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Abstract

In this paper, we apply a Control Lyapunov Function methodology to design two families of cruise controllers for the
two-dimensional movement of autonomous vehicles on lane-free roads using the bicycle kinematic model. The control
Lyapunov functions are based on measures of the energy of the system with the kinetic energy expressed in ways similar
to Newtonian or relativistic mechanics. The derived feedback laws (cruise controllers) are decentralized, as each vehicle
determines its control input based on its own speed and on the relative speeds and distances from adjacent vehicles and
from the boundary of the road. Moreover, the corresponding macroscopic models are derived, obtaining fluid-like models
that consist of a conservation equation and a momentum equation with pressure and viscous terms. Finally, we show
that, by selecting appropriately the parameters of the feedback laws, we can determine the physical properties of the
“traffic fluid”, i.e. we get free hand to create an artificial fluid that approximates the emerging traffic flow.
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1. Introduction

Traffic flow theory includes two fundamental classes of
mathematical models: microscopic and macroscopic. Mi-
croscopic traffic models aim to describe the longitudinal
(car-following) and lateral (e.g. lane-changing) movement5

of individual vehicles in the traffic stream; while macro-
scopic traffic flow models reflect the collective behavior of
vehicles by use of aggregate variables (flow, density, and
mean speed of vehicles).

The mathematical description of conventional traffic10

through microscopic models has been studied extensively
with various contributions and applications, see [4], [10],
[16], [17], [28], [35]. Recent advances in technology have
revolutionized vehicle automation with different kinds of
driver support systems (see for instance [9], [15], [25], [30],15

[35]). In the era of connected and automated vehicles,
new perspectives and principles have also been suggested
[26], where autonomous vehicles can move on the two-
dimensional surface of lane-free roads ([19], [38]) without
abiding to lane discipline, something that may improve20

traffic flow and increase capacity of highways and arteri-
als.

Macroscopic traffic flow modelling started in the 1950s
and continued to this day with a variety of models and
approaches, see for instance [2], [3], [6], [8], [11], [13], [18],25

?The research leading to these results has received funding from
the European Research Council under the European Union’s Horizon
2020 Research and Innovation programme/ ERC Grant Agreement
n. [833915], project TrafficFluid.

[20], [23], [31], [27], [32], [39], [40] and references therein.
Furthermore, several methodologies have been suggested
to derive macroscopic models from microscopic models,
see for instance [6], [8], [7], [13], [14], [29], [32], [36], [41]
and references therein.30

In this paper, we extend the Control Lyapunov Func-
tion (CLF) methodology presented in [19] to derive fami-
lies of cruise controllers for autonomous vehicles on lane-
free roads (Section 3). The CLFs also act as size functions
(Lemma 1 and Lemma 2) guaranteeing that the closed-35

loop system is well-posed. The construction of the CLF
is based on measures of the total energy of the system.
By expressing the kinetic energy in ways similar to New-
tonian or relativistic mechanics, two respective families of
cruise controllers are obtained that satisfy the following40

properties globally (Theorem 1 and Theorem 2): (i) there
are no collisions among vehicles or with the boundary of
the road; (ii) the speeds of all vehicles are always posi-
tive and remain below a given speed limit; (iii) the speeds
of all vehicles converge to a given speed set-point; and45

(iv) the accelerations, lateral speeds, and orientations of
all vehicles tend to zero. The proofs of the above results
can be found in Section 5. The proposed families of cruise
controllers are decentralized (per vehicle) and require ei-
ther the measurement only of the distances from adjacent50

vehicles (inviscid cruise controllers) or the measurement
of speeds of and distances from adjacent vehicles (viscous
cruise controllers). In contrast to the analysis presented
in [19], the vehicles are not assumed to have same size, i.e.
each vehicle may have different size.55

Finally, using the methodology in [13], we derive the
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macroscopic models that correspond to the closed-loop
systems with the derived cruise controllers (Section 4).
The resulting macroscopic models are very similar to mod-
els describing the flow of a Newtonian, compressible fluid60

in a porous or non-porous medium. We also provide the
explicit formulae that relate the physical characteristics
of the “traffic fluid” to the parameters of the cruise con-
trollers. This implies that, by changing the functions and
the parameters of the cruise controllers, we can actually65

determine the physical characteristics of the “traffic fluid”,
i.e. we get largely free hand to create an artificial fluid that
approximates the emerging traffic flow.

To understand how far the implications of the rela-
tions between the cruise controller parameters and the70

characteristics of the traffic fluid go, it is important to no-
tice that, for isentropic (or barotropic) flow of gases, the
dynamic viscosity and the pressure are always increasing
functions of the fluid density (see the discussion in [21]).
However, using the proposed families of cruise controllers,75

it is possible to obtain a traffic fluid with dynamic viscos-
ity and pressure that are non-monotone functions of the
fluid density (and can have local minima). Thus, the traf-
fic fluid can have very different physical properties from
the properties of real compressible fluids (mainly gases).80

Therefore, it can be claimed that the cruise control de-
sign procedure becomes the design procedure (with many
degrees of freedom) of an artificial fluid This is a math-
ematically founded realisation of the incentive, expressed
in [26], to design future traffic flow as an efficient artifi-85

cial fluid via appropriate design of the underlying vehicle
movement strategies.

Notation. Throughout this paper, we adopt the fol-
lowing notation. By R+ := [0,+∞) we denote the set of
non-negative real numbers. By |x| we denote both the Eu-90

clidean norm of a vector x ∈ Rn and the absolute value of
a scalar x ∈ R. By x′ we denote the transpose of a vector
x ∈ Rn. By dist(x,A) = inf {|x− y| : y ∈ A} we denote
the Euclidean distance of the point x ∈ Rn from the set
A ⊂ Rn. Let A ⊆ Rn be an open set. By C0(A,Ω), we95

denote the class of continuous functions on A ⊆ Rn, which
take values in Ω ⊆ Rm. By Ck(A; Ω), where k ≥ 1 is an
integer, we denote the class of functions on A ⊆ Rn with
continuous derivatives of order k, which take values in Ω ⊆
Rm. When Ω = R the we write C0(A) or Ck(A). For a100

function V ∈ C1(A ; R), the gradient of V at x ∈ A ⊆ Rn,

denoted by ∇V (x), is the row vector
[
∂V
∂x1

(x) · · · ∂V
∂xn

(x)
]
.

Let a(n), b(n) be quantities depending on the integer n ≥
1. We say that a(n) = b(n)+O(n−p), where p ≥ 1, if there
exists a constant K > 0 (independent of n ≥ 1) such that105

|a(n)− b(n)| ≤ K n−p for all n ≥ 1.

2. Vehicular Model Description

Consider n vehicles on a lane-free road of constant
width 2a > 0, where the movement of each vehicle i ∈

{1, ..., n} is described by the model

ẋi = vi cos(θi), ẏi = vi sin(θi) θ̇i = σ−1
i vi tan(δi), v̇i = Fi

(1)
where σi > 0 is the length of vehicle i (a constant). Here,
(xi, yi) ∈ R×(−a, a) is the reference point of the i-th vehi-
cle in an inertial frame with Cartesian coordinates (X,Y ),
with i ∈ {1, ..., n} and is placed at the midpoint of the rear
axle of the vehicle; vi ∈ (0, vmax) is the speed of the i-th
vehicle at the point (xi, yi), where vmax > 0 denotes the
road speed limit; θi ∈

(
−π2 ,

π
2

)
is the heading angle (ori-

entation) of the i-th vehicle with respect to the X axis;
δi is the steering angle of the front wheels relative to the
orientation θi of the i-th vehicle; and Fi is the accelera-
tion of the i-th vehicle. Model (1) is known as the bicycle
kinematic model (see [30]), and has been used to repre-
sent vehicles due to its simplicity to capture vehicle mo-
tion. In what follows, we use the input transformation
δi := arctan

(
σiv
−1
i ui

)
, to obtain the following system

ẋi =vi cos(θi), ẏi = vi sin(θi), θ̇i = ui, v̇i = Fi (2)

for i = 1, ..., n, where ui, Fi, are the inputs of the system.
Let v∗ ∈ (0, vmax) be a given speed set-point and define

the set

S := Rn × (−a, a)
n × (−ϕ,ϕ)

n × (0, vmax)n (3)

where ϕ ∈
(
0, π2

)
is an angle that satisfies

cos (ϕ) >
v∗

vmax
. (4)

The set S in (3) describes all possible states of the system
of n vehicles. Specifically, each vehicle should stay within110

the road, i.e., (xi, yi) ∈ R × (−a, a) for i = 1, ..., n; more-
over, the vehicles should not be able to turn perpendicular
to the road, hence it should hold that θi ∈ (−ϕ,ϕ) for
i = 1, ..., n. The constant ϕ can be understood as a safety
constraint, which restricts the movement of a vehicle; fi-115

nally, the speeds of all vehicles should always be positive,
i.e., no vehicle moves backwards; and all vehicles should
respect the road speed limit.

We define the distance between vehicles by

di,j :=
√

(xi − xj)2 + pi,j(yi − yj)2, for i, j = 1, ..., n (5)

where pi,j ≥ 1 are weighting factors that satisfy pi,j = pj,i
for all i, j = 1, ..., n. Note that, for pi,j = 1, we obtain
the standard Euclidean distance, while for larger values of
pi,j > 1, we have an “elliptical” metric, which can approx-
imate more accurately the dimensions of a vehicle. The
selection of the constants pi,j should be carried out based
on the length and width of the vehicle. For the case of n
vehicles of equal length, the optimal selection of a single p
can be found in [19]. Let

w = (x1, ..., xn, y1, ..., yn, θ1, ..., θn, v1, ..., vn)′ ∈ R4n. (6)
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Due to the various constraints explained above, the state
space of the model (2) is the set

Ω := {w ∈ S : di,j > Li,j , i, j = 1, ..., n , j 6= i } (7)

where Li,j , i, j = 1, ..., n, i 6= j, are positive constants
and represent the minimum distance between a vehicle i120

and a vehicle j, with Li,j = Lj,i for i, j = 1, ..., n, i 6=
j. To have a well-posed closed-loop system on the state
space Ω ⊂ R4n, the control inputs ui and Fi, i = 1, ..., n,
should be given by appropriate feedback laws which are
designed in such a way that every solution of (2) satisfies125

the following implication: w(0) ∈ Ω ⇒ w(t) ∈ Ω for all
t ≥ 0 (see Section 3).

Finally, it should be noted that model (2) is nonlinear
not only because of the nonlinearities appearing on the
right-hand sides of (2), but also due to the fact that the130

state space Ω is not a linear subspace of R4n, but an open
set (see [34] for the extension of the Input-to-State Stabil-
ity property to systems defined on open sets). As noted in
Section 1, model (2) with state space given by (7) is an ex-
tension of the model given in [19], where all vehicles were135

assumed to be identical and all distances between vehicles
were given by the same value of p in (5).

3. Two Families of Cruise Controllers

3.1. Preliminaries

In this section we present two families of cruise con-140

trollers for vehicles operating on lane-free roads that sat-
isfy the following properties:

(P1) Well-posedness requirement: For each w(0) ∈ Ω,
there exists a unique solution w(t) ∈ Ω defined for
all t ≥ 0. According to (7), this requirement implies145

that there are no collisions between vehicles (since
di,j(t) > Li,j for t ≥ 0, i, j = 1, ..., n, j 6= i) or with
the boundary of the road (since yi(t) ∈ (−a, a) for
t ≥ 0); the speeds of all vehicles are always posi-
tive and remain below the given speed limit (since150

vi(t) ∈ (0, vmax) for all t ≥ 0); and the orientation
of each vehicle is always bounded by the given value
ϕ ∈

(
0, π2

)
(since θi(t) ∈ (−ϕ,ϕ) for t ≥ 0).

(P2) Asymptotic requirement: The orientation of each ve-
hicle satisfies lim

t→+∞
(θi(t)) = 0 for i = 1, ..., n, and155

the speeds of all vehicles satisfy lim
t→+∞

(vi(t)) = v∗,

i = 1, ..., n, for a given a longitudinal speed set-point
v∗ ∈ (0, vmax). Moreover, the accelerations, angu-
lar speeds, and lateral speeds of all vehicles tend to
zero, i.e., lim

t→+∞
(Fi(t)) = 0, lim

t→+∞
(ui(t)) = 0, and160

lim
t→+∞

(ẏi(t)) = 0, for i = 1, ..., n.

Let Vi,j : (Li,j ,+∞) → R+, Ui : (−a, a) → R+, i, j =
1, ..., n, j 6= i be C2 functions and let κi,j : (Li,j ,+∞) →

R+,i, j = 1, ..., n, j 6= i be C1 functions that satisfy the
following properties

lim
d→L+

i,j

(Vi,j(d)) = +∞ (8)

Vi,j(d) = 0, for all d ≥ λ (9)

Vi,j(d) ≡ Vj,i(d), i, j = 1, ..., n, j 6= i (10)

lim
y→(−a)+

(Ui(y)) = +∞, lim
y→a−

(Ui(y)) = +∞ (11)

Ui(0) =0 (12)

κi,j(d) =0, for all d ≥ λ (13)

κi,j(d) ≡κj,i(d), i, j = 1, ..., n, j 6= i (14)

where λ is a positive constant that satisfies

λ > max {Li,j , i, j = 1, ..., n, i 6= j} . (15)

The families of functions Vi,j and Ui in (8), (9), (10), and
(11), (12), respectively, are potential functions, which have
been used to avoid collisions between vehicles and road
boundary violation (see for instance [37]). Condition (10)165

implies that if a vehicle i exerts a force to vehicle j, then
vehicle j exerts the opposite force to vehicle i. The func-
tions κi,j are used in the subsequent analysis for the intro-
duction of a viscous-like behavior of the vehicles.

We exploit next a Control Lyapunov Function (CLF)170

methodology and the potential functions above to derive
families of cruise controllers for autonomous vehicles on
lane-free roads that satisfy properties (P1) and (P2). The
construction of the Lyapunov function is based on mea-
sures of the total energy of the system. Depending on how175

the kinetic energy of the system is expressed, we obtain
two different families of cruise controllers. If the kinetic
energy is expressed in a fashion similar to that of New-
tonian mechanics, we call the corresponding controller a
Newtonian Cruise Controller (NCC); while, when the ki-180

netic energy is expressed in terms similar to those of rel-
ativistic mechanics, we call the corresponding controller a
Pseudo-Relativistic Cruise Controller (PRCC). The main
difference of those two approaches is that, in relativistic
mechanics, the kinetic energy increases to infinity when185

an object’s speed approaches the speed of light; while the
kinetic energy in Newtonian mechanics continues to in-
crease without bound as the speed of an object increases.
Finally, when κi,j(d) ≡ 0 for i, j = 1, ..., n, j 6= i, we call
the controller “inviscid” since the corresponding macro-190

scopic model does not contain a viscosity term; otherwise,
the corresponding controller is called “viscous”.
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3.2. Newtonian Cruise Controller (NCC)

The CLF in this case is given by the formula

H(w) :=
1

2

n∑
i=1

(vi cos(θi)− v∗)2
+
b

2

n∑
i=1

v2
i sin2(θi)

+

n∑
i=1

Ui(yi) +
1

2

n∑
i=1

∑
i 6=j

Vi,j(di,j)

+A

n∑
i=1

(
1

cos(θi)− cos(ϕ)
− 1

1− cosϕ

)
(16)

where A > 0, b > 1− v∗

vmax
> 0 (recall that v∗ ∈ (0, vmax))

are parameters of the controller and the Lyapunov func-195

tion. The function H in (16) is based on the total mechani-
cal energy of the system of n vehicles. Specifically, the first
two terms ( 1

2

∑n
i=1(vi cos(θi) − v∗)2 + b

2

∑n
i=1 v

2
i sin2(θi))

are related to the kinetic energy of the system of n vehicles
relative to an observer moving along the x−direction with200

speed equal to v∗(as in classical mechanics); they penalize
the deviation of the longitudinal and lateral speeds from
their desired values v∗ and zero, respectively. The sum
of the third and fourth term (

∑n
i=1 Ui(yi) + 1

2

∑n
i=1

∑
j 6=i

Vi,j(di,j)), which are based on the potential functions (8)205

and (11), is related to the potential energy of the sys-
tem. Finally, the last term of (16) (A

∑n
i=1( 1

cos(θi)−cos(ϕ)−
1

1−cos(ϕ) )) is a penalty term that blows up when θi → ±ϕ.

While the CLF (16) has characteristics of a size func-
tion (see [34]), it is not a (global) size function, since H210

takes finite values for vi /∈ (0, vmax). The following lemma
shows the partial size function properties of the Lyapunov
function H.

Lemma 1: Let constants A > 0, vmax > 0, v∗ ∈
(0, vmax), Li,j > 0, i, j = 1, ..., n, i 6= j, λ > 0 that sat-
isfies (15), ϕ ∈

(
0, π2

)
that satisfies (4), and define the

function H : Ω → R+ by means of (16), where Ω is
given by (7). Then, there exist non-decreasing functions
ω : R+ → [0, ϕ), ηi : R+ → [0, a), i = 1, ..., n, and for
each pair i, j ∈ {1, ..., n}, i 6= j, there exist non-increasing
functions ρi,j : R+ → (Li,j , λ] with ρi,j(s) ≡ ρj,i(s), such
that the following implications holds:

w ∈Ω⇒ |θi| ≤ ω (H(w)) , |yi| ≤ ηi (H(w)) ,

di,j ≥ ρi,j (H(w)) , for i, j = 1, ..., n , j 6= i.
(17)

Based on the CLF (16), we obtain the feedback laws

ui=Zi(w)− U ′i(yi)−
∑
j 6=i

pi,jV
′
i,j(di,j)

(yi − yj)
di,j

− b sin(θi)Fi


×

(
v∗ +

A

vi (cos(θi)− cos(ϕ))
2 + vi cos(θi)(b− 1)

)−1

(18)

Fi = − 1

cos(θi)
(ki(w) (vi cos(θi)− v∗) + Λi(w)) (19)

where

Zi(w) := −µ1vi sin(θi)

+
∑
j 6=i

κi,j(di,j) (g2(vj sin(θj))− g2(vi sin(θi)))
(20)

Λi(w) =
∑
j 6=i

V ′i,j(di,j)
(xi − xj)
di,j

−
∑
j 6=i

κi,j(di,j) (g1(vj cos(θj))− g1(vi cos(θi)))
(21)

ki(w) = µ2 +
Λi(w)

v∗
+

vmax cos(θi)

v∗(vmax cos(θi)− v∗)
r (−Λi(w))

(22)

and µ1, µ2 > 0 are constants (controller gains), and r ∈
C1(R), gj ∈ C1(R), j = 1, 2, are functions that satisfy

max(0, x) ≤r(x) for all x ∈ R (23)

g′j(x) >0 for x ∈ R, j = 1, 2. (24)

The term ki(w) in the acceleration Fi(t) given by (22),
is a state-dependent controller gain, which guarantees that215

the speed of each vehicle will remain positive and less than
the speed limit. The first term in (19) drives the longitudi-
nal speed of a vehicle towards the speed set-point v∗. If Vi,j
in (8), (9) is monotone, then, if vehicle j is behind vehicle

i, i.e., (xi − xj) > 0, we have that −V ′i,j(di,j)
(xi−xj)
di,j

> 0,220

and this term represents the effect of nudging [26], since
vehicles that are close and behind vehicle i will exert on
it a “pushing” force that increases its acceleration. Notice
that the fact that b > 1− v∗

vmax
implies that the denomina-

tor in (18) is positive for all vi ∈ (0, vmax), θi ∈ (−ϕ,ϕ),225

i = 1, ..., n. It should be noted that properties (9) and
(13) guarantee that the feedback laws (18) and (19), are
decentralized (per vehicle) and depend only on the rel-
ative speeds and distances from adjacent vehicles, more
precisely from vehicles that are located at a distance less230

than λ > 0.
When the NCC is inviscid, then it does not require

measurement of the speeds of the adjacent vehicles.

3.3. Pseudo-Relativistic Cruise Controller (PRCC)

The CLF in this case is given by

HR(w) :=
1

2

n∑
i=1

(vi cos(θi)− v∗)2
+ bv2

i sin2(θi)

(vmax − vi) vi

+

n∑
i=1

Ui(yi) +
1

2

n∑
i=1

∑
i 6=j

Vi,j(di,j)

+A

n∑
i=1

(
1

cos(θi)− cos(ϕ)
− 1

1− cosϕ

)
(25)

where A > 0, b > 1− v∗

vmax
> 0 (recall that v∗ ∈ (0, vmax))235

are parameters of the controller and the Lyapunov func-
tion. Notice that the kinetic energy term in HR (i.e.,
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the term 1
2

∑n
i=1

(vi cos(θi)−v∗)2+bv2i sin2(θi)
(vmax−vi)vi ) is not related

to the kinetic energy of classical mechanics, but is similar
to the kinetic energy of a system of n particles in rela-240

tivistic mechanics, with speed limits 0 and vmax in place
of −c and c, where c is the speed of light, which are the
speed limits in relativistic mechanics. In relativistic me-
chanics, the kinetic energy increases to infinity when the
speed of an object approaches (in absolute value) the speed245

of light, which indicates that no object with mass can reach
the speed of light. Analogously, in (25), the kinetic en-
ergy term grows to infinity as the speed of a vehicle ap-
proaches zero or the maximum speed vmax, thus restricting
the speed of vehicles in (0, vmax). As in the case of (16),250

the sum of the terms
∑n
i=1 Ui(yi) + 1

2

∑n
i=1

∑
j 6=i Vi,j(di,j)

is related to the potential energy of the system; and the

last term of (25) (A
∑n
i=1

(
1

cos(θi)−cos(ϕ) −
1

1−cos(ϕ)

)
) is a

penalty term that blows up when θi → ±ϕ.
The following result shows that the function HR is a255

size function for the state space Ω defined by (7).
Lemma 2: Let constants A > 0, vmax > 0, v∗ ∈ (0, vmax),
Li,j > 0, i, j = 1, ..., n, i 6= j, λ > 0 that satisfies (15),
ϕ ∈

(
0, π2

)
that satisfies (4), and define the function HR :

Ω→ R+ by means of (25), where Ω is given by (7). Then,
there exist non-decreasing functions ηi : R+ → [0, a), i =
1, ..., n, `2 : R+ → [v∗, vmax), ω : R+ → [0, ϕ), a non-
increasing function `1 : R+ → (0, v∗], and, for each pair
i, j = 1, ..., n, i 6= j, there exist non-increasing functions
ρi,j : R+ → (Li,j , λ] with ρi,j(s) ≡ ρj,i(s), such that the
following implications hold for all i, j = 1, ..., n, j 6= i:

w ∈ Ω⇒`1 (HR(w)) ≤ vi ≤ `2 (HR(w)) , |θi| ≤ ω (HR(w)) ,

|yi| ≤ ηi (HR(w)) , di,j ≥ ρi,j (HR(w)) , (26)

Let fj : R→ R, j = 1, 2, be C1 functions that satisfy:

fj(0) = 0 and x fj(x) > 0, for x 6= 0, j = 1, 2 (27)

and gj : R → R, j = 1, 2, be C1 functions that satisfy
(24). The controllers that correspond to the CLF (25) are

ui =
vi

β(vi, θi)

(
Gi(w)− U ′i(yi)− a(vi, θi)Fi

−
∑
j 6=i

pi,jV
′
i,j(di,j)

(yi − yj)
di,j

) (28)

Fi =
1

q(vi, θi)

Ri(w)−
∑
j 6=i

V ′i,j(di,j)
(xi − xj)
di,j

 (29)

where

Gi(w) = −f2 (vi sin(θi))

+
∑
j 6=i

κi,j (di,j) (g2 (vj sin(θj))− g2 (vi sin(θi)))
(30)

Ri(w) = −f1 (vi cos(θi)− v∗)

+
∑
j 6=i

κi,j (di,j) (g1 (vj cos(θj))− g1 (vi cos(θi)))
(31)

and

q(v, θ) :=
vmaxv cos(θ) + v∗vmax − 2v∗v

2 (vmax − v)
2
v2

(32)

β(v, θ) :=
A

(cos(θ)− cos(ϕ))
2 +

(b− 1)v cos(θ) + v∗

(vmax − v)
(33)

a(v, θ) :=
bvmax sin(θ)

2 (vmax − v)
2
v
. (34)

Notice that the definition of b implies that β(v, θ) > 0 for
all v ∈ (0, vmax), and θ ∈ (−ϕ,ϕ).

The pseudo-relativistic feedback laws (28) and (29) are
derived by using the CLF (25), which is also a size func-260

tion. Compared to the Newtonian controller (18), (19),
the controller (28), (29) is simpler, since it does not use
state-dependent controller gains to restrict the speed in
(0, vmax) (due to the properties of the size function HR).
The function 1

q(v,θ) in (29), (32) drives the acceleration Fi265

to zero, when the speed of the vehicle tends to zero or to
the maximum speed vmax. Finally, notice that properties
(9) and (13) guarantee that the feedback laws (28) and
(29), are decentralized (per vehicle) and depend only on
the relative speed of and distance from adjacent vehicles,270

namely vehicles that are located at a distance less than
λ > 0.

Again, it should be noted that, when the PRCC is in-
viscid, then it does not require measurement of the speeds
of the adjacent vehicles.275

3.4. Main Results

The following theorem shows that each of the closed-
loop systems (2), (18), (19), and (2), (28), (29) satisfy
properties (P1) and (P2).
Theorem 1 (Closed-loop system with PRCC): For
every w0 ∈ Ω there exists a unique solution w(t) ∈ Ω of the
initial-value problem (2), (28), (29) with initial condition
w(0) = w0. The solution w(t) ∈ Ω is defined for all t ≥ 0
and satisfies, for i = 1, ..., n,

lim
t→+∞

(vi(t)) = v∗, lim
t→+∞

(θi(t)) = 0 (35)

lim
t→+∞

(ui(t)) = 0, lim
t→+∞

(Fi(t)) = 0. (36)

Moreover, there exist non-decreasing functions Qk : R+ →
R+ (k = 1, 2) such that the following inequalities hold for
every solution w(t) ∈ Ω of (2), (28), (29)

max
i=1,...,n

(|Fi(t)|) ≤ Q1(HR(w(0))), for all t ≥ 0 (37)

max
i=1,...,n

(|ui(t)|) ≤ Q2(HR(w(0))), for all t ≥ 0 (38)

Theorem 2 (Closed-loop system with NCC): For
every w0 ∈ Ω there exists a unique solution w(t) ∈ Ω of
the initial-value problem (2), (18), (19) with initial condi-
tion w(0) = w0. The solution w(t) ∈ Ω is defined for all
t ≥ 0 and satisfies (35) and (36) for all i = 1, ..., n. More-
over, there exist non-decreasing functions Qk : R+ → R+
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(k = 3, 4) such that the following inequalities hold for ev-
ery solution w(t) ∈ Ω of (2), (18), (19):

max
i=1,...,n

(|Fi(t)|) ≤ Q3(H(w(0))), for all t ≥ 0 (39)

max
i=1,...,n

(|ui(t)|) ≤ Q4(H(w(0))), for all t ≥ 0 (40)

Remarks: (i) The results of Theorem 1 and Theorem280

2 hold globally, i.e., for any initial condition w0 ∈ Ω.
(ii) It is important to notice that, due to technical con-
straints, an inequality of the form |Fi(t)| ≤ K must be
satisfied for all t ≥ 0, where K > 0 is a constant that de-
pends on the technical characteristics of the vehicles and285

the road, as well as passenger convenience. Inequalities
(37), (39) allow us to determine the set of initial condi-
tions w0 ∈ Ω, for which the inequality |Fi(t)| ≤ K holds:
it includes the set of all w0 ∈ Ω with Q1(HR(w0)) ≤ K
in the case of PRCC and Q3(H(w0)) ≤ K in the case of290

NCC.
(iii) The proofs of Theorem 1 and Theorem 2 rely on Bar-
balat’s Lemma, (see [22]) which only guarantees asymp-
totic convergence rate. Simulations indicate that, by in-
creasing viscosity, we may increase the convergence rate295

of the vehicles speeds to the speed set point v∗ for the
closed-loop system with both NCC and PRCC. However,
the convergence rate is not exponential (see the analysis
in [20]).

3.5. Simulation Results300

To illustrate the behaviour of the closed-loop systems
with the NCCs and PRCCs, we consider the case of n = 10
vehicles of equal length and we set Li,j = L and pi,j = p
for all i, j = 1, ..., n. Let

Vi,j(d) =

{
q1

(λ−d)3

d−L , L < d ≤ λ
0 , d > λ

(41)

Ui(y) =


(

1
a2−y2 −

c
a2

)4 ,−a < y < −a
√
c−1√
c

and a
√
c−1√
c

< y < a

0 ,−a
√
c−1√
c
≤ y ≤ a

√
c−1√
c

(42)

κi,j(d) =

{
q2(λ− d)2 , L < d ≤ λ

0 , d > λ
(43)

where λ > L > 0, c ≥ 1 and q1 > 0, q2 ≥ 0.
For the PRCC, we considered the case where f1(s) =

µ2s, f2(s) = µ1s, gk(s) = s, for k = 1, 2 with µ2 > 0
and gk(s) = s, k = 1, 2. For the NCC, the function r(x)
satisfying (22) was selected to be

r(x) =
1

2ε


0 , if x ≤ −ε
(x+ ε)

2
, if − ε < x < 0

ε2 + 2εx , if x ≥ 0
(44)

where ε > 0.
Notice that, when vi ≈ v∗, θi ≈ 0 and d ≈ λ, then

q(v, θ) ≈ v2
max and ki(w) ≈ µ2. In order to compare the

Figure 1: Convergence of H for the inviscid and viscous NCC and
PRCC.

two controllers, the gains of the controllers are set approx-305

imately equal. Thus, we selected µ2 = v−2
max, A = 1, β = 1

and q1 = v−2
max10−3 for the PRCC, with q2 = 0.5v−2

max for
the viscous case and q2 = 0 for the inviscid case; and
q1 = 10−3,µ2 = v−1

max, µ1 = 0.4, A = 1, β = 1 for the
NCC, with q2 = 0.5 for the viscous case and q2 = 0 for the310

inviscid case. Finally, we selected c = 1.5, λ = 25, ε = 0.2,
vmax = 35, a = 7.2, and ϕ = 0.25, p = 5.11 and L = 5.59.

As a measure for comparison, we use the CLF H de-
fined by (16) for both the NCC and PRCC. Figure 1 shows
the asymptotic convergence ofH for the inviscid case (solid315

line) and the viscous case (dashed line) for both the NCC
and PRCC. It is shown that convergence of H is faster in
the viscous case than in the inviscid case for both cruise
controllers. This indicates that the additional measure-
ment requirements of the viscous cruise controllers pro-320

vide a direct advantage over the inviscid case, where no
measurement of the speeds of the adjacent vehicles is re-
quired.
4. Macroscopic Models

In this section we present the macroscopic models that325

correspond to the microscopic model (2) with the NCC
(18), (19) or the PRCC (28), (29). The derivation of the
macroscopic models below can be found in the Appendix.

Let ρmax, vmax > 0 and v∗ ∈ (0, vmax), ρ̄ ∈ (0, ρmax) be
constants and let µ : (0, ρmax) → R+, P : (0, ρmax) → R+

be C2 ((0, ρmax)) and non-negative functions that satisfy:

lim sup
ρ→ρ−max

(P (ρ)) = +∞, (45)

µ(ρ) =0, P (ρ) = 0 for all ρ ∈ (0, ρ̄] (46)

The macroscopic model that corresponds to the micro-
scopic model (2) under the PRCC (28), (29) is the fol-
lowing system of PDEs for t > 0 and x ∈ I(t), where
I(t) ⊆ R is an appropriate interval

∂ ρ

∂ t
+

∂

∂ x
(ρv) = 0, (47)

q(v)
∂ v

∂ t
+q(v)v

∂ v

∂ x
+
P ′(ρ)

ρ

∂ ρ

∂ x
=

1

ρ

∂

∂ x

(
∂ v

∂ x
g′(v)µ (ρ)

)
− f (v − v∗) (48)
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with constraints 0 < ρ(t, x) < ρmax, 0 < v(t, x) < vmax for
all t > 0 and x ∈ I(t), where g ∈ C1 (R) is an increasing
function with g′(v) > 0 for all v ∈ R, f : R → R with
f(0) = 0 is a C1 function with x f(x) > 0 for all x 6= 0
and

q(v) :=
vmaxv − 2v∗v + v∗vmax

2 (vmax − v)
2
v2

. (49)

The term f(v − v∗) is a relaxation term that describes
the tendency of vehicles to adjust their speed to the speed330

set-point v∗ and is similar to friction, see [12]. The term
P ′(ρ)
ρ

∂ ρ
∂ x is a pressure term and expresses the tendency to

accelerate or to decelerate based on the (local) density.
Finally, the term 1

ρ
∂
∂ x

(
∂ v
∂ xg

′(v)µ (ρ)
)
, is a viscosity term,

by analogy with the theory of fluids, with µ(ρ) playing the335

role of dynamic viscosity. When g(v) ≡ v, the viscosity
term is exactly the same as the viscosity term appearing
in compressible fluid flow (see [21], [24], [33] and references
therein). When g(v) does not coincide with v, then the
viscosity term is similar to the viscosity term appearing in340

porous fluid flow (see [1]).
The macroscopic model that corresponds to the NCC

is given by the continuity equation (47) and the following
momentum equation for t > 0 and x ∈ I(t), where I(t) ⊆
R is an appropriate interval

∂ v

∂ t
+ v

∂ v

∂ x
+
P ′(ρ)

ρ

∂ρ

∂x
=

1

ρ

∂

∂x

(
∂v

∂x
g′(v)µ(ρ)

)
− (γ + h (G)) (v − v∗)

(50)

where

G =− P ′(ρ)

ρ

∂ρ

∂x
+

1

ρ

∂

∂x

(
∂v

∂x
g′(v)µ(ρ)

)
h(s) =

vmaxr(s)

v∗(vmax − v∗)
− s

v∗

and r ∈ C1 satisfies max(0, x) ≤ r(x) for all x ∈ R. Again,
the macroscopic model (47), (50) is to be considered with
constraints 0 < ρ(t, x) < ρmax, 0 < v(t, x) < vmax for all
t > 0 and x ∈ I(t), with g ∈ C1 (R) being an increasing345

function with g′(v) > 0 for all v ∈ R and γ > 0 being a
constant.

Remarks: (i) Both models (47), (48) and (47), (50)
do not include non-local terms and have certain charac-
teristics from the kinematic theory of fluids. Traffic flow350

is isotropic, as in fluid flow, since the vehicles are au-
tonomous and do not react based on downstream vehicles
only (as in conventional traffic). Due to the nudging in-
duced by the NCCs and PRCCs, vehicles are affected by
both upstream and downstream vehicles.355

(ii) There are infinite equilibrium points for both models,
namely the points where v(x) ≡ v∗ and ρ(x) ≤ ρ̄ for all
x ∈ R.
(iii) For the inviscid NCC-based model (µ(s) ≡ 0), it was
shown in [20], that, if the density is sufficiently small, then360

the solution of the macroscopic model approaches the equi-
librium speed (in the sup norm); while the density con-
verges exponentially to a traveling wave.

(iv) the model (50) is highly nonlinear due to the presence
of a highly nonlinear relaxation term (γ + h (G)) (v − v∗)365

in the speed PDE.
The macroscopic models (47), (48) and (47), (50) can

approximate the movement of n identical vehicles with to-
tal mass m > 0 on a straight road under the PRCC (28),
(29) and under the NCC (18), (19) when the following370

assumption holds:
Assumption H: (i) the vehicles are constrained to

move on a line (longitudinal motion),
(ii) there exist constants λ > L > 0 with λ < 2L such
that Vi,j(s) = Φ (ns) for all i, j = 1, ..., n and s > L/n,375

where Φ : (L,+∞) → R+ is a C2 function that satisfies
lim
d→L+

(Φ(d)) = +∞ and Φ(d) = 0 for all d ≥ λ,

(iii) κi,j(s) = n2K(ns), for all i, j = 1, ..., n and s > L/n,
where K : (L,+∞) → R+ is a C1 function that satisfies
K(d) = 0 for all d ≥ λ, and380

(iv) the number of vehicles n is very large (tends to infin-
ity).

Note that assumption (i) above, is not always accurate
since it neglects the lateral movement of vehicles. The
derivation of the macroscopic models (47), (48) and (47),385

(50) is analogous to the approach in [2], [3], and [13], and
follows by appropriate scaling (H(ii)-H(iii)) and by increas-
ing the number of vehicles to infinity (H(iv)). An alter-
native approach would be to consider the rigorous formu-
lation proposed in [8] and [32], through which it is shown390

that the macroscopic models are the limit of the solutions
of the microscopic models.

We next present the relations between the various pa-
rameters and functions involved in the NCC and PRCC
on one hand; and the corresponding macroscopic quan-395

tities involved in the macroscopic models on the other
hand. Table 1 shows how all parameters and functions
of the macroscopic models can be directly obtained from
the corresponding microscopic models.

Notice that the pressure P is based on the derivative of400

the potential Φ, which, in the microscopic case, exerts the
same force to the following and preceding vehicle (nudg-
ing). The latter is in analogy with fluids where pressure at
any point in a fluid is (locally) the same in all directions.
The dynamic viscosity µ(ρ) makes the “traffic fluid” act405

as a Newtonian fluid. However, in contrast to actual flu-
ids, the “traffic fluid” induced by the PRCCs or the NCCs
satisfies (46). The function g(v) is met in various nonlin-
ear PDEs. For fluid flows in non-porous media, we have
g(v) ≡ v. For compressible fluid flows in porous media, the410

function g(v) takes the form g(v) = cvm, where c,m > 0
are constants (see [1], but notice also the essential differ-
ence that, for flow in porous media, the function g is a
function of the density ρ instead of the speed v). The
relaxation terms appear as friction terms (see [12], but,415

instead of penalizing the speed v, the relaxation terms pe-
nalize the deviation of the speed from the desired speed
v∗).

The most important implication from Table 1 is the
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Macroscopic Microscopic
Maximum Density ρmax = m

L

Maximum Speed vmax = vmax

Desired Speed v∗ = v∗

Interaction
Density

ρ̄ = m
λ

Dynamic Viscosity µ(ρ) = m2

ρ K
(
m
ρ

)
g(v) = g1(v)

Pressure P (ρ) = z −mΦ′
(
m
ρ

)
,

arbitrary z ∈ R
Relaxation Term
for the PRCC

f(v − v∗) = f1(v − v∗)

Relaxation Term
for the NCC

r(x) = r(x)

Constant Parame-
ter for the NCC

γ = µ2

Table 1: Relations between macroscopic and microscopic quantities

fact that, by changing the functions and the parameters of420

the NCCs and the PRCCs, we can directly determine the
physical properties of the “traffic fluid”. In this sense, we
may talk about an engineered or designed artificial fluid
that approximates the actual emerging traffic flow. To
understand how far the implications of the relations be-425

tween the cruise controller parameters and the character-
istics of the traffic fluid go, it is important to notice that
for isentropic (or barotropic) flow of gases, the dynamic
viscosity and the pressure are always increasing functions
of the fluid density (see the discussion in [21]). However,430

for a traffic fluid that emerges from the use of NCCs or
PRCCs, if the cruise controller uses a non-monotone po-
tential function Φ or a non-monotone viscosity function K,
then it is possible to obtain a traffic fluid with dynamic vis-
cosity and pressure, which are non-monotone functions of435

the fluid density (and can have local minima). Thus, the
traffic fluid can be arranged to have very different physical
properties from those of real compressible fluids (gases).

5. Proofs

The proof of Lemma 1 is a straightforward modification440

of Proposition 1 in [19] and is omitted.
Proof of Lemma 2: The existence of the functions

ηi : R+ → [0, a), ρi,j : R+ → (Li,j , λ], i, j = 1, ..., n, i 6= j,
and ω : R+ → [0, ϕ) for which implication (26) holds, is
a direct consequence of Lemma 1 with HR(w) in place
of H(w). It suffices to show that the first inequality in

(26) holds. Define the function f(v) := (v−v∗)2
(vmax−v)v which

is increasing on [v∗, vmax) and decreasing on (0, v∗] with
f(v∗) = 0 and satisfies

f(vi) ≤ HR(w) for all w ∈ Ω. (51)

Define the function `1 : R+ → (0, v∗] to be equal to the
inverse function of f restricted on (0, v∗]. The function

`1 : R+ → (0, v∗] is decreasing with `1(0) = v∗ and
lim

v→+∞
`1(v) = 0. Define also the function `2 : R+ →445

[v∗, vmax) to be equal to the inverse function of f restricted
on [v∗, vmax). The function `2 : R+ → [v∗, vmax) is in-
creasing with `2(0) = v∗ and lim

v→+∞
`2(v) = vmax. Then,

due to definitions of `1, `2 above and (51) it holds that
0 < `1(HR(w)) ≤ vi ≤ `2(HR(w)) < vmax.450

/
The proof of Theorem 1 is performed by using Bar-

balat’s lemma ([22]) and its following variant which uses
uniform continuity of the derivative of a function.
Lemma 3: If a function g ∈ C2 (R+) satisfies lim

t→+∞
(g(t))455

∈ R and sup
t≥0

(|g̈(t)|) < +∞, then, lim
t→+∞

(ġ(t)) = 0.

Proof of Theorem 1: Let w0 ∈ Ω and consider the
unique solution w(t) of the initial value problem (2), (28),
(29). Using the fact that the set Ω is open (recall def-
initions (3), (7)), we conclude that there exists tmax ∈460

(0,+∞] such that the solution w(t) of (2), (28), (29) is
defined on [0, tmax) and satisfies w(t) ∈ Ω for all t ∈
[0, tmax). Furthermore, if tmax < +∞ then there exists an
increasing sequence of times { ti ∈ [0, tmax) : i = 1, 2, ...}
with lim

i→+∞
(ti) = tmax and either lim

i→+∞
(dist (w(ti), ∂Ω)) =465

0 or lim
i→+∞

(|w(ti)|) = +∞.

We show first, that the solution w(t) of the initial value
problem (2), (28), (29) satisfies w(t) ∈ Ω for all t ≥ 0. By
using (2), (5), (25), (28), (29), properties (10), (14), the

fact that
∑n
i=1

∑
j 6=i V

′
i,j(di,j)

(xi−xj)
di,j

= 0, and definitions470

(32), (33), and (34), it follows that for all w ∈ Ω

∇HR(w)ẇ=−
n∑
i=1

(vi cos(θi)− v∗) f1 (vi cos(θi)− v∗)

−
n∑
i=1

vi sin(θi)f2 (vi sin(θi))

− 1

2

n∑
i=1

∑
j 6=i

κi,j (di,j(t)) (vj(t) sin(θj(t))− vi(t) sin(θi(t)))

× (g2 (vj(t) sin(θj(t)))− g2 (vi(t) sin(θi(t))))

− 1

2

n∑
i=1

∑
j 6=i

κi,j (di,j(t)) (vj(t) cos(θj(t))− vi(t) cos(θi(t)))

(g1 (vj(t) cos(θj(t)))− g1 (vi(t) cos(θi(t))))
(52)

It follows from (24), (27), and (52) that for all w ∈ Ω

∇HR(w)ẇ ≤ 0 (53)

Since w(t) ∈ Ω for all t ∈ [0, tmax), it follows from (3), (7)
that vi(t) ∈ (0, vmax), θi(t) ∈ (−ϕ,ϕ) for all t ∈ [0, tmax)
and i = 1, ..., n. Thus, (2) implies that 0 ≤ ẋi(t) ≤ vmax

for all t ∈ [0, tmax) and i = 1, ..., n. Moreover, inequality
(53) implies that

HR(w(t)) ≤ HR(w0), for all t ∈ [0, tmax) (54)
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Consequently, we obtain from (26) that for all t ∈ [0, tmax)
and i, j = 1, ..., n, j 6= i:

`1 (HR(w0)) ≤ vi(t) ≤ `2 (HR(w0)) , |θi(t)| ≤ ω (HR(w0)) ,

|yi(t)| ≤ ηi (HR(w0)) , xi(0) ≤ xi(t) ≤ xi(0) + vmaxt ,

di,j(t) ≥ ρi,j (HR(w0)) > Li,j (55)

which imply that for every increasing sequence of times
{ti ∈ [0, tmax) : i = 1, 2, ...} with lim

i→+∞
(ti) = tmax we can-

not have lim
i→+∞

(dist(w(ti), ∂Ω)) = 0 or lim
i→+∞

(|wi(t)|) =

+∞. Therefore, tmax =∞.475

Next, define

∆(t) :=

n∑
i=1

(vi(t) cos(θi(t))− v∗) f1 (vi(t) cos(θi(t))− v∗)

+

n∑
i=1

vi(t) sin(θi(t))f2 (vi(t) sin(θi(t)))

+
1

2

n∑
i=1

∑
j 6=i

κi,j (di,j(t)) (vj(t) sin(θj(t))− vi(t) sin(θi(t)))

× (g2 (vj(t) sin(θj(t)))− g2 (vi(t) sin(θi(t))))

+
1

2

n∑
i=1

∑
j 6=i

κi,j (di,j(t)) (vj(t) cos(θj(t))− vi(t) cos(θi(t)))

× (g1 (vj(t) cos(θj(t)))− g1 (vi(t) cos(θi(t))))
(56)

Notice that definition (56) and (52), (53) imply that ∆(t) =
− d
d tHR(w(t)) ≥ 0 for all t ≥ 0. Notice also that lim

t→+∞
H(w(t))

exists due to conditions (53) and (54) (since the limit of
a bounded and monotone function is finite). Therefore,
since HR(w) ≥ 0 for all w ∈ Ω, we obtain:∫ ∞

0

∆(t)dt ≤ HR(w0). (57)

In order to show that the solution of system (2), (28), (29)
satisfies (35), it suffices to show that there exists a constant
M̄ > 0 such that ∣∣∣∣ ddt (∆(t))

∣∣∣∣ ≤ M̄. (58)

Indeed, if (58) holds for some constant M̄ > 0, then, ∆(t)
is uniformly continuous and due to (57), we can apply
Barbalat’s lemma ([22]), to obtain that lim

t→+∞
∆(t) = 0.

Then, by using assumption (27) and the fact that ∆(t) ≥ 0
for all t ≥ 0, it can be shown that (35) holds.480

In order to prove (58), we show first that (37) and (38)
hold. Define

Bi,j(s) := max
{
|V ′i,j(d)| : s ≤ d ≤ λ

}
for s ∈ (Li,j , λ],

i, j = 1, ..., n, j 6= i (59)

ci,j(s) := max {κi,j(d) : s ≤ d ≤ λ} for s ∈ (Li,j , λ],

i, j = 1, ..., n, j 6= i (60)

ζi(s) := max {|U ′i(y) : |y| ≤ s} for s ∈ [0, a). (61)

Notice that definition (5) implies that∣∣∣∣xi − xjdi,j

∣∣∣∣ ≤ 1 and

∣∣∣∣yi − yjdi,j

∣∣∣∣ ≤ 1
√
pi,j

(62)

for all w ∈ Ω, i, j = 1, . . . , n, j 6= i. Moreover, for each
i = 1, ..., n, let mi ≥ 2 be the maximum number of points
that can be placed within the area bounded by two con-
centric ellipses with semi-major axes L̄i = min{Li,j , j =
1, ..., n, j 6= i} and λ satisfying (15), and semi-minor axes

L̄i

max
j 6=i

√
pi,j

and λ
min
j 6=i

√
pi,j

so that each point has distance (in

the metric given by (5)) at least L̄i from every other point.
Then, it follows from (5), (9), the fact that di,j > Li,j for
i, j = 1, ..., n, j 6= i and the definition of mi above, that the

sums
∑
j 6=i V

′
i,j(di,j)

(xi−xj)
di,j

,
∑
j 6=i pi,jV

′
i,j(di,j)

(yi−yj)
di,j

contain at most mi non-zero terms, namely the

terms with di,j ≤ λ. Definition (59) in conjunction with
(26), (62) and the fact that pi,j ≥ 1 for all i, j = 1, ..., n,
j 6= i, implies the following estimate for all w ∈ Ω and
i = 1, ..., n:

max

∣∣∣∣∣∣
∑
j 6=i

V ′i,j(di,j)
(xi − xj)
di,j

∣∣∣∣∣∣ ,
∣∣∣∣∣∣
∑
j 6=i

pi,jV
′
i,j(di,j)

(yi − yj)
di,j

∣∣∣∣∣∣


≤
∑
j 6=i

√
pi,jBi,j (di,j) ≤

∑
j 6=i

√
pi,jBi,j (ρi,j(HR(w)))

≤ mi max
j 6=i

(√
pi,jBi,j (ρi,j(HR(w)))

)
(63)

Moreover, due to (13), (26) and (60), it holds that∑
j 6=i

κi,j(di,j) ≤ mi max
j 6=i

(ci,j(ρi,j(HR(w)))) . (64)

Notice also that due to (4) and the facts that vi ∈ (0, vmax)
and cos(θ) > cos(ϕ), θ ∈ (−ϕ,ϕ), ϕ ∈

(
−π2 ,

π
2

)
, we have

that vmaxvi cos(θi) + v∗vmax − 2v∗vi ≥ v∗(vmax − vi) > 0,
i = 1, ..., n. The previous inequality together with (32)
implies that

1

q(vi(t), θi(t))
≤ 2(vmax − vi(t))v2

i (t)

v∗
≤ 2v3

max

v∗
, for t ≥ 0

(65)
Using (34), (55) and the facts that `2 : R+ → [v∗, vmax),
is non-decreasing and `1 : R+ → (0, v∗] is non-increasing,
we obtain the following estimate,

a(vi(t), θi(t)) ≤
bvmax

2 (vmax − `2(HR(w0)))
2
`1(HR(w0))

.

(66)
Moreover, due to the facts that vi ∈ (0, vmax), θi ∈

(
−π2 ,

π
2

)
for i = 1, ..., n and continuity of fk, k = 1, 2, we have that

|f1(vi(t) cos(θi(t))− v∗)| ≤ ξ1 := max
x∈[−v∗,vmax−v∗]

(|f1(x)|)

for i = 1, ..., n and t ≥ 0 (67)

|f2(vi(t) sin(θi(t)))| ≤ ξ2 := max
x∈[−vmax,vmax]

(|f2(x)|)

for i = 1, ..., n and t ≥ 0 (68)

9



Then, (24), (29), (31), (55), (63), (64), (65), and (67) we
obtain the following estimate for i = 1, ..., n and t ≥ 0

|Fi(t)| ≤
2v3

max

v∗
(ξ1

+mi (g1(vmax)− g1(0)) max
j 6=i

(ci,j(ρi,j(HR(w0))))

)
+

2v3
max

v∗
mi max

j 6=i

(√
pi,jBi,j(ρi,j(HR(w0)))

)
(69)

Estimate (37), for appropriate Q1(s), follows directly from
inequality (69).

Using also (33) and the definition of b > 1 − v∗

vmax
, we

also have that 1
β(vi(t),θi(t))

≤ (1−cos(ϕ))2

A for i = 1, ..., n and

t ≥ 0. The previous inequality, (24), (28), (30), (33), (34),
(37), (55), (61), (63), (64), (66), (68), and the fact that
`2(s) < vmax for all s ≥ 0, give the following estimate for
each i = 1, ..., n and t ≥ 0:

|ui(t)| ≤
vmax(1− cos(ϕ))2

A

(
ξ2 + ζi (ηi(HR(w0)))

+
bvmaxQ1(HR(w0))

2 (vmax − `2(HR(w0)))
2
`1(HR(w0))

)

+
vmax(1− cos(ϕ))2

A

mi

v∗

(
max
j 6=i

(√
pi,jBi,j(ρi,j(HR(w0)))

)
+ (g2(vmax)− g2(−vmax)) max

j 6=i
(ci,j(ρi,j(HR(w0))))

)
(70)

Inequality (38), for appropriate Q2(s), is a direct conse-
quence of (70).

We show next that d
dt ((vi(t) cos(θi(t)) − v∗)f1(vi(t)

cos(θi(t)) − v∗)), and d
dt (vi(t) sin(θi(t))f2(vi(t) sin(θi(t)))

are bounded for all i = 1, . . . , n. Since fk ∈ C1(R), k =
1, 2 and due to the facts that vi ∈ (0, vmax), θi ∈

(
−π2 ,

π
2

)
,

we also have that

|f ′1(vi(t) cos(θi(t))− v∗)| ≤ max
x∈[−v∗,vmax−v∗]

(|f ′1(x)|)

for i = 1, ..., n and t ≥ 0 (71)

|f ′2(vi(t) sin(θi(t)))| ≤ max
x∈[−vmax,vmax]

(|f ′2(x)|)

for i = 1, ..., n and t ≥ 0 (72)

Estimates (67), (68), (37), (38), (71), (72), the facts that
vi(t) ∈ (0, vmax), θi(t) ∈ (−ϕ,ϕ), for all t ≥ 0, i = 1, ..., n,
imply that d

dt ((vi(t) cos(θi(t))− v∗)f1(vi(t) cos(θi(t))− v∗))
and d

dt (vi(t) sin(θi(t))f2(vi(t) sin(θi(t))) are bounded for
all i = 1, ..., n. Moreover, by taking into account (24) and
the fact that vi(t) ∈ (0, vmax), θi(t) ∈ (−ϕ,ϕ) for all t ≥ 0,
we have that for all i = 1, ..., n, and t ≥ 0

|g′1 (vi(t) cos(θi(t)))| ≤ max
x∈[0,vmax]

(g′1(x))

for i = 1, ..., n and t ≥ 0
(73)

|g′2 (vi(t) sin(θi(t)))| ≤ max
x∈[−vmax,vmax]

(g′2(x))

for i = 1, ..., n and t ≥ 0
(74)

Inequalities (73), (74) in conjunction with (2), (69), (70)485

and the fact that vi(t) ∈ (0, vmax), θi(t) ∈ (−ϕ,ϕ) for
all t ≥ 0, imply that d

dtg1(vi(t) cos(θi(t))) and d
dtg2(vi(t)

sin(θi(t))) are bounded for all i = 1, ..., n and t ≥ 0.
Finally, we show that for t ≥ 0 and for each i = 1, . . . , n

d

dt

∑
j 6=i

κi,j (di,j(t)) (vj(t) cos(θj(t))− vi(t) cos(θi(t)))

× (g1 (vj(t) cos(θj(t)))− g1 (vi(t) cos(θi(t))))

)
(75)

is bounded. By virtue of (69), (70), and (73), and the
facts that vi(t) ∈ (0, vmax), θi(t) ∈ (−ϕ,ϕ), for all t ≥490

0, and i = 1, ..., n, we have that for all i, j = 1, ..., n,
j 6= i , the terms d

dt (vj(t) cos(θj(t))− vi(t) cos(θi(t))) and
d
dt (g1(vj(t) cos(θj(t)))− g1(vi(t) cos(θi(t)))), are bounded.

We finally show that d
dtκi,j(di,j(t)) = κ′i,j(di,j(t))ḋi,j(t)

is bounded for each i, j = 1, ..., n, j 6= i. We show first
that ḋi,j(t) is bounded for all t ≥ 0, i, j = 1, ..., n with j 6=
i. Indeed, using the Cauchy-Schwarz inequality, definition
(5), the assumption that pi,j ≥ 1, for i, j = 1, ..., n, j 6=
i, the facts that vi(t) ∈ (0, vmax), t ≥ 0 and sin(θ) is
increasing on the interval θ ∈ (−ϕ,ϕ), we get for t ≥ 0
and i, j = 1, ..., n, j 6= i:

|ḋi,j(t)| ≤ ((vi(t) cos(θi(t))− vj(t) cos(θj(t)))
2

+ pi,j (vi(t) sin(θi(t))− vj(t) sin(θj(t)))
2
)

1
2

≤
√

2vmax

√
1 + (2pi,j − 1) sin2(ϕ) = δi,j

(76)

Define the non-increasing functions

κ̄i,j(s) := max
{
|κ′i,j(d)| : s ≤ d ≤ λ

}
for s ∈ (Li,j , λ]

i, j = 1, ..., n, j 6= i (77)

Then, from (13), (55), and (77) we get

|κ′(di,j(t))| ≤ κ̄i,j(ρi,j(HR(w0))), i, j = 1, ..., n, j 6= i.
(78)

Inequalities (76) and (78) imply that d
dtκi,j(di,j(t) =

κ′i,j(di,j(t))ḋi,j(t) is bounded for all i, j = 1, ..., n, j 6= i.495

Combining, (78) and boundedness of d
dt (vj(t) cos(θj(t))−

vi(t) cos(θi(t))) and d
dt (g1(vj(t) cos(θj(t))) − g1(vi(t)

cos(θi(t)))), the fact that vi(t) ∈ (0, vmax), θi(t) ∈ (−ϕ,ϕ),
for all t ≥ 0, and assumption (24), we obtain that (75) is

bounded. Similarly, we prove that d
dt

(∑
j 6=i κi,j(di,j(t))500

(vj(t) sin(θj(t)) − vi(t) sin(θi(t)))(g2 (vj(t) sin(θj(t)))−
g2(vi(t) sin(θi(t))))) is bounded for all i = 1, ..., n.

Combining the boundedness of all the previous terms,
we obtain that there exists M̄ > 0 such that (58) holds.
Thus, from (57), (58) and Barbalat’s lemma ([22]), we
conclude that

lim
t→+∞

(∆(t)) = 0. (79)
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Since κi,j(d) ≥ 0 for all d > Li,j and due to assumptions
(24), (27), we have that the following inequalities hold for
all t ≥ 0, and i = 1, ..., n,

(vi(t) cos(θi(t))− v∗)f1(vi(t) cos(θi(t))− v∗) ≥ 0,

(vi(t) sin(θi(t)))f2(vi(t) sin(θi(t))) ≥ 0,∑
j 6=i

κi,j (di,j(t)) (vj(t) sin(θj(t))− vi(t) sin(θi(t)))

× (g2 (vj(t) sin(θj(t)))− g2 (vi(t) sin(θi(t)))) ≥ 0,∑
j 6=i

κi,j (di,j(t)) (vj(t) cos(θj(t))− vi(t) cos(θi(t)))

× (g1 (vj(t) cos(θj(t)))− g1 (vi(t) cos(θi(t)))) ≥ 0

Thus, we get from (56) that 0 ≤ (vi(t) cos(θi(t)) − v∗)
f1(vi(t) cos(θi(t))− v∗) ≤ ∆(t), 0 ≤ vi(t) sin(θi(t))f2(vi(t)
sin(θi(t))) ≤ ∆(t) for all t ≥ 0, and i = 1, ..., n. The505

previous inequalities, in conjunction with (55), (79) and
assumption (27), give (35).

Finally, we show that (36) holds for the solutions of
(2), (28), (29) by exploiting Lemma 3 with g(t) = vi(t)
and g(t) = θi(t) for i = 1, ..., n. Since (35) holds, it suffices510

to show that Ḟi(t) and u̇i(t) are bounded.
Using (4), (32), (55), (69), (70), the fact that vi(t) ∈

(0, vmax) and θi(t) ∈ (−ϕ,ϕ) for all t ≥ 0, i = 1, ..., n, in-
equality vmaxvi(t) cos(θi(t))+v

∗vmax−2v∗vi(t) ≥ v∗(vmax−
`2(HR(w0))) we obtain that d

dt

(
1

q(vi(t),θi(t))

)
is bounded515

for all i = 1, ..., n.

We next prove that d
d t

(∑
j 6=i V

′
i,j(di,j(t))

(xi(t)−xj(t))
di,j(t)

)
is bounded for all i = 1, ..., n. Since (9) and (55) hold,
it follows that V ′i,j(di,j(t)), V

′′
i,j(di,j(t)) are bounded for all

i, j = 1, ..., n with j 6= i. Moreover, due to (55), (62), (63),520

(76), it follows that d
d t

(∑
j 6=i V

′
i,j(di,j(t))

(xi(t)−xj(t))
di,j(t)

)
is

bounded. Similarly, we prove that d
d t (
∑
j 6=i pi,jV

′
i,j(di,j(t))

(yi(t)−yj(t))
di,j(t) ) is bounded for all i = 1, ..., n.

Using (13), (24), (37), (38), (64), (73), (74), (76) and
boundedness of d

dtκi,j(di,j(t)) (recall (76) and (78)),525

d
dtf1(vi(t) cos(θi(t)) −v∗), d

dtf2(vi(t) sin(θi(t))),
d
dtg1(vi(t)

cos(θi(t))), and d
dtg2 (vi(t) sin(θi(t))), we further obtain

that d
dtRi(w(t)) and d

dtGi(w(t)), are also bounded for all
i = 1, . . . , n, where Ri(w(t)) and Gi(w(t)), are defined in
(30), and (31), respectively. Boundedness of d

dtRi(w(t))530

and d
dt

(
1

q(vi(t),θi(t))

)
, i = 1, . . . , n, in conjunction with

(29), (55), (63), (64), (65), (67), (76), imply that Ḟi(t) is
bounded for all i = 1, . . . , n.

Finally, since (55) holds, it follows that U ′i(yi(t)) and
U ′′i (yi(t)) are bounded for all i = 1, ..., n which in conjunc-535

tion with (69), (70), vi(t) ∈ (0, vmax), θi(t) ∈ (−ϕ,ϕ) for
all t ≥ 0, imply that d

dtU
′
i(yi(t)) is bounded. Using the

facts that vi(t) ∈ (0, vmax), θi(t) ∈ (−ϕ,ϕ) for all t ≥ 0,
(33), (34), (55), (69),(70), and inequalities 1

β(vi(t),θi(t))
≤

(1−cos(ϕ))2

A , 1
vi(t)

≤ 1
`1(HR(w0)) , 1

vmax−vi(t) ≤
1

vmax−`2(HR(w0)) ,540

it follows that d
dt (

1
β(vi(t),θi(t))

), and d
dt (a(vi(t), θi(t)) are

bounded for all t ≥ 0, i = 1, ..., n as well. Moreover, us-
ing (13), (24), (28), (55), (63), (64), (66), (68), (69), (76),

and boundedness of d
d t

(∑
j 6=i pi,jV

′
i,j(di,j(t))

(yi(t)−yj(t))
di,j(t)

)
,

d
dtGi(w(t)), d

dt

(
1

β(vi(t),θi(t))

)
, d
dt (a(vi(t), θi(t)),

d
dtU

′
i(yi(t)),545

and Ḟi(t), i = 1, ..., n , we get that u̇i(t) is bounded for all
t ≥ 0, i = 1, ..., n. This completes the proof. /

The proof of Theorem 2 is very similar to the proof of
Theorem 1 and only a sketch of the proof is provided.

Sketch of the Proof of Theorem 2: We follow
the same approach as in the proof of Theorem 1 with the
following main differences. First, it can be shown by the
definition of mi, (13), (17), (21), (22), (24) (59), (60), (62),
(63) (with H(w) in place of HR(w)), and (64), that the
following inequalities hold for every w ∈ Ω and i = 1, ..., n

ki(w)v∗ ≥ Λi(w) ≥− ki(w)(vmax cos(θi)− v∗), (80)

µ2 ≤ki (w) ≤ Θi (H(w)) (81)

where Θi : R+ → R+, i = 1, ..., n, are the non-decreasing
functions defined for s ≥ 0. Then, using (2), (10), (14),
(16), (17), (18), (19), (22), (24), the fact that

∑n
i=1∑

j 6=i V
′
i,j(di,j)

(xi−xj)
di,j

= 0, and (81), we obtain the fol-

lowing estimate

∇H(w)ẇ ≤ −µ2

n∑
i=1

(vi cos(θi)− v∗)2 − µ1

n∑
i=1

v2
i sin2(θi)

− 1

2

n∑
i=1

∑
j 6=i

κ (di,j) (vj sin(θj)− vi sin(θi))

× (g2(vj sin(θj))− g2(vi sin(θi)))

− 1

2

n∑
i=1

∑
j 6=i

κ (di,j) (vj cos(θj)− vi cos(θi))

× (g1(vj cos(θj))− g1(vi cos(θi)))
(82)

which implies that ∇H(w)ẇ ≤ 0 for all w ∈ Ω.550

Let w0 ∈ Ω and consider the unique solution w(t) of
the initial value problem (2), (18), (19) with initial con-
dition w(0) = w0. Using the fact that the set Ω is open
(recall definitions (3), (7)), we conclude that there exists
tmax ∈ (0,+∞] such that the solution w(t) of (2), (18),555

(19) is defined on [0, tmax) and satisfies w(t) ∈ Ω for all
t ∈ [0, tmax).

Since w(t) ∈ Ω, it follows from (3) and (7) that vi(t) ∈
(0, vmax), θi(t) ∈ (−ϕ,ϕ) for all t ∈ [0, tmax), i = 1, ..., n.
Moreover, inequality ∇H(w)ẇ ≤ 0, w ∈ Ω implies that

H(w(t)) ≤ H(w0), for all t ∈ [0, tmax). (83)

Next, from (81) and (83) we get that

µ2 < ki (w(t)) ≤Mi := Θi (H(w0)) , for all t ∈ [0, tmax) ,

i = 1, . . . , n (84)

To obtain a bound on the speeds vi, i = 1, ..., n, we
have from inequalities (80), the facts that vi(t) ∈ (0, vmax),
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t ∈ [0, tmax), ki(w) > 0, for all w ∈ Ω, and definitions
(19) and (21), the following differential inequalities for all
t ∈ [0, tmax) and i = 1, ..., n:

ki (w(t)) (vmax − vi(t)) ≥ v̇i(t) ≥ −ki (w(t)) vi(t). (85)

Differential inequalities (85) in conjunction with inequal-
ities (84) imply that the following estimates hold for all
t ∈ [0, tmax) and i = 1, . . . , n:

vi(0) exp (−Mi t) + (1− exp (−Mi t)) vmax ≥ vi(t)
≥ vi(0) exp (−Mi t) .

(86)

Suppose that tmax < +∞. Inequalities (17), (83), (86) and
definitions (3), (7) imply that for every increasing sequence
of times { ti ∈ [0, tmax) : i = 1, 2, ...} with lim

i→+∞
(ti) = tmax560

we cannot have lim
i→+∞

(dist (w(ti), ∂Ω)) = 0 or lim
i→+∞

(|w(ti)|)
= +∞. Thus, we must have tmax = +∞.

The rest of the proof follows the same approach as in
the proof of Theorem 1. In particular, using (17), (81),
(83), we can obtain estimates (37), and (38) for certain Qk,565

k = 3, 4. Finally, (35) can be shown using (56) by setting
f1(s) = µ2s and f2(s) = µ1s, and by exploiting Barbalat’s
Lemma ([22]). Property (36) can be shown using Lemma
5 and following analogous arguments as in the proof of
Theorem 1. /570

6. Conclusions

In the present work, we have applied a CLF method-
ology to design nonlinear cruise controllers for the two-
dimensional movement of autonomous vehicles on lane-free
roads. The CLF were based on measures of the total en-575

ergy of the system. By expressing the kinetic energy as in
Newtonian or relativistic mechanics, two families of con-
trollers were obtained that guarantee the safe operation of
vehicles on lane-free roads. The proposed families of cruise
controllers are decentralized (per vehicle) and require ei-580

ther the measurement only of the distances from adjacent
vehicles (inviscid cruise controllers) or the measurement of
speeds and distances from adjacent vehicles (viscous cruise
controllers).

Finally, we have derived the corresponding macroscopic585

models consisting of a conservation equation and a momen-
tum equation with pressure and viscous terms. We have
shown that, by selecting appropriately the parameters of
the cruise controllers, we can directly influence the phys-
ical characteristics of the “traffic fluid”, thus creating an590

artificial fluid that approximates the traffic flow. In future
work, we will study the expected level of approximation
of the emerging traffic due to Assumption H, the effects of
lateral movement are reflected on the macroscopic model,
the topic of mixed autonomy, as well as the appropriate se-595

lection of elliptical distance metrics based on the different
vehicle dimensions.
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Appendix: Non-Rigorous Derivation of Macroscopic
Models

Consider the movement of n identical vehicles with total
mass m > 0 on a straight road under the PRCC (28), (29)740

and under the NCC (18), (19), when Assumption H holds.
Each vehicle has mass m/n and we define the inter-

vehicle distance by

si = xi−1 − xi, i = 2, ..., n. (A.1)

The microscopic model (2) under the PRCC (28), (29) is
given by the following ODEs:

ẋi = vi, i = 1, 2, ..., n (A.2)

q(v1)v̇1 = −f (v1 − v∗)− nΦ′(ns2)

+ n2K(ns2)(g(v2)− g(v1)) (A.3)

q(vi)v̇i = −f (vi − v∗) + nΦ′(nsi)− nΦ′(nsi+1)

+ n2K(nsi)(g(vi−1)− g(vi)) (A.4)

+n2K(nsi+1)(g(vi+1)− g(vi)), for i = 2, ..., n− 1,

q(vn)v̇n = −f (vn − v∗) + nΦ′(nsn)

+ n2K(nsn)(g(vn−1)− g(vn)) (A.5)

where f, g ∈ C1 with f(0) = 0, x f(x) > 0 for x 6= 0 and
g′(v) > 0 for v ∈ (0, vmax) and q : (0, vmax) → (0,+∞)
given by (49) with v∗ ∈ (0, vmax) being the longitudi-
nal speed set-point, and vmax the speed limit of the road745

(f, g are the functions f1, g1 appearing in (31)). The state
space of system (A.2), (A.3), (A.4), (A.5) is the set Ω =
{ (x1, ..., xn, v1, ..., vn) ∈ Rn × (0, vmax)

n
: n(xi − xi+1) >

L , i = 1, ..., n− 1 }.
Consider solutions (x(t), v(t)) ∈ Rn × Rn of the mi-

croscopic model (A.2), (A.3), (A.4), (A.5) with x(t) =
(x1(t), ..., xn(t)) ∈ Rn and v(t) = (v1(t), ..., vn(t)) ∈ Rn.
We assume that for each t > 0 there exists an interval
I(t) ⊆ R with lim

n→+∞
(x1(t)) = sup (I(t)), lim

n→+∞
(xn(t)) =

inf (I(t)) and the following property: for each x ∈ I(t)
there exists a sequence of indices { in ∈ {1, ..., n} : n =
3, 4, ... } with lim

n→+∞
(xin(t)) = x. Moreover, consider C2

density and speed functions ρ : Ω̄ → (0, ρmax), v : Ω̄ →
(0, vmax), where ρmax := m/L and Ω̄ =

⋃
t>0{t} × I(t),

which satisfy the equations

ρ(t, xi(t)) =
m

nsi(t)
, for t > 0, i = 2, ..., n (A.6)

v(t, xi(t)) =vi(t), for t > 0, i = 1, ..., n. (A.7)

Notice that by virtue of definition (A.6) in conjunction750

with the fact that (A.1) (which implies that si(t) > L/n
for i = 2, ..., n), we get that 0 < ρ(t, xi(t)) < m/L = ρmax,
for t > 0, i = 2, ..., n.

Using definition (A.1), (A.2), (A.6) and (A.7) we have
that

d

dt
ρ(t, xi(t)) =

∂ ρ

∂ t
(t, xi(t)) +

∂ ρ

∂ x
(t, xi(t))v(t, xi(t)),

for t > 0, i = 2, ..., n. (A.8)
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Thus, we get from (A.1), (A.8) for all t > 0, i = 2, ..., n:

∂ ρ

∂ t
(t, xi(t)) +

∂ ρ

∂ x
(t, xi(t))v(t, xi(t))

= −ρ(t, xi(t))
v(t, xi−1(t))− v(t, xi(t))

xi−1(t)− xi(t)

= −ρ(t, xi(t))

(
∂v

∂x
(t, xi(t))

+
1

si(t)

∫ xi(t)+si(t)

xi(t)

∫ l

xi(t)

∂2v

∂ x2
(t, r)drdl

)
(A.9)

Furthermore, assuming that the quantities max
i=2,...,n

(nsi(t))

and sup
t≥0,x∈R

∣∣∣ ∂2v
∂ x2 (t, x)

∣∣∣ are bounded for n ≥ 2 and for all755

t > 0, we obtain from (A.9) as n → +∞ the continuity
equation (47).

Next, using (A.4), (A.7) and the chain rule we obtain

q(v(t,xi(t)))
∂ v

∂ t
(t, xi(t))

+q(v(t, xi(t)))v(t, xi(t))
∂ v

∂ x
(t, xi(t)) =

− f (v(t, xi(t))− v∗) + nΦ′(nsi(t))− nΦ′(nsi+1(t))

+ n2K(nsi(t))(g(vi−1(t))− g(vi(t)))

+ n2K(nsi+1(t))(g(vi+1(t))− g(vi(t)))

for t ≥ 0, i = 2, . . . , n− 1. (A.10)

Notice that definition (A.6) implies that

si(t)− si+1(t) =
m

n

(
1

ρ(t, xi(t))
− 1

ρ(t, xi+1(t))

)
= − m2

n2ρ(t, xi+1(t))ρ2(t, xi(t))

∂ ρ

∂ x
(t, xi(t))

+
m

n

∫ xi(t)−si+1(t)

xi(t)

∫ l

xi(t)

1

ρ2(t, r)

∂2 ρ

∂ x2
(t, r)drdl

−2m

n

∫ xi(t)−si+1(t)

xi(t)

∫ l

xi(t)

1

ρ3(t, r)

(
∂ ρ

∂ x
(t, r)

)2

drdl

(A.11)
Combining (A.6), (A.11), we get:

nΦ′ (nsi(t))− nΦ′ (nsi+1(t)) = n2Φ′′(nsi(t)) (si(t)− si+1(t))

− n3

∫ si(t)

si+1(t)

∫ si(t)

l

Φ′′′(nr)drdl

(A.12)
Next, define

ϕ(s) :=K(s), for s > L, (A.13)

θ(s) :=s2K(s), for s > L, (A.14)

w(t, x) :=g(v(t, x)), for t > 0, x ∈ R. (A.15)

By virtue of (A.6), (A.13), (A.14), we get:

n2K(nsi(t)) (w(t, xi−1(t))− w(t, xi(t)))

+ n2K(nsi+1(t)) (w(t, xi+1(t))− w(t, xi(t)))

= n2 ∂ w

∂ x
(t, xi(t))ϕ

′ (nsi(t)) (si(t)− si+1(t))

+ θ(nsi(t))
∂2 w

∂ x2
(t, xi(t))

+ n2K(nsi(t))

∫ xi(t)+si(t)

xi(t)

∫ l

xi(t)

∫ r

xi(t)

∂3 w

∂ x3
(t, ξ)dξdrdl

+ n2K(nsi+1(t))

∫ xi(t)−si+1(t)

xi(t)

∫ l

xi(t)

∫ r

xi(t)

∂3 w

∂ x3
(t, ξ)dξdrdl

+ n
∂ w

∂ x
(t, xi(t))

∫ nsi(t)

nsi+1(t)

∫ l

nsi(t)

ϕ′(r)drdl

+
1

2

∂2 w

∂ x2
(t, xi(t))

∫ nsi+1(t)

nsi(t)

θ′(l)dl (A.16)

Using (A.6), (A.11), (A.12), (A.16) and assuming that

the quantities max
i=2,...,n

(nsi(t)) and sup
t≥0,x∈R

∣∣∣ ∂2 ρ
∂ x2 (t, x)

∣∣∣,
sup

t≥0,x∈R

∣∣∣ ∂ ρ∂ x (t, x)
∣∣∣, sup
t≥0,x∈R

(
1

ρ(t,x)

)
, sup
t≥0,x∈R

∣∣∣Φ′′ ( m
ρ(t,x)

)∣∣∣,
sup

t≥0,x∈R

∣∣∣Φ′′′ ( m
ρ(t,x)

)∣∣∣, sup
t≥0,x∈R

∣∣∂ w
∂ x (t, x)

∣∣, sup
t≥0,x∈R

∣∣∣∂2 w
∂ x2 (t, x)

∣∣∣,
sup

t≥0,x∈R

∣∣∣∂3 w
∂ x3 (t, x)

∣∣∣, sup
t≥0,x∈R

∣∣∣ϕ′ ( m
ρ(t,x)

)∣∣∣, sup
t≥0,x∈R

∣∣∣θ′ ( m
ρ(t,x)

)∣∣∣,
sup

t≥0,x∈R

(
K
(

m
ρ(t,x)

))
are bounded for n ≥ 2 and for all

t > 0, we get

si(t)− si+1(t) =

− m2

n2ρ(t, xi+1(t))ρ2(t, xi(t))

∂ ρ

∂ x
(t, xi(t)) +O(n−3)

= O(n−2) (A.17)

nΦ′ (nsi(t))− nΦ′ (nsi+1(t))

= −Φ′′
(

m

ρ(t, xi(t))

)
m2

ρ(t, xi+1(t))ρ2(t, xi(t))

∂ ρ

∂ x
(t, xi(t))

+O(n−1) (A.18)

n2K(nsi(t)) (w(t, xi−1(t))− w(t, xi(t)))

+ n2K(nsi+1(t)) (w(t, xi+1(t))− w(t, xi(t)))

= −ϕ′
(

m

ρ(t, xi(t))

)
m2

ρ(t, xi+1(t))ρ2(t, xi(t))

× ∂ w

∂ x
(t, xi(t))

∂ ρ

∂ x
(t, xi(t))

+θ

(
m

ρ(t, xi(t))

)
∂2 w

∂ x2
(t, xi(t)) +O

(
n−1

)
(A.19)

Therefore, we obtain the following equation from (A.10),
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(A.18), (A.19) as n→ +∞ :

q(v)
∂ v

∂ t
+ q(v)v

∂ v

∂ x
= −f (v − v∗)− Φ′′

(
m

ρ

)
m2

ρ3

∂ ρ

∂ x

− ϕ′
(
m

ρ

)
m2

ρ3

∂ w

∂ x

∂ ρ

∂ x
+ θ

(
m

ρ

)
∂2 w

∂ x2

(A.20)
Defining

P (ρ) := z −mΦ′
(
m

ρ

)
, µ(ρ) :=

m2

ρ
K

(
m

ρ

)
(A.21)

where z ∈ R is an arbitrary constant and using defini-
tions (A.13), (A.14), (A.15), we obtain from (A.20) equa-
tion (48). Conditions (45), (46) are direct consequences760

of definitions (A.21), the facts that lim
d→L+

(Φ(d)) = +∞,

Φ(d) = K(d) = 0 for d ≥ λ and definitions ρmax := m/L,
ρ̄ := m/λ.

The derivation of the macroscopic model (50), follows
analogous arguments as above, and by using the micro-
scopic model (2) under the NCC (18), (19) is given by the
ODEs (A.2) and the following ODEs:

v̇1 =− (γ + h(G1) (v1 − v∗) +G1 (A.22)

v̇i =− (γ + h(Gi) (vi − v∗) +Gi, for i = 2, ..., n− 1
(A.23)

v̇n =− (γ + h(Gn)) (vn − v∗) +Gn (A.24)

where

h(s) =
vmaxr(s)

v∗(vmax − v∗)
− s

v∗
(A.25)

and

G1=−nΦ′(ns2) + n2K(ns2)(g(v2)− g(v1))

Gi=nΦ′(nsi)− nΦ′(nsi+1) + n2K(nsi)(g(vi−1)− g(vi))

+n2K(nsi+1)(g(vi+1)− g(vi)), i=1, ..., n

Gn=nΦ′(nsn) + n2K(nsn)(g(vn−1)− g(vn))
(A.26)

with γ > 0, g′(v) > 0 for v ∈ R, (g is the function g1

appearing in (31)), and r satisfying (23).765
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