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0Abstract

Online Machine Learning (OML) techniques support training over

continuous unbounded training items while simultaneously providing

predictions on the same or another unlabeled stream. The explosion

in the amount and complexity of digital information generated online

is gradually rendering OML techniques essential for modern analytics

and forecasting applications due to their ability to handle massive,

unbounded, and most importantly, inherently not-static data. Having

noted that support for popular Machine Learning (ML) tool-chains is

somewhat weak for the OML setting, we have designed the Online

Machine Learning and Data Mining (OMLDM) component, a state-of-

the-art engine for e�ortlessly deploying OML pipelines on streaming

platforms. Our prototype, built on Apache Flink, validates our archi-

tecture, and identi�es issues that current streaming platforms should

improve on to support OML. To achieve high performance, OMLDM

supports distributed online learning by utilizing the Parameter Server

paradigm. We have identi�ed the communication cost of synchroniz-

ing distributed learners as the major impediment to scalability. To

overcome this obstacle, our proposed engine supports several popu-

lar model synchronization strategies. In addition, we bring forward

and evaluate a novel synchronization strategy, Functional Dynamic

Averaging (FDA), that minimizes the prediction loss and network

communication all at once. We demonstrate through experiments

that FDA is superior to current model synchronization strategies in

many settings.
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1 Introduction

Modern analytics and forecasting applications can bene�t immensely

from Machine Learning techniques. In traditional o�ine machine

learning (ML) settings, training a model is handled apart from and

before deploying it for prediction. Conventional ML approaches fol-

low a well-structured and sometimes recursive design cycle. More

precisely, the process starts by collecting, cleaning, and transforming

the data into a usable dataset. Then, studying and carefully selecting

meaningful information is necessary by performing feature selection,

feature extraction, and feature creation techniques. Afterwards, a

model is selected and trained on the carefully manufactured dataset.

Lastly, an evaluation is done on the model to determine its perfor-

mance. The analyst can always recurse back in each of these steps

to perfect its approach. When the training is over, the model can be

used to make predictions. This approach works well when models are

inherently static or slowly changing, and training data is available

a-priori. However, for a diverse number of applications, the o�ine

style is inadequate. Labeled training data can become available late,

multiplexed in time with unlabelled data, and the model must adapt

continuously to concept drift. These scenarios call for Online Machine

Learning (Online ML, or OML, for short) techniques and systems.

OML algorithms are ML algorithms that are trained continuously

on unbounded data streams and update themselves incrementally

whenever new data arrives. These methods are proven to be very

practical in cases when it’s computationally infeasible to train some

model on the entire dataset. Furthermore, data is generated on the

�y by some unknown distribution. It is usually the case that the

1



Chapter 1 Introduction

continuously created items will stem from a dynamic environment,

causing a change to the characteristics of the data stream and hence

may lead to the degradation of the predictors’ performance. This

challenging issue is known as concept drift (CD), in which statistical

properties of the input features and target classes or values may

shift over time. Many OML algorithms can detect and adapt to those

changes. Confusingly, in some of the literature, the term Online ML

is often used to refer to incremental ML algorithms, where training

happens o�ine, but the training dataset is processed in a streaming

fashion; indeed, most ML algorithms are incremental. In this paper,

OML refers to the situation where �tting and predicting co-exist in

space and time.

As a motivating example, consider the short-term forecasting prob-

lem. Assuming t now stands for the current time, the goal is to

estimate a future value. (C=>| +) ) from the current situation- (C=>|).
In a learning setting, a stream processing system may generate an

online stream of training data where the ongoing training sample can

be the pair (- (C=>| −) ), . (C=>|)).
Another area of interest, exempli�ed by spam handling in personal

emails, falls under the OML category because of online user inter-

action: a user may label a previously undetected mail as spam, or

conversely.

1.1 OMLDM

Our focus in this study is the Online Machine Learning and Data

Mining (OMLDM) architecture, an innovative implementation of the

Parameter Server paradigm that is deployable on top of a stream pro-

cessing platform alongside other data analysis tasks. The proposed

architecture has three levels of abstraction. At the lowest level, it is a

streaming application able to digest and process massive quantities of

2



OMLDM Section 1.2

data at a high rate. One level above is an abstract network of indepen-

dent computing nodes, more accurately a complete bipartite graph

with high-level primitives for communication and synchronization.

On top of this level, it is a feature-rich, parallel OML pipeline, able to

host a variety of OML techniques and coordinate them with varying

strategies.

Most cloud-based ML frameworks and libraries aim to meet the

needs of a batch setting (e.g., MLLib, FlinkML, scikit.learn, Mahout,

e.t.c.), even if they execute on a streaming platform. To our knowl-

edge, the only platform with a clear commitment to the OML setting

is Apache SAMOA [KDB19], from Yahoo! Barcelona. Yet, the architec-

tural decisions in SAMOA were di�erent. Although an abstract API

for communicating nodes exists, it is not mature or �exible enough

for use by developers. By contrast, the OMLDM architecture strives

for convenience; OMLDM pipelines orchestrate learners without the

need for additional coding. As such, our philosophy is very close to

Petuum (http://petuum.com). However, Petuum is appropriate for the

batch setting.

The testing and development of the OMLDM engine has been a part

of the Interactive Extreme-Scale Analytics and Forecasting (INFORE)

research project, a prototype supporting non-expert programmers in

performing optimized, cross platform, streaming analytics at scale.

INFORE’s aim is to address the challenges posed by huge datasets and

pave the way for real-time, interactive extreme-scale analytics and

forecasting. The project was the �rst holistic approach in streaming

settings and was developed on top of the �elds of life science, �nancial

data analysis and maritime awareness problems. Being a part of a

bigger project OMLDM needed to be able to communicate e�ectively

with various other components and systems. Hence, our component

provides simple interconnecting capabilities by an easy to use JSON

API.

3
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Chapter 1 Introduction

1.2 Reducing communication in distributed OML

A principal technical contribution of this study is Functional Dynamic

Averaging (FDA), a model synchronization strategy for parameter

server-based architectures. In batch learning, ML computations are

at the center stage and can consume computational resources vora-

ciously. Distributed learning utilizes more computational power to

reduce training time. Most distributed ML protocols assume some

form of periodic synchronization of local learners with the param-

eter server. This synchronization is done typically once for every

mini-batch �tted. For large OML models, this approach can generate

massive amounts of network tra�c and throttle overall performance.

However, an OMLDM deployment must coexist with other data pro-

cessing tasks under the management of a stream processing engine

and have the capacity to tolerate limits to resource use. Motivated by

previous work by Kamp et al. [Kam+14; Kam+16], we have designed

a novel distributed online learning protocol, which can reduce com-

munication compared to standard minibatch-based training on the

Parameter Server.

The salient idea of the FDA is to apply techniques of distributed

stream monitoring [CMY08] to determine model variance, a quan-

tity related to the di�erences between models of di�erent learners.

Synchronization occurs only when model variance exceeds a certain

threshold. We provide some analytical consequences of this scheme,

supporting its fundamental premise. On the algorithmic side, ac-

curately monitoring model variance cannot be done cheaply. We

resort to approximations instead. We employ ideas from Functional

Geometric Monitoring [SG] and propose three variants. An exper-

imental evaluation of this technique shows that it can reduce the

communication cost of OML by an order of magnitude.
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2 Preliminaries

We use the standard notation to de�ne Online ML concepts. We

shall focus on supervised learning for simplicity purposes, but similar

concepts apply to learning. Typically, we have a data stream of items

produced from one or multiple sources. An item is a data record

referring to an entity of interest, typically represented as a feature

vector. Let the set of all items (feature vectors) be X. To each item

corresponds a label, coming from the set of all possible labels Y.

Labels label can be categorical, for classi�cation, or real-valued, for

regression. The goal of ML is to construct a model, a functionX → Y,

which can predict the label corresponding to an item. The model

is usually a member in a parametric family of functions, and the

parameter vector denoted by w ∈ W, whereW is the vector space

of all parameter vectors. The predictor function is % :W ×X → Y.

In the discussion, we shall use the terms parameter vector, weight
vector and model interchangeably.

In the Online ML setting, at time C , a learner receives either an

unlabelled sample xC ∈ X, usually some feature vector, or a labelled
sample zC = 〈xC , yC〉 ∈ X × Y. In the former case, the learner reports

its current prediction ŷC = % (wC , xC ). In the latter case,

1. The learner su�ers loss ℓ (wC , zC ), and

2. the model is adjusted to wC+1, by some update rule,

wC+1 = q (wC , zC , [C )

where [C is a learning rate (which generally varies with time).

5



Chapter 2 Preliminaries

To evaluate the learning outcome, losses are accumulated in each

round, and the total loss is contrasted to the best possible model

after-the-fact (called the empirical risk minimizer). The di�erence,

called the regret after ) steps, is de�ned as

A46A4C () ) =
)∑
C=1

ℓ (wC , zC ) − min

w∈W

)∑
C=1

ℓ (w, zC ).

As witnessed from the above formula, Regret grows with ) . Hence,

the goal of an OML algorithm is to achieve sublinear regret. Under

broad assumptions [BPS09], it is theoretically possible to have

A46A4C () ) = $ (
√
!� (W) ·) ;>6) )

where !� (W) is the Littlestone dimension of the set of modelsW.

In general, regret should grow sublinearly with) , so that for large)

the average regret A46A4C () )/) vanishes, and therefore the predictive

outcome of online-learning, will on average be comparable to the

Empirical Risk Minimization outcome.

2.1 Distributed Online ML and the Parameter
Server architecture

The most widely accepted settings in distributed training are the

data-parallel setting and the model-parallel one. In model parallelism,

each processing machine is responsible for the computations of only

a fraction of a learning model. For example, in a distributed neural

network, each local worker may be assigned with the calculations

of a single layer. On the other hand, in data-parallelism, each local

worker has a complete copy of the neural network and witnesses a

fraction of the data set. However, the two methods are not mutually

exclusive. They can be fused into a hybrid approach.

6



Distributed Online ML and the Parameter Server architecture Section 2.2

For the distributed case, OMLDM adopts the data-parallel setting,

where there is a collection of : learners, each learner executing on a

separate computing node. The local model at learner 8 (for 1 ≤ 8 ≤ :)

at time C is denoted by w(8)C . Samples (labelled or not) are streamed

to these nodes learners; the sample received by learner 8 at time C is

z(8)C . Furthermore, there is a Parameter Server [Jia+17; Li+14; SN10],

a distinguished processing node which maintains a global model w̃C .

There are di�erent strategies for synchronizing the rounds between

learners. For batch processing, two simple approaches are the syn-

chronous (TSP) and the asynchronous (ASP) method [Ver+20]. In

both, a round consists of processing a single mini-batch. In the asyn-

chronous case, rounds on di�erent learners happen independently,

whereas in the synchronous case, learners synchronize so that all

learners are on the same round. The asynchronous method avoids de-

lays at the learners and achieves the best computational performance,

but sometimes at the expense of learning quality. Each learner exe-

cutes in sequence several rounds, where each round has the following

stages:

Push: the PS pushes w̃C to some learner 8 and the learner 8

updates w(8)C based on w̃C (e.g., by assignment w(8)C ← w̃C ).

Fit: Learner 8 �ts its local model by applying streaming inputs

and the update rule, for some number of steps, determined by the

synchronization algorithm. The learner maintains the update

∆(8)C , which is the di�erence of its current model and the model

at the beginning of this �t step.

Pull: At some later time C
′
, the PS pulls ∆(8)

C
′ and updates w̃C

′ .

Updating is typically done by weighted summation, w̃C
′ ←

Uw̃C
′ + V∆(8)

C
′

7



Chapter 2 Preliminaries

2.2 Parameter Server (PS) architecture
Synchronization Strategies

Figure 2.1: Parameter Server architec-

ture.

We now dive deeper into some

of the most used synchronization

strategies of the PS architecture.

All the algorithms are going to

be presented for the online dis-

tributed streaming scenario where

OML is used. Each worker re-

ceives its own data stream where

it bu�ers items until they comprise

of a single mini-batch. When the

mini-batch is formed then it is used

locally by the workers’ learner to

update the local model. The mini-match is discarded afterwards. The

Synchronization Strategies are similar for the o�ine scenario with the

only di�erence being in the workers having their whole chunk of the

entire dataset from the start. Then they use their distinct local dataset

to sample a mini-batch to �t. Most of these strategies are imple-

mented in various libraries, like Tensor�ow and Spark, that support

distributed training for traditional o�ine (batch) ML algorithms.

2.2.1 Bulk Synchronous Parallel (BSP)

The : local models in the BSP setting are combined together via

parameter averaging. We present BSP using the Gradient method as

the update rule, but the procedure applies to many other update rules.

Parameter averaging takes place after each worker 8 has �tted a mini-

batch to its model. Additionally, the setting imposes the constraint

that each worker should observe the same number of examples as the

rest. Assuming a mini-batch of size<, then the weight update rule

8
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by a single machine is given by

wC+1 = wC −
[

:<

:<∑
8=1

∇wC
ℓ8,

where ℓ8 is the loss function su�ered by the training example 8 . When

we separate this formula to: parallel workers the update rule becomes

wC+1 =
1

:

:∑
8=1

w(8)C =
1

:

:∑
8=1

(
wC−

[

<

8<∑
9=(8−1)<+1

∇wC
ℓ9
)
= wC−

[

:<

:<∑
8=1

∇wC
ℓ9 ,

a formula that is identical to the single machine setting. Regarding a

mini-batch �t for each worker as a round, then in each of these rounds

the communication cost incurred by the messages that are send from

the workers to the PS isK (:�), and the communication cost incurred

by the messages send from the PS to the workers is again K (:�).
Hence, the total communication cost of a single round is K (2:�)
bytes. Assuming that the entire data set is of size " and that each

worker �ts< examples to its model per round, then the total number

of rounds is d "
:<
e. Consequently, the grand total communication cost

of BSP algorithm in terms of bytes is K (2� d"
<
e). The algorithm of

this distributed training process proceeds as follows:

1. The PS initializes the parameters w̃ of the learner.

2. The PS broadcasts the parameters to each worker 8 ∈ [1, :].

3. Each worker �ts its local model on a mini-batch, comprised of

the oldest " items that it received from its stream, and discard

it.

4. All workers send their parameters w(8) , or their updates ∆(i) , to

the PS were they are averaged by using the weighted summation

9
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w̃← w̃ + 1

:

∑:
8=1 ∆(8) . During these phase, all incoming items to

the workers are bu�ered.

5. While there is more data return to step 2.

Parameter averaging is usually performed after each iteration, or

else after each worker has observed and �tted a single mini-batch.

Although this approach improves dramatically the convergence prop-

erties of the training process, it also introduces a considerable amount

of overhead to the network. Previous research on the subject [SC15],

suggests that averaging once every 10 to 20 mini-batches per worker

can still perform well, exchanging the predictive performance for com-

munication gain. In addition, even though BSP outperforms other

distributed learning techniques in terms of predicting accuracy, it

su�ers from the so called ’last-executor’ a�ect, meaning that a syn-

chronous system like this will always have to wait on the slowest

executor before completing each iteration. This can be a problem

when the total number of workers increases, making BSP a non viable

solution in large distributed settings.

2.2.2 Total Asynchronous Parallel (TAP)

A conceptually similar approach to parameter averaging is the update-

based data parallelism. In this setting, only the updates of the param-

eters are send by the workers instead of the parameters themselves.

Additionally, each worker sends its update as soon as the �tting pro-

cess completes, and the PS immediately adds this term to the global

weights. The PS then sends back to the worker the new updated

parameters. Hence, the updates are done in an asynchronous manner.

10
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This gives an update of the form

wC+1 = wC +
1

:

:∑
8=1

∆w(8),

with ∆w(8) encompassing, as before, the update that the optimizer im-

poses after the observation of a mini-batch by site 8 (i.e. for the vanilla

DG optimizer, the update term for a worker 8 is− U
<

∑<
9=1 ∇w(8) ℓ (x

(8)
9 , ~

(8)
9 )).

The communication cost is similar to the S-DSGD method.

A-DSGD, being an asynchronous method, gets rid the ’last-executor’

problem, thus gaining a big advantage against S-DSGD in terms of

data throughput, and hence execution speed. Workers can also be

tuned to apply their gradients after more than one mini-batch has

been observed, just as in S-DSGD, providing further throughput gains.

On the downside, A-DSGD on its simplest form can result to high

staleness values for the gradients. This means that, as the calculation

of gradients take time, by the time a worker has �nished these calcu-

lations and applies its results to the global parameters, the parameters

may have been updated a number of times. In realistic scenarios this

problem can slow down the predictor’s convergence signi�cantly.

Many variants of A-DSGD try to alleviate this problem and have been

shown to improve convergence over the naive implementation of

the A-DSGD algorithm, by utilizing some form of synchronization

procedure [Ho+13b; Zha+16].

2.2.3 Stale Synchronous Parallel (SSP)

This synchronization method is a compromise between BSP and TAP,

proposed in [Ho+13a]. In the BSP scenario all learners synchronize

with each other after a designated number of training data, hence

they are forced to be on the same round during the whole training

procedure. On the other hand, TAP enforces no such constraint. Each

11
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learner is left free to operate on its own, not having to care about the

learning round of other remote learners. Thus, learners in TAP can

all be on a di�erent learning round of arbitrary di�erence between

them. The SSP �nds a middle ground. It is not as restrictive as BSP

and not as as TAP. In SSP all learners can be on a di�erent learning

round as long as no learner is B + 1 rounds ahead of any other, where

B is a positive integer used as a bound. In essence, it is a TAP method

with a bound in the di�erence of learning rounds between the faster

and slower learners. When, B get close to in�nity SSP transforms to

TAP. On the other end of the spectrum, when B is equal to zero then

SSP becomes identical to BSP.

2.2.4 Elastic Averaging (EA)

In this strategy, proposed for SGD in [ZCL15], a synchronization

between learner and the PS is performed by an "elastic force" F(8)C =

d

(
w(8)C − w̃C

)
, which is added to w̃C+1 and subtracted from w(8)

C+1. This

strategy o�ers better exploration of the model "landscape" by the

learners, and therefore better generalization, while it is still e�cient.

However, stability has only been proved in the context of SGD. EA can

be used within a BSP and in a TAP setting for the simple reason that

it only alters the update rule of the learners. In our architecture we

will use its asynchronous variant, Asynchronous Elastic Averaging

Stochastic Gradient Descent (EASGD) for the simple reason that it is

more applicable on the online learning scenario (as all Asynchronous

methods are due to their robustness against back-pressure).

2.3 Online Machine Learning Libraries

The rise of computational power combined with industry digitaliza-

tion and the immense data explosion of the last decades have made

12



Online Machine Learning Libraries Section 2.3

ML methods very popular in numerous �elds. Their ever-expanding

popularity has led to the development of a myriad of ML libraries and

frameworks in various programming languages, each one covering

di�erent needs.

Unfortunately, Online ML methods have yet to be established in

the development community. Most cloud-based ML frameworks and

libraries aim to meet the needs of o�ine learning scenarios. Namely,

they cover the batch setting, even if they execute on a streaming

platform. The OML �eld was conceived to tackle the problem of

Big Data, the uncontrollable and rapid generation of unbounded

digital information. One of the �rst Big Data frameworks developed

to handle computations on big data sets in a distributed manner

was the Apache Hadoop Map-Reduce framework. Apache Mahout,

a distributed linear algebra framework implemented on top of the

Hadoop Map-Reduce framework, was one of the �rst attempts to

parallelize ML. However, those platforms were designed to perform

computations on static datasets. Hence, Online ML could not be

supported.

The �rst widely used and robust platform for online streaming com-

putations was the Apache Spark framework. It is a multi-language

engine for executing data engineering, data science, and ML on single-

node machines or clusters and is one of the most widely used plat-

forms for distributed ML training. Although it provides streaming

processing capabilities, its extensive set of distributed ML algorithms

is built only to train on static datasets. The �rst true OML library that

we came up upon was FlinkML, a library of online machine learning

algorithms built on top of the streaming engine Apache Flink. How-

ever, the library was deprecated and removed from the ecosystem

of Flink after version 1.9. Many other well-known libraries support

distributed ML, like Tensor�ow and Pettum, but they also are only

appropriate for the batch setting.

13
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Scikit-Multi�ow and MOA are libraries (the former written in

Python and the latter in Java) that support the OML setting. Never-

theless, the number of algorithms they provide is limited, and they

support only centralized learning.

To our knowledge, the only platform with a clear commitment to the

distributed OML setting is Apache SAMOA, from Yahoo! Barcelona.

Yet, the architectural decisions in SAMOA were di�erent. Although

an abstract API for communicating nodes exists, it is not mature or

�exible enough for use by developers. Motivated by the lack of a

truly dedicated distributed Online Machine Learning framework, we

propose the OMLDM architecture that can be implemented on top of

any streaming platform and can potentially support any online ML

pipeline.

2.4 Distributed Frameworks

In the last decade, we have been embarking on a new digitized era

with the generation of data exploding in terms of volume, velocity, va-

riety, veracity, and value. Traditional Database Management Systems

were more than enough to handle the data before the new digitized

era came along, but now they fall short. For that reason, new frame-

works we developed for �lling this vacuum in technological need,

Distributed Big Data frameworks. Frameworks like these are built for

the sole purpose of handling massive amounts of data. The way they

accomplish that is by utilizing more than one computational machine.

In essence, they utilize a network of computers, or mostly known as

a cluster of computers, and by allocating distributed computational

power and storage they solve computational problems of massive and

sometimes unbounded datasets. Such frameworks are optimized for

memory and disk utilization and provide strong guarantees against

machine failures. We chose to build our OML module on the Apache

14
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Flink, for distributed manipulation of data streams, and Apache Kafka

as a distributed stream messaging system.

2.4.1 Apache Flink

Apache Flink is a framework and distributed processing engine for

stateful computations over unbounded and bounded data streams.

It runs in all familiar cluster settings and resource managers (such

as Hadoop YARN, Apache Mesos, and Kubernetes) and performs

computations at in-memory speed and any scale. For our experiments,

we used a Hadoop YARN environment.

A distributed stream processor must possess the ability to recover

from failures and run streaming applications 24/7. For that reason,

Apache Flink provides strong guarantees against machine and process

failures. It does that by using a checkpoints system, thus ensuring

that its internal state remains consistent after a failure or during

a restart of the distributed application. The checkpointing system

utilizes three notions of time for keeping the internal states consistent

with each other.

• Processing Time: Processing time refers to the system time of

the machine that is executing the respective operation.

• Event Time: Event time is the time that each event occurred

on its producing device. This time is typically embedded in the

form of a timestamp within the records before they enter Flink.

• Ingestion Time: Ingestion time is the time that events enter

Flink.

When coding an application in Apache Flink we essentially create a

pipeline of data transformations. The framework forms, upon compil-

ing, a Directed Acyclic Graph (DAG) of this pipelined transformation
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that the user can upload into a cluster to run it in parallel or run it in

a single local machine.

Figure 2.2: Apache Flink cluster architecture.

Within a Flink cluster, we have two types of nodes, namely Master

Nodes and Worker nodes. Each node type runs a di�erent process that

serves a unique purpose within the distributed application. A Master

node, which should be at least one within a cluster, runs a JobManager

process. The JobManager has a plethora of responsibilities related

to coordinating the distributed execution of Flink Applications. It

decides when to schedule the next set of tasks, reacts to �nished

ones or execution failures, coordinates checkpoints, and coordinates

recovery on failures, among others. Each worker node incorporates a
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TaskManager that undertakes the physical execution of tasks. The

TaskManagers, which are essentially JVM processes, execute the tasks

of data-�ow and bu�er and exchange the data streams. There must

always be at least one TaskManager. The smallest unit of resource

scheduling in a TaskManager is a task slot. Each task slot represents

a �xed subset of resources of the TaskManager and their number

indicates the number of concurrent processing tasks. Tasks in the

same TaskManager share TCP connections (via multiplexing) and

heartbeat messages. They may also share data sets and data structures,

thus reducing the per-task overhead.

Figure 2.3: Apache Flink cluster architecture.

Apache Flink o�ers an API for implementing transformations on

data streams, the DataStream API. The API supports various data

sources (e.g., Kafka, Cassandra, Elasticsearch, socket streams, �les)

and sinks. It also supports a handful of operators for transforming

streams (e.g., map, �atMap, �ltering, reduce, e.t.c.). Flink operators

may run in several instances executing the same task but on di�erent
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data partitions. They divide into sub-tasks and are assigned to a slot.

Subtasks of distinct operators can share the same slot, thus leading

to better resource utilization. Here are some of the many more useful

operators that Apache Flink o�ers.

• Map: Takes one element and produces one element. A map

function that doubles the values of the input stream.

• FlatMap: Takes one element and produces zero, one, or more

elements.

• Process: A low-level stream processing operation, giving access

to the basic building blocks of all (acyclic) streaming applications.

• Connect: "Connects" two data streams retaining their types.

Connect allowing for shared state between the two streams.

• CoMap & CoFlatMap: Similar to map and �atMap on a con-

nected data stream.

• Union: Union of two or more data streams creating a new stream

containing all the elements from all the streams.

• Filter: Evaluates a boolean function for each element and retains

those for which the function returns true.

• KeyBy: Logically partitions a stream into disjoint partitions. All

records with the same key are assigned to the same partition.

Internally, keyBy() is implemented with hash partitioning. We

utilize such an operator to send messages from the local workers

to the PS in our distributed OML problem.

• KeydProcess: A Process with access to keyed state and timers.

• Reduce: A "rolling" reduce on a keyed data stream. Combines

the current element with the last reduced value and emits the

new value.
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2.4.2 Apache Kafka

Apache Kafka is a highly scalable messaging system written in Scala

and Java back in 2011 by LinkedIn data engineers. In a more precise

manner, Apache Kafka is a publish-subscribe-based durable messag-

ing system built for exchanging data between processes, applications,

and servers. Its key design principles were formed based on the grow-

ing need for high-throughput architectures that are easily scalable

and provide the ability to store, process, and reprocess streaming

data.

The cornerstone of Kafkas’ architecture is the Kafka topics. A topic

is a category/feed name to which records are stored and published.

Alternatively, a topic can be interpreted as a messaging pipe between

applications where they can add, transfer, process, and reprocess

records that run through them. Topics are divided into several parti-

tions where each one contains a set of key-value records ordered and

uniquely identi�ed by their o�sets. Moreover, records are stored and

indexed within partitions along with a timestamp and other optional

attributes.

Figure 2.4: Apache Kafka cluster architecture.
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Applications that subscribe to a speci�c topic have read and write

permissions to it. The subscribed applications can read records from

the partitions and use them for algorithmic purposes. Apps can also

read records multiple times. This is possible because once records are

published to the cluster they stay in the cluster until a con�gurable

retention period has passed by.

These are the four main parts of a Kafka system.

• Broker: Handles all requests from clients (produce, consume,

and metadata) and keeps data replicated within the cluster. A

Kafka cluster consists of one or more servers (Kafka brokers)

running Kafka.

• Zookeeper: Keeps the state of the cluster (brokers, topics, users).

It is also responsible for managing the brokers within the cluster.

There may be multiple Zookeepers in a Kafka cluster.

• Producer: Producers are processes that push records into Kafka

topics within the broker.

• Consumer: Consumes batches of records from the broker. They

can also be attached to a consumer group. If two of them are in

the same group, they will read di�erent partitions of a topic.
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Let us now present the structure of our approach to the problem of

distributed OML. The OMLDM architecture is composed of three main

layers, the Online Machine Learning library, the Network/Middleware

(N/M) layer, and the kernel or back-end layer. The hierarchy of those

layers can be depicted in Fig. 3.1.

Figure 3.1: The OMLDM software stack.

On top of the OMLDM stack, there is the computational layer.

Preprocessing techniques, Machine Learning algorithms, and Data

Mining methods live and execute at this level. One level below, and

within this library, machine learning pipeline management orches-
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trates computation, provides generic services for these components,

and controls their life-cycle. Lastly, the distributed learning logic

exists in this layer by the algorithmic implementations of workers

and Parameter Servers within a distributed learning setting.

Following the computational layer, the Network/Middleware (N/M)

layer is at the heart of the architecture. It implements an abstraction

of a network of processing nodes and a high-level middleware API for

communication between them. The abstract network that the layer

implements take the form of a fully connected Bipartite Graph. The

purpose of this design choice will become much more translucent in

our thorough summary of the N/M layer.

Finally, below the Network layer lies the online streaming kernel.

The kernels’ current implementation is in Flink and Kafka; in the

future, we are contemplating executions on other Big Data infras-

tructures such as Spark and Akka. Kafka is currently used only as

a source and destination for streaming data. Additionally, it serves

as a fault-tolerant data bu�er between Flink operators. Although

Flink and Kafka are highly versatile stream processing platforms,

implementing the operations of the network layer presented us with

several technical challenges that we will be discussing later in this

chapter.

The purpose of deconstructing the OMLDM into three components

was to make it more versatile and extendable to the user. This ap-

proach provides the user the ability to extend or to completely change

the upper layer (the OML library), as well as the lower layer of the

architecture (the streaming kernel), without the necessity of having

to deal with the rest of the module. We now advance to describe the

layers of our architecture in more detail. After that, we will see how

they all tie together to provide the user with a plethora of capabilities

in the playground of data mining and online machine learning.
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3.1 The Network/Middleware layer

The N/M layer, written in Java, mediates between the computational

code and the streaming kernel, making each oblivious to the other.

This layer serves as a middleware to the whole architecture that

glues together our high-level distributed OML library to the low-

lever streaming kernel. The primary abstraction to support this,

a Network, is a collection of processing nodes that manages the

transfer of messages between them, incoming and outgoing streaming

tra�c, and execution of tasks.

3.1.1 Networks

A network comprises a bipartite graph of nodes. Nodes can be of

two types, either spokes or hubs. Spokes are the nodes receiving the

distributed input stream; apart from that, there are no di�erences

between spokes and hubs. All nodes can generate streaming output,

either messages to other nodes or streaming network statistics. See

Fig. 3.2. In the distributed OML implementation, we intend for the

spokes to host local learners, whereas hubs collectively implement

the Parameter Server.

The reason for choosing a bipartite graph distributed topology of

nodes and not a classic star network topology was for the sole purpose

of dividing the parameter server into multiple nodes. As the models

grow in size, as in a deep learning model, it would be naive to hold

the global model and all the computations necessary to a single PS.

A single point of an immense number of calculations could not hold

up to Big Data scenarios. Hence, our architectural network topology

enables distributed learning scenarios with multiple PSs sharing the

computational load.

Communication can only occur between nodes of di�erent types.

Meaning that spokes cannot communicate with other spokes, and the
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Figure 3.2: A network with 4 spokes and 2 hubs.

same goes for hubs. Each spoke and hub node can send messages to

each other via bidirectional, reliable FIFO channels. These channels

can carry serializable messages of arbitrary size. Atomic broadcast

is also supported, meaning that a node can ship copies of the same

message to every node of the opposite type. This functionality can

signi�cantly reduce the amount of communication between the nodes.

As we will see soon afterward, we use such methods to broadcast

learning models to spokes.

The N/M layer is a collection of Java interfaces and abstract classes.

The instances of nodes are Java objects whose actual type is opaque

to the kernel and that the OML layer implementations need to extend.

They provide methods that the back-end kernel can call to deliver

messages, streaming data, or control commands. A node can only

execute one of these calls and does not have the clearance to create its

own threads or block any calling thread. Lastly, nodes cannot share

states with other nodes.
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3.1.2 Middleware

Remote Method Invocation (RMI) is a Java API that allows an object to

invoke a method on a Java object that exists in another address space,

which could be on the same machine or a remote one. Motivated

by this API, we created a middleware of our own, an asynchronous

RMI paradigm that allows programming distributed algorithms by

high-level, type-checked, and easily readable code.

Each node implements a remote interface. In addition, the middle-

ware provides each node with a proxy object for each node of the

opposite type. What is more, all nodes of the same type implement

a common remote interface, and a broadcast proxy is provided to

each node. As a result, each node can communicate with the opposite

type nodes one by one directly, or it can broadcast a message to all

of them by using their provided proxies. These proxy objects are

implemented using Java annotations and run-time re�ection.

Remote methods can return values. The caller of a remote method

can specify a callback to handle the return value. For example, the

following line calls the user de�ned remote method doFoo, via the

proxy given to user by the middleware, and provides the calling node’s

processFooResult method, also user de�ned , as the callback to handle

the response.

proxy.doFoo(x, y).then(this::processFooResult);

When calling a remote method on the broadcast proxy, the callback

is invoked once for each response received. Hence, the middleware

provides a node with the following functionalities.

1. To send a one way message to a node of the opposite side,

without waiting for any response.

2. To send a two way message to a node of the opposite side and
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expect for a response message. The caller can also allocate a

callback function to the answer.

3. To broadcast a one way message to all nodes of the opposite

side.

4. To broadcast a two way message to all nodes of the opposite

side and expect their responses. The same callback function will

be executed for each one of the responses. Hence, any di�erence

in functionality must be implemented by the user in the callback

function.

The middleware also provides for deferred responses via promises.
More often than not, the callee may not possess the reply to the

call made to it right away. In those cases where the callee cannot

immediately respond to the calling node, it may return a promise

object. The promise object is bound to this speci�c call. When the

response value becomes available, the callee provides it to the promise

object ("ful�lls" the promise) and ships the response message to the

calling node. Multiple promises can be given to a calling node and

can be "ful�lled" at once by providing the list of all the answers, or

one by one by providing only the available ones.

Finally, there is a broadcast promise facility. A broadcast promise

object can be returned by a remote method instead of a response

value. The same broadcast promise object can be bound to many calls.

A response message is broadcasted to all callers, when

(a) the broadcast promise object has been bound to every node of

the opposite type, and

(b) the promise is ful�lled.
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3.1.3 Synchronization

Broadcast promises are essentially a synchronization mechanism. To

see this, observe that they can be used to trivially implement barrier
synchronization between all nodes of the same type (just create a

remote function that returns a broadcast promise which is already

ful�lled).

Aside from broadcast promises, the middleware supports only lim-

ited facilities for synchronization between nodes. In distributed sys-

tems parlance, message delivery is FIFO-consistent. Stronger forms

of consistency, including causal and sequential consistency, are not

provided, in order to keep middleware implementation simple. We

are not aware of a need for such consistency guarantees in the domain

of machine learning.

However, the middleware does provide for synchronization between

messages and the incoming stream for spokes. It is possible to pause

the processing of streaming inputs until an RMI call has returned. This

pause may cause back-pressure to other parts of the implementation,

which the kernel may be able to exploit for more e�cient processing.

We will be using our previous example to demonstrate how a user may

do this. The following line once again provides a synchronous callback

method processFooResult to the answer of the remote method doFoo.

proxy.doFoo(x, y).thenSync(this::processFooResult);

The processing of the stream will resume immediately after the arrival

of the response message and the execution of the callback method.

The motivation for this functionality came to place after the need

of machine learning workers to stop �tting their local model on

incoming data when they await to receive the newly requested global

model.
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3.2 The kernel layer

The kernel layer is responsible for delivering streaming data to nodes,

and transferring messages between them, in an e�cient and scalable

manner.

3.2.1 Kernel implementation

For each node of a network, the N/W layer provides to the kernel

a node object # , with methods that the kernel can call to deliver

streaming tuples and incoming messages to the node.

For each node object # , the kernel must construct a network context
object; this object is used by the middleware to implement the RMI

proxies given to # . Methods on the network context object are called

by the N/M layer to send messages from = to other nodes and support

streaming synchronization.

Messages and streaming items are treated as blobs by the kernel.

The kernel can encapsulate these messages into its own message

objects, adding whatever routing, timing or other metadata is required.

Furthermore, as messages can be arbitrarily large, the kernel may

decide to fragment them in order to manage them more e�ciently.

3.2.2 Kernel on Flink and Kafka: lessons learned

We chose to build our kernel layer using the Apache Flink distributed

framework for streaming data manipulation and the Apache Kafka

for stream messaging. The implementation is written in Scala due

to its inherent nature in distributed programming. Choosing the

distributed framework Apache Flink as our main kernel for multi-

clustered stream computations in concert with Apache Kafka as its

input and output origin wasn’t an arbitrary choice. The two dis-

tributed frameworks performing in unison can provide all the prin-
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cipal requirements for managing extreme-scale interactive analytics

in stream processing fashion with fault-tolerance and exactly-once

guarantees. The implementation of the bipartite networks is built

via Apache Flink. Spokes and hubs, along with their algorithmic pro-

cessing of the data and messages, live inside a Flink Directed Acyclic

Graph (DAG) job. For providing streaming inputs and collecting

streaming outputs we use Apache Kafka.

Despite the simplicity of the kernel-N/M contract for scalable and

robust kernel implementation, signi�cant attention must be paid to

systems issues. The �nal design of the OMLDM kernel required sev-

eral iterations and is the result of the evaluation of several alternatives.

We expect that some of our design choices may need to be revisited

as the Flink platform evolves. However, we believe that future change

should be much easier due to the strong separation between the kernel

layer and the pipeline layer.

The two areas where signi�cant complexity arose in practice were

(a) upstream communication and (b) propagation of back-pressure.

In our bipartite graph network, we consider two kinds of data tra�c.

The downstream data �ow and downstream data �ow. The �rst one is

the data �ow with direction from the spokes to the hubs. The opposite

holds for upstream. The data within the Apache Flink implementation

�ow to the spokes, either streaming data or messages. Spokes handle

the necessary computations and forward messages either to the user

(outside the Flink job) or to the hubs. Unfortunately, the hubs can

only propel their messages outside the job. They cannot transmit

data messages backward. For that reason, due to the acyclic nature of

the framework, upstream data �ow (from the hubs to the spokes) is

not supported.

For most streaming frameworks, "upstream" data tra�c is not han-

dled as conveniently as downstream; acyclicity a�ords signi�cant

opportunities for optimization and fault resilience. Apache Flink sup-
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ports upstream tra�c by a mechanism called iteration. Unfortunately,

the versions of Flink available when OMLDM development started,

imposed several restrictions on iterations. To work around them, we

used Kafka to provide upstream communication. The hubs provide

their messages to a Kafka topic, a classic sink for a Flink job. We then

connect the other end of this Kafka topic to the input of the Flink

job, creating in this way a feedback loop, a direct way for the data to

�ow from the hubs to the spokes. Surprisingly, we discovered that

using Kafka slightly improved the performance over the Flink-native

solution of iterations.

3.3 Pipelines and ML library

The last and top most layer of our architecture is our own distributed

OML library written exclusively in Scala. All the algorithms that

you are going to see from this point on, either preprocessors, ML

algorimths or distributed learning synchronization methods, are im-

plemented from scratch with the exception of Deep Neural Networks.

The computational component of our architecture is a pipeline. Each

pipeline executes in a network. If : is the number of spokes and<

the number of hubs, a pipeline comprises of : independent learners,

and an<-node Parameter Server. Before each local learner, a number

of preprocessors is prepended in pipeline fashion. Fig. 3.3 depicts a

pipeline with 3 local nodes.

A pipeline is instantiated on a network, and is implemented as

a pair of Java classes, the spoke class and the hub class. The main

pipeline responsibilities are:

• To manage synchronization of local learners with the Param-

eter Server. A number of synchronization strategies are imple-

mented. Each of these strategies is implemented by a di�erent

pair of spoke and hub classes.
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Figure 3.3: A pipeline with 3 learners and a 1-node parameter server. Each learner is

preceded by a preprocessor. Black arrows depict communication channels.

• To drive streaming input through the preprocessors to the local

learners. The pipeline determines whether to �t or predict on a

sample, depending on the presence of a label. For training, input

can be aggregated in mini-batches, con�gurable by the user.

• To maintain statistics per-learner and globally, including learn-

ing quality (accuracy, regret, etc).

• To interact with the environment through a special control API,

in order to monitor execution, recon�gure learning hyperparam-

eters, etc.

3.3.1 Preprocessors

The incoming stream of samples is piped through a number of pre-

processors, before it is seen by the learner. The number and the type

of preprocessors that are going to be placed in front of the learner

are left for the user to decide. Preprocessors can be concatenated, are

aware of the pipeline, and can be created and destroyed dynamically.

Also, simple preprocessors can be easily be implemented in a few

lines of code. As such, they are a valuable convenience tool for OML
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coding and execution. Our current implementation of the distributed

OML library contains the following preprocessors implemented from

scratch.

• Feature �ltering/selection.

• MinMax scaler.

• Standard scaler.

• Running mean and variance.

• Polynomial features.

3.3.2 Synchronization strategies

The synchronization strategy is the heart of the distributed pipeline

logic, and a crucial factor to learning quality and performance as it can

"make or brake" a distributed learner. The current implementation

supports the following synchronization strategies:

• The Total Asynchronous Parallel (TAP) synchronization pro-

tocol, a method that maximizes throughput but can potentially

tamper the convergence of the learner.

• The Bulk Synchronous Parallel (BSP) synchronization proto-

col, a method that optimizes convergence but can potentially

limit the throughput of the streaming topology due to excessive

use of communication.

• The Stale Synchronous Parallel (SSP) synchronization proto-

col that is a compromise between BSP and TAP and tries to bring

the best of both worlds, smooth convergence and throughput.

• The Elastic Averaging (EA) synchronization protocol, a strat-

egy that o�ers better exploration of the model "landscape".
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• Last but not least, our own synchronization protocol, the Func-
tional Dynamic Averaging (FDA) protocol. The main idea of

this protocol is to minimize communication between the nodes,

hence maximize throughput, and maximize model performance

at the same time by performing model synchronization only

when necessary instead of periodically sending the model over

the network. Our method is discussed in detail in the next section

of our study.

3.3.3 Learning algorithms

For the implementations of the OML algorithms we used the Breeze

library. Breeze is a library for numerical processing written in Scala

that aims to be generic, clean, and powerful without sacri�cing e�-

ciency. All the necessary linear algebra computations are done using

Breeze. A number of learner algorithms have been implemented on

the OML pipeline.

• Passive-Aggressive (PA) learners [Cra+06] for binary and multi-

class classi�cation.

• Passive-Aggressive (PA) [Cra+06] regressor.

• Online Support Vector Machine (SVM) classi�er.

• Online Ridge Regression.

• KMeans++ clustering.

• The CVFDT [HSD01] algorithm for constructing Hoe�ding trees

on both discrete and real valued attributes.

• Neural networks algorithms contained in the DeepLearning4J
library [Tea16].
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These learners—except CVFDT—can be parallelized under any of the

supported synchronization strategies. Naturally, some combinations

may not work as well as others, but OMLDM does not impose the

decision on the user. Finally, the library provides a set of interfaces

so that users can create their own OML algorithm.

Scala traits are used to share interfaces and �elds between classes.

They are similar to Java 8’s interfaces. Classes and objects can extend

traits, but traits cannot be instantiated and therefore have no parame-

ters. In our implementation, the trait that the user needs to implement

in order to develop its own OML algorithm is the Learn.scala trait.

This trait contains several mandatory methods that need to be over-

written by the learner implementation of the user. Methods like these

include are functions for �tting and calculating the loss the model

on the provided data, making predictions, scoring the model, setting

and updating hyperparameters and last by not least serializing and

deserializing the model. The serialization and deserialization of the

model and its parameters is an essential part for the performance of

the module. It is necessary for the user to be able to convert its model

to a POJO object (as they can be easily serialized by many tools) and

convert it back to its own class (e�ectively deserializing it).

Sending the parameters over the network can be a very cost pro-

cedure in cases where the actual model is too big in size. Take for

example a deep neural network with one million features. The OML

library supports techniques for dividing the model into smaller pieces

so it can be sent in reasonably sized serialized messages. The model

then reconstructs itself upon arrival. The option to send the model in

sparse vectors is also supported. This "marshaling" (deconstruction,

spari�cation and serialization) before sending the model over the

network and "unmarshaling" upon receiving it is handled behind the

scenes by our library in an e�cient and optimized way.
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3.4 A holistic view of the OMLDM component

The composition of the three main layers gives rise to OMLDM, a

Big Data component intended for online learning and prediction.

OMLDM provides the capability to train more than one OML in a

distributed fashion, each one using its own synchronization method.

It is up to the user to decide which synchronization protocol suits

best for each distributed model. In its current form, the component

can run locally or in a cluster of computers. As soon as it is up and

running, the user can interact with it through a provided API written

in JSON format.

The API gives the user the �exibility to create, delete, modify and

query OML algorithms on OMLDM. To be precise, the programmer

is given the following option via the API.

• Query a general summary of all the OML algorithms that run

on the module.

• Obtain scores, loss rates, the model itself, and other valuable

information about each OML algorithm.

• Create new OML algorithms to train and use for prediction.

• Delete existing OML algorithms that already run on the compo-

nent.

• Change/modify the hyperparameters of an algorithm that al-

ready runs on the module and �ne-tune it in real-time.

The requests made to the component take the form of a dictionary,

with key-value pairs. There are 5 di�erent main keys.

• id: An non-negative integer used as unique identi�er for an OML

pipeline. All requests must contain an id so that the component

knows in which OML pipeline the request is referring to.
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• request: A string name referring to the request type. There are

four request types. "Create", "Update", "Delete" and "Query". The

"Query" request type is used when the user needs additional

information about the running OML pipeline. As it stands now,

all the information about the model is returned to the user (num-

ber of �tted data, score, accumulated and mean loss) during a

"Query", along with the model itself in a serialized format.

• preProcessors: A list of dictionaries describing all the pre-

processors the user wants to concatenate on its OML pipeline in

case of a "Create" or "Update" request.

• Learner: A dictionary describing the OML algorithm the user

wants to instantiate in case of a "Create" or "Update" query.

• trainingCon�guration: A dictionary containing all the infor-

mation needed about the distributed synchronization method

for training the OML pipeline. It is used in cases of a "Create"

and "Update" request.

Each pre-processor and learner dictionary is comprised of the fol-

lowing keys.

• name: The string name of the pre-processing or the OML method.

This �eld cannot be null as it is used to recognize and instantiate

an transforming or a learning object.

• hyperParameters: A dictionary containing the hyperparam-

eters of the transforming or the learning object. Any �eld, or

even the whole key, could be left null. In this case the default

hyperparameters of the object are used.

• parameters: A dictionary containing the parameters of the

transforming or the learning object. Any �eld, or even the whole
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key, could be left null. In this case the default parameters of the

object are used.

Lastly, the "trainingCon�guration" key contains the following keys.

• protocol: The string name of the synchronization method to be

used for distributed training.

• hubParallelism: A positive integer indicating the number of

distributed parameter servers to be used. The number of workers

is determined by the parallelization of the job.

• miniBatchSize: The size of the mini batch. This is the smallest

number of data points that the learner can use to train itself.

• miniBatches: The number of mini batches the learner �ts be-

fore each synchronization mechanism is triggered.

• safeZone: The string name of the safezone function used in the

FDA method. Only used when protocol takes the value "FDA".

More on FDA synchronization in the next section.

• threshold: The threshold parameter of the FDA method. Only

used when protocol takes the value "FDA". More on FDA syn-

chronization in the next section.

• precision: The precision parameter of the FDA method. Only

used when protocol takes the value "FDA". More on FDA syn-

chronization in the next section.

By combining the above key-value pairs the user has a variety of

actions regarding the creation, modi�cation, retrieval and deletion of

any OML algorithm running on the component.

We provide OMLDM with the means of communication by using

Apache Kafka. The input Kafka topics of OMLDM are:
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• Training Stream: The Kafka stream contains the data used

for training. The data points of this channel can be labeled or

not, depending on the nature of the ML problem, supervised or

unsupervised.

• Prediction Stream: The Kafka unlabeled data stream used by

the already running OML algorithms within the component to

make predictions on them.

• Requests Stream: A Kafka topic containing user requests for

creating, updating, querying, and deleting learning pipelines.

Messages that go through this channel must be provided in JSON

format.

• PS messages: The messages of the hubs towards the spokes.

This topic constitutes the feedback loop topic for the upstream

communication.

The output Kafka topics of OMLDM are:

• Predictions: This Kafka topic contains data points from the

prediction input stream along with their predicted label.

• Responses: The responses to users’ queries.

• PS messages: The messages of the hubs to the spokes. This

topic is the feedback loop topic for upstream communication.

Fig 3.4 depicts our Flink/Kafka implementation of OMLDM. The

data points from the Training Stream and the Prediction Stream are

parsed, transformed into training and prediction vectors, and united

into a single stream. Similarly, the Requests Stream and the PS Mes-
sages are parsed into message objects and united into a single stream.

This ends the parsing phase of the implementation. Then, vectors

and messages end up together to the spokes, a CoProcessFunction in
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Figure 3.4: OMLDM Flink Implementation.

Apache Flink. Inside the CoProcessFunction the spokes ingest the

two streams and execute their functionality. If necessary, spokes send

messages to the hubs written inside a KeydProcessFunction in Flink.

Messages to the hubs are hashed by hub key. This is the most costly

redistribution of data that happens within the module as more often

than not those messages are model parameters. The hubs send their

messages to a Kafka sink that is also our feedback loop. Both Spokes

and Hubs emits side output streams containing predictions to the

Prediction Stream, and responses to the Requests Stream.
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Most of the literature on distributed ML studies the batch setting,

where all training data is available to the system at the start of the

computation. A common, mostly unstated assumption, is that com-

putational resources are exclusively used by the ML training system;

therefore, the goal of synchronization strategies has been to improve

the trade-o� of computation time vs. learning quality.

Furthermore, much of the work has been done in the context of

Deep Learning, which in turn implies stochastic gradient-based opti-

mization techniques, notably SGD. Combined with the emergence of

GPUs, the mini-batch approach has dominated extreme-scale Machine

Learning in the literature.

Functional Dynamic Averaging (FDA) is motivated by cases where

the distributed OML computation is long-running, with the arrival

of training data �uctuating over time, computational resources (esp.

network bandwidth) are shared with other jobs, and the ML tech-

niques may not be gradient-based (for example, Passive-Aggressive

learning).

4.0.1 Intuition

The motivation of FDA came from previous work on Geometric Moni-

toring of distributed data streams [GKS13; SG; SSK07], and the promis-

ing results of Kamp et al. [Kam+14; Kam+16].

In FDA, the assumption made is that the (generally unknown) mean

model wC =
1

:

∑:
8=1 w(8)C is a "good" model, provided that w(8)C are not

too far apart. This is a standard assumption in Machine Learning,
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based on long empirical evidence in a plethora of cases. Synchro-

nization methods, including BSP, TAP, and SSP, track this average

explicitly, by periodic synchronization to the PS, updating w̃C to track

wC at each round. The frequency of synchronization is determined

rather arbitrarily by the mini-batch size of the training. Larger mini-

batches reduce communication, but possibly at the expense of the

local learners drifting too far apart, and their average not being "good"

anymore.

Succinctly, FDA works in rounds, similar to BSP. At the beginning of

a round, say at time C0, the model w̃C0 is pushed to local learners. Then,

local models are trained independently for some time, processing local

streams of training samples, while the nodes cooperatively monitor

the following Round Termination Condition (RTC):

1

:

:∑
8=1

‖w(8)C −wC ‖2 ≤ K, (4.1)

where the left-hand side is the model variance, and thresholdK is

a hyperparameter of the FDA, de�ned at the beginning of the round;

it may change at each round. When the monitoring logic cannot

guarantee the validity of RTC, the round terminates. All local models

are pulled into the Parameter Server, and w̃ is set to their average.

Then, another round begins.

4.0.2 Theoretical properties of FDA

We present some formal results on the e�ect of the RTC on prediction

and training performance. For this, we consider the risk function,

i.e. the expected loss, de�ned as '(w) = �Z[ℓ (w,Z)] where Z is a

random training sample, drawn from the same distribution as the

training data. We derive analytical results for the case where ' is

convex, and !-smooth in some large enough neighborhood of wC , i.e.,
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for any two models w,w′, it is

'(w′) ≤ '(w) + ∇'(w) · (w′ −w) + !
2

‖w′ −w‖2. (4.2)

Bounding the expected prediction risk

In our distributed OML setting, an unlabelled item is sent to one of the

local learners to have a label predicted. At node 8 and time C , '(w(8)C ) is

the expected loss incurred by labeling a random unlabeled item using

model w(8)C . Since an unlabelled sample is equally likely to be sent to

any learner 8 for labeling, on expectation the loss of the ensemble of

local models in labeling a random item is 'C =
1

:

∑:
8=1 '(w

(8)
C ).

The RTC can be used to bound 'C . By convexity, it is 'C ≥ '(wC ).
In this sense, the mean model is "better" than the ensemble of local

models. By plugging w(8)C into w′ and wC into w in the above formula,

summing all inequalities and taking the average, we conclude that

'(wC ) ≤ 'C ≤ '(wC ) +
!K

2

.

Convergence e�ect of FDA

We now examine the e�ect of the RTC on the training. For simplicity,

we shall assume a scenario where learning is performed by SGD.

Consider some time C during a round, where all learners perform

an SGD iteration. At learner 8 , the step taken is

w(8)
C+1 = w(8)C − [∇ℓ (w

(8)
C , z

(8)
C ).

Therefore, the update to the mean model has the form

wC+1 = wC − [
1

:

:∑
8=1

∇ℓ (w(8)C , z
(8)
C ). (4.3)
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Now, comparing Eq. 4.3 to a hypothetical (non-stochastic) gradient

descent step on the risk at wC :

wC+1 = wC − [∇'(wC ). (4.4)

we get to contrast the actual update GC =
1

:

∑:
8=1 ∇ℓ (w

(8)
C , z

(8)
C ) with

the ideal update ∇'(wC ).
Local updates z(8)C are i.i.d. random variables. By linearity and the

de�nition of risk, we have

� [∇ℓ (w(8)C , z
(8)
C )] = ∇� [ℓ (w

(8)
C , z

(8)
C )] = ∇'(w

(8)
C ),

and we can write

∇ℓ (w(8)C , z
(8)
C ) = ∇'(w

(8)
C ) + E(8)C ,

where E(8)C are "noise vectors" of 0-mean, and independent to each

other (though not identically distributed). It is now seen that the

actual update of wC is

GC = ∇'(wC ) + BC + EC , (4.5)

where EC = (1/:)
∑
8 E(8)C is again a 0-mean "noise" vector, and

BC =
1

:

C∑
8=1

∇'(w(8)C ) − ∇'(wC )

is a bias vector.

Bounding the bias

The bias vector depends only on the shape of the risk function '

in the neighborhood of wC . Note that the smoothness of ' implies

a Lipschitz condition on the gradients, i.e., Eq. 4.2 is equivalent to

‖∇'(w′) − ∇'(w)‖ ≤ !‖w′ − w‖. This inequality can be used to
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bound the bias vector; applying we get (after manipulations)

‖BC ‖ ≤ !
√
K

Tighter bound on bias

A probably tighter bound can be obtained by considering the Lipschitz

condition on the Hessian matrix ∇2' (this is simply the Jacobian of the

gradient, i.e., the multidimensional second derivative of '). Indeed, if

the Hessian is L-Lipschitz, i.e., ‖∇2'(w′) − ∇2'(w)‖ ≤ L‖w′ −w‖,
then (Lemma 1 in [NP06]),

‖∇'(w′) − ∇'(w) − ∇2'(w) ·
(
w′ −w

)
‖ ≤ L

2

‖w′ −w‖2. (4.6)

Observe that

BC =
1

:

:∑
8=1

(
∇'(w(8)C ) − ∇'(wC ) − ∇2'(wC ) · (w(8)C −wC )

)
.

By applying Eq. 4.6 and the triangle inequality of the norm, it follows

that the RTC implies the the following bound:

‖BC ‖ ≤
LK

2

. (4.7)

Note that, L can be much smaller than ! for many risk functions.

In particular, if ' is a quadratic function, then the Hessian is constant,

and therefore L = 0, whereas of course, ! is the maximum eigenvalue

of the Hessian. Intuitively, L measures how closely ' can be approxi-

mated by a quadratic function, whereas ! measures how well ' can

be approximated by a linear one.
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4.0.3 Monitoring the RTC

FDA monitors the RTC by applying techniques from Functional Geo-

metric Monitoring, as described in [SG] and the references therein.

Our �rst step is to restate the problem of monitoring the RTC,

into the standard distributed stream monitoring formulation. This

formulation, we de�ne the "local state" S8 (C) ∈ ℝ=
for 8 = 1, . . . , : .

Local state is updated arbitrarily. The "global state" of the system

S(C) ∈ ℝ=
is the average of the "local states". The goal is to monitor

a threshold condition on the global vector, of the form � (S(C)) ≤ K ,

where � : ℝ= → ℝ is a non-linear function.

Let ∆(8)C = w(8)C −w(8)C0 be the update at learner 8 , that is, the change to

the local model at time C since the beginning of the current round at

time C0. De�ning the average update, ∆C =
1

:

∑:
8=1 ∆(8)C , and noting that

at C0 all local models were equal, it follows that the model variance

can be written as

1

:

:∑
8=1

‖w(8)C −wC ‖2 =
1

:

:∑
8=1

‖∆(8)C − ∆C ‖2 =
(
1

:

:∑
8=1

‖∆(8)C ‖2
)
− ‖∆C ‖2

(4.8)

So, conceptually, if we de�ne

(8 (C) =
[
‖∆(8)C ‖2

∆
(8)
C

]
and � (

[
a

x

]
) = a − ‖x‖2, (4.9)

the RTC is equivalent to condition � (( (C)) ≤ K .

4.0.4 Approximately monitoring the RTC

Unfortunately, with the de�nitions of Eq. 4.9, the FGM will not be

able to monitor the RTC with low communication cost; the dimension

of state (8 is dimW + 1. To reduce communication, we must apply
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dimensionality reduction on the local updates ∆(8) , and determine a

suitable function to monitor, based on the reduction chosen.

However, by reducing the information in the state vectors, moni-

toring the RTC becomes approximate. There is a trade-o� between

performance and tightness. We now present three reductions for

monitoring the RTC with little communication.

Naive FDA

In the naive approach, we eliminate the update vector from the local

state (i.e. reduce the dimension to 0). De�ne local state as (8 (C) =
‖∆(8)C ‖2 ∈ ℝ and � (a) = a the identity function. It is trivial to check

that condition � (( (C)) ≤ K implies the RTC.

Linear FDA

In the linear case, we reduce the update vector to a scalar, b ·∆(8)C ∈ ℝ,

where b is any unit vector.

De�ne local state to be S8 (C) =
(
‖∆(8)C ‖2, b · ∆

(8)
C

)
∈ ℝ2

. Also, de�ne

� (a, G) = a − G2. To show that � (S(C)) ≤ K implies the RTC, observe

that

� (S(C)) =
(
1

:

:∑
8=1

‖∆(8)C ‖2
)
−

(
b · ∆C

)
2 ≥

(
1

:

:∑
8=1

‖∆(8)C ‖2
)
− ‖∆C ‖2

A random choice of b is likely to perform poorly (terminate a round

prematurely), as it will likely be close to orthogonal to ∆C . A good

choice would be a vector b correlated to ∆C . A heuristic choice is

to take ∆C0 (after scaling it to norm 1), i.e., the update vector right

before the current round started. All nodes can estimate this without

communication, as w̃C0 − w̃C−1 , the di�erence of the last two models

pushed by the Parameter Server.
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Sketch FDA

An optimal estimator for ‖∆C ‖2 can be obtained by employing AMS

sketches [CG05]. An AMS sketch of a vector v ∈ ℝ"
is a< × 3 real

matrix

M = B: (v) =
[
M1 M2 . . . M3

]
,

where 3 ·< � " . Operator B: (·) is linear and can be computed in

$ (3") steps.

Let< = $ (1/Y2) and 3 = $ (log 1

X
). Function

M2(B: (v)) =<4380=8=1,...,3 ‖b8 ‖2

is an excellent estimator of the squared norm of v: with probability

at least 1 − X ,M2(B: (v)) ∈ (1 ± Y)‖v‖2.
De�ne

S8 (C) =
[
‖∆(8)C ‖2
B: (∆(8)C )

]
∈ ℝ1+3×<,

Also, de�ne the function � (
[
a

M

]
) = a − 1

1+YM2(M). Then, by linearity

of the sketch operator, if follows that � (( (C)) ≤ K implies the RTC

with probability at least 1 − X .

4.0.5 Functional Geometric Monitoring for RTC

All three variants of FDA reduce the RTC to a condition of the form

� (( (C)) ≤ K . To monitor this condition, the local learners coordinate

via a coordinating Parameter Server node. A naive strategy could

be, for every learner, to ship updates of its local S8 (C) to the Coor-
dinator, which will compute the global state S(C) and monitor RTC

approximately.

While such simple schemes can arguably work well, especially for

Naive and linear FDA, there is also a large body of work on techniques
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for decreasing this communication cost by 1 or 2 orders of magnitude.

The sequence of local state updates can be thought of as a distributed

stream. Instead of collecting this stream to the coordinator, local

nodes may process their local streams in situ, and only ship updates

to a coordinator when needed, reducing the overall communication

cost.

A state-of-the-art technique for this type of communication reduc-

tion is Functional Geometric Monitoring (FGM). The essence of FGM

is in reducing a distributed monitoring problem to a simpler one.

To monitor a condition � (( (C)) ≤ K , starting at time C0, construct

another condition, q (( (C)) ≤ 0, such that the second implies the �rst,

and q is a convex function, called a safe function. The safe function

can depend on the global state ®( (C0). Then, the distributed scalar sum

condition

1

:

:∑
8=1

q ((8 (C)) ≤ 0 (4.10)

ensures q (( (C)) ≤ 0 by convexity, and therefore � (( (C)) ≤ K . At

the heart of FGM is an e�cient distributed protocol for monitoring a

distributed scalar sum threshold condition like (4.10)—we refer to [SG]

for details.

When, during monitoring, (4.10) fails at time C 5 , all local states are

sent to the coordinating node. If it is still � (( (C 5 )) ≤ K , the process

repeats (with a safe function for ( (C 5 )). Else, the monitoring routine

declares a violation and terminates the current round.

Naive FDA

The Naive FDA variant is already expressed as a scalar sum like

that of (4.10), by letting q (a) = a − K . Therefore, Naive FDA is

straightforward to handle.
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Linear FDA

It is � (a, G) = a − G2. Since � is not convex, construction of a safe

function is required. Let (a0, G0) be the current state; it must be

� (a0, G0) < K . Referring to Fig. 4.1, let (?, @) be the projection of the

G

a

K

� (a, G) > K

(a0, G0)

(?, @)
q (a, G) ≤ 0

Figure 4.1: Construction of a safe function for global state (a0, G0).

current state on the convex set � = {(a, G) ∈ ℝ2 | a − G2 > K }. The

tangent halfspace to � at (?, @) is de�ned by linear function

q (a, G) = a − ? + 2@(@ − G).

Noticing that q (a, G) ≤ 0 =⇒ (a, G) ∉ � ⇐⇒ � (a, G) ≤ K ,

completes the construction.

Sketch FDA

The construction of a safe function is signi�cantly more involved. We

apply the compositional technique of [GS17]. A detailed justi�cation

of our construction appears therein. Here we give a brief overview of

the construction, for completeness.

By properties of the median, condition � (a,Ξ) ≤ K is equivalent to

<4380=8=1,...,3
(
a − 1

1 + Y ‖b8 ‖
2
)
≤ K.

To compose a safe function at some global state (a0, M0), we �rst
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look at a safe function for conditions of the form

a − 1

1 + Y ‖bi‖2 ≤ K. (4.11)

Let � ⊆ {1, 2, . . . , 3} be the set of indices where (4.11) holds. Since

� (a0, M0) ≤ K , it is |� | ≥ 3/2.

Fix some 8 ∈ � . The safe function of Eq. 4.11 can be treated similar

to the case for linear FDA (refer again to Fig. 4.1). Again, the current

global state (a0, b0,8) must be projected on a paraboloid and a tangent

hyperplane at the projection de�ne function q8 (a, b8). Finally, the

overall safe function q is a weighted max-:-sum of q8 .

51





5 Experimental Evaluation

In this section, we present experiments to validate the main contribu-

tions presented. We have focused on scalability of the architecture

and the e�ect of synchronization.

5.1 Experimental setup

Our �rst learning task involves training a deep Convolutional Neural

Network on AMNIST, a dataset derived from the well-known MNIST

dataset. This is a dataset of 2,000,000 items, constructed from the

standard MNIST samples by adding random distortion, shear, rotation

and skew (we used https://augmentor.readthedocs.io/en/master/index.

html for this augmentation). The AMNIST dataset was stored as

text, occupying 6.7 GBytes on disk. This stream was used to train

online a deep CNN, implemented by DeepLearning4J. The network

contained 14 layers, with a total of about 100k parameters. The

network was trained locally by SGD using ADAM updates, with L2

regularization.

For our second experiment, we created a synthetic classi�cation

dataset using the facilities of the sklearn Python library. The dataset

contained 10,000,000 samples, of 43 features each, of which 4 features

were pure noise. Each class was represented by 2 clusters. The dataset

occupied 8 GBytes on disk. We trained a Passive-Aggressive kernel

classi�er, with a polynomial kernel of degree 2. The PA-I variant,

while aggressiveness was set to � = 0.01 (refer to [Cra+06] for the

relevant de�nitions).
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5.1.1 Experiment se�ings

For our experiment we used an existing Flink/Kafka installation, on a

cluster of 14 machines, each equipped with a 12-core Intel Xeon CPU

and 32 GBytes of RAM. Resources on this cluster were managed by

YARN. In the Flink setup, we limited the amount of work per node,

by allocating a maximum of 3 Flink tasks (TaskManagers) per cluster

machine, while the Kafka setup ran on 4 nodes.

Each training task was executed in a distributed pipeline, under

all synchronization strategies, with the exception of EA for the PA

learner, resulting in 9 distributed scenaria. In addition, the threshold

K for the FDA strategy was set to 8 for the DL task and 0.008 for the

PA task.

Each of these scenarios was executed on an OMLDM network with

parallelism 2, 4, 8, 16 and 32 (as determined by the number of spokes

in the OMLDM network). In all cases, there was a single hub node.

The pipeline was con�gured with a mini-batch size of 256 training

samples in every case.

5.2 Results

5.2.1 �ality of learning

We monitored various metrics of the learning quality in our executed

scenarios. In general, the quality of learning was comparable under

all synchronization strategies and parallelism. Fig. 5.1 depicts the

average learning accuracy of classi�cation. In the DL tasks, a trend of

slow decrease in the accuracy is exhibited by every method, with SSP

and BSP being the marginal winners. In the PA tasks, the di�erences

were even smaller.

Fig. 5.2 depicts the average loss during training the deep CNN

on AMNIST dataset for all the synchronization methods and for 16
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Figure 5.1: Mean classi�cation accuracy.

workers. It is evident form the graphs that FDA catches up with

the other methods after the �rst 100000 examples. Nevertheless, this

Figure 5.2: Training loss for deep CNN on AMNIST.

makes sense as FDA makes much fewer synchronizations compared to

the periodic averaging of the other distributed training methods. More

speci�cally, in this speci�c example FDA makes 2 synchronizations

up until the 100000 training examples, were the other methods made
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approximately 25. Similar results can be observed in Fig. 5.3 for the

PA classi�er.

Figure 5.3: Training loss for deep CNN on AMNIST.

Lastly, in Fig. 5.4 we can observe the training loss for the CNN and

PA classi�ers. All the experiments where conducted for classi�ers

of parallelism 16 and for various thresholds K of the FDA method.

Each type of classi�er demanded a very di�erent value range for

the thresholdK due to their di�erent structures, training losses and

number of trainable parameters. We observed that in both cases,

the smaller the threshold K the steeper the decline of the training

loss. This is understandable and can be explained from the fact that

as K declines, the safe zone becomes smaller and hence the easier

it is for the global variance to exceed the threshold and trigger a

synchronization. As such, synchronizations become more frequent

driving the training loss down more quickly.
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Figure 5.4: Training Loss for various FDA Thresholds.

5.2.2 Scalability

Our next set of results concerns the scalability of the distributed

computation. We executed each learning task in a centralized pipeline

(implemented in OMLDM, but without a Parameter Server). The

results shown in Fig. 5.5 validate our expectations based on previous

work, and con�rm our main claims.

A general observation, we should note that the two methods have

di�erent processing and communication costs, with DL being heavier

computationally, whereas PA is bounded by the total communication.

As shown, in all cases FDA dominated in performance over all other

methods. In the DL task, the asynchronous method (TAP) performed
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Figure 5.5: Speedup for the DL task (left) and the PA task (right). On top of each plot are

the times of centralized execution, over which speedup is computed.

comparably, implying that the communication cost is only a small part

of total time. In the PA task however, all strategies except FDA taper

o� after a parallelism of 16. In all cases, the synchronous BSP method

has the worst speedup, re�ecting the decreased CPU utilization caused

by aggressive synchronization.
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Figure 5.6: Total communication in GBytes for each execution.

The explanation of FDA’s superiority is in Fig. 5.6, showing the
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total amount of communication between OMLDM nodes. Observe

that BSP, TAP and EA carry out the same amount of communication

(proportional to the total number of mini-batches and the size of the

model). There is slightly smaller communication in the case of SSP,

re�ecting a small number of stale messages.

On the other hand, FDA performs almost an order of magnitude

less communication, owning to the method avoiding synchroniza-

tion when local models are su�ciently similar. A counter-intuitive

observation is the decrease of total communication as parallelism

grows. Our theoretical analysis does not explain this, however it was

consistently observed in a number of experiments.
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6 Conclusions & Outlook

In this study we presented OMLDM. A novel state-of-the-art dis-

tributed architecture for e�ortlessly deploying OML pipelines on

streaming platforms. Our module was designed as a part of the IN-

FORE project, a holistic approach in streaming settings aiming to

provide cross-platform streaming analytics at scale to non-expert

programmers. The module maintains and updates data models while

providing interactive data analytics capabilities along with online

predictions on unlabeled data. Users can interact with the module via

a JSON API and pose queries, create, delete and actively update data

models.

OMLDM supports distributed online learning by utilizing the Pa-

rameter Server paradigm. To support maximum scalability, we have

implemented a variety of distributed training techniques within OMLDM

to train the models. Because traditional synchronization strategies

tend to not scale well due to the excessive communication between

the learners and the parameter server as parallelism increases, we

brought forward and evaluated a novel synchronization strategy,

Functional Dynamic Averaging (FDA), that minimizes the prediction

loss and network communication all at once. Our technique utilizes

distributed stream monitoring methods. We proved experimentally

that FDA achieves high predictive performance, yet requires almost

an order of magnitude less communication than any other contem-

porary static synchronization protocol, a fact that gives it the best

speedup results.

Last but not least, the architecture of OMLDM is composed of three

layers, the Online Machine Learning library, the Network/Middle-
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ware(N/M) layer, and the kernel or back-end layer. This design choice

makes it easy for users to extend the module with their Online Ma-

chine Learning models and synchronization techniques with a few

lines of code. Many state-of-the-art online algorithms are yet to be

implemented in the library such as online random forests and other

bagging methods. What is more, the OML library provides a bat-

tleground for designing and testing new synchronization protocols,

line a more sophisticated FDA with rebalancing abilities. The Net-

work/Middleware layer can also be seen as a project of its own in

the distributed systems domain. Implementation of stronger forms

of consistency, including causal and sequential, could be a valuable

addition to the architecture. Another pleasant aftere�ect of this archi-

tecture is the ability to change the lower-level streaming kernel with

your streaming platform of choice. In future studies, we aim to imple-

ment the low-level streaming kernel by using a variety of streaming

frameworks like Apache Spark and Akka. This will prove that our

architecture is modular and will provide performance comparisons

against the distributed frameworks

62



6Bibliography

[BPS09] Shai Ben-David, D. Pál, and S. Shalev-Shwartz. Agnostic Online
Learning. In: COLT. 2009 (see page 6).

[CG05] Graham Cormode and Minos Garofalakis. “Sketching StreamsThrough
the Net: Distributed Approximate Query Tracking”. In: Proc. of
the 31st Intl. Conference on Very Large Data Bases. Trondheim, Norway,

Sept. 2005 (see page 48).

[CMY08] Graham Cormode, S. Muthukrishnan, and Ke Yi. Algorithms for dis-
tributed functional monitoring. In: SODA. 2008 (see page 4).

[Cra+06] Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-Shwartz, and

Yoram Singer. Online Passive-Aggressive Algorithms. en. 7 (2006),

551–585. issn: 1532-4435 (see pages 33, 53).

[GKS13] Minos N. Garofalakis, Daniel Keren, and Vasilis Samoladas. Sketch-
basedGeometricMonitoring ofDistributed StreamQueries. PVLDB
(2013) (see page 41).

[GS17] Minos N. Garofalakis and Vasilis Samoladas.DistributedQueryMon-
itoring through Convex Analysis: Towards Composable Safe
Zones. In: ICDT. 2017. doi: 10.4230/LIPIcs.ICDT.2017.14 (see page 50).

[Ho+13a] Qirong Ho, James Cipar, Henggang Cui, Jin Kyu Kim, Seunghak Lee,

Phillip B. Gibbons, Garth A. Gibson, Gregory R. Ganger, and Eric

P. Xing. More e�ective distributed ML via a Stale Synchronous
Parallel parameter server. In: Proceedings of the 26th International
Conference on Neural Information Processing Systems - Volume 1. NIPS’13.

Red Hook, NY, USA: Curran Associates Inc., Dec. 2013, 1223–1231.

(Visited on 07/02/2021) (see page 11).

[Ho+13b] Qirong Ho, James Cipar, Henggang Cui, Seunghak Lee, Jin Kyu Kim,

Phillip B. Gibbons, Garth A Gibson, Greg Ganger, and Eric P Xing.

More E�ective Distributed ML via a Stale Synchronous Paral-
lel Parameter Server. In: Advances in Neural Information Processing
Systems. Ed. by C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani,

and K. Q. Weinberger. Vol. 26. Curran Associates, Inc., 2013. url: https://

63

https://doi.org/10.4230/LIPIcs.ICDT.2017.14
https://proceedings.neurips.cc/paper/2013/file/b7bb35b9c6ca2aee2df08cf09d7016c2-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/b7bb35b9c6ca2aee2df08cf09d7016c2-Paper.pdf


Chapter 6 Bibliography

proceedings.neurips.cc/paper/2013/�le/b7bb35b9c6ca2aee2df08cf09d7016c2-

Paper.pdf (see page 11).

[HSD01] Geo� Hulten, Laurie Spencer, and Pedro M. Domingos. Mining time-
changing data streams. In: Proceedings of the seventh ACM SIGKDD
international conference on Knowledge discovery and data mining, San
Francisco, CA, USA, August 26-29, 2001. Ed. by Doheon Lee, Mario

Schkolnick, Foster J. Provost, and Ramakrishnan Srikant. ACM, 2001,

97–106. doi: 10.1145/502512.502529. url: https://doi.org/10.1145/

502512.502529 (see page 33).

[Jia+17] Jiawei Jiang, Bin Cui, Ce Zhang, and Lele Yu. Heterogeneity-aware
Distributed Parameter Servers. In: Proceedings of the 2017 ACM In-
ternational Conference on Management of Data. SIGMOD ’17. New York,

NY, USA: ACM, 2017, 463–478. isbn: 978-1-4503-4197-4. doi: 10.1145/

3035918.3035933. url: http://doi.acm.org/10.1145/3035918.3035933

(visited on 10/26/2018) (see page 7).

[Kam+14] Michael Kamp, Mario Boley, Daniel Keren, Assaf Schuster, and Izchak

Sharfman. Communication-e�cient Distributed Online Predic-
tion by Dynamic Model Synchronization. In: Proceedings of the
2014th European Conference on Machine Learning and Knowledge Dis-
covery in Databases - Volume Part I. ECMLPKDD’14. Berlin, Heidel-

berg: Springer-Verlag, 2014, 623–639. isbn: 978-3-662-44847-2. doi:

10.1007/978-3-662-44848-9_40. url: https://doi.org/10.1007/978-3-662-

44848-9_40 (visited on 10/26/2018) (see pages 4, 41).

[Kam+16] Michael Kamp, Sebastian Bothe, Mario Boley, and Michael Mock.Communication-
E�cient Distributed Online Learning with Kernels. en. In: Ma-
chine Learning and Knowledge Discovery in Databases. Ed. by Paolo

Frasconi, Niels Landwehr, Giuseppe Manco, and Jilles Vreeken. Lecture

Notes in Computer Science. Springer International Publishing, 2016,

805–819. isbn: 978-3-319-46227-1 (see pages 4, 41).

[KDB19] Nicolas Kourtellis, Gianmarco De Francisci Morales, and Albert Bifet.

“Large-Scale Learning from Data Streams with Apache SAMOA.” en.

In: Learning from Data Streams in Evolving Environments: Methods
and Applications. Ed. by Moamar Sayed-Mouchaweh. Studies in Big

Data. Cham: Springer International Publishing, 2019, 177–207. isbn:

978-3-319-89803-2. doi: 10.1007/978-3-319-89803-2_8. url: https:

//doi.org/10.1007/978-3-319-89803-2_8 (visited on 04/06/2020) (see

page 3).

64

https://proceedings.neurips.cc/paper/2013/file/b7bb35b9c6ca2aee2df08cf09d7016c2-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/b7bb35b9c6ca2aee2df08cf09d7016c2-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/b7bb35b9c6ca2aee2df08cf09d7016c2-Paper.pdf
https://doi.org/10.1145/502512.502529
https://doi.org/10.1145/502512.502529
https://doi.org/10.1145/502512.502529
https://doi.org/10.1145/3035918.3035933
https://doi.org/10.1145/3035918.3035933
http://doi.acm.org/10.1145/3035918.3035933
https://doi.org/10.1007/978-3-662-44848-9_40
https://doi.org/10.1007/978-3-662-44848-9_40
https://doi.org/10.1007/978-3-662-44848-9_40
https://doi.org/10.1007/978-3-319-89803-2_8
https://doi.org/10.1007/978-3-319-89803-2_8
https://doi.org/10.1007/978-3-319-89803-2_8


Bibliography Chapter 6

[Li+14] Mu Li, David G. Andersen, Alexander Smola, and Kai Yu. Communi-
cation E�cient Distributed Machine Learning with the Param-
eter Server. In: Proceedings of the 27th International Conference on
Neural Information Processing Systems - Volume 1. NIPS’14. Cambridge,

MA, USA: MIT Press, 2014, 19–27. url: http://dl.acm.org/citation.cfm?

id=2968826.2968829 (visited on 10/26/2018) (see page 7).

[NP06] Yurii E. Nesterov and Boris T. Polyak. Cubic regularization of New-
tonmethod and its global performance.Math. Program. 108:1 (2006),

177–205. doi: 10.1007/s10107-006-0706-8. url: https://doi.org/10.1007/

s10107-006-0706-8 (see page 45).

[SC15] Hang Su and Haoyu Chen. Experiments on Parallel Training of
DeepNeuralNetworkusingModelAveraging.ArXiv abs/1507.01239

(2015) (see page 10).

[SG] Vasilis Samoladas and Minos Garofalakis. Functional Geometric
Monitoring for Distributed Streams. In: EDBT2019. Lisbon, Por-

tugal (see pages 4, 41, 46, 49).

[SN10] Alexander Smola and Shravan Narayanamurthy. An architecture
for parallel topic models. Proceedings of the VLDB Endowment 3:1-2

(Sept. 2010), 703–710. issn: 2150-8097. doi: 10.14778/1920841.1920931.

url: https://doi.org/10.14778/1920841.1920931 (visited on 07/01/2021)

(see page 7).

[SSK07] Izchak Sharfman, Assaf Schuster, and Daniel Keren. “A geometric
approach to monitoring threshold functions over distributed
data streams”. ACM Trans. Database Syst. 32:4 (2007) (see page 41).

[Tea16] Eclipse Deeplearning4j Development Team. DeepLearning4J: Open-
source distributed deep learning for the JVM (2016). url: http :

//deeplearning4j.org (see page 33).

[Ver+20] Joost Verbraeken, Matthijs Wolting, Jonathan Katzy, Jeroen Kloppen-

burg, Tim Verbelen, and Jan S. Rellermeyer. A Survey on Distributed
Machine Learning. ACM Comput. Surv. 53:2 (Mar. 2020). issn: 0360-

0300. doi: 10.1145/3377454. url: https://doi.org/10.1145/3377454 (see

page 7).

[ZCL15] Sixin Zhang, Anna Choromanska, and Yann LeCun. Deep learning
with elastic averaging SGD. In: Proceedings of the 28th International
Conference on Neural Information Processing Systems - Volume 1. NIPS’15.

65

http://dl.acm.org/citation.cfm?id=2968826.2968829
http://dl.acm.org/citation.cfm?id=2968826.2968829
https://doi.org/10.1007/s10107-006-0706-8
https://doi.org/10.1007/s10107-006-0706-8
https://doi.org/10.1007/s10107-006-0706-8
https://doi.org/10.14778/1920841.1920931
https://doi.org/10.14778/1920841.1920931
http://deeplearning4j.org
http://deeplearning4j.org
https://doi.org/10.1145/3377454
https://doi.org/10.1145/3377454


Chapter 6 Bibliography

Cambridge, MA, USA: MIT Press, Dec. 2015, 685–693. (Visited on

07/02/2021) (see page 12).

[Zha+16] Wei Zhang, Suyog Gupta, Xiangru Lian, and Ji Liu. Staleness-aware
Async-SGD for Distributed Deep Learning. 2016. arXiv: 1511 . 05950

[cs.LG] (see page 11).

66

https://arxiv.org/abs/1511.05950
https://arxiv.org/abs/1511.05950

	Abstract
	Contents
	1 Introduction
	1.1 OMLDM
	1.2 Reducing communication in distributed OML

	2 Preliminaries
	2.1 Distributed Online ML and the Parameter Server architecture
	2.2 Parameter Server (PS) architecture Synchronization Strategies
	2.2.1 Bulk Synchronous Parallel (BSP)
	2.2.2 Total Asynchronous Parallel (TAP)
	2.2.3 Stale Synchronous Parallel (SSP)
	2.2.4 Elastic Averaging (EA)

	2.3 Online Machine Learning Libraries
	2.4 Distributed Frameworks
	2.4.1 Apache Flink
	2.4.2 Apache Kafka


	3 OMLDM Architecture
	3.1 The Network/Middleware layer
	3.1.1 Networks
	3.1.2 Middleware
	3.1.3 Synchronization

	3.2 The kernel layer
	3.2.1 Kernel implementation
	3.2.2 Kernel on Flink and Kafka: lessons learned

	3.3 Pipelines and ML library
	3.3.1 Preprocessors
	3.3.2 Synchronization strategies
	3.3.3 Learning algorithms

	3.4 A holistic view of the OMLDM component

	4 Functional Dynamic Averaging
	4.0.1 Intuition
	4.0.2 Theoretical properties of FDA
	4.0.3 Monitoring the RTC
	4.0.4 Approximately monitoring the RTC
	4.0.5 Functional Geometric Monitoring for RTC

	5 Experimental Evaluation
	5.1 Experimental setup
	5.1.1 Experiment settings

	5.2 Results
	5.2.1 Quality of learning
	5.2.2 Scalability


	6 Conclusions & Outlook

