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TECHNICAL UNIVERSITY OF CRETE

Abstract
School of Electrical and Computer Engineering

Electrical and Computer Engineer

Design and Implementation of Monte Carlo Path Tracing System on a
Reconfigurable Logic-Based Platform

by MICHAIL IASON CHATZAKIS

In recent years the subject of ray tracing has caused great interest because
it has many applications, ranging from the movie industry to flight simula-
tors. Major companies develop specific hardware for ray tracing accelera-
tion. Even though work has been done in the past, the interest of ray tracing
on FPGAs has decreased as GPUs were deemed to be more suitable for the
task at hand. In this thesis we re-visit the topic, albeit from the baseline of
the implementation of tree structures which have not been implemented in
hardware for ray tracing in the past. We aim to evaluate the performance of
this ray tracing algorithm across 3 different platforms: CPU, GPU and FPGA.
We also aim to introduce a ray tracing FPGA design to exploit the parallelism
that the platform can provide. The first step in the process was the conversion
of data structures and algorithms so that they are suitable to FPGA platforms,
by converting recursive structures to iterative. Secondly, we create an archi-
tecture in which we used streaming pipeline logic in order to achieve good
performance. With our introduced architecture, based on the given scene
we managed to achieve speedup of up to 2x against an AMD 5600xt GPU,
whereas both GPUs and FPGAs perform much better than CPUs even when
multi-threading is used. To conclude, the use of FPGAs yielded a satisfactory
speedup and further work on the introduced architecture can lead to better
speedups.
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TECHNICAL UNIVERSITY OF CRETE

Abstract
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Electrical and Computer Engineer

Design and Implementation of Monte Carlo Path Tracing System on a
Reconfigurable Logic-Based Platform

by MICHAIL IASON CHATZAKIS

Τα τελευταία χρόνια το θέμα του ray tracing, δηλαδή της εύρεσης με υπολογι-
στικές μεθόδους της όδευσης ακτινών σε κάποια σκηνή με αντικείμενα μελετάται

ιδιαίτερα επειδή υπάρχει μεγάλο πεδίο εφαρμογών, από την βιομηχανία του κινη-

ματογράφου έως τους προσομοιωτές πτήσεων. Μεγάλες εταιρίες αναπτύσσουν

ειδικές μονάδες με σκοπό την επιτάχυνση της διαδικασίας του ray tracing. Αν και
έχει γίνει δουλειά στο παρελθόν, το ενδιαφέρον για την διαδικασία σε πλατφόρμες

FPGA έχει μειωθεί καθότι τεχνολογία GPU εθεωρείτο περισσότερο κατάλληλη.
Σε αυτήν την διπλωματική εργασία ξαναπροσεγγίζουμε το πρόβλημα αυτό αλλά

από διαφορετική σκοπιά, με υλοποίηση σε υλικό δενδρικών δομών που δεν έχει

γίνει στο παρελθόν. Ο σκοπός μας ήταν να μελετήσουμε και να αξιολογήσουμε

την διαδικασία μεταξύ τριών διαφορετικών πλατφορμών, CPU, GPU και FPGA.
Επίσης, παρουσιάζουμε ένα σχέδιο ray tracing για FPGA που σκοπεύει να εκ-
μεταλλευτεί τον παραλληλισμό που μπορεί να προσφέρει η πλατφόρμα. Πρώτο

βήμα στην διαδικάσια ήταν η μετατροπή των δομών δεδομένων και αλγορίθμων

σε κατάλληλη δομή για πλατφόρμες FPGA, με μετατροπή αναδρομικών δομών σε
επαναληπτικές. Δεύτερο βήμα ήταν δημιουργία μιας αρχιτεκτονικής στην οποία

χρησιμοποίουμε streaming pipeline λογική ώστε να έχουμε καλή απόδοση. Με
την δική μας αρχιτεκτονική, ανάλογα με την κάθε σκηνή επιτυγχάνουμε επιτάχυν-

ση έως και 2x σε σχέση με μια GPU AMD 5600xt, ενώ τόσο οι GPU όσο και
οι FPGA αποδίδουν πολύ καλύτερα από CPU, ακόμη και σε πολυνηματική επε-
ξεργασία. Συμπερασματικά, η χρήση FPGA έδωσε μια ικανοποιητική επιτάχυνση
συγκριτικά με τις άλλες πλατφόρμες και περαιτέρω έρευνα πάνω στην αρχιτεκτο-

νική που δημιουργήθηκε θα οδηγήσει σε ακόμη καλύτερα αποτελέσματα.
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Chapter 1

Introduction

Computer graphics is a very important topic in computers. Many anima-
tion companies, architecture offices, video-game development companies,
etc., rely on the creation of realistic and believable scenery to promote their
work. As technology progresses and improves the demand and expectancy
of a more realistic outcome is becoming more and more rudimentary. Raster-
ization is the default technique used for 3D illumination but it is becoming
less and less appealing since its results can appear unrealistic in comparison
to what is expected. Ray Tracing as a concept is an old technique that tries to
replicate the natural process of light’s energy transportation in the real world,
thus providing visually incredible results but at the cost of a great computa-
tional cost. In the recent years hardware technology and software techniques
have finally come to a point where creating scenes using ray tracing is be-
coming much more viable given its great outcome.

1.1 Motivation

Considerable work has been done to accelerate the Ray Tracing process by
big GPU manufacturing companies. In the last few years GPUs with ray trac-
ing specific hardware have been created, but their performance relies on ex-
tra hardware, which nonetheless do not address certain critical sections of the
ray tracing algorithm itself and hence their performance is not the desirable
one (Nvidia DLSS, AMD FidelityFx and more). FPGAs are platforms that
can achieve great performance on heavily parallelizable workloads. The Ray
Tracing algorithm falls into this category. Due to the recent interest around
the topic, our goal was to evaluate the performance of a pure ray tracing
system based on a modern FPGA platform.
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1.2 Scientific Contributions

The scientific contribution is focused on two aspects. First of all, the conver-
sion of the software version of the ray tracing algorithm to fit the FPGA and
the GPU platforms. The algorithm is mainly recursive and written in an in-
heritance manner. Work needed to be done not only in the way data is stored
but also on how data travels into the pipeline to solve the recursion issue.
The second aspect involves the evaluation of the performance across differ-
ent platforms. A method to import to 3D objects into the ray tracer needed
to be introduced in order to evaluate the performance across different plat-
forms in different situations. In the end an evaluation based on our results
is made to determine weather or not modern FPGAs fit the workload of the
ray tracing algorithm.

1.3 Thesis Outline

• Chapter 2 - Theoretical Background: Theoretical Concepts and Tech-
niques regarding Ray Tracing.

• Chapter 3 - CPU Implementation: In depth coverage of math and pro-
cedures we included in our software Ray Tracer.

• Chapter 4 - GPU Implementation: Description of the steps followed to
convert the software Ray Tracer into a GPU compatible version using
OpenCL.

• Chapter 5 - FPGA Implementation: Our introduced architecture as
well as description of the problems we had to deal with.

• Chapter 6 - Results: Comparison and Discussion regarding the above
three implementations.

• Chapter 7 - Conclusions and Future Work: Conclusions and Future
work.
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Chapter 2

Theoretical Background

The first goal of this thesis was to understand and acquire knowledge re-
garding ray tracing and computer graphics in general. In this chapter we
will present the basic ideas and concepts behind ray tracing.

2.1 Rasterization - The currently most dominant

idea

Rasterization is a method which aims project 3D objects on a 2D computer
screen. It works by projecting every vertex of every object on the screen while
considering the angle between the object and the camera frame, connecting
those vertices with lines and finally filling the space between the lines with
the objects color. This process is repeated for every object.

FIGURE 2.1: Rasterization. Image taken from [1]

The problem with this procedure is that it is not known in advance which
objects are closer to the camera and which are further away. This is solved by
keeping the distance data from the camera to every object in a buffer called
the frame buffer or Z-buffer. The Z-axis location of each vertex determines
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the distance between the camera and the vertex so the Z-buffer holds this in-
formation. This way it can be determined which object should be projected in
the front and which object should be projected in the back. This requires mas-
sive parallel computational power and this is why specific graphics process-
ing units(GPU) are used to render 3D images. But in order to make a scene
photo-realistic and "believable" more elements are needed, such as shadows,
depth of field, anti-aliasing and many more effects, all of which require to be
coded in and do not appear naturally. Since those effects do not appear nat-
urally, they sometimes tend to not look very realistic in computer-generated
scenes. This is the main benefit of Ray Tracing over the currently most dom-
inant way of doing computer graphics.

FIGURE 2.2: Z buffer simulation. Image taken from [1]

2.2 What is Ray Tracing

2.2.1 The idea

Ray tracing is a process whose main purpose is to illuminate a digital scene.
The way in which ray tracing works is very similar to the way light behaves
in the real world. When someone looks at a camera, the camera screen is a
projection of the 3 dimensional world in the 2 dimensional camera screen. In
a scene of an animated movie or a video game, the screen acts like the cam-
era screen and the animated world acts like the real world from the previous
example. The way a camera is able to produce an image is by collecting en-
ergy from light rays that are emitted from light sources such as the sun. The
emitted rays bounce around in the environment and some of them eventu-
ally end up in the camera lens. The camera collects this light for every pixel
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of the screen and produces the image. Ray tracing attempts to solve the "il-
lumination of the scene" problem in a very similar fashion.

2.2.2 Forward Ray Tracing

A digital 3 dimensional scene consists of a digital objects that absorb light,
digital light sources that emit light and a digital camera that collects and
prints the output to our computer screen. As described earlier the idea is that
light rays are emitted from the light sources, they bounce around the scene
between the objects and a small portion of them eventually ends up in the
camera. This process is called forward ray tracing. There is a major problem
with this approach. In order to determine whether or not a ray ends up in the
scene, it is required that we fully trace the ray to its destination. That means
calculating every bounce with every object in the scene for every ray, most
of which will end up discarded since the majority of the rays will not hit the
camera and therefore their color will not contribute to the image. This is a
very chaotic and unproductive way that is way to costly to be practical.

FIGURE 2.3: Forward ray tracing. Image taken from [2]

2.2.3 Backward Ray Tracing

To solve the aforementioned problem, a setup is created where all the light
rays that are shot and processed are useful. The important rays are the ones
that end up in the camera frame. The idea is that instead of shooting rays
from the light sources and hoping that some of them will end up in the cam-
era frame, a ray(primary ray) is shot for every pixel of the camera frame
towards the scene. If the ray intersects an object, light from this objects color
is gathered and a new ray(scattered ray) is spawned at the impact location.
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The trajectory of the new ray is based on the objects material because differ-
ent material scatter light differently. This process is repeated until we finally
hit a light source. Its important to note that a bounce threshold needs to be
set because if a ray takes too many bounces to finally hit a light source it will
have lost so much energy to get to the camera that its impact on the pixel
color is meaningless.

FIGURE 2.4: Backward ray tracing. Image taken from [2]

2.2.4 Monte Carlo integration

In the real world a camera’s pixel can collect color from many different rays.
Additionally, since objects are not perfect mirrors, an emitted ray at an in-
tersection point could be the derivative of more than one ray and slightly
different angles. In order to effectively replicate the outcome of forward ray
tracing, monte carlo integration is used for the color of every pixel. Multiple
rays originating the same pixel are shot into the scene at slightly different
angles in a hemisphere, the paths and the bounces they make are slightly
different from one another, and eventually the final color of each pixel is the
average of the colors previously calculated(2.1). The amount of times that
this process is repeated is directly linked to the noisiness of the image and its
clarity, but at a toll of extra computational time.

FinalPixelColor =
∑

samples
1 color
samples

(2.1)
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FIGURE 2.5: Rays cast from the same pixel at different angles in
a hemisphere

2.2.5 Rays

A ray is a simple vector defined by 2 points, its origin and its direction. A ray
in its nature is a line so its function can be defined as:

P(t) = O + tD (2.2)

where O and D are the origin and direction respectively and P(t) is the po-
sition on the "line". t could be considered as the distance because the higher
the t, the longer the vector would be. Even though so simple, this equation is
quite important and will be used later to define the object intersection equa-
tions.

FIGURE 2.6: Simple Ray vector
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Shadow Rays

When a ray intersects an object a intersection point is found. In order to de-
termine weather or not that point in directly illuminated by a light source or
indirectly illuminated by ray bounces, shadow rays are a method that makes
this possible. Apart from the bounced ray that is spawned at that location
and is traversed further, a shadow ray is also spawned but isn’t traversed
further. The shadow ray points towards the light source of the image. If
there are no other objects in between the light source and the intersection
point, then the point is directly illuminated, otherwise there is something in
between, which casts a shadow on the point. Casting shadow rays is not the

FIGURE 2.7: Shadow Rays. Image was taken from the
Scrachapixel book.[3]

only way to perform this operation, but its the most common one. There are
other less common ways that could provide similar results. Instead of scat-
tering rays uniformly around a point when creating the bounced rays, some
bias can be introduced to send some rays directly towards the light sources.



2.2. What is Ray Tracing 9

2.2.6 Space Partitioning

The "brute force" method

At this point a scene can potentially be rendered. Since every object has its
parameters and its intersection test defined, its possible to render a scene by
testing intersection with every object and shading a pixel based on the closest
object. A very computationally expensive flaw can be noticed here. In a very
possible scenario where the scene contains triangle messes the scene can be
made of thousands of objects and if the resolution is scaled up(eg. 1920x1080
= 2073600 pixels) the problem becomes very apparent. Many intersection
tests will need to be performed for every ray, only end up with 1 or 0 objects
that intersects the ray. An algorithm like this has a time complexity of O(n)
where n is the number of objects. In addition the intersection test of objects
such as spheres and triangles, are not a particularly fast intersection tests.

What is Space Partitioning

A lot of work has been done to speedup the previous process. In order to ac-
celerate this procedure special structures are used to recursively divide and
categorize the objects in the scene into 2 sub-volumes until a single or a small
amount of objects are left in each sub-volume. After that instead of check-
ing every object from the scene, recursively checking weather or not a ray
intersects a sub-volume will lead to the same result but much faster. These
sub-volumes need to fulfill some characteristics:

• Nodes need to be close to each other.

• Each node need to be of minimum volume.

• The sum of all bounding volumes should be minimal.

• Volume of overlapping nodes should be minimal.

• Greater attention should be paid to nodes near the root as creating bet-
ter bounding boxes near the root could remove more branches from
further consideration.

• The tree should be balanced as this would reduce the computations
needed.

Isnert foto here
The most common ways to do this division is either by spacial division or
object division.
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Spacial Division

In spacial division the goal is to contain the objects of the scene inside equal
boxes defined by imaginary planes. Recursively repeat the process until only
a few or even single objects are left inside each box. The result will be a tree
data structure The 2 most commonly used structures of that type are k-d trees
and bounding volume hierarchies(BVH). Our ray tracer uses the later, so we
will be explaining that one later.

AABB-Axis Aligned Bounding Box

Bounding Box is a box that very tightly surrounds a set of objects. A Bound-
ing Box either contains objects, at the bottom of the tree, or other smaller
bounding boxes on other levels of the tree. Since bounding boxes are not real
objects in a scene, their intersection needs to be fast and since the hole tree hi-
erarchy consists of a lot of them, they need to have a relatively small memory
cost. Unlike other objects, the only information needed when an intersection
is tested against a AABB is weather or not it was actually hit. Other informa-
tion such us color, normals etc. are not needed since the AABB is not a real
object. It only exists to accelerate the intersection algorithm.

FIGURE 2.8: Bounding Box of a sphere
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2.2.7 BVH - Bounding Volume Hierarchy

FIGURE 2.9: Visual representation of 3D objects with bounding
boxes

(A) Y-Z Axis (B) X-Z Axis
(C) X-Y Axis

FIGURE 2.10: View of previous image 2.9 around the different
Axis

A bounding volume hierarchy is a object division structure. It categorizes
the objects of a scene relative to their position with each other on a single
axis and divides them into 2 sub-categories. A bounding box is put around
each of the sub-categories and the process is repeated. Eventually when there
are 2 or 1 objects left in each sub-category the process is complete. The final
product will be a binary tree whose inner nodes will contain bounding box
information. At the bottom of the tree, on its leaves, the objects are found.
Instead of checking all the objects of the tree in order to find the closest inter-
section, traversing the tree, testing bounding box intersections on the inner
nodes and finally testing object intersection on the leaves.
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Since the tree is balanced, the number of levels of the tree is given by

levels = log2n (2.3)

where n is number or objects. Theoretically we should traverse each of those
levels once to find our desired object. A scene of 1, 048, 576 objects would
produce a tree of log21, 048, 576 = 20 levels. This means that instead of test-
ing all 1, 048, 576 we would only need to test box intersection twice for each
level and finally test object intersection for a total of around 40 tests instead
of 1, 048, 576. This is a pretty remarkable speedup.

FIGURE 2.11: BVH tree equivalent of previous figure2.9

The major problem of the BVH

As described in [4] an important problem that BVH structures face, is the fact
that boxes which overlap may be produced(2.12). This means that the check
for box intersection on the same level of the tree can be true which would
produce 2 different paths going down. Most frequently one of those 2 paths
will be eliminated on the coming levels but this is not guaranteed. Sometimes
the different paths can lead to different objects. In that case the distance to
the camera is still the best way to determine which one is closest if more than
one objects pass the intersection check.
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FIGURE 2.12: Overlapping objects problem.

In the above image(2.12), the axis that was chosen when creating the BVH
structure was the z axis. This resulted in cyan squares and the pink triangles
to be grouped together. When a ray is shot at the location specified on the
image both blue and red children of outer orange node test true, thus both
paths should be traversed to determine the answer. Moreover, this specific
example will lead to both the right cyan square and the left pink triangle to
be tested for intersection and finally comparing the distance that the ray trav-
eled to hit them will result in the cyan square being the closest one.
The problem in this situation originated from the choosing of the z axis as our
split axis. Had we chosen a different axis as the split axis, different objects
would have been grouped together resulting in different bounding boxes,
thus solving this issue. But the trajectory of the rays is unknown at tree con-
struction time. Unfortunately, this reduces our worst case time complexity
from an O(log2n) to an O(n2)1 where n is number or real objects in the scene.
The best case complexity still remains O(log2n). Even though this seems to
be a step down, the worst case or anything close to it, are highly unlikely
to occur. After testing it was calculated that depending on the amount of
objects in the scene, using the algorithm was going to be beneficial. When
there were very few objects in the scene, less than 10, its better to use the
"brute force" method of testing every object in the scene, and when there
were more than 10 the benefits scale logarithmically. Any scene containing
a polygon mesh which consists of thousands of triangles is getting a major
speedup. Some test-benches such as the Cornell box, which contains only a
few objects trapped in a box, can potentially see better performance using the

1there are n objects and n nodes for those objects to be put in a tree, thus O(n2) complexity.



14 Chapter 2. Theoretical Background

"brute force" method.

2.3 Tools used for this thesis

2.3.1 GeoGebra

GeoGebra is a online geometry tool that can be used to create objects in 3D
space. The tool takes math function inputs in 2D or 3D space and creates the
corresponding 3D objects. In this thesis many of the figures and photos were
created using this tool.

2.3.2 Dia

Dia is another tool that was used to create shapes in this thesis. This tool
mainly used to create block diagrams and flowcharts.

2.4 Theoretical knowledge sources

Knowledge for this process was gathered from 3 online books regarding ray
tracing and computer graphics.

• Ray Tracing in one weekend book series [5]

• Scratchpixel book [6]

• Physical Based Rendering book [7]
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Chapter 3

Related Work

Using ray tracing acceleration structures is one of the most essential parts of
a ray tracer.
In [8] many techniques are explained and some new are introduced. In their
paper they note that when performing splits to create object intersection ac-
celeration structures(BVH, kd-tree and more) the position of the origin(the
camera) should be taken into account to create a better quality tree that will
perform better. Instead of using the most commonly used BVH and kd-tree
acceleration structures they mention another technique, the perspective grid.
They also propose the use of 2 different types of shadow rays, hard and soft.
In their testing they estimated to achieve 1.5x greater performance using their
techniques.

In [9] the method used to render the movie "Cars" is explained. For spatial
acceleration, they used a BVH(bounding volume hierarchy) structure. Ray
tracing is only used to render specific effects such as reflections, shadows,
ambient occlusion and more, and the REYES(Renders Everything You Ever
Saw), algorithm is used to render directly visible objects. Multi-resolution ge-
ometry and textures are used and the best geometry resolution or texture is
selected by comparing ray differentials. Finally, SIMD instructions are used
to speed up the tree traversal part of the process. This method is also used
by other movies as well.

The idea of accelerating the Ray Tracing Algorithm using FPGAs has been
been explored in the past.

One of the earliest works regarding Ray Tracing and FPGAs was the Saar-
Cor[10]. The SaarCor uses k-d trees to accelerate the intersection process and
traces packets or rays. its pipeline consists of f a ray generation/shading
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unit, a 4-wide SIMD traversal unit, a list unit, a transformation unit, and an
intersection test unit. The project aimed at real-time rendering of computer
games. Unfortunately, it wasn’t fully implemented on any VLSI boards and
all the benchmarks and results are based on simulations. The core was later
used and tested by[11].

RayCore[12] is another implementation by NAH. It also supports path trac-
ing and was tested with it, but its primary aim was the use of real-time recur-
sive ray tracing for mobile devices with low power consumption. An inter-
esting comparison was done by not using only an FPGA for benchmarking,
but also an ASIC, which gives a good approximation of how much perfor-
mance gain is possible with an ASIC compared to an FPGA.

The T&I-Engine[13] was the first approach using Single Instruction, Single
Data (SISD) to compute each ray independently. Similarly to SaarCOR, it
only relied on a simulation for evaluating the design and accelerated the in-
tersections using a k-d tree. Its core introduces three concepts: an ordered
depth-first layout, a three-phase intersection test unit, and a ray accumu-
lation buffer for latency hiding. Although its aim was real-time rendering
based on recursive ray tracing, the design can be used for basic path tracing
too. To support those class of algorithms, techniques such as sampling and
path termination are additionally needed.

One of the most computationally intensive operations regarding ray tracing
is the traversal of the object hierarchy. Work has been done specifically tar-
get to accelerate that without fully implementing a ray tracer. In [14] the
k-means clustering algorithm was used to accelerate the tree traversal. They
used a pipelined k-d tree implementation using multiple memory banks.

Another more recent work from the Sichuan University [15] involved us-
ing uniform spacial partition as the scene management method and using
openCL to design the FPGA architecture. It uses a hard processor system(HPS)
in combination with an FPGA. The FPGA was used to accelerate the intersec-
tion process. Shading and other related work for were dealt with by HPS.

At last, its important to note all the resent released consumer GPU cards
from NVIDIA and, more recently, AMD that have ASIC ray tracing cores
printed onto them. These cards are not scientific research projects so not a
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lot is known about their architecture. We know that NVIDIA’s RT cores aim
at accelerating the intersection process and leave the shading process for the
normal GPU pipeline. Also in order to achieve real-time ray tracing in high
resolutions, more image manipulation is required to achieve high frames per
second(DLSS, Denoiser modules, etc.). Benchmarks and other comparisons
are omitted here as at the writing of this thesis, the RTX cards were too new
and expensive.
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Chapter 4

CPU Implementation

Our next goal was to set up a basic ray tracer system in software. In this
chapter we will discuss and dive further into the functionality and the math
behind the ray tracer’s operations and algorithms.

4.1 The Basic Ray Tracer that we used

The Ray Tracer that we started with was a simple ray tracer which was pro-
vided by the book series "Ray Tracing In One Weekend" by Peter Shirley. We
didn’t used the most advanced version of the code as a lot of the features that
it provided weren’t what this thesis was aiming to achieve, even though they
are important for a fast ray tracer. We sticked to the version that is described
in book 2 of the series(Ray Tracing: The Next Week) and the Ray Tracer was
still able to take advantage of:

• Ray-Sphere Intercession

• Bounding Volume Hierarchies(BVH)

• Inti-aliasing effect

• Depth of filed effect

• 3 types of different materials(diffuse, metal, glass)

• Monte Carlo Integration

All of this was a good base to begin our setup. In addition to all those features
we also implemented a few extra as well.

• Parallelize the workload as a multi-thread application

• Ray-Triangle Intercession
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• Polygon Mesh readability

4.2 Parallelizing the work - multi thread

The first thing that we did to improve the code execution was to figure out if
and where if it would be possible to parallelize the workload. If we assume
that a pixel’s position on the image frame is described as pixel(x,y) the
basic loop of our algorithm is as follow:

for(y in y axis){

for (x in x axis){

for(every sample){

calculate_pixel_color;

}

}

}

From this we can easily deduct that every pixel is completely autonomous
and does not require any extra information from other pixels. We used the
OpenMP libary to parallelize the workload on the y axis loop. We were
basically giving a smaller part of the screen to each thread to render. So the
result was:

#pragma omp parallel

{

for(y in (y axis/num_threads)){

for (x in x axis){

for(every sample){

calculate_pixel_color;

}

}

}

}

4.3 Intersection Tests

An intersection occurs when a ray hits an object. Our raty tracer supports 3
different type of polygon intersections, triangle intersection, sphere intersec-
tion and Axis Alligned Bounding Box intersection.
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4.3.1 Triangle Intersection - Möller–Trumbore intersection

Since our original code didn’t include any triangle intersection algorithm we
decided to use the Möller–Trumbore triangle intersection algorithm[16][17].
Even though this algorithm was created back in 1997 it is still considered
very fast today. The main advantage that it has, is that it uses the barycentric
coordinates[18] to describe the intersection point.

Barycentric coordinates

Barycentric coordinates are especially important in computer graphics in gen-
eral. Barycentric coordinates are used to express the position of any point
P(w, u, v) located inside a triangle ABC with three scalars. In other words,
for each triangle ABC there is a unique sequence of numbers u, v, w ≥ 0, such
that u + v + w = 1 and:

P(w, u, v) = wA + uB + vC (4.1)

where P is the intersection point, and A, B, C are the vertices of the triangle.
u, v, w are the areas defined by the sub-triangles ABP, BCP, APC as shown
in figure 4.1. This system is also refereed to as areal coordinates system due
to this property. Note that by knowing two of the coordinates we can find
the third one, e.g w = 1− u− v and from the previous two we can deduct
u + v ≤ 1. so the equation can also be expressed as:

P(u, v) = (1− u− v)A + uB + vC (4.2)

FIGURE 4.1: Barycentric Coordinate System - u,v,w are the ar-
eas defined by the sub-triangles
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The coordinates of a point are always in regard to the specific triangle ABC
so for example, the triangle centroid1 point will always have homogeneous
barycentric coordinates of (1, 1, 1) since its a specific point on a triangle that
has the same properties for all triangles.

Calculating the Areas w,u,v

The goal on this entire process is to find the intersection point of the ray
with the triangle if that intersection point exists. The key idea here is that by
finding the barycentric coordinates of that point, if the equations u+ v+w =

1 and u, v, w ≥ 0 are not fulfilled, we can conclude that the points exists
outside the triangle, thus no intersection.
Lets continue with equation 4.2.

P(u, v) = (1− u− v)A + uB + vC (4.3)

We know from previous chapters that the parametric equation of the Ray is
P(t) = O + tD where O is the origin, D is the direction and t is the distance.
The intersection occurs when P(t) = P(u, v). By using this we get:

P(t) = P(u, v)⇔
O + tD = (1− u− v)A + uB + vC ⇔

⇔(move terms around)⇔
O− A = −tD + u(B− A) + v(C− A)

(4.4)

Expressing the above equation in terms of matrices yields:

[
(−D) (B− A) (C− A)

]  t
u
v

 = O− A (4.5)

To make everything more clean and simple, denoting E1 = B− A,
E2 = C− A and T = O− A gives:

[
(−D) (E1) (E2)

]  t
u
v

 = T (4.6)

1The point in which the three medians of the triangle intersect is known as the centroid
of a triangle.
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To elaborate further Cramer’s Rule[19] is used. The equation now becomes:

 t
u
v

 =
1

det
∣∣∣−D E1 E2

∣∣∣


det
∣∣∣T E1 E2

∣∣∣
det

∣∣∣−D T E2

∣∣∣
det

∣∣∣−D E1 T
∣∣∣

 (4.7)

Remember that all constants are either points or vectors defined in 3D space

so they are actually 3x1 matrices themselves eg. O =

Ox

Oy

Oz

 . So what seems

to be a 1x3 matrix in the equations is actually a 3x3 or a 1x3 vector matrix.
The determinant of a 1x3 vector matrix is called scalar triple product [20] for
which:

det
∣∣∣A B C

∣∣∣ = det

∣∣∣∣∣∣∣
Ax Bx Cx

Ay By Cy

Az Bz Cz

∣∣∣∣∣∣∣ = (A × B) ∗ C (4.8)

The scalar triple product has(among others) the following three properties:

• Stays unchanged under a circular shift. A ∗ (B× C) = B ∗ (C × A) =

C ∗ (A× B)

• Swapping any two of the three operands negates the triple product eg.
A ∗ (B× C) = −B(A× C)

• Swapping the positions of the operators without re-ordering the operands
leaves the triple product unchanged. A ∗ (B× C) = (A× B) ∗ C

Applying 4.8 to 4.7 gives: t
u
v

 =
1

(D× E2) ∗ E1

(T × E1) ∗ E2

(D× E2) ∗ T
(T × E1) ∗ D

 (4.9)

Finally denoting again, F = D × E2 and Q = T × E1 the final equation be-
comes:  t

u
v

 =
1

F ∗ E1

Q ∗ E2

F ∗ T
Q ∗ D

 (4.10)

Notice the properties of the scalar triple product were used to create the min-
imum amount of different cross products to be calculated. F and Q appear
twice so instead of calculating 4 different cross products, only 2 are needed



24 Chapter 4. CPU Implementation

and they are reused.
This way we can finally calculate the barycentric coordinates u, v and w is
given by w = 1− u− v. The distance t is also calculated during the process.
As we discussed earlier u + v ≤ 1 and each of the u, v, w need be positive
numbers. If any of the coordinates is negative this tells us that the inter-
section point was outside the triangle and thus its a no hit. By doing some
simple checks we can determine weather or not our ray did in fact intersect
with the triangle.

4.3.2 Sphere Intersection

A ray-spheres intersection occurs to determine whether or not a ray intersects
a sphere. The math for this intersection is fairly straight forward. First of all a
sphere is defined by one point, its center and its radius. The sphere equation
in 3D space is:

(x− Cx)
2 + (y− Cy)

2 + (z− Cz)
2 = R2 (4.11)

where (Cx, Cy, Cz) is the center, and R2 is the radius of the sphere.
Its preferable to have this equation in vector form to keep x, y, z more tidy.
So the equation becomes:

(x− Cx)
2 + (y− Cy)

2 + (z− Cz)
2 = (P− C)2 (4.12)

where point P is (x, y, z) and C is the center (Cx, Cy, Cz) so our final sphere
equation becomes:

~CP = ~AP− ~AC
~CP = R

}
R = P− C ⇔

R2 = (P− C)2

(A) ray-sphere roots
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The above equation means that any point P that satisfies the equation is on
the sphere. Our goal is to decide whether or not our ray P(t) = O + tD
intersects the sphere. If it does, then there must exist some t for which P(t)
satisfies the sphere equation. We are looking for a t that this becomes true:

R2 = (P(t)− C)2 ⇔ R2 = (O + tD− C)2 (4.13)

Finally, if we expand this a little bit more and solve for t we are left with:

t2 ∗ D2 + t ∗ 2D(O − C) + (O − C)2 − R2 = 0 (4.14)

This is second degree polynomial equation or quadratic equation. Depend-
ing on the solution we find there are 3 possible outcomes:

FIGURE 4.3: ray-sphere roots

• 0 roots. If 0 roots are the result then it
is decided that the ray did not intersect
the sphere.

• 1 root. If 1 root is the result, it is
decided that the ray did intersect the
sphere at its periphery and its a tan-
gent.

• 2 roots. If 2 roots are the result it is
decided that the 2 roots are 1 in front
of the sphere and 1 in the back of the
sphere, so the closest root to the camera is chosen as the intersection
point.
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4.3.3 Axis Aligned Bounding Box intersection

The most common way to test for intersection between an AABB and a ray
is by using the "Slab" method[21]. A "slab" is the interval between two end
points. In 4.4 we can see that a 2D box can be defined by 2 slabs vertical to
each other(one being the slab between red lines x1-x2 and the other the slab
between blue lines y1-y2).

FIGURE 4.4: 2D Axis Aligned Bounding Box defined by slabs

The ray intersection between a ray and a slab can be seen below(4.5).

FIGURE 4.5: Ray-Slab Intersection

The equations for the planes y1 and y2 are y = y1 and y = y2. In order to test
whether or not the ray intersects this slab, the values of the points t1 and t2
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are needed. Earlier we discussed that the ray equation is P(t) = O+ tD. This
equation describes all 3 x,y,z coordinates. For a single plane eg. y, it would
be Py(t) = Oy + tDy. So a ray will intersect plane y1 at the point where the
ray equation is satisfied for Py(t) = y1.

Py(t) = Oy + tDy ⇔ y1 = Oy + t1Dy (4.15)

And the hit point t1 is:

t1 =
y1 −Oy

Dy
(4.16)

Similarly, the equation for t2 would be:

t2 =
y2 −Oy

Dy
(4.17)

The key observation of the slab method, is that the above [t1 − t2] intervals
need to overlap on different axis for the same box. When they don’t overlap,
the rays doesn’t pass through the box, and when they do overlap the ray
passes through the box as shown in 4.6.

FIGURE 4.6: 2D Ray-Box Intersection
Ray 1 misses the bounding box and the blue-red areas don’t

overlap.
Ray 2 hits the bounding and the blue-red areas overlap.

By finding [t0− t1] intervals on both axis for a ray, and then checking weather
or not their regions overlap we can decide on the intersection test.
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The above method scales up to 3 dimensions the same way, by testing for all
3 axis. It is a great method since the math for it are simple and fast.

4.4 Polygon Meshes

One very important feature that our Ray Tracer was lacking, was the ability
to render triangles. This is very important because most modern modeling
programs are able to create complex objects that are described as polygon
meshes. These polygon meshes are constructed by smaller and smaller struc-
tures the base of which are a simple triangle. The triangle meshes that we
used are in the .obj format.
So in order to be able to add those complex triangle meshes to our ray tracer
we needed 2 things. A way to read the .obj file and a way to render the tri-
angles that it would add to our algorithm. In order to accomplish this we
advised a GitHub project from the user bicknyers[22].

4.4.1 Mesh

A polygon mesh is a collection of triangles stored in a file which define a
more complex shape when added together. These polygon meshes are cre-
ated using 3d software such as Cinema 4D and Autodesk 3ds Max. Our
object format of choice was the .obj file format. Reading data from an .obj file
was a fairly simple process. The file contains lines of the following type:

v v1 v2 v3

v v4 v5 v6

.

.

.

f n1 n2 n3

f n41 n5 n6

.

.

.

Lines that start with the letter v describe vertices and f describe faces. Based
on bicknyers project, we created a tokenaziation setup were the input is to-
kenized and combined for the correct polygons to be added. Since the .obj
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format is flexible so that an f line(face line) can describe multiple faces, sup-
port was added. Some of the faces are also grouped so that specific materials
are used for them.

4.5 Main Functions

4.5.1 The World_Hit function

This function is responsible for traversing the BVH tree and returns true
when an object is intersected, along the object’s data.The function reads node
data from the BVH structure and performs intersection tests to find the clos-
est object. This is were the ray tracer will be spending most of its time. In our
tests we calculated that about 90% of the total rendering time is spent in this
function. This function will be a major topic for discussion in the upcoming
sections so we will briefly be looking into its functionality and provide some
pseudo-code.

Algorithm 1 Software BVH traversal function

1: procedure WORLDHIT(ray, output)
2: if not box.hit(ray) then
3: return f alse
4: hit_le f t← WORLDHIT f or le f t child
5: hit_right← WORLDHIT f or right child
6: return (hit_le f t OR hit_right)

This is a heavily recursive class function. Left and right children as well as
the box are part of the class’ data. A depth-first search on the binary BVH
tree is performed to find the closest object. It is possible for both hit_left and
hit_right to test positive which creates multiple possible results, in which
case the closest of those to the camera.
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Chapter 5

GPU Implementation

After adding all the features we wanted to the ray tracer our goal was to cre-
ate a framework in order to run the Ray Tracing algorithm on a GPU(Graphics
Processing Unit). Our framework of choice was the openCL programming
framework.

5.1 What is OpenCL

OpenCL is a programming framework set from the Khronos group for writ-
ing programs that execute across heterogeneous platforms including GPUs.
A CPU based "Host" is responsible for controlling multiple compute devices,

FIGURE 5.1: OpenCL architecture. Image taken from [23]

such as CPUs, GPUs and even FPGAs. These compute devices consist of
multiple "compute units", which, on their end are made of multiple "Process-
ing Elements". At their core, these "Processing Elements" execute openCL
"kernels". The aforementioned "compute units" vary from device to device.
We could say that in FPGAs these "compute units" are our custom made IPs.
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Nvidia and AMD call their "compute units" "stream multiprocessors" and
"stream cores" respectively. They both have fairly complex hardware archi-
tectures, but at the bottom line its important that they can execute SIMD and
VLIW instructions.

5.1.1 OpenCL execution

At the top level, an OpenCL host uses the OpenCL API to select compute
devices, submit work to them. At the other side of the execution hierarchy
lie the OpenCL kernels, running on the processing units. The code for those
kernels is written in openCL C language and execute in parallel in a prede-
fined N-dimensional work domain. Each element of in this domain is called
a "work item". These "work item" can be grouped together to form "work
groups".

(A) OpenCL memory model. Image taken
from [23]

(B) OpenCL work groups. Image taken from
[24]

To sum everything up, some basic pipeline can be outlined for an OpenCL
application.

1. A host defines an N-dimensional computation domain, an array. Every
work item will be assigned to one of the array’s index. Eventually, each
work item will run the same kernel code to compute his part.

2. Host defines grouping of those item into work groups. Work item in the
same work groups can share the same memory which can have major
benefits in the overall throughput.

3. Host "sends" data to the device RAM.
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4. Work items start their work in parallel to compute the entire result of
the domain.

5.1.2 The openCL API

The openCL API exists to control the platform and execute code on the de-
vice. The same API is used by the xilinx Vitis tool to communicate with
different FPGAs. For GPUs the API follows the following steps to connect to
a device and run some code:

1. Create context

2. Create Command Queue

3. Create buffers holding the data that the device need to process

4. Create program providing the kernel code

5. Build the program

6. Create Kernel by denoting the main function

7. Set arguments for the kernel including the aforementioned buffers

8. Define the N-D range of the kernel

9. Execute the kernel

10. Deallocate the buffers

The 9th step, "Execute the kernel", works by calling the clEnqueueNDRangeKernel(...)
command that the API provides. This command takes an NDRange as an in-
put and divides the workload into separate threads to provide parallelism.
In our case, the workload is the pixels of the image multiplied by the number
of samples we want to acquire per pixel. A thread is spawned for each pixel
in the workload and the device performs the computation.
A design choice was made here. Calling the kernel one time for the en-
tire workload, which means #pixels× samples_per_pixel, was causing major
stability issues and sometimes was hitting some internal timeout since the
GPU is also used to provide picture. To provide some relaxation to the sys-
tem, we decided to call the kernel multiple times for a smaller workload, in
fact samples_per_pixel times. This means that instead of calculation the inte-
grated color of each pixel and then move to the next, we make a pass one the
entire image once, and then start again. This resulted in samples_per_pixel
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different images which were combined together to ensure monte-carlo inte-
gration.The major potential bottleneck in this case would be I/O between
CPU memory and GPU memory. If our BVH structure, which carries the
biggest cost in memory, is stored in device memory only once, then the I/O
would be greatly reduced. After testing, it was assured that the time dif-
ference between calling the kernel multiple times for smaller workloads or
calling it just once for a bigger workload, was negligible.

5.1.3 OpenCL C limitations

In our attempt to run the code in OpenCL on an external device(GPU) we
faced three major problems.
The first problem we faced when trying to run our code in OpenCL is the fact
that our entire C++ code was constructed in an inheritance manner. OpenCL
C doesn’t support any type of inheritance so our entire project needed to be
converted to a more basic C style.
Another problem that we had to deal with is that the basic loop of our al-
gorithm was recursive. OpenCL C does not support any kind of recursion
either. We needed to figure out a way to transform our code so that it could
run.
Our final problem was a combination of the above two problems. Our im-
plementation uses a BVH structure which, in its nature, is a binary tree used
to divide the objects and accelerate the search of the closest object. There was
no way to either traverse the tree in a recursive way nor send its data to the
device if a new way to store data wasn’t introduced. So we needed to figure
out a way to combat those problems.

5.2 Converting data Objects

For our basic objects such as spheres or triangles instead of having classes de-
scribing the object and its functions, we created structures that held the vari-
ables of each class and functions with different names for each class function.
This is an example of what a conversion looks like:

C++:
example_class(){
var1;
var2;
}
func1::example_class(){};

OpenCL:
struct example_struct{
var1;
var2;
}
func1_of_example_struct(){};
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More information regarding these structures and how they reference each
other will be given in later chapters.
Another important thing to note here is that we took advantage of the types
that OpenCL provides. We mostly used the double3 type instead of the cus-
tom class, vec3, that we had in C++ which describes a 3D vector. A double3

element can contain the coordinates of a vertex (x,y,z) or the color of a pixel
(r,g,b).

5.3 Converting the BVH data stracture

Finding a way for our BVH structure to run on the external device was the
hardest problem we had to solve and a few major changes needed to be im-
plemented. First of all the data structure that was holding all the information
consisted of 3 different elements, Axis-Aligned Bounding Boxes, Spheres and
Triangles. A visual representation of the structure would be like:

FIGURE 5.4: Visual Representation of BVH binary Tree

Every node of the tree contains an AABB object and every leaf of the tree
contains an actual object of our scene. openCL as a language doesn’t allow
dynamic data structures, so a conversion from a dynamic to a static data
structure was needed. Our idea was to fully traverse the already defined
dynamic data structure and and to create static arrays with the corresponding
data. For this job 3 major arrays were created:

• Nodes array: contains the node elements of the BVH.

• Spheres array: contains the sphere elements.

• Triangles array: contains the triangle elements.
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5.3.1 Sphere and Triangle Arrays

The elements of the sphere and the triangle arrays are similar with each other.
They both contain the data that describes each object and a material.

struct cl_sphere{
cl_double3 center;
cl_double radius;
cl_material mat;
}

struct cl_triangle{
cl_double3 v1;
cl_double3 v2;
cl_double3 v3;
cl_material mat;
}

The index of each of those element’s position in their corresponding array
acts as a unique key that will be used when trying to acquire the correct
element from each array.

5.3.2 Nodes Arrays

The nodes array contains information about the each node of the BVH tree.
Its elements consist of the bounding box that each node refers to and 4 im-
portant variables.

struct cl_node{
cl_aabb boudning_box;
cl_int left_node;
cl_int right_node;
cl_int obj_pointer;
cl_int obj_type;
}

Variable obj_type holds information about the node’s nature. We have set
that:

• obj_type=0 the current node refers to a node.

• obj_type=1 the current node refers to a sphere.

• obj_type=2 the current node refers to a triangle.

Variables left_node,right_node are keys that contain the indexes of ele-
ments in the same array. Their information is only valid when obj_type=0.
These elements represent the left and right pointers of the dynamic binary
tree. When a node’s children are not leaves, the keys are positive integers
and for they are leaves the keys are set to -1 because the information is not
valid.
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Finally, variable obj_pointer holds information about the object that the
node points to if that points to one. This information is only valid when
obj_type!=0 thus it is set to -1 for all the inner nodes of the tree and to a
number for the leaves. This key is an index to an element of either the tri-
angle or the sphere array. The appropriate element is obtained from one of
those arrays when the traversal is finished based on this index.

5.3.3 Creating the Arrays

A function was created to perform the aforementioned conversion. The func-
tion recursively goes over every node of the tree in a Death First Search man-
ner. Since it goes over every element of the tree it has a time complexity
of O(n). In our tests, compared to the time it took for the BVH dynamic
data structure to be created, the time that the conversion took was negligible,
about 1% of the time. Pseudo-code of the function follows:
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FIGURE 5.6: BVH tree to Arrays conversion example. Note that
the arrows in the picture are not pointers. They are there for

better visual understanding.
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Algorithm 2 Tree Conversion Algorithm

1: procedure TREE_CONVERSION(ptr(tree_node, nodes_array, spheres_array, triangles_array)
2: temp_cl_in f o_pack← GET_INFO(tree_node)
3: switch temp_cl_in f o_pack.obj_type do
4: case 0 . Stores node data and begins recursion
5: nodes_array← temp_cl_in f o_pack.node_in f o
6: if (tree_node→ le f t exists) then
7: TREE_CONVERSION(tree_node→le f t, nodes_array, spheres_array, triangles...)
8: if tree_node→ right then
9: TREE_CONVERSION(tree_node→right, nodes_array, spheres_array, triangles...)

10: break;
11: case 1 . Stores sphere data
12: spheres_array← temp_cl_in f o_pack.sphere_in f o
13: break;
14: case 2 . Stores tiangle data
15: triangles_array← temp_cl_in f o_pack.triangle_in f o
16: break;
17: case default . Never goes here
18: break;

return
19: function GET_INFO(ptr(node))
20: Returns information regrading the specific node.
21: if node points to a node, it collects the aabb of the node.
22: if node points to a sphere, it collects the sphere data.
23: if node points to a triangle, it collects the triangle data.
24: return in f o

5.4 Converting Recursion logic into Iterative logic

Our original CPP algorithm was, for the most part, recursive. Since OpenCL
doesn’t allow recursive algorithms, a general re-construction of the dataflow
was needed. The algorithm was broken down into its major functions and
loops:

• Spawn_rays loop : This loop was part of the main function. It runs for
every pixel of the screen and spawns a ray for it.

• World_hit function: This is a recursive function that returns true when
a ray intersects an object. It also returns the color data of that object.

• Scatter function: Takes as input the color data of the previous function,
shades the pixel and creates a new ray, the "scattered" ray, at the impact
location.
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• Object_hit functions: Takes a ray as an input and returns true when the
ray intersects the object.

5.4.1 Top level

Similarly to the original project, a "top level" function was needed to connect
everything together. In the original project this process was also done in a
recursive manner and needed to be modified. Again, we decided to use a
while loop to perform the iterations. This function performs a world_hit

followed by a Scatter operation. A new ray is spawned and the process is
repeated for the spawned ray. When a ray doesn’t intersect any object on
the scene, it is considered as an escaped ray, thus the process is complete.
A threshold is set for potential "trapped" rays who bounce between objects
indefinitely. This effectively means that up to threshold amount of bounces
can be performed before the computation is complete for a pixel. Finally,
a color that corresponds to a pixel is calculated and the process is finished.
Pseudo-code for this process:

Algorithm 3 Color function in openCL

procedure COLOR(primary_ray, ALL ARRAYS, background)
temp_ray← primary_ray
temp_color ← (0, 0, 0)

4: f inal_color ← (1, 1, 1)
depth← 0
while depth < threshold do

[WH_res, object]← WORLD_HIT(temp_ray, ALL ARRAYS)
8: if not WH_res then

f inal_color ← f inal_color ∗ background
break

[Sc_res, scattered_ray, temp_color]← SCATTER(temp_ray, object)
12: if not Sc_res then

f inal_color ← (0, 0, 0)
break

temp_ray← scattered_ray
16: f inal_color ← f inal_color ∗ temp_color

depth ++

return f inal_color

5.4.2 World_Hit Function

In 4.5.1 we discussed the purpose and usage of this function. Since its a
recursive algorithm, we had to make some major changes for it to work in
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openCL. We know that its purpose was to traverse the BVH tree and return
the closest intersected object. All rays start the traversal from the root ele-
ment. Instead of using recursion to traverse the tree, we used a while loop.
On every iteration of the loop, intersection with the current node’s children
is tested. When on of those checks true, the current node is set to that child
and the next iteration begins. Eventually, the bottom of the tree is reached
were a real object indicator lies. Polygon intersection is tested against that
object and, if it is hit, the color is returned.

There is a catch in this process. Earlier we discussed that due to the BVH’s
nature of having overlapping AABBs it is possible for both the left and the
right child intersection test, to test positive. In this case, both paths starting
on those children need to be traversed, but only one can be tested per itera-
tion. In order to deal with this issue, we used a cache array to store the index
of the second child. It was calculated that in the highly unlikely case of this
happening for every node, which is the worst case scenario, the size of this
array will need to be equal to the depth of the BVH to store all the extra not
yet traversed children. When this "double intersection occurs" an index to
that second element is stored in the cache array. At the end of the algorithm,
if the cache array is empty we can safely return. Otherwise, an element is
poped from the array and the process continues at that node. This method
looks more like a breadth first search rather than a depth first search which
was used in software. A flowchart and pseudo-code for this process follow:
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FIGURE 5.7: Flowchart describing the world hit process in
openCL.
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Algorithm 4 World_Hit in OpenCL

procedure WORLD_HIT(ray, ALL ARRAYS)
2: cache_array[tree_depth]

cur_obj← nodes_array[0]
4: while cur_obj.type = 0 do

le f t_child← nodes_array[cur_node.le f t]
6: right_child← nodes_array[cur_node.right]

hit_le f t← OBJECT_HIT(r, le f t_child, ALL ARRAYS)
8: hit_right← OBJECT_HIT(r, right_child, ALL ARRAYS)

if hit_le f t and hit_right then . Double hit
10: cur_obj← le f t_child

cache_array← right_child
12: else if hit_le f t then . Left hit only

cur_obj← le f t_child
14: else if hit_right then . Right hit only

cur_obj← right_child
16: else . No hit

if cache_array 6= empty then . get from cache
18: cur_obj← cache_array.pop()

else
20: break

if cur_obj.type 6= 0 and cache_array 6= empty then
22: cur_obj← cache_array.pop()

return
function OBJECT_HIT(ray, cur_obj, spheres_array, triangles_array)

24: switch item.obj_type do
case 0

26: return BOX_HIT(ray, cur_obj.bounding_box)
case 1

28: return SPHERE_HIT(ray, spheres_array[cur_obj.obj_pointer])
case 2

30: return TRIANGLE_HIT(ray, triangles_array[cur_obj.obj_pointer])
case default . Never goes here

32: return f alse

5.4.3 Scatter function

Scatter function’s purpose was to perform scattering of light at the location
of the intersection. Depending on the type of the object’s material, light scat-
ters differently. In he original code, inheritance was applied to the entire
project. After world_hit (5.4.2) returns a object that is intersected, this func-
tion is called to create a new ray on the impact location(scattering) and cal-
culate the color that should be projected on that pixel.
The material structure hold information about the material.
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struct cl_material{

cl_double3 albedo;

cl_double fuzz;

cl_double refIdx;

cl_int type;

}

There are 3 different materials in our ray tracer. The type variable is a refer-
ence to the type of the material. The others are data regarding the material.

• type=0 Refers to a lambetian material.

• type=1 Refers to a metal material.

• type=2 Refers to a dielectric material.

Depending on the type variable the scattering is performed.

Algorithm 5 Scatter function in openCL

procedure SCATTER(ray, object)
switch object.material.type do

3: case 0
return [new_ray, color]← LAMBERTIAN(ray, object.material)

case 1
6: return [new_ray, color]← METAL(ray, object.material)

case 2
return [new_ray, color]← DIELECTRIC(ray, object.material)

9: case others
f alse . Never goes here
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Chapter 6

FPGA Implementation

The final part of this project was to once again, convert and create the appro-
priate units to fit in a FPGA board. Our FPGA of choice was one of the alveo
family, the alveo U50. The alveo U50 is a modern but small reconfigurable
logic board. This board is connected to the host computer via PCI which of-
fers high datarates between host’s RAM and the device’s RAM. To program
architectural units we used Xilinx’s Vitis IDE and Vitis HLS.

6.1 Tools Used

6.1.1 Vitis IDE and Vitis HLS

The Vitis IDE is a high-level environment used to program architectures for
FPGAs. There are 2 sides on every program created on the Vitis IDE. The
way it is set up, is by having 2 sides on every program, the host side and the
kernel side.

The host side is responsible for the creation and collection of data as well as
to transfer them to the FPGA. The code used here is of the C++ program-
ming language. Much like our GPU implementation, the host code uses the
openCL API to create the required buffers and structures to ensure data trans-
fer to the FPGA as well as to deploy kernels.

The kernel side is where the real work is being done. This is were we begin to
imagine our architecture. The programming language used here resembles
C++, but once again is limited. Directives are used to provide different mode
of behaviour for numerous implementations and shape the design units.

In our implementation, we primarily used the following directives:
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• DATAFLOW. Enables task level pipelining. This directives automatically
attempts to pipeline the tasks themselves as well.

• ARRAY_PARTITION. Partitions an array into a smaller array of individual
elements.

• INTERFACE. Creates the requires input/output operations by using the
I/O protocols.

• INLINE. Inlines the code of a function into the caller function.

Finally, we used the Vitis HLS tool to perform synthesis of our kernel. The
tool performs synthesis and reports back what it managed to achieve based
on the directives we provided, as well as report the utilization on the chosen
FPGA.

6.2 Parallelizing Data Transfer | Multiple Banks

When it comes to data transfer, there are 2 parts that need to be considered.
First of all, the data transfer between the host’s RAM and the device’s RAM.
Many FPGAs use the USB interface to transfer data. In our project we aimed
to use the Xilinx Alveo family FPGAs. These boards are connected to the host
computer through the PCI-e 3.0 interface. The PCI-e interface is broken down
into lanes. Every lane has a max bandwidth of 984.6 MB/s. The Alveo FPGA
board is connected to the x16 connector. This provides a total bandwidth of
15.8 GB/s. There isn’t much we can do to change this and its already fast
enough compared to the process.

The second part that need to be considered is, the data transfer between the
device RAM and the device core.The Alveo family boards provide 2x4GB
HBM stacks with a total of 32 HBM AXI interfaces or "banks". These banks
can transfer data in parallel from the device’s memory to the IP cores. The
data in the device HBM memory is in the form of arrays. In our application
we have multiple arrays containing data so having the ability to read from
and write to those arrays in parallel is important. Specifically, our application
contains 3 input buffers and 2 output buffers. Those buffers were assigned to
different banks so that level of parallelism can be achieved.
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6.3 Random Number Generation

6.3.1 Linear Feedback Swift Register

One of the first problems we had to deal with when creating our hardware
implementation was random number generation. So far, random number
were generated using the "Mersenne Twister" pseudo-random number gen-
erator. After some research, we decided to use Linear Feedback Shift Regis-
ters(LFSR). The LFSR is a shift register for which the input bit is the combined
outcome of some of its other bits. More specifically, the input bit is defined
by selecting some of the LFSR’s bits and driving them through an XOR gate
together. The result of the XOR is then passed as an input to the most signif-
icant bit.
For the LFSR to start his process an initial state of the bits need to be defined
called a "seed" state. After performing a number of shifts and generating dif-
ferent pseudo-random numbers, it is inevitable that the original "seed" state
of the LFSR will eventually be met. At that point the LFSR will repeat gener-
ating the same numbers as before in the same order. The amount of different
pseudo-numbers an LFSR can provide before reaching its initial state is called
the "period" of the LFSR.
The bits which are chosen to be XORed together to provide the input for the
LFSR are called "taps". In the figure above we can see that selecting the right
taps for an LFSR is of major importance. On the left side of the figure we
can see that bit 1 and 2 were selected as the taps which resulted in a 16 cycle
period.
On the right side, we can see that the bits 1,2 and 4 were selected as the taps.
Even though this looks like it should provide a greater period since more bits
are combined and more hardware is used, that is not the case. After only 3
clock cycles the initial state showed up, resulting in a 3 cycle period.
What is also interesting about the above figure, is that it describes 4-bit regis-
ter. With 4 bits it is possible to represent up to (4−1 = 15 different numbers.
Selecting bit 1 and 2 as the taps resulted in 16 different numbers, thus it pro-
vided the maximum potential period it could. Number 0 can’t be encoun-
tered since XORing any number of 0 together, from any positions results in 0
which would lock the LFSR to only produce 0.
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FIGURE 6.1: Period difference when selecting different taps in
a 4bit LFSR

6.3.2 32-bit LFSR

In our case, we needed to create 32 bit floating numbers, thus we constructed
a 32-bit LFSR. As we discussed earlier it is important that the right taps need
to be selected to provide the maximum period. In a document published by
Xilinx in 2007 [25] it is stated that for a 32 bit LFSR, if bits 32,22,2 and 1 are
selected, the maximum period will be encountered.

FIGURE 6.2: 32 bit Fibonacci LFSR with maximum period

This LFSR has the maximum potential period which is 232− 1 = 4, 294, 967, 295.
Now we can appreciate the fact that in hardware, such a simple design, just a
register and a few gates, can provide such a large amount of pseudo-random
numbers. This is what makes the LFSR a great design for the job.
The LFSR design we were discussing so far is called the "Fibonacci" LFSR.
The "Galois" LFSR is another variant which works a bit differently. XOR
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gates are placed in between a few of the bits instead of them being combined
and only going to the input.

FIGURE 6.3: 32 bit Gallois LFSR

This can result in better frequency for the system since for the Fibonacci
LFSR, the delay of the input is that of 3 cascaded XORs, whereas for the
Galois LFSR the XORs are placed in between different bits resulting in 1 XOR
delay. Since we only have 3 XORs and modern FPGAs use LUTs which typ-
ically support 6 logic functions, the result of those 2 shouldn’t be different.
We decided to stick with the Fibonacci design which is more simple to create.

6.4 The ultimate Goal

The ultimate goal for our kernel architecture is an architecture that will be
able to produce, process and calculate the color of a ray every clock cycle.

6.5 First Generation

In our first Generation our goal was to create a setup without much change of
the ray tracing algorithm as we already had it. Even though we weren’t try-
ing to achieve any considerable performance, a few changes still needed to be
implemented. Even though the Vitis tool allows kernel to be programmed us-
ing openCL, directives for parallel data transfer between the host(CPU ram)
and the kenrel(FPGA ram) only exist for C++ kernels. The Vitis tool also
doesn’t allow recursive functions because they are not synthesizable. An-
other thing that is a limitation for the Vitis tool are dynamic data structures.
Xilinx in its user guide provides a technique to transform dynamic data struc-
tures into synthesizable counterpart using arrays and vectors.
All of this sounds a lot like the problems we needed to deal with when creat-
ing the openCL version of the kernel. But we couldn’t use OpenCL because
of the aforementioned reason. We decided to, once again, create another C++
kernel but with the elements of our OpenCL kernel. This meant that using
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the very useful custom types of openCL(float3,float4,float8 etc.) was
not an option. The vec3 class from the original C++ project was used once
again to describe 3D vectors and RGB colors. The Tree Traversal and Ar-
ray structure setup that we had created in OpenCL was used again in place
of the recursive functions. We also used the 32-bit Fibonacci LFSR that we
discussed in 6.3.1.

6.5.1 The problems

In the core of the Ray Tracing algorithm lies the tree traversal algorithm. Ear-
lier it was mentioned that this stage is where most of the execution time is
spent in software. At this point the tree traversal algorithm is very similar to
the one that we used in openCL(5.7).

FIGURE 6.4: Traversal Unit Architecture. Some routes are col-
ored for better clearance.

The Vitis tool performs pipelining on loops. The theoretical best performance
we can achieve is 1 iteration of the loop per clock cycle. But even if we man-
age to achieve that, the core will not be processing 1 ray per cycle. It will be
performing 1 step of the tree traversal at a time. This means that in the best
case of 0 double box intersections, the latency of this core to process a ray
will be #TreeDepth cycles. Since this is intended to be a pipelined algorithm
it will be slowing down all other processing units.
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6.6 Second Generation

As we know this is a repeating algorithm. The lifetime of a ray begins when
it is produced and ends after its corresponding color is found. The ray pro-
duces a new ray which is fed back into the algorithm for that process to re-
peat. With this in mind, we outlined the spectrum of the kernel we intended
to create. The first step is a unit related to creating rays, and the last part is a
unit to write the color and send back the produced rays.
The algorithm is, once again, broken down into its major components and
autonomous IP cores are created for each of those. The major components
are:

• A ray creation unit.

• A tree traversal unit.

• An object intersection unit.

• A ray scatter unit.

• A write back unit.

A common way to send data between those cores and achieve pipelining is
by connecting those IP core units using FIFO streams.

6.6.1 Random 3D Points and Vectors

Software

As we already discussed, the trajectory of the rays we create need to be
slightly different to one another so that Monte-Carlo integration can be ap-
plied(2.5). These differences are performed by random slight adjustments
to the trajectory of the ray. In the software implementation we had 2 major
functions to provide those numbers.

• Random in Unit Circle. Creates a 3D vector in a unit circle.

• Random in Unit Sphere. Creates a 3D vector in a unit sphere.

These two functions work similarly. They create a random vector in the outer
square square and the outer cube cube respectively. Then they check whether
or not the created point solves the circle or sphere equation. If it does, that
means the point is in the circle, if it doesn’t, a new number is generated and it
checked again until a correct number is found. We called this the "square" or
"sphere" "sample method". The performance of this method can be evaluated
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by comparing the volumes of the circle and the sphere relative to the square
and the cube.
The volume or area of the circle is given by Dcircle = π ∗ r2 and its a unit circle
so r = 1. That means DUnitCircle = π = 3.14.
The square around that circle has a side of size 2. Its area is given by Dsquare =

sidea ∗ sideb and sidea = sideb = 2. That means Dsquare = 4.
The area of the circle covers about 78.54% of the area of the square. Since
random points are generated in the range of [−2, 2] and they land inside the
square, we can say that there is probability of 78.54% or PSquareCorrect = 0.7854
that they will also land inside the contained circle.
Using the same logic, the probability of a random point that is generated in-
side a cube to also land inside the contained sphere is 52.36% or PSphereCorrect =

0.5236.
From this we can deduct that, statistically, about 1 out of 2 points generated
will be correct for the circle, and about 1 out 3 will be correct for the sphere.
Another possible way to produce the same result is by using trigonometric
functions. We tested both methods in software and it turns out that even
though the "square-sphere sample method" might need to re-run a few times
to produce the result, it is the fastest method. The also produced slightly
different results. Based on that, we decided to use the square-sphere sample
method for our kernel.

Hardware

In our implementation we are trying to achieve pipeline were 1 ray is pro-
cessed per cycle, so the component that generates random points, needs to
have an Interval of 1. In their current state, the random point generation
functions can’t provide this since they rerun until they find a fitting number
and can potentially never end, even though that’s highly unlikely. Since both
of the functions work the same way but in different dimensions, we will ana-
lyze for 2 dimensions. Instead of performing the same operation sequentially,
more units are added to perform the since cycle equivalent operation in par-
allel and when 1 of the results is correct, it is promoted. The more the units
we add, the higher the probability of "hitting" a correct result. A compromise
needed to be made. Since it is possible that none of our units will generate a
point that land inside the circle, a final unit is added that behaves differently.
Instead sampling the square around the circle(cyan in 6.5,[HGFE]), this unit
samples the square inside the circle(blue in 6.5,[BADC]). This guarantees that
the point will land inside the circle, but also introduces some bias since some
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FIGURE 6.5: Square and Circle Geometric Representation

areas of the circle will never be hit.
We attempted to create a setup were at least 99% of the time the random
point will be generated normally, from the outer square [HGFE] and the pro-
cess can be pipelined to provide 1 random point per cycle. We know that
PSquareCorrect = 0.7854 = 78.54%. Adding extra units that perform the same
operation increases the probability of at least one of them being correct. The
overall success probability of having 2 units for the random in unit circle
function is:

POverallSuccess = (P1 f ail ∗ P2success) + (P1success ∗ P2 f ail) + (P1success ∗ P2success)↔
POverallSuccess = (0.2146 ∗ 0.7854) + (0.7854 ∗ 0.2146) + (0.7854 ∗ 0.7854)↔
POverallSuccess = 0.1685 + 0.1685 + 0.6168↔
POverallSuccess = 0.9538

(6.1)
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This is not enough since we are aiming for 99% coverage, so a third unit to
perform the same operation is added, which yields a probability of success:

POverallSuccess = 1− POverallFail ↔
POverallSuccess = 1− (P1 f ail ∗ P2 f ail ∗ P3 f ail)↔
POverallSuccess = 1− (0.2146 ∗ 0.2146 ∗ 0.2146)↔
POverallSuccess = 1− 0.0098↔ POverallSuccess = 0.9901

(6.2)

Having 3 units covers our attempt for a 99% coverage for the Random in Unit
Circle function.
Similarlly, for the 3 dimensional counterpart and 5 units:

POverallSuccess = 1− POverallFail ↔
POverallSuccess = 1− (P1 f ail ∗ P2 f ail ∗ P3 f ail ∗ P4 f ail ∗ P5 f ail)↔
POverallSuccess = 1− (0.4764 ∗ 0.4764 ∗ 0.4764 ∗ 0.4764 ∗ 0.4764)↔
POverallSuccess = 1− 0.0245↔ POverallSuccess = 0.9754

(6.3)

This still wasn’t 99% but adding extra units wasn’t yielding much difference
compared to the extra hardware loss, so we decided to settle for 5 units(we
would need 2 extra units to gain 0.0146 and reach the 99% probability goal).

FIGURE 6.6: Random in Unit Circle hardware architecture
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6.6.2 Streaming Dataflow/Pipeline technique

This is a common technique that is used to connect units and achieve pipeline.
The algorithm is once again divided into its major components. A distinct
and autonomous IP is created to perform the operations for each individual
major component. Those IPs are connected together with FIFO streams, so
every IP has an input stream and an output stream. When there is no data
in the input stream or when the output stream is full, stalls are performed
on each individual unit, untill all data is consumed. Every component of this
chain is also pipelined by the Xilinx Vitis HLS tool. Two important values are
indicated:

• Iteration Latency. Indicates the #cycles it takes for 1 piece of data travel
from the input to the output stream for each IP.

• Interval. Indicates how many cycles it takes for data to move 1 step
forward in the inner pipeline of each IP. In other words, how often(in
term of cycles) a piece of data is written to the output stream.

For 1 piece of data, the overall latency of this technique is determined by
adding together the Iteration Latency for all component. Its also important
to note that since this is a pipe-lined process, the 2ed piece of data will not
have the same latency but instead will have a latency equal the to interval.
The unit with the worse Interval determines the overall interval of the chain.
So overall the latency is given by:

Tlatency = ∑ TIterationLatency + TWorseInterval ∗ TotalData (6.4)

Now it becomes clear that when dealing with a large amount of data(TotalData)
Iteration Latency becomes somewhat irrelevant, and minimizing Interval should
be the main focus.

6.6.3 Top level datapath

As discussed previously the algorithm was broken down to its 5 major units.
Those units are connected together with the aforementioned FIFO streams.
We managed to achieve an interval of 2 cycles for our worse case unit. That
means when there is a large of data(rays in our case), a ray is processed ap-
proximately every other cycle.
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FIGURE 6.7: Top level architecture

6.6.4 Main Dataflow Components

Ray Creation Unit

This unit is responsible for creating new Rays, when rendering begins, or
feed already processed and bounced rays to the pipeline. In the core of this
unit lay some of our aforementioned random point creation units to create
appropriately different rays.
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FIGURE 6.8: Ray Production Unit block diagram

The inner "Generate new Rays" component is responsible for creating new
rays while the "Pass Rays" component just reads and writes bounced rays
from global memory to the output stream. A top level value indicated as
"new rays?" determines which of the two components will be used to feed
data into the pipeline.
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BVH traversal Unit - Converting Recursion to fit the FPGA

This Unit is responsible for traversing the BVH tree. This was a heavily re-
cursive algorithm in software. In OpenCL we solved the recursion issue,
but using the same technique was impossible since it could not provide the
appropriate interval. Upon closer inspection of the software algorithm’s op-
eration, we observed that in each iteration of the recursive process an inter-
section test is made, but every time the tests involves one level of the tree.
So for example on the first iteration only the test is made on some data from
the first level of the tree, on the second iteration the test is made on some
data from the second level and so on, until the bottom is reached and an
object is determined. Our idea was to create a cascaded set of similar units
that perform intersections but each of them has its unique set of BVH objects
corresponding to the BVH tree level objects as shown in 6.9. These smaller

FIGURE 6.9: BVH conversion for a BVH with 16 objects

portions of the BVH are stored in different BRAMs and URAMs so they can
all be accessed individually without creating any issues. There is an issue
that needs to be noted with this design choice. This process is bound by the
total BRAM and URAM of the FPGA since each level requires exponentially
more object space.
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FIGURE 6.10: BVH traversal Unit with 4 box intersection units

As shown in 6.10 data flows from one box unit to the next performing in-
tersection tests on the appropriate level of the tree, until the tree is fully tra-
versed.

FIGURE 6.11: Box unit block diagram

Each of the box units actually performs two intersection tests(6.11). One for
the left and one for the right child of the input node. If one of those is correct,
it is promoted to the output of the box unit and to the input of the next box
unit. It is possible for both of those tests to be correct, in which case both
need to be promoted and this is were the limit to a pipeline interval of 2
originates, since FIFO streams only have 1 write port and thus, it would take
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2 cycles to write both data. This can also lead to a single ray intersecting with
multiple objects, in which case the closest of those object should be selected.
This problem will be dealt with later.

In order to allow our model to accept more scenes with different amounts of
triangles, we went for a design that allows a max BVH depth of 16(includ-
ing 0, the root), corresponding to 17 cascaded box units. This design allows
up to 2depth = 216 = 65536 polygons. This was the maximum amount we
managed to fit based on the bram and uram constraints that this design has
and the available BRAM and URAM of our FPGA. If it is detected that the
traversal has completed early(in case of a smaller scene with a smaller BVH
that requires less stages), data is simply passed from one box unit to the next
until it finally goes to the next major unit. This design choice introduces
some extra delay for a single piece data to be calculated in case of smaller
scenes, since data unnecessarily needs to flow through all the units, but also
allows for a much larger variety of different scenes to be rendered without
the need for different build architectures which cost a large amount of time
to complete.
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Object Intersection Unit

The object intersection unit is the unit responsible for actual polygon intersec-
tion. In the core of this unit lay the primary polygon intersection algorithms.
After a ray finishes traversing the BVH tree and a candidate object is found,
this unit checks if the ray did in fact intersect with that object.

FIGURE 6.12: Object intersection Unit block diagram

If it is detected that the ray intersected with the object, color and material
data of the object is gathered for the corresponding pixel to be shaded.

Scattering Unit

Scattering Unit is responsible for shading the corresponding pixel, as well as
creating a new bounced ray originating at the intersection point. The new
ray also corresponds to the same pixel. At the core of this unit, once again,
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lay some more LFSR random point generator units and a shading unit for
each of the three acceptable materials. We noticed a small optimization here.
Since only one of those three shading units is used on each iteration, it was
unproductive to generate random points for each of them. Instead we only
generate 1 random point which is then used as an input to the units. Even
though not a major component optimization, it does save a few LFSR point
generation units.

FIGURE 6.13: Scatter and Shade unit block diagram

The output of this unit includes color for the pixel and information about the
new bounced ray.
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Writeback Unit

The final unit of the dataflow is the writeback unit. This unit is of course
responsible for writing data back to the interface or global memory, but also
solve the final problem, of duplicate rays intersecting different objects. In
this case, the closest object should be selected. The original idea was to keep
distance data in a global array and compare the distance before overwriting
a ray to the closest one. That would require global memory reads on each
iteration so we decided to optimize this as we could.
We confirmed that duplicate rays can in fact show up at this stage corre-
sponding to the same pixel with different object and distance data, but we
noticed they always show up in order. We used 2 registers to compare 2
results on 2 inputs. For explanation purposes we’ll call them the "current"
register and the "previous" register, referring to the data each is holding. A
piece of data travels from the current register to the previous register on each
iteration. So the current register always has a new piece of data from the
FIFO stream while the previous register has an older "state" of the current
register.
The pixel_ids of the data in those registers are compared and if they are dif-
ferent to one another, then the color data inside the previous register is safe
to be written to the interface since its pixel_id will not show up again as they
come in order.
If the pixel_ids are the same then the closest needs to be picked. The distance
of the two is compared and the closest one is written to the previous regis-
ter instead of the interface, in case another piece of data will come with the
same pixel_id which will also need to be compared. The process repeats for
all rays until the image is formed.
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FIGURE 6.14: Write Unit block diagram
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Chapter 7

Results

7.1 Hardware used

For testing in software a personal computer was used. The processor used
was a AMD Ryzen 5-3600 6 core/12 thread chip, with a frequency of 3.6GHz
and a single core boost of up to 4.2GHz. The computer also has 16GB of
3000MHz DDR4 memory.
The GPU that we used for the GPU testing was a AMD RX 5600XT with 6GB
of GDDR6 VRAM. This GPU has a base clock of 1420MHz with a boost of
up to 1750 MHz. The core consists of 36 compute units and 2304 stream
processors.
Finally as we already mentioned, the FPGA we used was the Alveo U50 Data
Center Accelerator Card. This card consists of 872k LUTs, 1743K registers
and 5952 DSP slices. It also has 8GB of RAM, 28MB of SRAM and 2MB of
BRAM.

Power Consumption

Unfortunately we were unable to monitor the exact power consumption dur-
ing testing. Nevertheless bellow are presented the TDPs(Thermal Design
Power) of our hardware.

Ryzen 5 3600 AMD RX 5600 XT Alveo U50

65-80W 150-170W 75W
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7.2 FPGA utilization and timings

The timing outcome that Vitis HLS tool generated was:

target estimated uncertainty

3.33ns 2.433ns 0.9ns

For the Alveo U50 FPGA card the following utilization estimates were gen-
erated:

BRAM DSP FF LUT URAM

899(33%) 1183(19%) 905243(51%) 358422(41%) 120(18%)

Finally, our processing units displayed the following timing results in terms
of cycles.

iteration latency interval

ray production unit 61 1
box intersection unit 61 2

object intersection unit 300 2
scatter and shade unit 183 2

writeback unit 73 2

There are 17 instances of the box intersection unit so the overall latency of a
ray to go through the pipeline is:

Tlatency = ∑ TUnitLatency = 61 + 17 ∗ 61 + 300 + 183 + 73 = 1654cycles (7.1)

As we already discussed the process is pipelined and since the worse interval
case in our pipeline is 2 cycles, then we can assume that a ray is processed
every other cycle.
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7.3 The scenes

To evaluate the performance of our work across different platforms 4 differ-
ent scenes were created. All our scenes were rendered in 1920x1080 image
resolution with a threshold of 50 ray bounces for each ray.

Cornell Box

This is a fairly small scene. The Cornell box is a very famous benchmark
to evaluate a ray tracer’s performance. Since our ray tracer doesn’t include
light sources and our scenes are illuminated as if it was a sunny day, we had
to remove the ceiling of the Cornell box instead of adding a light source on
it.

FIGURE 7.1: Cornell Box Scene

Spheres Triangles

3 92

Double Teapot

In this scene we find 2 instances of another very famous object, the Utah
teapot. A few spheres are added around and a mirror in the back.
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FIGURE 7.2: Double Teapot Scene

Spheres Triangles

50 12642

Dragon Scene

The dragon scene consists of a dragon model.

FIGURE 7.3: Dragon Scene

Spheres Triangles

3 20384
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Toy Plane Scene

This scene consists of a plane model. The original materials from the model
are also present in this scene.

FIGURE 7.4: Toy Plane Scene

Spheres Triangles

1 21936

Cars Scene

FIGURE 7.5: Cars Scene



70 Chapter 7. Results

This scene consists of 2 car models. There are mirrors placed in the back at
a 90°angle so that more rays will bounce around the scene. They also create
the effect of quadrupling the objects placed in front of the mirrors.

Spheres Triangles

1 45120

Friends Scene

This scene consists of two famous characters from computer games, a fall guy
from the game "Fall Guys" and Cuphead from the game "Cuphead". Once
again, there are mirrors placed on the ceiling, on the floor and the front and
back wall. As it is expected, this scene is darker since the ceiling is blocked
off and objects collect light energy only from the rays that escape from the
sides. We also can see the "infinity" effect of putting 2 mirrors against each
other.

FIGURE 7.6: Friends Scene

Spheres Triangles

1 56654

7.4 Performance Results

We tested the above scenes under 2 different sampling settings, 10 sample
per pixel and 100 sample per pixel. For the CPU implementation 3 different
settings were used single thread, 6 thread and 12 thread. We present, below,
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in tabular form and in histograms the overall timing and total rays cast across
different platforms.

Total Rays (in millions)

Cornell box Dragon Plane Double Teapot Cars Friends

10 samples 107 34 45 58.3 84.5 110
100 samples 1,100 341 450.5 582.8 846 1,100

TABLE 7.1: Total rays cast for each scene

1920x1080 | 10 samples (in sec)

CPU 1T CPU 6T CPU 12T GPU U50

Cornell box 152.166 123.553 132.528 79.215 43.182
Dragon 237.897 48.031 52.155 30.012 47.765
Plane 203.548 54.923 52.261 33.292 41.799

Double Teapot 207.123 72.993 67.043 45.176 35.926
Cars 1285.14 301.354 197.316 124.96 177.874

Friends 549.013 134.206 121.185 74.998 71.703

TABLE 7.2: Timing results for |1920x1080p-10 sample| scenes

FIGURE 7.7: Execution times across platforms for 10 samples
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1920x1080 | 100 samples (in sec)

CPU 1T CPU 6T CPU 12T GPU U50

Cornell box 1537.764 1265.86 1333.28 774.152 423.909
Dragon 2413.95 496.311 475.433 293.326 466.781
Plane 2010.38 550.62 511.492 325.712 404.335

Double Teapot 2046.18 734.68 671.015 450.096 355.254
Cars 12748.58 3163.08 1943.89 1245.12 1795.89

Friends 5566.99 1304.87 1210.36 745.123 712.532

TABLE 7.3: Timing results for |1920x1080p-100 sample| scenes

FIGURE 7.8: Execution times across platforms for 100 samples

Performance discussion

As we can see, our FPGA implementation performs fairly well. As we can
see our FPGA implementation is able to beat the CPU equivalent on all of
our datasets. On the bigger scenes, it doesn’t manage to beat the GPU im-
plementation across the board, but they perform tightly close. We also need
to consider the power consumption of these 2 platforms. Even though we
couldn’t measure it, based on our knowledge, we expect the FPGA to be op-
erating at around half the power of the GPU. We believe the major reason that
the FPGA loses performance is because of the way that the feedback loop is
performed. Instead of data being routed back internally, the data is collected
at the end of the pipeline and sent back to the host as a big chunk. The host
then copies this chunk of data from the output buffer to the input buffer and
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feeds back into the kernel. This creates some sort of synchronization that
isn’t needed and can be avoided. Also BRAM and URAM data are copied
over and over when 1 time should be enough. This process is repeated many
times until the final image is created. As future work, rerouting this feedback
loop to be done internally should notably increase performance.

An odd result in our testing was around the Cornell Box scene. This scene
is the smallest of the bunch and we can see that it doesn’t scale as expected
on the CPU. We measured a high amount of cache misses when deploying
more threads on this scene. This led to a higher amount of instructions being
issued and eventually caused a hazard for the threads. We believe this has
to do with the small size of the BVH. Since the BVH is small and there aren’t
many nodes in it, we believe the threads were attempting to read similar
memory elements resulting in the problem. Further testing can confirm our
assumption, but the process in this scene is identical to the others. Nonethe-
less, in this scene we see the greatest performance difference of the FPGA
compared to the other platforms.

In the Cars scene we also observe a mediocre speedup from the FPGA com-
pared to the CPU. We believe this has to do with the amount of extra rays
which are fed back into the feedback loop. Resolving that issue should re-
lieve the situation.

At last we can see that across all platforms performance scales with the amount
of samples linearly, which means that 10x samples equal 10x time. This is also
the case for the total rays created.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

Ray Tracing is becoming a very "hot" topic when it comes to computer graph-
ics. The ray tracing algorithm is a very computationally exhaustive algorithm
that was mainly used by 3D film making companies. In the recent years the
hardware caught up to the demand and more people are able to have access
to this method of rendering. Major companies have already started pursu-
ing the creation of ray tracing specific platforms that aim to accelerate the
process.

In its core the ray tracing algorithm is heavily parallelizable so the FPGA can
be a great candidate platform to gain advantage from this. The algorithm’s
heaviest job revolves around identifying which object does a ray intersect
with. When it comes to very complex scenes, checking every polygon on the
scene to find the correct one becomes obsolete. Using acceleration structures
is essential to ensure the smooth operation of the algorithm. These structures
create a hierarchy tree of recursively smaller and smaller groups of polygons
in the scene based on their relative position which can be refereed to, to find
the correct objects with much less effort. All rays

To make this algorithm run on other platforms drastic changes need to be
made. Our algorithm was mainly recursive and written in an inheritance
manner. These needed to be removed or changed on platforms that don’t
support them. We created a setup that uses repetitive logic and removed in-
heritance to make the algorithm work on GPUs using the OpenCL platform.
The main issue was the traversal of the BVH acceleration structures which
we overcame by using repetitive logic and a small cache array.
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More changes needed to be issued to make the algorithm work on FPGAs.
Once again, recursion is not an option. We opted to use a pipeline streaming
setup. Using the same logic as before was not good enough because it was
not able to be pipelined. We broke the BVH traversal down into a cascaded
setup where every level of the tree has a unique hardware unit and BRAM
associated with it and is connected to the previous and next unit with FIFO
streams. Data moves from the root to the leaves of the tree while being pro-
cessed on the way. Data for the tree nodes are placed into BRAM and URAM
for faster memory accesses but that limits the possible maximum size of the
BVH. This way we were able to achieve a setup were a ray can be processed
every 2 cycles.
Our architecture has a big drawback regarding the feedback loop which cre-
ates a type of unnecessary synchronization and more I/O between the host
and kernel platforms. Rerouting the feedback loop is the next step to achieve
greater performance with this architecture.
Another issue we needed to solve was random random generation which
was done by using LFSR registers.

Even though close, FPGA results weren’t great compared to the GPU. We did
observe some speedup, especially on smaller scenes, but on bigger scenes the
result was underwhelming. That said, if we factor in power consumption the
results are a lot more promising. Rerouting the feedback loop is expected to
solve a lot of issues and provide considerable performance.

8.2 Future Work

In order to further improve the quality and performance of our introduced
ray tracer work can be done in many different areas.
First of all work can be done to add more features to the ray tracer:

• Shadow Rays or Importance Sampling can be applied for better shadow
quality.

• Light sources and directional lighting support.

• More materials and texture support can be added (wood etc.)

• Switch the BVH tree for a K-D tree to avoid double intersections and
reduce computations.

• Better bounding-box creation method for triangle polygons.
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• When creating the BVH or K-D tree, factor in camera position for better
tree quality(as proposed in [8]).

• Denoise filters could also be another way to reduce the amount of sam-
ples Monte Carlo integration requires to wield visually acceptable re-
sults.

Regarding the FPGA architecture work can also be done to improve the per-
formance:

• Re-route the feedback loop so that it doesn’t go back to the host, but is
done internally.

• Better memory management. "Enum" types can be used instead of inte-
gers where possible to save memory and maybe fit in a few extra stages.

• Multi-kernel process. Since the kernel itself is leaving some FPGA area
unused a multi kernel setup can be explored, but with consideration to
BRAM and URAM(maybe with multi-port BRAM/URAM).

• Using a K-D tree would make some logic redundant, which can be re-
designed for better space and resource management.
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