

Technical University of Crete
School of Production and Engineering Management
Master in Technology and Innovation Management

BUSINESS DECISION ANALYSIS BASED ON DATA ANALYTICS

TRIKOUNAKI ANTONIA

Supervisor
Professor Matsatsinis Nikolaos

Chania, 2022

Technical University of Crete
School of Production and Engineering Management Master in Technology and Innovation Management

MASTER'S THESIS

BUSINESS DECISION ANALYSIS BASED ON DATA ANALYTICS

A thesis submitted in partial fulfillment of the requirements for the degree in Master in Technology and Innovation Management.

TRIKOUNAKI ANTONIA

Supervisor
Professor Matsatsinis Nikolaos

Chania, 2022

Copyright © 2022
ANTONIA TRIKOUNAKI

Supervisor
 Professor Matsatsinis Nikolaos

Assistant-Supervisor
Dr. Batsakis Sotirios

Associate Professor
Tsafarakis Stelios

Acknowledgements

I would like to express my deepest appreciation to my supervisor, Professor Nikolaos Matsatsinis, who played a crucial role to my educational path, through his teaching work, knowledge and expertise. I would also like to thank him for providing me guidance and for cultivating my interest in data science and business intelligence.

I would like to express my deepest appreciation to my co-supervisor, Dr. Sotirios Batsakis, who have helped me undertake this thesis and provided me with consistent support, and guidance throughout my entire effort.

I would like to extend my sincere thanks to Associate Professor Mr. Stelios Tsafarakis as well as to all my professors and teaching stuff of Technical University of Crete, who helped me grow intellectually and broaden my horizons.

Last but not least, I would like to thank my family for their continuous support and understanding, throughout my college years.

Biography

Antonia Trikounaki is a Business Administration graduate of the Management School of Athens University of Economics and Business, majoring in business administration.

After graduating from the Management School in 2020, she enrolled at the Master in Technology and Innovation Management, at the School of Production Engineering and Management in Technical University of Crete.

Her educational background, also includes knowledge of Business Software Systems, Robotic Process Automation Software Systems and Business Process and Notation Systems.

She has attended numerous seminars on various topics such as Industry 4.0, Artificial Intelligence, Artificial Intelligence\& Data Analytics, E-business, Leadership, Digital Marketing, Customer Engagement, Google Ads and SEO, Social Media Marketing, Digital Transformation, Digital PR, Online Targeting Strategies, IT trends, Enterprise Crisis Management, Digital Nomads \& Strategies to Restart the Tourism Sector in Crete, Hotel Megatrends and Health \& Security in the Workplace.

She has attended trading seminars and she has participated in negotiating tournaments and mediation simulations. She has also participated in various workshops concerning Public Spaces, Smart Technologies and Urban Health.

She has an experience as a Real Estate Assistant and as a Guest Relations officer in a 5-Star Hotel.

Abstract

Despite the continuous and exponential technological evolution, a common phenomenon observed in the service and retail industry is the lack of pattern recognition in a dataset and thus the inability to create predictions on business issues. This, makes them even more susceptible to uncertainty and risk, as they are not able to focus on the key variables that influence their companies' attributes.

This thesis, highlights three different case studies of companies operating in the service and retail industry. Specifically, the paper focuses on the case of a hotel company based in Chania of Crete, a multinational insurance company and a big Greek Super Market chain, that seek to use data analysis along with data science to extract the necessary information and make the predictions needed in order to take effective decisions and improve their business performance.

The aforementioned, can be achieved by using the methods of categorization, clustering and association rule mining through the usage of machine learning software, WEKA. Through algorithms' implementation, it is possible to make predictions, check their accuracy, create patterns of interrelated sales/purchases and group features, based on the data provided by the companies.

In each of these three cases, the dataset is examined, and through WEKA'S assistance, the data is analyzed in order to obtain results, capable of assisting or improving decision-making, increasing competitiveness and possibly increasing the sales of the firms in question.

The first chapter presents the concept of data mining, the purpose it serves and the ways through which it helps in business problem solving. Then the data mining software- WEKA is presented, which is used in each of the cases, to analyze the data given and to provide meaningful patterns, rules and results for the issues addressed. The presentation, analysis and explanation of the different regression and classification algorithms follows, which will be used in the use cases of the following chapters and the different clusterers that will be applied through WEKA's software. Additionally, the concept of association rule mining is presented and explained, as well as the various metrics that will be used to analyze and interpret WEKA's results.

The second chapter presents the Creta Palm Hotel's case. For this case, a certain amount of data, concerning the hotel's bookings from the different travel agencies as well as the different booking sources was collected, for the years 2019 and 2020. This data is about to be analyzed through classification algorithms' implementations and clustering method developments, with the assistance of the machine learning software WEKA. This aims in generating predictions for the total bookings of the different travel agencies and the different booking pages, in checking the accuracy of the total bookings' predictions as well as in grouping the different co-operative booking sources' characteristics based on the years of 2019 and 2020. Total bookings' predictions concern all those travel agencies and booking sources that have the same, or similar characteristics to the agencies/sources given for analysis, that is the training data. The agencies/sources whose data have the same or similar characteristics to the training data, are expected to behave in the same way and have similar number of sales.

The third chapter is about the multinational insurance company NN. In this case, the company created a questionnaire for its customers and collected their responses, in order to examine their intentions and preferences concerning the insurance products she promotes. These responses, are being processed and then analyzed, in order to predict the customers' interest for insurance estimating, to test the predictions' accuracy and to cluster the customers' characteristics, based on the data provided by the company. The aforementioned are accomplished, through classification algorithms' implementation and clustering methods' development, with the assistance of WEKA machine learning software. WEKA's predictions for the customers' interest in retirement estimation, concern customers who display the same or similar characteristics as those of the customers answering the questionnaire. Therefore, customers with the same or similar characteristics as the training data are expected to behave in the same way and have a similar response.

The forth chapter presents the case of a large Super Market in Greece. For this use case, a database with transactional and demographic data was collected from the Supermarket for a period of eight months during 2021. This database included the customers' gender, age, card code and all of their purchases with its dates, the shop and area from which the customers made each purchase, the products each customer chose along with their product category and the amount of money that they spent on
each product. The collection and analysis of these data, gives us the opportunity to find useful information about the customers, through association rule mining and clustering. Weka Machine Learning Software, transforms the dataset into meaningful patterns with the assistance of integrated algorithms, aiming to find the products that appear an association with each other and are usually purchased together (association rule mining) as well as to group the customers depending on their purchase frequency of the various product categories. Association rule mining- in other words- market basket analysis, discovers the correlations between the different items in customers' shopping cart and clustering segregates groups with similar traits. These methods help the company to have a better understanding of the customers' profile and thus, create value for them. This leads to a better customer experience and creates a stronger sentiment or loyalty towards the company. The methods of association rule mining and clustering helps the company to better predict the results of a new oncoming dataset that has similar characteristics with our already existing dataset and make the necessary marketing campaigns depending on the customers' gender, age and area of shopping.

Table Of Contents

Acknowledgements 8
Biography 9
Abstract 10
Table Of Contents 13
Table of Figures 23
List of Tables 24
Chapter 1 27
1.1 Data Mining 27
1.2 Data Mining Software: WEKA 28
1.3 Regression 31
1.3.1 Linear Regression 33
1.3.2 Gaussian Process 34
1.3.3 Multilayer Perceptron 34
1.3.4 SMOreg 34
1.3.5 Lazy IBk 34
1.3.6 LWL 35
1.3.7 Lazy K Star 35
1.3.8 Decision Table 35
1.3.9 M5Rules 36
1.3.10 Zero R 36
1.3.11 Decision Stump Tree 36
1.3.12 M5P trees 36
1.3.13 Random Forest 36
1.3.14 Random Tree 37
1.3.15 RepTree 37
1.3.16 Meta Additive Regression 37
1.3.17 Meta Regression By Discretization 37
1.3.18 Meta Randomizable Filtered Classifier 38
1.3.19 Meta Vote 38
1.3.20 Meta Stacking 38
1.3.21 Meta Instances Handler Wrapper 38
1.3.22 Meta Random Sub Space 38
1.3.23 Meta CV Parameter Selection. 39
1.3.24 Meta Bagging 39
1.3.25 Meta Multischeme 39
1.3.26 Meta Random Committee 39
1.3.27 Misc Input Mapped Classifier. 39
1.4 Classification 39
1.4.1 SMO 47
1.4.2 Multilayer Perceptron 48
1.4.3 Logistic 48
1.4.4 SGD 49
1.4.5 SGD Text 49
1.4.6 Voted Perceptron. 50
1.4.7 Naive Bayes 50
1.4.8 Bayes Net 52
1.4.9 Naïve Bayes Multinomial Text 53
1.4.10 Lazy K Star 53
1.4.11 Lazy IBk 53
1.4.12 Meta Multi Class Classifier 54
1.4.13 Meta Multi Class Classifier Updateable. 54
1.4.14 Meta Randomizable Filtered Classifier 54
1.4.15 Meta Vote 55
1.4.16 Meta Stacking 55
1.4.17 Meta Instances Handler Wrapper 55
1.4.18 Meta Random Sub Space 55
1.4.19 Meta CV Parameter Selection. 55
1.4.20 Meta Bagging 55
1.4.21 Meta Multischeme 56
1.4.22 Meta Random Committee 56
1.4.23 Misc Input Mapped Classifier. 56
1.4.24 JRip 56
1.4.25 Zero R 56
1.4.26 One R Rules 56
1.4.27 Rules Part 56
1.4.28 Decision Table 57
1.4.29 Random Forest 57
1.4.30 J48 Tree 57
1.4.31 Decision Stump Tree 58
1.4.32 Random Tree 58
1.4.33 RepTree 58
1.4.34 Hoeffding Tree 58
1.4.35 Tree LMT 59
1.5 Clustering 59
1.5.1 Simple K-Means 60
1.5.2 EM 65
1.5.3 Hierarchical Clustering 66
1.5.4 Filtered Clusterer. 70
1.5.5 Farthest First 70
1.5.6 Cobweb 70
1.5.7 Make A Density Based 70
1.5.8 Canopy. 73
1.6 Association Rule Mining 74
Chapter 2 79
Use Case: Creta Palm Hotel 4* 79
2.1 WEKA Regression 2019 81
WEKA Algorithms 81
2.1.1 M5Rules 82
2.1.2 M5P trees 84
2.1.3 SMO Reg 86
2.1.4 Linear Regression 88
2.1.5 Gaussian Process 90
2.1.6 Random Forest 92
2.1.7 Meta Randomizable Filtered Classifier 93
2.1.8 Meta Random Committee 95
2.2 WEKA Clustering 2019 97
WEKA Clusterers 97
2.2.1 Simple K Means 98
2.2.2 EM 102
2.2.3 Filtered Clusterer. 104
2.2.4 Farthest First 106
2.2.5 Make A Density 108
2.2.6 Canopy. 112
2.3 WEKA Regression 2020 112
WEKA Algorithms 112
2.3.1 M5P trees 113
2.3.2 M5Rules 114
2.3.3 Linear Regression 116
2.3.4 SMO Reg 118
2.3.5 Gaussian Processes 120
2.3.6 Meta Random Committee 121
2.3.7 Lazy K Star 123
2.3.8 Random Forest 125
2.3.9 Multilayer Perceptron 126
2.4 WEKA Clustering 2020 128
WEKA Clusterers 128
2.4.1 Simple K Means 128
2.4.2 EM 132
2.4.3 Make A Density 134
2.4.4 Filtered Clusterer 138
2.4.5 Farthest First 140
2.4.6 Canopy. 141
Conclusions 142
Chapter 3 144
Use Case: NN Hellas 144
3.1 WEKA Classification 148
WEKA Algorithms 148
3.1.1 Random Tree. 150
3.1.2 Lazy IBK 154
3.1.3 Naive Bayes Updateable 156
3.1.4 Bayes Net 158
3.1.5 Naive Bayes 161
3.1.6 Lazy K Star 163
3.1.7 Meta Randomizable Filtered Classifier 165
3.1.8 SMO 166
3.1.9 Multi Class Classifier Updateable 168
3.1.10 Multi Class Classifier 176
3.1.11 Logistic 180
3.2 WEKA Clustering 182
WEKA Clusterers 182
3.2.1 Simple K Means 183
3.2.2 EM 186
3.2.3 Farthest First 188
3.2.4 Make A Density Based Clusterer 191
3.2.5 Canopy 194
3.2.6 Filtered Clusterer. 195
Conclusions 195
Chapter 4 200
Use Case: Large Super Market in Greece 200
4.1 WEKA Association Rule Mining 200
Associator model (full training set): Apriori 202
4.1.1 Best results found for Women 203
4.1.2 Best results found for Men 204
4.1.3 Best results found for Chania Area 206
4.1.4 Best results found for Kounoupidiana Area 208
4.1.5 Best results found for Heraclion Area(City) 209
4.1.6 Best results found for Gazi Area 210
4.1.7 Best results found for Malia Area 212
4.1.8 Best results found for Nea Alikarnassos Area 213
4.1.9 Best results found for Limenas Chersonissou 214
4.1.10 Best results found for Kokkini Chani Area 216
4.1.11 Best results found for Mires Area 217
4.1.12 Best results found for Tympaki Area 218
4.1.13 Best results found for Neapoli Area 219
4.1.14 Best results found for Sitia Area 221
4.1.15 Best results found for Ierapetra Area 222
4.1.16 Best results found for Agios Nikolaos Area 224
4.1.17 Best results found for the <=18 Age Group 226
4.1.18 Best results found for the Age Group 18-25 227
4.1.19 Best results found for the Age Group 26-35. 228
4.1.20 Best results found for the Age Group 36-45 229
4.1.21 Best results found for the Age Group 46-55 230
4.1.22 Best results found for the Age Group 56-65. 231
4.1.23 Best results found for the Age Group 66+ 232
4.2 WEKA Clustering 235
WEKA Clusterers 235
4.2.1 Simple K Means 236
4.2.2 Make A Density 241
4.2.3 Filtered Clusterer 247
4.2.4 Farthest First 247
4.2.5 EM 249
4.2.6 Canopy 250
Conclusions. 253
REFERENCES 254
APPENDIX 258
APPENDIX 1: Creta Palm Hotel 258
M5Rules Algorithm| Creta Palm 2019 258
M5P Trees Algorithm| Creta Palm 2019 259
SMOreg Algorithm | Creta Palm 2019 259
Linear Regression Model Algorithm| Creta Palm 2019 261
Meta Random Committee Algorithm| Creta Palm 2019 262
Classifiers with low or negative correlation coefficient (2019): 316
Lazy K Star 316
Multilayer Perceptron 317
Meta Regression By Discretization 350
Meta Additive Regression 351
Meta Random Sub Space 355
Lazy IBK 371
REPTree 372
Meta Bagging 373
Lazy LWL 373
Decision Table 373
Random Tree 374
Decision Stump 379
Simple K Means with 3 Clusters| Creta Palm 2019 380
Simple K Means with 4 Clusters| Creta Palm 2019 380
Simple K Means with 5 Clusters| Creta Palm 2019 381
EM Clusterer| Creta Palm 2019 382
Farthest First with 3 Clusters| Creta Palm 2019 383
Farthest First with 4 Clusters| Creta Palm 2019 383
Farthest First with 5 Clusters| Creta Palm 2019 384
Canopy Clusterer| Creta Palm 2019 384
Make A Density Clusterer, Fitted estimators (with ML estimates of variance) | Creta Palm 2019 386
M5P Trees Algorithm| Creta Palm 2020 388
M5Rules Algorithm| Creta Palm 2020 388
Linear Regression Algorithm| Creta Palm 2020 389
SMO Reg Algorithm | Creta Palm 2020 390
Meta Random Committee Algorithm | Creta Palm 2020 392
Multilayer Perceptron Algorithm | Creta Palm 2020 432
Classifiers with low or negative correlation coefficient (2020): 462
Meta Random Sub Space Algorithm| Creta Palm 2020 462
Meta Randomizable Filtered Classifier| Creta Palm 2020 475
Rules Decision Table Algorithm| Creta Palm 2020 476
Meta Additive Regression Algorithm| Creta Palm 2020 477
Random Tree Algorithm| Creta Palm 2020 480
Meta Bagging Algorithm| Creta Palm 2020 483
Meta Regression by Discretization Algorithm| Creta Palm 2020 484
Lazy LWL Algorithm| Creta Palm 2020 485
REP Tree Algorithm| Creta Palm 2020 485
Decision Stump Algorithm| Creta Palm 2020 486
Lazy IBK Algorithm| Creta Palm 2020 487
Simple K Means with 3 Clusters| Creta Palm 2020 488
Simple K Means with 4 Clusters| Creta Palm 2020 488
Simple K Means with 5 Clusters| Creta Palm 2020 488
EM Clustering Model (continued)| Creta Palm 2020 489
Make A Density Based Clusterer fitted estimators| Creta Palm 2020 491
Farthest First with 3 Clusters| Creta Palm 2020 494
Farthest First with 4 Clusters| Creta Palm 2020 494
Farthest First with 5 Clusters| Creta Palm 2020 495
Canopy Clusterer| Creta Palm 2020 496
APPENDIX 2: NN. 497
Random Tree Algorithm| NN 497
Random Tree Predictions| NN 500
Lazy IBK Predictions| NN 503
Bayes Net Classifier Model| NN 507
Bayes Net Predictions| NN 511
Naive Bayes Classifier Model| NN 515
Naive Bayes Predictions| NN 525
Naive Bayes Updatable Classifier| NN 529
Naive Bayes Updateable Predictions| NN 539
Lazy K Star Predictions| NN 543
Randomizable Filtered Classifier Predictions| NN 547
Logistic Classification Model| NN 550
Logistic Regression Predictions| NN 557
SMO Reg Classifier| NN 561
SMO Reg Predictions| NN 564
Multi Class Classifier| NN 568
Multi Class Classifier Predictions| NN 575
Multi Class Classifier Updateable| NN. 579
Multi Class Classifier Updeateable Predictions| NN 583
Classifiers with low accuracy|NN 587
SGD| NN 587
Decision Table| NN 587
JRIP rules| NN 588
Rules OneR| NN 589
Rules PART| NN 590
Rules ZeroR| NN 591
Trees Decision Stump| NN 592
Trees Hoeffding Tree| NN 593
Trees J48| NN 594
Trees LMT| NN 595
Trees RandomForest| NN 596
REPTree| NN 597
Naive Bayes Multinomial Text| NN 598
SGDText| NN 599
Voted Perceptron| NN 600
Lazy LWL| NN 600
Meta.MultiScheme| NN 601
Misc Input Mapped Classifier|NN 602
Simple K Means Clustering| NN 603
EM Clusterer| NN 606
Farthest First Clusterer | NN 616
Make A Density Fitted Estimators| NN. 616
Canopy Clustering| NN 623
APPENDIX 3: Large Super Market in Greece 624
Product Categories' Codes Translated 624
Simple K Means 633
Simple K Means with 2 Clusters. 633
Simple K Means with 3 Clusters. 640
Simple K Means with 4 Clusters. 647
Simple K Means with 5 Clusters. 654
Make A Density Fitted Estimators (with ML estimates of variance) 660
Make A Density Based Clusterer with 2 Clusters. 660
Make A Density Based Clusterer with 3 Clusters 666
Make A Density Based Clusterer with 4 Clusters 673
Make A Density Based Clusterer with 5 Clusters 679
Farthest First Clusterer 685
Farthest First with 2 Clusters 685
Farthest First with 3 Clusters 685
Farthest First with 4 Clusters 686
Farthest First with 5 Clusters 687
EM Clusterer. 689
Canopy Clusterer 791
Canopy clustering with 2 clusters 792
Canopy clustering with 3 clusters 792
Canopy clustering with 4 clusters 794
Canopy clustering with 5 clusters 795
Table of Figures
Figure 1: Weka visualization 31
Figure 2: Classification 40
Figure 3: Interpretation of Precision and Recall 44
Figure 4: Binary and Multi-class Classifiers 47
Figure 5: Clustering 60
Figure 6: Pointed Data 61
Figure 7: Data Labeling 61
Figure 8: Finding Cluster Centroids 62
Figure 9: Centroids with no data labeling 62
Figure 10: Clustering 63
Figure 11: Recomputing the centers 63
Figure 12: Centroids with no data labeling 64
Figure 13: Clustering 64
Figure 14: Final Clusters 65
Figure 15: Heatmap 67
Figure 16: Clustering 67
Figure 17: Clustering 68
Figure 18: Clustering 68
Figure 19: Dendrogram in hierarchical clustering 69
Figure 20: Data points 71
Figure 21: Corepoint X and hyperparameters 71
Figure 22: Borderpoint Y and hyperparameters 72
Figure 23: Noisepoint z and hyperparameters 72
Figure 24: Final cluster 72
Figure 25: Labeled data 171
Figure 26: Best hyperplane for our labeled data 172
Figure 27: Complex Dataset 172
Figure 28: Best hyperplane for three-dimension mapping 173
Figure 29: Best hyperplane for two dimentions in a non-linear dataset. 174
Figure 30: Within cluster sum of squared errors and number of clusters 186
Figure 31: Within cluster sum of squared errors and number of clusters 193
Figure 32: Algorithms' results 197
Figure 33: Algorithms' ranking 198
Figure 34: Algorithms' ranking 199
Figure 35: Algorithms' ranking 199
Figure 36: Within cluster sum of squared errors and Number of clusters 241
Figure 37: Within cluster sum of squared errors and Number of clusters 247
List of Tables
Table 1: Detailed Accuracy by Class- An example 52
Table 2: Predictions on test data- M5 Rules 84
Table 3: Predictions on user test set- M5P Trees 86
Table 4: Predictions on test data- SMO Reg 88
Table 5: Predictions on test data- Linear Regression 90
Table 6: Predictions on test data- Gaussian Process 92
Table 7: Predictions on test data- Random Forest 93
Table 8: Predictions on test data- Meta Randomizable Filtered Classifier 94
Table 9: Predictions on test data- Meta Random Committee 96
Table 10: Final Cluster Centroids- Simple K Means 99
Table 11: Clustering- EM 103
Table 12: Final Cluster Centroids- Filtered Clusterer 105
Table 13: Cluster Centroids- Farthest First 107
Table 14: Final Cluster Centroids- Make A Density Based Clusterer 109
Table 15: Predictions on test data- M5P trees 114
Table 16: Predictions on test data- M5Rules 116
Table 17: Predictionss on test data- Linear Regession 118
Table 18: Predictions on test data- SMO Reg. 119
Table 19: Predictions on test set- Gaussian Process 121
Table 20: Predictions on test data-Meta Random Cmmittee 123
Table 21: Predictions on test set- Lazy K Star. 125
Table 22: Predictions on test data- Random Forest 126
Table 23: Predictions on test data- Multilayer Perceptron 128
Table 24: Final Cluster Centroids- Simple K- Means 130
Table 25: Clustering-EM 133
Table 26: Final Cluster Centroids- Make A Density Based Clusterer 136
Table 27: Final Cluster Centroids- Filtered Clusterer 139
Table 28: Cluster Centroids- Farthest First 141
Table 29: Detailed Accuracy by Class- Random Tree 153
Table 30:Predictions on test set- Random Tree 154
Table 31: Detailed Accuracy by Class- Lazy IBk 155
Table 32: Predictions on user test set- Lazy IBk 156
Table 33: Detailed Accuracy by Class- Naïve Bayes Updateable 156
Table 34: Example of Naive Bayes Updateabe 157
Table 35: Predictions on user test set- Naive Bayes Updateable 158
Table 36: Detailed Accuracy by Class- Bayes Net 159
Table 37: Predictions on user test set- Bayes Net 161
Table 38: Detailed Accuracy by Class- Naive Bayes 162
Table 39: Predictions on user test set- Naive Bayes 163
Table 40: Detailed Accuracy by Class- Lazy K Star 163
Table 41: Predictions on user test set- Lazy K Star 164
Table 42: Detailed Accuracy by Class- Meta Randomizable Filtered Classifier 165
Table 43: Predictions in user test set- Meta Randomizable Filtered Classifier 166
Table 44: Detailed Accuracy by Class- SMO 167
Table 45:Predictions in user test set- SMO 168
Table 46: Detailed Accuracy by Class- Multi Class Classifier Updateable 168
Table 47: Predictions on user test set- Multi Class Classifier Updateable 176
Table 48: Detailed Accuracy by Class- Multi Class Classifier. 176
Table 49: Predictions on user test set- Multi Class Classifier 180
Table 50: Detailed Accuracy by Class- Logistic 180
Table 51: Predictions on user test set- Logistic 181
Table 52: Cluster Centroids- Simple K- Means 185
Table 53: Cluster Centroids- EM 188
Table 54: Cluster Centroids - Farthest First 189

Chapter 1

1.1 Data Mining

Data mining is a process that turns raw data into useful information. Through data mining software systems, businesses are able to look for patterns in large batches of data, so they can learn more about their customers and thus develop more effective marketing strategies, increase sales and decrease costs. Data mining depends on effective data collection, warehousing, and computer processing. ${ }^{1}$

Data mining is the process of extracting useful information from a large amount of data, often from a data warehouse or collection of linked data sets. Data mining tools include powerful statistical, mathematical, and analytics capabilities whose primary purpose is to sift through large sets of data to identify trends, patterns, and relationships to support informed decision-making and planning. ${ }^{2}$

Data Mining can be directed or undirected. Directed Data Mining attempts to explain a particular situation or field such as customer response or house price in a certain area, using predefined classes, whereas undirected data mining attempts to find similarities among groups, without the need of a predefined classes or the need of certain target fields. ${ }^{3}$

The process of sorting through large data sets and identifying patterns through data analysis can help solve business problems. Data mining techniques and tools enable enterprises to turn data into useful information and knowledge, to make predictions and take better business decisions. Data mining is a key part of data analytics and data science.

According to Fayyad et al., (1996) [1]: The knowledge discovery in databases (KDD) is the overall process of discovering useful knowledge from data, and data mining refers to a particular step in this process. Data mining is the application of specific algorithms for extracting patterns from data.

[^0]The information that data mining generates can be used in business intelligence (BI) and advanced analytics applications that involve analysis of historical data, as well as real-time analytics applications.

Data mining aims in effective business strategies' planning and managing operations. That includes market analysis, advertising, marketing, sales, business management, decision support, customer support, manufacturing, supply chain management, finance and HR .

Data mining supports fraud detection and cybersecurity planning. It also plays an important role in risk management, healthcare, government, scientific research, mathematics etc. ${ }^{4}$

Data mining attempts to extract potentially useful knowledge from data. Let us consider transactions (market baskets) that are obtained from a supermarket. Data mining can be used to discover useful information from data like 'when a customer buys spaghetti, he/she also buys cheese" and 'customers of this supermarket department in X area like to buy Y products and they usually associate them with Z products'.

Different kinds of knowledge require different kinds of representation e.g. classification, clustering, association rule mining.

Classification analysis is a type of Predictive Data Mining, which helps to know what may possibly happen in the future in business, whereas Clustering and Association Rule Mining analysis are types of Descriptive Data Mining, which converts given data into useful information.

1.2 Data Mining Software: WEKA

The University of Waikato in New Zealand developed WEKA (Waikato Environment for Knowledge Analysis), an open-source, data mining software package written in Java, issued under General Public International Journal of Pure and Applied Mathematics. Weka is a collection of machine learning algorithms for data mining tasks. The algorithms can either be applied directly to a dataset or called from your

[^1]own Java code. Weka is fully implemented in Java Programming Language and it fits with almost any computing platform.

You can download the relevant software from: http://www.cs.waikato.ac.nz/~ml/weka/index.html, and then install it on your Personal Computer.

Weka Software is supported from various Operating Systems such as Windows, Mac OS X and Linux.

If you do not already have a version of java installed you should download the version that will also contain the java VM. You can choose between Version for 32 bits or Version for 64 bits.

Machine learning (ML) techniques and their application to real-world data mining problems can be done using WEKA. The software package supports several standard data mining tasks, such as data pre-processing, clustering, classification, regressing, visualization and feature selection. The Graphic User Interface allows us to try out different data preparation, transformation and modeling algorithms on data set and contains a collection of visualization tools for data analysis and predictive modeling coupled with graphical user interface.

Weka is a software tool with integrated Machine Learning algorithms that can develop machine learning models which may provide meaningful patterns, rules and results. That is, Weka does not require knowledge of algorithm programming and coding in order to provide results of the inspected data and thus, it speeds-up the procedures. In order to use Weka, someone has to pre-process and pre-label the data to train a classifier (the variable we want to predict). After training, the dataset must usually be saved in csv format and then loaded in Weka Software. After the dataset has been loaded in Weka, someone can make further data preparations in order to bring it in a suitable format and therefore, be able to create prediction models, clustering models and association rules.

Machine Learning is a part of data-driven Intelligent Automation through which machines must learn themselves to do tasks instead of us, understand the human brain function and mimic them.

According to Agrawal, et l., (2019) [2], "Machine learning is a subset of AI that involves techniques that enable machines to learn from the given data for pattern detection and future prediction".

Artificial intelligence uses machine learning algorithms to perform data analytics by building learning models to be used in "intelligent" ways. The learning models are based on the idea that machines can learn from data, identify patterns, and predict future states that help in decision-making with little human intervention.

The algorithm models and rules can be used to predict future behavior or choice, to improve business revenues, to confirm something already known or to just find new information that was not identified before.

WEKA with the help of the Apriori Algorithm helps in mining association rules in the dataset. Apriori is a frequent pattern mining algorithm that counts the number of occurrences of an item set in the transaction.

Cluster Analysis is a technique to find out clusters of data that represent similar characteristics. WEKA provides many algorithms to perform cluster analysis out of which simple k means are highly used.

Data Visualization in WEKA can be performed on all datasets in the WEKA directory. The raw dataset can be viewed as well as other resultant datasets of other algorithms such as classification, clustering, and association can be visualized using WEKA.

Figure 1: Weka visualization ${ }^{5}$

The above picture helps us to understand more about WEKA tool. There are many stages in dealing with Big Data to make it suitable for machine learning.

1.3 Regression

Regression analysis consists of a set of machine learning methods that allow us to predict a continuous outcome variable (y) based on the value of one or multiple predictor variables (x). ${ }^{6}$ That is, Regression is a process of finding the correlations between dependent and independent variables.

[^2]Regression algorithms are Supervised Learning algorithms that are used for prediction in Machine learning and they work with the labeled datasets. Regression algorithms are used to predict the continuous values/quantities such as price, salary, age, etc. In Regression, the algorithms are used with continuous data and the output variable must be of real value. ${ }^{7}$

Regression predictions can be evaluated using root mean squared error and adjusted R - square. The best model is defined as the model that has the lowest prediction error. The most popular metric for comparing regression models, is Root Mean Squared Error. It measures the model prediction error. It corresponds to the average difference between the observed known values of the outcome and the predicted value by the model. RMSE is computed as $\mathrm{RMSE}=$ mean((observed - predicted)^2). The lower the RMSE, the better the model ${ }^{8}$

For numeric/continuous values, WEKA's regression models, detect correlation coefficient, mean absolute error, root mean squared error, relative absolute error and root relative squared error.

- Correlation coefficient implies what percentage of the variance in your data is explained by your model. The greater the correlation coefficient value, the stronger the model's predictions are. A high correlation coefficient (greater than 0.95) depicts that there is a strong relation between our data values and the values of the algorithm's prediction model and that our data do get close to the predictions of the model. This practically means that, we can better predict the results of a new oncoming dataset that has similar characteristics with an already existing dataset and there is a high probability that the dataset values are similar to those predicted from the algorithm.
- Mean absolute error is the average distance the models' predictions are from the actual data points. Absolute in the title indicates that predictions below data points ate not treated as negative distances.
- Root mean squared error (RMSE) is another way of calculating the mean absolute error. It measures the model prediction error. It corresponds to the average difference between the observed known values of the outcome and the

[^3]predicted value by the model. RMSE is computed as $\mathrm{RMSE}=$ mean $($ (observed - predicted) $\wedge 2$). In other words, RMSE is the standard deviation of the residuals (prediction errors). The Residuals is a measure of how far/spread out are the data points from the regression line or how concentrated are the data around the line of the best fit. ${ }^{9}$ The lower the RMSE, the better the model.

- Relative absolute error and root relative squared error scale the error to the mean. This enables the comparison between models constructed with larger/smaller valued data.
- Total number of instances is the number of data points in the data set.

The regression Algorithm can be further divided into Linear and Non-linear Regression.

Six Types of Rression Algorithms:

1. Functions (Gaussian Process, SMOreg, Multilayer Perceptron, Linear Regression, Voted Perception)
2. Lazy (K Star, LWL, IBk)
3. Meta (Bagging, Randomizable Filtered Classifier, Stacking, Vote, Additive Regression, Instances Handler Wrapper, Regression By Discretization, Random SubSpace, CV Parameter Selection, Multi Scheme, Random Committee)
4. Misc (Input Mapped Classifier)
5. Rules (M5Rules, Decision Table, Zero R)
6. Trees (Decision Stump, Random Forest, Random Tree, RepTree, M5P)

1.3.1 Linear Regression

Linear regression is a very simple regression algorithm that only supports regression type problems and is issued for prediction. The model uses the Akaike criterion for model selection, and is able to deal with weighted instances. Linear Regression can only deal with numeric attributes. ${ }^{10}$

[^4]
1.3.2 Gaussian Process

Gaussian Process implements regression without hyper parameter-tuning. This implementation applies normalization/standardization to the target attribute as well as the other attributes (if normalization/standardization is turned on). Missing values are replaced by the global mean/mode. Nominal attributes are converted to binary ones. ${ }^{11}$

1.3.3 Multilayer Perceptron

The Multi-Layer Perceptron algorithms supports both regression and classification problems. It is also called artificial neural networks or simply neural networks for short. Neural networks are a complex algorithm to use for predictive modeling because there are so many configuration parameters that can only be tuned effectively through intuition and a lot of trial and error. ${ }^{12}$ This is a classifier that uses backpropagation to learn a multi-layer perceptron to classify instances. The network can be built by hand or set up using a simple heuristic. The network parameters can also be monitored and modified during training time. The nodes in this network are all sigmoid, except for when the class is numeric, in which case the output nodes become unthresholded linear units. ${ }^{13}$

1.3.4 SMOreg

"SMOreg implements the "sequential minimal optimization" algorithm for support vector machines, which are an important paradigm in machine learning". Burges, (1998) [4].

Sequential Minimal Optimization (SMO) method breaks the problem down into subproblems that can be solved analytically (by calculating) rather than numerically (by searching or optimizing). ${ }^{14}$

1.3.5 Lazy IBk

This is a K-nearest neighbor's (KNN) classifier which attempts to predict the correct class for the test data by calculating the distance between the test data and all the training points. Then, it selects the K number of points which is closest to the test data. The K-Nearest Neighbours (KNN) algorithm is one of the most simple

[^5]supervised machine learning algorithms that is used to solve both classification and regression problems. KNN is also known as an instance-based model or a lazy learner because it doesn't construct an internal model. For regression problems, it will find the k nearest neighbors and predict the value by calculating the mean value of the nearest neighbors. ${ }^{15}$

When making predictions on regression problems, KNN will take the mean of the k most similar instances in the training dataset. ${ }^{16}$

1.3.6 LWL

According to Atkenson, et al., (1997) [9], "LWL is an implementation of a more sophisticated learning scheme for numeric prediction, using locally weighted regression".

1.3.7 Lazy K Star

According to Sharma and Jain (2013) [8]: K-Star algorithm can be defined as a method of cluster analysis which mainly aims at the partition of " n " observation into " k " clusters in which each observation belongs to the cluster with the nearest mean. We can describe K-Star algorithm as an instance-based learner which uses entropy as a distance measure. The benefits are that it provides a consistent approach to handling of real valued attributes, symbolic attributes and missing values.
"K- Star is a simple, instance-based classifier, similar to K-Nearest Neighbour (KNN)" (Vijayarani and Muthulakshimi (2013) [5])

1.3.8 Decision Table

According to Kalmegh [3]:
Decision Table is an accurate method for numeric prediction from decision trees and it is an ordered set of If-Then rules that have the potential to be more compact and therefore more understandable than the decision trees. Selection to explore decision tables because it is a simpler, less compute intensive algorithm than the decision-treebased approach.

[^6]
1.3.9 M5Rules

M5Rules generates a decision list for regression problems using separate-andconquer. In each iteration it builds a model tree using M5 and makes the "best" leaf into a rule. ${ }^{17}$

1.3.10 Zero R

Zero R predicts the mean (for a numeric class) or the mode (for a nominal class). ${ }^{18}$

1.3.11 Decision Stump Tree

Decision Stump trees can support both classification and regression problems. Decision Stump is a decision tree learner. According to Witten, et al., (1999) [10]: Decision Stump builds simple binary decision "stumps" (one-level decision trees) for both numeric and nominal classification problems. It copes with missing values by extending a third branch from the stump- in other words by treating "missing" as a separate attribute value.

1.3.12 M5P trees

M5P trees can support both classification and regression problems. According to [17]"The M5P model tree is based on conventional decision tree associated to linear regression function at the leaves nodes".

1.3.13 Random Forest

Random Forest trees can support both classification and regression problems. According to E. Kleinberg (n.d) [31]: Random forests or random decision forests are an ensemble learning method for classification, regression and other tasks that operates by constructing a multitude of decision trees at training time. Random forests are an ensemble learning method for classification (and regression) that operate by constructing a multitude of decision trees at training time and outputting the class that is the mode of the classes output by individual trees. The algorithm for inducing a random forest was developed by Leo Breiman and Adele Cutler.

It is called 'Random' Forest as it is using two random processes: bootstrapping and random feature selection. Bootstrapping ensures that we are not using the same data for every tree, so it helps the model to be less sensitive to our training data. The

[^7]random feature selection helps to reduce the correlation between the trees (if we use every feature, then the decision trees will have the same decision nodes and they will act very similarly, which will increase the variance). ${ }^{19}$

1.3.14 Random Tree

Random trees can support both classification and regression problems. A Random tree is a decision tree learner. Random Tree considers K randomly chosen attributes at each node and performs no pruning. It has also an option to allow estimation of class probabilities (or target mean in the regression case) based on a hold-out set (back fitting). ${ }^{20}$

1.3.15 RepTree

Rep trees can support both classification and regression problems. Rep Tree is a fast decision tree learner. It builds a decision/regression tree using information gain/variance and prunes it using reduced-error pruning (with back fitting). Rep Tree only sorts values for numeric attributes once. Missing values are dealt with by splitting the corresponding instances into pieces (i.e. as in C4.5). ${ }^{21}$

1.3.16 Meta Additive Regression

Meta Additive Classifier enhances the performance of a regression base classifier. Each iteration fits a model to the residuals left by the classifier on the previous iteration. Prediction is accomplished by adding the predictions of each classifier. Reducing the shrinkage (learning rate) parameter helps prevent overfitting and has a smoothing effect but increases the learning time. ${ }^{22}$

1.3.17 Meta Regression By Discretization

This is a regression scheme that employs any classifier on a copy of the data that has the class attribute (equal-width) discretized. The predicted value is the expected value of the mean class value for each discretized interval (based on the predicted probabilities for each interval). ${ }^{23}$

[^8]
1.3.18 Meta Randomizable Filtered Classifier

Meta Randomizable Filtered Classifier runs an arbitrary classifier on data that has been passed through an arbitrary filter. Like the classifier, the structure of the filter is based exclusively on the training data and test instances will be processed by the filter without changing their structure. ${ }^{24}$

1.3.19 Meta Vote

Occasionally meta-analyses use 'vote counting' to compare the number of positive studies with the number of negative studies. Vote counting might be considered as a last resort in situations when standard meta-analytical methods cannot be applied (such as when there is no consistent outcome measure). ${ }^{25}$

1.3.20 Meta Stacking

Meta Stacking combines several classifiers using the stacking method and can do classification or regression. ${ }^{26}$

1.3.21 Meta Instances Handler Wrapper

This is a generic wrapper around any classifier to enable weighted instances support. and uses resampling with weights if the base classifier is not implementing the weka core. By default, the training data is passed through to the base classifier if it can handle instance weights. However, it is possible to force the use of resampling with weights as well. ${ }^{27}$

1.3.22 Meta Random Sub Space

This method constructs a decision tree based classifier that maintains highest accuracy on training data and improves on generalization accuracy as it grows in complexity. The classifier consists of multiple trees constructed systematically by pseudorandomly selecting subsets of components of the feature vector, that is, trees constructed in randomly chosen subspaces. ${ }^{28}$

[^9]
1.3.23 Meta CV Parameter Selection

Meta CV Parameter Selection performs parameter selection by cross-validation for any classifier. ${ }^{29}$

1.3.24 Meta Bagging

Meta Bagging is a classifier that reduces variance and can do classification and regression depending on the base learner. ${ }^{30}$

1.3.25 Meta Multischeme

Meta Multischeme classifier uses cross validation on the training data or the performance on the training data. The performance is measured based on percent correct (classification) or mean-squared error (regression). ${ }^{31}$

1.3.26 Meta Random Committee

Meta Random Committee builds an ensemble of randomizable base classifiers. Each base classifier is built using a different random number seed (but based on the same data). The final prediction is a straight average of the predictions generated by the individual base classifiers. ${ }^{32}$

1.3.27 Misc Input Mapped Classifier

This is a wrapper classifier that addresses incompatible training and test data by building a mapping between the training data that a classifier has been built with and the incoming test instances' structure. ${ }^{33}$

1.4 Classification

According
to[23]

Classification is a data mining task that maps the data into predefined groups and classes. It is also called as supervised learning. It consists of two steps:

1. Model construction: It consists of set of predetermined classes. Each tuple is assumed to belong to a predefined class. The set of tuples used for model

[^10]construction, is training set. The model is represented as classification rules, decision trees, or mathematical formulas.
2. Model usage: This model is used for classifying future or unknown objects. The known label of test sample is compared with the classified result from the model. Accuracy rate is the percentage of test set samples that are correctly classified by the model. Test set is independent of training set, otherwise overfitting will occur.

Figure 2: Classification ${ }^{34}$

Classification algorithms can be better understood using the above diagram. In the diagram, there are two classes, class A and class B. Each class has features that are similar to each other and dissimilar to other classes.

Classification algorithms are also Supervised Learning algorithms that are used for prediction in Machine learning and they work with the labeled datasets. Unlike regression, classification algorithms are used to predict or classify the discrete values/ class labels such as Male or Female, True or False, Spam or Not Spam, etc. Classification is a process of finding a function which helps in dividing the dataset into classes based on different parameters. In Classification, a computer program is trained on the training dataset and based on that training, it categorizes the data into

[^11]different classes. The algorithms in classification, are used with discrete data and the output variable must be a discrete value. ${ }^{35}$

A common way to estimate Classification predictions is to calculate accuracy. The classification accuracy is the percentage of correctly classified examples out of all predictions made. For example, if a classification predictive model made 5 predictions and 3 of them were correct and 2 of them were incorrect, then the classification accuracy of the model based on just these predictions would be: ${ }^{36}$
accuracy $=$ correct predictions $/$ total predictions * $100 \Rightarrow$
accuracy $=3 / 5 * 100 \Rightarrow$
accuracy $=60 \%$
For nominal/discrete values, WEKA's classification models detect Correctly Classified Instances, Incorrectly Classified Instances, Kappa statistic, Mean absolute error, Root mean squared error, Relative absolute error, Root relative squared error, Total Number of Instances, TP Rate, FP Rate, Precision, Recall, F-Measure.

- Correctly Classified Instances depict how many relevant instances were predicted correctly as true
- Incorrectly Classified Instances depict how many irrelevant instances were falsely predicted as true.
- Kappa statistic is a chance-corrected measure of agreement between the classifications and the true classes. Specifically, K statistic is a value which estimates how well the model will perform, considering the chance that you randomly guessed correctly, without having any knowledge. It is calculated by taking the agreement expected by chance away from the observed agreement and dividing by the maximum possible agreement. A zero value equals to random guessing, but a value greater than zero means that your classifier is doing better than chance. The further the value above zero, the better it performs.

[^12]$$
\mathrm{K} \text { statistic }=\frac{\mathrm{P}(\mathrm{~A})-\mathrm{P}(\mathrm{E})}{1-P(E)} \text { (Source: Kinge \& Gaikwad, (2018). [13]) }
$$

$\mathrm{P}(\mathrm{A})$: Agreement percentage, $\mathrm{P}(\mathrm{E})$: Agreement chances.

If $\mathrm{K}=1$, Agreement is in tolerable range

- Mean absolute error is the average distance the models' predictions are from the actual data points. Absolute in the title indicates that predictions below data points ate not treated as negative distances.

$$
\text { MAE }=\frac{\sum_{i=1}^{n} \text { Actual-Forecast } i}{n} \text { (Source: Kinge \& Gaikwad, (2018). [13]) }
$$

- Root mean squared error is another way of calculating the mean absolute error. It follows an assumption that error are unbiased and follow a normal distribution.

$$
\text { RMS }=\sqrt{\frac{\sum_{i=1}^{n} e_{i}^{2}}{n}} \text { (Source: Kinge \& Gaikwad, (2018). [13]) }
$$

- Relative absolute error and root relative squared error scale the error to the mean. This enables the comparison between models constructed with larger/smaller valued data.
- Total number of instances is the number of data points in the data set.
- True Positive (TP) Rate: rate of true positives (instances correctly classified as positive)
- False Positive (FP) Rate: rate of false positives (instances incorrectly classified as positive)
- True Negative (TN) Rate: rate of true negatives (instances correctly classified as negative)
- False Negative (FN) Rate: rate of false negatives (instances that were incorrectly classified as negative)
- Precision: proportion of instances that are truly of a class divided by the total instances classified as that class.

$$
\text { Precision }=\frac{T P}{P}=\frac{T P}{T P+F P}(\text { Source: Kinge \& Gaikwad, (2018). [13]) }
$$

- Recall: proportion of instances classified as a given class divided by the actual total in that class (equivalent to TP rate).

$$
\text { Recall }=\frac{\mathrm{TP}}{\mathrm{~T}}=\frac{\mathrm{TP}}{\mathrm{TP}+\mathrm{FN}} \text { (Source: Kinge \& Gaikwad, (2018). [13]) }
$$

- F-Measure: A combined measure for precision and recall calculated as:

F-Measure $=\frac{2 * \text { Precision } * \text { Recall }}{(\text { Precision }+ \text { Recall })}$ (Source: Kinge \& Gaikwad, (2018). [13])

- Accuracy: The ability of the model to correctly predict the class label of new or previously unseen data.

Accuracy $=\frac{\mathrm{N}}{\mathrm{T}}=\frac{\mathrm{TP}+T N}{\mathrm{TP}+T N+F P+\mathrm{FN}}$ (Source: Kinge \& Gaikwad, (2018). [13])

Precision, Recall, F-Measure and ROC Area give a really good picture of how well things are performing. ${ }^{37}$

[^13]

Figure 3: Interpretation of Precision and Recall ${ }^{38}$

As mentioned above, the percentage of correctly classified instances is often called accuracy or sample accuracy. It does have some disadvantages as a performance estimate, so someone can look at some of the other numbers such as ROC Area.

ROC Area (Receiver Operating Characteristic-Area Under the Curve) shows us which items are correctly put in their classes (For example, if you had one item from each class, what percentage of the time are you going to correctly put them in their classes). An "optimal" classifier will have ROC area values approaching 1, with 0.5 being comparable to "random guessing" (similar to a Kappa statistic of 0). A value above 0.8 is considered a strong and accurate result. ROC uses True Positives and False Positive Rates as the axes that we are looking out, to draw a curve.

[^14]PRC (Precision on Recall): Works better for unbalanced data. ROC tends to be in general a better choice, because PRC do not really count the true positives.

Kappa is a chance-corrected measure of agreement between the classifications and the true classes. K switches on kernel density estimation numerical attributes which often improves performance. It is calculated by taking the agreement expected by chance away from the observed agreement and dividing by the maximum possible agreement. A value greater than zero, means that your classifier is doing better than chance.

The error rates are used for numeric prediction rather than classification. In numeric prediction, predictions are not just right or wrong, the error has a magnitude, and these measures reflect that.

The Confusion Matrix is another way of detecting how well a model is doing.

Confusion Matrix

a b <-- classified as
aa ba| a $=0$
$\mathrm{ab} \mathrm{bb} \mid \mathrm{b}=1$
The correctly and incorrectly classified instances show the percentage of test instances that were correctly and incorrectly classified. The raw numbers are shown in the confusion matrix, with a and b representing the class labels.

For instance:
a b <-- classified as
50 5| $\mathrm{a}=0$
27 13| $\mathrm{b}=1$
$a a=50, b a=5, a b=27, b b=13$.

- 50 elements of class a are classified as class a
- 5 elements of class a were incorrectly classified as class b
- 13 elements of class b were correctly classified as class b
- 27 elements of class b were incorrectly classified as class a

Assuming that we have 100 instances, we can detect that 50 out of 55 a's were predicted correctly (TP Rate) and 13 out of 40 b's were predicted correctly (TP Rate).

The percentages and raw numbers add up, so that we have $\mathrm{aa}+\mathrm{bb}=50+13=$ $63, \mathrm{ab}+\mathrm{ba}=27+5=32$.

According to Kalmegh, (2018) [3], classification may refer to categorization and the process in which ideas and objects are recognized, differentiated, and understood. An algorithm that implements classification is known as a classifier. Classification is an important technique with broad applications. It classifies data of various kinds.

Classification Algorithms can be divided into these two categories ${ }^{39}$:

- Indicative Linear Models
- Logistic Regression
- SMO Reg
- Indicative Non-linear Models
- Naïve Bayes
- Random Forest
- Random Tree

Classifiers can be also divided into these two categories:

- Binary classifiers: They work with only two classes or possible outcomes (example: positive or negative sentiment; whether a customer will want a retirement estimation or not),
- Multiclass classifiers: They work with multiple classes (ex: whether an image is a cat, dog or a rabbit). Multiclass assumes that each sample is assigned to one and only one label.

[^15]
Multi-class vs. Binary classification

- Multi-class:
- classes mutually exclusive:
- instance is either a or b or c
- even if it's an outlier
- NB, kNN, DT, logistic
- Binary:
- one-vs-rest:
- \{a\} vs \{not a\}, \{b\} vs \{not b\}
- classes may overlap
- instance can be both a and b
- can be in none of the classes
- SVM, logistic, perceptron

Figure 4: Binary and Multi-class Classifiers ${ }^{40}$

Seven Types of Classifiers:

1. Functions (SMO, Multilayer Perceptron, Logistic, Voted Perception)
2. Bayes (Bayes Net, Naive Bayes, Naive Bayes Multinomial Text)
3. Lazy (K Star, LWL, IBk)
4. Meta (Bagging, Randomizable Filtered Classifier, Stacking, Vote, Multi Class Classifier, Multiclass Classifier Updateable, Instances Handler Wrapper, Random SubSpace, CV Parameter Selection, Multi Scheme, Random Committee)
5. Misc (Input Mapped Classifier)
6. Rules (Decision Table, One R, J Rip, Part, Zero R)
7. Trees (J48, Decision Stump, Random Forest, Random Tree, RepTree, Hoeffding Tree, LMT)

1.4.1 SMO

SMO implements John Platt's sequential minimal optimization algorithm for training a support vector classifier.

[^16]This implementation globally replaces all missing values and transforms nominal attributes into binary ones. It also normalizes all attributes by default. (In that case the coefficients in the output are based on the normalized data, not the original data --this is important for interpreting the classifier). Multi-class problems are solved using pairwise classification (1-vs-1). To obtain proper probability estimates, use the option that fits calibration models to the outputs of the support vector machine. In the multiclass case, the predicted probabilities are coupled using Hastie and Tibshirani's pairwise coupling method. ${ }^{41}$

1.4.2 Multilayer Perceptron

This is a classifier that uses backpropagation to learn a multi-layer perceptron to classify instances. The network can be built by hand or set up using a simple heuristic. The network parameters can also be monitored and modified during training time. The nodes in this network are all sigmoid, except for when the class is numeric, in which case the output nodes become unthresholded linear units. ${ }^{42}$

1.4.3 Logistic

The logistic classification model (or logit model) is a binary classification model in which the conditional probability of one of the two possible realizations of the output variable is assumed to be equal to a linear combination of the input variables, transformed by the logistic function. ${ }^{43}$

Logistic class is for building and using a multinomial logistic regression model with a ridge estimator. There are some modifications, however, compared to the paper of leCessie and van Houwelingen (1992): If there are k classes for n instances with m attributes, the parameter matrix B to be calculated will be an $m *(k-1)$ matrix.

The probability for class j with the exception of the last class is:
$\operatorname{Pj}(\mathrm{Xi})=\exp (\mathrm{XiBj}) /\left(\left(\operatorname{sum}[\mathrm{j}=1 . .(\mathrm{k}-1)] \exp \left(\mathrm{Xi}{ }^{*} \mathrm{Bj}\right)\right)+1\right)$

The last class has probability:
1-(sum[j=1..(k-1)]Pj(Xi))

[^17]$=1 /((\operatorname{sum}[\mathrm{j}=1 . .(\mathrm{k}-1)] \exp (\mathrm{Xi} * \mathrm{Bj}))+1)$

The (negative) multinomial log-likelihood is thus:
$\mathrm{L}=-\operatorname{sum}[\mathrm{i}=1 . . \mathrm{n}]\{\operatorname{sum}[\mathrm{j}=1 . .(\mathrm{k}-1)](\mathrm{Yij} * \ln (\mathrm{Pj}(\mathrm{Xi})))+(1-(\operatorname{sum}[\mathrm{j}=1 . .(\mathrm{k}-1)] \mathrm{Yij})) * \ln (1-$ $\operatorname{sum}[\mathrm{j}=1 . .(\mathrm{k}-1)] \mathrm{Pj}(\mathrm{Xi}))\}+\operatorname{ridge} *\left(\mathrm{~B}^{\wedge} 2\right)$

In order to find the matrix B for which L is minimized, a Quasi-Newton Method is used to search for the optimized values of the $\mathrm{m}^{*}(\mathrm{k}-1)$ variables. Note that before we use the optimization procedure, we 'squeeze' the matrix B into a $\mathrm{m}^{*}(\mathrm{k}-1)$ vector.

Although original Logistic Regression does not deal with instance weights, we modify the algorithm a little bit to handle the instance weights. ${ }^{44}$

1.4.4 SGD

A simple yet efficient optimization algorithm, used to find the values of parameters/coefficients of functions that minimize a cost function. In other words, it is used for discriminative learning of linear classifiers under convex loss functions such as SVM and Logistic regression. SGD has been successfully applied to large-scale datasets because the update to the coefficients is performed for each training instance, rather than at the end of instances. ${ }^{45}$

1.4.5 SGD Text

SDG Text implements stochastic gradient descent for learning various linear models (binary class SVM, binary class logistic regression, squared loss, Huber loss and epsilon-insensitive loss linear regression). SGD Text Globally replaces all missing values and transforms nominal attributes into binary ones. It also normalizes all attributes, so the coefficients in the output are based on the normalized data. For numeric class attributes, the squared, Huber or epsilon-insensitive loss function must be used. Epsilon-insensitive and Huber loss may require a much higher learning rate. ${ }^{46}$

[^18]
1.4.6 Voted Perceptron

Voted Perceptron implements the voted perceptron algorithm. The classifier replaces all missing values and transforms nominal attributes into binary ones. ${ }^{47}$

1.4.7 Naive Bayes

The Naive Bayes algorithm is based on conditional probabilities (Vijayarani, et. al., (2013) [5].

Before moving to Naive Bayes' explanation, it is important to know about Bayes' theorem.
"Bayes' Theorem finds the probability of an event occurring given the probability of another event that has already occurred" Vijayarani, et. al., (2013) [5].

Bayes' theorem is stated mathematically as the following equation:

$$
\begin{gathered}
\operatorname{Pr}(\mathrm{A} \mid \mathrm{B})=\frac{\operatorname{Pr}(\mathrm{A} \cap \mathrm{~B})}{\operatorname{Pr}(B)}=\frac{\operatorname{Pr}(\mathrm{B} \mid \mathrm{A}) \operatorname{Pr}(\mathrm{A})}{\operatorname{Pr}(B)}= \\
\{\operatorname{Pr}(A \cap B)=\operatorname{Pr}(A) * \operatorname{Pr}(B \mid A)=\operatorname{Pr}(B) * \operatorname{Pr}(A \mid B)\} \\
\text { where } \mathrm{A} \text { and } \mathrm{B} \text { are events and } \mathrm{P}(\mathrm{~B}) \neq 0 .
\end{gathered}
$$

Basically, we are trying to find probability of event A, given the event B is true. Event B is also termed as evidence. $\mathrm{P}(\mathrm{A})$ is the priori of A (Probability of event before evidence is seen). The evidence is an attribute value of an unknown instance (here, it is event B$). \mathrm{P}(\mathrm{A} \mid \mathrm{B})$ is a posteriori probability of B (Probability of event after evidence is seen).

So, in a certain dataset:

$$
\operatorname{Pr}(\mathrm{y} \mid \mathrm{X})=\frac{\operatorname{Pr}(\mathrm{y} \cap \mathrm{x})}{\operatorname{Pr}(X)}=\frac{\operatorname{Pr}(\mathrm{X} \mid \mathrm{y}) \operatorname{Pr}(\mathrm{y})}{\operatorname{Pr}(X)}=
$$

y is class variable and X is a dependent feature vector (of size n) where:
$\mathrm{X}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \ldots . . \mathrm{x}_{\mathrm{n}}\right)$.
According to Vijayarani, et. al., (2013) [5]:
Naive Bayes uses the normal distribution to model numeric attributes and assumes

[^19]independence of variables. Naive Bayes can use kernel density estimators, which develop performance if the normality assumption if grossly correct; it can also handle numeric attributes using supervised discretization. Naive Bayes Updateable is an incremental version that processes one request at a time. It can use a kernel estimator but not discretization.

According to Al-Hyari, et al., (2013) [6], "Naive Bayes classifier is one of the efficient and highly scalable inductive learning algorithms which is trained in a supervised learning strategy".

All naive Bayes classifiers assume that the value of a particular feature is independent of the value of any other feature, given the class variable. For example, a fruit may be considered to be an apple if it has certain characteristics. A naive Bayes classifier considers each of these characteristics to contribute independently to the probability that this fruit is an apple, regardless of any possible correlations between the characteristics. ${ }^{48}$

In many practical applications, parameter estimation for naive Bayes models uses the method of maximum likelihood. In other words, one can work with the naive Bayes model without accepting Bayesian Probability or using any Bayesian methods.

Below is an example for a naive Bayes classifier, using 10-fold cross-validation.
$==$ Summary $==$

Correctly Classified Instances	71	71	$\%$
Incorrectly Classified Instances	29	29	$\%$
Kappa statistic	0.3108		
Mean absolute error	0.3333		
Root mean squared error	0.4662		
Relative absolute error	69.9453%		
Root relative squared error	95.5466%		
Total Number of Instances	100		

=== Detailed Accuracy By Class ===

[^20]| | TP Rate | FP Rate | Precision | Recall | F-
 Measure | ROC
 Area | Class |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 0.967 | 0.692 | 0.686 | 0.967 | 0.803 | 0.709 | 0 |
| | 0.308 | 0.033 | 0.857 | 0.308 | 0.453 | 0.708 | 1 |
| W.A | 0.71 | 0.435 | 0.753 | 0.71 | 0.666 | 0.709 | |

Table 1: Detailed Accuracy by Class- An example
*W.A: Weighted Average
=== Confusion Matrix ===
a b <-- classified as
$592 \mid \mathrm{a}=0$
$2712 \mid \mathrm{b}=1$

The correctly and incorrectly classified instances show the percentage of test instances that were correctly and incorrectly classified. The raw numbers are shown in the confusion matrix, with a and b representing the class labels. Here there were 100 instances, so the percentages and raw numbers add up, $\mathrm{aa}+\mathrm{bb}=59+12=$ $71, \mathrm{ab}+\mathrm{ba}=27+2=29$. It also means that 59 out of 61 a 's were predicted correctly (TP Rate) and 12 out of 39 b's were predicted correctly (TN Rate).

1.4.8 Bayes Net

A Bayesian network (also known as a Bayes network, Bayes net, belief network, or decision network), is a probabilistic graphical model that represents a set of variables and their conditional dependencies via a directed acyclic graph (DAG). Bayesian networks are ideal for taking an event that occurred and predicting the likelihood that any one of several possible known causes was the contributing factor. For example, a Bayesian network could represent the probabilistic relationships between diseases and symptoms. Given symptoms, the network can be used to compute the probabilities of the presence of various diseases. ${ }^{49}$

The classifier assumes strong (Naive) independence assumptions and is based on Bayes' Theorem. A more descriptive term for the underlying probability model would be "independent feature model". In simple terms, a naive Bayes classifier assumes

[^21]that the presence (or absence) of a particular feature of a class is unrelated to the presence (or absence) of any other feature. ${ }^{50}$

Bayes Net classifier usually provides better attribute results than Naïve Bayes classifier.

1.4.9 Nä̈ve Bayes Multinomial Text

The Multinomial naive bayes for text data, operates directly on String attributes. Other types of input attributes are accepted but ignored during training and classification. ${ }^{51}$

1.4.10 Lazy K Star

According to Sharma and Jain (2013) [8]: K-Star algorithm can be defined as a method of cluster analysis which mainly aims at the partition of " n " observation into " k " clusters in which each observation belongs to the cluster with the nearest mean. We can describe K-Star algorithm as an instance-based learner which uses entropy as a distance measure. The benefits are that it provides a consistent approach to handling of real valued attributes, symbolic attributes and missing values.
"K- Star is a simple, instance-based classifier, similar to K-Nearest Neighbour (KNN)" (Vijayarani and Muthulakshimi (2013) [5]).

K-Star can be guided using heuristic functions. ${ }^{52}$

1.4.11 Lazy IBk

This is a K-nearest neighbor's (KNN) classifier which attempts to predict the correct class for the test data by calculating the distance between the test data and all the training points. Then, it selects the K number of points, which are closest to the test data. ${ }^{53}$ The K-Nearest Neighbours (KNN) algorithm is one of the simplest supervised machine learning algorithms that is used to solve both classification and regression problems. KNN is also known as an instance-based model or a lazy learner because it

[^22]doesn't construct an internal model. For classification problems, it will find the k nearest neighbors and predict the class by the majority vote of the nearest neighbors. ${ }^{54}$ Usually, it is observed that the lazy IBK classifier provides better results than those of lazy K Star classifier.

1.4.12 Meta Multi Class Classifier

In machine learning, multiclass or multinomial classification is the problem of classifying instances into one of three or more classes (classifying instances into one of two classes is called binary classification). While many classification algorithms (i.e multinomial logistic regression) naturally permit the use of more than two classes, some are by nature binary algorithms; these can, however, be turned into multinomial classifiers by a variety of strategies. ${ }^{55}$

According to Witten, et al., (1999) [10], "Meta Multi Class Classifier transforms the multiclass problem into several two-class ones and combine the results".

Each training point belongs to one of the n different classes. The goal is to construct a function which, given a new data point, will correctly predict the class to which the new point belongs. ${ }^{56}$

1.4.13 Meta Multi Class Classifier Updateable

This is a meta classifier for handling multi-class datasets with 2-class classifiers and it has more than two outcomes. This classifier is also capable of applying error correcting output codes for increased accuracy. The base classifier must be an updateable classifier. ${ }^{57}$

1.4.14 Meta Randomizable Filtered Classifier

Meta Randomizable Filtered Classifier runs an arbitrary classifier on data that has been passed through an arbitrary filter. Like the classifier, the structure of the filter is based exclusively on the training data and test instances will be processed by the filter without changing their structure. ${ }^{58}$

[^23]
1.4.15 Meta Vote

Occasionally meta-analyses use 'vote counting' to compare the number of positive studies with the number of negative studies. Vote counting might be considered as a last resort in situations when standard meta-analytical methods cannot be applied (such as when there is no consistent outcome measure). ${ }^{59}$

1.4.16 Meta Stacking

Combines several classifiers using the stacking method and can do classification or regression. ${ }^{60}$

1.4.17 Meta Instances Handler Wrapper

This is a generic wrapper around any classifier to enable weighted instances support. and uses resampling with weights if the base classifier is not implementing the weka core. By default, the training data is passed through to the base classifier if it can handle instance weights. However, it is possible to force the use of resampling with weights as well. ${ }^{61}$

1.4.18 Meta Random Sub Space

This method constructs a decision tree based classifier that maintains highest accuracy on training data and improves on generalization accuracy as it grows in complexity. The classifier consists of multiple trees constructed systematically by pseudorandomly selecting subsets of components of the feature vector, that is, trees constructed in randomly chosen subspaces. ${ }^{62}$

1.4.19 Meta CV Parameter Selection

Meta CV Parameter Selection performs parameter selection by cross-validation for any classifier. ${ }^{63}$

1.4.20 Meta Bagging

Meta Bagging is a classifier that reduces variance and can do classification and regression depending on the base learner. ${ }^{64}$

[^24]
1.4.21 Meta Multischeme

Meta Multischeme classifier uses cross validation on the training data or the performance on the training data. Performance is measured based on percent correct (classification) or mean-squared error (regression). ${ }^{65}$

1.4.22 Meta Random Committee

Meta Random Committee builds an ensemble of randomizable base classifiers. Each base classifier is built using a different random number seed (but based one the same data). The final prediction is a straight average of the predictions generated by the individual base classifiers. ${ }^{66}$

1.4.23 Misc Input Mapped Classifier

This is a wrapper classifier that addresses incompatible training and test data by building a mapping between the training data that a classifier has been built with and the incoming test instances' structure. ${ }^{67}$

1.4.24 JRip

This implements a propositional rule learner, Repeated Incremental Pruning to Produce Error Reduction (RIPPER), which was proposed by William W. Cohen as an optimized version of IREP. ${ }^{68}$

1.4.25 Zero R

Zero R predicts the mean (for a numeric class) or the mode (for a nominal class). ${ }^{69}$

1.4.26 One R Rules

One R is a rule learner that uses the minimum-error attribute for prediction, discretizing numeric attributes. ${ }^{70}$

1.4.27 Rules Part

This is a Rule learner that uses separate-and-conquer method. Builds a partial C4.5 decision tree in each iteration and makes the "best" leaf into a rule. ${ }^{71}$

[^25]
1.4.28 Decision Table

According
Decision Table is an accurate method for numeric prediction from decision trees and it is an ordered set of If-Then rules that have the potential to be more compact and therefore more understandable than the decision trees. Selection to explore decision tables because it is a simpler, less compute intensive algorithm than the decision-treebased approach.

1.4.29 Random Forest

According to E. Kleinberg (n.d) [31]: Random forests or random decision forests are an ensemble learning method for classification, regression and other tasks that operates by constructing a multitude of decision trees at training time. Random forests are an ensemble learning method for classification (and regression) that operate by constructing a multitude of decision trees at training time and outputting the class that is the mode of the classes output by individual trees. The algorithm for inducing a random forest was developed by Leo Breiman and Adele Cutler.

As Kinge and Gaikwad indicate in their survey [13]: Random Forest builds a randomized decision tree in each iteration of the algorithm and often produces excellent predictors. Every subtree gives a classification and provides the tree votes for that class.

It is called 'Random' Forest as it is using two random processes: bootstrapping and random feature selection. Bootstrapping ensures that we are not using the same data for every tree, so it helps the model to be less sensitive to our training data. The random feature selection helps to reduce the correlation between the trees (if we use every feature, then the decision trees will have the same decision nodes and they will act very similarly, which will increase the variance). ${ }^{72}$

1.4.30 J48 Tree

According to Vaithiyanathan, et al., (2014) [15]: J48 Tree is an optimized implementation of the C4.5 or improved version of the C4.5. J48 Tree is a decision tree learner. The output given by J48 is the Decision tree. A Decision tree is same as that of the tree structure having different nodes, such as root node, intermediate nodes and leaf node. Each node in the tree contains a decision and

[^26]that decision leads to our result as name is decision tree. Decision tree divide the input space of a data set into mutually exclusive areas, where each area having a label, a value or an action to describe or elaborate its data points. Splitting criterion is used in decision tree to calculate which attribute is the best to split that portion tree of the training data that reaches a particular node.

1.4.31 Decision Stump Tree

Decision Stump is a decision tree learner. According to Witten, et al., (1999) [10]: Decision Stump builds simple binary decision "stumps" (one-level decision trees) for both numeric and nominal classification problems. It copes with missing values by extending a third branch from the stump- in other words by treating "missing" as a separate attribute value.

1.4.32 Random Tree

Random tree is a decision tree learner. Random Tree considers K randomly chosen attributes at each node and performs no pruning. It has also an option to allow estimation of class probabilities (or target mean in the regression case) based on a hold-out set (backfitting). ${ }^{73}$

1.4.33 RepTree

Rep Tree is a fast decision tree learner. It builds a decision/regression tree using information gain/variance and prunes it using reduced-error pruning (with back fitting). Rep Tree only sorts values for numeric attributes once. Missing values are dealt with by splitting the corresponding instances into pieces (i.e. as in C4.5). ${ }^{74}$

1.4.34 Hoeffding Tree

A Hoeffding tree (VFDT) is an incremental, anytime decision tree induction algorithm that is capable of learning from massive data streams, assuming that the distribution generating examples does not change over time. Hoeffding trees exploit the fact that a small sample can often be enough to choose an optimal splitting attribute. This idea is supported mathematically by the Hoeffding bound, which quantifies the number of observations (in our case, examples) needed to estimate some statistics within a prescribed precision (in our case, the goodness of an attribute). A theoretically

[^27]appealing feature of Hoeffding Trees not shared by other incremental decision tree learners is that it has sound guarantees of performance. Using the Hoeffding bound one can show that its output is asymptotically nearly identical to that of a nonincremental learner using infinitely many examples.

1.4.35 Tree LMT

Classifier for building 'logistic model trees', which are classification trees with logistic regression functions at the leaves. The algorithm can deal with binary and multi-class target variables, numeric and nominal attributes and missing values. ${ }^{75}$

Linear/Logistic Regression Models, Rules’ Models and Decision Tree Models are interpretable and can be easily comprehended by a human, by looking only at the model summary/ parameters, without any techniques. Interpretable models provide their own explanation. On the other hand, Voted Perceptron model, SMO Reg model and Random Forest are not interpretable and are quite difficult to be comprehended or explained by just looking at the model/summary, as they are more complicated (as their algorithms are separated into levels). For that reason, additional techniques/tools are required in order to understand the predictions made from the algorithms.

The classifiers in WEKA are designed to be trained to predict a single 'class' attribute, which is the target for prediction. Some classifiers can only learn nominal classes, others can only learn numeric classes and others can learn both. By default, the class is taken to be the last attribute in the data.

1.5 Clustering

Clustering is a method og grouping similar things together and is considered one of the most important unsupervised learning techniques as it does not need labeling. According to Alam, (2016) [30]: Clustering is an unsupervised learning problem and collection of objects in such a way that similar objects in the same group and dissimilar objects are in other groups.

[^28]In other words, we can say that clustering is a process of portioning a data set into a set of meaningful subclasses, known as clusters. Clustering is the same as classification in which data is grouped. ${ }^{76}$

Though, unlike classification, clustering does not seek rules that predict a particular class, but rather try to divide the data into groups/clusters, that are not previously defined, by determining similarities between data according to characteristics found in the real data.

Figure 5: Clustering ${ }^{77}$

Eight Different Types of Clustering Algorithms in Weka Tool:

1.5.1 Simple K-Means

Let us explain how Simple K-Means clusterer works in a given dataset:

[^29]

Figure 6: Pointed Data

The technique begins by randomly sprinkling some labels throughout our data (let us assume we have pink cluster and blue cluster. After labelling the data, Simple KMeans computes the centroids.

Figure 7: Data Labeling

Next, Simple K-Means randomly selects the cluster centroids, which might be close with each other.

Figure 8: Finding Cluster Centroids

Now, let us forger about the previous data labeling.

Figure 9: Centroids with no data labeling

Now, each point gets a label from the nearest centroid. For those points that are near both centroids, the machine finds the best answer. Euclidian distance is the most common way to calculate the distance of a pair of objects and it examines the root of square differences between coordinates.

Figure 10: Clustering

Next, Simple K-Means re-computes the centers. Now the centroids should be far apart:

Figure 11: Recomputing the centers

Again, the clusterer forgets about the labels:

Figure 12: Centroids with no data labeling

Now, each point gets a label from the closest centroid.

Figure 13: Clustering

Simple K-Means repeats the same procedure, until the cluster labels stop changing.
Nothing changes the next round, so the final clusters are these two:

Figure 14: Final Clusters

Let us assume that a point that is equally distanced between the two centroids. After several rounds of flipping from the one cluster to the other, it finally stops and gives us one final answer (about the cluster chosen).

Something that should be pointed out is that we usually get different results from clustering each time. ${ }^{78}$

So, Simple K-Means is a distant-based clusterer that minimizes the squared distance from each instance to their cluster center, after defining k centroids. It is one of the best unsupervised algorithms. For each different number of seeds, there is different clustering results. ${ }^{79} 80$

K in K -means stands for the number of clusters we want to create.
"This technique is iterated till there is no change in gravity centers" ([21]) [21].

1.5.2 EM

"EM (Expectation Maximization) is a probabilistic clusterer and can be used for unsupervised learning. Like Naive Bayes, it makes the assumption that all attributes are independent random variables." (Witten I.H., et al., (1999)) [10].

[^30]EM assigns a probability distribution to each instance which indicates the probability of it belonging to each of the clusters. EM can decide how many clusters to create by cross validation, or you may specify apriori how many clusters to generate. ${ }^{81}$

Let us assume we want two clusters a and b respectively.
EM starts by placing the Gaussians $\left(\mu_{\mathrm{a}}, \sigma_{\mathrm{a}}{ }^{2}\right),\left(\mu_{\mathrm{b}}, \sigma_{\mathrm{b}}{ }^{2}\right)$ randomly on space somewhere. Then, for each point $\mathrm{P}\left(\mathrm{b} \mid \mathrm{x}_{\mathrm{i}}\right)$ it asks: is it more likely that the point belongs to the group/cluster a or b? ${ }^{82}$

Unlike K-Means that takes one point and places it to the one cluster or the other, EM computes the probability that it goes into a or b cluster. This probability never gets zero or one, it is always a number between zero and one ($0<$ probability EM<1).

Once it has computed the probability that it came from a or b cluster, EM uses Gaussian numbers $\left(\mu_{\mathrm{a}}, \sigma_{\mathrm{a}}^{2}\right),\left(\mu_{\mathrm{b}}, \sigma_{\mathrm{b}}{ }^{2}\right)$, to re-estimate the means and the variances to fit the points assigned to them. Repeating, the clusters are continuing to separate and we can see very different groups of data. This procedure iterates until convergence. ${ }^{83}$

The model just finds that there are distinguished groups in the dataset that behave differently.

EM works for both numeric and nominal attributes providing mean and standard deviation results and value probability results respectively. Log likelihood is an overall quality measure and is increased by each iteration. ${ }^{84}$

1.5.3 Hierarchical Clustering

Hierarchical Clustering is often associated with heatmaps. Hierarchical Clustering orders the rows and the columns based on similarity, in order to see the correlations in the data.

Let us see an example: ${ }^{85}$

[^31]

Figure 15: Heatmap

Hierarchical Clustering figures which rows are similar to row 1. Row1 and row 3 are quite similar as in column 1, both row 1 and row 3 are red, in column 2 both row 1 and row 3 are pink and in column 3 both row 1 and row 3 are blue. Row 1 and row 2 are also quite similar, but not as much as row 1 and row 2 .

Now hierarchical clustering figures which row is most similar to row 2. Doing all the comparisons we can detect that row 2 is most similar to row 4 .

The same procedure happens for row 3 and raw 4 .
After this, hierarchical clustering figures which of the different combinations are the most similar and then merges them into clusters.

In this case rows 1 and 3 are the most similar than any other combination. So raw 1 and raw 3 are now cluster 1 . Cluster 1 is now treated like it is a single raw.

Figure 16: Clustering

Now the model tries to figure out which raw is similar to cluster 1 . Cluster 1 is most similar to raw 4.

Finally, raw 2 is most similar to raw 4.
Of the different combinations, the model figures which two rows are the most similar and it merges them into a cluster. In our case, rows 2 and 4 are the most similar, so we merge them into a cluster.

Figure 17: Clustering

Now the clusters can be all merged together.

$$
\text { Column } 1 \text { Column } 2 \text { Column } 3
$$

Figure 18: Clustering

Column 1 Column 2 Column 3

Figure 19: Dendrogram in hierarchical clustering

Hierarchical clustering is often accompanied by a dendrogram that indicates the order that the clusters were formed and the homogeneity that they presented.

Cluster 1 was formed first, had high homogeneity and has the shortest branch.
Cluster 2 was formed second, had the second best homogeneity and has the second shortest branch.

Cluster 3 has all the rows merged together and was formed last. It also has the longest branch.

According
to[22]

Hierarchical cluster divides the clusters in a sequential manner with nested portions. It consists of the agglomerative approach and divisive approach. (i) Agglomerative: This is a "bottom-up" method, every analysis starts its individual cluster, and similar clusters integrated collectively move over the hierarchy until every data from at intervals one cluster. (ii) Divisive: This is a "top-down" approach, and this hierarchical clustering having all its objects into one cluster then split the cluster into the cluster. In its splitting process needs minimum relation for the different cluster and maximum relation in the same cluster.

1.5.4 Filtered Clusterer

This is a clusterer that has been passed through an arbitrary filter. Like the clusterer, the structure of the filter is based exclusively on the training data and test instances will be processed by the filter without changing their structure. ${ }^{86}$

According
to
[20]
[20]:
This algorithm is primarily based completely on storing the multidimensional data points within a tree. The process regarding the tree is like a binary tree method, as represents a hierarchical subdivision on its data point set's bounding box the usage of their axis after which splitting is aligned by way on hyper planes. Each node on the tree is related with a closed field, referred to as the cell.

1.5.5 Farthest First

According
to[24]
[24]:
Farthest first finds its variant of K-means. Each cluster center point furthermost from the existing cluster center is placed by the K-mean, and this point must be positioned within the data area. So that it greatly speeds up the clustering in most cases, but it needs less move and adjustment for their fast performance.

1.5.6 Cobweb

"Cobweb is an incremental system for hierarchical conceptual clustering." (Fisher, D.H. (1987)) [25] [26]. Cobweb was invented by Professor Douglas H. Fisher, currently at Vanderbilt University.
According
to
[27]:

Cobweb incrementally organizes observations into a classification tree. Each node in a classification tree represents a class (concept) and is labeled by a probabilistic concept that summarizes the attribute-value distributions of objects classified under the node. This classification tree can be used to predict missing attributes or the class of a new object.

1.5.7 Make A Density Based

This is a class for wrapping a Clusterer to make it return a distribution and density. It fits normal distributions and discrete distributions within each cluster produced by the wrapped clusterer. ${ }^{87}$

[^32]We only have two hyperparameters:

- Eps(ilon): A "neighborhood's" radius around a point x
- MinPts: The minimum number of neighbors within "eps" radius

Let us consider of a MinPts=5

Figure 20: Data points

The clusterer randomly chooses point X . This point, is not already in a cluster, so it creates a new cluster. X and is also rounded by five other points, so we call X a core point.

O

Figure 21: Corepoint X and hyperparameters

If we do the same analysis for y , we would see that it is already in cluster 1. Y is rounded by four points but one of these points is a core point. So we will call y a border point.

[^33]

Figure 22: Borderpoint Y and hyperparameters

Except for one point, all the other points already exist in cluster 1 as well.
We re-do the same procedure for z , which is not in another cluster. Z has two neighbors, but none of them is a core point. Thus, we call z a noise point.

Figure 23: Noisepoint z and hyperparameters

Thus, removing the remaining-noise points, we have 1 final cluster.

Figure 24: Final cluster

So:

- The clusterer randomly chooses the core points and then for each core point that is not already assigned to a cluster, creates a new cluster.
- The clusterer finds all its density connected points and assigns them to the same cluster as the core point.
- Then it iterates through the remaining unvisited points in the dataset.
- The core points that do not belong to any cluster are treated as outliers or noise points. ${ }^{88}$

According
to
[29]
[29]:
Density-Based Clustering refers to unsupervised learning methods that identify distinctive groups/clusters in the data, based on the idea that a cluster in a data space is a contiguous region of high point density, separated from other such clusters by contiguous regions of low point density. The data points in the separating regions of low point density are typically considered noise/outliers.

1.5.8 Canopy

According to Mai and Cheng (2016) [33]: Canopy is one of the improved K-means algorithm, can be used to determine the number of clusters. With the introduction of Canopy clustering, the data set is divided into k sub-sets by setting the radius, and the sub-sets can be selected as the initial centers of K-means. Because the Canopy algorithm can reduce the running time of the clustering by reduce the count of comparisons, it will improve the computational efficiency. The Canopy algorithm's steps as follows:

Step1: Put all data into a List, and initialize two distance radius about the loose threshold T1 and the tight threshold T2 (T1> T2).

Step2: Randomly select a point as the first initial center of the Canopy cluster, and delete this node from the List.

Step3: Get a point from the List, and calculate the distance d to each Canopy clusters. If $d<T 2$, the point belongs to this cluster; if $T 2 \leq d \leq T 1$, this point will be marked with

[^34]a weak label; If the distance d to all Canopy center is greater than T1, then the point will be a new Canopy cluster center. Finally, this point should be deleted from the List;

Step4: Run the step3 repeatedly until the list is empty, and recalculate the cluster center. But the execution efficiency of Canopy algorithm is affected by the radius about T1 and T2. When T1 is too large, it will makes one point belongs to multiple Canopy cluster, which will increase the computing time; when the $T 2$ is too large, it will reduce the clustering count. So the initial radius about T1 and $T 2$ is generally set based on the experience or experimental test, which will influence the accuracy and efficiency of classification. In order to solve the above problems, an improved Canopy-K means algorithm is proposed.

Capopy clustering algorithm can run in either batch or incremental mode. Results are generally not as good when running incrementally, as the min/max for each numeric attribute is not known in advance. ${ }^{89}$

According
to
[28]
[28]:
Canopy clustering algorithm is an unsupervised pre-clustering algorithm and it is often used as preprocessing step for the K-means algorithm or the Hierarchical clustering algorithm. It is intended to speed up clustering operations on large data sets, where using another algorithm directly may be impractical due to the size of the data set.

1.6 Association Rule Mining

According to Kaur and Madan (2015) Error! Reference source not found.: Association rule mining is one of an important technique of data mining for knowledge discovery. The knowledge of the correlation between the items in the data transaction can use association rule mining.
"It is a very famous technique for discovering correlations between variables in the huge databases" (Karthikeyan and Ravikumar, (2014) Error! Reference source not found.).

[^35]Association rule mining is a kind of supervised learning that has been mainly developed to identify the strongly associated relationships among item sets that have high-frequency and strong-correlation. Association rules enable us to detect the items that frequently occur together in an application and have correlations among a set of items. They are often expressed in the rule form showing attribute-value conditions that occur frequently together in a given set of data. An association rule in the form of $\mathrm{X} \rightarrow \mathrm{Y}$ is interpreted as 'database tuples that satisfy X are likely to satisfy Y '. Association analysis is widely used in transaction data analysis for business decision making process.

Rules can predict any attribute, or indeed any combination of attributes. To find them we need a different kind of algorithm. "Support" and "confidence" are two measures of a rule that are used to evaluate them and rank them. The most popular association rule learner, and the one used in Weka, is called Apriori.

From a given dataset with adjusted number of rules to find and adjusted minimum metric (minmetric) score/ confidence, Weka's associator model exports the best association rules/results. These results have certain confidence level, lift, leverage and conviction.

Confidence c, essentially describes the level of interrelation between two elements or sets of elements. Confidence measures the reliability of the results emerged from a rule. For a given rule, $\mathrm{X} \Rightarrow \mathrm{Y}$, the higher the confidence level, the more likely Y is to engage in transactions containing X. Confidence also provides an estimation of the conditional probability of Y given that X has already occurred. Confidence for the correlation rule $\mathrm{X} \Rightarrow \mathrm{Y}$, is calculated from the ratio of the number of transactions containing both X and Y (XUY) to the number of transactions containing the element X . It is defined by the relation:

$$
\text { Confidence }=C(X \Rightarrow Y)=\frac{\sigma(X U Y)}{\sigma X}
$$

o: support count

So, confidence is the conditional probability, that a transaction that contains a certain item X, also contains another item Y. For instance, a transaction that contains the item 'Diapers' should also contain the item 'Beer'.

According to probability theory, confidence for the correlation rule $\mathrm{X} \Rightarrow \mathrm{Y}$, is calculated as follows:

$$
\mathrm{P}(X \Rightarrow Y)=\frac{P(X U Y)}{P(Y)}
$$

Support count $(\sigma(\mathrm{X}))$ of a set of elements, is the number of times that the element X appears. That is, that the support count of an element set X , can be stated as:

$$
\sigma(X)=\left|\left\{t_{i} / X \subseteq t_{i}, t_{i} \in T\right\}\right|
$$

i : the number of elements in a set.
Lift, is another known metric that is calculated as follows:

$$
\operatorname{Lift}(X \Rightarrow Y)=\frac{c(X U Y)}{s(Y)}
$$

This metric calculates the correlation between the Rule's Confidence and the set of elements' support in the subsequent (second) part of the Rule (Y).

The Lift measures the degree and type of correlation between the elements of the rule and can be used to measure the relationship or independence of the elements of a rule. The statistical measure Lift (lift ratio) is used to assess the degree of confidence of a rule and is described as the confidence of the rule divided by the confidence, assuming the independence of the entailed from the previous one:

$$
\operatorname{Lift}(X \Rightarrow Y)=\frac{P(X, Y)}{P(X) P(Y)}
$$

So, given a rule $A \Rightarrow B$, lift is the ratio of the probability that X and Y occur together to the multiple of the two individual probabilities for X and Y . This indicates how likely is for the product Y to be purchased given that product X is purchased, while checking how popular product Y is.

If this value is 1 , then X and Y are independent. The higher this value, the more likely that the existence of X and Y together in a transaction is not just a random occurrence, but because of some relationship between them. ${ }^{90}$

Lift and Leverage measure similar things, except that leverage measures the difference between the probability of co-occurrence of X and Y as the independent probabilities of each of X and $\mathrm{Y} .{ }^{91}$

$$
\text { Leverage }(\mathrm{X} \Rightarrow Y)=P(X \cup Y)-P(X) P(Y)=P(X, Y)-P(X)-P(Y)
$$

Leverage measures the difference between the probability of co-occurrence of X and Y in the data set, compared to what would be expected if X and Y were statistically independent.

In other words, leverage measures the proportion of additional cases covered by both X and Y above those expected if X and Y were independent of each other. If the value of the leverage is zero, then X and Y are statistically independent. A leverage value greater than zero, means that X and Y are related. The higher the leverage value, the stronger the correlation between X and Y .

Thus, for leverage, values above zero are desirable, whereas for lift, we want to see values greater than $1 .{ }^{92}$

Finally, conviction is similar to lift, but it measures the effect of the right-hand-side not being true. It also inverts the ratio. So, convictions is measured as:

$$
\text { Conviction }=\frac{P(X) P(\text { not } Y)}{P(X U Y)}=\frac{P(X) P(\operatorname{not} Y)}{P(X, Y)}
$$

[^36]Thus, conviction, in contrast to lift is not symmetric (and also has no upper bound). In most cases, it is sufficient to focus on a combination of support, confidence, and either lift or leverage to quantitatively measure the "quality" of the rule. However, the real value of a rule, in terms of usefulness is subjective and depends heavily of the particular domain and business objectives. ${ }^{93}$

[^37]
Chapter 2

Use Case: Creta Palm Hotel 4*

Creta Palm is a four-starred hotel in Chania, Crete, Greece. For this use case, two datasets were collected from 2019 and 2020 respectively, concerning the booking source, the country of the booking source, whether the booking source is a Tour Operator or Online Travel Agency (TO/OTA), the month that each booking source made a booking in Creta Palm, the average daily rate (ADR) each booking source made in Creta Palm that month, the total bookings that the booking source made in Creta Palm that month, the total overnight stays (total pax nights) the booking source made in Creta Palm that month as well as the average number of people per room (average pax/room), the total overnight stays per room (total room nights), the number of overnight stays with breakfast (BB) and its percentage (BB\%), the number of overnight stays with dinner (HB) and its percentage (HB\%) and the number of "all inclusive" overnight stays (AI) and its percentage (AI\%) each booking source made in Creta Palm this certain month.

Each booking source can be shown multiple times in the same year, but in different months.

In 2019, the hotel accommodated its customers from April to October whereas in 2020, the hotel accommodated its customers from July to October due to COVID-19 pandemic.

The COVID-19 outbreak has had pernicious impacts on tourism industry worldwide, so that it is considered one of the most damaged global industries. As the COVID-19 cases and deaths increased at an exponential rate, the transportation of international tourists presented a severe decline since March 2020 due to the fear of infection from the contagious virus and the worldwide health restrictions each country had imposed. As a consequence, Creta Palm presented less total bookings than those expected under normal conditions.

A real problem that the enterprises in the tourism industry are facing is that they cannot easily make predictions, nor can they identify useful patterns and rules from a certain amount of data. This, makes them more susceptible to uncertainty and risk, as
they are not able to focus on the key variables that influence their companies' attributes.

This issue can be solved, through collecting and analyzing data, in order to collect the necessary information from the travel agencies, analyze their profile and make certain predictions and clusterings about them. Weka Machine Learning Software, can transform the dataset into meaningful patterns with the assistance of integrated algorithms and help us make predictions on certain variables as well as clusterings for these travel agencies or future travel agencies with a similar profile. WEKA, helps us to better predict the results of a new oncoming dataset that has similar characteristics with our already existing dataset and there is a high probability that the dataset values are similar to those predicted from the algorithm.

Creta Palm's dataset needed a further data preparation/ training in order to bring it in a suitable format and train a classifier (the variable we want to predict). In this case, the classifier is total bookings.

After training, the dataset is loaded in Weka, where further data preparations were made in order to bring it in a suitable format and therefore, prediction models and clustering models are created. These models are developed through the integrated machine learning algorithms that are chosen each time. These algorithms provide patterns and consequently, useful prediction results for the hotel.

Cross-validation method is used in order to value the classifiers, by using the number of folds entered in the corresponding field. In our 10 -fold cross-validation, the original sample is randomly partitioned into 10 subsamples. Of the 10 subsamples, a single subsample is retained as the test set, and the remaining 9 subsamples are used as training set ${ }^{94}$. The cross-validation process is repeated 10 times (the folds), with each of the 10 subsamples used exactly once as the validation data. The 10 results from the folds then can be averaged (or otherwise combined) to produce a single estimation.

Supplied test set is used in order to make predictions for new unseen data from the set of instances loaded from the file.

[^38]For clustering outputs, the training set is used, so that, the cluster is the same set that the clusterer is trained on.

Chapter 2 presents the total bookings of each booking source based on the hotel's data for the years 2019 and 2020 (see chapter WEKA Regression 2019 for the year 2019 and chapter WEKA Regression 2020 for the year 2020 respectively) as well as the clusterings created for the years 2019 and 2020 (see chapter 2.2 for the year 2019 and chapter 2.4 for the year 2020 respectively) through weka software system.

Creta Palm data sets' sizes were not satisfactory, so the results may not be as good as they should be.

2.1 WEKA Regression 2019 WEKA Algorithms

As mentioned above, for numeric values, WEKA regression algorithms detect correlation coefficient, mean absolute error, root mean squared error, relative absolute error and root relative squared error.

- Correlation coefficient implies what percentage of the variance in your data is explained by your model. The greater the correlation coefficient value, the more accurate the model's predictions are. A high correlation coefficient (greater than 0.95) depicts that there is a strong relation between our data values and the values of the algorithm's prediction model and that our data do get close to the predictions of the model.
- Mean absolute error is the average distance the models' predictions are from the actual data points. Absolute in the title indicates that predictions below data points ate not treated as negative distances.
- Root mean squared error is another way of calculating the mean absolute error.
- Relative absolute error and root relative squared error scale the error to the mean. This enables the comparison between models constructed with larger/smaller valued data.
- Total number of instances is the number of data points in the data set.

Correlation coefficient and mean absolute error give a really good picture of how well things are performing. A high correlation coefficient (above 0.9) and a low mean absolute error depict that our predictions are close to the expected values, which indicate high accuracy in our results..

This chapter presents the algorithms that are performing well considering all the values as well as the predictions of the algorithms concerning the hotel's Total Bookings.

2.1.1 M5Rules

See Appendix: M5Rules Algorithm| Creta Palm 2019
=== Summary $===$
Correlation coefficient 0.9788
Mean absolute error 3.9186
Root mean squared error $\quad 5.7585$
Relative absolute error $\quad 20.4949$ \%
Root relative squared error $\quad 20.3659$ \%
Total Number of Instances 91

M5 Rules Algorithm provides the best results from all the algorithms. The high correlation coefficient $(0.9788>0.95)$ depicts that there is a strong relation between our data values and the values of the (M5Rules) algorithm's prediction model and that our data do get close to the predictions of the model.

We can better predict the results of a new oncoming dataset that has similar characteristics with our already existing dataset and there is a high probability that the dataset values are similar to those predicted from the algorithm.

M5Rules generates a decision list for regression problems using separate-andconquer. In each iteration, it builds a model tree using M5 and makes the "best" leaf into a rule. ${ }^{95}$

M5Rules is an interpretable, quite simple algorithm model. The model is understandable and explainable, as it is clear of how it arrived at a specific decision.

Let us interpret the patterns and conclusions that M5P rules regression's model tells us: Booking Sources and countries have different type of influence in total bookings each time (either positive or negative depending on the sign of the number in front of each booking source or country). However, as we can see, the total overnight stays (total PAX nights), the total overnight stays with dinner (HB) and the total room nights are having a positive correlation to the total bookings. Specifically, the positive coefficient in front of these variables depict that the higher the values of total PAX nights, total overnight stays with dinner and total room nights, the higher the number of the total bookings. On the other hand, all-inclusive overnight stays (AI), seem to have a negative correlation to the total bookings as the variable has a negative coefficient in front of it. That is, that the more overnight stays with dinner (HB) may lead to less total bookings.

High values of HB may lead to in overall less total bookings, but that does not mean that they are not profitable. The hotel may examine the situation and can possibly raise the prices for overnight stays with dinner, or confine the availability of them, in order to have a higher number of total bookings.

According to the algorithm's results, June, July and September of 2019 seem to have a positive correlation with the total bookings, which means that in these months the total bookings of Creta Palm increased.

M5Rules' Algorithm predictions of the Total Bookings of some of the 2019 Booking Sources are presented below.
"Actual" represents the actual total bookings of Creta Palm in 2019. "Predicted" represents the hotel's predicted bookings for each travel agency according to the respective algorithm. "Error" represents the accuracy of the predicted booking results. The higher the deviation between the actual and the predicted booking results, the lower the accuracy.

[^39]$===$ Predictions on test data $==$

inst\#	actual	predicted	error
TUI DEUTSCHLAND	14	16.561	2.561
EXPEDIA	32	27.472	-4.528
AURINKOMATKAT	125	113.653	-11.347
TUI UK	8	7.951	-0.049
ARHUS CHARTER	25	34.889	9.889
JET2HOLIDAYS	28	25.491	-2.509
ARHUS CHARTER	40	32.647	-7.353
EXPEDIA	45	39.657	-5.343
AURINKOMATKAT	92	101.22	9.22
AURINKOMATKAT	132	131.206	-0.794
AURINKOMATKAT	78	92.685	14.685
ITAKA	42	49.487	7.487
SUNWEB	19	17.322	-1.678
JET2HOLIDAYS	35	34.279	-0.721
TUI NL	6	7.1	1.1
ITAKA	56	41.326	-14.674
AURINKOMATKAT	82	93.822	11.822
EXPEDIA	26	31.83	5.83
SUNWEB	21	30.36	9.36
EXPEDIA	46	35.05	-10.95
AURINKOMATKAT	135	116.425	-18.575
BOOKING. COM	11	10.472	-0.528

Table 2: Predictions on test data- M5 Rules

2.1.2 M5P trees

M5 pruned model tree: (using smoothed linear models)
LM1 (91/16.644\%)
See Appendix: M5P Trees Algorithm| Creta Palm 2019
$===$ Summary $==$

Correlation coefficient	0.9768
Mean absolute error	4.0039
Root mean squared error	5.9966
Relative absolute error	20.9406%
Root relative squared error	21.208%
Total Number of Instances	91

M5P Trees' Algorithm provides the second best result from all algorithms. The high correlation coefficient $(0.9768>0.95)$ depicts that there is a strong relation between our data values and the values of the (M5P Trees) algorithm's prediction model and that our data do get close to the predictions of the model.

According to [17]"The M5P model tree is based on conventional decision tree associated to linear regression function at the leaves nodes".

M5P Trees is an interpretable, quite simple algorithm model. The model is understandable and explainable, as it is clear of how it arrived at a specific decision.

M5P Trees provide the same algorithm results as those of M5Rules.
Booking Sources and countries have different type of influence in total bookings each time (either positive or negative depending on the sign of the number in front of each booking source or country). However, as we can see, the total overnight stays (total PAX nights), the total overnight stays with dinner (HB) and the total room nights are having a positive correlation to the total bookings. Specifically, the positive coefficient in front of these variables depict that the higher the values of total PAX nights, total overnight stays with dinner and total room nights, the higher the number of the total bookings. On the other hand, all-inclusive overnight stays (AI), seem to have a negative correlation to the total bookings as the variable has a negative coefficient in front of it. That is, that the more overnight stays with dinner (HB) may lead to less total bookings.

High values of HB may lead to in overall less total bookings, but that does not mean that they are not profitable. The hotel may examine the situation and can possibly raise the prices for overnight stays with dinner, or confine the availability of them, in order to have a higher number of total bookings.

According to the algorithm's results, June, July and September of 2019 seem to have a positive correlation with the total bookings, which means that in these months the total bookings of Creta Palm increased.

M5P Trees Algorithm's predictions of the Total Bookings of some of the 2019 Booking Sources are presented below.
=== Predictions on user test set $==$

inst\#	actual	predicted	error

EXPEDIA	14	31.947	-0.053
AURINKOMATKAT	32	108.374	-16.626
TUI UK	125	7.951	-0.049
TUI DEUTSCHLAND	8	17.476	3.476
ARHUS CHARTER	25	34.889	9.889
JET2HOLIDAYS	28	25.491	-2.509
ARHUS CHARTER	40	32.647	-7.353
EXPEDIA	45	39.657	-5.343
AURINKOMATKAT	92	101.22	9.22
AURINKOMATKAT	132	131.206	-0.794
AURINKOMATKAT	78	92.685	14.685
ITAKA	42	49.487	7.487
SUNWEB	19	18.835	-0.165
JET2HOLIDAYS	35	33.886	-1.114
TUI NL	6	7.1	1.1
ITAKA	56	38.252	-17.748
AURINKOMATKAT	82	93.822	11.822
EXPEDIA	26	31.83	5.83
SUNWEB	21	30.807	9.807
EXPEDIA	46	35.242	-10.758
AURINKOMATKAT	135	117.105	-17.895
BOOKING.COM	11	10.472	-0.528

Table 3: Predictions on user test set- M5P Trees

2.1.3 SMO Reg

See Appendix: SMOreg Algorithm| Creta Palm 2019
=== Summary ===
Correlation coefficient 0.9712
Mean absolute error
5.219

Root mean squared error
6.6622

Relative absolute error
27.2957 \%

Root relative squared error
23.5618 \%

Total Number of Instances
91

Number of kernel ${ }^{96}$ evaluations: 4186 (99.697% cached)
SMO Reg Algorithm also provides a high correlation coefficient ($0.9712>0.95$). This means that there is a strong relation between our data values and the values of the (SMO Reg) algorithm's prediction model and that our data do get close to the predictions of the model.

Sequential Minimal Optimization (SMO) method breaks the problem down into subproblems that can be solved analytically (by calculating) rather than numerically (by searching or optimizing). ${ }^{97}$

SMO Reg is neither interpretable nor simple algorithm model. This means, that one who does not have the necessary expertise in the field of technology or analytics cannot fundamentally understand how the model arrived in a certain output or how the output influences the output, by just reading the algorithm.

SMO Reg's Algorithm predictions of the Total Bookings of some of the 2019 Booking Sources are presented below.
$===$ Predictions on test data $==$

inst\#	actual	predicted	error
EXPEDIA	14	10.463	-3.537
AURINKOMATKAT	32	28.704	-3.296
TUI UK	125	109.383	-15.617
TUI DEUTSCHLAND	8	7.741	-0.259
ARHUS CHARTER	25	36.617	11.617
JET2HOLIDAYS	28	26.181	-1.819
ARHUS CHARTER	40	31.028	-8.972
EXPEDIA	45	35.884	-9.116
AURINKOMATKAT	92	96.418	4.418
AURINKOMATKAT	132	137.243	5.243
AURINKOMATKAT	78	93.971	15.971
ITAKA	42	48.435	6.435
SUNWEB	19	19.374	0.374
JET2HOLIDAYS	35	32.115	-2.885
TUI NL	6	10.302	4.302
ITAKA	56	36.596	-19.404
AURINKOMATKAT	82	89.021	7.021

[^40]| EXPEDIA | 26 | 39.009 | 13.009 |
| :---: | :---: | :---: | :---: |
| SUNWEB | 21 | 29.428 | 8.428 |
| EXPEDIA | 46 | 39.046 | -6.954 |
| AURINKOMATKAT | 135 | 130.624 | -4.376 |
| BOOKING.COM | 11 | 16.079 | 5.079 |

Table 4: Predictions on test data- SMO Reg

2.1.4 Linear Regression

See Appendix: Linear Regression Model Algorithm
=== Summary ===
Correlation coefficient 0.9695
Mean absolute error 4.7712
Root mean squared error $\quad 6.8744$
Relative absolute error 24.954 \%
Root relative squared error $\quad 24.3122$ \%
Total Number of Instances 91

Linear Regression provides a high correlation coefficient ($0.9695>0.95$) as well. As a consequence, there is a strong relation between our data values and the values of the algorithm's prediction model and that our data do get close to the predictions of the model.

Linear regression is a very simple regression algorithm that only supports regression type problems and is issued for prediction. The model uses the Akaike criterion for model selection, and is able to deal with weighted instances. Linear Regression can only deal with numeric attributes. ${ }^{98}$

The model is understandable and explainable, as it is clear of how it arrived at a specific decision.

As far as the patterns and conclusions that linear regression's model are concerned: Booking Sources and countries have different type of influence in total bookings each time (either positive or negative depending on the sign of the number in front of each booking source or country). However, as we can see, Average Daily Rate (ADR), total overnight stays (total PAX nights) and total room nights are having a positive

[^41]correlation to the total bookings. Specifically, the positive coefficient in front of these variables depict that the higher the values of ADR, total PAX nights and total room nights, the higher the number of the total bookings, which is something expected. On the other hand, overnight stays with breakfast (BB) and all-inclusive overnight stays (AI), seem to have a negative correlation to the total bookings as these variables have a negative coefficient in front of them. That is, that the more overnight stays with breakfast (BB) as well as the more all-inclusive overnight stays (AI), may lead to less total bookings.

According to the algorithm's results, June and July seem to have a positive correlation with the total bookings, which means that in June and July the total bookings increased. This is confirmed through the original dataset.

High values of BB and AI may lead to in overall less total bookings, but that does not mean that they are not profitable. The hotel may examine the situation and can possibly raise the prices for overnight stays with breakfast or all-inclusive overnight stays, or confine the availability of those two, in order to have a higher number of total bookings.

Linear Regression's predictions of the Total Bookings of some of the 2019 Booking Sources are presented below.
$===$ Predictions on test data $===$

inst\#	actual	predicted	error
EXPEDIA	14	12.259	-1.741
AURINKOMATKA	32	31.243	-0.757
TUI UK	125	117.443	-7.557
TUI DEUTSCHLAND	8	10.173	2.173
ARHUS CHARTER	25	33.709	8.709
JET2HOLIDAYS	28	25.192	-2.808
ARHUS CHARTER	40	34.862	-5.138
EXPEDIA	45	37.768	-7.232
AURINKOMATKAT	92	94.726	2.726
AURINKOMATKAT	132	135.551	3.551
AURINKOMATKAT	78	94.647	16.647
ITAKA	42	55.068	13.068
SUNWEB	19	19.481	0.481
JET2HOLIDAYS	35	33.772	-1.228
TUI NL	6	8.04	2.04

ITAKA	56	40.695	-15.305
AURINKOMATKAT	82	92.631	10.631
EXPEDIA	26	37.602	11.602
SUNWEB	21	30.232	9.232
EXPEDIA	46	39.935	-6.065
AURINKOMATKAT	135	120.129	-14.871
BOOKING.COM	11	14.332	3.332

Table 5: Predictions on test data- Linear Regression

2.1.5 Gaussian Process

Kernel used: ${ }^{99}$
Linear Kernel: $\mathrm{K}(\mathrm{x}, \mathrm{y})=\langle\mathrm{x}, \mathrm{y}\rangle$
All values shown based on: Normalize training data.

Average Target Value : 0.16
Inverted Covariance Matrix:
Lowest Value $=-0.23$
Highest Value $=0.80$
Inverted Covariance Matrix * Target-value Vector:
Lowest Value $=-0.07$
Highest Value $=0.14$
=== Summary $==$
Correlation coefficient 0.9674
Mean absolute error 5.4531
Root mean squared error 7.1561
Relative absolute error $\quad 28.5204 \%$
Root relative squared error $\quad 25.3086$ \%
Total Number of Instances 91

[^42]Gaussian Process provides a high correlation coefficient $(0.9674>0.95)$ as well. As a consequence, there is a strong relation between our data values and the values of the algorithm's prediction model and that our data do get close to the predictions of the model.

Gaussian Process is a simple and interpretable model but it has not too many parameters. Gaussian Process implements regression without hyper parameter tuning. This implementation applies normalization/standardization to the target attribute as well as the other attributes (if normalization/standardization is turned on). Missing values are replaced by the global mean/mode. Nominal attributes are converted to binary ones. ${ }^{100}$

Gaussian Processes' predictions of the Total Bookings of some of the 2019 Booking Sources are presented below.
$===$ Predictions on test data $==$

inst	actual	predicted	error
EXPEDIA	14	14.662	0.662
AURINKOMATKAT	32	28.203	-3.797
TUI UK	125	99.79	-25.21
TUI DEUTSCHLAND	8	10.393	2.393
ARHUS CHARTER	25	31.42	6.42
JET2HOLIDAYS	28	24.124	-3.876
ARHUS CHARTER	40	34.074	-5.926
EXPEDIA	45	38.173	-6.827
AURINKOMATKAT	92	92.942	0.942
AURINKOMATKAT	132	129.598	-2.402
AURINKOMATKAT	78	86.816	8.816
ITAKA	42	53.013	11.013
SUNWEB	19	17.918	-1.082
JET2HOLIDAYS	35	30.582	-4.418
TUI NL	6	12.375	6.375
ITAKA	56	35.378	-20.622
AURINKOMATKAT	82	94.342	12.342
EXPEDIA	26	38.622	12.622
SUNWEB	21	25.842	4.842
EXPEDIA	46	36.575	-9.425
AURINKOMATKAT	135	122.617	-12.383

[^43]| BOOKING.COM | 11 | 16.95 | 5.95 |
| :---: | :---: | :---: | :---: |

Table 6: Predictions on test data- Gaussian Process

2.1.6 Random Forest

=== Summary $===$	
Correlation coefficient	0.9655
Mean absolute error	5.9985
Root mean squared error	8.3188
Relative absolute error	31.3731%
Root relative squared error	29.4205%
Total Number of Instances	91

Random Forest is bagging with 100 iteration and provides a high correlation coefficient $(0.9674>0.95)$ as well. As a consequence, there is a strong relation between our data values and the values of the algorithm's prediction model and that our data do get close to the predictions of the model.

According to E. Kleinberg [31]: Random forests or random decision forests are an ensemble learning method for classification, regression and other tasks that operates by constructing a multitude of decision trees at training time. Random forests are an ensemble learning method for regression that operate by constructing a multitude of decision trees at training time and outputting the class that is the mode of the classes output by individual trees.

Random Forest is not an interpretable model, and it has not too many parameters for analysis. So, one who does not have the necessary expertise in the field of technology or analytics cannot fundamentally understand how the model arrived in a certain output or how the output influences the output, by just reading the algorithm.

Random Forest's predictions of the Total Bookings of some of the 2019 Booking Sources are presented below.
$===$ Predictions on test data $==$

inst\#	actual	predicted	error
EXPEDIA	14	16.088	2.088
AURINKOMATKAT	32	28.787	-3.213
TUI UK	125	92.079	-32.921
TUI DEUTSCHLAND	8	10.704	2.704
ARHUS CHARTER	25	35.69	10.69
JET2HOLIDAYS	28	25.833	-2.167
ARHUS CHARTER	40	31.636	-8.364
EXPEDIA	45	32.956	-12.044
AURINKOMATKAT	92	87.222	-4.778
AURINKOMATKAT	132	106.129	-25.871
AURINKOMATKAT	78	83.944	5.944
ITAKA	42	42.417	0.417
SUNWEB	19	21.884	2.884
JET2HOLIDAYS	35	25.092	-9.908
TUI NL	6	10.205	4.205
ITAKA	56	41.017	-14.983
AURINKOMATKAT	82	81.03	-0.97
EXPEDIA	26	34.859	8.859
SUNWEB	21	22.201	1.201
EXPEDIA	46	33.427	-12.573
AURINKOMATKAT	135	110.976	-24.024
BOOKING.COM	11	11.026	0.026

Table 7: Predictions on test data- Random Forest

2.1.7 Meta Randomizable Filtered Classifier

$===$ Summary $==$

Correlation coefficient	0.9448
Mean absolute error	6.0989
Root mean squared error	9.4001
Relative absolute error	31.898%
Root relative squared error	33.245%
Total Number of Instances	91

Meta Randomizable Filtered Classifier provides lower correlation coefficient results. However, there is still a positive relation between our data values and the values of
the algorithm's prediction model and our data do get close to the predictions of the model.

This is a metaclassifier for handling multi-class datasets with two-class classifiers and it has more than two outcomes. This classifier is also capable of applying error correcting output codes for increased accuracy. The base classifier must be an updateable classifier. ${ }^{101}$

Meta Randomizable Filtered Classifier's predictions of the Total Bookings of some of the 2019 Booking Sources are presented below.
$===$ Predictions on test data $==$

inst\#	actual	predicted	error
EXPEDIA	14	24	10
AURINKOMATKAT	32	28	-4
TUI UK	125	92	-33
TUI DEUTSCHLAND	8	18	10
ARHUS CHARTER	25	39	14
JET2HOLIDAYS	28	34	6
ARHUS CHARTER	40	25	-15
EXPEDIA	45	34	-11
AURINKOMATKAT	92	125	33
AURINKOMATKAT	132	135	3
AURINKOMATKAT	78	82	4
ITAKA	42	41	-1
SUNWEB	19	23	4
JET2HOLIDAYS	35	16	-19
TUI NL	6	4	-2
ITAKA	56	41	-15
AURINKOMATKAT	82	92	10
EXPEDIA	26	45	19
SUNWEB	21	23	2
EXPEDIA	46	35	-11
AURINKOMATKAT	135	132	-3
BOOKING.COM	11	9	-2

Table 8: Predictions on test data- Meta Randomizable Filtered Classifier

[^44]
2.1.8 Meta Random Committee

Meta Random Committee's Classifier model contributes to the total bookings' predictions through the decision tree model that is presented in the appendix. The total bookings' number depends on parameters such as the booking sources and whether it is Tour Operators or Online Travel Agencies (TO/OTA), the customer's countries, the average daily rate (ADR), the total overnight stays per room (total room nights), the average number of people per room (average pax/room), the total overnight stays (total pax nights), the number of overnight stays with breakfast (BB) and its percentage ($\mathrm{BB} \%$), the number of overnight stays with dinner (HB) and its percentage (HB\%) and the "all inclusive" overnight stays (AI) and its percentage (AI\%) and the month of the lodging.

See Appendix: Meta Random Committee Algorithm| Creta Palm 2019
=== Summary $===$
Correlation coefficient 0.9429
Mean absolute error 6.6512
Root mean squared error 9.6551
Relative absolute error 34.7865%
Root relative squared error $\quad 34.1466$ \%
Total Number of Instances 91

Meta Random Committee provides lower correlation coefficient results. However, there is still a positive relation between our data values and the values of the algorithm's prediction model and our data do get close to the predictions of the model.

This is a classifier for building an ensemble of randomizable base classifiers. Each base classifier is built using a different random number seed (but based on the same data). The final prediction is a straight average of the predictions generated by the individual base classifiers. ${ }^{102}$

Meta Random Committee's predictions of the Total Bookings of some of the 2019 Booking Sources are presented below.

[^45]| $===$ Predictions on test data $===$ |
| :--- |
| inst actual predicted error
 EXPEDIA 14 9.271 -4.729
 AURINKOMATKA 32 28.04 -3.96
 TUI UK 125 81.214 -43.786
 TUI 8 12.52 4.52
 ARHUS CHARTER 25 36.546 11.546
 JET2HOLIDAYS 28 24.12 -3.88
 ARHUS CHARTER 40 25.45 -14.55
 EXPEDIA 45 37.307 -7.693
 AURINKOMATKAT 92 66.011 -25.989
 AURINKOMATKAT 132 120.05 -11.95
 AURINKOMATKAT 78 95.255 17.255
 ITAKA 42 46.533 4.533
 SUNWEB 19 23.167 4.167
 JET2HOLIDAYS 35 22.049 -12.951
 TUI NL 6 6.533 0.533
 ITAKA 56 53.183 -2.817
 AURINKOMATKAT 82 93.457 11.457
 EXPEDIA 26 32.547 6.547
 SUNWEB 21 32.183 11.183
 EXPEDIA 46 37.983 -8.017
 AURINKOMATKAT 135 105.313 -29.687
 BOOKING.COM 11 11.933 0.933 |

Table 9: Predictions on test data- Meta Random Committee

See in the Appendix:

Classifiers with low or negative correlation coefficient (2019):

A lower or negative correlation coefficient depicts that there is a weak relation (or negative relation) between our data and the algorithm's prediction model and that the data do not get close to the predictions of the model. This practically means that for the new oncoming agencies that have similar characteristics as those 2019's agencies, there is a low probability that the total bookings are similar as those predicted from the algorithm (or that the total bookings depict opposite results from those predicted from the algorithm - as far as negative correlation coefficient results are concerned-).

2.2 WEKA Clustering 2019

WEKA Clusterers

Clustering is a method of grouping similar things together. As mentioned in the first chapter, clustering is a process of portioning a data set into a set of meaningful subclasses, known as clusters. Clustering is the same as classification in which data is grouped. ${ }^{103}$

Though, unlike classification, clustering does not seek rules that predict a particular class, but rather try to divide the data into groups/clusters, that are not previously defined, by determining similarities between data according to characteristics found in the real data.

Like regression's procedure, two datasets were collected from 2019 and 2020 respectively, concerning the booking source, the country of the booking source, whether the booking source is a Tour Operator or Online Travel Agency (TO/OTA), the month that each booking source made a booking in Creta Palm, the average daily rate (ADR) each booking source made in Creta Palm that month, the total bookings that the booking source made in Creta Palm that month, the total overnight stays (total pax nights) the booking source made in Creta Palm that month as well as the average number of people per room (average pax/room), the total overnight stays per room (total room nights), the number of overnight stays with breakfast (BB) and its percentage (BB\%), the number of overnight stays with dinner (HB) and its percentage (HB\%) and the number of "all inclusive" overnight stays (AI) and its percentage (AI\%) each booking source made in Creta Palm this certain month. These datasets are loaded to WEKA software system in order to make the clusterings.

According to these data, WEKA created several clustering options depending on the clusterer chosen (Simple K- Means, EM, Make a Density, Farthest First, Canopy, Filtered) in order to group the travel agencies that presented similarities and disjoin those that displayed dissimilarities. The aim of clustering is to find distinct groups within a given dataset. Clustering also helps us discern the characteristics between data elements that would otherwise have been unlabeled and uncategorized.

[^46]For clustering outputs, the same dataset is used as those of classification.
Chapters 2.2 and 2.4 present the clusterings made according to the hotel's data for the years 2019 and 2020 (see chapter 2.2 for the year 2019 and chapter 2.4 for the year 2020 respectively).

2.2.1 Simple K Means

As mentioned in the first chapter (an analytical explanation is presented in chapter 60), Simple Means is a distant-based clusterer that minimizes the squared distance from each instance to their cluster center, after defining k centroids. It is one of the best unsupervised algorithms. For each different number of seeds, there are different clustering results. ${ }^{104105}$

Simple K Means uses random numbers and by using the same seed, we will always get the same random numbers. If we run Simple K Means over the same data twice, with the same seed, we will get exactly the same results. For different number of seeds, the results will vary each time we run Simple K Means.

In our dataset we use the same seed.
Simple K Means Clusterer, presents a different squared error depending on the number of clusters we wish to create. The bigger the number of clusters, the lower the value of squared errors within the clusters.

In order to cross-validate this, we choose different number of clusters manually. The results of each of the clusterings, depending on their number of clusters are presented below.

Simple K Means with 2 Clusters

Number of iterations: 7
Within cluster sum of squared errors: 278.35
Missing values globally replaced with mean/mode.

[^47]| | Final Cluster Centroids | | |
| :---: | :---: | :---: | :---: |
| Attribute | Full Data (91.0) | $\begin{gathered} 0 \\ (54.0) \end{gathered}$ | $\begin{gathered} 1 \\ (37.0) \end{gathered}$ |
| Booking Source | ARHUS CHARTER | BLUE AEGEAN | RAINBOW |
| Country | Denmark | Vary | Poland |
| Average pax/room | 2.4126 | 2.4121 | 2.4133 |
| TO/ OTA | TO | TO | TO |
| ADR | 82.1023 | 74.4252 | 93.3067 |
| Total Bookings | 22.1868 | 14.2222 | 93.3067 |
| Total PAX Nights | 491.0659 | 236.3333 | 862.8378 |
| Total Room Nights | 195.9231 | 101.1296 | 334.2703 |
| BB | 238.8 | 149.0704 | 369.7568 |
| BB\% | 0.4559 | 0.555 | 0.3112 |
| HB | 77.6 | 75.7519 | 80.2973 |
| HB\% | 0.2866 | 0.3741 | 0.1588 |
| AI | 180.4333 | 21.2302 | 412.7838 |
| AI\% | 0.2728 | 0.0964 | 0.5303 |
| Month | April 2019 | April 2019 | August 2019 |

Table 10: Final Cluster Centroids- Simple K Means

Clustered Instances (number of instances detected in each cluster):
054 (59\%)
137 (41\%)

Simple K Means divides Cretan Palm's booking sources into two clusters. The first cluster's centroid is BLUE AEGEAN and the second cluster's centroid is RAINBOW.

Centroids of cluster 0 depict that the customers in cluster 0 have as dominant characteristics that they come from various different countries (Vary), that they choose BLUE AEGEAN as a travel agency and that they choose Tour Operators (TO) over Online travel Agencies. Additionally, their characteristics (Total Bookings,

ADR , Average $\mathrm{PAX} /$ room $\mathrm{BB}, \mathrm{BB} \%$, etc.), are similar to their cluster's centroids characteristics.

The second cluster's centroids depict that the customers in cluster 1 have as dominant characteristics that they come from Poland, that they choose RAINBOW as a travel agency and that they choose Tour Operators (TO) over Online travel Agencies. Additionally, their characteristics (Total Bookings, ADR, Average PAX/room BB, BB\%, etc.), are similar to their cluster's centroids characteristics.

Simple K Means uses random numbers and by using the same seed, we will always get the same random numbers. If we run Simple K Means over the same data twice, with the same seed, we will get exactly the same results. For different number of seeds, the results will vary each time we run Simple K Means.

In our dataset we use the same seed.
Simple K Means Clusterer, presents a different squared error depending on the number of clusters we wish to create. The bigger the number of clusters, the lower the value of squared errors within the clusters.

In order to cross-validate this, we choose different number of clusters manually. The results of each of the clusterings, depending on their number of clusters are presented below.

Simple K Means with 3 Clusters

See the clustering results in the appendix: Simple K Means with 3 Clusters| Creta Palm 2019

Within cluster sum of squared errors: $\mathbf{2 5 5 . 6 4}$

Number of iterations: 5

Missing values globally replaced with mean/mode.
Clustered Instances
$0 \quad 41$ (45\%)
124 (26\%)
226 (29\%)

Simple K Means with 4 Clusters

See the clustering results in the appendix: Simple K Means with 4 Clusters| Creta Palm 2019

Within cluster sum of squared errors: 235.03
Number of iterations: 7
Missing values globally replaced with mean/mode.
Clustered Instances
$0 \quad 41$ (45\%)
124 (26\%)
2 26(29\%)

Simple K Means with 5 Clusters

See the clustering results in the appendix: Simple K Means with 5 Clusters| Creta Palm 2019

Within cluster sum of squared errors: 235.03
Number of iterations: 7
Missing values globally replaced with mean/mode.
Clustered Instances
$0 \quad 21$ (23\%)
1 (15%)
218 (20\%)
3 30(33\%)
48 (9%)

2.2.2 EM

"EM (Expectation Maximization) is a probabilistic clusterer and can be used for unsupervised learning. Like Naive Bayes, it makes the assumption that all attributes are independent random variables." (Witten I.H., et al., (1999))

As mentioned in the first chapter (an analytical explanation is presented in chapter 1.5.2), unlike K-Means that takes one point and places it to the one cluster or the other, EM computes the probability that it goes into a or b cluster. This probability never gets zero or one, it is always a number between zero and one ($0<$ probability EM<1).

The model just finds that there are distinguished groups in the dataset that behave differently. EM run alternative number of clusters and then chooses automatically the number of the clusters it shall create.

EM works for numeric attributes providing mean and standard deviation results and value probability results respectively. Log likelihood is an overall quality measure and is increased by each iteration. ${ }^{106}$

Number of clusters selected by cross validation: 6
Number of iterations performed: 2

	0 (0.25)	1 (0.14)	2 (0.18)	3 (0.09)	(0.16)	(0.17)
Booking Source						
ARHUS CHARTER	1.9645	1	6	1.1962	1.798	1.0413
AURINKOMATKAT	1	8	1	1	1	1
BLUE AEGEAN	5.9625	1	1	1.861	1.1185	2.058
BOOKING.COM	1	1	1	8	8	1
BRAVO TOURS	8	1	1	1	1	1
EXPEDIA	1	1	1	1	8	1
ITAKA	1	2	6	1.0036	1.9964	1
Jet2Holidays	1.0233	1	1	1.0427	1.8145	7.1194
RAINBOW	3.9457	1	4	1.2826	1.7107	1.0609
SUNWEB	1	1	1	7.9973	1	1.0027
TUI Deutschland	8	1	1	1	1	1
TUI NL	1	1	1	6.3393	1.6418	2.0189
TUI UK	1	1	1	1.5546	1.9216	6.5003

[^48]| [total] | 35.9196 | 21 | 26 | 27.2773 | 32.0015 | 26.8016 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Country | | | | | | |
| Denmark | 8.9645 | 1 | 6 | 1.1962 | 1.798 | 1.0413 |
| Finland | 1 | 8 | 1 | 1 | 1 | 1 |
| Romania | 5.9625 | 1 | 1 | 1.861 | 1.1185 | 2.058 |
| Vary | 1 | 1 | 1 | 1 | 15 | 1 |
| Poland | 3.9457 | 2 | 9 | 1.2863 | 2.7071 | 1.0609 |
| UK | 1.0468 | 1 | 1 | 1.5973 | 2.7361 | 12.6197 |
| Netherlands | 1 | 1 | 1 | 13.3366 | 1.6418 | 2.0216 |
| Germany | 8 | 1 | 1 | 1 | 1 | 1 |
| [total] | 30.9196 | 16 | 21 | 22.2773 | 27.0015 | 21.8016 |

Table 11: Clustering- EM

See the rest of the results in the Appendix: EM Clusterer| Creta Palm 2019

EM divides Cretan Palm's booking sources into six clusters. For each of the attributes, there is a probability that the output is going to be this certain attribute. This probability is calculated if you divide the number of the attribute by the total attributes in each of the clusters. For example:

ARHUS CHARTER in cluster 0 (1.9645) has a 5.4% probability (1.9645/35.9196*) of being cluster's 0 centroid.
*[total: 35.9196]
BLUE AEGEAN in cluster 0 , (5.9625) has the highest probability $\left(16.5 \%=5.9625 / 35.9196^{*}\right)$ of being cluster's 0 centroid. That is, BLUE AEGEAN has a higher probability that it is chosen among the customers of the first cluster.

The same procedure applies to the other clusters as well.
AURINKOMATKAT in cluster 1 (8) has by far the highest probability ($38 \%=8 / 21$) of being cluster's 1 centroid. That is, AURINKOMATKAT has a higher probability that it is chosen among the customers of the second cluster.

ARHUS CHARTER in cluster $2(6)$ has the highest probability $(23 \%=6 / 26)$ of being cluster's 2 centroids. So, this agency has a higher probability that are chosen among the customers of the third cluster.

SUNWEB in cluster 3 (7.9973) has the highest probability ($29.3 \%=7.9973 / 27.2773$) of being cluster's 3 centroid. That is, SUNWEB has a higher probability that it is chosen among the customers of the second cluster.

ITAKA in cluster 4 (1.9964) has the highest probability $(6.2 \%=1.9964 / 32.0015)$ of being cluster's 4 centroid. That is, ITAKA has a higher probability that it is chosen among the customers of the second cluster.

Jet2holidays in cluster 5 (7.1194) has the highest probability ($26.5 \%=7.1194 / 26.8016$) of being cluster's 5 centroid. That is, this agency has a higher probability that it is chosen among the customers of the second cluster.

Additionally, it is 28% probable that cluster's 0 centroid is Denmark ($8.9645 / 30.9196=28 \%), 50 \%$ probable that cluster's 1 centroid is Finland $(8 / 16=50 \%), 42.8 \%$ probable that cluster's 2 centroid is Poland ($9 / 21=42.8 \%$), 59.8% probable that cluster's 3 centroid is Netherlands (13.3366/22.2773=59.8\%), 55.5\% probable that cluster's 4 centroid is Varying (15/27.0015=55.5\%) and 57.8% that cluster's 5 centroid is UK (12.6197/21.8016=57.8\%).

Clustered Instances (number of instances detected in each cluster):

0	$25(27 \%)$
1	$8(9 \%)$
2	$13(14 \%)$
3	$12(13 \%)$
4	$22(24 \%)$
5	$11(12 \%)$

Log likelihood: -33.71

2.2.3 Filtered Clusterer

According
to
[20][20]:
This algorithm is primarily based completely on storing the multidimensional data points within a tree. The process regarding the tree is like a binary tree method, as represents a hierarchical subdivision on its data point set's bounding box the usage of their axis after which splitting is aligned by way on hyper planes. Each node on the tree is related with a closed field, referred to as the cell.

The results are the same as those of Simple K Means for all the number of clusters, which is expected, as Filtered Clusterer uses Simple K Means in order to proceed to the outcome.

Filtered Clusterer with 2 Clusters

Number of iterations: 7
Within cluster sum of squared errors: 278.35
Missing values globally replaced with mean/mode.

	Final Cluster Centroids		
Attribute	Full Data (91.0)	$\begin{gathered} 0 \\ (54.0) \end{gathered}$	$\begin{gathered} 1 \\ (37.0) \end{gathered}$
Booking Source	ARHUS CHARTER	BLUE AEGEAN	RAINBOW
Country	Denmark	Vary	Poland
Average pax/room	2.4126	2.4121	2.4133
TO/ OTA	TO	TO	TO
ADR	82.1023	74.4252	93.3067
Total Bookings	22.1868	14.2222	93.3067
Total PAX Nights	491.0659	236.3333	862.8378
Total Room Nights	195.9231	101.1296	334.2703
BB	238.8	149.0704	369.7568
BB\%	0.4559	0.555	0.3112
HB	77.6	75.7519	80.2973
HB\%	0.2866	0.3741	0.1588
AI	180.4333	21.2302	412.7838
AI\%	0.2728	0.0964	0.5303
Month	April 2019	April 2019	August 2019

Table 12: Final Cluster Centroids- Filtered Clusterer

Clustered Instances (number of instances detected in each cluster):
$0 \quad 54$ (59\%)
137 (41\%)

Filtered Clusterer divides Cretan Palm's booking sources into two clusters. The first cluster's centroid is BLUE AEGEAN and the second cluster's centroid is RAINBOW. Centroids of cluster 0 depict that the customers in cluster 0 have as dominant characteristics that they come from various different countries (Vary), that they choose BLUE AEGEAN as a travel agency and that they choose Tour Operators (TO) over Online travel Agencies. Additionally, their characteristics (Total Bookings, ADR, Average PAX/room $\mathrm{BB}, \mathrm{BB} \%$, etc.), are similar to their cluster's centroids characteristics.

The second cluster's centroids depict that the customers in cluster 1 have as dominant characteristics that they come from Poland, that they choose RAINBOW as a travel agency and that they choose Tour Operators (TO) over Online travel Agencies. Additionally, their characteristics (Total Bookings, ADR, Average PAX/room BB, BB\%, etc.), are similar to their cluster's centroids characteristics.

2.2.4 Farthest First

According to[24]:

Farthest first finds its variant of K-means. Each cluster center point furthermost from the existing cluster center is placed by the K-mean, and this point must be positioned within the data area. So that it greatly speeds up the clustering in most cases, but it needs less move and adjustment for their fast performance.

In order to examine Farthest First Clusterer's accuracy, we choose different number of clusters manually.

Farthest First Clusterer with 2 Clusters

	Cluster Centroids	
	Cluster 0	Cluster 1
Booking Source	BRAVO TOURS	AURINKOMATKAT
Country	Denmark	Finland
Average pax/room	2.0	3.06
TO/ OTA	TO	TO
ADR	51.04	132.97
Total Bookings	1	135

Total PAX Nights	10.0	3700
Total Room Nights	5	1210
BB	0	1859
BB\%	0	0.5
HB	10	540
HB\%	1.0	0.15
AI	0	1301
AI\%	0	0.35
Month	April 2019	July 2019

Table 13: Cluster Centroids- Farthest First

Clustered Instances (number of instances detected in each cluster):

```
0 81(89%)
1 10(11%)
```

Farthest First divides Cretan Palm's booking sources into two clusters. The first cluster's centroid is BRAVO TOURS and the second cluster's centroid is AURINKOMATKAT.

Centroids of cluster 0 depict that the customers in cluster 0 have as dominant characteristics that they choose BRAVO TOURS as their travel agency, that they come from Denmark and that they choose Tour Operators (TO) over Online travel Agencies. Additionally, their characteristics (Total Bookings, ADR, Average $\mathrm{PAX} /$ room $\mathrm{BB}, \mathrm{BB} \%$, etc.), are similar to their cluster's centroids characteristics.

The second cluster's centroids depict that the customers in cluster 1, have as dominant characteristics that they come from Finland, that they choose AURINKOMATKAT as a travel agency and that they choose Tour Operators (TO) over Online travel Agencies (OTA). Additionally, their characteristics (Total Bookings, ADR, Average PAX/room $\mathrm{BB}, \mathrm{BB} \%$, etc.), are similar to their cluster's centroids characteristics.

Below are presented the other clusterings' results.

Farthest First Clusterer with 3 Clusters

Appendix: Farthest First with 3 Clusters|Creta Palm 2019

Farthest First Clusterer with 4 Clusters

Appendix: Farthest First with 4 Clusters| Creta Palm 2019

Farthest First Clusterer with 5 Clusters

Appendix: Farthest First with 5 Clusters| Creta Palm 2019

2.2.5 Make A Density

According to

Density-Based Clustering refers to unsupervised learning methods that identify distinctive groups/clusters in the data, based on the idea that a cluster in a data space is a contiguous region of high point density, separated from other such clusters by contiguous regions of low point density. The data points in the separating regions of low point density are typically considered noise/outliers.

As mentioned in the first chapter (an analytical explanation is presented in chapter 1.5.7),

- The clusterer randomly chooses the core points and then for each core point that is not already assigned to a cluster, creates a new cluster.
- The clusterer finds all its density connected points and assigns them to the same cluster as the core point.
- Then it iterates through the remaining unvisited points in the dataset.
- The core points that do not belong to any cluster are treated as outliers or noise points. ${ }^{107}$

Make A Density Clusterer, also presents a different squared error depending on the number of clusters we wish to create. The bigger the number of clusters, the lower the value of squared errors within the clusters.

In order to cross-validate this, we choose different number of clusters manually. The results of each of the clusterings depending on their number of clusters are presented below.

Make A Density Clusterer with 2 Clusters

[^49]See the clustering results in the appendix: Make A Density Clusterer, Fitted estimators (with ML estimates of variance) |Creta Palm 2019

Within cluster sum of squared errors: 278.35
Number of iterations: 7
Missing values globally replaced with mean/mode.
Wrapped clusterer: kMeans
Clustered Instances (number of instances detected in each cluster):

	Final Cluster Centroids		
Attribute	Full Data (91.0)	$\begin{gathered} 0 \\ (54.0) \end{gathered}$	$\begin{gathered} 1 \\ (37.0) \end{gathered}$
Booking Source	ARHUS CHARTER	BLUE AEGEAN	RAINBOW
Country	Denmark	Vary	Poland
Average pax/room	2.4126	2.4121	2.4133
TO/ OTA	TO	TO	TO
ADR	82.1023	74.4252	93.3067
Total Bookings	22.1868	14.2222	93.3067
Total PAX Nights	491.0659	236.3333	862.8378
Total Room Nights	195.9231	101.1296	334.2703
BB	238.8	149.0704	369.7568
BB\%	0.4559	0.555	0.3112
HB	77.6	75.7519	80.2973
HB\%	0.2866	0.3741	0.1588
AI	180.4333	21.2302	412.7838
AI\%	0.2728	0.0964	0.5303
Month	April 2019	April 2019	August 2019

Table 14: Final Cluster Centroids- Make A Density Based Clusterer

Clustered Instances (number of instances detected in each cluster):

```
063(69%)
1 28(31%)
```

Log likelihood: -49.94

Make A Density Based Clusterer divides Cretan Palm's booking sources into two clusters. The first cluster's centroid is BLUE AEGEAN and the second cluster's centroid is RAINBOW.

Centroids of cluster 0 depict that the customers in cluster 0 have as dominant characteristics that they come from various different countries (Vary), that they choose they BLUE AEGEAN travel agency and that they choose Tour Operators (TO) over Online travel Agencies. Additionally, their characteristics (Total Bookings, ADR, Average PAX/room BB, BB\%, etc.), are similar to the their cluster's centroids characteristics.

The second cluster's centroids depict that the customers in cluster 1 have as dominant characteristics that they come from Poland, that they choose RAINBOW as a travel agency and that they choose Tour Operators (TO) over Online travel Agencies. Additionally, their characteristics (Total Bookings, ADR, Average PAX/room BB, BB\%, etc.), are similar to their cluster's centroids characteristics.

Make A Density Clusterer has the same cluster centroids as Simple K Means Clusterer and Filtered Clusterer. The only difference this Clusterer has from Filtered Clusterer and Simple K Means Clusterer is that they have different number of instances in each cluster. Filtered Clusterer and Simple K Means have 54 instances in Cluster 0 and 37 instances in Cluster 1, whereas Make A Density Clusterer has 63 instances in Cluster 0 and 28 instances in Cluster 1.

Make A Density Clusterer with 3 Clusters

Within cluster sum of squared errors: 255.64
Number of iterations: 5
Missing values globally replaced with mean/mode.
Wrapped clusterer: kMeans
Clustered Instances
056 (62\%)
123 (25\%)
2 12(13\%)

Log likelihood: -49.78718

Make A Density Clusterer with 4 Clusters

Within cluster sum of squared errors: $\mathbf{2 3 5 . 0 3}$
Number of iterations: 7
Missing values globally replaced with mean/mode.
Wrapped clusterer: kMeans
Clustered Instances
$0 \quad 20$ (22%)
115 (16%)
215 (16\%)
341 (45\%)
Log likelihood: -48.82826

Make A Density Clusterer with 5 Clusters

Within cluster sum of squared errors: 212.91
Number of iterations: 9
Missing values globally replaced with mean/mode.
Wrapped clusterer: kMeans
Clustered Instances
$0 \quad 21$ (23\%)
18 (9%)
2 17(19\%)
3 38(42\%)
4 (8\%)

Log likelihood: -46.80844

2.2.6 Canopy

According to Mai and Cheng (2016)[33]:
Canopy is one of the improved K-means algorithm, can be used to determine the number of clusters. With the introduction of Canopy clustering, the data set is divided into k sub-sets by setting the radius, and the sub-sets can be selected as the initial centers of K-means. Because the Canopy algorithm can reduce the running time of the clustering by reduce the count of comparisons, it will improve the computational efficiency.

The Canopy algorithm's analytical explanation of the steps are presented in chapter 1.5.8.

Canopy runs alternative number of clusters and then chooses automatically the number of the clusters it shall create.

Number of canopies (cluster centers) found: 16
T2 radius: 1,536
T1 radius: 1,919

Canopy divides Cretan Palm's booking sources into sixteen clusters. The characteristics (Country origin, Total Bookings, ADR TO/OTA, Average PAX/room $\mathrm{BB}, \mathrm{BB} \%$, etc.) of each cluster centroids are presented in the appendix. Each cluster has a centroid which is dominant and has similar characteristics with the other elements of the cluster. The elements present Attribute, Booking Source, Country, Average pax/room, TO/ OTA, ADR, Total Bookings, Total PAX Nights, Total Room Nights, BB, BB\%, HB, HB\%, AI, AI\% and Month as shown in the appendix: Canopy Clusterer| Creta Palm 2019

Note: The numbers in these brackets: Error! Reference source not found. show the instances that are appeared in the cluster.

2.3 WEKA Regression 2020 WEKA Algorithms

This chapter presents the algorithms that are performing well considering all the values as well as the predictions of the algorithms concerning the hotel's Total Bookings.

2.3.1 M5P trees

See Appendix: M5P Trees Algorithm| Creta Palm 2020
=== Summary ===
Correlation coefficient 0.9782
Mean absolute error 2.9395
Root mean squared error 4.0306
Relative absolute error 21.653 \%
Root relative squared error $\quad 20.5785 \%$
Total Number of Instances 52
Ignored Class Unknown Instances 4

M5P Trees Algorithm provides the best results from all algorithms. The high correlation coefficient $(0.9782>0.95)$ depicts that there is a strong relation between our data values and the values of the (M5P Trees) algorithm's prediction model and that our data do get close to the predictions of the model.

According to [17] "The M5P model tree is based on conventional decision tree associated to linear regression function at the leaves nodes".

M5P Trees is an interpretable, quite simple algorithm model. The model is understandable and explainable, as it is clear of how it arrived at a specific decision.

As far as the patterns and conclusions that M5P Trees' model are concerned for the year 2020: Booking Sources and countries have different type of influence in total bookings each time (either positive or negative depending on the sign of the number in front of each booking source or country). However, as we can see, the total overnight stays (total PAX nights) and the total room nights are having a positive correlation to the total bookings. Specifically, the positive coefficient in front of these variables depict that the higher the values of total PAX nights and total room nights, the higher the number of the total bookings.

M5P Trees' Algorithm predictions of the Total Bookings of some of the 2020 Booking Sources are presented below.
=== Predictions on test data $==$

inst\#	actual	predicted	error
ITAKA	26	26.882	0.882
BOOKING.COM	109	112.126	3.126
RAINBOW	13	9.022	-3.978
BOOKING.COM	27	26.096	-0.904
BOOKING.COM	56	48.765	-7.235
BRAVO TOURS	42	46.575	4.575
AURINKOMATKAT	29	26.306	-2.694
RAINBOW	31	36.464	5.464
EXPEDIA	32	19.268	-12.732
ITAKA	7	2.693	-4.307
SUNWEB	12	8.857	-3.143
ITAKA	47	53.013	6.013
TUI UK	2	1.344	-0.656
BRAVO TOURS	14	14.852	0.852
BLUE AEGEAN	15	10.339	-4.661
TUI DEUTSCHLAND	16	13.974	-2.026
AURINKOMATKAT	17	19.531	2.531
ITAKA	23	26.284	3.284
RAINBOW	25	20.637	-4.363
SUNWEB	20	19.123	-0.877
EXPEDIA	52	48.853	-3.147
ARHUS CHARTER	30	19.021	-10.979

Table 15: Predictions on test data- M5P trees

2.3.2 M5Rules

See Appendix: M5Rules Algorithm| Creta Palm 2020
$==$ Summary $==$

Correlation coefficient	0.978
Mean absolute error	2.9492
Root mean squared error	4.0424
Relative absolute error	21.7249%
Root relative squared error	20.639%
Total Number of Instances	52

M5Rules Algorithm provides the second best results from all algorithms. The high correlation coefficient $(0.978>0.95)$ depicts that there is a strong relation between our data values and the values of the (M5Rules) algorithm's prediction model and that our data do get close to the predictions of the model.

M5Rules generates a decision list for regression problems using separate-andconquer. In each iteration, it builds a model tree using M5 and makes the "best" leaf into a rule. ${ }^{108}$

M5Rules is an interpretable, quite simple algorithm model. The model is understandable and explainable, as it is clear of how it arrived at a specific decision.

As far as the patterns and conclusions that M5Rules' model are concerned for the year 2020: Booking Sources and countries have different type of influence in total bookings each time (either positive or negative depending on the sign of the number in front of each booking source or country). However, as we can see, the total overnight stays (total PAX nights) and the total room nights are having a positive correlation to the total bookings. Specifically, the positive coefficient in front of these variables depict that the higher the values of total PAX nights and total room nights, the higher the number of the total bookings.

M5Rules' Algorithm predictions of the Total Bookings of some of the 2019 Booking Sources are presented below.
=== Predictions on test data $==$

inst\#	actual	predicted	error
ITAKA	26	26.882	0.882
BOOKING.COM	109	112.126	3.126
RAINBOW	13	9.022	-3.978
BOOKING.COM	27	26.096	-0.904
BOOKING.COM	56	48.765	-7.235
BRAVO TOURS	42	46.575	4.575
AURINKOMATKAT	29	26.306	-2.694
RAINBOW	31	36.464	5.464
EXPEDIA	32	19.268	-12.732
ITAKA	7	2.693	-4.307
SUNWEB	12	8.857	-3.143

[^50]| ITAKA | 47 | 53.013 | 6.013 |
| :---: | :---: | :---: | :---: |
| TUI UK | 2 | 1.344 | -0.656 |
| BRAVO TOURS | 14 | 14.852 | 0.852 |
| BLUE AEGEAN | 15 | 10.339 | -4.661 |
| TUI DEUTSCHLAND | 16 | 13.974 | -2.026 |
| AURINKOMATKAT | 17 | 19.531 | 2.531 |
| ITAKA | 23 | 26.284 | 3.284 |
| RAINBOW | 25 | 20.637 | -4.363 |
| SUNWEB | 20 | 19.123 | -0.877 |
| EXPEDIA | 52 | 48.853 | -3.147 |
| ARHUS CHARTER | 30 | 19.021 | -10.979 |

Table 16: Predictions on test data- M5Rules

2.3.3 Linear Regression

See Appendix: Linear Regression Algorithm| Creta Palm 2020
=== Summary $===$
Correlation coefficient 0.9701
Mean absolute error 3.8488
Root mean squared error 4.7515
Relative absolute error $\quad 28.3516$ \%
Root relative squared error 24.259 \%
Total Number of Instances 52
Ignored Class Unknown Instances 4

Linear Regression provides a high correlation coefficient ($0.9701>0.95$) as well. As a consequence, there is a strong relation between our data values and the values of the algorithm's prediction model and that our data do get close to the predictions of the model.

Linear regression is a very simple regression algorithm that only supports regression type problems and is issued for prediction. The model uses the Akaike criterion for
model selection, and is able to deal with weighted instances. Linear Regression can only deal with numeric attributes. ${ }^{109}$

The model is understandable and explainable, as it is clear of how it arrived at a specific decision.

As far as the patterns and conclusions that linear regression's model are concerned for the year 2020: Booking Sources and countries have different type of influence in total bookings each time (either positive or negative depending on the sign of the number in front of each booking source or country). However, as we can see, the total overnight stays (total PAX nights) and total room nights are having a positive correlation to the total bookings. Specifically, the positive coefficient in front of these variables depict that the higher the values of total PAX nights and total room nights, the higher the number of the total bookings, which is something expected. On the other hand, overnight stays with breakfast (BB) and all-inclusive overnight stays (AI), seem to have a negative correlation to the total bookings as these variables have a negative coefficient in front of them. That is, that the more overnight stays with breakfast (BB) as well as the more all-inclusive overnight stays (AI), may lead to less total bookings.

High values of BB and AI may lead to in overall less total bookings, but that does not mean that they are not profitable. The hotel may examine the situation and can possibly raise the prices for overnight stays with breakfast or all-inclusive overnight stays, or confine the availability of those two, in order to have a higher number of total bookings.

According to the algorithm's results, August of 2020 seem to have a negative correlation with the total bookings, which means that in August the total bookings decreased. This is disproved from the original dataset, as August seems to have the highest number of total bookings in 2020. This depicts that the algorithm has its weaknesses and does not always provide the most accurate results.

Linear Regression's predictions of the Total Bookings of some of the 2020 Booking Sources are presented below.
=== Predictions on test data $===$

[^51]| inst\# | actual | predicted | error |
| :---: | :---: | :---: | :---: |
| ITAKA | 26 | 20.678 | -5.322 |
| BOOKING.COM | 109 | 105.515 | -3.485 |
| RAINBOW | 13 | 9.492 | -3.508 |
| BOOKING.COM | 27 | 25.894 | -1.106 |
| BOOKING.COM | 56 | 48.979 | -7.021 |
| BRAVO TOURS | 42 | 53.509 | 11.509 |
| AURINKOMATKAT | 29 | 26.846 | -2.154 |
| RAINBOW | 31 | 39.184 | 8.184 |
| EXPEDIA | 32 | 23.564 | -8.436 |
| ITAKA | 7 | -2.12 | -9.12 |
| SUNWEB | 12 | 4.849 | -7.151 |
| ITAKA | 47 | 55.995 | 8.995 |
| TUI UK | 2 | 0.135 | -1.865 |
| BRAVO TOURS | 14 | 9.008 | -4.992 |
| BLUE AEGEAN | 15 | 10.967 | -4.033 |
| TUI DEUTSCHLAND | 16 | 17.029 | 1.029 |
| AURINKOMATKAT | 17 | 17.968 | 0.968 |
| ITAKA | 23 | 28.564 | 5.564 |
| RAINBOW | 25 | 16.139 | -8.861 |
| SUNWEB | 20 | 21.542 | 1.542 |
| EXPEDIA | 52 | 55.352 | 3.352 |
| ARHUS CHARTER | 30 | 22.895 | -7.105 |

Table 17: Predictionss on test data- Linear Regession

2.3.4 SMO Reg

See Appendix: SMO Reg Algorithm| Creta Palm 2020
$===$ Summary $==$
Correlation coefficient 0.9577
Mean absolute error 4.658
Root mean squared error 5.7122
Relative absolute error $\quad 34.3121 \%$
Root relative squared error 29.164 \%
Total Number of Instances 52
Ignored Class Unknown Instances 4

SMO Reg Algorithm also provides a high correlation coefficient ($0.9577>0.95$). This means that there is a strong relation between our data values and the values of the (SMO Reg) algorithm's prediction model and that our data do get close to the predictions of the model.

As mentioned above, Sequential Minimal Optimization (SMO) method breaks the problem down into sub-problems that can be solved analytically (by calculating) rather than numerically (by searching or optimizing). ${ }^{110}$

SMO Reg is neither interpretable nor simple algorithm model, which means that one who does not have the necessary expertise in the field of technology or analytics cannot fundamentally understand how the model arrived in a certain output or how the output influences the output, by just reading the algorithm.

SMO Reg's Algorithm predictions of the Total Bookings of some of the 2020 Booking Sources are presented below.
$===$ Predictions on test data $==$

inst\#	actual	predicted	error
ITAKA	26	19.128	-6.872
BOOKING.COM	109	105.993	-3.007
RAINBOW	13	8.852	-4.148
BOOKING.COM	27	24.249	-2.751
BOOKING.COM	56	46.352	-9.648
BRAVO TOURS	42	53.009	11.009
AURINKOMATKAT	29	29.454	0.454
RAINBOW	31	41.94	10.94
EXPEDIA	32	21.759	-10.241
ITAKA	7	-4.945	-11.945
SUNWEB	12	7.574	-4.426
ITAKA	47	58.902	11.902
TUI UK	2	0.869	-1.131
BRAVO TOURS	14	11.427	-2.573
BLUE AEGEAN	15	7.027	-7.973
TUI DEUTSCHLAND	16	11.713	-4.287
AURINKOMATKAT	17	16.475	-0.525
ITAKA	23	30.089	7.089
RAINBOW	25	13.382	-11.618
SUNWEB	20	12.87	-7.13
EXPEDIA	52	55.743	3.743
ARHUS CHARTER	30	24.616	-5.384

Table 18: Predictions on test data- SMO Reg

[^52]
2.3.5 Gaussian Processes

$===$ Classifier model (full training set) $===$
Kernel used: ${ }^{111}$
Linear Kernel: $\mathrm{K}(\mathrm{x}, \mathrm{y})=\langle\mathrm{x}, \mathrm{y}\rangle$
All values shown based on: Normalize training data
Average Target Value : 0.1379675370501059
Inverted Covariance Matrix:
Lowest Value $=-0.26844055814504447$
Highest Value $=0.71814875178401$
Inverted Covariance Matrix * Target-value Vector:
Lowest Value $=-0.08407454635891383$
Highest Value $=0.1197270118367203$
$===$ Summary $==$
Correlation coefficient 0.9463
Mean absolute error 5.3462
Root mean squared error $\quad 6.7355$
Relative absolute error $\quad 39.3818$ \%
Root relative squared error $\quad 34.3884 \%$
Total Number of Instances 52
Ignored Class Unknown Instances 4

Gaussian Process provides lower correlation coefficient results ($0.9463<0.95$). However, there is still a positive relation between our data values and the values of the algorithm's prediction model and our data do get close to the predictions of the model.

Gaussian Process is a simple and interpretable model but it has not too many parameters. Gaussian Process is a simple and interpretable model but it has not too many parameters. Gaussian Process implements regression without hyper parameter-

[^53]tuning. This implementation applies normalization/standardization to the target attribute as well as the other attributes (if normalization/standardization is turned on). Missing values are replaced by the global mean/mode. Nominal attributes are converted to binary ones. ${ }^{112}$

Gaussian Processes' predictions of the Total Bookings of some of the 2020 Booking Sources are presented below.

inst\#	actual	predicted	error
ITAKA	26	26.485	0.485
BOOKING.COM	109	93.201	-15.799
RAINBOW	13	10.278	-2.722
BOOKING.COM	27	33.033	6.033
BOOKING.COM	56	48.686	-7.314
BRAVO TOURS	42	30.058	-11.942
AURINKOMATKAT	29	24.359	-4.641
RAINBOW	31	26.331	-4.669
EXPEDIA	32	19.681	-12.319
ITAKA	7	9.608	2.608
SUNWEB	12	6.254	-5.746
ITAKA	47	39.457	-7.543
TUI UK	2	1.91	-0.09
BRAVO TOURS	14	16.222	2.222
BLUE AEGEAN	15	11.632	-3.368
TUI DEUTSCHLAND	16	14.309	-1.691
AURINKOMATKAT	17	19.118	2.118
ITAKA	23	29.013	6.013
RAINBOW	25	17.296	-7.704
SUNWEB	20	11.729	-8.271
EXPEDIA	52	48.222	-3.778
ARHUS CHARTER	30	21.006	-8.994

Table 19: Predictions on test set- Gaussian Process

2.3.6 Meta Random Committee

[^54]Meta Random Committee's Classifier model contributes to the total bookings' predictions through the decision tree model that is presented in the appendix. The total bookings' number depends on parameters such as the booking sources and whether it is Tour Operators or Online Travel Agencies (TO/OTA), the customer's countries, the average daily rate (ADR), the total overnight stays per room (total room nights), the average number of people per room (average pax/room), the total overnight stays (total pax nights), the number of overnight stays with breakfast (BB) and its percentage ($\mathrm{BB} \%$), the number of overnight stays with dinner (HB) and its percentage (HB\%) and the "all inclusive" overnight stays (AI) and its percentage (AI\%) and the month of the lodging.

See Appendix: Meta Random Committee Algorithm| Creta Palm 2020
=== Summary $===$
Correlation coefficient 0.9142
Mean absolute error 5.2402
Root mean squared error 9.5939
Relative absolute error $\quad 38.6006 \%$
Root relative squared error $\quad 48.9824$ \%
Total Number of Instances 52
Ignored Class Unknown Instances 4

Meta Random Committee provides lower correlation coefficient results. However, there is still a positive relation between our data values and the values of the algorithm's prediction model and our data do get close to the predictions of the model.

This is a classifier for building an ensemble of randomizable base classifiers. Each base classifier is built using a different random number seed (but based on the same data). The final prediction is a straight average of the predictions generated by the individual base classifiers. ${ }^{113}$

Meta Random Committee's predictions of the Total Bookings of some of the 2020 Booking Sources are presented below.
$===$ Predictions on test data $==$

[^55]| inst\# | actual | predicted | error |
| :---: | :---: | :---: | :---: |
| ITAKA | 26 | 23.55 | -2.45 |
| BOOKING.COM | 109 | 55.1 | -53.9 |
| RAINBOW | 13 | 10.078 | -2.922 |
| BOOKING.COM | 27 | 23.502 | -3.498 |
| BOOKING.COM | 56 | 30.756 | -25.244 |
| BRAVO TOURS | 42 | 34.748 | -7.252 |
| AURINKOMATKAT | 29 | 18.3 | -10.7 |
| RAINBOW | 31 | 23.091 | -7.909 |
| EXPEDIA | 32 | 19.85 | -12.15 |
| ITAKA | 7 | 6.667 | -0.333 |
| SUNWEB | 12 | 7.467 | -4.533 |
| ITAKA | 47 | 50.6 | 3.6 |
| TUI UK | 2 | 1.087 | -0.913 |
| BRAVO TOURS | 14 | 15.5 | 1.5 |
| BLUE AEGEAN | 15 | 8.079 | -6.921 |
| TUI DEUTSCHLAND | 16 | 14.877 | -1.123 |
| AURINKOMATKAT | 17 | 14.722 | -2.278 |
| ITAKA | 23 | 25 | 2 |
| RAINBOW | 25 | 13.06 | -11.94 |
| SUNWEB | 20 | 14.894 | -5.106 |
| EXPEDIA | 52 | 49.745 | -2.255 |
| ARHUS CHARTER | 30 | 22.378 | -7.622 |

Table 20: Predictions on test data-Meta Random Cmmittee

2.3.7 Lazy K Star

$===$ Summary $==$

Correlation coefficient	0.9106
Mean absolute error	4.8774
Root mean squared error	9.3287

Relative absolute error $\quad 35.9285$ \%
Root relative squared error $\quad 47.6283 \%$
Total Number of Instances 52
Ignored Class Unknown Instances 4

Lazy K Star provides lower correlation coefficient results. However, there is still a positive relation between our data values and the values of the algorithm's prediction model and our data do get close to the predictions of the model.

Lazy K Star has not too many parameters. According to Sharma and Jain (2013): " K Star algorithm as an instance-based learner which uses entropy as a distance measure. The benefits are that it provides a consistent approach to handling of real valued attributes, symbolic attributes and missing values".

K- Star is a simple classifier, similar to K-Nearest Neighbour (K-NN).
For regression problems, it will find the k nearest neighbors and predict the value by calculating the mean value of the nearest neighbors. ${ }^{114}$

Lazy K Star's predictions of the Total Bookings of some of the 2020 Booking Sources are presented below.
$===$ Predictions on test data $==$

inst\#	actual	predicted	error
ITAKA	26	23.017	-2.983
BOOKING.COM	109	55.992	-53.008
RAINBOW	13	10.004	-2.996
BOOKING.COM	27	32	5
BOOKING.COM	56	46.354	-9.646
BRAVO TOURS	42	23.499	-18.501
AURINKOMATKAT	29	19.954	-9.046
RAINBOW	31	22.999	-8.001
EXPEDIA	32	27	-5
ITAKA	7	3.009	-3.991
SUNWEB	12	14.98	2.98
ITAKA	47	50.485	3.485
TUI UK	2	0.015	-1.985
BRAVO TOURS	14	14.575	0.575
BLUE AEGEAN	15	17.206	2.206
TUI DEUTSCHLAND	16	8.983	-7.017
AURINKOMATKAT	17	11.392	-5.608
ITAKA	23	29.928	6.928
RAINBOW	25	18.323	-6.677
SUNWEB	20	24.542	4.542

[^56]| EXPEDIA | 52 | 31.888 | -20.112 |
| :---: | :---: | :---: | :---: |
| ARHUS CHARTER | 30 | 17.975 | -12.025 |

Table 21: Predictions on test set- Lazy K Star

2.3.8 Random Forest

=== Summary $===$	
Correlation coefficient	0.9011
Mean absolute error	6.0915
Root mean squared error	10.8418
Relative absolute error	44.8714%
Root relative squared error	55.3535%
Total Number of Instances	52
Ignored Class Unknown Instances	4

Random Forest is bagging with 100 iterations and provides lower correlation coefficient results as well. However, there is still a positive relation between our data values and the values of the algorithm's prediction model and our data do get close to the predictions of the model.

According to E. Kleinberg (n.d) [31]: Random forests or random decision forests are an ensemble learning method for classification, regression and other tasks that operates by constructing a multitude of decision trees at training time. Random forests are an ensemble learning method for classification (and regression) that operate by constructing a multitude of decision trees at training time and outputting the class that is the mode of the classes output by individual trees.

Random Forest is not an interpretable model and it has not too many parameters for analysis. So, one who does not have the necessary expertise in the field of technology or analytics cannot fundamentally understand how the model arrived in a certain output or how the output influences the output, by just reading the algorithm.

Random Forest's predictions of the Total Bookings of some of the 2020 Booking Sources are presented below.
$===$ Predictions on test data $==$

inst\#	actual	predicted	error
ITAKA	26	25.066	-0.934
BOOKING.COM	109	45.244	-63.756
RAINBOW	13	12.045	-0.955
BOOKING.COM	27	30.985	3.985
BOOKING.COM	56	44.259	-11.741
BRAVO TOURS	42	28.863	-13.137
AURINKOMATKAT	29	17.04	-11.96
RAINBOW	31	23.128	-7.872
EXPEDIA	32	18.216	-13.784
ITAKA	7	14.132	7.132
SUNWEB	12	9.581	-2.419
ITAKA	47	37.477	-9.523
TUI UK	2	1.816	-0.184
BRAVO TOURS	14	14.832	0.832
BLUE AEGEAN	15	7.985	-7.015
TUI DEUTSCHLAND	16	14.674	-1.326
AURINKOMATKAT	17	13.412	-3.588
ITAKA	23	25.884	2.884
RAINBOW	25	17.065	-7.935
SUNWEB	20	17.344	-2.656
EXPEDIA	52	35.752	-16.248
ARHUS CHARTER	30	24.263	-5.737

Table 22: Predictions on test data- Random Forest

2.3.9 Multilayer Perceptron

See Appendix: Multilayer Perceptron Algorithm| Creta Palm 2020
=== Summary $===$

Correlation coefficient
Mean absolute error 0.9049

Mean absolate error 5.4974

Root mean squared error 8.3199

Relative absolute error 40.4953 \%

Root relative squared error 42.478 \%

Total Number of Instances 52

Ignored Class Unknown Instances 4

Multilayer Perceptron provides low correlation coefficient results as well. However, there is still a positive relation between our data values and the values of the algorithm's prediction model and our data do get close to the predictions of the model.

Multilayer Perceptron is neither interpretable nor simple algorithm model so, one who does not have the necessary expertise in the field of technology or analytics cannot fundamentally understand how the model arrived in a certain output or how the output influences the output, by just reading the algorithm.

The Multi-Layer Perceptron algorithm is also called artificial neural network and is a complex algorithm to use for predictive modeling because there are so many configuration parameters that can only be tuned effectively through intuition and a lot of trial and error. ${ }^{115}$ As mentioned in the first chapter, this is a classifier that uses backpropagation to learn a multi-layer perceptron to classify instances. The nodes in this network are all sigmoid, except for when the class is numeric, in which case the output nodes become unthresholded linear units. ${ }^{116}$

Multilayer Perceptron's Algorithm predictions of the Total Bookings of some of the 2020 Booking Sources are presented below.
$===$ Predictions on test data $==$

inst\#	actual	predicted	error
ITAKA	26	21.989	-4.011
BOOKING.COM	109	65.167	-43.833
RAINBOW	13	8.583	-4.417
BOOKING.COM	27	20.91	-6.09
BOOKING.COM	56	51.337	-4.663
BRAVO TOURS	42	47.227	5.227
AURINKOMATKAT	29	27.209	-1.791
RAINBOW	31	25.555	-5.445
EXPEDIA	32	23.341	-8.659
ITAKA	7	12.797	5.797

[^57]| SUNWEB | 12 | 10.571 | -1.429 |
| :---: | :---: | :---: | :---: |
| ITAKA | 47 | 53.93 | 6.93 |
| TUI UK | 2 | 6.141 | 4.141 |
| BRAVO TOURS | 14 | 20.899 | 6.899 |
| BLUE AEGEAN | 15 | 7.29 | -7.71 |
| TUI DEUTSCHLAND | 16 | 17.466 | 1.466 |
| AURINKOMATKAT | 17 | 25.118 | 8.118 |
| ITAKA | 23 | 29.706 | 6.706 |
| RAINBOW | 25 | 11.194 | -13.806 |
| SUNWEB | 20 | 7.703 | -12.297 |
| EXPEDIA | 52 | 65.968 | 13.968 |
| ARHUS CHARTER | 30 | 31.41 | 1.41 |

Table 23: Predictions on test data- Multilayer Perceptron

See in the Appendix: Classifiers with low or negative correlation coefficient (2020): A lower or negative correlation coefficient depicts that there is a weak relation (or negative relation) between our data and the algorithm's prediction model and that the data do not get close to the predictions of the model. This practically means that for the new oncoming agencies that have similar characteristics as those 2020's agencies, there is a low probability that the total bookings are similar as those predicted from the algorithm (or that the total bookings depict opposite results from those predicted from the algorithm - as far as negative correlation coefficient results are concerned-).

2.4 WEKA Clustering 2020
 WEKA Clusterers

As mentioned before, Simple K-Means, EM, Make a Density, Farthest First, Canopy, Filtered are the clusterers that are used in order to group the travel agencies that presented similarities and disjoin those that displayed dissimilarities. The aim of clustering is to find distinct groups within a given dataset.

2.4.1 Simple K Means

As mentioned in the first chapter (an analytical explanation is presented in chapter 60), Simple Means is a distant-based clusterer that minimizes the squared distance from each instance to their cluster center, after defining k centroids. It is one of the best unsupervised algorithms. For each different number of seeds, there are different clustering results. ${ }^{117118}$

Simple K Means uses random numbers and by using the same seed, we will always get the same random numbers. If we run Simple K Means over the same data twice, with the same seed, we will get exactly the same results. For different number of seeds, the results will vary each time we run Simple K Means.

In our dataset we use the same seed.
Simple K Means Clusterer, presents a different squared error depending on the number of clusters we wish to create. The bigger the number of clusters, the lower the value of squared errors within the clusters.

In order to cross-validate this, we choose different number of clusters manually. The results of each of the clusterings, depending on their number of clusters are presented below.

Simple K Means with 2 Clusters

Number of iterations: 4

Within cluster sum of squared errors: 159.36

Missing values globally replaced with mean/mode.

	Final Cluster Centroids		
Attribute	Full Data (56.0)	0 (35.0)	1 (21.0)
Booking Source	ARHUS CHARTER	SELF BOOKINGS	TUI Deutschland
Country	Vary	Vary	Germany
Average pax/room	2.3586	2.3561	2.2937
TO/ OTA	TO	TO	TO
ADR	73.5381	65.7399	86.5352

[^58]| Total Bookings | 15.0385 | 13.2615 | 18 |
| :---: | :---: | :---: | :---: |
| Total PAX Nights | 270.2642 | 220.8226 | 352.6667 |
| Total Room Nights | 108.3774 | 91.8609 | 135.9048 |
| BB | 142.16 | 83.4846 | 239.9524 |
| BB\% | 0.4362 | 0.379 | 0.5315 |
| HB | 38.9184 | 17.4146 | 74.758 |
| HB\% | 0.1671 | 0.0913 | 0.2935 |
| AI | 105.98 | 145.968 | 39.3333 |
| AI\% | 0.3901 | 0.5243 | 0.1664 |
| Month | JULY 2020 | SEPTEMBER 2020 | AUGUST 2020 |

Table 24: Final Cluster Centroids- Simple K- Means

Clustered Instances (number of instances detected in each cluster):

$$
\begin{array}{ll}
0 & 35(63 \%) \\
1 & 21(38 \%)
\end{array}
$$

Simple K Means divides Cretan Palm's booking sources into two clusters. The first cluster's centroid is SELF BOOKINGS and the second cluster's centroid is TUI Deutschland.

Centroids of cluster 0 depict that the customers in cluster 0 have as dominant characteristics that they come from various different countries (Vary), that they make their own bookings (SELF BOOKINGS) and that they choose Tour Operators (TO) over Online travel Agencies. Additionally, their characteristics (Total Bookings, ADR, Average PAX/room BB, BB\%, etc.), are similar to the their cluster's centroids characteristics.

The second cluster's centroids depict that the customers in cluster 1 have as dominant characteristics that they come from Germany, that they choose TUI Deutschland as a travel agency and that they choose Tour Operators (TO) over Online travel Agencies. Additionally, their characteristics (Total Bookings, ADR, Average PAX/room BB, BB\%, etc.), are similar to their cluster's centroids characteristics.

Simple K Means with 3 Clusters

See the clustering results in the appendix: Simple K Means with 3 Clusters| Creta Palm 2020

Number of iterations: 4
Within cluster sum of squared errors: 143.02
Missing values globally replaced with mean/mode.
Clustered Instances
$0 \quad 25$ (45\%)
1 13(23\%)
218 (32\%)

Simple K Means with 4 Clusters

See the clustering results in the appendix: Simple K Means with 4 Clusters| Creta Palm 2020

Number of iterations: 6
Within cluster sum of squared errors: $\mathbf{1 2 5 . 2 9}$
Missing values globally replaced with mean/mode.
Clustered Instances
$0 \quad 17$ (30\%)
1 12(21\%)
2 16(29\%)
311 (20\%)

Simple K Means with 5 Clusters

See the clustering results in the appendix: Simple K Means with 5 Clusters \mid Creta Palm 2020

Number of iterations: 7
Within cluster sum of squared errors: 115.67
Missing values globally replaced with mean/mode.
Clustered Instances

016 (29\%)
19 (16%)
2 13(23\%)
3 (13\%)

2.4.2 EM

"EM (Expectation Maximization) is a probabilistic clusterer and can be used for unsupervised learning. Like Naive Bayes, it makes the assumption that all attributes are independent random variables." (Witten I.H., et al., (1999))

As mentioned in the first chapter (an analytical explanation is presented in chapter 1.5.2), unlike K-Means that takes one point and places it to the one cluster or the other, EM computes the probability that it goes into the a or b cluster. This probability never gets zero or one, it is always a number between zero and one ($0<$ probability EM<1).

The model just finds that there are distinguished groups in the dataset that behave differently. EM run alternative number of clusters and then chooses automatically the number of the clusters it shall create.

EM works for numeric attributes providing mean and standard deviation results and value probability results respectively. Log likelihood is an overall quality measure and is increased by each iteration. ${ }^{119}$

Number of clusters selected by cross validation: 3
Number of iterations performed: 4

	0 (0.28)	1 (0.55)	2 (0.17)
Booking Source			
ARHUS CHARTER	3	3	1
AURINKOMATKAT	2	4	1
BLUE AEGEAN	2	4	1
BOOKING.COM	1	1.983	4.017
BRAVO TOURS	4.0041	1.9539	1.042
EXPEDIA	1	1.7907	4.2093
ITAKA	3.0004	1.9877	2.0119
Jet2Holidays	1.0093	3.9984	1.9923

[^59]| RAINBOW | 4.0002 | 1 | 1.9998 |
| :---: | :---: | :---: | :---: |
| SELF BOOKINGS | 1 | 5 | 1 |
| SUNWEB | 4 | 2 | 1 |
| TUI Deutschland | 1 | 5 | 1 |
| TUI NL | 1.8652 | 4.1343 | 1.0006 |
| TUI UK | 1 | 4.9996 | 1.0004 |
| [total] | 29.8792 | 44.8476 | 23.2732 |
| Country | | | |
| Denmark | 6.0041 | 3.9539 | 1.042 |
| Finland | 2 | 4 | 1 |
| Romania | 2 | 4 | 1 |
| Vary | 1 | 6.7737 | 7.2263 |
| Poland | 6.0006 | 1.9877 | 3.0117 |
| UK | 1.0093 | 7.998 | 1.9927 |
| Netherlands | 4.8652 | 5.1343 | 1.0006 |
| Germany | 1 | 5 | 1 |
| [total] | 23.8792 | 38.8476 | 17.2732 |

Table 25: Clustering-EM

See Appendix: EM Clustering Model (continued)| Creta Palm 2020

EM divides Cretan Palm's booking sources into three clusters. For each of the attributes, there is a probability that the output is going to be this certain attribute. This probability is calculated if you divide the number of the attribute by the total attributes in each of the clusters. For example:

ARHUS CHARTER in cluster 0 , (3) have a 10% probability (3/29.8792*) of being cluster's 0 centroid.
*[total: 29.8792]
BRAVO TOURS in cluster 0 (4.0041) has the highest probability $(13.4 \%=4.0041 /$ 29.8792) of being cluster's 0 centroid. That is, BRAVO TOURS has a higher probability that it is chosen among the customers of the first cluster.

The same procedure applies to the other clusters as well.
TUI UK in cluster 1 (4.9996) has the highest probability ($11.14 \%=4.9996$ /44.8476) of being cluster's 1 centroid. That is, TUI UK has a higher probability that it is chosen among the customers of the second cluster.

EXPEDIA in cluster 2 (4.2093) has the highest probability ($18 \%=4.2093$ / 23.2732) of being cluster's 2 centroid. That is, EXPEDIA has a higher probability that it is chosen among the customers of the third cluster.

Additionally, it is 25% probable that cluster's 0 centroid is Denmark ($6.0041 / 23.8792=25 \%), 20.5 \%$ probable that cluster's 1 centroid is UK ($7.998 / 38.8476=20.5 \%$) and 41.8% probable that cluster's 2 centroid is Varying (7.2263/17.2732= 41.8\%).

Clustered Instances (number of instances detected in each cluster):

016 (29\%)
131 (55\%)
2 (16%)

Log likelihood: -42.06695

2.4.3 Make A Density

According

to
[29]:
Density-Based Clustering refers to unsupervised learning methods that identify distinctive groups/clusters in the data, based on the idea that a cluster in a data space is a contiguous region of high point density, separated from other such clusters by contiguous regions of low point density. The data points in the separating regions of low point density are typically considered noise/outliers.

As mentioned in the first chapter (an analytical explanation is presented in chapter 1.5.7),

- The clusterer randomly chooses the core points and then for each core point that is not already assigned to a cluster, creates a new cluster.
- The clusterer finds all its density connected points and assigns them to the same cluster as the core point.
- Then it iterates through the remaining unvisited points in the dataset.
- The core points that do not belong to any cluster are treated as outliers or noise points. ${ }^{120}$

Make A Density Clusterer, also presents a different squared error depending on the number of clusters we wish to create. The bigger the number of clusters, the lower the value of squared errors within the clusters.

In order to cross-validate this, we choose different number of clusters manually. The results of each of the clusterings depending on their number of clusters are presented below.

Make A Density Clusterer has the same cluster centroids as Simple K Means Clusterer.

Make A Density Clusterer with 2 Clusters

See the clustering results in the appendix: Make A Density Based Clusterer fitted estimators| Creta Palm 2020

Number of iterations: 4
Within cluster sum of squared errors: 159.367
Missing values globally replaced with mean/mode.

	Final Cluster Centroids		
Attribute	Full Data (56.0)	0 (35.0)	1
Booking Source	ARHUS CHARTER	SELF BOOKINGS	TUI Deutschland
Country	Vary	Vary	Germany
Average pax/room	2.3586	2.3561	2.3627
TO/ OTA	TO	TO	TO
ADR	73.5381	65.7399	86.5352
Total Bookings	15.0385	13.2615	18
Total PAX Nights	270.2642	220.8226	352.6667
Total Room Nights	108.3774	91.8609	135.9048

[^60]| BB | 142.16 | 83.4846 | 239.9524 |
| :---: | :---: | :---: | :---: |
| BB\% | 0.4362 | 0.379 | 0.5315 |
| HB | 38.9184 | 17.4146 | 74.758 |
| HB\% | 0.1671 | 0.0913 | 0.2935 |
| AI | 105.98 | 145.968 | 39.3333 |
| AI\% | 0.3901 | 0.5243 | 0.1664 |
| Month | JULY 2020 | SEPTEMBER 2020 | AUGUST 2020 |

Table 26: Final Cluster Centroids- Make A Density Based Clusterer

Clustered Instances (number of instances detected in each cluster):

```
040(71%)
1 17(29%)
```

Log likelihood: -47.15

Make A Density Based Clusterer divides Cretan Palm's booking sources into two clusters. The first cluster's centroid is SELF BOOKINGS and the second cluster's centroid is TUI Deutschland.

Centroids of cluster 0 depict that the customers in cluster 0 have as dominant characteristics that they come from various different countries (Vary), that they make their own bookings (SELF BOOKINGS) and that they choose Tour Operators (TO) over Online travel Agencies. Additionally, their characteristics (Total Bookings, ADR , Average PAX/room BB, BB\%, etc.), are similar to the their cluster's centroids characteristics.

The second cluster's centroids depict that the customers in cluster 1 have as dominant characteristics that they come from Germany, that they choose TUI Deutschland as a travel agency and that they choose Tour Operators (TO) over Online travel Agencies. Additionally, their characteristics (Total Bookings, ADR, Average PAX/room BB, $\mathrm{BB} \%$, etc.), are similar to their cluster's centroids characteristics.

The only difference this Clusterer has from Simple K Means Clusterer is that they have different number of instances in each cluster. Simple K Means Clusterer have 35
instances in Cluster 0 and 21 instances in Cluster 1, whereas Make A Density Clusterer has 40 instances in Cluster 0 and 17 instances in Cluster 1.

Make A Density Clusterer with 3 Clusters

Within cluster sum of squared errors: 143.02
Number of iterations: 4
Missing values globally replaced with mean/mode.
Wrapped clusterer: kMeans
Clustered Instances
036 (64\%)
111 (20\%)
2 (16%)
Log likelihood: -46.90959

Make A Density Clusterer with 4 Clusters

Within cluster sum of squared errors: $\mathbf{1 2 5 . 2 9}$
Number of iterations: 6
Missing values globally replaced with mean/mode.
Wrapped clusterer: kMeans
Clustered Instances
$0 \quad 23$ (41\%)
14 (25\%)
28 (14\%)
311 (20\%)
Log likelihood: -45.37988

Make A Density Clusterer with 5 Clusters

Within cluster sum of squared errors: 115.67

Number of iterations: 7
Missing values globally replaced with mean/mode.
Wrapped clusterer: kMeans
Clustered Instances
019 (34\%)
1 (16%)
2 (13%)
3 (16%)
4 12 (21\%)
Log likelihood: -42.89493

2.4.4 Filtered Clusterer

According
to
[20][20]:
This algorithm is primarily based completely on storing the multidimensional data points within a tree. The process regarding the tree is like a binary tree method, as represents a hierarchical subdivision on its data point set's bounding box the usage of their axis after which splitting is aligned by way on hyper planes. Each node on the tree is related with a closed field, referred to as the cell.

The results are the same as those of Simple K Means for all the number of clusters, which is expected, as Filtered Clusterer uses Simple K Means in order to proceed to the outcome.

Filtered Clusterer with 2 Clusters

Number of iterations: 4
Within cluster sum of squared errors: 159.36
Missing values globally replaced with mean/mode.

	Final Cluster Centroids		
Attribute	Full Data	0	1
(56.0)	(35.0)	(21.0)	
Booking Source	ARHUS CHARTER	SELF BOOKINGS	TUI Deutschland

Country	Vary	Vary	Germany
Average pax/room	2.3586	2.3561	2.2937
TO/ OTA	TO	TO	TO
ADR	73.5381	65.7399	86.5352
Total Bookings	15.0385	13.2615	18
Total PAX Nights	270.2642	220.8226	352.6667
Total Room Nights	108.3774	91.8609	135.9048
BB	142.16	83.4846	239.9524
BB\%	0.4362	0.379	0.5315
HB	38.9184	17.4146	74.758
HB\%	0.1671	0.0913	0.2935
AI	105.98	145.968	39.3333
AI\%	0.3901	0.5243	0.1664
Month	JULY 2020	SEPTEMBER 2020	AUGUST 2020

Table 27: Final Cluster Centroids- Filtered Clusterer

Clustered Instances (number of instances detected in each cluster):
035 (63\%)
121 (38\%)

Filtered Clusterer divides Cretan Palm's booking sources into two clusters. The first cluster's centroid is SELF BOOKINGS and the second cluster's centroid is TUI Deutschland.

Centroids of cluster 0 depict that the customers in cluster 0 have as dominant characteristics that they come from various different countries (Vary), that they make their own bookings (SELF BOOKINGS) and that they choose Tour Operators (TO) over Online travel Agencies. Additionally, their characteristics (Total Bookings, ADR , Average $\mathrm{PAX} /$ room $\mathrm{BB}, \mathrm{BB} \%$, etc.), are similar to the their cluster's centroids characteristics.

The second cluster's centroids depict that the customers in cluster 1 have as dominant characteristics that they come from Germany, that they choose TUI Deutschland as a travel agency and that they choose Tour Operators (TO) over Online travel Agencies.

Additionally, their characteristics (Total Bookings, ADR, Average PAX/room BB, $\mathrm{BB} \%$, etc.), are similar to their cluster's centroids characteristics.

Filtered Clusterer provides the same cluster centroids as Simple K Means Clusterer and Make A Density Clusterer.

2.4.5 Farthest First

According
to[24]:
Farthest first finds its variant of K-means. Each cluster center point furthermost from the existing cluster center is placed by the K-mean, and this point must be positioned within the data area. So that it greatly speeds up the clustering in most cases, but it needs less move and adjustment for their fast performance.

In order to examine Farthest First Clusterer's accuracy, we choose different number of clusters manually.

Farthest First Clusterer with 2 Clusters

	Cluster centroids	
	Cluster 0	Cluster 1
Booking Source	TUI Deutschland	BOOKING.COM
Country	Germany	Vary
Average pax/room	2.28	3.11
TO/ OTA	TO	OTA
ADR	117.18	123.27
Total Bookings	9	109
Total PAX Nights	194	2155
Total Room Nights	85	691
BB	0	1652
BB\%	0	0.76
HB	148	503
HB\%	0.76	0.23
AI	46	10
AI\%	0.23	0.004

Month \quad August $2020 \quad$ August 2020
Table 28: Cluster Centroids- Farthest First

Clustered Instances (number of instances detected in each cluster):
0 52 (93\%)
15 (7%)
Farthest First divides Cretan Palm's booking sources into two clusters. The first cluster's centroid is TUI Deutschland and the second cluster's centroid is BOOKING.COM.

Centroids of cluster 0 depicts that the customers in cluster 0 have as dominant characteristics that they choose TUI Deutschland as their travel agency, that they come from Germany and that they choose Tour Operators (TO) over Online travel Agencies. Additionally, their characteristics (Total Bookings, ADR, Average $\mathrm{PAX} /$ room $\mathrm{BB}, \mathrm{BB} \%$, etc.), are similar to their cluster's centroids characteristics.

The second cluster's centroids depict that the customers in cluster 1 , have as dominant characteristics that they come from various different countries, that they choose Booking.com as a travel agency and that they choose Online travel Agencies (OTA) over Tour Operators (TO). Additionally, their characteristics (Total Bookings, ADR, Average $\mathrm{PAX} /$ room $\mathrm{BB}, \mathrm{BB} \%$, etc.), are similar to their cluster's centroids characteristics.

Farthest First Clusterer with 3 Clusters

Appendix: Farthest First with 3 Clusters| Creta Palm 2020

Farthest First Clusterer with 4 Clusters

Appendix: Farthest First with 4 Clusters|Creta Palm 2020

Farthest First Clusterer with 5 Clusters

Appendix: Farthest First with 5 Clusters| Creta Palm 2020

2.4.6 Canopy

According to Mai and Cheng (2016)[33]: Canopy is one of the improved K-means algorithm, can be used to determine the number of clusters. With the introduction of Canopy clustering, the data set is divided into k sub-sets by setting the radius, and the sub-sets can be selected as the initial centers of K-means. Because the Canopy algorithm can reduce the running time of the clustering by reduce the count of comparisons, it will improve the computational efficiency.

The Canopy algorithm's analytical explanation of the steps are presented in chapter 1.5.8.

Canopy runs alternative number of clusters and then chooses automatically the number of the clusters it shall create.

Number of canopies (cluster centers) found: 14
T2 radius: 1,504
T1 radius: 1,880
Canopy divides Cretan Palm's booking sources into fourteen clusters. The characteristics (Country origin, Total Bookings, ADR TO/OTA, Average PAX/room BB, BB\%, etc.) of each cluster's centroids are presented in the appendix. Each cluster its dominant centroids. The elements in each cluster, have similar characteristics with these centroids. The elements present Attribute, Booking Source, Country, Average pax/room, TO/ OTA, ADR, Total Bookings, Total PAX Nights, Total Room Nights, $\mathrm{BB}, \mathrm{BB} \%, \mathrm{HB}, \mathrm{HB} \%, \mathrm{AI}, \mathrm{AI} \%$ and Month as shown in the appendix: Canopy Clusterer| Creta Palm 2020.

Note: The numbers in these brackets: Error! Reference source not found. show the instances that are appeared in the cluster.

Conclusions

M5Rules, M5P Trees and SMO Reg are the algorithms that provide the best results for the year 2019. M5Trees, M5Rules and Linear Regression Reg are the algorithms that provide the best results for the year 2020.

These algorithms provided a high correlation coefficient (>0.97) which depicts a strong relation between our data values and the values of the algorithms' prediction model. So, our data do get close to the predictions of these models.

WEKA as well other machine learning software systems, provide us the opportunity to predict the results of a new oncoming dataset that has similar characteristics with our already existing dataset and there is a high probability that the dataset values are similar to those predicted from the algorithm.

Chapter 3

Use Case: NN Hellas

NN Hellas is part of the NN Group and is a private health and life insurance provider. NN Hellas created questionnaire in order to gather information and have a better understanding of its customers' attitude, perception and awareness of insurances (life, health and house insurances).

A hundred and eighty-two (182) NN customers gave answers about their superseding ability, their insurance type, the significance of their insurance package, the safety offered from their insurance package, the level of satisfaction from the public insurance health benefits, their wish for extra benefits from their health insurance and their wish for covering certain expenditures after they receive their pension.

Specifically, the questionnaire includes the following alternative answers:

- I have a car superseding ability
- I have a motorbike superseding ability
- I have a house superseding ability
- I have a business superseding ability
- I do not have superseding ability
- I have/had Business Insurance
- I have/had Civil Liability Insurance
- I have/had Vessel Insurance
- I have/had Health Insurance
- I have/had everyday needs Insurance
- I have/had Business House Insurance
- I have/had Family Insurance
- I have/had Cash Insurance
- I have/had Child Insurance
- I have/had Car Insurance
- I have/had Motorbike Insurance
- I have never had Insurance
- The Fixed Costs would not be covered in case of a possible loss of mine
- The Loans would not be covered in case of a possible loss of mine
- Children studies would not be covered in case of a possible loss of mine
- Tax obligations would not be covered in case of a possible loss of mine
- No needs to leave behind in case of a possible loss of mine
- Happiness would not be covered in case of a possible loss of mine
- Purchases in non-basic necessities would not be covered in case of a possible loss of mine
- I want a risk protection
- A satisfying amount of money for the support of my beloved ones
- I am not at all satisfied from the public insurance health benefits
- I am kind of satisfied from the public insurance health benefits
- I am quite satisfied from the public insurance health benefits
- I am absolutely satisfied from the public insurance health benefits
- I would choose a Public Hospital in Athens or Thessaloniki for a mild health issue
- I would choose a big private hospital in Athens or Thessaloniki for a mild health issue
- I would choose a local private hospital for a mild health issue
- I would choose a local public hospital for a mild health issue
- I would choose a public hospital in Athens or Thessaloniki for serious health issues
- I would choose a big private hospital of Athens or Thessaloniki for serious health issues
- I would choose a local private hospital for serious health issues
- I would choose a local public hospital for serious health issues
- I would choose a foreign hospital for serious health issues
- I wish for private health services coupled with my insurance
- I would like diagnostic tests to be included to my private insurance
- I would like doctor visits to be included to my private insurance
- I would like hospital care to be included to my private insurance
- I would like Annual check up to be included to my private insurance
- I would like to go abroad to be included to my private insurance
- I would like ambulance to be included to my private insurance
- I would like a team insurance
- I will not get a pension
- I will get a small pension
- I will get a satisfying pension
- I have managed for a lump sum or supplementary pension
- I have managed for a lump sum or supplementary pension through my bank savings
- I have managed for a lump sum or supplementary pension through Pension scheme purchase
- I have managed for a lump sum or supplementary pension through Life insurance program and savings plan
- I have managed for a lump sum or supplementary pension through Real estate purchase for rent or exploitation
- I am about to take immediate care of a lump sum or supplementary pension
- I have managed for a lump sum or supplementary pension through Pension scheme or savings plan purchase
- Even if I wanted it I cannot take care of a lump sum or supplementary pension
- It is of a major importance to support my children and grandchildren after I receive my pension
- It is of a major importance to cover my healthcare after I receive my pension
- It is of a major importance to cover my pleasure trips after I receive my pension
- It is of a major importance to cover my house purchases after I receive my pension
- It is of a major importance to cover my fixed costs after I receive my pension
- It is of a major importance to cover my everyday needs after I receive my pension
- I am interested in estimating my retirement

A real problem that the insurance sector is addressing in Greece is that, Greeks do not have developed the so-called 'insurance consciousness in contrast to the other European citizens. This means, that the percentage of Greece's GDP that is concerning the insurance sector is much lower than that of other European countries (Greece's GDP concerning insurances is about 2%, whereas the average percentage of GDP in other European countries is approximately 7\%).

This means that companies do not pay attention to the data they select from their customers, or they do not even select quality data, make predictions, nor can they identify useful patterns and rules from a certain amount of data. This, makes them more susceptible to uncertainty and risk, as they are not able to focus on the key variables that influence their companies' attributes.

This issue can be solved through collecting and analyzing data, in order to collect the necessary information from the customers, analyze their profile and make certain predictions and clusterings about them. Weka Machine Learning Software, can transform the dataset into meaningful patterns with the help of integrated algorithms and help us make predictions on certain variables as well as clusterings for these customers or future customers with a similar profile. WEKA, helps us to better predict the results of a new oncoming dataset that has similar characteristics with our already existing dataset and there is a high probability that the dataset values are similar to those predicted from the algorithm.

NN's dataset needed a further data preparation/training in order to bring it in a suitable format and train a classifier (the variable we want to predict). In this case, the classifier is the customers' interest to estimate their retirement.

After training, the dataset is loaded in Weka, where further data preparations is made in order to bring it in a suitable format and therefore, to create prediction and clustering models. These models are developed through the integrated machine learning algorithms that are chosen each time. These algorithms provide patterns and consequently, useful prediction results for NN. The results depict that a new upcoming dataset, with similar characteristics with our already existing dataset, can be better predicted and there is a high probability that the new dataset values are similar to those predicted from the algorithms.

Cross-validation method is used in order to value the classifiers, by using the number of folds entered in the corresponding field. In our 10 -fold cross-validation, the original sample is randomly partitioned into 10 subsamples. Of the 10 subsamples, a single subsample is retained as the test set, and the remaining 9 subsamples are used as training set ${ }^{121}$. The cross-validation process is repeated 10 times (the folds), with each of the 10 subsamples used exactly once as the validation data. The 10 results from the folds then can be averaged (or otherwise combined) to produce a single estimation.

Supplied test set is used in order to make predictions for new unseen data from the set of instances loaded from the file.

For clustering outputs, the training set is used, so that, the cluster is the same set that the clusterer is trained on.

Chapter 3 presents the predictions made about the customers' interest for retirement estimation as well as the clusterings made through weka software system based on the dataset given.

3.1 WEKA Classification

WEKA Algorithms

As mentioned above, for nominal values, WEKA detects Correctly Classified Instances, Incorrectly Classified Instances, Kappa statistic, Mean absolute error, Root mean squared error, Relative absolute error, Root relative squared error, Total Number of Instances, TP Rate, FP Rate, Precision, Recall, F-Measure.

Precision, Recall, F-Measure and ROC Area give a really good picture of how well things are performing.

ROC Area (Receiver Operating Characteristic-Area Under the Curve) shows us which items are correctly put in their classes. An "optimal" classifier will have ROC area values approaching 1, with 0.5 being comparable to "random guessing" (similar to a Kappa statistic of 0). A value above 0.8 is considered a strong and accurate result.

[^61]ROC uses True Positives and False Positive Rates as the axes that we are looking out, to draw a curve.

PRC (Precision on Recall): Works better for unbalanced data. ROC tends to be in general a better choice, because PRC do not really count the true positives.

The Confusion Matrix is another way of detecting how well a model is doing.

Confusion Matrix

a b <-- classified as
aa ba| $\mathrm{a}=0$
$\mathrm{ab} \mathrm{bb} \mid \mathrm{b}=1$

Correctly Classified Instances is a good measurement of our model's performance, but kappa statistic value, detailed accuracy by class and confusion matrix should also be taken into consideration in order to depict how well the model is performing.

So, we prefer algorithms with high correctly classified instances and positive kappa statistic. It is of a major importance that every element is classified and not all instances are in one class. If we have 90% of the instances in one class, then we are right 90% of the times, but the model is not reliable. Furthermore, if $\mathrm{ba}=0$ and $\mathrm{bb}=0$, this means that nothing is classified as b and that the model is performing really poor in class b. So, we suggest that the company that brought the results do something about it in order to get better results.

This chapter presents the algorithms that are performing well considering all the values as well as the predictions of the algorithms concerning the customers' willingness to estimate their retirement. The error predictions indicate that the dataset is unbalanced and there is no great diversity on customers' answers.

In the appendix are presented the algorithms that presented poor performance.

3.1.1 Random Tree

See Appendix: Random Tree Algorithm| NN

The algorithm rules found, that the customers' interest of retirement estimation depends on factors such as the need of covering their fixed costs after they receive their pension, their car superseding ability, the need of including doctor visits in their private insurance, the choose of a local, public hospital for serious or mild health issues, the need of covering their healthcare after they receive their pension, the interest for private health services to be coupled with their insurance, the need of hospital care inclusion to their private insurance, the amount of satisfactions from their public insurance health benefits, the need of covering pleasure trips after they receive their retirement, the supplementary pension management, the interest for risk protection, the fixed costs', tax obligations' and children' studies coverage estimation, the already existing insurance ownership and the estimation for a satisfactory pension. Specifically, customers presented an interest in estimating their retirement in those cases:

- They do have a car superseding ability but it is not of a major importance to cover their fixed costs after they receive their pension.
- They do not prefer a local, public hospital for serious health issues and it is of a major importance to cover their fixed costs after they receive their pension.
- They do not prefer a local, public hospital for serious health issues and they want doctor visits to be included to their private insurance. Additionally, they do not have a car superseding ability and it is not of a major importance to cover their fixed costs after they receive their pension.
- They do not think of healthcare as in need to be covered from their pension and they do not need doctor visits to be included to their private insurance. Additionally, they do not have a car superseding ability and it is not of a major importance to cover their fixed costs after they receive their pension.
- They want healthcare to be covered from their pension and they do not necessarily want private health services to be coupled with their insurance. They would choose a local public hospital for mild health issues and they want doctor visits to be included to their private insurance. Additionally, they do not have a car
superseding ability and it is not of a major importance to cover their fixed costs after they receive their pension.
- They are not quite satisfied from their public insurance healthcare benefits and they want hospital care to be included to their private insurance and private health services to be coupled with their insurance. They would choose a local, public hospital for mild health issues and they want doctor visits to be included to their private insurance. Additionally, they do not have a car superseding ability and it is not of a major importance to cover their fixed costs after they receive their pension.
- They want to cover their pleasure trips after they receive their retirement and they are quite satisfied from their public insurance healthcare benefits. They want hospital care to be included to their private insurance and private health services to be coupled with their insurance. They would choose a local, public hospital for mild health issues and they want doctor visits to be included to their private insurance. Additionally, they do not have a car superseding ability and it is not of a major importance to cover their fixed costs after they receive their pension.
- They have not managed for a supplementary pension and they do not want to cover their pleasure trips after they receive their retirement. They are quite satisfied from their public insurance healthcare benefits. They want hospital care to be included to their private insurance and private health services to be coupled with their insurance. They would choose a local, public hospital for mild health issues and they want doctor visits to be included to their private insurance. Additionally, they do not have a car superseding ability and it is not of a major importance to cover their fixed costs after they receive their pension.
- They do not want to include hospital care to their private insurance but they want private health services to be coupled with their insurance. They would choose a local, public hospital for mild health issues and they want doctor visits to be included to their private insurance. Additionally, they do not have a car superseding ability and it is not of a major importance to cover their fixed costs after they receive their pension.
- They can cover tax obligation and fixed costs in a possible loss of theirs and they would not choose a local, public hospital for serious health issues. They want a risk protection and is of a major importance to cover their healthcare after they
receive their pension. They do not want to include doctor visits to their private insurance, they do not have a car superseding ability and it is not of a major importance to cover their fixed costs after they receive their pension.
- They cannot cover fixed costs in a possible loss of theirs and they would not choose a local, public hospital for serious health issues. They want a risk protection and is of a major importance to cover their healthcare after they receive their pension. They do not want to include doctor visits to their private insurance, they do not have a car superseding ability and it is not of a major importance to cover their fixed costs after they receive their pension.
- They do not believe they will get a satisfying pension, they had never had insurance but they believe that children studies will be covered in a possible loss of theirs. They do not want a risk protection but it is of a major importance to cover their healthcare after they receive their pension. They do not want to include doctor visits to their private insurance, they do not have a car superseding ability and it is not of a major importance to cover their fixed costs after they receive their pension.
- They had had insurance before and they believe that children studies will be covered in a possible loss of theirs. They do not want a risk protection but it is of a major importance to cover their healthcare after they receive their pension. They do not want to include doctor visits to their private insurance, they do not have a car superseding ability and it is not of a major importance to cover their fixed costs after they receive their pension.
=== Summary $==$

Correctly Classified Instances
Incorrectly Classified Instances
Kappa statistic
Mean absolute error
Root mean squared error
Relative absolute error
Root relative squared error
Total Number of Instances172100.14150.05320.227359.6934 \%
110.7167 \%182

=== Detailed Accuracy By Class ===

	TP Rate	FP Rate	Precision	Recall	F- Measure	MCC	ROC Area	PRC Area	Class
	0,983	0,875	0,961	0,983	0,972	0,151	0,524	0,958	Yes
	0,125	0,017	0,250	0,125	0,167	0,151	0,527	0,080	No
W.A	0,945	0,837	0,945	0,929	0,945	0,151	0,527	0,920	

Table 29: Detailed Accuracy by Class- Random Tree
=== Confusion Matrix ===
a b <-- classified as
$1713 \mid a=Y e s$
7 1| b=No
Random Tree provides the best performance of all the algorithms. The high percentage of correctly classified instances and the positive kappa statistic along with the high accuracy of the estimators (ROC Area (>0,5)) indicate that Random Tree is a high-performance algorithm model. This practically means that, the predictions made by the algorithm were correct and better than a random guessing. So, there is a high probability that the dataset values are similar to those predicted from the algorithm.

Random Tree is a quite simple and interpretable model.
In the Confusion Matrix " $a=Y e s$ " means that they are interested in estimating their retirement, whereas the prediction " $\mathrm{b}=\mathrm{No}$ " means that they are not interested in estimating their retirement. The correctly and incorrectly classified instances show the percentage of test instances that were correctly and incorrectly classified. The raw numbers are shown in the confusion matrix, with a and b representing the class labels. Here there were 182 instances, so the percentages and raw numbers add up, $\mathrm{aa}+\mathrm{bb}=$ $171+1=172$ and $\mathrm{ab}+\mathrm{ba}=7+3=10$. It also means that 171 out of 174 a 's were predicted correctly (TP Rate-out of 174 customers that were predicted to want a retirement estimation, only 171 truly wanted to estimate their retirement) and 1 out of 8 b's were predicted correctly (TN Rate-out of 8 customers that were predicted to reject a retirement estimation, only 1 of them truly rejected the retirement estimation).

Some of the Random Trees' Model predictions about the customers' willingness to estimate their retirement are presented below. The prediction " 1. Yes" means that they are interested in estimating their retirement, whereas the prediction " 2 .No" means that
they are not interested in estimating their retirement. Here, the instances 1 through 10 are predicted to be of class 1 , whose value is "Yes" (Yes= I am interested in estimating my retirement). Class 2, whose value is "No" ($\mathrm{No}=\mathrm{I}$ am not interested in estimating my retirement) is not predicted in the first 10 instances.

The rest of the results are presented in the appendix: Random Tree Predictions| NN
=== Predictions on user test set ===

inst\#	actual	predicted	error prediction
1	$1:$ Yes	$1:$ Yes	1
2	$1:$ Yes	$1:$ Yes	1
3	$1:$ Yes	$1:$ Yes	1
4	$1:$ Yes	$1:$ Yes	1
5	$1:$ Yes	$1:$ Yes	1
6	$1:$ Yes	$1:$ Yes	1
7	$1:$ Yes	$1:$ Yes	1
8	$1:$ Yes	$1:$ Yes	1
9	$1:$ Yes	$1:$ Yes	1
10	$1:$ Yes	$1:$ Yes	1

Table 30:Predictions on test set- Random Tree

3.1.2 Lazy IBK

$===$ Classifier model (full training set) $===$
IB1 instance-based classifier
using 1 nearest neighbor(s) for classification
=== Summary ===

Correctly Classified Instances	172	94.5055%
Incorrectly Classified Instances	10	5.4945%
Kappa statistic	0.1415	
Mean absolute error	0.0627	
Root mean squared error	0.236	
Relative absolute error	70.2979%	
Root relative squared error	114.9252%	
Total Number of Instances	182	

=== Detailed Accuracy By Class ===

	TP Rate	FP Rate	Precision	Recall	F- Measure	MCC	ROC Area	PRC Area	Class
	0,983	0,875	0,961	0,983	0,972	0,151	0,634	0,968	Yes
	0,125	0,017	0,250	0,125	0,167	0,151	0,634	0,092	No
W.A	0,945	0,837	0,929	0,945	0,936	0,151	0,634	0,930	

Table 31: Detailed Accuracy by Class- Lazy IBk
=== Confusion Matrix ===
a b \leqslant classified as
1713 | $\mathrm{a}=$ Yes
7 1| b=No
Lazy IBK provides the second best performance of all the algorithms. The high percentage of correctly classified instances and the positive kappa statistic along with the high accuracy of the estimators (ROC Area (>0,5)) indicate that Lazy IBK is a high-performance algorithm model. This practically means that, the predictions made by the algorithm were correct and better than a random guessing. So, there is a high probability that the dataset values are similar to those predicted from the algorithm.

Lazy IBK is a K-nearest neighbor's (KNN) classifier which attempts to predict the correct class for the test data by calculating the distance between the test data and all the training points. Then, it selects the K number of points which is closest to the test data. The K-Nearest Neighbours (KNN) algorithm is one of the most simple supervised machine learning algorithms that is used to solve both classification and regression problems. KNN is also known as an instance-based model or a lazy learner because it doesn't construct an internal model. For classification problems, it will find the k nearest neighbors and predict the class by the majority vote of the nearest neighbors. ${ }^{122}$

Some of the Lazy IBK's Model predictions about each customers' willingness to estimate their retirement are presented below. The prediction "1.Yes" means that they are interested in estimating their retirement, whereas the prediction " 2 .No" means that they are not interested in estimating their retirement.

The rest of the results are presented in the appendix: Lazy IBK Predictions| NN
=== Predictions on user test set ===

[^62]| inst\# | actual | predicted | error prediction |
| :---: | :---: | :---: | :---: |
| 1 | $1:$ Yes | $1:$ Yes | 0.995 |
| 2 | $1:$ Yes | $1:$ Yes | 0.995 |
| 3 | $1:$ Yes | $1:$ Yes | 0.995 |
| 4 | $1:$ Yes | $1:$ Yes | 0.995 |
| 5 | $1:$ Yes | $1:$ Yes | 0.995 |
| 6 | $1:$ Yes | $1:$ Yes | 0.995 |
| 7 | $1:$ Yes | $1:$ Yes | 0.995 |
| 8 | $1:$ Yes | $1:$ Yes | 0.995 |
| 9 | $1:$ Yes | $1:$ Yes | 0.995 |
| 10 | $1:$ Yes | $1:$ Yes | 0.995 |

Table 32: Predictions on user test set- Lazy IBk

3.1.3 Naive Bayes Updateable

Naive Bayes and Naive Bayes Updateable provide the same results.
See Appendix: Naive Bayes Updatable Classifier| NN

$===$ Summary $===$		
Correctly Classified Instances	171	93.956%
Incorrectly Classified Instances	11	6.044%
Kappa statistic	0.1242	
Mean absolute error	0.0663	
Root mean squared error	0.2246	
Relative absolute error	74.3306%	
Root relative squared error	109.3955%	
Total Number of Instances	182	

$===$ Detailed Accuracy By Class $===$

	TP Rate	FP Rate	Precision	Recall	F- Measure	MCC	ROC Area	PRC Area	Class
	0,977	0,875	0,960	0,977	0,969	0,128	0,746	0,983	Yes
	0,125	0,023	0,200	0,125	0,154	0,128	0,746	0,152	No
W.A	0,940	0,838	0,927	0,940	0,933	0,128	0,746	0,946	

Table 33: Detailed Accuracy by Class- Naïve Bayes Updateable
=== Confusion Matrix ===
a b \leqslant classified as
$1704 \mid a=Y e s$

$$
7 \quad 1 \mid \mathrm{b}=\mathrm{No}
$$

Naïve Bayes Updateable provides a good performance as well. The percentage of correctly classified instances and the positive kappa statistic along with the high accuracy of the estimators (ROC Area (>0,5)) indicate that Naïve Bayes Updateable is a high-performance algorithm model. This practically means that, the predictions made by the algorithm were correct and better than a random guessing. So, there is a high probability that the dataset values are similar to those predicted from the algorithm.

Naïve Bayes Updateable is a quite simple and interpretable model. For each of the classes, there is a probability that the attribute of the class (i.e car superseding ability) is true for the customers and a probability that the attribute is not true.

Example (taken from the model in the appendix):
The classes are divided to two: Class $1=$ Yes and Class $2=$ No.

	Class	
Attribute	Yes	No
Car superseding ability	(0.95)	(0.05)
Yes	36.0	1.0
No	140.0	9.0
[total]	176.0	10.0

Table 34: Example of Naive Bayes Updateabe

- True Positives= 36.0
- False Positives= 140.0
- True Negatives= 9.0
- False Negatives $=1.0$

The correctly and incorrectly classified instances show the percentage of test instances that were correctly and incorrectly classified. The raw numbers are shown in the confusion matrix, with Yes and No representing the class labels. Here there were 186 instances, so the percentages and raw numbers add up $36+9=45$ and $1+140=$ 141. It also means that 36 out of 176 Yes's were predicted correctly (TP Rate-out of 176 customers that were predicted to have a car superseding ability, only 36 of them truly had) and 9 out of 10 No's were predicted correctly (TN Rate-out of 10
customers that were predicted to reject a retirement estimation, 9 of them indeed rejected the retirement estimation).

A visible problem is that 95% of the instances are in class "Yes", which means that we receive right answers 95% of the times for these predictions, so the model is not that much reliable. This happens because the customers' answers were quite similar.

Precision (how many selected items are relevant $)=T P /(T P=+\mathrm{FP})=36 /(36+140)=0.20$
Recall (how many relevant items are selected) $=\mathrm{TP} /(\mathrm{TP}+\mathrm{FN})=36 /(36+1)=0.97$
The same applies to the other attibutes as well.
Some of the Naïve Bayes Updateable's model predictions about each customers' willingness to estimate their retirement are presented below. The prediction " 1. Yes" means that they are interested in estimating their retirement, whereas the prediction "2.No" means that they are not interested in estimating their retirement.

The rest of the results are presented in the appendix: Naive Bayes Updateable Predictions| NN
=== Predictions on user test set ===

inst\#	actual	predicted	error prediction
1	$1:$ Yes	$1:$ Yes	1
2	$1:$ Yes	$1:$ Yes	1
3	$1:$ Yes	$1:$ Yes	1
4	$1:$ Yes	$1:$ Yes	0.997
5	$1:$ Yes	$1:$ Yes	0.992
6	$1:$ Yes	$1:$ Yes	0.994
7	$1:$ Yes	$1:$ Yes	0.999
8	$1:$ Yes	$1:$ Yes	1
9	$1:$ Yes	$1:$ Yes	0.995
10	$1:$ Yes	$1:$ Yes	1

Table 35: Predictions on user test set- Naive Bayes Updateable

3.1.4 Bayes Net

=== Summary ===

Correctly Classified Instances
Incorrectly Classified Instances
Kappa statistic171

11
0.2353
93.956 \%
6.044 \%

Mean absolute error
Root mean squared error
Relative absolute error
Root relative squared error
Total Number of Instances
0.0715
0.2293
80.2176 \%
111.6498 \%

182

See Appendix: Bayes Net Classifier Model| NN
$===$ Detailed Accuracy By Class $==$

	TP Rate	FP Rate	Precision	Recall	F- Measure	MCC	ROC Area	PRC Area	Class
	0,971	0,750	0,966	0,971	0,968	0,236	0,759	0,982	Yes
	0,250	0,029	0,286	0,250	0,267	0,236	0,759	0,271	No
W.A	0,940	0,718	0,936	0,940	0,938	0,236	0,759	0,951	

Table 36: Detailed Accuracy by Class- Bayes Net
(W.A= Weighted Average)
=== Confusion Matrix $==$
a $\mathrm{b} \leftarrow$ classified as
1695 | $\mathrm{a}=$ Yes
6 2| b=No
Bayes Net provides a good performance as well. The percentage of correctly classified instances and the positive kappa statistic along with the high accuracy of the estimators (ROC Area ($>0,5$)) indicate that Bayes Net is a high-performance algorithm model. This practically means that, the predictions made by the algorithm were correct and better than a random guessing. So, there is a high probability that the dataset values are similar to those predicted from the algorithm.

Bayes Net is a quite simple and interpretable model.
Example (taken from the algorithm in the appendix):
Bayes Network Classifier (full training set), not using ADTree:
\#attributes=65 \#classindex=6: This lines list the number of attributes and the number of the class variables for which the classifier was trained.

Network structure sample (nodes followed by parents)

Have or Had Car Insurance(1): I am interested in estimating my retirement
Have or Had Motorbike Insurance(2): I am interested in estimating my retirement
Have never had Insurance(2): I am interested in estimating my retirement

I am interested in estimating my retirement(2):

Each of the variables is followed by a parent, which is "I am interested in estimating my retirement". So, the variables "Have or Had Car Insurance", "Have or Had Motorbike Insurance" and "Have or Had Motorbike Insurance" has as a parent the class "I am interested in estimating my retirement". The number in brackets is the cardinality of the variable. It shows that there are two class variables.

LogScore Bayes: -4584.11
LogScore BDeu: -4694.39
LogScore MDL: -4813.55
LogScore ENTROPY: -4483.1
LogScore AIC: -4610.1
These lines list the logarithmic score of the network structure for various methods of scoring. The logarithmic scoring rule is a scoring rule used to measure how well a given assignment of probabilities to values of a random variable performs on some real-world instances of the random variable. The smaller the value of the score with the logarithmic scoring rule, the better the assignment of probabilities has performed according to the rule. ${ }^{123}$

[^63]In decision theory, a scoring rule, measures the accuracy of probabilistic predictions. It is applicable to tasks in which predictions must assign probabilities to a set of mutually exclusive outcomes or classes. The set of possible outcomes can be either binary (or categorical in nature), and the probabilities assigned to this set of outcomes must sum to one (where each individual probability is in the range of 0 to 1). A score can be thought of as either a measure of the "calibration" of a set of probabilistic predictions, or as a "cost function" or "loss function". ${ }^{124}$

Some of the Bayes Net model predictions about each customers' willingness to estimate their retirement are presented below. The prediction "1.Yes" means that they are interested in estimating their retirement, whereas the prediction " 2 .No" means that they are not interested in estimating their retirement.

The rest of the results are presented in the appendix: Bayes Net Predictions| NN
=== Predictions on user test set $===$

inst\#	actual	predicted	error prediction
1	$1:$ Yes	$1:$ Yes	1
2	$1:$ Yes	$1:$ Yes	1
3	$1:$ Yes	$1:$ Yes	1
4	$1:$ Yes	$1:$ Yes	0.997
5	$1:$ Yes	$1:$ Yes	0.994
6	$1:$ Yes	$1:$ Yes	0.996
7	$1:$ Yes	$1:$ Yes	0.999
8	$1:$ Yes	$1:$ Yes	1
9	$1:$ Yes	$1:$ Yes	0.994
10	$1:$ Yes	$1:$ Yes	1

Table 37: Predictions on user test set- Bayes Net

3.1.5 Naive Bayes

Naive Bayes and Naive Bayes Updateable provide the same results.
=== Summary $==$
Correctly Classified Instances 171
Incorrectly Classified Instances
Kappa statistic 11 0.1242

Mean absolute error 0.0663

Root mean squared error 0.2246
93.956 \%
6.044 \%

[^64]Relative absolute error
Root relative squared error
Total Number of Instances
74.3306 \%
109.3955 \% 182

See Appendix: Naive Bayes Classifier Model NN
$===$ Detailed Accuracy By Class $===$

	TP Rate	FP Rate	Precision	Recall	F- Measure	MCC	ROC Area	PRC Area	Class
	0,977	0,875	0,960	0,977	0,969	0,128	0,746	0,983	Yes
	0,125	0,023	0,200	0,125	0,154	0,128	0,746	0,152	No
W.A	0,940	0,838	0,927	0,940	0,933	0,128	0,746	0,946	

Table 38: Detailed Accuracy by Class- Naive Bayes
=== Confusion Matrix ===
a b \leftarrow classified as
$1704 \mid a=Y e s$
7 1| b=No
Naïve Bayes provides a good performance. The percentage of correctly classified instances and the positive kappa statistic along with the high accuracy of the estimators (ROC Area ($>0,5$)) indicate that Naïve Bayes Updateable is a highperformance algorithm model. This practically means that, the predictions made by the algorithm were correct and better than a random guessing. So, there is a high probability that the dataset values are similar to those predicted from the algorithm.

Naïve Bayes Updateable is a quite simple and interpretable model. The classifier model's results as well as the predictions for the customers' willingness of retirement estimation are the same as those of Naïve Bayes Updateable.

Some of the Naïve Bayes' model predictions about each customers' willingness to estimate their retirement are presented below. The prediction "1.Yes" means that they are interested in estimating their retirement, whereas the prediction " 2 .No" means that they are not interested in estimating their retirement.

The rest of the results are presented in the appendix: Naive Bayes Predictions| NN === Predictions on user test set $===$

Inst\#	actual	predicted	error prediction
1	$1:$ Yes	$1:$ Yes	1
2	$1:$ Yes	$1:$ Yes	1
3	$1:$ Yes	$1:$ Yes	1
4	$1:$ Yes	$1:$ Yes	0.997
5	$1:$ Yes	$1:$ Yes	0.992
6	$1:$ Yes	$1:$ Yes	0.994
7	$1:$ Yes	$1:$ Yes	0.999
8	$1:$ Yes	$1:$ Yes	1
9	$1:$ Yes	$1:$ Yes	0.995
10	$1:$ Yes	$1:$ Yes	1

Table 39: Predictions on user test set- Naive Bayes

3.1.6 Lazy K Star

=== Summary $===$		
Correctly Classified Instances	170	93.4066%
Incorrectly Classified Instances	12	6.5934%
Kappa statistic	0.1093	
Mean absolute error	0.0688	
Root mean squared error	0.2479	
Relative absolute error	77.143%	
Root relative squared error	120.7316%	
Total Number of Instances	182	

=== Detailed Accuracy By Class ===

	TP Rate	FP Rate	Precision	Recall	F- Measure	MCC	ROC Area	PRC Area	Class
	0,971	0,875	0,960	0,971	0,966	0,111	0,524	0,958	Yes
	0,125	0,029	0,167	0,125	0,143	0,111	0,524	0,116	No
W.A	0,945	0,934	0,838	0,925	0,9364	0,111	0,524	0,921	

Table 40: Detailed Accuracy by Class- Lazy K Star

$$
===\text { Confusion Matrix }===
$$

a b \leqslant classified as
169 5 $\mathrm{a}=$ Yes
7 1| $\mathrm{b}=\mathrm{No}$

Lazy K Star provides a good performance of all the algorithms. The high percentage of correctly classified instances and the positive kappa statistic along with the high accuracy of the estimators (ROC Area ($>0,5$)) indicate that Random Tree is a highperformance algorithm model. This practically means that, the predictions made by the algorithm were correct and better than a random guessing. So, there is a high probability that the dataset values are similar to those predicted from the algorithm.

Lazy K Star does not have many parameters. According to Sharma and Jain (2013): " K-Star algorithm as an instance-based learner which uses entropy as a distance measure. The benefits are that it provides a consistent approach to handling of real valued attributes, symbolic attributes and missing values".

K- Star is a simple classifier, similar to K-Nearest Neighbour (K-NN).
For classification problems, it will find the k nearest neighbors and predict the class by the majority vote of the nearest neighbors. ${ }^{125}$

Some of the Lazy K Star's Model predictions about the customers' willingness to estimate their retirement are presented below. The prediction " 1. Yes" means that they are interested in estimating their retirement, whereas the prediction " 2 .No" means that they are not interested in estimating their retirement.

The rest of the results are presented in the appendix: Lazy K Star Predictions| NN
The predictions found for Lazy K Star are the same as those of Random Tree.
$===$ Predictions on user test set $==$

inst\#	actual	predicted	error prediction
1	$1:$ Yes	$1:$ Yes	1
2	$1:$ Yes	$1:$ Yes	1
3	$1:$ Yes	$1:$ Yes	1
4	$1:$ Yes	$1:$ Yes	1
5	$1:$ Yes	$1:$ Yes	1
6	$1:$ Yes	$1:$ Yes	1
7	$1: Y e s$	$1:$ Yes	1
8	$1:$ Yes	$1:$ Yes	1
9	$1:$ Yes	$1:$ Yes	1
10	$1: Y e s$	$1: Y e s$	1

Table 41: Predictions on user test set- Lazy K Star

[^65]
3.1.7 Meta Randomizable Filtered Classifier

=== Summary $===$		
Correctly Classified Instances	169	92.8571%
Incorrectly Classified Instances	13	7.1429%
Kappa statistic	0.0963	
Mean absolute error	0.0766	
Root mean squared error	0.2657	
Relative absolute error	85.9134%	
Root relative squared error	129.4034%	
Total Number of Instances	182	

=== Detailed Accuracy By Class ===

	TP Rate	FP Rate	Precision	Recall	F- Measure	MCC	ROC Area	PRC Area	Class
	0,966	0,875	0,960	0,966	0,963	0,096	0,575	0,963	Yes
	0,125	0,034	0,143	0,125	0,133	0,096	0,575	0,062	No
W.A	0,929	0,838	0,924	0,929	0,926	0,096	0,575	0,923	

Table 42: Detailed Accuracy by Class- Meta Randomizable Filtered Classifier
=== Confusion Matrix $==$
a b <-- classified as
168 6| $\mathrm{a}=$ Yes
7 1| b=No
Randomizable Filtered Classifier provides a satisfactory percentage of correctly classified instances and the positive kappa statistic along with the high accuracy of the estimators (ROC Area ($>0,5$)) indicate that this is a high-performance algorithm model. This practically means that, the predictions made by the algorithm were correct and better than a random guessing. So, there is a high probability that the dataset values are similar to those predicted from the algorithm.

Randomizable Filtered Classifier does not have many parameters. As mentioned in the first chapter, it runs an arbitrary classifier on data that has been passed through an arbitrary filter. Like the classifier, the structure of the filter is based exclusively on the
training data and test instances will be processed by the filter without changing their structure. ${ }^{126}$

Some of the model's predictions about each customers' willingness to estimate their retirement are presented below. The prediction "1.Yes" means that they are interested in estimating their retirement, whereas the prediction " $2 . N o$ " means that they are not interested in estimating their retirement.

The rest of the results are presented in the appendix: Randomizable Filtered Classifier Predictions| NN

The predictions found for Randomizable Filtered Classifier are the same as those of Lazy IBK classifier.
=== Predictions on user test set $===$

inst\#	actual	predicted	error prediction
1	$1:$ Yes	$1:$ Yes	0.995
2	$1:$ Yes	$1:$ Yes	0.995
3	$1:$ Yes	$1:$ Yes	0.995
4	$1:$ Yes	$1:$ Yes	0.995
5	$1:$ Yes	$1:$ Yes	0.995
6	$1:$ Yes	$1:$ Yes	0.995
7	$1:$ Yes	$1:$ Yes	0.995
8	$1:$ Yes	$1:$ Yes	0.995
9	$1:$ Yes	$1:$ Yes	0.995
10	$1:$ Yes	$1:$ Yes	0.995

Table 43: Predictions in user test set- Meta Randomizable Filtered Classifier

3.1.8 SMO

=== Summary ===

Correctly Classified Instances	169	92.8571%
Incorrectly Classified Instances	13	7.1429%
Kappa statistic	0.0963	
Mean absolute error	0.0714	
Root mean squared error	0.2673	
Relative absolute error	80.1144%	
Root relative squared error	130.1572%	

[^66]See Appendix: SMO Reg Classifier| NN
$===$ Detailed Accuracy By Class $==$

	TP Rate	FP Rate	Precision	Recall	F- Measure	MCC	ROC Area	PRC Area	Class
	0,966	0,875	0,960	0,966	0,963	0,096	0,545	0,960	Yes
	0,125	0,034	0,143	0,125	0,133	0,096	0,545	0,056	No
W.A	0,929	0,838	0,924	0,929	0,926	0,096	0,545	0,920	

Table 44: Detailed Accuracy by Class- SMO
=== Confusion Matrix ===
a b <-- classified as
168 6| $\mathrm{a}=$ Yes
7 1| b=No
SMO Reg provides a satisfactory percentage of correctly classified instances and the positive kappa statistic along with the high accuracy of the estimators (ROC Area $(>0,5)$) indicate that this is a well-functioning algorithm model. This practically means that, the predictions made by the algorithm were correct and better than a random guessing. So, there is a high probability that the dataset values are similar to those predicted from the algorithm.

SMO Reg is neither interpretable nor simple algorithm model, which means that one who does not have the necessary expertise in the field of technology or analytics cannot fundamentally understand how the model arrived in a certain output or how the output influences the output, by just reading the algorithm.

As mentioned in the first chapter, the implementation of SMO globally replaces all missing values and transforms nominal attributes into binary ones. It also normalizes all attributes by default. (In that case the coefficients in the output are based on the normalized data, not the original data --- this is important for interpreting the classifier). Multi-class problems are solved using pairwise classification (1-vs-1).

Some of the model's predictions about each customer's willingness to estimate their retirement are presented below. The prediction " 1 .Yes" means that they are interested in estimating their retirement, whereas the prediction " 2 .No" means that they are not interested in estimating their retirement.

The rest of the results are presented in the appendix: SMO Reg Predictions| NN
=== Predictions on user test set $===$

inst\#	actual	predicted	error prediction
1	$1:$ Yes	$1:$ Yes	1
2	$1:$ Yes	$1:$ Yes	1
3	$1:$ Yes	$1:$ Yes	1
4	$1:$ Yes	$1:$ Yes	1
5	$1:$ Yes	$1:$ Yes	1
6	$1:$ Yes	$1:$ Yes	1
7	$1:$ Yes	$1:$ Yes	1
8	$1:$ Yes	$1:$ Yes	1
9	$1:$ Yes	$1:$ Yes	1
10	$1:$ Yes	$1:$ Yes	1

Table 45:Predictions in user test set- SMO

3.1.9 Multi Class Classifier Updateable

See Appendix: Multi Class Classifier Updateable| NN
=== Summary ===

Correctly Classified Instances	166	91.2088%
Incorrectly Classified Instances	16	8.7912%
Kappa statistic	0.1555	
Mean absolute error	0.0879	
Root mean squared error	0.2965	
Relative absolute error	98.6023%	
Root relative squared error	144.3965%	
Total Number of Instances	182	

=== Detailed Accuracy By Class ===

	TP Rate	FP Rate	Precision	Recall	F- Measure	MCC	ROC Area	PRC Area	Class
	0,943	0,750	0,965	0,943	0,950	0,159	0,596	0,964	Yes
	0,250	0,057	0,167	0,250	0,200	0,159	0,596	0,075	No
W.A	0,912	0,720	0,930	0,912	0,920	0,159	0,596	0,925	

Table 46: Detailed Accuracy by Class- Multi Class Classifier Updateable
=== Confusion Matrix ===
a b <-- classified as
$16410 \mid \mathrm{a}=$ Yes
$52 \mid \mathrm{b}=\mathrm{No}$
Multi Class Classifier Updateable provides a satisfactory percentage of correctly classified instances and a high kappa statistic, which, along with the high accuracy of the estimators (ROC Area ($>0,5$)) indicate that it is a well-functioning algorithm model. This practically means that, the predictions made by the algorithm were correct and better than a random guessing. So, there is a high probability that the dataset values are similar to those predicted from the algorithm.

The final results are presented in the appendix, however this is a description of how it works.

This is a metaclassifier for handling multi-class datasets with 2-class classifiers and it has more than two outcomes. This classifier is also capable of applying error correcting output codes for increased accuracy. The base classifier must be an updateable classifier. ${ }^{127}$

Multi Class Classifier Updateable is using SVM algorithm model, so it is neither interpretable nor simple model. That is, one who does not have the necessary expertise in the field of technology or analytics cannot fundamentally understand how the model arrived in a certain output or how the output influences the output, by just reading the algorithm.

For our dataset's evaluation, we need to take into consideration the loss function as well, apart from the metrics.

Loss function: Hinge loss ${ }^{128}$ (SVM)
I am interested in estimating my retirement $=$
0.8597 (normalized) Car superseding ability $=\mathrm{No}$

[^67]```
+ 0.5898 (normalized) Motorbike superseding ability=Yes
+ -0.2799 (normalized) House superseding ability=Yes
+ -0.1399 (normalized) Business superseding ability=Yes
+ 0.4298 (normalized) No superseding ability=Yes
+ -0.4098 (normalized) Have or had Business Insurance=Yes
```

SVM or Support Vector Machine is a supervised, linear, machine learning model that uses classification algorithms for two-group classification and regression problems. It can solve linear and non-linear problems and work well for many practical problems. ${ }^{129130}$

For datasets with linear relationships, SVM algorithm creates a line or a hyperplane (a line whose distance to the nearest element of each tag is the largest) that separates data into classes. For data with non-linear relationships, SVM algorithm use kernels ${ }^{131}$ to make non-separable data into separable data and fit them into classes. ${ }^{132}$ In our case, it seems we have data of linear relationships; however both cases are presented below.

So, SVMs define the boundary between areas belonging to different categories, which is not necessarily the categories we want.

SVM does not assume normality, but it minimizes some symmetric loss function using hyperplanes or kernels for linear and non-linear problems respectively.

Let us see how Support Vector Machines work example.

## Linear relationship in dataset:

Let us suppose we have two tags: pink and blue, and our data has two features: x and $y$. We want a classifier that, given a pair of $(x, y)$ coordinates, outputs if it's either pink or blue.

[^68]

Figure 25: Labeled data

A support vector machine takes these data points and outputs the hyperplane, which is a line that best separates the tags and consequently maximizes the margins from both tags. This line is our decision boundary: anything that falls to one side of the line will be classified as pink, and anything that falls to the other side of the line will be classified as blue.


Figure 26: Best hyperplane for our labeled data

## Nonlinear data:

Let us consider an example in which data are not linearly separable:


Figure 27: Complex Dataset

In this case, there is not a linear decision boundary (a single straight line that separates both tags). However, the vectors are very clearly segregated and it looks as though it should be easy to separate them.

For that reason, we will add a third dimension z (let us say $\mathrm{z}=1$ ), which is a hyperplane, parallel to the $x$ axis in order to be calculated a certain way that is convenient for us: $\mathrm{z}=\mathrm{x}^{2}+\mathrm{y}^{2}$ (you'll notice that's the equation for a circle).

This will give us a three-dimensional space:


Figure 28: Best hyperplane for three-dimension mapping

Now the last step is mapping it back to two dimensions.


Figure 29: Best hyperplane for two dimentions in a non-linear dataset

So, our decision boundary is a circumference of radius, which separates both tags using SVM. ${ }^{133}$

## The kernel trick:

As we can detect from the previous example, there is a way to classify nonlinear data by mapping our space to a higher dimension. However, there can be a lot of new dimensions, each one of them possibly involving a complicated calculation. Doing this for every vector in the dataset can be a lot of work. However, SVM does not need the actual vectors to work; it actually can get by only with the dot products between them.

Let us assume the new space we want:
$\mathrm{z}=\mathrm{x}^{2}+\mathrm{y}^{2}$
Figure out what the dot product in our space looks like:

[^69]\[

$$
\begin{aligned}
& a * b=x a * x b+y a * y b+z a * z b \Rightarrow \\
& a * b=x a * x b+y a * y b+\left(x a^{2}+y a^{2}\right) *\left(x b^{2}+y b^{2}\right)
\end{aligned}
$$
\]

That's the kernel trick, which allows us to ease complex calculations. Normally, the kernel is linear, and we get a linear classifier. However, by using a nonlinear kernel we can get a nonlinear classifier by just changing the dot product to that of the space that we want.

The kernel trick can be used with other linear classifiers as well such as logistic regression. A support vector machine only takes care of finding the decision boundary.

Compared to newer algorithms like neural networks, they have two main advantages: higher speed and better performance with a limited number of samples (in the thousands). This makes the algorithm very suitable for text classification problems, where it's common to have access to a dataset of thousands of tagged samples. ${ }^{134}$

Some of the model's predictions about each customers' willingness to estimate their retirement are presented below. The prediction "1.Yes" means that they are interested in estimating their retirement, whereas the prediction " $2 . N o$ " means that they are not interested in estimating their retirement.

The rest of the results are presented in the appendix: Multi Class Classifier Updeateable Predictions| NN.

The predictions found for Multi Class Classifier Updateable are the same as those of Lazy K Star and Random Tree.
=== Predictions on user test set $===$

| inst\# | actual | predicted | error prediction |
| :---: | :---: | :---: | :---: |
| 1 | $1:$ Yes | $1:$ Yes | 1 |
| 2 | $1:$ Yes | $1:$ Yes | 1 |
| 3 | $1:$ Yes | $1:$ Yes | 1 |
| 4 | $1:$ Yes | $1:$ Yes | 1 |
| 5 | $1:$ Yes | $1:$ Yes | 1 |
| 6 | $1:$ Yes | $1:$ Yes | 1 |

[^70]| 7 | $1:$ Yes | $1:$ Yes | 1 |
| :---: | :---: | :---: | :---: |
| 8 | $1:$ Yes | $1:$ Yes | 1 |
| 9 | $1:$ Yes | $1:$ Yes | 1 |
| 10 | $1:$ Yes | $1:$ Yes | 1 |

Table 47: Predictions on user test set- Multi Class Classifier Updateable

### 3.1.10 Multi Class Classifier

See Appendix: Multi Class Classifier| NN

| $===$ Summary $===$ |  |  |
| :--- | :---: | :--- |
| Correctly Classified Instances | 165 | $90.6593 \%$ |
| Incorrectly Classified Instances | 17 | $9.3407 \%$ |
| Kappa statistic | 0.2159 |  |
| Mean absolute error | 0.0952 |  |
| Root mean squared error | 0.3044 |  |
| Relative absolute error | $106.8283 \%$ |  |
| Root relative squared error | $148.264 \%$ |  |
| Total Number of Instances | 182 |  |

=== Detailed Accuracy By Class ===

|  | TP <br> Rate | FP <br> Rate | Precision | Recall | F- <br> Measure | MCC | ROC <br> Area | PRC <br> Area | Class |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0,931 | 0,625 | 0,970 | 0,931 | 0,950 | 0,228 | 0,624 | 0,967 | Yes |
|  | 0,375 | 0,069 | 0,200 | 0,375 | 0,261 | 0,228 | 0,681 | 0,222 | No |
| W.A | 0,907 | 0,601 | 0,936 | 0,907 | 0,920 | 0,228 | 0,627 | 0,934 |  |

Table 48: Detailed Accuracy by Class- Multi Class Classifier
=== Confusion Matrix $==$
a b <-- classified as
162 12| a = Yes
$53 \mid \mathrm{b}=\mathrm{No}$
Multi Class Classifier provides a satisfactory percentage of correctly classified instances and a high kappa statistic, which, along with the high accuracy of the estimators (ROC Area (>0,5)) indicate that it is a well-functioning algorithm model. This practically means that, the predictions made by the algorithm were correct and
better than a random guessing. So, there is a high probability that the dataset values are similar to those predicted from the algorithm.

In machine learning, multiclass or multinomial classification is the problem of classifying instances into one of three or more classes (classifying instances into one of two classes is called binary classification). While many classification algorithms (i.e multinomial logistic regression) naturally permit the use of more than two classes, some are by nature binary algorithms; these can, however, be turned into multinomial classifiers by a variety of strategies. ${ }^{135}$

Each training point belongs to one of the n different classes. The goal is to construct a function which, given a new data point, will correctly predict the class to which the new point belongs. ${ }^{136}$

Multi Class Classifier is interpretable and simple algorithm model. The final results are presented in the appendix; however this is a description of how it works.

Logistic Regression with ridge parameter of $1.0 \mathrm{E}-8$
Coefficients...
Class
Variable Yes

Car superseding ability=No
-26.2427
Motorbike superseding ability=Yes -4.39
House superseding ability=Yes 5.3858
Business superseding ability $=\mathrm{Yes} \quad 44.8751$
No superseding ability=Yes 3.3551
Have or Had Business Insurance=Yes

Odds Ratios...

[^71]Variable ..... Yes
Car superseding ability=No ..... 0
Motorbike superseding ability=Yes ..... 0.0124
House superseding ability=Yes ..... 218.2802
Business superseding ability $=\mathrm{Yes}$ ..... 3.08
No superseding ability=Yes ..... 28.6496
Have or Had Business Insurance=Yes ..... 88150280.8

Coefficients are the weights that are applied to each attribute plugged into the logistic function to obtain probabilities. The results illustrate the probability/odd that the instance belongs to class yes (Yes= I am interested in estimating my retirement) . The criterion which depicts that an instance belongs to class "yes" is that this probability is greater than $0.5{ }^{137}$.

Odds ratios are the exponential of the weights we have found. For example, the first coefficient we have is: "Car superseding ability=No": -26.2427. By calculating $\exp (-26.2427)$ we get a value really close to 0 . This is the corresponding value in the odds ratio table and means that there is almost zero probability that a customer who has no car superseding ability, is interested in estimating his/her retirement.

From the second coefficient we have: "Motorbike superseding ability=Yes": -4.39. By calculating $\exp (-4.39)$ we get a value of $0.0124(<0.5)$. This means that although a customer may have a motorbike superseding ability, that does not mean that he/she is interested in estimating his/her retirement.

[^72]The relation between the coefficient for "Car superseding ability=No" and its odds ratio is, the logarithm of the odds of "Car superseding ability=No", over the odds of "Car superseding ability=Yes":

$$
\log \frac{\text { Odds (Car superseding ability=No) }}{\text { Odds (Car superseding ability=Yes) }} 138
$$

Example: The odds of "House superseding ability=Yes" is the probability of a customer having a house superseding ability when they are interested in estimating their retirement over the probability of having a house superseding ability when they are not interested in estimating their retirement. Similarly, you can calculate the odds for "House superseding ability=No".

The $\log$ of this ratio is the value of the coefficient attached to the variable "House superseding ability $=Y$ Yes" in the logistic regression.

It is also observed that, the odds for "Have or Had Business Insurance=Yes" are extremely favorable to the yes outcome, producing a high positive value. This means that the customers that have or has business insurance are really interested in estimating their retirement.

Some of the model's predictions about each customer's willingness to estimate their retirement are presented below. The prediction "1.Yes" means that they are interested in estimating their retirement, whereas the prediction " 2 .No" means that they are not interested in estimating their retirement.

The rest of the results are presented in the appendix: Multi Class Classifier Predictions| NN

The predictions found for Multi Class Classifier Updateable are the same as those of Lazy K Star and Random Tree.
=== Predictions on user test set ===

| inst | Actual | predicted | error prediction |
| :---: | :---: | :---: | :---: |
| 1 | $1:$ Yes | $1:$ Yes | 1 |
| 2 | $1:$ Yes | $1:$ Yes | 1 |
| 3 | $1:$ Yes | $1:$ Yes | 1 |

[^73]| 4 | $1:$ Yes | $1:$ Yes | 1 |
| :---: | :---: | :--- | :--- |
| 5 | $1:$ Yes | $1:$ Yes | 1 |
| 6 | $1:$ Yes | $1:$ Yes | 1 |
| 7 | $1:$ Yes | $1:$ Yes | 1 |
| 8 | $1:$ Yes | $1:$ Yes | 1 |
| 9 | $1:$ Yes | $1:$ Yes | 1 |
| 10 | $1:$ Yes | $1:$ Yes | 1 |

Table 49: Predictions on user test set- Multi Class Classifier

### 3.1.11 Logistic

See Appendix: Logistic Classification Model| NN
=== Summary ===

| Correctly Classified Instances | 165 | $90.6593 \%$ |
| :--- | :--- | :--- |
| Incorrectly Classified Instances | 17 | $9.3407 \%$ |
| Kappa statistic | 0.2159 |  |
| Mean absolute error | 0.0952 |  |
| Root mean squared error | 0.3044 |  |
| Relative absolute error | $106.8283 \%$ |  |
| Root relative squared error | $148.264 \%$ |  |
| Total Number of Instances | 182 |  |

=== Detailed Accuracy By Class ===

|  | TP <br> Rate | FP <br> Rate | Precision | Recall | F- <br> Measure | MCC | ROC <br> Area | PRC <br> Area | Class |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0,931 | 0,625 | 0,970 | 0,931 | 0,950 | 0,228 | 0,624 | 0,967 | Yes |
|  | 0,375 | 0,069 | 0,200 | 0,375 | 0,261 | 0,228 | 0,681 | 0,222 | No |
| W.A | 0,907 | 0,601 | 0,936 | 0,907 | 0,920 | 0,228 | 0,627 | 0,934 |  |

Table 50: Detailed Accuracy by Class- Logistic
== Confusion Matrix ===
a b <-- classified as
$16212 \mid a=Y e s$
5 3|b=No
Logistic classification provides a satisfactory percentage of correctly classified instances and a high kappa statistic, which, along with the high accuracy of the estimators (ROC Area (>0,5)) indicate that it is a well-functioning algorithm model.

This practically means that, the predictions made by the algorithm were correct and better than a random guessing. So, there is a high probability that the dataset values are similar to those predicted from the algorithm.

The logistic classification model (or logit model) is a binary classification model in which the conditional probability of one of the two possible realizations of the output variable is assumed to be equal to a linear combination of the input variables, transformed by the logistic function. ${ }^{139}$

Logistic class is for building and using a multinomial logistic regression model with a ridge estimator.

Logistic Classification is interpretable and simple algorithm model and it provides the same results as those of Multi Class Classifier.

Some of the model's predictions about each customers' willingness to estimate their retirement are presented below. The prediction " 1 .Yes" means that they are interested in estimating their retirement, whereas the prediction " $2 . \mathrm{No}$ " means that they are not interested in estimating their retirement.

The rest of the results are presented in the appendix: Logistic Regression Predictions| NN

The predictions found for Logistic Classifier are the same as those of Multi Class Classifier, Multi Class Classifier Updateable, Lazy K Star and Random Tree.
$===$ Predictions on user test set $===$

| inst\# | actual | predicted | error prediction |
| :---: | :---: | :---: | :---: |
| 1 | $1: Y e s$ | $1:$ Yes | 1 |
| 2 | $1:$ Yes | $1:$ Yes | 1 |
| 3 | $1:$ Yes | $1:$ Yes | 1 |
| 4 | $1:$ Yes | $1:$ Yes | 1 |
| 5 | $1:$ Yes | $1:$ Yes | 1 |
| 6 | $1:$ Yes | $1:$ Yes | 1 |
| 7 | $1: Y e s$ | $1: Y e s$ | 1 |
| 8 | $1: Y e s$ | $1:$ Yes | 1 |
| 9 | $1: Y e s$ | $1:$ Yes | 1 |
| 10 | $1: Y e s$ | $1: Y e s$ | 1 |

Table 51: Predictions on user test set- Logistic

[^74]The algorithms Zero R, One R and J-Rip usually are the simplest algorithms with the best results given for predictability. However in our case these algorithms do not provide satisfying (low accuracy, negative kappa statistic, negative MCC).

See in the Appendix: Classifiers with low accuracy| NN
These are the algorithms with negative kappa statistic or negative MCC, which are a bad- functioning models.

### 3.2 WEKA Clustering <br> WEKA Clusterers

Clustering is a method of grouping similar things together. As mentioned in the first chapter, clustering is a process of portioning a data set into a set of meaningful subclasses, known as clusters. Clustering is the same as classification in which data is grouped. ${ }^{140}$

Though, unlike classification, clustering does not seek rules that predict a particular class, but rather try to divide the data into groups/clusters, that are not previously defined, by determining similarities between data according to characteristics found in the real data.

The objective of our clustering procedure is to group the customers who presented similarities in their insurance interests and to disjoin those who displayed dissimilarities. We proceed to the implementation of different clusterers (Simple KMeans, EM, Make a Density, Farthest First, Canopy, Filtered Clusterer) to the same dataset, in order to see how they behave and maybe to point possible similarities between the clustering results.

Below are the clusterers' results, which give information about the cluster centroids of the customers' answers. These, present the different clusters that are created, based on same characteristics observed in a set of elements.

Centroids are those characteristics that are dominant in the cluster and are similar (have similar characteristics) with the objects in the same cluster.

[^75]The dataset used for the creation of the clustering results was the answers of a hundred and eighty-two (182) NN customers concerning their superseding ability, their insurance type, the significance of their insurance package, the safety offered from their insurance package, the level of satisfaction from the public insurance health benefits, their wish for extra benefits from their health insurance and their wish for covering certain expenditures after they receive their pension were loaded to WEKA software system in order to make the clusterings.

According to these data, WEKA created several clustering options depending on the clusterer chosen (Simple K-Means, EM, Make a Density, Farthest First, Canopy, Filtered) in order to group the travel agencies that presented similarities and disjoin those that displayed dissimilarities. The aim of clustering is to find distinct groups within a given dataset. Clustering also helps us discern the characteristics between data elements that would otherwise have been unlabeled and uncategorized.

### 3.2.1 Simple K Means

As mentioned in the first chapter (an analytical explanation is presented in chapter 60), Simple Means is a distant-based clusterer that minimizes the squared distance from each instance to their cluster center, after defining k centroids. It is one of the best unsupervised algorithms. For each different number of seeds, there are different clustering results. ${ }^{141142}$

Simple K Means uses random numbers and by using the same seed, we will always get the same random numbers. If we run Simple K Means over the same data twice, with the same seed, we will get exactly the same results. For different number of seeds, the results will vary each time we run Simple K Means.

In our dataset we use the same seed.

Simple K Means Clusterer, presents a different squared error depending on the number of clusters we wish to create. The bigger the number of clusters, the lower the value of squared errors within the clusters.

[^76]In order to cross-validate this, we choose different number of clusters manually. The results of each of the clusterings, depending on their number of clusters are presented below.

## Simple K Means with 2 Clusters

See the clustering results in the appendix: Simple K Means Clustering| NN
Within cluster sum of squared errors: 1889.54
Number of iterations: 5
Missing values globally replaced with mean/mode.
Clustered Instances (number of instances detected in each cluster):
060 (33\%)
1122 ( $67 \%$ )
Simple K Means divides NN customers into two clusters, Cluster 0 and Cluster 1. $67 \%$ of the instances are in Cluster 1 ( 122 customers out of 182 are included in this cluster). The two clusters present differentiations in the fields of insurance owning, the satisfactory amount of money for family support, the satisfaction from public insurance health benefits, the selection of a big private hospital in a big city of Greece over public hospitals for serious health issues, the willingness to include traveling to the private insurance, the management of supplementary pension and the importance of covering pleasure trips after pension receiving.

|  | Cluster 0 | Cluster 1 |
| :---: | :---: | :---: |
| Have never had Insurance | No | Yes |
| Tax obligations would not be covered in case of a possible loss of mine | Yes | No |
| A satisfying amount of money for the support of my beloved ones | 99.57 | 79.57 |
| Kind of satisfied from the public insurance health benefits | No | Yes |
| I would choose a big private hospital of Athens or Thessaloniki for serious health issues | Yes | No |
| I would like going abroad to be included to my private insurance | Yes | No |


| I have managed for a lump sum or supplementary pension | Yes | No |
| :---: | :---: | :---: |
| It is of a major importance to cover my pleasure trips after I |  |  |
| receive my pension |  |  |$\quad$ Yes $\quad$ No

Table 52: Cluster Centroids- Simple K- Means

Centroids of cluster 0 depicts that the certain characteristics of Cluster 0 , are dominant in the cluster and are similar with the objects in the same cluster. The second cluster's centroid depicts that the certain characteristics of Cluster 1 are dominant in the second cluster and are similar with the objects in the same cluster.

## Simple K Means with 3 clusters:

Within cluster sum of squared errors: 1824.91
Clustered Instances
036 (20\%)
100 (55\%)
246 (25\%)

## Simple K Means with 4 clusters:

Within cluster sum of squared errors: 1716.16
Clustered Instances
045 (25\%)
171 (39\%)
2 22(12\%)
344 (24\%)

## Simple K Means with 5 clusters:

See the clustering results in the appendix:
Within cluster sum of squared errors: 1651.43
Clustered Instances

```
045(25%)
1 71(39%)
2 22(12%)
```

It is clear that a higher number of clusters, leads to a lower squared error, meaning that, the dataset is closer to finding the line of best fit.


Figure 30: Within cluster sum of squared errors and number of clusters

### 3.2.2 EM

"EM (Expectation Maximization) is a probabilistic clusterer and can be used for unsupervised learning. Like Naive Bayes, it makes the assumption that all attributes are independent random variables." (Witten I.H., et al., (1999))

As mentioned in the first chapter (an analytical explanation is presented in chapter 1.5.2), unlike K-Means that takes one point and places it to the one cluster or the other, EM computes the probability that it goes into a or b cluster. This probability never gets zero or one, it is always a number between zero and one ( $0<$ probability EM<1).

The model just finds that there are distinguished groups in the dataset that behave differently.

EM works for numeric attributes providing mean and standard deviation results and value probability results respectively. Log likelihood is an overall quality measure and is increased by each iteration. ${ }^{143}$

EM run alternative number of clusters and then chooses automatically the number of the clusters it shall create.
$===$ Model and evaluation on training set $===$
See Appendix: EM Clusterer $\mid$ NN

Number of clusters selected by cross validation: 3
Number of iterations performed: 9

EM divides Cretan Palm's booking sources into three clusters.
$43 \%$ of the customers are included in Cluster 0, $21 \%$ of the customers are included in Cluster 1 and $35 \%$ of the customers are included in Cluster 2.

Here is an example of how it works (all the rest clustering results are in the appendix):

- Customers in Cluster 0 have a $30 \%$ probability (24.1773/80.4633) to choose a big private hospital in a big city of Greece (Athens or Thessaloniki) over public hospitals for serious health issues (and a $70 \%$ probability (56.286/80.4633) not to choose a big private hospital in a big city of Greece (Athens or Thessaloniki) over public hospitals for serious health issues).
- Customers in Cluster 1 have a $66.5 \%$ probability (27.3252/41.0313) to choose a big private hospital in a big city of Greece (Athens or Thessaloniki) over public hospitals for serious health issues (and a $33.5 \%$ probability (27.3252/41.0313) not to choose a big private hospital in a big city of Greece (Athens or Thessaloniki) over public hospitals for serious health issues).
- Customers in Cluster 2 have a $42.8 \%$ probability (28.4974/66.5054) to choose a big private hospital in a big city of Greece (Athens or Thessaloniki) over public hospitals for serious health issues (and a $57.2 \%$ probability (38.0079/66.5054) not to choose a big private hospital in a big city of Greece (Athens or Thessaloniki) over public hospitals for serious health issues).

[^77]| Cluster 0 | Cluster 1 | Cluster 2 |
| :---: | :---: | :---: |
| $(0.43)$ | $(0.21)$ | $(0.35)$ |

I would choose a big private hospital of Athens or Thessaloniki for serious health issues

| Yes | 24.1773 | 27.3252 | 28.4974 |
| :--- | :--- | :--- | :--- |
| No | 56.286 | 13.7061 | 38.0079 |
| [total] | 80.4633 | 41.0313 | 66.5054 |

Table 53: Cluster Centroids- EM

Clustered Instances (number of instances detected in each cluster):
079 (43\%)
138 (21\%)
265 (36\%)
Log likelihood: -27.88

### 3.2.3 Farthest First

According to[24]:

Farthest first finds its variant of $K$-means. Each cluster center point furthermost from the existing cluster center is placed by the $K$-mean, and this point must be positioned within the data area. So that it greatly speeds up the clustering in most cases, but it needs less move and adjustment for their fast performance.

In order to examine Farthest First Clusterer's accuracy, we choose different number of clusters manually.

## Farthest First Clusterer with 2 Clusters

See Appendix for the clustered centroids: Farthest First Clusterer |NN
Farthest First divides NN's customer answers into two clusters. Each cluster's centroids are presented in the appendix. The elements "Yes" and "No" represent the centroid answers to the questionnaires' statements: "I have a car superseding ability, I
have a motorbike superseding ability, I have a house superseding ability, I have a business superseding ability, I do not have superseding ability, I have/had Business Insurance, I have/had Civil Liability Insurance, It is of a major importance to cover my everyday needs after I receive my pension,.......I I am interested in estimating my retirement". Each "Yes/No" answer in each question is the centroid of all the answers that the customers have answered (in that specific question).

The clusters differentiate in these fields:

- business superseding ability
- general superseding ability
- business insurance ability
- civil liability insurance ability
- risk protection interest
- satisfying amount of money for the support of beloved ones
- importance of supporting children and grandchildren after pension
- immediate care of supplementary pension interest
- retirement estimation interest

|  | Cluster 0 | Cluster 1 |
| :--- | :---: | :---: |
| Business superseding ability | Yes | No |
| General superseding ability | No | Yes |
| Business insurance ability | Yes | No |
| Civil liability insurance ability | Yes |  |
| Risk protection interest | Yes | No |
| Satisfying amount of money for the support of beloved ones | 100 | 86.6 |
| Importance of supporting children and grandchildren after <br> pension | No | Yes |
| Immediate care of supplementary pension interest | No | Yes |
| Retirement estimation interest | Yes | No |

Table 54: Cluster Centroids - Farthest First

Clustered Instances (number of instances detected in each cluster):
$0 \quad 148$ ( $81 \%$ )
134 (19\%)

Farthest First clusterer divides the data into two groups/clusters, with the first one having $81 \%$ of the instances and the second one having $19 \%$ of the instances.

According to centroids, the first cluster (Cluster 0) concerns customers who are interested in estimating their retirement, whereas the second cluster (Cluster 1) concerns customers who are not interested in estimating their retirement. The two clusters have similar characteristics (similar centroids) except for these written on the table. The rest of the characteristics are presented in the appendix.

## Farthest First Clusterer with 3 Clusters

Clustered Instances
$0 \quad 93$ (51\%)
123 (13\%)
266 (36\%)

## Farthest First Clusterer with 4 Clusters

Clustered Instances
085 (47\%)
18 (10\%)
249 (27\%)
3 30(16\%)

## Farthest First Clusterer with 5 Clusters

Clustered Instances
$0 \quad 72$ (40\%)
1 15 (8\%)
245 (25\%)
326 (14\%)

### 3.2.4 Make A Density Based Clusterer

According
to
[29]:
Density-Based Clustering refers to unsupervised learning methods that identify distinctive groups/clusters in the data, based on the idea that a cluster in a data space is a contiguous region of high point density, separated from other such clusters by contiguous regions of low point density. The data points in the separating regions of low point density are typically considered noise/outliers.

As mentioned in the first chapter (an analytical explanation is presented in chapter 1.5.7),

- The clusterer randomly chooses the core points and then for each core point that is not already assigned to a cluster, creates a new cluster.
- The clusterer finds all its density connected points and assigns them to the same cluster as the core point.
- Then it iterates through the remaining unvisited points in the dataset.
- The core points that do not belong to any cluster are treated as outliers or noise points. ${ }^{144}$

Make A Density Clusterer, also presents a different squared error depending on the number of clusters we wish to create. The bigger the number of clusters, the lower the value of squared errors within the clusters.

In order to cross-validate this, we choose different number of clusters manually. The results of each of the clusterings depending on their number of clusters are presented below.

## Make A Density Clusterer with 2 Clusters

See the clustering results in the appendix: Make A Density Fitted Estimators| NN

## Within cluster sum of squared errors: 1889.5

[^78]Wrapped clusterer: kMeans
Number of iterations: 5
Missing values globally replaced with mean/mode.

Clustered Instances (number of instances detected in each cluster):

```
0 59 (32%)
1 123(68%)
```

Log likelihood: -28.64

Make a density clusterer divides the data into two groups/clusters, with the first one having $32 \%$ of the instances and the second one having $68 \%$ of the instances.

## Make A Density Clusterer with 3 Clusters

Wrapped clusterer: kMeans
Number of iterations: 5
Within cluster sum of squared errors: 1824.91
Clustered Instances
032 (18\%)
102 (56\%)
248 (26\%)
Log likelihood: -28.45069

## Make A Density Clusterer with 4 Clusters

Wrapped clusterer: kMeans
Number of iterations: 7
Within cluster sum of squared errors: 1716.16
Clustered Instances
043 (24\%)
173 (40\%)
2 21 (12\%)

345 (25\%)
Log likelihood: -28.10392

## Make A Density Clusterer with 5 Clusters

Wrapped clusterer: kMeans
Number of iterations: 13

## Within cluster sum of squared errors: 1651.43

Clustered Instances
0 42 (23\%)
134 (19\%)
2 20(11\%)
344 (24\%)
4 42 (23\%)

Log likelihood: -28.0086

It is clear that a higher number of clusters, leads to a lower squared error, meaning that, the dataset is closer to finding the line of best fit.


Figure 31: Within cluster sum of squared errors and number of clusters

### 3.2.5 Canopy

According to Mai and Cheng (2016)[33]:
Canopy is one of the improved $K$-means algorithm, can be used to determine the number of clusters. With the introduction of Canopy clustering, the data set is divided into $k$ sub-sets by setting the radius, and the sub-sets can be selected as the initial centers of $K$-means. Because the Canopy algorithm can reduce the running time of the clustering by reduce the count of comparisons, it will improve the computational efficiency.

The Canopy algorithm's analytical explanation of the steps, are presented in chapter

### 1.5.8.

Canopy runs alternative number of clusters and then chooses automatically the number of the clusters it shall create.

## See Appendix: Canopy Clustering| $N N$

Number of canopies (cluster centers) found: 7
T2 radius: 4,020
T1 radius: 5,026

Clustered Instances (number of instances detected in each cluster):
061 (34\%)
150 (27\%)
2 6(3\%)
320 (11\%)
4 6(3\%)
533 (18\%)
66 ( $3 \%$ )

Canopy divides NN's customer answers into seven clusters. Each cluster's elements are presented in the appendix. The elements "Yes" and "No" represent the answers to the questionnaires' statements: "I have a car superseding ability, I have a motorbike superseding ability, I have a house superseding ability, I have a business superseding ability, I do not have superseding ability, I have/had Business Insurance, I have/had Civil Liability Insurance, It is of a major importance to cover my everyday needs after

I receive my pension,.......,I am interested in estimating my retirement". An obvious difference between the clusters is the amount of money that is satisfactory for the support of the customer's beloved ones.

According to centroids, all the clusters concern customers who are interested in estimating their retirement. These clusters differ in other characteristics and are presented in the appendix.

Note: The numbers in these brackets: Error! Reference source not found. show the instances that are appeared in the cluster.

### 3.2.6 Filtered Clusterer

According to

This algorithm is primarily based completely on storing the multidimensional data points within a tree. The process regarding the tree is like a binary tree method, as represents a hierarchical subdivision on its data point set's bounding box the usage of their axis after which splitting is aligned by way on hyper planes. Each node on the tree is related with a closed field, referred to as the cell.

These results are the same as those of Simple K Means for all the clusterings, which is expected, as Filtered Clusterer uses Simple K Means in order to proceed to the outcome.

## Conclusions

$95 \%$ of the customers that answered the questionnaire (174 out of 182) are interested in estimating their retirement.

According to the Random Tree algorithm- which presents an interpretable decision tree model- there is a correlation between certain factors (that influence the variable) and the variable (interest of retirement estimation).

It is recommended that the company adopts a marketing strategy focused on the customers that are interested in estimating their retirement.

Random Tree, Lazy IBK, Naïve Bayes Updateable and Bayes Net, are the algorithms that provide the most accurate results. The high percentage of correctly classified instances and the positive kappa statistic along with the high accuracy of the estimators (ROC Area (>0,5)) indicate that these are high-performance algorithm models. This practically means that, the predictions made by the algorithm were correct and better than a random guessing. So, there is a high probability that the dataset values are similar to those predicted from the algorithm.

Below there is a table providing all the algorithms' results as well as a table providing all algorithms' ranking. The second table ranks the algorithms and depicts which one of these is the best, based on the number of times a particular algorithm defeats others.

|  | Random Tree | Lazy IBK | Naive <br> Bayes Updateable | Bayes Net | Naive <br> Bayes | $\begin{aligned} & \text { Lazy K } \\ & \text { Star } \end{aligned}$ | Meta <br> Randomizable <br> Filtered <br> Classifier | SMO | Multi Class <br> Classifier <br> Updateable | Multi Class Classifier | Logistic Regression |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Correctly Classified Instances | 172 | 172 | 171 | 171 | 171 | 170 | 169 | 169 | 166 | 165 | 165 |
| Incorrectly Classified Instances | 10 | 10 | 11 | 11 | 11 | 12 | 13 | 13 | 16 | 7 | 17 |
| Kарра statistic | 0,1415 | 0,1415 | 0,1242 | 0,2353 | 0,1242 | 0,1093 | 0,0963 | 0,0963 | 0,15555 | 0,2159 | 0,2159 |
| Mean absolute error | 0,0532 | 0,0627 | 0,0663 | 0,0715 | 0,0663 | 0,0688 | 0,0766 | 0,0714 | 0,0879 | 0,0952 | 0,0952 |
| Root mean squared error | 0,2273 | 0,236 | 0,2246 | 0,2293 | 0,2246 | 0,2479 | 0,2657 | 0,2673 | 0,2965 | 0,3044 | 0,3044 |
| Relative absolute error | 59,69\% | 70,30\% | 74,33\% | 80,22\% | 74,33\% | 77,14\% | 85,91\% | 80,11\% | 98,60\% | 106,83\% | 106,83\% |
| Root relative squared error | 110,71\% | 114,93\% | 109,39\% | 111,65\% | 109,39\% | 120,73\% | 129,40\% | 13,16\% | 144,40\% | 148,26\% | 148,26\% |
| Total Number of Instances | 182 | 182 | 182 | 182 | 182 | 182 | 182 | 182 | 182 | 182 | 182 |
| TP Rate | 0,945 | 0,945 | 0,94 | 0,94 | 0,94 | 0,945 | 0,929 | 0,929 | 0,912 | 0,907 | 0,907 |
| FP Rate | 0,837 | 0,837 | 0,838 | 0,718 | 0,838 | 0,934 | 0,838 | 0,838 | 0,72 | 0,601 | 0,601 |
| Precision | 0,945 | 0,929 | 0,927 | 0,936 | 0,927 | 0,838 | 0,924 | 0,924 | 0,93 | 0,936 | 0,936 |
| Recall | 0,929 | 0,945 | 0,94 | 0,94 | 0,94 | 0,925 | 0,929 | 0,929 | 0,912 | 0,907 | 0,907 |
| F-Measure | 0,945 | 0,936 | 0,933 | 0,938 | 0,933 | 0,9364 | 0,926 | 0,926 | 0,92 | 0,92 | 0,92 |
| MCC | 0,151 | 0,151 | 0,128 | 0,236 | 0,128 | 0,111 | 0,096 | 0,096 | 0,159 | 0,228 | 0,228 |
| ROC Area | 0,527 | 0,634 | 0,746 | 0,759 | 0,746 | 0,524 | 0,575 | 0,545 | 0,596 | 0,627 | 0,627 |
| PRC Area | 0,92 | 0,93 | 0,946 | 0,951 | 0,946 | 0,921 | 0,923 | 0,92 | 0,925 | 0,934 | 0,934 |

Figure 32: Algorithms' results

| Dataset | SMO | Random Tree | Lazy IBK | Naive Bayes | Bayes Net | Lazy K Star | Meta <br> Randomizable <br> Filtered Classifier | Multi Class <br> Classifier <br> Updateable | Multi Class Classifier | Logistic |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NN | 93,81 | 92,03 | 93,64 | 93,91 | 93,91 | 93,64 | 92,37 | 92,38 | 89,41* | 89,41* |
|  | (v//*) | (0/1/0) | (0/1/0) | (0/1/0) | (0/1/0) | (0/1/0) | (01/0) | (0/1/0) | (0/0/1) | (0/0/1) |
| Ranking | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 |

Figure 33: Algorithms' ranking

The ranking table shows the number of statistically significant victories (we set level of significance: 0.05) of each algorithm versus all other algorithms for the data set (except Naïve Bayes Updateable which is binary). A victory (v) means an accuracy that is better than the accuracy of another algorithm and that this difference is statistically significant. ${ }^{145}$

We can see that SMO has two victories, which means that this is potentially the best one. Logistic and Multi Class Classifier, have 1 loss each. The accuracy of these two algorithms compared to SMO is low, so SMO algorithm is potentially the best one outperforming Logistic and Multiclass Classifier.

We can see that Logistic and Multiclass Classifier algorithms have an '*' next to its results, meaning its results with respect to SMO are statistically different.

The rating scores of Logistic and Multiclass Classifier is the same. Putting Logistic and Multi Class Classifier to the test base, we confirm the already known results, that is, SMO outperforms these two algorithms.

[^79]| Dataset | Logistic | Random Tree | Lazy IBK | Naive Bayes | Bayes Net | Lazy K Star | Meta <br> Randomizable <br> Filtered <br> Classifier | SMO | Multi Class <br> Classifier <br> Updateable | Multi Class Classifier |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NN | 89,41 | 92,03 | 93,64 | 93,91 | 93,91 | 93,64 | 92,37 | 93,81 v | 92,38 | 89,41 |
|  | (v/ /*) | (0/1/0) | (0/1/0) | (0/1/0) | (0/1/0) | (0/1/0) | (0/1/0) | (1/0/0) | (0/1/0) | (0/1/0) |
| Ranking | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | -1 |

Figure 34: Algorithms' ranking

| Dataset | Multi Class Classifier | Random Tree | Lazy IBK | Naive Bayes | Bayes Net | Lazy K Star | Meta <br> Randomizable <br> Filtered <br> Classifier | SMO | Multi Class <br> Classifier <br> Updateable | Logistic |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NN | 89,41 | 92,03 | 93,64 | 93,91 | 93,91 | 93,64 | 92,37 | 93,81 v | 92,38 | 89,41 |
|  | (v//*) | (0/1/0) | (0/1/0) | (0/1/0) | (0/1/0) | (0/1/0) | (0/1/0) | (1/0/0) | (0/1/0) | (0/1/0) |
| Ranking | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | -1 |

Figure 35: Algorithms' ranking

We can see that SMO has a small 'v' next to its results. This means that the difference in accuracy for this algorithm compared to Logistic and Multiclass Classifier is statistically significant. We can also see that the accuracy of SMO algorithms compared to these algorithms is high, so we can say that SMO achieved a statistically significantly better result than Logistic's and Multiclass Classifier's base lines.

So, we will probably choose SMO to make predictions about this problem.
If we wanted to report the results, we would say that the SMO algorithm achieved a classification accuracy of $93.81 \%(+/-5.47 \%)$.

## Chapter 4

## Use Case: Large Super Market in Greece

### 4.1 WEKA Association Rule Mining

In this chapter, we are going to make an analysis for a Super Market chain in Greece, using Association Rule Mining (also known as market basket analysis) to discover the correlations between the different items in customers' shopping cart, as well as Clustering to segregate groups with similar traits. The findings of these correlations may help the Super Market better understand the purchase behavior of the buyers, make the correct decisions and hence, establish a profitable sales strategy by considering items frequently purchased together by customers.

For a supermarket with multiple stores, finding purchasing patterns can be useful in forming sales, marketing, service, and operation strategies. However, there are some problems arisen from the existing traditional strategic methods for a supermarket environment such as the nature of purchasing patterns.

To address these problems, the Apriori algorithm is used for automated extraction of association rules in a supermarket's environment.

The rules can be used for sales, marketing and operation strategies, for product procurement and inventory as well as for distribution of the entire Supermarket chain. (Chen et. al., 2005. Market basket analysis in a multiple store environment, Decision Support Systems) [34]

For this use case, a database with transactional and demographic data was collected from the Supermarket for a period of eight months (January to August of 2021). This database includes the customers' gender, age, card code and all of their purchases with its dates, the shop and area from which the customers made each purchase, the products each customer chose along with their product category and the amount of money that they spent on each product. The total number of the customers is 467 , the different product categories are 431 and the different shops are 41.

The collection and analysis of these data, gives us the opportunity to find useful information about the customers, analyze their profile and make certain predictions
and clusterings about them. Weka Machine Learning Software, can transform the dataset into meaningful patterns with the assistance of integrated algorithms and help us make predictions on certain variables as well as clusterings. WEKA, helps us to better predict the results of a new oncoming dataset that has similar characteristics with our already existing dataset.

To proceed to these analyses, the original dataset was subjected to data preparation/ training in order to become in a suitable format and make the necessary associations and clusterings.

Association Rule Mining preparation includes sorting all customers by card code, gender, age, shopping area, and shopping dates and then for each shopping date and each shopping area ${ }^{146}$ chosen by each customer, we recorded if there was a purchase for each of the product categories with the assistance of Pivot Tables. Then, different sub-datasets were made; two for the different genders, six for the various age groups and fourteen for the different shopping areas (all around Crete) that customers choose for their purchases. Each one sub-dataset, is loaded to Weka and is being analyzed using Apriori algorithm in order to extract the necessary rules and discover the correlations between the different items in customers' shopping cart. Through data mining processing, useful information is extracted from a database aiming to make crucial business decisions. Data mining combined with artificial intelligence techniques, discovers various correlations and maybe unexpected patterns between two or more variables. As far as the Super Market Analysis is concerned, Association Rule Mining is used to discover the correlation between one item to another and to depict which items are frequently purchased together.

According to Solanki and Patel (2015) Error! Reference source not found.:
An association rule is one of the forms, where $A$ is an "antecedent" (if part) and B is the "consequent" (then part). Here variables $A$ and $B$ are the item sets and the rule ( ) means that customer who purchase an item set $A$ are expected to purchase an item set $B$ with the probability \% $c$, where $c$ is called confidence.

Clustering preparation, included sorting all customers by gender, age and then for each customer, the purchase frequency was recorded for each of the product

[^80]categories, with the assistance of Pivot Tables. Then, the dataset was loaded to Weka in order to segregate the customers with similar characteristics. In our case, the purpose is to find the groups that are similar as per their purchase frequencies.

Association Rule Mining /Market Basket Analysis is presented below, by adducing the correlations between the different items in customers' shopping cart for each gender (women and men of every age group and every area of purchase), each shopping area ${ }^{147}$ from the different prefectures of Crete (regardless of gender and age group) and each age group (of all genders and areas of purchase).

To evaluate the performance of Apriori's results, we use the following metrics:
As denoted in the first chapter, for a given rule $\mathrm{X} \Rightarrow \mathrm{Y}$, [conf:(w)](conf:(w)) lift:(z) lev:(t) conv:(j) :

- Confidence (<conf>) measures the reliability of the results emerged from a rule. The higher the confidence level, the more likely Y is to engage in transactions containing X .
- Lift is about how likely is for the product Y to be purchased given that product X is purchased, while checking how popular product Y is. Values greater than 1 are desirable.
- Leverage (lev) measures the proportion of additional cases covered by both X and Y above those expected if X and Y were independent of each other. If the value of the leverage is zero, then X and Y are statistically independent. A leverage value greater than zero, means that X and Y are related. The higher the leverage value, the stronger the correlation between X and Y .
- Conviction (conv) is the effect of the right-hand-side not being true.


## Associator model (full training set): Apriori

[^81]
### 4.1.1 Best results found for Women

1. CURED MEAT PRODUCTS (DRAINING BENCHES)=t 2439 ==> CHEESE (DRAINING BENCHES)=t 2203 [conf:(0.9)](conf:(0.9)) lift:(2.55) lev:(0.09) [1340] conv:(6.65) ${ }^{148}$
2. FRUITS, GROCERY=t CHEESE (DRAINING BENCHES)=t 2320 ==> VEGETABLES, GROCERY=t 1685 [conf:(0.73)](conf:(0.73)) lift:(1.53) lev:(0.04) [583] conv:(1.92) ${ }^{149}$
3. FRUITS, GROCERY=t XM CODE (OUT OF CATEGORY), BAZAAR=t 2691
==> VEGETABLES, GROCERY=t 1875 [conf:(0.7)](conf:(0.7)) lift:(1.47) lev:(0.04) [597] conv:(1.73)
4. FRUITS, GROCERY=t $5639==>$ VEGETABLES, GROCERY=t 3768 [conf:(0.67)](conf:(0.67)) lift:(1.41) lev:(0.07) [1090] conv:(1.58)
5. PASTA, CONSUMABLES=t $2800==>$ VEGETABLES, GROCERY=t 1605 [conf:(0.57)](conf:(0.57)) lift:(1.21) lev:(0.02) [275] conv:(1.23)
6. VEGETABLES, GROCERY=t CHEESE (DRAINING BENCHES)=t 3005 ==> FRUITS, GROCERY=t 1685 [conf:(0.56)](conf:(0.56)) lift:(1.56) lev:(0.04) [604] conv:(1.46)
7. BREAD, CONSUMABLES=t 3895 ==> CHEESE (DRAINING BENCHES)=t 2159 [conf:(0.55)](conf:(0.55)) lift:(1.57) lev:(0.05) [781] conv:(1.45)
8. YOGURT, CONSERVATION=t 3831 ==> VEGETABLES, GROCERY=t 2103 [conf:(0.55)](conf:(0.55)) lift:(1.16) lev:(0.02) [284] conv:(1.16)
9. CHEESE (DRAINING BENCHES)=t $5546==>$ VEGETABLES, GROCERY=t

3005 [conf:(0.54)](conf:(0.54)) lift:(1.14) lev:(0.02) [371] conv:(1.15)

[^82]10. VEGETABLES, GROCERY=t XM CODE (OUT OF CATEGORY), BAZAAR=t 3475 ==> FRUITS, GROCERY=t 1875 [conf:(0.54)](conf:(0.54)) lift:(1.5) lev:(0.04) [625] conv:(1.39)

The results show that women's purchases of fruits, consumables (pasta, bread), cheese and conserved products (yogurt), usually lead to the purchase of vegetables. Furthermore, the purchase of cured meat products usually lead to the purchase of cheese and the purchase of bazaar products usually lead to the purchase of fruits or vegetables. Vegetables lead to the purchase of fruits and vice versa.

These rules present high levels of confidence $(>0,5)$ which is a metric of reliability of the results emerged from a rule, high levels of lift ( $>1$ ) which is a metric of relation between the items. The rules' leverages are also greater than zero, which depicts that these products are statistically dependent and related with each other.

### 4.1.2 Best results found for Men

1. CURED MEAT PRODUCTS (DRAINING BENCHES)=t $630==>$ CHEESE (DRAINING BENCHES)=t 567 [conf:(0.9)](conf:(0.9)) lift:(2.68) lev:(0.09) [355] conv:(6.54)
2. FRUITS, GROCERY=t 1287 ==> VEGETABLES, GROCERY=t 735 [conf:(0.57)](conf:(0.57)) lift:(1.43) lev:(0.05) [222] conv:(1.4)
3. BREAD, CONSUMABLES $=\mathrm{t} 1014==>$ CHEESE (DRAINING BENCHES) $=\mathrm{t}$ 541 [conf:(0.53)](conf:(0.53)) lift:(1.59) lev:(0.05) [201] conv:(1.42)
4. YOGURT, CONSERVATION=t 953 ==> VEGETABLES, GROCERY=t 469 [conf:(0.49)](conf:(0.49)) lift:(1.24) lev:(0.02) [89] conv:(1.18)
5. VEGETABLES, GROCERY=t 1616 ==> FRUITS, GROCERY=t 735 [conf:(0.45)](conf:(0.45)) lift:(1.43) lev:(0.05) [222] conv:(1.25)
6. BREAD, CONSUMABLES=t $1014==>$ VEGETABLES, GROCERY=t 454 [conf:(0.45)](conf:(0.45)) lift:(1.12) lev:(0.01) [50] conv:(1.09)
7. MILK, CONSERVATION=t $1087==>$ CHEESE (DRAINING BENCHES)=t 484 [conf:(0.45)](conf:(0.45)) lift:(1.33) lev:(0.03) [119] conv:(1.2)
8. CHEESE (DRAINING BENCHES)=t $1361=$ => VEGETABLES, GROCERY=t 599 [conf:(0.44)](conf:(0.44)) lift:(1.11) lev:(0.01) [57] conv:(1.07)
9. BREAD, CONSUMABLES=t $1014==>$ XM CODE (OUT OF CATEGORY), BAZAAR=t 445 [conf:(0.44)](conf:(0.44)) lift:(1.14) lev:(0.01) [56] conv:(1.1)
10. YOGURT, CONSERVATION=t 953 ==> CHEESE (DRAINING BENCHES)=t 411 [conf:(0.43)](conf:(0.43)) lift:(1.29) lev:(0.02) [91] conv:(1.17)

The high levels of confidence (0.9) and lift (2.68) depict that men's purchases of cured meat products usually lead to the purchase of cheese.

Fruits usually lead to the purchase of vegetables and bread usually leads to the purchase of cheese. These rules have lower confidence and lift levels but they still considered to have a quite strong co-relation.

The other rules present a lower confidence level (0.5), which depict a weaker engagement between the related products.

## Propositions concerning both male and female target audience:

Since we have found which products with a high correlation factor, that go well together, we can proceed to certain in-store and/or online targeting activities, in order to enhance the cross-selling purchasing and maximize customer engagement and sales.

- It is recommended that fruits, vegetables, consumables (pasta, bread) and dairy products to be placed next to each other or within accessible reach to facilitate cross-selling.

Furthermore, cured meat products can be placed next to cheeses or within accessible reach.

- In the consumables' section can be placed a dairy products' promotion panel (for instance, in the pasta section can be placed a panel promoting the various types of cheese that may go well with the various types of pasta).
- Simultaneous discounts and offers can also be put from time to time to the highly correlated products, such as to the bazaar items and the fruits/ vegetables, to the consumables and the dairy products and/or the cured meat products and the cheeses.
- In-store digital signage is a form of dynamic advertising and can placed all around the aisles and activate the clients during their purchases. For example, pasta section can promote a healthy spaghetti receipt with cheese and vegetables. That way, visitors can identify a checklist of ingredients easily and shall consider again their purchase needs. Moreover, the usage of digital signage, is a useful reminder and an interactive counselor to the customers, as they can directly emphasize in suggesting other products that are going well with the one that the customer is standing in front. For instance, a digital signage in the cured meat product section can also suggest cheeses' section for a more complete shopping list.
Digital signage may also promote the high-related products' offers and discounts. That way, customers can be directly informed and better engaged with the purchase activities.
- Website as well as mobile applications may also promote a cross-selling tactic by showcasing the correlated products when a customer is searching for a certain product category. For example, when a customer is scrolling through the pasta section, a message shall appear at the end of the page, such as "Customers that searched for pasta, also searched for mozzarella cheese. Take a look at our dairy section!" and then by clicking the respective button, customers shall be redirected to the certain section.

Simple moves like the aforementioned, might be used to increase the sales of whatever correlated category needs to be promoted and will lead to higher sales.

### 4.1.3 Best results found for Chania Area

1. BREAD, CONSUMABLES=t 127 ==> VEGETABLES, GROCERY=t 97 [conf:(0.76)](conf:(0.76)) lift:(1.55) lev:(0.05) [34] conv:(2.08)
2. FRUITS, GROCERY=t 227 ==> VEGETABLES, GROCERY=t 146 [conf:(0.64)](conf:(0.64)) lift:(1.31) lev:(0.05) [34] conv:(1.41)
3. CHEESE (DRAINING BENCHES) $=\mathrm{t} 202=>$ VEGETABLES, GROCERY=t 126 [conf:(0.62)](conf:(0.62)) lift:(1.27) lev:(0.04) [26] conv:(1.33)
4. CAVA, NON-ALCOHOLIC/SOFT DRINKS=t 142 ==> VEGETABLES, GROCERY=t 76 [conf:(0.54)](conf:(0.54)) lift:(1.09) lev:(0.01) [6] conv:(1.08)
5. YOGURT, CONSERVATION=t 147 ==> VEGETABLES, GROCERY=t 77 [conf:(0.52)](conf:(0.52)) lift:(1.07) lev:(0.01) [4] conv:(1.05)
6. PASTRIES/ SWEETS, CONSUMABLES=t 152 ==> VEGETABLES, GROCERY=t 76 [conf:(0.5)](conf:(0.5)) lift:(1.02) lev:(0) [1] conv:(1)
7. XM CODE (OUT OF CATEGORY), BAZAAR=t $200==>$ VEGETABLES, GROCERY=t 93 [conf:(0.47)](conf:(0.47)) lift:(0.95) lev:(-0.01) [-5] conv:(0.94)
8. VEGETABLES, GROCERY=t $362 \Rightarrow=>$ FRUITS, GROCERY=t 146 [conf:(0.4)](conf:(0.4)) lift:(1.31) lev:(0.05) [34] conv:(1.15)
9. MILK, CONSERVATION=t 198 ==> VEGETABLES, GROCERY=t 76 [conf:(0.38)](conf:(0.38)) lift:(0.78) lev:(-0.03) [-21] conv:(0.82)
10. CHEESE (DRAINING BENCHES) $=\mathrm{t} 202==>$ FRUITS, GROCERY=t 77 [conf:(0.38)](conf:(0.38)) lift:(1.24) lev:(0.02) [14] conv:(1.11)

The results show that in the area of Chania purchases of bread, conserved products (yoghurt), consumables, drinks, beverages, cheese and fruits usually lead to the purchase of vegetables which means that it is very likely that vegetables are about to engage in transactions containing the aforementioned. These rules present high levels of confidence $(>0,5)$ which is a metric of reliability of the results emerged from a rule, high levels of lift ( $>1$ ) which is a metric of relation between the items. The rules' leverages are also greater than zero, which depicts that these products are statistically dependent and related with each other.

The other rules present a low confidence level (<0.5), which depict a weaker engagement between the related products. For example, the purchase of cheese seems to lead to the purchase of fruits; however, it has a lower confidence and lift level, which depict that the rule is not that reliable.

### 4.1.4 Best results found for Kounoupidiana Area

1. CURED MEAT PRODUCTS (DRAINING BENCHES)=t 92 ==> CHEESE (DRAINING BENCHES)=t 85 [conf:(0.92)](conf:(0.92)) lift:(2.45) lev:(0.08) [50] conv:(7.16)
2. CAVA NON-ALCOHOLICS/WATER=t 91 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 70 [conf:(0.77)](conf:(0.77)) lift:(1.46) lev:(0.04) [22] conv:(1.96)
3. CHEESE, CONSERVATION $=\mathrm{t}$ XM CODE (OUT OF CATEGORY), BAZAAR=t 86 ==> VEGETABLES, GROCERY=t 66 [conf:(0.77)](conf:(0.77)) lift:(1.52) lev:(0.04) [22] conv:(2.03)
4. FRUITS, GROCERY=t CHEESE (DRAINING BENCHES)=t 116 ==> VEGETABLES, GROCERY=t 89 [conf:(0.77)](conf:(0.77)) lift:(1.52) lev:(0.05) [30] conv:(2.05)
5. FRUITS, GROCERY=t XM CODE (OUT OF CATEGORY), BAZAAR=t 155 ==> VEGETABLES, GROCERY=t 118 [conf:(0.76)](conf:(0.76)) lift:(1.51) lev:(0.06) [39] conv:(2.02)
6. CHEESE, CONSERVATION=t $134==>$ VEGETABLES, GROCERY=t 95 [conf:(0.71)](conf:(0.71)) lift:(1.4) lev:(0.04) [27] conv:(1.66)
7. FRUITS, GROCERY=t $247==>$ VEGETABLES, GROCERY=t 172 [conf:(0.7)](conf:(0.7)) lift:(1.38) lev:(0.08) [47] conv:(1.61)
8. VEGETABLES, GROCERY=t CHEESE, CONSERVATION=t 95 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 66 [conf:(0.69)](conf:(0.69)) lift:(1.32) lev:(0.03) [16] conv:(1.5)
9. VEGETABLES, GROCERY=t FRUITS, GROCERY=t $172==>$ XM CODE (OUT OF CATEGORY), BAZAAR=t 118 [conf:(0.69)](conf:(0.69)) lift:(1.31) lev:(0.04) [27] conv:(1.48)

# 10. VEGETABLES, GROCERY=t CHEESE (DRAINING BENCHES)=t 135 ==> FRUITS, GROCERY=t 89 [conf:(0.66)](conf:(0.66)) lift:(1.68) lev:(0.06) [35] conv:(1.74) 

All the rules present a high confidence, lift and leverage level, which is an evidence of strong output reliability and strong relation between the products.

The results show that in the area of Kounoupidiana and as it is presented from the high confidence $(0.92>0.5)$ and lift $(2.45>1)$ levels, there is a high probability that purchases of cured meat products shall lead to the purchase of cheese.

Furthermore, purchases of non-alcoholic drinks, fruits, cheeses (conserved and from draining benches), bazaar items and other uncategorized products usually lead to the purchase of vegetables.

Vegetables on the other hand, usually lead to the purchase of uncategorized products and fruits. From the last rule, we can detect that a customer who has vegetables and cheese in his cart, will usually purchase fruits as well.

The Prefecture of Chania displays a correlation between non-alcoholic drinks/beverages with vegetables as well as between cheese and vegetables. That is, the purchase of beverages and/ or cheese, lead to the purchase of vegetables.

### 4.1.5 Best results found for Heraclion Area(City)

1. CURED MEAT PRODUCTS (DRAINING BENCHES)=t $2435==>$ CHEESE (DRAINING BENCHES)=t 2215 [conf:(0.91)](conf:(0.91)) lift:(2.51) lev:(0.09) [1331] conv:(7.02)
2. FRUITS, GROCERY=t CHEESE (DRAINING BENCHES)=t 2166 ==> VEGETABLES, GROCERY=t 1548 [conf:(0.71)](conf:(0.71)) lift:(1.56) lev:(0.04) [558] conv:(1.9)
3. FRUITS, GROCERY=t XM CODE (OUT OF CATEGORY), BAZAAR=t 2314 ==> VEGETABLES, GROCERY=t 1611 [conf:(0.7)](conf:(0.7)) lift:(1.52) lev:(0.04) [554] conv:(1.79)
4. FRUITS, GROCERY=t 5092 ==> VEGETABLES, GROCERY=t 3339 [conf:(0.66)](conf:(0.66)) lift:(1.44) lev:(0.07) [1013] conv:(1.58)
5. BREAD, CONSUMABLES=t $3735==>$ CHEESE (DRAINING BENCHES)=t 2117 [conf:(0.57)](conf:(0.57)) lift:(1.56) lev:(0.05) [761] conv:(1.47)
6. VEGETABLES, GROCERY=t CHEESE (DRAINING BENCHES)=t 2768 ==> FRUITS, GROCERY=t 1548 [conf:(0.56)](conf:(0.56)) lift:(1.62) lev:(0.04) [590] conv:(1.48)
7. YOGURT, CONSERVATION=t 3604 ==> VEGETABLES, GROCERY=t 1916 [conf:(0.53)](conf:(0.53)) lift:(1.16) lev:(0.02) [269] conv:(1.16)
8. BREAD, CONSUMABLES=t 3735 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 1972 [conf:(0.53)](conf:(0.53)) lift:(1.22) lev:(0.02) [357] conv:(1.2)
9. BREAD, CONSUMABLES=t 3735 ==> VEGETABLES, GROCERY=t 1969 [conf:(0.53)](conf:(0.53)) lift:(1.15) lev:(0.02) [263] conv:(1.15)
10. PASTRIES/ SWEETS, CONSUMABLES=t 2873 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 1500 [conf:(0.52)](conf:(0.52)) lift:(1.21) lev:(0.02) [257] conv:(1.19)

The results show that in Heraclion Area and as it is presented from the high confidence $(0.91>0.5)$ and lift $(2.51>1)$ levels, there is a high probability that purchases of cured meat products shall lead to the purchase of cheese.

Furthermore, purchases of fruits and/or cheeses (from draining benches) as well as fruits and bazaar items, usually lead to the purchase of vegetables.

Purchases of vegetables also lead to the purchase of fruits.
Also, bread presents a high correlation with cheese (from the draining benches) as well as with bazaar items and vegetables.

Purchases of conserved yoghurt lead to the purchases of vegetables as well and pastry purchases usually lead to the purchase of bazaar items.

### 4.1.6 Best results found for Gazi Area

1. MILK, CONSERVATION=t CURED MEAT PRODUCTS (DRAINING BENCHES)=t 43 ==> CHEESE (DRAINING BENCHES)=t 42 [conf:(0.98)](conf:(0.98)) lift:(2.01) lev:(0.06) [21] conv:(11.07)
2. YOGURT, CONSERVATION=t CURED MEAT PRODUCTS (DRAINING BENCHES)=t 38 ==> CHEESE (DRAINING BENCHES)=t 37 [conf:(0.97)](conf:(0.97)) lift:(2.01) lev:(0.05) [18] conv:(9.78)
3. BREAD, CONSUMABLES=t CURED MEAT PRODUCTS (DRAINING BENCHES)=t XM CODE (OUT OF CATEGORY), BAZAAR=t 40 ==> CHEESE (DRAINING BENCHES)=t 38 [conf:(0.95)](conf:(0.95)) lift:(1.96) lev:(0.05) [18] conv:(6.86)
4. CURED MEAT PRODUCTS (DRAINING BENCHES)=t XM CODE (OUT OF CATEGORY), BAZAAR=t $68==>$ CHEESE (DRAINING BENCHES)=t 64 [conf:(0.94)](conf:(0.94)) lift:(1.94) lev:(0.08) [31] conv:(7)
5. BREAD, CONSUMABLES=t CURED MEAT PRODUCTS (DRAINING BENCHES)=t 51 ==> CHEESE (DRAINING BENCHES)=t 48 [conf:(0.94)](conf:(0.94)) lift:(1.94) lev:(0.06) [23] conv:(6.56)
6. CURED MEAT PRODUCTS (DRAINING BENCHES)=t 109 ==> CHEESE (DRAINING BENCHES)=t 102 [conf:(0.94)](conf:(0.94)) lift:(1.93) lev:(0.13) [49] conv:(7.01)
7. FRUITS, GROCERY=t CURED MEAT PRODUCTS (DRAINING BENCHES)=t 49 ==> CHEESE (DRAINING BENCHES)=t 45 [conf:(0.92)](conf:(0.92)) lift:(1.89) lev:(0.06) [21] conv:(5.05)
8. CAVA, NON ALCOHOLIC/TEA/JUICES=t 41 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 37 [conf:(0.9)](conf:(0.9)) lift:(1.73) lev:(0.04) [15] conv:(3.93)
9. VEGETABLES, GROCERY=t CURED MEAT PRODUCTS (DRAINING BENCHES)=t 51 ==> CHEESE (DRAINING BENCHES)=t 46 [conf:(0.9)](conf:(0.9)) lift:(1.86) lev:(0.06) [21] conv:(4.38)
10. TEA/JUICES, CONSERVATION=t 43 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 38 [conf:(0.88)](conf:(0.88)) lift:(1.7) lev:(0.04) [15] conv:(3.44)

All the rules present a high confidence, lift and leverage level, which is an evidence of strong output reliability and strong relation between the products.

The results show that in the area of Gazi and as it is presented from the high confidence and lift levels, there is a high probability that purchases of conserved milk and yoghurt along with cured meat products will lead to the purchase of cheese.

Also purchases of bread along with cured milk products and bazaar lead to the purchase of cheese.

Purchases of fruits or vegetables along with cured meat products may also lead to the purchase of cheese.

Moreover, purchases of non-alcoholic drinks usually leads to the purchase of bazaar products.

### 4.1.7 Best results found for Malia Area

1. CAVA ALCOHOL/WINES=t BAKE OFF «ZESTI GONIA»=t 11 ==> SMOKERS' ITEMS=t 11 [conf:(1)](conf:(1)) lift:(2.3) lev:(0.07) [6] conv:(6.21)
2. OIL, CONSUMABLES=t $10==>$ VEGETABLES, GROCERY=t 10 [conf:(1)](conf:(1)) lift:(1.7) lev:(0.05) [4] conv:(4.12)
3. OIL, CONSUMABLES=t 10 ==> SMOKERS' ITEMS=t 10 [conf:(1)](conf:(1)) lift:(2.3) lev:(0.07) [5] conv:(5.65)
4. OIL, CONSUMABLES=t SMOKERS' ITEMS=t 10 ==> VEGETABLES, GROCERY=t 10 [conf:(1)](conf:(1)) lift:(1.7) lev:(0.05) [4] conv:(4.12)
5. VEGETABLES, GROCERY=t OIL, CONSUMABLES=t $10==>$ SMOKERS' ITEMS=t 10 [conf:(1)](conf:(1)) lift:(2.3) lev:(0.07) [5] conv:(5.65)
6. OIL, CONSUMABLES=t 10 ==> VEGETABLES, GROCERY=t SMOKERS' ITEMS=t 10 [conf:(1)](conf:(1)) lift:(3.27) lev:(0.08) [6] conv:(6.94)
7. FRUITS, GROCERY=t CORN PUFF SNACK/CHIPS=t 10 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 10 [conf:(1)](conf:(1)) lift:(2.83) lev:(0.08) [6] conv:(6.47)
8. OIL, CONSUMABLES=t BAKE OFF «ZESTI GONIA»=t 9 ==> VEGETABLES, GROCERY=t 9 [conf:(1)](conf:(1)) lift:(1.7) lev:(0.04) [3] conv:(3.71)
9. VEGETABLES, GROCERY=t CORN PUFF SNACK/CHIPS=t 9 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 9 [conf:(1)](conf:(1)) lift:(2.83) lev:(0.07) [5] conv:(5.82)
10. CAVA, NON-ALCOHOLIC/SOFT DRINKS=t BAKE OFF «ZESTI GONIA»=t 9 ==> VEGETABLES, GROCERY=t 9 [conf:(1)](conf:(1)) lift:(1.7) lev:(0.04) [3] conv:(3.71)
11. FRESH PORK MEAT=t 11 ==> VEGETABLES, GROCERY=t 9 [conf:(0.82)](conf:(0.82)) lift:(1.39) lev:(0.03) [2] conv:(1.51)

All the rules for Malia Area (except the last one) present the highest confidence level, and a high lift and leverage level as well, which is an evidence of strong output reliability and strong relation between the products.

Purchases of alcohol and consumables usually lead to the purchase of smokers' items and vegetables. Purchases of oils lead to the purchase of vegetables and/or smoker's items.

Fruits or vegetables along with corn puff snacks usually lead to the purchase of bazaar items.

Furthermore, vegetables are about to engage in transactions containing pork meat.
The purchase of non-alcoholic drinks and bake-offs usually lead to the purchase of vegetables.

### 4.1.8 Best results found for Nea Alikarnassos Area

1. BREAD, CONSUMABLES=t CURED MEAT PRODUCTS (DRAINING BENCHES)=t 62 ==> CHEESE (DRAINING BENCHES)=t 59 [conf:(0.95)](conf:(0.95)) lift:(2.49) lev:(0.09) [35] conv:(9.57)
2. CURED MEAT PRODUCTS (DRAINING BENCHES)=t 91 ==> CHEESE (DRAINING BENCHES)=t 81 [conf:(0.89)](conf:(0.89)) lift:(2.33) lev:(0.11) [46] conv:(5.11)
3. FRUITS, GROCERY=t CHEESE, CONSERVATION=t $71==>$ VEGETABLES, GROCERY=t 62 [conf:(0.87)](conf:(0.87)) lift:(1.69) lev:(0.06) [25] conv:(3.44)
4. BREAD, CONSUMABLES=t CHEESE, CONSERVATION=t 55 ==> VEGETABLES, GROCERY=t 46 [conf:(0.84)](conf:(0.84)) lift:(1.62) lev:(0.04) [17] conv:(2.66)
5. VEGETABLES, GROCERY=t CURED MEAT PRODUCTS (DRAINING BENCHES)=t 51 ==> CHEESE (DRAINING BENCHES)=t 42 [conf:(0.82)](conf:(0.82)) lift:(2.15) lev:(0.06) [22] conv:(3.15)
6. YOGURT, CONSERVATION=t FRUITS, GROCERY=t 74 ==> VEGETABLES, GROCERY=t 60 [conf:(0.81)](conf:(0.81)) lift:(1.57) lev:(0.05) [21] conv:(2.39)
7. YOGURT, CONSERVATION=t CHEESE, CONSERVATION=t 58 ==> VEGETABLES, GROCERY=t 46 [conf:(0.79)](conf:(0.79)) lift:(1.54) lev:(0.04) [16] conv:(2.16)
8. RUSKS, CONSUMABLES=t 52 ==> VEGETABLES, GROCERY=t 41 [conf:(0.79)](conf:(0.79)) lift:(1.53) lev:(0.03) [14] conv:(2.1)
9. CHEESE, CONSERVATION=t 112 ==> VEGETABLES, GROCERY=t 88 [conf:(0.79)](conf:(0.79)) lift:(1.52) lev:(0.07) [30] conv:(2.17)
10. BREAD, CONSUMABLES=t FRUITS, GROCERY=t 72 ==> VEGETABLES, GROCERY=t 56 [conf:(0.78)](conf:(0.78)) lift:(1.51) lev:(0.05) [18] conv:(2.05)

All the rules of Nea Alikarnassos Area, present a high confidence, lift and leverage level, which is an evidence of strong output reliability and strong relation between the products.

There is a high probability that purchases of bread along with cured meat products will lead to the purchase of cheese.

Also vegetables along with cured meat products also lead to the purchase of cheese.
Purchases of cheese along with fruits or bread lead to the purchase of vegetables.
Conserved yoghurt purchases along with fruits or cheese may also lead to the purchase of vegetables.

### 4.1.9 Best results found for Limenas Chersonissou

1. PASTRIES/ SWEETS, CONSUMABLES=t 7 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 7 [conf:(1)](conf:(1)) lift:(2.29) lev:(0.06) [3] conv:(3.94)
2. CHOCOLATES, CONSUMABLES=t 7 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 7 [conf:(1)](conf:(1)) lift:(2.29) lev:(0.06) [3] conv:(3.94)
3. FRUITS, GROCERY=t CAVA, NON-ALCOHOLIC/SOFT DRINKS=t 6 ==> CAVA NON-ALCOHOLICS/WATER=t 6 [conf:(1)](conf:(1)) lift:(2.46) lev:(0.06) [3] conv:(3.56)
4. MILK, CONSERVATION=t 12 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 11 [conf:(0.92)](conf:(0.92)) lift:(2.1) lev:(0.09) [5] conv:(3.38)
5. CHEESE (DRAINING BENCHES)=t $8==>$ VEGETABLES, GROCERY=t 7 [conf:(0.88)](conf:(0.88)) lift:(2.07) lev:(0.06) [3] conv:(2.31)
6. CHEESE (DRAINING BENCHES)=t 8 XM CODE (OUT OF CATEGORY), BAZAAR=t 7 [conf:(0.88)](conf:(0.88)) lift:(2) lev:(0.05) [3] conv:(2.25)
7. BAKE OFF 《ZESTI GONIA»=t $8==>$ CAVA ALCOHOL BEERS=t 7 [conf:(0.88)](conf:(0.88)) lift:(2.33) lev:(0.06) [4] conv:(2.5)
8. PASTA, CONSUMABLES=t 7 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 6 [conf:(0.86)](conf:(0.86)) lift:(1.96) lev:(0.05) [2] conv:(1.97)
9. CAVA, NON ALCOHOLIC/TEA/JUICES=t 7 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 6 [conf:(0.86)](conf:(0.86)) lift:(1.96) lev:(0.05) [2] conv:(1.97)
10. HOUSEHOLD, BAZAAR=t 7 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 6 [conf:(0.86)](conf:(0.86)) lift:(1.96) lev:(0.05) [2] conv:(1.97)

All the rules for the Area of Limenas Chersonissou present a high confidence, lift and leverage level, which is an evidence of strong output reliability and strong relation between the products.

The results show that, purchases of pastries, chocolates, conserved milk, cheese, pasta and non- alcoholic beverages usually lead to the purchase of bazaar items and the purchase of bake-offs usually lead to the purchase of alcohol beers.

### 4.1.10 Best results found for Kokkini Chani Area

1. MILK, CONSERVATION=t SMOKERS' ITEMS=t 31 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 30 [conf:(0.97)](conf:(0.97)) lift:(1.41) lev:(0.04) [8] conv:(4.83)
2. BREAKFAST CEREALS, CONSUMABLES=t MILK, CONSERVATION=t 28 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 27 [conf:(0.96)](conf:(0.96)) lift:(1.4) lev:(0.03) [7] conv:(4.36)
3. SMOKERS' ITEMS=t $40==>$ XM CODE (OUT OF CATEGORY), BAZAAR=t 38 [conf:(0.95)](conf:(0.95)) lift:(1.38) lev:(0.04) [10] conv:(4.16)
4. MILK, CONSERVATION=t TOMATO JUICE/COMPOSTERS/PRESERVES=t $36==>$ XM CODE (OUT OF CATEGORY), BAZAAR=t 34 [conf:(0.94)](conf:(0.94)) lift:(1.37) lev:(0.04) [9] conv:(3.74)
5. MILK, CONSERVATION=t YOGURT, CONSERVATION=t FRUITS, GROCERY=t 34 ==> VEGETABLES, GROCERY=t 32 [conf:(0.94)](conf:(0.94)) lift:(1.48) lev:(0.04) [10] conv:(4.13)
6. MILK, CONSERVATION=t YOGURT, CONSERVATION=t VEGETABLES, GROCERY=t 34 ==> FRUITS, GROCERY=t 32 [conf:(0.94)](conf:(0.94)) lift:(1.8) lev:(0.06) [14] conv:(5.41)
7. RUSKS, CONSUMABLES=t FRUITS, GROCERY=t 30 ==> VEGETABLES, GROCERY=t 28 [conf:(0.93)](conf:(0.93)) lift:(1.47) lev:(0.04) [8] conv:(3.64)
8. RUSKS, CONSUMABLES=t VEGETABLES, GROCERY=t $30==>$ FRUITS, GROCERY=t 28 [conf:(0.93)](conf:(0.93)) lift:(1.79) lev:(0.05) [12] conv:(4.78)
9. YOGURT, CONSERVATION=t FRUITS, GROCERY=t 42 ==> VEGETABLES, GROCERY=t 39 [conf:(0.93)](conf:(0.93)) lift:(1.46) lev:(0.05) [12] conv:(3.83)
10. YOGURT, CONSERVATION=t VEGETABLES, GROCERY=t 42 ==> FRUITS, GROCERY=t 39 [conf:(0.93)](conf:(0.93)) lift:(1.78) lev:(0.07) [17] conv:(5.02)

All the rules for Kokkini Chani Area present a high confidence, lift and leverage level, which is an evidence of strong output reliability and strong relation between the products.

Purchases of conserved milk along with smoking items tomato juices, may lead to the purchase of bazaar items. Also breakfast items' purchases along with conserved milk may lead to the purchase of bazaar items as well.

Moreover, purchases of conserved milk and yoghurt along with fruits or rusks along with fruits, can lead to the purchase of vegetables.

Purchases of conserved milk and yoghurt along with vegetables or rusks along with vegetables, can lead to the purchase of fruits.

### 4.1.11 Best results found for Mires Area

1. FRUITS, GROCERY=t CAVA, NON-ALCOHOLIC/SOFT DRINKS=t 12 ==> VEGETABLES, GROCERY=t 11 [conf:(0.92)](conf:(0.92)) lift:(2.1) lev:(0.05) [5] conv:(3.38)
2. FRUITS, GROCERY=t CAVA, NON-ALCOHOLIC/SOFT DRINKS=t 12 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 11 [conf:(0.92)](conf:(0.92)) lift:(2.28) lev:(0.06) [6] conv:(3.59)
3. FRUITS, GROCERY=t CHEESE (DRAINING BENCHES)=t XM CODE (OUT OF CATEGORY), BAZAAR=t 12 ==> VEGETABLES, GROCERY=t 11 [conf:(0.92)](conf:(0.92)) lift:(2.1) lev:(0.05) [5] conv:(3.38)
4. PASTRIES/ SWEETS, CONSUMABLES=t VEGETABLES, GROCERY=t 13 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 11 [conf:(0.85)](conf:(0.85)) lift:(2.11) lev:(0.05) [5] conv:(2.59)
5. VEGETABLES, GROCERY=t FRUITS, GROCERY=t CHEESE (DRAINING BENCHES)=t $13==>$ XM CODE (OUT OF CATEGORY), BAZAAR=t 11 [conf:(0.85)](conf:(0.85)) lift:(2.11) lev:(0.05) [5] conv:(2.59)
6. YOGURT, CONSERVATION=t FRUITS, GROCERY=t 14 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 11 [conf:(0.79)](conf:(0.79)) lift:(1.96) lev:(0.05) [5] conv:(2.09)
7. VEGETABLES, GROCERY=t CHEESE (DRAINING BENCHES)=t XM CODE (OUT OF CATEGORY), BAZAAR=t $14 \Longrightarrow=>$ FRUITS, GROCERY=t 11 [conf:(0.79)](conf:(0.79)) lift:(2.75) lev:(0.06) [7] conv:(2.5)
8. FRUITS, GROCERY=t CHEESE (DRAINING BENCHES)=t 17 ==> VEGETABLES, GROCERY=t 13 [conf:(0.76)](conf:(0.76)) lift:(1.75) lev:(0.05) [5] conv:(1.91)
9. DETERGENT=t 19 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 14 [conf:(0.74)](conf:(0.74)) lift:(1.83) lev:(0.06) [6] conv:(1.89)
10. CHEESE (DRAINING BENCHES)=t XM CODE (OUT OF CATEGORY), BAZAAR=t 19 ==> VEGETABLES, GROCERY=t 14 [conf:(0.74)](conf:(0.74)) lift:(1.68) lev:(0.05) [5] conv:(1.78)

The rules for Mires Area present a high confidence, lift and leverage level, which is an evidence of strong output reliability and strong relation between the products.

The results show that purchases of fruits along with soft drinks usually lead to the purchase of vegetables and bazaar items. Pastry purchases along with vegetables also lead to the purchase of bazaar items.

Furthermore, fruits, cheese, bazaar items and vegetables seem to have a high correlation with each other.

Purchases of cheese along with fruits or bazaar items may lead to the purchase of vegetables.

### 4.1.12 Best results found for Tympaki Area

1. VEGETABLES, GROCERY=t 11 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 11 [conf:(1)](conf:(1)) lift:(1.08) lev:(0.07) [0] conv:(0.85)
2. CAVA ALCOHOL BEERS=t 9 ==> VEGETABLES, GROCERY=t 9 [conf:(1)](conf:(1)) lift:(1.18) lev:(0.11) [1] conv:(1.38)
3. CAVA ALCOHOL BEERS=t 9 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 9 [conf:(1)](conf:(1)) lift:(1.08) lev:(0.05) [0] conv:(0.69)
4. CAVA ALCOHOL BEERS=t XM CODE (OUT OF CATEGORY), BAZAAR=t 9 ==> VEGETABLES, GROCERY=t 9 [conf:(1)](conf:(1)) lift:(1.18) lev:(0.11) [1] conv:(1.38)
5. VEGETABLES, GROCERY=t CAVA ALCOHOL BEERS=t 9 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 9 [conf:(1)](conf:(1)) lift:(1.08) lev:(0.05) [0] conv:(0.69)
6. CAVA ALCOHOL BEERS=t 9 ==> VEGETABLES, GROCERY=t XM CODE (OUT OF CATEGORY), BAZAAR=t 9 [conf:(1)](conf:(1)) lift:(1.18) lev:(0.11) [1] conv:(1.38)
7. CHEESE, CONSERVATION=t 8 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 8 [conf:(1)](conf:(1)) lift:(1.08) lev:(0.05) [0] conv:(0.62)
8. VEGETABLES, GROCERY=t CHEESE, CONSERVATION=t 7 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 7 [conf:(1)](conf:(1)) lift:(1.08) lev:(0.04) [0] conv:(0.54)
9. RUSKS, CONSUMABLES=t 6 ==> VEGETABLES, GROCERY=t 6 [conf:(1)](conf:(1)) lift:(1.18) lev:(0.07) [0] conv:(0.92)
10. RUSKS, CONSUMABLES=t 6 ==> CAVA ALCOHOL BEERS=t 6 [conf:(1)](conf:(1)) lift:(1.44) lev:(0.14) [1] conv:(1.85)

The rules for Tympaki Area present a high confidence, lift and leverage level, which is an evidence of strong output reliability and strong relation between the products.

Purchases of alcohol beers usually lead to the purchase of bazaar items and vegetables, usually lead to the purchase of vegetables and bazaar items and the purchase of consumables usually lead to the purchase of vegetables and alcohol beers. Also purchases of conserved cheese also lead to the purchase of bazaar items.

### 4.1.13 Best results found for Neapoli Area

1. CHOCOLATES, CONSUMABLES=t 7 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 7 [conf:(1)](conf:(1)) lift:(1.24) lev:(0.06) [1] conv:(1.33)
2. DETERGENTS=t 7 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 7 [conf:(1)](conf:(1)) lift:(1.24) lev:(0.06) [1] conv:(1.33)
3. FRUITS, GROCERY=t DETERGENTS=t 5 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 5 [conf:(1)](conf:(1)) lift:(1.24) lev:(0.05) [0] conv:(0.95)
4. RUSKS, CONSUMABLES=t $4==>$ CHOCOLATES, CONSUMABLES=t 4 [conf:(1)](conf:(1)) lift:(3) lev:(0.13) [2] conv:(2.67)
5. RUSKS, CONSUMABLES=t 4 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 4 [conf:(1)](conf:(1)) lift:(1.24) lev:(0.04) [0] conv:(0.76)
6. RICE/ LESUME, PASTRY=t 4 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 4 [conf:(1)](conf:(1)) lift:(1.24) lev:(0.04) [0] conv:(0.76)
7. HYGIENE PRODUCTS=t 4 ==> HYGIENE PRODUCTS=t 4 [conf:(1)](conf:(1)) lift:(2.63) lev:(0.12) [2] conv:(2.48)
8. STATIONERY=t $4==>$ DETERGENTS=t 4 [conf:(1)](conf:(1)) lift:(3) lev:(0.13) [2] conv:(2.67)
9. STATIONERY=t 4 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 4 [conf:(1)](conf:(1)) lift:(1.24) lev:(0.04) [0] conv:(0.76)
10. RUSKS, CONSUMABLES=t XM CODE (OUT OF CATEGORY), BAZAAR=t 4 ==> CHOCOLATES, CONSUMABLES=t 4 [conf:(1)](conf:(1)) lift:(3) lev:(0.13) [2] conv:(2.67)
11. FRESH BEEF, MEAT=t DETERGENTS=t 2 ==> FRUITS, GROCERY=t 2 [conf:(1)](conf:(1)) lift:(1.91) lev:(0.05) [0] conv:(0.95)
12. FRUITS, GROCERY=t FRESH BEEF, MEAT=t 2 ==> DETERGENTS=t 2 [conf:(1)](conf:(1)) lift:(3) lev:(0.06) [1] conv:(1.33)
13. FRESH BEEF, MEAT=t 2 ==> FRUITS, GROCERY=t DETERGENTS=t 2 [conf:(1)](conf:(1)) lift:(4.2) lev:(0.07) [1] conv:(1.52)
14. FRESH BEEF, MEAT=t XM CODE (OUT OF CATEGORY), BAZAAR=t 2 ==> FRUITS, GROCERY=t 2 [conf:(1)](conf:(1)) lift:(1.91) lev:(0.05) [0] conv:(0.95)
15. FRUITS, GROCERY=t FRESH BEEF, MEAT=t 2 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 2 [conf:(1)](conf:(1)) lift:(1.24) lev:(0.02) [0] conv:(0.38)
16. FRESH BEEF, MEAT=t 2 ==> FRUITS, GROCERY=t XM CODE (OUT OF CATEGORY), BAZAAR=t 2 [conf:(1)](conf:(1)) lift:(2.1) lev:(0.05) [1] conv:(1.05)
17. FRESH BEEF, MEAT=t XM CODE (OUT OF CATEGORY), BAZAAR=t 2 ==> DETERGENTS=t 2 [conf:(1)](conf:(1)) lift:(3) lev:(0.06) [1] conv:(1.33)
18. FRESH BEEF, MEAT=t DETERGENTS=t 2 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 2 [conf:(1)](conf:(1)) lift:(1.24) lev:(0.02) [0] conv:(0.38)
19. FRESH BEEF, MEAT=t 2 ==> DETERGENTS=t XM CODE (OUT OF CATEGORY), BAZAAR=t 2 [conf:(1)](conf:(1)) lift:(3) lev:(0.06) [1] conv:(1.33)
20. FRESH PORK MEAT=t XM CODE (OUT OF CATEGORY), BAZAAR=t 2 ==> CORN PUFF SNACK/CHIPS=t 2 [conf:(1)](conf:(1)) lift:(5.25) lev:(0.08) [1] conv:(1.62)
21. FRESH PORK MEAT=t CORN PUFF SNACK/CHIPS=t 2 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 2 [conf:(1)](conf:(1)) lift:(1.24) lev:(0.02) [0] conv:(0.38)

All rules for Neapoli Area present a high confidence, lift and leverage level, which is an evidence of strong output reliability and strong relation between the products.

In the Area of Neapoli purchases of consumables, detergents, stationery, pastry and fruits along with fresh beer, usually lead to the purchase of bazaar items.

Furthermore, the purchase of fresh beef meat, usually leads to the purchase of fruits, detergents and bazaar items. Also, the purchases of fresh pork meat usually leads to the purchase of corn puff snacks and bazaar items.

### 4.1.14 Best results found for Sitia Area

1. FRUITS, GROCERY=t $449==>$ VEGETABLES, GROCERY=t 264 [conf:(0.59)](conf:(0.59)) lift:(1.23) lev:(0.04) [50] conv:(1.26)
2. XM CODE (OUT OF CATEGORY), BAZAAR=t 416 ==> VEGETABLES, GROCERY=t 229 [conf:(0.55)](conf:(0.55)) lift:(1.16) lev:(0.03) [30] conv:(1.16)
3. YOGURT, CONSERVATION=t $271 \Rightarrow=>$ VEGETABLES, GROCERY=t 149 [conf:(0.55)](conf:(0.55)) lift:(1.15) lev:(0.02) [19] conv:(1.15)
4. CHEESE (DRAINING BENCHES)=t $337==$ VEGETABLES, GROCERY=t 176 [conf:(0.52)](conf:(0.52)) lift:(1.1) lev:(0.01) [15] conv:(1.09)
5. CAVA NON-ALCOHOLICS/WATER $=\mathrm{t} 272==>$ VEGETABLES, GROCERY $=\mathrm{t}$ 139 [conf:(0.51)](conf:(0.51)) lift:(1.07) lev:(0.01) [9] conv:(1.06)
6. YOGURT, CONSERVATION=t $271 \Rightarrow=>$ FRUITS, GROCERY=t 135 [conf:(0.5)](conf:(0.5)) lift:(1.32) lev:(0.03) [33] conv:(1.23)
7. CAVA NON-ALCOHOLICS/WATER=t $272==$ XM CODE (OUT OF CATEGORY), BAZAAR=t 130 [conf:(0.48)](conf:(0.48)) lift:(1.37) lev:(0.03) [35] conv:(1.24)
8. MILK, CONSERVATION=t $284==>$ VEGETABLES, GROCERY=t 134 [conf:(0.47)](conf:(0.47)) lift:(0.99) lev:(-0) [-1] conv:(0.99)
9. PASTRIES/ SWEETS, CONSUMABLES=t $274==>$ VEGETABLES, GROCERY=t 129 [conf:(0.47)](conf:(0.47)) lift:(0.99) lev:(-0) [-1] conv:(0.98)
10. VEGETABLES, GROCERY=t 568 ==> FRUITS, GROCERY=t 264 [conf:(0.46)](conf:(0.46)) lift:(1.23) lev:(0.04) [50] conv:(1.16)

All rules for Sitia Area present quite low confidence, lift and leverage levels, which is an evidence of low reliability and weak relation between the products.

The best results show that, purchases such as fruits, bazaar items, conserved cheese and yoghurt and non-alcoholic drinks, lead to the purchase of vegetables.

### 4.1.15 Best results found for Ierapetra Area

1. BREAD, CONSUMABLES=t CURED MEAT PRODUCTS (DRAINING BENCHES $)=\mathrm{t} 14=\Rightarrow$ CHEESE (DRAINING BENCHES)=t 12 [conf:(0.86)](conf:(0.86)) lift:(2.85) lev:(0.08) [7] conv:(3.26)
2. COFFEE, CONSUMABLES=t CHEESE (DRAINING BENCHES)=t 13 ==> BREAD, CONSUMABLES=t 11 [conf:(0.85)](conf:(0.85)) lift:(2.08) lev:(0.06) [5] conv:(2.57)
3. MILK, CONSERVATION=t FRESH POULTRY, MEAT=t 12 ==> BREAD, CONSUMABLES=t 10 [conf:(0.83)](conf:(0.83)) lift:(2.04) lev:(0.05) [5] conv:(2.37)
4. COFFEE, CONSUMABLES=t VEGETABLES, GROCERY=t 12 ==> BREAD, CONSUMABLES=t 10 [conf:(0.83)](conf:(0.83)) lift:(2.04) lev:(0.05) [5] conv:(2.37)
5. MILK, CONSERVATION=t TOMATO JUICES/ COMPOSTERS/ PRESERVES=t 14 ==> BREAD, CONSUMABLES=t 11 [conf:(0.79)](conf:(0.79)) lift:(1.93) lev:(0.05) [5] conv:(2.07)
6. BREAD, CONSUMABLES=t TOMATO JUICES/ COMPOSTERS/ PRESERVES=t 14 ==> MILK, CONSERVATION=t 11 [conf:(0.79)](conf:(0.79)) lift:(1.97) lev:(0.05) [5] conv:(2.11)
7. CURED MEAT PRODUCTS (DRAINING BENCHES)=t $23==>$ CHEESE (DRAINING BENCHES)=t 18 [conf:(0.78)](conf:(0.78)) lift:(2.6) lev:(0.11) [11] conv:(2.68)
8. BREAD, CONSUMABLES=t FRESH POULTRY, MEAT=t 13 ==> MILK, CONSERVATION=t 10 [conf:(0.77)](conf:(0.77)) lift:(1.93) lev:(0.05) [4] conv:(1.96)
9. TOMATO JUICES/ COMPOSTERS/ PRESERVES=t CHEESE (DRAINING BENCHES)=t 13 ==> BREAD, CONSUMABLES=t 10 [conf:(0.77)](conf:(0.77)) lift:(1.89) lev:(0.05) [4] conv:(1.92)
10. COFFEE, CONSUMABLES=t CHEESE (DRAINING BENCHES)=t 13 ==> MILK, CONSERVATION=t 10 [conf:(0.77)](conf:(0.77)) lift:(1.93) lev:(0.05) [4] conv:(1.96)
11. FRESH POULTRY, MEAT $=\mathrm{t} 17 \Rightarrow=>$ BREAD, CONSUMABLES $=\mathrm{t} 13$ [conf:(0.76)](conf:(0.76)) lift:(1.88) lev:(0.06) [6] conv:(2.01)
12. FRESH POULTRY, MEAT=t 17 ==> MILK, CONSERVATION=t 12 [conf:(0.71)](conf:(0.71)) lift:(1.77) lev:(0.05) [5] conv:(1.71)
13. FRESH POULTRY, MEAT=t 17 ==> COFFEE, CONSUMABLES=t 11 [conf:(0.65)](conf:(0.65)) lift:(2.15) lev:(0.06) [5] conv:(1.7)
14. FRESH POULTRY, MEAT=t 17 ==> BREAD, CONSUMABLES=t MILK, CONSERVATION=t 10 [conf:(0.59)](conf:(0.59)) lift:(2.42) lev:(0.06) [5] conv:(1.61)
15. COFFEE, CONSUMABLES=t 31 ==> FRESH POULTRY, MEAT=t 11 [conf:(0.35)](conf:(0.35)) lift:(2.15) lev:(0.06) [5] conv:(1.23)
16. BREAD, CONSUMABLES=t 42 ==> FRESH POULTRY, MEAT=t 13 [conf:(0.31)](conf:(0.31)) lift:(1.88) lev:(0.06) [6] conv:(1.17)
17. MILK, CONSERVATION=t 41 ==> FRESH POULTRY, MEAT=t 12 [conf:(0.29)](conf:(0.29)) lift:(1.77) lev:(0.05) [5] conv:(1.14)
18. MILK, CONSERVATION=t 41 ==> BREAD, CONSUMABLES=t FRESH POULTRY, MEAT=t 10 [conf:(0.24)](conf:(0.24)) lift:(1.93) lev:(0.05) [4] conv:(1.12)

The rules for Ierapetra Area present a quite high confidence, lift and leverage level, which is an evidence of strong output reliability and strong relation between the products.

Purchases of coffee, cheese, milk, tomato juices/composters and bread, usually lead to the purchase of bread. Additionally, fresh poultry meat is found to have a positive correlation with bread, milk and coffee which means that the purchase of fresh poultry meat usually leads to the purchase of milk bread and coffee and vice versa.

### 4.1.16 Best results found for Agios Nikolaos Area

1. PASTRIES/ SWEETS, CONSUMABLES=t CORN PUFF SNACK/CHIPS=t 27 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 26 [conf:(0.96)](conf:(0.96)) lift:(1.75) lev:(0.05) [11] conv:(6.07)
2. CHOCOLATES, CONSUMABLES=t CAVA, NON-ALCOHOLIC/SOFT DRINKS=t 25 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 24 [conf:(0.96)](conf:(0.96)) lift:(1.74) lev:(0.05) [10] conv:(5.62)
3. CORN PUFF SNACK/CHIPS=t $26==>$ CORN PUFF SNACK/CHIPS=t 24 [conf:(0.92)](conf:(0.92)) lift:(3.55) lev:(0.08) [17] conv:(6.41)
4. CHOCOLATES, CONSUMABLES=t CORN PUFF SNACK/CHIPS=t $30==>$ XM CODE (OUT OF CATEGORY), BAZAAR=t 27 [conf:(0.9)](conf:(0.9)) lift:(1.63) lev:(0.05) [10] conv:(3.37)
5. CHOCOLATES, CONSUMABLES=t COFFEE, CONSUMABLES=t $28==$ XM CODE (OUT OF CATEGORY), BAZAAR=t 25 [conf:(0.89)](conf:(0.89)) lift:(1.62) lev:(0.04) [9] conv:(3.15)
6. FRESH POULTRY, MEAT=t 33 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 29 [conf:(0.88)](conf:(0.88)) lift:(1.6) lev:(0.05) [10] conv:(2.97)
7. PASTRIES/ SWEETS, CONSUMABLES $=\mathrm{t}$ CHOCOLATES, CONSUMABLES=t 37 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 32 [conf:(0.86)](conf:(0.86)) lift:(1.57) lev:(0.05) [11] conv:(2.77)
8. FRUITS, GROCERY=t CORN PUFF SNACK/CHIPS=t 29 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 25 [conf:(0.86)](conf:(0.86)) lift:(1.57) lev:(0.04) [9] conv:(2.61)
9. CHOCOLATES, CONSUMABLES=t FRUITS, GROCERY=t $36==>$ XM CODE (OUT OF CATEGORY), BAZAAR=t 30 [conf:(0.83)](conf:(0.83)) lift:(1.51) lev:(0.04) [10] conv:(2.31)
10. COFFEE, CONSUMABLES=t FRUITS, GROCERY=t 29 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 24 [conf:(0.83)](conf:(0.83)) lift:(1.5) lev:(0.04) [8] conv:(2.17)
11. XM CODE (OUT OF CATEGORY), BAZAAR=t 125 ==> FRESH POULTRY, MEAT=t 29 [conf:(0.23)](conf:(0.23)) lift:(1.6) lev:(0.05) [10] conv:(1.1)
12. XM CODE (OUT OF CATEGORY), BAZAAR=t 125 ==> FRESH PORK MEAT=t 25 [conf:(0.2)](conf:(0.2)) lift:(1.34) lev:(0.03) [6] conv:(1.05)

Most of Agios Nikolaos results present a quite high confidence, lift and leverage level, which is an evidence of strong reliability and strong relation between the products.

Purchases of pastries/sweets/chocolates (consumables), soft drinks, corn puff snacks and other snacks lead to the purchase of bazaar items. Furthermore, the purchase of bazaar items seems to lead to the purchase of fresh poultry and fresh pork meat, but also fresh poultry meat usually lead to the purchase of bazaar items.

### 4.1.17 Best results found for the <=18 Age Group

1. CHEESE, CONSERVATION=t 6 ==> VEGETABLES, GROCERY=t 6 [conf:(1)](conf:(1)) lift:(1.91) lev:(0.14) [2] conv:(2.86)
2. MILK, CONSERVATION=t TEA/ JUICES, CONSERVATION=t 6 ==> VEGETABLES, GROCERY=t 6 [conf:(1)](conf:(1)) lift:(1.91) lev:(0.14) [2] conv:(2.86)
3. MILK, CONSERVATION=t VEGETABLES, GROCERY=t 6 ==> TEA/ JUICES, CONSERVATION=t 6 [conf:(1)](conf:(1)) lift:(1.5) lev:(0.1) [2] conv:(2)
4. CORN PUFF SNACK/CHIPS, CONSUMABLES=t 5 ==> CHEESE (DRAINING BENCHES)=t 5 [conf:(1)](conf:(1)) lift:(1.62) lev:(0.09) [1] conv:(1.9)
5. MILK, CONSERVATION=t CHEESE, CONSERVATION=t 5 ==> VEGETABLES, GROCERY=t 5 [conf:(1)](conf:(1)) lift:(1.91) lev:(0.11) [2] conv:(2.38)
6. CHEESE, CONSERVATION=t TEA/ JUICES, CONSERVATION=t 5 ==> MILK, CONSERVATION=t 5 [conf:(1)](conf:(1)) lift:(2.63) lev:(0.15) [3] conv:(3.1)
7. MILK, CONSERVATION=t CHEESE, CONSERVATION=t 5 ==> TEA/ JUICES, CONSERVATION=t 5 [conf:(1)](conf:(1)) lift:(1.5) lev:(0.08) [1] conv:(1.67)
8. CHEESE, CONSERVATION=t TEA/ JUICES, CONSERVATION=t 5 ==> VEGETABLES, GROCERY=t 5 [conf:(1)](conf:(1)) lift:(1.91) lev:(0.11) [2] conv:(2.38)
9. CHEESE, CONSERVATION=t FOOD, CONSERVATION=t 5 ==> VEGETABLES, GROCERY=t 5 [conf:(1)](conf:(1)) lift:(1.91) lev:(0.11) [2] conv:(2.38)
10. VEGETABLES, GROCERY=t CHEESE, CONSERVATION=t TEA/ JUICES, CONSERVATION=t 5 ==> MILK, CONSERVATION=t 5 [conf:(1)](conf:(1)) lift:(2.63) lev:(0.15) [3] conv:(3.1)

The results show that, for the ages under 18, the purchase of conserved cheese, milk and juices leads to the purchase of vegetables. In addition, the purchase of snacks usually leads to the purchase of cheese. The results for this age group present really high confidence, lift and leverage levels which is an evidence of strong reliability and strong relation between the products.

### 4.1.18 Best results found for the Age Group 18-25

1. CHEESE, CONSERVATION=t 13 ==> XMCODE OUT OF CATEGORIES, BAZAAR=t 13 [conf:(1)](conf:(1)) lift:(1.24) lev:(0.04) [2] conv:(2.48)
2. YOGURT, CONSERVATION=t FRUITS, GROCERIES=t 13 ==> XMCODE OUT OF CATEGORIES, BAZAAR=t 13 [conf:(1)](conf:(1)) lift:(1.24) lev:(0.04) [2] conv:(2.48)
3. YOGURT, CONSERVATION=t VEGETABLES, GROCERY=t 12 ==> XMCODE OUT OF CATEGORIES, BAZAAR=t 12 [conf:(1)](conf:(1)) lift:(1.24) lev:(0.04) [2] conv:(2.29)
4. FRUITS, GROCERIES=t CHEESE (DRAINING BENCHES)=t 12 ==> XMCODE OUT OF CATEGORIES, BAZAAR=t 12 [conf:(1)](conf:(1)) lift:(1.24) lev:(0.04) [2] conv:(2.29)
5. MILK, CONSERVATION=t FRUITS, GROCERIES=t 11 ==> XMCODE OUT OF CATEGORIES, BAZAAR=t 11 [conf:(1)](conf:(1)) lift:(1.24) lev:(0.03) [2] conv:(2.1)
6. YOGURT, CONSERVATION=t CHEESE, CONSERVATION=t 11 ==> XMCODE OUT OF CATEGORIES, BAZAAR=t 11 [conf:(1)](conf:(1)) lift:(1.24) lev:(0.03) [2] conv:(2.1)
7. FRUITS, GROCERIES=t CHEESE, CONSERVATION=t 11 ==> XMCODE OUT OF CATEGORIES, BAZAAR=t 11 [conf:(1)](conf:(1)) lift:(1.24) lev:(0.03) [2] conv:(2.1)
8. CURED MEAT (DRAINING BENCHES)=t 10 ==> XMCODE OUT OF CATEGORIES, BAZAAR=t 10 [conf:(1)](conf:(1)) lift:(1.24) lev:(0.03) [1] conv:(1.9)
9. BREAD, CONSUMABLES=t FRUITS, GROCERIES=t $10==>$ XMCODE OUT OF CATEGORIES, BAZAAR=t 10 [conf:(1)](conf:(1)) lift:(1.24) lev:(0.03) [1] conv:(1.9)
10. BREAD, CONSUMABLES=t CHEESE, CONSERVATION=t 10 ==> XMCODE OUT OF CATEGORIES, BAZAAR=t 10 [conf:(1)](conf:(1)) lift:(1.24) lev:(0.03) [1] conv:(1.9)
11. VEGETABLES, GROCERY=t FRESH BEEF, MEAT=t 6 ==> XM CODE OUT OF CATEGORY=t 6 [conf:(1)](conf:(1)) lift:(1.24) lev:(0.02) [1] conv:(1.14)

According to the results, for the ages 18 to 25 , the purchases of fruits along with conserved cheese lead to the purchase of bazaar items. In addition, the purchases of conserved milk, yogurt, cheese, cured meat as well as the purchases of consumables like bread and vegetables/groceries lead to the purchase of bazaar items. The results for this age group present high confidence, lift and leverage levels which is an evidence of strong reliability and strong relation between the products.

### 4.1.19 Best results found for the Age Group 26-35

1. CURED MEAT, CONSERVATION=t 105 ==> CHEESE (DRAINING BENCHES)=t 81 [conf:(0.77)](conf:(0.77)) lift:(2.92) lev:(0.08) [53] conv:(3.09)
2. MILK, CONSERVATION=t FRUITS, GROCERIES=t 97 ==> VEGETABLES, GROCERY=t 66 [conf:(0.68)](conf:(0.68)) lift:(1.6) lev:(0.04) [24] conv:(1.74)
3. MILK, CONSERVATION=t VEGETABLES, GROCERY=t 97 ==> FRUITS, GROCERIES=t 66 [conf:(0.68)](conf:(0.68)) lift:(1.9) lev:(0.05) [31] conv:(1.94)
4. FRUITS, GROCERIES=t 228 ==> VEGETABLES, GROCERY=t 148 [conf:(0.65)](conf:(0.65)) lift:(1.53) lev:(0.08) [51] conv:(1.62)
5. CHEESE, CONSERVATION=t 115 ==> VEGETABLES, GROCERY=t 66 [conf:(0.57)](conf:(0.57)) lift:(1.35) lev:(0.03) [17] conv:(1.32)
6. VEGETABLES, GROCERY=t 270 ==> FRUITS, GROCERIES=t 148 [conf:(0.55)](conf:(0.55)) lift:(1.53) lev:(0.08) [51] conv:(1.41)
7. YOGURT, CONSERVATION=t 161 ==> MILK, CONSERVATION=t 85 [conf:(0.53)](conf:(0.53)) lift:(1.48) lev:(0.04) [27] conv:(1.35)
8. YOGURT, CONSERVATION=t 161 ==> VEGETABLES, GROCERY=t 85 [conf:(0.53)](conf:(0.53)) lift:(1.24) lev:(0.03) [16] conv:(1.2)
9. CHEESE (DRAINING BENCHES)=t $168=>$ MILK, CONSERVATION=t 84 [conf:(0.5)](conf:(0.5)) lift:(1.4) lev:(0.04) [24] conv:(1.27)
10. CHEESE (DRAINING BENCHES)=t 168 ==> CURED MEAT, CONSERVATION=t 81 [conf:(0.48)](conf:(0.48)) lift:(2.92) lev:(0.08) [53] conv:(1.59)

For the ages 18 to 25 , the purchase of conserved, cheese, yogurt as well as conserved milk along with fruits, lead to the purchase of vegetables. Moreover, the purchases of conserved milk and vegetables lead to the purchase of fruits. Furthermore, purchases of cheese lead to the purchase of conserved milk or conserved cured meat. The results for this age group present lower confidence, lift and leverage levels, which might be an evidence of not that strong reliability and relation between the products.

### 4.1.20 Best results found for the Age Group 36-45

1. BREAD, CONSUMABLES=t CURED MEAT, CONSERVATION=t 582 ==> CHEESE (DRAINING BENCHES)=t 554 [conf:(0.95)](conf:(0.95)) lift:(2.53) lev:(0.07) [335] conv:(12.53)
2. VEGETABLES, GROCERY=t CURED MEAT, CONSERVATION=t 524 ==> CHEESE (DRAINING BENCHES)=t 491 [conf:(0.94)](conf:(0.94)) lift:(2.5) lev:(0.06) [294] conv:(9.62)
3. CURED MEAT, CONSERVATION=t XMCODE OUT OF CATEGORIES, BAZAAR=t $616==>$ CHEESE (DRAINING BENCHES)=t 575 [conf:(0.93)](conf:(0.93)) lift:(2.49) lev:(0.08) [343] conv:(9.16)
4. CURED MEAT, CONSERVATION=t 976 ==> CHEESE (DRAINING BENCHES)=t 900 [conf:(0.92)](conf:(0.92)) lift:(2.46) lev:(0.12) [533] conv:(7.92)
5. FRUITS, GROCERIES=t CHEESE (DRAINING BENCHES)=t 699 ==> VEGETABLES, GROCERY=t 532 [conf:(0.76)](conf:(0.76)) lift:(1.69) lev:(0.05) [217] conv:(2.29)
6. FRUITS, GROCERIES=t XMCODE OUT OF CATEGORIES, BAZAAR=t 964 ==> VEGETABLES, GROCERY=t 694 [conf:(0.72)](conf:(0.72)) lift:(1.6) lev:(0.06) [259] conv:(1.95)
7. CORN PUFF SNACK/CHIPS, CONSUMABLES=t $706==>$ XMCODE OUT OF CATEGORIES, BAZAAR=t 504 [conf:(0.71)](conf:(0.71)) lift:(1.23) lev:(0.02) [93] conv:(1.46)
8. BREAD, CONSUMABLES=t CHEESE (DRAINING BENCHES)=t $786==>$ CURED MEAT, CONSERVATION=t 554 [conf:(0.7)](conf:(0.7)) lift:(3.28) lev:(0.08) [385] conv:(2.65)
9. CHEESE, CONSERVATION=t 789 ==> XMCODE OUT OF CATEGORIES, BAZAAR=t 553 [conf:(0.7)](conf:(0.7)) lift:(1.21) lev:(0.02) [94] conv:(1.39)

The results show that, for the ages 36 to 45 , purchases of conserved cured meat, along with bread or vegetables lead to the purchase of cheese. In addition, the purchases of snacks and conserved cheese lead to the purchase bazaar items. Purchases of conserved cured meat lead to the purchase of cheese. Fruit purchases, along with cheese of bazaar items, usually lead to the purchase of vegetables. The results for this age group present high confidence, lift and leverage levels, which is an evidence of strong reliability and strong relation between the products.

### 4.1.21 Best results found for the Age Group 46-55

1. CURED MEAT, CONSERVATION=t 1271 ==> CHEESE (DRAINING BENCHES)=t 1139 [conf:(0.9)](conf:(0.9)) lift:(2.43) lev:(0.09) [669] conv:(6.03)
2. FRUITS, GROCERIES $=\mathrm{t}$ CHEESE (DRAINING BENCHES)=t 1116 ==> VEGETABLES, GROCERY=t 784 [conf:(0.7)](conf:(0.7)) lift:(1.48) lev:(0.03) [256] conv:(1.77)
3. FRUITS, GROCERIES=t XMCODE OUT OF CATEGORIES, BAZAAR=t 1142 $==>$ VEGETABLES, GROCERY=t 800 [conf:(0.7)](conf:(0.7)) lift:(1.48) lev:(0.03) [259] conv:(1.75)
4. FRUITS, GROCERIES=t 2513 ==> VEGETABLES, GROCERY=t 1661 [conf:(0.66)](conf:(0.66)) lift:(1.4) lev:(0.06) [472] conv:(1.55)
5. PASTA, CONSUMABLES=t $1426==>$ VEGETABLES, GROCERY=t 798 [conf:(0.56)](conf:(0.56)) lift:(1.18) lev:(0.02) [123] conv:(1.19)
6. PASTA, CONSUMABLES=t $1426==>$ CHEESE (DRAINING BENCHES)=t 790 [conf:(0.55)](conf:(0.55)) lift:(1.5) lev:(0.03) [263] conv:(1.41)
7. BREAD, CONSUMABLES=t 2217 ==> VEGETABLES, GROCERY=t 1197 [conf:(0.54)](conf:(0.54)) lift:(1.14) lev:(0.02) [148] conv:(1.14)
8. YOGURT, CONSERVATION=t 1941 ==> VEGETABLES, GROCERY=t 1044 [conf:(0.54)](conf:(0.54)) lift:(1.14) lev:(0.02) [125] conv:(1.14)
9. BREAD, CONSUMABLES=t 2217 ==> CHEESE (DRAINING BENCHES)=t 1190 [conf:(0.54)](conf:(0.54)) lift:(1.45) lev:(0.05) [370] conv:(1.36)
10. VEGETABLES, GROCERY=t CHEESE (DRAINING BENCHES)=t $1478==>$ FRUITS, GROCERIES=t 784 [conf:(0.53)](conf:(0.53)) lift:(1.59) lev:(0.04) [291] conv:(1.42)

For the ages 46 to 55 , purchases of fruits as well as pasta, bread and conserved yogurt lead to the purchase of vegetables. Moreover, the purchases of conserved cured meat and bread lead to the purchase of cheese.

### 4.1.22 Best results found for the Age Group 56-65

1. CURED MEAT, CONSERVATION=t $484==>$ CHEESE (DRAINING BENCHES)=t 437 [conf:(0.9)](conf:(0.9)) lift:(2.84) lev:(0.07) [282] conv:(6.87)
2. FRUITS, GROCERIES=t XMCODE OUT OF CATEGORIES, BAZAAR=t 678 ==> VEGETABLES, GROCERY=t 439 [conf:(0.65)](conf:(0.65)) lift:(1.46) lev:(0.03) [138] conv:(1.57)
3. FRUITS, GROCERIES=t $1465==>$ VEGETABLES, GROCERY=t 899 [conf:(0.61)](conf:(0.61)) lift:(1.38) lev:(0.06) [248] conv:(1.44)
4. VEGETABLES, GROCERY=t XMCODE OUT OF CATEGORIES, BAZAAR=t 809 ==> FRUITS, GROCERIES=t 439 [conf:(0.54)](conf:(0.54)) lift:(1.49) lev:(0.04) [143] conv:(1.38)
5. YOGURT, CONSERVATION=t 928 ==> VEGETABLES, GROCERY=t 483 [conf:(0.52)](conf:(0.52)) lift:(1.17) lev:(0.02) [71] conv:(1.16)
6. VEGETABLES, GROCERY=t 1780 ==> FRUITS, GROCERIES=t 899 [conf:(0.51)](conf:(0.51)) lift:(1.38) lev:(0.06) [248] conv:(1.28)
7. MILK, CONSERVATION=t 1013 ==> XMCODE OUT OF CATEGORIES, BAZAAR=t 499 [conf:(0.49)](conf:(0.49)) lift:(1.15) lev:(0.02) [63] conv:(1.12)
8. CHEESE (DRAINING BENCHES)=t $1276==>$ VEGETABLES, GROCERY=t 628 [conf:(0.49)](conf:(0.49)) lift:(1.11) lev:(0.02) [61] conv:(1.09)
9. VEGETABLES, GROCERY=t FRUITS, GROCERIES=t 899 ==> XMCODE OUT OF CATEGORIES, BAZAAR=t 439 [conf:(0.49)](conf:(0.49)) lift:(1.14) lev:(0.01) [52] conv:(1.11)
10. YOGURT, CONSERVATION=t 928 ==> FRUITS, GROCERIES=t 448 [conf:(0.48)](conf:(0.48)) lift:(1.32) lev:(0.03) [108] conv:(1.22)

For the ages 56 to 65 , purchases of conserved cured meat lead to the purchased of cheese. The purchases of conserved yogurt lead to the purchase of fruits or vegetables. Furthermore, the purchases of vegetables and/or bazaar items lead to the purchase of fruits and vice versa. The results for this age group present medium confidence, lift and leverage levels, except the first rule that presents high levels of these metrics.

### 4.1.23 Best results found for the Age Group 66+

1. FRUITS, GROCERIES=t CHEESE (DRAINING BENCHES)=t 433 ==> VEGETABLES, GROCERY=t 299 [conf:(0.69)](conf:(0.69)) lift:(1.49) lev:(0.03) [97] conv:(1.72)
2. FRUITS, GROCERIES=t 1164 ==> VEGETABLES, GROCERY=t 738 [conf:(0.63)](conf:(0.63)) lift:(1.36) lev:(0.07) [197] conv:(1.46)
3. VEGETABLES, GROCERY=t CHEESE (DRAINING BENCHES)=t $484==$ FRUITS, GROCERIES=t 299 [conf:(0.62)](conf:(0.62)) lift:(1.55) lev:(0.04) [106] conv:(1.57)
```
4. VEGETABLES, GROCERY=t 1360 ==> FRUITS, GROCERIES=t 738 <conf:(0.54)> lift:(1.36) lev:(0.07) [197] conv:(1.31)
5. CHEESE (DRAINING BENCHES) \(=\mathrm{t} 930=>\) VEGETABLES, GROCERY=t 484 <conf:(0.52)> lift:(1.12) lev:(0.02) [51] conv:(1.11)
6. YOGURT, CONSERVATION=t 676 ==> VEGETABLES, GROCERY=t 334
``` <conf:(0.49)> lift:(1.06) lev:(0.01) [19] conv:(1.06)
7. CHEESE (DRAINING BENCHES)=t 930 ==> FRUITS, GROCERIES=t 433 <conf:(0.47)> lift:(1.17) lev:(0.02) [63] conv:(1.12)
8. MILK, CONSERVATION=t 749 ==> VEGETABLES, GROCERY=t 346 <conf:(0.46)> lift:(0.99) lev:(-0) [-2] conv:(0.99)
9. YOGURT, CONSERVATION=t 676 ==> FRUITS, GROCERIES=t 311 <conf:(0.46)> lift:(1.16) lev:(0.01) [42] conv:(1.11)
10. XMCODE OUT OF CATEGORIES, BAZAAR=t 742 ==> VEGETABLES, GROCERY=t 327 <conf:(0.44)> lift:(0.95) lev:(-0.01) [-17] conv:(0.95)

For customers above the age of 66, the purchase of vegetables leads to the purchase of fruits. Additionally, the purchases of conserved milk, yogurt, cheese as well as the purchases of cheese usually lead to the purchase of fruits and groceries. Lastly, purchases of bazaar items may lead of the purchases of vegetables. The results for this age group present medium confidence, lift and leverage levels.

\section*{Propositions concerning all target audiences:}

The findings of these correlations may help the Super Market find the purchase behavior of its buyers, understand what they want, make the correct decisions and hence establish a profitable sales strategy by considering items frequently purchased together by customers.

Market basket analysis applies to bricks-and-mortar stores as well as in websites.

Since we have found which products with a high correlation factor, that go well together, we can proceed to certain in-store and/or online targeting activities, in order to enhance the cross-selling purchasing and maximize customer engagement and sales.
- Concerning the bricks-and-mortar stores it is recommended that products that present a correlation (the purchase of the product A leads to (or include) the purchase of the product B) to be placed on nearby shelves (even if it is an unexpected combination such as cheese and vegetables). Each store in the different areas of Crete, may present differentiations on its product placements depending on its customers' frequent purchasing patterns. For example, the stores in Tympaki area and Malia area provide different product correlations. In Tympaki area purchases of vegetables usually lead to the purchase of bazaar items and whereas in Malia area vegetables are about to engage in transactions containing pork meat.
- Promotion panels can be placed throughout the isles of interest (for instance, for correlations between pasta and cheese, a promotion panel can be placed near the pasta shelves regarding the various types of cheese that may go well with the various types of pasta).
- Simultaneous discounts and offers can also be put from time to time to the highly correlated products.
- In-store digital signage is a form of dynamic advertising and can placed all around the aisles and activate the clients during their purchases. For example, pasta section can promote a healthy spaghetti receipt with cheese and vegetables. That way, visitors can identify a checklist of ingredients easily and shall consider again their purchase needs. Moreover, the usage of digital signage, is a useful reminder and an interactive counselor to the customers, as they can directly emphasize in suggesting other products that are going well with the one that the customer is standing in front. For instance, a digital signage in the cured meat product section can also suggest cheeses' section for a more complete shopping list. Digital signage may also promote the highrelated products’ offers and discounts. That way, customers can be directly informed and better engaged with the purchase activities. Digital signage,
apart from assisting in cross-selling strategy, may reduce the perception of a long waiting-time. This will lead to a more enjoyable experience.
- Website as well as mobile applications can implement a cross-selling tactic by presenting to the users the products that are likely to be purchased together and by making the best recommendations on product matchings. For example, when a customer is scrolling through the pasta section, a message shall appear at the end of the page, such as "Customers who bought pasta, also bought mozzarella cheese. Take a look at our dairy section!" and then by clicking the respective button, customers shall be redirected to the certain section. These recommendations can be made depending on the customer's profile (gender, age, area) which they have created online through this website. Thus, the website may provide different recommendations and offers, based on the algorithms' combinations of data concerning the customers' gender, age group and area. For example, a woman in the age group 26-35 in Chania area, has different purchasing profile than that of a woman (or a man) in the age group 56-65, in Malia area and a man in the age group 18-25 in Mires area, has different purchasing profile than that of a man (or a woman) in the age group 46-55, in Ierapetra area. In each case, the recommendations and the offers may differ.

\subsection*{4.2 WEKA Clustering}

\section*{WEKA Clusterers}

Clustering is a method of grouping similar things together. As mentioned in the first chapter, clustering is a process of portioning a data set into a set of meaningful subclasses, known as clusters. Clustering is the same as classification in which data is grouped. \({ }^{150}\)

Though, unlike classification, clustering does not seek rules that predict a particular class, but rather try to divide the data into groups/clusters, that are not previously

\footnotetext{
\({ }^{150}\) Source: https://www.javatpoint.com/classification-vs-clustering-in-data-mining
}
defined, by determining similarities between data according to characteristics found in the real data.

The objective of our clustering procedure is to group the customers who presented similarities in their purchase frequency of the different product categories depending on their gender and age and to disjoin those who displayed dissimilarities. We proceed to the implementation of different clusterers (Simple K-Means, EM, Make a Density, Farthest First, Canopy, Filtered Clusterer) to the same dataset, in order to see how they behave and maybe to point possible similarities between the clustering results.

Below are the clusterers' results, which give information about the cluster centroids of gender, age and product category. These, present the different clusters that are created, based on same characteristics observed in a set of elements.

Centroids are those characteristics that are dominant in the cluster and are similar (have similar characteristics) with the objects in the same cluster.

The dataset used for the creation of the clustering results, was made by sorting the original dataset's information through a pivot table. Specifically, we sorted the data for gender, age and product category and we got a table with all the purchase frequencies of the customers that were distinguished between their gender (male, female) and their age (each gender's age is presented one time, instead of many and this is why in overall we end-up with a total of only 108 customers). In this case, we are searching for the purchase frequency of the customers depending on their gender and age, not their place of origin.

\subsection*{4.2.1 Simple K Means}

As mentioned in the first chapter (an analytical explanation is presented in chapter 60), Simple Means is a distant-based clusterer that minimizes the squared distance from each instance to their cluster center, after defining k centroids. It is one of the best unsupervised algorithms. For each different number of seeds, there are different clustering results. \({ }^{151} 152\)

\footnotetext{
\({ }^{151}\) Source: https://www.youtube.com/watch?v=4b5d3muPQmA
}

Simple K Means uses random numbers and by using the same seed, we will always get the same random numbers. If we run Simple K Means over the same data twice, with the same seed, we will get exactly the same results. For different number of seeds, the results will vary each time we run Simple K Means.

In our dataset we use the same seed.
Simple K Means Clusterer, presents a different squared error depending on the number of clusters we wish to create. The bigger the number of clusters, the lower the value of squared errors within the clusters.

In order to cross-validate this, we choose different number of clusters manually. The results of each of the clusterings depending on their number of clusters are presented below.

\section*{Simple K Means with 2 Clusters}

See the clustering results in the appendix: Simple \(\boldsymbol{K}\) Means with 2 Clusters

Within cluster sum of squared errors: \(\mathbf{1 1 1 1 2 . 0}\)
Clustered Instances:
```

0 7(6%)
1 101(94%)

```

Simple K Means divides customers into two clusters, Cluster 0 and Cluster 1. \(94 \%\) of the instances are in Cluster 1 (101 customers out of 108 are included in this cluster) and \(6 \%\) of the instances are in Cluster 0 ( 7 customers out of 108 are included in this cluster). The two clusters present differentiations in the purchase frequency of the product categories'.

To be more precise, the centroids of the two clusters, concerning the gender are the same (women), however they differ as per the age ( 38 and 32 respectively) and the purchase frequency of the various product categories. Cluster 1 includes most of the samples ( \(94 \%\) of the total samples) whereas Cluster 0 includes just a few samples ( \(6 \%\) of the total samples). That means, that customers in cluster 1, mostly characterized as women, aged 32, are the typical ones, who choose all product categories at the same rate, whereas the customers in cluster 0 , mostly characterized as women aged 38 , tend

\footnotetext{
\({ }^{152}\) Source: https://www.youtube.com/watch?v=HCA0Z9kL7Hg
}
to choose certain product categories much more frequently than the other cluster's customers do.

These frequently purchased products are fruits, vegetables, milk, bread, chocolates, rice/pulses, fresh beef, dump poultry, water, yoghurt as well as uncategorized products.

\section*{Simple K Means with 3 clusters:}

See the clustering results in the appendix: Simple K Means with 3 Clusters
Within cluster sum of squared errors: 11051.0
Clustered Instances:
```

0 7 (6%)
1 99(92%)
2 2(2%)

```

Simple K Means divides customers into three clusters, Cluster 0, Cluster 1 and Cluster 2.92\% of the instances are in Cluster 1 ( 99 customers out of 108 are included in this cluster), \(6 \%\) of the instances are in Cluster 0 ( 7 customers out of 108 are included in this cluster) and \(2 \%\) of the instances are in Cluster 2 ( 2 customers out of 108 are included in this cluster). The three clusters present differentiations in the purchase frequency of the product categories'.

The centroids of the three clusters, concerning the gender are the same (women), however they differ as per the age \((38,32,41)\) and the purchase frequency of the various product categories. Cluster 1 includes most of the samples ( \(92 \%\) of the total samples) whereas, Cluster 0 and Cluster 2 include just a few samples ( \(6 \%\) and \(2 \%\) of the total samples respectively). That means, that customers in cluster 1, mostly characterized as women aged 32, are the typical ones, who choose all product categories at the same rate, whereas the customers in cluster 0 , mostly characterized as women aged 38 , tend to choose certain product categories much more frequently than the other clusters' customers do.

These frequently purchased products are fruits, vegetables, milk, bread, chocolates, rice/pulses, fresh beef, dump poultry, water, yoghurt as well as paper, household, detergents and uncategorized products.

\section*{Simple K Means with 4 clusters:}

See the clustering results in the appendix: Simple K Means with 4 Clusters

\section*{Within cluster sum of squared errors: 10605.0}

\section*{Clustered Instances:}
08 ( 7\%)
187 ( \(81 \%\) )

2 12(11\%)
3 1( \(1 \%\) )

Simple K Means divides customers into four clusters, Cluster 0, Cluster 1, Cluster 2 and Cluster 3. \(81 \%\) of the instances are in Cluster 1 ( 87 customers out of 108 are included in this cluster), \(11 \%\) of the instances are in Cluster 2 ( 12 customers out of 108 are included in this cluster), \(7 \%\) of the instances are in Cluster 0 ( 8 customers out of 108 are included in this cluster) and \(1 \%\) of the customers are in Cluster 3 (1 customer out of 108 is in this cluster). The four clusters present differentiations in the purchase frequency of the product categories'.

The centroids of cluster 0 , cluster 2 and cluster 3, concerning the gender, are the same (women), unlike the centroid of Cluster 1 (which is male). The clusters' centroids differ as per the age (38, 32, 37, 52 for Clusters \(0,1,2,3,4\) respectively) and the purchase frequency of the various product categories. Cluster 1 includes most the samples whereas, cluster 3, cluster 0 and cluster 2 include just a few samples. That means, that customers in cluster 1 , mostly characterized as men, aged 32 , are the typical ones, who choose a wide variety of all product categories at the same rate, whereas the customers in cluster 3 , mostly characterized as women, aged 52 , tend to choose certain product categories much more frequently than the other clusters' customers do.

These frequently purchased products are pasta, bread, rusks, rice/pulses, biscuits, chocolates, pastries/sweets, frozens, breakfast cereals, shelf stable milk, coffee, fruits, sausages, preserved cheeses, fresh beef, dump pork, dump poultry, non- alcoholic drinks/water, tea/juices, beers, household, detergents, animal food, paper, bath foams, smoker's items and uncategorized products.

\section*{Simple K Means with 5 clusters:}

See the clustering results in the appendix: Simple K Means with 5 Clusters
Within cluster sum of squared errors: 10458.0
Clustered Instances
\begin{tabular}{cc}
0 & \(8(7 \%)\) \\
1 & \(87(81 \%)\) \\
2 & \(7(6 \%)\) \\
3 & \(1(1 \%)\) \\
4 & \(5(5 \%)\)
\end{tabular}

Simple K Means divides customers into five clusters, Cluster 0, Cluster 1, Cluster 2, Cluster 3 and Cluster 4. \(81 \%\) of the instances are in Cluster 1 ( 87 customers out of 108 are included in this cluster), \(7 \%\) of the instances are in Cluster 0 ( 8 customers out of 108 are included in this cluster), \(6 \%\) of the instances are in Cluster 2 ( 7 customers out of 108 are included in this cluster) and \(5 \%\) of the customers are in Cluster 4 (5 customer out of 108 are included in this cluster) and \(1 \%\) of the customers are in Cluster 3 ( 1 customer out of 108 is included in this cluster). The five clusters present differentiations in the purchase frequency of the product categories'.

The centroids of cluster 0 , cluster 2 , cluster 3 and cluster 4 concerning the gender, are the same (women), unlike the centroid of Cluster 1 (which is male). The clusters' centroids differ as per the age (38, 32, 37, 52, 39 for Clusters 0, 1, 2, 3, 4,5 respectively) and the purchase frequency of the various product categories. Cluster 1 includes most the samples whereas cluster 3, cluster 0 , cluster 2 and cluster 4 include just a few samples. That means, that customers in cluster 1, mostly characterized as men, aged 32 , are the typical ones, who choose a wide variety of all product categories at the same rate, whereas the customers in cluster 3, mostly characterized as women, aged 52 , tend to choose certain product categories much more frequently than the other clusters' customers do.

These frequently purchased products are pasta, bread, rusks, rice/pulses, biscuits, chocolates, pastries/sweets, frozens, breakfast cereals, shelf stable milk, coffee, fruits, sausages, preserved cheeses, fresh beef, dump pork, dump poultry, non- alcoholic
drinks/water, tea/juices, beers, household, detergents, animal food, paper, bath foams, smoker's items and uncategorized products.

This clustering is similar to the one with 4 clusters, but it also adds an extra cluster to expand the options.

It is clear that a higher number of clusters, leads to a lower squared error, meaning that, the dataset is closer to finding the line of best fit.


Figure 36: Within cluster sum of squared errors and Number of clusters

\subsection*{4.2.2 Make A Density}

According to

Density-Based Clustering refers to unsupervised learning methods that identify distinctive groups/clusters in the data, based on the idea that a cluster in a data space is a contiguous region of high point density, separated from other such clusters by contiguous regions of low point density. The data points in the separating regions of low point density are typically considered noiseloutliers.

As mentioned in the first chapter (an analytical explanation is presented in chapter 1.5.7),
- The clusterer randomly chooses the core points and then for each core point that is not already assigned to a cluster, creates a new cluster.
- The clusterer finds all its density connected points and assigns them to the same cluster as the core point.
- Then it iterates through the remaining unvisited points in the dataset.
- The core points that do not belong to any cluster are treated as outliers or noise points. \({ }^{153}\)

Make A Density Clusterer, also presents a different squared error depending on the number of clusters we wish to create. The bigger the number of clusters, the lower the value of squared errors within the clusters.

In order to cross-validate this, we choose different number of clusters manually. The results of each of the clusterings depending on their number of clusters are presented below.

\section*{Make A Density Clusterer with 2 Clusters}

See the clustering results in the appendix: Make A Density Based Clusterer with 2

\section*{Clusters}

Wrapped clusterer: kMeans
Number of iterations: 2

\section*{Within cluster sum of squared errors: 11112.0}

Missing values globally replaced with mean/mode
Clustered Instances:
\(0 \quad 14\) (13\%)
194 ( \(87 \%\) )
Log likelihood: -416.07815
Make A Density Clusterer divides customers into two clusters, Cluster 0 and Cluster 1. \(87 \%\) of the instances are in Cluster 1 ( 94 customers out of 108 are included in this

\footnotetext{
\({ }^{153}\) Source: https://www.youtube.com/watch?v=f4pZ9PHNdcM
}
cluster) and \(13 \%\) of the instances are in Cluster 0 ( 14 customers out of 108 are included in this cluster). The two clusters present differentiations in the purchase frequency of the product categories'.

To be more precise, the centroids of the two clusters, concerning the gender are the same (women), however they differ as per the age (38 and 32 respectively) and the purchase frequency of the various product categories. Cluster 1 includes most of the samples ( \(94 \%\) of the total samples) whereas Cluster 0 includes just a few samples ( \(6 \%\) of the total samples). That means, that customers in cluster 1, mostly characterized as women, aged 32, are the typical ones, who choose all product categories at the same rate, whereas the customers in cluster 0 , mostly characterized as women aged 38 , tend to choose certain product categories much more frequently than the other cluster's customers do.

These frequently purchased products are fruits, vegetables, milk, bread, chocolates, rice/pulses, fresh beef, dump poultry, water, yoghurt as well as uncategorized products.

These results are the same as those of Simple K Means, which is expected, as Simple K Means is wrapped to Make A Density Based Clusterer.

\section*{Make A Density Clusterer with 3 Clusters}

See the clustering results in the appendix: Make A Density Based Clusterer with 3

\section*{Clusters}

Wrapped clusterer: kMeans
Number of iterations: 2
Within cluster sum of squared errors: 11051.0
Missing values globally replaced with mean/mode
Clustered Instances:
08 ( \(7 \%\) )
191 (84\%)
2 ( \(8 \%\) )

Log likelihood: -413.54478
Make A Density Clusterer divides customers into three clusters, Cluster 0, Cluster 1 and Cluster 2. \(84 \%\) of the instances are in Cluster 1 ( 91 customers out of 108 are included in this cluster), \(8 \%\) of the instances are in Cluster 2 ( 9 customers out of 108 are included in this cluster) and \(7 \%\) of the instances are in Cluster 0 ( 8 customers out of 108 are included in this cluster). The three clusters present differentiations in the purchase frequency of the product categories'.

The centroids of the three clusters, concerning the gender are the same (women), however they differ as per the age \((38,32,41)\) and the purchase frequency of the various product categories. Cluster 1 includes most of the samples ( \(92 \%\) of the total samples) whereas, Cluster 0 and Cluster 2 include just a few samples ( \(6 \%\) and \(2 \%\) of the total samples respectively). That means, that customers in cluster 1, mostly characterized as women aged 32, are the typical ones, who choose all product categories at the same rate, whereas the customers in cluster 0 , mostly characterized as women aged 38 , tend to choose certain product categories much more frequently than the other clusters' customers do.

These frequently purchased products are fruits, vegetables, milk, bread, chocolates, rice/pulses, fresh beef, dump poultry, water, yoghurt as well as paper, household, detergents and uncategorized products.

These results are the same as those of Simple K Means, which is expected, as Simple K Means is wrapped to Make A Density Based Clusterer.

\section*{Make A Density Clusterer with 4 clusters:}

See the clustering results in the appendix: Make A Density Based Clusterer with 4 Clusters

\section*{Within cluster sum of squared errors: 10605.0}

Clustered Instances:
08 ( \(7 \%\) )
186 (80\%)
213 (12\%)

\section*{3 1(1\%)}

Log likelihood: - 390.05324

Make A Density Based Clusterer divides customers into four clusters, Cluster 0, Cluster 1, Cluster 2 and Cluster 3. 80\% of the instances are in Cluster 1 ( 86 customers out of 108 are included in this cluster), \(12 \%\) of the instances are in Cluster 2 (13 customers out of 108 are included in this cluster), \(7 \%\) of the instances are in Cluster 0 ( 8 customers out of 108 are included in this cluster) and \(1 \%\) of the customers are in Cluster 3 ( 1 customer is included in this cluster). The four clusters present differentiations in the purchase frequency of the product categories'.

The centroids of cluster 0 , cluster 2 and cluster 3, concerning the gender, are the same (women), unlike the centroid of Cluster 1 (which is male). The clusters' centroids differ as per the age ( \(38,32,37,52\) for Clusters \(0,1,2,3,4\) respectively) and the purchase frequency of the various product categories. Cluster 1 includes most the samples whereas, cluster 3, cluster 0 and cluster 2 include just a few samples. That means, that customers in cluster 1 , mostly characterized as men, aged 32 , are the typical ones, who choose a wide variety of all product categories at the same rate, whereas the customers in cluster 3, mostly characterized as women, aged 52 , tend to choose certain product categories much more frequently than the other clusters' customers.

These frequently purchased products are pasta, bread, rusks, rice/pulses, biscuits, chocolates, pastries/sweets, frozens, breakfast cereals, shelf stable milk, coffee, fruits, sausages, preserved cheeses, fresh beef, dump pork, dump poultry, non- alcoholic drinks/water, tea/juices, beers, household, detergents, animal food, paper, bath foams, smoker's items and uncategorized products.

These results are the same as those of Simple K Means, which is expected, as Simple K Means is wrapped to Make A Density Based Clusterer.

\section*{Make A Density Clusterer with 5 clusters:}

See the clustering results in the appendix: Make A Density Based Clusterer with 5 Clusters

\section*{Within cluster sum of squared errors: 10458.0}

08 ( \(7 \%\) )
185 (79\%)
28 ( \(7 \%\) )
3 1( \(1 \%\) )
4 6( \(6 \%\) )
Log likelihood: -389.75263

Make A Density Clusterer Simple K Means divides customers into five clusters, Cluster 0, Cluster 1, Cluster 2, Cluster 3 and Cluster \(4.81 \%\) of the instances are in Cluster 1 ( 87 customers out of 108 are included in this cluster), \(7 \%\) of the instances are in Cluster 0 ( 8 customers out of 108 are included in this cluster), \(6 \%\) of the instances are in Cluster 2 ( 7 customers out of 108 are included in this cluster) and 5\% of the customers are in Cluster 4 ( 5 customer out of 108 are included in this cluster) and \(1 \%\) of the customers are in Cluster 3 ( 1 customer is included in this cluster). The five clusters present differentiations in the purchase frequency of the product categories'.

The centroids of cluster 0 , cluster 2 , cluster 3 and cluster 4 concerning the gender, are the same (women), unlike the centroid of Cluster 1 (which is male). The clusters' centroids differ as per the age ( \(38,32,37,52,39\) for Clusters \(0,1,2,3,4,5\) respectively) and the purchase frequency of the various product categories. Cluster 1 includes most the samples whereas cluster 3, cluster 0 , cluster 2 and cluster 4 include just a few samples. That means, that customers in cluster 1, mostly characterized as men, aged 32, are the typical ones, who choose a wide variety of all product categories at the same rate, whereas the customers in cluster 3, mostly characterized as women, aged 52 , tend to choose certain product categories much more frequently than the other clusters' customers do.

These frequently purchased products are pasta, bread, rusks, rice/pulses, biscuits, chocolates, pastries/sweets, frozens, breakfast cereals, shelf stable milk, coffee, fruits, sausages, preserved cheeses, fresh beef, dump pork, dump poultry, non- alcoholic drinks/water, tea/juices, beers, household, detergents, animal food, paper, bath foams, smoker's items and uncategorized products.

These results are the same as those of Simple K Means, which is expected, as Simple K Means is wrapped to Make A Density Based Clusterer.

It is clear that a higher number of clusters, leads to a lower squared error, meaning that, the dataset is closer to finding the line of best fit.


Figure 37: Within cluster sum of squared errors and Number of clusters

\subsection*{4.2.3 Filtered Clusterer}

According to
[20][20]:
This algorithm is primarily based completely on storing the multidimensional data points within a tree. The process regarding the tree is like a binary tree method, as represents a hierarchical subdivision on its data point set's bounding box the usage of their axis after which splitting is aligned by way on hyper planes. Each node on the tree is related with a closed field, referred to as the cell.

These results are the same as those of Simple K Means for all the clusterings, which is expected, as Filtered Clusterer uses Simple K Means in order to proceed to the outcome.

\subsection*{4.2.4 Farthest First}

Farthest first finds its variant of K-means. Each cluster center point furthermost from the existing cluster center is placed by the K-mean, and this point must be positioned within the data area. So that it greatly speeds up the clustering in most cases, but it needs less move and adjustment for their fast performance.

In order to examine Farthest First Clusterer's accuracy, we choose different number of clusters manually.

\section*{Farthest First Clusterer with 2 Clusters:}

See the clustering results in the appendix: Farthest First with 2 Clusters
Clustered Instances:
0107 ( \(99 \%\) )
1 ( \(1 \%\) )

Simple K Means divides customers into two clusters, Cluster 0 and Cluster 1. \(99 \%\) of the instances are in Cluster 0 ( 107 customers out of 108 are included in this cluster) and \(1 \%\) of the instances are in Cluster 1 ( 1 is included in this cluster). The two clusters present differentiations in the purchase frequency of the product categories'.

To be more precise, the centroids of the two clusters, concerning the gender are the same (women), however they differ as per the age ( 82 and 52 respectively) and the purchase frequency of the various product categories. Cluster 1 includes most of the samples ( \(99 \%\) of the total samples) whereas Cluster 0 includes just a one sample. This seems to be inaccurate results, as it is not that possible \(99 \%\) of the customers to have similar consuming behavior concerning the purchase frequency as of 82 year-old women.

The same applies to the clusterings with a higher number of clusters as well, in which Cluster 0 has the higher rate of samples.

Farthest First seems to give inaccurate results for this case, however it shall be presented as well in the appendix:

Farthest First with 3 Clusters
Farthest First with 4 Clusters

\section*{Farthest First with 5 Clusters}

\subsection*{4.2.5 EM}
"EM (Expectation Maximization) is a probabilistic clusterer and can be used for unsupervised learning. Like Naive Bayes, it makes the assumption that all attributes are independent random variables." (Witten I.H., et al., (1999))

As mentioned in the first chapter (an analytical explanation is presented in chapter 1.5.2), unlike K-Means that takes one point and places it to the one cluster or the other, EM computes the probability that it goes into a or b cluster. This probability never gets zero or one, it is always a number between zero and one ( \(0<\) probability EM<1).

The model just finds that there are distinguished groups in the dataset that behave differently.

EM works for numeric attributes providing mean and standard deviation results and value probability results respectively. Log likelihood is an overall quality measure and is increased by each iteration. \({ }^{154}\)

EM run alternative number of clusters and then chooses automatically the number of the clusters it shall create.
\(===\) Model and evaluation on training set \(==\)
See Appendix: EM Clusterer
Clustered Instances:
\begin{tabular}{lc}
0 & \(1(1 \%)\) \\
1 & \(2(2 \%)\) \\
2 & \(85(79 \%)\) \\
3 & \(1(1 \%)\) \\
4 & \(1(1 \%)\) \\
5 & \(13(12 \%)\) \\
6 & \(5(5 \%)\)
\end{tabular}

\footnotetext{
\({ }^{154}\) Source: https://www.youtube.com/watch?v=HCAOZ9kL7Hg
}

Log likelihood: -384.06072

Each cluster has the attributes of Gender, Age and Product Category. For each of the attributes, there is a probability that the output is going to be this certain attribute. This probability is calculated if you divide the number of the attribute by the total attributes in each of the clusters.

Cluster 2 seems to include most of the samples ( \(79 \%\) of the total samples) and its customers are the typical ones ( \(42,5 \%\) possibility of its centroid to be a woman and \(57,5 \%\) possibility of its centroid to be a man).

\subsection*{4.2.6 Canopy}

According to Mai and Cheng (2016)[33]: Canopy is one of the improved K-means algorithm, can be used to determine the number of clusters. With the introduction of Canopy clustering, the data set is divided into \(k\) sub-sets by setting the radius, and the sub-sets can be selected as the initial centers of \(K\)-means. Because the Canopy algorithm can reduce the running time of the clustering by reduce the count of comparisons, it will improve the computational efficiency.

The Canopy algorithm's analytical explanation of the steps is presented in chapter 1.5.8.

We choose different number of clusters manually. The results of each of the clusterings, depending on their number of clusters are presented below.

\section*{Canopy Clustering with 2 Clusters}

See the appendix: Canopy clustering with 2 clusters
Clustered Instances
\(0 \quad 107\) ( \(99 \%\) )
1 ( \(1 \%\) )
First we divide customers into two clusters, Cluster 0 and Cluster 1. 99\% of the instances are in Cluster 0 ( 107 customers out of 108 are included in this cluster) and
\(1 \%\) of the instances are in Cluster 1 ( 1 customer is included in this cluster). The two clusters present differentiations in the purchase frequency of the product categories'.

To be more precise, the centroids of the two clusters, concerning the gender are the same (men), however they differ as per the age ( 32 and 49 respectively) and the purchase frequency of the various product categories. Cluster 0 includes most of the samples whereas Cluster 1 includes just a one sample. That means, that customers in cluster 0 , mostly characterized as men, aged 32 , are the typical ones, who choose all product categories at the same rate, whereas the customers in cluster 1 , mostly characterized as men aged 49 , tend to choose certain product categories much more frequently than the other cluster's customers do.

These frequently purchased products are pasta, bread, rusks, rice/pulses, biscuits, chocolates, pastries/sweets, frozens, breakfast cereals, shelf stable milk, coffee, fruits, sausages, preserved cheeses, fresh beef, dump pork, dump poultry, non- alcoholic drinks/water, tea/juices, beers, household, detergents, animal food, paper, bath foams, smoker's items and uncategorized products.

\section*{Canopy Clustering with 3 Clusters}

See the appendix: Canopy clustering with 3 clusters
Clustered Instances
\(0 \quad 94\) ( \(87 \%\) )
1 1 ( \(1 \%\) )
2 13(12\%)

We divide customers into 3 clusters but the first two clusters remain the same and we just introduce a new one, the centroids of which are men aged 72 . The number of samples in each cluster now renumbers, with Cluster 1 remaining the same as it was. Still, Cluster 0 includes the most samples and characterizes the typical customer.

\section*{Canopy Clustering with 4 Clusters}

See the appendix: Canopy clustering with 4 clusters
Clustered Instances
\(0 \quad 93\) ( 86\%)
1 ( \(1 \%\) )

We divide customers into 4 clusters but the first three clusters remain the same and we just introduce a new one, the centroids of which are women aged 40 . The number of samples in each cluster now renumbers, with Cluster 1 remaining the same as it was. Still, Cluster 0, followed by Cluster 2 includes the most samples and characterizes the typical customer. Cluster 1 and Cluster 2 tend to choose certain product categories much more frequently than the other cluster's customers do.

These frequently purchased products are the same as those mentioned above and these are pasta, bread, rusks, rice/pulses, biscuits, chocolates, pastries/sweets, frozens, breakfast cereals, shelf stable milk, coffee, fruits, sausages, preserved cheeses, fresh beef, dump pork, dump poultry, non- alcoholic drinks/water, tea/juices, beers, household, detergents, animal food, paper, bath foams, smoker's items and uncategorized products.

\section*{Canopy Clustering with 5 Clusters}

See the appendix: Canopy clustering with 5 clusters
Clustered Instances
088 (81\%)
1 ( \(1 \%\) )
2 12(11\%)
3 1 ( \(1 \%\) )
4 6(6\%)

Lastly, we divide customers into 5 clusters but the first four clusters remain the same and we just introduce a new one, the centroids of which are women aged 81. The number of samples in each cluster now renumbers, with Cluster 1 remaining the same as it was.

In each of the 5 cases, Cluster 0 (the centroids of which are men, aged 32), includes the most samples and characterizes the typical customer who choose \(\sigma\) all product categories at the same rate.

\section*{Conclusions}

Association rule mining or market basket analysis is a data mining technique used to increase sales by better understanding customer purchasing patterns. Through analyzing large databases, we can detect the products that are likely to be purchased together. Implementation of market basket analysis requires a background in statistics and data science.

In this chapter, we used the WEKA Machine Learning Software System Tool for association rule mining and clustering. We discovered the correlations between the different items in customers' shopping cart and we grouped customers who displayed similar characteristics.

These, shall help the Super Market find the purchase behavior of its buyers, understand what they want, make the correct decisions and hence establish a profitable sales strategy by considering items frequently purchased together by customers. For a supermarket with multiple stores, finding purchasing patterns can be useful in forming the best cross- selling actions as well as the best marketing, service, and operation strategies.

\section*{REFERENCES}
[1] Fayyad, U., Piatetsky, G., Smyth, P., (1996). From Data Mining to Knowledge Discovery in Databases. AI Magazine. Vol. 17, No. 3.
[2] Agrawal, A., Gans, J.S., and Goldfarb, A. (2019). Exploring the impact of artificial Intelligence: prediction versus judgment. Inform. Econ. Policy 47, pp.16. doi: 10.1016/j.infoecopol.2019.05.001.
[3] Kalmegh, S.R. (2018). Comparative Analysis of the WEKA Classifiers Rules Conjunctiverule \& Decisiontable on Indian News Dataset by Using Different Test Mode, International Journal of Engineering Science Invention (IJESI) ISSN (Online): 2319 - 6734, ISSN (Print): 2319 - 6726, www.ijesi.org, Volume 7 Issue 2, Ver. III, pp. 01-09.
[4] Burges, C.J.C. (1998). A tutorial on support vector machines for pattern recognition." Data Mining and Knowledge Discovery, Vol. 2, No.1, pp.121-167.
[5] Vijayarani, S., Muthulakshmi, M. (2013). Comparative Analysis of Bayes and Lazy Classification Algorithms. International Journal of Advanced Research in Computer and Communication Engineering. Vol. 2, Issue. 8.
[6] Al-Hyari, A., Al-Taee, A.M., Al-Taee, M., A. (2013). Clinical Decision Support System for Diagnosis and Management of Chronic Renal Failure, IEEE.
[7] Venkat, M., Mohammed, D., Rasheed, A., Ali, M.M. (2014). Classification of Lung cancer subtypes by Data Mining technique, IEEE.
[8] Sharma, T.C., Jain, M. (2013) WEKA Approach for Comparative Study of Classification Algorithm.
[9] Atkenson, C.G., Schaal, S.A. and Moore, A.W. (1997). Locally weighted learning, 128-137, Prague.
[10] Witten, I.H., Eibe, F.F., Hall, M., Holmes G., Cunningham, S.J. (1999). Weka: Practical Machine Learning Tools and Techniques with Java Implementations.
[11] Madeh, S.P., El-Diraby T.E. (2020). Role of Data Analytics in Infrastructure Asset Management: Overcoming Data Size and Quality Problems. Journal of Transportation Engineering, Part B: Pavements. Vol. 146, No.2, doi:10.1061/JPEODX. 0000175.
[12] Madeh, S.P., El-Diraby, T.E. (2021). Using Machine Learning to Examine Impact of Type of Performance Indicator on Flexible Pavement Deterioration

Modeling. Journal of Infrastructure Systems. Vol. 27, No. 2. doi:10.1061/(ASCE)IS.1943-555X.0000602. ISSN 1076-0342. S2CID 233550030.
[13] Kinge, D., Gaikwad, S. K.., (2018). Survey on data mining techniques for disease prediction. IRJET Journal (https://www.irjet.net/). Vol. 5, Issue: 1. eISSN: 2395-0056, p-ISSN: 2395-0072. Retrieved from: https://www.irjet.net/archives/V5/i1/IRJET-V5I1136.pdf
[14] Mishra, R., Singh, R. (2014). An efficient approach for supervised learning algorithms using Different Data Mining Tools for spam categorization, IEEE.
[15] Vaithiyanathan, V., Rajeswari, K., Tajane, K., Pitale, R. (2013). Comparison of Different Classification Techniques Using Different Datasets. Vol.6, no. 2.
[16] Witten I.H., Eibe, F.F., Len, T., Hall, M., Holmes, G., Cunningham S.J. (1999). Weka: Practical Machine Learning Tools and Techniques with Java Implementations
[17] Blaifi, S.A., Moulahoum, S., Benkercha, R., Taghezouit, B., Saim, A., (2018). M5P model tree based fast fuzzy maximum power point tracker. Solar Energy(163), pp. 405-424. doi:https://doi.org/10.1016/j.solener.2018.01.071
[18] Hulten, G., Spencer, L., \& Domingos, P. (2001). Mining time-changing data streams. ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining, pp. 97-106.
[19] Maimon, O., Rokach, L. (2006). "Clustering methods". Data Mining and Knowledge Discovery Handbook. Springer. pp. 321-352.
[20] Kodati, S., Vivekanandam, R., \& Ravi, G. (2019). Comparative Analysis of Clustering. Retrieved from https://link.springer.com/chapter/10.1007/978-981-13-3600-3_11
[21] Kumar, M.P., et al., (2010). Simultaneous pattern and data clustering using modified K-means algorithm. Int. J. Comput. Sci. Eng. Vol. 02, No.06, 20032008
[22] Vijaya, P., Murthy, M.N., Subramanian, D.K., (2004). Leaders-subleaders: an efficient hierarchical clustering algorithm for large data sets. Pattern Recogn. Lett. Vol. 25, pp.505-513.
[23] Lobo, L.M.R.J., Aher S.B., (2016). Data Mining in Educational System using WEKA, Retrieved from https://www.researchgate.net/profile/Sunita-Dol-

Aher/publication/266602921_Data_Mining_in_Educational_System_using_WE KA/links/57aee3f708ae95f9d8f15867/Data-Mining-in-Educational-System-using-WEKA.pdf
[24] Rama, B., (2010). A survey on clustering current status and challenging issues. Int. J. Comput. Sci. Eng. (IJCSE), Vol. 02, No. 09, pp.2976-2980 .
[25] Fisher, D., (1987). Knowledge acquisition via incremental conceptual clustering. Machine Learning. Vol. 2, No. 2, pp. 139-172. doi:10.1007/BF00114265
[26] Fisher, D. H., (July 1987). Improving inference through conceptual clustering. Proceedings of the 1987 AAAI Conferences. AAAI Conference. Seattle Washington. pp. 461-465.
[27] Iba, W., Langley, P., (n.d) Cobweb models of categorization and probabilistic concept formation. In Emmanuel M. Pothos and Andy J. Wills (ed.). Formal approaches in categorization. Cambridge: Cambridge University Press. pp. 253273. ISBN 9780521190480
[28] McCallum, A., Nigam, K., and Ungar L.H. (2000), Efficient Clustering of High Dimensional Data Sets with Application to Reference Matching. Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery and data mining, pp.169-178 doi:10.1145/347090.347123
[29] Sander J. (2011) Density-Based Clustering. In: Sammut C., Webb G.I. (eds) Encyclopedia of Machine Learning. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30164-8_211
[30] Alam, S., (2016). Handbook of Research on Natural Computing for Optimization Problems. IGI Global. doi: 10.4018/978-1-5225-0058-2.ch012.
[31] Kleinberg, E., (n.d). Random forest. Retrieved from: https://www.ic.unicamp.br/~rocha/teaching/2018s 1/mo444/classes/mo444-class-materials-13.pdf
[32] Ramzan, M., (2016). Comparing and Evaluating the Performance of WEKA Classifiers on Critical Diseases. 1st India International Conference on Information Processing (IICIP), pp. 1-4, doi: 10.1109/IICIP.2016.7975309.
[33] Mai, H., Cheng, L. (2016). The Application of Clustering Algorithm Based on Improved Canopy -Kmeans in Operators Data. 3rd International Conference on Engineering Technology and Application (ICETA 2016) ISBN: 978-1-60595-383-0
[34] Chen, Y.L., Tang, K., Shen, R.J., Hu, Y.H., (2005). Market basket analysis in a multiple store environment, Decision Support Systems, Vol. 40, Issue 2, pp. 39354, ISSN 0167-9236, https://doi.org/10.1016/j.dss.2004.04.009. (https://www.sciencedirect.com/science/article/pii/S0167923604000685)

\section*{APPENDIX}

\section*{APPENDIX 1: Creta Palm Hotel}

\section*{M5Rules Algorithm| Creta Palm 2019}
\(===\) Classifier model (full training set) \(===\)
pruned model rules (using smoothed linear models) :Number of Rules : 1

\section*{Rule: 1}

TOTAL BOOKINGS =
2.3818 * Booking Source=TUI NL,BLUEAEGEAN,SUNWEB,Jet2Holidays,ARHUS CHARTER,ITAKA,EXPEDIA,AURINKOMATKAT
- 5.4481
*BookingSource=SUNWEB,Jet2Holidays,ARHUSCHARTER,ITAKA,EXPEDIA,A
URINKOMATKAT
\(+6.033\)
* BookingSource=Jet2Holidays,ARHUSCHARTER,ITAKA,EXPEDIA,AURINKO

MATKAT
\(+6.8512\)
* BookingSource=ARHUSCHARTER,ITAKA,EXPEDIA,AURINKOMATKAT
- 4.2256 * Booking Source=ITAKA,EXPEDIA,AURINKOMATKAT
+4.4683 * Booking Source=EXPEDIA,AURINKOMATKAT
+0.008 * TOTAL PAX Nights
+0.0735 * Total Room Nights
+0.0149 * HB
-0.0085 * AI
+3.3041 * MONTH=September 2019,July 2019,June 2019
- 0.2915 [91/16.644\%]

\section*{M5P Trees Algorithm| Creta Palm 2019}

LM num: 1
TOTAL BOOKINGS \(=2.3818 *\) Booking Source

> = TUI NL,BLUE

AEGEAN,SUNWEB,Jet2Holidays,ARHUS
CHARTER,ITAKA,EXPEDIA,AURINKOMATKAT
- 5.4481 * Booking Source
=SUNWEB,Jet2Holidays, ARHUS
CHARTER,ITAKA,EXPEDIA,AURINKOMATKAT
+6.033 * Booking Source
=Jet2Holidays,ARHUS
CHARTER,ITAKA,EXPEDIA,AURINKOMATKAT
+6.8512 * Booking Source
=ARHUS
CHARTER,ITAKA,EXPEDIA,AURINKOMATKAT
- 4.2256 * Booking Source
=ITAKA,EXPEDIA,AURINKOMATKAT
+ 4.4683 * Booking Source
=EXPEDIA,AURINKOMATKAT
+0.008 * TOTAL PAX Nights
+0.0735 * Total Room Nights
+0.0149 * HB
- 0.0085 * AI
+3.3041 * MONTH
=September 2019,July 2019,June 2019
- 0.2915

\section*{SMOreg Algorithm| Creta Palm 2019}
weights (not support vectors):
+0.0793 * (normalized) Booking Source=ARHUS CHARTER
- 0.0049 * (normalized) Booking Source=AURINKOMATKAT
+0.0087 * (normalized) Booking Source=BLUE AEGEAN
- \(\quad 0.0348\) * (normalized) Booking Source=BOOKING.COM
- \(\quad 0.0549\) * (normalized) Booking Source=BRAVO TOURS
+0.0472 * (normalized) Booking Source=EXPEDIA
+0.0104 * (normalized) Booking Source=ITAKA
+0.0084 * (normalized) Booking Source=Jet2Holidays
- 0.0134 * (normalized) Booking Source=RAINBOW
- 0.0198 * (normalized) Booking Source=SUNWEB
- 0.0245 * (normalized) Booking Source=TUI Deutschland
+0.0048 * (normalized) Booking Source=TUI NL
- 0.0064 * (normalized) Booking Source=TUI UK
+0.0244 * (normalized) Country=Denmark
- \(\quad 0.0049\) * (normalized) Country=Finland
+0.0087 * (normalized) Country=Romania
+0.0124 * (normalized) Country=Vary
- \(\quad 0.0031\) * (normalized) Country=Poland
+0.002 * (normalized) Country=UK
- 0.015 * (normalized) Country=Netherlands
- 0.0245 * (normalized) Country=Germany
- \(\quad 0.0418\) * (normalized) Average pax/room
\(+\quad 0.0124\) * (normalized) TO/ OTA=OTA
+0.0815 * (normalized) ADR
+0.2293 * (normalized) TOTAL PAX Nights
+0.4811 * (normalized) Total Room Nights
+0.1714 * (normalized) BB
- 0.015 * (normalized) BB\%
+0.1306 * (normalized) HB
+0.0058 * (normalized) HB\%
- \(\quad 0.0177\) * (normalized) AI
- 0.0024 * (normalized) AI\%
+0.0153 * (normalized) MONTH=April 2019
+ 0.0126 * (normalized) MONTH=May 2019
+0.0113 * (normalized) MONTH=June 2019
+0.0014 * (normalized) MONTH=July 2019
- 0.0297 * (normalized) MONTH=August 2019
- \(\quad 0.0188\) * (normalized) MONTH=September 2019
\(+0.0079 *\) (normalized) MONTH=October 2019
0.0058

\section*{Linear Regression Model Algorithm| Creta Palm 2019}

TOTAL BOOKINGS =
\(-7.8096 *\) Booking Source \(=\)
BOOKING.COM,BRAVO TOURS,TUI Deutschland,TUI UK,TUI NL,BLUE
AEGEAN,SUNWEB,Jet2Holidays,ARHUS CHARTER,ITAKA,EXPEDIA,
AURINKOMATKAT
+7.6327 * Booking Source=
TUI UK,TUI NL,BLUE AEGEAN,SUNWEB,Jet2Holidays,ARHUS
CHARTER,ITAKA,EXPEDIA,AURINKOMATKAT +
-6.6557 * Booking Source=SUNWEB,Jet2Holidays,ARHUS
CHARTER,ITAKA,EXPEDIA,AURINKOMATKAT +
7.1524 * Booking Source=

Jet2Holidays,ARHUSCHARTER,ITAKA,EXPEDIA,AURINKOMATKAT + -7.9784 * Booking Source=
AURINKOMATKAT-6.6556*Country=
Netherlands,UK,Poland,Denmark,Vary,Finland +
7.8617 * Country=

Denmark,Vary,Finland +
-7.9782 * Country=Finland +
0.0478 * ADR +
0.0103 * TOTAL PAX Nights +
0.1078 * Total Room Nights +
-0.0071 * BB +
-0.0185 * AI +
-4.0717 * MONTH=
August 2019,September 2019,July 2019,June 2019 +
4.7388 * MONTH=

July 2019,June \(2019+4.1779\)

Meta Random Committee Algorithm| Creta Palm 2019
\(===\) Classifier model (full training set) \(===\)
All the base classifiers:
RandomTree

Booking Source \(=\) ARHUS CHARTER
| Total Room Nights < 103:0 (1/0)
| Total Room Nights >= 103
| | Average pax/room < 2.27
| | | MONTH = April 2019: 0 (0/0)
| | | MONTH = May 2019: 34 (1/0)
| | | MONTH = June 2019 : 40 (1/0)
| | | MONTH = July 2019 : 39 (1/0)
| | | MONTH = August 2019: 25 (1/0)
| | | MONTH = September 2019:39 (1/0)
| | | MONTH = October 2019: 0 (0/0)
| | Average pax/room >=2.27:22(1/0)
Booking Source \(=\) AURINKOMATKAT
| \(\mathrm{BB} \%<0.61\)
| | \(\mathrm{HB} \%<0.13: 92\) (1/0)
| | \(\mathrm{HB} \%>=0.13\)
| | | TOTAL PAX Nights < 3032 : 125 (1/0)
| | | TOTAL PAX Nights >= 3032
| | | | ADR < 120.78: 132 (1/0)
| | | | ADR >= \(120.78: 135\) (1/0)
| \(\mathrm{BB} \%>=0.61\)
| | Average pax/room < 2.51
| | | Total Room Nights < 839 : 78 (1/0)
| | | Total Room Nights >= \(839: 82\) (1/0)
| | Average pax/room >= \(2.51: 63\) (1/0)
Booking Source \(=\) BLUE AEGEAN
| TOTAL PAX Nights < 89.5 : 0.33 (3/0.22)
| TOTAL PAX Nights >=89.5
| | MONTH = April 2019: 0 (0/0)
| | MONTH = May 2019: 0 (0/0)
| | MONTH = June 2019 : 24 (1/0)
| | MONTH = July 2019 : 27 (1/0)
| | MONTH = August 2019: 18 (1/0)
| | MONTH = September 2019: \(20(1 / 0)\)
| | MONTH = October 2019: 0 (0/0)
Booking Source \(=\) BOOKING.COM
| \(\mathrm{BB} \%<0.81\)
| | TOTAL PAX Nights < 100.5: 9 (1/0)
| | TOTAL PAX Nights >= 100.5
| | | Average pax/room < \(2.83: 13\) (1/0)
| | | Average pax/room >= \(2.83: 11\) (1/0)
\(\mid \mathrm{BB} \%>=0.81: 2.5(4 / 0.25)\)
Booking Source \(=\) BRAVO TOURS
| \(\mathrm{AI}<40\)
| | TOTAL PAX Nights < 85.5
```

| | | Total Room Nights < 16.5 : 1 (1/0)
| | | Total Room Nights >= 16.5 : 3.67 (3/0.22)
| | TOTAL PAX Nights >= 85.5
| | | ADR < 84.92: 7 (1/0)
| | | ADR >= $84.92: 5(1 / 0)$
| $\mathrm{AI}>=40: 24(1 / 0)$
Booking Source $=$ EXPEDIA
| MONTH = April 2019: 41 (1/0)
| MONTH = May 2019: 22 (1/0)
| MONTH = June 2019 : 45 (1/0)
| MONTH = July 2019 : 46 (1/0)
| MONTH = August 2019: 27 (1/0)
| MONTH = September 2019: 26 (1/0)
| MONTH = October 2019: 32 (1/0)
Booking Source $=$ ITAKA
| MONTH = April 2019: 2 (1/0)
| MONTH = May 2019 : 15 (1/0)
| MONTH = June 2019 : 63 (1/0)
| MONTH = July 2019 : 42 (1/0)
| MONTH = August 2019: 41 (1/0)
| MONTH = September 2019 : 56 (1/0)
| MONTH = October 2019: 13 (1/0)
Booking Source $=$ Jet2Holidays
| TOTAL PAX Nights < 155.5 : 0 (1/0)
| TOTAL PAX Nights >= 155.5
| | MONTH = April 2019: 0 (0/0)

```
```

| | MONTH = May 2019 : 28 (1/0)
| | MONTH = June 2019 : 20 (1/0)
| | MONTH = July 2019 : 35 (1/0)
| | MONTH = August 2019 : 22 (1/0)
| | MONTH = September 2019 : 34 (1/0)
| | MONTH = October 2019: 18 (1/0)
Booking Source = RAINBOW : 0.86 (7/0.12)
Booking Source = SUNWEB
| MONTH = April 2019:4 (1/0)
| MONTH = May 2019 : 21 (1/0)
| MONTH = June 2019 : 24 (1/0)
| MONTH = July 2019 : 23 (1/0)
| MONTH = August 2019 : 19 (1/0)
| MONTH = September 2019 : 23 (1/0)
| MONTH = October 2019 : 12 (1/0)
Booking Source = TUI Deutschland
TOTAL PAX Nights < 94 : 2 (3/0.67)
| TOTAL PAX Nights >= 94
| | MONTH = April 2019:0 (0/0)
| | MONTH = May 2019:0 (0/0)
| | MONTH = June 2019 : 12 (1/0)
| | MONTH = July 2019 : 13 (1/0)
| | MONTH = August 2019 : 7 (1/0)
| | MONTH = September 2019:14 (1/0)
| | MONTH = October 2019: 0 (0/0)
Booking Source = TUI NL

```
| TOTAL PAX Nights < 237.5
| | \(\mathrm{ADR}<72.11: 1.5(2 / 0.25)\)
| | ADR >=72.11
| | | TOTAL PAX Nights < 175.5: 6(1/0)
| | | TOTAL PAX Nights >= \(175.5: 9\) (1/0)
| TOTAL PAX Nights >= 237.5 : \(15.67(3 / 0.22)\)
Booking Source \(=\) TUI UK
| \(\mathrm{MONTH}=\) April 2019: 0 (1/0)
| \(\operatorname{MONTH}=\) May 2019 : 1 (1/0)
| MONTH = June 2019 : 18 (1/0)
| MONTH = July 2019 : 5 (1/0)
| MONTH = August 2019: 7 (1/0)
| MONTH = September 2019: 8 (1/0)
| MONTH = October 2019: 16 (1/0)

Size of the tree : 112 Binary and Multi-class Classifiers

RandomTree

Booking Source \(=\) ARHUS CHARTER
MONTH \(=\) April \(2019: 0(1 / 0)\)
| MONTH = May 2019: 34 (1/0)
| MONTH = June 2019 : 40 (1/0)
| MONTH = July 2019 : 39 (1/0)
| MONTH = August 2019: 25 (1/0)
| MONTH = September 2019: 39 (1/0)
| MONTH = October \(2019: 22(1 / 0)\)
Booking Source \(=\) AURINKOMATKAT
| MONTH = April 2019 : 78 (1/0)
| \(\operatorname{MONTH}=\) May \(2019: 125\) (1/0)
| \(\operatorname{MONTH}=\) June 2019 : 132 (1/0)
| MONTH = July 2019 : 135 (1/0)
| MONTH = August 2019: 92 (1/0)
| MONTH = September 2019: 82 (1/0)
| MONTH = October 2019: 63 (1/0)
Booking Source \(=\) BLUE AEGEAN
| \(\mathrm{ADR}<43.99: 0.33\) (3/0.22)
| ADR >= 43.99
| | MONTH = April 2019: 0 (0/0)
| | MONTH = May 2019: 0 (0/0)
| | MONTH = June 2019 : 24 (1/0)
| | MONTH = July 2019 : 27 (1/0)
| | MONTH = August 2019: 18 (1/0)
| | MONTH = September 2019: \(20(1 / 0)\)
| | MONTH = October 2019: 0 (0/0)
Booking Source \(=\) BOOKING.COM
| \(\mathrm{BB}<65: 2.5(4 / 0.25)\)
| \(\mathrm{BB}>=65\)
| | \(\mathrm{BB} \%<0.71\)
| | | TOTAL PAX Nights < 160 : 13 (1/0)
| | | TOTAL PAX Nights >= \(160: 11(1 / 0)\)
| | \(\mathrm{BB} \%>=0.71: 9(1 / 0)\)

Booking Source \(=\) BRAVO TOURS
| HB\% < 0.91
| | \(\mathrm{AI} \%<0.21: 24(1 / 0)\)
| | AI\% >= \(0.21: 7(1 / 0)\)
| \(\mathrm{HB} \%>=0.91\)
| | Total Room Nights < \(16.5: 1\) (1/0)
| | Total Room Nights \(>=16.5: 4(4 / 0.5)\)
Booking Source \(=\) EXPEDIA
| \(\mathrm{BB}<492.5\)
| | TOTAL PAX Nights < \(353: 22\) (1/0)
| | TOTAL PAX Nights >= 353
| | | TOTAL PAX Nights < 471.5: 32 (1/0)
| | | TOTAL PAX Nights >= \(471.5: 26.5\) (2/0.25)
| \(\mathrm{BB}>=492.5\)
| | TOTAL PAX Nights < 566.5 : 41 (1/0)
| | TOTAL PAX Nights >= \(566.5: 45.5\) (2/0.25)
Booking Source = ITAKA
| \(\mathrm{ADR}<100.16\)
| | \(\mathrm{BB} \%<0.5\)
| | | MONTH = April 2019: 0 (0/0)
| | | MONTH = May 2019: 15 (1/0)
| | | MONTH = June 2019: 0 (0/0)
| | | MONTH = July 2019: 0 (0/0)
| | | MONTH = August 2019: 0 (0/0)
| | | MONTH = September 2019: 0 (0/0)
| | | MONTH = October \(2019: 13(1 / 0)\)
| | \(\mathrm{BB} \%>=0.5: 2(1 / 0)\)
| ADR >= 100.16
| | AI < 1489
| | | Average pax/room < 2.71 : 56 (1/0)
| | | Average pax/room >= \(2.71: 63\) (1/0)
| | \(\mathrm{AI}>=1489: 41.5\) (2/0.25)
Booking Source \(=\) Jet 2 Holidays
| ADR < 25.75 : 0 (1/0)
| ADR >= 25.75
| | \(\mathrm{ADR}<70.31\)
| | | \(\mathrm{BB}<339.5\)
| | | | Average pax/room < 2.11: 20 (1/0)
| | | | Average pax/room >=2.11:18 (1/0)
| | | \(\mathrm{BB}>=339.5: 28\) (1/0)
| | ADR >= 70.31
| | | TOTAL PAX Nights < 602 : 22 (1/0)
| | | TOTAL PAX Nights >= \(602: 34.5\) (2/0.25)
Booking Source \(=\) RAINBOW : 0.86 (7/0.12)
Booking Source \(=\) SUNWEB
| TOTAL PAX Nights < 454.5
| | \(\mathrm{BB}<82: 4\) (1/0)
| | \(\mathrm{BB}>=82: 12(1 / 0)\)
| TOTAL PAX Nights >=454.5
| | \(\mathrm{HB}<22: 19(1 / 0)\)
| | \(\mathrm{HB}>=22\)
| | | MONTH = April 2019: 0 (0/0)
| | | MONTH = May 2019: 21 (1/0)
| | | MONTH = June 2019: 24 (1/0)
| | | MONTH = July 2019: 23 (1/0)
| | | MONTH = August 2019: 0 (0/0)
| | | MONTH = September 2019:23 (1/0)
| | | MONTH = October 2019: 0 (0/0)
Booking Source = TUI Deutschland
| TOTAL PAX Nights < \(94: 2(3 / 0.67)\)
| TOTAL PAX Nights >= 94
| | TOTAL PAX Nights < 208
| | | TOTAL PAX Nights < 152 : 12 (1/0)
| | | TOTAL PAX Nights >= \(152: 7\) (1/0)
| | TOTAL PAX Nights >= \(208: 13.5(2 / 0.25)\)
Booking Source \(=\) TUI NL
| MONTH = April 2019: 1 (1/0)
| MONTH = May 2019 : 16 (1/0)
| MONTH = June 2019 : 15 (1/0)
| MONTH = July 2019: 6(1/0)
| MONTH = August 2019: 9 (1/0)
| MONTH = September 2019: 16(1/0)
| MONTH = October 2019 : 2 (1/0)
Booking Source \(=\) TUI UK
TOTAL PAX Nights < 216
| | MONTH = April 2019: 0 (1/0)
| | MONTH = May 2019: 1 (1/0)
| | MONTH = June 2019: 0 (0/0)
| | MONTH = July 2019 : 5 (1/0)
| | MONTH = August 2019 : 7 (1/0)
| | MONTH = September 2019: 8 (1/0)
| | MONTH = October 2019 : 0 (0/0)
| TOTAL PAX Nights >= 216
| | TOTAL PAX Nights < 255.5 : 18 (1/0)
| | TOTAL PAX Nights >= \(255.5: 16(1 / 0)\)

Size of the tree : 119

RandomTree

Country = Denmark
| Total Room Nights < 88
| | ADR < \(58.92: 0.5\) (2/0.25)
| | ADR >= 58.92
| | | Average pax/room < 1.94 : 7 (1/0)
| | | Average pax/room >= \(1.94: 4\) (4/0.5)
| Total Room Nights >=88
| | MONTH = April 2019: 0 (0/0)
| | MONTH = May 2019 : 34 (1/0)
| | MONTH = June 2019: 40 (1/0)
| | MONTH = July 2019
| | | Average pax/room < 2.52:39 (1/0)
| | | Average pax/room >= \(2.52: 24\) (1/0)
| | MONTH = August 2019 : 25 (1/0)
| | MONTH = September 2019: 39 (1/0)
| | MONTH = October 2019 : 22 (1/0)
Country = Finland
| \(\mathrm{BB}<1541.5\)
| | MONTH = April 2019 : 78 (1/0)
| | MONTH = May 2019: 0 (0/0)
| | MONTH = June 2019: 0 (0/0)
| | MONTH = July 2019: 0 (0/0)
| | MONTH = August 2019 : 92 (1/0)
| | MONTH = September 2019: 82 (1/0)
| | MONTH = October 2019: 63 (1/0)
| \(\mathrm{BB}>=1541.5\)
| | Average pax/room < 2.55 : 125 (1/0)
| | Average pax/room >=2.55
| | | HB < 557.5 : 135 (1/0)
| | | HB >= 557.5 : 132 (1/0)
Country = Romania
| \(\mathrm{AI}<6\)
| | Total Room Nights < 44.5 : 0.4 (2.5/0.24)
| | Total Room Nights >= \(44.5: 20(1 / 0)\)
| \(\mathrm{AI}>=6\)
| | TOTAL PAX Nights < \(85.5: 0(0.5 / 0)\)
| | TOTAL PAX Nights >=85.5
| | | Average pax/room < 3.2
| | | | Average pax/room < \(2.75: 24\) (1/0)
| | | | Average pax/room >=2.75:27(1/0)
| | | Average pax/room >= \(3.2: 18\) (1/0)
Country = Vary
| \(\mathrm{HB}<10: 2.5(4 / 0.25)\)
| \(\mathrm{HB}>=10\)
| | TOTAL PAX Nights < 353
| | | Average pax/room < \(2.16: 22\) (1/0)
| | | Average pax/room >=2.16
| | | | HB<28.5:9 (1/0)
| | | \(\mid \mathrm{HB}>=28.5\)
| | | | | TOTAL PAX Nights < \(160: 13\) (1/0)
\(\mid\) | | | | TOTAL PAX Nights >= \(160: 11(1 / 0)\)
| | TOTAL PAX Nights >= 353
| | | Total Room Nights < 227
| | | | MONTH = April 2019: 0 (0/0)
| | | | MONTH = May 2019: 0 (0/0)
| | | | MONTH = June 2019: 0 (0/0)
| | | | MONTH = July 2019: 0 (0/0)
| | | | MONTH = August 2019 : 27 (1/0)
| | | | MONTH = September 2019:26 (1/0)
| | | | MONTH = October 2019: 32 (1/0)
| | | Total Room Nights >= 227
| | | | MONTH = April 2019: 41 (1/0)
| | | | MONTH = May 2019: 0 (0/0)
| | | | MONTH = June 2019: 45 (1/0)
| | | | MONTH = July 2019: 46 (1/0)
| | | | MONTH = August 2019: 0 (0/0)
| | | | MONTH = September 2019: 0 (0/0)
| | | | MONTH = October 2019: 0 (0/0)
Country \(=\) Poland
| TOTAL PAX Nights < 777.5
| | Total Room Nights < \(57: 1\) (8/0.25)
| | Total Room Nights >=57
| | | \(\mathrm{AI}<280.5\) : 13 (1/0)
| | | AI \(>=280.5: 15(1 / 0)\)
| TOTAL PAX Nights >=777.5
| | Total Room Nights < 533.5
| | | \(\mathrm{BB}<780.5\) : 56 (1/0)
| | | \(\mathrm{BB}>=780.5: 63(1 / 0)\)
| | Total Room Nights >= \(533.5: 41.5(2 / 0.25)\)
Country \(=\) UK
| TOTAL PAX Nights < 216
| | \(\mathrm{ADR}<70.78: 0.33\) (3/0.22)
| | ADR >= 70.78
| | | Average pax/room < 1.84: 5 (1/0)
| | | Average pax/room >= \(1.84: 7.5\) (2/0.25)
| TOTAL PAX Nights >= 216
| | MONTH = April 2019: 0 (0/0)
| | MONTH = May 2019: 28 (1/0)
| | MONTH = June 2019
| | | ADR < 67.94: 20 (1/0)
| | | ADR >= \(67.94: 18(1 / 0)\)
| | MONTH = July 2019 : 35 (1/0)
| | MONTH = August 2019 : 22 (1/0)
| | MONTH = September 2019: 34 (1/0)
| | MONTH = October 2019
| | | Average pax/room < \(2.05: 16(1 / 0)\)
| | | Average pax/room >= \(2.05: 18\) (1/0)
Country \(=\) Netherlands
TOTAL PAX Nights < 237.5
| | MONTH = April 2019
| | | ADR < 55.51: 1 (1/0)
| | | ADR >= 55.51: 4 (1/0)
| | MONTH = May 2019: 0 (0/0)
| | MONTH = June 2019: 0 (0/0)
| | MONTH = July 2019: 6 (1/0)
| | MONTH = August 2019 : 9 (1/0)
| | MONTH = September 2019: 0 (0/0)
| | MONTH = October 2019: 2 (1/0)
| TOTAL PAX Nights >= 237.5
| | Total Room Nights < 243
| | | Booking Source = ARHUS CHARTER : \(0(0 / 0)\)
| | | Booking Source = AURINKOMATKAT : 0 (0/0)
| | | Booking Source = BLUE AEGEAN : 0 (0/0)
| | | Booking Source = BOOKING.COM : 0 (0/0)
| | | Booking Source = BRAVO TOURS : 0 (0/0)
\(||\mid\) Booking Source \(=\) EXPEDIA : \(0(0 / 0)\)
\(||\mid\) Booking Source \(=\) ITAKA : \(0(0 / 0)\)
| | | Booking Source \(=\) Jet2Holidays : \(0(0 / 0)\)
| | | Booking Source = RAINBOW : 0 ( \(0 / 0\) )
| | | Booking Source = SUNWEB : 12 (1/0)
| \| | Booking Source = TUI Deutschland : 0 (0/0)
| | | Booking Source = TUI NL : 15.67 (3/0.22)
| | | Booking Source = TUI UK : 0 \((0 / 0)\)
| | Total Room Nights >= 243
| | | MONTH = April 2019: 0 (0/0)
| | | MONTH = May 2019 : 21 (1/0)
| | | MONTH = June 2019: 24 (1/0)
| | | MONTH = July 2019 : 23 (1/0)
| | | MONTH = August 2019: 19 (1/0)
| | | MONTH = September \(2019: 23\) (1/0)
| | | MONTH = October 2019: 0 (0/0)
Country = Germany
Average pax/room < 2.39
| | MONTH = April 2019: 0 (0/0)
| | MONTH = May 2019: 0 (0/0)
| | MONTH = June 2019 : 12 (1/0)
| | MONTH = July 2019: 13 (1/0)
| | MONTH = August 2019: 7 (1/0)
| | MONTH = September \(2019: 14(1 / 0)\)
| | MONTH = October 2019: 1 (1/0)
| Average pax/room >=2.39:2.5 (2/0.25)

Size of the tree : 142

RandomTree

TOTAL PAX Nights < 1867
| Total Room Nights < 176.5
| | \(\mathrm{HB}<12\)
| | | Total Room Nights < 88
| | | | \(\mathrm{BB}<65\)
| | | | | AI < 29
\(||||\mid\) Country = Denmark : 0.5 (2/0.25)
\(||||\mid\) Country \(=\) Finland : \(0(0 / 0)\)
\(|||||\mid\) Country = Romania : 0.42 (2.39/0.24)
\(|||||\mid\) Country = Vary : 2.5 (4/0.25)
| | | | | | Country = Poland : 1 (7/0.29)
\(||||\mid\) Country = UK : 0.33 (3/0.22)
| | | | | | Country = Netherlands : 1.5 (2/0.25)
\(||||\mid\) Country \(=\) Germany : \(0(0 / 0)\)
| | | | | AI >= \(29: 4.9\) (1.02/0.47)
| | | | BB >=65
| \| \| \| TOTAL PAX Nights < 119.5 : 3.78 (1.06/0.84)
\(||||\mid\) TOTAL PAX Nights \(>=119.5: 6.5(2 / 0.25)\)
| | | Total Room Nights >= 88
| | | | Booking Source = ARHUS CHARTER : 0 (0/0)
| | | | Booking Source = AURINKOMATKAT : 0 (0/0)
\(|||\mid\) Booking Source = BLUE AEGEAN : 0 (0/0)
\(|||\mid\) Booking Source = BOOKING.COM : 0 (0/0)
\(|||\mid\) Booking Source = BRAVO TOURS : 0 (0/0)
| \| \| Booking Source = EXPEDIA : 0 (0/0)
| | | | Booking Source = ITAKA
| | | | | TOTAL PAX Nights < 280.5: 13 (1/0)
| | | | | TOTAL PAX Nights >= \(280.5: 15\) (1/0)
\(|||\mid\) Booking Source \(=\) Jet2Holidays : \(0(0 / 0)\)
\(||\mid\) Booking Source = RAINBOW : 0 (0/0)
\(||\mid\) Booking Source \(=\) SUNWEB : \(0(0 / 0)\)
\(||\mid\) Booking Source = TUI Deutschland : 0 (0/0)
| | | | Booking Source = TUI NL : 16 (1/0)
| | | | Booking Source = TUI UK : 0 (0/0)
| \(\mid \mathrm{HB}>=12\)
| | | TOTAL PAX Nights < 145.5
| | | | \(\mathrm{BB}<35\)
| | | | | HB < 94
\(||||\mid\) Booking Source = ARHUS CHARTER : \(0(0 / 0)\)
\(||||\mid\) Booking Source = AURINKOMATKAT : 0 ( \(0 / 0\) )
\(||||\mid\) Booking Source = BLUE AEGEAN : 0 (0.35/0)
\(||||\mid\) Booking Source = BOOKING.COM : 0 (0/0)
| | | | | Booking Source = BRAVO TOURS
| | | | | | | MONTH = April 2019:0 (0/0)
| | | | | | | MONTH = May 2019: 7 (1/0)
| | | | | | | MONTH = June 2019: 0 (0/0)
| | | | | | | MONTH = July 2019: 0 (0/0)
| | | | | | | MONTH = August 2019:3 (1/0)
| | | | | | | MONTH = September 2019: 4 (1/0)
| | | | | | | MONTH = October \(2019: 4\) (1/0)
| | | | | Booking Source = EXPEDIA : 0 (0/0)
| | | | | | Booking Source = ITAKA : 0 (0/0)
| | | | | | Booking Source = Jet2Holidays: 0 (0/0)
| | | | | | Booking Source = RAINBOW : 1 (1/0)
| | | | | | Booking Source = SUNWEB : 0 (0/0)
\(||||\mid\) Booking Source = TUI Deutschland : \(2(3 / 0.67)\)
\(||||\mid\) Booking Source = TUI NL : 0 (0/0)
| | | | | | Booking Source = TUI UK : 0 (0/0)\(||||\mid \mathrm{HB}>=94\)\(||||\mid\) Average pax/room < \(2.71: 11.5\) (1.04/5.8)| | | | | | Average pax/room >=2.71: 4.79 (1.04/1.01)\(|||\mid B B>=35\)| | | | | ADR < \(34.3: 0\) (0.09/0)| | | | | ADR >= 34.3: 11 (2/4)
| | | TOTAL PAX Nights >= 145.5
| | | | HB < 296
| | | | | TOTAL PAX Nights < 237.5
| | | | | | HB\% < 0.98
| | | | | | | Country = Denmark: 0 (0/0)
\(|||||\mid\) Country = Finland : 0 ( \(0 / 0\) )
| | | | | | | Country = Romania : 18 (1/0)
\(|||||\mid\) Country = Vary: 11 (1/0)
\(|||||\mid\) Country = Poland \(: 0(0 / 0)\)\(|||||\mid\) Country = UK : 8 (1/0)\(|||||\mid\) Country = Netherlands : 9 (1/0)
\(|||||\mid\) Country = Germany: 7 (1/0)
\(||||\mid \mathrm{HB} \%>=0.98\)
| | | | | | | Average pax/room < 2.23: 20 (1/0)
| | | | | | | Average pax/room >= 2.23: 13 (1/0)
| | | | | TOTAL PAX Nights >= 237.5
| | | | | | Average pax/room \(<2.42\)
\(|||||\mid\) Booking Source = ARHUS CHARTER : \(0(0 / 0)\)
\(|||||\mid\) Booking Source = AURINKOMATKAT : 0 (0/0)\(|||||\mid\) Booking Source = BLUE AEGEAN : 24 (1/0)\(|||||\mid\) Booking Source = BOOKING.COM : 0 (0/0)\(|||||\mid\) Booking Source = BRAVO TOURS : \(0(0 / 0)\)\(|||||\mid\) Booking Source = EXPEDIA : 22 (1/0)\(|||||\mid\) Booking Source = ITAKA: 0 (0/0)
| | | | | | Booking Source = Jet2Holidays
\(||||||\mid B B \%<0.69: 18(1 / 0)\)
\(||||||\mid B B \%>=0.69: 20(1 / 0)\)\(|||||\mid\) Booking Source = RAINBOW: 0 (0/0)
\(|||||\mid\) Booking Source = SUNWEB : 0 (0/0)
| | | | | | Booking Source = TUI Deutschland : 14 (1/0)
| | | | | | | Booking Source = TUI NL: 15 (1/0)
| | | | | | Booking Source = TUI UK
\(||||||\mid\) Average pax/room < 1.94: 16 (1/0)
\(||||||\mid\) Average pax/room \(>=1.94: 18\) (1/0)
\(||||\mid\) Average pax/room \(>=2.42: 12(1 / 0)\)| | | | HB >= 296\(||||\mid\) Booking Source \(=\) ARHUS CHARTER : \(0(0 / 0)\)| | | | | Booking Source = AURINKOMATKAT : \(0(0 / 0)\)
| | | | | Booking Source = BLUE AEGEAN : 27 (1/0)
\(|||\mid\) Booking Source \(=\) BOOKING.COM : \(0(0 / 0)\)
| | | | | Booking Source = BRAVO TOURS : 24 (1/0)
| | | | | Booking Source = EXPEDIA : 0 (0/0)
\(|||\mid\) Booking Source \(=\) ITAKA : \(0(0 / 0)\)
\(||||\mid\) Booking Source \(=\) Jet2Holidays : 0 (0/0)
| | | | | Booking Source=RAINBOW : 0 (0/0)
| | | | | Booking Source = SUNWEB : 0 (0/0)
\(|||\mid\) Booking Source = TUI Deutschland : 0 (0/0)
| | | | | Booking Source = TUI NL : 0 (0/0)
\(|||\mid\) Booking Source = TUI UK : 0 (0/0)
| Total Room Nights >= 176.5
| | Country = Denmark
| | | MONTH = April 2019: 0 (0/0)
| | | MONTH = May 2019: 34 (1/0)
| | | MONTH = June 2019: 40 (1/0)
| | | MONTH = July 2019: 39 (1/0)
| | | MONTH = August 2019: 25 (1/0)
| | | MONTH = September 2019: 39 (1/0)
| | | MONTH = October \(2019: 22(1 / 0)\)
| | Country = Finland : 63 (1/0)
| | Country = Romania : 0 (0/0)
| | Country = Vary
| | | Total Room Nights < 227
| | | | MONTH = April 2019: 0 (0/0)
| | | | MONTH = May 2019: 0 (0/0)
| | | | MONTH = June 2019: 0 (0/0)
| | | | MONTH = July 2019: 0 (0/0)
| | | | MONTH = August 2019: 27 (1/0)
| | | | MONTH = September 2019:26 (1/0)
| | | | MONTH = October 2019: 32 (1/0)
| | | Total Room Nights >= 227
| | | | ADR < 65.59: 41 (1/0)
\(|||\mid A D R>=65.59: 45.5(2 / 0.25)\)
| | Country = Poland
| | | \(\mathrm{BB}<780.5\)
| \| \| TOTAL PAX Nights < \(1489: 56\) (1/0)
| | | | TOTAL PAX Nights >= \(1489: 41.5(2 / 0.25)\)
| | | \(\mathrm{BB}>=780.5: 63(1 / 0)\)
| | Country = UK
| | | TOTAL PAX Nights < 602
| | | | Average pax/room < \(2.43: 28\) (1/0)
| | | | Average pax/room >=2.43:22 (1/0)
| | | TOTAL PAX Nights >= \(602: 34.5(2 / 0.25)\)
| | Country = Netherlands
| | | TOTAL PAX Nights < 533 : 16 (1/0)
| | | TOTAL PAX Nights >= 533
| | | | MONTH = April 2019:0 (0/0)
| | | | MONTH = May 2019: 21 (1/0)
| | | | MONTH = June 2019 : 24 (1/0)
| | | | MONTH = July 2019 : 23 (1/0)
| | | | MONTH = August 2019 : 19 (1/0)
| | | | MONTH = September 2019:23 (1/0)
| | | | MONTH = October 2019: 0 (0/0)
| | Country = Germany : 0 (0/0)
TOTAL PAX Nights >= 1867
| TOTAL PAX Nights < 2480.5
| | \(\mathrm{BB} \%<0.6: 92(1 / 0)\)
| | \(\mathrm{BB} \%>=0.6\)
| | | Average pax/room < 2.4 : 78 (1/0)
| | | Average pax/room >= \(2.4: 82(1 / 0)\)
| TOTAL PAX Nights >= 2480.5
| | Total Room Nights < 1176 : 125 (1/0)
| | Total Room Nights >= 1176
| | | \(\mathrm{BB}<1912\) : 135 (1/0)
| | | \(\mathrm{BB}>=1912\) : \(132(1 / 0)\)

Size of the tree : 169

RandomTree

TOTAL PAX Nights < 1867
| Total Room Nights < 176.5
| | \(\mathrm{ADR}<133.47\)
| | | Booking Source = ARHUS CHARTER : 0 (1/0)
\(||\mid\) Booking Source \(=\) AURINKOMATKAT : \(0(0 / 0)\)
| | | Booking Source = BLUE AEGEAN
\(|||\mid \mathrm{HB} \%<0.42: 0.6(1.67 / 0.24)\)
\(|||\mid \mathrm{HB} \%>=0.42\)
| | | | | Total Room Nights < \(42.5: 0\) (1.33/0)
| | | | | Total Room Nights \(>=42.5\)
| | | | | | Average pax/room < 2.26: 20 (1/0)
| | | | | | Average pax/room \(>=2.26: 24\) (1/0)
| | | Booking Source = BOOKING.COM
| | | | MONTH = April 2019: 13 (1/0)
| | | | MONTH = May 2019:3 (1/0)
| | | | MONTH = June 2019 : 11 (1/0)
| | | | MONTH = July \(2019: 2\) (1/0)
| | | | MONTH = August 2019: 9 (1/0)
| | | | MONTH = September 2019:3(1/0)
| | | | MONTH = October \(2019: 2\) (1/0)
| | | Booking Source = BRAVO TOURS
| | | | MONTH = April 2019: 1 (1/0)
| | | | MONTH = May 2019: 7 (1/0)
| | | | MONTH = June 2019: 5 (1/0)
| | | | MONTH = July 2019: 0 (0/0)
| | | | MONTH = August 2019:3(1/0)
| | | | MONTH = September 2019: 4 (1/0)
| | | | MONTH = October \(2019: 4\) (1/0)
| | | Booking Source = EXPEDIA : 22 (1/0)
| | | Booking Source = ITAKA
| | | | MONTH = April \(2019: 2\) (1/0)
| | | | MONTH = May 2019: 15 (1/0)
| | | | MONTH = June 2019: 0 (0/0)
| | | | MONTH = July 2019: 0 (0/0)
| | | | MONTH = August 2019: 0 (0/0)
| | | | MONTH = September 2019:0 (0/0)
| | | | MONTH = October 2019: 13 (1/0)
| | | Booking Source = Jet2Holidays
| | | | \(\mathrm{BB}<113.5: 0(1 / 0)\)
\(|||\mid B B>=113.5\)
| | | | | Total Room Nights < 157.5: 20 (1/0)
| | | | | Total Room Nights >= 157.5: 18 (1/0)
| | | Booking Source = RAINBOW : 0.86 (7/0.12)
| | | Booking Source = SUNWEB
\(|||\mid \mathrm{BB} \%<0.47: 12(1 / 0)\)
\(|||\mid \mathrm{BB} \%>=0.47: 4(1 / 0)\)
| | | Booking Source = TUI Deutschland
| | | | MONTH = April 2019: 3 (1/0)
| | | | MONTH = May 2019: 2 (1/0)
| | | | MONTH = June 2019: 12 (1/0)
| | | | MONTH = July 2019: 13 (1/0)
| | | | MONTH = August 2019: 7 (1/0)
| | | | MONTH = September 2019: 14 (1/0)
| | | | MONTH = October 2019: 1 (1/0)
| | | Booking Source = TUI NL
| | | | Total Room Nights < 105.5
| | | | | MONTH = April 2019 : 1 (1/0)
| | | | | MONTH = May 2019: 0 (0/0)
| | | | | MONTH = June 2019: 0 (0/0)
| | | | | MONTH = July 2019: 6 (1/0)
| | | | | MONTH = August 2019: 9 (1/0)
| | | | | MONTH = September 2019:0 (0/0)
| | | | | MONTH = October 2019:2 (1/0)
| | | | Total Room Nights >= \(105.5: 15.5\) (2/0.25)
| | | Booking Source = TUI UK
| | | | \(\mathrm{BB}<140\)
| | | | | MONTH = April 2019:0 (1/0)
| | | | | MONTH = May 2019: 1 (1/0)
| | | | | MONTH = June 2019: 0 (0/0)
| | | | | MONTH = July 2019 : 5 (1/0)
| | | | | MONTH = August 2019:7(1/0)
| | | | | MONTH = September 2019: 8 (1/0)
| | | | | MONTH = October 2019:0 (0/0)
| | | | BB >= 140
| | | | | \(\mathrm{BB}<152.5: 16(1 / 0)\)
\(||||\mid B B>=152.5: 18(1 / 0)\)
| | ADR >= 133.47
| | | MONTH = April 2019: 0 (0/0)
| | | MONTH = May 2019: 0 (0/0)
| | | MONTH = June 2019: 0 (0/0)
| | | MONTH = July 2019
| | | | \(\mathrm{HB}<321.5: 24\) (1/0)
\(|||\mid \mathrm{HB}>=321.5: 27(1 / 0)\)
| | | MONTH = August 2019: 18 (1/0)
| | | MONTH = September 2019: 0 (0/0)
| | | MONTH = October 2019: 0 (0/0)
| Total Room Nights >= 176.5
| | TOTAL PAX Nights < 1040.5
| | | Country = Denmark
| | | | Average pax/room < 2.27
| | | | | Average pax/room < 2.12
| | | | | | AI < \(641: 40\) (1/0)
\(|||||\mid A I>=641: 25(1 / 0)\)
\(|||\mid\) Average pax/room \(>=2.12\)
| | | | | | AI\% < 0.5: 34 (1/0)
\(||||\mid \mathrm{AI} \%>=0.5: 39(2 / 0)\)
| | | | Average pax/room >=2.27:22(1/0)
| | | Country = Finland : 0 (0/0)
| | | Country = Romania : 0 (0/0)
| | | Country = Vary
| | | | Total Room Nights < 227
| | | | | MONTH = April 2019:0 (0/0)
| | | | | MONTH = May 2019: 0 (0/0)
| | | | | MONTH = June 2019: 0 (0/0)
| | | | | MONTH = July 2019: 0 (0/0)
| | | | | MONTH = August 2019: 27 (1/0)
| | | | | MONTH = September \(2019: 26\) (1/0)
| | | | | MONTH = October 2019: 32 (1/0)
| | | | Total Room Nights >= 227
| | | | | HB\% < \(0.07: 41\) (1/0)
\(||||\mid \mathrm{HB} \%>=0.07: 45.5(2 / 0.25)\)
| | | Country = Poland : 0 (0/0)
| | | Country = UK
| | | | TOTAL PAX Nights < 602
| | | | | TOTAL PAX Nights < 545.5 : 28 (1/0)
| | | | | TOTAL PAX Nights >= \(545.5: 22\) (1/0)
| | | | TOTAL PAX Nights >= \(602: 34.5\) (2/0.25)
| | | Country = Netherlands
| | | | Average pax/room < 2.08: 16 (1/0)
| | | | Average pax/room \(>=2.08\)
| | | | | HB<22: 19 (1/0)
\(|||\mid \mathrm{HB}>=22\)
| | | | | | \(\mathrm{BB}<348.5: 23.33\) (3/0.22)
| | | | | | \(\mathrm{BB}>=348.5: 21\) (1/0)
| | | Country = Germany: 0 (0/0)
| | TOTAL PAX Nights >= 1040.5
| | | TOTAL PAX Nights < 1639.5
| | | | Average pax/room < 2.5 : 56 (1/0)
| | | | Average pax/room >=2.5: 63 (2/0)
| | | TOTAL PAX Nights \(>=1639.5: 41.5(2 / 0.25)\)
TOTAL PAX Nights >= 1867
| TOTAL PAX Nights < 2480.5
| | Average pax/room < 2.51
| | | ADR < 77.03 : 78 (1/0)
| | | ADR >=77.03: 82 (1/0)
| | Average pax/room >= \(2.51: 92\) (1/0)
| TOTAL PAX Nights >= 2480.5
| | Total Room Nights < 1176 : 125 (1/0)
| | Total Room Nights >= 1176
| | | Average pax/room < 2.96 : 132 (1/0)
| | | Average pax/room >= \(2.96: 135(1 / 0)\)

Size of the tree : 142

RandomTree

TOTAL PAX Nights < 1867
| TOTAL PAX Nights < 338.5
| | TOTAL PAX Nights < 93.5
| | | ADR < \(66.69: 0.58\) (12/0.41)
| | | ADR >= 66.69
| | | | Booking Source = ARHUS CHARTER : \(0(0 / 0)\)
| | | | Booking Source = AURINKOMATKAT : 0 (0/0)
| | | | Booking Source = BLUE AEGEAN : 0 (0/0)
\(|||\mid\) Booking Source = BOOKING.COM : 2.5 (4/0.25)
| | | | Booking Source = BRAVO TOURS
| | | | | ADR < \(71.4: 7\) (1/0)
| | | | | ADR >= \(71.4: 3.67\) (3/0.22)
| | | | Booking Source = EXPEDIA : \(0(0 / 0)\)
\(||\mid\) Booking Source \(=\) ITAKA : \(2(1 / 0)\)
\(||\mid\) Booking Source \(=\) Jet2Holidays : \(0(0 / 0)\)
| | | | Booking Source = RAINBOW : 1 (5/0)
\(||\mid\) Booking Source \(=\) SUNWEB : \(0(0 / 0)\)
| | | | Booking Source = TUI Deutschland : 2 (3/0.67)
| | | | Booking Source = TUI NL : 0 (0/0)
| | | | Booking Source = TUI UK : 5 (1/0)
| | TOTAL PAX Nights >= 93.5
| | | Booking Source = ARHUS CHARTER : 0 (0/0)
| | | Booking Source = AURINKOMATKAT : 0 (0/0)
| | | Booking Source = BLUE AEGEAN
| | | | MONTH = April 2019: 0 (0/0)
| | | | MONTH = May 2019: 0 (0/0)
| | | | MONTH = June 2019 : 24 (1/0)
| | | | MONTH = July \(2019: 0\) ( \(0 / 0\) )
| | | | MONTH = August 2019: 18 (1/0)
| | | | MONTH = September 2019:20 (1/0)
| | | | MONTH = October 2019: 0 (0/0)
| | | Booking Source = BOOKING.COM
| | | | Average pax/room < 2.53: 9 (1/0)
| | | | Average pax/room >=2.53
| | | | | ADR < 97.15 : 13 (1/0)
| | | | | ADR >= 97.15: 11 (1/0)
| | | Booking Source = BRAVO TOURS : 5 (1/0)
| | | Booking Source = EXPEDIA : \(22(1 / 0)\)
| | | Booking Source \(=\) ITAKA
| | | | Average pax/room < 2.7 : 13 (1/0)
| | | | Average pax/room >=2.7: \(15(1 / 0)\)
| | | Booking Source = Jet2Holidays : 20 (1/0)
| | | Booking Source = RAINBOW : 0 ( \(0 / 0\) )
| | | Booking Source = SUNWEB
| \| \| TOTAL PAX Nights < 202.5: 4 (1/0)
| | | | TOTAL PAX Nights >= 202.5: 12 (1/0)
| | | Booking Source = TUI Deutschland
| | | | MONTH = April 2019:0 (0/0)
| | | | MONTH = May 2019: 0 (0/0)
| | | | MONTH = June 2019: 12 (1/0)
| | | | MONTH = July 2019: 13 (1/0)
| | | | MONTH = August \(2019: 7\) (1/0)
| | | | MONTH = September 2019: 14 (1/0)
| | | | MONTH = October 2019: 0 (0/0)
| | | Booking Source = TUI NL
| | | | TOTAL PAX Nights < 237.5
| | | | | Average pax/room < 2.38: 6 (1/0)
| | | | | Average pax/room >=2.38:9 (1/0)
| | | | TOTAL PAX Nights >= \(237.5: 15.5\) (2/0.25)
| | | Booking Source = TUI UK
| \| \| Total Room Nights < 110.5 : 7.5 (2/0.25)
| | | | Total Room Nights >= 110.5
| | | | | \(\mathrm{BB}<152.5: 16\) (1/0)
\(||||\mid B B>=152.5: 18(1 / 0)\)
| TOTAL PAX Nights >=338.5
| | MONTH = April 2019: 41 (1/0)
| | MONTH = May 2019
| | | TOTAL PAX Nights < 612.5
| | | | Country = Denmark : 34 (1/0)
| | | | Country = Finland : \(0(0 / 0)\)
| | | | Country = Romania : 0 (0/0)
| | | | Country = Vary: \(0(0 / 0)\)
| | | | Country = Poland: \(0(0 / 0)\)
| | | | Country = UK : 28 (1/0)
| | | | Country = Netherlands : 0 (0/0)
\(|||\mid\) Country = Germany : 0 (0/0)
| | | TOTAL PAX Nights >=612.5:21(1/0)
| | MONTH = June 2019
| | | Booking Source = ARHUS CHARTER : 40 (1/0)
| | | Booking Source = AURINKOMATKAT : 0 (0/0)
| | | Booking Source = BLUE AEGEAN : 0 (0/0)
| | | Booking Source = BOOKING.COM : 0 (0/0)
| | | Booking Source = BRAVO TOURS : 0 (0/0)
| | | Booking Source = EXPEDIA : 45 (1/0)
| | | Booking Source = ITAKA : \(63(1 / 0)\)
| \| | Booking Source \(=\) Jet2Holidays : \(0(0 / 0)\)
| | | Booking Source = RAINBOW : 0 ( \(0 / 0\) )
| | | Booking Source = SUNWEB : 24 (1/0)
| | | Booking Source = TUI Deutschland : 0 (0/0)
| | | Booking Source = TUI NL : \(0(0 / 0)\)
| | | Booking Source = TUI UK : 0 \((0 / 0)\)
| | MONTH = July 2019
| | | Booking Source = ARHUS CHARTER : 39 (1/0)
| | | Booking Source = AURINKOMATKAT : 0 (0/0)
| | | Booking Source = BLUE AEGEAN : 27 (1/0)
| | | Booking Source = BOOKING.COM : 0 (0/0)
| | | Booking Source = BRAVO TOURS : 24 (1/0)
| | | Booking Source = EXPEDIA : 46 (1/0)
| | | Booking Source = ITAKA : \(42(1 / 0)\)
| | | Booking Source = Jet2Holidays : 35 (1/0)
| | | Booking Source = RAINBOW : 0 ( \(0 / 0\) )
| | | Booking Source = SUNWEB : 23 (1/0)
| | | Booking Source = TUI Deutschland : 0 (0/0)
| | | Booking Source = TUI NL : 0 (0/0)
\(||\mid\) Booking Source \(=\) TUI UK : \(0(0 / 0)\)
| | MONTH = August 2019
| | | Average pax/room < 3.05
| | | | Country = Denmark : 25 (1/0)
| | | | Country = Finland : \(0(0 / 0)\)
| | | | Country = Romania : 0 (0/0)
| | | | Country = Vary: 27 (1/0)
| | | \(\mid\) Country = Poland : \(0(0 / 0)\)
\(|||\mid\) Country = UK : 22 (1/0)
| | | | Country = Netherlands : 19 (1/0)
| | | | Country = Germany : 0 (0/0)
| | | Average pax/room >= \(3.05: 41\) (1/0)
| | MONTH = September 2019
| | | Booking Source = ARHUS CHARTER : 39 (1/0)
| | | Booking Source = AURINKOMATKAT : 0 (0/0)
| | | Booking Source = BLUE AEGEAN : 0 ( \(0 / 0\) )
| | | Booking Source = BOOKING.COM : 0 (0/0)
| | | Booking Source = BRAVO TOURS : 0 (0/0)
| | | Booking Source = EXPEDIA : 26 (1/0)
| | | Booking Source = ITAKA : \(56(1 / 0)\)
| | | Booking Source = Jet2Holidays : 34 (1/0)
| | | Booking Source = RAINBOW : 0 ( \(0 / 0\) )
| | | Booking Source = SUNWEB : 23 (1/0)
| | | Booking Source = TUI Deutschland: 0 (0/0)
| | | Booking Source = TUI NL : 16 (1/0)
| | | Booking Source = TUI UK : \(0(0 / 0)\)
| | MONTH = October 2019
| | | Average pax/room < 2.46
| | | | Country = Denmark : 22 (1/0)
| | | | Country = Finland : \(0(0 / 0)\)
| | | | Country = Romania : 0 (0/0)
| | | | Country = Vary : 32 (1/0)
| | | | Country = Poland : \(0(0 / 0)\)
\(||\mid\) Country = UK : 18 (1/0)
\(||\mid\) Country \(=\) Netherlands : \(0(0 / 0)\)
\(|||\mid\) Country = Germany : \(0(0 / 0)\)
| | | Average pax/room >= \(2.46: 63\) (1/0)
TOTAL PAX Nights >= 1867
| \(\mathrm{AI} \%<0.18\)
| | ADR < 77.03 : 78 (1/0)
| | ADR >=77.03: 82 (1/0)
| \(\mathrm{AI} \%>=0.18\)
| | TOTAL PAX Nights < 2480.5 : 92 (1/0)
| | TOTAL PAX Nights >= 2480.5
| | | MONTH = April 2019: 0 (0/0)
| | | MONTH = May 2019: 125 (1/0)
| | | MONTH = June 2019: 132 (1/0)
| | | MONTH = July 2019 : 135 (1/0)
| | | MONTH = August 2019: 0 (0/0)
| | | MONTH = September 2019: 0 (0/0)
| | | MONTH = October 2019: 0 (0/0)

Size of the tree : 156

RandomTree

Average pax/room < 2
TOTAL PAX Nights < 216
| | TOTAL PAX Nights < 55 : 1.14 (12.27/0.49)
| | TOTAL PAX Nights >= 55
| | | ADR < \(75.48: 7.5\) (2/0.25)
| | | ADR >= \(75.48: 4.5\) (2/0.25)
| TOTAL PAX Nights >= 216
| | MONTH = April 2019: 0 (0/0)
| | MONTH = May 2019 : 22 (1/0)
| | MONTH = June 2019: 18 (1/0)
| | MONTH = July 2019: 0 (0/0)
| | MONTH = August 2019:0 (0/0)
| | MONTH = September 2019: 0 (0/0)
| | MONTH = October 2019: 16 (1/0)
Average pax/room >=2
| HB\% < 0.28
| | Country = Denmark
| | | Total Room Nights < \(103: 0\) (0.58/0)
| | | Total Room Nights >= 103
| | | | Average pax/room < 2.27
\(||||\mid \mathrm{BB} \%<0.5\)
| | | | | | Total Room Nights < \(306: 39.5\) (2/0.25)
| | | | | | Total Room Nights >= 306
| | | | | | | Average pax/room < \(2.12: 25\) (1/0)
| | | | | | | Average pax/room >= 2.12:39 (1/0)
\(||||\mid B B \%>=0.5: 34(1 / 0)\)
| | | | Average pax/room >=2.27:22(1/0)
| | Country = Finland
| | | Total Room Nights < 1040.5
| | | | Total Room Nights < 699 : 63 (1/0)
| | | | Total Room Nights >= 699
| | | | | MONTH = April 2019: 78 (1/0)
| | | | | MONTH = May 2019: 0 (0/0)
| | | | | MONTH = June 2019: 0 (0/0)
| | | | | MONTH = July 2019: 0 (0/0)
| | | | | MONTH = August 2019: 92 (1/0)
| | | | | MONTH = September 2019: 82 (1/0)
| | | | | MONTH = October 2019:0 \(0(0 / 0)\)
| | | Total Room Nights >= 1040.5
| | | | Total Room Nights < 1176 : 125 (1/0)
| | | | Total Room Nights >= 1176
| | | | | Total Room Nights < 1217.5: 135 (1/0)
| | | | | Total Room Nights >= 1217.5 : 132 (1/0)
| | Country = Romania : 0 (1.15/0)
| | Country = Vary
| | | Total Room Nights < 106.5 : 2.33 (3/0.22)
| | | Total Room Nights >= 106.5
| | | | HB\% < 0.23
| | | | | TOTAL PAX Nights < 501: 32 (1/0)
| | | | | TOTAL PAX Nights >= 501
| | | | | | ADR < 65.59: 41 (1/0)
| | | | | | ADR >= 65.59: 45.5 (2/0.25)
\(|||\mid \mathrm{HB} \%>=0.23: 26.5(2 / 0.25)\)
| | Country = Poland
| | | TOTAL PAX Nights < 777.5
| | | | Total Room Nights < 57 : 1.27 (1.58/0.93)
| | | | Total Room Nights >= 57
| | | | | Total Room Nights < 104.5: 15 (1/0)
| | | | | Total Room Nights >= 104.5 : 13 (1/0)
| | | TOTAL PAX Nights >=777.5
| | | | Average pax/room < 3.07
| | | | | TOTAL PAX Nights < 1410.5: 56 (1/0)
| | | | | TOTAL PAX Nights >= \(1410.5: 63\) (1/0)
| | | | Average pax/room >=3.07: 41.5 (2/0.25)
| | Country = UK
```

 | | | BB < 149
 | | | | BB% < 0.7: 4.44 (1.58/11.37)
 | | | | BB% >= 0.7:0.63 (1.58/0.23)
 | | | BB >= 149
 | | | | Total Room Nights < 225
 | | | | | TOTAL PAX Nights < 475
 | | | | | | TOTAL PAX Nights < 332.5 : 20 (1/0)
 | | | | | | TOTAL PAX Nights >= 332.5: 18 (1/0)
 | | | | | TOTAL PAX Nights >= 475:22 (1/0)
 | | | | Total Room Nights >=225
 | | | | | MONTH = April 2019:0 (0/0)
 | | | | | MONTH = May 2019:28(1/0)
 | | | | | MONTH = June 2019:0 (0/0)
 | | | | | MONTH = July 2019 : 35 (1/0)
 | | | | | MONTH = August 2019:0 (0/0)
 | | | | | MONTH = September 2019:34 (1/0)
 | | | | | MONTH = October 2019:0 (0/0)
 | | Country = Netherlands
 | | | BB<201.5
 | | | | BB<90.5
 | | | | | HB<3
 | | | | | | ADR < 55.51:1 (1/0)
 | | | | | | ADR >= 55.51:4 (1/0)
 | | | | | HB >= 3:6(1/0)
 | | | | BB >=90.5
 | | | | Booking Source = ARHUS CHARTER : 0 (0/0)
    ```
| | | | | Booking Source = AURINKOMATKAT : 0 (0/0)
\(|||\mid\) Booking Source = BLUE AEGEAN : \(0(0 / 0)\)
\(|||\mid\) Booking Source = BOOKING.COM : 0 (0/0)
\(||||\mid\) Booking Source = BRAVO TOURS : 0 (0/0)
| | | | | Booking Source = EXPEDIA : 0 (0/0)
\(|||\mid\) Booking Source = ITAKA : \(0(0 / 0)\)
\(||||\mid\) Booking Source \(=\) Jet2Holidays : \(0(0 / 0)\)| | | | | Booking Source = RAINBOW : 0 (0/0)\(|||\mid\) Booking Source = SUNWEB : 12 (1/0)\(|||\mid\) Booking Source = TUI Deutschland : 0 (0/0)| \| \| \| Booking Source = TUI NL : 9 (1/0)\(\mid\) | | | | Booking Source = TUI UK : \(0(0 / 0)\)| | | BB >= 201.5
| | | | TOTAL PAX Nights < 533 : 16 (2/0)
| | | | TOTAL PAX Nights >= 533
| | | | | Total Room Nights < 272 : 24 (1/0)
| | | | | Total Room Nights >= 272
| | | | | | ADR < 114.13
| | | | | | | \(\mathrm{BB}<294\) : 19 (1/0)
| | | | | | \(\mid\) BB >= 294
\(||||||\mid\) Average pax/room < 2.17:23 (1/0)
\(||||||\mid\) Average pax/room \(>=2.17: 21\) (1/0)
\(|||||\mid A D R>=114.13: 23(1 / 0)\)| | Country = Germany : 0 (0/0)\(\mid \mathrm{HB} \%>=0.28\)| | Total Room Nights < 43
| | | TO/ OTA = TO
| | | | Total Room Nights < 14:0 (1.27/0)
| | | | Total Room Nights >= 14
| | | | | Average pax/room < \(2.98: 3\) (4/0.5)
| | | | | Average pax/room >=2.98:5 (1/0)
| | | TO/ OTA = OTA
| | | | ADR < 100.75 : 13 (1/0)
| | | | ADR >= \(100.75: 9(1 / 0)\)
| | Total Room Nights >= 43
| | \(\mid \mathrm{AI}<10\)
| | | | Average pax/room < 2.19: 20 (1/0)
| | | | Average pax/room >=2.19
\(||||\mid A I \%<0.02: 12(3 / 0.67)\)
| | | | | AI\% >= 0.02:7 (1/0)
\(||\mid A I>=10\)
| | | | Country = Denmark : 24 (1/0)
| | | Country = Finland : \(0(0 / 0)\)
| | | | Country = Romania
| | | | | MONTH = April 2019:0 (0/0)
| | | | | MONTH = May 2019: 0 (0/0)
| | | | | MONTH = June 2019 : 24 (1/0)
| | | | | MONTH = July \(2019: 27\) (1/0)
| | | | | MONTH = August 2019: 18 (1/0)
| | | | | MONTH = September 2019: 0 (0/0)
| | | | | MONTH = October 2019:0 \(0(0 / 0)\)
| | | | Country = Vary : 0 (0/0)
| | | | Country = Poland: \(0(0 / 0)\)
| | | | Country = UK : 0 (0/0)
| | | | Country = Netherlands : 15 (1/0)
| | | | Country = Germany : 14 (1/0)

Size of the tree : 148

RandomTree

Booking Source \(=\) ARHUS CHARTER
| \(\mathrm{AI}<542.5\)
| | TOTAL PAX Nights < 244 : 0 (1/0)
| | TOTAL PAX Nights >= 244
| | | ADR < \(44.02: 34\) (1/0)
| | | ADR >= \(44.02: 22(1 / 0)\)
\(\mathrm{AI}>=542.5\)
| | Total Room Nights < 306 : 39.5 (2/0.25)
| | Total Room Nights >= 306
| | | Average pax/room < 2.12 : 25 (1/0)
| | | Average pax/room >= 2.12:39 (1/0)
Booking Source \(=\) AURINKOMATKAT
| TOTAL PAX Nights < 2480.5
| | MONTH = April 2019 : 78 (1/0)
| | MONTH = May 2019: 0 (0/0)
| | MONTH = June 2019: 0 (0/0)
| | MONTH = July 2019: 0 (0/0)
| | MONTH = August 2019: 92 (1/0)
| | MONTH = September 2019: 82 (1/0)
| | MONTH = October 2019 : 63 (1/0)
| TOTAL PAX Nights >= 2480.5
| | TOTAL PAX Nights < 3032 : 125 (1/0)
| | TOTAL PAX Nights >= 3032
| | | Total Room Nights < 1217.5 : 135 (1/0)
| | | Total Room Nights >= \(1217.5: 132\) (1/0)
Booking Source \(=\) BLUE AEGEAN
| \(\mathrm{ADR}<43.99: 0.33\) (3/0.22)
| \(\mathrm{ADR}>=43.99\)
| | TOTAL PAX Nights < 227.5
| | | HB < \(168: 18\) (1/0)
| | | HB >= \(168: 20\) (1/0)
| | TOTAL PAX Nights >= 227.5
| | | ADR < 116.24: 24 (1/0)
| | | ADR >= 116.24:27(1/0)
Booking Source \(=\) BOOKING.COM
| Total Room Nights < \(29: 2.5\) (4/0.25)
| Total Room Nights >=29
| | ADR < 97.15 : 13 (1/0)
| | ADR >= 97.15
| | | TOTAL PAX Nights < 156.5 : 9 (1/0)
| | | TOTAL PAX Nights >= 156.5 : 11 (1/0)
Booking Source \(=\) BRAVO TOURS
| \(\mathrm{ADR}<129.51\)
| | Total Room Nights < 32
| | | Average pax/room < 2.4 : 1 (1/0)
| | | Average pax/room >= \(2.4: 3(1 / 0)\)
| | Total Room Nights >= 32
| | | Average pax/room < 1.94 : 7 (1/0)
| | | Average pax/room >= \(1.94: 4.33\) (3/0.22)
| \(\mathrm{ADR}>=129.51: 24(1 / 0)\)
Booking Source = EXPEDIA
| MONTH = April 2019: 41 (1/0)
| MONTH = May 2019 : 22 (1/0)
| MONTH = June 2019 : 45 (1/0)
| MONTH = July 2019: 46 (1/0)
| MONTH = August 2019: 27 (1/0)
| MONTH = September 2019: 26 (1/0)
| MONTH = October 2019: 32 (1/0)
Booking Source = ITAKA
ADR < 100.16
| | \(\mathrm{BB}<24\)
| | | Average pax/room < 2.7 : 13 (1/0)
| | | Average pax/room >= \(2.7: 15(1 / 0)\)
| | \(\mathrm{BB}>=24: 2(1 / 0)\)
| \(\mathrm{ADR}>=100.16\)
| | Total Room Nights < 533.5
| | | TOTAL PAX Nights < 1410.5 : 56 (1/0)
| | | TOTAL PAX Nights >= \(1410.5: 63\) (1/0)
| | Total Room Nights >= \(533.5: 41.5(2 / 0.25)\)

Booking Source \(=\) Jet2Holidays
```

| MONTH = April 2019 : 0 (1/0)
| MONTH = May 2019 : 28(1/0)
| MONTH = June 2019 : 20 (1/0)
| MONTH = July 2019:35 (1/0)
| MONTH = August 2019:22 (1/0)
| MONTH = September 2019:34 (1/0)
| MONTH = October 2019 : 18 (1/0)
Booking Source = RAINBOW : 0.86(7/0.12)
Booking Source = SUNWEB

```
| MONTH = April 2019: 4 (1/0)
| MONTH = May 2019 : 21 (1/0)
| MONTH = June 2019 : 24 (1/0)
| MONTH = July 2019 : 23 (1/0)
| MONTH = August 2019: 19 (1/0)
MONTH = September 2019 : 23 (1/0)
| MONTH = October 2019: 12 (1/0)
Booking Source = TUI Deutschland
AI < 28
| | MONTH = April 2019 : 0 (0/0)
| | MONTH = May \(2019: 2\) (1/0)
| | MONTH = June 2019: 12 (1/0)
| | MONTH = July 2019: 13 (1/0)
| | MONTH = August 2019 : 7 (1/0)
| | MONTH = September 2019: 14 (1/0)
| | MONTH = October 2019 : 1 (1/0)
| \(\mathrm{AI}>=28: 3(1 / 0)\)
Booking Source \(=\) TUI NL
| Total Room Nights < 105.5
| | Total Room Nights < 36.5 : 1.5 (2/0.25)
| | Total Room Nights >= 36.5
| | | TOTAL PAX Nights < 175.5: 6(1/0)
| | | TOTAL PAX Nights >= \(175.5: 9\) (1/0)
| Total Room Nights >= \(105.5: 15.67\) (3/0.22)
Booking Source \(=\) TUI UK
| TOTAL PAX Nights < 216
| | \(\mathrm{AI} \%<0.06: 0.8\) (1.25/0.16)
| | \(\mathrm{AI} \%>=0.06\)
| | | MONTH = April 2019: 0 (0.75/0)
| | | MONTH = May 2019: 0 (0/0)
| | | MONTH = June 2019: 0 (0/0)
| | | MONTH = July 2019 : 5 (1/0)
| | | MONTH = August 2019: 7 (1/0)
| | | MONTH = September 2019: 8 (1/0)
| | | MONTH = October 2019: 0 (0/0)
| TOTAL PAX Nights >=216
| | \(\mathrm{ADR}<72.12\) : 16 (1/0)
| | ADR >=72.12: 18 (1/0)

Size of the tree : 118

RandomTree
```

Country = Denmark
HB\% < 0.36
| | MONTH = April $2019: 0$ (0.46/0)
| | MONTH = May 2019: 34 (1/0)
| | MONTH = June 2019: 40 (1/0)
| | MONTH = July 2019: 39 (1/0)
| | MONTH = August 2019 : 25 (1/0)
| | MONTH = September 2019: 39 (1/0)
| | MONTH = October $2019: 22$ (1/0)
| $\mathrm{HB} \%>=0.36$
| | TOTAL PAX Nights < 246
| | | ADR < $58.92: 0.65$ (1.54/0.23)
| | | ADR >= 58.92
| | | | ADR < $71.4: 7$ (1/0)
| | | | ADR >= $71.4: 4$ (4/0.5)
| | TOTAL PAX Nights >= $246: 24$ (1/0)
Country = Finland
| MONTH = April 2019 : 78 (1/0)
| MONTH = May 2019 : 125 (1/0)
| MONTH = June 2019 : 132 (1/0)
| MONTH = July 2019: 135 (1/0)
| MONTH = August 2019: 92 (1/0)
| MONTH = September 2019: 82 (1/0)
| MONTH = October 2019: 63 (1/0)
Country $=$ Romania

```
| Total Room Nights < \(28: 0.33\) (3/0.22)
| Total Room Nights >=28
| | Average pax/room < 3.2
| | | \(\mathrm{AI}<6: 20(1 / 0)\)
\(||\mid A I>=6\)
| | | | AI < \(27: 27\) (1/0)
| | | | AI >= \(27: 24\) (1/0)
| | Average pax/room >= \(3.2: 18(1 / 0)\)
Country = Vary
| \(\mathrm{HB}<10: 2.5(4 / 0.25)\)
| \(\mathrm{HB}>=10\)
| | \(\mathrm{BB}<492.5\)
| \| \| Booking Source \(=\) ARHUS CHARTER : \(0(0 / 0)\)
| | | Booking Source = AURINKOMATKAT : \(0(0 / 0)\)
| | | Booking Source = BLUE AEGEAN : 0 (0/0)
| | | Booking Source = BOOKING.COM
| \| \| | TOTAL PAX Nights < 100.5 : 9 (1/0)
| | | | TOTAL PAX Nights >= 100.5
| | | | | \(\mathrm{BB}<110.5\) : 13 (1/0)
\(||||\mid \mathrm{BB}>=110.5: 11(1 / 0)\)
| | | Booking Source = BRAVO TOURS : 0 (0/0)
| | | Booking Source = EXPEDIA
| | | | BB < \(303: 22(1 / 0)\)
| | | | BB >=303
| | | | | MONTH = April 2019:0 (0/0)
| | | | | MONTH = May 2019: 0 (0/0)
| | | | | MONTH = June 2019: 0 (0/0)
| \| \| \| MONTH = July 2019: 0 (0/0)
| | | | | MONTH = August 2019: 27 (1/0)
| | | | | MONTH = September 2019: 26 (1/0)
| | | | | MONTH = October 2019: 32 (1/0)
\(||\mid\) Booking Source \(=\) ITAKA : \(0(0 / 0)\)
| | | Booking Source \(=\) Jet2Holidays : 0 ( \(0 / 0\) )
| | | Booking Source = RAINBOW : \(0(0 / 0)\)
\(||\mid\) Booking Source \(=\) SUNWEB : \(0(0 / 0)\)
| | | Booking Source = TUI Deutschland : 0 (0/0)
| | | Booking Source = TUI NL : 0 \((0 / 0)\)
\(||\mid\) Booking Source \(=\) TUI UK : \(0(0 / 0)\)
| | \(\mathrm{BB}>=492.5\)
| | | TOTAL PAX Nights < 566.5 : 41 (1/0)
| | | TOTAL PAX Nights >= \(566.5: 45.5\) (2/0.25)
Country = Poland
TOTAL PAX Nights < 777.5
| | \(\mathrm{AI}<146: 1\) (8/0.25)
| | AI \(>=146\)
| | | Average pax/room < 2.7 : 13 (1/0)
| | | Average pax/room >= \(2.7: 15(1 / 0)\)
| TOTAL PAX Nights >=777.5
| | MONTH = April 2019 : 0 ( \(0 / 0\) )
| | MONTH = May 2019: 0 (0/0)
| | MONTH = June 2019: 63 (1/0)
| | MONTH = July 2019 : 42 (1/0)
| | MONTH = August 2019: 41 (1/0)
| | MONTH = September 2019: 56 (1/0)
| | MONTH = October 2019 : 0 (0/0)
Country \(=\) UK
| TOTAL PAX Nights < 216
| | Total Room Nights < \(31: 0.33\) (3/0.22)
| | Total Room Nights >= 31
| | | ADR < 79.73: 8 (1/0)
| | | ADR >= 79.73
| | | | ADR < 103.68: 5 (1/0)
| | | | ADR >= \(103.68: 7(1 / 0)\)
| TOTAL PAX Nights >=216
| | Average pax/room < 2.06
| | | Average pax/room < 1.94 : 16 (1/0)
| | | Average pax/room >= 1.94
| | | | Booking Source = ARHUS CHARTER : 0 (0/0)
| | | | Booking Source = AURINKOMATKAT : 0 (0/0)
\(||\mid\) Booking Source = BLUE AEGEAN : 0 (0/0)
| | | | Booking Source = BOOKING.COM : 0 (0/0)
\(|||\mid\) Booking Source = BRAVO TOURS : 0 (0/0)
| \| | | Booking Source = EXPEDIA : 0 (0/0)
\(|||\mid\) Booking Source \(=\) ITAKA : \(0(0 / 0)\)
| | | | Booking Source = Jet2Holidays: 20 (1/0)
| | | | Booking Source = RAINBOW : 0 (0/0)
\(|||\mid\) Booking Source \(=\) SUNWEB : \(0(0 / 0)\)
\(||\mid\) Booking Source = TUI Deutschland : 0 (0/0)
| | | | Booking Source = TUI NL : 0 (0/0)
| | | | Booking Source = TUI UK : 18 (1/0)
| | Average pax/room >=2.06
| | | \(\mathrm{BB}<283: 18\) (1/0)
| | | BB >=283
| | | | Total Room Nights < 246
| | | | | ADR < 81.69: 28 (1/0)
| | | | | ADR >= 81.69: 22 (1/0)
| | | | Total Room Nights >= \(246: 34.5\) (2/0.25)
Country \(=\) Netherlands
| Total Room Nights < 105.5
| | MONTH = April 2019
| | | Average pax/room < \(2.87: 4\) (1/0)
| | | Average pax/room >= \(2.87: 1\) (1/0)
| | MONTH = May 2019: 0 (0/0)
| | MONTH = June 2019: 0 (0/0)
| | MONTH = July 2019 : 6 (1/0)
| | MONTH = August 2019: 9 (1/0)
| | MONTH = September 2019: 0 (0/0)
| | MONTH = October \(2019: 2\) (1/0)
| Total Room Nights >= 105.5
| | TOTAL PAX Nights < 533
| | | MONTH = April 2019: 0 (0/0)
| | | MONTH = May 2019: 16(1/0)
| | | MONTH = June 2019: 15 (1/0)
| | | MONTH = July 2019: 0 (0/0)
```

| | | MONTH = August 2019: 0 (0/0)
| | | MONTH = September 2019: 16 (1/0)
| | | MONTH = October $2019: 12(1 / 0)$
| | TOTAL PAX Nights >= 533
| | | ADR < 91.61
| | | | MONTH = April 2019: 0 (0/0)
| | | | MONTH = May 2019 : 21 (1/0)
| | | | MONTH = June 2019 : 24 (1/0)
| | | | MONTH = July 2019 : 0 (0/0)
| | | | MONTH = August 2019: 0 (0/0)
| | | | MONTH = September $2019: 23$ (1/0)
| | | | MONTH = October $2019: 0(0 / 0)$
| | | ADR >= 91.61
| | | | BB < $258: 23(1 / 0)$
$|||\mid \mathrm{BB}>=258: 19(1 / 0)$
Country = Germany
| MONTH = April 2019: 3 (1/0)
| MONTH = May 2019: 2 (1/0)
| MONTH = June 2019 : 12 (1/0)
| MONTH = July 2019: 13 (1/0)
| MONTH = August 2019: 7 (1/0)
| MONTH = September 2019: 14 (1/0)
| MONTH = October 2019: 1 (1/0)

```
Size of the tree : 153

RandomTree

Total Room Nights < 569.5
| Booking Source = ARHUS CHARTER
| \(\mid \mathrm{BB}<244\)
| | | Total Room Nights < \(103: 0(1 / 0)\)
| | | Total Room Nights >= 103
| | | | Average pax/room < 2.26
| | | | | MONTH = April 2019:0 (0/0)
| | | | | MONTH = May 2019: 0 (0/0)
| | | | | MONTH = June 2019: 40 (1/0)
| | | | | MONTH = July 2019: 39 (1/0)
| | | | | MONTH = August 2019: 25 (1/0)
| | | | | MONTH = September 2019:39 (1/0)
| | | | | MONTH = October 2019:0 (0/0)
| | | | Average pax/room >=2.26:22(1/0)
| | \(\mathrm{BB}>=244: 34(1 / 0)\)
| Booking Source = AURINKOMATKAT : 0 (0/0)
| Booking Source = BLUE AEGEAN
| | MONTH = April 2019: 0 (1/0)
| | MONTH = May 2019: 1 (1/0)
| | MONTH = June 2019 : 24 (1/0)
| | MONTH = July 2019 : 27 (1/0)
| | MONTH = August 2019: 18 (1/0)
| | MONTH = September 2019: 20 (1/0)
| | MONTH = October 2019: 0 (1/0)
| Booking Source \(=\) BOOKING.COM
| | TOTAL PAX Nights < 81.5 : 2.5 (4/0.25)
| | TOTAL PAX Nights >= 81.5
| | | Average pax/room < 2.53 : 9 (1/0)
| | | Average pax/room \(>=2.53\)
| | | | Average pax/room < 2.83: 13 (1/0)
| | | | Average pax/room >=2.83:11 (1/0)
| Booking Source = BRAVO TOURS
| | Total Room Nights < 88
| | | MONTH = April 2019: 1 (1/0)
| | | MONTH = May 2019: 7 (1/0)
| | | MONTH = June 2019: 5 (1/0)
| | | MONTH = July 2019:0 (0/0)
| | | MONTH = August 2019: 3 (1/0)
| | | MONTH = September 2019: 4 (1/0)
| | | MONTH = October 2019: 4 (1/0)
| | Total Room Nights >= \(88: 24(1 / 0)\)
| Booking Source = EXPEDIA
| | \(\mathrm{BB}<492.5\)
| | | MONTH = April 2019: 0 (0/0)
| | | MONTH = May 2019: 22 (1/0)
| | | MONTH = June 2019: 0 (0/0)
| | | MONTH = July 2019: 0 (0/0)
| | | MONTH = August 2019: 27 (1/0)
| | | MONTH = September 2019:26(1/0)
| | | MONTH = October \(2019: 32(1 / 0)\)
| | \(\mathrm{BB}>=492.5\)
| | | TOTAL PAX Nights < 566.5 : 41 (1/0)
| | | TOTAL PAX Nights >= \(566.5: 45.5\) (2/0.25)
| Booking Source = ITAKA
| | \(\mathrm{ADR}<100.16\)
| | | TOTAL PAX Nights < \(157: 2(1 / 0)\)
| | | TOTAL PAX Nights >= 157
| | | | Average pax/room < 2.7 : 13 (1/0)
| | | | Average pax/room >=2.7: \(15(1 / 0)\)
| | ADR >= 100.16
| | | MONTH = April 2019: 0 (0/0)
| | | MONTH = May 2019: 0 (0/0)
| | | MONTH = June 2019 : 63 (1/0)
| | | MONTH = July 2019 : 42 (1/0)
| | | MONTH = August 2019: 41 (1/0)
| | | MONTH = September 2019 : 56 (1/0)
| | | MONTH = October 2019: 0 (0/0)
| Booking Source \(=\) Jet 2 Holidays
| | TOTAL PAX Nights < 155.5 : 0 (1/0)
| | TOTAL PAX Nights >= 155.5
| | | Total Room Nights < 225
| | | | ADR < 88.71
| | | | | ADR < \(61.23: 20(1 / 0)\)
\(||||\mid A D R>=61.23: 18(1 / 0)\)
| | | | ADR >= \(88.71: 22(1 / 0)\)
| | | Total Room Nights >= 225
| | | | ADR < 63.28: 28 (1/0)
\(|||\mid A D R>=63.28: 34.5(2 / 0.25)\)
| Booking Source = RAINBOW : 0.86 (7/0.12)
| Booking Source \(=\) SUNWEB
| | MONTH = April 2019: 4 (1/0)
| | MONTH = May 2019 : 21 (1/0)
| | MONTH = June 2019 : 24 (1/0)
| | MONTH = July 2019 : 23 (1/0)
| | MONTH = August 2019: 19 (1/0)
| | MONTH = September \(2019: 23(1 / 0)\)
| | MONTH = October 2019: 12 (1/0)
| Booking Source = TUI Deutschland
| | MONTH = April 2019: 3 (1/0)
| | MONTH = May \(2019: 2\) (1/0)
| | MONTH = June 2019 : 12 (1/0)
| | MONTH = July 2019 : 13 (1/0)
| | MONTH = August 2019 : 7 (1/0)
| | MONTH = September 2019: 14 (1/0)
| | MONTH = October 2019: 1 (1/0)
- Booking Source \(=\) TUI NL
| | Total Room Nights < 105.5
| | | ADR < \(72.11: 1.5\) (2/0.25)
| | | ADR \(>=72.11\)
| | | | ADR < \(99.22: 9(1 / 0)\)
| | | | ADR >= 99.22: 6 (1/0)
| | Total Room Nights >= \(105.5: 15.67\) (3/0.22)
| Booking Source = TUI UK
| | Total Room Nights < 110.5
| | | MONTH = April 2019: 0 (1/0)
| | | MONTH = May 2019: 1 (1/0)
| | | MONTH = June 2019: 0 (0/0)
| | | MONTH = July 2019 : 5 (1/0)
| | | MONTH = August 2019: 7 (1/0)
| | | MONTH = September 2019: 8 (1/0)
| | | MONTH = October 2019: 0 (0/0)
| | Total Room Nights >= 110.5
| | | Average pax/room < 1.94 : 16 (1/0)
| | | Average pax/room >= \(1.94: 18\) (1/0)
Total Room Nights >= 569.5
| MONTH = April 2019 : 78 (1/0)
| MONTH = May 2019 : 125 (1/0)
| MONTH = June 2019 : 132 (1/0)
| MONTH = July 2019: 135 (1/0)
| MONTH = August 2019: 92 (1/0)
| MONTH = September 2019: 82 (1/0)
| MONTH = October 2019: 63 (1/0)
Size of the tree : 123

Classifiers with low or negative correlation coefficient (2019):

\section*{Lazy K Star}
=== Summary \(===\)
\begin{tabular}{lc} 
Correlation coefficient & 0.9327 \\
Mean absolute error & 5.6405 \\
Root mean squared error & 10.2027 \\
Relative absolute error & \(29.5003 \%\) \\
Root relative squared error & \(36.0832 \%\) \\
Total Number of Instances & 91
\end{tabular}

\section*{Multilayer Perceptron}
\(===\) Classifier model (full training set) \(===\)

\section*{Linear Node 0}

Inputs Weights
Threshold 0.07109771693061714
Node 1 -0.40296824691080807
Node \(2-0.6621335013310197\)
Node \(3-0.15864620365909546\)
Node \(4 \quad 0.48608176152571403\)
Node 50.320017054944052
Node 6 -0.015398430701580727
Node \(7 \quad 0.2678088365511743\)
Node \(8 \quad 0.789022850752216\)
Node \(9 \quad 0.0650264845432003\)
Node \(10 \quad-0.2576120577691362\)
Node 11 -0.10638092361038676
Node 12 -0.11877718270766281
Node \(13-0.43654228984554383\)
Node 140.043836947271253576
Node 15 -0.9001252189528062
Node 16 -0.004790221125993978

```

Attrib Country=Netherlands -0.03816091862488667
Attrib Country=Germany 0.10735182934668279
Attrib Average pax/room 0.1514516521674497
Attrib TO/ OTA=OTA -0.04595987161277557
Attrib ADR -0.522669379038609
Attrib TOTAL PAX Nights -0.7573891157291729
Attrib Total Room Nights -1.033735878799182
Attrib BB -0.22437045590270988
Attrib BB% 0.29573039967030723
Attrib HB -0.21383402033083415
Attrib HB% 0.07587841944809334
Attrib AI -0.15949481654894643
Attrib AI% 0.10878341562462213
Attrib MONTH=April 2019 0.18947180010603956
Attrib MONTH=May 2019 0.6932856731289202
Attrib MONTH=June 2019 0.29329771764356277
Attrib MONTH=July 2019 0.09335836708842352
Attrib MONTH=August 2019 -0.16581612258471282
Attrib MONTH=September 2019 -0.4713727079555084
Attrib MONTH=October 2019 -0.23470146813953838
Sigmoid Node 2
Inputs Weights
Threshold -0.14500373283323176
Attrib Booking Source=ARHUS CHARTER -0.03331361622882429
Attrib Booking Source=AURINKOMATKAT -0.050257277986903395
Attrib Booking Source=BLUE AEGEAN 0.25077196701663534

```
```

Attrib Booking Source=BOOKING.COM 0.31491757630579437
Attrib Booking Source=BRAVO TOURS 0.08827509041325324
Attrib Booking Source=EXPEDIA 0.1741498039085636
Attrib Booking Source=ITAKA 0.20222158513442773
Attrib Booking Source=Jet2Holidays 0.3104616636897445
Attrib Booking Source=RAINBOW -0.15953860368312195
Attrib Booking Source=SUNWEB 0.18851968172914688
Attrib Booking Source=TUI Deutschland 0.3851747861321432
Attrib Booking Source=TUI NL 0.3975115053101002
Attrib Booking Source=TUI UK -0.0870111750124361
Attrib Country=Denmark -0.11896972740448301
Attrib Country=Finland 0.0016599969185305513
Attrib Country=Romania 0.20774224545505507
Attrib Country=Vary 0.2040632841462182
Attrib Country=Poland -0.13266945629881008
Attrib Country=UK 0.06127898637722226
Attrib Country=Netherlands 0.37922647718146596
Attrib Country=Germany 0.3712168573446193
Attrib Average pax/room 0.08396269769215998
Attrib TO/ OTA=OTA 0.28356162492548515
Attrib ADR -0.04366042223209534
Attrib TOTAL PAX Nights -0.32948438932977686
Attrib Total Room Nights -0.4574275192442581
Attrib BB -0.10296993828844121
Attrib BB% 0.28674763733448444
Attrib HB 0.06408662386547005

```
```

Attrib HB% 0.01615493029088179
Attrib AI 0.0431817059589975
Attrib AI% -0.10708461864550932
Attrib MONTH=April 2019 -0.260440029308215
Attrib MONTH=May 2019 -0.13095152958028575
Attrib MONTH=June 2019 -0.0728121516901253
Attrib MONTH=July 2019 0.6454272112242992
Attrib MONTH=August 2019 -0.20993254309204723
Attrib MONTH=September 2019 0.2109052653367657
Attrib MONTH=October 2019 0.6825318512200114
Sigmoid Node 3
Inputs Weights
Threshold -0.12187370738606022
Attrib Booking Source=ARHUS CHARTER 0.1579850297321055
Attrib Booking Source=AURINKOMATKAT -8.478095328921116E-4
Attrib Booking Source=BLUE AEGEAN 0.1665869454257261
Attrib Booking Source=BOOKING.COM 0.09882429479270258
Attrib Booking Source=BRAVO TOURS 0.25773140197123395
Attrib Booking Source=EXPEDIA 0.08012593829802178
Attrib Booking Source=ITAKA 0.04357791897886238
Attrib Booking Source=Jet2Holidays 0.1666253739275713
Attrib Booking Source=RAINBOW 0.1203040290683847
Attrib Booking Source=SUNWEB 0.1253543807304496
Attrib Booking Source=TUI Deutschland 0.17851238115079268
Attrib Booking Source=TUI NL 0.09825808810535806
Attrib Booking Source=TUI UK 0.10133062696379672

```
```

Attrib Country=Denmark 0.1651785357083922
Attrib Country=Finland 0.007046427690325411
Attrib Country=Romania 0.18432658830673
Attrib Country=Vary 0.04198507177425412
Attrib Country=Poland 0.018369906920388642
Attrib Country=UK 0.07314959404029829
Attrib Country=Netherlands 0.1306865205368309
Attrib Country=Germany 0.19483778081901262
Attrib Average pax/room 0.005997231960752283
Attrib TO/ OTA=OTA 0.049008831157464475
Attrib ADR -0.15509921459295542
Attrib TOTAL PAX Nights -0.11164756926562847
Attrib Total Room Nights -0.15925007238156058
Attrib BB 0.07263935241845097
Attrib BB% 0.0029110989607911888
Attrib HB 0.07176523537098872
Attrib HB% 0.12606596516987986
Attrib AI 0.07789109621684301
Attrib AI% 0.14204831239639912
Attrib MONTH=April 2019 0.2308082482521892
Attrib MONTH=May 2019 0.12092533153187415
Attrib MONTH=June 2019 0.0577454251000822
Attrib MONTH=July 2019 0.04297433848554704
Attrib MONTH=August 2019 0.11058058330616923
Attrib MONTH=September 2019 0.0426026414696721
Attrib MONTH=October 2019 0.06859656265485663

```

Sigmoid Node 4
Inputs Weights
Threshold \(\quad-0.08829822544965715\)
Attrib Booking Source=ARHUS CHARTER 0.12324177977207927
Attrib Booking Source=AURINKOMATKAT 0.05397160950919729
Attrib Booking Source=BLUE AEGEAN 0.02466583249074063
Attrib Booking Source=BOOKING.COM 0.2665267928628154
Attrib Booking Source=BRAVO TOURS -0.015150610277449116
Attrib Booking Source=EXPEDIA 0.13232030705877357
Attrib Booking Source=ITAKA 0.1068392553903618
Attrib Booking Source=Jet2Holidays 0.0907827192582196
Attrib Booking Source=RAINBOW 0.10329601189558947
Attrib Booking Source=SUNWEB -0.01175395798822746
Attrib Booking Source=TUI Deutschland 0.028340793469234515
Attrib Booking Source=TUI NL 0.22416398532423068
Attrib Booking Source=TUI UK 0.06586345195569884
Attrib Country=Denmark
Attrib Country=Finland
Attrib Country=Romania
Attrib Average pax/room
Attrib Country=Vary
Attrib Country=Poland
Attrib Country=UK
```

Attrib ADR -0.07977152307546563
Attrib TOTAL PAX Nights 0.15618008664858826
Attrib Total Room Nights 0.22156951930064672
Attrib BB 0.03540490664427582
Attrib BB% 0.09310832691938212
Attrib HB -0.14455010044267458
Attrib HB% 0.06661855672301585
Attrib AI -0.04354004068407641
Attrib AI% -0.10010928668837105
Attrib MONTH=April 2019 0.5946432116872858
Attrib MONTH=May 2019 0.08527148761822016
Attrib MONTH=June 2019 -0.07278774733945576
Attrib MONTH=July 2019 0.04033662719437262
Attrib MONTH=August 2019 0.0072897256959839115
Attrib MONTH=September 2019 -0.15781161348577807
Attrib MONTH=October 2019 0.05901007650322424
Sigmoid Node 5
Inputs Weights
Threshold -0.15252077397233652
Attrib Booking Source=ARHUS CHARTER 0.07401385666454594
Attrib Booking Source=AURINKOMATKAT 0.10590777355772074
Attrib Booking Source=BLUE AEGEAN 0.28090170282948274
Attrib Booking Source=BOOKING.COM 0.08912340454683429
Attrib Booking Source=BRAVO TOURS -0.0976316151695189
Attrib Booking Source=EXPEDIA 0.08856501750543637
Attrib Booking Source=ITAKA 0.03856946851896069

```
```

Attrib Booking Source=Jet2Holidays 0.09233877121714698
Attrib Booking Source=RAINBOW 0.05904657225748539
Attrib Booking Source=SUNWEB 0.1678598277695587
Attrib Booking Source=TUI Deutschland 0.06913468165382287
Attrib Booking Source=TUI NL 0.2422502933503587
Attrib Booking Source=TUI UK 0.11185535211524558
Attrib Country=Denmark -0.15242381945352576
Attrib Country=Finland 0.0752424399344786
Attrib Country=Romania 0.2609179095939755
Attrib Country=Vary 0.04468291498004096
Attrib Country=Poland 0.08237861016730219
Attrib Country=UK 0.11486401225167099
Attrib Country=Netherlands 0.2547513638153792
Attrib Country=Germany 0.06550378845086255
Attrib Average pax/room -0.08472214449184247
Attrib TO/ OTA=OTA 0.03789259208746756
Attrib ADR 0.03685042924024216
Attrib TOTAL PAX Nights 0.1417816890393352
Attrib Total Room Nights 0.26792828752813647
Attrib BB -0.003500440838489442
Attrib BB% -0.0914152732424823
Attrib HB -0.06418134428561187
Attrib HB% 0.16115265563585196
Attrib AI 0.010943896463538716
Attrib AI% -0.009691757867903376
Attrib MONTH=April 2019 0.09981967302232046

```
\begin{tabular}{l} 
Attrib MONTH=May 2019 \(\quad 0.11883214384665779\) \\
Attrib MONTH=June 2019 \(\quad 0.20430824304867956\) \\
Attrib MONTH=July 2019
\end{tabular}\(\quad-0.020896928155150353\)
```

Attrib Country=Poland 0.15482882627369693
Attrib Country=UK 0.1163396795356653
Attrib Country=Netherlands 0.13512225230901656
Attrib Country=Germany 0.19961592020180285
Attrib Average pax/room 0.031111085009333697
Attrib TO/ OTA=OTA 0.11355168501362091
Attrib ADR -0.08567324738980296
Attrib TOTAL PAX Nights -0.044722261896475116
Attrib Total Room Nights -0.1491737867134942
Attrib BB -0.013378285846881973
Attrib BB% 0.06480063688733026
Attrib HB -0.024653772906461577
Attrib HB% 0.06668995276620447
Attrib AI 0.036221882192291006
Attrib AI% 0.096547497715648
Attrib MONTH=April 2019 0.09692835002447044
Attrib MONTH=May 2019 0.1974239837379522
Attrib MONTH=June 2019 0.04000687818621975
Attrib MONTH=July 2019 0.20210575617104287
Attrib MONTH=August 2019 0.055327977811591614
Attrib MONTH=September 2019 0.11261169649761638
Attrib MONTH=October 2019 0.0425271153334509
Sigmoid Node 7
Inputs Weights
Threshold -0.08709508579313097
Attrib Booking Source=ARHUS CHARTER 0.06588302998863553

```
```

Attrib Booking Source=AURINKOMATKAT 0.12253460643975338
Attrib Booking Source=BLUE AEGEAN 0.1316971857888071
Attrib Booking Source=BOOKING.COM 0.05861057483807775
Attrib Booking Source=BRAVO TOURS 0.00418370598448621
Attrib Booking Source=EXPEDIA 0.22126166670689487
Attrib Booking Source=ITAKA 0.0565947799275185
Attrib Booking Source=Jet2Holidays 0.1848860561517084
Attrib Booking Source=RAINBOW 0.04802908010320675
Attrib Booking Source=SUNWEB 0.12701080415354205
Attrib Booking Source=TUI Deutschland 0.11214537715672059
Attrib Booking Source=TUI NL 0.16140945726636838
Attrib Booking Source=TUI UK 0.018877026669084085
Attrib Country=Denmark 0.03053721393371835
Attrib Country=Finland 0.07452490166248364
Attrib Country=Romania 0.22624186839247698
Attrib Country=Vary 0.12943000299358196
Attrib Country=Poland -0.023511461281392296
Attrib Country=UK 0.04673892821822464
Attrib Country=Netherlands 0.13767228636925216
Attrib Country=Germany 0.195345691233857
Attrib Average pax/room -0.08286989185835227
Attrib TO/ OTA=OTA 0.18029770223191074
Attrib ADR 0.11723222957911775
Attrib TOTAL PAX Nights 0.20596881193382388
Attrib Total Room Nights 0.3327879055783564
Attrib BB 0.10967251216957664

```
```

Attrib BB% -0.05420167376164751
Attrib HB 0.07141335828869727
Attrib HB% 0.13071471077430902
Attrib AI 0.031109448601938854
Attrib AI% -0.11222835020664951
Attrib MONTH=April 2019 0.16143321262169172
Attrib MONTH=May 2019 0.16351418315928837
Attrib MONTH=June 2019 0.23817872755847866
Attrib MONTH=July 2019 0.2049335936850878
Attrib MONTH=August 2019 0.051725714814472266
Attrib MONTH=September 2019 -0.204749546646595
Attrib MONTH=October 2019 0.021864781332978346
Sigmoid Node 8
Inputs Weights
Threshold -0.1257970545635837
Attrib Booking Source=ARHUS CHARTER 0.458846828909564
Attrib Booking Source=AURINKOMATKAT 0.10396951699049099
Attrib Booking Source=BLUE AEGEAN 0.10441191825811097
Attrib Booking Source=BOOKING.COM -0.059259106172731335
Attrib Booking Source=BRAVO TOURS 0.07187103732713496
Attrib Booking Source=EXPEDIA 0.2173253588397431
Attrib Booking Source=ITAKA -0.19598892953686287
Attrib Booking Source=Jet2Holidays 0.5104869320221894
Attrib Booking Source=RAINBOW -0.05477962180439255
Attrib Booking Source=SUNWEB -0.1367860868267929
Attrib Booking Source=TUI Deutschland 0.07548100866379165

```

```

Attrib MONTH=September 2019 -0.5454788854676752
Attrib MONTH=October 2019 -0.38448404825814786
Sigmoid Node 9
Inputs Weights
Threshold -0.1363888447903936
Attrib Booking Source=ARHUS CHARTER 0.10097419844350917
Attrib Booking Source=AURINKOMATKAT 0.08804793716986287
Attrib Booking Source=BLUE AEGEAN 0.15380042523153908
Attrib Booking Source=BOOKING.COM 0.1537942430536753
Attrib Booking Source=BRAVO TOURS 0.07562240608683088
Attrib Booking Source=EXPEDIA 0.11275259921941003
Attrib Booking Source=ITAKA 0.12194531953384458
Attrib Booking Source=Jet2Holidays 0.09776452895589681
Attrib Booking Source=RAINBOW 0.14043398836588145
Attrib Booking Source=SUNWEB 0.13513082088890316
Attrib Booking Source=TUI Deutschland 0.15163582939129688
Attrib Booking Source=TUI NL 0.10336200407629272
Attrib Booking Source=TUI UK 0.14235125761181291
Attrib Country=Denmark 0.08226214889195387
Attrib Country=Finland 0.02630167876723207
Attrib Country=Romania 0.1366709143783275
Attrib Country=Vary 0.055267973757146
Attrib Country=Poland 0.10097707138180811
Attrib Country=UK 0.07816455167222211
Attrib Country=Netherlands 0.06765662211059766
Attrib Country=Germany 0.15303213503963886

```
```

 Attrib Average pax/room 0.05387344304422825
 Attrib TO/ OTA=OTA 0.07225772583556413
 Attrib ADR -0.07845596643669012
 Attrib TOTAL PAX Nights 0.06782605856246231
 Attrib Total Room Nights 0.025264974406370922
 Attrib BB -0.01614466156678523
 Attrib BB% 0.016947590520749983
 Attrib HB 0.007604283697366847
 Attrib HB% 0.05888674208815257
 Attrib AI 0.04116845052457511
 Attrib AI% 0.045116396304026536
 Attrib MONTH=April 2019 0.169161907451603
 Attrib MONTH=May 2019 0.04202427006369376
 Attrib MONTH=June 2019 0.011676093488940987
 Attrib MONTH=July 2019 0.03872856569434875
 Attrib MONTH=August 2019 0.06288169336227316
 Attrib MONTH=September 2019 0.10533191740867846
 Attrib MONTH=October 2019 0.13272661962666357
 Sigmoid Node 10
Inputs Weights
Threshold -0.1479529865406293
Attrib Booking Source=ARHUS CHARTER 0.11166945747509623
Attrib Booking Source=AURINKOMATKAT -0.05796395706386043
Attrib Booking Source=BLUE AEGEAN 0.24198951815188224
Attrib Booking Source=BOOKING.COM 0.08106355828585772
Attrib Booking Source=BRAVO TOURS 0.19960448739456865

```
```

Attrib Booking Source=EXPEDIA 0.108236054582306
Attrib Booking Source=ITAKA 0.14797463920497547
Attrib Booking Source=Jet2Holidays 0.11915272434972801
Attrib Booking Source=RAINBOW 0.029137381904747094
Attrib Booking Source=SUNWEB 0.3221162499109217
Attrib Booking Source=TUI Deutschland 0.3508306052003681
Attrib Booking Source=TUI NL 0.061948889617785594
Attrib Booking Source=TUI UK 0.1977849429779874
Attrib Country=Denmark 0.09169274715908388
Attrib Country=Finland -0.04878273664216448
Attrib Country=Romania 0.2150320615893737
Attrib Country=Vary 0.09480374182847663
Attrib Country=Poland 0.00671504926705343
Attrib Country=UK 0.12310093910522323
Attrib Country=Netherlands 0.2281102325809599
Attrib Country=Germany 0.31594924348616954
Attrib Average pax/room 0.033965796379352965
Attrib TO/ OTA=OTA 0.028691438428517728
Attrib ADR -0.17661374391066015
Attrib TOTAL PAX Nights -0.29674151710350927
Attrib Total Room Nights -0.3325354028078236
Attrib BB -0.02003469170603024
Attrib BB% 0.16846523952604903
Attrib HB 0.016185274563194622
Attrib HB% 0.08667972959651282
Attrib AI 0.06245618366277375

```

Attrib AI\% 0.20895229848430177
Attrib MONTH=April \(2019 \quad 0.2621826932031723\)
Attrib MONTH=May \(2019 \quad 0.3481055531367439\)
Attrib MONTH=June \(2019-0.013893840598901412\)
Attrib MONTH=July \(2019 \quad 0.17978170743015123\)
Attrib MONTH=August \(2019 \quad 0.117623741208433\)
Attrib MONTH=September 20190.08495306502572793
Attrib MONTH=October \(2019 \quad 0.0566750424235328\)
Sigmoid Node 11
Inputs Weights
Threshold -0.1046368306475034
Attrib Booking Source=ARHUS CHARTER 0.13805635835217248
Attrib Booking Source=AURINKOMATKAT 0.04138567430032936
Attrib Booking Source=BLUE AEGEAN 0.133033081011269
Attrib Booking Source=BOOKING.COM 0.12630208986270725
Attrib Booking Source=BRAVO TOURS 0.11626243566881996
Attrib Booking Source=EXPEDIA 0.13059791884435212
Attrib Booking Source=ITAKA 0.06640664670477883
Attrib Booking Source=Jet2Holidays 0.12175966174489797
Attrib Booking Source=RAINBOW 0.14087511641437436
Attrib Booking Source=SUNWEB 0.08762736696503368
Attrib Booking Source=TUI Deutschland 0.11351651000446977
Attrib Booking Source=TUI NL 0.07639739142486357
Attrib Booking Source=TUI UK 0.18424566409654494
Attrib Country=Denmark 0.06053828364752289
Attrib Country=Finland 0.020464307178890542
\begin{tabular}{l} 
Attrib Country=Romania \(\quad 0.10549059736923652\) \\
Attrib Country=Vary 0.03693805566850185 \\
Attrib Country=Poland 0.05193381523230864 \\
Attrib Country=UK \(\quad 0.18364483051067088\) \\
Attrib Country=Netherlands 0.0885980233465479 \\
Attrib Country=Germany \(\quad 0.14538280919844285\) \\
Attrib Average pax/room \(\quad 0.046588907207822716\) \\
Attrib TO/ OTA=OTA \(\quad 0.08164635229926205\) \\
Attrib ADR \(\quad-0.07921270589624796\) \\
Attrib TOTAL PAX Nights \\
Attrib Total Room Nights
\end{tabular}\(-0.06846822446991845\)

Sigmoid Node 12
Inputs Weights


```

Attrib Booking Source=SUNWEB 0.2985469129836817
Attrib Booking Source=TUI Deutschland 0.23483693056498847
Attrib Booking Source=TUI NL 0.02726003683483663
Attrib Booking Source=TUI UK 0.13999019575386712
Attrib Country=Denmark 0.18590695992669704
Attrib Country=Finland -0.05159269924971623
Attrib Country=Romania 0.338620949348999
Attrib Country=Vary -0.07546127990452739
Attrib Country=Poland -0.07584043942571046
Attrib Country=UK 8.591788038928249E-4
Attrib Country=Netherlands 0.2276923287867788
Attrib Country=Germany 0.24480706751433354
Attrib Average pax/room 0.0032739252316809487
Attrib TO/ OTA=OTA -0.08108319432575198
Attrib ADR -0.2658843388623676
Attrib TOTAL PAX Nights -0.2482641181862449
Attrib Total Room Nights -0.2387332758031298
Attrib BB 0.042241653238975316
Attrib BB% 0.12397616831259141
Attrib HB 0.09657438346173008
Attrib HB% 0.11448068643848237
Attrib AI 0.12200702672537686
Attrib AI% 0.14909020329143974
Attrib MONTH=April 2019 0.41767510973659333
Attrib MONTH=May 2019 0.15625225970167514
Attrib MONTH=June 2019 -0.07728240446113788

```
```

 Attrib MONTH=July 2019 0.04762581338922958
 Attrib MONTH=August 2019 0.0369961318987717
 Attrib MONTH=September 2019 0.19608982124469743
 Attrib MONTH=October 2019 0.01052640987006035
 Sigmoid Node 14
Inputs Weights
Threshold -0.16131919852015117
Attrib Booking Source=ARHUS CHARTER 0.07312454705767092
Attrib Booking Source=AURINKOMATKAT 0.04139808242839088
Attrib Booking Source=BLUE AEGEAN 0.10639819565126121
Attrib Booking Source=BOOKING.COM 0.15978701154114847
Attrib Booking Source=BRAVO TOURS 0.06853116385698058
Attrib Booking Source=EXPEDIA 0.09750579555191514
Attrib Booking Source=ITAKA 0.1288563748416659
Attrib Booking Source=Jet2Holidays 0.11656873795990447
Attrib Booking Source=RAINBOW 0.11229489922462414
Attrib Booking Source=SUNWEB 0.14564722508557085
Attrib Booking Source=TUI Deutschland 0.11259641877531539
Attrib Booking Source=TUI NL 0.0911733279905308
Attrib Booking Source=TUI UK 0.10835152900856779
Attrib Country=Denmark 0.12623590849878988
Attrib Country=Finland 0.07728377556419387
Attrib Country=Romania 0.14633845817486632
Attrib Country=Vary 0.11769798081375156
Attrib Country=Poland 0.06354684927440406
Attrib Country=UK 0.055138746739384244

```
```

Attrib Country=Netherlands 0.10936050459589791
Attrib Country=Germany 0.16865021399035496
Attrib Average pax/room 0.001041645938739338
Attrib TO/ OTA=OTA 0.060212410712161
Attrib ADR -0.034183803323064595
Attrib TOTAL PAX Nights 0.022491637768155395
Attrib Total Room Nights 0.03812508421122355
Attrib BB -0.015710863201808613
Attrib BB% 0.011013247043542234
Attrib HB 0.004520158812315304
Attrib HB% 0.04155851370524105
Attrib AI 0.10171684489083517
Attrib AI% 0.040976137728615365
Attrib MONTH=April 2019 0.143231860017455
Attrib MONTH=May 2019 0.10529144896515866
Attrib MONTH=June 2019 0.08207156601998966
Attrib MONTH=July 2019 0.07899185644225974
Attrib MONTH=August 2019 0.0904086792443873
Attrib MONTH=September 2019 0.0835534110140994
Attrib MONTH=October 2019 0.07856017776378883
Sigmoid Node 15
Inputs Weights
Threshold 0.08627377609237893
Attrib Booking Source=ARHUS CHARTER $\quad-0.23875721061985217$
Attrib Booking Source=AURINKOMATKAT -0.37717269043909274
Attrib Booking Source=BLUE AEGEAN -0.06357113721433791

```
```

Attrib Booking Source=BOOKING.COM 0.29954294329425424
Attrib Booking Source=BRAVO TOURS 0.0039969329619432645
Attrib Booking Source=EXPEDIA -0.10177222083592012
Attrib Booking Source=ITAKA -0.5842497031348396
Attrib Booking Source=Jet2Holidays -0.23654426445262297
Attrib Booking Source=RAINBOW 0.47249848859598864
Attrib Booking Source=SUNWEB 0.015367095319731653
Attrib Booking Source=TUI Deutschland -0.0542764577802904
Attrib Booking Source=TUI NL 0.04821388142311118
Attrib Booking Source=TUI UK 0.3371382911118146
Attrib Country=Denmark -0.1825092568630062
Attrib Country=Finland -0.3641028636735545
Attrib Country=Romania -0.11195056316776195
Attrib Country=Vary 0.22033198052019787
Attrib Country=Poland -0.03620108662138396
Attrib Country=UK 0.15874188437455614
Attrib Country=Netherlands 0.12139269624402012
Attrib Country=Germany -0.1219479723299893
Attrib Average pax/room -0.05130473951260568
Attrib TO/ OTA=OTA 0.2059250095454292
Attrib ADR -0.21211258563016905
Attrib TOTAL PAX Nights -0.6710399301330281
Attrib Total Room Nights -0.9435869402410023
Attrib BB -0.46019775273566904
Attrib BB% 0.08743042052674287
Attrib HB 0.03138652952795913

```
```

Attrib HB% 0.1797351174258127
Attrib AI -0.35552507340819844
Attrib AI% 0.12460838277919911
Attrib MONTH=April 2019 0.3575822899041137
Attrib MONTH=May 2019 -0.2413720368059171
Attrib MONTH=June 2019 -0.5460549756412101
Attrib MONTH=July 2019 0.43176996694817843
Attrib MONTH=August 2019 0.3066535986023676
Attrib MONTH=September 2019 -0.6496451444843252
Attrib MONTH=October 2019 0.10636208562883474
Sigmoid Node 16
Inputs Weights
Threshold -0.10729758149168733
Attrib Booking Source=ARHUS CHARTER 0.13731114880243384
Attrib Booking Source=AURINKOMATKAT 0.05884114443950078
Attrib Booking Source=BLUE AEGEAN 0.1459046080830644
Attrib Booking Source=BOOKING.COM 0.10608562518741818
Attrib Booking Source=BRAVO TOURS 0.1655870520544009
Attrib Booking Source=EXPEDIA 0.05566509384449433
Attrib Booking Source=ITAKA 0.0667447101253541
Attrib Booking Source=Jet2Holidays 0.058420326939913864
Attrib Booking Source=RAINBOW 0.06990041859135547
Attrib Booking Source=SUNWEB 0.09762494694779064
Attrib Booking Source=TUI Deutschland 0.14314141918870937
Attrib Booking Source=TUI NL 0.16995218578086355
Attrib Booking Source=TUI UK 0.09143851565335569

```
```

Attrib Country=Denmark 0.08194262848956356
Attrib Country=Finland 0.06419503507702952
Attrib Country=Romania 0.16743064571239877
Attrib Country=Vary 0.09707378838754258
Attrib Country=Poland 0.08410070172710438
Attrib Country=UK 0.08751415123817873
Attrib Country=Netherlands 0.09814097913951654
Attrib Country=Germany 0.11175551222454819
Attrib Average pax/room 0.08812071283473287
Attrib TO/ OTA=OTA 0.13265238378374572
Attrib ADR -0.07592939125136626
Attrib TOTAL PAX Nights 0.04808450020204058
Attrib Total Room Nights -0.01633844856521662
Attrib BB 0.02598216468220472
Attrib BB% 0.003457752368601739
Attrib HB 0.079896012535177
Attrib HB% 0.05173755506407564
Attrib AI 0.1289611965375111
Attrib AI% 0.09410824929857683
Attrib MONTH=April 2019 0.12803628603326286
Attrib MONTH=May 2019 0.07105638628867884
Attrib MONTH=June 2019 0.046617789078525304
Attrib MONTH=July 2019 0.052252614651873384
Attrib MONTH=August 2019 0.07514135797774185
Attrib MONTH=September 2019 0.12023328309374857
Attrib MONTH=October 2019 0.09006737219937161

```

Sigmoid Node 17
Inputs Weights
Threshold -0.1192316391407173
Attrib Booking Source=ARHUS CHARTER 0.05727325960202926
Attrib Booking Source=AURINKOMATKAT 0.08034739626934438
Attrib Booking Source=BLUE AEGEAN 0.1723698864306009
Attrib Booking Source=BOOKING.COM 0.13297866924664
Attrib Booking Source=BRAVO TOURS 0.12785431221537535
Attrib Booking Source=EXPEDIA 0.06892782865090363
Attrib Booking Source=ITAKA 0.12486412040260744
Attrib Booking Source=Jet2Holidays 0.1243786095131842
Attrib Booking Source=RAINBOW 0.11716601699041312
Attrib Booking Source=SUNWEB 0.1322848562468597
Attrib Booking Source=TUI Deutschland 0.09157271941889569
Attrib Booking Source=TUI NL 0.10221724195436054
Attrib Booking Source=TUI UK 0.12166771725047497
Attrib Country=Denmark 0.09774954705672201
Attrib Country=Finland \(\quad 0.0801685704700489\)
Attrib Country=Romania 0.08687603848127137
Attrib Country=Vary 0.09871334543391781
Attrib Country=Poland 0.13431534019585192
Attrib Country=UK 0.0616010634650774
Attrib Country=Netherlands 0.10520727867843208
Attrib Country=Germany 0.15528060161083296
Attrib Average pax/room 0.0135889886464766
Attrib TO/ OTA=OTA 0.05082999981578145
```

Attrib ADR -0.030416787686220928
Attrib TOTAL PAX Nights 0.03251047574389115
Attrib Total Room Nights 7.15566003048551E-4
Attrib BB 0.09158025880176072
Attrib BB% 0.005847082527404315
Attrib HB 0.04946653158551159
Attrib HB% 0.06942810076761279
Attrib AI 0.09213272268367574
Attrib AI% 0.11439995537859739
Attrib MONTH=April 2019 0.19023318593115138
Attrib MONTH=May 2019 0.05193665105918128
Attrib MONTH=June 2019 0.07862631237609473
Attrib MONTH=July 2019 0.058827975006347004
Attrib MONTH=August 2019 0.07219263309325431
Attrib MONTH=September 2019 0.05979988328256532
Attrib MONTH=October 2019 0.027582075872239178
Sigmoid Node 18
Inputs Weights
Threshold -0.09719128665717423
Attrib Booking Source=ARHUS CHARTER 0.05425184921386771
Attrib Booking Source=AURINKOMATKAT 0.028741355581596233
Attrib Booking Source=BLUE AEGEAN 0.12478204898380336
Attrib Booking Source=BOOKING.COM 0.10298678895347409
Attrib Booking Source=BRAVO TOURS 0.05734510130187418
Attrib Booking Source=EXPEDIA 0.05185213255610612
Attrib Booking Source=ITAKA 0.12906343983637705

```
```

Attrib Booking Source=Jet2Holidays 0.11619866303364934
Attrib Booking Source=RAINBOW 0.1275910108245811
Attrib Booking Source=SUNWEB 0.07001311651179035
Attrib Booking Source=TUI Deutschland 0.09491699844589271
Attrib Booking Source=TUI NL 0.1676679075383375
Attrib Booking Source=TUI UK 0.15688609379412619
Attrib Country=Denmark 0.06043551438260546
Attrib Country=Finland 0.05574380992925237
Attrib Country=Romania 0.08779362770283487
Attrib Country=Vary 0.07154491545824056
Attrib Country=Poland 0.09431259995242677
Attrib Country=UK 0.079608136221246
Attrib Country=Netherlands 0.13657682089270953
Attrib Country=Germany 0.16587930384480204
Attrib Average pax/room 0.06864395372420765
Attrib TO/ OTA=OTA 0.13992524954914234
Attrib ADR -0.020690498322432225
Attrib TOTAL PAX Nights 0.08604274652120697
Attrib Total Room Nights 0.061110441374099614
Attrib BB 0.021362386474221683
Attrib BB% 0.01496342756722587
Attrib HB 0.05868796789280961
Attrib HB% 0.04660994535226006
Attrib AI 0.09944895606222533
Attrib AI% 0.04246146640255664
Attrib MONTH=April 2019 0.1695776742438388

```
\begin{tabular}{ll} 
Attrib MONTH=May 2019 & 0.04475223001571981 \\
Attrib MONTH=June 2019 & 0.08959687013615607 \\
Attrib MONTH=July 2019 & 0.08530013303431776 \\
Attrib MONTH=August 2019 & 0.083935949634467 \\
Attrib MONTH=September 2019 & 0.09797974342545664 \\
Attrib MONTH=October 2019 & 0.11216352287901772
\end{tabular}

Sigmoid Node 19
\begin{tabular}{l} 
Inputs Weights \\
Threshold \(\quad-0.12302728582125275\) \\
Attrib Booking Source=ARHUS CHARTER
\end{tabular}\(-0.02290637191682181\)
```

Attrib Country=Poland -0.018864783818074823
Attrib Country=UK 0.11025034381715573
Attrib Country=Netherlands 0.17828162447436557
Attrib Country=Germany 0.08122887736334923
Attrib Average pax/room -0.4068033989108904
Attrib TO/ OTA=OTA 0.25583982742032907
Attrib ADR -0.1831929783500107
Attrib TOTAL PAX Nights 0.2510565144622139
Attrib Total Room Nights 0.37142907669905284
Attrib BB 0.16195485537442397
Attrib BB% -0.09259441170787973
Attrib HB -0.0914366907836561
Attrib HB% 0.2261289051686077
Attrib AI -0.032121730590823856
Attrib AI% -0.1462912811908819
Attrib MONTH=April 2019 0.47641803898736207
Attrib MONTH=May 2019 -0.24594015567810737
Attrib MONTH=June 2019 0.4893802256917139
Attrib MONTH=July 2019 0.23468932920895197
Attrib MONTH=August 2019 -0.34667415498844567
Attrib MONTH=September 2019 -0.4007469876618807
Attrib MONTH=October 2019 0.4891084029651396

```

Sigmoid Node 20
Inputs Weights
Threshold -0.09955480296163897
Attrib Booking Source=ARHUS CHARTER 0.15505166476747623
```

Attrib Booking Source=AURINKOMATKAT 0.04703939373314027
Attrib Booking Source=BLUE AEGEAN 0.09922743898154979
Attrib Booking Source=BOOKING.COM 0.0489742772437892
Attrib Booking Source=BRAVO TOURS -0.17990012841764758
Attrib Booking Source=EXPEDIA 0.03313484743319637
Attrib Booking Source=ITAKA -0.012061432781360487
Attrib Booking Source=Jet2Holidays 0.3299006322858109
Attrib Booking Source=RAINBOW 0.1699993423299534
Attrib Booking Source=SUNWEB -0.13073479467289437
Attrib Booking Source=TUI Deutschland 0.06679888800723244
Attrib Booking Source=TUI NL 0.47772412958443544
Attrib Booking Source=TUI UK -0.0645616545373109
Attrib Country=Denmark -0.009356781531836816
Attrib Country=Finland 0.014248931596833974
Attrib Country=Romania 0.1463550292985704
Attrib Country=Vary -0.09630337754270897
Attrib Country=Poland 0.17357859459113825
Attrib Country=UK 0.09787099146026873
Attrib Country=Netherlands 0.15651382478067488
Attrib Country=Germany 0.10483225175035624
Attrib Average pax/room -0.10449800107708898
Attrib TO/ OTA=OTA -0.07400210240178949
Attrib ADR -0.09722157890291633
Attrib TOTAL PAX Nights 0.19106613460995148
Attrib Total Room Nights 0.2923047926762347
Attrib BB 0.13661917335104412

```
```

Attrib BB% 0.0033679713482861807
Attrib HB 0.010499784941871709
Attrib HB% -0.018247991724779557
Attrib AI -0.0013360866665371976
Attrib AI% 0.10470101783993127
Attrib MONTH=April 2019 -0.049816209785018536
Attrib MONTH=May 2019 0.5211222435611422
Attrib MONTH=June 2019 -0.08508676634167955
Attrib MONTH=July 2019 -0.03867066067277948
Attrib MONTH=August 2019 0.12093141218739785
Attrib MONTH=September 2019 -0.25876536670541744
Attrib MONTH=October 2019 0.3046738408866307
Class
Input
Node 0
=== Summary ===
Correlation coefficient 0.927
Mean absolute error 7.2876
Root mean squared error 10.5483
Relative absolute error 38.1148 %
Root relative squared error 37.3055 %
Total Number of Instances 91

```

\section*{Meta Regression By Discretization}
=== Classifier model (full training set) === Class attribute discretized into 10 values J48 pruned tree
```

Total Room Nights <= 120: '(-inf-13.5]' (50.0/6.0)
Total Room Nights > 120
BB <= 597
| Country = Denmark
| | Average pax/room <= 2.25: '(27-40.5]' (5.0/1.0)
| | | Average pax/room > 2.25: '(13.5-27]' (2.0)
| | Country = Finland: '(13.5-27]' (0.0)
| | Country = Romania: '(13.5-27]' (0.0)
| | Country = Vary
| | Total Room Nights <= 226: '(13.5-27]' (4.0/1.0)
| | | Total Room Nights > 226: '(40.5-54]' (3.0)
| | Country = Poland: '(40.5-54]' (3.0/1.0)
| | Country = UK
| | | Total Room Nights <=224: '(13.5-27]' (5.0)
| | | Total Room Nights > 224: '(27-40.5]' (3.0)
| | Country = Netherlands: '(13.5-27]' (7.0)
| | Country = Germany: '(13.5-27]' (1.0)
$\mathrm{BB}>597$
HB\% <= 0.14
| TOTAL PAX Nights <= 1813: '(54-67.5]' (2.0)
| | | TOTAL PAX Nights > 1813: '(81-94.5]' (2.0)
| HB\% > 0.14: '(121.5-inf)' (4.0/1.0)
Number of Leaves : 15
Size of the tree : 23
=== Summary ===
Correlation coefficient 0.9221
Mean absolute error 7.7887
Root mean squared error 11.2044
Relative absolute error $\quad 40.736$ \%
Root relative squared error 39.6259 \%
Total Number of Instances 91

```

\section*{Meta Additive Regression}
\(===\) Classifier model (full training set) \(===\)
Additive Regression
Base classifier weka.classifiers.trees.DecisionStump
10 models generated

\section*{Model number 0}

Decision Stump
Classifications
\(\mathrm{BB}<=769.0\) : - 6.95510586974002
\(\mathrm{BB}>769.0\) : 74.06318681318677
BB is missing : - 22.186813186813186

\section*{Model number 1}

Decision Stump
Classifications

Total Room Nights <= 104.0 : -10.226558265582662
Total Room Nights > 104.0 : 10.004241781548252
Total Room Nights is missing : -1.5616323862859344E-15

Model number 2
Decision Stump
Classifications

AI >= 843.0 : - 1.5060026753720124
AI > 843.0 : 23.556733828207864
AI is missing : 10.226558265582662

Model number 3
Decision Stump
Classifications

Total Room Nights <= 519.0: 1.638231502595407
Total Room Nights > 519.0: - 13.269675171022792
Total Room Nights is missing : 7.027345738286705E-16

Model number 4
Decision Stump
Classifications
\(\mathrm{AI}<=573.5\) : -1.586992381078663
AI > 573.5 : 11.546420873437249
AI is missing : -1.638231502595407

Model number 5
Decision Stump
Classifications

Booking Source \(=\) EXPEDIA : 10.361671598090993
Booking Source != EXPEDIA : -0.8634726331742496
Booking Source is missing : \(5.465713352000771 \mathrm{E}-16\)

Model number 6
Decision Stump
Classifications

Total Room Nights <= 1040.5 : -0.40215898257489857
Total Room Nights > 1040.5 : 11.7966634888637
Total Room Nights is missing : \(1.5616323862859346 \mathrm{E}-16\)

\section*{Model number 7}

Decision Stump
Classifications

Total Room Nights <= 425.5 : 1.1447801332530734
Total Room Nights > 425.5 : -8.325673696385994
Total Room Nights is missing : -8.393774076286898E-16

Model number 8
Decision Stump
Classifications

MONTH = October 2019 : -5.312662995204634
MONTH != October \(2019: 0.8854438325341064\)
MONTH is missing : \(5.319310315786464 \mathrm{E}-16\)

Model number 9
Decision Stump
Classifications

Average pax/room <= 2.1100000000000003 : -2.465666200366835
Average pax/room > \(2.1100000000000003: 1.0188559419205916\)
Average pax/room is missing : -1.65
\(===\) Summary \(==\)
Correlation coefficient 0.913
Mean absolute error 7.8356
Root mean squared error 11.7053
Relative absolute error 40.9813 \%
Root relative squared error 41.3974 \%
Total Number of Instances 91

\section*{Meta Random Sub Space}
\(===\) Classifier model (full training set) \(===\)
All the base classifiers:
Filtered Header
@relation 'Creta Palm Data 2019 class TB-
weka.filters.unsupervised.attribute.Remove-V-R6,8,9,3,14,13,5,15'
@attribute 'TOTAL PAX Nights' numeric
@attribute BB numeric
@attribute 'BB\\%' numeric
@attribute 'Average pax/room' numeric
@attribute MONTH \{'April 2019','May 2019','June 2019','July 2019','August 2019','September 2019','October 2019'\}
@attribute 'AI\\%' numeric
@attribute ADR numeric
@attribute 'TOTAL BOOKINGS' numeric
@data

Classifier Model
REPTree

TOTAL PAX Nights < 1040.5
TOTAL PAX Nights < 233.5
| | TOTAL PAX Nights < 89.5
| | | TOTAL PAX Nights < 23 : 0.57 (9/0.25) [5/0.24]
| | | TOTAL PAX Nights >= 23 : 2.53 (10/1.21) [5/1.61]
| | TOTAL PAX Nights >= 89.5 : 9.93 (9/15.14) [6/27.44]
| TOTAL PAX Nights >= 233.5
| | \(\mathrm{BB}<481: 23.06\) (21/44.75) [10/83.99]
| | \(\mathrm{BB}>=481: 40(3 / 29.56)[2 / 29.61]\)
TOTAL PAX Nights >= 1040.5 : 82.64 (8/1049.61) [3/1184.77]

Size of the tree : 11

Filtered Header
@relation 'Creta Palm Data 2019 class TB-weka.filters.unsupervised.attribute.Remove-V-R1,13,11,2,9,3,8,15'
@attribute 'Booking Source' \{'ARHUS CHARTER',AURINKOMATKAT,'BLUE AEGEAN',BOOKING.COM,'BRAVO TOURS',EXPEDIA,ITAKA,Jet2Holidays,RAINBOW,SUNWEB,'TUI Deutschland','TUI NL','TUI UK'\}
@attribute 'AI\\%' numeric
@attribute 'HB\\%' numeric
@attribute
Country
\{Denmark,Finland,Romania,Vary,Poland,UK,Netherlands,Germany\}
@attribute 'BB\\%' numeric
@attribute 'Average pax/room' numeric
@attribute BB numeric
@attribute 'TOTAL BOOKINGS' numeric
@data

Classifier Model
REPTree

Booking Source \(=\) ARHUS CHARTER : 28.43 (6/186.56) [1/152.11]
Booking Source \(=\) AURINKOMATKAT : 101 (6/835.58) [1/110.25]
Booking Source \(=\) BLUE AEGEAN : 12.86 (3/104) [4/142.5]
Booking Source \(=\) BOOKING.COM : 6.14 (5/11.76) [2/50.24]
Booking Source \(=\) BRAVO TOURS : 6.86 (4/2.25) [3/130.92]
Booking Source \(=\) EXPEDIA : 34.14 (3/46.89) [4/122.36]
Booking Source \(=\) ITAKA : 33.14 (4/293.5) [3/849.67]
Booking Source \(=\) Jet2Holidays : 22.43 (6/141.92) [1/0.25]

Booking Source \(=\) RAINBOW : \(0.86(4 / 0)\) [3/0.33]
Booking Source \(=\) SUNWEB : 18 (4/63.69) [3/24.56]
Booking Source \(=\) TUI Deutschland : 7.43 (5/27.04) [2/25.36]
Booking Source \(=\) TUI NL : 9.29 (4/29.5) [3/49.67]
Booking Source \(=\) TUI UK
| \(\mathrm{BB}<140: 4.2\) (4/7.19) [1/27.56]
| \(\mathrm{BB}>=140: 17(2 / 1)[0 / 0]\)

Size of the tree : 16

Filtered Header
@relation 'Creta Palm Data 2019 class TB-weka.filters.unsupervised.attribute.Remove-V-R12,5,7,9,10,1,11,15'
@attribute AI numeric
@attribute ADR numeric
@attribute 'Total Room Nights' numeric
@ attribute 'BB\\%' numeric
@attribute HB numeric
@attribute 'Booking Source' \{'ARHUS CHARTER',AURINKOMATKAT,'BLUE AEGEAN',BOOKING.COM,'BRAVO

TOURS',EXPEDIA,ITAKA,Jet2Holidays,RAINBOW,SUNWEB,'TUI
Deutschland','TUI NL','TUI UK'\}
@attribute 'HB\\%' numeric
@attribute 'TOTAL BOOKINGS' numeric
@ data

Classifier Model
REPTree

Booking Source \(=\) ARHUS CHARTER : 28.43 (6/186.56) [1/152.11]
Booking Source \(=\) AURINKOMATKAT : 101 (5/540.64) [2/1673.36]
Booking Source \(=\) BLUE AEGEAN
| ADR < 49.2 : 0.33 (3/0.22) [0/0]
| ADR >= \(49.2: 22.25(2 / 9)[2 / 18.5]\)
Booking Source \(=\) BOOKING.COM
| Total Room Nights < \(27: 2.5\) (2/0.25) [2/0.25]
| Total Room Nights >= 27 : \(11(3 / 2.67)\) [0/0]
Booking Source \(=\) BRAVO TOURS
| \(\mathrm{AI}<2: 3(2 / 1)[2 / 4]\)
| \(\mathrm{AI}>=2: 12(2 / 1)[1 / 324]\)
Booking Source = EXPEDIA
| Total Room Nights < 221 : 26.75 (2/9) [2/26.5]
| Total Room Nights >= \(221: 44\) (2/6.25) [1/2.25]
Booking Source \(=\) ITAKA : 33.14 (3/392.67) [4/566.5]
Booking Source \(=\) Jet2Holidays : 22.43 (6/135.92) [1/42.25]
Booking Source \(=\) RAINBOW : 0.86 (7/0.12) [0/0]
Booking Source \(=\) SUNWEB : 18 (3/67.56) [4/69.44]
Booking Source \(=\) TUI Deutschland : 7.43 (5/32.24) [2/14.66]
Booking Source \(=\) TUI NL
| \(\mathrm{AI}<43.5\) : 3 (2/4) [1/9]
| \(\mathrm{AI}>=43.5: 14(2 / 0.25)[2 / 21.25]\)

Booking Source \(=\) TUI UK : 7.86 (3/10.89) [4/85.28]

Size of the tree : 24

Filtered Header
@relation 'Creta Palm Data 2019 class TB-
weka.filters.unsupervised.attribute.Remove-V-R2,11,5,4,3,9,14,15'
@attribute Country
\{Denmark,Finland,Romania,Vary,Poland,UK,Netherlands,Germany \}
@ attribute 'HB\\%' numeric
@ attribute ADR numeric
@attribute 'TO/ OTA' \{TO,OTA\}
@attribute 'Average pax/room' numeric
@ attribute 'BB\\%' numeric
@attribute MONTH \{'April 2019','May 2019','June 2019','July 2019','August 2019','September 2019','October 2019'\}
@attribute 'TOTAL BOOKINGS' numeric
@data

Classifier Model
REPTree

Country \(=\) Denmark : 17.64 (8/149.75) [6/402.25]
Country = Finland : 101 (3/878) [4/793.5]
Country = Romania : 12.86 (4/12.19) [3/480.56]
```

Country = Vary : 20.14 (11/295.32) [3/78.13]
Country = Poland : }17\mathrm{ (9/606.1) [5/313.99]
Country = UK : 15.14 (11/133.79) [3/149.79]
Country = Netherlands
| MONTH = April 2019 : 2.5 (1/0) [1/9]
| MONTH = May 2019 : 18.5 (2/6.25) [0/0]
| MONTH = June 2019 : 19.5 (1/0) [1/81]
| MONTH = July 2019 : 14.5 (0/0) [2/72.25]
| MONTH = August 2019: 14 (1/0) [1/100]
| MONTH = September 2019 : 19.5 (2/12.25) [0/0]
| MONTH = October 2019:7 (1/0) [1/100]
Country = Germany : 7.43 (6/30.92) [1/0.25]

```

Size of the tree : 16

Filtered Header
@relation 'Creta Palm Data 2019 class TB-
weka.filters.unsupervised.attribute.Remove-V-R13,12,9,6,5,8,1,15'
@attribute 'AI\\%' numeric
@attribute AI numeric
@attribute 'BB\\%' numeric
@attribute 'TOTAL PAX Nights' numeric
@attribute ADR numeric
@attribute BB numeric
@attribute 'Booking Source' \{'ARHUS CHARTER',AURINKOMATKAT,'BLUE AEGEAN',BOOKING.COM,'BRAVO

TOURS',EXPEDIA,ITAKA,Jet2Holidays,RAINBOW,SUNWEB,'TUI Deutschland','TUI NL','TUI UK'\}
@attribute 'TOTAL BOOKINGS' numeric
@ data
Classifier Model
REPTree

Booking Source \(=\) ARHUS CHARTER : 28.43 (4/263.69) [3/88.56]
Booking Source \(=\) AURINKOMATKAT
| TOTAL PAX Nights < 2480.5 : 78.75 (2/210.25) [2/10.25]
| TOTAL PAX Nights >= 2480.5 : 130.67 (3/17.56) [0/0]
Booking Source = BLUE AEGEAN
| TOTAL PAX Nights < 89.5 : 0.33 (3/0.22) [0/0]
| TOTAL PAX Nights >= 89.5 : 22.25 (3/14.89) [1/5.44]
Booking Source \(=\) BOOKING.COM
| \(\mathrm{BB} \%<0.81: 11\) (2/4) [1/0]
\(\mid \mathrm{BB} \%>=0.81: 2.5(3 / 0.22)[1 / 0.44]\)
Booking Source \(=\) BRAVO TOURS : 6.86 (4/66.5) [3/55.33]
Booking Source \(=\) EXPEDIA : 34.14 (3/64.67) [4/121.25]
Booking Source \(=\) ITAKA
| TOTAL PAX Nights < 763 : \(10(2 / 30.25)\) [1/56.25]
| TOTAL PAX Nights >= 763 : 50.5 (3/84.22) [1/128.44]
Booking Source \(=\) Jet2Holidays : 22.43 (6/115.92) [1/182.25]
Booking Source \(=\) RAINBOW : 0.86 (3/0.22) [4/0.11]

Booking Source \(=\) SUNWEB : 18 (3/84.67) [4/20.25]
Booking Source = TUI Deutschland : 7.43 (4/19.25) [3/38.92]
Booking Source \(=\) TUI NL
| \(\mathrm{AI}<51: 4.5\) (4/10.25) [0/0]
| \(\mathrm{AI}>=51: 15.67(2 / 0.25)[1 / 0.25]\)
Booking Source \(=\) TUI UK
TOTAL PAX Nights < 216 : 4.2 (4/12.5) [1/1]
| TOTAL PAX Nights >= 216 : 17 (2/1) [0/0]

Size of the tree : 26

Filtered Header
@relation 'Creta Palm Data 2019 class TB-
weka.filters.unsupervised.attribute.Remove-V-R12,10,11,6,9,5,3,15'
@attribute AI numeric
@attribute HB numeric
@attribute 'HB\\%' numeric
@attribute 'TOTAL PAX Nights' numeric
@ attribute 'BB\\%' numeric
@attribute ADR numeric
@attribute 'Average pax/room' numeric
@ attribute 'TOTAL BOOKINGS' numeric
@ data
Classifier Model

\section*{REPTree}

TOTAL PAX Nights < 1040.5
| TOTAL PAX Nights < 363
| | TOTAL PAX Nights < 149
| | | TOTAL PAX Nights < \(62.5: 1(15 / 0.46)\) [7/1.02]
| | | TOTAL PAX Nights >= \(62.5: 5.71\) (4/2.19) [10/19.61]
| | TOTAL PAX Nights >= 149
| | | Average pax/room < 2.23
| | | | Average pax/room < 1.96: 12 (2/16) [0/0]
| | | | Average pax/room >= 1.96
| | | | | AI < 28 : 20.67 (2/0) [1/4]
\(||||\mid A I>=28: 16.75(3 / 0.89)[1 / 5.44]\)
| | | Average pax/room >= 2.23
| | | | Average pax/room < 2.71
| | | | | TOTAL PAX Nights < \(208: 7(2 / 0)[0 / 0]\)
| | | | | TOTAL PAX Nights >= \(208: 14.17\) (5/2.96) [1/139.24]
| | | | Average pax/room >=2.71:17.75 (2/2.25) [2/70.25]
| TOTAL PAX Nights >= 363
| \(\mid \mathrm{BB} \%<0.78\)
| | | \(\mathrm{AI}<573.5\) : 23.5 (8/9.61) [4/40.95]
| | | AI >= \(573.5: 35.75\) (4/38.69) [0/0]
| | \(\mathrm{BB} \%>=0.78: 37.14\) (6/45.56) [1/13.44]
TOTAL PAX Nights \(>=1040.5: 82.64\) (7/780.78) [4/1672.83]

Size of the tree : 23

Filtered Header
@relation 'Creta Palm Data 2019 class TB-weka.filters.unsupervised.attribute.Remove-V-R11,4,5,9,1,2,13,15'
@attribute 'HB\\%' numeric
@attribute 'TO/ OTA' \{TO,OTA\}
@attribute ADR numeric
@ attribute 'BB\\%' numeric
@attribute 'Booking Source' \{'ARHUS CHARTER',AURINKOMATKAT,'BLUE AEGEAN',BOOKING.COM,'BRAVO

TOURS',EXPEDIA,ITAKA,Jet2Holidays,RAINBOW,SUNWEB,'TUI
Deutschland','TUI NL','TUI UK'\}
@attribute Country
\{Denmark,Finland,Romania,Vary,Poland,UK,Netherlands,Germany \}
@attribute 'AI\\%' numeric
@attribute 'TOTAL BOOKINGS' numeric
@data

Classifier Model
REPTree

Booking Source \(=\) ARHUS CHARTER : 28.43 (5/213.84) [2/93.96]
Booking Source \(=\) AURINKOMATKAT : 101 (3/17.56) [4/2804.03]
Booking Source = BLUE AEGEAN : 12.86 (3/110.22) [4/141.28]
Booking Source = BOOKING.COM : 6.14 (3/26.89) [4/13.44]
Booking Source \(=\) BRAVO TOURS : 6.86 (6/58.89) [1/11.11]

Booking Source = EXPEDIA
| \(\mathrm{HB} \%<0.23\) : \(37.2(2 / 49)\) [3/109.67]
| \(\mathrm{HB} \%>=0.23: 26.5(2 / 0.25)[0 / 0]\)
Booking Source \(=\) ITAKA : 33.14 (6/531.14) [1/84.03]
Booking Source \(=\) Jet 2 Holidays : 22.43 (4/156.69) [3/98.56]
Booking Source \(=\) RAINBOW : 0.86 (6/0.14) [1/0.03]
Booking Source \(=\) SUNWEB : 18 (3/22.89) [4/65.61]
Booking Source \(=\) TUI Deutschland : 7.43 (4/18.5) [3/43]
Booking Source \(=\) TUI NL : 9.29 (6/42.56) [1/0.11]
Booking Source \(=\) TUI UK : 7.86 (7/40.98) [0/0]

Size of the tree : 16

Filtered Header
@relation 'Creta Palm Data 2019 class TB-weka.filters.unsupervised.attribute.Remove-V-R12,5,8,1,14,3,13,15'
@attribute AI numeric
@attribute ADR numeric
@attribute BB numeric
@attribute 'Booking Source' \{'ARHUS CHARTER',AURINKOMATKAT,'BLUE AEGEAN',BOOKING.COM,'BRAVO
TOURS',EXPEDIA,ITAKA,Jet2Holidays,RAINBOW,SUNWEB,'TUI
Deutschland','TUI NL','TUI UK'\}
@attribute MONTH \{'April 2019','May 2019','June 2019','July 2019','August 2019','September 2019','October 2019'\}
@attribute 'Average pax/room' numeric
@attribute 'AI \(\backslash \%\) ' numeric
@attribute 'TOTAL BOOKINGS' numeric
@data

Classifier Model

\section*{REPTree}
\(\qquad\)

Booking Source \(=\) ARHUS CHARTER : 28.43 (4/226.19) [3/166.06]
Booking Source \(=\) AURINKOMATKAT : 101 (3/874.89) [4/653.69]
Booking Source = BLUE AEGEAN : 12.86 (3/94.89) [4/150.86]

Booking Source = BOOKING.COM : 6.14 (3/18.67) [4/33.5]

Booking Source = BRAVO TOURS : 6.86 (3/84.67) [4/57.25]

Booking Source = EXPEDIA : 34.14 (6/67.14) [1/200.69]

Booking Source \(=\) ITAKA : 33.14 (6/354.56) [1/1320.11]

Booking Source \(=\) Jet2Holidays : 22.43 (5/168.8) [2/5]

Booking Source \(=\) RAINBOW : 0.86 (4/0.19) [3/0.06]

Booking Source \(=\) SUNWEB : \(18(7 / 46.86)[0 / 0]\)
Booking Source = TUI Deutschland : 7.43 (6/22.92) [1/56.25]

Booking Source \(=\) TUI NL : 9.29 (5/43.36) [2/23.44]
Booking Source \(=\) TUI UK : 7.86 (5/57.2) [2/0.5]

Size of the tree : 14

Filtered Header
@relation 'Creta Palm Data 2019 class TB- weka.filters.unsupervised.attribute.Remove-V-R11,10,9,5,6,3,1,15'
@attribute 'HB\\%' numeric
@attribute HB numeric
@attribute 'BB\\%' numeric
@attribute ADR numeric
@attribute 'TOTAL PAX Nights' numeric
@attribute 'Average pax/room' numeric
@attribute 'Booking Source' \{'ARHUS CHARTER',AURINKOMATKAT,'BLUE AEGEAN',BOOKING.COM,'BRAVO

TOURS',EXPEDIA,ITAKA,Jet2Holidays,RAINBOW,SUNWEB,'TUI
Deutschland','TUI NL','TUI UK'\}
@attribute 'TOTAL BOOKINGS' numeric
@data

Classifier Model

REPTree

Booking Source = ARHUS CHARTER : 28.43 (5/53.2) [2/536.5]
Booking Source \(=\) AURINKOMATKAT
| TOTAL PAX Nights < 2480.5 : 78.75 (4/108.69) [0/0]
| TOTAL PAX Nights >= \(2480.5: 130.67\) (2/25) [1/4]
Booking Source = BLUE AEGEAN
ADR < 43.99 : 0.33 (2/0) [1/1]
| ADR >= \(43.99: 22.25\) (4/12.19) [0/0]

Booking Source \(=\) BOOKING.COM
| \(\mathrm{HB} \%<0.16: 2.5\) (2/0.25) [2/0.25]
\(\mid \mathrm{HB} \%>=0.16: 11(3 / 2.67)[0 / 0]\)
Booking Source \(=\) BRAVO TOURS : 6.86 (2/9) [5/80.4]
Booking Source \(=\) EXPEDIA : 34.14 (3/100.67) [4/74.25]
Booking Source \(=\) ITAKA
| \(\mathrm{ADR}<100.16: 10(2 / 42.25)[1 / 20.25]\)
\(\mid \mathrm{ADR}>=100.16: 50.5(3 / 84.22)[1 / 128.44]\)
Booking Source \(=\) Jet2Holidays : 22.43 (6/115.92) [1/182.25]
Booking Source \(=\) RAINBOW : 0.86 (6/0.14) [1/0.03]
Booking Source \(=\) SUNWEB : 18 (4/63.69) [3/24.56]
Booking Source = TUI Deutschland : 7.43 (5/25.04) [2/30.26]
Booking Source \(=\) TUI NL : 9.29 (2/0.25) [5/105.05]
Booking Source \(=\) TUI UK
| TOTAL PAX Nights < 216 : 4.2 (3/8.22) [2/13.61]
| TOTAL PAX Nights >= 216 : 17 (2/1) [0/0]

Size of the tree : 24
Filtered Header
@relation 'Creta Palm Data 2019 class TB-
weka.filters.unsupervised.attribute.Remove-V-R11,13,9,4,2,14,6,15'
@attribute 'HB\\%' numeric
@attribute 'AI\\%' numeric
@attribute 'BB\\%' numeric
@attribute 'TO/ OTA' \(\{\) TO, OTA \(\}\)

\section*{REPTree}

Country \(=\) Denmark
| \(\mathrm{HB} \%<0.93: 26.29(6 / 44.25)[2.75 / 609.52]\)
| \(\mathrm{HB} \%>=0.93: 3.24(2 / 0)[3.25 / 4.62]\)
Country = Finland : 101 (5/609.76) [2/1057.04]
Country = Romania : 12.86 (4/114.75) [3/150.92]
Country = Vary
| TOTAL PAX Nights < 237 : 6.14 (5/13.44) [2/33.86]
| TOTAL PAX Nights >= \(237: 34.14\) (4/51.19) [3/158.73]
Country \(=\) Poland
| TOTAL PAX Nights < 654 : 3.6 (6/0.33) [4/85]
| TOTAL PAX Nights >= 654 : 50.5 (3/46.89) [1/277.78]
Country = UK
| TOTAL PAX Nights < 216 : 3.5 (5/10.16) [1/17.64]
| TOTAL PAX Nights >= \(216: 23.88\) (4/54.69) [4/66.31]
Country \(=\) Netherlands
| TOTAL PAX Nights < 237.5 : 4.4 (2/12.25) [3/7.58]
| TOTAL PAX Nights >= 237.5
| | TOTAL PAX Nights < 533 : 14.75 (4/2.69) [0/0]
| | TOTAL PAX Nights \(>=533: 22(3 / 4.67)[2 / 1]\)
Country \(=\) Germany : 7.43 (7/26.53) [0/0]

Size of the tree : 21
=== Summary \(===\)
\begin{tabular}{ll} 
Correlation coefficient & 0.9124 \\
Mean absolute error & 8.0427 \\
Root mean squared error & 11.6649 \\
Relative absolute error & \(42.0642 \%\) \\
Root relative squared error & \(41.2546 \%\) \\
Total Number of Instances & 91
\end{tabular}

\section*{Lazy IBK}
=== Classifier model (full training set) \(===\)
IB1 instance-based classifier
using 1 nearest neighbour(s) for classification
=== Summary \(==\)
Correlation coefficient 0.8847
Mean absolute error 8.4505
Root mean squared error 13.0236
Relative absolute error \(\quad 44.1974\) \%
\begin{tabular}{lcl} 
Root relative squared error & \(46.06 \%\) \\
Total Number of Instances & 91
\end{tabular}

\section*{REPTree}
\(===\) Classifier model (full training set) \(===\)
Booking Source \(=\) ARHUS CHARTER : 28.43 (5/218.16) [2/88.74]
Booking Source \(=\) AURINKOMATKAT : 101 (5/881.2) [2/382.5]
Booking Source \(=\) BLUE AEGEAN : 12.86 (5/135.36) [2/101.14]
Booking Source \(=\) BOOKING.COM : 6.14 (4/17.19) [3/37.23]
Booking Source \(=\) BRAVO TOURS : 6.86 (6/3.33) [1/400]
Booking Source = EXPEDIA : 34.14 (5/87.44) [2/79.46]
Booking Source \(=\) ITAKA : 33.14 (4/219.25) [3/860.92]
Booking Source \(=\) Jet2Holidays : 22.43 (4/200.19) [3/17.06]
Booking Source \(=\) RAINBOW : 0.86 (6/0.14) [1/0.03]
Booking Source \(=\) SUNWEB : 18 (4/17.19) [3/87.73]
Booking Source \(=\) TUI Deutschland : 7.43 (3/13.56) [4/36.28]
Booking Source \(=\) TUI NL : 9.29 (7/36.49) [0/0]
Booking Source \(=\) TUI UK : 7.86 (2/12.25) [5/79.05]

Size of the tree : 14
=== Summary \(==\)
Correlation coefficient 0.8709
Mean absolute error 9.9758
Root mean squared error \(\quad 13.7176\)
Relative absolute error \(\quad 52.1747 \%\)
Root relative squared error \(\quad 48.5141 \%\)

\section*{Meta Bagging}
\(===\) Classifier model (full training set) \(===\)
Bagging with 10 iterations and base learner
=== Summary \(===\)
Correlation coefficient 0.8699
Mean absolute error 9.8428
Root mean squared error \(\quad 13.7439\)
Relative absolute error \(\quad 51.4791\) \%
Root relative squared error 48.6074 \%
Total Number of Instances 91

\section*{Lazy LWL}
=== Classifier model (full training set) ===
Locally weighted learning
Using classifier: weka.classifiers.trees.DecisionStump
Using linear weighting kernels
Using all neighbours
=== Summary \(===\)
Correlation coefficient 0.835
Mean absolute error 12.4952
Root mean squared error 15.4648
Relative absolute error 65.3511 \%
Root relative squared error 54.6936 \%
Total Number of Instances 91

\section*{Decision Table}
=== Classifier model (full training set) ===

Number of training instances: 91
Number of Rules : 10
Non matches covered by Majority class.
Best first.
Start set: no attributes
Search direction: forward

Stale search after 5 node expansions
Total number of subsets evaluated: 87
Merit of best subset found: 9.319
Evaluation (for feature selection): CV (leave one out)
Feature set: 4,6,15
=== Summary \(===\)
Correlation coefficient 0.8247
Mean absolute error 9.2794
Root mean squared error 15.9439
Relative absolute error \(\quad 48.5324\) \%
Root relative squared error 56.3878 \%
Total Number of Instances 91

\section*{Random Tree}
\(==\) Classifier model (full training set) \(===\)

RandomTree

TOTAL PAX Nights < 1867
| TOTAL PAX Nights < 338.5
| | Total Room Nights < 37.5
| \| | TOTAL PAX Nights < \(28: 0.6\) (15/0.24)
| | | TOTAL PAX Nights >= 28
| | | | TOTAL PAX Nights < \(62.5: 1.86\) (7/0.41)
| | | | TOTAL PAX Nights \(>=62.5: 3.17(6 / 0.47)\)
| | Total Room Nights >= 37.5
| \| \| Booking Source = ARHUS CHARTER : \(0(0 / 0)\)
\(||\mid\) Booking Source \(=\) AURINKOMATKAT : \(0(0 / 0)\)
| | | Booking Source = BLUE AEGEAN
| | | | TOTAL PAX Nights < 227.5
| | | | | Average pax/room < 2.71: 20 (1/0)
\(||||\mid\) Average pax/room \(>=2.71: 18(1 / 0)\)
| | | | TOTAL PAX Nights \(>=227.5: 24\) (1/0)
| | | Booking Source = BOOKING.COM
| | | | TOTAL PAX Nights < 100.5: 9 (1/0)
| | | | TOTAL PAX Nights >= 100.5
| | | | | ADR < \(97.15: 13(1 / 0)\)
| | | | | ADR >= 97.15: 11 (1/0)
| | | Booking Source = BRAVO TOURS
| | | | \(\mathrm{BB} \%<0.58: 7(1 / 0)\)
\(|||\mid \mathrm{BB} \%>=0.58: 5(1 / 0)\)
| | | Booking Source = EXPEDIA : 22 (1/0)
| | | Booking Source \(=\) ITAKA
| | | | AI < 280.5: 13 (1/0)
| | | | AI >= 280.5: 15 (1/0)
| | | Booking Source = Jet2Holidays : 20 (1/0)
| | | Booking Source = RAINBOW : 0 ( \(0 / 0\) )
| | | Booking Source = SUNWEB
| \| \| | TOTAL PAX Nights < 202.5: 4 (1/0)
| | | | TOTAL PAX Nights >= 202.5: 12 (1/0)
| | | Booking Source = TUI Deutschland
| | | | MONTH = April 2019:0 (0/0)
| | | | MONTH = May 2019: 0 (0/0)
| | | | MONTH = June 2019: 12 (1/0)
| | | | MONTH = July 2019: 13 (1/0)
| | | | MONTH = August \(2019: 7\) (1/0)
| | | | MONTH = September 2019: 14 (1/0)
| | | | MONTH = October 2019: 0 (0/0)
| | | Booking Source = TUI NL
| | | | TOTAL PAX Nights < 237.5
| | | | | ADR < 99.22: 9 (1/0)
| | | | | ADR >= 99.22: 6(1/0)
| | | | TOTAL PAX Nights >= \(237.5: 15.5\) (2/0.25)
| | | Booking Source = TUI UK
| | | | \(\mathrm{BB}<140\)
| \| \| | TOTAL PAX Nights < 129.5 : 5 (1/0)
\(||||\mid\) TOTAL PAX Nights \(>=129.5: 7.5\) (2/0.25)
| | | | BB >= 140
| | | | | ADR < 72.12: 16 (1/0)
\(||||\mid A D R>=72.12: 18(1 / 0)\)
| TOTAL PAX Nights >= 338.5
| | Country = Denmark
| | | MONTH = April 2019: 0 (0/0)
| | | MONTH = May 2019: 34 (1/0)
| | | MONTH = June 2019: 40 (1/0)
| | | MONTH = July 2019
| | | | HB\% < 0.42: 39 (1/0)
\(|||\mid \mathrm{HB} \%>=0.42: 24(1 / 0)\)
| | | MONTH = August 2019 : 25 (1/0)
| | | MONTH = September 2019:39 (1/0)
| | | MONTH = October \(2019: 22(1 / 0)\)
| | Country = Finland : 63 (1/0)
| | Country = Romania : 27 (1/0)
| | Country = Vary
| | \(\mid \mathrm{HB} \%<0.23\)
| | | | Average pax/room < 2.45
| | | | | Total Room Nights < 214 : 32 (1/0)
| | | | | Total Room Nights >= 214
| | | | | | TOTAL PAX Nights < 566.5 : 41 (1/0)
| | | | | | TOTAL PAX Nights >= \(566.5: 45\) (1/0)
| | | | Average pax/room >=2.45:46(1/0)
\(||\mid \mathrm{HB} \%>=0.23: 26.5(2 / 0.25)\)
| | Country = Poland
| | | \(\mathrm{BB}<780.5\)
| | | | Average pax/room < 2.79: 56 (1/0)
| | | | Average pax/room >=2.79: 41.5 (2/0.25)
| | | BB >=780.5: 63 (1/0)
| | Country = UK
| | | TOTAL PAX Nights < 602
| | | | BB < 449
| | | | | Average pax/room < 2.46: 18 (1/0)
| | | | | Average pax/room >=2.46:22 (1/0)
| | | | BB >= \(449: 28\) (1/0)
| | | TOTAL PAX Nights >= \(602: 34.5(2 / 0.25)\)
| | Country = Netherlands
| | | \(\mathrm{BB} \%<0.54\)
| | | | TOTAL PAX Nights < \(643: 24\) (1/0)
| | | | TOTAL PAX Nights >= 643
| | | | | Average pax/room < 2.17: 23 (1/0)
| | | | | Average pax/room \(>=2.17\)
| | | | | | MONTH = April \(2019: 0\) ( \(0 / 0\) )
| | | | | | MONTH = May \(2019: 21\) (1/0)
| | | | | | MONTH = June 2019: 0 (0/0)
| | | | | | MONTH = July 2019 : 23 (1/0)
| | | | | | MONTH = August 2019: 19 (1/0)
| | | | | | MONTH = September 2019:0 (0/0)
| | | | | | MONTH = October 2019:0 (0/0)
| | | \(\mathrm{BB} \%>=0.54: 16(1 / 0)\)
| | Country = Germany : 0 (0/0)
TOTAL PAX Nights >= 1867
| MONTH = April 2019: 78 (1/0)
| \(\operatorname{MONTH}=\) May \(2019: 125\) (1/0)
| \(\operatorname{MONTH}=\) June 2019 : 132 (1/0)
| MONTH = July 2019: 135 (1/0)
| MONTH = August 2019: 92 (1/0)
| MONTH = September 2019: 82 (1/0)
| MONTH = October 2019 : 0 (0/0)

Size of the tree : 110
=== Summary \(==\)
\begin{tabular}{lc} 
Correlation coefficient & 0.821 \\
Mean absolute error & 8.7104 \\
Root mean squared error & 16.1906 \\
Relative absolute error & \(45.5563 \%\) \\
Root relative squared error & \(57.2604 \%\) \\
Total Number of Instances & 91
\end{tabular}

\section*{Decision Stump}
\(===\) Classifier model (full training set) \(===\)

Decision Stump

Classifications
\(\mathrm{BB}<=769.0\) : 15.231707317073171
BB > 769.0 : 96.25
BB is missing : 0.0
=== Summary \(===\)
Correlation coefficient 0.8058
Mean absolute error 13.2695
Root mean squared error 16.4947
Relative absolute error 69.401 \%
\begin{tabular}{lc} 
Root relative squared error & \(58.3358 \%\) \\
Total Number of Instances & 91
\end{tabular}

\author{
Classifiers "CV Parameter Selection", "Meta Multi Scheme", "Meta Stacking", "Meta Vote", "Meta Weighted Instances Handler Wrapper", "Meta Input Mapped Classifier" and "ZeroR" provide the same algorithm results, with a correlation coefficient: - \(\mathbf{0 . 3 6 6 9}\).
}
\(==\) Summary \(==\)
Correlation coefficient -0.3669
Mean absolute error 19.12
Root mean squared error 28.2754
Relative absolute error 100 \%
Root relative squared error 100 \%
Total Number of Instances 91

ZeroR predicts class value: 22.18

Simple K Means with 3 Clusters| Creta Palm 2019
```

Final cluster centroids:

```
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Attribute & & Full Data
(91.0) & & \[
\begin{array}{r}
\text { Cluster\# } \\
0 \\
(41.0)
\end{array}
\] & \[
(24.0)^{1}
\] & \[
(26.0)^{2}
\] \\
\hline Booking Source & ARHUS & CHARTER & BLUE & AEGEAN ARHUS & CHARTER & ITAKA \\
\hline Country & & Denmark & & Vary & Denmark & Poland \\
\hline Avarage pax/room & & 2.4126 & & 2.4466 & 2.2539 & 2.5055 \\
\hline TO/ OTA & & TO & & TO & TO & TO \\
\hline ADR & & 82.1023 & & 74.4385 & 85.23 & 91.3004 \\
\hline TOTAL PAX Nights & & 491.0659 & & 250.0488 & 429.0417 & 928.3846 \\
\hline Total Room Nights & & 195.9231 & & 105.1951 & 186.8333 & 347.3846 \\
\hline BB & & 238.8 & & 166.4829 & 154.0833 & 431.0385 \\
\hline BB\% & & 0.4559 & & 0.5947 & 0.2819 & 0.3975 \\
\hline HB & & 77.6 & & 75.9415 & 53.2917 & 102.6538 \\
\hline HB\% & & 0.2866 & & 0.3284 & 0.2715 & 0.2345 \\
\hline AI & & 180.4333 & & 19.7423 & 222.8333 & 394.6923 \\
\hline AI\% & & 0.2728 & & 0.0786 & 0.4526 & 0.4132 \\
\hline MONTH & & April 2019 & & April 2019 & August 2019 & June 2019 \\
\hline TOTAL BOOKINGS & & 22.1868 & & 14.7073 & 19.5833 & 36.3846 \\
\hline
\end{tabular}

\section*{Simple K Means with 4 Clusters| Creta Palm 2019}

\footnotetext{
Final cluster centroids:
}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Attribute 3} & & Full Data & 0 & 1 & \[
2
\] \\
\hline & & (91.0) & (25.0) & (16.0) & (18.0) \\
\hline \multicolumn{6}{|l|}{(32.0)} \\
\hline \multicolumn{6}{|l|}{\(=\)} \\
\hline Booking Source Jet2Holidays & ARHUS & CHARTER BRAVO & TOURS & RAINBOW & ITAKA \\
\hline Country & & Denmark & Denmark & Poland & Poland \\
\hline \multicolumn{6}{|l|}{UK} \\
\hline Avarage pax/room & & 2.4126 & 2.4418 & 2.2883 & 2.6722 \\
\hline \multicolumn{6}{|l|}{2.3059} \\
\hline TO/ OTA & & TO & TO & TO & TO \\
\hline \multicolumn{6}{|l|}{TO} \\
\hline ADR & & 82.1023 & 75.6138 & 95.722 & 100.179 \\
\hline \multicolumn{6}{|l|}{70.1934} \\
\hline TOTAL PAX Nights & & 491.0659 & 273.44 & 228.125 & 1351.7222 \\
\hline 308.4375 & & & & & \\
\hline Total Room Nights & & 195.9231 & 116.64 & 96.5 & 502.6111 \\
\hline \multicolumn{6}{|l|}{135.0625} \\
\hline BB & & 238.8 & 104.112 & 86.125 & 623.3333 \\
\hline \multicolumn{6}{|l|}{204.0625} \\
\hline BB\% & & 0.4559 & 0.2801 & 0.3047 & 0.4322 \\
\hline \multicolumn{6}{|l|}{0.6821} \\
\hline HB & & 77.6 & 112.264 & 39.5625 & 128.9444 \\
\hline \multicolumn{6}{|l|}{40.6563} \\
\hline HB\% & & 0.2866 & 0.5989 & 0.3023 & 0.085 \\
\hline \multicolumn{6}{|l|}{0.1481} \\
\hline AI & & 180.4333 & 76.9373 & 102.4375 & 599.4444 \\
\hline \multicolumn{6}{|l|}{64.5938} \\
\hline AI\% & & 0.2728 & 0.169 & 0.3946 & 0.4817 \\
\hline \multicolumn{6}{|l|}{0.1756} \\
\hline MONTH & & April 2019 & April 2019 & August 2019 & June 2019 \\
\hline \multicolumn{6}{|l|}{October 2019} \\
\hline TOTAL BOOKINGS & & 22.1868 & 16.48 & 9.375 & 53.1111 \\
\hline 15.6563 & & & & & \\
\hline
\end{tabular}

\section*{Simple K Means with 5 Clusters| Creta Palm 2019}

Final cluster centroids:


\section*{EM Clusterer| Creta Palm 2019}

Number of clusters selected by cross validation: 6
Number of iterations performed: 2

\begin{tabular}{lrrrrrr} 
June 2019 & 4 & 3 & 3 & 2.0342 & 3 & 3.9658 \\
July 2019 & 5 & 2 & 3 & 3.0125 & 3 & 2.9875 \\
August 2019 & 4 & 2 & 4 & 3.421 & 3 & 2.579 \\
September 2019 & 5 & 2 & 3 & 3.0024 & 3 & 2.9976 \\
October 2019 & 4.9082 & 2 & 3 & 2.7739 & 3.2503 & 3.0676 \\
[total] & 29.9196 & 15 & 20 & 21.2773 & 26.0015 & 20.8016
\end{tabular}
```

Farthest First with 3 Clusters| Creta Palm 2019
]
Cluster centroids:
Cluster 0:
BRAVO TOURS Denmark 2.0 TO 51.04 10.0 5.0 0.0 0.0 10.0 1.0 0.0
0.0 April 2019 1.0
Cluster 1:
AURINKOMATKAT Finland 3.06 TO 132.97 3700.0 1210.0 1859.0 0.5
540.0 0.15 1301.0 0.35 July 2019 135.0
Cluster 2:
BOOKING.COM Vary 3.69 OTA 132.24 59.0 16.0 57.0 0.97 2.0 0.03 0.0
0.0 July 2019 2.0
=== Model and evaluation on training set ===
Clustered Instances
061 (67%)
1 9 (10%)
2 21 (23%)

```

\section*{Farthest First with 4 Clusters| Creta Palm 2019}
```

Cluster centroids:
Cluster 0:
BRAVO TOURS Denmark 2.0 TO 51.04 10.0 5.0 0.0 0.0 10.0 1.0 0.0
0.0 April 2019 1.0
Cluster 1:
AURINKOMATKAT Finland 3.06 TO 132.97 3700.0 1210.0 1859.0 0.5
540.0 0.15 1301.0 0.35 July 2019 135.0
Cluster 2:
BOOKING.COM Vary 3.69 OTA 132.24 59.0 16.0 57.0 0.97 2.0 0.03 0.0
0.0 July 2019 2.0
Cluster 3:
ITAKA Poland 3.15 TO 115.77 1718.0 545.0 0.0 0.0 0.0 0.0 1718.0
1.0 August 2019 41.0
=== Model and evaluation on training set ===
Clustered Instances

```
\begin{tabular}{|c|c|c|}
\hline 0 & 45 & 49\%) \\
\hline 1 & 7 & 8\%) \\
\hline 2 & 18 & 20\%) \\
\hline 3 & 21 & 23\%) \\
\hline
\end{tabular}

\section*{Farthest First with 5 Clusters| Creta Palm 2019}
```

Cluster centroids:
Cluster 0:
BRAVO TOURS Denmark 2.0 TO 51.04 10.0 5.0 0.0 0.0 10.0 1.0 0.0
0.0 April 2019 1.0
Cluster 1:
AURINKOMATKAT Finland 3.06 TO 132.97 3700.0 1210.0 1859.0 0.5
540.0 0.15 1301.0 0.35 July 2019 135.0
Cluster 2:
BOOKING.COM Vary 3.69 OTA 132.24 59.0 16.0 57.0 0.97 2.0 0.03 0.0
0.0 July 2019 2.0
Cluster 3:
ITAKA Poland 3.15 TO 115.77 1718.0 545.0 0.0 0.0 0.0 0.0 1718.0
1.0 August 2019 41.0
Cluster 4:
BLUE AEGEAN Romania 2.0 TO 0.0 8.0 4.0 8.0 1.0 0.0 0.0 0.0 0.0
May 2019 1.0
=== Model and evaluation on training set ===
Clustered Instances
0 22 (24%)
1 7 (8%)
2 15 (16%)
3 17 (19%)
4 30 (33%)

```

\section*{Canopy Clusterer|Creta Palm 2019}

Cluster 0: 'BRAVOTOURS', Denmark, 2.7625, TO, 113.8375, 9, 162.75, 57.75, 0, \(0.29,147.75,0.955,15,0.045\), 'June 2019', \{4\} <0,6,8,9,11,15>

Cluster 1: Jet2Holidays,UK, 2.165584, TO, 77.209231, 16.692308, 318.538462, \(145.615385,225.153846,0.650452,43.692308,0.139738,51.846154,0.221756\), 'July 2019', \{13\} <1,2,3,7,8,9,13>

Cluster 2: RAINBOW, Poland, 2.653147, TO, 47.845, 1,17. 75, 6.25, 17.75, \(0.863971,0,0.071647,0,0.068206\), 'April 2019', \{4\} <1,2,3,5,7,8,9,13,14,15>

Cluster 3: SUNWEB, Netherlands, 2.344545, TO, 80.927273, 16.545455, 474.727273, 204.909091, 222.181818, 0.507273, 29.818182, 0.071818, 222.727273, 0.420909 , 'May 2019', \(\{11\}<1,2,3,7,10,11,12,13,14>\)

Cluster 4:
AURINKOMATKAT,Finland,2.498333,TO,88.43,95.333333,2321.833333,925.8333 33,1428.833333,0.625,365.666667,0.158333,527.333333,0.216667,'April 2019',\{6\} <4>

Cluster 5: EXPEDIA, Vary, 2.421111, OTA, 78.018889, 28.222222, 417.666667, 171.333333, 346.333333, 0.843333, 71.333333, 0.156667, 0, 0, 'April 2019',\{9\} <2,5,7,10>

\section*{Cluster 6:}
'BLUEAEGEAN', Romania, 2.500647, TO, 81.34875, 13, 158.625, 62,29.85, 0.113971, 157.825, 0.780397, 33.054167, 0.109456, 'September 2019', \{8\} <0,6,8,9,15>

Cluster 7: 'TUI UK', UK, 2.646294, TO, 3.3, 0.5, 23, 8, 23, \(0.727941,0,0.143294,0\), 0.136412 , 'April 2019', \(\{2\}<1,2,3,5,7,8,13,15>\)

\section*{Cluster 8:}
'BRAVOTOURS', Denmark, 2.073147, TO, 48.4575, 3, 43, 22.25, 0, 0.113971, 37, \(0.754147,6,0.135706\), 'April 2019', \(\{4\}<0,1,2,6,7,8,9,11,13,15>\)

Cluster 9: RAINBOW, Poland, 2.17, TO, 100.61, 7, 109.5, 47, 0, 0, 109.5, 1, 0, 0, 'July 2019',\{2\} <0,1,2,6,8,9,14,15>

Cluster 10: BOOKING.COM, Vary, 2.844, OTA, 121.024, 5.6, 93.6, 33.4, 72.8, \(0.856,20.8,0.144,0,0\), 'May 2019', \{5\} < 3,5,10>

Cluster 11: 'ARHUSHARTER', Denmark, 2.17, TO, 83.287839, 33, 605.2, 281, 0, 0, \(0,0,605.2,1\), 'June 2019', \(\{5\}<0,3,8,11,12,13,14>\)

Cluster 12: ITAKA, Poland, 2.836, TO, 103.606, 33.4, 1070.4, 367.6, \(0,0,0,0\), 1070.4, 1, 'May 2019', \(\{5\}<3,11,12,14>\)

Cluster 13: 'ARHUS CHARTER', Denmark, 2.08, TO, 0, 17.5, 248, 115, 248, 1, 0, 0 ,0, 0, 'May 2019', \{2\} < 1,2,3,7,8,11,13>

Cluster 14: RAINBOW, Poland, 2, TO, 104.656667, 1, 18, 9, 0, 0, 0, 0, 18, 1, 'May2019',\{3\} <2,3,9,11,12,14>

Cluster 15: 'TUIDeutschland', Germany, 2.354, TO, 89.37, 5, 102.2, 43.2, 0, 0, 92.2, \(0.896,10,0.104\), 'April 2019', \{5\} <0,2,6,7,8,9,15>

Clustered Instances
\begin{tabular}{cc}
0 & \(3(3 \%)\) \\
1 & \(8(9 \%)\) \\
2 & \(5(5 \%)\) \\
3 & \(12(13 \%)\) \\
4 & \(7(8 \%)\) \\
5 & \(8(9 \%)\) \\
6 & \(6(7 \%)\) \\
7 & \(7(8 \%)\) \\
8 & \(4(4 \%)\) \\
9 & \(2(2 \%)\) \\
10 & \(6(7 \%)\) \\
11 & \(5(5 \%)\) \\
12 & \(5(5 \%)\) \\
13 & \(3(3 \%)\) \\
14 & \(3(3 \%)\) \\
15 & \(7(8 \%)\)
\end{tabular}

Make A Density Clusterer, Fitted estimators (with ML estimates of variance)|Creta
Palm 2019

\section*{Cluster 0:}

Prior probability: 0.5914
Attribute: Booking Source
Discrete Estimator. Counts = 3288782612767 (Total = 67)
Attribute: Country
Discrete Estimator. Counts = 9281521277 (Total=62)
Attribute: Average pax/room
Normal Distribution. Mean \(=2.4121\) StdDev \(=0.4301\)
Attribute: TO/ OTA
Discrete Estimator. Counts \(=4115(\) Total \(=56)\)
Attribute: ADR
Normal Distribution. Mean \(=74.4252\) StdDev \(=37.9721\)
Attribute: TOTAL BOOKINGS

Normal Distribution. Mean \(=\) 14.2222 StdDev \(=15.2518\)
Attribute: TOTAL PAX Nights
Normal Distribution. Mean \(=\) 236.3333 StdDev \(=300.9303\)
Attribute: Total Room Nights
Normal Distribution. Mean \(=\) 101.1296 StdDev \(=129.5958\)
Attribute: BB
Normal Distribution. Mean \(=\) 149.0704 StdDev \(=224.6238\)
Attribute: BB\%
Normal Distribution. Mean \(=0.555\) StdDev \(=0.3818\)
Attribute: HB
Normal Distribution. Mean \(=\) 75.7519 StdDev \(=99.247\)
Attribute: HB\%
Normal Distribution. Mean \(=0.3741\) StdDev \(=0.3745\)
Attribute: AI
Normal Distribution. Mean \(=\) 21.2302 StdDev \(=45.6064\)
Attribute: AI\%
Normal Distribution. Mean \(=0.0964\) StdDev \(=0.1353\)
Attribute: MONTH
Discrete Estimator. Counts \(=131098489(\) Total \(=61)\)

\section*{Cluster 1:}

Prior probability: 0.4086
Attribute: Booking Source
Discrete Estimator. Counts = \(6711217387232(\) Total = 50)
Attribute: Country
Discrete Estimator. Counts = 771114492 (Total = 45)
Attribute: Average pax/room
Normal Distribution. Mean \(=2.4133\) StdDev \(=0.35\)
Attribute: TO/ OTA
Discrete Estimator. Counts \(=381(\) Total \(=39)\)
Attribute: ADR
Normal Distribution. Mean \(=\) 93.3067 StdDev \(=24.5645\)
Attribute: TOTAL BOOKINGS
Normal Distribution. Mean \(=33.8108\) StdDev \(=36.6015\)
Attribute: TOTAL PAX Nights
Normal Distribution. Mean \(=862.8378\) StdDev \(=946.7349\)
Attribute: Total Room Nights
Normal Distribution. Mean \(=\) 334.2703 StdDev \(=341.4076\)
Attribute: BB
Normal Distribution. Mean \(=\) 369.7568 StdDev \(=596.6422\)
Attribute: BB\%
Normal Distribution. Mean \(=0.3112\) StdDev \(=0.3184\)
Attribute: HB

Normal Distribution. Mean \(=\) 80.2973 StdDev \(=146.6225\)
Attribute: HB\%
Normal Distribution. Mean \(=0.1588\) StdDev \(=0.2975\)
Attribute: AI
Normal Distribution. Mean \(=412.7838\) StdDev \(=467.9476\)
Attribute: AI\%
Normal Distribution. Mean \(=0.5303\) StdDev \(=0.384\)
Attribute: MONTH
Discrete Estimator. Counts \(=25671176(\) Total \(=44)\)

M5P Trees Algorithm| Creta Palm 2020
\(==\) Classifier model (full training set) \(==\)

M5 pruned model tree:
(using smoothed linear models)
LM1 (52/17.057\%)

LM num: 1

TOTAL BOOKINGS =
-3.2594 * Booking Source=SUNWEB,ARHUS
CHARTER,AURINKOMATKAT,RAINBOW,BRAVO
TOURS,EXPEDIA,ITAKA,BOOKING.COM
\(+5.7916 *\) Booking Source=ARHUS
CHARTER,AURINKOMATKAT,RAINBOW,BRAVO
TOURS,EXPEDIA,ITAKA,BOOKING.COM
\(+5.4911 *\) Booking Source=BOOKING.COM
\(+0.0311 *\) TOTAL PAX Nights
+0.0461 * Total Room Nights
\(-0.1135\)

M5Rules Algorithm| Creta Palm 2020
\(===\) Classifier model (full training set) \(==\)

M5 pruned model rules
(using smoothed linear models) :
Number of Rules : 1

Rule: 1
TOTAL BOOKINGS \(=\)
-3.2594 * Booking Source=SUNWEB,ARHUS
CHARTER,AURINKOMATKAT,RAINBOW,BRAVO
TOURS,EXPEDIA,ITAKA,BOOKING.COM
+5.7916 * Booking Source=ARHUS
CHARTER,AURINKOMATKAT,RAINBOW,BRAVO
TOURS,EXPEDIA,ITAKA,BOOKING.COM
+5.4911 * Booking Source=BOOKING.COM
+0.0311 * TOTAL PAX Nights
+0.0461 * Total Room Nights
-0.1135 [52/17.057\%]

\section*{Linear Regression Algorithm| Creta Palm 2020}
\(===\) Classifier model (full training set) \(===\)
Linear Regression Model

TOTAL BOOKINGS =
-4.0586 * Booking Source=Jet2Holidays,BLUE AEGEAN,TUI
Deutschland,SUNWEB,ARHUS
CHARTER,AURINKOMATKAT,RAINBOW,BRAVO
TOURS,EXPEDIA,ITAKA,BOOKING.COM +
3.6465 * Booking Source=BLUE AEGEAN,TUI Deutschland,SUNWEB,ARHUS CHARTER,AURINKOMATKAT,RAINBOW,BRAVO TOURS,EXPEDIA,ITAKA,BOOKING.COM +
-3.7908 * Booking Source=ITAKA,BOOKING.COM +
4.961 * Booking Source=BOOKING.COM +
-2.6084 * Country=Netherlands,Germany,Finland,Denmark,Poland,Vary +
4.9457 * Country=Denmark,Poland,Vary +
-3.0723 * MONTH=AUGUST 2020 +
0.0196 * TOTAL PAX Nights +
0.1122 * Total Room Nights +
-0.0083 * BB +
-0.0212 * AI +1.977

\section*{SMO Reg Algorithm| Creta Palm 2020}
=== Classifier model (full training set) ===
weights (not support vectors):
+0.0118 * (normalized) Booking Source=ARHUS CHARTER
+0.0003 * (normalized) Booking Source=AURINKOMATKAT
- 0.0016 * (normalized) Booking Source=BLUE AEGEAN
+0.0135 * (normalized) Booking Source=BOOKING.COM
+0.0029 * (normalized) Booking Source=BRAVO TOURS
- \(\quad 0.0053\) * (normalized) Booking Source=EXPEDIA
\(+0 \quad *\) (normalized) Booking Source=ITAKA
- 0.0043 * (normalized) Booking Source=Jet2Holidays
+0.005 * (normalized) Booking Source=RAINBOW
- \(\quad 0.0036\) * (normalized) Booking Source=SELF BOOKINGS
- 0.0096 * (normalized) Booking Source=SUNWEB
- \(\quad 0.0117\) * (normalized) Booking Source=TUI Deutschland
\(+0 \quad *\) (normalized) Booking Source=TUI NL
+0.0026 * (normalized) Booking Source=TUI UK
+0.0146 * (normalized) Country=Denmark
+0.0003 * (normalized) Country=Finland
- 0.0016 * (normalized) Country=Romania
+0.0046 * (normalized) Country=Vary
\(+0.005 *\) (normalized) Country=Poland
- \(\quad 0.0017\) * (normalized) Country=UK
- \(\quad 0.0096\) * (normalized) Country=Netherlands
- \(\quad 0.0117\) * (normalized) Country=Germany
- \(\quad 0.0229\) * (normalized) Average pax/room
+0.0082 * (normalized) TO/ OTA=OTA
+0.0455 * (normalized) ADR
- \(\quad 0.0077\) * (normalized) MONTH=JULY 2020
- \(\quad 0.0123\) * (normalized) MONTH=AUGUST 2020
+0.0044 * (normalized) MONTH=SEPTEMBER 2020
+0.0156 * (normalized) MONTH=OCTOBER 2020
+0.3325 * (normalized) TOTAL PAX Nights
\(+\quad 0.4042\) * (normalized) Total Room Nights
\(+0.15 *\) (normalized) BB
- \(\quad 0.0021\) * (normalized) \(\mathrm{BB} \%\)
+0.1003 * (normalized) HB
+0.0058 * (normalized) HB \(\%\)
+0.0069 * (normalized) AI
\(+0.0075 *\) (normalized) AI \%
- 0.0088

Meta Random Committee Algorithm| Creta Palm 2020
\(===\) Classifier model (full training set) \(===\)
All the base classifiers:
RandomTree
==========
TOTAL PAX Nights < 737
Country \(=\) Denmark
| | ADR < 147.39
| | | \(\mathrm{AI}<161\)
| | | | ADR < 45.22: 0 (1.6/0)
| | | | ADR >= \(45.22: 10(2 / 0)\)
| | | AI >= 161
| | | | TOTAL PAX Nights < 101.5: 0 (0.4/0)
| | | | TOTAL PAX Nights >= 101.5
| | | | | Average pax/room < 2.17: 18 (1/0)
\(||||\mid\) Average pax/room \(>=2.17: 14\) (1/0)
| | ADR >= \(147.39: 30(1 / 0)\)
| Country = Finland
| | ADR < 42.74: 0 (1/0)
| | ADR >= 42.74
| | | Total Room Nights < 185.5 : 17 (1/0)
| | | Total Room Nights >= \(185.5: 29(1 / 0)\)
| Country = Romania
| | MONTH = JULY 2020 : 3 (1/0)
| | MONTH = AUGUST 2020 : 10 (1/0)
| | MONTH = SEPTEMBER 2020 : 15 (1/0)
| | MONTH = OCTOBER \(2020: 0(1 / 0)\)
| Country = Vary
| | \(\mathrm{HB}<53.5\)
| | | ADR < \(64.38: 0.63\) (1.6/0.23)
| | | ADR >=64.38
| | | | Booking Source = ARHUS CHARTER : \(0(0 / 0)\)
| | | | Booking Source = AURINKOMATKAT : 0 (0/0)
\(||\mid\) Booking Source = BLUE AEGEAN : 0 (0/0)
\(|||\mid\) Booking Source = BOOKING.COM : 8 (1/0)
| | | | Booking Source = BRAVO TOURS : 0 (0/0)
| | | | Booking Source = EXPEDIA : 6 (1/0)
\(|||\mid\) Booking Source \(=\) ITAKA : \(0(0 / 0)\)
\(|||\mid\) Booking Source \(=\) Jet2Holidays : \(0(0 / 0)\)
| | | | Booking Source = RAINBOW : \(0(0 / 0)\)
| | | | Booking Source = SELF BOOKINGS : 0 (0/0)
| \| \| Booking Source \(=\) SUNWEB : \(0(0 / 0)\)
\(||\mid\) Booking Source = TUI Deutschland : 0 (0/0)
| \| \| Booking Source = TUI NL : \(0(0 / 0)\)
\(||\mid\) Booking Source = TUI UK : 0 (0/0)
| | HB >= 53.5
| | | Total Room Nights < \(82: 0\) (0.4/0)
| | | Total Room Nights >= 82
| | | | Average pax/room < 2.4 : 32 (1/0)
| | | | Average pax/room >=2.4:27(1/0)
| Country = Poland
| | \(\mathrm{AI}<332\)
| | | MONTH = JULY 2020: 1 (1/0)
| | | MONTH = AUGUST \(2020: 25\) (1/0)
| | | MONTH = SEPTEMBER 2020: 0 (0/0)
| | | MONTH = OCTOBER 2020
\(|||\mid \mathrm{BB} \%<0.5: 13(1 / 0)\)
\(|||\mid \mathrm{BB} \%>=0.5: 7(1 / 0)\)
| | AI >= 332
| | | Booking Source = ARHUS CHARTER : 0 (0/0)
\(||\mid\) Booking Source \(=\) AURINKOMATKAT : 0 (0/0)
| | | Booking Source = BLUE AEGEAN : 0 (0/0)
| | | Booking Source = BOOKING.COM : 0 (0/0)
| | | Booking Source = BRAVO TOURS : 0 (0/0)
| | | Booking Source = EXPEDIA : \(0(0 / 0)\)
| | | Booking Source = ITAKA
| | | | TOTAL PAX Nights < 554 : 26 (1/0)
| | | | TOTAL PAX Nights >= \(554: 23\) (1/0)
| | | Booking Source \(=\) Jet2Holidays : \(0(0 / 0)\)
| | | Booking Source = RAINBOW : 31 (1/0)
| \| | Booking Source = SELF BOOKINGS : 0 (0/0)
| | | Booking Source = SUNWEB : 0 (0/0)
| | | Booking Source = TUI Deutschland: 0 (0/0)
| | | Booking Source = TUI NL : 0 (0/0)
| | | Booking Source = TUI UK : \(0(0 / 0)\)
| Country = UK
| | TOTAL PAX Nights < 262.5
| | | MONTH = JULY \(2020: 0.5\) (2/0.25)
| | | MONTH = AUGUST \(2020: 0\) (1/0)
| | | MONTH = SEPTEMBER \(2020: 2.5\) (2/0.25)
| | | MONTH = OCTOBER 2020: 0 (2/0)
| | TOTAL PAX Nights >= \(262.5: 18\) (1/0)
| Country = Netherlands
| \(\mid \mathrm{BB}<189\)
| | | ADR < 41.63: 0 (1/0)
| | | ADR >= 41.63
| | | | MONTH = JULY 2020
| | | | | Average pax/room < 2.36:3(1/0)
| | | | | Average pax/room >=2.36:6(1/0)
| | | | MONTH = AUGUST 2020
| | | | | Average pax/room < \(2.3: 5\) (1/0)
| | | | | Average pax/room >=2.3:9 (1/0)
| | | | MONTH = SEPTEMBER 2020: 8 (1/0)
| | | | MONTH = OCTOBER 2020: 12 (1/0)
| | \(\mathrm{BB}>=189: 20(1 / 0)\)
| Country = Germany
| | MONTH = JULY 2020 : 16 (1/0)
| | MONTH = AUGUST 2020 : 9 (1/0)
| | MONTH = SEPTEMBER 2020 : 5 (1/0)
| | MONTH = OCTOBER \(2020: 3\) (1/0)
TOTAL PAX Nights \(>=737\)
| \(\mathrm{ADR}<117.03\)
| | TO/ OTA = TO
| | | Country = Denmark : 42 (1/0)
| | | Country = Finland : 0 (0/0)
| | | Country = Romania : 0 (0/0)
| | | Country = Vary: \(0(0 / 0)\)
| | | Country = Poland : 47 (1/0)
| | | Country = UK : 0 (0/0)
| | | Country = Netherlands : \(0(0 / 0)\)
| | | Country = Germany : 0 (0/0)
| | TO/ OTA = OTA
| \| | Booking Source \(=\) ARHUS CHARTER : \(0(0 / 0)\)
\(||\mid\) Booking Source \(=\) AURINKOMATKAT : \(0(0 / 0)\)
| | | Booking Source = BLUE AEGEAN : 0 (0/0)
| | | Booking Source = BOOKING.COM : 56 (1/0)
| | | Booking Source = BRAVO TOURS : 0 (0/0)
| | | Booking Source = EXPEDIA : 52 (1/0)
| | | Booking Source \(=\) ITAKA : \(0(0 / 0)\)
| | | Booking Source \(=\) Jet2Holidays : 0 (0/0)
| | | Booking Source=RAINBOW : 0 ( \(0 / 0\) )
| | | Booking Source = SELF BOOKINGS : 0 (0/0)
| | | Booking Source = SUNWEB : \(0(0 / 0)\)
| | | Booking Source = TUI Deutschland : 0 (0/0)
| | | Booking Source = TUI NL : 0 (0/0)
\(||\mid\) Booking Source \(=\) TUI UK : \(0(0 / 0)\)
| \(\mathrm{ADR}>=117.03: 109\) (1/0)

Size of the tree : 123

RandomTree

Booking Source \(=\) ARHUS CHARTER
| MONTH = JULY 2020: 0 (1/0)
| MONTH = AUGUST \(2020: 0\) (1/0)
| \(\mathrm{MONTH}=\) SEPTEMBER \(2020: 30(1 / 0)\)
| MONTH = OCTOBER 2020: 18 (1/0)
Booking Source \(=\) AURINKOMATKAT
| MONTH = JULY 2020: 17 (1/0)
| MONTH = AUGUST 2020 : 29 (1/0)
| MONTH = SEPTEMBER 2020:0 (0/0)
| MONTH = OCTOBER 2020: 0 (1/0)
Booking Source = BLUE AEGEAN
TOTAL PAX Nights < 111
| | HB<24.5:0(1/0)
| | HB >= \(24.5: 3(1 / 0)\)
| TOTAL PAX Nights >= 111
| | \(\mathrm{ADR}<87.31\) : 15 (1/0)
| | ADR >= 87.31: 10 (1/0)
Booking Source \(=\) BOOKING.COM
| MONTH = JULY 2020 : 56 (1/0)
| MONTH = AUGUST 2020 : 109 (1/0)
| MONTH = SEPTEMBER \(2020: 27\) (1/0)
| MONTH = OCTOBER 2020: 8 (1/0)

Booking Source \(=\) BRAVO TOURS
| MONTH = JULY 2020 : 42 (1/0)
| MONTH = AUGUST 2020 : 10 (1/0)
| \(\operatorname{MONTH}=\) SEPTEMBER \(2020: 14\) (1/0)
| MONTH = OCTOBER 2020: 10 (1/0)
Booking Source \(=\) EXPEDIA
| MONTH = JULY 2020: 32 (1/0)
| MONTH = AUGUST 2020 : 52 (1/0)
| MONTH = SEPTEMBER 2020: 6(1/0)
| MONTH = OCTOBER 2020: 1 (1/0)
Booking Source \(=\) ITAKA
| Average pax/room \(<2.78\)
| \(\mid \mathrm{BB}<36\)
| | | ADR < 99.42 : 23 (1/0)
| | | ADR >= 99.42: 26 (1/0)
| | \(\mathrm{BB}>=36: 7(1 / 0)\)
| Average pax/room >= \(2.78: 47\) (1/0)
Booking Source \(=\) Jet 2 Holidays
| TOTAL PAX Nights < 262.5
| | MONTH = JULY 2020: 1 (1/0)
| | MONTH = AUGUST \(2020: 0\) (0/0)
| | MONTH = SEPTEMBER \(2020: 3\) (1/0)
| | MONTH = OCTOBER 2020: 0 (1/0)
| TOTAL PAX Nights >= \(262.5: 18(1 / 0)\)
Booking Source \(=\) RAINBOW
| \(\mathrm{AI} \%<0.5: 25(1 / 0)\)
| \(\mathrm{AI} \%>=0.5\)
| | Average pax/room < 2.12 : 31 (1/0)
| | Average pax/room >=2.12
| | | Average pax/room < \(2.58: 13(1 / 0)\)
| | | Average pax/room >= \(2.58: 1(1 / 0)\)
Booking Source \(=\) SELF BOOKINGS : \(0(1 / 0)\)
Booking Source \(=\) SUNWEB
| \(\mathrm{BB}<189\)
| | TOTAL PAX Nights < 214 : 12 (1/0)
| | TOTAL PAX Nights >= 214
| | | Average pax/room < 2.54 : 9 (1/0)
| | | Average pax/room \(>=2.54: 6(1 / 0)\)
| \(\mathrm{BB}>=189: 20(1 / 0)\)
Booking Source = TUI Deutschland
| \(\mathrm{ADR}<119.28\)
| | ADR < 98.34
| | | TOTAL PAX Nights < 78.5 : 3 (1/0)
| | | TOTAL PAX Nights >= \(78.5: 5\) (1/0)
| | ADR >= 98.34 : 9 (1/0)
| \(\mathrm{ADR}>=119.28: 16(1 / 0)\)
Booking Source \(=\) TUI NL
| TOTAL PAX Nights < 88.5
| | ADR < \(43.49: 0(1 / 0)\)
| | ADR >= \(43.49: 3(1 / 0)\)
| TOTAL PAX Nights >=88.5
| | TOTAL PAX Nights < 130.5 : 5 (1/0)
| | TOTAL PAX Nights >= \(130.5: 8\) (1/0)
Booking Source \(=\) TUI UK
```

| MONTH = JULY 2020:0 (1/0)
| MONTH = AUGUST 2020:0 (1/0)
| MONTH = SEPTEMBER 2020:2 (1/0)
| MONTH = OCTOBER 2020:0 (1/0)

```

Size of the tree : 81

RandomTree
\(\qquad\)
BB < 489.5
| TOTAL PAX Nights < 235
| | TOTAL PAX Nights < 105
\(||\mid \mathrm{TO} / \mathrm{OTA}=\mathrm{TO}\)
\(|||\mid\) Country = Denmark : 0 (1.92/0)
\(|||\mid\) Country \(=\) Finland \(: 0(1 / 0)\)
| | | | Country = Romania
| | | | \(\mid \mathrm{HB}<24.5: 0(1 / 0)\)
\(||||\mid H B>=24.5: 3(1 / 0)\)
| | | | Country = Vary: 0 (0.79/0)
| | | \(\mid\) Country = Poland
\(||||\mid\) Booking Source = ARHUS CHARTER : 0 (0/0)
| | | | | Booking Source = AURINKOMATKAT : 0 (0/0)
\(||||\mid\) Booking Source = BLUE AEGEAN : 0 (0/0)
\(|||\mid\) Booking Source = BOOKING.COM : 0 (0/0)
| | | | | Booking Source = BRAVO TOURS : 0 (0/0)
| | | | | Booking Source = EXPEDIA : 0 (0/0)
| | | | | Booking Source = ITAKA : 7 (1/0)
| \| \| \| Booking Source = Jet2Holidays : 0 (0/0)
| | | | | Booking Source = RAINBOW : 1 (1/0)
| \| \| \| Booking Source = SELF BOOKINGS : \(0(0 / 0)\)
| | | | | Booking Source = SUNWEB : 0 (0/0)
\(|||\mid\) Booking Source = TUI Deutschland : 0 (0/0)
| | | | | Booking Source = TUI NL : 0 (0/0)
| | | | | Booking Source = TUI UK : 0 (0/0)
| | | | Country = UK
| | | | | Total Room Nights < \(3.5: 0\) (3.92/0)
| | | | | Total Room Nights >=3.5
| | | | | | \(\mathrm{BB}<7: 1\) (1/0)
\(|||||\mid B B>=7: 2.5(2 / 0.25)\)
| | | Country = Netherlands
\(||||\mid A I<13\)
| | | | | Total Room Nights < \(21: 0\) (1/0)
| | | | | | Total Room Nights >=21:3(1/0)
\(||||\mid A I>=13: 5(1 / 0)\)
| | | | Country = Germany
| | | | | Average pax/room < 2.06:3(1/0)
| | | | | Average pax/room >=2.06:5 (1/0)
\(||\mid \mathrm{TO} / \mathrm{OTA}=\mathrm{OTA}\)
| | | | ADR < \(64.38: 0.89\) (1.13/0.1)
| | | | ADR >=64.38
| | | | | Average pax/room < 2.15: 6(1/0)
| | | | | Average pax/room >= \(2.15: 8\) (1/0)
| | TOTAL PAX Nights >= 105
| | | \(\mathrm{AI} \%<0.76\)
| | | | MONTH = JULY 2020: 6 (1/0)
| | | | MONTH = AUGUST 2020 : 9.67 (3/0.22)
| | | | MONTH = SEPTEMBER 2020: 8 (1/0)
| | | | MONTH = OCTOBER 2020: 0 (0/0)
\(||\mid \mathrm{AI} \%>=0.76\)
| | | | Average pax/room < 2.13: 10 (1/0)
| | | | Average pax/room >=2.13
| | | | | AI < 189.5: 12.5 (2/0.25)
| | | | | AI >= 189.5: 14.5 (2/0.25)
| TOTAL PAX Nights >= 235
| | TOTAL PAX Nights < 381.5
| | | Country = Denmark : 18 (1/0)
| | | Country = Finland : 17 (1/0)
| | | Country = Romania : 0 (0/0)
| | | Country = Vary: \(0(0 / 0)\)
| | | Country = Poland : 25 (1/0)
| | | Country = UK : 0 (0/0)
| | | Country = Netherlands : 9 (1/0)
| | | Country = Germany : 16 (1/0)
| | TOTAL PAX Nights >= 381.5
| | | \(\mathrm{AI}<737\)
| | | | Country = Denmark : 30 (1/0)
| | | | Country = Finland : 29 (1/0)
| | | | Country = Romania : 0 (0/0)
| | | | Country = Vary
| | | | | Average pax/room < 2.4 : 32 (1/0)
| | | | | Average pax/room >=2.4:27(1/0)
| | | | Country = Poland
| | | | | TOTAL PAX Nights < 576
| | | | | | ADR < 99.42: 23 (1/0)
| | | | | | ADR >= 99.42: 26 (1/0)
| | | | | TOTAL PAX Nights >= \(576: 31\) (1/0)
| | | | Country = UK : 18 (1/0)
| | | | Country = Netherlands : \(20(1 / 0)\)
| | | | Country = Germany: 0 (0/0)
| | | AI >= \(737: 42\) (1/0)
\(B B>=489.5\)
| Booking Source = ARHUS CHARTER : 0 (0.08/0)
| Booking Source = AURINKOMATKAT : 0 (0/0)
| Booking Source = BLUE AEGEAN : 0 (0/0)
| Booking Source \(=\) BOOKING.COM
| | TOTAL PAX Nights < 1556.5 : 56 (1/0)
| | TOTAL PAX Nights >= \(1556.5: 109(1 / 0)\)
| Booking Source \(=\) BRAVO TOURS : \(0(0 / 0)\)
| Booking Source = EXPEDIA : \(52(1 / 0)\)
| Booking Source = ITAKA : \(47(1 / 0)\)
| Booking Source \(=\) Jet 2 Holidays : \(0(0 / 0)\)
| Booking Source = RAINBOW : \(0(0 / 0)\)
| Booking Source = SELF BOOKINGS : 0 (0.08/0)
| Booking Source \(=\) SUNWEB : \(0(0 / 0)\)
| Booking Source \(=\) TUI Deutschland : \(0(0 / 0)\)
| Booking Source = TUI NL : \(0(0 / 0)\)
| Booking Source = TUI UK : 0 ( \(0.08 / 0\) )

Size of the tree : 99

RandomTree

Total Room Nights < 297.5
| TOTAL PAX Nights < 235
| | Total Room Nights < 49
| | | Total Room Nights < 17.5
| | | | Total Room Nights < \(1.5: 0\) (10/0)
| | | | Total Room Nights >= 1.5 : 1.25 (4/0.19)
| | | Total Room Nights >= 17.5
| | | | Country = Denmark : 0 (0/0)
\(|||\mid\) Country = Finland : \(0(0 / 0)\)
| | | | Country = Romania : 3 (1/0)
| | | | Country = Vary
| | | | | ADR < 70.08: 6(1/0)
| | | | | ADR >=70.08: 8 (1/0)
| | | | Country = Poland : 7 (1/0)
| | | | Country = UK : 3 (1/0)
| | | \(\mid\) Country = Netherlands
| | | | | Average pax/room < 2.13:3 (1/0)
| | | | | Average pax/room >=2.13:5 (1/0)
| | | | Country = Germany
| | | | | Average pax/room < 2.06:3(1/0)
| | | | | Average pax/room >= \(2.06: 5\) (1/0)
| | Total Room Nights >=49
| | | \(\mathrm{BB} \%<0.17\)
| | | | MONTH = JULY 2020: 0 (0/0)
| | | | MONTH = AUGUST \(2020: 9.5\) (2/0.25)
| | | | MONTH = SEPTEMBER 2020: 14.5 (2/0.25)
| | | | MONTH = OCTOBER 2020
\(||||\mid\) Booking Source = ARHUS CHARTER : 0 (0/0)
\(|||\mid\) Booking Source = AURINKOMATKAT : 0 ( \(0 / 0\) )
\(||||\mid\) Booking Source = BLUE AEGEAN : 0 (0/0)
\(||||\mid\) Booking Source = BOOKING.COM : \(0(0 / 0)\)
| | | | | Booking Source = BRAVO TOURS : 10 (1/0)
| \| \| \| Booking Source = EXPEDIA : 0 (0/0)
| | | | | Booking Source = ITAKA : 0 (0/0)
| | | | Booking Source = Jet2Holidays : 0 (0/0)
| | | | | Booking Source = RAINBOW : 13 (1/0)
| \| \| \| Booking Source = SELF BOOKINGS : 0 (0/0)
| | | | | Booking Source = SUNWEB : 12 (1/0)
\(|||\mid\) Booking Source = TUI Deutschland : 0 (0/0)
| | | | | Booking Source = TUI NL : 0 (0/0)
| | | | | Booking Source = TUI UK : 0 (0/0)
\(||\mid \mathrm{BB} \%>=0.17\)
| \| \| Booking Source = ARHUS CHARTER : 0 (0/0)
| | | | Booking Source = AURINKOMATKAT : 0 (0/0)
| | | | Booking Source = BLUE AEGEAN : 0 (0/0)
\(|||\mid\) Booking Source = BOOKING.COM : 0 (0/0)
\(||\mid\) Booking Source = BRAVO TOURS : \(10(1 / 0)\)
| | | | Booking Source = EXPEDIA : 0 (0/0)
| | | | Booking Source = ITAKA : 0 (0/0)
\(|||\mid\) Booking Source \(=\) Jet2Holidays : \(0(0 / 0)\)
| | | | Booking Source = RAINBOW : 0 (0/0)
| | | | Booking Source = SELF BOOKINGS : \(0(0 / 0)\)
\(||\mid\) Booking Source \(=\) SUNWEB : 6 (1/0)
\(||\mid\) Booking Source = TUI Deutschland : 0 (0/0)
| | | | Booking Source = TUI NL : 8 (1/0)
| | | | Booking Source = TUI UK : \(0(0 / 0)\)
| TOTAL PAX Nights >= 235
| | Booking Source = ARHUS CHARTER
| \| | TOTAL PAX Nights < 318.5 : 18 (1/0)
| | | TOTAL PAX Nights >= \(318.5: 30(1 / 0)\)
| | Booking Source = AURINKOMATKAT
| | | TOTAL PAX Nights < 385 : 17 (1/0)
| | | TOTAL PAX Nights >= \(385: 29(1 / 0)\)
| | Booking Source = BLUE AEGEAN : 0 (0/0)
| | Booking Source = BOOKING.COM : 27 (1/0)
| | Booking Source = BRAVO TOURS : 0 (0/0)
| | Booking Source = EXPEDIA : 32 (1/0)
| | Booking Source \(=\) ITAKA
| | | ADR < 99.42 : 23 (1/0)
| | | ADR >= 99.42: 26 (1/0)
| | Booking Source = Jet2Holidays : 18 (1/0)
| | Booking Source \(=\) RAINBOW
| | | \(\mathrm{BB}<162: 31\) (1/0)
| | | \(\mathrm{BB}>=162: 25(1 / 0)\)
| | Booking Source = SELF BOOKINGS : 0 (0/0)
| | Booking Source \(=\) SUNWEB
| | | MONTH = JULY 2020: 0 (0/0)
| | | MONTH = AUGUST 2020 : 9 (1/0)
| | | MONTH = SEPTEMBER 2020: 20 (1/0)
| | | MONTH = OCTOBER 2020: 0 (0/0)
| | Booking Source = TUI Deutschland : 16 (1/0)
| | Booking Source = TUI NL : 0 \((0 / 0)\)
| | Booking Source = TUI UK : \(0(0 / 0)\)
Total Room Nights >=297.5
| \(\mathrm{ADR}<117.03\)
| | TO/ OTA = TO
| | | Average pax/room < 2.66 : 42 (1/0)
| | | Average pax/room >= \(2.66: 47\) (1/0)
| | TO/ OTA = OTA
| | | MONTH = JULY \(2020: 56(1 / 0)\)
| | | MONTH = AUGUST 2020 : 52 (1/0)
| | | MONTH = SEPTEMBER 2020: 0 (0/0)
| | | MONTH = OCTOBER 2020: 0 (0/0)
\(\left\lvert\, \begin{array}{ll}\text { ADR }>=117.03: 109(1 / 0)\end{array}\right.\)

Size of the tree : 95

RandomTree

BB < 489.5
| Total Room Nights < 88
| | Booking Source = ARHUS CHARTER : 0 (1.92/0)
| | Booking Source = AURINKOMATKAT : 0 (1/0)
| | Booking Source = BLUE AEGEAN
| | | Total Room Nights < 46
| | | | ADR < 43.55: 0 (1/0)
| | | | ADR >= \(43.55: 3(1 / 0)\)
| | | Total Room Nights >= \(46: 10(1 / 0)\)
| | Booking Source = BOOKING.COM : 8 (1/0)
| | Booking Source = BRAVO TOURS : 10 (2/0)
| | Booking Source = EXPEDIA
| | | Average pax/room < 2.54 : 6 (1/0)
| | | Average pax/room >= \(2.54: 1(1 / 0)\)
| | Booking Source \(=\) ITAKA : \(7(1 / 0)\)
| | Booking Source \(=\) Jet 2 Holidays
| | | \(\mathrm{BB}<28: 0.5(2 / 0.25)\)
| | | \(\mathrm{BB}>=28: 3(1 / 0)\)
| | Booking Source = RAINBOW
| | | Average pax/room < 2.58: 13 (1/0)
| | | Average pax/room >= \(2.58: 1(1 / 0)\)
| | Booking Source = SELF BOOKINGS : 0 (0.92/0)
| | Booking Source \(=\) SUNWEB
| | | MONTH = JULY 2020 : 6 (1/0)
| | | MONTH = AUGUST \(2020: 0(0 / 0)\)
| | | MONTH = SEPTEMBER 2020: 0 (0/0)
| | | MONTH = OCTOBER 2020 : 12 (1/0)
| | Booking Source = TUI Deutschland
| | | \(\mathrm{AI}<29\)
| | | | MONTH = JULY 2020: 0 (0/0)
| | | | MONTH = AUGUST \(2020: 0\) ( \(0 / 0\) )
| | | | MONTH = SEPTEMBER \(2020: 5\) (1/0)
| | | | MONTH = OCTOBER \(2020: 3\) (1/0)
| | | AI >= \(29: 9(1 / 0)\)
| | Booking Source = TUI NL
| | | TOTAL PAX Nights < 88.5
| | | | MONTH = JULY 2020 : 3 (1/0)
| | | | MONTH = AUGUST \(2020: 0(0 / 0)\)
| | | | MONTH = SEPTEMBER 2020: 0 (0/0)
| | | | MONTH = OCTOBER \(2020: 0(1 / 0)\)
| | | TOTAL PAX Nights >=88.5
| | | | ADR < 93.64 : 5 (1/0)
| | | | ADR >= \(93.64: 8\) (1/0)
| | Booking Source = TUI UK
| | | TOTAL PAX Nights < \(7: 0\) (2.92/0)
| | | TOTAL PAX Nights >=7:2(1/0)
| Total Room Nights >=88
| | Total Room Nights < 159.5
| | | Booking Source = ARHUS CHARTER : 18 (1/0)
| | | Booking Source = AURINKOMATKAT : 17 (1/0)
| | | Booking Source = BLUE AEGEAN : 15 (1/0)
| | | Booking Source = BOOKING.COM : 0 (0/0)
| | | Booking Source = BRAVO TOURS : 14 (1/0)
| | | Booking Source = EXPEDIA : \(0(0 / 0)\)
\(||\mid\) Booking Source \(=\) ITAKA : \(0(0 / 0)\)
| | | Booking Source \(=\) Jet2Holidays : 0 ( \(0 / 0\) )
| | | Booking Source = RAINBOW : 25 (1/0)
| \| | Booking Source = SELF BOOKINGS : 0 (0/0)
| | | Booking Source = SUNWEB : \(9(1 / 0)\)
| | | Booking Source = TUI Deutschland : 16 (1/0)
| | | Booking Source = TUI NL : 0 \((0 / 0)\)
\(||\mid\) Booking Source \(=\) TUI UK : \(0(0 / 0)\)
| | Total Room Nights >= 159.5
| | | Country = Denmark
| | | | TOTAL PAX Nights < \(641: 30(1 / 0)\)
| | | | TOTAL PAX Nights >=641: 42 (1/0)
| | | Country = Finland : 29 (1/0)
| | | Country = Romania : 0 (0/0)
| | | Country = Vary
| | | | ADR < 91.19: 32 (1/0)
| | | | ADR >= \(91.19: 27(1 / 0)\)
| | | Country = Poland
| | | | Average pax/room < 2.25: 31 (1/0)
| | | | Average pax/room >=2.25
| | | | | Average pax/room < 2.54: 23 (1/0)
| | | | | Average pax/room >=2.54:26(1/0)
| | | Country = UK : 18 (1/0)
| | | Country = Netherlands : 20 (1/0)
| | | Country = Germany : 0 (0/0)
\(B B>=489.5\)
| TO/ OTA = TO : 39.63 (1.19/292.19)
| TO/ OTA = OTA
| | TOTAL PAX Nights < 1556.5
| | | ADR < 44.03: 0 (0.06/0)
| | | ADR >= \(44.03: 54(2 / 4)\)
| | TOTAL PAX Nights >= 1556.5 : 109 (1/0)

Size of the tree : 87

RandomTree
\(\qquad\)
BB < 489.5
| Booking Source = ARHUS CHARTER
| | MONTH = JULY 2020 : 0 (0.92/0)
| | MONTH = AUGUST \(2020: 0\) (1/0)
| | MONTH = SEPTEMBER \(2020: 30(1 / 0)\)
| | MONTH = OCTOBER \(2020: 18\) (1/0)
| Booking Source \(=\) AURINKOMATKAT
| | ADR < 42.74: 0 (1/0)
| | ADR >= 42.74
| | | Average pax/room < 2.1:29 (1/0)
| | | Average pax/room >= 2.1:17(1/0)
| Booking Source = BLUE AEGEAN
| | TOTAL PAX Nights < 111
| | | ADR < 43.55: 0 (1/0)
| | | ADR >= \(43.55: 3\) (1/0)
| | TOTAL PAX Nights >= 111
| | | Average pax/room < \(2.31: 15(1 / 0)\)
| | | Average pax/room >= \(2.31: 10(1 / 0)\)
| Booking Source \(=\) BOOKING.COM
| | Average pax/room < 2.33 : 8 (1/0)
| | Average pax/room >= \(2.33: 27\) (1/0)
| Booking Source \(=\) BRAVO TOURS
| | TOTAL PAX Nights < 549
| | | ADR < 102.41: \(10(2 / 0)\)
| | | ADR >= 102.41: 14 (1/0)
| | TOTAL PAX Nights >= \(549: 42\) (1/0)
| Booking Source = EXPEDIA
| | ADR < 78.41
| | | ADR < 64.38: 1 (1/0)
| | | ADR >= \(64.38: 6(1 / 0)\)
| | ADR >=78.41: 32 (1/0)
| Booking Source \(=I T A K A\)
| | MONTH = JULY \(2020: 26\) (1/0)
| | MONTH = AUGUST \(2020: 0\) (0/0)
| | MONTH = SEPTEMBER 2020 : 23 (1/0)
| | MONTH = OCTOBER 2020: 7 (1/0)
| Booking Source \(=\) Jet 2 Holidays
| | MONTH = JULY 2020 : 1 (1/0)
| | MONTH = AUGUST 2020 : 18 (1/0)
| | MONTH = SEPTEMBER 2020: 3 (1/0)
| | MONTH = OCTOBER \(2020: 0(1 / 0)\)
| Booking Source = RAINBOW
| | TOTAL PAX Nights < 226.5
| | | Total Room Nights < \(33.5: 1\) (1/0)
| | | Total Room Nights >= 33.5 : 13 (1/0)
| | TOTAL PAX Nights \(>=226.5\)
| | | Average pax/room < \(2.24: 31\) (1/0)
| | | Average pax/room >= \(2.24: 25\) (1/0)
| Booking Source = SELF BOOKINGS : 0 (0.92/0)
| Booking Source = SUNWEB
| | \(\mathrm{BB} \%<0.47\)
| | | MONTH = JULY \(2020: 6\) (1/0)
| | | MONTH = AUGUST 2020 : 9 (1/0)
| | | MONTH = SEPTEMBER 2020: 0 (0/0)
| | | MONTH = OCTOBER 2020 : 12 (1/0)
| | \(\mathrm{BB} \%>=0.47: 20(1 / 0)\)
| Booking Source = TUI Deutschland
| | ADR < 119.28
| | | Average pax/room < 2.2
| | | | Average pax/room < 2.06:3 (1/0)
| | | | Average pax/room >=2.06:5 (1/0)
| | | Average pax/room >= \(2.2: 9\) (1/0)
| | ADR >= \(119.28: 16(1 / 0)\)
| Booking Source = TUI NL
| | MONTH = JULY 2020 : 3 (1/0)
| | MONTH = AUGUST \(2020: 5\) (1/0)
| | MONTH = SEPTEMBER \(2020: 8\) (1/0)
| | MONTH = OCTOBER 2020: 0 (1/0)
| Booking Source = TUI UK
| | TOTAL PAX Nights < \(7: 0\) (2.92/0)
| | TOTAL PAX Nights >=7:2(1/0)
\(B B>=489.5\)
| ADR < 117.03
| | ADR < 44.03: 0 (0.24/0)
| | ADR >= 44.03
| | | Booking Source = ARHUS CHARTER : 0 (0/0)
| | | Booking Source = AURINKOMATKAT : 0 (0/0)
| | | Booking Source = BLUE AEGEAN : 0 (0/0)
| | | Booking Source = BOOKING.COM : 56 (1/0)
| | | Booking Source = BRAVO TOURS : 0 (0/0)
| | | Booking Source = EXPEDIA : 52 (1/0)
| | | Booking Source = ITAKA : 47 (1/0)
| | | Booking Source \(=\) Jet2Holidays : 0 ( \(0 / 0\) )
| | | Booking Source = RAINBOW : 0 ( \(0 / 0\) )
\(||\mid\) Booking Source \(=\) SELF BOOKINGS : 0 (0/0)
\(||\mid\) Booking Source \(=\) SUNWEB : \(0(0 / 0)\)
| | | Booking Source = TUI Deutschland : 0 (0/0)
| \| | Booking Source = TUI NL : \(0(0 / 0)\)
| | | Booking Source = TUI UK : 0 (0/0)
\(\left\lvert\, \begin{array}{ll}\text { ADR }>=117.03: 109(1 / 0)\end{array}\right.\)

Size of the tree : 91

RandomTree

BB \(<489.5\)
Total Room Nights < 88
| | Booking Source \(=\) ARHUS CHARTER : 0 (1.92/0)
| | Booking Source = AURINKOMATKAT : 0 (1/0)
| | Booking Source = BLUE AEGEAN
| | | ADR < 89.95
| | | | MONTH = JULY 2020: 3 (1/0)
| | | | MONTH = AUGUST 2020:0 (0/0)
| | | | MONTH = SEPTEMBER 2020: 0 (0/0)
| | | | MONTH = OCTOBER 2020: 0 (1/0)
| | | ADR >= \(89.95: 10(1 / 0)\)
| | Booking Source = BOOKING.COM : 8 (1/0)
| | Booking Source = BRAVO TOURS : \(10(2 / 0)\)
| | Booking Source = EXPEDIA
| | | TOTAL PAX Nights < \(41: 1\) (1/0)
| | | TOTAL PAX Nights >= \(41: 6(1 / 0)\)
| | Booking Source \(=\) ITAKA : \(7(1 / 0)\)
| | Booking Source = Jet2Holidays
| | | ADR < 45.04: 0 (1/0)
| | | ADR >= 45.04
| | | | TOTAL PAX Nights < \(63: 1\) (1/0)
| | | | TOTAL PAX Nights >= \(63: 3(1 / 0)\)
| | Booking Source = RAINBOW
| | | Total Room Nights < 33.5 : 1 (1/0)
| | | Total Room Nights >= 33.5 : 13 (1/0)
| | Booking Source = SELF BOOKINGS : 0 (0.92/0)
| | Booking Source \(=\) SUNWEB
| | | ADR < 103.91: 12 (1/0)
| | | ADR >= \(103.91: 6(1 / 0)\)
| | Booking Source = TUI Deutschland
| | | ADR < 98.34
| | | | ADR < \(74.59: 3\) (1/0)
\(|||\mid A D R>=74.59: 5(1 / 0)\)
| | | ADR >= \(98.34: 9(1 / 0)\)
| | Booking Source = TUI NL
| | | \(\mathrm{AI}<13\)
| | | | ADR < 43.49: 0 (1/0)
| | | | ADR >= \(43.49: 3(1 / 0)\)
\(||\mid A I>=13\)
| | | | Average pax/room < 2.19: 8 (1/0)
\(|||\mid\) Average pax/room \(>=2.19: 5(1 / 0)\)
| | Booking Source = TUI UK
| | | TOTAL PAX Nights < \(7: 0\) (2.92/0)
| | | TOTAL PAX Nights >=7:2(1/0)
| Total Room Nights >=88
| | Country = Denmark
| | | MONTH = JULY 2020: 42 (1/0)
| | | MONTH = AUGUST 2020 : 0 ( \(0 / 0\) )
| | | MONTH = SEPTEMBER 2020
| | | | Total Room Nights < \(137: 14\) (1/0)
| | | | Total Room Nights >= 137:30 (1/0)
| | | MONTH = OCTOBER 2020 : 18 (1/0)
| | Country = Finland
| | | TOTAL PAX Nights < 385 : 17 (1/0)
| | | TOTAL PAX Nights >= \(385: 29(1 / 0)\)
| | Country = Romania : 15 (1/0)
| | Country = Vary
| | | Booking Source = ARHUS CHARTER : 0 (0/0)
| | | Booking Source = AURINKOMATKAT : \(0(0 / 0)\)
| | | Booking Source = BLUE AEGEAN : 0 (0/0)
| | | Booking Source = BOOKING.COM : 27 (1/0)
| | | Booking Source = BRAVO TOURS : 0 (0/0)
| | | Booking Source = EXPEDIA : 32 (1/0)
| | | Booking Source = ITAKA : \(0(0 / 0)\)
| | | Booking Source \(=\) Jet2Holidays : 0 ( \(0 / 0\) )
| | | Booking Source = RAINBOW : \(0(0 / 0)\)
| \| | Booking Source = SELF BOOKINGS : 0 (0/0)
| | | Booking Source = SUNWEB : 0 (0/0)
| | | Booking Source = TUI Deutschland: 0 (0/0)
| | | Booking Source = TUI NL : \(0(0 / 0)\)
| | | Booking Source = TUI UK : \(0(0 / 0)\)
| | Country = Poland
| | | MONTH = JULY \(2020: 26(1 / 0)\)
| | | MONTH = AUGUST \(2020: 25\) (1/0)
| | | MONTH = SEPTEMBER 2020
\(|||\mid\) Booking Source = ARHUS CHARTER : \(0(0 / 0)\)
\(|||\mid\) Booking Source \(=\) AURINKOMATKAT \(: 0(0 / 0)\)
\(||\mid\) Booking Source = BLUE AEGEAN : 0 (0/0)
| | | | Booking Source = BOOKING.COM : 0 (0/0)
\(||\mid\) Booking Source = BRAVO TOURS : 0 (0/0)
| \| \| Booking Source = EXPEDIA : 0 (0/0)
| | | | Booking Source = ITAKA : 23 (1/0)
\(|||\mid\) Booking Source \(=\) Jet2Holidays : \(0(0 / 0)\)
| | | | Booking Source= RAINBOW : 31 (1/0)
\(||\mid\) Booking Source \(=\) SELF BOOKINGS : \(0(0 / 0)\)
| \| \| Booking Source \(=\) SUNWEB : \(0(0 / 0)\)
\(||\mid\) Booking Source = TUI Deutschland :0 (0/0)
\(||\mid\) Booking Source = TUI NL : \(0(0 / 0)\)
| | | | Booking Source = TUI UK : 0 (0/0)
| | | MONTH = OCTOBER 2020: 0 (0/0)
| | Country = UK : 18 (1/0)
| | Country = Netherlands
| | | Average pax/room < \(2.32: 20(1 / 0)\)
| | | Average pax/room >=2.32:9 (1/0)
| | Country = Germany : 16 (1/0)
```

BB >= 489.5
| Average pax/room < 3.06
| | Total Room Nights < 158.5:0 (0.18/0)
| | Total Room Nights >= 158.5
| | | BB < 954
| | | | ADR < 99.44: 52 (1/0)
| | | | ADR >= 99.44 : 56(1/0)
| | | BB >= 954:47(1/0)
| Average pax/room >= 3.06: 102.71 (1.06/645.9)

```

Size of the tree : 105

RandomTree

Total Room Nights < 297.5
Total Room Nights < 88
| | Total Room Nights < 27
| | | TOTAL PAX Nights < 4.5 : 0 (10/0)
| | | TOTAL PAX Nights >= 4.5
| | | | HB < 45.5 : 1.25 (4/0.19)
| | | | HB >= \(45.5: 3\) (1/0)
| | Total Room Nights >= 27
| | | Country = Denmark : \(10(2 / 0)\)
| | | Country = Finland : 0 (0/0)
| | | Country = Romania : 10 (1/0)
| | | Country = Vary
| | | | Booking Source = ARHUS CHARTER: 0 (0/0)
| | | | Booking Source = AURINKOMATKAT : 0 (0/0)
\(||\mid\) Booking Source = BLUE AEGEAN : 0 (0/0)
| | | | Booking Source = BOOKING.COM : 8 (1/0)
\(|||\mid\) Booking Source = BRAVO TOURS : 0 (0/0)
| | | | Booking Source = EXPEDIA : 6 (1/0)
\(||\mid\) Booking Source \(=\) ITAKA : \(0(0 / 0)\)
| | | | Booking Source = Jet2Holidays : 0 (0/0)
| \| \| Booking Source = RAINBOW : 0 (0/0)
\(||\mid\) Booking Source \(=\) SELF BOOKINGS : \(0(0 / 0)\)
| | | | Booking Source = SUNWEB : 0 (0/0)
\(||\mid\) Booking Source = TUI Deutschland : 0 (0/0)
| | | | Booking Source = TUI NL : \(0(0 / 0)\)
| | | | Booking Source = TUI UK : 0 (0/0)
| | | Country = Poland
| | | | Total Room Nights < \(46.5: 7\) (1/0)
| | | | Total Room Nights >= \(46.5: 13\) (1/0)
| | | Country = UK : 3 (1/0)
| | | Country = Netherlands
| | | | ADR < 85.13: 12 (1/0)
| | | | ADR >= 85.13
| | | | | Total Room Nights < 60
| | | | | | TOTAL PAX Nights < \(88.5: 3\) (1/0)
\(||||\mid\) TOTAL PAX Nights \(>=88.5: 5\) (1/0)
| | | | | Total Room Nights >=60
\(||||\mid\) Booking Source = ARHUS CHARTER : \(0(0 / 0)\)
| | | | | Booking Source = AURINKOMATKAT : 0 (0/0)
\(||||\mid\) Booking Source = BLUE AEGEAN : \(0(0 / 0)\)
\(||||\mid\) Booking Source \(=\) BOOKING.COM : \(0(0 / 0)\)
\(||||\mid\) Booking Source = BRAVO TOURS : \(0(0 / 0)\)| | | | | | Booking Source = EXPEDIA : 0 (0/0)\(||||\mid\) Booking Source = ITAKA : 0 (0/0)\(||||\mid\) Booking Source \(=\) Jet2Holidays : 0 ( \(0 / 0\) )| | | | | | Booking Source = RAINBOW : 0 (0/0)\(||||\mid\) Booking Source \(=\) SELF BOOKINGS : \(0(0 / 0)\)
\(||||\mid\) Booking Source = SUNWEB : 6(1/0)
\(||||\mid\) Booking Source = TUI Deutschland : 0 (0/0)
| | | | | | Booking Source = TUI NL : 8 (1/0)
| | | | | | Booking Source = TUI UK : 0 (0/0)
| | | Country = Germany
| | | | MONTH = JULY 2020: 0 (0/0)
| | | | MONTH = AUGUST \(2020: 9(1 / 0)\)
| | | | MONTH = SEPTEMBER \(2020: 5\) (1/0)
| | | | MONTH = OCTOBER 2020: 3 (1/0)
| Total Room Nights >=88
| | Average pax/room < 2.09| | | Total Room Nights < \(256: 29\) (1/0)| | | Total Room Nights >= \(256: 31(1 / 0)\)| | Average pax/room >=2.09| | | Country = Denmark
```

| | | | ADR < 147.39
| | | | | ADR < 95.55: 18 (1/0)
| | | | | ADR >= 95.55: 14 (1/0)
| | | | ADR >= 147.39:30 (1/0)
| | | Country = Finland : 17 (1/0)
| | | Country = Romania : 15 (1/0)
| | | Country = Vary
| | | | MONTH = JULY 2020: 32(1/0)
| | | | MONTH = AUGUST 2020:0 (0/0)
| | | | MONTH = SEPTEMBER 2020:27 (1/0)
| | | | MONTH = OCTOBER 2020:0 (0/0)
| | | Country = Poland
| | | | ADR < 99.42: 23 (1/0)
| | | | ADR >= 99.42:25.5 (2/0.25)
| | | Country = UK : 18 (1/0)
| | | Country = Netherlands
| | | | TOTAL PAX Nights < 389:9(1/0)
| | | | TOTAL PAX Nights >= 389:20(1/0)
| | | Country = Germany : 16 (1/0)
Total Room Nights >= 297.5
| TOTAL PAX Nights < 1619
| | TOTAL PAX Nights < 925.5:42(1/0)
| | TOTAL PAX Nights >= 925.5
| | | Country = Denmark : 0 (0/0)
| | | Country = Finland :0 (0/0)
| | | Country = Romania : 0 (0/0)

```
| | | Country = Vary
| | | | ADR < 99.44: 52 (1/0)
| | | | ADR >= \(99.44: 56(1 / 0)\)
| | | Country = Poland : 47 (1/0)
| | | Country = UK : 0 (0/0)
| | | Country = Netherlands : 0 (0/0)
| | | Country = Germany : 0 (0/0)
| TOTAL PAX Nights >= 1619 : 109 (1/0)

Size of the tree : 97

RandomTree

BB < 489.5
TOTAL PAX Nights < 235
| | \(\mathrm{AI}<37\)
| | | Total Room Nights < 27
| | | | ADR < 29.86: 0 (9.02/0)
| | | | ADR >= 29.86
\(|||\mid\) Country = Denmark : \(0(0 / 0)\)
\(|||\mid\) Country \(=\) Finland \(: 0(0 / 0)\)
\(||||\mid\) Country \(=\) Romania \(: 3\) (1/0)
| | | | | Country = Vary : 1 (1/0)
| | | | | Country = Poland : 1 (1/0)
\(||||\mid\) Country = UK : \(1.5(2 / 0.25)\)
\(|||\mid\) Country \(=\) Netherlands : \(0(0 / 0)\)
\(|||\mid\) Country = Germany : \(0(0 / 0)\)
| | | Total Room Nights >= 27
| | | | ADR < 91.94
\(||||\mid\) Booking Source = ARHUS CHARTER : 0 (0/0)
\(|||\mid\) Booking Source = AURINKOMATKAT : 0 (0/0)
\(||||\mid\) Booking Source = BLUE AEGEAN : 0 (0/0)
\(|||\mid\) Booking Source = BOOKING.COM : 8 (1/0)
\(||||\mid\) Booking Source = BRAVO TOURS : 0 (0/0)
| | | | | Booking Source = EXPEDIA : 6 (1/0)
\(||||\mid\) Booking Source = ITAKA : 7 (1/0)
| | | | | Booking Source = Jet2Holidays : 3 (1/0)
\(|||\mid\) Booking Source = RAINBOW : 0 (0/0)
\(|||\mid\) Booking Source \(=\) SELF BOOKINGS : \(0(0 / 0)\)
\(|||\mid\) Booking Source \(=\) SUNWEB : \(0(0 / 0)\)
| | | | Booking Source = TUI Deutschland
| | | | | | Average pax/room < 2.06:3(1/0)
\(||||\mid\) Average pax/room \(>=2.06: 5(1 / 0)\)
| \| \| \| Booking Source = TUI NL
| | | | | | Average pax/room < 2.13:3 (1/0)
| | | | | | Average pax/room >=2.13:5 (1/0)
| | | | | Booking Source = TUI UK : 0 (0/0)
| | | | ADR >= \(91.94: 10(2 / 0)\)
| | \(\mathrm{AI}>=37\)
| | | ADR < 39.73: 0 (0.73/0)
| | | ADR >= 39.73
| | | | Booking Source = ARHUS CHARTER : \(0(0 / 0)\)
| \| \| Booking Source = AURINKOMATKAT : 0 (0/0)
| | | | Booking Source = BLUE AEGEAN : 15 (1/0)
| | | | Booking Source = BOOKING.COM : 0 (0/0)
| | | | Booking Source = BRAVO TOURS
| | | | | Total Room Nights < 73.5 : 10 (1/0)
| | | | | Total Room Nights >=73.5: 14 (1/0)
| | | | Booking Source = EXPEDIA : \(0(0 / 0)\)
\(||\mid\) Booking Source \(=\) ITAKA : \(0(0 / 0)\)
\(|||\mid\) Booking Source \(=\) Jet2Holidays : \(0(0 / 0)\)
| | | | Booking Source = RAINBOW : 13 (1/0)
\(|||\mid\) Booking Source \(=\) SELF BOOKINGS : \(0(0 / 0)\)
| | | | Booking Source = SUNWEB
| | | | | ADR < 103.91: 12 (1/0)
| | | | | ADR >= 103.91:6(1/0)
| | | | Booking Source = TUI Deutschland : 9 (1/0)
\(||\mid\) Booking Source = TUI NL : 8 (1/0)
| | | | Booking Source = TUI UK : 0 (0/0)
| TOTAL PAX Nights >= 235
| | Country = Denmark
| | | TOTAL PAX Nights < 318.5 : 18 (1/0)
| | | TOTAL PAX Nights >= 318.5
| | | | MONTH = JULY 2020: 42 (1/0)
| | | | MONTH = AUGUST 2020:0 (0/0)
| | | | MONTH = SEPTEMBER 2020: 30 (1/0)
| | | | MONTH = OCTOBER \(2020: 0(0 / 0)\)
| | Country = Finland
| | | Average pax/room < 2.1 : 29 (1/0)
| | | Average pax/room >= 2.1:17(1/0)
| | Country = Romania : 0 (0/0)
| | Country = Vary
| | | ADR < 91.19: 32 (1/0)
| | | ADR >= \(91.19: 27(1 / 0)\)
| | Country = Poland
| | | Total Room Nights < 256.5
| | | | ADR < 99.42 : 23 (1/0)
| | | | ADR >= \(99.42: 25.5\) (2/0.25)
| | | Total Room Nights >=256.5:31(1/0)
| | Country = UK : 18 (1/0)
| | Country = Netherlands
| | | ADR < 93.81: 20 (1/0)
| | | ADR >= \(93.81: 9\) (1/0)
| | Country = Germany : 16 (1/0)
\(B B>=489.5\)
ADR < 117.03
| | ADR < 44.03: 0 (0.24/0)
| | \(\mathrm{ADR}>=44.03\)
| | | Country = Denmark : 0 ( \(0 / 0\) )
| | | Country = Finland : 0 (0/0)
| | | Country = Romania : 0 (0/0)
| | | Country = Vary
| | | | Booking Source = ARHUS CHARTER : 0 (0/0)
\(||\mid\) Booking Source = AURINKOMATKAT : 0 (0/0)
| \| \| Booking Source = BLUE AEGEAN : 0 (0/0)
| | | | Booking Source = BOOKING.COM : 56 (1/0)
| | | | Booking Source = BRAVO TOURS : 0 (0/0)
| | | | Booking Source = EXPEDIA : 52 (1/0)
\(||\mid\) Booking Source \(=\) ITAKA : \(0(0 / 0)\)
\(|||\mid\) Booking Source \(=\) Jet2Holidays : \(0(0 / 0)\)
| | | | Booking Source = RAINBOW : 0 (0/0)
| | | | Booking Source = SELF BOOKINGS : 0 (0/0)
\(||\mid\) Booking Source \(=\) SUNWEB : \(0(0 / 0)\)
| | | | Booking Source = TUI Deutschland : 0 (0/0)
| | | | Booking Source = TUI NL : \(0(0 / 0)\)
| \| \| Booking Source = TUI UK : 0 (0/0)
| | | Country = Poland : 47 (1/0)
| | | Country = UK : 0 (0/0)
| | | Country = Netherlands : \(0(0 / 0)\)
| | | Country = Germany: 0 (0/0)
| ADR >= 117.03: 109 (1/0)

Size of the tree : 109

RandomTree

ADR < 97.41
| Booking Source = ARHUS CHARTER
| | ADR < 41.14: 0 (2/0)
| | ADR >= 41.14: 18 (1/0)
| Booking Source \(=\) AURINKOMATKAT
| | Total Room Nights < 68.5 : 0 (1/0)
| | Total Room Nights >=68.5
| | | Average pax/room < 2.1:29 (1/0)
| | | Average pax/room >= 2.1:17(1/0)
| Booking Source = BLUE AEGEAN
| | Total Room Nights < 46
| | | ADR < 43.55: 0 (1/0)
| | | ADR >= \(43.55: 3\) (1/0)
| | Total Room Nights >=46
| | | Average pax/room < \(2.31: 15(1 / 0)\)
| | | Average pax/room >=2.31:10 (1/0)
| Booking Source \(=\) BOOKING.COM
| | Average pax/room < 2.33 : 8 (1/0)
| | Average pax/room >= \(2.33: 27\) (1/0)
| Booking Source = BRAVO TOURS : \(10(2 / 0)\)
| Booking Source = EXPEDIA
| | MONTH = JULY 2020 : 32 (1/0)
| | MONTH = AUGUST 2020 : 52 (1/0)
| | MONTH = SEPTEMBER 2020 : 6 (1/0)
| | MONTH = OCTOBER 2020: 1 (1/0)
| Booking Source \(=I T A K A\)
| | MONTH = JULY 2020: 0 (0/0)
| | MONTH = AUGUST \(2020: 0\) (0/0)
| | MONTH = SEPTEMBER \(2020: 23\) (1/0)
| | MONTH = OCTOBER \(2020: 7\) (1/0)
| Booking Source \(=\) Jet 2 Holidays
| \(\mid \mathrm{BB}<231\)
| | | AI < \(14: 0.5(2 / 0.25)\)
| | | \(\mathrm{AI}>=14: 3(1 / 0)\)
| | \(\mathrm{BB}>=231: 18(1 / 0)\)
| Booking Source \(=\) RAINBOW
| | ADR < 85.19: 13 (1/0)
| | ADR >= 85.19: 1 (1/0)
| Booking Source = SELF BOOKINGS : 0 (1/0)
| Booking Source = SUNWEB
| | MONTH = JULY 2020: 0 (0/0)
| | MONTH = AUGUST \(2020: 0\) (0/0)
| | MONTH = SEPTEMBER 2020 : 20 (1/0)
| | MONTH = OCTOBER \(2020: 12\) (1/0)
| Booking Source = TUI Deutschland
| | MONTH = JULY 2020: 0 (0/0)
| | MONTH = AUGUST 2020 : 0 (0/0)
| | MONTH = SEPTEMBER \(2020: 5(1 / 0)\)
| | MONTH = OCTOBER \(2020: 3\) (1/0)
| Booking Source = TUI NL
| | MONTH = JULY 2020: 3 (1/0)
| | MONTH = AUGUST 2020 : 5 (1/0)
| | MONTH = SEPTEMBER 2020: 8 (1/0)
| | MONTH = OCTOBER \(2020: 0(1 / 0)\)
| Booking Source = TUI UK
| | ADR < 35: 0 (3/0)
| | ADR >= \(35: 2(1 / 0)\)
ADR >= 97.41
| \(\mathrm{BB}<1367.5\)
| | Country = Denmark
| | | AI < 295 : 14 (1/0)
| | | AI >= 295
| | | | Booking Source = ARHUS CHARTER : 30 (1/0)
\(||\mid\) Booking Source = AURINKOMATKAT : 0 (0/0)
| | | | Booking Source = BLUE AEGEAN : 0 (0/0)
| | | | Booking Source = BOOKING.COM : 0 (0/0)
\(||\mid\) Booking Source = BRAVO TOURS : 42 (1/0)
| | | | Booking Source = EXPEDIA : 0 (0/0)
| | | | Booking Source = ITAKA : \(0(0 / 0)\)
| | | | Booking Source = Jet2Holidays : 0 ( \(0 / 0\) )
| | | | Booking Source = RAINBOW : \(0(0 / 0)\)
| | | | Booking Source = SELF BOOKINGS : \(0(0 / 0)\)
| \| \| Booking Source = SUNWEB : 0 (0/0)
\(||\mid\) Booking Source = TUI Deutschland : 0 (0/0)
| | | | Booking Source = TUI NL : 0 (0/0)
\(||\mid\) Booking Source = TUI UK : \(0(0 / 0)\)
| | Country = Finland : 0 (0/0)
| | Country = Romania : 0 (0/0)
| | Country = Vary : 56 (1/0)
| | Country = Poland
| | | \(\mathrm{BB} \%<0.5\)
```

| | | | ADR < 102.14:31 (1/0)
| | | | ADR >= $102.14: 26(1 / 0)$
$||\mid \mathrm{BB} \%>=0.5$
| | | | Booking Source = ARHUS CHARTER : $0(0 / 0)$
| | | | Booking Source = AURINKOMATKAT : 0 (0/0)
$||\mid$ Booking Source = BLUE AEGEAN : 0 (0/0)
| | | | Booking Source = BOOKING.COM : 0 (0/0)
$|||\mid$ Booking Source = BRAVO TOURS : 0 (0/0)
| | | | Booking Source = EXPEDIA : 0 (0/0)
$||\mid$ Booking Source $=$ ITAKA : $47(1 / 0)$
| | | | Booking Source $=$ Jet2Holidays : $0(0 / 0)$
| | | | Booking Source= RAINBOW : 25 (1/0)
$|||\mid$ Booking Source $=$ SELF BOOKINGS : $0(0 / 0)$
| \| \| Booking Source = SUNWEB : $0(0 / 0)$
| | | | Booking Source = TUI Deutschland : 0 (0/0)
| \| \| Booking Source = TUI NL : $0(0 / 0)$
| \| \| Booking Source = TUI UK : 0 (0/0)
| | Country = UK : 0 (0/0)
| | Country = Netherlands
| | | TOTAL PAX Nights < 299 : 6 (1/0)
| | | TOTAL PAX Nights >= $299: 9(1 / 0)$
| | Country = Germany
| | | Average pax/room < 2.35 : 9 (1/0)
| | | Average pax/room >= $2.35: 16$ (1/0)
| $\mathrm{BB}>=1367.5$: 109 (1/0)

```
Size of the tree : 107

\section*{Multilayer Perceptron Algorithm| Creta Palm 2020}
\(===\) Classifier model (full training set) \(===\)

Linear Node 0
Inputs Weights
Threshold -0.35220722928027764

Node \(1 \quad 0.7068336793168924\)
Node 2 -0.013147412294212868
Node \(3-0.3600576130557452\)
Node 40.2625684872935586
Node 5 -0.20049201520802387
Node 60.5020969459777488

Node 7 -0.1607713922400183
Node \(8 \quad 0.020298920989118313\)
Node \(9-0.00869032593719303\)
Node 10 -8.788576605409771E-5
Node 11 -0.3239302288546291
Node 120.6945851771843676
Node \(13-0.5866254154459591\)
Node \(14-0.657429677571837\)
Node 150.002093448409455931
Node 160.10797855195831878

Node 17 -0.03758542503939778
Node \(18 \quad 0.303927612688793\)

Node 19 -0.05647774504642454

Sigmoid Node 1

```

Attrib TO/ OTA=OTA 0.17531749379198808
Attrib ADR 0.16749487085431902
Attrib MONTH=JULY 2020 0.37635100535554084
Attrib MONTH=AUGUST 2020 0.2948596649618947
Attrib MONTH=SEPTEMBER 2020 -0.39902489803063806
Attrib MONTH=OCTOBER 2020 -0.16738064347325685
Attrib TOTAL PAX Nights 0.44629621172338163
Attrib Total Room Nights 0.47659433148588815
Attrib BB 0.22306382097878474
Attrib BB% 0.25224812177621
Attrib HB 0.13879855779743175
Attrib HB% -0.1018132915097763
Attrib AI 0.07257651585138526
Attrib AI% -0.20385284670738527
Sigmoid Node 2
Inputs Weights
Threshold -0.07535668297107032
Attrib Booking Source=ARHUS CHARTER 0.10549851870107949
Attrib Booking Source=AURINKOMATKAT 0.05799223261922426
Attrib Booking Source=BLUE AEGEAN 0.15576298231715238
Attrib Booking Source=BOOKING.COM 0.04708994579071747
Attrib Booking Source=BRAVO TOURS 0.1465294865171615
Attrib Booking Source=EXPEDIA 0.09343493340614416
Attrib Booking Source=ITAKA 0.10610878314339864
Attrib Booking Source=Jet2Holidays 0.16321733160670707
Attrib Booking Source=RAINBOW 0.118197623489446

```
```

Attrib Booking Source=SELF BOOKINGS 0.14909280574752146
Attrib Booking Source=SUNWEB 0.05620711847931745
Attrib Booking Source=TUI Deutschland 0.10729933654484294
Attrib Booking Source=TUI NL 0.11774314674655122
Attrib Booking Source=TUI UK 0.095982204978741
Attrib Country=Denmark 0.07230639623048242
Attrib Country=Finland 0.11025931896167926
Attrib Country=Romania 0.10135372447982136
Attrib Country=Vary 0.05386450416967181
Attrib Country=Poland 0.11265997073436297
Attrib Country=UK 0.08986550748966533
Attrib Country=Netherlands 0.09189118409182312
Attrib Country=Germany 0.07897277876153017
Attrib Average pax/room 0.0012907602473205347
Attrib TO/ OTA=OTA 0.055594421278198886
Attrib ADR -0.04896951454333076
Attrib MONTH=JULY 2020 0.1027062313099135
Attrib MONTH=AUGUST 2020 0.004667695616470775
Attrib MONTH=SEPTEMBER 2020 0.10643704310124076
Attrib MONTH=OCTOBER 2020 0.09126084196756612
Attrib TOTAL PAX Nights -0.0647004940814029
Attrib Total Room Nights -0.006332379156993063
Attrib BB 0.06673549527877987
Attrib BB% 0.010958618651479613
Attrib HB 0.043401524389213735
Attrib HB% 0.055729540811212945

```
```

 Attrib AI 0.07688246305666971
 Attrib AI% -0.024989830002110476
 Sigmoid Node 3
Inputs Weights
Threshold -0.13070146853302914
Attrib Booking Source=ARHUS CHARTER 0.047516175121149924
Attrib Booking Source=AURINKOMATKAT 0.24627538008456057
Attrib Booking Source=BLUE AEGEAN 0.14171979862927642
Attrib Booking Source=BOOKING.COM 0.11713916091015036
Attrib Booking Source=BRAVO TOURS 0.19508737601585427
Attrib Booking Source=EXPEDIA 0.16497819116325607
Attrib Booking Source=ITAKA 0.10240350517300624
Attrib Booking Source=Jet2Holidays 0.11143421146766486
Attrib Booking Source=RAINBOW 0.1356168045120526
Attrib Booking Source=SELF BOOKINGS 0.2895757394409267
Attrib Booking Source=SUNWEB -0.042797696032496925
Attrib Booking Source=TUI Deutschland 0.03452322272541273
Attrib Booking Source=TUI NL 0.13065570184532335
Attrib Booking Source=TUI UK 0.027943390382273822
Attrib Country=Denmark 0.18931698333296626
Attrib Country=Finland 0.24477978544371193
Attrib Country=Romania 0.11335100452162104
Attrib Country=Vary 0.2868267685961481
Attrib Country=Poland 0.07931124866385031
Attrib Country=UK -0.003302629960025442
Attrib Country=Netherlands -0.09321493152317169

```
```

Attrib Country=Germany 0.098145127561625
Attrib Average pax/room 0.06122208111530044
Attrib TO/ OTA=OTA 0.20488966191171876
Attrib ADR -0.07494757354441724
Attrib MONTH=JULY 2020 0.3467549078318984
Attrib MONTH=AUGUST 2020 -0.12382349020594795
Attrib MONTH=SEPTEMBER 2020 0.06725688839201678
Attrib MONTH=OCTOBER 2020 -0.10245461007321777
Attrib TOTAL PAX Nights -0.4346589094296057
Attrib Total Room Nights -0.6250903544940348
Attrib BB -0.07895161578047494
Attrib BB% 0.24878729408756484
Attrib HB 0.020662193519758548
Attrib HB% 0.03907831949735876
Attrib AI 0.00418327612903968
Attrib AI% -0.09246573898974307
Sigmoid Node 4
Inputs Weights
Threshold -0.12177517066719586
Attrib Booking Source=ARHUS CHARTER 0.1425102639914988
Attrib Booking Source=AURINKOMATKAT 0.10356495418335518
Attrib Booking Source=BLUE AEGEAN 0.1537592269367017
Attrib Booking Source=BOOKING.COM 0.15326793405172734
Attrib Booking Source=BRAVO TOURS -0.004071850446200693
Attrib Booking Source=EXPEDIA 0.02634879235242209
Attrib Booking Source=ITAKA 0.06644867954975704

```
```

Attrib Booking Source=Jet2Holidays 0.13822759990515326
Attrib Booking Source=RAINBOW 0.06954837259799761
Attrib Booking Source=SELF BOOKINGS 0.03290141568400705
Attrib Booking Source=SUNWEB 0.0227696262504487
Attrib Booking Source=TUI Deutschland 0.025276630229300257
Attrib Booking Source=TUI NL 0.050699880224836805
Attrib Booking Source=TUI UK 0.14417047437616579
Attrib Country=Denmark 0.05362148331715693
Attrib Country=Finland 0.1242215807023514
Attrib Country=Romania 0.09865398777070548
Attrib Country=Vary 0.007479236081582394
Attrib Country=Poland 0.06826002044838911
Attrib Country=UK 0.1988278694055645
Attrib Country=Netherlands -0.02536924605038882
Attrib Country=Germany 0.0389053107067417
Attrib Average pax/room 0.09987723386523821
Attrib TO/ OTA=OTA 0.048599794646004404
Attrib ADR 0.04623702331329077
Attrib MONTH=JULY 2020 0.01688018610408994
Attrib MONTH=AUGUST 2020 0.10958327914075525
Attrib MONTH=SEPTEMBER 2020 -0.0014471217717948958
Attrib MONTH=OCTOBER 2020 0.1475066873372439
Attrib TOTAL PAX Nights 0.21151295841784917
Attrib Total Room Nights 0.14660234547732873
Attrib BB 0.1326572783198153
Attrib BB% 0.0317341941113038

```
```

 Attrib HB 0.08610014103228872
 Attrib HB% 0.10624360930252622
 Attrib AI 0.01479844031941715
 Attrib AI% -0.013542008940754
 Sigmoid Node 5
Inputs Weights
Threshold -0.15108966611352828
Attrib Booking Source=ARHUS CHARTER 0.13540843356568646
Attrib Booking Source=AURINKOMATKAT 0.13981719985977886
Attrib Booking Source=BLUE AEGEAN 0.12812179411472413
Attrib Booking Source=BOOKING.COM 0.08437359969299492
Attrib Booking Source=BRAVO TOURS 0.165627420273853
Attrib Booking Source=EXPEDIA 0.0999995076513826
Attrib Booking Source=ITAKA 0.10979555429044296
Attrib Booking Source=Jet2Holidays 0.1327729272492991
Attrib Booking Source=RAINBOW 0.13136189031216775
Attrib Booking Source=SELF BOOKINGS 0.20513476701729236
Attrib Booking Source=SUNWEB 0.13014421273967292
Attrib Booking Source=TUI Deutschland 0.07768010831706469
Attrib Booking Source=TUI NL 0.061924637269400076
Attrib Booking Source=TUI UK 0.07683006929847813
Attrib Country=Denmark 0.16161678471922983
Attrib Country=Finland 0.15007425681835923
Attrib Country=Romania 0.08545972637846173
Attrib Country=Vary 0.05807692327470757
Attrib Country=Poland 0.06664464801965071

```
```

 Attrib Country=UK 0.007110490161630729
 Attrib Country=Netherlands 0.09868359523128331
 Attrib Country=Germany 0.09938145719556936
 Attrib Average pax/room -0.01749675234937621
 Attrib TO/ OTA=OTA 0.06725008709536581
 Attrib ADR -0.049394860671629216
 Attrib MONTH=JULY 2020 0.1684857091065976
 Attrib MONTH=AUGUST 2020 0.06699569978303532
 Attrib MONTH=SEPTEMBER 2020 0.041154935515578625
 Attrib MONTH=OCTOBER 2020 -0.11346621939837633
 Attrib TOTAL PAX Nights -0.19608769519684627
 Attrib Total Room Nights -0.24794075181194528
 Attrib BB -0.010337606315456797
 Attrib BB% 0.08596046742264778
 Attrib HB 0.030710640855660602
 Attrib HB% 0.11363505355090757
 Attrib AI 0.06673399327824088
 Attrib AI% -0.045744475462397155
 Sigmoid Node 6
Inputs Weights
Threshold -0.0913384174273276
Attrib Booking Source=ARHUS CHARTER 0.06753244595732237
Attrib Booking Source=AURINKOMATKAT 0.14297999327795083
Attrib Booking Source=BLUE AEGEAN 0.19185055676934018
Attrib Booking Source=BOOKING.COM 0.18494527668065655
Attrib Booking Source=BRAVO TOURS 0.12156914965801599

```
```

Attrib Booking Source=EXPEDIA 0.12839836890824305
Attrib Booking Source=ITAKA 0.0565680761607219
Attrib Booking Source=Jet2Holidays 0.1844639070874336
Attrib Booking Source=RAINBOW 0.11243551915623728
Attrib Booking Source=SELF BOOKINGS 0.07264628237353044
Attrib Booking Source=SUNWEB -0.10322947742866422
Attrib Booking Source=TUI Deutschland 0.008347192060936615
Attrib Booking Source=TUI NL 0.09809764373856221
Attrib Booking Source=TUI UK 0.11150337174833076
Attrib Country=Denmark 0.087596864012537
Attrib Country=Finland 0.09981629245787273
Attrib Country=Romania 0.17772890602093042
Attrib Country=Vary 0.10331696441100681
Attrib Country=Poland 0.05529598102793342
Attrib Country=UK 0.13390068596206411
Attrib Country=Netherlands -0.08026086168025809
Attrib Country=Germany 0.03509959521987222
Attrib Average pax/room 0.013030828204777313
Attrib TO/ OTA=OTA 0.14950741609404805
Attrib ADR 0.14850318142789612
Attrib MONTH=JULY 2020 0.20156851217769536
Attrib MONTH=AUGUST 2020 0.16908106732543848
Attrib MONTH=SEPTEMBER 2020 -0.09144400774374231
Attrib MONTH=OCTOBER 2020 -0.07934188950034711
Attrib TOTAL PAX Nights 0.4243119881126081
Attrib Total Room Nights 0.47590925144138446

```
```

Attrib BB 0.29348658631000213
Attrib BB% 0.04993602868558195
Attrib HB 0.14107487571572133
Attrib HB% 0.07447261853878043
Attrib AI 0.09369601498672318
Attrib AI% -0.015313020969768026
Sigmoid Node 7
Inputs Weights
Threshold -0.16913466824932255
Attrib Booking Source=ARHUS CHARTER 0.09813162810813773
Attrib Booking Source=AURINKOMATKAT 0.12091785658795137
Attrib Booking Source=BLUE AEGEAN 0.10162575378489905
Attrib Booking Source=BOOKING.COM 0.05996951817929735
Attrib Booking Source=BRAVO TOURS 0.05481822357508535
Attrib Booking Source=EXPEDIA 0.1308124662715472
Attrib Booking Source=ITAKA 0.04597581502416891
Attrib Booking Source=Jet2Holidays 0.12423412811343026
Attrib Booking Source=RAINBOW 0.11626098574504445
Attrib Booking Source=SELF BOOKINGS 0.21197697930143444
Attrib Booking Source=SUNWEB 0.04369227331752699
Attrib Booking Source=TUI Deutschland 0.10475382925575645
Attrib Booking Source=TUI NL 0.1046972729668376
Attrib Booking Source=TUI UK 0.13296283570961043
Attrib Country=Denmark 0.13307270453243505
Attrib Country=Finland 0.17734026313854168
Attrib Country=Romania 0.1417435324418222

```
```

Attrib Country=Vary 0.07641800685834974
Attrib Country=Poland 0.11063876074352354
Attrib Country=UK 0.11819960610594468
Attrib Country=Netherlands 0.034643412143747686
Attrib Country=Germany 0.09428198764750588
Attrib Average pax/room -0.04569518906989207
Attrib TO/ OTA=OTA 0.014975952879521923
Attrib ADR -0.05631169131432615
Attrib MONTH=JULY 2020 0.19856676945996274
Attrib MONTH=AUGUST 2020 0.006836781410568524
Attrib MONTH=SEPTEMBER 2020 0.14426839530616678
Attrib MONTH=OCTOBER 2020 -0.041347576850074626
Attrib TOTAL PAX Nights -0.12854351379627074
Attrib Total Room Nights -0.18329172034594382
Attrib BB 0.023538408712542737
Attrib BB% 0.03386716683255277
Attrib HB 0.06647604807196034
Attrib HB% 0.031235889829098393
Attrib AI 0.0229353761379585
Attrib AI% 0.029769024538213694
Sigmoid Node 8
Inputs Weights
Threshold -0.13817596093537104
Attrib Booking Source=ARHUS CHARTER 0.14865099273079135
Attrib Booking Source=AURINKOMATKAT 0.11918192829394306
Attrib Booking Source=BLUE AEGEAN 0.1029214176846807

```
```

Attrib Booking Source=BOOKING.COM 0.029838138830058
Attrib Booking Source=BRAVO TOURS 0.08989059629144017
Attrib Booking Source=EXPEDIA 0.035326980121631345
Attrib Booking Source=ITAKA 0.10701854705823231
Attrib Booking Source=Jet2Holidays 0.13682139292953996
Attrib Booking Source=RAINBOW 0.11981175181493137
Attrib Booking Source=SELF BOOKINGS 0.09885835781527731
Attrib Booking Source=SUNWEB 0.08504111226478249
Attrib Booking Source=TUI Deutschland 0.12660260705142387
Attrib Booking Source=TUI NL 0.07677767236046533
Attrib Booking Source=TUI UK 0.13678316692867265
Attrib Country=Denmark 0.09277331489249588
Attrib Country=Finland 0.07103108261492835
Attrib Country=Romania 0.12286619474852316
Attrib Country=Vary 0.02183288760219848
Attrib Country=Poland 0.05660151782026134
Attrib Country=UK 0.08681655847398773
Attrib Country=Netherlands 0.06415451049829757
Attrib Country=Germany 0.1416591419099702
Attrib Average pax/room -0.02531975417610194
Attrib TO/ OTA=OTA -0.018638091498302322
Attrib ADR -0.05781510493836422
Attrib MONTH=JULY 2020 0.0474037826358191
Attrib MONTH=AUGUST 2020 0.02360538973173462
Attrib MONTH=SEPTEMBER 2020 0.07746304896688043
Attrib MONTH=OCTOBER 2020 0.0438906023799886

```
```

Attrib TOTAL PAX Nights 0.04148926914648341
Attrib Total Room Nights 0.02696216243953585
Attrib BB 0.06373620240689566
Attrib BB\% 0.05286914582971879
Attrib HB 0.04530064155212853
Attrib HB\% 0.11354794564064902
Attrib AI 0.08146450294599734
Attrib AI\% 0.03200456757046585
Sigmoid Node 9
Inputs Weights
Threshold -0.13735927815813867
Attrib Booking Source=ARHUS CHARTER 0.1142062167127564
Attrib Booking Source=AURINKOMATKAT 0.040893478718821506
Attrib Booking Source=BLUE AEGEAN 0.15849579626124458
Attrib Booking Source=BOOKING.COM 0.06241497427973921
Attrib Booking Source=BRAVO TOURS 0.13688698547433148
Attrib Booking Source=EXPEDIA 0.05381103890182279
Attrib Booking Source=ITAKA 0.11232274301712379
Attrib Booking Source=Jet2Holidays 0.1063748839307315
Attrib Booking Source=RAINBOW 0.08256863240964896
Attrib Booking Source=SELF BOOKINGS 0.1627949533521751
Attrib Booking Source=SUNWEB 0.14332661167611674
Attrib Booking Source=TUI Deutschland 0.10920155469720282
Attrib Booking Source=TUI NL 0.07817365884217917
Attrib Booking Source=TUI UK 0.1199320444129233
Attrib Country=Denmark 0.07798263796590661

```
```

Attrib Country=Finland 0.12241057145681095
Attrib Country=Romania 0.08187249984673216
Attrib Country=Vary 0.04207027331018536
Attrib Country=Poland 0.03318595536834471
Attrib Country=UK 0.13710935775153216
Attrib Country=Netherlands 0.04573488242801416
Attrib Country=Germany 0.1091163137128016
Attrib Average pax/room 0.026603606707018487
Attrib TO/ OTA=OTA 0.08495660971094747
Attrib ADR 0.024162499525052283
Attrib MONTH=JULY 2020 0.024931354415516013
Attrib MONTH=AUGUST 2020 0.03234953533012723
Attrib MONTH=SEPTEMBER 2020 0.10844938305071589
Attrib MONTH=OCTOBER 2020 0.030130762090018966
Attrib TOTAL PAX Nights 0.010581268974912907
Attrib Total Room Nights -0.0022934886233687423
Attrib BB 0.028959587723221877
Attrib BB% -0.013715186102039957
Attrib HB 0.04724668899339332
Attrib HB% 0.07218669268359423
Attrib AI 0.0744044871739882
Attrib AI% -0.012828689954054107

```

Sigmoid Node 10
Inputs Weights
Threshold -0.10395933206891955
Attrib Booking Source=ARHUS CHARTER 0.12152709066802773
```

Attrib Booking Source=AURINKOMATKAT 0.060519663468126685
Attrib Booking Source=BLUE AEGEAN 0.14435096489678778
Attrib Booking Source=BOOKING.COM 0.07285451574033466
Attrib Booking Source=BRAVO TOURS 0.11633378199128447
Attrib Booking Source=EXPEDIA 0.039327236520914265
Attrib Booking Source=ITAKA 0.1184797046578443
Attrib Booking Source=Jet2Holidays 0.07773524367818542
Attrib Booking Source=RAINBOW 0.08215149165044057
Attrib Booking Source=SELF BOOKINGS 0.16333526994347855
Attrib Booking Source=SUNWEB 0.08975656116644189
Attrib Booking Source=TUI Deutschland 0.09178830495207162
Attrib Booking Source=TUI NL 0.11662525423746914
Attrib Booking Source=TUI UK 0.07393896742023938
Attrib Country=Denmark 0.10064131681747936
Attrib Country=Finland 0.09899668869894869
Attrib Country=Romania 0.1014768346919674
Attrib Country=Vary 0.017955352468231038
Attrib Country=Poland 0.09202764048578146
Attrib Country=UK 0.14564303933522657
Attrib Country=Netherlands 0.11471726554566519
Attrib Country=Germany 0.1546231804235821
Attrib Average pax/room -0.01963858069356034
Attrib TO/ OTA=OTA 0.035842537028030474
Attrib ADR -0.0468399476395823
Attrib MONTH=JULY 2020 0.1062781798029032
Attrib MONTH=AUGUST 2020 0.04899022513701145

```
```

Attrib MONTH=SEPTEMBER 2020 0.022282917722422392
Attrib MONTH=OCTOBER 2020 0.049415969337957846
Attrib TOTAL PAX Nights 0.013332409554774775
Attrib Total Room Nights -0.019704648955313014
Attrib BB 0.00382802602316993
Attrib BB% 0.025525037591730193
Attrib HB 0.10246671688537559
Attrib HB% 0.07472839046293554
Attrib AI 0.08965846650237415
Attrib AI% 0.048037953929688654
Sigmoid Node 11
Inputs Weights
Threshold -0.11899192519441092
Attrib Booking Source=ARHUS CHARTER 0.032906887169651775
Attrib Booking Source=AURINKOMATKAT 0.1925862627203965
Attrib Booking Source=BLUE AEGEAN 0.09680745009116434
Attrib Booking Source=BOOKING.COM 0.07828396365432423
Attrib Booking Source=BRAVO TOURS 0.2277197228324353
Attrib Booking Source=EXPEDIA 0.2504353523332484
Attrib Booking Source=ITAKA 0.05907693869722906
Attrib Booking Source=Jet2Holidays 0.048124960331698934
Attrib Booking Source=RAINBOW 0.08623035148302181
Attrib Booking Source=SELF BOOKINGS 0.2880351615127983
Attrib Booking Source=SUNWEB -0.012137820953059075
Attrib Booking Source=TUI Deutschland 0.13326984978381573
Attrib Booking Source=TUI NL 0.08110101492223158

```
```

Attrib Booking Source=TUI UK 0.07028140540240334
Attrib Country=Denmark 0.1650195783796354
Attrib Country=Finland 0.20865090711114262
Attrib Country=Romania 0.0624112585365286
Attrib Country=Vary 0.2988131101078037
Attrib Country=Poland 0.05789879664020744
Attrib Country=UK 0.014523154041807589
Attrib Country=Netherlands -0.11808596954410458
Attrib Country=Germany 0.12345019899951763
Attrib Average pax/room 0.045966907352806875
Attrib TO/ OTA=OTA 0.18241107639410822
Attrib ADR -0.050655413976877534
Attrib MONTH=JULY 2020 0.3458243835600519
Attrib MONTH=AUGUST 2020 -0.021471441695918605
Attrib MONTH=SEPTEMBER 2020 0.06877151408601456
Attrib MONTH=OCTOBER 2020 -0.10772524364545065
Attrib TOTAL PAX Nights -0.4486680207271173
Attrib Total Room Nights -0.5991194199620518
Attrib BB -0.08196039523382312
Attrib BB% 0.2497535442787267
Attrib HB 0.039187410435214454
Attrib HB% 0.01255448680394923
Attrib AI -0.005709587668437713
Attrib AI% -0.09650212771140183

```

Sigmoid Node 12
Inputs Weights

```

Attrib MONTH=JULY 2020 0.7299210365445803
Attrib MONTH=AUGUST 2020 -0.06395349842040343
Attrib MONTH=SEPTEMBER 2020 -0.1989701667646899
Attrib MONTH=OCTOBER 2020 -0.45522387139662684
Attrib TOTAL PAX Nights 0.5243098739602359
Attrib Total Room Nights 0.6744682943409593
Attrib BB 0.12901885863265336
Attrib BB% 0.15229536313935785
Attrib HB 0.06032599193185318
Attrib HB% -0.19798586532103013
Attrib AI 0.25279365425874945
Attrib AI% -0.13130268023064676
Sigmoid Node 13
Inputs Weights
Threshold -0.13631632563690432
Attrib Booking Source=ARHUS CHARTER 0.12999309702209494
Attrib Booking Source=AURINKOMATKAT 0.3544147613051819
Attrib Booking Source=BLUE AEGEAN 0.30455901603601665
Attrib Booking Source=BOOKING.COM 0.12748138313979634
Attrib Booking Source=BRAVO TOURS 0.11576079720716445
Attrib Booking Source=EXPEDIA 0.02765901839123922
Attrib Booking Source=ITAKA -0.017212815583781172
Attrib Booking Source=Jet2Holidays -0.017540199260141213
Attrib Booking Source=RAINBOW 0.3796689532996641
Attrib Booking Source=SELF BOOKINGS 0.20285454162730243
Attrib Booking Source=SUNWEB -0.13323594452909804

```
```

Attrib Booking Source=TUI Deutschland -0.02139743192761791
Attrib Booking Source=TUI NL 0.12131010688348078
Attrib Booking Source=TUI UK 0.168195683820399
Attrib Country=Denmark 0.11127479414105415
Attrib Country=Finland 0.33647693954898317
Attrib Country=Romania 0.2807336135608056
Attrib Country=Vary 0.03234224651814814
Attrib Country=Poland 0.1888215246992415
Attrib Country=UK 0.06679269257225832
Attrib Country=Netherlands -0.16126495963010543
Attrib Country=Germany -0.005320400252885884
Attrib Average pax/room 0.02694312678487512
Attrib TO/ OTA=OTA -0.006047553183000557
Attrib ADR -0.17494149470971804
Attrib MONTH=JULY 2020 0.5313337548962764
Attrib MONTH=AUGUST 2020 -0.3934137099439581
Attrib MONTH=SEPTEMBER 2020 0.10687392910839895
Attrib MONTH=OCTOBER 2020 0.008086401499414662
Attrib TOTAL PAX Nights -0.28507161001170006
Attrib Total Room Nights -0.3586958578969481
Attrib BB 0.10923244854733527
Attrib BB% 0.17470331064693653
Attrib HB 0.057516659064525646
Attrib HB% 0.06242569994371022
Attrib AI 0.026806010639939724
Attrib AI% 0.06136523883818108

```

Sigmoid Node 14
Inputs Weights
Threshold 0.03284992617594235
Attrib Booking Source=ARHUS CHARTER -0.2644229889796864
Attrib Booking Source=AURINKOMATKAT -0.2619805229850532
Attrib Booking Source=BLUE AEGEAN -0.13191751162037324
Attrib Booking Source=BOOKING.COM -0.09926325463378156
Attrib Booking Source=BRAVO TOURS 0.046162273230422955
Attrib Booking Source=EXPEDIA 0.09851981604695036
Attrib Booking Source=ITAKA 0.16301731065283026
Attrib Booking Source=Jet2Holidays 0.2579816349446593
Attrib Booking Source=RAINBOW -0.26610781072130973
Attrib Booking Source=SELF BOOKINGS 0.16383064171076595
Attrib Booking Source=SUNWEB -0.1552891853077426
Attrib Booking Source=TUI Deutschland 0.27360885037136407
Attrib Booking Source=TUI NL 0.13943479367607167
Attrib Booking Source=TUI UK 0.0611718835535817
Attrib Country=Denmark -0.21500674068582906
Attrib Country=Finland -0.29640257706783707
Attrib Country=Romania -0.13860306049810633
Attrib Country=Vary 0.13780635956148377
Attrib Country=Poland -0.06290593335449002
Attrib Country=UK 0.2976195706484944
Attrib Country=Netherlands 0.009077748648998024
Attrib Country=Germany 0.23475202744259308
Attrib Average pax/room 0.0778667231230654
```

Attrib TO/ OTA=OTA 0.09479824076412202
Attrib ADR -0.31757973173728904
Attrib MONTH=JULY 2020 0.3566194652307629
Attrib MONTH=AUGUST 2020 0.5005686321200872
Attrib MONTH=SEPTEMBER 2020 -0.4707677121759187
Attrib MONTH=OCTOBER 2020 -0.21819976781023
Attrib TOTAL PAX Nights -0.7047400877368926
Attrib Total Room Nights -0.8548996657527919
Attrib BB -0.3000308233227895
Attrib BB% 0.11785462901122491
Attrib HB -0.08318188002153738
Attrib HB% 0.09846934926065623
Attrib AI -0.058568949355139385
Attrib AI% 0.23286938837726248
Sigmoid Node 15
Inputs Weights
Threshold -0.09755851347687959
Attrib Booking Source=ARHUS CHARTER 0.0760210071104531
Attrib Booking Source=AURINKOMATKAT 0.11680903933930553
Attrib Booking Source=BLUE AEGEAN 0.09121180371882515
Attrib Booking Source=BOOKING.COM 0.05127741710904949
Attrib Booking Source=BRAVO TOURS 0.1319079997311859
Attrib Booking Source=EXPEDIA 0.05929978502463564
Attrib Booking Source=ITAKA 0.06638466455606833
Attrib Booking Source=Jet2Holidays 0.07230293015687629
Attrib Booking Source=RAINBOW 0.07062321361142114

```
```

Attrib Booking Source=SELF BOOKINGS 0.16961004025288007
Attrib Booking Source=SUNWEB 0.14732510154059722
Attrib Booking Source=TUI Deutschland 0.0809019746025792
Attrib Booking Source=TUI NL 0.09441537854792352
Attrib Booking Source=TUI UK 0.1450675000267229
Attrib Country=Denmark 0.05290766710438923
Attrib Country=Finland 0.15036047975283326
Attrib Country=Romania 0.1345192115604981
Attrib Country=Vary 0.06637097501233923
Attrib Country=Poland 0.07024825731283386
Attrib Country=UK 0.1491116724786122
Attrib Country=Netherlands 0.09362466736656705
Attrib Country=Germany 0.1407849316268908
Attrib Average pax/room 0.040067913141351406
Attrib TO/ OTA=OTA 0.010853125254077277
Attrib ADR -0.027104054126848482
Attrib MONTH=JULY 2020 0.14809648866253003
Attrib MONTH=AUGUST 2020 0.023842892768332923
Attrib MONTH=SEPTEMBER 2020 0.06370005436336221
Attrib MONTH=OCTOBER 2020 0.051439604278156977
Attrib TOTAL PAX Nights -0.023877997158620788
Attrib Total Room Nights -0.03561910455196841
Attrib BB -0.009056180026315622
Attrib BB% 0.0029168999498376137
Attrib HB 0.07368560622781907
Attrib HB% 0.11508601076813985

```
```

 Attrib AI 0.09267332527797299
 Attrib AI% 0.048020470650251314
 Sigmoid Node 16
Inputs Weights
Threshold -0.11317015660074953
Attrib Booking Source=ARHUS CHARTER 0.07932409916475332
Attrib Booking Source=AURINKOMATKAT 0.07518964832913173
Attrib Booking Source=BLUE AEGEAN 0.12642565674136585
Attrib Booking Source=BOOKING.COM 0.10524082763229062
Attrib Booking Source=BRAVO TOURS 0.05469970016652741
Attrib Booking Source=EXPEDIA 0.055978581817591494
Attrib Booking Source=ITAKA 0.08947238691269963
Attrib Booking Source=Jet2Holidays 0.12992817918284577
Attrib Booking Source=RAINBOW 0.13321848065898959
Attrib Booking Source=SELF BOOKINGS 0.08006543464003249
Attrib Booking Source=SUNWEB 0.13911909388290628
Attrib Booking Source=TUI Deutschland 0.05216203548217172
Attrib Booking Source=TUI NL 0.0881677819696682
Attrib Booking Source=TUI UK 0.11880533681160822
Attrib Country=Denmark 0.1047774966199159
Attrib Country=Finland 0.08209659093611892
Attrib Country=Romania 0.08962255402820478
Attrib Country=Vary 0.0626882123922402
Attrib Country=Poland 0.06392445972484427
Attrib Country=UK 0.15988869851030707
Attrib Country=Netherlands 0.025592614982989287

```
```

Attrib Country=Germany 0.048456084825804054
Attrib Average pax/room 0.046728291353927164
Attrib TO/ OTA=OTA 0.10046769628922154
Attrib ADR 0.04908592279710585
Attrib MONTH=JULY 2020 0.057495414152290564
Attrib MONTH=AUGUST 2020 0.020382633117494962
Attrib MONTH=SEPTEMBER 2020 0.0718882836686056
Attrib MONTH=OCTOBER 2020 0.0631645959281579
Attrib TOTAL PAX Nights 0.10066130778686234
Attrib Total Room Nights 0.11169956926392921
Attrib BB 0.06136675767452667
Attrib BB% 0.043676505053017435
Attrib HB 0.10546002863556246
Attrib HB% 0.11405493468177653
Attrib AI 0.09944922107119979
Attrib AI% 0.05203212134868179
Sigmoid Node 17
Inputs Weights
Threshold -0.17085478376769692
Attrib Booking Source=ARHUS CHARTER 0.14498842785376703
Attrib Booking Source=AURINKOMATKAT 0.12670873230348126
Attrib Booking Source=BLUE AEGEAN 0.09190773361236915
Attrib Booking Source=BOOKING.COM 0.08565045188817398
Attrib Booking Source=BRAVO TOURS 0.09679327580610168
Attrib Booking Source=EXPEDIA 0.08912830967855682
Attrib Booking Source=ITAKA 0.07422776262715547

```
```

Attrib Booking Source=Jet2Holidays 0.14512901638720163
Attrib Booking Source=RAINBOW 0.10479713366684126
Attrib Booking Source=SELF BOOKINGS 0.16406600345679573
Attrib Booking Source=SUNWEB 0.12563092229823647
Attrib Booking Source=TUI Deutschland 0.10385510084060581
Attrib Booking Source=TUI NL 0.0431204895791828
Attrib Booking Source=TUI UK 0.09187050111961752
Attrib Country=Denmark 0.06992110557586734
Attrib Country=Finland 0.12828440593516252
Attrib Country=Romania 0.08397234923716809
Attrib Country=Vary 0.06571682750670696
Attrib Country=Poland 0.057588962897883074
Attrib Country=UK 0.09828886794625723
Attrib Country=Netherlands 0.09800818077628937
Attrib Country=Germany 0.09131609007560351
Attrib Average pax/room 0.019020955776399864
Attrib TO/ OTA=OTA 0.041093912597144774
Attrib ADR -0.026991023247396065
Attrib MONTH=JULY 2020 0.07118410686501807
Attrib MONTH=AUGUST 2020 0.03591112252127608
Attrib MONTH=SEPTEMBER 2020 0.04576411720236792
Attrib MONTH=OCTOBER 2020 -0.019140000992184904
Attrib TOTAL PAX Nights -0.027107936535711957
Attrib Total Room Nights -0.05376934973840479
Attrib BB 0.06450671592230209
Attrib BB% -0.028377766329981534

```
```

 Attrib HB 0.08318438299816966
 Attrib HB% 0.0781622175675319
 Attrib AI 0.05890210730477784
 Attrib AI% 0.07993397133438253
 Sigmoid Node 18
Inputs Weights
Threshold -0.10672993236693175
Attrib Booking Source=ARHUS CHARTER 0.09999366726438302
Attrib Booking Source=AURINKOMATKAT 0.09611395328370759
Attrib Booking Source=BLUE AEGEAN 0.08849272249109041
Attrib Booking Source=BOOKING.COM 0.10442835884725121
Attrib Booking Source=BRAVO TOURS 0.09042516937973
Attrib Booking Source=EXPEDIA -0.029267698764101263
Attrib Booking Source=ITAKA 0.006854899539011768
Attrib Booking Source=Jet2Holidays 0.13297477221884904
Attrib Booking Source=RAINBOW 0.05768366313899758
Attrib Booking Source=SELF BOOKINGS 0.046082957625755115
Attrib Booking Source=SUNWEB 0.1810645054798091
Attrib Booking Source=TUI Deutschland 0.06026951569224879
Attrib Booking Source=TUI NL 0.031130747102789104
Attrib Booking Source=TUI UK 0.09722363058811223
Attrib Country=Denmark 0.0733664674866501
Attrib Country=Finland 0.038343481017556476
Attrib Country=Romania 0.06225862575441235
Attrib Country=Vary 0.006276124717432812
Attrib Country=Poland 0.05085794696814359

```
```

 Attrib Country=UK 0.12019517661824049
 Attrib Country=Netherlands 0.07831346911216852
 Attrib Country=Germany 0.056279654031173625
 Attrib Average pax/room 0.10126637795294302
 Attrib TO/ OTA=OTA 0.020415861942336574
 Attrib ADR 0.025456788576361564
 Attrib MONTH=JULY 2020 0.04763634072687759
 Attrib MONTH=AUGUST 2020 -0.14234672132616222
 Attrib MONTH=SEPTEMBER 2020 0.09362468419042735
 Attrib MONTH=OCTOBER 2020 0.220622666215035
 Attrib TOTAL PAX Nights 0.23679755729253213
 Attrib Total Room Nights 0.2435991180832139
 Attrib BB 0.1410247034655608
 Attrib BB% -0.017998300764572803
 Attrib HB 0.08515918751570904
 Attrib HB% 0.10825975866238528
 Attrib AI 0.06450566432350655
 Attrib AI% -0.011529841464190435
 Sigmoid Node 19
Inputs Weights
Threshold -0.15282388740626424
Attrib Booking Source=ARHUS CHARTER 0.1219182333379638
Attrib Booking Source=AURINKOMATKAT 0.07905870732684044
Attrib Booking Source=BLUE AEGEAN 0.12980481259020948
Attrib Booking Source=BOOKING.COM 0.04127531306433957
Attrib Booking Source=BRAVO TOURS 0.0770841030425281

```
```

Attrib Booking Source=EXPEDIA 0.0584141641843902
Attrib Booking Source=ITAKA 0.10878242606605891
Attrib Booking Source=Jet2Holidays 0.10358770890273891
Attrib Booking Source=RAINBOW 0.11715206794957717
Attrib Booking Source=SELF BOOKINGS 0.1240742339245748
Attrib Booking Source=SUNWEB 0.0718850539345562
Attrib Booking Source=TUI Deutschland 0.13117691014497146
Attrib Booking Source=TUI NL 0.12150239329955598
Attrib Booking Source=TUI UK 0.11020868418967777
Attrib Country=Denmark 0.12179633871637312
Attrib Country=Finland 0.12370439773635943
Attrib Country=Romania 0.09048199185002846
Attrib Country=Vary 0.08918197397284922
Attrib Country=Poland 0.06272770383369916
Attrib Country=UK 0.12882243886765626
Attrib Country=Netherlands 0.04154296646278616
Attrib Country=Germany 0.11674148825047839
Attrib Average pax/room 0.031043416654808354
Attrib TO/ OTA=OTA 0.01303926528350667
Attrib ADR 0.007813555534130278
Attrib MONTH=JULY 2020 0.1300837927378734
Attrib MONTH=AUGUST 2020 0.018761426369225405
Attrib MONTH=SEPTEMBER 2020 0.0994693751649831
Attrib MONTH=OCTOBER 2020 0.0408669871588251
Attrib TOTAL PAX Nights -0.06993214498184884
Attrib Total Room Nights -0.08953237985309832

```

Attrib BB 0.07250053445969222
Attrib BB\% 0.03234956960804703
Attrib HB 0.09700070771662139
Attrib HB\% 0.03082228517572309
Attrib AI 0.09086306183897391
Attrib AI\% 0.013113146303164808
Class
Input
Node 0

Classifiers with low or negative correlation coefficient (2020):

\section*{Meta Random Sub Space Algorithm| Creta Palm 2020}
=== Classifier model (full training set) ===
Filtered Header
@relation 'Creta Palm Data 2020 ()-weka.filters.unsupervised.attribute.Remove-VR3,14,2,6,13,4,1,15'
@attribute 'Average pax/room' numeric
@attribute 'AI\\%' numeric
@attribute
\{Denmark,Finland,Romania,Vary,Poland,UK,Netherlands,Germany \}
@attribute MONTH \{'JULY 2020','AUGUST 2020','SEPTEMBER 2020','OCTOBER 2020' \(\}\)
@attribute AI numeric
@attribute 'TO/ OTA' \{TO,OTA\}
@attribute 'Booking Source' \{'ARHUS CHARTER',AURINKOMATKAT,'BLUE AEGEAN',BOOKING.COM,'BRAVO TOURS',EXPEDIA,ITAKA,Jet2Holidays,RAINBOW,'SELF BOOKINGS',SUNWEB,'TUI Deutschland','TUI NL','TUI UK'\} @attribute 'TOTAL BOOKINGS' numeric
@data

\section*{Classifier Model}

REPTree

Booking Source \(=\) ARHUS CHARTER : \(12(1 / 0)\) [3/408]

Booking Source \(=\) AURINKOMATKAT : 15.33 (2/72.25) [1/420.25]

Booking Source \(=\) BLUE AEGEAN : 7 (2/6.25) [2/123.25]

Booking Source \(=\) BOOKING.COM : 50 (3/389.56) [1/6188.44]
Booking Source \(=\) BRAVO TOURS : 19 (2/4) [2/452]

Booking Source = EXPEDIA : 22.75 (4/423.69) [0/0]

Booking Source \(=\) ITAKA : 25.75 (3/69.56) [1/802.78]

Booking Source \(=\) Jet2Holidays : 5.5 (3/62) [1/36]
Booking Source \(=\) RAINBOW : 17.5 (2/36) [2/234]

Booking Source \(=\) SELF BOOKINGS : \(0(0 / 0)\) [1/177.52]

Booking Source \(=\) SUNWEB : 11.75 (4/27.19) [0/0]

Booking Source \(=\) TUI Deutschland : 8.25 (3/20.67) [1/49]

Booking Source = TUI NL : \(4(2 / 6.25)[2 / 15.25]\)

Booking Source \(=\) TUI UK : \(0.5(3 / 0.89)[1 / 0.44]\)

Size of the tree : 15

Filtered Header
@relation 'Creta Palm Data 2020 ()-weka.filters.unsupervised.attribute.Remove-VR13,14,1,10,9,4,6,15'
@attribute AI numeric
@attribute 'AI\\%' numeric
@attribute 'Booking Source' \{'ARHUS CHARTER',AURINKOMATKAT,'BLUE AEGEAN',BOOKING.COM,'BRAVO

TOURS',EXPEDIA,ITAKA,Jet2Holidays,RAINBOW,'SELF
BOOKINGS',SUNWEB,'TUI Deutschland','TUI NL','TUI UK'\}
@attribute 'BB\\%' numeric
@attribute BB numeric
@attribute 'TO/ OTA' \{TO,OTA\}
@attribute MONTH \{'JULY 2020','AUGUST 2020','SEPTEMBER 2020','OCTOBER 2020'\}
@attribute 'TOTAL BOOKINGS' numeric
@ data

Classifier Model
REPTree

BB < 489.5
| Booking Source = ARHUS CHARTER : 12.3 (2.9/148.25) [1/273.35]
| Booking Source = AURINKOMATKAT : 15.33 (3/141.56) [0/0]
| Booking Source = BLUE AEGEAN : 7 (1/0) [3/131.33]
| Booking Source = BOOKING.COM : 17.5 (2/90.25) [0/0]
| Booking Source \(=\) BRAVO TOURS : 19 (3/3.56) [1/940.44]
| Booking Source = EXPEDIA : 13 (3/184.67) [0/0]
| Booking Source = ITAKA : \(18.67(1 / 0)[2 / 132.5]\)
| Booking Source = Jet2Holidays : 5.5 (2/72.25) [2/66.25]
| Booking Source = RAINBOW : 17.5 (3/152) [1/100]
| Booking Source = SELF BOOKINGS : 0 (0.9/0) [0/0]
| Booking Source = SUNWEB : 11.75 (2/2.25) [2/88.25]
| Booking Source = TUI Deutschland : 8.25 (4/24.69) [0/0]
| Booking Source = TUI NL : 4 (1/0) [3/12.67]
| Booking Source = TUI UK : 0.51 (1.9/0) [2/2]
\(B B>=489.5\) : 61.53 (3.29/227.12) [1/3830.64]

Size of the tree : 17

Filtered Header
@relation 'Creta Palm Data 2020 ()-weka.filters.unsupervised.attribute.Remove-VR5,7,10,2,13,14,8,15'
@ attribute ADR numeric
@attribute 'TOTAL PAX Nights' numeric
@ attribute 'BB\\%' numeric
@ attribute
Country
\{Denmark,Finland,Romania,Vary,Poland,UK,Netherlands,Germany\}
@attribute AI numeric
@attribute 'AI\\%' numeric
@attribute 'Total Room Nights' numeric
@attribute 'TOTAL BOOKINGS' numeric
@data

Classifier Model

REPTree

TOTAL PAX Nights < 768.5
| Total Room Nights < 88
| | TOTAL PAX Nights < 60.5 : 0.53 (13/0.71) [2/1.29]
| | TOTAL PAX Nights >=60.5
| | | \(\mathrm{BB} \%<0.1: 9.4(4 / 2.25)\) [1/30.25]
| | | \(\mathrm{BB} \%>=0.1: 6.45\) (2/0.25) [9/9.58]
| Total Room Nights >= 88
| | TOTAL PAX Nights < 382.5 : 16.29 (7/19.92) [0/0]
| | TOTAL PAX Nights >= 382.5 : 26.22 (5/15.44) [4/32.71]
TOTAL PAX Nights >= \(768.5: 61.2(3 / 748.22)\) [2/585.11]

Size of the tree : 11

Filtered Header
@relation 'Creta Palm Data 2020 ()-weka.filters.unsupervised.attribute.Remove-V-
R14,4,3,2,5,7,9,15'
@attribute 'AI\\%' numeric
@attribute 'TO/ OTA' \{TO,OTA\}
@attribute 'Average pax/room' numeric
@attribute
Country
\{Denmark,Finland,Romania,Vary,Poland,UK,Netherlands,Germany\}
@attribute ADR numeric
@attribute 'TOTAL PAX Nights' numeric
@attribute BB numeric
@attribute 'TOTAL BOOKINGS' numeric
@ data

Classifier Model
REPTree

TOTAL PAX Nights < 737
| TOTAL PAX Nights < 235
| | TOTAL PAX Nights < 102.5
| | | TOTAL PAX Nights < \(45.5: 0.36\) (10/0.45) [4/0.25]
| | | TOTAL PAX Nights >= \(45.5: 4.78\) (6/3.89) [3/2.67]
| | TOTAL PAX Nights >= 102.5 : 10.7 (5/10.24) [5/4.76]
| TOTAL PAX Nights >= 235
| | Country = Denmark : \(24(2 / 36)\) [0/0]
| | Country = Finland : \(23(2 / 36)[0 / 0]\)
| | Country = Romania : 22.93 (0/0) [0/0]
| | Country = Vary : 29.5 (1/0) [1/25]
| | Country = Poland : 26.25 (1/0) [3/41.67]
| | Country = UK : 18 (1/0) [0/0]
| | Country = Netherlands : 14.5 (1/0) [1/121]
| | Country = Germany : 16 (1/0) [0/0]
TOTAL PAX Nights >= 737 : 61.2 (4/678.69) [1/315.06]

Size of the tree : 17

Filtered Header
@relation 'Creta Palm Data 2020 ()-weka.filters.unsupervised.attribute.Remove-VR11,3,10,7,4,5,6,15'
@attribute HB numeric
@attribute 'Average pax/room' numeric
@attribute 'BB\\%' numeric
@attribute 'TOTAL PAX Nights' numeric
@attribute 'TO/ OTA' \{TO,OTA\}
@ attribute ADR numeric
@attribute MONTH \{'JULY 2020','AUGUST 2020','SEPTEMBER 2020','OCTOBER 2020'\}
@attribute 'TOTAL BOOKINGS' numeric
@ data

\section*{REPTree}
: 15.04 (34/432.11) [18/261.13]
Size of the tree : 1
Filtered Header
@relation 'Creta Palm Data 2020 ()-weka.filters.unsupervised.attribute.Remove-VR9,10,5,12,8,11,2,15'
@attribute BB numeric
@ attribute 'BB\\%' numeric
@attribute ADR numeric
@ attribute 'HB\\%' numeric
@attribute 'Total Room Nights' numeric
@attribute HB numeric
@ attribute
\{Denmark,Finland,Romania,Vary,Poland,UK,Netherlands,Germany \}
@ attribute 'TOTAL BOOKINGS' numeric
@ data

Classifier Model

REPTree

Total Room Nights < 259.5
| Total Room Nights < 88
| | Total Room Nights < 23.5 : 0.53 (10/0.21) [5/2.09]
| | Total Room Nights >= 23.5
| | | Total Room Nights < 49 : 5 (5/3.04) [3/4.56]
| | | Total Room Nights >= 49 : 9.75 (5/2.16) [3/10.51]
| Total Room Nights >= \(88: 21.27\) (11/37.06) [4/56.85]
Total Room Nights >= 259.5 : 56.17 (3/748.22) [3/914.56]

Size of the tree : 9

Filtered Header
@relation 'Creta Palm Data 2020 ()-weka.filters.unsupervised.attribute.Remove-VR1,3,5,10,7,4,2,15'
@attribute 'Booking Source' \{'ARHUS CHARTER',AURINKOMATKAT,'BLUE AEGEAN',BOOKING.COM,'BRAVO

TOURS',EXPEDIA,ITAKA,Jet2Holidays,RAINBOW,'SELF
BOOKINGS',SUNWEB,'TUI Deutschland','TUI NL','TUI UK'\}
@attribute 'Average pax/room' numeric
@attribute ADR numeric
@ attribute 'BB\\%' numeric
@attribute 'TOTAL PAX Nights' numeric
@attribute 'TO/ OTA' \{TO,OTA\}
@ attribute
\{Denmark,Finland,Romania,Vary,Poland,UK,Netherlands,Germany \}
@attribute 'TOTAL BOOKINGS' numeric
@ data

Classifier Model

\section*{REPTree}

TOTAL PAX Nights < 765.5
| TOTAL PAX Nights < 201
| | TOTAL PAX Nights < 61
| | | ADR < 29.86: 0 (7/0) [3/0]
| | | ADR >= \(29.86: 1.6(5 / 0.64)[0 / 0]\)
| | TOTAL PAX Nights >= \(61: 7.14\) (8/4.94) [6/14.73]
| TOTAL PAX Nights >= 201
| | Booking Source = ARHUS CHARTER : 24 (2/36) [0/0]
| | Booking Source = AURINKOMATKAT : 23 (1/0) [1/144]
| | Booking Source = BLUE AEGEAN : 15 (1/0) [0/0]
| | Booking Source = BOOKING.COM : 27 (0/0) [1/45.56]
| | Booking Source = BRAVO TOURS : 14 (0/0) [1/39.06]
| | Booking Source = EXPEDIA : 32 (1/0) [0/0]
| | Booking Source = ITAKA : \(24.5(2 / 2.25)[0 / 0]\)
| | Booking Source = Jet2Holidays : 18 (0/0) [1/5.06]
| | Booking Source = RAINBOW : 28 (1/0) [1/36]
| | Booking Source = SELF BOOKINGS : 20.44 (0/0) [0/0]
| | Booking Source = SUNWEB : 11.75 (3/21.56) [1/58.78]
| | Booking Source = TUI Deutschland : 16 (1/0) [0/0]
| | Booking Source = TUI NL : 20.44 (0/0) [0/0]
| | Booking Source = TUI UK : 20.44 (0/0) [0/0]
TOTAL PAX Nights >=765.5: \(61.2(2 / 702.25)\) [3/1276.92]

Size of the tree : 23

Filtered Header
@relation 'Creta Palm Data 2020 ()-weka.filters.unsupervised.attribute.Remove-VR5,7,3,13,10,6,4,15'
@ attribute ADR numeric
@attribute 'TOTAL PAX Nights' numeric
@attribute 'Average pax/room' numeric
@attribute AI numeric
@attribute 'BB\\%' numeric
@attribute MONTH \{'JULY 2020','AUGUST 2020','SEPTEMBER 2020','OCTOBER 2020' \(\}\)
@attribute 'TO/ OTA' \{TO,OTA\}
@attribute 'TOTAL BOOKINGS' numeric
@ data

Classifier Model
REPTree

TOTAL PAX Nights < 764.5
| TOTAL PAX Nights < 382.5
| | TOTAL PAX Nights < 102.5
| | | TOTAL PAX Nights < \(45.5: 0.36\) (9/0.44) [5/0.24]
| | | TOTAL PAX Nights >=45.5
| | | | ADR < \(86.31: 5.8\) (3/2.89) [2/3.61]
| | | | ADR >= 86.31:3.5 (3/0) [1/4]
| | TOTAL PAX Nights >= 102.5 : 12.8 (9/9.06) [6/52.03]
| TOTAL PAX Nights >= 382.5 : 26.22 (6/17) [3/46]
TOTAL PAX Nights >= 764.5 : \(61.2(4 / 626.5)\) [1/576]

Size of the tree : 11

\section*{Filtered Header}
@relation 'Creta Palm Data 2020 ()-weka.filters.unsupervised.attribute.Remove-VR13,8,3,11,12,9,14,15'
@attribute AI numeric
@attribute 'Total Room Nights' numeric
@attribute 'Average pax/room' numeric
@attribute HB numeric
@attribute 'HB\\%' numeric
@attribute BB numeric
@attribute 'AI\\%' numeric
@attribute 'TOTAL BOOKINGS' numeric
@ data

Classifier Model
REPTree

Total Room Nights < 159.5
| Total Room Nights < 88.5
| | Total Room Nights < \(27: 0.53\) (11/0.79) [4/0.77]
| | Total Room Nights >= 27 : 7.38 (10/4.49) [6/21.81]
| Total Room Nights >= 88.5 : 16.29 (5/26.64) [2/3.46]
Total Room Nights >= 159.5
| Total Room Nights < 259.5 : 25.63 (5/29.76) [3/7.51]
| Total Room Nights >=259.5:56.17 (3/13.56) [3/1269.22]

Size of the tree : 9

FilteredClassifier using weka.classifiers.trees.REPTree -M 2 -V 0.001 -N 3 -S 1158800660 -L \(-1 \quad\)-I 0.0 on data filtered through weka.filters.unsupervised.attribute.Remove -V -R 9,7,2,13,3,8,11,15

Filtered Header
@relation 'Creta Palm Data 2020 ()-weka.filters.unsupervised.attribute.Remove-VR9,7,2,13,3,8,11,15'
@attribute BB numeric
@attribute 'TOTAL PAX Nights' numeric
@ attribute
Country
\{Denmark,Finland,Romania,Vary,Poland,UK,Netherlands,Germany \}
@attribute AI numeric
@attribute 'Average pax/room' numeric
@attribute 'Total Room Nights' numeric
@attribute HB numeric
@attribute 'TOTAL BOOKINGS' numeric
@ data

Classifier Model
REPTree

TOTAL PAX Nights < 768.5
| Total Room Nights < 88
| | TOTAL PAX Nights < 102.5
| | | TOTAL PAX Nights < \(35: 0.31\) (6/0.14) [7/0.6]
| | | TOTAL PAX Nights >= \(35: 4.4\) (6/3.89) [4/4.78]
| | TOTAL PAX Nights \(>=102.5\) : \(9.75(6 / 2.14)\) [2/13.69]
| Total Room Nights >= \(88: 21.88\) (13/48.56) [3/32.67]
TOTAL PAX Nights >= \(768.5: 61.2(3 / 748.22)\) [2/585.11]

Size of the tree : 9
=== Summary ===
Correlation coefficient 0.875
Mean absolute error 6.3925
Root mean squared error 10.6306
Relative absolute error \(\quad 47.0885 \%\)
Root relative squared error \(\quad 54.2753\) \%
Total Number of Instances 52
Ignored Class Unknown Instances 4

\section*{Meta Randomizable Filtered Classifier| Creta Palm 2020}
\(===\) Classifier model (full training set) \(===\)
IB1 instance-based classifier
using 1 nearest neighbour(s) for classification
=== Summary ===
Correlation coefficient ..... 0.8399
Mean absolute error ..... 5.9423
Root mean squared error ..... 11.0026
Relative absolute error ..... 43.7726 \%
Root relative squared error ..... 56.1748 \%
Total Number of Instances ..... 52
Ignored Class Unknown Instances ..... 4
Rules Decision Table Algorithm| Creta Palm 2020
\(===\) Classifier model (full training set) \(===\)
Decision Table:
Number of training instances: 52
Number of Rules : 7
Non matches covered by Majority class.
Best first
Start set: no attributes
Search direction: forward
Stale search after 5 node expansions
Total number of subsets evaluated: 74
Merit of best subset found: ..... 14.863
Evaluation (for feature selection): CV (leave one out)
Feature set: 8,15
=== Summary ===
Correlation coefficient ..... 0.8395
Mean absolute error ..... 6.5878
\begin{tabular}{lc} 
Root mean squared error & 12.1645 \\
Relative absolute error & \(48.5274 \%\) \\
Root relative squared error & \(62.1067 \%\) \\
Total Number of Instances & 52 \\
Ignored Class Unknown Instances & 4
\end{tabular}

\section*{Meta Additive Regression Algorithm| Creta Palm 2020}
\(==\) Classifier model (full training set) \(===\)

Additive Regression

Initial prediction: 15.03

10 models generated.

\section*{Model number 0}

Decision Stump
Classifications

TOTAL PAX Nights <= 737.0 : -4.9108019639934595
TOTAL PAX Nights > 737.0 : 46.16153846153846
TOTAL PAX Nights is missing : \(-5.943963270300838 \mathrm{E}-15\)

\section*{Model number 1}

Decision Stump
Classifications

Average pax/room <= \(3.065: 1.304307213284903\)
Average pax/room > 3.065 : 47.800000000000026

Average pax/room is missing : -10.127659574468082

\section*{Model number 2}

Decision Stump
Classifications

Total Room Nights <= 88.0 : - 3.6797194368649238
Total Room Nights > 88.0 : 5.431966787752982
Total Room Nights is missing : -2.391249591500337E-16

\section*{Model number 3}

Decision Stump
Classifications

Total Room Nights <= 297.5 : 1.7058949530192467
Total Room Nights > 297.5 : - 16.035412558380912
Total Room Nights is missing : 7.173748774501012E-16

\section*{Model number 4}

Decision Stump
Classifications

Total Room Nights <= 159.5 : -1.8124090327177127
Total Room Nights > 159.5 : 4.91939594594808
Total Room Nights is missing : 4.782499183000674E-16

Model number 5

Decision Stump
Classifications

AI <= \(737.0: 0.07211576747739341\)
AI > 737.0 : -14.82025738860505
AI is missing : 3.786233516563391

Model number 6

Decision Stump
Classifications

Average pax/room <= 2.795 : -0.018679579795516488
Average pax/room > 2.795 : -4.221059895160568
Average pax/room is missing : 2.5998824243601986

\section*{Model number 7}

Decision Stump
Classifications

HB <= \(426.0: 0.056719633608277725\)
HB > 426.0 : 9.832993952363008
HB is missing : -3.1247041829880158

\section*{Model number 8}

Decision Stump
Classifications

Booking Source \(=\) RAINBOW : 4.555911629386115
Booking Source != RAINBOW : -0.3796593024488432

Booking Source is missing ：\(-2.391249591500337 \mathrm{E}-16\)

\section*{Model number 9}

Decision Stump
Classifications

Average pax／room＜＝ \(1.9849999999999999: 4.202024608327246\)
Average pax／room＞ 1.9849999999999999 ：－0．5294429338712259
Average pax／room is missing ： 1.277366813819454
＝＝＝Summary＝＝＝
Correlation coefficient 0.8342
Mean absolute error 6.4298
Root mean squared error 11.6181
Relative absolute error \(\quad 47.3635 \%\)
Root relative squared error \(\quad 59.3169\) \％
Total Number of Instances 52
Ignored Class Unknown Instances 4

\section*{Random Tree Algorithm｜Creta Palm 2020}
\(===\) Classifier model（full training set）\(===\)

RandomTree

ニ二ニニ二ニニニニ＝
Total Room Nights＜ 297.5
Booking Source \(=\) ARHUS CHARTER
｜｜MONTH＝JULY 2020：0（1／0）
｜｜MONTH＝AUGUST 2020 ： 0 （1／0）
｜｜MONTH＝SEPTEMBER 2020 ： 30 （1／0）
｜｜MONTH＝OCTOBER 2020 ： 18 （1／0）
```

| Booking Source = AURINKOMATKAT
| | ADR < 42.74:0 (1/0)
| | ADR >= 42.74
| | | Average pax/room < 2.1:29 (1/0)
| | | Average pax/room >= 2.1:17 (1/0)
| Booking Source = BLUE AEGEAN
| | MONTH = JULY 2020:3 (1/0)
| | MONTH = AUGUST 2020 : 10 (1/0)
| | MONTH = SEPTEMBER 2020 : 15 (1/0)
| | MONTH = OCTOBER 2020:0 (1/0)
| Booking Source = BOOKING.COM
| | BB < 182: 8 (1/0)
| | BB >= 182:27 (1/0)
| Booking Source = BRAVO TOURS
| | AI < 161: 10 (2/0)
| | AI >= 161:14 (1/0)
| Booking Source = EXPEDIA
| | MONTH = JULY 2020: 32 (1/0)
| | MONTH = AUGUST 2020:0 (0/0)
| | MONTH = SEPTEMBER 2020: 6 (1/0)
| | MONTH = OCTOBER 2020:1 (1/0)
| Booking Source = ITAKA
| | TOTAL PAX Nights < 303.5:7 (1/0)
| | TOTAL PAX Nights >= 303.5
| | | TOTAL PAX Nights < 554 : 26 (1/0)
| | | TOTAL PAX Nights >= 554 : 23 (1/0)
| Booking Source = Jet2Holidays
| | Total Room Nights < 115.5
| | | TOTAL PAX Nights < 63:0.5 (2/0.25)
| | | TOTAL PAX Nights >= 63:3 (1/0)
| | Total Room Nights >= 115.5 : 18 (1/0)
| Booking Source = RAINBOW

```
| | TOTAL PAX Nights < 226.5
| | | ADR < 85.19: 13 (1/0)
| | | ADR >= 85.19 : 1 (1/0)
| | TOTAL PAX Nights >= 226.5
| | | ADR < 102.15 : 31 (1/0)
| | | ADR >= \(102.15: 25\) (1/0)
| Booking Source = SELF BOOKINGS : 0 (1/0)
| Booking Source = SUNWEB
| | ADR < 81.25 : 20 (1/0)
| | ADR >= 81.25
| | | MONTH = JULY 2020: 6 (1/0)
| | | MONTH = AUGUST \(2020: 9(1 / 0)\)
| | | MONTH = SEPTEMBER 2020: 0 (0/0)
| | | MONTH = OCTOBER 2020 : 12 (1/0)
| Booking Source = TUI Deutschland
| | ADR < 119.28
| | | Total Room Nights < 62
| | | | Average pax/room < 2.06: 3 (1/0)
| | | | Average pax/room >=2.06:5(1/0)
| | | Total Room Nights >= \(62: 9(1 / 0)\)
| | ADR >= 119.28: 16 (1/0)
| Booking Source = TUI NL
| | MONTH = JULY 2020: 3 (1/0)
| | MONTH = AUGUST \(2020: 5\) (1/0)
| | MONTH = SEPTEMBER 2020: 8 (1/0)
| | MONTH = OCTOBER 2020: 0 (1/0)
| Booking Source = TUI UK
| | Total Room Nights < \(3.5: 0\) (3/0)
| | Total Room Nights >= 3.5 : 2 (1/0)
Total Room Nights >=297.5
Average pax/room < 3.06
| | Country = Denmark : 42 (1/0)
| | Country = Finland : \(0(0 / 0)\)
| | Country = Romania : 0 (0/0)
| | Country = Vary
| | | MONTH = JULY 2020: 56(1/0)
| | | MONTH = AUGUST 2020 : 52 (1/0)
| | | MONTH = SEPTEMBER 2020: 0 (0/0)
| | | MONTH = OCTOBER 2020: 0 (0/0)
| | Country = Poland : 47 (1/0)
| | Country = UK : 0 ( \(0 / 0\) )
| | Country = Netherlands : 0 (0/0)
| | Country = Germany : 0 ( \(0 / 0\) )
| Average pax/room >=3.06: 109 (1/0)

Size of the tree : 83
=== Summary \(===\)
Correlation coefficient 0.8035
Mean absolute error 7.5063
Root mean squared error 11.6473
Relative absolute error \(\quad 55.2936\) \%
Root relative squared error 59.466 \%
Total Number of Instances 52
Ignored Class Unknown Instances 4

\section*{Meta Bagging Algorithm| Creta Palm 2020}
\(===\) Classifier model (full training set) \(===\)
Bagging with 10 iterations and base learner
=== Summary ===
Correlation coefficient 0.7682
Mean absolute error 7.8863
Root mean squared error 13.0864
Relative absolute error 58.0927 \%
\begin{tabular}{lc} 
Root relative squared error & \(66.8134 \%\) \\
Total Number of Instances & 52 \\
Ignored Class Unknown Instances & 4
\end{tabular}

\section*{Meta Regression by Discretization Algorithm| Creta Palm 2020}
\(===\) Classifier model (full training set) \(==\)
Class attribute discretized into 10 values
Classifier spec: weka.classifiers.trees.J48 -C 0.25 -M 2
J48 pruned tree
------------------

Total Room Nights <= 85: '(-inf-10.9]' (31.0/2.0)
Total Room Nights > 85
| BB <= 406: '(21.8-32.7]' (17.0/9.0)
| \(\mathrm{BB}>406\)
| | Average pax/room <= 2.91: '(43.6-54.5]' (2.0)
| | Average pax/room > 2.91: '(54.5-65.4]' (2.0/1.0)

Number of Leaves : 4
Size of the tree : 7
\(==\) Summary \(===\)
Correlation coefficient 0.7575
Mean absolute error 8.4383
Root mean squared error 12.8237
Relative absolute error 62.1588 \%
Root relative squared error \(\quad 65.4725\) \%
Total Number of Instances 52
Ignored Class Unknown Instances 4

\section*{Lazy LWL Algorithm| Creta Palm 2020}
\(===\) Classifier model (full training set) \(===\)
Locally weighted learning
Using classifier: weka.classifiers.trees.DecisionStump
Using linear weighting kernels
Using all neighbours
=== Summary \(===\)
\begin{tabular}{ll} 
Correlation coefficient & 0.6917 \\
Mean absolute error & 9.4686
\end{tabular}

Root mean squared error 14.0376
Relative absolute error 69.7484 \%
Root relative squared error \(\quad 71.6703\) \%
Total Number of Instances 52
Ignored Class Unknown Instances 4

\section*{REP Tree Algorithm| Creta Palm 2020}
=== Classifier model (full training set) ===

\section*{REPTree}

TOTAL PAX Nights < 737
Total Room Nights < 87
| | TOTAL PAX Nights < 102.5 : 2.09 (15/5.98) [8/6.52]
| | TOTAL PAX Nights >= 102.5 : 9.75 (6/5.47) [2/0.36]
| Total Room Nights >= 87 : 21.88 (8/59.48) [8/31.11]
TOTAL PAX Nights >= 737 : 61.2 (5/593.36) [0/0]

Size of the tree : 7
=== Summary \(==\)
Correlation coefficient 0.6909
Mean absolute error 9.4218
Root mean squared error 14.1754
Relative absolute error \(\quad 69.4032\) \%
Root relative squared error \(\quad 72.3738\) \%
Total Number of Instances 52
Ignored Class Unknown Instances 4

\section*{Decision Stump Algorithm| Creta Palm 2020}
\(===\) Classifier model (full training set) \(===\)
REPTree

TOTAL PAX Nights < 737
| Total Room Nights < 87
| | TOTAL PAX Nights < 102.5 : 2.09 (15/5.98) [8/6.52]
| | TOTAL PAX Nights >= 102.5 : 9.75 (6/5.47) [2/0.36]
| Total Room Nights >= 87 : 21.88 ( \(8 / 59.48\) ) [8/31.11]
TOTAL PAX Nights >= 737 : 61.2 (5/593.36) [0/0]

Size of the tree : 7
=== Summary \(===\)
Correlation coefficient 0.6589
Mean absolute error 11.4081
Root mean squared error 17.1056
Relative absolute error 84.0353 \%
Root relative squared error \(\quad 87.3339\) \%

\section*{Lazy IBK Algorithm| Creta Palm 2020}
\(===\) Classifier model (full training set) \(===\)
IB1 instance-based classifier
using 1 nearest neighbour(s) for classification
=== Summary \(===\)
Correlation coefficient 0.5753
Mean absolute error 12.0577
Root mean squared error 15.7816
Relative absolute error \(88.8201 \%\)
Root relative squared error 80.574 \%
Total Number of Instances 52
Ignored Class Unknown Instances 4

Classifiers "Meta CV Parameter Selection", "Meta Multi Scheme", "Meta Stacking", "Meta Vote", "Meta Weighted Instances Handler Wrapper", "Misc

Input Mapped Classifier" and "Zero R", provide the same algorithm results, with a correlation coefficient: \(\mathbf{- 0 . 3 5 4 3}\), as shown below:

Cross-validated Parameter selection.
Classifier: weka.classifiers.rules.ZeroR
Classifier Options:

ZeroR predicts class value: 15.03
=== Summary \(===\)
Correlation coefficient -0.3543
\begin{tabular}{lc} 
Mean absolute error & 13.5754 \\
Root mean squared error & 19.5864 \\
Relative absolute error & \(100 \%\) \\
Root relative squared error & \(100 \%\) \\
Total Number of Instances & 52
\end{tabular}

Ignored Class Unknown Instances 4

Simple K Means with 3 Clusters| Creta Palm 2020
Final cluster centroids:
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{3}{*}{Attribute} & \multicolumn{4}{|c|}{Cluster\#} \\
\hline & Full Data & 0 & 1 & 2 \\
\hline & (56.0) & (25.0) & (13.0) & (18.0) \\
\hline Booking Source & ARHUS CHARTER & SELF BOOKINGS & TUI Deutchland & AURINKOMATKAT \\
\hline Country & Vary & Vary & Germany & Finland \\
\hline Avarage pax/room & 2.3586 & 2.3295 & 2.4344 & 2.3441 \\
\hline TO/ OTA & TO & TO & TO & TO \\
\hline ADR & 73.5381 & 69.0307 & 82.6585 & 73.2117 \\
\hline MONTH & JULY 2020 & OCTOBER 2020 & JULY 2020 & AUGUST 2020 \\
\hline TOTAL PAX Nights & 270.2642 & 225.2717 & 192.3846 & 389 \\
\hline Total Room Nights & 108.3774 & 94.4053 & 78.6923 & 149.2222 \\
\hline BB & 142.16 & 92.6656 & 36.7169 & 287.0556 \\
\hline BB\% & 0.4362 & 0.3988 & 0.2233 & 0.6419 \\
\hline HB & 38.9184 & 20.3069 & 45.9812 & 59.6667 \\
\hline HB\% & 0.1671 & 0.0971 & 0.3549 & 0.1288 \\
\hline AI & 105.98 & 125.7968 & 156.8431 & 41.7222 \\
\hline AI\% & 0.3901 & 0.4992 & 0.4162 & 0.2197 \\
\hline TOTAL BOOKINGS & 15.0385 & 14.2446 & 8.8462 & 20.6132 \\
\hline
\end{tabular}

\section*{Simple K Means with 4 Clusters| Creta Palm 2020}

Final cluster centroids:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Attribute} & \multicolumn{6}{|c|}{Cluster\#} \\
\hline & & \[
\begin{array}{r}
\text { Full Data } \\
(56.0)
\end{array}
\] & \[
\begin{array}{r}
0 \\
(17.0)^{0}
\end{array}
\] & \[
(12.0)^{1}
\] & \[
(16.0)^{2}
\] & \[
(11.0)^{3}
\] \\
\hline Booking Source & ARHUS & CHARTER SELF & BOOKINGS TUI & Deutchland AU & AURINKOMATKAT & BRAVO TOURS \\
\hline Country & & Vary & Vary & Germany & y Finland & Denmark \\
\hline Avarage pax/room & & 2.3586 & 2.4005 & 2.4364 & 42.3721 & 2.1891 \\
\hline TO/ OTA & & TO & TO & TO & O TO & TO \\
\hline ADR & & 73.5381 & 52.2639 & 81.19 & 971.78 & 100.6264 \\
\hline MONTH & & JULY 2020 & OCTOBER 2020 & JULY 2020 & 0 AUGUST 2020 & SEPTEMBER 2020 \\
\hline TOTAL PAX Nights & & 270.2642 & 184.8701 & 133.8333 & 3407.375 & 351.6364 \\
\hline Total Room Nights & & 108.3774 & 72.1254 & 54.4167 & 7154.125 & 156.7273 \\
\hline BB & & 142.16 & 131.3906 & 39.7767 & 7302.0625 & 37.9091 \\
\hline BB\% & & 0.4362 & 0.5582 & 0.2419 & 90.6378 & 0.1664 \\
\hline HB & & 38.9184 & 29.8631 & 49.8129 & 967.125 & 0 \\
\hline HB\% & & 0.1671 & 0.1428 & 0.3845 & 50.1449 & 0 \\
\hline AI & & 105.98 & 43.4659 & 95.33 & 37.5625 & 313.7273 \\
\hline AI\% & & 0.3901 & 0.2924 & 0.3675 & 50.2078 & 0.8309 \\
\hline TOTAL BOOKINGS & & 15.0385 & 12.1833 & 6.0833 & 321.7524 & 19.4545 \\
\hline
\end{tabular}

\section*{Simple K Means with 5 Clusters|Creta Palm 2020}

Final cluster centroids:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Cluster\#} \\
\hline Attribute & & ull Data
\[
(56.0)
\] & & \[
\begin{gathered}
0 \\
(16.0)
\end{gathered}
\] & & \[
\begin{gathered}
1 \\
(9.0)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(13.0)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(7.0)
\end{gathered}
\] & & \[
\begin{gathered}
4 \\
(11.0)
\end{gathered}
\] \\
\hline Source A & ARHUS & CHARTER & SELF & BOOKINGS & TUI & Deutchland & AURINKOMATKAT & RAINBOW & ARHUS & CHARTER \\
\hline Country & & Vary & & Vary & & Germany & Finland & Poland & & Denmark \\
\hline Av. pax/roo & & 2.3586 & & 2.4162 & & 2.3321 & 2.3974 & 2.4843 & & 2.1706 \\
\hline TO/ OTA & & TO & & TO & & TO & TO & TO & & TO \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ADR & 73.5381 & 50.5635 & 82.8844 & 75.82 & 98.9471 & 80.4427 \\
\hline MONTH & JULY 2020 & OCTOBER 2020 & JULY 2020 & AUGUST 2020 & JULY 2020 & SEPTEMBER 2020 \\
\hline TOTAL PAX & 270.2642 & 188.362 & 111.4444 & 487 & 421.7143 & 166.8182 \\
\hline Total Room N . & 108.3774 & 72.8833 & 48.1111 & 183.6923 & 176.2857 & 77.0909 \\
\hline BB & 142.16 & 139.6025 & 32.24 & 370.6923 & 6.4286 & 52.1055 \\
\hline BB\% & 0.4362 & 0.5931 & 0.2518 & 0.6745 & 0.0286 & 0.3366 \\
\hline HB & 38.9184 & 31.7296 & 76.3152 & 70.9231 & 3.4286 & 3.538 \\
\hline HB\% & 0.1671 & 0.1517 & 0.5797 & 0.0986 & 0.0143 & 0.0304 \\
\hline AI & 105.98 & 38.12 & 39.1089 & 44.6154 & 411.8571 & 137.2709 \\
\hline AI\% & 0.3901 & 0.2482 & 0.1622 & 0.2165 & 0.9543 & 0.6291 \\
\hline TOTAL BOOKINGS & 15.0385 & 12.1322 & 5.5556 & 25.8491 & 20.2857 & 10.9091 \\
\hline
\end{tabular}

\section*{EM Clustering Model (continued)| Creta Palm 2020}
\begin{tabular}{cccr} 
& \multicolumn{2}{c}{ Cluster } \\
Attribute & 0 & 1 & 2 \\
& \((0.28)\) & \((0.55)\) & \((0.17)\)
\end{tabular}

Booking Source
ARHUS CHARTER
\(\begin{array}{lll}3 & 3 & 1\end{array}\)
AURINKOMATKAT
2
\(4 \quad 1\)

BLUE AEGEAN
2
4
1

BOOKING.COM
\(1 \quad 1.983 \quad 4.017\)

BRAVO TOURS
4.0041
1.9539
1.042

EXPEDIA
\(1 \quad 1.7907\)
4.2093

ITAKA
3.0004
1.9877
2.0119

Jet2Holidays
1.0093
3.9984
1.9923

RAINBOW
4.0002
\(1 \quad 1.9998\)
SELF BOOKINGS
15
1

SUNWEB
4
2
1

TUI Deutchland
1
1

TUI NL
1.86524 .1343
1.0006

TUI UK
14.9996
1.0004
[total]
\(29.879244 .8476 \quad 23.2732\)

Country
\begin{tabular}{lrrr} 
Denmark & 6.0041 & 3.9539 & 1.042 \\
Finland & 2 & 4 & 1 \\
Romania & 2 & 4 & 1 \\
Vary & 1 & 6.7737 & 7.2263
\end{tabular}
\begin{tabular}{lrrr} 
Poland & 6.0006 & 1.9877 & 3.0117 \\
UK & 1.0093 & 7.998 & 1.9927 \\
Nederlands & 4.8652 & 5.1343 & 1.0006 \\
Germany & 1 & 5 & 1 \\
[total] & 23.8792 & 38.8476 & 17.2732 \\
Avarage pax/room & & & \\
mean & 2.2972 & 2.2975 & 2.6667 \\
std. dev. & 0.2519 & 0.2068 & 0.318 \\
TO/ OTA & 16.8792 & 30.0739 & 4.0469 \\
TO & & 2.7737 & 7.2263 \\
OTA & 17.8792 & 32.8476 & 11.2732 \\
[total] & & & \\
ADR & 98.1323 & 54.3313 & 95.316
\end{tabular}

MONTH
JULY \(2020 \quad 4 \quad 9.9994 \quad 3.0006\)
\(\begin{array}{llll}\text { AUGUST } 2020 & 3.0145 & 7.9514 & 6.0341\end{array}\)
\(\begin{array}{llll}\text { SEPTEMBER } 2020 & 7.8642 & 6.9111 & 2.2247\end{array}\)
\(\begin{array}{llll}\text { OCTOBER } 2020 \quad 5.0004 & 9.9857 \quad 2.0139\end{array}\)
\(\begin{array}{llll}\text { [total] } & 19.8792 & 34.8476 & 13.2732\end{array}\)
TOTAL PAX Nights
mean \(346.2423 \quad 93.5928 \quad 727.8619\)
std. dev. 218.9589102 .9212601 .8411
\begin{tabular}{lrrl} 
Total Room Nights \\
mean & 152.0379 & 40.1846 & 260.4587 \\
std. dev. & 93.078 & 42.6628 & 188.5728
\end{tabular}

BB
mean \(\quad 50.167 \quad 53.846593 .4631\)
```

 std. dev. 97.9618 59.9082 476.2931
 BB%
mean 0.1385 0.4653 0.849
std. dev.
0.241 0.3055 0.1343
HB
mean 1.1336 32.2179 125.9087
std. dev. 4.3725 43.0547 167.8338
HB%
mean 0.0019 0.263 0.1314
std. dev.
0.0073
0.3066
0.1286
AI
mean 294.9417 38.3408 7.4118
std. dev. 230.6609 52.2848 10.9021
AI%
mean 0.8559 0.2645 0.0101
std. dev.
0.2507
0.1901
0.0211
TOTAL BOOKINGS
mean 18.8993 5.6153 39.7735
std. dev.
10.3394
5.7736
29.3252

```

\section*{Make A Density Based Clusterer fitted estimators| Creta Palm 2020}

Fitted estimators (with ML estimates of variance):

Cluster: 0 Prior probability: 0.6207

Attribute: ï»¡Booking Source

Discrete Estimator. Counts = 43344433454134 (Total = 49)
Attribute: Country
Discrete Estimator. Counts \(=733116661\) (Total = 43)
Attribute: Avarage pax/room
Normal Distribution. Mean \(=\) 2.3561 StdDev \(=0.2526\)
Attribute: TO/ OTA
Discrete Estimator. Counts \(=307(\) Total \(=37)\)
Attribute: ADR
Normal Distribution. Mean \(=65.7399\) StdDev \(=46.3358\)
Attribute: MONTH
Discrete Estimator. Counts = 1021413 (Total = 39)
Attribute: TOTAL PAX Nights
Normal Distribution. Mean \(=220.8226\) StdDev \(=246.7839\)
Attribute: Total Room Nights
Normal Distribution. Mean \(=91.8609\) StdDev \(=97.6317\)
Attribute: BB
Normal Distribution. Mean \(=\) 83.4846 StdDev \(=155.2409\)
Attribute: BB\%
Normal Distribution. Mean \(=0.379\) StdDev \(=0.3137\)
Attribute: HB
Normal Distribution. Mean \(=\) 17.4146 StdDev \(=30.8339\)
Attribute: HB\%
Normal Distribution. Mean \(=0.0913\) StdDev \(=0.0946\)
Attribute: AI
Normal Distribution. Mean \(=\) 145.968 StdDev \(=205.4665\)
Attribute: AI\%

Normal Distribution. Mean \(=0.5243\) StdDev \(=0.3715\)
Attribute: TOTAL BOOKINGS
Normal Distribution. Mean \(=\) 13.2615 StdDev \(=13.3537\)

Cluster: 1 Prior probability: 0.3793

Attribute: ï»¿Booking Source
Discrete Estimator. Counts = 23322233212532 (Total = 35)
Attribute: Country
Discrete Estimator. Counts = 33334445 (Total = 29)
Attribute: Avarage pax/room
Normal Distribution. Mean \(=\) 2.3627 StdDev \(=0.3152\)
Attribute: TO/ OTA
Discrete Estimator. Counts \(=203(\) Total \(=23)\)
Attribute: ADR
Normal Distribution. Mean \(=86.5352\) StdDev \(=31.1497\)
Attribute: MONTH
Discrete Estimator. Counts \(=61423(\) Total \(=25)\)
Attribute: TOTAL PAX Nights
Normal Distribution. Mean \(=\) 352.6667 StdDev \(=492.0075\)
Attribute: Total Room Nights
Normal Distribution. Mean \(=135.9048\) StdDev \(=162.215\)
Attribute: BB
Normal Distribution. Mean \(=\) 239.9524 StdDev \(=406.2404\)
Attribute: BB\%
Normal Distribution. Mean \(=0.5315 \mathrm{StdDev}=0.3923\)

Attribute: HB
Normal Distribution. Mean \(=74.758\) StdDev \(=126.5836\)
Attribute: HB\%
Normal Distribution. Mean \(=0.2935\) StdDev \(=0.3737\)
Attribute: AI
Normal Distribution. Mean \(=\) 39.3333 StdDev \(=69.5792\)
Attribute: AI\%
Normal Distribution. Mean \(=0.1664\) StdDev \(=0.2042\)
Attribute: TOTAL BOOKINGS
Normal Distribution. Mean \(=18\) StdDev \(=24.702\)

\section*{Farthest First with 3 Clusters| Creta Palm 2020}
```

Cluster centroids:
Cluster 0:
TUI Deutchland Germany 2.28 TO 117.18 AUGUST 2020 194.0 85.0 0.0
0.0 148.0 0.76 46.0 0.23 9.0
Cluster 1:
BOOKING.COM Vary 3.11 OTA 123.27 AUGUST 2020 2155.0 691.0 1652.0
0.76 503.0 0.23 10.0 0.004 109.0
Cluster 2:
EXPEDIA Vary 3.0 OTA 59.71 OCTOBER 2020 9.0 3.0 9.0 1.0 0.0 0.0
0.0 0.0 1.0
=== Model and evaluation on training set ===
Clustered Instances
0 38 (68%)
1 3 (5%)
2 15 (27%)

```

\section*{Farthest First with 4 Clusters| Creta Palm 2020}
```

Cluster centroids:
Cluster 0:
TUI Deutchland Germany 2.28 TO 117.18 AUGUST 2020 194.0 85.0 0.0
0.0 148.0 0.76 46.0 0.23 9.0

```
```

Cluster 1:
BOOKING.COM Vary 3.11 OTA 123.27 AUGUST 2020 2155.0 691.0 1652.0
0.76 503.0 0.23 10.0 0.004 109.0
Cluster 2:
EXPEDIA Vary 3.0 OTA 59.71 OCTOBER 2020 9.0 3.0 9.0 1.0 0.0 0.0
0.0 0.0 1.0
Cluster 3:
BRAVO TOURS Denmark 2.41 TO 100.28 JULY 2020 895.0 370.0 0.0 0.0
0.0 0.0 895.0 1.0 42.0
=== Model and evaluation on training set ===
Clustered Instances
0 24 (43%)
1 3 (5%)
2 15 (27%)
3 14 (25%)

```

\section*{Farthest First with 5 Clusters| Creta Palm 2020}
```

Cluster centroids:
Cluster 0:
TUI Deutchland Germany 2.28 TO 117.18 AUGUST 2020 194.0 85.0 0.0
0.0 148.0 0.76 46.0 0.23 9.0
Cluster 1:
BOOKING.COM Vary 3.11 OTA 123.27 AUGUST 2020 2155.0 691.0 1652.0
0.76 503.0 0.23 10.0 0.004 109.0
Cluster 2:
EXPEDIA Vary 3.0 OTA 59.71 OCTOBER 2020 9.0 3.0 9.0 1.0 0.0 0.0
0.0 0.0 1.0
Cluster 3:
BRAVO TOURS Denmark 2.41 TO 100.28 JULY 2020 895.0 370.0 0.0 0.0
0.0 0.0 895.0 1.0 42.0
Cluster 4:
ITAKA Poland 2.91 TO 108.52 AUGUST 2020 1083.0 372.0 1083.0 1.0
0.0 0.0 0.0 0.0 47.0
=== Model and evaluation on training set ===
Clustered Instances
0 18 (32%)
1 3 (5%)
2 13 (23%)
3 14 (25%)
4 (14%)

```

\section*{Canopy Clusterer|Creta Palm 2020}

Number of canopies (cluster centers) found: 14
Cluster 0: ITAKA, Poland, 2.5375, TO, 97.0825, 'JULY2020', 427, 180.5, 0, 0, 0, 0, \(427,1,20.25,\{4\}<0,3,4,5,10,12,13>\)

Cluster 1: Jet2Holidays, UK, 2.208163, TO, 70.611164, 'SEPTEMBER2020', 197.037736, 86.053908, 139.88, 0.66034, 5.559767, 0.047755, 53.997143, 0.284313, 9.434066, \(\{7\}\) <1,2,3,7,9,11,13>

Cluster 2: 'ARHUS CHARTER', Denmark, 2.240714, TO, 29.713333, 'AUGUST2020', 108.877358, 49.396226, 69.553333, 0.45746, 12.972789, 0.111429, 76.993333, \(0.42673,7.173077,\{6\}<1,2,3,4,7,9,10,12,13>\)

Cluster 3: ITAKA, Poland, 2.09, TO, 77.645, 'OCTOBER2020', 73, 35, 67, 0.915 , 19.459184, \(0,6,0.08,5,\{2\}<0,1,2,3,7,9,12>\)

Cluster 4: 'BRAVO TOURS', Denmark, 2.256667, TO, 84.39, 'OCTOBER2020', 152, 66.333333, 10.666667, \(0.05,0,0,141.333333,0.946667,11.666667,\{3\}<0,2,4,9,10>\)

Cluster 5: 'TUI Deutchland', Germany, 2.276667, TO, 106.02, 'JULY2020', 193, 82.666667, \(0,0,122,0.726667,71,0.263333,10,\{3\}<0,5,6,10,13>\)

Cluster 6: 'BLUEAEGEAN', Romania, 2.372857, TO, 59.97, 'JULY2020', 74, 30.666667, \(0,0.145397,67,0.679048,7,0.170032,4.333333,\{3\}<5,6,9,13>\)

Cluster 7:'TUINL', Nederlands, 2.195714, TO, 74.382, 'AUGUST 2020', 203.4, 94.4, \(112.4,0.615238,3.6,0.039429,87.4,0.336019,9.2,\{5\}<1,2,3,7,9,12,13>\)

Cluster 8: EXPEDIA, Vary, 2.48, OTA, 87.92, 'JULY2020', 670.5, 264, 438.5, 0.685, \(215,0.285,7,0.005,42,\{2\}<8,11,13>\)

Cluster 9: AURINKOMATKAT, Finland, 2.334857, TO, 33.50763, 'OCTOBER2020', 115.65283, 49.075472, 62.832, 0.458952, 18.183673, 0.165714, 37.996, \(0.366076,9.415385,\{5\}<1,2,3,4,6,7,9,13>\)

Cluster 10: 'BRAVOTOURS', Denmark, 2.32, TO, 104.55, 'JULY2020', 549, 230.5, \(0,0,0,0,549,1,28,\{2\}<0,2,4,5,10,13>\)

Cluster 11: BOOKING.COM, Vary, 2.4375, OTA, 73.6225, 'SEPTEMBER2020', \(145,61,108,0.8025,37,0.19,0,0,10.5,\{4\}<1,8,11,13>\)

Cluster 12: ITAKA, Poland, 2.655, TO, 107.115, 'AUGUST2020', 703.5, 253.5, \(703.5,1,0,0,0,0,36,\{2\}<0,2,3,7,12>\)

Cluster 13: 'SELFBOOKINGS', Vary, 2.358571, TO, 0, 'JULY2020', 0, 0, 142.16, \(0.43619,38.918367,0.167143,105.98,0.390095,0,\{2\}<0,1,2,5,6,7,8,9,10,11,13>\)

Clustered Instances:
\begin{tabular}{cc}
0 & \(5(9 \%)\) \\
1 & \(4(7 \%)\) \\
2 & \(4(7 \%)\) \\
3 & \(2(4 \%)\) \\
4 & \(5(9 \%)\) \\
5 & \(3(5 \%)\) \\
6 & \(5(9 \%)\) \\
7 & \(6(11 \%)\) \\
8 & \(5(9 \%)\) \\
9 & \(5(9 \%)\) \\
10 & \(2(4 \%)\) \\
11 & \(3(5 \%)\) \\
12 & \(2(4 \%)\) \\
13 & \(5(9 \%)\)
\end{tabular}

\section*{APPENDIX 2: NN}

\section*{Random Tree Algorithm| \(N\) N}

Note: The number in the parenthesis (i.e. 35/0) denotes that the respective rule had been correctly applied in 35 cases.

It is of a major importance to cover my fixed costs after I receive my pension = No
Car superseding Ability \(=\) Yes : Yes (35/0)
Car superseding Ability \(=\) No
| | I would like doctor visits to be included to my private insurance = Yes
| | | I would choose a local public hospital for a mild health issue \(=\) No : Yes (65/0)
| | | I would choose a local public hospital for a mild health issue \(=\) Yes
| \| \| I wish for private health services coupled with my insurance = Yes
\(||||\mid\) I would like hospital care to be included to my private insurance \(=\) Yes
\(||||\mid\) Quite satisfied from the public insurance health benefits = No : Yes (10/0)
| \| \| \| Quite satisfied from the public insurance health benefits = Yes
\(|||||\mid\) It is of a major importance to cover my pleasure trips after I receive my pension \(=\) Yes : Yes (4/0)
\(|||||\mid\) It is of a major importance to cover my pleasure trips after I receive my pension \(=\) No
\(||||||\mid\) I have managed for a lump sum or supplementary pension = Yes : No (1/0)
\(||||||\mid\) I have managed for a lump sum or supplementary pension \(=\) No : Yes (1/0)
\(|||\mid\) I would like hospital care to be included to my private insurance \(=\) No: Yes (7/0)
| \| \| I wish for private health services coupled with my insurance \(=\) No
\(||||\mid\) It is of a major importance to cover my healthcare after I receive my pension \(=\) Yes : Yes (2/0)
\(||||\mid\) It is of a major importance to cover my healthcare after I receive my pension = No : No (1/0)
| | I would like doctor visits to be included to my private insurance \(=\) No
| | | It is of a major importance to cover my healthcare after I receive my pension = Yes
| | | | Want a risk protection = Yes
| | | | I would choose a local public hospital for serious health issues = No
| \| \| \| \| Fixed Costs would not be covered in case of a possible loss of mine = Yes: Yes (19/0)
\(||||\mid\) Fixed Costs would not be covered in case of a possible loss of mine \(=\) No
| | | | | | Tax obligations would not be covered in case of a possible loss of mine \(=\) No : Yes (5/0)
| | | | | | Tax obligations would not be covered in case of a possible loss of mine \(=\) Yes : No (1/0)
| | | | | I would choose a local public hospital for serious health issues = Yes : No (1/0)
| | | \(\mid\) Want a risk protection \(=\) No
| \| \| \| Children Studies would not be covered in case of a possible loss of mine = No
| | | | | Have never had Insurance = Yes
| | | | | | I will get a satisfying pension = No: Yes (2/0)
\(|||||\mid I\) will get a satisfying pension = Yes : No (1/0)
\(||||\mid\) Have never had Insurance \(=\) No: Yes (3/0)
\| \| \| \| Children Studies would not be covered in case of a possible loss of mine = Yes : No (2/0)
| | | It is of a major importance to cover my healthcare after I receive my pension \(=\) No : Yes (15/0)
| | I would like doctor visits to be included to my private insurance = Yes : Yes (5/0)

It is of a major importance to cover my fixed costs after I receive my pension \(=\) Yes
| I would choose a local public hospital for serious health issues = No : Yes (1/0)
| I would choose a local public hospital for serious health issues = Yes : No (1/0)

\section*{Random Tree Predictions|NN}
\begin{tabular}{|c|c|c|c|}
\hline \#inst & actual & predicted & error \\
\hline 11 & 1:Yes & 1:Yes & 1 \\
\hline 12 & 1:Yes & 1:Yes & 1 \\
\hline 13 & 1:Yes & 1:Yes & 1 \\
\hline 14 & 1:Yes & 1:Yes & 1 \\
\hline 15 & 1:Yes & 1:Yes & 1 \\
\hline 16 & 1:Yes & 1:Yes & 1 \\
\hline 17 & 1:Yes & 1:Yes & 1 \\
\hline 18 & 1:Yes & 1:Yes & 1 \\
\hline 19 & 1:Yes & 1:Yes & 1 \\
\hline 20 & 1:Yes & 1:Yes & 1 \\
\hline 21 & 1:Yes & 1:Yes & 1 \\
\hline 22 & 1:Yes & 1:Yes & 1 \\
\hline 23 & 1:Yes & 1:Yes & 1 \\
\hline 24 & 1:Yes & 1:Yes & 1 \\
\hline 25 & 1:Yes & 1:Yes & 1 \\
\hline 26 & 1:Yes & 1:Yes & 1 \\
\hline 27 & 1:Yes & 1:Yes & 1 \\
\hline 28 & 1:Yes & 1:Yes & 1 \\
\hline 29 & 1:Yes & 1:Yes & 1 \\
\hline 30 & 1:Yes & 1:Yes & 1 \\
\hline 31 & 1:Yes & 1:Yes & 1 \\
\hline 32 & 1:Yes & 1:Yes & 1 \\
\hline 33 & 1:Yes & 1:Yes & 1 \\
\hline 34 & 1:Yes & 1:Yes & 1 \\
\hline 35 & 1:Yes & 1:Yes & 1 \\
\hline 36 & 1:Yes & 1:Yes & 1 \\
\hline 37 & 1:Yes & 1:Yes & 1 \\
\hline 38 & 1:Yes & 1:Yes & 1 \\
\hline 39 & 1:Yes & 1:Yes & 1 \\
\hline 40 & 1:Yes & 1:Yes & 1 \\
\hline 41 & 1:Yes & 1:Yes & 1 \\
\hline 42 & 1:Yes & 1:Yes & 1 \\
\hline 43 & 1:Yes & 1:Yes & 1 \\
\hline 44 & 1:Yes & 1:Yes & 1 \\
\hline 45 & 1:Yes & 1:Yes & 1 \\
\hline 46 & 1:Yes & 1:Yes & 1 \\
\hline 47 & 1:Yes & 1:Yes & 1 \\
\hline 48 & 1:Yes & 1:Yes & 1 \\
\hline 49 & 1:Yes & 1:Yes & 1 \\
\hline 50 & 1:Yes & 1:Yes & 1 \\
\hline 51 & 1:Yes & 1:Yes & 1 \\
\hline 52 & 1:Yes & 1:Yes & 1 \\
\hline 53 & 1:Yes & 1:Yes & 1 \\
\hline 54 & 1:Yes & 1:Yes & 1 \\
\hline 55 & 1:Yes & 1:Yes & 1 \\
\hline 56 & 1:Yes & 1:Yes & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 57 & 1:Yes & 1:Yes & 1 \\
\hline 58 & 1:Yes & 1:Yes & 1 \\
\hline 59 & 1:Yes & 1:Yes & 1 \\
\hline 60 & 1:Yes & 1:Yes & 1 \\
\hline 61 & 1:Yes & 1:Yes & 1 \\
\hline 62 & 1:Yes & 1:Yes & 1 \\
\hline 63 & 1:Yes & 1:Yes & 1 \\
\hline 64 & 1:Yes & 1:Yes & 1 \\
\hline 65 & 1:Yes & 1:Yes & 1 \\
\hline 66 & 1:Yes & 1:Yes & 1 \\
\hline 67 & 1:Yes & 1:Yes & 1 \\
\hline 68 & 1:Yes & 1:Yes & 1 \\
\hline 69 & 1:Yes & 1:Yes & 1 \\
\hline 70 & 1:Yes & 1:Yes & 1 \\
\hline 71 & 1:Yes & 1:Yes & 1 \\
\hline 72 & 1:Yes & 1:Yes & 1 \\
\hline 73 & 1:Yes & 1:Yes & 1 \\
\hline 74 & 1:Yes & 1:Yes & 1 \\
\hline 75 & 1:Yes & 1:Yes & 1 \\
\hline 76 & 1:Yes & 1:Yes & 1 \\
\hline 77 & 1:Yes & 1:Yes & 1 \\
\hline 78 & 1:Yes & 1:Yes & 1 \\
\hline 79 & 1:Yes & 1:Yes & 1 \\
\hline 80 & 1:Yes & 1:Yes & 1 \\
\hline 81 & 1:Yes & 1:Yes & 1 \\
\hline 82 & 1:Yes & 1:Yes & 1 \\
\hline 83 & 1:Yes & 1:Yes & 1 \\
\hline 84 & 1:Yes & 1:Yes & 1 \\
\hline 85 & 1:Yes & 1:Yes & 1 \\
\hline 86 & 1:Yes & 1:Yes & 1 \\
\hline 87 & 1:Yes & 1:Yes & 1 \\
\hline 88 & 1:Yes & 1:Yes & 1 \\
\hline 89 & 1:Yes & 1:Yes & 1 \\
\hline 90 & 1:Yes & 1:Yes & 1 \\
\hline 91 & 1:Yes & 1:Yes & 1 \\
\hline 92 & 1:Yes & 1:Yes & 1 \\
\hline 93 & 1:Yes & 1:Yes & 1 \\
\hline 94 & 1:Yes & 1:Yes & 1 \\
\hline 95 & 1:Yes & 1:Yes & 1 \\
\hline 96 & 1:Yes & 1:Yes & 1 \\
\hline 97 & 1:Yes & 1:Yes & 1 \\
\hline 98 & 1:Yes & 1:Yes & 1 \\
\hline 99 & 1:Yes & 1:Yes & 1 \\
\hline 100 & 1:Yes & 1:Yes & 1 \\
\hline 101 & 1:Yes & 1:Yes & 1 \\
\hline 102 & 1:Yes & 1:Yes & 1 \\
\hline 103 & 1:Yes & 1:Yes & 1 \\
\hline 104 & 1:Yes & 1:Yes & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 105 & 1:Yes & 1:Yes & 1 \\
\hline 106 & 1:Yes & 1:Yes & 1 \\
\hline 107 & 1:Yes & 1:Yes & 1 \\
\hline 108 & 1:Yes & 1:Yes & 1 \\
\hline 109 & 1:Yes & 1:Yes & 1 \\
\hline 110 & 1:Yes & 1:Yes & 1 \\
\hline 111 & 1:Yes & 1:Yes & 1 \\
\hline 112 & 1:Yes & 1:Yes & 1 \\
\hline 113 & 1:Yes & 1:Yes & 1 \\
\hline 114 & 1:Yes & 1:Yes & 1 \\
\hline 115 & 1:Yes & 1:Yes & 1 \\
\hline 116 & 1:Yes & 1:Yes & 1 \\
\hline 117 & 1:Yes & 1:Yes & 1 \\
\hline 118 & 1:Yes & 1:Yes & 1 \\
\hline 119 & 1:Yes & 1:Yes & 1 \\
\hline 120 & 1:Yes & 1:Yes & 1 \\
\hline 121 & 1:Yes & 1:Yes & 1 \\
\hline 122 & 1:Yes & 1:Yes & 1 \\
\hline 123 & 1:Yes & 1:Yes & 1 \\
\hline 124 & 1:Yes & 1:Yes & 1 \\
\hline 125 & 1:Yes & 1:Yes & 1 \\
\hline 126 & 1:Yes & 1:Yes & 1 \\
\hline 127 & 1:Yes & 1:Yes & 1 \\
\hline 128 & 1:Yes & 1:Yes & 1 \\
\hline 129 & 1:Yes & 1:Yes & 1 \\
\hline 130 & 1:Yes & 1:Yes & 1 \\
\hline 131 & 1:Yes & 1:Yes & 1 \\
\hline 132 & 1:Yes & 1:Yes & 1 \\
\hline 133 & 1:Yes & 1:Yes & 1 \\
\hline 134 & 1:Yes & 1:Yes & 1 \\
\hline 135 & 1:Yes & 1:Yes & 1 \\
\hline 136 & 1:Yes & 1:Yes & 1 \\
\hline 137 & 1:Yes & 1:Yes & 1 \\
\hline 138 & 1:Yes & 1:Yes & 1 \\
\hline 139 & 1:Yes & 1:Yes & 1 \\
\hline 140 & 1:Yes & 1:Yes & 1 \\
\hline 141 & 1:Yes & 1:Yes & 1 \\
\hline 142 & 1:Yes & 1:Yes & 1 \\
\hline 143 & 1:Yes & 1:Yes & 1 \\
\hline 144 & 1:Yes & 1:Yes & 1 \\
\hline 145 & 1:Yes & 1:Yes & 1 \\
\hline 146 & 1:Yes & 1:Yes & 1 \\
\hline 147 & 1:Yes & 1:Yes & 1 \\
\hline 148 & 1:Yes & 1:Yes & 1 \\
\hline 149 & 1:Yes & 1:Yes & 1 \\
\hline 150 & 1:Yes & 1:Yes & 1 \\
\hline 151 & 1:Yes & 1:Yes & 1 \\
\hline 152 & 1:Yes & 1:Yes & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 153 & 1:Yes & 1:Yes & 1 \\
\hline 154 & 1:Yes & 1:Yes & 1 \\
\hline 155 & 1:Yes & 1:Yes & 1 \\
\hline 156 & 1:Yes & 1:Yes & 1 \\
\hline 157 & 1:Yes & 1:Yes & 1 \\
\hline 158 & 1:Yes & 1:Yes & 1 \\
\hline 159 & 1:Yes & 1:Yes & 1 \\
\hline 160 & 1:Yes & 1:Yes & 1 \\
\hline 161 & 1:Yes & 1:Yes & 1 \\
\hline 162 & 2:No & 2:No & 1 \\
\hline 163 & 1:Yes & 1:Yes & 1 \\
\hline 164 & 1:Yes & 1:Yes & 1 \\
\hline 165 & 1:Yes & 1:Yes & 1 \\
\hline 166 & 1:Yes & 1:Yes & 1 \\
\hline 167 & 1:Yes & 1:Yes & 1 \\
\hline 168 & 2:No & 2:No & 1 \\
\hline 169 & 2:No & 2:No & 1 \\
\hline 170 & 1:Yes & 1:Yes & 1 \\
\hline 171 & 2:No & 2:No & 1 \\
\hline 172 & 1:Yes & 1:Yes & 1 \\
\hline 173 & 1:Yes & 1:Yes & 1 \\
\hline 174 & 2:No & 2:No & 1 \\
\hline 175 & 1:Yes & 1:Yes & 1 \\
\hline 176 & 1:Yes & 1:Yes & 1 \\
\hline 177 & 1:Yes & 1:Yes & 1 \\
\hline 178 & 2:No & 2:No & 1 \\
\hline 179 & 2:No & 2:No & 1 \\
\hline 180 & 1:Yes & 1:Yes & 1 \\
\hline 181 & 2:No & 2:No & 1 \\
\hline 182 & 1:Yes & 1:Yes & 1 \\
\hline
\end{tabular}

Lazy IBK Predictions \({ }^{\mid N N}\)
\begin{tabular}{|c|c|c|c|}
\hline \#inst & actual & predicted & error \\
\hline 11 & \(1:\) Yes & \(1:\) Yes & 0.995 \\
\hline 12 & \(1:\) Yes & \(1:\) Yes & 0.995 \\
\hline 13 & \(1:\) Yes & \(1:\) Yes & 0.995 \\
\hline 14 & \(1:\) Yes & \(1:\) Yes & 0.995 \\
\hline 15 & \(1:\) Yes & \(1:\) Yes & 0.995 \\
\hline 16 & \(1:\) Yes & \(1:\) Yes & 0.995 \\
\hline 17 & \(1:\) Yes & \(1:\) Yes & 0.995 \\
\hline 18 & \(1:\) Yes & \(1:\) Yes & 0.995 \\
\hline 19 & \(1:\) Yes & \(1:\) Yes & 0.995 \\
\hline 20 & \(1:\) Yes & \(1:\) Yes & 0.995 \\
\hline 21 & \(1:\) Yes & \(1:\) Yes & 0.995 \\
\hline 22 & \(1:\) Yes & \(1:\) Yes & 0.995 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 23 & 1:Yes & 1:Yes & 0.995 \\
\hline 24 & 1:Yes & 1:Yes & 0.995 \\
\hline 25 & 1:Yes & 1:Yes & 0.995 \\
\hline 26 & 1:Yes & 1:Yes & 0.995 \\
\hline 27 & 1:Yes & 1:Yes & 0.995 \\
\hline 28 & 1:Yes & 1:Yes & 0.995 \\
\hline 29 & 1:Yes & 1:Yes & 0.995 \\
\hline 30 & 1:Yes & 1:Yes & 0.995 \\
\hline 31 & 1:Yes & 1:Yes & 0.995 \\
\hline 32 & 1:Yes & 1:Yes & 0.995 \\
\hline 33 & 1:Yes & 1:Yes & 0.995 \\
\hline 34 & 1:Yes & 1:Yes & 0.995 \\
\hline 35 & 1:Yes & 1:Yes & 0.995 \\
\hline 36 & 1:Yes & 1:Yes & 0.995 \\
\hline 37 & 1:Yes & 1:Yes & 0.995 \\
\hline 38 & 1:Yes & 1:Yes & 0.995 \\
\hline 39 & 1:Yes & 1:Yes & 0.995 \\
\hline 40 & 1:Yes & 1:Yes & 0.995 \\
\hline 41 & 1:Yes & 1:Yes & 0.995 \\
\hline 42 & 1:Yes & 1:Yes & 0.995 \\
\hline 43 & 1:Yes & 1:Yes & 0.995 \\
\hline 44 & 1:Yes & 1:Yes & 0.995 \\
\hline 45 & 1:Yes & 1:Yes & 0.995 \\
\hline 46 & 1:Yes & 1:Yes & 0.995 \\
\hline 47 & 1:Yes & 1:Yes & 0.995 \\
\hline 48 & 1:Yes & 1:Yes & 0.995 \\
\hline 49 & 1:Yes & 1:Yes & 0.995 \\
\hline 50 & 1:Yes & 1:Yes & 0.995 \\
\hline 51 & 1:Yes & 1:Yes & 0.995 \\
\hline 52 & 1:Yes & 1:Yes & 0.995 \\
\hline 53 & 1:Yes & 1:Yes & 0.995 \\
\hline 54 & 1:Yes & 1:Yes & 0.995 \\
\hline 55 & 1:Yes & 1:Yes & 0.995 \\
\hline 56 & 1:Yes & 1:Yes & 0.995 \\
\hline 57 & 1:Yes & 1:Yes & 0.995 \\
\hline 58 & 1:Yes & 1:Yes & 0.995 \\
\hline 59 & 1:Yes & 1:Yes & 0.995 \\
\hline 60 & 1:Yes & 1:Yes & 0.995 \\
\hline 61 & 1:Yes & 1:Yes & 0.995 \\
\hline 62 & 1:Yes & 1:Yes & 0.995 \\
\hline 63 & 1:Yes & 1:Yes & 0.995 \\
\hline 64 & 1:Yes & 1:Yes & 0.995 \\
\hline 65 & 1:Yes & 1:Yes & 0.995 \\
\hline 66 & 1:Yes & 1:Yes & 0.995 \\
\hline 67 & 1:Yes & 1:Yes & 0.995 \\
\hline 68 & 1:Yes & 1:Yes & 0.995 \\
\hline 69 & 1:Yes & 1:Yes & 0.995 \\
\hline 70 & 1:Yes & 1:Yes & 0.995 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 71 & 1:Yes & 1:Yes & 0.995 \\
\hline 72 & 1:Yes & 1:Yes & 0.995 \\
\hline 73 & 1:Yes & 1:Yes & 0.995 \\
\hline 74 & 1:Yes & 1:Yes & 0.995 \\
\hline 75 & 1:Yes & 1:Yes & 0.995 \\
\hline 76 & 1:Yes & 1:Yes & 0.995 \\
\hline 77 & 1:Yes & 1:Yes & 0.995 \\
\hline 78 & 1:Yes & 1:Yes & 0.995 \\
\hline 79 & 1:Yes & 1:Yes & 0.995 \\
\hline 80 & 1:Yes & 1:Yes & 0.995 \\
\hline 81 & 1:Yes & 1:Yes & 0.995 \\
\hline 82 & 1:Yes & 1:Yes & 0.995 \\
\hline 83 & 1:Yes & 1:Yes & 0.995 \\
\hline 84 & 1:Yes & 1:Yes & 0.995 \\
\hline 85 & 1:Yes & 1:Yes & 0.995 \\
\hline 86 & 1:Yes & 1:Yes & 0.995 \\
\hline 87 & 1:Yes & 1:Yes & 0.995 \\
\hline 88 & 1:Yes & 1:Yes & 0.995 \\
\hline 89 & 1:Yes & 1:Yes & 0.995 \\
\hline 90 & 1:Yes & 1:Yes & 0.995 \\
\hline 91 & 1:Yes & 1:Yes & 0.995 \\
\hline 92 & 1:Yes & 1:Yes & 0.995 \\
\hline 93 & 1:Yes & 1:Yes & 0.995 \\
\hline 94 & 1:Yes & 1:Yes & 0.995 \\
\hline 95 & 1:Yes & 1:Yes & 0.995 \\
\hline 96 & 1:Yes & 1:Yes & 0.995 \\
\hline 97 & 1:Yes & 1:Yes & 0.995 \\
\hline 98 & 1:Yes & 1:Yes & 0.995 \\
\hline 99 & 1:Yes & 1:Yes & 0.995 \\
\hline 100 & 1:Yes & 1:Yes & 0.995 \\
\hline 101 & 1:Yes & 1:Yes & 0.995 \\
\hline 102 & 1:Yes & 1:Yes & 0.995 \\
\hline 103 & 1:Yes & 1:Yes & 0.995 \\
\hline 104 & 1:Yes & 1:Yes & 0.995 \\
\hline 105 & 1:Yes & 1:Yes & 0.995 \\
\hline 106 & 1:Yes & 1:Yes & 0.995 \\
\hline 107 & 1:Yes & 1:Yes & 0.995 \\
\hline 108 & 1:Yes & 1:Yes & 0.995 \\
\hline 109 & 1:Yes & 1:Yes & 0.995 \\
\hline 110 & 1:Yes & 1:Yes & 0.995 \\
\hline 111 & 1:Yes & 1:Yes & 0.995 \\
\hline 112 & 1:Yes & 1:Yes & 0.995 \\
\hline 113 & 1:Yes & 1:Yes & 0.995 \\
\hline 114 & 1:Yes & 1:Yes & 0.995 \\
\hline 115 & 1:Yes & 1:Yes & 0.995 \\
\hline 116 & 1:Yes & 1:Yes & 0.995 \\
\hline 117 & 1:Yes & 1:Yes & 0.995 \\
\hline 118 & 1:Yes & 1:Yes & 0.995 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 119 & 1:Yes & 1:Yes & 0.995 \\
\hline 120 & 1:Yes & 1:Yes & 0.995 \\
\hline 121 & 1:Yes & 1:Yes & 0.995 \\
\hline 122 & 1:Yes & 1:Yes & 0.995 \\
\hline 123 & 1:Yes & 1:Yes & 0.995 \\
\hline 124 & 1:Yes & 1:Yes & 0.995 \\
\hline 125 & 1:Yes & 1:Yes & 0.995 \\
\hline 126 & 1:Yes & 1:Yes & 0.995 \\
\hline 127 & 1:Yes & 1:Yes & 0.995 \\
\hline 128 & 1:Yes & 1:Yes & 0.995 \\
\hline 129 & 1:Yes & 1:Yes & 0.995 \\
\hline 130 & 1:Yes & 1:Yes & 0.995 \\
\hline 131 & 1:Yes & 1:Yes & 0.995 \\
\hline 132 & 1:Yes & 1:Yes & 0.995 \\
\hline 133 & 1:Yes & 1:Yes & 0.995 \\
\hline 134 & 1:Yes & 1:Yes & 0.995 \\
\hline 135 & 1:Yes & 1:Yes & 0.995 \\
\hline 136 & 1:Yes & 1:Yes & 0.995 \\
\hline 137 & 1:Yes & 1:Yes & 0.995 \\
\hline 138 & 1:Yes & 1:Yes & 0.995 \\
\hline 139 & 1:Yes & 1:Yes & 0.995 \\
\hline 140 & 1:Yes & 1:Yes & 0.995 \\
\hline 141 & 1:Yes & 1:Yes & 0.995 \\
\hline 142 & 1:Yes & 1:Yes & 0.995 \\
\hline 143 & 1:Yes & 1:Yes & 0.995 \\
\hline 144 & 1:Yes & 1:Yes & 0.995 \\
\hline 145 & 1:Yes & 1:Yes & 0.995 \\
\hline 146 & 1:Yes & 1:Yes & 0.995 \\
\hline 147 & 1:Yes & 1:Yes & 0.995 \\
\hline 148 & 1:Yes & 1:Yes & 0.995 \\
\hline 149 & 1:Yes & 1:Yes & 0.995 \\
\hline 150 & 1:Yes & 1:Yes & 0.995 \\
\hline 151 & 1:Yes & 1:Yes & 0.995 \\
\hline 152 & 1:Yes & 1:Yes & 0.995 \\
\hline 153 & 1:Yes & 1:Yes & 0.995 \\
\hline 154 & 1:Yes & 1:Yes & 0.995 \\
\hline 155 & 1:Yes & 1:Yes & 0.995 \\
\hline 156 & 1:Yes & 1:Yes & 0.995 \\
\hline 157 & 1:Yes & 1:Yes & 0.995 \\
\hline 158 & 1:Yes & 1:Yes & 0.995 \\
\hline 159 & 1:Yes & 1:Yes & 0.995 \\
\hline 160 & 1:Yes & 1:Yes & 0.995 \\
\hline 161 & 1:Yes & 1:Yes & 0.995 \\
\hline 162 & 2:No & 2:No & 0.995 \\
\hline 163 & 1:Yes & 1:Yes & 0.995 \\
\hline 164 & 1:Yes & 1:Yes & 0.995 \\
\hline 165 & 1:Yes & 1:Yes & 0.995 \\
\hline 166 & 1:Yes & 1:Yes & 0.997 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 167 & 1:Yes & 1:Yes & 0.997 \\
\hline 168 & 2:No & 2:No & 0.995 \\
\hline 169 & 2:No & 2:No & 0.995 \\
\hline 170 & 1:Yes & 1:Yes & 0.995 \\
\hline 171 & 2:No & 2:No & 0.995 \\
\hline 172 & 1:Yes & 1:Yes & 0.995 \\
\hline 173 & 1:Yes & 1:Yes & 0.995 \\
\hline 174 & 2:No & 2:No & 0.995 \\
\hline 175 & 1:Yes & 1:Yes & 0.995 \\
\hline 176 & 1:Yes & 1:Yes & 0.995 \\
\hline 177 & 1:Yes & 1:Yes & 0.995 \\
\hline 178 & 2:No & 2:No & 0.995 \\
\hline 179 & 2:No & 2:No & 0.995 \\
\hline 180 & 1:Yes & 1:Yes & 0.995 \\
\hline 181 & 2:No & 2:No & 0.995 \\
\hline 182 & 1:Yes & 1:Yes & 0.995 \\
\hline
\end{tabular}

\section*{Bayes Net Classifier Model| \({ }^{\text {NN }}\)}

Bayes Network Classifier (full training set)
not using ADTree
\#attributes=65 \#classindex=64
Network structure (nodes followed by parents)
Car superseding Ability(2): I am interested in estimating my retirement
Motorbike superseding Ability(2): I am interested in estimating my retirement
House superseding Ability(2): I am interested in estimating my retirement
Business superseding Ability(2): I am interested in estimating my retirement
No superseding ability(2): I am interested in estimating my retirement
Have or Had Business Insurance(2): I am interested in estimating my retirement
Have or Had Civil Liability Insurance(2): I am interested in estimating my retirement
Have or Had Vessel Insurance(2): I am interested in estimating my retirement
Have or Had Health Insurance(2): I am interested in estimating my retirement
Have or Had Everyday needs Insurance(2): I am interested in estimating my retirement

Have or Had Business House Insurance(2): I am interested in estimating my retirement

Have or Had Family Insurance(2): I am interested in estimating my retirement
Have or Had Cash Insurance(2): I am interested in estimating my retirement
Have or Had Child Insurance(2): I am interested in estimating my retirement
Have or Had Car Insurance(1): I am interested in estimating my retirement
Have or Had Motorbike Insurance(2): I am interested in estimating my retirement
Have never had Insurance(2): I am interested in estimating my retirement
Fixed Costs would not be covered in case of a possible loss of mine(2): I am interested in estimating my retirement

Loans would not be covered in case of a possible loss of mine(2): I am interested in estimating my retirement

Children Studies would not be covered in case of a possible loss of mine(2): I am interested in estimating my retirement

Tax obligations would not be covered in case of a possible loss of mine(2): I am interested in estimating my retirement

No needs to leave behind in case of a possible loss of mine(2): I am interested in estimating my retirement

Happiness would not be covered in case of a possible loss of mine(2): I am interested in estimating my retirement

Purchases in non basic necessities would not be covered in case of a possible loss of mine(2): I am interested in estimating my retirement

Want a risk protection(2): I am interested in estimating my retirement
A satisfying amount of money for the support of my beloved ones(1): I am interested in estimating my retirement

Not at all satisfied from the public insurance health benefits(2): I am interested in estimating my retirement

Kind of satisfied from the public insurance health benefits(2): I am interested in estimating my retirement

Quite satisfied from the public insurance health benefits(2): I am interested in estimating my retirement

Absolutely satisfied from the public insurance health benefits(2): I am interested in estimating my retirement

I would choose a Public Hospital in Athens or Thessaloniki for a mild health issue(2): I am interested in estimating my retirement

I would choose a big private hospital in Athens or Thessaloniki for a mild health issue(2): I am interested in estimating my retirement

I would choose a local private hospital for a mild health issue(2): I am interested in estimating my retirement

I would choose a local public hospital for a mild health issue(2): I am interested in estimating my retirement

I would choose a public hospital in Athens or Thessaloniki for serious health issues(2): I am interested in estimating my retirement

I would choose a big private hospital of Athens or Thessaloniki for serious health issues(2): I am interested in estimating my retirement

I would choose a local private hospital for serious health issues(2): I am interested in estimating my retirement

I would choose a local public hospital for serious health issues(2): I am interested in estimating my retirement

I would choose a foreign hospital for serious health issues(2): I am interested in estimating my retirement

I wish for private health services coupled with my insurance(2): I am interested in estimating my retirement

I would like diagnostic tests to be included to my private insurance(2): I am interested in estimating my retirement

I would like doctor visits to be included to my private insurance(3): I am interested in estimating my retirement

I would like hospital care to be included to my private insurance(2): I am interested in estimating my retirement

I would like Annual check up to be included to my private insurance(2): I am interested in estimating my retirement

I would like going abroad to be included to my private insurance(2): I am interested in estimating my retirement

I would like ambulance to be included to my private insurance (2): I am interested in estimating my retirement

Team insurance (2): I am interested in estimating my retirement
I will not get a pension(2): I am interested in estimating my retirement
I will get a small pension(2): I am interested in estimating my retirement
I will get a satisfying pension(2): I am interested in estimating my retirement
I have managed for a lump sum or supplementary pension(2): I am interested in estimating my retirement

I have managed for a lump sum or supplementary pension through Bank Savings(2): I am interested in estimating my retirement

I have managed for a lump sum or supplementary pension through Pension scheme purchase(2): I am interested in estimating my retirement

I have managed for a lump sum or supplementary pension through Life insurance program and savings plan(2): I am interested in estimating my retirement

I have managed for a lump sum or supplementary pension through Real estate purchase for rent or exploitation(2): I am interested in estimating my retirement

I am about to take immediate care of a lump sum or supplementary pension(2): I am interested in estimating my retirement

I have managed for a lump sum or supplementary pension through Pension scheme or savings plan purchase (2): I am interested in estimating my retirement

Even if I wanted it I cannot take care of a lump sum or supplementary pension(2): I am interested in estimating my retirement

It is of a major importance to support my children and grandchildren after I receive my pension(2): I am interested in estimating my retirement

It is of a major importance to cover my healthcare after I receive my pension(2): I am interested in estimating my retirement

It is of a major importance to cover my pleasure trips after I receive my pension(2): I am interested in estimating my retirement

It is of a major importance to cover my house purchases after I receive my pension(2):
I am interested in estimating my retirement
It is of a major importance to cover my fixed costs after I receive my pension(2): I am interested in estimating my retirement

It is of a major importance to cover my everyday needs after I receive my pension(2):
I am interested in estimating my retirement
I am interested in estimating my retirement(2):
LogScore Bayes: -4584.11
LogScore BDeu: -4694.39
LogScore MDL: -4813.55
LogScore ENTROPY: -4483.1
LogScore AIC: -4610.1

\section*{Bayes Net Predictions| NN}
\begin{tabular}{|c|c|c|c|}
\hline \#inst & actual & predicted & error \\
\hline 11 & \(1:\) Yes & \(1:\) Yes & 1 \\
\hline 12 & \(1:\) Yes & \(1:\) Yes & 1 \\
\hline 13 & \(1:\) Yes & \(1:\) Yes & 0.999 \\
\hline 14 & \(1:\) Yes & \(1:\) Yes & 1 \\
\hline 15 & \(1:\) Yes & \(1:\) Yes & 0.999 \\
\hline 16 & \(1:\) Yes & \(1:\) Yes & 1 \\
\hline 17 & \(1:\) Yes & \(1:\) Yes & 0.996 \\
\hline 18 & \(1:\) Yes & \(1:\) Yes & 0.999 \\
\hline 19 & \(1:\) Yes & \(1:\) Yes & 0.987 \\
\hline 20 & \(1:\) Yes & \(1:\) Yes & 0.999 \\
\hline 21 & \(1:\) Yes & \(1:\) Yes & 0.934 \\
\hline 22 & \(1:\) Yes & \(1:\) Yes & 1 \\
\hline 23 & \(1:\) Yes & \(1:\) Yes & 0.991 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 24 & 1:Yes & 1:Yes & 0.999 \\
\hline 25 & 1:Yes & 1:Yes & 1 \\
\hline 26 & 1:Yes & 1:Yes & 1 \\
\hline 27 & 1:Yes & 1:Yes & 0.962 \\
\hline 28 & 1:Yes & 1:Yes & 0.853 \\
\hline 29 & 1:Yes & 1:Yes & 1 \\
\hline 30 & 1:Yes & 1:Yes & 0.932 \\
\hline 31 & 1:Yes & 1:Yes & 1 \\
\hline 32 & 1:Yes & 1:Yes & 1 \\
\hline 33 & 1:Yes & 1:Yes & 1 \\
\hline 34 & 1:Yes & 1:Yes & 1 \\
\hline 35 & 1:Yes & 1:Yes & 1 \\
\hline 36 & 1:Yes & 1:Yes & 1 \\
\hline 37 & 1:Yes & 1:Yes & 1 \\
\hline 38 & 1:Yes & 1:Yes & 1 \\
\hline 39 & 1:Yes & 1:Yes & 1 \\
\hline 40 & 1:Yes & 1:Yes & 1 \\
\hline 41 & 1:Yes & 1:Yes & 1 \\
\hline 42 & 1:Yes & 1:Yes & 0.997 \\
\hline 43 & 1:Yes & 1:Yes & 1 \\
\hline 44 & 1:Yes & 1:Yes & 1 \\
\hline 45 & 1:Yes & 1:Yes & 0.939 \\
\hline 46 & 1:Yes & 1:Yes & 0.653 \\
\hline 47 & 1:Yes & 1:Yes & 1 \\
\hline 48 & 1:Yes & 1:Yes & 1 \\
\hline 49 & 1:Yes & 1:Yes & 1 \\
\hline 50 & 1:Yes & 1:Yes & 1 \\
\hline 51 & 1:Yes & 1:Yes & 0.999 \\
\hline 52 & 1:Yes & 1:Yes & 1 \\
\hline 53 & 1:Yes & 1:Yes & 1 \\
\hline 54 & 1:Yes & 1:Yes & 0.999 \\
\hline 55 & 1:Yes & 1:Yes & 1 \\
\hline 56 & 1:Yes & 1:Yes & 1 \\
\hline 57 & 1:Yes & 1:Yes & 0.989 \\
\hline 58 & 1:Yes & 1:Yes & 0.999 \\
\hline 59 & 1:Yes & 1:Yes & 1 \\
\hline 60 & 1:Yes & 1:Yes & 0.999 \\
\hline 61 & 1:Yes & 1:Yes & 1 \\
\hline 62 & 1:Yes & 1:Yes & 1 \\
\hline 63 & 1:Yes & 1:Yes & 1 \\
\hline 64 & 1:Yes & 1:Yes & 0.999 \\
\hline 65 & 1:Yes & 1:Yes & 1 \\
\hline 66 & 1:Yes & 1:Yes & 1 \\
\hline 67 & 1:Yes & 1:Yes & 1 \\
\hline 68 & 1:Yes & 1:Yes & 1 \\
\hline 69 & 1:Yes & 1:Yes & 1 \\
\hline 70 & 1:Yes & 1:Yes & 1 \\
\hline 71 & 1:Yes & 1:Yes & 0.998 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 72 & 1:Yes & 1:Yes & 1 \\
\hline 73 & 1:Yes & 1:Yes & 1 \\
\hline 74 & 1:Yes & 1:Yes & 1 \\
\hline 75 & 1:Yes & 2:No & 0.516 \\
\hline 76 & 1:Yes & 1:Yes & 1 \\
\hline 77 & 1:Yes & 1:Yes & 1 \\
\hline 78 & 1:Yes & 1:Yes & 0.916 \\
\hline 79 & 1:Yes & 1:Yes & 0.984 \\
\hline 80 & 1:Yes & 1:Yes & 0.998 \\
\hline 81 & 1:Yes & 1:Yes & 1 \\
\hline 82 & 1:Yes & 1:Yes & 0.973 \\
\hline 83 & 1:Yes & 1:Yes & 1 \\
\hline 84 & 1:Yes & 1:Yes & 1 \\
\hline 85 & 1:Yes & 1:Yes & 1 \\
\hline 86 & 1:Yes & 1:Yes & 1 \\
\hline 87 & 1:Yes & 1:Yes & 1 \\
\hline 88 & 1:Yes & 1:Yes & 0.999 \\
\hline 89 & 1:Yes & 1:Yes & 1 \\
\hline 90 & 1:Yes & 1:Yes & 1 \\
\hline 91 & 1:Yes & 1:Yes & 0.984 \\
\hline 92 & 1:Yes & 1:Yes & 0.812 \\
\hline 93 & 1:Yes & 1:Yes & 1 \\
\hline 94 & 1:Yes & 1:Yes & 0.969 \\
\hline 95 & 1:Yes & 1:Yes & 1 \\
\hline 96 & 1:Yes & 1:Yes & 1 \\
\hline 97 & 1:Yes & 1:Yes & 1 \\
\hline 98 & 1:Yes & 1:Yes & 0.983 \\
\hline 99 & 1:Yes & 1:Yes & 0.983 \\
\hline 100 & 1:Yes & 1:Yes & 0.938 \\
\hline 101 & 1:Yes & 1:Yes & 1 \\
\hline 102 & 1:Yes & 1:Yes & 0.999 \\
\hline 103 & 1:Yes & 1:Yes & 1 \\
\hline 104 & 1:Yes & 1:Yes & 0.99 \\
\hline 105 & 1:Yes & 1:Yes & 1 \\
\hline 106 & 1:Yes & 1:Yes & 1 \\
\hline 107 & 1:Yes & 1:Yes & 1 \\
\hline 108 & 1:Yes & 1:Yes & 1 \\
\hline 109 & 1:Yes & 1:Yes & 1 \\
\hline 110 & 1:Yes & 1:Yes & 1 \\
\hline 111 & 1:Yes & 2:No & 0.567 \\
\hline 112 & 1:Yes & 1:Yes & 0.852 \\
\hline 113 & 1:Yes & 1:Yes & 1 \\
\hline 114 & 1:Yes & 1:Yes & 0.995 \\
\hline 115 & 1:Yes & 1:Yes & 1 \\
\hline 116 & 1:Yes & 1:Yes & 1 \\
\hline 117 & 1:Yes & 1:Yes & 1 \\
\hline 118 & 1:Yes & 1:Yes & 1 \\
\hline 119 & 1:Yes & 1:Yes & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 120 & 1:Yes & 1:Yes & 0.995 \\
\hline 121 & 1:Yes & 1:Yes & 1 \\
\hline 122 & 1:Yes & 1:Yes & 1 \\
\hline 123 & 1:Yes & 1:Yes & 0.939 \\
\hline 124 & 1:Yes & 1:Yes & 0.994 \\
\hline 125 & 1:Yes & 1:Yes & 0.998 \\
\hline 126 & 1:Yes & 1:Yes & 0.722 \\
\hline 127 & 1:Yes & 1:Yes & 1 \\
\hline 128 & 1:Yes & 1:Yes & 0.99 \\
\hline 129 & 1:Yes & 1:Yes & 1 \\
\hline 130 & 1:Yes & 1:Yes & 0.963 \\
\hline 131 & 1:Yes & 1:Yes & 0.997 \\
\hline 132 & 1:Yes & 1:Yes & 0.884 \\
\hline 133 & 1:Yes & 1:Yes & 1 \\
\hline 134 & 1:Yes & 1:Yes & 1 \\
\hline 135 & 1:Yes & 2:No & 0.724 \\
\hline 136 & 1:Yes & 1:Yes & 0.999 \\
\hline 137 & 1:Yes & 1:Yes & 1 \\
\hline 138 & 1:Yes & 1:Yes & 0.988 \\
\hline 139 & 1:Yes & 1:Yes & 0.996 \\
\hline 140 & 1:Yes & 1:Yes & 0.999 \\
\hline 141 & 1:Yes & 1:Yes & 1 \\
\hline 142 & 1:Yes & 1:Yes & 0.999 \\
\hline 143 & 1:Yes & 1:Yes & 0.993 \\
\hline 144 & 1:Yes & 1:Yes & 1 \\
\hline 145 & 1:Yes & 1:Yes & 1 \\
\hline 146 & 1:Yes & 1:Yes & 1 \\
\hline 147 & 1:Yes & 1:Yes & 1 \\
\hline 148 & 1:Yes & 1:Yes & 1 \\
\hline 149 & 1:Yes & 1:Yes & 0.924 \\
\hline 150 & 1:Yes & 1:Yes & 0.878 \\
\hline 151 & 1:Yes & 1:Yes & 1 \\
\hline 152 & 1:Yes & 1:Yes & 1 \\
\hline 153 & 1:Yes & 1:Yes & 0.995 \\
\hline 154 & 1:Yes & 1:Yes & 1 \\
\hline 155 & 1:Yes & 1:Yes & 1 \\
\hline 156 & 1:Yes & 1:Yes & 0.857 \\
\hline 157 & 1:Yes & 1:Yes & 1 \\
\hline 158 & 1:Yes & 1:Yes & 0.987 \\
\hline 159 & 1:Yes & 1:Yes & 0.999 \\
\hline 160 & 1:Yes & 1:Yes & 1 \\
\hline 161 & 1:Yes & 1:Yes & 1 \\
\hline 162 & 2:No & 1:Yes & 0.601 \\
\hline 163 & 1:Yes & 1:Yes & 0.893 \\
\hline 164 & 1:Yes & 1:Yes & 0.998 \\
\hline 165 & 1:Yes & 1:Yes & 0.999 \\
\hline 166 & 1:Yes & 1:Yes & 1 \\
\hline 167 & 1:Yes & 1:Yes & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 168 & 2:No & 2:No & 0.982 \\
\hline 169 & 2:No & 2:No & 0.999 \\
\hline 170 & 1:Yes & 1:Yes & 1 \\
\hline 171 & 2:No & 2:No & 1 \\
\hline 172 & 1:Yes & 1:Yes & 1 \\
\hline 173 & 1:Yes & 1:Yes & 0.932 \\
\hline 174 & 2:No & 1:Yes & 0.994 \\
\hline 175 & 1:Yes & 1:Yes & 1 \\
\hline 176 & 1:Yes & 1:Yes & 0.996 \\
\hline 177 & 1:Yes & 2:No & 0.845 \\
\hline 178 & 2:No & 2:No & 0.864 \\
\hline 179 & 2:No & 1:Yes & 0.831 \\
\hline 180 & 1:Yes & 2:No & 0.754 \\
\hline 181 & 2:No & 1:Yes & 0.619 \\
\hline 182 & 1:Yes & 1:Yes & 0.981 \\
\hline
\end{tabular}

\section*{Naive Bayes Classifier Model| NN}
\(===\) Classifier model (full training set) \(==\)
Naive Bayes Classifier

\section*{Class}

\section*{Attribute}
(0.95) (0.05)

Car superseding Ability
\begin{tabular}{lcc} 
Yes & 36.0 & 1.0 \\
No & 140.0 & 9.0 \\
[total] & 176.0 & 10.0
\end{tabular}

Motorbike superseding Ability
\begin{tabular}{lll} 
No & 150.0 & 8.0 \\
Yes & 26.0 & 2.0 \\
[total] & 176.0 & 10.0
\end{tabular}

House superseding Ability
\begin{tabular}{lcl} 
Yes & 12.0 & 1.0 \\
[total] & 176.0 & 10.0 \\
Business superseding Ability & & \\
No & 170.0 & 9.0 \\
Yes & 6.0 & 1.0 \\
[total] & 176.0 & 10.0
\end{tabular}

No superseding ability
\begin{tabular}{lcc} 
No & 66.0 & 2.0 \\
Yes & 110.0 & 8.0 \\
[total] & 176.0 & 10.0
\end{tabular}

Have or Had Business Insurance
\begin{tabular}{lll} 
No & 148.0 & 9.0 \\
Yes & 28.0 & 1.0 \\
[total] & 176.0 & 10.0
\end{tabular}

Have or Had Civil Liability Insurance
No
\(149.0 \quad 9.0\)

Yes \(\quad 27.0 \quad 1.0\)
[total]
\(176.0 \quad 10.0\)
Have or Had Vessel Insurance
No \(168.0 \quad 9.0\)
Yes
\(8.0 \quad 1.0\)
[total]
\(176.0 \quad 10.0\)
Have or Had Health Insurance
No
\(173.0 \quad 9.0\)
Yes
\(3.0 \quad 1.0\)
[total]
\(176.0 \quad 10.0\)

Have or Had Everyday needs Insurance
\begin{tabular}{lll} 
No & 174.0 & 9.0 \\
Yes & 2.0 & 1.0 \\
[total] & 176.0 & 10.0
\end{tabular}

Have or Had Business House Insurance
No \(\quad 174.0 \quad 9.0\)
Yes
\(2.0 \quad 1.0\)
[total]
\(176.0 \quad 10.0\)
Have or Had Family Insurance
\begin{tabular}{lcc} 
No & 174.0 & 9.0 \\
Yes & 2.0 & 1.0 \\
[total] & 176.0 & 10.0
\end{tabular}

Have or Had Cash Insurance
\begin{tabular}{lll} 
No & 174.0 & 9.0 \\
Yes & 2.0 & 1.0 \\
[total] & 176.0 & 10.0
\end{tabular}

Have or Had Child Insurance
No \(174.0 \quad 9.0\)
\(\begin{array}{lll}\text { Yes } & 2.0 & 1.0\end{array}\)
[total]
\(176.0 \quad 10.0\)
Have or Had Car Insurance
No \(\quad 175.0 \quad 9.0\)
[total]
\(175.0 \quad 9.0\)
Have or Had Motorbike Insurance
\begin{tabular}{lll} 
No \\
Yes & 174.0 & 9.0 \\
2.0 & 1.0
\end{tabular}
[total] \(\quad 176.010 .0\)
Have never had Insurance
\(\begin{array}{lll}\text { Yes } & 104.0 & 7.0\end{array}\)
No \(\quad 72.0 \quad 3.0\)
[total]
\(176.0 \quad 10.0\)
Fixed Costs would not be covered in case of a possible loss of mine
\(\begin{array}{lll}\text { Yes } & 127.0 & 6.0\end{array}\)
No \(\quad 48.0 \quad 4.0\)
[total] \(\quad 175.010 .0\)
Loans would not be covered in case of a possible loss of mine
\begin{tabular}{lrl} 
No & 123.0 & 6.0 \\
Yes & 52.0 & 4.0 \\
[total] & 175.0 & 10.0
\end{tabular}

Children Studies would not be covered in case of a possible loss of mine
No \(130.0 \quad 7.0\)
Yes \(\quad 45.0 \quad 3.0\)
[total]
\(175.0 \quad 10.0\)
Tax obligations would not be covered in case of a possible loss of mine
\(\begin{array}{lll}\text { No } & 102.0 \quad 8.0\end{array}\)
Yes
\(73.0 \quad 2.0\)
[total]
\(175.0 \quad 10.0\)
No needs to leave behind in case of a possible loss of mine
\begin{tabular}{lcc} 
No & 173.0 & 9.0 \\
Yes & 2.0 & 1.0 \\
[total] & 175.0 & 10.0
\end{tabular}

Happiness would not be covered in case of a possible loss of mine
\begin{tabular}{lcc} 
No & 173.0 & 9.0 \\
Yes & 2.0 & 1.0 \\
[total] & 175.0 & 10.0
\end{tabular}

Purchases in non basic necessities would not be covered in case of a possible loss of mine
\begin{tabular}{lll} 
No & 173.0 & 9.0 \\
Yes & 2.0 & 1.0 \\
[total] & 175.0 & 10.0
\end{tabular}

Want a risk protection
\begin{tabular}{lcl} 
Yes & 151.0 & 4.0 \\
No & 25.0 & 6.0 \\
[total] & 176.0 & 10.0
\end{tabular}

A satisfying amount of money for the support of my beloved ones
\(\begin{array}{lll}\text { mean } & 72.31 \quad 43.33\end{array}\)
std. dev.
\(44.52 \quad 35.38\)
weight sum \(\quad 151 \quad 3\)
precision \(\quad 43.33 \quad 43.33\)
Not at all satisfied from the public insurance health benefits
No \(\quad 146.0 \quad 8.0\)
Yes
\(30.0 \quad 2.0\)
[total]
\(176.0 \quad 10.0\)
Kind of satisfied from the public insurance health benefits
\begin{tabular}{lcc} 
Yes & 100.0 & 3.0 \\
No & 76.0 & 7.0 \\
[total] & 176.0 & 10.0
\end{tabular}

Quite satisfied from the public insurance health benefits
\begin{tabular}{lcl} 
No & 132.0 & 4.0 \\
Yes & 44.0 & 6.0 \\
[total] & 176.0 & 10.0
\end{tabular}

Absolutely satisfied from the public insurance health benefits
\[
\begin{array}{lll}
\text { No } & 172.0 & 9.0
\end{array}
\]

Yes
\(4.0 \quad 1.0\)
[total] \(176.0 \quad 10.0\)

I would choose a Public Hospital in Athens or Thessaloniki for a mild health issue
\begin{tabular}{lcl} 
Yes & 28.0 & 1.0 \\
No & 148.0 & 9.0 \\
[total] & 176.0 & 10.0
\end{tabular}

I would choose a big private hospital in Athens or Thessaloniki for a mild health issue
\begin{tabular}{lcl} 
No & 119.0 & 9.0 \\
Yes & 57.0 & 1.0 \\
[total] & 176.0 & 10.0
\end{tabular}

I would choose a local private hospital for a mild health issue
No \(129.0 \quad 7.0\)
Yes
\(47.0 \quad 3.0\)
[total]
\(176.0 \quad 10.0\)
I would choose a local public hospital for a mild health issue
No \(\quad 130.0 \quad 3.0\)
Yes
\(46.0 \quad 7.0\)
[total]
\(176.0 \quad 10.0\)
I would choose a public hospital in Athens or Thessaloniki for serious health issues
\begin{tabular}{lll} 
No \\
Yes & 141.0 & 7.0 \\
35.0 & 3.0
\end{tabular}
[total]
\(176.0 \quad 10.0\)

I would choose a big private hospital of Athens or Thessaloniki for serious health issues

Yes \(\quad \begin{array}{ll}76.0 & 3.0\end{array}\)
No
\(100.0 \quad 7.0\)
[total]
\(176.0 \quad 10.0\)

I would choose a local private hospital for serious health issues
\begin{tabular}{lcl} 
No & 150.0 & 8.0 \\
Yes & 26.0 & 2.0 \\
[total] & 176.0 & 10.0
\end{tabular}

I would choose a local public hospital for serious health issues

No
\(166.0 \quad 6.0\)

Yes
\(10.0 \quad 4.0\)
[total]
\(176.0 \quad 10.0\)

I would choose a foreign hospital for serious health issues
No \(144.0 \quad 9.0\)

Yes
\(32.0 \quad 1.0\)
[total]
\(176.0 \quad 10.0\)

I wish for private health services coupled with my insurance
Yes
\(167.0 \quad 6.0\)

No
\(9.0 \quad 4.0\)
[total]
\(176.0 \quad 10.0\)

I would like diagnostic tests to be included to my private insurance
Yes
\(104.0 \quad 6.0\)

No
\(72.0 \quad 4.0\)
[total]
\(176.0 \quad 10.0\)

I would like doctor visits to be included to my private insurance
\begin{tabular}{lcc} 
Yes & 113.0 & 3.0 \\
No & 58.0 & 7.0 \\
Yes & 6.0 & 1.0 \\
[total] & 177.0 & 11.0
\end{tabular}

I would like hospital care to be included to my private insurance
\(\begin{array}{lll}\text { Yes } & 124.0 & 6.0\end{array}\)
No \(\quad 52.0 \quad 4.0\)
[total]
\(176.0 \quad 10.0\)
I would like Annual check up to be included to my private insurance
\begin{tabular}{lcc} 
Yes & 105.0 & 7.0 \\
No & 71.0 & 3.0 \\
[total] & 176.0 & 10.0
\end{tabular}

I would like going abroad to be included to my private insurance
Yes
\(78.0 \quad 2.0\)

No
\(98.0 \quad 8.0\)
[total]
\(176.0 \quad 10.0\)
I would like ambulance to be included to my private insurance
\begin{tabular}{lcc} 
No & 172.0 & 9.0 \\
Yes & 4.0 & 1.0 \\
[total] & 176.0 & 10.0
\end{tabular}

Team insurance
\begin{tabular}{lcl} 
No & 130.0 & 7.0 \\
Yes & 46.0 & 3.0 \\
[total] & 176.0 & 10.0
\end{tabular}

I will not get a pension
\begin{tabular}{lcc} 
Yes & 37.0 & 2.0 \\
No & 139.0 & 8.0 \\
[total] & 176.0 & 10.0 \\
I will get a small pension & & \\
No & 67.0 & 4.0 \\
Yes & 109.0 & 6.0 \\
[total] & 176.0 & 10.0 \\
I will get a satisfying pension & & \\
No & 145.0 & 7.0 \\
Yes & 31.0 & 3.0 \\
[total] & 176.0 & 10.0
\end{tabular}

I have managed for a lump sum or supplementary pension
\begin{tabular}{lcc} 
Yes & 61.0 & 4.0 \\
No & 115.0 & 6.0 \\
[total] & 176.0 & 10.0
\end{tabular}

I have managed for a lump sum or supplementary pension through Bank Savings
\begin{tabular}{lcc} 
Yes & 43.0 & 4.0 \\
No & 61.0 & 3.0 \\
[total] & 104.0 & 7.0
\end{tabular}

I have managed for a lump sum or supplementary pension through Pension scheme purchase
\begin{tabular}{lcc} 
No & 102.0 & 6.0 \\
Yes & 2.0 & 1.0 \\
[total] & 104.0 & 7.0
\end{tabular}

I have managed for a lump sum or supplementary pension through Life insurance program and savings plan
\begin{tabular}{lcc} 
Yes & 2.0 & 1.0 \\
[total] & 104.0 & 7.0
\end{tabular}

I have managed for a lump sum or supplementary pension through Real estate purchase for rent or exploitation
\begin{tabular}{lcc} 
No & 82.0 & 6.0 \\
Yes & 22.0 & 1.0 \\
[total] & 104.0 & 7.0
\end{tabular}

I am about to take immediate care of a lump sum or supplementary pension
No
\(73.0 \quad 4.0\)
Yes
\(31.0 \quad 3.0\)
[total]
\(104.0 \quad 7.0\)

I have managed for a lump sum or supplementary pension through Pension scheme or savings plan purchase

No \(\quad 80.0 \quad 5.0\)
Yes
\(24.0 \quad 2.0\)
[total]
\(104.0 \quad 7.0\)
Even if I wanted it I cannot take care of a lump sum or supplementary pension
No \(\quad 102.0 \quad 5.0\)
Yes
\(2.0 \quad 2.0\)
[total]
\(104.0 \quad 7.0\)
It is of a major importance to support my children and grandchildren after I receive my pension
\begin{tabular}{lcc} 
Yes & 116.0 & 6.0 \\
No & 60.0 & 4.0 \\
[total] & 176.0 & 10.0
\end{tabular}

It is of a major importance to cover my healthcare after I receive my pension
Yes \(\quad 135.0 \quad 7.0\)
No
41.0
[total]
\(176.0 \quad 10.0\)

It is of a major importance to cover my pleasure trips after I receive my pension
\(\begin{array}{lll}\text { Yes } & 72.0 & 3.0\end{array}\)
No
\(104.0 \quad 7.0\)
[total]
\(176.0 \quad 10.0\)
It is of a major importance to cover my house purchases after I receive my pension
\begin{tabular}{lrl} 
No & 161.0 & 9.0 \\
Yes & 15.0 & 1.0 \\
[total] & 176.0 & 10.0
\end{tabular}

It is of a major importance to cover my fixed costs after I receive my pension
\begin{tabular}{lll} 
No & 174.0 & 8.0 \\
Yes & 2.0 & 2.0 \\
[total] & 176.0 & 10.0
\end{tabular}

It is of a major importance to cover my everyday needs after I receive my pension
No
\(174.0 \quad 9.0\)
Yes
\(2.0 \quad 1.0\)
[total]
\(176.0 \quad 10.0\)

Naive Bayes Predictions| \(N\) N
\begin{tabular}{|c|c|c|c|}
\hline \#inst & actual & predicted & error \\
\hline 10 & \(1:\) Yes & \(1:\) Yes & 1 \\
\hline 11 & \(1:\) Yes & \(1:\) Yes & 1 \\
\hline 12 & \(1:\) Yes & \(1:\) Yes & 1 \\
\hline 13 & \(1:\) Yes & \(1:\) Yes & 1 \\
\hline 14 & \(1:\) Yes & \(1:\) Yes & 1 \\
\hline 15 & \(1:\) Yes & \(1:\) Yes & 0.999 \\
\hline 16 & \(1:\) Yes & \(1:\) Yes & 1 \\
\hline 17 & \(1:\) Yes & \(1:\) Yes & 0.999 \\
\hline 18 & \(1:\) Yes & \(1:\) Yes & 0.999 \\
\hline 19 & \(1:\) Yes & \(1:\) Yes & 0.98 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 20 & 1:Yes & 1:Yes & 1 \\
\hline 21 & 1:Yes & 1:Yes & 0.979 \\
\hline 22 & 1:Yes & 1:Yes & 1 \\
\hline 23 & 1:Yes & 1:Yes & 0.999 \\
\hline 24 & 1:Yes & 1:Yes & 1 \\
\hline 25 & 1:Yes & 1:Yes & 1 \\
\hline 26 & 1:Yes & 1:Yes & 1 \\
\hline 27 & 1:Yes & 1:Yes & 0.984 \\
\hline 28 & 1:Yes & 1:Yes & 0.918 \\
\hline 29 & 1:Yes & 1:Yes & 1 \\
\hline 30 & 1:Yes & 1:Yes & 0.981 \\
\hline 31 & 1:Yes & 1:Yes & 1 \\
\hline 32 & 1:Yes & 1:Yes & 1 \\
\hline 33 & 1:Yes & 1:Yes & 1 \\
\hline 34 & 1:Yes & 1:Yes & 1 \\
\hline 35 & 1:Yes & 1:Yes & 1 \\
\hline 36 & 1:Yes & 1:Yes & 1 \\
\hline 37 & 1:Yes & 1:Yes & 1 \\
\hline 38 & 1:Yes & 1:Yes & 1 \\
\hline 39 & 1:Yes & 1:Yes & 1 \\
\hline 40 & 1:Yes & 1:Yes & 1 \\
\hline 41 & 1:Yes & 1:Yes & \\
\hline 42 & 1:Yes & 1:Yes & 0.995 \\
\hline 43 & 1:Yes & 1:Yes & 1 \\
\hline 44 & 1:Yes & 1:Yes & 0.999 \\
\hline 45 & 1:Yes & 1:Yes & 0.991 \\
\hline 46 & 1:Yes & 1:Yes & 0.732 \\
\hline 47 & 1:Yes & 1:Yes & 1 \\
\hline 48 & 1:Yes & 1:Yes & 1 \\
\hline 49 & 1:Yes & 1:Yes & 1 \\
\hline 50 & 1:Yes & 1:Yes & 1 \\
\hline 51 & 1:Yes & 1:Yes & 1 \\
\hline 52 & 1:Yes & 1:Yes & 1 \\
\hline 53 & 1:Yes & 1:Yes & 0.998 \\
\hline 54 & 1:Yes & 1:Yes & 1 \\
\hline 55 & 1:Yes & 1:Yes & 1 \\
\hline 56 & 1:Yes & 1:Yes & 1 \\
\hline 57 & 1:Yes & 1:Yes & 0.986 \\
\hline 58 & 1:Yes & 1:Yes & 0.999 \\
\hline 59 & 1:Yes & 1:Yes & 1 \\
\hline 60 & 1:Yes & 1:Yes & , \\
\hline 61 & 1:Yes & 1:Yes & 1 \\
\hline 62 & 1:Yes & 1:Yes & 0.999 \\
\hline 63 & 1:Yes & 1:Yes & 1 \\
\hline 64 & 1:Yes & 1:Yes & 1 \\
\hline 65 & 1:Yes & 1:Yes & 1 \\
\hline 66 & 1:Yes & 1:Yes & 1 \\
\hline 67 & 1:Yes & 1:Yes & 0.999 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 68 & 1:Yes & 1:Yes & 1 \\
\hline 69 & 1:Yes & 1:Yes & 1 \\
\hline 70 & 1:Yes & 1:Yes & 1 \\
\hline 71 & 1:Yes & 1:Yes & 1 \\
\hline 72 & 1:Yes & 1:Yes & 1 \\
\hline 73 & 1:Yes & 1:Yes & 1 \\
\hline 74 & 1:Yes & 1:Yes & 1 \\
\hline 75 & 1:Yes & 1:Yes & 0.551 \\
\hline 76 & 1:Yes & 1:Yes & 1 \\
\hline 77 & 1:Yes & 1:Yes & 1 \\
\hline 78 & 1:Yes & 1:Yes & 0.975 \\
\hline 79 & 1:Yes & 1:Yes & 0.986 \\
\hline 80 & 1:Yes & 1:Yes & 0.998 \\
\hline 81 & 1:Yes & 1:Yes & 1 \\
\hline 82 & 1:Yes & 1:Yes & 0.981 \\
\hline 83 & 1:Yes & 1:Yes & 1 \\
\hline 84 & 1:Yes & 1:Yes & 1 \\
\hline 85 & 1:Yes & 1:Yes & 1 \\
\hline 86 & 1:Yes & 1:Yes & 1 \\
\hline 87 & 1:Yes & 1:Yes & 1 \\
\hline 88 & 1:Yes & 1:Yes & 0.999 \\
\hline 89 & 1:Yes & 1:Yes & , \\
\hline 90 & 1:Yes & 1:Yes & 1 \\
\hline 91 & 1:Yes & 1:Yes & 0.97 \\
\hline 92 & 1:Yes & 1:Yes & 0.697 \\
\hline 93 & 1:Yes & 1:Yes & 1 \\
\hline 94 & 1:Yes & 1:Yes & 0.955 \\
\hline 95 & 1:Yes & 1:Yes & 1 \\
\hline 96 & 1:Yes & 1:Yes & 1 \\
\hline 97 & 1:Yes & 1:Yes & 1 \\
\hline 98 & 1:Yes & 1:Yes & 0.979 \\
\hline 99 & 1:Yes & 1:Yes & 0.995 \\
\hline 100 & 1:Yes & 1:Yes & 0.996 \\
\hline 101 & 1:Yes & 1:Yes & 1 \\
\hline 102 & 1:Yes & 1:Yes & 0.999 \\
\hline 103 & 1:Yes & 1:Yes & 1 \\
\hline 104 & 1:Yes & 1:Yes & 0.984 \\
\hline 105 & 1:Yes & 1:Yes & , \\
\hline 106 & 1:Yes & 1:Yes & 1 \\
\hline 107 & 1:Yes & 1:Yes & 1 \\
\hline 108 & 1:Yes & 1:Yes & , \\
\hline 109 & 1:Yes & 1:Yes & 1 \\
\hline 110 & 1:Yes & 1:Yes & 1 \\
\hline 111 & 1:Yes & 1:Yes & 0.529 \\
\hline 112 & 1:Yes & 1:Yes & 0.956 \\
\hline 113 & 1:Yes & 1:Yes & 1 \\
\hline 114 & 1:Yes & 1:Yes & 0.996 \\
\hline 115 & 1:Yes & 1:Yes & 0.999 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 116 & 1:Yes & 1:Yes & 1 \\
\hline 117 & 1:Yes & 1:Yes & 1 \\
\hline 118 & 1:Yes & 1:Yes & 1 \\
\hline 119 & 1:Yes & 1:Yes & 1 \\
\hline 120 & 1:Yes & 1:Yes & 0.996 \\
\hline 121 & 1:Yes & 1:Yes & 1 \\
\hline 122 & 1:Yes & 1:Yes & 1 \\
\hline 123 & 1:Yes & 1:Yes & 0.965 \\
\hline 124 & 1:Yes & 1:Yes & 0.998 \\
\hline 125 & 1:Yes & 1:Yes & 1 \\
\hline 126 & 1:Yes & 1:Yes & 0.861 \\
\hline 127 & 1:Yes & 1:Yes & 1 \\
\hline 128 & 1:Yes & 1:Yes & 0.992 \\
\hline 129 & 1:Yes & 1:Yes & 1 \\
\hline 130 & 1:Yes & 1:Yes & 0.968 \\
\hline 131 & 1:Yes & 1:Yes & 0.997 \\
\hline 132 & 1:Yes & 1:Yes & 0.951 \\
\hline 133 & 1:Yes & 1:Yes & 1 \\
\hline 134 & 1:Yes & 1:Yes & 1 \\
\hline 135 & 1:Yes & 2:No & 0.743 \\
\hline 136 & 1:Yes & 1:Yes & 0.999 \\
\hline 137 & 1:Yes & 1:Yes & 1 \\
\hline 138 & 1:Yes & 1:Yes & 0.986 \\
\hline 139 & 1:Yes & 1:Yes & 0.999 \\
\hline 140 & 1:Yes & 1:Yes & 0.998 \\
\hline 141 & 1:Yes & 1:Yes & 1 \\
\hline 142 & 1:Yes & 1:Yes & 0.999 \\
\hline 143 & 1:Yes & 1:Yes & 0.996 \\
\hline 144 & 1:Yes & 1:Yes & 1 \\
\hline 145 & 1:Yes & 1:Yes & 1 \\
\hline 146 & 1:Yes & 1:Yes & 1 \\
\hline 147 & 1:Yes & 1:Yes & 1 \\
\hline 148 & 1:Yes & 1:Yes & 1 \\
\hline 149 & 1:Yes & 1:Yes & 0.978 \\
\hline 150 & 1:Yes & 1:Yes & 0.946 \\
\hline 151 & 1:Yes & 1:Yes & 1 \\
\hline 152 & 1:Yes & 1:Yes & 1 \\
\hline 153 & 1:Yes & 1:Yes & 0.999 \\
\hline 154 & 1:Yes & 1:Yes & 0.999 \\
\hline 155 & 1:Yes & 1:Yes & 1 \\
\hline 156 & 1:Yes & 1:Yes & 0.937 \\
\hline 157 & 1:Yes & 1:Yes & 0.999 \\
\hline 158 & 1:Yes & 1:Yes & 0.994 \\
\hline 159 & 1:Yes & 1:Yes & 1 \\
\hline 160 & 1:Yes & 1:Yes & 1 \\
\hline 161 & 2:No & 1:Yes & 1 \\
\hline 162 & 1:Yes & 1:Yes & 0.92 \\
\hline 163 & 1:Yes & 1:Yes & 0.916 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 164 & 1:Yes & 1:Yes & 0.998 \\
\hline 165 & 1:Yes & 1:Yes & 0.999 \\
\hline 166 & 1:Yes & 1:Yes & 1 \\
\hline 167 & 2:No & 1:Yes & 1 \\
\hline 168 & 2:No & 2:No & 0.958 \\
\hline 169 & 1:Yes & 2:No & 0.995 \\
\hline 170 & 2:No & 1:Yes & 1 \\
\hline 171 & 1:Yes & 2:No & 0.998 \\
\hline 172 & 1:Yes & 1:Yes & 1 \\
\hline 173 & 2:No & 1:Yes & 0.966 \\
\hline 174 & 1:Yes & 1:Yes & 0.998 \\
\hline 175 & 1:Yes & 1:Yes & 1 \\
\hline 176 & 1:Yes & 1:Yes & 0.996 \\
\hline 177 & 2:No & 2:No & 0.736 \\
\hline 178 & 2:No & 2:No & 0.517 \\
\hline 179 & 1:Yes & 1:Yes & 0.899 \\
\hline 180 & 2:No & 2:No & 0.894 \\
\hline 181 & 1:Yes & 1:Yes & 0.768 \\
\hline 182 & 1:Yes & 1:Yes & 0.999 \\
\hline
\end{tabular}

\section*{Naive Bayes Updatable Classifier \(\mid\) NN}

Naive Bayes Classifier (full training set)
Class

Attribute
Yes No
(0.95) (0.05)

Car superseding Ability
\begin{tabular}{lcc} 
Yes & 36.0 & 1.0 \\
No & 140.0 & 9.0 \\
[total] & 176.0 & 10.0
\end{tabular}

Motorbike superseding Ability
\begin{tabular}{lcl} 
No & 150.0 & 8.0 \\
Yes & 26.0 & 2.0 \\
[total] & 176.0 & 10.0
\end{tabular}

House superseding Ability
\begin{tabular}{lcl} 
No & 164.0 & 9.0 \\
Yes & 12.0 & 1.0 \\
[total] & 176.0 & 10.0 \\
Business superseding Ability & & \\
No & 170.0 & 9.0 \\
Yes & 6.0 & 1.0 \\
[total] & 176.0 & 10.0
\end{tabular}

No superseding ability
\begin{tabular}{lcc} 
No & 66.0 & 2.0 \\
Yes & 110.0 & 8.0 \\
[total] & 176.0 & 10.0
\end{tabular}

Have or Had Business Insurance
\begin{tabular}{lll} 
No & 148.0 & 9.0 \\
Yes & 28.0 & 1.0 \\
[total] & 176.0 & 10.0
\end{tabular}

Have or Had Civil Liability Insurance
No \(149.0 \quad 9.0\)
Yes \(\quad 27.0 \quad 1.0\)
[total]
\(176.0 \quad 10.0\)
Have or Had Vessel Insurance
No \(\quad 168.0 \quad 9.0\)
\(\begin{array}{lll}\text { Yes } & 8.0 & 1.0\end{array}\)
[total]
\(176.0 \quad 10.0\)
Have or Had Health Insurance
\begin{tabular}{lll} 
No & 173.0 & 9.0 \\
Yes & 3.0 & 1.0
\end{tabular}
[total] \(176.0 \quad 10.0\)
Have or Had Everyday needs Insurance
No \(\quad 174.0 \quad 9.0\)
Yes \(\quad 2.0 \quad 1.0\)
[total]
\(176.0 \quad 10.0\)
Have or Had Business House Insurance
No \(\quad 174.0 \quad 9.0\)
Yes
\(2.0 \quad 1.0\)
[total]
\(176.0 \quad 10.0\)
Have or Had Family Insurance
\begin{tabular}{lcl} 
No & 174.0 & 9.0 \\
Yes & 2.0 & 1.0 \\
[total] & 176.0 & 10.0
\end{tabular}

Have or Had Cash Insurance
\begin{tabular}{lcc} 
No & 174.0 & 9.0 \\
Yes & 2.0 & 1.0 \\
[total] & 176.0 & 10.0
\end{tabular}

Have or Had Child Insurance
No \(\quad 174.0 \quad 9.0\)
Yes
\(2.0 \quad 1.0\)
[total]
\(176.0 \quad 10.0\)
Have or Had Car Insurance
No \(\quad 175.0 \quad 9.0\)
[total]
\(175.0 \quad 9.0\)
Have or Had Motorbike Insurance
No
\(174.0 \quad 9.0\)
\begin{tabular}{lcl} 
Yes & 2.0 & 1.0 \\
[total] & 176.0 & 10.0
\end{tabular}

Have never had Insurance
Yes \(\quad 104.0 \quad 7.0\)
No \(\quad 72.0 \quad 3.0\)
\(\begin{array}{llll}\text { [totall } & 176.0 & 10.0\end{array}\)
Fixed Costs would not be covered in case of a possible loss of mine
\begin{tabular}{lcc} 
Yes & 127.0 & 6.0 \\
No & 48.0 & 4.0 \\
[total] & 175.0 & 10.0
\end{tabular}

Loans would not be covered in case of a possible loss of mine
\begin{tabular}{lrl} 
No & 123.0 & 6.0 \\
Yes & 52.0 & 4.0 \\
[total] & 175.0 & 10.0
\end{tabular}

Children Studies would not be covered in case of a possible loss of mine
No \(130.0 \quad 7.0\)
Yes \(\quad 45.0 \quad 3.0\)
[total]
\(175.0 \quad 10.0\)
Tax obligations would not be covered in case of a possible loss of mine
No \(\quad 102.0 \quad 8.0\)
Yes \(\quad 73.0 \quad 2.0\)
[total]
\(175.0 \quad 10.0\)
No needs to leave behind in case of a possible loss of mine
\begin{tabular}{lcc} 
No & 173.0 & 9.0 \\
Yes & 2.0 & 1.0 \\
[total] & 175.0 & 10.0
\end{tabular}

Happiness would not be covered in case of a possible loss of mine
No
\(173.0 \quad 9.0\)
Yes
\(2.0 \quad 1.0\)
[total]
\(175.0 \quad 10.0\)

Purchases in non-basic necessities would not be covered in case of a possible loss of mine
\begin{tabular}{lcc} 
No & 173.0 & 9.0 \\
Yes & 2.0 & 1.0 \\
[total] & 175.0 & 10.0
\end{tabular}

Want a risk protection
\begin{tabular}{lcl} 
Yes & 151.0 & 4.0 \\
No & 25.0 & 6.0 \\
[total] & 176.0 & 10.0
\end{tabular}

A satisfying amount of money for the support of my beloved ones
mean
72.3143 .33
std. dev.
\(44.52 \quad 35.38\)
weight sum \(\quad 151 \quad 3\)
precision
43.3343 .33

Not at all satisfied from the public insurance health benefits
\(\begin{array}{lll}\text { No } & 146.0 & 8.0\end{array}\)
Yes \(\quad 30.0 \quad 2.0\)
[total]
\(176.0 \quad 10.0\)
Kind of satisfied from the public insurance health benefits
\begin{tabular}{lcc} 
Yes & 100.0 & 3.0 \\
No & 76.0 & 7.0 \\
[total] & 176.0 & 10.0
\end{tabular}

Quite satisfied from the public insurance health benefits
\begin{tabular}{lcl} 
No & 132.0 & 4.0 \\
Yes & 44.0 & 6.0 \\
[total] & 176.0 & 10.0
\end{tabular}

Absolutely satisfied from the public insurance health benefits
No \(\quad 172.0 \quad 9.0\)
Yes \(\quad 4.0 \quad 1.0\)
[total]
\(176.0 \quad 10.0\)
I would choose a Public Hospital in Athens or Thessaloniki for a mild health issue
\begin{tabular}{lrl} 
Yes & 28.0 & 1.0 \\
No & 148.0 & 9.0 \\
[total] & 176.0 & 10.0
\end{tabular}

I would choose a big private hospital in Athens or Thessaloniki for a mild health issue
\begin{tabular}{lll} 
No & 119.0 & 9.0 \\
Yes & 57.0 & 1.0 \\
[total] & 176.0 & 10.0
\end{tabular}

I would choose a local private hospital for a mild health issue
No \(129.0 \quad 7.0\)
Yes
\(47.0 \quad 3.0\)
[total]
\(176.0 \quad 10.0\)
I would choose a local public hospital for a mild health issue
No \(\quad 130.0 \quad 3.0\)
\(\begin{array}{lll}\text { Yes } & 46.0 & 7.0\end{array}\)
\(\begin{array}{lll}\text { [total] } & 176.0 & 10.0\end{array}\)
I would choose a public hospital in Athens or Thessaloniki for serious health issues
\[
\begin{array}{lll}
\text { No } & 141.0 & 7.0
\end{array}
\]
\begin{tabular}{lcl} 
Yes & 35.0 & 3.0 \\
[total] & 176.0 & 10.0
\end{tabular}

I would choose a big private hospital of Athens or Thessaloniki for serious health issues
\begin{tabular}{lcc} 
Yes & 76.0 & 3.0 \\
No & 100.0 & 7.0 \\
[total] & 176.0 & 10.0
\end{tabular}

I would choose a local private hospital for serious health issues
\begin{tabular}{lll} 
No & 150.0 & 8.0 \\
Yes & 26.0 & 2.0 \\
[total] & 176.0 & 10.0
\end{tabular}

I would choose a local public hospital for serious health issues
No \(\quad 166.0 \quad 6.0\)
Yes \(\quad 10.0 \quad 4.0\)
[total]
\(176.0 \quad 10.0\)
I would choose a foreign hospital for serious health issues
No \(144.0 \quad 9.0\)
Yes \(\quad 32.0 \quad 1.0\)
[total]
\(176.0 \quad 10.0\)
I wish for private health services coupled with my insurance
\(\begin{array}{lll}\text { Yes } & 167.0 & 6.0\end{array}\)
No \(\quad 9.0 \quad 4.0\)
[total]
\(176.0 \quad 10.0\)
I would like diagnostic tests to be included to my private insurance
\begin{tabular}{lcc} 
Yes \\
No & 104.0 & 6.0 \\
72.0 & 4.0
\end{tabular}
[total]
\(176.0 \quad 10.0\)

I would like doctor visits to be included to my private insurance
\begin{tabular}{lcc} 
Yes & 113.0 & 3.0 \\
No & 58.0 & 7.0 \\
Yes & 6.0 & 1.0 \\
[total] & 177.0 & 11.0
\end{tabular}

I would like hospital care to be included to my private insurance
\begin{tabular}{lcc} 
Yes & 124.0 & 6.0 \\
No & 52.0 & 4.0 \\
[total] & 176.0 & 10.0
\end{tabular}

I would like Annual check up to be included to my private insurance
\begin{tabular}{lcc} 
Yes & 105.0 & 7.0 \\
No & 71.0 & 3.0 \\
[total] & 176.0 & 10.0
\end{tabular}

I would like going abroad to be included to my private insurance
\begin{tabular}{lcl} 
Yes & 78.0 & 2.0 \\
No & 98.0 & 8.0 \\
[total] & 176.0 & 10.0
\end{tabular}

I would like ambulance to be included to my private insurance
No \(\quad 172.0 \quad 9.0\)
Yes
\(4.0 \quad 1.0\)
[total]
\(176.0 \quad 10.0\)
Team insurance
\begin{tabular}{lcl} 
No & 130.0 & 7.0 \\
Yes & 46.0 & 3.0 \\
[total] & 176.0 & 10.0
\end{tabular}

I will not get a pension
\begin{tabular}{lcc} 
Yes & 37.0 & 2.0 \\
No & 139.0 & 8.0 \\
[total] & 176.0 & 10.0 \\
I will get a small pension & & \\
No & 67.0 & 4.0 \\
Yes & 109.0 & 6.0 \\
[total] & 176.0 & 10.0 \\
I will get a satisfying pension & & \\
No & 145.0 & 7.0 \\
Yes & 31.0 & 3.0 \\
[total] & 176.0 & 10.0
\end{tabular}

I have managed for a lump sum or supplementary pension
\begin{tabular}{lcc} 
Yes & 61.0 & 4.0 \\
No & 115.0 & 6.0 \\
[total] & 176.0 & 10.0
\end{tabular}

I have managed for a lump sum or supplementary pension through Bank Savings
\begin{tabular}{lcc} 
Yes & 43.0 & 4.0 \\
No & 61.0 & 3.0 \\
[total] & 104.0 & 7.0
\end{tabular}

I have managed for a lump sum or supplementary pension through Pension scheme purchase
\begin{tabular}{lcc} 
No & 102.0 & 6.0 \\
Yes & 2.0 & 1.0 \\
[total] & 104.0 & 7.0
\end{tabular}

I have managed for a lump sum or supplementary pension through Life insurance program and savings plan
\begin{tabular}{lll} 
No & 102.0 & 6.0 \\
Yes & 2.0 & 1.0 \\
[total] & 104.0 & 7.0
\end{tabular}

I have managed for a lump sum or supplementary pension through Real estate purchase for rent or exploitation
\begin{tabular}{lcc} 
No & 82.0 & 6.0 \\
Yes & 22.0 & 1.0 \\
[total] & 104.0 & 7.0
\end{tabular}

I am about to take immediate care of a lump sum or supplementary pension
No
\(73.0 \quad 4.0\)
Yes
\(31.0 \quad 3.0\)
[total]
\(104.0 \quad 7.0\)

I have managed for a lump sum or supplementary pension through Pension scheme or savings plan purchase

No \(\begin{array}{ll}80.0 & 5.0\end{array}\)
Yes
\(24.0 \quad 2.0\)
[total]
\(104.0 \quad 7.0\)
Even if I wanted it I cannot take care of a lump sum or supplementary pension
No \(\quad 102.0 \quad 5.0\)
Yes \(\quad 2.0 \quad 2.0\)
[total]
\(104.0 \quad 7.0\)
It is of a major importance to support my children and grandchildren after I receive my pension
\begin{tabular}{lcc} 
Yes & 116.0 & 6.0 \\
No & 60.0 & 4.0 \\
[total] & 176.0 & 10.0
\end{tabular}

It is of a major importance to cover my healthcare after I receive my pension
\begin{tabular}{lcc} 
Yes & 135.0 & 7.0 \\
No & 41.0 & 3.0 \\
[total] & 176.0 & 10.0
\end{tabular}

It is of a major importance to cover my pleasure trips after I receive my pension
\(\begin{array}{lll}\text { Yes } & 72.0 & 3.0\end{array}\)
No
\(104.0 \quad 7.0\)
[total]
\(176.0 \quad 10.0\)
It is of a major importance to cover my house purchases after I receive my pension
\begin{tabular}{lcl} 
No & 161.0 & 9.0 \\
Yes & 15.0 & 1.0 \\
[total] & 176.0 & 10.0
\end{tabular}

It is of a major importance to cover my fixed costs after I receive my pension
\begin{tabular}{lcc} 
No & 174.0 & 8.0 \\
Yes & 2.0 & 2.0 \\
[total] & 176.0 & 10.0
\end{tabular}

It is of a major importance to cover my everyday needs after I receive my pension
No
\(174.0 \quad 9.0\)
Yes
\(2.0 \quad 1.0\)
[total]
\(176.0 \quad 10.0\)

Naive Bayes Updateable Predictions| \({ }^{2} N\)
\begin{tabular}{|c|l|l|c|}
\hline \#inst & actual & predicted & error \\
\hline 11 & \(1:\) Yes & \(1:\) Yes & 1 \\
\hline 12 & \(1:\) Yes & \(1:\) Yes & 1 \\
\hline 13 & \(1:\) Yes & \(1:\) Yes & 1 \\
\hline 14 & \(1:\) Yes & \(1:\) Yes & 1 \\
\hline 15 & \(1:\) Yes & \(1:\) Yes & 0.999 \\
\hline 16 & \(1:\) Yes & \(1:\) Yes & 1 \\
\hline 17 & \(1:\) Yes & \(1:\) Yes & 0.999 \\
\hline 18 & \(1:\) Yes & \(1:\) Yes & 0.999 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 19 & 1:Yes & 1:Yes & 0.98 \\
\hline 20 & 1:Yes & 1:Yes & 1 \\
\hline 21 & 1:Yes & 1:Yes & 0.979 \\
\hline 22 & 1:Yes & 1:Yes & 1 \\
\hline 23 & 1:Yes & 1:Yes & 0.999 \\
\hline 24 & 1:Yes & 1:Yes & 1 \\
\hline 25 & 1:Yes & 1:Yes & 1 \\
\hline 26 & 1:Yes & 1:Yes & 1 \\
\hline 27 & 1:Yes & 1:Yes & 0.984 \\
\hline 28 & 1:Yes & 1:Yes & 0.918 \\
\hline 29 & 1:Yes & 1:Yes & 1 \\
\hline 30 & 1:Yes & 1:Yes & 0.981 \\
\hline 31 & 1:Yes & 1:Yes & 1 \\
\hline 32 & 1:Yes & 1:Yes & 1 \\
\hline 33 & 1:Yes & 1:Yes & 1 \\
\hline 34 & 1:Yes & 1:Yes & 1 \\
\hline 35 & 1:Yes & 1:Yes & 1 \\
\hline 36 & 1:Yes & 1:Yes & 1 \\
\hline 37 & 1:Yes & 1:Yes & 1 \\
\hline 38 & 1:Yes & 1:Yes & 1 \\
\hline 39 & 1:Yes & 1:Yes & 1 \\
\hline 40 & 1:Yes & 1:Yes & 1 \\
\hline 41 & 1:Yes & 1:Yes & 1 \\
\hline 42 & 1:Yes & 1:Yes & 0.995 \\
\hline 43 & 1:Yes & 1:Yes & 1 \\
\hline 44 & 1:Yes & 1:Yes & 0.999 \\
\hline 45 & 1:Yes & 1:Yes & 0.991 \\
\hline 46 & 1:Yes & 1:Yes & 0.732 \\
\hline 47 & 1:Yes & 1:Yes & 1 \\
\hline 48 & 1:Yes & 1:Yes & 1 \\
\hline 49 & 1:Yes & 1:Yes & 1 \\
\hline 50 & 1:Yes & 1:Yes & 1 \\
\hline 51 & 1:Yes & 1:Yes & 1 \\
\hline 52 & 1:Yes & 1:Yes & 1 \\
\hline 53 & 1:Yes & 1:Yes & 0.998 \\
\hline 54 & 1:Yes & 1:Yes & 1 \\
\hline 55 & 1:Yes & 1:Yes & 1 \\
\hline 56 & 1:Yes & 1:Yes & 1 \\
\hline 57 & 1:Yes & 1:Yes & 0.986 \\
\hline 58 & 1:Yes & 1:Yes & 0.999 \\
\hline 59 & 1:Yes & 1:Yes & 1 \\
\hline 60 & 1:Yes & 1:Yes & 1 \\
\hline 61 & 1:Yes & 1:Yes & 1 \\
\hline 62 & 1:Yes & 1:Yes & 0.999 \\
\hline 63 & 1:Yes & 1:Yes & 1 \\
\hline 64 & 1:Yes & 1:Yes & 1 \\
\hline 65 & 1:Yes & 1:Yes & 1 \\
\hline 66 & 1:Yes & 1:Yes & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 67 & 1:Yes & 1:Yes & 0.999 \\
\hline 68 & 1:Yes & 1:Yes & 1 \\
\hline 69 & 1:Yes & 1:Yes & 1 \\
\hline 70 & 1:Yes & 1:Yes & 1 \\
\hline 71 & 1:Yes & 1:Yes & 1 \\
\hline 72 & 1:Yes & 1:Yes & 1 \\
\hline 73 & 1:Yes & 1:Yes & 1 \\
\hline 74 & 1:Yes & 1:Yes & 1 \\
\hline 75 & 1:Yes & 1:Yes & 0.551 \\
\hline 76 & 1:Yes & 1:Yes & 1 \\
\hline 77 & 1:Yes & 1:Yes & 1 \\
\hline 78 & 1:Yes & 1:Yes & 0.975 \\
\hline 79 & 1:Yes & 1:Yes & 0.986 \\
\hline 80 & 1:Yes & 1:Yes & 0.998 \\
\hline 81 & 1:Yes & 1:Yes & 1 \\
\hline 82 & 1:Yes & 1:Yes & 0.981 \\
\hline 83 & 1:Yes & 1:Yes & 1 \\
\hline 84 & 1:Yes & 1:Yes & 1 \\
\hline 85 & 1:Yes & 1:Yes & 1 \\
\hline 86 & 1:Yes & 1:Yes & 1 \\
\hline 87 & 1:Yes & 1:Yes & 1 \\
\hline 88 & 1:Yes & 1:Yes & 0.999 \\
\hline 89 & 1:Yes & 1:Yes & 1 \\
\hline 90 & 1:Yes & 1:Yes & 1 \\
\hline 91 & 1:Yes & 1:Yes & 0.97 \\
\hline 92 & 1:Yes & 1:Yes & 0.697 \\
\hline 93 & 1:Yes & 1:Yes & 1 \\
\hline 94 & 1:Yes & 1:Yes & 0.955 \\
\hline 95 & 1:Yes & 1:Yes & 1 \\
\hline 96 & 1:Yes & 1:Yes & 1 \\
\hline 97 & 1:Yes & 1:Yes & 1 \\
\hline 98 & 1:Yes & 1:Yes & 0.979 \\
\hline 99 & 1:Yes & 1:Yes & 0.995 \\
\hline 100 & 1:Yes & 1:Yes & 0.996 \\
\hline 101 & 1:Yes & 1:Yes & 1 \\
\hline 102 & 1:Yes & 1:Yes & 0.999 \\
\hline 103 & 1:Yes & 1:Yes & 1 \\
\hline 104 & 1:Yes & 1:Yes & 0.984 \\
\hline 105 & 1:Yes & 1:Yes & 1 \\
\hline 106 & 1:Yes & 1:Yes & 1 \\
\hline 107 & 1:Yes & 1:Yes & 1 \\
\hline 108 & 1:Yes & 1:Yes & 1 \\
\hline 109 & 1:Yes & 1:Yes & 1 \\
\hline 110 & 1:Yes & 1:Yes & 1 \\
\hline 111 & 1:Yes & 1:Yes & 0.529 \\
\hline 112 & 1:Yes & 1:Yes & 0.956 \\
\hline 113 & 1:Yes & 1:Yes & 1 \\
\hline 114 & 1:Yes & 1:Yes & 0.996 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 115 & 1:Yes & 1:Yes & 0.999 \\
\hline 116 & 1:Yes & 1:Yes & 1 \\
\hline 117 & 1:Yes & 1:Yes & 1 \\
\hline 118 & 1:Yes & 1:Yes & 1 \\
\hline 119 & 1:Yes & 1:Yes & 1 \\
\hline 120 & 1:Yes & 1:Yes & 0.996 \\
\hline 121 & 1:Yes & 1:Yes & 1 \\
\hline 122 & 1:Yes & 1:Yes & 1 \\
\hline 123 & 1:Yes & 1:Yes & 0.965 \\
\hline 124 & 1:Yes & 1:Yes & 0.998 \\
\hline 125 & 1:Yes & 1:Yes & 1 \\
\hline 126 & 1:Yes & 1:Yes & 0.861 \\
\hline 127 & 1:Yes & 1:Yes & 1 \\
\hline 128 & 1:Yes & 1:Yes & 0.992 \\
\hline 129 & 1:Yes & 1:Yes & 1 \\
\hline 130 & 1:Yes & 1:Yes & 0.968 \\
\hline 131 & 1:Yes & 1:Yes & 0.997 \\
\hline 132 & 1:Yes & 1:Yes & 0.951 \\
\hline 133 & 1:Yes & 1:Yes & , \\
\hline 134 & 1:Yes & 1:Yes & 1 \\
\hline 135 & 1:Yes & 2:No & 0.743 \\
\hline 136 & 1:Yes & 1:Yes & 0.999 \\
\hline 137 & 1:Yes & 1:Yes & 1 \\
\hline 138 & 1:Yes & 1:Yes & 0.986 \\
\hline 139 & 1:Yes & 1:Yes & 0.999 \\
\hline 140 & 1:Yes & 1:Yes & 0.998 \\
\hline 141 & 1:Yes & 1:Yes & 1 \\
\hline 142 & 1:Yes & 1:Yes & 0.999 \\
\hline 143 & 1:Yes & 1:Yes & 0.996 \\
\hline 144 & 1:Yes & 1:Yes & 1 \\
\hline 145 & 1:Yes & 1:Yes & 1 \\
\hline 146 & 1:Yes & 1:Yes & 1 \\
\hline 147 & 1:Yes & 1:Yes & 1 \\
\hline 148 & 1:Yes & 1:Yes & 1 \\
\hline 149 & 1:Yes & 1:Yes & 0.978 \\
\hline 150 & 1:Yes & 1:Yes & 0.946 \\
\hline 151 & 1:Yes & 1:Yes & 1 \\
\hline 152 & 1:Yes & 1:Yes & 1 \\
\hline 153 & 1:Yes & 1:Yes & 0.999 \\
\hline 154 & 1:Yes & 1:Yes & 0.999 \\
\hline 155 & 1:Yes & 1:Yes & 1 \\
\hline 156 & 1:Yes & 1:Yes & 0.937 \\
\hline 157 & 1:Yes & 1:Yes & 0.999 \\
\hline 158 & 1:Yes & 1:Yes & 0.994 \\
\hline 159 & 1:Yes & 1:Yes & 1 \\
\hline 160 & 1:Yes & 1:Yes & 1 \\
\hline 161 & 1:Yes & 1:Yes & 1 \\
\hline 162 & 2:No & 1:Yes & 0.92 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 163 & 1:Yes & 1:Yes & 0.916 \\
\hline 164 & 1:Yes & 1:Yes & 0.998 \\
\hline 165 & 1:Yes & 1:Yes & 0.999 \\
\hline 166 & 1:Yes & 1:Yes & 1 \\
\hline 167 & 1:Yes & 1:Yes & 1 \\
\hline 168 & 2:No & 2:No & 0.958 \\
\hline 169 & 2:No & 2:No & 0.995 \\
\hline 170 & 1:Yes & 1:Yes & 1 \\
\hline 171 & 2:No & 2:No & 0.998 \\
\hline 172 & 1:Yes & 1:Yes & 1 \\
\hline 173 & 1:Yes & 1:Yes & 0.966 \\
\hline 174 & 2:No & 1:Yes & 0.998 \\
\hline 175 & 1:Yes & 1:Yes & 1 \\
\hline 176 & 1:Yes & 1:Yes & 0.996 \\
\hline 177 & 1:Yes & 2:No & 0.736 \\
\hline 178 & 2:No & 2:No & 0.517 \\
\hline 179 & 2:No & 1:Yes & 0.899 \\
\hline 180 & 1:Yes & 2:No & 0.894 \\
\hline 181 & 2:No & 1:Yes & 0.768 \\
\hline 182 & 1:Yes & 1:Yes & 0.999 \\
\hline
\end{tabular}

\section*{Lazy K Star Predictions| NN}
\begin{tabular}{|c|c|c|c|}
\hline \#inst & actual & predicted & error \\
\hline 11 & \(1:\) Yes & \(1:\) Yes & 1 \\
\hline 12 & \(1:\) Yes & \(1:\) Yes & 1 \\
\hline 13 & \(1:\) Yes & \(1:\) Yes & 1 \\
\hline 14 & \(1:\) Yes & \(1:\) Yes & 1 \\
\hline 15 & \(1:\) Yes & \(1:\) Yes & 1 \\
\hline 16 & \(1:\) Yes & \(1:\) Yes & 1 \\
\hline 17 & \(1:\) Yes & \(1:\) Yes & 1 \\
\hline 18 & \(1:\) Yes & \(1:\) Yes & 1 \\
\hline 19 & \(1:\) Yes & \(1:\) Yes & 1 \\
\hline 20 & \(1:\) Yes & \(1:\) Yes & 1 \\
\hline 21 & \(1:\) Yes & \(1:\) Yes & 1 \\
\hline 22 & \(1:\) Yes & \(1:\) Yes & 1 \\
\hline 23 & \(1:\) Yes & \(1:\) Yes & 1 \\
\hline 24 & \(1:\) Yes & \(1:\) Yes & 1 \\
\hline 25 & \(1:\) Yes & \(1:\) Yes & 1 \\
\hline 26 & \(1:\) Yes & \(1:\) Yes & 1 \\
\hline 27 & \(1:\) Yes & \(1:\) Yes & 1 \\
\hline 28 & \(1:\) Yes & \(1:\) Yes & 1 \\
\hline 29 & \(1:\) Yes & \(1:\) Yes & 1 \\
\hline 30 & \(1:\) Yes & \(1:\) Yes & 1 \\
\hline 31 & \(1:\) Yes & \(1:\) Yes & 1 \\
\hline 32 & \(1:\) Yes & \(1:\) Yes & 1 \\
\hline 33 & \(1:\) Yes & & \(1:\) Yes \\
\hline 34 & \(1:\) Yes & \(1:\) Yes & 1 \\
\hline & & & 1 \\
\hline & & & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 35 & 1:Yes & 1:Yes & 1 \\
\hline 36 & 1:Yes & 1:Yes & 1 \\
\hline 37 & 1:Yes & 1:Yes & 1 \\
\hline 38 & 1:Yes & 1:Yes & 1 \\
\hline 39 & 1:Yes & 1:Yes & 1 \\
\hline 40 & 1:Yes & 1:Yes & 1 \\
\hline 41 & 1:Yes & 1:Yes & 1 \\
\hline 42 & 1:Yes & 1:Yes & 1 \\
\hline 43 & 1:Yes & 1:Yes & 1 \\
\hline 44 & 1:Yes & 1:Yes & 1 \\
\hline 45 & 1:Yes & 1:Yes & 1 \\
\hline 46 & 1:Yes & 1:Yes & 1 \\
\hline 47 & 1:Yes & 1:Yes & 1 \\
\hline 48 & 1:Yes & 1:Yes & 1 \\
\hline 49 & 1:Yes & 1:Yes & 1 \\
\hline 50 & 1:Yes & 1:Yes & 1 \\
\hline 51 & 1:Yes & 1:Yes & 1 \\
\hline 52 & 1:Yes & 1:Yes & 1 \\
\hline 53 & 1:Yes & 1:Yes & 1 \\
\hline 54 & 1:Yes & 1:Yes & 1 \\
\hline 55 & 1:Yes & 1:Yes & 1 \\
\hline 56 & 1:Yes & 1:Yes & 1 \\
\hline 57 & 1:Yes & 1:Yes & 1 \\
\hline 58 & 1:Yes & 1:Yes & 1 \\
\hline 59 & 1:Yes & 1:Yes & 1 \\
\hline 60 & 1:Yes & 1:Yes & 1 \\
\hline 61 & 1:Yes & 1:Yes & 1 \\
\hline 62 & 1:Yes & 1:Yes & 1 \\
\hline 63 & 1:Yes & 1:Yes & 1 \\
\hline 64 & 1:Yes & 1:Yes & 1 \\
\hline 65 & 1:Yes & 1:Yes & \\
\hline 66 & 1:Yes & 1:Yes & 1 \\
\hline 67 & 1:Yes & 1:Yes & 1 \\
\hline 68 & 1:Yes & 1:Yes & , \\
\hline 69 & 1:Yes & 1:Yes & 1 \\
\hline 70 & 1:Yes & 1:Yes & 1 \\
\hline 71 & 1:Yes & 1:Yes & 1 \\
\hline 72 & 1:Yes & 1:Yes & 1 \\
\hline 73 & 1:Yes & 1:Yes & 1 \\
\hline 74 & 1:Yes & 1:Yes & 1 \\
\hline 75 & 1:Yes & 1:Yes & 1 \\
\hline 76 & 1:Yes & 1:Yes & 1 \\
\hline 77 & 1:Yes & 1:Yes & 1 \\
\hline 78 & 1:Yes & 1:Yes & 1 \\
\hline 79 & 1:Yes & 1:Yes & 1 \\
\hline 80 & 1:Yes & 1:Yes & 1 \\
\hline 81 & 1:Yes & 1:Yes & 1 \\
\hline 82 & 1:Yes & 1:Yes & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 83 & 1:Yes & 1:Yes & 1 \\
\hline 84 & 1:Yes & 1:Yes & 1 \\
\hline 85 & 1:Yes & 1:Yes & 1 \\
\hline 86 & 1:Yes & 1:Yes & 1 \\
\hline 87 & 1:Yes & 1:Yes & 1 \\
\hline 88 & 1:Yes & 1:Yes & 1 \\
\hline 89 & 1:Yes & 1:Yes & 1 \\
\hline 90 & 1:Yes & 1:Yes & 1 \\
\hline 91 & 1:Yes & 1:Yes & 1 \\
\hline 92 & 1:Yes & 1:Yes & 1 \\
\hline 93 & 1:Yes & 1:Yes & 1 \\
\hline 94 & 1:Yes & 1:Yes & 1 \\
\hline 95 & 1:Yes & 1:Yes & 1 \\
\hline 96 & 1:Yes & 1:Yes & 1 \\
\hline 97 & 1:Yes & 1:Yes & 1 \\
\hline 98 & 1:Yes & 1:Yes & 1 \\
\hline 99 & 1:Yes & 1:Yes & 1 \\
\hline 100 & 1:Yes & 1:Yes & 1 \\
\hline 101 & 1:Yes & 1:Yes & 1 \\
\hline 102 & 1:Yes & 1:Yes & 1 \\
\hline 103 & 1:Yes & 1:Yes & 1 \\
\hline 104 & 1:Yes & 1:Yes & 1 \\
\hline 105 & 1:Yes & 1:Yes & 1 \\
\hline 106 & 1:Yes & 1:Yes & 1 \\
\hline 107 & 1:Yes & 1:Yes & 1 \\
\hline 108 & 1:Yes & 1:Yes & 1 \\
\hline 109 & 1:Yes & 1:Yes & 1 \\
\hline 110 & 1:Yes & 1:Yes & 1 \\
\hline 111 & 1:Yes & 1:Yes & 1 \\
\hline 112 & 1:Yes & 1:Yes & 1 \\
\hline 113 & 1:Yes & 1:Yes & 1 \\
\hline 114 & 1:Yes & 1:Yes & 1 \\
\hline 115 & 1:Yes & 1:Yes & 1 \\
\hline 116 & 1:Yes & 1:Yes & 1 \\
\hline 117 & 1:Yes & 1:Yes & 1 \\
\hline 118 & 1:Yes & 1:Yes & 1 \\
\hline 119 & 1:Yes & 1:Yes & 1 \\
\hline 120 & 1:Yes & 1:Yes & , \\
\hline 121 & 1:Yes & 1:Yes & 1 \\
\hline 122 & 1:Yes & 1:Yes & 1 \\
\hline 123 & 1:Yes & 1:Yes & 1 \\
\hline 124 & 1:Yes & 1:Yes & 1 \\
\hline 125 & 1:Yes & 1:Yes & 1 \\
\hline 126 & 1:Yes & 1:Yes & 1 \\
\hline 127 & 1:Yes & 1:Yes & 1 \\
\hline 128 & 1:Yes & 1:Yes & 1 \\
\hline 129 & 1:Yes & 1:Yes & 1 \\
\hline 130 & 1:Yes & 1:Yes & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 131 & 1:Yes & 1:Yes & 1 \\
\hline 132 & 1:Yes & 1:Yes & 1 \\
\hline 133 & 1:Yes & 1:Yes & 1 \\
\hline 134 & 1:Yes & 1:Yes & 1 \\
\hline 135 & 1:Yes & 1:Yes & 1 \\
\hline 136 & 1:Yes & 1:Yes & 1 \\
\hline 137 & 1:Yes & 1:Yes & 1 \\
\hline 138 & 1:Yes & 1:Yes & 1 \\
\hline 139 & 1:Yes & 1:Yes & 1 \\
\hline 140 & 1:Yes & 1:Yes & 1 \\
\hline 141 & 1:Yes & 1:Yes & 1 \\
\hline 142 & 1:Yes & 1:Yes & 1 \\
\hline 143 & 1:Yes & 1:Yes & 1 \\
\hline 144 & 1:Yes & 1:Yes & 1 \\
\hline 145 & 1:Yes & 1:Yes & 1 \\
\hline 146 & 1:Yes & 1:Yes & 1 \\
\hline 147 & 1:Yes & 1:Yes & 1 \\
\hline 148 & 1:Yes & 1:Yes & 1 \\
\hline 149 & 1:Yes & 1:Yes & 1 \\
\hline 150 & 1:Yes & 1:Yes & 1 \\
\hline 151 & 1:Yes & 1:Yes & 1 \\
\hline 152 & 1:Yes & 1:Yes & 1 \\
\hline 153 & 1:Yes & 1:Yes & 1 \\
\hline 154 & 1:Yes & 1:Yes & 1 \\
\hline 155 & 1:Yes & 1:Yes & 1 \\
\hline 156 & 1:Yes & 1:Yes & 1 \\
\hline 157 & 1:Yes & 1:Yes & 1 \\
\hline 158 & 1:Yes & 1:Yes & 1 \\
\hline 159 & 1:Yes & 1:Yes & 1 \\
\hline 160 & 1:Yes & 1:Yes & 1 \\
\hline 161 & 1:Yes & 1:Yes & 1 \\
\hline 162 & 2:No & 2:No & 1 \\
\hline 163 & 1:Yes & 1:Yes & 1 \\
\hline 164 & 1:Yes & 1:Yes & 1 \\
\hline 165 & 1:Yes & 1:Yes & 1 \\
\hline 166 & 1:Yes & 1:Yes & 1 \\
\hline 167 & 1:Yes & 1:Yes & 1 \\
\hline 168 & 2:No & 2:No & 1 \\
\hline 169 & 2:No & 2:No & 1 \\
\hline 170 & 1:Yes & 1:Yes & 1 \\
\hline 171 & 2:No & 2:No & 1 \\
\hline 172 & 1:Yes & 1:Yes & 1 \\
\hline 173 & 1:Yes & 1:Yes & 1 \\
\hline 174 & 2:No & 2:No & 1 \\
\hline 175 & 1:Yes & 1:Yes & 1 \\
\hline 176 & 1:Yes & 1:Yes & 1 \\
\hline 177 & 1:Yes & 1:Yes & 1 \\
\hline 178 & 2:No & 2:No & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|l|l|}
\hline 179 & \(2:\) No & \(2:\) No & 1 \\
\hline 180 & \(1:\) Yes & \(1:\) Yes & 1 \\
\hline 181 & \(2:\) No & \(2:\) No & 1 \\
\hline 182 & \(1:\) Yes & \(1:\) Yes & 1 \\
\hline
\end{tabular}

\section*{Randomizable Filtered Classifier Predictions \(\mid\) NN}
\begin{tabular}{|c|c|c|c|}
\hline \#inst & actual & predicted & error \\
\hline 11 & 1:Yes & 1:Yes & 0.995 \\
\hline 12 & 1:Yes & 1:Yes & 0.995 \\
\hline 13 & 1:Yes & 1:Yes & 0.995 \\
\hline 14 & 1:Yes & 1:Yes & 0.995 \\
\hline 15 & 1:Yes & 1:Yes & 0.995 \\
\hline 16 & 1:Yes & 1:Yes & 0.995 \\
\hline 17 & 1:Yes & 1:Yes & 0.995 \\
\hline 18 & 1:Yes & 1:Yes & 0.995 \\
\hline 19 & 1:Yes & 1:Yes & 0.995 \\
\hline 20 & 1:Yes & 1:Yes & 0.995 \\
\hline 21 & 1:Yes & 1:Yes & 0.995 \\
\hline 22 & 1:Yes & 1:Yes & 0.995 \\
\hline 23 & 1:Yes & 1:Yes & 0.995 \\
\hline 24 & 1:Yes & 1:Yes & 0.995 \\
\hline 25 & 1:Yes & 1:Yes & 0.995 \\
\hline 26 & 1:Yes & 1:Yes & 0.995 \\
\hline 27 & 1:Yes & 1:Yes & 0.995 \\
\hline 28 & 1:Yes & 1:Yes & 0.995 \\
\hline 29 & 1:Yes & 1:Yes & 0.995 \\
\hline 30 & 1:Yes & 1:Yes & 0.995 \\
\hline 31 & 1:Yes & 1:Yes & 0.995 \\
\hline 32 & 1:Yes & 1:Yes & 0.995 \\
\hline 33 & 1:Yes & 1:Yes & 0.995 \\
\hline 34 & 1:Yes & 1:Yes & 0.995 \\
\hline 35 & 1:Yes & 1:Yes & 0.995 \\
\hline 36 & 1:Yes & 1:Yes & 0.995 \\
\hline 37 & 1:Yes & 1:Yes & 0.995 \\
\hline 38 & 1:Yes & 1:Yes & 0.995 \\
\hline 39 & 1:Yes & 1:Yes & 0.995 \\
\hline 40 & 1:Yes & 1:Yes & 0.995 \\
\hline 41 & 1:Yes & 1:Yes & 0.995 \\
\hline 42 & 1:Yes & 1:Yes & 0.995 \\
\hline 43 & 1:Yes & 1:Yes & 0.995 \\
\hline 44 & 1:Yes & 1:Yes & 0.995 \\
\hline 45 & 1:Yes & 1:Yes & 0.995 \\
\hline 46 & 1:Yes & 1:Yes & 0.995 \\
\hline 47 & 1:Yes & 1:Yes & 0.995 \\
\hline 48 & 1:Yes & 1:Yes & 0.995 \\
\hline 49 & 1:Yes & 1:Yes & 0.995 \\
\hline 50 & 1:Yes & 1:Yes & 0.995 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 51 & 1:Yes & 1:Yes & 0.995 \\
\hline 52 & 1:Yes & 1:Yes & 0.995 \\
\hline 53 & 1:Yes & 1:Yes & 0.995 \\
\hline 54 & 1:Yes & 1:Yes & 0.995 \\
\hline 55 & 1:Yes & 1:Yes & 0.995 \\
\hline 56 & 1:Yes & 1:Yes & 0.995 \\
\hline 57 & 1:Yes & 1:Yes & 0.995 \\
\hline 58 & 1:Yes & 1:Yes & 0.995 \\
\hline 59 & 1:Yes & 1:Yes & 0.995 \\
\hline 60 & 1:Yes & 1:Yes & 0.995 \\
\hline 61 & 1:Yes & 1:Yes & 0.995 \\
\hline 62 & 1:Yes & 1:Yes & 0.995 \\
\hline 63 & 1:Yes & 1:Yes & 0.995 \\
\hline 64 & 1:Yes & 1:Yes & 0.995 \\
\hline 65 & 1:Yes & 1:Yes & 0.995 \\
\hline 66 & 1:Yes & 1:Yes & 0.995 \\
\hline 67 & 1:Yes & 1:Yes & 0.995 \\
\hline 68 & 1:Yes & 1:Yes & 0.995 \\
\hline 69 & 1:Yes & 1:Yes & 0.995 \\
\hline 70 & 1:Yes & 1:Yes & 0.995 \\
\hline 71 & 1:Yes & 1:Yes & 0.995 \\
\hline 72 & 1:Yes & 1:Yes & 0.995 \\
\hline 73 & 1:Yes & 1:Yes & 0.995 \\
\hline 74 & 1:Yes & 1:Yes & 0.995 \\
\hline 75 & 1:Yes & 1:Yes & 0.995 \\
\hline 76 & 1:Yes & 1:Yes & 0.995 \\
\hline 77 & 1:Yes & 1:Yes & 0.995 \\
\hline 78 & 1:Yes & 1:Yes & 0.995 \\
\hline 79 & 1:Yes & 1:Yes & 0.995 \\
\hline 80 & 1:Yes & 1:Yes & 0.995 \\
\hline 81 & 1:Yes & 1:Yes & 0.995 \\
\hline 82 & 1:Yes & 1:Yes & 0.995 \\
\hline 83 & 1:Yes & 1:Yes & 0.995 \\
\hline 84 & 1:Yes & 1:Yes & 0.995 \\
\hline 85 & 1:Yes & 1:Yes & 0.995 \\
\hline 86 & 1:Yes & 1:Yes & 0.995 \\
\hline 87 & 1:Yes & 1:Yes & 0.995 \\
\hline 88 & 1:Yes & 1:Yes & 0.995 \\
\hline 89 & 1:Yes & 1:Yes & 0.995 \\
\hline 90 & 1:Yes & 1:Yes & 0.995 \\
\hline 91 & 1:Yes & 1:Yes & 0.995 \\
\hline 92 & 1:Yes & 1:Yes & 0.995 \\
\hline 93 & 1:Yes & 1:Yes & 0.995 \\
\hline 94 & 1:Yes & 1:Yes & 0.995 \\
\hline 95 & 1:Yes & 1:Yes & 0.995 \\
\hline 96 & 1:Yes & 1:Yes & 0.995 \\
\hline 97 & 1:Yes & 1:Yes & 0.995 \\
\hline 98 & 1:Yes & 1:Yes & 0.995 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 99 & 1:Yes & 1:Yes & 0.995 \\
\hline 100 & 1:Yes & 1:Yes & 0.995 \\
\hline 101 & 1:Yes & 1:Yes & 0.995 \\
\hline 102 & 1:Yes & 1:Yes & 0.995 \\
\hline 103 & 1:Yes & 1:Yes & 0.995 \\
\hline 104 & 1:Yes & 1:Yes & 0.995 \\
\hline 105 & 1:Yes & 1:Yes & 0.995 \\
\hline 106 & 1:Yes & 1:Yes & 0.995 \\
\hline 107 & 1:Yes & 1:Yes & 0.995 \\
\hline 108 & 1:Yes & 1:Yes & 0.995 \\
\hline 109 & 1:Yes & 1:Yes & 0.995 \\
\hline 110 & 1:Yes & 1:Yes & 0.995 \\
\hline 111 & 1:Yes & 1:Yes & 0.995 \\
\hline 112 & 1:Yes & 1:Yes & 0.995 \\
\hline 113 & 1:Yes & 1:Yes & 0.995 \\
\hline 114 & 1:Yes & 1:Yes & 0.995 \\
\hline 115 & 1:Yes & 1:Yes & 0.995 \\
\hline 116 & 1:Yes & 1:Yes & 0.995 \\
\hline 117 & 1:Yes & 1:Yes & 0.995 \\
\hline 118 & 1:Yes & 1:Yes & 0.995 \\
\hline 119 & 1:Yes & 1:Yes & 0.995 \\
\hline 120 & 1:Yes & 1:Yes & 0.995 \\
\hline 121 & 1:Yes & 1:Yes & 0.995 \\
\hline 122 & 1:Yes & 1:Yes & 0.995 \\
\hline 123 & 1:Yes & 1:Yes & 0.995 \\
\hline 124 & 1:Yes & 1:Yes & 0.995 \\
\hline 125 & 1:Yes & 1:Yes & 0.995 \\
\hline 126 & 1:Yes & 1:Yes & 0.995 \\
\hline 127 & 1:Yes & 1:Yes & 0.995 \\
\hline 128 & 1:Yes & 1:Yes & 0.995 \\
\hline 129 & 1:Yes & 1:Yes & 0.995 \\
\hline 130 & 1:Yes & 1:Yes & 0.995 \\
\hline 131 & 1:Yes & 1:Yes & 0.995 \\
\hline 132 & 1:Yes & 1:Yes & 0.995 \\
\hline 133 & 1:Yes & 1:Yes & 0.995 \\
\hline 134 & 1:Yes & 1:Yes & 0.995 \\
\hline 135 & 1:Yes & 1:Yes & 0.995 \\
\hline 136 & 1:Yes & 1:Yes & 0.995 \\
\hline 137 & 1:Yes & 1:Yes & 0.995 \\
\hline 138 & 1:Yes & 1:Yes & 0.995 \\
\hline 139 & 1:Yes & 1:Yes & 0.995 \\
\hline 140 & 1:Yes & 1:Yes & 0.995 \\
\hline 141 & 1:Yes & 1:Yes & 0.995 \\
\hline 142 & 1:Yes & 1:Yes & 0.995 \\
\hline 143 & 1:Yes & 1:Yes & 0.995 \\
\hline 144 & 1:Yes & 1:Yes & 0.995 \\
\hline 145 & 1:Yes & 1:Yes & 0.995 \\
\hline 146 & 1:Yes & 1:Yes & 0.995 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 147 & 1:Yes & 1:Yes & 0.995 \\
\hline 148 & 1:Yes & 1:Yes & 0.995 \\
\hline 149 & 1:Yes & 1:Yes & 0.995 \\
\hline 150 & 1:Yes & 1:Yes & 0.995 \\
\hline 151 & 1:Yes & 1:Yes & 0.995 \\
\hline 152 & 1:Yes & 1:Yes & 0.995 \\
\hline 153 & 1:Yes & 1:Yes & 0.995 \\
\hline 154 & 1:Yes & 1:Yes & 0.995 \\
\hline 155 & 1:Yes & 1:Yes & 0.995 \\
\hline 156 & 1:Yes & 1:Yes & 0.995 \\
\hline 157 & 1:Yes & 1:Yes & 0.995 \\
\hline 158 & 1:Yes & 1:Yes & 0.995 \\
\hline 159 & 1:Yes & 1:Yes & 0.995 \\
\hline 160 & 1:Yes & 1:Yes & 0.995 \\
\hline 161 & 1:Yes & 1:Yes & 0.995 \\
\hline 162 & 2:No & 2:No & 0.995 \\
\hline 163 & 1:Yes & 1:Yes & 0.995 \\
\hline 164 & 1:Yes & 1:Yes & 0.995 \\
\hline 165 & 1:Yes & 1:Yes & 0.995 \\
\hline 166 & 1:Yes & 1:Yes & 0.997 \\
\hline 167 & 1:Yes & 1:Yes & 0.997 \\
\hline 168 & 2:No & 2:No & 0.995 \\
\hline 169 & 2:No & 2:No & 0.995 \\
\hline 170 & 1:Yes & 1:Yes & 0.995 \\
\hline 171 & 2:No & 2:No & 0.995 \\
\hline 172 & 1:Yes & 1:Yes & 0.995 \\
\hline 173 & 1:Yes & 1:Yes & 0.995 \\
\hline 174 & 2:No & 2:No & 0.995 \\
\hline 175 & 1:Yes & 1:Yes & 0.995 \\
\hline 176 & 1:Yes & 1:Yes & 0.995 \\
\hline 177 & 1:Yes & 1:Yes & 0.995 \\
\hline 178 & 2:No & 2:No & 0.995 \\
\hline 179 & 2:No & 2:No & 0.995 \\
\hline 180 & 1:Yes & 1:Yes & 0.995 \\
\hline 181 & 2:No & 2:No & 0.995 \\
\hline 182 & 1:Yes & 1:Yes & 0.995 \\
\hline
\end{tabular}

\section*{Logistic Classification Model \(\mid\) NN}

Logistic classification with ridge parameter of \(1.0 \mathrm{E}-8\)
Coefficients...

Class
Variable Yes
Car superseding Ability=No ..... -26.2427
Motorbike superseding Ability=Yes ..... -4.39
House superseding Ability=Yes ..... 5.3858
Business superseding Ability=Yes ..... 44.8751
No superseding ability \(=\) Yes ..... 3.3551
Have or Had Business Insurance=Yes ..... 18.2946
Have or Had Civil Liability Insurance=Yes ..... 42.4228
Have or Had Vessel Insurance=Yes ..... -33.1193
Have or Had Health Insurance=Yes ..... -37.0265
Have or Had Everyday needs Insurance=Yes ..... -31.7624
Have or Had Business House Insurance=Yes ..... -44.8548
Have or Had Family Insurance=Yes ..... -49.4047
Have or Had Cash Insurance=Yes ..... -53.9398
Have or Had Child Insurance=Yes ..... 12.6073
Have or Had Motorbike Insurance=Yes ..... \(-1.6668\)
Have never had Insurance=No ..... -10.1612
Fixed Costs would not be covered in case of a possible loss of mine=No ..... 11.1234
Loans would not be covered in case of a possible loss of mine=Yes ..... -28.2996
Children Studies would not be covered in case of a possible loss
of mine \(=\) Yes ..... \(-1.3838\)
Tax obligations would not be covered in case of a possible loss of mine=Yes ..... -4.141
No needs to leave behind in case of a possible loss of mine=Yes ..... \(-2.9381\)
Happiness would not be covered in case of a possible loss of mine=Yes ..... -18.9965
Purchases in non-basic necessities would not be covered in case of a possible loss ofmine \(=\) Yes24.0523
Want a risk protection=No ..... -32.7197
A satisfying amount of money for the support of my beloved ones ..... 0.0216
Not at all satisfied from the public insurance health benefits=Yes ..... -26.4691
Kind of satisfied from the public insurance health benefits=No8.1841
Quite satisfied from the public insurance health benefits=Yes ..... 9.0859
Absolutely satisfied from the public insurance health benefits=Yes ..... \(-8.7435\)
I would choose a Public Hospital in Athens or Thessaloniki for a mild health issue \(=\) No ..... \(-5.5799\)
I would choose a big private hospital in Athens or Thessaloniki for a mild healthissue \(=\) Yes20.0535
I would choose a local private hospital for a mild health issue=Yes ..... -4.9704
I would choose a local public hospital for a mild health issue=Yes ..... -19.8892
I would choose a public hospital in Athens or Thessaloniki for serious healthissues=Yes-17.0709
I would choose a big private hospital of Athens or Thessaloniki for serious health issues=No ..... -4.0864
I would choose a local private hospital for serious health issues=Yes ..... 5.0078
I would choose a local public hospital for serious health issues=Yes ..... 6.0193
I would choose a foreign hospital for serious health issues=Yes ..... 5.1473
I wish for private health services coupled with my insurance=No ..... -13.6774
I would like diagnostic tests to be included to my private insurance=No ..... 8.8833
I would like doctor visits to be included to my private insurance=Yes ..... 24.7004
I would like doctor visits to be included to my private insurance=No ..... -19.3459
I would like doctor visits to be included to my private insurance=Yes ..... -52.4769
I would like hospital care to be included to my private insurance=No ..... 33.9022
I would like Annual check up to be included to my private insurance=No ..... 19.2363
I would like going abroad to be included to my private insurance=No ..... -2.5301
I would like ambulance to be included to my private insurance \(=\mathrm{Yes}\) ..... 1.4932
Team insurance \(=\) Yes ..... -8.6958
I will not get a pension=No ..... -12.6141
I will get a small pension=Yes ..... \(-2.1184\)
I will get a satisfying pension=Yes ..... -10.6577
I have managed for a lump sum or supplementary pension=No ..... 6.6073
I have managed for a lump sum or supplementary pension throughBank Savings=No30.2287
I have managed for a lump sum or supplementary pension through Pension schemepurchase \(=\) Yes-54.3474
I have managed for a lump sum or supplementary pension through Life insuranceprogram and savings plan=Yes12.6073I have managed for a lump sum or supplementary pension through Real estatepurchase for rent or exploitation=Yes\(-11.2331\)
I am about to take immediate care of a lump sum or supplementarypension=Yes\(-25.3673\)
I have managed for a lump sum or supplementary pension through Pension scheme orsavings plan purchase \(=\) Yes-14.2421Even if I wanted it I cannot take care of a lump sum or supplementarypension=Yes-44.301
It is of a major importance to support my children and grandchildren after I receivemy pension=No-11.5925It is of a major importance to cover my healthcare after I receivemy pension=No-3.646
It is of a major importance to cover my pleasure trips after I receive my pension=No-10.7943

It is of a major importance to cover my house purchases after I receive my pension=Yes -14.7902

It is of a major importance to cover my fixed costs after I receive my pension=Yes -43.8113
\[
\begin{array}{lr}
\text { It is of a major importance to cover my everyday needs after I receive my } \\
\text { pension=Yes } & -31.7624 \\
\text { Intercept } & 81.5235
\end{array}
\]

Odds Ratios...
\begin{tabular}{lc} 
& Class \\
Variable & Yes \\
\(====================================================\) \\
Car superseding Ability=No & 0 \\
Motorbike superseding Ability=Yes & 0.0124 \\
House superseding Ability=Yes & 218.2802 \\
Business superseding Ability=Yes & 3.08 \\
No superseding ability=Yes & 28.6496 \\
Have or Had Business Insurance=Yes & 88150280.86 \\
Have or Had Civil Liability Insurance=Yes & 2.65 \\
Have or Had Vessel Insurance=Yes & 0 \\
Have or Had Health Insurance=Yes & 0 \\
Have or Had Everyday needs Insurance=Yes & 0 \\
Have or Had Business House Insurance=Yes & 0 \\
Have or Had Family Insurance=Yes & 0 \\
Have or Had Cash Insurance=Yes & 0 \\
Have or Had Child Insurance=Yes & 0 \\
Have or Had Motorbike Insurance=Yes & 298733.29 \\
\hline
\end{tabular}

Have never had Insurance=No
Fixed Costs would not be covered in case of a possible loss of mine=No 67736.35
Loans would not be covered in case of a possible loss of mine=Yes 0
Children Studies would not be covered in case of a possible loss of mine=Yes 0.2506
Tax obligations would not be covered in case of a possible loss of mine=Yes 0.0159
No needs to leave behind in case of a possible loss of mine=Yes 0.053
Happiness would not be covered in case of a possible loss of mine=Yes 0
Purchases in non basic necessities would not be covered in case of a possible loss of
mine=Yes \(\quad 2.79\)
Want a risk protection=No 0
A satisfying amount of money for the support of my beloved ones 1.0218
Not at all satisfied from the public insurance health benefits=Yes 0
Kind of satisfied from the public insurance health benefits=No 0.0003
Quite satisfied from the public insurance health benefits=Yes 8829.5989
Absolutely satisfied from the public insurance health benefits=Yes 0.0002
I would choose a Public Hospital in Athens or Thessaloniki for a mild health issue \(=\) No
0.0038

I would choose a big private hospital in Athens or Thessaloniki for a mild health issue \(=\) Yes 511817009.01

I would choose a local private hospital for a mild health issue \(=\) Yes 0.0069

I would choose a local public hospital for a mild health issue=Yes
I would choose a public hospital in Athens or Thessaloniki for serious health issues=Yes

I would choose a big private hospital of Athens or Thessaloniki for serious health issues=No

I would choose a local private hospital for serious health issues=Yes
I would choose a local public hospital for serious health issues=Yes
I would choose a foreign hospital for serious health issues=Yes ..... 171.96
I wish for private health services coupled with my insurance=No ..... 0
I would like diagnostic tests to be included to my private insurance=No ..... 7210.64
I would like doctor visits to be included to my private insurance \(=\) Yes ..... 5.33
I would like doctor visits to be included to my private insurance=No ..... 0
I would like doctor visits to be included to my private insurance=Yes ..... 0
I would like hospital care to be included to my private insurance=No ..... 5.29
I would like Annual check up to be included to my
private insurance \(=\) No226063771.49
I would like going abroad to be included to my private insurance=No ..... 0.0797
I would like ambulance to be included to my private insurance \(=\) Yes ..... 4.4515
Team insurance \(=\) Yes ..... 0.0002
I will not get a pension=No ..... 0
I will get a small pension=Yes ..... 0.1202
I will get a satisfying pension=Yes ..... 0
I have managed for a lump sum or supplementary pension=No ..... 740.4793
I have managed for a lump sum or supplementary pension through
Bank Savings=No ..... 1.34I have managed for a lump sum or supplementary pension through Pension schemepurchase \(=\) Yes0I have managed for a lump sum or supplementary pension through Life insuranceprogram and savings plan=Yes 298733.2066I have managed for a lump sum or supplementary pension through Real estatepurchase for rent or exploitation=Yes0I am about to take immediate care of a lump sum or supplementarypension=Yes0

I have managed for a lump sum or supplementary pension through Pension scheme or savings plan purchase \(=\) Yes

Even if I wanted it I cannot take care of a lump sum or supplementary pension=Yes

It is of a major importance to support my children and grandchildren after I receive my pension=No

It is of a major importance to cover my healthcare after I receive my pension=No

It is of a major importance to cover my pleasure trips after I receive my pension=No

It is of a major importance to cover my house purchases after I receive my pension=Yes

It is of a major importance to cover my fixed costs after I receive my pension=Yes

It is of a major importance to cover my everyday needs after I receive my pension=Yes

\section*{Logistic Regression Predictions \(\mid\) NN}
\begin{tabular}{|c|c|c|c|}
\hline \#inst & actual & predicted & error \\
\hline 11 & \(1:\) Yes & \(1:\) Yes & 1 \\
\hline 12 & \(1:\) Yes & \(1:\) Yes & 1 \\
\hline 13 & \(1:\) Yes & \(1:\) Yes & 1 \\
\hline 14 & \(1:\) Yes & \(1:\) Yes & 1 \\
\hline 15 & \(1:\) Yes & \(1:\) Yes & 1 \\
\hline 16 & \(1:\) Yes & \(1:\) Yes & 1 \\
\hline 17 & \(1:\) Yes & \(1:\) Yes & 1 \\
\hline 18 & \(1:\) Yes & \(1:\) Yes & 1 \\
\hline 19 & \(1:\) Yes & \(1:\) Yes & 1 \\
\hline 20 & \(1:\) Yes & \(1:\) Yes & 1 \\
\hline 21 & \(1:\) Yes & \(1:\) Yes & 1 \\
\hline 22 & \(1:\) Yes & \(1:\) Yes & 1 \\
\hline 23 & \(1:\) Yes & \(1:\) Yes & 1 \\
\hline 24 & \(1:\) Yes & \(1:\) Yes & 1 \\
\hline 25 & \(1:\) Yes & \(1:\) Yes & 1 \\
\hline 26 & \(1:\) Yes & \(1:\) Yes & 1 \\
\hline & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 27 & 1:Yes & 1:Yes & 1 \\
\hline 28 & 1:Yes & 1:Yes & 1 \\
\hline 29 & 1:Yes & 1:Yes & 1 \\
\hline 30 & 1:Yes & 1:Yes & 1 \\
\hline 31 & 1:Yes & 1:Yes & 1 \\
\hline 32 & 1:Yes & 1:Yes & 1 \\
\hline 33 & 1:Yes & 1:Yes & 1 \\
\hline 34 & 1:Yes & 1:Yes & 1 \\
\hline 35 & 1:Yes & 1:Yes & 1 \\
\hline 36 & 1:Yes & 1:Yes & 1 \\
\hline 37 & 1:Yes & 1:Yes & 1 \\
\hline 38 & 1:Yes & 1:Yes & 1 \\
\hline 39 & 1:Yes & 1:Yes & 1 \\
\hline 40 & 1:Yes & 1:Yes & 1 \\
\hline 41 & 1:Yes & 1:Yes & 1 \\
\hline 42 & 1:Yes & 1:Yes & 1 \\
\hline 43 & 1:Yes & 1:Yes & 1 \\
\hline 44 & 1:Yes & 1:Yes & 1 \\
\hline 45 & 1:Yes & 1:Yes & 1 \\
\hline 46 & 1:Yes & 1:Yes & 1 \\
\hline 47 & 1:Yes & 1:Yes & 1 \\
\hline 48 & 1:Yes & 1:Yes & 1 \\
\hline 49 & 1:Yes & 1:Yes & 1 \\
\hline 50 & 1:Yes & 1:Yes & 1 \\
\hline 51 & 1:Yes & 1:Yes & 1 \\
\hline 52 & 1:Yes & 1:Yes & 1 \\
\hline 53 & 1:Yes & 1:Yes & 1 \\
\hline 54 & 1:Yes & 1:Yes & 1 \\
\hline 55 & 1:Yes & 1:Yes & 1 \\
\hline 56 & 1:Yes & 1:Yes & 1 \\
\hline 57 & 1:Yes & 1:Yes & 1 \\
\hline 58 & 1:Yes & 1:Yes & 1 \\
\hline 59 & 1:Yes & 1:Yes & 1 \\
\hline 60 & 1:Yes & 1:Yes & 1 \\
\hline 61 & 1:Yes & 1:Yes & 1 \\
\hline 62 & 1:Yes & 1:Yes & 1 \\
\hline 63 & 1:Yes & 1:Yes & 1 \\
\hline 64 & 1:Yes & 1:Yes & 1 \\
\hline 65 & 1:Yes & 1:Yes & 1 \\
\hline 66 & 1:Yes & 1:Yes & 1 \\
\hline 67 & 1:Yes & 1:Yes & 1 \\
\hline 68 & 1:Yes & 1:Yes & 1 \\
\hline 69 & 1:Yes & 1:Yes & 1 \\
\hline 70 & 1:Yes & 1:Yes & 1 \\
\hline 71 & 1:Yes & 1:Yes & 1 \\
\hline 72 & 1:Yes & 1:Yes & 1 \\
\hline 73 & 1:Yes & 1:Yes & 1 \\
\hline 74 & 1:Yes & 1:Yes & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 75 & 1:Yes & 1:Yes & 1 \\
\hline 76 & 1:Yes & 1:Yes & 1 \\
\hline 77 & 1:Yes & 1:Yes & 1 \\
\hline 78 & 1:Yes & 1:Yes & 1 \\
\hline 79 & 1:Yes & 1:Yes & 1 \\
\hline 80 & 1:Yes & 1:Yes & 1 \\
\hline 81 & 1:Yes & 1:Yes & 1 \\
\hline 82 & 1:Yes & 1:Yes & 1 \\
\hline 83 & 1:Yes & 1:Yes & 1 \\
\hline 84 & 1:Yes & 1:Yes & 1 \\
\hline 85 & 1:Yes & 1:Yes & 1 \\
\hline 86 & 1:Yes & 1:Yes & 1 \\
\hline 87 & 1:Yes & 1:Yes & 1 \\
\hline 88 & 1:Yes & 1:Yes & 1 \\
\hline 89 & 1:Yes & 1:Yes & 1 \\
\hline 90 & 1:Yes & 1:Yes & 1 \\
\hline 91 & 1:Yes & 1:Yes & 1 \\
\hline 92 & 1:Yes & 1:Yes & 1 \\
\hline 93 & 1:Yes & 1:Yes & 1 \\
\hline 94 & 1:Yes & 1:Yes & 1 \\
\hline 95 & 1:Yes & 1:Yes & 1 \\
\hline 96 & 1:Yes & 1:Yes & 1 \\
\hline 97 & 1:Yes & 1:Yes & 1 \\
\hline 98 & 1:Yes & 1:Yes & 1 \\
\hline 99 & 1:Yes & 1:Yes & 1 \\
\hline 100 & 1:Yes & 1:Yes & 1 \\
\hline 101 & 1:Yes & 1:Yes & 1 \\
\hline 102 & 1:Yes & 1:Yes & 1 \\
\hline 103 & 1:Yes & 1:Yes & 1 \\
\hline 104 & 1:Yes & 1:Yes & 1 \\
\hline 105 & 1:Yes & 1:Yes & 1 \\
\hline 106 & 1:Yes & 1:Yes & 1 \\
\hline 107 & 1:Yes & 1:Yes & 1 \\
\hline 108 & 1:Yes & 1:Yes & 1 \\
\hline 109 & 1:Yes & 1:Yes & 1 \\
\hline 110 & 1:Yes & 1:Yes & 1 \\
\hline 111 & 1:Yes & 1:Yes & 1 \\
\hline 112 & 1:Yes & 1:Yes & 1 \\
\hline 113 & 1:Yes & 1:Yes & 1 \\
\hline 114 & 1:Yes & 1:Yes & 1 \\
\hline 115 & 1:Yes & 1:Yes & 1 \\
\hline 116 & 1:Yes & 1:Yes & 1 \\
\hline 117 & 1:Yes & 1:Yes & 1 \\
\hline 118 & 1:Yes & 1:Yes & 1 \\
\hline 119 & 1:Yes & 1:Yes & 1 \\
\hline 120 & 1:Yes & 1:Yes & 1 \\
\hline 121 & 1:Yes & 1:Yes & 1 \\
\hline 122 & 1:Yes & 1:Yes & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 123 & 1:Yes & 1:Yes & 1 \\
\hline 124 & 1:Yes & 1:Yes & 1 \\
\hline 125 & 1:Yes & 1:Yes & 1 \\
\hline 126 & 1:Yes & 1:Yes & 1 \\
\hline 127 & 1:Yes & 1:Yes & 1 \\
\hline 128 & 1:Yes & 1:Yes & 1 \\
\hline 129 & 1:Yes & 1:Yes & 1 \\
\hline 130 & 1:Yes & 1:Yes & 1 \\
\hline 131 & 1:Yes & 1:Yes & 1 \\
\hline 132 & 1:Yes & 1:Yes & 1 \\
\hline 133 & 1:Yes & 1:Yes & 1 \\
\hline 134 & 1:Yes & 1:Yes & 1 \\
\hline 135 & 1:Yes & 1:Yes & 1 \\
\hline 136 & 1:Yes & 1:Yes & 1 \\
\hline 137 & 1:Yes & 1:Yes & 1 \\
\hline 138 & 1:Yes & 1:Yes & 1 \\
\hline 139 & 1:Yes & 1:Yes & 1 \\
\hline 140 & 1:Yes & 1:Yes & 1 \\
\hline 141 & 1:Yes & 1:Yes & 1 \\
\hline 142 & 1:Yes & 1:Yes & 1 \\
\hline 143 & 1:Yes & 1:Yes & 1 \\
\hline 144 & 1:Yes & 1:Yes & 1 \\
\hline 145 & 1:Yes & 1:Yes & 1 \\
\hline 146 & 1:Yes & 1:Yes & 1 \\
\hline 147 & 1:Yes & 1:Yes & 1 \\
\hline 148 & 1:Yes & 1:Yes & 1 \\
\hline 149 & 1:Yes & 1:Yes & 1 \\
\hline 150 & 1:Yes & 1:Yes & 1 \\
\hline 151 & 1:Yes & 1:Yes & 1 \\
\hline 152 & 1:Yes & 1:Yes & 1 \\
\hline 153 & 1:Yes & 1:Yes & 1 \\
\hline 154 & 1:Yes & 1:Yes & 1 \\
\hline 155 & 1:Yes & 1:Yes & 1 \\
\hline 156 & 1:Yes & 1:Yes & 1 \\
\hline 157 & 1:Yes & 1:Yes & 1 \\
\hline 158 & 1:Yes & 1:Yes & 1 \\
\hline 159 & 1:Yes & 1:Yes & 1 \\
\hline 160 & 1:Yes & 1:Yes & 1 \\
\hline 161 & 1:Yes & 1:Yes & 1 \\
\hline 162 & 2:No & 2:No & 1 \\
\hline 163 & 1:Yes & 1:Yes & 1 \\
\hline 164 & 1:Yes & 1:Yes & 1 \\
\hline 165 & 1:Yes & 1:Yes & 1 \\
\hline 166 & 1:Yes & 1:Yes & 1 \\
\hline 167 & 1:Yes & 1:Yes & 1 \\
\hline 168 & 2:No & 2:No & 1 \\
\hline 169 & 2:No & 2:No & 1 \\
\hline 170 & 1:Yes & 1:Yes & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 171 & 2:No & 2:No & 1 \\
\hline 172 & 1:Yes & 1:Yes & 1 \\
\hline 173 & 1:Yes & 1:Yes & 1 \\
\hline 174 & 2:No & 2:No & 1 \\
\hline 175 & 1:Yes & 1:Yes & 1 \\
\hline 176 & 1:Yes & 1:Yes & 1 \\
\hline 177 & 1:Yes & 1:Yes & 1 \\
\hline 178 & 2:No & 2:No & 1 \\
\hline 179 & 2:No & 2:No & 1 \\
\hline 180 & 1:Yes & 1:Yes & 1 \\
\hline 181 & 2:No & 2:No & 1 \\
\hline 182 & 1:Yes & 1:Yes & 1 \\
\hline
\end{tabular}

\section*{SMO Reg Classifier \(\mid\) NN}

Kernel used: Linear Kernel: \(\mathrm{K}(\mathrm{x}, \mathrm{y})=\langle\mathrm{x}, \mathrm{y}\rangle\)
Classifier for classes: Yes, No

\section*{BinarySMO}

Machine linear: showing attribute weights, not support vectors.
\[
\begin{aligned}
& \quad 0.5581 * \text { (normalized) Car superseding Ability=No } \\
& +\quad 0.3858 * \text { (normalized) Motorbike superseding Ability=Yes } \\
& +\quad-0.1487 * \text { (normalized) House superseding Ability=Yes } \\
& +\quad-0.0192 * \text { (normalized) Business superseding Ability=Yes } \\
& +\quad 0.2542 * \text { (normalized) No superseding ability=Yes } \\
& +\quad-0.0702 * \text { (normalized) Have or Had Business Insurance=Yes } \\
& +\quad-0.4933 * \text { (normalized) Have or Had Civil Liability Insurance=Yes } \\
& +\quad-0 \quad * \text { (normalized) Have or Had Vessel Insurance=Yes } \\
& +\quad 0.044 * \text { (normalized) Have never had Insurance=No } \\
& +\quad-0.0314 * \text { (normalized) Fixed Costs would not be covered in case of a possible } \\
& \text { loss of mine=No }
\end{aligned}
\]
+0.4173 * (normalized) Loans would not be covered in case of a possible loss of mine \(=\) Yes
+0.0743 * (normalized) Children Studies would not be covered in case of a possible loss of mine \(=\) Yes
\(+\quad-0.3094 *\) (normalized) Tax obligations would not be covered in case of a possible loss of mine=Yes
\(+\quad-0.0751 *\) (normalized) Purchases in non basic necessities would not be covered in case of a possible loss of mine \(=\) Yes
+0.8043 * (normalized) Want a risk protection=No
\(+\quad 0.101 *\) (normalized) A satisfying amount of money for the support of my beloved ones
\(+\quad 0.4458 *\) (normalized) Not at all satisfied from the public insurance health benefits=Yes
\(+\quad 0.4266\) * (normalized) Kind of satisfied from the public insurance health benefits=No
\(+\quad 0.0098\) * (normalized) Quite satisfied from the public insurance health benefits \(=\) Yes
\(+\quad-0.0291 *\) (normalized) Absolutely satisfied from the public insurance health benefits=Yes
\(+\quad 0.1453 *\) (normalized) I would choose a Public Hospital in Athens or Thessaloniki for a mild health issue \(=\) No
\(+\quad-0.6878\) * (normalized) I would choose a big private hospital in Athens or Thessaloniki for a mild health issue=Yes
\(+\quad 0.1451\) * (normalized) I would choose a local private hospital for a mild health issue \(=\) Yes
\(+\quad 0.6879\) * (normalized) I would choose a local public hospital for a mild health issue \(=\) Yes
\(+\quad 0.4222 *\) (normalized) I would choose a public hospital in Athens or Thessaloniki for serious health issues=Yes
\(+\quad-0.0536\) * (normalized) I would choose a big private hospital of Athens or Thessaloniki for serious health issues=No
\(+\quad-0.1972 *\) (normalized) I would choose a local private hospital for serious health issues \(=Y\) es
\(+\quad 0.1199\) * (normalized) I would choose a local public hospital for serious health issues=Yes
\(+\quad-0.3986\) * (normalized) I would choose a foreign hospital for serious health issues \(=\) Yes
\(+\quad 0.3267 *\) (normalized) I wish for private health services coupled with my insurance=No
\(+\quad-0.594 *\) (normalized) I would like diagnostic tests to be included to my private insurance \(=\) No
\(+\quad-0.569 *\) (normalized) I would like doctor visits to be included to my private insurance \(=Y\) es
\(+\quad 0.569 *\) (normalized) I would like doctor visits to be included to my private insurance \(=\) No
\(+0 \quad *\) (normalized) I would like doctor visits to be included to my private insurance \(=\) Yes
\(+\quad-0.6324\) (normalized) I would like hospital care to be included to my private insurance=No
\(+\quad-0.4584\) * (normalized) I would like Annual check up to be included to my private insurance \(=\) No
\(+0.0573 *\) (normalized) I would like going abroad to be included to my private insurance \(=\) No
\(+\quad-0.0751 *\) (normalized) I would like ambulance to be included to my private insurance \(=\) Yes
\(+0.1281 *(\) normalized \()\) Team insurance \(=\) Yes
+0.4074 * (normalized) I will not get a pension=No
+0.2487 * (normalized) I will get a small pension=Yes
\(+0.1588 *\) (normalized) I will get a satisfying pension=Yes
\(+\quad 0.1512 *\) (normalized) I have managed for a lump sum or supplementary pension=No
\(+\quad-0.6477 *\) (normalized) I have managed for a lump sum or supplementary pension through Bank Savings \(=\) No
\(+\quad-0.0751\) * (normalized) I have managed for a lump sum or supplementary pension through Real estate purchase for rent or exploitation=Yes
\(+\quad 0.5914\) * (normalized) I am about to take immediate care of a lump sum or supplementary pension=Yes
\(+\quad 0.0162 *\) (normalized) I have managed for a lump sum or supplementary pension through Pension scheme or savings plan purchase \(=\) Yes
+0.4028 * (normalized) Even if I wanted it I cannot take care of a lump sum or supplementary pension=Yes
\(+\quad 0.0601 *\) (normalized) It is of a major importance to support my children and grandchildren after I receive my pension=No
\(+\quad-0.0389\) * (normalized) It is of a major importance to cover my healthcare after I receive my pension=No
\(+\quad 0.567 *\) (normalized) It is of a major importance to cover my pleasure trips after I receive my pension=No
\(+0 \quad\) * (normalized) It is of a major importance to cover my house purchases after \(I\) receive my pension=Yes
\(+\quad 0.7332\) (normalized) It is of a major importance to cover my fixed costs after I receive my pension=Yes
- \(\quad 3.2305\)

Number of kernel evaluations: 5192 (92.48\% cached)

SMO Reg Predictions| \({ }^{\prime} N\)
\begin{tabular}{|c|c|c|c|}
\hline \#inst & actual & predicted & error \\
\hline 11 & \(1:\) Yes & \(1:\) Yes & 1 \\
\hline 12 & \(1:\) Yes & \(1:\) Yes & 1 \\
\hline 13 & \(1:\) Yes & \(1:\) Yes & 1 \\
\hline 14 & \(1:\) Yes & \(1:\) Yes & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 15 & 1:Yes & 1:Yes & 1 \\
\hline 16 & 1:Yes & 1:Yes & 1 \\
\hline 17 & 1:Yes & 1:Yes & 1 \\
\hline 18 & 1:Yes & 1:Yes & 1 \\
\hline 19 & 1:Yes & 1:Yes & 1 \\
\hline 20 & 1:Yes & 1:Yes & 1 \\
\hline 21 & 1:Yes & 1:Yes & 1 \\
\hline 22 & 1:Yes & 1:Yes & 1 \\
\hline 23 & 1:Yes & 1:Yes & 1 \\
\hline 24 & 1:Yes & 1:Yes & 1 \\
\hline 25 & 1:Yes & 1:Yes & 1 \\
\hline 26 & 1:Yes & 1:Yes & 1 \\
\hline 27 & 1:Yes & 1:Yes & 1 \\
\hline 28 & 1:Yes & 1:Yes & 1 \\
\hline 29 & 1:Yes & 1:Yes & 1 \\
\hline 30 & 1:Yes & 1:Yes & 1 \\
\hline 31 & 1:Yes & 1:Yes & 1 \\
\hline 32 & 1:Yes & 1:Yes & 1 \\
\hline 33 & 1:Yes & 1:Yes & 1 \\
\hline 34 & 1:Yes & 1:Yes & 1 \\
\hline 35 & 1:Yes & 1:Yes & 1 \\
\hline 36 & 1:Yes & 1:Yes & 1 \\
\hline 37 & 1:Yes & 1:Yes & 1 \\
\hline 38 & 1:Yes & 1:Yes & 1 \\
\hline 39 & 1:Yes & 1:Yes & 1 \\
\hline 40 & 1:Yes & 1:Yes & 1 \\
\hline 41 & 1:Yes & 1:Yes & 1 \\
\hline 42 & 1:Yes & 1:Yes & 1 \\
\hline 43 & 1:Yes & 1:Yes & 1 \\
\hline 44 & 1:Yes & 1:Yes & 1 \\
\hline 45 & 1:Yes & 1:Yes & 1 \\
\hline 46 & 1:Yes & 1:Yes & 1 \\
\hline 47 & 1:Yes & 1:Yes & , \\
\hline 48 & 1:Yes & 1:Yes & 1 \\
\hline 49 & 1:Yes & 1:Yes & 1 \\
\hline 50 & 1:Yes & 1:Yes & \\
\hline 51 & 1:Yes & 1:Yes & 1 \\
\hline 52 & 1:Yes & 1:Yes & 1 \\
\hline 53 & 1:Yes & 1:Yes & 1 \\
\hline 54 & 1:Yes & 1:Yes & 1 \\
\hline 55 & 1:Yes & 1:Yes & 1 \\
\hline 56 & 1:Yes & 1:Yes & \\
\hline 57 & 1:Yes & 1:Yes & 1 \\
\hline 58 & 1:Yes & 1:Yes & 1 \\
\hline 59 & 1:Yes & 1:Yes & 1 \\
\hline 60 & 1:Yes & 1:Yes & 1 \\
\hline 61 & 1:Yes & 1:Yes & 1 \\
\hline 62 & 1:Yes & 1:Yes & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 63 & 1:Yes & 1:Yes & 1 \\
\hline 64 & 1:Yes & 1:Yes & 1 \\
\hline 65 & 1:Yes & 1:Yes & 1 \\
\hline 66 & 1:Yes & 1:Yes & 1 \\
\hline 67 & 1:Yes & 1:Yes & 1 \\
\hline 68 & 1:Yes & 1:Yes & 1 \\
\hline 69 & 1:Yes & 1:Yes & 1 \\
\hline 70 & 1:Yes & 1:Yes & 1 \\
\hline 71 & 1:Yes & 1:Yes & 1 \\
\hline 72 & 1:Yes & 1:Yes & 1 \\
\hline 73 & 1:Yes & 1:Yes & 1 \\
\hline 74 & 1:Yes & 1:Yes & 1 \\
\hline 75 & 1:Yes & 1:Yes & 1 \\
\hline 76 & 1:Yes & 1:Yes & 1 \\
\hline 77 & 1:Yes & 1:Yes & 1 \\
\hline 78 & 1:Yes & 1:Yes & 1 \\
\hline 79 & 1:Yes & 1:Yes & 1 \\
\hline 80 & 1:Yes & 1:Yes & 1 \\
\hline 81 & 1:Yes & 1:Yes & 1 \\
\hline 82 & 1:Yes & 1:Yes & 1 \\
\hline 83 & 1:Yes & 1:Yes & 1 \\
\hline 84 & 1:Yes & 1:Yes & 1 \\
\hline 85 & 1:Yes & 1:Yes & 1 \\
\hline 86 & 1:Yes & 1:Yes & 1 \\
\hline 87 & 1:Yes & 1:Yes & 1 \\
\hline 88 & 1:Yes & 1:Yes & 1 \\
\hline 89 & 1:Yes & 1:Yes & 1 \\
\hline 90 & 1:Yes & 1:Yes & 1 \\
\hline 91 & 1:Yes & 1:Yes & 1 \\
\hline 92 & 1:Yes & 1:Yes & 1 \\
\hline 93 & 1:Yes & 1:Yes & 1 \\
\hline 94 & 1:Yes & 1:Yes & 1 \\
\hline 95 & 1:Yes & 1:Yes & 1 \\
\hline 96 & 1:Yes & 1:Yes & 1 \\
\hline 97 & 1:Yes & 1:Yes & 1 \\
\hline 98 & 1:Yes & 1:Yes & 1 \\
\hline 99 & 1:Yes & 1:Yes & 1 \\
\hline 100 & 1:Yes & 1:Yes & 1 \\
\hline 101 & 1:Yes & 1:Yes & 1 \\
\hline 102 & 1:Yes & 1:Yes & 1 \\
\hline 103 & 1:Yes & 1:Yes & 1 \\
\hline 104 & 1:Yes & 1:Yes & 1 \\
\hline 105 & 1:Yes & 1:Yes & 1 \\
\hline 106 & 1:Yes & 1:Yes & 1 \\
\hline 107 & 1:Yes & 1:Yes & 1 \\
\hline 108 & 1:Yes & 1:Yes & 1 \\
\hline 109 & 1:Yes & 1:Yes & 1 \\
\hline 110 & 1:Yes & 1:Yes & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 111 & 1:Yes & 1:Yes & 1 \\
\hline 112 & 1:Yes & 1:Yes & 1 \\
\hline 113 & 1:Yes & 1:Yes & 1 \\
\hline 114 & 1:Yes & 1:Yes & 1 \\
\hline 115 & 1:Yes & 1:Yes & 1 \\
\hline 116 & 1:Yes & 1:Yes & 1 \\
\hline 117 & 1:Yes & 1:Yes & 1 \\
\hline 118 & 1:Yes & 1:Yes & 1 \\
\hline 119 & 1:Yes & 1:Yes & 1 \\
\hline 120 & 1:Yes & 1:Yes & 1 \\
\hline 121 & 1:Yes & 1:Yes & 1 \\
\hline 122 & 1:Yes & 1:Yes & 1 \\
\hline 123 & 1:Yes & 1:Yes & 1 \\
\hline 124 & 1:Yes & 1:Yes & 1 \\
\hline 125 & 1:Yes & 1:Yes & 1 \\
\hline 126 & 1:Yes & 1:Yes & 1 \\
\hline 127 & 1:Yes & 1:Yes & 1 \\
\hline 128 & 1:Yes & 1:Yes & 1 \\
\hline 129 & 1:Yes & 1:Yes & 1 \\
\hline 130 & 1:Yes & 1:Yes & 1 \\
\hline 131 & 1:Yes & 1:Yes & 1 \\
\hline 132 & 1:Yes & 1:Yes & 1 \\
\hline 133 & 1:Yes & 1:Yes & 1 \\
\hline 134 & 1:Yes & 1:Yes & 1 \\
\hline 135 & 1:Yes & 1:Yes & 1 \\
\hline 136 & 1:Yes & 1:Yes & 1 \\
\hline 137 & 1:Yes & 1:Yes & 1 \\
\hline 138 & 1:Yes & 1:Yes & 1 \\
\hline 139 & 1:Yes & 1:Yes & 1 \\
\hline 140 & 1:Yes & 1:Yes & 1 \\
\hline 141 & 1:Yes & 1:Yes & 1 \\
\hline 142 & 1:Yes & 1:Yes & 1 \\
\hline 143 & 1:Yes & 1:Yes & 1 \\
\hline 144 & 1:Yes & 1:Yes & 1 \\
\hline 145 & 1:Yes & 1:Yes & 1 \\
\hline 146 & 1:Yes & 1:Yes & 1 \\
\hline 147 & 1:Yes & 1:Yes & 1 \\
\hline 148 & 1:Yes & 1:Yes & 1 \\
\hline 149 & 1:Yes & 1:Yes & 1 \\
\hline 150 & 1:Yes & 1:Yes & 1 \\
\hline 151 & 1:Yes & 1:Yes & 1 \\
\hline 152 & 1:Yes & 1:Yes & 1 \\
\hline 153 & 1:Yes & 1:Yes & 1 \\
\hline 154 & 1:Yes & 1:Yes & 1 \\
\hline 155 & 1:Yes & 1:Yes & 1 \\
\hline 156 & 1:Yes & 1:Yes & 1 \\
\hline 157 & 1:Yes & 1:Yes & 1 \\
\hline 158 & 1:Yes & 1:Yes & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 159 & \(1:\) Yes & \(1:\) Yes & 1 \\
\hline 160 & \(1:\) Yes & \(1:\) Yes & 1 \\
\hline 161 & \(1:\) Yes & \(1:\) Yes & 1 \\
\hline 162 & \(2:\) No & 2:No & 1 \\
\hline 163 & \(1:\) Yes & \(1:\) Yes & 1 \\
\hline 164 & \(1:\) Yes & \(1:\) Yes & 1 \\
\hline 165 & \(1:\) Yes & \(1:\) Yes & 1 \\
\hline 166 & \(1:\) Yes & \(1:\) Yes & 1 \\
\hline 167 & \(1:\) Yes & \(1:\) Yes & 1 \\
\hline 168 & \(2:\) No & 2:No & 1 \\
\hline 169 & \(2:\) No & 2:No & 1 \\
\hline 170 & \(1:\) Yes & \(1:\) Yes & 1 \\
\hline 171 & \(2:\) No & \(2:\) No & 1 \\
\hline 172 & \(1:\) Yes & \(1:\) Yes & 1 \\
\hline 173 & \(1:\) Yes & \(1:\) Yes & 1 \\
\hline 174 & \(2:\) No & \(1:\) Yes & 1 \\
\hline 175 & \(1:\) Yes & \(1:\) Yes & 1 \\
\hline 176 & \(1:\) Yes & \(1:\) Yes & 1 \\
\hline 177 & \(1:\) Yes & \(1:\) Yes & 1 \\
\hline 178 & \(2:\) No & \(2:\) No & 1 \\
\hline 179 & \(2:\) No & \(1:\) Yes & 1 \\
\hline 180 & \(1:\) Yes & \(1:\) Yes & 1 \\
\hline 181 & \(2:\) No & 2:No & 1 \\
\hline 182 & \(1:\) Yes & & \(1:\) Yes \\
\hline & & & 1 \\
\hline & & & \\
\hline
\end{tabular}

\section*{Multi Class Classifier| \(\operatorname{NN}\)}
\(===\) Classifier model (full training set) \(===\)

\section*{Classifier 1}

Logistic Regression with ridge parameter of \(1.0 \mathrm{E}-8\)
Coefficients...

\section*{Class}

Variable Yes

Car superseding Ability=No -26.2427
Motorbike superseding Ability=Yes
-4.39
House superseding Ability=Yes 5.3858
Business superseding Ability=Yes 44.8751
No superseding ability=Yes ..... 3.3551
Have or Had Business Insurance=Yes ..... 18.2946
Have or Had Civil Liability Insurance=Yes ..... 42.4228
Have or Had Vessel Insurance=Yes ..... -33.1193
Have or Had Health Insurance=Yes ..... -37.0265
Have or Had Everyday needs Insurance=Yes ..... -31.7624
Have or Had Business House Insurance=Yes ..... -44.8548
Have or Had Family Insurance=Yes ..... -49.4047
Have or Had Cash Insurance=Yes ..... -53.9398
Have or Had Child Insurance=Yes ..... 12.6073
Have or Had Motorbike Insurance=Yes ..... -1.6668
Have never had Insurance=No ..... -10.1612
Fixed Costs would not be covered in case of a possible loss of mine=No ..... 11.1234
Loans would not be covered in case of a possible loss of mine=Yes ..... -28.2996
Children Studies would not be covered in case of a possible loss
of mine \(=\) Yes\(-1.3838\)
Tax obligations would not be covered in case of a possible loss
of mine \(=\) Yes\(-4.141\)
No needs to leave behind in case of a possible loss of mine=Yes ..... -2.9381
Happiness would not be covered in case of a possible loss of mine=Yes ..... \(-18.9965\)
Purchases in non-basic necessities would not be covered in case of a possible loss ofmine \(=\) Yes24.0523
Want a risk protection=No ..... -32.7197
A satisfying amount of money for the support of my beloved ones ..... 0.0216
Not at all satisfied from the public insurance health benefits=Yes ..... -26.4691
Kind of satisfied from the public insurance health benefits=No ..... -8.1841

Quite satisfied from the public insurance health benefits=Yes 9.0859
Absolutely satisfied from the public insurance health benefits=Yes -8.7435
I would choose a Public Hospital in Athens or Thessaloniki for a mild health issue \(=\) No \(\quad-5.5799\)

I would choose a big private hospital in Athens or Thessaloniki for a mild health issue \(=\) Yes 20.0535

I would choose a local private hospital for a mild health issue=Yes -4.9704
I would choose a local public hospital for a mild health issue=Yes -19.8892
I would choose a public hospital in Athens or Thessaloniki for serious health
issues=Yes
-17.0709
I would choose a big private hospital of Athens or Thessaloniki for serious health issues=No -4.0864

I would choose a local private hospital for serious health issues=Yes \(\quad 5.0078\)
I would choose a local public hospital for serious health issues=Yes \(\quad 6.0193\)
I would choose a foreign hospital for serious health issues=Yes 5.1473
I wish for private health services coupled with my insurance=No \(\quad-13.6774\)
I would like diagnostic tests to be included to my private insurance=No \(\quad 8.8833\)
I would like doctor visits to be included to my private insurance=Yes \(\quad 24.7004\)
I would like doctor visits to be included to my private insurance=No \(\quad-19.3459\)
I would like doctor visits to be included to my private insurance=Yes \(\quad-52.4769\)
I would like hospital care to be included to my private insurance=No 33.9022
I would like Annual check up to be included to my private insurance=No 19.2363
I would like going abroad to be included to my private insurance=No \(\quad-2.5301\)
I would like ambulance to be included to my private insurance \(=\) Yes 1.4932
Team insurance \(=\) Yes -8.6958
I will not get a pension=No -12.6141
I will get a small pension=Yes -2.1184

I will get a satisfying pension=Yes
I have managed for a lump sum or supplementary pension=No 6.6073

I have managed for a lump sum or supplementary pension through
Bank Savings=No
30.2287

I have managed for a lump sum or supplementary pension through Pension scheme purchase=Yes \(-54.3474\)

I have managed for a lump sum or supplementary pension through Life insurance program and savings plan=Yes

I have managed for a lump sum or supplementary pension through Real estate purchase for rent or exploitation=Yes -11.2331

I am about to take immediate care of a lump sum or supplementary pension=Yes \(-25.3673\)

I have managed for a lump sum or supplementary pension through Pension scheme or savings plan purchase \(=\) Yes

Even if I wanted it I cannot take care of a lump sum or supplementary pension=Yes

It is of a major importance to support my children and grandchildren after I receive my pension=No \(-11.5925\)

It is of a major importance to cover my healthcare after I receive my pension \(=\mathrm{No}\)

It is of a major importance to cover my pleasure trips after I receive my pension=No

It is of a major importance to cover my house purchases after I receive my pension=Yes \(-14.7902\)

It is of a major importance to cover my fixed costs after I receive my pension=Yes

It is of a major importance to cover my everyday needs after I receive my pension=Yes
Intercept ..... 81.5235
Odds Ratios...
Class
Variable ..... Yes
Car superseding Ability=No ..... 0
Motorbike superseding Ability=Yes ..... 0.0124
House superseding Ability=Yes ..... 218.2802
Business superseding Ability=Yes ..... 3.08
No superseding ability=Yes ..... 28.6496
Have or Had Business Insurance=Yes ..... 88150280.8
Have or Had Civil Liability Insurance=Yes ..... 2.65
Have or Had Vessel Insurance=Yes ..... 0
Have or Had Health Insurance=Yes ..... 0
Have or Had Everyday needs Insurance=Yes ..... 0
Have or Had Business House Insurance=Yes ..... 0
Have or Had Family Insurance=Yes ..... 0
Have or Had Cash Insurance=Yes ..... 0
Have or Had Child Insurance=Yes ..... 298733.29
Have or Had Motorbike Insurance=Yes ..... 0.1888
Have never had Insurance=No ..... 0
Fixed Costs would not be covered in case of a possible loss of mine=No ..... 67736.35
Loans would not be covered in case of a possible loss of mine=Yes ..... 0
Children Studies would not be covered in case of a possible loss of mine=Yes 0.2506
Tax obligations would not be covered in case of a possible loss of mine=Yes ..... 0.0159

No needs to leave behind in case of a possible loss of mine \(=\) Yes
Happiness would not be covered in case of a possible loss of mine=Yes
Purchases in non basic necessities would not be covered in case of a possible loss of mine=Yes 2.79

Want a risk protection=No 0
A satisfying amount of money for the support of my beloved ones
Not at all satisfied from the public insurance health benefits=Yes
Kind of satisfied from the public insurance health benefits=No
0.0003

Quite satisfied from the public insurance health benefits=Yes
Absolutely satisfied from the public insurance health benefits=Yes
0.0002

I would choose a Public Hospital in Athens or Thessaloniki for a mild health issue \(=\) No 0.0038

I would choose a big private hospital in Athens or Thessaloniki for a mild health issue \(=\) Yes
511817009.01

I would choose a local private hospital for a mild health issue \(=\) Yes
I would choose a local public hospital for a mild health issue=Yes 0

I would choose a public hospital in Athens or Thessaloniki for serious health issues \(=\) Yes

0

I would choose a big private hospital of Athens or Thessaloniki for serious health issues \(=\) No 0.0168

I would choose a local private hospital for serious health issues=Yes
I would choose a local public hospital for serious health issues=Yes
I would choose a foreign hospital for serious health issues=Yes
I wish for private health services coupled with my insurance=No
I would like diagnostic tests to be included to my private insurance=No
I would like doctor visits to be included to my private insurance \(=\) Yes
I would like doctor visits to be included to my private insurance=No ..... 0
I would like doctor visits to be included to my private insurance=Yes ..... 0
I would like hospital care to be included to my private insurance=No ..... 0
5.29
I would like Annual check up to be included to my private insurance ..... 226063771.49
I would like going abroad to be included to my private insurance=No ..... 0.0797
I would like ambulance to be included to my private insurance \(=\) Yes ..... 4.4515
Team insurance \(=\) Yes ..... 0.0002
I will not get a pension=No ..... 0
I will get a small pension=Yes ..... 0.1202
I will get a satisfying pension=Yes ..... 0
I have managed for a lump sum or supplementary pension=No ..... 740.4793
I have managed for a lump sum or supplementary pension through
Bank Savings=No ..... 1.34
I have managed for a lump sum or supplementary pension through Pension schemepurchase \(=\) Yes0
I have managed for a lump sum or supplementary pension through Life insuranceprogram and savings plan=Yes298733.2066I have managed for a lump sum or supplementary pension through Real estatepurchase for rent or exploitation=Yes0
I am about to take immediate care of a lump sum or supplementary pension=Yes 0I have managed for a lump sum or supplementary pension through Pension scheme orsavings plan purchase \(=\) Yes0
Even if I wanted it I cannot take care of a lump sum or supplementary pension=Yes

It is of a major importance to support my children and grandchildren after I receive my pension=No

It is of a major importance to cover my healthcare after I receive my pension 0.0261
It is of a major importance to cover my pleasure trips after I receive my pension=No

It is of a major importance to cover my house purchases after I receive my pension=Yes

It is of a major importance to cover my fixed costs after I receive my pension=Yes

It is of a major importance to cover my everyday needs after I receive my pension=Yes

\section*{Multi Class Classifier Predictions| \(N\) N}
\begin{tabular}{|c|c|c|c|}
\hline \#inst & actual & predicted & error \\
\hline 10 & 1:Yes & 1:Yes & 1 \\
\hline 11 & 1:Yes & 1:Yes & 1 \\
\hline 12 & 1:Yes & 1:Yes & 1 \\
\hline 13 & 1:Yes & 1:Yes & 1 \\
\hline 14 & 1:Yes & 1:Yes & 1 \\
\hline 15 & 1:Yes & 1:Yes & 1 \\
\hline 16 & 1:Yes & 1:Yes & 1 \\
\hline 17 & 1:Yes & 1:Yes & 1 \\
\hline 18 & 1:Yes & 1:Yes & 1 \\
\hline 19 & 1:Yes & 1:Yes & 1 \\
\hline 20 & 1:Yes & 1:Yes & 1 \\
\hline 21 & 1:Yes & 1:Yes & 1 \\
\hline 22 & 1:Yes & 1:Yes & 1 \\
\hline 23 & 1:Yes & 1:Yes & 1 \\
\hline 24 & 1:Yes & 1:Yes & 1 \\
\hline 25 & 1:Yes & 1:Yes & 1 \\
\hline 26 & 1:Yes & 1:Yes & 1 \\
\hline 27 & 1:Yes & 1:Yes & 1 \\
\hline 28 & 1:Yes & 1:Yes & 1 \\
\hline 29 & 1:Yes & 1:Yes & 1 \\
\hline 30 & 1:Yes & 1:Yes & 1 \\
\hline 31 & 1:Yes & 1:Yes & 1 \\
\hline 32 & 1:Yes & 1:Yes & 1 \\
\hline 33 & 1:Yes & 1:Yes & 1 \\
\hline 34 & 1:Yes & 1:Yes & 1 \\
\hline 35 & 1:Yes & 1:Yes & 1 \\
\hline 36 & 1:Yes & 1:Yes & 1 \\
\hline 37 & 1:Yes & 1:Yes & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 38 & 1:Yes & 1:Yes & 1 \\
\hline 39 & 1:Yes & 1:Yes & 1 \\
\hline 40 & 1:Yes & 1:Yes & 1 \\
\hline 41 & 1:Yes & 1:Yes & 1 \\
\hline 42 & 1:Yes & 1:Yes & 1 \\
\hline 43 & 1:Yes & 1:Yes & 1 \\
\hline 44 & 1:Yes & 1:Yes & 1 \\
\hline 45 & 1:Yes & 1:Yes & 1 \\
\hline 46 & 1:Yes & 1:Yes & 1 \\
\hline 47 & 1:Yes & 1:Yes & 1 \\
\hline 48 & 1:Yes & 1:Yes & 1 \\
\hline 49 & 1:Yes & 1:Yes & 1 \\
\hline 50 & 1:Yes & 1:Yes & 1 \\
\hline 51 & 1:Yes & 1:Yes & 1 \\
\hline 52 & 1:Yes & 1:Yes & 1 \\
\hline 53 & 1:Yes & 1:Yes & 1 \\
\hline 54 & 1:Yes & 1:Yes & 1 \\
\hline 55 & 1:Yes & 1:Yes & 1 \\
\hline 56 & 1:Yes & 1:Yes & 1 \\
\hline 57 & 1:Yes & 1:Yes & 1 \\
\hline 58 & 1:Yes & 1:Yes & 1 \\
\hline 59 & 1:Yes & 1:Yes & 1 \\
\hline 60 & 1:Yes & 1:Yes & 1 \\
\hline 61 & 1:Yes & 1:Yes & 1 \\
\hline 62 & 1:Yes & 1:Yes & 1 \\
\hline 63 & 1:Yes & 1:Yes & \\
\hline 64 & 1:Yes & 1:Yes & 1 \\
\hline 65 & 1:Yes & 1:Yes & 1 \\
\hline 66 & 1:Yes & 1:Yes & 1 \\
\hline 67 & 1:Yes & 1:Yes & 1 \\
\hline 68 & 1:Yes & 1:Yes & 1 \\
\hline 69 & 1:Yes & 1:Yes & 1 \\
\hline 70 & 1:Yes & 1:Yes & 1 \\
\hline 71 & 1:Yes & 1:Yes & , \\
\hline 72 & 1:Yes & 1:Yes & 1 \\
\hline 73 & 1:Yes & 1:Yes & 1 \\
\hline 74 & 1:Yes & 1:Yes & 1 \\
\hline 75 & 1:Yes & 1:Yes & 1 \\
\hline 76 & 1:Yes & 1:Yes & , \\
\hline 77 & 1:Yes & 1:Yes & \\
\hline 78 & 1:Yes & 1:Yes & 1 \\
\hline 79 & 1:Yes & 1:Yes & 1 \\
\hline 80 & 1:Yes & 1:Yes & 1 \\
\hline 81 & 1:Yes & 1:Yes & 1 \\
\hline 82 & 1:Yes & 1:Yes & 1 \\
\hline 83 & 1:Yes & 1:Yes & 1 \\
\hline 84 & 1:Yes & 1:Yes & 1 \\
\hline 85 & 1:Yes & 1:Yes & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 86 & 1:Yes & 1:Yes & 1 \\
\hline 87 & 1:Yes & 1:Yes & 1 \\
\hline 88 & 1:Yes & 1:Yes & 1 \\
\hline 89 & 1:Yes & 1:Yes & 1 \\
\hline 90 & 1:Yes & 1:Yes & 1 \\
\hline 91 & 1:Yes & 1:Yes & 1 \\
\hline 92 & 1:Yes & 1:Yes & 1 \\
\hline 93 & 1:Yes & 1:Yes & 1 \\
\hline 94 & 1:Yes & 1:Yes & 1 \\
\hline 95 & 1:Yes & 1:Yes & 1 \\
\hline 96 & 1:Yes & 1:Yes & 1 \\
\hline 97 & 1:Yes & 1:Yes & 1 \\
\hline 98 & 1:Yes & 1:Yes & 1 \\
\hline 99 & 1:Yes & 1:Yes & 1 \\
\hline 100 & 1:Yes & 1:Yes & 1 \\
\hline 101 & 1:Yes & 1:Yes & 1 \\
\hline 102 & 1:Yes & 1:Yes & 1 \\
\hline 103 & 1:Yes & 1:Yes & 1 \\
\hline 104 & 1:Yes & 1:Yes & 1 \\
\hline 105 & 1:Yes & 1:Yes & 1 \\
\hline 106 & 1:Yes & 1:Yes & 1 \\
\hline 107 & 1:Yes & 1:Yes & 1 \\
\hline 108 & 1:Yes & 1:Yes & 1 \\
\hline 109 & 1:Yes & 1:Yes & 1 \\
\hline 110 & 1:Yes & 1:Yes & 1 \\
\hline 111 & 1:Yes & 1:Yes & 1 \\
\hline 112 & 1:Yes & 1:Yes & 1 \\
\hline 113 & 1:Yes & 1:Yes & 1 \\
\hline 114 & 1:Yes & 1:Yes & 1 \\
\hline 115 & 1:Yes & 1:Yes & 1 \\
\hline 116 & 1:Yes & 1:Yes & 1 \\
\hline 117 & 1:Yes & 1:Yes & 1 \\
\hline 118 & 1:Yes & 1:Yes & 1 \\
\hline 119 & 1:Yes & 1:Yes & 1 \\
\hline 120 & 1:Yes & 1:Yes & 1 \\
\hline 121 & 1:Yes & 1:Yes & 1 \\
\hline 122 & 1:Yes & 1:Yes & , \\
\hline 123 & 1:Yes & 1:Yes & 1 \\
\hline 124 & 1:Yes & 1:Yes & 1 \\
\hline 125 & 1:Yes & 1:Yes & 1 \\
\hline 126 & 1:Yes & 1:Yes & 1 \\
\hline 127 & 1:Yes & 1:Yes & 1 \\
\hline 128 & 1:Yes & 1:Yes & 1 \\
\hline 129 & 1:Yes & 1:Yes & 1 \\
\hline 130 & 1:Yes & 1:Yes & 1 \\
\hline 131 & 1:Yes & 1:Yes & 1 \\
\hline 132 & 1:Yes & 1:Yes & 1 \\
\hline 133 & 1:Yes & 1:Yes & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 134 & 1:Yes & 1:Yes & 1 \\
\hline 135 & 1:Yes & 1:Yes & 1 \\
\hline 136 & 1:Yes & 1:Yes & 1 \\
\hline 137 & 1:Yes & 1:Yes & 1 \\
\hline 138 & 1:Yes & 1:Yes & 1 \\
\hline 139 & 1:Yes & 1:Yes & 1 \\
\hline 140 & 1:Yes & 1:Yes & 1 \\
\hline 141 & 1:Yes & 1:Yes & 1 \\
\hline 142 & 1:Yes & 1:Yes & 1 \\
\hline 143 & 1:Yes & 1:Yes & 1 \\
\hline 144 & 1:Yes & 1:Yes & 1 \\
\hline 145 & 1:Yes & 1:Yes & 1 \\
\hline 146 & 1:Yes & 1:Yes & 1 \\
\hline 147 & 1:Yes & 1:Yes & 1 \\
\hline 148 & 1:Yes & 1:Yes & 1 \\
\hline 149 & 1:Yes & 1:Yes & 1 \\
\hline 150 & 1:Yes & 1:Yes & 1 \\
\hline 151 & 1:Yes & 1:Yes & 1 \\
\hline 152 & 1:Yes & 1:Yes & 1 \\
\hline 153 & 1:Yes & 1:Yes & 1 \\
\hline 154 & 1:Yes & 1:Yes & 1 \\
\hline 155 & 1:Yes & 1:Yes & 1 \\
\hline 156 & 1:Yes & 1:Yes & 1 \\
\hline 157 & 1:Yes & 1:Yes & 1 \\
\hline 158 & 1:Yes & 1:Yes & 1 \\
\hline 159 & 1:Yes & 1:Yes & 1 \\
\hline 160 & 1:Yes & 1:Yes & 1 \\
\hline 161 & 2:No & 1:Yes & 1 \\
\hline 162 & 1:Yes & 2:No & 1 \\
\hline 163 & 1:Yes & 1:Yes & 1 \\
\hline 164 & 1:Yes & 1:Yes & 1 \\
\hline 165 & 1:Yes & 1:Yes & 1 \\
\hline 166 & 1:Yes & 1:Yes & 1 \\
\hline 167 & 2:No & 1:Yes & 1 \\
\hline 168 & 2:No & 2:No & 1 \\
\hline 169 & 1:Yes & 2:No & 1 \\
\hline 170 & 2:No & 1:Yes & 1 \\
\hline 171 & 1:Yes & 2:No & 1 \\
\hline 172 & 1:Yes & 1:Yes & 1 \\
\hline 173 & 2:No & 1:Yes & 1 \\
\hline 174 & 1:Yes & 2:No & 1 \\
\hline 175 & 1:Yes & 1:Yes & 1 \\
\hline 176 & 1:Yes & 1:Yes & 1 \\
\hline 177 & 2:No & 1:Yes & 1 \\
\hline 178 & 2:No & 2:No & 1 \\
\hline 179 & 1:Yes & 2:No & 1 \\
\hline 180 & 2:No & 1:Yes & 1 \\
\hline 181 & 1:Yes & 2:No & 1 \\
\hline
\end{tabular}
\begin{tabular}{c|c|c|c|}
\hline 182 & \(1:\) Yes & \(1:\) Yes & 1 \\
\hline
\end{tabular}

\section*{Multi Class Classifier Updateable \(\mid\) NN}
\(===\) Classifier model (full training set) \(==\)

\section*{Classifier 1}

Loss function: Hinge loss (SVM)
I am interested in estimating my retirement \(=\)
0.8597 (normalized) Car superseding Ability=No
\(+\quad 0.5898\) (normalized) Motorbike superseding Ability=Yes
\(+\quad-0.2799\) (normalized) House superseding Ability=Yes
\(+\quad-0.1399\) (normalized) Business superseding Ability=Yes
\(+\quad 0.4298\) (normalized) No superseding ability=Yes
\(+\quad-0.4098\) (normalized) Have or Had Business Insurance=Yes
\(+\quad-1.7394\) (normalized) Have or Had Civil Liability Insurance=Yes
+ -0.02 (normalized) Have or Had Vessel Insurance=Yes
\(+\quad-0.01\) (normalized) Have or Had Health Insurance=Yes
+ 0 (normalized) Have or Had Everyday needs Insurance=Yes
+ 0 (normalized) Have or Had Business House Insurance=Yes
\(+\quad-0.01\) (normalized) Have or Had Family Insurance=Yes
+ -0.01 (normalized) Have or Had Cash Insurance=Yes
+ 0 (normalized) Have or Had Child Insurance=Yes
+0 (normalized) Have or Had Car Insurance
+ 0 (normalized) Have or Had Motorbike Insurance=Yes
\(+\quad 0.2099\) (normalized) Have never had Insurance=No
\(+\quad-0.12\) (normalized) Fixed Costs would not be covered in case of a possible loss of mine=No
\(+\quad 1.3795\) (normalized) Loans would not be covered in case of a possible loss of mine \(=\) Yes
\(+\quad-0.09\) (normalized) Children Studies would not be covered in case of a possible loss of mine=Yes
\(+\quad-0.3199\) (normalized) Tax obligations would not be covered in case of a possible loss of mine \(=\) Yes
\(+\quad-0.07\) (normalized) No needs to leave behind in case of a possible loss of mine \(=\) Yes
\(+\quad-0.05\) (normalized) Happiness would not be covered in case of a possible loss of mine=Yes
\(+\quad-0.1\) (normalized) Purchases in non-basic necessities would not be covered in case of a possible loss of mine=Yes
+1.4794 (normalized) Want a risk protection=No
\(+\quad-0.3727\) (normalized) A satisfying amount of money for the support of my beloved ones
\(+\quad 0.7797\) (normalized) Not at all satisfied from the public insurance health benefits=Yes
+0.3998 (normalized) Kind of satisfied from the public insurance health benefits=No
\(+\quad-0.3099\) (normalized) Quite satisfied from the public insurance health benefits=Yes
\(+\quad-0.07\) (normalized) Absolutely satisfied from the public insurance health benefits=Yes
\(+\quad-0.1499\) (normalized) I would choose a Public Hospital in Athens or Thessaloniki for a mild health issue \(=\mathrm{No}\)
\(+\quad-1.5794\) (normalized) I would choose a big private hospital in Athens or Thessaloniki for a mild health issue=Yes
\(+\quad 0.3499\) (normalized) I would choose a local private hospital for a mild health issue \(=\) Yes
\(+\quad 1.0796\) (normalized) I would choose a local public hospital for a mild health issue \(=\) Yes
\(+\quad 0.7597\) (normalized) I would choose a public hospital in Athens or Thessaloniki for serious health issues=Yes
\(+\quad-0.2199\) (normalized) I would choose a big private hospital of Athens or Thessaloniki for serious health issues=No
\(+\quad-0.2799\) (normalized) I would choose a local private hospital for serious health issues=Yes
\(+\quad-0.14\) (normalized) I would choose a local public hospital for serious health issues=Yes
\(+\quad-0.5598\) (normalized) I would choose a foreign hospital for serious health issues \(=\) Yes
\(+\quad 0.7597\) (normalized) I wish for private health services coupled with my insurance \(=\) No
\(+\quad-1.4594\) (normalized) I would like diagnostic tests to be included to my private insurance \(=\) No
\(+\quad-2.4391\) (normalized) I would like doctor visits to be included to my private insurance=Yes
\(+\quad 0.7997\) (normalized) I would like doctor visits to be included to my private insurance \(=\) No
\(+\quad-0.03\) (normalized) I would like doctor visits to be included to my private insurance \(=\) Yes
\(+\quad-1.8294\) (normalized) I would like hospital care to be included to my private insurance=No
\(+\quad-1.3495\) (normalized) I would like Annual check up to be included to my private insurance \(=\) No
\(+\quad-0.2599\) (normalized) I would like going abroad to be included to my private insurance=No
\(+\quad-0.1\) (normalized) I would like ambulance to be included to my private insurance \(=\) Yes
\(+\quad 0.1699\) (normalized) Team insurance \(=\) Yes
+0.3699 (normalized) I will not get a pension=No
+0.01 (normalized) I will get a small pension=Yes
+0.3599 (normalized) I will get a satisfying pension=Yes
\(+\quad-0.03\) (normalized) I have managed for a lump sum or supplementary pension=No
\(+\quad-1.1595\) (normalized) I have managed for a lump sum or supplementary pension through Bank Savings=No
\(+0 \quad\) (normalized) I have managed for a lump sum or supplementary pension through Pension scheme purchase \(=\) Yes
+0 (normalized) I have managed for a lump sum or supplementary pension through Life insurance program and savings plan=Yes
\(+\quad-0.2499\) (normalized) I have managed for a lump sum or supplementary pension through Real estate purchase for rent or exploitation=Yes
\(+\quad 1.4095\) (normalized) I am about to take immediate care of a lump sum or supplementary pension=Yes
\(+\quad-0.03\) (normalized) I have managed for a lump sum or supplementary pension through Pension scheme or savings plan purchase \(=\) Yes
\(+\quad 0.4798\) (normalized) Even if I wanted it I cannot take care of a lump sum or supplementary pension=Yes
\(+\quad 0.4299\) (normalized) It is of a major importance to support my children and grandchildren after I receive my pension=No
\(+\quad-0.0799\) (normalized) It is of a major importance to cover my healthcare after I receive my pension \(=\mathrm{No}\)
\(+\quad 0.6597\) (normalized) It is of a major importance to cover my pleasure trips after I receive my pension=No
\(+\quad-0.2499\) (normalized) It is of a major importance to cover my house purchases after I receive my pension=Yes
\(+\quad 1.4694\) (normalized) It is of a major importance to cover my fixed costs after I receive my pension=Yes
\(+0 \quad\) (normalized) It is of a major importance to cover my everyday needs after I receive my pension=Yes
- 1.67

\section*{Multi Class Classifier Updeateable Predictions|NN}
\begin{tabular}{|c|c|c|c|}
\hline \#inst & actual & predicted & error \\
\hline 11 & 1:Yes & 1:Yes & 1 \\
\hline 12 & 1:Yes & 1:Yes & 1 \\
\hline 13 & 1:Yes & 1:Yes & 1 \\
\hline 14 & 1:Yes & 1:Yes & 1 \\
\hline 15 & 1:Yes & 1:Yes & 1 \\
\hline 16 & 1:Yes & 1:Yes & 1 \\
\hline 17 & 1:Yes & 1:Yes & 1 \\
\hline 18 & 1:Yes & 1:Yes & 1 \\
\hline 19 & 1:Yes & 1:Yes & 1 \\
\hline 20 & 1:Yes & 1:Yes & 1 \\
\hline 21 & 1:Yes & 1:Yes & 1 \\
\hline 22 & 1:Yes & 1:Yes & 1 \\
\hline 23 & 1:Yes & 1:Yes & 1 \\
\hline 24 & 1:Yes & 1:Yes & 1 \\
\hline 25 & 1:Yes & 1:Yes & 1 \\
\hline 26 & 1:Yes & 1:Yes & 1 \\
\hline 27 & 1:Yes & 1:Yes & 1 \\
\hline 28 & 1:Yes & 1:Yes & 1 \\
\hline 29 & 1:Yes & 1:Yes & 1 \\
\hline 30 & 1:Yes & 1:Yes & 1 \\
\hline 31 & 1:Yes & 1:Yes & 1 \\
\hline 32 & 1:Yes & 1:Yes & 1 \\
\hline 33 & 1:Yes & 1:Yes & 1 \\
\hline 34 & 1:Yes & 1:Yes & 1 \\
\hline 35 & 1:Yes & 1:Yes & 1 \\
\hline 36 & 1:Yes & 1:Yes & 1 \\
\hline 37 & 1:Yes & 1:Yes & 1 \\
\hline 38 & 1:Yes & 1:Yes & 1 \\
\hline 39 & 1:Yes & 1:Yes & 1 \\
\hline 40 & 1:Yes & 1:Yes & 1 \\
\hline 41 & 1:Yes & 1:Yes & 1 \\
\hline 42 & 1:Yes & 1:Yes & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 43 & 1:Yes & 1:Yes & 1 \\
\hline 44 & 1:Yes & 1:Yes & 1 \\
\hline 45 & 1:Yes & 1:Yes & 1 \\
\hline 46 & 1:Yes & 1:Yes & 1 \\
\hline 47 & 1:Yes & 1:Yes & 1 \\
\hline 48 & 1:Yes & 1:Yes & 1 \\
\hline 49 & 1:Yes & 1:Yes & 1 \\
\hline 50 & 1:Yes & 1:Yes & 1 \\
\hline 51 & 1:Yes & 1:Yes & 1 \\
\hline 52 & 1:Yes & 1:Yes & 1 \\
\hline 53 & 1:Yes & 1:Yes & 1 \\
\hline 54 & 1:Yes & 1:Yes & 1 \\
\hline 55 & 1:Yes & 1:Yes & 1 \\
\hline 56 & 1:Yes & 1:Yes & 1 \\
\hline 57 & 1:Yes & 1:Yes & 1 \\
\hline 58 & 1:Yes & 1:Yes & 1 \\
\hline 59 & 1:Yes & 1:Yes & 1 \\
\hline 60 & 1:Yes & 1:Yes & 1 \\
\hline 61 & 1:Yes & 1:Yes & 1 \\
\hline 62 & 1:Yes & 1:Yes & 1 \\
\hline 63 & 1:Yes & 1:Yes & 1 \\
\hline 64 & 1:Yes & 1:Yes & 1 \\
\hline 65 & 1:Yes & 1:Yes & \\
\hline 66 & 1:Yes & 1:Yes & 1 \\
\hline 67 & 1:Yes & 1:Yes & 1 \\
\hline 68 & 1:Yes & 1:Yes & 1 \\
\hline 69 & 1:Yes & 1:Yes & 1 \\
\hline 70 & 1:Yes & 1:Yes & 1 \\
\hline 71 & 1:Yes & 1:Yes & 1 \\
\hline 72 & 1:Yes & 1:Yes & 1 \\
\hline 73 & 1:Yes & 1:Yes & 1 \\
\hline 74 & 1:Yes & 1:Yes & 1 \\
\hline 75 & 1:Yes & 1:Yes & 1 \\
\hline 76 & 1:Yes & 1:Yes & 1 \\
\hline 77 & 1:Yes & 1:Yes & 1 \\
\hline 78 & 1:Yes & 1:Yes & 1 \\
\hline 79 & 1:Yes & 1:Yes & 1 \\
\hline 80 & 1:Yes & 1:Yes & 1 \\
\hline 81 & 1:Yes & 1:Yes & 1 \\
\hline 82 & 1:Yes & 1:Yes & 1 \\
\hline 83 & 1:Yes & 1:Yes & 1 \\
\hline 84 & 1:Yes & 1:Yes & 1 \\
\hline 85 & 1:Yes & 1:Yes & 1 \\
\hline 86 & 1:Yes & 1:Yes & 1 \\
\hline 87 & 1:Yes & 1:Yes & 1 \\
\hline 88 & 1:Yes & 1:Yes & 1 \\
\hline 89 & 1:Yes & 1:Yes & 1 \\
\hline 90 & 1:Yes & 1:Yes & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 91 & 1:Yes & 1:Yes & 1 \\
\hline 92 & 1:Yes & 1:Yes & 1 \\
\hline 93 & 1:Yes & 1:Yes & 1 \\
\hline 94 & 1:Yes & 1:Yes & 1 \\
\hline 95 & 1:Yes & 1:Yes & 1 \\
\hline 96 & 1:Yes & 1:Yes & 1 \\
\hline 97 & 1:Yes & 1:Yes & 1 \\
\hline 98 & 1:Yes & 1:Yes & 1 \\
\hline 99 & 1:Yes & 1:Yes & 1 \\
\hline 100 & 1:Yes & 1:Yes & 1 \\
\hline 101 & 1:Yes & 1:Yes & 1 \\
\hline 102 & 1:Yes & 1:Yes & 1 \\
\hline 103 & 1:Yes & 1:Yes & 1 \\
\hline 104 & 1:Yes & 1:Yes & 1 \\
\hline 105 & 1:Yes & 1:Yes & 1 \\
\hline 106 & 1:Yes & 1:Yes & 1 \\
\hline 107 & 1:Yes & 1:Yes & 1 \\
\hline 108 & 1:Yes & 1:Yes & 1 \\
\hline 109 & 1:Yes & 1:Yes & 1 \\
\hline 110 & 1:Yes & 1:Yes & 1 \\
\hline 111 & 1:Yes & 1:Yes & 1 \\
\hline 112 & 1:Yes & 1:Yes & 1 \\
\hline 113 & 1:Yes & 1:Yes & 1 \\
\hline 114 & 1:Yes & 1:Yes & 1 \\
\hline 115 & 1:Yes & 1:Yes & 1 \\
\hline 116 & 1:Yes & 1:Yes & 1 \\
\hline 117 & 1:Yes & 1:Yes & 1 \\
\hline 118 & 1:Yes & 1:Yes & 1 \\
\hline 119 & 1:Yes & 1:Yes & 1 \\
\hline 120 & 1:Yes & 1:Yes & 1 \\
\hline 121 & 1:Yes & 1:Yes & 1 \\
\hline 122 & 1:Yes & 1:Yes & 1 \\
\hline 123 & 1:Yes & 1:Yes & 1 \\
\hline 124 & 1:Yes & 1:Yes & 1 \\
\hline 125 & 1:Yes & 1:Yes & 1 \\
\hline 126 & 1:Yes & 1:Yes & 1 \\
\hline 127 & 1:Yes & 1:Yes & 1 \\
\hline 128 & 1:Yes & 1:Yes & 1 \\
\hline 129 & 1:Yes & 1:Yes & 1 \\
\hline 130 & 1:Yes & 1:Yes & 1 \\
\hline 131 & 1:Yes & 1:Yes & 1 \\
\hline 132 & 1:Yes & 1:Yes & 1 \\
\hline 133 & 1:Yes & 1:Yes & 1 \\
\hline 134 & 1:Yes & 1:Yes & 1 \\
\hline 135 & 1:Yes & 1:Yes & 1 \\
\hline 136 & 1:Yes & 1:Yes & 1 \\
\hline 137 & 1:Yes & 1:Yes & 1 \\
\hline 138 & 1:Yes & 1:Yes & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 139 & 1:Yes & 1:Yes & 1 \\
\hline 140 & 1:Yes & 1:Yes & 1 \\
\hline 141 & 1:Yes & 1:Yes & 1 \\
\hline 142 & 1:Yes & 1:Yes & 1 \\
\hline 143 & 1:Yes & 1:Yes & 1 \\
\hline 144 & 1:Yes & 1:Yes & 1 \\
\hline 145 & 1:Yes & 1:Yes & 1 \\
\hline 146 & 1:Yes & 1:Yes & 1 \\
\hline 147 & 1:Yes & 1:Yes & 1 \\
\hline 148 & 1:Yes & 1:Yes & 1 \\
\hline 149 & 1:Yes & 1:Yes & 1 \\
\hline 150 & 1:Yes & 1:Yes & 1 \\
\hline 151 & 1:Yes & 1:Yes & 1 \\
\hline 152 & 1:Yes & 1:Yes & 1 \\
\hline 153 & 1:Yes & 1:Yes & 1 \\
\hline 154 & 1:Yes & 1:Yes & 1 \\
\hline 155 & 1:Yes & 1:Yes & 1 \\
\hline 156 & 1:Yes & 1:Yes & 1 \\
\hline 157 & 1:Yes & 1:Yes & 1 \\
\hline 158 & 1:Yes & 1:Yes & 1 \\
\hline 159 & 1:Yes & 1:Yes & 1 \\
\hline 160 & 1:Yes & 1:Yes & 1 \\
\hline 161 & 1:Yes & 1:Yes & 1 \\
\hline 162 & 2:No & 2:No & 1 \\
\hline 163 & 1:Yes & 1:Yes & 1 \\
\hline 164 & 1:Yes & 1:Yes & 1 \\
\hline 165 & 1:Yes & 1:Yes & 1 \\
\hline 166 & 1:Yes & 1:Yes & 1 \\
\hline 167 & 1:Yes & 1:Yes & 1 \\
\hline 168 & 2:No & 2:No & 1 \\
\hline 169 & 2:No & 2:No & 1 \\
\hline 170 & 1:Yes & 1:Yes & 1 \\
\hline 171 & 2:No & 2:No & 1 \\
\hline 172 & 1:Yes & 1:Yes & 1 \\
\hline 173 & 1:Yes & 1:Yes & 1 \\
\hline 174 & 2:No & 2:No & 1 \\
\hline 175 & 1:Yes & 1:Yes & 1 \\
\hline 176 & 1:Yes & 1:Yes & 1 \\
\hline 177 & 1:Yes & 1:Yes & 1 \\
\hline 178 & 2:No & 2:No & 1 \\
\hline 179 & 2:No & 2:No & 1 \\
\hline 180 & 1:Yes & 1:Yes & 1 \\
\hline 181 & 2:No & 2:No & 1 \\
\hline 182 & 1:Yes & 1:Yes & 1 \\
\hline
\end{tabular}

\section*{Classifiers with low accuracy| \(N\) N}

\section*{SGD|NN}

SGDText:
Loss function: Hinge loss (SVM)
Dictionary size: 0
I am interested in estimating my retirement \(=-1\)
=== Summary \(===\)
\begin{tabular}{lll} 
Correctly Classified Instances & 174 & \(95.6044 \%\) \\
Incorrectly Classified Instances & 8 & \(4.3956 \%\) \\
Kappa statistic & 0 & \\
Mean absolute error & 0.044 & \\
Root mean squared error & 0.2097 & \\
Relative absolute error & \(49.3012 \%\) & \\
Root relative squared error & \(102.1037 \%\) & \\
Total Number of Instances & 182 &
\end{tabular}
=== Detailed Accuracy By Class ===
\begin{tabular}{cccccccccc} 
& TP Rate & FP Rate Precision Recall & F-Measure & MCC & ROC Area & PRC Area Class \\
1,000 & 1,000 & 0,956 & 1,000 & 0,978 & \(?\) & 0,500 & 0,956 & Yes \\
0,000 & 0,000 & \(?\) & 0,000 & \(?\) & \(?\) & 0,500 & 0,044 & No \\
W.A & 0,956 & 0,956 & \(?\) & 0,956 & \(?\) & \(?\) & 0,500 & 0,916 &
\end{tabular}
=== Confusion Matrix ===
a b <-- classified as
\(1740 \mid a=Y e s\)
\(80 \left\lvert\, \begin{aligned} & \text { b }=N o\end{aligned}\right.\)

\section*{Decision Table| NN}
\begin{tabular}{lcl} 
Correctly Classified Instances & 173 & \(95.0549 \%\) \\
Incorrectly Classified Instances & 9 & \(4.9451 \%\) \\
Kappa statistic & -0.0099 & \\
Mean absolute error & 0.0934 & \\
Root mean squared error & 0.2135 & \\
Relative absolute error & \(104.774 \%\) &
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Root relative squared error Total Number of Instances & \multicolumn{3}{|c|}{\[
\begin{aligned}
& 103.9543 \% \\
& 182
\end{aligned}
\]} & & & & \\
\hline \multicolumn{8}{|l|}{\(===\) Detailed Accuracy By Class \(===\)} \\
\hline TP Rate FP Rate & Precision & Recall & F-Measure & MCC & ROC Area & PRC Area & Class \\
\hline 0,994 1,000 & 0,956 & 0,994 & 0,975 & -0,016 & 0,450 & 0,954 & Yes \\
\hline 0,000 0,006 & 0,000 & 0,000 & 0,000 & -0,016 & 0,450 & 0,042 & No \\
\hline W.A \(0,951 \quad 0,956\) & 0,914 & 0,951 & 0,932 & -0,016 & 0,450 & 0,914 & \\
\hline \multicolumn{8}{|l|}{=== Confusion Matrix ===} \\
\hline \multicolumn{8}{|l|}{a b <-- classified as} \\
\hline \multicolumn{8}{|l|}{173 1| \(\mathrm{a}=\) Yes} \\
\hline \(80 \mid \mathrm{b}=\) No & & & & & & & \\
\hline
\end{tabular}

\section*{JRIP rules| NN}
(I would choose a local public hospital for a mild health issue \(=\) Yes \()\) and \((\) Want a risk protection \(=\mathrm{No}\) ) and (I will get a small pension \(=\) Yes) and (I would like Annual check up to be included to my private insurance \(=\) Yes) \(=>\) I am interested in estimating my retirement=No (3.0/0.0)
(I would like doctor visits to be included to my private insurance \(=\) No) and (I would choose a local public hospital for serious health issues \(=\) Yes) and (Kind of satisfied from the public insurance health benefits \(=\mathrm{No}\) ) \(=>\) I am interested in estimating my retirement=No (3.0/0.0)

I am interested in estimating my retirement=Yes (176.0/2.0)
Number of Rules : 3
=== Summary \(===\)
\begin{tabular}{lcl} 
Correctly Classified Instances & 169 & \(92.8571 \%\) \\
Incorrectly Classified Instances & 13 & \(7.1429 \%\) \\
Kappa statistic & -0.035 &
\end{tabular}
\begin{tabular}{lc} 
Mean absolute error & 0.0921 \\
Root mean squared error & 0.2499 \\
Relative absolute error & \(103.2467 \%\) \\
Root relative squared error & \(121.7182 \%\) \\
Total Number of Instances & 182
\end{tabular}
=== Detailed Accuracy By Class \(===\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & TP Rate & FP Rate & Precision & Recall & F-Measure & MCC & ROC Area & PRC Area & Class \\
\hline & 0,971 & 1,000 & 0,955 & 0,971 & 0,963 & -0,036 & 0,506 & 0,960 & Yes \\
\hline & 0,000 & 0,029 & 0,000 & 0,000 & 0,000 & -0,036 & 0,506 & 0,046 & No \\
\hline W.A & 0,929 & 0,957 & 0,913 & 0,929 & 0,921 & -0,036 & 0,506 & 0,920 & \\
\hline
\end{tabular}
=== Confusion Matrix ===
a b <-- classified as
169 5| \(\mathrm{a}=\) Yes
\(80 \mid \mathrm{b}=\mathrm{No}\)

\section*{Rules OneR|NN}

Car superseding Ability:
\[
\begin{array}{ll}
\text { Yes } & \text {-> Yes } \\
\text { No } & ->Y e s
\end{array}
\]
(174/182 instances correct)
=== Summary \(===\)
\begin{tabular}{lcl} 
Correctly Classified Instances & 172 & \(94.5055 \%\) \\
Incorrectly Classified Instances & 10 & \(5.4945 \%\) \\
Kappa statistic & -0.0179 & \\
Mean absolute error & 0.0549 & \\
Root mean squared error & 0.2344 & \\
Relative absolute error & \(61.6265 \%\) & \\
Root relative squared error & \(114.1555 \%\) & \\
Total Number of Instances & 182 &
\end{tabular}
```

=== Detailed Accuracy By Class ===

| TP Rate | | | | | | | | | | | | | FP Rate | Precision | Recall | F-Measure | MCC | ROC Area | | | PRC Area Class |
| :---: |
| 0,989 | 1,000 | 0,956 | 0,989 | 0,972 | $-0,023$ | 0,494 | 0,956 | Yes | | | | | | | | | | | | | |
| 0,000 | 0,011 | 0,000 | 0,000 | 0,000 | $-0,023$ | 0,494 | 0,044 | No | | | | | | | | | | | | | |
| W.A. | 0,945 | 0,957 | 0,914 | 0,945 | 0,929 | $-0,023$ | 0,494 | 0,915 | | | | | | | | | | | | | |

```
=== Confusion Matrix ===
a b <-- classified as
172 2| \(\mathrm{a}=\) Yes
\(80 \mid \mathrm{b}=\mathrm{No}\)

\section*{Rules PART| NN}

PART decision list:
It is of a major importance to cover my fixed costs after I receive my pension \(=\) No AND

I wish for private health services coupled with my insurance \(=\) Yes
AND
Want a risk protection \(=\) Yes: Yes \((146.0 / 1.0)\)

Tax obligations would not be covered in case of a possible loss of mine \(=\) Yes: Yes (13.37)

Kind of satisfied from the public insurance health benefits \(=\) Yes: Yes (11.0/1.0)

It is of a major importance to cover my pleasure trips after I receive my pension \(=\) No AND

I would choose a local public hospital for a mild health issue \(=\) Yes: No (5.0)
: Yes (6.63/1.0)

Number of Rules : 5
\begin{tabular}{lcc} 
=== Summary \(===\) \\
& & \\
Correctly Classified Instances & 169 & \(92.8571 \%\) \\
Incorrectly Classified Instances & 13 & \(7.1429 \%\) \\
Kappa statistic & -0.035 & \\
Mean absolute error & 0.0864 & \\
Root mean squared error & 0.2704 & \\
Relative absolute error & \(96.8912 \%\) \\
Root relative squared error & \(131.6686 \%\) \\
Total Number of Instances & 182 &
\end{tabular}
=== Detailed Accuracy By Class ===
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & TP Rate & FP Rate & Precision & Recall & F-Measur & MCC & ROC Area & PRC Area & Class \\
\hline & 0,971 & 1,000 & 0,955 & 0,971 & 0,963 & -0,036 & 0,249 & 0,921 & Yes \\
\hline & 0,000 & 0,029 & 0,000 & 0,000 & 0,000 & -0,036 & 0,249 & 0,036 & No \\
\hline W.A & 0,929 & 0,957 & 0,913 & 0,929 & 0,921 & -0,036 & 0,249 & 0,882 & \\
\hline
\end{tabular}
=== Confusion Matrix \(===\)
a b <-- classified as
1695 a \(=\) Yes
\(80 \mid \mathrm{b}=\mathrm{No}\)

\section*{Rules ZeroR| NN}
=== Summary \(===\)
\begin{tabular}{lcl} 
Correctly Classified Instances & 174 & \(95.6044 \%\) \\
Incorrectly Classified Instances & 8 & \(4.3956 \%\)
\end{tabular}
\begin{tabular}{lc} 
Kappa statistic & 0 \\
Mean absolute error & 0.0892 \\
Root mean squared error & 0.2053 \\
Relative absolute error & \(100 \%\) \\
Root relative squared error & \(100 \%\) \\
Total Number of Instances & 182
\end{tabular}
=== Detailed Accuracy By Class === TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class
\begin{tabular}{cccccccccc} 
& 1,000 & 1,000 & 0,956 & 1,000 & 0,978 & \(?\) & 0,392 & 0,947 & Yes \\
& 0,000 & 0,000 & \(?\) & 0,000 & \(?\) & \(?\) & 0,392 & 0,040 & No \\
W.A & 0,956 & 0,956 & \(?\) & 0,956 & \(?\) & \(?\) & 0,392 & 0,907 &
\end{tabular}
=== Confusion Matrix ===
a b <-- classified as
\(1740 \mid a=Y e s\)
\(80 \mid \mathrm{b}=\mathrm{No}\)

\section*{Trees Decision Stump| NN}

Classifications
A satisfying amount of money for the support of my beloved ones <= 125.0005 : Yes
A satisfying amount of money for the support of my beloved ones > 125.0005: Yes
A satisfying amount of money for the support of my beloved ones is missing : Yes

\section*{Class distributions}

A satisfying amount of money for the support of my beloved ones <= 125.0005
Yes No
\(0.97 \quad 0.025\)

A satisfying amount of money for the support of my beloved ones \(>125.0005\)
Yes No
\(1.0 \quad 0.0\)
A satisfying amount of money for the support of my beloved ones is missing
Yes No
\(0.82 \quad 0.17\)
=== Summary \(===\)
\begin{tabular}{lcl} 
Correctly Classified Instances & 174 & \(95.6044 \%\) \\
Incorrectly Classified Instances & 8 & \(4.3956 \%\) \\
Kappa statistic & 0 & \\
Mean absolute error & 0.0794 & \\
Root mean squared error & 0.2045 & \\
Relative absolute error & \(89.043 \%\) & \\
Root relative squared error & \(99.6095 \%\) \\
Total Number of Instances & 182 &
\end{tabular}
=== Detailed Accuracy By Class ===
\begin{tabular}{rccccccccc}
\multicolumn{10}{c}{ TP Rate } \\
FP Rate & Precision & Recall & F-Measure & MCC & ROC Area & PRC Area & Class \\
1,000 & 1,000 & 0,956 & 1,000 & 0,978 & \(?\) & 0,573 & 0,963 & Yes \\
0,000 & 0,000 & \(?\) & 0,000 & \(?\) & \(?\) & 0,573 & 0,082 & No \\
W.A. 0,956 & 0,956 & \(?\) & 0,956 & \(?\) & \(?\) & 0,573 & 0,924 &
\end{tabular}
=== Confusion Matrix ===
a b <-- classified as
\(1740 \mid a=Y e s\)
\(80 \mid \mathrm{b}=\mathrm{No}\)

\section*{Trees Hoeffding Tree| NN}

Test mode: 10 -fold cross-validation
=== Classifier model (full training set) \(===\)
\begin{tabular}{lcc} 
Yes (175,000) NB1 NB adaptive1 & & \\
& & \\
\(===\) Summary === & & \(95.6044 \%\) \\
Correctly Classified Instances & 174 & \(4.3956 \%\) \\
Incorrectly Classified Instances & 8 & \\
Kappa statistic & 0 & \\
Mean absolute error & 0.0892 & \\
Root mean squared error & 0.2053 & \\
Relative absolute error & \(100 \%\) & \\
Root relative squared error & \(100 \%\) & \\
Total Number of Instances & 182
\end{tabular}
=== Detailed Accuracy By Class === TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class
\begin{tabular}{ccccccccc}
1,000 & 1,000 & 0,956 & 1,000 & 0,978 & \(?\) & 0,392 & 0,947 & Yes \\
0,000 & 0,000 & \(?\) & 0,000 & \(?\) & \(?\) & 0,392 & 0,040 & No \\
W.A. & 0,956 & 0,956 & \(?\) & 0,956 & \(?\) & \(?\) & 0,392 & 0,907 \\
\end{tabular}
=== Confusion Matrix ===
a b <-- classified as
\[
\begin{array}{cc|l}
174 & 0 & \mathrm{a}=\mathrm{Yes} \\
8 & 0 & \mathrm{~b}=\mathrm{No}
\end{array}
\]

\section*{Trees J48| NN}
\(==\) Classifier model (full training set) \(===\)
J48 pruned tree
: Yes (182.0/8.0)

Number of Leaves : 1
Size of the tree : 1
```

=== Summary $===$

```
\begin{tabular}{lcc} 
Correctly Classified Instances & 171 & \(93.956 \%\) \\
Incorrectly Classified Instances & 11 & \(6.044 \%\) \\
Kappa statistic & -0.0246 & \\
Mean absolute error & 0.0965 & \\
Root mean squared error & 0.2415 & \\
Relative absolute error & \(108.2033 \%\) \\
Root relative squared error & \(117.6141 \%\) \\
Total Number of Instances & 182 &
\end{tabular}
=== Detailed Accuracy By Class ===
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline TP Rate & FP Rate & Precision & Recall & F-Measure & MCC & ROC Area & PRC Area & Class \\
\hline 0,983 & 1,000 & 0,955 & 0,983 & 0,969 & -0,028 & 0,582 & 0,965 & Yes \\
\hline 0,000 & 0,017 & 0,000 & 0,000 & 0,000 & -0,028 & 0,582 & 0,052 & No \\
\hline 0,940 & 0,957 & 0,913 & 0,940 & 0,926 & -0,028 & 0,582 & 0,925 & \\
\hline
\end{tabular}
=== Confusion Matrix ===
a b <-- classified as
\(1713 \mid \mathrm{a}=\mathrm{Yes}\)
\(80 \mid \mathrm{b}=\mathrm{No}\)

\section*{Trees LMT| NN}

Logistic model tree
: LM_1:0/0 (182)

Number of Leaves : 1
Size of the Tree : 1
LM_1:
Class Yes :
\(0+\)

Class No :
\(0+\)
=== Summary \(==\)
\begin{tabular}{lcc} 
Correctly Classified Instances & 174 & \(95.6044 \%\) \\
Incorrectly Classified Instances & 8 & \(4.3956 \%\) \\
Kappa statistic & 0 & \\
Mean absolute error & 0.4618 & \\
Root mean squared error & 0.4822 & \\
Relative absolute error & \(518.0072 \%\) \\
Root relative squared error & \(234.836 \%\) \\
Total Number of Instances & 182
\end{tabular}
=== Detailed Accuracy By Class ===
\begin{tabular}{rccccccccc}
\multicolumn{11}{c}{ TP Rate } & FP Rate & Precision & Recall & F-Measure & MCC & ROC Area & PRC Area & Class \\
1,000 & 1,000 & 0,956 & 1,000 & 0,978 & \(?\) & 0,482 & 0,953 & Yes \\
0,000 & 0,000 & \(?\) & 0,000 & \(?\) & \(?\) & 0,482 & 0,043 & No \\
W.A. & 0,956 & 0,956 & \(?\) & 0,956 & \(?\) & \(?\) & 0,482 & 0,913 &
\end{tabular}
\(===\) Confusion Matrix \(===\)
a b <-- classified as
\(1740 \mid a=Y e s\)
\(80 \mid \mathrm{b}=\mathrm{No}\)

\section*{Trees RandomForest| NN}

Bagging with 100 iterations and base learner
=== Summary \(===\)

Correctly Classified Instances 174
Incorrectly Classified Instances
8
95.6044 \%

Kappa statistic 0
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Mean absolute error} & \multicolumn{3}{|c|}{0.0763} & & & \\
\hline \multicolumn{3}{|l|}{Root mean squared error} & \multicolumn{2}{|r|}{0.197} & & & & \\
\hline \multicolumn{3}{|l|}{Relative absolute error} & \multicolumn{2}{|r|}{85.6312 \%} & & & & \\
\hline \multicolumn{3}{|l|}{Root relative squared error} & \multicolumn{2}{|r|}{95.934 \%} & & & & \\
\hline \multicolumn{3}{|l|}{Total Number of Instances} & \multicolumn{2}{|r|}{182} & & & & \\
\hline \multicolumn{9}{|l|}{\(===\) Detailed Accuracy By Class \(===\)} \\
\hline TP Rate & FP Rate & Precision & Recall & F-Measure & MCC & ROC Area & PRC Area & Class \\
\hline 1,000 & 1,000 & 0,956 & 1,000 & 0,978 & ? & 0,770 & 0,985 & Yes \\
\hline 0,000 & 0,000 & ? & 0,000 & ? & ? & 0,770 & 0,267 & No \\
\hline W.A. 0,956 & 0,956 & ? & 0,956 & ? & ? & 0,770 & 0,953 & \\
\hline
\end{tabular}
=== Confusion Matrix ===
a b <-- classified as
\(1740 \mid a=Y e s\)
\(80 \left\lvert\, \begin{aligned} & \text { b }=\text { No }\end{aligned}\right.\)

\section*{REPTreed NN}
\(===\) Summary \(===\)
\begin{tabular}{lcl} 
Correctly Classified Instances & 174 & \(95.6044 \%\) \\
Incorrectly Classified Instances & 8 & \(4.3956 \%\) \\
Kappa statistic & 0 & \\
Mean absolute error & 0.0804 & \\
Root mean squared error & 0.2053 & \\
Relative absolute error & \(90.2187 \%\) \\
Root relative squared error & \(99.9629 \%\) \\
Total Number of Instances & 182 &
\end{tabular}
=== Detailed Accuracy By Class ===
\begin{tabular}{cccccccccc} 
TP Rate & FP Rate & Precision & Recall & F-Measure & MCC & ROC Area & PRC Area Class \\
1,000 & 1,000 & 0,956 & 1,000 & 0,978 & \(?\) & 0,407 & 0,955 & Yes \\
0,000 & 0,000 & \(?\) & 0,000 & \(?\) & \(?\) & 0,407 & 0,040 & No
\end{tabular}
\begin{tabular}{ccccccc} 
W.A & 0,956 & 0,956 & \(0,956 \quad ?\) & 0,407 & 0,915
\end{tabular}
\(===\) Confusion Matrix \(==\)
a b <-- classified as
\(1740 \mid a=Y e s\)
\(8 \quad 0 \mid \mathrm{b}=\mathrm{No}\)

\section*{Naive Bayes Multinomial Text| NN}

The independent frequency of a class
\(\qquad\)
Yes 175.0
No 9.0

The frequency of a word given the class
\begin{tabular}{lcc}
--------------------------------------- & & \\
\multicolumn{1}{c}{\(\quad\) Yo } & & \\
=== Summary === & & \(95.6044 \%\) \\
Correctly Classified Instances & 174 & \(4.3956 \%\) \\
Incorrectly Classified Instances & 8 & \\
Kappa statistic & 0 & \\
Mean absolute error & 0.0892 & \\
Root mean squared error & 0.2053 & \\
Relative absolute error & \(100 \%\) & \\
Root relative squared error & \(100 \%\) & \\
Total Number of Instances & 182 &
\end{tabular}
=== Detailed Accuracy By Class ===
\begin{tabular}{cccccccccc} 
TP Rate & FP Rate & Precision & Recall & F-Measure & MCC & ROC Area & PRC Area & Class \\
1,000 & 1,000 & 0,956 & 1,000 & 0,978 & \(?\) & 0,392 & 0,947 & Yes \\
0,000 & 0,000 & \(?\) & 0,000 & \(?\) & \(?\) & 0,392 & 0,040 & No
\end{tabular}
W.A. \(0,9560,956 \quad ? \quad 0,956 \quad ? \quad\) ? \(0,392 \quad 0,907\)
=== Confusion Matrix ===
a b <-- classified as
\(1740 \mid a=Y e s\)
\(80 \mid \mathrm{b}=\mathrm{No}\)

\section*{SGDText| NN}

I am interested in estimating my retirement \(=-1\)
=== Summary ===
\begin{tabular}{lcl} 
Correctly Classified Instances & 174 & \(95.6044 \%\) \\
Incorrectly Classified Instances & 8 & \(4.3956 \%\) \\
Kappa statistic & 0 & \\
Mean absolute error & 0.044 & \\
Root mean squared error & 0.2097 \\
Relative absolute error & \multicolumn{2}{l}{\(49.3012 \%\)} \\
Root relative squared error & \(102.1037 \%\) \\
Total Number of Instances & 182
\end{tabular}
=== Detailed Accuracy By Class ===
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 1,000 & 1,000 & 0,956 & 1,000 & 0,978 & ? & 0,500 & 0,956 \\
\hline 0,000 & 0,000 & ? & 0,000 & ? & ? & 0,500 & 0,044 \\
\hline 0,956 & 0,956 & ? & 0,956 & ? & ? & 0,500 & 0,916 \\
\hline
\end{tabular}
=== Confusion Matrix ===
a b <-- classified as
\(1740 \mid a=Y e s\)
\(80 \mid \mathrm{b}=\mathrm{No}\)

\section*{Voted Perceptron NN}

VotedPerceptron: Number of perceptrons \(=16\)
=== Summary \(==\)
\begin{tabular}{lcl} 
Correctly Classified Instances & 174 & \(95.6044 \%\) \\
Incorrectly Classified Instances & 8 & \(4.3956 \%\) \\
Kappa statistic & 0 & \\
Mean absolute error & 0.044 & \\
Root mean squared error & 0.2097 & \\
Relative absolute error & \(49.3012 \%\) \\
Root relative squared error & \(102.1037 \%\) \\
Total Number of Instances & 182
\end{tabular}
=== Detailed Accuracy By Class ===
TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class
\begin{tabular}{cccccccccc} 
& 1,000 & 1,000 & 0,956 & 1,000 & 0,978 & \(?\) & 0,500 & 0,956 & Yes \\
& 0,000 & 0,000 & \(?\) & 0,000 & \(?\) & \(?\) & 0,451 & 0,053 & No \\
W.A & 0,956 & 0,956 & \(?\) & 0,956 & \(?\) & \(?\) & 0,498 & 0,916 &
\end{tabular}
=== Confusion Matrix ===
a b <-- classified as
\(1740 \mid a=Y e s\)
\(80 \mid \mathrm{b}=\mathrm{No}\)

\section*{Lazy LWL| NN}

Locally weighted learning

Using classifier: weka.classifiers.trees.DecisionStump
Using linear weighting kernels
Using all neighbours
=== Summary \(===\)
\begin{tabular}{lrl} 
Correctly Classified Instances & 174 & \(95.6044 \%\) \\
Incorrectly Classified Instances & 8 & \(4.3956 \%\)
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Kappa statistic & & 0 & & & & \\
\hline Mean absolute error & & 0.0814 & & & & \\
\hline Root mean squared error & & 0.2156 & & & & \\
\hline Relative absolute error & & 91.3454 \% & & & & \\
\hline Root relative squared error & & 104.9973 \% & & & & \\
\hline Total Number of Instances & & 182 & & & & \\
\hline \(===\) Detailed Accuracy By Class & s \(==\) & & & & & \\
\hline TP Rate FP Rate Precision & Recall & F-Measure & MCC & ROC Area & PRC Area & Class \\
\hline 1,000 \(\quad 1,000 \quad 0,956\) & 1,000 & 0,978 & ? & 0,469 & 0,954 & Yes \\
\hline 0,000 0,000 ? & 0,000 & ? & ? & 0,466 & 0,047 & No \\
\hline W.A. 0,956 0,956 & 0,956 & ? & ? & 0,469 & 0,914 & \\
\hline === Confusion Matrix === & & & & & & \\
\hline a b <-- classified as & & & & & & \\
\hline \(1740 \mid a=Y e s\) & & & & & & \\
\hline \(80 \mid \mathrm{b}=\mathrm{No}\) & & & & & & \\
\hline
\end{tabular}

\section*{Meta.MultiScheme| NN}

ZeroR predicts class value: Yes
=== Summary \(===\)
\begin{tabular}{lcl} 
Correctly Classified Instances & 174 & \(95.6044 \%\) \\
Incorrectly Classified Instances & 8 & \(4.3956 \%\) \\
Kappa statistic & 0 & \\
Mean absolute error & 0.0892 & \\
Root mean squared error & 0.2053 & \\
Relative absolute error & \(100 \%\) & \\
Root relative squared error & \(100 \%\) & \\
Total Number of Instances & 182 &
\end{tabular}
=== Detailed Accuracy By Class ===
\begin{tabular}{rcccccccccc} 
TP Rate & FP Rate Precision & Recall & F-Measure & MCC & ROC Area & PRC Area & Class \\
1,000 & 1,000 & 0,956 & 1,000 & 0,978 & \(?\) & 0,392 & 0,947 & Yes \\
0,000 & 0,000 & \(?\) & 0,000 & \(?\) & \(?\) & 0,392 & 0,040 & No \\
W.A. & 0,956 & 0,956 & \(?\) & 0,956 & \(?\) & \(?\) & 0,392 & 0,907 &
\end{tabular}
\(===\) Confusion Matrix \(==\)
a b <-- classified as
\(1740 \mid a=Y e s\)
\(8 \quad 0 \mid \mathrm{b}=\mathrm{No}\)

\section*{Misc Input Mapped Classifier|NN}

ZeroR predicts class value.
Model attributes \(\rightarrow\) Incoming attributes
=== Summary \(===\)
\begin{tabular}{lcl} 
Correctly Classified Instances & 174 & \(95.6044 \%\) \\
Incorrectly Classified Instances & 8 & \(4.3956 \%\) \\
Kappa statistic & 0 & \\
Mean absolute error & 0.0892 & \\
Root mean squared error & 0.2053 & \\
Relative absolute error & \(100 \%\) & \\
Root relative squared error & \(100 \%\) & \\
Total Number of Instances & 182 &
\end{tabular}
=== Detailed Accuracy By Class ===
TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class
\begin{tabular}{rcccccccc}
1,000 & 1,000 & 0,956 & 1,000 & 0,978 & \(?\) & 0,392 & 0,947 & Yes \\
0,000 & 0,000 & \(?\) & 0,000 & \(?\) & \(?\) & 0,392 & 0,040 & No \\
W.A. 0,956 & 0,956 & \(?\) & 0,956 & \(?\) & \(?\) & 0,392 & 0,907 &
\end{tabular}
\(===\) Confusion Matrix \(===\)
a b <-- classified as
\(1740 \mid a=Y e s\)
\(8 \quad 0 \mid \mathrm{b}=\mathrm{No}\)

\section*{Simple K Means Clustering|NN}

Simple K Means with 2 Clusters
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{1}{|c|}{} & \multicolumn{2}{c|}{ Final cluster centroids } \\
\hline \multicolumn{1}{|c|}{ Attribute } & \begin{tabular}{c} 
Full \\
\((182.0)\)
\end{tabular} & 0 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Loans would not be covered in case of a possible loss of mine & No & No & No \\
\hline Children Studies would not be covered in case of a possible loss of mine & No & No & No \\
\hline Tax obligations would not be covered in case of a possible loss of mine & No & Yes & No \\
\hline No needs to leave behind in case of a possible los & No & No & No \\
\hline Happiness would not be covered in case of a possible loss of mine & No & No & No \\
\hline Purchases in non-basic necessities would not be covered in case of a possible loss of mine & No & No & No \\
\hline Want a risk protection & Yes & Yes & Yes \\
\hline A satisfying amount of money for the support of my beloved ones & 86.16 & 99.57 & 79.57 \\
\hline Not at all satisfied from the public insurance health benefits & No & No & No \\
\hline Kind of satisfied from the public insurance health benefits & Yes & No & Yes \\
\hline Quite satisfied from the public insurance health benefits & No & No & No \\
\hline Absolutely satisfied from the public insurance health benefits & No & No & No \\
\hline I would choose a Public Hospital in Athens or Thessaloniki for a mild health issue & No & No & No \\
\hline I would choose a big private hospital in Athens or Thessaloniki for a mild health issue & No & No & No \\
\hline I would choose a local private hospital for a mild health issue & No & No & No \\
\hline I would choose a local public hospital for a mild health issue & No & No & No \\
\hline I would choose a public hospital in Athens or Thessaloniki for serious health issues & No & No & No \\
\hline I would choose a big private hospital of Athens or Thessaloniki for serious health issues & No & Yes & No \\
\hline I would choose a local private hospital for serious health issues & No & No & No \\
\hline I would choose a local public hospital for serious health issues & No & No & No \\
\hline I would choose a foreign hospital for serious health issues & No & No & No \\
\hline I wish for private health services coupled with my insurance & Yes & Yes & Yes \\
\hline I would like diagnostic tests to be included to my private insurance & Yes & Yes & Yes \\
\hline
\end{tabular}
\begin{tabular}{|l|lll|}
\hline I would like doctor visits to be included to my private insurance & Yes & Yes & Yes \\
\hline I would like hospital care to be included to my private insurance & Yes & Yes & Yes \\
\hline \begin{tabular}{l} 
I would like Annual check up to be included to my \\
private insurance
\end{tabular} & Yes & Yes & Yes \\
\hline I would like to go abroad to be included to my private insurance & No & Yes & No \\
\hline I would like ambulance to be included to my private insurance & No & No & No \\
\hline \begin{tabular}{l} 
Team insurance
\end{tabular} & No & No & No \\
\hline I will not get a pension & No & No & No \\
\hline I will get a small pension & Yes & Yes & Yes \\
\hline I will get a satisfying pension & No & No & No \\
\hline I have managed for a lump sum or supplementary pension & No & Yes & No \\
\hline \begin{tabular}{l} 
I have managed for a lump sum or supplementary pension \\
through Bank Savings
\end{tabular} & No & No & No \\
\hline \begin{tabular}{l} 
I have managed for a lump sum or supplementary pension \\
through Pension scheme purchase
\end{tabular} & No & No & No \\
\hline \begin{tabular}{l} 
I have managed for a lump sum or supplementary pension \\
through Life insurance program and savings plan
\end{tabular} & No & No & No \\
\hline \begin{tabular}{l} 
I have managed for a lump sum or supplementary pension \\
through Real estate purchase for rent or exploitation
\end{tabular} & No & No & No \\
\hline \begin{tabular}{l} 
I am about to take immediate care of a lump sum or \\
supplementary pension
\end{tabular} & No & No \\
\hline \begin{tabular}{l} 
I have managed for a lump sum or supplementary pension \\
through Pension scheme or savings plan purchase
\end{tabular} & No & No & No \\
\hline \begin{tabular}{l} 
Even if I wanted it I cannot take care of a lump sum \\
or supplementary pension
\end{tabular} & No & No & No \\
\hline \begin{tabular}{l} 
It is of a major importance to support my children and \\
grandchildren after I receive my pension
\end{tabular} & Yes & Yes \\
\hline \begin{tabular}{l} 
It is of a major importance to cover my healthcare \\
after I receive my pension
\end{tabular} & No \\
\hline \begin{tabular}{l} 
It is of a major importance to cover my pleasure trips \\
after I receive my pension
\end{tabular} & Yes & Yes \\
\hline It is of a major importance to cover my house purchases & No \\
\hline Nes & No & No & No \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline after I receive my pension & No & No & No \\
\hline \begin{tabular}{l} 
It is of a major importance to cover my fixed costs \\
after I receive my pension
\end{tabular} & No & No & No \\
\hline \begin{tabular}{l} 
It is of a major importance to cover my everyday needs \\
after I receive my pension
\end{tabular} & Yes & Yes & Yes \\
\hline I am interested in estimating my retirement & & & \\
\hline
\end{tabular}

EM Clusterer \(\mid\) NN
\left.\begin{tabular}{|c|ccc|}
\hline & & \multicolumn{3}{|c|}{ Cluster } \\
\hline Attribute & & 0 & 1 \\
\hline
\end{tabular}\(\right)\)
\begin{tabular}{|c|c|c|c|}
\hline Yes & 45.75 & 20.83 & 52.41 \\
\hline [total] & 80.46 & 41.03 & 66.50 \\
\hline \multicolumn{4}{|c|}{Have or Had Business Insurance} \\
\hline No & 75.65 & 21.65 & 60.68 \\
\hline Yes & 4.801 & 9.37 & 5.81 \\
\hline [total] & 80.46 & 41.03 & 66.50 \\
\hline \multicolumn{4}{|c|}{Have or Had Civil Liability Insurance} \\
\hline No & 78.29 & 22.03 & 58.66 \\
\hline Yes & 2.16 & 18.99 & 7.84 \\
\hline [total] & 80.46 & 41.03 & 66.50 \\
\hline \multicolumn{4}{|c|}{Have or Had Vessel Insurance} \\
\hline No & 78.71 & 35.78 & 63.50 \\
\hline Yes & 1.74 & 5.25 & 3.00 \\
\hline [total] & 80.46 & 41.03 & 66.50 \\
\hline \multicolumn{4}{|c|}{Have or Had Health Insurance} \\
\hline No & 79.46 & 39.03 & 64.49 \\
\hline Yes & & \(00 \quad 1\) & 992.0 \\
\hline [total] & 80.46 & 41.03 & 66.50 \\
\hline \multicolumn{4}{|c|}{Have or Had Everyday needs Insurance} \\
\hline No & 79.46 & 39.95 & 64.57 \\
\hline Yes & 1.00 & 1.07 & 1.92 \\
\hline [total] & 80.46 & 41.03 & 66.50 \\
\hline \multicolumn{4}{|c|}{Have or Had Business House Insurance} \\
\hline No & 79.46 & 40.01 & 64.51 \\
\hline Yes & 1 & 1.01 & 1.98 \\
\hline [total] & 80.46 & 41.03 & 66.50 \\
\hline \multicolumn{4}{|c|}{Have or Had Family Insurance} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline No & 79.4639 .0365 .50 \\
\hline Yes & 121 \\
\hline [total] & 80.4641 .0366 .50 \\
\hline \multicolumn{2}{|c|}{Have or Had Cash Insurance} \\
\hline No & 78.4640 .0365 .50 \\
\hline Yes & 211 \\
\hline [total] & 80.4641 .0366 .50 \\
\hline \multicolumn{2}{|c|}{Have or Had Child Insurance} \\
\hline No & 79.4539 .0465 .50 \\
\hline Yes & \(1.01 \quad 1.981 .0\) \\
\hline [total] & 80.4641 .0366 .50 \\
\hline \multicolumn{2}{|c|}{Have or Had Car Insurance} \\
\hline No & 79.4640 .0365 .50 \\
\hline [total] & 79.4640 .0365 .50 \\
\hline \multicolumn{2}{|c|}{Have or Had Motorbike Insurance} \\
\hline No & 78.4840 .0265 .48 \\
\hline Yes & 1.91 .001 .02 \\
\hline [total] & 80.4641 .0366 .50 \\
\hline \multicolumn{2}{|c|}{Have never had Insurance} \\
\hline Yes & 63.664 .2044 .12 \\
\hline No & 16.7936 .8222 .37 \\
\hline [total] & 80.4641 .0366 .50 \\
\hline \multicolumn{2}{|c|}{Fixed Costs would not be covered in case of a possible loss of mine} \\
\hline Yes & \(56.2927 .89 \quad 50.80\) \\
\hline No & 24.1613 .1315 .69 \\
\hline [total] & 80.4641 .0366 .50 \\
\hline & of mine \\
\hline
\end{tabular}


A satisfying amount of money for the support of my beloved ones
\begin{tabular}{|l|lll|}
\hline mean & 75.79 & 93.35 & 94.43 \\
\hline std. dev. & 40.43 & 41.12 & 43.18 \\
\hline & Not at all satisfied from the public insurance health benefits \\
\hline No & 64.11 & & \\
\hline Yes & 16.34 & 3.59 & 53.39 \\
\hline [total] & 80.46 & 41.03 & 66.50 \\
\hline
\end{tabular}

Kind of satisfied from the public insurance health benefits
\begin{tabular}{|lrll|}
\hline Yes & \begin{tabular}{llll|}
\hline 36.56 & 31.11 & 36.32 \\
\hline No & 43.90 & 9.91 & 30.18 \\
\hline [total] & Quite satisfied from the public insurance health benefits & & \\
\hline & 80.46 & 41.03 & 66.50 \\
\hline No & 51.91 & 34.75 & 50.32 \\
\hline Yes & 28.54 & 6.27 & 16.18 \\
\hline [total] & 80.46 & 41.03 & 66.50 \\
\hline
\end{tabular} & & \\
\hline
\end{tabular}

Absolutely satisfied from the public insurance health benefits
\begin{tabular}{|lrll} 
No & 79.45 & 38.92 & 63.61 \\
\hline Yes & 1.00 & 2.10 & 2.88 \\
\hline\([\) total \(]\) & 80.46 & 41.03 & 66.50 \\
\hline
\end{tabular}

I would choose a Public Hospital in Athens or Thessaloniki for a mild health issue
\begin{tabular}{|lrll|}
\hline Yes & 11.00 & 8.04 & 10.95 \\
\hline No & 69.46 & 32.98 & 55.55 \\
\hline [total] & 80.46 & 41.03 & 66.50 \\
\hline I would choose a big private hospital in Athens or Thessaloniki for a mild health issue \\
\hline No & 61.86 & 21.89 & 45.23 \\
\hline Yes & 18.596 & 19.13 & 21.26 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline [total] & 80.4641 .0366 .50 \\
\hline \multicolumn{2}{|c|}{I would choose a local private hospital for a mild health issue} \\
\hline No & 58.129 .1749 .72 \\
\hline Yes & 22.3611 .8516 .77 \\
\hline [total] & 80.4641 .0366 .50 \\
\hline \multicolumn{2}{|c|}{I would choose a local public hospital for a mild health issue} \\
\hline No & 49.9537 .0446 .99 \\
\hline Yes & \(30.50 \quad 3.98 \quad 19.50\) \\
\hline [total] & 80.4641 .0366 .50 \\
\hline \multicolumn{2}{|l|}{I would choose a public hospital in Athens or Thessaloniki for serious health issues} \\
\hline No & 60.334 .1354 .56 \\
\hline Yes & 20.166 .8911 .94 \\
\hline [total] & 80.4641 .0366 .50 \\
\hline \multicolumn{2}{|l|}{I would choose a big private hospital of Athens or Thessaloniki for serious health issues} \\
\hline Yes & 24.1727 .3228 .49 \\
\hline No & 56.213 .7038 .00 \\
\hline [total] & 80.4641 .0366 .50 \\
\hline \multicolumn{2}{|c|}{I would choose a local private hospital for serious health issues} \\
\hline No & \(65.61 \quad 37.5655 .82\) \\
\hline Yes & \(14.85 \quad 3.4610 .68\) \\
\hline [total] & 80.4641 .0366 .50 \\
\hline \multicolumn{2}{|c|}{I would choose a local public hospital for serious health issues} \\
\hline No & 71.4538 .0363 .51 \\
\hline Yes & \(9.00 \quad 2.99 \quad 2.99\) \\
\hline [total] & 80.4641 .0366 .50 \\
\hline \multicolumn{2}{|c|}{I would choose a foreign hospital for serious health issues} \\
\hline No & \(65.20 \quad 37.6851 .11\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Yes & 15.2633 .3415 .39 \\
\hline [total] & \(80.4641 .03 \quad 66.50\) \\
\hline \multicolumn{2}{|c|}{I wish for private health services coupled with my insurance} \\
\hline Yes & \(69.9640 .00 \quad 64.0\) \\
\hline No & \(10.49 \quad 1.02 \quad 2.47\) \\
\hline [total] & 80.4641 .0366 .50 \\
\hline \multicolumn{2}{|r|}{I would like diagnostic tests to be included to my private insurance} \\
\hline Yes & 20.8625 .1364 .99 \\
\hline No & \(59.5915 .89 \quad 1.50\) \\
\hline [total] & 80.4641 .0366 .50 \\
\hline \multicolumn{2}{|c|}{I would like doctor visits to be included to my private insurance} \\
\hline Yes & \(28.9622 .63 \quad 65.408\) \\
\hline No & 46.5118 .391 .09 \\
\hline Yes & \(5.991 .00 \quad 1.00\) \\
\hline [total] & 81.4642 .0367 .50 \\
\hline \multicolumn{2}{|c|}{I would like hospital care to be included to my private insurance} \\
\hline Yes & \(31.97 \quad 35.21 \quad 63.81\) \\
\hline No & \(48.48 \quad 5.81 \quad 2.69\) \\
\hline [total] & 80.4641 .0366 .50 \\
\hline \multicolumn{2}{|r|}{I would like Annual check up to be included to my private insurance} \\
\hline Yes & 26.4128 .4758 .11 \\
\hline No & \(54.05 \quad 12.55 \quad 8.38\) \\
\hline [total] & 80.4641 .0366 .50 \\
\hline \multicolumn{2}{|c|}{I would like going abroad to be included to my private insurance} \\
\hline Yes & \(17.20 \quad 18.35 \quad 45.44\) \\
\hline No & 63.2622 .6721 .05 \\
\hline [total] & 80.4641 .0366 .50 \\
\hline
\end{tabular}

I would like ambulance to be included to my private insurance
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{I would like ambulance to be included to my private insurance} \\
\hline No & 79.46 & 38.0564 .48 \\
\hline Yes & 1.00 & 2.972 .02 \\
\hline [total] & 80.46 & 41.0366 .50 \\
\hline \multicolumn{3}{|c|}{Team insurance} \\
\hline No & 56.523 & 32.7948 .68 \\
\hline Yes & 23.93 & 8.2417 .82 \\
\hline [total] & 80.464 & 41.0366 .50 \\
\hline \multicolumn{3}{|c|}{I will not get a pension} \\
\hline Yes & 19.20 & 5.2615 .52 \\
\hline No & 61.253 & 35.7650 .97 \\
\hline [total] & 80.46 & 41.0366 .50 \\
\hline \multicolumn{3}{|c|}{I will get a small pension} \\
\hline No & 33.941 & 15.2122 .84 \\
\hline Yes & 46.522 & 25.8143 .66 \\
\hline [total] & 80.46 & 41.03166 .50 \\
\hline \multicolumn{3}{|c|}{I will get a satisfying pension} \\
\hline No & 64.7230 & 30.0858 .18 \\
\hline Yes & 15.731 & 10.948 .316 \\
\hline [total] & 80.46 & 41.0366 .50 \\
\hline \multicolumn{3}{|c|}{I have managed for a lump sum or supplementary pension} \\
\hline Yes & 20.133 & 33.3912 .47 \\
\hline No & 60.32 & 7.6354 .0 \\
\hline [total] & 80.46 & 41.0366 .50 \\
\hline \multicolumn{3}{|l|}{I have managed for a lump sum or supplementary pension through Bank Savings} \\
\hline Yes & 16.621 & 16.6214 .75 \\
\hline No & 63.83 & 24.4051 .75 \\
\hline
\end{tabular}

I have managed for a lump sum or supplementary pension through Pension scheme purchase
\begin{tabular}{lllll}
\hline No & 79.27 & 39.38 & 65.33 \\
\hline Yes & 1.18 & 1.64 & 1.16 \\
\hline total \(]\) & 80.46 & 41.03 & 66.50 \\
\hline
\end{tabular}

I have managed for a lump sum or supplementary pension through Life insurance program and savings plan
\begin{tabular}{lllll} 
No & 79.45 & 39.04 & 65.50 \\
\hline Yes & 1.011 & 1.98 & 1.00 \\
\hline total \(]\) & 80.46 & 41.03 & 66.50 \\
\hline
\end{tabular}

I have managed for a lump sum or supplementary pension through Real estate purchase for rent or exploitation
\begin{tabular}{llrll} 
No & \begin{tabular}{lll}
75.43 & 23.28 & 65.28 \\
Yes & 5.03 & 17.74 \\
\hline
\end{tabular} & 1.21 \\
[total] & 80.46 & 41.03 & 66.50
\end{tabular}

I am about to take immediate care of a lump sum or supplementary pension
No \(62.87 \quad 37.98 \quad 52.13\)
\begin{tabular}{lrll} 
Yes & 17.58 & 3.04 & 14.37 \\
\hline\([\) total \(]\) & 80.46 & 41.03 & 66.505
\end{tabular}

I have managed for a lump sum or supplementary pension through Pension scheme or savings plan purchase

No
73.8922 .6564 .45

Yes
\(6.57 \quad 18.37 \quad 2.05\)
[total]
80.4641 .0366 .50
\begin{tabular}{|l|lll|}
\hline Even if I wanted it I cannot take care of a lump sum or supplementary pension \\
\hline No & 78.46 & 40.03 & 64.50 \\
\hline Yes & 1.99 & 1 & 2 \\
\hline [total] & 80.46 & 41.03 & 66.50 \\
\hline It is of a major importance to support my children and grandchildren after I receive my \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{pension} \\
\hline Yes & 44.5228 .3950 .081 \\
\hline No & 35.9312 .6416 .42 \\
\hline [total] & 80.46341 .0366 .50 \\
\hline \multicolumn{2}{|r|}{It is of a major importance to cover my healthcare after I receive my pension} \\
\hline Yes & 46.1535 .4561 .38 \\
\hline No & \(34.30 \quad 5.57 \quad 5.12\) \\
\hline [total] & 80.4641 .0366 .50 \\
\hline \multicolumn{2}{|r|}{It is of a major importance to cover my pleasure trips after I receive my pension} \\
\hline Yes & 23.2420 .4132 .33 \\
\hline No & 57.2120 .6134 .16 \\
\hline [total] & 80.4641 .0366 .50 \\
\hline \multicolumn{2}{|l|}{It is of a major importance to cover my house purchases after I receive my pension} \\
\hline No & 74.0137 .8359 .15 \\
\hline Yes & \(6.443 .20 \quad 7.35\) \\
\hline [total] & 80.4641 .0366 .50 \\
\hline \multicolumn{2}{|r|}{It is of a major importance to cover my fixed costs after I receive my pension} \\
\hline No & 78.4440 .0364 .52 \\
\hline Yes & \(\begin{array}{lll}2.01 & 1 & 1.98\end{array}\) \\
\hline [total] & 80.4641 .0366 .50 \\
\hline \multicolumn{2}{|l|}{It is of a major importance to cover my everyday needs after I receive my pension} \\
\hline No & 79.4639 .9564 .57 \\
\hline Yes & \(1 \begin{array}{lll}1 & 1.071 .9267\end{array}\) \\
\hline [total] & 80.4641 .0366 .50 \\
\hline \multicolumn{2}{|c|}{I am interested in estimating my retirement} \\
\hline Yes & \(72.8840 \quad 64.10\) \\
\hline No & \(\begin{array}{lll}7.57 & 1.02 & 2.40\end{array}\) \\
\hline
\end{tabular}

\section*{Farthest First Clusterer |NN}

\section*{Cluster centroids:}

\section*{Cluster 0:}

No No No Yes No Yes Yes No Yes No No No No No No Yes 100 No Yes No No No No Yes No No Yes No No No Yes No No Yes No No No No No Yes No No No No No No Yes No No Yes No No No No No Yes

\section*{Cluster 1:}

No No No No Yes No Yes No No No No No 86.16 No No Yes No No No No Yes No No No Yes No No Yes No No No No No Yes No No Yes Yes Yes No No No No Yes No Yes Yes No No No No No

Each "Yes/No" answer in each question (Car superseding ability, motorbike superseding ability etc..) is the centroid of all the answers that the customers have answered (in that specific question).

\section*{Make A Density Fitted Estimators| NN}

Fitted estimators (with ML estimates of variance):

\section*{Cluster 0:}

Prior probability \(=0.3315\)

Attribute: Car superseding Ability
Discrete Estimator. Counts \(=1052(\) Total \(=62)\)
Attribute: Motorbike superseding Ability
Discrete Estimator. Counts \(=5012(\) Total \(=62)\)
Attribute: House superseding Ability
Discrete Estimator. Counts \(=602(\) Total \(=62)\)
Attribute: Business superseding Ability
Discrete Estimator. Counts \(=602(\) Total \(=62)\)
Attribute: No superseding ability
Discrete Estimator. Counts \(=1844(\) Total \(=62)\)

Attribute: Have or Had Business Insurance
Discrete Estimator. Counts \(=4616(\) Total \(=62)\)
Attribute: Have or Had Civil Liability Insurance
Discrete Estimator. Counts \(=4022(\) Total \(=62)\)
Attribute: Have or Had Vessel Insurance
Discrete Estimator. Counts \(=548(\) Total \(=62)\)
Attribute: Have or Had Health Insurance
Discrete Estimator. Counts \(=602(\) Total \(=62)\)
Attribute: Have or Had Everyday needs Insurance
Discrete Estimator. Counts \(=611(\) Total \(=62)\)
Attribute: Have or Had Business House Insurance
Discrete Estimator. Counts \(=602(\) Total \(=62)\)
Attribute: Have or Had Family Insurance
Discrete Estimator. Counts \(=602(\) Total \(=62)\)
Attribute: Have or Had Cash Insurance
Discrete Estimator. Counts \(=611(\) Total \(=62)\)
Attribute: Have or Had Child Insurance
Discrete Estimator. Counts \(=611(\) Total \(=62)\)
Attribute: Have or Had Car Insurance
Discrete Estimator. Counts \(=61(\) Total \(=61)\)
Attribute: Have or Had Motorbike Insurance
Discrete Estimator. Counts \(=602(\) Total \(=62)\)
Attribute: Have never had Insurance
Discrete Estimator. Counts \(=1943(\) Total \(=62)\)
Attribute: Fixed Costs would not be covered in case of a possible loss of mine
Discrete Estimator. Counts \(=4616(\) Total \(=62)\)
Attribute: Loans would not be covered in case of a possible loss of mine
Discrete Estimator. Counts \(=4121(\) Total \(=62)\)
Attribute: Children Studies would not be covered in case of a possible loss of mine
Discrete Estimator. Counts \(=4418(\) Total \(=62)\)
Attribute: Tax obligations would not be covered in case of a possible loss of mine
Discrete Estimator. Counts \(=1745(\) Total \(=62)\)
Attribute: No needs to leave behind in case of a possible loss of mine
Discrete Estimator. Counts \(=611(\) Total \(=62)\)
Attribute: Happiness would not be covered in case of a possible loss of mine
Discrete Estimator. Counts \(=611(\) Total \(=62)\)
Attribute: Purchases in non basic necessities would not be covered in case of a possible loss of mine
Discrete Estimator. Counts \(=602(\) Total \(=62)\)
Attribute: Want a risk protection
Discrete Estimator. Counts \(=548(\) Total \(=62)\)
Attribute: A satisfying amount of money for the support of my beloved ones
Normal Distribution. Mean \(=99.5782\) StdDev \(=40.5907\)
Attribute: Not at all satisfied from the public insurance health benefits

Discrete Estimator. Counts \(=4814(\) Total \(=62)\)
Attribute: Kind of satisfied from the public insurance health benefits
Discrete Estimator. Counts \(=2735(\) Total \(=62)\)
Attribute: Quite satisfied from the public insurance health benefits
Discrete Estimator. Counts \(=4319(\) Total \(=62)\)
Attribute: Absolutely satisfied from the public insurance health benefits
Discrete Estimator. Counts \(=584(\) Total \(=62)\)
Attribute: I would choose a Public Hospital in Athens or Thessaloniki for a mild health issue
Discrete Estimator. Counts \(=953(\) Total \(=62)\)
Attribute: I would choose a big private hospital in Athens or Thessaloniki for a mild health issue
Discrete Estimator. Counts \(=3230(\) Total \(=62)\)
Attribute: I would choose a local private hospital for a mild health issue
Discrete Estimator. Counts \(=4913(\) Total \(=62)\)
Attribute: I would choose a local public hospital for a mild health issue
Discrete Estimator. Counts \(=5012(\) Total \(=62)\)
Attribute: I would choose a public hospital in Athens or Thessaloniki for serious health issues
Discrete Estimator. Counts \(=557(\) Total \(=62)\)
Attribute: I would choose a big private hospital of Athens or Thessaloniki for serious health issues
Discrete Estimator. Counts \(=3824(\) Total \(=62)\)
Attribute: I would choose a local private hospital for serious health issues
Discrete Estimator. Counts \(=548(\) Total \(=62)\)
Attribute: I would choose a local public hospital for serious health issues
Discrete Estimator. Counts \(=584(\) Total \(=62)\)
Attribute: I would choose a foreign hospital for serious health issues
Discrete Estimator. Counts \(=548(\) Total \(=62)\)
Attribute: I wish for private health services coupled with my insurance
Discrete Estimator. Counts \(=602(\) Total \(=62)\)
Attribute: I would like diagnostic tests to be included to my private insurance
Discrete Estimator. Counts \(=4517(\) Total \(=62)\)
Attribute: I would like doctor visits to be included to my private insurance
Discrete Estimator. Counts = \(43191(\) Total = 63)
Attribute: I would like hospital care to be included to my private insurance
Discrete Estimator. Counts \(=5210(\) Total \(=62)\)
Attribute: I would like Annual check up to be included to my private insurance
Discrete Estimator. Counts \(=4715(\) Total \(=62)\)
Attribute: I would like going abroad to be included to my private insurance
Discrete Estimator. Counts \(=4517(\) Total \(=62)\)
Attribute: I would like ambulance to be included to my private insurance
Discrete Estimator. Counts \(=593(\) Total \(=62)\)
Attribute: Team insurance

Discrete Estimator. Counts \(=4715(\) Total \(=62)\)
Attribute: I will not get a pension
Discrete Estimator. Counts \(=1250(\) Total \(=62)\)
Attribute: I will get a small pension
Discrete Estimator. Counts \(=2537(\) Total \(=62)\)
Attribute: I will get a satisfying pension
Discrete Estimator. Counts \(=4814(\) Total \(=62)\)
Attribute: I have managed for a lump sum or supplementary pension
Discrete Estimator. Counts \(=3626(\) Total \(=62)\)
Attribute: I have managed for a lump sum or supplementary pension through Bank Savings
Discrete Estimator. Counts \(=1745(\) Total \(=62)\)
Attribute: I have managed for a lump sum or supplementary pension through Pension scheme purchase
Discrete Estimator. Counts \(=611(\) Total \(=62)\)
Attribute: I have managed for a lump sum or supplementary pension through Life insurance program and savings plan
Discrete Estimator. Counts \(=611(\) Total \(=62)\)
Attribute: I have managed for a lump sum or supplementary pension through Real estate purchase for rent or exploitation
Discrete Estimator. Counts \(=4814(\) Total \(=62)\)
Attribute: I am about to take immediate care of a lump sum or supplementary pension Discrete Estimator. Counts \(=557(\) Total \(=62)\)
Attribute: I have managed for a lump sum or supplementary pension through Pension scheme or savings plan purchase
Discrete Estimator. Counts \(=4319(\) Total \(=62)\)
Attribute: Even if I wanted it I cannot take care of a lump sum or supplementary pension
Discrete Estimator. Counts \(=611(\) Total \(=62)\)
Attribute: It is of a major importance to support my children and grandchildren after I receive my pension
Discrete Estimator. Counts \(=4319(\) Total \(=62)\)
Attribute: It is of a major importance to cover my healthcare after I receive my pension
Discrete Estimator. Counts \(=548(\) Total \(=62)\)
Attribute: It is of a major importance to cover my pleasure trips after I receive my pension
Discrete Estimator. Counts \(=4022(\) Total \(=62)\)
Attribute: It is of a major importance to cover my house purchases after I receive my pension
Discrete Estimator. Counts \(=557(\) Total \(=62)\)
Attribute: It is of a major importance to cover my fixed costs after I receive my pension
Discrete Estimator. Counts \(=602(\) Total \(=62)\)

Attribute: It is of a major importance to cover my everyday needs after I receive my pension
Discrete Estimator. Counts \(=611(\) Total \(=62)\)
Attribute: I am interested in estimating my retirement
Discrete Estimator. Counts \(=611(\) Total \(=62)\)

\section*{Cluster 1:}

Prior probability \(=0.6685\)

Attribute: Car superseding Ability
Discrete Estimator. Counts \(=2797(\) Total \(=124)\)
Attribute: Motorbike superseding Ability
Discrete Estimator. Counts = \(10816(\) Total \(=124)\)
Attribute: House superseding Ability
Discrete Estimator. Counts = \(11311(\) Total \(=124)\)
Attribute: Business superseding Ability
Discrete Estimator. Counts \(=1195(\) Total \(=124)\)
Attribute: No superseding ability
Discrete Estimator. Counts \(=5074(\) Total \(=124)\)
Attribute: Have or Had Business Insurance
Discrete Estimator. Counts = \(11113(\) Total \(=124)\)
Attribute: Have or Had Civil Liability Insurance
Discrete Estimator. Counts \(=1186(\) Total \(=124)\)
Attribute: Have or Had Vessel Insurance
Discrete Estimator. Counts \(=1231(\) Total \(=124)\)
Attribute: Have or Had Health Insurance
Discrete Estimator. Counts \(=1222(\) Total \(=124)\)
Attribute: Have or Had Everyday needs Insurance
Discrete Estimator. Counts = \(1222(\) Total \(=124)\)
Attribute: Have or Had Business House Insurance
Discrete Estimator. Counts \(=1231(\) Total \(=124)\)
Attribute: Have or Had Family Insurance
Discrete Estimator. Counts \(=1231(\) Total \(=124)\)
Attribute: Have or Had Cash Insurance
Discrete Estimator. Counts \(=1222(\) Total \(=124)\)
Attribute: Have or Had Child Insurance
Discrete Estimator. Counts \(=1222(\) Total \(=124)\)
Attribute: Have or Had Car Insurance
Discrete Estimator. Counts = \(123(\) Total \(=123)\)
Attribute: Have or Had Motorbike Insurance
Discrete Estimator. Counts \(=1231(\) Total \(=124)\)
Attribute: Have never had Insurance
Discrete Estimator. Counts \(=9232(\) Total \(=124)\)
Attribute: Fixed Costs would not be covered in case of a possible loss of mine

Discrete Estimator. Counts \(=8836(\) Total \(=124)\)
Attribute: Loans would not be covered in case of a possible loss of mine
Discrete Estimator. Counts \(=8935(\) Total \(=124)\)
Attribute: Children Studies would not be covered in case of a possible loss of mine
Discrete Estimator. Counts \(=9430(\) Total \(=124)\)
Attribute: Tax obligations would not be covered in case of a possible loss of mine
Discrete Estimator. Counts \(=9430(\) Total \(=124)\)
Attribute: No needs to leave behind in case of a possible loss of mine
Discrete Estimator. Counts \(=1222(\) Total \(=124)\)
Attribute: Happiness would not be covered in case of a possible loss of mine
Discrete Estimator. Counts \(=1222(\) Total \(=124)\)
Attribute: Purchases in non basic necessities would not be covered in case of a possible loss of mine
Discrete Estimator. Counts \(=1231(\) Total \(=124)\)
Attribute: Want a risk protection
Discrete Estimator. Counts \(=10123(\) Total \(=124)\)
Attribute: A satisfying amount of money for the support of my beloved ones
Normal Distribution. Mean \(=79.5744\) StdDev \(=41.9303\)
Attribute: Not at all satisfied from the public insurance health benefits
Discrete Estimator. Counts \(=10618(\) Total \(=124)\)
Attribute: Kind of satisfied from the public insurance health benefits
Discrete Estimator. Counts \(=7648(\) Total \(=124)\)
Attribute: Quite satisfied from the public insurance health benefits
Discrete Estimator. Counts \(=9331(\) Total \(=124)\)
Attribute: Absolutely satisfied from the public insurance health benefits
Discrete Estimator. Counts \(=1231(\) Total \(=124)\)
Attribute: I would choose a Public Hospital in Athens or Thessaloniki for a mild health issue
Discrete Estimator. Counts = \(20104(\) Total \(=124)\)
Attribute: I would choose a big private hospital in Athens or Thessaloniki for a mild health issue
Discrete Estimator. Counts \(=9628(\) Total \(=124)\)
Attribute: I would choose a local private hospital for a mild health issue
Discrete Estimator. Counts \(=8737(\) Total \(=124)\)
Attribute: I would choose a local public hospital for a mild health issue
Discrete Estimator. Counts \(=8341(\) Total \(=124)\)
Attribute: I would choose a public hospital in Athens or Thessaloniki for serious health issues
Discrete Estimator. Counts \(=9331(\) Total \(=124)\)
Attribute: I would choose a big private hospital of Athens or Thessaloniki for serious health issues
Discrete Estimator. Counts \(=4183(\) Total \(=124)\)
Attribute: I would choose a local private hospital for serious health issues
Discrete Estimator. Counts = \(10420(\) Total \(=124)\)

Attribute: I would choose a local public hospital for serious health issues
Discrete Estimator. Counts \(=11410(\) Total \(=124)\)
Attribute: I would choose a foreign hospital for serious health issues
Discrete Estimator. Counts \(=9925(\) Total \(=124)\)
Attribute: I wish for private health services coupled with my insurance
Discrete Estimator. Counts \(=11311(\) Total \(=124)\)
Attribute: I would like diagnostic tests to be included to my private insurance
Discrete Estimator. Counts \(=6559(\) Total \(=124)\)
Attribute: I would like doctor visits to be included to my private insurance
Discrete Estimator. Counts \(=73466(\) Total \(=125)\)
Attribute: I would like hospital care to be included to my private insurance
Discrete Estimator. Counts \(=7846(\) Total \(=124)\)
Attribute: I would like Annual check up to be included to my private insurance
Discrete Estimator. Counts \(=6559(\) Total \(=124)\)
Attribute: I would like going abroad to be included to my private insurance
Discrete Estimator. Counts \(=3589(\) Total \(=124)\)
Attribute: I would like ambulance to be included to my private insurance
Discrete Estimator. Counts \(=1222(\) Total \(=124)\)
Attribute: Team insurance
Discrete Estimator. Counts \(=9034(\) Total \(=124)\)
Attribute: I will not get a pension
Discrete Estimator. Counts \(=2797(\) Total \(=124)\)
Attribute: I will get a small pension
Discrete Estimator. Counts \(=4678(\) Total \(=124)\)
Attribute: I will get a satisfying pension
Discrete Estimator. Counts \(=10420(\) Total \(=124)\)
Attribute: I have managed for a lump sum or supplementary pension
Discrete Estimator. Counts \(=2995(\) Total \(=124)\)
Attribute: I have managed for a lump sum or supplementary pension through Bank Savings
Discrete Estimator. Counts \(=3094(\) Total \(=124)\)
Attribute: I have managed for a lump sum or supplementary pension through Pension scheme purchase
Discrete Estimator. Counts \(=1222(\) Total \(=124)\)
Attribute: I have managed for a lump sum or supplementary pension through Life insurance program and savings plan
Discrete Estimator. Counts \(=1222(\) Total \(=124)\)
Attribute: I have managed for a lump sum or supplementary pension through Real estate purchase for rent or exploitation
Discrete Estimator. Counts \(=1159(\) Total \(=124)\)
Attribute: I am about to take immediate care of a lump sum or supplementary pension
Discrete Estimator. Counts \(=9727(\) Total \(=124)\)
Attribute: I have managed for a lump sum or supplementary pension through Pension scheme or savings plan purchase

Discrete Estimator. Counts \(=1177(\) Total \(=124)\)
Attribute: Even if I wanted it I cannot take care of a lump sum or supplementary pension
Discrete Estimator. Counts \(=1213(\) Total \(=124)\)
Attribute: It is of a major importance to support my children and grandchildren after I receive my pension
Discrete Estimator. Counts \(=7945(\) Total \(=124)\)
Attribute: It is of a major importance to cover my healthcare after I receive my pension
Discrete Estimator. Counts \(=8836(\) Total \(=124)\)
Attribute: It is of a major importance to cover my pleasure trips after I receive my pension
Discrete Estimator. Counts \(=3589(\) Total \(=124)\)
Attribute: It is of a major importance to cover my house purchases after I receive my pension
Discrete Estimator. Counts \(=1159(\) Total \(=124)\)
Attribute: It is of a major importance to cover my fixed costs after I receive my pension
Discrete Estimator. Counts \(=1222(\) Total \(=124)\)
Attribute: It is of a major importance to cover my everyday needs after I receive my pension
Discrete Estimator. Counts \(=1222(\) Total \(=124)\)
Attribute: I am interested in estimating my retirement
Discrete Estimator. Counts \(=1159(\) Total \(=124)\)

\section*{Canopy Clustering| NN}
\[
\begin{gathered}
\text { Cluster 0: } \\
\text { No,No,No,No,Yes,No,No,No,No,No,No,No,No,No,No,No,No,Yes,No,No,Yes,No,N } \\
\text { o,No,Yes,85.444184,No,Yes,No,No,No,No,No,No,No,Yes,No,No,No,Yes,Yes,Yes,Y } \\
\text { es,Yes,Yes,No,No,No,Yes,No,No,No,No,No,No,No,No,No,Yes,Yes,Yes,No,No,No, } \\
\text { Yes,\{80\}<0,1,2,3,4,5,6> } \\
\text { Cluster 1: } \\
\text { No,No,No,No,Yes,No,No,No,No,No,No,No,No,No,No,No,Yes,Yes,No,No,No,No,N } \\
\text { o,No,Yes,82.623013,No,No,No,No,No,No,No,No,No,No,No,No,No,Yes,Yes,Yes,Ye } \\
\text { s,Yes,No,No,No,No,No,No,No,No,No,No,No,No,No,No,Yes,Yes,No,No,No,No,Yes, } \\
\{64\}<0,1,2,3,4,5,6>
\end{gathered}
\]
\[
\begin{aligned}
& \text { Cluster 2: } \\
& \text { No,No,No,No,No,Yes,No,No,No,No,No,No,No,No,No,No,No,Yes,No,No,No,No,No, } \\
& \text { No,Yes,68.0002,No,Yes,No,No,No,No,No,No,No,No,No,No,Yes,Yes,No,Yes,No,Ye } \\
& \text { s,No,No,No,No,Yes,No,No,Yes,No,No,No,No,No,No,No,Yes,No,No,No,No,Yes, \{5\} } \\
& <0,1,2,3,4,5,6>
\end{aligned}
\]

\section*{Cluster 3:}

No,No,No,No,No,No,No,No,No,No,No,No,No,No,No,No,Yes,No,Yes,No,No,No,No, No,Yes,73.152483,No,No,No,No,No,No,No,No,No,No,No,No,No,Yes,No,No,No,No ,No,No,No,Yes,No,No,No,No,No,No,No,No,No,No,No,No,No,No,No,No,Yes, \(\{11\}\) <0,1,2,3,4,5,6>

\section*{Cluster 4:}

No,No,No,No,No,No,Yes,Yes,No,No,No,No,No,No,No,No,No,No,Yes,Yes,No,No,N o,No,Yes,150.001,Yes,No,No,No,No,Yes,No,No,No,No,No,No,Yes, Yes, Yes, Yes, Ye s,Yes, Yes,No,No,No,No,No,No,No,No,No,No,No,No,No,Yes,Yes, Yes,No,No,No, Ye s, \(\{4\}<0,1,2,3,4,5,6>\)

\section*{Cluster 5:}

No,No,No,No,No,No,No,No,No,No,No,No,No,No,No,No,Yes,Yes,No,No,No,No,No, No,Yes, 94.042603, No, Yes,No,No,No,No,No,Yes,No,No,No,No,No,Yes,No,No,No,N o,No,No,No,No,Yes,No,No,No,No,No,No,No,No,No,Yes,No,No,No,No,No, Yes, \(\{12\) \} <0,1,2,3,4,5,6>

\section*{Cluster 6:}

No,No,No,No,No,No,No,No,No,No,No,No,No,No,No,No,Yes,Yes,No,No,No,No,No, No,Yes,109.042519,No,Yes,No,No,No,No,No,Yes,No,No,No,Yes,No, Yes, Yes, Yes, Y es,No,Yes,No,No,Yes,No,No,Yes,Yes,No,No,No,No,No,No,Yes,Yes,No,No,No,No,
\[
\text { Yes, }\{4\}<0,1,2,3,4,5,6>
\]

Each "Yes/No" answer in each question (Car superseding ability, motorbike superseding ability etc..) is the centroid of all the answers that the customers have answered (in that specific question).

\section*{APPENDIX 3: Large Super Market in Greece}

\section*{Product Categories' Codes Translated}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{c} 
Product \\
Categories' Codes \\
\(011 A 01\)
\end{tabular} & Product Categories' Names \\
\hline 011A02 & PASTA \\
\hline \(\mathbf{0 1 1 A 0 3}\) & FOOD \\
\hline \(\mathbf{0 1 1 A 0 4}\) & BREADS \\
\hline 011AAY & PASTRIES/SWEETS \\
\hline 011AAF & BREADS \\
\hline 011AAX & BREADS \\
\hline 011AAC & RUSKS/RUSKS \\
\hline 011AAV & RUSKS/RUSKS \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 012G01 & OTHER - MAINTENANCE \\
\hline 012GZ5 & OTHER - MAINTENANCE \\
\hline 012D04 & FROZENS \\
\hline 012DBA & FROZENS \\
\hline 012DBB & FROZENS \\
\hline 012DZ5 & FROZENS \\
\hline 012DF0 & FROZENS \\
\hline 012DF3 & FROZENS \\
\hline 021 A 05 & RICE/PULSES \\
\hline 021A06 & RICE/PULSES \\
\hline 021E05 & RICE/PULSES \\
\hline \(021 \mathrm{E06}\) & RICE/PULSES \\
\hline 031A07 & FOOD \\
\hline 031 A68 & FOOD \\
\hline 031A73 & FOOD \\
\hline 031 A74 & FOOD \\
\hline 041A08 & BISCUITS \\
\hline 041A09 & PASTRIES/SWEETS \\
\hline 041 A16 & BREAKFAST ITEMS \\
\hline 041A17 & BREAKFAST ITEMS \\
\hline 041A18 & PASTRIES/SWEETS \\
\hline 041 A19 & PASTRIES/SWEETS \\
\hline 041A20 & PASTRIES/SWEETS \\
\hline 041A21 & PASTRIES/SWEETS \\
\hline 041A22 & PASTRIES/SWEETS \\
\hline 041 A23 & PASTRIES/SWEETS \\
\hline 041A25 & CHOCOLATES \\
\hline 041A26 & CHOCOLATES \\
\hline 041 A27 & CANDIES/GUMS \\
\hline 041 A 28 & CANDIES/GUMS \\
\hline 041AC2 & PASTRIES/SWEETS \\
\hline 042G19 & OTHER - MAINTENANCE \\
\hline 042 D 21 & FROZENS \\
\hline 042DZ3 & FROZENS \\
\hline 042E20 & OTHER - DRAINING BENCHES \\
\hline 051A10 & BREAKFAST CEREALS \\
\hline 051A29 & BREAKFAST ITEMS \\
\hline 051A30 & BREAKFAST ITEMS \\
\hline 051A33 & TEAS/JUICES - SHELF \\
\hline 051A34 & BREAKFAST ITEMS \\
\hline 061A11 & SHELF STABLE MILK \\
\hline 062G11 & MILK - MAINTENANCE \\
\hline 062G12 & YOGHURTS \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \(062 \mathrm{G14}\) & DESSERTS/CREAMS GAL. \\
\hline 062GX0 & DESSERTS/CREAMS GAL. \\
\hline 062GC5 & DESSERTS/CREAMS GAL. \\
\hline 062GC9 & DESSERTS/CREAMS GAL. \\
\hline 062E12 & YOGHURTS \\
\hline 071A15 & FOOD \\
\hline 081A24 & FOOD \\
\hline 082G24 & OTHER - MAINTENANCE \\
\hline 091A31 & COFFEE \\
\hline 091BBN & HOUSEHOLD \\
\hline 092G31 & COFFEE \\
\hline 092 E 31 & COFFEE \\
\hline 101A37 & COMPOSTERS/PRESERVES/TOMATOES \\
\hline 102D35 & FROZENS \\
\hline 102E35 & VEGETABLES \\
\hline 111A36 & COMPOSTERS/PRESERVES/TOMATOES \\
\hline 112E40 & FRUITS \\
\hline 121A38 & FOOD \\
\hline 121A39 & KETCHUP/MAYONEZA/MUSTARD \\
\hline 121A64 & KETCHUP/MAYONEZA/MUSTARD \\
\hline 121A65 & KETCHUP/MAYONEZA/MUSTARD \\
\hline 121A67 & FOOD \\
\hline 121AZ4 & FOOD \\
\hline 122G63 & OTHER - MAINTENANCE \\
\hline 122G67 & OTHER - MAINTENANCE \\
\hline 131A41 & COMPOSTERS/PRESERVES/TOMATOES \\
\hline 132G41 & OTHER - MAINTENANCE \\
\hline 132D41 & FROZENS \\
\hline 141A42 & OILS \\
\hline 141A43 & BUTTER/MARGARINES \\
\hline 141ABG & OILS \\
\hline 141ABD & OILS \\
\hline 142G44 & BUTTER/MARGARINES \\
\hline 142G45 & BUTTER/MARGARINES \\
\hline 142E45 & BUTTER/MARGARINES \\
\hline 152G46 & SAUSAGES \\
\hline 152GY0 & SAUSAGES \\
\hline 152E46 & SAUSAGES \\
\hline 162G50 & CHEESES - PRESERVATION \\
\hline 162EJ2 & CHEESES - DRAINING BENCHES \\
\hline 172G51 & OTHER - MAINTENANCE \\
\hline 172GM6 & OTHER - MAINTENANCE \\
\hline 172 E 51 & OTHER - DRAINING BENCHES \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 172EJ3 & OTHER - DRAINING BENCHES \\
\hline 182G52 & OTHER - MAINTENANCE \\
\hline 182E52 & OTHER - DRAINING BENCHES \\
\hline 191A53 & FOOD \\
\hline 192E53 & OTHER - DRAINING BENCHES \\
\hline 201A54 & FOOD \\
\hline 202G54 & OTHER - MAINTENANCE \\
\hline 202E54 & OTHER - DRAINING BENCHES \\
\hline 212D55 & FROZENS \\
\hline 212D56 & FROZENS \\
\hline 212E55 & FRESH FISH/MOLLUSCS \\
\hline 212E56 & FRESH FISH/MOLLUSCS \\
\hline 222G59 & DAMP POULTRY \\
\hline 222D58 & FROZENS \\
\hline 222 D 59 & FROZENS \\
\hline 222D62 & FROZENS \\
\hline 222E57 & FRESH BEEF \\
\hline 222E58 & DAMP PORK \\
\hline 222E59 & DAMP POULTRY \\
\hline 222E60 & DAMP POULTRY \\
\hline 222E61 & DAMPMEAT- LAMBS/OTHER \\
\hline 222E62 & DAMPS MEAT- LAMBS/OTHER \\
\hline 222EY1 & DAMP POULTRY \\
\hline 231A66 & EGGS \\
\hline 241A08 & BISCUITS \\
\hline 241A70 & CORN PUFF SNACK/CHIPS \\
\hline 241A71 & CORN PUFF SNACK/CHIPS \\
\hline 241A72 & FOOD \\
\hline 242E72 & OTHER - DRAINING BENCHES \\
\hline 251A33 & KAVA NON-ALCOHOLIC/TEA/JUICES \\
\hline 251A75 & KAVA NON-ALCOHOLIC/WATER \\
\hline 251A76 & KAVA NON-ALCOHOLIC/SOFT DRINKS \\
\hline 251AX3 & KAVA NON-ALCOHOLIC/SOFT DRINKS \\
\hline 251AX4 & KAVA NON-ALCOHOLIC/SOFT DRINKS \\
\hline 251AX5 & KAVA NON-ALCOHOLIC/TEA/JUICES \\
\hline 252G33 & TEAS/JUICES - MAINTENANCE \\
\hline 252G76 & OTHER - MAINTENANCE \\
\hline 252GX5 & TEAS/JUICES - MAINTENANCE \\
\hline 261A77 & KAVA ALCOHOL/BEERS \\
\hline 261A78 & KAVA ALCOHOL/WINES \\
\hline 261A79 & KAVA ALCOHOL/DRINKS \\
\hline 261A80 & KAVA ALCOHOL/DRINKS \\
\hline 261A81 & KAVA ALCOHOL/DRINKS \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 261A82 & KAVA ALCOHOL/DRINKS \\
\hline 261A83 & KAVA ALCOHOL/DRINKS \\
\hline 261A84 & KAVA ALCOHOL/DRINKS \\
\hline 261A85 & KAVA ALCOHOL/DRINKS \\
\hline 261A86 & KAVA ALCOHOL/DRINKS \\
\hline 261A88 & KAVA ALCOHOL/DRINKS \\
\hline 261AZ7 & KAVA ALCOHOL/DRINKS \\
\hline 261AX4 & KAVA ALCOHOL/DRINKS \\
\hline 281BB1 & TYPES OF PHYSICAL HEALTH \\
\hline 281BD9 & TYPES OF PHYSICAL HEALTH \\
\hline 281BE1 & TYPES OF PHYSICAL HEALTH \\
\hline 281BS7 & TYPES OF PHYSICAL HEALTH \\
\hline 281BS8 & TYPES OF PHYSICAL HEALTH \\
\hline 281BS9 & TYPES OF PHYSICAL HEALTH \\
\hline 281BT0 & TYPES OF PHYSICAL HEALTH \\
\hline 281BT3 & TYPES OF PHYSICAL HEALTH \\
\hline 291BA4 & TYPES OF PHYSICAL HEALTH \\
\hline 291BA8 & TYPES OF PHYSICAL HEALTH \\
\hline 291BC4 & TYPES OF PHYSICAL HEALTH \\
\hline 301BB2 & DETERGENTS \\
\hline 301BB3 & DETERGENTS \\
\hline 301BB4 & DETERGENTS \\
\hline 301BB5 & DETERGENTS \\
\hline 301BG1 & DETERGENTS \\
\hline 301BT2 & DETERGENTS \\
\hline 311BA8 & DETERGENTS \\
\hline 311BB6 & DETERGENTS \\
\hline 321BB7 & DETERGENTS \\
\hline 321BB8 & DETERGENTS \\
\hline 331BB9 & HOUSEHOLD \\
\hline 331BY5 & HOUSEHOLD \\
\hline 341BG3 & HOUSEHOLD \\
\hline 341BG4 & HOUSEHOLD \\
\hline 351BG8 & HOUSEHOLD \\
\hline 351BG9 & HOUSEHOLD \\
\hline 351BD1 & HOUSEHOLD \\
\hline 351BD2 & HOUSEHOLD \\
\hline 351BD3 & HOUSEHOLD \\
\hline 351BD5 & HOUSEHOLD \\
\hline 361BBL & HOUSEHOLD \\
\hline 361BG2 & DETERGENTS \\
\hline 361BG5 & HOUSEHOLD \\
\hline 361BG6 & HOUSEHOLD \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 361BG7 & HOUSEHOLD \\
\hline 361BD4 & HOUSEHOLD \\
\hline 361BD6 & BAZAAR \\
\hline 361BD8 & HOUSEHOLD \\
\hline 361BM5 & HOUSEHOLD \\
\hline 361BY4 & HOUSEHOLD \\
\hline 361BY6 & HOUSEHOLD \\
\hline 371AE2 & ANIMAL FEEDS-ACCESSORIES \\
\hline 371BE3 & ANIMAL FEEDS-ACCESSORIES \\
\hline 381BE4 & PAPER \\
\hline 381BE5 & PAPER \\
\hline 381BE6 & PAPER \\
\hline 381BE7 & PAPER \\
\hline 391BE8 & SMOKER'S ITEMS \\
\hline 401BE9 & BAZAAR \\
\hline 401BZ1 & HOUSEHOLD \\
\hline 411A14 & BABY FOOD \\
\hline 411AZ2 & BABY FOOD \\
\hline 423ZH1 & BAZAAR \\
\hline 423ZH2 & BAZAAR \\
\hline 433ZBM & BAZAAR \\
\hline 433ZH1 & BAZAAR \\
\hline 433ZH2 & BAZAAR \\
\hline 433ZH3 & BAZAAR \\
\hline 433ZH5 & BAZAAR \\
\hline 463HH1 & BAZAAR \\
\hline 463HH2 & BAZAAR \\
\hline \(463 \mathrm{HH3}\) & BAZAAR \\
\hline 463 HH 4 & BAZAAR \\
\hline 463HH5 & BAZAAR \\
\hline 473UH1 & BAZAAR \\
\hline 473UH2 & BAZAAR \\
\hline 473UH3 & BAZAAR \\
\hline 473UH4 & BAZAAR \\
\hline 483IH6 & BAZAAR \\
\hline 483IH7 & BAZAAR \\
\hline 483IH8 & BAZAAR \\
\hline 483IH9 & BAZAAR \\
\hline 493KU1 & BAZAAR \\
\hline 493KU2 & BAZAAR \\
\hline 503KU4 & HOUSEHOLD \\
\hline 503KU5 & BAZAAR \\
\hline 503KU6 & BAZAAR \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 503KU7 & BAZAAR \\
\hline 513KU8 & BAZAAR \\
\hline 513KU9 & HOUSEHOLD \\
\hline 533LI1 & GAMES \\
\hline 543LI3 & GAMES \\
\hline 553LH4 & GAMES \\
\hline \(563 \mathrm{LI5}\) & GAMES \\
\hline 563LI6 & GAMES \\
\hline 573LI7 & GAMES \\
\hline 573LI8 & GAMES \\
\hline \(583 \mathrm{LI9}\) & GAMES \\
\hline 583LK1 & GAMES \\
\hline 603MK6 & BAZAAR \\
\hline 613MK7 & BAZAAR \\
\hline 623MK8 & BAZAAR \\
\hline 633NK9 & BAZAAR \\
\hline 633NX7 & HOUSEHOLD \\
\hline 643NL1 & BAZAAR \\
\hline 653NL2 & BAZAAR \\
\hline 663NL3 & BAZAAR \\
\hline 673NL4 & BAZAAR \\
\hline 673NL5 & BAZAAR \\
\hline 673NN9 & BAZAAR \\
\hline 683JL5 & BAZAAR \\
\hline 693JL5 & BAZAAR \\
\hline \(693 J L 7\) & BAZAAR \\
\hline \(693 \mathrm{JL8}\) & BAZAAR \\
\hline 703JL5 & BAZAAR \\
\hline 723PM2 & BAZAAR \\
\hline 733PM3 & BAZAAR \\
\hline 733PN8 & HOUSEHOLD \\
\hline 743PM4 & BAZAAR \\
\hline 751BT8 & XMCODE OUT OF CATEGORIES \\
\hline 761AN1 & FOOD \\
\hline 762GN1 & OTHER - MAINTENANCE \\
\hline 771BN2 & BAZAAR \\
\hline 783RN5 & BAZAAR \\
\hline 783RN6 & BAZAAR \\
\hline 793SB0 & BAZAAR \\
\hline 793SG0 & BAZAAR \\
\hline 793SD0 & BAZAAR \\
\hline 803TA0 & BAZAAR \\
\hline 803TBJ & XMCODE OUT OF CATEGORIES \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 811BAP & BODY/HAND COSMETICS \\
\hline 811BAS & TYPES OF PHYSICAL HEALTH \\
\hline 811BJ4 & BATH FOAMS/SHAMPOO/SOFTENERS \\
\hline 811BJ6 & BATH FOAMS/SHAMPOO/SOFTENERS \\
\hline 811BJ7 & BATH FOAMS/SHAMPOO/SOFTENERS \\
\hline 811BJ9 & BATH FOAMS/SHAMPOO/SOFTENERS \\
\hline 811BO1 & BODY/HAND COSMETICS \\
\hline 811BO2 & BODY/HAND COSMETICS \\
\hline 811BO3 & BODY/HAND COSMETICS \\
\hline 811BO4 & BODY/HAND COSMETICS \\
\hline 811BO5 & BODY/HAND COSMETICS \\
\hline 811BO6 & BODY/HAND COSMETICS \\
\hline 811BO8 & BODY/HAND COSMETICS \\
\hline 811BO9 & BODY/HAND COSMETICS \\
\hline 811BP0 & BODY/HAND COSMETICS \\
\hline 811BP1 & BODY/HAND COSMETICS \\
\hline 811BP2 & TYPES OF PHYSICAL HEALTH \\
\hline 811BP3 & TYPES OF PHYSICAL HEALTH \\
\hline 821BA5 & FACE/HEAD COSMETICS \\
\hline 821BO4 & FACE/HEAD COSMETICS \\
\hline 821BP6 & FACE/HEAD COSMETICS \\
\hline 821BP7 & FACE/HEAD COSMETICS \\
\hline \(831 \mathrm{B90}\) & BATH FOAMS/SHAMPOO/SOFTENERS \\
\hline 831BA7 & FACE/HEAD COSMETICS \\
\hline 831BP8 & BATH FOAMS/SHAMPOO/SOFTENERS \\
\hline 831BP9 & BATH FOAMS/SHAMPOO/SOFTENERS \\
\hline 831BR1 & FACE/HEAD COSMETICS \\
\hline 831BR2 & FACE/HEAD COSMETICS \\
\hline 831BC8 & FACE/HEAD COSMETICS \\
\hline 841BO4 & BODY/HAND COSMETICS \\
\hline 841BR4 & TYPES OF PHYSICAL HEALTH \\
\hline 841BR5 & TYPES OF PHYSICAL HEALTH \\
\hline 841BR6 & BODY/HAND COSMETICS \\
\hline 851BR7 & TYPES OF ORAL HEALTH \\
\hline 851BR8 & TYPES OF ORAL HEALTH \\
\hline 851BR9 & TYPES OF ORAL HEALTH \\
\hline 851BS0 & TYPES OF ORAL HEALTH \\
\hline 851BS1 & FACE/HEAD COSMETICS \\
\hline 851BS2 & TYPES OF ORAL HEALTH \\
\hline 851BS3 & TYPES OF ORAL HEALTH \\
\hline 851BX2 & TYPES OF ORAL HEALTH \\
\hline \(861 \mathrm{B98}\) & FACE/HEAD COSMETICS \\
\hline 861BS4 & FACE/HEAD COSMETICS \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 861BS6 & FACE/HEAD COSMETICS \\
\hline 861BT6 & HOUSEHOLD \\
\hline 861BC0 & BODY/HAND COSMETICS \\
\hline 873TY8 & BAZAAR \\
\hline 902DX6 & FROZENS \\
\hline 913HX8 & BAZAAR \\
\hline 923JC1 & BAZAAR \\
\hline 933JC6 & BAZAAR \\
\hline 943XC7 & BAZAAR \\
\hline 943XV1 & BAZAAR \\
\hline 951A01 & PASTA \\
\hline 951 A 02 & FOOD \\
\hline 951A04 & PASTRIES/SWEETS \\
\hline 951A05 & RICE/PULSES \\
\hline 951A06 & RICE/PULSES \\
\hline 951A07 & FOOD \\
\hline 951A10 & BREAKFAST CEREALS \\
\hline 951A15 & FOOD \\
\hline 951A16 & BREAKFAST ITEMS \\
\hline 951A22 & PASTRIES/SWEETS \\
\hline 951A23 & PASTRIES/SWEETS \\
\hline 951A26 & CHOCOLATES \\
\hline 951A37 & COMPOSTERS/PRESERVES/TOMATOES \\
\hline 951A38 & FOOD \\
\hline 951A39 & KETCHUP/MAYONEZA/MUSTARD \\
\hline 951A41 & COMPOSTERS/PRESERVES/TOMATOES \\
\hline 951A42 & OILS \\
\hline 951A52 & FOOD \\
\hline 951A53 & FOOD \\
\hline 951A54 & FOOD \\
\hline 951A64 & KETCHUP/MAYONEZA/MUSTARD \\
\hline 951A67 & FOOD \\
\hline 951A69 & FOOD \\
\hline 951A71 & FOOD \\
\hline 951 A 72 & FOOD \\
\hline 951A77 & KAVA ALCOHOL/WINES \\
\hline 951A78 & KAVA ALCOHOL/WINES \\
\hline 951AN1 & BREAKFAST ITEMS \\
\hline 951AX4 & ALOE VERA BEVERAGE \\
\hline 952G11 & MILK - MAINTENANCE \\
\hline 952G12 & YOGHURTS \\
\hline 952G44 & BUTTER/MARGARINES \\
\hline 952G45 & BUTTER/MARGARINES \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 952G46 & SAUSAGES \\
\hline 952G50 & CHEESES - PRESERVATION \\
\hline \(952 \mathrm{G77}\) & TEAS/JUICES - MAINTENANCE \\
\hline 952GX5 & FROZENS \\
\hline 952D35 & FROZENS \\
\hline 952EJ2 & CHEESES - DRAINING BENCHES \\
\hline 963 CVO & XMCODE OUT OF CATEGORIES \\
\hline AA1A54 & FOOD \\
\hline AA1A72 & FOOD \\
\hline AB1A05 & RICE/PULSES \\
\hline AB1A11 & SHELF STABLE MILK \\
\hline AB1A35 & COMPOSTERS/PRESERVES/TOMATOES \\
\hline AB1A38 & FOOD \\
\hline AB1AAR & PASTA \\
\hline AB1AT6 & FOOD \\
\hline AH1BBC & SMOKER'S ITEMS \\
\hline AK2E04 & BAKE OFF / HOT CORNER \\
\hline AK2E59 & BAKE OFF / HOT CORNER \\
\hline AK2EBH & BAKE OFF / HOT CORNER \\
\hline AK2EBU & BAKE OFF / HOT CORNER \\
\hline AK2EBI & BAKE OFF / HOT CORNER \\
\hline AK2EBV & BAKE OFF / HOT CORNER \\
\hline AT1AAT & XMCODE OUT OF CATEGORIES \\
\hline
\end{tabular}

Error! Reference source not found.
\(===\) Clustering model (full training set) \(==\)

\section*{Simple K Means with 2 Clusters}

Number of iterations: 2
Within cluster sum of squared errors: \(\mathbf{1 1 1 1 2 . 0}\)
Missing values globally replaced with mean/mode
Final cluster centroids:
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{Attribute} & \multicolumn{3}{|c|}{Cluster\#} \\
\hline & Full Data
(108.0) & \[
\begin{array}{r}
0 \\
(7.0)
\end{array}
\] & \[
\begin{gathered}
1 \\
(101.0)
\end{gathered}
\] \\
\hline GENDER & WOMAN & WOMAN & WOMAN \\
\hline AGE & 32 & 38 & 32 \\
\hline 011A01 & 2 & 81 & 2 \\
\hline 011A02 & 1 & 33 & 1 \\
\hline 011A03 & 1 & 1 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 011A04 & 1 & 1 & 1 \\
\hline 011AAY & 1 & 45 & 1 \\
\hline 011AAF & 1 & 96 & 1 \\
\hline 011AAX & 3 & 13 & 3 \\
\hline 011AAC & 2 & 15 & 2 \\
\hline 011AAV & 2 & 2 & 2 \\
\hline 012G01 & 1 & 1 & 1 \\
\hline 012GZ5 & 1 & 1 & 1 \\
\hline 012D04 & 1 & 1 & 1 \\
\hline 012 DBA & 1 & 11 & 1 \\
\hline 012 DBB & 1 & 1 & 1 \\
\hline 012DZ5 & 1 & 2 & 1 \\
\hline 012DF0 & 1 & 2 & 1 \\
\hline 012DF3 & 1 & 8 & 1 \\
\hline 021A05 & 2 & 31 & 2 \\
\hline 021A06 & 1 & 14 & 1 \\
\hline 021E05 & 1 & 2 & 1 \\
\hline 021E06 & 1 & 1 & 1 \\
\hline 031A07 & 1 & 27 & 1 \\
\hline 031A68 & 1 & 17 & 1 \\
\hline 031A73 & 1 & 26 & 1 \\
\hline 031A74 & 1 & 1 & 1 \\
\hline 041 A08 & 3 & 69 & 3 \\
\hline 041 A0 9 & 1 & 1 & 1 \\
\hline 041 A16 & 1 & 1 & 1 \\
\hline 041 A17 & 1 & 3 & 1 \\
\hline 041 A18 & 1 & 1 & 1 \\
\hline 041 A19 & 1 & 1 & 1 \\
\hline 041 A20 & 1 & 1 & 1 \\
\hline 041 A21 & 1 & 56 & 1 \\
\hline 041 A22 & 1 & 1 & 1 \\
\hline 041 A23 & 1 & 14 & 1 \\
\hline 041 A25 & 1 & 72 & 1 \\
\hline 041 A26 & 1 & 12 & 1 \\
\hline 041 A27 & 1 & 12 & 1 \\
\hline 041 A28 & 2 & 19 & 2 \\
\hline \(041 \mathrm{AC2}\) & 2 & 5 & 2 \\
\hline 042G19 & 1 & 1 & 1 \\
\hline 042D21 & 1 & 1 & 1 \\
\hline 042DZ3 & 1 & 14 & 1 \\
\hline 042E20 & 1 & 1 & 1 \\
\hline 051A10 & 1 & 35 & 1 \\
\hline 051A29 & 1 & 10 & 1 \\
\hline 051A30 & 1 & 1 & 1 \\
\hline 051A33 & 1 & 1 & 1 \\
\hline 051A34 & 1 & 8 & 1 \\
\hline 061 A11 & 4 & 13 & 4 \\
\hline \(062 \mathrm{G11}\) & 3 & 119 & 3 \\
\hline \(062 \mathrm{G12}\) & 1 & 84 & 1 \\
\hline \(062 \mathrm{G14}\) & 1 & 10 & 1 \\
\hline \(062 \mathrm{GX0}\) & 1 & 1 & 1 \\
\hline 062 GC 5 & 1 & 37 & 1 \\
\hline 062 GC 9 & 1 & 1 & 1 \\
\hline 062 E 12 & 2 & 2 & 2 \\
\hline 071A15 & 1 & 29 & 1 \\
\hline 081A24 & 5 & 42 & 5 \\
\hline 082G24 & 1 & 5 & 1 \\
\hline 091A31 & 2 & 61 & 2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 091 BBN & 1 & 1 & 1 \\
\hline 092G31 & 1 & 1 & 1 \\
\hline 092E31 & 2 & 17 & 2 \\
\hline 101A37 & 4 & 52 & 4 \\
\hline 102D35 & 1 & 18 & 1 \\
\hline 102E35 & 1 & 214 & 1 \\
\hline 111A36 & 1 & 1 & 1 \\
\hline 112E40 & 11 & 120 & 11 \\
\hline 121A38 & 1 & 3 & 1 \\
\hline 121A39 & 1 & 6 & 1 \\
\hline 121A64 & 1 & 16 & 1 \\
\hline 121A65 & 1 & 9 & 1 \\
\hline 121A67 & 1 & 8 & 1 \\
\hline 121AZ4 & 1 & 2 & 1 \\
\hline 122G63 & 2 & 2 & 2 \\
\hline 122G67 & 1 & 1 & 1 \\
\hline 131A41 & 2 & 24 & 2 \\
\hline 132G41 & 1 & 1 & 1 \\
\hline 132D41 & 1 & 14 & 1 \\
\hline 141A42 & 1 & 1 & 1 \\
\hline 141A43 & 1 & 8 & 1 \\
\hline 141 ABG & 1 & 1 & 1 \\
\hline 141 ABD & 1 & 14 & 1 \\
\hline 142G44 & 1 & 17 & 1 \\
\hline 142G45 & 2 & 15 & 2 \\
\hline 142E45 & 1 & 1 & 1 \\
\hline 152G46 & 2 & 41 & 2 \\
\hline 152GY0 & 1 & 1 & 1 \\
\hline 152E46 & 4 & 74 & 4 \\
\hline 162G50 & 1 & 66 & 1 \\
\hline 162EJ2 & 1 & 142 & 1 \\
\hline 172G51 & 1 & 1 & 1 \\
\hline 172 GM 6 & 1 & 1 & 1 \\
\hline 172E51 & 1 & 2 & 1 \\
\hline 172EJ3 & 1 & 1 & 1 \\
\hline 182G52 & 1 & 5 & 1 \\
\hline 182E52 & 1 & 5 & 1 \\
\hline 191A53 & 1 & 1 & 1 \\
\hline 192E53 & 1 & 4 & 1 \\
\hline 201A54 & 1 & 1 & 1 \\
\hline 202G54 & 1 & 1 & 1 \\
\hline 202E54 & 2 & 2 & 2 \\
\hline 212D55 & 1 & 7 & 1 \\
\hline 212D56 & 1 & 7 & 1 \\
\hline 212E55 & 1 & 2 & 1 \\
\hline 212E56 & 2 & 2 & 2 \\
\hline 222G59 & 1 & 2 & 1 \\
\hline 222D58 & 1 & 1 & 1 \\
\hline 222D59 & 1 & 9 & 1 \\
\hline 222D62 & 1 & 1 & 1 \\
\hline 222E57 & 1 & 35 & 1 \\
\hline 222E58 & 1 & 26 & 1 \\
\hline 222E59 & 5 & 35 & 5 \\
\hline 222E60 & 2 & 2 & 2 \\
\hline 222E61 & 2 & 5 & 2 \\
\hline 222E62 & 1 & 1 & 1 \\
\hline 222EY1 & 1 & 2 & 1 \\
\hline 231A66 & 2 & 51 & 2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 241A08 & 1 & 19 & 1 \\
\hline 241A70 & 1 & 8 & 1 \\
\hline 241A71 & 2 & 40 & 2 \\
\hline 241A72 & 1 & 12 & 1 \\
\hline 242E72 & 1 & 5 & 1 \\
\hline 251A33 & 1 & 8 & 1 \\
\hline 251A75 & 8 & 108 & 8 \\
\hline 251A76 & 1 & 10 & 1 \\
\hline 251AX3 & 2 & 4 & 2 \\
\hline 251AX4 & 3 & 54 & 3 \\
\hline 251AX5 & 1 & 21 & 1 \\
\hline 252G33 & 1 & 1 & 1 \\
\hline 252G76 & 1 & 1 & 1 \\
\hline 252GX5 & 1 & 9 & 1 \\
\hline 261A77 & 1 & 21 & 1 \\
\hline 261A78 & 1 & 18 & 1 \\
\hline 261A79 & 1 & 1 & 1 \\
\hline 261A80 & 1 & 1 & 1 \\
\hline 261A81 & 1 & 1 & 1 \\
\hline 261A82 & 1 & 1 & 1 \\
\hline 261A83 & 1 & 1 & 1 \\
\hline 261A84 & 1 & 1 & 1 \\
\hline 261A85 & 1 & 1 & 1 \\
\hline 261A86 & 1 & 1 & 1 \\
\hline 261A88 & 1 & 1 & 1 \\
\hline 261 Az7 & 1 & 1 & 1 \\
\hline 261AX4 & 1 & 1 & 1 \\
\hline 281BB1 & 2 & 9 & 2 \\
\hline 281BD9 & 1 & 1 & 1 \\
\hline 281BE1 & 1 & 6 & 1 \\
\hline 281BS 7 & 1 & 8 & 1 \\
\hline 281BS8 & 1 & 3 & 1 \\
\hline 281BS9 & 1 & 8 & 1 \\
\hline 281BT0 & 1 & 1 & 1 \\
\hline 281BT3 & 1 & 1 & 1 \\
\hline 291BA4 & 1 & 5 & 1 \\
\hline 291BA8 & 1 & 22 & 1 \\
\hline 291BC4 & 1 & 1 & 1 \\
\hline 301 BB 2 & 1 & 37 & 1 \\
\hline 301 BB 3 & 1 & 22 & 1 \\
\hline 301 BB 4 & 2 & 38 & 2 \\
\hline 301 BB 5 & 1 & 19 & 1 \\
\hline \(301 \mathrm{BG1}\) & 1 & 1 & 1 \\
\hline 301 BT 2 & 1 & 1 & 1 \\
\hline 311 BA 8 & 1 & 1 & 1 \\
\hline 311 BB 6 & 1 & 3 & 1 \\
\hline 321 BB 7 & 1 & 1 & 1 \\
\hline 321 BB 8 & 1 & 6 & 1 \\
\hline 331 BB 9 & 1 & 1 & 1 \\
\hline 331 BY 5 & 1 & 1 & 1 \\
\hline 341 BG 3 & 1 & 14 & 1 \\
\hline 341 BG 4 & 1 & 6 & 1 \\
\hline 351 BG 8 & 1 & 6 & 1 \\
\hline 351BG9 & 1 & 4 & 1 \\
\hline 351 BD 1 & 1 & 2 & 1 \\
\hline 351BD2 & 1 & 1 & 1 \\
\hline 351 BD 3 & 1 & 6 & 1 \\
\hline 351BD5 & 1 & 11 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 361 BBL & 1 & 5 & 1 \\
\hline 361BG2 & 1 & 1 & 1 \\
\hline 361BG5 & 1 & 15 & 1 \\
\hline \(361 \mathrm{BG6}\) & 1 & 1 & 1 \\
\hline 361BG7 & 3 & 25 & 3 \\
\hline 361 BD 4 & 1 & 1 & 1 \\
\hline 361 BD 6 & 1 & 1 & 1 \\
\hline 361 BD 8 & 1 & 2 & 1 \\
\hline 361 BM 5 & 1 & 15 & 1 \\
\hline 361BY4 & 1 & 1 & 1 \\
\hline 361BY6 & 1 & 2 & 1 \\
\hline 371AE2 & 1 & 9 & 1 \\
\hline 371BE3 & 1 & 2 & 1 \\
\hline 381BE4 & 2 & 21 & 2 \\
\hline 381BE5 & 1 & 28 & 1 \\
\hline 381BE6 & 2 & 23 & 2 \\
\hline 381BE7 & 1 & 25 & 1 \\
\hline 391BE8 & 1 & 27 & 1 \\
\hline 401BE9 & 1 & 7 & 1 \\
\hline 401BZ1 & 1 & 1 & 1 \\
\hline 411A14 & 1 & 1 & 1 \\
\hline 411AZ2 & 1 & 1 & 1 \\
\hline 4237H1 & 1 & 1 & 1 \\
\hline 4237H2 & 1 & 1 & 1 \\
\hline 433 ZBM & 1 & 1 & 1 \\
\hline 4337H1 & 1 & 1 & 1 \\
\hline 433ZH2 & 1 & 4 & 1 \\
\hline 4332H3 & 1 & 1 & 1 \\
\hline 433ZH5 & 1 & 1 & 1 \\
\hline 463HH1 & 1 & 1 & 1 \\
\hline 463 HH 2 & 1 & 1 & 1 \\
\hline 463 HH 3 & 1 & 8 & 1 \\
\hline 463 HH 4 & 1 & 1 & 1 \\
\hline 463 HH 5 & 1 & 1 & 1 \\
\hline 473UH1 & 1 & 1 & 1 \\
\hline 473UH2 & 1 & 3 & 1 \\
\hline 473UH3 & 1 & 1 & 1 \\
\hline 473UH4 & 1 & 1 & 1 \\
\hline 4831H6 & 1 & 9 & 1 \\
\hline 483IH7 & 1 & 2 & 1 \\
\hline 4831H8 & 1 & 1 & 1 \\
\hline 483IH9 & 1 & 4 & 1 \\
\hline \(493 \mathrm{KU1}\) & 1 & 1 & 1 \\
\hline 493KU2 & 1 & 1 & 1 \\
\hline 503KU4 & 1 & 22 & 1 \\
\hline 503KU5 & 1 & 1 & 1 \\
\hline 503KU6 & 1 & 1 & 1 \\
\hline 503KU7 & 1 & 3 & 1 \\
\hline 513KU8 & 1 & 1 & 1 \\
\hline 513 KU 9 & 1 & 3 & 1 \\
\hline 533LI1 & 1 & 1 & 1 \\
\hline 543LI3 & 1 & 1 & 1 \\
\hline 553LH4 & 1 & 1 & 1 \\
\hline 563LI5 & 1 & 1 & 1 \\
\hline 563LI6 & 1 & 1 & 1 \\
\hline 573LI7 & 1 & 1 & 1 \\
\hline 573LI8 & 1 & 1 & 1 \\
\hline 583LI9 & 1 & 1 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 583LK1 & 1 & 1 & 1 \\
\hline 603MK6 & 1 & 1 & 1 \\
\hline 613MK7 & 1 & 1 & 1 \\
\hline 623MK8 & 1 & 1 & 1 \\
\hline 633NK9 & 1 & 4 & 1 \\
\hline 633NX7 & 2 & 11 & 2 \\
\hline 643 NL 1 & 1 & 5 & 1 \\
\hline 653NL2 & 1 & 5 & 1 \\
\hline 663NL3 & 2 & 8 & 2 \\
\hline 673 NL 4 & 1 & 5 & 1 \\
\hline 673NL5 & 1 & 1 & 1 \\
\hline 673NN9 & 1 & 4 & 1 \\
\hline 683JL5 & 1 & 1 & 1 \\
\hline 693JL5 & 1 & 1 & 1 \\
\hline 693JL7 & 1 & 1 & 1 \\
\hline 693JL8 & 1 & 1 & 1 \\
\hline 703JL5 & 1 & 5 & 1 \\
\hline 723 PM 2 & 1 & 1 & 1 \\
\hline 733 PM 3 & 1 & 1 & 1 \\
\hline 733 PN 8 & 1 & 1 & 1 \\
\hline 743 PM 4 & 1 & 1 & 1 \\
\hline 751BT8 & 1 & 1 & 1 \\
\hline 761AN1 & 1 & 23 & 1 \\
\hline \(762 \mathrm{GN1}\) & 1 & 21 & 1 \\
\hline 771 BN 2 & 1 & 1 & 1 \\
\hline 783RN5 & 1 & 1 & 1 \\
\hline 783RN6 & 1 & 1 & 1 \\
\hline 793SB0 & 1 & 1 & 1 \\
\hline 793SG0 & 1 & 1 & 1 \\
\hline 793SD0 & 1 & 3 & 1 \\
\hline \(803 \mathrm{TA0}\) & 1 & 1 & 1 \\
\hline 803 TBJ & 1 & 1 & 1 \\
\hline 811BAP & 1 & 4 & 1 \\
\hline 811 BAS & 1 & 2 & 1 \\
\hline 811 BJ 4 & 1 & 8 & 1 \\
\hline 811BJ6 & 1 & 1 & 1 \\
\hline 811BJ7 & 2 & 4 & 2 \\
\hline 811 BJ 9 & 1 & 1 & 1 \\
\hline 811B01 & 1 & & 1 \\
\hline 811B02 & 1 & 9 & 1 \\
\hline 811B03 & 1 & 1 & 1 \\
\hline 811B04 & 1 & 7 & 1 \\
\hline 811B05 & 1 & 1 & 1 \\
\hline 811B06 & 1 & 1 & 1 \\
\hline 811B08 & 1 & 1 & 1 \\
\hline 811B09 & 1 & 1 & 1 \\
\hline 811BP0 & 1 & 2 & 1 \\
\hline \(811 \mathrm{BP1}\) & 1 & 1 & 1 \\
\hline 811 BP 2 & 2 & 4 & 2 \\
\hline 811BP3 & 1 & 1 & 1 \\
\hline 821BA5 & 1 & 1 & 1 \\
\hline 821B04 & 1 & 2 & 1 \\
\hline 821 BP 6 & 1 & 13 & 1 \\
\hline 821 BP 7 & 1 & 1 & 1 \\
\hline 831B90 & 2 & 15 & 2 \\
\hline \(831 \mathrm{BA7}\) & 1 & 10 & 1 \\
\hline 831 BP 8 & 1 & 4 & 1 \\
\hline 831BP9 & 1 & 11 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 831BR1 & 1 & 5 & 1 \\
\hline 831BR2 & 1 & 1 & 1 \\
\hline 831BC8 & 1 & 1 & 1 \\
\hline 841B04 & 1 & 1 & 1 \\
\hline 841BR4 & 1 & 2 & 1 \\
\hline 841 BR5 & 1 & 7 & 1 \\
\hline 841BR6 & 1 & 1 & 1 \\
\hline 851BR7 & 1 & 21 & 1 \\
\hline 851BR8 & 1 & 1 & 1 \\
\hline 851BR9 & 1 & 1 & 1 \\
\hline 851BS0 & 1 & 1 & 1 \\
\hline 851BS1 & 1 & 1 & 1 \\
\hline 851BS2 & 1 & 7 & 1 \\
\hline 851BS3 & 1 & 1 & 1 \\
\hline 851BX2 & 1 & 1 & 1 \\
\hline 861B98 & 1 & 2 & 1 \\
\hline 861BS 4 & 1 & 3 & 1 \\
\hline 861BS 6 & 1 & 4 & 1 \\
\hline 861BT6 & 1 & 3 & 1 \\
\hline 861BC0 & 1 & 1 & 1 \\
\hline 873TY8 & 1 & 1 & 1 \\
\hline 902DX6 & 1 & 1 & 1 \\
\hline 913HX8 & 1 & 1 & 1 \\
\hline 923JC1 & 1 & 1 & 1 \\
\hline 933JC6 & 1 & 1 & 1 \\
\hline 943XC7 & 1 & 2 & 1 \\
\hline \(943 \mathrm{XV1}\) & 1 & 1 & 1 \\
\hline 951A01 & 1 & 1 & 1 \\
\hline 951A02 & 1 & 1 & 1 \\
\hline 951A04 & 1 & 1 & 1 \\
\hline 951A05 & 1 & 1 & 1 \\
\hline 951A06 & 1 & 1 & 1 \\
\hline \(951 A 07\) & 1 & 1 & 1 \\
\hline 951A10 & 1 & 1 & 1 \\
\hline 951A15 & 1 & 1 & 1 \\
\hline 951 A16 & 1 & 1 & 1 \\
\hline 951A22 & 1 & 1 & 1 \\
\hline 951A23 & 1 & 1 & 1 \\
\hline 951A26 & 1 & 1 & 1 \\
\hline 951A37 & 1 & 1 & 1 \\
\hline 951A38 & 2 & 2 & 2 \\
\hline 951A39 & 1 & 1 & 1 \\
\hline 951A41 & 1 & 1 & 1 \\
\hline 951A42 & 1 & 1 & 1 \\
\hline 951A52 & 1 & 1 & 1 \\
\hline 951A53 & 2 & 2 & 2 \\
\hline 951A54 & 1 & 1 & 1 \\
\hline 951A64 & 1 & 1 & 1 \\
\hline 951A67 & 1 & 1 & 1 \\
\hline 951A69 & 5 & 5 & 5 \\
\hline 951A71 & 1 & 1 & 1 \\
\hline 951 A72 & 1 & 3 & 1 \\
\hline 951 A77 & 1 & 1 & 1 \\
\hline 951 A78 & 1 & 1 & 1 \\
\hline 951AN1 & 1 & 1 & 1 \\
\hline 951AX4 & 1 & 1 & 1 \\
\hline 952G11 & 1 & 9 & 1 \\
\hline 952G12 & 1 & 1 & 1 \\
\hline
\end{tabular}
\begin{tabular}{llrl}
\(952 G 44\) & 1 & 1 & 1 \\
\(952 G 45\) & 1 & 1 & 1 \\
\(952 G 46\) & 1 & 1 & 1 \\
\(952 G 50\) & 1 & 1 & 1 \\
\(952 G 77\) & 1 & 1 & 1 \\
\(952 G X 5\) & 1 & 1 & 1 \\
\(952 D 35\) & 1 & 2 & 1 \\
952 EJ2 & 1 & 1 & 1 \\
\(963 C V 0\) & 3 & 200 & 3 \\
AA1A54 & 1 & 1 & 1 \\
AA1A72 & 1 & 1 & 1 \\
AB1A05 & 1 & 1 & 1 \\
AB1A11 & 1 & 1 & 1 \\
AB1A35 & 1 & 1 & 1 \\
AB1A38 & 1 & 2 & 1 \\
AB1AAR & 1 & 1 & 1 \\
AB1AT6 & 1 & 1 & 1 \\
AH1BBC & 1 & 8 & 1 \\
AK2E04 & 1 & 1 & 1 \\
AK2E59 & 1 & 1 & 1 \\
AK2EBH & 1 & 1 & 1 \\
AK2EBU & 1 & 1 & 1 \\
AK2EBI & 1 & 1 & 1 \\
AK2EBV & 1 & 1 & 1 \\
AT1AAT & 1 & 1 &
\end{tabular}
\(===\) Model and evaluation on training set \(===\)

Clustered Instances
\(0 \quad 7\) ( \(6 \%\) )
101 (94\%)

\section*{Simple K Means with 3 Clusters}

Number of iterations: 2
Within cluster sum of squared errors: 11051.0
Missing values globally replaced with mean/mode
Final cluster centroids:
\begin{tabular}{lcccc} 
Attribute & \begin{tabular}{c} 
Full Data \\
\((108.0)\)
\end{tabular} & \begin{tabular}{r} 
Cluster\# \\
\((7.0)\)
\end{tabular} & \begin{tabular}{c}
1 \\
\((99.0)\)
\end{tabular} & \((2.0)\) \\
\(=======================================================\) \\
GENDER & WOMAN & WOMAN & WOMAN & WOMAN \\
AGE & 32 & 38 & 32 & 41 \\
011A01 & 2 & 81 & 2 & 4 \\
011A02 & 1 & 33 & 1 & 9 \\
011A03 & 1 & 1 & 1 & 1 \\
011A04 & 1 & 1 & 1 & 1 \\
011AAY & 1 & 45 & 1 & 8 \\
011AAF & 1 & 96 & 1 & 1
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 011AAX & 3 & 13 & 3 & 2 \\
\hline 011AAC & 2 & 15 & 2 & 4 \\
\hline 011AAV & 2 & 2 & 2 & 2 \\
\hline 012G01 & 1 & 1 & 1 & 3 \\
\hline 012GZ5 & 1 & 1 & 1 & 1 \\
\hline 012D04 & 1 & 1 & 1 & 1 \\
\hline 012 DBA & 1 & 11 & 1 & 1 \\
\hline 012 DBB & 1 & 1 & 1 & 1 \\
\hline 012DZ5 & 1 & 2 & 1 & 1 \\
\hline 012DF0 & 1 & 2 & 1 & 1 \\
\hline 012DF3 & 1 & 8 & 1 & 1 \\
\hline 021A05 & 2 & 31 & 2 & 3 \\
\hline 021A06 & 1 & 14 & 1 & 1 \\
\hline 021E05 & 1 & 2 & 1 & 1 \\
\hline 021E06 & 1 & 1 & 1 & 1 \\
\hline 031A07 & 1 & 27 & 1 & 2 \\
\hline 031A68 & 1 & 17 & 1 & 1 \\
\hline 031A73 & 1 & 26 & 1 & 1 \\
\hline 031A74 & 1 & 1 & 1 & 1 \\
\hline 041 A08 & 3 & 69 & 3 & 4 \\
\hline 041 A0 9 & 1 & 1 & 1 & 1 \\
\hline 041 A16 & 1 & 1 & 1 & 1 \\
\hline 041 A17 & 1 & 3 & 1 & 1 \\
\hline 041 A18 & 1 & 1 & 1 & 1 \\
\hline 041 A19 & 1 & 1 & 1 & 1 \\
\hline 041A20 & 1 & 1 & 1 & 1 \\
\hline 041 A21 & 1 & 56 & 1 & 1 \\
\hline 041A22 & 1 & 1 & 1 & 1 \\
\hline 041 A23 & 1 & 14 & 1 & 1 \\
\hline 041A25 & 1 & 72 & 1 & 8 \\
\hline 041 A26 & 1 & 12 & 1 & 1 \\
\hline 041 A27 & 1 & 12 & 1 & 1 \\
\hline 041 A28 & 2 & 19 & 2 & 2 \\
\hline 041 AC 2 & 2 & 5 & 2 & 3 \\
\hline \(042 \mathrm{G19}\) & 1 & 1 & 1 & 1 \\
\hline 042D21 & 1 & 1 & 1 & 1 \\
\hline 042DZ3 & 1 & 14 & 1 & 2 \\
\hline 042E20 & 1 & 1 & 1 & 1 \\
\hline 051 A10 & 1 & 35 & 1 & 1 \\
\hline 051A29 & 1 & 10 & 1 & 1 \\
\hline 051A30 & 1 & 1 & 1 & 1 \\
\hline 051A33 & 1 & 1 & 1 & 1 \\
\hline 051A34 & 1 & 8 & 1 & 1 \\
\hline 061A11 & 4 & 13 & 4 & 7 \\
\hline \(062 \mathrm{G11}\) & 3 & 119 & 3 & 20 \\
\hline \(062 \mathrm{G12}\) & 1 & 84 & 1 & 17 \\
\hline \(062 \mathrm{G1} 4\) & 1 & 10 & 1 & 2 \\
\hline 062 GX 0 & 1 & 1 & 1 & 1 \\
\hline 062 GC 5 & 1 & 37 & 1 & 1 \\
\hline 062 GC 9 & 1 & 1 & 1 & 1 \\
\hline 062E12 & 2 & 2 & 2 & 1 \\
\hline 071A15 & 1 & 29 & 1 & 8 \\
\hline 081A24 & 5 & 42 & 5 & 10 \\
\hline 082 G 24 & 1 & 5 & 1 & 4 \\
\hline 091A31 & 2 & 61 & 2 & 3 \\
\hline 091 BBN & 1 & 1 & 1 & 1 \\
\hline 092G31 & 1 & 1 & 1 & 1 \\
\hline 092E31 & 2 & 17 & 2 & 2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 101A37 & 4 & 52 & 4 & 4 \\
\hline 102D35 & 1 & 18 & 1 & 7 \\
\hline 102E35 & 1 & 214 & 1 & 34 \\
\hline 111A36 & 1 & 1 & 1 & 1 \\
\hline 112E40 & 11 & 120 & 11 & 39 \\
\hline 121A38 & 1 & 3 & 1 & 1 \\
\hline 121A39 & 1 & 6 & 1 & 1 \\
\hline 121A64 & 1 & 16 & 1 & 1 \\
\hline 121A65 & 1 & 9 & 1 & 1 \\
\hline 121A67 & 1 & 8 & 1 & 3 \\
\hline 121AZ4 & 1 & 2 & 1 & 1 \\
\hline 122G63 & 2 & 2 & 2 & 2 \\
\hline 122G67 & 1 & 1 & 1 & 1 \\
\hline 131A41 & 2 & 24 & 2 & 7 \\
\hline 132G41 & 1 & 1 & 1 & 1 \\
\hline 132D41 & 1 & 14 & 1 & 1 \\
\hline 141A42 & 1 & 1 & 1 & 1 \\
\hline 141A43 & 1 & 8 & 1 & 1 \\
\hline 141 ABG & 1 & 1 & 1 & 1 \\
\hline 141 ABD & 1 & 14 & 1 & 1 \\
\hline 142G44 & 1 & 17 & 1 & 1 \\
\hline 142G45 & 2 & 15 & 2 & 2 \\
\hline 142E45 & 1 & 1 & 1 & 1 \\
\hline 152G46 & 2 & 41 & 2 & 10 \\
\hline 152 GY 0 & 1 & 1 & 1 & 1 \\
\hline 152E46 & 4 & 74 & 4 & 8 \\
\hline 162 G 50 & 1 & 66 & 1 & 6 \\
\hline 162EJ2 & 1 & 142 & 1 & 22 \\
\hline 172G51 & 1 & 1 & 1 & 1 \\
\hline 172 GM 6 & 1 & 1 & 1 & 1 \\
\hline 172E51 & 1 & 2 & 1 & 2 \\
\hline 172EJ3 & 1 & 1 & 1 & 1 \\
\hline 182G52 & 1 & 5 & 1 & 1 \\
\hline 182E52 & 1 & 5 & 1 & 1 \\
\hline 191A53 & 1 & 1 & 1 & 1 \\
\hline 192E53 & 1 & 4 & 1 & 4 \\
\hline 201A54 & 1 & 1 & 1 & 1 \\
\hline 202G54 & 1 & 1 & 1 & 1 \\
\hline 202E54 & 2 & 2 & 2 & 2 \\
\hline 212D55 & 1 & 7 & 1 & 7 \\
\hline 212D56 & 1 & 7 & 1 & 2 \\
\hline 212E55 & 1 & 2 & 1 & 1 \\
\hline 212E56 & 2 & 2 & 2 & 2 \\
\hline 222G59 & 1 & 2 & 1 & 1 \\
\hline 222D58 & 1 & 1 & 1 & 1 \\
\hline 222D59 & 1 & 9 & 1 & 1 \\
\hline 222D62 & 1 & 1 & 1 & 1 \\
\hline 222E57 & 1 & 35 & 1 & 10 \\
\hline 222E58 & 1 & 26 & 1 & 10 \\
\hline 222E59 & 5 & 35 & 5 & 15 \\
\hline 222E60 & 2 & 2 & 2 & 2 \\
\hline 222E61 & 2 & 5 & 2 & 1 \\
\hline 222E62 & 1 & 1 & 1 & 1 \\
\hline 222EY1 & 1 & 2 & 1 & 1 \\
\hline 231A66 & 2 & 51 & 2 & 8 \\
\hline 241A08 & 1 & 19 & 1 & 1 \\
\hline 241A70 & 1 & 8 & 1 & 3 \\
\hline 241A71 & 2 & 40 & 2 & 13 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 241A72 & 1 & 12 & 1 & 4 \\
\hline 242E72 & 1 & 5 & 1 & 1 \\
\hline 251A33 & 1 & 8 & 1 & 1 \\
\hline 251A75 & 8 & 108 & 8 & 21 \\
\hline 251A76 & 1 & 10 & 1 & 1 \\
\hline 251AX3 & 2 & 4 & 2 & 2 \\
\hline 251AX4 & 3 & 54 & 3 & 17 \\
\hline 251AX5 & 1 & 21 & 1 & 19 \\
\hline 252G33 & 1 & 1 & 1 & 1 \\
\hline 252G76 & 1 & 1 & 1 & 1 \\
\hline 252GX5 & 1 & 9 & 1 & 2 \\
\hline 261 A 77 & 1 & 21 & 1 & 1 \\
\hline 261A78 & 1 & 18 & 1 & 1 \\
\hline 261A79 & 1 & 1 & 1 & 1 \\
\hline 261A80 & 1 & 1 & 1 & 1 \\
\hline 261A81 & 1 & 1 & 1 & 1 \\
\hline 261A82 & 1 & 1 & 1 & 1 \\
\hline 261A83 & 1 & 1 & 1 & 1 \\
\hline 261A84 & 1 & 1 & 1 & 1 \\
\hline 261A85 & 1 & 1 & 1 & 1 \\
\hline 261A86 & 1 & 1 & 1 & 1 \\
\hline 261A88 & 1 & 1 & 1 & 1 \\
\hline 261 AZ7 & 1 & 1 & 1 & 1 \\
\hline 261AX4 & 1 & 1 & 1 & 1 \\
\hline 281BB1 & 2 & 9 & 2 & 2 \\
\hline 281BD9 & 1 & 1 & 1 & 1 \\
\hline 281BE1 & 1 & 6 & 1 & 1 \\
\hline 281BS 7 & 1 & 8 & 1 & 2 \\
\hline 281BS8 & 1 & 3 & 1 & 1 \\
\hline 281BS9 & 1 & 8 & 1 & 1 \\
\hline 281BT0 & 1 & 1 & 1 & 1 \\
\hline 281BT3 & 1 & 1 & 1 & 1 \\
\hline 291BA4 & 1 & 5 & 1 & 1 \\
\hline 291BA8 & 1 & 22 & 1 & 1 \\
\hline 291BC4 & 1 & 1 & 1 & 1 \\
\hline 301 BB 2 & 1 & 37 & 1 & 2 \\
\hline 301 BB 3 & 1 & 22 & 1 & 1 \\
\hline 301 BB 4 & 2 & 38 & 2 & 4 \\
\hline 301 BB 5 & 1 & 19 & 1 & 1 \\
\hline 301BG1 & 1 & 1 & 1 & 1 \\
\hline 301 BT 2 & 1 & 1 & 1 & 1 \\
\hline 311BA8 & 1 & 1 & 1 & 1 \\
\hline 311BB6 & 1 & 3 & 1 & 1 \\
\hline \(321 \mathrm{BB7}\) & 1 & 1 & 1 & 1 \\
\hline 321BB8 & 1 & 6 & 1 & 6 \\
\hline 331 BB 9 & 1 & 1 & 1 & 1 \\
\hline 331 BY 5 & 1 & 1 & 1 & 1 \\
\hline 341BG3 & 1 & 14 & 1 & 1 \\
\hline 341 BG 4 & 1 & 6 & 1 & 1 \\
\hline 351BG8 & 1 & 6 & 1 & 1 \\
\hline 351 BG 9 & 1 & 4 & 1 & 1 \\
\hline 351BD1 & 1 & 2 & 1 & 1 \\
\hline 351BD2 & 1 & 1 & 1 & 1 \\
\hline 351BD3 & 1 & 6 & 1 & 1 \\
\hline 351BD5 & 1 & 11 & 1 & 1 \\
\hline 361 BBL & 1 & 5 & 1 & 1 \\
\hline 361 BG2 & 1 & 1 & 1 & 1 \\
\hline 361 BG 5 & 1 & 15 & 1 & 2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 361BG6 & 1 & 1 & 1 & 1 \\
\hline 361 BG7 & 3 & 25 & 3 & 3 \\
\hline 361 BD 4 & 1 & 1 & 1 & 1 \\
\hline 361 BD 6 & 1 & 1 & 1 & 1 \\
\hline 361 BD 8 & 1 & 2 & 1 & 1 \\
\hline 361 BM 5 & 1 & 15 & 1 & 1 \\
\hline 361 BY 4 & 1 & 1 & 1 & 1 \\
\hline 361 BY 6 & 1 & 2 & 1 & 1 \\
\hline 371 AE 2 & 1 & 9 & 1 & 2 \\
\hline 371 BE 3 & 1 & 2 & 1 & 1 \\
\hline 381BE4 & 2 & 21 & 2 & 2 \\
\hline 381BE5 & 1 & 28 & 1 & 5 \\
\hline 381BE6 & 2 & 23 & 2 & 5 \\
\hline 381 BE 7 & 1 & 25 & 1 & 1 \\
\hline 391BE8 & 1 & 27 & 1 & 1 \\
\hline 401BE9 & 1 & 7 & 1 & 1 \\
\hline 401BZ1 & 1 & 1 & 1 & 1 \\
\hline 411A14 & 1 & 1 & 1 & 1 \\
\hline 411AZ2 & 1 & 1 & 1 & 1 \\
\hline 4237H1 & 1 & 1 & 1 & 1 \\
\hline 423zH2 & 1 & 1 & 1 & 1 \\
\hline 433 ZBM & 1 & 1 & 1 & 1 \\
\hline 4332H1 & 1 & 1 & 1 & 1 \\
\hline 4332H2 & 1 & 4 & 1 & 1 \\
\hline 4332H3 & 1 & 1 & 1 & 1 \\
\hline 4332H5 & 1 & 1 & 1 & 1 \\
\hline \(463 \mathrm{HH1}\) & 1 & 1 & 1 & 1 \\
\hline 463 HH 2 & 1 & 1 & 1 & 1 \\
\hline 463 HH 3 & 1 & 8 & 1 & 1 \\
\hline 463 HH 4 & 1 & 1 & 1 & 1 \\
\hline 463 HH 5 & 1 & 1 & 1 & 1 \\
\hline 473UH1 & 1 & 1 & 1 & 1 \\
\hline 473UH2 & 1 & 3 & 1 & 1 \\
\hline 473UH3 & 1 & 1 & 1 & 1 \\
\hline 473UH4 & 1 & 1 & 1 & 1 \\
\hline 483IH6 & 1 & 9 & 1 & 1 \\
\hline 483IH7 & 1 & 2 & 1 & 1 \\
\hline 483IH8 & 1 & 1 & 1 & 1 \\
\hline 483IH9 & 1 & 4 & 1 & 1 \\
\hline 493KU1 & 1 & 1 & 1 & 1 \\
\hline 493KU2 & 1 & 1 & 1 & 1 \\
\hline 503KU4 & 1 & 22 & 1 & 2 \\
\hline 503KU5 & 1 & 1 & 1 & 1 \\
\hline 503KU6 & 1 & 1 & 1 & 1 \\
\hline 503KU7 & 1 & 3 & 1 & 1 \\
\hline 513 KU 8 & 1 & 1 & 1 & 1 \\
\hline 513KU9 & 1 & 3 & 1 & 1 \\
\hline 533LI1 & 1 & 1 & 1 & 1 \\
\hline 543LI3 & 1 & 1 & 1 & 1 \\
\hline 553LH4 & 1 & 1 & 1 & 1 \\
\hline 563LI5 & 1 & 1 & 1 & 1 \\
\hline 563LI6 & 1 & 1 & 1 & 1 \\
\hline 573LI7 & 1 & 1 & 1 & 1 \\
\hline 573LI8 & 1 & 1 & 1 & 1 \\
\hline 583LI9 & 1 & 1 & 1 & 1 \\
\hline 583LK1 & 1 & 1 & 1 & 1 \\
\hline 603MK6 & 1 & 1 & 1 & 1 \\
\hline 613MK7 & 1 & 1 & 1 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 623MK8 & 1 & 1 & 1 & 1 \\
\hline 633NK9 & 1 & 4 & 1 & 1 \\
\hline 633NX7 & 2 & 11 & 2 & 2 \\
\hline 643 NL 1 & 1 & 5 & 1 & 1 \\
\hline 653NL2 & 1 & 5 & 1 & 1 \\
\hline 663NL3 & 2 & 8 & 2 & 2 \\
\hline 673NL4 & 1 & 5 & 1 & 1 \\
\hline 673NL5 & 1 & 1 & 1 & 1 \\
\hline 673NN9 & 1 & 4 & 1 & 1 \\
\hline 683JL5 & 1 & 1 & 1 & 1 \\
\hline 693JL5 & 1 & 1 & 1 & 1 \\
\hline 693JL7 & 1 & 1 & 1 & 1 \\
\hline 693JL8 & 1 & 1 & 1 & 1 \\
\hline 703JL5 & 1 & 5 & 1 & 1 \\
\hline 723PM2 & 1 & 1 & 1 & 1 \\
\hline 733PM3 & 1 & 1 & 1 & 1 \\
\hline 733PN8 & 1 & 1 & 1 & 1 \\
\hline 743PM4 & 1 & 1 & 1 & 1 \\
\hline 751BT8 & 1 & 1 & 1 & 1 \\
\hline 761 AN1 & 1 & 23 & 1 & 1 \\
\hline \(762 \mathrm{GN1}\) & 1 & 21 & 1 & 1 \\
\hline 771BN2 & 1 & 1 & 1 & 1 \\
\hline 783RN5 & 1 & 1 & 1 & 1 \\
\hline 783RN6 & 1 & 1 & 1 & 1 \\
\hline 793SB0 & 1 & 1 & 1 & 1 \\
\hline 793SG0 & 1 & 1 & 1 & 1 \\
\hline 793SD0 & 1 & 3 & 1 & 1 \\
\hline 803 TA0 & 1 & 1 & 1 & 1 \\
\hline 803 TBJ & 1 & 1 & 1 & 1 \\
\hline 811BAP & 1 & 4 & 1 & 1 \\
\hline 811BAS & 1 & 2 & 1 & 1 \\
\hline 811BJ4 & 1 & 8 & 1 & 1 \\
\hline 811BJ6 & 1 & 1 & 1 & 1 \\
\hline 811BJ7 & 2 & 4 & 2 & 2 \\
\hline 811BJ9 & 1 & 1 & 1 & 1 \\
\hline 811B01 & 1 & 4 & 1 & 1 \\
\hline 811B02 & 1 & 9 & 1 & 1 \\
\hline 811B03 & 1 & 1 & 1 & 1 \\
\hline 811B04 & 1 & 7 & 1 & 1 \\
\hline 811B05 & 1 & 1 & 1 & 1 \\
\hline 811B06 & 1 & 1 & 1 & 1 \\
\hline 811B08 & 1 & 1 & 1 & 1 \\
\hline 811B09 & 1 & 1 & 1 & 1 \\
\hline 811BP0 & 1 & 2 & 1 & 1 \\
\hline \(811 \mathrm{BP1}\) & 1 & 1 & 1 & 1 \\
\hline 811BP2 & 2 & 4 & 2 & 2 \\
\hline 811BP3 & 1 & 1 & 1 & 1 \\
\hline 821BA5 & 1 & 1 & 1 & 1 \\
\hline 821 BO 4 & 1 & 2 & 1 & 1 \\
\hline 821BP6 & 1 & 13 & 1 & 1 \\
\hline \(821 \mathrm{BP7}\) & 1 & 1 & 1 & 1 \\
\hline 831B90 & 2 & 15 & 2 & 2 \\
\hline 831BA7 & 1 & 10 & 1 & 1 \\
\hline 831BP8 & 1 & 4 & 1 & 1 \\
\hline \(831 \mathrm{BP9} 9\) & 1 & 11 & 1 & 1 \\
\hline \(831 \mathrm{BR1}\) & 1 & 5 & 1 & 1 \\
\hline 831BR2 & 1 & 1 & 1 & 1 \\
\hline 831BC8 & 1 & 1 & 1 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 841B04 & 1 & 1 & 1 & 1 \\
\hline 841 BR4 & 1 & 2 & 1 & 1 \\
\hline 841 BR 5 & 1 & 7 & 1 & 1 \\
\hline 841 BR 6 & 1 & 1 & 1 & 1 \\
\hline 851BR7 & 1 & 21 & 1 & 2 \\
\hline 851BR8 & 1 & 1 & 1 & 1 \\
\hline \(851 \mathrm{BR9}\) & 1 & 1 & 1 & 1 \\
\hline 851BS0 & 1 & 1 & 1 & 1 \\
\hline 851BS1 & 1 & 1 & 1 & 1 \\
\hline 851BS2 & 1 & 7 & 1 & 1 \\
\hline 851BS3 & 1 & 1 & 1 & 1 \\
\hline 851BX2 & 1 & 1 & 1 & 1 \\
\hline 861B98 & 1 & 2 & 1 & 1 \\
\hline 861 BS 4 & 1 & 3 & 1 & 1 \\
\hline 861BS 6 & 1 & 4 & 1 & 1 \\
\hline \(861 \mathrm{BT6}\) & 1 & 3 & 1 & 1 \\
\hline 861 BC0 & 1 & 1 & 1 & 1 \\
\hline 873 TY 8 & 1 & 1 & 1 & 1 \\
\hline 902DX6 & 1 & 1 & 1 & 1 \\
\hline 913HX8 & 1 & 1 & 1 & 1 \\
\hline 923JC1 & 1 & 1 & 1 & 1 \\
\hline 933JC6 & 1 & 1 & 1 & 1 \\
\hline \(943 \mathrm{XC7}\) & 1 & 2 & 1 & 1 \\
\hline \(943 \mathrm{XV1}\) & 1 & 1 & 1 & 1 \\
\hline 951A01 & 1 & 1 & 1 & 1 \\
\hline 951A02 & 1 & 1 & 1 & 1 \\
\hline 951A04 & 1 & 1 & 1 & 1 \\
\hline 951A05 & 1 & 1 & 1 & 1 \\
\hline 951A06 & 1 & 1 & 1 & 1 \\
\hline 951 A07 & 1 & 1 & 1 & 1 \\
\hline 951A10 & 1 & 1 & 1 & 1 \\
\hline 951A15 & 1 & 1 & 1 & 1 \\
\hline 951 A16 & 1 & 1 & 1 & 1 \\
\hline 951 A22 & 1 & 1 & 1 & 1 \\
\hline 951A23 & 1 & 1 & 1 & 1 \\
\hline 951A26 & 1 & 1 & 1 & 1 \\
\hline 951A37 & 1 & 1 & 1 & 1 \\
\hline 951A38 & 2 & 2 & 2 & 2 \\
\hline 951A39 & 1 & 1 & 1 & 1 \\
\hline 951A41 & 1 & 1 & 1 & 1 \\
\hline 951A42 & 1 & 1 & 1 & 1 \\
\hline 951A52 & 1 & 1 & 1 & 1 \\
\hline 951A53 & 2 & 2 & 2 & 2 \\
\hline 951A54 & 1 & 1 & 1 & 1 \\
\hline 951A64 & 1 & 1 & 1 & 1 \\
\hline 951 A67 & 1 & 1 & 1 & 1 \\
\hline 951A69 & 5 & 5 & 5 & 5 \\
\hline 951 A71 & 1 & 1 & 1 & 1 \\
\hline 951 A72 & 1 & 3 & 1 & 1 \\
\hline 951 A77 & 1 & 1 & 1 & 1 \\
\hline 951 A78 & 1 & 1 & 1 & 1 \\
\hline 951AN1 & 1 & 1 & 1 & 1 \\
\hline 951AX4 & 1 & 1 & 1 & 1 \\
\hline 952G11 & 1 & 9 & 1 & 1 \\
\hline 952G12 & 1 & 1 & 1 & 1 \\
\hline 952G44 & 1 & 1 & 1 & 1 \\
\hline 952G45 & 1 & 1 & 1 & 1 \\
\hline 952G46 & 1 & 1 & 1 & 1 \\
\hline
\end{tabular}
\begin{tabular}{lllll}
\(952 G 50\) & 1 & 1 & 1 & 1 \\
\(952 G 77\) & 1 & 1 & 1 & 1 \\
\(952 G X 5\) & 1 & 1 & 1 & 1 \\
952D35 & 1 & 2 & 1 & 1 \\
\(952 E J 2\) & 1 & 1 & 1 & 1 \\
\(963 C V 0\) & 3 & 200 & 3 & 6 \\
AA1A54 & 1 & 1 & 1 & 1 \\
AA1A72 & 1 & 1 & 1 & 1 \\
AB1A05 & 1 & 1 & 1 & 1 \\
AB1A11 & 1 & 1 & 1 & 1 \\
AB1A35 & 1 & 1 & 1 & 1 \\
AB1A38 & 1 & 2 & 1 & 1 \\
AB1AAR & 1 & 1 & 1 & 1 \\
AB1AT6 & 1 & 1 & 1 & 1 \\
AH1BBC & 1 & 8 & 1 & 1 \\
AK2E04 & 1 & 1 & 1 & 1 \\
AK2E59 & 1 & 1 & 1 & 1 \\
AK2EBH & 1 & 1 & 1 & 1 \\
AK2EBU & 1 & 1 & 1 & 1 \\
AK2EBI & 1 & 1 & 1 & 1 \\
AK2EBV & 1 & 1 & 1 & 1 \\
AT1AAT & 1 & & 1 & 1
\end{tabular}
\(===\) Model and evaluation on training set \(===\)
Clustered Instances

07 ( 6\%)
199 (92\%)
2 2 ( \(2 \%\) )

\section*{Simple K Means with 4 Clusters}

Number of iterations: 7
Within cluster sum of squared errors: 10605.0

Missing values globally replaced with mean/mode

Final cluster centroids:

\begin{tabular}{|c|c|c|c|c|c|}
\hline \(012 \mathrm{G01}\) & 1 & 1 & 1 & 1 & 1 \\
\hline 012GZ5 & 1 & 2 & 1 & 1 & 8 \\
\hline 012D04 & 1 & 1 & 1 & 1 & 1 \\
\hline 012 DBA & 1 & 11 & 1 & 1 & 10 \\
\hline 012 DBB & 1 & 1 & 1 & 1 & 1 \\
\hline 012DZ5 & 1 & 7 & 1 & 6 & 14 \\
\hline 012DF0 & 1 & 3 & 1 & 1 & 11 \\
\hline 012DF3 & 1 & 7 & 1 & 1 & 20 \\
\hline 021A05 & 2 & 31 & 2 & 43 & 100 \\
\hline 021 A06 & 1 & 14 & 1 & 23 & 53 \\
\hline 021 E 05 & 1 & 2 & 1 & 1 & 6 \\
\hline 021 E 06 & 1 & 1 & 1 & 1 & 1 \\
\hline 031 A07 & 1 & 19 & 1 & 2 & 49 \\
\hline 031 A68 & 1 & 17 & 1 & 7 & 38 \\
\hline 031 A73 & 1 & 26 & 1 & 27 & 37 \\
\hline 031 A74 & 1 & 1 & 1 & 1 & 2 \\
\hline 041 A08 & 3 & 69 & 3 & 75 & 221 \\
\hline 041 A09 & 1 & 1 & 1 & 1 & 11 \\
\hline 041 A16 & 1 & 1 & 1 & 1 & 18 \\
\hline 041 A17 & 1 & 8 & 1 & 7 & 58 \\
\hline 041 A18 & 1 & 1 & 1 & 1 & 2 \\
\hline 041 A19 & 1 & 1 & 1 & 1 & 1 \\
\hline 041 A20 & 1 & 5 & 1 & 2 & 11 \\
\hline 041 A21 & 1 & 56 & 1 & 25 & 80 \\
\hline 041 A22 & 1 & 3 & 1 & 6 & 8 \\
\hline 041 A23 & 1 & 14 & 1 & 6 & 39 \\
\hline 041 A25 & 1 & 72 & 1 & 24 & 198 \\
\hline 041 A26 & 1 & 12 & 1 & 5 & 87 \\
\hline 041 A27 & 1 & 10 & 1 & 8 & 14 \\
\hline 041 A28 & 2 & 19 & 2 & 8 & 49 \\
\hline 041 AC2 & 2 & 5 & 2 & 2 & 7 \\
\hline \(042 \mathrm{G19}\) & 1 & 1 & 1 & 1 & 1 \\
\hline 042 D 21 & 1 & 1 & 1 & 1 & 1 \\
\hline \(042 \mathrm{DZ3}\) & 1 & 14 & 1 & 8 & 52 \\
\hline 042E20 & 1 & 1 & 1 & 1 & 1 \\
\hline 051A10 & 1 & 35 & 1 & 7 & 124 \\
\hline 051A29 & 1 & 4 & 1 & 1 & 10 \\
\hline 051A30 & 1 & 4 & 1 & 1 & 7 \\
\hline 051 A33 & 1 & 1 & 1 & 1 & 1 \\
\hline 051A34 & 1 & 13 & 1 & 2 & 14 \\
\hline 061 A11 & 4 & 6 & 4 & 4 & 60 \\
\hline \(062 \mathrm{G11}\) & 3 & 119 & 3 & 23 & 315 \\
\hline \(062 \mathrm{G12}\) & 1 & 84 & 1 & 91 & 208 \\
\hline \(062 \mathrm{G14}\) & 1 & 10 & 1 & 12 & 41 \\
\hline \(062 \mathrm{GX0}\) & 1 & 1 & 1 & 1 & 1 \\
\hline 062 GC 5 & 1 & 37 & 1 & 15 & 38 \\
\hline 062 GC 9 & 1 & 1 & 1 & 1 & 20 \\
\hline 062 E 12 & 2 & 2 & 2 & 2 & 2 \\
\hline 071 A15 & 1 & 15 & 1 & 26 & 81 \\
\hline 081A24 & 5 & 42 & 5 & 51 & 140 \\
\hline 082G24 & 1 & 3 & 1 & 1 & 5 \\
\hline 091 A31 & 2 & 51 & 2 & 12 & 229 \\
\hline 091 BBN & 1 & 1 & 1 & 1 & 2 \\
\hline 092 G 31 & 1 & 1 & 1 & 1 & 1 \\
\hline 092 E 31 & 2 & 3 & 2 & 5 & 17 \\
\hline 101A37 & 4 & 50 & 4 & 3 & 108 \\
\hline 102D35 & 1 & 18 & 1 & 5 & 86 \\
\hline 102E35 & 1 & 214 & 1 & 176 & 478 \\
\hline 111A36 & 1 & 1 & 1 & 1 & 1 \\
\hline 112 E 40 & 11 & 120 & 11 & 61 & 344 \\
\hline 121A38 & 1 & 17 & 1 & 1 & 13 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 121A39 & 1 & 14 & 1 & 5 & 16 \\
\hline 121A64 & 1 & 16 & 1 & 2 & 16 \\
\hline 121A65 & 1 & 5 & 1 & 5 & 20 \\
\hline 121A67 & 1 & 2 & 1 & 5 & 18 \\
\hline 121AZ4 & 1 & 1 & 1 & 1 & 1 \\
\hline 122G63 & 2 & 9 & 2 & 2 & 12 \\
\hline 122G67 & 1 & 1 & 1 & 1 & 3 \\
\hline 131A41 & 2 & 74 & 2 & 8 & 62 \\
\hline 132G41 & 1 & 1 & 1 & 1 & 1 \\
\hline 132D41 & 1 & 14 & 1 & 2 & 24 \\
\hline 141A42 & 1 & 1 & 1 & 1 & 1 \\
\hline 141A43 & 1 & 8 & 1 & 9 & 4 \\
\hline 141ABG & 1 & 1 & 1 & 1 & 1 \\
\hline 141 ABD & 1 & 14 & 1 & 3 & 16 \\
\hline 142G44 & 1 & 15 & 1 & 14 & 87 \\
\hline 142G45 & 2 & 13 & 2 & 4 & 11 \\
\hline 142E45 & 1 & 1 & 1 & 1 & 1 \\
\hline 152G46 & 2 & 41 & 2 & 8 & 130 \\
\hline 152GY0 & 1 & 1 & 1 & 1 & 1 \\
\hline 152E46 & 4 & 74 & 4 & 17 & 162 \\
\hline \(162 \mathrm{G5} 0\) & 1 & 66 & 1 & 14 & 144 \\
\hline 162EJ2 & 1 & 142 & 1 & 123 & 323 \\
\hline 172G51 & 1 & 10 & 1 & 1 & 6 \\
\hline 172 GM 6 & 1 & 1 & 1 & 1 & 1 \\
\hline 172E51 & 1 & 8 & 1 & 7 & 12 \\
\hline 172EJ3 & 1 & 1 & 1 & 1 & 1 \\
\hline 182G52 & 1 & 17 & 1 & 10 & 30 \\
\hline 182E52 & 1 & 5 & 1 & 11 & 25 \\
\hline 191A53 & 1 & 1 & 1 & 1 & 1 \\
\hline 192E53 & 1 & 4 & 1 & 3 & 10 \\
\hline 201A54 & 1 & 1 & 1 & 2 & 1 \\
\hline 202G54 & 1 & 1 & 1 & 1 & 1 \\
\hline 202E54 & 2 & 2 & 2 & 2 & 3 \\
\hline 212D55 & 1 & 13 & 1 & 3 & 24 \\
\hline 212D56 & 1 & 7 & 1 & 13 & 26 \\
\hline 212E55 & 1 & 2 & 1 & 1 & 3 \\
\hline 212E56 & 2 & 2 & 2 & 2 & 2 \\
\hline 222G59 & 1 & 2 & 1 & 1 & 19 \\
\hline 222D58 & 1 & 1 & 1 & 1 & 12 \\
\hline 222D59 & 1 & 5 & 1 & 1 & 9 \\
\hline 222D62 & 1 & 1 & 1 & 1 & 1 \\
\hline 222E57 & 1 & 35 & 1 & 3 & 116 \\
\hline 222E58 & 1 & 26 & 1 & 25 & 107 \\
\hline 222E59 & 5 & 35 & 5 & 3 & 108 \\
\hline 222E60 & 2 & 2 & 2 & 2 & 2 \\
\hline 222E61 & 2 & 2 & 2 & 4 & 7 \\
\hline 222E62 & 1 & 1 & 1 & 1 & 1 \\
\hline 222EY1 & 1 & 1 & 1 & 1 & 2 \\
\hline 231A66 & 2 & 51 & 2 & 21 & 126 \\
\hline 241A08 & 1 & 19 & 1 & 11 & 21 \\
\hline 241A70 & 1 & 8 & 1 & 13 & 35 \\
\hline 241A71 & 2 & 40 & 2 & 54 & 116 \\
\hline 241A72 & 1 & 12 & 1 & 19 & 38 \\
\hline 242E72 & 1 & 5 & 1 & 5 & 13 \\
\hline 251A33 & 1 & 8 & 1 & 5 & 25 \\
\hline 251A75 & 8 & 108 & 8 & 19 & 133 \\
\hline 251A76 & 1 & 7 & 1 & 8 & 41 \\
\hline 251AX3 & 2 & 2 & 2 & 2 & 4 \\
\hline 251AX4 & 3 & 89 & 3 & 72 & 155 \\
\hline 251AX5 & 1 & 21 & 1 & 11 & 76 \\
\hline 252G33 & 1 & 1 & 1 & 1 & 6 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 252G76 & 1 & 1 & 1 & 1 & 1 \\
\hline 252GX5 & 1 & 9 & 1 & 10 & 44 \\
\hline 261A77 & 1 & 21 & 1 & 8 & 61 \\
\hline 261A78 & 1 & 5 & 1 & 8 & 18 \\
\hline 261A79 & 1 & 1 & 1 & 1 & 1 \\
\hline 261A80 & 1 & 1 & 1 & 1 & 4 \\
\hline 261A81 & 1 & 1 & 1 & 1 & 1 \\
\hline 261A82 & 1 & 1 & 1 & 1 & 1 \\
\hline 261A83 & 1 & 1 & 1 & 1 & 7 \\
\hline 261A84 & 1 & 1 & 1 & 1 & 1 \\
\hline 261A85 & 1 & 1 & 1 & 1 & 1 \\
\hline 261A86 & 1 & 1 & 1 & 1 & 1 \\
\hline 261A88 & 1 & 1 & 1 & 1 & 3 \\
\hline 261AZ7 & 1 & 1 & 1 & 1 & 1 \\
\hline 261AX4 & 1 & 1 & 1 & 1 & 1 \\
\hline 281BB1 & 2 & 9 & 2 & 29 & 75 \\
\hline 281BD9 & 1 & 1 & 1 & 1 & 2 \\
\hline 281BE1 & 1 & 6 & 1 & 1 & 41 \\
\hline 281BS 7 & 1 & 29 & 1 & 3 & 27 \\
\hline 281BS8 & 1 & 3 & 1 & 1 & 9 \\
\hline 281BS9 & 1 & 9 & 1 & 1 & 29 \\
\hline 281BT0 & 1 & 1 & 1 & 1 & 7 \\
\hline 281BT3 & 1 & 1 & 1 & 1 & 1 \\
\hline 291BA4 & 1 & 5 & 1 & 7 & 20 \\
\hline 291BA8 & 1 & 22 & 1 & 7 & 36 \\
\hline 291BC4 & 1 & 1 & 1 & 1 & 1 \\
\hline 301BB2 & 1 & 37 & 1 & 18 & 91 \\
\hline 301BB3 & 1 & 22 & 1 & 47 & 73 \\
\hline 301BB4 & 2 & 38 & 2 & 22 & 128 \\
\hline \(301 \mathrm{BB5}\) & 1 & 19 & 1 & 31 & 56 \\
\hline 301BG1 & 1 & 1 & 1 & 1 & 1 \\
\hline 301BT2 & 1 & 1 & 1 & 1 & 2 \\
\hline 311BA8 & 1 & 1 & 1 & 1 & 17 \\
\hline 311BB6 & 1 & 3 & 1 & 1 & 10 \\
\hline \(321 \mathrm{BB7}\) & 1 & 1 & 1 & 1 & 2 \\
\hline 321 BB 8 & 1 & 6 & 1 & 8 & 24 \\
\hline 331 BB 9 & 1 & 1 & 1 & 1 & 3 \\
\hline 331 BY 5 & 1 & 1 & 1 & 1 & 1 \\
\hline 341BG3 & 1 & 14 & 1 & 10 & 26 \\
\hline 341BG4 & 1 & 6 & 1 & 5 & 20 \\
\hline 351BG8 & 1 & 4 & 1 & 4 & 8 \\
\hline 351BG9 & 1 & 4 & 1 & 1 & 4 \\
\hline 351BD1 & 1 & 2 & 1 & 1 & 7 \\
\hline 351 BD 2 & 1 & 1 & 1 & 1 & 1 \\
\hline 351BD3 & 1 & 11 & 1 & 11 & 29 \\
\hline 351BD5 & 1 & 13 & 1 & 7 & 16 \\
\hline 361 BBL & 1 & 10 & 1 & 1 & 5 \\
\hline 361 BG 2 & 1 & 1 & 1 & 2 & 2 \\
\hline \(361 \mathrm{BG5}\) & 1 & 18 & 1 & 13 & 43 \\
\hline 361 BG 6 & 1 & 1 & 1 & 1 & 1 \\
\hline \(361 \mathrm{BG7}\) & 3 & 25 & 3 & 29 & 61 \\
\hline 361 BD 4 & 1 & 1 & 1 & 1 & 1 \\
\hline 361 BD 6 & 1 & 1 & 1 & 2 & 2 \\
\hline 361 BD 8 & 1 & 2 & 1 & 1 & 3 \\
\hline \(361 \mathrm{BM5}\) & 1 & 5 & 1 & 2 & 9 \\
\hline 361BY4 & 1 & 1 & 1 & 1 & 1 \\
\hline 361 BY 6 & 1 & 2 & 1 & 1 & 33 \\
\hline 371AE2 & 1 & 9 & 1 & 3 & 76 \\
\hline 371BE3 & 1 & 4 & 1 & 1 & 18 \\
\hline 381BE4 & 2 & 18 & 2 & 31 & 44 \\
\hline 381BE5 & 1 & 28 & 1 & 53 & 146 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 381BE6 & 2 & 23 & 2 & 54 & 121 \\
\hline 381 BE 7 & 1 & 25 & 1 & 41 & 89 \\
\hline 391BE8 & 1 & 1 & 1 & 1 & 6 \\
\hline 401BE9 & 1 & 6 & 1 & 1 & 7 \\
\hline 401BZ1 & 1 & 4 & 1 & 2 & 9 \\
\hline 411A14 & 1 & 1 & 1 & 1 & 1 \\
\hline 411AZ2 & 1 & 1 & 1 & 1 & 1 \\
\hline 4237H1 & 1 & 1 & 1 & 1 & 1 \\
\hline 4232H2 & 1 & 1 & 1 & 1 & 3 \\
\hline 433 ZBM & 1 & 1 & 1 & 1 & 1 \\
\hline 433zH1 & 1 & 1 & 1 & 1 & 3 \\
\hline 433ZH2 & 1 & 4 & 1 & 3 & 11 \\
\hline 433zH3 & 1 & 1 & 1 & 1 & 1 \\
\hline 433zH5 & 1 & 1 & 1 & 1 & 1 \\
\hline \(463 \mathrm{HH1}\) & 1 & 1 & 1 & 1 & 1 \\
\hline 463 HH 2 & 1 & 1 & 1 & 1 & 1 \\
\hline 463 HH 3 & 1 & 7 & 1 & 4 & 8 \\
\hline 463 HH 4 & 1 & 1 & 1 & 1 & 1 \\
\hline 463HH5 & 1 & 1 & 1 & 1 & 3 \\
\hline 473UH1 & 1 & 1 & 1 & 1 & 2 \\
\hline 473UH2 & 1 & 1 & 1 & 1 & 3 \\
\hline 473 UH 3 & 1 & 1 & 1 & 1 & 1 \\
\hline 473UH4 & 1 & 1 & 1 & 1 & 1 \\
\hline 483IH6 & 1 & 3 & 1 & 1 & 9 \\
\hline 483IH7 & 1 & 1 & 1 & 1 & 6 \\
\hline 483IH8 & 1 & 1 & 1 & 1 & 6 \\
\hline 483IH9 & 1 & 4 & 1 & 2 & 6 \\
\hline \(493 \mathrm{KU1}\) & 1 & 1 & 1 & 1 & 1 \\
\hline 493KU2 & 1 & 1 & 1 & 1 & 1 \\
\hline 503KU4 & 1 & 5 & 1 & 6 & 22 \\
\hline 503 KU 5 & 1 & 1 & 1 & 1 & 1 \\
\hline 503KU6 & 1 & 1 & 1 & 1 & 1 \\
\hline 503KU7 & 1 & 3 & 1 & 1 & 6 \\
\hline 513 KU 8 & 1 & 1 & 1 & 1 & 1 \\
\hline 513 KU 9 & 1 & 2 & 1 & 1 & 4 \\
\hline 533LI1 & 1 & 1 & 1 & 1 & 1 \\
\hline 543LI3 & 1 & 1 & 1 & 1 & 2 \\
\hline 553LH4 & 1 & 1 & 1 & 1 & 1 \\
\hline 563LI5 & 1 & 1 & 1 & 1 & 5 \\
\hline 563LI6 & 1 & 1 & 1 & 1 & 1 \\
\hline 573LI7 & 1 & 1 & 1 & 1 & 2 \\
\hline 573LI8 & 1 & 1 & 1 & 1 & 1 \\
\hline 583LI9 & 1 & 1 & 1 & 1 & 2 \\
\hline 583LK1 & 1 & 1 & 1 & 1 & 1 \\
\hline 603MK6 & 1 & 1 & 1 & 3 & 3 \\
\hline 613MK7 & 1 & 1 & 1 & 1 & 1 \\
\hline 623MK8 & 1 & 3 & 1 & 3 & 5 \\
\hline 633NK9 & 1 & 9 & 1 & 12 & 19 \\
\hline 633NX7 & 2 & 3 & 2 & 7 & 22 \\
\hline \(643 \mathrm{NL1}\) & 1 & 2 & 1 & 1 & 9 \\
\hline 653NL2 & 1 & 6 & 1 & 8 & 13 \\
\hline 663NL3 & 2 & 7 & 2 & 10 & 26 \\
\hline 673 NL 4 & 1 & 5 & 1 & 3 & 8 \\
\hline 673NL5 & 1 & 1 & 1 & 1 & 1 \\
\hline 673NN9 & 1 & 4 & 1 & 2 & 7 \\
\hline 683JL5 & 1 & 1 & 1 & 1 & 1 \\
\hline 693JL5 & 1 & 1 & 1 & 1 & 1 \\
\hline 693JL7 & 1 & 1 & 1 & 1 & 1 \\
\hline 693JL8 & 1 & 1 & 1 & 1 & 1 \\
\hline 703JL5 & 1 & 5 & 1 & 2 & 5 \\
\hline 723PM2 & 1 & 1 & 1 & 1 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 733 PM 3 & 1 & 1 & 1 & 1 & 5 \\
\hline 733PN8 & 1 & 1 & 1 & 1 & 1 \\
\hline 743 PM 4 & 1 & 1 & 1 & 1 & 1 \\
\hline 751BT8 & 1 & 1 & 1 & 1 & 8 \\
\hline 761AN1 & 1 & 17 & 1 & 2 & 40 \\
\hline 762GN1 & 1 & 21 & 1 & 1 & 80 \\
\hline 771 BN 2 & 1 & 1 & 1 & 1 & 1 \\
\hline 783RN5 & 1 & 1 & 1 & 1 & 1 \\
\hline 783RN6 & 1 & 1 & 1 & 1 & 1 \\
\hline 793SB0 & 1 & 1 & 1 & 1 & 4 \\
\hline 793SG0 & 1 & 1 & 1 & 1 & 2 \\
\hline 793SD0 & 1 & 1 & 1 & 1 & 3 \\
\hline 803 TAO & 1 & 1 & 1 & 1 & 1 \\
\hline 803 TBJ & 1 & 1 & 1 & 1 & 1 \\
\hline 811BAP & 1 & 4 & 1 & 3 & 7 \\
\hline 811BAS & 1 & 2 & 1 & 1 & 5 \\
\hline 811BJ4 & 1 & 8 & 1 & 6 & 25 \\
\hline 811BJ6 & 1 & 1 & 1 & 1 & 1 \\
\hline 811BJ7 & 2 & 4 & 2 & 2 & 14 \\
\hline 811BJ9 & 1 & 1 & 1 & 1 & 2 \\
\hline 811B01 & 1 & 5 & 1 & 1 & 19 \\
\hline 811B02 & 1 & 14 & 1 & 2 & 9 \\
\hline 811B03 & 1 & 1 & 1 & 1 & 5 \\
\hline 811B04 & 1 & 7 & 1 & 1 & 7 \\
\hline 811B05 & 1 & 1 & 1 & 1 & 1 \\
\hline 811B06 & 1 & 1 & 1 & 1 & 1 \\
\hline 811B08 & 1 & 1 & 1 & 1 & 1 \\
\hline 811B09 & 1 & 1 & 1 & 1 & 4 \\
\hline 811BP0 & 1 & 2 & 1 & 1 & 2 \\
\hline 811BP1 & 1 & 1 & 1 & 1 & 1 \\
\hline 811BP2 & 2 & 4 & 2 & 4 & 11 \\
\hline 811BP3 & 1 & 1 & 1 & 1 & 1 \\
\hline 821BA5 & 1 & 1 & 1 & 1 & 2 \\
\hline 821B04 & 1 & 2 & 1 & 1 & 7 \\
\hline 821BP6 & 1 & 13 & 1 & 1 & 15 \\
\hline 821BP7 & 1 & 1 & 1 & 1 & 2 \\
\hline 831B90 & 2 & 15 & 2 & 2 & 13 \\
\hline 831BA7 & 1 & 6 & 1 & 1 & 30 \\
\hline 831BP8 & 1 & 1 & 1 & 2 & 11 \\
\hline 831BP9 & 1 & 11 & 1 & 8 & 46 \\
\hline 831BR1 & 1 & 1 & 1 & 4 & 21 \\
\hline 831BR2 & 1 & 1 & 1 & 1 & 6 \\
\hline 831BC8 & 1 & 1 & 1 & 1 & 1 \\
\hline 841 BO 4 & 1 & 1 & 1 & 1 & 4 \\
\hline 841 BR4 & 1 & 4 & 1 & 1 & 2 \\
\hline 841 BR5 & 1 & 7 & 1 & 8 & 20 \\
\hline 841 BR6 & 1 & 1 & 1 & 3 & 10 \\
\hline 851 BR 7 & 1 & 21 & 1 & 9 & 40 \\
\hline 851BR8 & 1 & 1 & 1 & 1 & 1 \\
\hline 851BR9 & 1 & 1 & 1 & 1 & 4 \\
\hline 851BS 0 & 1 & 1 & 1 & 1 & 1 \\
\hline 851BS1 & 1 & 1 & 1 & 1 & 10 \\
\hline 851BS2 & 1 & 7 & 1 & 3 & 12 \\
\hline 851BS3 & 1 & 1 & 1 & 1 & 1 \\
\hline 851BX2 & 1 & 1 & 1 & 1 & 1 \\
\hline 861B98 & 1 & 2 & 1 & 1 & 12 \\
\hline 861BS4 & 1 & 3 & 1 & 1 & 4 \\
\hline 861BS6 & 1 & 11 & 1 & 5 & 17 \\
\hline 861BT6 & 1 & 3 & 1 & 1 & 5 \\
\hline \(861 \mathrm{BC0}\) & 1 & 1 & 1 & 1 & 1 \\
\hline 873TY8 & 1 & 1 & 1 & 1 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 902DX6 & 1 & 1 & 1 & 1 & 1 \\
\hline 913HX8 & 1 & 1 & 1 & 1 & 1 \\
\hline 923JC1 & 1 & 1 & 1 & 1 & 1 \\
\hline 933JC6 & 1 & 1 & 1 & 1 & 1 \\
\hline 943XC7 & 1 & 1 & 1 & 1 & 2 \\
\hline 943XV1 & 1 & 1 & 1 & 1 & 1 \\
\hline 951A01 & 1 & 1 & 1 & 1 & 1 \\
\hline 951A02 & 1 & 1 & 1 & 1 & 1 \\
\hline 951A04 & 1 & 1 & 1 & 1 & 1 \\
\hline 951A05 & 1 & 1 & 1 & 1 & 1 \\
\hline 951A06 & 1 & 1 & 1 & 1 & 1 \\
\hline 951A07 & 1 & 1 & 1 & 1 & 1 \\
\hline 951A10 & 1 & 1 & 1 & 1 & 1 \\
\hline 951A15 & 1 & 1 & 1 & 1 & 1 \\
\hline 951A16 & 1 & 1 & 1 & 1 & 2 \\
\hline 951A22 & 1 & 1 & 1 & 1 & 1 \\
\hline 951A23 & 1 & 1 & 1 & 1 & 14 \\
\hline 951A26 & 1 & 1 & 1 & 1 & 1 \\
\hline 951A37 & 1 & 1 & 1 & 1 & 6 \\
\hline 951A38 & 2 & 2 & 2 & 2 & 2 \\
\hline 951A39 & 1 & 1 & 1 & 1 & 1 \\
\hline 951A41 & 1 & 1 & 1 & 1 & 1 \\
\hline 951A42 & 1 & 1 & 1 & 1 & 1 \\
\hline 951A52 & 1 & 1 & 1 & 1 & 2 \\
\hline 951A53 & 2 & 2 & 2 & 2 & 2 \\
\hline 951A54 & 1 & 1 & 1 & 1 & 1 \\
\hline 951A64 & 1 & 1 & 1 & 1 & 1 \\
\hline 951A67 & 1 & 1 & 1 & 1 & 2 \\
\hline 951A69 & 5 & 5 & 5 & 5 & 5 \\
\hline 951A71 & 1 & 1 & 1 & 1 & 1 \\
\hline 951A72 & 1 & 3 & 1 & 1 & 4 \\
\hline 951 A77 & 1 & 1 & 1 & 1 & 1 \\
\hline 951A78 & 1 & 1 & 1 & 1 & 1 \\
\hline 951AN1 & 1 & 1 & 1 & 1 & 1 \\
\hline 951AX4 & 1 & 1 & 1 & 1 & 1 \\
\hline \(952 \mathrm{G11}\) & 1 & 26 & 1 & 5 & 9 \\
\hline 952G12 & 1 & 1 & 1 & 1 & 3 \\
\hline 952G44 & 1 & 1 & 1 & 1 & 1 \\
\hline 952G45 & 1 & 1 & 1 & 1 & 1 \\
\hline 952G46 & 1 & 1 & 1 & 1 & 1 \\
\hline 952G50 & 1 & 1 & 1 & 1 & 1 \\
\hline 952G77 & 1 & 1 & 1 & 1 & 1 \\
\hline 952GX5 & 1 & 1 & 1 & 1 & 1 \\
\hline 952D35 & 1 & 2 & 1 & 1 & 4 \\
\hline 952EJ2 & 1 & 1 & 1 & 1 & 1 \\
\hline 963CV0 & 3 & 200 & 3 & 66 & 423 \\
\hline AA1A54 & 1 & 1 & 1 & 1 & 1 \\
\hline AA1A72 & 1 & 1 & 1 & 1 & 1 \\
\hline AB1A05 & 1 & 1 & 1 & 1 & 1 \\
\hline AB1A11 & 1 & 1 & 1 & 1 & 1 \\
\hline AB1A35 & 1 & 1 & 1 & 1 & 1 \\
\hline AB1A38 & 1 & 2 & 1 & 1 & 5 \\
\hline AB1AAR & 1 & 1 & 1 & 1 & 65 \\
\hline AB1AT6 & 1 & 1 & 1 & 1 & 1 \\
\hline AH1BBC & 1 & 9 & 1 & 2 & 96 \\
\hline AK2E04 & 1 & 1 & 1 & 6 & 10 \\
\hline AK2E59 & 1 & 1 & 1 & 1 & 1 \\
\hline AK2EBH & 1 & 1 & 1 & 1 & 1 \\
\hline AK2EBU & 1 & 1 & 1 & 1 & 1 \\
\hline AK2EBI & 1 & 1 & 1 & 1 & 2 \\
\hline AK2EBV & 1 & 1 & 1 & 1 & 1 \\
\hline
\end{tabular}
AT1AAT
1
1
1
1
=== Model and evaluation on training set \(==\)
Clustered Instances
```

0 (7%)
1 87(81%)
2 12(11%)
3 1(1%)

```

\section*{Simple K Means with 5 Clusters}

Number of iterations: 6
Within cluster sum of squared errors: 10458.0
Missing values globally replaced with mean/mode
Final cluster centroids:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Attribute} & \multicolumn{6}{|c|}{Cluster\#} \\
\hline & Full Data
(108.0) & \[
\begin{gathered}
0 \\
(8.0)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(87.0)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(7.0)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(1.0)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
5.0)
\end{gathered}
\] \\
\hline GENDER & WOMAN & WOMAN & MAN & WOMAN & WOMAN & WOMAN \\
\hline AGE & 32 & 38 & 32 & 37 & 52 & 39 \\
\hline 011A01 & 2 & 81 & 2 & 14 & 153 & 47 \\
\hline 011A02 & 1 & 22 & 1 & 8 & 109 & 33 \\
\hline 011A03 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 011A04 & 1 & 1 & 1 & 1 & 17 & 4 \\
\hline 011AAY & 1 & 45 & 1 & 7 & 89 & 24 \\
\hline 011AAF & 1 & 96 & 1 & 20 & 324 & 41 \\
\hline 011AAX & 3 & 27 & 3 & 36 & 69 & 17 \\
\hline 011 AAC & 2 & 15 & 2 & 22 & 47 & 8 \\
\hline 011 AAV & 2 & 2 & 2 & 3 & 24 & 2 \\
\hline 012G01 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 012 GZ 5 & 1 & 2 & 1 & 1 & 8 & 4 \\
\hline 012D04 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 012 DBA & 1 & 11 & 1 & 1 & 10 & 1 \\
\hline 012 DBB & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 012DZ5 & 1 & 7 & 1 & 6 & 14 & 1 \\
\hline 012DF0 & 1 & 3 & 1 & 1 & 11 & 1 \\
\hline 012DF3 & 1 & 7 & 1 & 1 & 20 & 11 \\
\hline 021A05 & 2 & 31 & 2 & 43 & 100 & 20 \\
\hline 021 A0 6 & 1 & 14 & 1 & 7 & 53 & 18 \\
\hline 021E05 & 1 & 2 & 1 & 1 & 6 & 1 \\
\hline 021E06 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 031 A 07 & 1 & 19 & 1 & 2 & 49 & 7 \\
\hline 031 A68 & 1 & 17 & 1 & 1 & 38 & 10 \\
\hline 031 A73 & 1 & 26 & 1 & 4 & 37 & 13 \\
\hline 031 A74 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 041 A 08 & 3 & 69 & 3 & 75 & 221 & 62 \\
\hline 041 A 09 & 1 & 1 & 1 & 2 & 11 & 4 \\
\hline 041 A1 6 & 1 & 1 & 1 & 1 & 18 & 1 \\
\hline 041 A17 & 1 & 8 & 1 & 7 & 58 & 1 \\
\hline 041 A18 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 041 A19 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 041 A20 & 1 & 5 & 1 & 1 & 11 & 2 \\
\hline 041 A21 & 1 & 56 & 1 & 39 & 80 & 7 \\
\hline 041 A22 & 1 & 3 & 1 & 2 & 8 & 3 \\
\hline 041 A23 & 1 & 14 & 1 & 18 & 39 & 7 \\
\hline 041 A25 & 1 & 72 & 1 & 24 & 198 & 34 \\
\hline 041 A26 & 1 & 12 & 1 & 9 & 87 & 13 \\
\hline 041 A27 & 1 & 10 & 1 & 8 & 14 & 8 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 222D62 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 222E57 & 1 & 35 & 1 & 3 & 116 & 14 \\
\hline 222E58 & 1 & 26 & 1 & 25 & 107 & 36 \\
\hline 222E59 & 5 & 35 & 5 & 3 & 108 & 21 \\
\hline 222E60 & 2 & 2 & 2 & 2 & 2 & 2 \\
\hline 222E61 & 2 & 2 & 2 & 2 & 7 & 3 \\
\hline 222E62 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 222EY1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 231A66 & 2 & 51 & 2 & 21 & 126 & 31 \\
\hline 241A08 & 1 & 19 & 1 & 11 & 21 & 2 \\
\hline 241A70 & 1 & 8 & 1 & 3 & 35 & 6 \\
\hline 241A71 & 2 & 40 & 2 & 7 & 116 & 54 \\
\hline 241A72 & 1 & 12 & 1 & 19 & 38 & 9 \\
\hline 242E72 & 1 & 5 & 1 & 8 & 13 & 7 \\
\hline 251A33 & 1 & 8 & 1 & 6 & 25 & 7 \\
\hline 251A75 & 8 & 108 & 8 & 19 & 133 & 25 \\
\hline 251A76 & 1 & 7 & 1 & 2 & 41 & 6 \\
\hline 251AX3 & 2 & 2 & 2 & 2 & 4 & 2 \\
\hline 251AX4 & 3 & 89 & 3 & 72 & 155 & 37 \\
\hline 251AX5 & 1 & 21 & 1 & 11 & 76 & 47 \\
\hline 252G33 & 1 & 1 & 1 & 1 & 6 & 1 \\
\hline 252G76 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 252GX5 & 1 & 9 & 1 & 22 & 44 & 18 \\
\hline 261A77 & 1 & 21 & 1 & 8 & 61 & 11 \\
\hline 261A78 & 1 & 5 & 1 & 8 & 18 & 1 \\
\hline 261A79 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 261A80 & 1 & 1 & 1 & 1 & 4 & 1 \\
\hline 261A81 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 261A82 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 261A83 & 1 & 1 & 1 & 1 & 7 & 1 \\
\hline 261A84 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 261 A85 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 261A86 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 261A88 & 1 & 1 & 1 & 1 & 3 & 1 \\
\hline 261 AZ7 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 261AX4 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 281BB1 & 2 & 9 & 2 & 14 & 75 & 8 \\
\hline 281BD9 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 281BE1 & 1 & 6 & 1 & 1 & 41 & 1 \\
\hline 281BS 7 & 1 & 29 & 1 & 5 & 27 & 3 \\
\hline 281BS8 & 1 & 3 & 1 & 1 & 9 & 1 \\
\hline 281BS 9 & 1 & 9 & 1 & 1 & 29 & 4 \\
\hline 281BT0 & 1 & 1 & 1 & 1 & 7 & 1 \\
\hline 281BT3 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 291BA4 & 1 & 5 & 1 & 2 & 20 & 7 \\
\hline 291BA8 & 1 & 22 & 1 & 7 & 36 & 7 \\
\hline 291BC4 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 301BB2 & 1 & 37 & 1 & 18 & 91 & 17 \\
\hline 301BB3 & 1 & 22 & 1 & 47 & 73 & 33 \\
\hline 301BB4 & 2 & 38 & 2 & 22 & 128 & 40 \\
\hline 301BB5 & 1 & 19 & 1 & 10 & 56 & 9 \\
\hline 301BG1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 301BT2 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 311BA8 & 1 & 1 & 1 & 1 & 17 & 4 \\
\hline 311BB6 & 1 & 3 & 1 & 1 & 10 & 1 \\
\hline \(321 \mathrm{BB7}\) & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 321 BB 8 & 1 & 6 & 1 & 3 & 24 & 4 \\
\hline 331 BB 9 & 1 & 1 & 1 & 1 & 3 & 1 \\
\hline 331 BY 5 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 341BG3 & 1 & 14 & 1 & 3 & 26 & 2 \\
\hline 341BG4 & 1 & 6 & 1 & 1 & 20 & 2 \\
\hline 351BG8 & 1 & 4 & 1 & 4 & 8 & 1 \\
\hline 351BG9 & 1 & 4 & 1 & 1 & 4 & 1 \\
\hline 351BD1 & 1 & 2 & 1 & 1 & 7 & 2 \\
\hline 351BD2 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 351BD3 & 1 & 11 & 1 & 11 & 29 & 9 \\
\hline 351BD5 & 1 & 13 & 1 & 4 & 16 & 1 \\
\hline 361 BBL & 1 & 10 & 1 & 1 & 5 & 1 \\
\hline 361 BG2 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 361 BG5 & 1 & 18 & 1 & 6 & 43 & 11 \\
\hline 361 BG6 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 361 BG 7 & 3 & 25 & 3 & 29 & 61 & 20 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 733PN8 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 743 PM 4 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 751BT8 & 1 & 1 & 1 & 1 & 8 & 1 \\
\hline 761 AN1 & 1 & 17 & 1 & 2 & 40 & 4 \\
\hline \(762 \mathrm{GN1}\) & 1 & 21 & 1 & 1 & 80 & 2 \\
\hline 771 BN 2 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 783RN5 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 783RN6 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline \(793 \mathrm{SB0}\) & 1 & 1 & 1 & 1 & 4 & 1 \\
\hline 793SG0 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 793 SD0 & 1 & 1 & 1 & 1 & 3 & 1 \\
\hline 803 TAO & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 803 TBJ & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 811BAP & 1 & 4 & 1 & 2 & 7 & 2 \\
\hline 811 BAS & 1 & 2 & 1 & 1 & 5 & 1 \\
\hline 811 BJ 4 & 1 & 8 & 1 & 6 & 25 & 8 \\
\hline 811BJ6 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 811BJ7 & 2 & 4 & 2 & 2 & 14 & 2 \\
\hline 811BJ9 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 811B01 & 1 & 5 & 1 & 1 & 19 & 12 \\
\hline 811B02 & 1 & 14 & 1 & 1 & 9 & 2 \\
\hline 811B03 & 1 & 1 & 1 & 1 & 5 & 1 \\
\hline 811 BO 4 & 1 & 7 & 1 & 1 & 7 & 1 \\
\hline 811 BO 5 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 811B06 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 811B08 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 811B09 & 1 & 1 & 1 & 1 & 4 & 1 \\
\hline 811 BP 0 & 1 & 2 & 1 & 1 & 2 & 1 \\
\hline 811 BP 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 811BP2 & 2 & 4 & 2 & 2 & 11 & 2 \\
\hline 811BP3 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 821BA5 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 821 BO 4 & 1 & 2 & 1 & 1 & 7 & 2 \\
\hline 821 BP 6 & 1 & 13 & 1 & 1 & 15 & 1 \\
\hline 821 BP 7 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 831B90 & 2 & 15 & 2 & 2 & 13 & 4 \\
\hline 831 BA 7 & 1 & 6 & 1 & 8 & 30 & 1 \\
\hline 831 BP 8 & 1 & 1 & 1 & 2 & 11 & 1 \\
\hline \(831 \mathrm{BP9} 9\) & 1 & 11 & 1 & 8 & 46 & 8 \\
\hline 831 BR 1 & 1 & 1 & 1 & 3 & 21 & 8 \\
\hline 831 BR 2 & 1 & 1 & 1 & 1 & 6 & 1 \\
\hline 831 BC 8 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 841 BO 4 & 1 & 1 & 1 & 1 & 4 & 1 \\
\hline 841 BR 4 & 1 & 4 & 1 & 1 & 2 & 1 \\
\hline 841 BR5 & 1 & 7 & 1 & 8 & 20 & 6 \\
\hline 841 BR6 & 1 & 1 & 1 & 1 & 10 & 1 \\
\hline 851 BR 7 & 1 & 21 & 1 & 9 & 40 & 10 \\
\hline 851BR8 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 851 BR9 & 1 & 1 & 1 & 1 & 4 & 1 \\
\hline 851BS0 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 851 BS 1 & 1 & 1 & 1 & 1 & 10 & 1 \\
\hline 851BS2 & 1 & 7 & 1 & 3 & 12 & 1 \\
\hline 851BS3 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 851BX2 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 861B98 & 1 & 2 & 1 & 1 & 12 & 1 \\
\hline 861 BS 4 & 1 & 3 & 1 & 1 & 4 & 1 \\
\hline 861 BS 6 & 1 & 11 & 1 & 5 & 17 & 7 \\
\hline 861 BT 6 & 1 & 3 & 1 & 1 & 5 & 1 \\
\hline 861 BCO & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 873 TY 8 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 902 DX6 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 913HX8 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline \(923 \mathrm{JC1}\) & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline \(933 \mathrm{JC6}\) & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline \(943 \mathrm{XC7}\) & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline \(943 \mathrm{XV1}\) & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 951A01 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 951A02 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 951A04 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 951A05 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 951A06 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 951 A07 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 951A10 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 951A15 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 951A16 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 951A22 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 951A23 & 1 & 1 & 1 & 1 & 14 & 1 \\
\hline 951A26 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 951A37 & 1 & 1 & 1 & 1 & 6 & 1 \\
\hline 951A38 & 2 & 2 & 2 & 2 & 2 & 2 \\
\hline 951A39 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 951A41 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 951A42 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 951A52 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 951A53 & 2 & 2 & 2 & 2 & 2 & 2 \\
\hline 951A54 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 951A64 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 951A67 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 951A69 & 5 & 5 & 5 & 5 & 5 & 5 \\
\hline 951A71 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 951 A72 & 1 & 3 & 1 & 1 & 4 & 2 \\
\hline 951 A77 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 951A78 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 951 AN 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 951AX4 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 952G11 & 1 & 26 & 1 & 4 & 9 & 9 \\
\hline 952G12 & 1 & 1 & 1 & 1 & 3 & 1 \\
\hline 952G44 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 952G45 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 952G46 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 952G50 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 952G77 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 952GX5 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 952D35 & 1 & 2 & 1 & 1 & 4 & 1 \\
\hline 952EJ2 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 963CV0 & 3 & 200 & 3 & 66 & 423 & 101 \\
\hline AA1A54 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline AA1A72 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline AB1A05 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline AB1A11 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline AB1A35 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline AB1A38 & 1 & 2 & 1 & 1 & 5 & 1 \\
\hline AB1AAR & 1 & 1 & 1 & 1 & 65 & 1 \\
\hline AB1AT6 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline AH1BBC & 1 & 9 & 1 & 7 & 96 & 8 \\
\hline AK2E0 4 & 1 & 1 & 1 & 6 & 10 & 2 \\
\hline AK2E59 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline AK2EBH & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline AK2EBU & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline AK2EBI & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline AK2EBV & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline AT1AAT & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline
\end{tabular}
\(===\) Model and evaluation on training set \(===\)

\section*{Clustered Instances}
\begin{tabular}{cc}
0 & \(8(7 \%)\) \\
1 & \(87(81 \%)\) \\
2 & \(7(6 \%)\) \\
3 & \(1(1 \%)\) \\
4 & \(5(5 \%)\)
\end{tabular}

Error! Reference source not found.

\section*{Make A Density Based Clusterer with 2 Clusters}
\begin{tabular}{|c|c|c|c|}
\hline Attribute & Full Data
(108.0) & \begin{tabular}{l}
Cluster\# \\
0 \\
(7.0)
\end{tabular} & \[
(101.0)^{1}
\] \\
\hline GENDER & WOMAN & WOMAN & WOMAN \\
\hline AGE & 32 & 38 & 32 \\
\hline 011A01 & 2 & 81 & 2 \\
\hline 011A02 & 1 & 33 & 1 \\
\hline 011A03 & 1 & 1 & 1 \\
\hline 011A04 & 1 & 1 & 1 \\
\hline 011AAY & 1 & 45 & 1 \\
\hline 011AAF & 1 & 96 & 1 \\
\hline 011AAX & 3 & 13 & 3 \\
\hline 011AAC & 2 & 15 & 2 \\
\hline 011AAV & 2 & 2 & 2 \\
\hline 012G01 & 1 & 1 & 1 \\
\hline 012GZ5 & 1 & 1 & 1 \\
\hline 012D04 & 1 & 1 & 1 \\
\hline 012 DBA & 1 & 11 & 1 \\
\hline 012 DBB & 1 & 1 & 1 \\
\hline 012DZ5 & 1 & 2 & 1 \\
\hline 012DF0 & 1 & 2 & 1 \\
\hline 012DF3 & 1 & 8 & 1 \\
\hline 021A05 & 2 & 31 & 2 \\
\hline 021A06 & 1 & 14 & 1 \\
\hline 021E05 & 1 & 2 & 1 \\
\hline 021E06 & 1 & 1 & 1 \\
\hline 031A07 & 1 & 27 & 1 \\
\hline 031A68 & 1 & 17 & 1 \\
\hline 031 A73 & 1 & 26 & 1 \\
\hline 031 A74 & 1 & 1 & 1 \\
\hline 041 A08 & 3 & 69 & 3 \\
\hline 041 A09 & 1 & 1 & 1 \\
\hline 041 A16 & 1 & 1 & 1 \\
\hline 041 A17 & 1 & 3 & 1 \\
\hline 041 A18 & 1 & 1 & 1 \\
\hline 041 A19 & 1 & 1 & 1 \\
\hline 041 A20 & 1 & 1 & 1 \\
\hline 041 A21 & 1 & 56 & 1 \\
\hline 041 A22 & 1 & 1 & 1 \\
\hline 041 A23 & 1 & 14 & 1 \\
\hline 041 A25 & 1 & 72 & 1 \\
\hline 041 A26 & 1 & 12 & 1 \\
\hline 041 A27 & 1 & 12 & 1 \\
\hline 041 A28 & 2 & 19 & 2 \\
\hline 041 AC 2 & 2 & 5 & 2 \\
\hline \(042 \mathrm{G19}\) & 1 & 1 & 1 \\
\hline 042 D 21 & 1 & 1 & 1 \\
\hline 042 DZ3 & 1 & 14 & 1 \\
\hline 042E20 & 1 & 1 & 1 \\
\hline 051A10 & 1 & 35 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 051A29 & 1 & 10 & 1 \\
\hline 051A30 & 1 & 1 & 1 \\
\hline 051A33 & 1 & 1 & 1 \\
\hline 051A34 & 1 & 8 & 1 \\
\hline 061 A11 & 4 & 13 & 4 \\
\hline \(062 \mathrm{G11}\) & 3 & 119 & 3 \\
\hline \(062 \mathrm{G12}\) & 1 & 84 & 1 \\
\hline \(062 \mathrm{G1} 4\) & 1 & 10 & 1 \\
\hline \(062 \mathrm{GX0}\) & 1 & 1 & 1 \\
\hline 062 GC 5 & 1 & 37 & 1 \\
\hline 062 GC 9 & 1 & 1 & 1 \\
\hline 062 E 12 & 2 & 2 & 2 \\
\hline 071A15 & 1 & 29 & 1 \\
\hline 081A24 & 5 & 42 & 5 \\
\hline 082G24 & 1 & 5 & 1 \\
\hline 091A31 & 2 & 61 & 2 \\
\hline 091 BBN & 1 & 1 & 1 \\
\hline 092G31 & 1 & 1 & 1 \\
\hline 092E31 & 2 & 17 & 2 \\
\hline 101A37 & 4 & 52 & 4 \\
\hline 102D35 & 1 & 18 & 1 \\
\hline 102E35 & 1 & 214 & 1 \\
\hline 111A36 & 1 & 1 & 1 \\
\hline 112E40 & 11 & 120 & 11 \\
\hline 121A38 & 1 & 3 & 1 \\
\hline 121A39 & 1 & 6 & 1 \\
\hline 121A64 & 1 & 16 & 1 \\
\hline 121A65 & 1 & 9 & 1 \\
\hline 121A67 & 1 & 8 & 1 \\
\hline 121AZ4 & 1 & 2 & 1 \\
\hline 122G63 & 2 & 2 & 2 \\
\hline 122G67 & 1 & 1 & 1 \\
\hline 131A41 & 2 & 24 & 2 \\
\hline 132G41 & 1 & 1 & 1 \\
\hline 132D41 & 1 & 14 & 1 \\
\hline 141A42 & 1 & 1 & 1 \\
\hline 141A43 & 1 & 8 & 1 \\
\hline 141 ABG & 1 & 1 & 1 \\
\hline 141 ABD & 1 & 14 & 1 \\
\hline 142G44 & 1 & 17 & 1 \\
\hline 142G45 & 2 & 15 & 2 \\
\hline 142E45 & 1 & 1 & 1 \\
\hline 152G46 & 2 & 41 & 2 \\
\hline 152GY0 & 1 & 1 & 1 \\
\hline 152E46 & 4 & 74 & 4 \\
\hline 162G50 & 1 & 66 & 1 \\
\hline 162EJ2 & 1 & 142 & 1 \\
\hline 172G51 & 1 & 1 & 1 \\
\hline 172 GM 6 & 1 & 1 & 1 \\
\hline 172E51 & 1 & 2 & 1 \\
\hline 172EJ3 & 1 & 1 & 1 \\
\hline 182G52 & 1 & 5 & 1 \\
\hline 182E52 & 1 & 5 & 1 \\
\hline 191A53 & 1 & 1 & 1 \\
\hline 192E53 & 1 & 4 & 1 \\
\hline 201A54 & 1 & 1 & 1 \\
\hline 202G54 & 1 & 1 & 1 \\
\hline 202E54 & 2 & 2 & 2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 212D55 & 1 & 7 & 1 \\
\hline 212D56 & 1 & 7 & 1 \\
\hline 212E55 & 1 & 2 & 1 \\
\hline 212E56 & 2 & 2 & 2 \\
\hline 222G59 & 1 & 2 & 1 \\
\hline 222D58 & 1 & 1 & 1 \\
\hline 222D59 & 1 & 9 & 1 \\
\hline 222D62 & 1 & 1 & 1 \\
\hline 222E57 & 1 & 35 & 1 \\
\hline 222E58 & 1 & 26 & 1 \\
\hline 222E59 & 5 & 35 & 5 \\
\hline 222E60 & 2 & 2 & 2 \\
\hline 222E61 & 2 & 5 & 2 \\
\hline 222E62 & 1 & 1 & 1 \\
\hline 222EY1 & 1 & 2 & 1 \\
\hline 231A66 & 2 & 51 & 2 \\
\hline 241A08 & 1 & 19 & 1 \\
\hline 241A70 & 1 & 8 & 1 \\
\hline 241A71 & 2 & 40 & 2 \\
\hline 241A72 & 1 & 12 & 1 \\
\hline 242E72 & 1 & 5 & 1 \\
\hline 251A33 & 1 & 8 & 1 \\
\hline 251A75 & 8 & 108 & 8 \\
\hline 251A76 & 1 & 10 & 1 \\
\hline 251AX3 & 2 & 4 & 2 \\
\hline 251AX4 & 3 & 54 & 3 \\
\hline 251AX5 & 1 & 21 & 1 \\
\hline 252G33 & 1 & 1 & 1 \\
\hline 252G76 & 1 & 1 & 1 \\
\hline 252GX5 & 1 & 9 & 1 \\
\hline 261A77 & 1 & 21 & 1 \\
\hline 261A78 & 1 & 18 & 1 \\
\hline 261A79 & 1 & 1 & 1 \\
\hline 261A80 & 1 & 1 & 1 \\
\hline 261A81 & 1 & 1 & 1 \\
\hline 261A82 & 1 & 1 & 1 \\
\hline 261A83 & 1 & 1 & 1 \\
\hline 261A84 & 1 & 1 & 1 \\
\hline 261A85 & 1 & 1 & 1 \\
\hline 261A86 & 1 & 1 & 1 \\
\hline 261A88 & 1 & 1 & 1 \\
\hline 261AZ7 & 1 & 1 & 1 \\
\hline 261AX4 & 1 & 1 & 1 \\
\hline 281BB1 & 2 & 9 & 2 \\
\hline 281BD9 & 1 & 1 & 1 \\
\hline 281BE1 & 1 & 6 & 1 \\
\hline 281BS 7 & 1 & 8 & 1 \\
\hline 281BS8 & 1 & 3 & 1 \\
\hline 281BS9 & 1 & 8 & 1 \\
\hline 281BT0 & 1 & 1 & 1 \\
\hline 281BT3 & 1 & 1 & 1 \\
\hline 291BA4 & 1 & 5 & 1 \\
\hline 291BA8 & 1 & 22 & 1 \\
\hline 291BC4 & 1 & 1 & 1 \\
\hline 301 BB 2 & 1 & 37 & 1 \\
\hline 301BB3 & 1 & 22 & 1 \\
\hline 301 BB 4 & 2 & 38 & 2 \\
\hline 301 BB 5 & 1 & 19 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 301BG1 & 1 & 1 & 1 \\
\hline 301BT2 & 1 & 1 & 1 \\
\hline 311BA8 & 1 & 1 & 1 \\
\hline \(311 \mathrm{BB6}\) & 1 & 3 & 1 \\
\hline 321BB7 & 1 & 1 & 1 \\
\hline 321 BB 8 & 1 & 6 & 1 \\
\hline \(331 \mathrm{BB9}\) & 1 & 1 & 1 \\
\hline 331 BY 5 & 1 & 1 & 1 \\
\hline 341BG3 & 1 & 14 & 1 \\
\hline 341BG4 & 1 & 6 & 1 \\
\hline 351BG8 & 1 & 6 & 1 \\
\hline 351BG9 & 1 & 4 & 1 \\
\hline 351BD1 & 1 & 2 & 1 \\
\hline 351BD2 & 1 & 1 & 1 \\
\hline 351BD3 & 1 & 6 & 1 \\
\hline 351BD5 & 1 & 11 & 1 \\
\hline 361 BBL & 1 & 5 & 1 \\
\hline 361BG2 & 1 & 1 & 1 \\
\hline \(361 \mathrm{BG5}\) & 1 & 15 & 1 \\
\hline 361BG6 & 1 & 1 & 1 \\
\hline \(361 \mathrm{BG7}\) & 3 & 25 & 3 \\
\hline 361 BD 4 & 1 & 1 & 1 \\
\hline 361 BD 6 & 1 & 1 & 1 \\
\hline 361 BD 8 & 1 & 2 & 1 \\
\hline 361 BM 5 & 1 & 15 & 1 \\
\hline 361 BY 4 & 1 & 1 & 1 \\
\hline 361 BY 6 & 1 & 2 & 1 \\
\hline 371 AE2 & 1 & 9 & 1 \\
\hline 371BE3 & 1 & 2 & 1 \\
\hline 381BE4 & 2 & 21 & 2 \\
\hline 381BE5 & 1 & 28 & 1 \\
\hline 381BE6 & 2 & 23 & 2 \\
\hline 381BE7 & 1 & 25 & 1 \\
\hline 391BE8 & 1 & 27 & 1 \\
\hline 401BE9 & 1 & 7 & 1 \\
\hline 401BZ1 & 1 & 1 & 1 \\
\hline 411A14 & 1 & 1 & 1 \\
\hline 411AZ2 & 1 & 1 & 1 \\
\hline 4237H1 & 1 & 1 & 1 \\
\hline 423ZH2 & 1 & 1 & 1 \\
\hline 433 ZBM & 1 & 1 & 1 \\
\hline 433ZH1 & 1 & 1 & 1 \\
\hline 433zH2 & 1 & 4 & 1 \\
\hline 433zH3 & 1 & 1 & 1 \\
\hline 4332H5 & 1 & 1 & 1 \\
\hline \(463 \mathrm{HH1}\) & 1 & 1 & 1 \\
\hline 463 HH 2 & 1 & 1 & 1 \\
\hline 463HH3 & 1 & 8 & 1 \\
\hline 463 HH 4 & 1 & 1 & 1 \\
\hline 463 HH 5 & 1 & 1 & 1 \\
\hline 473UH1 & 1 & 1 & 1 \\
\hline 473UH2 & 1 & 3 & 1 \\
\hline 473UH3 & 1 & 1 & 1 \\
\hline 473UH4 & 1 & 1 & 1 \\
\hline 483IH6 & 1 & 9 & 1 \\
\hline 483IH7 & 1 & 2 & 1 \\
\hline 4831H8 & 1 & 1 & 1 \\
\hline 4831H9 & 1 & 4 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 493KU1 & 1 & 1 & 1 \\
\hline 493KU2 & 1 & 1 & 1 \\
\hline 503KU4 & 1 & 22 & 1 \\
\hline 503KU5 & 1 & 1 & 1 \\
\hline 503KU6 & 1 & 1 & 1 \\
\hline 503 KU 7 & 1 & 3 & 1 \\
\hline 513KU8 & 1 & 1 & 1 \\
\hline 513 KU 9 & 1 & 3 & 1 \\
\hline 533LI1 & 1 & 1 & 1 \\
\hline 543LI3 & 1 & 1 & 1 \\
\hline 553LH4 & 1 & 1 & 1 \\
\hline 563LI5 & 1 & 1 & 1 \\
\hline 563LI6 & 1 & 1 & 1 \\
\hline 573LI7 & 1 & 1 & 1 \\
\hline 573LI8 & 1 & 1 & 1 \\
\hline 583LI9 & 1 & 1 & 1 \\
\hline 583LK1 & 1 & 1 & 1 \\
\hline 603MK6 & 1 & 1 & 1 \\
\hline 613MK7 & 1 & 1 & 1 \\
\hline 623MK8 & 1 & 1 & 1 \\
\hline 633NK9 & 1 & 4 & 1 \\
\hline 633NX7 & 2 & 11 & 2 \\
\hline \(643 \mathrm{NL1}\) & 1 & 5 & 1 \\
\hline 653NL2 & 1 & 5 & 1 \\
\hline 663NL3 & 2 & 8 & 2 \\
\hline 673NL4 & 1 & 5 & 1 \\
\hline 673NL5 & 1 & 1 & 1 \\
\hline 673NN9 & 1 & 4 & 1 \\
\hline 683JL5 & 1 & 1 & 1 \\
\hline 693JL5 & 1 & 1 & 1 \\
\hline 693JL7 & 1 & 1 & 1 \\
\hline 693JL8 & 1 & 1 & 1 \\
\hline 703JL5 & 1 & 5 & 1 \\
\hline 723 PM 2 & 1 & 1 & 1 \\
\hline 733 PM 3 & 1 & 1 & 1 \\
\hline 733 PN 8 & 1 & 1 & 1 \\
\hline 743 PM 4 & 1 & 1 & 1 \\
\hline 751BT8 & 1 & 1 & 1 \\
\hline 761AN1 & 1 & 23 & 1 \\
\hline \(762 \mathrm{GN1}\) & 1 & 21 & 1 \\
\hline 771 BN 2 & 1 & 1 & 1 \\
\hline 783RN5 & 1 & 1 & 1 \\
\hline 783RN6 & 1 & 1 & 1 \\
\hline 793SB0 & 1 & 1 & 1 \\
\hline 793SG0 & 1 & 1 & 1 \\
\hline 793SD0 & 1 & 3 & 1 \\
\hline 803TA0 & 1 & 1 & 1 \\
\hline 803 TBJ & 1 & 1 & 1 \\
\hline 811BAP & 1 & 4 & 1 \\
\hline 811BAS & 1 & 2 & 1 \\
\hline 811BJ4 & 1 & 8 & 1 \\
\hline 811BJ6 & 1 & 1 & 1 \\
\hline 811BJ7 & 2 & 4 & 2 \\
\hline 811BJ9 & 1 & 1 & 1 \\
\hline 811B01 & 1 & 4 & 1 \\
\hline 811BO2 & 1 & 9 & 1 \\
\hline 811B03 & 1 & 1 & 1 \\
\hline 811B04 & 1 & 7 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 811B05 & 1 & 1 & 1 \\
\hline 811 BO 6 & 1 & 1 & 1 \\
\hline 811B08 & 1 & 1 & 1 \\
\hline 811B09 & 1 & 1 & 1 \\
\hline 811 BP 0 & 1 & 2 & 1 \\
\hline \(811 \mathrm{BP1}\) & 1 & 1 & 1 \\
\hline 811 BP 2 & 2 & 4 & 2 \\
\hline 811 BP 3 & 1 & 1 & 1 \\
\hline 821BA5 & 1 & 1 & 1 \\
\hline 821 BO 4 & 1 & 2 & 1 \\
\hline 821BP6 & 1 & 13 & 1 \\
\hline \(821 \mathrm{BP7}\) & 1 & 1 & 1 \\
\hline 831B90 & 2 & 15 & 2 \\
\hline 831 BA 7 & 1 & 10 & 1 \\
\hline 831 BP 8 & 1 & 4 & 1 \\
\hline \(831 \mathrm{BP9}\) & 1 & 11 & 1 \\
\hline \(831 \mathrm{BR1}\) & 1 & 5 & 1 \\
\hline 831 BR 2 & 1 & 1 & 1 \\
\hline 831 BC 8 & 1 & 1 & 1 \\
\hline 841B04 & 1 & 1 & 1 \\
\hline 841 BR 4 & 1 & 2 & 1 \\
\hline 841 BR5 & 1 & 7 & 1 \\
\hline 841 BR6 & 1 & 1 & 1 \\
\hline 851BR7 & 1 & 21 & 1 \\
\hline 851BR8 & 1 & 1 & 1 \\
\hline 851BR9 & 1 & 1 & 1 \\
\hline 851 BS 0 & 1 & 1 & 1 \\
\hline 851 BS 1 & 1 & 1 & 1 \\
\hline 851 BS 2 & 1 & 7 & 1 \\
\hline 851 BS 3 & 1 & 1 & 1 \\
\hline 851 BX 2 & 1 & 1 & 1 \\
\hline 861B98 & 1 & 2 & 1 \\
\hline 861 BS 4 & 1 & 3 & 1 \\
\hline 861 BS 6 & 1 & 4 & 1 \\
\hline 861 BT 6 & 1 & 3 & 1 \\
\hline 861 BC 0 & 1 & 1 & 1 \\
\hline 873 TY 8 & 1 & 1 & 1 \\
\hline 902DX6 & 1 & 1 & 1 \\
\hline 913HX8 & 1 & 1 & 1 \\
\hline 923JC1 & 1 & 1 & 1 \\
\hline 933JC6 & 1 & 1 & 1 \\
\hline 943XC7 & 1 & 2 & 1 \\
\hline \(943 \mathrm{XV1}\) & 1 & 1 & 1 \\
\hline 951A01 & 1 & 1 & 1 \\
\hline 951A02 & 1 & 1 & 1 \\
\hline 951A04 & 1 & 1 & 1 \\
\hline 951A05 & 1 & 1 & 1 \\
\hline 951A06 & 1 & 1 & 1 \\
\hline 951A07 & 1 & 1 & 1 \\
\hline 951A10 & 1 & 1 & 1 \\
\hline 951A15 & 1 & 1 & 1 \\
\hline 951A16 & 1 & 1 & 1 \\
\hline 951A22 & 1 & 1 & 1 \\
\hline 951A23 & 1 & 1 & 1 \\
\hline 951 A26 & 1 & 1 & 1 \\
\hline 951A37 & 1 & 1 & 1 \\
\hline 951A38 & 2 & 2 & 2 \\
\hline 951A39 & 1 & 1 & 1 \\
\hline
\end{tabular}
\begin{tabular}{llll}
\(951 A 41\) & 1 & 1 & 1 \\
\(951 A 42\) & 1 & 1 & 1 \\
\(951 A 52\) & 1 & 1 & 1 \\
\(951 A 53\) & 2 & 2 & 2 \\
\(951 A 54\) & 1 & 1 & 1 \\
\(951 A 64\) & 1 & 1 & 1 \\
\(951 A 67\) & 1 & 1 & 1 \\
\(951 A 69\) & 5 & 5 & 5 \\
\(951 A 71\) & 1 & 1 & 1 \\
\(951 A 72\) & 1 & 3 & 1 \\
\(951 A 77\) & 1 & 1 & 1 \\
\(951 A 78\) & 1 & 1 & 1 \\
\(951 A N 1\) & 1 & 1 & 1 \\
\(951 A X 4\) & 1 & 1 & 1 \\
\(952 G 11\) & 1 & 9 & 1 \\
\(952 G 12\) & 1 & 1 & 1 \\
\(952 G 44\) & 1 & 1 & 1 \\
\(952 G 45\) & 1 & 1 & 1 \\
\(952 G 46\) & 1 & 1 & 1 \\
\(952 G 50\) & 1 & 1 & 1 \\
\(952 G 77\) & 1 & 1 & 1 \\
\(952 G X 5\) & 1 & 1 & 1 \\
\(952 D 35\) & 1 & 2 & 1 \\
952 EJ2 & 1 & 1 & 1 \\
\(963 C V 0\) & 3 & 1 & 1 \\
AA1A54 & 1 & 1 & 1 \\
AA1A72 & 1 & 1 & 1 \\
AB1A05 & 1 & 1 & 1 \\
AB1A11 & 1 & 1 & 1 \\
AB1A35 & 1 & 1 & 1 \\
AB1A38 & 1 & 1 & 1 \\
AB1AAR & 1 & 1 & 1 \\
AB1AT6 & 1 & 1 & 1 \\
AH1BBC & 1 & 1 & 1 \\
AK2E04 & 1 & 1 & 1 \\
AK2E59 & 1 & 1 & 1 \\
AK2EBH & 1 & 1 & 1 \\
AK2EBU & 1 & 1 & 1 \\
AK2EBI & 1 & 1 & 1 \\
AK2EBV & 1 & 1 & 1 \\
AT1AAT & 1 & 1 & 1 \\
& 1 & 1 & 1 \\
\hline
\end{tabular}

\section*{Make A Density Based Clusterer with 3 Clusters}

Final cluster centroids:
\begin{tabular}{lrrrrr} 
Attribute & \begin{tabular}{r} 
Full Data \\
\((108.0)\)
\end{tabular} & \begin{tabular}{r} 
Cluster\# \\
\((7.0)\)
\end{tabular} & \begin{tabular}{c}
1 \\
\((99.0)\)
\end{tabular} & \((2.0)\) \\
\(=======================================================\) \\
GENDER & WOMAN & WOMAN & WOMAN & WOMAN \\
AGE & 32 & 38 & 32 & 41 \\
011A01 & 2 & 81 & 2 & 4 \\
011A02 & 1 & 33 & 1 & 9 \\
011A03 & 1 & 1 & 1 & 1 \\
011A04 & 1 & 1 & 1 & 1 \\
011AAY & 1 & 45 & 1 & 8 \\
011AAF & 1 & 96 & 1 & 1
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 011AAX & 3 & 13 & 3 & 2 \\
\hline 011AAC & 2 & 15 & 2 & 4 \\
\hline 011AAV & 2 & 2 & 2 & 2 \\
\hline 012G01 & 1 & 1 & 1 & 3 \\
\hline 012GZ5 & 1 & 1 & 1 & 1 \\
\hline 012D04 & 1 & 1 & 1 & 1 \\
\hline 012 DBA & 1 & 11 & 1 & 1 \\
\hline 012 DBB & 1 & 1 & 1 & 1 \\
\hline 012DZ5 & 1 & 2 & 1 & 1 \\
\hline 012DF0 & 1 & 2 & 1 & 1 \\
\hline 012DF3 & 1 & 8 & 1 & 1 \\
\hline 021A05 & 2 & 31 & 2 & 3 \\
\hline 021A06 & 1 & 14 & 1 & 1 \\
\hline 021E05 & 1 & 2 & 1 & 1 \\
\hline 021E06 & 1 & 1 & 1 & 1 \\
\hline 031 A07 & 1 & 27 & 1 & 2 \\
\hline 031A68 & 1 & 17 & 1 & 1 \\
\hline 031 A73 & 1 & 26 & 1 & 1 \\
\hline 031 A74 & 1 & 1 & 1 & 1 \\
\hline 041 A08 & 3 & 69 & 3 & 4 \\
\hline 041 A09 & 1 & 1 & 1 & 1 \\
\hline 041 A16 & 1 & 1 & 1 & 1 \\
\hline 041 A17 & 1 & 3 & 1 & 1 \\
\hline 041 A18 & 1 & 1 & 1 & 1 \\
\hline 041 A19 & 1 & 1 & 1 & 1 \\
\hline 041A20 & 1 & 1 & 1 & 1 \\
\hline 041 A21 & 1 & 56 & 1 & 1 \\
\hline 041 A22 & 1 & 1 & 1 & 1 \\
\hline 041 A23 & 1 & 14 & 1 & 1 \\
\hline 041 A25 & 1 & 72 & 1 & 8 \\
\hline 041 A26 & 1 & 12 & 1 & 1 \\
\hline 041 A27 & 1 & 12 & 1 & 1 \\
\hline 041 A28 & 2 & 19 & 2 & 2 \\
\hline 041 AC2 & 2 & 5 & 2 & 3 \\
\hline \(042 \mathrm{G19}\) & 1 & 1 & 1 & 1 \\
\hline 042D21 & 1 & 1 & 1 & 1 \\
\hline \(042 \mathrm{DZ3}\) & 1 & 14 & 1 & 2 \\
\hline 042E20 & 1 & 1 & 1 & 1 \\
\hline \(051 A 10\) & 1 & 35 & 1 & 1 \\
\hline 051A29 & 1 & 10 & 1 & 1 \\
\hline 051A30 & 1 & 1 & 1 & 1 \\
\hline 051A33 & 1 & 1 & 1 & 1 \\
\hline 051A34 & 1 & 8 & 1 & 1 \\
\hline 061 A11 & 4 & 13 & 4 & 7 \\
\hline \(062 \mathrm{G11}\) & 3 & 119 & 3 & 20 \\
\hline \(062 \mathrm{G12}\) & 1 & 84 & 1 & 17 \\
\hline \(062 \mathrm{G14}\) & 1 & 10 & 1 & 2 \\
\hline \(062 \mathrm{GX0}\) & 1 & 1 & 1 & 1 \\
\hline 062 GC 5 & 1 & 37 & 1 & 1 \\
\hline 062 GC 9 & 1 & 1 & 1 & 1 \\
\hline 062 E 12 & 2 & 2 & 2 & 1 \\
\hline 071A15 & 1 & 29 & 1 & 8 \\
\hline 081A24 & 5 & 42 & 5 & 10 \\
\hline 082G24 & 1 & 5 & 1 & 4 \\
\hline 091 A31 & 2 & 61 & 2 & 3 \\
\hline 091 BBN & 1 & 1 & 1 & 1 \\
\hline 092G31 & 1 & 1 & 1 & 1 \\
\hline 092E31 & 2 & 17 & 2 & 2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 101A37 & 4 & 52 & 4 & 4 \\
\hline 102D35 & 1 & 18 & 1 & 7 \\
\hline 102E35 & 1 & 214 & 1 & 34 \\
\hline 111A36 & 1 & 1 & 1 & 1 \\
\hline 112E40 & 11 & 120 & 11 & 39 \\
\hline 121A38 & 1 & 3 & 1 & 1 \\
\hline 121A39 & 1 & 6 & 1 & 1 \\
\hline 121A64 & 1 & 16 & 1 & 1 \\
\hline 121A65 & 1 & 9 & 1 & 1 \\
\hline 121A67 & 1 & 8 & 1 & 3 \\
\hline 121AZ4 & 1 & 2 & 1 & 1 \\
\hline 122G63 & 2 & 2 & 2 & 2 \\
\hline 122G67 & 1 & 1 & 1 & 1 \\
\hline 131A41 & 2 & 24 & 2 & 7 \\
\hline 132G41 & 1 & 1 & 1 & 1 \\
\hline 132D41 & 1 & 14 & 1 & 1 \\
\hline 141A42 & 1 & 1 & 1 & 1 \\
\hline 141A43 & 1 & 8 & 1 & 1 \\
\hline 141 ABG & 1 & 1 & 1 & 1 \\
\hline 141 ABD & 1 & 14 & 1 & 1 \\
\hline 142G44 & 1 & 17 & 1 & 1 \\
\hline 142G45 & 2 & 15 & 2 & 2 \\
\hline 142E45 & 1 & 1 & 1 & 1 \\
\hline 152G46 & 2 & 41 & 2 & 10 \\
\hline 152GY0 & 1 & 1 & 1 & 1 \\
\hline 152E46 & 4 & 74 & 4 & 8 \\
\hline 162G50 & 1 & 66 & 1 & 6 \\
\hline 162EJ2 & 1 & 142 & 1 & 22 \\
\hline 172G51 & 1 & 1 & 1 & 1 \\
\hline 172 GM 6 & 1 & 1 & 1 & 1 \\
\hline 172E51 & 1 & 2 & 1 & 2 \\
\hline 172EJ3 & 1 & 1 & 1 & 1 \\
\hline 182G52 & 1 & 5 & 1 & 1 \\
\hline 182E52 & 1 & 5 & 1 & 1 \\
\hline 191A53 & 1 & 1 & 1 & 1 \\
\hline 192E53 & 1 & 4 & 1 & 4 \\
\hline 201A54 & 1 & 1 & 1 & 1 \\
\hline 202G54 & 1 & 1 & 1 & 1 \\
\hline 202E54 & 2 & 2 & 2 & 2 \\
\hline 212D55 & 1 & 7 & 1 & 7 \\
\hline 212D56 & 1 & 7 & 1 & 2 \\
\hline 212E55 & 1 & 2 & 1 & 1 \\
\hline 212E56 & 2 & 2 & 2 & 2 \\
\hline 222G59 & 1 & 2 & 1 & 1 \\
\hline 222D58 & 1 & 1 & 1 & 1 \\
\hline 222D59 & 1 & 9 & 1 & 1 \\
\hline 222D62 & 1 & 1 & 1 & 1 \\
\hline 222E57 & 1 & 35 & 1 & 10 \\
\hline 222E58 & 1 & 26 & 1 & 10 \\
\hline 222E59 & 5 & 35 & 5 & 15 \\
\hline 222E60 & 2 & 2 & 2 & 2 \\
\hline 222E61 & 2 & 5 & 2 & 1 \\
\hline 222E62 & 1 & 1 & 1 & 1 \\
\hline 222EY1 & 1 & 2 & 1 & 1 \\
\hline 231A66 & 2 & 51 & 2 & 8 \\
\hline 241A08 & 1 & 19 & 1 & 1 \\
\hline 241A70 & 1 & 8 & 1 & 3 \\
\hline 241A71 & 2 & 40 & 2 & 13 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 241A72 & 1 & 12 & 1 & 4 \\
\hline 242E72 & 1 & 5 & 1 & 1 \\
\hline 251A33 & 1 & 8 & 1 & 1 \\
\hline 251A75 & 8 & 108 & 8 & 21 \\
\hline 251A76 & 1 & 10 & 1 & 1 \\
\hline 251AX3 & 2 & 4 & 2 & 2 \\
\hline 251AX4 & 3 & 54 & 3 & 17 \\
\hline 251AX5 & 1 & 21 & 1 & 19 \\
\hline 252G33 & 1 & 1 & 1 & 1 \\
\hline 252G76 & 1 & 1 & 1 & 1 \\
\hline 252GX5 & 1 & 9 & 1 & 2 \\
\hline 261 A 77 & 1 & 21 & 1 & 1 \\
\hline 261A78 & 1 & 18 & 1 & 1 \\
\hline 261A79 & 1 & 1 & 1 & 1 \\
\hline 261A80 & 1 & 1 & 1 & 1 \\
\hline 261A81 & 1 & 1 & 1 & 1 \\
\hline 261A82 & 1 & 1 & 1 & 1 \\
\hline 261A83 & 1 & 1 & 1 & 1 \\
\hline 261A84 & 1 & 1 & 1 & 1 \\
\hline 261A85 & 1 & 1 & 1 & 1 \\
\hline 261A86 & 1 & 1 & 1 & 1 \\
\hline 261A88 & 1 & 1 & 1 & 1 \\
\hline 261 AZ7 & 1 & 1 & 1 & 1 \\
\hline 261AX4 & 1 & 1 & 1 & 1 \\
\hline 281BB1 & 2 & 9 & 2 & 2 \\
\hline 281BD9 & 1 & 1 & 1 & 1 \\
\hline 281BE1 & 1 & 6 & 1 & 1 \\
\hline 281BS 7 & 1 & 8 & 1 & 2 \\
\hline 281BS8 & 1 & 3 & 1 & 1 \\
\hline 281BS9 & 1 & 8 & 1 & 1 \\
\hline 281BT0 & 1 & 1 & 1 & 1 \\
\hline 281BT3 & 1 & 1 & 1 & 1 \\
\hline 291BA4 & 1 & 5 & 1 & 1 \\
\hline 291BA8 & 1 & 22 & 1 & 1 \\
\hline 291BC4 & 1 & 1 & 1 & 1 \\
\hline 301 BB 2 & 1 & 37 & 1 & 2 \\
\hline 301 BB 3 & 1 & 22 & 1 & 1 \\
\hline 301 BB 4 & 2 & 38 & 2 & 4 \\
\hline 301 BB 5 & 1 & 19 & 1 & 1 \\
\hline 301BG1 & 1 & 1 & 1 & 1 \\
\hline 301 BT 2 & 1 & 1 & 1 & 1 \\
\hline 311BA8 & 1 & 1 & 1 & 1 \\
\hline 311BB6 & 1 & 3 & 1 & 1 \\
\hline \(321 \mathrm{BB7}\) & 1 & 1 & 1 & 1 \\
\hline 321BB8 & 1 & 6 & 1 & 6 \\
\hline 331 BB 9 & 1 & 1 & 1 & 1 \\
\hline 331 BY 5 & 1 & 1 & 1 & 1 \\
\hline 341BG3 & 1 & 14 & 1 & 1 \\
\hline 341BG4 & 1 & 6 & 1 & 1 \\
\hline 351BG8 & 1 & 6 & 1 & 1 \\
\hline 351 BG 9 & 1 & 4 & 1 & 1 \\
\hline 351BD1 & 1 & 2 & 1 & 1 \\
\hline 351BD2 & 1 & 1 & 1 & 1 \\
\hline 351BD3 & 1 & 6 & 1 & 1 \\
\hline 351BD5 & 1 & 11 & 1 & 1 \\
\hline 361 BBL & 1 & 5 & 1 & 1 \\
\hline 361 BG2 & 1 & 1 & 1 & 1 \\
\hline 361 BG 5 & 1 & 15 & 1 & 2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 361BG6 & 1 & 1 & 1 & 1 \\
\hline 361 BG7 & 3 & 25 & 3 & 3 \\
\hline 361 BD 4 & 1 & 1 & 1 & 1 \\
\hline 361 BD 6 & 1 & 1 & 1 & 1 \\
\hline 361 BD 8 & 1 & 2 & 1 & 1 \\
\hline 361 BM 5 & 1 & 15 & 1 & 1 \\
\hline 361 BY 4 & 1 & 1 & 1 & 1 \\
\hline 361 BY 6 & 1 & 2 & 1 & 1 \\
\hline 371 AE 2 & 1 & 9 & 1 & 2 \\
\hline 371 BE 3 & 1 & 2 & 1 & 1 \\
\hline 381BE4 & 2 & 21 & 2 & 2 \\
\hline 381BE5 & 1 & 28 & 1 & 5 \\
\hline 381BE6 & 2 & 23 & 2 & 5 \\
\hline 381 BE 7 & 1 & 25 & 1 & 1 \\
\hline 391BE8 & 1 & 27 & 1 & 1 \\
\hline 401BE9 & 1 & 7 & 1 & 1 \\
\hline 401BZ1 & 1 & 1 & 1 & 1 \\
\hline 411A14 & 1 & 1 & 1 & 1 \\
\hline 411AZ2 & 1 & 1 & 1 & 1 \\
\hline 4237H1 & 1 & 1 & 1 & 1 \\
\hline 423zH2 & 1 & 1 & 1 & 1 \\
\hline 433 ZBM & 1 & 1 & 1 & 1 \\
\hline 4332H1 & 1 & 1 & 1 & 1 \\
\hline 4332H2 & 1 & 4 & 1 & 1 \\
\hline 4332H3 & 1 & 1 & 1 & 1 \\
\hline 4332H5 & 1 & 1 & 1 & 1 \\
\hline \(463 \mathrm{HH1}\) & 1 & 1 & 1 & 1 \\
\hline 463 HH 2 & 1 & 1 & 1 & 1 \\
\hline 463 HH 3 & 1 & 8 & 1 & 1 \\
\hline 463 HH 4 & 1 & 1 & 1 & 1 \\
\hline 463 HH 5 & 1 & 1 & 1 & 1 \\
\hline 473UH1 & 1 & 1 & 1 & 1 \\
\hline 473UH2 & 1 & 3 & 1 & 1 \\
\hline 473UH3 & 1 & 1 & 1 & 1 \\
\hline 473UH4 & 1 & 1 & 1 & 1 \\
\hline 483IH6 & 1 & 9 & 1 & 1 \\
\hline 483IH7 & 1 & 2 & 1 & 1 \\
\hline 483IH8 & 1 & 1 & 1 & 1 \\
\hline 483IH9 & 1 & 4 & 1 & 1 \\
\hline 493KU1 & 1 & 1 & 1 & 1 \\
\hline 493KU2 & 1 & 1 & 1 & 1 \\
\hline 503KU4 & 1 & 22 & 1 & 2 \\
\hline 503KU5 & 1 & 1 & 1 & 1 \\
\hline 503KU6 & 1 & 1 & 1 & 1 \\
\hline 503KU7 & 1 & 3 & 1 & 1 \\
\hline 513 KU 8 & 1 & 1 & 1 & 1 \\
\hline 513KU9 & 1 & 3 & 1 & 1 \\
\hline 533LI1 & 1 & 1 & 1 & 1 \\
\hline 543LI3 & 1 & 1 & 1 & 1 \\
\hline 553LH4 & 1 & 1 & 1 & 1 \\
\hline 563LI5 & 1 & 1 & 1 & 1 \\
\hline 563LI6 & 1 & 1 & 1 & 1 \\
\hline 573LI7 & 1 & 1 & 1 & 1 \\
\hline 573LI8 & 1 & 1 & 1 & 1 \\
\hline 583LI9 & 1 & 1 & 1 & 1 \\
\hline 583LK1 & 1 & 1 & 1 & 1 \\
\hline 603MK6 & 1 & 1 & 1 & 1 \\
\hline 613MK7 & 1 & 1 & 1 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 623MK8 & 1 & 1 & 1 & 1 \\
\hline 633NK9 & 1 & 4 & 1 & 1 \\
\hline 633NX7 & 2 & 11 & 2 & 2 \\
\hline \(643 N L 1\) & 1 & 5 & 1 & 1 \\
\hline 653NL2 & 1 & 5 & 1 & 1 \\
\hline 663NL3 & 2 & 8 & 2 & 2 \\
\hline 673NL4 & 1 & 5 & 1 & 1 \\
\hline 673NL5 & 1 & 1 & 1 & 1 \\
\hline 673NN9 & 1 & 4 & 1 & 1 \\
\hline 683JL5 & 1 & 1 & 1 & 1 \\
\hline 693JL5 & 1 & 1 & 1 & 1 \\
\hline \(693 \mathrm{JL7}\) & 1 & 1 & 1 & 1 \\
\hline 693JL8 & 1 & 1 & 1 & 1 \\
\hline 703JL5 & 1 & 5 & 1 & 1 \\
\hline 723PM2 & 1 & 1 & 1 & 1 \\
\hline 733PM3 & 1 & 1 & 1 & 1 \\
\hline 733PN8 & 1 & 1 & 1 & 1 \\
\hline 743PM4 & 1 & 1 & 1 & 1 \\
\hline 751BT8 & 1 & 1 & 1 & 1 \\
\hline 761 AN1 & 1 & 23 & 1 & 1 \\
\hline \(762 \mathrm{GN1}\) & 1 & 21 & 1 & 1 \\
\hline 771 BN 2 & 1 & 1 & 1 & 1 \\
\hline 783RN5 & 1 & 1 & 1 & 1 \\
\hline 783RN6 & 1 & 1 & 1 & 1 \\
\hline 793SB0 & 1 & 1 & 1 & 1 \\
\hline 793SG0 & 1 & 1 & 1 & 1 \\
\hline 793SD0 & 1 & 3 & 1 & 1 \\
\hline 803 TA0 & 1 & 1 & 1 & 1 \\
\hline 803 TBJ & 1 & 1 & 1 & 1 \\
\hline 811BAP & 1 & 4 & 1 & 1 \\
\hline 811BAS & 1 & 2 & 1 & 1 \\
\hline 811BJ4 & 1 & 8 & 1 & 1 \\
\hline 811BJ6 & 1 & 1 & 1 & 1 \\
\hline 811BJ7 & 2 & 4 & 2 & 2 \\
\hline 811BJ9 & 1 & 1 & 1 & 1 \\
\hline 811B01 & 1 & 4 & 1 & 1 \\
\hline 811B02 & 1 & 9 & 1 & 1 \\
\hline 811B03 & 1 & 1 & 1 & 1 \\
\hline 811B04 & 1 & 7 & 1 & 1 \\
\hline 811B05 & 1 & 1 & 1 & 1 \\
\hline 811B06 & 1 & 1 & 1 & 1 \\
\hline 811B08 & 1 & 1 & 1 & 1 \\
\hline 811B09 & 1 & 1 & 1 & 1 \\
\hline 811BP0 & 1 & 2 & 1 & 1 \\
\hline 811BP1 & 1 & 1 & 1 & 1 \\
\hline 811BP2 & 2 & 4 & 2 & 2 \\
\hline 811BP3 & 1 & 1 & 1 & 1 \\
\hline 821BA5 & 1 & 1 & 1 & 1 \\
\hline 821B04 & 1 & 2 & 1 & 1 \\
\hline 821BP6 & 1 & 13 & 1 & 1 \\
\hline \(821 \mathrm{BP7}\) & 1 & 1 & 1 & 1 \\
\hline \(831 \mathrm{B9} 0\) & 2 & 15 & 2 & 2 \\
\hline 831 BA 7 & 1 & 10 & 1 & 1 \\
\hline 831 BP 8 & 1 & 4 & 1 & 1 \\
\hline \(831 \mathrm{BP9} 9\) & 1 & 11 & 1 & 1 \\
\hline 831BR1 & 1 & 5 & 1 & 1 \\
\hline 831BR2 & 1 & 1 & 1 & 1 \\
\hline 831BC8 & 1 & 1 & 1 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 841B04 & 1 & 1 & 1 & 1 \\
\hline 841BR4 & 1 & 2 & 1 & 1 \\
\hline 841BR5 & 1 & 7 & 1 & 1 \\
\hline 841BR6 & 1 & 1 & 1 & 1 \\
\hline 851BR7 & 1 & 21 & 1 & 2 \\
\hline 851BR8 & 1 & 1 & 1 & 1 \\
\hline 851BR9 & 1 & 1 & 1 & 1 \\
\hline 851BS0 & 1 & 1 & 1 & 1 \\
\hline 851BS1 & 1 & 1 & 1 & 1 \\
\hline 851BS2 & 1 & 7 & 1 & 1 \\
\hline 851BS3 & 1 & 1 & 1 & 1 \\
\hline 851BX2 & 1 & 1 & 1 & 1 \\
\hline 861B98 & 1 & 2 & 1 & 1 \\
\hline 861BS 4 & 1 & 3 & 1 & 1 \\
\hline 861BS 6 & 1 & 4 & 1 & 1 \\
\hline 861BT6 & 1 & 3 & 1 & 1 \\
\hline 861BC0 & 1 & 1 & 1 & 1 \\
\hline 873TY8 & 1 & 1 & 1 & 1 \\
\hline 902DX6 & 1 & 1 & 1 & 1 \\
\hline 913HX8 & 1 & 1 & 1 & 1 \\
\hline 923JC1 & 1 & 1 & 1 & 1 \\
\hline 933JC6 & 1 & 1 & 1 & 1 \\
\hline 943XC7 & 1 & 2 & 1 & 1 \\
\hline 943XV1 & 1 & 1 & 1 & 1 \\
\hline 951A01 & 1 & 1 & 1 & 1 \\
\hline 951A02 & 1 & 1 & 1 & 1 \\
\hline 951A04 & 1 & 1 & 1 & 1 \\
\hline 951A05 & 1 & 1 & 1 & 1 \\
\hline 951A06 & 1 & 1 & 1 & 1 \\
\hline 951A07 & 1 & 1 & 1 & 1 \\
\hline 951A10 & 1 & 1 & 1 & 1 \\
\hline 951A15 & 1 & 1 & 1 & 1 \\
\hline 951A16 & 1 & 1 & 1 & 1 \\
\hline 951A22 & 1 & 1 & 1 & 1 \\
\hline 951A23 & 1 & 1 & 1 & 1 \\
\hline 951A26 & 1 & 1 & 1 & 1 \\
\hline 951A37 & 1 & 1 & 1 & 1 \\
\hline 951A38 & 2 & 2 & 2 & 2 \\
\hline 951A39 & 1 & 1 & 1 & 1 \\
\hline 951A41 & 1 & 1 & 1 & 1 \\
\hline 951A42 & 1 & 1 & 1 & 1 \\
\hline 951A52 & 1 & 1 & 1 & 1 \\
\hline 951A53 & 2 & 2 & 2 & 2 \\
\hline 951A54 & 1 & 1 & 1 & 1 \\
\hline 951A64 & 1 & 1 & 1 & 1 \\
\hline 951A67 & 1 & 1 & 1 & 1 \\
\hline 951A69 & 5 & 5 & 5 & 5 \\
\hline 951A71 & 1 & 1 & 1 & 1 \\
\hline 951A72 & 1 & 3 & 1 & 1 \\
\hline 951 A77 & 1 & 1 & 1 & 1 \\
\hline 951A78 & 1 & 1 & 1 & 1 \\
\hline 951AN1 & 1 & 1 & 1 & 1 \\
\hline 951AX4 & 1 & 1 & 1 & 1 \\
\hline 952G11 & 1 & 9 & 1 & 1 \\
\hline 952G12 & 1 & 1 & 1 & 1 \\
\hline 952G44 & 1 & 1 & 1 & 1 \\
\hline 952G45 & 1 & 1 & 1 & 1 \\
\hline 952G46 & 1 & 1 & 1 & 1 \\
\hline
\end{tabular}
\begin{tabular}{lrrrr}
\(952 G 50\) & 1 & 1 & 1 & 1 \\
\(952 G 77\) & 1 & 1 & 1 & 1 \\
\(952 G X 5\) & 1 & 1 & 1 & 1 \\
\(952 D 35\) & 1 & 2 & 1 & 1 \\
\(952 E J 2\) & 1 & 1 & 1 & 1 \\
\(963 C V 0\) & 3 & 200 & 3 & 6 \\
AA1A54 & 1 & 1 & 1 & 1 \\
AA1A72 & 1 & 1 & 1 & 1 \\
AB1A05 & 1 & 1 & 1 & 1 \\
AB1A11 & 1 & 1 & 1 & 1 \\
AB1A35 & 1 & 1 & 1 & 1 \\
AB1A38 & 1 & 2 & 1 & 1 \\
AB1AAR & 1 & 1 & 1 & 1 \\
AB1AT6 & 1 & 1 & 1 & 1 \\
AH1BBC & 1 & 8 & 1 & 1 \\
AK2E04 & 1 & 1 & 1 & 1 \\
AK2E59 & 1 & 1 & 1 & 1 \\
AK2EBH & 1 & 1 & 1 & 1 \\
AK2EBU & 1 & 1 & 1 & 1 \\
AK2EBI & 1 & 1 & 1 & 1 \\
AK2EBV & 1 & 1 & 1 & 1 \\
AT1AAT & 1 & & 1 & 1
\end{tabular}

\section*{Make A Density Based Clusterer with 4 Clusters}

Final cluster centroids:
\begin{tabular}{|c|c|c|c|c|c|}
\hline Attribute & \[
\begin{gathered}
\text { Full Data } \\
(108.0)
\end{gathered}
\] & \[
\begin{gathered}
\text { uster\# } \\
0 \\
(8.0)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(87.0)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(12.0)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(1.0)
\end{gathered}
\] \\
\hline GENDER & WOMAN & WOMAN & MAN & WOMAN & WOMAN \\
\hline AGE & 32 & 38 & 32 & 37 & 52 \\
\hline 011A01 & 2 & 81 & 2 & 14 & 153 \\
\hline 011A02 & 1 & 22 & 1 & 8 & 109 \\
\hline 011A03 & 1 & 1 & 1 & 1 & 1 \\
\hline 011A04 & 1 & 1 & 1 & 1 & 17 \\
\hline 011AAY & 1 & 45 & 1 & 26 & 89 \\
\hline 011AAF & 1 & 96 & 1 & 20 & 324 \\
\hline 011AAX & 3 & 27 & 3 & 36 & 69 \\
\hline 011AAC & 2 & 15 & 2 & 22 & 47 \\
\hline 011AAV & 2 & 2 & 2 & 6 & 24 \\
\hline 012G01 & 1 & 1 & 1 & 1 & 1 \\
\hline \(012 \mathrm{GZ5}\) & 1 & 2 & 1 & 1 & 8 \\
\hline 012D04 & 1 & 1 & 1 & 1 & 1 \\
\hline 012 DBA & 1 & 11 & 1 & 1 & 10 \\
\hline 012 DBB & 1 & 1 & 1 & 1 & 1 \\
\hline 012DZ5 & 1 & 7 & 1 & 6 & 14 \\
\hline 012DF0 & 1 & 3 & 1 & 1 & 11 \\
\hline 012DF3 & 1 & 7 & 1 & 1 & 20 \\
\hline 021A05 & 2 & 31 & 2 & 43 & 100 \\
\hline 021A06 & 1 & 14 & 1 & 23 & 53 \\
\hline 021E05 & 1 & 2 & 1 & 1 & 6 \\
\hline 021E06 & 1 & 1 & 1 & 1 & 1 \\
\hline 031A07 & 1 & 19 & 1 & 2 & 49 \\
\hline 031A68 & 1 & 17 & 1 & 7 & 38 \\
\hline 031A73 & 1 & 26 & 1 & 27 & 37 \\
\hline 031A74 & 1 & 1 & 1 & 1 & 2 \\
\hline 041A08 & 3 & 69 & 3 & 75 & 221 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 041 A 09 & 1 & 1 & 1 & 1 & 11 \\
\hline 041 A16 & 1 & 1 & 1 & 1 & 18 \\
\hline 041 A17 & 1 & 8 & 1 & 7 & 58 \\
\hline 041 A18 & 1 & 1 & 1 & 1 & 2 \\
\hline 041 A19 & 1 & 1 & 1 & 1 & 1 \\
\hline 041 A20 & 1 & 5 & 1 & 2 & 11 \\
\hline 041 A21 & 1 & 56 & 1 & 25 & 80 \\
\hline 041 A22 & 1 & 3 & 1 & 6 & 8 \\
\hline 041 A23 & 1 & 14 & 1 & 6 & 39 \\
\hline 041A25 & 1 & 72 & 1 & 24 & 198 \\
\hline 041 A26 & 1 & 12 & 1 & 5 & 87 \\
\hline 041 A27 & 1 & 10 & 1 & 8 & 14 \\
\hline 041 A28 & 2 & 19 & 2 & 8 & 49 \\
\hline 041 AC 2 & 2 & 5 & 2 & 2 & 7 \\
\hline 042G19 & 1 & 1 & 1 & 1 & 1 \\
\hline 042D21 & 1 & 1 & 1 & 1 & 1 \\
\hline 042DZ3 & 1 & 14 & 1 & 8 & 52 \\
\hline 042E20 & 1 & 1 & 1 & 1 & 1 \\
\hline 051A10 & 1 & 35 & 1 & 7 & 124 \\
\hline 051A29 & 1 & 4 & 1 & 1 & 10 \\
\hline 051A30 & 1 & 4 & 1 & 1 & 7 \\
\hline 051A33 & 1 & 1 & 1 & 1 & 1 \\
\hline 051A34 & 1 & 13 & 1 & 2 & 14 \\
\hline 061 A11 & 4 & 6 & 4 & 4 & 60 \\
\hline \(062 \mathrm{G11}\) & 3 & 119 & 3 & 23 & 315 \\
\hline \(062 \mathrm{G12}\) & 1 & 84 & 1 & 91 & 208 \\
\hline \(062 \mathrm{G14}\) & 1 & 10 & 1 & 12 & 41 \\
\hline \(062 \mathrm{GX0}\) & 1 & 1 & 1 & 1 & 1 \\
\hline 062 GC 5 & 1 & 37 & 1 & 15 & 38 \\
\hline 062 GC 9 & 1 & 1 & 1 & 1 & 20 \\
\hline 062E12 & 2 & 2 & 2 & 2 & 2 \\
\hline 071 A15 & 1 & 15 & 1 & 26 & 81 \\
\hline 081A24 & 5 & 42 & 5 & 51 & 140 \\
\hline 082G24 & 1 & 3 & 1 & 1 & 5 \\
\hline 091 A31 & 2 & 51 & 2 & 12 & 229 \\
\hline 091 BBN & 1 & 1 & 1 & 1 & 2 \\
\hline \(092 \mathrm{G31}\) & 1 & 1 & 1 & 1 & 1 \\
\hline 092E31 & 2 & 3 & 2 & 5 & 17 \\
\hline 101A37 & 4 & 50 & 4 & 3 & 108 \\
\hline 102D35 & 1 & 18 & 1 & 5 & 86 \\
\hline 102E35 & 1 & 214 & 1 & 176 & 478 \\
\hline 111A36 & 1 & 1 & 1 & 1 & 1 \\
\hline 112E40 & 11 & 120 & 11 & 61 & 344 \\
\hline 121A38 & 1 & 17 & 1 & 1 & 13 \\
\hline 121A39 & 1 & 14 & 1 & 5 & 16 \\
\hline 121A64 & 1 & 16 & 1 & 2 & 16 \\
\hline 121A65 & 1 & 5 & 1 & 5 & 20 \\
\hline 121A67 & 1 & 2 & 1 & 5 & 18 \\
\hline 121AZ4 & 1 & 1 & 1 & 1 & 1 \\
\hline 122G63 & 2 & 9 & 2 & 2 & 12 \\
\hline 122G67 & 1 & 1 & 1 & 1 & 3 \\
\hline 131A41 & 2 & 74 & 2 & 8 & 62 \\
\hline 132G41 & 1 & 1 & 1 & 1 & 1 \\
\hline 132D41 & 1 & 14 & 1 & 2 & 24 \\
\hline 141A42 & 1 & 1 & 1 & 1 & 1 \\
\hline 141A43 & 1 & 8 & 1 & 9 & 4 \\
\hline 141 ABG & 1 & 1 & 1 & 1 & 1 \\
\hline 141 ABD & 1 & 14 & 1 & 3 & 16 \\
\hline 142G44 & 1 & 15 & 1 & 14 & 87 \\
\hline 142G45 & 2 & 13 & 2 & 4 & 11 \\
\hline 142E45 & 1 & 1 & 1 & 1 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 152G46 & 2 & 41 & 2 & 8 & 130 \\
\hline 152GY0 & 1 & 1 & 1 & 1 & 1 \\
\hline 152E46 & 4 & 74 & 4 & 17 & 162 \\
\hline 162G50 & 1 & 66 & 1 & 14 & 144 \\
\hline 162EJ2 & 1 & 142 & 1 & 123 & 323 \\
\hline 172G51 & 1 & 10 & 1 & 1 & 6 \\
\hline 172 GM 6 & 1 & 1 & 1 & 1 & 1 \\
\hline 172E51 & 1 & 8 & 1 & 7 & 12 \\
\hline 172EJ3 & 1 & 1 & 1 & 1 & 1 \\
\hline 182G52 & 1 & 17 & 1 & 10 & 30 \\
\hline 182E52 & 1 & 5 & 1 & 11 & 25 \\
\hline 191A53 & 1 & 1 & 1 & 1 & 1 \\
\hline 192E53 & 1 & 4 & 1 & 3 & 10 \\
\hline 201A54 & 1 & 1 & 1 & 2 & 1 \\
\hline 202G54 & 1 & 1 & 1 & 1 & 1 \\
\hline 202E54 & 2 & 2 & 2 & 2 & 3 \\
\hline 212D55 & 1 & 13 & 1 & 3 & 24 \\
\hline 212D56 & 1 & 7 & 1 & 13 & 26 \\
\hline 212E55 & 1 & 2 & 1 & 1 & 3 \\
\hline 212E56 & 2 & 2 & 2 & 2 & 2 \\
\hline 222G59 & 1 & 2 & 1 & 1 & 19 \\
\hline 222D58 & 1 & 1 & 1 & 1 & 12 \\
\hline 222D59 & 1 & 5 & 1 & 1 & 9 \\
\hline 222D62 & 1 & 1 & 1 & 1 & 1 \\
\hline 222E57 & 1 & 35 & 1 & 3 & 116 \\
\hline 222E58 & 1 & 26 & 1 & 25 & 107 \\
\hline 222E59 & 5 & 35 & 5 & 3 & 108 \\
\hline 222E60 & 2 & 2 & 2 & 2 & 2 \\
\hline 222E61 & 2 & 2 & 2 & 4 & 7 \\
\hline 222E62 & 1 & 1 & 1 & 1 & 1 \\
\hline 222EY1 & 1 & 1 & 1 & 1 & 2 \\
\hline 231A66 & 2 & 51 & 2 & 21 & 126 \\
\hline 241A08 & 1 & 19 & 1 & 11 & 21 \\
\hline 241A70 & 1 & 8 & 1 & 13 & 35 \\
\hline 241A71 & 2 & 40 & 2 & 54 & 116 \\
\hline 241A72 & 1 & 12 & 1 & 19 & 38 \\
\hline 242E72 & 1 & 5 & 1 & 5 & 13 \\
\hline 251A33 & 1 & 8 & 1 & 5 & 25 \\
\hline 251A75 & 8 & 108 & 8 & 19 & 133 \\
\hline 251A76 & 1 & 7 & 1 & 8 & 41 \\
\hline 251AX3 & 2 & 2 & 2 & 2 & 4 \\
\hline 251AX4 & 3 & 89 & 3 & 72 & 155 \\
\hline 251AX5 & 1 & 21 & 1 & 11 & 76 \\
\hline 252G33 & 1 & 1 & 1 & 1 & 6 \\
\hline 252G76 & 1 & 1 & 1 & 1 & 1 \\
\hline 252GX5 & 1 & 9 & 1 & 10 & 44 \\
\hline 261A77 & 1 & 21 & 1 & 8 & 61 \\
\hline 261A78 & 1 & 5 & 1 & 8 & 18 \\
\hline 261A79 & 1 & 1 & 1 & 1 & 1 \\
\hline 261A80 & 1 & 1 & 1 & , & 4 \\
\hline 261A81 & 1 & 1 & 1 & 1 & 1 \\
\hline 261A82 & 1 & 1 & 1 & 1 & 1 \\
\hline 261A83 & 1 & 1 & 1 & 1 & 7 \\
\hline 261A84 & 1 & 1 & 1 & 1 & 1 \\
\hline 261A85 & 1 & 1 & 1 & 1 & 1 \\
\hline 261A86 & 1 & 1 & 1 & 1 & 1 \\
\hline 261A88 & 1 & 1 & 1 & 1 & 3 \\
\hline 261Az7 & 1 & 1 & 1 & 1 & 1 \\
\hline 261AX4 & 1 & 1 & 1 & 1 & 1 \\
\hline 281BB1 & 2 & 9 & 2 & 29 & 75 \\
\hline 281BD9 & 1 & 1 & 1 & 1 & 2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 281BE1 & 1 & 6 & 1 & 1 & 41 \\
\hline 281BS 7 & 1 & 29 & 1 & 3 & 27 \\
\hline 281BS8 & 1 & 3 & 1 & 1 & 9 \\
\hline 281BS 9 & 1 & 9 & 1 & 1 & 29 \\
\hline 281BT0 & 1 & 1 & 1 & 1 & 7 \\
\hline 281BT3 & 1 & 1 & 1 & 1 & 1 \\
\hline 291BA4 & 1 & 5 & 1 & 7 & 20 \\
\hline 291BA8 & 1 & 22 & 1 & 7 & 36 \\
\hline 291BC4 & 1 & 1 & 1 & 1 & 1 \\
\hline 301 BB 2 & 1 & 37 & 1 & 18 & 91 \\
\hline 301 BB 3 & 1 & 22 & 1 & 47 & 73 \\
\hline 301 BB 4 & 2 & 38 & 2 & 22 & 128 \\
\hline 301 BB 5 & 1 & 19 & 1 & 31 & 56 \\
\hline \(301 \mathrm{BG1}\) & 1 & 1 & 1 & 1 & 1 \\
\hline 301 BT 2 & 1 & 1 & 1 & 1 & 2 \\
\hline 311BA8 & 1 & 1 & 1 & 1 & 17 \\
\hline 311 BB 6 & 1 & 3 & 1 & 1 & 10 \\
\hline \(321 \mathrm{BB7}\) & 1 & 1 & 1 & 1 & 2 \\
\hline 321 BB 8 & 1 & 6 & 1 & 8 & 24 \\
\hline \(331 \mathrm{BB9}\) & 1 & 1 & 1 & 1 & 3 \\
\hline 331 BY 5 & 1 & 1 & 1 & 1 & 1 \\
\hline 341BG3 & 1 & 14 & 1 & 10 & 26 \\
\hline 341 BG 4 & 1 & 6 & 1 & 5 & 20 \\
\hline 351 BG 8 & 1 & 4 & 1 & 4 & 8 \\
\hline 351BG9 & 1 & 4 & 1 & 1 & 4 \\
\hline 351 BD 1 & 1 & 2 & 1 & 1 & 7 \\
\hline 351BD2 & 1 & 1 & 1 & 1 & 1 \\
\hline 351 BD 3 & 1 & 11 & 1 & 11 & 29 \\
\hline 351 BD 5 & 1 & 13 & 1 & 7 & 16 \\
\hline 361 BBL & 1 & 10 & 1 & 1 & 5 \\
\hline 361 BG 2 & 1 & 1 & 1 & 2 & 2 \\
\hline 361BG5 & 1 & 18 & 1 & 13 & 43 \\
\hline \(361 \mathrm{BG6}\) & 1 & 1 & 1 & 1 & 1 \\
\hline \(361 \mathrm{BG7}\) & 3 & 25 & 3 & 29 & 61 \\
\hline 361 BD 4 & 1 & 1 & 1 & 1 & 1 \\
\hline 361 BD 6 & 1 & 1 & 1 & 2 & 2 \\
\hline 361 BD 8 & 1 & 2 & 1 & 1 & 3 \\
\hline 361 BM 5 & 1 & 5 & 1 & 2 & 9 \\
\hline 361 BY 4 & 1 & 1 & 1 & 1 & 1 \\
\hline 361 BY 6 & 1 & 2 & 1 & 1 & 33 \\
\hline 371AE2 & 1 & 9 & 1 & 3 & 76 \\
\hline 371 BE 3 & 1 & 4 & 1 & 1 & 18 \\
\hline 381BE4 & 2 & 18 & 2 & 31 & 44 \\
\hline 381BE5 & 1 & 28 & 1 & 53 & 146 \\
\hline 381BE6 & 2 & 23 & 2 & 54 & 121 \\
\hline 381 BE 7 & 1 & 25 & 1 & 41 & 89 \\
\hline 391 BE 8 & 1 & 1 & 1 & 1 & 6 \\
\hline 401BE9 & 1 & 6 & 1 & 1 & 7 \\
\hline 401BZ1 & 1 & 4 & 1 & 2 & 9 \\
\hline 411A14 & 1 & 1 & 1 & 1 & 1 \\
\hline 411AZ2 & 1 & 1 & 1 & 1 & 1 \\
\hline 423ZH1 & 1 & 1 & 1 & 1 & 1 \\
\hline 423zH2 & 1 & 1 & 1 & 1 & 3 \\
\hline 433 ZBM & 1 & 1 & 1 & 1 & 1 \\
\hline 4332H1 & 1 & 1 & 1 & 1 & 3 \\
\hline 433zH2 & 1 & 4 & 1 & 3 & 11 \\
\hline 433zH3 & 1 & 1 & 1 & 1 & 1 \\
\hline 433zH5 & 1 & 1 & 1 & 1 & 1 \\
\hline 463HH1 & 1 & 1 & 1 & 1 & 1 \\
\hline 463 HH 2 & 1 & 1 & 1 & 1 & 1 \\
\hline 463 HH 3 & 1 & 7 & 1 & 4 & 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 463HH4 & 1 & 1 & 1 & 1 & 1 \\
\hline 463HH5 & 1 & 1 & 1 & 1 & 3 \\
\hline 473UH1 & 1 & 1 & 1 & 1 & 2 \\
\hline 473UH2 & 1 & 1 & 1 & 1 & 3 \\
\hline 473UH3 & 1 & 1 & 1 & 1 & 1 \\
\hline 473UH4 & 1 & 1 & 1 & 1 & 1 \\
\hline 483IH6 & 1 & 3 & 1 & 1 & 9 \\
\hline 483IH7 & 1 & 1 & 1 & 1 & 6 \\
\hline 4831H8 & 1 & 1 & 1 & 1 & 6 \\
\hline 483IH9 & 1 & 4 & 1 & 2 & 6 \\
\hline \(493 \mathrm{KU1}\) & 1 & 1 & 1 & 1 & 1 \\
\hline 493KU2 & 1 & 1 & 1 & 1 & 1 \\
\hline 503KU4 & 1 & 5 & 1 & 6 & 22 \\
\hline 503KU5 & 1 & 1 & 1 & 1 & 1 \\
\hline 503KU6 & 1 & 1 & 1 & 1 & 1 \\
\hline 503KU7 & 1 & 3 & 1 & 1 & 6 \\
\hline 513 KU 8 & 1 & 1 & 1 & 1 & 1 \\
\hline 513KU9 & 1 & 2 & 1 & 1 & 4 \\
\hline 533LI1 & 1 & 1 & 1 & 1 & 1 \\
\hline 543LI3 & 1 & 1 & 1 & 1 & 2 \\
\hline 553LH4 & 1 & 1 & 1 & 1 & 1 \\
\hline 563LI5 & 1 & 1 & 1 & 1 & 5 \\
\hline 563LI6 & 1 & 1 & 1 & 1 & 1 \\
\hline 573LI7 & 1 & 1 & 1 & 1 & 2 \\
\hline 573LI8 & 1 & 1 & 1 & 1 & 1 \\
\hline 583LI9 & 1 & 1 & 1 & 1 & 2 \\
\hline 583LK1 & 1 & 1 & 1 & 1 & 1 \\
\hline 603MK6 & 1 & 1 & 1 & 3 & 3 \\
\hline 613MK7 & 1 & 1 & 1 & 1 & 1 \\
\hline 623MK8 & 1 & 3 & 1 & 3 & 5 \\
\hline 633NK9 & 1 & 9 & 1 & 12 & 19 \\
\hline 633NX7 & 2 & 3 & 2 & 7 & 22 \\
\hline \(643 \mathrm{NL1}\) & 1 & 2 & 1 & 1 & 9 \\
\hline 653NL2 & 1 & 6 & 1 & 8 & 13 \\
\hline 663NL3 & 2 & 7 & 2 & 10 & 26 \\
\hline 673 NL 4 & 1 & 5 & 1 & 3 & 8 \\
\hline 673 NL 5 & 1 & 1 & 1 & 1 & 1 \\
\hline 673NN9 & 1 & 4 & 1 & 2 & 7 \\
\hline 683JL5 & 1 & 1 & 1 & 1 & 1 \\
\hline 693JL5 & 1 & 1 & 1 & 1 & 1 \\
\hline 693JL7 & 1 & 1 & 1 & 1 & 1 \\
\hline 693JL8 & 1 & 1 & 1 & 1 & 1 \\
\hline 703JL5 & 1 & 5 & 1 & 2 & 5 \\
\hline 723PM2 & 1 & 1 & 1 & 1 & 1 \\
\hline 733 PM 3 & 1 & 1 & 1 & 1 & 5 \\
\hline 733 PN 8 & 1 & 1 & 1 & 1 & 1 \\
\hline 743 PM 4 & 1 & 1 & 1 & 1 & 1 \\
\hline 751BT8 & 1 & 1 & 1 & 1 & 8 \\
\hline 761AN1 & 1 & 17 & 1 & 2 & 40 \\
\hline \(762 \mathrm{GN1}\) & 1 & 21 & 1 & 1 & 80 \\
\hline 771 BN 2 & 1 & 1 & 1 & 1 & 1 \\
\hline 783RN5 & 1 & 1 & 1 & 1 & 1 \\
\hline 783RN6 & 1 & 1 & 1 & 1 & 1 \\
\hline 793SB0 & 1 & 1 & 1 & 1 & 4 \\
\hline 793SG0 & 1 & 1 & 1 & 1 & 2 \\
\hline 793SD0 & 1 & 1 & 1 & 1 & 3 \\
\hline 803TA0 & 1 & 1 & 1 & 1 & 1 \\
\hline 803 TBJ & 1 & 1 & 1 & 1 & 1 \\
\hline 811 BAP & 1 & 4 & 1 & 3 & 7 \\
\hline 811 BAS & 1 & 2 & 1 & 1 & 5 \\
\hline 811 BJ 4 & 1 & 8 & 1 & 6 & 25 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 811BJ6 & 1 & 1 & 1 & 1 & 1 \\
\hline \(811 \mathrm{BJ7}\) & 2 & 4 & 2 & 2 & 14 \\
\hline \(811 \mathrm{BJ9}\) & 1 & 1 & 1 & 1 & 2 \\
\hline 811BO1 & 1 & 5 & 1 & 1 & 19 \\
\hline 811BO2 & 1 & 14 & 1 & 2 & 9 \\
\hline 811B03 & 1 & 1 & 1 & 1 & 5 \\
\hline 811 BO 4 & 1 & 7 & 1 & 1 & 7 \\
\hline 811 BO 5 & 1 & 1 & 1 & 1 & 1 \\
\hline 811B06 & 1 & 1 & 1 & 1 & 1 \\
\hline 811 BO 8 & 1 & 1 & 1 & 1 & 1 \\
\hline 811B09 & 1 & 1 & 1 & 1 & 4 \\
\hline 811BP0 & 1 & 2 & 1 & 1 & 2 \\
\hline 811 BP 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 811 BP 2 & 2 & 4 & 2 & 4 & 11 \\
\hline 811 BP 3 & 1 & 1 & 1 & 1 & 1 \\
\hline 821BA5 & 1 & 1 & 1 & 1 & 2 \\
\hline 821 BO 4 & 1 & 2 & 1 & 1 & 7 \\
\hline 821 BP 6 & 1 & 13 & 1 & 1 & 15 \\
\hline 821 BP 7 & 1 & 1 & 1 & 1 & 2 \\
\hline 831B90 & 2 & 15 & 2 & 2 & 13 \\
\hline 831 BA 7 & 1 & 6 & 1 & 1 & 30 \\
\hline 831 BP 8 & 1 & 1 & 1 & 2 & 11 \\
\hline 831BP9 & 1 & 11 & 1 & 8 & 46 \\
\hline \(831 \mathrm{BR1}\) & 1 & 1 & 1 & 4 & 21 \\
\hline 831 BR2 & 1 & 1 & 1 & 1 & 6 \\
\hline 831 BC 8 & 1 & 1 & 1 & 1 & 1 \\
\hline 841 BO 4 & 1 & 1 & 1 & 1 & 4 \\
\hline 841 BR4 & 1 & 4 & 1 & 1 & 2 \\
\hline 841 BR5 & 1 & 7 & 1 & 8 & 20 \\
\hline 841 BR6 & 1 & 1 & 1 & 3 & 10 \\
\hline 851 BR7 & 1 & 21 & 1 & 9 & 40 \\
\hline 851BR8 & 1 & 1 & 1 & 1 & 1 \\
\hline 851 BR9 & 1 & 1 & 1 & 1 & 4 \\
\hline 851BS0 & 1 & 1 & 1 & 1 & 1 \\
\hline 851 BS 1 & 1 & 1 & 1 & 1 & 10 \\
\hline 851BS2 & 1 & 7 & 1 & 3 & 12 \\
\hline 851BS3 & 1 & 1 & 1 & 1 & 1 \\
\hline 851 BX 2 & 1 & 1 & 1 & 1 & 1 \\
\hline \(861 \mathrm{B98}\) & 1 & 2 & 1 & 1 & 12 \\
\hline 861 BS 4 & 1 & 3 & 1 & 1 & 4 \\
\hline 861BS6 & 1 & 11 & 1 & 5 & 17 \\
\hline 861BT6 & 1 & 3 & 1 & 1 & 5 \\
\hline 861 BC 0 & 1 & 1 & 1 & 1 & 1 \\
\hline 873 TY 8 & 1 & 1 & 1 & 1 & 1 \\
\hline 902DX6 & 1 & 1 & 1 & 1 & 1 \\
\hline 913HX8 & 1 & 1 & 1 & 1 & 1 \\
\hline 923JC1 & 1 & 1 & 1 & 1 & 1 \\
\hline 933JC6 & 1 & 1 & 1 & 1 & 1 \\
\hline \(943 \mathrm{XC7}\) & 1 & 1 & 1 & 1 & 2 \\
\hline \(943 \mathrm{XV1}\) & 1 & 1 & 1 & 1 & 1 \\
\hline 951A01 & 1 & 1 & 1 & 1 & 1 \\
\hline 951A02 & 1 & 1 & 1 & 1 & 1 \\
\hline 951A04 & 1 & 1 & 1 & 1 & 1 \\
\hline 951A05 & 1 & 1 & 1 & 1 & 1 \\
\hline 951A06 & 1 & 1 & 1 & 1 & 1 \\
\hline 951 A 07 & 1 & 1 & 1 & 1 & 1 \\
\hline 951A10 & 1 & 1 & 1 & 1 & 1 \\
\hline 951A15 & 1 & 1 & 1 & 1 & 1 \\
\hline 951A16 & 1 & 1 & 1 & 1 & 2 \\
\hline 951A22 & 1 & 1 & 1 & 1 & 1 \\
\hline 951A23 & 1 & 1 & 1 & 1 & 14 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 951A26 & 1 & 1 & 1 & 1 & 1 \\
\hline 951 A37 & 1 & 1 & 1 & 1 & 6 \\
\hline 951A38 & 2 & 2 & 2 & 2 & 2 \\
\hline 951A39 & 1 & 1 & 1 & 1 & 1 \\
\hline 951A41 & 1 & 1 & 1 & 1 & 1 \\
\hline 951A42 & 1 & 1 & 1 & 1 & 1 \\
\hline 951A52 & 1 & 1 & 1 & 1 & 2 \\
\hline 951A53 & 2 & 2 & 2 & 2 & 2 \\
\hline 951A54 & 1 & 1 & 1 & 1 & 1 \\
\hline 951A64 & 1 & 1 & 1 & 1 & 1 \\
\hline 951A67 & 1 & 1 & 1 & 1 & 2 \\
\hline 951A69 & 5 & 5 & 5 & 5 & 5 \\
\hline 951 A71 & 1 & 1 & 1 & 1 & 1 \\
\hline 951 A72 & 1 & 3 & 1 & 1 & 4 \\
\hline 951 A77 & 1 & 1 & 1 & 1 & 1 \\
\hline 951A78 & 1 & 1 & 1 & 1 & 1 \\
\hline 951 An1 & 1 & 1 & 1 & 1 & 1 \\
\hline 951AX4 & 1 & 1 & 1 & 1 & 1 \\
\hline 952G11 & 1 & 26 & 1 & 5 & 9 \\
\hline 952G12 & 1 & 1 & 1 & 1 & 3 \\
\hline 952G44 & 1 & 1 & 1 & 1 & 1 \\
\hline 952G45 & 1 & 1 & 1 & 1 & 1 \\
\hline 952G46 & 1 & 1 & 1 & 1 & 1 \\
\hline 952G50 & 1 & 1 & 1 & 1 & 1 \\
\hline 952G77 & 1 & 1 & 1 & 1 & 1 \\
\hline 952GX5 & 1 & 1 & 1 & 1 & 1 \\
\hline 952D35 & 1 & 2 & 1 & 1 & 4 \\
\hline 952EJ2 & 1 & 1 & 1 & 1 & 1 \\
\hline 963 CV 0 & 3 & 200 & 3 & 66 & 423 \\
\hline AA1A54 & 1 & 1 & 1 & 1 & 1 \\
\hline AA1A72 & 1 & 1 & 1 & 1 & 1 \\
\hline AB1A05 & 1 & 1 & 1 & 1 & 1 \\
\hline AB1A11 & 1 & 1 & 1 & 1 & 1 \\
\hline AB1A35 & 1 & 1 & 1 & 1 & 1 \\
\hline AB1A38 & 1 & 2 & 1 & 1 & 5 \\
\hline AB1AAR & 1 & 1 & 1 & 1 & 65 \\
\hline AB1AT6 & 1 & 1 & 1 & 1 & 1 \\
\hline AH1BBC & 1 & 9 & 1 & 2 & 96 \\
\hline AK2E04 & 1 & 1 & 1 & 6 & 10 \\
\hline AK2E59 & 1 & 1 & 1 & 1 & 1 \\
\hline AK2EBH & 1 & 1 & 1 & 1 & 1 \\
\hline AK2EBU & 1 & 1 & 1 & 1 & 1 \\
\hline AK2EBI & 1 & 1 & 1 & 1 & 2 \\
\hline AK2EBV & 1 & 1 & 1 & 1 & 1 \\
\hline AT1AAT & 1 & 1 & 1 & 1 & 1 \\
\hline
\end{tabular}

\section*{Make A Density Based Clusterer with 5 Clusters}

Final cluster centroids:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Attribute & Full Data
(108.0) & \[
\begin{gathered}
\text { Cluste } \\
0 \\
(8.0)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(87.0)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(7.0)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(1.0)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(5.0)
\end{gathered}
\] \\
\hline GENDER & WOMAN & WOMAN & MAN & WOMAN & WOMAN & WOMAN \\
\hline AGE & 32 & 38 & 32 & 37 & 52 & 39 \\
\hline 011 A01 & 2 & 81 & 2 & 14 & 153 & 47 \\
\hline 011A02 & 1 & 22 & 1 & 8 & 109 & 33 \\
\hline 011 A 03 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 011A04 & 1 & 1 & 1 & 1 & 17 & 4 \\
\hline 011 AAY & 1 & 45 & 1 & 7 & 89 & 24 \\
\hline 011AAF & 1 & 96 & 1 & 20 & 324 & 41 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 011AAX & 3 & 27 & 3 & 36 & 69 & 17 \\
\hline 011 AAC & 2 & 15 & 2 & 22 & 47 & 8 \\
\hline 011 AAV & 2 & 2 & 2 & 3 & 24 & 2 \\
\hline 012G01 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline \(012 \mathrm{GZ5}\) & 1 & 2 & 1 & 1 & 8 & 4 \\
\hline 012D04 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 012 DBA & 1 & 11 & 1 & 1 & 10 & 1 \\
\hline 012 DBB & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 012DZ5 & 1 & 7 & 1 & 6 & 14 & 1 \\
\hline 012DF0 & 1 & 3 & 1 & 1 & 11 & 1 \\
\hline 012DF3 & 1 & 7 & 1 & 1 & 20 & 11 \\
\hline 021A05 & 2 & 31 & 2 & 43 & 100 & 20 \\
\hline 021A06 & 1 & 14 & 1 & 7 & 53 & 18 \\
\hline 021E05 & 1 & 2 & 1 & 1 & 6 & 1 \\
\hline 021E06 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 031A07 & 1 & 19 & 1 & 2 & 49 & 7 \\
\hline 031A68 & 1 & 17 & 1 & 1 & 38 & 10 \\
\hline 031A73 & 1 & 26 & 1 & 4 & 37 & 13 \\
\hline 031A74 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 041A08 & 3 & 69 & 3 & 75 & 221 & 62 \\
\hline 041A09 & 1 & 1 & 1 & 2 & 11 & 4 \\
\hline 041A16 & 1 & 1 & 1 & 1 & 18 & 1 \\
\hline 041A17 & 1 & 8 & 1 & 7 & 58 & 1 \\
\hline 041A18 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 041A19 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 041 A 20 & 1 & 5 & 1 & 1 & 11 & 2 \\
\hline 041 A 21 & 1 & 56 & 1 & 39 & 80 & 7 \\
\hline 041A22 & 1 & 3 & 1 & 2 & 8 & 3 \\
\hline 041A23 & 1 & 14 & 1 & 18 & 39 & 7 \\
\hline 041A25 & 1 & 72 & 1 & 24 & 198 & 34 \\
\hline 041A26 & 1 & 12 & 1 & 9 & 87 & 13 \\
\hline 041 A27 & 1 & 10 & 1 & 8 & 14 & 8 \\
\hline 041A28 & 2 & 19 & 2 & 8 & 49 & 5 \\
\hline 041AC2 & 2 & 5 & 2 & 1 & 7 & 2 \\
\hline \(042 \mathrm{G19}\) & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 042D21 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 042DZ3 & 1 & 14 & 1 & 8 & 52 & 27 \\
\hline 042E20 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 051A10 & 1 & 35 & 1 & 7 & 124 & 9 \\
\hline 051A29 & 1 & 4 & 1 & 1 & 10 & 1 \\
\hline 051A30 & 1 & 4 & 1 & 1 & 7 & 3 \\
\hline 051A33 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 051A34 & 1 & 13 & 1 & 2 & 14 & 1 \\
\hline 061A11 & 4 & 6 & 4 & 4 & 60 & 28 \\
\hline \(062 \mathrm{G11}\) & 3 & 119 & 3 & 23 & 315 & 39 \\
\hline \(062 \mathrm{G12}\) & 1 & 84 & 1 & 91 & 208 & 70 \\
\hline \(062 \mathrm{G14}\) & 1 & 10 & 1 & 17 & 41 & 11 \\
\hline 062 GXO & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 062 GC 5 & 1 & 37 & 1 & 1 & 38 & 11 \\
\hline 062 GC 9 & 1 & 1 & 1 & 1 & 20 & 1 \\
\hline 062 E 12 & 2 & 2 & 2 & 2 & 2 & 2 \\
\hline 071 A15 & 1 & 15 & 1 & 37 & 81 & 20 \\
\hline 081A24 & 5 & 42 & 5 & 7 & 140 & 32 \\
\hline 082G24 & 1 & 3 & 1 & 1 & 5 & 1 \\
\hline 091A31 & 2 & 51 & 2 & 12 & 229 & 37 \\
\hline 091 BBN & 1 & 1 & 1 & 3 & 2 & 1 \\
\hline \(092 \mathrm{G31}\) & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 092E31 & 2 & 3 & 2 & 5 & 17 & 2 \\
\hline 101A37 & 4 & 50 & 4 & 3 & 108 & 30 \\
\hline 102D35 & 1 & 18 & 1 & 5 & 86 & 16 \\
\hline 102E35 & 1 & 214 & 1 & 176 & 478 & 121 \\
\hline 111A36 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 112 E 40 & 11 & 120 & 11 & 61 & 344 & 88 \\
\hline 121A38 & 1 & 17 & 1 & 1 & 13 & 8 \\
\hline 121A39 & 1 & 14 & 1 & 5 & 16 & 8 \\
\hline 121A64 & 1 & 16 & 1 & 2 & 16 & 3 \\
\hline 121A65 & 1 & 5 & 1 & 5 & 20 & 5 \\
\hline 121A67 & 1 & 2 & 1 & 1 & 18 & 3 \\
\hline 121AZ4 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 122G63 & 2 & 9 & 2 & 2 & 12 & 3 \\
\hline \(122 \mathrm{G67}\) & 1 & 1 & 1 & 1 & 3 & 1 \\
\hline 131 A 41 & 2 & 74 & 2 & 8 & 62 & 14 \\
\hline
\end{tabular}




\begin{tabular}{|c|c|c|c|c|c|c|}
\hline AB1AAR & 1 & 1 & 1 & 1 & 65 & 1 \\
\hline AB1AT 6 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline AH1BBC & 1 & 9 & 1 & 7 & 96 & 8 \\
\hline AK2E0 4 & 1 & 1 & 1 & 6 & 10 & 2 \\
\hline AK2E5 9 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline AK2EBH & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline AK2EBU & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline AK2EBI & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline AK2EBV & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline AT1AAT & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline
\end{tabular}

\section*{Farthest First Clusterer}

\section*{Farthest First with 2 Clusters}

Cluster centroids:
Cluster 0: WOMAN 8249118124231111111311121114111111111811231121111 1172017211118104311247341393111312171111111211018622112111161127 2121111101015281181313411211217191121111111111111211211111112141 1111161111111111112131111112125511111111111111111111111111112 1111111111111111112112111111111111111111111111111212111111111 2111112111111111121111111111111111111116111111111121111211151 11111111111111161111111111111111

Cluster 1: WOMAN 521531091178932469472418110114112010053614938372221111858 21118083919887144971152112410711460315208411382028114052292117108864781 34413161620181123621241411687111130116214432361121302511011324263219129 11161071082712126213511638132513341415576614461181411711131175241279297 1203619173128561217102243126208471291652431611239133761844146121896791 113131111118132311966611221161412151212131519229132681711115151 184080111423117525114219957111421111271521330114621614220104014110 121112417511111121111111112114162111221125141111931111114142311 11156519610111211

\section*{Farthest First with 3 Clusters}

Cluster centroids:

\footnotetext{
Cluster 0: WOMAN 8249118124231111111311121114111111111811231121111 1172017211118104311247341393111312171111111211018622112111161127 2121111101015281181313411211217191121111111111111211211111112141 1111161111111111112131111112125511111111111111111111111111112 1111111111111111112112111111111111111111111111111212111111111
}

\section*{2111112111111111121111111111111111111116111111111121111211151 11111111111111161111111111111111}

Cluster 1: WOMAN 521531091178932469472418110114112010053614938372221111858 21118083919887144971152112410711460315208411382028114052292117108864781 34413161620181123621241411687111130116214432361121302511011324263219129 11161071082712126213511638132513341415576614461181411711131175241279297 1203619173128561217102243126208471291652431611239133761844146121896791 113131111118132311966611221161412151212131519229132681711115151 184080111423117525114219957111421111271521330114621614220104014110 121112417511111121111111112114162111221125141111931111114142311 11156519610111211

Cluster 2: WOMAN 5113577141820459211831721112332468492734243111641615114 23634120412037511241143109112732232051014125466983142413890743567246179 1625261091741141132127553215711301292698120117165124382719152271517162 7227291289451043221231082929141721133624211122111321841441359145110222 9478114591173420112511191351261881331772241713038250845948211011132111 3511111155411173782122115171111111111111113683071412116145612321 121113120451411221014431111311162131151142012416629351181313112315 211311121312182111111121111211151615115511112114136611111316110 11111111

\section*{Clustered Instances}

0106 (98\%)
1 ( \(1 \%\) )
2 1( \(1 \%\) )

\section*{Farthest First with 4 Clusters}

\section*{Cluster centroids:}

Cluster 0: WOMAN 824911812423111111131112111411111111181123112111 1117201721111810431124734139311131217111111121101862211211116112 7212111110101528118131341121121719112111111111111121121111111214 1111116111111111111213111111212551111111111111111111111111111 2111111111111111111211211111111111111111111111111121211111111 1211111211111111112111111111111111111111611111111112111121115 111111111111111161111111111111111

Cluster 1: woman 521531091178932469472418110114112010053614938372221111858 21118083919887144971152112410711460315208411382028114052292117108864781 34413161620181123621241411687111130116214432361121302511011324263219129 11161071082712126213511638132513341415576614461181411711131175241279297

\begin{abstract}
1203619173128561217102243126208471291652431611239133761844146121896791 113131111118132311966611221161412151212131519229132681711115151 184080111423117525114219957111421111271521330114621614220104014110 121112417511111121111111112114162111221125141111931111114142311 11156519610111211
\end{abstract}

Cluster 2: WOMAN 5113577141820459211831721112332468492734243111641615114 23634120412037511241143109112732232051014125466983142413890743567246179 1625261091741141132127553215711301292698120117165124382719152271517162 7227291289451043221231082929141721133624211122111321841441359145110222 9478114591173420112511191351261881331772241713038250845948211011132111 3511111155411173782122115171111111111111113683071412116145612321 121113120451411221014431111311162131151142012416629351181313112315 211311121312182111111121111211151615115511112114136611111316110 11111111

Cluster 3: WOMAN 481923812114265665347131912289862412731301159162111556 13491456421835111912221921844297268331371241699178112288363881339181418 40303171761141812143613111911991153751012151221173227142211171109951342 2023176192661293231316225156941111349181111111151160115341512122417176 12447711451811197610712317141022166134151871144234564727751413315111 17117521543751461112162111111136118201251231111101311813121512411 121111138451123111411811138141361311510441881242536811111111231631 111111316411119331115121116241151121121124411111171376111114101 1051311111

\section*{Clustered Instances}

0105 (97\%)
1 ( \(1 \%\) )
2 1(1\%)
3 1( \(1 \%\) )

\section*{Farthest First with 5 Clusters}

Cluster centroids:

Cluster 0: WOMAN 8249118124231111111311121114111111111811231121111 1172017211118104311247341393111312171111111211018622112111161127 2121111101015281181313411211217191121111111111111211211111112141 1111161111111111112131111112125511111111111111111111111111112 11111111111111111121121111111111111111111111111111212111111111 2111112111111111121111111111111111111116111111111121111211151 11111111111111161111111111111111

Cluster 1: WOMAN 521531091178932469472418110114112010053614938372221111858 21118083919887144971152112410711460315208411382028114052292117108864781 34413161620181123621241411687111130116214432361121302511011324263219129 11161071082712126213511638132513341415576614461181411711131175241279297 1203619173128561217102243126208471291652431611239133761844146121896791 113131111118132311966611221161412151212131519229132681711115151 184080111423117525114219957111421111271521330114621614220104014110 121112417511111121111111112114162111221125141111931111114142311 11156519610111211

Cluster 2: WOMAN 5113577141820459211831721112332468492734243111641615114 23634120412037511241143109112732232051014125466983142413890743567246179 162526109174114113212755321571301292698120117165124382719152271517162 7227291289451043221231082929141721133624211122111321841441359145110222 9478114591173420112511191351261881331772241713038250845948211011132111 3511111155411173782122115171111111111111113683071412116145612321 121113120451411221014431111311162131151142012416629351181313112315 211311121312182111111121111211151615115511112114136611111316110 11111111

Cluster 3: WOMAN 481923812114265665347131912289862412731301159162111556 13491456421835111912221921844297268331371241699178112288363881339181418 4030317176114181214361311191199115375101215122117322714221117109951342 2023176192661293231316225156941111349181111111151160115341512122417176 1244771145181149761071231714102216613415187144234564727751413315111 17117521543751461112162111111136118201251231111101311813121512411 1211111384512311141181113814136131510441881242536811111111231631 111111316411119331115121116241151121121124411111171376111114101 1051311111

Cluster 4: WOMAN 5319672118521635051271211112228564621394539116812410512 567151143412422511451681111203619719210168125069131472011710758453323621 13164623213413611412224353725511419415728751612021414411220291182079162 39146255676321366252414146757894811253822111111111114619132811513162 67786011126119211922145261211910123175115411310419410586452724111123 7113181483111025751221131711121111121111511111293151111317212423 19111113118220141172117111121411423171171452123268381211101113621 3111111212111021811131221111211105131111521111121121316111111371 591311111

\section*{Clustered Instances}

0104 (96\%)
\(1 \quad 1(1 \%)\)
\(21(1 \%)\)
```

3 (1%)
4 (1%)

```

\section*{EM Clusterer}
```

Number of clusters selected by cross validation: 7
Number of iterations performed: 3

```
\left.\begin{tabular}{ccccccc}
\multicolumn{7}{c}{ Cluster } \\
Attribute & 0 & 1 & 2 & 3 & 4 & 5
\end{tabular}\(\right]\)\begin{tabular}{l}
6 \\
\\
\\
\((0.01)(0.02)(0.79)(0.01)(0.01)(0.12)(0.05)\)
\end{tabular}
GENDER
\begin{tabular}{lrrrrrrr} 
MAN & 1 & 1 & 50 & 1 & 1 & 1 & 1 \\
WOMAN & 2 & 3 & 37 & 2 & 2 & 14 & 6 \\
[total] & 3 & 4 & 87 & 3 & 3 & 15 & 7
\end{tabular}
AGE
    9
    20
    24
    28
    29
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
54
55
56
57
58
\(59 \quad 1 \begin{array}{lllllll}1 & 1 & 3 & 1 & 1 & 1 & 1\end{array}\)
60
61
62
\begin{tabular}{lllllll}
1 & 1 & 2 & 1 & 1 & 1 & 1 \\
1 & 1 & 2 & 1 & 1 & 1 & 1 \\
1 & 1 & 2 & 1 & 1 & 1 & 1 \\
1 & 1 & 2 & 1 & 1 & 1 & 1 \\
1 & 1 & 2 & 1 & 1 & 1 & 1 \\
1 & 1 & 2 & 1 & 1 & 1 & 1 \\
1 & 1 & 3 & 1 & 1 & 1 & 1 \\
1 & 1 & 2 & 1 & 1 & 1 & 1 \\
1 & 1 & 3 & 1 & 1 & 1 & 1 \\
1 & 1 & 3 & 1 & 1 & 1 & 1 \\
1 & 1 & 3 & 1 & 1 & 1 & 1 \\
1 & 1 & 3 & 1 & 1 & 1 & 1 \\
1 & 1 & 2 & 1 & 1 & 2 & 1 \\
1 & 2 & 2 & 1 & 1 & 1 & 1 \\
1 & 1 & 2 & 1 & 1 & 2 & 1 \\
1 & 1 & 2 & 1 & 1 & 1 & 2 \\
1 & 1 & 2 & 1 & 1 & 2 & 1 \\
1 & 1 & 2 & 1 & 1 & 2 & 1 \\
1 & 2 & 2 & 1 & 1 & 1 & 1 \\
1 & 1 & 2 & 1 & 1 & 2 & 1 \\
1 & 1 & 2 & 1 & 1 & 1 & 2 \\
1 & 1 & 2 & 1 & 1 & 2 & 1 \\
1 & 1 & 2 & 2 & 1 & 1 & 1 \\
1 & 1 & 3 & 1 & 1 & 1 & 1 \\
1 & 1 & 3 & 1 & 1 & 1 & 1 \\
1 & 1 & 2 & 1 & 1 & 2 & 1 \\
1 & 1 & 2 & 1 & 1 & 2 & 1 \\
1 & 1 & 2 & 1 & 1 & 1 & 2 \\
1 & 1 & 2 & 1 & 1 & 1 & 2 \\
1 & 1 & 2 & 1 & 1 & 1 & 2 \\
1 & 1 & 2 & 1 & 1 & 2 & 1 \\
2 & 1 & 2 & 1 & 1 & 1 & 1 \\
1 & 1 & 2 & 1 & 1 & 2 & 1 \\
1 & 1 & 3 & 1 & 1 & 1 & 1 \\
1 & 1 & 2 & 1 & 1 & 2 & 1 \\
1 & 1 & 2 & 1 & 2 & 1 & 1 \\
1 & 1 & 3 & 1 & 1 & 1 & 1 \\
& & & & & &
\end{tabular}


\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 44 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 45 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 48 & 1 & 1 & 1 & 1 & 1 & 2 & 2 \\
\hline 52 & 2 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 54 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 56 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 61 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 63 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 64 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 72 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 77 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 109 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline [total] & 45 & 46 & 129 & 45 & 45 & 57 & 49 \\
\hline \multicolumn{8}{|l|}{011A03} \\
\hline 1 & 2 & 3 & 86 & 2 & 2 & 14 & 6 \\
\hline [total] & 2 & 3 & 86 & 2 & 2 & 14 & 6 \\
\hline \multicolumn{8}{|l|}{011A04} \\
\hline 1 & 1 & 1 & 66 & 1 & 2 & 2 & 2 \\
\hline 2 & 1 & 1 & 7 & 1 & 1 & 1 & 1 \\
\hline 3 & 1 & 1 & 6 & 1 & 1 & 1 & 1 \\
\hline 4 & 1 & 1 & 5 & 1 & 1 & 3 & 2 \\
\hline 5 & 1 & 2 & 2 & 1 & 1 & 4 & 1 \\
\hline 6 & 1 & 1 & 2 & 1 & 1 & 2 & 1 \\
\hline 10 & 2 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 11 & 1 & 2 & 1 & 1 & 1 & 1 & 1 \\
\hline 12 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 13 & 1 & 1 & 1 & 1 & 1 & 1 & 3 \\
\hline 14 & 1 & 1 & 2 & 1 & 1 & 2 & 1 \\
\hline 15 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 16 & 1 & 1 & 2 & 1 & 1 & 2 & 1 \\
\hline 17 & 1 & 1 & 1 & 1 & 1 & 3 & 1 \\
\hline 18 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 21 & 1 & 1 & 1 & 2 & 1 & 1 & 1 \\
\hline 40 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline [total] & 18 & 19 & 102 & 18 & 18 & 30 & 22 \\
\hline \multicolumn{8}{|l|}{011AAY} \\
\hline 1 & 1 & 1 & 37 & 1 & 1 & 1 & 1 \\
\hline 2 & 1 & 1 & 10 & 1 & 1 & 1 & 1 \\
\hline 3 & 1 & 1 & 6 & 1 & 1 & 1 & 1 \\
\hline 5 & 1 & 1 & 5 & 1 & 1 & 1 & 1 \\
\hline 6 & 1 & 1 & 6 & 1 & 1 & 1 & 1 \\
\hline 7 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 8 & 1 & 1 & 5 & 1 & 1 & 1 & 1 \\
\hline 9 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 10 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 12 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 13 & 1 & 1 & 3 & 1 & 1 & 2 & 1 \\
\hline 14 & 1 & 1 & 1 & 2 & 1 & 1 & 1 \\
\hline 18 & 1 & 1 & 3 & 1 & 1 & 2 & 1 \\
\hline 19 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 20 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 21 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 22 & 1 & 1 & 2 & 1 & 1 & 3 & 1 \\
\hline 24 & 1 & 2 & 1 & 1 & 1 & 2 & 1 \\
\hline 25 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 26 & 1 & 1 & 2 & 1 & 1 & 2 & 2 \\
\hline 29 & 1 & 1 & 2 & 1 & 1 & 2 & 1 \\
\hline 30 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|}
\hline  &  &  \\
\hline \(\triangleright \vdash N \vdash \vdash\) &  & \(\stackrel{\stackrel{\rightharpoonup}{\omega}}{ } \stackrel{ }{ }\) • \\
\hline  & \begin{tabular}{l}
\(\omega\) \\

\end{tabular} & \[
\stackrel{\Delta}{\Delta} \mapsto \vdash \mapsto
\] \\
\hline  &  & \[
\stackrel{\stackrel{\rightharpoonup}{N}}{\sim} N \mapsto \vdash
\] \\
\hline \(\vdash \vdash \vdash \vdash \vdash \vdash \vdash \vdash)\) & \(\stackrel{\omega}{y} N \vdash \vdash\) & \(\stackrel{\stackrel{\rightharpoonup}{\omega}}{ } \stackrel{ }{ }\) \\
\hline \(\vdash \vdash \vdash \vdash \vdash \vdash \vdash \vdash \vdash N \vdash \vdash \vdash \vdash \vdash\) &  & \(\stackrel{\stackrel{\rightharpoonup}{\omega}}{ } \stackrel{ }{ }\) \\
\hline NமNNNNNNNNமワமゅம &  & \(ज ّ N N\) \\
\hline \(N \leftharpoondown N \triangleright \vdash \vdash \vdash \vdash N \vdash \vdash \vdash \vdash N\) &  & \[
\stackrel{\oplus}{\jmath} \mapsto \vdash \vdash
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 31 & 1 & 2 & 1 & 1 & 1 & 1 & 1 \\
\hline 38 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 47 & 1 & 1 & 1 & 2 & 1 & 1 & 1 \\
\hline 54 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline [total] & 20 & 21 & 104 & 20 & 20 & 32 & 24 \\
\hline \multicolumn{8}{|l|}{012G01} \\
\hline 1 & 2 & 3 & 83 & 2 & 2 & 13 & 5 \\
\hline 2 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 3 & 1 & 1 & 2 & 1 & 1 & 2 & 2 \\
\hline 4 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline [total] & 5 & 6 & 89 & 5 & 5 & 17 & 9 \\
\hline \multicolumn{8}{|l|}{012GZ5} \\
\hline 1 & 1 & 2 & 77 & 1 & 2 & 4 & 3 \\
\hline 2 & 1 & 1 & 4 & 1 & 1 & 2 & 3 \\
\hline 3 & 1 & 1 & 4 & 2 & 1 & 2 & 1 \\
\hline 4 & 1 & 1 & 2 & 1 & 1 & 4 & 1 \\
\hline 5 & 1 & 1 & 3 & 1 & 1 & 2 & 1 \\
\hline 6 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 7 & 1 & 2 & 1 & 1 & 1 & 1 & 1 \\
\hline 8 & 2 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 12 & 1 & 1 & 1 & 1 & 1 & 2 & 2 \\
\hline 17 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline [total] & 11 & 12 & 95 & 11 & 11 & 23 & 15 \\
\hline \multicolumn{8}{|l|}{012D04} \\
\hline 1 & 1 & 2 & 84 & 2 & 1 & 11 & 6 \\
\hline 2 & 2 & 1 & 1 & 1 & 2 & 3 & 1 \\
\hline 3 & 1 & 1 & 2 & 1 & 1 & 2 & 1 \\
\hline 6 & 1 & 2 & 2 & 1 & 1 & 1 & 1 \\
\hline [total] & 5 & 6 & 89 & 5 & 5 & 17 & 9 \\
\hline \multicolumn{8}{|l|}{012 DBA} \\
\hline 1 & 1 & 1 & 63 & 1 & 1 & 4 & 1 \\
\hline 2 & 1 & 1 & 12 & 1 & 1 & 2 & 1 \\
\hline 3 & 1 & 1 & 4 & 1 & 1 & 2 & 1 \\
\hline 4 & 2 & 1 & 5 & 1 & 1 & 2 & 1 \\
\hline 5 & 1 & 1 & 3 & 1 & 1 & 1 & 2 \\
\hline 6 & 1 & 2 & 2 & 1 & 2 & 1 & 2 \\
\hline 7 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 8 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 9 & 1 & 1 & 2 & 2 & 1 & 2 & 1 \\
\hline 10 & 1 & 1 & 1 & 1 & 1 & 2 & 2 \\
\hline 11 & 1 & 2 & 1 & 1 & 1 & 2 & 2 \\
\hline 14 & 1 & 1 & 1 & 1 & 1 & 3 & 1 \\
\hline 16 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 19 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline [total] & 15 & 16 & 99 & 15 & 15 & 27 & 19 \\
\hline \multicolumn{8}{|l|}{012 DBB} \\
\hline 1 & 2 & 3 & 86 & 2 & 2 & 14 & 6 \\
\hline [total] & 2 & 3 & 86 & 2 & 2 & 14 & 6 \\
\hline \multicolumn{8}{|l|}{012DZ5} \\
\hline 1 & 1 & 1 & 62 & 1 & 1 & 2 & 1 \\
\hline 2 & 2 & 1 & 9 & 2 & 1 & 1 & 1 \\
\hline 3 & 1 & 1 & 7 & 1 & 1 & 4 & 1 \\
\hline 4 & 1 & 1 & 5 & 1 & 1 & 1 & 1 \\
\hline 5 & 1 & 1 & 2 & 1 & 1 & 2 & 1 \\
\hline 6 & 1 & 2 & 3 & 1 & 1 & 1 & 2 \\
\hline 7 & 1 & 2 & 1 & 1 & 2 & 3 & 1 \\
\hline 8 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 9 & 1 & 1 & 3 & 1 & 1 & 1 & 3 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 11 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 12 & 1 & 1 & 1 & 1 & 1 & 3 & 1 \\
\hline 13 & 1 & 1 & 1 & 1 & 1 & 3 & 1 \\
\hline 14 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 22 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 23 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline [total] & 16 & 17 & 100 & 16 & 16 & 28 & 20 \\
\hline \multicolumn{8}{|l|}{012DF0} \\
\hline 1 & 1 & 2 & 74 & 1 & 2 & 5 & 3 \\
\hline 2 & 1 & 1 & 7 & 2 & 1 & 2 & 2 \\
\hline 3 & 1 & 2 & 5 & 1 & 1 & 5 & 1 \\
\hline 4 & 1 & 1 & 2 & 1 & 1 & 2 & 2 \\
\hline 5 & 2 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 6 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 7 & 1 & 1 & 2 & 1 & 1 & 1 & 2 \\
\hline 11 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline [total] & 9 & 10 & 93 & 9 & 9 & 21 & 13 \\
\hline \multicolumn{8}{|l|}{012DF3} \\
\hline 1 & 1 & 1 & 55 & 1 & 1 & 2 & 1 \\
\hline 2 & 1 & 1 & 8 & 1 & 1 & 1 & 1 \\
\hline 3 & 1 & 1 & 6 & 1 & 1 & 1 & 1 \\
\hline 4 & 1 & 1 & 6 & 1 & 1 & 1 & 1 \\
\hline 5 & 1 & 1 & 5 & 1 & 1 & 2 & 1 \\
\hline 6 & 1 & 1 & 5 & 1 & 1 & 1 & 1 \\
\hline 7 & 1 & 2 & 2 & 1 & 1 & 2 & 1 \\
\hline 8 & 1 & 1 & 3 & 2 & 1 & 2 & 2 \\
\hline 9 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 10 & 1 & 1 & 1 & 1 & 2 & 1 & 1 \\
\hline 11 & 1 & 1 & 2 & 1 & 1 & 2 & 2 \\
\hline 12 & 1 & 1 & 1 & 1 & 1 & 5 & 1 \\
\hline 13 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 14 & 1 & 1 & 1 & 1 & 1 & 2 & 2 \\
\hline 15 & 1 & 1 & 1 & 1 & 1 & 2 & 2 \\
\hline 16 & 1 & 2 & 1 & 1 & 1 & 1 & 1 \\
\hline 17 & 2 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 20 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 24 & 1 & 1 & 1 & 1 & 1 & 2 & 2 \\
\hline [total] & 20 & 21 & 104 & 20 & 20 & 32 & 24 \\
\hline \multicolumn{8}{|l|}{021A05} \\
\hline 1 & 1 & 1 & 8 & 1 & 1 & 1 & 1 \\
\hline 2 & 1 & 1 & 28 & 1 & 1 & 1 & 1 \\
\hline 3 & 1 & 1 & 9 & 1 & 1 & 1 & 1 \\
\hline 4 & 1 & 1 & 5 & 1 & 1 & 1 & 1 \\
\hline 5 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 6 & 1 & 1 & 8 & 1 & 1 & 1 & 1 \\
\hline 7 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 8 & 1 & 1 & 4 & 1 & 1 & 1 & 1 \\
\hline 9 & 1 & 1 & 6 & 1 & 1 & 1 & 1 \\
\hline 10 & 1 & 1 & 6 & 1 & 1 & 1 & 1 \\
\hline 11 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 12 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 13 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 14 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 15 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 16 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 17 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 18 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 20 & 1 & 2 & 1 & 1 & 1 & 2 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 21 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 24 & 1 & 1 & 1 & 1 & 1 & 3 & 1 \\
\hline 25 & 1 & 1 & 1 & 1 & 2 & 1 & 1 \\
\hline 26 & 1 & 1 & 4 & 1 & 1 & 1 & 1 \\
\hline 27 & 1 & 1 & 2 & 1 & 1 & 2 & 1 \\
\hline 31 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 32 & 1 & 1 & 1 & 1 & 1 & 2 & 2 \\
\hline 34 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 38 & 1 & 2 & 1 & 1 & 1 & 1 & 1 \\
\hline 39 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 43 & 2 & 1 & 1 & 1 & 1 & 3 & 1 \\
\hline 45 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 49 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 53 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 54 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 56 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 68 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 98 & 1 & 1 & 1 & 2 & 1 & 1 & 1 \\
\hline 100 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline [total] & 39 & 40 & 123 & 39 & 39 & 51 & 43 \\
\hline \multicolumn{8}{|l|}{021A06} \\
\hline 1 & 1 & 1 & 31 & 1 & 1 & 1 & 1 \\
\hline 2 & 1 & 1 & 12 & 1 & 1 & 1 & 1 \\
\hline 3 & 1 & 1 & 4 & 1 & 1 & 1 & 1 \\
\hline 4 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 5 & 1 & 1 & 6 & 1 & 1 & 1 & 1 \\
\hline 6 & 1 & 1 & 8 & 1 & 1 & 1 & 1 \\
\hline 7 & 1 & 1 & 7 & 1 & 1 & 1 & 1 \\
\hline 8 & 1 & 1 & 5 & 1 & 1 & 1 & 1 \\
\hline 9 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 11 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 13 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 14 & 1 & 1 & 3 & 1 & 1 & 2 & 1 \\
\hline 15 & 1 & 1 & 6 & 1 & 1 & 1 & 1 \\
\hline 17 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 18 & 1 & 2 & 1 & 1 & 1 & 1 & 1 \\
\hline 21 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 23 & 1 & 1 & 2 & 1 & 2 & 2 & 1 \\
\hline 24 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 25 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 28 & 1 & 1 & 1 & 1 & 1 & 3 & 1 \\
\hline 29 & 1 & 2 & 1 & 1 & 1 & 1 & 1 \\
\hline 31 & 1 & 1 & 1 & 1 & 1 & 3 & 1 \\
\hline 35 & 1 & 1 & 2 & 1 & 1 & 1 & 2 \\
\hline 37 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 38 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 40 & 1 & 1 & 1 & 1 & 1 & 2 & 2 \\
\hline 42 & 2 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 43 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 46 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 49 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 53 & 1 & 1 & 1 & 1 & 1 & 3 & 1 \\
\hline 56 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 62 & 1 & 1 & 1 & 2 & 1 & 1 & 1 \\
\hline [total] & 34 & 35 & 118 & 34 & 34 & 46 & 38 \\
\hline \multicolumn{8}{|l|}{021E05} \\
\hline 1 & 1 & 2 & 80 & 1 & 2 & 6 & 3 \\
\hline 2 & 1 & 1 & 3 & 1 & 1 & 5 & 2 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \(\triangleright \omega N \mapsto\) &  &  & \(\stackrel{\stackrel{\rightharpoonup}{\bullet}}{\stackrel{\rightharpoonup}{\bullet}}\) \\
\hline \(\triangleright \vdash \vdash \vdash\) & \(G \vdash \vdash \vdash N\) &  &  \\
\hline \(\triangleright \vdash \vdash \vdash\) & の・ \({ }^{\text {a }}\) &  & \(\stackrel{\omega}{\omega} \longmapsto \vdash N \vdash \vdash \vdash\) \\
\hline －官にの & \({ }_{\circ}^{\infty} \omega N\) の \({ }^{\circ}\) &  &  \\
\hline \(\triangleright \vdash \vdash \vdash\) & \(\cdots \vdash \vdash \vdash N\) &  & \(\stackrel{\omega}{N} \longmapsto \vdash \vdash \vdash \vdash \vdash \vdash N \vdash \vdash \vdash \vdash \vdash \vdash \vdash \vdash \vdash\) \\
\hline \(\triangleright \vdash \vdash \vdash\) & \(\cdots N \longmapsto \vdash \vdash\) &  & \(\stackrel{\omega}{N} \mapsto \vdash \vdash \vdash \vdash \vdash \vdash \vdash \vdash \vdash N \vdash \vdash \vdash \vdash \vdash \vdash\) \\
\hline ャャ \(\downarrow\) & \[
\stackrel{\rightharpoonup}{\jmath} \mapsto \vdash N \stackrel{\rightharpoonup}{\omega}
\] &  & \(\stackrel{\triangleright}{\triangleright} \triangleright \mathrm{N}\) \\
\hline \(\triangleright \vdash \vdash\) & மャャமの &  & \begin{tabular}{l}
\(\omega\) \\

\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \(\triangleright \omega N \triangleright\) &  \\
\hline \(\triangleright \vdash \vdash \vdash\) &  \\
\hline \(N \longmapsto \vdash \vdash\) &  \\
\hline Nのの &  \\
\hline －\(\downarrow\) N &  \\
\hline \(\triangleright \vdash \vdash\) &  \\
\hline \(\triangleright N \omega の\) &  \\
\hline N N N &  \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(G \triangleright \omega N \mapsto\) &  &  &  &  &  \\
\hline \(\triangleright \vdash \vdash \vdash \mathrm{N}\) & N N & ルャャナ N &  & \(\stackrel{\rightharpoonup}{\circ} \longmapsto \vdash \vdash \vdash \vdash \vdash \vdash \vdash N\) &  \\
\hline \(\triangleright \vdash \vdash N \triangleright\) & \(\omega \omega\) & のம• &  &  &  \\
\hline \[
N \omega G \sqsupset \sqsupset
\] & \[
\begin{aligned}
& \infty \\
& \sigma_{0}^{\infty} \\
& \hline
\end{aligned}
\] & \[
\stackrel{\infty}{\omega} \longmapsto \vdash \triangleright \stackrel{\infty}{\omega}
\] &  & \[
\stackrel{\bullet}{\triangleright} \vdash \vdash \mapsto \omega \omega \omega \text { の } \downarrow \text { Ø}
\] &  \\
\hline \(N \longmapsto \vdash \vdash \vdash\) & N N & जャナナ N &  & \(\stackrel{\rightharpoonup}{\circ} \vdash \vdash \vdash \vdash N \vdash \vdash \vdash \vdash\) &  \\
\hline \(\triangleright \vdash \vdash N \vdash\) & N N & \(ज \vdash \vdash \mathrm{~N} \longmapsto\) &  & \(\stackrel{\rightharpoonup}{\circ} \longmapsto \vdash \vdash \vdash \vdash \vdash \vdash N \leftharpoondown\) & \(\stackrel{\rightharpoonup}{\checkmark} \longmapsto \vdash \mathrm{N}\) \\
\hline NNNL \(\omega\) & \(\stackrel{\rightharpoonup}{\triangleright}\) & \(\stackrel{\rightharpoonup}{\sqsupset} \longmapsto \vdash N \stackrel{\rightharpoonup}{\omega}\) &  &  &  \\
\hline \(N \mapsto \omega \vdash\) & の の & \(\quad\) NN・ゅ &  & \(\stackrel{\rightharpoonup}{\triangleright} \mapsto \vdash \vdash N \omega \vdash N N\) &  \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline  &  &  &  &  \\
\hline \(\vdash \vdash \vdash\) & \(\stackrel{\stackrel{\rightharpoonup}{\omega}}{\omega}\) ம\(\vdash \vdash \vdash \vdash \vdash N \vdash \vdash \vdash \vdash\) & &  &  \\
\hline \(\vdash \vdash \vdash\) & \(\stackrel{\rightharpoonup}{\triangleright} \stackrel{\rightharpoonup}{ } \stackrel{\rightharpoonup}{ }+\triangleright \vdash \vdash \vdash \vdash N \vdash N\) & &  & \(\stackrel{\rightharpoonup}{\triangleright} \vdash \vdash \vdash N \vdash \vdash \vdash\) \\
\hline \[
\stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{\bullet}} \underset{\sim}{\omega}
\] &  & \[
\stackrel{\stackrel{\rightharpoonup}{\stackrel{~}{\sim}}}{ }
\] &  & \(\stackrel{6}{\jmath} N \triangleright \vdash \vdash \vdash \vdash N\) \\
\hline \(\triangleright \vdash \vdash\) & \(\stackrel{\rightharpoonup}{\omega} N \vdash \vdash\) & \(\stackrel{\omega}{\hookleftarrow}\) &  & \(\stackrel{\rightharpoonup}{\omega} \mapsto \vdash \vdash \vdash \vdash \vdash \vdash\) \\
\hline \(\triangleright \vdash \vdash\) &  & \[
\underset{\mapsto}{\omega}
\] &  & \(\stackrel{\rightharpoonup}{\omega} \mapsto \vdash \mapsto \vdash \mapsto \vdash \vdash\) \\
\hline \(\vdash \vdash\) & NロேNNNNGமேGமN & \[
\stackrel{\stackrel{\rightharpoonup}{\omega}}{ }
\] &  & N゙ャNNமNNW \\
\hline ャャャ &  & \(\stackrel{\omega}{\sim}\) &  &  \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|}
\hline  & \begin{tabular}{l}
 \\

\end{tabular} &  \\
\hline \(\triangleright N \vdash \vdash \vdash \vdash \vdash \vdash \vdash \vdash \vdash\) &  &  \\
\hline \(\omega \vdash \vdash \vdash \vdash \vdash \vdash \vdash \vdash \vdash \vdash\) &  &  \\
\hline \(\omega N \omega \vdash \vdash \vdash G G \triangleright)^{\circ}\) &  & \[
\begin{aligned}
& \stackrel{\rightharpoonup}{\circ} \\
& \infty
\end{aligned}
\] \\
\hline \(\triangleright \vdash \vdash \vdash \vdash \vdash N \vdash \vdash \vdash \vdash\) &  &  \\
\hline \(\triangleright \vdash \vdash \vdash N \vdash \vdash \vdash \vdash \vdash \vdash\) &  &  \\
\hline \(\triangleright \vdash \vdash \omega N\) N &  &  \\
\hline ャャャN N &  & N \(\infty \vdash \vdash N \mapsto N \vdash \vdash \vdash \vdash N \vdash \vdash N \mapsto \vdash\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 12 & 1 & 1 & 2 & 1 & 1 & 2 & 1 \\
\hline 13 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 16 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 17 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 19 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 23 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 25 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 27 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline [total] & 20 & 21 & 104 & 20 & 20 & 32 & 24 \\
\hline \multicolumn{8}{|l|}{042G19} \\
\hline 1 & 2 & 3 & 86 & 2 & 2 & 14 & 6 \\
\hline [total] & 2 & 3 & 86 & 2 & 2 & 14 & 6 \\
\hline \multicolumn{8}{|l|}{042D21} \\
\hline 1 & 2 & 3 & 86 & 2 & 2 & 14 & 6 \\
\hline [total] & 2 & 3 & 86 & 2 & 2 & 14 & 6 \\
\hline \multicolumn{8}{|l|}{042DZ3} \\
\hline 1 & 1 & 1 & 44 & 1 & 1 & 1 & 1 \\
\hline 2 & 1 & 1 & 6 & 1 & 1 & 1 & 1 \\
\hline 3 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 4 & 1 & 1 & 5 & 1 & 1 & 1 & 1 \\
\hline 5 & 1 & 1 & 5 & 1 & 1 & 1 & 1 \\
\hline 6 & 1 & 1 & 8 & 1 & 1 & 1 & 1 \\
\hline 7 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 8 & 2 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 9 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 10 & 1 & 1 & 8 & 1 & 1 & 2 & 1 \\
\hline 11 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 12 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 13 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 14 & 1 & 1 & 3 & 1 & 1 & 2 & 1 \\
\hline 16 & 1 & 1 & 1 & 1 & 1 & 2 & 2 \\
\hline 18 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 19 & 1 & 1 & 1 & 2 & 1 & 1 & 1 \\
\hline 20 & 1 & 1 & 1 & 1 & 1 & 2 & 2 \\
\hline 21 & 1 & 2 & 1 & 1 & 1 & 2 & 1 \\
\hline 22 & 1 & 1 & 1 & 1 & 2 & 3 & 1 \\
\hline 23 & 1 & 1 & 1 & 1 & 1 & 3 & 1 \\
\hline 24 & 1 & 1 & 1 & 1 & 1 & 3 & 1 \\
\hline 27 & 1 & 1 & 1 & 1 & 1 & 2 & 2 \\
\hline 29 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 32 & 1 & 2 & 1 & 1 & 1 & 1 & 1 \\
\hline 45 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 52 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline [total] & 28 & 29 & 112 & 28 & 28 & 40 & 32 \\
\hline \multicolumn{8}{|l|}{042E20} \\
\hline 1 & 2 & 3 & 85 & 2 & 2 & 14 & 6 \\
\hline 12 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline [total] & 3 & 4 & 87 & 3 & 3 & 15 & 7 \\
\hline \multicolumn{8}{|l|}{051A10} \\
\hline 1 & 1 & 1 & 31 & 1 & 1 & 1 & 1 \\
\hline 2 & 1 & 1 & 10 & 1 & 1 & 1 & 1 \\
\hline 3 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 4 & 1 & 1 & 5 & 1 & 1 & 1 & 1 \\
\hline 5 & 1 & 1 & 7 & 1 & 1 & 1 & 1 \\
\hline 6 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 7 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 8 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 9 & 1 & 1 & 2 & 1 & 1 & 2 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \(\stackrel{\vdash}{\triangleright} \infty ン の ル ゅ \omega N \vdash\) &  &  \\
\hline \(\triangleright \vdash \vdash \vdash \vdash \vdash \vdash \vdash N \vdash\) &  &  \\
\hline \(N \vdash \vdash \vdash \vdash \vdash \vdash N \vdash \vdash\) & \(\stackrel{\rightharpoonup}{\omega} \longmapsto \vdash \vdash \vdash \vdash \vdash \vdash \vdash \vdash N N\) &  \\
\hline ம &  & \begin{tabular}{l}
\(\stackrel{\rightharpoonup}{N}\) \\

\end{tabular} \\
\hline  &  &  \\
\hline  &  &  \\
\hline \(N \sim N N \triangleright \omega \vdash ゅ N\) & \(\stackrel{N}{\triangleright} \mapsto \triangleright \omega \vdash N \triangleright \triangleright \omega \vdash N G\) &  \\
\hline ャャャ & \(\stackrel{\rightharpoonup}{\circ}+N\)－\({ }^{\text {a }}\) &  \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 12 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 18 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline [total] & 13 & 14 & 97 & 13 & 13 & 25 & 17 \\
\hline \multicolumn{8}{|l|}{051A33} \\
\hline 1 & 2 & 3 & 86 & 2 & 2 & 14 & 6 \\
\hline [total] & 2 & 3 & 86 & 2 & 2 & 14 & 6 \\
\hline \multicolumn{8}{|l|}{051A34} \\
\hline 1 & 1 & 2 & 61 & 1 & 1 & 1 & 1 \\
\hline 2 & 1 & 1 & 12 & 1 & 1 & 1 & 3 \\
\hline 3 & 1 & 1 & 7 & 1 & 1 & 1 & 1 \\
\hline 4 & 1 & 1 & 5 & 1 & 1 & 1 & 1 \\
\hline 5 & 1 & 1 & 2 & 1 & 1 & 4 & 1 \\
\hline 6 & 1 & 1 & 1 & 1 & 1 & 3 & 1 \\
\hline 7 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 8 & 1 & 1 & 2 & 2 & 2 & 1 & 1 \\
\hline 9 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 10 & 1 & 1 & 1 & 1 & 1 & 2 & 2 \\
\hline 11 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 12 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 13 & 1 & 2 & 1 & 1 & 1 & 2 & 1 \\
\hline 14 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 16 & 2 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 19 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 20 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 23 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 24 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline [total] & 20 & 21 & 104 & 20 & 20 & 32 & 24 \\
\hline \multicolumn{8}{|l|}{061 A11} \\
\hline 1 & 1 & 1 & 6 & 1 & 1 & 1 & 1 \\
\hline 2 & 1 & 1 & 7 & 1 & 1 & 1 & 1 \\
\hline 3 & 1 & 1 & 6 & 1 & 1 & 1 & 1 \\
\hline 4 & 1 & 1 & 30 & 1 & 1 & 1 & 1 \\
\hline 5 & 1 & 1 & 6 & 1 & 1 & 1 & 1 \\
\hline 6 & 1 & 2 & 3 & 1 & 1 & 1 & 1 \\
\hline 7 & 1 & 1 & 5 & 1 & 1 & 1 & 1 \\
\hline 8 & 1 & 1 & 4 & 1 & 1 & 1 & 1 \\
\hline 9 & 1 & 1 & 4 & 1 & 1 & 1 & 1 \\
\hline 10 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 11 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 12 & 1 & 1 & 4 & 1 & 1 & 1 & 1 \\
\hline 13 & 1 & 1 & 4 & 1 & 1 & 2 & 1 \\
\hline 16 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 17 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 18 & 1 & 1 & 4 & 1 & 1 & 1 & 1 \\
\hline 20 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 21 & 1 & 1 & 2 & 1 & 2 & 1 & 1 \\
\hline 24 & 2 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 26 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 27 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 28 & 1 & 1 & 1 & 1 & 1 & 3 & 1 \\
\hline 31 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 32 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 33 & 1 & 2 & 1 & 1 & 1 & 1 & 1 \\
\hline 35 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 36 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 38 & 1 & 1 & 2 & 1 & 1 & 2 & 1 \\
\hline 42 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 43 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 110 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 116 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 119 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 123 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 132 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 138 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 141 & 2 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 148 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 154 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 164 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 169 & 1 & 2 & 1 & 1 & 1 & 1 & 1 \\
\hline 171 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 182 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 191 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 197 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 204 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 223 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 297 & 1 & 1 & 1 & 2 & 1 & 1 & 1 \\
\hline 315 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline [total] & 68 & 69 & 152 & 68 & 68 & 80 & 72 \\
\hline 062G12 & & & & & & & \\
\hline 1 & 1 & 1 & 15 & 1 & 1 & 1 & 1 \\
\hline 2 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 4 & 1 & 1 & 4 & 1 & 1 & 1 & 1 \\
\hline 5 & 1 & 1 & 5 & 1 & 1 & 1 & 1 \\
\hline 6 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 7 & 1 & 1 & 4 & 1 & 1 & 1 & 1 \\
\hline 8 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 9 & 1 & 1 & 4 & 1 & 1 & 1 & 1 \\
\hline 11 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 12 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 13 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 15 & 1 & 1 & 5 & 1 & 1 & 1 & 1 \\
\hline 16 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 17 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 18 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 20 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 21 & 1 & 1 & 4 & 1 & 1 & 1 & 1 \\
\hline 22 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 23 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 24 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 25 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 26 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 28 & 1 & 1 & 5 & 1 & 1 & 1 & 1 \\
\hline 30 & 1 & 1 & 4 & 1 & 1 & 1 & 1 \\
\hline 32 & 1 & 1 & 4 & 1 & 1 & 1 & 1 \\
\hline 33 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 36 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 38 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 39 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 40 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 45 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 46 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 47 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 49 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 52 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 55 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 57 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline
\end{tabular}



\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
 \\

\end{tabular} &  &  \\
\hline  & \(\stackrel{\rightharpoonup}{\circ} \longmapsto \vdash \vdash \vdash \vdash \vdash \vdash \vdash N\) & \(\stackrel{\stackrel{1}{N}}{\sim}\) \\
\hline  & \(\stackrel{\rightharpoonup}{\vdash} \vdash \vdash \vdash \vdash \vdash \vdash \mathrm{N} \vdash \mathrm{N}\) & \(\stackrel{\stackrel{\rightharpoonup}{\omega}}{\stackrel{\rightharpoonup}{\omega}} \stackrel{\vdash}{ }\) \\
\hline  &  &  \\
\hline  &  &  \\
\hline  & \(\stackrel{\rightharpoonup}{\circ} \vdash \vdash \vdash \vdash \vdash \vdash \vdash \vdash N\) &  \\
\hline  &  &  \\
\hline  & \(\stackrel{\rightharpoonup}{\bullet} N N \triangleright \vdash \vdash N \sqcup N N\) &  \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline のルゅ \(\omega\) N &  &  \\
\hline \(\mapsto \vdash \vdash \vdash \vdash \vdash \vdash\) &  & \[
\stackrel{N}{\sim} \stackrel{\rightharpoonup}{\bullet} \mapsto \mapsto
\] \\
\hline \(\triangleright \vdash \vdash \vdash \vdash \vdash \vdash\) &  & N \\
\hline \[
\text { のமのゅ } ம \text { の }{ }_{0}^{\omega}
\] &  & \[
\begin{aligned}
& \stackrel{\rightharpoonup}{\circ} \\
& \infty \quad \mapsto \vdash N ~ N
\end{aligned}
\] \\
\hline \(\vdash \vdash \vdash \vdash \vdash \vdash \vdash\) & \(\stackrel{\Delta}{\triangleright} \vdash \vdash \vdash \vdash N \vdash \vdash\) & \(\stackrel{\sim}{\sim}\) \\
\hline \(\vdash \vdash \vdash \vdash \vdash \vdash \vdash\) & \(\stackrel{\Delta}{\triangleright} \vdash N \vdash \vdash\) & \(\stackrel{\sim}{\sim}\) \\
\hline \(\vdash \vdash \vdash \vdash \vdash \vdash \vdash\) &  & \[
{ }_{\sigma}^{\omega} N \sim \longmapsto N
\] \\
\hline \(\sim \vdash \vdash\) &  & \[
\underset{\infty}{N} \longmapsto \vdash \vdash \vdash
\] \\
\hline
\end{tabular}



\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 131 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 134 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 142 & 1 & 2 & 1 & 1 & 1 & 1 & 1 \\
\hline 147 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 155 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 169 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 186 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 191 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 192 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 203 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 205 & 2 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 216 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 217 & 1 & 2 & 1 & 1 & 1 & 1 & 1 \\
\hline 236 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 246 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 254 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 339 & 1 & 1 & 1 & 2 & 1 & 1 & 1 \\
\hline 344 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline [total] & 79 & 80 & 163 & 79 & 79 & 91 & 83 \\
\hline \multicolumn{8}{|l|}{121A38} \\
\hline 1 & 1 & 1 & 68 & 1 & 1 & 1 & 2 \\
\hline 2 & 1 & 1 & 6 & 1 & 1 & 1 & 1 \\
\hline 3 & 1 & 1 & 5 & 1 & 1 & 3 & 1 \\
\hline 4 & 1 & 1 & 5 & 1 & 1 & 1 & 2 \\
\hline 5 & 1 & 1 & 2 & 1 & 2 & 2 & 1 \\
\hline 8 & 1 & 2 & 2 & 1 & 1 & 4 & 1 \\
\hline 9 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 10 & 1 & 1 & 3 & 1 & 1 & 4 & 1 \\
\hline 13 & 1 & 1 & 2 & 1 & 1 & 2 & 1 \\
\hline 15 & 2 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 17 & 1 & 2 & 1 & 1 & 1 & 2 & 2 \\
\hline 18 & 1 & 1 & 1 & 2 & 1 & 2 & 1 \\
\hline 21 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 24 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline [total] & 15 & 16 & 99 & 15 & 15 & 27 & 19 \\
\hline \multicolumn{8}{|l|}{121A39} \\
\hline 1 & 1 & 1 & 65 & 1 & 1 & 2 & 1 \\
\hline 2 & 1 & 1 & 9 & 1 & 1 & 1 & 1 \\
\hline 3 & 1 & 1 & 6 & 1 & 1 & 1 & 1 \\
\hline 4 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 5 & 2 & 1 & 2 & 1 & 1 & 1 & 3 \\
\hline 6 & 1 & 1 & 2 & 1 & 1 & 5 & 2 \\
\hline 7 & 1 & 1 & 2 & 1 & 1 & 2 & 1 \\
\hline 8 & 1 & 2 & 1 & 1 & 1 & 2 & 2 \\
\hline 9 & 1 & 1 & 1 & 1 & 2 & 2 & 1 \\
\hline 10 & 1 & 1 & 2 & 1 & 1 & 2 & 1 \\
\hline 11 & 1 & 1 & 2 & 1 & 1 & 3 & 1 \\
\hline 13 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 14 & 1 & 2 & 1 & 2 & 1 & 1 & 1 \\
\hline 16 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 17 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 22 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline [total] & 17 & 18 & 101 & 17 & 17 & 29 & 21 \\
\hline \multicolumn{8}{|l|}{121A64} \\
\hline 1 & 1 & 1 & 63 & 1 & 1 & 1 & 1 \\
\hline 2 & 1 & 1 & 10 & 1 & 2 & 2 & 1 \\
\hline 3 & 1 & 2 & 8 & 1 & 1 & 2 & 1 \\
\hline 4 & 1 & 1 & 4 & 1 & 1 & 3 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 5 & 1 & 1 & 3 & 1 & 1 & 1 & 2 \\
\hline 7 & 1 & 1 & 2 & 1 & 1 & 2 & 1 \\
\hline 9 & 1 & 1 & 1 & 1 & 1 & 3 & 2 \\
\hline 10 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 11 & 2 & 1 & 1 & 1 & 1 & 3 & 1 \\
\hline 13 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 16 & 1 & 2 & 1 & 1 & 1 & 3 & 3 \\
\hline 18 & 1 & 1 & 1 & 2 & 1 & 1 & 1 \\
\hline 19 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 20 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline [total] & 15 & 16 & 99 & 15 & 15 & 27 & 19 \\
\hline \multicolumn{8}{|l|}{121A65} \\
\hline 1 & 1 & 1 & 60 & 1 & 1 & 1 & 1 \\
\hline 2 & 1 & 1 & 4 & 1 & 1 & 1 & 1 \\
\hline 3 & 1 & 1 & 6 & 1 & 1 & 1 & 1 \\
\hline 4 & 1 & 1 & 3 & 1 & 1 & 2 & 1 \\
\hline 5 & 1 & 2 & 5 & 1 & 1 & 2 & 1 \\
\hline 6 & 1 & 1 & 8 & 1 & 1 & 2 & 1 \\
\hline 7 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 8 & 1 & 1 & 2 & 1 & 1 & 1 & 2 \\
\hline 9 & 1 & 1 & 2 & 1 & 1 & 4 & 1 \\
\hline 10 & 1 & 1 & 1 & 1 & 2 & 1 & 2 \\
\hline 11 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 12 & 1 & 2 & 2 & 1 & 1 & 2 & 1 \\
\hline 14 & 2 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 15 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 16 & 1 & 1 & 2 & 1 & 1 & 1 & 3 \\
\hline 19 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 20 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 25 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 29 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 40 & 1 & 1 & 1 & 2 & 1 & 1 & 1 \\
\hline 46 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline [total] & 22 & 23 & 106 & 22 & 22 & 34 & 26 \\
\hline \multicolumn{8}{|l|}{121A67} \\
\hline 1 & 1 & 1 & 58 & 1 & 1 & 1 & 1 \\
\hline 2 & 1 & 2 & 10 & 1 & 1 & 1 & 1 \\
\hline 3 & 1 & 2 & 6 & 1 & 1 & 2 & 1 \\
\hline 4 & 1 & 1 & 4 & 1 & 1 & 2 & 1 \\
\hline 5 & 1 & 1 & 6 & 1 & 1 & 2 & 2 \\
\hline 6 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 7 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 8 & 1 & 1 & 1 & 1 & 1 & 3 & 1 \\
\hline 9 & 1 & 1 & 5 & 1 & 1 & 2 & 1 \\
\hline 10 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 12 & 1 & 1 & 1 & 1 & 1 & 3 & 1 \\
\hline 13 & 1 & 1 & 1 & 1 & 1 & 3 & 2 \\
\hline 14 & 1 & 1 & 1 & 1 & 2 & 1 & 1 \\
\hline 15 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 16 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 17 & 2 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 18 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 23 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 26 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 30 & 1 & 1 & 1 & 2 & 1 & 1 & 1 \\
\hline [total] & 21 & 22 & 105 & 21 & 21 & 33 & 25 \\
\hline \multicolumn{8}{|l|}{121AZ4} \\
\hline 1 & 2 & 2 & 81 & 1 & 2 & 8 & 4 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 26 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 29 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 30 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 32 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 33 & 1 & 2 & 1 & 1 & 1 & 2 & 1 \\
\hline 37 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 38 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 42 & 1 & 1 & 1 & 1 & 2 & 1 & 1 \\
\hline 48 & 2 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 49 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 56 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 57 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 62 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 70 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 74 & 1 & 2 & 1 & 1 & 1 & 2 & 1 \\
\hline 76 & 1 & 1 & 1 & 2 & 1 & 1 & 1 \\
\hline 77 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 136 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline [total] & 40 & 41 & 124 & 40 & 40 & 52 & 44 \\
\hline \multicolumn{8}{|l|}{132G41} \\
\hline 1 & 2 & 3 & 86 & 2 & 2 & 14 & 6 \\
\hline [total] & 2 & 3 & 86 & 2 & 2 & 14 & 6 \\
\hline \multicolumn{8}{|l|}{132D41} \\
\hline 1 & 1 & 1 & 69 & 1 & 1 & 1 & 1 \\
\hline 2 & 1 & 1 & 9 & 1 & 1 & 2 & 1 \\
\hline 3 & 1 & 1 & 1 & 1 & 1 & 5 & 2 \\
\hline 4 & 1 & 2 & 4 & 1 & 1 & 1 & 2 \\
\hline 5 & 1 & 2 & 2 & 1 & 1 & 2 & 1 \\
\hline 6 & 1 & 1 & 2 & 1 & 1 & 3 & 1 \\
\hline 7 & 1 & 1 & 1 & 1 & 2 & 1 & 2 \\
\hline 8 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 9 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 10 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 11 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 12 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 14 & 1 & 1 & 1 & 2 & 1 & 3 & 2 \\
\hline 18 & 2 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 24 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 27 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline [total] & 17 & 18 & 101 & 17 & 17 & 29 & 21 \\
\hline \multicolumn{8}{|l|}{141A42} \\
\hline 1 & 2 & 3 & 85 & 2 & 2 & 13 & 6 \\
\hline 2 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 4 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline [total] & 4 & 5 & 88 & 4 & 4 & 16 & 8 \\
\hline \multicolumn{8}{|l|}{141A43} \\
\hline 1 & 1 & 1 & 69 & 1 & 1 & 4 & 1 \\
\hline 2 & 1 & 3 & 7 & 1 & 1 & 2 & 2 \\
\hline 3 & 1 & 1 & 7 & 1 & 1 & 4 & 2 \\
\hline 4 & 2 & 1 & 2 & 1 & 1 & 3 & 1 \\
\hline 5 & 1 & 1 & 4 & 1 & 1 & 1 & 1 \\
\hline 6 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 8 & 1 & 1 & 1 & 2 & 2 & 2 & 1 \\
\hline 9 & 1 & 1 & 1 & 1 & 1 & 2 & 3 \\
\hline 13 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 17 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 22 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline [total] & 12 & 13 & 96 & 12 & 12 & 24 & 16 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 141 ABG & & & & & & & \\
\hline 1 & 2 & 2 & 81 & 1 & 1 & 11 & 4 \\
\hline 2 & 1 & 2 & 1 & 1 & 1 & 2 & 2 \\
\hline 3 & 1 & 1 & 2 & 1 & 2 & 1 & 1 \\
\hline 4 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 7 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 10 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 11 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 12 & 1 & 1 & 1 & 2 & 1 & 1 & 1 \\
\hline 19 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 21 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 24 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline [total] & 12 & 13 & 96 & 12 & 12 & 24 & 16 \\
\hline 141 ABD & & & & & & & \\
\hline 1 & 1 & 1 & 65 & 1 & 1 & 2 & 1 \\
\hline 2 & 1 & 1 & 7 & 1 & 1 & 1 & 1 \\
\hline 3 & 1 & 2 & 7 & 1 & 1 & 4 & 1 \\
\hline 4 & 1 & 1 & 3 & 1 & 2 & 1 & 1 \\
\hline 5 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 6 & 1 & 1 & 4 & 1 & 1 & 2 & 2 \\
\hline 7 & 2 & 2 & 1 & 1 & 1 & 3 & 1 \\
\hline 8 & 1 & 1 & 2 & 1 & 1 & 1 & 2 \\
\hline 10 & 1 & 1 & 2 & 1 & 1 & 1 & 2 \\
\hline 11 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 12 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 14 & 1 & 1 & 1 & 2 & 1 & 2 & 1 \\
\hline 16 & 1 & 1 & 1 & 1 & 1 & 3 & 1 \\
\hline 27 & 1 & 1 & 1 & 1 & 1 & 3 & 1 \\
\hline 35 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline [total] & 16 & 17 & 100 & 16 & 16 & 28 & 20 \\
\hline 142G44 & & & & & & & \\
\hline 1 & 1 & 1 & 33 & 1 & 1 & 1 & 1 \\
\hline 2 & 1 & 1 & 6 & 1 & 1 & 1 & 1 \\
\hline 3 & 1 & 1 & 9 & 1 & 1 & 1 & 1 \\
\hline 4 & 1 & 1 & 7 & 1 & 1 & 1 & 1 \\
\hline 5 & 1 & 1 & 8 & 1 & 1 & 1 & 1 \\
\hline 6 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 7 & 1 & 1 & 7 & 1 & 1 & 1 & 1 \\
\hline 8 & 1 & 1 & 4 & 1 & 1 & 1 & 1 \\
\hline 9 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 10 & 1 & 1 & 4 & 1 & 1 & 1 & 1 \\
\hline 11 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 12 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 13 & 1 & 1 & 2 & 1 & 1 & 2 & 1 \\
\hline 14 & 1 & 1 & 3 & 1 & 1 & 2 & 1 \\
\hline 15 & 1 & 2 & 1 & 1 & 1 & 1 & 1 \\
\hline 16 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 17 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 18 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 20 & 2 & 2 & 1 & 1 & 1 & 1 & 1 \\
\hline 21 & 1 & 1 & 2 & 1 & 1 & 2 & 2 \\
\hline 23 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 26 & 1 & 1 & 2 & 1 & 1 & 1 & 2 \\
\hline 29 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 31 & 1 & 1 & 1 & 1 & 1 & 2 & 2 \\
\hline 32 & 1 & 1 & 2 & 1 & 2 & 2 & 1 \\
\hline 33 & 1 & 1 & 1 & 1 & 1 & 2 & 2 \\
\hline 35 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 36 & 1 & 1 & 1 & 2 & 1 & 1 & 1 \\
\hline 37 & 1 & 1 & 1 & 1 & 1 & 2 & 2 \\
\hline 55 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 87 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline [total] & 32 & 33 & 116 & 32 & 32 & 44 & 36 \\
\hline \multicolumn{8}{|l|}{142G45} \\
\hline 1 & 1 & 1 & 12 & 1 & 1 & 1 & 1 \\
\hline 2 & 1 & 1 & 47 & 1 & 1 & 2 & 1 \\
\hline 3 & 1 & 1 & 12 & 1 & 1 & 1 & 1 \\
\hline 4 & 1 & 1 & 6 & 1 & 1 & 3 & 1 \\
\hline 5 & 1 & 1 & 2 & 1 & 1 & 1 & 2 \\
\hline 6 & 1 & 1 & 5 & 1 & 1 & 1 & 1 \\
\hline 7 & 1 & 1 & 4 & 1 & 2 & 1 & 1 \\
\hline 9 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 10 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 11 & 1 & 1 & 2 & 1 & 1 & 3 & 1 \\
\hline 12 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 13 & 1 & 2 & 1 & 2 & 1 & 1 & 1 \\
\hline 15 & 1 & 1 & 1 & 1 & 1 & 3 & 1 \\
\hline 16 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 17 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 19 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 20 & 1 & 2 & 1 & 1 & 1 & 2 & 1 \\
\hline 21 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 22 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 25 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 27 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 31 & 2 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 32 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 35 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline [total] & 25 & 26 & 109 & 25 & 25 & 37 & 29 \\
\hline \multicolumn{8}{|l|}{142E45} \\
\hline 1 & 2 & 3 & 84 & 2 & 2 & 13 & 4 \\
\hline 2 & 1 & 1 & 2 & 1 & 1 & 2 & 2 \\
\hline 3 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 5 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline [total] & 5 & 6 & 89 & 5 & 5 & 17 & 9 \\
\hline \multicolumn{8}{|l|}{152G46} \\
\hline 1 & 1 & 1 & 5 & 1 & 1 & 1 & 1 \\
\hline 2 & 1 & 1 & 27 & 1 & 1 & 1 & 1 \\
\hline 3 & 1 & 1 & 8 & 1 & 1 & 1 & 1 \\
\hline 4 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 5 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 6 & 1 & 1 & 4 & 1 & 1 & 1 & 1 \\
\hline 7 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 8 & 1 & 1 & 8 & 1 & 1 & 1 & 1 \\
\hline 9 & 1 & 1 & 5 & 1 & 1 & 1 & 1 \\
\hline 10 & 1 & 1 & 5 & 1 & 1 & 1 & 1 \\
\hline 11 & 1 & 1 & 4 & 1 & 1 & 1 & 1 \\
\hline 13 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 14 & 1 & 1 & 4 & 1 & 1 & 1 & 1 \\
\hline 16 & 1 & 1 & 4 & 1 & 1 & 1 & 1 \\
\hline 18 & 1 & 1 & 4 & 1 & 1 & 1 & 1 \\
\hline 19 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 20 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 23 & 1 & 1 & 4 & 1 & 1 & 1 & 1 \\
\hline 24 & 1 & 1 & 2 & 1 & 1 & 1 & 2 \\
\hline 25 & 1 & 1 & 2 & 1 & 1 & 2 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 27 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 30 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 31 & 1 & 1 & 2 & 1 & 1 & 2 & 1 \\
\hline 32 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 35 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 36 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 41 & 2 & 1 & 1 & 1 & 1 & 3 & 1 \\
\hline 44 & 1 & 1 & 2 & 1 & 2 & 2 & 1 \\
\hline 45 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 48 & 1 & 2 & 1 & 1 & 1 & 1 & 1 \\
\hline 51 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 54 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 57 & 1 & 1 & 1 & 1 & 1 & 3 & 1 \\
\hline 60 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 62 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 68 & 1 & 2 & 1 & 1 & 1 & 1 & 1 \\
\hline 71 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 114 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 119 & 1 & 1 & 1 & 2 & 1 & 1 & 1 \\
\hline 130 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline [total] & 41 & 42 & 125 & 41 & 41 & 53 & 45 \\
\hline \multicolumn{8}{|l|}{152GY0} \\
\hline 1 & 2 & 3 & 85 & 2 & 2 & 14 & 4 \\
\hline 2 & 1 & 1 & 2 & 1 & 1 & 1 & 2 \\
\hline 6 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline [total] & 4 & 5 & 88 & 4 & 4 & 16 & 8 \\
\hline \multicolumn{8}{|l|}{152E46} \\
\hline 1 & 1 & 1 & 9 & 1 & 1 & 1 & 1 \\
\hline 2 & 1 & 1 & 7 & 1 & 1 & 1 & 1 \\
\hline 3 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 4 & 1 & 1 & 24 & 1 & 1 & 1 & 1 \\
\hline 5 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 6 & 1 & 1 & 4 & 1 & 1 & 1 & 1 \\
\hline 7 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 8 & 1 & 1 & 4 & 1 & 1 & 1 & 1 \\
\hline 9 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 10 & 1 & 1 & 4 & 1 & 1 & 1 & 1 \\
\hline 11 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 12 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 14 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 15 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 17 & 1 & 1 & 5 & 1 & 1 & 1 & 1 \\
\hline 18 & 1 & 1 & 2 & 1 & 1 & 2 & 2 \\
\hline 19 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 20 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 22 & 1 & 1 & 4 & 1 & 1 & 1 & 1 \\
\hline 23 & 1 & 1 & 2 & 1 & 1 & 2 & 1 \\
\hline 25 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 26 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 27 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 31 & 1 & 1 & 4 & 1 & 1 & 1 & 1 \\
\hline 38 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 39 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 42 & 2 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 49 & 1 & 1 & 1 & 1 & 2 & 1 & 1 \\
\hline 50 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 52 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 54 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline
\end{tabular}



\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 13 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 15 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 17 & 2 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 20 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline [total] & 15 & 16 & 99 & 15 & 15 & 27 & 19 \\
\hline \multicolumn{8}{|l|}{172EJ3} \\
\hline 1 & 1 & 3 & 86 & 2 & 2 & 14 & 5 \\
\hline 2 & 2 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline [total] & 3 & 4 & 87 & 3 & 3 & 15 & 7 \\
\hline \multicolumn{8}{|l|}{182G52} \\
\hline 1 & 1 & 1 & 47 & 1 & 1 & 1 & 1 \\
\hline 2 & 1 & 1 & 7 & 1 & 1 & 2 & 1 \\
\hline 3 & 1 & 1 & 5 & 1 & 1 & 1 & 2 \\
\hline 4 & 1 & 1 & 6 & 1 & 1 & 1 & 2 \\
\hline 5 & 1 & 1 & 7 & 1 & 1 & 3 & 1 \\
\hline 6 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 7 & 1 & 1 & 5 & 1 & 1 & 2 & 1 \\
\hline 8 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 9 & 1 & 2 & 3 & 1 & 2 & 1 & 1 \\
\hline 10 & 1 & 1 & 3 & 1 & 1 & 3 & 1 \\
\hline 11 & 1 & 1 & 3 & 1 & 1 & 2 & 1 \\
\hline 12 & 1 & 1 & 3 & 1 & 1 & 1 & 2 \\
\hline 13 & 1 & 1 & 2 & 1 & 1 & 2 & 1 \\
\hline 14 & 1 & 1 & 2 & 1 & 1 & 2 & 1 \\
\hline 15 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 17 & 1 & 2 & 1 & 1 & 1 & 3 & 1 \\
\hline 18 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 19 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 20 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 29 & 2 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 30 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 51 & 1 & 1 & 1 & 2 & 1 & 1 & 1 \\
\hline [total] & 23 & 24 & 107 & 23 & 23 & 35 & 27 \\
\hline \multicolumn{8}{|l|}{182E52} \\
\hline 1 & 1 & 1 & 41 & 1 & 1 & 1 & 1 \\
\hline 2 & 1 & 1 & 13 & 1 & 1 & 1 & 1 \\
\hline 3 & 1 & 1 & 9 & 1 & 1 & 1 & 1 \\
\hline 4 & 1 & 1 & 12 & 1 & 1 & 2 & 1 \\
\hline 5 & 1 & 1 & 5 & 1 & 1 & 2 & 1 \\
\hline 6 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 7 & 2 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 8 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 9 & 1 & 2 & 3 & 1 & 1 & 3 & 1 \\
\hline 10 & 1 & 2 & 1 & 1 & 1 & 1 & 1 \\
\hline 11 & 1 & 1 & 2 & 1 & 2 & 1 & 3 \\
\hline 12 & 1 & 1 & 2 & 1 & 1 & 2 & 1 \\
\hline 13 & 1 & 1 & 2 & 1 & 1 & 2 & 1 \\
\hline 14 & 1 & 1 & 1 & 1 & 1 & 4 & 2 \\
\hline 16 & 1 & 1 & 1 & 1 & 1 & 3 & 1 \\
\hline 20 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 21 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 22 & 1 & 1 & 1 & 2 & 1 & 1 & 1 \\
\hline 23 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 25 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline [total] & 21 & 22 & 105 & 21 & 21 & 33 & 25 \\
\hline \multicolumn{8}{|l|}{191A53} \\
\hline 1 & 2 & 2 & 81 & 2 & 2 & 10 & 5 \\
\hline 2 & 1 & 2 & 1 & 1 & 1 & 1 & 1 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 11 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 12 & 1 & 1 & 2 & 1 & 1 & 2 & 1 \\
\hline 13 & 1 & 1 & 1 & 1 & 1 & 3 & 1 \\
\hline 14 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 15 & 1 & 1 & 1 & 1 & 1 & 3 & 1 \\
\hline 16 & 1 & 2 & 1 & 1 & 1 & 1 & 1 \\
\hline 17 & 1 & 1 & 2 & 1 & 1 & 2 & 1 \\
\hline 20 & 1 & 1 & 1 & 1 & 1 & 1 & 3 \\
\hline 22 & 1 & 1 & 1 & 1 & 1 & 2 & 2 \\
\hline 24 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 27 & 2 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline [total] & 22 & 23 & 106 & 22 & 22 & 34 & 26 \\
\hline \multicolumn{8}{|l|}{212D56} \\
\hline 1 & 1 & 1 & 50 & 1 & 1 & 1 & 1 \\
\hline 2 & 1 & 1 & 9 & 1 & 1 & 1 & 1 \\
\hline 3 & 1 & 2 & 10 & 1 & 1 & 1 & 1 \\
\hline 4 & 1 & 1 & 6 & 1 & 1 & 2 & 1 \\
\hline 5 & 1 & 1 & 6 & 1 & 1 & 1 & 1 \\
\hline 6 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 7 & 1 & 1 & 2 & 1 & 1 & 4 & 1 \\
\hline 8 & 1 & 1 & 4 & 1 & 1 & 3 & 2 \\
\hline 9 & 1 & 1 & 2 & 1 & 1 & 2 & 1 \\
\hline 10 & 2 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 11 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 12 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 13 & 1 & 1 & 1 & 1 & 2 & 2 & 2 \\
\hline 14 & 1 & 1 & 2 & 2 & 1 & 2 & 1 \\
\hline 17 & 1 & 1 & 1 & 1 & 1 & 1 & 3 \\
\hline 19 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 20 & 1 & 2 & 1 & 1 & 1 & 1 & 1 \\
\hline 23 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 26 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 29 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline [total] & 21 & 22 & 105 & 21 & 21 & 33 & 25 \\
\hline \multicolumn{8}{|l|}{212E55} \\
\hline 1 & 1 & 1 & 72 & 1 & 1 & 6 & 1 \\
\hline 2 & 1 & 3 & 6 & 2 & 1 & 2 & 3 \\
\hline 3 & 1 & 1 & 3 & 1 & 1 & 2 & 1 \\
\hline 4 & 2 & 1 & 4 & 1 & 1 & 2 & 1 \\
\hline 5 & 1 & 1 & 2 & 1 & 1 & 2 & 1 \\
\hline 6 & 1 & 1 & 2 & 1 & 1 & 2 & 2 \\
\hline 7 & 1 & 1 & 2 & 1 & 1 & 2 & 1 \\
\hline 8 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 11 & 1 & 1 & 1 & 1 & 1 & 2 & 2 \\
\hline 14 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 15 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 17 & 1 & 1 & 1 & 1 & 2 & 1 & 1 \\
\hline [total] & 13 & 14 & 97 & 13 & 13 & 25 & 17 \\
\hline \multicolumn{8}{|l|}{212E56} \\
\hline 1 & 1 & 1 & 1 & 1 & 1 & 1 & 3 \\
\hline 2 & 2 & 3 & 85 & 2 & 2 & 14 & 3 \\
\hline 4 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 8 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline [total] & 5 & 6 & 89 & 5 & 5 & 17 & 9 \\
\hline \multicolumn{8}{|l|}{222G59} \\
\hline 1 & 2 & 1 & 64 & 1 & 2 & 2 & 1 \\
\hline 2 & 1 & 1 & 8 & 1 & 1 & 3 & 2 \\
\hline 3 & 1 & 1 & 4 & 1 & 1 & 2 & 1 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline  &  \\
\hline \(\triangleright \vdash \vdash \vdash \vdash \vdash \vdash \vdash \vdash)\) & \(\stackrel{\rightharpoonup}{\circ} \stackrel{\rightharpoonup}{ }{ }^{\text {c }}\) \\
\hline  &  \\
\hline  &  \\
\hline  &  \\
\hline  &  \\
\hline  & NNーNNமேNமNமNNமNNNமNமே \\
\hline  &  \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 76 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 95 & 1 & 1 & 1 & 2 & 1 & 1 & 1 \\
\hline 107 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline [total] & 40 & 41 & 124 & 40 & 40 & 52 & 44 \\
\hline \multicolumn{8}{|l|}{222E59} \\
\hline 1 & 1 & 1 & 8 & 1 & 1 & 1 & 1 \\
\hline 2 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 3 & 1 & 1 & 8 & 1 & 1 & 1 & 1 \\
\hline 4 & 1 & 1 & 8 & 1 & 1 & 1 & 1 \\
\hline 5 & 1 & 1 & 25 & 1 & 1 & 1 & 1 \\
\hline 6 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 7 & 1 & 1 & 4 & 1 & 1 & 1 & 1 \\
\hline 8 & 1 & 1 & 5 & 1 & 1 & 1 & 1 \\
\hline 10 & 1 & 1 & 5 & 1 & 1 & 1 & 1 \\
\hline 11 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 12 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 13 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 14 & 1 & 1 & 4 & 1 & 1 & 1 & 1 \\
\hline 15 & 1 & 1 & 4 & 1 & 1 & 1 & 1 \\
\hline 17 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 18 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 19 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 20 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 21 & 1 & 2 & 2 & 1 & 1 & 1 & 1 \\
\hline 22 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 23 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 24 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 27 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 29 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 30 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 31 & 1 & 1 & 2 & 1 & 2 & 1 & 1 \\
\hline 32 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 33 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 34 & 2 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 35 & 1 & 1 & 2 & 1 & 1 & 2 & 1 \\
\hline 39 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 42 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 46 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 51 & 1 & 2 & 1 & 1 & 1 & 1 & 1 \\
\hline 52 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 58 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 59 & 1 & 1 & 2 & 1 & 1 & 2 & 1 \\
\hline 61 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 72 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 78 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 81 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 85 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 108 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 134 & 1 & 1 & 1 & 2 & 1 & 1 & 1 \\
\hline 146 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline [total] & 46 & 47 & 130 & 46 & 46 & 58 & 50 \\
\hline \multicolumn{8}{|l|}{222E60} \\
\hline 2 & 2 & 3 & 86 & 2 & 2 & 14 & 6 \\
\hline [total] & 2 & 3 & 86 & 2 & 2 & 14 & 6 \\
\hline \multicolumn{8}{|l|}{222E61} \\
\hline 1 & 1 & 1 & 14 & 1 & 1 & 1 & 2 \\
\hline 2 & 1 & 2 & 54 & 1 & 2 & 3 & 1 \\
\hline 3 & 1 & 1 & 3 & 1 & 1 & 2 & 2 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline  &  &  \\
\hline \(\vdash \vdash \vdash)\) &  & \(\stackrel{\triangleright}{\infty} \downarrow\) ¢ \\
\hline  &  &  \\
\hline \(\mapsto N \omega \triangleright \triangleright N \triangleright N \triangleright \omega G \stackrel{\rightharpoonup}{\triangleright} \stackrel{\rightharpoonup}{\circ}\) &  & \[
\stackrel{\stackrel{\rightharpoonup}{\omega}}{\stackrel{\omega}{\sim}} \mapsto \vdash \vdash \vdash \vdash \vdash \vdash \vdash N \vdash \vdash \vdash \vdash N \vdash \vdash \vdash \vdash N
\] \\
\hline \(\vdash \vdash \vdash \vdash \vdash \vdash \vdash \vdash)\) &  & \(\stackrel{\perp}{\infty} N \longmapsto \vdash \vdash\) \\
\hline \(\vdash \vdash \vdash \vdash \vdash \vdash N \vdash \vdash \vdash \vdash \vdash \vdash \vdash\) &  &  \\
\hline \(N N \longmapsto N \longmapsto \vdash \vdash N N \longmapsto \vdash \vdash \vdash \vdash\) & \(\stackrel{\omega}{\mapsto} \downarrow \omega N N \triangleright N \vdash \vdash N \vdash \omega \vdash \omega \vdash \vdash \vdash N \vdash \vdash \omega \vdash\) &  \\
\hline \(\omega\) &  & \begin{tabular}{l}
G \\

\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline [total] & 44 & 45 & 128 & 44 & 44 & 56 & 48 \\
\hline \multicolumn{8}{|l|}{241A72} \\
\hline 1 & 1 & 1 & 40 & 1 & 1 & 1 & 1 \\
\hline 2 & 1 & 1 & 11 & 1 & 1 & 1 & 1 \\
\hline 3 & 1 & 1 & 7 & 1 & 1 & 1 & 1 \\
\hline 4 & 1 & 1 & 5 & 1 & 1 & 1 & 1 \\
\hline 5 & 1 & 1 & 6 & 1 & 1 & 1 & 1 \\
\hline 6 & 1 & 1 & 4 & 1 & 1 & 2 & 1 \\
\hline 7 & 1 & 1 & 5 & 1 & 1 & 1 & 1 \\
\hline 8 & 1 & 1 & 3 & 1 & 2 & 1 & 1 \\
\hline 9 & 1 & 1 & 3 & 1 & 1 & 2 & 1 \\
\hline 10 & 1 & 1 & 4 & 1 & 1 & 1 & 1 \\
\hline 11 & 1 & 1 & 3 & 1 & 1 & 2 & 1 \\
\hline 12 & 1 & 1 & 3 & 1 & 1 & 2 & 1 \\
\hline 13 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 14 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 15 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 16 & 1 & 2 & 1 & 1 & 1 & 2 & 1 \\
\hline 17 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 19 & 2 & 1 & 1 & 1 & 1 & 1 & 3 \\
\hline 21 & 1 & 1 & 1 & 1 & 1 & 2 & 2 \\
\hline 23 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 25 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 27 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 29 & 1 & 1 & 1 & 2 & 1 & 1 & 1 \\
\hline 32 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 33 & 1 & 2 & 1 & 1 & 1 & 1 & 1 \\
\hline 36 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 38 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 39 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline [total] & 29 & 30 & 113 & 29 & 29 & 41 & 33 \\
\hline \multicolumn{8}{|l|}{242E72} \\
\hline 1 & 1 & 1 & 61 & 1 & 1 & 1 & 1 \\
\hline 2 & 1 & 1 & 7 & 1 & 1 & 1 & 1 \\
\hline 3 & 1 & 1 & 6 & 1 & 1 & 1 & 1 \\
\hline 4 & 1 & 1 & 6 & 1 & 2 & 1 & 1 \\
\hline 5 & 1 & 1 & 4 & 1 & 1 & 3 & 2 \\
\hline 6 & 1 & 1 & 3 & 1 & 1 & 1 & 2 \\
\hline 7 & 1 & 1 & 1 & 1 & 1 & 4 & 1 \\
\hline 8 & 1 & 1 & 2 & 1 & 1 & 2 & 2 \\
\hline 9 & 1 & 2 & 1 & 1 & 1 & 2 & 1 \\
\hline 10 & 1 & 1 & 3 & 1 & 1 & 2 & 1 \\
\hline 11 & 1 & 2 & 1 & 1 & 1 & 1 & 1 \\
\hline 13 & 1 & 1 & 1 & 1 & 1 & 3 & 1 \\
\hline 16 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 17 & 2 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 18 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 21 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 24 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 25 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 32 & 1 & 1 & 1 & 2 & 1 & 1 & 1 \\
\hline 52 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline [total] & 21 & 22 & 105 & 21 & 21 & 33 & 25 \\
\hline \multicolumn{8}{|l|}{251A33} \\
\hline 1 & 1 & 1 & 61 & 1 & 1 & 1 & 1 \\
\hline 2 & 1 & 1 & 8 & 1 & 1 & 1 & 1 \\
\hline 3 & 1 & 1 & 5 & 1 & 1 & 2 & 1 \\
\hline 4 & 1 & 1 & 3 & 1 & 1 & 2 & 1 \\
\hline
\end{tabular}




\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline [total] & 8 & 9 & 92 & 8 & 8 & 20 & 12 \\
\hline \multicolumn{8}{|l|}{252G76} \\
\hline 1 & 2 & 3 & 86 & 2 & 2 & 14 & 6 \\
\hline [total] & 2 & 3 & 86 & 2 & 2 & 14 & 6 \\
\hline \multicolumn{8}{|l|}{252GX5} \\
\hline 1 & 1 & 1 & 46 & 1 & 1 & 1 & 1 \\
\hline 2 & 1 & 1 & 6 & 1 & 1 & 1 & 1 \\
\hline 3 & 1 & 1 & 4 & 1 & 1 & 1 & 1 \\
\hline 4 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 5 & 1 & 1 & 6 & 1 & 1 & 1 & 1 \\
\hline 6 & 1 & 1 & 4 & 1 & 1 & 1 & 1 \\
\hline 7 & 1 & 1 & 6 & 1 & 1 & 1 & 1 \\
\hline 8 & 1 & 1 & 4 & 1 & 1 & 1 & 1 \\
\hline 9 & 1 & 1 & 3 & 1 & 1 & 2 & 1 \\
\hline 10 & 1 & 1 & 3 & 1 & 1 & 2 & 1 \\
\hline 11 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 14 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 16 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 18 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 20 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 21 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 22 & 1 & 1 & 1 & 1 & 2 & 1 & 1 \\
\hline 23 & 1 & 1 & 2 & 1 & 1 & 2 & 1 \\
\hline 24 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 25 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 27 & 1 & 1 & 2 & 1 & 1 & 1 & 2 \\
\hline 31 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 32 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 33 & 1 & 1 & 2 & 1 & 1 & 2 & 2 \\
\hline 35 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 37 & 1 & 1 & 2 & 1 & 1 & 2 & 1 \\
\hline 39 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 41 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 44 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 45 & 1 & 2 & 1 & 1 & 1 & 1 & 1 \\
\hline 47 & 2 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 77 & 1 & 2 & 1 & 1 & 1 & 1 & 1 \\
\hline 99 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 113 & 1 & 1 & 1 & 2 & 1 & 1 & 1 \\
\hline [total] & 35 & 36 & 119 & 35 & 35 & 47 & 39 \\
\hline \multicolumn{8}{|l|}{261A77} \\
\hline 1 & 1 & 1 & 29 & 1 & 1 & 1 & 1 \\
\hline 2 & 1 & 1 & 10 & 1 & 1 & 1 & 1 \\
\hline 3 & 1 & 1 & 9 & 1 & 1 & 1 & 1 \\
\hline 4 & 1 & 1 & 4 & 1 & 1 & 1 & 1 \\
\hline 5 & 1 & 1 & 6 & 1 & 1 & 1 & 1 \\
\hline 6 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 7 & 1 & 1 & 4 & 1 & 1 & 1 & 1 \\
\hline 8 & 1 & 1 & 4 & 1 & 1 & 1 & 1 \\
\hline 9 & 1 & 1 & 4 & 1 & 1 & 1 & 1 \\
\hline 10 & 1 & 1 & 4 & 1 & 1 & 1 & 1 \\
\hline 11 & 1 & 1 & 2 & 1 & 1 & 2 & 1 \\
\hline 12 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 13 & 1 & 1 & 4 & 1 & 1 & 1 & 1 \\
\hline 14 & 1 & 1 & 2 & 1 & 1 & 3 & 1 \\
\hline 15 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 16 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 17 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline  &  &  &  &  \\
\hline \(\vdash \mathrm{N}\) & \(ज \vdash \vdash \vdash \mathrm{~N}\) & \(ज \vdash \vdash \vdash \mathrm{~N}\) &  & \begin{tabular}{l}
\(\omega\) \\

\end{tabular} \\
\hline \(\vdash \omega\) & のம• & の・ &  &  \\
\hline \[
\sim \stackrel{\infty}{\infty}
\] & \(\stackrel{\infty}{\bullet} \downarrow \sim \sim \stackrel{\infty}{\triangleright}\) & \(\stackrel{\infty}{\bullet} \sqcup \sim \omega \stackrel{\infty}{\omega}\) &  &  \\
\hline \(\vdash \mathrm{N}\) & \(ज \vdash \vdash \vdash N\) & \(\cdots \vdash \vdash \vdash N\) &  &  \\
\hline N & \(G \vdash \vdash \vdash N\) & \(ज \vdash \vdash \vdash \mathrm{~N}\) &  &  \\
\hline \[
\stackrel{\rightharpoonup}{\triangleright}
\] & \[
\stackrel{\oplus}{\cup} N \mapsto N \stackrel{\oplus}{N}
\] & \(\stackrel{\rightharpoonup}{\checkmark} \vdash \omega \omega \stackrel{\rightharpoonup}{\circ}\) &  & GNNNமNNமம㠯NமமமNமNNமமN \\
\hline G & மம・の & ○N•Nゅ &  &  \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 3 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline [total] & 4 & 5 & 88 & 4 & 4 & 16 & 8 \\
\hline \multicolumn{8}{|l|}{261A82} \\
\hline 1 & 1 & 3 & 82 & 2 & 1 & 11 & 3 \\
\hline 2 & 1 & 1 & 3 & 1 & 2 & 3 & 1 \\
\hline 3 & 2 & 1 & 2 & 1 & 1 & 1 & 3 \\
\hline 4 & 1 & 1 & 2 & 1 & 1 & 2 & 2 \\
\hline [total] & 5 & 6 & 89 & 5 & 5 & 17 & 9 \\
\hline \multicolumn{8}{|l|}{261A83} \\
\hline 1 & 2 & 3 & 82 & 2 & 1 & 9 & 6 \\
\hline 2 & 1 & 1 & 4 & 1 & 2 & 4 & 1 \\
\hline 4 & 1 & 1 & 2 & 1 & 1 & 2 & 1 \\
\hline 7 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline [total] & 5 & 6 & 89 & 5 & 5 & 17 & 9 \\
\hline \multicolumn{8}{|l|}{261A84} \\
\hline 1 & 2 & 3 & 86 & 2 & 2 & 14 & 5 \\
\hline 2 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline [total] & 3 & 4 & 87 & 3 & 3 & 15 & 7 \\
\hline \multicolumn{8}{|l|}{261A85} \\
\hline 1 & 2 & 3 & 85 & 2 & 2 & 13 & 6 \\
\hline 2 & 1 & 1 & 2 & 1 & 1 & 2 & 1 \\
\hline [total] & 3 & 4 & 87 & 3 & 3 & 15 & 7 \\
\hline \multicolumn{8}{|l|}{261A86} \\
\hline 1 & 2 & 3 & 86 & 2 & 2 & 13 & 6 \\
\hline 2 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline [total] & 3 & 4 & 87 & 3 & 3 & 15 & 7 \\
\hline \multicolumn{8}{|l|}{261A88} \\
\hline 1 & 2 & 2 & 85 & 1 & 2 & 9 & 6 \\
\hline 2 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 3 & 1 & 1 & 1 & 1 & 1 & 5 & 1 \\
\hline 4 & 1 & 2 & 1 & 1 & 1 & 1 & 1 \\
\hline 5 & 1 & 1 & 2 & 2 & 1 & 1 & 1 \\
\hline [total] & 6 & 7 & 90 & 6 & 6 & 18 & 0 \\
\hline \multicolumn{8}{|l|}{261AZ7} \\
\hline 1 & 2 & 2 & 86 & 2 & 2 & 11 & 6 \\
\hline 2 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 3 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 4 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 5 & 1 & 2 & 1 & 1 & 1 & 1 & 1 \\
\hline [total] & 6 & 7 & 90 & 6 & 6 & 18 & 0 \\
\hline \multicolumn{8}{|l|}{261AX4} \\
\hline 1 & 1 & 2 & 86 & 2 & 2 & 13 & 6 \\
\hline 2 & 2 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 4 & 1 & 2 & 1 & 1 & 1 & 2 & 1 \\
\hline [total] & 4 & 5 & 88 & 4 & 4 & 16 & 8 \\
\hline \multicolumn{8}{|l|}{281BB1} \\
\hline 1 & 1 & 1 & 9 & 1 & 1 & 1 & 1 \\
\hline 2 & 1 & 1 & 35 & 1 & 1 & 1 & 1 \\
\hline 3 & 1 & 1 & 6 & 1 & 1 & 1 & 1 \\
\hline 4 & 1 & 1 & 5 & 1 & 1 & 1 & 1 \\
\hline 5 & 1 & 1 & 5 & 1 & 1 & 1 & 1 \\
\hline 6 & 1 & 1 & 4 & 1 & 1 & 1 & 1 \\
\hline 7 & 1 & 1 & 4 & 1 & 1 & 1 & 1 \\
\hline 8 & 1 & 1 & 5 & 1 & 1 & 2 & 1 \\
\hline 9 & 1 & 1 & 6 & 1 & 1 & 2 & 1 \\
\hline 10 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 11 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 13 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 14 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 16 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 17 & 1 & 1 & 3 & 1 & 1 & 2 & 1 \\
\hline 18 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 19 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 21 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 22 & 1 & 1 & 3 & 1 & 2 & 1 & 1 \\
\hline 24 & 2 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 26 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 29 & 1 & 1 & 1 & 1 & 1 & 1 & 4 \\
\hline 31 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 32 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 34 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 41 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 46 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 47 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 49 & 1 & 2 & 1 & 1 & 1 & 1 & 1 \\
\hline 53 & 1 & 2 & 1 & 1 & 1 & 1 & 1 \\
\hline 55 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 60 & 1 & 1 & 1 & 2 & 1 & 1 & 1 \\
\hline 75 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 77 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 84 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline [total] & 36 & 37 & 120 & 36 & 36 & 48 & 40 \\
\hline \multicolumn{8}{|l|}{281BD9} \\
\hline 1 & 1 & 2 & 76 & 2 & 1 & 6 & 4 \\
\hline 2 & 1 & 1 & 3 & 1 & 1 & 3 & 1 \\
\hline 3 & 1 & 1 & 3 & 1 & 1 & 2 & 1 \\
\hline 4 & 1 & 1 & 2 & 1 & 1 & 2 & 2 \\
\hline 5 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 6 & 2 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 8 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 9 & 1 & 1 & 2 & 1 & 1 & 2 & 1 \\
\hline 11 & 1 & 1 & 1 & 1 & 2 & 1 & 1 \\
\hline 14 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 18 & 1 & 2 & 1 & 1 & 1 & 1 & 1 \\
\hline 22 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 24 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 37 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline [total] & 15 & 16 & 99 & 15 & 15 & 27 & 19 \\
\hline \multicolumn{8}{|l|}{281BE1} \\
\hline 1 & 1 & 1 & 67 & 2 & 2 & 4 & 3 \\
\hline 2 & 1 & 2 & 8 & 1 & 1 & 1 & 1 \\
\hline 3 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 4 & 1 & 1 & 5 & 1 & 1 & 2 & 1 \\
\hline 5 & 1 & 1 & 4 & 1 & 1 & 1 & 1 \\
\hline 6 & 1 & 1 & 1 & 1 & 1 & 3 & 1 \\
\hline 7 & 1 & 1 & 3 & 1 & 1 & 3 & 2 \\
\hline 8 & 1 & 2 & 1 & 1 & 1 & 2 & 1 \\
\hline 9 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 15 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 17 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 21 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 25 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 31 & 2 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 41 & 1 & 1 & 1 & 1 & 1 & 3 & 1 \\
\hline [total] & 16 & 17 & 100 & 16 & 16 & 28 & 20 \\
\hline 281BS 7 & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline  &  - \({ }^{\circ}\) \(\stackrel{\stackrel{\circ}{\stackrel{~}{\sqcup}}}{ }\) &  &  \\
\hline \[
\vdash
\] &  & \(\stackrel{\rightharpoonup}{\circ} \longmapsto \vdash \vdash \vdash \vdash \vdash \vdash N \vdash\) &  \\
\hline \(\vdash\) & \(\stackrel{N}{\omega} \longmapsto \vdash \omega \vdash \vdash \vdash \vdash \vdash \vdash \vdash \vdash\) & \(\stackrel{\rightharpoonup}{\vdash} \vdash \vdash \vdash \vdash \vdash N \vdash \vdash N\) &  \\
\hline \[
\stackrel{\infty}{\stackrel{\infty}{2}}
\] & \[
\stackrel{\rightharpoonup}{\circ} \stackrel{\rightharpoonup}{\sigma} \mapsto \vdash \vdash N \vdash \vdash \vdash \vdash \vdash N \vdash N N N \triangleright G N G \rightharpoonup 6 \stackrel{G}{\triangleright}
\] & \(\stackrel{\bullet}{\triangleright}\) &  \\
\hline N &  & \(\stackrel{\rightharpoonup}{\circ} \longmapsto \vdash \vdash \vdash \vdash N \vdash \vdash \vdash\) & N N \\
\hline \(\triangleright\) &  & \(\stackrel{\rightharpoonup}{\circ} \longmapsto \vdash \vdash \vdash \vdash N \vdash \vdash \vdash\) &  \\
\hline & \(\stackrel{\omega}{\bullet}\) Nமம㠯ம & NNL &  \\
\hline &  & \(\stackrel{\rightharpoonup}{\triangleright} \mapsto \vdash \vdash \vdash \vdash \vdash \vdash \omega \triangleright\) &  \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline 官宁占卢卢 &  &  \\
\hline \(\vdash \vdash ~\) &  & \(\stackrel{\rightharpoonup}{ } \stackrel{ }{ }\) \\
\hline \(\triangleright \vdash \vdash \vdash \vdash \vdash \vdash)\) &  & \(\cdots \vdash\) \\
\hline  & \(\stackrel{\stackrel{\rightharpoonup}{N}}{\omega} \longmapsto \vdash \vdash \vdash \vdash N \vdash \vdash \vdash \vdash \vdash \vdash \vdash \vdash N \vdash \omega \vdash \vdash \vdash N \omega N G N \triangleright の G \triangleright \omega N \omega \omega \stackrel{\rightharpoonup}{\circ} \triangleright \triangleright \stackrel{~}{\circ}\) N & \(\infty\)
\(\infty\)
\(\infty\) \\
\hline  &  & \(\stackrel{\rightharpoonup}{ } \stackrel{ }{ }\) \\
\hline \(\mapsto \vdash \vdash\) &  & \(\triangleright \vdash\) \\
\hline  &  & \[
\stackrel{\rightharpoonup}{\sigma} \vdash
\] \\
\hline \(\rightharpoonup \vdash \vdash \vdash \vdash \mapsto\) &  & \[
\infty \vdash
\] \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \[
\checkmark N \vdash
\] &  &  \\
\hline \(\triangleright \vdash \mathrm{N}\) &  &  \\
\hline N N &  &  \\
\hline \[
\vdash \vdash \stackrel{\infty}{\circ}
\] &  & \begin{tabular}{l}
\(\stackrel{\rightharpoonup}{\omega}\) \\

\end{tabular} \\
\hline \(N \triangleright \vdash\) &  &  \\
\hline \(\triangleright \mathrm{N}\) &  &  \\
\hline \[
\vdash \vdash \stackrel{\triangleright}{\triangleright}
\] &  & \(\stackrel{\otimes}{\omega} \mathrm{N} \sqcup \vdash \mathrm{N} \vdash \mathrm{N}\) \\
\hline NG &  &  \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline [total] & 4 & 5 & 88 & 4 & 4 & 16 & 8 \\
\hline \multicolumn{8}{|l|}{301BT2} \\
\hline 1 & 2 & 2 & 86 & 2 & 2 & 13 & 6 \\
\hline 2 & 1 & 2 & 1 & 1 & 1 & 2 & 1 \\
\hline [total] & 3 & 4 & 87 & 3 & 3 & 15 & 7 \\
\hline \multicolumn{8}{|l|}{311BA8} \\
\hline 1 & 1 & 2 & 63 & 2 & 1 & 5 & 3 \\
\hline 2 & 1 & 2 & 8 & 1 & 1 & 1 & 1 \\
\hline 3 & 2 & 1 & 7 & 1 & 1 & 3 & 1 \\
\hline 4 & 1 & 1 & 4 & 1 & 1 & 3 & 1 \\
\hline 5 & 1 & 1 & 4 & 1 & 1 & 4 & 1 \\
\hline 6 & 1 & 1 & 2 & 1 & 1 & 1 & 2 \\
\hline 7 & 1 & 1 & 2 & 1 & 1 & 2 & 1 \\
\hline 8 & 1 & 1 & 1 & 1 & 2 & 1 & 1 \\
\hline 9 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 10 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 12 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 17 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 26 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline [total] & 14 & 15 & 98 & 14 & 14 & 26 & 18 \\
\hline \multicolumn{8}{|l|}{311BB6} \\
\hline 1 & 2 & 1 & 66 & 1 & 1 & 2 & 2 \\
\hline 2 & 1 & 1 & 11 & 1 & 1 & 1 & 1 \\
\hline 3 & 1 & 2 & 5 & 1 & 1 & 5 & 2 \\
\hline 4 & 1 & 2 & 5 & 2 & 2 & 1 & 1 \\
\hline 5 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 6 & 1 & 1 & 2 & 1 & 1 & 2 & 2 \\
\hline 7 & 1 & 1 & 1 & 1 & 1 & 3 & 2 \\
\hline 8 & 1 & 1 & 1 & 1 & 1 & 3 & 2 \\
\hline 9 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 10 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 11 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline [total] & 12 & 13 & 96 & 12 & 12 & 24 & 16 \\
\hline \multicolumn{8}{|l|}{321BB7} \\
\hline 1 & 1 & 1 & 79 & 1 & 1 & 7 & 3 \\
\hline 2 & 1 & 3 & 6 & 1 & 1 & 3 & 1 \\
\hline 3 & 2 & 1 & 2 & 1 & 1 & 1 & 3 \\
\hline 4 & 1 & 1 & 1 & 1 & 2 & 3 & 2 \\
\hline 5 & 1 & 1 & 1 & 2 & 1 & 2 & 1 \\
\hline 8 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 9 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 13 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline [total] & 9 & 10 & 93 & 9 & 9 & 21 & 13 \\
\hline \multicolumn{8}{|l|}{321BB8} \\
\hline 1 & 1 & 1 & 54 & 1 & 1 & 1 & 1 \\
\hline 2 & 1 & 1 & 12 & 1 & 1 & 1 & 1 \\
\hline 3 & 1 & 1 & 4 & 1 & 1 & 1 & 1 \\
\hline 4 & 1 & 2 & 8 & 1 & 1 & 1 & 1 \\
\hline 5 & 1 & 1 & 4 & 1 & 1 & 2 & 1 \\
\hline 6 & 1 & 1 & 5 & 1 & 1 & 3 & 1 \\
\hline 7 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 8 & 1 & 1 & 3 & 1 & 1 & 4 & 1 \\
\hline 9 & 1 & 1 & 1 & 1 & 1 & 2 & 2 \\
\hline 10 & 1 & 1 & 3 & 1 & 1 & 2 & 2 \\
\hline 12 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 15 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 16 & 1 & 1 & 1 & 1 & 2 & 1 & 1 \\
\hline 17 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 18 & 1 & 1 & 1 & 2 & 1 & 1 & 1 \\
\hline 19 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 20 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 21 & 1 & 2 & 1 & 1 & 1 & 1 & 1 \\
\hline 23 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 24 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 25 & 2 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline [total] & 22 & 23 & 106 & 22 & 22 & 34 & 26 \\
\hline \multicolumn{8}{|l|}{\(331 \mathrm{BB9}\)} \\
\hline 1 & 2 & 3 & 85 & 2 & 2 & 11 & 4 \\
\hline 2 & 1 & 1 & 2 & 1 & 1 & 3 & 3 \\
\hline 3 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline [total] & 4 & 5 & 88 & 4 & 4 & 16 & 8 \\
\hline \multicolumn{8}{|l|}{331BY5} \\
\hline 1 & 2 & 3 & 84 & 2 & 2 & 14 & 6 \\
\hline 2 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline [total] & 3 & 4 & 87 & 3 & 3 & 15 & 7 \\
\hline \multicolumn{8}{|l|}{341BG3} \\
\hline 1 & 1 & 1 & 50 & 1 & 1 & 1 & 1 \\
\hline 2 & 1 & 2 & 10 & 1 & 1 & 1 & 1 \\
\hline 3 & 1 & 1 & 11 & 1 & 1 & 1 & 1 \\
\hline 4 & 1 & 1 & 8 & 1 & 1 & 1 & 2 \\
\hline 5 & 1 & 1 & 7 & 1 & 1 & 2 & 1 \\
\hline 6 & 1 & 1 & 4 & 1 & 1 & 2 & 1 \\
\hline 7 & 2 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 8 & 1 & 1 & 2 & 1 & 1 & 2 & 1 \\
\hline 9 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 10 & 1 & 1 & 1 & 1 & 2 & 3 & 1 \\
\hline 12 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 13 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 14 & 1 & 2 & 1 & 1 & 1 & 4 & 1 \\
\hline 16 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 17 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 18 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 19 & 1 & 1 & 1 & 2 & 1 & 1 & 2 \\
\hline 25 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 26 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline [total] & 20 & 21 & 104 & 20 & 20 & 32 & 24 \\
\hline \multicolumn{8}{|l|}{341BG4} \\
\hline 1 & 1 & 1 & 65 & 1 & 1 & 1 & 1 \\
\hline 2 & 1 & 2 & 12 & 1 & 1 & 1 & 1 \\
\hline 3 & 1 & 1 & 2 & 1 & 1 & 2 & 1 \\
\hline 4 & 1 & 1 & 2 & 1 & 1 & 2 & 1 \\
\hline 5 & 2 & 1 & 6 & 1 & 1 & 3 & 2 \\
\hline 6 & 1 & 1 & 1 & 1 & 1 & 3 & 1 \\
\hline 7 & 1 & 1 & 1 & 2 & 1 & 2 & 2 \\
\hline 8 & 1 & 1 & 1 & 1 & 1 & 3 & 1 \\
\hline 9 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 10 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 11 & 1 & 1 & 2 & 1 & 1 & 2 & 1 \\
\hline 13 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 14 & 1 & 2 & 1 & 1 & 1 & 1 & 1 \\
\hline 15 & 1 & 1 & 1 & 1 & 2 & 1 & 1 \\
\hline 16 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 19 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 20 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 22 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline [total] & 19 & 20 & 103 & 19 & 19 & 31 & 23 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{351BG8} \\
\hline 1 & 1 & 2 & 68 & 1 & 1 & 2 & 1 \\
\hline 2 & 1 & 1 & 6 & 1 & 1 & 3 & 1 \\
\hline 3 & 1 & 1 & 7 & 1 & 1 & 2 & 1 \\
\hline 4 & 1 & 1 & 4 & 1 & 1 & 3 & 2 \\
\hline 5 & 2 & 1 & 3 & 1 & 2 & 2 & 1 \\
\hline 6 & 1 & 1 & 3 & 2 & 1 & 3 & 1 \\
\hline 7 & 1 & 1 & 1 & 1 & 1 & 2 & 3 \\
\hline 8 & 1 & 2 & 1 & 1 & 1 & 2 & 2 \\
\hline 14 & 1 & 1 & 1 & 1 & 1 & 2 & 2 \\
\hline 19 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline [total] & 11 & 12 & 95 & 11 & 11 & 23 & 15 \\
\hline \multicolumn{8}{|l|}{351BG9} \\
\hline 1 & 1 & 1 & 73 & 1 & 1 & 2 & 1 \\
\hline 2 & 1 & 1 & 8 & 1 & 1 & 1 & 2 \\
\hline 3 & 1 & 1 & 5 & 1 & 1 & 3 & 1 \\
\hline 4 & 1 & 2 & 2 & 1 & 1 & 4 & 2 \\
\hline 5 & 2 & 1 & 2 & 1 & 1 & 2 & 2 \\
\hline 6 & 1 & 2 & 1 & 1 & 1 & 2 & 2 \\
\hline 7 & 1 & 1 & 1 & 1 & 1 & 4 & 1 \\
\hline 9 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 10 & 1 & 1 & 1 & 2 & 1 & 1 & 1 \\
\hline 11 & 1 & 1 & 1 & 1 & 2 & 1 & 2 \\
\hline 13 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline [total] & 12 & 13 & 96 & 12 & 12 & 24 & 16 \\
\hline \multicolumn{8}{|l|}{351BD1} \\
\hline 1 & 1 & 1 & 64 & 1 & 1 & 1 & 2 \\
\hline 2 & 2 & 1 & 10 & 1 & 1 & 7 & 1 \\
\hline 3 & 1 & 2 & 4 & 1 & 1 & 1 & 2 \\
\hline 4 & 1 & 1 & 7 & 1 & 1 & 1 & 3 \\
\hline 5 & 1 & 1 & 2 & 1 & 1 & 3 & 1 \\
\hline 6 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 7 & 1 & 1 & 2 & 2 & 1 & 3 & 1 \\
\hline 8 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 9 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 14 & 1 & 2 & 1 & 1 & 1 & 1 & 1 \\
\hline 17 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 18 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 25 & 1 & 1 & 1 & 1 & 2 & 1 & 1 \\
\hline 26 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline [total] & 15 & 16 & 99 & 15 & 15 & 27 & 19 \\
\hline \multicolumn{8}{|l|}{351BD2} \\
\hline 1 & 2 & 3 & 86 & 2 & 2 & 14 & 6 \\
\hline [total] & 2 & 3 & 86 & 2 & 2 & 14 & 6 \\
\hline \multicolumn{8}{|l|}{351BD3} \\
\hline 1 & 1 & 1 & 54 & 1 & 1 & 1 & 1 \\
\hline 2 & 1 & 1 & 14 & 1 & 1 & 1 & 1 \\
\hline 3 & 1 & 1 & 10 & 1 & 1 & 1 & 1 \\
\hline 4 & 1 & 1 & 5 & 1 & 1 & 1 & 1 \\
\hline 5 & 1 & 1 & 4 & 1 & 1 & 1 & 1 \\
\hline 6 & 2 & 1 & 3 & 1 & 1 & 2 & 1 \\
\hline 7 & 1 & 1 & 1 & 1 & 1 & 3 & 1 \\
\hline 8 & 1 & 1 & 2 & 1 & 1 & 3 & 1 \\
\hline 9 & 1 & 2 & 1 & 1 & 1 & 3 & 2 \\
\hline 11 & 1 & 2 & 1 & 1 & 2 & 4 & 3 \\
\hline 12 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 17 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 21 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 23 & 1 & 1 & 1 & 2 & 1 & 1 & 1 \\
\hline 26 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 29 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline [total] & 17 & 18 & 101 & 17 & 17 & 29 & 21 \\
\hline \multicolumn{8}{|l|}{351BD5} \\
\hline 1 & 1 & 2 & 47 & 1 & 1 & 1 & 1 \\
\hline 2 & 1 & 1 & 14 & 1 & 1 & 1 & 1 \\
\hline 3 & 1 & 1 & 6 & 1 & 1 & 1 & 1 \\
\hline 4 & 1 & 1 & 8 & 1 & 1 & 1 & 2 \\
\hline 5 & 1 & 1 & 6 & 1 & 1 & 2 & 1 \\
\hline 6 & 1 & 1 & 4 & 1 & 1 & 2 & 1 \\
\hline 7 & 1 & 1 & 4 & 1 & 1 & 2 & 3 \\
\hline 11 & 1 & 1 & 3 & 1 & 2 & 2 & 1 \\
\hline 13 & 1 & 2 & 1 & 1 & 1 & 3 & 1 \\
\hline 15 & 1 & 1 & 1 & 1 & 1 & 2 & 2 \\
\hline 16 & 1 & 1 & 1 & 1 & 1 & 4 & 1 \\
\hline 17 & 1 & 1 & 1 & 2 & 1 & 1 & 1 \\
\hline 18 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 19 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 23 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 26 & 2 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 30 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline [total] & 18 & 19 & 102 & 18 & 18 & 30 & 22 \\
\hline \multicolumn{8}{|l|}{361BBL} \\
\hline 1 & 1 & 1 & 64 & 1 & 2 & 2 & 2 \\
\hline 2 & 1 & 1 & 8 & 1 & 1 & 3 & 2 \\
\hline 3 & 1 & 1 & 6 & 1 & 1 & 3 & 1 \\
\hline 4 & 2 & 1 & 5 & 1 & 1 & 4 & 1 \\
\hline 5 & 1 & 1 & 4 & 1 & 1 & 3 & 1 \\
\hline 6 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 7 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 8 & 1 & 1 & 1 & 1 & 1 & 2 & 2 \\
\hline 9 & 1 & 3 & 1 & 1 & 1 & 1 & 1 \\
\hline 10 & 1 & 1 & 1 & 1 & 1 & 2 & 2 \\
\hline 12 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 14 & 1 & 1 & 1 & 2 & 1 & 1 & 1 \\
\hline 17 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline [total] & 14 & 15 & 98 & 14 & 14 & 26 & 18 \\
\hline \multicolumn{8}{|l|}{361BG2} \\
\hline 1 & 2 & 1 & 76 & 1 & 2 & 7 & 2 \\
\hline 2 & 1 & 3 & 4 & 1 & 1 & 5 & 3 \\
\hline 3 & 1 & 1 & 5 & 1 & 1 & 3 & 1 \\
\hline 4 & 1 & 1 & 1 & 1 & 1 & 2 & 3 \\
\hline 5 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 6 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 7 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 10 & 1 & 1 & 1 & 2 & 1 & 1 & 1 \\
\hline [total] & 9 & 10 & 93 & 9 & 9 & 21 & 13 \\
\hline \multicolumn{8}{|l|}{361BG5} \\
\hline 1 & 1 & 1 & 39 & 1 & 1 & 1 & 1 \\
\hline 2 & 1 & 1 & 14 & 1 & 1 & 1 & 1 \\
\hline 3 & 1 & 1 & 11 & 1 & 1 & 1 & 1 \\
\hline 4 & 1 & 1 & 7 & 1 & 1 & 1 & 1 \\
\hline 5 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 6 & 1 & 1 & 10 & 1 & 1 & 1 & 1 \\
\hline 7 & 1 & 1 & 4 & 1 & 1 & 1 & 1 \\
\hline 9 & 1 & 1 & 4 & 1 & 1 & 1 & 2 \\
\hline 11 & 2 & 2 & 1 & 1 & 1 & 1 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 12 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 13 & 1 & 1 & 2 & 1 & 1 & 3 & 1 \\
\hline 14 & 1 & 1 & 1 & 1 & 1 & 3 & 1 \\
\hline 15 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 16 & 1 & 1 & 1 & 1 & 2 & 1 & 2 \\
\hline 17 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 18 & 1 & 2 & 1 & 1 & 1 & 3 & 2 \\
\hline 19 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 22 & 1 & 1 & 1 & 2 & 1 & 1 & 1 \\
\hline 23 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 25 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 33 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 43 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 49 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline [total] & 24 & 25 & 108 & 24 & 24 & 36 & 28 \\
\hline \multicolumn{8}{|l|}{361BG6} \\
\hline 1 & 2 & 3 & 86 & 2 & 2 & 14 & 6 \\
\hline [total] & 2 & 3 & 86 & 2 & 2 & 14 & 6 \\
\hline \multicolumn{8}{|l|}{361BG7} \\
\hline 1 & 1 & 1 & 10 & 1 & 1 & 1 & 1 \\
\hline 2 & 1 & 1 & 8 & 1 & 1 & 1 & 1 \\
\hline 3 & 1 & 1 & 37 & 1 & 1 & 1 & 1 \\
\hline 4 & 1 & 1 & 6 & 1 & 1 & 1 & 1 \\
\hline 5 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 6 & 1 & 1 & 4 & 1 & 1 & 1 & 1 \\
\hline 7 & 1 & 1 & 5 & 1 & 1 & 1 & 1 \\
\hline 8 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 9 & 1 & 1 & 4 & 1 & 1 & 1 & 1 \\
\hline 10 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 11 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 12 & 1 & 1 & 5 & 1 & 1 & 1 & 1 \\
\hline 13 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 14 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 16 & 1 & 1 & 3 & 1 & 1 & 2 & 1 \\
\hline 17 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 20 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 21 & 1 & 2 & 1 & 1 & 1 & 2 & 1 \\
\hline 25 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 27 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 29 & 1 & 1 & 1 & 1 & 1 & 1 & 3 \\
\hline 30 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 31 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 32 & 1 & 1 & 1 & 1 & 1 & 3 & 1 \\
\hline 33 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 34 & 2 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 36 & 1 & 1 & 1 & 1 & 2 & 1 & 1 \\
\hline 37 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 39 & 1 & 1 & 1 & 1 & 1 & 3 & 2 \\
\hline 42 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 56 & 1 & 2 & 1 & 1 & 1 & 1 & 1 \\
\hline 61 & 1 & 1 & 1 & 1 & 1 & 3 & 1 \\
\hline 66 & 1 & 1 & 1 & 2 & 1 & 1 & 1 \\
\hline 75 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 77 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline [total] & 36 & 37 & 120 & 36 & 36 & 48 & 40 \\
\hline \multicolumn{8}{|l|}{361BD4} \\
\hline 1 & 1 & 2 & 83 & 2 & 2 & 10 & 5 \\
\hline 2 & 1 & 1 & 3 & 1 & 1 & 3 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline  &  &  &  &  &  \\
\hline \(\mapsto \vdash \vdash \vdash \vdash \vdash \vdash N \vdash \vdash \vdash \vdash \vdash \vdash \vdash\) & \(\omega \vdash N\) & \(\stackrel{\rightharpoonup}{\sqsupset} \mapsto \vdash N \vdash \vdash \vdash\) & のமャமNம & \(\infty \vdash \vdash \vdash \vdash \vdash N \vdash\) & のN• \\
\hline \(\mapsto \vdash \mapsto \vdash \vdash \vdash \vdash \vdash \vdash N N \mapsto \vdash \vdash\) & \(\triangleright \sqcup \omega\) &  & \(\checkmark \vdash \vdash \vdash \vdash \omega\) & \(\bullet \vdash \vdash N \vdash N \vdash \vdash\) & \(\checkmark \vdash N \vdash\) \\
\hline  & \(\stackrel{\infty}{\cup} \omega \stackrel{\infty}{\triangleright}\) & \[
\stackrel{\rightharpoonup}{\ominus} \mapsto \vdash \vdash \vdash \vdash \vdash \vdash \vdash \vdash \omega N \triangleright \omega \stackrel{\rightharpoonup}{\circ} \downarrow \stackrel{\circ}{\omega}
\] & \[
\stackrel{\bullet}{0} \mapsto N \vdash \omega \stackrel{\infty}{\omega}
\] & \(\stackrel{\ominus}{N} \mapsto \vdash N \mapsto \omega \sigma \stackrel{N}{\sim}\) & \[
\stackrel{\ominus}{\circ} \triangleright \vdash \mathrm{N}
\] \\
\hline \(\mapsto \vdash \vdash \vdash \vdash \vdash \vdash N \vdash \vdash \vdash \vdash \vdash \vdash \vdash\) & \(\omega \vdash \mathrm{N}\) &  & のமNம尸ம & \(\infty \vdash \vdash \vdash \vdash \mathrm{N}\) & の・ \\
\hline  & \(\omega \vdash N\) &  & のமமம尸N & \(\infty \vdash \vdash \vdash \vdash \vdash \vdash N\) & の・ \\
\hline \(N N \triangleright N \triangleright \omega N \vdash \vdash N \vdash \omega \vdash N \omega\) & \(\stackrel{\rightharpoonup}{\bullet} \stackrel{\rightharpoonup}{\triangleright}\) & N & \(\stackrel{\square}{\infty}\) NNN」G & ONNமN & \(\stackrel{\rightharpoonup}{\infty} \mathrm{N} \longmapsto \mathrm{N}\) \\
\hline \(\vdash N \vdash N \vdash \vdash \vdash \vdash N \vdash \vdash \vdash N N\) & \[
\downarrow \vdash の
\] &  & \(\stackrel{\rightharpoonup}{\circ} N \triangleright \mapsto N ゅ\) & \(\stackrel{\rightharpoonup}{N} \longmapsto N \leftharpoondown N \vdash \vdash \triangleright\) & \[
\stackrel{\rightharpoonup}{\circ} \mapsto \vdash N
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 33 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline [total] & 17 & 18 & 101 & 17 & 17 & 29 & 21 \\
\hline \multicolumn{8}{|l|}{371AE2} \\
\hline 1 & 1 & 1 & 50 & 1 & 1 & 3 & 1 \\
\hline 2 & 1 & 1 & 7 & 1 & 1 & 1 & 1 \\
\hline 3 & 1 & 1 & 4 & 1 & 1 & 2 & 1 \\
\hline 4 & 1 & 1 & 6 & 1 & 1 & 1 & 1 \\
\hline 5 & 1 & 1 & 3 & 1 & 1 & 2 & 1 \\
\hline 6 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 7 & 1 & 1 & 2 & 1 & 1 & 1 & 2 \\
\hline 8 & 1 & 2 & 1 & 1 & 1 & 1 & 1 \\
\hline 9 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 10 & 1 & 1 & 4 & 1 & 1 & 2 & 1 \\
\hline 11 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 12 & 1 & 2 & 1 & 1 & 1 & 1 & 1 \\
\hline 13 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 14 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 15 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 19 & 1 & 1 & 3 & 1 & 1 & 2 & 1 \\
\hline 21 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 24 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 25 & 1 & 1 & 2 & 1 & 2 & 1 & 1 \\
\hline 32 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 36 & 2 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 38 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 40 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 44 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 46 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 51 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 54 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 61 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 70 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 71 & 1 & 1 & 1 & 2 & 1 & 1 & 1 \\
\hline 76 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 104 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline [total] & 33 & 34 & 117 & 33 & 33 & 45 & 37 \\
\hline \multicolumn{8}{|l|}{371BE3} \\
\hline 1 & 2 & 1 & 76 & 1 & 1 & 6 & 2 \\
\hline 2 & 1 & 2 & 4 & 1 & 1 & 5 & 1 \\
\hline 3 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 4 & 1 & 2 & 1 & 1 & 1 & 3 & 1 \\
\hline 5 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 6 & 1 & 1 & 1 & 1 & 2 & 1 & 1 \\
\hline 7 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 8 & 1 & 1 & 2 & 1 & 1 & 1 & 2 \\
\hline 9 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 12 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 14 & 1 & 1 & 1 & 2 & 1 & 1 & 1 \\
\hline 18 & 1 & 1 & 2 & 1 & 1 & 2 & 1 \\
\hline 19 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 24 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline [total] & 15 & 16 & 99 & 15 & 15 & 27 & 19 \\
\hline \multicolumn{8}{|l|}{381BE4} \\
\hline 1 & 1 & 1 & 5 & 1 & 1 & 1 & 1 \\
\hline 2 & 1 & 1 & 43 & 1 & 1 & 1 & 1 \\
\hline 3 & 1 & 1 & 8 & 1 & 1 & 1 & 1 \\
\hline 4 & 1 & 1 & 5 & 1 & 1 & 1 & 1 \\
\hline 5 & 1 & 1 & 4 & 1 & 1 & 1 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline  & \(\qquad\) \\
\hline \(\triangleright \vdash \vdash \vdash \vdash \vdash \vdash \vdash \vdash \vdash)\) &  \\
\hline  & \begin{tabular}{l}
\(\omega\) \\

\end{tabular} \\
\hline \(\triangleright N\) NャN & \(\stackrel{\stackrel{\rightharpoonup}{\bullet}}{\stackrel{\rightharpoonup}{\bullet}} ⺊ 尸 \vdash \vdash \vdash \vdash N \vdash \vdash \vdash \vdash N \vdash N \vdash N \vdash N \vdash N \triangleright \omega \vdash N の \omega \omega N \triangleright\) \\
\hline  &  \\
\hline  &  \\
\hline \(\vdash \vdash \vdash N \vdash \vdash \omega \vdash \vdash \vdash N \vdash ~\) &  \\
\hline  &  \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 37 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 42 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 44 & 1 & 1 & 2 & 1 & 1 & 1 & 2 \\
\hline 45 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 47 & 1 & 1 & 2 & 1 & 1 & 3 & 1 \\
\hline 51 & 2 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 53 & 1 & 1 & 1 & 1 & 1 & 2 & 2 \\
\hline 61 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 69 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 78 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 82 & 1 & 2 & 1 & 1 & 1 & 1 & 1 \\
\hline 84 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 87 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 105 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 146 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline [total] & 43 & 44 & 127 & 43 & 43 & 55 & 47 \\
\hline \multicolumn{8}{|l|}{381BE6} \\
\hline 1 & 1 & 1 & 8 & 1 & 1 & 1 & 1 \\
\hline 2 & 1 & 1 & 31 & 1 & 1 & 1 & 1 \\
\hline 3 & 1 & 1 & 5 & 1 & 1 & 1 & 1 \\
\hline 4 & 1 & 1 & 4 & 1 & 1 & 1 & 1 \\
\hline 5 & 1 & 1 & 9 & 1 & 1 & 1 & 1 \\
\hline 6 & 1 & 1 & 6 & 1 & 1 & 1 & 1 \\
\hline 7 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 8 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 9 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 10 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 12 & 1 & 1 & 4 & 1 & 1 & 1 & 1 \\
\hline 14 & 1 & 1 & 4 & 1 & 1 & 1 & 1 \\
\hline 15 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 17 & 1 & 1 & 4 & 1 & 1 & 1 & 1 \\
\hline 18 & 1 & 1 & 5 & 1 & 1 & 1 & 1 \\
\hline 20 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 21 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 23 & 1 & 1 & 1 & 1 & 1 & 3 & 1 \\
\hline 24 & 1 & 1 & 1 & 1 & 2 & 1 & 1 \\
\hline 25 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 26 & 1 & 2 & 3 & 1 & 1 & 1 & 1 \\
\hline 28 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 29 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 32 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 34 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 35 & 1 & 1 & 2 & 1 & 1 & 1 & 2 \\
\hline 39 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 41 & 1 & 1 & 1 & 1 & 1 & 3 & 1 \\
\hline 42 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 44 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 45 & 2 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 48 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 54 & 1 & 1 & 1 & 1 & 1 & 2 & 2 \\
\hline 56 & 1 & 1 & 1 & 2 & 1 & 1 & 1 \\
\hline 59 & 1 & 1 & 2 & 1 & 1 & 2 & 1 \\
\hline 62 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 63 & 1 & 2 & 1 & 1 & 1 & 1 & 1 \\
\hline 86 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 121 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline [total] & 40 & 41 & 124 & 40 & 40 & 52 & 44 \\
\hline 381BE7 & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline  &  &  \\
\hline \(\triangleright \vdash \vdash\) &  &  \\
\hline \(\vdash \vdash \vdash\) & \(\stackrel{\rightharpoonup}{G} \triangleright \vdash \vdash \vdash \vdash \vdash \vdash \vdash \omega \vdash \vdash \vdash \vdash\) &  \\
\hline \[
\stackrel{\rightharpoonup}{\circ} \stackrel{\square}{\curvearrowleft}
\] & ¢ ¢ \(¢\) ¢ &  \\
\hline \(\rightharpoonup \vdash \vdash\) & \(\stackrel{\rightharpoonup}{\triangleright} \triangleright N \mapsto \vdash \vdash \vdash \vdash \vdash \vdash \vdash \vdash \vdash \vdash\) &  \\
\hline \(\triangleright \vdash \vdash\) & \(\stackrel{\rightharpoonup}{\triangleright} \vdash \vdash \vdash \vdash \vdash \vdash \vdash \vdash \vdash N \vdash\) &  \\
\hline NNN &  &  \\
\hline \(\omega \downarrow\) &  &  \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 4 & 1 & 1 & 5 & 1 & 1 & 1 & 2 \\
\hline 5 & 2 & 1 & 4 & 1 & 1 & 3 & 1 \\
\hline 6 & 1 & 2 & 2 & 1 & 1 & 4 & 1 \\
\hline 7 & 1 & 1 & 3 & 2 & 1 & 3 & 1 \\
\hline 9 & 1 & 2 & 2 & 1 & 1 & 2 & 1 \\
\hline 10 & 1 & 1 & 1 & 1 & 2 & 2 & 1 \\
\hline 11 & 1 & 1 & 1 & 1 & 1 & 2 & 2 \\
\hline [total] & 11 & 12 & 95 & 11 & 11 & 23 & 15 \\
\hline \multicolumn{8}{|l|}{401BZ1} \\
\hline 1 & 1 & 1 & 71 & 1 & 2 & 5 & 1 \\
\hline 2 & 2 & 1 & 10 & 1 & 1 & 4 & 3 \\
\hline 3 & 1 & 2 & 4 & 1 & 1 & 1 & 2 \\
\hline 4 & 1 & 2 & 2 & 1 & 1 & 2 & 2 \\
\hline 5 & 1 & 1 & 2 & 2 & 1 & 1 & 1 \\
\hline 6 & 1 & 1 & 2 & 1 & 1 & 3 & 2 \\
\hline 7 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 9 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 11 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline [total] & 10 & 11 & 94 & 10 & 10 & 22 & 14 \\
\hline \multicolumn{8}{|l|}{411A14} \\
\hline 1 & 2 & 3 & 86 & 2 & 2 & 13 & 6 \\
\hline 2 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline [total] & 3 & 4 & 87 & 3 & 3 & 15 & 7 \\
\hline \multicolumn{8}{|l|}{411AZ2} \\
\hline 1 & 1 & 3 & 78 & 1 & 1 & 6 & 3 \\
\hline 2 & 1 & 1 & 3 & 1 & 1 & 2 & 2 \\
\hline 3 & 2 & 1 & 4 & 1 & 1 & 2 & 2 \\
\hline 4 & 1 & 1 & 3 & 2 & 1 & 1 & 1 \\
\hline 5 & 1 & 1 & 1 & 1 & 2 & 2 & 2 \\
\hline 7 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 8 & 1 & 1 & 2 & 1 & 1 & 2 & 1 \\
\hline 12 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 32 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 51 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline [total] & 11 & 12 & 95 & 11 & 11 & 23 & 15 \\
\hline \multicolumn{8}{|l|}{423ZH1} \\
\hline 1 & 2 & 3 & 86 & 2 & 2 & 14 & 6 \\
\hline [total] & 2 & 3 & 86 & 2 & 2 & 14 & 6 \\
\hline \multicolumn{8}{|l|}{4237H2} \\
\hline 1 & 2 & 3 & 86 & 1 & 2 & 12 & 4 \\
\hline 2 & 1 & 1 & 1 & 1 & 1 & 1 & 3 \\
\hline 3 & 1 & 1 & 1 & 2 & 1 & 3 & 1 \\
\hline [total] & 4 & 5 & 88 & 4 & 4 & 16 & 8 \\
\hline \multicolumn{8}{|l|}{433 ZBM} \\
\hline 1 & 2 & 3 & 79 & 1 & 1 & 8 & 4 \\
\hline 2 & 1 & 1 & 5 & 1 & 2 & 3 & 2 \\
\hline 3 & 1 & 1 & 4 & 2 & 1 & 3 & 2 \\
\hline 5 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 6 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline [total] & 6 & 7 & 90 & 6 & 6 & 18 & 10 \\
\hline \multicolumn{8}{|l|}{433zH1} \\
\hline 1 & 1 & 2 & 79 & 2 & 1 & 7 & 3 \\
\hline 2 & 1 & 1 & 4 & 1 & 2 & 4 & 2 \\
\hline 3 & 2 & 2 & 4 & 1 & 1 & 4 & 2 \\
\hline 4 & 1 & 1 & 1 & 1 & 1 & 2 & 2 \\
\hline 5 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline [total] & 6 & 7 & 90 & 6 & 6 & 18 & 10 \\
\hline 433ZH2 & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 1 & 1 & 1 & 78 & 1 & 2 & 3 & 1 \\
\hline 2 & 1 & 3 & 8 & 1 & 1 & 1 & 1 \\
\hline 3 & 2 & 1 & 2 & 1 & 1 & 5 & 3 \\
\hline 4 & 1 & 1 & 1 & 1 & 1 & 5 & 1 \\
\hline 5 & 1 & 1 & 1 & 2 & 1 & 2 & 2 \\
\hline 6 & 1 & 1 & 1 & 1 & 1 & 2 & 2 \\
\hline 7 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 11 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline [total] & 9 & 10 & 93 & 9 & 9 & 21 & 13 \\
\hline \multicolumn{8}{|l|}{4332H3} \\
\hline 1 & 2 & 2 & 85 & 2 & 2 & 14 & 5 \\
\hline 2 & 1 & 2 & 2 & 1 & 1 & 1 & 2 \\
\hline [total] & 3 & 4 & 87 & 3 & 3 & 15 & 7 \\
\hline \multicolumn{8}{|l|}{433ZH5} \\
\hline 1 & 2 & 3 & 86 & 2 & 2 & 13 & 5 \\
\hline 2 & 1 & 1 & 1 & 1 & 1 & 2 & 2 \\
\hline [total] & 3 & 4 & 87 & 3 & 3 & 15 & 7 \\
\hline \multicolumn{8}{|l|}{\(463 \mathrm{HH1}\)} \\
\hline 1 & 2 & 3 & 85 & 2 & 2 & 12 & 3 \\
\hline 2 & 1 & 1 & 2 & 1 & 1 & 2 & 3 \\
\hline 3 & 1 & 1 & 1 & 1 & 1 & 2 & 2 \\
\hline [total] & 4 & 5 & 88 & 4 & 4 & 16 & 8 \\
\hline \multicolumn{8}{|l|}{463HH2} \\
\hline 1 & 2 & 3 & 86 & 2 & 2 & 13 & 6 \\
\hline 2 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline [total] & 3 & 4 & 87 & 3 & 3 & 15 & 7 \\
\hline \multicolumn{8}{|l|}{463HH3} \\
\hline 1 & 1 & 1 & 74 & 1 & 1 & 5 & 1 \\
\hline 2 & 1 & 1 & 7 & 1 & 1 & 2 & 1 \\
\hline 3 & 1 & 1 & 4 & 1 & 1 & 2 & 2 \\
\hline 4 & 1 & 1 & 1 & 1 & 1 & 2 & 3 \\
\hline 5 & 1 & 1 & 4 & 1 & 1 & 3 & 2 \\
\hline 6 & 1 & 2 & 1 & 1 & 1 & 3 & 1 \\
\hline 7 & 1 & 2 & 1 & 2 & 1 & 1 & 1 \\
\hline 8 & 1 & 1 & 1 & 1 & 2 & 3 & 2 \\
\hline 11 & 2 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline [total] & 10 & 11 & 94 & 10 & 10 & 22 & 14 \\
\hline \multicolumn{8}{|l|}{463HH4} \\
\hline 1 & 2 & 3 & 86 & 2 & 2 & 14 & 6 \\
\hline [total] & 2 & 3 & 86 & 2 & 2 & 14 & 6 \\
\hline \multicolumn{8}{|l|}{\(463 \mathrm{HH5}\)} \\
\hline 1 & 2 & 3 & 81 & 2 & 2 & 9 & 5 \\
\hline 2 & 1 & 1 & 3 & 1 & 1 & 3 & 1 \\
\hline 3 & 1 & 1 & 3 & 1 & 1 & 3 & 1 \\
\hline 4 & 1 & 1 & 2 & 1 & 1 & 1 & 2 \\
\hline 5 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline [total] & 6 & 7 & 90 & 6 & 6 & 18 & 10 \\
\hline \multicolumn{8}{|l|}{473UH1} \\
\hline 1 & 1 & 1 & 81 & 1 & 2 & 7 & 1 \\
\hline 2 & 2 & 1 & 6 & 1 & 1 & 4 & 2 \\
\hline 3 & 1 & 2 & 1 & 1 & 1 & 2 & 2 \\
\hline 4 & 1 & 2 & 1 & 1 & 1 & 2 & 3 \\
\hline 5 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 7 & 1 & 1 & 1 & 2 & 1 & 1 & 1 \\
\hline 8 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 9 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline [total] & 9 & 10 & 93 & 9 & 9 & 21 & 13 \\
\hline 473UH2 & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 1 & 2 & 2 & 83 & 1 & 1 & 4 & 2 \\
\hline 2 & 1 & 1 & 4 & 1 & 2 & 4 & 3 \\
\hline 3 & 1 & 2 & 1 & 1 & 1 & 4 & 2 \\
\hline 4 & 1 & 1 & 1 & 1 & 1 & 4 & 1 \\
\hline 5 & 1 & 1 & 1 & 2 & 1 & 2 & 2 \\
\hline [total] & 6 & 7 & 90 & 6 & 6 & 18 & 10 \\
\hline \multicolumn{8}{|l|}{473UH3} \\
\hline 1 & 2 & 3 & 84 & 1 & 2 & 14 & 5 \\
\hline 2 & 1 & 1 & 3 & 2 & 1 & 1 & 2 \\
\hline [total] & 3 & 4 & 87 & 3 & 3 & 15 & 7 \\
\hline \multicolumn{8}{|l|}{473UH4} \\
\hline 1 & 2 & 3 & 86 & 2 & 2 & 14 & 6 \\
\hline [total] & 2 & 3 & 86 & 2 & 2 & 14 & 6 \\
\hline \multicolumn{8}{|l|}{4831H6} \\
\hline 1 & 1 & 1 & 76 & 1 & 2 & 3 & 2 \\
\hline 2 & 1 & 1 & 3 & 1 & 1 & 3 & 2 \\
\hline 3 & 1 & 3 & 6 & 1 & 1 & 3 & 1 \\
\hline 4 & 1 & 1 & 3 & 1 & 1 & 2 & 1 \\
\hline 5 & 1 & 1 & 2 & 2 & 1 & 1 & 1 \\
\hline 6 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 9 & 1 & 1 & 1 & 1 & 1 & 3 & 2 \\
\hline 10 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 11 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 12 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 14 & 2 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 17 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline [total] & 13 & 14 & 97 & 13 & 13 & 25 & 17 \\
\hline \multicolumn{8}{|l|}{483IH7} \\
\hline 1 & 1 & 2 & 78 & 1 & 1 & 7 & 2 \\
\hline 2 & 1 & 1 & 7 & 1 & 1 & 2 & 3 \\
\hline 3 & 1 & 1 & 3 & 1 & 1 & 5 & 1 \\
\hline 4 & 1 & 2 & 1 & 2 & 2 & 1 & 3 \\
\hline 5 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 6 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 7 & 2 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline [total] & 8 & 9 & 92 & 8 & 8 & 20 & 12 \\
\hline \multicolumn{8}{|l|}{483IH8} \\
\hline 1 & 2 & 3 & 83 & 1 & 2 & 10 & 4 \\
\hline 2 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 3 & 1 & 1 & 2 & 2 & 1 & 1 & 1 \\
\hline 4 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 5 & 1 & 1 & 3 & 1 & 1 & 2 & 2 \\
\hline 6 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 7 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline [total] & 8 & 9 & 92 & 8 & 8 & 20 & 12 \\
\hline \multicolumn{8}{|l|}{483IH9} \\
\hline 1 & 1 & 2 & 76 & 1 & 1 & 2 & 1 \\
\hline 2 & 1 & 1 & 8 & 1 & 1 & 3 & 2 \\
\hline 3 & 1 & 1 & 3 & 1 & 2 & 3 & 1 \\
\hline 4 & 1 & 1 & 2 & 1 & 1 & 4 & 1 \\
\hline 5 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 6 & 2 & 2 & 1 & 1 & 1 & 3 & 3 \\
\hline 7 & 1 & 1 & 1 & 2 & 1 & 1 & 2 \\
\hline 8 & 1 & 1 & 1 & 1 & 1 & 2 & 2 \\
\hline 11 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline [total] & 10 & 11 & 94 & 10 & 10 & 22 & 14 \\
\hline \multicolumn{8}{|l|}{493KU1} \\
\hline 1 & 2 & 1 & 83 & 1 & 2 & 9 & 4 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 2 & 1 & 3 & 4 & 1 & 1 & 4 & 2 \\
\hline 3 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 4 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 5 & 1 & 1 & 1 & 2 & 1 & 1 & 2 \\
\hline [total] & 6 & 7 & 90 & 6 & 6 & 18 & 10 \\
\hline \multicolumn{8}{|l|}{493KU2} \\
\hline 1 & 1 & 3 & 86 & 2 & 2 & 13 & 6 \\
\hline 2 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 4 & 2 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline [total] & 4 & 5 & 88 & 4 & 4 & 16 & 8 \\
\hline \multicolumn{8}{|l|}{503KU4} \\
\hline 1 & 1 & 1 & 45 & 1 & 1 & 1 & 1 \\
\hline 2 & 1 & 1 & 10 & 1 & 1 & 1 & 2 \\
\hline 3 & 1 & 2 & 10 & 1 & 1 & 2 & 1 \\
\hline 4 & 1 & 1 & 7 & 1 & 1 & 1 & 1 \\
\hline 5 & 1 & 1 & 3 & 1 & 1 & 3 & 1 \\
\hline 6 & 1 & 1 & 5 & 1 & 2 & 2 & 2 \\
\hline 7 & 1 & 1 & 5 & 1 & 1 & 1 & 1 \\
\hline 8 & 1 & 1 & 3 & 1 & 1 & 3 & 1 \\
\hline 9 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 10 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 12 & 2 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 13 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 14 & 1 & 1 & 2 & 1 & 1 & 4 & 1 \\
\hline 15 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 16 & 1 & 2 & 1 & 1 & 1 & 2 & 1 \\
\hline 22 & 1 & 1 & 1 & 1 & 1 & 3 & 2 \\
\hline 27 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 46 & 1 & 1 & 1 & 2 & 1 & 1 & 1 \\
\hline [total] & 19 & 20 & 103 & 19 & 19 & 31 & 23 \\
\hline \multicolumn{8}{|l|}{503KU5} \\
\hline 1 & 1 & 3 & 86 & 2 & 2 & 12 & 6 \\
\hline 2 & 2 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 3 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline [total] & 4 & 5 & 88 & 4 & 4 & 16 & 8 \\
\hline \multicolumn{8}{|l|}{503KU6} \\
\hline 1 & 2 & 3 & 86 & 2 & 2 & 14 & 6 \\
\hline [total] & 2 & 3 & 86 & 2 & 2 & 14 & 6 \\
\hline \multicolumn{8}{|l|}{503KU7} \\
\hline 1 & 1 & 1 & 71 & 1 & 2 & 1 & 3 \\
\hline 2 & 2 & 3 & 9 & 1 & 1 & 4 & 1 \\
\hline 3 & 1 & 1 & 5 & 1 & 1 & 3 & 2 \\
\hline 4 & 1 & 1 & 3 & 1 & 1 & 2 & 2 \\
\hline 5 & 1 & 1 & 2 & 1 & 1 & 4 & 1 \\
\hline 6 & 1 & 1 & 1 & 1 & 1 & 3 & 1 \\
\hline 7 & 1 & 1 & 1 & 1 & 1 & 3 & 1 \\
\hline 12 & 1 & 1 & 1 & 2 & 1 & 1 & 2 \\
\hline [total] & 9 & 10 & 93 & 9 & 9 & 21 & 13 \\
\hline \multicolumn{8}{|l|}{513KU8} \\
\hline 1 & 2 & 3 & 86 & 2 & 2 & 14 & 5 \\
\hline 2 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline [total] & 3 & 4 & 87 & 3 & 3 & 15 & 7 \\
\hline \multicolumn{8}{|l|}{513KU9} \\
\hline 1 & 2 & 1 & 70 & 1 & 2 & 3 & 2 \\
\hline 2 & 1 & 2 & 11 & 1 & 1 & 2 & 1 \\
\hline 3 & 1 & 1 & 5 & 1 & 1 & 4 & 1 \\
\hline 4 & 1 & 2 & 1 & 1 & 1 & 4 & 1 \\
\hline 5 & 1 & 1 & 1 & 1 & 1 & 2 & 2 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 3 & 2 & 1 & 2 & 2 & 1 & 1 & 2 \\
\hline 4 & 1 & 1 & 2 & 1 & 1 & 2 & 1 \\
\hline 5 & 1 & 3 & 1 & 1 & 1 & 1 & 1 \\
\hline [total] & 6 & 7 & 90 & 6 & 6 & 18 & 10 \\
\hline \multicolumn{8}{|l|}{603MK6} \\
\hline 1 & 1 & 1 & 76 & 1 & 1 & 8 & 1 \\
\hline 2 & 1 & 1 & 6 & 1 & 1 & 3 & 4 \\
\hline 3 & 1 & 2 & 4 & 1 & 1 & 4 & 2 \\
\hline 4 & 2 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 5 & 1 & 2 & 2 & 1 & 2 & 1 & 1 \\
\hline 6 & 1 & 1 & 2 & 2 & 1 & 2 & 2 \\
\hline [total] & 7 & 8 & 91 & 7 & 7 & 19 & 11 \\
\hline \multicolumn{8}{|l|}{613MK7} \\
\hline 1 & 1 & 3 & 80 & 2 & 1 & 9 & 4 \\
\hline 2 & 1 & 1 & 3 & 1 & 1 & 3 & 3 \\
\hline 3 & 1 & 1 & 3 & 1 & 1 & 2 & 1 \\
\hline 5 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 6 & 1 & 1 & 1 & 1 & 2 & 2 & 1 \\
\hline 7 & 2 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 8 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 55 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline [total] & 9 & 10 & 93 & 9 & 9 & 21 & 13 \\
\hline \multicolumn{8}{|l|}{623MK8} \\
\hline 1 & 1 & 1 & 67 & 1 & 1 & 3 & 1 \\
\hline 2 & 1 & 1 & 10 & 1 & 1 & 3 & 1 \\
\hline 3 & 1 & 1 & 4 & 1 & 1 & 4 & 3 \\
\hline 4 & 1 & 1 & 6 & 1 & 1 & 1 & 1 \\
\hline 5 & 1 & 1 & 2 & 1 & 2 & 3 & 1 \\
\hline 6 & 1 & 1 & 2 & 1 & 1 & 2 & 2 \\
\hline 8 & 2 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 9 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 10 & 1 & 2 & 1 & 1 & 1 & 1 & 2 \\
\hline 11 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 12 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 14 & 1 & 2 & 1 & 1 & 1 & 2 & 1 \\
\hline 18 & 1 & 1 & 1 & 2 & 1 & 1 & 1 \\
\hline [total] & 14 & 15 & 98 & 14 & 14 & 26 & 18 \\
\hline \multicolumn{8}{|l|}{633NK9} \\
\hline 1 & 1 & 1 & 61 & 1 & 1 & 1 & 1 \\
\hline 2 & 1 & 1 & 9 & 1 & 1 & 1 & 1 \\
\hline 3 & 1 & 1 & 5 & 1 & 1 & 1 & 1 \\
\hline 4 & 1 & 1 & 7 & 1 & 1 & 3 & 1 \\
\hline 5 & 1 & 1 & 6 & 1 & 1 & 1 & 2 \\
\hline 6 & 1 & 1 & 1 & 1 & 1 & 3 & 1 \\
\hline 7 & 1 & 2 & 1 & 1 & 2 & 1 & 1 \\
\hline 8 & 1 & 1 & 2 & 1 & 1 & 2 & 2 \\
\hline 9 & 1 & 1 & 1 & 1 & 1 & 4 & 1 \\
\hline 10 & 1 & 1 & 2 & 1 & 1 & 2 & 2 \\
\hline 11 & 1 & 2 & 1 & 1 & 1 & 2 & 1 \\
\hline 12 & 2 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 14 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 15 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 19 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 20 & 1 & 1 & 1 & 2 & 1 & 1 & 1 \\
\hline 23 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline [total] & 18 & 19 & 102 & 18 & 18 & 30 & 22 \\
\hline \multicolumn{8}{|l|}{633NX7} \\
\hline 1 & 1 & 1 & 13 & 1 & 1 & 1 & 1 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 15 & 2 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 20 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 21 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 23 & 1 & 1 & 1 & 1 & 2 & 1 & 2 \\
\hline 24 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 26 & 1 & 2 & 1 & 1 & 1 & 3 & 1 \\
\hline 29 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 30 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 31 & 1 & 1 & 1 & 2 & 1 & 1 & 1 \\
\hline [total] & 22 & 23 & 106 & 22 & 22 & 34 & 26 \\
\hline \multicolumn{8}{|l|}{673NL4} \\
\hline 1 & 1 & 1 & 72 & 1 & 1 & 2 & 1 \\
\hline 2 & 1 & 1 & 11 & 1 & 1 & 3 & 1 \\
\hline 3 & 1 & 1 & 3 & 1 & 1 & 2 & 4 \\
\hline 4 & 1 & 1 & 3 & 1 & 1 & 3 & 2 \\
\hline 5 & 1 & 3 & 1 & 1 & 1 & 3 & 1 \\
\hline 7 & 2 & 1 & 1 & 1 & 1 & 4 & 1 \\
\hline 8 & 1 & 1 & 1 & 1 & 1 & 3 & 1 \\
\hline 9 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 10 & 1 & 1 & 1 & 1 & 2 & 1 & 1 \\
\hline 11 & 1 & 1 & 1 & 2 & 1 & 1 & 1 \\
\hline [total] & 11 & 12 & 95 & 11 & 11 & 23 & 15 \\
\hline \multicolumn{8}{|l|}{673 NL 5} \\
\hline 1 & 2 & 3 & 85 & 2 & 2 & 14 & 6 \\
\hline 2 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline [total] & 3 & 4 & 87 & 3 & 3 & 15 & 7 \\
\hline \multicolumn{8}{|l|}{673 NN 9} \\
\hline 1 & 1 & 3 & 63 & 1 & 1 & 3 & 3 \\
\hline 2 & 1 & 1 & 8 & 1 & 1 & 3 & 1 \\
\hline 3 & 2 & 1 & 5 & 1 & 1 & 2 & 1 \\
\hline 4 & 1 & 1 & 3 & 1 & 1 & 4 & 1 \\
\hline 5 & 1 & 1 & 4 & 1 & 1 & 3 & 4 \\
\hline 6 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 7 & 1 & 1 & 2 & 1 & 1 & 2 & 1 \\
\hline 8 & 1 & 1 & 3 & 1 & 2 & 1 & 1 \\
\hline 9 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 10 & 1 & 1 & 1 & 2 & 1 & 1 & 1 \\
\hline 11 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 13 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 16 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 35 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline [total] & 15 & 16 & 99 & 15 & 15 & 27 & 19 \\
\hline \multicolumn{8}{|l|}{683JL5} \\
\hline 1 & 2 & 3 & 86 & 2 & 2 & 14 & 6 \\
\hline [total] & 2 & 3 & 86 & 2 & 2 & 14 & 6 \\
\hline \multicolumn{8}{|l|}{\(693 \mathrm{JL5}\)} \\
\hline 1 & 2 & 2 & 86 & 1 & 1 & 13 & 5 \\
\hline 2 & 1 & 1 & 1 & 1 & 1 & 2 & 2 \\
\hline 3 & 1 & 1 & 1 & 2 & 1 & 1 & 1 \\
\hline 4 & 1 & 2 & 1 & 1 & 2 & 1 & 1 \\
\hline [total] & 5 & 6 & 89 & 5 & 5 & 17 & 9 \\
\hline \multicolumn{8}{|l|}{693JL7} \\
\hline 1 & 1 & 3 & 86 & 2 & 2 & 14 & 6 \\
\hline 2 & 2 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline [total] & 3 & 4 & 87 & 3 & 3 & 15 & 7 \\
\hline \multicolumn{8}{|l|}{693JL8} \\
\hline 1 & 1 & 3 & 86 & 2 & 2 & 14 & 4 \\
\hline 2 & 2 & 1 & 1 & 1 & 1 & 1 & 3 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline [total] & 3 & 4 & 87 & 3 & 3 & 15 & 7 \\
\hline \multicolumn{8}{|l|}{703JL5} \\
\hline 1 & 1 & 1 & 76 & 1 & 1 & 2 & 1 \\
\hline 2 & 2 & 2 & 6 & 1 & 1 & 2 & 1 \\
\hline 3 & 1 & 2 & 6 & 1 & 1 & 4 & 2 \\
\hline 4 & 1 & 1 & 1 & 1 & 2 & 3 & 2 \\
\hline 5 & 1 & 1 & 1 & 1 & 1 & 6 & 1 \\
\hline 6 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 7 & 1 & 1 & 1 & 1 & 1 & 1 & 4 \\
\hline 8 & 1 & 1 & 1 & 2 & 1 & 1 & 1 \\
\hline [total] & 9 & 10 & 93 & 9 & 9 & 21 & 13 \\
\hline \multicolumn{8}{|l|}{723PM2} \\
\hline 1 & 2 & 3 & 86 & 2 & 2 & 14 & 6 \\
\hline [total] & 2 & 3 & 86 & 2 & 2 & 14 & 6 \\
\hline \multicolumn{8}{|l|}{733PM3} \\
\hline 1 & 1 & 2 & 77 & 1 & 1 & 8 & 3 \\
\hline 2 & 1 & 1 & 5 & 1 & 1 & 2 & 2 \\
\hline 3 & 1 & 1 & 5 & 2 & 2 & 1 & 1 \\
\hline 4 & 1 & 2 & 2 & 1 & 1 & 2 & 1 \\
\hline 5 & 1 & 1 & 1 & 1 & 1 & 4 & 2 \\
\hline 6 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 7 & 2 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline [total] & 8 & 9 & 92 & 8 & 8 & 20 & 12 \\
\hline \multicolumn{8}{|l|}{733PN8} \\
\hline 1 & 1 & 3 & 81 & 2 & 1 & 9 & 3 \\
\hline 2 & 2 & 1 & 4 & 1 & 2 & 3 & 3 \\
\hline 3 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 4 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 5 & 1 & 1 & 1 & 1 & 1 & 3 & 1 \\
\hline 6 & 1 & 1 & 2 & 1 & 1 & 2 & 1 \\
\hline [total] & 7 & 8 & 91 & 7 & 7 & 19 & 11 \\
\hline \multicolumn{8}{|l|}{743PM4} \\
\hline 1 & 2 & 3 & 82 & 1 & 2 & 9 & 4 \\
\hline 2 & 1 & 1 & 3 & 2 & 1 & 2 & 2 \\
\hline 3 & 1 & 1 & 2 & 1 & 1 & 4 & 2 \\
\hline 4 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 6 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline [total] & 6 & 7 & 90 & 6 & 6 & 18 & 10 \\
\hline \multicolumn{8}{|l|}{751BT8} \\
\hline 1 & 1 & 2 & 75 & 2 & 2 & 8 & 3 \\
\hline 2 & 1 & 1 & 3 & 1 & 1 & 3 & 1 \\
\hline 3 & 1 & 1 & 2 & 1 & 1 & 2 & 1 \\
\hline 4 & 1 & 2 & 3 & 1 & 1 & 1 & 2 \\
\hline 6 & 2 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 7 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 8 & 1 & 1 & 2 & 1 & 1 & 2 & 1 \\
\hline 10 & 1 & 1 & 2 & 1 & 1 & 1 & 2 \\
\hline 12 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 13 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 15 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 24 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 47 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline [total] & 14 & 15 & 98 & 14 & 14 & 26 & 18 \\
\hline \multicolumn{8}{|l|}{761AN1} \\
\hline 1 & 1 & 1 & 57 & 1 & 1 & 1 & 1 \\
\hline 2 & 1 & 1 & 12 & 1 & 1 & 2 & 1 \\
\hline 3 & 1 & 1 & 4 & 1 & 1 & 2 & 1 \\
\hline 4 & 1 & 1 & 4 & 1 & 1 & 2 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 5 & 1 & 1 & 4 & 1 & 1 & 1 & 3 \\
\hline 6 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 7 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 8 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 9 & 2 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 10 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 11 & 1 & 1 & 2 & 1 & 1 & 1 & 2 \\
\hline 12 & 1 & 1 & 1 & 1 & 2 & 2 & 1 \\
\hline 13 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 14 & 1 & 1 & 2 & 1 & 1 & 2 & 1 \\
\hline 15 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 17 & 1 & 2 & 1 & 1 & 1 & 2 & 1 \\
\hline 19 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 23 & 1 & 1 & 1 & 1 & 1 & 2 & 2 \\
\hline 25 & 1 & 2 & 1 & 1 & 1 & 1 & 1 \\
\hline 27 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 29 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 34 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 38 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 40 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 51 & 1 & 1 & 1 & 2 & 1 & 1 & 1 \\
\hline [total] & 26 & 27 & 110 & 26 & 26 & 38 & 30 \\
\hline \multicolumn{8}{|l|}{762GN1} \\
\hline 1 & 1 & 1 & 58 & 1 & 1 & 1 & 1 \\
\hline 2 & 1 & 1 & 2 & 1 & 1 & 3 & 1 \\
\hline 3 & 1 & 1 & 4 & 1 & 1 & 1 & 1 \\
\hline 4 & 1 & 1 & 3 & 1 & 1 & 2 & 1 \\
\hline 5 & 1 & 1 & 3 & 1 & 1 & 2 & 2 \\
\hline 6 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 7 & 1 & 1 & 5 & 1 & 1 & 2 & 1 \\
\hline 8 & 1 & 1 & 5 & 1 & 1 & 1 & 1 \\
\hline 9 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 10 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 11 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 12 & 1 & 2 & 1 & 1 & 1 & 1 & 1 \\
\hline 13 & 1 & 1 & 2 & 1 & 1 & 2 & 1 \\
\hline 14 & 1 & 1 & 1 & 1 & 1 & 2 & 2 \\
\hline 15 & 1 & 1 & 1 & 1 & 2 & 1 & 1 \\
\hline 16 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 17 & 1 & 1 & 2 & 1 & 1 & 3 & 1 \\
\hline 19 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 21 & 1 & 1 & 1 & 1 & 1 & 3 & 1 \\
\hline 23 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 24 & 1 & 1 & 1 & 2 & 1 & 1 & 1 \\
\hline 25 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 27 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 29 & 1 & 2 & 2 & 1 & 1 & 1 & 1 \\
\hline 31 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 33 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 34 & 2 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 37 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 80 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline [total] & 30 & 31 & 114 & 30 & 30 & 42 & 34 \\
\hline \multicolumn{8}{|l|}{771 BN2} \\
\hline 1 & 2 & 3 & 86 & 2 & 2 & 13 & 6 \\
\hline 2 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline [total] & 3 & 4 & 87 & 3 & 3 & 15 & 7 \\
\hline 783RN5 & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 1 & 1 & 3 & 86 & 2 & 2 & 13 & 6 \\
\hline 2 & 2 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline [total] & 3 & 4 & 87 & 3 & 3 & 15 & 7 \\
\hline \multicolumn{8}{|l|}{783RN6} \\
\hline 1 & 2 & 3 & 85 & 2 & 2 & 14 & 6 \\
\hline 2 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline [total] & 3 & 4 & 87 & 3 & 3 & 15 & 7 \\
\hline \multicolumn{8}{|l|}{793SB0} \\
\hline 1 & 2 & 3 & 86 & 1 & 2 & 13 & 6 \\
\hline 2 & 1 & 1 & 1 & 2 & 1 & 1 & 1 \\
\hline 4 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline [total] & 4 & 5 & 88 & 4 & 4 & 16 & 8 \\
\hline \multicolumn{8}{|l|}{793SG0} \\
\hline 1 & 2 & 3 & 83 & 2 & 2 & 11 & 5 \\
\hline 2 & 1 & 1 & 4 & 1 & 1 & 2 & 2 \\
\hline 3 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 5 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline [total] & 5 & 6 & 89 & 5 & 5 & 17 & 9 \\
\hline \multicolumn{8}{|l|}{793SD0} \\
\hline 1 & 2 & 3 & 85 & 2 & 2 & 7 & 2 \\
\hline 2 & 1 & 1 & 1 & 1 & 1 & 3 & 2 \\
\hline 3 & 1 & 1 & 1 & 1 & 1 & 4 & 3 \\
\hline 4 & 1 & 1 & 1 & 1 & 1 & 3 & 2 \\
\hline 5 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline [total] & 6 & 7 & 90 & 6 & 6 & 18 & 10 \\
\hline \multicolumn{8}{|l|}{\(803 \mathrm{TA0}\)} \\
\hline 1 & 2 & 3 & 86 & 2 & 2 & 14 & 6 \\
\hline [total] & 2 & 3 & 86 & 2 & 2 & 14 & 6 \\
\hline \multicolumn{8}{|l|}{803 TBJ} \\
\hline 1 & 2 & 2 & 76 & 2 & 2 & 8 & 6 \\
\hline 2 & 1 & 2 & 3 & 1 & 1 & 1 & 1 \\
\hline 3 & 1 & 1 & 4 & 1 & 1 & 1 & 1 \\
\hline 4 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 5 & 1 & 1 & 3 & 1 & 1 & 2 & 1 \\
\hline 6 & 1 & 1 & 1 & 1 & 1 & 3 & 1 \\
\hline 10 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 12 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 13 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 20 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline [total] & 11 & 12 & 95 & 11 & 11 & 23 & 15 \\
\hline \multicolumn{8}{|l|}{811BAP} \\
\hline 1 & 1 & 1 & 68 & 1 & 1 & 2 & 1 \\
\hline 2 & 2 & 2 & 4 & 1 & 1 & 2 & 2 \\
\hline 3 & 1 & 1 & 7 & 1 & 2 & 4 & 1 \\
\hline 4 & 1 & 1 & 6 & 1 & 1 & 4 & 1 \\
\hline 5 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 6 & 1 & 1 & 1 & 1 & 1 & 3 & 1 \\
\hline 7 & 1 & 1 & 1 & 1 & 1 & 3 & 3 \\
\hline 8 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 9 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 11 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 12 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 13 & 1 & 1 & 1 & 2 & 1 & 1 & 1 \\
\hline 15 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 22 & 1 & 2 & 1 & 1 & 1 & 1 & 1 \\
\hline [total] & 15 & 16 & 99 & 15 & 15 & 27 & 19 \\
\hline \multicolumn{8}{|l|}{811BAS} \\
\hline 1 & 1 & 1 & 78 & 1 & 1 & 5 & 2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 2 & 1 & 1 & 4 & 1 & 1 & 3 & 2 \\
\hline 3 & 1 & 1 & 3 & 1 & 1 & 2 & 2 \\
\hline 4 & 1 & 3 & 1 & 1 & 1 & 1 & 1 \\
\hline 5 & 1 & 1 & 3 & 1 & 1 & 4 & 2 \\
\hline 6 & 1 & 1 & 1 & 1 & 1 & 2 & 2 \\
\hline 7 & 1 & 1 & 1 & 1 & 2 & 1 & 1 \\
\hline 8 & 1 & 1 & 2 & 2 & 1 & 2 & 1 \\
\hline 9 & 2 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 11 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline [total] & 11 & 12 & 95 & 11 & 11 & 23 & 15 \\
\hline \multicolumn{8}{|l|}{811BJ4} \\
\hline 1 & 1 & 1 & 54 & 1 & 1 & 1 & 1 \\
\hline 2 & 1 & 1 & 9 & 1 & 1 & 1 & 1 \\
\hline 3 & 1 & 1 & 5 & 1 & 1 & 1 & 1 \\
\hline 4 & 1 & 1 & 10 & 1 & 1 & 1 & 1 \\
\hline 5 & 1 & 1 & 5 & 1 & 1 & 3 & 1 \\
\hline 6 & 1 & 1 & 3 & 1 & 1 & 1 & 2 \\
\hline 7 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 8 & 1 & 1 & 3 & 1 & 2 & 5 & 1 \\
\hline 9 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 10 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 11 & 1 & 2 & 1 & 1 & 1 & 1 & 2 \\
\hline 13 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 14 & 1 & 1 & 1 & 1 & 1 & 3 & 1 \\
\hline 15 & 1 & 1 & 1 & 1 & 1 & 1 & 3 \\
\hline 17 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 18 & 2 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 20 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 23 & 1 & 2 & 1 & 1 & 1 & 1 & 1 \\
\hline 25 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 45 & 1 & 1 & 1 & 2 & 1 & 1 & 1 \\
\hline [total] & 21 & 22 & 105 & 21 & 21 & 33 & 25 \\
\hline \multicolumn{8}{|l|}{811BJ6} \\
\hline 1 & 2 & 3 & 86 & 2 & 2 & 14 & 6 \\
\hline [total] & 2 & 3 & 86 & 2 & 2 & 14 & 6 \\
\hline \multicolumn{8}{|l|}{811BJ7} \\
\hline 1 & 1 & 1 & 15 & 1 & 1 & 2 & 1 \\
\hline 2 & 1 & 1 & 68 & 1 & 1 & 3 & 1 \\
\hline 3 & 1 & 2 & 1 & 1 & 2 & 2 & 1 \\
\hline 4 & 2 & 1 & 2 & 1 & 1 & 2 & 2 \\
\hline 5 & 1 & 1 & 2 & 1 & 1 & 4 & 1 \\
\hline 6 & 1 & 1 & 2 & 1 & 1 & 1 & 3 \\
\hline 7 & 1 & 1 & 2 & 1 & 1 & 1 & 3 \\
\hline 8 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 9 & 1 & 2 & 1 & 1 & 1 & 2 & 1 \\
\hline 10 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 12 & 1 & 1 & 1 & 2 & 1 & 2 & 1 \\
\hline 14 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline [total] & 13 & 14 & 97 & 13 & 13 & 25 & 17 \\
\hline \multicolumn{8}{|l|}{811BJ9} \\
\hline 1 & 2 & 1 & 83 & 1 & 2 & 9 & 3 \\
\hline 2 & 1 & 2 & 2 & 1 & 1 & 3 & 2 \\
\hline 3 & 1 & 2 & 3 & 2 & 1 & 2 & 1 \\
\hline 4 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 6 & 1 & 1 & 1 & 1 & 1 & 3 & 2 \\
\hline [total] & 6 & 7 & 90 & 6 & 6 & 18 & 10 \\
\hline \multicolumn{8}{|l|}{811B01} \\
\hline 1 & 1 & 1 & 69 & 1 & 1 & 3 & 2 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 3 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 6 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline [total] & 5 & 6 & 89 & 5 & 5 & 17 & 9 \\
\hline \multicolumn{8}{|l|}{811B09} \\
\hline 1 & 2 & 1 & 78 & 1 & 2 & 10 & 6 \\
\hline 2 & 1 & 1 & 6 & 1 & 1 & 1 & 1 \\
\hline 3 & 1 & 2 & 3 & 2 & 1 & 4 & 1 \\
\hline 4 & 1 & 2 & 2 & 1 & 1 & 2 & 1 \\
\hline [total] & 5 & 6 & 89 & 5 & 5 & 17 & 9 \\
\hline \multicolumn{8}{|l|}{811BP0} \\
\hline 1 & 2 & 2 & 81 & 1 & 2 & 6 & 2 \\
\hline 2 & 1 & 1 & 4 & 1 & 1 & 4 & 4 \\
\hline 3 & 1 & 1 & 1 & 1 & 1 & 3 & 1 \\
\hline 4 & 1 & 1 & 1 & 1 & 1 & 3 & 1 \\
\hline 5 & 1 & 1 & 2 & 1 & 1 & 2 & 1 \\
\hline 6 & 1 & 2 & 1 & 1 & 1 & 1 & 2 \\
\hline 8 & 1 & 1 & 1 & 2 & 1 & 1 & 1 \\
\hline 9 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline [total] & 9 & 10 & 93 & 9 & 9 & 21 & 13 \\
\hline \multicolumn{8}{|l|}{811BP1} \\
\hline 1 & 2 & 3 & 84 & 2 & 2 & 13 & 6 \\
\hline 2 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 3 & 1 & 1 & 2 & 1 & 1 & 2 & 1 \\
\hline [total] & 4 & 5 & 88 & 4 & 4 & 16 & 8 \\
\hline \multicolumn{8}{|l|}{811BP2} \\
\hline 1 & 1 & 1 & 9 & 1 & 1 & 2 & 1 \\
\hline 2 & 1 & 2 & 60 & 1 & 2 & 5 & 1 \\
\hline 3 & 1 & 1 & 4 & 1 & 1 & 4 & 1 \\
\hline 4 & 1 & 1 & 6 & 2 & 1 & 1 & 5 \\
\hline 5 & 1 & 1 & 4 & 1 & 1 & 2 & 2 \\
\hline 6 & 1 & 1 & 2 & 1 & 1 & 3 & 1 \\
\hline 7 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 8 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 9 & 2 & 2 & 1 & 1 & 1 & 1 & 1 \\
\hline 11 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 12 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 15 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 23 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 26 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 34 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline [total] & 16 & 17 & 100 & 16 & 16 & 28 & 20 \\
\hline \multicolumn{8}{|l|}{811BP3} \\
\hline 1 & 2 & 3 & 86 & 2 & 2 & 14 & 6 \\
\hline [total] & 2 & 3 & 86 & 2 & 2 & 14 & 6 \\
\hline \multicolumn{8}{|l|}{821BA5} \\
\hline 1 & 2 & 2 & 74 & 1 & 2 & 8 & 4 \\
\hline 2 & 1 & 2 & 9 & 1 & 1 & 5 & 1 \\
\hline 3 & 1 & 1 & 3 & 2 & 1 & 1 & 2 \\
\hline 4 & 1 & 1 & 2 & 1 & 1 & 1 & 2 \\
\hline 5 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 6 & 1 & 1 & 2 & 1 & 1 & 2 & 1 \\
\hline [total] & 7 & 8 & 91 & 7 & 7 & 19 & 11 \\
\hline \multicolumn{8}{|l|}{821B04} \\
\hline 1 & 1 & 3 & 80 & 1 & 2 & 5 & 3 \\
\hline 2 & 2 & 1 & 5 & 1 & 1 & 6 & 3 \\
\hline 3 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 4 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 5 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 6 & 1 & 1 & 1 & 2 & 1 & 2 & 1 \\
\hline 7 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 9 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 12 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline [total] & 10 & 11 & 94 & 10 & 10 & 22 & 14 \\
\hline \multicolumn{8}{|l|}{821BP6} \\
\hline 1 & 1 & 1 & 73 & 1 & 2 & 6 & 1 \\
\hline 2 & 2 & 1 & 4 & 1 & 1 & 1 & 1 \\
\hline 3 & 1 & 1 & 7 & 1 & 1 & 3 & 1 \\
\hline 4 & 1 & 2 & 2 & 1 & 1 & 1 & 1 \\
\hline 6 & 1 & 2 & 1 & 1 & 1 & 2 & 2 \\
\hline 7 & 1 & 1 & 2 & 1 & 1 & 2 & 1 \\
\hline 8 & 1 & 1 & 3 & 1 & 1 & 1 & 2 \\
\hline 10 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 12 & 1 & 1 & 1 & 1 & 1 & 2 & 2 \\
\hline 13 & 1 & 1 & 1 & 2 & 1 & 3 & 1 \\
\hline 15 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 23 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline [total] & 13 & 14 & 97 & 13 & 13 & 25 & 17 \\
\hline \multicolumn{8}{|l|}{821BP7} \\
\hline 1 & 2 & 3 & 84 & 2 & 2 & 13 & 4 \\
\hline 2 & 1 & 1 & 3 & 1 & 1 & 2 & 3 \\
\hline [total] & 3 & 4 & 87 & 3 & 3 & 15 & 7 \\
\hline \multicolumn{8}{|l|}{831B90} \\
\hline 1 & 1 & 1 & 10 & 1 & 1 & 2 & 1 \\
\hline 2 & 2 & 1 & 68 & 1 & 1 & 2 & 1 \\
\hline 3 & 1 & 2 & 4 & 1 & 1 & 3 & 1 \\
\hline 4 & 1 & 1 & 2 & 1 & 1 & 5 & 3 \\
\hline 5 & 1 & 1 & 5 & 1 & 1 & 2 & 1 \\
\hline 6 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 7 & 1 & 1 & 2 & 1 & 2 & 1 & 2 \\
\hline 8 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 10 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 13 & 1 & 2 & 1 & 1 & 1 & 2 & 1 \\
\hline 15 & 1 & 1 & 1 & 2 & 1 & 2 & 1 \\
\hline 18 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline [total] & 13 & 14 & 97 & 13 & 13 & 25 & 17 \\
\hline \multicolumn{8}{|l|}{831BA7} \\
\hline 1 & 1 & 2 & 66 & 1 & 1 & 2 & 1 \\
\hline 2 & 1 & 1 & 8 & 1 & 1 & 1 & 1 \\
\hline 3 & 1 & 1 & 4 & 1 & 1 & 1 & 1 \\
\hline 4 & 1 & 1 & 3 & 1 & 2 & 4 & 1 \\
\hline 5 & 1 & 1 & 4 & 1 & 1 & 1 & 2 \\
\hline 6 & 1 & 2 & 3 & 1 & 1 & 2 & 1 \\
\hline 7 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 8 & 2 & 1 & 3 & 1 & 1 & 2 & 1 \\
\hline 9 & 1 & 1 & 2 & 1 & 1 & 2 & 1 \\
\hline 10 & 1 & 1 & 1 & 2 & 1 & 2 & 2 \\
\hline 11 & 1 & 1 & 1 & 1 & 1 & 2 & 2 \\
\hline 12 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 14 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 15 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 16 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 30 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline [total] & 17 & 18 & 101 & 17 & 17 & 29 & 21 \\
\hline \multicolumn{8}{|l|}{831BP8} \\
\hline 1 & 1 & 2 & 72 & 1 & 1 & 5 & 3 \\
\hline 2 & 2 & 1 & 7 & 1 & 2 & 3 & 2 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 7 & 2 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 8 & 1 & 1 & 1 & 2 & 1 & 1 & 1 \\
\hline [total] & 9 & 10 & 93 & 9 & 9 & 21 & 13 \\
\hline \multicolumn{8}{|l|}{831BC8} \\
\hline 1 & 2 & 3 & 86 & 2 & 2 & 14 & 6 \\
\hline [total] & 2 & 3 & 86 & 2 & 2 & 14 & 6 \\
\hline \multicolumn{8}{|l|}{841B04} \\
\hline 1 & 2 & 2 & 80 & 1 & 1 & 9 & 3 \\
\hline 2 & 1 & 2 & 3 & 2 & 1 & 2 & 3 \\
\hline 3 & 1 & 1 & 3 & 1 & 2 & 2 & 2 \\
\hline 4 & 1 & 1 & 3 & 1 & 1 & 2 & 1 \\
\hline 5 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 6 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline [total] & 7 & 8 & 91 & 7 & 7 & 19 & 11 \\
\hline \multicolumn{8}{|l|}{841BR4} \\
\hline 1 & 2 & 1 & 73 & 1 & 1 & 3 & 2 \\
\hline 2 & 1 & 1 & 7 & 1 & 1 & 4 & 2 \\
\hline 3 & 1 & 2 & 5 & 1 & 2 & 1 & 2 \\
\hline 4 & 1 & 2 & 2 & 2 & 1 & 5 & 1 \\
\hline 5 & 1 & 1 & 2 & 1 & 1 & 2 & 1 \\
\hline 6 & 1 & 1 & 2 & 1 & 1 & 4 & 1 \\
\hline 7 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 28 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline [total] & 9 & 10 & 93 & 9 & 9 & 21 & 13 \\
\hline \multicolumn{8}{|l|}{841BR5} \\
\hline 1 & 1 & 1 & 47 & 1 & 1 & 1 & 1 \\
\hline 2 & 1 & 1 & 14 & 1 & 1 & 1 & 1 \\
\hline 3 & 1 & 1 & 8 & 1 & 1 & 1 & 1 \\
\hline 4 & 1 & 1 & 4 & 1 & 1 & 1 & 1 \\
\hline 5 & 1 & 1 & 5 & 1 & 1 & 1 & 1 \\
\hline 6 & 1 & 1 & 5 & 1 & 1 & 2 & 1 \\
\hline 7 & 1 & 2 & 5 & 1 & 1 & 4 & 1 \\
\hline 8 & 1 & 1 & 1 & 1 & 1 & 1 & 3 \\
\hline 10 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 11 & 1 & 1 & 1 & 1 & 2 & 1 & 1 \\
\hline 12 & 1 & 1 & 1 & 1 & 1 & 3 & 1 \\
\hline 13 & 1 & 1 & 1 & 1 & 1 & 3 & 2 \\
\hline 14 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 16 & 1 & 2 & 1 & 1 & 1 & 1 & 2 \\
\hline 19 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 20 & 2 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 23 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 24 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 25 & 1 & 1 & 1 & 2 & 1 & 1 & 1 \\
\hline 26 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 27 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 29 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 33 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline [total] & 24 & 25 & 108 & 24 & 24 & 36 & 28 \\
\hline \multicolumn{8}{|l|}{841BR6} \\
\hline 1 & 1 & 2 & 84 & 1 & 1 & 7 & 2 \\
\hline 2 & 1 & 2 & 3 & 1 & 1 & 3 & 3 \\
\hline 3 & 2 & 1 & 1 & 2 & 2 & 5 & 2 \\
\hline 8 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 10 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline [total] & 6 & 7 & 90 & 6 & 6 & 18 & 10 \\
\hline \multicolumn{8}{|l|}{851BR7} \\
\hline 1 & 1 & 1 & 33 & 1 & 1 & 1 & 1 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline [total] & 5 & 6 & 89 & 5 & 5 & 17 & 9 \\
\hline \multicolumn{8}{|l|}{851BS2} \\
\hline 1 & 1 & 2 & 58 & 1 & 1 & 1 & 1 \\
\hline 2 & 1 & 1 & 13 & 1 & 1 & 3 & 1 \\
\hline 3 & 2 & 1 & 9 & 1 & 2 & 2 & 2 \\
\hline 4 & 1 & 1 & 5 & 1 & 1 & 1 & 1 \\
\hline 5 & 1 & 1 & 4 & 1 & 1 & 3 & 2 \\
\hline 6 & 1 & 1 & 1 & 1 & 1 & 2 & 2 \\
\hline 7 & 1 & 2 & 1 & 1 & 1 & 4 & 1 \\
\hline 8 & 1 & 1 & 2 & 1 & 1 & 2 & 1 \\
\hline 9 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 10 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 11 & 1 & 1 & 1 & 2 & 1 & 1 & 1 \\
\hline 12 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 13 & 1 & 1 & 1 & 1 & 1 & 3 & 1 \\
\hline [total] & 14 & 15 & 98 & 14 & 14 & 26 & 18 \\
\hline \multicolumn{8}{|l|}{851BS3} \\
\hline 1 & 2 & 1 & 84 & 2 & 2 & 11 & 4 \\
\hline 2 & 1 & 2 & 1 & 1 & 1 & 2 & 3 \\
\hline 3 & 1 & 2 & 3 & 1 & 1 & 2 & 1 \\
\hline 6 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline [total] & 5 & 6 & 89 & 5 & 5 & 17 & 9 \\
\hline \multicolumn{8}{|l|}{851BX2} \\
\hline 1 & 2 & 3 & 84 & 2 & 2 & 14 & 6 \\
\hline 2 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 4 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline [total] & 4 & 5 & 88 & 4 & 4 & 16 & 8 \\
\hline \multicolumn{8}{|l|}{861B98} \\
\hline 1 & 2 & 2 & 82 & 1 & 2 & 5 & 3 \\
\hline 2 & 1 & 2 & 4 & 2 & 1 & 5 & 2 \\
\hline 3 & 1 & 1 & 2 & 1 & 1 & 2 & 2 \\
\hline 4 & 1 & 1 & 1 & 1 & 1 & 3 & 1 \\
\hline 5 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 12 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 13 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline [total] & 8 & 9 & 92 & 8 & 8 & 20 & 12 \\
\hline \multicolumn{8}{|l|}{861BS 4} \\
\hline 1 & 1 & 1 & 83 & 1 & 2 & 5 & 4 \\
\hline 2 & 1 & 2 & 4 & 1 & 1 & 2 & 2 \\
\hline 3 & 1 & 1 & 1 & 2 & 1 & 5 & 1 \\
\hline 4 & 1 & 1 & 1 & 1 & 1 & 5 & 1 \\
\hline 5 & 2 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 6 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 8 & 1 & 2 & 1 & 1 & 1 & 1 & 1 \\
\hline [total] & 8 & 9 & 92 & 8 & 8 & 20 & 12 \\
\hline \multicolumn{8}{|l|}{861BS6} \\
\hline 1 & 1 & 1 & 56 & 1 & 2 & 1 & 1 \\
\hline 2 & 2 & 1 & 8 & 1 & 1 & 1 & 1 \\
\hline 3 & 1 & 1 & 8 & 1 & 1 & 1 & 1 \\
\hline 4 & 1 & 2 & 7 & 1 & 1 & 4 & 1 \\
\hline 5 & 1 & 1 & 5 & 1 & 1 & 2 & 2 \\
\hline 6 & 1 & 1 & 4 & 1 & 1 & 2 & 1 \\
\hline 7 & 1 & 2 & 2 & 1 & 1 & 3 & 1 \\
\hline 8 & 1 & 1 & 2 & 1 & 1 & 2 & 1 \\
\hline 9 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 10 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 11 & 1 & 1 & 1 & 1 & 1 & 4 & 1 \\
\hline 14 & 1 & 1 & 1 & 1 & 1 & 1 & 3 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 15 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 16 & 1 & 1 & 1 & 2 & 1 & 1 & 1 \\
\hline 17 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 21 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline [total] & 17 & 18 & 101 & 17 & 17 & 29 & 21 \\
\hline \multicolumn{8}{|l|}{861BT6} \\
\hline 1 & 1 & 3 & 83 & 1 & 2 & 5 & 5 \\
\hline 2 & 2 & 1 & 4 & 1 & 1 & 6 & 1 \\
\hline 3 & 1 & 1 & 1 & 2 & 1 & 3 & 2 \\
\hline 4 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 5 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline [total] & 6 & 7 & 90 & 6 & 6 & 18 & 10 \\
\hline \multicolumn{8}{|l|}{861BC0} \\
\hline 1 & 2 & 3 & 86 & 2 & 2 & 14 & 6 \\
\hline [total] & 2 & 3 & 86 & 2 & 2 & 14 & 6 \\
\hline \multicolumn{8}{|l|}{873 TY8} \\
\hline 1 & 2 & 3 & 86 & 2 & 2 & 14 & 6 \\
\hline [total] & 2 & 3 & 86 & 2 & 2 & 14 & 6 \\
\hline \multicolumn{8}{|l|}{902DX6} \\
\hline 1 & 2 & 3 & 80 & 1 & 2 & 10 & 6 \\
\hline 2 & 1 & 1 & 4 & 1 & 1 & 3 & 1 \\
\hline 3 & 1 & 1 & 3 & 1 & 1 & 2 & 1 \\
\hline 11 & 1 & 1 & 1 & 2 & 1 & 1 & 1 \\
\hline 13 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 18 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline [total] & 7 & 8 & 91 & 7 & 7 & 19 & 11 \\
\hline \multicolumn{8}{|l|}{913HX8} \\
\hline 1 & 2 & 3 & 86 & 2 & 2 & 14 & 6 \\
\hline [total] & 2 & 3 & 86 & 2 & 2 & 14 & 6 \\
\hline \multicolumn{8}{|l|}{923JC1} \\
\hline 1 & 2 & 3 & 86 & 2 & 2 & 14 & 6 \\
\hline [total] & 2 & 3 & 86 & 2 & 2 & 14 & 6 \\
\hline \multicolumn{8}{|l|}{933JC6} \\
\hline 1 & 2 & 3 & 86 & 2 & 2 & 14 & 6 \\
\hline [total] & 2 & 3 & 86 & 2 & 2 & 14 & 6 \\
\hline \multicolumn{8}{|l|}{943XC7} \\
\hline 1 & 2 & 3 & 84 & 1 & 2 & 9 & 4 \\
\hline 2 & 1 & 1 & 3 & 1 & 1 & 6 & 3 \\
\hline 3 & 1 & 1 & 1 & 2 & 1 & 1 & 1 \\
\hline [total] & 4 & 5 & 88 & 4 & 4 & 16 & 8 \\
\hline \multicolumn{8}{|l|}{943XV1} \\
\hline 1 & 2 & 3 & 84 & 2 & 2 & 13 & 4 \\
\hline 2 & 1 & 1 & 3 & 1 & 1 & 1 & 2 \\
\hline 3 & 1 & 1 & 1 & 1 & 1 & 2 & 2 \\
\hline [total] & 4 & 5 & 88 & 4 & 4 & 16 & 8 \\
\hline \multicolumn{8}{|l|}{951A01} \\
\hline 1 & 2 & 2 & 83 & 1 & 2 & 13 & 5 \\
\hline 2 & 1 & 1 & 3 & 1 & 1 & 1 & 2 \\
\hline 3 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 6 & 1 & 1 & 1 & 2 & 1 & 1 & 1 \\
\hline 7 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 8 & 1 & 2 & 1 & 1 & 1 & 1 & 1 \\
\hline [total] & 7 & 8 & 91 & 7 & 7 & 19 & 11 \\
\hline \multicolumn{8}{|l|}{951A02} \\
\hline 1 & 2 & 2 & 83 & 1 & 2 & 13 & 6 \\
\hline 2 & 1 & 1 & 2 & 1 & 1 & 2 & 1 \\
\hline 4 & 1 & 2 & 2 & 2 & 1 & 1 & 1 \\
\hline 8 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline [total] & 5 & 6 & 89 & 5 & 5 & 17 & 9 \\
\hline \multicolumn{8}{|l|}{951A04} \\
\hline 1 & 2 & 1 & 83 & 2 & 2 & 10 & 6 \\
\hline 2 & 1 & 1 & 2 & 1 & 1 & 5 & 1 \\
\hline 3 & 1 & 2 & 1 & 1 & 1 & 1 & 1 \\
\hline 6 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 31 & 1 & 2 & 1 & 1 & 1 & 1 & 1 \\
\hline [total] & 6 & 7 & 90 & 6 & 6 & 18 & 10 \\
\hline \multicolumn{8}{|l|}{951A05} \\
\hline 1 & 1 & 2 & 81 & 2 & 2 & 12 & 5 \\
\hline 2 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 3 & 2 & 2 & 1 & 1 & 1 & 2 & 1 \\
\hline 4 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 5 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 7 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 10 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 15 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline [total] & 9 & 10 & 93 & 9 & 9 & 21 & 13 \\
\hline \multicolumn{8}{|l|}{951A06} \\
\hline 1 & 1 & 2 & 80 & 2 & 2 & 9 & 5 \\
\hline 2 & 1 & 1 & 2 & 1 & 1 & 1 & 2 \\
\hline 3 & 2 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 4 & 1 & 1 & 2 & 1 & 1 & 2 & 1 \\
\hline 5 & 1 & 2 & 1 & 1 & 1 & 3 & 1 \\
\hline 6 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 8 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 10 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 12 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline [total] & 10 & 11 & 94 & 10 & 10 & 22 & 14 \\
\hline \multicolumn{8}{|l|}{951A07} \\
\hline 1 & 2 & 3 & 84 & 2 & 2 & 13 & 6 \\
\hline 2 & 1 & 1 & 2 & 1 & 1 & 2 & 1 \\
\hline 4 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline [total] & 4 & 5 & 88 & 4 & 4 & 16 & 8 \\
\hline \multicolumn{8}{|l|}{951A10} \\
\hline 1 & 1 & 3 & 83 & 1 & 2 & 9 & 5 \\
\hline 2 & 1 & 1 & 3 & 1 & 1 & 2 & 1 \\
\hline 3 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 4 & 1 & 1 & 1 & 1 & 1 & 3 & 1 \\
\hline 5 & 2 & 1 & 2 & 1 & 1 & 2 & 1 \\
\hline 8 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 9 & 1 & 1 & 1 & 2 & 1 & 1 & 1 \\
\hline [total] & 8 & 9 & 92 & 8 & 8 & 20 & 12 \\
\hline \multicolumn{8}{|l|}{951A15} \\
\hline 1 & 2 & 2 & 84 & 1 & 2 & 11 & 5 \\
\hline 2 & 1 & 1 & 1 & 1 & 1 & 3 & 2 \\
\hline 3 & 1 & 2 & 2 & 2 & 1 & 1 & 1 \\
\hline 5 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 7 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline [total] & 6 & 7 & 90 & 6 & 6 & 18 & 10 \\
\hline \multicolumn{8}{|l|}{951A16} \\
\hline 1 & 2 & 2 & 85 & 1 & 2 & 13 & 6 \\
\hline 2 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 3 & 1 & 1 & 1 & 2 & 1 & 1 & 1 \\
\hline 4 & 1 & 2 & 2 & 1 & 1 & 1 & 1 \\
\hline [total] & 5 & 6 & 89 & 5 & 5 & 17 & 9 \\
\hline \multicolumn{8}{|l|}{951A22} \\
\hline 1 & 1 & 3 & 86 & 2 & 2 & 14 & 6 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 2 & 2 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline [total] & 3 & 4 & 87 & 3 & 3 & 15 & 7 \\
\hline \multicolumn{8}{|l|}{951A23} \\
\hline 1 & 1 & 1 & 82 & 1 & 2 & 11 & 5 \\
\hline 2 & 2 & 3 & 4 & 1 & 1 & 2 & 1 \\
\hline 3 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 6 & 1 & 1 & 2 & 1 & 1 & 2 & 1 \\
\hline 11 & 1 & 1 & 1 & 2 & 1 & 1 & 1 \\
\hline 14 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline [total] & 7 & 8 & 91 & 7 & 7 & 19 & 11 \\
\hline \multicolumn{8}{|l|}{951A26} \\
\hline 1 & 2 & 3 & 85 & 1 & 2 & 13 & 6 \\
\hline 2 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 4 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 5 & 1 & 1 & 1 & 2 & 1 & 1 & 1 \\
\hline [total] & 5 & 6 & 89 & 5 & 5 & 17 & 9 \\
\hline \multicolumn{8}{|l|}{951A37} \\
\hline 1 & 1 & 2 & 79 & 2 & 2 & 11 & 5 \\
\hline 2 & 1 & 1 & 3 & 1 & 1 & 2 & 2 \\
\hline 3 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 4 & 1 & 2 & 2 & 1 & 1 & 1 & 1 \\
\hline 5 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 6 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 7 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 8 & 2 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 10 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 11 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline [total] & 11 & 12 & 95 & 11 & 11 & 23 & 15 \\
\hline \multicolumn{8}{|l|}{951A38} \\
\hline 2 & 2 & 3 & 86 & 2 & 2 & 14 & 6 \\
\hline [total] & 2 & 3 & 86 & 2 & 2 & 14 & 6 \\
\hline \multicolumn{8}{|l|}{951A39} \\
\hline 1 & 2 & 3 & 85 & 2 & 2 & 14 & 5 \\
\hline 2 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 3 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline [total] & 4 & 5 & 88 & 4 & 4 & 16 & 8 \\
\hline \multicolumn{8}{|l|}{951A41} \\
\hline 1 & 2 & 3 & 86 & 2 & 2 & 14 & 6 \\
\hline [total] & 2 & 3 & 86 & 2 & 2 & 14 & 6 \\
\hline \multicolumn{8}{|l|}{951A42} \\
\hline 1 & 2 & 3 & 86 & 2 & 2 & 13 & 6 \\
\hline 2 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline [total] & 3 & 4 & 87 & 3 & 3 & 15 & 7 \\
\hline \multicolumn{8}{|l|}{951A52} \\
\hline 1 & 2 & 2 & 84 & 1 & 2 & 12 & 6 \\
\hline 2 & 1 & 1 & 2 & 1 & 1 & 3 & 1 \\
\hline 4 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 6 & 1 & 1 & 1 & 2 & 1 & 1 & 1 \\
\hline 7 & 1 & 2 & 1 & 1 & 1 & 1 & 1 \\
\hline [total] & 6 & 7 & 90 & 6 & 6 & 18 & 10 \\
\hline \multicolumn{8}{|l|}{951A53} \\
\hline 2 & 2 & 3 & 86 & 2 & 2 & 14 & 6 \\
\hline [total] & 2 & 3 & 86 & 2 & 2 & 14 & 6 \\
\hline \multicolumn{8}{|l|}{951A54} \\
\hline 1 & 2 & 3 & 86 & 1 & 2 & 14 & 6 \\
\hline 4 & 1 & 1 & 1 & 2 & 1 & 1 & 1 \\
\hline [total] & 3 & 4 & 87 & 3 & 3 & 15 & 7 \\
\hline 951A64 & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 1 & 2 & 3 & 85 & 2 & 2 & 14 & 6 \\
\hline 3 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline [total] & 3 & 4 & 87 & 3 & 3 & 15 & 7 \\
\hline \multicolumn{8}{|l|}{951A67} \\
\hline 1 & 2 & 3 & 84 & 2 & 2 & 13 & 5 \\
\hline 2 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 4 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 5 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 10 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline [total] & 6 & 7 & 90 & 6 & 6 & 18 & 10 \\
\hline \multicolumn{8}{|l|}{951A69} \\
\hline 5 & 2 & 3 & 86 & 2 & 2 & 13 & 6 \\
\hline 10 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline [total] & 3 & 4 & 87 & 3 & 3 & 15 & 7 \\
\hline \multicolumn{8}{|l|}{951A71} \\
\hline 1 & 2 & 3 & 86 & 2 & 2 & 14 & 6 \\
\hline [total] & 2 & 3 & 86 & 2 & 2 & 14 & 6 \\
\hline \multicolumn{8}{|l|}{951A72} \\
\hline 1 & 1 & 1 & 72 & 1 & 2 & 5 & 3 \\
\hline 2 & 1 & 1 & 7 & 1 & 1 & 3 & 2 \\
\hline 3 & 1 & 2 & 2 & 1 & 1 & 3 & 3 \\
\hline 4 & 2 & 1 & 3 & 1 & 1 & 3 & 1 \\
\hline 5 & 1 & 2 & 3 & 1 & 1 & 2 & 1 \\
\hline 6 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 7 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 12 & 1 & 1 & 2 & 2 & 1 & 1 & 1 \\
\hline 13 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 15 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline [total] & 11 & 12 & 95 & 11 & 11 & 23 & 15 \\
\hline \multicolumn{8}{|l|}{951A77} \\
\hline 1 & 2 & 3 & 86 & 2 & 2 & 13 & 6 \\
\hline 2 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline [total] & 3 & 4 & 87 & 3 & 3 & 15 & 7 \\
\hline \multicolumn{8}{|l|}{951A78} \\
\hline 1 & 2 & 3 & 81 & 2 & 2 & 12 & 5 \\
\hline 2 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 3 & 1 & 1 & 3 & 1 & 1 & 1 & 2 \\
\hline 5 & 1 & 1 & 1 & 1 & 1 & 3 & 1 \\
\hline 6 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline [total] & 6 & 7 & 90 & 6 & 6 & 18 & 10 \\
\hline \multicolumn{8}{|l|}{951AN1} \\
\hline 1 & 2 & 2 & 82 & 1 & 1 & 13 & 6 \\
\hline 2 & 1 & 1 & 1 & 2 & 1 & 1 & 1 \\
\hline 3 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 4 & 1 & 1 & 3 & 1 & 2 & 1 & 1 \\
\hline 5 & 1 & 1 & 2 & 1 & 1 & 2 & 1 \\
\hline 9 & 1 & 2 & 1 & 1 & 1 & 1 & 1 \\
\hline [total] & 7 & 8 & 91 & 7 & 7 & 19 & 11 \\
\hline \multicolumn{8}{|l|}{951AX4} \\
\hline 1 & 2 & 3 & 86 & 2 & 2 & 14 & 6 \\
\hline [total] & 2 & 3 & 86 & 2 & 2 & 14 & 6 \\
\hline \multicolumn{8}{|l|}{952G11} \\
\hline 1 & 1 & 1 & 54 & 1 & 1 & 1 & 2 \\
\hline 2 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 3 & 1 & 1 & 5 & 1 & 1 & 1 & 1 \\
\hline 4 & 2 & 1 & 4 & 1 & 1 & 1 & 1 \\
\hline 5 & 1 & 1 & 3 & 1 & 1 & 3 & 1 \\
\hline 6 & 1 & 1 & 4 & 1 & 1 & 2 & 1 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 14 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline [total] & 7 & 8 & 91 & 7 & 7 & 19 & 11 \\
\hline \multicolumn{8}{|l|}{952G77} \\
\hline 1 & 2 & 3 & 86 & 2 & 2 & 14 & 5 \\
\hline 2 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline [total] & 3 & 4 & 87 & 3 & 3 & 15 & 7 \\
\hline \multicolumn{8}{|l|}{952GX5} \\
\hline 1 & 2 & 3 & 86 & 2 & 2 & 14 & 6 \\
\hline [total] & 2 & 3 & 86 & 2 & 2 & 14 & 6 \\
\hline \multicolumn{8}{|l|}{952D35} \\
\hline 1 & 2 & 1 & 71 & 1 & 2 & 7 & 4 \\
\hline 2 & 1 & 2 & 5 & 1 & 1 & 3 & 3 \\
\hline 3 & 1 & 1 & 4 & 1 & 1 & 1 & 1 \\
\hline 4 & 1 & 1 & 2 & 1 & 1 & 3 & 1 \\
\hline 5 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 6 & 1 & 1 & 3 & 1 & 1 & 2 & 1 \\
\hline 7 & 1 & 2 & 2 & 2 & 1 & 2 & 1 \\
\hline 8 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 13 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 14 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 18 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline [total] & 12 & 13 & 96 & 12 & 12 & 24 & 16 \\
\hline \multicolumn{8}{|l|}{952EJ2} \\
\hline 1 & 2 & 3 & 86 & 2 & 2 & 14 & 6 \\
\hline [total] & 2 & 3 & 86 & 2 & 2 & 14 & 6 \\
\hline \multicolumn{8}{|l|}{963 CV 0} \\
\hline 1 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 2 & 1 & 1 & 5 & 1 & 1 & 1 & 1 \\
\hline 3 & 1 & 1 & 11 & 1 & 1 & 1 & 1 \\
\hline 4 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 5 & 1 & 1 & 6 & 1 & 1 & 1 & 1 \\
\hline 6 & 1 & 1 & 5 & 1 & 1 & 1 & 1 \\
\hline 7 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 8 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 9 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 10 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 14 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 15 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 16 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 17 & 1 & 1 & 4 & 1 & 1 & 1 & 1 \\
\hline 18 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 19 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 21 & 1 & 1 & 4 & 1 & 1 & 1 & 1 \\
\hline 22 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 25 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 29 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 30 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 32 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 33 & 1 & 1 & 4 & 1 & 1 & 1 & 1 \\
\hline 35 & 1 & 1 & 4 & 1 & 1 & 1 & 1 \\
\hline 38 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 39 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 43 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 44 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 48 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 51 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 52 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 54 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline [total] & 3 & 4 & 87 & 3 & 3 & 15 & 7 \\
\hline \multicolumn{8}{|l|}{AB1A38} \\
\hline 1 & 2 & 1 & 83 & 1 & 2 & 7 & 5 \\
\hline 2 & 1 & 2 & 4 & 1 & 1 & 4 & 1 \\
\hline 3 & 1 & 1 & 1 & 1 & 1 & 3 & 1 \\
\hline 4 & 1 & 2 & 1 & 2 & 1 & 1 & 1 \\
\hline 5 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 6 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 13 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline [total] & 8 & 9 & 92 & 8 & 8 & 20 & 12 \\
\hline \multicolumn{8}{|l|}{AB1AAR} \\
\hline 1 & 2 & 1 & 70 & 1 & 2 & 5 & 2 \\
\hline 2 & 1 & 1 & 3 & 1 & 1 & 1 & 2 \\
\hline 3 & 1 & 1 & 5 & 1 & 1 & 2 & 1 \\
\hline 4 & 1 & 1 & 3 & 1 & 1 & 2 & 1 \\
\hline 5 & 1 & 1 & 2 & 1 & 1 & 3 & 1 \\
\hline 6 & 1 & 2 & 2 & 1 & 1 & 1 & 1 \\
\hline 7 & 1 & 1 & 2 & 1 & 1 & 2 & 2 \\
\hline 8 & 1 & 1 & 4 & 1 & 1 & 1 & 2 \\
\hline 9 & 1 & 1 & 2 & 1 & 1 & 3 & 1 \\
\hline 10 & 1 & 1 & 1 & 2 & 1 & 1 & 1 \\
\hline 13 & 1 & 2 & 1 & 1 & 1 & 1 & 1 \\
\hline 14 & 1 & 1 & 2 & 1 & 1 & 1 & 2 \\
\hline 16 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 65 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline [total] & 15 & 16 & 99 & 15 & 15 & 27 & 19 \\
\hline \multicolumn{8}{|l|}{AB1AT6} \\
\hline 1 & 2 & 3 & 86 & 2 & 2 & 14 & 6 \\
\hline [total] & 2 & 3 & 86 & 2 & 2 & 14 & 6 \\
\hline \multicolumn{8}{|l|}{AH1BBC} \\
\hline 1 & 1 & 1 & 65 & 1 & 1 & 1 & 1 \\
\hline 2 & 1 & 1 & 2 & 1 & 1 & 2 & 1 \\
\hline 3 & 1 & 1 & 3 & 1 & 1 & 2 & 1 \\
\hline 4 & 1 & 1 & 4 & 1 & 1 & 1 & 1 \\
\hline 6 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 7 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 8 & 1 & 1 & 1 & 1 & 1 & 3 & 2 \\
\hline 9 & 1 & 2 & 2 & 1 & 1 & 2 & 1 \\
\hline 10 & 1 & 1 & 1 & 1 & 1 & 2 & 2 \\
\hline 11 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 14 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 16 & 1 & 2 & 2 & 1 & 1 & 1 & 2 \\
\hline 17 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 19 & 1 & 1 & 2 & 1 & 1 & 2 & 1 \\
\hline 22 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 24 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 34 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 40 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 44 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 46 & 1 & 1 & 3 & 1 & 1 & 1 & 1 \\
\hline 49 & 2 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 50 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 59 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 60 & 1 & 1 & 1 & 1 & 2 & 1 & 1 \\
\hline 65 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 96 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 103 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 105 & 1 & 1 & 1 & 2 & 1 & 1 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline [total] & 29 & 30 & 113 & 29 & 29 & 41 & 33 \\
\hline \multicolumn{8}{|l|}{AK2E04} \\
\hline 1 & 1 & 1 & 63 & 2 & 2 & 2 & 1 \\
\hline 2 & 1 & 1 & 6 & 1 & 1 & 2 & 1 \\
\hline 3 & 1 & 1 & 3 & 1 & 1 & 3 & 1 \\
\hline 4 & 1 & 1 & 2 & 1 & 1 & 2 & 1 \\
\hline 5 & 1 & 2 & 8 & 1 & 1 & 2 & 1 \\
\hline 6 & 1 & 1 & 3 & 1 & 1 & 1 & 2 \\
\hline 7 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 9 & 1 & 1 & 2 & 1 & 1 & 2 & 1 \\
\hline 10 & 2 & 1 & 1 & 1 & 1 & 3 & 1 \\
\hline 11 & 1 & 1 & 1 & 1 & 1 & 2 & 2 \\
\hline 13 & 1 & 1 & 2 & 1 & 1 & 1 & 2 \\
\hline 16 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 19 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 21 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 23 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 24 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 34 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 35 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline 38 & 1 & 2 & 1 & 1 & 1 & 1 & 1 \\
\hline 60 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline [total] & 21 & 22 & 105 & 21 & 21 & 33 & 25 \\
\hline \multicolumn{8}{|l|}{AK2E59} \\
\hline 1 & 1 & 3 & 82 & 1 & 2 & 10 & 6 \\
\hline 2 & 1 & 1 & 2 & 1 & 1 & 2 & 1 \\
\hline 3 & 1 & 1 & 2 & 2 & 1 & 1 & 1 \\
\hline 4 & 2 & 1 & 3 & 1 & 1 & 2 & 1 \\
\hline 5 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 9 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline [total] & 7 & 8 & 91 & 7 & 7 & 19 & 11 \\
\hline \multicolumn{8}{|l|}{AK2EBH} \\
\hline 1 & 2 & 3 & 86 & 2 & 2 & 14 & 6 \\
\hline [total] & 2 & 3 & 86 & 2 & 2 & 14 & 6 \\
\hline \multicolumn{8}{|l|}{AK2EBU} \\
\hline 1 & 2 & 3 & 86 & 2 & 2 & 14 & 6 \\
\hline [total] & 2 & 3 & 86 & 2 & 2 & 14 & 6 \\
\hline \multicolumn{8}{|l|}{AK2EBI} \\
\hline 1 & 2 & 3 & 85 & 2 & 2 & 10 & 6 \\
\hline 2 & 1 & 1 & 2 & 1 & 1 & 4 & 1 \\
\hline 4 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline [total] & 4 & 5 & 88 & 4 & 4 & 16 & 8 \\
\hline \multicolumn{8}{|l|}{AK2EBV} \\
\hline 1 & 2 & 3 & 86 & 2 & 2 & 14 & 6 \\
\hline [total] & 2 & 3 & 86 & 2 & 2 & 14 & 6 \\
\hline \multicolumn{8}{|l|}{AT1AAT} \\
\hline 1 & 2 & 3 & 86 & 2 & 2 & 14 & 6 \\
\hline [total] & 2 & 3 & 86 & 2 & 2 & 14 & 6 \\
\hline
\end{tabular}

\section*{Canopy Clusterer}

Note: The numbers in these brackets: Error! Reference source not found. show the instances that are appeared in the cluster.

\section*{Canopy clustering with 2 clusters}

T2 radius: 9,721
T1 radius: 12,151
Cluster 0:
MAN,32,2,1,1,1,1,1,3,2,2,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,1,1,1,1,1,2,2,1,1,1,1,1, \(1,1,1,1,4,3,1,1,1,1,1,2,1,5,1,2,1,1,2,4,1,1,1,11,1,1,1,1,1,1,2,1,2,1,1,1,1,1,1,1,2,1,2,1,4,1,1,1,1,1\) ,1,1,1,1,1,1,1,2,1,1,1,2,1,1,1,1,1,1,5,2,2,1,1,2,1,1,2,1,1,1,8,1,2,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, \(1,2,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,1,2,1,2,1,1\), \(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,2,1\), \(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,2,1,1,1,1,1\), \(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,2,1,1,1,5,1,1\), \(1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,\{52\}<0>\)

Cluster 1:
MAN,49,39,10,1,40,22,80,7,8,1,1,1,1,2,1,2,1,11,17,15,1,1,4,1,2,1,121,41,2,2,2,1,15,44,1,8,12 \(5,4,9,10,5,1,1,11,12,35,1,2,1,1,43,62,59,4,1,8,5,2,13,14,1,24,1,6,2,20,21,74,1,89,2,6,1,1,1,1,6\), \(1,20,1,10,1,1,11,1,5,6,1,23,1,15,73,60,1,1,2,1,4,12,1,2,1,1,3,7,1,1,2,6,1,5,1,10,8,5,2,2,1,1,43,2\) \(0,8,24,14,1,6,115,5,6,113,42,1,1,14,18,7,1,1,1,1,1,1,1,1,1,1,1,47,2,5,9,1,6,1,2,4,16,1,19,19,32\), \(19,1,1,2,1,1,5,1,1,6,5,2,2,1,1,3,6,2,5,4,1,9,1,1,1,2,1,3,5,2,39,32,15,27,1,3,1,1,1,1,1,1,3,1,1,1,1\), \(1,5,1,4,1,1,1,1,1,1,1,1,1,1,6,1,1,2,1,2,1,1,1,2,1,1,1,1,1,1,1,1,1,2,1,4,5,1,1,1,1,1,1,1,1,1,1,1,1,3\), \(11,13,1,1,1,1,1,1,1,1,5,1,7,1,6,1,1,2,1,1,1,1,1,2,1,1,23,1,1,1,1,1,2,1,5,13,1,1,1,1,1,19,1,26,6,1\), \(1,1,2,3,1,1,2,7,1,1,1,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,1,2,1,1,1,1,2,1,1,1,5,1,4,1,1,1,1,27,8,1,1\) ,1,1,1,1,8,1,57,1,1,1,1,1,1,6,1,46,1,1,1,1,1,1,1<1>
\(===\) Model and evaluation on training set \(===\)
Clustered Instances
0107 (99\%)
1 1 ( \(1 \%\) )

\section*{Canopy clustering with \(\mathbf{3}\) clusters}

T2 radius: 9,721
T1 radius: 12,151

Cluster 0:
MAN, 32,2,1,1,1,1,1,3,2,2,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,1,1,1,1,1,2,2,1,1,1,1,1, \(1,1,1,1,4,3,1,1,1,1,1,2,1,5,1,2,1,1,2,4,1,1,1,11,1,1,1,1,1,1,2,1,2,1,1,1,1,1,1,1,2,1,2,1,4,1,1,1,1,1\) ,1,1,1,1,1,1,1,2,1,1,1,2,1,1,1,1,1,1,5,2,2,1,1,2,1,1,2,1,1,1,8,1,2,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, \(1,2,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,1,2,1,2,1,1\), \(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,2,1\), \(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,2,1,1,1,1,1\), \(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,2,1,1,1,5,1,1\), \(1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,\{52\}<0,2>\)

Cluster 1:
MAN,49,39,10,1,40,22,80,7,8,1,1,1,1,2,1,2,1,11,17,15,1,1,4,1,2,1,121,41,2,2,2,1,15,44,1,8,12 \(5,4,9,10,5,1,1,11,12,35,1,2,1,1,43,62,59,4,1,8,5,2,13,14,1,24,1,6,2,20,21,74,1,89,2,6,1,1,1,1,6\), \(1,20,1,10,1,1,11,1,5,6,1,23,1,15,73,60,1,1,2,1,4,12,1,2,1,1,3,7,1,1,2,6,1,5,1,10,8,5,2,2,1,1,43,2\) \(0,8,24,14,1,6,115,5,6,113,42,1,1,14,18,7,1,1,1,1,1,1,1,1,1,1,1,47,2,5,9,1,6,1,2,4,16,1,19,19,32\), \(19,1,1,2,1,1,5,1,1,6,5,2,2,1,1,3,6,2,5,4,1,9,1,1,1,2,1,3,5,2,39,32,15,27,1,3,1,1,1,1,1,1,3,1,1,1,1\), \(1,5,1,4,1,1,1,1,1,1,1,1,1,1,6,1,1,2,1,2,1,1,1,2,1,1,1,1,1,1,1,1,1,2,1,4,5,1,1,1,1,1,1,1,1,1,1,1,1,3\), \(11,13,1,1,1,1,1,1,1,1,5,1,7,1,6,1,1,2,1,1,1,1,1,2,1,1,23,1,1,1,1,1,2,1,5,13,1,1,1,1,1,19,1,26,6,1\), \(1,1,2,3,1,1,2,7,1,1,1,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,1,2,1,1,1,1,2,1,1,1,5,1,4,1,1,1,1,27,8,1,1\) ,1,1,1,1,8,1,57,1,1,1,1,1,1,6,1,46,1,1,1,1,1,1,1<1>

Cluster 2:
MAN,72,12,9,1,1,1,14,3,2,2,1,1,1,1,1,1,1,1,7,8,1,1,6,3,1,1,3,1,1,1,1,1,1,2,1,1,23,1,1,2,2,1,1,5, \(1,1,1,1,1,1,7,3,18,1,1,1,1,2,3,7,1,15,1,1,1,16,6,24,1,19,1,1,1,1,1,1,2,1,9,1,1,1,2,1,1,6,2,1,11,1\), \(1,21,24,1,1,5,1,1,1,1,1,1,1,2,1,3,1,2,1,1,1,1,9,11,3,2,2,1,1,15,1,1,8,1,1,1,8,1,2,28,12,1,1,1,3,2\), \(1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,8,5,6,1,1,1,1,1,1,2,1,1,2,1,1,1,1,1,1,1,2,1,4,1,3,1,1,1\), \(1,1,1,1,1,2,10,12,4,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,1,1,1,1,1\), \(1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,1,2,1,1,1,1,1,1,1,1,1,1,1,2\), \(1,1,1,1,1,2,5,1,4,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2\), \(1,1,1,1,2,1,1,1,5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,1,14,3,1,1,1,1,1,1<0,2>\)
\(===\) Model and evaluation on training set \(===\)

\section*{Clustered Instances}
\(0 \quad 94\) ( 87\%)
1 ( \(1 \%\) )

\section*{Canopy clustering with 4 clusters}

T2 radius: 9,721
T1 radius: 12,151

Cluster 0:
MAN,32,2,1,1,1,1,1,3,2,2,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,1,1,1,1,1,2,2,1,1,1,1,1, \(1,1,1,1,4,3,1,1,1,1,1,2,1,5,1,2,1,1,2,4,1,1,1,11,1,1,1,1,1,1,2,1,2,1,1,1,1,1,1,1,2,1,2,1,4,1,1,1,1,1\) ,1,1,1,1,1,1,1,2,1,1,1,2,1,1,1,1,1,1,5,2,2,1,1,2,1,1,2,1,1,1,8,1,2,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, \(1,2,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,1,2,1,2,1,1\), \(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,2,1\), \(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,2,1,1,1,1,1\), \(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,2,1,1,1,5,1,1\), \(1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,\{52\}<0,2>\)

Cluster 1:
MAN,49,39,10,1,40,22,80,7,8,1,1,1,1,2,1,2,1,11,17,15,1,1,4,1,2,1,121,41,2,2,2,1,15,44,1,8,12 5,4,9,10,5,1,1,11,12,35,1,2,1,1,43,62,59,4,1,8,5,2,13,14,1,24,1,6,2,20,21,74,1,89,2,6,1,1,1,1,6, \(1,20,1,10,1,1,11,1,5,6,1,23,1,15,73,60,1,1,2,1,4,12,1,2,1,1,3,7,1,1,2,6,1,5,1,10,8,5,2,2,1,1,43,2\) \(0,8,24,14,1,6,115,5,6,113,42,1,1,14,18,7,1,1,1,1,1,1,1,1,1,1,1,47,2,5,9,1,6,1,2,4,16,1,19,19,32\), \(19,1,1,2,1,1,5,1,1,6,5,2,2,1,1,3,6,2,5,4,1,9,1,1,1,2,1,3,5,2,39,32,15,27,1,3,1,1,1,1,1,1,3,1,1,1,1\), \(1,5,1,4,1,1,1,1,1,1,1,1,1,1,6,1,1,2,1,2,1,1,1,2,1,1,1,1,1,1,1,1,1,2,1,4,5,1,1,1,1,1,1,1,1,1,1,1,1,3\), \(11,13,1,1,1,1,1,1,1,1,5,1,7,1,6,1,1,2,1,1,1,1,1,2,1,1,23,1,1,1,1,1,2,1,5,13,1,1,1,1,1,19,1,26,6,1\), \(1,1,2,3,1,1,2,7,1,1,1,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,1,2,1,1,1,1,2,1,1,1,5,1,4,1,1,1,1,27,8,1,1\) ,1,1,1,1,8,1,57,1,1,1,1,1,1,6,1,46,1,1,1,1,1,1,1<1>

Cluster 2:
MAN,72,12,9,1,1,1,14,3,2,2,1,1,1,1,1,1,1,1,7,8,1,1,6,3,1,1,3,1,1,1,1,1,1,2,1,1,23,1,1,2,2,1,1,5, \(1,1,1,1,1,1,7,3,18,1,1,1,1,2,3,7,1,15,1,1,1,16,6,24,1,19,1,1,1,1,1,1,2,1,9,1,1,1,2,1,1,6,2,1,11,1\), \(1,21,24,1,1,5,1,1,1,1,1,1,1,2,1,3,1,2,1,1,1,1,9,11,3,2,2,1,1,15,1,1,8,1,1,1,8,1,2,28,12,1,1,1,3,2\), \(1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,8,5,6,1,1,1,1,1,1,2,1,1,2,1,1,1,1,1,1,1,2,1,4,1,3,1,1,1\), \(1,1,1,1,1,2,10,12,4,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,1,1,1,1,1\), \(1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,1,2,1,1,1,1,1,1,1,1,1,1,1,2\), \(1,1,1,1,1,2,5,1,4,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2\), \(1,1,1,1,2,1,1,1,5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,1,14,3,1,1,1,1,1,1<0,2>\)

Cluster 3:
WOMAN, 40, 89,39, 1, 15,33,162,49,20,38, 1, 1, 1, 16, 1,3,3,8,45, 40, 1, 1, 15, 6, 9, 1, 111, 13, 8, 3, 1, 1, 10 ,29,3,19, \(85,25,38,61,12,1,1,22,1,86,7,2,1,6,31,182,100,14,1,64,10,2,24,47,1,62,1,1,2,42,40,15\) \(7,1,131,10,6,7,4,4,5,4,1,37,1,14,1,1,1,7,21,11,1,51,1,104,55,152,1,1,1,1,17,9,6,6,1,1,2,5,14,1\), \(2,21,1,1,1,37,20,42,2,2,2,1,43,22,59,88,36,9,5,54,11,2,64,78,1,1,31,23,3,2,2,1,1,1,1,1,1,3,1,1\), \(41,9,17,20,1,12,1,1,7,20,1,27,36,73,26,1,1,5,6,13,8,1,1,10,4,6,5,2,1,9,15,2,3,14,1,21,1,1,5,10\), \(1,11,32,7,21,47,29,41,6,5,2,1,1,1,1,2,1,1,1,1,1,2,6,1,1,9,4,1,1,1,1,1,4,4,2,14,1,1,4,1,1,1,1,1,8,1\) ,3,2,1,4,6,6,14,8,20,5,1,14,8,1,1,1,1,1,1,5,1,1,1,1,1,27,5,1,1,1,1,5,1,1,1,11,5,17,1,5,6,13,3,4,1, \(1,1,1,3,1,3,2,1,1,1,6,1,8,4,3,21,10,5,1,5,6,10,3,16,3,1,1,3,6,2,1,1,2,4,2,1,1,1,1,1,1,1,1,1,1,1,1,1\) , \(1,1,1,1,1,1,1,1,2,1,1,1,1,2,1,1,1,10,1,1,1,1,1,1,21,1,1,1,1,1,1,1,1,1,245,1,1,1,1,1,1,5,1,17,1,1,1\) , \(1,1,1,1<3>\)
\(===\) Model and evaluation on training set \(===\)
Clustered Instances
```

0 93(86%)
1 (1%)
2 13(12%)
3 1(1%)

```

\section*{Canopy clustering with 5 clusters}

T2 radius: 9,721
T1 radius: 12,151

Cluster 0:
MAN,32,2,1,1,1,1,1,3,2,2,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,1,1,1,1,1,2,2,1,1,1,1,1, 1,1,1,1,4,3,1,1,1,1,1,2,1,5,1,2,1,1,2,4,1,1,1,11,1,1,1,1,1,1,2,1,2,1,1,1,1,1,1,1,2,1,2,1,4,1,1,1,1,1 ,1,1,1,1,1,1,1,2,1,1,1,2,1,1,1,1,1,1,5,2,2,1,1,2,1,1,2,1,1,1, 8, 1,2,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, \(1,2,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,1,2,1,2,1,1\), \(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,2,1\), \(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,2,1,1,1,1,1\), \(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,2,1,1,1,5,1,1\), \(1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,\{52\}<0,2,4>\)

Cluster 1:
MAN,49,39,10,1,40,22,80,7,8,1,1,1,1,2,1,2,1,11,17,15,1,1,4,1,2,1,121,41,2,2,2,1,15,44,1,8,12 5,4,9,10,5,1,1,11,12,35,1,2,1,1,43,62,59,4,1,8,5,2,13,14,1,24,1,6,2,20,21,74,1,89,2,6,1,1,1,1,6, \(1,20,1,10,1,1,11,1,5,6,1,23,1,15,73,60,1,1,2,1,4,12,1,2,1,1,3,7,1,1,2,6,1,5,1,10,8,5,2,2,1,1,43,2\) \(0,8,24,14,1,6,115,5,6,113,42,1,1,14,18,7,1,1,1,1,1,1,1,1,1,1,1,47,2,5,9,1,6,1,2,4,16,1,19,19,32\), \(19,1,1,2,1,1,5,1,1,6,5,2,2,1,1,3,6,2,5,4,1,9,1,1,1,2,1,3,5,2,39,32,15,27,1,3,1,1,1,1,1,1,3,1,1,1,1\), \(1,5,1,4,1,1,1,1,1,1,1,1,1,1,6,1,1,2,1,2,1,1,1,2,1,1,1,1,1,1,1,1,1,2,1,4,5,1,1,1,1,1,1,1,1,1,1,1,1,3\), \(11,13,1,1,1,1,1,1,1,1,5,1,7,1,6,1,1,2,1,1,1,1,1,2,1,1,23,1,1,1,1,1,2,1,5,13,1,1,1,1,1,19,1,26,6,1\),

1,1,2,3,1,1,2,7,1,1,1,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,1,2,1,1,1,1,2,1,1,1,5,1,4,1,1,1,1,27,8,1,1 ,1,1,1,1,8,1,57,1,1,1,1,1,1,6,1,46,1,1,1,1,1,1,1<1>

Cluster 2:
MAN,72,12,9,1,1,1,14,3,2,2,1,1,1,1,1,1,1,1,7,8,1,1,6,3,1,1,3,1,1,1,1,1,1,2,1,1,23,1,1,2,2,1,1,5, 1,1,1,1,1,1,7,3,18,1,1,1,1,2,3,7,1,15,1,1,1,16,6,24,1,19,1,1,1,1,1,1,2,1,9,1,1,1,2,1,1,6,2,1,11,1, \(1,21,24,1,1,5,1,1,1,1,1,1,1,2,1,3,1,2,1,1,1,1,9,11,3,2,2,1,1,15,1,1,8,1,1,1,8,1,2,28,12,1,1,1,3,2\), \(1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,8,5,6,1,1,1,1,1,1,2,1,1,2,1,1,1,1,1,1,1,2,1,4,1,3,1,1,1\), \(1,1,1,1,1,2,10,12,4,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,1,1,1,1,1\), \(1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,1,2,1,1,1,1,1,1,1,1,1,1,1,2\), \(1,1,1,1,1,2,5,1,4,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2\), \(1,1,1,1,2,1,1,1,5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,1,14,3,1,1,1,1,1,1<0,2,4>\)

Cluster 3:
WOMAN,40,89,39,1,15,33,162,49,20,38,1,1,1,16,1,3,3,8,45,40,1,1,15,6,9,1,111,13,8,3,1,1,10 ,29,3,19,85,25,38,61,12,1,1,22,1,86,7,2,1,6,31,182,100,14,1,64,10,2,24,47,1, 62, 1, 1,2,42,40,15 \(7,1,131,10,6,7,4,4,5,4,1,37,1,14,1,1,1,7,21,11,1,51,1,104,55,152,1,1,1,1,17,9,6,6,1,1,2,5,14,1\), \(2,21,1,1,1,37,20,42,2,2,2,1,43,22,59,88,36,9,5,54,11,2,64,78,1,1,31,23,3,2,2,1,1,1,1,1,1,3,1,1\), \(41,9,17,20,1,12,1,1,7,20,1,27,36,73,26,1,1,5,6,13,8,1,1,10,4,6,5,2,1,9,15,2,3,14,1,21,1,1,5,10\), 1,11,32,7,21,47,29,41,6,5,2,1,1,1,1,2,1,1,1,1,1,2,6,1,1,9,4,1,1,1,1,1,4,4,2,14,1,1,4,1,1,1,1,1,8,1 ,3,2,1,4,6,6,14,8,20,5,1,14,8,1,1,1,1,1,1,5,1,1,1,1,1,27,5,1,1,1,1,5,1,1,1,11,5,17,1,5,6,13,3,4,1, 1,1,1,3,1,3,2,1,1,1,6,1,8,4,3,21,10,5,1,5,6,10,3,16,3,1,1,3,6,2,1,1,2,4,2,1,1,1,1,1,1,1,1,1,1,1,1,1 ,1,1,1,1,1,1,1,1,2,1,1,1,1,2,1,1,1,10,1,1,1,1,1,1,21,1,1,1,1,1,1,1,1,1,245,1,1,1,1,1,1,5,1,17,1,1,1 ,1,1,1,1 <3>

Cluster 4:
WOMAN, \(81,12,12,1,1,12,7,11,4,2,1,1,1,1,1,1,1,2,1,1,1,1,4,7,1,1,11,1,1,1,1,1,1,4,1,2,4,1,1,2,4\) ,1,1,1,1,5,1,2,1,1,11,4,15,1,1,1,1,2,2,9,1,12,1,1,2,2,3,20,1,14,1,1,1,1,9,1,2,1,2,1,1,1,1,1,1,8,2,1
 \(1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,3,8,2,1,1,1,6,1,1,1,1,1,2,1,1,1,1,1,5,1,1,1,1,4,1,1,1\), \(1,1,5,1,1,2,13,2,8,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,1,1,1,1,1,1\) ,1,2,1,1,1,2,1,1,2,1,1,8,1,1,1,1,1,1,1,1,1,1,1,8,1,1,1,1,1,1,1,1,1,1,1,1,2,1,2,1,1,1,1,1,1,1,1,1,1,1, \(1,1,1,1,1,3,1,1,1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1\), \(1,1,1,2,1,1,1,5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,14,1,1,1,1,1,1,3,1,1,1,1,1,1,1,1,1<0,2,4>\)
\(===\) Model and evaluation on training set \(===\)
Clustered Instances
\begin{tabular}{cc}
0 & \(88(81 \%)\) \\
1 & \(1(1 \%)\) \\
2 & \(12(11 \%)\) \\
3 & \(1(1 \%)\) \\
4 & \(6(6 \%)\)
\end{tabular}```


[^0]:    ${ }^{1}$ Source: https://www.sap.com/mena-ar/insights/what-is-data-mining.html
    ${ }^{2}$ Source: https://www.investopedia.com/terms/d/datamining.asp
    ${ }^{3}$ Source: https://www.coursehero.com/file/p479j4o/Directed-vs-Undirected-data-mining-Directed-data-mining-attempts-to-explain-or/

[^1]:    ${ }^{4}$ Source: https://searchbusinessanalytics.techtarget.com/definition/data-mining

[^2]:    ${ }^{5}$ Source: https://www.tutorialspoint.com/weka/what is weka.htm
    ${ }^{6}$ Source: http://www.sthda.com/english/wiki/regression-analysis-essentials-for-machine-learning

[^3]:    ${ }^{7}$ Source: https://www.javatpoint.com/regression-vs-classification-in-machinelearning?fbclid=IwAROMJoSS1zxED1LmJnEJyOTY3XIpTszCeJGkV2 Rdz AVMo8ByCPp5cdgjo
    ${ }^{8}$ Source: http://www.sthda.com/english/wiki/regression-analysis-essentials-for-machine-learning

[^4]:    ${ }^{9}$ Source: https://www.statisticshowto.com/probability-and-statistics/regression-analysis/rmse-root-mean-square-error/
    ${ }^{10}$ Source:https://weka.sourceforge.io/doc.dev/weka/classifiers/functions/LinearRegression.html

[^5]:    ${ }^{11}$ Source:https://weka.sourceforge.io/doc.dev/weka/classifiers/functions/GaussianProcesses.html
    ${ }^{12}$ Source: https://machinelearningmastery.com/use-regression-machine-learning-algorithmsweka/?fbclid=IwAR3PWrbfejBgXpV4YmADPnKm7F5h1Ubxh8zNCSa75EfYoDL3s qmVYL-V4E
    ${ }^{13}$ Source:https://weka.sourceforge.io/doc.dev/weka/classifiers/functions/MultilayerPerceptron.html
    ${ }^{14}$ Source:https://machinelearningmastery.com/support-vector-machines-for-machine-learning/

[^6]:    ${ }^{15}$ Source: https://towardsdatascience.com/an-introduction-to-k-nearest-neighbours-algorithm3ddc99883acd
    ${ }^{16}$ Source: https://machinelearningmastery.com/use-regression-machine-learning-algorithmsweka/?fbclid=IwAR3PWrbfejBgXpV4YmADPnKm7F5h1Ubxh8zNCSa75EfYoDL3s qmVYL-V4E

[^7]:    ${ }^{17}$ Source: https://weka.sourceforge.io/doc.dev/weka/classifiers/rules/M5Rules.html
    ${ }^{18}$ Source: https://weka.sourceforge.io/doc.dev/weka/classifiers/rules/ZeroR.html

[^8]:    ${ }^{19}$ Source: https://www.youtube.com/watch?v=v6VJ2RO66Ag
    ${ }^{20}$ Source: https://weka.sourceforge.io/doc.dev/weka/classifiers/trees/RandomTree.html
    ${ }^{21}$ Source: https://weka.sourceforge.io/doc.dev/weka/classifiers/trees/REPTree.html
    ${ }^{22}$ Source: https://weka.sourceforge.io/doc.dev/weka/classifiers/meta/AdditiveRegression.html
    ${ }^{23}$ Source: https://weka.sourceforge.io/doc.dev/weka/classifiers/meta/RegressionByDiscretization.html

[^9]:    ${ }^{24}$ Source:
    https://weka.sourceforge.io/doc.dev/weka/classifiers/meta/RandomizableFilteredClassifier.html
    ${ }^{25}$ Source: https://handbook-5-
    1.cochrane.org/chapter 9/9 411 use of vote counting for meta analysis.htm
    ${ }^{26}$ Source: https://weka.sourceforge.io/doc.dev/weka/classifiers/meta/Stacking.html
    ${ }^{27}$ Source:
    https://weka.sourceforge.io/doc.dev/weka/classifiers/meta/WeightedlnstancesHandlerWrapper.ht ml
    ${ }^{28}$ Source: https://weka.sourceforge.io/doc.dev/weka/classifiers/meta/RandomSubSpace.html

[^10]:    ${ }^{29}$ Source: https://weka.sourceforge.io/doc.dev/weka/classifiers/meta/CVParameterSelection.html
    ${ }^{30}$ Source: https://weka.sourceforge.io/doc.stable/weka/classifiers/meta/Bagging.html
    ${ }^{31}$ Source: https://weka.sourceforge.io/doc.dev/weka/classifiers/meta/MultiScheme.html
    ${ }^{32}$ Source: https://weka.sourceforge.io/doc.dev/weka/classifiers/meta/RandomCommittee.html
    ${ }^{33}$ Source: https://weka.sourceforge.io/doc.dev/weka/classifiers/misc/InputMappedClassifier.html

[^11]:    ${ }^{34}$ Source: https://www.javatpoint.com/classification-algorithm-in-machine-learning

[^12]:    ${ }^{35}$ Source: https://www.javatpoint.com/regression-vs-classification-in-machinelearning?fbclid=IwAROMJoSS1zxED1LmJnEJy0TY3XIpTszCeJGkV2 Rdz AVMo8ByCPp5cdgjo
    ${ }^{36}$ Source: https://machinelearningmastery.com/classification-versus-regression-in-machine-learning/?fbclid=IwAR2bkzualYkl8YkQcKhm2ie5yiYs309-
    Ybt4VhVquc4vIJG2yfDq3H52duw\#:~:text=Classification\%20is\%20the\%20task\%20of,of\%20predicting\% 20a\%20continuous\%20quantity

[^13]:    ${ }^{37}$ Source-Interpreting Results and Accuracy in Weka:
    https://www.youtube.com/watch?v=gfhGfnkypCY

[^14]:    ${ }^{38}$ Source: https://commons.wikimedia.org/w/index.php?curid=36926283

[^15]:    ${ }^{39}$ Source: https://www.javatpoint.com/classification-algorithm-in-machine-learning

[^16]:    ${ }^{40}$ Source: https://medium.com/@jorgesleonel/classification-methods-in-machine-learning-
    58ce63173db8

[^17]:    ${ }^{41}$ Source: https://weka.sourceforge.io/doc.dev/weka/classifiers/functions/SMO.html
    ${ }^{42}$ Source:https://weka.sourceforge.io/doc.dev/weka/classifiers/functions/MultilayerPerceptron.html
    ${ }^{43}$ Source:https://www.statlect.com/fundamentals-of-statistics/logistic-classification-model

[^18]:    ${ }^{44}$ Source: https://weka.sourceforge.io/doc.dev/weka/classifiers/functions/Logistic.html
    ${ }^{45}$ Source:https://www.tutorialspoint.com/scikit learn/scikit learn stochastic gradient descent.htm
    ${ }^{46}$ Source:https://weka.sourceforge.io/doc.dev/weka/classifiers/functions/SGD.html

[^19]:    ${ }^{47}$ Source:https://weka.sourceforge.io/doc.dev/weka/classifiers/functions/VotedPerceptron.html

[^20]:    ${ }^{48}$ Source: $\underline{h t t p s: / / e n . w i k i p e d i a . o r g / w i k i / N a i v e ~ B a y e s ~ c l a s s i f i e r ~}$

[^21]:    ${ }^{49}$ Source: https://en.wikipedia.org/wiki/Bayesian network

[^22]:    ${ }^{50}$ Source: https://medium.com/@analyttica/what-is-bayesian-network-classifier-4d2771f91f63
    ${ }^{51}$ Source:https://weka.sourceforge.io/doc.dev/weka/classifiers/bayes/NaiveBayesMultinomialText.ht ml
    ${ }^{52}$ Source: https://www.sen.uni-konstanz.de/research/research/tools/k-star-algorithm/
    ${ }^{53}$ Source: https://medium.com/swlh/k-nearest-neighbor-ca2593d7a3c4

[^23]:    ${ }^{54}$ Source: https://towardsdatascience.com/an-introduction-to-k-nearest-neighbours-algorithm3ddc99883acd
    ${ }^{55}$ Source: https://en.wikipedia.org/wiki/Multiclass classification
    ${ }^{56}$ Source: https://www.mit.edu/~9.520/spring09/Classes/multiclass.pdf
    ${ }^{57}$ Source:https://weka.sourceforge.io/doc.dev/weka/classifiers/meta/MultiClassClassifierUpdateable. html
    ${ }^{58}$ Source:
    https://weka.sourceforge.io/doc.dev/weka/classifiers/meta/RandomizableFilteredClassifier.html

[^24]:    ${ }^{59}$ Source: https://handbook-5-
    1.cochrane.org/chapter 9/9 4 11 use of vote counting for meta analysis.htm
    ${ }^{60}$ Source: https://weka.sourceforge.io/doc.dev/weka/classifiers/meta/Stacking.html
    ${ }^{61}$ Source:
    https://weka.sourceforge.io/doc.dev/weka/classifiers/meta/WeightedlnstancesHandlerWrapper.ht ml
    ${ }^{62}$ Source: https://weka.sourceforge.io/doc.dev/weka/classifiers/meta/RandomSubSpace.htm
    ${ }^{63}$ Source: https://weka.sourceforge.io/doc.dev/weka/classifiers/meta/CVParameterSelection.html

[^25]:    ${ }^{64}$ Source: https://weka.sourceforge.io/doc.stable/weka/classifiers/meta/Bagging.html
    ${ }^{65}$ Source: https://weka.sourceforge.io/doc.dev/weka/classifiers/meta/MultiScheme.html
    ${ }^{66}$ Source: https://weka.sourceforge.io/doc.dev/weka/classifiers/meta/RandomCommittee.html
    ${ }^{67}$ Source: https://weka.sourceforge.io/doc.dev/weka/classifiers/misc/InputMappedClassifier.html
    ${ }^{68}$ Source: https://weka.sourceforge.io/doc.dev/weka/classifiers/rules/JRip.html
    ${ }^{69}$ Source: https://weka.sourceforge.io/doc.dev/weka/classifiers/rules/ZeroR.html
    ${ }^{70}$ Source: https://weka.sourceforge.io/doc.dev/weka/classifiers/rules/OneR.html
    ${ }^{71}$ Source: https://weka.sourceforge.io/doc.dev/weka/classifiers/rules/PART.html

[^26]:    ${ }^{72}$ Source: https://www.youtube.com/watch?v=v6VJ2RO66Ag

[^27]:    ${ }^{73}$ Source: https://weka.sourceforge.io/doc.dev/weka/classifiers/trees/RandomTree.htm
    ${ }^{74}$ Source: https://weka.sourceforge.io/doc.dev/weka/classifiers/trees/REPTree.html

[^28]:    ${ }^{75}$ Source: https://weka.sourceforge.io/doc.dev/weka/classifiers/trees/LMT.html

[^29]:    ${ }^{76}$ Source: https://www.javatpoint.com/classification-vs-clustering-in-data-mining
    ${ }^{77}$ Source: https://www.geeksforgeeks.org/ml-classification-vs-clustering/

[^30]:    ${ }^{78}$ Source: https://www.youtube.com/watch?v=IQ39ZRFfYbI\&t=10s
    ${ }^{79}$ Source: https://www.youtube.com/watch?v=4b5d3muPQmA
    ${ }^{80}$ Source: https://www.youtube.com/watch?v=HCAOZ9kL7Hg

[^31]:    ${ }^{81}$ Source: https://weka.sourceforge.io/doc.dev/weka/clusterers/EM.html
    ${ }^{82}$ Normal or Gaussian distribution is the most common distribution for independent, randomly generated variables. A random variable is a normally distributed variable with mean $\mu=0$ and standard deviation $\sigma=1$.
    ${ }^{83}$ Source: https://www.youtube.com/watch?v=REypi2sy 5U
    ${ }^{84}$ Source: https://www.youtube.com/watch?v=HCAOZ9kL7Hg
    ${ }^{85}$ Source: https://www.youtube.com/watch?v=7xHsRkOdVwo

[^32]:    ${ }^{86}$ Source: $\underline{h t t p s: / / w e k a . s o u r c e f o r g e . i o / d o c . d e v / w e k a / c l u s t e r e r s / F i l t e r e d C l u s t e r e r . h t m l ~}$

[^33]:    ${ }^{87}$ Source: $\mathrm{https}: / /$ weka.sourceforge.io/doc.dev/weka/clusterers/MakeDensityBasedClusterer.html

[^34]:    ${ }^{88}$ Source: https://www.youtube.com/watch?v=f4pZ9PHNdcM

[^35]:    ${ }^{89}$ Source: https://weka.sourceforge.io/doc.dev/weka/clusterers/Canopy.html

[^36]:    ${ }^{90}$ Source: DePaul University's website: http://facweb.cs.depaul.edu/mobasher/classes/ect584/weka/associate.html
    ${ }^{91}$ Source: DePaul University's website: http://facweb.cs.depaul.edu/mobasher/classes/ect584/weka/associate.html
    92 Source: DePaul University's website: http://facweb.cs.depaul.edu/mobasher/classes/ect584/weka/associate.html

[^37]:    ${ }^{93}$ Source: DePaul University's website:
    http://facweb.cs.depaul.edu/mobasher/classes/ect584/weka/associate.html

[^38]:    ${ }^{94}$ A training set is a subset of a dataset that is used to train a model and a test set is a subset of a dataset that is used to test the trained model. Source: https://developers.google.com/machine-learning/crash-course/training-and-test-sets/splitting-data

[^39]:    ${ }^{95}$ Source: https://weka.sourceforge.io/doc.dev/weka/classifiers/rules/M5Rules.html

[^40]:    ${ }^{96}$ A "kernel" is usually used to refer to a method of using a linear classifier to solve a non-linear problem.
    ${ }^{97}$ Source:https://machinelearningmastery.com/support-vector-machines-for-machine-learning/

[^41]:    ${ }^{98}$ Source:https://weka.sourceforge.io/doc.dev/weka/classifiers/functions/LinearRegression.html

[^42]:    ${ }^{99} \mathrm{~A}$ "kernel" is usually used to refer to a method of using a linear classifier to solve a non-linear problem.

[^43]:    ${ }^{100}$ Source:https://weka.sourceforge.io/doc.dev/weka/classifiers/functions/GaussianProcesses.htm|

[^44]:    ${ }^{101}$ Source:https://weka.sourceforge.io/doc.dev/weka/classifiers/meta/MultiClassClassifierUpdateable .html

[^45]:    ${ }^{102}$ Source: $\underline{h t t p s: / / w e k a . s o u r c e f o r g e . i o / d o c . d e v / w e k a / c l a s s i f i e r s / m e t a / R a n d o m C o m m i t t e e . h t m l ~}$

[^46]:    ${ }^{103}$ Source: https://www.javatpoint.com/classification-vs-clustering-in-data-mining

[^47]:    ${ }^{104}$ Source: https://www.youtube.com/watch?v=4b5d3muPQmA
    ${ }^{105}$ Source: https://www.youtube.com/watch?v=HCA0Z9kL7Hg

[^48]:    ${ }^{106}$ Source: https://www.youtube.com/watch?v=HCA0Z9kL7Hg

[^49]:    107 Source: https://www.youtube.com/watch?v=f4pZ9PHNdcM

[^50]:    ${ }^{108}$ Source: https://weka.sourceforge.io/doc.dev/weka/classifiers/rules/M5Rules.html

[^51]:    ${ }^{109}$ Source:https://weka.sourceforge.io/doc.dev/weka/classifiers/functions/LinearRegression.html

[^52]:    ${ }^{110}$ Source:https://machinelearningmastery.com/support-vector-machines-for-machine-learning/

[^53]:    ${ }^{111}$ A "kernel" is usually used to refer to a method of using a linear classifier to solve a non-linear problem.

[^54]:    ${ }^{112}$ Source:https://weka.sourceforge.io/doc.dev/weka/classifiers/functions/GaussianProcesses.htm|

[^55]:    ${ }^{113}$ Source: $\underline{h t t p s: / / w e k a . s o u r c e f o r g e . i o / d o c . d e v / w e k a / c l a s s i f i e r s / m e t a / R a n d o m C o m m i t t e e . h t m l ~}$

[^56]:    ${ }^{114}$ Source: https://towardsdatascience.com/an-introduction-to-k-nearest-neighbours-algorithm3ddc99883acd

[^57]:    ${ }^{115}$ Source: https://machinelearningmastery.com/use-regression-machine-learning-algorithms$\frac{\text { weka/?fbclid=IwAR3PWrbfejBgXpV4YmADPnKm7F5h1Ubxh8zNCSa75EfYoDL3s amVYL-V4E }}{116}$

    Source:https://weka.sourceforge.io/doc.dev/weka/classifiers/functions/MultilayerPerceptron.htm|

[^58]:    ${ }^{117}$ Source: https://www.youtube.com/watch?v=4b5d3muPQmA
    ${ }^{118}$ Source: https://www.youtube.com/watch?v=HCA0Z9kL7Hg

[^59]:    119 Source: https://www.youtube.com/watch?v=HCAOZ9kL7Hg

[^60]:    ${ }^{120}$ Source: https://www.youtube.com/watch?v=f4pZ9PHNdcM

[^61]:    ${ }^{121}$ A training set is a subset of a dataset that is used to train a model and a test set is a subset of a dataset that is used to test the trained model. Source: https://developers.google.com/machine-learning/crash-course/training-and-test-sets/splitting-data

[^62]:    ${ }^{122}$ Source: https://towardsdatascience.com/an-introduction-to-k-nearest-neighbours-algorithm3ddc99883acd

[^63]:    ${ }^{123}$ Source: https://calculus.subwiki.org/wiki/Logarithmic scoring rule

[^64]:    ${ }^{124}$ Source: https://en.wikipedia.org/wiki/Scoring rule

[^65]:    ${ }^{125}$ Source: https://towardsdatascience.com/an-introduction-to-k-nearest-neighbours-algorithm3ddc99883acd

[^66]:    ${ }^{126}$ Source:
    https://weka.sourceforge.io/doc.dev/weka/classifiers/meta/RandomizableFilteredClassifier.html

[^67]:    ${ }^{127}$ Source:https://weka.sourceforge.io/doc.dev/weka/classifiers/meta/MultiClassClassifierUpdateable .html
    ${ }^{128}$ The hinge loss is a type of cost function that penalizes misclassified samples and correctly classified ones that are within a defined margin from the decision boundary. The hinge loss function is most commonly employed to regularize soft margin support vector machines. The degree of regularization determines how aggressively the classifier tries to prevent misclassifications and can be controlled with an additional parameter C. Hard margin SVMs do not allow for misclassifications and do not require regularization. Source: https://programmathically.com/understanding-hinge-loss-and-the-svm-cost-function/

[^68]:    ${ }^{129}$ Source: https://towardsdatascience.com/https-medium-com-pupalerushikesh-svm-f4b42800e989
    ${ }^{130}$ Source: https://monkeylearn.com/blog/introduction-to-support-vector-machines-svm/
    ${ }^{131}$ A "kernel" is usually used to refer to a method of using a linear classifier to solve a non-linear problem.
    ${ }^{132}$ Source: https://www.aitude.com/svm-difference-between-linear-and-non-linear-models/

[^69]:    ${ }^{133}$ Source: https://monkeylearn.com/blog/introduction-to-support-vector-machines-svm/

[^70]:    ${ }^{134}$ Source: https://monkeylearn.com/blog/introduction-to-support-vector-machines-svm/

[^71]:    ${ }^{135}$ Source: https://en.wikipedia.org/wiki/Multiclass classification
    ${ }^{136}$ Source: https://www.mit.edu/~9.520/spring09/Classes/multiclass.pdf

[^72]:    ${ }^{137}$ Source: https://stackoverflow.com/questions/19136213/how-to-interpret-weka-logistic-regression-output

[^73]:    ${ }^{138}$ Source: https://stats.stackexchange.com/questions/71684/how-to-interpret-weka-logistic-regression-output

[^74]:    ${ }^{139}$ Source:https://www.statlect.com/fundamentals-of-statistics/logistic-classification-model

[^75]:    ${ }^{140}$ Source: https://www.javatpoint.com/classification-vs-clustering-in-data-mining

[^76]:    ${ }^{141}$ Source: https://www.youtube.com/watch?v=4b5d3muPQmA
    ${ }^{142}$ Source: https://www.youtube.com/watch?v=HCA0Z9kL7Hg

[^77]:    ${ }^{143}$ Source: https://www.youtube.com/watch?v=HCAOZ9kL7Hg

[^78]:    ${ }^{144}$ Source: https://www.youtube.com/watch?v=f4pZ9PHNdcM

[^79]:    ${ }^{145}$ Statistical significance is achieved when the $p$-value is lower than the level of significance (which is usually 0.05).
    A p-value, or probability value, is a number describing how likely it is that your data would have occurred by random chance (i.e. that the null hypothesis is true). A p-value less than 0.05 (typically $\leq$ 0.05 ) is statistically significant. It indicates strong evidence against the null hypothesis, as there is less than a 5\% probability the null is correct (and the results are random). Therefore, we reject the null hypothesis, and accept the alternative hypothesis. A p-value higher than 0.05 (> 0.05 ) is not statistically significant and indicates strong evidence for the null hypothesis. This means we retain the null hypothesis and reject the alternative hypothesis. Source: McLeod, S. A. (2019, May 20). What a pvalue tells you about statistical significance. Simply Psychology. www.simplypsychology.org/pvalue.html

[^80]:    ${ }^{146}$ A shopping area may has one or more different shops.

[^81]:    ${ }^{147}$ These areas are: Chania, Kounoupidiana, Heraclion, Kokkini Chani, Gazi, Malia, LImenas Chersonissou, Mires, Nea Alikarnassos, Tympaki, Ierapetra, Neapoli, Siteia, Agios Nikolaos.

[^82]:    ${ }^{148}$ This rule depicts that there is a correlation between the purchase of cured meat products and cheese by women. That is, that the purchase of cured meat products, usually lead to the purchase of cheese and with a confidence of 0,9 it is very likely that cheese is to engage in transactions containing cured meat products. The lift $2.25(>1)$ also depicts that it is very likely for the cheese to be purchased given that cured meat products are purchased. The leverage $0.09(>0)$ depicts that these two products are statistically dependent and related with each other.
    ${ }^{149}$ This rule depicts that there is a correlation between the purchase of fruits and cheese with vegetables by women. That is, that the purchase of fruits and cheese, usually lead to the purchase of vegetables. Fruits and cheese along with vegetables are frequently purchased together with a confidence of 0.73 .

