

TECHNICAL UNIVERSITY OF CRETE SCHOOL OF PRODUCTION AND ENGINEERING MANAGEMENT MASTER IN TECHNOLOGY AND INNOVATION MANAGEMENT

MASTER'S THESIS

BUSINESS DECISION ANALYSIS BASED ON DATA ANALYTICS

TRIKOUNAKI ANTONIA

Supervisor

Professor Matsatsinis Nikolaos

Chania, 2022

TECHNICAL UNIVERSITY OF CRETE SCHOOL OF PRODUCTION AND ENGINEERING MANAGEMENT MASTER IN TECHNOLOGY AND INNOVATION MANAGEMENT

MASTER'S THESIS

BUSINESS DECISION ANALYSIS BASED ON DATA ANALYTICS

A thesis submitted in partial fulfillment of the requirements for the degree in Master in Technology and Innovation Management.

TRIKOUNAKI ANTONIA

Supervisor Professor Matsatsinis Nikolaos

Chania, 2022

Copyright © 2022

ANTONIA TRIKOUNAKI

The Master's Thesis of Antonia Trikounaki is approved by the Committee of:

Supervisor

Professor Matsatsinis Nikolaos

Assistant-Supervisor

Dr. Batsakis Sotirios

Associate Professor

Tsafarakis Stelios

Acknowledgements

I would like to express my deepest appreciation to my supervisor, Professor Nikolaos Matsatsinis, who played a crucial role to my educational path, through his teaching work, knowledge and expertise. I would also like to thank him for providing me guidance and for cultivating my interest in data science and business intelligence.

I would like to express my deepest appreciation to my co-supervisor, Dr. Sotirios Batsakis, who have helped me undertake this thesis and provided me with consistent support, and guidance throughout my entire effort.

I would like to extend my sincere thanks to Associate Professor Mr. Stelios Tsafarakis as well as to all my professors and teaching stuff of Technical University of Crete, who helped me grow intellectually and broaden my horizons.

Last but not least, I would like to thank my family for their continuous support and understanding, throughout my college years.

Biography

Antonia Trikounaki is a Business Administration graduate of the Management School of Athens University of Economics and Business, majoring in business administration.

After graduating from the Management School in 2020, she enrolled at the Master in Technology and Innovation Management, at the School of Production Engineering and Management in Technical University of Crete.

Her educational background, also includes knowledge of Business Software Systems, Robotic Process Automation Software Systems and Business Process and Notation Systems.

She has attended numerous seminars on various topics such as Industry 4.0, Artificial Intelligence, Artificial Intelligence Data Analytics, E-business, Leadership, Digital Marketing, Customer Engagement, Google Ads and SEO, Social Media Marketing, Digital Transformation, Digital PR, Online Targeting Strategies, IT trends, Enterprise Crisis Management, Digital Nomads & Strategies to Restart the Tourism Sector in Crete, Hotel Megatrends and Health & Security in the Workplace.

She has attended trading seminars and she has participated in negotiating tournaments and mediation simulations. She has also participated in various workshops concerning Public Spaces, Smart Technologies and Urban Health.

She has an experience as a Real Estate Assistant and as a Guest Relations officer in a 5-Star Hotel.

Abstract

Despite the continuous and exponential technological evolution, a common phenomenon observed in the service and retail industry is the lack of pattern recognition in a dataset and thus the inability to create predictions on business issues. This, makes them even more susceptible to uncertainty and risk, as they are not able to focus on the key variables that influence their companies' attributes.

This thesis, highlights three different case studies of companies operating in the service and retail industry. Specifically, the paper focuses on the case of a hotel company based in Chania of Crete, a multinational insurance company and a big Greek Super Market chain, that seek to use data analysis along with data science to extract the necessary information and make the predictions needed in order to take effective decisions and improve their business performance.

The aforementioned, can be achieved by using the methods of categorization, clustering and association rule mining through the usage of machine learning software, WEKA. Through algorithms' implementation, it is possible to make predictions, check their accuracy, create patterns of interrelated sales/purchases and group features, based on the data provided by the companies.

In each of these three cases, the dataset is examined, and through WEKA'S assistance, the data is analyzed in order to obtain results, capable of assisting or improving decision-making, increasing competitiveness and possibly increasing the sales of the firms in question.

The first chapter presents the concept of data mining, the purpose it serves and the ways through which it helps in business problem solving. Then the data mining software- WEKA is presented, which is used in each of the cases, to analyze the data given and to provide meaningful patterns, rules and results for the issues addressed. The presentation, analysis and explanation of the different regression and classification algorithms follows, which will be used in the use cases of the following chapters and the different clusterers that will be applied through WEKA's software. Additionally, the concept of association rule mining is presented and explained, as well as the various metrics that will be used to analyze and interpret WEKA's results.

The second chapter presents the Creta Palm Hotel's case. For this case, a certain amount of data, concerning the hotel's bookings from the different travel agencies as well as the different booking sources was collected, for the years 2019 and 2020. This data is about to be analyzed through classification algorithms' implementations and clustering method developments, with the assistance of the machine learning software WEKA. This aims in generating predictions for the total bookings of the different travel agencies and the different booking pages, in checking the accuracy of the total bookings' predictions as well as in grouping the different co-operative booking sources' characteristics based on the years of 2019 and 2020. Total bookings' predictions concern all those travel agencies and booking sources that have the same, or similar characteristics to the agencies/sources given for analysis, that is the training data. The agencies/sources whose data have the same or similar characteristics to the training data, are expected to behave in the same way and have similar number of sales.

The third chapter is about the multinational insurance company NN. In this case, the company created a questionnaire for its customers and collected their responses, in order to examine their intentions and preferences concerning the insurance products she promotes. These responses, are being processed and then analyzed, in order to predict the customers' interest for insurance estimating, to test the predictions' accuracy and to cluster the customers' characteristics, based on the data provided by the company. The aforementioned are accomplished, through classification algorithms' implementation and clustering methods' development, with the assistance of WEKA machine learning software. WEKA's predictions for the customers' interest in retirement estimation, concern customers who display the same or similar characteristics as the same or similar characteristics as the training data are expected to behave in the same way and have a similar response.

The forth chapter presents the case of a large Super Market in Greece. For this use case, a database with transactional and demographic data was collected from the Supermarket for a period of eight months during 2021. This database included the customers' gender, age, card code and all of their purchases with its dates, the shop and area from which the customers made each purchase, the products each customer chose along with their product category and the amount of money that they spent on

each product. The collection and analysis of these data, gives us the opportunity to find useful information about the customers, through association rule mining and clustering. Weka Machine Learning Software, transforms the dataset into meaningful patterns with the assistance of integrated algorithms, aiming to find the products that appear an association with each other and are usually purchased together (association rule mining) as well as to group the customers depending on their purchase frequency of the various product categories. Association rule mining- in other words- market basket analysis, discovers the correlations between the different items in customers' shopping cart and clustering segregates groups with similar traits. These methods help the company to have a better understanding of the customers' profile and thus, create value for them. This leads to a better customer experience and creates a stronger sentiment or loyalty towards the company. The methods of association rule mining and clustering helps the company to better predict the results of a new oncoming dataset that has similar characteristics with our already existing dataset and make the necessary marketing campaigns depending on the customers' gender, age and area of shopping.

Table Of Contents

Acknowledgements		
Biography9		
Abs	tract	
Tab	le Of C	ontents
Tab	le of Fig	gures
List	of Tabl	les
Cha	pter 1	
1.	.1 Da	ta Mining
1.	.2 Da	ta Mining Software: WEKA
1.	.3 Re	gression
	1.3.1	Linear Regression
	1.3.2	Gaussian Process
	1.3.3	Multilayer Perceptron
	1.3.4	SMOreg
	1.3.5	Lazy IBk
	1.3.6	LWL
	1.3.7	Lazy K Star
	1.3.8	Decision Table
	1.3.9	M5Rules
	1.3.10	Zero R
	1.3.11	Decision Stump Tree
	1.3.12	M5P trees
	1.3.13	Random Forest
	1.3.14	Random Tree
	1.3.15	RepTree
	1.3.16	Meta Additive Regression

1.3.17	Meta Regression By Discretization	37
1.3.18	Meta Randomizable Filtered Classifier	38
1.3.19	Meta Vote	38
1.3.20	Meta Stacking	38
1.3.21	Meta Instances Handler Wrapper	38
1.3.22	Meta Random Sub Space	38
1.3.23	Meta CV Parameter Selection	39
1.3.24	Meta Bagging	39
1.3.25	Meta Multischeme	39
1.3.26	Meta Random Committee	39
1.3.27	Misc Input Mapped Classifier	39
1.4 Cla	assification	39
1.4.1	SMO	47
1.4.2	Multilayer Perceptron	48
1.4.3	Logistic	48
1.4.4	SGD	49
1.4.5	SGD Text	49
1.4.6	Voted Perceptron	50
1.4.7	Naive Bayes	50
1.4.8	Bayes Net	52
1.4.9	Naïve Bayes Multinomial Text	53
1.4.10	Lazy K Star	53
1.4.11	Lazy IBk	53
1.4.12	Meta Multi Class Classifier	54
1.4.13	Meta Multi Class Classifier Updateable	54
1.4.14	Meta Randomizable Filtered Classifier	54
1.4.15	Meta Vote	55

1.4.16	Meta Stacking	. 55
1.4.17	Meta Instances Handler Wrapper	. 55
1.4.18	Meta Random Sub Space	. 55
1.4.19	Meta CV Parameter Selection	. 55
1.4.20	Meta Bagging	. 55
1.4.21	Meta Multischeme	. 56
1.4.22	Meta Random Committee	. 56
1.4.23	Misc Input Mapped Classifier	. 56
1.4.24	JRip	. 56
1.4.25	Zero R	. 56
1.4.26	One R Rules	. 56
1.4.27	Rules Part	. 56
1.4.28	Decision Table	. 57
1.4.29	Random Forest	. 57
1.4.30	J48 Tree	. 57
1.4.31	Decision Stump Tree	. 58
1.4.32	Random Tree	. 58
1.4.33	RepTree	. 58
1.4.34	Hoeffding Tree	. 58
1.4.35	Tree LMT	. 59
1.5 Ch	ustering	. 59
1.5.1	Simple K-Means	. 60
1.5.2	EM	. 65
1.5.3	Hierarchical Clustering	. 66
1.5.4	Filtered Clusterer	. 70
1.5.5	Farthest First	. 70
1.5.6	Cobweb	. 70

1.5.7	Make A Density Based	70
1.5.8	Canopy	
1.6 A	ssociation Rule Mining	74
Chapter 2		79
Use Case:	Creta Palm Hotel 4*	79
2.1 W	VEKA Regression 2019	81
WEKA A	Algorithms	81
2.1.1	M5Rules	
2.1.2	M5P trees	
2.1.3	SMO Reg	86
2.1.4	Linear Regression	88
2.1.5	Gaussian Process	
2.1.6	Random Forest	
2.1.7	Meta Randomizable Filtered Classifier	
2.1.8	Meta Random Committee	
2.2 W	VEKA Clustering 2019	
WEKA	Clusterers	
2.2.1	Simple K Means	
2.2.2	EM	102
2.2.3	Filtered Clusterer	104
2.2.4	Farthest First	106
2.2.5	Make A Density	108
2.2.6	Canopy	112
2.3 W	VEKA Regression 2020	112
WEKA A	Algorithms	112
2.3.1	M5P trees	113
2.3.2	M5Rules	114

2.3.3	Linear Regression	116
2.3.4	SMO Reg	118
2.3.5	Gaussian Processes	120
2.3.6	Meta Random Committee	121
2.3.7	Lazy K Star	123
2.3.8	Random Forest	125
2.3.9	Multilayer Perceptron	126
2.4 W	EKA Clustering 2020	128
WEKA (Clusterers	128
2.4.1	Simple K Means	128
2.4.2	EM	132
2.4.3	Make A Density	134
2.4.4	Filtered Clusterer	138
2.4.5	Farthest First	140
2.4.6	Canopy	141
Conclusio	ons	142
Chapter 3.		144
Use Case: N	N Hellas	144
3.1 W	EKA Classification	148
WEKA A	Algorithms	148
3.1.1	Random Tree	150
3.1.2	Lazy IBK	154
3.1.3	Naive Bayes Updateable	156
3.1.4	Bayes Net	158
3.1.5	Naive Bayes	161
3.1.6	Lazy K Star	163
3.1.7	Meta Randomizable Filtered Classifier	165

Business Decision Analysis Based on Data Analytics | Antonia Trikounaki

3.1.8	SMO	166
3.1.9	Multi Class Classifier Updateable	168
3.1.10	Multi Class Classifier	176
3.1.11	Logistic	
3.2 W	EKA Clustering	
WEKA C	lusterers	
3.2.1	Simple K Means	
3.2.2	EM	186
3.2.3	Farthest First	
3.2.4	Make A Density Based Clusterer	191
3.2.5	Canopy	194
3.2.6	Filtered Clusterer	195
Conclusio	ns	
Chapter 4		200
Use Case: L	arge Super Market in Greece	200
4.1 W	EKA Association Rule Mining	200
Associato	r model (full training set): Apriori	202
4.1.1	Best results found for Women	203
4.1.2	Best results found for Men	204
4.1.3	Best results found for Chania Area	206
4.1.4	Best results found for Kounoupidiana Area	208
4.1.5	Best results found for Heraclion Area(City)	209
4.1.6	Best results found for Gazi Area	210
4.1.7	Best results found for Malia Area	212
4.1.8	Best results found for Nea Alikarnassos Area	213
4.1.9	Best results found for Limenas Chersonissou	214
4.1.10	Best results found for Kokkini Chani Area	216

4.1.11	Best results found for Mires Area217		
4.1.12	Best results found for Tympaki Area218		
4.1.13	Best results found for Neapoli Area		
4.1.14	Best results found for Sitia Area		
4.1.15	Best results found for Ierapetra Area		
4.1.16	Best results found for Agios Nikolaos Area224		
4.1.17	Best results found for the <=18 Age Group		
4.1.18	Best results found for the Age Group 18-25		
4.1.19	Best results found for the Age Group 26-35		
4.1.20	Best results found for the Age Group 36-45		
4.1.21	Best results found for the Age Group 46-55230		
4.1.22	Best results found for the Age Group 56-65231		
4.1.23	Best results found for the Age Group 66+		
4.2 W	EKA Clustering235		
WEKA C	Clusterers		
4.2.1	Simple K Means236		
4.2.2	Make A Density		
4.2.3	Filtered Clusterer		
4.2.4	Farthest First		
4.2.5	EM249		
4.2.6	Canopy250		
Conclusio	ns253		
REFEREN	REFERENCES		
APPENDIX			
APPEN	IDIX 1: Creta Palm Hotel258		
M5Ru	les Algorithm Creta Palm 2019258		
M5P T	rees Algorithm Creta Palm 2019259		
SMOr	eg Algorithm Creta Palm 2019259		

Linear Regression Model Algorithm Creta Palm 2019	.261
Meta Random Committee Algorithm Creta Palm 2019	. 262
Classifiers with low or negative correlation coefficient (2019):	. 316
Lazy K Star	.316
Multilayer Perceptron	. 317
Meta Regression By Discretization	. 350
Meta Additive Regression	.351
Meta Random Sub Space	. 355
Lazy IBK	.371
REPTree	. 372
Meta Bagging	. 373
Lazy LWL	. 373
Decision Table	. 373
Random Tree	.374
Decision Stump	. 379
Simple K Means with 3 Clusters Creta Palm 2019	. 380
Simple K Means with 4 Clusters Creta Palm 2019	. 380
Simple K Means with 5 Clusters Creta Palm 2019	.381
EM Clusterer Creta Palm 2019	. 382
Farthest First with 3 Clusters Creta Palm 2019	. 383
Farthest First with 4 Clusters Creta Palm 2019	. 383
Farthest First with 5 Clusters Creta Palm 2019	. 384
Canopy Clusterer Creta Palm 2019	. 384
Make A Density Clusterer, Fitted estimators (with ML estimates of variance) Cre Palm 2019	
M5P Trees Algorithm Creta Palm 2020	. 388
M5Rules Algorithm Creta Palm 2020	. 388
Linear Regression Algorithm Creta Palm 2020	. 389
SMO Reg Algorithm Creta Palm 2020	. 390
Meta Random Committee Algorithm Creta Palm 2020	. 392
Multilayer Perceptron Algorithm Creta Palm 2020	.432
Classifiers with low or negative correlation coefficient (2020):	. 462
Meta Random Sub Space Algorithm Creta Palm 2020	.462
Meta Randomizable Filtered Classifier Creta Palm 2020	.475
Rules Decision Table Algorithm Creta Palm 2020	.476

483 484
485
485
486
487
488
488
488
489
491
494
494
495
496
497
497
500
503
507
511
515
525
529
539
543
547
550
557
561
564
568
575

	Multi Class Classifier Updeateable Predictions NN	583
	Classifiers with low accuracy NN	587
	SGD NN	587
	Decision Table NN	587
	JRIP rules NN	588
	Rules OneR NN	589
	Rules PART NN	590
	Rules ZeroR NN	591
	Trees Decision Stump NN	592
	Trees Hoeffding Tree NN	593
	Trees J48 NN	594
	Trees LMT NN	595
	Trees RandomForest NN	596
	REPTree NN	597
	Naive Bayes Multinomial Text NN	598
	SGDText NN	599
	Voted Perceptron NN	600
	Lazy LWL NN	600
	Meta.MultiScheme NN	601
	Misc Input Mapped Classifier NN	602
	Simple K Means Clustering NN	603
	EM Clusterer NN	606
	Farthest First Clusterer NN	616
	Make A Density Fitted Estimators NN	616
	Canopy Clustering NN	623
A	PPENDIX 3: Large Super Market in Greece	624
	Product Categories' Codes Translated	624
	Simple K Means	
	Simple K Means with 2 Clusters	
	Simple K Means with 3 Clusters	
	Simple K Means with 4 Clusters	
	Simple K Means with 5 Clusters	
	Make A Density Fitted Estimators (with ML estimates of variance)	
	Make A Density Based Clusterer with 2 Clusters	
	Make A Density Based Clusterer with 3 Clusters	

Make A Density Based Clusterer with 4 Clusters	673
Make A Density Based Clusterer with 5 Clusters	679
Farthest First Clusterer	
Farthest First with 2 Clusters	685
Farthest First with 3 Clusters	685
Farthest First with 4 Clusters	686
Farthest First with 5 Clusters	687
EM Clusterer	689
Canopy Clusterer	791
Canopy clustering with 2 clusters	792
Canopy clustering with 3 clusters	792
Canopy clustering with 4 clusters	794
Canopy clustering with 5 clusters	795

Table of Figures

Figure 1: Weka visualization
Figure 2: Classification 40
Figure 3: Interpretation of Precision and Recall 44
Figure 4: Binary and Multi-class Classifiers 47
Figure 5: Clustering 60
Figure 6: Pointed Data 61
Figure 7: Data Labeling 61
Figure 8: Finding Cluster Centroids
Figure 9: Centroids with no data labeling
Figure 10: Clustering
Figure 11: Recomputing the centers
Figure 12: Centroids with no data labeling
Figure 13: Clustering 64
Figure 14: Final Clusters 65
Figure 15: Heatmap 67
Figure 16: Clustering 67
Figure 17: Clustering
Figure 18: Clustering
Figure 19: Dendrogram in hierarchical clustering 69

Figure 20: Data points	71
Figure 21: Corepoint X and hyperparameters	71
Figure 22: Borderpoint Y and hyperparameters	72
Figure 23: Noisepoint z and hyperparameters	72
Figure 24: Final cluster	
Figure 25: Labeled data	171
Figure 26: Best hyperplane for our labeled data	172
Figure 27: Complex Dataset	172
Figure 28: Best hyperplane for three-dimension mapping	173
Figure 29: Best hyperplane for two dimentions in a non-linear dataset	174
Figure 30: Within cluster sum of squared errors and number of clusters	186
Figure 31: Within cluster sum of squared errors and number of clusters	193
Figure 32: Algorithms' results	197
Figure 33: Algorithms' ranking	198
Figure 34: Algorithms' ranking	199
Figure 35: Algorithms' ranking	199
Figure 36: Within cluster sum of squared errors and Number of clusters	241
Figure 37: Within cluster sum of squared errors and Number of clusters	247

List of Tables

Table 1: Detailed Accuracy by Class- An example	52
Table 2: Predictions on test data- M5 Rules	84
Table 3: Predictions on user test set- M5P Trees	86
Table 4: Predictions on test data- SMO Reg	88
Table 5: Predictions on test data- Linear Regression	
Table 6: Predictions on test data- Gaussian Process	
Table 7: Predictions on test data- Random Forest	
Table 8: Predictions on test data- Meta Randomizable Filtered Classifier	
Table 9: Predictions on test data- Meta Random Committee	
Table 10: Final Cluster Centroids- Simple K Means	
Table 11: Clustering- EM	103
Table 12: Final Cluster Centroids- Filtered Clusterer	105
Table 13: Cluster Centroids- Farthest First	107

Table 14: Final Cluster Centroids- Make A Density Based Clusterer	109
Table 15: Predictions on test data- M5P trees	114
Table 16: Predictions on test data- M5Rules	116
Table 17: Predictionss on test data- Linear Regession	118
Table 18: Predictions on test data- SMO Reg	119
Table 19: Predictions on test set- Gaussian Process	121
Table 20: Predictions on test data-Meta Random Cmmittee	123
Table 21: Predictions on test set- Lazy K Star	125
Table 22: Predictions on test data- Random Forest	126
Table 23: Predictions on test data- Multilayer Perceptron	128
Table 24: Final Cluster Centroids- Simple K- Means	130
Table 25: Clustering-EM	133
Table 26: Final Cluster Centroids- Make A Density Based Clusterer	136
Table 27: Final Cluster Centroids- Filtered Clusterer	139
Table 28: Cluster Centroids- Farthest First	141
Table 29: Detailed Accuracy by Class- Random Tree	153
Table 30:Predictions on test set- Random Tree	154
Table 31: Detailed Accuracy by Class- Lazy IBk	155
Table 32: Predictions on user test set- Lazy IBk	156
Table 33: Detailed Accuracy by Class- Naïve Bayes Updateable	156
Table 34: Example of Naive Bayes Updateabe	157
Table 35: Predictions on user test set- Naive Bayes Updateable	158
Table 36: Detailed Accuracy by Class- Bayes Net	159
Table 37: Predictions on user test set- Bayes Net	161
Table 38: Detailed Accuracy by Class- Naive Bayes	162
Table 39: Predictions on user test set- Naive Bayes	163
Table 40: Detailed Accuracy by Class- Lazy K Star	163
Table 41: Predictions on user test set- Lazy K Star	164
Table 42: Detailed Accuracy by Class- Meta Randomizable Filtered Classifier	165
Table 43: Predictions in user test set- Meta Randomizable Filtered Classifier	166
Table 44: Detailed Accuracy by Class- SMO	167
Table 45:Predictions in user test set- SMO	168
Table 46: Detailed Accuracy by Class- Multi Class Classifier Updateable	168
Table 47: Predictions on user test set- Multi Class Classifier Updateable	176

Table 48: Detailed Accuracy by Class- Multi Class Classifier	176
Table 49: Predictions on user test set- Multi Class Classifier	
Table 50: Detailed Accuracy by Class- Logistic	
Table 51: Predictions on user test set- Logistic	
Table 52: Cluster Centroids- Simple K- Means	
Table 53: Cluster Centroids- EM	
Table 54: Cluster Centroids – Farthest First	

Chapter 1

1.1 Data Mining

Data mining is a process that turns raw data into useful information. Through data mining software systems, businesses are able to look for patterns in large batches of data, so they can learn more about their customers and thus develop more effective marketing strategies, increase sales and decrease costs. Data mining depends on effective data collection, warehousing, and computer processing.¹

Data mining is the process of extracting useful information from a large amount of data, often from a data warehouse or collection of linked data sets. Data mining tools include powerful statistical, mathematical, and analytics capabilities whose primary purpose is to sift through large sets of data to identify trends, patterns, and relationships to support informed decision-making and planning.²

Data Mining can be directed or undirected. Directed Data Mining attempts to explain a particular situation or field such as customer response or house price in a certain area, using predefined classes, whereas undirected data mining attempts to find similarities among groups, without the need of a predefined classes or the need of certain target fields.³

The process of sorting through large data sets and identifying patterns through data analysis can help solve business problems. Data mining techniques and tools enable enterprises to turn data into useful information and knowledge, to make predictions and take better business decisions. Data mining is a key part of data analytics and data science.

According to Fayyad et al., (1996) [1]: The knowledge discovery in databases (KDD) is the overall process of discovering useful knowledge from data, and data mining refers to a particular step in this process. Data mining is the application of specific algorithms for extracting patterns from data.

¹ Source: <u>https://www.sap.com/mena-ar/insights/what-is-data-mining.html</u>

² Source: <u>https://www.investopedia.com/terms/d/datamining.asp</u>

³ Source: <u>https://www.coursehero.com/file/p479j4o/Directed-vs-Undirected-data-mining-Directed-data-mining-attempts-to-explain-or/</u>

The information that data mining generates can be used in business intelligence (BI) and advanced analytics applications that involve analysis of historical data, as well as real-time analytics applications.

Data mining aims in effective business strategies' planning and managing operations. That includes market analysis, advertising, marketing, sales, business management, decision support, customer support, manufacturing, supply chain management, finance and HR.

Data mining supports fraud detection and cybersecurity planning. It also plays an important role in risk management, healthcare, government, scientific research, mathematics etc.⁴

Data mining attempts to extract potentially useful knowledge from data. Let us consider transactions (market baskets) that are obtained from a supermarket. Data mining can be used to discover useful information from data like 'when a customer buys spaghetti, he/she also buys cheese" and 'customers of this supermarket department in X area like to buy Y products and they usually associate them with Z products'.

Different kinds of knowledge require different kinds of representation e.g. classification, clustering, association rule mining.

Classification analysis is a type of Predictive Data Mining, which helps to know what may possibly happen in the future in business, whereas Clustering and Association Rule Mining analysis are types of Descriptive Data Mining, which converts given data into useful information.

1.2 Data Mining Software: WEKA

The University of Waikato in New Zealand developed WEKA (Waikato Environment for Knowledge Analysis), an open-source, data mining software package written in Java, issued under General Public International Journal of Pure and Applied Mathematics. Weka is a collection of machine learning algorithms for data mining tasks. The algorithms can either be applied directly to a dataset or called from your

⁴ Source: <u>https://searchbusinessanalytics.techtarget.com/definition/data-mining</u>

own Java code. Weka is fully implemented in Java Programming Language and it fits with almost any computing platform.

You can download the relevant software from: <u>http://www.cs.waikato.ac.nz/~ml/weka/index.html</u>, and then install it on your Personal Computer.

Weka Software is supported from various Operating Systems such as Windows, Mac OS X and Linux.

If you do not already have a version of java installed you should download the version that will also contain the java VM. You can choose between Version for 32 bits or Version for 64 bits.

Machine learning (ML) techniques and their application to real-world data mining problems can be done using WEKA. The software package supports several standard data mining tasks, such as data pre-processing, clustering, classification, regressing, visualization and feature selection. The Graphic User Interface allows us to try out different data preparation, transformation and modeling algorithms on data set and contains a collection of visualization tools for data analysis and predictive modeling coupled with graphical user interface.

Weka is a software tool with integrated Machine Learning algorithms that can develop machine learning models which may provide meaningful patterns, rules and results. That is, Weka does not require knowledge of algorithm programming and coding in order to provide results of the inspected data and thus, it speeds-up the procedures. In order to use Weka, someone has to pre-process and pre-label the data to train a classifier (the variable we want to predict). After training, the dataset must usually be saved in csv format and then loaded in Weka Software. After the dataset has been loaded in Weka, someone can make further data preparations in order to bring it in a suitable format and therefore, be able to create prediction models, clustering models and association rules.

Machine Learning is a part of data-driven Intelligent Automation through which machines must learn themselves to do tasks instead of us, understand the human brain function and mimic them.

According to Agrawal, et l., (2019) [2], "Machine learning is a subset of AI that involves techniques that enable machines to learn from the given data for pattern detection and future prediction".

Artificial intelligence uses machine learning algorithms to perform data analytics by building learning models to be used in "intelligent" ways. The learning models are based on the idea that machines can learn from data, identify patterns, and predict future states that help in decision-making with little human intervention.

The algorithm models and rules can be used to predict future behavior or choice, to improve business revenues, to confirm something already known or to just find new information that was not identified before.

WEKA with the help of the Apriori Algorithm helps in mining association rules in the dataset. Apriori is a frequent pattern mining algorithm that counts the number of occurrences of an item set in the transaction.

Cluster Analysis is a technique to find out clusters of data that represent similar characteristics. WEKA provides many algorithms to perform cluster analysis out of which simple k means are highly used.

Data Visualization in WEKA can be performed on all datasets in the WEKA directory. The raw dataset can be viewed as well as other resultant datasets of other algorithms such as classification, clustering, and association can be visualized using WEKA.

Figure 1: Weka visualization ⁵

The above picture helps us to understand more about WEKA tool. There are many stages in dealing with Big Data to make it suitable for machine learning.

1.3 Regression

Regression analysis consists of a set of machine learning methods that allow us to predict a continuous outcome variable (y) based on the value of one or multiple predictor variables (x).⁶ That is, Regression is a process of finding the correlations between dependent and independent variables.

⁵ Source: <u>https://www.tutorialspoint.com/weka/what_is_weka.htm</u>

⁶ Source: http://www.sthda.com/english/wiki/regression-analysis-essentials-for-machine-learning

Regression algorithms are Supervised Learning algorithms that are used for prediction in Machine learning and they work with the labeled datasets. Regression algorithms are used to predict the continuous values/quantities such as price, salary, age, etc. In Regression, the algorithms are used with continuous data and the output variable must be of real value.⁷

Regression predictions can be evaluated using root mean squared error and adjusted R- square. The best model is defined as the model that has the lowest prediction error. The most popular metric for comparing regression models, is Root Mean Squared Error. It measures the model prediction error. It corresponds to the average difference between the observed known values of the outcome and the predicted value by the model. RMSE is computed as RMSE = mean((observed - predicted)^2). The lower the RMSE, the better the model⁸

For numeric/continuous values, WEKA's regression models, detect correlation coefficient, mean absolute error, root mean squared error, relative absolute error and root relative squared error.

- Correlation coefficient implies what percentage of the variance in your data is explained by your model. The greater the correlation coefficient value, the stronger the model's predictions are. A high correlation coefficient (greater than 0.95) depicts that there is a strong relation between our data values and the values of the algorithm's prediction model and that our data do get close to the predictions of the model. This practically means that, we can better predict the results of a new oncoming dataset that has similar characteristics with an already existing dataset and there is a high probability that the dataset values are similar to those predicted from the algorithm.
- Mean absolute error is the average distance the models' predictions are from the actual data points. Absolute in the title indicates that predictions below data points ate not treated as negative distances.
- Root mean squared error (RMSE) is another way of calculating the mean absolute error. It measures the model prediction error. It corresponds to the average difference between the observed known values of the outcome and the

⁷ Source: <u>https://www.javatpoint.com/regression-vs-classification-in-machine-</u>

learning?fbclid=IwAR0MJoSS1zxED1LmJnEJy0TY3XIpTszCeJGkV2 Rdz AVMo8ByCPp5cdgjo

⁸ Source: <u>http://www.sthda.com/english/wiki/regression-analysis-essentials-for-machine-learning</u>

predicted value by the model. RMSE is computed as $RMSE = mean((observed - predicted)^2)$. In other words, RMSE is the standard deviation of the residuals (prediction errors). The Residuals is a measure of how far/spread out are the data points from the regression line or how concentrated are the data around the line of the best fit.⁹ The lower the RMSE, the better the model.

- Relative absolute error and root relative squared error scale the error to the mean. This enables the comparison between models constructed with larger/smaller valued data.
- Total number of instances is the number of data points in the data set.

The regression Algorithm can be further divided into Linear and Non-linear Regression.

Six Types of Rression Algorithms:

- Functions (Gaussian Process, SMOreg, Multilayer Perceptron, Linear Regression, Voted Perception)
- 2. Lazy (K Star, LWL, IBk)
- Meta (Bagging, Randomizable Filtered Classifier, Stacking, Vote, Additive Regression, Instances Handler Wrapper, Regression By Discretization, Random SubSpace, CV Parameter Selection, Multi Scheme, Random Committee)
- 4. Misc (Input Mapped Classifier)
- 5. Rules (M5Rules, Decision Table, Zero R)
- 6. Trees (Decision Stump, Random Forest, Random Tree, RepTree, M5P)

1.3.1 Linear Regression

Linear regression is a very simple regression algorithm that only supports regression type problems and is issued for prediction. The model uses the Akaike criterion for model selection, and is able to deal with weighted instances. Linear Regression can only deal with numeric attributes. ¹⁰

⁹ Source: <u>https://www.statisticshowto.com/probability-and-statistics/regression-analysis/rmse-root-mean-square-error/</u>

¹⁰ Source: https://weka.sourceforge.io/doc.dev/weka/classifiers/functions/LinearRegression.html

1.3.2 Gaussian Process

Gaussian Process implements regression without hyper parameter-tuning. This implementation applies normalization/standardization to the target attribute as well as the other attributes (if normalization/standardization is turned on). Missing values are replaced by the global mean/mode. Nominal attributes are converted to binary ones.¹¹

1.3.3 Multilayer Perceptron

The Multi-Layer Perceptron algorithms supports both regression and classification problems. It is also called artificial neural networks or simply neural networks for short. Neural networks are a complex algorithm to use for predictive modeling because there are so many configuration parameters that can only be tuned effectively through intuition and a lot of trial and error.¹² This is a classifier that uses backpropagation to learn a multi-layer perceptron to classify instances. The network can be built by hand or set up using a simple heuristic. The network parameters can also be monitored and modified during training time. The nodes in this network are all sigmoid, except for when the class is numeric, in which case the output nodes become unthresholded linear units.¹³

1.3.4 SMOreg

"SMOreg implements the "sequential minimal optimization" algorithm for support vector machines, which are an important paradigm in machine learning". Burges, (1998) [4].

Sequential Minimal Optimization (SMO) method breaks the problem down into subproblems that can be solved analytically (by calculating) rather than numerically (by searching or optimizing).¹⁴

1.3.5 Lazy IBk

This is a K-nearest neighbor's (KNN) classifier which attempts to predict the correct class for the test data by calculating the distance between the test data and all the training points. Then, it selects the K number of points which is closest to the test data. The K-Nearest Neighbours (KNN) algorithm is one of the most simple

¹⁴ Source: <u>https://machinelearningmastery.com/support-vector-machines-for-machine-learning/</u>

 ¹¹ Source: <u>https://weka.sourceforge.io/doc.dev/weka/classifiers/functions/GaussianProcesses.html</u>
 ¹² Source: <u>https://machinelearningmastery.com/use-regression-machine-learning-algorithms-</u>weka/?fbclid=IwAR3PWrbfejBgXpV4YmADPnKm7F5h1Ubxh8zNCSa75EfYoDL3s_gmVYL-V4E

¹³ Source: <u>https://weka.sourceforge.io/doc.dev/weka/classifiers/functions/MultilayerPerceptron.html</u>

supervised machine learning algorithms that is used to solve both classification and regression problems. KNN is also known as an instance-based model or a lazy learner because it doesn't construct an internal model. For regression problems, it will find the k nearest neighbors and predict the value by calculating the mean value of the nearest neighbors.¹⁵

When making predictions on regression problems, KNN will take the mean of the k most similar instances in the training dataset. ¹⁶

1.3.6 LWL

According to Atkenson, et al., (1997) [9], "LWL is an implementation of a more sophisticated learning scheme for numeric prediction, using locally weighted regression".

1.3.7 Lazy K Star

According to Sharma and Jain (2013) [8]: *K-Star algorithm can be defined as a method of cluster analysis which mainly aims at the partition of "n" observation into "k" clusters in which each observation belongs to the cluster with the nearest mean. We can describe K-Star algorithm as an instance-based learner which uses entropy as a distance measure. The benefits are that it provides a consistent approach to handling of real valued attributes, symbolic attributes and missing values.*

"K- Star is a simple, instance-based classifier, similar to K-Nearest Neighbour (K-NN)" (Vijayarani and Muthulakshimi (2013) [5])

1.3.8 Decision Table

According to Kalmegh (2018) [3]: Decision Table is an accurate method for numeric prediction from decision trees and it is an ordered set of If-Then rules that have the potential to be more compact and therefore more understandable than the decision trees. Selection to explore decision tables because it is a simpler, less compute intensive algorithm than the decision-treebased approach.

¹⁵ Source: <u>https://towardsdatascience.com/an-introduction-to-k-nearest-neighbours-algorithm-</u> <u>3ddc99883acd</u>

¹⁶ Source: <u>https://machinelearningmastery.com/use-regression-machine-learning-algorithms-</u>weka/?fbclid=IwAR3PWrbfejBgXpV4YmADPnKm7F5h1Ubxh8zNCSa75EfYoDL3s_qmVYL-V4E

1.3.9 M5Rules

M5Rules generates a decision list for regression problems using separate-andconquer. In each iteration it builds a model tree using M5 and makes the "best" leaf into a rule.¹⁷

1.3.10 Zero R

Zero R predicts the mean (for a numeric class) or the mode (for a nominal class).¹⁸

1.3.11 Decision Stump Tree

Decision Stump trees can support both classification and regression problems. Decision Stump is a decision tree learner. According to Witten, et al., (1999) [10]: Decision Stump builds simple binary decision "stumps" (one-level decision trees) for both numeric and nominal classification problems. It copes with missing values by extending a third branch from the stump- in other words by treating "missing" as a separate attribute value.

1.3.12 M5P trees

M5P trees can support both classification and regression problems. According to [17]"The M5P model tree is based on conventional decision tree associated to linear regression function at the leaves nodes".

1.3.13 Random Forest

Random Forest trees can support both classification and regression problems. According to E. Kleinberg (n.d) [31]: Random forests or random decision forests are an ensemble learning method for classification, regression and other tasks that operates by constructing a multitude of decision trees at training time. Random forests are an ensemble learning method for classification (and regression) that operate by constructing a multitude of decision trees at training time and outputting the class that is the mode of the classes output by individual trees. The algorithm for inducing a random forest was developed by Leo Breiman and Adele Cutler.

It is called 'Random' Forest as it is using two random processes: bootstrapping and random feature selection. Bootstrapping ensures that we are not using the same data for every tree, so it helps the model to be less sensitive to our training data. The

¹⁷ Source: <u>https://weka.sourceforge.io/doc.dev/weka/classifiers/rules/M5Rules.html</u>

¹⁸ Source: <u>https://weka.sourceforge.io/doc.dev/weka/classifiers/rules/ZeroR.html</u>

random feature selection helps to reduce the correlation between the trees (if we use every feature, then the decision trees will have the same decision nodes and they will act very similarly, which will increase the variance). ¹⁹

1.3.14 Random Tree

Random trees can support both classification and regression problems. A Random tree is a decision tree learner. Random Tree considers K randomly chosen attributes at each node and performs no pruning. It has also an option to allow estimation of class probabilities (or target mean in the regression case) based on a hold-out set (back fitting). ²⁰

1.3.15 RepTree

Rep trees can support both classification and regression problems. Rep Tree is a fast decision tree learner. It builds a decision/regression tree using information gain/variance and prunes it using reduced-error pruning (with back fitting). Rep Tree only sorts values for numeric attributes once. Missing values are dealt with by splitting the corresponding instances into pieces (i.e. as in C4.5).²¹

1.3.16 Meta Additive Regression

Meta Additive Classifier enhances the performance of a regression base classifier. Each iteration fits a model to the residuals left by the classifier on the previous iteration. Prediction is accomplished by adding the predictions of each classifier. Reducing the shrinkage (learning rate) parameter helps prevent overfitting and has a smoothing effect but increases the learning time.²²

1.3.17 Meta Regression By Discretization

This is a regression scheme that employs any classifier on a copy of the data that has the class attribute (equal-width) discretized. The predicted value is the expected value of the mean class value for each discretized interval (based on the predicted probabilities for each interval). ²³

¹⁹ Source: <u>https://www.youtube.com/watch?v=v6VJ2RO66Ag</u>

²⁰ Source: <u>https://weka.sourceforge.io/doc.dev/weka/classifiers/trees/RandomTree.html</u>

²¹ Source: <u>https://weka.sourceforge.io/doc.dev/weka/classifiers/trees/REPTree.html</u>

²² Source: <u>https://weka.sourceforge.io/doc.dev/weka/classifiers/meta/AdditiveRegression.html</u>

²³ Source: <u>https://weka.sourceforge.io/doc.dev/weka/classifiers/meta/RegressionByDiscretization.html</u>

1.3.18 Meta Randomizable Filtered Classifier

Meta Randomizable Filtered Classifier runs an arbitrary classifier on data that has been passed through an arbitrary filter. Like the classifier, the structure of the filter is based exclusively on the training data and test instances will be processed by the filter without changing their structure.²⁴

1.3.19 Meta Vote

Occasionally meta-analyses use 'vote counting' to compare the number of positive studies with the number of negative studies. Vote counting might be considered as a last resort in situations when standard meta-analytical methods cannot be applied (such as when there is no consistent outcome measure).²⁵

1.3.20 Meta Stacking

Meta Stacking combines several classifiers using the stacking method and can do classification or regression.²⁶

1.3.21 Meta Instances Handler Wrapper

This is a generic wrapper around any classifier to enable weighted instances support. and uses resampling with weights if the base classifier is not implementing the weka core. By default, the training data is passed through to the base classifier if it can handle instance weights. However, it is possible to force the use of resampling with weights as well.²⁷

1.3.22 Meta Random Sub Space

This method constructs a decision tree based classifier that maintains highest accuracy on training data and improves on generalization accuracy as it grows in complexity. The classifier consists of multiple trees constructed systematically by pseudorandomly selecting subsets of components of the feature vector, that is, trees constructed in randomly chosen subspaces.²⁸

²⁷ Source:

²⁴ Source:

https://weka.sourceforge.io/doc.dev/weka/classifiers/meta/RandomizableFilteredClassifier.html ²⁵ Source: <u>https://handbook-5-</u>

^{1.}cochrane.org/chapter 9/9 4 11 use of vote counting for meta analysis.htm
²⁶ Source: https://weka.sourceforge.io/doc.dev/weka/classifiers/meta/Stacking.html

https://weka.sourceforge.io/doc.dev/weka/classifiers/meta/WeightedInstancesHandlerWrapper.ht ml

²⁸ Source: <u>https://weka.sourceforge.io/doc.dev/weka/classifiers/meta/RandomSubSpace.html</u>

1.3.23 Meta CV Parameter Selection

Meta CV Parameter Selection performs parameter selection by cross-validation for any classifier.²⁹

1.3.24 Meta Bagging

Meta Bagging is a classifier that reduces variance and can do classification and regression depending on the base learner. ³⁰

1.3.25 Meta Multischeme

Meta Multischeme classifier uses cross validation on the training data or the performance on the training data. The performance is measured based on percent correct (classification) or mean-squared error (regression). ³¹

1.3.26 Meta Random Committee

Meta Random Committee builds an ensemble of randomizable base classifiers. Each base classifier is built using a different random number seed (but based on the same data). The final prediction is a straight average of the predictions generated by the individual base classifiers. ³²

1.3.27 Misc Input Mapped Classifier

This is a wrapper classifier that addresses incompatible training and test data by building a mapping between the training data that a classifier has been built with and the incoming test instances' structure.³³

1.4 Classification

According

to[23]

[23]:

Classification is a data mining task that maps the data into predefined groups and classes. It is also called as supervised learning. It consists of two steps:

1. Model construction: It consists of set of predetermined classes. Each tuple is assumed to belong to a predefined class. The set of tuples used for model

³² Source: <u>https://weka.sourceforge.io/doc.dev/weka/classifiers/meta/RandomCommittee.html</u>

²⁹ Source: <u>https://weka.sourceforge.io/doc.dev/weka/classifiers/meta/CVParameterSelection.html</u>

³⁰ Source: <u>https://weka.sourceforge.io/doc.stable/weka/classifiers/meta/Bagging.html</u>

³¹ Source: <u>https://weka.sourceforge.io/doc.dev/weka/classifiers/meta/MultiScheme.html</u>

³³ Source: <u>https://weka.sourceforge.io/doc.dev/weka/classifiers/misc/InputMappedClassifier.html</u>

construction, is training set. The model is represented as classification rules, decision trees, or mathematical formulas.

2. Model usage: This model is used for classifying future or unknown objects. The known label of test sample is compared with the classified result from the model. Accuracy rate is the percentage of test set samples that are correctly classified by the model. Test set is independent of training set, otherwise overfitting will occur.

Figure 2: Classification ³⁴

Classification algorithms can be better understood using the above diagram. In the diagram, there are two classes, class A and class B. Each class has features that are similar to each other and dissimilar to other classes.

Classification algorithms are also Supervised Learning algorithms that are used for prediction in Machine learning and they work with the labeled datasets. Unlike regression, classification algorithms are used to predict or classify the discrete values/ class labels such as Male or Female, True or False, Spam or Not Spam, etc. Classification is a process of finding a function which helps in dividing the dataset into classes based on different parameters. In Classification, a computer program is trained on the training dataset and based on that training, it categorizes the data into

³⁴ Source: https://www.javatpoint.com/classification-algorithm-in-machine-learning

different classes. The algorithms in classification, are used with discrete data and the output variable must be a discrete value.³⁵

A common way to estimate Classification predictions is to calculate accuracy. The classification accuracy is the percentage of correctly classified examples out of all predictions made. For example, if a classification predictive model made 5 predictions and 3 of them were correct and 2 of them were incorrect, then the classification accuracy of the model based on just these predictions would be: ³⁶

accuracy = correct predictions / total predictions * $100 \Rightarrow$

accuracy = $3 / 5 * 100 \Rightarrow$

accuracy = 60%

For nominal/discrete values, WEKA's classification models detect Correctly Classified Instances, Incorrectly Classified Instances, Kappa statistic, Mean absolute error, Root mean squared error, Relative absolute error, Root relative squared error, Total Number of Instances, TP Rate, FP Rate, Precision, Recall, F-Measure.

- Correctly Classified Instances depict how many relevant instances were predicted correctly as true
- Incorrectly Classified Instances depict how many irrelevant instances were falsely predicted as true.
- Kappa statistic is a chance-corrected measure of agreement between the classifications and the true classes. Specifically, K statistic is a value which estimates how well the model will perform, considering the chance that you randomly guessed correctly, without having any knowledge. It is calculated by taking the agreement expected by chance away from the observed agreement and dividing by the maximum possible agreement. A zero value equals to random guessing, but a value greater than zero means that your classifier is doing better than chance. The further the value above zero, the better it performs.

³⁵ Source: <u>https://www.javatpoint.com/regression-vs-classification-in-machine-learning?fbclid=lwAR0MJoSS1zxED1LmJnEJy0TY3XIpTszCeJGkV2_Rdz_AVMo8ByCPp5cdgjo</u> 36 Courses https://www.javatpoint.com/regression-vs-classification-in-machine-learning?fbclid=lwAR0MJoSS1zxED1LmJnEJy0TY3XIpTszCeJGkV2_Rdz_AVMo8ByCPp5cdgjo 36 Courses https://www.javatpoint.com/regression-vs-classification-in-machine-learning?fbclid=lwAR0MJoSS1zxED1LmJnEJy0TY3XIpTszCeJGkV2_Rdz_AVMo8ByCPp5cdgjo

³⁶ Source: <u>https://machinelearningmastery.com/classification-versus-regression-in-machine-learning/?fbclid=lwAR2bkzualYkl8YkQcKhm2ie5yiYs3O9-</u>

Ybt4VhVquc4vlJG2yfDq3H52duw#:~:text=Classification%20is%20the%20task%20of,of%20predicting% 20a%20continuous%20quantity

K statistic=
$$\frac{P(A)-P(E)}{1-P(E)}$$
 (Source: Kinge & Gaikwad, (2018). [13])

P(A): Agreement percentage, P(E): Agreement chances.

If K = 1, Agreement is in tolerable range

• Mean absolute error is the average distance the models' predictions are from the actual data points. Absolute in the title indicates that predictions below data points ate not treated as negative distances.

MAE=
$$\frac{\sum_{i=1}^{n} Actual - Forecast i}{n}$$
 (Source: Kinge & Gaikwad, (2018). [13])

• Root mean squared error is another way of calculating the mean absolute error. It follows an assumption that error are unbiased and follow a normal distribution.

$$RMS = \sqrt{\frac{\sum_{i=1}^{n} e_i^2}{n}} \quad (Source: Kinge \& Gaikwad, (2018). [13])$$

- Relative absolute error and root relative squared error scale the error to the mean. This enables the comparison between models constructed with larger/smaller valued data.
- Total number of instances is the number of data points in the data set.
- True Positive (TP) Rate: rate of true positives (instances correctly classified as positive)
- False Positive (FP) Rate: rate of false positives (instances incorrectly classified as positive)
- True Negative (TN) Rate: rate of true negatives (instances correctly classified as negative)
- False Negative (FN) Rate: rate of false negatives (instances that were incorrectly classified as negative)
- Precision: proportion of instances that are truly of a class divided by the total instances classified as that class.

Precision $=\frac{TP}{P} = \frac{TP}{TP+FP}$ (Source: Kinge & Gaikwad, (2018). [13])

• Recall: proportion of instances classified as a given class divided by the actual total in that class (equivalent to TP rate).

Recall
$$=\frac{TP}{T} = \frac{TP}{TP+FN}$$
 (Source: Kinge & Gaikwad, (2018). [13])

• F-Measure: A combined measure for precision and recall calculated as:

 $F-Measure = \frac{2 * Precision * Recall}{(Precision + Recall)}$ (Source: Kinge & Gaikwad, (2018). [13])

• Accuracy: The ability of the model to correctly predict the class label of new or previously unseen data.

Accuracy= $\frac{N}{T} = \frac{TP+TN}{TP+TN+FP+FN}$ (Source: Kinge & Gaikwad, (2018). [13])

Precision, Recall, F-Measure and ROC Area give a really good picture of how well things are performing. ³⁷

³⁷ Source-Interpreting Results and Accuracy in Weka: https://www.youtube.com/watch?v=gfhGfnkypCY

Figure 3: Interpretation of Precision and Recall ³⁸

As mentioned above, the percentage of correctly classified instances is often called accuracy or sample accuracy. It does have some disadvantages as a performance estimate, so someone can look at some of the other numbers such as ROC Area.

ROC Area (Receiver Operating Characteristic-Area Under the Curve) shows us which items are correctly put in their classes (For example, if you had one item from each class, what percentage of the time are you going to correctly put them in their classes). An "optimal" classifier will have ROC area values approaching 1, with 0.5 being comparable to "random guessing" (similar to a Kappa statistic of 0). A value above 0.8 is considered a strong and accurate result. ROC uses True Positives and False Positive Rates as the axes that we are looking out, to draw a curve.

³⁸ Source: https://commons.wikimedia.org/w/index.php?curid=36926283

PRC (Precision on Recall): Works better for unbalanced data. ROC tends to be in general a better choice, because PRC do not really count the true positives.

Kappa is a chance-corrected measure of agreement between the classifications and the true classes. K switches on kernel density estimation numerical attributes which often improves performance. It is calculated by taking the agreement expected by chance away from the observed agreement and dividing by the maximum possible agreement. A value greater than zero, means that your classifier is doing better than chance.

The error rates are used for numeric prediction rather than classification. In numeric prediction, predictions are not just right or wrong, the error has a magnitude, and these measures reflect that.

The Confusion Matrix is another way of detecting how well a model is doing.

Confusion Matrix

a b <-- classified as aa ba| a = 0ab bb| b = 1

The correctly and incorrectly classified instances show the percentage of test instances that were correctly and incorrectly classified. The raw numbers are shown in the confusion matrix, with a and b representing the class labels.

For instance:

a b <-- classified as 50 5 | a = 0 27 13 | b = 1

aa=50, ba=5, ab=27, bb=13.

- 50 elements of class a are classified as class a
- 5 elements of class a were incorrectly classified as class b
- 13 elements of class b were correctly classified as class b
- 27 elements of class b were incorrectly classified as class a

Assuming that we have 100 instances, we can detect that 50 out of 55 a's were predicted correctly (TP Rate) and 13 out of 40 b's were predicted correctly (TP Rate).

The percentages and raw numbers add up, so that we have aa + bb = 50 + 13 = 63, ab + ba = 27 + 5 = 32.

According to Kalmegh, (2018) [3], classification may refer to categorization and the process in which ideas and objects are recognized, differentiated, and understood. An algorithm that implements classification is known as a classifier. Classification is an important technique with broad applications. It classifies data of various kinds.

Classification Algorithms can be divided into these two categories³⁹:

- Indicative Linear Models
 - Logistic Regression
 - SMO Reg
- Indicative Non-linear Models
 - Naïve Bayes
 - o Random Forest
 - Random Tree

Classifiers can be also divided into these two categories:

- Binary classifiers: They work with only two classes or possible outcomes (example: positive or negative sentiment; whether a customer will want a retirement estimation or not),
- Multiclass classifiers: They work with multiple classes (ex: whether an image is a cat, dog or a rabbit). Multiclass assumes that each sample is assigned to one and only one label.

³⁹ Source: https://www.javatpoint.com/classification-algorithm-in-machine-learning

Figure 4: Binary and Multi-class Classifiers ⁴⁰

Seven Types of Classifiers:

- 1. Functions (SMO, Multilayer Perceptron, Logistic, Voted Perception)
- 2. Bayes (Bayes Net, Naive Bayes, Naive Bayes Multinomial Text)
- 3. Lazy (K Star, LWL, IBk)
- Meta (Bagging, Randomizable Filtered Classifier, Stacking, Vote, Multi Class Classifier, Multiclass Classifier Updateable, Instances Handler Wrapper, Random SubSpace, CV Parameter Selection, Multi Scheme, Random Committee)
- 5. Misc (Input Mapped Classifier)
- 6. Rules (Decision Table, One R, J Rip, Part, Zero R)
- Trees (J48, Decision Stump, Random Forest, Random Tree, RepTree, Hoeffding Tree, LMT)

1.4.1 SMO

SMO implements John Platt's sequential minimal optimization algorithm for training a support vector classifier.

⁴⁰ Source: <u>https://medium.com/@jorgesleonel/classification-methods-in-machine-learning-58ce63173db8</u>

This implementation globally replaces all missing values and transforms nominal attributes into binary ones. It also normalizes all attributes by default. (In that case the coefficients in the output are based on the normalized data, not the original data --- this is important for interpreting the classifier). Multi-class problems are solved using pairwise classification (1-vs-1). To obtain proper probability estimates, use the option that fits calibration models to the outputs of the support vector machine. In the multi-class case, the predicted probabilities are coupled using Hastie and Tibshirani's pairwise coupling method.⁴¹

1.4.2 Multilayer Perceptron

This is a classifier that uses backpropagation to learn a multi-layer perceptron to classify instances. The network can be built by hand or set up using a simple heuristic. The network parameters can also be monitored and modified during training time. The nodes in this network are all sigmoid, except for when the class is numeric, in which case the output nodes become unthresholded linear units.⁴²

1.4.3 Logistic

The logistic classification model (or logit model) is a binary classification model in which the conditional probability of one of the two possible realizations of the output variable is assumed to be equal to a linear combination of the input variables, transformed by the logistic function.⁴³

Logistic class is for building and using a multinomial logistic regression model with a ridge estimator. There are some modifications, however, compared to the paper of leCessie and van Houwelingen (1992): If there are k classes for n instances with m attributes, the parameter matrix B to be calculated will be an $m^*(k-1)$ matrix.

The probability for class j with the exception of the last class is:

Pj(Xi) = exp(XiBj)/((sum[j=1..(k-1)]exp(Xi*Bj))+1)

The last class has probability:

1-(sum[j=1..(k-1)]Pj(Xi))

⁴¹ Source: <u>https://weka.sourceforge.io/doc.dev/weka/classifiers/functions/SMO.html</u>

⁴² Source: <u>https://weka.sourceforge.io/doc.dev/weka/classifiers/functions/MultilayerPerceptron.html</u>

⁴³ Source: https://www.statlect.com/fundamentals-of-statistics/logistic-classification-model

= 1/((sum[j=1..(k-1)]exp(Xi*Bj))+1)

The (negative) multinomial log-likelihood is thus:

$$\begin{split} L &= -sum[i=1..n]\{sum[j=1..(k-1)](Yij * ln(Pj(Xi))) + (1 - (sum[j=1..(k-1)]Yij)) * ln(1 - sum[j=1..(k-1)]Pj(Xi))\} + ridge * (B^2) \end{split}$$

In order to find the matrix B for which L is minimized, a Quasi-Newton Method is used to search for the optimized values of the $m^*(k-1)$ variables. Note that before we use the optimization procedure, we 'squeeze' the matrix B into a $m^*(k-1)$ vector.

Although original Logistic Regression does not deal with instance weights, we modify the algorithm a little bit to handle the instance weights.⁴⁴

1.4.4 SGD

A simple yet efficient optimization algorithm, used to find the values of parameters/coefficients of functions that minimize a cost function. In other words, it is used for discriminative learning of linear classifiers under convex loss functions such as SVM and Logistic regression. SGD has been successfully applied to large-scale datasets because the update to the coefficients is performed for each training instance, rather than at the end of instances.⁴⁵

1.4.5 SGD Text

SDG Text implements stochastic gradient descent for learning various linear models (binary class SVM, binary class logistic regression, squared loss, Huber loss and epsilon-insensitive loss linear regression). SGD Text Globally replaces all missing values and transforms nominal attributes into binary ones. It also normalizes all attributes, so the coefficients in the output are based on the normalized data. For numeric class attributes, the squared, Huber or epsilon-insensitive loss function must be used. Epsilon-insensitive and Huber loss may require a much higher learning rate.⁴⁶

⁴⁴ Source: <u>https://weka.sourceforge.io/doc.dev/weka/classifiers/functions/Logistic.html</u>

⁴⁵ Source: <u>https://www.tutorialspoint.com/scikit learn/scikit learn stochastic gradient descent.htm</u>

⁴⁶ Source: https://weka.sourceforge.io/doc.dev/weka/classifiers/functions/SGD.html

1.4.6 Voted Perceptron

Voted Perceptron implements the voted perceptron algorithm. The classifier replaces all missing values and transforms nominal attributes into binary ones.⁴⁷

1.4.7 Naive Bayes

The Naive Bayes algorithm is based on conditional probabilities (Vijayarani, et. al., (2013) [5].

Before moving to Naive Bayes' explanation, it is important to know about Bayes' theorem.

"Bayes' Theorem finds the probability of an event occurring given the probability of another event that has already occurred" Vijayarani, et. al., (2013) [5].

Bayes' theorem is stated mathematically as the following equation:

$$\Pr(\mathbf{A}|\mathbf{B}) = \frac{\Pr(\mathbf{A} \cap \mathbf{B})}{\Pr(B)} = \frac{\Pr(\mathbf{B}|\mathbf{A}) \Pr(\mathbf{A})}{\Pr(B)} =$$

$$\{Pr(A \cap B) = Pr(A) * Pr(B|A) = Pr(B) * Pr(A|B)\}$$

where A and B are events and $P(B) \neq 0$.

Basically, we are trying to find probability of event A, given the event B is true. Event B is also termed as evidence. P(A) is the priori of A (Probability of event before evidence is seen). The evidence is an attribute value of an unknown instance (here, it is event B). P(A|B) is a posteriori probability of B (Probability of event after evidence is seen).

So, in a certain dataset:

$$\Pr(\mathbf{y}|\mathbf{X}) = \frac{\Pr(\mathbf{y} \cap \mathbf{X})}{\Pr(\mathbf{X})} = \frac{\Pr(\mathbf{X}|\mathbf{y})\Pr(\mathbf{y})}{\Pr(\mathbf{X})} =$$

y is class variable and X is a dependent feature vector (of size *n*) where:

 $X = (x_1, x_2, x_3, \dots, x_n).$

AccordingtoVijayarani,et.al.,(2013)[5]:Naive Bayes uses the normal distribution to model numeric attributes and assumes

⁴⁷ Source:https://weka.sourceforge.io/doc.dev/weka/classifiers/functions/VotedPerceptron.html

independence of variables. Naive Bayes can use kernel density estimators, which develop performance if the normality assumption if grossly correct; it can also handle numeric attributes using supervised discretization. Naive Bayes Updateable is an incremental version that processes one request at a time. It can use a kernel estimator but not discretization.

According to Al-Hyari, et al., (2013) [6], "Naive Bayes classifier is one of the efficient and highly scalable inductive learning algorithms which is trained in a supervised learning strategy".

All naive Bayes classifiers assume that the value of a particular feature is independent of the value of any other feature, given the class variable. For example, a fruit may be considered to be an apple if it has certain characteristics. A naive Bayes classifier considers each of these characteristics to contribute independently to the probability that this fruit is an apple, regardless of any possible correlations between the characteristics.⁴⁸

In many practical applications, parameter estimation for naive Bayes models uses the method of maximum likelihood. In other words, one can work with the naive Bayes model without accepting Bayesian Probability or using any Bayesian methods.

Below is an example for a naive Bayes classifier, using 10-fold cross-validation.

=== Summary ===

Correctly Classified Instances	71	71	%
Incorrectly Classified Instances	29	29	%
Kappa statistic	0.3108		
Mean absolute error	0.3333		
Root mean squared error	0.4662		
Relative absolute error	69.9453	%	
Root relative squared error	95.5466	%	
Total Number of Instances	100		

=== Detailed Accuracy By Class ===

⁴⁸ Source: <u>https://en.wikipedia.org/wiki/Naive_Bayes_classifier</u>

	TP Rate	FP Rate	Precision	Recall	F- Measure	ROC Area	Class
	0.967	0.692	0.686	0.967	0.803	0.709	0
	0.308	0.033	0.857	0.308	0.453	0.708	1
W.A	0.71	0.435	0.753	0.71	0.666	0.709	

Table 1: Detailed Accuracy by Class- An example

*W.A: Weighted Average

- === Confusion Matrix ===
- a b <-- classified as
- 59 $2 \mid a = 0$
- 27 12| b = 1

The correctly and incorrectly classified instances show the percentage of test instances that were correctly and incorrectly classified. The raw numbers are shown in the confusion matrix, with a and b representing the class labels. Here there were 100 instances, so the percentages and raw numbers add up, aa + bb = 59 + 12 = 71, ab + ba = 27 + 2 = 29. It also means that 59 out of 61 a's were predicted correctly (TP Rate) and 12 out of 39 b's were predicted correctly (TN Rate).

1.4.8 Bayes Net

A Bayesian network (also known as a Bayes network, Bayes net, belief network, or decision network), is a probabilistic graphical model that represents a set of variables and their conditional dependencies via a directed acyclic graph (DAG). Bayesian networks are ideal for taking an event that occurred and predicting the likelihood that any one of several possible known causes was the contributing factor. For example, a Bayesian network could represent the probabilistic relationships between diseases and symptoms. Given symptoms, the network can be used to compute the probabilities of the presence of various diseases.⁴⁹

The classifier assumes strong (Naive) independence assumptions and is based on Bayes' Theorem. A more descriptive term for the underlying probability model would be "independent feature model". In simple terms, a naive Bayes classifier assumes

⁴⁹ Source: <u>https://en.wikipedia.org/wiki/Bayesian_network</u>

that the presence (or absence) of a particular feature of a class is unrelated to the presence (or absence) of any other feature. 50

Bayes Net classifier usually provides better attribute results than Naïve Bayes classifier.

1.4.9 Naïve Bayes Multinomial Text

The Multinomial naive bayes for text data, operates directly on String attributes. Other types of input attributes are accepted but ignored during training and classification.⁵¹

1.4.10 Lazy K Star

According to Sharma and Jain (2013) [8]: *K-Star algorithm can be defined as a method of cluster analysis which mainly aims at the partition of "n" observation into "k" clusters in which each observation belongs to the cluster with the nearest mean. We can describe K-Star algorithm as an instance-based learner which uses entropy as a distance measure. The benefits are that it provides a consistent approach to handling of real valued attributes, symbolic attributes and missing values.*

"K- Star is a simple, instance-based classifier, similar to K-Nearest Neighbour (K-NN)" (Vijayarani and Muthulakshimi (2013) [5]).

K-Star can be guided using heuristic functions.⁵²

1.4.11 Lazy IBk

This is a K-nearest neighbor's (KNN) classifier which attempts to predict the correct class for the test data by calculating the distance between the test data and all the training points. Then, it selects the K number of points, which are closest to the test data. ⁵³The K-Nearest Neighbours (KNN) algorithm is one of the simplest supervised machine learning algorithms that is used to solve both classification and regression problems. KNN is also known as an instance-based model or a lazy learner because it

⁵⁰ Source: <u>https://medium.com/@analyttica/what-is-bayesian-network-classifier-4d2771f91f63</u>
⁵¹Source: <u>https://weka.sourceforge.io/doc.dev/weka/classifiers/bayes/NaiveBayesMultinomialText.ht</u>
<u>ml</u>

⁵² Source: <u>https://www.sen.uni-konstanz.de/research/research/tools/k-star-algorithm/</u>

⁵³ Source: <u>https://medium.com/swlh/k-nearest-neighbor-ca2593d7a3c4</u>

doesn't construct an internal model. For classification problems, it will find the k nearest neighbors and predict the class by the majority vote of the nearest neighbors.⁵⁴

Usually, it is observed that the lazy IBK classifier provides better results than those of lazy K Star classifier.

1.4.12 Meta Multi Class Classifier

In machine learning, multiclass or multinomial classification is the problem of classifying instances into one of three or more classes (classifying instances into one of two classes is called binary classification). While many classification algorithms (i.e multinomial logistic regression) naturally permit the use of more than two classes, some are by nature binary algorithms; these can, however, be turned into multinomial classifiers by a variety of strategies.⁵⁵

According to Witten, et al., (1999) [10], "Meta Multi Class Classifier transforms the multiclass problem into several two-class ones and combine the results".

Each training point belongs to one of the n different classes. The goal is to construct a function which, given a new data point, will correctly predict the class to which the new point belongs.⁵⁶

1.4.13 Meta Multi Class Classifier Updateable

This is a meta classifier for handling multi-class datasets with 2-class classifiers and it has more than two outcomes. This classifier is also capable of applying error correcting output codes for increased accuracy. The base classifier must be an updateable classifier.⁵⁷

1.4.14 Meta Randomizable Filtered Classifier

Meta Randomizable Filtered Classifier runs an arbitrary classifier on data that has been passed through an arbitrary filter. Like the classifier, the structure of the filter is based exclusively on the training data and test instances will be processed by the filter without changing their structure. ⁵⁸

58 Source:

⁵⁴ Source: <u>https://towardsdatascience.com/an-introduction-to-k-nearest-neighbours-algorithm-3ddc99883acd</u>

⁵⁵ Source: <u>https://en.wikipedia.org/wiki/Multiclass_classification</u>

⁵⁶ Source: <u>https://www.mit.edu/~9.520/spring09/Classes/multiclass.pdf</u>

⁵⁷Source:<u>https://weka.sourceforge.io/doc.dev/weka/classifiers/meta/MultiClassClassifierUpdateable.</u> <u>html</u>

https://weka.sourceforge.io/doc.dev/weka/classifiers/meta/RandomizableFilteredClassifier.html

1.4.15 Meta Vote

Occasionally meta-analyses use 'vote counting' to compare the number of positive studies with the number of negative studies. Vote counting might be considered as a last resort in situations when standard meta-analytical methods cannot be applied (such as when there is no consistent outcome measure).⁵⁹

1.4.16 Meta Stacking

Combines several classifiers using the stacking method and can do classification or regression.⁶⁰

1.4.17 Meta Instances Handler Wrapper

This is a generic wrapper around any classifier to enable weighted instances support. and uses resampling with weights if the base classifier is not implementing the weka core. By default, the training data is passed through to the base classifier if it can handle instance weights. However, it is possible to force the use of resampling with weights as well.⁶¹

1.4.18 Meta Random Sub Space

This method constructs a decision tree based classifier that maintains highest accuracy on training data and improves on generalization accuracy as it grows in complexity. The classifier consists of multiple trees constructed systematically by pseudorandomly selecting subsets of components of the feature vector, that is, trees constructed in randomly chosen subspaces.⁶²

1.4.19 Meta CV Parameter Selection

Meta CV Parameter Selection performs parameter selection by cross-validation for any classifier.⁶³

1.4.20 Meta Bagging

Meta Bagging is a classifier that reduces variance and can do classification and regression depending on the base learner. ⁶⁴

⁵⁹ Source: https://handbook-5-

^{1.}cochrane.org/chapter 9/9 4 11 use of vote counting for meta analysis.htm

⁶⁰ Source: <u>https://weka.sourceforge.io/doc.dev/weka/classifiers/meta/Stacking.html</u>

⁶¹ Source:

https://weka.sourceforge.io/doc.dev/weka/classifiers/meta/WeightedInstancesHandlerWrapper.ht ml

⁶² Source: <u>https://weka.sourceforge.io/doc.dev/weka/classifiers/meta/RandomSubSpace.html</u>

⁶³ Source: <u>https://weka.sourceforge.io/doc.dev/weka/classifiers/meta/CVParameterSelection.html</u>

1.4.21 Meta Multischeme

Meta Multischeme classifier uses cross validation on the training data or the performance on the training data. Performance is measured based on percent correct (classification) or mean-squared error (regression).⁶⁵

1.4.22 Meta Random Committee

Meta Random Committee builds an ensemble of randomizable base classifiers. Each base classifier is built using a different random number seed (but based one the same data). The final prediction is a straight average of the predictions generated by the individual base classifiers. ⁶⁶

1.4.23 Misc Input Mapped Classifier

This is a wrapper classifier that addresses incompatible training and test data by building a mapping between the training data that a classifier has been built with and the incoming test instances' structure.⁶⁷

1.4.24 JRip

This implements a propositional rule learner, Repeated Incremental Pruning to Produce Error Reduction (RIPPER), which was proposed by William W. Cohen as an optimized version of IREP.⁶⁸

1.4.25 Zero R

Zero R predicts the mean (for a numeric class) or the mode (for a nominal class).⁶⁹

1.4.26 One R Rules

One R is a rule learner that uses the minimum-error attribute for prediction, discretizing numeric attributes. 70

1.4.27 Rules Part

This is a Rule learner that uses separate-and-conquer method. Builds a partial C4.5 decision tree in each iteration and makes the "best" leaf into a rule. ⁷¹

⁶⁴ Source: <u>https://weka.sourceforge.io/doc.stable/weka/classifiers/meta/Bagging.html</u>

⁶⁵ Source: <u>https://weka.sourceforge.io/doc.dev/weka/classifiers/meta/MultiScheme.html</u>

⁶⁶ Source: <u>https://weka.sourceforge.io/doc.dev/weka/classifiers/meta/RandomCommittee.html</u>

⁶⁷ Source: <u>https://weka.sourceforge.io/doc.dev/weka/classifiers/misc/InputMappedClassifier.html</u>

⁶⁸ Source: <u>https://weka.sourceforge.io/doc.dev/weka/classifiers/rules/JRip.html</u>

⁶⁹ Source: <u>https://weka.sourceforge.io/doc.dev/weka/classifiers/rules/ZeroR.html</u>

⁷⁰ Source: <u>https://weka.sourceforge.io/doc.dev/weka/classifiers/rules/OneR.html</u>

⁷¹ Source: <u>https://weka.sourceforge.io/doc.dev/weka/classifiers/rules/PART.html</u>

1.4.28 Decision Table

According to Kalmegh (2018) [3]: Decision Table is an accurate method for numeric prediction from decision trees and it is an ordered set of If-Then rules that have the potential to be more compact and therefore more understandable than the decision trees. Selection to explore decision tables because it is a simpler, less compute intensive algorithm than the decision-treebased approach.

1.4.29 Random Forest

According to E. Kleinberg (n.d) [31]: Random forests or random decision forests are an ensemble learning method for classification, regression and other tasks that operates by constructing a multitude of decision trees at training time. Random forests are an ensemble learning method for classification (and regression) that operate by constructing a multitude of decision trees at training time and outputting the class that is the mode of the classes output by individual trees. The algorithm for inducing a random forest was developed by Leo Breiman and Adele Cutler.

As Kinge and Gaikwad indicate in their survey [13]: Random Forest builds a randomized decision tree in each iteration of the algorithm and often produces excellent predictors. Every subtree gives a classification and provides the tree votes for that class.

It is called 'Random' Forest as it is using two random processes: bootstrapping and random feature selection. Bootstrapping ensures that we are not using the same data for every tree, so it helps the model to be less sensitive to our training data. The random feature selection helps to reduce the correlation between the trees (if we use every feature, then the decision trees will have the same decision nodes and they will act very similarly, which will increase the variance). ⁷²

1.4.30 J48 Tree

According to Vaithiyanathan, et al., (2014) [15]: J48 Tree is an optimized implementation of the C4.5 or improved version of the C4.5. J48 Tree is a decision tree learner. The output given by J48 is the Decision tree. A Decision tree is same as that of the tree structure having different nodes, such as root node, intermediate nodes and leaf node. Each node in the tree contains a decision and

⁷² Source: <u>https://www.youtube.com/watch?v=v6VJ2RO66Ag</u>

that decision leads to our result as name is decision tree. Decision tree divide the input space of a data set into mutually exclusive areas, where each area having a label, a value or an action to describe or elaborate its data points. Splitting criterion is used in decision tree to calculate which attribute is the best to split that portion tree of the training data that reaches a particular node.

1.4.31 Decision Stump Tree

Decision Stump is a decision tree learner. According to Witten, et al., (1999) [10]: Decision Stump builds simple binary decision "stumps" (one-level decision trees) for both numeric and nominal classification problems. It copes with missing values by extending a third branch from the stump- in other words by treating "missing" as a separate attribute value.

1.4.32 Random Tree

Random tree is a decision tree learner. Random Tree considers K randomly chosen attributes at each node and performs no pruning. It has also an option to allow estimation of class probabilities (or target mean in the regression case) based on a hold-out set (backfitting).⁷³

1.4.33 RepTree

Rep Tree is a fast decision tree learner. It builds a decision/regression tree using information gain/variance and prunes it using reduced-error pruning (with back fitting). Rep Tree only sorts values for numeric attributes once. Missing values are dealt with by splitting the corresponding instances into pieces (i.e. as in C4.5).⁷⁴

1.4.34 Hoeffding Tree

[18]

[18]:

A Hoeffding tree (VFDT) is an incremental, anytime decision tree induction algorithm that is capable of learning from massive data streams, assuming that the distribution generating examples does not change over time. Hoeffding trees exploit the fact that a small sample can often be enough to choose an optimal splitting attribute. This idea is supported mathematically by the Hoeffding bound, which quantifies the number of observations (in our case, examples) needed to estimate some statistics within a prescribed precision (in our case, the goodness of an attribute). A theoretically

⁷³ Source: <u>https://weka.sourceforge.io/doc.dev/weka/classifiers/trees/RandomTree.html</u>

⁷⁴ Source: <u>https://weka.sourceforge.io/doc.dev/weka/classifiers/trees/REPTree.html</u>

appealing feature of Hoeffding Trees not shared by other incremental decision tree learners is that it has sound guarantees of performance. Using the Hoeffding bound one can show that its output is asymptotically nearly identical to that of a nonincremental learner using infinitely many examples.

1.4.35 Tree LMT

Classifier for building 'logistic model trees', which are classification trees with logistic regression functions at the leaves. The algorithm can deal with binary and multi-class target variables, numeric and nominal attributes and missing values. ⁷⁵

Linear/Logistic Regression Models, Rules' Models and Decision Tree Models are interpretable and can be easily comprehended by a human, by looking only at the model summary/ parameters, without any techniques. Interpretable models provide their own explanation. On the other hand, Voted Perceptron model, SMO Reg model and Random Forest are not interpretable and are quite difficult to be comprehended or explained by just looking at the model/summary, as they are more complicated (as their algorithms are separated into levels). For that reason, additional techniques/ tools are required in order to understand the predictions made from the algorithms.

The classifiers in WEKA are designed to be trained to predict a single 'class' attribute, which is the target for prediction. Some classifiers can only learn nominal classes, others can only learn numeric classes and others can learn both. By default, the class is taken to be the last attribute in the data.

1.5 Clustering

Clustering is a method og grouping similar things together and is considered one of the most important unsupervised learning techniques as it does not need labeling. According to Alam, (2016) [30]: Clustering is an unsupervised learning problem and collection of objects in such a way that similar objects in the same group and dissimilar objects are in other groups.

⁷⁵ Source: <u>https://weka.sourceforge.io/doc.dev/weka/classifiers/trees/LMT.html</u>

In other words, we can say that clustering is a process of portioning a data set into a set of meaningful subclasses, known as clusters. Clustering is the same as classification in which data is grouped. ⁷⁶

Though, unlike classification, clustering does not seek rules that predict a particular class, but rather try to divide the data into groups/clusters, that are not previously defined, by determining similarities between data according to characteristics found in the real data.

Figure 5: Clustering 77

Eight Different Types of Clustering Algorithms in Weka Tool:

1.5.1 Simple K-Means

Let us explain how Simple K-Means clusterer works in a given dataset:

⁷⁶ Source: <u>https://www.javatpoint.com/classification-vs-clustering-in-data-mining</u>

⁷⁷ Source: https://www.geeksforgeeks.org/ml-classification-vs-clustering/

Figure 6: Pointed Data

The technique begins by randomly sprinkling some labels throughout our data (let us assume we have pink cluster and blue cluster. After labelling the data, Simple K-Means computes the centroids.

Figure 7: Data Labeling

Next, Simple K-Means randomly selects the cluster centroids, which might be close with each other.

Figure 8: Finding Cluster Centroids

Now, let us forger about the previous data labeling.

Figure 9: Centroids with no data labeling

Now, each point gets a label from the nearest centroid. For those points that are near both centroids, the machine finds the best answer. Euclidian distance is the most common way to calculate the distance of a pair of objects and it examines the root of square differences between coordinates.

Figure 10: Clustering

Next, Simple K-Means re-computes the centers. Now the centroids should be far apart:

Figure 11: Recomputing the centers

Again, the clusterer forgets about the labels:

Figure 12: Centroids with no data labeling

Now, each point gets a label from the closest centroid.

Figure 13: Clustering

Simple K-Means repeats the same procedure, until the cluster labels stop changing. Nothing changes the next round, so the final clusters are these two:

Figure 14: Final Clusters

Let us assume that a point that is equally distanced between the two centroids. After several rounds of flipping from the one cluster to the other, it finally stops and gives us one final answer (about the cluster chosen).

Something that should be pointed out is that we usually get different results from clustering each time.⁷⁸

So, Simple K-Means is a distant-based clusterer that minimizes the squared distance from each instance to their cluster center, after defining k centroids. It is one of the best unsupervised algorithms. For each different number of seeds, there is different clustering results.^{79 80}

K in K-means stands for the number of clusters we want to create.

"This technique is iterated till there is no change in gravity centers" ([21]) [21].

1.5.2 EM

"EM (Expectation Maximization) is a probabilistic clusterer and can be used for unsupervised learning. Like Naive Bayes, it makes the assumption that all attributes are independent random variables." (Witten I.H., et al., (1999)) [10].

⁷⁸ Source: <u>https://www.youtube.com/watch?v=IQ39ZRFfYbI&t=10s</u>

⁷⁹ Source: <u>https://www.youtube.com/watch?v=4b5d3muPQmA</u>

⁸⁰ Source: <u>https://www.youtube.com/watch?v=HCA0Z9kL7Hg</u>

EM assigns a probability distribution to each instance which indicates the probability of it belonging to each of the clusters. EM can decide how many clusters to create by cross validation, or you may specify apriori how many clusters to generate.⁸¹

Let us assume we want two clusters a and b respectively.

EM starts by placing the Gaussians (μ_a , σ_a^2), (μ_b , σ_b^2) randomly on space somewhere. Then, for each point P(b|x_i) it asks: is it more likely that the point belongs to the group/cluster a or b?⁸²

Unlike K-Means that takes one point and places it to the one cluster or the other, EM computes the probability that it goes into a or b cluster. This probability never gets zero or one, it is always a number between zero and one (0<probability EM<1).

Once it has computed the probability that it came from a or b cluster, EM uses Gaussian numbers (μ_a , σ_a^2), (μ_b , σ_b^2), to re-estimate the means and the variances to fit the points assigned to them. Repeating, the clusters are continuing to separate and we can see very different groups of data. This procedure iterates until convergence.⁸³

The model just finds that there are distinguished groups in the dataset that behave differently.

EM works for both numeric and nominal attributes providing mean and standard deviation results and value probability results respectively. Log likelihood is an overall quality measure and is increased by each iteration.⁸⁴

1.5.3 Hierarchical Clustering

Hierarchical Clustering is often associated with heatmaps. Hierarchical Clustering orders the rows and the columns based on similarity, in order to see the correlations in the data.

Let us see an example:⁸⁵

⁸¹ Source: <u>https://weka.sourceforge.io/doc.dev/weka/clusterers/EM.html</u>

⁸² Normal or Gaussian distribution is the most common distribution for independent, randomly generated variables. A random variable is a normally distributed variable with mean μ =0 and standard deviation σ =1.

⁸³ Source: <u>https://www.youtube.com/watch?v=REypj2sy_5U</u>

⁸⁴ Source: <u>https://www.youtube.com/watch?v=HCA0Z9kL7Hg</u>

⁸⁵ Source: <u>https://www.youtube.com/watch?v=7xHsRkOdVwo</u>

Hierarchical Clustering figures which rows are similar to row 1. Row1 and row 3 are quite similar as in column 1, both row 1 and row 3 are red, in column 2 both row 1 and row 3 are pink and in column 3 both row 1 and row 3 are blue. Row 1 and row 2 are also quite similar, but not as much as row 1 and row 2.

Now hierarchical clustering figures which row is most similar to row 2. Doing all the comparisons we can detect that row 2 is most similar to row 4.

The same procedure happens for row 3 and raw 4.

After this, hierarchical clustering figures which of the different combinations are the most similar and then merges them into clusters.

In this case rows 1 and 3 are the most similar than any other combination. So raw1 and raw 3 are now cluster 1. Cluster 1 is now treated like it is a single raw.

Figure 16: Clustering

Now the model tries to figure out which raw is similar to cluster 1. Cluster 1 is most similar to raw 4.

Finally, raw 2 is most similar to raw 4.

Of the different combinations, the model figures which two rows are the most similar and it merges them into a cluster. In our case, rows 2 and 4 are the most similar, so we merge them into a cluster.

Now the clusters can be all merged together.

Figure 19: Dendrogram in hierarchical clustering

Hierarchical clustering is often accompanied by a dendrogram that indicates the order that the clusters were formed and the homogeneity that they presented.

Cluster 1 was formed first, had high homogeneity and has the shortest branch.

Cluster 2 was formed second, had the second best homogeneity and has the second shortest branch.

Cluster 3 has all the rows merged together and was formed last. It also has the longest branch.

According to[22] [22]:

Hierarchical cluster divides the clusters in a sequential manner with nested portions. It consists of the agglomerative approach and divisive approach. (i) Agglomerative: This is a "bottom-up" method, every analysis starts its individual cluster, and similar clusters integrated collectively move over the hierarchy until every data from at intervals one cluster. (ii) Divisive: This is a "top-down" approach, and this hierarchical clustering having all its objects into one cluster then split the cluster into the cluster. In its splitting process needs minimum relation for the different cluster and maximum relation in the same cluster.

1.5.4 Filtered Clusterer

This is a clusterer that has been passed through an arbitrary filter. Like the clusterer, the structure of the filter is based exclusively on the training data and test instances will be processed by the filter without changing their structure.⁸⁶

According to [20] [20]: This algorithm is primarily based completely on storing the multidimensional data points within a tree. The process regarding the tree is like a binary tree method, as represents a hierarchical subdivision on its data point set's bounding box the usage of their axis after which splitting is aligned by way on hyper planes. Each node on the tree is related with a closed field, referred to as the cell.

1.5.5 Farthest First

According to[24] [24]:

Farthest first finds its variant of K-means. Each cluster center point furthermost from the existing cluster center is placed by the K-mean, and this point must be positioned within the data area. So that it greatly speeds up the clustering in most cases, but it needs less move and adjustment for their fast performance.

1.5.6 Cobweb

"Cobweb is an incremental system for hierarchical conceptual clustering." (Fisher, D.H. (1987)) [25] [26]. Cobweb was invented by Professor Douglas H. Fisher, currently at Vanderbilt University.

According to [27] [27]:

Cobweb incrementally organizes observations into a classification tree. Each node in a classification tree represents a class (concept) and is labeled by a probabilistic concept that summarizes the attribute-value distributions of objects classified under the node. This classification tree can be used to predict missing attributes or the class of a new object.

1.5.7 Make A Density Based

This is a class for wrapping a Clusterer to make it return a distribution and density. It fits normal distributions and discrete distributions within each cluster produced by the wrapped clusterer.⁸⁷

⁸⁶ Source: <u>https://weka.sourceforge.io/doc.dev/weka/clusterers/FilteredClusterer.html</u>

We only have two hyperparameters:

- Eps(ilon): A "neighborhood's" radius around a point x
- MinPts: The minimum number of neighbors within "eps" radius

Let us consider of a MinPts=5

Figure 20: Data points

The clusterer randomly chooses point X. This point, is not already in a cluster, so it creates a new cluster. X and is also rounded by five other points, so we call X a core point.

Figure 21: Corepoint X and hyperparameters

If we do the same analysis for y, we would see that it is already in cluster 1. Y is rounded by four points but one of these points is a core point. So we will call y a border point.

⁸⁷ Source: <u>https://weka.sourceforge.io/doc.dev/weka/clusterers/MakeDensityBasedClusterer.html</u>

Figure 22: Borderpoint Y and hyperparameters

Except for one point, all the other points already exist in cluster 1 as well.

We re-do the same procedure for z, which is not in another cluster. Z has two neighbors, but none of them is a core point. Thus, we call z a noise point.

Figure 23: Noisepoint z and hyperparameters

Thus, removing the remaining-noise points, we have 1 final cluster.

Figure 24: Final cluster

So:

- The clusterer randomly chooses the core points and then for each core point that is not already assigned to a cluster, creates a new cluster.
- The clusterer finds all its density connected points and assigns them to the same cluster as the core point.
- Then it iterates through the remaining unvisited points in the dataset.
- The core points that do not belong to any cluster are treated as outliers or noise points.⁸⁸

According to [29] [29]: Density-Based Clustering refers to unsupervised learning methods that identify distinctive groups/clusters in the data, based on the idea that a cluster in a data space is a contiguous region of high point density, separated from other such clusters by contiguous regions of low point density. The data points in the separating regions of low point density are typically considered noise/outliers.

1.5.8 Canopy

According to Mai and Cheng (2016) [33]: Canopy is one of the improved K-means algorithm, can be used to determine the number of clusters. With the introduction of Canopy clustering, the data set is divided into k sub-sets by setting the radius, and the sub-sets can be selected as the initial centers of K-means. Because the Canopy algorithm can reduce the running time of the clustering by reduce the count of comparisons, it will improve the computational efficiency. The Canopy algorithm's steps as follows:

Step1: Put all data into a List, and initialize two distance radius about the loose threshold T1 and the tight threshold T2 (T1>T2).

Step2: Randomly select a point as the first initial center of the Canopy cluster, and delete this node from the List.

Step3: Get a point from the List, and calculate the distance d to each Canopy clusters. If d < T2, the point belongs to this cluster; if $T2 \le d \le T1$, this point will be marked with

⁸⁸ Source: https://www.youtube.com/watch?v=f4pZ9PHNdcM

a weak label; If the distance d to all Canopy center is greater than T1, then the point will be a new Canopy cluster center. Finally, this point should be deleted from the List;

Step4: Run the step3 repeatedly until the list is empty, and recalculate the cluster center. But the execution efficiency of Canopy algorithm is affected by the radius about T1 and T2. When T1 is too large, it will makes one point belongs to multiple Canopy cluster, which will increase the computing time; when the T2 is too large, it will reduce the clustering count. So the initial radius about T1 and T2 is generally set based on the experience or experimental test, which will influence the accuracy and efficiency of classification. In order to solve the above problems, an improved Canopy-K means algorithm is proposed.

Capopy clustering algorithm can run in either batch or incremental mode. Results are generally not as good when running incrementally, as the min/max for each numeric attribute is not known in advance.⁸⁹

According to [28] [28]: Canopy clustering algorithm is an unsupervised pre-clustering algorithm and it is often used as preprocessing step for the K-means algorithm or the Hierarchical clustering algorithm. It is intended to speed up clustering operations on large data sets, where using another algorithm directly may be impractical due to the size of the data set.

1.6 Association Rule Mining

According to Kaur and Madan (2015) **Error! Reference source not found.**: Association rule mining is one of an important technique of data mining for knowledge discovery. The knowledge of the correlation between the items in the data transaction can use association rule mining.

"It is a very famous technique for discovering correlations between variables in the huge databases" (Karthikeyan and Ravikumar, (2014) **Error! Reference source not found.**).

⁸⁹ Source: <u>https://weka.sourceforge.io/doc.dev/weka/clusterers/Canopy.html</u>

Association rule mining is a kind of supervised learning that has been mainly developed to identify the strongly associated relationships among item sets that have high-frequency and strong-correlation. Association rules enable us to detect the items that frequently occur together in an application and have correlations among a set of items. They are often expressed in the rule form showing attribute-value conditions that occur frequently together in a given set of data. An association rule in the form of $X \rightarrow Y$ is interpreted as 'database tuples that satisfy X are likely to satisfy Y '. Association analysis is widely used in transaction data analysis for business decision making process.

Rules can predict any attribute, or indeed any combination of attributes. To find them we need a different kind of algorithm. "Support" and "confidence" are two measures of a rule that are used to evaluate them and rank them. The most popular association rule learner, and the one used in Weka, is called Apriori.

From a given dataset with adjusted number of rules to find and adjusted minimum metric (minmetric) score/ confidence, Weka's associator model exports the best association rules/results. These results have certain confidence level, lift, leverage and conviction.

Confidence c, essentially describes the level of interrelation between two elements or sets of elements. Confidence measures the reliability of the results emerged from a rule. For a given rule, $X \Rightarrow Y$, the higher the confidence level, the more likely Y is to engage in transactions containing X. Confidence also provides an estimation of the conditional probability of Y given that X has already occurred. Confidence for the correlation rule $X \Rightarrow Y$, is calculated from the ratio of the number of transactions containing both X and Y (XUY) to the number of transactions containing the element X. It is defined by the relation:

$$Confidence = C (X \Rightarrow Y) = \frac{\sigma(XUY)}{\sigma X}$$

σ : support count

So, confidence is the conditional probability, that a transaction that contains a certain item X, also contains another item Y. For instance, a transaction that contains the item 'Diapers' should also contain the item 'Beer'.

According to probability theory, confidence for the correlation rule $X \Rightarrow Y$, is calculated as follows:

$$P(X \Rightarrow Y) = \frac{P(XUY)}{P(Y)}$$

Support count ($\sigma(X)$) of a set of elements, is the number of times that the element X appears. That is, that the support count of an element set X, can be stated as:

$$\sigma(X) = |\{t_i / X \subseteq t_i, t_i \in T\}|$$

i: the number of elements in a set.

Lift, is another known metric that is calculated as follows:

$$\operatorname{Lift}(X \Rightarrow Y) = \frac{c(X \cup Y)}{s(Y)}$$

This metric calculates the correlation between the Rule's Confidence and the set of elements' support in the subsequent (second) part of the Rule (Y).

The Lift measures the degree and type of correlation between the elements of the rule and can be used to measure the relationship or independence of the elements of a rule. The statistical measure Lift (lift ratio) is used to assess the degree of confidence of a rule and is described as the confidence of the rule divided by the confidence, assuming the independence of the entailed from the previous one:

$$Lift(X \Rightarrow Y) = \frac{P(X,Y)}{P(X)P(Y)}$$

So, given a rule $A \Rightarrow B$, lift is the ratio of the probability that X and Y occur together to the multiple of the two individual probabilities for X and Y. This indicates how likely is for the product Y to be purchased given that product X is purchased, while checking how popular product Y is. If this value is 1, then X and Y are independent. The higher this value, the more likely that the existence of X and Y together in a transaction is not just a random occurrence, but because of some relationship between them. 90

Lift and Leverage measure similar things, except that leverage measures the difference between the probability of co-occurrence of X and Y as the independent probabilities of each of X and Y.⁹¹

$Leverage(X \Rightarrow Y) = P(X \cup Y) - P(X)P(Y) = P(X,Y) - P(X) - P(Y)$

Leverage measures the difference between the probability of co-occurrence of X and Y in the data set, compared to what would be expected if X and Y were statistically independent.

In other words, leverage measures the proportion of additional cases covered by both X and Y above those expected if X and Y were independent of each other. If the value of the leverage is zero, then X and Y are statistically independent. A leverage value greater than zero, means that X and Y are related. The higher the leverage value, the stronger the correlation between X and Y.

Thus, for leverage, values above zero are desirable, whereas for lift, we want to see values greater than $1.^{92}$

Finally, *conviction* is similar to lift, but it measures the effect of the right-hand-side not being true. It also inverts the ratio. So, convictions is measured as:

$$Conviction = \frac{P(X)P(not Y)}{P(XUY)} = \frac{P(X)P(not Y)}{P(X,Y)}$$

 ⁹⁰ Source: DePaul University's website: <u>http://facweb.cs.depaul.edu/mobasher/classes/ect584/weka/associate.html</u>
 ⁹¹ Source: DePaul University's website:

http://facweb.cs.depaul.edu/mobasher/classes/ect584/weka/associate.html ⁹² Source: DePaul University's website:

http://facweb.cs.depaul.edu/mobasher/classes/ect584/weka/associate.html

Thus, conviction, in contrast to lift is not symmetric (and also has no upper bound). In most cases, it is sufficient to focus on a combination of support, confidence, and either lift or leverage to quantitatively measure the "quality" of the rule. However, the real value of a rule, in terms of usefulness is subjective and depends heavily of the particular domain and business objectives. ⁹³

⁹³ Source: DePaul University's website: <u>http://facweb.cs.depaul.edu/mobasher/classes/ect584/weka/assoc</u>iate.html

Chapter 2

Use Case: Creta Palm Hotel 4*

Creta Palm is a four-starred hotel in Chania, Crete, Greece. For this use case, two datasets were collected from 2019 and 2020 respectively, concerning the booking source, the country of the booking source, whether the booking source is a Tour Operator or Online Travel Agency (TO/OTA), the month that each booking source made a booking in Creta Palm, the average daily rate (ADR) each booking source made in Creta Palm that month, the total bookings that the booking source made in Creta Palm that month as well as the average number of people per room (average pax/room), the total overnight stays per room (total room nights), the number of overnight stays with breakfast (BB) and its percentage (BB%), the number of "all inclusive" overnight stays (AI) and its percentage (AI%) each booking source made in Creta Palm this certain month.

Each booking source can be shown multiple times in the same year, but in different months.

In 2019, the hotel accommodated its customers from April to October whereas in 2020, the hotel accommodated its customers from July to October due to COVID-19 pandemic.

The COVID-19 outbreak has had pernicious impacts on tourism industry worldwide, so that it is considered one of the most damaged global industries. As the COVID-19 cases and deaths increased at an exponential rate, the transportation of international tourists presented a severe decline since March 2020 due to the fear of infection from the contagious virus and the worldwide health restrictions each country had imposed. As a consequence, Creta Palm presented less total bookings than those expected under normal conditions.

A real problem that the enterprises in the tourism industry are facing is that they cannot easily make predictions, nor can they identify useful patterns and rules from a certain amount of data. This, makes them more susceptible to uncertainty and risk, as they are not able to focus on the key variables that influence their companies' attributes.

This issue can be solved, through collecting and analyzing data, in order to collect the necessary information from the travel agencies, analyze their profile and make certain predictions and clusterings about them. Weka Machine Learning Software, can transform the dataset into meaningful patterns with the assistance of integrated algorithms and help us make predictions on certain variables as well as clusterings for these travel agencies or future travel agencies with a similar profile. WEKA, helps us to better predict the results of a new oncoming dataset that has similar characteristics with our already existing dataset and there is a high probability that the dataset values are similar to those predicted from the algorithm.

Creta Palm's dataset needed a further data preparation/ training in order to bring it in a suitable format and train a classifier (the variable we want to predict). In this case, the classifier is total bookings.

After training, the dataset is loaded in Weka, where further data preparations were made in order to bring it in a suitable format and therefore, prediction models and clustering models are created. These models are developed through the integrated machine learning algorithms that are chosen each time. These algorithms provide patterns and consequently, useful prediction results for the hotel.

Cross-validation method is used in order to value the classifiers, by using the number of folds entered in the corresponding field. In our 10-fold cross-validation, the original sample is randomly partitioned into 10 subsamples. Of the 10 subsamples, a single subsample is retained as the test set, and the remaining 9 subsamples are used as training set⁹⁴. The cross-validation process is repeated 10 times (the folds), with each of the 10 subsamples used exactly once as the validation data. The 10 results from the folds then can be averaged (or otherwise combined) to produce a single estimation.

Supplied test set is used in order to make predictions for new unseen data from the set of instances loaded from the file.

⁹⁴ A training set is a subset of a dataset that is used to train a model and a test set is a subset of a dataset that is used to test the trained model. Source: <u>https://developers.google.com/machine-learning/crash-course/training-and-test-sets/splitting-data</u>

For clustering outputs, the training set is used, so that, the cluster is the same set that the clusterer is trained on.

Chapter 2 presents the total bookings of each booking source based on the hotel's data for the years 2019 and 2020 (see chapter WEKA *Regression 2019* for the year 2019 and chapter WEKA **Regression 2020** for the year 2020 respectively) as well as the clusterings created for the years 2019 and 2020 (see chapter 2.2 for the year 2019 and chapter 2.4 for the year 2020 respectively) through weka software system.

Creta Palm data sets' sizes were not satisfactory, so the results may not be as good as they should be.

2.1 WEKA Regression 2019 WEKA Algorithms

As mentioned above, for numeric values, WEKA regression algorithms detect correlation coefficient, mean absolute error, root mean squared error, relative absolute error and root relative squared error.

- Correlation coefficient implies what percentage of the variance in your data is explained by your model. The greater the correlation coefficient value, the more accurate the model's predictions are. A high correlation coefficient (greater than 0.95) depicts that there is a strong relation between our data values and the values of the algorithm's prediction model and that our data do get close to the predictions of the model.
- Mean absolute error is the average distance the models' predictions are from the actual data points. Absolute in the title indicates that predictions below data points ate not treated as negative distances.
- Root mean squared error is another way of calculating the mean absolute error.
- Relative absolute error and root relative squared error scale the error to the mean. This enables the comparison between models constructed with larger/smaller valued data.

• Total number of instances is the number of data points in the data set.

Correlation coefficient and mean absolute error give a really good picture of how well things are performing. A high correlation coefficient (above 0.9) and a low mean absolute error depict that our predictions are close to the expected values, which indicate high accuracy in our results..

This chapter presents the algorithms that are performing well considering all the values as well as the predictions of the algorithms concerning the hotel's Total Bookings.

2.1.1 M5Rules

See Appendix: M5Rules Algorithm |Creta Palm 2019

=== Summary ===

Correlation coefficient	0.9788
Mean absolute error	3.9186
Root mean squared error	5.7585
Relative absolute error	20.4949 %
Root relative squared error	20.3659 %
Total Number of Instances	91

M5 Rules Algorithm provides the best results from all the algorithms. The high correlation coefficient (0.9788>0.95) depicts that there is a strong relation between our data values and the values of the (M5Rules) algorithm's prediction model and that our data do get close to the predictions of the model.

We can better predict the results of a new oncoming dataset that has similar characteristics with our already existing dataset and there is a high probability that the dataset values are similar to those predicted from the algorithm.

M5Rules generates a decision list for regression problems using separate-andconquer. In each iteration, it builds a model tree using M5 and makes the "best" leaf into a rule.⁹⁵

M5Rules is an interpretable, quite simple algorithm model. The model is understandable and explainable, as it is clear of how it arrived at a specific decision.

Let us interpret the patterns and conclusions that M5P rules regression's model tells us: Booking Sources and countries have different type of influence in total bookings each time (either positive or negative depending on the sign of the number in front of each booking source or country). However, as we can see, the total overnight stays (total PAX nights), the total overnight stays with dinner (HB) and the total room nights are having a positive correlation to the total bookings. Specifically, the positive coefficient in front of these variables depict that the higher the values of total PAX nights, total overnight stays with dinner and total room nights, the higher the number of the total bookings. On the other hand, all-inclusive overnight stays (AI), seem to have a negative correlation to the total bookings as the variable has a negative coefficient in front of it. That is, that the more overnight stays with dinner (HB) may lead to less total bookings.

High values of HB may lead to in overall less total bookings, but that does not mean that they are not profitable. The hotel may examine the situation and can possibly raise the prices for overnight stays with dinner, or confine the availability of them, in order to have a higher number of total bookings.

According to the algorithm's results, June, July and September of 2019 seem to have a positive correlation with the total bookings, which means that in these months the total bookings of Creta Palm increased.

M5Rules' Algorithm predictions of the Total Bookings of some of the 2019 Booking Sources are presented below.

"Actual" represents the actual total bookings of Creta Palm in 2019. "Predicted" represents the hotel's predicted bookings for each travel agency according to the respective algorithm. "Error" represents the accuracy of the predicted booking results. The higher the deviation between the actual and the predicted booking results, the lower the accuracy.

⁹⁵ Source: https://weka.sourceforge.io/doc.dev/weka/classifiers/rules/M5Rules.html

=== Predictions on test data ===

inst#	actual	predicted	error
TUI DEUTSCHLAND	14	16.561	2.561
EXPEDIA	32	27.472	-4.528
AURINKOMATKAT	125	113.653	-11.347
TUI UK	8	7.951	-0.049
ARHUS CHARTER	25	34.889	9.889
JET2HOLIDAYS	28	25.491	-2.509
ARHUS CHARTER	40	32.647	-7.353
EXPEDIA	45	39.657	-5.343
AURINKOMATKAT	92	101.22	9.22
AURINKOMATKAT	132	131.206	-0.794
AURINKOMATKAT	78	92.685	14.685
ITAKA	42	49.487	7.487
SUNWEB	19	17.322	-1.678
JET2HOLIDAYS	35	34.279	-0.721
TUI NL	6	7.1	1.1
ITAKA	56	41.326	-14.674
AURINKOMATKAT	82	93.822	11.822
EXPEDIA	26	31.83	5.83
SUNWEB	21	30.36	9.36
EXPEDIA	46	35.05	-10.95
AURINKOMATKAT	135	116.425	-18.575
BOOKING. COM	11	10.472	-0.528

 Table 2: Predictions on test data- M5 Rules

2.1.2 M5P trees

M5 pruned model tree: (using smoothed linear models)

LM1 (91/16.644%)

See Appendix: M5P Trees Algorithm |Creta Palm 2019

=== Summary ===

Correlation coefficient	0.9768
Mean absolute error	4.0039
Root mean squared error	5.9966
Relative absolute error	20.9406 %
Root relative squared error	21.208 %
Total Number of Instances	91

M5P Trees' Algorithm provides the second best result from all algorithms. The high correlation coefficient (0.9768>0.95) depicts that there is a strong relation between our data values and the values of the (M5P Trees) algorithm's prediction model and that our data do get close to the predictions of the model.

According to [17]"The M5P model tree is based on conventional decision tree associated to linear regression function at the leaves nodes".

M5P Trees is an interpretable, quite simple algorithm model. The model is understandable and explainable, as it is clear of how it arrived at a specific decision.

M5P Trees provide the same algorithm results as those of M5Rules.

Booking Sources and countries have different type of influence in total bookings each time (either positive or negative depending on the sign of the number in front of each booking source or country). However, as we can see, the total overnight stays (total PAX nights), the total overnight stays with dinner (HB) and the total room nights are having a positive correlation to the total bookings. Specifically, the positive coefficient in front of these variables depict that the higher the values of total PAX nights, total overnight stays with dinner and total room nights, the higher the number of the total bookings. On the other hand, all-inclusive overnight stays (AI), seem to have a negative correlation to the total bookings as the variable has a negative coefficient in front of it. That is, that the more overnight stays with dinner (HB) may lead to less total bookings.

High values of HB may lead to in overall less total bookings, but that does not mean that they are not profitable. The hotel may examine the situation and can possibly raise the prices for overnight stays with dinner, or confine the availability of them, in order to have a higher number of total bookings.

According to the algorithm's results, June, July and September of 2019 seem to have a positive correlation with the total bookings, which means that in these months the total bookings of Creta Palm increased.

M5P Trees Algorithm's predictions of the Total Bookings of some of the 2019 Booking Sources are presented below.

=== Predictions on user test set ==

inst#	actual	predicted	error
-------	--------	-----------	-------

EXPEDIA	14	31.947	-0.053
AURINKOMATKAT	32	108.374	-16.626
TUI UK	125	7.951	-0.049
TUI DEUTSCHLAND	8	17.476	3.476
ARHUS CHARTER	25	34.889	9.889
JET2HOLIDAYS	28	25.491	-2.509
ARHUS CHARTER	40	32.647	-7.353
EXPEDIA	45	39.657	-5.343
AURINKOMATKAT	92	101.22	9.22
AURINKOMATKAT	132	131.206	-0.794
AURINKOMATKAT	78	92.685	14.685
ITAKA	42	49.487	7.487
SUNWEB	19	18.835	-0.165
JET2HOLIDAYS	35	33.886	-1.114
TUI NL	б	7.1	1.1
ITAKA	56	38.252	-17.748
AURINKOMATKAT	82	93.822	11.822
EXPEDIA	26	31.83	5.83
SUNWEB	21	30.807	9.807
EXPEDIA	46	35.242	-10.758
AURINKOMATKAT	135	117.105	-17.895
BOOKING.COM	11	10.472	-0.528

Table 3: Predictions on user test set- M5P Trees

2.1.3 SMO Reg

See Appendix: SMOreg Algorithm| Creta Palm 2019

=== Summary ===

Correlation coefficient	0.9712
Mean absolute error	5.219
Root mean squared error	6.6622
Relative absolute error	27.2957 %
Root relative squared error	23.5618 %
Total Number of Instances	91

Number of kernel⁹⁶ evaluations: 4186 (99.697% cached)

SMO Reg Algorithm also provides a high correlation coefficient (0.9712>0.95). This means that there is a strong relation between our data values and the values of the (SMO Reg) algorithm's prediction model and that our data do get close to the predictions of the model.

Sequential Minimal Optimization (SMO) method breaks the problem down into subproblems that can be solved analytically (by calculating) rather than numerically (by searching or optimizing).⁹⁷

SMO Reg is neither interpretable nor simple algorithm model. This means, that one who does not have the necessary expertise in the field of technology or analytics cannot fundamentally understand how the model arrived in a certain output or how the output influences the output, by just reading the algorithm.

SMO Reg's Algorithm predictions of the Total Bookings of some of the 2019 Booking Sources are presented below.

inst#	actual	predicted	error
		1	
EXPEDIA	14	10.463	-3.537
AURINKOMATKAT	32	28.704	-3.296
TUI UK	125	109.383	-15.617
TUI DEUTSCHLAND	8	7.741	-0.259
ARHUS CHARTER	25	36.617	11.617
JET2HOLIDAYS	28	26.181	-1.819
ARHUS CHARTER	40	31.028	-8.972
EXPEDIA	45	35.884	-9.116
AURINKOMATKAT	92	96.418	4.418
AURINKOMATKAT	132	137.243	5.243
AURINKOMATKAT	78	93.971	15.971
ITAKA	42	48.435	6.435
SUNWEB	19	19.374	0.374
JET2HOLIDAYS	35	32.115	-2.885
TUI NL	6	10.302	4.302
ITAKA	56	36.596	-19.404
AURINKOMATKAT	82	89.021	7.021

=== Predictions on test data ===

⁹⁶ A "kernel" is usually used to refer to a method of using a linear classifier to solve a non-linear problem.

⁹⁷ Source:https://machinelearningmastery.com/support-vector-machines-for-machine-learning/

EXPEDIA	26	39.009	13.009
SUNWEB	21	29.428	8.428
EXPEDIA	46	39.046	-6.954
AURINKOMATKAT	135	130.624	-4.376
BOOKING.COM	11	16.079	5.079

Table 4: Predictions on test data- SMO Reg

2.1.4 Linear Regression

See Appendix: Linear Regression Model Algorithm

=== Summary ===	
Correlation coefficient	0.9695
Mean absolute error	4.7712
Root mean squared error	6.8744
Relative absolute error	24.954 %
Root relative squared error	24.3122 %
Total Number of Instances	91

Linear Regression provides a high correlation coefficient (0.9695>0.95) as well. As a consequence, there is a strong relation between our data values and the values of the algorithm's prediction model and that our data do get close to the predictions of the model.

Linear regression is a very simple regression algorithm that only supports regression type problems and is issued for prediction. The model uses the Akaike criterion for model selection, and is able to deal with weighted instances. Linear Regression can only deal with numeric attributes. ⁹⁸

The model is understandable and explainable, as it is clear of how it arrived at a specific decision.

As far as the patterns and conclusions that linear regression's model are concerned: Booking Sources and countries have different type of influence in total bookings each time (either positive or negative depending on the sign of the number in front of each booking source or country). However, as we can see, Average Daily Rate (ADR), total overnight stays (total PAX nights) and total room nights are having a positive

⁹⁸ Source:https://weka.sourceforge.io/doc.dev/weka/classifiers/functions/LinearRegression.html

correlation to the total bookings. Specifically, the positive coefficient in front of these variables depict that the higher the values of ADR, total PAX nights and total room nights, the higher the number of the total bookings, which is something expected. On the other hand, overnight stays with breakfast (BB) and all-inclusive overnight stays (AI), seem to have a negative correlation to the total bookings as these variables have a negative coefficient in front of them. That is, that the more overnight stays with breakfast (BB) as well as the more all-inclusive overnight stays (AI), may lead to less total bookings.

According to the algorithm's results, June and July seem to have a positive correlation with the total bookings, which means that in June and July the total bookings increased. This is confirmed through the original dataset.

High values of BB and AI may lead to in overall less total bookings, but that does not mean that they are not profitable. The hotel may examine the situation and can possibly raise the prices for overnight stays with breakfast or all-inclusive overnight stays, or confine the availability of those two, in order to have a higher number of total bookings.

Linear Regression's predictions of the Total Bookings of some of the 2019 Booking Sources are presented below.

inst#	actual	predicted	error
EXPEDIA	14	12.259	-1.741
AURINKOMATKA	32	31.243	-0.757
TUI UK	125	117.443	-7.557
TUI DEUTSCHLAND	8	10.173	2.173
ARHUS CHARTER	25	33.709	8.709
JET2HOLIDAYS	28	25.192	-2.808
ARHUS CHARTER	40	34.862	-5.138
EXPEDIA	45	37.768	-7.232
AURINKOMATKAT	92	94.726	2.726
AURINKOMATKAT	132	135.551	3.551
AURINKOMATKAT	78	94.647	16.647
ITAKA	42	55.068	13.068
SUNWEB	19	19.481	0.481
JET2HOLIDAYS	35	33.772	-1.228
TUI NL	6	8.04	2.04

=== Predictions on test data ===

ITAKA	56	40.695	-15.305
AURINKOMATKAT	82	92.631	10.631
EXPEDIA	26	37.602	11.602
SUNWEB	21	30.232	9.232
EXPEDIA	46	39.935	-6.065
AURINKOMATKAT	135	120.129	-14.871
BOOKING.COM	11	14.332	3.332

 Table 5: Predictions on test data- Linear Regression

2.1.5 Gaussian Process

Kernel used:⁹⁹ Linear Kernel: K(x,y) = <x,y>

All values shown based on: Normalize training data.

Average Target Value : 0.16 Inverted Covariance Matrix: Lowest Value = -0.23 Highest Value = 0.80 Inverted Covariance Matrix * Target-value Vector: Lowest Value = -0.07 Highest Value = 0.14

=== Summary ===

Correlation coefficient	0.9674
Mean absolute error	5.4531
Root mean squared error	7.1561
Relative absolute error	28.5204 %
Root relative squared error	25.3086 %
Total Number of Instances	91

⁹⁹ A "kernel" is usually used to refer to a method of using a linear classifier to solve a non-linear problem.

Gaussian Process provides a high correlation coefficient (0.9674>0.95) as well. As a consequence, there is a strong relation between our data values and the values of the algorithm's prediction model and that our data do get close to the predictions of the model.

Gaussian Process is a simple and interpretable model but it has not too many parameters. Gaussian Process implements regression without hyper parameter tuning. This implementation applies normalization/standardization to the target attribute as well as the other attributes (if normalization/standardization is turned on). Missing values are replaced by the global mean/mode. Nominal attributes are converted to binary ones.¹⁰⁰

Gaussian Processes' predictions of the Total Bookings of some of the 2019 Booking Sources are presented below.

$\equiv \equiv$ Predictions on test d	ata ===		
inst#	actual	predicted	error
EXPEDIA	14	14.662	0.662
AURINKOMATKAT	32	28.203	-3.797
TUI UK	125	99.79	-25.21
TUI DEUTSCHLAND	8	10.393	2.393
ARHUS CHARTER	25	31.42	6.42
JET2HOLIDAYS	28	24.124	-3.876
ARHUS CHARTER	40	34.074	-5.926
EXPEDIA	45	38.173	-6.827
AURINKOMATKAT	92	92.942	0.942
AURINKOMATKAT	132	129.598	-2.402
AURINKOMATKAT	78	86.816	8.816
ITAKA	42	53.013	11.013
SUNWEB	19	17.918	-1.082
JET2HOLIDAYS	35	30.582	-4.418
TUI NL	6	12.375	6.375
ITAKA	56	35.378	-20.622
AURINKOMATKAT	82	94.342	12.342
EXPEDIA	26	38.622	12.622
SUNWEB	21	25.842	4.842
EXPEDIA	46	36.575	-9.425
AURINKOMATKAT	135	122.617	-12.383

=== Predictions on test data ===

¹⁰⁰ Source: <u>https://weka.sourceforge.io/doc.dev/weka/classifiers/functions/GaussianProcesses.html</u>

BOOKING.COM	11	16.95	5.95

Table 6: Predictions on test data- Gaussian Process

2.1.6 Random Forest

=== Summary ===

Correlation coefficient	0.9655
Mean absolute error	5.9985
Root mean squared error	8.3188
Relative absolute error	31.3731 %
Root relative squared error	29.4205 %
Total Number of Instances	91

Random Forest is bagging with 100 iteration and provides a high correlation coefficient (0.9674>0.95) as well. As a consequence, there is a strong relation between our data values and the values of the algorithm's prediction model and that our data do get close to the predictions of the model.

According to E. Kleinberg (n.d) [31]: Random forests or random decision forests are an ensemble learning method for classification, regression and other tasks that operates by constructing a multitude of decision trees at training time. Random forests are an ensemble learning method for regression that operate by constructing a multitude of decision trees at training time and outputting the class that is the mode of the classes output by individual trees.

Random Forest is not an interpretable model, and it has not too many parameters for analysis. So, one who does not have the necessary expertise in the field of technology or analytics cannot fundamentally understand how the model arrived in a certain output or how the output influences the output, by just reading the algorithm.

Random Forest's predictions of the Total Bookings of some of the 2019 Booking Sources are presented below.

=== Predictions on test data ===

inst#	actual	predicted	error
EXPEDIA	14	16.088	2.088
AURINKOMATKAT	32	28.787	-3.213
TUI UK	125	92.079	-32.921
TUI DEUTSCHLAND	8	10.704	2.704
ARHUS CHARTER	25	35.69	10.69
JET2HOLIDAYS	28	25.833	-2.167
ARHUS CHARTER	40	31.636	-8.364
EXPEDIA	45	32.956	-12.044
AURINKOMATKAT	92	87.222	-4.778
AURINKOMATKAT	132	106.129	-25.871
AURINKOMATKAT	78	83.944	5.944
ITAKA	42	42.417	0.417
SUNWEB	19	21.884	2.884
JET2HOLIDAYS	35	25.092	-9.908
TUI NL	6	10.205	4.205
ITAKA	56	41.017	-14.983
AURINKOMATKAT	82	81.03	-0.97
EXPEDIA	26	34.859	8.859
SUNWEB	21	22.201	1.201
EXPEDIA	46	33.427	-12.573
AURINKOMATKAT	135	110.976	-24.024
BOOKING.COM	11	11.026	0.026

Table 7: Predictions on test data- Random Forest

2.1.7 Meta Randomizable Filtered Classifier

=== Summary ===

Correlation coefficient	0.9448
Mean absolute error	6.0989
Root mean squared error	9.4001
Relative absolute error	31.898 %
Root relative squared error	33.245 %
Total Number of Instances	91

Meta Randomizable Filtered Classifier provides lower correlation coefficient results. However, there is still a positive relation between our data values and the values of the algorithm's prediction model and our data do get close to the predictions of the model.

This is a metaclassifier for handling multi-class datasets with two-class classifiers and it has more than two outcomes. This classifier is also capable of applying error correcting output codes for increased accuracy. The base classifier must be an updateable classifier.¹⁰¹

Meta Randomizable Filtered Classifier's predictions of the Total Bookings of some of the 2019 Booking Sources are presented below.

inst#	actual	predicted	error
EXPEDIA	14	24	10
AURINKOMATKAT	32	28	-4
TUI UK	125	92	-33
TUI DEUTSCHLAND	8	18	10
ARHUS CHARTER	25	39	14
JET2HOLIDAYS	28	34	6
ARHUS CHARTER	40	25	-15
EXPEDIA	45	34	-11
AURINKOMATKAT	92	125	33
AURINKOMATKAT	132	135	3
AURINKOMATKAT	78	82	4
ITAKA	42	41	-1
SUNWEB	19	23	4
JET2HOLIDAYS	35	16	-19
TUI NL	6	4	-2
ITAKA	56	41	-15
AURINKOMATKAT	82	92	10
EXPEDIA	26	45	19
SUNWEB	21	23	2
EXPEDIA	46	35	-11
AURINKOMATKAT	135	132	-3
BOOKING.COM	11	9	-2

=== Predictions on test data ===

Table 8: Predictions on test data- Meta Randomizable Filtered Classifier

¹⁰¹Source:<u>https://weka.sourceforge.io/doc.dev/weka/classifiers/meta/MultiClassClassifierUpdateable</u>.<u>html</u>

2.1.8 Meta Random Committee

Meta Random Committee's Classifier model contributes to the total bookings' predictions through the decision tree model that is presented in the appendix. The total bookings' number depends on parameters such as the booking sources and whether it is Tour Operators or Online Travel Agencies (TO/OTA), the customer's countries, the average daily rate (ADR), the total overnight stays per room (total room nights), the average number of people per room (average pax/room), the total overnight stays (total pax nights), the number of overnight stays with breakfast (BB) and its percentage (BB%), the number of overnight stays with dinner (HB) and its percentage (HB%) and the "all inclusive" overnight stays (AI) and its percentage (AI%) and the month of the lodging.

See Appendix: Meta Random Committee Algorithm| Creta Palm 2019

=== Summary ===

Correlation coefficient	0.9429
Mean absolute error	6.6512
Root mean squared error	9.6551
Relative absolute error	34.7865 %
Root relative squared error	34.1466 %
Total Number of Instances	91

Meta Random Committee provides lower correlation coefficient results. However, there is still a positive relation between our data values and the values of the algorithm's prediction model and our data do get close to the predictions of the model.

This is a classifier for building an ensemble of randomizable base classifiers. Each base classifier is built using a different random number seed (but based on the same data). The final prediction is a straight average of the predictions generated by the individual base classifiers. ¹⁰²

Meta Random Committee's predictions of the Total Bookings of some of the 2019 Booking Sources are presented below.

¹⁰² Source: https://weka.sourceforge.io/doc.dev/weka/classifiers/meta/RandomCommittee.html

inst#	actual	predicted	error
EXPEDIA	14	9.271	-4.729
AURINKOMATKA	32	28.04	-3.96
TUI UK	125	81.214	-43.786
TUI	8	12.52	4.52
ARHUS CHARTER	25	36.546	11.546
JET2HOLIDAYS	28	24.12	-3.88
ARHUS CHARTER	40	25.45	-14.55
EXPEDIA	45	37.307	-7.693
AURINKOMATKAT	92	66.011	-25.989
AURINKOMATKAT	132	120.05	-11.95
AURINKOMATKAT	78	95.255	17.255
ITAKA	42	46.533	4.533
SUNWEB	19	23.167	4.167
JET2HOLIDAYS	35	22.049	-12.951
TUI NL	6	6.533	0.533
ITAKA	56	53.183	-2.817
AURINKOMATKAT	82	93.457	11.457
EXPEDIA	26	32.547	6.547
SUNWEB	21	32.183	11.183
EXPEDIA	46	37.983	-8.017
AURINKOMATKAT	135	105.313	-29.687
BOOKING.COM	11	11.933	0.933

=== Predictions on test data ===

 Table 9: Predictions on test data- Meta Random Committee

See in the Appendix:

Classifiers with low or negative correlation coefficient (2019):

A lower or negative correlation coefficient depicts that there is a weak relation (or negative relation) between our data and the algorithm's prediction model and that the data do not get close to the predictions of the model. This practically means that for the new oncoming agencies that have similar characteristics as those 2019's agencies, there is a low probability that the total bookings are similar as those predicted from the algorithm (or that the total bookings depict opposite results from those predicted from the algorithm – as far as negative correlation coefficient results are concerned-).

2.2 WEKA Clustering 2019 WEKA Clusterers

Clustering is a method of grouping similar things together. As mentioned in the first chapter, clustering is a process of portioning a data set into a set of meaningful subclasses, known as clusters. Clustering is the same as classification in which data is grouped. ¹⁰³

Though, unlike classification, clustering does not seek rules that predict a particular class, but rather try to divide the data into groups/clusters, that are not previously defined, by determining similarities between data according to characteristics found in the real data.

Like regression's procedure, two datasets were collected from 2019 and 2020 respectively, concerning the booking source, the country of the booking source, whether the booking source is a Tour Operator or Online Travel Agency (TO/OTA), the month that each booking source made a booking in Creta Palm, the average daily rate (ADR) each booking source made in Creta Palm that month, the total bookings that the booking source made in Creta Palm that month, the total bookings that the booking source made in Creta Palm that month as well as the average number of people per room (average pax/room), the total overnight stays per room (total room nights), the number of overnight stays with breakfast (BB) and its percentage (BB%), the number of overnight stays with dinner (HB) and its percentage (AI%) each booking source made in Creta Palm this certain month. These datasets are loaded to WEKA software system in order to make the clusterings.

According to these data, WEKA created several clustering options depending on the clusterer chosen (Simple K- Means, EM, Make a Density, Farthest First, Canopy, Filtered) in order to group the travel agencies that presented similarities and disjoin those that displayed dissimilarities. The aim of clustering is to find distinct groups within a given dataset. Clustering also helps us discern the characteristics between data elements that would otherwise have been unlabeled and uncategorized.

¹⁰³ Source: <u>https://www.javatpoint.com/classification-vs-clustering-in-data-mining</u>

For clustering outputs, the same dataset is used as those of classification.

Chapters 2.2 and 2.4 present the clusterings made according to the hotel's data for the years 2019 and 2020 (see chapter 2.2 for the year 2019 and chapter 2.4 for the year 2020 respectively).

2.2.1 Simple K Means

As mentioned in the first chapter (an analytical explanation is presented in chapter 60), Simple Means is a distant-based clusterer that minimizes the squared distance from each instance to their cluster center, after defining k centroids. It is one of the best unsupervised algorithms. For each different number of seeds, there are different clustering results.^{104 105}

Simple K Means uses random numbers and by using the same seed, we will always get the same random numbers. If we run Simple K Means over the same data twice, with the same seed, we will get exactly the same results. For different number of seeds, the results will vary each time we run Simple K Means.

In our dataset we use the same seed.

Simple K Means Clusterer, presents a different squared error depending on the number of clusters we wish to create. The bigger the number of clusters, the lower the value of squared errors within the clusters.

In order to cross-validate this, we choose different number of clusters manually. The results of each of the clusterings, depending on their number of clusters are presented below.

Simple K Means with 2 Clusters

Number of iterations: 7

Within cluster sum of squared errors: 278.35

Missing values globally replaced with mean/mode.

¹⁰⁴ Source: <u>https://www.youtube.com/watch?v=4b5d3muPQmA</u>

¹⁰⁵ Source: https://www.youtube.com/watch?v=HCA0Z9kL7Hg

		Final Cluster Centroids	
Attribute	Full Data (91.0)	0 (54.0)	1 (37.0)
Booking Source	ARHUS CHARTER	BLUE AEGEAN	RAINBOW
Country	Denmark	Vary	Poland
Average pax/room	2.4126	2.4121	2.4133
TO/ OTA	ТО	ТО	ТО
ADR	82.1023	74.4252	93.3067
Total Bookings	ngs 22.1868 14.2222		93.3067
Total PAX Nights	ghts 491.0659 236.3333		862.8378
Total Room Nights	195.9231	101.1296	334.2703
BB	238.8	149.0704	369.7568
BB%	0.4559	0.555	0.3112
НВ	77.6	75.7519	80.2973
HB%	0.2866	0.3741	0.1588
AI	180.4333	21.2302	412.7838
AI%	0.2728	0.0964	0.5303
Month	April 2019	April 2019	August 2019

Table 10: Final Cluster Centroids- Simple K Means

Clustered Instances (number of instances detected in each cluster):

- 0 54 (59%)
- 1 37 (41%)

Simple K Means divides Cretan Palm's booking sources into two clusters. The first cluster's centroid is BLUE AEGEAN and the second cluster's centroid is RAINBOW. Centroids of cluster 0 depict that the customers in cluster 0 have as dominant characteristics that they come from various different countries (Vary), that they choose BLUE AEGEAN as a travel agency and that they choose Tour Operators (TO) over Online travel Agencies. Additionally, their characteristics (Total Bookings,

ADR, Average PAX/room BB, BB%, etc.), are similar to their cluster's centroids characteristics.

The second cluster's centroids depict that the customers in cluster 1 have as dominant characteristics that they come from Poland, that they choose RAINBOW as a travel agency and that they choose Tour Operators (TO) over Online travel Agencies. Additionally, their characteristics (Total Bookings, ADR, Average PAX/room BB, BB%, etc.), are similar to their cluster's centroids characteristics.

Simple K Means uses random numbers and by using the same seed, we will always get the same random numbers. If we run Simple K Means over the same data twice, with the same seed, we will get exactly the same results. For different number of seeds, the results will vary each time we run Simple K Means.

In our dataset we use the same seed.

Simple K Means Clusterer, presents a different squared error depending on the number of clusters we wish to create. The bigger the number of clusters, the lower the value of squared errors within the clusters.

In order to cross-validate this, we choose different number of clusters manually. The results of each of the clusterings, depending on their number of clusters are presented below.

Simple K Means with 3 Clusters

See the clustering results in the appendix: Simple K Means with 3 Clusters/ Creta Palm 2019

Within cluster sum of squared errors: 255.64

Number of iterations: 5

Missing values globally replaced with mean/mode.

Clustered Instances

- 0 41 (45%)
- 1 24 (26%)
- 2 26 (29%)

Simple K Means with 4 Clusters

See the clustering results in the appendix: Simple K Means with 4 Clusters/ Creta Palm 2019

Within cluster sum of squared errors: 235.03

Number of iterations: 7

Missing values globally replaced with mean/mode.

Clustered Instances

- 0 41 (45%)
- 1 24 (26%)
- 2 26 (29%)

Simple K Means with 5 Clusters

See the clustering results in the appendix: Simple K Means with 5 Clusters/ Creta Palm 2019

Within cluster sum of squared errors: 235.03

Number of iterations: 7

Missing values globally replaced with mean/mode.

Clustered Instances

- 0 21 (23%)
- 1 14 (15%)
- 2 18 (20%)
- 3 30(33%)
- 4 8 (9%)

2.2.2 EM

"EM (Expectation Maximization) is a probabilistic clusterer and can be used for unsupervised learning. Like Naive Bayes, it makes the assumption that all attributes are independent random variables." (Witten I.H., et al., (1999))

As mentioned in the first chapter (an analytical explanation is presented in chapter 1.5.2), unlike K-Means that takes one point and places it to the one cluster or the other, EM computes the probability that it goes into a or b cluster. This probability never gets zero or one, it is always a number between zero and one (0<probability EM<1).

The model just finds that there are distinguished groups in the dataset that behave differently. EM run alternative number of clusters and then chooses automatically the number of the clusters it shall create.

EM works for numeric attributes providing mean and standard deviation results and value probability results respectively. Log likelihood is an overall quality measure and is increased by each iteration.¹⁰⁶

Number of clusters selected by cross validation: 6 Number of iterations performed: 2

	0 (0.25)	1 (0.14)	2 (0.18)	3 (0.09)	4 (0.16)	5 (0.17)
Booking Source						
ARHUS CHARTER	1.9645	1	6	1.1962	1.798	1.0413
AURINKOMATKAT	1	8	1	1	1	1
BLUE AEGEAN	5.9625	1	1	1.861	1.1185	2.058
BOOKING.COM	1	1	1	8	8	1
BRAVO TOURS	8	1	1	1	1	1
EXPEDIA	1	1	1	1	8	1
ITAKA	1	2	6	1.0036	1.9964	1
Jet2Holidays	1.0233	1	1	1.0427	1.8145	7.1194
RAINBOW	3.9457	1	4	1.2826	1.7107	1.0609
SUNWEB	1	1	1	7.9973	1	1.0027
TUI Deutschland	8	1	1	1	1	1
TUI NL	1	1	1	6.3393	1.6418	2.0189
TUI UK	1	1	1	1.5546	1.9216	6.5003

¹⁰⁶ Source: <u>https://www.youtube.com/watch?v=HCA0Z9kL7Hg</u>

Business Decision Analysis Based on Data Analytics | Antonia Trikounaki

[total]	35.9196	21	26	27.2773	32.0015	26.8016
Country						
Denmark	8.9645	1	6	1.1962	1.798	1.0413
Finland	1	8	1	1	1	1
Romania	5.9625	1	1	1.861	1.1185	2.058
Vary	1	1	1	1	15	1
Poland	3.9457	2	9	1.2863	2.7071	1.0609
UK	1.0468	1	1	1.5973	2.7361	12.6197
Netherlands	1	1	1	13.3366	1.6418	2.0216
Germany	8	1	1	1	1	1
[total]	30.9196	16	21	22.2773	27.0015	21.8016

Table 11: Clustering- EM

See the rest of the results in the Appendix: EM Clusterer Creta Palm 2019

EM divides Cretan Palm's booking sources into six clusters. For each of the attributes, there is a probability that the output is going to be this certain attribute. This probability is calculated if you divide the number of the attribute by the total attributes in each of the clusters. For example:

ARHUS CHARTER in cluster 0 (1.9645) has a 5.4% probability (1.9645/35.9196*) of being cluster's 0 centroid.

*[total: 35.9196]

BLUE AEGEAN in cluster 0, (5.9625) has the highest probability (16.5%=5.9625/35.9196*) of being cluster's 0 centroid. That is, BLUE AEGEAN has a higher probability that it is chosen among the customers of the first cluster.

The same procedure applies to the other clusters as well.

AURINKOMATKAT in cluster 1 (8) has by far the highest probability (38% = 8/21) of being cluster's 1 centroid. That is, AURINKOMATKAT has a higher probability that it is chosen among the customers of the second cluster.

ARHUS CHARTER in cluster 2 (6) has the highest probability (23% = 6/26) of being cluster's 2 centroids. So, this agency has a higher probability that are chosen among the customers of the third cluster.

SUNWEB in cluster 3 (7.9973) has the highest probability (29.3%=7.9973/27.2773) of being cluster's 3 centroid. That is, SUNWEB has a higher probability that it is chosen among the customers of the second cluster.

ITAKA in cluster 4 (1.9964) has the highest probability (6.2%=1.9964/32.0015) of being cluster's 4 centroid. That is, ITAKA has a higher probability that it is chosen among the customers of the second cluster.

Jet2holidays in cluster 5 (7.1194) has the highest probability (26.5% = 7.1194/26.8016) of being cluster's 5 centroid. That is, this agency has a higher probability that it is chosen among the customers of the second cluster.

Additionally, it is 28% probable that cluster's 0 centroid is Denmark (8.9645/30.9196=28%), 50% probable that cluster's 1 centroid is Finland (8/16=50%), 42.8% probable that cluster's 2 centroid is Poland (9/21=42.8%), 59.8% probable that cluster's 3 centroid is Netherlands (13.3366/22.2773=59.8%), 55.5% probable that cluster's 4 centroid is Varying (15/27.0015=55.5%) and 57.8% that cluster's 5 centroid is UK (12.6197/21.8016=57.8%).

Clustered Instances (number of instances detected in each cluster):

- 0 25 (27%) 1 8 (9%)
- 2 13 (14%)
- 3 12 (13%)
- 4 22 (24%)
- 5 11 (12%)

Log likelihood: -33.71

2.2.3 Filtered Clusterer

According

to

[20][20]:

This algorithm is primarily based completely on storing the multidimensional data points within a tree. The process regarding the tree is like a binary tree method, as represents a hierarchical subdivision on its data point set's bounding box the usage of their axis after which splitting is aligned by way on hyper planes. Each node on the tree is related with a closed field, referred to as the cell. The results are the same as those of Simple K Means for all the number of clusters, which is expected, as Filtered Clusterer uses Simple K Means in order to proceed to the outcome.

Filtered Clusterer with 2 Clusters

Number of iterations: 7

Within cluster sum of squared errors: 278.35

Missing values globally replaced with mean/mode.

	Final Cluster Centroids				
Attribute	Full Data 0 (91.0) (54.0)		1 (37.0)		
Booking Source	ARHUS CHARTER	BLUE AEGEAN	RAINBOW		
Country	Denmark	Vary	Poland		
Average pax/room	2.4126	2.4121	2.4133		
TO/ OTA	ТО	ТО	ТО		
ADR	82.1023	74.4252	93.3067		
Total Bookings	22.1868	14.2222	93.3067		
Total PAX Nights	491.0659	236.3333	862.8378		
Total Room Nights	195.9231	101.1296	334.2703		
BB	238.8	149.0704	369.7568		
BB%	0.4559	0.555	0.3112		
HB	77.6	75.7519	80.2973		
HB%	0.2866	0.3741	0.1588		
AI	180.4333	21.2302	412.7838		
AI%	0.2728	0.0964	0.5303		
Month	April 2019	April 2019	August 2019		

 Table 12: Final Cluster Centroids- Filtered Clusterer

Clustered Instances (number of instances detected in each cluster):

0 54 (59%)

1 37 (41%)

Filtered Clusterer divides Cretan Palm's booking sources into two clusters. The first cluster's centroid is BLUE AEGEAN and the second cluster's centroid is RAINBOW. Centroids of cluster 0 depict that the customers in cluster 0 have as dominant characteristics that they come from various different countries (Vary), that they choose BLUE AEGEAN as a travel agency and that they choose Tour Operators (TO) over Online travel Agencies. Additionally, their characteristics (Total Bookings, ADR, Average PAX/room BB, BB%, etc.), are similar to their cluster's centroids characteristics.

The second cluster's centroids depict that the customers in cluster 1 have as dominant characteristics that they come from Poland, that they choose RAINBOW as a travel agency and that they choose Tour Operators (TO) over Online travel Agencies. Additionally, their characteristics (Total Bookings, ADR, Average PAX/room BB, BB%, etc.), are similar to their cluster's centroids characteristics.

2.2.4 Farthest First

According

Farthest first finds its variant of K-means. Each cluster center point furthermost from the existing cluster center is placed by the K-mean, and this point must be positioned within the data area. So that it greatly speeds up the clustering in most cases, but it needs less move and adjustment for their fast performance.

In order to examine Farthest First Clusterer's accuracy, we choose different number of clusters manually.

	Cluster Centroids	
	Cluster 0	Cluster 1
Booking Source	BRAVO TOURS	AURINKOMATKAT
Country	Denmark	Finland
Average pax/room	2.0	3.06
TO/ OTA	ТО	ТО
ADR	51.04	132.97
Total Bookings	1	135

Farthest First Clusterer with 2 Clusters

to[24]:

Business Decision Analysis Based on Data Analytics | Antonia Trikounaki

Total PAX Nights	10.0	3700
Total Room Nights	5	1210
BB	0	1859
BB%	0	0.5
HB	10	540
HB%	1.0	0.15
AI	0	1301
AI%	0	0.35
Month	April 2019	July 2019

Table 13: Cluster Centroids- Farthest First

Clustered Instances (number of instances detected in each cluster):

- 0 81 (89%)
- 1 10(11%)

Farthest First divides Cretan Palm's booking sources into two clusters. The first cluster's centroid is BRAVO TOURS and the second cluster's centroid is AURINKOMATKAT.

Centroids of cluster 0 depict that the customers in cluster 0 have as dominant characteristics that they choose BRAVO TOURS as their travel agency, that they come from Denmark and that they choose Tour Operators (TO) over Online travel Agencies. Additionally, their characteristics (Total Bookings, ADR, Average PAX/room BB, BB%, etc.), are similar to their cluster's centroids characteristics.

The second cluster's centroids depict that the customers in cluster 1, have as dominant characteristics that they come from Finland, that they choose AURINKOMATKAT as a travel agency and that they choose Tour Operators (TO) over Online travel Agencies (OTA). Additionally, their characteristics (Total Bookings, ADR, Average PAX/room BB, BB%, etc.), are similar to their cluster's centroids characteristics.

Below are presented the other clusterings' results.

Farthest First Clusterer with 3 Clusters

Appendix: Farthest First with 3 Clusters/ Creta Palm 2019

Farthest First Clusterer with 4 Clusters

Appendix: Farthest First with 4 Clusters/ Creta Palm 2019

Farthest First Clusterer with 5 Clusters

Appendix: Farthest First with 5 Clusters/ Creta Palm 2019

2.2.5 Make A Density

According

[29]:

Density-Based Clustering refers to unsupervised learning methods that identify distinctive groups/clusters in the data, based on the idea that a cluster in a data space is a contiguous region of high point density, separated from other such clusters by contiguous regions of low point density. The data points in the separating regions of low point density are typically considered noise/outliers.

to

As mentioned in the first chapter (an analytical explanation is presented in chapter 1.5.7),

- The clusterer randomly chooses the core points and then for each core point that is not already assigned to a cluster, creates a new cluster.
- The clusterer finds all its density connected points and assigns them to the same cluster as the core point.
- Then it iterates through the remaining unvisited points in the dataset.
- The core points that do not belong to any cluster are treated as outliers or noise points.¹⁰⁷

Make A Density Clusterer, also presents a different squared error depending on the number of clusters we wish to create. The bigger the number of clusters, the lower the value of squared errors within the clusters.

In order to cross-validate this, we choose different number of clusters manually. The results of each of the clusterings depending on their number of clusters are presented below.

Make A Density Clusterer with 2 Clusters

¹⁰⁷ Source: <u>https://www.youtube.com/watch?v=f4pZ9PHNdcM</u>

See the clustering results in the appendix: Make A Density Clusterer, Fitted estimators (with ML estimates of variance) / Creta Palm 2019

Within cluster sum of squared errors: 278.35

Number of iterations: 7

Missing values globally replaced with mean/mode.

Wrapped clusterer: kMeans

Clustered Instances (number of instances detected in each cluster):

	Final Cluster Centroids		
Attribute	Full Data (91.0)	0 (54.0)	1 (37.0)
Booking Source	ARHUS CHARTER	BLUE AEGEAN	RAINBOW
Country	Denmark	Vary	Poland
Average pax/room	2.4126	2.4121	2.4133
TO/ OTA	ТО	ТО	ТО
ADR	82.1023	74.4252	93.3067
Total Bookings	22.1868	14.2222	93.3067
Total PAX Nights	491.0659	236.3333	862.8378
Total Room Nights	195.9231	101.1296	334.2703
BB	238.8	149.0704	369.7568
BB%	0.4559	0.555	0.3112
HB	77.6	75.7519	80.2973
HB%	0.2866	0.3741	0.1588
AI	180.4333	21.2302	412.7838
AI%	0.2728	0.0964	0.5303
Month	April 2019	April 2019	August 2019

Table 14: Final Cluster Centroids- Make A Density Based Clusterer

Clustered Instances (number of instances detected in each cluster):

0 63 (69%)

1 28 (31%)

Log likelihood: -49.94

Make A Density Based Clusterer divides Cretan Palm's booking sources into two clusters. The first cluster's centroid is BLUE AEGEAN and the second cluster's centroid is RAINBOW.

Centroids of cluster 0 depict that the customers in cluster 0 have as dominant characteristics that they come from various different countries (Vary), that they choose they BLUE AEGEAN travel agency and that they choose Tour Operators (TO) over Online travel Agencies. Additionally, their characteristics (Total Bookings, ADR, Average PAX/room BB, BB%, etc.), are similar to the their cluster's centroids characteristics.

The second cluster's centroids depict that the customers in cluster 1 have as dominant characteristics that they come from Poland, that they choose RAINBOW as a travel agency and that they choose Tour Operators (TO) over Online travel Agencies. Additionally, their characteristics (Total Bookings, ADR, Average PAX/room BB, BB%, etc.), are similar to their cluster's centroids characteristics.

Make A Density Clusterer has the same cluster centroids as Simple K Means Clusterer and Filtered Clusterer. The only difference this Clusterer has from Filtered Clusterer and Simple K Means Clusterer is that they have different number of instances in each cluster. Filtered Clusterer and Simple K Means have 54 instances in Cluster 0 and 37 instances in Cluster 1, whereas Make A Density Clusterer has 63 instances in Cluster 0 and 28 instances in Cluster 1.

Make A Density Clusterer with 3 Clusters

Within cluster sum of squared errors: 255.64

Number of iterations: 5

Missing values globally replaced with mean/mode.

Wrapped clusterer: kMeans

Clustered Instances

- 0 56 (62%)
- 1 23 (25%)
- 2 12 (13%)

Log likelihood: -49.78718

Make A Density Clusterer with 4 Clusters

Within cluster sum of squared errors: 235.03

Number of iterations: 7

Missing values globally replaced with mean/mode.

Wrapped clusterer: kMeans

Clustered Instances

- 0 20 (22%)
- 1 15 (16%)
- 2 15 (16%)
- 3 41 (45%)

Log likelihood: -48.82826

Make A Density Clusterer with 5 Clusters

Within cluster sum of squared errors: 212.91

Number of iterations: 9

Missing values globally replaced with mean/mode.

Wrapped clusterer: kMeans

Clustered Instances

- 0 21 (23%)
- 1 8 (9%)
- 2 17 (19%)
- 3 38 (42%)
- 4 7 (8%)

Log likelihood: -46.80844

2.2.6 Canopy

According to Mai and Cheng (2016)[33]: Canopy is one of the improved K-means algorithm, can be used to determine the number of clusters. With the introduction of Canopy clustering, the data set is divided into k sub-sets by setting the radius, and the sub-sets can be selected as the initial centers of K-means. Because the Canopy algorithm can reduce the running time of the clustering by reduce the count of comparisons, it will improve the computational efficiency.

The Canopy algorithm's analytical explanation of the steps are presented in chapter 1.5.8.

Canopy runs alternative number of clusters and then chooses automatically the number of the clusters it shall create.

Number of canopies (cluster centers) found: 16

T2 radius: 1,536 T1 radius: 1,919

Canopy divides Cretan Palm's booking sources into sixteen clusters. The characteristics (Country origin, Total Bookings, ADR TO/OTA, Average PAX/room BB, BB%, etc.) of each cluster centroids are presented in the appendix. Each cluster has a centroid which is dominant and has similar characteristics with the other elements of the cluster. The elements present Attribute, Booking Source, Country, Average pax/room, TO/ OTA, ADR, Total Bookings, Total PAX Nights, Total Room Nights, BB, BB%, HB, HB%, AI, AI% and Month as shown in the appendix: Canopy Clusterer Creta Palm 2019

Note: The numbers in these brackets: **Error! Reference source not found.** show the instances that are appeared in the cluster.

2.3 WEKA Regression 2020 WEKA Algorithms

This chapter presents the algorithms that are performing well considering all the values as well as the predictions of the algorithms concerning the hotel's Total Bookings.

2.3.1 M5P trees

See Appendix: M5P Trees Algorithm Creta Palm 2020 === Summary === Correlation coefficient 0.9782 Mean absolute error 2.9395 Root mean squared error 4.0306 Relative absolute error 21.653 % Root relative squared error 20.5785 % Total Number of Instances 52 4 Ignored Class Unknown Instances

M5P Trees Algorithm provides the best results from all algorithms. The high correlation coefficient (0.9782>0.95) depicts that there is a strong relation between our data values and the values of the (M5P Trees) algorithm's prediction model and that our data do get close to the predictions of the model.

According to [17] "The M5P model tree is based on conventional decision tree associated to linear regression function at the leaves nodes".

M5P Trees is an interpretable, quite simple algorithm model. The model is understandable and explainable, as it is clear of how it arrived at a specific decision.

As far as the patterns and conclusions that M5P Trees' model are concerned for the year 2020: Booking Sources and countries have different type of influence in total bookings each time (either positive or negative depending on the sign of the number in front of each booking source or country). However, as we can see, the total overnight stays (total PAX nights) and the total room nights are having a positive correlation to the total bookings. Specifically, the positive coefficient in front of these variables depict that the higher the values of total PAX nights and total room nights, the higher the number of the total bookings.

M5P Trees' Algorithm predictions of the Total Bookings of some of the 2020 Booking Sources are presented below.

in at #	o otvol	madiated	0,000
inst#	actual	predicted	error
ITAKA	26	26.882	0.882
BOOKING.COM	109	112.126	3.126
RAINBOW	13	9.022	-3.978
BOOKING.COM	27	26.096	-0.904
BOOKING.COM	56	48.765	-7.235
BRAVO TOURS	42	46.575	4.575
AURINKOMATKAT	29	26.306	-2.694
RAINBOW	31	36.464	5.464
EXPEDIA	32	19.268	-12.732
ITAKA	7	2.693	-4.307
SUNWEB	12	8.857	-3.143
ITAKA	47	53.013	6.013
TUI UK	2	1.344	-0.656
BRAVO TOURS	14	14.852	0.852
BLUE AEGEAN	15	10.339	-4.661
TUI DEUTSCHLAND	16	13.974	-2.026
AURINKOMATKAT	17	19.531	2.531
ITAKA	23	26.284	3.284
RAINBOW	25	20.637	-4.363
SUNWEB	20	19.123	-0.877
EXPEDIA	52	48.853	-3.147
ARHUS CHARTER	30	19.021	-10.979

=== Predictions on test data ===

 Table 15: Predictions on test data- M5P trees

2.3.2 M5Rules

See Appendix: M5Rules Algorithm| Creta Palm 2020

=== Summary ===

Correlation coefficient	0.978
Mean absolute error	2.9492
Root mean squared error	4.0424
Relative absolute error	21.7249 %
Root relative squared error	20.639 %
Total Number of Instances	52
Ignored Class Unknown Instance	s 4

M5Rules Algorithm provides the second best results from all algorithms. The high correlation coefficient (0.978>0.95) depicts that there is a strong relation between our data values and the values of the (M5Rules) algorithm's prediction model and that our data do get close to the predictions of the model.

M5Rules generates a decision list for regression problems using separate-andconquer. In each iteration, it builds a model tree using M5 and makes the "best" leaf into a rule.¹⁰⁸

M5Rules is an interpretable, quite simple algorithm model. The model is understandable and explainable, as it is clear of how it arrived at a specific decision.

As far as the patterns and conclusions that M5Rules' model are concerned for the year 2020: Booking Sources and countries have different type of influence in total bookings each time (either positive or negative depending on the sign of the number in front of each booking source or country). However, as we can see, the total overnight stays (total PAX nights) and the total room nights are having a positive correlation to the total bookings. Specifically, the positive coefficient in front of these variables depict that the higher the values of total PAX nights and total room nights, the higher the number of the total bookings.

M5Rules' Algorithm predictions of the Total Bookings of some of the 2019 Booking Sources are presented below.

inst#	actual	predicted	error
ITAKA	26	26.882	0.882
BOOKING.COM	109	112.126	3.126
RAINBOW	13	9.022	-3.978
BOOKING.COM	27	26.096	-0.904
BOOKING.COM	56	48.765	-7.235
BRAVO TOURS	42	46.575	4.575
AURINKOMATKAT	29	26.306	-2.694
RAINBOW	31	36.464	5.464
EXPEDIA	32	19.268	-12.732
ITAKA	7	2.693	-4.307
SUNWEB	12	8.857	-3.143

=== Predictions on test data ===

¹⁰⁸ Source: https://weka.sourceforge.io/doc.dev/weka/classifiers/rules/M5Rules.html

Business Decision Analysis Based on Data Analytics | Antonia Trikounaki

ITAKA	47	53.013	6.013
TUI UK	2	1.344	-0.656
BRAVO TOURS	14	14.852	0.852
BLUE AEGEAN	15	10.339	-4.661
TUI DEUTSCHLAND	16	13.974	-2.026
AURINKOMATKAT	17	19.531	2.531
ITAKA	23	26.284	3.284
RAINBOW	25	20.637	-4.363
SUNWEB	20	19.123	-0.877
EXPEDIA	52	48.853	-3.147
ARHUS CHARTER	30	19.021	-10.979

Table 16: Predictions on test data- M5Rules

2.3.3 Linear Regression

See Appendix: Linear Regression Algorithm |Creta Palm 2020

=== Summary ===	
Correlation coefficient	0.9701
Mean absolute error	3.8488
Root mean squared error	4.7515
Relative absolute error	28.3516 %
Root relative squared error	24.259 %
Total Number of Instances	52
Ignored Class Unknown Instance	es 4

Linear Regression provides a high correlation coefficient (0.9701>0.95) as well. As a consequence, there is a strong relation between our data values and the values of the algorithm's prediction model and that our data do get close to the predictions of the model.

Linear regression is a very simple regression algorithm that only supports regression type problems and is issued for prediction. The model uses the Akaike criterion for model selection, and is able to deal with weighted instances. Linear Regression can only deal with numeric attributes. ¹⁰⁹

The model is understandable and explainable, as it is clear of how it arrived at a specific decision.

As far as the patterns and conclusions that linear regression's model are concerned for the year 2020: Booking Sources and countries have different type of influence in total bookings each time (either positive or negative depending on the sign of the number in front of each booking source or country). However, as we can see, the total overnight stays (total PAX nights) and total room nights are having a positive correlation to the total bookings. Specifically, the positive coefficient in front of these variables depict that the higher the values of total PAX nights and total room nights, the higher the number of the total bookings, which is something expected. On the other hand, overnight stays with breakfast (BB) and all-inclusive overnight stays (AI), seem to have a negative correlation to the total bookings as these variables have a negative coefficient in front of them. That is, that the more overnight stays with breakfast (BB) as well as the more all-inclusive overnight stays (AI), may lead to less total bookings.

High values of BB and AI may lead to in overall less total bookings, but that does not mean that they are not profitable. The hotel may examine the situation and can possibly raise the prices for overnight stays with breakfast or all-inclusive overnight stays, or confine the availability of those two, in order to have a higher number of total bookings.

According to the algorithm's results, August of 2020 seem to have a negative correlation with the total bookings, which means that in August the total bookings decreased. This is disproved from the original dataset, as August seems to have the highest number of total bookings in 2020. This depicts that the algorithm has its weaknesses and does not always provide the most accurate results.

Linear Regression's predictions of the Total Bookings of some of the 2020 Booking Sources are presented below.

=== Predictions on test data ===

¹⁰⁹ Source:https://weka.sourceforge.io/doc.dev/weka/classifiers/functions/LinearRegression.html

inst#	actual	predicted	error
ITAKA	26	20.678	-5.322
BOOKING.COM	109	105.515	-3.485
RAINBOW	13	9.492	-3.508
BOOKING.COM	27	25.894	-1.106
BOOKING.COM	56	48.979	-7.021
BRAVO TOURS	42	53.509	11.509
AURINKOMATKAT	29	26.846	-2.154
RAINBOW	31	39.184	8.184
EXPEDIA	32	23.564	-8.436
ITAKA	7	-2.12	-9.12
SUNWEB	12	4.849	-7.151
ITAKA	47	55.995	8.995
TUI UK	2	0.135	-1.865
BRAVO TOURS	14	9.008	-4.992
BLUE AEGEAN	15	10.967	-4.033
TUI DEUTSCHLAND	16	17.029	1.029
AURINKOMATKAT	17	17.968	0.968
ITAKA	23	28.564	5.564
RAINBOW	25	16.139	-8.861
SUNWEB	20	21.542	1.542
EXPEDIA	52	55.352	3.352
ARHUS CHARTER	30	22.895	-7.105

Table 17: Predictionss on test data- Linear Regession

2.3.4 SMO Reg

See Appendix: SMO Reg Algorithm |Creta Palm 2020

=== Summary ===	
Correlation coefficient	0.9577
Mean absolute error	4.658
Root mean squared error	5.7122
Relative absolute error	34.3121 %
Root relative squared error	29.164 %
Total Number of Instances	52
Ignored Class Unknown Instance	s 4

SMO Reg Algorithm also provides a high correlation coefficient (0.9577>0.95). This means that there is a strong relation between our data values and the values of the (SMO Reg) algorithm's prediction model and that our data do get close to the predictions of the model.

As mentioned above, Sequential Minimal Optimization (SMO) method breaks the problem down into sub-problems that can be solved analytically (by calculating) rather than numerically (by searching or optimizing).¹¹⁰

SMO Reg is neither interpretable nor simple algorithm model, which means that one who does not have the necessary expertise in the field of technology or analytics cannot fundamentally understand how the model arrived in a certain output or how the output influences the output, by just reading the algorithm.

SMO Reg's Algorithm predictions of the Total Bookings of some of the 2020 Booking Sources are presented below.

inst#	actual	predicted	error
ITAKA	26	19.128	-6.872
BOOKING.COM	109	105.993	-3.007
RAINBOW	13	8.852	-4.148
BOOKING.COM	27	24.249	-2.751
BOOKING.COM	56	46.352	-9.648
BRAVO TOURS	42	53.009	11.009
AURINKOMATKAT	29	29.454	0.454
RAINBOW	31	41.94	10.94
EXPEDIA	32	21.759	-10.241
ITAKA	7	-4.945	-11.945
SUNWEB	12	7.574	-4.426
ITAKA	47	58.902	11.902
TUI UK	2	0.869	-1.131
BRAVO TOURS	14	11.427	-2.573
BLUE AEGEAN	15	7.027	-7.973
TUI DEUTSCHLAND	16	11.713	-4.287
AURINKOMATKAT	17	16.475	-0.525
ITAKA	23	30.089	7.089
RAINBOW	25	13.382	-11.618
SUNWEB	20	12.87	-7.13
EXPEDIA	52	55.743	3.743
ARHUS CHARTER	30	24.616	-5.384

=== Predictions on test data ===

 Table 18: Predictions on test data- SMO Reg

¹¹⁰ Source: https://machinelearningmastery.com/support-vector-machines-for-machine-learning/

2.3.5 Gaussian Processes

=== Classifier model (full training set) === Kernel used:¹¹¹ Linear Kernel: $K(x,y) = \langle x,y \rangle$ All values shown based on: Normalize training data Average Target Value : 0.1379675370501059 Inverted Covariance Matrix: Lowest Value = -0.26844055814504447 Highest Value = 0.71814875178401 Inverted Covariance Matrix * Target-value Vector: Lowest Value = -0.08407454635891383 Highest Value = 0.1197270118367203

=== Summary ===

Correlation coefficient	0.9463
Mean absolute error	5.3462
Root mean squared error	6.7355
Relative absolute error	39.3818 %
Root relative squared error	34.3884 %
Total Number of Instances	52
Ignored Class Unknown Instance	es 4

Gaussian Process provides lower correlation coefficient results (0.9463< 0.95). However, there is still a positive relation between our data values and the values of the algorithm's prediction model and our data do get close to the predictions of the model.

Gaussian Process is a simple and interpretable model but it has not too many parameters. Gaussian Process is a simple and interpretable model but it has not too many parameters. Gaussian Process implements regression without hyper parameter-

¹¹¹ A "kernel" is usually used to refer to a method of using a linear classifier to solve a non-linear problem.

tuning. This implementation applies normalization/standardization to the target attribute as well as the other attributes (if normalization/standardization is turned on). Missing values are replaced by the global mean/mode. Nominal attributes are converted to binary ones.¹¹²

Gaussian Processes' predictions of the Total Bookings of some of the 2020 Booking Sources are presented below.

inst#	actual	predicted	error
ITAKA	26	26.485	0.485
BOOKING.COM	109	93.201	-15.799
RAINBOW	13	10.278	-2.722
BOOKING.COM	27	33.033	6.033
BOOKING.COM	56	48.686	-7.314
BRAVO TOURS	42	30.058	-11.942
AURINKOMATKAT	29	24.359	-4.641
RAINBOW	31	26.331	-4.669
EXPEDIA	32	19.681	-12.319
ITAKA	7	9.608	2.608
SUNWEB	12	6.254	-5.746
ITAKA	47	39.457	-7.543
TUI UK	2	1.91	-0.09
BRAVO TOURS	14	16.222	2.222
BLUE AEGEAN	15	11.632	-3.368
TUI DEUTSCHLAND	16	14.309	-1.691
AURINKOMATKAT	17	19.118	2.118
ITAKA	23	29.013	6.013
RAINBOW	25	17.296	-7.704
SUNWEB	20	11.729	-8.271
EXPEDIA	52	48.222	-3.778
ARHUS CHARTER	30	21.006	-8.994

=== Predictions on test data ===

 Table 19: Predictions on test set- Gaussian Process

2.3.6 Meta Random Committee

¹¹² Source: https://weka.sourceforge.io/doc.dev/weka/classifiers/functions/GaussianProcesses.html

Meta Random Committee's Classifier model contributes to the total bookings' predictions through the decision tree model that is presented in the appendix. The total bookings' number depends on parameters such as the booking sources and whether it is Tour Operators or Online Travel Agencies (TO/OTA), the customer's countries, the average daily rate (ADR), the total overnight stays per room (total room nights), the average number of people per room (average pax/room), the total overnight stays (total pax nights), the number of overnight stays with breakfast (BB) and its percentage (BB%), the number of overnight stays with dinner (HB) and its percentage (HB%) and the "all inclusive" overnight stays (AI) and its percentage (AI%) and the month of the lodging.

See Appendix: Meta Random Committee Algorithm |Creta Palm 2020

=== Summary ===

Correlation coefficient	0.9142
Mean absolute error	5.2402
Root mean squared error	9.5939
Relative absolute error	38.6006 %
Root relative squared error	48.9824 %
Total Number of Instances	52
Ignored Class Unknown Instances	4

Meta Random Committee provides lower correlation coefficient results. However, there is still a positive relation between our data values and the values of the algorithm's prediction model and our data do get close to the predictions of the model.

This is a classifier for building an ensemble of randomizable base classifiers. Each base classifier is built using a different random number seed (but based on the same data). The final prediction is a straight average of the predictions generated by the individual base classifiers. ¹¹³

Meta Random Committee's predictions of the Total Bookings of some of the 2020 Booking Sources are presented below.

=== Predictions on test data ===

¹¹³ Source: https://weka.sourceforge.io/doc.dev/weka/classifiers/meta/RandomCommittee.html

inst#	actual	predicted	error
ITAKA	26	23.55	-2.45
BOOKING.COM	109	55.1	-53.9
RAINBOW	13	10.078	-2.922
BOOKING.COM	27	23.502	-3.498
BOOKING.COM	56	30.756	-25.244
BRAVO TOURS	42	34.748	-7.252
AURINKOMATKAT	29	18.3	-10.7
RAINBOW	31	23.091	-7.909
EXPEDIA	32	19.85	-12.15
ITAKA	7	6.667	-0.333
SUNWEB	12	7.467	-4.533
ITAKA	47	50.6	3.6
TUI UK	2	1.087	-0.913
BRAVO TOURS	14	15.5	1.5
BLUE AEGEAN	15	8.079	-6.921
TUI DEUTSCHLAND	16	14.877	-1.123
AURINKOMATKAT	17	14.722	-2.278
ITAKA	23	25	2
RAINBOW	25	13.06	-11.94
SUNWEB	20	14.894	-5.106
EXPEDIA	52	49.745	-2.255
ARHUS CHARTER	30	22.378	-7.622

Table 20: Predictions on test data-Meta Random Cmmittee

2.3.7 Lazy K Star

=== Summary ===

Correlation coefficient	0.9106
Mean absolute error	4.8774
Root mean squared error	9.3287
Relative absolute error	35.9285 %
Root relative squared error	47.6283 %
Total Number of Instances	52
Ignored Class Unknown Instance	s 4

Lazy K Star provides lower correlation coefficient results. However, there is still a positive relation between our data values and the values of the algorithm's prediction model and our data do get close to the predictions of the model.

Lazy K Star has not too many parameters. According to Sharma and Jain (2013): "K-Star algorithm as an instance-based learner which uses entropy as a distance measure. The benefits are that it provides a consistent approach to handling of real valued attributes, symbolic attributes and missing values".

K- Star is a simple classifier, similar to K-Nearest Neighbour (K-NN).

For regression problems, it will find the k nearest neighbors and predict the value by calculating the mean value of the nearest neighbors.¹¹⁴

Lazy K Star's predictions of the Total Bookings of some of the 2020 Booking Sources are presented below.

inst#	actual	predicted	error
ITAKA	26	23.017	-2.983
BOOKING.COM	109	55.992	-53.008
RAINBOW	13	10.004	-2.996
BOOKING.COM	27	32	5
BOOKING.COM	56	46.354	-9.646
BRAVO TOURS	42	23.499	-18.501
AURINKOMATKAT	29	19.954	-9.046
RAINBOW	31	22.999	-8.001
EXPEDIA	32	27	-5
ITAKA	7	3.009	-3.991
SUNWEB	12	14.98	2.98
ITAKA	47	50.485	3.485
TUI UK	2	0.015	-1.985
BRAVO TOURS	14	14.575	0.575
BLUE AEGEAN	15	17.206	2.206
TUI DEUTSCHLAND	16	8.983	-7.017
AURINKOMATKAT	17	11.392	-5.608
ITAKA	23	29.928	6.928
RAINBOW	25	18.323	-6.677
SUNWEB	20	24.542	4.542

=== Predictions on test data ===

¹¹⁴ Source: <u>https://towardsdatascience.com/an-introduction-to-k-nearest-neighbours-algorithm-</u> 3ddc99883acd

EXPEDIA	52	31.888	-20.112
ARHUS CHARTER	30	17.975	-12.025

Table 21: Predictions on test set- Lazy K Star

2.3.8 Random Forest

=== Summary ===

Correlation coefficient	0.9011
Mean absolute error	6.0915
Root mean squared error	10.8418
Relative absolute error	44.8714 %
Root relative squared error	55.3535 %
Total Number of Instances	52
Ignored Class Unknown Instance	es 4

Random Forest is bagging with 100 iterations and provides lower correlation coefficient results as well. However, there is still a positive relation between our data values and the values of the algorithm's prediction model and our data do get close to the predictions of the model.

According to E. Kleinberg (n.d) [31]: Random forests or random decision forests are an ensemble learning method for classification, regression and other tasks that operates by constructing a multitude of decision trees at training time. Random forests are an ensemble learning method for classification (and regression) that operate by constructing a multitude of decision trees at training time and outputting the class that is the mode of the classes output by individual trees.

Random Forest is not an interpretable model and it has not too many parameters for analysis. So, one who does not have the necessary expertise in the field of technology or analytics cannot fundamentally understand how the model arrived in a certain output or how the output influences the output, by just reading the algorithm.

Random Forest's predictions of the Total Bookings of some of the 2020 Booking Sources are presented below.

inst#	actual	predicted	error
ITAKA	26	25.066	-0.934
BOOKING.COM	109	45.244	-63.756
RAINBOW	13	12.045	-0.955
BOOKING.COM	27	30.985	3.985
BOOKING.COM	56	44.259	-11.741
BRAVO TOURS	42	28.863	-13.137
AURINKOMATKAT	29	17.04	-11.96
RAINBOW	31	23.128	-7.872
EXPEDIA	32	18.216	-13.784
ITAKA	7	14.132	7.132
SUNWEB	12	9.581	-2.419
ITAKA	47	37.477	-9.523
TUI UK	2	1.816	-0.184
BRAVO TOURS	14	14.832	0.832
BLUE AEGEAN	15	7.985	-7.015
TUI DEUTSCHLAND	16	14.674	-1.326
AURINKOMATKAT	17	13.412	-3.588
ITAKA	23	25.884	2.884
RAINBOW	25	17.065	-7.935
SUNWEB	20	17.344	-2.656
EXPEDIA	52	35.752	-16.248
ARHUS CHARTER	30	24.263	-5.737

=== Predictions on test data ===

 Table 22: Predictions on test data- Random Forest

2.3.9 Multilayer Perceptron

See Appendix: Multilayer Perceptron Algorithm | Creta Palm 2020

=== Summary ===	
Correlation coefficient	0.9049
Mean absolute error	5.4974
Root mean squared error	8.3199
Relative absolute error	40.4953 %
Root relative squared error	42.478 %
Total Number of Instances	52
Ignored Class Unknown Instance	s 4

Multilayer Perceptron provides low correlation coefficient results as well. However, there is still a positive relation between our data values and the values of the algorithm's prediction model and our data do get close to the predictions of the model.

Multilayer Perceptron is neither interpretable nor simple algorithm model so, one who does not have the necessary expertise in the field of technology or analytics cannot fundamentally understand how the model arrived in a certain output or how the output influences the output, by just reading the algorithm.

The Multi-Layer Perceptron algorithm is also called artificial neural network and is a complex algorithm to use for predictive modeling because there are so many configuration parameters that can only be tuned effectively through intuition and a lot of trial and error.¹¹⁵ As mentioned in the first chapter, this is a classifier that uses backpropagation to learn a multi-layer perceptron to classify instances. The nodes in this network are all sigmoid, except for when the class is numeric, in which case the output nodes become unthresholded linear units.¹¹⁶

Multilayer Perceptron's Algorithm predictions of the Total Bookings of some of the 2020 Booking Sources are presented below.

inst#	actual	predicted	error
ITAKA	26	21.989	-4.011
BOOKING.COM	109	65.167	-43.833
RAINBOW	13	8.583	-4.417
BOOKING.COM	27	20.91	-6.09
BOOKING.COM	56	51.337	-4.663
BRAVO TOURS	42	47.227	5.227
AURINKOMATKAT	29	27.209	-1.791
RAINBOW	31	25.555	-5.445
EXPEDIA	32	23.341	-8.659
ITAKA	7	12.797	5.797

=== Predictions	on test	data ===
-----------------	---------	----------

¹¹⁵ Source: <u>https://machinelearningmastery.com/use-regression-machine-learning-algorithms-weka/?fbclid=lwAR3PWrbfejBgXpV4YmADPnKm7F5h1Ubxh8zNCSa75EfYoDL3s_qmVYL-V4E</u> 116

Source:https://weka.sourceforge.io/doc.dev/weka/classifiers/functions/MultilayerPerceptron.html

Business Decision Analysis Based on Data Analytics | Antonia Trikounaki

SUNWEB	12	10.571	-1.429
ITAKA	47	53.93	6.93
TUI UK	2	6.141	4.141
BRAVO TOURS	14	20.899	6.899
BLUE AEGEAN	15	7.29	-7.71
TUI DEUTSCHLAND	16	17.466	1.466
AURINKOMATKAT	17	25.118	8.118
ITAKA	23	29.706	6.706
RAINBOW	25	11.194	-13.806
SUNWEB	20	7.703	-12.297
EXPEDIA	52	65.968	13.968
ARHUS CHARTER	30	31.41	1.41

Table 23: Predictions on test data- Multilayer Perceptron

See in the Appendix: *Classifiers with low or negative correlation coefficient (2020)*: A lower or negative correlation coefficient depicts that there is a weak relation (or negative relation) between our data and the algorithm's prediction model and that the data do not get close to the predictions of the model. This practically means that for the new oncoming agencies that have similar characteristics as those 2020's agencies, there is a low probability that the total bookings are similar as those predicted from the algorithm (or that the total bookings depict opposite results from those predicted from the algorithm – as far as negative correlation coefficient results are concerned-).

2.4 WEKA Clustering 2020 WEKA Clusterers

As mentioned before, Simple K-Means, EM, Make a Density, Farthest First, Canopy, Filtered are the clusterers that are used in order to group the travel agencies that presented similarities and disjoin those that displayed dissimilarities. The aim of clustering is to find distinct groups within a given dataset.

2.4.1 Simple K Means

As mentioned in the first chapter (an analytical explanation is presented in chapter 60), Simple Means is a distant-based clusterer that minimizes the squared distance from each instance to their cluster center, after defining k centroids. It is one of the best unsupervised algorithms. For each different number of seeds, there are different clustering results.^{117 118}

Simple K Means uses random numbers and by using the same seed, we will always get the same random numbers. If we run Simple K Means over the same data twice, with the same seed, we will get exactly the same results. For different number of seeds, the results will vary each time we run Simple K Means.

In our dataset we use the same seed.

Simple K Means Clusterer, presents a different squared error depending on the number of clusters we wish to create. The bigger the number of clusters, the lower the value of squared errors within the clusters.

In order to cross-validate this, we choose different number of clusters manually. The results of each of the clusterings, depending on their number of clusters are presented below.

Simple K Means with 2 Clusters

Number of iterations: 4

Within cluster sum of squared errors: 159.36

Missing values globally replaced with mean/mode.

	Final Cluster Centroids		
Attribute	Full Data (56.0)	0 (35.0)	1 (21.0)
Booking Source	ARHUS CHARTER	SELF BOOKINGS	TUI Deutschland
Country	Vary	Vary	Germany
Average pax/room	2.3586	2.3561	2.2937
TO/ OTA	ТО	ТО	ТО
ADR	73.5381	65.7399	86.5352

¹¹⁷ Source: <u>https://www.youtube.com/watch?v=4b5d3muPQmA</u>

¹¹⁸ Source: <u>https://www.youtube.com/watch?v=HCA0Z9kL7Hg</u>

Business Decision Analysis Based on Data Analytics | Antonia Trikounaki

Total Bookings	15.0385	13.2615	18
Total PAX Nights	270.2642	220.8226	352.6667
Total Room Nights	108.3774	91.8609	135.9048
BB	142.16	83.4846	239.9524
BB%	0.4362	0.379	0.5315
HB	38.9184	17.4146	74.758
HB%	0.1671	0.0913	0.2935
AI	105.98	145.968	39.3333
AI%	0.3901	0.5243	0.1664
Month	JULY 2020	SEPTEMBER 2020	AUGUST 2020

Table 24: Final Cluster Centroids- Simple K- Means

Clustered Instances (number of instances detected in each cluster):

- 0 35 (63%)
- 1 21 (38%)

Simple K Means divides Cretan Palm's booking sources into two clusters. The first cluster's centroid is SELF BOOKINGS and the second cluster's centroid is TUI Deutschland.

Centroids of cluster 0 depict that the customers in cluster 0 have as dominant characteristics that they come from various different countries (Vary), that they make their own bookings (SELF BOOKINGS) and that they choose Tour Operators (TO) over Online travel Agencies. Additionally, their characteristics (Total Bookings, ADR, Average PAX/room BB, BB%, etc.), are similar to the their cluster's centroids characteristics.

The second cluster's centroids depict that the customers in cluster 1 have as dominant characteristics that they come from Germany, that they choose TUI Deutschland as a travel agency and that they choose Tour Operators (TO) over Online travel Agencies. Additionally, their characteristics (Total Bookings, ADR, Average PAX/room BB, BB%, etc.), are similar to their cluster's centroids characteristics.

Simple K Means with 3 Clusters

See the clustering results in the appendix: Simple K Means with 3 Clusters/ Creta

Palm 2020

Number of iterations: 4

Within cluster sum of squared errors: 143.02

Missing values globally replaced with mean/mode.

Clustered Instances

0 25 (45%)

1 13 (23%)

2 18 (32%)

Simple K Means with 4 Clusters

See the clustering results in the appendix: Simple K Means with 4 Clusters/ Creta

Palm 2020

Number of iterations: 6

Within cluster sum of squared errors: 125.29

Missing values globally replaced with mean/mode.

Clustered Instances

- 0 17 (30%)
- 1 12 (21%)
- 2 16 (29%)
- 3 11 (20%)

Simple K Means with 5 Clusters

See the clustering results in the appendix: Simple K Means with 5 Clusters/ Creta

Palm 2020

Number of iterations: 7

Within cluster sum of squared errors: 115.67

Missing values globally replaced with mean/mode.

Clustered Instances

- 0 16 (29%)
- 1 9 (16%)
- 2 13 (23%)
- 3 7 (13%)

4 11 (20%)

2.4.2 EM

"EM (Expectation Maximization) is a probabilistic clusterer and can be used for unsupervised learning. Like Naive Bayes, it makes the assumption that all attributes are independent random variables." (Witten I.H., et al., (1999))

As mentioned in the first chapter (an analytical explanation is presented in chapter 1.5.2), unlike K-Means that takes one point and places it to the one cluster or the other, EM computes the probability that it goes into the a or b cluster. This probability never gets zero or one, it is always a number between zero and one (0<probability EM<1).

The model just finds that there are distinguished groups in the dataset that behave differently. EM run alternative number of clusters and then chooses automatically the number of the clusters it shall create.

EM works for numeric attributes providing mean and standard deviation results and value probability results respectively. Log likelihood is an overall quality measure and is increased by each iteration.¹¹⁹

Number of clusters selected by cross validation: 3 Number of iterations performed: 4

	0 (0.28)	1 (0.55)	2 (0.17)
Booking Source			
ARHUS CHARTER	3	3	1
AURINKOMATKAT	2	4	1
BLUE AEGEAN	2	4	1
BOOKING.COM	1	1.983	4.017
BRAVO TOURS	4.0041	1.9539	1.042
EXPEDIA	1	1.7907	4.2093
ITAKA	3.0004	1.9877	2.0119
Jet2Holidays	1.0093	3.9984	1.9923

¹¹⁹ Source: https://www.youtube.com/watch?v=HCA0Z9kL7Hg

RAINBOW	4.0002	1	1.9998
SELF BOOKINGS	1	5	1
SUNWEB	4	2	1
TUI Deutschland	1	5	1
TUI NL	1.8652	4.1343	1.0006
TUI UK	1	4.9996	1.0004
[total]	29.8792	44.8476	23.2732
Country			
Denmark	6.0041	3.9539	1.042
Finland	2	4	1
Romania	2	4	1
Vary	1	6.7737	7.2263
Poland	6.0006	1.9877	3.0117
UK	1.0093	7.998	1.9927
Netherlands	4.8652	5.1343	1.0006
Germany	1	5	1
[total]	23.8792	38.8476	17.2732

Table 25: Clustering-EM

See Appendix: EM Clustering Model (continued) | Creta Palm 2020

EM divides Cretan Palm's booking sources into three clusters. For each of the attributes, there is a probability that the output is going to be this certain attribute. This probability is calculated if you divide the number of the attribute by the total attributes in each of the clusters. For example:

ARHUS CHARTER in cluster 0, (3) have a 10% probability (3/29.8792*) of being cluster's 0 centroid.

*[total: 29.8792]

BRAVO TOURS in cluster 0 (4.0041) has the highest probability (13.4% = 4.0041 / 29.8792) of being cluster's 0 centroid. That is, BRAVO TOURS has a higher probability that it is chosen among the customers of the first cluster.

The same procedure applies to the other clusters as well.

TUI UK in cluster 1 (4.9996) has the highest probability (11.14% = 4.9996/44.8476) of being cluster's 1 centroid. That is, TUI UK has a higher probability that it is chosen among the customers of the second cluster.

EXPEDIA in cluster 2 (4.2093) has the highest probability (18% = 4.2093/23.2732) of being cluster's 2 centroid. That is, EXPEDIA has a higher probability that it is chosen among the customers of the third cluster.

Additionally, it is 25% probable that cluster's 0 centroid is Denmark (6.0041/23.8792=25%), 20.5% probable that cluster's 1 centroid is UK (7.998/38.8476=20.5%) and 41.8% probable that cluster's 2 centroid is Varying (7.2263/17.2732=41.8%).

Clustered Instances (number of instances detected in each cluster):

- 0 16 (29%)
- 1 31 (55%)
- 2 9 (16%)

Log likelihood: -42.06695

2.4.3 Make A Density

According to [29]: Density-Based Clustering refers to unsupervised learning methods that identify distinctive groups/clusters in the data, based on the idea that a cluster in a data space is a contiguous region of high point density, separated from other such clusters by contiguous regions of low point density. The data points in the separating regions of low point density are typically considered noise/outliers.

As mentioned in the first chapter (an analytical explanation is presented in chapter 1.5.7),

- The clusterer randomly chooses the core points and then for each core point that is not already assigned to a cluster, creates a new cluster.
- The clusterer finds all its density connected points and assigns them to the same cluster as the core point.
- Then it iterates through the remaining unvisited points in the dataset.

• The core points that do not belong to any cluster are treated as outliers or noise points.¹²⁰

Make A Density Clusterer, also presents a different squared error depending on the number of clusters we wish to create. The bigger the number of clusters, the lower the value of squared errors within the clusters.

In order to cross-validate this, we choose different number of clusters manually. The results of each of the clusterings depending on their number of clusters are presented below.

Make A Density Clusterer has the same cluster centroids as Simple K Means Clusterer.

Make A Density Clusterer with 2 Clusters

See the clustering results in the appendix: Make A Density Based Clusterer fitted estimators/ Creta Palm 2020

Number of iterations: 4

Within cluster sum of squared errors: 159.367

Missing values globally replaced with mean/mode.

	Final Cluster Centroids		
Attribute	Full Data (56.0)	0 (35.0)	1 (21.0)
Booking Source	ARHUS CHARTER	SELF BOOKINGS	TUI Deutschland
Country	Vary	Vary	Germany
Average pax/room	2.3586	2.3561	2.3627
TO/ OTA	ТО	ТО	ТО
ADR	73.5381	65.7399	86.5352
Total Bookings	15.0385	13.2615	18
Total PAX Nights	270.2642	220.8226	352.6667
Total Room Nights	108.3774	91.8609	135.9048

¹²⁰ Source: https://www.youtube.com/watch?v=f4pZ9PHNdcM

Business Decision Analysis Based on Data Analytics | Antonia Trikounaki

BB	142.16	83.4846	239.9524
BB%	0.4362	0.379	0.5315
HB	38.9184	17.4146	74.758
HB%	0.1671	0.0913	0.2935
AI	105.98	145.968	39.3333
AI%	0.3901	0.5243	0.1664
Month	JULY 2020	SEPTEMBER 2020	AUGUST 2020

Table 26: Final Cluster Centroids- Make A Density Based Clusterer

Clustered Instances (number of instances detected in each cluster):

- 0 40 (71%)
- 1 17 (29%)

Log likelihood: -47.15

Make A Density Based Clusterer divides Cretan Palm's booking sources into two clusters. The first cluster's centroid is SELF BOOKINGS and the second cluster's centroid is TUI Deutschland.

Centroids of cluster 0 depict that the customers in cluster 0 have as dominant characteristics that they come from various different countries (Vary), that they make their own bookings (SELF BOOKINGS) and that they choose Tour Operators (TO) over Online travel Agencies. Additionally, their characteristics (Total Bookings, ADR, Average PAX/room BB, BB%, etc.), are similar to the their cluster's centroids characteristics.

The second cluster's centroids depict that the customers in cluster 1 have as dominant characteristics that they come from Germany, that they choose TUI Deutschland as a travel agency and that they choose Tour Operators (TO) over Online travel Agencies. Additionally, their characteristics (Total Bookings, ADR, Average PAX/room BB, BB%, etc.), are similar to their cluster's centroids characteristics.

The only difference this Clusterer has from Simple K Means Clusterer is that they have different number of instances in each cluster. Simple K Means Clusterer have 35

instances in Cluster 0 and 21 instances in Cluster 1, whereas Make A Density Clusterer has 40 instances in Cluster 0 and 17 instances in Cluster 1.

Make A Density Clusterer with 3 Clusters

Within cluster sum of squared errors: 143.02

Number of iterations: 4

Missing values globally replaced with mean/mode.

Wrapped clusterer: kMeans

Clustered Instances

- 0 36 (64%)
- 1 11 (20%)
- 2 9 (16%)

Log likelihood: -46.90959

Make A Density Clusterer with 4 Clusters

Within cluster sum of squared errors: 125.29

Number of iterations: 6

Missing values globally replaced with mean/mode.

Wrapped clusterer: kMeans

Clustered Instances

- 0 23 (41%)
- 1 14 (25%)
- 2 8 (14%)
- 3 11 (20%)

Log likelihood: -45.37988

Make A Density Clusterer with 5 Clusters

Within cluster sum of squared errors: 115.67

Number of iterations: 7

Missing values globally replaced with mean/mode.

Wrapped clusterer: kMeans

Clustered Instances

0 19 (34%)
1 9 (16%)
2 7 (13%)
3 9 (16%)
4 12 (21%)
Log likelihood: -42.89493

2.4.4 Filtered Clusterer

According

to

[20][20]:

This algorithm is primarily based completely on storing the multidimensional data points within a tree. The process regarding the tree is like a binary tree method, as represents a hierarchical subdivision on its data point set's bounding box the usage of their axis after which splitting is aligned by way on hyper planes. Each node on the tree is related with a closed field, referred to as the cell.

The results are the same as those of Simple K Means for all the number of clusters, which is expected, as Filtered Clusterer uses Simple K Means in order to proceed to the outcome.

Filtered Clusterer with 2 Clusters

Number of iterations: 4

Within cluster sum of squared errors: 159.36

Missing values globally replaced with mean/mode.

]	Final Cluster Centroids	
Attribute	Full Data (56.0)	0 (35.0)	1 (21.0)
Booking Source	ARHUS CHARTER	SELF BOOKINGS	TUI Deutschland

Business Decision Analysis Based on Data Analytics | Antonia Trikounaki

Country	Vary	Vary	Germany
Average pax/room	2.3586	2.3561	2.2937
TO/ OTA	ТО	ТО	ТО
ADR	73.5381	65.7399	86.5352
Total Bookings	15.0385	13.2615	18
Total PAX Nights	270.2642	220.8226	352.6667
Total Room Nights	108.3774	91.8609	135.9048
BB	142.16	83.4846	239.9524
BB%	0.4362	0.379	0.5315
HB	38.9184	17.4146	74.758
HB%	0.1671	0.0913	0.2935
AI	105.98	145.968	39.3333
AI%	0.3901	0.5243	0.1664
Month	JULY 2020	SEPTEMBER 2020	AUGUST 2020

Table 27: Final Cluster Centroids- Filtered Clusterer

Clustered Instances (number of instances detected in each cluster):

- 0 35 (63%)
- 1 21 (38%)

Filtered Clusterer divides Cretan Palm's booking sources into two clusters. The first cluster's centroid is SELF BOOKINGS and the second cluster's centroid is TUI Deutschland.

Centroids of cluster 0 depict that the customers in cluster 0 have as dominant characteristics that they come from various different countries (Vary), that they make their own bookings (SELF BOOKINGS) and that they choose Tour Operators (TO) over Online travel Agencies. Additionally, their characteristics (Total Bookings, ADR, Average PAX/room BB, BB%, etc.), are similar to the their cluster's centroids characteristics.

The second cluster's centroids depict that the customers in cluster 1 have as dominant characteristics that they come from Germany, that they choose TUI Deutschland as a travel agency and that they choose Tour Operators (TO) over Online travel Agencies.

Additionally, their characteristics (Total Bookings, ADR, Average PAX/room BB, BB%, etc.), are similar to their cluster's centroids characteristics.

Filtered Clusterer provides the same cluster centroids as Simple K Means Clusterer and Make A Density Clusterer.

2.4.5 Farthest First

According

to[24]:

Farthest first finds its variant of K-means. Each cluster center point furthermost from the existing cluster center is placed by the K-mean, and this point must be positioned within the data area. So that it greatly speeds up the clustering in most cases, but it needs less move and adjustment for their fast performance.

In order to examine Farthest First Clusterer's accuracy, we choose different number of clusters manually.

Farthest First Clusterer with 2 Clusters

	Cluster centroids	
	Cluster 0	Cluster 1
Booking Source	TUI Deutschland	BOOKING.COM
Country	Germany	Vary
Average pax/room	2.28	3.11
TO/ OTA	ТО	OTA
ADR	117.18	123.27
Total Bookings	9	109
Total PAX Nights	194	2155
Total Room Nights	85	691
BB	0	1652
BB%	0	0.76
HB	148	503
HB%	0.76	0.23
AI	46	10
AI%	0.23	0.004

Month	August 2020	August 2020

 Table 28: Cluster Centroids- Farthest First

Clustered Instances (number of instances detected in each cluster):

- 0 52 (93%)
- 1 5 (7%)

Farthest First divides Cretan Palm's booking sources into two clusters. The first cluster's centroid is TUI Deutschland and the second cluster's centroid is BOOKING.COM.

Centroids of cluster 0 depicts that the customers in cluster 0 have as dominant characteristics that they choose TUI Deutschland as their travel agency, that they come from Germany and that they choose Tour Operators (TO) over Online travel Agencies. Additionally, their characteristics (Total Bookings, ADR, Average PAX/room BB, BB%, etc.), are similar to their cluster's centroids characteristics.

The second cluster's centroids depict that the customers in cluster 1, have as dominant characteristics that they come from various different countries, that they choose Booking.com as a travel agency and that they choose Online travel Agencies (OTA) over Tour Operators (TO). Additionally, their characteristics (Total Bookings, ADR, Average PAX/room BB, BB%, etc.), are similar to their cluster's centroids characteristics.

Farthest First Clusterer with 3 Clusters

Appendix: Farthest First with 3 Clusters/Creta Palm 2020

Farthest First Clusterer with 4 Clusters

Appendix: Farthest First with 4 Clusters/Creta Palm 2020

Farthest First Clusterer with 5 Clusters

Appendix: Farthest First with 5 Clusters/Creta Palm 2020

2.4.6 Canopy

According to Mai and Cheng (2016)[33]: Canopy is one of the improved K-means algorithm, can be used to determine the number of clusters. With the introduction of Canopy clustering, the data set is divided into k sub-sets by setting the radius, and the sub-sets can be selected as the initial centers of K-means. Because the Canopy algorithm can reduce the running time of the clustering by reduce the count of comparisons, it will improve the computational efficiency.

The Canopy algorithm's analytical explanation of the steps are presented in chapter 1.5.8.

Canopy runs alternative number of clusters and then chooses automatically the number of the clusters it shall create.

Number of canopies (cluster centers) found: 14

T2 radius: 1,504

T1 radius: 1,880

Canopy divides Cretan Palm's booking sources into fourteen clusters. The characteristics (Country origin, Total Bookings, ADR TO/OTA, Average PAX/room BB, BB%, etc.) of each cluster's centroids are presented in the appendix. Each cluster its dominant centroids. The elements in each cluster, have similar characteristics with these centroids. The elements present Attribute, Booking Source, Country, Average pax/room, TO/ OTA, ADR, Total Bookings, Total PAX Nights, Total Room Nights, BB, BB%, HB, HB%, AI, AI% and Month as shown in the appendix: Canopy Clusterer Creta Palm 2020.

Note: The numbers in these brackets: **Error! Reference source not found.** show the instances that are appeared in the cluster.

Conclusions

M5Rules, M5P Trees and SMO Reg are the algorithms that provide the best results for the year 2019. M5Trees, M5Rules and Linear Regression Reg are the algorithms that provide the best results for the year 2020.

These algorithms provided a high correlation coefficient (>0.97) which depicts a strong relation between our data values and the values of the algorithms' prediction model. So, our data do get close to the predictions of these models.

WEKA as well other machine learning software systems, provide us the opportunity to predict the results of a new oncoming dataset that has similar characteristics with our already existing dataset and there is a high probability that the dataset values are similar to those predicted from the algorithm.

Chapter 3

Use Case: NN Hellas

NN Hellas is part of the NN Group and is a private health and life insurance provider. NN Hellas created questionnaire in order to gather information and have a better understanding of its customers' attitude, perception and awareness of insurances (life, health and house insurances).

A hundred and eighty-two (182) NN customers gave answers about their superseding ability, their insurance type, the significance of their insurance package, the safety offered from their insurance package, the level of satisfaction from the public insurance health benefits, their wish for extra benefits from their health insurance and their wish for covering certain expenditures after they receive their pension.

Specifically, the questionnaire includes the following alternative answers:

- I have a car superseding ability
- I have a motorbike superseding ability
- I have a house superseding ability
- I have a business superseding ability
- I do not have superseding ability
- I have/had Business Insurance
- I have/had Civil Liability Insurance
- I have/had Vessel Insurance
- I have/had Health Insurance
- I have/had everyday needs Insurance
- I have/had Business House Insurance
- I have/had Family Insurance
- I have/had Cash Insurance
- I have/had Child Insurance
- I have/had Car Insurance
- I have/had Motorbike Insurance
- I have never had Insurance

- The Fixed Costs would not be covered in case of a possible loss of mine
- The Loans would not be covered in case of a possible loss of mine
- Children studies would not be covered in case of a possible loss of mine
- Tax obligations would not be covered in case of a possible loss of mine
- No needs to leave behind in case of a possible loss of mine
- Happiness would not be covered in case of a possible loss of mine
- Purchases in non-basic necessities would not be covered in case of a possible loss of mine
- I want a risk protection
- A satisfying amount of money for the support of my beloved ones
- I am not at all satisfied from the public insurance health benefits
- I am kind of satisfied from the public insurance health benefits
- I am quite satisfied from the public insurance health benefits
- I am absolutely satisfied from the public insurance health benefits
- I would choose a Public Hospital in Athens or Thessaloniki for a mild health issue
- I would choose a big private hospital in Athens or Thessaloniki for a mild health issue
- I would choose a local private hospital for a mild health issue
- I would choose a local public hospital for a mild health issue
- I would choose a public hospital in Athens or Thessaloniki for serious health issues
- I would choose a big private hospital of Athens or Thessaloniki for serious health issues
- I would choose a local private hospital for serious health issues
- I would choose a local public hospital for serious health issues
- I would choose a foreign hospital for serious health issues
- I wish for private health services coupled with my insurance
- I would like diagnostic tests to be included to my private insurance
- I would like doctor visits to be included to my private insurance
- I would like hospital care to be included to my private insurance
- I would like Annual check up to be included to my private insurance

- I would like to go abroad to be included to my private insurance
- I would like ambulance to be included to my private insurance
- I would like a team insurance
- I will not get a pension
- I will get a small pension
- I will get a satisfying pension
- I have managed for a lump sum or supplementary pension
- I have managed for a lump sum or supplementary pension through my bank savings
- I have managed for a lump sum or supplementary pension through Pension scheme purchase
- I have managed for a lump sum or supplementary pension through Life insurance program and savings plan
- I have managed for a lump sum or supplementary pension through Real estate purchase for rent or exploitation
- I am about to take immediate care of a lump sum or supplementary pension
- I have managed for a lump sum or supplementary pension through Pension scheme or savings plan purchase
- Even if I wanted it I cannot take care of a lump sum or supplementary pension
- It is of a major importance to support my children and grandchildren after I receive my pension
- It is of a major importance to cover my healthcare after I receive my pension
- It is of a major importance to cover my pleasure trips after I receive my pension
- It is of a major importance to cover my house purchases after I receive my pension
- It is of a major importance to cover my fixed costs after I receive my pension
- It is of a major importance to cover my everyday needs after I receive my pension
- I am interested in estimating my retirement

A real problem that the insurance sector is addressing in Greece is that, Greeks do not have developed the so-called 'insurance consciousness in contrast to the other European citizens. This means, that the percentage of Greece's GDP that is concerning the insurance sector is much lower than that of other European countries (Greece's GDP concerning insurances is about 2%, whereas the average percentage of GDP in other European countries is approximately 7%).

This means that companies do not pay attention to the data they select from their customers, or they do not even select quality data, make predictions, nor can they identify useful patterns and rules from a certain amount of data. This, makes them more susceptible to uncertainty and risk, as they are not able to focus on the key variables that influence their companies' attributes.

This issue can be solved through collecting and analyzing data, in order to collect the necessary information from the customers, analyze their profile and make certain predictions and clusterings about them. Weka Machine Learning Software, can transform the dataset into meaningful patterns with the help of integrated algorithms and help us make predictions on certain variables as well as clusterings for these customers or future customers with a similar profile. WEKA, helps us to better predict the results of a new oncoming dataset that has similar characteristics with our already existing dataset and there is a high probability that the dataset values are similar to those predicted from the algorithm.

NN's dataset needed a further data preparation/training in order to bring it in a suitable format and train a classifier (the variable we want to predict). In this case, the classifier is the customers' interest to estimate their retirement.

After training, the dataset is loaded in Weka, where further data preparations is made in order to bring it in a suitable format and therefore, to create prediction and clustering models. These models are developed through the integrated machine learning algorithms that are chosen each time. These algorithms provide patterns and consequently, useful prediction results for NN. The results depict that a new upcoming dataset, with similar characteristics with our already existing dataset, can be better predicted and there is a high probability that the new dataset values are similar to those predicted from the algorithms. Cross-validation method is used in order to value the classifiers, by using the number of folds entered in the corresponding field. In our 10-fold cross-validation, the original sample is randomly partitioned into 10 subsamples. Of the 10 subsamples, a single subsample is retained as the test set, and the remaining 9 subsamples are used as training set¹²¹. The cross-validation process is repeated 10 times (the folds), with each of the 10 subsamples used exactly once as the validation data. The 10 results from the folds then can be averaged (or otherwise combined) to produce a single estimation.

Supplied test set is used in order to make predictions for new unseen data from the set of instances loaded from the file.

For clustering outputs, the training set is used, so that, the cluster is the same set that the clusterer is trained on.

Chapter 3 presents the predictions made about the customers' interest for retirement estimation as well as the clusterings made through weka software system based on the dataset given.

3.1 WEKA Classification WEKA Algorithms

As mentioned above, for nominal values, WEKA detects Correctly Classified Instances, Incorrectly Classified Instances, Kappa statistic, Mean absolute error, Root mean squared error, Relative absolute error, Root relative squared error, Total Number of Instances, TP Rate, FP Rate, Precision, Recall, F-Measure.

Precision, Recall, F-Measure and ROC Area give a really good picture of how well things are performing.

ROC Area (Receiver Operating Characteristic-Area Under the Curve) shows us which items are correctly put in their classes. An "optimal" classifier will have ROC area values approaching 1, with 0.5 being comparable to "random guessing" (similar to a Kappa statistic of 0). A value above 0.8 is considered a strong and accurate result.

¹²¹ A training set is a subset of a dataset that is used to train a model and a test set is a subset of a dataset that is used to test the trained model. Source: <u>https://developers.google.com/machine-learning/crash-course/training-and-test-sets/splitting-data</u>

ROC uses True Positives and False Positive Rates as the axes that we are looking out, to draw a curve.

PRC (Precision on Recall): Works better for unbalanced data. ROC tends to be in general a better choice, because PRC do not really count the true positives.

The Confusion Matrix is another way of detecting how well a model is doing.

Confusion Matrix

- a b <-- classified as
- aa ba| a = 0

ab bb| b = 1

Correctly Classified Instances is a good measurement of our model's performance, but kappa statistic value, detailed accuracy by class and confusion matrix should also be taken into consideration in order to depict how well the model is performing.

So, we prefer algorithms with high correctly classified instances and positive kappa statistic. It is of a major importance that every element is classified and not all instances are in one class. If we have 90% of the instances in one class, then we are right 90% of the times, but the model is not reliable. Furthermore, if ba=0 and bb=0, this means that nothing is classified as b and that the model is performing really poor in class b. So, we suggest that the company that brought the results do something about it in order to get better results.

This chapter presents the algorithms that are performing well considering all the values as well as the predictions of the algorithms concerning the customers' willingness to estimate their retirement. The error predictions indicate that the dataset is unbalanced and there is no great diversity on customers' answers.

In the appendix are presented the algorithms that presented poor performance.

3.1.1 Random Tree

See Appendix: Random Tree Algorithm NN

The algorithm rules found, that the customers' interest of retirement estimation depends on factors such as the need of covering their fixed costs after they receive their pension, their car superseding ability, the need of including doctor visits in their private insurance, the choose of a local, public hospital for serious or mild health issues, the need of covering their healthcare after they receive their pension, the interest for private health services to be coupled with their insurance, the need of hospital care inclusion to their private insurance, the amount of satisfactions from their public insurance health benefits, the need of covering pleasure trips after they receive their retirement, the supplementary pension management, the interest for risk protection, the fixed costs', tax obligations' and children' studies coverage estimation, the already existing insurance ownership and the estimation for a satisfactory pension.

Specifically, customers presented an interest in estimating their retirement in those cases:

- They do have a car superseding ability but it is not of a major importance to cover their fixed costs after they receive their pension.
- They do not prefer a local, public hospital for serious health issues and it is of a major importance to cover their fixed costs after they receive their pension.
- They do not prefer a local, public hospital for serious health issues and they want doctor visits to be included to their private insurance. Additionally, they do not have a car superseding ability and it is not of a major importance to cover their fixed costs after they receive their pension.
- They do not think of healthcare as in need to be covered from their pension and they do not need doctor visits to be included to their private insurance. Additionally, they do not have a car superseding ability and it is not of a major importance to cover their fixed costs after they receive their pension.
- They want healthcare to be covered from their pension and they do not necessarily want private health services to be coupled with their insurance. They would choose a local public hospital for mild health issues and they want doctor visits to be included to their private insurance. Additionally, they do not have a car

superseding ability and it is not of a major importance to cover their fixed costs after they receive their pension.

- They are not quite satisfied from their public insurance healthcare benefits and they want hospital care to be included to their private insurance and private health services to be coupled with their insurance. They would choose a local, public hospital for mild health issues and they want doctor visits to be included to their private insurance. Additionally, they do not have a car superseding ability and it is not of a major importance to cover their fixed costs after they receive their pension.
- They want to cover their pleasure trips after they receive their retirement and they are quite satisfied from their public insurance healthcare benefits. They want hospital care to be included to their private insurance and private health services to be coupled with their insurance. They would choose a local, public hospital for mild health issues and they want doctor visits to be included to their private insurance. Additionally, they do not have a car superseding ability and it is not of a major importance to cover their fixed costs after they receive their pension.
- They have not managed for a supplementary pension and they do not want to cover their pleasure trips after they receive their retirement. They are quite satisfied from their public insurance healthcare benefits. They want hospital care to be included to their private insurance and private health services to be coupled with their insurance. They would choose a local, public hospital for mild health issues and they want doctor visits to be included to their private insurance. Additionally, they do not have a car superseding ability and it is not of a major importance to cover their fixed costs after they receive their pension.
- They do not want to include hospital care to their private insurance but they want private health services to be coupled with their insurance. They would choose a local, public hospital for mild health issues and they want doctor visits to be included to their private insurance. Additionally, they do not have a car superseding ability and it is not of a major importance to cover their fixed costs after they receive their pension.
- They can cover tax obligation and fixed costs in a possible loss of theirs and they would not choose a local, public hospital for serious health issues. They want a risk protection and is of a major importance to cover their healthcare after they

receive their pension. They do not want to include doctor visits to their private insurance, they do not have a car superseding ability and it is not of a major importance to cover their fixed costs after they receive their pension.

- They cannot cover fixed costs in a possible loss of theirs and they would not choose a local, public hospital for serious health issues. They want a risk protection and is of a major importance to cover their healthcare after they receive their pension. They do not want to include doctor visits to their private insurance, they do not have a car superseding ability and it is not of a major importance to cover their fixed costs after they receive their pension.
- They do not believe they will get a satisfying pension, they had never had insurance but they believe that children studies will be covered in a possible loss of theirs. They do not want a risk protection but it is of a major importance to cover their healthcare after they receive their pension. They do not want to include doctor visits to their private insurance, they do not have a car superseding ability and it is not of a major importance to cover their fixed costs after they receive their pension.
- They had had insurance before and they believe that children studies will be covered in a possible loss of theirs. They do not want a risk protection but it is of a major importance to cover their healthcare after they receive their pension. They do not want to include doctor visits to their private insurance, they do not have a car superseding ability and it is not of a major importance to cover their fixed costs after they receive their pension.

$\equiv\equiv$ Summary $\equiv\equiv$		
Correctly Classified Instances	172	94.5055 %
Incorrectly Classified Instances	10	5.4945 %
Kappa statistic	0.1415	
Mean absolute error	0.0532	
Root mean squared error	0.2273	
Relative absolute error	59.6934 %	
Root relative squared error	110.7167 %	
Total Number of Instances	182	

- Summary --

	TP	FP	Precision	Recall	F-	MCC	ROC	PRC	Class
	Rate	Rate			Measure		Area	Area	
	0,983	0,875	0,961	0,983	0,972	0,151	0,524	0,958	Yes
	0,125	0,017	0,250	0,125	0,167	0,151	0,527	0,080	No
W.A	0,945	0,837	0,945	0,929	0,945	0,151	0,527	0,920	

=== Detailed Accuracy By Class ===

Table 29: Detailed Accuracy by Class- Random Tree

=== Confusion Matrix ===

a b <-- classified as

171 $3 \mid a = Yes$

 $7 \ 1 | b = No$

Random Tree provides the best performance of all the algorithms. The high percentage of correctly classified instances and the positive kappa statistic along with the high accuracy of the estimators (ROC Area (>0,5)) indicate that Random Tree is a high-performance algorithm model. This practically means that, the predictions made by the algorithm were correct and better than a random guessing. So, there is a high probability that the dataset values are similar to those predicted from the algorithm.

Random Tree is a quite simple and interpretable model.

In the Confusion Matrix "a=Yes" means that they are interested in estimating their retirement, whereas the prediction "b=No" means that they are not interested in estimating their retirement. The correctly and incorrectly classified instances show the percentage of test instances that were correctly and incorrectly classified. The raw numbers are shown in the confusion matrix, with a and b representing the class labels. Here there were 182 instances, so the percentages and raw numbers add up, aa + bb = 171 + 1 = 172 and ab + ba = 7 + 3 = 10. It also means that 171 out of 174 a's were predicted correctly (TP Rate-out of 174 customers that were predicted to want a retirement estimation, only 171 truly wanted to estimate their retirement) and 1 out of 8 b's were predicted correctly (TN Rate-out of 8 customers that were predicted to reject a retirement estimation, only 1 of them truly rejected the retirement estimation).

Some of the Random Trees' Model predictions about the customers' willingness to estimate their retirement are presented below. The prediction "1.Yes" means that they are interested in estimating their retirement, whereas the prediction "2.No" means that

they are not interested in estimating their retirement. Here, the instances 1 through 10 are predicted to be of class 1, whose value is "Yes" (Yes= I am interested in estimating my retirement). Class 2, whose value is "No" (No= I am not interested in estimating my retirement) is not predicted in the first 10 instances.

The rest of the results are presented in the appendix: Random Tree Predictions| NN

inst#	actual	predicted	error prediction
1	1:Yes	1:Yes	1
2	1:Yes	1:Yes	1
3	1:Yes	1:Yes	1
4	1:Yes	1:Yes	1
5	1:Yes	1:Yes	1
6	1:Yes	1:Yes	1
7	1:Yes	1:Yes	1
8	1:Yes	1:Yes	1
9	1:Yes	1:Yes	1
10	1:Yes	1:Yes	1

=== Predictions on user test set ===

Table 30:Predictions on test set- Random Tree

3.1.2 Lazy IBK

=== Classifier model (full training set) ===

IB1 instance-based classifier using 1 nearest neighbor(s) for classification

=== Summary ===

Correctly Classified Instances	172	94.5055 %
Incorrectly Classified Instances	10	5.4945 %
Kappa statistic	0.1415	
Mean absolute error	0.0627	
Root mean squared error	0.236	
Relative absolute error	70.2979 %	
Root relative squared error	114.9252 %	0
Total Number of Instances	182	

=== Detailed Accuracy By Class ===

	TP	FP	Precision	Recall	F-	MCC	ROC	PRC	Class
	Rate	Rate			Measure		Area	Area	
	0,983	0,875	0,961	0,983	0,972	0,151	0,634	0,968	Yes
	0,125	0,017	0,250	0,125	0,167	0,151	0,634	0,092	No
W.A	0,945	0,837	0,929	0,945	0,936	0,151	0,634	0,930	

Table 31: Detailed Accuracy by Class- Lazy IBk

=== Confusion Matrix ===

a b \leftarrow classified as

171 $3 \mid a = Yes$

7 $1 \mid b = No$

Lazy IBK provides the second best performance of all the algorithms. The high percentage of correctly classified instances and the positive kappa statistic along with the high accuracy of the estimators (ROC Area (>0,5)) indicate that Lazy IBK is a high-performance algorithm model. This practically means that, the predictions made by the algorithm were correct and better than a random guessing. So, there is a high probability that the dataset values are similar to those predicted from the algorithm.

Lazy IBK is a K-nearest neighbor's (KNN) classifier which attempts to predict the correct class for the test data by calculating the distance between the test data and all the training points. Then, it selects the K number of points which is closest to the test data. The K-Nearest Neighbours (KNN) algorithm is one of the most simple supervised machine learning algorithms that is used to solve both classification and regression problems. KNN is also known as an instance-based model or a lazy learner because it doesn't construct an internal model. For classification problems, it will find the k nearest neighbors and predict the class by the majority vote of the nearest neighbors.¹²²

Some of the Lazy IBK's Model predictions about each customers' willingness to estimate their retirement are presented below. The prediction "1.Yes" means that they are interested in estimating their retirement, whereas the prediction "2.No" means that they are not interested in estimating their retirement.

The rest of the results are presented in the appendix: Lazy IBK Predictions| NN

⁼⁼⁼ Predictions on user test set ===

¹²² Source: <u>https://towardsdatascience.com/an-introduction-to-k-nearest-neighbours-algorithm-</u>3ddc99883acd

Business Decision Analysis Based on Data Analytics | Antonia Trikounaki

inst#	actual	predicted	error prediction
1	1:Yes	1:Yes	0.995
2	1:Yes	1:Yes	0.995
3	1:Yes	1:Yes	0.995
4	1:Yes	1:Yes	0.995
5	1:Yes	1:Yes	0.995
6	1:Yes	1:Yes	0.995
7	1:Yes	1:Yes	0.995
8	1:Yes	1:Yes	0.995
9	1:Yes	1:Yes	0.995
10	1:Yes	1:Yes	0.995

 Table 32: Predictions on user test set- Lazy IBk

3.1.3 Naive Bayes Updateable

Naive Bayes and Naive Bayes Updateable provide the same results.

See Appendix: Naive Bayes Updatable Classifier| NN

=== Summary ===

Correctly Classified Instances	171	93.956 %
Incorrectly Classified Instances	11	6.044 %
Kappa statistic	0.1242	
Mean absolute error	0.0663	
Root mean squared error	0.2246	
Relative absolute error	74.3306 %	
Root relative squared error	109.3955 %	
Total Number of Instances	182	

=== Detailed Accuracy By Class ===

	TP	FP	Precision	Recall	F-	MCC	ROC	PRC	Class
	Rate	Rate			Measure		Area	Area	
	0,977	0,875	0,960	0,977	0,969	0,128	0,746	0,983	Yes
	0,125	0,023	0,200	0,125	0,154	0,128	0,746	0,152	No
W.A	0,940	0,838	0,927	0,940	0,933	0,128	0,746	0,946	

Table 33: Detailed Accuracy by Class- Naïve Bayes Updateable

=== Confusion Matrix ===

a b \leftarrow classified as

170 $4 \mid a = Yes$

7 $1 \mid b = No$

Naïve Bayes Updateable provides a good performance as well. The percentage of correctly classified instances and the positive kappa statistic along with the high accuracy of the estimators (ROC Area (>0,5)) indicate that Naïve Bayes Updateable is a high-performance algorithm model. This practically means that, the predictions made by the algorithm were correct and better than a random guessing. So, there is a high probability that the dataset values are similar to those predicted from the algorithm.

Naïve Bayes Updateable is a quite simple and interpretable model. For each of the classes, there is a probability that the attribute of the class (i.e car superseding ability) is true for the customers and a probability that the attribute is not true.

Example (taken from the model in the appendix):

The classes are divided to two: Class 1= Yes and Class 2=No.

	Clas	SS
Attribute	Yes	No
	(0.95)	(0.05)
Car superseding ability		
Yes	36.0	1.0
No	140.0	9.0
[total]	176.0	10.0

Table 34: Example of Naive Bayes Updateabe

- True Positives= 36.0
- False Positives= 140.0
- True Negatives= 9.0
- False Negatives= 1.0

The correctly and incorrectly classified instances show the percentage of test instances that were correctly and incorrectly classified. The raw numbers are shown in the confusion matrix, with Yes and No representing the class labels. Here there were 186 instances, so the percentages and raw numbers add up 36 + 9 = 45 and 1+140 = 141. It also means that 36 out of 176 Yes's were predicted correctly (TP Rate-out of 176 customers that were predicted to have a car superseding ability, only 36 of them truly had) and 9 out of 10 No's were predicted correctly (TN Rate-out of 10

customers that were predicted to reject a retirement estimation, 9 of them indeed rejected the retirement estimation).

A visible problem is that 95% of the instances are in class "Yes", which means that we receive right answers 95% of the times for these predictions, so the model is not that much reliable. This happens because the customers' answers were quite similar.

Precision (how many selected items are relevant) = TP/(TP=+FP) = 36/(36+140) = 0.20

Recall (how many relevant items are selected) = TP/(TP+FN) = 36/(36+1) = 0.97

The same applies to the other attibutes as well.

Some of the Naïve Bayes Updateable's model predictions about each customers' willingness to estimate their retirement are presented below. The prediction "1.Yes" means that they are interested in estimating their retirement, whereas the prediction "2.No" means that they are not interested in estimating their retirement.

The rest of the results are presented in the appendix: Naive Bayes Updateable Predictions NN

inst#	actual	predicted	error prediction
1	1:Yes	1:Yes	1
2	1:Yes	1:Yes	1
3	1:Yes	1:Yes	1
4	1:Yes	1:Yes	0.997
5	1:Yes	1:Yes	0.992
6	1:Yes	1:Yes	0.994
7	1:Yes	1:Yes	0.999
8	1:Yes	1:Yes	1
9	1:Yes	1:Yes	0.995
10	1:Yes	1:Yes	1

=== Predictions on user test set ===

Table 35: Predictions on user test set- Naive Bayes Updateable

3.1.4 Bayes Net

=== Summary ===		
Correctly Classified Instances	171	93.956 %
Incorrectly Classified Instances	11	6.044 %
Kappa statistic	0.2353	

Mean absolute error	0.0715
Root mean squared error	0.2293
Relative absolute error	80.2176 %
Root relative squared error	111.6498 %
Total Number of Instances	182

See Appendix: Bayes Net Classifier Model NN

	TP	FP	Precision	Recall	F-	MCC	ROC	PRC	Class
	Rate	Rate			Measure		Area	Area	
	0,971	0,750	0,966	0,971	0,968	0,236	0,759	0,982	Yes
	0,250	0,029	0,286	0,250	0,267	0,236	0,759	0,271	No
W.A	0,940	0,718	0,936	0,940	0,938	0,236	0,759	0,951	

=== Detailed Accuracy By Class ===

Table 36: Detailed Accuracy by Class- Bayes Net

(W.A= Weighted Average)

=== Confusion Matrix ===

a b \leftarrow classified as

169 5 | a = Yes

 $6 \quad 2 \mid b = No$

Bayes Net provides a good performance as well. The percentage of correctly classified instances and the positive kappa statistic along with the high accuracy of the estimators (ROC Area (>0,5)) indicate that Bayes Net is a high-performance algorithm model. This practically means that, the predictions made by the algorithm were correct and better than a random guessing. So, there is a high probability that the dataset values are similar to those predicted from the algorithm.

Bayes Net is a quite simple and interpretable model.

Example (taken from the algorithm in the appendix):

Bayes Network Classifier (full training set), not using ADTree:

#attributes=65 #classindex=6: This lines list the number of attributes and the number of the class variables for which the classifier was trained.

Network structure sample (nodes followed by parents)

Have or Had Car Insurance(1): I am interested in estimating my retirement Have or Had Motorbike Insurance(2): I am interested in estimating my retirement Have never had Insurance(2): I am interested in estimating my retirement

I am interested in estimating my retirement(2):

.

.

Each of the variables is followed by a parent, which is "I am interested in estimating my retirement". So, the variables "Have or Had Car Insurance", "Have or Had Motorbike Insurance" and "Have or Had Motorbike Insurance" has as a parent the class "I am interested in estimating my retirement". The number in brackets is the cardinality of the variable. It shows that there are two class variables.

LogScore Bayes: -4584.11 LogScore BDeu: -4694.39 LogScore MDL: -4813.55 LogScore ENTROPY: -4483.1

LogScore AIC: -4610.1

These lines list the logarithmic score of the network structure for various methods of scoring. The logarithmic scoring rule is a scoring rule used to measure how well a given assignment of probabilities to values of a random variable performs on some real-world instances of the random variable. The smaller the value of the score with the logarithmic scoring rule, the better the assignment of probabilities has performed according to the rule.¹²³

¹²³ Source: <u>https://calculus.subwiki.org/wiki/Logarithmic_scoring_rule</u>

In decision theory, a scoring rule, measures the accuracy of probabilistic predictions. It is applicable to tasks in which predictions must assign probabilities to a set of mutually exclusive outcomes or classes. The set of possible outcomes can be either binary (or categorical in nature), and the probabilities assigned to this set of outcomes must sum to one (where each individual probability is in the range of 0 to 1). A score can be thought of as either a measure of the "calibration" of a set of probabilistic predictions, or as a "cost function" or "loss function". ¹²⁴

Some of the Bayes Net model predictions about each customers' willingness to estimate their retirement are presented below. The prediction "1.Yes" means that they are interested in estimating their retirement, whereas the prediction "2.No" means that they are not interested in estimating their retirement.

The rest of the results are presented in the appendix: Bayes Net Predictions| NN

inst#	actual	predicted	error prediction
1	1:Yes	1:Yes	1
2	1:Yes	1:Yes	1
3	1:Yes	1:Yes	1
4	1:Yes	1:Yes	0.997
5	1:Yes	1:Yes	0.994
6	1:Yes	1:Yes	0.996
7	1:Yes	1:Yes	0.999
8	1:Yes	1:Yes	1
9	1:Yes	1:Yes	0.994
10	1:Yes	1:Yes	1

=== Predictions on user test set ===

Table 37: Predictions on user test set- Bayes Net

3.1.5 Naive Bayes

Naive Bayes and Naive Bayes Updateable provide the same results.

=== Summary ===		
Correctly Classified Instances	171	93.956 %
Incorrectly Classified Instances	11	6.044 %
Kappa statistic	0.1242	
Mean absolute error	0.0663	
Root mean squared error	0.2246	

¹²⁴ Source: https://en.wikipedia.org/wiki/Scoring_rule

Relative absolute error	74.3306 %
Root relative squared error	109.3955 %
Total Number of Instances	182

See Appendix: Naive Bayes Classifier Model NN

	TP	FP	Precision	Recall	F-	MCC	ROC	PRC	Class
	Rate	Rate			Measure		Area	Area	
	0,977	0,875	0,960	0,977	0,969	0,128	0,746	0,983	Yes
	0,125	0,023	0,200	0,125	0,154	0,128	0,746	0,152	No
W.A	0,940	0,838	0,927	0,940	0,933	0,128	0,746	0,946	

=== Detailed Accuracy By Class ===

Table 38: Detailed Accuracy by Class- Naive Bayes

=== Confusion Matrix ===

a b \leftarrow classified as

170 $4 \mid a = Yes$

 $7 \ 1 | b = No$

Naïve Bayes provides a good performance. The percentage of correctly classified instances and the positive kappa statistic along with the high accuracy of the estimators (ROC Area (>0,5)) indicate that Naïve Bayes Updateable is a high-performance algorithm model. This practically means that, the predictions made by the algorithm were correct and better than a random guessing. So, there is a high probability that the dataset values are similar to those predicted from the algorithm.

Naïve Bayes Updateable is a quite simple and interpretable model. The classifier model's results as well as the predictions for the customers' willingness of retirement estimation are the same as those of Naïve Bayes Updateable.

Some of the Naïve Bayes' model predictions about each customers' willingness to estimate their retirement are presented below. The prediction "1.Yes" means that they are interested in estimating their retirement, whereas the prediction "2.No" means that they are not interested in estimating their retirement.

The rest of the results are presented in the appendix: Naive Bayes Predictions| NN

=== Predictions on user test set ===

Business Decision Analysis Based on Data Analytics | Antonia Trikounaki

Inst#	actual	predicted	error prediction
1	1:Yes	1:Yes	1
2	1:Yes	1:Yes	1
3	1:Yes	1:Yes	1
4	1:Yes	1:Yes	0.997
5	1:Yes	1:Yes	0.992
6	1:Yes	1:Yes	0.994
7	1:Yes	1:Yes	0.999
8	1:Yes	1:Yes	1
9	1:Yes	1:Yes	0.995
10	1:Yes	1:Yes	1

Table 39: Predictions on user test set- Naive Bayes

3.1.6 Lazy K Star

=== Summary ===		
Correctly Classified Instances	170	93.4066 %
Incorrectly Classified Instances	12	6.5934 %
Kappa statistic	0.1093	
Mean absolute error	0.0688	3
Root mean squared error	0.2479	9
Relative absolute error	77.143	%
Root relative squared error	120.731	6 %
Total Number of Instances	182	

=== Detailed Accuracy By Class ===

	TP	FP	Precision	Recall	F-	MCC	ROC	PRC	Class
	Rate	Rate			Measure		Area	Area	
	0,971	0,875	0,960	0,971	0,966	0,111	0,524	0,958	Yes
	0,125	0,029	0,167	0,125	0,143	0,111	0,524	0,116	No
W.A	0,945	0,934	0,838	0,925	0,9364	0,111	0,524	0,921	

Table 40: Detailed Accuracy by Class- Lazy K Star

=== Confusion Matrix ===

a b \leftarrow classified as

169 $5 \mid a = Yes$

7 $1 \mid b = No$

Lazy K Star provides a good performance of all the algorithms. The high percentage of correctly classified instances and the positive kappa statistic along with the high accuracy of the estimators (ROC Area (>0,5)) indicate that Random Tree is a high-performance algorithm model. This practically means that, the predictions made by the algorithm were correct and better than a random guessing. So, there is a high probability that the dataset values are similar to those predicted from the algorithm.

Lazy K Star does not have many parameters. According to Sharma and Jain (2013): "K-Star algorithm as an instance-based learner which uses entropy as a distance measure. The benefits are that it provides a consistent approach to handling of real valued attributes, symbolic attributes and missing values".

K- Star is a simple classifier, similar to K-Nearest Neighbour (K-NN).

For classification problems, it will find the k nearest neighbors and predict the class by the majority vote of the nearest neighbors.¹²⁵

Some of the Lazy K Star's Model predictions about the customers' willingness to estimate their retirement are presented below. The prediction "1.Yes" means that they are interested in estimating their retirement, whereas the prediction "2.No" means that they are not interested in estimating their retirement.

The rest of the results are presented in the appendix: Lazy K Star Predictions| NN The predictions found for Lazy K Star are the same as those of Random Tree.

inst#	actual	predicted	error prediction
1	1:Yes	1:Yes	1
2	1:Yes	1:Yes	1
3	1:Yes	1:Yes	1
4	1:Yes	1:Yes	1
5	1:Yes	1:Yes	1
6	1:Yes	1:Yes	1
7	1:Yes	1:Yes	1
8	1:Yes	1:Yes	1
9	1:Yes	1:Yes	1
10	1:Yes	1:Yes	1

=== Predictions	on	user	test	set	===
-----------------	----	------	------	-----	-----

Table 41: Predictions on user test set- Lazy K Star

¹²⁵ Source: <u>https://towardsdatascience.com/an-introduction-to-k-nearest-neighbours-algorithm-</u> 3ddc99883acd

3.1.7 Meta Randomizable Filtered Classifier

=== Summary ===		
Correctly Classified Instances	169	92.8571 %
Incorrectly Classified Instances	13	7.1429 %
Kappa statistic	0.0963	
Mean absolute error	0.0766	
Root mean squared error	0.2657	
Relative absolute error	85.9134 %	
Root relative squared error	129.4034 %	
Total Number of Instances	182	

=== Detailed Accuracy By Class ===

	TP	FP	Precision	Recall	F-	MCC	ROC	PRC	Class
	Rate	Rate			Measure		Area	Area	
	0,966	0,875	0,960	0,966	0,963	0,096	0,575	0,963	Yes
	0,125	0,034	0,143	0,125	0,133	0,096	0,575	0,062	No
W.A	0,929	0,838	0,924	0,929	0,926	0,096	0,575	0,923	

Table 42: Detailed Accuracy by Class- Meta Randomizable Filtered Classifier

=== Confusion Matrix ===

a b <-- classified as

168 $6 \mid a = Yes$

7 $1 \mid b = No$

Randomizable Filtered Classifier provides a satisfactory percentage of correctly classified instances and the positive kappa statistic along with the high accuracy of the estimators (ROC Area (>0,5)) indicate that this is a high-performance algorithm model. This practically means that, the predictions made by the algorithm were correct and better than a random guessing. So, there is a high probability that the dataset values are similar to those predicted from the algorithm.

Randomizable Filtered Classifier does not have many parameters. As mentioned in the first chapter, it runs an arbitrary classifier on data that has been passed through an arbitrary filter. Like the classifier, the structure of the filter is based exclusively on the training data and test instances will be processed by the filter without changing their structure. ¹²⁶

Some of the model's predictions about each customers' willingness to estimate their retirement are presented below. The prediction "1.Yes" means that they are interested in estimating their retirement, whereas the prediction "2.No" means that they are not interested in estimating their retirement.

The rest of the results are presented in the appendix: Randomizable Filtered Classifier Predictions NN

The predictions found for Randomizable Filtered Classifier are the same as those of Lazy IBK classifier.

inst#	actual	predicted	error prediction
1	1:Yes	1:Yes	0.995
2	1:Yes	1:Yes	0.995
3	1:Yes	1:Yes	0.995
4	1:Yes	1:Yes	0.995
5	1:Yes	1:Yes	0.995
6	1:Yes	1:Yes	0.995
7	1:Yes	1:Yes	0.995
8	1:Yes	1:Yes	0.995
9	1:Yes	1:Yes	0.995
10	1:Yes	1:Yes	0.995

=== Predictions on user test set ===

Table 43: Predictions in user test set- Meta Randomizable Filtered Classifier

3.1.8 SMO

169	92.8571 %
13	7.1429 %
0.0963	
0.0714	
0.2673	
80.1144 %	
130.1572 %)
	13 0.0963 0.0714 0.2673 80.1144 %

¹²⁶ Source:

https://weka.sourceforge.io/doc.dev/weka/classifiers/meta/RandomizableFilteredClassifier.html

Total Number of Instances 182

See Appendix: SMO Reg Classifier NN

=== Detailed Accuracy By Class ===

	TP	FP	Precision	Recall	F-	MCC	ROC	PRC	Class
	Rate	Rate			Measure		Area	Area	
	0,966	0,875	0,960	0,966	0,963	0,096	0,545	0,960	Yes
	0,125	0,034	0,143	0,125	0,133	0,096	0,545	0,056	No
W.A	0,929	0,838	0,924	0,929	0,926	0,096	0,545	0,920	

Table 44: Detailed Accuracy by Class- SMO

=== Confusion Matrix ===

a b <-- classified as

168 $6 \mid a = Yes$

7 $1 \mid b = No$

SMO Reg provides a satisfactory percentage of correctly classified instances and the positive kappa statistic along with the high accuracy of the estimators (ROC Area (>0,5)) indicate that this is a well-functioning algorithm model. This practically means that, the predictions made by the algorithm were correct and better than a random guessing. So, there is a high probability that the dataset values are similar to those predicted from the algorithm.

SMO Reg is neither interpretable nor simple algorithm model, which means that one who does not have the necessary expertise in the field of technology or analytics cannot fundamentally understand how the model arrived in a certain output or how the output influences the output, by just reading the algorithm.

As mentioned in the first chapter, the implementation of SMO globally replaces all missing values and transforms nominal attributes into binary ones. It also normalizes all attributes by default. (In that case the coefficients in the output are based on the normalized data, not the original data --- this is important for interpreting the classifier). Multi-class problems are solved using pairwise classification (1-vs-1).

Some of the model's predictions about each customer's willingness to estimate their retirement are presented below. The prediction "1.Yes" means that they are interested in estimating their retirement, whereas the prediction "2.No" means that they are not interested in estimating their retirement.

The rest of the results are presented in the appendix: SMO Reg Predictions| NN

inst#	actual	predicted	error prediction
1	1:Yes	1:Yes	1
2	1:Yes	1:Yes	1
3	1:Yes	1:Yes	1
4	1:Yes	1:Yes	1
5	1:Yes	1:Yes	1
6	1:Yes	1:Yes	1
7	1:Yes	1:Yes	1
8	1:Yes	1:Yes	1
9	1:Yes	1:Yes	1
10	1:Yes	1:Yes	1

=== Predictions on user test set ===

Table 45:Predictions in user test set- SMO

3.1.9 Multi Class Classifier Updateable

See Appendix: Multi Class Classifier Updateable| NN

=== Summary ===

Correctly Classified Instances	166	91.2088 %
Incorrectly Classified Instances	16	8.7912 %
Kappa statistic	0.1555	
Mean absolute error	0.0879	
Root mean squared error	0.2965	
Relative absolute error	98.6023 %	
Root relative squared error	144.3965 %	
Total Number of Instances	182	

=== Detailed Accuracy By Class ===

	TP	FP	Precision	Recall	F-	MCC	ROC	PRC	Class
	Rate	Rate			Measure		Area	Area	
	0,943	0,750	0,965	0,943	0,950	0,159	0,596	0,964	Yes
	0,250	0,057	0,167	0,250	0,200	0,159	0,596	0,075	No
W.A	0,912	0,720	0,930	0,912	0,920	0,159	0,596	0,925	

Table 46: Detailed Accuracy by Class- Multi Class Classifier Updateable

=== Confusion Matrix ===

a b <-- classified as 164 10 | a = Yes 5 2 | b = No

Multi Class Classifier Updateable provides a satisfactory percentage of correctly classified instances and a high kappa statistic, which, along with the high accuracy of the estimators (ROC Area (>0,5)) indicate that it is a well-functioning algorithm model. This practically means that, the predictions made by the algorithm were correct and better than a random guessing. So, there is a high probability that the dataset values are similar to those predicted from the algorithm.

The final results are presented in the appendix, however this is a description of how it works.

This is a metaclassifier for handling multi-class datasets with 2-class classifiers and it has more than two outcomes. This classifier is also capable of applying error correcting output codes for increased accuracy. The base classifier must be an updateable classifier.¹²⁷

Multi Class Classifier Updateable is using SVM algorithm model, so it is neither interpretable nor simple model. That is, one who does not have the necessary expertise in the field of technology or analytics cannot fundamentally understand how the model arrived in a certain output or how the output influences the output, by just reading the algorithm.

For our dataset's evaluation, we need to take into consideration the loss function as well, apart from the metrics.

Loss function: Hinge loss¹²⁸ (SVM)

I am interested in estimating my retirement =

0.8597 (normalized) Car superseding ability=No

¹²⁷Source:<u>https://weka.sourceforge.io/doc.dev/weka/classifiers/meta/MultiClassClassifierUpdateable</u>.<u>html</u>

¹²⁸ The hinge loss is a type of cost function that penalizes misclassified samples and correctly classified ones that are within a defined margin from the decision boundary. The hinge loss function is most commonly employed to regularize soft margin support vector machines. The degree of regularization determines how aggressively the classifier tries to prevent misclassifications and can be controlled with an additional parameter C. Hard margin SVMs do not allow for misclassifications and do not require regularization. Source: <u>https://programmathically.com/understanding-hinge-loss-and-the-</u> svm-cost-function/

- + 0.5898 (normalized) Motorbike superseding ability=Yes
- + -0.2799 (normalized) House superseding ability=Yes
- + -0.1399 (normalized) Business superseding ability=Yes
- + 0.4298 (normalized) No superseding ability=Yes
- + -0.4098 (normalized) Have or had Business Insurance=Yes

SVM or Support Vector Machine is a supervised, linear, machine learning model that uses classification algorithms for two-group classification and regression problems. It can solve linear and non-linear problems and work well for many practical problems.^{129 130}

For datasets with linear relationships, SVM algorithm creates a line or a hyperplane (a line whose distance to the nearest element of each tag is the largest) that separates data into classes. For data with non-linear relationships, SVM algorithm use kernels¹³¹ to make non-separable data into separable data and fit them into classes.¹³² In our case, it seems we have data of linear relationships; however both cases are presented below.

So, SVMs define the boundary between areas belonging to different categories, which is not necessarily the categories we want.

SVM does not assume normality, but it minimizes some symmetric loss function using hyperplanes or kernels for linear and non-linear problems respectively.

Let us see how Support Vector Machines work example.

Linear relationship in dataset:

Let us suppose we have two tags: pink and blue, and our data has two features: x and y. We want a classifier that, given a pair of (x,y) coordinates, outputs if it's either pink or blue.

 ¹²⁹ Source: <u>https://towardsdatascience.com/https-medium-com-pupalerushikesh-svm-f4b42800e989</u>
 ¹³⁰ Source: <u>https://monkeylearn.com/blog/introduction-to-support-vector-machines-svm/</u>

¹³¹ A "kernel" is usually used to refer to a method of using a linear classifier to solve a non-linear problem.

¹³² Source: https://www.aitude.com/svm-difference-between-linear-and-non-linear-models/

Figure 25: Labeled data

A support vector machine takes these data points and outputs the hyperplane, which is a line that best separates the tags and consequently maximizes the margins from both tags. This line is our decision boundary: anything that falls to one side of the line will be classified as pink, and anything that falls to the other side of the line will be classified as blue.

Figure 26: Best hyperplane for our labeled data

Nonlinear data:

Let us consider an example in which data are not linearly separable:

Figure 27: Complex Dataset

In this case, there is not a linear decision boundary (a single straight line that separates both tags). However, the vectors are very clearly segregated and it looks as though it should be easy to separate them.

For that reason, we will add a third dimension z (let us say z=1), which is a hyperplane, parallel to the x axis in order to be calculated a certain way that is convenient for us: $z = x^2 + y^2$ (you'll notice that's the equation for a circle).

This will give us a three-dimensional space:

Figure 28: Best hyperplane for three-dimension mapping

Now the last step is mapping it back to two dimensions.

Figure 29: Best hyperplane for two dimentions in a non-linear dataset

So, our decision boundary is a circumference of radius, which separates both tags using SVM.¹³³

The kernel trick:

As we can detect from the previous example, there is a way to classify nonlinear data by mapping our space to a higher dimension. However, there can be a lot of new dimensions, each one of them possibly involving a complicated calculation. Doing this for every vector in the dataset can be a lot of work. However, SVM does not need the actual vectors to work; it actually can get by only with the dot products between them.

Let us assume the new space we want:

$$z = x^2 + y^2$$

Figure out what the dot product in our space looks like:

¹³³ Source: https://monkeylearn.com/blog/introduction-to-support-vector-machines-svm/

 $a * b = xa * xb + ya * yb + za * zb \Rightarrow$ $a * b = xa * xb + ya * yb + (xa^2 + ya^2) * (xb^2 + yb^2)$

That's the kernel trick, which allows us to ease complex calculations. Normally, the kernel is linear, and we get a linear classifier. However, by using a nonlinear kernel we can get a nonlinear classifier by just changing the dot product to that of the space that we want.

The kernel trick can be used with other linear classifiers as well such as logistic regression. A support vector machine only takes care of finding the decision boundary.

Compared to newer algorithms like neural networks, they have two main advantages: higher speed and better performance with a limited number of samples (in the thousands). This makes the algorithm very suitable for text classification problems, where it's common to have access to a dataset of thousands of tagged samples.¹³⁴

Some of the model's predictions about each customers' willingness to estimate their retirement are presented below. The prediction "1.Yes" means that they are interested in estimating their retirement, whereas the prediction "2.No" means that they are not interested in estimating their retirement.

The rest of the results are presented in the appendix: Multi Class Classifier Updeateable Predictions NN.

The predictions found for Multi Class Classifier Updateable are the same as those of Lazy K Star and Random Tree.

inst#	actual	predicted	error prediction
1	1:Yes	1:Yes	1
2	1:Yes	1:Yes	1
3	1:Yes	1:Yes	1
4	1:Yes	1:Yes	1
5	1:Yes	1:Yes	1
6	1:Yes	1:Yes	1

=== Predictions on user test set ===

¹³⁴ Source: <u>https://monkeylearn.com/blog/introduction-to-support-vector-machines-svm/</u>

7	1:Yes	1:Yes	1
8	1:Yes	1:Yes	1
9	1:Yes	1:Yes	1
10	1:Yes	1:Yes	1

Table 47: Predictions on user test set- Multi Class Classifier Updateable

3.1.10 Multi Class Classifier

~

See Appendix: Multi Class Classifier NN

=== Summary ===		
Correctly Classified Instances	165	90.6593 %
Incorrectly Classified Instances	17	9.3407 %
Kappa statistic	0.2159	
Mean absolute error	0.0952	
Root mean squared error	0.3044	
Relative absolute error	106.8283 %	
Root relative squared error	148.264 %	
Total Number of Instances	182	

=== Detailed Accuracy By Class ===

	TP	FP	Precision	Recall	F-	MCC	ROC	PRC	Class
	Rate	Rate			Measure		Area	Area	
	0,931	0,625	0,970	0,931	0,950	0,228	0,624	0,967	Yes
	0,375	0,069	0,200	0,375	0,261	0,228	0,681	0,222	No
W.A	0,907	0,601	0,936	0,907	0,920	0,228	0,627	0,934	

Table 48: Detailed Accuracy by Class- Multi Class Classifier

=== Confusion Matrix ===

a b <-- classified as

162 12 | a = Yes

5 3 | b = No

Multi Class Classifier provides a satisfactory percentage of correctly classified instances and a high kappa statistic, which, along with the high accuracy of the estimators (ROC Area (>0,5)) indicate that it is a well-functioning algorithm model. This practically means that, the predictions made by the algorithm were correct and

better than a random guessing. So, there is a high probability that the dataset values are similar to those predicted from the algorithm.

In machine learning, multiclass or multinomial classification is the problem of classifying instances into one of three or more classes (classifying instances into one of two classes is called binary classification). While many classification algorithms (i.e multinomial logistic regression) naturally permit the use of more than two classes, some are by nature binary algorithms; these can, however, be turned into multinomial classifiers by a variety of strategies.¹³⁵

Each training point belongs to one of the n different classes. The goal is to construct a function which, given a new data point, will correctly predict the class to which the new point belongs.¹³⁶

Multi Class Classifier is interpretable and simple algorithm model. The final results are presented in the appendix; however this is a description of how it works.

Logistic Regression with ridge parameter of 1.0E-8

Coefficients...

	Class
Variable	Yes
Car superseding ability=No	-26.2427
Motorbike superseding ability=Yes	-4.39
House superseding ability=Yes	5.3858
Business superseding ability=Yes	44.8751
No superseding ability=Yes	3.3551
Have or Had Business Insurance=Yes	18.2946

Odds Ratios...

¹³⁵ Source: <u>https://en.wikipedia.org/wiki/Multiclass_classification</u>

¹³⁶ Source: https://www.mit.edu/~9.520/spring09/Classes/multiclass.pdf

	Class
Variable	Yes
Car superseding ability=No	0
Motorbike superseding ability=Yes	0.0124
House superseding ability=Yes	218.2802
Business superseding ability=Yes	3.08
No superseding ability=Yes	28.6496
Have or Had Business Insurance=Yes	88150280.8

Coefficients are the weights that are applied to each attribute plugged into the logistic function to obtain probabilities. The results illustrate the probability/odd that the instance belongs to class yes (Yes= I am interested in estimating my retirement). The criterion which depicts that an instance belongs to class "yes" is that this probability is greater than 0.5^{137} .

Odds ratios are the exponential of the weights we have found. For example, the first coefficient we have is: "Car superseding ability=No": -26.2427. By calculating exp(-26.2427) we get a value really close to 0. This is the corresponding value in the odds ratio table and means that there is almost zero probability that a customer who has no car superseding ability, is interested in estimating his/her retirement.

From the second coefficient we have: "Motorbike superseding ability=Yes": -4.39. By calculating exp(-4.39) we get a value of 0.0124(< 0.5). This means that although a customer may have a motorbike superseding ability, that does not mean that he/she is interested in estimating his/her retirement.

¹³⁷ Source: <u>https://stackoverflow.com/questions/19136213/how-to-interpret-weka-logistic-regression-output</u>

The relation between the coefficient for "Car superseding ability=No" and its odds ratio is, the logarithm of the odds of "Car superseding ability=No", over the odds of "Car superseding ability=Yes":

Example: The odds of "House superseding ability=Yes" is the probability of a customer having a house superseding ability when they are interested in estimating their retirement over the probability of having a house superseding ability when they are not interested in estimating their retirement. Similarly, you can calculate the odds for "House superseding ability=No".

The log of this ratio is the value of the coefficient attached to the variable "House superseding ability=Yes" in the logistic regression.

It is also observed that, the odds for "Have or Had Business Insurance=Yes" are extremely favorable to the yes outcome, producing a high positive value. This means that the customers that have or has business insurance are really interested in estimating their retirement.

Some of the model's predictions about each customer's willingness to estimate their retirement are presented below. The prediction "1.Yes" means that they are interested in estimating their retirement, whereas the prediction "2.No" means that they are not interested in estimating their retirement.

The rest of the results are presented in the appendix: Multi Class Classifier Predictions| NN

The predictions found for Multi Class Classifier Updateable are the same as those of Lazy K Star and Random Tree.

inst#	Actual	predicted	error prediction
1	1:Yes	1:Yes	1
2	1:Yes	1:Yes	1
3	1:Yes	1:Yes	1

=== Predictions on user test set ===

¹³⁸ Source: <u>https://stats.stackexchange.com/questions/71684/how-to-interpret-weka-logistic-regression-output</u>

4	1:Yes	1:Yes	1
5	1:Yes	1:Yes	1
6	1:Yes	1:Yes	1
7	1:Yes	1:Yes	1
8	1:Yes	1:Yes	1
9	1:Yes	1:Yes	1
10	1:Yes	1:Yes	1

Table 49: Predictions on user test set- Multi Class Classifier

3.1.11 Logistic

See Appendix: Logistic Classification Model| NN

=== Summary ===		
Correctly Classified Instances	165	90.6593 %
Incorrectly Classified Instances	17	9.3407 %
Kappa statistic	0.2159	
Mean absolute error	0.0952	
Root mean squared error	0.3044	
Relative absolute error	106.8283 %	, D
Root relative squared error	148.264 %)
Total Number of Instances	182	

=== Detailed Accuracy By Class ===

	TP	FP	Precision	Recall	F-	MCC	ROC	PRC	Class
	Rate	Rate			Measure		Area	Area	
	0,931	0,625	0,970	0,931	0,950	0,228	0,624	0,967	Yes
	0,375	0,069	0,200	0,375	0,261	0,228	0,681	0,222	No
W.A	0,907	0,601	0,936	0,907	0,920	0,228	0,627	0,934	

Table 50: Detailed Accuracy by Class- Logistic

== Confusion Matrix ===

a b <-- classified as

162 12 | a = Yes

5 3 | b = No

Logistic classification provides a satisfactory percentage of correctly classified instances and a high kappa statistic, which, along with the high accuracy of the estimators (ROC Area (>0,5)) indicate that it is a well-functioning algorithm model.

This practically means that, the predictions made by the algorithm were correct and better than a random guessing. So, there is a high probability that the dataset values are similar to those predicted from the algorithm.

The logistic classification model (or logit model) is a binary classification model in which the conditional probability of one of the two possible realizations of the output variable is assumed to be equal to a linear combination of the input variables, transformed by the logistic function.¹³⁹

Logistic class is for building and using a multinomial logistic regression model with a ridge estimator.

Logistic Classification is interpretable and simple algorithm model and it provides the same results as those of Multi Class Classifier.

Some of the model's predictions about each customers' willingness to estimate their retirement are presented below. The prediction "1.Yes" means that they are interested in estimating their retirement, whereas the prediction "2.No" means that they are not interested in estimating their retirement.

The rest of the results are presented in the appendix: Logistic Regression Predictions|

The predictions found for Logistic Classifier are the same as those of Multi Class Classifier, Multi Class Classifier Updateable, Lazy K Star and Random Tree.

inst#	actual	predicted	error prediction
1	1:Yes	1:Yes	1
2	1:Yes	1:Yes	1
3	1:Yes	1:Yes	1
4	1:Yes	1:Yes	1
5	1:Yes	1:Yes	1
6	1:Yes	1:Yes	1
7	1:Yes	1:Yes	1
8	1:Yes	1:Yes	1
9	1:Yes	1:Yes	1
10	1:Yes	1:Yes	1

=== Predictions on user test set ===

Table 51: Predictions on user test set- Logistic

¹³⁹ Source:https://www.statlect.com/fundamentals-of-statistics/logistic-classification-model

The algorithms Zero R, One R and J-Rip usually are the simplest algorithms with the best results given for predictability. However in our case these algorithms do not provide satisfying (low accuracy, negative kappa statistic, negative MCC).

See in the Appendix: Classifiers with low accuracy| NN

These are the algorithms with negative kappa statistic or negative MCC, which are a bad- functioning models.

3.2 WEKA Clustering WEKA Clusterers

Clustering is a method of grouping similar things together. As mentioned in the first chapter, clustering is a process of portioning a data set into a set of meaningful subclasses, known as clusters. Clustering is the same as classification in which data is grouped.¹⁴⁰

Though, unlike classification, clustering does not seek rules that predict a particular class, but rather try to divide the data into groups/clusters, that are not previously defined, by determining similarities between data according to characteristics found in the real data.

The objective of our clustering procedure is to group the customers who presented similarities in their insurance interests and to disjoin those who displayed dissimilarities. We proceed to the implementation of different clusterers (Simple K-Means, EM, Make a Density, Farthest First, Canopy, Filtered Clusterer) to the same dataset, in order to see how they behave and maybe to point possible similarities between the clustering results.

Below are the clusterers' results, which give information about the cluster centroids of the customers' answers. These, present the different clusters that are created, based on same characteristics observed in a set of elements.

Centroids are those characteristics that are dominant in the cluster and are similar (have similar characteristics) with the objects in the same cluster.

¹⁴⁰ Source: <u>https://www.javatpoint.com/classification-vs-clustering-in-data-mining</u>

The dataset used for the creation of the clustering results was the answers of a hundred and eighty-two (182) NN customers concerning their superseding ability, their insurance type, the significance of their insurance package, the safety offered from their insurance package, the level of satisfaction from the public insurance health benefits, their wish for extra benefits from their health insurance and their wish for covering certain expenditures after they receive their pension were loaded to WEKA software system in order to make the clusterings.

According to these data, WEKA created several clustering options depending on the clusterer chosen (Simple K-Means, EM, Make a Density, Farthest First, Canopy, Filtered) in order to group the travel agencies that presented similarities and disjoin those that displayed dissimilarities. The aim of clustering is to find distinct groups within a given dataset. Clustering also helps us discern the characteristics between data elements that would otherwise have been unlabeled and uncategorized.

3.2.1 Simple K Means

As mentioned in the first chapter (an analytical explanation is presented in chapter 60), Simple Means is a distant-based clusterer that minimizes the squared distance from each instance to their cluster center, after defining k centroids. It is one of the best unsupervised algorithms. For each different number of seeds, there are different clustering results.¹⁴¹ ¹⁴²

Simple K Means uses random numbers and by using the same seed, we will always get the same random numbers. If we run Simple K Means over the same data twice, with the same seed, we will get exactly the same results. For different number of seeds, the results will vary each time we run Simple K Means.

In our dataset we use the same seed.

Simple K Means Clusterer, presents a different squared error depending on the number of clusters we wish to create. The bigger the number of clusters, the lower the value of squared errors within the clusters.

¹⁴¹ Source: <u>https://www.youtube.com/watch?v=4b5d3muPQmA</u>

¹⁴² Source: https://www.youtube.com/watch?v=HCA0Z9kL7Hg

In order to cross-validate this, we choose different number of clusters manually. The results of each of the clusterings, depending on their number of clusters are presented below.

Simple K Means with 2 Clusters

See the clustering results in the appendix: Simple K Means Clustering/NN

Within cluster sum of squared errors: 1889.54

Number of iterations: 5

Missing values globally replaced with mean/mode.

Clustered Instances (number of instances detected in each cluster):

- 0 60 (33%)
- 1 122 (67%)

Simple K Means divides NN customers into two clusters, Cluster 0 and Cluster 1. 67% of the instances are in Cluster 1 (122 customers out of 182 are included in this cluster). The two clusters present differentiations in the fields of insurance owning, the satisfactory amount of money for family support, the satisfaction from public insurance health benefits, the selection of a big private hospital in a big city of Greece over public hospitals for serious health issues, the willingness to include traveling to the private insurance, the management of supplementary pension and the importance of covering pleasure trips after pension receiving.

	Cluster 0	Cluster 1
Have never had Insurance	No	Yes
Tax obligations would not be covered in case of a possible loss of mine	Yes	No
A satisfying amount of money for the support of my beloved ones	99.57	79.57
Kind of satisfied from the public insurance health benefits	No	Yes
I would choose a big private hospital of Athens or Thessaloniki for serious health issues	Yes	No
I would like going abroad to be included to my private insurance	Yes	No

I have managed for a lump sum or supplementary pension	Yes	No
It is of a major importance to cover my pleasure trips after I receive my pension	Yes	No

Table 52: Cluster Centroids- Simple K- Means

Centroids of cluster 0 depicts that the certain characteristics of Cluster 0, are dominant in the cluster and are similar with the objects in the same cluster. The second cluster's centroid depicts that the certain characteristics of Cluster 1 are dominant in the second cluster and are similar with the objects in the same cluster.

Simple K Means with 3 clusters:

Within cluster sum of squared errors: 1824.91

Clustered Instances

- 0 36 (20%)
- 1 100 (55%)
- 2 46 (25%)

Simple K Means with 4 clusters:

Within cluster sum of squared errors: 1716.16

Clustered Instances

- 0 45 (25%)
- 1 71 (39%)
- 2 22 (12%)
- 3 44 (24%)

Simple K Means with 5 clusters:

See the clustering results in the appendix:

Within cluster sum of squared errors: 1651.43

Clustered Instances

- 0 45 (25%)
- 1 71 (39%)
- 2 22 (12%)

3 44 (24%)

It is clear that a higher number of clusters, leads to a lower squared error, meaning that, the dataset is closer to finding the line of best fit.

Figure 30: Within cluster sum of squared errors and number of clusters

3.2.2 EM

"EM (Expectation Maximization) is a probabilistic clusterer and can be used for unsupervised learning. Like Naive Bayes, it makes the assumption that all attributes are independent random variables." (Witten I.H., et al., (1999))

As mentioned in the first chapter (an analytical explanation is presented in chapter 1.5.2), unlike K-Means that takes one point and places it to the one cluster or the other, EM computes the probability that it goes into a or b cluster. This probability never gets zero or one, it is always a number between zero and one (0<probability EM<1).

The model just finds that there are distinguished groups in the dataset that behave differently.

EM works for numeric attributes providing mean and standard deviation results and value probability results respectively. Log likelihood is an overall quality measure and is increased by each iteration.¹⁴³

EM run alternative number of clusters and then chooses automatically the number of the clusters it shall create.

=== Model and evaluation on training set === See Appendix: *EM Clusterer*/*NN*

Number of clusters selected by cross validation: 3 Number of iterations performed: 9

EM divides Cretan Palm's booking sources into three clusters.

43% of the customers are included in Cluster 0, 21% of the customers are included in Cluster 1 and 35% of the customers are included in Cluster 2.

Here is an example of how it works (all the rest clustering results are in the appendix):

- Customers in Cluster 0 have a 30% probability (24.1773/80.4633) to choose a big private hospital in a big city of Greece (Athens or Thessaloniki) over public hospitals for serious health issues (and a 70% probability (56.286/80.4633) not to choose a big private hospital in a big city of Greece (Athens or Thessaloniki) over public hospitals for serious health issues).
- Customers in Cluster 1 have a 66.5% probability (27.3252/41.0313) to choose
 a big private hospital in a big city of Greece (Athens or Thessaloniki) over
 public hospitals for serious health issues (and a 33.5% probability
 (27.3252/41.0313) not to choose a big private hospital in a big city of Greece
 (Athens or Thessaloniki) over public hospitals for serious health issues).
- Customers in Cluster 2 have a 42.8% probability (28.4974/66.5054) to choose
 a big private hospital in a big city of Greece (Athens or Thessaloniki) over
 public hospitals for serious health issues (and a 57.2% probability
 (38.0079/66.5054) not to choose a big private hospital in a big city of Greece
 (Athens or Thessaloniki) over public hospitals for serious health issues).

¹⁴³ Source: https://www.youtube.com/watch?v=HCA0Z9kL7Hg

	Cluster 0 (0.43)	Cluster 1 (0.21)	Cluster 2 (0.35)
I would choose a big private hospital of	of Athens or Thessaloniki for s	serious healt	h issues
Yes	24.1773	27.3252	28.4974
No	56.286	13.7061	38.0079
[total]	80.4633	41.0313	66.5054

Table 53: Cluster Centroids- EM

Clustered Instances (number of instances detected in each cluster):

- 0 79 (43%)
- 1 38 (21%)
- 2 65 (36%)

Log likelihood: -27.88

3.2.3 Farthest First

According

to[24]:

Farthest first finds its variant of K-means. Each cluster center point furthermost from the existing cluster center is placed by the K-mean, and this point must be positioned within the data area. So that it greatly speeds up the clustering in most cases, but it needs less move and adjustment for their fast performance.

In order to examine Farthest First Clusterer's accuracy, we choose different number of clusters manually.

Farthest First Clusterer with 2 Clusters

See Appendix for the clustered centroids: Farthest First Clusterer / NN

Farthest First divides NN's customer answers into two clusters. Each cluster's centroids are presented in the appendix. The elements "Yes" and "No" represent the centroid answers to the questionnaires' statements: "I have a car superseding ability, I

have a motorbike superseding ability, I have a house superseding ability, I have a business superseding ability, I do not have superseding ability, I have/had Business Insurance, I have/had Civil Liability Insurance, It is of a major importance to cover my everyday needs after I receive my pension,.....,I am interested in estimating my retirement". Each "Yes/No" answer in each question is the centroid of all the answers that the customers have answered (in that specific question).

The clusters differentiate in these fields:

- business superseding ability
- general superseding ability
- business insurance ability
- civil liability insurance ability
- risk protection interest
- satisfying amount of money for the support of beloved ones
- importance of supporting children and grandchildren after pension
- immediate care of supplementary pension interest
- retirement estimation interest

	Cluster 0	Cluster 1
Business superseding ability	Yes	No
General superseding ability	No	Yes
Business insurance ability	Yes	No
Civil liability insurance ability	No	Yes
Risk protection interest	Yes	No
Satisfying amount of money for the support of beloved ones	100	86.6
Importance of supporting children and grandchildren after pension	No	Yes
Immediate care of supplementary pension interest	No	Yes
Retirement estimation interest	Yes	No

Table 54: Cluster Centroids – Farthest First

Clustered Instances (number of instances detected in each cluster):

- 0 148 (81%)
- 1 34 (19%)

Farthest First clusterer divides the data into two groups/clusters, with the first one having 81% of the instances and the second one having 19% of the instances.

According to centroids, the first cluster (Cluster 0) concerns customers who are interested in estimating their retirement, whereas the second cluster (Cluster 1) concerns customers who are not interested in estimating their retirement. The two clusters have similar characteristics (similar centroids) except for these written on the table. The rest of the characteristics are presented in the appendix.

Farthest First Clusterer with 3 Clusters

Clustered Instances

- 0 93 (51%)
- 1 23 (13%)
- 2 66 (36%)

Farthest First Clusterer with 4 Clusters

Clustered Instances

- 0 85 (47%)
- 1 18 (10%)
- 2 49 (27%)
- 3 30 (16%)

Farthest First Clusterer with 5 Clusters

Clustered Instances

- 0 72 (40%)
- 1 15 (8%)
- 2 45 (25%)
- 3 26 (14%)

4 24 (13%)

3.2.4 Make A Density Based Clusterer

According

to

[29]:

Density-Based Clustering refers to unsupervised learning methods that identify distinctive groups/clusters in the data, based on the idea that a cluster in a data space is a contiguous region of high point density, separated from other such clusters by contiguous regions of low point density. The data points in the separating regions of low point density are typically considered noise/outliers.

As mentioned in the first chapter (an analytical explanation is presented in chapter 1.5.7),

- The clusterer randomly chooses the core points and then for each core point that is not already assigned to a cluster, creates a new cluster.
- The clusterer finds all its density connected points and assigns them to the same cluster as the core point.
- Then it iterates through the remaining unvisited points in the dataset.
- The core points that do not belong to any cluster are treated as outliers or noise points.¹⁴⁴

Make A Density Clusterer, also presents a different squared error depending on the number of clusters we wish to create. The bigger the number of clusters, the lower the value of squared errors within the clusters.

In order to cross-validate this, we choose different number of clusters manually. The results of each of the clusterings depending on their number of clusters are presented below.

Make A Density Clusterer with 2 Clusters

See the clustering results in the appendix: Make A Density Fitted Estimators/NN

Within cluster sum of squared errors: 1889.5

¹⁴⁴ Source: <u>https://www.youtube.com/watch?v=f4pZ9PHNdcM</u>

Wrapped clusterer: kMeans

Number of iterations: 5

Missing values globally replaced with mean/mode.

Clustered Instances (number of instances detected in each cluster):

0 59 (32%)

1 123 (68%)

Log likelihood: -28.64

Make a density clusterer divides the data into two groups/clusters, with the first one having 32% of the instances and the second one having 68% of the instances.

Make A Density Clusterer with 3 Clusters

Wrapped clusterer: kMeans

Number of iterations: 5

Within cluster sum of squared errors: 1824.91

Clustered Instances

- 0 32 (18%)
- 1 102 (56%)
- 2 48 (26%)

Log likelihood: -28.45069

Make A Density Clusterer with 4 Clusters

Wrapped clusterer: kMeans

Number of iterations: 7

Within cluster sum of squared errors: 1716.16

Clustered Instances

- 0 43 (24%)
- 1 73 (40%)
- 2 21 (12%)

3 45 (25%)

Log likelihood: -28.10392

Make A Density Clusterer with 5 Clusters

Wrapped clusterer: kMeans

Number of iterations: 13

Within cluster sum of squared errors: 1651.43

Clustered Instances

- 0 42 (23%)
- 1 34 (19%)
- 2 20 (11%)
- 3 44 (24%)
- 4 42 (23%)

Log likelihood: -28.0086

It is clear that a higher number of clusters, leads to a lower squared error, meaning that, the dataset is closer to finding the line of best fit.

Figure 31: Within cluster sum of squared errors and number of clusters

3.2.5 Canopy

According to Mai and Cheng (2016)[33]: Canopy is one of the improved K-means algorithm, can be used to determine the number of clusters. With the introduction of Canopy clustering, the data set is divided into k sub-sets by setting the radius, and the sub-sets can be selected as the initial centers of K-means. Because the Canopy algorithm can reduce the running time of the clustering by reduce the count of comparisons, it will improve the computational efficiency.

The Canopy algorithm's analytical explanation of the steps, are presented in chapter 1.5.8.

Canopy runs alternative number of clusters and then chooses automatically the number of the clusters it shall create.

See Appendix: Canopy Clustering/NN

Number of canopies (cluster centers) found: 7

T2 radius: 4,020 T1 radius: 5,026

Clustered Instances (number of instances detected in each cluster):

- 0 61 (34%)
- 1 50 (27%)
- 2 6(3%)
- 3 20 (11%)
- 4 6(3%)
- 5 33 (18%)
- 6 6 (3%)

Canopy divides NN's customer answers into seven clusters. Each cluster's elements are presented in the appendix. The elements "Yes" and "No" represent the answers to the questionnaires' statements: "I have a car superseding ability, I have a motorbike superseding ability, I have a house superseding ability, I have a business superseding ability, I do not have superseding ability, I have/had Business Insurance, I have/had Civil Liability Insurance, It is of a major importance to cover my everyday needs after

I receive my pension,.....,I am interested in estimating my retirement". An obvious difference between the clusters is the amount of money that is satisfactory for the support of the customer's beloved ones.

According to centroids, all the clusters concern customers who are interested in estimating their retirement. These clusters differ in other characteristics and are presented in the appendix.

Note: The numbers in these brackets: **Error! Reference source not found.** show the instances that are appeared in the cluster.

3.2.6 Filtered Clusterer

According to [20][20]: This algorithm is primarily based completely on storing the multidimensional data points within a tree. The process regarding the tree is like a binary tree method, as represents a hierarchical subdivision on its data point set's bounding box the usage of their axis after which splitting is aligned by way on hyper planes. Each node on the tree is related with a closed field, referred to as the cell.

These results are the same as those of Simple K Means for all the clusterings, which is expected, as Filtered Clusterer uses Simple K Means in order to proceed to the outcome.

Conclusions

95% of the customers that answered the questionnaire (174 out of 182) are interested in estimating their retirement.

According to the Random Tree algorithm- which presents an interpretable decision tree model- there is a correlation between certain factors (that influence the variable) and the variable (interest of retirement estimation).

It is recommended that the company adopts a marketing strategy focused on the customers that are interested in estimating their retirement.

Random Tree, Lazy IBK, Naïve Bayes Updateable and Bayes Net, are the algorithms that provide the most accurate results. The high percentage of correctly classified instances and the positive kappa statistic along with the high accuracy of the estimators (ROC Area (>0,5)) indicate that these are high-performance algorithm models. This practically means that, the predictions made by the algorithm were correct and better than a random guessing. So, there is a high probability that the dataset values are similar to those predicted from the algorithm.

Below there is a table providing all the algorithms' results as well as a table providing all algorithms' ranking. The second table ranks the algorithms and depicts which one of these is the best, based on the number of times a particular algorithm defeats others.

	Random Tree	Lazy IBK	Naive Bayes Updateable	Bayes Net	Naive Bayes	Lazy K Star	Meta Randomizable Filtered Classifier	SMO	Multi Class Classifier Updateable	Multi Class Classifier	Logistic Regression
Correctly Classified Instances	172	172	171	171	171	170	169	169	166	165	165
Incorrectly Classified Instances	10	10	11	11	11	12	13	13	16	7	17
Kappa statistic	0,1415	0,1415	0,1242	0,2353	0,1242	0,1093	0,0963	0,0963	0,15555	0,2159	0,2159
Mean absolute error	0,0532	0,0627	0,0663	0,0715	0,0663	0,0688	0,0766	0,0714	0,0879	0,0952	0,0952
Root mean squared error	0,2273	0,236	0,2246	0,2293	0,2246	0,2479	0,2657	0,2673	0,2965	0,3044	0,3044
Relative absolute error	59,69%	70,30%	74,33%	80,22%	74,33%	77,14%	85,91%	80,11%	98,60%	106,83%	106,83%
Root relative squared error	110,71%	114,93%	109,39%	111,65%	109,39%	120,73%	129,40%	13,16%	144,40%	148,26%	148,26%
Total Number of Instances	182	182	182	182	182	182	182	182	182	182	182
TP Rate	0,945	0,945	0,94	0,94	0,94	0,945	0,929	0,929	0,912	0,907	0,907
FP Rate	0,837	0,837	0,838	0,718	0,838	0,934	0,838	0,838	0,72	0,601	0,601
Precision	0,945	0,929	0,927	0,936	0,927	0,838	0,924	0,924	0,93	0,936	0,936
Recall	0,929	0,945	0,94	0,94	0,94	0,925	0,929	0,929	0,912	0,907	0,907
F-Measure	0,945	0,936	0,933	0,938	0,933	0,9364	0,926	0,926	0,92	0,92	0,92
МСС	0,151	0,151	0,128	0,236	0,128	0,111	0,096	0,096	0,159	0,228	0,228
ROC Area	0,527	0,634	0,746	0,759	0,746	0,524	0,575	0,545	0,596	0,627	0,627
PRC Area	0,92	0,93	0,946	0,951	0,946	0,921	0,923	0,92	0,925	0,934	0,934

Figure 32: Algorithms' results

Dataset	SMO	Random Tree	Lazy IBK	Naive Bayes	Bayes Net	Lazy K Star	Randomizable	Multi Class Classifier Updateable	Multi Class Classifier	Logistic
NN	93,81	92,03	93,64	93,91	93,91	93,64	92,37	92,38	89,41*	89,41*
ININ	(v/ /*)	(0/1/0)	(0/1/0)	(0/1/0)	(0/1/0)	(0/1/0)	(0/1/0)	(0/1/0)	(0/0/1)	(0/0/1)
Ranking	2	0	0	0	0	0	0	0	-1	-1

Figure 33: Algorithms' ranking

The ranking table shows the number of statistically significant victories (we set level of significance: 0.05) of each algorithm versus all other algorithms for the data set (except Naïve Bayes Updateable which is binary). A victory (v) means an accuracy that is better than the accuracy of another algorithm and that this difference is statistically significant.¹⁴⁵

We can see that SMO has two victories, which means that this is potentially the best one. Logistic and Multi Class Classifier, have 1 loss each. The accuracy of these two algorithms compared to SMO is low, so SMO algorithm is potentially the best one outperforming Logistic and Multiclass Classifier.

We can see that Logistic and Multiclass Classifier algorithms have an '*' next to its results, meaning its results with respect to SMO are statistically different.

The rating scores of Logistic and Multiclass Classifier is the same. Putting Logistic and Multi Class Classifier to the test base, we confirm the already known results, that is, SMO outperforms these two algorithms.

¹⁴⁵ Statistical significance is achieved when the p-value is lower than the level of significance (which is usually 0.05).

A p-value, or probability value, is a number describing how likely it is that your data would have occurred by random chance (i.e. that the null hypothesis is true). A p-value less than 0.05 (typically \leq 0.05) is statistically significant. It indicates strong evidence against the null hypothesis, as there is less than a 5% probability the null is correct (and the results are random). Therefore, we reject the null hypothesis, and accept the alternative hypothesis. A p-value higher than 0.05 (> 0.05) is not statistically significant and indicates strong evidence for the null hypothesis. This means we retain the null hypothesis and reject the alternative hypothesis. Source: McLeod, S. A. (2019, May 20). What a p-value tells you about statistical significance. Simply Psychology. www.simplypsychology.org/p-value.html

Dataset	Logistic	Random Tree	Lazy IBK	Naive Bayes	Bayes Net	Lazy K Star	Meta Randomizable Filtered Classifier	SMO	Multi Class Classifier Updateable	Multi Class Classifier
NN	89,41	92,03	93,64	93,91	93,91	93,64	92,37	93,81 v	92,38	89,41
ININ	(v//*)	(0/1/0)	(0/1/0)	(0/1/0)	(0/1/0)	(0/1/0)	(0/1/0)	(1/0/0)	(0/1/0)	(0/1/0)
Ranking	-1	0	0	0	0	0	0	2	0	-1

Figure 34: Algorithms' ranking

Dataset	Multi Class Classifier	Random Tree	Lazy IBK	Naive Bayes	Bayes Net	Lazy K Star	M eta Randomizable Filtered Classifier	SMO	Multi Class Classifier Updateable	Logistic
NN	89,41	92,03	93,64	93,91	93,91	93,64	92,37	93,81 v	92,38	89,41
ININ	(v//*)	(0/1/0)	(0/1/0)	(0/1/0)	(0/1/0)	(0/1/0)	(0/1/0)	(1/0/0)	(0/1/0)	(0/1/0)
Ranking	-1	0	0	0	0	0	0	2	0	-1

Figure 35: Algorithms' ranking

We can see that SMO has a small 'v' next to its results. This means that the difference in accuracy for this algorithm compared to Logistic and Multiclass Classifier is statistically significant. We can also see that the accuracy of SMO algorithms compared to these algorithms is high, so we can say that SMO achieved a statistically significantly better result than Logistic's and Multiclass Classifier's base lines.

So, we will probably choose SMO to make predictions about this problem.

If we wanted to report the results, we would say that the SMO algorithm achieved a classification accuracy of 93.81% (+/- 5.47%).

Chapter 4

Use Case: Large Super Market in Greece

4.1 WEKA Association Rule Mining

In this chapter, we are going to make an analysis for a Super Market chain in Greece, using Association Rule Mining (also known as market basket analysis) to discover the correlations between the different items in customers' shopping cart, as well as Clustering to segregate groups with similar traits. The findings of these correlations may help the Super Market better understand the purchase behavior of the buyers, make the correct decisions and hence, establish a profitable sales strategy by considering items frequently purchased together by customers.

For a supermarket with multiple stores, finding purchasing patterns can be useful in forming sales, marketing, service, and operation strategies. However, there are some problems arisen from the existing traditional strategic methods for a supermarket environment such as the nature of purchasing patterns.

To address these problems, the Apriori algorithm is used for automated extraction of association rules in a supermarket's environment.

The rules can be used for sales, marketing and operation strategies, for product procurement and inventory as well as for distribution of the entire Supermarket chain. (Chen et. al., 2005. Market basket analysis in a multiple store environment, Decision Support Systems) [34]

For this use case, a database with transactional and demographic data was collected from the Supermarket for a period of eight months (January to August of 2021). This database includes the customers' gender, age, card code and all of their purchases with its dates, the shop and area from which the customers made each purchase, the products each customer chose along with their product category and the amount of money that they spent on each product. The total number of the customers is 467, the different product categories are 431 and the different shops are 41.

The collection and analysis of these data, gives us the opportunity to find useful information about the customers, analyze their profile and make certain predictions

and clusterings about them. Weka Machine Learning Software, can transform the dataset into meaningful patterns with the assistance of integrated algorithms and help us make predictions on certain variables as well as clusterings. WEKA, helps us to better predict the results of a new oncoming dataset that has similar characteristics with our already existing dataset.

To proceed to these analyses, the original dataset was subjected to data preparation/ training in order to become in a suitable format and make the necessary associations and clusterings.

Association Rule Mining preparation includes sorting all customers by card code, gender, age, shopping area, and shopping dates and then for each shopping date and each shopping area¹⁴⁶ chosen by each customer, we recorded if there was a purchase for each of the product categories with the assistance of Pivot Tables. Then, different sub-datasets were made; two for the different genders, six for the various age groups and fourteen for the different shopping areas (all around Crete) that customers choose for their purchases. Each one sub-dataset, is loaded to Weka and is being analyzed using Apriori algorithm in order to extract the necessary rules and discover the correlations between the different items in customers' shopping cart. Through data mining processing, useful information is extracted from a database aiming to make crucial business decisions. Data mining combined with artificial intelligence techniques, discovers various correlations and maybe unexpected patterns between two or more variables. As far as the Super Market Analysis is concerned, Association Rule Mining is used to discover the correlation between one item to another and to depict which items are frequently purchased together.

According to Solanki and Patel (2015) Error! Reference source not found.:

An association rule is one of the forms, where A is an "antecedent" (if part) and B is the "consequent" (then part). Here variables A and B are the item sets and the rule () means that customer who purchase an item set A are expected to purchase an item set B with the probability % c, where c is called confidence.

Clustering preparation, included sorting all customers by gender, age and then for each customer, the purchase frequency was recorded for each of the product

¹⁴⁶ A shopping area may has one or more different shops.

categories, with the assistance of Pivot Tables. Then, the dataset was loaded to Weka in order to segregate the customers with similar characteristics. In our case, the purpose is to find the groups that are similar as per their purchase frequencies.

Association Rule Mining /Market Basket Analysis is presented below, by adducing the correlations between the different items in customers' shopping cart for each gender (women and men of every age group and every area of purchase), each shopping area¹⁴⁷ from the different prefectures of Crete (regardless of gender and age group) and each age group (of all genders and areas of purchase).

To evaluate the performance of Apriori's results, we use the following metrics:

As denoted in the first chapter, for a given rule $X \Rightarrow Y$, $\langle conf:(w) \rangle$ lift:(z) lev:(t) conv:(j):

- Confidence (<conf>) measures the reliability of the results emerged from a rule. The higher the confidence level, the more likely Y is to engage in transactions containing X.
- Lift is about how likely is for the product Y to be purchased given that product X is purchased, while checking how popular product Y is. Values greater than 1 are desirable.
- Leverage (lev) measures the proportion of additional cases covered by both X and Y above those expected if X and Y were independent of each other. If the value of the leverage is zero, then X and Y are statistically independent. A leverage value greater than zero, means that X and Y are related. The higher the leverage value, the stronger the correlation between X and Y.
- Conviction (conv) is the effect of the right-hand-side not being true.

Associator model (full training set): Apriori

¹⁴⁷ These areas are: Chania, Kounoupidiana, Heraclion, Kokkini Chani, Gazi, Malia, LImenas Chersonissou, Mires, Nea Alikarnassos, Tympaki, Ierapetra, Neapoli, Siteia, Agios Nikolaos.

4.1.1 Best results found for Women

1. CURED MEAT PRODUCTS (DRAINING BENCHES)=t 2439 ==> CHEESE (DRAINING BENCHES)=t 2203 <conf:(0.9)> lift:(2.55) lev:(0.09) [1340] conv:(6.65)¹⁴⁸

2. FRUITS, GROCERY=t CHEESE (DRAINING BENCHES)=t 2320 ==> VEGETABLES, GROCERY=t 1685 <conf:(0.73)> lift:(1.53) lev:(0.04) [583] conv: $(1.92)^{149}$

3. FRUITS, GROCERY=t XM CODE (OUT OF CATEGORY), BAZAAR=t 2691 ==> VEGETABLES, GROCERY=t 1875 <conf:(0.7)> lift:(1.47) lev:(0.04) [597] conv:(1.73)

4. FRUITS, GROCERY=t 5639 ==> VEGETABLES, GROCERY=t 3768 <conf:(0.67)> lift:(1.41) lev:(0.07) [1090] conv:(1.58)

5. PASTA, CONSUMABLES=t 2800 ==> VEGETABLES, GROCERY=t 1605 <conf:(0.57)> lift:(1.21) lev:(0.02) [275] conv:(1.23)

6. VEGETABLES, GROCERY=t CHEESE (DRAINING BENCHES)=t 3005 ==> FRUITS, GROCERY=t 1685 <conf:(0.56)> lift:(1.56) lev:(0.04) [604] conv:(1.46)

7. BREAD, CONSUMABLES=t 3895 ==> CHEESE (DRAINING BENCHES)=t 2159 <conf:(0.55)> lift:(1.57) lev:(0.05) [781] conv:(1.45)

8. YOGURT, CONSERVATION=t 3831 ==> VEGETABLES, GROCERY=t 2103 <conf:(0.55)> lift:(1.16) lev:(0.02) [284] conv:(1.16)

9. CHEESE (DRAINING BENCHES)=t 5546 ==> VEGETABLES, GROCERY=t 3005 <conf:(0.54)> lift:(1.14) lev:(0.02) [371] conv:(1.15)

¹⁴⁸ This rule depicts that there is a correlation between the purchase of cured meat products and cheese by women. That is, that the purchase of cured meat products, usually lead to the purchase of cheese and with a confidence of 0,9 it is very likely that cheese is to engage in transactions containing cured meat products. The lift 2.25 (>1) also depicts that it is very likely for the cheese to be purchased given that cured meat products are purchased. The leverage 0.09 (>0) depicts that these two products are statistically dependent and related with each other.

¹⁴⁹ This rule depicts that there is a correlation between the purchase of fruits and cheese with vegetables by women. That is, that the purchase of fruits and cheese, usually lead to the purchase of vegetables. Fruits and cheese along with vegetables are frequently purchased together with a confidence of 0.73.

10. VEGETABLES, GROCERY=t XM CODE (OUT OF CATEGORY), BAZAAR=t 3475 ==> FRUITS, GROCERY=t 1875 <conf:(0.54)> lift:(1.5) lev:(0.04) [625] conv:(1.39)

The results show that women's purchases of fruits, consumables (pasta, bread), cheese and conserved products (yogurt), usually lead to the purchase of vegetables. Furthermore, the purchase of cured meat products usually lead to the purchase of cheese and the purchase of bazaar products usually lead to the purchase of fruits or vegetables. Vegetables lead to the purchase of fruits and vice versa.

These rules present high levels of confidence (>0,5) which is a metric of reliability of the results emerged from a rule, high levels of lift (>1) which is a metric of relation between the items. The rules' leverages are also greater than zero, which depicts that these products are statistically dependent and related with each other.

4.1.2 Best results found for Men

1. CURED MEAT PRODUCTS (DRAINING BENCHES)=t 630 ==> CHEESE (DRAINING BENCHES)=t 567 <conf:(0.9)> lift:(2.68) lev:(0.09) [355] conv:(6.54)

2. FRUITS, GROCERY=t 1287 ==> VEGETABLES, GROCERY=t 735 <conf:(0.57)>lift:(1.43) lev:(0.05) [222] conv:(1.4)

3. BREAD, CONSUMABLES=t 1014 ==> CHEESE (DRAINING BENCHES)=t 541 <conf:(0.53)> lift:(1.59) lev:(0.05) [201] conv:(1.42)

4. YOGURT, CONSERVATION=t 953 ==> VEGETABLES, GROCERY=t 469 <conf:(0.49)> lift:(1.24) lev:(0.02) [89] conv:(1.18)

5. VEGETABLES, GROCERY=t 1616 ==> FRUITS, GROCERY=t 735 <conf:(0.45)>lift:(1.43) lev:(0.05) [222] conv:(1.25)

6. BREAD, CONSUMABLES=t 1014 ==> VEGETABLES, GROCERY=t 454 <conf:(0.45)>lift:(1.12) lev:(0.01) [50] conv:(1.09)

7. MILK, CONSERVATION=t 1087 ==> CHEESE (DRAINING BENCHES)=t 484 <conf:(0.45)> lift:(1.33) lev:(0.03) [119] conv:(1.2)

8. CHEESE (DRAINING BENCHES)=t 1361 ==> VEGETABLES, GROCERY=t 599 <conf:(0.44)> lift:(1.11) lev:(0.01) [57] conv:(1.07)

```
9. BREAD, CONSUMABLES=t 1014 ==> XM CODE (OUT OF CATEGORY),
BAZAAR=t 445 <conf:(0.44)> lift:(1.14) lev:(0.01) [56] conv:(1.1)
```

```
10. YOGURT, CONSERVATION=t 953 ==> CHEESE (DRAINING BENCHES)=t
```

```
411 \langle conf:(0.43) \rangle lift:(1.29) lev:(0.02) [91] conv:(1.17)
```

The high levels of confidence (0.9) and lift (2.68) depict that men's purchases of cured meat products usually lead to the purchase of cheese.

Fruits usually lead to the purchase of vegetables and bread usually leads to the purchase of cheese. These rules have lower confidence and lift levels but they still considered to have a quite strong co-relation.

The other rules present a lower confidence level (0.5), which depict a weaker engagement between the related products.

Propositions concerning both male and female target audience:

Since we have found which products with a high correlation factor, that go well together, we can proceed to certain in-store and/or online targeting activities, in order to enhance the cross-selling purchasing and maximize customer engagement and sales.

- It is recommended that fruits, vegetables, consumables (pasta, bread) and dairy products to be placed next to each other or within accessible reach to facilitate cross-selling.
 - Furthermore, cured meat products can be placed next to cheeses or within accessible reach.
- In the consumables' section can be placed a dairy products' promotion panel (for instance, in the pasta section can be placed a panel promoting the various types of cheese that may go well with the various types of pasta).

- Simultaneous discounts and offers can also be put from time to time to the highly correlated products, such as to the bazaar items and the fruits/ vegetables, to the consumables and the dairy products and/or the cured meat products and the cheeses.
- In-store digital signage is a form of dynamic advertising and can placed all around the aisles and activate the clients during their purchases. For example, pasta section can promote a healthy spaghetti receipt with cheese and vegetables. That way, visitors can identify a checklist of ingredients easily and shall consider again their purchase needs. Moreover, the usage of digital signage, is a useful reminder and an interactive counselor to the customers, as they can directly emphasize in suggesting other products that are going well with the one that the customer is standing in front. For instance, a digital signage in the cured meat product section can also suggest cheeses' section for a more complete shopping list.

Digital signage may also promote the high-related products' offers and discounts. That way, customers can be directly informed and better engaged with the purchase activities.

Website as well as mobile applications may also promote a cross-selling tactic by showcasing the correlated products when a customer is searching for a certain product category. For example, when a customer is scrolling through the pasta section, a message shall appear at the end of the page, such as "Customers that searched for pasta, also searched for mozzarella cheese. Take a look at our dairy section!" and then by clicking the respective button, customers shall be redirected to the certain section.

Simple moves like the aforementioned, might be used to increase the sales of whatever correlated category needs to be promoted and will lead to higher sales.

4.1.3 Best results found for Chania Area

1. BREAD, CONSUMABLES=t 127 ==> VEGETABLES, GROCERY=t 97 <conf:(0.76)> lift:(1.55) lev:(0.05) [34] conv:(2.08)

2. FRUITS, GROCERY=t 227 ==> VEGETABLES, GROCERY=t 146 <conf:(0.64)> lift:(1.31) lev:(0.05) [34] conv:(1.41)

3. CHEESE (DRAINING BENCHES)=t 202 ==> VEGETABLES, GROCERY=t 126 <conf:(0.62)> lift:(1.27) lev:(0.04) [26] conv:(1.33)

4. CAVA, NON-ALCOHOLIC/SOFT DRINKS=t 142 ==> VEGETABLES, GROCERY=t 76 <conf:(0.54)> lift:(1.09) lev:(0.01) [6] conv:(1.08)

5. YOGURT, CONSERVATION=t 147 ==> VEGETABLES, GROCERY=t 77 <conf:(0.52)> lift:(1.07) lev:(0.01) [4] conv:(1.05)

6. PASTRIES/ SWEETS, CONSUMABLES=t 152 ==> VEGETABLES, GROCERY=t 76 <conf:(0.5)> lift:(1.02) lev:(0) [1] conv:(1)

7. XM CODE (OUT OF CATEGORY), BAZAAR=t 200 ==> VEGETABLES, GROCERY=t 93 <conf:(0.47)> lift:(0.95) lev:(-0.01) [-5] conv:(0.94)

8. VEGETABLES, GROCERY=t 362 ==> FRUITS, GROCERY=t 146 <conf:(0.4)> lift:(1.31) lev:(0.05) [34] conv:(1.15)

9. MILK, CONSERVATION=t 198 ==> VEGETABLES, GROCERY=t 76 <conf:(0.38)> lift:(0.78) lev:(-0.03) [-21] conv:(0.82)

10. CHEESE (DRAINING BENCHES)=t 202 ==> FRUITS, GROCERY=t 77 <conf:(0.38)>lift:(1.24) lev:(0.02) [14] conv:(1.11)

The results show that in the area of Chania purchases of bread, conserved products (yoghurt), consumables, drinks, beverages, cheese and fruits usually lead to the purchase of vegetables which means that it is very likely that vegetables are about to engage in transactions containing the aforementioned. These rules present high levels of confidence (>0,5) which is a metric of reliability of the results emerged from a rule, high levels of lift (>1) which is a metric of relation between the items. The rules' leverages are also greater than zero, which depicts that these products are statistically dependent and related with each other.

The other rules present a low confidence level (<0.5), which depict a weaker engagement between the related products. For example, the purchase of cheese seems to lead to the purchase of fruits; however, it has a lower confidence and lift level, which depict that the rule is not that reliable.

4.1.4 Best results found for Kounoupidiana Area

1. CURED MEAT PRODUCTS (DRAINING BENCHES)=t 92 ==> CHEESE (DRAINING BENCHES)=t 85 <conf:(0.92)> lift:(2.45) lev:(0.08) [50] conv:(7.16)

2. CAVA NON-ALCOHOLICS/WATER=t 91 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 70 <conf:(0.77)> lift:(1.46) lev:(0.04) [22] conv:(1.96)

3. CHEESE, CONSERVATION=t XM CODE (OUT OF CATEGORY), BAZAAR=t 86 ==> VEGETABLES, GROCERY=t 66 <conf:(0.77)> lift:(1.52) lev:(0.04) [22] conv:(2.03)

4. FRUITS, GROCERY=t CHEESE (DRAINING BENCHES)=t 116 ==> VEGETABLES, GROCERY=t 89 <conf:(0.77)> lift:(1.52) lev:(0.05) [30] conv:(2.05)

5. FRUITS, GROCERY=t XM CODE (OUT OF CATEGORY), BAZAAR=t 155 ==> VEGETABLES, GROCERY=t 118 <conf:(0.76)> lift:(1.51) lev:(0.06) [39] conv:(2.02)

6. CHEESE, CONSERVATION=t 134 ==> VEGETABLES, GROCERY=t 95 <conf:(0.71)>lift:(1.4) lev:(0.04) [27] conv:(1.66)

7. FRUITS, GROCERY=t 247 ==> VEGETABLES, GROCERY=t 172 <conf:(0.7)>lift:(1.38) lev:(0.08) [47] conv:(1.61)

8. VEGETABLES, GROCERY=t CHEESE, CONSERVATION=t 95 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 66 <conf:(0.69)> lift:(1.32) lev:(0.03) [16] conv:(1.5)

9. VEGETABLES, GROCERY=t FRUITS, GROCERY=t 172 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 118 <conf:(0.69)> lift:(1.31) lev:(0.04) [27] conv:(1.48) 10. VEGETABLES, GROCERY=t CHEESE (DRAINING BENCHES)=t 135 ==> FRUITS, GROCERY=t 89 <conf:(0.66)> lift:(1.68) lev:(0.06) [35] conv:(1.74)

All the rules present a high confidence, lift and leverage level, which is an evidence of strong output reliability and strong relation between the products.

The results show that in the area of Kounoupidiana and as it is presented from the high confidence (0.92>0.5) and lift (2.45>1) levels, there is a high probability that purchases of cured meat products shall lead to the purchase of cheese.

Furthermore, purchases of non-alcoholic drinks, fruits, cheeses (conserved and from draining benches), bazaar items and other uncategorized products usually lead to the purchase of vegetables.

Vegetables on the other hand, usually lead to the purchase of uncategorized products and fruits. From the last rule, we can detect that a customer who has vegetables and cheese in his cart, will usually purchase fruits as well.

The Prefecture of Chania displays a correlation between non-alcoholic drinks/beverages with vegetables as well as between cheese and vegetables. That is, the purchase of beverages and/ or cheese, lead to the purchase of vegetables.

4.1.5 Best results found for Heraclion Area(City)

1. CURED MEAT PRODUCTS (DRAINING BENCHES)=t 2435 ==> CHEESE (DRAINING BENCHES)=t 2215 <conf:(0.91)> lift:(2.51) lev:(0.09) [1331] conv:(7.02)

2. FRUITS, GROCERY=t CHEESE (DRAINING BENCHES)=t 2166 ==> VEGETABLES, GROCERY=t 1548 <conf:(0.71)> lift:(1.56) lev:(0.04) [558] conv:(1.9)

3. FRUITS, GROCERY=t XM CODE (OUT OF CATEGORY), BAZAAR=t 2314 ==> VEGETABLES, GROCERY=t 1611 <conf:(0.7)> lift:(1.52) lev:(0.04) [554] conv:(1.79) 4. FRUITS, GROCERY=t 5092 ==> VEGETABLES, GROCERY=t 3339 <conf:(0.66)> lift:(1.44) lev:(0.07) [1013] conv:(1.58)

5. BREAD, CONSUMABLES=t 3735 ==> CHEESE (DRAINING BENCHES)=t 2117 <conf:(0.57)> lift:(1.56) lev:(0.05) [761] conv:(1.47)

6. VEGETABLES, GROCERY=t CHEESE (DRAINING BENCHES)=t 2768 ==> FRUITS, GROCERY=t 1548 <conf:(0.56)> lift:(1.62) lev:(0.04) [590] conv:(1.48)

7. YOGURT, CONSERVATION=t 3604 ==> VEGETABLES, GROCERY=t 1916 <conf:(0.53)> lift:(1.16) lev:(0.02) [269] conv:(1.16)

8. BREAD, CONSUMABLES=t 3735 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 1972 <conf:(0.53)> lift:(1.22) lev:(0.02) [357] conv:(1.2)

9. BREAD, CONSUMABLES=t 3735 ==> VEGETABLES, GROCERY=t 1969 <conf:(0.53)> lift:(1.15) lev:(0.02) [263] conv:(1.15)

10. PASTRIES/ SWEETS, CONSUMABLES=t 2873 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 1500 <conf:(0.52)> lift:(1.21) lev:(0.02) [257] conv:(1.19)

The results show that in Heraclion Area and as it is presented from the high confidence (0.91>0.5) and lift (2.51>1) levels, there is a high probability that purchases of cured meat products shall lead to the purchase of cheese.

Furthermore, purchases of fruits and/or cheeses (from draining benches) as well as fruits and bazaar items, usually lead to the purchase of vegetables.

Purchases of vegetables also lead to the purchase of fruits.

Also, bread presents a high correlation with cheese (from the draining benches) as well as with bazaar items and vegetables.

Purchases of conserved yoghurt lead to the purchases of vegetables as well and pastry purchases usually lead to the purchase of bazaar items.

4.1.6 Best results found for Gazi Area

1. MILK, CONSERVATION=t CURED MEAT PRODUCTS (DRAINING BENCHES)=t 43 ==> CHEESE (DRAINING BENCHES)=t 42 <conf:(0.98)> lift:(2.01) lev:(0.06) [21] conv:(11.07)

2. YOGURT, CONSERVATION=t CURED MEAT PRODUCTS (DRAINING BENCHES)=t 38 ==> CHEESE (DRAINING BENCHES)=t 37 <conf:(0.97)> lift:(2.01) lev:(0.05) [18] conv:(9.78)

3. BREAD, CONSUMABLES=t CURED MEAT PRODUCTS (DRAINING BENCHES)=t XM CODE (OUT OF CATEGORY), BAZAAR=t 40 ==> CHEESE (DRAINING BENCHES)=t 38 <conf:(0.95)> lift:(1.96) lev:(0.05) [18] conv:(6.86)

4. CURED MEAT PRODUCTS (DRAINING BENCHES)=t XM CODE (OUT OF CATEGORY), BAZAAR=t 68 ==> CHEESE (DRAINING BENCHES)=t 64 <conf:(0.94)>lift:(1.94) lev:(0.08) [31] conv:(7)

5. BREAD, CONSUMABLES=t CURED MEAT PRODUCTS (DRAINING BENCHES)=t 51 ==> CHEESE (DRAINING BENCHES)=t 48 <conf:(0.94)> lift:(1.94) lev:(0.06) [23] conv:(6.56)

6. CURED MEAT PRODUCTS (DRAINING BENCHES)=t 109 ==> CHEESE (DRAINING BENCHES)=t 102 <conf:(0.94)> lift:(1.93) lev:(0.13) [49] conv:(7.01)

7. FRUITS, GROCERY=t CURED MEAT PRODUCTS (DRAINING BENCHES)=t 49 ==> CHEESE (DRAINING BENCHES)=t 45 <conf:(0.92)> lift:(1.89) lev:(0.06) [21] conv:(5.05)

8. CAVA, NON ALCOHOLIC/TEA/JUICES=t 41 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 37 <conf:(0.9)> lift:(1.73) lev:(0.04) [15] conv:(3.93)

9. VEGETABLES, GROCERY=t CURED MEAT PRODUCTS (DRAINING BENCHES)=t 51 ==> CHEESE (DRAINING BENCHES)=t 46 <conf:(0.9)> lift:(1.86) lev:(0.06) [21] conv:(4.38)

10. TEA/JUICES, CONSERVATION=t 43 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 38 <conf:(0.88)> lift:(1.7) lev:(0.04) [15] conv:(3.44)

All the rules present a high confidence, lift and leverage level, which is an evidence of strong output reliability and strong relation between the products.

211

The results show that in the area of Gazi and as it is presented from the high confidence and lift levels, there is a high probability that purchases of conserved milk and yoghurt along with cured meat products will lead to the purchase of cheese.

Also purchases of bread along with cured milk products and bazaar lead to the purchase of cheese.

Purchases of fruits or vegetables along with cured meat products may also lead to the purchase of cheese.

Moreover, purchases of non-alcoholic drinks usually leads to the purchase of bazaar products.

4.1.7 Best results found for Malia Area

1. CAVA ALCOHOL/WINES=t BAKE OFF «ZESTI GONIA»=t 11 ==> SMOKERS' ITEMS=t 11 <conf:(1)> lift:(2.3) lev:(0.07) [6] conv:(6.21)

2. OIL, CONSUMABLES=t 10 ==> VEGETABLES, GROCERY=t 10 <conf:(1)> lift:(1.7) lev:(0.05) [4] conv:(4.12)

3. OIL, CONSUMABLES=t 10 ==> SMOKERS' ITEMS=t 10 <conf:(1)> lift:(2.3) lev:(0.07) [5] conv:(5.65)

4. OIL, CONSUMABLES=t SMOKERS' ITEMS=t 10 ==> VEGETABLES, GROCERY=t 10 <conf:(1)> lift:(1.7) lev:(0.05) [4] conv:(4.12)

5. VEGETABLES, GROCERY=t OIL, CONSUMABLES=t 10 ==> SMOKERS' ITEMS=t 10 <conf:(1)> lift:(2.3) lev:(0.07) [5] conv:(5.65)

6. OIL, CONSUMABLES=t 10 ==> VEGETABLES, GROCERY=t SMOKERS' ITEMS=t 10 <conf:(1)> lift:(3.27) lev:(0.08) [6] conv:(6.94)

7. FRUITS, GROCERY=t CORN PUFF SNACK/CHIPS=t 10 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 10 <conf:(1)> lift:(2.83) lev:(0.08) [6] conv:(6.47)

8. OIL, CONSUMABLES=t BAKE OFF «ZESTI GONIA»=t 9 ==> VEGETABLES, GROCERY=t 9 <conf:(1)> lift:(1.7) lev:(0.04) [3] conv:(3.71) 9. VEGETABLES, GROCERY=t CORN PUFF SNACK/CHIPS=t 9 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 9 <conf:(1)> lift:(2.83) lev:(0.07) [5] conv:(5.82)

10. CAVA, NON-ALCOHOLIC/SOFT DRINKS=t BAKE OFF «ZESTI GONIA»=t 9 ==> VEGETABLES, GROCERY=t 9 <conf:(1)> lift:(1.7) lev:(0.04) [3] conv:(3.71)

35. FRESH PORK MEAT=t 11 ==> VEGETABLES, GROCERY=t 9 <conf:(0.82)>lift:(1.39) lev:(0.03) [2] conv:(1.51)

All the rules for Malia Area (except the last one) present the highest confidence level, and a high lift and leverage level as well, which is an evidence of strong output reliability and strong relation between the products.

Purchases of alcohol and consumables usually lead to the purchase of smokers' items and vegetables. Purchases of oils lead to the purchase of vegetables and/or smoker's items.

Fruits or vegetables along with corn puff snacks usually lead to the purchase of bazaar items.

Furthermore, vegetables are about to engage in transactions containing pork meat.

The purchase of non-alcoholic drinks and bake-offs usually lead to the purchase of vegetables.

4.1.8 Best results found for Nea Alikarnassos Area

1. BREAD, CONSUMABLES=t CURED MEAT PRODUCTS (DRAINING
BENCHES)=t 62 ==> CHEESE (DRAINING BENCHES)=t 59 <conf:(0.95)>lift:(2.49) lev:(0.09) [35] conv:(9.57)

2. CURED MEAT PRODUCTS (DRAINING BENCHES)=t 91 ==> CHEESE (DRAINING BENCHES)=t 81 <conf:(0.89)> lift:(2.33) lev:(0.11) [46] conv:(5.11)

3. FRUITS, GROCERY=t CHEESE, CONSERVATION=t 71 ==> VEGETABLES, GROCERY=t 62 <conf:(0.87)> lift:(1.69) lev:(0.06) [25] conv:(3.44) 4. BREAD, CONSUMABLES=t CHEESE, CONSERVATION=t 55 ==> VEGETABLES, GROCERY=t 46 <conf:(0.84)> lift:(1.62) lev:(0.04) [17] conv:(2.66)

5. VEGETABLES, GROCERY=t CURED MEAT PRODUCTS (DRAINING BENCHES)=t 51 ==> CHEESE (DRAINING BENCHES)=t 42 <conf:(0.82)> lift:(2.15) lev:(0.06) [22] conv:(3.15)

6. YOGURT, CONSERVATION=t FRUITS, GROCERY=t 74 ==> VEGETABLES, GROCERY=t 60 <conf:(0.81)> lift:(1.57) lev:(0.05) [21] conv:(2.39)

7. YOGURT, CONSERVATION=t CHEESE, CONSERVATION=t 58 ==> VEGETABLES, GROCERY=t 46 <conf:(0.79)> lift:(1.54) lev:(0.04) [16] conv:(2.16)

8. RUSKS, CONSUMABLES=t 52 ==> VEGETABLES, GROCERY=t 41 <conf:(0.79)>lift:(1.53) lev:(0.03) [14] conv:(2.1)

9. CHEESE, CONSERVATION=t 112 ==> VEGETABLES, GROCERY=t 88 <conf:(0.79)>lift:(1.52) lev:(0.07) [30] conv:(2.17)

10. BREAD, CONSUMABLES=t FRUITS, GROCERY=t 72 ==> VEGETABLES, GROCERY=t 56 <conf:(0.78)> lift:(1.51) lev:(0.05) [18] conv:(2.05)

All the rules of Nea Alikarnassos Area, present a high confidence, lift and leverage level, which is an evidence of strong output reliability and strong relation between the products.

There is a high probability that purchases of bread along with cured meat products will lead to the purchase of cheese.

Also vegetables along with cured meat products also lead to the purchase of cheese.

Purchases of cheese along with fruits or bread lead to the purchase of vegetables.

Conserved yoghurt purchases along with fruits or cheese may also lead to the purchase of vegetables.

4.1.9 Best results found for Limenas Chersonissou

1. PASTRIES/ SWEETS, CONSUMABLES=t 7 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 7 <conf:(1)> lift:(2.29) lev:(0.06) [3] conv:(3.94)

2. CHOCOLATES, CONSUMABLES=t 7 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 7 <conf:(1)> lift:(2.29) lev:(0.06) [3] conv:(3.94)

3. FRUITS, GROCERY=t CAVA, NON-ALCOHOLIC/SOFT DRINKS=t 6 ==> CAVA NON-ALCOHOLICS/WATER=t 6 <conf:(1)> lift:(2.46) lev:(0.06) [3] conv:(3.56)

4. MILK, CONSERVATION=t 12 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 11 <conf:(0.92)> lift:(2.1) lev:(0.09) [5] conv:(3.38)

5. CHEESE (DRAINING BENCHES)=t 8 ==> VEGETABLES, GROCERY=t 7 <conf:(0.88)> lift:(2.07) lev:(0.06) [3] conv:(2.31)

6. CHEESE (DRAINING BENCHES)=t 8 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 7 <conf:(0.88)> lift:(2) lev:(0.05) [3] conv:(2.25)

7. BAKE OFF «ZESTI GONIA»=t 8 ==> CAVA ALCOHOL BEERS=t 7 <conf:(0.88)>lift:(2.33) lev:(0.06) [4] conv:(2.5)

8. PASTA, CONSUMABLES=t 7 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 6 <conf:(0.86)> lift:(1.96) lev:(0.05) [2] conv:(1.97)

9. CAVA, NON ALCOHOLIC/TEA/JUICES=t 7 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 6 <conf:(0.86)> lift:(1.96) lev:(0.05) [2] conv:(1.97)

10. HOUSEHOLD, BAZAAR=t 7 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 6 $\langle conf:(0.86) \rangle$ lift:(1.96) lev:(0.05) [2] conv:(1.97)

All the rules for the Area of Limenas Chersonissou present a high confidence, lift and leverage level, which is an evidence of strong output reliability and strong relation between the products.

The results show that, purchases of pastries, chocolates, conserved milk, cheese, pasta and non- alcoholic beverages usually lead to the purchase of bazaar items and the purchase of bake-offs usually lead to the purchase of alcohol beers.

4.1.10 Best results found for Kokkini Chani Area

1. MILK, CONSERVATION=t SMOKERS' ITEMS=t 31 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 30 <conf:(0.97)> lift:(1.41) lev:(0.04) [8] conv:(4.83)

2. BREAKFAST CEREALS, CONSUMABLES=t MILK, CONSERVATION=t 28 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 27 <conf:(0.96)> lift:(1.4) lev:(0.03) [7] conv:(4.36)

3. SMOKERS' ITEMS=t 40 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 38 <conf:(0.95)> lift:(1.38) lev:(0.04) [10] conv:(4.16)

4. MILK, CONSERVATION=t TOMATO JUICE/COMPOSTERS/PRESERVES=t 36 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 34 <conf:(0.94)> lift:(1.37) lev:(0.04) [9] conv:(3.74)

5. MILK, CONSERVATION=t YOGURT, CONSERVATION=t FRUITS, GROCERY=t 34 ==> VEGETABLES, GROCERY=t 32 <conf:(0.94)> lift:(1.48) lev:(0.04) [10] conv:(4.13)

6. MILK, CONSERVATION=t YOGURT, CONSERVATION=t VEGETABLES,
GROCERY=t 34 ==> FRUITS, GROCERY=t 32 <conf:(0.94)> lift:(1.8) lev:(0.06)
[14] conv:(5.41)

7. RUSKS, CONSUMABLES=t FRUITS, GROCERY=t 30 ==> VEGETABLES, GROCERY=t 28 <conf:(0.93)> lift:(1.47) lev:(0.04) [8] conv:(3.64)

8. RUSKS, CONSUMABLES=t VEGETABLES, GROCERY=t 30 ==> FRUITS, GROCERY=t 28 <conf:(0.93)> lift:(1.79) lev:(0.05) [12] conv:(4.78)

9. YOGURT, CONSERVATION=t FRUITS, GROCERY=t 42 ==> VEGETABLES, GROCERY=t 39 <conf:(0.93)> lift:(1.46) lev:(0.05) [12] conv:(3.83)

10. YOGURT, CONSERVATION=t VEGETABLES, GROCERY=t 42 ==> FRUITS, GROCERY=t 39 <conf:(0.93)> lift:(1.78) lev:(0.07) [17] conv:(5.02) All the rules for Kokkini Chani Area present a high confidence, lift and leverage level, which is an evidence of strong output reliability and strong relation between the products.

Purchases of conserved milk along with smoking items tomato juices, may lead to the purchase of bazaar items. Also breakfast items' purchases along with conserved milk may lead to the purchase of bazaar items as well.

Moreover, purchases of conserved milk and yoghurt along with fruits or rusks along with fruits, can lead to the purchase of vegetables.

Purchases of conserved milk and yoghurt along with vegetables or rusks along with vegetables, can lead to the purchase of fruits.

4.1.11 Best results found for Mires Area

1. FRUITS, GROCERY=t CAVA, NON-ALCOHOLIC/SOFT DRINKS=t 12 ==> VEGETABLES, GROCERY=t 11 <conf:(0.92)>lift:(2.1) lev:(0.05) [5] conv:(3.38)

2. FRUITS, GROCERY=t CAVA, NON-ALCOHOLIC/SOFT DRINKS=t 12 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 11 <conf:(0.92)> lift:(2.28) lev:(0.06) [6] conv:(3.59)

3. FRUITS, GROCERY=t CHEESE (DRAINING BENCHES)=t XM CODE (OUT OF CATEGORY), BAZAAR=t 12 ==> VEGETABLES, GROCERY=t 11 <conf:(0.92)>lift:(2.1) lev:(0.05) [5] conv:(3.38)

4. PASTRIES/ SWEETS, CONSUMABLES=t VEGETABLES, GROCERY=t 13 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 11 <conf:(0.85)> lift:(2.11) lev:(0.05) [5] conv:(2.59)

5. VEGETABLES, GROCERY=t FRUITS, GROCERY=t CHEESE (DRAINING BENCHES)=t 13 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 11 <conf:(0.85)>lift:(2.11) lev:(0.05) [5] conv:(2.59)

6. YOGURT, CONSERVATION=t FRUITS, GROCERY=t 14 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 11 <conf:(0.79)> lift:(1.96) lev:(0.05) [5] conv:(2.09) 7. VEGETABLES, GROCERY=t CHEESE (DRAINING BENCHES)=t XM CODE (OUT OF CATEGORY), BAZAAR=t 14 ==> FRUITS, GROCERY=t 11 <conf:(0.79)> lift:(2.75) lev:(0.06) [7] conv:(2.5)

8. FRUITS, GROCERY=t CHEESE (DRAINING BENCHES)=t 17 ==> VEGETABLES, GROCERY=t 13 <conf:(0.76)> lift:(1.75) lev:(0.05) [5] conv:(1.91)

9. DETERGENT=t 19 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 14 <conf:(0.74)> lift:(1.83) lev:(0.06) [6] conv:(1.89)

10. CHEESE (DRAINING BENCHES)=t XM CODE (OUT OF CATEGORY), BAZAAR=t 19 ==> VEGETABLES, GROCERY=t 14 <conf:(0.74)> lift:(1.68)
lev:(0.05) [5] conv:(1.78)

The rules for Mires Area present a high confidence, lift and leverage level, which is an evidence of strong output reliability and strong relation between the products.

The results show that purchases of fruits along with soft drinks usually lead to the purchase of vegetables and bazaar items. Pastry purchases along with vegetables also lead to the purchase of bazaar items.

Furthermore, fruits, cheese, bazaar items and vegetables seem to have a high correlation with each other.

Purchases of cheese along with fruits or bazaar items may lead to the purchase of vegetables.

4.1.12 Best results found for Tympaki Area

1. VEGETABLES, GROCERY=t 11 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 11 <conf:(1)> lift:(1.08) lev:(0.07) [0] conv:(0.85)

2. CAVA ALCOHOL BEERS=t 9 ==> VEGETABLES, GROCERY=t 9 <conf:(1)> lift:(1.18) lev:(0.11) [1] conv:(1.38)

3. CAVA ALCOHOL BEERS=t 9 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 9 <conf:(1)> lift:(1.08) lev:(0.05) [0] conv:(0.69) 4. CAVA ALCOHOL BEERS=t XM CODE (OUT OF CATEGORY), BAZAAR=t 9 ==> VEGETABLES, GROCERY=t 9 <conf:(1)> lift:(1.18) lev:(0.11) [1] conv:(1.38)

5. VEGETABLES, GROCERY=t CAVA ALCOHOL BEERS=t 9 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 9 <conf:(1)> lift:(1.08) lev:(0.05) [0] conv:(0.69)

6. CAVA ALCOHOL BEERS=t 9 ==> VEGETABLES, GROCERY=t XM CODE (OUT OF CATEGORY), BAZAAR=t 9 <conf:(1)> lift:(1.18) lev:(0.11) [1] conv:(1.38)

7. CHEESE, CONSERVATION=t 8 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 8 <conf:(1)> lift:(1.08) lev:(0.05) [0] conv:(0.62)

8. VEGETABLES, GROCERY=t CHEESE, CONSERVATION=t 7 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 7 <conf:(1)> lift:(1.08) lev:(0.04) [0] conv:(0.54)

9. RUSKS, CONSUMABLES=t 6 ==> VEGETABLES, GROCERY=t 6 <conf:(1)> lift:(1.18) lev:(0.07) [0] conv:(0.92)

10. RUSKS, CONSUMABLES=t 6 ==> CAVA ALCOHOL BEERS=t 6 <conf:(1)> lift:(1.44) lev:(0.14) [1] conv:(1.85)

The rules for Tympaki Area present a high confidence, lift and leverage level, which is an evidence of strong output reliability and strong relation between the products.

Purchases of alcohol beers usually lead to the purchase of bazaar items and vegetables, usually lead to the purchase of vegetables and bazaar items and the purchase of consumables usually lead to the purchase of vegetables and alcohol beers.

Also purchases of conserved cheese also lead to the purchase of bazaar items.

4.1.13 Best results found for Neapoli Area

1. CHOCOLATES, CONSUMABLES=t 7 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 7 <conf:(1)> lift:(1.24) lev:(0.06) [1] conv:(1.33)

2. DETERGENTS=t 7 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 7 <conf:(1)> lift:(1.24) lev:(0.06) [1] conv:(1.33)

3. FRUITS, GROCERY=t DETERGENTS=t 5 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 5 <conf:(1)> lift:(1.24) lev:(0.05) [0] conv:(0.95)

4. RUSKS, CONSUMABLES=t 4 ==> CHOCOLATES, CONSUMABLES=t 4 <conf:(1)> lift:(3) lev:(0.13) [2] conv:(2.67)

5. RUSKS, CONSUMABLES=t 4 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 4 <conf:(1)> lift:(1.24) lev:(0.04) [0] conv:(0.76)

6. RICE/ LESUME, PASTRY=t 4 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 4 <conf:(1)> lift:(1.24) lev:(0.04) [0] conv:(0.76)

7. HYGIENE PRODUCTS=t 4 ==> HYGIENE PRODUCTS=t 4 <conf:(1)> lift:(2.63) lev:(0.12) [2] conv:(2.48)

8. STATIONERY=t 4 ==> DETERGENTS=t 4 <conf:(1)> lift:(3) lev:(0.13) [2] conv:(2.67)

9. STATIONERY=t 4 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 4 <<conf:(1)> lift:(1.24) lev:(0.04) [0] conv:(0.76)

10. RUSKS, CONSUMABLES=t XM CODE (OUT OF CATEGORY), BAZAAR=t 4 ==> CHOCOLATES, CONSUMABLES=t 4 <conf:(1)> lift:(3) lev:(0.13) [2] conv:(2.67)

784. FRESH BEEF, MEAT=t DETERGENTS=t 2 ==> FRUITS, GROCERY=t 2 <conf:(1)> lift:(1.91) lev:(0.05) [0] conv:(0.95)

785. FRUITS, GROCERY=t FRESH BEEF, MEAT=t 2 ==> DETERGENTS=t 2 <<conf:(1)> lift:(3) lev:(0.06) [1] conv:(1.33)

786. FRESH BEEF, MEAT=t 2 ==> FRUITS, GROCERY=t DETERGENTS=t 2 <<conf:(1)> lift:(4.2) lev:(0.07) [1] conv:(1.52)

787. FRESH BEEF, MEAT=t XM CODE (OUT OF CATEGORY), BAZAAR=t 2 ==> FRUITS, GROCERY=t 2 <conf:(1)> lift:(1.91) lev:(0.05) [0] conv:(0.95)

788. FRUITS, GROCERY=t FRESH BEEF, MEAT=t 2 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 2 <conf:(1)> lift:(1.24) lev:(0.02) [0] conv:(0.38)

789. FRESH BEEF, MEAT=t 2 ==> FRUITS, GROCERY=t XM CODE (OUT OF CATEGORY), BAZAAR=t 2 <conf:(1)> lift:(2.1) lev:(0.05) [1] conv:(1.05) 836. FRESH BEEF, MEAT=t XM CODE (OUT OF CATEGORY), BAZAAR=t 2 ==> DETERGENTS=t 2 <conf:(1)> lift:(3) lev:(0.06) [1] conv:(1.33) 837. FRESH BEEF, MEAT=t DETERGENTS=t 2 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 2 <conf:(1)> lift:(1.24) lev:(0.02) [0] conv:(0.38) 838. FRESH BEEF, MEAT=t 2 ==> DETERGENTS=t XM CODE (OUT OF CATEGORY), BAZAAR=t 2 <conf:(1)> lift:(3) lev:(0.06) [1] conv:(1.33) 839. FRESH PORK MEAT=t XM CODE (OUT OF CATEGORY), BAZAAR=t 2 ==> CORN PUFF SNACK/CHIPS=t 2 <conf:(1)> lift:(5.25) lev:(0.08) [1] conv:(1.62) 840. FRESH PORK MEAT=t CORN PUFF SNACK/CHIPS=t 2 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 2 <conf:(1)> lift:(1.24) lev:(0.02) [0]

conv:(0.38)

All rules for Neapoli Area present a high confidence, lift and leverage level, which is an evidence of strong output reliability and strong relation between the products.

In the Area of Neapoli purchases of consumables, detergents, stationery, pastry and fruits along with fresh beer, usually lead to the purchase of bazaar items.

Furthermore, the purchase of fresh beef meat, usually leads to the purchase of fruits, detergents and bazaar items. Also, the purchases of fresh pork meat usually leads to the purchase of corn puff snacks and bazaar items.

4.1.14 Best results found for Sitia Area

1. FRUITS, GROCERY=t 449 ==> VEGETABLES, GROCERY=t 264 <conf:(0.59)>lift:(1.23) lev:(0.04) [50] conv:(1.26)

2. XM CODE (OUT OF CATEGORY), BAZAAR=t 416 ==> VEGETABLES, GROCERY=t 229 <conf:(0.55)> lift:(1.16) lev:(0.03) [30] conv:(1.16) 3. YOGURT, CONSERVATION=t 271 ==> VEGETABLES, GROCERY=t 149 <conf:(0.55)> lift:(1.15) lev:(0.02) [19] conv:(1.15)

4. CHEESE (DRAINING BENCHES)=t 337 ==> VEGETABLES, GROCERY=t 176 <conf:(0.52)> lift:(1.1) lev:(0.01) [15] conv:(1.09)

5. CAVA NON-ALCOHOLICS/WATER=t 272 ==> VEGETABLES, GROCERY=t 139 <conf:(0.51)> lift:(1.07) lev:(0.01) [9] conv:(1.06)

6. YOGURT, CONSERVATION=t 271 ==> FRUITS, GROCERY=t 135 <conf:(0.5)>lift:(1.32) lev:(0.03) [33] conv:(1.23)

7. CAVA NON-ALCOHOLICS/WATER=t 272 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 130 <conf:(0.48)> lift:(1.37) lev:(0.03) [35] conv:(1.24)

8. MILK, CONSERVATION=t 284 ==> VEGETABLES, GROCERY=t 134 <conf:(0.47)>lift:(0.99) lev:(-0) [-1] conv:(0.99)

9. PASTRIES/ SWEETS, CONSUMABLES=t 274 ==> VEGETABLES, GROCERY=t 129 <conf:(0.47)> lift:(0.99) lev:(-0) [-1] conv:(0.98)

10. VEGETABLES, GROCERY=t 568 ==> FRUITS, GROCERY=t 264 <conf:(0.46)> lift:(1.23) lev:(0.04) [50] conv:(1.16)

All rules for Sitia Area present quite low confidence, lift and leverage levels, which is an evidence of low reliability and weak relation between the products.

The best results show that, purchases such as fruits, bazaar items, conserved cheese and yoghurt and non-alcoholic drinks, lead to the purchase of vegetables.

4.1.15 Best results found for Ierapetra Area

1. BREAD, CONSUMABLES=t CURED MEAT PRODUCTS (DRAINING BENCHES)=t 14 ==> CHEESE (DRAINING BENCHES)=t 12 <conf:(0.86)> lift:(2.85) lev:(0.08) [7] conv:(3.26) 2. COFFEE, CONSUMABLES=t CHEESE (DRAINING BENCHES)=t 13 ==> BREAD, CONSUMABLES=t 11 <conf:(0.85)> lift:(2.08) lev:(0.06) [5] conv:(2.57)

3. MILK, CONSERVATION=t FRESH POULTRY, MEAT=t 12 ==> BREAD, CONSUMABLES=t 10 <conf:(0.83)> lift:(2.04) lev:(0.05) [5] conv:(2.37)

4. COFFEE, CONSUMABLES=t VEGETABLES, GROCERY=t 12 ==> BREAD, CONSUMABLES=t 10 <conf:(0.83)> lift:(2.04) lev:(0.05) [5] conv:(2.37)

5. MILK, CONSERVATION=t TOMATO JUICES/ COMPOSTERS/ PRESERVES=t 14 ==> BREAD, CONSUMABLES=t 11 <conf:(0.79)> lift:(1.93) lev:(0.05) [5] conv:(2.07)

6. BREAD, CONSUMABLES=t TOMATO JUICES/ COMPOSTERS/ PRESERVES=t 14 ==> MILK, CONSERVATION=t 11 <conf:(0.79)> lift:(1.97) lev:(0.05) [5] conv:(2.11)

7. CURED MEAT PRODUCTS (DRAINING BENCHES)=t 23 ==> CHEESE (DRAINING BENCHES)=t 18 <conf:(0.78)> lift:(2.6) lev:(0.11) [11] conv:(2.68)

8. BREAD, CONSUMABLES=t FRESH POULTRY, MEAT=t 13 ==> MILK, CONSERVATION=t 10 <conf:(0.77)> lift:(1.93) lev:(0.05) [4] conv:(1.96)

9. TOMATO JUICES/ COMPOSTERS/ PRESERVES=t CHEESE (DRAINING BENCHES)=t 13 ==> BREAD, CONSUMABLES=t 10 <conf:(0.77)> lift:(1.89) lev:(0.05) [4] conv:(1.92)

10. COFFEE, CONSUMABLES=t CHEESE (DRAINING BENCHES)=t 13 ==> MILK, CONSERVATION=t 10 <conf:(0.77)> lift:(1.93) lev:(0.05) [4] conv:(1.96)

11. FRESH POULTRY, MEAT=t 17 ==> BREAD, CONSUMABLES=t 13 <conf:(0.76)>lift:(1.88) lev:(0.06) [6] conv:(2.01)

15. FRESH POULTRY, MEAT=t 17 ==> MILK, CONSERVATION=t 12 <conf:(0.71)>lift:(1.77) lev:(0.05) [5] conv:(1.71)

21. FRESH POULTRY, MEAT=t 17 ==> COFFEE, CONSUMABLES=t 11 <conf:(0.65)>lift:(2.15) lev:(0.06) [5] conv:(1.7)

31. FRESH POULTRY, MEAT=t 17 ==> BREAD, CONSUMABLES=t MILK, CONSERVATION=t 10 <conf:(0.59)> lift:(2.42) lev:(0.06) [5] conv:(1.61) 80. COFFEE, CONSUMABLES=t 31 ==> FRESH POULTRY, MEAT=t 11 <conf:(0.35)> lift:(2.15) lev:(0.06) [5] conv:(1.23)

100. BREAD, CONSUMABLES=t 42 ==> FRESH POULTRY, MEAT=t 13 <conf:(0.31)>lift:(1.88) lev:(0.06) [6] conv:(1.17)

108. MILK, CONSERVATION=t 41 ==> FRESH POULTRY, MEAT=t 12 <conf:(0.29)>lift:(1.77) lev:(0.05) [5] conv:(1.14)

123. MILK, CONSERVATION=t 41 ==> BREAD, CONSUMABLES=t FRESH POULTRY, MEAT=t 10 <conf:(0.24)> lift:(1.93) lev:(0.05) [4] conv:(1.12)

The rules for Ierapetra Area present a quite high confidence, lift and leverage level, which is an evidence of strong output reliability and strong relation between the products.

Purchases of coffee, cheese, milk, tomato juices/composters and bread, usually lead to the purchase of bread. Additionally, fresh poultry meat is found to have a positive correlation with bread, milk and coffee which means that the purchase of fresh poultry meat usually leads to the purchase of milk bread and coffee and vice versa.

4.1.16 Best results found for Agios Nikolaos Area

1. PASTRIES/ SWEETS, CONSUMABLES=t CORN PUFF SNACK/CHIPS=t 27 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 26 <conf:(0.96)> lift:(1.75) lev:(0.05) [11] conv:(6.07)

2. CHOCOLATES, CONSUMABLES=t CAVA, NON-ALCOHOLIC/SOFT DRINKS=t 25 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 24 <conf:(0.96)>lift:(1.74) lev:(0.05) [10] conv:(5.62)

3. CORN PUFF SNACK/CHIPS=t 26 ==> CORN PUFF SNACK/CHIPS=t 24 <conf:(0.92)>lift:(3.55) lev:(0.08) [17] conv:(6.41)

4. CHOCOLATES, CONSUMABLES=t CORN PUFF SNACK/CHIPS=t 30 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 27 <conf:(0.9)> lift:(1.63) lev:(0.05) [10] conv:(3.37) 5. CHOCOLATES, CONSUMABLES=t COFFEE, CONSUMABLES=t 28 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 25 <conf:(0.89)> lift:(1.62) lev:(0.04) [9] conv:(3.15)

6. FRESH POULTRY, MEAT=t 33 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 29 <conf:(0.88)> lift:(1.6) lev:(0.05) [10] conv:(2.97)

7. PASTRIES/ SWEETS, CONSUMABLES=t CHOCOLATES, CONSUMABLES=t 37 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 32 <conf:(0.86)> lift:(1.57) lev:(0.05) [11] conv:(2.77)

8. FRUITS, GROCERY=t CORN PUFF SNACK/CHIPS=t 29 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 25 <conf:(0.86)> lift:(1.57) lev:(0.04) [9] conv:(2.61)

9. CHOCOLATES, CONSUMABLES=t FRUITS, GROCERY=t 36 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 30 <conf:(0.83)> lift:(1.51) lev:(0.04) [10] conv:(2.31)

10. COFFEE, CONSUMABLES=t FRUITS, GROCERY=t 29 ==> XM CODE (OUT OF CATEGORY), BAZAAR=t 24 <conf:(0.83)> lift:(1.5) lev:(0.04) [8] conv:(2.17)

130. XM CODE (OUT OF CATEGORY), BAZAAR=t 125 ==> FRESH POULTRY, MEAT=t 29 <conf:(0.23)> lift:(1.6) lev:(0.05) [10] conv:(1.1)

137. XM CODE (OUT OF CATEGORY), BAZAAR=t 125 ==> FRESH PORK MEAT=t 25 <conf:(0.2)> lift:(1.34) lev:(0.03) [6] conv:(1.05)

Most of Agios Nikolaos results present a quite high confidence, lift and leverage level, which is an evidence of strong reliability and strong relation between the products.

Purchases of pastries/sweets/chocolates (consumables), soft drinks, corn puff snacks and other snacks lead to the purchase of bazaar items. Furthermore, the purchase of bazaar items seems to lead to the purchase of fresh poultry and fresh pork meat, but also fresh poultry meat usually lead to the purchase of bazaar items.

4.1.17 Best results found for the <=18 Age Group

1. CHEESE, CONSERVATION=t 6 ==> VEGETABLES, GROCERY=t 6 <conf:(1)> lift:(1.91) lev:(0.14) [2] conv:(2.86)

2. MILK, CONSERVATION=t TEA/ JUICES, CONSERVATION=t 6 ==> VEGETABLES, GROCERY=t 6 <conf:(1)> lift:(1.91) lev:(0.14) [2] conv:(2.86)

3. MILK, CONSERVATION=t VEGETABLES, GROCERY=t 6 ==> TEA/ JUICES, CONSERVATION=t 6 <conf:(1)> lift:(1.5) lev:(0.1) [2] conv:(2)

4. CORN PUFF SNACK/CHIPS, CONSUMABLES=t 5 ==> CHEESE (DRAINING BENCHES)=t 5 <conf:(1)> lift:(1.62) lev:(0.09) [1] conv:(1.9)

5. MILK, CONSERVATION=t CHEESE, CONSERVATION=t 5 ==> VEGETABLES, GROCERY=t 5 <conf:(1)> lift:(1.91) lev:(0.11) [2] conv:(2.38)

6. CHEESE, CONSERVATION=t TEA/ JUICES, CONSERVATION=t 5 ==> MILK, CONSERVATION=t 5 <conf:(1)> lift:(2.63) lev:(0.15) [3] conv:(3.1)

7. MILK, CONSERVATION=t CHEESE, CONSERVATION=t 5 ==> TEA/ JUICES, CONSERVATION=t 5 <conf:(1)> lift:(1.5) lev:(0.08) [1] conv:(1.67)

8. CHEESE, CONSERVATION=t TEA/ JUICES, CONSERVATION=t 5 ==> VEGETABLES, GROCERY=t 5 <conf:(1)> lift:(1.91) lev:(0.11) [2] conv:(2.38)

9. CHEESE, CONSERVATION=t FOOD, CONSERVATION=t 5 ==>
VEGETABLES, GROCERY=t 5 <conf:(1)> lift:(1.91) lev:(0.11) [2] conv:(2.38)
10. VEGETABLES, GROCERY=t CHEESE, CONSERVATION=t TEA/ JUICES, CONSERVATION=t 5 ==> MILK, CONSERVATION=t 5 <conf:(1)> lift:(2.63) lev:(0.15) [3] conv:(3.1)

The results show that, for the ages under 18, the purchase of conserved cheese, milk and juices leads to the purchase of vegetables. In addition, the purchase of snacks usually leads to the purchase of cheese. The results for this age group present really high confidence, lift and leverage levels which is an evidence of strong reliability and strong relation between the products.

4.1.18 Best results found for the Age Group 18-25

1. CHEESE, CONSERVATION=t 13 ==> XMCODE OUT OF CATEGORIES, BAZAAR=t 13 <conf:(1)> lift:(1.24) lev:(0.04) [2] conv:(2.48)

2. YOGURT, CONSERVATION=t FRUITS, GROCERIES=t 13 ==> XMCODE OUT OF CATEGORIES, BAZAAR=t 13 <conf:(1)> lift:(1.24) lev:(0.04) [2] conv:(2.48)

3. YOGURT, CONSERVATION=t VEGETABLES, GROCERY=t 12 ==> XMCODE OUT OF CATEGORIES, BAZAAR=t 12 <conf:(1)> lift:(1.24) lev:(0.04) [2] conv:(2.29)

4. FRUITS, GROCERIES=t CHEESE (DRAINING BENCHES)=t 12 ==> XMCODE OUT OF CATEGORIES, BAZAAR=t 12 <conf:(1)> lift:(1.24) lev:(0.04) [2] conv:(2.29)

5. MILK, CONSERVATION=t FRUITS, GROCERIES=t 11 ==> XMCODE OUT OF CATEGORIES, BAZAAR=t 11 <conf:(1)> lift:(1.24) lev:(0.03) [2] conv:(2.1)

6. YOGURT, CONSERVATION=t CHEESE, CONSERVATION=t 11 ==> XMCODE OUT OF CATEGORIES, BAZAAR=t 11 <conf:(1)> lift:(1.24) lev:(0.03) [2] conv:(2.1)

7. FRUITS, GROCERIES=t CHEESE, CONSERVATION=t 11 ==> XMCODE OUT OF CATEGORIES, BAZAAR=t 11 <conf:(1)> lift:(1.24) lev:(0.03) [2] conv:(2.1)

8. CURED MEAT (DRAINING BENCHES)=t 10 ==> XMCODE OUT OF CATEGORIES, BAZAAR=t 10 <conf:(1)> lift:(1.24) lev:(0.03) [1] conv:(1.9)

9. BREAD, CONSUMABLES=t FRUITS, GROCERIES=t 10 ==> XMCODE OUT OF CATEGORIES, BAZAAR=t 10 <conf:(1)> lift:(1.24) lev:(0.03) [1] conv:(1.9)

10. BREAD, CONSUMABLES=t CHEESE, CONSERVATION=t 10 ==> XMCODE OUT OF CATEGORIES, BAZAAR=t 10 <conf:(1)> lift:(1.24) lev:(0.03) [1] conv:(1.9)

227

286. VEGETABLES, GROCERY=t FRESH BEEF, MEAT=t 6 ==> XM CODE OUT OF CATEGORY=t 6 <conf:(1)> lift:(1.24) lev:(0.02) [1] conv:(1.14)

According to the results, for the ages 18 to 25, the purchases of fruits along with conserved cheese lead to the purchase of bazaar items. In addition, the purchases of conserved milk, yogurt, cheese, cured meat as well as the purchases of consumables like bread and vegetables/groceries lead to the purchase of bazaar items. The results for this age group present high confidence, lift and leverage levels which is an evidence of strong reliability and strong relation between the products.

4.1.19 Best results found for the Age Group 26-35

1. CURED MEAT, CONSERVATION=t 105 ==> CHEESE (DRAINING BENCHES)=t 81 <conf:(0.77)> lift:(2.92) lev:(0.08) [53] conv:(3.09)

2. MILK, CONSERVATION=t FRUITS, GROCERIES=t 97 ==> VEGETABLES, GROCERY=t 66 <conf:(0.68)> lift:(1.6) lev:(0.04) [24] conv:(1.74)

3. MILK, CONSERVATION=t VEGETABLES, GROCERY=t 97 ==> FRUITS, GROCERIES=t 66 <conf:(0.68)> lift:(1.9) lev:(0.05) [31] conv:(1.94)

4. FRUITS, GROCERIES=t 228 ==> VEGETABLES, GROCERY=t 148 <conf:(0.65)>lift:(1.53) lev:(0.08) [51] conv:(1.62)

5. CHEESE, CONSERVATION=t 115 ==> VEGETABLES, GROCERY=t 66 <conf:(0.57)> lift:(1.35) lev:(0.03) [17] conv:(1.32)

6. VEGETABLES, GROCERY=t 270 ==> FRUITS, GROCERIES=t 148 <conf:(0.55)>lift:(1.53) lev:(0.08) [51] conv:(1.41)

7. YOGURT, CONSERVATION=t 161 ==> MILK, CONSERVATION=t 85 <conf:(0.53)> lift:(1.48) lev:(0.04) [27] conv:(1.35)

8. YOGURT, CONSERVATION=t 161 ==> VEGETABLES, GROCERY=t 85 <conf:(0.53)>lift:(1.24) lev:(0.03) [16] conv:(1.2)

9. CHEESE (DRAINING BENCHES)=t 168 ==> MILK, CONSERVATION=t 84 <conf:(0.5)> lift:(1.4) lev:(0.04) [24] conv:(1.27)

10. CHEESE (DRAINING BENCHES)=t 168 ==> CURED MEAT, CONSERVATION=t 81 <conf:(0.48)> lift:(2.92) lev:(0.08) [53] conv:(1.59)

For the ages 18 to 25, the purchase of conserved, cheese, yogurt as well as conserved milk along with fruits, lead to the purchase of vegetables. Moreover, the purchases of conserved milk and vegetables lead to the purchase of fruits. Furthermore, purchases of cheese lead to the purchase of conserved milk or conserved cured meat. The results for this age group present lower confidence, lift and leverage levels, which might be an evidence of not that strong reliability and relation between the products.

4.1.20 Best results found for the Age Group 36-45

1. BREAD, CONSUMABLES=t CURED MEAT, CONSERVATION=t 582 ==> CHEESE (DRAINING BENCHES)=t 554 <conf:(0.95)> lift:(2.53) lev:(0.07) [335] conv:(12.53)

2. VEGETABLES, GROCERY=t CURED MEAT, CONSERVATION=t 524 ==> CHEESE (DRAINING BENCHES)=t 491 <conf:(0.94)> lift:(2.5) lev:(0.06) [294] conv:(9.62)

3. CURED MEAT, CONSERVATION=t XMCODE OUT OF CATEGORIES, BAZAAR=t 616 ==> CHEESE (DRAINING BENCHES)=t 575 <conf:(0.93)> lift:(2.49) lev:(0.08) [343] conv:(9.16)

4. CURED MEAT, CONSERVATION=t 976 ==> CHEESE (DRAINING BENCHES)=t 900 <conf:(0.92)> lift:(2.46) lev:(0.12) [533] conv:(7.92)

5. FRUITS, GROCERIES=t CHEESE (DRAINING BENCHES)=t 699 ==> VEGETABLES, GROCERY=t 532 <conf:(0.76)> lift:(1.69) lev:(0.05) [217] conv:(2.29)

6. FRUITS, GROCERIES=t XMCODE OUT OF CATEGORIES, BAZAAR=t 964 ==> VEGETABLES, GROCERY=t 694 <conf:(0.72)> lift:(1.6) lev:(0.06) [259] conv:(1.95) 7. CORN PUFF SNACK/CHIPS, CONSUMABLES=t 706 ==> XMCODE OUT OF CATEGORIES, BAZAAR=t 504 <conf:(0.71)> lift:(1.23) lev:(0.02) [93] conv:(1.46)

8. BREAD, CONSUMABLES=t CHEESE (DRAINING BENCHES)=t 786 ==> CURED MEAT, CONSERVATION=t 554 <conf:(0.7)> lift:(3.28) lev:(0.08) [385] conv:(2.65)

9. CHEESE, CONSERVATION=t 789 ==> XMCODE OUT OF CATEGORIES, BAZAAR=t 553 <conf:(0.7)> lift:(1.21) lev:(0.02) [94] conv:(1.39)

The results show that, for the ages 36 to 45, purchases of conserved cured meat, along with bread or vegetables lead to the purchase of cheese. In addition, the purchases of snacks and conserved cheese lead to the purchase bazaar items. Purchases of conserved cured meat lead to the purchase of cheese. Fruit purchases, along with cheese of bazaar items, usually lead to the purchase of vegetables. The results for this age group present high confidence, lift and leverage levels, which is an evidence of strong reliability and strong relation between the products.

4.1.21 Best results found for the Age Group 46-55

1. CURED MEAT, CONSERVATION=t 1271 ==> CHEESE (DRAINING BENCHES)=t 1139 <conf:(0.9)> lift:(2.43) lev:(0.09) [669] conv:(6.03)

2. FRUITS, GROCERIES=t CHEESE (DRAINING BENCHES)=t 1116 ==> VEGETABLES, GROCERY=t 784 <conf:(0.7)> lift:(1.48) lev:(0.03) [256] conv:(1.77)

3. FRUITS, GROCERIES=t XMCODE OUT OF CATEGORIES, BAZAAR=t 1142 ==> VEGETABLES, GROCERY=t 800 <conf:(0.7)> lift:(1.48) lev:(0.03) [259] conv:(1.75)

4. FRUITS, GROCERIES=t 2513 ==> VEGETABLES, GROCERY=t 1661 <conf:(0.66)> lift:(1.4) lev:(0.06) [472] conv:(1.55)

5. PASTA, CONSUMABLES=t 1426 ==> VEGETABLES, GROCERY=t 798 <conf:(0.56)> lift:(1.18) lev:(0.02) [123] conv:(1.19)

6. PASTA, CONSUMABLES=t 1426 ==> CHEESE (DRAINING BENCHES)=t 790 <conf:(0.55)> lift:(1.5) lev:(0.03) [263] conv:(1.41)

7. BREAD, CONSUMABLES=t 2217 ==> VEGETABLES, GROCERY=t 1197 <conf:(0.54)> lift:(1.14) lev:(0.02) [148] conv:(1.14)

8. YOGURT, CONSERVATION=t 1941 ==> VEGETABLES, GROCERY=t 1044 <conf:(0.54)> lift:(1.14) lev:(0.02) [125] conv:(1.14)

9. BREAD, CONSUMABLES=t 2217 ==> CHEESE (DRAINING BENCHES)=t 1190 <conf:(0.54)> lift:(1.45) lev:(0.05) [370] conv:(1.36)

10. VEGETABLES, GROCERY=t CHEESE (DRAINING BENCHES)=t 1478 ==> FRUITS, GROCERIES=t 784 <conf:(0.53)> lift:(1.59) lev:(0.04) [291] conv:(1.42)

For the ages 46 to 55, purchases of fruits as well as pasta, bread and conserved yogurt lead to the purchase of vegetables. Moreover, the purchases of conserved cured meat and bread lead to the purchase of cheese.

4.1.22 Best results found for the Age Group 56-65

1. CURED MEAT, CONSERVATION=t 484 ==> CHEESE (DRAINING BENCHES)=t 437 <conf:(0.9)> lift:(2.84) lev:(0.07) [282] conv:(6.87)

2. FRUITS, GROCERIES=t XMCODE OUT OF CATEGORIES, BAZAAR=t 678 ==> VEGETABLES, GROCERY=t 439 <conf:(0.65)> lift:(1.46) lev:(0.03) [138] conv:(1.57)

3. FRUITS, GROCERIES=t 1465 ==> VEGETABLES, GROCERY=t 899 <conf:(0.61)>lift:(1.38) lev:(0.06) [248] conv:(1.44)

4. VEGETABLES, GROCERY=t XMCODE OUT OF CATEGORIES, BAZAAR=t 809 ==> FRUITS, GROCERIES=t 439 <conf:(0.54)> lift:(1.49) lev:(0.04) [143] conv:(1.38) 5. YOGURT, CONSERVATION=t 928 ==> VEGETABLES, GROCERY=t 483 <conf:(0.52)> lift:(1.17) lev:(0.02) [71] conv:(1.16)

6. VEGETABLES, GROCERY=t 1780 ==> FRUITS, GROCERIES=t 899 <conf:(0.51)>lift:(1.38) lev:(0.06) [248] conv:(1.28)

7. MILK, CONSERVATION=t 1013 ==> XMCODE OUT OF CATEGORIES, BAZAAR=t 499 <conf:(0.49)> lift:(1.15) lev:(0.02) [63] conv:(1.12)

8. CHEESE (DRAINING BENCHES)=t 1276 ==> VEGETABLES, GROCERY=t 628 <conf:(0.49)> lift:(1.11) lev:(0.02) [61] conv:(1.09)

9. VEGETABLES, GROCERY=t FRUITS, GROCERIES=t 899 ==> XMCODE OUT OF CATEGORIES, BAZAAR=t 439 <conf:(0.49)> lift:(1.14) lev:(0.01) [52] conv:(1.11)

10. YOGURT, CONSERVATION=t 928 ==> FRUITS, GROCERIES=t 448 <conf:(0.48)>lift:(1.32) lev:(0.03) [108] conv:(1.22)

For the ages 56 to 65, purchases of conserved cured meat lead to the purchased of cheese. The purchases of conserved yogurt lead to the purchase of fruits or vegetables. Furthermore, the purchases of vegetables and/or bazaar items lead to the purchase of fruits and vice versa. The results for this age group present medium confidence, lift and leverage levels, except the first rule that presents high levels of these metrics.

4.1.23 Best results found for the Age Group 66+

1. FRUITS, GROCERIES=t CHEESE (DRAINING BENCHES)=t 433 ==> VEGETABLES, GROCERY=t 299 <conf:(0.69)> lift:(1.49) lev:(0.03) [97] conv:(1.72)

2. FRUITS, GROCERIES=t 1164 ==> VEGETABLES, GROCERY=t 738 <conf:(0.63)> lift:(1.36) lev:(0.07) [197] conv:(1.46)

3. VEGETABLES, GROCERY=t CHEESE (DRAINING BENCHES)=t 484 ==> FRUITS, GROCERIES=t 299 <conf:(0.62)> lift:(1.55) lev:(0.04) [106] conv:(1.57) 4. VEGETABLES, GROCERY=t 1360 ==> FRUITS, GROCERIES=t 738 <conf:(0.54)> lift:(1.36) lev:(0.07) [197] conv:(1.31)

5. CHEESE (DRAINING BENCHES)=t 930 ==> VEGETABLES, GROCERY=t 484 <conf:(0.52)> lift:(1.12) lev:(0.02) [51] conv:(1.11)

6. YOGURT, CONSERVATION=t 676 ==> VEGETABLES, GROCERY=t 334 <conf:(0.49)> lift:(1.06) lev:(0.01) [19] conv:(1.06)

7. CHEESE (DRAINING BENCHES)=t 930 ==> FRUITS, GROCERIES=t 433 <conf:(0.47)> lift:(1.17) lev:(0.02) [63] conv:(1.12)

8. MILK, CONSERVATION=t 749 ==> VEGETABLES, GROCERY=t 346 <conf:(0.46)> lift:(0.99) lev:(-0) [-2] conv:(0.99)

9. YOGURT, CONSERVATION=t 676 ==> FRUITS, GROCERIES=t 311 <conf:(0.46)> lift:(1.16) lev:(0.01) [42] conv:(1.11)

10. XMCODE OUT OF CATEGORIES, BAZAAR=t 742 ==> VEGETABLES, GROCERY=t 327 <conf:(0.44)> lift:(0.95) lev:(-0.01) [-17] conv:(0.95)

For customers above the age of 66, the purchase of vegetables leads to the purchase of fruits. Additionally, the purchases of conserved milk, yogurt, cheese as well as the purchases of cheese usually lead to the purchase of fruits and groceries. Lastly, purchases of bazaar items may lead of the purchases of vegetables. The results for this age group present medium confidence, lift and leverage levels.

Propositions concerning all target audiences:

The findings of these correlations may help the Super Market find the purchase behavior of its buyers, understand what they want, make the correct decisions and hence establish a profitable sales strategy by considering items frequently purchased together by customers.

Market basket analysis applies to bricks-and-mortar stores as well as in websites.

Since we have found which products with a high correlation factor, that go well together, we can proceed to certain in-store and/or online targeting activities, in order to enhance the cross-selling purchasing and maximize customer engagement and sales.

- Concerning the bricks-and-mortar stores it is recommended that products that present a correlation (the purchase of the product A leads to (or include) the purchase of the product B) to be placed on nearby shelves (even if it is an unexpected combination such as cheese and vegetables). Each store in the different areas of Crete, may present differentiations on its product placements depending on its customers' frequent purchasing patterns. For example, the stores in Tympaki area and Malia area provide different product correlations. In Tympaki area purchases of vegetables usually lead to the purchase of bazaar items and whereas in Malia area vegetables are about to engage in transactions containing pork meat.
- Promotion panels can be placed throughout the isles of interest (for instance, for correlations between pasta and cheese, a promotion panel can be placed near the pasta shelves regarding the various types of cheese that may go well with the various types of pasta).
- Simultaneous discounts and offers can also be put from time to time to the highly correlated products.
- In-store digital signage is a form of dynamic advertising and can placed all around the aisles and activate the clients during their purchases. For example, pasta section can promote a healthy spaghetti receipt with cheese and vegetables. That way, visitors can identify a checklist of ingredients easily and shall consider again their purchase needs. Moreover, the usage of digital signage, is a useful reminder and an interactive counselor to the customers, as they can directly emphasize in suggesting other products that are going well with the one that the customer is standing in front. For instance, a digital signage in the cured meat product section can also suggest cheeses' section for a more complete shopping list. Digital signage may also promote the highrelated products' offers and discounts. That way, customers can be directly informed and better engaged with the purchase activities. Digital signage,

apart from assisting in cross-selling strategy, may reduce the perception of a long waiting-time. This will lead to a more enjoyable experience.

Website as well as mobile applications can implement a cross-selling tactic by presenting to the users the products that are likely to be purchased together and by making the best recommendations on product matchings. For example, when a customer is scrolling through the pasta section, a message shall appear at the end of the page, such as "Customers who bought pasta, also bought mozzarella cheese. Take a look at our dairy section!" and then by clicking the respective button, customers shall be redirected to the certain section. These recommendations can be made depending on the customer's profile (gender, age, area) which they have created online through this website. Thus, the website may provide different recommendations and offers, based on the algorithms' combinations of data concerning the customers' gender, age group and area. For example, a woman in the age group 26-35 in Chania area, has different purchasing profile than that of a woman (or a man) in the age group 56-65, in Malia area and a man in the age group 18-25 in Mires area, has different purchasing profile than that of a man (or a woman) in the age group 46-55, in Ierapetra area. In each case, the recommendations and the offers may differ.

4.2 WEKA Clustering WEKA Clusterers

Clustering is a method of grouping similar things together. As mentioned in the first chapter, clustering is a process of portioning a data set into a set of meaningful subclasses, known as clusters. Clustering is the same as classification in which data is grouped. ¹⁵⁰

Though, unlike classification, clustering does not seek rules that predict a particular class, but rather try to divide the data into groups/clusters, that are not previously

¹⁵⁰ Source: <u>https://www.javatpoint.com/classification-vs-clustering-in-data-mining</u>

defined, by determining similarities between data according to characteristics found in the real data.

The objective of our clustering procedure is to group the customers who presented similarities in their purchase frequency of the different product categories depending on their gender and age and to disjoin those who displayed dissimilarities. We proceed to the implementation of different clusterers (Simple K-Means, EM, Make a Density, Farthest First, Canopy, Filtered Clusterer) to the same dataset, in order to see how they behave and maybe to point possible similarities between the clustering results.

Below are the clusterers' results, which give information about the cluster centroids of gender, age and product category. These, present the different clusters that are created, based on same characteristics observed in a set of elements.

Centroids are those characteristics that are dominant in the cluster and are similar (have similar characteristics) with the objects in the same cluster.

The dataset used for the creation of the clustering results, was made by sorting the original dataset's information through a pivot table. Specifically, we sorted the data for gender, age and product category and we got a table with all the purchase frequencies of the customers that were distinguished between their gender (male, female) and their age (each gender's age is presented one time, instead of many and this is why in overall we end-up with a total of only 108 customers). In this case, we are searching for the purchase frequency of the customers depending on their gender and age, not their place of origin.

4.2.1 Simple K Means

As mentioned in the first chapter (an analytical explanation is presented in chapter 60), Simple Means is a distant-based clusterer that minimizes the squared distance from each instance to their cluster center, after defining k centroids. It is one of the best unsupervised algorithms. For each different number of seeds, there are different clustering results.¹⁵¹ ¹⁵²

¹⁵¹ Source: <u>https://www.youtube.com/watch?v=4b5d3muPQmA</u>

Simple K Means uses random numbers and by using the same seed, we will always get the same random numbers. If we run Simple K Means over the same data twice, with the same seed, we will get exactly the same results. For different number of seeds, the results will vary each time we run Simple K Means.

In our dataset we use the same seed.

Simple K Means Clusterer, presents a different squared error depending on the number of clusters we wish to create. The bigger the number of clusters, the lower the value of squared errors within the clusters.

In order to cross-validate this, we choose different number of clusters manually. The results of each of the clusterings depending on their number of clusters are presented below.

Simple K Means with 2 Clusters

See the clustering results in the appendix: Simple K Means with 2 Clusters

Within cluster sum of squared errors: **11112.0** Clustered Instances:

- 0 7 (6%)
- 1 101 (94%)

Simple K Means divides customers into two clusters, Cluster 0 and Cluster 1. 94% of the instances are in Cluster 1 (101 customers out of 108 are included in this cluster) and 6% of the instances are in Cluster 0 (7 customers out of 108 are included in this cluster). The two clusters present differentiations in the purchase frequency of the product categories'.

To be more precise, the centroids of the two clusters, concerning the gender are the same (women), however they differ as per the age (38 and 32 respectively) and the purchase frequency of the various product categories. Cluster 1 includes most of the samples (94% of the total samples) whereas Cluster 0 includes just a few samples (6% of the total samples). That means, that customers in cluster 1, mostly characterized as women, aged 32, are the typical ones, who choose all product categories at the same rate, whereas the customers in cluster 0, mostly characterized as women aged 38, tend

¹⁵² Source: <u>https://www.youtube.com/watch?v=HCA0Z9kL7Hg</u>

to choose certain product categories much more frequently than the other cluster's customers do.

These frequently purchased products are fruits, vegetables, milk, bread, chocolates, rice/pulses, fresh beef, dump poultry, water, yoghurt as well as uncategorized products.

Simple K Means with 3 clusters:

See the clustering results in the appendix: Simple K Means with 3 Clusters

Within cluster sum of squared errors: 11051.0

Clustered Instances:

- 0 7 (6%)
- 1 99 (92%)
- 2 2 (2%)

Simple K Means divides customers into three clusters, Cluster 0, Cluster 1 and Cluster 2. 92% of the instances are in Cluster 1 (99 customers out of 108 are included in this cluster), 6% of the instances are in Cluster 0 (7 customers out of 108 are included in this cluster) and 2% of the instances are in Cluster 2 (2 customers out of 108 are included in this cluster). The three clusters present differentiations in the purchase frequency of the product categories'.

The centroids of the three clusters, concerning the gender are the same (women), however they differ as per the age (38, 32, 41) and the purchase frequency of the various product categories. Cluster 1 includes most of the samples (92% of the total samples) whereas, Cluster 0 and Cluster 2 include just a few samples (6% and 2% of the total samples respectively). That means, that customers in cluster 1, mostly characterized as women aged 32, are the typical ones, who choose all product categories at the same rate, whereas the customers in cluster 0, mostly characterized as women aged 38, tend to choose certain product categories much more frequently than the other clusters' customers do.

These frequently purchased products are fruits, vegetables, milk, bread, chocolates, rice/pulses, fresh beef, dump poultry, water, yoghurt as well as paper, household, detergents and uncategorized products.

Simple K Means with 4 clusters:

See the clustering results in the appendix: *Simple K Means with 4 Clusters* Within cluster sum of squared errors: 10605.0

Clustered Instances:

- 0 8(7%)
- 1 87 (81%)
- 2 12 (11%)
- 3 1 (1%)

Simple K Means divides customers into four clusters, Cluster 0, Cluster 1, Cluster 2 and Cluster 3. 81% of the instances are in Cluster 1 (87 customers out of 108 are included in this cluster), 11% of the instances are in Cluster 2 (12 customers out of 108 are included in this cluster), 7% of the instances are in Cluster 0 (8 customers out of 108 are included in this cluster) and 1% of the customers are in Cluster 3 (1 customer out of 108 is in this cluster). The four clusters present differentiations in the purchase frequency of the product categories'.

The centroids of cluster 0, cluster 2 and cluster 3, concerning the gender, are the same (women), unlike the centroid of Cluster 1 (which is male). The clusters' centroids differ as per the age (38, 32, 37, 52 for Clusters 0, 1, 2, 3, 4 respectively) and the purchase frequency of the various product categories. Cluster 1 includes most the samples whereas, cluster 3, cluster 0 and cluster 2 include just a few samples. That means, that customers in cluster 1, mostly characterized as men, aged 32, are the typical ones, who choose a wide variety of all product categories at the same rate, whereas the customers in cluster 3, mostly characterized as women, aged 52, tend to choose certain product categories much more frequently than the other clusters' customers do.

These frequently purchased products are pasta, bread, rusks, rice/pulses, biscuits, chocolates, pastries/sweets, frozens, breakfast cereals, shelf stable milk, coffee, fruits, sausages, preserved cheeses, fresh beef, dump pork, dump poultry, non- alcoholic drinks/water, tea/juices, beers, household, detergents, animal food, paper, bath foams, smoker's items and uncategorized products.

Simple K Means with 5 clusters:

See the clustering results in the appendix: Simple K Means with 5 Clusters

Within cluster sum of squared errors: 10458.0

Clustered Instances

- 0 8(7%)
- 1 87 (81%)
- 2 7 (6%)
- 3 1 (1%)
- 4 5 (5%)

Simple K Means divides customers into five clusters, Cluster 0, Cluster 1, Cluster 2, Cluster 3 and Cluster 4. 81% of the instances are in Cluster 1 (87 customers out of 108 are included in this cluster), 7% of the instances are in Cluster 0 (8 customers out of 108 are included in this cluster), 6% of the instances are in Cluster 2 (7 customers out of 108 are included in this cluster) and 5% of the customers are in Cluster 4 (5 customer out of 108 are included in this cluster) and 5% of the customers are in Cluster 4 (5 customer out of 108 are included in this cluster) and 1% of the customers are in Cluster 3 (1 customer out of 108 is included in this cluster). The five clusters present differentiations in the purchase frequency of the product categories'.

The centroids of cluster 0, cluster 2, cluster 3 and cluster 4 concerning the gender, are the same (women), unlike the centroid of Cluster 1 (which is male). The clusters' centroids differ as per the age (38, 32, 37, 52, 39 for Clusters 0, 1, 2, 3, 4,5 respectively) and the purchase frequency of the various product categories. Cluster 1 includes most the samples whereas cluster 3, cluster 0, cluster 2 and cluster 4 include just a few samples. That means, that customers in cluster 1, mostly characterized as men, aged 32, are the typical ones, who choose a wide variety of all product categories at the same rate, whereas the customers in cluster 3, mostly characterized as women, aged 52, tend to choose certain product categories much more frequently than the other clusters' customers do.

These frequently purchased products are pasta, bread, rusks, rice/pulses, biscuits, chocolates, pastries/sweets, frozens, breakfast cereals, shelf stable milk, coffee, fruits, sausages, preserved cheeses, fresh beef, dump pork, dump poultry, non- alcoholic

drinks/water, tea/juices, beers, household, detergents, animal food, paper, bath foams, smoker's items and uncategorized products.

This clustering is similar to the one with 4 clusters, but it also adds an extra cluster to expand the options.

It is clear that a higher number of clusters, leads to a lower squared error, meaning that, the dataset is closer to finding the line of best fit.

Figure 36: Within cluster sum of squared errors and Number of clusters

4.2.2 Make A Density

According to [29]: Density-Based Clustering refers to unsupervised learning methods that identify distinctive groups/clusters in the data, based on the idea that a cluster in a data space is a contiguous region of high point density, separated from other such clusters by contiguous regions of low point density. The data points in the separating regions of low point density are typically considered noise/outliers.

As mentioned in the first chapter (an analytical explanation is presented in chapter 1.5.7),

- The clusterer randomly chooses the core points and then for each core point that is not already assigned to a cluster, creates a new cluster.
- The clusterer finds all its density connected points and assigns them to the same cluster as the core point.
- Then it iterates through the remaining unvisited points in the dataset.
- The core points that do not belong to any cluster are treated as outliers or noise points.¹⁵³

Make A Density Clusterer, also presents a different squared error depending on the number of clusters we wish to create. The bigger the number of clusters, the lower the value of squared errors within the clusters.

In order to cross-validate this, we choose different number of clusters manually. The results of each of the clusterings depending on their number of clusters are presented below.

Make A Density Clusterer with 2 Clusters

See the clustering results in the appendix: Make A Density Based Clusterer with 2

Clusters

Wrapped clusterer: kMeans

Number of iterations: 2

Within cluster sum of squared errors: 11112.0

Missing values globally replaced with mean/mode

Clustered Instances:

0 14 (13%)

1 94 (87%)

Log likelihood: -416.07815

Make A Density Clusterer divides customers into two clusters, Cluster 0 and Cluster 1. 87% of the instances are in Cluster 1 (94 customers out of 108 are included in this

¹⁵³ Source: <u>https://www.youtube.com/watch?v=f4pZ9PHNdcM</u>

cluster) and 13% of the instances are in Cluster 0 (14 customers out of 108 are included in this cluster). The two clusters present differentiations in the purchase frequency of the product categories'.

To be more precise, the centroids of the two clusters, concerning the gender are the same (women), however they differ as per the age (38 and 32 respectively) and the purchase frequency of the various product categories. Cluster 1 includes most of the samples (94% of the total samples) whereas Cluster 0 includes just a few samples (6% of the total samples). That means, that customers in cluster 1, mostly characterized as women, aged 32, are the typical ones, who choose all product categories at the same rate, whereas the customers in cluster 0, mostly characterized as women aged 38, tend to choose certain product categories much more frequently than the other cluster's customers do.

These frequently purchased products are fruits, vegetables, milk, bread, chocolates, rice/pulses, fresh beef, dump poultry, water, yoghurt as well as uncategorized products.

These results are the same as those of Simple K Means, which is expected, as Simple K Means is wrapped to Make A Density Based Clusterer.

Make A Density Clusterer with 3 Clusters

See the clustering results in the appendix: Make A Density Based Clusterer with 3 Clusters

Wrapped clusterer: kMeans

Number of iterations: 2

Within cluster sum of squared errors: 11051.0

Missing values globally replaced with mean/mode

Clustered Instances:

0 8 (7%) 1 91 (84%) 2 9 (8%)

Log likelihood: -413.54478

Make A Density Clusterer divides customers into three clusters, Cluster 0, Cluster 1 and Cluster 2. 84% of the instances are in Cluster 1 (91 customers out of 108 are included in this cluster), 8% of the instances are in Cluster 2 (9 customers out of 108 are included in this cluster) and 7% of the instances are in Cluster 0 (8 customers out of 108 are included in this cluster). The three clusters present differentiations in the purchase frequency of the product categories'.

The centroids of the three clusters, concerning the gender are the same (women), however they differ as per the age (38, 32, 41) and the purchase frequency of the various product categories. Cluster 1 includes most of the samples (92% of the total samples) whereas, Cluster 0 and Cluster 2 include just a few samples (6% and 2% of the total samples respectively). That means, that customers in cluster 1, mostly characterized as women aged 32, are the typical ones, who choose all product categories at the same rate, whereas the customers in cluster 0, mostly characterized as women aged 38, tend to choose certain product categories much more frequently than the other clusters' customers do.

These frequently purchased products are fruits, vegetables, milk, bread, chocolates, rice/pulses, fresh beef, dump poultry, water, yoghurt as well as paper, household, detergents and uncategorized products.

These results are the same as those of Simple K Means, which is expected, as Simple K Means is wrapped to Make A Density Based Clusterer.

Make A Density Clusterer with 4 clusters:

See the clustering results in the appendix: *Make A Density Based Clusterer with 4 Clusters*

Within cluster sum of squared errors: 10605.0

Clustered Instances:

- 0 8(7%)
- 1 86 (80%)
- 2 13 (12%)

3 1 (1%)

Log likelihood: -390.05324

Make A Density Based Clusterer divides customers into four clusters, Cluster 0, Cluster 1, Cluster 2 and Cluster 3. 80% of the instances are in Cluster 1 (86 customers out of 108 are included in this cluster), 12% of the instances are in Cluster 2 (13 customers out of 108 are included in this cluster), 7% of the instances are in Cluster 0 (8 customers out of 108 are included in this cluster) and 1% of the customers are in Cluster 3 (1 customer is included in this cluster). The four clusters present differentiations in the purchase frequency of the product categories'.

The centroids of cluster 0, cluster 2 and cluster 3, concerning the gender, are the same (women), unlike the centroid of Cluster 1 (which is male). The clusters' centroids differ as per the age (38, 32, 37, 52 for Clusters 0, 1, 2, 3, 4 respectively) and the purchase frequency of the various product categories. Cluster 1 includes most the samples whereas, cluster 3, cluster 0 and cluster 2 include just a few samples. That means, that customers in cluster 1, mostly characterized as men, aged 32, are the typical ones, who choose a wide variety of all product categories at the same rate, whereas the customers in cluster 3, mostly characterized as women, aged 52, tend to choose certain product categories much more frequently than the other clusters' customers.

These frequently purchased products are pasta, bread, rusks, rice/pulses, biscuits, chocolates, pastries/sweets, frozens, breakfast cereals, shelf stable milk, coffee, fruits, sausages, preserved cheeses, fresh beef, dump pork, dump poultry, non- alcoholic drinks/water, tea/juices, beers, household, detergents, animal food, paper, bath foams, smoker's items and uncategorized products.

These results are the same as those of Simple K Means, which is expected, as Simple K Means is wrapped to Make A Density Based Clusterer.

Make A Density Clusterer with 5 clusters:

See the clustering results in the appendix: Make A Density Based Clusterer with 5 Clusters

Within cluster sum of squared errors: 10458.0

- 0 8(7%)
- 1 85 (79%)
- 2 8 (7%)
- 3 1 (1%)
- 4 6 (6%)

Log likelihood: -389.75263

Make A Density Clusterer Simple K Means divides customers into five clusters, Cluster 0, Cluster 1, Cluster 2, Cluster 3 and Cluster 4. 81% of the instances are in Cluster 1 (87 customers out of 108 are included in this cluster), 7% of the instances are in Cluster 0 (8 customers out of 108 are included in this cluster), 6% of the instances are in Cluster 2 (7 customers out of 108 are included in this cluster) and 5% of the customers are in Cluster 4 (5 customer out of 108 are included in this cluster) and 5% of the customers are in Cluster 3 (1 customer is included in this cluster). The five clusters present differentiations in the purchase frequency of the product categories'.

The centroids of cluster 0, cluster 2, cluster 3 and cluster 4 concerning the gender, are the same (women), unlike the centroid of Cluster 1 (which is male). The clusters' centroids differ as per the age (38, 32, 37, 52, 39 for Clusters 0, 1, 2, 3, 4, 5 respectively) and the purchase frequency of the various product categories. Cluster 1 includes most the samples whereas cluster 3, cluster 0, cluster 2 and cluster 4 include just a few samples. That means, that customers in cluster 1, mostly characterized as men, aged 32, are the typical ones, who choose a wide variety of all product categories at the same rate, whereas the customers in cluster 3, mostly characterized as women, aged 52, tend to choose certain product categories much more frequently than the other clusters' customers do.

These frequently purchased products are pasta, bread, rusks, rice/pulses, biscuits, chocolates, pastries/sweets, frozens, breakfast cereals, shelf stable milk, coffee, fruits, sausages, preserved cheeses, fresh beef, dump pork, dump poultry, non- alcoholic drinks/water, tea/juices, beers, household, detergents, animal food, paper, bath foams, smoker's items and uncategorized products.

These results are the same as those of Simple K Means, which is expected, as Simple K Means is wrapped to Make A Density Based Clusterer.

It is clear that a higher number of clusters, leads to a lower squared error, meaning that, the dataset is closer to finding the line of best fit.

Figure 37: Within cluster sum of squared errors and Number of clusters

4.2.3 Filtered Clusterer

According

[20][20]:

This algorithm is primarily based completely on storing the multidimensional data points within a tree. The process regarding the tree is like a binary tree method, as represents a hierarchical subdivision on its data point set's bounding box the usage of their axis after which splitting is aligned by way on hyper planes. Each node on the tree is related with a closed field, referred to as the cell.

to

These results are the same as those of Simple K Means for all the clusterings, which is expected, as Filtered Clusterer uses Simple K Means in order to proceed to the outcome.

4.2.4 Farthest First

According

to[24]:

Farthest first finds its variant of K-means. Each cluster center point furthermost from the existing cluster center is placed by the K-mean, and this point must be positioned within the data area. So that it greatly speeds up the clustering in most cases, but it needs less move and adjustment for their fast performance.

In order to examine Farthest First Clusterer's accuracy, we choose different number of clusters manually.

Farthest First Clusterer with 2 Clusters:

See the clustering results in the appendix: Farthest First with 2 Clusters

Clustered Instances:

- 0 107 (99%)
- 1 1 (1%)

Simple K Means divides customers into two clusters, Cluster 0 and Cluster 1. 99% of the instances are in Cluster 0 (107 customers out of 108 are included in this cluster) and 1% of the instances are in Cluster 1 (1 is included in this cluster). The two clusters present differentiations in the purchase frequency of the product categories'.

To be more precise, the centroids of the two clusters, concerning the gender are the same (women), however they differ as per the age (82 and 52 respectively) and the purchase frequency of the various product categories. Cluster 1 includes most of the samples (99% of the total samples) whereas Cluster 0 includes just a one sample. This seems to be inaccurate results, as it is not that possible 99% of the customers to have similar consuming behavior concerning the purchase frequency as of 82 year-old women.

The same applies to the clusterings with a higher number of clusters as well, in which Cluster 0 has the higher rate of samples.

Farthest First seems to give inaccurate results for this case, however it shall be presented as well in the appendix:

Farthest First with 3 Clusters Farthest First with 4 Clusters

Farthest First with 5 Clusters

4.2.5 EM

"EM (Expectation Maximization) is a probabilistic clusterer and can be used for unsupervised learning. Like Naive Bayes, it makes the assumption that all attributes are independent random variables." (Witten I.H., et al., (1999))

As mentioned in the first chapter (an analytical explanation is presented in chapter 1.5.2), unlike K-Means that takes one point and places it to the one cluster or the other, EM computes the probability that it goes into a or b cluster. This probability never gets zero or one, it is always a number between zero and one (0<probability EM<1).

The model just finds that there are distinguished groups in the dataset that behave differently.

EM works for numeric attributes providing mean and standard deviation results and value probability results respectively. Log likelihood is an overall quality measure and is increased by each iteration.¹⁵⁴

EM run alternative number of clusters and then chooses automatically the number of the clusters it shall create.

=== Model and evaluation on training set ===

See Appendix: EM Clusterer

Clustered Instances:

- 0 1(1%)
- 1 2 (2%)
- 2 85 (79%)
- 3 1 (1%)
- 4 1 (1%)
- 5 13 (12%)
- 6 5 (5%)

¹⁵⁴ Source: <u>https://www.youtube.com/watch?v=HCA0Z9kL7Hg</u>

Log likelihood: -384.06072

Each cluster has the attributes of Gender, Age and Product Category. For each of the attributes, there is a probability that the output is going to be this certain attribute. This probability is calculated if you divide the number of the attribute by the total attributes in each of the clusters.

Cluster 2 seems to include most of the samples (79% of the total samples) and its customers are the typical ones (42,5% possibility of its centroid to be a woman and 57,5% possibility of its centroid to be a man).

4.2.6 Canopy

According to Mai and Cheng (2016)[33]: Canopy is one of the improved K-means algorithm, can be used to determine the number of clusters. With the introduction of Canopy clustering, the data set is divided into k sub-sets by setting the radius, and the sub-sets can be selected as the initial centers of K-means. Because the Canopy algorithm can reduce the running time of the clustering by reduce the count of comparisons, it will improve the computational efficiency.

The Canopy algorithm's analytical explanation of the steps is presented in chapter 1.5.8.

We choose different number of clusters manually. The results of each of the clusterings, depending on their number of clusters are presented below.

Canopy Clustering with 2 Clusters

See the appendix: Canopy clustering with 2 clusters

Clustered Instances

0 107 (99%)

First we divide customers into two clusters, Cluster 0 and Cluster 1. 99% of the instances are in Cluster 0 (107 customers out of 108 are included in this cluster) and

1% of the instances are in Cluster 1 (1 customer is included in this cluster). The two clusters present differentiations in the purchase frequency of the product categories'.

To be more precise, the centroids of the two clusters, concerning the gender are the same (men), however they differ as per the age (32 and 49 respectively) and the purchase frequency of the various product categories. Cluster 0 includes most of the samples whereas Cluster 1 includes just a one sample. That means, that customers in cluster 0, mostly characterized as men, aged 32, are the typical ones, who choose all product categories at the same rate, whereas the customers in cluster 1, mostly characterized as men aged 49, tend to choose certain product categories much more frequently than the other cluster's customers do.

These frequently purchased products are pasta, bread, rusks, rice/pulses, biscuits, chocolates, pastries/sweets, frozens, breakfast cereals, shelf stable milk, coffee, fruits, sausages, preserved cheeses, fresh beef, dump pork, dump poultry, non- alcoholic drinks/water, tea/juices, beers, household, detergents, animal food, paper, bath foams, smoker's items and uncategorized products.

Canopy Clustering with 3 Clusters

See the appendix: Canopy clustering with 3 clusters

Clustered Instances

- 0 94 (87%)
- 1 1 (1%)
- 2 13 (12%)

We divide customers into 3 clusters but the first two clusters remain the same and we just introduce a new one, the centroids of which are men aged 72. The number of samples in each cluster now renumbers, with Cluster 1 remaining the same as it was. Still, Cluster 0 includes the most samples and characterizes the typical customer.

Canopy Clustering with 4 Clusters

See the appendix: Canopy clustering with 4 clusters

Clustered Instances

- 0 93 (86%)
- 1 1 (1%)

2 13 (12%)

3 1 (1%)

We divide customers into 4 clusters but the first three clusters remain the same and we just introduce a new one, the centroids of which are women aged 40. The number of samples in each cluster now renumbers, with Cluster 1 remaining the same as it was. Still, Cluster 0, followed by Cluster 2 includes the most samples and characterizes the typical customer. Cluster 1 and Cluster 2 tend to choose certain product categories much more frequently than the other cluster's customers do.

These frequently purchased products are the same as those mentioned above and these are pasta, bread, rusks, rice/pulses, biscuits, chocolates, pastries/sweets, frozens, breakfast cereals, shelf stable milk, coffee, fruits, sausages, preserved cheeses, fresh beef, dump pork, dump poultry, non- alcoholic drinks/water, tea/juices, beers, household, detergents, animal food, paper, bath foams, smoker's items and uncategorized products.

Canopy Clustering with 5 Clusters

See the appendix: Canopy clustering with 5 clusters

Clustered Instances

- 0 88 (81%)
- 1 1 (1%)
- 2 12 (11%)
- 3 1 (1%)
- 4 6(6%)

Lastly, we divide customers into 5 clusters but the first four clusters remain the same and we just introduce a new one, the centroids of which are women aged 81. The number of samples in each cluster now renumbers, with Cluster 1 remaining the same as it was.

In each of the 5 cases, Cluster 0 (the centroids of which are men, aged 32), includes the most samples and characterizes the typical customer who choose all product categories at the same rate.

Conclusions

Association rule mining or market basket analysis is a data mining technique used to increase sales by better understanding customer purchasing patterns. Through analyzing large databases, we can detect the products that are likely to be purchased together. Implementation of market basket analysis requires a background in statistics and data science.

In this chapter, we used the WEKA Machine Learning Software System Tool for association rule mining and clustering. We discovered the correlations between the different items in customers' shopping cart and we grouped customers who displayed similar characteristics.

These, shall help the Super Market find the purchase behavior of its buyers, understand what they want, make the correct decisions and hence establish a profitable sales strategy by considering items frequently purchased together by customers. For a supermarket with multiple stores, finding purchasing patterns can be useful in forming the best cross- selling actions as well as the best marketing, service, and operation strategies.

REFERENCES

- Fayyad, U., Piatetsky, G., Smyth, P., (1996). From Data Mining to Knowledge Discovery in Databases. AI Magazine. Vol. 17, No. 3.
- [2] Agrawal, A., Gans, J.S., and Goldfarb, A. (2019). Exploring the impact of artificial Intelligence: prediction versus judgment. Inform. Econ. Policy 47, pp.1–6. doi: 10.1016/j.infoecopol.2019.05.001.
- [3] Kalmegh, S.R. (2018). Comparative Analysis of the WEKA Classifiers Rules Conjunctiverule & Decisiontable on Indian News Dataset by Using Different Test Mode, International Journal of Engineering Science Invention (IJESI) ISSN (Online): 2319 – 6734, ISSN (Print): 2319 – 6726, <u>www.ijesi.org</u>, Volume 7 Issue 2, Ver. III, pp. 01-09.
- [4] Burges, C.J.C. (1998). A tutorial on support vector machines for pattern recognition." Data Mining and Knowledge Discovery, Vol. 2, No.1, pp.121-167.
- [5] Vijayarani, S., Muthulakshmi, M. (2013). Comparative Analysis of Bayes and Lazy Classification Algorithms. International Journal of Advanced Research in Computer and Communication Engineering. Vol. 2, Issue. 8.
- [6] Al-Hyari, A., Al-Taee, A.M., Al-Taee, M., A. (2013). Clinical Decision Support System for Diagnosis and Management of Chronic Renal Failure, *IEEE*.
- [7] Venkat, M., Mohammed, D., Rasheed, A., Ali, M.M. (2014). Classification of Lung cancer subtypes by Data Mining technique, *IEEE*.
- [8] Sharma, T.C., Jain, M. (2013) WEKA Approach for Comparative Study of Classification Algorithm.
- [9] Atkenson, C.G., Schaal, S.A. and Moore, A.W. (1997). Locally weighted learning, 128-137, Prague.
- [10] Witten, I.H., Eibe, F.F., Hall, M., Holmes G., Cunningham, S.J. (1999). Weka: Practical Machine Learning Tools and Techniques with Java Implementations.
- [11] Madeh, S.P., El-Diraby T.E. (2020). Role of Data Analytics in Infrastructure Asset Management: Overcoming Data Size and Quality Problems. Journal of Transportation Engineering, Part B: Pavements. Vol. 146, No.2, doi:10.1061/JPEODX.0000175.
- [12] Madeh, S.P., El-Diraby, T.E. (2021). Using Machine Learning to Examine Impact of Type of Performance Indicator on Flexible Pavement Deterioration

Modeling. Journal of Infrastructure Systems. Vol. 27, No. 2. doi:10.1061/(ASCE)IS.1943-555X.0000602. ISSN 1076-0342. S2CID 233550030.

- [13] Kinge, D., Gaikwad, S. K., (2018). Survey on data mining techniques for disease prediction. IRJET Journal (<u>https://www.irjet.net/</u>). Vol. 5, Issue: 1. e-ISSN: 2395-0056, p-ISSN: 2395-0072. Retrieved from: <u>https://www.irjet.net/archives/V5/i1/IRJET-V5I1136.pdf</u>
- [14] Mishra, R., Singh, R. (2014). An efficient approach for supervised learning algorithms using Different Data Mining Tools for spam categorization, *IEEE*.
- [15] Vaithiyanathan, V., Rajeswari, K., Tajane, K., Pitale, R. (2013). Comparison of Different Classification Techniques Using Different Datasets. Vol.6, no. 2.
- [16] Witten I.H., Eibe, F.F., Len, T., Hall, M., Holmes, G., Cunningham S.J. (1999).Weka: Practical Machine Learning Tools and Techniques with Java Implementations
- [17] Blaifi, S.A., Moulahoum, S., Benkercha, R., Taghezouit, B., Saim, A., (2018).
 M5P model tree based fast fuzzy maximum power point tracker. Solar Energy(163), pp. 405-424. doi:https://doi.org/10.1016/j.solener.2018.01.071
- [18] Hulten, G., Spencer, L., & Domingos, P. (2001). Mining time-changing data streams. ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining, pp. 97-106.
- [19] Maimon, O., Rokach, L. (2006). "Clustering methods". Data Mining and Knowledge Discovery Handbook. Springer. pp. 321–352.
- [20] Kodati, S., Vivekanandam, R., & Ravi, G. (2019). Comparative Analysis of Clustering. Retrieved from <u>https://link.springer.com/chapter/10.1007/978-981-13-3600-3_11</u>
- [21] Kumar, M.P., et al., (2010). Simultaneous pattern and data clustering using modified K-means algorithm. Int. J. Comput. Sci. Eng. Vol. 02, No.06, 2003– 2008
- [22] Vijaya, P., Murthy, M.N., Subramanian, D.K., (2004). Leaders-subleaders: an efficient hierarchical clustering algorithm for large data sets. Pattern Recogn. Lett. Vol. 25, pp.505–513.
- [23] Lobo, L.M.R.J., Aher S.B., (2016). Data Mining in Educational System using WEKA, Retrieved from <u>https://www.researchgate.net/profile/Sunita-Dol-</u>

<u>Aher/publication/266602921_Data_Mining_in_Educational_System_using_WE</u> <u>KA/links/57aee3f708ae95f9d8f15867/Data-Mining-in-Educational-System-</u> using-WEKA.pdf

- [24] Rama, B., (2010). A survey on clustering current status and challenging issues.Int. J. Comput. Sci. Eng. (IJCSE), Vol. 02, No. 09, pp.2976–2980.
- [25] Fisher, D., (1987). Knowledge acquisition via incremental conceptual clustering. Machine Learning. Vol. 2, No. 2, pp. 139–172. doi:10.1007/BF00114265
- [26] Fisher, D. H., (July 1987). Improving inference through conceptual clustering. Proceedings of the 1987 AAAI Conferences. AAAI Conference. Seattle Washington. pp. 461–465.
- [27] Iba, W., Langley, P., (n.d) Cobweb models of categorization and probabilistic concept formation. In Emmanuel M. Pothos and Andy J. Wills (ed.). Formal approaches in categorization. Cambridge: Cambridge University Press. pp. 253– 273. ISBN 9780521190480
- [28] McCallum, A., Nigam, K., and Ungar L.H. (2000), Efficient Clustering of High Dimensional Data Sets with Application to Reference Matching. Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery and data mining, pp.169-178 <u>doi:10.1145/347090.347123</u>
- [29] Sander J. (2011) Density-Based Clustering. In: Sammut C., Webb G.I. (eds) Encyclopedia of Machine Learning. Springer, Boston, MA. <u>https://doi.org/10.1007/978-0-387-30164-8_211</u>
- [30] Alam, S., (2016). Handbook of Research on Natural Computing for Optimization Problems. IGI Global. doi: 10.4018/978-1-5225-0058-2.ch012.
- [31] Kleinberg, E., (n.d). Random forest. Retrieved from: <u>https://www.ic.unicamp.br/~rocha/teaching/2018s1/mo444/classes/mo444-class-materials-13.pdf</u>
- [32] Ramzan, M., (2016). Comparing and Evaluating the Performance of WEKA Classifiers on Critical Diseases. 1st India International Conference on Information Processing (IICIP), pp. 1-4, doi: 10.1109/IICIP.2016.7975309.
- [33] Mai, H., Cheng, L. (2016). The Application of Clustering Algorithm Based on Improved Canopy -Kmeans in Operators Data. 3rd International Conference on Engineering Technology and Application (ICETA 2016) ISBN: 978-1-60595-383-0

[34] Chen, Y.L., Tang, K., Shen, R.J., Hu, Y.H., (2005). Market basket analysis in a multiple store environment, Decision Support Systems, Vol. 40, Issue 2, pp. 39-354, ISSN 0167-9236, <u>https://doi.org/10.1016/j.dss.2004.04.009</u>. (<u>https://www.sciencedirect.com/science/article/pii/S0167923604000685</u>)

APPENDIX

APPENDIX 1: Creta Palm Hotel

M5Rules Algorithm/ Creta Palm 2019

=== Classifier model (full training set) ===

pruned model rules (using smoothed linear models) :Number of Rules : 1

Rule: 1

TOTAL BOOKINGS =

2.3818 * Booking Source=TUI NL,BLUEAEGEAN,SUNWEB,Jet2Holidays,ARHUS CHARTER,ITAKA,EXPEDIA,AURINKOMATKAT

- 5.4481

*BookingSource=SUNWEB,Jet2Holidays,ARHUSCHARTER,ITAKA,EXPEDIA,A URINKOMATKAT

+ 6.033

```
* BookingSource=Jet2Holidays,ARHUSCHARTER,ITAKA,EXPEDIA,AURINKO
MATKAT
```

+ 6.8512

- * BookingSource=ARHUSCHARTER,ITAKA,EXPEDIA,AURINKOMATKAT
- 4.2256 * Booking Source=ITAKA,EXPEDIA,AURINKOMATKAT
- + 4.4683 * Booking Source=EXPEDIA,AURINKOMATKAT
- + 0.008 * TOTAL PAX Nights
- + 0.0735 * Total Room Nights
- + 0.0149 * HB
- 0.0085 * AI
- + 3.3041 * MONTH=September 2019, July 2019, June 2019

```
- 0.2915 [91/16.644%]
```

M5P Trees Algorithm/ Creta Palm 2019

```
LM num: 1
TOTAL BOOKINGS = 2.3818 * Booking Source
                  = TUI NL, BLUE
                  AEGEAN, SUNWEB, Jet2Holidays, ARHUS
                  CHARTER, ITAKA, EXPEDIA, AURINKOMATKAT
                  - 5.4481 * Booking Source
                  =SUNWEB,Jet2Holidays,ARHUS
                  CHARTER, ITAKA, EXPEDIA, AURINKOMATKAT
                  + 6.033 * Booking Source
                  =Jet2Holidays,ARHUS
                  CHARTER, ITAKA, EXPEDIA, AURINKOMATKAT
                  + 6.8512 * Booking Source
                  =ARHUS
                  CHARTER, ITAKA, EXPEDIA, AURINKOMATKAT
                  - 4.2256 * Booking Source
                  =ITAKA, EXPEDIA, AURINKOMATKAT
                  + 4.4683 * Booking Source
                  =EXPEDIA,AURINKOMATKAT
                  + 0.008 * TOTAL PAX Nights
                  + 0.0735 * Total Room Nights
                  + 0.0149 * HB
                  - 0.0085 * AI
                  + 3.3041 * MONTH
                  =September 2019, July 2019, June 2019
                  - 0.2915
```

SMOreg Algorithm/ Creta Palm 2019

weights (not support vectors):

- + 0.0793 * (normalized) Booking Source=ARHUS CHARTER
- 0.0049 * (normalized) Booking Source=AURINKOMATKAT
- + 0.0087 * (normalized) Booking Source=BLUE AEGEAN
- 0.0348 * (normalized) Booking Source=BOOKING.COM
- 0.0549 * (normalized) Booking Source=BRAVO TOURS
- + 0.0472 * (normalized) Booking Source=EXPEDIA
- + 0.0104 * (normalized) Booking Source=ITAKA

- + 0.0084 * (normalized) Booking Source=Jet2Holidays
- 0.0134 * (normalized) Booking Source=RAINBOW
- 0.0198 * (normalized) Booking Source=SUNWEB
- 0.0245 * (normalized) Booking Source=TUI Deutschland
- + 0.0048 * (normalized) Booking Source=TUI NL
- 0.0064 * (normalized) Booking Source=TUI UK
- + 0.0244 * (normalized) Country=Denmark
- 0.0049 * (normalized) Country=Finland
- + 0.0087 * (normalized) Country=Romania
- + 0.0124 * (normalized) Country=Vary
- 0.0031 * (normalized) Country=Poland
- + 0.002 * (normalized) Country=UK
- 0.015 * (normalized) Country=Netherlands
- 0.0245 * (normalized) Country=Germany
- 0.0418 * (normalized) Average pax/room
- + 0.0124 * (normalized) TO/ OTA=OTA
- + 0.0815 * (normalized) ADR
- + 0.2293 * (normalized) TOTAL PAX Nights
- + 0.4811 * (normalized) Total Room Nights
- + 0.1714 * (normalized) BB
- 0.015 * (normalized) BB%
- + 0.1306 * (normalized) HB
- + 0.0058 * (normalized) HB%
- 0.0177 * (normalized) AI
- 0.0024 * (normalized) AI%
- + 0.0153 * (normalized) MONTH=April 2019

- + 0.0126 * (normalized) MONTH=May 2019
- + 0.0113 * (normalized) MONTH=June 2019
- + 0.0014 * (normalized) MONTH=July 2019
- 0.0297 * (normalized) MONTH=August 2019
- 0.0188 * (normalized) MONTH=September 2019
- + 0.0079 * (normalized) MONTH=October 2019
- 0.0058

Linear Regression Model Algorithm/ Creta Palm 2019

TOTAL BOOKINGS =

-7.8096 * Booking Source= BOOKING.COM, BRAVO TOURS, TUI Deutschland, TUI UK, TUI NL, BLUE AEGEAN, SUNWEB, Jet2Holidays, ARHUS CHARTER, ITAKA, EXPEDIA, AURINKOMATKAT +7.6327 * Booking Source= TUI UK, TUI NL, BLUE AEGEAN, SUNWEB, Jet 2Holidays, ARHUS CHARTER, ITAKA, EXPEDIA, AURINKOMATKAT + -6.6557 * Booking Source=SUNWEB,Jet2Holidays,ARHUS CHARTER, ITAKA, EXPEDIA, AURINKOMATKAT + 7.1524 * Booking Source= Jet2Holidays,ARHUSCHARTER,ITAKA,EXPEDIA,AURINKOMATKAT + -7.9784 * Booking Source= AURINKOMATKAT-6.6556*Country= Netherlands, UK, Poland, Denmark, Vary, Finland + 7.8617 * Country= Denmark, Vary, Finland + -7.9782 * Country=Finland + 0.0478 * ADR + 0.0103 * TOTAL PAX Nights + 0.1078 * Total Room Nights + -0.0071 * BB + -0.0185 * AI + -4.0717 * MONTH= August 2019, September 2019, July 2019, June 2019 + 4.7388 * MONTH= July 2019, June 2019 +4.1779

Meta Random Committee Algorithm/ Creta Palm 2019

=== Classifier model (full training set) ===

All the base classifiers:

RandomTree

Booking Source = ARHUS CHARTER

- | Total Room Nights < 103 : 0 (1/0)
- | Total Room Nights >= 103
- | | Average pax/room < 2.27
- | | | MONTH = April 2019 : 0 (0/0)

| | | MONTH = May 2019 : 34 (1/0)

- | | | MONTH = June 2019 : 40 (1/0)
- | | | MONTH = July 2019 : 39 (1/0)
- | | | MONTH = August 2019 : 25 (1/0)
- | | | MONTH = September 2019 : 39 (1/0)
- | | | MONTH = October 2019 : 0 (0/0)
- | | Average pax/room >= 2.27 : 22 (1/0)

Booking Source = AURINKOMATKAT

- | BB% < 0.61
- | HB% < 0.13 : 92 (1/0)
- | | HB% >= 0.13
- | | | TOTAL PAX Nights < 3032 : 125 (1/0)
- | | | TOTAL PAX Nights >= 3032
- | | | ADR < 120.78 : 132 (1/0)

| | | ADR >= 120.78 : 135 (1/0)

| BB% >= 0.61

- | | Average pax/room < 2.51
- | | | Total Room Nights < 839 : 78 (1/0)
- | | | Total Room Nights >= 839 : 82 (1/0)
- | | Average pax/room >= 2.51 : 63 (1/0)

Booking Source = BLUE AEGEAN

- | TOTAL PAX Nights < 89.5 : 0.33 (3/0.22)
- | TOTAL PAX Nights >= 89.5
- | | MONTH = April 2019 : 0 (0/0)
- | | MONTH = May 2019 : 0 (0/0)
- | | MONTH = June 2019 : 24 (1/0)
- | | MONTH = July 2019 : 27 (1/0)
- | | MONTH = August 2019 : 18 (1/0)
- | | MONTH = September 2019 : 20 (1/0)
- | | MONTH = October 2019 : 0 (0/0)

Booking Source = BOOKING.COM

| BB% < 0.81

- | | TOTAL PAX Nights < 100.5 : 9 (1/0)
- | | TOTAL PAX Nights >= 100.5
- | | | Average pax/room < 2.83 : 13 (1/0)
- | | | Average pax/room >= 2.83 : 11 (1/0)
- | BB% >= 0.81 : 2.5 (4/0.25)

Booking Source = BRAVO TOURS

- $\mid AI < 40$
- | | TOTAL PAX Nights < 85.5

- | | | Total Room Nights < 16.5 : 1 (1/0)
- | | Total Room Nights >= 16.5 : 3.67 (3/0.22)
- | | TOTAL PAX Nights >= 85.5
- | | ADR < 84.92 : 7 (1/0)
- | | ADR >= 84.92 : 5 (1/0)
- | AI >= 40 : 24 (1/0)

Booking Source = EXPEDIA

- | MONTH = April 2019 : 41 (1/0)
- | MONTH = May 2019 : 22 (1/0)
- | MONTH = June 2019 : 45 (1/0)
- | MONTH = July 2019 : 46 (1/0)
- | MONTH = August 2019 : 27 (1/0)
- | MONTH = September 2019 : 26 (1/0)
- | MONTH = October 2019 : 32 (1/0)

Booking Source = ITAKA

- | MONTH = April 2019 : 2 (1/0)
- | MONTH = May 2019 : 15 (1/0)
- | MONTH = June 2019: 63(1/0)
- | MONTH = July 2019 : 42 (1/0)
- | MONTH = August 2019 : 41 (1/0)
- | MONTH = September 2019 : 56 (1/0)
- | MONTH = October 2019 : 13 (1/0)

Booking Source = Jet2Holidays

- | TOTAL PAX Nights < 155.5 : 0 (1/0)
- | TOTAL PAX Nights >= 155.5
- | | MONTH = April 2019 : 0 (0/0)

- | | MONTH = May 2019 : 28 (1/0)
- | | MONTH = June 2019 : 20 (1/0)
- | | MONTH = July 2019 : 35 (1/0)
- | | MONTH = August 2019 : 22 (1/0)
- | | MONTH = September 2019 : 34 (1/0)
- | | MONTH = October 2019 : 18 (1/0)
- Booking Source = RAINBOW : 0.86 (7/0.12)
- Booking Source = SUNWEB
- | MONTH = April 2019 : 4 (1/0)
- | MONTH = May 2019 : 21 (1/0)
- | MONTH = June 2019 : 24 (1/0)
- | MONTH = July 2019 : 23 (1/0)
- | MONTH = August 2019 : 19 (1/0)
- | MONTH = September 2019 : 23 (1/0)
- | MONTH = October 2019 : 12 (1/0)

Booking Source = TUI Deutschland

- | TOTAL PAX Nights < 94 : 2 (3/0.67)
- | TOTAL PAX Nights >= 94
- | | MONTH = April 2019 : 0 (0/0)
- | | MONTH = May 2019 : 0 (0/0)
- | | MONTH = June 2019 : 12 (1/0)
- | | MONTH = July 2019 : 13 (1/0)
- | | MONTH = August 2019 : 7 (1/0)
- | | MONTH = September 2019 : 14 (1/0)
- | | MONTH = October 2019 : 0 (0/0)

Booking Source = TUI NL

- | TOTAL PAX Nights < 237.5
- | | ADR < 72.11 : 1.5 (2/0.25)
- | ADR >= 72.11
- | | | TOTAL PAX Nights < 175.5 : 6 (1/0)
- | | | TOTAL PAX Nights >= 175.5 : 9 (1/0)
- | TOTAL PAX Nights >= 237.5 : 15.67 (3/0.22)

Booking Source = TUI UK

- | MONTH = April 2019 : 0 (1/0)
- | MONTH = May 2019 : 1 (1/0)
- | MONTH = June 2019 : 18 (1/0)
- | MONTH = July 2019 : 5 (1/0)
- | MONTH = August 2019 : 7 (1/0)
- | MONTH = September 2019 : 8 (1/0)
- | MONTH = October 2019 : 16 (1/0)

Size of the tree : 112 Binary and Multi-class Classifiers

RandomTree

Booking Source = ARHUS CHARTER

- | MONTH = April 2019 : 0 (1/0)
- | MONTH = May 2019 : 34 (1/0)
- | MONTH = June 2019 : 40 (1/0)
- | MONTH = July 2019: 39(1/0)
- | MONTH = August 2019 : 25 (1/0)
- | MONTH = September 2019 : 39 (1/0)

| MONTH = October 2019 : 22 (1/0)

Booking Source = AURINKOMATKAT

- | MONTH = April 2019 : 78 (1/0)
- | MONTH = May 2019 : 125 (1/0)
- | MONTH = June 2019 : 132 (1/0)
- | MONTH = July 2019 : 135 (1/0)
- | MONTH = August 2019 : 92 (1/0)
- | MONTH = September 2019 : 82 (1/0)
- | MONTH = October 2019 : 63 (1/0)

Booking Source = BLUE AEGEAN

- | ADR < 43.99 : 0.33 (3/0.22)
- | ADR >= 43.99
- | | MONTH = April 2019 : 0 (0/0)
- | | MONTH = May 2019 : 0 (0/0)
- | | MONTH = June 2019 : 24 (1/0)
- | | MONTH = July 2019 : 27 (1/0)
- | | MONTH = August 2019 : 18 (1/0)
- | | MONTH = September 2019 : 20 (1/0)
- | | MONTH = October 2019 : 0 (0/0)

Booking Source = BOOKING.COM

- | BB < 65: 2.5 (4/0.25)
- | BB >= 65
- | | BB% < 0.71
- | | | TOTAL PAX Nights < 160 : 13 (1/0)
- | | | TOTAL PAX Nights >= 160 : 11 (1/0)
- | BB% >= 0.71 : 9 (1/0)

```
Booking Source = BRAVO TOURS
```

- | HB% < 0.91
- | AI% < 0.21 : 24 (1/0)
- | | AI% >= 0.21 : 7 (1/0)
- | HB% >= 0.91
- | | Total Room Nights < 16.5 : 1 (1/0)
- | | Total Room Nights >= 16.5 : 4 (4/0.5)
- Booking Source = EXPEDIA
- | BB < 492.5
- | | TOTAL PAX Nights < 353 : 22 (1/0)
- | | TOTAL PAX Nights >= 353
- | | | TOTAL PAX Nights < 471.5 : 32 (1/0)
- | | | TOTAL PAX Nights >= 471.5 : 26.5 (2/0.25)
- | BB >= 492.5
- | | TOTAL PAX Nights < 566.5 : 41 (1/0)
- | | TOTAL PAX Nights >= 566.5 : 45.5 (2/0.25)
- Booking Source = ITAKA
- | ADR < 100.16
- | | BB% < 0.5
- | | | MONTH = April 2019 : 0 (0/0)
- | | | MONTH = May 2019 : 15 (1/0)
- | | | MONTH = June 2019 : 0 (0/0)
- | | | MONTH = July 2019 : 0 (0/0)
- | | | MONTH = August 2019 : 0 (0/0)
- | | | MONTH = September 2019 : 0 (0/0)
- | | | MONTH = October 2019 : 13 (1/0)

- | BB% >= 0.5 : 2 (1/0)
- | ADR >= 100.16
- | | AI < 1489
- | | | Average pax/room < 2.71 : 56 (1/0)
- | | | Average pax/room >= 2.71 : 63 (1/0)
- | | AI >= 1489 : 41.5 (2/0.25)

Booking Source = Jet2Holidays

- | ADR < 25.75 : 0 (1/0)
- | ADR >= 25.75
- | | ADR < 70.31
- | | | BB < 339.5
- | | | | Average pax/room < 2.11 : 20 (1/0)
- | | | Average pax/room >= 2.11 : 18 (1/0)
- | | | BB >= 339.5 : 28 (1/0)
- | ADR >= 70.31
- | | | TOTAL PAX Nights < 602 : 22 (1/0)
- | | | TOTAL PAX Nights >= 602 : 34.5 (2/0.25)

Booking Source = RAINBOW : 0.86 (7/0.12)

Booking Source = SUNWEB

- | TOTAL PAX Nights < 454.5
- | BB < 82:4(1/0)
- | BB >= 82 : 12 (1/0)
- | TOTAL PAX Nights >= 454.5
- | | HB < 22 : 19 (1/0)
- | | HB >= 22
- | | | MONTH = April 2019 : 0 (0/0)

- | | | MONTH = May 2019 : 21 (1/0)
- | | | MONTH = June 2019 : 24 (1/0)
- | | | MONTH = July 2019 : 23 (1/0)
- | | | MONTH = August 2019 : 0 (0/0)
- | | | MONTH = September 2019 : 23 (1/0)
- | | | MONTH = October 2019 : 0 (0/0)
- Booking Source = TUI Deutschland
- | TOTAL PAX Nights < 94 : 2 (3/0.67)
- | TOTAL PAX Nights >= 94
- | | TOTAL PAX Nights < 208
- | | | TOTAL PAX Nights < 152 : 12 (1/0)
- | | | TOTAL PAX Nights >= 152 : 7 (1/0)
- | | TOTAL PAX Nights >= 208 : 13.5 (2/0.25)

Booking Source = TUI NL

- | MONTH = April 2019 : 1 (1/0)
- | MONTH = May 2019 : 16 (1/0)
- | MONTH = June 2019 : 15 (1/0)
- | MONTH = July 2019 : 6 (1/0)
- | MONTH = August 2019 : 9 (1/0)
- | MONTH = September 2019 : 16 (1/0)
- | MONTH = October 2019 : 2(1/0)

Booking Source = TUI UK

- | TOTAL PAX Nights < 216
- | | MONTH = April 2019 : 0 (1/0)
- | | MONTH = May 2019 : 1 (1/0)
- | | MONTH = June 2019 : 0 (0/0)

- | | MONTH = July 2019 : 5 (1/0)
- | | MONTH = August 2019 : 7 (1/0)
- | | MONTH = September 2019 : 8 (1/0)
- | | MONTH = October 2019 : 0 (0/0)
- | TOTAL PAX Nights >= 216
- | | TOTAL PAX Nights < 255.5 : 18 (1/0)
- | | TOTAL PAX Nights >= 255.5 : 16 (1/0)

Size of the tree: 119

RandomTree

Country = Denmark

- | Total Room Nights < 88
- | ADR < 58.92 : 0.5 (2/0.25)

| | ADR >= 58.92

- | | | Average pax/room < 1.94 : 7 (1/0)
- | | | Average pax/room >= 1.94 : 4 (4/0.5)
- | Total Room Nights >= 88
- | | MONTH = April 2019 : 0 (0/0)
- | | MONTH = May 2019 : 34 (1/0)
- | | MONTH = June 2019 : 40 (1/0)
- | | MONTH = July 2019
- | | | Average pax/room < 2.52 : 39 (1/0)
- | | | Average pax/room >= 2.52 : 24 (1/0)
- | | MONTH = August 2019 : 25 (1/0)

- | | MONTH = September 2019 : 39 (1/0)
- | | MONTH = October 2019 : 22 (1/0)

Country = Finland

| BB < 1541.5

- | | MONTH = April 2019 : 78 (1/0)
- | | MONTH = May 2019 : 0 (0/0)
- | | MONTH = June 2019 : 0 (0/0)
- | | MONTH = July 2019 : 0 (0/0)
- | | MONTH = August 2019 : 92 (1/0)
- | | MONTH = September 2019 : 82 (1/0)
- | | MONTH = October 2019 : 63 (1/0)

| BB >= 1541.5

- | | Average pax/room < 2.55 : 125 (1/0)
- | | Average pax/room >= 2.55
- | | | HB < 557.5 : 135 (1/0)
- | | | HB >= 557.5 : 132 (1/0)

Country = Romania

- | AI < 6
- | | Total Room Nights < 44.5 : 0.4 (2.5/0.24)
- | | Total Room Nights >= 44.5 : 20 (1/0)
- | AI >= 6
- | | TOTAL PAX Nights < 85.5 : 0 (0.5/0)
- | | TOTAL PAX Nights >= 85.5
- | | Average pax/room < 3.2
- | | | Average pax/room < 2.75 : 24 (1/0)
- | | | | Average pax/room >= 2.75 : 27 (1/0)

| | | Average pax/room >= 3.2 : 18 (1/0)

Country = Vary

| HB < 10 : 2.5 (4/0.25)

| HB >= 10

- | | TOTAL PAX Nights < 353
- | | | Average pax/room < 2.16 : 22 (1/0)
- | | Average pax/room >= 2.16
- | | | | HB < 28.5 : 9 (1/0)
- | | | HB >= 28.5
- | | | | TOTAL PAX Nights < 160 : 13 (1/0)
- | | | | | | TOTAL PAX Nights >= 160 : 11 (1/0)
- | | TOTAL PAX Nights >= 353
- | | | Total Room Nights < 227
- | | | | MONTH = April 2019 : 0 (0/0)
- | | | | MONTH = May 2019 : 0 (0/0)
- | | | | MONTH = June 2019 : 0 (0/0)
- | | | MONTH = July 2019 : 0 (0/0)
- | | | MONTH = August 2019 : 27 (1/0)
- | | | | MONTH = September 2019 : 26 (1/0)
- | | | | MONTH = October 2019 : 32 (1/0)
- | | | Total Room Nights >= 227
- | | | | MONTH = April 2019 : 41 (1/0)
- | | | | MONTH = May 2019 : 0 (0/0)
- | | | MONTH = June 2019 : 45 (1/0)
- | | | MONTH = July 2019 : 46 (1/0)
- | | | | MONTH = August 2019 : 0 (0/0)

| | | | MONTH = September 2019 : 0 (0/0)

| | | | MONTH = October 2019 : 0 (0/0)

Country = Poland

- | TOTAL PAX Nights < 777.5
- | | Total Room Nights < 57 : 1 (8/0.25)
- | | Total Room Nights >= 57

| | | AI < 280.5 : 13 (1/0)

- | | | AI >= 280.5 : 15 (1/0)
- | TOTAL PAX Nights >= 777.5
- | | Total Room Nights < 533.5

| | BB < 780.5 : 56 (1/0)

- | | BB >= 780.5 : 63 (1/0)
- | | Total Room Nights >= 533.5 : 41.5 (2/0.25)

Country = UK

- | TOTAL PAX Nights < 216
- | | ADR < 70.78 : 0.33 (3/0.22)
- | | ADR >= 70.78
- | | | Average pax/room < 1.84 : 5 (1/0)
- | | Average pax/room >= 1.84 : 7.5 (2/0.25)
- | TOTAL PAX Nights >= 216
- | | MONTH = April 2019 : 0 (0/0)
- | | MONTH = May 2019 : 28 (1/0)
- | | MONTH = June 2019
- | | ADR < 67.94 : 20 (1/0)
- | | | ADR >= 67.94 : 18 (1/0)
- | | MONTH = July 2019 : 35 (1/0)

- | | MONTH = August 2019 : 22 (1/0)
- | | MONTH = September 2019 : 34 (1/0)
- | | MONTH = October 2019
- | | | Average pax/room < 2.05 : 16 (1/0)
- | | | Average pax/room >= 2.05 : 18 (1/0)
- Country = Netherlands
- | TOTAL PAX Nights < 237.5
- | | MONTH = April 2019
- | | ADR < 55.51 : 1 (1/0)
- | | ADR >= 55.51 : 4 (1/0)
- | | MONTH = May 2019 : 0 (0/0)
- | | MONTH = June 2019 : 0 (0/0)
- | | MONTH = July 2019 : 6 (1/0)
- | | MONTH = August 2019 : 9 (1/0)
- | | MONTH = September 2019 : 0 (0/0)
- | | MONTH = October 2019 : 2 (1/0)
- | TOTAL PAX Nights >= 237.5
- | | Total Room Nights < 243
- | | Booking Source = ARHUS CHARTER : 0 (0/0)
- | | Booking Source = AURINKOMATKAT : 0 (0/0)
- | | Booking Source = BLUE AEGEAN : 0 (0/0)
- | | Booking Source = BOOKING.COM : 0 (0/0)
- | | Booking Source = BRAVO TOURS : 0 (0/0)
- | | Booking Source = EXPEDIA : 0 (0/0)
- | | | Booking Source = ITAKA : 0 (0/0)
- | | Booking Source = Jet2Holidays : 0 (0/0)

- | | Booking Source = RAINBOW : 0 (0/0)
- | | Booking Source = SUNWEB : 12 (1/0)
- | | Booking Source = TUI Deutschland : 0 (0/0)
- | | Booking Source = TUI NL : 15.67 (3/0.22)
- | | | Booking Source = TUI UK : 0 (0/0)
- | | Total Room Nights >= 243
- | | | MONTH = April 2019 : 0 (0/0)
- | | | MONTH = May 2019 : 21 (1/0)
- | | | MONTH = June 2019 : 24 (1/0)
- | | | MONTH = July 2019 : 23 (1/0)
- | | | MONTH = August 2019 : 19 (1/0)
- | | | MONTH = September 2019 : 23 (1/0)
- | | | MONTH = October 2019 : 0 (0/0)

Country = Germany

- | Average pax/room < 2.39
- | | MONTH = April 2019 : 0 (0/0)
- | | MONTH = May 2019 : 0 (0/0)
- | | MONTH = June 2019 : 12 (1/0)
- | | MONTH = July 2019 : 13 (1/0)
- | | MONTH = August 2019 : 7 (1/0)
- | | MONTH = September 2019 : 14 (1/0)
- | | MONTH = October 2019 : 1 (1/0)
- | Average pax/room >= 2.39 : 2.5 (2/0.25)

Size of the tree : 142

RandomTree

- TOTAL PAX Nights < 1867
- | Total Room Nights < 176.5
- | | HB < 12
- | | | Total Room Nights < 88
- | | | BB < 65
- | | | | AI < 29
- | | | | | | Country = Denmark : 0.5 (2/0.25)
- | | | | | | Country = Finland : 0 (0/0)
- | | | | | | Country = Romania : 0.42 (2.39/0.24)
- | | | | | Country = Vary : 2.5 (4/0.25)
- | | | | | Country = Poland : 1 (7/0.29)
- | | | | | Country = UK : 0.33 (3/0.22)
- | | | | | | Country = Netherlands : 1.5 (2/0.25)
- | | | | | Country = Germany : 0 (0/0)
- $| | | | | AI \ge 29: 4.9 (1.02/0.47)$
- | | | BB >= 65
- | | | | TOTAL PAX Nights < 119.5 : 3.78 (1.06/0.84)
- | | | | TOTAL PAX Nights >= 119.5 : 6.5 (2/0.25)
- | | | Total Room Nights >= 88
- | | | | Booking Source = ARHUS CHARTER : 0 (0/0)
- | | | | Booking Source = AURINKOMATKAT : 0 (0/0)
- | | | Booking Source = BLUE AEGEAN : 0 (0/0)
- | | | | Booking Source = BOOKING.COM : 0 (0/0)
- | | | Booking Source = BRAVO TOURS : 0 (0/0)

- | | | Booking Source = EXPEDIA : 0 (0/0)
- | | | Booking Source = ITAKA
- | | | | TOTAL PAX Nights < 280.5 : 13 (1/0)
- | | | | TOTAL PAX Nights >= 280.5 : 15 (1/0)
- | | | Booking Source = Jet2Holidays : 0 (0/0)
- | | | Booking Source = RAINBOW : 0 (0/0)
- | | | Booking Source = SUNWEB : 0 (0/0)
- | | | | Booking Source = TUI Deutschland : 0 (0/0)
- | | | Booking Source = TUI NL : 16 (1/0)
- | | | | Booking Source = TUI UK : 0 (0/0)
- | | HB >= 12
- | | | TOTAL PAX Nights < 145.5
- | | | BB < 35
- | | | | HB < 94
- | | | | | | Booking Source = ARHUS CHARTER : 0 (0/0)
- | | | | | | Booking Source = AURINKOMATKAT : 0 (0/0)
- | | | | | | Booking Source = BLUE AEGEAN : 0 (0.35/0)
- | | | | | | Booking Source = BOOKING.COM : 0 (0/0)
- | | | | Booking Source = BRAVO TOURS
- | | | | | | MONTH = April 2019 : 0 (0/0)
- | | | | | | | MONTH = May 2019 : 7 (1/0)
- | | | | | | | MONTH = June 2019 : 0 (0/0)
- | | | | | | MONTH = July 2019 : 0 (0/0)
- | | | | | | | MONTH = August 2019 : 3 (1/0)
- | | | | | | | MONTH = September 2019 : 4 (1/0)
- | | | | | | | MONTH = October 2019 : 4 (1/0)

- | | | | | | Booking Source = EXPEDIA : 0 (0/0)| | | | | Booking Source = ITAKA : 0 (0/0)| | | | | Booking Source = Jet2Holidays : 0 (0/0)| | | | | | Booking Source = RAINBOW : 1 (1/0)| | | | | | Booking Source = SUNWEB : 0 (0/0)| | | | | Booking Source = TUI Deutschland : 2 (3/0.67) | | | | | Booking Source = TUI NL : 0 (0/0)| | | | | | Booking Source = TUI UK : 0 (0/0)| | | | HB >= 94| | | | | | Average pax/room < 2.71 : 11.5 (1.04/5.8)| | | | | | Average pax/room >= 2.71 : 4.79 (1.04/1.01)| | | BB >= 35| | | | ADR < 34.3 : 0 (0.09/0)| | | | ADR >= 34.3 : 11 (2/4) | | | TOTAL PAX Nights >= 145.5| | | HB < 296 | | | | TOTAL PAX Nights < 237.5 | | | | | HB% < 0.98| | | | | | | Country = Denmark : 0 (0/0)| | | | | | Country = Finland : 0 (0/0)| | | | | Country = Romania : 18 (1/0) | | | | | | | Country = Vary : 11 (1/0)| | | | | | | Country = Poland : 0 (0/0)
 - | | | | | | | Country = UK : 8 (1/0)
 - | | | | | | Country = Netherlands : 9 (1/0)
 - | | | | | | | Country = Germany : 7 (1/0)

- | | | | HB% >= 0.98
- | | | | | | Average pax/room < 2.23 : 20 (1/0)
- | | | | | | | Average pax/room >= 2.23 : 13 (1/0)
- | | | | TOTAL PAX Nights >= 237.5
- | | | | | Average pax/room < 2.42
- | | | | | | | Booking Source = ARHUS CHARTER : 0 (0/0)
- | | | | | | | Booking Source = AURINKOMATKAT : 0 (0/0)
- | | | | | | | Booking Source = BLUE AEGEAN : 24 (1/0)
- | | | | | | | Booking Source = BOOKING.COM : 0 (0/0)
- | | | | | | | Booking Source = BRAVO TOURS : 0 (0/0)
- | | | | | | | Booking Source = EXPEDIA : 22 (1/0)
- | | | | | | | Booking Source = ITAKA : 0 (0/0)
- | | | | | Booking Source = Jet2Holidays
- | | | | | | BB% < 0.69 : 18 (1/0)
- | | | | | | | BB% >= 0.69 : 20 (1/0)
- | | | | | | | Booking Source = RAINBOW : 0 (0/0)
- | | | | | | | Booking Source = SUNWEB : 0 (0/0)
- | | | | | | | Booking Source = TUI Deutschland : 14 (1/0)
- | | | | | | Booking Source = TUI NL : 15 (1/0)
- | | | | | Booking Source = TUI UK
- | | | | | | Average pax/room < 1.94 : 16 (1/0)
- | | | | | | Average pax/room >= 1.94 : 18 (1/0)
- | | | | | | Average pax/room >= 2.42 : 12 (1/0)
- | | | HB >= 296
- | | | | Booking Source = ARHUS CHARTER : 0 (0/0)
- | | | | | Booking Source = AURINKOMATKAT : 0 (0/0)

- | | | | Booking Source = BLUE AEGEAN : 27 (1/0)
- | | | | | Booking Source = BOOKING.COM : 0 (0/0)
- | | | | Booking Source = BRAVO TOURS : 24 (1/0)
- | | | | | Booking Source = EXPEDIA : 0 (0/0)
- | | | | Booking Source = ITAKA : 0 (0/0)
- | | | | | Booking Source = Jet2Holidays : 0 (0/0)
- | | | | Booking Source = RAINBOW : 0 (0/0)
- | | | | | Booking Source = SUNWEB : 0 (0/0)
- | | | | | Booking Source = TUI Deutschland : 0 (0/0)
- | | | | | Booking Source = TUI NL : 0 (0/0)
- | | | | Booking Source = TUI UK : 0 (0/0)
- | Total Room Nights >= 176.5
- | | Country = Denmark
- | | | MONTH = April 2019 : 0 (0/0)
- | | | MONTH = May 2019 : 34 (1/0)
- | | | MONTH = June 2019 : 40 (1/0)
- | | | MONTH = July 2019 : 39 (1/0)
- | | | MONTH = August 2019 : 25 (1/0)
- | | | MONTH = September 2019 : 39 (1/0)
- | | | MONTH = October 2019 : 22 (1/0)
- | Country = Finland : 63 (1/0)
- | Country = Romania : 0 (0/0)
- | | Country = Vary
- | | | Total Room Nights < 227
- | | | | MONTH = April 2019 : 0 (0/0)
- | | | | MONTH = May 2019 : 0 (0/0)

- | | | | MONTH = June 2019 : 0 (0/0)
- | | | MONTH = July 2019 : 0 (0/0)
- | | | | MONTH = August 2019 : 27 (1/0)
- | | | | MONTH = September 2019 : 26 (1/0)
- | | | | MONTH = October 2019 : 32 (1/0)
- | | | Total Room Nights ≥ 227
- | | | ADR < 65.59 : 41 (1/0)
- | | | ADR >= 65.59 : 45.5 (2/0.25)
- | | Country = Poland
- | | | BB < 780.5
- | | | TOTAL PAX Nights < 1489 : 56 (1/0)
- | | | TOTAL PAX Nights >= 1489 : 41.5 (2/0.25)
- | | BB >= 780.5 : 63 (1/0)
- | | Country = UK
- | | | TOTAL PAX Nights < 602
- | | | | Average pax/room < 2.43 : 28 (1/0)
- | | | | Average pax/room >= 2.43 : 22 (1/0)
- | | | TOTAL PAX Nights >= 602 : 34.5 (2/0.25)
- | | Country = Netherlands
- | | | TOTAL PAX Nights < 533 : 16 (1/0)
- | | | TOTAL PAX Nights >= 533
- | | | MONTH = April 2019 : 0 (0/0)
- | | | | MONTH = May 2019 : 21 (1/0)
- | | | MONTH = June 2019 : 24 (1/0)
- | | | MONTH = July 2019 : 23 (1/0)
- | | | | MONTH = August 2019 : 19 (1/0)

- | | | | MONTH = September 2019 : 23 (1/0)
- | | | | MONTH = October 2019 : 0 (0/0)
- | Country = Germany : 0 (0/0)
- TOTAL PAX Nights >= 1867
- | TOTAL PAX Nights < 2480.5
- | BB% < 0.6:92(1/0)
- | | BB% >= 0.6
- | | | Average pax/room < 2.4 : 78 (1/0)
- | | | Average pax/room >= 2.4 : 82 (1/0)
- | TOTAL PAX Nights >= 2480.5
- | | Total Room Nights < 1176 : 125 (1/0)
- | | Total Room Nights >= 1176
- | | | BB < 1912 : 135 (1/0)
- | | BB >= 1912 : 132 (1/0)

Size of the tree : 169

RandomTree

TOTAL PAX Nights < 1867

- | Total Room Nights < 176.5
- | | ADR < 133.47
- | | Booking Source = ARHUS CHARTER : 0 (1/0)
- | | Booking Source = AURINKOMATKAT : 0 (0/0)
- | | | Booking Source = BLUE AEGEAN
- | | | | HB% < 0.42 : 0.6 (1.67/0.24)

- | | | | HB% >= 0.42
- | | | | Total Room Nights < 42.5 : 0 (1.33/0)
- | | | | Total Room Nights >= 42.5
- | | | | Average pax/room < 2.26 : 20 (1/0)
- | | | | | | Average pax/room >= 2.26 : 24 (1/0)
- | | | Booking Source = BOOKING.COM
- | | | | MONTH = April 2019 : 13 (1/0)
- | | | MONTH = May 2019 : 3 (1/0)
- | | | | MONTH = June 2019 : 11 (1/0)
- | | | | MONTH = July 2019 : 2 (1/0)
- | | | | MONTH = August 2019 : 9 (1/0)
- | | | | MONTH = September 2019 : 3 (1/0)
- | | | | MONTH = October 2019 : 2 (1/0)
- | | | Booking Source = BRAVO TOURS
- | | | | MONTH = April 2019 : 1 (1/0)
- | | | MONTH = May 2019 : 7 (1/0)
- | | | | MONTH = June 2019 : 5 (1/0)
- | | | MONTH = July 2019 : 0 (0/0)
- | | | | MONTH = August 2019 : 3 (1/0)
- | | | | MONTH = September 2019 : 4 (1/0)
- | | | | MONTH = October 2019 : 4 (1/0)
- | | Booking Source = EXPEDIA : 22 (1/0)
- | | | Booking Source = ITAKA
- | | | | MONTH = April 2019 : 2 (1/0)
- | | | MONTH = May 2019 : 15 (1/0)
- | | | | MONTH = June 2019 : 0 (0/0)

- | | | MONTH = July 2019 : 0 (0/0)
- | | | | MONTH = August 2019 : 0 (0/0)
- | | | | MONTH = September 2019 : 0 (0/0)
- | | | | MONTH = October 2019 : 13 (1/0)
- | | | Booking Source = Jet2Holidays
- | | | BB < 113.5 : 0 (1/0)
- | | | BB >= 113.5
- | | | | Total Room Nights < 157.5 : 20 (1/0)
- | | | | | Total Room Nights >= 157.5 : 18 (1/0)
- | | Booking Source = RAINBOW : 0.86 (7/0.12)
- | | | Booking Source = SUNWEB
- | | | BB% < 0.47 : 12 (1/0)
- | | | BB% >= 0.47 : 4 (1/0)
- | | | Booking Source = TUI Deutschland
- | | | | MONTH = April 2019 : 3 (1/0)
- | | | | MONTH = May 2019 : 2 (1/0)
- | | | MONTH = June 2019 : 12 (1/0)
- | | | MONTH = July 2019 : 13 (1/0)
- | | | | MONTH = August 2019 : 7 (1/0)
- | | | | MONTH = September 2019 : 14 (1/0)
- | | | | MONTH = October 2019 : 1 (1/0)
- | | | Booking Source = TUI NL
- | | | Total Room Nights < 105.5
- | | | | MONTH = April 2019 : 1 (1/0)
- | | | | | MONTH = May 2019 : 0 (0/0)
- | | | | | MONTH = June 2019 : 0 (0/0)

- | | | | MONTH = July 2019 : 6 (1/0)
- | | | | | MONTH = August 2019 : 9 (1/0)
- | | | | | MONTH = September 2019 : 0 (0/0)
- | | | | | MONTH = October 2019 : 2 (1/0)
- | | | Total Room Nights >= 105.5 : 15.5 (2/0.25)
- | | | Booking Source = TUI UK
- | | | BB < 140
- | | | | | MONTH = April 2019 : 0 (1/0)
- | | | | | MONTH = May 2019 : 1 (1/0)
- | | | | | MONTH = June 2019 : 0 (0/0)
- | | | | | MONTH = July 2019 : 5 (1/0)
- | | | | | MONTH = August 2019 : 7 (1/0)
- | | | | | MONTH =September 2019 : 8 (1/0)
- | | | | | MONTH = October 2019 : 0 (0/0)
- | | | BB >= 140
- | | | | BB < 152.5 : 16 (1/0)
- | | | | BB >= 152.5 : 18 (1/0)
- | | ADR >= 133.47
- | | | MONTH = April 2019 : 0 (0/0)
- | | | MONTH = May 2019 : 0 (0/0)
- | | | MONTH = June 2019 : 0 (0/0)
- | | | MONTH = July 2019
- | | | | HB < 321.5 : 24 (1/0)
- | | | | HB >= 321.5 : 27 (1/0)
- | | | MONTH = August 2019 : 18 (1/0)
- | | | MONTH = September 2019 : 0 (0/0)

- | | | MONTH = October 2019 : 0 (0/0)
- | Total Room Nights >= 176.5
- | | TOTAL PAX Nights < 1040.5
- | | | Country = Denmark
- | | | Average pax/room < 2.27
- | | | | | Average pax/room < 2.12
- | | | | | | AI < 641 : 40 (1/0)
- | | | | | | AI >= 641 : 25 (1/0)
- | | | | | Average pax/room >= 2.12
- | | | | | | AI% < 0.5 : 34 (1/0)
- | | | | | | AI% >= 0.5 : 39 (2/0)
- | | | Average pax/room >= 2.27 : 22 (1/0)
- | | Country = Finland : 0 (0/0)
- | | Country = Romania : 0 (0/0)
- | | | Country = Vary
- | | | Total Room Nights < 227
- | | | | MONTH = April 2019 : 0 (0/0)
- | | | | | MONTH = May 2019 : 0 (0/0)
- | | | | | MONTH = June 2019 : 0 (0/0)
- | | | | MONTH = July 2019 : 0 (0/0)
- | | | | MONTH = August 2019 : 27 (1/0)
- | | | | | MONTH = September 2019 : 26 (1/0)
- | | | | | MONTH = October 2019 : 32 (1/0)
- | | | Total Room Nights >= 227
- | | | | | HB% < 0.07 : 41 (1/0)
- | | | | | HB% >= 0.07 : 45.5 (2/0.25)

- | | | Country = Poland : 0 (0/0)
- | | | Country = UK
- | | | TOTAL PAX Nights < 602
- | | | | TOTAL PAX Nights < 545.5 : 28 (1/0)
- | | | | TOTAL PAX Nights >= 545.5 : 22 (1/0)
- | | | TOTAL PAX Nights >= 602 : 34.5 (2/0.25)
- | | | Country = Netherlands
- | | | Average pax/room < 2.08 : 16 (1/0)
- | | | Average pax/room >= 2.08
- | | | | | HB < 22 : 19 (1/0)
- | | | | HB >= 22
- | | | | BB < 348.5 : 23.33 (3/0.22)
- | | | | BB >= 348.5 : 21 (1/0)
- | | | Country = Germany : 0 (0/0)
- | | TOTAL PAX Nights >= 1040.5
- | | | TOTAL PAX Nights < 1639.5
- | | | Average pax/room < 2.5 : 56 (1/0)
- | | | | Average pax/room >= 2.5 : 63 (2/0)
- | | | TOTAL PAX Nights >= 1639.5 : 41.5 (2/0.25)
- TOTAL PAX Nights >= 1867
- | TOTAL PAX Nights < 2480.5
- | | Average pax/room < 2.51
- | | ADR < 77.03 : 78 (1/0)
- | | ADR >= 77.03 : 82 (1/0)
- | | Average pax/room >= 2.51 : 92 (1/0)
- | TOTAL PAX Nights >= 2480.5

- | | Total Room Nights < 1176 : 125 (1/0)
- | | Total Room Nights >= 1176
- | | | Average pax/room < 2.96 : 132 (1/0)
- | | Average pax/room >= 2.96 : 135 (1/0)

Size of the tree : 142

RandomTree

- TOTAL PAX Nights < 1867
- | TOTAL PAX Nights < 338.5
- | | TOTAL PAX Nights < 93.5
- | | | ADR < 66.69 : 0.58 (12/0.41)
- | | | ADR >= 66.69
- | | | | Booking Source = ARHUS CHARTER : 0 (0/0)
- | | | Booking Source = AURINKOMATKAT : 0 (0/0)
- | | | Booking Source = BLUE AEGEAN : 0 (0/0)
- | | | Booking Source = BOOKING.COM : 2.5 (4/0.25)
- | | | Booking Source = BRAVO TOURS
- | | | | ADR < 71.4 : 7 (1/0)
- | | | | ADR >= 71.4 : 3.67 (3/0.22)
- | | | Booking Source = EXPEDIA : 0 (0/0)
- | | | Booking Source = ITAKA : 2 (1/0)
- | | | Booking Source = Jet2Holidays : 0 (0/0)
- | | | Booking Source = RAINBOW : 1 (5/0)
- | | | | Booking Source = SUNWEB : 0 (0/0)

- | | | Booking Source = TUI Deutschland : 2 (3/0.67)
- | | | Booking Source = TUI NL : 0 (0/0)
- | | | Booking Source = TUI UK : 5 (1/0)
- | | TOTAL PAX Nights >= 93.5
- | | Booking Source = ARHUS CHARTER : 0 (0/0)
- | | Booking Source = AURINKOMATKAT : 0 (0/0)
- | | | Booking Source = BLUE AEGEAN
- | | | | MONTH = April 2019 : 0 (0/0)
- | | | | MONTH = May 2019 : 0 (0/0)
- | | | | MONTH = June 2019 : 24 (1/0)
- | | | MONTH = July 2019 : 0 (0/0)
- | | | | MONTH = August 2019 : 18 (1/0)
- | | | | MONTH = September 2019 : 20 (1/0)
- | | | | MONTH = October 2019 : 0 (0/0)
- | | | Booking Source = BOOKING.COM
- | | | | Average pax/room < 2.53 : 9 (1/0)
- | | | Average pax/room >= 2.53
- | | | | ADR < 97.15 : 13 (1/0)
- | | | | ADR >= 97.15 : 11 (1/0)
- | | Booking Source = BRAVO TOURS : 5 (1/0)
- | | Booking Source = EXPEDIA : 22 (1/0)
- | | | Booking Source = ITAKA
- | | | Average pax/room < 2.7 : 13 (1/0)
- | | | Average pax/room >= 2.7 : 15 (1/0)
- | | Booking Source = Jet2Holidays : 20 (1/0)
- | | Booking Source = RAINBOW : 0 (0/0)

- | | | Booking Source = SUNWEB
- | | | | TOTAL PAX Nights < 202.5 : 4 (1/0)
- | | | TOTAL PAX Nights >= 202.5 : 12 (1/0)
- | | | Booking Source = TUI Deutschland
- | | | | MONTH = April 2019 : 0 (0/0)
- | | | | MONTH = May 2019 : 0 (0/0)
- | | | MONTH = June 2019 : 12 (1/0)
- | | | MONTH = July 2019 : 13 (1/0)
- | | | | MONTH = August 2019 : 7 (1/0)
- | | | | MONTH = September 2019 : 14 (1/0)
- | | | | MONTH = October 2019 : 0 (0/0)
- | | | Booking Source = TUI NL
- | | | TOTAL PAX Nights < 237.5
- | | | | | Average pax/room < 2.38 : 6 (1/0)
- | | | | | Average pax/room >= 2.38 : 9 (1/0)
- | | | TOTAL PAX Nights >= 237.5 : 15.5 (2/0.25)
- | | | Booking Source = TUI UK
- | | | Total Room Nights < 110.5 : 7.5 (2/0.25)
- | | | Total Room Nights >= 110.5
- | | | | BB < 152.5 : 16 (1/0)
- | | | | BB >= 152.5 : 18 (1/0)
- | TOTAL PAX Nights >= 338.5
- | | MONTH = April 2019 : 41 (1/0)
- | | MONTH = May 2019
- | | | TOTAL PAX Nights < 612.5
- | | | | Country = Denmark : 34 (1/0)

- | | | Country = Finland : 0 (0/0)
- | | | | Country = Romania : 0 (0/0)
- | | | Country = Vary : 0 (0/0)
- | | | | Country = Poland : 0 (0/0)
- | | | Country = UK : 28 (1/0)
- | | | Country = Netherlands : 0 (0/0)
- | | | Country = Germany : 0 (0/0)
- | | | TOTAL PAX Nights >= 612.5 : 21 (1/0)
- | | MONTH = June 2019
- | | Booking Source = ARHUS CHARTER : 40 (1/0)
- | | Booking Source = AURINKOMATKAT : 0 (0/0)
- | | Booking Source = BLUE AEGEAN : 0 (0/0)
- | | Booking Source = BOOKING.COM : 0 (0/0)
- | | Booking Source = BRAVO TOURS : 0 (0/0)
- | | Booking Source = EXPEDIA : 45 (1/0)
- | | Booking Source = ITAKA : 63 (1/0)
- | | Booking Source = Jet2Holidays : 0 (0/0)
- | | Booking Source = RAINBOW : 0 (0/0)
- | | Booking Source = SUNWEB : 24 (1/0)
- | | Booking Source = TUI Deutschland : 0 (0/0)
- | | | Booking Source = TUI NL : 0 (0/0)
- | | Booking Source = TUI UK : 0 (0/0)
- | | MONTH = July 2019
- | | Booking Source = ARHUS CHARTER : 39 (1/0)
- | | Booking Source = AURINKOMATKAT : 0 (0/0)
- | | Booking Source = BLUE AEGEAN : 27 (1/0)

- | | Booking Source = BOOKING.COM : 0 (0/0)
- | | Booking Source = BRAVO TOURS : 24 (1/0)
- | | Booking Source = EXPEDIA : 46 (1/0)
- | | Booking Source = ITAKA : 42 (1/0)
- | | Booking Source = Jet2Holidays : 35 (1/0)
- | | Booking Source = RAINBOW : 0 (0/0)
- | | Booking Source = SUNWEB : 23 (1/0)
- | | Booking Source = TUI Deutschland : 0 (0/0)
- | | Booking Source = TUI NL : 0 (0/0)
- | | Booking Source = TUI UK : 0 (0/0)
- | | MONTH = August 2019
- | | | Average pax/room < 3.05
- | | | | Country = Denmark : 25 (1/0)
- | | | | Country = Finland : 0 (0/0)
- | | | | Country = Romania : 0 (0/0)
- | | | Country = Vary : 27 (1/0)
- | | | Country = Poland : 0 (0/0)
- | | | | Country = UK : 22 (1/0)
- | | | | Country = Netherlands : 19 (1/0)
- | | | Country = Germany : 0 (0/0)
- | | | Average pax/room >= 3.05 : 41 (1/0)
- | | MONTH = September 2019
- | | Booking Source = ARHUS CHARTER : 39 (1/0)
- | | Booking Source = AURINKOMATKAT : 0 (0/0)
- | | Booking Source = BLUE AEGEAN : 0 (0/0)
- | | Booking Source = BOOKING.COM : 0 (0/0)

- | | Booking Source = BRAVO TOURS : 0 (0/0)
- | | Booking Source = EXPEDIA : 26 (1/0)
- | | Booking Source = ITAKA : 56 (1/0)
- | | Booking Source = Jet2Holidays : 34 (1/0)
- | | Booking Source = RAINBOW : 0 (0/0)
- | | Booking Source = SUNWEB : 23 (1/0)
- | | Booking Source = TUI Deutschland : 0 (0/0)
- | | Booking Source = TUI NL : 16 (1/0)
- | | | Booking Source = TUI UK : 0 (0/0)
- | | MONTH = October 2019
- | | | Average pax/room < 2.46
- | | | | Country = Denmark : 22 (1/0)
- | | | | Country = Finland : 0 (0/0)
- | | | | Country = Romania : 0 (0/0)
- | | | | Country = Vary : 32 (1/0)
- | | | | Country = Poland : 0 (0/0)
- | | | | Country = UK : 18 (1/0)
- | | | | Country = Netherlands : 0 (0/0)
- | | | Country = Germany : 0 (0/0)
- | | | Average pax/room >= 2.46 : 63 (1/0)
- TOTAL PAX Nights >= 1867
- | AI% < 0.18
- | ADR < 77.03 : 78 (1/0)
- | | ADR >= 77.03 : 82 (1/0)
- | AI% >= 0.18
- | | TOTAL PAX Nights < 2480.5 : 92 (1/0)

- | | TOTAL PAX Nights >= 2480.5
- | | | MONTH = April 2019 : 0 (0/0)
- | | | MONTH = May 2019 : 125 (1/0)
- | | | MONTH = June 2019 : 132 (1/0)
- | | | MONTH = July 2019 : 135 (1/0)
- | | | MONTH = August 2019 : 0 (0/0)
- | | | MONTH = September 2019 : 0 (0/0)
- | | | MONTH = October 2019 : 0 (0/0)

Size of the tree : 156

RandomTree

Average pax/room < 2

- | TOTAL PAX Nights < 216
- | | TOTAL PAX Nights < 55 : 1.14 (12.27/0.49)
- | | TOTAL PAX Nights >= 55
- | | | ADR < 75.48 : 7.5 (2/0.25)
- | | | ADR >= 75.48 : 4.5 (2/0.25)
- | TOTAL PAX Nights >= 216
- | | MONTH = April 2019 : 0 (0/0)
- | | MONTH = May 2019 : 22 (1/0)
- | | MONTH = June 2019 : 18 (1/0)
- | | MONTH = July 2019 : 0 (0/0)
- | | MONTH = August 2019 : 0 (0/0)
- | | MONTH = September 2019 : 0 (0/0)

- | | MONTH = October 2019 : 16 (1/0)
- Average pax/room ≥ 2
- | HB% < 0.28
- | | Country = Denmark
- | | | Total Room Nights < 103 : 0 (0.58/0)
- | | | Total Room Nights >= 103
- | | | | Average pax/room < 2.27
- | | | | BB% < 0.5
- | | | | | Total Room Nights < 306 : 39.5 (2/0.25)
- | | | | | Total Room Nights >= 306
- | | | | | Average pax/room < 2.12 : 25 (1/0)
- | | | | | | Average pax/room >= 2.12 : 39 (1/0)
- | | | | BB% >= 0.5 : 34 (1/0)
- | | | | Average pax/room >= 2.27 : 22 (1/0)
- | | Country = Finland
- | | | Total Room Nights < 1040.5
- | | | | Total Room Nights < 699 : 63 (1/0)
- | | | Total Room Nights >= 699
- | | | | MONTH = April 2019 : 78 (1/0)
- | | | | | MONTH = May 2019 : 0 (0/0)
- | | | | | MONTH = June 2019 : 0 (0/0)
- | | | | | MONTH = July 2019 : 0 (0/0)
- | | | | | MONTH = August 2019 : 92 (1/0)
- | | | | | MONTH =September 2019 : 82 (1/0)
- | | | | | MONTH = October 2019 : 0 (0/0)
- | | | Total Room Nights >= 1040.5

- | | | | Total Room Nights < 1176 : 125 (1/0)
- | | | Total Room Nights >= 1176
- | | | | Total Room Nights < 1217.5 : 135 (1/0)
- | | | | | Total Room Nights >= 1217.5 : 132 (1/0)
- | Country = Romania : 0 (1.15/0)
- | | Country = Vary
- | | | Total Room Nights < 106.5 : 2.33 (3/0.22)
- | | | Total Room Nights >= 106.5
- | | | HB% < 0.23
- | | | | TOTAL PAX Nights < 501 : 32 (1/0)
- | | | | TOTAL PAX Nights >= 501
- | | | | | ADR < 65.59 : 41 (1/0)
- | | | | ADR >= 65.59 : 45.5 (2/0.25)
- | | | | HB% >= 0.23 : 26.5 (2/0.25)
- | | Country = Poland
- | | | TOTAL PAX Nights < 777.5
- | | | Total Room Nights < 57 : 1.27 (1.58/0.93)
- | | | Total Room Nights >= 57
- | | | | | Total Room Nights < 104.5 : 15 (1/0)
- | | | | | Total Room Nights >= 104.5 : 13 (1/0)
- | | | TOTAL PAX Nights >= 777.5
- | | | Average pax/room < 3.07
- | | | | TOTAL PAX Nights < 1410.5 : 56 (1/0)
- | | | | TOTAL PAX Nights >= 1410.5 : 63 (1/0)
- | | | Average pax/room >= 3.07 : 41.5 (2/0.25)
- | | Country = UK

- | | | BB < 149
- | | | BB% < 0.7 : 4.44 (1.58/11.37)
- | | | BB% >= 0.7 : 0.63 (1.58/0.23)
- | | | BB >= 149
- | | | Total Room Nights < 225
- | | | | TOTAL PAX Nights < 475
- | | | | | TOTAL PAX Nights < 332.5 : 20 (1/0)
- | | | | | TOTAL PAX Nights >= 332.5 : 18 (1/0)
- | | | | | TOTAL PAX Nights >= 475 : 22 (1/0)
- | | | Total Room Nights >= 225
- | | | | | MONTH = April 2019 : 0 (0/0)
- | | | | MONTH = May 2019 : 28 (1/0)
- | | | | | MONTH = June 2019 : 0 (0/0)
- | | | | MONTH = July 2019 : 35 (1/0)
- | | | | | MONTH = August 2019 : 0 (0/0)
- | | | | | MONTH = September 2019 : 34 (1/0)
- | | | | | MONTH = October 2019 : 0 (0/0)
- | | Country = Netherlands
- | | | BB < 201.5
- | | | BB < 90.5
- | | | | HB < 3
- | | | | | | ADR < 55.51 : 1 (1/0)
- | | | | ADR >= 55.51 : 4 (1/0)
- | | | | HB >= 3:6(1/0)
- | | | BB >= 90.5
- | | | | | Booking Source = ARHUS CHARTER : 0 (0/0)

- | | | | Booking Source = AURINKOMATKAT : 0 (0/0)| | | | Booking Source = BLUE AEGEAN : 0 (0/0)| | | | Booking Source = BOOKING.COM : 0 (0/0)| | | | Booking Source = BRAVO TOURS : 0 (0/0)| | | | Booking Source = EXPEDIA : 0 (0/0)| | | | Booking Source = ITAKA : 0 (0/0) | | | | Booking Source = Jet2Holidays : 0 (0/0) | | | | Booking Source = RAINBOW : 0 (0/0)| | | | Booking Source = SUNWEB : 12 (1/0)| | | | | Booking Source = TUI Deutschland : 0 (0/0)| | | | Booking Source = TUI NL : 9 (1/0) | | | | Booking Source = TUI UK : 0 (0/0) | | BB >= 201.5| | | TOTAL PAX Nights < 533 : 16 (2/0) | | | TOTAL PAX Nights >= 533 | | | | Total Room Nights < 272 : 24 (1/0) | | | | Total Room Nights >= 272 | | | | ADR < 114.13 | | | | BB < 294 : 19 (1/0) | | | | | | BB >= 294| | | | | | | | Average pax/room < 2.17 : 23 (1/0)| | | | | | | | | Average pax/room >= 2.17 : 21 (1/0)| | | | | ADR >= 114.13 : 23 (1/0)| Country = Germany : 0 (0/0)
 - | HB% >= 0.28
 - | | Total Room Nights < 43

- | | | TO/ OTA = TO
- | | | | Total Room Nights < 14 : 0 (1.27/0)
- | | | Total Room Nights >= 14
- | | | | Average pax/room < 2.98 : 3 (4/0.5)
- | | | | | Average pax/room >= 2.98 : 5 (1/0)
- | | | TO/OTA = OTA
- | | | ADR < 100.75 : 13 (1/0)
- | | | ADR >= 100.75 : 9 (1/0)
- | | Total Room Nights >= 43
- | | | AI < 10
- | | | Average pax/room < 2.19 : 20 (1/0)
- | | | | Average pax/room >= 2.19
- | | | | AI% < 0.02 : 12 (3/0.67)
- | | | | | AI% >= 0.02:7(1/0)
- | | | AI >= 10
- | | | | Country = Denmark : 24 (1/0)
- | | | | Country = Finland : 0 (0/0)
- | | | Country = Romania
- | | | | MONTH = April 2019 : 0 (0/0)
- | | | | | MONTH = May 2019 : 0 (0/0)
- | | | | | MONTH = June 2019 : 24 (1/0)
- | | | | MONTH = July 2019 : 27 (1/0)
- | | | | MONTH = August 2019 : 18 (1/0)
- | | | | | MONTH =September 2019 : 0 (0/0)
- | | | | | MONTH = October 2019 : 0 (0/0)
- | | | Country = Vary : 0 (0/0)

- | | | Country = Poland : 0 (0/0)
- | | | Country = UK : 0 (0/0)
- | | | Country = Netherlands : 15 (1/0)
- | | | | Country = Germany : 14 (1/0)

Size of the tree : 148

RandomTree

Booking Source = ARHUS CHARTER

| AI < 542.5

- | | TOTAL PAX Nights < 244 : 0 (1/0)
- | | TOTAL PAX Nights >= 244
- | | ADR < 44.02 : 34 (1/0)
- | | ADR >= 44.02 : 22 (1/0)
- | AI >= 542.5
- | | Total Room Nights < 306 : 39.5 (2/0.25)
- | | Total Room Nights >= 306
- | | | Average pax/room < 2.12 : 25 (1/0)
- | | | Average pax/room >= 2.12 : 39 (1/0)

Booking Source = AURINKOMATKAT

- | TOTAL PAX Nights < 2480.5
- | | MONTH = April 2019 : 78 (1/0)
- | | MONTH = May 2019 : 0 (0/0)
- | | MONTH = June 2019 : 0 (0/0)
- | | MONTH = July 2019 : 0 (0/0)

- | | MONTH = August 2019 : 92 (1/0)
- | | MONTH = September 2019 : 82 (1/0)
- | | MONTH = October 2019 : 63 (1/0)
- | TOTAL PAX Nights >= 2480.5
- | | TOTAL PAX Nights < 3032 : 125 (1/0)
- | | TOTAL PAX Nights >= 3032
- | | | Total Room Nights < 1217.5 : 135 (1/0)
- | | | Total Room Nights >= 1217.5 : 132 (1/0)

Booking Source = BLUE AEGEAN

- | ADR < 43.99 : 0.33 (3/0.22)
- | ADR >= 43.99
- | | TOTAL PAX Nights < 227.5
- | | | HB < 168 : 18 (1/0)
- | | | HB >= 168 : 20 (1/0)
- | | TOTAL PAX Nights >= 227.5
- | | | ADR < 116.24 : 24 (1/0)
- | | | ADR >= 116.24 : 27 (1/0)

Booking Source = BOOKING.COM

- | Total Room Nights < 29 : 2.5 (4/0.25)
- | Total Room Nights >= 29
- | ADR < 97.15 : 13 (1/0)
- | ADR >= 97.15
- | | | TOTAL PAX Nights < 156.5 : 9 (1/0)
- | | | TOTAL PAX Nights >= 156.5 : 11 (1/0)

Booking Source = BRAVO TOURS

| ADR < 129.51

- | | Total Room Nights < 32
- | | | Average pax/room < 2.4 : 1 (1/0)
- | | | Average pax/room >= 2.4 : 3 (1/0)
- | | Total Room Nights >= 32
- | | | Average pax/room < 1.94 : 7 (1/0)
- | | | Average pax/room >= 1.94 : 4.33 (3/0.22)

| ADR >= 129.51 : 24 (1/0)

Booking Source = EXPEDIA

- | MONTH = April 2019 : 41 (1/0)
- | MONTH = May 2019 : 22 (1/0)
- | MONTH = June 2019 : 45 (1/0)
- | MONTH = July 2019 : 46 (1/0)
- | MONTH = August 2019 : 27 (1/0)
- | MONTH = September 2019 : 26 (1/0)
- | MONTH = October 2019 : 32 (1/0)
- Booking Source = ITAKA
- | ADR < 100.16
- | | BB < 24
- | | | Average pax/room < 2.7 : 13 (1/0)
- | | | Average pax/room >= 2.7 : 15 (1/0)
- | BB >= 24 : 2(1/0)
- | ADR >= 100.16
- | | Total Room Nights < 533.5
- | | | TOTAL PAX Nights < 1410.5 : 56 (1/0)
- | | | TOTAL PAX Nights >= 1410.5 : 63 (1/0)
- | | Total Room Nights >= 533.5 : 41.5 (2/0.25)

- | MONTH = April 2019 : 0 (1/0)
- | MONTH = May 2019 : 28 (1/0)
- | MONTH = June 2019 : 20 (1/0)
- | MONTH = July 2019 : 35 (1/0)
- | MONTH = August 2019 : 22 (1/0)
- | MONTH = September 2019 : 34 (1/0)
- | MONTH = October 2019 : 18 (1/0)
- Booking Source = RAINBOW : 0.86 (7/0.12)
- Booking Source = SUNWEB
- | MONTH = April 2019 : 4(1/0)
- | MONTH = May 2019 : 21 (1/0)
- | MONTH = June 2019 : 24 (1/0)
- | MONTH = July 2019 : 23 (1/0)
- | MONTH = August 2019 : 19 (1/0)
- | MONTH = September 2019 : 23 (1/0)
- | MONTH = October 2019 : 12 (1/0)

Booking Source = TUI Deutschland

- | AI < 28
- | | MONTH = April 2019 : 0 (0/0)
- | | MONTH = May 2019 : 2 (1/0)
- | | MONTH = June 2019 : 12 (1/0)
- | | MONTH = July 2019 : 13 (1/0)
- | | MONTH = August 2019 : 7 (1/0)
- | | MONTH = September 2019 : 14 (1/0)
- | | MONTH = October 2019 : 1 (1/0)

| AI >= 28 : 3 (1/0)

Booking Source = TUI NL

- | Total Room Nights < 105.5
- | | Total Room Nights < 36.5 : 1.5 (2/0.25)
- | | Total Room Nights >= 36.5
- | | | TOTAL PAX Nights < 175.5 : 6 (1/0)
- | | | TOTAL PAX Nights >= 175.5 : 9 (1/0)
- | Total Room Nights >= 105.5 : 15.67 (3/0.22)

Booking Source = TUI UK

- | TOTAL PAX Nights < 216
- | | AI% < 0.06 : 0.8 (1.25/0.16)
- | | AI% >= 0.06
- | | | MONTH = April 2019 : 0 (0.75/0)
- | | | MONTH = May 2019 : 0 (0/0)
- | | | MONTH = June 2019 : 0 (0/0)
- | | | MONTH = July 2019 : 5 (1/0)
- | | | MONTH = August 2019 : 7 (1/0)
- | | | MONTH = September 2019 : 8 (1/0)
- | | | MONTH = October 2019 : 0 (0/0)
- | TOTAL PAX Nights >= 216
- | | ADR < 72.12 : 16 (1/0)
- | ADR >= 72.12 : 18 (1/0)

Size of the tree : 118

RandomTree

Country = Denmark

| HB% < 0.36

- | | MONTH = April 2019 : 0 (0.46/0)
- | | MONTH = May 2019 : 34 (1/0)
- | | MONTH = June 2019 : 40 (1/0)
- | | MONTH = July 2019 : 39 (1/0)
- | | MONTH = August 2019 : 25 (1/0)
- | | MONTH = September 2019 : 39 (1/0)
- | | MONTH = October 2019 : 22 (1/0)

| HB% >= 0.36

- | | TOTAL PAX Nights < 246
- | | | ADR < 58.92 : 0.65 (1.54/0.23)
- | | ADR >= 58.92
- | | | ADR < 71.4 : 7 (1/0)
- | | | ADR >= 71.4 : 4 (4/0.5)
- | | TOTAL PAX Nights >= 246 : 24 (1/0)

Country = Finland

- | MONTH = April 2019 : 78 (1/0)
- | MONTH = May 2019 : 125 (1/0)
- | MONTH = June 2019 : 132 (1/0)
- | MONTH = July 2019 : 135 (1/0)
- | MONTH = August 2019 : 92 (1/0)
- | MONTH = September 2019 : 82 (1/0)
- | MONTH = October 2019 : 63 (1/0)

Country = Romania

- | Total Room Nights < 28 : 0.33 (3/0.22)
- | Total Room Nights >= 28
- | | Average pax/room < 3.2
- | | | AI < 6: 20 (1/0)
- | | | AI >= 6
- | | | AI < 27: 27 (1/0)
- | | | | AI >= 27 : 24 (1/0)
- | | Average pax/room >= 3.2 : 18 (1/0)

Country = Vary

- | HB < 10 : 2.5 (4/0.25)
- | HB >= 10
- | | BB < 492.5
- | | Booking Source = ARHUS CHARTER : 0 (0/0)
- | | Booking Source = AURINKOMATKAT : 0 (0/0)
- | | Booking Source = BLUE AEGEAN : 0 (0/0)
- | | | Booking Source = BOOKING.COM
- | | | | TOTAL PAX Nights < 100.5 : 9 (1/0)
- | | | TOTAL PAX Nights >= 100.5
- | | | | BB < 110.5 : 13 (1/0)
- | | | | BB >= 110.5 : 11 (1/0)
- | | Booking Source = BRAVO TOURS : 0 (0/0)
- | | | Booking Source = EXPEDIA
- | | | BB < 303 : 22 (1/0)
- | | | BB >= 303
- | | | | | MONTH = April 2019 : 0 (0/0)
- | | | | | MONTH = May 2019 : 0 (0/0)

- | | | | MONTH = June 2019 : 0 (0/0)
- | | | | | MONTH = July 2019 : 0 (0/0)
- | | | | | MONTH = August 2019 : 27 (1/0)
- | | | | | MONTH = September 2019 : 26 (1/0)
- | | | | | MONTH = October 2019 : 32 (1/0)
- | | Booking Source = ITAKA : 0 (0/0)
- | | Booking Source = Jet2Holidays : 0 (0/0)
- | | Booking Source = RAINBOW : 0 (0/0)
- | | Booking Source = SUNWEB : 0 (0/0)
- | | Booking Source = TUI Deutschland : 0 (0/0)
- | | Booking Source = TUI NL : 0 (0/0)
- | | Booking Source = TUI UK : 0 (0/0)
- | | BB >= 492.5
- | | | TOTAL PAX Nights < 566.5 : 41 (1/0)
- | | | TOTAL PAX Nights >= 566.5 : 45.5 (2/0.25)

Country = Poland

- | TOTAL PAX Nights < 777.5
- | | AI < 146 : 1 (8/0.25)
- | | AI >= 146
- | | | Average pax/room < 2.7 : 13 (1/0)
- | | | Average pax/room >= 2.7 : 15 (1/0)
- | TOTAL PAX Nights >= 777.5
- | | MONTH = April 2019 : 0 (0/0)
- | | MONTH = May 2019 : 0 (0/0)
- | | MONTH = June 2019 : 63 (1/0)
- | | MONTH = July 2019 : 42 (1/0)

- | | MONTH = August 2019 : 41 (1/0)
- | | MONTH = September 2019 : 56 (1/0)
- | | MONTH = October 2019 : 0 (0/0)

Country = UK

- | TOTAL PAX Nights < 216
- | | Total Room Nights < 31 : 0.33 (3/0.22)
- | | Total Room Nights >= 31
- | | ADR < 79.73 : 8 (1/0)
- | | | ADR >= 79.73
- | | | ADR < 103.68 : 5 (1/0)
- | | | ADR >= 103.68 : 7 (1/0)
- | TOTAL PAX Nights >= 216
- | | Average pax/room < 2.06
- | | | Average pax/room < 1.94 : 16 (1/0)
- | | | Average pax/room >= 1.94
- | | | Booking Source = ARHUS CHARTER : 0 (0/0)
- | | | | Booking Source = AURINKOMATKAT : 0 (0/0)
- | | | | Booking Source = BLUE AEGEAN : 0 (0/0)
- | | | | Booking Source = BOOKING.COM : 0 (0/0)
- | | | Booking Source = BRAVO TOURS : 0 (0/0)
- | | | Booking Source = EXPEDIA : 0 (0/0)
- | | | Booking Source = ITAKA : 0 (0/0)
- | | | Booking Source = Jet2Holidays : 20 (1/0)
- | | | | Booking Source = RAINBOW : 0 (0/0)
- | | | | Booking Source = SUNWEB : 0 (0/0)
- | | | | Booking Source = TUI Deutschland : 0 (0/0)

- | | | Booking Source = TUI NL : 0 (0/0)
- | | | Booking Source = TUI UK : 18 (1/0)
- | Average pax/room >= 2.06
- | | BB < 283 : 18 (1/0)
- | | | BB >= 283
- | | | Total Room Nights < 246
- | | | | ADR < 81.69 : 28 (1/0)
- | | | | ADR >= 81.69 : 22 (1/0)
- | | | Total Room Nights >= 246 : 34.5 (2/0.25)

Country = Netherlands

- | Total Room Nights < 105.5
- | | MONTH = April 2019
- | | | Average pax/room < 2.87 : 4 (1/0)
- | | | Average pax/room >= 2.87 : 1 (1/0)
- | | MONTH = May 2019 : 0 (0/0)
- | | MONTH = June 2019 : 0 (0/0)
- | | MONTH = July 2019 : 6 (1/0)
- | | MONTH = August 2019 : 9 (1/0)
- | | MONTH = September 2019 : 0 (0/0)
- | | MONTH = October 2019 : 2 (1/0)
- | Total Room Nights >= 105.5
- | | TOTAL PAX Nights < 533
- | | | MONTH = April 2019 : 0 (0/0)
- | | | MONTH = May 2019 : 16 (1/0)
- | | | MONTH = June 2019 : 15 (1/0)
- | | | MONTH = July 2019 : 0 (0/0)

- | | | MONTH = August 2019 : 0 (0/0)
- | | | MONTH = September 2019 : 16 (1/0)
- | | | MONTH = October 2019 : 12 (1/0)
- | | TOTAL PAX Nights >= 533
- | | | ADR < 91.61
- | | | | MONTH = April 2019 : 0 (0/0)
- | | | | MONTH = May 2019 : 21 (1/0)
- | | | | MONTH = June 2019 : 24 (1/0)
- | | | MONTH = July 2019 : 0 (0/0)
- | | | | MONTH = August 2019 : 0 (0/0)
- | | | | MONTH = September 2019 : 23 (1/0)
- | | | | MONTH = October 2019 : 0 (0/0)
- | | ADR >= 91.61
- | | | BB < 258 : 23 (1/0)
- | | | BB >= 258 : 19 (1/0)

Country = Germany

- | MONTH = April 2019 : 3 (1/0)
- | MONTH = May 2019 : 2 (1/0)
- | MONTH = June 2019 : 12 (1/0)
- | MONTH = July 2019 : 13 (1/0)
- | MONTH = August 2019 : 7 (1/0)
- | MONTH = September 2019 : 14 (1/0)
- | MONTH = October 2019 : 1 (1/0)

Size of the tree: 153

RandomTree

- Total Room Nights < 569.5
- | Booking Source = ARHUS CHARTER
- $| \quad | \quad BB < 244$
- | | Total Room Nights < 103 : 0 (1/0)
- | | | Total Room Nights >= 103
- | | | Average pax/room < 2.26
- | | | | MONTH = April 2019 : 0 (0/0)
- | | | | | MONTH = May 2019 : 0 (0/0)
- | | | | | MONTH = June 2019 : 40 (1/0)
- | | | | MONTH = July 2019 : 39 (1/0)
- | | | | MONTH = August 2019 : 25 (1/0)
- | | | | | MONTH =September 2019 : 39 (1/0)
- | | | | | MONTH = October 2019 : 0 (0/0)
- | | | | Average pax/room >= 2.26 : 22 (1/0)
- | BB >= 244 : 34 (1/0)
- | Booking Source = AURINKOMATKAT : 0 (0/0)
- | Booking Source = BLUE AEGEAN
- | | MONTH = April 2019 : 0 (1/0)
- | | MONTH = May 2019 : 1 (1/0)
- | | MONTH = June 2019 : 24 (1/0)
- | | MONTH = July 2019 : 27 (1/0)
- | | MONTH = August 2019 : 18 (1/0)
- | | MONTH = September 2019 : 20 (1/0)
- | | MONTH = October 2019 : 0 (1/0)

- | Booking Source = BOOKING.COM
- | | TOTAL PAX Nights < 81.5 : 2.5 (4/0.25)
- | | TOTAL PAX Nights >= 81.5
- | | | Average pax/room < 2.53 : 9 (1/0)
- | | | Average pax/room >= 2.53
- | | | | Average pax/room < 2.83 : 13 (1/0)
- | | | | Average pax/room >= 2.83 : 11 (1/0)
- | Booking Source = BRAVO TOURS
- | | Total Room Nights < 88
- | | | MONTH = April 2019 : 1 (1/0)
- | | | MONTH = May 2019 : 7 (1/0)
- | | | MONTH = June 2019 : 5 (1/0)
- | | | MONTH = July 2019 : 0 (0/0)
- | | | MONTH = August 2019 : 3 (1/0)
- | | | MONTH = September 2019 : 4 (1/0)
- | | | MONTH = October 2019 : 4 (1/0)
- | Total Room Nights >= 88 : 24 (1/0)
- | Booking Source = EXPEDIA
- | | BB < 492.5
- | | | MONTH = April 2019 : 0 (0/0)
- | | | MONTH = May 2019 : 22 (1/0)
- | | | MONTH = June 2019 : 0 (0/0)
- | | | MONTH = July 2019 : 0 (0/0)
- | | | MONTH = August 2019 : 27 (1/0)
- | | | MONTH = September 2019 : 26 (1/0)
- | | | MONTH = October 2019 : 32 (1/0)

- | | BB >= 492.5
- | | | TOTAL PAX Nights < 566.5 : 41 (1/0)
- | | | TOTAL PAX Nights >= 566.5 : 45.5 (2/0.25)
- | Booking Source = ITAKA
- | | ADR < 100.16
- | | | TOTAL PAX Nights < 157 : 2 (1/0)
- | | | TOTAL PAX Nights >= 157
- | | | Average pax/room < 2.7 : 13 (1/0)
- | | | Average pax/room >= 2.7 : 15 (1/0)
- | ADR >= 100.16
- | | | MONTH = April 2019 : 0 (0/0)
- | | | MONTH = May 2019 : 0 (0/0)
- | | | MONTH = June 2019 : 63 (1/0)
- | | | MONTH = July 2019 : 42 (1/0)
- | | | MONTH = August 2019 : 41 (1/0)
- | | | MONTH = September 2019 : 56 (1/0)
- | | | MONTH = October 2019 : 0 (0/0)
- | Booking Source = Jet2Holidays
- | | TOTAL PAX Nights < 155.5 : 0 (1/0)
- | | TOTAL PAX Nights >= 155.5
- | | | Total Room Nights < 225
- | | | ADR < 88.71
- | | | | ADR < 61.23 : 20 (1/0)
- | | | | ADR >= 61.23 : 18 (1/0)
- | | | ADR >= 88.71 : 22 (1/0)
- | | | Total Room Nights ≥ 225

- | | | ADR < 63.28 : 28 (1/0)
- | | | ADR >= 63.28 : 34.5 (2/0.25)
- | Booking Source = RAINBOW : 0.86 (7/0.12)
- | Booking Source = SUNWEB
- | | MONTH = April 2019 : 4 (1/0)
- | | MONTH = May 2019 : 21 (1/0)
- | | MONTH = June 2019 : 24 (1/0)
- | | MONTH = July 2019 : 23 (1/0)
- | | MONTH = August 2019 : 19 (1/0)
- | | MONTH = September 2019 : 23 (1/0)
- | | MONTH = October 2019 : 12 (1/0)
- | Booking Source = TUI Deutschland
- | | MONTH = April 2019 : 3 (1/0)
- | | MONTH = May 2019 : 2 (1/0)
- | | MONTH = June 2019 : 12 (1/0)
- | | MONTH = July 2019 : 13 (1/0)
- | | MONTH = August 2019 : 7 (1/0)
- | | MONTH = September 2019 : 14 (1/0)
- | | MONTH = October 2019 : 1 (1/0)
- | Booking Source = TUI NL
- | | Total Room Nights < 105.5
- | | | ADR < 72.11 : 1.5 (2/0.25)
- | | | ADR >= 72.11
- | | | ADR < 99.22 : 9 (1/0)
- | | | ADR >= 99.22 : 6 (1/0)
- | | Total Room Nights $\geq 105.5 : 15.67 (3/0.22)$

- | Booking Source = TUI UK
- | | Total Room Nights < 110.5
- | | | MONTH = April 2019 : 0 (1/0)
- | | | MONTH = May 2019 : 1 (1/0)
- | | | MONTH = June 2019 : 0 (0/0)
- | | | MONTH = July 2019 : 5 (1/0)
- | | | MONTH = August 2019 : 7 (1/0)
- | | | MONTH = September 2019 : 8 (1/0)
- | | | MONTH = October 2019 : 0 (0/0)
- | | Total Room Nights >= 110.5
- | | | Average pax/room < 1.94 : 16 (1/0)
- | | | Average pax/room >= 1.94 : 18 (1/0)

Total Room Nights >= 569.5

- | MONTH = April 2019 : 78 (1/0)
- | MONTH = May 2019 : 125 (1/0)
- | MONTH = June 2019 : 132 (1/0)
- | MONTH = July 2019 : 135 (1/0)
- | MONTH = August 2019 : 92 (1/0)
- | MONTH = September 2019 : 82 (1/0)
- | MONTH = October 2019 : 63 (1/0)

Size of the tree : 123

Classifiers with low or negative correlation coefficient (2019):

Lazy K Star

Correlation coefficient	0.9327
Mean absolute error	5.6405
Root mean squared error	10.2027
Relative absolute error	29.5003 %
Root relative squared error	36.0832 %
Total Number of Instances	91

Multilayer Perceptron

=== Classifier model (full training set) ===

Linear Node 0

- Inputs Weights
- Threshold 0.07109771693061714
- Node 1 -0.40296824691080807
- Node 2 -0.6621335013310197
- Node 3 -0.15864620365909546
- Node 4 0.48608176152571403
- Node 5 0.320017054944052
- Node 6 -0.015398430701580727
- Node 7 0.2678088365511743
- Node 8 0.789022850752216
- Node 9 0.0650264845432003
- Node 10 -0.2576120577691362
- Node 11 -0.10638092361038676
- Node 12 -0.11877718270766281
- Node 13 -0.43654228984554383
- Node 14 0.043836947271253576
- Node 15 -0.9001252189528062
- Node 16 -0.004790221125993978

Node 17 -0.0012769329858275688

Node 18 0.06708084280419196

- Node 19 0.7755129240131697
- Node 20 0.5500903953235246

Sigmoid Node 1

Inputs Weights

Threshold -0.11326154146273766

Attrib Booking Source=ARHUS CHARTER -0.09418668469134503

Attrib Booking Source=AURINKOMATKAT -0.13467906112452732

Attrib Booking Source=BLUE AEGEAN -0.07189096692433342

Attrib Booking Source=BOOKING.COM 0.15133623162093096

Attrib Booking Source=BRAVO TOURS 0.44790692359303674

Attrib Booking Source=EXPEDIA -0.11927389893708984

Attrib Booking Source=ITAKA 0.1074193640614443

Attrib Booking Source=Jet2Holidays 0.012858384779396978

Attrib Booking Source=RAINBOW 0.35564479553726697

Attrib Booking Source=SUNWEB -0.366487876317349

Attrib Booking Source=TUI Deutschland 0.08323600411299704

Attrib Booking Source=TUI NL 0.3489859546182458

Attrib Booking Source=TUI UK -0.01940903138333248

Attrib Country=Denmark 0.28153762835641666

Attrib Country=Finland -0.2167262882646323

Attrib Country=Romania -0.14061327106561472

Attrib Country=Vary -0.017729858490741324

Attrib Country=Poland 0.434843453491475

Attrib Country=UK -0.0135769428443448

Attrib Country=Netherlands -0.03816091862488667

Attrib Country=Germany 0.10735182934668279

Attrib Average pax/room 0.1514516521674497

Attrib TO/ OTA=OTA -0.04595987161277557

Attrib ADR -0.522669379038609

Attrib TOTAL PAX Nights -0.7573891157291729

Attrib Total Room Nights -1.033735878799182

Attrib BB -0.22437045590270988

Attrib BB% 0.29573039967030723

Attrib HB -0.21383402033083415

Attrib HB% 0.07587841944809334

Attrib AI -0.15949481654894643

Attrib AI% 0.10878341562462213

Attrib MONTH=April 2019 0.18947180010603956

Attrib MONTH=May 2019 0.6932856731289202

Attrib MONTH=June 2019 0.29329771764356277

Attrib MONTH=July 2019 0.09335836708842352

Attrib MONTH=August 2019 -0.16581612258471282

Attrib MONTH=September 2019 -0.4713727079555084

Attrib MONTH=October 2019 -0.23470146813953838

Sigmoid Node 2

Inputs Weights

Threshold -0.14500373283323176

Attrib Booking Source=ARHUS CHARTER -0.03331361622882429

Attrib Booking Source=AURINKOMATKAT -0.050257277986903395

Attrib Booking Source=BLUE AEGEAN 0.25077196701663534

Attrib Booking Source=BOOKING.COM 0.31491757630579437 Attrib Booking Source=BRAVO TOURS 0.08827509041325324 Attrib Booking Source=EXPEDIA 0.1741498039085636 Attrib Booking Source=ITAKA 0.20222158513442773 Attrib Booking Source=Jet2Holidays 0.3104616636897445 Attrib Booking Source=RAINBOW -0.15953860368312195 Attrib Booking Source=SUNWEB 0.18851968172914688 Attrib Booking Source=TUI Deutschland 0.3851747861321432 Attrib Booking Source=TUI NL 0.3975115053101002 Attrib Booking Source=TUI UK -0.0870111750124361 Attrib Country=Denmark -0.11896972740448301 Attrib Country=Finland 0.0016599969185305513 Attrib Country=Romania 0.20774224545505507 Attrib Country=Vary 0.2040632841462182 Attrib Country=Poland -0.13266945629881008 Attrib Country=UK 0.06127898637722226 Attrib Country=Netherlands 0.37922647718146596 Attrib Country=Germany 0.3712168573446193 Attrib Average pax/room 0.08396269769215998 Attrib TO/ OTA=OTA 0.28356162492548515 Attrib ADR -0.04366042223209534 Attrib TOTAL PAX Nights -0.32948438932977686 Attrib Total Room Nights -0.4574275192442581 Attrib BB -0.10296993828844121 Attrib BB% 0.28674763733448444

Attrib HB 0.06408662386547005

Attrib HB% 0.01615493029088179

Attrib AI 0.0431817059589975

Attrib AI% -0.10708461864550932

Attrib MONTH=April 2019 -0.260440029308215

Attrib MONTH=May 2019 -0.13095152958028575

Attrib MONTH=June 2019 -0.0728121516901253

Attrib MONTH=July 2019 0.6454272112242992

Attrib MONTH=August 2019 -0.20993254309204723

Attrib MONTH=September 2019 0.2109052653367657

Attrib MONTH=October 2019 0.6825318512200114

Sigmoid Node 3

Inputs Weights

Threshold -0.12187370738606022

Attrib Booking Source=ARHUS CHARTER 0.1579850297321055

Attrib Booking Source=AURINKOMATKAT -8.478095328921116E-4

Attrib Booking Source=BLUE AEGEAN 0.1665869454257261

Attrib Booking Source=BOOKING.COM 0.09882429479270258

Attrib Booking Source=BRAVO TOURS 0.25773140197123395

Attrib Booking Source=EXPEDIA 0.08012593829802178

Attrib Booking Source=ITAKA 0.04357791897886238

Attrib Booking Source=Jet2Holidays 0.1666253739275713

Attrib Booking Source=RAINBOW 0.1203040290683847

Attrib Booking Source=SUNWEB 0.1253543807304496

Attrib Booking Source=TUI Deutschland 0.17851238115079268

Attrib Booking Source=TUI NL 0.09825808810535806

Attrib Booking Source=TUI UK 0.10133062696379672

Attrib Country=Denmark 0.1651785357083922	
Attrib Country=Finland 0.007046427690325411	
Attrib Country=Romania 0.18432658830673	
Attrib Country=Vary 0.04198507177425412	
Attrib Country=Poland 0.018369906920388642	
Attrib Country=UK 0.07314959404029829	
Attrib Country=Netherlands 0.1306865205368309	
Attrib Country=Germany 0.19483778081901262	
Attrib Average pax/room 0.005997231960752283	
Attrib TO/ OTA=OTA 0.049008831157464475	
Attrib ADR -0.15509921459295542	
Attrib TOTAL PAX Nights -0.11164756926562847	
Attrib Total Room Nights -0.15925007238156058	
Attrib BB 0.07263935241845097	
Attrib BB% 0.0029110989607911888	
Attrib HB 0.07176523537098872	
Attrib HB% 0.12606596516987986	
Attrib AI 0.07789109621684301	
Attrib AI% 0.14204831239639912	
Attrib MONTH=April 2019 0.2308082482521892	
Attrib MONTH=May 2019 0.12092533153187415	
Attrib MONTH=June 2019 0.0577454251000822	
Attrib MONTH=July 2019 0.04297433848554704	
Attrib MONTH=August 2019 0.11058058330616923	
Attrib MONTH=September 2019 0.0426026414696721	
Attrib MONTH=October 2019 0.06859656265485663	

Sigmoid Node 4

Inputs Weights

Threshold -0.08829822544965715

Attrib Booking Source=ARHUS CHARTER 0.12324177977207927

Attrib Booking Source=AURINKOMATKAT 0.05397160950919729

Attrib Booking Source=BLUE AEGEAN 0.02466583249074063

Attrib Booking Source=BOOKING.COM 0.2665267928628154

Attrib Booking Source=BRAVO TOURS -0.015150610277449116

Attrib Booking Source=EXPEDIA 0.13232030705877357

Attrib Booking Source=ITAKA 0.1068392553903618

Attrib Booking Source=Jet2Holidays 0.0907827192582196

Attrib Booking Source=RAINBOW 0.10329601189558947

Attrib Booking Source=SUNWEB -0.01175395798822746

Attrib Booking Source=TUI Deutschland 0.028340793469234515

Attrib Booking Source=TUI NL 0.22416398532423068

Attrib Booking Source=TUI UK 0.06586345195569884

Attrib Country=Denmark -0.03501608603358452

Attrib Country=Finland 0.06770683768503061

Attrib Country=Romania 0.05080125104070624

Attrib Country=Vary 0.3213045376069354

Attrib Country=Poland 0.11296256321750293

Attrib Country=UK 0.10990510339007457

Attrib Country=Netherlands 0.07305686378831382

Attrib Country=Germany 0.005457208305791118

Attrib Average pax/room -0.16492836728381124

Attrib TO/ OTA=OTA 0.326247630937099

Attrib ADR -0.07977152307546563

Attrib TOTAL PAX Nights 0.15618008664858826

Attrib Total Room Nights 0.22156951930064672

Attrib BB 0.03540490664427582

Attrib BB% 0.09310832691938212

Attrib HB -0.14455010044267458

Attrib HB% 0.06661855672301585

Attrib AI -0.04354004068407641

Attrib AI% -0.10010928668837105

Attrib MONTH=April 2019 0.5946432116872858

Attrib MONTH=May 2019 0.08527148761822016

Attrib MONTH=June 2019 -0.07278774733945576

Attrib MONTH=July 2019 0.04033662719437262

Attrib MONTH=August 2019 0.0072897256959839115

Attrib MONTH=September 2019 -0.15781161348577807

Attrib MONTH=October 2019 0.05901007650322424

Sigmoid Node 5

Inputs Weights

Threshold -0.15252077397233652

Attrib Booking Source=ARHUS CHARTER 0.07401385666454594

Attrib Booking Source=AURINKOMATKAT 0.10590777355772074

Attrib Booking Source=BLUE AEGEAN 0.28090170282948274

Attrib Booking Source=BOOKING.COM 0.08912340454683429

Attrib Booking Source=BRAVO TOURS -0.0976316151695189

Attrib Booking Source=EXPEDIA 0.08856501750543637

Attrib Booking Source=ITAKA 0.03856946851896069

Attrib Booking Source=Jet2Holidays 0.09233877121714698 Attrib Booking Source=RAINBOW 0.05904657225748539 Attrib Booking Source=SUNWEB 0.1678598277695587 Attrib Booking Source=TUI Deutschland 0.06913468165382287 Attrib Booking Source=TUI NL 0.2422502933503587 Attrib Booking Source=TUI UK 0.11185535211524558 Attrib Country=Denmark -0.15242381945352576 Attrib Country=Finland 0.0752424399344786 Attrib Country=Romania 0.2609179095939755 Attrib Country=Vary 0.04468291498004096 Attrib Country=Poland 0.08237861016730219 Attrib Country=UK 0.11486401225167099 Attrib Country=Netherlands 0.2547513638153792 Attrib Country=Germany 0.06550378845086255 Attrib Average pax/room -0.08472214449184247 Attrib TO/ OTA=OTA 0.03789259208746756 Attrib ADR 0.03685042924024216 Attrib TOTAL PAX Nights 0.1417816890393352 Attrib Total Room Nights 0.26792828752813647 Attrib BB -0.003500440838489442Attrib BB% -0.0914152732424823 Attrib HB -0.06418134428561187 Attrib HB% 0.16115265563585196 Attrib AI 0.010943896463538716 Attrib AI% -0.009691757867903376

Attrib MONTH=April 2019 0.09981967302232046

Attrib MONTH=May 2019 0.11883214384665779 Attrib MONTH=June 2019 0.20430824304867956 Attrib MONTH=July 2019 -0.020896928155150353 Attrib MONTH=August 2019 0.20915303451748152 Attrib MONTH=September 2019 -0.16155611842254664 Attrib MONTH=October 2019 0.231854245626138 Sigmoid Node 6 Inputs Weights Threshold -0.1331528029674265 Attrib Booking Source=ARHUS CHARTER 0.057719189522516125 Attrib Booking Source=AURINKOMATKAT -0.00755653730202173 Attrib Booking Source=BLUE AEGEAN 0.11929231068087226 Attrib Booking Source=BOOKING.COM 0.19856521682600506 Attrib Booking Source=BRAVO TOURS 0.16002439343823102 Attrib Booking Source=EXPEDIA 0.08968829936887909 Attrib Booking Source=ITAKA 0.13920970548733022 Attrib Booking Source=Jet2Holidays 0.08076861742413488 Attrib Booking Source=RAINBOW 0.13703068942672747 Attrib Booking Source=SUNWEB 0.14826069569889974 Attrib Booking Source=TUI Deutschland 0.15330433641868735 Attrib Booking Source=TUI NL 0.18576930489477836

Attrib Booking Source=TUI UK 0.15452186540542778

Attrib Country=Denmark 0.08466908100126325

Attrib Country=Finland -0.011150216516441198

Attrib Country=Romania 0.19677612653771606

Attrib Country=Vary 0.09351783980625879

Attrib Country=Poland 0.15482882627369693

Attrib Country=UK 0.1163396795356653

Attrib Country=Netherlands 0.13512225230901656

Attrib Country=Germany 0.19961592020180285

Attrib Average pax/room 0.031111085009333697

Attrib TO/ OTA=OTA 0.11355168501362091

Attrib ADR -0.08567324738980296

Attrib TOTAL PAX Nights -0.044722261896475116

Attrib Total Room Nights -0.1491737867134942

Attrib BB -0.013378285846881973

Attrib BB% 0.06480063688733026

Attrib HB -0.024653772906461577

Attrib HB% 0.06668995276620447

Attrib AI 0.036221882192291006

Attrib AI% 0.096547497715648

Attrib MONTH=April 2019 0.09692835002447044

Attrib MONTH=May 2019 0.1974239837379522

Attrib MONTH=June 2019 0.04000687818621975

Attrib MONTH=July 2019 0.20210575617104287

Attrib MONTH=August 2019 0.055327977811591614

Attrib MONTH=September 2019 0.11261169649761638

Attrib MONTH=October 2019 0.0425271153334509

Sigmoid Node 7

Inputs Weights

Threshold -0.08709508579313097

Attrib Booking Source=ARHUS CHARTER 0.06588302998863553

Attrib Booking Source=AURINKOMATKAT 0.12253460643975338 Attrib Booking Source=BLUE AEGEAN 0.1316971857888071 Attrib Booking Source=BOOKING.COM 0.05861057483807775 Attrib Booking Source=BRAVO TOURS 0.00418370598448621 Attrib Booking Source=EXPEDIA 0.22126166670689487 Attrib Booking Source=ITAKA 0.0565947799275185 Attrib Booking Source=Jet2Holidays 0.1848860561517084 Attrib Booking Source=RAINBOW 0.04802908010320675 Attrib Booking Source=SUNWEB 0.12701080415354205 Attrib Booking Source=TUI Deutschland 0.11214537715672059 Attrib Booking Source=TUI NL 0.16140945726636838 Attrib Booking Source=TUI UK 0.018877026669084085 Attrib Country=Denmark 0.03053721393371835 Attrib Country=Finland 0.07452490166248364 Attrib Country=Romania 0.22624186839247698 Attrib Country=Vary 0.12943000299358196 Attrib Country=Poland -0.023511461281392296 Attrib Country=UK 0.04673892821822464 Attrib Country=Netherlands 0.13767228636925216 Attrib Country=Germany 0.195345691233857 Attrib Average pax/room -0.08286989185835227 Attrib TO/ OTA=OTA 0.18029770223191074 Attrib ADR 0.11723222957911775 Attrib TOTAL PAX Nights 0.20596881193382388 Attrib Total Room Nights 0.3327879055783564

Attrib BB 0.10967251216957664

Attrib BB% -0.05420167376164751

Attrib HB 0.07141335828869727

Attrib HB% 0.13071471077430902

Attrib AI 0.031109448601938854

Attrib AI% -0.11222835020664951

Attrib MONTH=April 2019 0.16143321262169172

Attrib MONTH=May 2019 0.16351418315928837

Attrib MONTH=June 2019 0.23817872755847866

Attrib MONTH=July 2019 0.2049335936850878

Attrib MONTH=August 2019 0.051725714814472266

Attrib MONTH=September 2019 -0.204749546646595

Attrib MONTH=October 2019 0.021864781332978346

Sigmoid Node 8

Inputs Weights

Threshold -0.1257970545635837

Attrib Booking Source=ARHUS CHARTER 0.458846828909564

Attrib Booking Source=AURINKOMATKAT 0.10396951699049099

Attrib Booking Source=BLUE AEGEAN 0.10441191825811097

Attrib Booking Source=BOOKING.COM -0.059259106172731335

Attrib Booking Source=BRAVO TOURS 0.07187103732713496

Attrib Booking Source=EXPEDIA 0.2173253588397431

Attrib Booking Source=ITAKA -0.19598892953686287

Attrib Booking Source=Jet2Holidays 0.5104869320221894

Attrib Booking Source=RAINBOW -0.05477962180439255

Attrib Booking Source=SUNWEB -0.1367860868267929

Attrib Booking Source=TUI Deutschland 0.07548100866379165

Attrib Booking Source=TUI NL 0.19622170517724513

Attrib Booking Source=TUI UK -0.46384423517039125

Attrib Country=Denmark 0.5198640341784722

Attrib Country=Finland 0.1424707748378368

Attrib Country=Romania 0.13983155694943605

Attrib Country=Vary 0.06304545799262137

Attrib Country=Poland -0.3827710401433516

Attrib Country=UK -0.006528953528970396

Attrib Country=Netherlands 0.060342755651172454

Attrib Country=Germany 0.06747508043009698

Attrib Average pax/room 0.17063137358209032

Attrib TO/ OTA=OTA 0.08565245634439483

Attrib ADR 0.38291042059179237

Attrib TOTAL PAX Nights 0.47496039204414275

Attrib Total Room Nights 0.6687622992720236

Attrib BB 0.37918494887068455

Attrib BB% -0.11970134305524115

Attrib HB 0.2703121395780883

Attrib HB% -0.05092913360004239

Attrib AI 0.02564300623921458

Attrib AI% -0.2165638664802037

Attrib MONTH=April 2019 -0.13939038874107237

Attrib MONTH=May 2019 0.5308305053126212

Attrib MONTH=June 2019 -0.01928179974833053

Attrib MONTH=July 2019 0.9379797474326447

Attrib MONTH=August 2019 -0.054991228350805076

Attrib MONTH=September 2019 -0.5454788854676752

Attrib MONTH=October 2019 -0.38448404825814786

Sigmoid Node 9

Inputs Weights

Threshold -0.1363888447903936

Attrib Booking Source=ARHUS CHARTER 0.10097419844350917 Attrib Booking Source=AURINKOMATKAT 0.08804793716986287 Attrib Booking Source=BLUE AEGEAN 0.15380042523153908 Attrib Booking Source=BOOKING.COM 0.1537942430536753 Attrib Booking Source=BRAVO TOURS 0.07562240608683088 Attrib Booking Source=EXPEDIA 0.11275259921941003 Attrib Booking Source=ITAKA 0.12194531953384458 Attrib Booking Source=Jet2Holidays 0.09776452895589681 Attrib Booking Source=RAINBOW 0.14043398836588145 Attrib Booking Source=SUNWEB 0.13513082088890316 Attrib Booking Source=TUI Deutschland 0.15163582939129688 Attrib Booking Source=TUI NL 0.10336200407629272 Attrib Booking Source=TUI UK 0.14235125761181291 Attrib Country=Denmark 0.08226214889195387 Attrib Country=Finland 0.02630167876723207 Attrib Country=Romania 0.1366709143783275 Attrib Country=Vary 0.055267973757146 Attrib Country=Poland 0.10097707138180811 Attrib Country=UK 0.07816455167222211 Attrib Country=Netherlands 0.06765662211059766

Attrib Country=Germany 0.15303213503963886

Attrib Average pax/room 0.05387344304422825

Attrib TO/ OTA=OTA 0.07225772583556413

Attrib ADR -0.07845596643669012

Attrib TOTAL PAX Nights 0.06782605856246231

Attrib Total Room Nights 0.025264974406370922

Attrib BB -0.01614466156678523

Attrib BB% 0.016947590520749983

Attrib HB 0.007604283697366847

Attrib HB% 0.05888674208815257

Attrib AI 0.04116845052457511

Attrib AI% 0.045116396304026536

Attrib MONTH=April 2019 0.169161907451603

Attrib MONTH=May 2019 0.04202427006369376

Attrib MONTH=June 2019 0.011676093488940987

Attrib MONTH=July 2019 0.03872856569434875

Attrib MONTH=August 2019 0.06288169336227316

Attrib MONTH=September 2019 0.10533191740867846

Attrib MONTH=October 2019 0.13272661962666357

Sigmoid Node 10

Inputs Weights

Threshold -0.1479529865406293

Attrib Booking Source=ARHUS CHARTER 0.11166945747509623

Attrib Booking Source=AURINKOMATKAT -0.05796395706386043

Attrib Booking Source=BLUE AEGEAN 0.24198951815188224

Attrib Booking Source=BOOKING.COM 0.08106355828585772

Attrib Booking Source=BRAVO TOURS 0.19960448739456865

Attrib Booking Source=EXPEDIA 0.108236054582306 Attrib Booking Source=ITAKA 0.14797463920497547 Attrib Booking Source=Jet2Holidays 0.11915272434972801 Attrib Booking Source=RAINBOW 0.029137381904747094 Attrib Booking Source=SUNWEB 0.3221162499109217 Attrib Booking Source=TUI Deutschland 0.3508306052003681 Attrib Booking Source=TUI NL 0.061948889617785594 Attrib Booking Source=TUI UK 0.1977849429779874 Attrib Country=Denmark 0.09169274715908388 Attrib Country=Finland -0.04878273664216448 Attrib Country=Romania 0.2150320615893737 Attrib Country=Vary 0.09480374182847663 Attrib Country=Poland 0.00671504926705343 Attrib Country=UK 0.12310093910522323 Attrib Country=Netherlands 0.2281102325809599 Attrib Country=Germany 0.31594924348616954 Attrib Average pax/room 0.033965796379352965 Attrib TO/ OTA=OTA 0.028691438428517728 Attrib ADR -0.17661374391066015 Attrib TOTAL PAX Nights -0.29674151710350927 Attrib Total Room Nights -0.3325354028078236 -0.02003469170603024 Attrib BB Attrib BB% 0.16846523952604903 Attrib HB 0.016185274563194622 Attrib HB% 0.08667972959651282 Attrib AI 0.06245618366277375

Attrib AI% 0.20895229848430177

Attrib MONTH=April 2019 0.2621826932031723 Attrib MONTH=May 2019 0.3481055531367439 Attrib MONTH=June 2019 -0.013893840598901412 Attrib MONTH=July 2019 0.17978170743015123 Attrib MONTH=August 2019 0.117623741208433 Attrib MONTH=September 2019 0.08495306502572793 Attrib MONTH=October 2019 0.0566750424235328 Sigmoid Node 11 Inputs Weights Threshold -0.1046368306475034 Attrib Booking Source=ARHUS CHARTER 0.13805635835217248 Attrib Booking Source=AURINKOMATKAT 0.04138567430032936 Attrib Booking Source=BLUE AEGEAN 0.133033081011269 Attrib Booking Source=BOOKING.COM 0.12630208986270725 Attrib Booking Source=BRAVO TOURS 0.11626243566881996 Attrib Booking Source=EXPEDIA 0.13059791884435212 Attrib Booking Source=ITAKA 0.06640664670477883 Attrib Booking Source=Jet2Holidays 0.12175966174489797 Attrib Booking Source=RAINBOW 0.14087511641437436 Attrib Booking Source=SUNWEB 0.08762736696503368 Attrib Booking Source=TUI Deutschland 0.11351651000446977 Attrib Booking Source=TUI NL 0.07639739142486357 Attrib Booking Source=TUI UK 0.18424566409654494 Attrib Country=Denmark 0.06053828364752289 Attrib Country=Finland 0.020464307178890542

Attrib Country=Romania 0.10549059736923652

Attrib Country=Vary 0.03693805566850185

Attrib Country=Poland 0.05193381523230864

Attrib Country=UK 0.18364483051067088

Attrib Country=Netherlands 0.0885980233465479

Attrib Country=Germany 0.14538280919844285

Attrib Average pax/room 0.046588907207822716

Attrib TO/ OTA=OTA 0.08164635229926205

Attrib ADR -0.07921270589624796

Attrib TOTAL PAX Nights -0.06846822446991845

Attrib Total Room Nights -0.09402438192672431

Attrib BB 0.06917134089552159

Attrib BB% 0.034468556591493615

Attrib HB 0.09572893871532921

Attrib HB% 0.12115413977552143

Attrib AI 0.08893536119763679

Attrib AI% 0.1011930705792736

Attrib MONTH=April 2019 0.14225093715449863

Attrib MONTH=May 2019 0.12012336029057548

Attrib MONTH=June 2019 0.11159981956735232

Attrib MONTH=July 2019 0.11969741522670341

Attrib MONTH=August 2019 0.0832911057093754

Attrib MONTH=September 2019 0.1253657396855563

Attrib MONTH=October 2019 -0.017529764545586933

Sigmoid Node 12

Inputs Weights

Threshold -0.10376818940306982

Attrib Booking Source=ARHUS CHARTER 0.12377295168144976 Attrib Booking Source=AURINKOMATKAT 9.36550377229498E-4 Attrib Booking Source=BLUE AEGEAN 0.1504833560471242 Attrib Booking Source=BOOKING.COM 0.08091500272386506 Attrib Booking Source=BRAVO TOURS 0.18912365331068037 Attrib Booking Source=EXPEDIA 0.0361218560999875 Attrib Booking Source=ITAKA 0.06455371773210085 Attrib Booking Source=Jet2Holidays 0.11972958428188056 Attrib Booking Source=RAINBOW 0.18328696970661243 Attrib Booking Source=SUNWEB 0.20326929454367082 Attrib Booking Source=TUI Deutschland 0.22062842029794813 Attrib Booking Source=TUI NL 0.11979771075669969 Attrib Booking Source=TUI UK 0.20030210679392968 Attrib Country=Denmark 0.11574371486422529 Attrib Country=Finland 0.010464898174932704 Attrib Country=Romania 0.09097538983979073 Attrib Country=Vary 0.0760392839563745 Attrib Country=Poland 0.09447383606645256 Attrib Country=UK 0.1508938630440705 Attrib Country=Netherlands 0.10387419898971226 Attrib Country=Germany 0.1642134399451636 Attrib Average pax/room -0.003761394221586533 Attrib TO/ OTA=OTA 0.007072651426213641 Attrib ADR -0.07826956727126017

Attrib TOTAL PAX Nights -0.10389152664853052

Attrib Total Room Nights -0.16195228859343383

Attrib BB 0.0329797907895684

Attrib BB% 0.017237860867849217

Attrib HB -0.03233175815595289

Attrib HB% 0.17858318874231346

Attrib AI 0.06997066090027922

Attrib AI% 0.08483129670979074

Attrib MONTH=April 2019 0.17198471537909737

Attrib MONTH=May 2019 0.17388502730438052

Attrib MONTH=June 2019 0.06678441293697533

Attrib MONTH=July 2019 0.12396268266611378

Attrib MONTH=August 2019 0.15649248392649054

Attrib MONTH=September 2019 0.11136596147492343

Attrib MONTH=October 2019 4.12091588471187E-4

Sigmoid Node 13

Inputs Weights

Threshold -0.0946963087575667

Attrib Booking Source=ARHUS CHARTER 0.0889564839324552

Attrib Booking Source=AURINKOMATKAT -0.010035591160551761

Attrib Booking Source=BLUE AEGEAN 0.2854951983703372

Attrib Booking Source=BOOKING.COM -0.06522530998679167

Attrib Booking Source=BRAVO TOURS 0.25293967808766105

Attrib Booking Source=EXPEDIA 0.10396583420348915

Attrib Booking Source=ITAKA -0.040498819326266096

Attrib Booking Source=Jet2Holidays 0.04900367343792238

Attrib Booking Source=RAINBOW 0.022443222559516418

Attrib Booking Source=SUNWEB 0.2985469129836817 Attrib Booking Source=TUI Deutschland 0.23483693056498847 Attrib Booking Source=TUI NL 0.02726003683483663 Attrib Booking Source=TUI UK 0.13999019575386712 Attrib Country=Denmark 0.18590695992669704 Attrib Country=Finland -0.05159269924971623 Attrib Country=Romania 0.338620949348999 Attrib Country=Vary -0.07546127990452739 Attrib Country=Poland -0.07584043942571046 Attrib Country=UK 8.591788038928249E-4 Attrib Country=Netherlands 0.2276923287867788 Attrib Country=Germany 0.24480706751433354 Attrib Average pax/room 0.0032739252316809487 Attrib TO/ OTA=OTA -0.08108319432575198 Attrib ADR -0.2658843388623676 Attrib TOTAL PAX Nights -0.2482641181862449 Attrib Total Room Nights -0.2387332758031298 Attrib BB 0.042241653238975316 Attrib BB% 0.12397616831259141 Attrib HB 0.09657438346173008 Attrib HB% 0.11448068643848237 Attrib AI 0.12200702672537686 Attrib AI% 0.14909020329143974 Attrib MONTH=April 2019 0.41767510973659333

Attrib MONTH=May 2019 0.15625225970167514

Attrib MONTH=June 2019 -0.07728240446113788

Attrib MONTH=July 2019 0.04762581338922958 Attrib MONTH=August 2019 0.0369961318987717 Attrib MONTH=September 2019 0.19608982124469743 Attrib MONTH=October 2019 0.01052640987006035 Sigmoid Node 14 Inputs Weights Threshold -0.16131919852015117 Attrib Booking Source=ARHUS CHARTER 0.07312454705767092 Attrib Booking Source=AURINKOMATKAT 0.04139808242839088 Attrib Booking Source=BLUE AEGEAN 0.10639819565126121 Attrib Booking Source=BOOKING.COM 0.15978701154114847 Attrib Booking Source=BRAVO TOURS 0.06853116385698058 Attrib Booking Source=EXPEDIA 0.09750579555191514 Attrib Booking Source=ITAKA 0.1288563748416659 Attrib Booking Source=Jet2Holidays 0.11656873795990447 Attrib Booking Source=RAINBOW 0.11229489922462414 Attrib Booking Source=SUNWEB 0.14564722508557085 Attrib Booking Source=TUI Deutschland 0.11259641877531539 Attrib Booking Source=TUI NL 0.0911733279905308 Attrib Booking Source=TUI UK 0.10835152900856779 Attrib Country=Denmark 0.12623590849878988 Attrib Country=Finland 0.07728377556419387 Attrib Country=Romania 0.14633845817486632 Attrib Country=Vary 0.11769798081375156 Attrib Country=Poland 0.06354684927440406 Attrib Country=UK 0.055138746739384244

Attrib Country=Netherlands 0.10936050459589791

Attrib Country=Germany 0.16865021399035496

Attrib Average pax/room 0.001041645938739338

Attrib TO/ OTA=OTA 0.060212410712161

Attrib ADR -0.034183803323064595

Attrib TOTAL PAX Nights 0.022491637768155395

Attrib Total Room Nights 0.03812508421122355

Attrib BB -0.015710863201808613

Attrib BB% 0.011013247043542234

Attrib HB 0.004520158812315304

Attrib HB% 0.04155851370524105

Attrib AI 0.10171684489083517

Attrib AI% 0.040976137728615365

Attrib MONTH=April 2019 0.143231860017455

Attrib MONTH=May 2019 0.10529144896515866

Attrib MONTH=June 2019 0.08207156601998966

Attrib MONTH=July 2019 0.07899185644225974

Attrib MONTH=August 2019 0.0904086792443873

Attrib MONTH=September 2019 0.0835534110140994

Attrib MONTH=October 2019 0.07856017776378883

Sigmoid Node 15

Inputs Weights

Threshold 0.08627377609237893

Attrib Booking Source=ARHUS CHARTER -0.23875721061985217

Attrib Booking Source=AURINKOMATKAT -0.37717269043909274

Attrib Booking Source=BLUE AEGEAN -0.06357113721433791

Attrib Booking Source=BOOKING.COM 0.29954294329425424 Attrib Booking Source=BRAVO TOURS 0.0039969329619432645 Attrib Booking Source=EXPEDIA -0.10177222083592012 Attrib Booking Source=ITAKA -0.5842497031348396 Attrib Booking Source=Jet2Holidays -0.23654426445262297 Attrib Booking Source=RAINBOW 0.47249848859598864 Attrib Booking Source=SUNWEB 0.015367095319731653 Attrib Booking Source=TUI Deutschland -0.0542764577802904 Attrib Booking Source=TUI NL 0.04821388142311118 Attrib Booking Source=TUI UK 0.3371382911118146 Attrib Country=Denmark -0.1825092568630062 Attrib Country=Finland -0.3641028636735545 Attrib Country=Romania -0.11195056316776195 Attrib Country=Vary 0.22033198052019787 Attrib Country=Poland -0.03620108662138396 Attrib Country=UK 0.15874188437455614 Attrib Country=Netherlands 0.12139269624402012 Attrib Country=Germany -0.1219479723299893 Attrib Average pax/room -0.05130473951260568 Attrib TO/ OTA=OTA 0.2059250095454292 Attrib ADR -0.21211258563016905 Attrib TOTAL PAX Nights -0.6710399301330281 Attrib Total Room Nights -0.9435869402410023 Attrib BB -0.46019775273566904

Attrib BB% 0.08743042052674287

Attrib HB 0.03138652952795913

Attrib HB% 0.1797351174258127

Attrib AI -0.35552507340819844

Attrib AI% 0.12460838277919911

Attrib MONTH=April 2019 0.3575822899041137

Attrib MONTH=May 2019 -0.2413720368059171

Attrib MONTH=June 2019 -0.5460549756412101

Attrib MONTH=July 2019 0.43176996694817843

Attrib MONTH=August 2019 0.3066535986023676

Attrib MONTH=September 2019 -0.6496451444843252

Attrib MONTH=October 2019 0.10636208562883474

Sigmoid Node 16

Inputs Weights

Threshold -0.10729758149168733

Attrib Booking Source=ARHUS CHARTER 0.13731114880243384

Attrib Booking Source=AURINKOMATKAT 0.05884114443950078

Attrib Booking Source=BLUE AEGEAN 0.1459046080830644

Attrib Booking Source=BOOKING.COM 0.10608562518741818

Attrib Booking Source=BRAVO TOURS 0.1655870520544009

Attrib Booking Source=EXPEDIA 0.05566509384449433

Attrib Booking Source=ITAKA 0.0667447101253541

Attrib Booking Source=Jet2Holidays 0.058420326939913864

Attrib Booking Source=RAINBOW 0.06990041859135547

Attrib Booking Source=SUNWEB 0.09762494694779064

Attrib Booking Source=TUI Deutschland 0.14314141918870937

Attrib Booking Source=TUI NL 0.16995218578086355

Attrib Booking Source=TUI UK 0.09143851565335569

Attrib Country=Denmark 0.08194262848956356
Attrib Country=Finland 0.06419503507702952
Attrib Country=Romania 0.16743064571239877
Attrib Country=Vary 0.09707378838754258
Attrib Country=Poland 0.08410070172710438
Attrib Country=UK 0.08751415123817873
Attrib Country=Netherlands 0.09814097913951654
Attrib Country=Germany 0.11175551222454819
Attrib Average pax/room 0.08812071283473287
Attrib TO/ OTA=OTA 0.13265238378374572
Attrib ADR -0.07592939125136626
Attrib TOTAL PAX Nights 0.04808450020204058
Attrib Total Room Nights -0.01633844856521662
Attrib BB 0.02598216468220472
Attrib BB% 0.003457752368601739
Attrib HB 0.079896012535177
Attrib HB% 0.05173755506407564
Attrib AI 0.1289611965375111
Attrib AI% 0.09410824929857683
Attrib MONTH=April 2019 0.12803628603326286
Attrib MONTH=May 2019 0.07105638628867884
Attrib MONTH=June 2019 0.046617789078525304
Attrib MONTH=July 2019 0.052252614651873384
Attrib MONTH=August 2019 0.07514135797774185
Attrib MONTH=September 2019 0.12023328309374857
Attrib MONTH=October 2019 0.09006737219937161

Sigmoid Node 17

Inputs Weights

Threshold -0.1192316391407173

Attrib Booking Source=ARHUS CHARTER 0.05727325960202926

Attrib Booking Source=AURINKOMATKAT 0.08034739626934438

Attrib Booking Source=BLUE AEGEAN 0.1723698864306009

Attrib Booking Source=BOOKING.COM 0.13297866924664

Attrib Booking Source=BRAVO TOURS 0.12785431221537535

Attrib Booking Source=EXPEDIA 0.06892782865090363

Attrib Booking Source=ITAKA 0.12486412040260744

Attrib Booking Source=Jet2Holidays 0.1243786095131842

Attrib Booking Source=RAINBOW 0.11716601699041312

Attrib Booking Source=SUNWEB 0.1322848562468597

Attrib Booking Source=TUI Deutschland 0.09157271941889569

Attrib Booking Source=TUI NL 0.10221724195436054

Attrib Booking Source=TUI UK 0.12166771725047497

Attrib Country=Denmark 0.09774954705672201

Attrib Country=Finland 0.0801685704700489

Attrib Country=Romania 0.08687603848127137

Attrib Country=Vary 0.09871334543391781

Attrib Country=Poland 0.13431534019585192

Attrib Country=UK 0.0616010634650774

Attrib Country=Netherlands 0.10520727867843208

Attrib Country=Germany 0.15528060161083296

Attrib Average pax/room 0.0135889886464766

Attrib TO/ OTA=OTA 0.05082999981578145

Attrib ADR -0.030416787686220928

Attrib TOTAL PAX Nights 0.03251047574389115

Attrib Total Room Nights 7.15566003048551E-4

Attrib BB 0.09158025880176072

Attrib BB% 0.005847082527404315

Attrib HB 0.04946653158551159

Attrib HB% 0.06942810076761279

Attrib AI 0.09213272268367574

Attrib AI% 0.11439995537859739

Attrib MONTH=April 2019 0.19023318593115138

Attrib MONTH=May 2019 0.05193665105918128

Attrib MONTH=June 2019 0.07862631237609473

Attrib MONTH=July 2019 0.058827975006347004

Attrib MONTH=August 2019 0.07219263309325431

Attrib MONTH=September 2019 0.05979988328256532

Attrib MONTH=October 2019 0.027582075872239178

Sigmoid Node 18

Inputs Weights

Threshold -0.09719128665717423

Attrib Booking Source=ARHUS CHARTER 0.05425184921386771

Attrib Booking Source=AURINKOMATKAT 0.028741355581596233

Attrib Booking Source=BLUE AEGEAN 0.12478204898380336

Attrib Booking Source=BOOKING.COM 0.10298678895347409

Attrib Booking Source=BRAVO TOURS 0.05734510130187418

Attrib Booking Source=EXPEDIA 0.05185213255610612

Attrib Booking Source=ITAKA 0.12906343983637705

Attrib Booking Source=Jet2Holidays 0.11619866303364934 Attrib Booking Source=RAINBOW 0.1275910108245811 Attrib Booking Source=SUNWEB 0.07001311651179035 Attrib Booking Source=TUI Deutschland 0.09491699844589271 Attrib Booking Source=TUI NL 0.1676679075383375 Attrib Booking Source=TUI UK 0.15688609379412619 Attrib Country=Denmark 0.06043551438260546 Attrib Country=Finland 0.05574380992925237 Attrib Country=Romania 0.08779362770283487 Attrib Country=Vary 0.07154491545824056 Attrib Country=Poland 0.09431259995242677 Attrib Country=UK 0.079608136221246 Attrib Country=Netherlands 0.13657682089270953 Attrib Country=Germany 0.16587930384480204 Attrib Average pax/room 0.06864395372420765 Attrib TO/ OTA=OTA 0.13992524954914234 Attrib ADR -0.020690498322432225 Attrib TOTAL PAX Nights 0.08604274652120697 Attrib Total Room Nights 0.061110441374099614 Attrib BB 0.021362386474221683 Attrib BB% 0.01496342756722587 Attrib HB 0.05868796789280961 Attrib HB% 0.04660994535226006 Attrib AI 0.09944895606222533 Attrib AI% 0.04246146640255664

Attrib MONTH=April 2019 0.1695776742438388

Attrib MONTH=May 2019 0.04475223001571981 Attrib MONTH=June 2019 0.08959687013615607 Attrib MONTH=July 2019 0.08530013303431776 Attrib MONTH=August 2019 0.083935949634467 Attrib MONTH=September 2019 0.09797974342545664 Attrib MONTH=October 2019 0.11216352287901772 Sigmoid Node 19 Inputs Weights Threshold -0.12302728582125275 Attrib Booking Source=ARHUS CHARTER -0.02290637191682181 Attrib Booking Source=AURINKOMATKAT -8.962819793780499E-4 Attrib Booking Source=BLUE AEGEAN 0.07463017208902967 Attrib Booking Source=BOOKING.COM -0.2881219853163261 Attrib Booking Source=BRAVO TOURS 0.0685793895483629 Attrib Booking Source=EXPEDIA 0.5931169334982721 Attrib Booking Source=ITAKA 0.13176357072629283 Attrib Booking Source=Jet2Holidays -0.15377507004261004 Attrib Booking Source=RAINBOW 0.026787444386056652 Attrib Booking Source=SUNWEB 0.13750762516167164

Attrib Booking Source=TUI Deutschland 0.14037168280793902

Attrib Booking Source=TUI NL 0.1098058371080899

Attrib Booking Source=TUI UK 0.3227513203254333

Attrib Country=Denmark -0.10592000116244385

Attrib Country=Finland 0.09164757655845934

Attrib Country=Romania 0.08677632713386588

Attrib Country=Vary 0.2264643738013373

Attrib Country=Poland -0.018864783818074823

Attrib Country=UK 0.11025034381715573

Attrib Country=Netherlands 0.17828162447436557

Attrib Country=Germany 0.08122887736334923

Attrib Average pax/room -0.4068033989108904

Attrib TO/ OTA=OTA 0.25583982742032907

Attrib ADR -0.1831929783500107

Attrib TOTAL PAX Nights 0.2510565144622139

Attrib Total Room Nights 0.37142907669905284

Attrib BB 0.16195485537442397

Attrib BB% -0.09259441170787973

Attrib HB -0.0914366907836561

Attrib HB% 0.2261289051686077

Attrib AI -0.032121730590823856

Attrib AI% -0.1462912811908819

Attrib MONTH=April 2019 0.47641803898736207

Attrib MONTH=May 2019 -0.24594015567810737

Attrib MONTH=June 2019 0.4893802256917139

Attrib MONTH=July 2019 0.23468932920895197

Attrib MONTH=August 2019 -0.34667415498844567

Attrib MONTH=September 2019 -0.4007469876618807

Attrib MONTH=October 2019 0.4891084029651396

Sigmoid Node 20

Inputs Weights

Threshold -0.09955480296163897

Attrib Booking Source=ARHUS CHARTER 0.15505166476747623

Attrib Booking Source=AURINKOMATKAT 0.04703939373314027 Attrib Booking Source=BLUE AEGEAN 0.09922743898154979 Attrib Booking Source=BOOKING.COM 0.0489742772437892 Attrib Booking Source=BRAVO TOURS -0.17990012841764758 Attrib Booking Source=EXPEDIA 0.03313484743319637 Attrib Booking Source=ITAKA -0.012061432781360487 Attrib Booking Source=Jet2Holidays 0.3299006322858109 Attrib Booking Source=RAINBOW 0.1699993423299534 Attrib Booking Source=SUNWEB -0.13073479467289437 Attrib Booking Source=TUI Deutschland 0.06679888800723244 Attrib Booking Source=TUI NL 0.47772412958443544 Attrib Booking Source=TUI UK -0.0645616545373109 Attrib Country=Denmark -0.009356781531836816 Attrib Country=Finland 0.014248931596833974 Attrib Country=Romania 0.1463550292985704 Attrib Country=Vary -0.09630337754270897 Attrib Country=Poland 0.17357859459113825 Attrib Country=UK 0.09787099146026873 Attrib Country=Netherlands 0.15651382478067488 Attrib Country=Germany 0.10483225175035624 Attrib Average pax/room -0.10449800107708898 Attrib TO/ OTA=OTA -0.07400210240178949 Attrib ADR -0.09722157890291633 Attrib TOTAL PAX Nights 0.19106613460995148 Attrib Total Room Nights 0.2923047926762347

Attrib BB 0.13661917335104412

Attrib BB% 0.0033679713482861807

Attrib HB 0.010499784941871709

Attrib HB% -0.018247991724779557

Attrib AI -0.0013360866665371976

Attrib AI% 0.10470101783993127

Attrib MONTH=April 2019 -0.049816209785018536

Attrib MONTH=May 2019 0.5211222435611422

Attrib MONTH=June 2019 -0.08508676634167955

Attrib MONTH=July 2019 -0.03867066067277948

Attrib MONTH=August 2019 0.12093141218739785

Attrib MONTH=September 2019 -0.25876536670541744

Attrib MONTH=October 2019 0.3046738408866307

Class

Input

Node 0

=== Summary ===

Correlation coefficient	0.927
Mean absolute error	7.2876
Root mean squared error	10.5483
Relative absolute error	38.1148 %
Root relative squared error	37.3055 %
Total Number of Instances	91

Meta Regression By Discretization

=== Classifier model (full training set) === Class attribute discretized into 10 values J48 pruned tree

```
Total Room Nights \leq 120: '(-inf-13.5]' (50.0/6.0)
Total Room Nights > 120
| BB <= 597
| | Country = Denmark
| | Average pax/room \leq 2.25: '(27-40.5]' (5.0/1.0)
| | | Average pax/room > 2.25: '(13.5-27]' (2.0)
| | Country = Finland: '(13.5-27)'(0.0)
| Country = Romania: '(13.5-27]' (0.0)
| | Country = Vary
| | Total Room Nights <= 226: '(13.5-27)' (4.0/1.0)
| | Total Room Nights > 226: '(40.5-54]' (3.0)
| | Country = Poland: '(40.5-54]'(3.0/1.0)
| | Country = UK
| | Total Room Nights <= 224: '(13.5-27]' (5.0)
| | Total Room Nights > 224: '(27-40.5]' (3.0)
| Country = Netherlands: '(13.5-27]' (7.0)
| Country = Germany: '(13.5-27]' (1.0)
| BB > 597
| | HB\% <= 0.14
| | TOTAL PAX Nights <= 1813: '(54-67.5]' (2.0)
| | TOTAL PAX Nights > 1813: '(81-94.5]' (2.0)
| HB\% > 0.14: '(121.5-inf)' (4.0/1.0)
Number of Leaves : 15
Size of the tree :
                     23
=== Summary ===
```

Correlation coefficient	0.9221
Mean absolute error	7.7887
Root mean squared error	11.2044
Relative absolute error	40.736 %
Root relative squared error	39.6259 %
Total Number of Instances	91

Meta Additive Regression

=== Classifier model (full training set) ===

Additive Regression

Base classifier weka.classifiers.trees.DecisionStump

10 models generated

Decision Stump

Classifications

BB <= 769.0 : -6.95510586974002

BB > 769.0: 74.06318681318677

BB is missing : -22.186813186813186

Model number 1

Decision Stump

Classifications

Total Room Nights <= 104.0 : -10.226558265582662

Total Room Nights > 104.0 : 10.004241781548252

Total Room Nights is missing : -1.5616323862859344E-15

Model number 2

Decision Stump

Classifications

AI <= 843.0 : -1.5060026753720124

AI > 843.0: 23.556733828207864

AI is missing : 10.226558265582662

Decision Stump

Classifications

Total Room Nights <= 519.0 : 1.638231502595407

Total Room Nights > 519.0 : -13.269675171022792

Total Room Nights is missing: 7.027345738286705E-16

Model number 4

Decision Stump

Classifications

AI <= 573.5 : -1.586992381078663

AI > 573.5: 11.546420873437249

AI is missing : -1.638231502595407

Model number 5

Decision Stump

Classifications

Booking Source = EXPEDIA : 10.361671598090993

Booking Source != EXPEDIA : -0.8634726331742496

Booking Source is missing : 5.465713352000771E-16

Decision Stump

Classifications

Total Room Nights <= 1040.5 : -0.40215898257489857

Total Room Nights > 1040.5 : 11.7966634888637

Total Room Nights is missing : 1.5616323862859346E-16

Model number 7

Decision Stump

Classifications

Total Room Nights <= 425.5 : 1.1447801332530734

Total Room Nights > 425.5 : -8.325673696385994

Total Room Nights is missing : -8.393774076286898E-16

Model number 8

Decision Stump

Classifications

MONTH = October 2019 : -5.312662995204634 MONTH != October 2019 : 0.8854438325341064 MONTH is missing : 5.319310315786464E-16

Decision Stump

Classifications

Average pax/room <= 2.110000000000003 : -2.465666200366835

Average pax/room > 2.110000000000003 : 1.0188559419205916

Average pax/room is missing : -1.65

=== Summary ===

Correlation coefficient	0.913
Mean absolute error	7.8356
Root mean squared error	11.7053
Relative absolute error	40.9813 %
Root relative squared error	41.3974 %
Total Number of Instances	91

Meta Random Sub Space

=== Classifier model (full training set) ===

All the base classifiers:

Filtered Header

@relation	'Creta	Palm	Data	2019	class	TB-
weka.filters.unsupervised.attribute.Remove-V-R6,8,9,3,14,13,5,15'						

@attribute 'TOTAL PAX Nights' numeric

@attribute BB numeric

@attribute 'BB\%' numeric

@attribute 'Average pax/room' numeric

@attribute MONTH {'April 2019','May 2019','June 2019','July 2019','August 2019','September 2019','October 2019'}

@attribute 'AI\%' numeric

@attribute ADR numeric

@attribute 'TOTAL BOOKINGS' numeric

@data

Classifier Model

REPTree

TOTAL PAX Nights < 1040.5

- | TOTAL PAX Nights < 233.5
- | | TOTAL PAX Nights < 89.5
- | | | TOTAL PAX Nights < 23 : 0.57 (9/0.25) [5/0.24]
- | | | TOTAL PAX Nights >= 23 : 2.53 (10/1.21) [5/1.61]
- | | TOTAL PAX Nights >= 89.5 : 9.93 (9/15.14) [6/27.44]
- | TOTAL PAX Nights >= 233.5
- | | BB < 481 : 23.06 (21/44.75) [10/83.99]
- | | BB >= 481 : 40 (3/29.56) [2/29.61]

TOTAL PAX Nights >= 1040.5 : 82.64 (8/1049.61) [3/1184.77]

Size of the tree : 11

Filtered Header

@relation'CretaPalmData2019classTB-weka.filters.unsupervised.attribute.Remove-V-R1,13,11,2,9,3,8,15'

356

@attribute 'Booking Source' {'ARHUS CHARTER',AURINKOMATKAT,'BLUEAEGEAN',BOOKING.COM,'BRAVOTOURS',EXPEDIA,ITAKA,Jet2Holidays,RAINBOW,SUNWEB,'TUIDeutschland','TUI NL','TUI UK'}@attribute 'AI\%' numeric@attribute 'HB\%' numeric@attribute 'HB\%' numeric@attribute 'BB\%' numeric@attribute 'Average pax/room' numeric@attribute BB numeric@attribute BB numeric@attribute 'TOTAL BOOKINGS' numeric

@data

Classifier Model

REPTree

Booking Source = ARHUS CHARTER : 28.43 (6/186.56) [1/152.11]

Booking Source = AURINKOMATKAT : 101 (6/835.58) [1/110.25]

Booking Source = BLUE AEGEAN : 12.86 (3/104) [4/142.5]

Booking Source = BOOKING.COM : 6.14 (5/11.76) [2/50.24]

Booking Source = BRAVO TOURS : 6.86 (4/2.25) [3/130.92]

Booking Source = EXPEDIA : 34.14 (3/46.89) [4/122.36]

Booking Source = ITAKA : 33.14 (4/293.5) [3/849.67]

Booking Source = Jet2Holidays : 22.43 (6/141.92) [1/0.25]

Booking Source = RAINBOW : 0.86 (4/0) [3/0.33]

Booking Source = SUNWEB : 18 (4/63.69) [3/24.56]

Booking Source = TUI Deutschland : 7.43 (5/27.04) [2/25.36]

Booking Source = TUI NL : 9.29 (4/29.5) [3/49.67]

Booking Source = TUI UK

| BB < 140 : 4.2 (4/7.19) [1/27.56]

| BB >= 140 : 17 (2/1) [0/0]

Size of the tree : 16

Filtered Header

@relation 'Creta Palm Data 2019 class TBweka.filters.unsupervised.attribute.Remove-V-R12,5,7,9,10,1,11,15'

@attribute AI numeric

@attribute ADR numeric

@attribute 'Total Room Nights' numeric

@attribute 'BB\%' numeric

@attribute HB numeric

@attribute 'Booking Source' {'ARHUS CHARTER',AURINKOMATKAT,'BLUE

AEGEAN', BOOKING.COM, 'BRAVO

TOURS', EXPEDIA, ITAKA, Jet2Holidays, RAINBOW, SUNWEB, 'TUI

Deutschland', 'TUI NL', 'TUI UK'}

@attribute 'HB\%' numeric

@attribute 'TOTAL BOOKINGS' numeric

@data

Classifier Model

REPTree

Booking Source = ARHUS CHARTER : 28.43 (6/186.56) [1/152.11]

Booking Source = AURINKOMATKAT : 101 (5/540.64) [2/1673.36]

Booking Source = BLUE AEGEAN

| ADR < 49.2 : 0.33 (3/0.22) [0/0]

| ADR >= 49.2 : 22.25 (2/9) [2/18.5]

Booking Source = BOOKING.COM

| Total Room Nights < 27 : 2.5 (2/0.25) [2/0.25]

| Total Room Nights >= 27 : 11 (3/2.67) [0/0]

Booking Source = BRAVO TOURS

| AI < 2 : 3 (2/1) [2/4]

| AI >= 2 : 12 (2/1) [1/324]

Booking Source = EXPEDIA

| Total Room Nights < 221 : 26.75 (2/9) [2/26.5]

| Total Room Nights >= 221 : 44 (2/6.25) [1/2.25]

Booking Source = ITAKA : 33.14 (3/392.67) [4/566.5]

Booking Source = Jet2Holidays : 22.43 (6/135.92) [1/42.25]

Booking Source = RAINBOW : 0.86 (7/0.12) [0/0]

Booking Source = SUNWEB : 18 (3/67.56) [4/69.44]

Booking Source = TUI Deutschland : 7.43 (5/32.24) [2/14.66]

Booking Source = TUI NL

| AI < 43.5 : 3 (2/4) [1/9]

| AI >= 43.5 : 14 (2/0.25) [2/21.25]

Booking Source = TUI UK : 7.86 (3/10.89) [4/85.28]

Size of the tree : 24

Filtered Header

@relation'CretaPalmData2019classTB-weka.filters.unsupervised.attribute.Remove-V-R2,11,5,4,3,9,14,15'

@attribute Country
{Denmark,Finland,Romania,Vary,Poland,UK,Netherlands,Germany}
@attribute 'HB\%' numeric
@attribute ADR numeric
@attribute 'TO/ OTA' {TO,OTA}
@attribute 'Average pax/room' numeric
@attribute 'BB\%' numeric
@attribute MONTH {'April 2019','May 2019','June 2019','July 2019','August 2019','September 2019','October 2019'}
@attribute 'TOTAL BOOKINGS' numeric

@data

Classifier Model

REPTree

Country = Denmark : 17.64 (8/149.75) [6/402.25]

Country = Finland : 101 (3/878) [4/793.5]

Country = Romania : 12.86 (4/12.19) [3/480.56]

Country = Vary : 20.14 (11/295.32) [3/78.13]

Country = Poland : 17 (9/606.1) [5/313.99]

Country = UK : 15.14 (11/133.79) [3/149.79]

Country = Netherlands

| MONTH = April 2019 : 2.5 (1/0) [1/9]

| MONTH = May 2019 : 18.5 (2/6.25) [0/0]

| MONTH = June 2019 : 19.5 (1/0) [1/81]

| MONTH = July 2019 : 14.5 (0/0) [2/72.25]

| MONTH = August 2019 : 14 (1/0) [1/100]

- | MONTH = September 2019 : 19.5 (2/12.25) [0/0]
- | MONTH = October 2019 : 7 (1/0) [1/100]

Country = Germany : 7.43 (6/30.92) [1/0.25]

Size of the tree : 16

Filtered Header

@relation'CretaPalmData2019classTB-weka.filters.unsupervised.attribute.Remove-V-R13,12,9,6,5,8,1,15'

@attribute 'AI\%' numeric

@attribute AI numeric

@attribute 'BB\%' numeric

@attribute 'TOTAL PAX Nights' numeric

@attribute ADR numeric

@attribute BB numeric

@attribute 'Booking Source' {'ARHUS CHARTER',AURINKOMATKAT,'BLUE AEGEAN',BOOKING.COM,'BRAVO

361

TOURS',EXPEDIA,ITAKA,Jet2Holidays,RAINBOW,SUNWEB,'TUI Deutschland','TUI NL','TUI UK'}

@attribute 'TOTAL BOOKINGS' numeric

@data

Classifier Model

REPTree

Booking Source = ARHUS CHARTER : 28.43 (4/263.69) [3/88.56]

Booking Source = AURINKOMATKAT

| TOTAL PAX Nights < 2480.5 : 78.75 (2/210.25) [2/10.25]

| TOTAL PAX Nights >= 2480.5 : 130.67 (3/17.56) [0/0]

Booking Source = BLUE AEGEAN

| TOTAL PAX Nights < 89.5 : 0.33 (3/0.22) [0/0]

| TOTAL PAX Nights >= 89.5 : 22.25 (3/14.89) [1/5.44]

Booking Source = BOOKING.COM

| BB% < 0.81 : 11 (2/4) [1/0]

| BB% >= 0.81 : 2.5 (3/0.22) [1/0.44]

Booking Source = BRAVO TOURS : 6.86 (4/66.5) [3/55.33]

Booking Source = EXPEDIA : 34.14 (3/64.67) [4/121.25]

Booking Source = ITAKA

| TOTAL PAX Nights < 763 : 10 (2/30.25) [1/56.25]

| TOTAL PAX Nights >= 763 : 50.5 (3/84.22) [1/128.44]

Booking Source = Jet2Holidays : 22.43 (6/115.92) [1/182.25]

Booking Source = RAINBOW : 0.86 (3/0.22) [4/0.11]

Booking Source = SUNWEB : 18 (3/84.67) [4/20.25]

Booking Source = TUI Deutschland : 7.43 (4/19.25) [3/38.92]

Booking Source = TUI NL

| AI < 51: 4.5 (4/10.25) [0/0]

| AI >= 51 : 15.67 (2/0.25) [1/0.25]

Booking Source = TUI UK

| TOTAL PAX Nights < 216 : 4.2 (4/12.5) [1/1]

| TOTAL PAX Nights >= 216 : 17 (2/1) [0/0]

Size of the tree : 26

Filtered Header

@relation	'Creta	Palm	Data	2019	class	TB-
weka.filters.un	supervised.a	tribute.Remo	ove-V-R12,1	0,11,6,9,5,3,	15'	

@attribute AI numeric @attribute HB numeric @attribute 'HB\%' numeric

@attribute 'TOTAL PAX Nights' numeric

@attribute 'BB\%' numeric

@attribute ADR numeric

@attribute 'Average pax/room' numeric

@attribute 'TOTAL BOOKINGS' numeric

@data

Classifier Model

REPTree

- TOTAL PAX Nights < 1040.5
- | TOTAL PAX Nights < 363
- | | TOTAL PAX Nights < 149
- | | | TOTAL PAX Nights < 62.5 : 1 (15/0.46) [7/1.02]
- | | | TOTAL PAX Nights >= 62.5 : 5.71 (4/2.19) [10/19.61]
- | | TOTAL PAX Nights >= 149
- | | | Average pax/room < 2.23
- | | | Average pax/room < 1.96 : 12 (2/16) [0/0]
- | | | | Average pax/room >= 1.96
- | | | | AI < 28 : 20.67 (2/0) [1/4]
- | | | | AI >= 28 : 16.75 (3/0.89) [1/5.44]
- | | | Average pax/room >= 2.23
- | | | Average pax/room < 2.71
- | | | | TOTAL PAX Nights < 208 : 7 (2/0) [0/0]
- | | | | TOTAL PAX Nights >= 208 : 14.17 (5/2.96) [1/139.24]
- | | | Average pax/room >= 2.71 : 17.75 (2/2.25) [2/70.25]
- | TOTAL PAX Nights >= 363
- | BB% < 0.78
- | | | AI < 573.5 : 23.5 (8/9.61) [4/40.95]
- | | | AI >= 573.5 : 35.75 (4/38.69) [0/0]
- | BB% >= 0.78: 37.14(6/45.56)[1/13.44]

TOTAL PAX Nights >= 1040.5 : 82.64 (7/780.78) [4/1672.83]

Size of the tree : 23

Filtered Header @relation 'Creta Palm Data 2019 class TBweka.filters.unsupervised.attribute.Remove-V-R11,4,5,9,1,2,13,15' @attribute 'HB\%' numeric @attribute 'TO/ OTA' {TO,OTA} @attribute ADR numeric @attribute 'BB\%' numeric @attribute 'Booking Source' {'ARHUS CHARTER', AURINKOMATKAT, 'BLUE AEGEAN', BOOKING.COM, 'BRAVO TOURS', EXPEDIA, ITAKA, Jet2Holidays, RAINBOW, SUNWEB, 'TUI Deutschland', 'TUI NL', 'TUI UK' @attribute Country {Denmark,Finland,Romania,Vary,Poland,UK,Netherlands,Germany} @attribute 'AI\%' numeric @attribute 'TOTAL BOOKINGS' numeric @data **Classifier Model REPTree** _____

Booking Source = ARHUS CHARTER : 28.43 (5/213.84) [2/93.96]

Booking Source = AURINKOMATKAT : 101 (3/17.56) [4/2804.03]

Booking Source = BLUE AEGEAN : 12.86 (3/110.22) [4/141.28]

Booking Source = BOOKING.COM : 6.14 (3/26.89) [4/13.44]

Booking Source = BRAVO TOURS : 6.86 (6/58.89) [1/11.11]

Booking Source = EXPEDIA

| HB% < 0.23 : 37.2 (2/49) [3/109.67]

| HB% >= 0.23 : 26.5 (2/0.25) [0/0]

Booking Source = ITAKA : 33.14 (6/531.14) [1/84.03]

Booking Source = Jet2Holidays : 22.43 (4/156.69) [3/98.56]

Booking Source = RAINBOW : 0.86 (6/0.14) [1/0.03]

Booking Source = SUNWEB : 18 (3/22.89) [4/65.61]

Booking Source = TUI Deutschland : 7.43 (4/18.5) [3/43]

Booking Source = TUI NL : 9.29 (6/42.56) [1/0.11]

Booking Source = TUI UK : 7.86 (7/40.98) [0/0]

Size of the tree : 16

Filtered Header

@relation 'Creta Palm Data 2019 class TBweka.filters.unsupervised.attribute.Remove-V-R12,5,8,1,14,3,13,15'

@attribute AI numeric

@attribute ADR numeric

@attribute BB numeric

@attribute 'Booking Source' {'ARHUS CHARTER',AURINKOMATKAT,'BLUE AEGEAN',BOOKING.COM,'BRAVO

TOURS', EXPEDIA, ITAKA, Jet2Holidays, RAINBOW, SUNWEB, 'TUI

Deutschland', 'TUI NL', 'TUI UK'}

@attribute MONTH {'April 2019','May 2019','June 2019','July 2019','August 2019','September 2019','October 2019'}

@attribute 'Average pax/room' numeric

@attribute 'AI\%' numeric

@attribute 'TOTAL BOOKINGS' numeric

@data

Classifier Model

REPTree

Booking Source = ARHUS CHARTER : 28.43 (4/226.19) [3/166.06] Booking Source = AURINKOMATKAT : 101 (3/874.89) [4/653.69] Booking Source = BLUE AEGEAN : 12.86 (3/94.89) [4/150.86] Booking Source = BOOKING.COM : 6.14 (3/18.67) [4/33.5] Booking Source = BRAVO TOURS : 6.86 (3/84.67) [4/57.25] Booking Source = EXPEDIA : 34.14 (6/67.14) [1/200.69] Booking Source = ITAKA : 33.14 (6/354.56) [1/1320.11] Booking Source = Jet2Holidays : 22.43 (5/168.8) [2/5] Booking Source = RAINBOW : 0.86 (4/0.19) [3/0.06] Booking Source = TUI Deutschland : 7.43 (6/22.92) [1/56.25] Booking Source = TUI NL : 9.29 (5/43.36) [2/23.44] Booking Source = TUI UK : 7.86 (5/57.2) [2/0.5]

Size of the tree : 14

Filtered Header

@relation 'Creta Palm Data 2019 class TBweka.filters.unsupervised.attribute.Remove-V-R11,10,9,5,6,3,1,15'

@attribute 'HB\%' numeric

@attribute HB numeric

@attribute 'BB\%' numeric

@attribute ADR numeric

@attribute 'TOTAL PAX Nights' numeric

@attribute 'Average pax/room' numeric

@attribute 'Booking Source' {'ARHUS CHARTER',AURINKOMATKAT,'BLUE AEGEAN',BOOKING.COM,'BRAVO

TOURS', EXPEDIA, ITAKA, Jet2Holidays, RAINBOW, SUNWEB, 'TUI

Deutschland', 'TUI NL', 'TUI UK'}

@attribute 'TOTAL BOOKINGS' numeric

@data

Classifier Model

REPTree

Booking Source = ARHUS CHARTER : 28.43 (5/53.2) [2/536.5]

Booking Source = AURINKOMATKAT

| TOTAL PAX Nights < 2480.5 : 78.75 (4/108.69) [0/0]

| TOTAL PAX Nights >= 2480.5 : 130.67 (2/25) [1/4]

Booking Source = BLUE AEGEAN

| ADR < 43.99 : 0.33 (2/0) [1/1]

| ADR >= 43.99 : 22.25 (4/12.19) [0/0]

Booking Source = BOOKING.COM

| HB% < 0.16 : 2.5 (2/0.25) [2/0.25]

| HB% >= 0.16 : 11 (3/2.67) [0/0]

Booking Source = BRAVO TOURS : 6.86 (2/9) [5/80.4]

Booking Source = EXPEDIA : 34.14 (3/100.67) [4/74.25]

Booking Source = ITAKA

| ADR < 100.16 : 10 (2/42.25) [1/20.25]

| ADR >= 100.16 : 50.5 (3/84.22) [1/128.44]

Booking Source = Jet2Holidays : 22.43 (6/115.92) [1/182.25]

Booking Source = RAINBOW : 0.86 (6/0.14) [1/0.03]

Booking Source = SUNWEB : 18 (4/63.69) [3/24.56]

Booking Source = TUI Deutschland : 7.43 (5/25.04) [2/30.26]

Booking Source = TUI NL : 9.29 (2/0.25) [5/105.05]

Booking Source = TUI UK

| TOTAL PAX Nights < 216 : 4.2 (3/8.22) [2/13.61]

| TOTAL PAX Nights >= 216 : 17 (2/1) [0/0]

Size of the tree : 24

Filtered Header

@relation'CretaPalmData2019classTB-weka.filters.unsupervised.attribute.Remove-V-R11,13,9,4,2,14,6,15'

@attribute 'HB\%' numeric

@attribute 'AI\%' numeric

@attribute 'BB\%' numeric

@attribute 'TO/ OTA' {TO,OTA}

@attribute

Country

{Denmark,Finland,Romania,Vary,Poland,UK,Netherlands,Germany}

@attribute MONTH {'April 2019','May 2019','June 2019','July 2019','August 2019','September 2019','October 2019'}

@attribute 'TOTAL PAX Nights' numeric

@attribute 'TOTAL BOOKINGS' numeric

@data

Classifier Model

REPTree

Country = Denmark

| HB% < 0.93 : 26.29 (6/44.25) [2.75/609.52]

| HB% >= 0.93 : 3.24 (2/0) [3.25/4.62]

Country = Finland : 101 (5/609.76) [2/1057.04]

Country = Romania : 12.86 (4/114.75) [3/150.92]

Country = Vary

- | TOTAL PAX Nights < 237 : 6.14 (5/13.44) [2/33.86]
- | TOTAL PAX Nights >= 237 : 34.14 (4/51.19) [3/158.73]

Country = Poland

- | TOTAL PAX Nights < 654 : 3.6 (6/0.33) [4/85]
- | TOTAL PAX Nights >= 654 : 50.5 (3/46.89) [1/277.78]

Country = UK

| TOTAL PAX Nights < 216 : 3.5 (5/10.16) [1/17.64]

| TOTAL PAX Nights >= 216 : 23.88 (4/54.69) [4/66.31]

Country = Netherlands

| TOTAL PAX Nights < 237.5 : 4.4 (2/12.25) [3/7.58]

| TOTAL PAX Nights >= 237.5

| | TOTAL PAX Nights < 533 : 14.75 (4/2.69) [0/0]

| | TOTAL PAX Nights >= 533 : 22 (3/4.67) [2/1]

Country = Germany : 7.43 (7/26.53) [0/0]

Size of the tree : 21

=== Summary ===

Correlation coefficient	0.9124
Mean absolute error	8.0427
Root mean squared error	11.6649
Relative absolute error	42.0642 %
Root relative squared error	41.2546 %
Total Number of Instances	91

Lazy IBK

=== Classifier model (full training set) ===
IB1 instance-based classifier
using 1 nearest neighbour(s) for classification
=== Summary ===
Correlation coefficient
0.8847
Mean absolute error
8.4505
Root mean squared error
13.0236
Relative absolute error
44.1974 %

Root relative squared error46.06 %Total Number of Instances91

REPTree

=== Classifier model (full training set) ===

Booking Source = ARHUS CHARTER : 28.43 (5/218.16) [2/88.74]

Booking Source = AURINKOMATKAT : 101 (5/881.2) [2/382.5]

Booking Source = BLUE AEGEAN : 12.86 (5/135.36) [2/101.14]

- Booking Source = BOOKING.COM : 6.14 (4/17.19) [3/37.23]
- Booking Source = BRAVO TOURS : 6.86 (6/3.33) [1/400]
- Booking Source = EXPEDIA : 34.14 (5/87.44) [2/79.46]
- Booking Source = ITAKA : 33.14 (4/219.25) [3/860.92]
- Booking Source = Jet2Holidays : 22.43 (4/200.19) [3/17.06]
- Booking Source = RAINBOW : 0.86 (6/0.14) [1/0.03]
- Booking Source = SUNWEB : 18 (4/17.19) [3/87.73]
- Booking Source = TUI Deutschland : 7.43 (3/13.56) [4/36.28]
- Booking Source = TUI NL : 9.29 (7/36.49) [0/0]
- Booking Source = TUI UK : 7.86 (2/12.25) [5/79.05]

Size of the tree : 14

- === Summary ===
- Correlation coefficient 0.8709
- Mean absolute error 9.9758
- Root mean squared error 13.7176
- Relative absolute error 52.1747 %
- Root relative squared error 48.5141 %

Total Number of Instances 91

Meta Bagging

=== Classifier model (full training set) ===

Bagging with 10 iterations and base learner

=== Summary ===

Correlation coefficient	0.8699
Mean absolute error	9.8428
Root mean squared error	13.7439
Relative absolute error	51.4791 %
Root relative squared error	48.6074 %
Total Number of Instances	91

Lazy LWL

=== Classifier model (full training set) === Locally weighted learning Using classifier: weka.classifiers.trees.DecisionStump Using linear weighting kernels Using all neighbours === Summary === Correlation coefficient 0.835 Mean absolute error 12.4952

Root mean squared error	15.4648
Relative absolute error	65.3511 %
Root relative squared error	54.6936 %
Total Number of Instances	91

Decision Table

=== Classifier model (full training set) ===

%

Number of training instances: 91 Number of Rules: 10 Non matches covered by Majority class. Best first. Start set: no attributes Search direction: forward Stale search after 5 node expansions Total number of subsets evaluated: 87 Merit of best subset found: 9.319 Evaluation (for feature selection): CV (leave one out) Feature set: 4,6,15 === Summary === Correlation coefficient 0.8247 Mean absolute error 9.2794 Root mean squared error 15.9439 Dalatin

Relative absolute error	48.5324 %
Root relative squared error	56.3878 %
Total Number of Instances	91

Random Tree

=== Classifier model (full training set) ===

RandomTree

- TOTAL PAX Nights < 1867
- | TOTAL PAX Nights < 338.5
- | | Total Room Nights < 37.5

- | | | TOTAL PAX Nights < 28 : 0.6 (15/0.24)
- | | | TOTAL PAX Nights >= 28
- | | | TOTAL PAX Nights < 62.5 : 1.86 (7/0.41)
- | | | TOTAL PAX Nights >= 62.5 : 3.17 (6/0.47)
- | | Total Room Nights >= 37.5
- | | Booking Source = ARHUS CHARTER : 0 (0/0)
- | | Booking Source = AURINKOMATKAT : 0 (0/0)
- | | | Booking Source = BLUE AEGEAN
- | | | TOTAL PAX Nights < 227.5
- | | | | | Average pax/room < 2.71 : 20 (1/0)
- | | | | Average pax/room >= 2.71 : 18 (1/0)
- | | | TOTAL PAX Nights >= 227.5 : 24 (1/0)
- | | | Booking Source = BOOKING.COM
- | | | TOTAL PAX Nights < 100.5 : 9 (1/0)
- | | | TOTAL PAX Nights >= 100.5
- | | | | ADR < 97.15 : 13 (1/0)
- | | | | ADR >= 97.15 : 11 (1/0)
- | | | Booking Source = BRAVO TOURS
- | | | BB% < 0.58:7(1/0)
- | | | BB% >= 0.58 : 5 (1/0)
- | | Booking Source = EXPEDIA : 22 (1/0)
- | | | Booking Source = ITAKA
- | | | | AI < 280.5 : 13 (1/0)
- | | | | AI >= 280.5 : 15 (1/0)
- | | Booking Source = Jet2Holidays : 20 (1/0)
- | | Booking Source = RAINBOW : 0 (0/0)

- | | | Booking Source = SUNWEB
- | | | | TOTAL PAX Nights < 202.5 : 4 (1/0)
- | | | TOTAL PAX Nights >= 202.5 : 12 (1/0)
- | | | Booking Source = TUI Deutschland
- | | | | MONTH = April 2019 : 0 (0/0)
- | | | | MONTH = May 2019 : 0 (0/0)
- | | | | MONTH = June 2019 : 12 (1/0)
- | | | MONTH = July 2019 : 13 (1/0)
- | | | | MONTH = August 2019 : 7 (1/0)
- | | | | MONTH = September 2019 : 14 (1/0)
- | | | | MONTH = October 2019 : 0 (0/0)
- | | | Booking Source = TUI NL
- | | | TOTAL PAX Nights < 237.5
- | | | | ADR < 99.22 : 9 (1/0)
- | | | | ADR >= 99.22 : 6 (1/0)
- | | | TOTAL PAX Nights >= 237.5 : 15.5 (2/0.25)
- | | | Booking Source = TUI UK
- $| \quad | \quad | \quad BB < 140$
- | | | | TOTAL PAX Nights < 129.5 : 5 (1/0)
- | | | | TOTAL PAX Nights >= 129.5 : 7.5 (2/0.25)
- | | | BB >= 140
- | | | | ADR < 72.12 : 16 (1/0)
- | | | | ADR >= 72.12 : 18 (1/0)
- | TOTAL PAX Nights >= 338.5
- | | Country = Denmark
- | | | MONTH = April 2019 : 0 (0/0)

- | | | MONTH = May 2019 : 34 (1/0)
- | | | MONTH = June 2019 : 40 (1/0)
- | | | MONTH = July 2019
- | | | | HB% < 0.42: 39 (1/0)
- | | | | HB% >= 0.42 : 24 (1/0)
- | | | MONTH = August 2019 : 25 (1/0)
- | | MONTH = September 2019 : 39 (1/0)
- | | | MONTH = October 2019 : 22 (1/0)
- | Country = Finland : 63 (1/0)
- | Country = Romania : 27 (1/0)
- | | Country = Vary
- | | | HB% < 0.23
- | | | Average pax/room < 2.45
- | | | | | Total Room Nights < 214 : 32 (1/0)
- | | | | Total Room Nights >= 214
- | | | | | TOTAL PAX Nights < 566.5 : 41 (1/0)
- | | | | | | | TOTAL PAX Nights >= 566.5 : 45 (1/0)
- | | | | Average pax/room >= 2.45 : 46 (1/0)
- | | | HB% >= 0.23 : 26.5 (2/0.25)
- | | Country = Poland
- | | | BB < 780.5
- | | | Average pax/room < 2.79 : 56 (1/0)
- | | | Average pax/room >= 2.79 : 41.5 (2/0.25)
- | | BB >= 780.5 : 63 (1/0)
- | | Country = UK
- | | | TOTAL PAX Nights < 602

- | | | BB < 449
- | | | | Average pax/room < 2.46 : 18 (1/0)
- | | | | | Average pax/room >= 2.46 : 22 (1/0)
- | | | BB >= 449 : 28 (1/0)
- | | | TOTAL PAX Nights >= 602 : 34.5 (2/0.25)
- | | Country = Netherlands
- | | | BB% < 0.54
- | | | | TOTAL PAX Nights < 643 : 24 (1/0)
- | | | TOTAL PAX Nights >= 643
- | | | | | Average pax/room < 2.17 : 23 (1/0)
- | | | | | Average pax/room >= 2.17
- | | | | | MONTH = April 2019 : 0 (0/0)
- | | | | | MONTH = May 2019 : 21 (1/0)
- | | | | | | MONTH = June 2019 : 0 (0/0)
- | | | | | | MONTH = July 2019 : 23 (1/0)
- | | | | | MONTH = August 2019 : 19 (1/0)
- | | | | | | MONTH = September 2019 : 0 (0/0)
- | | | | | | MONTH = October 2019 : 0 (0/0)
- | | BB% >= 0.54 : 16(1/0)
- | Country = Germany : 0 (0/0)
- TOTAL PAX Nights >= 1867
- | MONTH = April 2019 : 78 (1/0)
- | MONTH = May 2019 : 125 (1/0)
- | MONTH = June 2019 : 132 (1/0)
- | MONTH = July 2019 : 135 (1/0)
- | MONTH = August 2019 : 92 (1/0)

- | MONTH = September 2019 : 82 (1/0)
- | MONTH = October 2019 : 0 (0/0)

Size of the tree : 110

=== Summary ===

Correlation coefficient	0.821
Mean absolute error	8.7104
Root mean squared error	16.1906
Relative absolute error	45.5563 %
Root relative squared error	57.2604 %
Total Number of Instances	91

Decision Stump

=== Classifier model (full training set) ===

Decision Stump

Classifications

BB <= 769.0 : 15.231707317073171

BB > 769.0:96.25

BB is missing : 0.0

=== Summary ===

Correlation coefficient	0.8058
Mean absolute error	13.2695
Root mean squared error	16.4947

Relative absolute error 69.401 %

Root relative squared error58.3358 %Total Number of Instances91

Classifiers "CV Parameter Selection", "Meta Multi Scheme", "Meta Stacking", "Meta Vote", "Meta Weighted Instances Handler Wrapper", "Meta Input Mapped Classifier" and "ZeroR" provide the same algorithm results, with a correlation coefficient: -0.3669.

=== Summary ===

Correlation coefficient	-0.366	9
Mean absolute error	19.12	
Root mean squared error	28.275	4
Relative absolute error	100	%
Root relative squared error	100	%
Total Number of Instances	91	

ZeroR predicts class value: 22.18

Simple K Means with 3 Clusters/Creta Palm 2019

Final cluster centroids:							
Cluster#							
Attribute	Full Data	0	1	2			
	(91.0)	(41.0)	(24.0)	(26.0)			
Booking Source ARHUS	CHARTER B	LUE AEGEAN ARHUS	CHARTER	ITAKA			
Country	Denmark	Vary	Denmark	Poland			
Avarage pax/room	2.4126	2.4466	2.2539	2.5055			
TO/ OTA	ТО	ТО	TO	TO			
ADR	82.1023	74.4385	85.23	91.3004			
TOTAL PAX Nights	491.0659	250.0488	429.0417	928.3846			
Total Room Nights	195.9231	105.1951	186.8333	347.3846			
BB	238.8	166.4829	154.0833	431.0385			
BB%	0.4559	0.5947	0.2819	0.3975			
HB	77.6	75.9415	53.2917	102.6538			
HB%	0.2866	0.3284	0.2715	0.2345			
AI	180.4333	19.7423	222.8333	394.6923			
AI%	0.2728	0.0786	0.4526	0.4132			
MONTH	April 2019	April 2019	August 2019	June 2019			
TOTAL BOOKINGS	22.1868	14.7073	19.5833	36.3846			

Simple K Means with 4 Clusters/Creta Palm 2019

Final cluster centroids:

Business Decision Analysis Based on Data Analytics | Antonia Trikounaki

Attribute 3	Full Data	0	1	2	
3	(91.0)	(25.0)	(16.0)	(18.0)	
(32.0)	. ,	. ,	· · ·		
========					
Booking Source ARHUS Jet2Holidays	CHARTER BRAV	O TOURS	RAINBOW	ITAKA	
Country UK	Denmark	Denmark	Poland	Poland	
Avarage pax/room 2.3059	2.4126	2.4418	2.2883	2.6722	
TO/ OTA TO	ТО	ТО	ТО	ТО	
ADR 70.1934	82.1023	75.6138	95.722	100.179	
TOTAL PAX Nights 308.4375	491.0659	273.44	228.125	1351.7222	
Total Room Nights 135.0625	195.9231	116.64	96.5	502.6111	
BB 204.0625	238.8	104.112	86.125	623.3333	
BB% 0.6821	0.4559	0.2801	0.3047	0.4322	
HB 40.6563	77.6	112.264	39.5625	128.9444	
HB% 0.1481	0.2866	0.5989	0.3023	0.085	
AI 64.5938	180.4333	76.9373	102.4375	599.4444	
AI%	0.2728	0.169	0.3946	0.4817	
0.1756 MONTH	April 2019	April 2019	August 2019	June 2019	
October 2019 TOTAL BOOKINGS 15.6563	22.1868	16.48	9.375	53.1111	

Simple K Means with 5 Clusters/ Creta Palm 2019

Final cluster centroids:

Cluster#						
Attribute	Full	Data 0	1	. 2	:	3 4
	(91.0)	(21.0)	(14.0)	(18.0)	(30.0)	(8.0)
Booking Source AR	HUS CHARTER	BRAVO TOURS	RAINBOW	ITAKA	Jet2Holidays	AURINKOMATKAT
Country	Denmark	Denmark	Poland	Poland	UK	Finland
Avarage pax/room	2.4126	2.4783	2.3195	2.5411	2.2899	2.5737
to/ ota	TO	TO	TO	TO	TO	TO
ADR	82.1023	74.5529	95.8794	96.3187	68.4807	96.9038
TOTAL PAX Nights	491.0659	161.2857	208.3571	685.3889	259.1667	2283.875
Total Room Nights	195.9231	66.0952	85.7857	262.4444	116.6333	877.125
BB	238.8	67.6095	76	179.2222	169.2333	1368
BB%	0.4559	0.3039	0.3168	0.2911	0.6793	0.6313
HB	77.6	99.5048	43.3571	29.5	32.4	357.75
HB%	0.2866	0.6606	0.3426	0.095	0.1467	0.1625
AI	180.4333	17.8302	89	476.6667	58.4667	558.125
AI%	0.2728	0.0926	0.3416	0.6139	0.1799	0.2063
MONTH	April 2019	April 2019	August 2019	June 2019	October 2019	July 2019
TOTAL BOOKINGS	22.1868	11.0476	9	28.6667	13.0667	94.125

EM Clusterer/ Creta Palm 2019

Number of clusters selected by cross validation: 6

Number of iterations performed: 2

I	Cluster					
Attribute	0	1	2	3	4	5
	(0.25)	(0.09)	(0.14)	(0.16)	(0.21)	(0.15)
Booking Source						
ARHUS CHARTER	1.9645	1 8	6 1	1.1962	1.798	1.0413
AURINKOMATKAT BLUE AEGEAN	1 5.9625	8	1	1.861	1.1185	2.058
BOOKING.COM	1	1	1	1	8	1
BRAVO TOURS	8	1	1	1	1	1
EXPEDIA	1	1	1	1	8	1
ITAKA Jet2Holidays	1 1.0233	2 1	6 1	1.0036 1.0427	1.9964 1.8145	1 7.1194
RAINBOW	3.9457	1	4	1.2826	1.7107	1.0609
SUNWEB	1	1	1	7.9973	1	1.0027
TUI Deutschland	8					
TUI NL	1 0005	1	1	6.3393	1.6418	2.0189
TUI UK [total]	1.0235 35.9196	1 21	1 26	1.5546 27.2773	1.9216 32.0015	6.5003 26.8016
Country	33.9190	21	20	21.2113	32.0013	20.0010
Denmark	8.9645	1	6	1.1962	1.798	1.0413
Finland	1	8	1	1	1	1
Romania Vary	5.9625 1	1	1	1.861	1.1185 15	2.058 1
Poland	3.9457	2	9	1.2863	2.7071	1.0609
UK	1.0468	1	1	1.5973	2.7361	12.6197
Netherlands	1	1	1	13.3366	1.6418	2.0216
Germany	8	1	1	1	1	1
[total] Average pax/room	30.9196	16	21	22.2773	27.0015	21.8016
mean	2.4112	2.63	2.3869	2.3397	2.5613	2.1836
std. dev.	0.4005	0.2832	0.4229	0.275	0.4782	0.2477
TO/ OTA				45 0550	c	
TO OTA	23.9196 1	9 1	14 1	15.2773 1	6.0015 15	14.8016 1
[total]	24.9196	10	15	16.2773	21.0015	15.8016
ADR	21.9190	10	10	10.17.0	22.0010	10.0010
mean	84.9945	95.7125	96.0338	74.2696	82.628	63.6668
std. dev.	40.0007	22.2281	13.1838	30.2916	33.8575	38.5206
TOTAL BOOKINGS mean	8.3335	96.25	25.7692	13.1435	17.7131	14.4021
std. dev.	8.6207	28.2212	17.7511	8.5626	15.7915	11.3081
TOTAL PAX Nights						
mean	123.1261	2399	648.6154	374.6268	270.1771	272.3284
std. dev. Total Room Nights	110.6516	776.995	579.5326	278.0052	237.0828	224.4275
mean	49.1283	910.875	251.5385	161.3676	111.4095	124.997
std. dev.	41.9332	254.8821	193.7709	118.9394	98.925	97.5841
BB						
mean std. dev.	0 005	1499.125	0	182.1568 122.6681	228.9/83	201.8/23
BB%	0.005	311.291	0.0009	122.0001	201.2700	100.0410
mean	0.1087	0.6563	0	0.6072	0.8826	0.6017
std. dev.	0.2709	0.1441	0	0.2227	0.1161	0.1346
HB	112 6146	2/1 75	0	10 0001	41 1000	40 5101
mean std. dev.	113.6146 101.8571	181.5625		18.9981 19.4071		
HB%						
mean		0.1375			0.1174	
std. dev.	0.2427	0.0644	0.3631	0.0415	0.1161	0.0877
AI mean	9.5115	558 125	648 6154	173.9444	0	59.4841
std. dev.	15.966			167.2705		
AI%						
mean	0.0915			0.3479		
std. dev. MONTH	0.1302	0.1066	0	0.2117	0.3429	0.1403
April 2019	4.0114	2	1	2.9054	5.0986	3.9846
May 2019	3	2	3	4.1278	5.6526	

Business Decision Analysis Based on Data Analytics | Antonia Trikounaki

June 2019	4	3	3	2.0342	3	3.9658
July 2019	5	2	3	3.0125	3	2.9875
August 2019	4	2	4	3.421	3	2.579
September 2019	5	2	3	3.0024	3	2.9976
October 2019	4.9082	2	3	2.7739	3.2503	3.0676
[total]	29.9196	15	20	21.2773	26.0015	20.8016

Farthest First with 3 Clusters/Creta Palm 2019

] Cluster centroids:

Cluster 0: BRAVO TOURS Denmark 2.0 TO 51.04 10.0 5.0 0.0 0.0 10.0 1.0 0.0 0.0 April 2019 1.0

Cluster 1: AURINKOMATKAT Finland 3.06 TO 132.97 3700.0 1210.0 1859.0 0.5 540.0 0.15 1301.0 0.35 July 2019 135.0

Cluster 2: BOOKING.COM Vary 3.69 OTA 132.24 59.0 16.0 57.0 0.97 2.0 0.03 0.0 0.0 July 2019 2.0

=== Model and evaluation on training set ===

Clustered Instances

0	61	(67응)
1	9	(10%)
2	21	(23응)

Farthest First with 4 Clusters/Creta Palm 2019

Cluster centroids:

Cluster 0: BRAVO TOURS Denmark 2.0 TO 51.04 10.0 5.0 0.0 0.0 10.0 1.0 0.0 0.0 April 2019 1.0

Cluster 1: AURINKOMATKAT Finland 3.06 TO 132.97 3700.0 1210.0 1859.0 0.5 540.0 0.15 1301.0 0.35 July 2019 135.0

Cluster 2: BOOKING.COM Vary 3.69 OTA 132.24 59.0 16.0 57.0 0.97 2.0 0.03 0.0 0.0 July 2019 2.0

Cluster 3: ITAKA Poland 3.15 TO 115.77 1718.0 545.0 0.0 0.0 0.0 0.0 1718.0 1.0 August 2019 41.0

=== Model and evaluation on training set ===

Clustered Instances

0	45	(49응)
1	7	(8%)
2	18	(20%)
3	21	(23%)

Cluster centroids:

Farthest First with 5 Clusters/Creta Palm 2019

Cluster 0: BRAVO TOURS Denmark 2.0 TO 51.04 10.0 5.0 0.0 0.0 10.0 1.0 0.0 0.0 April 2019 1.0 Cluster 1: AURINKOMATKAT Finland 3.06 TO 132.97 3700.0 1210.0 1859.0 0.5 540.0 0.15 1301.0 0.35 July 2019 135.0 Cluster 2: BOOKING.COM Vary 3.69 OTA 132.24 59.0 16.0 57.0 0.97 2.0 0.03 0.0 0.0 July 2019 2.0 Cluster 3: ITAKA Poland 3.15 TO 115.77 1718.0 545.0 0.0 0.0 0.0 0.0 1718.0 1.0 August 2019 41.0 Cluster 4: BLUE AEGEAN Romania 2.0 TO 0.0 8.0 4.0 8.0 1.0 0.0 0.0 0.0 0.0 May 2019 1.0 === Model and evaluation on training set === Clustered Instances 0 22 (24%) 1 7 (8%) 2 15 (16%)

Canopy Clusterer/Creta Palm 2019

17 (19%) 30 (33%)

3

4

<u>Cluster 0:</u> 'BRAVOTOURS', Denmark, 2.7625, TO, 113.8375, 9, 162.75, 57.75, 0, 0.29, 147.75, 0.955, 15, 0.045, 'June 2019', {4} <0,6,8,9,11,15>

<u>Cluster 1:</u> Jet2Holidays,UK, 2.165584, TO, 77.209231, 16.692308, 318.538462, 145.615385, 225.153846, 0.650452, 43.692308, 0.139738, 51.846154, 0.221756, 'July 2019',{13} <1,2,3,7,8,9,13>

<u>Cluster 2:</u> RAINBOW, Poland, 2.653147, TO, 47.845, 1,17. 75, 6.25, 17.75, 0.863971, 0, 0.071647, 0, 0.068206, 'April 2019', {4} <1,2,3,5,7,8,9,13,14,15>

<u>Cluster 3:</u> SUNWEB, Netherlands, 2.344545, TO, 80.927273, 16.545455, 474.727273, 204.909091, 222.181818, 0.507273, 29.818182, 0.071818, 222.727273, 0.420909, 'May 2019', {11} <1,2,3,7,10,11,12,13,14>

Cluster 4:

AURINKOMATKAT,Finland,2.498333,TO,88.43,95.333333,2321.833333,925.8333 33,1428.833333,0.625,365.666667,0.158333,527.333333,0.216667,'April 2019',{6} <4>

<u>Cluster 5:</u> EXPEDIA, Vary, 2.421111, OTA, 78.018889, 28.222222, 417.666667, 171.333333, 346.333333, 0.843333, 71.333333, 0.156667, 0, 0, 'April 2019', {9} <2,5,7,10>

Cluster 6:

'BLUEAEGEAN', Romania, 2.500647, TO, 81.34875, 13, 158.625, 62,29.85, 0.113971, 157.825, 0.780397, 33.054167, 0.109456, 'September 2019',{8} <0,6,8,9,15>

<u>Cluster 7:</u> 'TUI UK', UK, 2.646294, TO, 3.3, 0.5, 23, 8, 23, 0.727941, 0, 0.143294, 0, 0.136412, 'April 2019', {2} <1,2,3,5,7,8,13,15>

Cluster 8:

'BRAVOTOURS', Denmark, 2.073147, TO, 48.4575, 3, 43, 22.25, 0, 0.113971, 37, 0.754147, 6, 0.135706, 'April 2019', {4} <0,1,2,6,7,8,9,11,13,15>

<u>Cluster 9:</u> RAINBOW, Poland, 2.17, TO, 100.61, 7, 109.5, 47, 0, 0, 109.5, 1, 0, 0, 'July 2019',{2} <0,1,2,6,8,9,14,15>

<u>Cluster 10:</u> BOOKING.COM, Vary, 2.844, OTA, 121.024, 5.6, 93.6, 33.4, 72.8, 0.856, 20.8, 0.144, 0, 0, 'May 2019', {5} <3,5,10>

<u>Cluster 11:</u> 'ARHUSHARTER', Denmark, 2.17, TO, 83.287839, 33, 605.2, 281, 0, 0, 0, 0, 605.2, 1, 'June 2019', {5} <0,3,8,11,12,13,14>

<u>Cluster 12:</u> ITAKA, Poland, 2.836, TO, 103.606, 33.4, 1070.4, 367.6, 0, 0, 0, 0, 1070.4, 1, 'May 2019', {5} <3,11,12,14>

<u>Cluster 13:</u> 'ARHUS CHARTER', Denmark, 2.08, TO, 0, 17.5, 248, 115, 248, 1, 0, 0 ,0, 0, 'May 2019',{2} <1,2,3,7,8,11,13> <u>Cluster 14:</u> RAINBOW, Poland, 2, TO, 104.656667, 1, 18, 9, 0, 0, 0, 0, 18, 1, 'May2019',{3} <2,3,9,11,12,14>

<u>Cluster 15:</u> 'TUIDeutschland', Germany, 2.354, TO, 89.37, 5, 102.2, 43.2, 0, 0, 92.2, 0.896, 10, 0.104, 'April 2019', {5} <0,2,6,7,8,9,15>

Clustered Instances

0	3(3%)
1	8 (9%)
2	5(5%)
3	12 (13%)
4	7(8%)
5	8 (9%)
6	6(7%)
7	7(8%)
8	4(4%)
9	2(2%)
10	6(7%)
11	5 (5%)
12	5 (5%)
13	3 (3%)
14	3 (3%)
15	7(8%)

Make A Density Clusterer, Fitted estimators (with ML estimates of variance) / Creta Palm 2019

Cluster 0:

Prior probability: 0.5914

Attribute: Booking Source Discrete Estimator. Counts = 3 2 8 8 7 8 2 6 1 2 7 6 7 (Total = 67) Attribute: Country Discrete Estimator. Counts = 9 2 8 15 2 12 7 7 (Total = 62) Attribute: Average pax/room Normal Distribution. Mean = 2.4121 StdDev = 0.4301 Attribute: TO/ OTA Discrete Estimator. Counts = 41 15 (Total = 56) Attribute: ADR Normal Distribution. Mean = 74.4252 StdDev = 37.9721 Attribute: TOTAL BOOKINGS Normal Distribution. Mean = 14.2222 StdDev = 15.2518 Attribute: TOTAL PAX Nights Normal Distribution. Mean = 236.3333 StdDev = 300.9303 Attribute: Total Room Nights Normal Distribution. Mean = 101.1296 StdDev = 129.5958 Attribute: **BB** Normal Distribution. Mean = 149.0704 StdDev = 224.6238 Attribute: BB% Normal Distribution. Mean = 0.555 StdDev = 0.3818Attribute: HB Normal Distribution. Mean = 75.7519 StdDev = 99.247 Attribute: HB% Normal Distribution. Mean = 0.3741 StdDev = 0.3745Attribute: AI Normal Distribution. Mean = 21.2302 StdDev = 45.6064 Attribute: AI% Normal Distribution. Mean = 0.0964 StdDev = 0.1353Attribute: MONTH Discrete Estimator. Counts = $13\ 10\ 9\ 8\ 4\ 8\ 9\ (Total = 61)$

Cluster 1:

Prior probability: 0.4086

Attribute: Booking Source Discrete Estimator. Counts = 6711217387232 (Total = 50) Attribute: Country Discrete Estimator. Counts = 771114492 (Total = 45) Attribute: Average pax/room Normal Distribution. Mean = 2.4133 StdDev = 0.35Attribute: TO/ OTA Discrete Estimator. Counts = 381 (Total = 39) Attribute: ADR Normal Distribution. Mean = 93.3067 StdDev = 24.5645Attribute: TOTAL BOOKINGS Normal Distribution. Mean = 33.8108 StdDev = 36.6015 Attribute: TOTAL PAX Nights Normal Distribution. Mean = 862.8378 StdDev = 946.7349 Attribute: Total Room Nights Normal Distribution. Mean = 334.2703 StdDev = 341.4076 Attribute: BB Normal Distribution. Mean = 369.7568 StdDev = 596.6422 Attribute: **BB%** Normal Distribution. Mean = 0.3112 StdDev = 0.3184Attribute: HB

Normal Distribution. Mean = 80.2973 StdDev = 146.6225 Attribute: HB% Normal Distribution. Mean = 0.1588 StdDev = 0.2975 Attribute: AI Normal Distribution. Mean = 412.7838 StdDev = 467.9476 Attribute: AI% Normal Distribution. Mean = 0.5303 StdDev = 0.384 Attribute: MONTH Discrete Estimator. Counts = 25671176 (Total = 44)

M5P Trees Algorithm/ Creta Palm 2020

== Classifier model (full training set) ===

M5 pruned model tree:

(using smoothed linear models)

LM1 (52/17.057%)

LM num: 1

TOTAL BOOKINGS =

-3.2594 * Booking Source=SUNWEB,ARHUS CHARTER,AURINKOMATKAT,RAINBOW,BRAVO TOURS,EXPEDIA,ITAKA,BOOKING.COM

+ 5.7916 * Booking Source=ARHUS

CHARTER, AURINKOMATKAT, RAINBOW, BRAVO

TOURS, EXPEDIA, ITAKA, BOOKING. COM

+ 5.4911 * Booking Source=BOOKING.COM

+ 0.0311 * TOTAL PAX Nights

+ 0.0461 * Total Room Nights

- 0.1135

M5Rules Algorithm/ Creta Palm 2020

=== Classifier model (full training set) ===

M5 pruned model rules

(using smoothed linear models) :

Number of Rules : 1

Rule: 1

TOTAL BOOKINGS =

-3.2594 * Booking Source=SUNWEB,ARHUS CHARTER,AURINKOMATKAT,RAINBOW,BRAVO TOURS,EXPEDIA,ITAKA,BOOKING.COM

+ 5.7916 * Booking Source=ARHUS

CHARTER, AURINKOMATKAT, RAINBOW, BRAVO

TOURS, EXPEDIA, ITAKA, BOOKING. COM

+ 5.4911 * Booking Source=BOOKING.COM

+ 0.0311 * TOTAL PAX Nights

+ 0.0461 * Total Room Nights

- 0.1135 [52/17.057%]

Linear Regression Algorithm/ Creta Palm 2020

=== Classifier model (full training set) ===

Linear Regression Model

TOTAL BOOKINGS =

-4.0586 * Booking Source=Jet2Holidays,BLUE AEGEAN,TUI Deutschland,SUNWEB,ARHUS CHARTER,AURINKOMATKAT,RAINBOW,BRAVO TOURS,EXPEDIA,ITAKA,BOOKING.COM + 3.6465 * Booking Source=BLUE AEGEAN,TUI Deutschland,SUNWEB,ARHUS CHARTER,AURINKOMATKAT,RAINBOW,BRAVO TOURS,EXPEDIA,ITAKA,BOOKING.COM +

-3.7908 * Booking Source=ITAKA,BOOKING.COM +

4.961 * Booking Source=BOOKING.COM +

- -2.6084 * Country=Netherlands,Germany,Finland,Denmark,Poland,Vary +
- 4.9457 * Country=Denmark,Poland,Vary +

-3.0723 * MONTH=AUGUST 2020 +

0.0196 * TOTAL PAX Nights +

0.1122 * Total Room Nights +

-0.0083 * BB +

-0.0212 * AI + 1.977

SMO Reg Algorithm/ Creta Palm 2020

=== Classifier model (full training set) ===

weights (not support vectors):

- + 0.0118 * (normalized) Booking Source=ARHUS CHARTER
- + 0.0003 * (normalized) Booking Source=AURINKOMATKAT
- 0.0016 * (normalized) Booking Source=BLUE AEGEAN
- + 0.0135 * (normalized) Booking Source=BOOKING.COM
- + 0.0029 * (normalized) Booking Source=BRAVO TOURS
- 0.0053 * (normalized) Booking Source=EXPEDIA
- + 0 * (normalized) Booking Source=ITAKA
- 0.0043 * (normalized) Booking Source=Jet2Holidays
- + 0.005 * (normalized) Booking Source=RAINBOW
- 0.0036 * (normalized) Booking Source=SELF BOOKINGS
- 0.0096 * (normalized) Booking Source=SUNWEB

- 0.0117 * (normalized) Booking Source=TUI Deutschland
- + 0 * (normalized) Booking Source=TUI NL
- + 0.0026 * (normalized) Booking Source=TUI UK
- + 0.0146 * (normalized) Country=Denmark
- + 0.0003 * (normalized) Country=Finland
- 0.0016 * (normalized) Country=Romania
- + 0.0046 * (normalized) Country=Vary
- + 0.005 * (normalized) Country=Poland
- 0.0017 * (normalized) Country=UK
- 0.0096 * (normalized) Country=Netherlands
- 0.0117 * (normalized) Country=Germany
- 0.0229 * (normalized) Average pax/room
- + 0.0082 * (normalized) TO/ OTA=OTA
- + 0.0455 * (normalized) ADR
- 0.0077 * (normalized) MONTH=JULY 2020
- 0.0123 * (normalized) MONTH=AUGUST 2020
- + 0.0044 * (normalized) MONTH=SEPTEMBER 2020
- + 0.0156 * (normalized) MONTH=OCTOBER 2020
- + 0.3325 * (normalized) TOTAL PAX Nights
- + 0.4042 * (normalized) Total Room Nights
- + 0.15 * (normalized) BB
- 0.0021 * (normalized) BB%
- + 0.1003 * (normalized) HB
- + 0.0058 * (normalized) HB%
- + 0.0069 * (normalized) AI
- + 0.0075 * (normalized) AI%

- 0.0088

Meta Random Committee Algorithm/ Creta Palm 2020

=== Classifier model (full training set) ===

All the base classifiers:

RandomTree

TOTAL PAX Nights < 737

- | Country = Denmark
- | | ADR < 147.39
- | | | AI < 161
- | | | ADR < 45.22 : 0 (1.6/0)
- | | | ADR >= 45.22 : 10 (2/0)
- | | | AI >= 161
- | | | | TOTAL PAX Nights < 101.5 : 0 (0.4/0)
- | | | TOTAL PAX Nights >= 101.5
- | | | | Average pax/room < 2.17 : 18 (1/0)
- | | | | | Average pax/room >= 2.17 : 14 (1/0)
- | | ADR >= 147.39 : 30 (1/0)
- | Country = Finland
- | ADR < 42.74 : 0 (1/0)
- | ADR >= 42.74
- | | | Total Room Nights < 185.5 : 17 (1/0)
- | | | Total Room Nights >= 185.5 : 29 (1/0)
- | Country = Romania
- | | MONTH = JULY 2020 : 3 (1/0)

- | | MONTH = AUGUST 2020 : 10 (1/0)
- | | MONTH = SEPTEMBER 2020 : 15 (1/0)
- | | MONTH = OCTOBER 2020 : 0 (1/0)
- | Country = Vary
- | | HB < 53.5
- | | | ADR < 64.38 : 0.63 (1.6/0.23)
- | | ADR >= 64.38
- | | | | Booking Source = ARHUS CHARTER : 0 (0/0)
- | | | Booking Source = AURINKOMATKAT : 0 (0/0)
- | | | | Booking Source = BLUE AEGEAN : 0 (0/0)
- | | | Booking Source = BOOKING.COM : 8 (1/0)
- | | | Booking Source = BRAVO TOURS : 0 (0/0)
- | | | Booking Source = EXPEDIA : 6 (1/0)
- | | | Booking Source = ITAKA : 0 (0/0)
- | | | Booking Source = Jet2Holidays : 0 (0/0)
- | | | Booking Source = RAINBOW : 0 (0/0)
- | | | | Booking Source = SELF BOOKINGS : 0 (0/0)
- | | | Booking Source = SUNWEB : 0 (0/0)
- | | | | Booking Source = TUI Deutschland : 0 (0/0)
- | | | | Booking Source = TUI NL : 0 (0/0)
- | | | Booking Source = TUI UK : 0 (0/0)
- | | HB >= 53.5
- | | | Total Room Nights < 82 : 0 (0.4/0)
- | | | Total Room Nights >= 82
- | | | Average pax/room < 2.4 : 32 (1/0)
- | | | | Average pax/room >= 2.4 : 27 (1/0)

- | Country = Poland
- | | AI < 332
- | | | MONTH = JULY 2020 : 1 (1/0)
- | | | MONTH = AUGUST 2020 : 25 (1/0)
- | | | MONTH = SEPTEMBER 2020 : 0 (0/0)
- | | | MONTH = OCTOBER 2020
- | | | BB% < 0.5: 13(1/0)
- | | | BB% >= 0.5 : 7 (1/0)
- | | AI >= 332
- | | Booking Source = ARHUS CHARTER : 0 (0/0)
- | | Booking Source = AURINKOMATKAT : 0 (0/0)
- | | Booking Source = BLUE AEGEAN : 0 (0/0)
- | | Booking Source = BOOKING.COM : 0 (0/0)
- | | Booking Source = BRAVO TOURS : 0 (0/0)
- | | Booking Source = EXPEDIA : 0 (0/0)
- | | | Booking Source = ITAKA
- | | | | TOTAL PAX Nights < 554 : 26 (1/0)
- | | | | TOTAL PAX Nights >= 554 : 23 (1/0)
- | | Booking Source = Jet2Holidays : 0 (0/0)
- | | Booking Source = RAINBOW : 31 (1/0)
- | | Booking Source = SELF BOOKINGS : 0 (0/0)
- | | Booking Source = SUNWEB : 0 (0/0)
- | | Booking Source = TUI Deutschland : 0 (0/0)
- | | Booking Source = TUI NL : 0 (0/0)
- | | Booking Source = TUI UK : 0 (0/0)
- | Country = UK

- | | TOTAL PAX Nights < 262.5
- | | | MONTH = JULY 2020 : 0.5 (2/0.25)
- | | | MONTH = AUGUST 2020 : 0 (1/0)
- | | | MONTH = SEPTEMBER 2020 : 2.5 (2/0.25)
- | | | MONTH = OCTOBER 2020 : 0 (2/0)
- | | TOTAL PAX Nights >= 262.5 : 18 (1/0)
- | Country = Netherlands
- | | BB < 189
- | | ADR < 41.63 : 0 (1/0)
- | | ADR >= 41.63
- | | | MONTH = JULY 2020
- | | | | Average pax/room < 2.36 : 3 (1/0)
- | | | | | Average pax/room >= 2.36 : 6 (1/0)
- | | | | MONTH = AUGUST 2020
- | | | | | Average pax/room < 2.3 : 5 (1/0)
- | | | | | Average pax/room >= 2.3 : 9 (1/0)
- | | | MONTH = SEPTEMBER 2020 : 8 (1/0)
- | | | MONTH = OCTOBER 2020 : 12 (1/0)
- | BB >= 189 : 20 (1/0)
- | Country = Germany
- | | MONTH = JULY 2020 : 16 (1/0)
- | | MONTH = AUGUST 2020 : 9 (1/0)
- | | MONTH = SEPTEMBER 2020 : 5 (1/0)
- | | MONTH = OCTOBER 2020 : 3 (1/0)

TOTAL PAX Nights >= 737

| ADR < 117.03

- | | TO/OTA = TO
- | | | Country = Denmark : 42 (1/0)
- | | Country = Finland : 0 (0/0)
- | | Country = Romania : 0 (0/0)
- | | | Country = Vary : 0 (0/0)
- | | Country = Poland : 47 (1/0)
- | | | Country = UK : 0 (0/0)
- | | Country = Netherlands : 0 (0/0)
- | | | Country = Germany : 0 (0/0)
- | | TO/OTA = OTA
- | | Booking Source = ARHUS CHARTER : 0 (0/0)
- | | Booking Source = AURINKOMATKAT : 0 (0/0)
- | | Booking Source = BLUE AEGEAN : 0 (0/0)
- | | Booking Source = BOOKING.COM : 56 (1/0)
- | | Booking Source = BRAVO TOURS : 0 (0/0)
- | | Booking Source = EXPEDIA : 52 (1/0)
- | | Booking Source = ITAKA : 0 (0/0)
- | | Booking Source = Jet2Holidays : 0 (0/0)
- | | Booking Source = RAINBOW : 0 (0/0)
- | | Booking Source = SELF BOOKINGS : 0 (0/0)
- | | Booking Source = SUNWEB : 0 (0/0)
- | | Booking Source = TUI Deutschland : 0 (0/0)
- | | Booking Source = TUI NL : 0 (0/0)
- | | Booking Source = TUI UK : 0 (0/0)
- | ADR >= 117.03 : 109 (1/0)

RandomTree

Booking Source = ARHUS CHARTER							
MONTH = JULY 2020 : 0 (1/0)							
MONTH = AUGUST 2020 : 0 (1/0)							
MONTH = SEPTEMBER 2020 : 30 (1/0)							
MONTH = OCTOBER 2020 : 18 (1/0)							
Booking Source = AURINKOMATKAT							
MONTH = JULY 2020 : 17 (1/0)							
MONTH = AUGUST 2020 : 29 (1/0)							
MONTH = SEPTEMBER 2020 : 0 (0/0)							
MONTH = OCTOBER 2020 : 0 (1/0)							
Booking Source = BLUE AEGEAN							
TOTAL PAX Nights < 111							
HB < 24.5 : 0 (1/0)							
HB >= 24.5 : 3 (1/0)							
TOTAL PAX Nights >= 111							
ADR < 87.31 : 15 (1/0)							
ADR >= 87.31 : 10 (1/0)							
Booking Source = BOOKING.COM							

Booking Source = BOOKING.COM

- | MONTH = JULY 2020 : 56 (1/0)
- | MONTH = AUGUST 2020 : 109 (1/0)
- | MONTH = SEPTEMBER 2020 : 27 (1/0)
- | MONTH = OCTOBER 2020 : 8 (1/0)

```
Booking Source = BRAVO TOURS
```

- | MONTH = JULY 2020 : 42 (1/0)
- | MONTH = AUGUST 2020 : 10 (1/0)
- | MONTH = SEPTEMBER 2020 : 14 (1/0)
- | MONTH = OCTOBER 2020 : 10 (1/0)
- Booking Source = EXPEDIA
- | MONTH = JULY 2020 : 32 (1/0)
- | MONTH = AUGUST 2020 : 52 (1/0)
- | MONTH = SEPTEMBER 2020 : 6 (1/0)
- | MONTH = OCTOBER 2020 : 1 (1/0)
- Booking Source = ITAKA
- | Average pax/room < 2.78
- | | BB < 36
- | | ADR < 99.42 : 23 (1/0)
- | | | ADR >= 99.42 : 26 (1/0)
- | BB >= 36:7(1/0)
- Average pax/room >= 2.78 : 47 (1/0)
- Booking Source = Jet2Holidays
- | TOTAL PAX Nights < 262.5
- | | MONTH = JULY 2020 : 1 (1/0)
- | | MONTH = AUGUST 2020 : 0 (0/0)
- | | MONTH = SEPTEMBER 2020 : 3 (1/0)
- | | MONTH = OCTOBER 2020 : 0 (1/0)
- | TOTAL PAX Nights >= 262.5 : 18 (1/0)

Booking Source = RAINBOW

| AI% < 0.5 : 25 (1/0)

| AI% >= 0.5

- | | Average pax/room < 2.12 : 31 (1/0)
- | | Average pax/room >= 2.12
- | | | Average pax/room < 2.58 : 13 (1/0)
- | | | Average pax/room >= 2.58 : 1 (1/0)

Booking Source = SELF BOOKINGS : 0(1/0)

Booking Source = SUNWEB

| BB < 189

- | | TOTAL PAX Nights < 214 : 12 (1/0)
- | | TOTAL PAX Nights >= 214
- | | | Average pax/room < 2.54 : 9 (1/0)
- | | | Average pax/room >= 2.54 : 6 (1/0)

| BB >= 189 : 20 (1/0)

Booking Source = TUI Deutschland

| ADR < 119.28

- | | ADR < 98.34
- | | | TOTAL PAX Nights < 78.5 : 3 (1/0)
- | | | TOTAL PAX Nights >= 78.5 : 5 (1/0)
- | | ADR >= 98.34 : 9 (1/0)
- | ADR >= 119.28 : 16 (1/0)
- Booking Source = TUI NL
- | TOTAL PAX Nights < 88.5
- | ADR < 43.49 : 0 (1/0)
- | ADR >= 43.49 : 3 (1/0)
- | TOTAL PAX Nights >= 88.5
- | | TOTAL PAX Nights < 130.5 : 5 (1/0)

- | | TOTAL PAX Nights >= 130.5 : 8 (1/0)
- Booking Source = TUI UK
- | MONTH = JULY 2020 : 0 (1/0)
- | MONTH = AUGUST 2020 : 0 (1/0)
- | MONTH = SEPTEMBER 2020 : 2 (1/0)
- | MONTH = OCTOBER 2020 : 0 (1/0)

RandomTree

BB < 489.5

- | TOTAL PAX Nights < 235
- | | TOTAL PAX Nights < 105

| | | TO/OTA = TO

- | | | | Country = Denmark : 0 (1.92/0)
- | | | | Country = Finland : 0 (1/0)
- | | | Country = Romania
- | | | | | HB < 24.5 : 0 (1/0)
- | | | | HB >= 24.5 : 3 (1/0)
- | | | Country = Vary : 0 (0.79/0)
- | | | Country = Poland
- | | | | Booking Source = ARHUS CHARTER : 0 (0/0)
- | | | | | Booking Source = AURINKOMATKAT : 0 (0/0)
- | | | | Booking Source = BLUE AEGEAN : 0 (0/0)
- | | | | | Booking Source = BOOKING.COM : 0 (0/0)

- | | | | Booking Source = BRAVO TOURS : 0 (0/0)
- | | | | | Booking Source = EXPEDIA : 0 (0/0)
- | | | | Booking Source = ITAKA : 7 (1/0)
- | | | | | Booking Source = Jet2Holidays : 0 (0/0)
- | | | | | Booking Source = RAINBOW : 1 (1/0)
- | | | | Booking Source = SELF BOOKINGS : 0 (0/0)
- | | | | Booking Source = SUNWEB : 0 (0/0)
- | | | | | Booking Source = TUI Deutschland : 0 (0/0)
- | | | | Booking Source = TUI NL : 0 (0/0)
- | | | | Booking Source = TUI UK : 0 (0/0)
- | | | Country = UK
- | | | | Total Room Nights < 3.5 : 0 (3.92/0)
- | | | | Total Room Nights >= 3.5
- | | | | BB < 7 : 1 (1/0)
- | | | | | BB >= 7 : 2.5 (2/0.25)
- | | | Country = Netherlands
- | | | | AI < 13
- | | | | | | Total Room Nights < 21 : 0 (1/0)
- | | | | | | Total Room Nights >= 21 : 3 (1/0)
- | | | | AI >= 13:5(1/0)
- | | | Country = Germany
- | | | | Average pax/room < 2.06 : 3 (1/0)
- | | | | | Average pax/room >= 2.06 : 5 (1/0)
- | | | TO/OTA = OTA
- | | | ADR < 64.38 : 0.89 (1.13/0.1)
- | | | ADR >= 64.38

- | | | | | Average pax/room < 2.15 : 6 (1/0)
- | | | | | Average pax/room >= 2.15 : 8 (1/0)
- | | TOTAL PAX Nights >= 105
- | | | AI% < 0.76
- | | | | MONTH = JULY 2020 : 6 (1/0)
- | | | MONTH = AUGUST 2020 : 9.67 (3/0.22)
- | | | MONTH = SEPTEMBER 2020 : 8 (1/0)
- | | | | MONTH = OCTOBER 2020 : 0 (0/0)
- | | | AI% >= 0.76
- | | | | Average pax/room < 2.13 : 10 (1/0)
- | | | Average pax/room >= 2.13
- | | | | AI < 189.5 : 12.5 (2/0.25)
- | | | | AI >= 189.5 : 14.5 (2/0.25)
- | TOTAL PAX Nights >= 235
- | | TOTAL PAX Nights < 381.5
- | | Country = Denmark : 18 (1/0)
- | | | Country = Finland : 17 (1/0)
- | | Country = Romania : 0 (0/0)
- | | | Country = Vary : 0 (0/0)
- | | Country = Poland : 25 (1/0)
- | | | Country = UK : 0 (0/0)
- | | Country = Netherlands : 9 (1/0)
- | | | Country = Germany : 16 (1/0)
- | | TOTAL PAX Nights >= 381.5
- | | | AI < 737
- | | | | Country = Denmark : 30 (1/0)

- | | | | Country = Finland : 29 (1/0)
- | | | | Country = Romania : 0 (0/0)
- | | | Country = Vary
- | | | | Average pax/room < 2.4 : 32 (1/0)
- | | | | | Average pax/room >= 2.4 : 27 (1/0)
- | | | Country = Poland
- | | | | TOTAL PAX Nights < 576
- | | | | | ADR < 99.42 : 23 (1/0)
- | | | | | ADR >= 99.42 : 26 (1/0)
- | | | | | TOTAL PAX Nights >= 576 : 31 (1/0)
- | | | Country = UK : 18 (1/0)
- | | | | Country = Netherlands : 20 (1/0)
- | | | | Country = Germany : 0 (0/0)
- | | | AI >= 737 : 42 (1/0)

- | Booking Source = ARHUS CHARTER : 0 (0.08/0)
- | Booking Source = AURINKOMATKAT : 0 (0/0)
- | Booking Source = BLUE AEGEAN : 0 (0/0)
- | Booking Source = BOOKING.COM
- | | TOTAL PAX Nights < 1556.5 : 56 (1/0)
- | | TOTAL PAX Nights >= 1556.5 : 109 (1/0)
- | Booking Source = BRAVO TOURS : 0 (0/0)
- | Booking Source = EXPEDIA : 52 (1/0)
- | Booking Source = ITAKA : 47 (1/0)
- | Booking Source = Jet2Holidays : 0 (0/0)
- | Booking Source = RAINBOW : 0 (0/0)

- | Booking Source = SELF BOOKINGS : 0 (0.08/0)
- | Booking Source = SUNWEB : 0 (0/0)
- | Booking Source = TUI Deutschland : 0 (0/0)
- | Booking Source = TUI NL : 0 (0/0)
- | Booking Source = TUI UK : 0 (0.08/0)

RandomTree

Total Room Nights < 297.5

- | TOTAL PAX Nights < 235
- | | Total Room Nights < 49
- | | | Total Room Nights < 17.5
- | | | | Total Room Nights < 1.5 : 0 (10/0)
- | | | Total Room Nights >= 1.5 : 1.25 (4/0.19)
- | | Total Room Nights >= 17.5
- | | | | Country = Denmark : 0 (0/0)
- | | | | Country = Finland : 0 (0/0)
- | | | | Country = Romania : 3 (1/0)
- | | | Country = Vary
- | | | | ADR < 70.08 : 6 (1/0)
- | | | | ADR >= 70.08 : 8 (1/0)
- | | | | Country = Poland : 7 (1/0)
- | | | Country = UK : 3 (1/0)
- | | | Country = Netherlands

- | | | | | Average pax/room < 2.13 : 3 (1/0)
- | | | | | Average pax/room >= 2.13 : 5 (1/0)
- | | | Country = Germany
- | | | | | Average pax/room < 2.06 : 3 (1/0)
- | | | | | Average pax/room >= 2.06 : 5 (1/0)
- | | Total Room Nights >= 49
- | | BB% < 0.17
- | | | | MONTH = JULY 2020 : 0 (0/0)
- | | | MONTH = AUGUST 2020 : 9.5 (2/0.25)
- | | | MONTH = SEPTEMBER 2020 : 14.5 (2/0.25)
- | | | | MONTH = OCTOBER 2020
- | | | | | Booking Source = ARHUS CHARTER : 0 (0/0)
- | | | | Booking Source = AURINKOMATKAT : 0 (0/0)
- | | | | Booking Source = BLUE AEGEAN : 0 (0/0)
- | | | | Booking Source = BOOKING.COM : 0 (0/0)
- | | | | Booking Source = BRAVO TOURS : 10 (1/0)
- | | | | | Booking Source = EXPEDIA : 0 (0/0)
- | | | | Booking Source = ITAKA : 0 (0/0)
- | | | | | Booking Source = Jet2Holidays : 0 (0/0)
- | | | | | Booking Source = RAINBOW : 13 (1/0)
- | | | | Booking Source = SELF BOOKINGS : 0 (0/0)
- | | | | Booking Source = SUNWEB : 12 (1/0)
- | | | | | Booking Source = TUI Deutschland : 0 (0/0)
- | | | | | Booking Source = TUI NL : 0 (0/0)
- | | | | | Booking Source = TUI UK : 0 (0/0)
- | | BB% >= 0.17

- | | | Booking Source = ARHUS CHARTER : 0 (0/0)
- | | | Booking Source = AURINKOMATKAT : 0 (0/0)
- | | | | Booking Source = BLUE AEGEAN : 0 (0/0)
- | | | Booking Source = BOOKING.COM : 0 (0/0)
- | | | Booking Source = BRAVO TOURS : 10 (1/0)
- | | | Booking Source = EXPEDIA : 0 (0/0)
- | | | | Booking Source = ITAKA : 0 (0/0)
- | | | Booking Source = Jet2Holidays : 0 (0/0)
- | | | Booking Source = RAINBOW : 0 (0/0)
- | | | | Booking Source = SELF BOOKINGS : 0 (0/0)
- | | | Booking Source = SUNWEB : 6 (1/0)
- | | | | Booking Source = TUI Deutschland : 0 (0/0)
- | | | Booking Source = TUI NL : 8 (1/0)
- | | | Booking Source = TUI UK : 0 (0/0)
- | TOTAL PAX Nights >= 235
- | | Booking Source = ARHUS CHARTER
- | | | TOTAL PAX Nights < 318.5 : 18 (1/0)
- | | | TOTAL PAX Nights >= 318.5 : 30 (1/0)
- | | Booking Source = AURINKOMATKAT
- | | | TOTAL PAX Nights < 385 : 17 (1/0)
- | | | TOTAL PAX Nights >= 385 : 29 (1/0)
- | Booking Source = BLUE AEGEAN : 0 (0/0)
- | | Booking Source = BOOKING.COM : 27 (1/0)
- | | Booking Source = BRAVO TOURS : 0 (0/0)
- | Booking Source = EXPEDIA : 32 (1/0)
- | | Booking Source = ITAKA

- | | ADR < 99.42 : 23 (1/0)
- | | ADR >= 99.42 : 26 (1/0)
- | Booking Source = Jet2Holidays : 18 (1/0)
- | | Booking Source = RAINBOW
- | | BB < 162 : 31 (1/0)
- | | BB >= 162 : 25 (1/0)
- | | Booking Source = SELF BOOKINGS : 0 (0/0)
- | | Booking Source = SUNWEB
- | | | MONTH = JULY 2020 : 0 (0/0)
- | | | MONTH = AUGUST 2020 : 9 (1/0)
- | | | MONTH = SEPTEMBER 2020 : 20 (1/0)
- | | | MONTH = OCTOBER 2020 : 0 (0/0)
- | | Booking Source = TUI Deutschland : 16 (1/0)
- | | Booking Source = TUI NL : 0 (0/0)
- | | Booking Source = TUI UK : 0 (0/0)
- Total Room Nights >= 297.5
- | ADR < 117.03
- | | TO/OTA = TO
- | | | Average pax/room < 2.66 : 42 (1/0)
- | | | Average pax/room >= 2.66 : 47 (1/0)
- | | TO/OTA = OTA
- | | | MONTH = JULY 2020 : 56 (1/0)
- | | | MONTH = AUGUST 2020 : 52 (1/0)
- | | | MONTH = SEPTEMBER 2020 : 0 (0/0)
- | | | MONTH = OCTOBER 2020 : 0 (0/0)
- | ADR >= 117.03 : 109 (1/0)

RandomTree

BB < 489.5

- | Total Room Nights < 88
- | Booking Source = ARHUS CHARTER : 0 (1.92/0)
- | | Booking Source = AURINKOMATKAT : 0 (1/0)
- | | Booking Source = BLUE AEGEAN
- | | | Total Room Nights < 46
- | | | ADR < 43.55 : 0 (1/0)
- | | | ADR >= 43.55 : 3 (1/0)
- | | | Total Room Nights >= 46 : 10 (1/0)
- | | Booking Source = BOOKING.COM : 8 (1/0)
- | | Booking Source = BRAVO TOURS : 10 (2/0)
- | | Booking Source = EXPEDIA
- | | | Average pax/room < 2.54 : 6 (1/0)
- | | | Average pax/room >= 2.54 : 1 (1/0)
- | Booking Source = ITAKA : 7 (1/0)
- | | Booking Source = Jet2Holidays
- | | | BB < 28: 0.5 (2/0.25)
- | | BB >= 28:3(1/0)
- | | Booking Source = RAINBOW
- | | | Average pax/room < 2.58 : 13 (1/0)
- | | | Average pax/room >= 2.58 : 1 (1/0)

- | | Booking Source = SELF BOOKINGS : 0 (0.92/0)
- | | Booking Source = SUNWEB
- | | | MONTH = JULY 2020 : 6 (1/0)
- | | | MONTH = AUGUST 2020 : 0 (0/0)
- | | | MONTH = SEPTEMBER 2020 : 0 (0/0)
- | | | MONTH = OCTOBER 2020 : 12 (1/0)
- | | Booking Source = TUI Deutschland
- | | | AI < 29
- | | | | MONTH = JULY 2020 : 0 (0/0)
- | | | | MONTH = AUGUST 2020 : 0 (0/0)
- | | | MONTH = SEPTEMBER 2020 : 5 (1/0)
- | | | | MONTH = OCTOBER 2020 : 3 (1/0)
- | | | AI >= 29:9(1/0)
- | | Booking Source = TUI NL
- | | | TOTAL PAX Nights < 88.5
- | | | | MONTH = JULY 2020 : 3 (1/0)
- | | | | MONTH = AUGUST 2020 : 0 (0/0)
- | | | | MONTH = SEPTEMBER 2020 : 0 (0/0)
- | | | MONTH = OCTOBER 2020 : 0 (1/0)
- | | | TOTAL PAX Nights >= 88.5
- | | | ADR < 93.64 : 5 (1/0)
- | | | ADR >= 93.64 : 8 (1/0)
- | | Booking Source = TUI UK
- | | | TOTAL PAX Nights < 7 : 0 (2.92/0)
- | | | TOTAL PAX Nights >= 7 : 2 (1/0)
- | Total Room Nights >= 88

- | | Total Room Nights < 159.5
- | | Booking Source = ARHUS CHARTER : 18 (1/0)
- | | Booking Source = AURINKOMATKAT : 17 (1/0)
- | | Booking Source = BLUE AEGEAN : 15 (1/0)
- | | Booking Source = BOOKING.COM : 0 (0/0)
- | | Booking Source = BRAVO TOURS : 14 (1/0)
- | | Booking Source = EXPEDIA : 0 (0/0)
- | | | Booking Source = ITAKA : 0 (0/0)
- | | Booking Source = Jet2Holidays : 0 (0/0)
- | | Booking Source = RAINBOW : 25 (1/0)
- | | Booking Source = SELF BOOKINGS : 0 (0/0)
- | | Booking Source = SUNWEB : 9 (1/0)
- | | Booking Source = TUI Deutschland : 16 (1/0)
- | | | Booking Source = TUI NL : 0 (0/0)
- | | | Booking Source = TUI UK : 0 (0/0)
- | | Total Room Nights >= 159.5
- | | | Country = Denmark
- | | | | TOTAL PAX Nights < 641 : 30 (1/0)
- | | | | TOTAL PAX Nights >= 641 : 42 (1/0)
- | | | Country = Finland : 29 (1/0)
- | | Country = Romania : 0 (0/0)
- | | | Country = Vary
- | | | ADR < 91.19 : 32 (1/0)
- | | | ADR >= 91.19 : 27 (1/0)
- | | | Country = Poland
- | | | | Average pax/room < 2.25 : 31 (1/0)

- | | | Average pax/room >= 2.25
- | | | | Average pax/room < 2.54 : 23 (1/0)
- | | | | Average pax/room >= 2.54 : 26 (1/0)
- | | | Country = UK : 18 (1/0)
- | | Country = Netherlands : 20 (1/0)
- | | Country = Germany : 0 (0/0)

- | TO/ OTA = TO : 39.63 (1.19/292.19)
- \mid TO/ OTA = OTA
- | | TOTAL PAX Nights < 1556.5
- | | ADR < 44.03 : 0 (0.06/0)
- | | ADR >= 44.03 : 54 (2/4)
- | | TOTAL PAX Nights >= 1556.5 : 109 (1/0)

Size of the tree: 87

RandomTree

BB < 489.5

- | Booking Source = ARHUS CHARTER
- | | MONTH = JULY 2020 : 0 (0.92/0)
- | | MONTH = AUGUST 2020 : 0 (1/0)
- | | MONTH = SEPTEMBER 2020 : 30 (1/0)
- | | MONTH = OCTOBER 2020 : 18 (1/0)
- | Booking Source = AURINKOMATKAT
- | ADR < 42.74 : 0 (1/0)

- | ADR >= 42.74
- | | | Average pax/room < 2.1 : 29 (1/0)
- | | | Average pax/room >= 2.1 : 17 (1/0)
- | Booking Source = BLUE AEGEAN
- | | TOTAL PAX Nights < 111
- | | ADR < 43.55 : 0 (1/0)
- | | ADR >= 43.55 : 3 (1/0)
- | | TOTAL PAX Nights >= 111
- | | | Average pax/room < 2.31 : 15 (1/0)
- | | | Average pax/room >= 2.31 : 10 (1/0)
- | Booking Source = BOOKING.COM
- | | Average pax/room < 2.33 : 8 (1/0)
- | | Average pax/room >= 2.33 : 27 (1/0)
- | Booking Source = BRAVO TOURS
- | | TOTAL PAX Nights < 549
- | | | ADR < 102.41 : 10 (2/0)
- | | | ADR >= 102.41 : 14 (1/0)
- | | TOTAL PAX Nights >= 549 : 42 (1/0)
- | Booking Source = EXPEDIA
- | | ADR < 78.41
- | | ADR < 64.38 : 1 (1/0)
- | | ADR >= 64.38 : 6 (1/0)
- | ADR >= 78.41 : 32 (1/0)
- | Booking Source = ITAKA
- | | MONTH = JULY 2020 : 26 (1/0)
- | | MONTH = AUGUST 2020 : 0 (0/0)

- | | MONTH = SEPTEMBER 2020 : 23 (1/0)
- | | MONTH = OCTOBER 2020 : 7 (1/0)
- | Booking Source = Jet2Holidays
- | | MONTH = JULY 2020 : 1 (1/0)
- | | MONTH = AUGUST 2020 : 18 (1/0)
- | | MONTH = SEPTEMBER 2020 : 3 (1/0)
- | | MONTH = OCTOBER 2020 : 0 (1/0)
- | Booking Source = RAINBOW
- | | TOTAL PAX Nights < 226.5
- | | | Total Room Nights < 33.5 : 1 (1/0)
- | | | Total Room Nights >= 33.5 : 13 (1/0)
- | | TOTAL PAX Nights >= 226.5
- | | | Average pax/room < 2.24 : 31 (1/0)
- | | | Average pax/room >= 2.24 : 25 (1/0)
- | Booking Source = SELF BOOKINGS : 0 (0.92/0)
- | Booking Source = SUNWEB
- | | BB% < 0.47
- | | | MONTH = JULY 2020 : 6 (1/0)
- | | | MONTH = AUGUST 2020 : 9 (1/0)
- | | | MONTH = SEPTEMBER 2020 : 0 (0/0)
- | | | MONTH = OCTOBER 2020 : 12 (1/0)
- | BB% >= 0.47 : 20 (1/0)
- | Booking Source = TUI Deutschland
- | | ADR < 119.28
- | | | Average pax/room < 2.2
- | | | | Average pax/room < 2.06 : 3 (1/0)

- | | | | Average pax/room >= 2.06 : 5 (1/0)
- | | | Average pax/room >= 2.2 : 9 (1/0)
- | | ADR >= 119.28 : 16 (1/0)
- | Booking Source = TUI NL
- | | MONTH = JULY 2020 : 3 (1/0)
- | | MONTH = AUGUST 2020 : 5 (1/0)
- | | MONTH = SEPTEMBER 2020 : 8 (1/0)
- | | MONTH = OCTOBER 2020 : 0 (1/0)
- | Booking Source = TUI UK
- | | TOTAL PAX Nights < 7 : 0 (2.92/0)
- | | TOTAL PAX Nights >= 7 : 2 (1/0)

- | ADR < 117.03
- | | ADR < 44.03 : 0 (0.24/0)
- | ADR >= 44.03
- | | Booking Source = ARHUS CHARTER : 0 (0/0)
- | | Booking Source = AURINKOMATKAT : 0 (0/0)
- | | Booking Source = BLUE AEGEAN : 0 (0/0)
- | | Booking Source = BOOKING.COM : 56 (1/0)
- | | Booking Source = BRAVO TOURS : 0 (0/0)
- | | Booking Source = EXPEDIA : 52 (1/0)
- | | Booking Source = ITAKA : 47 (1/0)
- | | Booking Source = Jet2Holidays : 0 (0/0)
- | | Booking Source = RAINBOW : 0 (0/0)
- | | Booking Source = SELF BOOKINGS : 0 (0/0)
- | | Booking Source = SUNWEB : 0 (0/0)

- | | Booking Source = TUI Deutschland : 0 (0/0)
- | | Booking Source = TUI NL : 0 (0/0)
- | | | Booking Source = TUI UK : 0 (0/0)
- | ADR >= 117.03 : 109 (1/0)

RandomTree

BB < 489.5

- | Total Room Nights < 88
- | Booking Source = ARHUS CHARTER : 0 (1.92/0)
- | | Booking Source = AURINKOMATKAT : 0(1/0)
- | | Booking Source = BLUE AEGEAN
- | | | ADR < 89.95
- | | | | MONTH = JULY 2020 : 3 (1/0)
- | | | | MONTH = AUGUST 2020 : 0 (0/0)
- | | | MONTH = SEPTEMBER 2020 : 0 (0/0)
- | | | MONTH = OCTOBER 2020 : 0 (1/0)
- | | ADR >= 89.95 : 10 (1/0)
- | | Booking Source = BOOKING.COM : 8 (1/0)
- | Booking Source = BRAVO TOURS : 10 (2/0)
- | | Booking Source = EXPEDIA
- | | | TOTAL PAX Nights < 41 : 1 (1/0)
- | | | TOTAL PAX Nights >= 41 : 6 (1/0)
- | | Booking Source = ITAKA : 7(1/0)

- | | Booking Source = Jet2Holidays
- | | ADR < 45.04 : 0 (1/0)
- | | ADR >= 45.04
- | | | TOTAL PAX Nights < 63 : 1 (1/0)
- | | | TOTAL PAX Nights >= 63 : 3 (1/0)
- | | Booking Source = RAINBOW
- | | | Total Room Nights < 33.5 : 1 (1/0)
- | | | Total Room Nights >= 33.5 : 13 (1/0)
- | | Booking Source = SELF BOOKINGS : 0 (0.92/0)
- | | Booking Source = SUNWEB
- | | | ADR < 103.91 : 12 (1/0)
- | | | ADR >= 103.91 : 6 (1/0)
- | | Booking Source = TUI Deutschland
- | | | ADR < 98.34
- | | | ADR < 74.59 : 3 (1/0)
- | | | ADR >= 74.59 : 5 (1/0)
- | | ADR >= 98.34 : 9 (1/0)
- | | Booking Source = TUI NL
- | | | AI < 13
- | | | ADR < 43.49 : 0 (1/0)
- | | | ADR >= 43.49 : 3 (1/0)
- | | | AI >= 13
- | | | Average pax/room < 2.19 : 8 (1/0)
- | | | | Average pax/room >= 2.19 : 5 (1/0)
- | | Booking Source = TUI UK
- | | | TOTAL PAX Nights < 7 : 0 (2.92/0)

- | | | TOTAL PAX Nights >= 7 : 2 (1/0)
- | Total Room Nights >= 88
- | | Country = Denmark
- | | | MONTH = JULY 2020 : 42 (1/0)
- | | | MONTH = AUGUST 2020 : 0 (0/0)
- | | | MONTH = SEPTEMBER 2020
- | | | | Total Room Nights < 137 : 14 (1/0)
- | | | | Total Room Nights >= 137 : 30 (1/0)
- | | | MONTH = OCTOBER 2020 : 18 (1/0)
- | | Country = Finland
- | | | TOTAL PAX Nights < 385 : 17 (1/0)
- | | | TOTAL PAX Nights >= 385 : 29 (1/0)
- | Country = Romania : 15 (1/0)
- | | Country = Vary
- | | Booking Source = ARHUS CHARTER : 0 (0/0)
- | | Booking Source = AURINKOMATKAT : 0 (0/0)
- | | Booking Source = BLUE AEGEAN : 0 (0/0)
- | | Booking Source = BOOKING.COM : 27 (1/0)
- | | Booking Source = BRAVO TOURS : 0 (0/0)
- | | Booking Source = EXPEDIA : 32 (1/0)
- | | | Booking Source = ITAKA : 0 (0/0)
- | | Booking Source = Jet2Holidays : 0 (0/0)
- | | Booking Source = RAINBOW : 0 (0/0)
- | | Booking Source = SELF BOOKINGS : 0 (0/0)
- | | Booking Source = SUNWEB : 0 (0/0)
- | | Booking Source = TUI Deutschland : 0 (0/0)

- | | | Booking Source = TUI NL : 0 (0/0)
- | | Booking Source = TUI UK : 0 (0/0)
- | | Country = Poland
- | | | MONTH = JULY 2020 : 26 (1/0)
- | | | MONTH = AUGUST 2020 : 25 (1/0)
- | | | MONTH = SEPTEMBER 2020
- | | | Booking Source = ARHUS CHARTER : 0 (0/0)
- | | | | Booking Source = AURINKOMATKAT : 0 (0/0)
- | | | Booking Source = BLUE AEGEAN : 0 (0/0)
- | | | | Booking Source = BOOKING.COM : 0 (0/0)
- | | | Booking Source = BRAVO TOURS : 0 (0/0)
- | | | Booking Source = EXPEDIA : 0 (0/0)
- | | | Booking Source = ITAKA : 23 (1/0)
- | | | Booking Source = Jet2Holidays : 0 (0/0)
- | | | | Booking Source = RAINBOW : 31 (1/0)
- | | | Booking Source = SELF BOOKINGS : 0 (0/0)
- | | | Booking Source = SUNWEB : 0 (0/0)
- | | | | Booking Source = TUI Deutschland : 0 (0/0)
- | | | Booking Source = TUI NL : 0 (0/0)
- | | | Booking Source = TUI UK : 0 (0/0)
- | | | MONTH = OCTOBER 2020 : 0 (0/0)
- | | Country = UK : 18 (1/0)
- | | Country = Netherlands
- | | | Average pax/room < 2.32 : 20 (1/0)
- | | | Average pax/room >= 2.32 : 9 (1/0)
- | Country = Germany : 16 (1/0)

- | Average pax/room < 3.06
- | | Total Room Nights < 158.5 : 0 (0.18/0)
- | Total Room Nights >= 158.5
- $| \ | \ BB < 954$
- | | | ADR < 99.44 : 52 (1/0)
- | | | ADR >= 99.44 : 56 (1/0)
- | | BB >= 954:47 (1/0)
- Average pax/room >= 3.06 : 102.71 (1.06/645.9)

Size of the tree : 105

RandomTree

Total Room Nights < 297.5

- | Total Room Nights < 88
- | | Total Room Nights < 27
- | | | TOTAL PAX Nights < 4.5 : 0 (10/0)
- | | | TOTAL PAX Nights >= 4.5
- | | | | HB < 45.5 : 1.25 (4/0.19)
- | | | HB >= 45.5 : 3 (1/0)
- | | Total Room Nights >= 27
- | | Country = Denmark : 10 (2/0)
- | | | Country = Finland : 0 (0/0)

- | | Country = Romania : 10 (1/0)
- | | | Country = Vary
- | | | | Booking Source = ARHUS CHARTER : 0 (0/0)
- | | | | Booking Source = AURINKOMATKAT : 0 (0/0)
- | | | | Booking Source = BLUE AEGEAN : 0 (0/0)
- | | | | Booking Source = BOOKING.COM : 8 (1/0)
- | | | Booking Source = BRAVO TOURS : 0 (0/0)
- | | | Booking Source = EXPEDIA : 6 (1/0)
- | | | Booking Source = ITAKA : 0 (0/0)
- | | | | Booking Source = Jet2Holidays : 0 (0/0)
- | | | Booking Source = RAINBOW : 0 (0/0)
- | | | | Booking Source = SELF BOOKINGS : 0 (0/0)
- | | | Booking Source = SUNWEB : 0 (0/0)
- | | | | Booking Source = TUI Deutschland : 0 (0/0)
- | | | Booking Source = TUI NL : 0 (0/0)
- | | | Booking Source = TUI UK : 0 (0/0)
- | | | Country = Poland
- | | | | Total Room Nights < 46.5 : 7 (1/0)
- | | | | Total Room Nights >= 46.5 : 13 (1/0)
- | | | Country = UK : 3 (1/0)
- | | | Country = Netherlands
- | | | ADR < 85.13 : 12 (1/0)
- | | | ADR >= 85.13
- | | | | Total Room Nights < 60
- | | | | | TOTAL PAX Nights < 88.5 : 3 (1/0)
- | | | | | TOTAL PAX Nights >= 88.5 : 5 (1/0)

					Т	otal Room Nights >= 60	
						Booking Source = ARHUS CHARTER : 0 (0/0)	
						Booking Source = AURINKOMATKAT : 0 (0/0)	
						Booking Source = BLUE AEGEAN : 0 (0/0)	
						Booking Source = BOOKING.COM : 0 (0/0)	
						Booking Source = BRAVO TOURS : 0 (0/0)	
						Booking Source = EXPEDIA : 0 (0/0)	
						Booking Source = ITAKA : 0 (0/0)	
						Booking Source = Jet2Holidays : 0 (0/0)	
						Booking Source = RAINBOW : 0 (0/0)	
						Booking Source = SELF BOOKINGS : 0 (0/0)	
						Booking Source = SUNWEB : 6 (1/0)	
						Booking Source = TUI Deutschland : 0 (0/0)	
						Booking Source = TUI NL : 8 (1/0)	
						Booking Source = TUI UK : $0 (0/0)$	
			С	ou	int	ry = Germany	
				N	10	NTH = JULY 2020 : 0 (0/0)	
				N	10	NTH = AUGUST 2020 : 9 (1/0)	
				M	10	NTH = SEPTEMBER 2020 : 5 (1/0)	
				M	10	NTH = OCTOBER 2020 : 3 (1/0)	
Total Room Nights >= 88							
Average pax/room < 2.09							
Total Room Nights < 256 : 29 (1/0)							
			Т	ota	al l	Room Nights >= 256 : 31 (1/0)	
		A	ve	ra	ge	pax/room >= 2.09	

| | | Country = Denmark

- | | | ADR < 147.39
- | | | ADR < 95.55 : 18 (1/0)
- | | | | ADR >= 95.55 : 14 (1/0)
- | | | ADR >= 147.39 : 30 (1/0)
- | | | Country = Finland : 17 (1/0)
- | | | Country = Romania : 15 (1/0)
- | | | Country = Vary
- | | | | MONTH = JULY 2020 : 32 (1/0)
- | | | | MONTH = AUGUST 2020 : 0 (0/0)
- | | | MONTH = SEPTEMBER 2020 : 27 (1/0)
- | | | | MONTH = OCTOBER 2020 : 0 (0/0)
- | | | Country = Poland
- | | | ADR < 99.42 : 23 (1/0)
- | | | ADR >= 99.42 : 25.5 (2/0.25)
- | | | Country = UK : 18 (1/0)
- | | | Country = Netherlands
- | | | | TOTAL PAX Nights < 389 : 9 (1/0)
- | | | TOTAL PAX Nights >= 389 : 20 (1/0)
- | | | Country = Germany : 16 (1/0)
- Total Room Nights >= 297.5
- | TOTAL PAX Nights < 1619
- | | TOTAL PAX Nights < 925.5 : 42 (1/0)
- | | TOTAL PAX Nights >= 925.5
- | | Country = Denmark : 0 (0/0)
- | | | Country = Finland : 0 (0/0)
- | | | Country = Romania : 0 (0/0)

- | | Country = Vary
- | | | ADR < 99.44 : 52 (1/0)
- | | | ADR >= 99.44 : 56 (1/0)
- | | | Country = Poland : 47 (1/0)
- | | | Country = UK : 0 (0/0)
- | | Country = Netherlands : 0 (0/0)
- | | | Country = Germany : 0 (0/0)
- | TOTAL PAX Nights >= 1619 : 109 (1/0)

RandomTree

BB < 489.5

| TOTAL PAX Nights < 235

| | AI < 37

- | | | Total Room Nights < 27
- | | | ADR < 29.86 : 0 (9.02/0)
- | | | ADR >= 29.86
- | | | | Country = Denmark : 0 (0/0)
- | | | | | Country = Finland : 0 (0/0)
- | | | | Country = Romania : 3 (1/0)
- | | | | Country = Vary : 1 (1/0)
- | | | | Country = Poland : 1 (1/0)
- | | | | Country = UK : 1.5 (2/0.25)
- | | | | | Country = Netherlands : 0 (0/0)

- | | | | Country = Germany : 0 (0/0)
- | | | Total Room Nights >= 27
- | | | ADR < 91.94
- | | | | Booking Source = ARHUS CHARTER : 0 (0/0)
- | | | | | Booking Source = AURINKOMATKAT : 0 (0/0)
- | | | | Booking Source = BLUE AEGEAN : 0 (0/0)
- | | | | | Booking Source = BOOKING.COM : 8 (1/0)
- | | | | | Booking Source = BRAVO TOURS : 0 (0/0)
- | | | | Booking Source = EXPEDIA : 6 (1/0)
- | | | | Booking Source = ITAKA : 7 (1/0)
- | | | | Booking Source = Jet2Holidays : 3 (1/0)
- | | | | | Booking Source = RAINBOW : 0 (0/0)
- | | | | | Booking Source = SELF BOOKINGS : 0 (0/0)
- | | | | | Booking Source = SUNWEB : 0 (0/0)
- | | | | Booking Source = TUI Deutschland
- | | | | Average pax/room < 2.06 : 3 (1/0)
- | | | | | | Average pax/room >= 2.06 : 5 (1/0)
- | | | | Booking Source = TUI NL
- | | | | | | Average pax/room < 2.13 : 3 (1/0)
- | | | | | | Average pax/room >= 2.13 : 5 (1/0)
- | | | | Booking Source = TUI UK : 0 (0/0)
- | | | ADR >= 91.94 : 10 (2/0)
- | | AI >= 37
- | | ADR < 39.73 : 0 (0.73/0)
- | | ADR >= 39.73
- | | | | Booking Source = ARHUS CHARTER : 0 (0/0)

- | | | Booking Source = AURINKOMATKAT : 0 (0/0)
- | | | Booking Source = BLUE AEGEAN : 15 (1/0)
- | | | | Booking Source = BOOKING.COM : 0 (0/0)
- | | | Booking Source = BRAVO TOURS
- | | | | | Total Room Nights < 73.5 : 10 (1/0)
- | | | | | Total Room Nights >= 73.5 : 14 (1/0)
- | | | | Booking Source = EXPEDIA : 0 (0/0)
- | | | Booking Source = ITAKA : 0 (0/0)
- | | | Booking Source = Jet2Holidays : 0 (0/0)
- | | | | Booking Source = RAINBOW : 13 (1/0)
- | | | | Booking Source = SELF BOOKINGS : 0 (0/0)
- | | | Booking Source = SUNWEB
- | | | | ADR < 103.91 : 12 (1/0)
- | | | | ADR >= 103.91 : 6 (1/0)
- | | | | Booking Source = TUI Deutschland : 9 (1/0)
- | | | Booking Source = TUI NL : 8 (1/0)
- | | | Booking Source = TUI UK : 0 (0/0)
- | TOTAL PAX Nights >= 235
- | | Country = Denmark
- | | | TOTAL PAX Nights < 318.5 : 18 (1/0)
- | | | TOTAL PAX Nights >= 318.5
- | | | | MONTH = JULY 2020 : 42 (1/0)
- | | | | MONTH = AUGUST 2020 : 0 (0/0)
- | | | MONTH = SEPTEMBER 2020 : 30 (1/0)
- | | | | MONTH = OCTOBER 2020 : 0 (0/0)
- | | Country = Finland

- | | | Average pax/room < 2.1 : 29 (1/0)
- | | | Average pax/room >= 2.1 : 17 (1/0)
- | Country = Romania : 0 (0/0)
- | | Country = Vary
- | | ADR < 91.19 : 32 (1/0)
- | | | ADR >= 91.19 : 27 (1/0)
- | | Country = Poland
- | | | Total Room Nights < 256.5
- | | | ADR < 99.42 : 23 (1/0)
- | | | ADR >= 99.42 : 25.5 (2/0.25)
- | | | Total Room Nights >= 256.5 : 31 (1/0)
- | | Country = UK : 18 (1/0)
- | | Country = Netherlands
- | | | ADR < 93.81 : 20 (1/0)
- | | ADR >= 93.81 : 9 (1/0)
- | Country = Germany : 16 (1/0)
- BB >= 489.5
- | ADR < 117.03
- | | ADR < 44.03 : 0 (0.24/0)
- | | ADR >= 44.03
- | | | Country = Denmark : 0 (0/0)
- | | Country = Finland : 0 (0/0)
- | | | Country = Romania : 0 (0/0)
- | | | Country = Vary
- | | | | Booking Source = ARHUS CHARTER : 0 (0/0)
- | | | | Booking Source = AURINKOMATKAT : 0 (0/0)

- | | | Booking Source = BLUE AEGEAN : 0 (0/0)
- | | | Booking Source = BOOKING.COM : 56 (1/0)
- | | | Booking Source = BRAVO TOURS : 0 (0/0)
- | | | Booking Source = EXPEDIA : 52 (1/0)
- | | | Booking Source = ITAKA : 0 (0/0)
- | | | Booking Source = Jet2Holidays : 0 (0/0)
- | | | Booking Source = RAINBOW : 0 (0/0)
- | | | | Booking Source = SELF BOOKINGS : 0 (0/0)
- | | | Booking Source = SUNWEB : 0 (0/0)
- | | | Booking Source = TUI Deutschland : 0 (0/0)
- | | | | Booking Source = TUI NL : 0 (0/0)
- | | | | Booking Source = TUI UK : 0 (0/0)
- | | Country = Poland : 47 (1/0)
- | | | Country = UK : 0 (0/0)
- | | Country = Netherlands : 0 (0/0)
- | | | Country = Germany : 0 (0/0)
- | ADR >= 117.03 : 109 (1/0)

RandomTree

ADR < 97.41

- | Booking Source = ARHUS CHARTER
- | ADR < 41.14 : 0 (2/0)

- | | ADR >= 41.14 : 18 (1/0)
- | Booking Source = AURINKOMATKAT
- | | Total Room Nights < 68.5 : 0 (1/0)
- | | Total Room Nights >= 68.5
- | | | Average pax/room < 2.1 : 29 (1/0)
- | | | Average pax/room >= 2.1 : 17 (1/0)
- | Booking Source = BLUE AEGEAN
- | | Total Room Nights < 46
- | | ADR < 43.55 : 0 (1/0)
- | | ADR >= 43.55 : 3 (1/0)
- | | Total Room Nights >= 46
- | | | Average pax/room < 2.31 : 15 (1/0)
- | | | Average pax/room >= 2.31 : 10 (1/0)
- | Booking Source = BOOKING.COM
- | | Average pax/room < 2.33 : 8 (1/0)
- | | Average pax/room >= 2.33 : 27 (1/0)
- | Booking Source = BRAVO TOURS : 10 (2/0)
- | Booking Source = EXPEDIA
- | | MONTH = JULY 2020 : 32 (1/0)
- | | MONTH = AUGUST 2020 : 52 (1/0)
- | | MONTH = SEPTEMBER 2020 : 6 (1/0)
- | | MONTH = OCTOBER 2020 : 1 (1/0)
- | Booking Source = ITAKA
- | | MONTH = JULY 2020 : 0 (0/0)
- | | MONTH = AUGUST 2020 : 0 (0/0)
- | | MONTH = SEPTEMBER 2020 : 23 (1/0)

- | | MONTH = OCTOBER 2020 : 7 (1/0)
- | Booking Source = Jet2Holidays
- | | BB < 231
- | | | AI < 14: 0.5 (2/0.25)
- | | | AI >= 14:3(1/0)
- | BB >= 231 : 18 (1/0)
- | Booking Source = RAINBOW
- | ADR < 85.19 : 13 (1/0)
- | ADR >= 85.19 : 1 (1/0)
- | Booking Source = SELF BOOKINGS : 0 (1/0)
- | Booking Source = SUNWEB
- | | MONTH = JULY 2020 : 0 (0/0)
- | | MONTH = AUGUST 2020 : 0 (0/0)
- | | MONTH = SEPTEMBER 2020 : 20 (1/0)
- | | MONTH = OCTOBER 2020 : 12 (1/0)
- | Booking Source = TUI Deutschland
- | | MONTH = JULY 2020 : 0 (0/0)
- | | MONTH = AUGUST 2020 : 0 (0/0)
- | | MONTH = SEPTEMBER 2020 : 5 (1/0)
- | | MONTH = OCTOBER 2020 : 3 (1/0)
- | Booking Source = TUI NL
- | | MONTH = JULY 2020 : 3 (1/0)
- | | MONTH = AUGUST 2020 : 5 (1/0)
- | | MONTH = SEPTEMBER 2020 : 8 (1/0)
- | | MONTH = OCTOBER 2020 : 0 (1/0)
- | Booking Source = TUI UK

- | ADR < 35 : 0 (3/0)
- | ADR >= 35 : 2 (1/0)
- ADR >= 97.41
- | BB < 1367.5
- | | Country = Denmark
- | | | AI < 295 : 14 (1/0)
- | | | AI >= 295
- | | | | Booking Source = ARHUS CHARTER : 30 (1/0)
- | | | | Booking Source = AURINKOMATKAT : 0 (0/0)
- | | | Booking Source = BLUE AEGEAN : 0 (0/0)
- | | | Booking Source = BOOKING.COM : 0 (0/0)
- | | | Booking Source = BRAVO TOURS : 42 (1/0)
- | | | Booking Source = EXPEDIA : 0 (0/0)
- | | | Booking Source = ITAKA : 0 (0/0)
- | | | Booking Source = Jet2Holidays : 0 (0/0)
- | | | | Booking Source = RAINBOW : 0 (0/0)
- | | | | Booking Source = SELF BOOKINGS : 0 (0/0)
- | | | Booking Source = SUNWEB : 0 (0/0)
- | | | Booking Source = TUI Deutschland : 0 (0/0)
- | | | Booking Source = TUI NL : 0 (0/0)
- | | | Booking Source = TUI UK : 0 (0/0)
- | | Country = Finland : 0 (0/0)
- | Country = Romania : 0 (0/0)
- | | Country = Vary : 56 (1/0)
- | | Country = Poland
- | | BB% < 0.5

- | | | ADR < 102.14 : 31 (1/0)
- | | | ADR >= 102.14 : 26 (1/0)
- | | BB% >= 0.5
- | | | Booking Source = ARHUS CHARTER : 0 (0/0)
- | | | | Booking Source = AURINKOMATKAT : 0 (0/0)
- | | | Booking Source = BLUE AEGEAN : 0 (0/0)
- | | | Booking Source = BOOKING.COM : 0 (0/0)
- | | | Booking Source = BRAVO TOURS : 0 (0/0)
- | | | Booking Source = EXPEDIA : 0 (0/0)
- | | | Booking Source = ITAKA : 47 (1/0)
- | | | Booking Source = Jet2Holidays : 0 (0/0)
- | | | Booking Source = RAINBOW : 25 (1/0)
- | | | | Booking Source = SELF BOOKINGS : 0 (0/0)
- | | | Booking Source = SUNWEB : 0 (0/0)
- | | | | Booking Source = TUI Deutschland : 0 (0/0)
- | | | Booking Source = TUI NL : 0 (0/0)
- | | | Booking Source = TUI UK : 0 (0/0)
- | Country = UK : 0 (0/0)
- | | Country = Netherlands
- | | | TOTAL PAX Nights < 299 : 6 (1/0)
- | | | TOTAL PAX Nights >= 299 : 9 (1/0)
- | | Country = Germany
- | | | Average pax/room < 2.35 : 9 (1/0)
- | | | Average pax/room >= 2.35 : 16 (1/0)
- | BB >= 1367.5 : 109 (1/0)

Multilayer Perceptron Algorithm/ Creta Palm 2020

=== Classifier model (full training set) ===

Linear Node 0

- Inputs Weights
- Threshold -0.35220722928027764
- Node 1 0.7068336793168924
- Node 2 -0.013147412294212868
- Node 3 -0.3600576130557452
- Node 4 0.2625684872935586
- Node 5 -0.20049201520802387
- Node 6 0.5020969459777488
- Node 7 -0.1607713922400183
- Node 8 0.020298920989118313
- Node 9 -0.00869032593719303
- Node 10 -8.788576605409771E-5
- Node 11 -0.3239302288546291
- Node 12 0.6945851771843676
- Node 13 -0.5866254154459591
- Node 14 -0.657429677571837
- Node 15 0.002093448409455931
- Node 16 0.10797855195831878
- Node 17 -0.03758542503939778
- Node 18 0.303927612688793
- Node 19 -0.05647774504642454

Sigmoid Node 1

Inputs Weights

Threshold -0.0443585314448995

Attrib Booking Source=ARHUS CHARTER -0.034098816062567726

Attrib Booking Source=AURINKOMATKAT 0.024779310379166104

Attrib Booking Source=BLUE AEGEAN 0.06805491113679517

Attrib Booking Source=BOOKING.COM 0.06383501972347144

Attrib Booking Source=BRAVO TOURS -0.007822264952454864

Attrib Booking Source=EXPEDIA 0.15629077016656634

Attrib Booking Source=ITAKA 0.024021262720210525

Attrib Booking Source=Jet2Holidays 0.17461271780531198

Attrib Booking Source=RAINBOW 0.31888248557098486

Attrib Booking Source=SELF BOOKINGS -0.003807688945055579

Attrib Booking Source=SUNWEB -0.16884717049793854

Attrib Booking Source=TUI Deutschland 0.0729242887229587

Attrib Booking Source=TUI NL 0.0830083264127876

Attrib Booking Source=TUI UK 0.08823520832260652

Attrib Country=Denmark -0.12951537127835255

Attrib Country=Finland 0.048284723468535455

Attrib Country=Romania 0.13850850018623662

Attrib Country=Vary 0.11404344554149286

Attrib Country=Poland 0.2604761524223664

Attrib Country=UK 0.12409763756800672

Attrib Country=Netherlands -0.21636327243270223

Attrib Country=Germany 0.022478522707113546

Attrib Average pax/room -0.15517657087450804

Attrib TO/ OTA=OTA 0.17531749379198808

Attrib ADR 0.16749487085431902

Attrib MONTH=JULY 2020 0.37635100535554084

Attrib MONTH=AUGUST 2020 0.2948596649618947

Attrib MONTH=SEPTEMBER 2020 -0.39902489803063806

Attrib MONTH=OCTOBER 2020 -0.16738064347325685

Attrib TOTAL PAX Nights 0.44629621172338163

Attrib Total Room Nights 0.47659433148588815

Attrib BB 0.22306382097878474

Attrib BB% 0.25224812177621

Attrib HB 0.13879855779743175

Attrib HB% -0.1018132915097763

Attrib AI 0.07257651585138526

Attrib AI% -0.20385284670738527

Sigmoid Node 2

Inputs Weights

Threshold -0.07535668297107032

Attrib Booking Source=ARHUS CHARTER 0.10549851870107949

Attrib Booking Source=AURINKOMATKAT 0.05799223261922426

Attrib Booking Source=BLUE AEGEAN 0.15576298231715238

Attrib Booking Source=BOOKING.COM 0.04708994579071747

Attrib Booking Source=BRAVO TOURS 0.1465294865171615

Attrib Booking Source=EXPEDIA 0.09343493340614416

Attrib Booking Source=ITAKA 0.10610878314339864

Attrib Booking Source=Jet2Holidays 0.16321733160670707

Attrib Booking Source=RAINBOW 0.118197623489446

Attrib Booking Source=SELF BOOKINGS 0.14909280574752146 Attrib Booking Source=SUNWEB 0.05620711847931745 Attrib Booking Source=TUI Deutschland 0.10729933654484294 Attrib Booking Source=TUI NL 0.11774314674655122 Attrib Booking Source=TUI UK 0.095982204978741 Attrib Country=Denmark 0.07230639623048242 Attrib Country=Finland 0.11025931896167926 Attrib Country=Romania 0.10135372447982136 Attrib Country=Vary 0.05386450416967181 Attrib Country=Poland 0.11265997073436297 Attrib Country=UK 0.08986550748966533 Attrib Country=Netherlands 0.09189118409182312 Attrib Country=Germany 0.07897277876153017 Attrib Average pax/room 0.0012907602473205347 Attrib TO/ OTA=OTA 0.055594421278198886 Attrib ADR -0.04896951454333076 Attrib MONTH=JULY 2020 0.1027062313099135 Attrib MONTH=AUGUST 2020 0.004667695616470775 Attrib MONTH=SEPTEMBER 2020 0.10643704310124076 Attrib MONTH=OCTOBER 2020 0.09126084196756612 Attrib TOTAL PAX Nights -0.0647004940814029 Attrib Total Room Nights -0.006332379156993063 Attrib BB 0.06673549527877987 Attrib BB% 0.010958618651479613 Attrib HB 0.043401524389213735 Attrib HB% 0.055729540811212945

Attrib AI 0.07688246305666971

Attrib AI% -0.024989830002110476

Sigmoid Node 3

Inputs Weights

Threshold -0.13070146853302914

Attrib Booking Source=ARHUS CHARTER 0.047516175121149924 Attrib Booking Source=AURINKOMATKAT 0.24627538008456057 Attrib Booking Source=BLUE AEGEAN 0.14171979862927642 Attrib Booking Source=BOOKING.COM 0.11713916091015036 Attrib Booking Source=BRAVO TOURS 0.19508737601585427 Attrib Booking Source=EXPEDIA 0.16497819116325607 Attrib Booking Source=ITAKA 0.10240350517300624 Attrib Booking Source=Jet2Holidays 0.11143421146766486 Attrib Booking Source=RAINBOW 0.1356168045120526 Attrib Booking Source=SELF BOOKINGS 0.2895757394409267 Attrib Booking Source=SUNWEB -0.042797696032496925 Attrib Booking Source=TUI Deutschland 0.03452322272541273 Attrib Booking Source=TUI NL 0.13065570184532335 Attrib Booking Source=TUI UK 0.027943390382273822 Attrib Country=Denmark 0.18931698333296626 Attrib Country=Finland 0.24477978544371193 Attrib Country=Romania 0.11335100452162104 Attrib Country=Vary 0.2868267685961481 Attrib Country=Poland 0.07931124866385031 Attrib Country=UK -0.003302629960025442

Attrib Country=Netherlands -0.09321493152317169

 Attrib Country=Germany
 0.098145127561625

 Attrib Average pax/room
 0.06122208111530044

 Attrib TO/ OTA=OTA
 0.20488966191171876

 Attrib ADR
 -0.07494757354441724

 Attrib MONTH=JULY 2020
 0.3467549078318984

 Attrib MONTH=AUGUST 2020
 -0.12382349020594795

 Attrib MONTH=SEPTEMBER 2020
 0.06725688839201678

 Attrib MONTH=OCTOBER 2020
 -0.10245461007321777

 Attrib TOTAL PAX Nights
 -0.4346589094296057

 Attrib Total Room Nights
 -0.6250903544940348

 Attrib BB
 -0.07895161578047494

Attrib BB% 0.24878729408756484

Attrib HB 0.020662193519758548

Attrib HB% 0.03907831949735876

Attrib AI 0.00418327612903968

Attrib AI% -0.09246573898974307

Sigmoid Node 4

Inputs Weights

Threshold -0.12177517066719586

Attrib Booking Source=ARHUS CHARTER 0.1425102639914988

Attrib Booking Source=AURINKOMATKAT 0.10356495418335518

Attrib Booking Source=BLUE AEGEAN 0.1537592269367017

Attrib Booking Source=BOOKING.COM 0.15326793405172734

Attrib Booking Source=BRAVO TOURS -0.004071850446200693

Attrib Booking Source=EXPEDIA 0.02634879235242209

Attrib Booking Source=ITAKA 0.06644867954975704

Attrib Booking Source=Jet2Holidays 0.13822759990515326 Attrib Booking Source=RAINBOW 0.06954837259799761 Attrib Booking Source=SELF BOOKINGS 0.03290141568400705 Attrib Booking Source=SUNWEB 0.0227696262504487 Attrib Booking Source=TUI Deutschland 0.025276630229300257 Attrib Booking Source=TUI NL 0.050699880224836805 Attrib Booking Source=TUI UK 0.14417047437616579 Attrib Country=Denmark 0.05362148331715693 Attrib Country=Finland 0.1242215807023514 Attrib Country=Romania 0.09865398777070548 Attrib Country=Vary 0.007479236081582394 Attrib Country=Poland 0.06826002044838911 Attrib Country=UK 0.1988278694055645 Attrib Country=Netherlands -0.02536924605038882 Attrib Country=Germany 0.0389053107067417 Attrib Average pax/room 0.09987723386523821 Attrib TO/ OTA=OTA 0.048599794646004404 Attrib ADR 0.04623702331329077 Attrib MONTH=JULY 2020 0.01688018610408994 Attrib MONTH=AUGUST 2020 0.10958327914075525 Attrib MONTH=SEPTEMBER 2020 -0.0014471217717948958 Attrib MONTH=OCTOBER 2020 0.1475066873372439 Attrib TOTAL PAX Nights 0.21151295841784917 Attrib Total Room Nights 0.14660234547732873 Attrib BB 0.1326572783198153

Attrib BB% 0.0317341941113038

Attrib HB 0.08610014103228872

Attrib HB% 0.10624360930252622

Attrib AI 0.01479844031941715

Attrib AI% -0.013542008940754

Sigmoid Node 5

Inputs Weights

Threshold -0.15108966611352828

Attrib Booking Source=ARHUS CHARTER 0.13540843356568646

Attrib Booking Source=AURINKOMATKAT 0.13981719985977886

Attrib Booking Source=BLUE AEGEAN 0.12812179411472413

Attrib Booking Source=BOOKING.COM 0.08437359969299492

Attrib Booking Source=BRAVO TOURS 0.165627420273853

Attrib Booking Source=EXPEDIA 0.0999995076513826

Attrib Booking Source=ITAKA 0.10979555429044296

Attrib Booking Source=Jet2Holidays 0.1327729272492991

Attrib Booking Source=RAINBOW 0.13136189031216775

Attrib Booking Source=SELF BOOKINGS 0.20513476701729236

Attrib Booking Source=SUNWEB 0.13014421273967292

Attrib Booking Source=TUI Deutschland 0.07768010831706469

Attrib Booking Source=TUI NL 0.061924637269400076

Attrib Booking Source=TUI UK 0.07683006929847813

Attrib Country=Denmark 0.16161678471922983

Attrib Country=Finland 0.15007425681835923

Attrib Country=Romania 0.08545972637846173

Attrib Country=Vary 0.05807692327470757

Attrib Country=Poland 0.06664464801965071

Attrib Country=UK 0.007110490161630729 Attrib Country=Netherlands 0.09868359523128331 Attrib Country=Germany 0.09938145719556936 Attrib Average pax/room -0.01749675234937621 Attrib TO/ OTA=OTA 0.06725008709536581 Attrib ADR -0.049394860671629216 Attrib MONTH=JULY 2020 0.1684857091065976 Attrib MONTH=AUGUST 2020 0.06699569978303532 Attrib MONTH=SEPTEMBER 2020 0.041154935515578625 Attrib MONTH=OCTOBER 2020 -0.11346621939837633 Attrib TOTAL PAX Nights -0.19608769519684627 Attrib Total Room Nights -0.24794075181194528 Attrib BB -0.010337606315456797 Attrib BB% 0.08596046742264778 Attrib HB 0.030710640855660602 Attrib HB% 0.11363505355090757 Attrib AI 0.06673399327824088 Attrib AI% -0.045744475462397155 Sigmoid Node 6 Inputs Weights

Threshold -0.0913384174273276

Attrib Booking Source=ARHUS CHARTER 0.06753244595732237

Attrib Booking Source=AURINKOMATKAT 0.14297999327795083

Attrib Booking Source=BLUE AEGEAN 0.19185055676934018

Attrib Booking Source=BOOKING.COM 0.18494527668065655

Attrib Booking Source=BRAVO TOURS 0.12156914965801599

Attrib Booking Source=EXPEDIA 0.12839836890824305 Attrib Booking Source=ITAKA 0.0565680761607219 Attrib Booking Source=Jet2Holidays 0.1844639070874336 Attrib Booking Source=RAINBOW 0.11243551915623728 Attrib Booking Source=SELF BOOKINGS 0.07264628237353044 Attrib Booking Source=SUNWEB -0.10322947742866422 Attrib Booking Source=TUI Deutschland 0.008347192060936615 Attrib Booking Source=TUI NL 0.09809764373856221 Attrib Booking Source=TUI UK 0.11150337174833076 Attrib Country=Denmark 0.087596864012537 Attrib Country=Finland 0.09981629245787273 Attrib Country=Romania 0.17772890602093042 Attrib Country=Vary 0.10331696441100681 Attrib Country=Poland 0.05529598102793342 Attrib Country=UK 0.13390068596206411 Attrib Country=Netherlands -0.08026086168025809 Attrib Country=Germany 0.03509959521987222 Attrib Average pax/room 0.013030828204777313 Attrib TO/ OTA=OTA 0.14950741609404805 Attrib ADR 0.14850318142789612 Attrib MONTH=JULY 2020 0.20156851217769536 Attrib MONTH=AUGUST 2020 0.16908106732543848 Attrib MONTH=SEPTEMBER 2020 -0.09144400774374231 Attrib MONTH=OCTOBER 2020 -0.07934188950034711 Attrib TOTAL PAX Nights 0.4243119881126081

Attrib Total Room Nights 0.47590925144138446

Attrib BB 0.29348658631000213

Attrib BB% 0.04993602868558195

Attrib HB 0.14107487571572133

Attrib HB% 0.07447261853878043

Attrib AI 0.09369601498672318

Attrib AI% -0.015313020969768026

Sigmoid Node 7

Inputs Weights

Threshold -0.16913466824932255

Attrib Booking Source=ARHUS CHARTER 0.09813162810813773

Attrib Booking Source=AURINKOMATKAT 0.12091785658795137

Attrib Booking Source=BLUE AEGEAN 0.10162575378489905

Attrib Booking Source=BOOKING.COM 0.05996951817929735

Attrib Booking Source=BRAVO TOURS 0.05481822357508535

Attrib Booking Source=EXPEDIA 0.1308124662715472

Attrib Booking Source=ITAKA 0.04597581502416891

Attrib Booking Source=Jet2Holidays 0.12423412811343026

Attrib Booking Source=RAINBOW 0.11626098574504445

Attrib Booking Source=SELF BOOKINGS 0.21197697930143444

Attrib Booking Source=SUNWEB 0.04369227331752699

Attrib Booking Source=TUI Deutschland 0.10475382925575645

Attrib Booking Source=TUI NL 0.1046972729668376

Attrib Booking Source=TUI UK 0.13296283570961043

Attrib Country=Denmark 0.13307270453243505

Attrib Country=Finland 0.17734026313854168

Attrib Country=Romania 0.1417435324418222

Attrib Country=Vary 0.07641800685834974 Attrib Country=Poland 0.11063876074352354 Attrib Country=UK 0.11819960610594468 Attrib Country=Netherlands 0.034643412143747686 Attrib Country=Germany 0.09428198764750588 Attrib Average pax/room -0.04569518906989207 Attrib TO/ OTA=OTA 0.014975952879521923 Attrib ADR -0.05631169131432615 Attrib MONTH=JULY 2020 0.19856676945996274 Attrib MONTH=AUGUST 2020 0.006836781410568524 Attrib MONTH=SEPTEMBER 2020 0.14426839530616678 Attrib MONTH=OCTOBER 2020 -0.041347576850074626 Attrib TOTAL PAX Nights -0.12854351379627074 Attrib Total Room Nights -0.18329172034594382 Attrib BB 0.023538408712542737 Attrib BB% 0.03386716683255277 Attrib HB 0.06647604807196034 Attrib HB% 0.031235889829098393 Attrib AI 0.0229353761379585

Attrib AI% 0.029769024538213694

Sigmoid Node 8

Inputs Weights

Threshold -0.13817596093537104

Attrib Booking Source=ARHUS CHARTER 0.14865099273079135

Attrib Booking Source=AURINKOMATKAT 0.11918192829394306

Attrib Booking Source=BLUE AEGEAN 0.1029214176846807

Attrib Booking Source=BOOKING.COM 0.029838138830058 Attrib Booking Source=BRAVO TOURS 0.08989059629144017 Attrib Booking Source=EXPEDIA 0.035326980121631345 Attrib Booking Source=ITAKA 0.10701854705823231 Attrib Booking Source=Jet2Holidays 0.13682139292953996 Attrib Booking Source=RAINBOW 0.11981175181493137 Attrib Booking Source=SELF BOOKINGS 0.09885835781527731 Attrib Booking Source=SUNWEB 0.08504111226478249 Attrib Booking Source=TUI Deutschland 0.12660260705142387 Attrib Booking Source=TUI NL 0.07677767236046533 Attrib Booking Source=TUI UK 0.13678316692867265 Attrib Country=Denmark 0.09277331489249588 Attrib Country=Finland 0.07103108261492835 Attrib Country=Romania 0.12286619474852316 Attrib Country=Vary 0.02183288760219848 Attrib Country=Poland 0.05660151782026134 Attrib Country=UK 0.08681655847398773 Attrib Country=Netherlands 0.06415451049829757 Attrib Country=Germany 0.1416591419099702 Attrib Average pax/room -0.02531975417610194 Attrib TO/ OTA=OTA -0.018638091498302322 Attrib ADR -0.05781510493836422 Attrib MONTH=JULY 2020 0.0474037826358191 Attrib MONTH=AUGUST 2020 0.02360538973173462 Attrib MONTH=SEPTEMBER 2020 0.07746304896688043

Attrib MONTH=OCTOBER 2020 0.0438906023799886

Attrib TOTAL PAX Nights 0.04148926914648341

Attrib Total Room Nights 0.02696216243953585

Attrib BB 0.06373620240689566

Attrib BB% 0.05286914582971879

Attrib HB 0.04530064155212853

Attrib HB% 0.11354794564064902

Attrib AI 0.08146450294599734

Attrib AI% 0.03200456757046585

Sigmoid Node 9

Inputs Weights

Threshold -0.13735927815813867

Attrib Booking Source=ARHUS CHARTER 0.1142062167127564

Attrib Booking Source=AURINKOMATKAT 0.040893478718821506

Attrib Booking Source=BLUE AEGEAN 0.15849579626124458

Attrib Booking Source=BOOKING.COM 0.06241497427973921

Attrib Booking Source=BRAVO TOURS 0.13688698547433148

Attrib Booking Source=EXPEDIA 0.05381103890182279

Attrib Booking Source=ITAKA 0.11232274301712379

Attrib Booking Source=Jet2Holidays 0.1063748839307315

Attrib Booking Source=RAINBOW 0.08256863240964896

Attrib Booking Source=SELF BOOKINGS 0.1627949533521751

Attrib Booking Source=SUNWEB 0.14332661167611674

Attrib Booking Source=TUI Deutschland 0.10920155469720282

Attrib Booking Source=TUI NL 0.07817365884217917

Attrib Booking Source=TUI UK 0.1199320444129233

Attrib Country=Denmark 0.07798263796590661

Attrib Country=Finland 0.12241057145681095

Attrib Country=Romania 0.08187249984673216

Attrib Country=Vary 0.04207027331018536

Attrib Country=Poland 0.03318595536834471

Attrib Country=UK 0.13710935775153216

Attrib Country=Netherlands 0.04573488242801416

Attrib Country=Germany 0.1091163137128016

Attrib Average pax/room 0.026603606707018487

Attrib TO/ OTA=OTA 0.08495660971094747

Attrib ADR 0.024162499525052283

Attrib MONTH=JULY 2020 0.024931354415516013

Attrib MONTH=AUGUST 2020 0.03234953533012723

Attrib MONTH=SEPTEMBER 2020 0.10844938305071589

Attrib MONTH=OCTOBER 2020 0.030130762090018966

Attrib TOTAL PAX Nights 0.010581268974912907

Attrib Total Room Nights -0.0022934886233687423

Attrib BB 0.028959587723221877

Attrib BB% -0.013715186102039957

Attrib HB 0.04724668899339332

Attrib HB% 0.07218669268359423

Attrib AI 0.0744044871739882

Attrib AI% -0.012828689954054107

Sigmoid Node 10

Inputs Weights

Threshold -0.10395933206891955

Attrib Booking Source=ARHUS CHARTER 0.12152709066802773

Attrib Booking Source=AURINKOMATKAT 0.060519663468126685 Attrib Booking Source=BLUE AEGEAN 0.14435096489678778 Attrib Booking Source=BOOKING.COM 0.07285451574033466 Attrib Booking Source=BRAVO TOURS 0.11633378199128447 Attrib Booking Source=EXPEDIA 0.039327236520914265 Attrib Booking Source=ITAKA 0.1184797046578443 Attrib Booking Source=Jet2Holidays 0.07773524367818542 Attrib Booking Source=RAINBOW 0.08215149165044057 Attrib Booking Source=SELF BOOKINGS 0.16333526994347855 Attrib Booking Source=SUNWEB 0.08975656116644189 Attrib Booking Source=TUI Deutschland 0.09178830495207162 Attrib Booking Source=TUI NL 0.11662525423746914 Attrib Booking Source=TUI UK 0.07393896742023938 Attrib Country=Denmark 0.10064131681747936 Attrib Country=Finland 0.09899668869894869 Attrib Country=Romania 0.1014768346919674 Attrib Country=Vary 0.017955352468231038 Attrib Country=Poland 0.09202764048578146 Attrib Country=UK 0.14564303933522657 Attrib Country=Netherlands 0.11471726554566519 Attrib Country=Germany 0.1546231804235821 Attrib Average pax/room -0.01963858069356034 Attrib TO/ OTA=OTA 0.035842537028030474 Attrib ADR -0.0468399476395823

Attrib MONTH=JULY 2020 0.1062781798029032

Attrib MONTH=AUGUST 2020 0.04899022513701145

Attrib MONTH=SEPTEMBER 2020 0.022282917722422392

Attrib MONTH=OCTOBER 2020 0.049415969337957846

Attrib TOTAL PAX Nights 0.013332409554774775

Attrib Total Room Nights -0.019704648955313014

Attrib BB 0.00382802602316993

Attrib BB% 0.025525037591730193

Attrib HB 0.10246671688537559

Attrib HB% 0.07472839046293554

Attrib AI 0.08965846650237415

Attrib AI% 0.048037953929688654

Sigmoid Node 11

Inputs Weights

Threshold -0.11899192519441092

Attrib Booking Source=ARHUS CHARTER 0.032906887169651775

Attrib Booking Source=AURINKOMATKAT 0.1925862627203965

Attrib Booking Source=BLUE AEGEAN 0.09680745009116434

Attrib Booking Source=BOOKING.COM 0.07828396365432423

Attrib Booking Source=BRAVO TOURS 0.2277197228324353

Attrib Booking Source=EXPEDIA 0.2504353523332484

Attrib Booking Source=ITAKA 0.05907693869722906

Attrib Booking Source=Jet2Holidays 0.048124960331698934

Attrib Booking Source=RAINBOW 0.08623035148302181

Attrib Booking Source=SELF BOOKINGS 0.2880351615127983

Attrib Booking Source=SUNWEB -0.012137820953059075

Attrib Booking Source=TUI Deutschland 0.13326984978381573

Attrib Booking Source=TUI NL 0.08110101492223158

Attrib Booking Source=TUI UK 0.07028140540240334 Attrib Country=Denmark 0.1650195783796354 Attrib Country=Finland 0.20865090711114262 Attrib Country=Romania 0.0624112585365286 Attrib Country=Vary 0.2988131101078037 Attrib Country=Poland 0.05789879664020744 Attrib Country=UK 0.014523154041807589 Attrib Country=Netherlands -0.11808596954410458 Attrib Country=Germany 0.12345019899951763 Attrib Average pax/room 0.045966907352806875 Attrib TO/ OTA=OTA 0.18241107639410822 Attrib ADR -0.050655413976877534 Attrib MONTH=JULY 2020 0.3458243835600519 Attrib MONTH=AUGUST 2020 -0.021471441695918605 Attrib MONTH=SEPTEMBER 2020 0.06877151408601456 Attrib MONTH=OCTOBER 2020 -0.10772524364545065 Attrib TOTAL PAX Nights -0.4486680207271173 Attrib Total Room Nights -0.5991194199620518 Attrib BB -0.08196039523382312 Attrib BB% 0.2497535442787267 Attrib HB 0.039187410435214454 Attrib HB% 0.01255448680394923 Attrib AI -0.005709587668437713 Attrib AI% -0.09650212771140183 Sigmoid Node 12

Inputs Weights

Threshold 0.008923858289018994

Attrib Booking Source=ARHUS CHARTER -0.05705805057723772
Attrib Booking Source=AURINKOMATKAT 0.06701941979036737
Attrib Booking Source=BLUE AEGEAN 0.07790644425258736
Attrib Booking Source=BOOKING.COM 0.12272537544578214
Attrib Booking Source=BRAVO TOURS 0.18177688526254418
Attrib Booking Source=EXPEDIA 0.19105480836380737
Attrib Booking Source=ITAKA 0.06657796310235517
Attrib Booking Source=Jet2Holidays -0.1090049252165471
Attrib Booking Source=RAINBOW -0.10454436692336351
Attrib Booking Source=SELF BOOKINGS 0.03701272019012146
Attrib Booking Source=SUNWEB -0.3193648287452197
Attrib Booking Source=TUI Deutschland 0.1324897184100106
Attrib Booking Source=TUI NL -0.05953961442321127
Attrib Booking Source=TUI UK -0.018996593663351345
Attrib Country=Denmark 0.03875928508293106
Attrib Country=Finland 0.10048175435394653
Attrib Country=Romania 0.12781076015143142
Attrib Country=Vary 0.3148926993574691
Attrib Country=Poland 0.04019503461070003
Attrib Country=UK -0.1369831682585527
Attrib Country=Netherlands -0.40232033801004846
Attrib Country=Germany 0.09604991802439197
Attrib Average pax/room -0.09816535662082507
Attrib TO/ OTA=OTA 0.34389195708256737

Attrib ADR 0.3597547393933265

Attrib MONTH=JULY 2020 0.7299210365445803

Attrib MONTH=AUGUST 2020 -0.06395349842040343

Attrib MONTH=SEPTEMBER 2020 -0.1989701667646899

Attrib MONTH=OCTOBER 2020 -0.45522387139662684

Attrib TOTAL PAX Nights 0.5243098739602359

Attrib Total Room Nights 0.6744682943409593

Attrib BB 0.12901885863265336

Attrib BB% 0.15229536313935785

Attrib HB 0.06032599193185318

Attrib HB% -0.19798586532103013

Attrib AI 0.25279365425874945

Attrib AI% -0.13130268023064676

Sigmoid Node 13

Inputs Weights

Threshold -0.13631632563690432

Attrib Booking Source=ARHUS CHARTER 0.12999309702209494

Attrib Booking Source=AURINKOMATKAT 0.3544147613051819

Attrib Booking Source=BLUE AEGEAN 0.30455901603601665

Attrib Booking Source=BOOKING.COM 0.12748138313979634

Attrib Booking Source=BRAVO TOURS 0.11576079720716445

Attrib Booking Source=EXPEDIA 0.02765901839123922

Attrib Booking Source=ITAKA -0.017212815583781172

Attrib Booking Source=Jet2Holidays -0.017540199260141213

Attrib Booking Source=RAINBOW 0.3796689532996641

Attrib Booking Source=SELF BOOKINGS 0.20285454162730243

Attrib Booking Source=SUNWEB -0.13323594452909804

Attrib Booking Source=TUI Deutschland -0.02139743192761791 Attrib Booking Source=TUI NL 0.12131010688348078 Attrib Booking Source=TUI UK 0.168195683820399 Attrib Country=Denmark 0.11127479414105415 Attrib Country=Finland 0.33647693954898317 Attrib Country=Romania 0.2807336135608056 Attrib Country=Vary 0.03234224651814814 Attrib Country=Poland 0.1888215246992415 Attrib Country=UK 0.06679269257225832 Attrib Country=Netherlands -0.16126495963010543 Attrib Country=Germany -0.005320400252885884 Attrib Average pax/room 0.02694312678487512 Attrib TO/ OTA=OTA -0.006047553183000557 Attrib ADR -0.17494149470971804 Attrib MONTH=JULY 2020 0.5313337548962764 Attrib MONTH=AUGUST 2020 -0.3934137099439581 Attrib MONTH=SEPTEMBER 2020 0.10687392910839895 Attrib MONTH=OCTOBER 2020 0.008086401499414662 Attrib TOTAL PAX Nights -0.28507161001170006 Attrib Total Room Nights -0.3586958578969481 Attrib BB 0.10923244854733527 Attrib BB% 0.17470331064693653 Attrib HB 0.057516659064525646 Attrib HB% 0.06242569994371022 Attrib AI 0.026806010639939724 Attrib AI% 0.06136523883818108

Sigmoid Node 14

Inputs Weights

Threshold 0.03284992617594235

Attrib Booking Source=ARHUS CHARTER -0.2644229889796864

Attrib Booking Source=AURINKOMATKAT -0.2619805229850532

Attrib Booking Source=BLUE AEGEAN -0.13191751162037324

Attrib Booking Source=BOOKING.COM -0.09926325463378156

Attrib Booking Source=BRAVO TOURS 0.046162273230422955

Attrib Booking Source=EXPEDIA 0.09851981604695036

Attrib Booking Source=ITAKA 0.16301731065283026

Attrib Booking Source=Jet2Holidays 0.2579816349446593

Attrib Booking Source=RAINBOW -0.26610781072130973

Attrib Booking Source=SELF BOOKINGS 0.16383064171076595

Attrib Booking Source=SUNWEB -0.1552891853077426

Attrib Booking Source=TUI Deutschland 0.27360885037136407

Attrib Booking Source=TUI NL 0.13943479367607167

Attrib Booking Source=TUI UK 0.0611718835535817

Attrib Country=Denmark -0.21500674068582906

Attrib Country=Finland -0.29640257706783707

Attrib Country=Romania -0.13860306049810633

Attrib Country=Vary 0.13780635956148377

Attrib Country=Poland -0.06290593335449002

Attrib Country=UK 0.2976195706484944

Attrib Country=Netherlands 0.009077748648998024

Attrib Country=Germany 0.23475202744259308

Attrib Average pax/room 0.0778667231230654

Attrib TO/ OTA=OTA 0.09479824076412202

Attrib ADR -0.31757973173728904

Attrib MONTH=JULY 2020 0.3566194652307629

Attrib MONTH=AUGUST 2020 0.5005686321200872

Attrib MONTH=SEPTEMBER 2020 -0.4707677121759187

Attrib MONTH=OCTOBER 2020 -0.21819976781023

Attrib TOTAL PAX Nights -0.7047400877368926

Attrib Total Room Nights -0.8548996657527919

Attrib BB -0.3000308233227895

Attrib BB% 0.11785462901122491

Attrib HB -0.08318188002153738

Attrib HB% 0.09846934926065623

Attrib AI -0.058568949355139385

Attrib AI% 0.23286938837726248

Sigmoid Node 15

Inputs Weights

Threshold -0.09755851347687959

Attrib Booking Source=ARHUS CHARTER 0.0760210071104531

Attrib Booking Source=AURINKOMATKAT 0.11680903933930553

Attrib Booking Source=BLUE AEGEAN 0.09121180371882515

Attrib Booking Source=BOOKING.COM 0.05127741710904949

Attrib Booking Source=BRAVO TOURS 0.1319079997311859

Attrib Booking Source=EXPEDIA 0.05929978502463564

Attrib Booking Source=ITAKA 0.06638466455606833

Attrib Booking Source=Jet2Holidays 0.07230293015687629

Attrib Booking Source=RAINBOW 0.07062321361142114

Attrib Booking Source=SELF BOOKINGS 0.16961004025288007 Attrib Booking Source=SUNWEB 0.14732510154059722 Attrib Booking Source=TUI Deutschland 0.0809019746025792 Attrib Booking Source=TUI NL 0.09441537854792352 Attrib Booking Source=TUI UK 0.1450675000267229 Attrib Country=Denmark 0.05290766710438923 Attrib Country=Finland 0.15036047975283326 Attrib Country=Romania 0.1345192115604981 Attrib Country=Vary 0.06637097501233923 Attrib Country=Poland 0.07024825731283386 Attrib Country=UK 0.1491116724786122 Attrib Country=Netherlands 0.09362466736656705 Attrib Country=Germany 0.1407849316268908 Attrib Average pax/room 0.040067913141351406 Attrib TO/ OTA=OTA 0.010853125254077277 Attrib ADR -0.027104054126848482 Attrib MONTH=JULY 2020 0.14809648866253003 Attrib MONTH=AUGUST 2020 0.023842892768332923 Attrib MONTH=SEPTEMBER 2020 0.06370005436336221 Attrib MONTH=OCTOBER 2020 0.051439604278156977 Attrib TOTAL PAX Nights -0.023877997158620788 Attrib Total Room Nights -0.03561910455196841 Attrib BB -0.009056180026315622 Attrib BB% 0.0029168999498376137 Attrib HB 0.07368560622781907 Attrib HB% 0.11508601076813985

Attrib AI 0.09267332527797299

Attrib AI% 0.048020470650251314

Sigmoid Node 16

Inputs Weights

Threshold -0.11317015660074953

Attrib Booking Source=ARHUS CHARTER 0.07932409916475332 Attrib Booking Source=AURINKOMATKAT 0.07518964832913173 Attrib Booking Source=BLUE AEGEAN 0.12642565674136585 Attrib Booking Source=BOOKING.COM 0.10524082763229062 Attrib Booking Source=BRAVO TOURS 0.05469970016652741 Attrib Booking Source=EXPEDIA 0.055978581817591494 Attrib Booking Source=ITAKA 0.08947238691269963 Attrib Booking Source=Jet2Holidays 0.12992817918284577 Attrib Booking Source=RAINBOW 0.13321848065898959 Attrib Booking Source=SELF BOOKINGS 0.08006543464003249 Attrib Booking Source=SUNWEB 0.13911909388290628 Attrib Booking Source=TUI Deutschland 0.05216203548217172 Attrib Booking Source=TUI NL 0.0881677819696682 Attrib Booking Source=TUI UK 0.11880533681160822 Attrib Country=Denmark 0.1047774966199159 Attrib Country=Finland 0.08209659093611892 Attrib Country=Romania 0.08962255402820478 Attrib Country=Vary 0.0626882123922402 Attrib Country=Poland 0.06392445972484427 Attrib Country=UK 0.15988869851030707

Attrib Country=Netherlands 0.025592614982989287

Attrib Country=Germany 0.048456084825804054 Attrib Average pax/room 0.046728291353927164 Attrib TO/ OTA=OTA 0.10046769628922154 Attrib ADR 0.04908592279710585 Attrib MONTH=JULY 2020 0.057495414152290564 Attrib MONTH=AUGUST 2020 0.020382633117494962 Attrib MONTH=SEPTEMBER 2020 0.0718882836686056 Attrib MONTH=OCTOBER 2020 0.0631645959281579 Attrib TOTAL PAX Nights 0.10066130778686234 Attrib Total Room Nights 0.11169956926392921 Attrib BB 0.06136675767452667 Attrib BB% 0.043676505053017435 Attrib HB 0.10546002863556246 Attrib HB% 0.11405493468177653 Attrib AI 0.09944922107119979 Attrib AI% 0.05203212134868179 Sigmoid Node 17 Inputs Weights Threshold -0.17085478376769692 Attrib Booking Source=ARHUS CHARTER 0.14498842785376703 Attrib Booking Source=AURINKOMATKAT 0.12670873230348126 Attrib Booking Source=BLUE AEGEAN 0.09190773361236915 Attrib Booking Source=BOOKING.COM 0.08565045188817398

Attrib Booking Source=BRAVO TOURS 0.09679327580610168

Attrib Booking Source=EXPEDIA 0.08912830967855682

Attrib Booking Source=ITAKA 0.07422776262715547

Attrib Booking Source=Jet2Holidays 0.14512901638720163 Attrib Booking Source=RAINBOW 0.10479713366684126 Attrib Booking Source=SELF BOOKINGS 0.16406600345679573 Attrib Booking Source=SUNWEB 0.12563092229823647 Attrib Booking Source=TUI Deutschland 0.10385510084060581 Attrib Booking Source=TUI NL 0.0431204895791828 Attrib Booking Source=TUI UK 0.09187050111961752 Attrib Country=Denmark 0.06992110557586734 Attrib Country=Finland 0.12828440593516252 Attrib Country=Romania 0.08397234923716809 Attrib Country=Vary 0.06571682750670696 Attrib Country=Poland 0.057588962897883074 Attrib Country=UK 0.09828886794625723 Attrib Country=Netherlands 0.09800818077628937 Attrib Country=Germany 0.09131609007560351 Attrib Average pax/room 0.019020955776399864 Attrib TO/ OTA=OTA 0.041093912597144774 Attrib ADR -0.026991023247396065 Attrib MONTH=JULY 2020 0.07118410686501807 Attrib MONTH=AUGUST 2020 0.03591112252127608 Attrib MONTH=SEPTEMBER 2020 0.04576411720236792 Attrib MONTH=OCTOBER 2020 -0.019140000992184904 Attrib TOTAL PAX Nights -0.027107936535711957 Attrib Total Room Nights -0.05376934973840479 Attrib BB 0.06450671592230209

Attrib BB% -0.028377766329981534

Attrib HB 0.08318438299816966

Attrib HB% 0.0781622175675319

Attrib AI 0.05890210730477784

Attrib AI% 0.07993397133438253

Sigmoid Node 18

Inputs Weights

Threshold -0.10672993236693175

Attrib Booking Source=ARHUS CHARTER 0.09999366726438302

Attrib Booking Source=AURINKOMATKAT 0.09611395328370759

Attrib Booking Source=BLUE AEGEAN 0.08849272249109041

Attrib Booking Source=BOOKING.COM 0.10442835884725121

Attrib Booking Source=BRAVO TOURS 0.09042516937973

Attrib Booking Source=EXPEDIA -0.029267698764101263

Attrib Booking Source=ITAKA 0.006854899539011768

Attrib Booking Source=Jet2Holidays 0.13297477221884904

Attrib Booking Source=RAINBOW 0.05768366313899758

Attrib Booking Source=SELF BOOKINGS 0.046082957625755115

Attrib Booking Source=SUNWEB 0.1810645054798091

Attrib Booking Source=TUI Deutschland 0.06026951569224879

Attrib Booking Source=TUI NL 0.031130747102789104

Attrib Booking Source=TUI UK 0.09722363058811223

Attrib Country=Denmark 0.0733664674866501

Attrib Country=Finland 0.038343481017556476

Attrib Country=Romania 0.06225862575441235

Attrib Country=Vary 0.006276124717432812

Attrib Country=Poland 0.05085794696814359

Attrib Country=UK 0.12019517661824049 Attrib Country=Netherlands 0.07831346911216852 Attrib Country=Germany 0.056279654031173625 Attrib Average pax/room 0.10126637795294302 Attrib TO/ OTA=OTA 0.020415861942336574 Attrib ADR 0.025456788576361564 Attrib MONTH=JULY 2020 0.04763634072687759 Attrib MONTH=AUGUST 2020 -0.14234672132616222 Attrib MONTH=SEPTEMBER 2020 0.09362468419042735 Attrib MONTH=OCTOBER 2020 0.220622666215035 Attrib TOTAL PAX Nights 0.23679755729253213 Attrib Total Room Nights 0.2435991180832139 Attrib BB 0.1410247034655608 Attrib BB% -0.017998300764572803 Attrib HB 0.08515918751570904 Attrib HB% 0.10825975866238528 Attrib AI 0.06450566432350655 Attrib AI% -0.011529841464190435 Sigmoid Node 19 Inputs Weights Threshold -0.15282388740626424 Attrib Booking Source=ARHUS CHARTER 0.1219182333379638 Attrib Booking Source=AURINKOMATKAT 0.07905870732684044

Attrib Booking Source=BLUE AEGEAN 0.12980481259020948

Attrib Booking Source=BOOKING.COM 0.04127531306433957

Attrib Booking Source=BRAVO TOURS 0.0770841030425281

Attrib Booking Source=EXPEDIA 0.0584141641843902 Attrib Booking Source=ITAKA 0.10878242606605891 Attrib Booking Source=Jet2Holidays 0.10358770890273891 Attrib Booking Source=RAINBOW 0.11715206794957717 Attrib Booking Source=SELF BOOKINGS 0.1240742339245748 Attrib Booking Source=SUNWEB 0.0718850539345562 Attrib Booking Source=TUI Deutschland 0.13117691014497146 Attrib Booking Source=TUI NL 0.12150239329955598 Attrib Booking Source=TUI UK 0.11020868418967777 Attrib Country=Denmark 0.12179633871637312 Attrib Country=Finland 0.12370439773635943 Attrib Country=Romania 0.09048199185002846 Attrib Country=Vary 0.08918197397284922 Attrib Country=Poland 0.06272770383369916 Attrib Country=UK 0.12882243886765626 Attrib Country=Netherlands 0.04154296646278616 Attrib Country=Germany 0.11674148825047839 Attrib Average pax/room 0.031043416654808354 Attrib TO/ OTA=OTA 0.01303926528350667 Attrib ADR 0.007813555534130278 Attrib MONTH=JULY 2020 0.1300837927378734 Attrib MONTH=AUGUST 2020 0.018761426369225405 Attrib MONTH=SEPTEMBER 2020 0.0994693751649831 Attrib MONTH=OCTOBER 2020 0.0408669871588251 Attrib TOTAL PAX Nights -0.06993214498184884 Attrib Total Room Nights -0.08953237985309832

Attrib BB 0.07250053445969222

Attrib BB% 0.03234956960804703

Attrib HB 0.09700070771662139

Attrib HB% 0.03082228517572309

Attrib AI 0.09086306183897391

Attrib AI% 0.013113146303164808

Class

Input

Node 0

Classifiers with low or negative correlation coefficient (2020):

Meta Random Sub Space Algorithm | Creta Palm 2020

=== Classifier model (full training set) ===

Filtered Header

@relation 'Creta Palm Data 2020 ()-weka.filters.unsupervised.attribute.Remove-V-R3,14,2,6,13,4,1,15'

@attribute 'Average pax/room' numeric

@attribute 'AI\%' numeric

@attribute

Country

{Denmark,Finland,Romania,Vary,Poland,UK,Netherlands,Germany}

@attribute MONTH {'JULY 2020','AUGUST 2020','SEPTEMBER 2020','OCTOBER
2020'}

@attribute AI numeric

@attribute 'TO/ OTA' {TO,OTA}

@attribute 'Booking Source' {'ARHUS CHARTER',AURINKOMATKAT,'BLUE AEGEAN',BOOKING.COM,'BRAVO
TOURS',EXPEDIA,ITAKA,Jet2Holidays,RAINBOW,'SELF
BOOKINGS',SUNWEB,'TUI Deutschland','TUI NL','TUI UK'}
@attribute 'TOTAL BOOKINGS' numeric

@data

Classifier Model

REPTree

Booking Source = ARHUS CHARTER : 12 (1/0) [3/408]

Booking Source = AURINKOMATKAT : 15.33 (2/72.25) [1/420.25]

- Booking Source = BLUE AEGEAN : 7 (2/6.25) [2/123.25]
- Booking Source = BOOKING.COM : 50 (3/389.56) [1/6188.44]
- Booking Source = BRAVO TOURS : 19 (2/4) [2/452]
- Booking Source = EXPEDIA : 22.75 (4/423.69) [0/0]
- Booking Source = ITAKA : 25.75 (3/69.56) [1/802.78]
- Booking Source = Jet2Holidays : 5.5 (3/62) [1/36]
- Booking Source = RAINBOW : 17.5 (2/36) [2/234]
- Booking Source = SELF BOOKINGS : 0 (0/0) [1/177.52]
- Booking Source = SUNWEB : 11.75 (4/27.19) [0/0]
- Booking Source = TUI Deutschland : 8.25 (3/20.67) [1/49]
- Booking Source = TUI NL : 4 (2/6.25) [2/15.25]

Booking Source = TUI UK : 0.5 (3/0.89) [1/0.44]

Size of the tree : 15

Filtered Header

@relation 'Creta Palm Data 2020 ()-weka.filters.unsupervised.attribute.Remove-V-R13,14,1,10,9,4,6,15'

@attribute AI numeric

@attribute 'AI\%' numeric

@attribute 'Booking Source' {'ARHUS CHARTER',AURINKOMATKAT,'BLUE AEGEAN',BOOKING.COM,'BRAVO

TOURS', EXPEDIA, ITAKA, Jet2Holidays, RAINBOW, 'SELF

BOOKINGS', SUNWEB, 'TUI Deutschland', 'TUI NL', 'TUI UK'}

@attribute 'BB\%' numeric

@attribute BB numeric

```
@attribute 'TO/ OTA' {TO,OTA}
```

@attribute MONTH {'JULY 2020','AUGUST 2020','SEPTEMBER 2020','OCTOBER 2020'}

@attribute 'TOTAL BOOKINGS' numeric

@data

Classifier Model

REPTree

BB < 489.5

- Booking Source = ARHUS CHARTER : 12.3 (2.9/148.25) [1/273.35]
- | Booking Source = AURINKOMATKAT : 15.33 (3/141.56) [0/0]
- | Booking Source = BLUE AEGEAN : 7 (1/0) [3/131.33]
- | Booking Source = BOOKING.COM : 17.5 (2/90.25) [0/0]
- | Booking Source = BRAVO TOURS : 19 (3/3.56) [1/940.44]
- | Booking Source = EXPEDIA : 13 (3/184.67) [0/0]
- | Booking Source = ITAKA : 18.67 (1/0) [2/132.5]
- | Booking Source = Jet2Holidays : 5.5 (2/72.25) [2/66.25]
- | Booking Source = RAINBOW : 17.5 (3/152) [1/100]
- | Booking Source = SELF BOOKINGS : 0 (0.9/0) [0/0]
- | Booking Source = SUNWEB : 11.75 (2/2.25) [2/88.25]
- | Booking Source = TUI Deutschland : 8.25 (4/24.69) [0/0]
- | Booking Source = TUI NL : 4 (1/0) [3/12.67]
- | Booking Source = TUI UK : 0.51 (1.9/0) [2/2]
- BB >= 489.5 : 61.53 (3.29/227.12) [1/3830.64]

Size of the tree : 17

Filtered Header

@relation 'Creta Palm Data 2020 ()-weka.filters.unsupervised.attribute.Remove-V-R5,7,10,2,13,14,8,15'

@attribute ADR numeric

@attribute 'TOTAL PAX Nights' numeric

@attribute 'BB\%' numeric

@attribute

{Denmark,Finland,Romania,Vary,Poland,UK,Netherlands,Germany}

Country

@attribute AI numeric

@attribute 'AI\%' numeric

@attribute 'Total Room Nights' numeric

@attribute 'TOTAL BOOKINGS' numeric

@data

Classifier Model

REPTree

TOTAL PAX Nights < 768.5

| Total Room Nights < 88

- | | TOTAL PAX Nights < 60.5 : 0.53 (13/0.71) [2/1.29]
- | | TOTAL PAX Nights >= 60.5
- | | BB% < 0.1 : 9.4 (4/2.25) [1/30.25]
- | | | BB% >= 0.1 : 6.45 (2/0.25) [9/9.58]
- | Total Room Nights >= 88
- | | TOTAL PAX Nights < 382.5 : 16.29 (7/19.92) [0/0]
- | | TOTAL PAX Nights >= 382.5 : 26.22 (5/15.44) [4/32.71]

TOTAL PAX Nights >= 768.5 : 61.2 (3/748.22) [2/585.11]

Size of the tree : 11

Filtered Header

@relation 'Creta Palm Data 2020 ()-weka.filters.unsupervised.attribute.Remove-V-R14,4,3,2,5,7,9,15'

@attribute 'AI\%' numeric

@attribute 'TO/ OTA' {TO,OTA}

@attribute 'Average pax/room' numeric

@attribute

{Denmark,Finland,Romania,Vary,Poland,UK,Netherlands,Germany}

@attribute ADR numeric

@attribute 'TOTAL PAX Nights' numeric

@attribute BB numeric

@attribute 'TOTAL BOOKINGS' numeric

@data

Classifier Model

REPTree

TOTAL PAX Nights < 737

- | TOTAL PAX Nights < 235
- | | TOTAL PAX Nights < 102.5
- | | TOTAL PAX Nights < 45.5 : 0.36 (10/0.45) [4/0.25]
- | | | TOTAL PAX Nights >= 45.5 : 4.78 (6/3.89) [3/2.67]
- | | TOTAL PAX Nights >= 102.5 : 10.7 (5/10.24) [5/4.76]
- | TOTAL PAX Nights >= 235
- | | Country = Denmark : 24 (2/36) [0/0]
- | | Country = Finland : 23 (2/36) [0/0]
- | | Country = Romania : 22.93 (0/0) [0/0]

Country

- | | Country = Vary : 29.5 (1/0) [1/25]
- | | Country = Poland : 26.25 (1/0) [3/41.67]
- | | Country = UK : 18 (1/0) [0/0]
- | | Country = Netherlands : 14.5 (1/0) [1/121]
- | | Country = Germany : 16 (1/0) [0/0]

TOTAL PAX Nights >= 737 : 61.2 (4/678.69) [1/315.06]

Size of the tree : 17

Filtered Header

@relation 'Creta Palm Data 2020 ()-weka.filters.unsupervised.attribute.Remove-V-R11,3,10,7,4,5,6,15'

@attribute HB numeric

@attribute 'Average pax/room' numeric

@attribute 'BB\%' numeric

@attribute 'TOTAL PAX Nights' numeric

@attribute 'TO/ OTA' {TO,OTA}

@attribute ADR numeric

@attribute MONTH {'JULY 2020','AUGUST 2020','SEPTEMBER 2020','OCTOBER
2020'}

@attribute 'TOTAL BOOKINGS' numeric

@data

REPTree

: 15.04 (34/432.11) [18/261.13]

Size of the tree : 1

Filtered Header

@relation 'Creta Palm Data 2020 ()-weka.filters.unsupervised.attribute.Remove-V-R9,10,5,12,8,11,2,15'

@attribute BB numeric

@attribute 'BB\%' numeric

@attribute ADR numeric

@attribute 'HB\%' numeric

@attribute 'Total Room Nights' numeric

@attribute HB numeric

@attribute

Country

 $\{Denmark, Finland, Romania, Vary, Poland, UK, Netherlands, Germany\}$

@attribute 'TOTAL BOOKINGS' numeric

@data

Classifier Model

REPTree

Total Room Nights < 259.5

| Total Room Nights < 88

| | Total Room Nights < 23.5 : 0.53 (10/0.21) [5/2.09]

| | Total Room Nights >= 23.5

- | | Total Room Nights < 49 : 5 (5/3.04) [3/4.56]
- | | | Total Room Nights >= 49 : 9.75 (5/2.16) [3/10.51]
- | Total Room Nights $\geq 88 : 21.27 (11/37.06) [4/56.85]$

Total Room Nights >= 259.5 : 56.17 (3/748.22) [3/914.56]

Size of the tree : 9

Filtered Header

@relation 'Creta Palm Data 2020 ()-weka.filters.unsupervised.attribute.Remove-V-R1,3,5,10,7,4,2,15'

@attribute 'Booking Source' {'ARHUS CHARTER',AURINKOMATKAT,'BLUE AEGEAN',BOOKING.COM,'BRAVO TOURS',EXPEDIA,ITAKA,Jet2Holidays,RAINBOW,'SELF BOOKINGS',SUNWEB,'TUI Deutschland','TUI NL','TUI UK'}
@attribute 'Average pax/room' numeric
@attribute ADR numeric
@attribute 'BB\%' numeric
@attribute 'TOTAL PAX Nights' numeric
@attribute 'TO/OTA' {TO,OTA}
@attribute 'Country

@attribute 'TOTAL BOOKINGS' numeric

{Denmark, Finland, Romania, Vary, Poland, UK, Netherlands, Germany}

@data

Classifier Model

REPTree

- TOTAL PAX Nights < 765.5
- | TOTAL PAX Nights < 201
- | | TOTAL PAX Nights < 61
- | | ADR < 29.86 : 0 (7/0) [3/0]
- | | ADR >= 29.86 : 1.6 (5/0.64) [0/0]
- | | TOTAL PAX Nights >= 61 : 7.14 (8/4.94) [6/14.73]
- | TOTAL PAX Nights >= 201
- | | Booking Source = ARHUS CHARTER : 24 (2/36) [0/0]
- | | Booking Source = AURINKOMATKAT : 23 (1/0) [1/144]
- | Booking Source = BLUE AEGEAN : 15 (1/0) [0/0]
- | | Booking Source = BOOKING.COM : 27 (0/0) [1/45.56]
- | | Booking Source = BRAVO TOURS : 14 (0/0) [1/39.06]
- | Booking Source = EXPEDIA : 32 (1/0) [0/0]
- | | Booking Source = ITAKA : 24.5 (2/2.25) [0/0]
- | | Booking Source = Jet2Holidays : 18 (0/0) [1/5.06]
- | | Booking Source = RAINBOW : 28 (1/0) [1/36]
- | | Booking Source = SELF BOOKINGS : 20.44 (0/0) [0/0]
- | | Booking Source = SUNWEB : 11.75 (3/21.56) [1/58.78]
- | | Booking Source = TUI Deutschland : 16 (1/0) [0/0]
- | | Booking Source = TUI NL : 20.44 (0/0) [0/0]
- | | Booking Source = TUI UK : 20.44 (0/0) [0/0]

TOTAL PAX Nights >= 765.5 : 61.2 (2/702.25) [3/1276.92]

Size of the tree : 23

Filtered Header

@relation 'Creta Palm Data 2020 ()-weka.filters.unsupervised.attribute.Remove-V-R5,7,3,13,10,6,4,15'

@attribute ADR numeric

@attribute 'TOTAL PAX Nights' numeric

@attribute 'Average pax/room' numeric

@attribute AI numeric

@attribute 'BB\%' numeric

@attribute MONTH {'JULY 2020','AUGUST 2020','SEPTEMBER 2020','OCTOBER
2020'}

```
@attribute 'TO/ OTA' {TO,OTA}
```

@attribute 'TOTAL BOOKINGS' numeric

@data

Classifier Model

REPTree

TOTAL PAX Nights < 764.5

- | TOTAL PAX Nights < 382.5
- | | TOTAL PAX Nights < 102.5
- | | | TOTAL PAX Nights < 45.5 : 0.36 (9/0.44) [5/0.24]
- | | TOTAL PAX Nights >= 45.5
- | | | ADR < 86.31 : 5.8 (3/2.89) [2/3.61]
- | | | ADR >= 86.31 : 3.5 (3/0) [1/4]

| | TOTAL PAX Nights >= 102.5 : 12.8 (9/9.06) [6/52.03]

| TOTAL PAX Nights >= 382.5 : 26.22 (6/17) [3/46]

TOTAL PAX Nights >= 764.5 : 61.2 (4/626.5) [1/576]

Size of the tree : 11

Filtered Header

@relation 'Creta Palm Data 2020 ()-weka.filters.unsupervised.attribute.Remove-V-R13,8,3,11,12,9,14,15'

@attribute AI numeric

@attribute 'Total Room Nights' numeric

@attribute 'Average pax/room' numeric

@attribute HB numeric

@attribute 'HB\%' numeric

@attribute BB numeric

@attribute 'AI\%' numeric

@attribute 'TOTAL BOOKINGS' numeric

@data

Classifier Model

REPTree

Total Room Nights < 159.5

| Total Room Nights < 88.5

| | Total Room Nights < 27 : 0.53 (11/0.79) [4/0.77]

| | Total Room Nights $\geq 27: 7.38 (10/4.49) [6/21.81]$

| Total Room Nights >= 88.5 : 16.29 (5/26.64) [2/3.46]

Total Room Nights >= 159.5

Total Room Nights < 259.5 : 25.63 (5/29.76) [3/7.51]

Total Room Nights >= 259.5 : 56.17 (3/13.56) [3/1269.22]

Size of the tree : 9

FilteredClassifierusingweka.classifiers.trees.REPTree-M2-V0.001-N3-S1158800660-L-1-I0.0ondatafilteredthroughweka.filters.unsupervised.attribute.Remove-V-R9,7,2,13,3,8,11,15

Filtered Header

@relation 'Creta Palm Data 2020 ()-weka.filters.unsupervised.attribute.Remove-V-R9,7,2,13,3,8,11,15'

@attribute BB numeric

@attribute 'TOTAL PAX Nights' numeric

@attribute

{Denmark, Finland, Romania, Vary, Poland, UK, Netherlands, Germany}

@attribute AI numeric

@attribute 'Average pax/room' numeric

@attribute 'Total Room Nights' numeric

@attribute HB numeric

@attribute 'TOTAL BOOKINGS' numeric

Country

@data

Classifier Model

REPTree

TOTAL PAX Nights < 768.5

- | Total Room Nights < 88
- | | TOTAL PAX Nights < 102.5
- | | | TOTAL PAX Nights < 35 : 0.31 (6/0.14) [7/0.6]
- | | TOTAL PAX Nights >= 35 : 4.4 (6/3.89) [4/4.78]
- | | TOTAL PAX Nights >= 102.5 : 9.75 (6/2.14) [2/13.69]
- | Total Room Nights >= 88 : 21.88 (13/48.56) [3/32.67]
- TOTAL PAX Nights >= 768.5 : 61.2 (3/748.22) [2/585.11]

Size of the tree : 9

=== Summary ===Correlation coefficient0.875Mean absolute error6.3925Root mean squared error10.6306Relative absolute error47.0885 %Root relative squared error54.2753 %Total Number of Instances52Ignored Class Unknown Instances4

Meta Randomizable Filtered Classifier |Creta Palm 2020

=== Classifier model (full training set) ===

IB1 instance-based classifier

using 1 nearest neighbour(s) for classification

=== Summary ===

Correlation coefficient	0.8399
Mean absolute error	5.9423
Root mean squared error	11.0026
Relative absolute error	43.7726 %
Root relative squared error	56.1748 %
Total Number of Instances	52
Ignored Class Unknown Instances	s 4

Rules Decision Table Algorithm | Creta Palm 2020

=== Classifier model (f	full training set) ===
-------------------------	------------------------

Decision Table:

Number of training instances: 52

Number of Rules : 7

Non matches covered by Majority class.

Best first.

Start set: no attributes

Search direction: forward

Stale search after 5 node expansions

Total number of subsets evaluated: 74

Merit of best subset found: 14.863

Evaluation (for feature selection): CV (leave one out)

Feature set: 8,15

=== Summary ===

Correlation coefficient	0.8395
Mean absolute error	6.5878

Root mean squared error	12.1645
Relative absolute error	48.5274 %
Root relative squared error	62.1067 %
Total Number of Instances	52
Ignored Class Unknown Instances	s 4

Meta Additive Regression Algorithm |Creta Palm 2020

=== Classifier model (full training set) ===

Additive Regression

Initial prediction: 15.03

10 models generated.

Model number 0

Decision Stump

Classifications

TOTAL PAX Nights <= 737.0 : -4.9108019639934595 TOTAL PAX Nights > 737.0 : 46.16153846153846 TOTAL PAX Nights is missing : -5.943963270300838E-15

Model number 1

Decision Stump Classifications

Average pax/room <= 3.065 : 1.304307213284903 Average pax/room > 3.065 : 47.8000000000026 Average pax/room is missing : -10.127659574468082

Model number 2

Decision Stump

Classifications

Total Room Nights <= 88.0 : -3.6797194368649238 Total Room Nights > 88.0 : 5.431966787752982 Total Room Nights is missing : -2.391249591500337E-16

Model number 3

Decision Stump Classifications

Total Room Nights <= 297.5 : 1.7058949530192467 Total Room Nights > 297.5 : -16.035412558380912 Total Room Nights is missing : 7.173748774501012E-16

Model number 4

Decision Stump

Classifications

Total Room Nights <= 159.5 : -1.8124090327177127 Total Room Nights > 159.5 : 4.91939594594808 Total Room Nights is missing : 4.782499183000674E-16

Model number 5

Decision Stump Classifications

AI <= 737.0 : 0.07211576747739341 AI > 737.0 : -14.82025738860505 AI is missing : 3.786233516563391

Model number 6

Decision Stump Classifications

Average pax/room <= 2.795 : -0.018679579795516488 Average pax/room > 2.795 : -4.221059895160568 Average pax/room is missing : 2.5998824243601986

Model number 7

Decision Stump Classifications

HB <= 426.0 : 0.056719633608277725 HB > 426.0 : 9.832993952363008 HB is missing : -3.1247041829880158

Model number 8

Decision Stump Classifications

Booking Source = RAINBOW : 4.555911629386115 Booking Source != RAINBOW : -0.3796593024488432

Booking Source is missing : -2.391249591500337E-16

Model number 9

Decision Stump

Classifications

Average pax/room <= 1.984999999999999999 : 4.202024608327246 Average pax/room > 1.9849999999999999 : -0.5294429338712259 Average pax/room is missing : 1.277366813819454

=== Summary ===

Correlation coefficient	0.8342
Mean absolute error	6.4298
Root mean squared error	11.6181
Relative absolute error	47.3635 %
Root relative squared error	59.3169 %
Total Number of Instances	52
Ignored Class Unknown Instances	s 4

Random Tree Algorithm| Creta Palm 2020

=== Classifier model (full training set) ===

RandomTree

Total Room Nights < 297.5

- | Booking Source = ARHUS CHARTER
- | | MONTH = JULY 2020 : 0 (1/0)
- | | MONTH = AUGUST 2020 : 0 (1/0)
- | | MONTH = SEPTEMBER 2020 : 30 (1/0)
- | | MONTH = OCTOBER 2020 : 18 (1/0)

```
Booking Source = AURINKOMATKAT
| ADR < 42.74 : 0 (1/0)
| ADR >= 42.74
| | | Average pax/room < 2.1 : 29 (1/0)
| | | Average pax/room >= 2.1 : 17 (1/0)
| Booking Source = BLUE AEGEAN
| | MONTH = JULY 2020 : 3 (1/0)
| | MONTH = AUGUST 2020 : 10 (1/0)
| | MONTH = SEPTEMBER 2020 : 15 (1/0)
| | MONTH = OCTOBER 2020 : 0 (1/0)
| Booking Source = BOOKING.COM
| BB < 182 : 8 (1/0)
| BB >= 182 : 27 (1/0)
| Booking Source = BRAVO TOURS
| | AI < 161 : 10 (2/0)
| AI >= 161 : 14 (1/0)
| Booking Source = EXPEDIA
| | MONTH = JULY 2020 : 32 (1/0)
| | MONTH = AUGUST 2020 : 0 (0/0)
| | MONTH = SEPTEMBER 2020 : 6 (1/0)
| | MONTH = OCTOBER 2020 : 1 (1/0)
| Booking Source = ITAKA
| | TOTAL PAX Nights < 303.5 : 7 (1/0)
| | TOTAL PAX Nights >= 303.5
| | | TOTAL PAX Nights < 554 : 26 (1/0)
| | | TOTAL PAX Nights >= 554 : 23 (1/0)
| Booking Source = Jet2Holidays
| | Total Room Nights < 115.5
| | | TOTAL PAX Nights < 63 : 0.5 (2/0.25)
| | TOTAL PAX Nights >= 63 : 3 (1/0)
| | Total Room Nights >= 115.5 : 18 (1/0)
| Booking Source = RAINBOW
```

- | | TOTAL PAX Nights < 226.5
- | | | ADR < 85.19 : 13 (1/0)
- | | ADR >= 85.19 : 1 (1/0)
- | | TOTAL PAX Nights >= 226.5
- | | | ADR < 102.15 : 31 (1/0)
- | | ADR >= 102.15 : 25 (1/0)
- | Booking Source = SELF BOOKINGS : 0 (1/0)
- | Booking Source = SUNWEB
- | ADR < 81.25 : 20 (1/0)
- | ADR >= 81.25
- | | | MONTH = JULY 2020 : 6 (1/0)
- | | | MONTH = AUGUST 2020 : 9 (1/0)
- | | | MONTH = SEPTEMBER 2020 : 0 (0/0)
- | | | MONTH = OCTOBER 2020 : 12 (1/0)
- | Booking Source = TUI Deutschland
- | | ADR < 119.28
- | | | Total Room Nights < 62
- | | | Average pax/room < 2.06 : 3 (1/0)
- | | | | Average pax/room >= 2.06 : 5 (1/0)
- | | Total Room Nights >= 62 : 9 (1/0)
- | | ADR >= 119.28 : 16 (1/0)
- | Booking Source = TUI NL
- | | MONTH = JULY 2020 : 3 (1/0)
- | | MONTH = AUGUST 2020 : 5 (1/0)
- | | MONTH = SEPTEMBER 2020 : 8 (1/0)
- | | MONTH = OCTOBER 2020 : 0 (1/0)
- | Booking Source = TUI UK
- | | Total Room Nights < 3.5 : 0 (3/0)
- | Total Room Nights $\geq 3.5: 2(1/0)$

Total Room Nights >= 297.5

- | Average pax/room < 3.06
- | Country = Denmark : 42 (1/0)

- | | Country = Finland : 0 (0/0)
- | Country = Romania : 0 (0/0)
- | | Country = Vary
- | | | MONTH = JULY 2020 : 56 (1/0)
- | | | MONTH = AUGUST 2020 : 52 (1/0)
- | | | MONTH = SEPTEMBER 2020 : 0 (0/0)
- | | | MONTH = OCTOBER 2020 : 0 (0/0)
- | Country = Poland : 47 (1/0)
- | Country = UK : 0 (0/0)
- | Country = Netherlands : 0 (0/0)
- | Country = Germany : 0 (0/0)
- | Average pax/room >= 3.06 : 109 (1/0)

Size of the tree: 83

=== Summary ===	
Correlation coefficient	0.8035
Mean absolute error	7.5063
Root mean squared error	11.6473
Relative absolute error	55.2936 %
Root relative squared error	59.466 %
Total Number of Instances	52
Ignored Class Unknown Instance	s 4

Meta Bagging Algorithm| Creta Palm 2020

=== Classifier model (full training set) === Bagging with 10 iterations and base learner

=== Summary ===Correlation coefficient0.7682Mean absolute error7.8863Root mean squared error13.0864Relative absolute error58.0927 %

Root relative squared error66.8134 %Total Number of Instances52Ignored Class Unknown Instances4

Meta Regression by Discretization Algorithm |Creta Palm 2020

=== Classifier model (full training set) ===

Class attribute discretized into 10 values

Classifier spec: weka.classifiers.trees.J48 -C 0.25 -M 2

J48 pruned tree

Total Room Nights <= 85: '(-inf-10.9]' (31.0/2.0)

Total Room Nights > 85

| BB <= 406: '(21.8-32.7]' (17.0/9.0)

| BB > 406

- | | Average pax/room <= 2.91: '(43.6-54.5]' (2.0)
- | Average pax/room > 2.91: '(54.5-65.4]' (2.0/1.0)

Number of Leaves : 4

Size of the tree : 7

=== Summary ===

Correlation coefficient	0.7575
Mean absolute error	8.4383
Root mean squared error	12.8237
Relative absolute error	62.1588 %
Root relative squared error	65.4725 %
Total Number of Instances	52
Ignored Class Unknown Instances	s 4

Lazy LWL Algorithm |Creta Palm 2020

=== Classifier model (full training set) ===

Locally weighted learning

Using classifier: weka.classifiers.trees.DecisionStump

Using linear weighting kernels

Using all neighbours

=== Summary ===

Correlation coefficient	0.6917
Mean absolute error	9.4686
Root mean squared error	14.0376
Relative absolute error	69.7484 %
Root relative squared error	71.6703 %
Total Number of Instances	52
Ignored Class Unknown Instance	es 4

REP Tree Algorithm | Creta Palm 2020

=== Classifier model (full training set) ===

REPTree

TOTAL PAX Nights < 737

- | Total Room Nights < 87
- | | TOTAL PAX Nights < 102.5 : 2.09 (15/5.98) [8/6.52]
- | | TOTAL PAX Nights >= 102.5 : 9.75 (6/5.47) [2/0.36]
- | Total Room Nights >= 87 : 21.88 (8/59.48) [8/31.11]

TOTAL PAX Nights >= 737 : 61.2 (5/593.36) [0/0]

Size of the tree : 7

=== Summary ===	
Correlation coefficient	0.6909
Mean absolute error	9.4218
Root mean squared error	14.1754
Relative absolute error	69.4032 %
Root relative squared error	72.3738 %
Total Number of Instances	52
Ignored Class Unknown Instance	es 4

Decision Stump Algorithm| Creta Palm 2020

=== Classifier model (full training set) ===

REPTree

TOTAL PAX Nights < 737

| Total Room Nights < 87

| | TOTAL PAX Nights < 102.5 : 2.09 (15/5.98) [8/6.52]

| | TOTAL PAX Nights >= 102.5 : 9.75 (6/5.47) [2/0.36]

| Total Room Nights >= 87 : 21.88 (8/59.48) [8/31.11]

TOTAL PAX Nights >= 737 : 61.2 (5/593.36) [0/0]

Size of the tree : 7

=== Summary ===

Correlation coefficient	0.6589
Mean absolute error	11.4081
Root mean squared error	17.1056
Relative absolute error	84.0353 %

Total Number of Instances52Ignored Class Unknown Instances4

Lazy IBK Algorithm| Creta Palm 2020

=== Classifier model (full training set) ===

IB1 instance-based classifier

using 1 nearest neighbour(s) for classification

=== Summary ===

Correlation coefficient	0.5753
Mean absolute error	12.0577
Root mean squared error	15.7816
Relative absolute error	88.8201 %
Root relative squared error	80.574 %
Total Number of Instances	52
Ignored Class Unknown Instance	es 4

Classifiers "Meta CV Parameter Selection", "Meta Multi Scheme", "Meta Stacking", "Meta Vote", "Meta Weighted Instances Handler Wrapper", "Misc Input Mapped Classifier" and "Zero R", provide the same algorithm results, with a correlation coefficient: -0.3543, as shown below:

Cross-validated Parameter selection. Classifier: weka.classifiers.rules.ZeroR Classifier Options:

ZeroR predicts class value: 15.03

=== Summary ===

Correlation coefficient -0.3543

Mean absolute error	13.57	54
Root mean squared error	19.58	64
Relative absolute error	100	%
Root relative squared error	100	%
Total Number of Instances	52	
Ignored Class Unknown Instances	5	4

Simple K Means with 3 Clusters/Creta Palm 2020

Final cluster	centroids:	0]t.e.u#		
Attribute	Full Data (56.0)	Cluster# 0 (25.0)	(13.0)	(18.0)
Booking Source Country Avarage pax/room TO/ OTA ADR MONTH TOTAL PAX Nights Total Room Nights BB BB% HB HB% AI	ARHUS CHARTER Vary 2.3586 TO 73.5381 JULY 2020 270.2642 108.3774 142.16 0.4362 38.9184 0.1671 105.98	SELF BOOKINGS Vary 2.3295 TO 69.0307 OCTOBER 2020 225.2717 94.4053 92.6656 0.3988 20.3069 0.0971 125.7968	Germany 2.4344 TO 82.6585 JULY 2020 192.3846 78.6923 36.7169 0.2233 45.9812 0.3549 156.8431	AURINKOMATKAT Finland 2.3441 TO 73.2117 AUGUST 2020 389 149.2222 287.0556 0.6419 59.6667 0.1288 41.7222
AI% TOTAL BOOKINGS	0.3901 15.0385	0.4992 14.2446	0.4162 8.8462	0.2197 20.6132

Simple K Means with 4 Clusters/Creta Palm 2020

Final cluster centrolds:						
		Cluster#				
Attribute	Full Data	0	1	2	3	
	(56.0)	(17.0)	(12.0)	(16.0)	(11.0)	
Booking Source	ARHUS CHARTER SEL	F BOOKINGS TUI	Deutchland A	JRINKOMATKAT	BRAVO TOURS	
Country	Vary	Vary	Germany	Finland	Denmark	
Avarage pax/room	2.3586	2.4005	2.4364	2.3721	2.1891	
to/ ota	TO	TO	TO	TO	TO	
ADR	73.5381	52.2639	81.19	71.78	100.6264	
MONTH	JULY 2020	OCTOBER 2020	JULY 2020	AUGUST 2020	SEPTEMBER 2020	
TOTAL PAX Nights	270.2642	184.8701	133.8333	407.375	351.6364	
Total Room Nights	108.3774	72.1254	54.4167	154.125	156.7273	
BB	142.16	131.3906	39.7767	302.0625	37.9091	
BB%	0.4362	0.5582	0.2419	0.6378	0.1664	
HB	38.9184	29.8631	49.8129	67.125	0	
HB%	0.1671	0.1428	0.3845	0.1449	0	
AI	105.98	43.4659	95.33	37.5625	313.7273	
AI%	0.3901	0.2924	0.3675	0.2078	0.8309	
TOTAL BOOKINGS	15.0385	12.1833	6.0833	21.7524	19.4545	

Simple K Means with 5 Clusters/Creta Palm 2020

Final cluster centroids:						
		C	luster#			
Attribute 1	Full Data	0	1	2	3	4
	(56.0)	(16.0)	(9.0)	(13.0)	(7.0)	(11.0)
Source ARHUS	5 CHARTER	SELF BOOKINGS TUI	Deutchland	AURINKOMATKAT	RAINBOW	ARHUS CHARTER
Country	Vary	Vary	Germany	Finland	Poland	Denmark
Av. pax/room	2.3586	2.4162	2.3321	2.3974	2.4843	2.1706
TO/ OTA	TO	TO	TO	TO	TO	TO

Business Decision Analysis Based on Data Analytics | Antonia Trikounaki

ADR	73.5381	50.5635	82.8844	75.82	98.9471	80.4427
MONTH	JULY 2020	OCTOBER 2020	JULY 2020	AUGUST 2020	JULY 2020	SEPTEMBER 2020
TOTAL PAX	270.2642	188.362	111.4444	487	421.7143	166.8182
Total Room N.	108.3774	72.8833	48.1111	183.6923	176.2857	77.0909
BB	142.16	139.6025	32.24	370.6923	6.4286	52.1055
BB%	0.4362	0.5931	0.2518	0.6745	0.0286	0.3366
HB	38.9184	31.7296	76.3152	70.9231	3.4286	3.538
HB%	0.1671	0.1517	0.5797	0.0986	0.0143	0.0304
AI	105.98	38.12	39.1089	44.6154	411.8571	137.2709
AI%	0.3901	0.2482	0.1622	0.2165	0.9543	0.6291
TOTAL BOOKINGS	15.0385	12.1322	5.5556	25.8491	20.2857	10.9091

EM Clustering Model (continued)/ Creta Palm 2020

		Clus	luster		
Attribute	0	1	2		
	(0.28)	(0.55)	(0.17)		
Booking Source					
ARHUS CHARTER	3	3	1		
AURINKOMATKAT	2	4	1		
BLUE AEGEAN	2	4	1		
BOOKING.COM	1	1.983	4.017		
BRAVO TOURS	4.0041	1.9539	1.042		
EXPEDIA	1	1.7907	4.2093		
ITAKA	3.0004	1.9877	2.0119		
Jet2Holidays	1.0093	3.9984	1.9923		
RAINBOW	4.0002	1	1.9998		
SELF BOOKINGS	1	5	1		
SUNWEB	4	2	1		
TUI Deutchland	1	5	1		
TUI NL	1.8652	4.1343	1.0006		
TUI UK	1	4.9996	1.0004		
[total]	29.8792	44.8476	23.2732		
Country					
Denmark	6.0041	3.9539	1.042		
Finland	2	4	1		
Romania	2	4	1		
Vary	1	6.7737	7.2263		

Business Decision Analysis Based on Data Analytics | Antonia Trikounaki

Poland	6.0006	1.9877	3.0117
UK	1.0093	7.998	1.9927
Nederlands	4.8652	5.1343	1.0006
Germany	1	5	1
[total]	23.8792	38.8476	17.2732
Avarage pax/room			
mean	2.2972	2.2975	2.6667
std. dev.	0.2519	0.2068	0.318
TO/ OTA			
ТО	16.8792	30.0739	4.0469
OTA	1	2.7737	7.2263
[total]	17.8792	32.8476	11.2732
ADR			
mean	98.1323	54.3313	95.316
std. dev.	24.7663	45.2436	17.7772
MONTH			
JULY 2020	4	9.9994	3.0006
AUGUST 2020	3.0145	7.9514	6.0341
SEPTEMBER 2020	7.8642	6.9111	2.2247
OCTOBER 2020	5.0004	9.9857	2.0139
[total]	19.8792	34.8476	13.2732
TOTAL PAX Nights			
mean	346.2423	93.5928	727.8619
std. dev.	218.9589	102.9212	601.8411

Total Room Nights

mean	152.0379	40.1846	260.4587
std. dev.	93.078	42.6628	188.5728

ΒB

mean 50.167 53.846 593.4631	mean	50.167	53.846	593.4631
-----------------------------	------	--------	--------	----------

490

std.	dev.	97.9618	59.9082	476.2931	
BB%					
mean		0.1385	0.4653	0.849	
std.	dev.	0.241	0.3055	0.1343	
HB					
mean		1.1336	32.2179	125.9087	
std.	dev.	4.3725	43.0547	167.8338	
HB%					
mean		0.0019	0.263	0.1314	
std.	dev.	0.0073	0.3066	0.1286	
AI					
mean		294.9417	38.3408	7.4118	
std.	dev.	230.6609	52.2848	10.9021	
AI%					
mean		0.8559	0.2645	0.0101	
std.	dev.	0.2507	0.1901	0.0211	
TOTAL 1	BOOKINGS				
mean		18.8993	5.6153	39.7735	
std.	dev.	10.3394	5.7736	29.3252	

Make A Density Based Clusterer fitted estimators/ Creta Palm 2020

Fitted estimators (with ML estimates of variance):

Cluster: 0 Prior probability: 0.6207

Attribute: Booking Source

Discrete Estimator. Counts = 4 3 3 4 4 4 3 3 4 5 4 1 3 4 (Total = 49)
Attribute: Country
Discrete Estimator. Counts = 7 3 3 11 6 6 6 1 (Total = 43)
Attribute: Avarage pax/room
Normal Distribution. Mean = 2.3561 StdDev = 0.2526
Attribute: TO/ OTA
Discrete Estimator. Counts = 307 (Total = 37)
Attribute: ADR
Normal Distribution. Mean = 65.7399 StdDev = 46.3358
Attribute: MONTH
Discrete Estimator. Counts = 10 2 14 13 (Total = 39)
Attribute: TOTAL PAX Nights
Normal Distribution. Mean = 220.8226 StdDev = 246.7839
Attribute: Total Room Nights
Normal Distribution. Mean = 91.8609 StdDev = 97.6317
Attribute: BB
Normal Distribution. Mean = 83.4846 StdDev = 155.2409
Attribute: BB%
Normal Distribution. Mean = 0.379 StdDev = 0.3137
Attribute: HB
Normal Distribution. Mean = 17.4146 StdDev = 30.8339
Attribute: HB%
Normal Distribution. Mean = 0.0913 StdDev = 0.0946
Attribute: AI
Normal Distribution. Mean = 145.968 StdDev = 205.4665
Attribute: AI%

Normal Distribution. Mean = 0.5243 StdDev = 0.3715

Attribute: TOTAL BOOKINGS

Normal Distribution. Mean = 13.2615 StdDev = 13.3537

Cluster: 1 Prior probability: 0.3793

Attribute: Booking Source

Discrete Estimator. Counts = 2 3 3 2 2 2 3 3 2 1 2 5 3 2 (Total = 35)

Attribute: Country

Discrete Estimator. Counts = 3 3 3 3 4 4 4 5 (Total = 29)

Attribute: Avarage pax/room

Normal Distribution. Mean = 2.3627 StdDev = 0.3152

Attribute: TO/ OTA

Discrete Estimator. Counts = 203 (Total = 23)

Attribute: ADR

Normal Distribution. Mean = 86.5352 StdDev = 31.1497

Attribute: MONTH

Discrete Estimator. Counts = $6 \ 14 \ 2 \ 3$ (Total = 25)

Attribute: TOTAL PAX Nights

Normal Distribution. Mean = 352.6667 StdDev = 492.0075

Attribute: Total Room Nights

Normal Distribution. Mean = 135.9048 StdDev = 162.215

Attribute: BB

Normal Distribution. Mean = 239.9524 StdDev = 406.2404

Attribute: BB%

Normal Distribution. Mean = 0.5315 StdDev = 0.3923

Attribute: HB

Normal Distribution. Mean = 74.758 StdDev = 126.5836

Attribute: HB%

Normal Distribution. Mean = 0.2935 StdDev = 0.3737

Attribute: AI

Normal Distribution. Mean = 39.3333 StdDev = 69.5792

Attribute: AI%

Normal Distribution. Mean = 0.1664 StdDev = 0.2042

Attribute: TOTAL BOOKINGS

Normal Distribution. Mean = 18 StdDev = 24.702

Farthest First with 3 Clusters/Creta Palm 2020

Cluster centroids:

```
Cluster 0:

TUI Deutchland Germany 2.28 TO 117.18 AUGUST 2020 194.0 85.0 0.0

0.0 148.0 0.76 46.0 0.23 9.0

Cluster 1:

BOOKING.COM Vary 3.11 OTA 123.27 AUGUST 2020 2155.0 691.0 1652.0

0.76 503.0 0.23 10.0 0.004 109.0

Cluster 2:

EXPEDIA Vary 3.0 OTA 59.71 OCTOBER 2020 9.0 3.0 9.0 1.0 0.0 0.0

0.0 0.0 1.0
```

=== Model and evaluation on training set ===

Clustered Instances

```
      0
      38 ( 68%)

      1
      3 ( 5%)

      2
      15 ( 27%)
```

Farthest First with 4 Clusters/Creta Palm 2020

Cluster centroids:

```
Cluster 0:
TUI Deutchland Germany 2.28 TO 117.18 AUGUST 2020 194.0 85.0 0.0
0.0 148.0 0.76 46.0 0.23 9.0
```

Cluster 1: BOOKING.COM Vary 3.11 OTA 123.27 AUGUST 2020 2155.0 691.0 1652.0 0.76 503.0 0.23 10.0 0.004 109.0 Cluster 2: EXPEDIA Vary 3.0 OTA 59.71 OCTOBER 2020 9.0 3.0 9.0 1.0 0.0 0.0 0.0 0.0 1.0 Cluster 3: BRAVO TOURS Denmark 2.41 TO 100.28 JULY 2020 895.0 370.0 0.0 0.0 0.0 0.0 895.0 1.0 42.0 === Model and evaluation on training set === Clustered Instances 24 (43%) 0 3 (5응) 15 (27응) 1 2 3 14 (25%)

Farthest First with 5 Clusters/Creta Palm 2020

Cluster centroids:

Cluster 0: TUI Deutchland Germany 2.28 TO 117.18 AUGUST 2020 194.0 85.0 0.0 0.0 148.0 0.76 46.0 0.23 9.0

Cluster 1: BOOKING.COM Vary 3.11 OTA 123.27 AUGUST 2020 2155.0 691.0 1652.0 0.76 503.0 0.23 10.0 0.004 109.0

Cluster 2: EXPEDIA Vary 3.0 OTA 59.71 OCTOBER 2020 9.0 3.0 9.0 1.0 0.0 0.0 0.0 0.0 1.0

Cluster 3: BRAVO TOURS Denmark 2.41 TO 100.28 JULY 2020 895.0 370.0 0.0 0.0 0.0 0.0 895.0 1.0 42.0

Cluster 4: ITAKA Poland 2.91 TO 108.52 AUGUST 2020 1083.0 372.0 1083.0 1.0 0.0 0.0 0.0 0.0 47.0

=== Model and evaluation on training set ===

Clustered Instances

0	18	(32응)
1	3	(5응)
2	13	(23%)
3	14	(25%)
4	8	(14%)

Canopy Clusterer/Creta Palm 2020

Number of canopies (cluster centers) found: 14

<u>Cluster 0:</u> ITAKA, Poland, 2.5375, TO, 97.0825, 'JULY2020', 427, 180.5, 0, 0, 0, 0, 427, 1, 20.25, {4} <0,3,4,5,10,12,13>

<u>Cluster 1:</u> Jet2Holidays, UK, 2.208163, TO, 70.611164, 'SEPTEMBER2020', 197.037736, 86.053908, 139.88, 0.66034, 5.559767, 0.047755, 53.997143, 0.284313, 9.434066, {7} <1,2,3,7,9,11,13>

<u>Cluster 2:</u> 'ARHUS CHARTER', Denmark, 2.240714, TO, 29.713333, 'AUGUST2020', 108.877358, 49.396226, 69.553333, 0.45746, 12.972789, 0.111429, 76.993333, 0.42673, 7.173077, {6} <1,2,3,4,7,9,10,12,13>

<u>Cluster 3:</u> ITAKA, Poland, 2.09, TO, 77.645, 'OCTOBER2020', 73, 35, 67, 0.915, 19.459184, 0, 6, 0.08, 5, {2} <0,1,2,3,7,9,12>

<u>Cluster 4:</u> 'BRAVO TOURS', Denmark, 2.256667, TO, 84.39, 'OCTOBER2020', 152, 66.333333, 10.6666667, 0.05, 0, 0, 141.333333, 0.946667, 11.6666667, {3} <0,2,4,9,10>

<u>Cluster 5:</u> 'TUI Deutchland', Germany, 2.276667, TO, 106.02, 'JULY2020', 193, 82.6666667, 0, 0, 122, 0.726667, 71, 0.263333, 10,{3} <0,5,6,10,13>

<u>Cluster 6:</u> 'BLUEAEGEAN', Romania, 2.372857, TO, 59.97, 'JULY2020', 74, 30.666667, 0, 0.145397, 67, 0.679048, 7, 0.170032, 4.333333, {3} <5,6,9,13>

<u>Cluster 7:</u>'TUINL', Nederlands, 2.195714, TO, 74.382, 'AUGUST 2020', 203.4, 94.4, 112.4, 0.615238, 3.6, 0.039429, 87.4, 0.336019, 9.2, {5} <1,2,3,7,9,12,13>

<u>Cluster 8:</u> EXPEDIA, Vary, 2.48, OTA, 87.92, 'JULY2020', 670.5, 264, 438.5, 0.685, 215, 0.285, 7, 0.005, 42, {2} <8,11,13>

<u>Cluster 9:</u> AURINKOMATKAT, Finland, 2.334857, TO, 33.50763, 'OCTOBER2020', 115.65283, 49.075472, 62.832, 0.458952, 18.183673, 0.165714, 37.996, 0.366076, 9.415385,{5} <1,2,3,4,6,7,9,13>

<u>Cluster 10:</u> 'BRAVOTOURS', Denmark, 2.32, TO, 104.55, 'JULY2020', 549, 230.5, 0, 0, 0, 0, 549, 1, 28,{2} <0,2,4,5,10,13>

<u>Cluster 11:</u> BOOKING.COM, Vary, 2.4375, OTA, 73.6225, 'SEPTEMBER2020', 145, 61, 108, 0.8025, 37, 0.19, 0, 0, 10.5, {4} <1,8,11,13>

<u>Cluster 12</u>: ITAKA, Poland, 2.655, TO, 107.115, 'AUGUST2020', 703.5, 253.5, 703.5, 1, 0, 0, 0, 0, 36, {2} <0,2,3,7,12>

<u>Cluster 13:</u> 'SELFBOOKINGS', Vary, 2.358571, TO, 0, 'JULY2020', 0, 0, 142.16, 0.43619, 38.918367, 0.167143, 105.98, 0.390095, 0,{2} <0,1,2,5,6,7,8,9,10,11,13>

Clustered Instances:

- 0 5 (9%)
- 1 4(7%)
- 2 4(7%)
- 3 2 (4%)
- 4 5 (9%)
- 5 3 (5%)
- 6 5 (9%)
- 7 6(11%)
- 8 5 (9%)
- 9 5 (9%)
- 10 2 (4%)
- 11 3 (5%)
- 12 2 (4%)
- 13 5 (9%)

APPENDIX 2: NN

Random Tree Algorithm/NN

Note: The number in the parenthesis (i.e. 35/0) denotes that the respective rule had been correctly applied in 35 cases.

It is of a major importance to cover my fixed costs after I receive my pension = No

- | Car superseding Ability = Yes : Yes (35/0)
- | Car superseding Ability = No

| | I would like doctor visits to be included to my private insurance = Yes

| | | I would choose a local public hospital for a mild health issue = No : Yes (65/0)

| | I would choose a local public hospital for a mild health issue = Yes

| | | I wish for private health services coupled with my insurance = Yes

| | | | I would like hospital care to be included to my private insurance = Yes

| | | | | | Quite satisfied from the public insurance health benefits = No : Yes (10/0)

| | | | Quite satisfied from the public insurance health benefits = Yes

| | | | | | It is of a major importance to cover my pleasure trips after I receive my pension = Yes : Yes (4/0)

| | | | | | It is of a major importance to cover my pleasure trips after I receive my pension = No

| | | | | | | I have managed for a lump sum or supplementary pension = Yes : No (1/0)

| | | | | | | I have managed for a lump sum or supplementary pension = No : Yes (1/0)

| | | | I would like hospital care to be included to my private insurance = No : Yes (7/0)

| | | I wish for private health services coupled with my insurance = No

| | | | It is of a major importance to cover my healthcare after I receive my pension = Yes : Yes (2/0)

| | | | | It is of a major importance to cover my healthcare after I receive my pension = No : No (1/0)

| | I would like doctor visits to be included to my private insurance = No

| | | It is of a major importance to cover my healthcare after I receive my pension = Yes

| | | Want a risk protection = Yes

| | | | I would choose a local public hospital for serious health issues = No

| | | | | Fixed Costs would not be covered in case of a possible loss of mine = Yes : Yes (19/0)

| | | | Fixed Costs would not be covered in case of a possible loss of mine = No

| | | | | | | Tax obligations would not be covered in case of a possible loss of mine = No : Yes (5/0)

| | | | | | | Tax obligations would not be covered in case of a possible loss of mine = Yes : No (1/0)

| | | | | I would choose a local public hospital for serious health issues = Yes : No (1/0)

| | | Want a risk protection = No

| | | | Children Studies would not be covered in case of a possible loss of mine = No

| | | | Have never had Insurance = Yes

| | | | | | | | I will get a satisfying pension = No : Yes (2/0)

| | | | | | | | I will get a satisfying pension = Yes : No (1/0)

| | | | | | Have never had Insurance = No : Yes (3/0)

| | | | Children Studies would not be covered in case of a possible loss of mine = Yes : No (2/0)

| | It is of a major importance to cover my healthcare after I receive my pension = No : Yes (15/0)

| | I would like doctor visits to be included to my private insurance = Yes : Yes (5/0)

It is of a major importance to cover my fixed costs after I receive my pension = Yes

- | I would choose a local public hospital for serious health issues = No : Yes (1/0)
- | I would choose a local public hospital for serious health issues = Yes : No (1/0)

#inst	actual	predicted	error
11	1:Yes	1:Yes	1
12	1:Yes	1:Yes	1
13	1:Yes	1:Yes	1
14	1:Yes	1:Yes	1
15	1:Yes	1:Yes	1
16	1:Yes	1:Yes	1
17	1:Yes	1:Yes	1
18	1:Yes	1:Yes	1
19	1:Yes	1:Yes	1
20	1:Yes	1:Yes	1
21	1:Yes	1:Yes	1
22	1:Yes	1:Yes	1
23	1:Yes	1:Yes	1
24	1:Yes	1:Yes	1
25	1:Yes	1:Yes	1
26	1:Yes	1:Yes	1
27	1:Yes	1:Yes	1
28	1:Yes	1:Yes	1
29	1:Yes	1:Yes	1
30	1:Yes	1:Yes	1
31	1:Yes	1:Yes	1
32	1:Yes	1:Yes	1
33	1:Yes	1:Yes	1
34	1:Yes	1:Yes	1
35	1:Yes	1:Yes	1
36	1:Yes	1:Yes	1
37	1:Yes	1:Yes	1
38	1:Yes	1:Yes	1
39	1:Yes	1:Yes	1
40	1:Yes	1:Yes	1
41	1:Yes	1:Yes	1
42	1:Yes	1:Yes	1
43	1:Yes	1:Yes	1
44	1:Yes	1:Yes	1
45	1:Yes	1:Yes	1
46	1:Yes	1:Yes	1
47	1:Yes	1:Yes	1
48	1:Yes	1:Yes	1
49	1:Yes	1:Yes	1
50	1:Yes	1:Yes	1
51	1:Yes	1:Yes	1
52	1:Yes	1:Yes	1
53	1:Yes	1:Yes	1
54	1:Yes	1:Yes	1
55	1:Yes	1:Yes	1
56	1:Yes	1:Yes	1
50	1.108	1.105	1

Random Tree Predictions/NN

57	1:Yes	1:Yes	1
58	1:Yes	1:Yes	1
59	1:Yes	1:Yes	1
60	1:Yes	1:Yes	1
61	1:Yes	1:Yes	1
62	1:Yes	1:Yes	1
63	1:Yes	1:Yes	1
64	1:Yes	1:Yes	1
65	1:Yes	1:Yes	1
66	1:Yes	1:Yes	1
67	1:Yes	1:Yes	1
68	1:Yes	1:Yes	1
69	1:Yes	1:Yes	1
70	1:Yes	1:Yes	1
71	1:Yes	1:Yes	1
72	1:Yes	1:Yes	1
73	1:Yes	1:Yes	1
74	1:Yes	1:Yes	1
75	1:Yes	1:Yes	1
76	1:Yes	1:Yes	1
77	1:Yes	1:Yes	1
78	1:Yes	1:Yes	1
79	1:Yes	1:Yes	1
80	1:Yes	1:Yes	1
81	1:Yes	1:Yes	1
82	1:Yes	1:Yes	1
83	1:Yes	1:Yes	1
84	1:Yes	1:Yes	1
85	1:Yes	1:Yes	1
86	1:Yes	1:Yes	1
87	1:Yes	1:Yes	1
88	1:Yes	1:Yes	1
89	1:Yes	1:Yes	1
90	1:Yes	1:Yes	1
91	1:Yes	1:Yes	1
92	1:Yes	1:Yes	1
93	1:Yes	1:Yes	1
94	1:Yes	1:Yes	1
95	1:Yes	1:Yes	1
96	1:Yes	1:Yes	1
97	1:Yes	1:Yes	1
98	1:Yes	1:Yes	1
99	1:Yes	1:Yes	1
100	1:Yes	1:Yes	1
100	1:Yes	1:Yes	1
101	1:Yes	1:Yes	1
102	1:Yes	1:Yes	1
103	1:Yes	1:Yes	1
104	1.105	1.105	1

105	1:Yes	1:Yes	1
106	1:Yes	1:Yes	1
107	1:Yes	1:Yes	1
108	1:Yes	1:Yes	1
109	1:Yes	1:Yes	1
110	1:Yes	1:Yes	1
111	1:Yes	1:Yes	1
112	1:Yes	1:Yes	1
113	1:Yes	1:Yes	1
114	1:Yes	1:Yes	1
115	1:Yes	1:Yes	1
116	1:Yes	1:Yes	1
117	1:Yes	1:Yes	1
118	1:Yes	1:Yes	1
119	1:Yes	1:Yes	1
120	1:Yes	1:Yes	1
121	1:Yes	1:Yes	1
122	1:Yes	1:Yes	1
123	1:Yes	1:Yes	1
124	1:Yes	1:Yes	1
125	1:Yes	1:Yes	1
126	1:Yes	1:Yes	1
127	1:Yes	1:Yes	1
128	1:Yes	1:Yes	1
129	1:Yes	1:Yes	1
130	1:Yes	1:Yes	1
131	1:Yes	1:Yes	1
132	1:Yes	1:Yes	1
133	1:Yes	1:Yes	1
134	1:Yes	1:Yes	1
135	1:Yes	1:Yes	1
136	1:Yes	1:Yes	1
137	1:Yes	1:Yes	1
138	1:Yes	1:Yes	1
139	1:Yes	1:Yes	1
140	1:Yes	1:Yes	1
141	1:Yes	1:Yes	1
142	1:Yes	1:Yes	1
143	1:Yes	1:Yes	1
144	1:Yes	1:Yes	1
145	1:Yes	1:Yes	1
146	1:Yes	1:Yes	1
147	1:Yes	1:Yes	1
148	1:Yes	1:Yes	1
149	1:Yes	1:Yes	1
150	1:Yes	1:Yes	1
150	1:Yes	1:Yes	1
151	1:Yes	1:Yes	1
102	1.105	1.105	*

153	1:Yes	1:Yes	1
154	1:Yes	1:Yes	1
155	1:Yes	1:Yes	1
156	1:Yes	1:Yes	1
157	1:Yes	1:Yes	1
158	1:Yes	1:Yes	1
159	1:Yes	1:Yes	1
160	1:Yes	1:Yes	1
161	1:Yes	1:Yes	1
162	2:No	2:No	1
163	1:Yes	1:Yes	1
164	1:Yes	1:Yes	1
165	1:Yes	1:Yes	1
166	1:Yes	1:Yes	1
167	1:Yes	1:Yes	1
168	2:No	2:No	1
169	2:No	2:No	1
170	1:Yes	1:Yes	1
171	2:No	2:No	1
172	1:Yes	1:Yes	1
173	1:Yes	1:Yes	1
174	2:No	2:No	1
175	1:Yes	1:Yes	1
176	1:Yes	1:Yes	1
177	1:Yes	1:Yes	1
178	2:No	2:No	1
179	2:No	2:No	1
180	1:Yes	1:Yes	1
181	2:No	2:No	1
182	1:Yes	1:Yes	1

Lazy IBK Predictions/NN

#inst	actual	predicted	error
11	1:Yes	1:Yes	0.995
12	1:Yes	1:Yes	0.995
13	1:Yes	1:Yes	0.995
14	1:Yes	1:Yes	0.995
15	1:Yes	1:Yes	0.995
16	1:Yes	1:Yes	0.995
17	1:Yes	1:Yes	0.995
18	1:Yes	1:Yes	0.995
19	1:Yes	1:Yes	0.995
20	1:Yes	1:Yes	0.995
21	1:Yes	1:Yes	0.995
22	1:Yes	1:Yes	0.995

23	1:Yes	1:Yes	0.995
24	1:Yes	1:Yes	0.995
25	1:Yes	1:Yes	0.995
26	1:Yes	1:Yes	0.995
27	1:Yes	1:Yes	0.995
28	1:Yes	1:Yes	0.995
29	1:Yes	1:Yes	0.995
30	1:Yes	1:Yes	0.995
31	1:Yes	1:Yes	0.995
32	1:Yes	1:Yes	0.995
33	1:Yes	1:Yes	0.995
34	1:Yes	1:Yes	0.995
35	1:Yes	1:Yes	0.995
36	1:Yes	1:Yes	0.995
37	1:Yes	1:Yes	0.995
38	1:Yes	1:Yes	0.995
39	1:Yes	1:Yes	0.995
40	1:Yes	1:Yes	0.995
41	1:Yes	1:Yes	0.995
42	1:Yes	1:Yes	0.995
43	1:Yes	1:Yes	0.995
44	1:Yes	1:Yes	0.995
45	1:Yes	1:Yes	0.995
46	1:Yes	1:Yes	0.995
47	1:Yes	1:Yes	0.995
48	1:Yes	1:Yes	0.995
49	1:Yes	1:Yes	0.995
50	1:Yes	1:Yes	0.995
51	1:Yes	1:Yes	0.995
52	1:Yes	1:Yes	0.995
53	1:Yes	1:Yes	0.995
54	1:Yes	1:Yes	0.995
55	1:Yes	1:Yes	0.995
56	1:Yes	1:Yes	0.995
57	1:Yes	1:Yes	0.995
58	1:Yes	1:Yes	0.995
59	1:Yes	1:Yes	0.995
60	1:Yes	1:Yes	0.995
61	1:Yes	1:Yes	0.995
62	1:Yes	1:Yes	0.995
63	1:Yes	1:Yes	0.995
64	1:Yes	1:Yes	0.995
65	1:Yes	1:Yes	0.995
66	1:Yes	1:Yes	0.995
67	1:Yes	1:Yes	0.995
68	1:Yes	1:Yes	0.995
69	1:Yes	1:Yes	0.995
70	1:Yes	1:Yes	0.995

71	1	1	0.005
71	1:Yes	1:Yes	0.995
72	1:Yes	1:Yes	0.995
73	1:Yes	1:Yes	0.995
74	1:Yes	1:Yes	0.995
75	1:Yes	1:Yes	0.995
76	1:Yes	1:Yes	0.995
77	1:Yes	1:Yes	0.995
78	1:Yes	1:Yes	0.995
79	1:Yes	1:Yes	0.995
80	1:Yes	1:Yes	0.995
81	1:Yes	1:Yes	0.995
82	1:Yes	1:Yes	0.995
83	1:Yes	1:Yes	0.995
84	1:Yes	1:Yes	0.995
85	1:Yes	1:Yes	0.995
86	1:Yes	1:Yes	0.995
87	1:Yes	1:Yes	0.995
88	1:Yes	1:Yes	0.995
89	1:Yes	1:Yes	0.995
90	1:Yes	1:Yes	0.995
91	1:Yes	1:Yes	0.995
92	1:Yes	1:Yes	0.995
93	1:Yes	1:Yes	0.995
94	1:Yes	1:Yes	0.995
95	1:Yes	1:Yes	0.995
96	1:Yes	1:Yes	0.995
97	1:Yes	1:Yes	0.995
98	1:Yes	1:Yes	0.995
99	1:Yes	1:Yes	0.995
100	1:Yes	1:Yes	0.995
101	1:Yes	1:Yes	0.995
102	1:Yes	1:Yes	0.995
103	1:Yes	1:Yes	0.995
104	1:Yes	1:Yes	0.995
101	1:Yes	1:Yes	0.995
105	1:Yes	1:Yes	0.995
107	1:Yes	1:Yes	0.995
107	1:Yes	1:Yes	0.995
109	1:Yes	1:Yes	0.995
110	1:Yes	1:Yes	0.995
110	1:Yes	1:Yes	0.995
111	1:Yes	1:Yes	0.995
112	1:Yes	1:Yes	0.995
113	1:Yes	1:Yes	0.995
114	1:Yes	1:Yes	0.995
115	1:Yes	1:Yes	0.995
117 118	1:Yes 1:Yes	1:Yes	0.995
110	1.1 es	1:Yes	0.993

110	4.77	4 37	0.005
119	1:Yes	1:Yes	0.995
120	1:Yes	1:Yes	0.995
121	1:Yes	1:Yes	0.995
122	1:Yes	1:Yes	0.995
123	1:Yes	1:Yes	0.995
124	1:Yes	1:Yes	0.995
125	1:Yes	1:Yes	0.995
126	1:Yes	1:Yes	0.995
127	1:Yes	1:Yes	0.995
128	1:Yes	1:Yes	0.995
129	1:Yes	1:Yes	0.995
130	1:Yes	1:Yes	0.995
131	1:Yes	1:Yes	0.995
132	1:Yes	1:Yes	0.995
133	1:Yes	1:Yes	0.995
134	1:Yes	1:Yes	0.995
135	1:Yes	1:Yes	0.995
136	1:Yes	1:Yes	0.995
137	1:Yes	1:Yes	0.995
138	1:Yes	1:Yes	0.995
139	1:Yes	1:Yes	0.995
140	1:Yes	1:Yes	0.995
141	1:Yes	1:Yes	0.995
142	1:Yes	1:Yes	0.995
143	1:Yes	1:Yes	0.995
144	1:Yes	1:Yes	0.995
145	1:Yes	1:Yes	0.995
146	1:Yes	1:Yes	0.995
147	1:Yes	1:Yes	0.995
148	1:Yes	1:Yes	0.995
149	1:Yes	1:Yes	0.995
150	1:Yes	1:Yes	0.995
151	1:Yes	1:Yes	0.995
152	1:Yes	1:Yes	0.995
153	1:Yes	1:Yes	0.995
154	1:Yes	1:Yes	0.995
155	1:Yes	1:Yes	0.995
156	1:Yes	1:Yes	0.995
150	1:Yes	1:Yes	0.995
158	1:Yes	1:Yes	0.995
150	1:Yes	1:Yes	0.995
160	1:Yes	1:Yes	0.995
160	1:Yes	1:Yes	0.995
162	2:No	2:No	0.995
162	1:Yes	1:Yes	0.995
165	1:Yes	1:Yes	0.995
165	1:Yes	1:Yes	0.995
165	1:Yes	1:Yes	0.995
100	1.105	1.100	0.771

Business Decision Analysis Based on Data Analytics | Antonia Trikounaki

167	1:Yes	1:Yes	0.997
168	2:No	2:No	0.995
169	2:No	2:No	0.995
170	1:Yes	1:Yes	0.995
171	2:No	2:No	0.995
172	1:Yes	1:Yes	0.995
173	1:Yes	1:Yes	0.995
174	2:No	2:No	0.995
175	1:Yes	1:Yes	0.995
176	1:Yes	1:Yes	0.995
177	1:Yes	1:Yes	0.995
178	2:No	2:No	0.995
179	2:No	2:No	0.995
180	1:Yes	1:Yes	0.995
181	2:No	2:No	0.995
182	1:Yes	1:Yes	0.995

Bayes Net Classifier Model/NN

Bayes Network Classifier (full training set)

not using ADTree

#attributes=65 #classindex=64

Network structure (nodes followed by parents)

Car superseding Ability(2): I am interested in estimating my retirement

Motorbike superseding Ability(2): I am interested in estimating my retirement

House superseding Ability(2): I am interested in estimating my retirement

Business superseding Ability(2): I am interested in estimating my retirement

No superseding ability(2): I am interested in estimating my retirement

Have or Had Business Insurance(2): I am interested in estimating my retirement

Have or Had Civil Liability Insurance(2): I am interested in estimating my retirement

Have or Had Vessel Insurance(2): I am interested in estimating my retirement

Have or Had Health Insurance(2): I am interested in estimating my retirement

Have or Had Everyday needs Insurance(2): I am interested in estimating my retirement

Have or Had Business House Insurance(2): I am interested in estimating my retirement

Have or Had Family Insurance(2): I am interested in estimating my retirement

Have or Had Cash Insurance(2): I am interested in estimating my retirement

Have or Had Child Insurance(2): I am interested in estimating my retirement

Have or Had Car Insurance(1): I am interested in estimating my retirement

Have or Had Motorbike Insurance(2): I am interested in estimating my retirement

Have never had Insurance(2): I am interested in estimating my retirement

Fixed Costs would not be covered in case of a possible loss of mine(2): I am interested in estimating my retirement

Loans would not be covered in case of a possible loss of mine(2): I am interested in estimating my retirement

Children Studies would not be covered in case of a possible loss of mine(2): I am interested in estimating my retirement

Tax obligations would not be covered in case of a possible loss of mine(2): I am interested in estimating my retirement

No needs to leave behind in case of a possible loss of mine(2): I am interested in estimating my retirement

Happiness would not be covered in case of a possible loss of mine(2): I am interested in estimating my retirement

Purchases in non basic necessities would not be covered in case of a possible loss of mine(2): I am interested in estimating my retirement

Want a risk protection(2): I am interested in estimating my retirement

A satisfying amount of money for the support of my beloved ones(1): I am interested in estimating my retirement

Not at all satisfied from the public insurance health benefits(2): I am interested in estimating my retirement

Kind of satisfied from the public insurance health benefits(2): I am interested in estimating my retirement

Quite satisfied from the public insurance health benefits(2): I am interested in estimating my retirement

Absolutely satisfied from the public insurance health benefits(2): I am interested in estimating my retirement

I would choose a Public Hospital in Athens or Thessaloniki for a mild health issue(2): I am interested in estimating my retirement

I would choose a big private hospital in Athens or Thessaloniki for a mild health issue(2): I am interested in estimating my retirement

I would choose a local private hospital for a mild health issue(2): I am interested in estimating my retirement

I would choose a local public hospital for a mild health issue(2): I am interested in estimating my retirement

I would choose a public hospital in Athens or Thessaloniki for serious health issues(2): I am interested in estimating my retirement

I would choose a big private hospital of Athens or Thessaloniki for serious health issues(2): I am interested in estimating my retirement

I would choose a local private hospital for serious health issues(2): I am interested in estimating my retirement

I would choose a local public hospital for serious health issues(2): I am interested in estimating my retirement

I would choose a foreign hospital for serious health issues(2): I am interested in estimating my retirement

I wish for private health services coupled with my insurance(2): I am interested in estimating my retirement

I would like diagnostic tests to be included to my private insurance(2): I am interested in estimating my retirement

I would like doctor visits to be included to my private insurance(3): I am interested in estimating my retirement

I would like hospital care to be included to my private insurance(2): I am interested in estimating my retirement

I would like Annual check up to be included to my private insurance(2): I am interested in estimating my retirement

I would like going abroad to be included to my private insurance(2): I am interested in estimating my retirement

I would like ambulance to be included to my private insurance (2): I am interested in estimating my retirement

Team insurance (2): I am interested in estimating my retirement

I will not get a pension(2): I am interested in estimating my retirement

I will get a small pension(2): I am interested in estimating my retirement

I will get a satisfying pension(2): I am interested in estimating my retirement

I have managed for a lump sum or supplementary pension(2): I am interested in estimating my retirement

I have managed for a lump sum or supplementary pension through Bank Savings(2): I am interested in estimating my retirement

I have managed for a lump sum or supplementary pension through Pension scheme purchase(2): I am interested in estimating my retirement

I have managed for a lump sum or supplementary pension through Life insurance program and savings plan(2): I am interested in estimating my retirement

I have managed for a lump sum or supplementary pension through Real estate purchase for rent or exploitation(2): I am interested in estimating my retirement

I am about to take immediate care of a lump sum or supplementary pension(2): I am interested in estimating my retirement

I have managed for a lump sum or supplementary pension through Pension scheme or savings plan purchase (2): I am interested in estimating my retirement

Even if I wanted it I cannot take care of a lump sum or supplementary pension(2): I am interested in estimating my retirement

It is of a major importance to support my children and grandchildren after I receive my pension(2): I am interested in estimating my retirement

It is of a major importance to cover my healthcare after I receive my pension(2): I am interested in estimating my retirement

It is of a major importance to cover my pleasure trips after I receive my pension(2): I am interested in estimating my retirement

It is of a major importance to cover my house purchases after I receive my pension(2): I am interested in estimating my retirement

It is of a major importance to cover my fixed costs after I receive my pension(2): I am interested in estimating my retirement

It is of a major importance to cover my everyday needs after I receive my pension(2): I am interested in estimating my retirement

I am interested in estimating my retirement(2):

LogScore Bayes: -4584.11

LogScore BDeu: -4694.39

LogScore MDL: -4813.55

LogScore ENTROPY: -4483.1

LogScore AIC: -4610.1

Bayes Net Predictions/NN

#inst	actual	predicted	error
11	1:Yes	1:Yes	1
12	1:Yes	1:Yes	1
13	1:Yes	1:Yes	0.999
14	1:Yes	1:Yes	1
15	1:Yes	1:Yes	0.999
16	1:Yes	1:Yes	1
17	1:Yes	1:Yes	0.996
18	1:Yes	1:Yes	0.999
19	1:Yes	1:Yes	0.987
20	1:Yes	1:Yes	0.999
21	1:Yes	1:Yes	0.934
22	1:Yes	1:Yes	1
23	1:Yes	1:Yes	0.991

24	1:Yes	1:Yes	0.999
25	1:Yes	1:Yes	1
26	1:Yes	1:Yes	1
27	1:Yes	1:Yes	0.962
28	1:Yes	1:Yes	0.853
29	1:Yes	1:Yes	1
30	1:Yes	1:Yes	0.932
31	1:Yes	1:Yes	1
32	1:Yes	1:Yes	1
33	1:Yes	1:Yes	1
34	1:Yes	1:Yes	1
35	1:Yes	1:Yes	1
36	1:Yes	1:Yes	1
37	1:Yes	1:Yes	1
38	1:Yes	1:Yes	1
39	1:Yes	1:Yes	1
40	1:Yes	1:Yes	1
41	1:Yes	1:Yes	1
42	1:Yes	1:Yes	0.997
43	1:Yes	1:Yes	1
44	1:Yes	1:Yes	1
45	1:Yes	1:Yes	0.939
46	1:Yes	1:Yes	0.653
47	1:Yes	1:Yes	1
48	1:Yes	1:Yes	1
49	1:Yes	1:Yes	1
50	1:Yes	1:Yes	1
51	1:Yes	1:Yes	0.999
52	1:Yes	1:Yes	1
53	1:Yes	1:Yes	1
54	1:Yes	1:Yes	0.999
55	1:Yes	1:Yes	1
56	1:Yes	1:Yes	1
57	1:Yes	1:Yes	0.989
58	1:Yes	1:Yes	0.999
59	1:Yes	1:Yes	1
60	1:Yes	1:Yes	0.999
61	1:Yes	1:Yes	1
62	1:Yes	1:Yes	1
63	1:Yes	1:Yes	1
64	1:Yes	1:Yes	0.999
65	1:Yes	1:Yes	1
66	1:Yes	1:Yes	1
67	1:Yes	1:Yes	1
68	1:Yes	1:Yes	1
69	1:Yes	1:Yes	1
70	1:Yes	1:Yes	1
71	1:Yes	1:Yes	0.998

721:Yes1:Yes1731:Yes1:Yes1741:Yes1:Yes1751:Yes2:No0.51761:Yes1:Yes1771:Yes1:Yes1781:Yes1:Yes0.91791:Yes1:Yes0.98801:Yes1:Yes0.99811:Yes1:Yes1821:Yes1:Yes0.97	6
741:Yes1:Yes1751:Yes2:No0.51761:Yes1:Yes1771:Yes1:Yes1781:Yes1:Yes0.91791:Yes1:Yes0.98801:Yes1:Yes0.99811:Yes1:Yes1821:Yes1:Yes0.97	б
751:Yes2:No0.51761:Yes1:Yes1771:Yes1:Yes1781:Yes1:Yes0.91791:Yes1:Yes0.98801:Yes1:Yes0.99811:Yes1:Yes1821:Yes1:Yes0.97	б
761:Yes1:Yes1771:Yes1:Yes1781:Yes1:Yes0.91791:Yes1:Yes0.98801:Yes1:Yes0.99811:Yes1:Yes1821:Yes1:Yes0.97	б
771:Yes1:Yes1781:Yes1:Yes0.91791:Yes1:Yes0.98801:Yes1:Yes0.99811:Yes1:Yes1821:Yes1:Yes0.97	
781:Yes1:Yes0.91791:Yes1:Yes0.98801:Yes1:Yes0.99811:Yes1:Yes1821:Yes1:Yes0.97	
791:Yes1:Yes0.98801:Yes1:Yes0.99811:Yes1:Yes1821:Yes1:Yes0.97	
80 1:Yes 1:Yes 0.99 81 1:Yes 1:Yes 1 82 1:Yes 1:Yes 0.97	6
81 1:Yes 1:Yes 1 82 1:Yes 1:Yes 0.97	4
82 1:Yes 1:Yes 0.97	8
	3
83 1:Yes 1:Yes 1	
84 1:Yes 1:Yes 1	
85 1:Yes 1:Yes 1	
86 1:Yes 1:Yes 1	
87 1:Yes 1:Yes 1	
88 1:Yes 1:Yes 0.99	9
89 1:Yes 1:Yes 1	
90 1:Yes 1:Yes 1	
91 1:Yes 1:Yes 0.98	4
92 1:Yes 1:Yes 0.81	2
93 1:Yes 1:Yes 1	
94 1:Yes 1:Yes 0.96	9
95 1:Yes 1:Yes 1	
96 1:Yes 1:Yes 1	
97 1:Yes 1:Yes 1	
98 1:Yes 1:Yes 0.98	3
99 1:Yes 1:Yes 0.98	3
100 1:Yes 1:Yes 0.93	8
101 1:Yes 1:Yes 1	
102 1:Yes 1:Yes 0.99	9
103 1:Yes 1:Yes 1	
104 1:Yes 1:Yes 0.99)
105 1:Yes 1:Yes 1	
106 1:Yes 1:Yes 1	
107 1:Yes 1:Yes 1	
108 1:Yes 1:Yes 1	
109 1:Yes 1:Yes 1	
110 1:Yes 1:Yes 1	
111 1:Yes 2:No 0.56	7
112 1:Yes 1:Yes 0.85	
113 1:Yes 1:Yes 1	
114 1:Yes 1:Yes 0.99	5
115 1:Yes 1:Yes 1	
116 1:Yes 1:Yes 1	
117 1:Yes 1:Yes 1	
118 1:Yes 1:Yes 1	
119 1:Yes 1:Yes 1	

120	1:Yes	1:Yes	0.995
121	1:Yes	1:Yes	1
122	1:Yes	1:Yes	1
123	1:Yes	1:Yes	0.939
124	1:Yes	1:Yes	0.994
125	1:Yes	1:Yes	0.998
126	1:Yes	1:Yes	0.722
127	1:Yes	1:Yes	1
128	1:Yes	1:Yes	0.99
129	1:Yes	1:Yes	1
130	1:Yes	1:Yes	0.963
131	1:Yes	1:Yes	0.997
132	1:Yes	1:Yes	0.884
133	1:Yes	1:Yes	1
134	1:Yes	1:Yes	1
135	1:Yes	2:No	0.724
136	1:Yes	1:Yes	0.999
137	1:Yes	1:Yes	1
138	1:Yes	1:Yes	0.988
139	1:Yes	1:Yes	0.996
140	1:Yes	1:Yes	0.999
141	1:Yes	1:Yes	1
142	1:Yes	1:Yes	0.999
143	1:Yes	1:Yes	0.993
144	1:Yes	1:Yes	1
145	1:Yes	1:Yes	1
146	1:Yes	1:Yes	1
147	1:Yes	1:Yes	1
148	1:Yes	1:Yes	1
149	1:Yes	1:Yes	0.924
150	1:Yes	1:Yes	0.878
151	1:Yes	1:Yes	1
152	1:Yes	1:Yes	1
153	1:Yes	1:Yes	0.995
154	1:Yes	1:Yes	1
155	1:Yes	1:Yes	1
156	1:Yes	1:Yes	0.857
157	1:Yes	1:Yes	1
158	1:Yes	1:Yes	0.987
159	1:Yes	1:Yes	0.999
160	1:Yes	1:Yes	1
161	1:Yes	1:Yes	1
162	2:No	1:Yes	0.601
163	1:Yes	1:Yes	0.893
164	1:Yes	1:Yes	0.998
165	1:Yes	1:Yes	0.999
166	1:Yes	1:Yes	1
167	1:Yes	1:Yes	1

Business Decision Analysis Based on Data Analytics | Antonia Trikounaki

1682:No2:No0.9821692:No2:No0.9991701:Yes1:Yes11712:No2:No11721:Yes1:Yes11731:Yes1:Yes0.9321742:No1:Yes0.9941751:Yes1:Yes11761:Yes1:Yes0.9961771:Yes2:No0.8451782:No2:No0.8641792:No1:Yes0.8311801:Yes2:No0.7541812:No1:Yes0.981				
1701:Yes1:Yes11712:No2:No11721:Yes1:Yes11731:Yes1:Yes0.9321742:No1:Yes0.9941751:Yes1:Yes11761:Yes1:Yes0.9961771:Yes2:No0.8451782:No1:Yes0.8311801:Yes2:No0.7541812:No1:Yes0.619	168	2:No	2:No	0.982
1712:No2:No11721:Yes1:Yes11731:Yes1:Yes0.9321742:No1:Yes0.9941751:Yes1:Yes11761:Yes1:Yes0.9961771:Yes2:No0.8451782:No1:Yes0.8311801:Yes2:No0.7541812:No1:Yes0.619	169	2:No	2:No	0.999
1721:Yes1:Yes11731:Yes1:Yes0.9321742:No1:Yes0.9941751:Yes1:Yes11761:Yes1:Yes0.9961771:Yes2:No0.8451782:No2:No0.8641792:No1:Yes0.8311801:Yes2:No0.7541812:No1:Yes0.619	170	1:Yes	1:Yes	1
1731:Yes1:Yes0.9321742:No1:Yes0.9941751:Yes1:Yes11761:Yes1:Yes0.9961771:Yes2:No0.8451782:No2:No0.8641792:No1:Yes0.8311801:Yes2:No0.7541812:No1:Yes0.619	171	2:No	2:No	1
1742:No1:Yes0.9941751:Yes1:Yes11761:Yes1:Yes0.9961771:Yes2:No0.8451782:No2:No0.8641792:No1:Yes0.8311801:Yes2:No0.7541812:No1:Yes0.619	172	1:Yes	1:Yes	1
1751:Yes1:Yes11761:Yes1:Yes0.9961771:Yes2:No0.8451782:No2:No0.8641792:No1:Yes0.8311801:Yes2:No0.7541812:No1:Yes0.619	173	1:Yes	1:Yes	0.932
1761:Yes1:Yes0.9961771:Yes2:No0.8451782:No2:No0.8641792:No1:Yes0.8311801:Yes2:No0.7541812:No1:Yes0.619	174	2:No	1:Yes	0.994
1771:Yes2:No0.8451782:No2:No0.8641792:No1:Yes0.8311801:Yes2:No0.7541812:No1:Yes0.619	175	1:Yes	1:Yes	1
1782:No2:No0.8641792:No1:Yes0.8311801:Yes2:No0.7541812:No1:Yes0.619	176	1:Yes	1:Yes	0.996
1792:No1:Yes0.8311801:Yes2:No0.7541812:No1:Yes0.619	177	1:Yes	2:No	0.845
1801:Yes2:No0.7541812:No1:Yes0.619	178	2:No	2:No	0.864
181 2:No 1:Yes 0.619	179	2:No	1:Yes	0.831
	180	1:Yes	2:No	0.754
182 1:Yes 1:Yes 0.981	181	2:No	1:Yes	0.619
	182	1:Yes	1:Yes	0.981

Naive Bayes Classifier Model/NN

=== Classifier model (full training set) ===

Naive Bayes Classifier		
	Class	
Attribute	Yes	No
	(0.95)	(0.05)
Car superseding Ability		
Yes	36.0	1.0
No	140.0	9.0
[total]	176.0	10.0
Motorbike superseding Ability		
No	150.0	8.0
Yes	26.0	2.0
[total]	176.0	10.0
House superseding Ability		
No	164.0	9.0

Yes	12.0	1.0
[total]	176.0	10.0
Business superseding Ability		
No	170.0	9.0
Yes	6.0	1.0
[total]	176.0	10.0
No superseding ability		
No	66.0	2.0
Yes	110.0	8.0
[total]	176.0	10.0
Have or Had Business Insurance		
No	148.0	9.0
Yes	28.0	1.0
[total]	176.0	10.0
Have or Had Civil Liability Insurance		
No	149.0	9.0
Yes	27.0	1.0
[total]	176.0	10.0
Have or Had Vessel Insurance		
No	168.0	9.0
Yes	8.0	1.0
[total]	176.0	10.0
Have or Had Health Insurance		
No	173.0	9.0
Yes	3.0	1.0
[total]	176.0	10.0

No	174.0	9.0
Yes	2.0	1.0
[total]	176.0	10.0
Have or Had Business House Insurance		
No	174.0	9.0
Yes	2.0	1.0
[total]	176.0	10.0
Have or Had Family Insurance		
No	174.0	9.0
Yes	2.0	1.0
[total]	176.0	10.0
Have or Had Cash Insurance		
No	174.0	9.0
Yes	2.0	1.0
[total]	176.0	10.0
Have or Had Child Insurance		
No	174.0	9.0
Yes	2.0	1.0
[total]	176.0	10.0
Have or Had Car Insurance		
No	175.0	9.0
[total]	175.0	9.0
Have or Had Motorbike Insurance		
No	174.0	9.0
Yes	2.0	1.0

Have or Had Everyday needs Insurance

[total]	176.0	10.0
Have never had Insurance		
Yes	104.0	7.0
No	72.0	3.0
[total]	176.0	10.0
Fixed Costs would not be covered in case of a possible loss of mine		
Yes	127.0	6.0
No	48.0	4.0
[total]	175.0	10.0
Loans would not be covered in case of a possible loss of mine		
No	123.0	6.0
Yes	52.0	4.0
[total]	175.0	10.0
Children Studies would not be covered in case of a possible loss of mine	<u>,</u>	
No	130.0	7.0
Yes	45.0	3.0
[total]	175.0	10.0
Tax obligations would not be covered in case of a possible loss of mine		
No	102.0	8.0
Yes	73.0	2.0
[total]	175.0	10.0
No needs to leave behind in case of a possible loss of mine		
No	173.0	9.0
Yes	2.0	1.0
[total]	175.0	10.0

Happiness would not be covered in case of a possible loss of mine

No	173.0	9.0
Yes	2.0	1.0
[total]	175.0	10.0
Purchases in non basic necessities would not be covered in case of	of a possible	loss of
mine		
No	173.0	9.0
Yes	2.0	1.0
[total]	175.0	10.0
Want a risk protection		
Yes	151.0	4.0
No	25.0	6.0
[total]	176.0	10.0
A satisfying amount of money for the support of my beloved ones		
mean	72.31	43.33
std. dev.	44.52	35.38
weight sum	151	3
precision	43.33	43.33
Not at all satisfied from the public insurance health benefits		
No	146.0	8.0
Yes	30.0	2.0
[total]	176.0	10.0
Kind of satisfied from the public insurance health benefits		
Yes	100.0	3.0
No	76.0	7.0
[total]	176.0	10.0
Quite estistiad from the public insurance health henefits		

Quite satisfied from the public insurance health benefits

No	132.0	4.0
Yes	44.0	6.0
[total]	176.0	10.0
Absolutely satisfied from the public insurance health benefits		
No	172.0	9.0
Yes	4.0	1.0
[total]	176.0	10.0
I would choose a Public Hospital in Athens or Thessaloniki for a mild h	ealth iss	ue
Yes	28.0	1.0
No	148.0	9.0
[total]	176.0	10.0
I would choose a big private hospital in Athens or Thessaloniki for a mi	ld health	ı issue
No	119.0	9.0
Yes	57.0	1.0
[total]	176.0	10.0
I would choose a local private hospital for a mild health issue		
No	129.0	7.0
Yes	47.0	3.0
[total]	176.0	10.0
I would choose a local public hospital for a mild health issue		
No	130.0	3.0
Yes	46.0	7.0
[total]	176.0	10.0
I would choose a public hospital in Athens or Thessaloniki for serious h	ealth iss	ues
No	141.0	7.0
Yes	35.0	3.0

[total]	176.0	10.0
I would choose a big private hospital of Athens or Thessaloniki for	serious	health
issues		
Yes	76.0	3.0
No	100.0	7.0
[total]	176.0	10.0
I would choose a local private hospital for serious health issues		
No	150.0	8.0
Yes	26.0	2.0
[total]	176.0	10.0
I would choose a local public hospital for serious health issues		
No	166.0	6.0
Yes	10.0	4.0
[total]	176.0	10.0
I would choose a foreign hospital for serious health issues		
No	144.0	9.0
Yes	32.0	1.0
[total]	176.0	10.0
I wish for private health services coupled with my insurance		
Yes	167.0	6.0
No	9.0	4.0
[total]	176.0	10.0
I would like diagnostic tests to be included to my private insurance		
Yes	104.0	6.0
No	72.0	4.0
[total]	176.0	10.0

I would like doctor visits to be included to my private insurance

Yes	113.0	3.0
No	58.0	7.0
Yes	6.0	1.0
[total]	177.0	11.0
I would like hospital care to be included to my private insurance		
Yes	124.0	6.0
No	52.0	4.0
[total]	176.0	10.0
I would like Annual check up to be included to my private insurance		
Yes	105.0	7.0
No	71.0	3.0
[total]	176.0	10.0
I would like going abroad to be included to my private insurance		
Yes	78.0	2.0
No	98.0	8.0
[total]	176.0	10.0
I would like ambulance to be included to my private insurance		
No	172.0	9.0
Yes	4.0	1.0
[total]	176.0	10.0
Team insurance		
No	130.0	7.0
Yes	46.0	3.0
[total]	176.0	10.0
I will not get a pension		

Yes	37.0	2.0
No	139.0	8.0
[total]	176.0	10.0
I will get a small pension		
No	67.0	4.0
Yes	109.0	6.0
[total]	176.0	10.0
I will get a satisfying pension		
No	145.0	7.0
Yes	31.0	3.0
[total]	176.0	10.0
I have managed for a lump sum or supplementary pension		
Yes	61.0	4.0
No	115.0	6.0
[total]	176.0	10.0
I have managed for a lump sum or supplementary pension through Bank	s Saving	S
Yes	43.0	4.0
No	61.0	3.0
[total]	104.0	7.0
I have managed for a lump sum or supplementary pension through Pepurchase	ension s	cheme
No	102.0	6.0
Yes	2.0	1.0
[total]	104.0	7.0
I have managed for a lump sum or supplementary pension through	Life ins	urance

program and savings plan

No	102.0	6.0

Yes	2.0	1.0
[total]	104.0	7.0
I have managed for a lump sum or supplementary pension throug purchase for rent or exploitation	h Real	estate
No	82.0	6.0
Yes	22.0	1.0
[total]	104.0	7.0
I am about to take immediate care of a lump sum or supplementary pens	ion	
No	73.0	4.0
Yes	31.0	3.0
[total]	104.0	7.0
I have managed for a lump sum or supplementary pension through Pens savings plan purchase	ion sche	eme or
No	80.0	5.0
Yes	24.0	2.0
[total]	104.0	7.0
Even if I wanted it I cannot take care of a lump sum or supplementary p	ension	
No	102.0	5.0
Yes	2.0	2.0
[total]	104.0	7.0
It is of a major importance to support my children and grandchildren my pension	after I 1	eceive
Yes	116.0	6.0
No	60.0	4.0
[total]	176.0	10.0
It is of a major importance to cover my healthcare after I receive my per	ision	
N/	105.0	7.0

Yes	135.0	7.0
Yes	135.0	7.0

No	41.0	3.0
[total]	176.0	10.0
It is of a major importance to cover my pleasure trips after I receive my	pension	
Yes	72.0	3.0
No	104.0	7.0
[total]	176.0	10.0
It is of a major importance to cover my house purchases after I receive n	ny pensi	on
No	161.0	9.0
Yes	15.0	1.0
[total]	176.0	10.0
It is of a major importance to cover my fixed costs after I receive my per	nsion	
No	174.0	8.0
Yes	2.0	2.0
[total]	176.0	10.0
It is of a major importance to cover my everyday needs after I receive m	y pensio	on
No	174.0	9.0
Yes	2.0	1.0
[total]	176.0	10.0

Naive Bayes Predictions/NN

#inst	actual	predicted	error
10	1:Yes	1:Yes	1
11	1:Yes	1:Yes	1
12	1:Yes	1:Yes	1
13	1:Yes	1:Yes	1
14	1:Yes	1:Yes	1
15	1:Yes	1:Yes	0.999
16	1:Yes	1:Yes	1
17	1:Yes	1:Yes	0.999
18	1:Yes	1:Yes	0.999
19	1:Yes	1:Yes	0.98

			-
20	1:Yes	1:Yes	1
21	1:Yes	1:Yes	0.979
22	1:Yes	1:Yes	1
23	1:Yes	1:Yes	0.999
24	1:Yes	1:Yes	1
25	1:Yes	1:Yes	1
26	1:Yes	1:Yes	1
27	1:Yes	1:Yes	0.984
28	1:Yes	1:Yes	0.918
29	1:Yes	1:Yes	1
30	1:Yes	1:Yes	0.981
31	1:Yes	1:Yes	1
32	1:Yes	1:Yes	1
33	1:Yes	1:Yes	1
34	1:Yes	1:Yes	1
35	1:Yes	1:Yes	1
36	1:Yes	1:Yes	1
37	1:Yes	1:Yes	1
38	1:Yes	1:Yes	1
39	1:Yes	1:Yes	1
40	1:Yes	1:Yes	1
41	1:Yes	1:Yes	1
42	1:Yes	1:Yes	0.995
43	1:Yes	1:Yes	1
44	1:Yes	1:Yes	0.999
45	1:Yes	1:Yes	0.991
46	1:Yes	1:Yes	0.732
40	1:Yes	1:Yes	1
48	1:Yes	1:Yes	1
49	1:Yes	1:Yes	1
50	1:Yes	1:Yes	1
51	1:Yes	1:Yes	1
52	1:Yes	1:Yes	1
53	1:Yes	1:Yes	0.998
54			1
	1:Yes	1:Yes	1
55	1:Yes	1:Yes	
56	1:Yes	1:Yes	1
57	1:Yes	1:Yes	0.986
58	1:Yes	1:Yes	0.999
59	1:Yes	1:Yes	1
60	1:Yes	1:Yes	1
61	1:Yes	1:Yes	1
62	1:Yes	1:Yes	0.999
63	1:Yes	1:Yes	1
64	1:Yes	1:Yes	1
65	1:Yes	1:Yes	1
66	1:Yes	1:Yes	1
67	1:Yes	1:Yes	0.999

68	1:Yes	1:Yes	1
69	1:Yes	1:Yes	1
70	1:Yes	1:Yes	1
71	1:Yes	1:Yes	1
72	1:Yes	1:Yes	1
73	1:Yes	1:Yes	1
74	1:Yes	1:Yes	1
75	1:Yes	1:Yes	0.551
76	1:Yes	1:Yes	1
77	1:Yes	1:Yes	1
78	1:Yes	1:Yes	0.975
79	1:Yes	1:Yes	0.986
80	1:Yes	1:Yes	0.998
81	1:Yes	1:Yes	1
82	1:Yes	1:Yes	0.981
83	1:Yes	1:Yes	1
84	1:Yes	1:Yes	1
85	1:Yes	1:Yes	1
86	1:Yes	1:Yes	1
87	1:Yes	1:Yes	1
88	1:Yes	1:Yes	0.999
89	1:Yes	1:Yes	1
90	1:Yes	1:Yes	1
91	1:Yes	1:Yes	0.97
92	1:Yes	1:Yes	0.697
93	1:Yes	1:Yes	1
94	1:Yes	1:Yes	0.955
95	1:Yes	1:Yes	1
96	1:Yes	1:Yes	1
97	1:Yes	1:Yes	1
98	1:Yes	1:Yes	0.979
99	1:Yes	1:Yes	0.995
100	1:Yes	1:Yes	0.996
100	1:Yes	1:Yes	1
101	1:Yes	1:Yes	0.999
102	1:Yes	1:Yes	1
105	1:Yes	1:Yes	0.984
105	1:Yes	1:Yes	1
105	1:Yes	1:Yes	1
100	1:Yes	1:Yes	1
107	1:Yes	1:Yes	1
108	1:Yes	1:Yes	1
110	1:Yes	1:Yes	1
110	1:Yes	1:Yes	0.529
111	1:Yes	1:Yes	0.956
112	1:Yes	1:Yes	1
113	1:Yes	1:Yes	0.996
114	1:Yes	1:Yes	0.996
113	1.105	1.105	0.777

112	4 37	1 37	1
116	1:Yes	1:Yes	1
117	1:Yes	1:Yes	1
118	1:Yes	1:Yes	1
119	1:Yes	1:Yes	1
120	1:Yes	1:Yes	0.996
121	1:Yes	1:Yes	1
122	1:Yes	1:Yes	1
123	1:Yes	1:Yes	0.965
124	1:Yes	1:Yes	0.998
125	1:Yes	1:Yes	1
126	1:Yes	1:Yes	0.861
127	1:Yes	1:Yes	1
128	1:Yes	1:Yes	0.992
129	1:Yes	1:Yes	1
130	1:Yes	1:Yes	0.968
131	1:Yes	1:Yes	0.997
132	1:Yes	1:Yes	0.951
133	1:Yes	1:Yes	1
134	1:Yes	1:Yes	1
135	1:Yes	2:No	0.743
136	1:Yes	1:Yes	0.999
137	1:Yes	1:Yes	1
138	1:Yes	1:Yes	0.986
139	1:Yes	1:Yes	0.999
140	1:Yes	1:Yes	0.998
141	1:Yes	1:Yes	1
142	1:Yes	1:Yes	0.999
143	1:Yes	1:Yes	0.996
144	1:Yes	1:Yes	1
145	1:Yes	1:Yes	1
146	1:Yes	1:Yes	1
147	1:Yes	1:Yes	1
147	1:Yes	1:Yes	1
140	1:Yes	1:Yes	0.978
150	1:Yes	1:Yes	0.946
150	1:Yes	1:Yes	1
151	1:Yes	1:Yes	1
152	1:Yes	1:Yes	0.999
153	1:Yes	1:Yes	0.999
			1
155	1:Yes	1:Yes	
156	1:Yes	1:Yes	0.937
157	1:Yes	1:Yes	0.999
158	1:Yes	1:Yes	0.994
159	1:Yes	1:Yes	1
160	1:Yes	1:Yes	1
161	2:No	1:Yes	1
162	1:Yes	1:Yes	0.92
163	1:Yes	1:Yes	0.916

Business Decision Analysis Based on Data Analytics | Antonia Trikounaki

164	1:Yes	1:Yes	0.998
165	1:Yes	1:Yes	0.999
166	1:Yes	1:Yes	1
167	2:No	1:Yes	1
168	2:No	2:No	0.958
169	1:Yes	2:No	0.995
170	2:No	1:Yes	1
171	1:Yes	2:No	0.998
172	1:Yes	1:Yes	1
173	2:No	1:Yes	0.966
174	1:Yes	1:Yes	0.998
175	1:Yes	1:Yes	1
176	1:Yes	1:Yes	0.996
177	2:No	2:No	0.736
178	2:No	2:No	0.517
179	1:Yes	1:Yes	0.899
180	2:No	2:No	0.894
181	1:Yes	1:Yes	0.768
182	1:Yes	1:Yes	0.999

Naive Bayes Updatable Classifier/NN

Naive Bayes Classifier (full training set)

	Class
Attribute	Yes No
	(0.95) (0.05)
Car superseding Ability	
Yes	36.0 1.0
No	140.0 9.0
[total]	176.0 10.0
Motorbike superseding Ability	
No	150.0 8.0
Yes	26.0 2.0
[total]	176.0 10.0
House superseding Ability	

No	164.0	9.0
Yes	12.0	1.0
[total]	176.0	10.0
Business superseding Ability		
No	170.0	9.0
Yes	6.0	1.0
[total]	176.0	10.0
No superseding ability		
No	66.0	2.0
Yes	110.0	8.0
[total]	176.0	10.0
Have or Had Business Insurance		
No	148.0	9.0
Yes	28.0	1.0
[total]	176.0	10.0
Have or Had Civil Liability Insurance		
No	149.0	9.0
Yes	27.0	1.0
[total]	176.0	10.0
Have or Had Vessel Insurance		
No	168.0	9.0
Yes	8.0	1.0
[total]	176.0	10.0
Have or Had Health Insurance		
No	173.0	9.0
Yes	3.0	1.0

[total]	176.0	10.0
Have or Had Everyday needs Insurance		
No	174.0	9.0
Yes	2.0	1.0
[total]	176.0	10.0
Have or Had Business House Insurance		
No	174.0	9.0
Yes	2.0	1.0
[total]	176.0	10.0
Have or Had Family Insurance		
No	174.0	9.0
Yes	2.0	1.0
[total]	176.0	10.0
Have or Had Cash Insurance		
No	174.0	9.0
Yes	2.0	1.0
[total]	176.0	10.0
Have or Had Child Insurance		
No	174.0	9.0
Yes	2.0	1.0
[total]	176.0	10.0
Have or Had Car Insurance		
No	175.0	9.0
[total]	175.0	9.0
Have or Had Motorbike Insurance		
No	174.0	9.0

Yes	2.0	1.0
[total]	176.0	10.0
Have never had Insurance		
Yes	104.0	7.0
No	72.0	3.0
[total]	176.0	10.0
Fixed Costs would not be covered in case of a possible loss of mine		
Yes	127.0	6.0
No	48.0	4.0
[total]	175.0	10.0
Loans would not be covered in case of a possible loss of mine		
No	123.0	6.0
Yes	52.0	4.0
[total]	175.0	10.0
Children Studies would not be covered in case of a possible loss of mine	2	
No	130.0	7.0
Yes	45.0	3.0
[total]	175.0	10.0
Tax obligations would not be covered in case of a possible loss of mine		
No	102.0	8.0
Yes	73.0	2.0
[total]	175.0	10.0
No needs to leave behind in case of a possible loss of mine		
No	173.0	9.0
Yes	2.0	1.0
[total]	175.0	10.0

Happiness would not be covered in case of a possible loss of mine

No	173.0	9.0
Yes	2.0	1.0
[total]	175.0	10.0

Purchases in non-basic necessities would not be covered in case of a possible loss of mine

No	173.0	9.0
Yes	2.0	1.0
[total]	175.0	10.0
Want a risk protection		
Yes	151.0	4.0
No	25.0	6.0
[total]	176.0	10.0
A satisfying amount of money for the support of my beloved ones		
mean	72.31	43.33
std. dev.	44.52	35.38
weight sum	151	3
precision	43.33	43.33
Not at all satisfied from the public insurance health benefits		
No	146.0	8.0
Yes	30.0	2.0
[total]	176.0	10.0
Kind of satisfied from the public insurance health benefits		
Yes	100.0	3.0
No	76.0	7.0
[total]	176.0	10.0

32.0 4.0 76.0 72.0	4.06.010.09.0		
76.0 72.0	10.0		
72.0			
	9.0		
	9.0		
4.0	1.0		
76.0	10.0		
th issu	ue		
8.0	1.0		
48.0	9.0		
76.0	10.0		
I would choose a big private hospital in Athens or Thessaloniki for a mild health issue			
19.0	9.0		
7.0	1.0		
76.0	10.0		
29.0	7.0		
7.0	3.0		
	10.0		
76.0	10.0		
76.0	10.0		
76.0 30.0	3.0		
30.0	3.0		
30.0 •6.0	3.0 7.0 10.0		
	th isso 28.0 48.0 76.0 nealth 19.0 76.0 29.0		

Quite satisfied from the public insurance health benefits

Yes	35.0	3.0
[total]	176.0	10.0
I would choose a big private hospital of Athens or Thessaloniki for	serious	health
issues		
Yes	76.0	3.0
No	100.0	7.0
[total]	176.0	10.0
I would choose a local private hospital for serious health issues		
No	150.0	8.0
Yes	26.0	2.0
[total]	176.0	10.0
I would choose a local public hospital for serious health issues		
No	166.0	6.0
Yes	10.0	4.0
[total]	176.0	10.0
I would choose a foreign hospital for serious health issues		
No	144.0	9.0
Yes	32.0	1.0
[total]	176.0	10.0
I wish for private health services coupled with my insurance		
Yes	167.0	6.0
No	9.0	4.0
[total]	176.0	10.0
I would like diagnostic tests to be included to my private insurance		
Yes	104.0	6.0
No	72.0	4.0

[total]	176.0	10.0
I would like doctor visits to be included to my private insurance		
Yes	113.0	3.0
No	58.0	7.0
Yes	6.0	1.0
[total]	177.0	11.0
I would like hospital care to be included to my private insurance		
Yes	124.0	6.0
No	52.0	4.0
[total]	176.0	10.0
I would like Annual check up to be included to my private insurance		
Yes	105.0	7.0
No	71.0	3.0
[total]	176.0	10.0
I would like going abroad to be included to my private insurance		
Yes	78.0	2.0
No	98.0	8.0
[total]	176.0	10.0
I would like ambulance to be included to my private insurance		
No	172.0	9.0
Yes	4.0	1.0
[total]	176.0	10.0
Team insurance		
No	130.0	7.0
Yes	46.0	3.0
[total]	176.0	10.0

I will not get a pension			
Yes	37.0	2.0	
No	139.0	8.0	
[total]	176.0	10.0	
I will get a small pension			
No	67.0	4.0	
Yes	109.0	6.0	
[total]	176.0	10.0	
I will get a satisfying pension			
No	145.0	7.0	
Yes	31.0	3.0	
[total]	176.0	10.0	
I have managed for a lump sum or supplementary pension			
Yes	61.0	4.0	
No	115.0	6.0	
[total]	176.0	10.0	
I have managed for a lump sum or supplementary pension through Banl	k Saving	S	
Yes	43.0	4.0	
No	61.0	3.0	
[total]	104.0	7.0	
I have managed for a lump sum or supplementary pension through Pension scheme purchase			
No	102.0	6.0	
Yes	2.0	1.0	
[total]	104.0	7.0	

I have managed for a lump sum or supplementary pension through Life insurance program and savings plan

537

No	102.0	6.0
Yes	2.0	1.0
[total]	104.0	7.0

I have managed for a lump sum or supplementary pension through Real estate purchase for rent or exploitation

No	82.0	6.0
Yes	22.0	1.0
[total]	104.0	7.0
I am about to take immediate care of a lump sum or supplementary p	ension	
No	73.0	4.0
Yes	31.0	3.0
[total]	104.0	7.0

I have managed for a lump sum or supplementary pension through Pension scheme or savings plan purchase

No	80.0	5.0
Yes	24.0	2.0

[total]	104.0	7.0

Even if I wanted it I cannot take care of a lump sum or supplementary pension

No	102.0	5.0
Yes	2.0	2.0

[total] 104.0 7.0

It is of a major importance to support my children and grandchildren after I receive my pension

Yes	116.0	6.0
No	60.0	4.0
[total]	176.0	10.0

It is of a major importance to cover my healthcare after I receive my pension

Yes	135.0	7.0
No	41.0	3.0
[total]	176.0	10.0
It is of a major importance to cover my pleasure trips after I receive my	pension	
Yes	72.0	3.0
No	104.0	7.0
[total]	176.0	10.0
It is of a major importance to cover my house purchases after I receive n	ny pensi	ion
No	161.0	9.0
Yes	15.0	1.0
[total]	176.0	10.0
It is of a major importance to cover my fixed costs after I receive my per	nsion	
No	174.0	8.0
Yes	2.0	2.0
[total]	176.0	10.0
It is of a major importance to cover my everyday needs after I receive my pension		
No	174.0	9.0
Yes	2.0	1.0
[total]	176.0	10.0

#inst	actual	predicted	error
11	1:Yes	1:Yes	1
12	1:Yes	1:Yes	1
13	1:Yes	1:Yes	1
14	1:Yes	1:Yes	1
15	1:Yes	1:Yes	0.999
16	1:Yes	1:Yes	1
17	1:Yes	1:Yes	0.999
18	1:Yes	1:Yes	0.999

19	1:Yes	1:Yes	0.98
20	1:Yes	1:Yes	1
21	1:Yes	1:Yes	0.979
22	1:Yes	1:Yes	1
23	1:Yes	1:Yes	0.999
24	1:Yes	1:Yes	1
25	1:Yes	1:Yes	1
26	1:Yes	1:Yes	1
27	1:Yes	1:Yes	0.984
28	1:Yes	1:Yes	0.918
29	1:Yes	1:Yes	1
30	1:Yes	1:Yes	0.981
31	1:Yes	1:Yes	1
32	1:Yes	1:Yes	1
33	1:Yes	1:Yes	1
34	1:Yes	1:Yes	1
35	1:Yes	1:Yes	1
36	1:Yes	1:Yes	1
37	1:Yes	1:Yes	1
38	1:Yes	1:Yes	1
39	1:Yes	1:Yes	1
40	1:Yes	1:Yes	1
41	1:Yes	1:Yes	1
42	1:Yes	1:Yes	0.995
43	1:Yes	1:Yes	1
44	1:Yes	1:Yes	0.999
45	1:Yes	1:Yes	0.991
46	1:Yes	1:Yes	0.732
47	1:Yes	1:Yes	1
48	1:Yes	1:Yes	1
49	1:Yes	1:Yes	1
50	1:Yes	1:Yes	1
51	1:Yes	1:Yes	1
52	1:Yes	1:Yes	1
53	1:Yes	1:Yes	0.998
54	1:Yes	1:Yes	1
55	1:Yes	1:Yes	1
56	1:Yes	1:Yes	1
57	1:Yes	1:Yes	0.986
58	1:Yes	1:Yes	0.999
59	1:Yes	1:Yes	1
60	1:Yes	1:Yes	1
61	1:Yes	1:Yes	1
62	1:Yes	1:Yes	0.999
63	1:Yes	1:Yes	1
64	1:Yes	1:Yes	1
65	1:Yes	1:Yes	1
66	1:Yes	1:Yes	1

671:Yes1:Yes0.999 68 1:Yes1:Yes1 69 1:Yes1:Yes1 70 1:Yes1:Yes1 71 1:Yes1:Yes1 72 1:Yes1:Yes1 73 1:Yes1:Yes1 74 1:Yes1:Yes1 75 1:Yes1:Yes1 76 1:Yes1:Yes1 77 1:Yes1:Yes1 78 1:Yes1:Yes1 78 1:Yes1:Yes0.975 79 1:Yes1:Yes0.986 80 1:Yes1:Yes0.998 81 1:Yes1:Yes1 82 1:Yes1:Yes1 83 1:Yes1:Yes1 84 1:Yes1:Yes1 85 1:Yes1:Yes1 86 1:Yes1:Yes1 87 1:Yes1:Yes1 88 1:Yes1:Yes1 89 1:Yes1:Yes1 90 1:Yes1:Yes1 90 1:Yes1:Yes1	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
721:Yes1:Yes1 73 1:Yes1:Yes1 74 1:Yes1:Yes1 75 1:Yes1:Yes1 76 1:Yes1:Yes1 76 1:Yes1:Yes1 77 1:Yes1:Yes1 78 1:Yes1:Yes0.975 79 1:Yes1:Yes0.986 80 1:Yes1:Yes0.998 81 1:Yes1:Yes1 82 1:Yes1:Yes1 83 1:Yes1:Yes1 84 1:Yes1:Yes1 85 1:Yes1:Yes1 86 1:Yes1:Yes1 87 1:Yes1:Yes1 88 1:Yes1:Yes1 89 1:Yes1:Yes1 90 1:Yes1:Yes1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
771:Yes1:Yes1781:Yes1:Yes0.975791:Yes1:Yes0.986801:Yes1:Yes0.998811:Yes1:Yes1821:Yes1:Yes0.981831:Yes1:Yes1841:Yes1:Yes1851:Yes1:Yes1861:Yes1:Yes1871:Yes1:Yes1881:Yes1:Yes0.999891:Yes1:Yes1901:Yes1:Yes1	
781:Yes1:Yes0.975791:Yes1:Yes0.986801:Yes1:Yes0.998811:Yes1:Yes1821:Yes1:Yes0.981831:Yes1:Yes1841:Yes1:Yes1851:Yes1:Yes1861:Yes1:Yes1871:Yes1:Yes1881:Yes1:Yes0.999891:Yes1:Yes1901:Yes1:Yes1	
791:Yes1:Yes0.986801:Yes1:Yes0.998811:Yes1:Yes1821:Yes1:Yes0.981831:Yes1:Yes1841:Yes1:Yes1851:Yes1:Yes1861:Yes1:Yes1871:Yes1:Yes1881:Yes1:Yes1901:Yes1:Yes1901:Yes1:Yes1	
801:Yes1:Yes0.998811:Yes1:Yes1821:Yes1:Yes0.981831:Yes1:Yes1841:Yes1:Yes1851:Yes1:Yes1861:Yes1:Yes1871:Yes1:Yes1881:Yes1:Yes1891:Yes1:Yes1901:Yes1:Yes1	
811:Yes1:Yes1821:Yes1:Yes0.981831:Yes1:Yes1841:Yes1:Yes1851:Yes1:Yes1861:Yes1:Yes1871:Yes1:Yes1881:Yes1:Yes0.999891:Yes1:Yes1901:Yes1:Yes1	
811:Yes1:Yes1821:Yes1:Yes0.981831:Yes1:Yes1841:Yes1:Yes1851:Yes1:Yes1861:Yes1:Yes1871:Yes1:Yes1881:Yes1:Yes0.999891:Yes1:Yes1901:Yes1:Yes1	
821:Yes1:Yes0.981831:Yes1:Yes1841:Yes1:Yes1851:Yes1:Yes1861:Yes1:Yes1871:Yes1:Yes1881:Yes1:Yes0.999891:Yes1:Yes1901:Yes1:Yes1	
831:Yes1:Yes1841:Yes1:Yes1851:Yes1:Yes1861:Yes1:Yes1871:Yes1:Yes1881:Yes1:Yes0.999891:Yes1:Yes1901:Yes1:Yes1	
841:Yes1:Yes1851:Yes1:Yes1861:Yes1:Yes1871:Yes1:Yes1881:Yes1:Yes0.999891:Yes1:Yes1901:Yes1:Yes1	
851:Yes1:Yes1861:Yes1:Yes1871:Yes1:Yes1881:Yes1:Yes0.999891:Yes1:Yes1901:Yes1:Yes1	
861:Yes1:Yes1871:Yes1:Yes1881:Yes1:Yes0.999891:Yes1:Yes1901:Yes1:Yes1	
871:Yes1:Yes1881:Yes1:Yes0.999891:Yes1:Yes1901:Yes1:Yes1	
881:Yes1:Yes0.999891:Yes1:Yes1901:Yes1:Yes1	
891:Yes1:Yes1901:Yes1:Yes1	
90 1:Yes 1:Yes 1	
91 1:Yes 1:Yes 0.97	
92 1:Yes 1:Yes 0.697	
93 1:Yes 1:Yes 1	
94 1:Yes 1:Yes 0.955	
95 1:Yes 1:Yes 1	
96 1:Yes 1:Yes 1	
97 1:Yes 1:Yes 1	
98 1:Yes 1:Yes 0.979	
99 1:Yes 1:Yes 0.995	
100 1:Yes 1:Yes 0.996	
101 1:Yes 1:Yes 1	
102 1:Yes 1:Yes 0.999	
103 1:Yes 1:Yes 1	
104 1:Yes 1:Yes 0.984	
105 1:Yes 1:Yes 1	
106 1:Yes 1:Yes 1	
107 1:Yes 1:Yes 1	
108 1:Yes 1:Yes 1	
109 1:Yes 1:Yes 1	
110 1:Yes 1:Yes 1	
111 1:Yes 1:Yes 0.529	
112 1:Yes 1:Yes 0.956	
113 1:Yes 1:Yes 1	
114 1:Yes 1:Yes 0.996	

115	1:Yes	1:Yes	0.999
116	1:Yes	1:Yes	1
117	1:Yes	1:Yes	1
118	1:Yes	1:Yes	1
119	1:Yes	1:Yes	1
120	1:Yes	1:Yes	0.996
121	1:Yes	1:Yes	1
122	1:Yes	1:Yes	1
123	1:Yes	1:Yes	0.965
124	1:Yes	1:Yes	0.998
125	1:Yes	1:Yes	1
126	1:Yes	1:Yes	0.861
127	1:Yes	1:Yes	1
128	1:Yes	1:Yes	0.992
129	1:Yes	1:Yes	1
130	1:Yes	1:Yes	0.968
131	1:Yes	1:Yes	0.997
132	1:Yes	1:Yes	0.951
133	1:Yes	1:Yes	1
134	1:Yes	1:Yes	1
135	1:Yes	2:No	0.743
136	1:Yes	1:Yes	0.999
137	1:Yes	1:Yes	1
138	1:Yes	1:Yes	0.986
139	1:Yes	1:Yes	0.999
140	1:Yes	1:Yes	0.998
141	1:Yes	1:Yes	1
142	1:Yes	1:Yes	0.999
143	1:Yes	1:Yes	0.996
144	1:Yes	1:Yes	1
145	1:Yes	1:Yes	1
146	1:Yes	1:Yes	1
147	1:Yes	1:Yes	1
148	1:Yes	1:Yes	1
149	1:Yes	1:Yes	0.978
150	1:Yes	1:Yes	0.946
151	1:Yes	1:Yes	1
152	1:Yes	1:Yes	1
153	1:Yes	1:Yes	0.999
154	1:Yes	1:Yes	0.999
155	1:Yes	1:Yes	1
156	1:Yes	1:Yes	0.937
157	1:Yes	1:Yes	0.999
158	1:Yes	1:Yes	0.994
159	1:Yes	1:Yes	1
160	1:Yes	1:Yes	1
161	1:Yes	1:Yes	1
162	2:No	1:Yes	0.92

Business Decision Analysis Based on Data Analytics | Antonia Trikounaki

163	1:Yes	1:Yes	0.916
164	1:Yes	1:Yes	0.998
165	1:Yes	1:Yes	0.999
166	1:Yes	1:Yes	1
167	1:Yes	1:Yes	1
168	2:No	2:No	0.958
169	2:No	2:No	0.995
170	1:Yes	1:Yes	1
171	2:No	2:No	0.998
172	1:Yes	1:Yes	1
173	1:Yes	1:Yes	0.966
174	2:No	1:Yes	0.998
175	1:Yes	1:Yes	1
176	1:Yes	1:Yes	0.996
177	1:Yes	2:No	0.736
178	2:No	2:No	0.517
179	2:No	1:Yes	0.899
180	1:Yes	2:No	0.894
181	2:No	1:Yes	0.768
182	1:Yes	1:Yes	0.999

Lazy K Star Predictions/NN

#inst	actual	predicted	error
11	1:Yes	1:Yes	1
12	1:Yes	1:Yes	1
13	1:Yes	1:Yes	1
14	1:Yes	1:Yes	1
15	1:Yes	1:Yes	1
16	1:Yes	1:Yes	1
17	1:Yes	1:Yes	1
18	1:Yes	1:Yes	1
19	1:Yes	1:Yes	1
20	1:Yes	1:Yes	1
21	1:Yes	1:Yes	1
22	1:Yes	1:Yes	1
23	1:Yes	1:Yes	1
24	1:Yes	1:Yes	1
25	1:Yes	1:Yes	1
26	1:Yes	1:Yes	1
27	1:Yes	1:Yes	1
28	1:Yes	1:Yes	1
29	1:Yes	1:Yes	1
30	1:Yes	1:Yes	1
31	1:Yes	1:Yes	1
32	1:Yes	1:Yes	1
33	1:Yes	1:Yes	1
34	1:Yes	1:Yes	1

35	1:Yes	1:Yes	1
36	1:Yes	1:Yes	1
37	1:Yes	1:Yes	1
38	1:Yes	1:Yes	1
39	1:Yes	1:Yes	1
40	1:Yes	1:Yes	1
41	1:Yes	1:Yes	1
42	1:Yes	1:Yes	1
43	1:Yes	1:Yes	1
44	1:Yes	1:Yes	1
45	1:Yes	1:Yes	1
46	1:Yes	1:Yes	1
47	1:Yes	1:Yes	1
48	1:Yes	1:Yes	1
49	1:Yes	1:Yes	1
50	1:Yes	1:Yes	1
51	1:Yes	1:Yes	1
52	1:Yes	1:Yes	1
53	1:Yes	1:Yes	1
54	1:Yes	1:Yes	1
55	1:Yes	1:Yes	1
56	1:Yes	1:Yes	1
57	1:Yes	1:Yes	1
58	1:Yes	1:Yes	1
59	1:Yes	1:Yes	1
60	1:Yes	1:Yes	1
61	1:Yes	1:Yes	1
62	1:Yes	1:Yes	1
63	1:Yes	1:Yes	1
64	1:Yes	1:Yes	1
65	1:Yes	1:Yes	1
66	1:Yes	1:Yes	1
67	1:Yes	1:Yes	1
68	1:Yes	1:Yes	1
69	1:Yes	1:Yes	1
70	1:Yes	1:Yes	1
70	1:Yes	1:Yes	1
72	1:Yes	1:Yes	1
73	1:Yes	1:Yes	1
73	1:Yes	1:Yes	1
75	1:Yes	1:Yes	1
76	1:Yes	1:Yes	1
70	1:Yes	1:Yes	1
78	1:Yes	1:Yes	1
78	1:Yes	1:Yes	1
80	1:Yes	1:Yes	1
81	1:Yes	1:Yes	1
81	1:Yes	1:Yes	1
02	1.108	1.105	1

83	1:Yes	1:Yes	1
84	1:Yes	1:Yes	1
85	1:Yes	1:Yes	1
86	1:Yes	1:Yes	1
87	1:Yes	1:Yes	1
88	1:Yes	1:Yes	1
89	1:Yes	1:Yes	1
90	1:Yes	1:Yes	1
91	1:Yes	1:Yes	1
92	1:Yes	1:Yes	1
93	1:Yes	1:Yes	1
94	1:Yes	1:Yes	1
95	1:Yes	1:Yes	1
96	1:Yes	1:Yes	1
97	1:Yes	1:Yes	1
98	1:Yes	1:Yes	1
99	1:Yes	1:Yes	1
100	1:Yes	1:Yes	1
100	1:Yes	1:Yes	1
101	1:Yes	1:Yes	1
102	1:Yes	1:Yes	1
105	1:Yes	1:Yes	1
104	1:Yes	1:Yes	1
105	1:Yes	1:Yes	1
100	1:Yes	1:Yes	1
107	1:Yes	1:Yes	1
			1
109	1:Yes	1:Yes	
110	1:Yes	1:Yes	1
111	1:Yes	1:Yes	1
112	1:Yes	1:Yes	1
113	1:Yes	1:Yes	1
114	1:Yes	1:Yes	1
115	1:Yes	1:Yes	1
116	1:Yes	1:Yes	1
117	1:Yes	1:Yes	1
118	1:Yes	1:Yes	1
119	1:Yes	1:Yes	1
120	1:Yes	1:Yes	1
121	1:Yes	1:Yes	1
122	1:Yes	1:Yes	1
123	1:Yes	1:Yes	1
124	1:Yes	1:Yes	1
125	1:Yes	1:Yes	1
126	1:Yes	1:Yes	1
127	1:Yes	1:Yes	1
128	1:Yes	1:Yes	1
129	1:Yes	1:Yes	1
130	1:Yes	1:Yes	1

131	1:Yes	1:Yes	1
132	1:Yes	1:Yes	1
133	1:Yes	1:Yes	1
134	1:Yes	1:Yes	1
135	1:Yes	1:Yes	1
136	1:Yes	1:Yes	1
137	1:Yes	1:Yes	1
138	1:Yes	1:Yes	1
139	1:Yes	1:Yes	1
140	1:Yes	1:Yes	1
141	1:Yes	1:Yes	1
142	1:Yes	1:Yes	1
143	1:Yes	1:Yes	1
144	1:Yes	1:Yes	1
145	1:Yes	1:Yes	1
146	1:Yes	1:Yes	1
147	1:Yes	1:Yes	1
148	1:Yes	1:Yes	1
149	1:Yes	1:Yes	1
150	1:Yes	1:Yes	1
150	1:Yes	1:Yes	1
151	1:Yes	1:Yes	1
152	1:Yes	1:Yes	1
153	1:Yes	1:Yes	1
155	1:Yes	1:Yes	1
155	1:Yes	1:Yes	1
150	1:Yes	1:Yes	1
157	1:Yes	1:Yes	1
159	1:Yes	1:Yes	1
160	1:Yes	1:Yes	1
161	1:Yes	1:Yes	1
162	2:No	2:No	1
163	1:Yes	1:Yes	1
164	1:Yes	1:Yes	1
165	1:Yes	1:Yes	1
166	1:Yes	1:Yes	1
167	1:Yes	1:Yes	1
168	2:No	2:No	1
169	2:No	2:No	1
170	1:Yes	1:Yes	1
171	2:No	2:No	1
172	1:Yes	1:Yes	1
173	1:Yes	1:Yes	1
174	2:No	2:No	1
175	1:Yes	1:Yes	1
176	1:Yes	1:Yes	1
177	1:Yes	1:Yes	1
178	2:No	2:No	1

179	2:No	2:No	1
180	1:Yes	1:Yes	1
181	2:No	2:No	1
182	1:Yes	1:Yes	1

Randomizable Filtered Classifier Predictions/NN

#inst	actual	predicted	error
11	1:Yes	1:Yes	0.995
12	1:Yes	1:Yes	0.995
13	1:Yes	1:Yes	0.995
14	1:Yes	1:Yes	0.995
15	1:Yes	1:Yes	0.995
16	1:Yes	1:Yes	0.995
17	1:Yes	1:Yes	0.995
18	1:Yes	1:Yes	0.995
19	1:Yes	1:Yes	0.995
20	1:Yes	1:Yes	0.995
21	1:Yes	1:Yes	0.995
22	1:Yes	1:Yes	0.995
23	1:Yes	1:Yes	0.995
24	1:Yes	1:Yes	0.995
25	1:Yes	1:Yes	0.995
26	1:Yes	1:Yes	0.995
27	1:Yes	1:Yes	0.995
28	1:Yes	1:Yes	0.995
29	1:Yes	1:Yes	0.995
30	1:Yes	1:Yes	0.995
31	1:Yes	1:Yes	0.995
32	1:Yes	1:Yes	0.995
33	1:Yes	1:Yes	0.995
34	1:Yes	1:Yes	0.995
35	1:Yes	1:Yes	0.995
36	1:Yes	1:Yes	0.995
37	1:Yes	1:Yes	0.995
38	1:Yes	1:Yes	0.995
39	1:Yes	1:Yes	0.995
40	1:Yes	1:Yes	0.995
41	1:Yes	1:Yes	0.995
42	1:Yes	1:Yes	0.995
43	1:Yes	1:Yes	0.995
44	1:Yes	1:Yes	0.995
45	1:Yes	1:Yes	0.995
46	1:Yes	1:Yes	0.995
47	1:Yes	1:Yes	0.995
48	1:Yes	1:Yes	0.995
49	1:Yes	1:Yes	0.995
50	1:Yes	1:Yes	0.995

51	1:Yes	1:Yes	0.995
52	1:Yes	1:Yes	0.995
53	1:Yes	1:Yes	0.995
54	1:Yes	1:Yes	0.995
55	1:Yes	1:Yes	0.995
56	1:Yes	1:Yes	0.995
57	1:Yes	1:Yes	0.995
58	1:Yes	1:Yes	0.995
59	1:Yes	1:Yes	0.995
60	1:Yes	1:Yes	0.995
61	1:Yes	1:Yes	0.995
62	1:Yes	1:Yes	0.995
63	1:Yes	1:Yes	0.995
64	1:Yes	1:Yes	0.995
65	1:Yes	1:Yes	0.995
66	1:Yes	1:Yes	0.995
67	1:Yes	1:Yes	0.995
68	1:Yes	1:Yes	0.995
69	1:Yes	1:Yes	0.995
70	1:Yes	1:Yes	0.995
71	1:Yes	1:Yes	0.995
72	1:Yes	1:Yes	0.995
73	1:Yes	1:Yes	0.995
74	1:Yes	1:Yes	0.995
75	1:Yes	1:Yes	0.995
76	1:Yes	1:Yes	0.995
77	1:Yes	1:Yes	0.995
78	1:Yes	1:Yes	0.995
79	1:Yes	1:Yes	0.995
80	1:Yes	1:Yes	0.995
81	1:Yes	1:Yes	0.995
82	1:Yes	1:Yes	0.995
83	1:Yes	1:Yes	0.995
84	1:Yes	1:Yes	0.995
85	1:Yes	1:Yes	0.995
86	1:Yes	1:Yes	0.995
87	1:Yes	1:Yes	0.995
88	1:Yes	1:Yes	0.995
89	1:Yes	1:Yes	0.995
90	1:Yes	1:Yes	0.995
91	1:Yes	1:Yes	0.995
92	1:Yes	1:Yes	0.995
93	1:Yes	1:Yes	0.995
94	1:Yes	1:Yes	0.995
95	1:Yes	1:Yes	0.995
96	1:Yes	1:Yes	0.995
97	1:Yes	1:Yes	0.995
98	1:Yes	1:Yes	0.995

991:Yes1:Yes0.9951001:Yes1:Yes0.9951011:Yes1:Yes0.9951021:Yes1:Yes0.9951031:Yes1:Yes0.9951041:Yes1:Yes0.9951051:Yes1:Yes0.9951061:Yes1:Yes0.9951071:Yes1:Yes0.9951081:Yes1:Yes0.9951091:Yes1:Yes0.9951101:Yes1:Yes0.9951111:Yes1:Yes0.9951121:Yes1:Yes0.9951131:Yes1:Yes0.9951141:Yes1:Yes0.9951151:Yes1:Yes0.9951161:Yes1:Yes0.9951171:Yes1:Yes0.9951181:Yes1:Yes0.9951191:Yes1:Yes0.9951201:Yes1:Yes0.9951211:Yes1:Yes0.9951221:Yes1:Yes0.9951231:Yes1:Yes0.9951241:Yes1:Yes0.9951251:Yes1:Yes0.9951261:Yes1:Yes0.9951271:Yes1:Yes0.9951301:Yes1:Yes0.9951311:Yes1:Yes0.9951321:Yes1:Yes0.9951331:				
1011:Yes1:Yes 0.995 102 1:Yes1:Yes 0.995 103 1:Yes1:Yes 0.995 104 1:Yes1:Yes 0.995 105 1:Yes1:Yes 0.995 106 1:Yes1:Yes 0.995 107 1:Yes1:Yes 0.995 108 1:Yes1:Yes 0.995 109 1:Yes1:Yes 0.995 110 1:Yes1:Yes 0.995 111 1:Yes1:Yes 0.995 111 1:Yes1:Yes 0.995 112 1:Yes1:Yes 0.995 113 1:Yes1:Yes 0.995 114 1:Yes1:Yes 0.995 115 1:Yes1:Yes 0.995 116 1:Yes1:Yes 0.995 117 1:Yes1:Yes 0.995 118 1:Yes1:Yes 0.995 120 1:Yes1:Yes 0.995 121 1:Yes1:Yes 0.995 122 1:Yes1:Yes 0.995 123 1:Yes1:Yes 0.995 124 1:Yes1:Yes 0.995 125 1:Yes1:Yes 0.995 126 1:Yes1:Yes 0.995 130 1:Yes1:Yes 0.995 131 1:Yes1:Yes 0.995 132 1:Yes1:Yes 0.995 133 1:Yes1:Yes 0.995 134 1:Yes	99	1:Yes	1:Yes	0.995
1021:Yes1:Yes 0.995 103 1:Yes1:Yes 0.995 104 1:Yes1:Yes 0.995 105 1:Yes1:Yes 0.995 106 1:Yes1:Yes 0.995 106 1:Yes1:Yes 0.995 107 1:Yes1:Yes 0.995 108 1:Yes1:Yes 0.995 109 1:Yes1:Yes 0.995 110 1:Yes1:Yes 0.995 111 1:Yes1:Yes 0.995 112 1:Yes1:Yes 0.995 113 1:Yes1:Yes 0.995 114 1:Yes1:Yes 0.995 115 1:Yes1:Yes 0.995 116 1:Yes1:Yes 0.995 117 1:Yes1:Yes 0.995 118 1:Yes1:Yes 0.995 120 1:Yes1:Yes 0.995 121 1:Yes1:Yes 0.995 122 1:Yes1:Yes 0.995 123 1:Yes1:Yes 0.995 124 1:Yes1:Yes 0.995 125 1:Yes1:Yes 0.995 126 1:Yes1:Yes 0.995 127 1:Yes1:Yes 0.995 130 1:Yes1:Yes 0.995 131 1:Yes1:Yes 0.995 132 1:Yes1:Yes 0.995 133 1:Yes1:Yes 0.995 134 1:Yes	100	1:Yes	1:Yes	0.995
1031:Yes1:Yes 0.995 104 1:Yes1:Yes 0.995 105 1:Yes1:Yes 0.995 106 1:Yes1:Yes 0.995 107 1:Yes1:Yes 0.995 107 1:Yes1:Yes 0.995 108 1:Yes1:Yes 0.995 109 1:Yes1:Yes 0.995 110 1:Yes1:Yes 0.995 111 1:Yes1:Yes 0.995 112 1:Yes1:Yes 0.995 113 1:Yes1:Yes 0.995 114 1:Yes1:Yes 0.995 115 1:Yes1:Yes 0.995 116 1:Yes1:Yes 0.995 117 1:Yes1:Yes 0.995 118 1:Yes1:Yes 0.995 120 1:Yes1:Yes 0.995 121 1:Yes1:Yes 0.995 122 1:Yes1:Yes 0.995 123 1:Yes1:Yes 0.995 124 1:Yes1:Yes 0.995 125 1:Yes1:Yes 0.995 126 1:Yes1:Yes 0.995 131 1:Yes1:Yes 0.995 132 1:Yes1:Yes 0.995 133 1:Yes1:Yes 0.995 134 1:Yes1:Yes 0.995 135 1:Yes1:Yes 0.995 136 1:Yes1:Yes 0.995 137 1:Yes	101	1:Yes	1:Yes	0.995
1041:Yes1:Yes 0.995 105 1:Yes1:Yes 0.995 106 1:Yes1:Yes 0.995 107 1:Yes1:Yes 0.995 108 1:Yes1:Yes 0.995 109 1:Yes1:Yes 0.995 110 1:Yes1:Yes 0.995 111 1:Yes1:Yes 0.995 111 1:Yes1:Yes 0.995 112 1:Yes1:Yes 0.995 113 1:Yes1:Yes 0.995 114 1:Yes1:Yes 0.995 115 1:Yes1:Yes 0.995 116 1:Yes1:Yes 0.995 117 1:Yes1:Yes 0.995 118 1:Yes1:Yes 0.995 119 1:Yes1:Yes 0.995 120 1:Yes1:Yes 0.995 121 1:Yes1:Yes 0.995 122 1:Yes1:Yes 0.995 123 1:Yes1:Yes 0.995 126 1:Yes1:Yes 0.995 127 1:Yes1:Yes 0.995 128 1:Yes1:Yes 0.995 130 1:Yes1:Yes 0.995 131 1:Yes1:Yes 0.995 134 1:Yes1:Yes 0.995 135 1:Yes1:Yes 0.995 136 1:Yes1:Yes 0.995 136 1:Yes1:Yes 0.995 137 1:Yes	102	1:Yes	1:Yes	0.995
1051:Yes1:Yes 0.995 106 1:Yes1:Yes 0.995 107 1:Yes1:Yes 0.995 108 1:Yes1:Yes 0.995 109 1:Yes1:Yes 0.995 110 1:Yes1:Yes 0.995 111 1:Yes1:Yes 0.995 111 1:Yes1:Yes 0.995 111 1:Yes1:Yes 0.995 112 1:Yes1:Yes 0.995 113 1:Yes1:Yes 0.995 114 1:Yes1:Yes 0.995 115 1:Yes1:Yes 0.995 116 1:Yes1:Yes 0.995 117 1:Yes1:Yes 0.995 118 1:Yes1:Yes 0.995 120 1:Yes1:Yes 0.995 121 1:Yes1:Yes 0.995 122 1:Yes1:Yes 0.995 123 1:Yes1:Yes 0.995 124 1:Yes1:Yes 0.995 125 1:Yes1:Yes 0.995 126 1:Yes1:Yes 0.995 123 1:Yes1:Yes 0.995 130 1:Yes1:Yes 0.995 131 1:Yes1:Yes 0.995 132 1:Yes1:Yes 0.995 133 1:Yes1:Yes 0.995 134 1:Yes1:Yes 0.995 135 1:Yes1:Yes 0.995 136 1:Yes	103	1:Yes	1:Yes	0.995
1061:Yes1:Yes 0.995 107 1:Yes1:Yes 0.995 108 1:Yes1:Yes 0.995 109 1:Yes1:Yes 0.995 110 1:Yes1:Yes 0.995 111 1:Yes1:Yes 0.995 111 1:Yes1:Yes 0.995 112 1:Yes1:Yes 0.995 113 1:Yes1:Yes 0.995 114 1:Yes1:Yes 0.995 115 1:Yes1:Yes 0.995 116 1:Yes1:Yes 0.995 117 1:Yes1:Yes 0.995 118 1:Yes1:Yes 0.995 119 1:Yes1:Yes 0.995 120 1:Yes1:Yes 0.995 121 1:Yes1:Yes 0.995 122 1:Yes1:Yes 0.995 123 1:Yes1:Yes 0.995 126 1:Yes1:Yes 0.995 126 1:Yes1:Yes 0.995 126 1:Yes1:Yes 0.995 130 1:Yes1:Yes 0.995 131 1:Yes1:Yes 0.995 133 1:Yes1:Yes 0.995 134 1:Yes1:Yes 0.995 135 1:Yes1:Yes 0.995 136 1:Yes1:Yes 0.995 137 1:Yes1:Yes 0.995 138 1:Yes1:Yes 0.995 139 1:Yes	104	1:Yes	1:Yes	0.995
1071:Yes1:Yes 0.995 108 1:Yes1:Yes 0.995 109 1:Yes1:Yes 0.995 110 1:Yes1:Yes 0.995 111 1:Yes1:Yes 0.995 111 1:Yes1:Yes 0.995 112 1:Yes1:Yes 0.995 113 1:Yes1:Yes 0.995 114 1:Yes1:Yes 0.995 115 1:Yes1:Yes 0.995 116 1:Yes1:Yes 0.995 116 1:Yes1:Yes 0.995 117 1:Yes1:Yes 0.995 118 1:Yes1:Yes 0.995 119 1:Yes1:Yes 0.995 120 1:Yes1:Yes 0.995 121 1:Yes1:Yes 0.995 122 1:Yes1:Yes 0.995 123 1:Yes1:Yes 0.995 124 1:Yes1:Yes 0.995 125 1:Yes1:Yes 0.995 126 1:Yes1:Yes 0.995 128 1:Yes1:Yes 0.995 130 1:Yes1:Yes 0.995 131 1:Yes1:Yes 0.995 133 1:Yes1:Yes 0.995 134 1:Yes1:Yes 0.995 135 1:Yes1:Yes 0.995 136 1:Yes1:Yes 0.995 137 1:Yes1:Yes 0.995 138 1:Yes	105	1:Yes	1:Yes	0.995
1081:Yes1:Yes0.995 109 1:Yes1:Yes0.995 110 1:Yes1:Yes0.995 111 1:Yes1:Yes0.995 111 1:Yes1:Yes0.995 112 1:Yes1:Yes0.995 113 1:Yes1:Yes0.995 114 1:Yes1:Yes0.995 115 1:Yes1:Yes0.995 116 1:Yes1:Yes0.995 116 1:Yes1:Yes0.995 117 1:Yes1:Yes0.995 118 1:Yes1:Yes0.995 120 1:Yes1:Yes0.995 121 1:Yes1:Yes0.995 122 1:Yes1:Yes0.995 123 1:Yes1:Yes0.995 124 1:Yes1:Yes0.995 125 1:Yes1:Yes0.995 126 1:Yes1:Yes0.995 128 1:Yes1:Yes0.995 130 1:Yes1:Yes0.995 131 1:Yes1:Yes0.995 133 1:Yes1:Yes0.995 134 1:Yes1:Yes0.995 135 1:Yes1:Yes0.995 136 1:Yes1:Yes0.995 137 1:Yes1:Yes0.995 138 1:Yes1:Yes0.995 140 1:Yes1:Yes0.995 144 1:Yes1:Yes0.995	106	1:Yes	1:Yes	0.995
1091:Yes1:Yes 0.995 1101:Yes1:Yes 0.995 1111:Yes1:Yes 0.995 1121:Yes1:Yes 0.995 1131:Yes1:Yes 0.995 1141:Yes1:Yes 0.995 1151:Yes1:Yes 0.995 1161:Yes1:Yes 0.995 1171:Yes1:Yes 0.995 1181:Yes1:Yes 0.995 1191:Yes1:Yes 0.995 1201:Yes1:Yes 0.995 1211:Yes1:Yes 0.995 1221:Yes1:Yes 0.995 1231:Yes1:Yes 0.995 1241:Yes1:Yes 0.995 1251:Yes1:Yes 0.995 1261:Yes1:Yes 0.995 1271:Yes1:Yes 0.995 1281:Yes1:Yes 0.995 1301:Yes1:Yes 0.995 1311:Yes1:Yes 0.995 1331:Yes1:Yes 0.995 1341:Yes1:Yes 0.995 1351:Yes1:Yes 0.995 1361:Yes1:Yes 0.995 1371:Yes1:Yes 0.995 1381:Yes1:Yes 0.995 1391:Yes1:Yes 0.995 1411:Yes1:Yes 0.995 1421:Yes1:Yes 0.995	107	1:Yes	1:Yes	0.995
110 $1:Yes$ $1:Yes$ 0.995 111 $1:Yes$ $1:Yes$ 0.995 112 $1:Yes$ $1:Yes$ 0.995 113 $1:Yes$ $1:Yes$ 0.995 114 $1:Yes$ $1:Yes$ 0.995 115 $1:Yes$ $1:Yes$ 0.995 116 $1:Yes$ $1:Yes$ 0.995 116 $1:Yes$ $1:Yes$ 0.995 116 $1:Yes$ $1:Yes$ 0.995 117 $1:Yes$ $1:Yes$ 0.995 118 $1:Yes$ $1:Yes$ 0.995 120 $1:Yes$ $1:Yes$ 0.995 121 $1:Yes$ $1:Yes$ 0.995 122 $1:Yes$ $1:Yes$ 0.995 123 $1:Yes$ $1:Yes$ 0.995 124 $1:Yes$ $1:Yes$ 0.995 125 $1:Yes$ $1:Yes$ 0.995 126 $1:Yes$ $1:Yes$ 0.995 128 $1:Yes$ $1:Yes$ 0.995 130 $1:Yes$ $1:Yes$ 0.995 131 $1:Yes$ $1:Yes$ 0.995 133 $1:Yes$ $1:Yes$ 0.995 134 $1:Yes$ $1:Yes$ 0.995 135 $1:Yes$ $1:Yes$ 0.995 136 $1:Yes$ $1:Yes$ 0.995 138 $1:Yes$ $1:Yes$ 0.995 140 $1:Yes$ $1:Yes$ 0.995 141 $1:Yes$ $1:Yes$ 0.995 144 $1:Yes$ $1:Yes$ <td>108</td> <td>1:Yes</td> <td>1:Yes</td> <td>0.995</td>	108	1:Yes	1:Yes	0.995
1111:Yes1:Yes0.9951121:Yes1:Yes0.9951131:Yes1:Yes0.9951141:Yes1:Yes0.9951151:Yes1:Yes0.9951161:Yes1:Yes0.9951171:Yes1:Yes0.9951181:Yes1:Yes0.9951191:Yes1:Yes0.9951201:Yes1:Yes0.9951211:Yes1:Yes0.9951221:Yes1:Yes0.9951231:Yes1:Yes0.9951241:Yes1:Yes0.9951251:Yes1:Yes0.9951261:Yes1:Yes0.9951271:Yes1:Yes0.9951301:Yes1:Yes0.9951311:Yes1:Yes0.9951331:Yes1:Yes0.9951341:Yes1:Yes0.9951351:Yes1:Yes0.9951361:Yes1:Yes0.9951371:Yes1:Yes0.9951381:Yes1:Yes0.9951391:Yes1:Yes0.9951411:Yes1:Yes0.9951421:Yes1:Yes0.9951441:Yes1:Yes0.995	109	1:Yes	1:Yes	0.995
1121:Yes1:Yes 0.995 113 1:Yes1:Yes 0.995 114 1:Yes1:Yes 0.995 115 1:Yes1:Yes 0.995 116 1:Yes1:Yes 0.995 116 1:Yes1:Yes 0.995 117 1:Yes1:Yes 0.995 118 1:Yes1:Yes 0.995 119 1:Yes1:Yes 0.995 120 1:Yes1:Yes 0.995 121 1:Yes1:Yes 0.995 122 1:Yes1:Yes 0.995 123 1:Yes1:Yes 0.995 124 1:Yes1:Yes 0.995 125 1:Yes1:Yes 0.995 126 1:Yes1:Yes 0.995 127 1:Yes1:Yes 0.995 128 1:Yes1:Yes 0.995 130 1:Yes1:Yes 0.995 131 1:Yes1:Yes 0.995 133 1:Yes1:Yes 0.995 134 1:Yes1:Yes 0.995 135 1:Yes1:Yes 0.995 136 1:Yes1:Yes 0.995 139 1:Yes1:Yes 0.995 141 1:Yes1:Yes 0.995 142 1:Yes1:Yes 0.995 144 1:Yes1:Yes 0.995	110	1:Yes	1:Yes	0.995
1131:Yes1:Yes0.9951141:Yes1:Yes0.9951151:Yes1:Yes0.9951161:Yes1:Yes0.9951171:Yes1:Yes0.9951181:Yes1:Yes0.9951191:Yes1:Yes0.9951201:Yes1:Yes0.9951211:Yes1:Yes0.9951221:Yes1:Yes0.9951231:Yes1:Yes0.9951241:Yes1:Yes0.9951251:Yes1:Yes0.9951261:Yes1:Yes0.9951271:Yes1:Yes0.9951281:Yes1:Yes0.9951291:Yes1:Yes0.9951301:Yes1:Yes0.9951311:Yes1:Yes0.9951331:Yes1:Yes0.9951341:Yes1:Yes0.9951351:Yes1:Yes0.9951361:Yes1:Yes0.9951371:Yes1:Yes0.9951381:Yes1:Yes0.9951391:Yes1:Yes0.9951411:Yes1:Yes0.9951421:Yes1:Yes0.9951441:Yes1:Yes0.995	111	1:Yes	1:Yes	0.995
114 $1:Yes$ $1:Yes$ 0.995 115 $1:Yes$ $1:Yes$ 0.995 116 $1:Yes$ $1:Yes$ 0.995 116 $1:Yes$ $1:Yes$ 0.995 117 $1:Yes$ $1:Yes$ 0.995 118 $1:Yes$ $1:Yes$ 0.995 119 $1:Yes$ $1:Yes$ 0.995 120 $1:Yes$ $1:Yes$ 0.995 121 $1:Yes$ $1:Yes$ 0.995 122 $1:Yes$ $1:Yes$ 0.995 123 $1:Yes$ $1:Yes$ 0.995 124 $1:Yes$ $1:Yes$ 0.995 125 $1:Yes$ $1:Yes$ 0.995 126 $1:Yes$ $1:Yes$ 0.995 127 $1:Yes$ $1:Yes$ 0.995 128 $1:Yes$ $1:Yes$ 0.995 130 $1:Yes$ $1:Yes$ 0.995 131 $1:Yes$ $1:Yes$ 0.995 133 $1:Yes$ $1:Yes$ 0.995 134 $1:Yes$ $1:Yes$ 0.995 135 $1:Yes$ $1:Yes$ 0.995 136 $1:Yes$ $1:Yes$ 0.995 138 $1:Yes$ $1:Yes$ 0.995 140 $1:Yes$ $1:Yes$ 0.995 144 $1:Yes$ $1:Yes$ 0.995	112	1:Yes	1:Yes	0.995
115 $1:Yes$ $1:Yes$ 0.995 116 $1:Yes$ $1:Yes$ 0.995 117 $1:Yes$ $1:Yes$ 0.995 117 $1:Yes$ $1:Yes$ 0.995 118 $1:Yes$ $1:Yes$ 0.995 119 $1:Yes$ $1:Yes$ 0.995 120 $1:Yes$ $1:Yes$ 0.995 120 $1:Yes$ $1:Yes$ 0.995 121 $1:Yes$ $1:Yes$ 0.995 122 $1:Yes$ $1:Yes$ 0.995 123 $1:Yes$ $1:Yes$ 0.995 124 $1:Yes$ $1:Yes$ 0.995 125 $1:Yes$ $1:Yes$ 0.995 126 $1:Yes$ $1:Yes$ 0.995 127 $1:Yes$ $1:Yes$ 0.995 128 $1:Yes$ $1:Yes$ 0.995 130 $1:Yes$ $1:Yes$ 0.995 131 $1:Yes$ $1:Yes$ 0.995 133 $1:Yes$ $1:Yes$ 0.995 134 $1:Yes$ $1:Yes$ 0.995 135 $1:Yes$ $1:Yes$ 0.995 136 $1:Yes$ $1:Yes$ 0.995 138 $1:Yes$ $1:Yes$ 0.995 139 $1:Yes$ $1:Yes$ 0.995 140 $1:Yes$ $1:Yes$ 0.995 144 $1:Yes$ $1:Yes$ 0.995	113	1:Yes	1:Yes	0.995
116 $1:Yes$ $1:Yes$ 0.995 117 $1:Yes$ $1:Yes$ 0.995 118 $1:Yes$ $1:Yes$ 0.995 119 $1:Yes$ $1:Yes$ 0.995 120 $1:Yes$ $1:Yes$ 0.995 121 $1:Yes$ $1:Yes$ 0.995 122 $1:Yes$ $1:Yes$ 0.995 123 $1:Yes$ $1:Yes$ 0.995 124 $1:Yes$ $1:Yes$ 0.995 125 $1:Yes$ $1:Yes$ 0.995 126 $1:Yes$ $1:Yes$ 0.995 127 $1:Yes$ $1:Yes$ 0.995 128 $1:Yes$ $1:Yes$ 0.995 129 $1:Yes$ $1:Yes$ 0.995 130 $1:Yes$ $1:Yes$ 0.995 131 $1:Yes$ $1:Yes$ 0.995 133 $1:Yes$ $1:Yes$ 0.995 134 $1:Yes$ $1:Yes$ 0.995 135 $1:Yes$ $1:Yes$ 0.995 136 $1:Yes$ $1:Yes$ 0.995 137 $1:Yes$ $1:Yes$ 0.995 138 $1:Yes$ $1:Yes$ 0.995 139 $1:Yes$ $1:Yes$ 0.995 140 $1:Yes$ $1:Yes$ 0.995 141 $1:Yes$ $1:Yes$ 0.995 144 $1:Yes$ $1:Yes$ 0.995	114	1:Yes	1:Yes	0.995
1171:Yes1:Yes0.995 118 1:Yes1:Yes0.995 119 1:Yes1:Yes0.995 120 1:Yes1:Yes0.995 121 1:Yes1:Yes0.995 122 1:Yes1:Yes0.995 123 1:Yes1:Yes0.995 124 1:Yes1:Yes0.995 125 1:Yes1:Yes0.995 126 1:Yes1:Yes0.995 127 1:Yes1:Yes0.995 128 1:Yes1:Yes0.995 129 1:Yes1:Yes0.995 130 1:Yes1:Yes0.995 131 1:Yes1:Yes0.995 133 1:Yes1:Yes0.995 134 1:Yes1:Yes0.995 135 1:Yes1:Yes0.995 136 1:Yes1:Yes0.995 137 1:Yes1:Yes0.995 138 1:Yes1:Yes0.995 139 1:Yes1:Yes0.995 140 1:Yes1:Yes0.995 141 1:Yes1:Yes0.995 144 1:Yes1:Yes0.995	115	1:Yes	1:Yes	0.995
1181:Yes1:Yes0.9951191:Yes1:Yes0.9951201:Yes1:Yes0.9951211:Yes1:Yes0.9951221:Yes1:Yes0.9951231:Yes1:Yes0.9951241:Yes1:Yes0.9951251:Yes1:Yes0.9951261:Yes1:Yes0.9951271:Yes1:Yes0.9951281:Yes1:Yes0.9951301:Yes1:Yes0.9951311:Yes1:Yes0.9951331:Yes1:Yes0.9951341:Yes1:Yes0.9951351:Yes1:Yes0.9951361:Yes1:Yes0.9951371:Yes1:Yes0.9951381:Yes1:Yes0.9951391:Yes1:Yes0.9951401:Yes1:Yes0.9951411:Yes1:Yes0.9951441:Yes1:Yes0.9951441:Yes1:Yes0.995	116	1:Yes	1:Yes	0.995
1191:Yes1:Yes 0.995 120 1:Yes1:Yes 0.995 121 1:Yes1:Yes 0.995 122 1:Yes1:Yes 0.995 123 1:Yes1:Yes 0.995 123 1:Yes1:Yes 0.995 124 1:Yes1:Yes 0.995 125 1:Yes1:Yes 0.995 126 1:Yes1:Yes 0.995 127 1:Yes1:Yes 0.995 128 1:Yes1:Yes 0.995 129 1:Yes1:Yes 0.995 130 1:Yes1:Yes 0.995 131 1:Yes1:Yes 0.995 133 1:Yes1:Yes 0.995 134 1:Yes1:Yes 0.995 135 1:Yes1:Yes 0.995 136 1:Yes1:Yes 0.995 137 1:Yes1:Yes 0.995 138 1:Yes1:Yes 0.995 139 1:Yes1:Yes 0.995 140 1:Yes1:Yes 0.995 141 1:Yes1:Yes 0.995 144 1:Yes1:Yes 0.995	117	1:Yes	1:Yes	0.995
120 $1:Yes$ $1:Yes$ 0.995 121 $1:Yes$ $1:Yes$ 0.995 122 $1:Yes$ $1:Yes$ 0.995 123 $1:Yes$ $1:Yes$ 0.995 123 $1:Yes$ $1:Yes$ 0.995 124 $1:Yes$ $1:Yes$ 0.995 125 $1:Yes$ $1:Yes$ 0.995 126 $1:Yes$ $1:Yes$ 0.995 127 $1:Yes$ $1:Yes$ 0.995 128 $1:Yes$ $1:Yes$ 0.995 129 $1:Yes$ $1:Yes$ 0.995 130 $1:Yes$ $1:Yes$ 0.995 131 $1:Yes$ $1:Yes$ 0.995 133 $1:Yes$ $1:Yes$ 0.995 134 $1:Yes$ $1:Yes$ 0.995 135 $1:Yes$ $1:Yes$ 0.995 136 $1:Yes$ $1:Yes$ 0.995 138 $1:Yes$ $1:Yes$ 0.995 139 $1:Yes$ $1:Yes$ 0.995 140 $1:Yes$ $1:Yes$ 0.995 141 $1:Yes$ $1:Yes$ 0.995 144 $1:Yes$ $1:Yes$ 0.995	118	1:Yes	1:Yes	0.995
121 $1:Yes$ $1:Yes$ 0.995 122 $1:Yes$ $1:Yes$ 0.995 123 $1:Yes$ $1:Yes$ 0.995 124 $1:Yes$ $1:Yes$ 0.995 125 $1:Yes$ $1:Yes$ 0.995 126 $1:Yes$ $1:Yes$ 0.995 127 $1:Yes$ $1:Yes$ 0.995 128 $1:Yes$ $1:Yes$ 0.995 129 $1:Yes$ $1:Yes$ 0.995 130 $1:Yes$ $1:Yes$ 0.995 131 $1:Yes$ $1:Yes$ 0.995 132 $1:Yes$ $1:Yes$ 0.995 133 $1:Yes$ $1:Yes$ 0.995 134 $1:Yes$ $1:Yes$ 0.995 135 $1:Yes$ $1:Yes$ 0.995 136 $1:Yes$ $1:Yes$ 0.995 138 $1:Yes$ $1:Yes$ 0.995 139 $1:Yes$ $1:Yes$ 0.995 140 $1:Yes$ $1:Yes$ 0.995 141 $1:Yes$ $1:Yes$ 0.995 144 $1:Yes$ $1:Yes$ 0.995	119	1:Yes	1:Yes	0.995
1221:Yes1:Yes0.995 123 1:Yes1:Yes0.995 124 1:Yes1:Yes0.995 125 1:Yes1:Yes0.995 126 1:Yes1:Yes0.995 127 1:Yes1:Yes0.995 128 1:Yes1:Yes0.995 129 1:Yes1:Yes0.995 130 1:Yes1:Yes0.995 131 1:Yes1:Yes0.995 132 1:Yes1:Yes0.995 133 1:Yes1:Yes0.995 134 1:Yes1:Yes0.995 135 1:Yes1:Yes0.995 136 1:Yes1:Yes0.995 138 1:Yes1:Yes0.995 139 1:Yes1:Yes0.995 140 1:Yes1:Yes0.995 141 1:Yes1:Yes0.995 144 1:Yes1:Yes0.995	120	1:Yes	1:Yes	0.995
123 $1:Yes$ $1:Yes$ 0.995 124 $1:Yes$ $1:Yes$ 0.995 125 $1:Yes$ $1:Yes$ 0.995 126 $1:Yes$ $1:Yes$ 0.995 127 $1:Yes$ $1:Yes$ 0.995 127 $1:Yes$ $1:Yes$ 0.995 128 $1:Yes$ $1:Yes$ 0.995 129 $1:Yes$ $1:Yes$ 0.995 130 $1:Yes$ $1:Yes$ 0.995 131 $1:Yes$ $1:Yes$ 0.995 132 $1:Yes$ $1:Yes$ 0.995 133 $1:Yes$ $1:Yes$ 0.995 134 $1:Yes$ $1:Yes$ 0.995 135 $1:Yes$ $1:Yes$ 0.995 136 $1:Yes$ $1:Yes$ 0.995 137 $1:Yes$ $1:Yes$ 0.995 138 $1:Yes$ $1:Yes$ 0.995 140 $1:Yes$ $1:Yes$ 0.995 141 $1:Yes$ $1:Yes$ 0.995 142 $1:Yes$ $1:Yes$ 0.995 143 $1:Yes$ $1:Yes$ 0.995 144 $1:Yes$ $1:Yes$ 0.995	121	1:Yes	1:Yes	0.995
1241:Yes1:Yes 0.995 125 1:Yes1:Yes 0.995 126 1:Yes1:Yes 0.995 127 1:Yes1:Yes 0.995 128 1:Yes1:Yes 0.995 129 1:Yes1:Yes 0.995 130 1:Yes1:Yes 0.995 131 1:Yes1:Yes 0.995 132 1:Yes1:Yes 0.995 133 1:Yes1:Yes 0.995 134 1:Yes1:Yes 0.995 135 1:Yes1:Yes 0.995 136 1:Yes1:Yes 0.995 137 1:Yes1:Yes 0.995 138 1:Yes1:Yes 0.995 139 1:Yes1:Yes 0.995 140 1:Yes1:Yes 0.995 141 1:Yes1:Yes 0.995 144 1:Yes1:Yes 0.995	122	1:Yes	1:Yes	0.995
1251:Yes1:Yes0.9951261:Yes1:Yes0.9951271:Yes1:Yes0.9951281:Yes1:Yes0.9951291:Yes1:Yes0.9951301:Yes1:Yes0.9951311:Yes1:Yes0.9951321:Yes1:Yes0.9951331:Yes1:Yes0.9951341:Yes1:Yes0.9951351:Yes1:Yes0.9951361:Yes1:Yes0.9951371:Yes1:Yes0.9951381:Yes1:Yes0.9951401:Yes1:Yes0.9951411:Yes1:Yes0.9951431:Yes1:Yes0.9951441:Yes1:Yes0.995	123	1:Yes	1:Yes	0.995
1261:Yes1:Yes 0.995 127 1:Yes1:Yes 0.995 128 1:Yes1:Yes 0.995 129 1:Yes1:Yes 0.995 130 1:Yes1:Yes 0.995 131 1:Yes1:Yes 0.995 131 1:Yes1:Yes 0.995 132 1:Yes1:Yes 0.995 133 1:Yes1:Yes 0.995 134 1:Yes1:Yes 0.995 135 1:Yes1:Yes 0.995 136 1:Yes1:Yes 0.995 137 1:Yes1:Yes 0.995 138 1:Yes1:Yes 0.995 139 1:Yes1:Yes 0.995 140 1:Yes1:Yes 0.995 141 1:Yes1:Yes 0.995 144 1:Yes1:Yes 0.995 144 1:Yes1:Yes 0.995	124	1:Yes	1:Yes	0.995
1271:Yes1:Yes0.995 128 1:Yes1:Yes0.995 129 1:Yes1:Yes0.995 130 1:Yes1:Yes0.995 131 1:Yes1:Yes0.995 131 1:Yes1:Yes0.995 132 1:Yes1:Yes0.995 133 1:Yes1:Yes0.995 134 1:Yes1:Yes0.995 135 1:Yes1:Yes0.995 136 1:Yes1:Yes0.995 138 1:Yes1:Yes0.995 139 1:Yes1:Yes0.995 140 1:Yes1:Yes0.995 141 1:Yes1:Yes0.995 143 1:Yes1:Yes0.995 144 1:Yes1:Yes0.995	125	1:Yes	1:Yes	0.995
128 $1:Yes$ $1:Yes$ 0.995 129 $1:Yes$ $1:Yes$ 0.995 130 $1:Yes$ $1:Yes$ 0.995 131 $1:Yes$ $1:Yes$ 0.995 131 $1:Yes$ $1:Yes$ 0.995 132 $1:Yes$ $1:Yes$ 0.995 133 $1:Yes$ $1:Yes$ 0.995 134 $1:Yes$ $1:Yes$ 0.995 135 $1:Yes$ $1:Yes$ 0.995 136 $1:Yes$ $1:Yes$ 0.995 137 $1:Yes$ $1:Yes$ 0.995 138 $1:Yes$ $1:Yes$ 0.995 139 $1:Yes$ $1:Yes$ 0.995 140 $1:Yes$ $1:Yes$ 0.995 141 $1:Yes$ $1:Yes$ 0.995 142 $1:Yes$ $1:Yes$ 0.995 143 $1:Yes$ $1:Yes$ 0.995 144 $1:Yes$ $1:Yes$ 0.995	126	1:Yes	1:Yes	0.995
1291:Yes1:Yes0.9951301:Yes1:Yes0.9951311:Yes1:Yes0.9951321:Yes1:Yes0.9951331:Yes1:Yes0.9951341:Yes1:Yes0.9951351:Yes1:Yes0.9951361:Yes1:Yes0.9951371:Yes1:Yes0.9951381:Yes1:Yes0.9951391:Yes1:Yes0.9951401:Yes1:Yes0.9951411:Yes1:Yes0.9951421:Yes1:Yes0.9951441:Yes1:Yes0.995	127	1:Yes	1:Yes	0.995
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	128	1:Yes	1:Yes	0.995
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	129	1:Yes	1:Yes	0.995
1321:Yes1:Yes0.9951331:Yes1:Yes0.9951341:Yes1:Yes0.9951351:Yes1:Yes0.9951361:Yes1:Yes0.9951371:Yes1:Yes0.9951381:Yes1:Yes0.9951391:Yes1:Yes0.9951401:Yes1:Yes0.9951411:Yes1:Yes0.9951421:Yes1:Yes0.9951431:Yes1:Yes0.9951441:Yes1:Yes0.995	130	1:Yes	1:Yes	0.995
1331:Yes1:Yes0.9951341:Yes1:Yes0.9951351:Yes1:Yes0.9951361:Yes1:Yes0.9951371:Yes1:Yes0.9951381:Yes1:Yes0.9951391:Yes1:Yes0.9951401:Yes1:Yes0.9951411:Yes1:Yes0.9951421:Yes1:Yes0.9951431:Yes1:Yes0.9951441:Yes1:Yes0.995	131	1:Yes	1:Yes	0.995
1341:Yes1:Yes0.9951351:Yes1:Yes0.9951361:Yes1:Yes0.9951371:Yes1:Yes0.9951381:Yes1:Yes0.9951391:Yes1:Yes0.9951401:Yes1:Yes0.9951411:Yes1:Yes0.9951421:Yes1:Yes0.9951431:Yes1:Yes0.9951441:Yes1:Yes0.995	132	1:Yes	1:Yes	0.995
1351:Yes1:Yes0.9951361:Yes1:Yes0.9951371:Yes1:Yes0.9951381:Yes1:Yes0.9951391:Yes1:Yes0.9951401:Yes1:Yes0.9951411:Yes1:Yes0.9951421:Yes1:Yes0.9951431:Yes1:Yes0.9951441:Yes1:Yes0.995	133	1:Yes	1:Yes	0.995
1361:Yes1:Yes0.9951371:Yes1:Yes0.9951381:Yes1:Yes0.9951391:Yes1:Yes0.9951401:Yes1:Yes0.9951411:Yes1:Yes0.9951421:Yes1:Yes0.9951431:Yes1:Yes0.9951441:Yes1:Yes0.995	134	1:Yes	1:Yes	0.995
1371:Yes1:Yes0.9951381:Yes1:Yes0.9951391:Yes1:Yes0.9951401:Yes1:Yes0.9951411:Yes1:Yes0.9951421:Yes1:Yes0.9951431:Yes1:Yes0.9951441:Yes1:Yes0.995	135	1:Yes	1:Yes	0.995
1381:Yes1:Yes0.9951391:Yes1:Yes0.9951401:Yes1:Yes0.9951411:Yes1:Yes0.9951421:Yes1:Yes0.9951431:Yes1:Yes0.9951441:Yes1:Yes0.995	136	1:Yes	1:Yes	0.995
1391:Yes1:Yes0.9951401:Yes1:Yes0.9951411:Yes1:Yes0.9951421:Yes1:Yes0.9951431:Yes1:Yes0.9951441:Yes1:Yes0.995	137	1:Yes	1:Yes	0.995
1401:Yes1:Yes0.9951411:Yes1:Yes0.9951421:Yes1:Yes0.9951431:Yes1:Yes0.9951441:Yes1:Yes0.995	138	1:Yes	1:Yes	0.995
1411:Yes1:Yes0.9951421:Yes1:Yes0.9951431:Yes1:Yes0.9951441:Yes1:Yes0.995	139	1:Yes	1:Yes	0.995
1421:Yes1:Yes0.9951431:Yes1:Yes0.9951441:Yes1:Yes0.995	140	1:Yes	1:Yes	0.995
1431:Yes1:Yes0.9951441:Yes1:Yes0.995	141	1:Yes	1:Yes	0.995
144 1:Yes 1:Yes 0.995	142	1:Yes	1:Yes	0.995
	143	1:Yes	1:Yes	0.995
145 $1:V_{00}$ $1:V_{00}$ 0.005	144	1:Yes	1:Yes	0.995
145 1.1es 1.1es 0.995	145	1:Yes	1:Yes	0.995
146 1:Yes 1:Yes 0.995	146	1:Yes	1:Yes	0.995

147	1:Yes	1:Yes	0.995
148	1:Yes	1:Yes	0.995
149	1:Yes	1:Yes	0.995
150	1:Yes	1:Yes	0.995
151	1:Yes	1:Yes	0.995
152	1:Yes	1:Yes	0.995
153	1:Yes	1:Yes	0.995
154	1:Yes	1:Yes	0.995
155	1:Yes	1:Yes	0.995
156	1:Yes	1:Yes	0.995
157	1:Yes	1:Yes	0.995
158	1:Yes	1:Yes	0.995
159	1:Yes	1:Yes	0.995
160	1:Yes	1:Yes	0.995
161	1:Yes	1:Yes	0.995
162	2:No	2:No	0.995
163	1:Yes	1:Yes	0.995
164	1:Yes	1:Yes	0.995
165	1:Yes	1:Yes	0.995
166	1:Yes	1:Yes	0.997
167	1:Yes	1:Yes	0.997
168	2:No	2:No	0.995
169	2:No	2:No	0.995
170	1:Yes	1:Yes	0.995
171	2:No	2:No	0.995
172	1:Yes	1:Yes	0.995
173	1:Yes	1:Yes	0.995
174	2:No	2:No	0.995
175	1:Yes	1:Yes	0.995
176	1:Yes	1:Yes	0.995
177	1:Yes	1:Yes	0.995
178	2:No	2:No	0.995
179	2:No	2:No	0.995
180	1:Yes	1:Yes	0.995
181	2:No	2:No	0.995
182	1:Yes	1:Yes	0.995

Logistic Classification Model/NN

Logistic classification with ridge parameter of 1.0E-8

Coefficients...

Class

Variable

Yes

Car superseding Ability=No	-26.2427		
Motorbike superseding Ability=Yes	-4.39		
House superseding Ability=Yes	5.3858		
Business superseding Ability=Yes	44.8751		
No superseding ability=Yes	3.3551		
Have or Had Business Insurance=Yes	18.2946		
Have or Had Civil Liability Insurance=Yes	42.4228		
Have or Had Vessel Insurance=Yes	-33.1193		
Have or Had Health Insurance=Yes	-37.0265		
Have or Had Everyday needs Insurance=Yes	-31.7624		
Have or Had Business House Insurance=Yes	-44.8548		
Have or Had Family Insurance=Yes	-49.4047		
Have or Had Cash Insurance=Yes	-53.9398		
Have or Had Child Insurance=Yes	12.6073		
Have or Had Motorbike Insurance=Yes	-1.6668		
Have never had Insurance=No	-10.1612		
Fixed Costs would not be covered in case of a possible loss of mine=No	11.1234		
Loans would not be covered in case of a possible loss of mine=Yes	-28.2996		
Children Studies would not be covered in case of a possible loss			
of mine=Yes	-1.3838		
Tax obligations would not be covered in case of a possible loss of mine=Yes -4.141			
No needs to leave behind in case of a possible loss of mine=Yes	-2.9381		
Happiness would not be covered in case of a possible loss of mine=Yes	-18.9965		
Purchases in non-basic necessities would not be covered in case of a possible loss of			
mine=Yes	24.0523		

Want a risk protection=No	-32.7197
A satisfying amount of money for the support of my beloved ones	0.0216
Not at all satisfied from the public insurance health benefits=Yes	-26.4691
Kind of satisfied from the public insurance health benefits=No 8.1841	-
Quite satisfied from the public insurance health benefits=Yes	9.0859
Absolutely satisfied from the public insurance health benefits=Yes	-8.7435
I would choose a Public Hospital in Athens or Thessaloniki for a	
mild health issue=No	-5.5799
I would choose a big private hospital in Athens or Thessaloniki for a mild he	ealth
issue=Yes	20.0535
I would choose a local private hospital for a mild health issue=Yes	-4.9704
I would choose a local public hospital for a mild health issue=Yes	-19.8892
I would choose a public hospital in Athens or Thessaloniki for serious health issues=Yes	n -17.0709
I would choose a big private hospital of Athens or Thessaloniki for serious h	nealth
issues=No	-4.0864
I would choose a local private hospital for serious health issues=Yes	5.0078
I would choose a local public hospital for serious health issues=Yes	6.0193
I would choose a foreign hospital for serious health issues=Yes	5.1473
I wish for private health services coupled with my insurance=No	-13.6774
I would like diagnostic tests to be included to my private insurance=No	8.8833
I would like doctor visits to be included to my private insurance=Yes	24.7004
I would like doctor visits to be included to my private insurance=No	-19.3459
I would like doctor visits to be included to my private insurance=Yes	-52.4769
I would like hospital care to be included to my private insurance=No	33.9022
I would like Annual check up to be included to my private insurance=No	19.2363

I would like going abroad to be included to my private insurance=No	-2.5301
I would like ambulance to be included to my private insurance =Yes	1.4932
Team insurance =Yes	-8.6958
I will not get a pension=No	-12.6141
I will get a small pension=Yes	-2.1184
I will get a satisfying pension=Yes	-10.6577
I have managed for a lump sum or supplementary pension=No	6.6073
I have managed for a lump sum or supplementary pension through	
Bank Savings=No	30.2287
I have managed for a lump sum or supplementary pension through Pension supplementary supplementary pension supplementary p	scheme -54.3474
I have managed for a lump sum or supplementary pension through Life insu	
program and savings plan=Yes	12.6073
I have managed for a lump sum or supplementary pension through Real esta	
purchase for rent or exploitation=Yes	-11.2331
I am about to take immediate care of a lump sum or supplementary	
pension=Yes	-25.3673
I have managed for a lump sum or supplementary pension through Pension	scheme or
savings plan purchase =Yes	-14.2421
Even if I wanted it I cannot take care of a lump sum or supplementary	
pension=Yes	-44.301
It is of a major importance to support my children and grandchildren after I	receive
my pension=No	-11.5925
It is of a major importance to cover my healthcare after I receive	
my pension=No	-3.646
It is of a major importance to cover my pleasure trips after I receive my pen- -10.7943	sion=No

It is of a major importance to cover my house purchases after I receive	my
pension=Yes	-14.7902
It is of a major importance to cover my fixed costs after I receive my pe-43.8113	ension=Yes
It is of a major importance to cover my everyday needs after I receive a	my
pension=Yes	-31.7624
Intercept	81.5235
Odds Ratios	
	Class
Variable	Yes
Car superseding Ability=No	0
Motorbike superseding Ability=Yes	0.0124
House superseding Ability=Yes	218.2802
Business superseding Ability=Yes	3.08
No superseding ability=Yes	28.6496
Have or Had Business Insurance=Yes	88150280.86
Have or Had Civil Liability Insurance=Yes	2.65
Have or Had Vessel Insurance=Yes	0
Have or Had Health Insurance=Yes	0
Have or Had Everyday needs Insurance=Yes	0
Have or Had Business House Insurance=Yes	0
Have or Had Family Insurance=Yes	0
Have or Had Cash Insurance=Yes	0
Have or Had Child Insurance=Yes	298733.29
Have or Had Motorbike Insurance=Yes	0.1888

Have never had Insurance=No	0
Fixed Costs would not be covered in case of a possible loss of mine=No	67736.35
Loans would not be covered in case of a possible loss of mine=Yes	0
Children Studies would not be covered in case of a possible loss of mine="	Yes 0.2506
Tax obligations would not be covered in case of a possible loss of mine=Y	es 0.0159
No needs to leave behind in case of a possible loss of mine=Yes	0.053
Happiness would not be covered in case of a possible loss of mine=Yes	0
Purchases in non basic necessities would not be covered in case of a possil mine=Yes	ble loss of 2.79
Want a risk protection=No	0
A satisfying amount of money for the support of my beloved ones	1.0218
Not at all satisfied from the public insurance health benefits=Yes	0
Kind of satisfied from the public insurance health benefits=No	0.0003
Quite satisfied from the public insurance health benefits=Yes	8829.5989
Absolutely satisfied from the public insurance health benefits=Yes	0.0002
I would choose a Public Hospital in Athens or Thessaloniki for a mild heal	lth
issue=No	0.0038
I would choose a big private hospital in Athens or Thessaloniki for a mild issue=Yes 511	health 817009.01
I would choose a local private hospital for a mild health issue=Yes	0.0069
I would choose a local public hospital for a mild health issue=Yes	0
I would choose a public hospital in Athens or Thessaloniki for serious heat issues=Yes	lth O
I would choose a big private hospital of Athens or Thessaloniki for serious issues=No	s health 0.0168
I would choose a local private hospital for serious health issues=Yes	149.5731
I would choose a local public hospital for serious health issues=Yes	411.2982

I would choose a foreign hospital for serious health issues=Yes	171.96
I wish for private health services coupled with my insurance=No	0
I would like diagnostic tests to be included to my private insurance=N	lo 7210.64
I would like doctor visits to be included to my private insurance=Yes	5.33
I would like doctor visits to be included to my private insurance=No	0
I would like doctor visits to be included to my private insurance=Yes	0
I would like hospital care to be included to my private insurance=No	5.29
I would like Annual check up to be included to my	
private insurance=No	226063771.49
I would like going abroad to be included to my private insurance=No	0.0797
I would like ambulance to be included to my private insurance =Yes	4.4515
Team insurance =Yes	0.0002
I will not get a pension=No	0
I will get a small pension=Yes	0.1202
I will get a satisfying pension=Yes	0
I have managed for a lump sum or supplementary pension=No	740.4793
I have managed for a lump sum or supplementary pension through	
Bank Savings=No	1.34
I have managed for a lump sum or supplementary pension through Perpurchase=Yes	nsion scheme 0
I have managed for a lump sum or supplementary pension through Lif program and savings plan=Yes	fe insurance 298733.2066
I have managed for a lump sum or supplementary pension through Re	
purchase for rent or exploitation=Yes	0
I am about to take immediate care of a lump sum or supplementary	
pension=Yes	0

I have managed for a lump sum or supplementary pension through Pension scheme or		
savings plan purchase =Yes	0	
Even if I wanted it I cannot take care of a lump sum or supplementary		
pension=Yes	0	
It is of a major importance to support my children and grandchildren after I re	eceive	
my pension=No	0	
It is of a major importance to cover my healthcare after I receive		
my pension=No	0.0261	
It is of a major importance to cover my pleasure trips after I receive		
my pension=No	0	
It is of a major importance to cover my house purchases after I receive my		
pension=Yes	0	
It is of a major importance to cover my fixed costs after I receive my		
pension=Yes	0	
It is of a major importance to cover my everyday needs after I receive my		
pension=Yes	0	

Logistic	Regression	Predictions /	NN
----------	------------	----------------------	----

#inst	actual	predicted	error
11	1:Yes	1:Yes	1
12	1:Yes	1:Yes	1
13	1:Yes	1:Yes	1
14	1:Yes	1:Yes	1
15	1:Yes	1:Yes	1
16	1:Yes	1:Yes	1
17	1:Yes	1:Yes	1
18	1:Yes	1:Yes	1
19	1:Yes	1:Yes	1
20	1:Yes	1:Yes	1
21	1:Yes	1:Yes	1
22	1:Yes	1:Yes	1
23	1:Yes	1:Yes	1
24	1:Yes	1:Yes	1
25	1:Yes	1:Yes	1
26	1:Yes	1:Yes	1

Business Decision Analysis Based on Data Analytics | Antonia Trikounaki

27	1:Yes	1:Yes	1
28	1:Yes	1:Yes	1
29	1:Yes	1:Yes	1
30	1:Yes	1:Yes	1
31	1:Yes	1:Yes	1
32	1:Yes	1:Yes	1
33	1:Yes	1:Yes	1
34	1:Yes	1:Yes	1
35	1:Yes	1:Yes	1
36	1:Yes	1:Yes	1
37	1:Yes	1:Yes	1
38	1:Yes	1:Yes	1
39	1:Yes	1:Yes	1
40	1:Yes	1:Yes	1
41	1:Yes	1:Yes	1
42	1:Yes	1:Yes	1
43	1:Yes	1:Yes	1
44	1:Yes	1:Yes	1
45	1:Yes	1:Yes	1
46	1:Yes	1:Yes	1
47	1:Yes	1:Yes	1
48	1:Yes	1:Yes	1
49	1:Yes	1:Yes	1
50	1:Yes	1:Yes	1
51	1:Yes	1:Yes	1
52	1:Yes	1:Yes	1
53	1:Yes	1:Yes	1
54	1:Yes	1:Yes	1
55	1:Yes	1:Yes	1
56	1:Yes	1:Yes	1
57	1:Yes	1:Yes	1
58	1:Yes	1:Yes	1
59	1:Yes	1:Yes	1
60	1:Yes	1:Yes	1
61	1:Yes	1:Yes	1
62	1:Yes	1:Yes	1
63	1:Yes	1:Yes	1
64	1:Yes	1:Yes	1
65	1:Yes	1:Yes	1
66	1:Yes	1:Yes	1
67	1:Yes	1:Yes	1
68	1:Yes	1:Yes	1
69	1:Yes	1:Yes	1
70	1:Yes	1:Yes	1
70	1:Yes	1:Yes	1
72	1:Yes	1:Yes	1
72	1:Yes	1:Yes	1
73	1:Yes	1:Yes	1
/	1.100	1.105	1

75	1:Yes	1:Yes	1
76	1:Yes	1:Yes	1
77	1:Yes	1:Yes	1
78	1:Yes	1:Yes	1
79	1:Yes	1:Yes	1
80	1:Yes	1:Yes	1
81	1:Yes	1:Yes	1
82	1:Yes	1:Yes	1
83	1:Yes	1:Yes	1
84	1:Yes	1:Yes	1
85	1:Yes	1:Yes	1
86	1:Yes	1:Yes	1
87	1:Yes	1:Yes	1
88	1:Yes	1:Yes	1
89	1:Yes	1:Yes	1
90	1:Yes	1:Yes	1
91	1:Yes	1:Yes	1
92	1:Yes	1:Yes	1
93	1:Yes	1:Yes	1
94	1:Yes	1:Yes	1
95	1:Yes	1:Yes	1
96	1:Yes	1:Yes	1
97	1:Yes	1:Yes	1
98	1:Yes	1:Yes	1
99	1:Yes	1:Yes	1
100	1:Yes	1:Yes	1
101	1:Yes	1:Yes	1
102	1:Yes	1:Yes	1
103	1:Yes	1:Yes	1
104	1:Yes	1:Yes	1
105	1:Yes	1:Yes	1
106	1:Yes	1:Yes	1
107	1:Yes	1:Yes	1
108	1:Yes	1:Yes	1
109	1:Yes	1:Yes	1
110	1:Yes	1:Yes	1
111	1:Yes	1:Yes	1
112	1:Yes	1:Yes	1
113	1:Yes	1:Yes	1
114	1:Yes	1:Yes	1
115	1:Yes	1:Yes	1
116	1:Yes	1:Yes	1
117	1:Yes	1:Yes	1
118	1:Yes	1:Yes	1
119	1:Yes	1:Yes	1
120	1:Yes	1:Yes	1
121	1:Yes	1:Yes	1
122	1:Yes	1:Yes	1

123	1:Yes	1:Yes	1
124	1:Yes	1:Yes	1
125	1:Yes	1:Yes	1
126	1:Yes	1:Yes	1
127	1:Yes	1:Yes	1
128	1:Yes	1:Yes	1
129	1:Yes	1:Yes	1
130	1:Yes	1:Yes	1
131	1:Yes	1:Yes	1
132	1:Yes	1:Yes	1
133	1:Yes	1:Yes	1
134	1:Yes	1:Yes	1
135	1:Yes	1:Yes	1
136	1:Yes	1:Yes	1
137	1:Yes	1:Yes	1
138	1:Yes	1:Yes	1
139	1:Yes	1:Yes	1
140	1:Yes	1:Yes	1
141	1:Yes	1:Yes	1
142	1:Yes	1:Yes	1
143	1:Yes	1:Yes	1
144	1:Yes	1:Yes	1
145	1:Yes	1:Yes	1
146	1:Yes	1:Yes	1
147	1:Yes	1:Yes	1
148	1:Yes	1:Yes	1
149	1:Yes	1:Yes	1
150	1:Yes	1:Yes	1
151	1:Yes	1:Yes	1
152	1:Yes	1:Yes	1
153	1:Yes	1:Yes	1
154	1:Yes	1:Yes	1
155	1:Yes	1:Yes	1
156	1:Yes	1:Yes	1
157	1:Yes	1:Yes	1
158	1:Yes	1:Yes	1
159	1:Yes	1:Yes	1
160	1:Yes	1:Yes	1
161	1:Yes	1:Yes	1
162	2:No	2:No	1
163	1:Yes	1:Yes	1
164	1:Yes	1:Yes	1
165	1:Yes	1:Yes	1
166	1:Yes	1:Yes	1
167	1:Yes	1:Yes	1
168	2:No	2:No	1
169	2:No	2:No	1
170	1:Yes	1:Yes	1
			-

Business Decision Analysis Based on Data Analytics | Antonia Trikounaki

171	2:No	2:No	1
172	1:Yes	1:Yes	1
173	1:Yes	1:Yes	1
174	2:No	2:No	1
175	1:Yes	1:Yes	1
176	1:Yes	1:Yes	1
177	1:Yes	1:Yes	1
178	2:No	2:No	1
179	2:No	2:No	1
180	1:Yes	1:Yes	1
181	2:No	2:No	1
182	1:Yes	1:Yes	1

SMO Reg Classifier/NN

<u>Kernel used</u>: Linear Kernel: $K(x,y) = \langle x, y \rangle$

Classifier for classes: Yes, No

BinarySMO

Machine linear: showing attribute weights, not support vectors.

0.5581 * (normalized) Car superseding Ability=No

- + 0.3858 * (normalized) Motorbike superseding Ability=Yes
- + -0.1487 * (normalized) House superseding Ability=Yes
- + -0.0192 * (normalized) Business superseding Ability=Yes
- + 0.2542 * (normalized) No superseding ability=Yes
- + -0.0702 * (normalized) Have or Had Business Insurance=Yes
- + -0.4933 * (normalized) Have or Had Civil Liability Insurance=Yes
- + -0 * (normalized) Have or Had Vessel Insurance=Yes
- + 0.044 * (normalized) Have never had Insurance=No

+ -0.0314 * (normalized) Fixed Costs would not be covered in case of a possible loss of mine=No

+ 0.4173 * (normalized) Loans would not be covered in case of a possible loss of mine=Yes

+ 0.0743 * (normalized) Children Studies would not be covered in case of a possible loss of mine=Yes

+ -0.3094 * (normalized) Tax obligations would not be covered in case of a possible loss of mine=Yes

+ -0.0751 * (normalized) Purchases in non basic necessities would not be covered in case of a possible loss of mine=Yes

+ 0.8043 * (normalized) Want a risk protection=No

+ 0.101 * (normalized) A satisfying amount of money for the support of my beloved ones

+ 0.4458 * (normalized) Not at all satisfied from the public insurance health benefits=Yes

+ 0.4266 * (normalized) Kind of satisfied from the public insurance health benefits=No

+ 0.0098 * (normalized) Quite satisfied from the public insurance health benefits=Yes

+ -0.0291 * (normalized) Absolutely satisfied from the public insurance health benefits=Yes

+ 0.1453 * (normalized) I would choose a Public Hospital in Athens or Thessaloniki for a mild health issue=No

+ -0.6878 * (normalized) I would choose a big private hospital in Athens or Thessaloniki for a mild health issue=Yes

+ 0.1451 * (normalized) I would choose a local private hospital for a mild health issue=Yes

+ 0.6879 * (normalized) I would choose a local public hospital for a mild health issue=Yes

+ 0.4222 * (normalized) I would choose a public hospital in Athens or Thessaloniki for serious health issues=Yes

+ -0.0536 * (normalized) I would choose a big private hospital of Athens or Thessaloniki for serious health issues=No

562

+ -0.1972 * (normalized) I would choose a local private hospital for serious health issues=Yes

+ 0.1199 * (normalized) I would choose a local public hospital for serious health issues=Yes

+ -0.3986 * (normalized) I would choose a foreign hospital for serious health issues=Yes

+ 0.3267 * (normalized) I wish for private health services coupled with my insurance=No

+ -0.594 * (normalized) I would like diagnostic tests to be included to my private insurance=No

+ -0.569 * (normalized) I would like doctor visits to be included to my private insurance=Yes

+ 0.569 * (normalized) I would like doctor visits to be included to my private insurance=No

+ 0 * (normalized) I would like doctor visits to be included to my private insurance=Yes

+ -0.6324 * (normalized) I would like hospital care to be included to my private insurance=No

+ -0.4584 * (normalized) I would like Annual check up to be included to my private insurance=No

+ 0.0573 * (normalized) I would like going abroad to be included to my private insurance=No

+ -0.0751 * (normalized) I would like ambulance to be included to my private insurance =Yes

+ 0.1281 * (normalized) Team insurance =Yes

+ 0.4074 * (normalized) I will not get a pension=No

+ 0.2487 * (normalized) I will get a small pension=Yes

+ 0.1588 * (normalized) I will get a satisfying pension=Yes

563

+ 0.1512 * (normalized) I have managed for a lump sum or supplementary pension=No

+ -0.6477 * (normalized) I have managed for a lump sum or supplementary pension through Bank Savings=No

+ -0.0751 * (normalized) I have managed for a lump sum or supplementary pension through Real estate purchase for rent or exploitation=Yes

+ 0.5914 * (normalized) I am about to take immediate care of a lump sum or supplementary pension=Yes

+ 0.0162 * (normalized) I have managed for a lump sum or supplementary pension through Pension scheme or savings plan purchase =Yes

+ 0.4028 * (normalized) Even if I wanted it I cannot take care of a lump sum or supplementary pension=Yes

+ 0.0601 * (normalized) It is of a major importance to support my children and grandchildren after I receive my pension=No

+ -0.0389 * (normalized) It is of a major importance to cover my healthcare after I receive my pension=No

+ 0.567 * (normalized) It is of a major importance to cover my pleasure trips after I receive my pension=No

+ 0 * (normalized) It is of a major importance to cover my house purchases after I receive my pension=Yes

+ 0.7332 * (normalized) It is of a major importance to cover my fixed costs after I receive my pension=Yes

- 3.2305

Number of kernel evaluations: 5192 (92.48% cached)

#inst	actual	predicted	error
11	1:Yes	1:Yes	1
12	1:Yes	1:Yes	1
13	1:Yes	1:Yes	1
14	1:Yes	1:Yes	1

SMO Reg Predictions/NN

15	1:Yes	1:Yes	1
16	1:Yes	1:Yes	1
17	1:Yes	1:Yes	1
18	1:Yes	1:Yes	1
19	1:Yes	1:Yes	1
20	1:Yes	1:Yes	1
21	1:Yes	1:Yes	1
22	1:Yes	1:Yes	1
23	1:Yes	1:Yes	1
24	1:Yes	1:Yes	1
25	1:Yes	1:Yes	1
26	1:Yes	1:Yes	1
27	1:Yes	1:Yes	1
28	1:Yes	1:Yes	1
29	1:Yes	1:Yes	1
30	1:Yes	1:Yes	1
31	1:Yes	1:Yes	1
32	1:Yes	1:Yes	1
33	1:Yes	1:Yes	1
34	1:Yes	1:Yes	1
35	1:Yes	1:Yes	1
36	1:Yes	1:Yes	1
37	1:Yes	1:Yes	1
38	1:Yes	1:Yes	1
39	1:Yes	1:Yes	1
40	1:Yes	1:Yes	1
41	1:Yes	1:Yes	1
42	1:Yes	1:Yes	1
43	1:Yes	1:Yes	1
44	1:Yes	1:Yes	1
45	1:Yes	1:Yes	1
46	1:Yes	1:Yes	1
47	1:Yes	1:Yes	1
48	1:Yes	1:Yes	1
49	1:Yes	1:Yes	1
50	1:Yes	1:Yes	1
51	1:Yes	1:Yes	1
52	1:Yes	1:Yes	1
53	1:Yes	1:Yes	1
54	1:Yes	1:Yes	1
55	1:Yes	1:Yes	1
56	1:Yes	1:Yes	1
57	1:Yes	1:Yes	1
58			1
	1:Yes	1:Yes	
59	1:Yes	1:Yes	1
60	1:Yes	1:Yes	
61	1:Yes	1:Yes	1
62	1:Yes	1:Yes	1

63	1:Yes	1:Yes	1
64	1:Yes	1:Yes	1
65	1:Yes	1:Yes	1
66	1:Yes	1:Yes	1
67	1:Yes	1:Yes	1
68	1:Yes	1:Yes	1
69	1:Yes	1:Yes	1
70	1:Yes	1:Yes	1
71	1:Yes	1:Yes	1
72	1:Yes	1:Yes	1
73	1:Yes	1:Yes	1
74	1:Yes	1:Yes	1
75	1:Yes	1:Yes	1
76	1:Yes	1:Yes	1
77	1:Yes	1:Yes	1
78	1:Yes	1:Yes	1
79	1:Yes	1:Yes	1
80	1:Yes	1:Yes	1
81	1:Yes	1:Yes	1
82	1:Yes	1:Yes	1
83	1:Yes	1:Yes	1
84	1:Yes	1:Yes	1
85	1:Yes	1:Yes	1
86	1:Yes	1:Yes	1
87	1:Yes	1:Yes	1
87	1:Yes	1:Yes	1
89	1:Yes	1:Yes	1
90	1:Yes	1:Yes	1
90	1:Yes	1:Yes	1
91 92	1:Yes		1
92		1:Yes	
	1:Yes	1:Yes	1
94	1:Yes	1:Yes	1
95	1:Yes	1:Yes	1
96	1:Yes	1:Yes	1
97	1:Yes	1:Yes	1
98	1:Yes	1:Yes	1
99	1:Yes	1:Yes	1
100	1:Yes	1:Yes	1
101	1:Yes	1:Yes	1
102	1:Yes	1:Yes	1
103	1:Yes	1:Yes	1
104	1:Yes	1:Yes	1
105	1:Yes	1:Yes	1
106	1:Yes	1:Yes	1
107	1:Yes	1:Yes	1
108	1:Yes	1:Yes	1
109	1:Yes	1:Yes	1
110	1:Yes	1:Yes	1

111	1:Yes	1:Yes	1
112	1:Yes	1:Yes	1
113	1:Yes	1:Yes	1
114	1:Yes	1:Yes	1
115	1:Yes	1:Yes	1
116	1:Yes	1:Yes	1
117	1:Yes	1:Yes	1
118	1:Yes	1:Yes	1
119	1:Yes	1:Yes	1
120	1:Yes	1:Yes	1
121	1:Yes	1:Yes	1
122	1:Yes	1:Yes	1
123	1:Yes	1:Yes	1
124	1:Yes	1:Yes	1
125	1:Yes	1:Yes	1
126	1:Yes	1:Yes	1
127	1:Yes	1:Yes	1
128	1:Yes	1:Yes	1
129	1:Yes	1:Yes	1
130	1:Yes	1:Yes	1
131	1:Yes	1:Yes	1
132	1:Yes	1:Yes	1
133	1:Yes	1:Yes	1
134	1:Yes	1:Yes	1
135	1:Yes	1:Yes	1
136	1:Yes	1:Yes	1
137	1:Yes	1:Yes	1
138	1:Yes	1:Yes	1
139	1:Yes	1:Yes	1
140	1:Yes	1:Yes	1
141	1:Yes	1:Yes	1
142	1:Yes	1:Yes	1
143	1:Yes	1:Yes	1
144	1:Yes	1:Yes	1
145	1:Yes	1:Yes	1
146	1:Yes	1:Yes	1
147	1:Yes	1:Yes	1
148	1:Yes	1:Yes	1
149	1:Yes	1:Yes	1
150	1:Yes	1:Yes	1
150	1:Yes	1:Yes	1
151	1:Yes	1:Yes	1
153	1:Yes	1:Yes	1
154	1:Yes	1:Yes	1
155	1:Yes	1:Yes	1
155	1:Yes	1:Yes	1
157	1:Yes	1:Yes	1
158	1:Yes	1:Yes	1

159	1:Yes	1:Yes	1
160	1:Yes	1:Yes	1
161	1:Yes	1:Yes	1
162	2:No	2:No	1
163	1:Yes	1:Yes	1
164	1:Yes	1:Yes	1
165	1:Yes	1:Yes	1
166	1:Yes	1:Yes	1
167	1:Yes	1:Yes	1
168	2:No	2:No	1
169	2:No	2:No	1
170	1:Yes	1:Yes	1
171	2:No	2:No	1
172	1:Yes	1:Yes	1
173	1:Yes	1:Yes	1
174	2:No	1:Yes	1
175	1:Yes	1:Yes	1
176	1:Yes	1:Yes	1
177	1:Yes	1:Yes	1
178	2:No	2:No	1
179	2:No	1:Yes	1
180	1:Yes	1:Yes	1
181	2:No	2:No	1
182	1:Yes	1:Yes	1

Multi Class Classifier/NN

=== Classifier model (full training set) ===

Classifier 1

Logistic Regression with ridge parameter of 1.0E-8

Coefficients...

	Class
Variable	Yes
Car superseding Ability=No	-26.2427
Motorbike superseding Ability=Yes	-4.39
House superseding Ability=Yes	5.3858
Business superseding Ability=Yes	44.8751

No superseding ability=Yes	3.3551
Have or Had Business Insurance=Yes	18.2946
Have or Had Civil Liability Insurance=Yes	42.4228
Have or Had Vessel Insurance=Yes	-33.1193
Have or Had Health Insurance=Yes	-37.0265
Have or Had Everyday needs Insurance=Yes	-31.7624
Have or Had Business House Insurance=Yes	-44.8548
Have or Had Family Insurance=Yes	-49.4047
Have or Had Cash Insurance=Yes	-53.9398
Have or Had Child Insurance=Yes	12.6073
Have or Had Motorbike Insurance=Yes	-1.6668
Have never had Insurance=No	-10.1612
Fixed Costs would not be covered in case of a possible loss of mine=No	11.1234
Loans would not be covered in case of a possible loss of mine=Yes	-28.2996
Children Studies would not be covered in case of a possible loss	
of mine=Yes	-1.3838
Tax obligations would not be covered in case of a possible loss	
of mine=Yes	-4.141
No needs to leave behind in case of a possible loss of mine=Yes	-2.9381
Happiness would not be covered in case of a possible loss of mine=Yes	-18.9965
Purchases in non-basic necessities would not be covered in case of a poss	sible loss of
mine=Yes	24.0523
Want a risk protection=No	-32.7197
A satisfying amount of money for the support of my beloved ones	0.0216
Not at all satisfied from the public insurance health benefits=Yes	-26.4691
Kind of satisfied from the public insurance health benefits=No	-8.1841

Quite satisfied from the public insurance health benefits=Yes	9.0859
Absolutely satisfied from the public insurance health benefits=Yes	-8.7435
I would choose a Public Hospital in Athens or Thessaloniki for a	
mild health issue=No	-5.5799
I would choose a big private hospital in Athens or Thessaloniki for a mile	d health
issue=Yes	20.0535
I would choose a local private hospital for a mild health issue=Yes	-4.9704
I would choose a local public hospital for a mild health issue=Yes	-19.8892
I would choose a public hospital in Athens or Thessaloniki for serious he	ealth
issues=Yes	-17.0709
I would choose a big private hospital of Athens or Thessaloniki for seriou	us health
issues=No	-4.0864
I would choose a local private hospital for serious health issues=Yes	5.0078
I would choose a local public hospital for serious health issues=Yes	6.0193
I would choose a foreign hospital for serious health issues=Yes	5.1473
I wish for private health services coupled with my insurance=No	-13.6774
I would like diagnostic tests to be included to my private insurance=No	8.8833
I would like doctor visits to be included to my private insurance=Yes	24.7004
I would like doctor visits to be included to my private insurance=No	-19.3459
I would like doctor visits to be included to my private insurance=Yes	-52.4769
I would like hospital care to be included to my private insurance=No	33.9022
I would like Annual check up to be included to my private insurance=No	0 19.2363
I would like going abroad to be included to my private insurance=No	-2.5301
I would like ambulance to be included to my private insurance =Yes	1.4932
Team insurance =Yes	-8.6958
I will not get a pension=No	-12.6141
I will get a small pension=Yes	-2.1184

I will get a satisfying pension=Yes	-10.6577
I have managed for a lump sum or supplementary pension=No	6.6073
I have managed for a lump sum or supplementary pension through	
Bank Savings=No	30.2287
I have managed for a lump sum or supplementary pension through Pens purchase=Yes	sion scheme -54.3474
I have managed for a lump sum or supplementary pension through Life program and savings plan=Yes	insurance 12.6073
I have managed for a lump sum or supplementary pension through Rea purchase for rent or exploitation=Yes	l estate -11.2331
I am about to take immediate care of a lump sum or supplementary	
pension=Yes	-25.3673
I have managed for a lump sum or supplementary pension through Pens savings plan purchase =Yes	sion scheme or -14.2421
Even if I wanted it I cannot take care of a lump sum or supplementary	
pension=Yes	-44.301
It is of a major importance to support my children and grandchildren af my pension=No	ter I receive -11.5925
It is of a major importance to cover my healthcare after I receive my	
pension=No	-3.646
It is of a major importance to cover my pleasure trips after I receive my	,
pension=No	-10.7943
It is of a major importance to cover my house purchases after I receive pension=Yes	my -14.7902
It is of a major importance to cover my fixed costs after I receive my	
pension=Yes	-43.8113
It is of a major importance to cover my everyday needs after I receive r pension=Yes	ny -31.7624

Intercept 81.5235 Odds Ratios... Class Variable Yes _____ 0 Car superseding Ability=No Motorbike superseding Ability=Yes 0.0124 House superseding Ability=Yes 218.2802 Business superseding Ability=Yes 3.08 No superseding ability=Yes 28.6496 Have or Had Business Insurance=Yes 88150280.8 Have or Had Civil Liability Insurance=Yes 2.65 0 Have or Had Vessel Insurance=Yes Have or Had Health Insurance=Yes 0 Have or Had Everyday needs Insurance=Yes 0 Have or Had Business House Insurance=Yes 0 Have or Had Family Insurance=Yes 0 Have or Had Cash Insurance=Yes 0 Have or Had Child Insurance=Yes 298733.29 Have or Had Motorbike Insurance=Yes 0.1888 0 Have never had Insurance=No Fixed Costs would not be covered in case of a possible loss of mine=No 67736.35 0 Loans would not be covered in case of a possible loss of mine=Yes Children Studies would not be covered in case of a possible loss of mine=Yes 0.2506 Tax obligations would not be covered in case of a possible loss of mine=Yes 0.0159

No needs to leave behind in case of a possible loss of mine=Yes	0.053
Happiness would not be covered in case of a possible loss of mine=Yes	0
Purchases in non basic necessities would not be covered in case of a possib	ole loss of
mine=Yes	2.79
Want a risk protection=No	0
A satisfying amount of money for the support of my beloved ones	1.0218
Not at all satisfied from the public insurance health benefits=Yes	0
Kind of satisfied from the public insurance health benefits=No 0.0003	
Quite satisfied from the public insurance health benefits=Yes	8829.59
Absolutely satisfied from the public insurance health benefits=Yes	0.0002
I would choose a Public Hospital in Athens or Thessaloniki for a mild heal issue=No	th 0.0038
I would choose a big private hospital in Athens or Thessaloniki for a mild issue=Yes 51181	health 7009.01
I would choose a local private hospital for a mild health issue=Yes	
i would choose a local private hospital for a finite health issue- i es	0.0069
I would choose a local public hospital for a mild health issue=Yes	0.0069 0
	0
I would choose a local public hospital for a mild health issue=Yes	0
I would choose a local public hospital for a mild health issue=Yes I would choose a public hospital in Athens or Thessaloniki for serious heal	0 th 0
I would choose a local public hospital for a mild health issue=Yes I would choose a public hospital in Athens or Thessaloniki for serious heal issues=Yes I would choose a big private hospital of Athens or Thessaloniki for serious	0 th 0 health
I would choose a local public hospital for a mild health issue=Yes I would choose a public hospital in Athens or Thessaloniki for serious heal issues=Yes I would choose a big private hospital of Athens or Thessaloniki for serious issues=No	0 th 0 health 0.0168
I would choose a local public hospital for a mild health issue=Yes I would choose a public hospital in Athens or Thessaloniki for serious heal issues=Yes I would choose a big private hospital of Athens or Thessaloniki for serious issues=No I would choose a local private hospital for serious health issues=Yes	0 th 0 health 0.0168 149.5731
I would choose a local public hospital for a mild health issue=Yes I would choose a public hospital in Athens or Thessaloniki for serious heal issues=Yes I would choose a big private hospital of Athens or Thessaloniki for serious issues=No I would choose a local private hospital for serious health issues=Yes I would choose a local public hospital for serious health issues=Yes	0 th 0 health 0.0168 149.5731 11.2982
I would choose a local public hospital for a mild health issue=Yes I would choose a public hospital in Athens or Thessaloniki for serious heal issues=Yes I would choose a big private hospital of Athens or Thessaloniki for serious issues=No I would choose a local private hospital for serious health issues=Yes I would choose a local public hospital for serious health issues=Yes I would choose a foreign hospital for serious health issues=Yes	0 th 0 health 0.0168 149.5731 11.2982 171.9687

I would like doctor visits to be included to my private insurance=No	0
I would like doctor visits to be included to my private insurance=Yes	0
I would like hospital care to be included to my private insurance=No 5.29	0
I would like Annual check up to be included to my private insurance	226063771.49
I would like going abroad to be included to my private insurance=No	0.0797
I would like ambulance to be included to my private insurance =Yes	4.4515
Team insurance =Yes	0.0002
I will not get a pension=No	0
I will get a small pension=Yes	0.1202
I will get a satisfying pension=Yes	0
I have managed for a lump sum or supplementary pension=No	740.4793
I have managed for a lump sum or supplementary pension through	
Bank Savings=No	1.34
I have managed for a lump sum or supplementary pension through Pen purchase=Yes	nsion scheme 0
purchase=Yes I have managed for a lump sum or supplementary pension through Life	0 e insurance
purchase=Yes I have managed for a lump sum or supplementary pension through Life program and savings plan=Yes	0 e insurance 298733.2066
purchase=Yes I have managed for a lump sum or supplementary pension through Life	0 e insurance 298733.2066
purchase=Yes I have managed for a lump sum or supplementary pension through Life program and savings plan=Yes I have managed for a lump sum or supplementary pension through Rea	0 e insurance 298733.2066 al estate 0
purchase=Yes I have managed for a lump sum or supplementary pension through Life program and savings plan=Yes I have managed for a lump sum or supplementary pension through Rea purchase for rent or exploitation=Yes	0 e insurance 298733.2066 al estate 0 nsion=Yes 0
purchase=Yes I have managed for a lump sum or supplementary pension through Life program and savings plan=Yes I have managed for a lump sum or supplementary pension through Rea purchase for rent or exploitation=Yes I am about to take immediate care of a lump sum or supplementary pen- I have managed for a lump sum or supplementary pension through Pen	0 e insurance 298733.2066 al estate 0 nsion=Yes 0 asion scheme or 0
purchase=Yes I have managed for a lump sum or supplementary pension through Life program and savings plan=Yes I have managed for a lump sum or supplementary pension through Rea purchase for rent or exploitation=Yes I am about to take immediate care of a lump sum or supplementary pen I have managed for a lump sum or supplementary pension through Pen savings plan purchase =Yes	0 e insurance 298733.2066 al estate 0 nsion=Yes 0 asion scheme or 0
purchase=Yes I have managed for a lump sum or supplementary pension through Life program and savings plan=Yes I have managed for a lump sum or supplementary pension through Rea purchase for rent or exploitation=Yes I am about to take immediate care of a lump sum or supplementary pen I have managed for a lump sum or supplementary pension through Pen savings plan purchase =Yes	0 e insurance 298733.2066 al estate 0 nsion=Yes 0 sion scheme or 0 pension=Yes 0

It is of a major importance to cover my healthcare after I receive my pension	0.0261
It is of a major importance to cover my pleasure trips after I receive	
my pension=No	0
It is of a major importance to cover my house purchases after I receive my	
pension=Yes	0
It is of a major importance to cover my fixed costs after I receive	
my pension=Yes	0
It is of a major importance to cover my everyday needs after I receive my	
pension=Yes	0

#inst	actual	predicted	error
10	1:Yes	1:Yes	1
11	1:Yes	1:Yes	1
12	1:Yes	1:Yes	1
13	1:Yes	1:Yes	1
14	1:Yes	1:Yes	1
15	1:Yes	1:Yes	1
16	1:Yes	1:Yes	1
17	1:Yes	1:Yes	1
18	1:Yes	1:Yes	1
19	1:Yes	1:Yes	1
20	1:Yes	1:Yes	1
21	1:Yes	1:Yes	1
22	1:Yes	1:Yes	1
23	1:Yes	1:Yes	1
24	1:Yes	1:Yes	1
25	1:Yes	1:Yes	1
26	1:Yes	1:Yes	1
27	1:Yes	1:Yes	1
28	1:Yes	1:Yes	1
29	1:Yes	1:Yes	1
30	1:Yes	1:Yes	1
31	1:Yes	1:Yes	1
32	1:Yes	1:Yes	1
33	1:Yes	1:Yes	1
34	1:Yes	1:Yes	1
35	1:Yes	1:Yes	1
36	1:Yes	1:Yes	1
37	1:Yes	1:Yes	1

Multi Class Classifier Predictions/NN

38	1:Yes	1:Yes	1
39	1:Yes	1:Yes	1
40	1:Yes	1:Yes	1
41	1:Yes	1:Yes	1
42	1:Yes	1:Yes	1
43	1:Yes	1:Yes	1
44	1:Yes	1:Yes	1
45	1:Yes	1:Yes	1
46	1:Yes	1:Yes	1
47	1:Yes	1:Yes	1
48	1:Yes	1:Yes	1
49	1:Yes	1:Yes	1
50	1:Yes	1:Yes	1
51	1:Yes	1:Yes	1
52	1:Yes	1:Yes	1
53			1
	1:Yes	1:Yes	
54	1:Yes	1:Yes	1
55	1:Yes	1:Yes	1
56	1:Yes	1:Yes	1
57	1:Yes	1:Yes	1
58	1:Yes	1:Yes	1
59	1:Yes	1:Yes	1
60	1:Yes	1:Yes	1
61	1:Yes	1:Yes	1
62	1:Yes	1:Yes	1
63	1:Yes	1:Yes	1
64	1:Yes	1:Yes	1
65	1:Yes	1:Yes	1
66	1:Yes	1:Yes	1
67	1:Yes	1:Yes	1
68	1:Yes	1:Yes	1
69	1:Yes	1:Yes	1
70	1:Yes	1:Yes	1
71	1:Yes	1:Yes	1
72	1:Yes	1:Yes	1
73	1:Yes	1:Yes	1
74	1:Yes	1:Yes	1
75	1:Yes	1:Yes	1
76	1:Yes	1:Yes	1
70	1:Yes	1:Yes	1
77	1:Yes	1:Yes	1
78	1:Yes	1:Yes	1
80	1:Yes	1:Yes	1
80		1:Yes	1
	1:Yes		
82	1:Yes	1:Yes	1
83	1:Yes	1:Yes	1
84	1:Yes	1:Yes	1
85	1:Yes	1:Yes	1

86 1:Yes 1:Yes 1 87 1:Yes 1:Yes 1 88 1:Yes 1:Yes 1 90 1:Yes 1:Yes 1 90 1:Yes 1:Yes 1 91 1:Yes 1:Yes 1 92 1:Yes 1:Yes 1 93 1:Yes 1:Yes 1 94 1:Yes 1:Yes 1 95 1:Yes 1:Yes 1 96 1:Yes 1:Yes 1 97 1:Yes 1:Yes 1 98 1:Yes 1:Yes 1 100 1:Yes 1:Yes 1 101 1:Yes 1:Yes 1 102 1:Yes 1:Yes 1 103 1:Yes 1:Yes 1 104 1:Yes 1:Yes 1 106 1:Yes 1:Yes 1 1				
88 1:Yes 1:Yes 1 90 1:Yes 1:Yes 1 91 1:Yes 1:Yes 1 92 1:Yes 1:Yes 1 93 1:Yes 1:Yes 1 94 1:Yes 1:Yes 1 95 1:Yes 1:Yes 1 96 1:Yes 1:Yes 1 97 1:Yes 1:Yes 1 98 1:Yes 1:Yes 1 99 1:Yes 1:Yes 1 100 1:Yes 1:Yes 1 101 1:Yes 1:Yes 1 102 1:Yes 1:Yes 1 103 1:Yes 1:Yes 1 104 1:Yes 1:Yes 1 105 1:Yes 1:Yes 1 106 1:Yes 1:Yes 1 108 1:Yes 1:Yes 1 110 1:Yes 1:Yes 1 111 1:Yes 1:Yes 1 <tr< td=""><td>86</td><td>1:Yes</td><td>1:Yes</td><td>1</td></tr<>	86	1:Yes	1:Yes	1
89 1:Yes 1:Yes 1 90 1:Yes 1:Yes 1 91 1:Yes 1:Yes 1 92 1:Yes 1:Yes 1 93 1:Yes 1:Yes 1 93 1:Yes 1:Yes 1 94 1:Yes 1:Yes 1 95 1:Yes 1:Yes 1 96 1:Yes 1:Yes 1 97 1:Yes 1:Yes 1 98 1:Yes 1:Yes 1 100 1:Yes 1:Yes 1 101 1:Yes 1:Yes 1 102 1:Yes 1:Yes 1 103 1:Yes 1:Yes 1 104 1:Yes 1:Yes 1 105 1:Yes 1:Yes 1 106 1:Yes 1:Yes 1 107 1:Yes 1:Yes 1 108 1:Yes	87	1:Yes	1:Yes	1
90 $1:Yes$ $1:Yes$ $1:Yes$ 91 $1:Yes$ $1:Yes$ 1 92 $1:Yes$ $1:Yes$ 1 93 $1:Yes$ $1:Yes$ 1 94 $1:Yes$ $1:Yes$ 1 95 $1:Yes$ $1:Yes$ 1 96 $1:Yes$ $1:Yes$ 1 97 $1:Yes$ $1:Yes$ 1 98 $1:Yes$ $1:Yes$ 1 99 $1:Yes$ $1:Yes$ 1 100 $1:Yes$ $1:Yes$ 1 101 $1:Yes$ $1:Yes$ 1 102 $1:Yes$ $1:Yes$ 1 103 $1:Yes$ $1:Yes$ 1 104 $1:Yes$ $1:Yes$ 1 105 $1:Yes$ $1:Yes$ 1 106 $1:Yes$ $1:Yes$ 1 107 $1:Yes$ $1:Yes$ 1 108 $1:Yes$ $1:Yes$ 1 110 $1:Yes$ $1:Yes$ 1 111 $1:Yes$ $1:Yes$ 1 112 $1:Yes$ $1:Yes$ 1 113 $1:Yes$ $1:Yes$ 1 114 $1:Yes$ $1:Yes$ 1 115 $1:Yes$ $1:Yes$ 1 116 $1:Yes$ $1:Yes$ 1 120 $1:Yes$ $1:Yes$ 1 121 $1:Yes$ $1:Yes$ 1 122 $1:Yes$ $1:Yes$ 1 123 $1:Yes$ $1:Yes$ 1 124 $1:Yes$ $1:Yes$ 1 125 $1:Yes$ <	88	1:Yes	1:Yes	1
91 $1:Yes$ $1:Yes$ $1:Yes$ 92 $1:Yes$ $1:Yes$ 1 93 $1:Yes$ $1:Yes$ 1 94 $1:Yes$ $1:Yes$ 1 95 $1:Yes$ $1:Yes$ 1 96 $1:Yes$ $1:Yes$ 1 97 $1:Yes$ $1:Yes$ 1 98 $1:Yes$ $1:Yes$ 1 99 $1:Yes$ $1:Yes$ 1 100 $1:Yes$ $1:Yes$ 1 101 $1:Yes$ $1:Yes$ 1 102 $1:Yes$ $1:Yes$ 1 103 $1:Yes$ $1:Yes$ 1 104 $1:Yes$ $1:Yes$ 1 105 $1:Yes$ $1:Yes$ 1 106 $1:Yes$ $1:Yes$ 1 107 $1:Yes$ $1:Yes$ 1 110 $1:Yes$ $1:Yes$ 1 110 $1:Yes$ <	89	1:Yes	1:Yes	1
92 1:Yes 1:Yes 1 93 1:Yes 1:Yes 1 94 1:Yes 1:Yes 1 95 1:Yes 1:Yes 1 95 1:Yes 1:Yes 1 96 1:Yes 1:Yes 1 97 1:Yes 1:Yes 1 98 1:Yes 1:Yes 1 99 1:Yes 1:Yes 1 100 1:Yes 1:Yes 1 101 1:Yes 1:Yes 1 102 1:Yes 1:Yes 1 103 1:Yes 1:Yes 1 104 1:Yes 1:Yes 1 105 1:Yes 1:Yes 1 106 1:Yes 1:Yes 1 108 1:Yes 1:Yes 1 110 1:Yes 1:Yes 1 1111 1:Yes 1:Yes 1 1112 1:Yes	90	1:Yes	1:Yes	1
93 1:Yes 1:Yes 1 94 1:Yes 1:Yes 1 95 1:Yes 1:Yes 1 96 1:Yes 1:Yes 1 97 1:Yes 1:Yes 1 98 1:Yes 1:Yes 1 99 1:Yes 1:Yes 1 100 1:Yes 1:Yes 1 101 1:Yes 1:Yes 1 102 1:Yes 1:Yes 1 103 1:Yes 1:Yes 1 104 1:Yes 1:Yes 1 105 1:Yes 1:Yes 1 106 1:Yes 1:Yes 1 107 1:Yes 1:Yes 1 108 1:Yes 1:Yes 1 109 1:Yes 1:Yes 1 110 1:Yes 1:Yes 1 111 1:Yes 1:Yes 1 1111 1:Yes	91	1:Yes	1:Yes	1
93 1:Yes 1:Yes 1 94 1:Yes 1:Yes 1 95 1:Yes 1:Yes 1 96 1:Yes 1:Yes 1 97 1:Yes 1:Yes 1 98 1:Yes 1:Yes 1 99 1:Yes 1:Yes 1 100 1:Yes 1:Yes 1 101 1:Yes 1:Yes 1 102 1:Yes 1:Yes 1 103 1:Yes 1:Yes 1 104 1:Yes 1:Yes 1 105 1:Yes 1:Yes 1 106 1:Yes 1:Yes 1 107 1:Yes 1:Yes 1 108 1:Yes 1:Yes 1 109 1:Yes 1:Yes 1 110 1:Yes 1:Yes 1 111 1:Yes 1:Yes 1 1111 1:Yes	92	1:Yes	1:Yes	1
951:Yes1:Yes1961:Yes1:Yes1971:Yes1:Yes1981:Yes1:Yes1991:Yes1:Yes11001:Yes1:Yes11011:Yes1:Yes11021:Yes1:Yes11031:Yes1:Yes11041:Yes1:Yes11051:Yes1:Yes11061:Yes1:Yes11071:Yes1:Yes11081:Yes1:Yes11091:Yes1:Yes11101:Yes1:Yes11111:Yes1:Yes11121:Yes1:Yes11131:Yes1:Yes11141:Yes1:Yes11151:Yes1:Yes11161:Yes1:Yes11171:Yes1:Yes11181:Yes1:Yes11201:Yes1:Yes11211:Yes1:Yes11221:Yes1:Yes11231:Yes1:Yes11241:Yes1:Yes11251:Yes1:Yes11261:Yes1:Yes11271:Yes1:Yes11281:Yes1:Yes11291:Yes1:Yes11211:Yes1:	93	1:Yes	1:Yes	1
961:Yes1:Yes1 97 1:Yes1:Yes1 98 1:Yes1:Yes1 99 1:Yes1:Yes1 100 1:Yes1:Yes1 101 1:Yes1:Yes1 101 1:Yes1:Yes1 101 1:Yes1:Yes1 102 1:Yes1:Yes1 103 1:Yes1:Yes1 104 1:Yes1:Yes1 105 1:Yes1:Yes1 106 1:Yes1:Yes1 106 1:Yes1:Yes1 107 1:Yes1:Yes1 108 1:Yes1:Yes1 109 1:Yes1:Yes1 110 1:Yes1:Yes1 111 1:Yes1:Yes1 111 1:Yes1:Yes1 112 1:Yes1:Yes1 113 1:Yes1:Yes1 114 1:Yes1:Yes1 115 1:Yes1:Yes1 116 1:Yes1:Yes1 117 1:Yes1:Yes1 118 1:Yes1:Yes1 120 1:Yes1:Yes1 121 1:Yes1:Yes1 122 1:Yes1:Yes1 123 1:Yes1:Yes1 124 1:Yes1:Yes1 125 1:Yes1:Yes1 126 1:Yes<	94	1:Yes	1:Yes	1
971:Yes1:Yes1 98 1:Yes1:Yes1 99 1:Yes1:Yes1 100 1:Yes1:Yes1 101 1:Yes1:Yes1 101 1:Yes1:Yes1 102 1:Yes1:Yes1 101 1:Yes1:Yes1 102 1:Yes1:Yes1 103 1:Yes1:Yes1 104 1:Yes1:Yes1 105 1:Yes1:Yes1 106 1:Yes1:Yes1 107 1:Yes1:Yes1 107 1:Yes1:Yes1 108 1:Yes1:Yes1 109 1:Yes1:Yes1 110 1:Yes1:Yes1 111 1:Yes1:Yes1 112 1:Yes1:Yes1 113 1:Yes1:Yes1 114 1:Yes1:Yes1 115 1:Yes1:Yes1 116 1:Yes1:Yes1 118 1:Yes1:Yes1 120 1:Yes1:Yes1 121 1:Yes1:Yes1 122 1:Yes1:Yes1 123 1:Yes1:Yes1 124 1:Yes1:Yes1 125 1:Yes1:Yes1 126 1:Yes1:Yes1 128 1:Yes1:Yes1 129 1:Yes	95	1:Yes	1:Yes	1
98 $1:Yes$ $1:Yes$ 1 99 $1:Yes$ $1:Yes$ 1 100 $1:Yes$ $1:Yes$ 1 101 $1:Yes$ $1:Yes$ 1 102 $1:Yes$ $1:Yes$ 1 103 $1:Yes$ $1:Yes$ 1 104 $1:Yes$ $1:Yes$ 1 105 $1:Yes$ $1:Yes$ 1 106 $1:Yes$ $1:Yes$ 1 107 $1:Yes$ $1:Yes$ 1 108 $1:Yes$ $1:Yes$ 1 109 $1:Yes$ $1:Yes$ 1 110 $1:Yes$ $1:Yes$ 1 111 $1:Yes$ $1:Yes$ 1 112 $1:Yes$ $1:Yes$ 1 113 $1:Yes$ $1:Yes$ 1 114 $1:Yes$ $1:Yes$ 1 115 $1:Yes$ $1:Yes$ 1 116 $1:Yes$ $1:Yes$ 1 117 $1:Yes$ $1:Yes$ 1 118 $1:Yes$ $1:Yes$ 1 120 $1:Yes$ $1:Yes$ 1 121 $1:Yes$ $1:Yes$ 1 122 $1:Yes$ $1:Yes$ 1 123 $1:Yes$ $1:Yes$ 1 124 $1:Yes$ $1:Yes$ 1 125 $1:Yes$ $1:Yes$ 1 126 $1:Yes$ $1:Yes$ 1 127 $1:Yes$ $1:Yes$ 1 128 $1:Yes$ $1:Yes$ 1 129 $1:Yes$ $1:Yes$ 1 130 $1:Y$	96	1:Yes	1:Yes	1
991:Yes1:Yes11001:Yes1:Yes11011:Yes1:Yes11021:Yes1:Yes11031:Yes1:Yes11041:Yes1:Yes11051:Yes1:Yes11061:Yes1:Yes11071:Yes1:Yes11081:Yes1:Yes11091:Yes1:Yes11101:Yes1:Yes11111:Yes1:Yes11121:Yes1:Yes11131:Yes1:Yes11141:Yes1:Yes11151:Yes1:Yes11161:Yes1:Yes11171:Yes1:Yes11181:Yes1:Yes11201:Yes1:Yes11211:Yes1:Yes11221:Yes1:Yes11231:Yes1:Yes11241:Yes1:Yes11251:Yes1:Yes11261:Yes1:Yes11271:Yes1:Yes11281:Yes1:Yes11291:Yes1:Yes11301:Yes1:Yes11311:Yes1:Yes1	97	1:Yes	1:Yes	1
100 $1:Yes$ $1:Yes$ 1 101 $1:Yes$ $1:Yes$ 1 102 $1:Yes$ $1:Yes$ 1 103 $1:Yes$ $1:Yes$ 1 104 $1:Yes$ $1:Yes$ 1 105 $1:Yes$ $1:Yes$ 1 106 $1:Yes$ $1:Yes$ 1 107 $1:Yes$ $1:Yes$ 1 108 $1:Yes$ $1:Yes$ 1 109 $1:Yes$ $1:Yes$ 1 110 $1:Yes$ $1:Yes$ 1 111 $1:Yes$ $1:Yes$ 1 111 $1:Yes$ $1:Yes$ 1 111 $1:Yes$ $1:Yes$ 1 111 $1:Yes$ $1:Yes$ 1 112 $1:Yes$ $1:Yes$ 1 113 $1:Yes$ $1:Yes$ 1 116 $1:Yes$ $1:Yes$ 1 117 $1:Yes$ $1:Yes$ 1 118 $1:Yes$ $1:Yes$ 1 120 $1:Yes$ $1:Yes$ 1 123 $1:Yes$ $1:Yes$ 1 124 $1:Yes$ $1:Yes$ 1 125 $1:Yes$ $1:Yes$ 1 126 $1:Yes$ $1:Yes$ 1 128 $1:Yes$ $1:Yes$ 1 129 $1:Ye$	98	1:Yes	1:Yes	1
1011:Yes1:Yes1 102 1:Yes1:Yes1 103 1:Yes1:Yes1 104 1:Yes1:Yes1 105 1:Yes1:Yes1 106 1:Yes1:Yes1 106 1:Yes1:Yes1 107 1:Yes1:Yes1 108 1:Yes1:Yes1 109 1:Yes1:Yes1 109 1:Yes1:Yes1 110 1:Yes1:Yes1 111 1:Yes1:Yes1 111 1:Yes1:Yes1 112 1:Yes1:Yes1 113 1:Yes1:Yes1 114 1:Yes1:Yes1 115 1:Yes1:Yes1 116 1:Yes1:Yes1 117 1:Yes1:Yes1 118 1:Yes1:Yes1 120 1:Yes1:Yes1 121 1:Yes1:Yes1 122 1:Yes1:Yes1 123 1:Yes1:Yes1 124 1:Yes1:Yes1 125 1:Yes11 126 1:Yes11 128 1:Yes11 129 1:Yes1:Yes1 121 1:Yes1:Yes1 122 1:Yes11 123 1:Yes11 124 1:Yes1 <t< td=""><td>99</td><td>1:Yes</td><td>1:Yes</td><td>1</td></t<>	99	1:Yes	1:Yes	1
1021:Yes1:Yes1 103 1:Yes1:Yes1 104 1:Yes1:Yes1 105 1:Yes1:Yes1 106 1:Yes1:Yes1 106 1:Yes1:Yes1 107 1:Yes1:Yes1 107 1:Yes1:Yes1 108 1:Yes1:Yes1 109 1:Yes1:Yes1 109 1:Yes1:Yes1 110 1:Yes1:Yes1 111 1:Yes1:Yes1 111 1:Yes1:Yes1 112 1:Yes1:Yes1 113 1:Yes1:Yes1 114 1:Yes1:Yes1 115 1:Yes1:Yes1 116 1:Yes1:Yes1 117 1:Yes1:Yes1 118 1:Yes1:Yes1 120 1:Yes1:Yes1 121 1:Yes1:Yes1 122 1:Yes1:Yes1 123 1:Yes1:Yes1 124 1:Yes1:Yes1 125 1:Yes11 126 1:Yes1:Yes1 127 1:Yes1:Yes1 129 1:Yes1:Yes1 129 1:Yes1:Yes1 131 1:Yes1:Yes1 131 1:Yes1:Yes1	100	1:Yes	1:Yes	1
103 $1:Yes$ $1:Yes$ 1 104 $1:Yes$ $1:Yes$ 1 105 $1:Yes$ $1:Yes$ 1 105 $1:Yes$ $1:Yes$ 1 106 $1:Yes$ $1:Yes$ 1 106 $1:Yes$ $1:Yes$ 1 107 $1:Yes$ $1:Yes$ 1 108 $1:Yes$ $1:Yes$ 1 109 $1:Yes$ $1:Yes$ 1 109 $1:Yes$ $1:Yes$ 1 110 $1:Yes$ $1:Yes$ 1 111 $1:Yes$ $1:Yes$ 1 1114 $1:Yes$ $1:Yes$ 1 115 $1:Yes$ $1:Yes$ 1 116 $1:Yes$ $1:Yes$ 1 117 $1:Yes$ $1:Yes$ 1 118 $1:Yes$ $1:Yes$ 1 120 $1:Yes$ $1:Yes$ 1 122 $1:Yes$ $1:Yes$ 1 123 $1:Yes$ $1:Yes$ 1 124 $1:Yes$ $1:Yes$ 1 125 $1:Yes$ $1:Yes$ 1 126 $1:Y$	101	1:Yes	1:Yes	1
104 $1:Yes$ $1:Yes$ 1 105 $1:Yes$ $1:Yes$ 1 106 $1:Yes$ $1:Yes$ 1 107 $1:Yes$ $1:Yes$ 1 108 $1:Yes$ $1:Yes$ 1 109 $1:Yes$ $1:Yes$ 1 109 $1:Yes$ $1:Yes$ 1 110 $1:Yes$ $1:Yes$ 1 111 $1:Yes$ $1:Yes$ 1 111 $1:Yes$ $1:Yes$ 1 112 $1:Yes$ $1:Yes$ 1 113 $1:Yes$ $1:Yes$ 1 114 $1:Yes$ $1:Yes$ 1 115 $1:Yes$ $1:Yes$ 1 116 $1:Yes$ $1:Yes$ 1 117 $1:Yes$ $1:Yes$ 1 118 $1:Yes$ $1:Yes$ 1 119 $1:Yes$ $1:Yes$ 1 120 $1:Yes$ $1:Yes$ 1 121 $1:Yes$ $1:Yes$ 1 122 $1:Yes$ $1:Yes$ 1 123 $1:Yes$ $1:Yes$ 1 124 $1:Yes$ $1:Yes$ 1 125 $1:Yes$ $1:Yes$ 1 126 $1:Yes$ $1:Yes$ 1 128 $1:Yes$ $1:Yes$ 1 129 $1:Yes$ $1:Yes$ 1 130 $1:Yes$ $1:Yes$ 1 131 $1:Yes$ $1:Yes$ 1	102	1:Yes	1:Yes	1
104 $1:Yes$ $1:Yes$ 1 105 $1:Yes$ $1:Yes$ 1 106 $1:Yes$ $1:Yes$ 1 107 $1:Yes$ $1:Yes$ 1 108 $1:Yes$ $1:Yes$ 1 109 $1:Yes$ $1:Yes$ 1 109 $1:Yes$ $1:Yes$ 1 110 $1:Yes$ $1:Yes$ 1 111 $1:Yes$ $1:Yes$ 1 111 $1:Yes$ $1:Yes$ 1 112 $1:Yes$ $1:Yes$ 1 113 $1:Yes$ $1:Yes$ 1 114 $1:Yes$ $1:Yes$ 1 115 $1:Yes$ $1:Yes$ 1 116 $1:Yes$ $1:Yes$ 1 117 $1:Yes$ $1:Yes$ 1 118 $1:Yes$ $1:Yes$ 1 119 $1:Yes$ $1:Yes$ 1 120 $1:Yes$ $1:Yes$ 1 121 $1:Yes$ $1:Yes$ 1 122 $1:Yes$ $1:Yes$ 1 123 $1:Yes$ $1:Yes$ 1 124 $1:Yes$ $1:Yes$ 1 125 $1:Yes$ $1:Yes$ 1 126 $1:Yes$ $1:Yes$ 1 128 $1:Yes$ $1:Yes$ 1 129 $1:Yes$ $1:Yes$ 1 130 $1:Yes$ $1:Yes$ 1 131 $1:Yes$ $1:Yes$ 1	103			1
105 $1:Yes$ $1:Yes$ 1 106 $1:Yes$ $1:Yes$ 1 107 $1:Yes$ $1:Yes$ 1 108 $1:Yes$ $1:Yes$ 1 109 $1:Yes$ $1:Yes$ 1 109 $1:Yes$ $1:Yes$ 1 110 $1:Yes$ $1:Yes$ 1 111 $1:Yes$ $1:Yes$ 1 111 $1:Yes$ $1:Yes$ 1 111 $1:Yes$ $1:Yes$ 1 112 $1:Yes$ $1:Yes$ 1 113 $1:Yes$ $1:Yes$ 1 114 $1:Yes$ $1:Yes$ 1 115 $1:Yes$ $1:Yes$ 1 116 $1:Yes$ $1:Yes$ 1 117 $1:Yes$ $1:Yes$ 1 118 $1:Yes$ $1:Yes$ 1 119 $1:Yes$ $1:Yes$ 1 120 $1:Yes$ $1:Yes$ 1 121 $1:Yes$ $1:Yes$ 1 122 $1:Yes$ $1:Yes$ 1 123 $1:Yes$ $1:Yes$ 1 124 $1:Yes$ $1:Yes$ 1 125 $1:Yes$ $1:Yes$ 1 126 $1:Yes$ $1:Yes$ 1 129 $1:Yes$ $1:Yes$ 1 129 $1:Yes$ $1:Yes$ 1 130 $1:Yes$ $1:Yes$ 1 131 $1:Yes$ $1:Yes$ 1			1:Yes	1
106 $1:Yes$ $1:Yes$ $1:Yes$ 107 $1:Yes$ $1:Yes$ 1 108 $1:Yes$ $1:Yes$ 1 109 $1:Yes$ $1:Yes$ 1 110 $1:Yes$ $1:Yes$ 1 111 $1:Yes$ $1:Yes$ 1 111 $1:Yes$ $1:Yes$ 1 111 $1:Yes$ $1:Yes$ 1 111 $1:Yes$ $1:Yes$ 1 112 $1:Yes$ $1:Yes$ 1 113 $1:Yes$ $1:Yes$ 1 114 $1:Yes$ $1:Yes$ 1 115 $1:Yes$ $1:Yes$ 1 116 $1:Yes$ $1:Yes$ 1 116 $1:Yes$ $1:Yes$ 1 117 $1:Yes$ $1:Yes$ 1 118 $1:Yes$ $1:Yes$ 1 119 $1:Yes$ $1:Yes$ 1 120 $1:Yes$ $1:Yes$ 1 121 $1:Yes$ $1:Yes$ 1 122 $1:Yes$ $1:Yes$ 1 123 $1:Yes$ $1:Yes$ 1 124 $1:Yes$ $1:Yes$ 1 125 $1:Yes$ $1:Yes$ 1 128 $1:Yes$ $1:Yes$ 1 129 $1:Yes$ $1:Yes$ 1 129 $1:Yes$ $1:Yes$ 1 130 $1:Yes$ $1:Yes$ 1 131 $1:Yes$ $1:Yes$ 1				1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	106			1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	108			1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	110			1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	112	1:Yes	1:Yes	1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	113	1:Yes	1:Yes	1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	114	1:Yes	1:Yes	1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	115	1:Yes	1:Yes	1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	116	1:Yes	1:Yes	1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		1:Yes	1:Yes	1
1201:Yes1:Yes11211:Yes1:Yes11221:Yes1:Yes11231:Yes1:Yes11241:Yes1:Yes11251:Yes1:Yes11261:Yes1:Yes11271:Yes1:Yes11281:Yes1:Yes11291:Yes1:Yes11301:Yes1:Yes11311:Yes1:Yes1	118	1:Yes	1:Yes	1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	119	1:Yes	1:Yes	1
1221:Yes1:Yes11231:Yes1:Yes11241:Yes1:Yes11251:Yes1:Yes11261:Yes1:Yes11271:Yes1:Yes11281:Yes1:Yes11291:Yes1:Yes11301:Yes1:Yes11311:Yes1:Yes1	120	1:Yes	1:Yes	1
1231:Yes1:Yes11241:Yes1:Yes11251:Yes1:Yes11261:Yes1:Yes11271:Yes1:Yes11281:Yes1:Yes11291:Yes1:Yes11301:Yes1:Yes11311:Yes1:Yes1	121	1:Yes	1:Yes	1
1241:Yes1:Yes11251:Yes1:Yes11261:Yes1:Yes11271:Yes1:Yes11281:Yes1:Yes11291:Yes1:Yes11301:Yes1:Yes11311:Yes1:Yes1	122	1:Yes	1:Yes	1
1251:Yes1:Yes11261:Yes1:Yes11271:Yes1:Yes11281:Yes1:Yes11291:Yes1:Yes11301:Yes1:Yes11311:Yes1:Yes1	123	1:Yes	1:Yes	1
1261:Yes1:Yes11271:Yes1:Yes11281:Yes1:Yes11291:Yes1:Yes11301:Yes1:Yes11311:Yes1:Yes1	124	1:Yes	1:Yes	1
1271:Yes1:Yes11281:Yes1:Yes11291:Yes1:Yes11301:Yes1:Yes11311:Yes1:Yes1	125	1:Yes	1:Yes	1
1281:Yes1:Yes11291:Yes1:Yes11301:Yes1:Yes11311:Yes1:Yes1	126	1:Yes	1:Yes	1
129 1:Yes 1:Yes 1 130 1:Yes 1:Yes 1 131 1:Yes 1:Yes 1	127	1:Yes	1:Yes	1
130 1:Yes 1:Yes 1 131 1:Yes 1:Yes 1	128	1:Yes	1:Yes	1
131 1:Yes 1:Yes 1	129	1:Yes	1:Yes	1
	130	1:Yes	1:Yes	1
132 1:Yes 1:Yes 1	131	1:Yes	1:Yes	1
	132	1:Yes	1:Yes	1
133 1:Yes 1:Yes 1	133	1:Yes	1:Yes	1

134	1:Yes	1:Yes	1
135	1:Yes	1:Yes	1
136	1:Yes	1:Yes	1
137	1:Yes	1:Yes	1
138	1:Yes	1:Yes	1
139	1:Yes	1:Yes	1
140	1:Yes	1:Yes	1
141	1:Yes	1:Yes	1
142	1:Yes	1:Yes	1
143	1:Yes	1:Yes	1
144	1:Yes	1:Yes	1
145	1:Yes	1:Yes	1
146	1:Yes	1:Yes	1
147	1:Yes	1:Yes	1
148	1:Yes	1:Yes	1
149	1:Yes	1:Yes	1
150	1:Yes	1:Yes	1
151	1:Yes	1:Yes	1
152	1:Yes	1:Yes	1
153	1:Yes	1:Yes	1
154	1:Yes	1:Yes	1
155	1:Yes	1:Yes	1
156	1:Yes	1:Yes	1
157	1:Yes	1:Yes	1
158	1:Yes	1:Yes	1
159	1:Yes	1:Yes	1
160	1:Yes	1:Yes	1
161	2:No	1:Yes	1
162	1:Yes	2:No	1
163	1:Yes	1:Yes	1
164	1:Yes	1:Yes	1
165	1:Yes	1:Yes	1
166	1:Yes	1:Yes	1
167	2:No	1:Yes	1
168	2:No	2:No	1
169	1:Yes	2:No	1
170	2:No	1:Yes	1
170	1:Yes	2:No	1
172	1:Yes	1:Yes	1
172	2:No	1:Yes	1
173	1:Yes	2:No	1
175	1:Yes	1:Yes	1
175	1:Yes	1:Yes	1
170	2:No	1:Yes	1
178	2:No	2:No	1
178	1:Yes	2:No	1
180	2:No	1:Yes	1
180	1:Yes	2:No	1
101	1.105	2.110	1

182	1:Yes	1:Yes	1
Multi Class Classific	er Updateable/ NN		
=== Classifier mode	l (full training set) ===	=	
Classifier 1			
Loss function: Hinge	e loss (SVM)		
I am interested in est	imating my retirement	;=	
0.8597 (normal	lized) Car superseding	Ability=No	
+ 0.5898 (norma	alized) Motorbike supe	rseding Ability=Yes	
+ -0.2799 (norma	alized) House supersed	ling Ability=Yes	
+ -0.1399 (norma	alized) Business supers	seding Ability=Yes	
+ 0.4298 (norma	lized) No superseding	ability=Yes	
+ -0.4098 (norma	alized) Have or Had B	usiness Insurance=Yes	1
+ -1.7394 (norma	alized) Have or Had Ci	ivil Liability Insurance	=Yes
+ -0.02 (normal	ized) Have or Had Ve	ssel Insurance=Yes	
+ -0.01 (normal	ized) Have or Had Hea	alth Insurance=Yes	
+ 0 (normaliz	ed) Have or Had Ever	yday needs Insurance=	-Yes
+ 0 (normaliz	ed) Have or Had Busi	ness House Insurance=	Yes
+ -0.01 (normal	ized) Have or Had Far	nily Insurance=Yes	
+ -0.01 (normal	ized) Have or Had Cas	sh Insurance=Yes	
+ 0 (normaliz	zed) Have or Had Child	d Insurance=Yes	
+ 0 (normaliz	zed) Have or Had Car l	Insurance	
+ 0 (normaliz	ed) Have or Had Moto	orbike Insurance=Yes	
+ 0.2099 (norma	lized) Have never had	Insurance=No	
+ -0.12 (normal	ized) Fixed Costs wou	ld not be covered in ca	use of a possible loss
of mine=No			

Business Decision Analysis Based on Data Analytics | Antonia Trikounaki

+ 1.3795 (normalized) Loans would not be covered in case of a possible loss of mine=Yes

+ -0.09 (normalized) Children Studies would not be covered in case of a possible loss of mine=Yes

+ -0.3199 (normalized) Tax obligations would not be covered in case of a possible loss of mine=Yes

+ -0.07 (normalized) No needs to leave behind in case of a possible loss of mine=Yes

+ -0.05 (normalized) Happiness would not be covered in case of a possible loss of mine=Yes

+ -0.1 (normalized) Purchases in non-basic necessities would not be covered in case of a possible loss of mine=Yes

+ 1.4794 (normalized) Want a risk protection=No

+ -0.3727 (normalized) A satisfying amount of money for the support of my beloved ones

+ 0.7797 (normalized) Not at all satisfied from the public insurance health benefits=Yes

+ 0.3998 (normalized) Kind of satisfied from the public insurance health benefits=No

+ -0.3099 (normalized) Quite satisfied from the public insurance health benefits=Yes

+ -0.07 (normalized) Absolutely satisfied from the public insurance health benefits=Yes

+ -0.1499 (normalized) I would choose a Public Hospital in Athens or Thessaloniki for a mild health issue=No

+ -1.5794 (normalized) I would choose a big private hospital in Athens or Thessaloniki for a mild health issue=Yes

+ 0.3499 (normalized) I would choose a local private hospital for a mild health issue=Yes

580

Business Decision Analysis Based on Data Analytics | Antonia Trikounaki

+ 1.0796 (normalized) I would choose a local public hospital for a mild health issue=Yes

+ 0.7597 (normalized) I would choose a public hospital in Athens or Thessaloniki for serious health issues=Yes

+ -0.2199 (normalized) I would choose a big private hospital of Athens or Thessaloniki for serious health issues=No

+ -0.2799 (normalized) I would choose a local private hospital for serious health issues=Yes

+ -0.14 (normalized) I would choose a local public hospital for serious health issues=Yes

+ -0.5598 (normalized) I would choose a foreign hospital for serious health issues=Yes

+ 0.7597 (normalized) I wish for private health services coupled with my insurance=No

+ -1.4594 (normalized) I would like diagnostic tests to be included to my private insurance=No

+ -2.4391 (normalized) I would like doctor visits to be included to my private insurance=Yes

+ 0.7997 (normalized) I would like doctor visits to be included to my private insurance=No

+ -0.03 (normalized) I would like doctor visits to be included to my private insurance=Yes

+ -1.8294 (normalized) I would like hospital care to be included to my private insurance=No

+ -1.3495 (normalized) I would like Annual check up to be included to my private insurance=No

+ -0.2599 (normalized) I would like going abroad to be included to my private insurance=No

581

+ -0.1 (normalized) I would like ambulance to be included to my private insurance =Yes

+ 0.1699 (normalized) Team insurance =Yes

+ 0.3699 (normalized) I will not get a pension=No

+ 0.01 (normalized) I will get a small pension=Yes

+ 0.3599 (normalized) I will get a satisfying pension=Yes

+ -0.03 (normalized) I have managed for a lump sum or supplementary pension=No

+ -1.1595 (normalized) I have managed for a lump sum or supplementary pension through Bank Savings=No

+ 0 (normalized) I have managed for a lump sum or supplementary pension through Pension scheme purchase=Yes

+ 0 (normalized) I have managed for a lump sum or supplementary pension through Life insurance program and savings plan=Yes

+ -0.2499 (normalized) I have managed for a lump sum or supplementary pension through Real estate purchase for rent or exploitation=Yes

+ 1.4095 (normalized) I am about to take immediate care of a lump sum or supplementary pension=Yes

+ -0.03 (normalized) I have managed for a lump sum or supplementary pension through Pension scheme or savings plan purchase =Yes

+ 0.4798 (normalized) Even if I wanted it I cannot take care of a lump sum or supplementary pension=Yes

+ 0.4299 (normalized) It is of a major importance to support my children and grandchildren after I receive my pension=No

+ -0.0799 (normalized) It is of a major importance to cover my healthcare after I receive my pension=No

+ 0.6597 (normalized) It is of a major importance to cover my pleasure trips after I receive my pension=No

582

+ -0.2499 (normalized) It is of a major importance to cover my house purchases after I receive my pension=Yes

+ 1.4694 (normalized) It is of a major importance to cover my fixed costs after I receive my pension=Yes

+ 0 (normalized) It is of a major importance to cover my everyday needs after I receive my pension=Yes

- 1.67

#inst	actual	predicted	error
11	1:Yes	1:Yes	1
12	1:Yes	1:Yes	1
13	1:Yes	1:Yes	1
14	1:Yes	1:Yes	1
15	1:Yes	1:Yes	1
16	1:Yes	1:Yes	1
17	1:Yes	1:Yes	1
18	1:Yes	1:Yes	1
19	1:Yes	1:Yes	1
20	1:Yes	1:Yes	1
21	1:Yes	1:Yes	1
22	1:Yes	1:Yes	1
23	1:Yes	1:Yes	1
24	1:Yes	1:Yes	1
25	1:Yes	1:Yes	1
26	1:Yes	1:Yes	1
27	1:Yes	1:Yes	1
28	1:Yes	1:Yes	1
29	1:Yes	1:Yes	1
30	1:Yes	1:Yes	1
31	1:Yes	1:Yes	1
32	1:Yes	1:Yes	1
33	1:Yes	1:Yes	1
34	1:Yes	1:Yes	1
35	1:Yes	1:Yes	1
36	1:Yes	1:Yes	1
37	1:Yes	1:Yes	1
38	1:Yes	1:Yes	1
39	1:Yes	1:Yes	1
40	1:Yes	1:Yes	1
41	1:Yes	1:Yes	1
42	1:Yes	1:Yes	1

Multi Class Classifier Updeateable Predictions/NN

43	1:Yes	1:Yes	1
44	1:Yes	1:Yes	1
45	1:Yes	1:Yes	1
46	1:Yes	1:Yes	1
47	1:Yes	1:Yes	1
48	1:Yes	1:Yes	1
49	1:Yes	1:Yes	1
50	1:Yes	1:Yes	1
51	1:Yes	1:Yes	1
52	1:Yes	1:Yes	1
53	1:Yes	1:Yes	1
54	1:Yes	1:Yes	1
55	1:Yes	1:Yes	1
56	1:Yes	1:Yes	1
57	1:Yes	1:Yes	1
58	1:Yes	1:Yes	1
59	1:Yes	1:Yes	1
60	1:Yes	1:Yes	1
61	1:Yes	1:Yes	1
62	1:Yes	1:Yes	1
63	1:Yes	1:Yes	<u> </u>
64	1:Yes	1:Yes	
65	1:Yes	1:Yes	1
66	1:Yes	1:Yes	1
67	1:Yes	1:Yes	1
68	1:Yes	1:Yes	1
69	1:Yes	1:Yes	1
70	1:Yes	1:Yes	1
71	1:Yes	1:Yes	1
72	1:Yes	1:Yes	1
73	1:Yes	1:Yes	1
74	1:Yes	1:Yes	1
75	1:Yes	1:Yes	1
76	1:Yes	1:Yes	1
77	1:Yes	1:Yes	1
78	1:Yes	1:Yes	1
79	1:Yes	1:Yes	1
80	1:Yes	1:Yes	1
81	1:Yes	1:Yes	1
82	1:Yes	1:Yes	1
83	1:Yes	1:Yes	1
84	1:Yes	1:Yes	1
85	1:Yes	1:Yes	1
86	1:Yes	1:Yes	1
87	1:Yes	1:Yes	1
88	1:Yes	1:Yes	1
89	1:Yes	1:Yes	1
90	1:Yes	1:Yes	1
	1		

91	1:Yes	1:Yes	1
92	1:Yes	1:Yes	1
93	1:Yes	1:Yes	1
94	1:Yes	1:Yes	1
95	1:Yes	1:Yes	1
96	1:Yes	1:Yes	1
97	1:Yes	1:Yes	1
98	1:Yes	1:Yes	1
99	1:Yes	1:Yes	1
100	1:Yes	1:Yes	1
101	1:Yes	1:Yes	1
102	1:Yes	1:Yes	1
103	1:Yes	1:Yes	1
104	1:Yes	1:Yes	1
105	1:Yes	1:Yes	1
106	1:Yes	1:Yes	1
107	1:Yes	1:Yes	1
108	1:Yes	1:Yes	1
109	1:Yes	1:Yes	1
110	1:Yes	1:Yes	1
111	1:Yes	1:Yes	1
112	1:Yes	1:Yes	1
113	1:Yes	1:Yes	1
114	1:Yes	1:Yes	1
115	1:Yes	1:Yes	1
116	1:Yes	1:Yes	1
117	1:Yes	1:Yes	1
118	1:Yes	1:Yes	1
119	1:Yes	1:Yes	1
120	1:Yes	1:Yes	1
121	1:Yes	1:Yes	1
122	1:Yes	1:Yes	1
123	1:Yes	1:Yes	1
124	1:Yes	1:Yes	1
125	1:Yes	1:Yes	1
126	1:Yes	1:Yes	1
127	1:Yes	1:Yes	1
128	1:Yes	1:Yes	1
129	1:Yes	1:Yes	1
130	1:Yes	1:Yes	1
131	1:Yes	1:Yes	1
132	1:Yes	1:Yes	1
133	1:Yes	1:Yes	1
134	1:Yes	1:Yes	1
135	1:Yes	1:Yes	1
136	1:Yes	1:Yes	1
137	1:Yes	1:Yes	1
138	1:Yes	1:Yes	1

139	1:Yes	1:Yes	1
140	1:Yes	1:Yes	1
141	1:Yes	1:Yes	1
142	1:Yes	1:Yes	1
143	1:Yes	1:Yes	1
144	1:Yes	1:Yes	1
145	1:Yes	1:Yes	1
146	1:Yes	1:Yes	1
147	1:Yes	1:Yes	1
148	1:Yes	1:Yes	1
149	1:Yes	1:Yes	1
150	1:Yes	1:Yes	1
151	1:Yes	1:Yes	1
152	1:Yes	1:Yes	1
153	1:Yes	1:Yes	1
154	1:Yes	1:Yes	1
155	1:Yes	1:Yes	1
156	1:Yes	1:Yes	1
157	1:Yes	1:Yes	1
158	1:Yes	1:Yes	1
159	1:Yes	1:Yes	1
160	1:Yes	1:Yes	1
161	1:Yes	1:Yes	1
162	2:No	2:No	1
163	1:Yes	1:Yes	1
164	1:Yes	1:Yes	1
165	1:Yes	1:Yes	1
166	1:Yes	1:Yes	1
167	1:Yes	1:Yes	1
168	2:No	2:No	1
169	2:No	2:No	1
170	1:Yes	1:Yes	1
171	2:No	2:No	1
172	1:Yes	1:Yes	1
173	1:Yes	1:Yes	1
174	2:No	2:No	1
175	1:Yes	1:Yes	1
176	1:Yes	1:Yes	1
177	1:Yes	1:Yes	1
178	2:No	2:No	1
179	2:No	2:No	1
180	1:Yes	1:Yes	1
181	2:No	2:No	1
182	1:Yes	1:Yes	1
102	1.100	1.105	1

Classifiers with low accuracy/NN

SGD| NN

SGDText:

Loss function: Hinge loss (SVM)

Dictionary size: 0

I am interested in estimating my retirement = -1

=== Summary ===

Correctly Classified Instances	174	95.6044 %
Incorrectly Classified Instances	8	4.3956 %
Kappa statistic	0	
Mean absolute error	0.044	
Root mean squared error	0.2097	
Relative absolute error	49.3012 %	
Root relative squared error	102.1037 9	%
Total Number of Instances	182	

=== Detailed Accuracy By Class ===

	TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Area	Class
	1,000	1,000	0,956	1,000	0,978	?	0,500	0,956	Yes
	0,000	0,000	?	0,000	?	?	0,500	0,044	No
W.A	0,956	0,956	?	0,956	?	?	0,500	0,916	

=== Confusion Matrix ===

a b <-- classified as

174 $0 \mid a = Yes$

 $8 \quad 0 \mid b = No$

Decision Table| NN

Correctly Classified Instances	173	95.0549 %
Incorrectly Classified Instances	9	4.9451 %
Kappa statistic	-0.0099	
Mean absolute error	0.0934	
Root mean squared error	0.2135	
Relative absolute error	104.774 %	

Root relative squared error103.9543 %Total Number of Instances182

=== Detailed Accuracy By Class ===

	TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Area	Class
	0,994	1,000	0,956	0,994	0,975	-0,016	0,450	0,954	Yes
	0,000	0,006	0,000	0,000	0,000	-0,016	0,450	0,042	No
.A	0,951	0,956	0,914	0,951	0,932	-0,016	0,450	0,914	

- === Confusion Matrix ===
 - a b <-- classified as
- $173 \ 1| \ a = Yes$

W.

 $8 \quad 0 \mid b = No$

JRIP rules| NN

(I would choose a local public hospital for a mild health issue = Yes) and (Want a risk protection = No) and (I will get a small pension = Yes) and (I would like Annual check up to be included to my private insurance = Yes) => I am interested in estimating my retirement=No (3.0/0.0)

(I would like doctor visits to be included to my private insurance = No) and (I would choose a local public hospital for serious health issues = Yes) and (Kind of satisfied from the public insurance health benefits = No) => I am interested in estimating my retirement=No (3.0/0.0)

I am interested in estimating my retirement=Yes (176.0/2.0)

Number of Rules : 3

=== Summary ===

Correctly Classified Instances	169	92.8571 %
Incorrectly Classified Instances	13	7.1429 %
Kappa statistic	-0.035	

Mean absolute error	0.0921
Root mean squared error	0.2499
Relative absolute error	103.2467 %
Root relative squared error	121.7182 %
Total Number of Instances	182

	TP Rate	FP Rate	Precision	Recall	F-Measur	e MCC	ROC Area	PRC Area	Class
	0,971	1,000	0,955	0,971	0,963	-0,036	0,506	0,960	Yes
	0,000	0,029	0,000	0,000	0,000	-0,036	0,506	0,046	No
W.A	0,929	0,957	0,913	0,929	0,921	-0,036	0,506	0,920	

- === Confusion Matrix ===
- a b <-- classified as
- 169 $5 \mid a = Yes$
- $8 \quad 0 \mid b = No$

Rules OneR| NN

Car superseding Ability:

Yes -> Yes No -> Yes

(174/182 instances correct)

=== Summary ===

Correctly Classified Instances	172	94.5055 %
Incorrectly Classified Instances	10	5.4945 %
Kappa statistic	-0.0179	
Mean absolute error	0.0549	
Root mean squared error	0.2344	
Relative absolute error	61.6265 %	
Root relative squared error	114.1555 %	
Total Number of Instances	182	

	TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Are	ea Class
	0,989	1,000	0,956	0,989	0,972	-0,023	0,494	0,956	Yes
	0,000	0,011	0,000	0,000	0,000	-0,023	0,494	0,044	No
W.A.	0,945	0,957	0,914	0,945	0,929	-0,023	0,494	0,915	

- === Confusion Matrix ===
 - a b <-- classified as
- 172 $2 \mid a = Yes$
- $8 \quad 0 \mid b = No$

Rules PART| NN

PART decision list:

It is of a major importance to cover my fixed costs after I receive my pension = No

AND

I wish for private health services coupled with my insurance = Yes

AND

Want a risk protection = Yes: Yes (146.0/1.0)

Tax obligations would not be covered in case of a possible loss of mine = Yes: Yes (13.37)

Kind of satisfied from the public insurance health benefits = Yes: Yes (11.0/1.0)

It is of a major importance to cover my pleasure trips after I receive my pension = No AND I would choose a local public hospital for a mild health issue = Yes: No (5.0)

: Yes (6.63/1.0)

Number of Rules : 5

=== Summary ===

Correctly Classified Instances	169	92.8571 %
Incorrectly Classified Instances	13	7.1429 %
Kappa statistic	-0.035	
Mean absolute error	0.0864	
Root mean squared error	0.2704	
Relative absolute error	96.8912 %	
Root relative squared error	131.6686 %	
Total Number of Instances	182	

=== Detailed Accuracy By Class ===

	TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Area	Class
	0,971	1,000	0,955	0,971	0,963	-0,036	0,249	0,921	Yes
	0,000	0,029	0,000	0,000	0,000	-0,036	0,249	0,036	No
W.A	0,929	0,957	0,913	0,929	0,921	-0,036	0,249	0,882	

=== Confusion Matrix ===

a b <-- classified as

- 169 $5 \mid a = Yes$
- $8 \quad 0 \mid \ b = No$

Rules ZeroR| NN

=== Summary ===

Correctly Classified Instances	174	95.6044 %
Incorrectly Classified Instances	8	4.3956 %

Kappa statistic	0
Mean absolute error	0.0892
Root mean squared error	0.2053
Relative absolute error	100%
Root relative squared error	100%
Total Number of Instances	182

	TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Area	Class
	1,000	1,000	0,956	1,000	0,978	?	0,392	0,947	Yes
	0,000	0,000	?	0,000	?	?	0,392	0,040	No
W.A	0,956	0,956	?	0,956	?	?	0,392	0,907	

=== Confusion Matrix ===

- a b <-- classified as
- 174 $0 \mid a = Yes$
- $8 \quad 0 \mid b = No$

Trees Decision Stump| NN

Classifications

A satisfying amount of money for the support of my beloved ones <= 125.0005 : Yes A satisfying amount of money for the support of my beloved ones > 125.0005 : Yes A satisfying amount of money for the support of my beloved ones is missing : Yes

Class distributions

A satisfying amount of money for the support of my beloved ones <= 125.0005

Yes No

0.97 0.025

A satisfying amount of money for the support of my beloved ones > 125.0005

Yes No

1.0 0.0

A satisfying amount of money for the support of my beloved ones is missing

Yes No

0.82 0.17

=== Summary ===

Correctly Classified Instances	174	95.6044 %
Incorrectly Classified Instances	8	4.3956 %
Kappa statistic	0	
Mean absolute error	0.0794	
Root mean squared error	0.2045	
Relative absolute error	89.043 %	
Root relative squared error	99.6095 %	
Total Number of Instances	182	

=== Detailed Accuracy By Class ===

TI	P Rate	FP Rate	Precision	Recall	F-Measur	e MCC	ROC Area	a PRC Area (Class
1,	,000	1,000	0,956	1,000	0,978	?	0,573	0,963	Yes
0,	,000	0,000	?	0,000	?	?	0,573	0,082	No
W.A. 0	,956	0,956	?	0,956	?	?	0,573	0,924	

- === Confusion Matrix ===
 - a b <-- classified as
- 174 $0 \mid a = Yes$
- $8 \quad 0 \mid b = No$

Trees Hoeffding Tree| NN

Test mode: 10-fold cross-validation

=== Classifier model (full training set) ===

Yes (175,000) NB1 NB adaptive1

=== Summary ===		
Correctly Classified Instances	174	95.6044 %
Incorrectly Classified Instances	8	4.3956 %
Kappa statistic	0	
Mean absolute error	0.0892	
Root mean squared error	0.2053	
Relative absolute error	100 %	
Root relative squared error	100 %	
Total Number of Instances	182	

=== Detailed Accuracy By Class ===

	TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Area	Class
	1,000	1,000	0,956	1,000	0,978	?	0,392	0,947	Yes
	0,000	0,000	?	0,000	?	?	0,392	0,040	No
W.A.	0,956	0,956	?	0,956	?	?	0,392	0,907	

=== Confusion Matrix ===

a b <-- classified as

- 174 $0 \mid a = Yes$
- $8 \quad 0 \mid b = No$

Trees J48| NN

=== Classifier model (full training set) ===

J48 pruned tree

: Yes (182.0/8.0)

Number of Leaves : 1

Size of the tree : 1

=== Summary ===

Correctly Classified Instances	171	93.956 %
Incorrectly Classified Instances	11	6.044 %
Kappa statistic	-0.0246	
Mean absolute error	0.0965	
Root mean squared error	0.2415	
Relative absolute error	108.203	33 %
Root relative squared error	117.614	41 %
Total Number of Instances	182	

=== Detailed Accuracy By Class ===

	TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Area	Class
	0,983	1,000	0,955	0,983	0,969	-0,028	0,582	0,965	Yes
	0,000	0,017	0,000	0,000	0,000	-0,028	0,582	0,052	No
W.A.	0,940	0,957	0,913	0,940	0,926	-0,028	0,582	0,925	

=== Confusion Matrix ===

a b <-- classified as 171 3 | a = Yes 8 0 | b = No

Trees LMT| NN

Logistic model tree

: LM_1:0/0 (182)

Number of Leaves : 1

Size of the Tree : 1

LM_1:

Class Yes :

0 +

Class No :

0 +

=== Summary ===

Correctly Classified Instances	174	95.6044 %
Incorrectly Classified Instances	8	4.3956 %
Kappa statistic	0	
Mean absolute error	0.4618	3
Root mean squared error	0.4822	2
Relative absolute error	518.0	0072 %
Root relative squared error	234.8	36 %
Total Number of Instances	182	

=== Detailed Accuracy By Class ===

TP	Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Area	Class
1,0	000	1,000	0,956	1,000	0,978	?	0,482	0,953	Yes
0,0	000	0,000	?	0,000	?	?	0,482	0,043	No
W.A. 0,9	56	0,956	?	0,956	?	?	0,482	0,913	

=== Confusion Matrix ===

a b <-- classified as

174 $0 \mid a = Yes$

8 $0 \mid b = No$

Trees RandomForest| NN

Bagging with 100 iterations and base learner

==== ;	Summary	
--------	---------	--

Correctly Classified Instances	174	95.6044 %
Incorrectly Classified Instances	8	4.3956 %
Kappa statistic	0	

Mean absolute error	0.0763
Root mean squared error	0.197
Relative absolute error	85.6312 %
Root relative squared error	95.934 %
Total Number of Instances	182

TP R	ate FP Rate	Precision	Recall	F-Measur	re MCC	ROC Area	a PRC Are	a Class
1,00	0 1,000	0,956	1,000	0,978	?	0,770	0,985	Yes
0,00	0,000	?	0,000	?	?	0,770	0,267	No
W.A. 0,95	6 0,956	?	0,956	?	?	0,770	0,953	

- === Confusion Matrix ===
 - a b <-- classified as
- 174 $0 \mid a = Yes$
- $8 \quad 0 \mid b = No$

REPTree| NN

=== Summary ===

Correctly Classified Instances	174	95.6044 %
Incorrectly Classified Instances	8	4.3956 %
Kappa statistic	0	
Mean absolute error	0.0804	
Root mean squared error	0.2053	
Relative absolute error	90.2187	%
Root relative squared error	99.9629	%
Total Number of Instances	182	

TP Rate	FP Rate	Precision	Recall	F-Measur	re MCC	ROC Area	PRC Area	Class
1,000	1,000	0,956	1,000	0,978	?	0,407	0,955	Yes
0,000	0,000	?	0,000	?	?	0,407	0,040	No

W.A 0,956 0,956 ? 0,956 ? ? 0,407 0,915

=== Confusion Matrix ===

a b <-- classified as

- 174 $0 \mid a = Yes$
- $8 \quad 0 \mid b = No$

Naive Bayes Multinomial Text| NN

The independent frequency of a class

Yes 175.0 No 9.0

The frequency of a word given the class

Yes No

=== Summary ===

Correctly Classified Instances	174	95.6044 %
Incorrectly Classified Instances	8	4.3956 %
Kappa statistic	0	
Mean absolute error	0.0892	
Root mean squared error	0.2053	
Relative absolute error	100 %	
Root relative squared error	100 %	
Total Number of Instances	182	

TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Area	Class
1,000	1,000	0,956	1,000	0,978	?	0,392	0,947	Yes
0,000	0,000	?	0,000	?	?	0,392	0,040	No

W.A. 0,956 0,956 ? 0,956 ? ? 0,392 0,907

- === Confusion Matrix ===
 - a b <-- classified as
- 174 $0 \mid a = Yes$
- $8 \quad 0 \mid b = No$

SGDText| NN

I am interested in estimating my retirement = -1

=== Summary ===

Correctly Classified Instances	174	95.6044 %
Incorrectly Classified Instances	8	4.3956 %
Kappa statistic	0	
Mean absolute error	0.044	
Root mean squared error	0.2097	
Relative absolute error	49.301	12 %
Root relative squared error	102.10	037 %
Total Number of Instances	182	

	TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Area	Class
	1,000	1,000	0,956	1,000	0,978	?	0,500	0,956	Yes
	0,000	0,000	?	0,000	?	?	0,500	0,044	No
W.A	0,956	0,956	?	0,956	?	?	0,500	0,916	

- === Confusion Matrix ===
 - a b <-- classified as
- 174 $0 \mid a = Yes$
- $8 \quad 0 \mid b = No$

Voted Perceptron | NN

VotedPerceptron: Number of perceptrons=16

=== Summary ===

Correctly Classified Instances	174	95.6044 %
Incorrectly Classified Instances	8	4.3956 %
Kappa statistic	0	
Mean absolute error	0.044	
Root mean squared error	0.2097	
Relative absolute error	49.30	12 %
Root relative squared error	102.10	037 %
Total Number of Instances	182	

=== Detailed Accuracy By Class ===

	TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Area	Class
	1,000	1,000	0,956	1,000	0,978	?	0,500	0,956	Yes
	0,000	0,000	?	0,000	?	?	0,451	0,053	No
W.A	0,956	0,956	?	0,956	?	?	0,498	0,916	

=== Confusion Matrix ===

a b <-- classified as 174 0 | a = Yes 8 0 | b = No

Lazy LWL| NN

Locally weighted learning

Using classifier: weka.classifiers.trees.DecisionStump

Using linear weighting kernels

Using all neighbours

=== Summary ===

Correctly Classified Instances	174	95.6044 %
Incorrectly Classified Instances	8	4.3956 %

Kappa statistic	0
Mean absolute error	0.0814
Root mean squared error	0.2156
Relative absolute error	91.3454 %
Root relative squared error	104.9973 %
Total Number of Instances	182

	TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Area	Class
	1,000	1,000	0,956	1,000	0,978	?	0,469	0,954	Yes
	0,000	0,000	?	0,000	?	?	0,466	0,047	No
W.A.	0,956	0,956	?	0,956	?	?	0,469	0,914	

- === Confusion Matrix ===
 - a b <-- classified as
- 174 $0 \mid a = Yes$
- $8 \quad 0 \mid b = No$

Meta.MultiScheme| NN

ZeroR predicts class value: Yes

=== Summary ===

Correctly Classified Instances	174	95.6044 %
Incorrectly Classified Instances	8	4.3956 %
Kappa statistic	0	
Mean absolute error	0.0892	
Root mean squared error	0.2053	
Relative absolute error	100 %	
Root relative squared error	100 %	
Total Number of Instances	182	

	TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Area	Class
	1,000	1,000	0,956	1,000	0,978	?	0,392	0,947	Yes
	0,000	0,000	?	0,000	?	?	0,392	0,040	No
W.A.	0,956	0,956	?	0,956	?	?	0,392	0,907	

=== Confusion Matrix ===

- a b <-- classified as
- 174 $0 \mid a = Yes$
- $8 \quad 0 \mid b = No$

Misc Input Mapped Classifier|NN

ZeroR predicts class value.

Model attributes \rightarrow Incoming attributes

=== Summary ===

Correctly Classified Instances	174	95.6044 %
Incorrectly Classified Instances	8	4.3956 %
Kappa statistic	0	
Mean absolute error	0.0892	
Root mean squared error	0.2053	
Relative absolute error	100 %	
Root relative squared error	100 %	
Total Number of Instances	182	

	TP Rate	FP Rate	Precision	Recall	F-Measure	e MCC	ROC Area	PRC Area	Class
	1,000	1,000	0,956	1,000	0,978	?	0,392	0,947	Yes
	0,000	0,000	?	0,000	?	?	0,392	0,040	No
W.A.	0,956	0,956	?	0,956	?	?	0,392	0,907	

- === Confusion Matrix ===
 - a b <-- classified as
- 174 $0 \mid a = Yes$
- $8 \quad 0 \mid b = No$

Simple K Means Clustering/NN

Simple K Means with 2 Clusters

	Final c	Final cluster centroids		
	Full Data (182.0)	0 (60.0)	1 (122.0)	
Car superseding Ability	No	No	No	
Motorbike superseding Ability	No	No	No	
House superseding Ability	No	No	No	
Business superseding Ability	No	No	No	
No superseding ability	Yes	Yes	Yes	
Have or Had Business Insurance	No	No	No	
Have or Had Civil Liability Insurance	No	No	No	
Have or Had Vessel Insurance	No	No	No	
Have or Had Health Insurance	No	No	No	
Have or Had Everyday needs Insurance	No	No	No	
Have or Had Business House Insurance	No	No	No	
Have or Had Family Insurance	No	No	No	
Have or Had Cash Insurance	No	No	No	
Have or Had Child Insurance	No	No	No	
Have or Had Car Insurance	No	No	No	
Have or Had Motorbike Insurance	No	No	No	
Have never had Insurance	Yes	No	Yes	
Fixed Costs would not be covered in case of a possible loss of m	ine Yes	Yes	Yes	

Loans would not be covered in case of a possible loss of mine	No	No	No
Children Studies would not be covered in case of a possible loss of mine	No	No	No
Tax obligations would not be covered in case of a possible loss of mine	No	Yes	No
No needs to leave behind in case of a possible los	No	No	No
Happiness would not be covered in case of a possible loss of mine	No	No	No
Purchases in non-basic necessities would not be covered in case of a possible loss of mine	No	No	No
Want a risk protection	Yes	Yes	Yes
A satisfying amount of money for the support of my beloved ones	86.16	99.57	79.57
Not at all satisfied from the public insurance health benefits	No	No	No
Kind of satisfied from the public insurance health benefits	Yes	No	Yes
Quite satisfied from the public insurance health benefits	No	No	No
Absolutely satisfied from the public insurance health benefits	No	No	No
I would choose a Public Hospital in Athens or Thessaloniki for a mild health issue	No	No	No
I would choose a big private hospital in Athens or Thessaloniki for a mild health issue	No	No	No
I would choose a local private hospital for a mild health issue	No	No	No
I would choose a local public hospital for a mild health issue	No	No	No
I would choose a public hospital in Athens or Thessaloniki for serious health issues	No	No	No
I would choose a big private hospital of Athens or Thessaloniki for serious health issues	No	Yes	No
I would choose a local private hospital for serious health issues	No	No	No
I would choose a local public hospital for serious health issues	No	No	No
I would choose a foreign hospital for serious health issues	No	No	No
I wish for private health services coupled with my insurance	Yes	Yes	Yes
I would like diagnostic tests to be included to my private insurance	Yes	Yes	Yes

I would like doctor visits to be included to my private insurance	Yes	Yes	Yes
I would like hospital care to be included to my private insurance	Yes	Yes	Yes
I would like Annual check up to be included to my private insurance	Yes	Yes	Yes
I would like to go abroad to be included to my private insurance	No	Yes	No
I would like ambulance to be included to my private insurance	No	No	No
Team insurance	No	No	No
I will not get a pension	No	No	No
I will get a small pension	Yes	Yes	Yes
I will get a satisfying pension	No	No	No
I have managed for a lump sum or supplementary pension	No	Yes	No
I have managed for a lump sum or supplementary pension through Bank Savings	No	No	No
I have managed for a lump sum or supplementary pension through Pension scheme purchase	No	No	No
I have managed for a lump sum or supplementary pension through Life insurance program and savings plan	No	No	No
I have managed for a lump sum or supplementary pension through Real estate purchase for rent or exploitation	No	No	No
I am about to take immediate care of a lump sum or supplementary pension	No	No	No
I have managed for a lump sum or supplementary pension through Pension scheme or savings plan purchase	No	No	No
Even if I wanted it I cannot take care of a lump sum or supplementary pension	No	No	No
It is of a major importance to support my children and grandchildren after I receive my pension	Yes	Yes	Yes
It is of a major importance to cover my healthcare after I receive my pension	Yes	Yes	Yes
It is of a major importance to cover my pleasure trips after I receive my pension	No	Yes	No

after I receive my pension			
It is of a major importance to cover my fixed costs after I receive my pension	No	No	No
It is of a major importance to cover my everyday needs after I receive my pension	No	No	No
I am interested in estimating my retirement	Yes	Yes	Yes

EM Clusterer/NN

			Cluster	
Attribute		0 (0.43)	1 (0.21)	2 (0.35)
	Car superseding Ability			
Yes		18.35	11.05 8	8.58
No		62.10	29.97 5	7.92
[total]		80.46	41.03 6	6.50
	Motorbike superseding Ability			
No		67.93	3 30.83	60.23
Yes		12.5	3 10.19	6.26
[total]		80.46	41.03	66.50
	House superseding Ability			
No		72.78	38.99 6	2.22
Yes		7.68	3 2.03	4.28
[total]		80.46	41.03 6	56.50
	Business superseding Ability			
No		78.32	37.14	54.52
Yes		2.13	3.88	1.97
[total]		80.46	41.03 60	5.50
	No superseding ability			
No		34.70	20.19 1	4.09

Yes		45.75 20.83 52.41
[total]		80.46 41.03 66.50
	Have or Had Business Insurance	
No		75.65 21.65 60.68
Yes		4.80 19.37 5.81
[total]		80.46 41.03 66.50
	Have or Had Civil Liability Insurance	
No		78.29 22.03 58.66
Yes		2.16 18.99 7.84
[total]		80.46 41.03 66.50
	Have or Had Vessel Insurance	
No		78.71 35.78 63.50
Yes		1.74 5.25 3.00
[total]		80.46 41.03 66.50
	Have or Had Health Insurance	
No		79.46 39.03 64.49
Yes		1.00 1.99 2.0
[total]		80.46 41.03 66.50
	Have or Had Everyday needs Insurance	
No		79.46 39.95 64.57
Yes		1.00 1.07 1.92
[total]		80.46 41.03 66.50
	Have or Had Business House Insurance	
No		79.46 40.01 64.51
Yes		1 1.01 1.98
[total]		80.46 41.03 66.50
	Have or Had Family Insurance	

No	79.46 39.03 65.5	0
Yes	1 2	1
[total]	80.46 41.03 66.5	0
	Have or Had Cash Insurance	
No	78.46 40.03 65.5	50
Yes	2 1	1
[total]	80.46 41.03 66.	50
	Have or Had Child Insurance	
No	79.45 39.04 65.	50
Yes	1.01 1.98	1.
[total]	80.46 41.03 66.	50
	Have or Had Car Insurance	
No	79.46 40.03 65.	50
[total]	79.46 40.03 65.	50
	Have or Had Motorbike Insurance	
No	78.48 40.02 65.4	48
Yes	1.9 1.00 1.02	2
[total]	80.46 41.03 66.	50
	Have never had Insurance	
Yes	63.66 4.20 44.	12
No	16.79 36.82 22.	37
[total]	80.46 41.03 66.	50
	Fixed Costs would not be covered in case of a possible loss of mine	
	56.29 27.89 50.	.80
Yes		
Yes No	24.16 13.13 15.	69

Business Decision Analysis Based on Data Analytics | Antonia Trikounaki

No 59.12 27.72 44.15 Yes 21.34 13.30 22.35 [total] 80.46 41.03 66.50 Children Studies would not be covered in case of a possible loss of mine No 67.77 31.72 39.50 Yes 12.69 9.31 26.99 [total] 80.46 41.03 66.50	
[total] 80.46 41.03 66.50 Children Studies would not be covered in case of a possible loss of mine No 67.77 31.72 39.50 Yes 12.69 9.31 26.99	
Children Studies would not be covered in case of a possible loss of mine No 67.77 31.72 39.50 Yes 12.69 9.31 26.99	
No 67.77 31.72 39.50 Yes 12.69 9.31 26.99	
Yes 12.69 9.31 26.99	
	_
[tota]] 80.46.41.03.66.50	
Tax obligations would not be covered in case of a possible loss of mine	
No 62.87 17.49 31.62	
Yes 17.58 23.53 34.87	
[total] 80.46 41.03 66.50	
No needs to leave behind in case of a possible loss of mine	
No 79.44 40.02 64.52	
Yes 1.01 1.00 1.97	
[total] 80.46 41.03 66.50	
Happiness would not be covered in case of a possible loss of mine	
No 78.46 40.03 65.50	
Yes 1.99 1 1.00	
[total] 80.46 41.03 66.50	
Purchases in non-basic necessities would not be covered in case of a possible loss of mine	
No 79.46 39.03 65.50	
Yes 1.00 1.99 1.00	
[total] 80.46 41.03 66.50	
Want a risk protection	
Yes 63.86 36.01 56.11	
Yes 63.86 36.01 56.11 No 16.59 5.01 10.38	

A satisfying amount of mo	ney for the support of my beloved ones
A satisfying amount of mo	
mean	75.79 93.35 94.4
std. dev.	40.43 41.12 43.18
Not at all satisfied from	the public insurance health benefits
No	64.11 37.49 53.39
Yes	16.34 3.53 13.11
[total]	80.46 41.03 66.50
Kind of satisfied from t	the public insurance health benefits
Yes	36.56 31.11 36.32
No	43.90 9.91 30.18
[total]	80.46 41.03 66.50
Quite satisfied from the	e public insurance health benefits
No	51.91 34.75 50.32
Yes	28.54 6.27 16.18
[total]	80.46 41.03 66.50
Absolutely satisfied from	the public insurance health benefits
No	79.45 38.92 63.6
Yes	1.00 2.10 2.88
[total]	80.46 41.03 66.50
I would choose a Public Hospital in	Athens or Thessaloniki for a mild health issue
Yes	11.00 8.04 10.95
No	69.46 32.98 55.55
[total]	80.46 41.03 66.50
I would choose a big private hospital	in Athens or Thessaloniki for a mild health issue
No	61.86 21.89 45.23
Yes	18.596 19.13 21.26

80.46 41.03 66.50
hospital for a mild health issue
58.1 29.17 49.72
22.36 11.85 16.77
80.46 41.03 66.50
nospital for a mild health issue
49.95 37.04 46.99
30.50 3.98 19.50
80.46 41.03 66.50
s or Thessaloniki for serious health issues
60.3 34.13 54.56
20.16 6.89 11.94
80.46 41.03 66.50
ens or Thessaloniki for serious health issues
24.17 27.32 28.49
56.2 13.70 38.00
80.46 41.03 66.50
ospital for serious health issues
65.61 37.56 55.82
14.85 3.46 10.68
80.46 41.03 66.50
ospital for serious health issues
71.45 38.03 63.51
9.00 2.99 2.99
80.46 41.03 66.50
pital for serious health issues
65.20 37.68 51.11

Business Decision Analysis Based on Data Analytics | Antonia Trikounaki

Yes	15.26 3.34 15.39
[total]	80.46 41.03 66.50
	I wish for private health services coupled with my insurance
Yes	69.96 40.00 64.0
No	10.49 1.02 2.47
[total]	80.46 41.03 66.50
	I would like diagnostic tests to be included to my private insurance
Yes	20.86 25.13 64.99
No	59.59 15.89 1.50
[total]	80.46 41.03 66.50
	I would like doctor visits to be included to my private insurance
Yes	28.96 22.63 65.408
No	46.51 18.39 1.09
Yes	5.99 1.00 1.00
[total]	81.46 42.03 67.50
	I would like hospital care to be included to my private insurance
Yes	31.97 35.21 63.81
No	48.48 5.81 2.69
[total]	80.46 41.03 66.50
	I would like Annual check up to be included to my private insurance
Yes	26.41 28.47 58.11
No	54.05 12.55 8.38
[total]	80.46 41.03 66.50
	I would like going abroad to be included to my private insurance
Yes	17.20 18.35 45.44
No	63.26 22.67 21.05
[total]	80.46 41.03 66.50

I w	I would like ambulance to be included to my private insurance		
No	79.46 38.05 64.48		
Yes	1.00 2.97 2.02		
[total]	80.46 41.03 66.50		
	Team insurance		
No	56.52 32.79 48.68		
Yes	23.93 8.24 17.82		
[total]	80.46 41.03 66.50		
	I will not get a pension		
Yes	19.20 5.26 15.52		
No	61.25 35.76 50.97		
[total]	80.46 41.03 66.50		
	I will get a small pension		
No	33.94 15.21 22.84		
Yes	46.52 25.81 43.66		
[total]	80.46 41.031 66.50		
	I will get a satisfying pension		
No	64.72 30.08 58.18		
Yes	15.73 10.94 8.316		
[total]	80.46 41.03 66.50		
]	I have managed for a lump sum or supplementary pension		
Yes	20.133 33.39 12.47		
No	60.32 7.63 54.0		
[total]	80.46 41.03 66.50		
I have mana	ged for a lump sum or supplementary pension through Bank Savings		
Yes	16.62 16.62 14.75		
No	63.83 24.40 51.75		

[total]	80.46 41.03 66.50
I have managed for a lump sum or suppl	ementary pension through Pension scheme purchase
No	79.27 39.38 65.33
Yes	1.18 1.64 1.16
[total]	80.46 41.03 66.50
	lementary pension through Life insurance program d savings plan
No	79.45 39.04 65.50
Yes	1.011 1.98 1.00
[total]	80.46 41.03 66.50
č i i	lementary pension through Real estate purchase for or exploitation
No	75.43 23.28 65.28
Yes	5.03 17.74 1.21
[total]	80.46 41.03 66.50
I am about to take immediate ca	re of a lump sum or supplementary pension
No	62.87 37.98 52.13
Yes	17.58 3.04 14.37
[total]	80.46 41.03 66.505
	ementary pension through Pension scheme or saving lan purchase
No	73.89 22.65 64.45
Yes	6.57 18.37 2.05
[total]	80.46 41.03 66.50
Even if I wanted it I cannot take c	are of a lump sum or supplementary pension
No	78.46 40.03 64.50
Yes	1.99 1 2
[total]	80.46 41.03 66.50

	pension		
Yes	44.52 28.39 50.081		
No	35.93 12.64 16.42		
[total]	80.463 41.03 66.50		
It is of a major in	It is of a major importance to cover my healthcare after I receive my pension		
Yes	46.15 35.45 61.38		
No	34.30 5.57 5.12		
[total]	80.46 41.03 66.50		
It is of a major im	portance to cover my pleasure trips after I receive my pension		
Yes	23.24 20.41 32.33		
No	57.21 20.61 34.16		
[total]	80.46 41.03 66.50		
It is of a major impo	It is of a major importance to cover my house purchases after I receive my pension		
No	74.01 37.83 59.15		
Yes	6.44 3.20 7.35		
[total]	80.46 41.03 66.50		
It is of a major in	nportance to cover my fixed costs after I receive my pension		
No	78.44 40.03 64.52		
Yes	2.01 1 1.98		
[total]	80.46 41.03 66.50		
It is of a major imp	ortance to cover my everyday needs after I receive my pension		
No	79.46 39.95 64.57		
Yes	1 1.07 1.9267		
[total]	80.46 41.03 66.50		
	I am interested in estimating my retirement		
Yes	72.88 40 64.10		
No	7.57 1.02 2.40		

[total]

Farthest First Clusterer / NN

Cluster centroids:

Cluster 0:

Cluster 1:

Each "Yes/No" answer in each question (Car superseding ability, motorbike superseding ability etc..) is the centroid of all the answers that the customers have answered (in that specific question).

Make A Density Fitted Estimators/NN

Fitted estimators (with ML estimates of variance):

<u>Cluster 0:</u> Prior probability= 0.3315

Attribute: Car superseding Ability Discrete Estimator. Counts = 1052 (Total = 62) Attribute: Motorbike superseding Ability Discrete Estimator. Counts = 5012 (Total = 62) Attribute: House superseding Ability Discrete Estimator. Counts = 602 (Total = 62) Attribute: Business superseding Ability Discrete Estimator. Counts = 602 (Total = 62) Attribute: No superseding ability Discrete Estimator. Counts = 1844 (Total = 62)

Attribute: Have or Had Business Insurance Discrete Estimator. Counts = 4616 (Total = 62) Attribute: Have or Had Civil Liability Insurance Discrete Estimator. Counts = 40.22 (Total = 62) Attribute: Have or Had Vessel Insurance Discrete Estimator. Counts = 54.8 (Total = 62) Attribute: Have or Had Health Insurance Discrete Estimator. Counts = 602 (Total = 62) Attribute: Have or Had Everyday needs Insurance Discrete Estimator. Counts = 611 (Total = 62) Attribute: Have or Had Business House Insurance Discrete Estimator. Counts = 602 (Total = 62) Attribute: Have or Had Family Insurance Discrete Estimator. Counts = 602 (Total = 62) Attribute: Have or Had Cash Insurance Discrete Estimator. Counts = 611 (Total = 62) Attribute: Have or Had Child Insurance Discrete Estimator. Counts = 611 (Total = 62) Attribute: Have or Had Car Insurance Discrete Estimator. Counts = 61 (Total = 61) Attribute: Have or Had Motorbike Insurance Discrete Estimator. Counts = 60.2 (Total = 62) Attribute: Have never had Insurance Discrete Estimator. Counts = 1943 (Total = 62) Attribute: Fixed Costs would not be covered in case of a possible loss of mine Discrete Estimator. Counts = 4616 (Total = 62) Attribute: Loans would not be covered in case of a possible loss of mine Discrete Estimator. Counts = $41\ 21\ (Total = 62)$ Attribute: Children Studies would not be covered in case of a possible loss of mine Discrete Estimator. Counts = $44 \ 18$ (Total = 62) Attribute: Tax obligations would not be covered in case of a possible loss of mine Discrete Estimator. Counts = 1745 (Total = 62) Attribute: No needs to leave behind in case of a possible loss of mine Discrete Estimator. Counts = 611 (Total = 62) Attribute: Happiness would not be covered in case of a possible loss of mine Discrete Estimator. Counts = 611 (Total = 62) Attribute: Purchases in non basic necessities would not be covered in case of a possible loss of mine Discrete Estimator. Counts = 602 (Total = 62) Attribute: Want a risk protection Discrete Estimator. Counts = 54.8 (Total = 62) Attribute: A satisfying amount of money for the support of my beloved ones Normal Distribution. Mean = 99.5782 StdDev = 40.5907 Attribute: Not at all satisfied from the public insurance health benefits

Discrete Estimator. Counts = $48 \ 14$ (Total = 62) Attribute: Kind of satisfied from the public insurance health benefits Discrete Estimator. Counts = 2735 (Total = 62) Attribute: Quite satisfied from the public insurance health benefits Discrete Estimator. Counts = $43\ 19\ (Total = 62)$ Attribute: Absolutely satisfied from the public insurance health benefits Discrete Estimator. Counts = 584 (Total = 62) Attribute: I would choose a Public Hospital in Athens or Thessaloniki for a mild health issue Discrete Estimator. Counts = 953 (Total = 62) Attribute: I would choose a big private hospital in Athens or Thessaloniki for a mild health issue Discrete Estimator. Counts = $32\ 30\ (Total = 62)$ Attribute: I would choose a local private hospital for a mild health issue Discrete Estimator. Counts = $49 \ 13$ (Total = 62) Attribute: I would choose a local public hospital for a mild health issue Discrete Estimator. Counts = $50 \ 12$ (Total = 62) Attribute: I would choose a public hospital in Athens or Thessaloniki for serious health issues Discrete Estimator. Counts = 557 (Total = 62) Attribute: I would choose a big private hospital of Athens or Thessaloniki for serious health issues Discrete Estimator. Counts = 3824 (Total = 62) Attribute: I would choose a local private hospital for serious health issues Discrete Estimator. Counts = 54.8 (Total = 62) Attribute: I would choose a local public hospital for serious health issues Discrete Estimator. Counts = 584 (Total = 62) Attribute: I would choose a foreign hospital for serious health issues Discrete Estimator. Counts = 54.8 (Total = 62) Attribute: I wish for private health services coupled with my insurance Discrete Estimator. Counts = 602 (Total = 62) Attribute: I would like diagnostic tests to be included to my private insurance Discrete Estimator. Counts = $45 \ 17$ (Total = 62) Attribute: I would like doctor visits to be included to my private insurance Discrete Estimator. Counts = $43\ 19\ 1$ (Total = 63) Attribute: I would like hospital care to be included to my private insurance Discrete Estimator. Counts = $52\ 10\ (Total = 62)$ Attribute: I would like Annual check up to be included to my private insurance Discrete Estimator. Counts = $47 \ 15 \ (Total = 62)$ Attribute: I would like going abroad to be included to my private insurance Discrete Estimator. Counts = $45 \ 17$ (Total = 62) Attribute: I would like ambulance to be included to my private insurance Discrete Estimator. Counts = 593 (Total = 62) Attribute: Team insurance

Discrete Estimator. Counts = $47 \ 15 \ (Total = 62)$ Attribute: I will not get a pension Discrete Estimator. Counts = 1250 (Total = 62) Attribute: I will get a small pension Discrete Estimator. Counts = $25 \ 37$ (Total = 62) Attribute: I will get a satisfying pension Discrete Estimator. Counts = $48 \ 14$ (Total = 62) Attribute: I have managed for a lump sum or supplementary pension Discrete Estimator. Counts = 3626 (Total = 62) Attribute: I have managed for a lump sum or supplementary pension through Bank Savings Discrete Estimator. Counts = 1745 (Total = 62) Attribute: I have managed for a lump sum or supplementary pension through Pension scheme purchase Discrete Estimator. Counts = 611 (Total = 62) Attribute: I have managed for a lump sum or supplementary pension through Life insurance program and savings plan Discrete Estimator. Counts = 611 (Total = 62) Attribute: I have managed for a lump sum or supplementary pension through Real estate purchase for rent or exploitation Discrete Estimator. Counts = $48 \ 14$ (Total = 62) Attribute: I am about to take immediate care of a lump sum or supplementary pension Discrete Estimator. Counts = 557 (Total = 62) Attribute: I have managed for a lump sum or supplementary pension through Pension scheme or savings plan purchase Discrete Estimator. Counts = $43\ 19\ (Total = 62)$ Attribute: Even if I wanted it I cannot take care of a lump sum or supplementary pension Discrete Estimator. Counts = 611 (Total = 62) Attribute: It is of a major importance to support my children and grandchildren after I receive my pension Discrete Estimator. Counts = $43\ 19\ (Total = 62)$ Attribute: It is of a major importance to cover my healthcare after I receive my pension Discrete Estimator. Counts = 54.8 (Total = 62) Attribute: It is of a major importance to cover my pleasure trips after I receive my pension Discrete Estimator. Counts = 40.22 (Total = 62) Attribute: It is of a major importance to cover my house purchases after I receive my pension Discrete Estimator. Counts = 557 (Total = 62) Attribute: It is of a major importance to cover my fixed costs after I receive my pension Discrete Estimator. Counts = 602 (Total = 62)

Attribute: It is of a major importance to cover my everyday needs after I receive my pension Discrete Estimator. Counts = 61 1 (Total = 62) Attribute: I am interested in estimating my retirement

Discrete Estimator. Counts = 611 (Total = 62)

<u>Cluster 1:</u> Prior probability= 0.6685

Attribute: Car superseding Ability Discrete Estimator. Counts = 2797 (Total = 124) Attribute: Motorbike superseding Ability Discrete Estimator. Counts = $108 \ 16$ (Total = 124) Attribute: House superseding Ability Discrete Estimator. Counts = $113 \ 11$ (Total = 124) Attribute: Business superseding Ability Discrete Estimator. Counts = 1195 (Total = 124) Attribute: No superseding ability Discrete Estimator. Counts = 5074 (Total = 124) Attribute: Have or Had Business Insurance Discrete Estimator. Counts = 111 13 (Total = 124) Attribute: Have or Had Civil Liability Insurance Discrete Estimator. Counts = 1186 (Total = 124) Attribute: Have or Had Vessel Insurance Discrete Estimator. Counts = 1231 (Total = 124) Attribute: Have or Had Health Insurance Discrete Estimator. Counts = 1222 (Total = 124) Attribute: Have or Had Everyday needs Insurance Discrete Estimator. Counts = 1222 (Total = 124) Attribute: Have or Had Business House Insurance Discrete Estimator. Counts = 1231 (Total = 124) Attribute: Have or Had Family Insurance Discrete Estimator. Counts = 1231 (Total = 124) Attribute: Have or Had Cash Insurance Discrete Estimator. Counts = 1222 (Total = 124) Attribute: Have or Had Child Insurance Discrete Estimator. Counts = 1222 (Total = 124) Attribute: Have or Had Car Insurance Discrete Estimator. Counts = 123 (Total = 123) Attribute: Have or Had Motorbike Insurance Discrete Estimator. Counts = 1231 (Total = 124) Attribute: Have never had Insurance Discrete Estimator. Counts = 9232 (Total = 124) Attribute: Fixed Costs would not be covered in case of a possible loss of mine Discrete Estimator. Counts = 8836 (Total = 124) Attribute: Loans would not be covered in case of a possible loss of mine Discrete Estimator. Counts = 8935 (Total = 124) Attribute: Children Studies would not be covered in case of a possible loss of mine Discrete Estimator. Counts = 9430 (Total = 124) Attribute: Tax obligations would not be covered in case of a possible loss of mine Discrete Estimator. Counts = 9430 (Total = 124) Attribute: No needs to leave behind in case of a possible loss of mine Discrete Estimator. Counts = 1222 (Total = 124) Attribute: Happiness would not be covered in case of a possible loss of mine Discrete Estimator. Counts = 1222 (Total = 124) Attribute: Purchases in non basic necessities would not be covered in case of a possible loss of mine Discrete Estimator. Counts = 1231 (Total = 124) Attribute: Want a risk protection Discrete Estimator. Counts = $101 \ 23$ (Total = 124) Attribute: A satisfying amount of money for the support of my beloved ones Normal Distribution. Mean = 79.5744 StdDev = 41.9303 Attribute: Not at all satisfied from the public insurance health benefits Discrete Estimator. Counts = $106 \ 18$ (Total = 124) Attribute: Kind of satisfied from the public insurance health benefits Discrete Estimator. Counts = 7648 (Total = 124) Attribute: Quite satisfied from the public insurance health benefits Discrete Estimator. Counts = 93 31 (Total = 124) Attribute: Absolutely satisfied from the public insurance health benefits Discrete Estimator. Counts = 1231 (Total = 124) Attribute: I would choose a Public Hospital in Athens or Thessaloniki for a mild health issue Discrete Estimator. Counts = $20\ 104\ (Total = 124)$ Attribute: I would choose a big private hospital in Athens or Thessaloniki for a mild health issue Discrete Estimator. Counts = 9628 (Total = 124) Attribute: I would choose a local private hospital for a mild health issue Discrete Estimator. Counts = 8737 (Total = 124) Attribute: I would choose a local public hospital for a mild health issue Discrete Estimator. Counts = 8341 (Total = 124) Attribute: I would choose a public hospital in Athens or Thessaloniki for serious health issues Discrete Estimator. Counts = 93 31 (Total = 124) Attribute: I would choose a big private hospital of Athens or Thessaloniki for serious health issues Discrete Estimator. Counts = $41\,83$ (Total = 124) Attribute: I would choose a local private hospital for serious health issues Discrete Estimator. Counts = $104\ 20$ (Total = 124)

Attribute: I would choose a local public hospital for serious health issues Discrete Estimator. Counts = $114\ 10\ (Total = 124)$ Attribute: I would choose a foreign hospital for serious health issues Discrete Estimator. Counts = 9925 (Total = 124) Attribute: I wish for private health services coupled with my insurance Discrete Estimator. Counts = $113 \ 11$ (Total = 124) Attribute: I would like diagnostic tests to be included to my private insurance Discrete Estimator. Counts = 6559 (Total = 124) Attribute: I would like doctor visits to be included to my private insurance Discrete Estimator. Counts = 73466 (Total = 125) Attribute: I would like hospital care to be included to my private insurance Discrete Estimator. Counts = 7846 (Total = 124) Attribute: I would like Annual check up to be included to my private insurance Discrete Estimator. Counts = 6559 (Total = 124) Attribute: I would like going abroad to be included to my private insurance Discrete Estimator. Counts = 3589 (Total = 124) Attribute: I would like ambulance to be included to my private insurance Discrete Estimator. Counts = 1222 (Total = 124) Attribute: Team insurance Discrete Estimator. Counts = 90.34 (Total = 124) Attribute: I will not get a pension Discrete Estimator. Counts = 2797 (Total = 124) Attribute: I will get a small pension Discrete Estimator. Counts = 4678 (Total = 124) Attribute: I will get a satisfying pension Discrete Estimator. Counts = $104\ 20$ (Total = 124) Attribute: I have managed for a lump sum or supplementary pension Discrete Estimator. Counts = 2995 (Total = 124) Attribute: I have managed for a lump sum or supplementary pension through Bank Savings Discrete Estimator. Counts = 30.94 (Total = 124) Attribute: I have managed for a lump sum or supplementary pension through Pension scheme purchase Discrete Estimator. Counts = 1222 (Total = 124) Attribute: I have managed for a lump sum or supplementary pension through Life insurance program and savings plan Discrete Estimator. Counts = 1222 (Total = 124) Attribute: I have managed for a lump sum or supplementary pension through Real estate purchase for rent or exploitation Discrete Estimator. Counts = 1159 (Total = 124) Attribute: I am about to take immediate care of a lump sum or supplementary pension Discrete Estimator. Counts = $97\ 27$ (Total = 124) Attribute: I have managed for a lump sum or supplementary pension through Pension scheme or savings plan purchase

Discrete Estimator. Counts = 1177 (Total = 124) Attribute: Even if I wanted it I cannot take care of a lump sum or supplementary pension Discrete Estimator. Counts = 1213 (Total = 124) Attribute: It is of a major importance to support my children and grandchildren after I receive my pension Discrete Estimator. Counts = 7945 (Total = 124) Attribute: It is of a major importance to cover my healthcare after I receive my pension Discrete Estimator. Counts = 8836 (Total = 124) Attribute: It is of a major importance to cover my pleasure trips after I receive my pension Discrete Estimator. Counts = $35\ 89\ (Total = 124)$ Attribute: It is of a major importance to cover my house purchases after I receive my pension Discrete Estimator. Counts = 1159 (Total = 124) Attribute: It is of a major importance to cover my fixed costs after I receive my pension Discrete Estimator. Counts = 1222 (Total = 124) Attribute: It is of a major importance to cover my everyday needs after I receive my pension Discrete Estimator. Counts = 1222 (Total = 124) Attribute: I am interested in estimating my retirement Discrete Estimator. Counts = 1159 (Total = 124)

Canopy Clustering/NN

Cluster 0:

Cluster 1:

Cluster 2:

Cluster 3:

Cluster 4:

Cluster 5:

Cluster 6:

Each "Yes/No" answer in each question (Car superseding ability, motorbike superseding ability etc..) is the centroid of all the answers that the customers have answered (in that specific question).

APPENDIX 3: Large Super Market in Greece

Product Categories' Codes Translated

Product Categories' Codes	Product Categories' Names
011A01	PASTA
011A02	FOOD
011A03	BREADS
011A04	PASTRIES/SWEETS
011AAY	BREADS
011AAF	BREADS
011AAX	RUSKS/RUSKS
011AAC	RUSKS/RUSKS
011AAV	RUSKS/RUSKS

012G01	OTHER - MAINTENANCE
012GZ5	OTHER - MAINTENANCE
012D04	FROZENS
012DBA	FROZENS
012DBB	FROZENS
012DZ5	FROZENS
012DF0	FROZENS
012DF3	FROZENS
021A05	RICE/PULSES
021A06	RICE/PULSES
021E05	RICE/PULSES
021E06	RICE/PULSES
031A07	FOOD
031A68	FOOD
031A73	FOOD
031A74	FOOD
041A08	BISCUITS
041A09	PASTRIES/SWEETS
041A16	BREAKFAST ITEMS
041A17	BREAKFAST ITEMS
041A18	PASTRIES/SWEETS
041A19	PASTRIES/SWEETS
041A20	PASTRIES/SWEETS
041A21	PASTRIES/SWEETS
041A22	PASTRIES/SWEETS
041A23	PASTRIES/SWEETS
041A25	CHOCOLATES
041A26	CHOCOLATES
041A27	CANDIES/GUMS
041A28	CANDIES/GUMS
041AC2	PASTRIES/SWEETS
042G19	OTHER - MAINTENANCE
042D21	FROZENS
042DZ3	FROZENS
042E20	OTHER - DRAINING BENCHES
051A10	BREAKFAST CEREALS
051A29	BREAKFAST ITEMS
051A30	BREAKFAST ITEMS
051A33	TEAS/JUICES - SHELF
051A34	BREAKFAST ITEMS
061A11	SHELF STABLE MILK
062G11	MILK - MAINTENANCE
062G12	YOGHURTS

062G14	DESSERTS/CREAMS GAL.
062GX0	DESSERTS/CREAMS GAL.
062GC5	DESSERTS/CREAMS GAL.
062GC9	DESSERTS/CREAMS GAL.
062E12	YOGHURTS
071A15	FOOD
081A24	FOOD
082G24	OTHER - MAINTENANCE
091A31	COFFEE
091BBN	HOUSEHOLD
092G31	COFFEE
092E31	COFFEE
101A37	COMPOSTERS/PRESERVES/TOMATOES
102D35	FROZENS
102E35	VEGETABLES
111A36	COMPOSTERS/PRESERVES/TOMATOES
112E40	FRUITS
121A38	FOOD
121A39	KETCHUP/MAYONEZA/MUSTARD
121A64	KETCHUP/MAYONEZA/MUSTARD
121A65	KETCHUP/MAYONEZA/MUSTARD
121A67	FOOD
121AZ4	FOOD
122G63	OTHER - MAINTENANCE
122G67	OTHER - MAINTENANCE
131A41	COMPOSTERS/PRESERVES/TOMATOES
132G41	OTHER - MAINTENANCE
132D41	FROZENS
141A42	OILS
141A43	BUTTER/MARGARINES
141ABG	OILS
141ABD	OILS
142G44	BUTTER/MARGARINES
142G45	BUTTER/MARGARINES
142E45	BUTTER/MARGARINES
152G46	SAUSAGES
152GY0	SAUSAGES
152E46	SAUSAGES
162G50	CHEESES - PRESERVATION
162EJ2	CHEESES - DRAINING BENCHES
172G51	OTHER - MAINTENANCE
172GM6	OTHER - MAINTENANCE
172E51	OTHER - DRAINING BENCHES

172EJ3	OTHER - DRAINING BENCHES
	OTHER - MAINTENANCE
182E52	OTHER - DRAINING BENCHES
191A53	FOOD
192E53	OTHER - DRAINING BENCHES
201A54	FOOD
202G54	OTHER - MAINTENANCE
202E54	OTHER - DRAINING BENCHES
202E54 212D55	FROZENS
212D55	FROZENS
212E55	FRESH FISH/MOLLUSCS
212E55	FRESH FISH/MOLLUSCS
222G59	DAMP POULTRY
222D58	FROZENS
222D59	FROZENS
222D62	FROZENS
222E57	FRESH BEEF
222E58	DAMP PORK
222E59	DAMP POULTRY
222E60	DAMP POULTRY
222E61	DAMPMEAT- LAMBS/OTHER
222E62	DAMPS MEAT- LAMBS/OTHER
222EY1	DAMP POULTRY
231A66	EGGS
241A08	BISCUITS
241A70	CORN PUFF SNACK/CHIPS
241A71	CORN PUFF SNACK/CHIPS
241A72	FOOD
242E72	OTHER - DRAINING BENCHES
251A33	KAVA NON-ALCOHOLIC/TEA/JUICES
251A75	KAVA NON-ALCOHOLIC/WATER
251A76	KAVA NON-ALCOHOLIC/SOFT DRINKS
251AX3	KAVA NON-ALCOHOLIC/SOFT DRINKS
251AX4	KAVA NON-ALCOHOLIC/SOFT DRINKS
251AX5	KAVA NON-ALCOHOLIC/TEA/JUICES
252G33	TEAS/JUICES - MAINTENANCE
252G76	OTHER - MAINTENANCE
252GX5	TEAS/JUICES - MAINTENANCE
261A77	KAVA ALCOHOL/BEERS
261A78	KAVA ALCOHOL/WINES
261A79	KAVA ALCOHOL/DRINKS
261A80	KAVA ALCOHOL/DRINKS
261A81	KAVA ALCOHOL/DRINKS
201A01	INA TA ALCOHOL/DRINKS

2(1) 92	KANA ALCOHOL (DDINKS
261A82	KAVA ALCOHOL/DRINKS
261A83	KAVA ALCOHOL/DRINKS
261A84	KAVA ALCOHOL/DRINKS
261A85	KAVA ALCOHOL/DRINKS
261A86	KAVA ALCOHOL/DRINKS
261A88	KAVA ALCOHOL/DRINKS
261AZ7	KAVA ALCOHOL/DRINKS
261AX4	KAVA ALCOHOL/DRINKS
281BB1	TYPES OF PHYSICAL HEALTH
281BD9	TYPES OF PHYSICAL HEALTH
281BE1	TYPES OF PHYSICAL HEALTH
281BS7	TYPES OF PHYSICAL HEALTH
281BS8	TYPES OF PHYSICAL HEALTH
281BS9	TYPES OF PHYSICAL HEALTH
281BT0	TYPES OF PHYSICAL HEALTH
281BT3	TYPES OF PHYSICAL HEALTH
291BA4	TYPES OF PHYSICAL HEALTH
291BA8	TYPES OF PHYSICAL HEALTH
291BC4	TYPES OF PHYSICAL HEALTH
301BB2	DETERGENTS
301BB3	DETERGENTS
301BB4	DETERGENTS
301BB5	DETERGENTS
301BG1	DETERGENTS
301BT2	DETERGENTS
311BA8	DETERGENTS
311BB6	DETERGENTS
321BB7	DETERGENTS
321BB8	DETERGENTS
331BB9	HOUSEHOLD
331BY5	HOUSEHOLD
341BG3	HOUSEHOLD
341BG4	HOUSEHOLD
351BG8	HOUSEHOLD
351BG9	HOUSEHOLD
351BD1	HOUSEHOLD
351BD2	HOUSEHOLD
351BD3	HOUSEHOLD
351BD5	HOUSEHOLD
361BBL	HOUSEHOLD
361BG2	DETERGENTS
361BG5	HOUSEHOLD
361BG6	HOUSEHOLD

361BG7	HOUSEHOLD
361BD4	HOUSEHOLD
361BD6	BAZAAR
361BD8	HOUSEHOLD
361BM5	HOUSEHOLD
361BY4	HOUSEHOLD
361BY6	HOUSEHOLD
371AE2	ANIMAL FEEDS-ACCESSORIES
371BE3	ANIMAL FEEDS-ACCESSORIES
381BE4	PAPER
381BE5	PAPER
381BE6	PAPER
381BE7	PAPER
391BE8	SMOKER'S ITEMS
401BE9	BAZAAR
401BZ1	HOUSEHOLD
411A14	BABY FOOD
411AZ2	BABY FOOD
423ZH1	BAZAAR
423ZH2	BAZAAR
433ZBM	BAZAAR
433ZH1	BAZAAR
433ZH2	BAZAAR
433ZH3	BAZAAR
433ZH5	BAZAAR
463HH1	BAZAAR
463HH2	BAZAAR
463HH3	BAZAAR
463HH4	BAZAAR
463HH5	BAZAAR
473UH1	BAZAAR
473UH2	BAZAAR
473UH3	BAZAAR
473UH4	BAZAAR
483IH6	BAZAAR
483IH7	BAZAAR
483IH8	BAZAAR
483IH9	BAZAAR
493KU1	BAZAAR
493KU2	BAZAAR
503KU4	HOUSEHOLD
503KU5	BAZAAR
503KU6	BAZAAR

503KU7	BAZAAR
513KU8	BAZAAR
513KU9	HOUSEHOLD
533LI1	GAMES
543LI3	GAMES
553LH4	GAMES
563LI5	GAMES
563LI6	GAMES
573LI7	GAMES
573LI8	GAMES
583LI9	GAMES
583LK1	GAMES
603MK6	BAZAAR
613MK7	BAZAAR
623MK8	BAZAAR
633NK9	BAZAAR
633NX7	HOUSEHOLD
643NL1	BAZAAR
653NL2	BAZAAR
663NL3	BAZAAR
673NL4	BAZAAR
673NL5	BAZAAR
673NN9	BAZAAR
683JL5	BAZAAR
693JL5	BAZAAR
693JL7	BAZAAR
693JL8	BAZAAR
703JL5	BAZAAR
723PM2	BAZAAR
733PM3	BAZAAR
733PN8	HOUSEHOLD
743PM4	BAZAAR
751BT8	XMCODE OUT OF CATEGORIES
761AN1	FOOD
762GN1	OTHER - MAINTENANCE
771BN2	BAZAAR
783RN5	BAZAAR
783RN6	BAZAAR
793SB0	BAZAAR
793SG0	BAZAAR
793SD0	BAZAAR
803TA0	BAZAAR
803TBJ	XMCODE OUT OF CATEGORIES

811BAP	BODY/HAND COSMETICS
811BAS	TYPES OF PHYSICAL HEALTH
811BJ4	BATH FOAMS/SHAMPOO/SOFTENERS
811BJ6	BATH FOAMS/SHAMPOO/SOFTENERS
811BJ7	BATH FOAMS/SHAMPOO/SOFTENERS
811BJ9	BATH FOAMS/SHAMPOO/SOFTENERS
811BO1	BODY/HAND COSMETICS
811BO2	BODY/HAND COSMETICS
811BO3	BODY/HAND COSMETICS
811BO4	BODY/HAND COSMETICS
811BO5	BODY/HAND COSMETICS
811BO6	BODY/HAND COSMETICS
811BO8	BODY/HAND COSMETICS
811BO9	BODY/HAND COSMETICS
811BP0	BODY/HAND COSMETICS
811BP1	BODY/HAND COSMETICS
811BP2	TYPES OF PHYSICAL HEALTH
811BP3	TYPES OF PHYSICAL HEALTH
821BA5	FACE/HEAD COSMETICS
821BO4	FACE/HEAD COSMETICS
821BP6	FACE/HEAD COSMETICS
821BP7	FACE/HEAD COSMETICS
831B90	BATH FOAMS/SHAMPOO/SOFTENERS
831BA7	FACE/HEAD COSMETICS
831BP8	BATH FOAMS/SHAMPOO/SOFTENERS
831BP9	BATH FOAMS/SHAMPOO/SOFTENERS
831BR1	FACE/HEAD COSMETICS
831BR2	FACE/HEAD COSMETICS
831BC8	FACE/HEAD COSMETICS
841BO4	BODY/HAND COSMETICS
841BR4	TYPES OF PHYSICAL HEALTH
841BR5	TYPES OF PHYSICAL HEALTH
841BR6	BODY/HAND COSMETICS
851BR7	TYPES OF ORAL HEALTH
851BR8	TYPES OF ORAL HEALTH
851BR9	TYPES OF ORAL HEALTH
851BS0	TYPES OF ORAL HEALTH
851BS1	FACE/HEAD COSMETICS
851BS2	TYPES OF ORAL HEALTH
851BS3	TYPES OF ORAL HEALTH
851BX2	TYPES OF ORAL HEALTH
861B98	FACE/HEAD COSMETICS
861BS4	FACE/HEAD COSMETICS

861BS6	FACE/HEAD COSMETICS
861BT6	HOUSEHOLD
861BC0	BODY/HAND COSMETICS
873TY8	BAZAAR
902DX6	FROZENS
913HX8	BAZAAR
923JC1	BAZAAR
933JC6	BAZAAR
943XC7	BAZAAR
943XV1	BAZAAR
951A01	PASTA
951A02	FOOD
951A04	PASTRIES/SWEETS
951A05	RICE/PULSES
951A06	RICE/PULSES
951A07	FOOD
951A10	BREAKFAST CEREALS
951A15	FOOD
951A16	BREAKFAST ITEMS
951A22	PASTRIES/SWEETS
951A23	PASTRIES/SWEETS
951A26	CHOCOLATES
951A37	COMPOSTERS/PRESERVES/TOMATOES
951A38	FOOD
951A39	KETCHUP/MAYONEZA/MUSTARD
951A41	COMPOSTERS/PRESERVES/TOMATOES
951A42	OILS
951A52	FOOD
951A53	FOOD
951A54	FOOD
951A64	KETCHUP/MAYONEZA/MUSTARD
951A67	FOOD
951A69	FOOD
951A71	FOOD
951A72	FOOD
951A77	KAVA ALCOHOL/WINES
951A78	KAVA ALCOHOL/WINES
951AN1	BREAKFAST ITEMS
951AX4	ALOE VERA BEVERAGE
952G11	MILK - MAINTENANCE
952G12	YOGHURTS
952G44	BUTTER/MARGARINES
952G45	BUTTER/MARGARINES

952G46	SAUSAGES
952G50	CHEESES - PRESERVATION
952G77	TEAS/JUICES - MAINTENANCE
952GX5	FROZENS
952D35	FROZENS
952EJ2	CHEESES - DRAINING BENCHES
963CV0	XMCODE OUT OF CATEGORIES
AA1A54	FOOD
AA1A72	FOOD
AB1A05	RICE/PULSES
AB1A11	SHELF STABLE MILK
AB1A35	COMPOSTERS/PRESERVES/TOMATOES
AB1A38	FOOD
AB1AAR	PASTA
AB1AT6	FOOD
AH1BBC	SMOKER'S ITEMS
AK2E04	BAKE OFF / HOT CORNER
AK2E59	BAKE OFF / HOT CORNER
AK2EBH	BAKE OFF / HOT CORNER
AK2EBU	BAKE OFF / HOT CORNER
AK2EBI	BAKE OFF / HOT CORNER
AK2EBV	BAKE OFF / HOT CORNER
AT1AAT	XMCODE OUT OF CATEGORIES

Error! Reference source not found.

=== Clustering model (full training set) ===

Simple K Means with 2 Clusters

Number of iterations: 2 Within cluster sum of squared errors: **11112.0**

Missing values globally replaced with mean/mode

Final cluster centroids:

	(Cluster#	
Attribute	Full Data	0	1
	(108.0)	(7.0)	(101.0)
==========		================	=======
GENDER	WOMAN	WOMAN	WOMAN
AGE	32	38	32
011A01	2	81	2
011A02	1	33	1
011A03	1	1	1

011A04	1	1	1
011AAY	1	45	1
011AAF	1	96	1
011AAX	3	13	3
011AAC	2	15	2
			2
011AAV	2	2	2
012G01	1	1	1
012GZ5	1	1	1
012D04	1	1	1
012DBA	1	11	1
012DBB	1	1	1
012DZ5	1	2	1
012DF0	1	2	1
012DF3	1	8	1
021A05	2	31	2
021A06	1	14	1
021E05	1	2	1
021E06	1	1	1
031A07	1	27	1
031A68	1	17	1
031A73	1	26	1
031A74	1	1	1
041A08	3	69	3
041A09	1	1	1
041A16	1	1	1
041A17	1	3	1
041A18	1	1	1
041A19	1	1	1
041A20	1	1	1
041A21	1	56	1
041A22	1	1	1
041A23	1	14	1
041A25	1	72	1
041A26	1	12	1
041A27	1	12	1
			Ţ
041A28	2	19	2
041AC2	2	5	2
042G19	1	1	1
042D21	1	1	1
042DZ3	1	14	1
042E20	1	1	1
051A10	1	35	1
051A29	1	10	1
			1
051A30	1	1	1
051A33	1	1	1
051A34	1	8	1
061A11	4	13	4
062G11	3	119	3
062G12	1	84	1
062G14	1	10	1
	1		1
062GX0		1	1
062GC5	1	37	1
062GC9	1	1	1
062E12	2	2	1 2
071A15	1	29	1
081A24	5	42	5
082G24	1	5	1
091A31	2	61	2
0	4	U L	4

091BBN	1	1	1
092G31	1	1	1
092E31	2	17	2
101A37	4	52	4
102D35	1	18	1
102E35	1	214	1
	1	1	1
111A36			
112E40	11	120	11
121A38	1	3	1
121A39	1	6	1
121A64	1	16	1
121A65	1	9	1
121A67	1	8	1
121AZ4	1	2	1
122G63	2	2	2
122G67	1	1	1
131A41	2	24	2
132G41	1	1	1
132D41	1	14	1
141A42	1	1	1
141A43	1	8	1
141ABG	1	1	1
141ABD	1	14	1
142G44	1	17	1
142G45	2	15	2
142E45	1	1	1
152G46	2	41	2
152GY0	1	1	1
152E46	4	74	4
	1		
162G50		66	1
162EJ2	1	142	1
172G51	1	1	1
172GM6	1	1	1
172E51	1	2	1
172EJ3	1	1	1
182G52	1	5	1
		5	
182E52	1	5	1
191A53	1	1	1
192E53	1	4	1
201A54	1	1	1
202G54	1	1	1
202E54	2	2	2
212D55	1	7	1
212D56	1	7	1
212E55	1	2	1
212E56	2	2	2
222G59	1	2	1
222D58	1	1	1
222D59	1	9	1
222D62	1	1	1
222E57	1	35	1
222E58	1	26	1
222E59	5	35	5
222E60	2	2	2
	2 2		2
222E61		5	2
222E62	1	1	1
222EY1	1	2	1
231A66	2	51	2

241A08	1	19	1
241A70	1	8	1
241A71	2	40	2
241A72	1	12	1
242E72	1	5	1
251A33	1	8	1
251A75	8	108	8
251A76	1	10	1
251AX3	2	4	2
251AX4	3	54	3
251AX5	1	21	1
252G33	1	1	1
252G76	1	1	1
252GX5	1	9	1
261A77	1	21	1
261A78	1	18	1
261A79	1	1	1
261A80	1	1	1
261A81	1	1	1
261A82	1	1	1
261A83	1	1	1
261A84	1	1	1
261A85	1	1	1
261A86	1	1	1
261A88	1	1	1
	1	1	1
261AZ7			
261AX4	1	1	1
281BB1	2	9	2
281BD9	1	1	1
281BE1	1	6	1
281BS7	1	8	1
281BS8	1	3	1
281BS9	1	8	1
281BT0	1	1	1
281BT3	1	1	1
291BA4	1	5	1
291BA8	1	22	1
291BC4	1	1	1
301BB2	1	37	1
301BB3	1	22	1
301BB4	2	38	2
301BB5	1	19	1
301BG1	1	1	1
301BT2	1	1	1
311BA8	1	1	1
311BB6	1	3	1
321BB7	1	1	1
321BB8	1	6	1
331BB9	1	1	1
331BY5	1	1	1
341BG3	1	14	1
341BG4	1	6	1
351BG8	1	6	1
351BG9	1	4	1
351BD1	1	2	1
351BD2	1	1	1
351BD3	1	6	1
351BD5	1	11	1
	1	± ±	T

361BBL	1	5	1
361BG2	1	1	1
361BG5	1	15	1
361BG6	1	1	1
361BG7	3	25	3
361BD4	1	1	1
361BD6	1	1	1
361BD8	1	2	1
361BM5	1	15	1
361BY4	1	1	1
361BY6	1	2	1
371AE2	1	9	1
371BE3	1	2	1
	2		
381BE4		21	2
381BE5	1	28	1
381BE6	2	23	2
381BE7	1	25	1
391BE8	1	27	1
401BE9	1	7	1
401BZ1	1	1	1
411A14	1		
		1	1
411AZ2	1	1	1
423ZH1	1	1	1
423ZH2	1	1	1
433ZBM	1	1	1
433ZH1	1	1	1
433ZH2	1	4	1
433ZH3	1	1	1
433ZH5	1	1	1
463HH1	1	1	1
463HH2	1	1	1
463HH3	1	8	1
463HH4	1	1	1
463HH5	1	1	1
473UH1	1		1
		1	
473UH2	1	3	1
473UH3	1	1	1
473UH4	1	1	1
483IH6	1	9	1
483IH7	1	2	1
483IH8	1	1	1
483IH9	1	4	1
493KU1	1	1	1
493KU2	1	1	1
503KU4	1	22	1
	1		1
503KU5		1	
503KU6	1	1	1
503KU7	1	3	1
513KU8	1	1	1
513KU9	1	3	1
533LI1	1	1	1
543LI3	1	1	1
553LH4	1	1	1
563LI5	1	1	1
563LI6	1	1	1
573LI7	1	1	1
573LI8	1	1	1
583LI9	1	1	1

583LK1	1	1	1
603MK6	1	1	1
613MK7	1	1	1
623MK8	1	1	1
633NK9	1	4	1
633NX7	2	11	2
643NL1	1	5	1
653NL2	1	5	1
663NL3	2	8	2
673NL4	1	5	1
673NL5	1	1	1
673NN9	1	4	1
683JL5	1	1	1
693JL5	1	1	1
693JL7	1	1	1
693JL8	1	1	1
703JL5	1	5	1
723PM2	1	1	1
733PM3	1	1	1
733PN8	1	1	1
743PM4	1	1	1
751BT8	1	1	1
761AN1	1	23	1
762GN1	1	21	1
771BN2	1	1	1
783RN5	1	1	1
783RN6	1	1	1
793SB0	1	1	1
793SG0	1	1	1
793SD0	1	3	1
803TA0	1	1	1
803TBJ	1	1	1
811BAP	1	4	1
811BAS	1	2	1
811BJ4	1	8	1
811BJ6	1	1	1
811BJ7	2	4	2
811BJ9	1	1	1
811BO1	1	4	1
	1		
811BO2	1	9	1
811BO3	1	1	1
811BO4	1	7	1
811BO5	1	1	1
			1
811BO6	1	1	
811BO8	1	1	1
	1		1
811BO9		1	
811BP0	1	2	1
811BP1	1	1	1
			T
811BP2	2	4	2
811BP3	1	1	1
821BA5	1	1	1
821BO4	1	2	1
821BP6	1	13	1
821BP7	1	1	1
			- -
831B90	2	15	2
831BA7	1	10	1
831BP8	1	4	1
831BP9	1	11	1
			-

831BR1	1	5	1
831BR2	1	1	1
831BC8	1	1	1
841BO4	1	1	1
841BR4	1	2	1
841BR5	1	7	1
841BR6	1	1	1
851BR7	1	21	1
851BR8	1	1	1
851BR9	1	1	1
851BS0	1	1	1
851BS1	1	1	1
851BS2	1	7	1
	1	1	1
851BS3			
851BX2	1	1	1
861B98	1	2	1
861BS4	1	3	1
861BS6	1	4	1
861BT6	1	3	1
861BC0	1	1	1
873TY8	1	1	1
902DX6	1	1	1
913HX8	1	1	1
923JC1	1	1	1
	1	1	1
933JC6			
943XC7	1	2	1
943XV1	1	1	1
951A01	1	1	1
951A02	1	1	1
951A04	1	1	1
951A05	1	1	1
951A06	1	1	1
951A07	1	1	1
951A10	1	1	1
951A15	1	1	1
951A16	1	1	1
951A22	1	1	1
951A23	1	1	1
951A26	1	1	1
	1		
951A37	1	1	1
951A38	2	2	2
951A39	1	1	1
951A41	1	1	1
951A42	1	1	1
951A52	1	1	1
951A53	2	2	2
	1		
951A54		1	1
951A64	1	1	1
951A67	1	1	1
951A69	5	5	5
	5		
951A71	1	1	1
951A72	1	3	1
951A77	1	1	1
951A78	1	1	1
951AN1	1	1	1
951AX4	1	1	1
952G11	1	9	1
952G12	1	1	1
JJZGIZ	Ť	Ţ	T

050011		-	-
952G44	1	1	1
952G45	1	1	1
952G46	1	1	1
952G50	1	1	1
952G77	1	1	1
952GX5	1	1	1
952D35	1	2	1
952EJ2	1	1	1
963CV0	3	200	3
AA1A54	1	1	1
AA1A72	1	1	1
AB1A05	1	1	1
AB1A11	1	1	1
AB1A35	1	1	1
AB1A38	1	2	1
AB1AAR	1	1	1
AB1AT6	1	1	1
AH1BBC	1	8	1
AK2E04	1	1	1
AK2E59	1	1	1
AK2EBH	1	1	1
AK2EBU	1	1	1
AK2EBI	1	1	1
AK2EBV	1	1	1
AT1AAT	1	1	1

=== Model and evaluation on training set ===

Clustered Instances

0 7 (6%) 1 101 (94%)

Simple K Means with 3 Clusters

Number of iterations: 2 Within cluster sum of squared errors: 11051.0

Missing values globally replaced with mean/mode

Final cluster centroids:

	(Cluster#		
Attribute	Full Data	0	1	2
	(108.0)	(7.0)	(99.0)	(2.0)
GENDER	======================================	======================================	======================================	WOMAN
AGE	32	38	32	41
011A01	2	81	2	4
011A02	1	33	1	9
011A03	1	1	1	1
011A04	1	1	1	1
011AAY	1	45	1	8
011AAF	1	96	1	1

011AAX	3	13	3	2
	2		2	
011AAC		15		4
011AAV	2	2	2	2
012G01	1	1	1	3
012GZ5	1	1	1	1
012D04	1	1	1	1
012DBA	1	11	1	1
012DBB	1	1	1	1
012DZ5	1	2	1	1
012DF0	1	2	1	1
012DF3	1	8	1	1
021A05	2	31	2	3
021A06	1	14	1	1
021E05	1	2	1	1
021E06	1	1	1	1
031A07	1	27	1	2
031A68	1	17	1	1
031A73	1	26	1	1
031A74	1	1	1	1
041A08	3	69	3	4
	1		1	1
041A09		1		
041A16	1	1	1	1
041A17	1	3	1	1
041A18	1	1	1	1
041A19	1	1	1	1
041A20	1	1	1	1
041A21	1	56	1	1
041A22	1	1	1	1
041A23	1	14	1	1
041A25	1	72	1	8
041A26	1	12	1	1
041A27	1	12	1	1
041A28	2	19	2	2
041AC2	2	5	2	3
042G19	1	1	1	1
042D21	1	1	1	1
042DZ3	1	14	1	2
042E20	1	1	1	1
051A10	1	35	1	1
051A29	1	10	1	1
051A30	1	1	1	1
051A33	1	1	1	1
051A34	1	8	1	1
061A11	4	13	4	7
062G11	3	119	3	20
062G12	1	84	1	17
062G14	1	10	1	2
062GX0	1	1	1	1
062GC5	1	37	1	1
	1		1	1
062GC9		1		
062E12	2	2	2	1
071A15	1	29	1	8
081A24	5	42	5	10
082G24	1	5	1	4
091A31	2	61	2	3
091BBN	1	1	1	1
092G31	1	1	1	1
092E31	2	17	2	2
	_	± '	_	-

101A37	4	52	4	4
102D35	1	18	1	7
102E35	1	214	1	34
111A36	1	1	1	1
112E40	11	120	11	39
121A38	1	3	1	1
121A39	1	6	1	1
121A64	1	16	1	1
121A65	1	9	1	1
121A67	1	8	1	3
121AZ4	1	2	1	1
122G63	2	2	2	2
122G67	1	1	1	1
131A41	2	24	2	7
132G41	1	1	1	1
132D41	1	14	1	1
141A42	1	1	1	1
141A43	1	8	1	1
141ABG	1	1	1	1
141ABD	1	14	1	1
142G44	1	17	1	1
142G45	2	15	2	2
142E45	1	1	1	1
152G46	2	41	2	10
152GY0	1	1	1	1
152E46	4	74	4	8
162G50	1	66	1	6
162EJ2	1	142	1	22
172G51	1	1	1	1
172GM6	1	1	1	1
172E51	1	2	1	2
172EJ3	1	1	1	1
182G52	1	5	1	1
182E52	1	5	1	1
191A53	1	1	1	1
192E53	1	4	1	4
201A54	1	1	1	1
202G54	1	1	1	1
202E54	2	2	2	2
212D55	1	7	1	7
212D56	1	7	1	2
212E55	1	2	1	1
212E56	2	2	2	2
222G59	1	2	1	1
222D58	1	1	1	1
222D59	1	9	1	1
222D62	1	1	1	1
222E57	1	35	1	10
222E58	1	26	1	10
222E59	5	35	5	15
222E60	2	2	2	2
222E61	2	5	2	1
222E62	1	1	1	1
222EY1	1	2	1	1
231A66	2	51	2	8
	1		1	
241A08		19		1
241A70	1	8	1	3
241A71	2	40	2	13
	2	10	2	10

241A72	1	12	1	4
242E72	1	5	1	1
251A33	1	8	1	1
251A75	8	108	8	21
251A76	1	10	1	1
251AX3	2	4	2	2
251AX4	3	54	3	17
251AX5	1	21	1	19
252G33	1	1	1	1
252G76	1	1	1	1
	1			2
252GX5		9	1	
261A77	1	21	1	1
261A78	1	18	1	1
261A79	1	1	1	1
261A80	1	1	1	1
261A81	1	1	1	1
261A82	1	1	1	1
261A83	1	1	1	1
261A84	1	1	1	1
261A85	1	1	1	1
261A86	1	1	1	1
261A88	1	1	1	1
261AZ7	1	1	1	1
261AX4	1	1	1	1
281BB1	2	9	2	2
281BD9	1	1	1	1
281BE1	1	6	1	1
281BS7	1	8	1	2
281BS8	1	3	1	1
281BS9	1	8	1	1
281BT0	1	1	1	1
281BT3	1	1	1	1
291BA4	1	5	1	1
291BA8	1	22	1	1
291BR0 291BC4	1	1	1	1
301BB2	1	37	1	2
301BB3	1	22	1	1
301BB4	2	38	2	4
301BB5	1	19	1	1
301BG1	1	1	1	1
301BT2	1	1	1	1
311BA8	1	1	1	1
311BB6	1	3	1	1
321BB7	1	1	1	1
321BB8	1	6	1	6
331BB9	1	1	1	1
331BY5	1	1	1	1
341BG3	1	14	1	1
341BG4	1	6	1	1
351BG8	1	6	1	1
351BG9	1	4	1	1
351BD1	1	2	1	1
				1
351BD2	1	1	1	
351BD3	1	6	1	1
351BD5	1	11	1	1
361BBL	1	5	1	1
361BG2	1	1	1	1
361BG5	1	15	1	2

361BG6	1	1	1	1
361BG7	3	25	3	3
361BD4	1	1	1	1
361BD6	1	1	1	1
361BD8	1	2	1	1
361BM5	1	15	1	1
361BY4	1	1	1	1
361BY6	1	2	1	1
371AE2	1	9	1	2
371BE3	1	2	1	1
381BE4	2	21	2	2
381BE5	1	28	1	5
381BE6	2	23	2	5
381BE7	1	25	1	1
391BE8	1	27	1	1
401BE9	1	7	1	1
401BZ1	1	1	1	1
411A14	1	1	1	1
411AZ2	1	1	1	1
423ZH1	1	1	1	1
423ZH2	1	1	1	1
433ZBM	1	1	1	1
433ZH1	1	1	1	1
433ZH2	1	4	1	1
433ZH3	1	1	1	1
433ZH5	1	1	1	1
463HH1	1	1	1	1
463HH2	1	1	1	1
463HH3	1	8	1	1
463HH4	1	1	1	1
463HH5	1	1	1	1
473UH1	1	1	1	1
473UH2	1	3	1	1
473UH3	1	1	1	1
473UH4	1	1	1	1
483IH6	1	9	1	1
483IH7	1	2	1	1
483IH8	1	1	1	1
483IH9	1	4	1	1
493KU1	1	1	1	1
493KU2	1	1	1	1
503KU4	1	22	1	2
503KU5	1	1	1	1
503KU6	1	1	1	1
503KU7	1	3	1	1
513KU8	1	1	1	1
	1	3	1	1
513KU9				
533LI1	1	1	1	1
543LI3	1	1	1	1
553LH4	1	1	1	1
563LI5	1	1	1	1
563LI6	1	1	1	1
573LI7	1	1	1	1
573LI8	1	1	1	1
583LI9	1	1	1	1
583LK1	1	1	1	1
603MK6	1	1	1	1
613MK7	1	1	1	1

623MK8	1	1	1	1
633NK9	1	4	1	1
633NX7	2	11	2	2
643NL1	1	5	1	1
653NL2	1	5	1	1
663NL3	2	8	2	2
673NL4	1	5	1	1
673NL5	1	1	1	1
673NN9	1	4	1	1
683JL5	1	1	1	1
693JL5	1	1	1	1
693JL7	1	1	1	1
693JL8	1	1	1	1
703JL5	1	5	1	1
723PM2	1	1	1	1
733PM3	1	1	1	1
733PN8	1	1	1	1
743PM4	1	1	1	1
751BT8	1	1	1	1
761AN1	1	23	1	1
762GN1	1	21	1	1
771BN2	1	1	1	1
783RN5	1	1	1	1
783RN6	1	1	1	1
793SB0	1	1	1	1
793SG0	1	1	1	1
793SD0	1	3	1	1
803TA0	1	1	1	1
803TBJ	1	1	1	1
811BAP	1	4	1	1
811BAS	1	2	1	1
811BJ4	1	8	1	1
811BJ6	1	1	1	1
811BJ7	2	4	2	2
811BJ9	1	1	1	1
811BO1	1	4	1	1
811BO2	1	9	1	1
811BO3	1	1	1	1
811BO4	1	7	1	1
811B05	1	1	1	1
811BO6	1	1	1	1
811BO8	1	1	1	1
811BO9	1	1	1	1
811BP0	1	2	1	1
811BP1	1	1	1	1
811BP2	2			
		4	2	2
811BP3	1	1	1	1
821BA5	1	1	1	1
821BO4	1	2	1	1
821BP6	1	13	1	1
821BP7	1	1	1	1
831B90	2	15	2	2
831BA7	1	10	1	1
831BP8	1	4	1	1
831BP9	1	11	1	1
831BR1	1	5	1	1
831BR2	1	1	1	1
831BC8	1	1	1	1

841BO4	1	1	1	1
841BR4	1	2	1	1
841BR5	1	7	1	1
841BR6	1	1	1	1
851BR7	1	21	1	2
851BR8	1	1	1	1
851BR9	1	1	1	1
851BS0	1	1	1	1
851BS1	1	1	1	1
851BS2	1	7	1	1
851BS3	1	1	1	1
851BX2	1	1	1	1
861B98	1	2	1	1
861BS4	1	3	1	1
861BS6	1	4	1	1
861BT6	1	3	1	1
861BC0	1	1	1	1
873TY8	1	1	1	1
902DX6	1	1	1	1
913HX8	1	1	1	1
923JC1	1	1	1	1
933JC6	1	1	1	1
943XC7	1	2	1	1
943XV1	1	1	1	1
951A01	1	1	1	1
951A02	1	1	1	1
951A04	1	1	1	1
951A05	1	1	1	1
951A06	1	1	1	1
951A07	1	1	1	1
951A10	1	1	1	1
951A15	1	1	1	1
951A16	1	1	1	1
951A22	1	1	1	1
951A23	1	1	1	1
951A26	1	1	1	1
951A37	1	1	1	1
951A38	2	2	2	2
951A39	1	1	1	1
951A41	1	1	1	1
951A42	1	1	1	1
951A52	1	1	1	1
951A53	2	2	2	2
951A54	1	1	1	1
951A64	1	1	1	1
951A67	1	1	1	1
951A69	5	5	5	5
951A71	1	1	1	1
951A72	1	3	1	1
951A77	1	1	1	1
951A78	1	1	1	1
951AN1	1	1	1	1
951AX4	1	1	1	1
952G11	1	9	1	1
952G12	1	1	1	1
952G44	1	1	1	1
952G45	1	1	1	1
952G46	1	1	1	1
201010	-	±	÷	-

952G50	1	1	1	1
952G77	1	1	1	1
952GX5	1	1	1	1
952D35	1	2	1	1
952EJ2	1	1	1	1
963CV0	3	200	3	6
AA1A54	1	1	1	1
AA1A72	1	1	1	1
AB1A05	1	1	1	1
AB1A11	1	1	1	1
AB1A35	1	1	1	1
AB1A38	1	2	1	1
AB1AAR	1	1	1	1
AB1AT6	1	1	1	1
AH1BBC	1	8	1	1
AK2E04	1	1	1	1
AK2E59	1	1	1	1
AK2EBH	1	1	1	1
AK2EBU	1	1	1	1
AK2EBI	1	1	1	1
AK2EBV	1	1	1	1
AT1AAT	1	1	1	1

=== Model and evaluation on training set ===

Clustered Instances

- 0 7 (6%)
- 1 99 (92%)
- 2 2 (2%)

Simple K Means with 4 Clusters

Number of iterations: 7 Within cluster sum of squared errors: 10605.0

Missing values globally replaced with mean/mode

Final cluster centroids:

		Cluster#			
Attribute	Full Data	0	1	2	3
	(108.0)	(8.0)	(87.0)	(12.0)	(1.0)
gender	======================================	WOMAN	======================================	======================================	woman
AGE	32	38	32	37	52
011A01	2	81	2	14	153
011A02	1	22	1	8	109
011A03	1	1	1	1	1
011A04	1	1	1	1	17
011AAY	1	45	1	26	89
011AAF	1	96	1	20	324
011AAX	3	27	3	36	69
011AAC	2	15	2	22	47
011AAV	2	2	2	6	24

012G01	1	1	1	1	1
012GZ5	1	2	1	1	8
012D04	1	1	1	1	1
012DBA	1	11	1	1	10
012DBB	1	1	1	1	1
012DZ5	1	7	1	6	14
012DF0	1	3	1	1	11
012DF3	1	7	1	1	20
021A05	2	31	2	43	100
021A06	1	14	1	23	53
021E05	1	2	1	1	6
021E06	1	1	1	1	1
031A07	1	19	1	2	49
031A68	1	17	1	7	38
031A73	1	26	1	27	37
031A74	1	1	1	1	2
041A08	3	69	3	75	221
041A09	1	1	1	1	11
041A16	1	1	1	1	18
041A17	1	8	1	7	58
041A18	1	1	1	1	2
041A19	1	1	1	1	1
041A20	1	5	1	2	11
041A21	1	56	1	25	80
041A22	1	3	1	6	8
041A23	1	14	1	6	39
041A25	1	72	1	24	198
041A26	1	12	1	5	87
041A27	1	10	1	8	14
041A28	2	19	2	8	49
041AC2	2	5	2	2	7
042G19	1	1	1	1	1
	1				
042D21		1	1	1	1
042DZ3	1	14	1	8	52
042E20	1	1	1	1	1
051A10	1	35	1	- 7	124
051A29	1	4	1	1	10
051A30	1	4	1	1	7
051A33	1	1	1	1	1
051A34	1	13	1	2	14
061A11	4	6	4	4	60
062G11	3	119	3	23	315
	5				
062G12	1	84	1	91	208
062G14	1	10	1	12	41
062GX0	1	1	1	1	1
062GC5	1	37	1	15	38
062GC9	1	1	1	1	20
062E12	2	2	2	2	2
071A15	1		1	26	
		15			81
081A24	5	42	5	51	140
082G24	1	3	1	1	5
091A31	2	51	2	12	229
091BBN	1	1	1	1	2
092G31	1	1	1	1	1
092E31	2	3	2	5	17
101A37	4	50	4	3	108
102D35	1	18	1	5	86
102E35	1	214	1	176	478
111A36	1	1	1	1	1
112E40	11	120	11	61	344
121A38	1	17	1	1	13
	-		-	-	

121A39	1	14	1	5	16
121A64	1	16	1	2	16
121A65	1	5	1	5	20
121A67	1	2	1	5	18
121AZ4	1	1	1	1	1
122G63	2	9	2	2	12
122G67	1	1	1	1	3
131A41	2	74	2	8	62
132G41	1	1	1	1	1
132D41	1	14	1	2	24
141A42	1	1	1	1	1
141A43	1	8	1	9	4
141ABG	1	1	1	1	1
141ABD	1	14	1	3	16
142G44	1	15	1	14	87
142G45	2	13	2	4	11
142E45	1	1	1	1	1
152G46	2	41	2	8	130
152GY0	1	1	1	1	1
152E46	4	74	4	17	162
162G50	1	66	1	14	144
162EJ2	1	142	1	123	323
172G51	1	10	1	1	6
172GM6	1	1	1	1	1
172E51	1	8	1	7	12
172EJ3	1	1	1	1	1
182G52	1	17	1	10	30
182E52	1	5	1	11	25
191A53	1	1	1		
				1	1
192E53	1	4	1	3	10
201A54	1	1	1	2	1
202G54	1	1	1	1	1
202E54	2	2	2	2	3
212D55	1	13	1	3	24
212D56	1	7	1	13	26
212E55	1	2	1	1	3
212E56	2	2	2	2	2
222G59	1	2	1	1	19
222D58	1	1	1	1	12
222D59	1	5	1	1	9
222D62	1	1	1	1	1
222E57	1	35	1	3	116
222E58	1	26	1	25	107
222E59	5	35	5	3	108
222E60	2	2	2	2	2
222E61	2	2	2	4	7
222E62	1	1	1	1	1
222EY1	1	1	1	1	2
231A66	2	51	2	21	126
241A08	1	19	1	11	21
241A70	1	8	1	13	35
241A71	2	40	2	54	116
241A72	1	12	1	19	38
242E72	1	5	1	5	13
251A33	1	8	1	5	25
251A75	8	108	8	19	133
251A76	1	7	1	8	41
251AX3	2	2	2	2	4
251AX4	3	89	3	72	155
251AX5	1	21	1	11	
					76
252G33	1	1	1	1	6

252G76	1	1	1	1	1
252GX5	1	9	1	10	44
261A77	1	21	1	8	61
261A78	1	5	1	8	18
261A79	1	1	1	1	1
261A80	1	1	1	1	4
	1	1	1	1	
261A81					1
261A82	1	1	1	1	1
261A83	1	1	1	1	7
261A84	1	1	1	1	1
261A85	1	1	1	1	1
261A86	1	1	1	1	1
261A88	1	1	1	1	3
261AZ7	1	1	1	1	1
261AX4	1	1	1	1	1
281BB1	2	9	2	29	75
281BD9	1	1	1	1	2
281BE1	1	6	1	1	41
281BS7	1	29	1	3	27
281BS8	1	3	1	1	9
281BS9	1	9	1	1	29
281BT0	1	1	1	1	7
281BT3	1	1	1	1	1
291BA4	1	5	1	7	20
291BA8	1	22	1	7	36
291BC4	1	1	1	1	1
301BB2	1	37	1	18	91
301BB3	1	22	1	47	73
301BB4	2	38	2	22	128
301BB5	1	19	1	31	56
301BG1	1	1	1	1	1
301BT2	1	1	1	1	2
311BA8	1	1	1	1	17
311BB6	1	3	1	1	10
321BB7	1	1	1	1	2
321BB8	1	6	1	8	24
331BB9	1	1	1	1	3
331BY5	1	1	1	1	1
341BG3	1	14	1	10	26
341BG4	1	6	1	5	20
351BG8	1	4	1	4	8
351BG9	1	4	1	1	4
351BD1	1	2	1	1	7
351BD2	1	1	1	1	1
	1	11	1		
351BD3				11	29
351BD5	1	13	1	7	16
361BBL	1	10	1	1	5
					5
361BG2	1	1	1	2	2
361BG5	1	18	1	13	43
361BG6	1		1	1	10
		1			
361BG7	3	25	3	29	61
361BD4	1	1	1	1	1
361BD6	1	1	1	2	2
361BD8	1	2	1	1	3
361BM5	1	5	1	2	
					9
361BY4	1	1	1	1	1
361BY6	1	2	1	1	33
371AE2	1	9	1	3	76
371BE3	1	4	1	1	18
381BE4	2	18	2	31	44
381BE5	1	28	1	53	146

381BE6	2	23	2	54	121
	1		1		
381BE7		25		41	89
391BE8	1	1	1	1	6
401BE9	1	6	1	1	7
401BZ1	1	4	1	2	9
411A14	1	1	1	1	1
411AZ2	1	1	1	1	1
423ZH1	1	1	1	1	1
423ZH2	1	1	1	1	3
433ZBM	1	1	1	1	1
433ZH1	1	1	1	1	3
433ZH2	1	4	1	3	11
433ZH3	1	1	1	1	1
433ZH5	1	1	1	1	1
463HH1	1	1	1	1	1
463HH2	1	1	1	1	1
463HH3	1	7	1	4	8
463HH4	1	1	1	1	1
463HH5	1	1	1	1	3
473UH1	1	1	1	1	2
473UH2	1	1	1	1	3
473UH3	1	1	1	1	1
473UH4	1	1	1	1	1
483IH6	1	3	1	1	9
					6
483IH7	1	1	1	1	
483IH8	1	1	1	1	6
483IH9	1	4	1	2	6
493KU1	1	1	1	1	1
493KU2	1	1	1	1	1
503KU4	1	5	1	6	22
503KU5	1	1	1	1	1
503KU6	1	1	1	1	1
503KU7	1	3	1	1	6
513KU8	1	1	1	1	1
513KU9	1	2	1	1	4
533LI1	1	1	1	1	1
543LI3	1	1	1	1	2
553LH4	1	1	1	1	1
	1	1	1	1	5
563LI5					
563LI6	1	1	1	1	1
573LI7	1	1	1	1	2
573LI8	1	1	1	1	1
583LI9	1	1	1	1	2
	1				
583LK1		1	1	1	1
603MK6	1	1	1	3	3
613MK7	1	1	1	1	1
623MK8	1	3	1	3	5
633NK9	1	9	1	12	19
		2			
633NX7	2	3	2	7	22
643NL1	1	2	1	1	9
653NL2	1	6	1	8	13
663NL3	2	7	2	10	26
673NL4	1	5	1	3	8
673NL5	1	1	1	1	1
673NN9	1	4	1	2	7
683JL5	1	1	1	1	1
693JL5	1	1	1	1	1
693JL7	1	1	1	1	1
693JL8	1	1	1	1	1
703JL5	1	5	1	2	5
723PM2	1	1	1	1	1

733PM3	1	1	1	1	5
733PN8	1	1	1	1	1
743PM4	1	1	1	1	1
751BT8	1	1	1	1	8
761AN1	1	17	1	2	40
762GN1	1	21	1	1	80
771BN2	1	1	1	1	1
783RN5	1	1	1	1	1
783RN6	1	1	1	1	1
793SB0	1	1	1	1	4
793SG0	1	1	1	1	2
793SD0	1	1	1	1	3
803TA0	1	1	1	1	1
803TBJ	1	1	1	1	1
811BAP	1	4	1	3	7
811BAS	1	2	1	1	5
811BJ4	1	8	1	6	25
811BJ6	1	1	1	1	1
	2		2	2	
811BJ7		4			14
811BJ9	1	1	1	1	2
811BO1	1	5	1	1	19
811BO2	1	14	1	2	9
811BO3	1	1	1	1	5
811BO4	1	7	1	1	7
811BO5	1	1	1	1	1
811BO6	1	1	1	1	1
811BO8	1	1	1	1	1
811BO9	1	1	1	1	4
811BP0	1	2	1	1	2
811BP1	1	1	1	1	1
811BP2	2	4	2	4	11
811BP3	1	1	1	1	1
821BA5	1	1	1	1	2
821BO4	1	2	1	1	7
821BP6	1	13	1	1	15
821BP7	1	1	1	1	2
831B90	2	15	2	2	13
831BA7	1	6	1	1	30
831BP8	1	1	1	2	11
831BP9	1	11	1	8	46
831BR1	1	1	1	4	21
831BR2	1	1	1	1	6
831BC8	1	1	1	1	1
841BO4	1	1	1	1	4
841BR4	1	4	1	1	2
841BR5	1	7	1	8	20
841BR6	1	1	1	3	10
851BR7	1	21	1	9	40
851BR8	1	1	1	1	1
851BR9	1	1	1	1	4
851BS0	1	1	1	1	1
851BS1	1	1	1	1	10
851BS2	1	7	1	3	12
851BS3	1	1	1	1	1
851BX2	1	1	1	1	1
861B98	1	2	1	1	12
861BS4	1	3	1	1	4
861BS6	1	11	1	5	17
861BT6	1	3	1	1	5
861BC0	1	1	1	1	1
873TY8	1	1	1	1	1
0/3110	\perp	Ť	1	1	T

902DX6	1	1	1	1	1
913HX8	1	1	1	1	1
923JC1	1	1	1	1	1
933JC6	1	1	1	1	1
943XC7	1	1	1	1	2
943XV1	1	1	1	1	1
	1	1	1	1	
951A01					1
951A02	1	1	1	1	1
951A04	1	1	1	1	1
951A05	1	1	1	1	1
951A06	1	1	1	1	1
951A07	1	1	1	1	1
951A10	1	1	1	1	1
951A15	1	1	1	1	1
951A16	1	1	1	1	2
	1	1	1	1	
951A22					1
951A23	1	1	1	1	14
951A26	1	1	1	1	1
951A37	1	1	1	1	6
951A38	2	2	2	2	2
951A39	1	1	1	1	1
951A41	1	1	1	1	1
951A42	1	1	1	1	1
951A52	1	1	1	1	2
951A53	2	2	2	2	2
951A54	1	1	1	1	1
951A64	1	1	1	1	1
951A67	1	1	1	1	2
	5		5	5	
951A69		5	5	5	5
951A71	1	1	1	1	1
951A72	1	3	1	1	4
951A77	1	1	1	1	1
951A78	1	1	1	1	1
951AN1	1	1	1	1	1
951AX4	1	1	1	1	1
952G11	1	26	1	5	9
952G12	1	1	1	1	3
952G44	1	1	1	1	1
952G45	1	1	1	1	1
952G46	1	1	1	1	1
	1	1	1	1	1
952G50	1	1	1	1	1
952G77	1	1	1	1	1
952GX5	1	1	1	1	1
952D35	1	2	1	1	4
952EJ2	1	1	1	1	1
			3		
963CV0	3	200		66	423
AA1A54	1	1	1	1	1
	1				
AA1A72		1	1	1	1
AB1A05	1	1	1	1	1
AB1A11	1	1	1	1	1
AB1A35	1	1	1	1	1
AB1A38	1	2	1	1	5
AB1AAR	1	1	1	1	65
AB1AT6	1	1	1	1	1
AH1BBC	1	9	1	2	96
AK2E04	1	1	1	6	10
AK2E59	1	1	1	1	1
AK2EBH	1	1	1	1	1
AK2EBU	1	1	1	1	1
AK2EBI	1	1	1	1	2
AK2EBV	1	1	1	1	1
ANZEDV	Ţ	T	T	T	Ť

1

AT1AAT

1

1

1

=== Model and evaluation on training set ===

1

Clustered Instances

0	8(7%)
1	87 (81%)
2	12 (11%)
2	1 (10()

3 1 (1%)

Simple K Means with 5 Clusters

Number of iterations: 6 Within cluster sum of squared errors: 10458.0

Missing values globally replaced with mean/mode

Final cluster centroids:

Fillal cluster (centrolas.		Q1			
Attribute	Eull Data	0	Cluster# 1	2	3	4
ALLIDULE	Full Data (108.0)	(8.0)	(87.0)	(7.0)	(1.0)	4 5.0)
	(100.0)	(0.0)	===========	===========	============	===
GENDER	WOMAN	WOMAN	MAN	WOMAN	WOMAN	WOMAN
AGE	32	38	32	37	52	39
011A01	2	81	2	14	153	47
011A02	1	22	1	8	109	33
011A03	1	1	1	1	1	1
011A04	1	1	1	1	17	4
011AAY	1	45	1	7	89	24
011AAF	1	96	1	20	324	41
011AAX	3	27	3	36	69	17
011AAC	2	15	2	22	47	8
011AAV	2	2	2	3	24	2
012G01	1	1	1	1	1	1
012GZ5	1	2	1	1	8	4
012D04	1	1	1	1	1	1
012DBA	1	11	1	1	10	1
012DBB	1	1	1	1	1	1
012DZ5	1	7	1	6	14	1
012DF0	1	3	1	1	11	1
012DF3	1	7	1	1	20	11
021A05	2	31	2	43	100	20
021A06	1	14	1	7	53	18
021E05	1	2	1	1	6	1
021E06	1	1	1	1	1	1
031A07	1	19	1	2	49	7
031A68	1	17	1	1	38	10
031A73	1	26	1	4	37	13
031A74	1	1	1	1	2	1
041A08	3	69	3	75	221	62
041A09	1	1	1	2	11	4
041A16	1	1	1	1	18	1
041A17	1	8	1	7	58	1
041A18	1	1	1	1	2	1
041A19	1	1	1	1	1	1
041A20	1	5	1	1	11	2
041A21	1	56	1	39	80	7
041A22	1	3	1	2	8	3
041A23	1	14	1	18	39	7
041A25	1	72	1	24	198	34
041A26	1	12	1	9	87	13
041A27	1	10	1	8	14	8

041A28	2	19	2	8	49	5
041AC2	2	5	2	1	7	2
042G19	1	1	1	1	1	1
042D21	1	1	1	1	1	1
042DZ3	1	14	1	8	52	27
042E20	1	1	1	1	1	1
051A10	1	35	1	7	124	9
051A29	1	4	1	1	10	1
			1		10	
051A30	1	4		1		3
051A33	1	1	1	1	1	1
051A34	1	13	1	2	14	1
061A11	4	6	4	4	60	28
062G11	3	119	3	23	315	39
062G12	1	84	1	91	208	70
062G14	1	10	1	17	41	11
062GX0	1	1	1	1	1	1
062GC5	1	37	1	1	38	11
062GC9	1	1	1	1	20	1
062E12	2	2	2	2	2	2
071A15	1	15	1	37	81	20
081A24	5	42	5	7	140	32
082G24	1	3	1	1	5	1
091A31	2	51	2	12	229	37
091BBN	1	1	1	3	2	1
092G31	1	1	1	1	1	1
092E31	2	3	2	5	17	2
101A37	4	50	4	3	108	30
102D35	1	18	1	5	86	16
102E35	1	214	1	176	478	121
111A36	1	1	1	1	1	1
112E40	11	120	11	61	344	88
121A38	1	17	1	1	13	8
121A39	1	14	1	5	16	8
121A64	1	16	1	2	16	3
121A65	1	5	1	5	20	5
121A67	1	2	1	1	18	3
121AZ4	1	1	1	1	1	1
122G63	2	9	2	2	12	3
122G67	1	1	1	1	3	1
131A41	2		2		62	14
		74		8		
132G41	1	1	1	1	1	1
132D41	1	14	1	1	24	3
141A42	1	1	1	1	1	1
141A43	1	8	1	3	4	3
141ABG	1	1	1	1	1	1
141ABD	1	14	1	2	16	3
142G44	1	15	1	32	87	13
142G45	2	13	2	2	11	2
142E45	1	1	1	1	1	1
152G46	2	41	2	8	130	24
152GY0	1	1	1	1	1	1
152E46	4	74	4	17	162	18
162G50	1	66	1	14	144	55
162EJ2	1	142	1	123	323	85
	1	10	1	123	6	
172G51						1
172GM6	1	1	1	1	1	1
172E51	1	8	1	2	12	2
172EJ3	1	1	1	1	1	1
182G52	1	17	1	3	30	2
182E52	1	5	1	11	25	14
191A53	1	1	1	1	1	1
	1	4	1	⊥ ⊃		
192E53				3	10	11
201A54	1	1	1	2	1	1
202G54	1	1	1	1	1	1
202E54	2	2	2	1	3	2
212D55	1	13	1	3	24	9
212D35 212D56	1		1	13	26	3
	1	2	1		20	
212E55				2		1
212E56	2	2	2	2	2	2
222G59	1	2	1	1	19	7
222D58	1	1	1	1	12	1
222D59	1	5	1	1	9	1

222D62	1	1	1	1	1	1
222E57	1	35	1	3	116	14
222E58	1	26	1	25	107	36
222E59	5	35	5	3	108	21
222E60	2	2	2	2	2	2
222E61	2	2	2	2	7	3
222E62	1	1	1	1	1	1
222EY1	1	1	1	1	2	1
231A66	2	51	2	21	126	31
241A08	1	19	1	11	21	2
241A70	1	8	1	3	35	6
241A71	2	40	2	7	116	54
241A72	1	12	1	19	38	9
242E72	1	5	1	8	13	7
251A33	1	8	1	6	25	7
251A75	8	108	8	19	133	25
251A76	1	7	1	2	41	6
251AX3	2	2	2	2	4	2
251AX4	3	89	3	72	155	37
251AX5	1	21	1	11	76	47
252G33	1	1	1	1	6	1
252G76	1	1	1	1	1	1
252GX5	1	9	1	22	44	18
261A77	1	21	1	8	61	11
261A78	1	5	1	8	18	1
261A79	1	1	1	1	1	2
261A80	1	1	1	1	4	1
261A81	1	1	1	1	1	1
261A82	1	1	1	1	1	1
261A83	1	1	1	1	7	1
261A84	1	1	1	1	1	1
261A85	1	1	1	1	1	1
261A86	1	1	1	1	1	1
261A88	1	1	1	1	3	1
261AZ7	1	1	1	1	1	1
261AX4	1	1	1	1	1	1
281BB1	2	9	2	14	75	8
281BD9	1	1	1	1	2	1
281BE1	1	6	1	1	41	1
281BS7	1	29	1	5	27	3
281BS8	1	3	1	1	9	1
281BS9	1	9	1	1	29	4
281BT0	1	1	1	1	7	1
281BT3	1	1	1	1	1	1
291BA4	1	5	1	2	20	7
291BA8	1	22	1	7	36	7
291BC4	1	1	1	1	1	1
301BB2	1	37	1	18	91	17
301BB3	1	22	1	47	73	33
301BB4	2	38	2	22	128	40
301BB5	1	19	1	10	56	9
301BG1	1	1	1	1	1	1
301BT2	1	1	1	1	2	1
311BA8	1	1	1	1	17	4
311BB6	1	3	1	1	10	1
					- U	
321BB7	1	1	1	1	2	1
321BB8	1	6	1	3	24	4
331BB9	1	1	1	1	3	1
331BY5	1	1	1	1	1	1
341BG3	1	14	1	3	26	2
						2
341BG4	1	6	1	1	20	2
351BG8	1	4	1	4	8	1
351BG9	1	4	1	1	4	1
351BD1	1	2	1	1	7	2
351BD2	1	1	1	1	1	1
351BD3	1	11	1	11	29	9
351BD5	1	13	1	4	16	1
361BBL	1	10	1	1		1
					5	
361BG2	1	1	1	1	2	1
361BG5	1	18	1	6	43	11
361BG6	1	1	1	1	1	1
361BG7	3	25	3	29	61	20

361BD4	1	1	1	1	1	1
361BD6	1	1	1	2	2	2
361BD8	1	2	1	1	3	1
361BM5	1	5	1	2	9	5
361BY4	1	1	1	1	1	1
361BY6	1	2	1	1	33	4
371AE2	1	9	1	7	76	1
371BE3	1	4	1	1	18	1
381BE4	2	18	2	31	44	14
381BE5	1	28	1	21	146	19
381BE6	2	23	2	4	121	54
381BE7	1	25	1	41	89	15
391BE8	1	1	1	3	6	1
401BE9	1	6	1	1	7	6
401BZ1	1	4	1	1	9	1
411A14	1	1	1	1	1	1
411AZ2	1	1	1	1	1	1
423ZH1	1	1	1	1	1	1
423ZH2	1	1	1	1	3	1
433ZBM	1	1	1	1	1	1
433ZH1	1	1	1	1	3	2
433ZH2	1	4	1	1	11	4
433ZH3	1	1	1	1	1	1
433ZH5	1	1	1	1	1	1
463HH1	1	1	1	1	1	1
463HH2	1	1	1	1	1	1
463HH3	1	7	1	3	8	1
463HH4	1	1	1	1	1	1
463HH5	1	1	1	1	3	1
473UH1	1	1	1	1	2	1
473UH2	1	1	1	1	3	2
473UH3	1	1	1	1	1	1
473UH4	1	1	1	1	1	1
483IH6	1	3	1	1	9	2
483IH7	1	1	1	1	6	3
483IH8	1	1	1	1		1
					6	
483IH9	1	4	1	2	6	1
493KU1	1	1	1	1	1	1
493KU2	1	1	1	1	1	1
503KU4	1	5	1	6	22	8
503KU5	1	1	1	1	1	1
503KU6	1	1	1	1	1	1
503KU7	1	3	1	1	6	2
513KU8	1	1	1	1	1	1
513KU9	1	2	1	1	4	4
533LI1	1	1	1	1	1	1
543LI3	1	1	1	1	2	1
553LH4	1	1	1	1	1	1
563LI5	1	1	1	6	5	2
563LI6	1	1	1	1	1	1
573LI7	1	1	1	1	2	1
573LI8	1	1	1	1	1	1
583LI9	1	1	1	1	2	1
583LK1	1	1	1	1	1	1
603MK6	1	1	1	3	3	1
613MK7	1	1	1	1	1	1
623MK8	1	3	1	3	5	3
633NK9	1	9	1	12	19	10
633NX7	2	3	2	7	22	2
643NL1	1	2	1	1	9	1
653NL2	1	6	1	11	13	1
663NL3	2	7	2	14	26	7
673NL4	1	5	1	3	8	3
673NL5	1	1	1	1	1	1
673NN9	1	4	1	1	7	
						1
683JL5	1	1	1	1	1	1
693JL5	1	1	1	1	1	1
693JL7	1	1	1	1	1	1
693JL8	1	1	1	1	1	1
703JL5	1	5	1	4	5	3
723PM2	1	1	1	1	1	1
733PM3	1	1	1	1	5	1

733PN8	1	1	1	1	1	1
743PM4	1	1	1	1	1	1
751BT8	1	1	1	1	8	1
761AN1	1	17	1	2	40	4
762GN1	1	21	1	1	80	2
771BN2	1		1	1		
		1			1	1
783RN5	1	1	1	1	1	1
783RN6	1	1	1	1	1	1
793SB0	1	1	1	1	4	1
793SG0	1	1	1	1	2	1
793SD0	1	1	1	1	3	1
803TA0	1	1	1	1	1	1
803TBJ	1	1	1	1	1	1
811BAP	1	4	1	2	7	2
811BAS	1	2	1	1	5	1
811BJ4	1	8	1	6	25	8
811BJ6	1	1	1	1	1	1
811BJ7	2	4	2	2	14	2
811BJ9	1	1	1	1	2	1
811BO1	1	5	1	1	19	12
811BO2	1	14	1	1	9	2
811BO3	1	1	1	1	5	1
811BO4	1	7	1	1	7	1
811BO5	1	1	1	1	1	1
811BO6	1	1	1	1	1	1
811BO8	1	1	1	1	1	1
811BO9	1	1	1	1	4	1
811BP0	1	2	1	1	2	1
811BP1	1	1	1	1	1	1
811BP2	2	4	2	2	11	2
811BP3	1	1	1	1	1	1
821BA5	1	1	1	1	2	1
821BO4	1	2	1	1	7	2
821BP6	1	13	1	1	15	1
821BP7	1	1	1	1	2	1
831B90	2	15	2	2	13	4
831BA7	1	6	1	8	30	1
831BP8	1	1	1	2	11	1
831BP9	1		1			
		11		8	46	8
831BR1	1	1	1	3	21	8
831BR2	1	1	1	1	6	1
831BC8	1	1	1	1	1	1
841BO4	1	1	1	1	4	1
841BR4	1	4	1	1	2	1
841BR5	1	7	1	8	20	6
841BR6	1	1	1	1	10	1
		_				
851BR7	1	21	1	9	40	10
851BR8	1	1	1	1	1	1
851BR9	1	1	1	1	4	1
851BS0	1	1	1	1	1	1
851BS1	1	1	1	1	10	1
851BS2	1	7	1	3	12	1
851BS3	1	1	1	1	1	1
851BX2	1	1	1	1	1	1
861B98	1	2	1	1	12	1
861BS4	1	3	1	1	4	1
861BS6	1	11	1	5	17	7
861BT6	1	3	1	1	5	1
861BC0	1	1	1	1	1	1
873TY8	1	1	1	1	1	1
902DX6	1	1	1	1	1	1
913HX8	1	1	1	1	1	1
923JC1	1	1	1	1	1	1
933JC6	1	1	1	1	1	1
943XC7	1	1	1	1	2	1
943XV1	1	1	1	1	1	1
951A01	1	1	1	1	1	1
951A02	1	1	1	1	1	1
951A04	1	1	1	1	1	1
951A05	1	1	1	1	1	1
951A06	1	1	1	1	1	1
951A07	1	1	1	1	1	1

951A10	1	1	1	1	1	1
951A15	1	1	1	1	1	1
951A16	1	1	1	1	2	1
951A22	1	1	1	1	1	1
951A23	1	1	1	1	14	1
951A26	1	1	1	1	1	1
951A37	1	1	1	1	6	1
951A38	2	2	2	2	2	2
	1		1	1	1	
951A39		1				1
951A41	1	1	1	1	1	1
951A42	1	1	1	1	1	1
951A52	1	1	1	1	2	1
951A53	2	2	2	2	2	2
951A54	1	1	1	1	1	1
	1	1			1	
951A64			1	1		1
951A67	1	1	1	1	2	1
951A69	5	5	5	5	5	5
951A71	1	1	1	1	1	1
951A72	1	3	1	1	4	2
951A77	1	1	1	1	1	1
951A78	1	1	1	1	1	1
951AN1	1	1	1	1	1	1
951AX4	1	1	1	1	1	1
952G11	1	26	1	4	9	9
952G12	1	1	1	1	3	1
952G44	1	1	1	1	1	1
952G45	1	1	1	1	1	1
952G46	1	1	1	1	1	1
952G50	1	1	1	1	1	1
952G77	1	1	1	1	1	1
952GX5	1	1	1	1	1	1
952D35	1	2	1	1	4	1
952EJ2	1	1	1	1	1	1
963CV0	3	200	3	66	423	101
AA1A54	1		1			
		1		1	1	1
AA1A72	1	1	1	1	1	1
AB1A05	1	1	1	1	1	1
AB1A11	1	1	1	1	1	1
AB1A35	1	1	1	1	1	1
AB1A38	1	2	1	1	5	1
AB1AAR	1	1	1	1	65	1
AB1AT6	1	1	1	1	1	1
AH1BBC	1	9	1	7	96	8
AK2E04	1	1	1	6	10	2
AK2E59	1	1	1	1	1	1
AK2EBH	1	1	1	1	1	1
AK2EBU	1	1	1	1	1	1
AK2EBI	1	1	1	1	2	1
AK2EBV	1	1	1	1	1	1
AT1AAT	1	1	1	1	1	1

=== Model and evaluation on training set ===

Clustered Instances

0	8(7%)
1	87 (81%)
2	7(6%)
3	1(1%)
4	5 (5%)

Error! Reference source not found.

Final cluste	er centroids:	<u></u>	
Attribute	Full Data	Cluster# 0	1
Attibute	(108.0)	(7.0)	(101.0)
	============	===========	==========
GENDER	WOMAN	WOMAN	WOMAN
AGE	32	38	32
011A01	2	81	2
011A02	1	33	1
011A03	1	1	1
011A04	1	1	1
011AAY	1	45	1
011AAF	1	96	1
011AAX	3	13	3
011AAC	2	15	2
011AAV	2	2	2
012G01	1	1	1
012GZ5	1	1	1
012D04	1	1	1
012DBA	1 1	11 1	1 1
012DBB 012DZ5	1	1	1
012D25 012DF0	1	2	1
012DF0 012DF3	1	8	1
021A05	2	31	2
021A05	1	14	1
021E05	1	2	1
021E06	1	1	1
031A07	- 1	27	- 1
031A68	1	17	1
031A73	1	26	1
031A74	1	1	1
041A08	3	69	3
041A09	1	1	1
041A16	1	1	1
041A17	1	3	1
041A18	1	1	1
041A19	1	1	1
041A20	1	1	1
041A21	1	56	1
041A22	1	1	1
041A23	1	14	1
041A25	1 1	72	1
041A26	1	12 12	1 1
041A27 041A28	1 2	12	1 2
041AC2	2	19 5	2
041AC2 042G19	1	1	2
042021	1	1	1
042DZ3	1	14	1
042E20	1	1	1
051A10	1	35	1
0 0 TITT 0	-	55	1

Make A Density Based Clusterer with 2 Clusters

051A29	1	10	1
051A30	1	1	1
051A33	1	1	1
051A34	1	8	1
061A11	4	13	4
062G11	3	119	3
062G12	1	84	1
062G14	1	10	1
062GX0	1	1	1
062GC5	1	37	1
062GC9	1	1	1
062E12	2	2	2
071A15	1	29	1
081A24	5	42	5
082G24	1	5	1
091A31	2	61	2
091BBN	1	1	1
092G31	1	1	1
092E31	2	17	2
101A37	4	52	4
102D35	1	18	1
	1		1
102E35		214	
111A36	1	1	1
112E40	11	120	11
121A38	1	3	1
121A39	1	6	1
121A64	1	16	1
121A65	1	9	1
121A67	1	8	1
121AZ4	1	2	1
122G63	2	2	2
122G67	1	1	1
131A41	2	24	2
132G41	1	1	1
132D41	1	14	1
141A42	1	1	1
141A43	1	8	1
		1	
141ABG	1		1
141ABD	1	14	1
142G44	1	17	1
142G45	2	15	2
142E45	1	1	1
152G46	2	41	2
152GY0	1	1	1
152E46	4	74	4
	1		1
162G50		66	
162EJ2	1	142	1
172G51	1	1	1
172GM6	1	1	1
172E51	1	2	1
172EJ3	1	1	1
182G52	1	5	1
182E52	1	5	1
	1	1	1
191A53			
192E53	1	4	1
201A54	1	1	1
202G54	1	1	1
202E54	2	2	2

212D55	1	7	1
212D56	1	7	1
212E55	1	2	1
212E56	2	2	2
222G59	1	2	1
222D58	1	1	1
222D59	1	9	1
222D62	1	1	1
222E57	1	35	1
222E58	1	26	
			1 5
222E59	5	35	
222E60	2	2	2
222E61	2	5	2
222E62	1	1	1
222EY1	1	2	1
231A66	2	51	2
241A08	1	19	1
241A70	1	8	1
241A71	2	40	2
241A72	1	12	1
242E72	1	5	1
251A33	1	8	1
251A75	8	108	8
251A76	1	10	1
251AX3	2	4	2
			3
251AX4	3	54	
251AX5	1	21	1
252G33	1	1	1
252G76	1	1	1
252GX5	1	9	1
261A77	1	21	1
261A78	1	18	1
261A79	1	1	1
261A80	1	1	1
261A81	1	1	1
261A82	1	1	1
261A83	1	1	1
261A84	1	1	1
261A85	1	1	1
261A86	1	1	1
			1
261A88	1	1	1
261AZ7	1	1	1
261AX4	1	1	1
	2		2
281BB1		9	Z
281BD9	1	1	1
281BE1	1	6	1
281BS7	1	8	1
		0	
281BS8	1	3	1
281BS9	1	8	1
281BT0	1	1	1
281BT3	1	1	1
291BA4	1	5	1
291BA8	1	22	1
291BC4	1	1	1
301BB2	1	37	1
301BB3	1	22	1
301BB4	2	38	2
301BB5	1	19	1
JUIDJ	Ţ	ТЭ	T

301BG1	1	1	1
301BT2	1	1	1
311BA8	1	1	1
311BB6	1	3	1
321BB7	1	1	1
321BB8	1	6	1
331BB9	1	1	1
331BY5	1	1	1
341BG3	1	14	1
341BG4	1	6	1
351BG8	1	6	1
351BG9	1	4	1
351BD1	1	2	1
351BD2	1	1	1
351BD3	1	6	1
351BD5	1	11	1
	1	5	1
361BBL			
361BG2	1	1	1
361BG5	1	15	1
361BG6	1	1	1
361BG7	3	25	3
361BD4	1	1	1
361BD6	1	1	1
361BD8	1	2	1
361BM5	1	15	1
361BY4	1	1	1
361BY6	1	2	1
371AE2	1	9	1
371BE3	1	2	1
	2	21	2
381BE4			
381BE5	1	28	1
381BE6	2	23	2
381BE7	1	25	1
391BE8	1	27	1
401BE9	1	7	1
401BZ1	1	1	1
411A14	1	1	1
411AZ2	1	1	1
423ZH1	1	1	1
423ZH2	1	1	1
433ZBM	1	1	1
433ZH1	1	1	1
433ZH2	1	4	1
433ZH3	1	1	1
433ZH5	1	1	1
463HH1	1	1	1
463HH2	1	1	1
463HH3	1	8	1
	1	1	1
463HH4			
463HH5	1	1	1
473UH1	1	1	1
473UH2	1	3	1
473UH3	1	1	1
473UH4	1	1	1
483IH6	1	9	1
483IH7	1	2	1
		- 1	
483IH8	1	1	1
483IH9	1	4	1

493KU1	1	1	1
493KU2	1	1	1
503KU4	1	22	1
503KU5	1	1	1
503KU6	1	1	1
503KU7	1	3	1
513KU8	1	1	1
513KU9	1	3	1
533LI1	1	1	1
543LI3	1	1	1
553LH4	1	1	1
563LI5	1	1	1
563LI6	1	1	1
573LI7	1	1	1
573LI8	1	1	1
583LI9	1	1	1
583LK1	1	1	1
603MK6	1	1	1
613MK7	1	1	1
623MK8	1	1	1
633NK9	1	4	1
633NX7	2	11	2
643NL1	1	5	1
653NL2	1	5	1
663NL3	2	8	2
673NL4	1	5	1
673NL5	1	1	1
673NN9	1	4	1
683JL5	1	1	1
693JL5	1	1	1
693JL7	1	1	1
693JL8	1	1	1
703JL5	1	5	1
723PM2	1	1	1
733PM3	1	1	1
733PN8	1	1	1
743PM4	1	1	1
751BT8	1	1	1
761AN1	1	23	1
			1
762GN1	1	21	1
771BN2	1	1	1
783RN5	1	1	1
783RN6	1	1	1
793SB0	1	1	1
793SG0	1	1	1
793SD0	1	3	1
	1	1	1
803TA0			
803TBJ	1	1	1
811BAP	1	4	1
811BAS	1	2	1
811BJ4	1	8	1
811BJ6	1	1	1
811BJ7	2	4	2
811BJ9	1	1	1
811BO1	1	4	1
811BO2	1	9	1
811BO3	1	1	1
811BO4	1	7	1
OTTDO4	Ŧ	1	T

811BO5	1	1	1
811BO6	1	1	1
811BO8	1	1	1
811BO9	1	1	1
811BP0	1	2	1
811BP1	1	1	1
811BP2	2	4	2
811BP3	1	1	1
821BA5	1	1	1
821BO4	1	2	1
821BP6	1	13	1
821BP7	1	1	1
831B90	2	15	2
831BA7	1	10	1
831BP8	1	4	1
831BP9	1	11	1
831BR1	1	5	1
831BR2	1	1	1
831BC8	1	1	1
841BO4	1	1	1
841BR4	1	2	1
		7	
841BR5	1		1
841BR6	1	1	1
851BR7	1	21	1
851BR8	1	1	1
851BR9	1	1	1
851BS0	1	1	1
851BS1	1	1	1
851BS2	1	7	1
851BS3	1	1	1
851BX2	1	1	1
861B98	1	2	1
861BS4	1	3	1
861BS6	1	4	1
	1	3	1
861BT6			
861BC0	1	1	1
873TY8	1	1	1
902DX6	1	1	1
913HX8	1	1	1
923JC1	1	1	1
933JC6	1	1	1
943XC7	1	2	1
943XV1	1	1	1
951A01	1	1	1
951A02	1	1	1
951A04	1	1	1
951A05	1	1	1
951A06	1	1	1
951A07	1	1	1
951A10	1	1	1
951A15	1	1	1
951A16	1	1	1
951A22	1	1	1
951A23	1	1	1
951A26	1	1	1
951A37	1	1	1
951A38	2	2	2
951A39	1	1	1
201102	-	-	-

951A41	1	1	1
951A42	1	1	1
951A42 951A52	1	1	1
	1 2	1 2	1
951A53			
951A54	1	1	1
951A64	1	1	1
951A67	1	1	1
951A69	5	5	5
951A71	1	1	1
951A72	1	3	1
951A77	1	1	1
951A78	1	1	1
951AN1	1	1	1
951AX4	1	1	1
952G11	1	9	1
952G12	1	1	1
952G44	1	1	1
952G45	1	1	1
952G46	1	1	1
952G50	1	1	1
952G77	1	1	1
952GX5	1	1	1
952D35	1	2	1
952EJ2	1	1	1
963CV0	3	200	3
AA1A54	1	1	1
AA1A72	1	1	1
AB1A05	1	1	1
AB1A11	1	1	1
AB1A35	1	1	1
AB1A38	1	2	1
AB1AAR	1	1	1
AB1AT6	1	1	1
AH1BBC	1	8	1
AK2E04	1	1	1
AK2E59	1	1	1
AK2EBH	1	1	1
AK2EBU	1	1	1
AK2EBI	1	1	1
AK2EBV	1	1	1
AT1AAT	1	1	1

Make A Density Based Clusterer with 3 Clusters

Final clust	er centroids:			
		Cluster#		
Attribute	Full Data	0	1	2
	(108.0)	(7.0)	(99.0)	(2.0)
=========	=============		==========	=======
GENDER	WOMAN	WOMAN	WOMAN	WOMAN
AGE	32	38	32	41
011A01	2	81	2	4
011A02	1	33	1	9
011A03	1	1	1	1
011A04	1	1	1	1
011AAY	1	45	1	8
011AAF	1	96	1	1

011AAX	3	13	3	2
	2		2	
011AAC		15		4
011AAV	2	2	2	2
012G01	1	1	1	3
012GZ5	1	1	1	1
012D04	1	1	1	1
012DBA	1	11	1	1
012DBB	1	1	1	1
012DZ5	1	2	1	1
012DF0	1	2	1	1
012DF3	1	8	1	1
021A05	2	31	2	3
021A06	1	14	1	1
021E05	1	2	1	1
021E06	1	1	1	1
031A07	1	27	1	2
031A68	1	17	1	1
031A73	1	26	1	1
031A74	1	1	1	1
041A08	3	69	3	4
041A09	1	1	1	1
041A16	1	1	1	1
041A17	1	3	1	1
041A18	1	1	1	1
041A19	1	1	1	1
041A20	1	1	1	1
	1	56	1	1
041A21				
041A22	1	1	1	1
041A23	1	14	1	1
041A25	1	72	1	8
041A26	1	12	1	1
041A27	1	12	1	1
041A28	2	19	2	2
041AC2	2	5	2	3
042G19	1	1	1	1
042D21	1	1	1	1
042DZ3	1	14	1	2
042E20	1	1	1	1
051A10	1	35	1	1
051A29	1	10	1	1
051A30	1	1	1	1
051A33	1	1	1	1
051A34	1	8	1	1
061A11	4	13	4	7
062G11	3	119	3	20
062G12	1	84	1	17
062G14	1	10	1	2
062GX0	1	1	1	1
062GC5	1	37	1	1
062GC9	1	1	1	1
062E12	2	2	2	1
071A15	1	29	1	8
	5		5	
081A24		42		10
082G24	1	5	1	4
091A31	2	61	2	3
	1		1	1
091BBN		1		
092G31	1	1	1	1
092E31	2	17	2	2
	_	= ·	-	_

101A37	4	52	4	4
				7
102D35	1	18	1	
102E35	1	214	1	34
111A36	1	1	1	1
112E40	11	120	11	39
121A38	1	3	1	1
121A39	1	6	1	1
121A64	1	16	1	1
121A65	1	9	1	1
121A67	1	8	1	3
121AZ4	1	2	1	1
122G63	2	2	2	2
122G67	1	1	1	1
131A41	2	24	2	7
132G41	1	1	1	1
132D41	1	14	1	1
141A42	1	1	1	1
141A43	1	8	1	1
141ABG	1	1	1	1
141ABD	1	14	1	1
	1		1	1
142G44		17		
142G45	2	15	2	2
142E45	1	1	1	1
152G46	2	41	2	10
152GY0	1	1	1	1
152E46	4	74	4	8
162G50	1	66	1	6
162EJ2	1	142	1	22
172G51	1	1	1	1
172GM6	1	1	1	1
172E51	1	2	1	2
172EJ3	1	1	1	1
182G52	1	5	1	1
182E52	1	5	1	1
191A53	1	1	1	1
192E53	1	4	1	4
201A54	1	1	1	1
202G54	1	1	1	1
202E54	2	2	2	2
212D55	1	7	1	7
212D56	1	7	1	2
212E55	1	2	1	1
212E56	2	2	2	2
222G59	1	2	1	1
222D58	1	1	1	1
222D59	1	9	1	1
222D62	1	1	1	1
222E57	1	35	1	10
222E58	1	26	1	10
222E59	5	35	5	15
222E60	2	2	2	2
222E60 222E61	2	5	2	1
222E62	1	1	1	1
222EY1	1	2	1	1
231A66	2	51	2	8
241A08	1	19	1	1
241A70	1	8	1	3
241A71	2	40	2	13
	_		_	

241A72	1	12	1	4
242E72	1	5	1	1
251A33	1	8	1	1
251A75	8	108	8	21
251A76	1	10	1	1
251AX3	2	4	2	2
251AX4	3	54	3	17
251AX5	1	21	1	19
252G33	1	1	1	1
252G76	1	1	1	1
252GX5	1	9	1	2
261A77	1	21	1	1
261A78	1	18	1	1
261A79	1	1	1	1
261A80	1	1	1	1
261A81	1	1	1	1
261A82	1	1	1	1
261A83	1	1	1	1
261A84	1	1	1	1
	1	1	1	1
261A85				
261A86	1	1	1	1
261A88	1	1	1	1
261AZ7	1	1	1	1
261AX4	1	1	1	1
281BB1	2	9	2	2
281BD9	1	1	1	1
281BE1	1	6	1	1
281BS7	1	8	1	2
281BS8	1	3	1	1
281BS9	1	8	1	1
281BT0	1	1	1	1
281BT3	1	1	1	1
291BA4	1	5	1	1
291BA8	1	22	1	1
291BC4	1	1	1	1
301BB2	1	37	1	2
301BB3	1	22	1	1
301BB4	2	38	2	4
301BB5	1	19	1	1
301BG1	1	1	1	1
301BT2	1	1	1	1
311BA8	1	1	1	1
311BB6	1	3	1	1
321BB7	1	1	1	1
321BB8	1	6	1	6
331BB9	1	1	1	1
		1		
331BY5	1		1	1
341BG3	1	14	1	1
341BG4	1	6	1	1
351BG8	1	6	1	1
351BG9	1	4	1	1
351BD1	1	2	1	1
351BD2	1	1	1	1
351BD3	1	6	1	1
351BD5	1	11	1	1
361BBL	1	5	1	1
361BG2	1	1	1	1
361BG5	1	15	1	2

361BG6	1	1	1	1
361BG7	3	25	3	3
361BD4	1	1	1	1
	1	1	1	1
361BD6				
361BD8	1	2	1	1
361BM5	1	15	1	1
361BY4	1	1	1	1
361BY6	1	2	1	1
371AE2	1	9	1	2
371BE3	1	2	1	1
381BE4	2	21	2	2
381BE5	1	28	1	5
381BE6	2	23	2	5
381BE7	1	25	1	1
391BE8	1	27	1	1
401BE9	1	7	1	1
	1	1	1	1
401BZ1				
411A14	1	1	1	1
411AZ2	1	1	1	1
423ZH1	1	1	1	1
423ZH2	1	1	1	1
433ZBM	1	1	1	1
433ZH1	1	1	1	1
433ZH2	1	4	1	1
433ZH3	1	1	1	1
433ZH5	1	1	1	1
463HH1	1	1	1	1
463HH2	1	1	1	1
463HH3	1	8	1	1
	1			
463HH4		1	1	1
463HH5	1	1	1	1
473UH1	1	1	1	1
473UH2	1	3	1	1
473UH3	1	1	1	1
473UH4	1	1	1	1
483IH6	1	9	1	1
483IH7	1	2	1	1
483IH8	1	1	1	1
483IH9	1	4	1	1
493KU1	1	1	1	1
493KU2	1	1	1	1
503KU4	1	22	1	2
503KU5	1	1	1	1
503KU6	1	1	1	1
503KU7	1	3	1	1
513KU8	1	1	1	1
513KU9	1	3	1	1
533LI1	1	1	1	1
543LI3	1	1	1	1
553LH4	1	1	1	1
563LI5	1	1	1	1
	1		1	1
563LI6		1		
573LI7	1	1	1	1
573LI8	1	1	1	1
583LI9	1	1	1	1
583LK1	1	1	1	1
603MK6	1	1	1	1
613MK7	1	1	1	1

623MK8	1	1	1	1
633NK9	1	4	1	1
633NX7	2	11	2	2
643NL1	1	5	1	1
653NL2	1	5	1	1
663NL3	2	8	2	2
673NL4	1	5	1	1
673NL5	1	1	1	1
673NN9	1	4	1	1
683JL5	1	1	1	1
693JL5	1	1	1	1
693JL7	1	1	1	1
693JL8	1	1	1	1
	1	5	1	1
703JL5				
723PM2	1	1	1	1
733PM3	1	1	1	1
733PN8	1	1	1	1
743PM4	1	1	1	1
751BT8	1	1	1	1
761AN1	1	23	1	1
762GN1	1	21	1	1
771BN2	1	1	1	1
783RN5	1	1	1	1
783RN6	1	1	1	1
793SB0	1	1	1	1
793SG0	1	1	1	1
793SD0	1	3	1	1
803TA0	1	1	1	1
803TBJ	1	1	1	1
811BAP	1	4	1	1
811BAS	1	2	1	1
811BJ4	1	8	1	1
811BJ6	1	1	1	1
811BJ7	2	4	2	2
811BJ9	1	1	1	1
811BO1	1	4	1	1
811BO2	1	9	1	1
811BO3	1	1	1	1
811BO4	1	7	1	1
811BO5	1	1	1	1
811BO6	1	1	1	1
811BO8	1	1	1	1
811BO9	1	1	1	1
811BP0	1	2	1	1
811BP1	1	1	1	1
811BP2	2	4	2	2
811BP3	1	1	1	1
821BA5	1	1	1	1
821BO4	1	2	1	1
821BP6	1	13	1	1
821BP7	1	1	1	1
831B90	2	15	2	2
831BA7	1	10	1	1
831BP8	1	4	1	1
831BP9	1	11	1	1
831BR1	1	5	1	1
831BR2	1	1	1	1
831BC8	1	1	1	1

841BO4	1	1	1	1
841BR4	1	2	1	1
841BR5	1	7	1	1
841BR6	1	1	1	1
851BR7	1	21	1	2
851BR8	1	1	1	1
851BR9	1	1	1	1
851BS0	1	1	1	1
851BS1	1	1	1	1
851BS2	1	7	1	1
851BS3	1	1	1	1
851BX2	1	1	1	1
861B98	1	2	1	1
861BS4	1	3	1	1
861BS6	1	4	1	1
861BT6	1	3	1	1
861BC0	1	1	1	1
873TY8	1	1	1	1
902DX6	1	1	1	1
913HX8	1	1	1	1
923JC1	1	1	1	1
933JC6	1	1	1	1
943XC7	1	2	1	1
943XV1	1	1	1	1
951A01	1	1	1	1
951A02	1	1	1	1
951A04	1	1	1	1
951A05	1	1	1	1
951A06	1	1	1	1
951A07	1	1	1	1
951A10	1	1	1	1
951A15	1	1	1	1
951A16	1	1	1	1
951A22	1	1	1	1
951A23	1	1	1	1
951A26	1	1	1	1
951A37	1	1	1	1
951A38	2	2	2	2
951A39	1	1	1	1
951A41	1	1	1	1
951A42	1	1	1	1
951A52	1	1	1	1
951A53	2	2	2	2
951A54	1	1	1	1
951A64	1	1	1	1
951A67	1	1	1	1
951A69	5	5	5	5
951A71	1	1	1	1
951A72	1	3	1	1
951A77	1	1	1	1
951A78	1	1	1	1
951AN1	1	1	1	1
951AX4	1	1	1	1
952G11	1	9	1	1
952G12	1	1	1	1
952G44	1	1	1	1
952G45	1	1	1	1
952G46	1	1	1	1

952G50	1	1	1	1
952G77	1	1	1	1
952GX5	1	1	1	1
952D35	1	2	1	1
952EJ2	1	1	1	1
963CV0	3	200	3	6
AA1A54	1	1	1	1
AA1A72	1	1	1	1
AB1A05	1	1	1	1
AB1A11	1	1	1	1
AB1A35	1	1	1	1
AB1A38	1	2	1	1
AB1AAR	1	1	1	1
AB1AT6	1	1	1	1
AH1BBC	1	8	1	1
AK2E04	1	1	1	1
AK2E59	1	1	1	1
AK2EBH	1	1	1	1
AK2EBU	1	1	1	1
AK2EBI	1	1	1	1
AK2EBV	1	1	1	1
AT1AAT	1	1	1	1

Make A Density Based Clusterer with 4 Clusters

Final cluster centroids:							
Attribute	Full Data (108.0)	Cluster# 0 (8.0)	1 (87.0)	2 (12.0)	3 (1.0)		
GENDER	woman	WOMAN	MAN	WOMAN	WOMAN		
AGE	32	38	32	37	52		
011A01	2	81	2	14	153		
011A02	1	22	1	8	109		
011A03	1	1	1	1	1		
011A04	1	1	1	1	17		
011AAY	1	45	1	26	89		
011AAF	1	96	1	20	324		
011AAX	3	27	3	36	69		
011AAC	2	15	2	22	47		
011AAV	2	2	2	6	24		
012G01	1	1	1	1	1		
012GZ5	1	2	1	1	8		
012D04	1	1	1	1	1		
012DBA	1	11	1	1	10		
012DBB	1	1	1	1	1		
012DZ5	1	7	1	6	14		
012DF0	1	3	1	1	11		
012DF3	1	7	1	1	20		
021A05	2	31	2	43	100		
021A06	1	14	1	23	53		
021E05	1	2	1	1	6		
021E06	1	1	1	1	1		
031A07	1	19	1	2	49		
031A68	1	17	1	7	38		
031A73	1	26	1	27	37		
031A74	1	1	1	1	2		
041A08	3	69	3	75	221		

041A09	1	1	1	1	11
041A16	1	1	1	1	18
041A17	1	8	1	7	58
041A18	1	1	1	1	2
041A19	1	1	1	1	1
041A20	1	5	1	2	11
041A21	1	56	1	25	80
041A22	1	3	1	6	8
041A23	1	14	1	6	39
041A25	1	72	1	24	198
041A26	1	12	1	5	87
041A27	1	10	1	8	14
041A28	2	19	2	8	49
041AC2	2	5	2	2	7
042G19	1	1	1	1	1
042D21	1	1	1	1	1
042DZ3	1	14	1	8	52
042E20	1	1	1	1	1
051A10	1	35	1	7	124
051A29	1	4	1	1	10
051A30	1	4	1	1	7
051A33	1	1	1	1	1
051A34	1	13	1	2	14
061A11	4	6	4	4	60
062G11	3	119	3	23	315
062G12	1	84	1	91	208
062G14	1	10	1	12	41
062GX0	1	1	1	1	1
062GC5	1	37	1	15	38
062GC9	1	1	1	1	20
062E12	2	2	2	2	2
071A15	1	15	1	26	81
081A24	5	42	5	51	140
082G24	1	3	1	1	5
091A31	2	51	2	12	229
091BBN	1	1	1	1	2
092G31	1	1	1	1	1
092E31	2	3	2	5	17
101A37	4	50	4	3	108
102D35	1	18	1	5	86
102E35	1	214	1	176	478
111A36	1	1	1	1	1
112E40	11	120	11	61	344
121A38	1	17	1	1	13
121A39	1	14	1	5	16
121A64	1	16	1	2	16
121A65	1	5	1	5	20
		5			
121A67	1	2	1	5	18
121AZ4	1	1	1	1	1
122G63	2	9	2	2	12
122G67	1	1	1	1	3
131A41	2	74	2	8	62
132G41	1	1	1	1	1
132D41	1	14	1	2	24
141A42	1	1	1	1	1
141A43	1	8	1	9	4
141ABG	1	1	1	1	1
141ABD	1	14	1	3	16
142G44	1	15	1	14	87
142G45	2	13	2	4	11
142E45	1	1	1	1	1

152G46	2	41	2	8	130
152GY0	1	1	1	1	1
152E46	4	74	4	17	162
162G50	1	66	1	14	144
162EJ2	1	142	1	123	323
172G51	1	10	1	1	6
172GM6	1	1	1	1	1
172E51	1	8	1	7	12
172EJ3	1	1	1	1	1
182G52	1	17	1	10	30
182E52	1	5	1	11	25
191A53	1	1	1	1	1
192E53	1	4	1	3	10
201A54	1	1	1	2	1
202G54	1	1	1	1	1
202E54	2	2	2	2	3
212D55	1	13	1	3	24
212D33 212D56	1		1	13	26
212E55	1	2	1	1	3
212E56	2	2	2	2	2
222G59	1	2	1	1	19
222D58	1	1	1	1	12
222D59	1	5	1	1	9
222D62	1	1	1	1	1
222E57	1	35	1	3	116
222E58	1	26	1	25	107
222E59	5	35	5	3	108
222E60	2	2	2	2	2
222E61	2	2	2	4	7
222E62	1	1	1	1	1
222EY1	1	1	1	1	2
231A66	2	51	2	21	126
241A08	1	19	1	11	21
241A70	1	8	1	13	35
241A71	2	40	2	54	116
241A72	1	12	1	19	38
242E72	1	5	1	5	13
251A33	1	8	1	5	25
251A75	8	108	8	19	133
251A76		7			
	1		1	8	41
251AX3	2	2	2	2	4
251AX4	3	89	3	72	155
251AX5	1	21	1	11	76
252G33	1	1	1	1	6
252G76	1	1	1	1	1
252GX5	1	9	1	10	44
261A77	1	21	1	8	61
261A78	1	5	1	8	18
261A79	1	1	1	1	1
261A80	1	1	1	1	4
261A81	1	1	1	1	1
261A82	1	1	1	1	1
261A83	1	1	1	1	7
261A84	1	1	1	1	1
261A85	1	1	1	1	1
261A86	1	1	1	1	1
261A88	1	1	1	1	3
261AZ7	1	1	1	1	1
261AX4	1	1	1	1	1
281BB1	2	9	2	29	75
281BD9	1	1	1	1	2
20103	1	1	Ŧ	1	∠

281BE1	1	6	1	1	41
281BS7	1	29	1	3	27
281BS8	1	3	1	1	9
281BS9	1	9	1	1	29
281BT0	1	1	1	1	7
281BT3	1	1	1	1	1
291BA4	1	5	1	7	20
291BA8	1	22	1	7	36
291BC4	1	1	1	1	1
301BB2	1	37	1	18	91
301BB3	1	22	1	47	73
301BB4	2	38	2	22	128
301BB5	1	19	1	31	56
301BG1	1	1	1	1	1
301BT2	1	1	1	1	2
311BA8	1	1	1	1	17
311BB6	1	3	1	1	10
321BB7	1	1	1	1	2
321BB8	1	6	1	8	24
331BB9	1	1	1	1	3
331BY5	1	1	1	1	1
341BG3	1		1		
		14		10	26
341BG4	1	6	1	5	20
351BG8	1	4	1	4	8
351BG9	1	4	1	1	4
351BD1	1	2	1	1	7
351BD2	1	1	1	1	1
351BD3	1	11	1	11	29
351BD5	1	13	1	7	16
361BBL	1	10	1	1	5
361BG2	1	1	1	2	2
361BG5	1	18	1	13	43
361BG6	1	1	1	1	1
361BG7	3	25	3	29	61
361BD4	1	1	1	1	1
361BD6	1	1	1	2	2
361BD8	1	2	1	1	3
361BM5	1	5	1	2	9
361BY4	1	1	1	1	1
361BY6	1	2	1	1	33
371AE2	1	9	1	3	76
371BE3	1	4	1	1	18
381BE4	2	18	2	31	44
381BE5	1	28	1	53	146
381BE6	2	23	2	54	121
381BE7	1	25	1	41	89
391BE8	1	1	1	1	6
401BE9	1	6	1	1	7
401BZ1	1	4	1	2	9
411A14	1	1	1	1	1
411AZ2	1	1	1	1	1
	1			1	
423ZH1		1	1		1
423ZH2	1	1	1	1	3
433ZBM	1	1	1	1	1
433ZH1	1	1	1	1	3
433ZH2	1	4	1	3	11
433ZH3	1	1	1	1	1
433ZH5	1	1	1	1	1
463HH1	1	1	1	1	1
463HH2	1	1	1	1	1
463HH3	1	7	1	4	8
/ = =	-	•	-	-	÷

463HH4	1	1	1	1	1
463нн5	1	1	1	1	3
473UH1	1	1	1	1	2
473UH2	1	1	1	1	3
473UH3	1	1	1	1	1
473UH4	1	1	1	1	1
483IH6	1	3	1	1	9
483IH7	1	1	1	1	6
	1	1	1	1	6
483IH8					
483IH9	1	4	1	2	6
493KU1	1	1	1	1	1
493KU2	1	1	1	1	1
503KU4	1	5	1	6	22
503KU5	1	1	1	1	1
503KU6	1	1	1	1	1
503KU7	1	3	1	1	6
513KU8	1	1	1	1	1
513KU9	1	2	1	1	4
533LI1	1	1	1	1	1
543LI3	1	1	1	1	2
553LH4	1	1	1	1	1
563LI5	1	1	1	1	5
563LI6	1	1	1	1	1
573LI7	1	1	1	1	2
573LI8	1	1	1	1	1
583LI9	1	1	1	1	2
583LK1	1	1	1	1	1
603MK6	1	1	1	3	3
613MK7	1	1	1	1	1
623MK8	1	3	1	3	5
633NK9	1	9	1	12	19
633NX7	2	3	2	7	22
643NL1	1	2	1	1	9
653NL2	1	6	1	8	13
663NL3	2	7	2	10	26
673NL4	1	5	1	3	8
673NL5	1	1	1	1	1
673NN9	1	4	1	2	7
683JL5	1	1	1	1	1
693JL5	1	1	1	1	1
693JL7	1	1	1	1	1
693JL8	1	1	1	1	1
703JL5	1	5	1	2	5
723PM2	1	1	1	1	1
733PM3	1	1	1	1	5
733PN8	1	1	1	1	1
743PM4	1	1	1	1	1
751BT8	1	1	1	1	8
761AN1	1	17	1	2	40
762GN1	1	21	1	1	80
771BN2	1	1	1	1	1
783RN5	1	1	1	1	1
783RN6	1	1	1	1	1
793SB0	1	1	1	1	4
793SG0	1	1	1	1	2
793SD0	1	1	1	1	3
803TA0	1	1	1	1	1
803TBJ	1	1	1	1	1
811BAP		4	1	3	7
OTTDAL	1	4			
044	1	4			
811BAS	1 1	4 2	1	1	5
811BAS 811BJ4					

811BJ6	1	1	1	1	1
811BJ7	2	4	2	2	14
811BJ9	1	1	1	1	2
811BO1	1	5	1	1	19
811BO2	1	14	1	2	9
811BO3	1	1	1	1	5
811BO4	1	7	1	1	7
811BO5	1	1	1	1	1
811BO6	1	1	1	1	1
811BO8	1	1	1	1	1
811BO9	1	1	1	1	
					4
811BP0	1	2	1	1	2
811BP1	1	1	1	1	1
811BP2	2	4	2	4	11
811BP3	1	1	1	1	1
821BA5	1	1	1	1	2
821BO4	1	2	1	1	7
	1	13	1	1	
821BP6					15
821BP7	1	1	1	1	2
831B90	2	15	2	2	13
831BA7	1	6	1	1	30
831BP8	1	1	1	2	11
831BP9	1	11	1	8	46
831BR1	1	1	1	4	21
831BR2	1	1	1	1	6
831BC8	1	1	1	1	1
841BO4	1	1	1	1	4
841BR4	1	4	1	1	2
841BR5	1	7	1	8	20
841BR6	1	1	1	3	10
851BR7	1	21	1	9	40
851BR8	1	1	1	1	1
851BR9	1	1	1	1	4
851BS0	1	1	1	1	
					1
851BS1	1	1	1	1	10
851BS2	1	7	1	3	12
851BS3	1	1	1	1	1
851BX2	1	1	1	1	1
861B98	1	2	1	1	12
861BS4	1	3	1	1	4
861BS6	1	11	1	5	17
861BT6	1	3	1	1	5
861BC0	1	1	1	1	1
873TY8	1	1	1	1	1
902DX6	1	1	1	1	1
913HX8	1	1	1	1	1
923JC1	1	1	1	1	1
933JC6	1	1	1	1	1
943XC7	1	1	1	1	2
943XV1	1	1	1	1	1
951A01	1	1	1	1	1
951A02	1	1	1	1	1
951A04	1	1	1	1	1
951A05	1	1	1	1	1
951A06	1	1	1	1	1
951A07	1	1	1	1	1
951A10	1	1	1	1	1
951A15	1	1	1	1	1
951A16	1	1	1	1	2
951A22	1	1	1	1	1
951A23	1	1	1	1	14

951A26	1	1	1	1	1
	1	1	1	1	
951A37					6
951A38	2	2	2	2	2
951A39	1	1	1	1	1
951A41	1	1	1	1	1
951A42	1	1	1	1	1
951A52	1	1	1	1	2
951A53	2	2	2	2	2
951A54	1	1	1	1	1
951A64	1	1	1	1	1
951A67	1	1	1	1	2
951A69	5	5	5	5	5
951A09 951A71	1	1	1	1	1
951A72	1	3	1	1	4
951A77	1	1	1	1	1
951A78	1	1	1	1	1
951AN1	1	1	1	1	1
951AX4	1	1	1	1	1
952G11	1	26	1	5	9
952G12	1	1	1	1	3
952G44	1	1	1	1	1
952G45	1	1	1	1	1
952G46	1	1	1	1	1
952G50	1	1	1	1	1
952G50 952G77	1				1
		1	1	1	
952GX5	1	1	1	1	1
952D35	1	2	1	1	4
952EJ2	1	1	1	1	1
963CV0	3	200	3	66	423
AA1A54	1	1	1	1	1
AA1A72	1	1	1	1	1
AB1A05	1	1	1	1	1
AB1A11	1	1	1	1	1
AB1A35	1	1	1	1	1
AB1A38	- 1	2	1	1	5
AB1AAR	1	1	1	1	65
ABIAAR AB1AT6	1	1	1	1	
					1
AH1BBC	1	9	1	2	96
AK2E04	1	1	1	6	10
AK2E59	1	1	1	1	1
AK2EBH	1	1	1	1	1
AK2EBU	1	1	1	1	1
AK2EBI	1	1	1	1	2
AK2EBV	1	1	1	1	1
AT1AAT	1	1	1	1	1

Make A Density Based Clusterer with 5 Clusters

Final clust	ter centroid	s:				
		Cluster#				
Attribute	Full Data	0	1	2	3	4
	(108.0)	(8.0)	(87.0)	(7.0)	(1.0)	(5.0)
GENDER	WOMAN	WOMAN	MAN	WOMAN	WOMAN	WOMAN
AGE	32	38	32	37	52	39
011A01	2	81	2	14	153	47
011A02	1	22	1	8	109	33
011A03	1	1	1	1	1	1
011A04	1	1	1	1	17	4
011AAY	1	45	1	7	89	24
011AAF	1	96	1	20	324	41

Final cluster centroids:

011AAX	3	27	3	36	69	17
011AAC	2	15	2	22	47	8
011AAV	2	2	2	3	24	2
012G01	1	1	1	1	1	1
012GZ5	1	2	1	1	8	4
012D04	1	1	1	1	1	1
012D04 012DBA	1	11	1	1	10	1
012DBB	1	1	1	1	1	1
012DZ5	1	7	1	6	14	1
012DF0	1	3	1	1	11	1
012DF3	1	7	1	1	20	11
021A05	2	31	2	43	100	20
021A06	1	14	1	7	53	18
021E05	1	2	1	1	6	1
021E06	1	1	1	1	1	1
031A07	1	19	1	2	49	7
			1	1		
031A68	1	17			38	10
031A73	1	26	1	4	37	13
031A74	1	1	1	1	2	1
041A08	3	69	3	75	221	62
041A09	1	1	1	2	11	4
041A16	1	1	1	1	18	1
041A17	1	8	1	7	58	1
041A18	1	1	1	1	2	1
041A19	1	1	1	1	1	1
041A20	1	5	1	1	11	2
041A21	1	56	1	39	80	2
041A22	1	3	1	2	8	3
041A23	1	14	1	18	39	7
041A25	1	72	1	24	198	34
041A26	1	12	1	9	87	13
041A27	1	10	1	8	14	8
041A28	2	19	2	8	49	5
041AC2	2	5	2	1	7	2
042G19	1	1	1	1	1	1
042D21	1	1	1	1	1	1
042DZ3	1	14	1	8	52	27
042E20	1		1	1		
		1			1	1
051A10	1	35	1	7	124	9
051A29	1	4	1	1	10	1
051A30	1	4	1	1	7	3
051A33	1	1	1	1	1	1
051A34	1	13	1	2	14	1
061A11	4	6	4	4	60	28
062G11	3	119	3	23	315	39
062G12	1	84	1	91	208	70
062G14	1	10	1	17	41	11
062GX0	1	1	1	1	1	1
062GC5	1	37	1	1	38	11
062GC9	1	1	1	1	20	1
062E12	2	2	2	2	2	2
071A15	1	15	1	37	81	20
071A15 081A24	5					
		42	5	7	140	32
082G24	1	3	1	1	5	1
091A31	2	51	2	12	229	37
091BBN	1	1	1	3	2	1
092G31	1	1	1	1	1	1
092E31	2	3	2	5	17	2
101A37	4	50	4	3	108	30
102D35	1	18	1	5	86	16
102E35	1	214	1	176	478	121
111A36	1	1	1	1	1	1
112E40	11	120	11	61	344	88
		17	1		13	
121A38	1			1		8
121A39	1	14	1	5	16	8
121A64	1	16	1	2	16	3
121A65	1	5	1	5	20	5
121A67	1	2	1	1	18	3
121AZ4	1	1	1	1	1	1
122G63	2	9	2	2	12	3
122G67	1	1	1	1	3	1
131A41	2	74	2	8	62	14
	-		-	-		

132G41	1	1	1	1	1	1
132D41	1	14	1	1	24	3
141A42	1	1	1	1	1	1
141A43	1	8	1	3	4	3
141ABG	1	1	1	1	1	1
141ABD	1	14	1	2	16	3
142G44	1	15	1	32	87	13
142G45	2	13	2	2	11	2
142E45	1	1	1	1	1	1
152G46	2	41	2	8	130	24
152GY0	1	1	1	1	100	1
152E46	4	74	4		162	
				17		18
162G50	1	66	1	14	144	55
162EJ2	1	142	1	123	323	85
172G51	1	10	1	1	6	1
172GM6	1	1	1	1	1	1
172E51	1	8	1	2	12	2
172EJ3	1	1	1	1	1	1
182G52	1	17	1	3	30	2
182E52	1	5	1	11	25	14
191A53	1	1	1	1	1	1
192E53	1	4	1	3	10	11
201A54	1	1	1	2	1	1
202G54	1	1	1	1	1	1
202E54	2	2	2	1	3	2
212D55	1	13	1	3	24	9
212D56	1	7	1	13	26	3
212E55	1	2	1	2	3	1
212E56	2	2	2	2	2	2
222G59	1	2	1	1	19	7
222D58	1	1	1	1	12	1
222D59	1	5	1	1	9	1
222D62	1	1	1	1	1	1
222E57	1	35	1	3	116	14
222E58	1	26	1	25	107	36
222E59	5	35	5	3	108	21
222E60	2	2	2	2	2	2
222E61	2	2	2	2	7	3
222E62	1	1	1	1	1	1
222EY1	1	1	1	1	2	1
231A66	2	51	2	21	126	31
241A08	1	19	1	11	21	2
241A70	1	8	1	3	35	6
241A71	2	40	2	7	116	54
241A72	1	12	1	19	38	9
242E72	1	5	1	8	13	7
251A33	1	8	1	6	25	7
251A75	8	108	8	19	133	25
251A76	1	7	1	2	41	6
251AX3	2	2	2	2	4	2
251AX4	3	89	3	72	155	37
251AX5	1	21	1	11	76	47
252G33	1	1	1	1	6	1
252G76	1	1	1	1	1	1
252GX5	1	9	1	22	44	18
261A77	1	21	1	8	61	11
261A78	1	5	1	8	18	1
261A79	1	1	1	1	1	2
261A80	1	1	1	1	4	1
261A81	1	1	1	1	1	1
261A82	1	1	1	1	1	1
261A83	1	1	1	1	7	1
261A84	1	1	1	1	1	1
261A85	1	1	1	1	1	1
261A86	1	1	1	1	1	1
261A88	1	1	1	1	3	1
261AZ7	1	1	1	1	1	1
261AX4	1	1	1	1	1	1
281BB1	2	9	2	14	75	8
281BD9	1	1	1	1	2	1
281BE1	1	6	1	1	41	1
281BS7	1	29	1	5	27	3

281BS8	1	3	1	1	9	1
281BS9	1	9	1	1	29	4
281BT0	1	1	1	1	7	1
281BT3	1	1	1	1	1	1
291BA4	1	5	1	2	20	7
291BA8	1	22	1	7	36	7
291BC4	1	1	1	1	1	1
301BB2	1	37	1	18	91	17
301BB3	1	22	1	47	73	33
301BB4	2	38	2	22	128	40
301BB5	1	19	1	10	56	9
301BG1	1	1	1	1	1	1
301BT2	1	1	1	1	2	1
311BA8	1	1	1	1	17	4
311BB6	1	3	1	1	10	1
321BB7	1	1	1	1	2	1
321BB8	1	6	1	3	24	4
331BB9	1	1	1	1	3	1
331BY5	1	1	1	1	1	1
341BG3	1	14	1	3	26	2
341BG4	1	6	1	1	20	2
351BG8	1	4	1	4	8	1
351BG9	1	4	1	1	4	1
351BD1	1	2	1	1	7	2
351BD2	1	1	1	1	1	1
351BD3	1	11	1	11	29	9
351BD5	1	13	1	4	16	1
361BBL	1	10	1	1	5	1
361BG2	1	1	1	1	2	1
361BG5	1	18	1	6	43	11
361BG6	1	1	1	1	1	1
361BG7	3	25	3	29	61	20
361BD4	1	1	1	1	1	1
361BD6	1	1	1	2	2	2
361BD8	1	2	1	1	3	1
361BM5	1	5	1	2	9	5
361BY4	1	1	1	1	1	1
361BY6	1	2	1	1	33	4
371AE2	1	9	1	7	76	1
371BE3	1	4	1	1	18	1
381BE4	2	18	2	31	44	14
381BE5	1	28	1	21	146	19
381BE6	2	23	2	4	121	54
381BE7	1	25	1	41	89	15
391BE8	1	1	1	3	6	1
401BE9	1	6	1	1	7	6
401BZ1	1	4	1	1	9	1
411A14	1	1	1	1	1	1
411AZ2	1	1	1	1	1	1
423ZH1	1	1	1	1	1	1
423ZH2	1	1	1	1	3	1
433ZBM	1	1	1	1	1	1
433ZH1	1	1	1	1	3	2
433ZH2	1	4	1	1	11	4
433ZH3	1	1	1	1	1	1
433ZH5	1	1	1	1	1	1
463HH1	1	1	1	1	1	1
463HH2	1	1	1	1	1	1
463HH3	1	7	1	3	8	1
463HH4	1	1	1	1	1	1
463HH5	1	1	1	1	3	1
473UH1	1	1	1	1	2	1
473UH2	1	1	1	1	3	2
473UH3	1	1	1	1	1	1
473UH4	1	1	1	1	1	1
483IH6	1	3	1	1	9	2
483IH7	1	1	1	1	6	3
483IH8	1	1	1	1	6	1
483IH9	1	4	1	2	6	1
493KU1	1	1	1	1	1	1
493KU2	1	1	1	1	1	1
503KU4	1	5	1	6	22	8

503KU5	1	1	1	1	1	1
503KU6	1	1	1	1	1	1
503KU7	1	3	1	1	6	2
513KU8	1	1	1	1	1	1
513KU9	1	2	1	1	4	4
533LI1	1	1	1	1	1	1
543LI3	1	1	1	1	2	1
553LH4	1	1	1	1	1	1
563LI5	1	1	1	6	5	2
563LI6	1	1	1	1	1	1
573LI7	1	1	1	1	2	1
573LI8	1	1	1	1	1	1
583LI9	1	1	1	1	2	1
583LK1	1	1	1	1	1	1
	1					
603MK6		1	1	3	3	1
613MK7	1	1	1	1	1	1
623MK8	1	3	1	3	5	3
633NK9	1	9	1	12	19	10
633NX7	2	3	2	7	22	2
643NL1	1	2	1	1	9	1
653NL2	1	6	1	11	13	1
663NL3	2	7	2	14	26	7
673NL4	1	5	1	3	8	3
673NL5	1	1	1	1	1	1
	1			1	7	
673NN9		4	1			1
683JL5	1	1	1	1	1	1
693JL5	1	1	1	1	1	1
693JL7	1	1	1	1	1	1
693JL8	1	1	1	1	1	1
703JL5	1	5	1	4	5	3
723PM2	1	1	1	1	1	1
733PM3	1	1	1	1	5	1
733PN8	1	1	1	1	1	1
743PM4	1	1	1	1	1	1
751BT8	1	1	1	1	8	1
761AN1	1	17	1	2	40	4
762GN1	1	21	1	1	80	2
771BN2	1	1	1	1	1	1
783RN5	1	1	1	1	1	1
783RN6	1	1	1	1	1	1
793SB0	1	1	1	1	4	1
793SG0	1	1	1	1	2	1
793SD0	1	1	1	1	3	1
803TA0	1	1	1	1	1	1
803TBJ	1	1	1	1	1	1
811BAP	1	4	1	2	7	2
811BAS	1	2	1	1	5	1
811BJ4	1	8	1	6	25	8
811BJ6	1	1	1	1	1	1
811BJ7	2	4	2	2	14	2
	1	1	1	1	2	1
811BJ9						
811BO1	1	5	1	1	19	12
811BO2	1	14	1	1	9	2
	1	1	1	1	5	1
811BO3						
811BO4	1	7	1	1	7	1
811BO5	1	1	1	1	1	1
811BO6	1	1	1	1	1	1
811BO8	1	1	1	1	1	1
811BO9	1	1	1	1	4	1
811BP0	1	2	1	1	2	1
811BP1	1	1	1	1	1	1
811BP2	2	4	2	2	11	2
811BP3	1	1	1	1	1	1
821BA5	1	1	1	1	2	1
821BO4	1	2	1	1	7	2
821BP6	1	13	1	1	15	1
	1	1	1	1	2	
821BP7						1
831B90	2	15	2	2	13	4
831BA7	1	6	1	8	30	1
831BP8	1	1	1	2	11	1
831BP9	1	11	1	8	46	8
	1	1	1	3	21	8
831BR1	T	Ţ	T	3	$\angle \perp$	Ø

831BR2	1	1	1	1	6	1
831BC8	1	1	1	1	1	1
841BO4	1	1	1	1	4	1
841BR4	1	4	1	1	2	1
841BR5	1	7	1	8	20	6
841BR6	1	1	1	1	10	1
851BR7	1	21	1	9	40	10
851BR8	1	1	1	1	1	1
851BR9	1	1	1	1	4	1
851BS0	1	1	1	1	1	1
851BS1	1	1	1	1	10	1
851BS2	1	7	1	3	12	1
851BS3	1	1	1	1	1	1
851BX2	1	1	1	1	1	1
861B98	1	2	1	1	12	1
861BS4	1	3	1	1	4	1
861BS6	1	11	1	5	17	7
861BT6	1	3	1	1	5	1
861BC0	1	1	1	1	1	1
873TY8	1	1	1	1	1	1
902DX6	1	1	1	1	1	1
913HX8	1	1	1	1	1	1
				1		
923JC1	1	1	1		1	1
933JC6	1	1	1	1	1	1
943XC7	1	1	1	1	2	1
943XV1	1	1	1	1	1	1
951A01	1	1	1	1	1	1
951A02	1	1	1	1	1	1
951A04	1	1	1	1	1	1
951A05	1	1	1	1	1	1
951A06	1	1	1	1	1	1
951A07	1	1	1	1	1	1
951A10	1	1	1	1	1	1
951A15	1	1	1	1	1	1
					2	
951A16	1	1	1	1		1
951A22	1	1	1	1	1	1
951A23	1	1	1	1	14	1
951A26	1	1	1	1	1	1
951A37	1	1	1	1	6	1
951A38	2	2	2	2	2	2
951A39	1	1	1	1	1	1
951A41	1	1	1	1	1	1
951A42	1	1	1	1	1	1
951A52	1	1	1	1	2	1
951A53	2	2	2	2	2	2
951A54	1	1	1	1	1	1
	_					
951A64	1	1	1	1	1	1
951A67	1	1	1	1	2	1
951A69	5	5	5	5	5	5
951A71	1	1	1	1	1	1
951A72	1	3	1	1	4	2
951A77	1	1	1	1	1	1
951A78	1	1	1	1	1	1
951AN1	1	1	1	1	1	1
951AX4	1	1	1	1	1	1
952G11	1	26	1	4	9	9
952G12	1	1	1	1	3	1
952G44	1	1	1	1	1	1
952G45	1	1	1	1	1	1
952G46	1	1	1	1	1	1
952G50	1	1	1	1	1	1
952G77	1	1	1	1	1	1
952GX5	1	1	1	1	1	1
952D35	1	2	1	1	4	1
952EJ2	1	1	1	1	1	1
963CV0	3	200	3	66	423	101
AA1A54	1	1	1	1	1	1
AA1A72	1	1	1	1	1	1
AB1A05	1	1	1	1	1	1
AB1A11	1	1	1	1	1	1
AB1A35	1	1	1	1	1	1
AB1A38	1	2	1	1	5	1
ADIAJ0	Ť	2	T	T	J	T

AB1AAR	1	1	1	1	65	1
	T	T	1	T	63	T
AB1AT6	1	1	1	1	1	1
AH1BBC	1	9	1	7	96	8
AK2E04	1	1	1	6	10	2
AK2E59	1	1	1	1	1	1
AK2EBH	1	1	1	1	1	1
AK2EBU	1	1	1	1	1	1
AK2EBI	1	1	1	1	2	1
AK2EBV	1	1	1	1	1	1
AT1AAT	1	1	1	1	1	1

Farthest First Clusterer

Farthest First with 2 Clusters

Cluster centroids:

Farthest First with 3 Clusters

Cluster centroids:

Cluster 1: WOMAN 52 153 109 1 17 89 324 69 47 24 1 8 1 10 1 14 11 20 100 53 6 1 49 38 37 2 221 11 18 58 2 1 11 18 0 8 39 198 87 14 49 7 1 1 52 1 124 10 7 1 14 60 315 208 41 1 38 20 2 81 140 5 229 2 1 17 108 86 478 1 344 13 16 16 20 18 1 12 3 62 1 24 1 4 1 16 87 11 1 130 1 162 144 323 6 1 12 1 30 25 1 10 1 1 3 24 26 3 2 19 12 9 1 116 107 108 2 7 1 2 126 21 35 116 38 13 25 133 41 4 155 76 6 1 44 61 18 1 4 1 1 7 1 1 1 3 1 1 75 2 41 27 9 29 7 1 20 36 1 91 73 128 56 1 2 17 10 2 24 3 1 26 20 8 4 7 1 29 16 5 2 43 1 61 1 2 3 9 1 33 76 18 44 146 121 89 6 7 9 1 1 3 1 3 11 11 1 1 8 1 3 2 3 1 1 9 6 6 6 1 1 22 1 1 6 1 4 1 2 1 5 1 2 1 2 1 3 1 5 19 22 9 13 26 8 1 7 1 1 1 1 5 1 5 1 1 8 40 80 1 1 1 4 2 3 1 1 7 5 25 1 14 2 19 9 5 7 1 1 1 4 2 1 11 2 7 15 2 13 30 11 46 21 6 1 4 2 20 10 40 1 4 1 10 12 1 1 12 4 17 5 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 14 1 6 2 1 1 1 2 2 1 1 2 5 1 4 1 1 1 9 3 1 1 1 1 1 4 1 423 1 1 1 1 5 65 1 96 10 1 1 1 2 1 1

Clustered Instances

- 0 106 (98%)
- 1 1 (1%)
- 2 1 (1%)

Farthest First with 4 Clusters

Cluster centroids:

Cluster 1: WOMAN 52 153 109 1 17 89 324 69 47 24 1 8 1 10 1 14 11 20 100 53 6 1 49 38 37 2 221 11 18 58 2 1 11 80 8 39 198 87 14 49 7 1 1 52 1 124 10 7 1 14 60 315 208 41 1 38 20 2 81 140 5 229 2 1 17 108 86 478 1 344 13 16 16 20 18 1 12 3 62 1 24 1 4 1 16 87 11 1 130 1 162 144 323 6 1 12 1 30 25 1 10 1 1 3 24 26 3 2 19 12 9 1 116 107 108 2 7 1 2 126 21 35 116 38 13 25 133 41 4 155 76 6 1 44 61 18 1 4 1 1 7 1 1 1 3 1 1 75 2 41 27 9 29 7

1 20 36 1 91 73 128 56 1 2 17 10 2 24 3 1 26 20 8 4 7 1 29 16 5 2 43 1 61 1 2 3 9 1 33 76 18 44 146 121 89 6 7 9 1 1 1 3 1 3 11 1 1 1 1 8 1 3 2 3 1 1 9 6 6 6 1 1 22 1 1 6 1 4 1 2 1 5 1 2 1 2 1 3 1 5 19 22 9 13 26 8 1 7 1 1 1 1 5 1 5 1 1 8 40 80 1 1 1 4 2 3 1 1 7 5 25 1 14 2 19 9 5 7 1 1 1 4 2 1 11 1 2 7 15 2 13 30 11 46 21 6 1 4 2 20 10 40 1 4 1 10 12 1 1 12 4 17 5 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1 14 1 6 2 1 1 1 2 2 1 1 2 5 1 4 1 1 1 9 3 1 1 1 1 1 1 4 1 423 1 1 1 1 1 5 65 1 96 10 1 1 1 2 1 1

 $\begin{array}{c} \textbf{Cluster 3: WOMAN 48 192 38 1 21 14 265 66 53 47 1 3 1 9 1 2 2 8 98 62 4 1 27 31 30 1 159 1 6 21 1 1 5 56 \\ 13 49 145 64 21 83 5 1 1 19 1 222 19 2 1 8 44 297 268 33 1 37 1 2 41 69 9 178 1 1 22 88 36 388 1 339 18 14 18 \\ 40 30 3 17 1 76 1 14 1 8 12 14 36 13 1 119 1 199 115 375 10 1 2 1 51 22 1 17 3 2 2 7 14 2 2 11 1 7 1 109 95 134 2 \\ 20 2 3 176 19 26 61 29 32 31 316 22 5 156 94 1 1 113 49 18 1 1 1 1 1 1 1 5 1 1 60 1 1 53 4 15 1 2 12 24 1 71 76 \\ 124 47 7 1 1 4 5 18 1 1 19 7 6 10 7 1 23 17 14 10 22 1 66 1 3 4 15 1 8 71 14 42 34 56 47 27 7 5 1 4 1 3 3 1 5 1 1 1 \\ 17 1 1 7 5 2 1 5 4 3 7 5 1 46 1 1 12 1 6 2 1 1 1 1 1 1 3 6 1 18 20 12 5 12 31 11 1 10 1 3 1 1 8 1 3 1 2 1 51 24 11 \\ 12 1 1 1 1 3 8 45 1 12 3 11 14 11 8 1 1 1 3 8 1 4 1 3 6 13 1 15 10 4 41 8 8 1 2 4 25 3 68 1 1 1 1 11 1 1 2 3 16 3 1 \\ 111 1 1 3 1 6 4 1 1 1 1 9 3 3 1 11 5 1 2 1 1 1 6 2 4 1 1 5 1 12 1 1 2 1 12 4 4 1 1 1 1 1 1 7 1 376 1 1 1 1 1 4 10 1 \\ 105 1 3 1 1 1 1 \end{array}$

Clustered Instances

- 0 105 (97%)
- 1 1 (1%)
- 2 1 (1%)
- 3 1 (1%)

Farthest First with 5 Clusters

Cluster centroids:

Cluster 1: WOMAN 52 153 109 1 17 89 324 69 47 24 1 8 1 10 1 14 11 20 100 53 6 1 49 38 37 2 221 11 18 58 2 1 11 80 8 39 198 87 14 49 7 1 1 52 1 124 10 7 1 14 60 315 208 41 1 38 20 2 81 140 5 229 2 1 17 108 86 478 1 344 13 16 16 20 18 1 12 3 62 1 24 1 4 1 16 87 11 1 130 1 162 144 323 6 1 12 1 30 25 1 10 1 1 3 24 26 3 2 19 12 9 1 116 107 108 2 7 1 2 126 21 35 116 38 13 25 133 41 4 155 76 6 1 44 61 18 1 4 1 1 7 1 1 1 3 1 1 75 2 41 27 9 29 7 1 20 36 1 91 73 128 56 1 2 17 10 2 24 3 1 26 20 8 4 7 1 29 16 5 2 43 1 61 1 2 3 9 1 33 76 18 44 146 121 89 6 7 9 1 1 3 1 3 11 11 1 1 8 1 3 2 3 1 1 9 6 6 6 1 1 22 1 1 6 1 4 1 2 1 5 1 2 1 2 1 3 1 5 19 22 9 13 26 8 1 7 1 1 1 1 5 1 5 1 1 8 40 80 1 1 1 4 2 3 1 1 7 5 25 1 14 2 19 9 5 7 1 1 1 4 2 1 11 2 7 15 2 13 30 11 46 21 6 1 4 2 20 10 40 1 4 1 10 12 1 1 12 4 17 5 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1 14 1 6 2 1 1 1 2 2 1 1 2 5 1 4 1 1 1 9 3 1 1 1 1 1 1 4 1 423 1 1 1 1 5 65 1 96 10 1 1 1 2 1 1

Cluster 3: WOMAN 48 192 38 1 21 14 265 66 53 47 1 3 1 9 1 2 2 8 98 62 4 1 27 31 30 1 159 1 6 21 1 1 5 56 13 49 145 64 21 83 5 1 1 19 1 222 19 2 1 8 44 297 268 33 1 37 1 2 41 69 9 178 1 1 22 88 36 388 1 339 18 14 18 40 30 3 17 1 76 1 14 1 8 12 14 36 13 1 119 1 199 115 375 10 1 2 1 51 22 1 17 3 2 2 7 14 2 2 11 1 7 1 109 95 134 2 20 2 3 176 19 26 61 29 32 31 316 22 5 156 94 1 1 113 49 18 1 1 1 1 1 1 1 1 5 1 1 60 1 1 53 4 15 1 2 12 24 1 71 76 124 47 7 1 1 4 5 18 1 1 19 7 6 10 7 1 23 17 14 10 22 1 66 1 3 4 15 1 8 71 14 42 34 56 47 27 7 5 1 4 1 3 3 1 5 1 1 1 1 7 1 17 5 2 1 5 4 3 7 5 1 46 1 1 12 1 6 2 1 1 1 1 1 1 3 6 1 18 20 12 5 12 31 11 1 10 1 3 1 1 8 1 3 1 2 1 51 24 1 1 1 2 1 1 1 1 3 6 1 18 20 12 5 12 31 11 1 10 1 3 1 1 8 1 3 1 2 1 51 24 1 1 1 1 1 1 1 1 3 1 6 4 1 1 1 1 9 3 3 1 11 5 1 2 1 1 1 6 2 4 1 1 5 1 12 1 1 2 1 12 4 4 1 1 1 1 1 1 7 1 376 1 1 1 1 1 4 10 1 105 1 3 1 1 1 1

Clustered Instances

- 0 104 (96%)
- 1 1 (1%)
- 2 1 (1%)

3 1 (1%)

4 1 (1%)

EM Clusterer

Number of clusters selected by cross validation: 7 Number of iterations performed: 3

Attribute	cluster • 0 (0.01)(0						
GENDER MAN WOMAN [total]	1 2 3	1 3 4	50 37 87	1 2 3	1 2 3	1 14 15	1 6 7
[total] AGE 9 20 24 28 29 31 32 33 34 35 36 37 38 39 40 41 42 43 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57	3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	87 2222233333222222222222222222222222222	3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	15 1 1 1 1 1 1 1 1 1 1 1 1 1	7 1 1 1 1 1 1 1 1 1 1 1 1 1
58 59 60 61 62	1 1 1 1	1 1 1 1	2 3 2 2 3	1 1 1 1	1 1 1 2 1	2 1 2 1 1	1 1 1 1 1

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 82 83 84 89 91 [total]	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 3 2 2 3 3 3 3 2 3 3 2 3 3 2 3 3 2 2 3 3 2 2 2 2 146	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 6 6
011A01 1 2 3 4 5 7 8 9 10 11 12 13 14 15 16 17 18 20 21 23 24 25 26 29 31 32 34 35 37 38 39 46	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 18 4 2 7 4 5 4 7 5 3 3 2 2 2 4 2 3 2 2 2 2 2 2 2 2 2 2 2 2		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

47 51 52 53 55 62 64 69 73 75 76 81 86 89 96 97 98 99 107 125 135 153 192 196 [total]	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 3 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 2 1 2 1 1 2 1 1 2 2 2 2 2 3 1 1 1 1 2 2 2 1 1 9	1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 2 1 1 1 2 2 1 1 1 2 61
011A02 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 20 21 22 23 24 26 27 28 30 32 33 34 38 39 41	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	23 8 7 4 6 5 7 6 3 2 3 3 2 2 2 2 1 1 2 2 3 2 2 1 1 2 2 2 1 1 2 2 1 1 2 1 1 2 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{c}1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

44 45 48 52 54 56 61 63 64 72 77 109 [total] 011A03	1 1 2 1 1 1 1 1 1 45	1 1 1 1 1 1 1 1 1 46	1 2 1 1 1 1 1 1 1 129	1 1 1 1 1 1 1 1 1 1 45	1 1 1 1 1 1 1 1 1 1 45	2 1 2 1 2 1 2 1 2 1 2 1 2 57	1 2 1 1 2 1 2 1 2 1 49
1 [total] 011A04	2 2	3 3	86 86	2 2	2 2	14 14	6 6
1 2 3 4 5 6 10 11 12 13 14 15 16 17 18 21 40 [total]	1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 8	1 1 2 1 2 1 1 1 1 1 1 1 1 1 9	66 7 6 5 2 1 1 1 1 2 1 2 1 1 2 1 1 2 1 1 2 102	1 1 1 1 1 1 1 1 1 1 1 1 2 1 8	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 1 3 4 2 1 2 2 2 3 1 1 1 30	2 1 2 1 1 1 1 1 1 1 1 2 1 1 2 2
011AAY 1 2 3 5 6 7 8 9 10 12 13 14 18 19 20 21 22 24 25 26 29 30	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	37 10 6 5 6 2 5 3 2 3 1 3 2 2 2 2 1 1 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 3 2 2 2 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

33 34 35 36 38 39 45 47 52 60 62 63 68 82 89 [total] 011AAF	1 1 1 1 1 1 1 1 1 1 1 2 1 1 38	1 1 2 1 1 1 1 1 1 1 1 39	1 2 1 1 1 2 1 1 2 1 2 1 2 1 22	1 1 1 1 1 1 1 1 1 1 1 1 1 38	1 1 2 1 1 1 1 1 1 1 1 1 38	2 1 1 2 3 1 1 1 1 1 1 2 50	1 1 1 2 1 2 2 1 1 1 1 42
$ \begin{array}{c} 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 9\\ 10\\ 11\\ 12\\ 14\\ 16\\ 17\\ 18\\ 19\\ 20\\ 22\\ 24\\ 25\\ 27\\ 30\\ 34\\ 39\\ 40\\ 41\\ 45\\ 46\\ 47\\ 48\\ 50\\ 61\\ 65\\ 66\\ 69\\ 77\\ 80\\ 86\\ 87\\ 88\\ 96\end{array} $	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	16 3 2 3 5 7 7 4 3 2 5 2 3 2 2 4 3 2 2 3 2 2 4 3 2 2 3 2 2 4 2 2 3 2 2 2 1 1 2 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 2 2 3 2 2 2 1 2 2 3 2 2 2 1 2 2 3 2 2 2 3 2 2 2 3 2 2 2 3 2 2 2 4 4 3 2 2 2 3 2 2 2 4 4 3 2 2 2 3 2 2 2 3 2 2 2 3 2 2 2 3 2 2 2 3 2 2 2 3 2 2 2 3 2 2 2 3 2 2 2 3 2 2 2 2 3 2 2 2 2 3 2 2 2 2 3 2 2 2 3 2 2 2 3 2 2 2 2 3 2 2 2 3 2 2 2 2 3 2 2 2 3 2 2 2 2 3 2 2 2 2 2 2 3 2 2 2 2 2 3 2	$\begin{array}{c}1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

97 100 106 111 118 124 137 147 150 151 162 163 184 186 204 265 324 [total] 011AAX	1 1 1 1 1 1 1 1 1 1 1 1 1 59	1 1 2 1 1 1 1 1 1 2 1 1 2 1 1 60	2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 2 59	1 1 1 1 1 1 1 1 1 1 1 1 1 1 59	1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 71	1 2 1 2 1 2 1 2 1 2 1 2 1 1 1 1 1 5 3
$ \begin{array}{c} 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 15\\ 16\\ 17\\ 20\\ 21\\ 24\\ 26\\ 27\\ 28\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 38\\ 39\\ 40\\ 44\\ 47\\ 48\\ 49\\ 50\\ 59\\ 64\\ 66\end{array} $		1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1	4 6 27 5 4 10 5 5 3 2 7 3 3 2 3 2 1 1 2 1 1 2 2 2 2 1 2 1 1 1 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

68 69 76 [total] 011AAC	1 1 1 43	1 1 1 44	1 1 2 127	1 1 1 43	1 1 1 43	2 2 1 55	1 1 1 47
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 17 18 19 20 21 22 23 24 26 27 28 29 34 40 42 44 45 47 51 52 53 [total] 011AAV	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8 30 2 5 6 6 2 6 3 2 6 3 2 6 3 2 6 3 2 6 3 2 1 3 2 3 2 3 2 3 1 3 1 2 2 3 1 3 1 2 2 2 3 1 3 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 2 2 2 1 2 1 2 1 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 10 11 18 19 24 27 30	1 2 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1	10 57 4 8 4 2 2 4 3 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 2 1 1 1 1 1 1 1 1	1 4 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2	2 1 1 1 2 1 1 1 1 2 1 2 1

31 38 47 54 [total] 012G01	1 1 1 20	2 1 1 1 21	1 1 1 1 104	1 1 2 1 20	1 1 1 20	1 2 1 1 32	1 1 2 24	
1 2 3 4 [total] 012GZ5	2 1 1 5	3 1 1 1 6	83 2 2 2 89	2 1 1 5	2 1 1 5	13 1 2 1 17	5 1 2 1 9	
1 2 3 4 5 6 7 8 12 17 [total] 012D04	1 1 1 1 1 2 1 1 1	2 1 1 1 2 1 1 1 12	77 4 2 3 1 1 1 1 1 95	1 2 1 1 1 1 1 1 1	2 1 1 1 1 1 1 1 1	4 2 4 2 1 2 2 2 2 3	3 1 1 1 1 1 2 1 15	
1 2 3 6 [total]	1 2 1 1 5	2 1 1 2 6	84 1 2 2 89	2 1 1 1 5	1 2 1 1 5	11 3 2 1 17	6 1 1 9	
012DBA 1 2 3 4 5 6 7 8 9 10 11 14 16 19 [total] 012DBB	1 1 2 1 1 1 1 1 1 1 1 1 5	1 1 1 2 1 1 1 1 1 1 1 1 1 1	63 12 4 5 3 2 2 1 2 1 2 1 1 1 1 99	1 1 1 1 1 1 1 1 1 1 1 1 5	1 1 1 2 1 1 1 1 1 1 1 5	4 2 2 1 1 1 2 2 3 2 2 2 7	1 1 2 2 1 2 1 2 1 1 1 1 9	
1 [total]	2 2	3 3	86 86	2 2	2 2	14 14	6 6	
012DZ5 1 2 3 4 5 6 7 8 9	1 2 1 1 1 1 1 1 1	1 1 1 2 2 1 1	62 9 7 5 2 3 1 2 3	1 2 1 1 1 1 1 1	1 1 1 1 2 1 1	2 1 4 1 2 1 3 1 1	1 1 1 2 1 1 3	

11 12 13 14 22 23 [total] 012DF0	1 1 1 1 1 16	1 1 1 1 1 1 17	1 1 1 1 1 100	1 1 1 1 1 16	1 1 1 1 1 1	1 3 2 1 2 28	2 1 1 2 1 20
1 2 3 4 5 6 7 11 [total]	1 1 1 2 1 1 1 9	2 1 1 1 1 1 1 10	74 7 2 1 2 1 2 1 93	1 2 1 1 1 1 1 9	2 1 1 1 1 1 1 9	5 2 2 2 2 1 2 21	3 2 1 2 1 1 2 1 13
012DF3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 20 24 [total]	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 0	1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 2 1	55 8 6 5 2 3 2 1 2 1 2 1 2 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 20	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 20	2 1 1 2 1 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 32	1 1 1 1 1 1 2 1 1 2 1 1 2 2 1 1 2 2 4
021A05 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 2	8 28 9 5 3 8 3 4 6 3 2 3 2 2 2 2 2 2 2 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1

21 24 25 26 27 31 32 34 38 39 43 45 49 53 54 56 68 98 100 [total] 021A06	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 39	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 40	2 1 4 2 1 1 1 1 1 1 1 1 1 1 1 1 1 23	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 39	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 39	1 3 1 2 2 2 1 2 2 1 2 1 2 1 2 1 2 5 1	1 1 1 2 2 1 1 2 1 2 1 2 1 2 1 1 2 1 1 4 3
1 2 3 4 5 6 7 8 9 11 13 14 15 17 18 21 23 24 25 28 29 31 35 37 38 40 42 43 46 49 53 56 62 [total] 021E05	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	31 12 4 2 6 8 7 5 3 2 3 3 6 3 1 2 2 1 1 1 1 2 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 2 1 1 1 1 2 1 1 2 1 1 1 1 2 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 2	1 1	2 1	80 3	1 1	2 1	6 5	3 2

3 4 6 7 9 14 18 [total] 021E06 1 2 4 7 16 [total] 031A07	1 1 2 1 1 1 10 1 2 1 1 6	2 1 1 1 1 1 1 1 1 1 7	3 1 2 1 2 1 94 82 4 1 2 1 90	1 2 1 1 1 1 1 1 1 0 2 1 1 1 1 6	1 1 1 1 1 1 1 1 1 1 2 6	1 3 2 1 2 1 1 22 13 1 2 1 3 1 2 1 8	2 1 1 1 2 14 4 2 1 1 10
1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 17 18 19 23 25 27 28 32 34 39 49 [total] 031A68	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 8	32 14 10 8 6 5 5 5 3 4 2 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 2 2 1 2 1 1 1 1 2 1 2 1 2 1 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 13 16 17	1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 2 1 1	41 8 6 8 2 7 5 3 3 4 6 2 1 2	1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 2 2 1 2 1 1 2 1 1 2	1 1 1 1 1 1 1 1 2 2 1

18 19 20 22 23 24 25 29 30 31 32 33 36 38 43 44 45 [total] 031A73	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 32	1 1 2 1 1 1 1 1 1 1 1 1 1 1 3 3	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 32	1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 32	1 2 1 2 1 2 1 2 1 1 2 1 2 2 2 1 44	1 1 1 1 1 1 2 1 1 1 1 1 2 36
1 2 3 4 5 6 8 9 10 11 12 13 14 15 16 17 18 19 22 25 26 27 30 31 37 38 39 [total]	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	39 9 10 9 9 5 4 3 2 3 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 2 1 1 1 2 2 1 1 3 1 1 2 3 3 1 2 2 1 1 40	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
031A74 1 2 3 4 [total]	2 1 1 5	3 1 1 1 6	78 6 2 3 89	2 1 1 5	1 1 2 5	13 2 1 1 17	6 1 1 9
041A08 1 2 3 4	1 1 1 1	1 1 1 1	6 5 19 4	1 1 1	1 1 1	1 1 1	1 1 1 1

5	1	1	5	1	1	1	1
6	1	1	5	1	1	1	1
7	1	1	2	1	1	1	1
8	1	1	2	1	1	1	1
9	1	1	4	1	1	1	1
10	1	1	2	1	1	1	1
11	1	1	3	1	1	1	1
12	1	1	2	1	1	1	1
13 14	1 1	1 1	2	1 1	1 1	1 1	1 1
15	1	1	2 2 3 2	1	1	1	1
19	1	1		1	1	1	1
21	1	1	3 3	1	1	1	1
23	1	1	3	1	1	1	1
24	1	1	3 2	1	1	1	1
25	1	1	5	1	1	1	1
26	1	1	4	1	1	1	1
28	1	1	3	1	1	1	1
33	1 1	1	3	1	1	1	1
35 36	1 1	1 1	2 3	1 1	1 1	1 1	1 1
37	1	1	2	1	1	1	1
39	1	1	3	1	1	1	1
40	1	1	2	1	1	1	1
42	1	1	2	1	1	1	1
43	1	1	2 2	1	1	1	1
44	1	1	2	1	1	1	1
47	1	1	2	1	1	1	1
50	1	1	2	1	1	1	1
62	1 1	1	1	1 1	1 1	2	1
64 66	1 1	1 1	2 2	1 1	1	2 2	1 1
69	1	1	2	1	1	2	1
75	2	2	1	1	1	2	1
77	1	1	2	1	1	1	1
89	1	1	1	1	1	2	1
90	1	1	1	1	1	2	1
92	1	1	1	1	1	2	1
96	1	1	1	1	2	1	1
97	1	1	1	1	1	2	1
98 99	1 1	1 1	1 1	1 1	1 1	2 1	1 2
106	1	1	1	1	1	1	2
111	1	1	1	1	1	2	1
112	1	1	1	1	1	1	2
113	1	1	1	1	1	1	2
121	1	1	2	1	1	1	1
127	1	2	1	1	1	1	1
159	1	1	1	2	1	1	1
164	1	1	1	1	1	2	1
168 221	1 1	1 1	1 1	1 1	1 1	1 2	2 1
[total]	1 57	1 58	141	1 57	1 57	2 69	1 61
041A09	57	50	- -	51	51	09	ΟŢ
1	1	1	70	2	1	6	1
2	1	1	6	1	1	3	2
3	1	1	6	1	1	2	2
4	1	2	2	1	1	1	2

5 6 7 8 9 10 11 12 13 16 26 41 [total] 041A16	1 1 2 1 1 1 1 1 1 1 1 7	1 1 1 2 1 1 1 1 1 1 8	2 3 1 1 1 1 1 1 1 2 2 101	1 1 1 1 1 1 1 1 1 1 1 1 7	2 1 1 1 1 1 1 1 1 1 1 1 1 7	1 2 2 1 1 2 1 2 2 1 2 2 1 1 29	1 2 1 1 1 2 1 1 1 1 2 1 1 2 1
1 2 3 4 6 7 8 11 18 [total]	2 1 1 1 1 1 1 1 1 10	1 1 2 1 2 1 1 11	69 7 6 3 3 1 1 1 94	1 1 1 2 1 1 1 1 10	1 2 1 1 1 1 1 1 1 10	8 2 1 3 1 3 1 2 22	2 1 3 2 1 1 1 1
041A17 1 2 3 4 5 6 7 8 9 10 12 13 14 15 18 21 58 [total] 041A18	1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 8	1 1 1 2 1 1 1 1 1 1 1 1 9	65 6 4 5 3 4 2 2 1 1 1 1 1 1 1 1 1 1 102	1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 1 3 1 1 2 3 1 1 2 2 2 1 2 30	1 1 1 1 1 1 2 2 1 1 1 1 1 2 2 1 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 2 1 1 2 2 2 1 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 2 1 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2
1 2 5 8 [total]	2 1 1 5	3 1 1 1 6	83 4 1 1 89	2 1 1 5	1 2 1 1 5	13 2 1 1 17	4 1 2 2 9
041A19 1 [total]	2 2	3 3	86 86	2 2	2 2	14 14	6 6
041A20 1 2 3 4 5	2 1 1 1 1	1 2 1 1 1	71 7 5 3 2	1 1 1 2	1 2 1 1 1	3 3 2 2 2	1 3 1 2 2

6 7 8 9 10 11 15 [total] 041A21	1 1 1 1 1 1 1 13	1 1 2 1 1 1	2 1 1 1 2 97	1 1 1 1 1 1 1 13	1 1 1 1 1 1 1 13	3 2 1 2 2 1 2 2 1 25	1 1 1 1 2 1 17
1 2 3 4 5 6 7 9 10 11 13 14 15 16 17 19 23 25 29 30 31 32 36 38 39 41 44 45 56 80 [total] 041A22	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	43 13 5 7 2 3 4 7 2 1 2 2 2 1 2 2 2 1 2 1 2 2 2 2 1 2 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 2 1 1 2 1 2 2 2 1 2 2 3 1 2 1 1 2 2 3 1 2 1 1 2 3 1 2 1 2	1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
041A22 1 2 3 4 5 6 7 8 10 11 12 13 [total] 041A23	1 1 2 1 1 1 1 1 1 3	2 1 1 1 1 1 1 1 1 1 1	74 3 4 2 3 2 1 1 1 3 1 97	1 1 1 1 1 1 1 1 1 2 13	1 2 1 1 1 1 1 1 1 1 1 3	2 1 5 1 5 2 2 2 2 1 1 25	1 3 1 1 2 3 1 1 1 1 1 7
1 2 3	1 1 1	1 1 1	39 11 7	1 1 1	1 1 1	1 1 1	1 1 1

4 5 6 7 8 9 10 11 12 14 15 16 17 18 19 22 24 30 34 36 39 49 [total]	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9 5 8 4 3 1 6 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 26	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 2 1 2 1 2
041A25 1 2 3 4 5 6 7 8 9 10 12 13 14 18 19 20 23 24 25 26 27 28 29 30 32 34 36 38 39 42 43 46 47 53	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20 7 4 11 3 2 2 3 3 2 4 3 3 2 4 3 3 2 4 3 3 2 4 3 3 2 2 2 2	$\begin{array}{c}1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\$	$\begin{array}{c}1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

54 56 59 63 69 71 72 74 77 79 80 81 85 87 102 114 120 125 136 145 198 [total] 041A26	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5 6	1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 57	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 5 6	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5 6	1 1 2 2 2 2 2 2 2 2 2 2 2 1 1 1 2 1 1 2 68	1 1 1 1 1 1 1 1 1 2 1 2 1 2 1 2 1 60
1 2 3 4 5 6 7 8 9 10 11 12 13 15 17 18 21 23 25 27 28 34 41 64 87 [total]	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	48 14 5 2 5 2 2 5 4 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 2 2 1 1 1 2 2 1 2 1 2 1 2 1 2 1 2	1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 2 1 1 30
041A27 1 2 3 4 5 6 7 8	1 1 1 1 1 1 2	1 1 1 1 1 1 1	53 10 6 5 2 3 3 2	1 1 1 1 1 1 1	1 1 1 1 1 1 2	1 1 2 1 2 1 2	1 1 1 1 1 1 2

9 10 12 13 14 16 18 20 21 23 24 25 30 31 38 [total] 041A28	1 1 1 1 1 1 1 1 1 1 1 24	1 3 1 1 1 1 1 1 1 1 1 1 25	4 1 2 1 2 1 1 1 1 1 2 1 1 2 1 108	1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 4	1 1 1 1 1 1 1 1 1 1 1 1 24	3 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 36	1 2 1 2 1 1 2 1 2 1 2 1 2 2 8
1 2 3 4 5 6 7 8 9 10 11 12 13 15 17 19 21 26 29 30 37 40 41 42 43 49 61 83 [total]	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8 51 5 4 4 2 4 3 4 4 2 2 2 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 2 1 1 2 1 1 2 1 2 2 2 2 2 2 3 1 1 1 2 1 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1
041AC2 1 2 3 4 5 6 7 8 9 10 11	1 1 1 1 1 1 1 2 1	1 1 1 1 1 1 1 3	9 60 4 5 5 1 1 1 3 2 3	1 1 1 2 1 1 1 1 1 1	1 1 1 1 2 1 1 1 1	1 4 1 2 2 3 1 1 1	1 1 2 1 2 1 1 1 1

12 13 16 17 19 23 25 27 [total] 042G19	1 1 1 1 1 1 1 20	1 1 1 1 1 1 21	2 1 1 1 1 1 2 104	1 1 1 1 1 1 1 20	1 1 1 1 1 1 1 20	2 2 1 2 1 2 1 1 32	1 1 2 1 1 2 1 24
1 [total] 042D21	2 2	3 3	86 86	2 2	2 2	14 14	6 6
1 [total] 042DZ3	2 2	3 3	86 86	2 2	2 2	14 14	6 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 18 19 20 21 22 23 24 27 29 32 45 52 [total] 042E20	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	44 6 3 5 5 8 2 3 3 8 2 3 3 8 2 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 2 1 1 2 2 3 3 2 1 1 2 40	1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 12 [total] 051A10	2 1 3	3 1 4	85 2 87	2 1 3	2 1 3	14 1 15	6 1 7
1 2 3 4 5 6 7 8 9	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1	31 10 3 5 7 3 3 3 3 2	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 2	1 1 1 1 1 1 1 1

10 12 13 15 16 17 20 23 24 26 28 29 35 38 41 42 43 44 46 52 53 65 68 74 77 84 85 86 106 124 137 143 222 [total]	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 2 4 2 3 2 3 3 3 4 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
051A29 1 2 3 4 5 6 7 9 10 11 19 [total] 051A29	2 1 1 1 1 1 1 1 1 1 1 2	2 2 1 1 1 1 1 1 1 1 3	77 6 2 2 1 2 1 1 1 1 96	1 1 1 1 1 1 1 1 1 2 12	1 2 1 1 1 1 1 1 1 1 2	5 2 1 3 4 1 2 1 3 1 1 24	1 2 2 1 2 1 2 1 2 1 2 1 1 6
051A30 1 2 3 4 5 6 7 8 9 11	1 2 1 1 1 1 1 1 1	1 2 1 1 1 1 1 2	70 9 5 1 3 2 1 1 1	1 2 1 1 1 1 1 1 1	1 2 1 1 1 1 1 1 1	2 4 1 3 4 2 2 2 2 1	4 1 2 1 1 1 1 1 1 1

12 18 [total] 051A33	1 1 13	1 1 14	1 2 97	1 1 13	1 1 13	1 1 25	2 1 17
1 [total] 051A34	2 2	3 3	86 86	2 2	2 2	14 14	6 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 19 20 23 24 [total]	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 20	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1	61 12 7 5 2 1 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 20	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 20	1 1 1 4 3 1 1 2 2 2 2 2 1 1 1 2 2 32	1 3 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 24
061A11 1 2 3 4 5 6 7 8 9 10 11 12 13 16 17 18 20 21 24 26 27 28 31 32 33 35 36 38 42 43	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 7 6 30 6 3 5 4 4 3 3 4 4 2 2 4 3 2 2 2 1 1 1 1 1 2 1 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	$1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

44 46 52 59 60 63 67 73 [total] 062G11	1 1 1 1 1 1 1 39	1 1 1 1 1 1 1 40	1 1 1 1 1 1 1 123	2 1 1 1 1 1 1 39	1 1 1 1 1 1 1 39	1 2 1 2 3 2 1 2 51	1 2 1 2 1 2 1 43
0.62G11 1 2 3 4 5 6 8 9 10 11 12 13 14 16 17 20 21 22 23 27 29 30 21 22 23 27 29 30 33 35 36 39 41 45 48 49 51 53 56 57 62 64 69 70 75 76 77 80 81 93 95 101 103 109		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 3 6 3 5 2 3 4 3 4 2 3 2 3 2 3 2 3 2 2 4 4 2 1 3 2 2 2 2 1 2 2 3 2 2 2 1 2 2 3 2 2 2 1 2 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

110 116 119 123 132 138 141 148 154 164 169 171 182 191 197 204 223 297 315 [total] 062G12	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 68	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 69	2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 68	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 68	1 2 2 2 2 2 1 2 1 1 1 2 2 1 2 2 1 2 80	1 1 1 1 1 1 2 2 1 2 1 1 2 1 1 1 1 72
$ \begin{array}{c} 1\\ 2\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 11\\ 12\\ 13\\ 15\\ 16\\ 17\\ 18\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 28\\ 30\\ 32\\ 33\\ 36\\ 38\\ 39\\ 40\\ 45\\ 46\\ 47\\ 49\\ 52\\ 55\\ 57\\ \end{array} $			15 2 5 3 2 2 5 3 4 2 5 2 2 5 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 3 2 3 2 3 2 3 2 3 2 2 3 3 2 3 2 3 2 3 2 3 2 <t< td=""><td></td><td></td><td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td><td>$\begin{smallmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$</td></t<>			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{smallmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $

59 64 70 74 76 80 84 86 89 91 98 100 111 125 132 138 150 160 163 192 205 208 268 [total] 062G14	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 3 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 2 2 2 2 2 2 2 1 1 2 2 2 2 2 1 1 1 2 2 2 2 1 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 2 1 1 2 2 2 2 2 2 1 1 1 2 2 2 2 2 1 1 1 2 2 2 2 2 2 2 2 1 1 1 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 65
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 20 29 33 38 41 56 [total] 062GX0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 5	58 7 5 7 3 1 2 4 2 2 2 2 1 2 1 2 1 2 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 2 1 2 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 2 1 2 2 2 1 2 2 2 2 1 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 [total]	2 2	3 3	86 86	2 2	2 2	14 14	6 6
062GC5 1 2 3 4 5	1 1 1 1	1 1 1 1	51 10 8 4 3	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1

6 7 8 10 11 13 14 15 16 17 18 19 21 23 27 37 38 41 64 68 [total]	1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 7	5 3 4 1 1 2 2 1 3 1 1 2 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 6	1 1 2 4 1 2 2 1 2 1 2 1 2 1 2 3 2 2 1 38	1 1 1 2 2 1 1 1 1 2 1 1 1 1 2 30
062GC9 1 2 3 4 5 6 8 9 10 20 24 25 [total] 062E12	1 2 1 1 1 1 1 1 1 1 1 3	1 2 1 1 2 1 1 1 1 1 1 1	72 7 1 2 1 1 2 1 1 2 1 1 1 97	2 1 1 1 1 1 1 1 1 1 1 3	1 1 1 2 1 1 1 1 1 1 3	4 3 1 3 2 1 1 2 2 2 2 2 2 2 5	3 1 1 2 1 1 1 1 1 1 1 7
1 2 3 4 5 6 [total]	1 1 2 1 1 7	1 3 1 1 1 8	6 74 2 3 2 91	1 2 1 1 1 7	1 2 1 1 1 7	1 12 2 1 1 19	1 5 1 2 1 1 11
071A15 1 2 3 4 5 6 7 8 9 11 13 14 15 16	1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 2 1	30 4 5 11 8 5 3 6 2 3 6 2 3 6 2 3	1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1

17 18 19 20 21 24 26 27 28 29 31 33 35 36 37 41 43 47 49 50 59 66 68 81 [total] 081A24	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 40	2 3 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 2 3 2 1 2 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 5 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 2 2 1 1 1 4 3
1 2 3 4 5 7 8 9 10 11 12 13 14 16 17 18 20 21 22 23 24 25 28 31 32 4 25 28 31 32 36 38 39 40 41 42 44	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7 6 9 3 28 4 6 4 3 5 3 2 4 3 2 2 2 3 2 3 1 1 1 1 1 1 2 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 1 2 1 2 3 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

47 48 51 57 58 69 89 98 140 [total] 082G24	1 2 1 1 1 1 1 1 42	1 1 1 1 1 1 1 43	1 1 1 1 1 1 1 126	1 1 1 1 2 1 1 1 42	1 1 1 1 1 1 1 1 42	2 1 2 2 1 1 2 2 54	1 3 1 2 2 1 1 46
1 2 3 4 5 7 9 10 13 [total] 091A31	2 1 1 1 1 1 1 1 1 10	2 1 1 1 1 1 1 1	76 5 3 1 1 1 1 94	1 1 1 1 2 1 1 10	2 1 1 1 1 1 1 1 1 10	6 1 3 2 3 3 2 1 1 22	2 2 1 2 1 1 2 2 2 14
$ \begin{array}{c} 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 27\\ 30\\ 31\\ 32\\ 33\\ 36\\ 37\\ 39\\ 43\\ 44\\ 45\\ 51\end{array} $	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8 15 5 4 3 4 5 3 3 3 5 3 4 4 2 2 3 2 3 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

52 54 56 59 61 62 63 69 72 74 79 80 81 86 88 103 117 134 142 147 178 229 [total]	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 1 2 1 1 2 1 2 1 2 1 2 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 59	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 59	1 1 2 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 1 2 7 1	1 1 1 1 2 1 2 1 1 1 1 2 2 1 2 1 2 1 2 1
091BBN 1 2 3 4 5 6 20 [total] 092G31	1 2 1 1 1 1 8	3 1 1 1 1 1 9	74 4 3 3 2 1 92	2 1 1 1 1 1 1 8	1 1 2 1 1 1 1 8	6 4 2 4 2 1 1 20	2 1 2 2 2 12
1 2 6 7 [total]	2 1 1 5	3 1 1 1 6	83 3 2 1 89	2 1 1 5	2 1 1 5	13 1 1 2 17	6 1 1 9
092E31 1 2 3 4 5 6 7 9 11 12 13 14 15 17 18 22 23 29 33	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 52 6 3 6 2 1 2 2 3 2 3 1 1 2 1 2 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 3 1 2 1 2 1 2 1 1 1 2 3 1 2 1 2	1 1 2 1 2 1 1 2 1 2 1 1 1 1 1 1

38 40 42 52 [total]	1 1 1 24	1 1 1 25	2 2 1 1 108	1 1 1 24	1 1 1 24	2 1 2 2 36	1 1 1 28
101A37 1 2 3 4 5 6 7 8 10 11 12 16 18 19 20 21 22 23 24 25 26 30 31 33 34 41 42 47 49	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7 8 6 2 4 8 5 6 2 3 2 4 4 2 2 3 3 4 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 2 2 3 2 4 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{c}1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\$
50 51 52 53 58 63 64 65 67 88 89 90 107 108 [total] 102D35	1 1 1 1 1 1 1 1 1 1 1 1 4 4	2 1 1 1 1 1 1 1 1 1 1 1 45	1 1 1 1 1 1 1 1 1 1 128	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 4	1 1 1 1 1 1 1 1 1 1 1 1 4 4	2 2 2 2 2 2 2 1 1 2 2 1 2 2 1 2 2 1 2 5 6	1 1 1 1 2 2 1 1 2 1 1 2 1 3 1 48
1 2 3 4 5 6 7	1 1 1 1 1 1	1 1 1 1 1 1	30 6 8 4 6 9 6	1 1 1 1 1	1 1 1 1 1	1 1 1 1 1	1 1 1 1 1 1

8 9 10 11 12 13 14 15 16 17 18 20 21 22 23 24 26 28 29 30 31 33 35 36 38 39 40 41 54 58 74 86 [total]	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 3 6 2 3 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 2 1 2 1 2 3 1 1 2 2 2 1 1 1 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 2 2 1 1 2 1 2 1 1 2 1 2 1 2 1 1 2 1 1 2 2 1 1 2 1 2 1 1 2 2 1 1 2 1 2 1 2 1 2 1 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 2 1 1 1 2 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 2 1 1 2 2 1 2 2 1 2 1 2 2 1 1 2 2 1 2 2 1 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 2 2 1 2 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 1 2 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 2 1 2 2 1 2 2 1 2 2 2 2 1 1 2 2 2 2 1 2 2 1 2 1 2 2 2 1 2 1 2 2 1 2 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 1 2 1 2 1 2 2 1 2 1 2 1 2 2 1 2 1 2 2 1 2 2 1 2 1 2 1 2 2 1 2 1 2 2 1 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 1 2 2 2 1 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
102E35 1 2 3 4 8 9 10 11 12 13 14 15 16 17 18 20 21 22 23 24 30 31 34 35	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8 4 3 2 2 4 3 2 2 3 2 2 3 2 3 2 3 2 3 3 2 3 3 4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$ \begin{array}{c} 1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\$	$ \begin{array}{c} 1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

36	1	1	3	1	1	1	1
37	1	1	2	1	1	1	1
40 42	1 1	1 1	2 2	1 1	1 1	1 1	1 1
44	1	1	2 2 3	1	1	1	1
51 52	1 1	1 1		1 1	1 1	1 1	1 1
55	1	1	2 2	1	1	1	1
61	1	1	2	1	1	1	1
62 66	1 1	1 1	3 3	1 1	1 1	1 1	1 1
67	1	1	2	1	1	1	1
69	1	1	4	1	1	1	1
72 74	1 1	1 1	2 2	1 1	1 1	1 1	1 1
75	1	1	2	1	1	1	1
79 81	1 1	1 1	2 2	1 1	1 1	1 1	1 1
83	1	1	3	1	1	1	1
92	1	1	2	1	1	1	1
96 102	1 1	1 1	2 3	1 1	1 1	1 1	1 1
111	1	1	2	1	1	1	1
119 121	1 1	1 1	2 2	1 1	1 1	1 2	1 1
137	1	1	1	1	1	2	1
147	1	1	2	1	1	1	1
151 157	1 1	1 1	1 1	1 1	2 1	1 2	1 1
161	1	2	1	1	1	1	1
162 176	1 1	1 1	2 1	1 1	1 1	1 1	1 3
202	1	1	1	1	1	2	1
214 216	1 1	1 1	1 1	1 1	1 1	2 2	1
226	1	1	1	1	1	2	1 1
229	2	1	1	1	1	1	1
231 238	1 1	1 1	1 1	1 1	1 1	2 1	1 2
249	1	1	1	1	1	2	1
275 278	1 1	2 1	1 1	1 1	1 1	1 2	1 1
282	1	1	1	1	1	1	2
303 356	1 1	1 1	1 1	1 1	1 1	2 2	1 1
388	1	1	1	2	1	2	1
453	1	1	1	1	1	1	2
478 [total]	1 73	1 74	1 157	1 73	1 73	2 85	1 77
111A36							
1 2	2 1	2 1	85 2	2 1	2 1	12 2	4 2
3	1	2	1	1	1	1	2
7 [total]	1 5	1 6	1 89	1 5	1 5	2 17	1 9
112E40	5	0	09	5	5	± /	J
1	1	1	5	1	1	1	1
2	1	1	5	1	1	1	1

41 6 1 7 1 8 1 9 1 10 1 11 1 12 1 13 1 14 1 16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 1 26 1 27 1 28 1 32 1 34 1 35 1 39 1 40 1 41 1 43 1 44 1 45 1 52 1 58 1 59 1 61 1 62 1 63 1 79 1 81 1 83 1 86 1 88 1 89 1 90 1 90 1 91 1 92 1 91 1 92 1 92 1 93 1 93 1 90 1 92 1 92 1 93 1 93 1 93 1 93 1 93 1 93 1 94 1 95 1
1 3 3 3 1 3 1 3 1 2 1 2 1 2 1 2 2 2 2 2 2 2 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

131 134 142 147 155 169 186 191 192 203 205 216 217 236 246 254 339 344 [total] 121A38	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 79	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 2 79	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 79	2 1 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 91	1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 8 3
1 2 3 4 5 8 9 10 13 15 17 18 21 24 [total] 121A39	1 1 1 1 1 1 1 1 1 1 1 1 1 5	1 1 1 2 1 1 1 1 1 1 1 1 1 1 1	68 5 2 2 1 3 2 1 1 1 1 99	1 1 1 1 1 1 1 1 1 2 1 1 5	1 1 2 1 1 1 1 1 1 1 1 5	1 3 1 2 4 2 4 2 1 2 2 1 1 27	2 1 2 1 1 1 1 1 2 1 2 2 19
121A39 1 2 3 4 5 6 7 8 9 10 11 13 14 16 17 22 [total] 121A64	1 1 2 1 1 1 1 1 1 1 1 1 1 1 7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 8	65 9 6 3 2 2 2 1 1 2 2 1 1 2 1 1 2 1 101	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 7	2 1 1 5 2 2 2 2 3 1 1 2 1 2 9	1 1 1 2 1 2 1 1 1 1 1 1 2 1 1 2 1
1 2 3 4	1 1 1	1 1 2 1	63 10 8 4	1 1 1 1	1 2 1 1	1 2 2 3	1 1 1 1

10 11 13 16 18 19 20 [total] 121A65	2 1 1 1 1 1 15	1 1 2 1 1 1 16	1 1 1 2 1 99	1 1 1 2 1 1 5	1 1 1 1 1 1 1 15	3 2 3 1 3 1 1 2 27	2 1 2 3 1 1 1 9
1 2 3 4 5 6 7 8 9 10 11 12 14 15 16 19 20 25 29 40 46 [total] 121A67	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3	60 4 6 3 5 8 2 2 2 1 1 2 1 1 2 1 1 2 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 22	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 2 2 2 1 1 4 1 2 2 2 1 2 2 2 1 1 2 2 2 1 1 3 4	1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 2 26
1 2 3 4 5 6 7 8 9 10 12 13 14 15 16 17 18 23 26 30 [total] 121AZ4 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2	58 10 6 4 6 2 1 1 5 2 1 1 1 1 1 1 1 1 1 1 5 8 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 21 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 2 2 1 1 3 2 1 3 1 1 2 1 2 1 2 1 3 3 1 1 2 1 2 1 3 3 1 1 2 1 3 3 1 2 1 3 3 1 2 1 3 3 1 2 1 3 3 1 2 1 3 3 1 2 1 3 3 1 2 1 3 3 1 2 1 3 3 1 2 1 3 3 1 2 1 3 3 1 2 1 3 3 1 2 1 3 3 1 2 1 3 3 1 2 1 3 3 1 2 1 3 3 1 2 1 2 1 3 3 1 2 1 2 1 3 3 1 2 1 2 1 3 3 1 2 1 2 1 2 1 2 1 3 3 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 3 3 1 2 1 2 1 2 1 2 1 3 3 1 2 1 2 1 2 1 3 3 3 3 3 1 2 1 2 1 3 3 3 3 3 3 3 3 3 3 3 3 3	1 1 2 1 2 1 1 2 1 1 2 1 1 2 1 1 2 5 4

2 3 4 5 8 10 [total] 122G63	1 1 1 1 1 8	2 1 1 1 1 9	3 1 3 2 1 1 92	1 2 1 1 1 1 8	1 1 1 1 1 8	3 1 3 2 2 20	3 1 1 1 1 1 12
122G03 1 2 3 4 5 6 7 9 10 11 12 13 14 15 16 17 20 [total] 122G67	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 9	11 55 10 4 2 6 2 1 1 2 1 1 2 1 1 2 1 1 1 2 1 1 102	1 1 1 1 1 1 1 1 1 1 1 1 2 1 8	1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 2 4 2 2 3 1 1 2 1 2 1 2 1 2 1 30	1 1 2 1 1 2 1 1 2 1 2 1 2 2 2
1 2 3 4 6 8 10 11 [total]	2 1 1 1 1 1 1 9	3 1 1 1 1 1 1 10	80 6 1 2 1 1 1 1 93	2 1 1 1 1 1 1 9	1 1 1 2 1 1 9	6 1 4 2 2 3 1 2 21	3 2 1 2 1 1 2 1 1 3
131A41 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16 17 18 20 23 24 25	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 28 10 6 5 8 7 4 5 3 2 3 2 2 2 3 2 2 2 2 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

26 29 30 32 33 37 38 42 48 49 56 57 62 70 74 76 77 136 [total] 132G41	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 40	1 1 2 1 1 1 1 1 1 1 1 2 1 1 41	2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 40	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 40	1 2 2 2 2 2 1 1 2 2 1 2 1 2 1 2 1 2 1 2	1 1 1 1 1 1 1 1 2 1 2 1 2 1 1 2 4 4
1 [total]	2 2	3 3	86 86	2 2	2 2	14 14	6 6
132D41 1 2 3 4 5 6 7 8 9 10 11 12 14 18 24 27 [total] 141A42	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 8	69 9 1 4 2 2 1 1 3 2 2 1 1 1 1 1 1 101	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 2 5 1 2 3 1 2 1 1 2 3 1 2 1 2 9	1 2 2 1 1 2 1 1 1 1 1 2 1 1 2 21
1 2 4 [total]	2 1 1 4	3 1 1 5	85 1 2 88	2 1 1 4	2 1 1 4	13 2 1 16	6 1 1 8
141A43 1 2 3 4 5 6 8 9 13 17 22 [total]	1 1 2 1 1 1 1 1 1 1 2	1 3 1 1 1 1 1 1 1 1 3	69 7 2 4 2 1 1 1 1 96	1 1 1 1 1 2 1 1 1 1 2	1 1 1 1 1 2 1 1 1 1 2	4 4 3 1 2 2 2 2 1 24	1 2 1 1 1 3 1 2 16

141ABG							
1	2	2	81	1	1	11	4
2	1	2	1	1	1	2	2
3 4	1 1	1 1	2 2	1 1	2 1	1 1	1 1
4 7	1	1	2	1 1	1	1	1
10	1	1	2	1	1	1	1
11	1	1	2	1	1	1	1
12	1	1	1	2	1	1	1
19	1	1	1	1	1	2	1
21 24	1 1	1 1	1 1	1 1	1 1	2 1	1 2
[total]	12	13	96	12	12	24	16
141ABD		-					-
1	1	1	65	1	1	2	1
2	1	1	7	1	1	1	1
3 4	1 1	2 1	7 3	1 1	1 2	4 1	1 1
5	1	1	1	1 1	1	2	1
6	1	1	4	1	1	2	2
7	2	2	1	1	1	3	1
8	1	1	2	1	1	1	2
10 11	1 1	1 1	2 3	1 1	1 1	1 1	2 1
12	1	1	1	1 1	1	1	2
14	1	1	1	2	1	2	1
16	1	1	1	1	1	3	1
27	1	1	1	1	1	3	1
35	1 16	1 17	1 100	1 16	1 16	1 28	2 20
[total] 142G44	ΤO	1/	TOO	ΤO	10	20	20
1	1	1	33	1	1	1	1
2	1	1	6	1	1	1	1
3	1	1	9	1	1	1	1
4 5	1 1	1 1	7 8	1 1	1 1	1 1	1 1
6	1	1	3	1 1	1	1	1
7	1	1	7	1	1	1	1
8	1	1	4	1	1	1	1
9	1	1	3	1	1	1	1
10 11	1 1	1 1	4 2	1 1	1 1	1 1	1 1
12	1	1	2	1	1	1	1
13	1	1	2 2 3	1	1	2 2	1
14	1	1		1	1	2	1
15	1 1	2	1	1	1 1	1	1
16 17	1	1 1	3 1	1 1	1	1 2	1 1
18	1	1	2	1	1	1	1
20	2	2	1	1	1	1	1
21	1	1	2	1	1	2	2 1
23	1	1	1	1	1	2	1
26	1	1	2	1		1	2
26 29	1	1	2	1	1	1 2	2
29 31	1 1 1	1 1 1	2 1 1	1 1 1	1 1 1	2 2 1 2 2	2 1 2
29 31 32	1 1 1 1	1 1 1 1	2 1 1 2	1 1 1 1	1 1 1 2	2 2	2 1 2 1
29 31	1 1 1	1 1 1	2 1 1	1 1 1	1 1 1	2	2 1 2

36 37 55 87 [total] 142G45	1 1 1 32	1 1 1 33	1 1 1 116	2 1 1 1 32	1 1 1 1 32	1 2 2 2 44	1 2 1 1 36
142G43 1 2 3 4 5 6 7 9 10 11 12 13 15 16 17 19 20 21 22 25 27 31 32 35 [total] 142E45	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	12 47 12 6 2 5 4 2 1 2 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 0 9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 2 1 3 1 1 1 2 3 2 1 3 2 1 1 2 2 1 1 2 2 1 1 2 2 1 3 7	1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 2 1 1 2 2 9
142E45 1 2 3 5 [total] 152G46	2 1 1 5	3 1 1 1 6	84 2 2 1 89	2 1 1 5	2 1 1 5	13 2 1 1 17	4 2 1 2 9
1 2 3 4 5 6 7 8 9 10 11 13 14 16 18 19 20 23 24 25	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 27 8 3 2 4 3 8 5 5 4 2 4 4 2 4 2 2 4 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1

27 30 31 32 35 36 41 44 45 48 51 54 57 60 62 68 71 114 119 130 [total]	1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 42	1 2 2 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 1 2 1 2 3 2 1 2 1 2 1 2 1 2 1 2 1 2 1	1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 2 1 1 2 1 1 2 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 2 1
152GY0 1 2 6 [total] 152E46	2 1 1 4	3 1 1 5	85 2 1 88	2 1 1 4	2 1 1 4	14 1 1 16	4 2 2 8
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 14 \\ 15 \\ 17 \\ 18 \\ 19 \\ 20 \\ 22 \\ 23 \\ 25 \\ 26 \\ 27 \\ 31 \\ 38 \\ 39 \\ 42 \\ 49 \\ 50 \\ 52 \\ 54 \\ \end{array} $	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9 7 3 24 3 4 2 4 2 4 2 2 3 5 2 2 4 2 2 3 4 3 2 1 1 3 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

56 57 60 65 67 74 76 80 86 94 99 100 101 101 104 114 130 162 163 199 [total] 162G50	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 51	1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 52	3 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 35	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 51	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 51	1 2 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 2 2 1 6 3	1 1 1 1 1 2 2 2 1 1 1 1 1 1 1 55
$ \begin{array}{c} 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 30\\ 31\\ 32\\ 33\\ 34\\ 36\\ 41\\ 45\\ 48\\ 52\\ \end{array} $		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20 6 4 3 2 5 4 5 3 4 5 3 4 5 3 4 5 3 4 5 3 4 2 3 3 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2	$\begin{array}{c}1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

55 56 62 63 66 67 71 72 73 74 77 79 81 84 99 103 115 129 134 144 157 [total] 162EJ2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 59	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 59	3 1 2 2 2 1 2 1 1 2 2 1 2 2 1 2 1 2 1 2	1 1 1 1 2 1 1 2 1 1 1 2 1 1 1 2 63
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 21 22 23 24 25 26 27 31 32 33 35 36 44 46 48 57 58	$\begin{array}{c}1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{c} 1 \\ 0 \\ 3 \\ 2 \\ 4 \\ 3 \\ 2 \\ 2 \\ 5 \\ 5 \\ 2 \\ 4 \\ 2 \\ 2 \\ 4 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

60 62 68 69 75 77 78 81 85 87 90 101 102 103 116 123 124 129 142 146 152 158 165 167 176 192 215 224 229 269 287 323 375 [total]	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
172G51 1 2 3 4 5 6 8 10 [total] 172CM6	2 1 1 1 1 1 1 9	1 2 1 1 1 1 2 10	79 5 2 1 1 1 93	1 1 1 1 1 1 2 9	1 2 1 1 1 1 9	8 1 2 3 1 2 2 2 21	4 1 2 1 1 1 1 3
172GM6 1 [total]	2 2	3 3	86 86	2 2	2 2	14 14	6 6
172E51 1 2 3 4 5 6 7 8 10 12	1 1 1 1 1 1 1 1	1 1 1 2 2 1 1	46 12 10 10 5 3 2 2 2	1 2 1 1 1 1 1 1 1 1	1 1 1 1 1 2 1 1	2 3 1 2 1 2 4 4 1 2	1 2 1 1 3 1 1 1 1

13 15 17 20 [total]	1 1 2 1 15	1 1 1 16	1 1 1 99	1 1 1 15	1 1 1 15	1 1 2 27	2 2 1 1 19
172EJ3 1 2 [total] 182G52	1 2 3	3 1 4	86 1 87	2 1 3	2 1 3	14 1 15	5 2 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 17 18 19 20 29 30 51 [total] 182E52	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 4	47 7 5 6 7 2 5 3 3 3 3 3 3 3 3 3 2 2 1 1 1 2 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 23	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3	1 2 1 3 1 2 1 3 2 1 2 2 3 1 1 1 2 1 2 3 5	1 2 2 1 1 1 1 1 2 1 1 2 1 2 1 1 2 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 20 21 22 23 25 [total] 191A53	1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	41 13 9 12 5 3 2 3 3 1 2 2 2 1 1 1 1 1 1 1 105	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 21	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 2 2 1 1 1 2 2 1 1 2 2 4 3 2 1 1 2 3 3	1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 2 5
1 2	2 1	2 2	81 1	2 1	2 1	10 1	5 1

3 4 5 6 [total] 192E53	1 1 1 7	1 1 1 8	5 2 1 1 91	1 1 1 7	1 1 1 7	2 1 3 2 19	1 2 1 1 11
1 2 3 4 5 6 9 10 11 12 13 14 15 17 21 23 [total]	1 2 1 1 1 1 1 1 1 1 1 1 1 1 7	1 1 1 1 2 1 2 1 1 1 1 1 1 8	57 8 8 7 2 4 2 2 1 1 2 1 2 1 2 1 1 2 1 1 101	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 1 3 1 4 2 3 2 2 1 2 1 2 1 2 9	1 1 3 1 1 1 2 1 1 2 1 1 2 21
201A54 1 2 3 4 5 7 22 41 [total] 202G54	1 2 1 1 1 1 9	1 1 1 2 1 2 1 10	77 6 4 2 1 1 1 1 93	1 2 1 1 1 1 9	1 2 1 1 1 1 1 9	7 5 2 1 2 1 2 1 1 21	2 3 1 1 1 2 13
202G34 1 2 3 16 [total] 202E54	2 1 1 5	3 1 1 1 6	82 2 3 2 89	1 2 1 1 5	1 2 1 1 5	10 4 2 1 17	4 3 1 1 9
1 2 3 4 6 8 [total] 212D55	2 1 1 1 1 7	1 3 1 1 1 8	11 74 3 1 1 1 91	1 2 1 1 1 7	1 2 1 1 7	2 9 2 2 2 2 19	1 5 2 1 1 1 11
212D55 1 2 3 4 5 6 7 8 9 10	1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 2 1	52 13 7 4 1 3 3 1 2	1 1 1 1 2 1 1 1	1 1 1 2 1 1 1 1	1 1 1 3 1 1 3 1 3	1 1 1 1 1 1 1 1

11 12 13 14 15 16 17 20 22 24 27 [total] 212D56	1 1 1 1 1 1 1 1 2 22	1 1 1 2 1 1 1 1 2 3	1 2 1 1 1 2 1 1 1 1 106	1 1 1 1 1 1 1 1 1 1 22	1 1 1 1 1 1 1 1 1 1 22	1 2 3 1 3 1 2 1 2 2 2 34	2 1 2 1 1 3 2 1 1 26
1 2 3 4 5 6 7 8 9 10 11 12 13 14 17 19 20 23 26 29 [total] 212E55	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 2 1 1 1 1 1 1 1 1 1 1 1 2 1 1 22	50 9 10 6 3 2 4 2 1 2 1 2 1 1 2 1 1 1 1 1 1 1 5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 2 1 4 3 2 1 1 2 2 1 2 1 2 2 1 2 1 3 3	1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 2 2 5
1 2 3 4 5 6 7 8 11 14 15 17 [total] 212E56	1 1 2 1 1 1 1 1 1 1 1 3	1 3 1 1 1 1 1 1 1 1 1 1	72 6 3 4 2 2 2 2 1 1 1 1 97	1 2 1 1 1 1 1 1 1 1 1 3	1 1 1 1 1 1 1 1 1 2 13	6 2 2 2 2 2 2 1 2 1 2 1 2 5	1 3 1 1 2 1 1 2 2 1 1 1 7
1 2 4 8 [total]	1 2 1 1 5	1 3 1 1 6	1 85 2 1 89	1 2 1 1 5	1 2 1 1 5	1 14 1 1 17	3 3 1 2 9
222G59 1 2 3	2 1 1	1 1 1	64 8 4	1 1 1	2 1 1	2 3 2	1 2 1

4 5 6 7 8 10 11 18 19 20 21 27 [total] 222D58	1 1 1 1 1 1 1 1 1 1 1 1	1 2 2 1 1 1 1 1 1 1 1 7	4 3 2 3 1 1 1 1 1 1 1 100	1 1 1 1 1 2 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1	2 2 1 3 2 1 2 1 2 1 2 2 2 8	2 1 1 1 1 2 1 2 1 2 1 20
222D38 1 2 3 4 6 7 12 13 [total] 222D59	1 1 2 1 1 1 9	2 1 2 1 1 1 1 1 10	82 2 1 2 1 1 2 93	2 1 1 1 1 1 1 9	1 2 1 1 1 1 9	8 3 4 1 1 2 1 21	3 2 1 2 1 2 1 1 13
1 2 3 4 5 6 7 9 12 13 [total]	1 2 1 1 1 1 1 1 1 1	1 2 1 1 1 1 1 1 2 12	76 4 2 3 2 1 1 2 1 2 5	1 1 1 1 2 1 1 1 1	2 1 1 1 1 1 1 1 1 1	8 2 1 3 2 1 3 1 1 23	3 1 2 1 1 2 1 1 15
222D62 1 [total]	2 2	3 3	86 86	2 2	2 2	14 14	6 6
222E57 1 2 3 4 5 6 7 9 10 11 12 13 14 15 17 18 19 24 25	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	27 7 6 4 5 3 4 4 8 2 4 4 3 3 2 4 1 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1

26 28 31 33 34 35 37 38 40 49 50 53 55 56 57 62 71 74 109 116 [total] 222E58	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 40	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 3 1 3 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 40	1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 40	1 2 2 2 1 2 1 2 1 2 1 2 1 2 1 2 2 1 2 52	1 1 1 1 2 1 1 2 1 1 2 1 1 2 3 1 1 1 1 4 4	
$ \begin{array}{c} 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 32\\ 33\\ 24\\ 25\\ 26\\ 27\\ 32\\ 33\\ 34\\ 36\\ 37\\ 38\\ 39\\ 43\\ 47\\ 56\\ 62\\ 64\\ 66\end{array} $	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	27 6 7 4 4 4 3 5 2 5 4 4 2 3 3 2 2 3 2 2 1 3 1 1 3 1 2 1 1 1 1 2 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

76 95 107 [total] 222E59	1 1 1 40	1 1 1 41	1 1 1 124	1 2 1 40	1 1 1 40	2 1 2 52	1 1 1 44
134 146 [total]	1 1 46	1 1 47	1 1 130	2 1 46	1 1 46	1 1 58	1 2 50
222E60 2 [total] 222E61	2 2	3 3	86 86	2 2	2 2	14 14	6 6
1 2 3	1 1 1	1 2 1	14 54 3	1 1 1	1 2 1	1 3 2	2 1 2

4 5 6 7 8 9 10 11 13 20 [total] 222E62	1 1 1 1 2 1 1 1 1 1 4	1 1 1 1 2 1 1 15	3 4 5 4 3 2 2 2 1 1 98	1 1 1 1 1 1 1 2 14	1 1 1 1 1 1 1 1 1	5 3 1 3 1 2 1 2 1 26	1 2 1 2 1 1 2 1 2 1 2 1 8
1 2 3 5 7 [total] 222EY1	2 1 1 1 1 6	3 1 1 1 7	81 4 2 2 1 90	1 2 1 1 6	2 1 1 1 6	11 3 1 2 1 18	3 1 3 2 10
1 2 3 4 6 7 8 9 19 [total]	2 1 1 1 1 1 1 1 1 1	2 1 1 1 1 1 1 2 11	84 1 2 1 1 2 1 2 1 1 94	1 1 2 1 1 1 1 1 10	2 1 1 1 1 1 1 1 10	8 4 2 1 1 1 2 1 22	4 1 2 2 1 1 14
231A66 1 2 3 4 6 7 8 9 10 11 12 13 15 17 19 21 25 26 27 28 30 31 33 35 40 41 43 47	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{c}1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\$	$\begin{array}{c} 5\\ 2 \\ 4\\ 6\\ 4\\ 4\\ 5\\ 6\\ 4\\ 2\\ 4\\ 5\\ 4\\ 2\\ 3\\ 3\\ 2\\ 3\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\$	$\begin{array}{c}1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\$	$\begin{array}{c}1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

49 50 51 52 53 55 57 59 60 65 66 75 76 84 85 98 126 128 176 [total] 241A08	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 48	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 49	2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 48	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 48	1 4 1 1 2 3 2 2 1 1 1 2 2 1 2 1 2 2 1 60	1 1 2 1 1 1 1 2 1 1 2 1 1 2 1 1 52
1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 19 20 21 22 23 32 [total]	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3	58 5 6 8 3 2 3 1 1 1 3 2 2 1 1 2 1 1 2 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2	1 3 1 2 1 1 3 1 2 1 1 2 1 2 2 3 1 3 4	1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 2 6
241A70 1 2 3 4 5 6 8 9 10 11 13 14 15 19	1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 2 1 1 1	46 11 10 5 3 4 2 1 2 4 1 3 2 1	1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 2 2 1 1 2 1 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1

21 23 24 25 26 27 28 30 34 35 39 45 59 [total] 241A71	1 2 1 1 1 1 1 1 1 1 28	1 1 1 1 2 1 1 1 1 29	1 2 1 2 2 1 1 2 1 1 2 1 1 1 1 112	1 1 2 1 1 1 1 1 1 1 2 8	1 1 1 1 1 1 1 1 1 1 1 28	2 1 2 1 1 1 2 2 2 2 2 2 40	1 2 1 1 1 2 1 1 2 1 2 1 32
$ \begin{array}{c} 1\\ 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 18\\ 19\\ 20\\ 23\\ 24\\ 30\\ 31\\ 32\\ 33\\ 24\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 37\\ 40\\ 43\\ 44\\ 54\\ 56\\ 61\\ 64\\ 66\\ 73\\ 74\\ 76\\ 88\\ 89\\ 104\\ 115\\ 116\\ \end{array} $	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7 27 4 8 6 2 5 9 2 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

[total] 241A72	44	45	128	44	44	56	48
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 19 21 23 25 27 29 32 33 36 38 39 [total] 242E72	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	40 11 7 5 6 4 5 3 4 5 3 4 3 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 2 1 2 2 1 2 2 1 2 2 1 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 2 2 1 1 2 2 1 1 2 2 2 1 1 2 2 2 1 2 2 1 2 2 2 1 2 2 2 1 2 2 2 2 1 2 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 1 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 13 16 17 18 21 24 25 32 52 [total] 251A33 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	61 7 6 4 3 1 2 1 3 1 2 1 1 1 1 1 1 1 1 1 5 61	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 21	1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 3 1 4 2 2 1 3 1 1 2 1 2 3 3 1	1 1 1 2 2 1 2 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 2 1 1 2 5 1 2 5 1 1 2 5 1 1 2 5 1 2 5 5 1 2 5 5 5 5 5 5 5 5 5 5 5 5 5
1 2 3 4	1 1 1	1 1 1	8 5 3	1 1 1	1 1 1 1	1 2 2	1 1 1 1

5 6 7 8 9 10 13 14 15 16 23 25 26 31 34 43 [total] 251A75	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 21	1 1 1 1 1 1 1 1 1 2 1 1 22	4 2 3 2 2 3 1 1 2 2 1 1 2 2 1 1 1 1 1 1 05	1 1 1 1 1 1 1 1 1 1 1 1 2 1 21	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 21	3 1 2 2 2 2 1 1 2 2 1 1 2 2 1 1 1 3 3	2 1 1 1 2 2 1 1 1 1 1 2 2 2 5
$ \begin{array}{c} 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 29\\ 30\\ 31\\ 34\\ 39\\ 40\\ 44\\ 49\\ 51\\ 53\\ 54\\ 58\\ 59\\ 63\\ 64\\ \end{array} $			6 4 3 2 4 6 4 2 2 5 3 2 2 2 6 2 1 2 3 2 2 2 5 3 2 2 2 6 2 1 2 3 2 2 2 3 2 2 2 3 2 2 2 3 2 2 2 1 2 2 3 2 2 2 3 2 2 2 1 2 1	$\begin{array}{c}1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

68 69 71 72 79 96 97 107 108 113 115 118 131 133 146 149 316 [total] 251A76	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 58	2 1 1 1 1 1 1 1 1 1 1 1 2 59	1 2 1 2 1 1 1 2 1 1 2 1 2 1 1 1 1 1 1 42	1 1 1 1 1 1 1 1 1 1 1 1 2 58	1 1 1 1 1 1 1 1 1 1 1 1 1 1 58	1 1 1 2 1 2 3 1 1 2 1 2 1 1 2 1 1 70	1 1 2 2 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 2 1 1 2 1 1 1 2 1 2 1 1 2 1 1 1 2 1 1 2 1 2 1 1 2 1 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 1 2 1 1 2 1 2 1 1 1 2 1 1 2 1 1 1 1 1 2 1 1 2 1 1 1 2 1 1 1 1 1 2 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 18 19 21 22 23 24 25 29 37 41 49 63	1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	52 9 5 6 6 2 2 2 2 1 3 1 1 1 2 2 1 1 2 1 1 2 1 1 2 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 2 2 3 1 2 3 1 2 2 1 1 2 1 1 1 1 1	$1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$
75 [total] 251AX3 1 2 3 4 5 6 7 8	1 30 1 1 2 1 1 1 1 1	1 31 1 3 1 1 1 1 1	1 114 8 73 3 1 1 3 1 2	1 30 1 1 1 2 1 1 1	1 30 1 1 1 1 1 1 1 1	1 42 5 1 4 1 2 1 1	2 34 1 3 1 1 1 2 1

9 12 13 16 24 29 30 [total] 2514X4	1 1 1 1 1 1 16	1 1 1 1 1 1 17	2 1 1 1 1 1 1 100	1 1 1 1 1 1 1 16	1 2 1 1 1 1 1 16	1 1 2 2 2 2 1 28	1 2 1 1 2 20
[total] 251AX4 1 2 3 4 5 6 7 8 9 11 12 14 15 17 21 22 23 24 25 27 28 29 30 31 32 36 37 41 42 43 44 51 55 60 61 62 64 66 69 71 72 73 75 76	16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	17 11111111111111111111111111111111111	100 6 4 19 4 2 5 4 4 6 3 6 2 4 3 2 2 2 2 2 2 2 2 2 2 2 2 2	16 11 11 11 11 11 11 11 11 11 11 11 11 1	16 11 11 11 11 11 11 11 11 11 11 11 11 1	28 11 11 11 11 11 11 11 11 11 11 11 12 11 21 12 12	20 11 11 11 11 11 11 11 11 11 11 11 11 11
81 82 84 89	1 1 1 1	1 1 2 1	2 1 1 1	1 1 1 1	1 1 1 1	1 2 1 2	1 1 1 2

90 113 135 141 155 156 [total] 251AX5	1 1 1 1 1 56	1 1 1 1 1 57	1 2 1 1 1 1 140	1 1 1 1 2 56	1 1 1 1 1 56	2 1 2 2 1 68	1 2 1 1 1 1 60
1 2 3 4 5 6 7 8 9 10	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	26 11 5 4 6 4 2 2 2	1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1
11 12 13 14 15 16 19 20 21	1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	3 5 4 2 4 3 4 3 1	1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1	1 2 1 1 1 1 1 1 2	1 1 1 1 1 1 1 1
23 25 29 32 34 35 38 41 42 43	1 1 1 1 1 1 1 2 1	1 1 1 2 1 1 1 1 1	2 2 1 1 2 1 1 2 2 2	1 1 1 1 1 1 1 1 1 1	1 2 1 1 1 1 1 1 1 1	1 1 2 1 1 2 2 2 1	1 2 1 2 1 1 1 1 1
46 47 48 55 57 59 65 72 76 78	1 1 1 1 1 1 1 1 1 1	1 2 1 1 1 1 1 1 1	1 1 2 1 1 2 1 1 1 1	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1	2 2 1 1 2 1 2 2 2 2 2	1 2 1 2 1 1 1 1 1
79 94 [total] 252G33	1 1 42	1 1 43	1 1 126	1 2 42	1 1 42	1 1 54	1 2 1 46
1 2 3 6 7 15 29	2 1 1 1 1 1 1	1 2 1 1 2 1 2	82 3 1 2 1 2	2 1 1 1 1 1	2 1 1 1 1 1	11 1 2 3 1 1 1	5 2 1 1 1 1 1

[total]	8	9	92	8	8	20	12
252G76							
1 [total]	2 2	3 3	86 86	2 2	2 2	14 14	6 6
252GX5							
1 2	1 1	1 1	46 6	1 1	1 1	1 1	1 1
3	1	1	4	1	1	1	1
4 5	1 1	1 1	3 6	1 1	1 1	1 1	1 1
6	1	1	4	1	1	1	1
7	1	1	6	1	1	1	1
8 9	1 1	1 1	4 3	1 1	1 1	1 2	1 1
10	1	1	3	1	1	2	1
11 14	1 1	1 1	2 3	1 1	1 1	1 1	1 1
16	1	1	2	1	1	1	1
18 20	1 1	1 1	1 1	1 1	1 1	2 2	1 1
21	1	1	1	1	1	2	1
22 23	1 1	1 1	1 2	1 1	2 1	1 2	1 1
24	1	1	3	1	1	1	1
25 27	1 1	1 1	1 2	1 1	1 1	1 1	2 2
31	1	1	1	1	1	2	1
32 33	1 1	1 1	1 2	1 1	1 1	2 2	1
33 35	1 1	1 1	2 1	1 1	1 1	2 2	2 1
37	1	1	2	1	1	2	1
39 41	1 1	1 1	1 1	1 1	1 1	2 1	1 2
44	1	1	1	1	1	2	1
45 47	1 2	2 1	1 1	1 1	1 1	1 1	1 1
77	1	2	1	1	1	1	1
99 113	1 1	1 1	1 1	1 2	1 1	1 1	2 1
[total]	35	36	119	35	35	47	39
261A77 1	1	1	29	1	1	1	1
2 3	1	1	10	1	1	1	1
3	1 1	1 1	9 4	1 1	1 1	1 1	1 1
5	1	1	6	1	1	1	1
6 7	1 1	1 1	2 4	1 1	1 1	1 1	1 1
8	1	1	4	1	1	1	1
9 10	1 1	1 1	4 4	1 1	1 1	1 1	1 1
11	1	1	2	1	1	2	1
12 13	1 1	1 1	3 4	1 1	1 1	1 1	1 1
14	1	1		1	1	3	1
15 16	1 1	1 1	2 2 2	1 1	1 1	1 1	1 1
17	1	1	2	1	1	1	1

18 19 20 21 23 25 26 29 30 33 34 35 38 39 40 45 49 57 61 62 [total]	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 38	1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 39	3 3 1 2 1 1 2 1 2 1 1 2 2 1 1 1 2 2 1 1 1 1 1 2 2 1 1 1 1 2 2 1 1 1 2 1 1 2 1 1 2 1 2 1 1 2 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 2 1 1 1 2 1 1 2 1 1 1 1 2 1 1 2 1 1 2 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 38	2 1 2 1 2 1 1 2 1 1 2 2 1 2 2 2 50	1 1 1 1 1 2 1 1 2 2 1 1 1 1 1 1 2 42
261A78 1 2 3 4 5 6 7 8 9 10 11 12 14 15 18 22 24 34 42 45 [total] 261A79	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 22	55 10 7 2 4 5 2 2 3 2 3 1 2 3 1 2 1 1 1 1 1 1 1 05	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1	2 1 2 2 2 2 1 1 2 2 2 2 2 1 2 1 2 1 2 1	1 1 1 2 2 1 1 1 1 2 2 1 1 1 2 1 2 5
1 2 3 9 [total]	2 1 1 5	2 2 1 1 6	83 3 2 1 89	2 1 1 5	2 1 1 5	10 3 3 1 17	4 2 1 2 9
261A80 1 2 3 4 [total]	2 1 1 5	3 1 1 1 6	84 2 1 89	2 1 1 5	2 1 1 5	12 2 1 2 17	6 1 1 9
261A81 1 2	2 1	3 1	84 2	2 1	2 1	14 1	5 2

3 [total] 261A82	1 4	1 5	2 88	1 4	1 4	1 16	1 8
201A82 1 2 3 4 [total] 261A83	1 1 2 1 5	3 1 1 1 6	82 3 2 2 89	2 1 1 5	1 2 1 5	11 3 1 2 17	3 1 3 2 9
1 2 4 7 [total]	2 1 1 5	3 1 1 1 6	82 4 2 1 89	2 1 1 5	1 2 1 1 5	9 4 2 2 17	6 1 1 9
261A84 1 2 [total] 261A85	2 1 3	3 1 4	86 1 87	2 1 3	2 1 3	14 1 15	5 2 7
1 2 [total] 261A86	2 1 3	3 1 4	85 2 87	2 1 3	2 1 3	13 2 15	6 1 7
1 2 [total] 261A88	2 1 3	3 1 4	86 1 87	2 1 3	2 1 3	13 2 15	6 1 7
1 2 3 4 5 [total] 261AZ7	2 1 1 1 6	2 1 2 1 7	85 1 1 2 90	1 1 1 2 6	2 1 1 1 6	9 2 5 1 1 18	6 1 1 1 1 10
1 2 3 4 5 [total]	2 1 1 1 1 6	2 1 1 2 7	86 1 1 1 90	2 1 1 1 1	2 1 1 1 1	11 2 2 2 1 18	6 1 1 1 1
261AX4 1 2 4 [total] 281BB1	1 2 1 4	2 1 2 5	86 1 1 88	2 1 1 4	2 1 1 4	13 1 2 16	6 1 1 8
1 2 3 4 5 6 7 8 9 10 11 13	1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	9 35 5 4 4 5 6 2 2 3	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	1 1 1 1 2 2 1 1	1 1 1 1 1 1 1 1 1

14 16 17 18 19 21 22 24 26 29 31 32 34 41 46 47 49 53 55 60 75 77 84 [total]	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 3 7	1 3 2 2 1 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 1 2 1 1 2 1 2 1 2 1 2 1 1 1 2 2 2 4 8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
281BD9 1 2 3 4 5 6 8 9 11 14 18 22 24 37 [total]	1 1 1 2 1 1 1 1 1 1 1 1 5	2 1 1 1 1 1 1 1 2 1 1 1 1 6	76 3 2 3 1 2 2 1 1 1 2 1 2 1 99	2 1 1 1 1 1 1 1 1 1 1 1 1 5	1 1 1 1 1 1 1 1 1 1 1 1 5	6 3 2 1 2 1 2 1 2 1 2 1 1 2 2 7	4 1 2 1 1 1 1 2 1 1 2 1 1 9
281BE1 1 2 3 4 5 6 7 8 9 15 17 21 25 31 41 [total] 281BS7	1 1 1 1 1 1 1 1 1 1 1 2 1 16	1 2 1 1 1 2 1 1 1 1 1 1 7	67 8 3 5 4 1 3 1 1 1 2 1 1 1 1 00	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 1 2 1 3 2 1 2 2 1 1 1 3 28	3 1 1 1 2 1 2 1 1 2 1 1 2 0

281BS7

2 3 4 5 6 7 [total] 281BT3	1 2 1 1 8	2 2 1 1 1 9	5 1 1 2 1 92	1 1 1 1 1 8	1 1 2 1 1 8	2 3 1 2 1 2 20	1 2 1 1 2 12
1 2 3 4 5 [total] 291BA4	2 1 1 1 1 6	2 1 2 1 1 7	81 4 2 2 1 90	1 2 1 1 6	2 1 1 1 6	12 2 1 1 2 18	3 2 2 2 1 10
1 2 3 4 5 6 7 8 9 10 11 12 20 [total]	1 1 1 1 2 1 1 1 1 1 1 1 4	1 1 2 1 1 2 1 1 1 1 1 1 5	69 6 9 3 1 1 2 2 1 1 1 1 98	1 1 1 1 1 1 1 1 1 2 1 1 4	1 1 1 2 1 1 1 1 1 1 1 1	3 1 2 4 1 3 1 2 2 2 1 2 26	1 1 3 2 2 1 1 1 1 1 1 8
291BA8 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 18 20 22 23 24 31 34 36 [total] 291BC4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 6	44 12 10 4 2 3 4 1 3 4 1 3 4 3 2 1 1 2 2 2 3 1 1 1 1 1 1 1 09	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 2 1 1 2 1 1 2 1 1 2 1 2 1 2 3 3 2 2 2 1 2 3 7	1 1 1 1 1 2 1 1 1 2 2 1 1 1 1 2 1 1 1 2 9
291BC4 1 2	2 1	3 1	85 1	2 1	2 1	13 2	6 1

3 [total] 301BB2	1 4	1 5	2 88	1 4	1 4	1 16	1 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 18 19 22 23 24 26 27 33 34 37 39 44 45 47 48 49 54 55 62 71 91 94 [total] 301BB3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	27 10 4 10 3 2 3 4 5 6 4 2 5 2 3 2 1 1 3 2 2 1 1 1 3 1 2 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 13 14 15 16	1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1	24 7 11 9 3 4 5 4 6 3 2 3 4 3 3	1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1

17 19 22 23 25 26 28 30 33 34 36 37 39 45 46 47 48 49 52 54 67 73 76 78 [total] 301BB4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 4 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 2 2 2 1 2 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 2 1 2 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2	1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 2 1 1 2 1 1 2 1 1 4 4
1 2 3 4 5 6 7 8 9 10 11 12 14 15 16 17 21 22 23 24 25 26 27 28 29 32 35 36 37 38 40 42	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7 19 5 7 3 6 3 3 3 4 4 4 4 2 2 5 4 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

44 47 53 56 59 62 63 64 66 73 78 79 81 85 114 120 124 128 [total] 301BB5	1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 5 1	1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 52	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 35	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 51	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5 1	2 2 1 2 1 2 2 1 2 2 1 2 1 2 1 2 1 2 1 2	1 2 1 1 1 1 1 2 1 1 2 1 1 2 1 1 55
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 17 19 20 21 22 24 26 29 31 34 36 37 38 47 48 56 59 60 [total] 301BG1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	42 7 2 5 9 2 5 4 2 4 3 3 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 2 1 1 1 2 1 1 2 1 2 1 2 1 2 2 2 2 1 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 2 1 2 1 2 1 2 1 2 1 1 2 2 1 2 1 1 2 2 2 2 2 2 1 2 2 2 2 2 1 2 2 1 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 1 2 2 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1 2 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 2 7	2 1 1	1 2 2	86 1 1	1 1 2	2 1 1	14 1 1	5 2 1

[total] 301BT2	4	5	88	4	4	16	8
1 2 [total] 311BA8	2 1 3	2 2 4	86 1 87	2 1 3	2 1 3	13 2 15	6 1 7
1 2 3 4 5 6 7 8 9 10 12 17 26 [total] 311BB6	1 2 1 1 1 1 1 1 1 1 1 1 1	2 2 1 1 1 1 1 1 1 1 1 1 1 5	63 8 7 4 2 2 1 1 2 1 1 2 98	2 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1	5 1 3 4 1 2 1 1 2 1 2 6	3 1 1 2 1 2 1 2 1 1 1 8
1 2 3 4 5 6 7 8 9 10 11 [total] 321BB7	2 1 1 1 1 1 1 1 1 1 1 2	1 2 2 1 1 1 1 1 1 1 3	66 11 5 2 2 1 1 1 1 96	1 1 2 1 1 1 1 1 1 1 2	1 1 2 1 1 1 1 1 1 1 2	2 1 5 1 2 3 3 2 2 2 2 4	2 1 2 1 2 2 2 1 1 1 16
1 2 3 4 5 8 9 13 [total] 321BB8	1 2 1 1 1 1 9	1 3 1 1 1 1 1 1 10	79 6 2 1 1 2 1 1 93	1 1 1 2 1 1 9	1 1 2 1 1 1 9	7 3 1 3 2 1 2 2 21	3 1 2 1 1 1 1 3
1 2 3 4 5 6 7 8 9 10 12 15 16 17	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 2 1 1 1 1 1 1 1 1 1 1	54 12 4 8 4 5 1 3 1 3 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 2 1	1 1 1 2 3 1 4 2 1 2 1 2 1 2	1 1 1 1 2 1 2 2 1 1 1

18 19 20 21 23 24 25 [total] 331BB9	1 1 1 1 1 2 22	1 1 2 1 1 23	1 1 1 1 1 1 106	2 1 1 1 1 1 1 22	1 1 1 1 1 1 22	1 2 1 2 2 1 34	1 2 1 1 1 1 26
1 2 3 [total] 331BY5	2 1 1 4	3 1 1 5	85 2 1 88	2 1 1 4	2 1 1 4	11 3 2 16	4 3 1 8
1 2 [total] 341BG3	2 1 3	3 1 4	84 3 87	2 1 3	2 1 3	14 1 15	6 1 7
1 2 3 4 5 6 7 8 9 10 12 13 14 16 17 18 19 25 26 [total] 341BG4	1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 20	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1	50 10 11 8 7 4 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 20	1 1 2 2 1 2 1 2 1 2 1 2 1 2 2 1 2 2 32	1 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
1 2 3 4 5 6 7 8 9 10 11 13 14 15 16 19 20 22 [total]	1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 9	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	65 12 2 6 1 1 1 3 2 1 1 1 1 1 1 103	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 2 2 3 3 2 3 1 1 2 2 1 1 2 2 1 1 2 2 1 31	1 1 2 1 2 1 1 1 1 1 2 1 1 2 1 1 2 2 3

351BG8							
1	1	2	68	1	1	2	1
2	1	1	6	1	1	3	1
3	1	1	7	1	1	2	1
4	1	1	4	1	1	3	2
5	2	1	3	1	2	2	1
6	1	1	3	2	1	3	1
7	1	1	1	1	1	2	3
8	1	2	1	1	1	2	2
14	1	1	1	1	1	2	2
19	1	1	1	1	1	2	1
[total]	11	12	95	11	11	23	15
351BG9							
1	1	1	73	1	1	2	1
2	1	1	8	1	1	1	2
3	1	1	5	1	1	3	1
4	1	2	2	1	1	4	2
5	2	1	2	1	1	2	2
6	1	2	1	1	1	2	2
7	1	1	1	1	1	4	1
9	1	1	1	1	1	2	1
10	1	1	1	2	1	1	1
11	1	1	1	1	2	1	2
13	1	1	1	1	1	2	1
[total]	12	13	96	12	12	24	16
351BD1							
1	1	1	64	1	1	1	2
2	2	1	10	1	1	7	1
3	1	2	4	1	1	1	2
4	1	1	7	1	1	1	3
5	1	1	2	1	1	3	1
6	1	1	2	1	1	1	1
7	1	1	2	2	1	3	1
8	1	1	2	1	1	1	1
9	1	1	1	1	1	2	1
14	1	2	1	1	1	1	1
17	1	1	1	1	1	2	1
18	1	1	1	1	1	2	1
25	1	1	1	1	2	1	1
26	1	1	1	1	1	1	2
[total]	15	16	99	15	15	27	19
351BD2							
1	2	3	86	2	2	14	6
[total]	2	3	86	2	2	14	6
351BD3							
1 2	1	1	54	1	1	1	1
2	1	1	14	1	1	1	1
3	1	1	10	1	1	1	1
4	1	1	5	1	1	1	1
5	1	1	4	1	1	1	1
6	2	1	3	1	1	2	1
7	1	1	1	1	1	3	1
8	1	1	2	1	1	3	1
9	1	2	1	1	1	3	2 3
11	1	2	1	1	2	4	3
12	1	1	1	1	1	2	1
17	1	1	1	1	1	1	2 2
21	1	1	1	1	1	1	2

Business Decision Analysis Based on Data Analytics | Antonia Trikounaki

23 26 29 [total] 351BD5	1 1 17	1 1 1 18	1 1 1 101	2 1 1 17	1 1 1 17	1 2 2 29	1 1 1 21
1 2 3 4 5 6 7 11 13 15 16 17 18 19 23 26 30 [total]	1 1 1 1 1 1 1 1 1 1 1 1 2 1 8	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 9	47 14 6 8 6 4 4 3 1 1 1 1 1 1 1 2 102	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 2 2 2 2 2 2 2 2 2 3 2 4 1 2 2 1 30	1 1 2 1 1 3 1 1 2 1 1 2 1 1 2 2 2
361BBL 1 2 3 4 5 6 7 8 9 10 12 14 17 [total] 361BG2	1 1 2 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 3 1 1 1 1 5	64 8 6 5 4 3 2 1 1 1 1 1 1 98	1 1 1 1 1 1 1 1 1 2 1 14	2 1 1 1 1 1 1 1 1 1 1 1 1	2 3 4 3 1 2 1 2 1 2 2 6	2 1 1 1 2 1 2 1 2 1 1 18
1 2 3 4 5 6 7 10 [total]	2 1 1 1 1 1 1 9	1 3 1 1 1 1 1 10	76 4 5 1 2 2 2 1 93	1 1 1 1 1 2 9	2 1 1 1 1 1 1 9	7 5 3 2 1 1 1 21	2 3 1 3 1 1 1 1 1 3
361BG5 1 2 3 4 5 6 7 9 11	1 1 1 1 1 1 1 2	1 1 1 1 1 1 1 2	39 14 11 7 3 10 4 4 1	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	1 1 1 1 1 1 2 1

12 13 14 15 16 17 18 19 22 23 25 33 43 43 49 [total] 361BG6	1 1 1 1 1 1 1 1 1 1 1 1 1 24	1 1 1 1 2 1 1 1 1 1 25	1 2 1 1 1 1 1 1 1 1 1 1 108	1 1 1 1 1 1 1 1 1 1 1 1 2 4	1 1 2 1 1 1 1 1 1 1 1 2 4	2 3 2 1 2 3 1 1 2 2 2 2 36	1 1 2 1 2 1 2 1 1 1 1 28
1 [total] 361BG7	2 2	3 3	86 86	2 2	2 2	14 14	6 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 20 21 25 27 29 30 31 32 33 34 36 37 39 42 56 61 66 75 77 [total] 361BD4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 8 37 6 2 4 5 2 4 3 2 5 3 2 1 1 1 1 2 2 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 2	1 1	2 1	83 3	2 1	2 1	10 3	5 1

3 4 6 [total] 361BD6	1 2 1 6	1 2 1 7	2 1 1 90	1 1 1 6	1 1 1 6	2 1 2 18	2 1 1 10
1 2 3 5 6 7 8 [total]	1 2 1 1 1 1 8	1 2 1 2 1 1 9	75 9 3 1 2 1 92	1 2 1 1 1 8	2 1 1 1 1 1 1 8	3 7 3 2 1 2 2 20	4 1 2 1 2 1 12
361BD8 1 2 3 4 5 [total]	1 2 1 1 1 6	3 1 1 1 7	83 3 1 2 1 90	1 1 2 1 6	2 1 1 1 6	5 7 2 2 2 18	4 2 1 1 2 10
361BM5 1 2 3 4 5 6 7 8 9 10 12 14 15 17 18 21 [total] 361BY4	1 1 2 1 1 1 1 1 1 1 1 1 1 1 7	1 1 1 2 1 1 1 1 1 1 1 1 2 18	63 7 10 3 4 2 3 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 2 1 7	1 3 1 2 5 1 1 3 2 1 2 2 1 2 9	1 1 2 1 1 2 3 1 1 2 1 1 1 1 1 2 1
1 2 [total]	2 1 3	3 1 4	84 3 87	2 1 3	2 1 3	14 1 15	6 1 7
361BY6 1 2 3 4 5 6 7 8 9 11 13 15 16 18 30	1 1 1 1 1 1 1 1 1 1 1 1	1 1 2 1 1 1 1 1 1 1 1	69 5 6 4 2 3 2 2 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1	1 2 1 1 1 1 1 1 1 1 1 1	3 2 1 3 1 2 1 2 3 1 2 1 2 2	2 1 1 2 1 1 1 1 2 1 2 1 1

33 [total] 371AE2	1 17	1 18	1 101	1 17	1 17	2 29	1 21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 19 21 24 25 32 36 38 40 44 46 51 54 61 70 71 76 104 [total]	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1	50 7 4 6 3 2 2 1 1 4 3 1 2 3 3 3 2 1 1 1 2 3 3 3 2 1 1 1 1 2 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 1 2 1 2 1 1 1 2 2 1 1 1 2 2 1 2 1 2 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1
371BE3 1 2 3 4 5 6 7 8 9 12 14 18 19 24 [total] 381BE4	2 1 1 1 1 1 1 1 1 1 1 1 1 5	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	76 4 3 1 2 1 1 2 3 1 2 1 2 1 99	1 1 1 1 1 1 1 1 1 1 1 1 1 1 5	1 1 1 2 1 1 1 1 1 1 1 1 5	6 5 1 3 1 1 2 1 1 2 1 1 2 7	2 1 1 1 1 2 1 2 1 2 1 2 1 9
381BE4 1 2 3 4 5	1 1 1 1	1 1 1 1	5 43 8 5 4	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1

6 7 8 9 10 11 14 15 16 17 18 19 21 22 23 26 28 29 31 33 26 28 29 31 33 34 36 39 41 42 44 48 49 50 [total]	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 2 3 6 2 1 3 4 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 2
381BE5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 18 19 21 26 27 28 30 32 33 34 35 36	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	30 6 4 3 4 9 2 3 4 2 5 3 4 2 2 5 3 4 3 2 2 3 4 1 1 3 2 1 2 2 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{c}1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\$

37 42 44 45 47 51 53 61 69 78 82 84 82 84 87 105 146 [total] 381BE6	1 1 1 2 1 1 1 1 1 1 1 1 4 3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 4	1 2 2 1 2 1 2 1 1 1 1 1 1 127	1 1 1 1 1 1 1 1 1 1 1 1 1 4 3	1 1 1 1 1 1 1 1 1 1 1 1 1 4 3	2 2 1 2 3 1 2 1 1 1 2 2 1 2 55	1 2 1 1 2 1 2 2 1 1 2 1 2 1 47
1 2 3 4 5 6 7 8 9 10 12 14 15 17 18 20 21 23 24 25 26 28 29 32 34 35 39 41 42 44 45 48 54 56 59 62 63 86 121 [total] 381BE7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8 31 5 4 9 6 3 2 2 2 4 4 2 2 2 4 4 2 2 2 4 4 2 4 5 3 2 1 1 3 2 1 2 1 2 1 2 1 2 1 2 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 2 3 4 5 6 7 8 9 10 11 13 14 15 16 17 18 20 21 22 24 25 26 27 31 32 33 34 35 37 41 45 47 48 51 64 66 89	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1	23 7 10 7 5 4 6 4 2 4 2 4 3 3 3 2 1 1 2 1 1 2 1 1 2 1 1 1 2 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[total]	1	1	1	1	1	2	1
	39	40	123	39	39	51	43
391BE8 1 2 3 4 5 6 7 8 9 11 21 27 29 [total] 401BE9	1 1 1 1 1 1 1 1 1 1 1 2 14	1 1 3 1 1 1 1 1 1 1 5	76 5 2 1 2 2 1 1 2 1 1 2 1 1 2 98	1 1 1 1 1 1 1 1 2 1 14	1 1 2 1 1 1 1 1 1 1 1 1 1	5 4 3 2 1 3 1 1 1 2 1 26	1 1 2 1 2 1 2 1 2 1 2 1 2 1 1 8
1	1	1	56	1	1	2	1
2	1	1	11	1	1	2	3
3	1	1	10	1	1	2	2

4 5 6 7 9 10 11 [total] 401BZ1	1 2 1 1 1 1 1 1	1 1 2 1 2 1 1 12	5 4 2 3 2 1 1 95	1 1 2 1 1 1 1	1 1 1 1 2 1 11	1 3 4 3 2 2 2 2 2 3	2 1 1 1 1 2 15
1 2 3 4 5 6 7 9 11 [total]	1 2 1 1 1 1 1 1 1 1	1 1 2 1 1 1 1 1 1	71 10 4 2 2 2 1 1 1 94	1 1 1 2 1 1 1 1 10	2 1 1 1 1 1 1 1 1 10	5 4 1 2 1 3 2 2 2 22	1 3 2 1 2 1 1 1 1
411A14 1 2 [total] 411AZ2	2 1 3	3 1 4	86 1 87	2 1 3	2 1 3	13 2 15	6 1 7
411A22 1 2 3 4 5 7 8 12 32 51 [total] 423ZH1	1 1 1 1 1 1 1 1 1	3 1 1 1 1 1 1 1 1 12	78 3 4 3 1 2 1 1 1 95	1 1 2 1 1 1 1 1 1	1 1 2 1 1 1 1 1	6 2 1 2 2 2 2 2 2 2 3	3 2 1 2 1 1 1 1 15
4232H1 1 [total] 4232H2	2 2	3 3	86 86	2 2	2 2	14 14	6 6
1 2 3 [total] 433ZBM	2 1 1 4	3 1 1 5	86 1 1 88	1 1 2 4	2 1 1 4	12 1 3 16	4 3 1 8
1 2 3 5 6 [total] 433ZH1	2 1 1 1 6	3 1 1 1 7	79 5 4 1 1 90	1 1 2 1 1 6	1 2 1 1 6	8 3 2 2 18	4 2 1 1 10
4332H1 1 2 3 4 5 [total] 433ZH2	1 2 1 1 6	2 1 2 1 1 7	79 4 1 2 90	2 1 1 1 6	1 2 1 1 6	7 4 2 1 18	3 2 2 1 10

1 2 3 4 5 6 7 11 [total]	1 2 1 1 1 1 2 9	1 3 1 1 1 1 1 1 1	78 8 1 1 1 1 1 93	1 1 1 2 1 1 1 9	2 1 1 1 1 1 1 9	3 1 5 2 2 1 2 21	1 3 1 2 2 2 1 13
433ZH3 1 2 [total]	2 1 3	2 2 4	85 2 87	2 1 3	2 1 3	14 1 15	5 2 7
433ZH5 1 2 [total] 463HH1	2 1 3	3 1 4	86 1 87	2 1 3	2 1 3	13 2 15	5 2 7
1 2 3 [total]	2 1 1 4	3 1 1 5	85 2 1 88	2 1 1 4	2 1 1 4	12 2 2 16	3 3 2 8
463HH2 1 2 [total] 463HH3	2 1 3	3 1 4	86 1 87	2 1 3	2 1 3	13 2 15	6 1 7
1 2 3 4 5 6 7 8 11 [total] 463HH4	1 1 1 1 1 1 1 2 10	1 1 1 2 2 1 1 11	74 7 4 1 1 1 1 94	1 1 1 1 2 1 1 10	1 1 1 1 1 1 2 1 10	5 2 2 3 3 1 3 1 22	1 2 3 2 1 2 1 2 1 14
1 [total] 463HH5	2 2	3 3	86 86	2 2	2 2	14 14	6 6
1 2 3 4 5 [total] 473UH1	2 1 1 1 6	3 1 1 1 7	81 3 2 1 90	2 1 1 1 6	2 1 1 1 6	9 3 1 2 18	5 1 2 1 10
4730H1 1 2 3 4 5 7 8 9 [total] 473UH2	1 2 1 1 1 1 1 9	1 2 2 1 1 1 1 10	81 6 1 1 1 1 1 93	1 1 1 1 2 1 1 9	2 1 1 1 1 1 1 9	7 4 2 2 1 1 2 21	1 2 3 1 2 1 2 1 3

473UH2

1 2 3 4 5 [total]	2 1 1 1 6	2 1 2 1 1 7	83 4 1 1 90	1 1 1 2 6	1 2 1 1 1 6	4 4 4 2 18	2 3 2 1 2 10
473UH3 1 2 [total] 473UH4	2 1 3	3 1 4	84 3 87	1 2 3	2 1 3	14 1 15	5 2 7
1 [total] 483IH6	2 2	3 3	86 86	2 2	2 2	14 14	6 6
1 2 3 4 5 6 9 10 11 12 14 17 [total] 483IH7	1 1 1 1 1 1 1 1 2 1 3	1 3 1 1 1 1 1 1 1 1 1	76 3 2 1 1 1 1 1 97	1 1 2 1 1 1 1 1 1 1 3	2 1 1 1 1 1 1 1 1 1 1 3	3 3 2 1 2 3 1 2 1 2 2 2 5	2 1 1 1 2 2 1 2 1 2 1 1 7
1 2 3 4 5 6 7 [total]	1 1 1 1 1 2 8	2 1 2 1 1 1 9	78 7 3 1 1 1 1 92	1 1 2 1 1 1 8	1 1 2 1 1 1 8	7 2 5 1 2 2 1 20	2 3 1 3 1 1 1 12
483IH8 1 2 3 4 5 6 7 [total]	2 1 1 1 1 1 1 8	3 1 1 1 1 1 9	83 1 2 1 3 1 1 92	1 2 1 1 1 1 8	2 1 1 1 1 1 1 8	10 1 2 2 2 2 2 20	4 2 1 2 1 1 12
483IH9 1 2 3 4 5 6 7 8 11 [total] 493KU1	1 1 1 1 2 1 1 1 10	2 1 1 1 2 1 1 1 1	76 8 3 1 1 1 1 94	1 1 1 1 1 2 1 1 10	1 2 1 1 1 1 1 1 1	2 3 4 2 3 1 2 2 22	1 2 1 1 3 2 2 1 14
1	2	1	83	1	2	9	4

2 3 4 5 [total] 493KU2	1 1 1 6	3 1 1 1 7	4 1 1 90	1 1 2 6	1 1 1 6	4 2 1 18	2 1 1 2 10
493K02 1 2 4 [total] 503KU4	1 1 2 4	3 1 1 5	86 1 1 88	2 1 1 4	2 1 1 4	13 2 1 16	6 1 1 8
1 2 3 4 5 6 7 8 9 10 12 13 14 15 16 22 27 46 [total] 503KU5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 9	1 1 1 1 1 1 1 1 1 1 2 1 1 20	45 10 7 3 5 5 3 1 2 1 2 1 1 1 1 103	1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 19	1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 9	1 2 1 3 2 1 3 1 2 1 1 4 1 2 3 1 1 31	1 2 1 1 2 1 1 1 1 1 2 1 1 2 2 1 23
1 2 3 [total]	1 2 1 4	3 1 1 5	86 1 1 88	2 1 1 4	2 1 1 4	12 2 2 16	6 1 1 8
503KU6 1 [total]	2 2	3 3	86 86	2 2	2 2	14 14	6 6
503KU7 1 2 3 4 5 6 7 12 [total] 513KU8	1 2 1 1 1 1 1 9	1 3 1 1 1 1 1 10	71 9 5 3 2 1 1 1 93	1 1 1 1 1 1 2 9	2 1 1 1 1 1 1 9	1 4 3 2 4 3 3 1 21	3 1 2 1 1 1 2 13
1 2 [total]	2 1 3	3 1 4	86 1 87	2 1 3	2 1 3	14 1 15	5 2 7
513KU9 1 2 3 4 5	2 1 1 1 1	1 2 1 2 1	70 11 5 1 1	1 1 1 1	2 1 1 1 1	3 2 4 4 2	2 1 1 2

6 7 8 11 16 [total] 533LI1	1 1 1 1 1	1 1 1 1 1 12	2 1 2 1 1 95	2 1 1 1 1	1 1 1 1 1	2 2 1 2 1 23	1 2 1 2 2 15
1 2 3 [total] 543LI3	2 1 1 4	3 1 1 5	85 2 1 88	1 2 1 4	1 1 2 4	14 1 1 16	6 1 1 8
1 2 3 4 5 [total] 553LH4	2 1 1 1 6	2 1 1 2 7	81 4 3 1 1 90	2 1 1 1 6	2 1 1 1 6	8 5 2 1 18	4 1 3 1 1 10
1 [total] 563LI5	2 2	3 3	86 86	2 2	2 2	14 14	6 6
1 2 3 4 5 6 7 8 9 [total] 563LI6	1 1 1 1 1 2 1 1 10	1 1 2 1 1 1 1 1	72 4 6 3 1 1 1 3 94	2 1 1 1 1 1 1 1 1 10	1 1 1 2 1 1 1 10	6 5 2 2 1 1 2 1 22	1 4 1 1 3 1 1 1
563L16 1 5 [total] 573L17	2 1 3	3 1 4	86 1 87	2 1 3	1 2 3	14 1 15	6 1 7
573L17 1 2 3 4 5 7 [total] 573L18	1 2 1 1 1 7	1 2 1 2 1 1 8	83 4 1 1 1 91	2 1 1 1 1 7	2 1 1 1 1 7	8 4 2 1 2 2 19	6 1 1 1 1 1
1 2 3 4 5 [total]	2 1 1 1 1 6	2 1 2 1 7	83 3 1 2 1 90	2 1 1 1 1 6	1 2 1 1 1 6	10 3 2 1 2 18	3 2 1 1 10
583LI9 1 2 [total]	2 1 3	3 1 4	85 2 87	2 1 3	2 1 3	13 2 15	5 2 7
583LK1 1 2	1 1	1 1	80 5	1 1	2 1	13 1	4 2

3 4 5 [total]	2 1 1 6	1 1 3 7	2 2 1 90	2 1 1 6	1 1 1 6	1 2 1 18	2 1 1 10
603MK6 1 2 3 4 5 6 [total]	1 1 2 1 1 7	1 1 2 1 2 1 8	76 6 4 1 2 2 91	1 1 1 1 1 2 7	1 1 1 1 2 1 7	8 3 4 1 1 2 19	10 1 4 2 1 1 2 11
613MK7 1 2 3 5 6 7 8 55 [total]	1 1 1 1 2 1 1 9	3 1 1 1 1 1 1 10	80 3 2 1 1 1 2 93	2 1 1 1 1 1 1 9	1 1 1 2 1 1 9	9 3 2 1 2 1 2 1 21	4 3 1 1 1 1 1 13
623MK8 1 2 3 4 5 6 8 9 10 11 12 14 18 [total] 6220V2	1 1 1 1 1 2 1 1 1 1 1 1 1	1 1 1 1 1 1 2 1 2 1 5	67 10 4 2 2 1 1 1 1 1 1 1 98	1 1 1 1 1 1 1 1 1 1 2 14	1 1 2 1 1 1 1 1 1 1 1 1 1	3 4 1 3 2 1 2 1 2 2 1 2 6	1 3 1 2 1 2 2 1 1 1 1 8
633NK9 1 2 3 4 5 6 7 8 9 10 11 12 14 15 19 20 23 [total] 633NX7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 9	61 9 5 7 6 1 1 2 1 2 1 1 1 1 1 1 1 1 02	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 3 1 3 1 2 4 2 2 2 2 1 2 1 2 1 30	1 1 2 1 2 1 2 1 1 2 1 1 2 1 1 2 2 2 2
1	1	1	13	1	1	1	1

2 3 4 5 6 7 8 9 11 12 13 14 16 18 20 21 22 23 [total] 643NL1	1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 20	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1	57 7 3 4 2 4 1 2 1 2 1 2 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 20	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 0	1 3 2 1 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 32	1 1 2 1 1 1 1 1 1 1 2 1 1 1 2 24
1 2 3 4 5 6 8 9 [total] 653NL2	2 1 1 1 1 1 9	1 2 1 1 1 1 1 10	77 5 2 1 1 1 93	1 1 1 2 1 1 9	2 1 1 1 1 1 1 9	3 4 3 2 3 3 1 2 21	4 2 1 1 1 2 1 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 [total]	1 1 1 1 1 1 1 1 1 1 1 1 5	1 1 1 1 1 1 2 1 1 2 1 1 6	58 12 4 5 4 1 4 2 1 2 1 3 1 3 99	1 1 1 1 1 1 1 1 1 1 2 1 1 5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 5	3 1 1 2 3 2 4 2 2 1 2 1 2 7	1 1 1 2 1 2 1 2 1 1 2 1 1 2 1 9
663NL3 1 2 3 4 5 6 7 8 10 11 12 14	1 1 1 1 1 1 1 1 1 1	1 1 1 1 2 1 1 1 1 1	9 44 11 2 10 6 4 3 3 2 1 2	1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 3 2 2 3 2 2 2	1 1 1 1 1 1 2 1 2

15 20 21 23 24 26 29 30 31 [total] 673NL4	2 1 1 1 1 1 1 1 22	1 1 1 2 1 1 23	1 1 1 1 1 1 1 106	1 1 1 1 1 1 1 2 22	1 1 2 1 1 1 1 22	1 2 1 2 3 1 2 1 34	1 2 1 2 1 2 1 2 1 26
1 2 3 4 5 7 8 9 10 11 [total] 673NL5	1 1 1 1 2 1 1 1 1	1 1 1 3 1 1 1 1 12	72 11 3 1 1 1 1 1 1 95	1 1 1 1 1 1 1 2 11	1 1 1 1 1 1 1 2 1 11	2 3 2 3 4 3 1 1 1 23	1 4 2 1 1 2 1 1 1 5
1 2 [total] 673NN9	2 1 3	3 1 4	85 2 87	2 1 3	2 1 3	14 1 15	6 1 7
1 2 3 4 5 6 7 8 9 10 11 13 16 35 [total] 683JL5	1 2 1 1 1 1 1 1 1 1 1 1 5	3 1 1 1 1 1 1 1 1 1 1 1 6	63 8 5 3 4 2 2 3 2 1 2 1 2 1 2 99	1 1 1 1 1 1 1 1 1 1 1 1 1 5	1 1 1 1 1 1 1 1 1 1 1 1 5	3 3 4 3 1 2 1 1 1 2 2 1 27	3 1 1 1 1 1 1 1 1 1 1 9
1 [total]	2 2	3 3	86 86	2 2	2 2	14 14	6 6
693JL5 1 2 3 4 [total]	2 1 1 5	2 1 1 2 6	86 1 1 1 89	1 1 2 1 5	1 1 2 5	13 2 1 1 17	5 2 1 1 9
693JL7 1 2 [total]	1 2 3	3 1 4	86 1 87	2 1 3	2 1 3	14 1 15	6 1 7
693JL8 1 2	1 2	3 1	86 1	2 1	2 1	14 1	4 3

[total] 703JL5	3	4	87	3	3	15	7
1 2 3 4 5 6 7 8 [total] 723PM2	1 2 1 1 1 1 1 9	1 2 1 1 1 1 1 10	76 6 1 1 1 1 93	1 1 1 1 1 2 9	1 1 2 1 1 1 9	2 2 4 3 6 2 1 1 21	1 2 2 1 4 13
1 [total] 733PM3	2 2	3 3	86 86	2 2	2 2	14 14	6 6
1 2 3 4 5 6 7 [total] 733PN8	1 1 1 1 2 8	2 1 2 1 1 1 9	77 5 2 1 1 1 92	1 2 1 1 1 8	1 2 1 1 1 1 8	8 2 1 2 4 2 1 20	3 2 1 2 1 2 12
733PN8 1 2 3 4 5 6 [total] 743PM4	1 2 1 1 1 7	3 1 1 1 1 8	81 4 2 1 1 2 91	2 1 1 1 1 7	1 2 1 1 1 7	9 3 1 3 2 19	3 3 1 2 1 1 11
1 2 3 4 6 [total]	2 1 1 1 1 6	3 1 1 1 7	82 3 2 2 1 90	1 2 1 1 1 6	2 1 1 1 1 6	9 2 4 1 2 18	4 2 1 1 10
751BT8 1 2 3 4 6 7 8 10 12 13 15 24 47 [total] 761AN1	1 1 2 1 1 1 1 1 1 1 1 1 1	2 1 2 1 1 1 1 1 1 1 1 1 5	75 3 2 3 1 2 2 2 2 2 2 2 1 1 98	2 1 1 1 1 1 1 1 1 1 1 1	2 1 1 1 1 1 1 1 1 1 1 1 1	8 3 2 1 2 1 2 1 1 1 1 2 26	3 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 8
1 2 3 4	1 1 1 1	1 1 1 1	57 12 4 4	1 1 1 1	1 1 1 1	1 2 2 2	1 1 1 1

5 6 7 8 9 10 11 12 13 14 15 17 19 23 25 27 29 34 38 40 51 [total]	1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 3 2 1 2 2 1 1 2 2 1 1 1 2 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 26	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 6	1 1 2 1 1 2 1 2 1 2 2 1 2 2 1 2 1 2 1 2	3 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 30
762GN1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 19 21 23 24 25 27 29 31 33 34 37 80 [total] 771BN2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	58 2 4 3 2 5 5 5 3 2 2 1 2 1 2 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 1 2 1 1 2 2 1 2 1 2 1 2 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 1 2 1 2 2 2 1 2 2 1 2 2 1 2 1 2 2 1 2 2 1 2 2 2 1 1 2 2 2 1 2 2 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 1 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 3 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	1 1 1 2 1 1 1 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 2 1
1 2 [total]	2 1 3	3 1 4	86 1 87	2 1 3	2 1 3	13 2 15	6 1 7
783RN5							

783RN5

1 2 [total] 783RN6	1 2 3	3 1 4	86 1 87	2 1 3	2 1 3	13 2 15	6 1 7
1 2 [total] 793SB0	2 1 3	3 1 4	85 2 87	2 1 3	2 1 3	14 1 15	6 1 7
1 2 4 [total]	2 1 1 4	3 1 1 5	86 1 1 88	1 2 1 4	2 1 1 4	13 1 2 16	6 1 1 8
793SG0 1 2 3 5	2 1 1 1	3 1 1 1	83 4 1 1	2 1 1 1	2 1 1 1	11 2 2 2	5 2 1 1
[total] 793SD0 1 2 3	5 2 1 1	6 3 1 1	89 85 1 1	5 2 1 1	5 2 1 1	17 7 3 4	9 2 3
4 5 [total] 803TA0 1	1 1 6 2	1 1 7 3	1 2 90 86	1 1 6 2	1 1 6 2	3 1 18 14	2 1 10 6
[total] 803TBJ 1 2	2 2 1	3 2 2	86 76 3	2 2 1	2 2 1	14 8 1	6 6 1
3 4 5 6 10 12 13 20 [total]	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 12	4 3 1 1 2 1 95	1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1	1 1 2 3 2 2 1 2 2 3	1 1 1 1 1 1 1 1 15
811BAP 1 2 3 4 5 6 7 8 9 11 12 13 15 22 [total] 811BAS	1 1 1 1 1 1 1 1 1 1 1 1 1 5	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	68 4 7 6 3 1 1 1 1 2 1 2 99	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5	1 1 2 1 1 1 1 1 1 1 1 1 1 1 5	2 2 4 4 1 3 1 1 2 1 1 1 2 7	1 1 1 1 1 1 3 2 1 1 1 1 1 1 9
1 1	1	1	78	1	1	5	2

2 3 4 5 6 7 8 9 11 [total] 811BJ4	1 1 1 1 1 1 2 1 11	1 3 1 1 1 1 1 12	4 3 1 3 1 2 1 1 95	1 1 1 1 2 1 1 1	1 1 1 2 1 1 1 1	3 2 1 4 2 1 2 1 2 23	2 2 1 2 1 1 1 1 15
1 2 3 4 5 6 7 8 9 10 11 13 14 15 17 18 20 23 25 45 [total]	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2	54 9 5 10 5 3 3 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 21	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 3 1 1 5 2 1 1 2 3 1 2 2 1 1 2 1 3 3	1 1 1 2 1 1 1 2 1 1 2 1 1 2 1 1 2 5
811BJ6 1 [total]	2 2	3 3	86 86	2 2	2 2	14 14	6 6
811BJ7 1 2 3 4 5 6 7 8 9 10 12 14 [total] 811BJ9	1 1 2 1 1 1 1 1 1 1 1 3	1 2 1 1 1 1 2 1 1 1 1 1 4	15 68 1 2 2 2 2 1 1 1 1 1 97	1 1 1 1 1 1 1 1 2 1 13	1 2 1 1 1 1 1 1 1 1 1 3	2 3 2 4 1 2 2 2 2 2 2 5	1 1 2 1 3 1 1 1 1 1 7
1 2 3 4 6 [total]	2 1 1 1 1 6	1 2 1 1 7	83 2 3 1 1 90	1 1 2 1 1 6	2 1 1 1 6	9 3 2 1 3 18	3 2 1 2 2 10
811BO1 1	1	1	69	1	1	3	2

2 3 4 5 7 9 10 11 12 13 17 19 [total] 811BO2	1 2 1 1 1 1 1 1 1 1 1 1	1 2 1 1 1 1 1 1 1 1 5	6 5 2 2 2 2 1 1 1 1 98	1 1 1 1 1 2 1 1 1 1 1	1 1 1 2 1 1 1 1 1 1 1	1 2 3 2 1 2 3 1 3 2 1 2 26	1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 8
1 2 3 4 5 6 7 8 9 10 11 12 14 [total] 811BO3	2 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 2 1 1 1 1 1 2 1 1 1 5	69 9 4 1 2 1 2 1 2 1 2 1 98	1 1 1 1 1 1 1 1 1 2 14	1 1 2 1 1 1 1 1 1 1 1	3 2 1 2 1 2 3 1 2 3 1 2 1 3 26	1 3 1 2 1 1 1 2 1 2 1 2 1 8
1 2 3 4 5 8 11 [total]	1 1 1 2 1 1 8	1 1 1 3 1 9	82 2 1 2 2 1 92	1 1 1 1 1 2 8	2 1 1 1 1 1 1 8	8 2 1 5 2 1 1 20	3 1 2 1 2 2 12
811BO4 1 2 3 5 6 7 8 9 [total]	1 2 1 1 1 1 1 9	2 1 1 1 2 1 1 10	75 8 4 2 1 1 1 93	1 1 1 1 2 1 9	2 1 1 1 1 1 1 9	5 3 1 3 1 3 1 2 21	2 3 1 1 2 1 1 1 3
811B05 1 2 5 [total]	2 1 1 4	3 1 1 5	86 1 1 88	2 1 1 4	2 1 1 4	12 2 2 16	5 2 1 8
811BO6 1 [total]	2 2	3 3	86 86	2 2	2 2	14 14	6 6
811BO8 1 2	2 1	3 1	84 1	2 1	2 1	13 2	6 1

3 6 [total] 811BO9	1 1 5	1 1 6	2 2 89	1 1 5	1 1 5	1 1 17	1 1 9
1 2 3 4 [total]	2 1 1 5	1 1 2 6	78 6 3 2 89	1 1 2 1 5	2 1 1 5	10 1 4 2 17	6 1 1 1 9
811BP0 1 2 3 4 5 6 8 9 [total]	2 1 1 1 1 1 1 9	2 1 1 1 2 1 1 10	81 4 1 2 1 1 2 93	1 1 1 1 1 2 1 9	2 1 1 1 1 1 1 9	6 4 3 2 1 1 1 21	2 4 1 1 2 1 1 13
811BP1 1 2 3 [total] 811BP2	2 1 1 4	3 1 1 5	84 2 2 88	2 1 1 4	2 1 1 4	13 1 2 16	6 1 1 8
811BP2 1 2 3 4 5 6 7 8 9 11 12 15 23 26 34 [total] 811BP3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 2 1 1 1 1 2 1 1 1 1 1 1 7	9 60 4 2 2 1 1 1 2 2 2 2 2 2 100	1 1 2 1 1 1 1 1 1 1 1 1 1 1 1	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 5 4 1 2 3 1 2 1 2 1 1 1 1 1 2 8	1 1 5 2 1 1 1 1 1 1 1 1 1 20
1 [total] 821BA5	2 2	3 3	86 86	2 2	2 2	14 14	6 6
1 2 3 4 5 6 [total]	2 1 1 1 1 7	2 2 1 1 1 1 8	74 9 3 2 1 2 91	1 2 1 1 7	2 1 1 1 1 7	8 5 1 2 2 19	4 1 2 1 1 11
821BO4 1 2 3 4 5	1 2 1 1	3 1 1 1	80 5 2 1 1	1 1 1 1	2 1 1 1	5 6 1 2	3 3 1 2 1

6 7 9 12 [total] 821BP6	1 1 1 1	1 1 1 1	1 1 2 94	2 1 1 1 10	1 1 1 1	2 2 1 22	1 1 1 1 14
1 2 3 4 6 7 8 10 12 13 15 23 [total]	1 2 1 1 1 1 1 1 1 1 1 3	1 1 2 1 1 1 1 1 1 1	73 4 7 2 1 2 3 1 1 1 1 1 97	1 1 1 1 1 1 1 2 1 1 3	2 1 1 1 1 1 1 1 1 1 1 3	6 1 3 1 2 2 1 1 2 3 2 1 25	1 1 2 1 2 2 1 1 2 1 1 7
821BP7 1 2 [total] 831B90	2 1 3	3 1 4	84 3 87	2 1 3	2 1 3	13 2 15	4 3 7
1 2 3 4 5 6 7 8 10 13 15 18 [total]	1 2 1 1 1 1 1 1 1 1 1 1 3	1 2 1 1 1 1 2 1 1 1 1 4	10 68 4 2 5 1 2 1 1 1 1 1 97	1 1 1 1 1 1 1 1 2 1 3	1 1 1 1 2 1 1 1 1 1 3	2 2 3 5 2 2 1 2 1 2 2 1 25	1 1 3 1 2 1 2 1 1 2 1 1 2
831BA7 1 2 3 4 5 6 7 8 9 10 11 12 14 15 16 30 [total]	1 1 1 1 1 1 1 1 1 1 1 1 1 1 7	2 1 1 2 1 1 1 1 1 1 1 1 1 1 8	66 8 4 3 1 3 2 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 7	1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 7	2 1 4 1 2 2 2 2 2 1 1 2 2 2 1 1 2 2 2 9	1 1 1 2 1 1 1 2 2 2 2 1 1 1 2 1
831BP8 1 2	1 2	2 1	72 7	1 1	1 2	5 3	3 2

3 4 5 6 7 8 11 12 [total] 831BP9	1 1 1 1 1 1 1 1	2 1 1 1 1 1 1 12	2 3 6 1 1 1 1 95	1 2 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	2 3 2 1 2 2 1 2 2 1 23	1 1 1 2 1 1 2 15
1 2 3 4 5 6 7 8 9 11 12 13 14 15 17 18 19 20 21 24 25 27 29 41 46 [total] 831BR1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	48 5 11 6 7 3 4 3 1 2 3 1 1 2 3 1 1 1 2 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 2 1 2 1 1 3 1 2 1 2 1 2 3 1 1 2 3 8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 2 1 1 30
1 2 3 4 5 6 7 8 9 10 12 13 21 [total] 831BR2	2 1 1 1 1 1 1 1 1 1 1 1 1 1 4	2 1 1 1 1 2 1 1 1 1 1 5	63 9 10 3 2 1 3 1 1 1 2 1 98	1 1 1 1 1 2 1 1 1 1 1 1 4	1 2 1 1 1 1 1 1 1 1 1 1 1	2 1 2 4 2 2 1 3 2 2 2 1 2 2 6	1 2 1 2 1 1 3 2 1 1 1 1 1 8
1 2 3 4 5 6	1 1 1 1	2 1 2 1 1	84 2 1 2 1	1 1 1 1 1	2 1 1 1 1	9 1 2 3 2 2	3 2 1 1

7 8 [total]	2 1 9	1 1 10	1 1 93	1 2 9	1 1 9	1 1 21	1 1 13
831BC8 1 [total] 841BO4	2 2	3 3	86 86	2 2	2 2	14 14	6 6
1 2 3 4 5 6 [total] 841BR4	2 1 1 1 1 7	2 2 1 1 1 1 8	80 3 3 1 1 91	1 2 1 1 1 7	1 2 1 1 1 7	9 2 2 2 2 2 19	3 2 1 1 1 11
1 2 3 4 5 6 7 28 [total]	2 1 1 1 1 1 1 9	1 2 2 1 1 1 10	73 7 5 2 2 2 1 1 93	1 1 2 1 1 1 9	1 2 1 1 1 1 9	3 4 1 5 2 4 1 1 21	2 2 1 1 2 2 2 13
841BR5 1 2 3 4 5 6 7 8 10 11 12 13 14 16 19 20 23 24 25 26 27 29 33 [total] 841BR6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 5	47 14 8 4 5 5 5 1 1 1 1 2 1 2 1 2 1 2 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 2 4 1 2 1 3 1 1 2 1 1 1 2 2 3 6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 2 3 8 10 [total]	1 1 2 1 1 6	2 2 1 1 1 7	84 3 1 1 1 90	1 1 2 1 1 6	1 1 2 1 1 6	7 3 5 1 2 18	2 3 2 1 10
851BR7 1	1	1	33	1	1	1	1

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 21 26 28 29 30 38 40 51 68 [total]	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	12 8 5 4 6 2 3 2 4 4 3 2 2 4 4 3 2 2 3 1 2 1 2 1 2 1 2 1 1 2 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
851BR8 1 2 3 5 6 13 [total]	2 1 1 1 1 7	1 1 2 1 2 8	81 3 1 3 2 1 91	2 1 1 1 1 7	2 1 1 1 1 7	11 3 2 1 1 1 19	4 2 1 1 1 1
851BR9 1 2 3 4 5 6 8 10 12 [total]	2 1 1 1 1 1 1 1 1 10	1 1 3 1 1 1 1	79 5 2 2 1 1 1 1 94	2 1 1 1 1 1 1 1 1 10	2 1 1 1 1 1 1 1 1 10	8 2 3 1 1 2 1 1 22	2 1 1 2 1 2 2 14
851BS0 1 2 4 5 [total]	2 1 1 1 5	3 1 1 1 6	84 1 2 2 89	2 1 1 1 5	2 1 1 5	14 1 1 1	5 2 1 1 9
851BS1 1 2 3 10	2 1 1 1	3 1 1 1	85 2 1 1	2 1 1 1	2 1 1 1	10 2 3 2	4 3 1 1

[total] 851BS2	5	6	89	5	5	17	9
1 2 3 4 5 6 7 8 9 10 11 12 13 [total] 851BS3	1 2 1 1 1 1 1 1 1 1 1 1 1	2 1 1 1 1 2 1 1 1 1 1 1 1 5	58 13 9 5 4 1 2 1 1 1 1 1 98	1 1 1 1 1 1 1 1 2 1 1 1 4	1 2 1 1 1 1 1 1 1 1 1 1 1	1 3 2 1 3 2 4 2 1 1 2 3 26	1 2 1 2 1 1 2 1 1 2 1 1 1 1 8
1 2 3 6 [total]	2 1 1 5	1 2 1 6	84 1 3 1 89	2 1 1 5	2 1 1 5	11 2 2 2 17	4 3 1 1 9
851BX2 1 2 4 [total] 861B98	2 1 1 4	3 1 1 5	84 2 2 88	2 1 1 4	2 1 1 4	14 1 1 16	6 1 1 8
1 2 3 4 5 12 13 [total] 861BS4	2 1 1 1 1 1 8	2 2 1 1 1 1 1 9	82 4 1 1 1 1 92	1 2 1 1 1 1 1 8	2 1 1 1 1 1 1 8	5 5 2 3 2 2 1 20	3 2 1 1 1 2 12
1 2 3 4 5 6 8 [total] 861BS6	1 1 1 2 1 1 8	1 2 1 1 1 1 2 9	83 4 1 1 1 1 1 92	1 2 1 1 1 1 8	2 1 1 1 1 1 1 8	5 2 5 1 1 1 20	4 2 1 1 2 1 12
1 2 3 4 5 6 7 8 9 10 11 14	1 2 1 1 1 1 1 1 1 1 1	1 1 2 1 1 2 1 1 1 1 1	56 8 7 5 4 2 2 1 2 1 1	1 1 1 1 1 1 1 1 1 1	2 1 1 1 1 1 1 1 1 1 1 1	1 1 4 2 3 2 1 1 4 1	1 1 2 1 1 2 1 1 3

15 16 17 21 [total] 861BT6	1 1 1 17	1 1 1 1 18	1 1 1 101	1 2 1 1 17	1 1 1 1 17	2 1 2 1 29	1 1 2 21
1 2 3 4 5 [total] 861BC0	1 2 1 1 1 6	3 1 1 1 7	83 4 1 1 1 90	1 1 2 1 1 6	2 1 1 1 1 6	5 6 3 2 2 18	5 1 2 1 1 10
1 [total] 873TY8	2 2	3 3	86 86	2 2	2 2	14 14	6 6
1 [total] 902DX6	2 2	3 3	86 86	2 2	2 2	14 14	6 6
1 2 3 11 13 18 [total] 913HX8	2 1 1 1 1 7	3 1 1 1 1 8	80 4 3 1 2 1 91	1 1 2 1 1 7	2 1 1 1 1 7	10 3 2 1 1 2 19	6 1 1 1 1 1
1 [total] 923JC1	2 2	3 3	86 86	2 2	2 2	14 14	6 6
1 [total] 933JC6	2 2	3 3	86 86	2 2	2 2	14 14	6 6
1 [total] 943XC7	2 2	3 3	86 86	2 2	2 2	14 14	6 6
1 2 3 [total] 943XV1	2 1 1 4	3 1 1 5	84 3 1 88	1 1 2 4	2 1 1 4	9 6 1 16	4 3 1 8
1 2 3 [total]	2 1 1 4	3 1 1 5	84 3 1 88	2 1 1 4	2 1 1 4	13 1 2 16	4 2 2 8
951A01 1 2 3 6 7 8 [total]	2 1 1 1 1 7	2 1 1 1 2 8	83 3 1 2 1 91	1 1 2 1 1 7	2 1 1 1 1 7	13 1 2 1 1 1 19	5 2 1 1 1 1 11
951A02 1 2 4 8	2 1 1 1	2 1 2 1	83 2 2 2	1 1 2 1	2 1 1 1	13 2 1 1	6 1 1 1

[total] 951A04	5	6	89	5	5	17	9
1 2 3 6 31 [total] 951A05	2 1 1 1 6	1 2 1 2 7	83 2 1 3 1 90	2 1 1 1 6	2 1 1 1 1 6	10 5 1 1 1 1	6 1 1 1 1
1 2 3 4 5 7 10 15 [total] 951A06	1 2 1 1 1 1 9	2 1 2 1 1 1 1 1 10	81 2 1 3 2 1 1 2 93	2 1 1 1 1 1 1 9	2 1 1 1 1 1 9	12 1 2 1 1 2 1 1 21	5 1 1 1 1 2 1 13
1 2 3 4 5 6 8 10 12 [total]	1 2 1 1 1 1 1 1 1	2 1 1 2 1 1 1 1 11	80 2 3 2 1 2 1 2 1 2 1 94	2 1 1 1 1 1 1 1 10	2 1 1 1 1 1 1 1 10	9 1 2 3 1 2 1 2 22	5 2 1 1 1 1 1 1 14
951A07 1 2 4 [total]	2 1 1 4	3 1 1 5	84 2 2 88	2 1 1 4	2 1 1 4	13 2 1 16	6 1 1 8
951A10 1 2 3 4 5 8 9 [total] 951A15	1 1 1 2 1 1 8	3 1 1 1 1 1 9	83 3 1 2 1 1 92	1 1 1 1 2 8	2 1 1 1 1 1 8	9 2 3 2 1 1 20	5 1 1 1 2 1 12
1 2 3 5 7 [total]	2 1 1 1 1 6	2 1 2 1 1 7	84 1 2 1 2 90	1 1 2 1 1 6	2 1 1 1 1 6	11 3 1 2 1 18	5 2 1 1 1 10
951A16 1 2 3 4 [total]	2 1 1 5	2 1 1 2 6	85 1 1 2 89	1 1 2 1 5	2 1 1 5	13 2 1 1 17	6 1 1 9
951A22 1	1	3	86	2	2	14	6

Business Decision Analysis Based on Data Analytics | Antonia Trikounaki

2 [total] 951A23	2 3	1 4	1 87	1 3	1 3	1 15	1 7
951A25 1 2 3 6 11 14 [total] 951A26	1 2 1 1 1 7	1 3 1 1 1 8	82 4 1 2 1 1 91	1 1 1 2 1 7	2 1 1 1 1 7	11 2 1 2 1 2 19	5 1 2 1 1 1
951A26 1 2 4 5 [total] 951A37	2 1 1 5	3 1 1 1 6	85 1 2 1 89	1 1 2 5	2 1 1 5	13 2 1 1 17	6 1 1 9
1 2 3 4 5 6 7 8 10 11 [total] 951A38	1 1 1 1 1 2 1 1 1	2 1 2 1 1 1 1 1 1 1 2	79 3 2 2 1 2 1 2 1 2 95	2 1 1 1 1 1 1 1 1 1	2 1 1 1 1 1 1 1 1	11 2 1 1 2 1 1 2 1 23	5 2 1 1 1 1 1 1 1 1 5
951A38 2 [total] 951A39	2 2	3 3	86 86	2 2	2 2	14 14	6 6
1 2 3 [total] 951A41	2 1 1 4	3 1 1 5	85 2 1 88	2 1 1 4	2 1 1 4	14 1 1 16	5 1 2 8
1 [total] 951A42	2 2	3 3	86 86	2 2	2 2	14 14	6 6
1 2 [total]	2 1 3	3 1 4	86 1 87	2 1 3	2 1 3	13 2 15	6 1 7
951A52 1 2 4 6 7 [total] 951A53	2 1 1 1 6	2 1 1 2 7	84 2 1 1 90	1 1 2 1 6	2 1 1 1 1 6	12 3 1 1 1 18	6 1 1 1 1 10
2 [total]	2 2	3 3	86 86	2 2	2 2	14 14	6 6
951A54 1 4 [total] 951A64	2 1 3	3 1 4	86 1 87	1 2 3	2 1 3	14 1 15	6 1 7

1 3 [total]	2 1 3	3 1 4	85 2 87	2 1 3	2 1 3	14 1 15	6 1 7
951A67 1 2 4 5 10 [total]	2 1 1 1 6	3 1 1 1 7	84 1 2 2 1 90	2 1 1 1 1 6	2 1 1 1 1 6	13 2 1 1 1 18	5 1 1 2 10
951A69 5 10 [total]	2 1 3	3 1 4	86 1 87	2 1 3	2 1 3	13 2 15	6 1 7
951A71 1 [total] 951A72	2 2	3 3	86 86	2 2	2 2	14 14	6 6
1 2 3 4 5 6 7 12 13 15 [total] 951A77	1 1 2 1 1 1 1 1 1 1	1 1 2 1 1 1 1 1 1 2	72 7 2 3 1 1 2 2 2 95	1 1 1 1 1 2 1 1 1	2 1 1 1 1 1 1 1 1 1	5 3 3 2 2 2 1 1 1 23	3 2 3 1 1 1 1 1 1 5
1 2 [total]	2 1 3	3 1 4	86 1 87	2 1 3	2 1 3	13 2 15	6 1 7
951A78 1 2 3 5 6 [total] 951AN1	2 1 1 1 6	3 1 1 1 7	81 3 1 2 90	2 1 1 1 1 6	2 1 1 1 1 6	12 1 3 1 18	5 1 2 1 1
1 2 3 4 5 9 [total] 951AX4	2 1 1 1 1 7	2 1 1 1 2 8	82 1 2 3 2 1 91	1 2 1 1 1 7	1 1 2 1 1 7	13 1 1 2 1 19	6 1 1 1 1 1
1 [total] 952G11	2 2	3 3	86 86	2 2	2 2	14 14	6 6
1 2 3 4 5 6	1 1 2 1 1	1 1 1 1 1	54 2 5 4 3 4	1 1 1 1 1	1 1 1 1 1	1 1 1 3 2	2 1 1 1 1

7 8 9 10 12 13 14 17 18 20 21 26 27 29 32 34 38 40 42 44 51 52 55 58 124 [total] 952G12	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 3 2 2 3 2 2 3 2 2 2 3 2 2 2 3 2 1 1 3 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 3 1 2 2 1 3 2 1 2 2 3 2 2 2 3 2 2 2 3 2 2 2 3 2 2 2 3 2 2 2 3 2 2 2 3 2 2 2 3 2 2 2 3 2 2 2 3 2 2 2 2 3 2 2 2 3 2 2 2 2 3 2 2 2 2 3 2 2 2 2 3 2 2 2 2 3 2 2 2 2 3 2 2 2 2 2 3 2 2 2 2 3 2 2 2 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 3 1 1 1 1 2 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 1 2 2 2 1 1 1 1 2 2 2 1 1 1 1 1 2 2 2 1 1 1 1 1 1 2 2 2 1 1 1 1 1 2 2 2 1 1 1 1 1 2 2 2 2 1 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 2 2 2 2 1 1 1 1 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 2 1 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 2 1 1 1 2 2 2 1 1 2 2 2 1 1 1 2 2 2 2 1 1 1 2 2 2 2 1 1 1 2 2 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 2 1 1 1 2 2 2 2 1 1 1 2 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 2 1 1 2	1 1 2 1 1 2 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 2 1
952G12 1 2 3 4 8 9 11 12 13 16 25 33 [total] 952G44	1 2 1 1 1 1 1 1 1 1 1 3	1 2 1 1 2 1 1 1 1 1 1 1	75 2 2 3 2 1 1 2 3 2 2 97	1 1 2 1 1 1 1 1 1 1 1 3	1 1 2 1 1 1 1 1 1 1 1 3	12 1 2 1 1 1 2 1 1 1 1 2 5	3 1 1 2 1 1 1 1 1 1 1 7
1 5 [total]	2 1 3	3 1 4	86 1 87	2 1 3	2 1 3	14 1 15	5 2 7
952G45 1 [total] 952G46	2 2	3 3	86 86	2 2	2 2	14 14	6 6
1 2 3 [total]	2 1 1 4	3 1 1 5	85 1 2 88	2 1 1 4	2 1 1 4	13 2 1 16	6 1 1 8
952G50 1 2 3 11 12	2 1 1 1	3 1 1 1 1	83 1 2 2 1	2 1 1 1	2 1 1 1	13 2 1 1 1	4 2 1 1 2

14 [total] 952G77	1 7	1 8	2 91	1 7	1 7	1 19	1 11
1 2 [total]	2 1 3	3 1 4	86 1 87	2 1 3	2 1 3	14 1 15	5 2 7
952GX5 1 [total] 952D35	2 2	3 3	86 86	2 2	2 2	14 14	6 6
1 2 3 4 5 6 7 8 13 14 18 [total] 952EJ2	2 1 1 1 1 1 1 1 1 1 2	1 2 1 1 1 2 1 1 1 1 1 3	71 5 4 2 2 3 2 2 2 2 1 96	1 1 1 1 2 1 1 1 1 12	2 1 1 1 1 1 1 1 1 1 1 2	7 3 1 3 1 2 2 1 1 1 2 2 4	4 3 1 1 1 1 1 1 1 1 1 1
1 [total]	2 2	3 3	86 86	2 2	2 2	14 14	6 6
963CV0 1 2 3 4 5 6 7 8 9 10 14 15 16 17 18 19 21 22 25 29 30 32 33 35 38 39 43 44 48 51 52 54	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 5 11 2 6 5 3 2 3 2 2 2 4 2 2 4 3 2 2 2 3 4 4 3 2 2 3 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

57 62 63 66 70 71 77 80 81 83 86 89 101 107 118 121 147 148 151 157 165 169 199 200 201 211 212 215 216 232 243 245 269 276 315 316 352 366 376 423 [total]	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 1 2 1 2 1 2 1 2 1 1 2 1 1 1 7 7
AA1A54 1 [total]	2 2	3 3	86 86	2 2	2 2	14 14	6 6
AA1A72 1 [total]	2 2	3	86 86	2 2	2 2	14 14	6
AB1A05 1 [total]	2	3	86 86	2	2	14 14	6 6
AB1A11 1	2	3	86	2	2	12	6
2 3 [total] AB1A35	1 1 4	1 1 5	1 1 88	1 1 4	1 1 4	2 2 16	1 1 8
1 2	2 1	3 1	85 2	2 1	2 1	14 1	5 2

Business Decision Analysis Based on Data Analytics | Antonia Trikounaki

[total] AB1A38	3	4	87	3	3	15	7
1 2 3 4 5 6 13 [total] AB1AAR	2 1 1 1 1 1 8	1 2 1 2 1 1 1 9	83 4 1 1 1 1 1 92	1 1 2 1 1 1 8	2 1 1 1 1 1 1 8	7 4 3 1 2 2 1 20	5 1 1 1 1 2 12
1 2 3 4 5 6 7 8 9 10 13 14 16 65 [total]	2 1 1 1 1 1 1 1 1 1 1 1 1 5	1 1 1 2 1 1 1 1 1 1 1 1 1 1	70 3 5 2 2 4 2 4 2 1 1 2 1 99	1 1 1 1 1 1 1 1 1 1 1 1 1 5	2 1 1 1 1 1 1 1 1 1 1 1 1 5	5 1 2 3 1 2 1 3 1 1 2 2 27	2 1 1 2 2 1 1 2 1 1 2 1 1 9
AB1AT6 1 [total]	2 2	3 3	86 86	2 2	2 2	14 14	6 6
AH1BBC 1 2 3 4 6 7 8 9 10 11 14 16 17 19 22 24 34 40 44 46 49 50 59 60 65 96 103 105	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	65 2 3 4 3 3 1 2 1 1 2 2 1 2 3 1 2 1 2 3 1 2 1 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 2 2 1 1 1 3 2 2 1 1 2 2 1 2 1 2 1 2 1	1 1 1 1 2 1 2 1 2 1 1 1 1 1 1 1 1 2 1 2

[total] AK2E04	29	30	113	29	29	41	33
1 2 3 4 5 6 7 9 10 11 13 16 19 21 23 24 34 35 38 60 [total]	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2	63 6 3 2 8 3 2 2 1 1 2 1 1 2 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 2 1 2 2 2 2 1 2 1 2 2 1 2 2 1 2 2 1 2	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 3 2 1 1 2 3 2 1 2 1 2 1 2 1 2 1 2 1	1 1 1 2 1 1 2 1 1 2 1 1 1 1 1 1 2 5
AK2E59	2 x	22	100	<u> </u>	<u> </u>	00	20
1 2 3 4 5 9 [total] AK2EBH	1 1 2 1 7	3 1 1 1 1 1 8	82 2 3 1 91	1 1 2 1 1 7	2 1 1 1 1 7	10 2 1 2 2 2 19	6 1 1 1 1 1
1	2	3	86	2	2	14	6
[total] AK2EBU	2	3	86	2	2	14	6
1 [total] AK2EBI	2 2	3 3	86 86	2 2	2 2	14 14	6 6
1 2 4 [total]	2 1 1 4	3 1 1 5	85 2 1 88	2 1 1 4	2 1 1 4	10 4 2 16	6 1 1 8
AK2EBV 1 [total]	2 2	3 3	86 86	2 2	2 2	14 14	6 6
AT1AAT 1 [total]	2 2	3 3	86 86	2 2	2 2	14 14	6 6

Canopy Clusterer

Note: The numbers in these brackets: **Error! Reference source not found.** show the instances that are appeared in the cluster.

Canopy clustering with 2 clusters

T2 radius: 9,721

T1 radius: 12,151

Cluster 0:

Cluster 1:

=== Model and evaluation on training set ===

Clustered Instances

0 107 (99%)

1 1 (1%)

Canopy clustering with 3 clusters

T2 radius: 9,721

T1 radius: 12,151

Cluster 0:

Cluster 1:

Cluster 2:

=== Model and evaluation on training set ===

Clustered Instances

- 0 94 (87%)
- 1 1 (1%)

2 13 (12%)

Canopy clustering with 4 clusters

T2 radius: 9,721

T1 radius: 12,151

Cluster 0:

Cluster 1:

Cluster 2:

Cluster 3:

=== Model and evaluation on training set ===

Clustered Instances

- 0 93 (86%)
- 1 1(1%)
- 2 13 (12%)
- 3 1 (1%)

Canopy clustering with 5 clusters

T2 radius: 9,721

T1 radius: 12,151

Cluster 0:

Cluster 1:

$$\begin{split} \mathsf{MAN}, 49, 39, 10, 1, 40, 22, 80, 7, 8, 1, 1, 1, 1, 2, 1, 2, 1, 11, 17, 15, 1, 1, 4, 1, 2, 1, 121, 41, 2, 2, 2, 1, 15, 44, 1, 8, 12\\ \mathsf{5}, \mathsf{4}, \mathsf{9}, 10, \mathsf{5}, \mathsf{1}, \mathsf{1}, \mathsf{1}, \mathsf{1}, \mathsf{2}, \mathsf{3}, \mathsf{5}, \mathsf{1}, \mathsf{2}, \mathsf{1}, \mathsf{1}, \mathsf{4}, \mathsf{3}, \mathsf{6}, \mathsf{2}, \mathsf{5}, \mathsf{9}, \mathsf{4}, \mathsf{1}, \mathsf{8}, \mathsf{5}, \mathsf{2}, \mathsf{1}, \mathsf{3}, \mathsf{1}, \mathsf{4}, \mathsf{1}, \mathsf{6}, \mathsf{2}, \mathsf{2}, \mathsf{2}, \mathsf{1}, \mathsf{7}, \mathsf{4}, \mathsf{1}, \mathsf{8}, \mathsf{9}, \mathsf{2}, \mathsf{6}, \mathsf{1}, \mathsf{2}, \mathsf{1}, \mathsf{1}, \mathsf{6}, \mathsf{2}, \mathsf{2}, \mathsf{2}, \mathsf{1}, \mathsf{1}, \mathsf{4}, \mathsf{3}, \mathsf{6}, \mathsf{2}, \mathsf{5}, \mathsf{9}, \mathsf{4}, \mathsf{1}, \mathsf{8}, \mathsf{5}, \mathsf{2}, \mathsf{1}, \mathsf{3}, \mathsf{1}, \mathsf{1}, \mathsf{1}, \mathsf{2}, \mathsf{4}, \mathsf{1}, \mathsf{6}, \mathsf{2}, \mathsf{2}, \mathsf{2}, \mathsf{1}, \mathsf{1}, \mathsf{4}, \mathsf{3}, \mathsf{6}, \mathsf{2}, \mathsf{5}, \mathsf{9}, \mathsf{4}, \mathsf{1}, \mathsf{8}, \mathsf{5}, \mathsf{2}, \mathsf{1}, \mathsf{3}, \mathsf{1}, \mathsf{1}, \mathsf{1}, \mathsf{1}, \mathsf{2}, \mathsf{1}, \mathsf{1}, \mathsf{5}, \mathsf{1}, \mathsf{1}, \mathsf{8}, \mathsf{9}, \mathsf{2}, \mathsf{6}, \mathsf{1}, \mathsf{2}, \mathsf{1}, \mathsf{$$

Cluster 2:

Cluster 3:

Cluster 4:

=== Model and evaluation on training set ===

Clustered Instances

- 0 88 (81%)
- 1 1 (1%)
- 2 12 (11%)
- 3 1 (1%)
- 4 6 (6%)