
Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

School of Electrical and Computer Engineering

ΜΕΛΕΤΗ ΤΩΝ ICS/SCADA HONEYPOTS ΚΑΙ ΣΥΓΧΡΟΝΩΝ

ΜΕΘΟΔΩΝ ΑΥΤΟΜΑΤΗΣ ΑΝΑΠΤΥΞΗΣ

STUDY OF ICS/SCADA HONEYPOTS AND MODERN

AUTOMATIC DEPLOYMENT METHODS

Author

Irodotos Karatsoris

Supervisor

Associate Professor Sotirios Ioannidis

Thesis Committee

Associate Professor Sotirios Ioannidis

Professor Apostolos Dollas

Associate Professor Eftychios Koutroulis

Chania 2022



2

Table of contents

Acknowledgements 4

Abstract 5

Περίληψη 6

1 Introduction to Honeypots 7
1.1 Generic Honeypot Model 7
1.2 Classification of Honeypots 9

1.2.1 Based on the purpose 9
1.2.2 Based on the level of interaction 9
1.2.3 Based on the role of the honeypot 11
1.2.4 Based on hardware deployment 12

1.3 Honeypot Deployment Methods on a Network 12

2 Background on Industrial Control Systems 14
2.1 Simple Network Management Protocol (SNMP) 14
2.2 Modbus TCP 15
2.3 S7comm 16
2.4 Telnet 19

2.4.1 Negotiation bytes 20
2.4.2 User data bytes 21

2.5 IEC 60870-5-104 22
2.6 IEC 61850 (GOOSE - MMS) 24
2.7 DNP3 25

3 SCADA Networks & Honeypots 29
3.1 SCADA Honeynet Project 29
3.2 Digital Bond’s Honeynet 29
3.3 Conpot 30
3.4 Crysys PLC Honeypot (CryPLH) 30
3.5 SHaPe 32
3.6 S7commTrace 33
3.7 HoneyPLC 33
3.8 DiPot 35

4 Modern Automatic Deployment Methods 37
4.1 Historical Background 37
4.2 Introduction to Container Technology 39
4.3 Introduction to Kubernetes 41



3

4.4 The Architecture of a Kubernetes Cluster 42
4.5 Deployment Process 43
4.6 Helm Charts 44

5 HoneyChart 45
5.1 Home Page 45
5.2 Custom Honeypots Page 46

5.2.1 How It Works 49
5.2.2 The Creation of the Helm Chart 54

5.3 Prebuild Interfaces Page 56
5.4 Deployment Example 59
5.5 Log Management and Visualization 61
5.6 System Architecture 64

6 Conclusion 65

References 66



4

Acknowledgements

There are a lot of people that I want to give thanks to because without them I would have never

managed to deal with my problems and achieve my goals. First and foremost, my family, that

stood strong by me even after illness, losses, and pain that we went through. My dear friends that

were always there for me and made me feel joy even in my darkest hours.

Of course, I want to thank my supervisor Sotirios Ioannidis for giving me the opportunity to

work on an interesting subject and work with a great team from the Foundation for Research and

Technology - Hellas (FORTH). Manos Athanatos and Giorgos Tsirantonakis, thank you for your

guidance and your support. And last but not least, Giorgos Kokolakis thank you for being a great

project partner.



5

Abstract

When Industrial Control Systems (ICS) started to be developed, their security was not considered

to be a priority, because they were isolated from other networks. Nowadays ICS networks are

connected to other networks, even to the internet. Making sure these networks are protected from

malicious attacks is an important issue. One of the ways to protect an ICS network is with the

use of honeypots. This dissertation describes, at first, the known classifications of honeypots and

the communication protocols that are used mostly in ICS networks. Based on the bibliography

there are honeypots that can simulate these protocols in various combinations. These honeypots

are described and categorized according to certain attributes. Concerning the modern deployment

methods, after the reference of all known deployment methods, containerized application

deployment is the most time and cost efficient method, according to the bibliography. Kubernetes

is a container orchestration system for managing, scaling, and deploying software. And by

combining Kubernetes with HoneyChart, we were able to achieve fast and automatic deployment

of containerized honeypots.
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Περίληψη

Όταν άρχισαν να αναπτύσσονται τα Συστήματα Βιομηχανικού Ελέγχου (ΣΒΕ), η ασφάλειά τους

δεν θεωρούταν προτεραιότητα, επειδή ήταν απομονωμένα από άλλα δίκτυα. Σήμερα τα δίκτυα

ΣΒΕ είναι συνδεδεμένα με άλλα δίκτυα, ακόμη και με το διαδίκτυο. Η διασφάλιση της

προστασίας αυτών των δικτύων από κακόβουλες επιθέσεις είναι ένα σημαντικό ζήτημα. Ένας

από τους τρόπους προστασίας ενός δικτύου ΣΒΕ είναι με τη χρήση honeypots. Η παρούσα

εργασία περιγράφει, αρχικά, τις γνωστές κατηγορίες των honeypots και τα πρωτόκολλα

επικοινωνίας που χρησιμοποιούνται κυρίως σε δίκτυα ΣΒΕ. Με βάση τη βιβλιογραφία υπάρχουν

honeypots που μπορούν να προσομοιώσουν αυτά τα πρωτόκολλα σε διάφορους συνδυασμούς.

Αυτά τα honeypots περιγράφονται και κατηγοριοποιούνται σύμφωνα με ορισμένα

χαρακτηριστικά. Όσον αφορά τις σύγχρονες μεθόδους ανάπτυξης, μετά την αναφορά όλων των

γνωστών μεθόδων ανάπτυξης, η ανάπτυξη εφαρμογών σε μορφή container είναι η πιο αποδοτική

μέθοδος από άποψη χρόνου και κόστους, σύμφωνα με τη βιβλιογραφία. Το λογισμικό

Kubernetes είναι ένα σύστημα ενορχήστρωσης container για διαχείριση, κλιμάκωση και

ανάπτυξη λογισμικού. Και συνδυάζοντας το Kubernetes με το HoneyChart, μπορέσαμε να

επιτύχουμε γρήγορη και αυτόματη ανάπτυξη containerized honeypots.
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1 Introduction to Honeypots

A useful component of an Intrusion Detection System (IDS) is the honeypot. Honeypot is a

decoy system that attracts attackers away from critical systems. This system emulates an

operating system (OS) and/or services and acts as a trap for hackers. This means that users who

do not belong in the network have no real reason to interact with it. Any interaction with a

honeypot is considered suspicious and gets logged for future analysis by the administrators

(Stallings et al. 2012). These interactions can be access attempts, keystrokes, file access and

modification, and process execution.

There are many configurations that can be deployed, depending on what is required. Honeypots

can attain intrusion detection, countering spam, data collection, etc. Also, they can keep attackers

interested in the system long enough for the administrators to understand the vulnerabilities of

their system. With this information, they can patch the vulnerabilities themselves or inform the

software or hardware provider about it. However, honeypots by themselves do not provide

complete protection from attackers. And certainly, they do not replace other traditional security

systems like intrusion detection systems. But if they are to be combined with other defending

components, they can produce good results. For example, they can detect insider threats and

attackers which have breached the defenses.

1.1 Generic Honeypot Model
On a network, a honeypot is set up solely to be attacked. It's built with intentional flaws, and it's

exposed to a public network. A honeypot does not have a production value. Therefore, any traffic

destined to a honeypot is considered suspicious and gets monitored. For this to be achieved, a

honeypot consists of (Joshi & Sardana, 2011):

● Honeypot Production System: It is a fake production system, created to attract intruders.

Depending on the emulated service, it can provide honey-files and fake system resources

to the intruder. This system produces automatic responses for every interaction so that it

appears to be functioning as a real production system.

● Firewall: Firewalls log how an intruder tries to break into a honeypot. The honeypot’s

firewall is configured to log all packets going to and from it.
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● Monitor Unit: This unit evaluates threats by monitoring network and/or system activities

for malicious activities or policy violations and creates reports for the administrators.

These reports help identify the intruders’ methods, methodology and intention, by

providing information about the order, sequence, timestamps and type of packets used by

an intruder to gain access to the honeypot and also the keystrokes, system accesses, files

changed, etc.

● Alert Unit: This unit by creating alerts notifies the administration about traffic going to or

from the honeypot.

● Logging Unit: This unit stores both firewall and system logs, as well as the traffic

between the firewall and the honeypot system, efficiently.

Figure 1.1 Generic Model of Honeypot (Joshi & Sardana, 2011, 9)
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1.2 Classification of Honeypots
There are different types of honeypots, these types can be grouped into four categories.

1.2.1 Based on the purpose

Honeypots can be classified into Production and Research honeypots according to their purpose.

Production Honeypot

They are used by organizations as an additional countermeasure for possible attacks (Aliyev,

2010). Production honeypot’s purpose is to emulate the production network of a company.

Depending on the level of interaction, the company can collect information about the attacks that

take place in their network. By analyzing this information they can discover vulnerabilities in

their systems and be ready to face similar attacks. They add value to a company’s security

measures. But they are unable to prevent hackers from entering. To keep malicious actors out of

the company's IT infrastructure, the organization must continue to rely on its security policies,

processes and best practices, such as disabling unused services, patch management and

implementing security measures such as firewalls, intrusion detection systems, anti-virus and

reliable authentication mechanisms. (Joshi & Sardana, 2011)

Research Honeypot

They are deployed mainly by non-profit research organizations or educational institutes.

Research honeypots are used for a more in-depth analysis of threats. By collecting information

on the attacker’s motive, methods and tools, researchers are able to design newer and better

systems for intrusion detection and malware protection. They can be compared with a “counter-

intelligence” body. In addition, research honeypots are great for capturing automated attacks like

auto-rooters and worms. Since these attacks target entire network blocks, research honeypots can

easily catch and analyze these attacks.

1.2.2 Based on the level of interaction

According to their services and the interaction level that a honeypot provides, it can be classified

as a Low, High, or Medium Interaction Honeypot.
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Low-interaction Honeypots

Low-interaction honeypots emulate IT services that are usually requested by attackers. They do

not provide an actual OS, only a limited subset of the functionality attackers would expect from a

server (Peter & Schiller, 2011). Usually, this kind of honeypot monitors certain ports that a server

would use for known services, like FTP, SQL, HTTP, etc. Because of the emulation of a limited

amount of services and the lack of an OS, low-interaction honeypots are easy to install, deploy

and maintain. They log only a limited amount of information regarding the hacker’s activities.

High-interaction Honeypots

A high-interaction honeypot is a complete system, which contains a fully functional OS and all

the services that it could provide (Stallings et al., 2012). High-interaction honeypots are used to

capture the maximum amount of information concerning new and old ways of attacking.

Researchers are using this kind of honeypot to investigate the attacker’s methodology, by

observing their interactions with the system. High-interaction honeypots are complex systems,

which makes their installation, deployment and maintenance difficult. Also, they increase the

risk of intrusion into the real system.

Medium-interaction Honeypots

They attempt to mix the benefits of both low and high-interaction honeypots. They are more

advanced than low-interaction honeypots, but they are not as advanced as high-interaction

honeypots. When they are questioned, they will react in a specific way. These honeypots don't

have a real OS or follow every aspect of the application protocol. They have a virtualization

layer in place. They simply respond to the hacker's requests. These responses are designed to

entice hackers into sending their payload. As security personnel receive the payload, they

remove the shellcode for further inspection and forensic examination. These honeypots are then

used to mimic the behavior that shellcode was intended to perform after a thorough review.

Following these steps to download malware from a serving site, it is either saved locally or sent

somewhere else for review. These honeypots are very complex, time-consuming to install and

necessitate a significant amount of effort as well as a detailed understanding of protocols,

application services and protection to build. They are also more vulnerable to dangers.
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Medium-interaction honeypots are custom-made honeypots that have been customized to meet

the needs of organizations or individuals. (Joshi & Sardana, 2011)

Factors Low-interaction Medium-interaction High-interaction

Degree of involvement Low Medium High

Real operating system No No Yes

Installation Easy Difficult More difficult

Maintenance Easy Easy Time-consuming

Risk Low Medium High

Compromised wished No No Yes

Need control No No Yes

Knowledge to run Low Low High

Knowledge to develop Low High Mid-high

Data gathering Limited Medium Extensive

Interaction Emulated services Requests Full control

Table 1.1 Low-interaction vs. Medium-interaction vs. High-interaction (Joshi & Sardana,
2011, 17)

1.2.3 Based on the role of the honeypot

Additionally, honeypots can be classified as server or client honeypots. This classification is

based on the direction of the interaction.

Server Honeypots

Server honeypots are designed to be passive and do not initiate traffic unless they are

compromised. Server-side honeypots aid in the detection of new exploits, the collection of

malware and the enrichment of threat analysis research. (Joshi & Sardana, 2011)
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Client Honeypots

Unlike Server Honeypots, Client Honeypots actively search for threats and possible malicious

entities and they initiate the interaction. Usually, they emulate web browsers or components of

theirs. When a client interacts with malicious servers, client-side attacks target vulnerable client

applications. These honeypots are used to search for and detect malicious servers. (Joshi &

Sardana, 2011)

1.2.4 Based on hardware deployment

Finally, honeypots can be classified as Physical or Virtual depending on their physicality.

Physical Honeypots

Physical Honeypots are real entities on the network with their own IP address. They are often

high-interaction honeypots and they are expensive to install and maintain. Due to the limited

view of their single IP address and the high cost of maintaining a farm of physical honeypots,

they are less practical in real-world scenarios. (Joshi & Sardana, 2011)

Virtual Honeypots

They are usually implemented on a single physical machine that serves as a host for multiple

virtual honeypots. Virtual honeypots are more cost-effective when it comes to monitoring large

IP address spaces while also simulating large IP addresses. (Joshi & Sardana, 2011)

1.3 Honeypot Deployment Methods on a Network
Honeypots can be deployed in a variety of locations on a network, depending on the goal of the

organization using it. There are three main locations: Outside the external firewall, Inside the

DMZ (Demilitarized Zone) and Inside the internal network.

A honeypot located outside the external firewall detects connection attempts on unused IP

addresses. It does not increase the risk for the internal network. It also reduces the number of

alerts that are produced by the external firewall, and by internal IDS sensors. However, it cannot

trap internal attackers.

DMZ allows an organization to access untrustworthy networks while ensuring its private

network remains secure. On the DMZ are stored external-facing services and resources like FTP,
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mail server, web server, etc. A honeypot deployed in the DMZ can emulate the servers that

connect to the public domain and provide early warning of threats located there. This means that

certain ports will intentionally be opened so that the honeypot can attract attackers.

The most advantageous way to detect attacks in the internal network is the internal honeypot. It

alerts if any external exploits have made it past other network defenses and catches internal

threats at the same time. (Stallings et al., 2012)

Figure 1.2 Example of Honeypot Deployment (Stallings et al., 2018, 301)
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2 Background on Industrial Control Systems

Industrial Control Systems (ICS) are the systems that manage an industrial process. These

systems usually include Supervisory Control and Data Acquisition (SCADA), Distributed

Control Systems (DCS) and Programmable Logic Controllers (PLC). The above systems are

used by industries to monitor and control energy production, water and electricity distribution

and manufacturing. They could also be a significant part of a country’s Critical National

Infrastructure (CNI).

Specifically, SCADA systems are distributed systems that are used to control assets on a large

geographical area, usually thousands of square kilometers, where centralized data acquisition and

control are critical to system operation. Data is collected from field devices that control local

operations, like valve controls, sensors and monitoring systems.

DCS are used to control industrial processes like electric power generation, oil refineries, water

and wastewater treatment, as well as chemical, food and automotive manufacturing. DCS are

part of a control architecture that includes a supervisory level of control that oversees various,

integrated sub-systems that control the specifics of a localized process.

The PLC is a small industrial computer that was initially intended to perform the logic functions

performed by electrical hardware (relays, switches and mechanical timer/counters). PLCs have

developed into controllers capable of managing complex processes and they are widely used in

SCADA and DCS systems.

Much like Web Applications that use protocols like TCP/IP, HTTP/HTTPS, FTP, etc. to transfer

information, ICSs also use communication protocols. The most used protocols are described

below.

2.1 Simple Network Management Protocol (SNMP)
For monitoring the health of networked devices, the Simple Network Management Protocol

(SNMP) is used. Administrators can access a wide range of information from devices, including

interface statistics, software versions and internal component temperatures. As a form of

automated administration, SNMP also allows you to remotely write certain values (Lewis &

Peterson). Because it provides a simple and easy way to monitor and manage the device, the

SNMP service is commonly installed on intermediate and end network devices such as PLCs. A
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typical SNMP conversation involves two parties: a manager who queries the requests and a

managed device who responds to them (Buza et al., 2014).

2.2 Modbus TCP
Modicon invented the Modbus protocol in 1979. Modbus is a basic communication protocol that

is widely used in the industry. It is a protocol that is universal, open and simple to use. Although

new industrial products like PLCs, PACs, I/O devices and instruments may have Ethernet, serial,

or even wireless interfaces, Modbus remains the preferred protocol. Modbus protocol's main

advantage is that it works with any type of communication medium, including twisted pair wires,

wireless, fiber optics, Ethernet, and so on. The plant data is stored in the memory of the Modbus

devices. Discrete input, discrete coil, input register and holding register are the four parts of this

memory. The discrete input and coil are of 1 bit while the input register and holding register are

of 16 bits. Modbus TCP is a server-client communication protocol that runs over an Ethernet

TCP/IP network. The Modbus TCP messaging cycle is divided into four steps, as shown in

Figure 2.1. The client sends a query (connection request) to the server in the first step, the server

acknowledges or accepts the query in the second step, the server sends responses for function

code in the third step, and the client sends a confirmation signal to the server in the fourth step,

which may be a disconnected TCP connection. Figure 2.2 depicts the Modbus TCP message

format.

Figure 2.1 Message Cycle in Modbus TCP (Tamboli et al., 2015, 3)
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Figure 2.2 Message Format of Modbus TCP (Tamboli et al., 2015, 3)

MBAP (Modbus application header) is a seven-byte message format that includes transaction ID,

protocol ID, message length and client ID. In Modbus TCP, the server's ID and port number are

required to establish communication, while the message format for a client requires the server's

IP address, client ID and port number (Tamboli et al., 2015). Modbus is the most popular

communication protocol for SCADA applications, because of its simplicity and ease of use.

However, Modbus has several well-known vulnerabilities, such as lack of encryption (Samanis,

2018).

2.3 S7comm
The S7 communications protocol (S7comm) is a Siemens S7-300/400 PLC family proprietary

protocol. The Siemens S7-1200/1500 PLC family also partially supports the protocol. PLC

programming, data exchange with PLCs, PLC data access by SCADA systems and diagnostics

are all possible with it.

S7comm's Ethernet implementation is based on ISO TCP (RFC 1006), a block-oriented protocol.

Each block is called a protocol data unit (PDU). Each transmission in the S7comm protocol is

function-oriented or command-oriented, meaning it contains a command or a response to a

command. If a command or reply does not fit inside a single PDU, it is split across multiple

PDUs.

Each command has four components:

● Header

● Parameters

● Parameter data

● Data block

The header and parameters are required components of an S7comm command; the remaining

components are optional. The first byte in the parameters field represents the S7 function code.

S7's optional function codes are listed in Table 2.1. To create an S7 connection, the
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Communication Setup code is used. Read code assists the host computer in reading data from the

PLC, while Write code assists the host computer in writing data to the PLC. The Request

Download, Download Block, Download End, Download Start, Upload, and Upload End codes

are used to perform block downloading and uploading operations. The operations of Hot Run

and Cool Run are covered by PLC Control code, while PLC Stop is used to turn off the device.

The 0x00 function code denotes a system function that is used to verify system settings or status.

The 4-bit function group code and 1-byte subfunction code in the parameters field describe the

details. Table 2.2 shows how system functions are further divided into seven groups. The Block

function reads the block, while the Time function checks or sets the device clock (Xiao et al.,

2017).

Code Function Code Function Code Function

0x00 System functions 0x1b Download block 0x1f Upload end

0x04 Read 0x1c Download end 0x28 PLC control

0x05 Write 0x1d Download start 0x29 PLC stop

0x1a Request download 0x1e Upload 0xf0 Communication setup

Table 2.1 System function codes of S7comm (Xiao et al., 2017, 415)

Function
group code

Function Subfunction
code

Subfunction

1 Programmer commands 1 Request diag data

2 VarTab

2 Cyclic data 1 Memory

3 Block function 1 List blocks

2 List blocks of type

3 Get block info

4 CPU function 1 Read SZL
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2 Message service

5 Security 1 PLC password

6 PBC BSEND/BRECV None None

7 Time function 1 Read clock

2,3 Set clock

4 Read clock (following)

Table 2.2 System function group and corresponding subfunction (Xiao et al., 2017, 416)

The protocol encapsulation structure is shown in Figure 2.3, followed by S7 Telegram, ISO on

TCP and TCP/IP (Yau et al., 2018).

Figure 2.3 Protocol Encapsulation (Yau et al., 2018, 339)

Lastly, The S7 protocol's communication procedure is divided into three stages, as shown in

Figure 2.4. The first stage is to establish a COTP connection, the second is to set up S7

communication, and the third is to exchange the request and response for the function code.
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Figure 2.4 Communication procedure of S7 protocol (Xiao et al., 2017, 415)

2.4 Telnet
Telnet is a TCP-based text-oriented interaction protocol that allows bidirectional communication

with a device. It's most commonly used to send commands to a terminal server. Although it is no

longer used on servers and workstations, it is still widely used on embedded systems due to its

simplicity. After authentication, access to the command line is granted; however, owners of IoT

devices frequently do not change the default credentials (Metongnon & Sadre, 2018).

The Mirai botnet is one of the most well-known botnets on the Internet. Mirai was first

discovered attacking Telnet ports 23/TCP and 2323/TCP in August 2016. Mirai used a list of 68

default usernames and passwords to gain access to the targeted device. In September 2016, the

Mirai botnet was also responsible for a massive DDoS attack against KrebsOnSecurity's servers.

Because the Telnet protocol does not encrypt the payload, all of the communication between

devices can be read from network traffic (Musilová, 2020). The Telnet protocol's bytes can be

divided into two groups:

● Negotiation bytes: Dedicated non-printable bytes used to configure and exchange

information between the two terminals. The majority of the negotiation bytes are sent at

the start of the communication, but they can be sent at any point during the

communication.

● User data: Any byte in the Telnet communication that isn't the negotiation byte. These

bytes hold everything the user typed on the keyboard as well as all the data displayed in

the terminal.
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2.4.1 Negotiation bytes

Specifically, there are three bytes in the negotiation process. The first byte is always 0xFF, which

indicates the beginning of the negotiation byte. 0xFF is called Interpret As Command (IAC)

byte. The second byte is the option code, which indicates whether you want to start or stop

performing a particular option. The option byte is the third byte, and it specifies a terminal

function or setting. Four different bytes can be used to turn on or off an option during the

negotiation process:

● 0xFE: Demand to stop (DON’T)

● 0xFD: Request to start using specified option (DO)

● 0xFC: Reject the proposed option (WON’T)

● 0xFB: Accept the proposed option (WILL)

Figure 2.5 The structure of the Telnet negotiation bytes (Musilová, 2020, 12)

Only if both devices agree to use the specified option is it enabled. By sending the 0xFD byte,

also known as the DO byte, to the other device, any device can propose to use any option. If the

other device wishes to use this option, it responds with the 0xFB byte, also known as the WILL

byte, indicating that it accepts the proposal. If the second device wants to reject the proposed

option, it sends the WON’T byte, meaning the 0xFC byte. By sending the 0xFE byte, also known

as the DON'T byte, to the client, any device can demand this option to turn off any previously

agreed upon option The other device must confirm this by sending the 0xFC byte, also known as

the WON'T byte, in order to disable the option. The structure of the negotiation byte is shown in

Figure 2.5 (Musilová, 2020).
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The subnegotiation process can begin once the specified option is enabled. The terminals

exchange detailed information or settings about each other during this process. The

subnegotiation process always begins with the 0xFF byte, which indicates the start of the

subnegotiation bytes, followed by the 0xFA byte. The specified option that was previously

turned on is the next byte, followed by any number of bytes. The meaning of those bytes is

determined by the option selected. The 0xFF byte is always followed by the 0xF0 byte in the

subnegotiation bytes. The subnegotiation bytes structure is shown in Figure 2.6 (Musilová,

2020).

Figure 2.6 The Structure of the Telnet Subnegotiation Bytes (Musilová, 2020, 12)

2.4.2 User data bytes

The user data bytes are all the bytes that do not belong to the negotiation or subnegotiation byte

structures, and they represent the interaction between two hosts. We can find everything the

client-side user typed on the keyboard, edited, and sent to the server, as well as all the server's

responses, among those bytes in the server-client oriented connection. The user on the client-side

interacts with the server by typing commands in the command line in server-client-oriented

communication. Every key pressed by the user is sent to the server to be processed. The majority

of the sent bytes are returned to the client, and they are only displayed on the screen of the user's

terminal window after they have been delivered to the client, as shown in Figure 2.7. The echo

bytes are all of the returned bytes. This is why, when a user is connected to a server located far

away from them, there may be a delay between pressing a key and seeing the character appear on

the terminal screen. There are some exceptions when the server does not send back the echo

byte, such as when typing a password or when sending special bytes (Musilová, 2020).
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Figure 2.7 Telnet Echo Bytes

Many PLCs are still managed by Telnet, despite the security issues with cleartext password

transmission are well known. In addition to the cleartext password issue, large character strings

passed to the PLCs username or password fields can cause the PLC to freeze or reload (Lewis &

Peterson).

2.5 IEC 60870-5-104
IEC 60870-5-104 provides network access for IEC60870-5-101 based on TCP/IP, which can be

used for basic remote-controlled tasks between control centers and substations. The IEC

60870-5-104 protocol, on the other hand, sends messages in plain text with no authentication

mechanism. In addition, the IEC 60870-5-104 protocol is based on TCP/IP, which has its own set

of cyber-security issues. As a result of the IEC/104 protocol, a proliferation of cyber

vulnerabilities in SCADA systems has emerged.

In Europe, China and many other non-US countries, the IEC/104 protocol is widely used in

SCADA systems. The Enhanced Performance Architecture (EPA) model, which belongs to the

application layer protocol, is given a transport and a network layer by IEC/104. A port number is

assigned to a TCP/IP-based application layer protocol. The IEC/104's standard port number is

2404, which can be used to write detection rules.

As shown in Figure 2.8, the IEC/104 application layer sends an Application Service Data Unit

(ASDU). The IEC/104 protocol defines Application Protocol Control Information (APCI) to

detect the start and end of the ASDUs because the transport interface does not define a start or

stop mechanism for the ASDUs of IEC 60870-5-101. The start character (68H), the Application

Protocol Data Units (APDUs) length field and the control field make up the APCI. Figure 2.9

shows how the APCI and ASDU combine to form the APDU. The APDU has a maximum length
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of 253 bytes, and the control field has a length of 4 bytes. The three types of control field formats

are I format, S format and U format, which are used to perform numbered information transfer,

numbered supervisory functions and unnumbered control functions, respectively (Yang et al.,

2013).

Figure 2.8 ASDU Structure Figure 2.9 APDU Structure

Potential cyber vulnerabilities and attacks from the physical layer to the application layer in the

IEC/104 protocol are as follows:

● Plaintext Mode Message Transmission: Information transmission between the control

center and substations is potentially vulnerable to eavesdropping, sniffing and tampering

as a result of data transmission in clear text in legacy SCADA systems. In each case, they

could be modified and then re-injected onto the communications infrastructure to

jeopardize the SCADA system's stability or security, possibly to facilitate further

intrusion at a later date.

● Lack of Authentication Mechanism: Malicious attackers could gain unauthorized

access to SCADA systems, compromise information integrity, and availability, and

launch spoofing, replay, and MITM attacks due to a lack of authentication for
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interrogation commands, remote control commands and remote adjustment commands.

This is a critical vulnerability because the lack of authentication allows for relatively easy

access to vulnerable points, potentially resulting in catastrophic damage and

compromised power system operation and safety.

2.6 IEC 61850 (GOOSE - MMS)
The IEC 61850 standard is frequently used in electric substation automation systems. Generic

Object Oriented Substation Events (GOOSE) and Manufacturing Message Specification (MMS)

are the two main protocols used by an IEC 61850 substation. The GOOSE protocol is an

Ethernet-based protocol. It uses the Generic Substation Event (GSE) service, which is part of the

IEC61850-7-2 communications standard, to provide fast and reliable multicast messaging. The

GOOSE protocol, which is based on Ethernet, does not include IP addresses.

When broadcast messages are sent from logical devices, the GOOSE protocol has a static

periodic transmission behavior. When no new events are triggered, the retransmission time

between GOOSE messages from a single logical device is usually set. When a new event occurs,

however, a new message is created and sent to the subscribed destination devices right away. The

subsequent transmission time increases exponentially until it reaches the usual rate again,

restoring the regular periodic retransmission status. When a new event occurs, a new message is

generated with the following actions: 1) GOOSE stNum value is incremented by one; 2) GOOSE

sqNum value is reset to zero; 3) GOOSE time value record is set to the current time; and 4)

GOOSE datSet value is modified.

Manufacturing Message Specification (MMS), an IP-based protocol, is the second

communications protocol commonly used in substation automation. To support peer-to-peer

communications in substation automation, MMS messages override the TCP/IP protocol;

however, IP addresses are contained in the headers of MMS packets. There are two message

transmission modes in MMS. Request/response communication between a client and server is

the first mode. The second mode is unsolicited communications, in which the server sends

periodic status updates or new event reports (Lahza et al., 2018).

Figure 2.10 depicts the IEC 61850 architecture and the range of uses of MMS and GOOSE

protocols.



25

Figure 2.10 IEC 61850 substation automation architecture (Yoo & Shon, 2015, 306)

2.7 DNP3
DNP3 was created in the early 1990s by Westronic, Inc. (now GE Harris). The protocol specifies

how SCADA devices exchange control commands and process data.

Between a control center (master unit) and outstation devices, DNP3 supports three simple

communication modes.

● Unicast transaction

A master sends a request message to an addressed outstation device, which responds with a reply

message in a unicast transaction.

● Broadcast transaction

The master sends a message to all outstations in the network in a broadcast transaction, but the

outstation devices do not respond to the broadcast message.
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● Unsolicited responses

Unsolicited responses from outstation devices are the third mode of communication; these

responses are typically used to provide periodic updates or alerts.

The DNP3 protocol is compatible with a wide range of network configurations. Figure 2.11

depicts three common configurations.

● One-on-One

One master and one outstation device share a dedicated connection, such as a dial-up telephone

line, in a "one-on-one" configuration.

● Multi-Drop

One master communicates with multiple outstations in the popular "multi-drop" configuration.

The master sends all requests to each outstation, but each outstation only responds to messages

addressed to it.

● Hierarchical

A device that serves as an outstation in one segment and a master in another is referred to as a

"sub-master" in a "hierarchical" configuration.

Figure 2.11 DNP3 Network Configurations (East et al., 2009, 69)
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Early SCADA architectures relied heavily on noisy and distorted communication circuits. As a

result, DNP3 was created with multiple protocol layers in mind. Based on the Open Systems

Interconnection (OSI) model, the International Electrotechnical Commission (IEC) proposed the

IEC 870 standard for telemetry data transmission in SCADA systems. The three-layer Enhanced

Performance Architecture (EPA) was created by removing unnecessary layers from the

seven-layer OSI model (from the perspective of SCADA systems) (Figure 2.12). EPA, on the

other hand, did not support application layer messages that were longer than a data link frame's

maximum length. DNP3 addressed this problem by including a pseudo-transport layer that

allowed for message fragmentation.

Figure 2.12 Design Progression From OSI to DNP3 (East et al., 2009, 70)

The DNP3 protocol layers sit on top of a physical layer that handles message transmission over

physical media like radio, satellite, copper and fiber. The electrical settings, voltage and timing,

as well as other properties required to send signals between devices, are determined by the

physical layer specification. Send data, receive data, connect, disconnect and status update are

the five services provided by the physical layer. Because the physical layer is not specified in the

DNP3 standard, it is shaded in Figure 2.12.

DNP3 can be transmitted using a variety of physical media, including serial links. Modern

SCADA systems, on the other hand, typically use DNP3 in IP networks. In IP-based

implementations, the DNP Users Group has mandated that the three layers of DNP3 remain
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unchanged. As a result, the three DNP3 layers in the protocol stack are placed directly above the

TCP/IP or UDP/IP layers (East et al., 2009).

Situational awareness and forensics are difficult to implement, because of the operational

requirements and reliance on embedded systems. Organizations that use ICS or Operational

Technology (OT) have high operational demands. That means system security and data integrity

are required for reliable operation.
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3 SCADA Networks & Honeypots

When the SCADA systems started to be developed security was not a concern, mainly because

the network was isolated from all other networks. As the industry grows, the demand for more

connectivity also increases. This resulted in SCADA systems connecting to other networks. This

makes them vulnerable to malicious attacks.

Introduction
Honeypots can be used on SCADA networks to identify attackers that threaten the integrity of

the system and analyze their purpose and behavioral pattern. In the following sections are

referenced honeypots and honeynets that have been developed for the purpose of diverting

attacks from SCADA systems.

3.1 SCADA Honeynet Project
Cisco Critical Infrastructure Assurance Group (CIAG) began the SCADA Honeynet Project in

2004 and ended it in 2005. It is made up of a series of Python scripts, each of which implements

a different service of the simulated PLC. Honeyd, a small daemon that creates virtual hosts on a

network, is heavily used in this project. The hosts can be set up to run any number of services,

and their personalities can be tweaked to make them appear to be running specific OSs. The

Honeyd daemon can be configured to act as a computer with a PLC's OS fingerprint and run

Cisco scripts on the appropriate ports. The Honeyd PLC simulates TCP/IP stack, Telnet, FTP,

HTTP, and Modbus TCP with the help of these scripts. In summary, these scripts appear

incomplete, the services are only partially implemented, and the implemented functionality is

neither realistic nor interactive. (Buza et al., 2014)

3.2 Digital Bond’s Honeynet
Digital Bond created this honeynet in 2006. It consists of two Linux-based virtual machines

(VMs). The first VM works as a PLC (Modicon Quantum PLC) honeypot and the second VM

runs the Honeynet Project’s Generation III honeywall, which is enhanced with Digital Bond’s

Quickdraw IDS signatures. The goal of the second VM is to keep track of all the network activity
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in order to detect and log any malicious attacks against the simulated PLC. The first VM, that

emulates a PLC, runs five services: HTTP, FTP, SNMP, Telnet and Modbus TCP. The FTP,

HTTP, and Modbus services are implemented using Java applications, while the Telnet and

SNMP services are implemented using Python scripts. The core of the VM is Honeyd, which is

responsible for the routing of the virtual host’s network traffic (the data streams and datagrams).

The Digital Bond’s SCADA Honeynet is a significant improvement over the Cisco Honeynet

Project. It is possible to fool scanning and information-gathering tools (such as nmap or nessus)

into thinking it is a real PLC using the returned service banners and OS fingerprint, making it

effective against automated attacks and tools. The simulated services, on the other hand, provide

very little interaction and may not be able to keep an attacker interested long enough to uncover

new targeted PLC attacks. Digital Bond’s Honeynet scripts are available on GitHub. (Buza et al.,

2014)

3.3 Conpot
In 2013 the Honeynet group released a honeypot for SCADA named Conpot. Conpot is a

low-interaction server-side ICS honeypot and supports a variety of SmartGrid use cases.

Conpot's ease of use, combined with simulated PLCs, is one of its most appealing features.

Conpot supports protocols such as Modbus TCP, HTTP, IEC104, FTP, TFTP, S7Comm, BACnet,

and SNMP, and it, like other honeypots, can keep track of attacks. It also supports a

Human-Machine Interface (HMI) via the HTTP server on TCP port 80 and can be configured to

display a page of one’s choosing (Scott & Carbone, 2014). Conpot is open source and can be

extended to emulate more complex SCADA systems. It can be installed using Docker or

Virtualenv. (Conpot Documentation, 2018)

3.4 Crysys PLC Honeypot (CryPLH)
CryPLH is a high-interaction honeypot that emulates a Siemens S7-300 PLC, with HTTP/

HTTPS, S7comm, and SNMP services running on a Linux host modified to accept connections

on specific ports. An abstract model of the CryPLH is shown in Figure 3.1. The TCP/IP Stack is

simulated using the Linux kernel, and the S7comm protocol is simulated by showing an incorrect

password response.
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HTTP/HTTPS implementation

HTTP is one of the most common Internet protocols, and it's also supported by the Siemens

Simatic 300 PLC. HTTPS (Secure HTTP) is an extension of the HTTP protocol. It is not a

stand-alone protocol; rather, it is a layering of HTTP over the SSL/TLS protocol. The device

makes use of a web server from the MiniWeb project, which was written in C to provide a small

HTTP server that is both efficient and portable. It also has a login procedure for gaining access to

the device (Buza et al., 2014).

SNMP implementation

Buza, Dániel István, et al. created a custom SNMP Agent on the honeypot device after a

thorough exploration of the Siemens PLC SNMP database and implementation. The Agent, like

the original SNMP service, listens on UDP port 161 and accepts and responds to SNMP requests

and responses. Rather than using real MIBs (Management Information Databases), it parses an

XML file containing a list of records found on the real PLC. These records all have an Object

Identifier (OID) and a type attribute. They either contain the static data they represent or a

special mark and string that instructs the interpreter on how to create or retrieve dynamic data

(Buza et al., 2014).

S7comm protocol implementation

A simulation of the S7comm protocol is implemented on the PLC honeypot with a python script.

The communication is going through PLC’s TCP port 102. In (Buza et al., 2014) it is described

that the PLC requires a password to make changes to it. And they decided to simulate this

behavior with the exception that every time a password is entered, the PLC would respond with

an invalid message (Buza et al., 2014).
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Figure 3.1 The abstract model of the CryPLH honeypot (Buza et al., 2014)

3.5 SHaPe
SHaPe (Scada HoneyPot) is a low-interaction honeypot that can be used on substation

automation systems. Specifically, it can simulate Intelligent Electronic Devices (IEDs) that are

compatible with the IEC-61850 MMS communication over TCP/IP connection. The SHaPe

honeypot does not handle generic substation events based on GOOSE or transmission of sampled

values that are mapped to other protocol stacks according to IEC 61850. SHaPe, on the other

hand, supports and executes all IEC 61850 services mapped to MMS. The state of the emulated

IED will be updated if a service creates, modifies, or deletes an object.

SHaPe can be used to simulate a specific type of IED. SHaPe, on the other hand, can run

multiple copies of the emulated IED, each with its own IP address. In this way, SHaPe makes it

simple to increase the number of monitored IP addresses and, as a result, the attack surface

associated with a specific type of IED (Kołtyś & Gajewski, 2015).

SHaPe is a GPLv3-licensed open-source project. It is linked to the open-source projects

libiec61850 and Dionaea. libiec61850 is a C library that implements the IEC 61850/MMS and

IEC 61850/GOOSE communication protocols as a server and client. To handle IEC 61850

communication, SHaPe uses a modified version of libiec61850. Dionaea is a versatile honeypot
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that can be easily customized with third-party modules. SHaPe is implemented as a Dionaea

module (The SHaPe Project Website).

3.6 S7commTrace
S7commTrace is a honeypot based on the S7 protocol. This protocol is running on PLCs of

Siemens S7-300, 400, 1200 and 1500 series. S7commTrace consists of four modules, TCP

Communication module, S7 Communications Protocol Simulation module, Data Storage module

and User Template, as shown in Figure 3.2. The TCP communication module listens on port 102,

transmitting incoming data to the S7 protocol simulation module and responding to the remote

peer. The simulation module parses the received data and creates a reply according to the User

Template. And the reply is submitted to the TCP Communication module to be packaged. The

Data Storage module handles the data storage requests (Xiao et al., 2017).

Figure 3.2 Module of S7commTrace (Xiao et al., 2017, 416)

3.7 HoneyPLC
HoneyPLC is a high-interaction, malware-collecting honeypot for ICS. It simulates TCP/IP,

HTTP, SNMP and S7comm protocols. HoneyPLC consists of four modules, as shown in Figure

3.3. The PLC Profile Repository, the Integration Framework, the Network Services and the

Interaction Data modules.
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Figure 3.3 The architecture of HoneyPLC (López-Morales et al., 2020, 283)

The PLC Profile Repository contains several PLC profiles. These profiles have information on

real-life PLCs. In the initial setup of the honeypot, a profile is chosen to be simulated. After the

initialization of the HoneyPLC, when initial contact is established, the HoneyPLC's Personality

Engine (in Integration Framework module), which is based on features provided by the Honeyd

tool, will handle all TCP/IP requests.

Depending on the attacker’s approach, the appropriate simulated protocol, in the Network

Services module, responds to them. For example, if they try to initiate an S7comm connection,

the S7comm server replies with the requested information, which is forwarded to the attacker by

the Integration Framework. Meanwhile, the S7comm server records all communications,
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including the attacker's source IP address and memory block requests to the HoneyPLC

repository, which is managed by the Interaction Data module. (López-Morales et al., 2020)

HoneyPLC is available for download on GitHub.

3.8 DiPot
DiPot is a distributed industrial honeypot system. Its architecture consists of three components:

Honeypot Node (HN), Data Processing Node (DPN) and Management Node (MN).

Honeypot nodes are based on an extended version of Conpot, and it is used as an interface with

the outside world and potential attackers.

Raw log files are forwarded by HNs to the Data Processing Node (DPN), which filters them,

removes duplicate data, and applies a custom format. The output is saved in the DPN's central

database. Meanwhile, the node clusters the formatted logs for each HN separately using the

k-means algorithm based on timestamp, source IP, protocol, and function/slave Identifier.

Finally, the DPN sends its output to the Management Node, which displays data in an

easy-to-understand format. HNs are plotted on a world map based on their location, and

information about each HN is organized according to the classification criteria mentioned above

(Dalamagkas et al., 2019).

In Table 3.1 is shown the summary of the mentioned honeypots.

Name Supported
Protocols

Open-source Extensibility Dockerized Support

Low-interaction Honeypots

SCADA
Honeynet
Project

HTTP, FTP,
TCP/IP, Modbus
TCP, Telnet

Yes No No No, Last
updated
in 2005

Digital Bond’s
Honeynet

HTTP, FTP,
Modbus TCP,
Telnet, SNMP

Yes No No No

Conpot HTTP, FTP, TFTP,
Modbus TCP,
SNMP, S7comm,
IEC/104, BACnet

Yes Medium Yes Yes
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SHaPe IEC 61850-MMS Yes Medium No No, Last
updated
in 2015

DiPot HTTP, Modbus
TCP, SNMP,
S7comm

No Medium No Unknown

High-interaction Honeypots

CryPLH HTTP/HTTPS,
SNMP, S7comm

No No No Unknown

S7commTrace S7comm No Medium No Unknown

HoneyPLC HTTP, TCP/IP,
SNMP, S7comm

Yes High No No, Last
updated
in 2020

Table 3.1 Summary of the mentioned honeypots



37

4 Modern Automatic Deployment Methods

4.1 Historical Background
Software deployment has improved over the last three decades, which is essential in a world

where people are increasingly living and working online. Chronologically deployment methods

can be divided into three eras. In the traditional deployment era, the virtualized deployment era,

and the container deployment era.

Traditional deployment era

Organizations used to run applications on physical servers. Developers would program multiple

versions of the same application if they wanted to create applications that worked on different

setups, and they would often need direct access to the machine to install the software. It's easy to

see how this could be time and money-consuming. Users could only access the software from the

physical machine or, in some cases, from a network connection even after a successful

deployment. Another disadvantage of apps that run directly on the physical machine is the

potential for the software to have a negative impact on the machine, such as using excessive

amounts of resources or causing software problems due to bugs or other unforeseen interactions

with the operating system.

Figure 4.1 Traditional Deployment

Virtualized deployment era

The above problems were partially solved with the use of Virtual Machines (VMs). With

virtualization, physical hardware turned into software components enabling us to run multiple
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VMs on a single physical server’s processor. Each VM has its own hardware and operating

system. This is possible thanks to Hypervisor, which converts physical resources into virtual

counterparts. Hypervisor is a piece of software that allows one host computer to support multiple

guest VMs by sharing its resources virtually.

Virtualization isolates applications between VMs and increases security by preventing one

application's information from being freely accessed by another. Virtualization also improves

resource utilization on a physical server, compared to the traditional deployment method,

improves scalability by allowing applications to be easily added or updated, and lowers hardware

costs. But, as it is shown in Figure 4.2, an OS must be installed in every VM to be operational,

which means that a lot of physical resources are utilized to deploy a limited amount of

applications.

Container deployment era

Containerization was created to address the drawbacks that were mentioned above.

Containerization is a type of OS virtualization in which applications are run in isolated spaces

called containers while all sharing the same OS. Compared to VMs, containers have less strict

isolation properties, allowing applications to share the same OS. As a result, containers are

considered light and portable across OS and cloud distributions, because they are decoupled from

the underlying infrastructure, as shown in Figure 4.3.
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Figure 4.2 Virtualized Deployment Figure 4.3 Container Deployment

4.2 Introduction to Container Technology
An application usually consists of a number of components. If the components are small in

number and large then it is acceptable to run each component to a dedicated VM and isolate their

environments by giving each one its own instance of the OS. But when the components become

smaller and larger in number, it requires more VMs in order to run an application.,which

increases the hardware cost and likely the amount of staff needed to operate a large amount of

VMs.

Rather than using virtual machines to isolate each microservice's environment, developers are

using Linux container technologies. Containers enable us to run multiple services on the same

host machine while isolating them from each other, but with far less cost.

A containerized process, like all other processes, runs inside the host's operating system.

However, the container process remains isolated from other processes. From the process’

perspective, it appears to be the one running on the machine and in the OS.

Docker Container Platform

The Docker container platform is the most widely known and used by developers. Docker was

the first container system that allowed containers to be easily moved between machines. It made
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it easier to package not only the application but also all of its libraries and other dependencies, as

well as the entire OS file system, into a simple, portable package that could be used to provision

the application to any other Docker-enabled machine.

When a Docker-based application is executed, it sees the exact filesystem contents that its

developer has included with it. It sees the same files whether it’s on the development machine or

a production machine, even if the production server is running a different Linux distribution.

This is analogous to generating a VM image by installing an OS, installing a program in it, and

then distributing and running the entire VM image. Instead of employing VMs to accomplish

application isolation, Docker employs Linux container technologies to provide almost the same

level of isolation as VMs.

The process of creating and deploying a Docker image is as follows. At first, the developer

builds an image of their application, containing all of its dependencies in the container

filesystem, and then pushes it to the Docker registry. Anyone who has access to this specific

image can pull it to any Docker-enabled system. Docker uses the image to create an isolated

container that runs the binary executable specified in the image. In Figure 4.4 is shown the above

process.

Figure 4.4 Development and Deployment of Docker images (Luksa, 2017, 13)
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4.3 Introduction to Kubernetes
Kubernetes is a software platform for easily deploying and managing containerized applications.

It uses Linux container features to run heterogeneous applications without having to know any

internal details about them or manually deploying them on each host. Kubernetes allows you to

run containerized applications across thousands of computer nodes as if they were all part of a

single massive computer. It abstracts away the underlying infrastructure, making development,

deployment, and management easier for development and operations teams alike. Using

Kubernetes to deploy applications is the same whether your cluster has a few nodes or thousands.

It does not matter how big the cluster is. Adding cluster nodes simply increases the amount of

resources accessible to applications that have been deployed.

A Kubernetes system consists of a master node and any number of worker nodes. Kubernetes

deploys applications to the cluster of worker nodes after the developer submits a list of

applications to the master. It makes no difference to the developer or the system administrator

which node a component lands on. If it is specified by the developer many applications can be

deployed on the same worker node. Otherwise, the applications will be dispersed across the

cluster.

Kubernetes functions as a cluster’s OS. It frees application developers from needing to build

infrastructure-related services within their apps. And with this developers can focus on the

application’s functionality and features.

The infrastructure-related services that Kubernetes provide are the following.

● Service discovery and load balancing: It can expose a container to a network or the

open internet using an IP address or a DNS name. Kubernetes also load balances

automatically the traffic between the deployed containers, to achieve system stability.

● Storage orchestration: A variety of storage systems can be mounted on Kubernetes like

local storage, or cloud storage.

● Automated rollouts and rollbacks: Kubernetes allows you to specify the desired state

for your deployed containers, and it can change the actual state to the desired state at a set

rate.

● Automatic bin packing: Depending on the system's resources and a cluster of nodes that

are provided to Kubernetes, it can deploy containers efficiently.
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● Self-healing: The user can define health checks that work as instructions to Kubernetes

to restart, replace or kill containers and divert the traffic from them, in case they fail.

● Secrets and configuration management: Kubernetes can be used to store and manage

sensitive data like passwords, OAuth tokens, and SSH keys. Without rebuilding container

images or exposing secrets in the stack configuration, the user can deploy and update

secrets and application configuration.

4.4 The Architecture of a Kubernetes Cluster
A Kubernetes cluster consists of two types of nodes. The master node and the worker nodes. The

master node hosts the Kubernetes Control Plane, which is responsible for controlling and

managing the whole Kubernetes system and the worker nodes run the applications that have been

deployed.

The Control Plane

The Control Plane is in charge of managing and operating the cluster. It is made up of several

components that can run on a single master node or be distributed across numerous nodes and

duplicated for high availability. Control Plane’s components are

● The Kubernetes API Server: It enables the administrators to communicate with the other

Control Plane components.

● The Scheduler: It schedules the applications.

● The Controller Manager: It is in charge of cluster-level functions like replicating

components, keeping track of worker nodes, and handling node failures.

● etcd: It is a dependable distributed data storage that stores the cluster configuration

indefinitely.

The Worker Nodes

The worker nodes, as stated above, run the containerized applications. The following

components are responsible for running, monitoring, and providing services to the deployed

applications.

● The container runtime: It runs the containers.

● The Kubelet: It manages containers on its node and communicates with the API Server.
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● The Kubernetes Service Proxy: It is in charge of the load-balancing between application

components.

4.5 Deployment Process
Deploying an application in Kubernetes is generally achieved in three steps. First, the developer

needs to package one or more container images, then push those images to an image registry.

And finally, post the application description file to the Kubernetes API server. This file is usually

a JSON or a YAML file.

The description includes details like the container image or images that contain your application

components, how those components are related to one another, and which ones must be run on

the same node and which do not. We can also specify how many replicas we want to run for each

component. Furthermore, the description specifies which components provide a service to either

internal or external clients and should be exposed via a single IP address and made discoverable

by the other components.

The Scheduler schedules the specified groups of containers onto the available worker nodes

when the API server processes the application's description, based on the computational

resources required by each group and the unallocated resources on each node at the time. The

Container Runtime (e.g. Docker) is then instructed by the Kubelet on those nodes to pull the

required container images and run the containers.

Figure 4.5 shows a simplified overview of the Kubernetes architecture and an example of

application deployment. In this example, the application descriptor lists four containers, grouped

into three sets, that are called pods. A pod is a co-located group of containers and represents the

basic building block in Kubernetes. Each of the first two pods has only one container, whereas

the last one has two. That means both containers must run in the same location and should not be

isolated from one another. A number appears next to each pod, indicating the number of replicas

of that pod that must run in parallel. Kubernetes will schedule the specified number of replicas of

each pod to the available worker nodes after receiving the descriptor. The Kubelets on the worker

nodes will then instruct Docker to download and run the container images from the image

registry.
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Figure 4.5 A Basic Overview of the Kubernetes Architecture and an Application Running on
Top of It. (Luksa, 2017, 20)

4.6 Helm Charts
At this point Helm Charts should be mentioned because they will be referred later. Helm is a

package manager for Kubernetes. Helm is an open-source project that was originally developed

by Deis Labs and is now maintained by Cloud Native Computing Foundation (CNCF). Helm

was created with the intention of giving users a better way to manage all of the Kubernetes

YAML (description) files that they create on Kubernetes projects. Helm developed Helm Charts

as a means of resolving the description file management problem. Each chart is a collection of

one or more Kubernetes manifests; a chart can also have child and dependent charts. When we

run the install command for the top-level chart, Helm installs the entire project's dependency

tree.

The Kubernetes project’s goal is to manage your containers, but it cannot use template files.

Helm gives us the ability to create template files and add to them variables and functions. These

files are truly generic and can be used across large teams or organizations to deploy scalable

applications where their parameters can be changed at any time.
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5 HoneyChart

The use of cloud-based services and IoT devices in an industrial environment has increased

significantly. This might result in an increased exposure of industrial networks to the internet,

with an increased likelihood of an attack to the network. As mentioned previously (Section 1, p.

7), honeypots can provide early detection of unauthorized network activity and this along with

the Kubernetes orchestration system, we are able to deploy containerized honeypots timely,

efficiently and with low resource cost.

To make the deployment process easier and faster, we developed the HoneyChart solution.

HoneyChart is a tool for creating Helm Charts (Section 4.6, p. 44) of containerized honeypots.

The charts are able to contain descriptions and deployment instructions for a single honeypot or

multiple ones. The creation of the honeypot charts is made via the HoneyChart web application.

The application’s front-end was developed in HTML, CSS and Javascript and the back-end was

built with Node.js (About Node.js, 2022).

5.1 Home Page
When entering the home page of the application, the user has two options to pick from. Custom

Honeypots and Prebuild Interfaces. The Custom Honeypots option lets us create custom Helm

Charts by using the available honeypots on the platform. The Prebuild Interfaces gives us the

option to select prebuilt honeypot Helm Charts that can simulate for example PLC

communication protocols or Microsoft Windows protocols. In Figure 5.1 is shown the

application’s home page.
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Figure 5.1 Home Page

5.2 Custom Honeypots Page
On the Custom Honeypots page, the user first chooses which honeypot is going to use. At the

moment there are three available honeypots on the platform. Conpot (Honeynet/conpot - Docker

Image), Cowrie (Cowrie/cowrie - Docker Image) and Dionaea (Dinotools/dionaea - Docker

Image), which are open-source, containerized and available for download from the Docker

platform (Section 4.2, p. 39). After choosing the honeypot, the user can enable/disable the

available protocols of the honeypot as shown in Figure 5.2. Also, they can select which

Kubernetes ServiceType they prefer for their deployment (Nodeport or LoadBalancer). Table 5.1

details all the available Kubernetes ServicesTypes. And in the two final fields the user fills in the

number of replicas and the file path for the honeypot logs. Figure 5.2 shows the form that was

described above.

After filling the form and pressing the “Add” button the application performs a series of

validations to make sure that the user’s options are in order. If there is an error, the application

will inform the user, an example is shown in Figure 5.3. Otherwise, the user has the option to add

more honeypots to the chart, or finish the process by pressing the “Create” button. The final step

is depicted on Figure 5.4. If they choose to add more honeypots to the chart, they just have to

follow the previous steps again. Otherwise, the chart gets downloaded to the user’s computer and

they can now deploy it on their Kubernetes cluster.

With the options that HoneyChart provides, the user can combine services from different

honeypots to build certain profiles. In an industrial environment, it is possible to create a

honeypot profile that emulates an industrial device, e.g. PLC, to attract attackers away from
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critical industrial devices. And by combining HoneyChart and Kubernetes, the honeypot

deployment becomes a fast and easy process.

Figure 5.2 Custom Honeypots Form Figure 5.3 Example With False IP
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Figure 5.4 Final Step Before Chart Creation

Kubernetes ServiceTypes

Kubernetes ServiceTypes allow you to specify the type of Service you want. With ClusterIP
being the default value.
These ServiceTypes are

● ClusterIP: Exposes the Service on a cluster-internal IP. Choosing this value makes the
Service only reachable from within the cluster. This is the default ServiceType.

● Nodeport: Exposes the Service on each Node's IP at a static port (the NodePort). A
ClusterIP Service, to which the NodePort Service routes, is automatically created.
You'll be able to contact the NodePort Service, from outside the cluster, by requesting
<NodeIP>:<NodePort>.

● LoadBalancer: Exposes the Service externally using a cloud provider's load balancer.
NodePort and ClusterIP Services, to which the external load balancer routes, are
automatically created.

● ExternalName: Maps the Service to the contents of the externalName field (e.g.
foo.bar.example.com), by returning a CNAME record with its value. No proxying of
any kind is set up.

Table 5.1 Kubernetes ServiceTypes (Service, 2022)
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5.2.1 How It Works

Overall the Custom Honeypots page is divided into three sections. The dropdown menu where

the user selects a honeypot, the honeypot options and the information panel (Figure 5.5).

Figure 5.5 Custom Honeypots Page Sections

Initially the only section that is visible is the dropdown menu. After the user selects a honeypot,

the page loads on the honeypot options section the corresponding options. The honeypot options

section is divided into six sections. The name, the services, the Kubernetes ServiceTypes,

replicas, the logs path and the “Add” button (Figure 5.6). If the user is in the process of adding

the first honeypot to the Helm Chart, then all six sections are shown. Otherwise the name,

replicas and ServiceTypes sections are hidden. The reason for this design is that the user needs to

fill these sections only once.

In the name section, the user can choose the name for their Helm Chart. Although some

constraints were added. They can only type 3 to 20 letters, numbers and hyphens (-). The user

can mouse-over on the question mark, next to the name field, to get informed about this

constraint.
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Figure 5.6 Honeypot Options Sections

In the services section, the user can enable or disable the services that they need from the

selected honeypot. They can do this by clicking on the corresponding switches. By enabling a

service, automatically the text field next to it becomes enabled and by default it contains the

most common port that it is used for the selected service. If the user needs more information

about the service, they can click on the question mark and they will be redirected to an

information page.

The ServiceType section has two options, Nodeport and LoadBalancer (Table 5.1). If the user

selects Nodeport, they do not need to fill the IP (Internet Protocol) address field. If they select

the LoadBalancer option, then they must fill the IP address field using the IPv4 format (IBM,

IPv4 and IPv6 address formats). The question mark next to the ServiceType options redirects the

user to an information page that explains all the Kubernetes ServiceTypes.

In the replicas section the user can specify how many replicas of the Helm Chart that they need.

The allowed range of values is from 1 to 100. This information can be seen by hovering over the

question mark next to the replicas text field.

Logs path allows the user to specify in which directory the honeypot logs will be extracted, on
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the Control Plane (master node).

After the user fills the necessary fields and clicks the “Add” button, the process of validation and

the creation of the Helm Chart structure begins. At first the program initializes the data structure

that will be used to hold all the information that the user filled in the honeypot options. The data

structure is shown in Figure 5.7.

Figure 5.7 Custom Honeypot Data Structure

Afterwards the program checks every service switch. For every switch that it is enabled, the

program will check the validity of the user-defined port number. This was achieved with the use

of a regular expression (Table 5.2), which allows integer values that range between 1 and 65535.

Port numbers are 16-bit unsigned integers, which means that they range from 1 to 216 - 1 (Port

(Computer Networking)). If the value is invalid, then an error message is shown “Invalid port

number”. If it is valid, then the program pushes the service information to the corresponding

honeypot services array in the following form: <service name>:<port number>. It also pushes the
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container port to the containerports array. The container port number is predefined by the

creator(s) of each honeypot. This information can be found in the docker-compose.yml file in all

honeypot docker images that are available on Honeychart. Also the program pushes into the

protocols array the corresponding communication protocol, either TCP (Transmission Control

Protocol) or UDP (User Datagram Protocol). During the service registration, we keep count of

how many services are enabled. If they are zero then an error message is shown “Please select at

least one service”. Otherwise the program continues to the next step.

If this is the first honeypot addition, then the name, service type and replicas get validated and

added to the chart's data structure. The name of the chart gets validated by using a regular

expression (Table 5.2). The regular expression only allows 3 to 20 letters, numbers and hyphens

(-). This constraint was created because the name of the Helm Chart is used on certain

commands when the program creates the Chart. Which means that if a malicious user finds out

how the program works, then they can use the name field to execute commands of their

choosing. If the name is invalid, then an error message is shown “Chart name must contain only

3 to 20 letters, numbers or '-' ”. Otherwise the name gets added to the data structure.

The number of replicas gets validated with a regular expression (Table 5.2). The allowed values

are integers ranging from 1 to 100. This constraint was created based on the available resources

of the Kubernetes cluster. If the number is invalid then an error message is shown “The number

of replicas can be from 1 to 100”. If it is valid, then the number gets added to the data structure.

Name Regular Expression

Helm Chart Name [a-zA-Z0-9-]{3,20}

Port Numbers [1-9]|[1-9][0-9]{1,3}|[1-5][0-9]{4}|6[0-4][0-9]{3}|65[0-4][0-9]{2}|655[0-
2][0-9]|6553[0-5]

IP Address (([1-9]?\\d|1\\d\\d|2[0-5][0-5]|2[0-4]\\d)\\.){3}([1-9]?\\d|1\\d\\d|2[0-5][0-5]
|2[0-4]\\d)

Replicas ([1-9]|[1-9][0-9]|100)

Table 5.2 Regular Expressions Used in the Program

The program checks if the user chose Nodeport or LoadBalancer as a ServiceType. If they have

selected Nodeport, then the program sets the data.service.type variable to “Nodeport” and the
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data.service.lbIp variable to null. Otherwise if the user has selected LoadBalancer, then the

program validates the IP address by using a regular expression (Table 5.2). This regular

expression follows the IPv4 format (IBM, IPv4 and IPv6 address formats). If the IP is invalid

then an error message is shown “False IP Address”. If the IP address is valid, then the variable

data.service.type gets set to “LoadBalancer” and the variable data.service.lbIp gets the value of

the user-defined IP address. In case the user did not pick any service type then an error message

is shown “You must choose service type (Nodeport/LoadBalancer)”. At this point the program

has all the general information of the Helm Chart and it can be shown on the page.

The information panel shown in Figure 5.5 is divided into two sections. The General Information

section and the Honeypot Information section (Figure 5.8). The General Information section

presents the name of the Helm Chart, its ServiceType and the number of replicas. The Honeypot

Information section shows all the services that the user selected and the logs path.

Figure 5.8 Chart Information
After showing the general information, the program pushes in the array data.honeypots.names

(Figure 5.7) the name of the selected honeypot (e.g. “conpot”). This array is useful for the
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creation of the Helm Chart in the backend. Then we push the logs path to the

data.honeypots.<honeypot name>.volumes array.

Now that we have all the necessary information for the first honeypot addition, the program

shows the Honeypot Information on the Information Panel. In case the user wants to add more

honeypots they can select one from the drop down menu and repeat the previous steps without

having to name the chart, select the service type, and replicas. Otherwise they can click the

“Create” button to send the filled data structure to the backend and begin the process of Helm

Chart creation.

5.2.2 The Creation of the Helm Chart

The process of the Helm Chart creation begins after the user has clicked on the “Create” button.

Then the data structure (Figure 5.7) gets converted to a JSON string on the frontend and with a

POST request (POST - HTTP | MDN, 2021) the program sends the JSON string to the backend.

When the server receives the JSON string, it validates the name of the Helm Chart for security

purposes. Afterwards the program initializes the generic_values (Figure 5.9),

generic_deployment (Figure 5.10), and generic_service (Figure 5.11) data structures. The

process continues with specifying the logs path for both the container and the worker node.

Depending on the selection of honeypots made by the user, the program fills out values, services

and deployment data to the corresponding data structures. Then we create three YAML files,

values.yaml, deployment.yaml and service.yaml using the three data structures (generic_values,

generic_deployment, and generic_service).

Now that we have all the needed information, the program executes the command helm create

<Helm Chart Name> (Helm Create, 2022). This command creates a chart directory with all of

the necessary files and directories, an example is shown in Figure 5.12. Then the program moves

the values.yaml file to the chart’s root directory and the deployment.yaml and the service.yaml to

the templates directory. To make sure that the server has access to the Helm Chart directory, the

program executes the command chmod -R 770 <Helm Chart Name> (MacKenzie & Meyering,

2007). When the chart directory is ready the server creates a zip file from the directory using the

command: zip -r <Helm Chart Name> .zip <Helm Chart Name> (Zip(1): Package/compress

Files - Linux Man Page, 2007) and then the server sends the zip file to the client as a response.
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Figure 5.9 generic_values Figure 5.10 generic_deployment
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Figure 5.11 generic_service

Figure 5.12 Helm Chart Directories Example (Helm Create, 2022)

5.3 Prebuild Interfaces Page
At the prebuild interfaces page the user can select specific setups from a dropdown menu and

then choose the service type and set the number of replicas and the honeypot log path (Figure

5.13). Prebuilt Interfaces were created in case a user does not know which honeypot services

they need from it.
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Figure 5.13 Prebuild Interface Options Example

Every available interface is created in the form of a JSON file. The file contains the name of the

chart, the names of the honeypots that will be used, a default logs path, the services, the

container ports, the protocol type for every service that is going to be used and a string that

contains a description of the honeypot’s services. Figure 5.14 shows the Siemens PLC JSON file

that is used in this example. After the user has selected the prebuilt interface, the service type, the

number of replicas and the log path they must click confirm to move to the next step of the

process.

Figure 5.14 Siemens PLC JSON file
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Prebuild Interfaces page follows the same principles as the Custom Honeypots page. First the

program initializes the data structure shown in Figure 5.7. Afterwards it checks the ServiceType.

If the LoadBalancer is selected then it validates the IP address. The program then fills the

ServiceType and the IP address (if applicable) to the data structure. Next it validates the replica

number and registers the number to the data structure. Finally, it fills the logs path in the data

structure.

When the data structure is ready then the chart information gets displayed on the page (Figure

5.15). With the information panel the user can review their choices and then they can click

Create to finish the chart creation. The chart creation process is the same as the custom build

option.

Figure 5.15 Prebuild Interfaces Information Panel
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5.4 Deployment Example
In this example we are creating a chart for Conpot. Conpot, as mentioned previously (Section

3.3, p. 30), is an ICS/SCADA honeypot. Table 5.3 shows which ports are going to be exposed

after deployment. These ports were selected for demonstration purposes. In case we wanted to

simulate an industrial device like Siemens S7-300/400 PLC we would have enabled the

following protocols (Which Types of Connection/protocols Do the S7-300/400 CPUs and the CPs

Support by Default?, 2009).

● FTP

● S7Comm

● Modbus TCP

● EtherNetIP

The ServiceType in this example is LoadBalancer and we are deploying a single replica.

Port Protocol

21/TCP FTP

69/UDP TFTP

102/TCP S7Comm (iso-tsap)

161/UDP SNMP

502/TCP Modbus TCP (mbap)

623/UDP IPMI (asf-rmcp)

44818/TCP EtherNetIP (enip)

47808/UDP BACnet

Table 5.3 Conpot Exposed Ports

After the creation of the chart the user can download it and they can deploy it on their

Kubernetes cluster. The file is downloaded in ZIP format. After extraction, the chart can be

deployed using the installation command of Helm: helm install (Helm Install, 2022). In this

example the name of the chart is conpot-chart.
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user@master-node:~$ helm install conpot-chart conpot-chart

After running the above command the Kubelet on the worker node will instruct Docker to

download and run the Conpot’s container image from the image registry. To check if the pod is

running we can run the kubectl get pods command (Kubectl Reference Docs, 2022). In Figure

5.16 is shown the result.

user@master-node:~$ kubectl get pods

Figure 5.16 Result of kubectl get pods

When the pod is ready we can run kubectl get services to display additional information about

the running pods, such as ServiceType, Cluster-IP, External-IP, exposed ports, and the amount of

time the pod is running. In Figure 5.17 is shown the result of the command. The external IP is

blurred for security reasons.

user@master-node:~$ kubectl get services

Figure 5.17 Result of kubectl get services

Now that we know that the pod is running properly on the Kubernetes cluster, we can scan the

external IP using the Nmap scanning tool. Nmap stands for Network Mapper and it is an

open-source Linux command-line tool for scanning IP addresses and ports in a network (Nmap,

2022). To scan the exposed ports we used the following commands. Figure 5.18 depicts the

summary of all the executed Nmap commands.
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For TCP ports

user@pc:~$ nmap -sS -p <port number> <network IP address>

For UDP ports

user@pc:~$ nmap -sU -p <port number> <network IP address>

Figure 5.18 Result of Nmap Commands

With the above results we confirmed that the exposed ports are indeed open to the outside world.

5.5 Log Management and Visualization
After deploying a honeypot container, with every interaction it logs information about it like

● Timestamp

● Source IP and port (Attacker)

● Destination IP and port (Target System)

● Information Message

These logs are stored in both the container and the worker node. The worker node logs remain

stored regardless if the container stops working.

For the management and visualization of logs we used the ELK Stack. ELK is an acronym

describing three open-source projects - Elasticsearch, Logstash, and Kibana. Afterwards Beats

open platform was added to the Stack (The ELK Stack: From the Creators of Elasticsearch,

2022). We used the ELK Stack, because its components provide a complete solution for log
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management and visualization. In our system the logs are harvested by running Filebeat on the

worker node. Filebeat reads each log file line by line and sends the content to the master node.

The output from Filebeat goes to Logstash, where the logs get converted, and filtered. Logstash

also deciphers geographical coordinates from IP addresses, which is useful information for the

presentation of statistics. To store the converted logs we used Elasticsearch and to visualize the

data we used Kibana.

From the Kibana visualization we can extract useful information. For example, which port was

attacked the most, and knowing that we can investigate the reason for the attack and the methods

used by the attacker. After determining the type of attack, the administrators can take steps to

close the hole that allowed the exploit to occur. Also the source location of the attack is useful,

because this information shows whether the attack originated from the organization’s network or

somewhere else.

Figures 5.19 and 5.20 show two examples of Kibana visualization. Figure 5.19 shows how many

times an exposed port has been contacted by an outside source. This information can help us

identify which protocols are attacked the most. In our case FTP seems to be mostly attacked

followed by S7comm. It is logical for the FTP to be attacked the most because a malicious actor

can use FTP to extract files from our system, or send malicious software to it. As for the

S7comm protocol, attackers can use it to extract information from the network’s PLCs, or control

them remotely to sabotage the system. By having this information, we can take measures to

increase the security of these particular protocols on our real system.

Figure 5.20 shows the total number of interactions and which countries they originated from.

This information is derived from the source IP address and can be used either for research

purposes or for identifying insider attacks.
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Figure 5.19 Number of Recorded Port Interactions

Figure 5.20 Number of Recorded Interactions Based on Geographical Coordinates
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5.6 System Architecture
Now that the Honeychart solution has been described in the previous sections, the system

architecture can be summarized. To deploy and test the available honeypots (Conpot, Dionaea

and Cowrie) and to collect their logs, we used a Kubernetes cluster with a single worker node

(Section 4.4, p. 42).

On the worker node is installed a load-balancer named MetalLB. MetalLB is an open-source

load-balancer implementation for bare metal Kubernetes clusters (MetalLB - GitHub, 2020). This

load balancer was needed because Kubernetes does not provide an implementation of network

load balancers. Which means that Kubernetes itself cannot expose a service or an application to

the outside world. MetalLB directs the network traffic to the honeypot container.

When an outside source comes in contact with the honeypot container, the honeypot logs this

interaction in a directory inside the container and in a directory in the worker node file system.

Then Filebeat (Section 5.5, p. 62) reads these logs and sends them to the master node.

On the master node is installed the rest of the ELK Stack (Section 5.5, p. 61). The output of

Filebeat goes to Logstash and the output of Logstash gets stored in Elasticsearch. And finally

Kibana visualizes the logs as shown in Figures 5.19 and 5.20 (Section 5.5, p. 63).

The system architecture, that is described above, is shown in Figure 5.21.

Figure 5.21 System Architecture
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6 Conclusion
In this work is presented how honeypots can be used to protect ICS/SCADA networks and how

they can be easily deployed using modern methods. By simulating the most frequently used

communication protocols in industrial networks, ICS honeypots can protect these networks on

different levels. They can be fully interactive with the attacker (high-interaction honeypots)

because they contain a fully functional OS making the attacker believe that they are using the

actual system. Or they can emulate certain services (low-interaction honeypots), without the

complete functionalities of an OS.

Nowadays with container technology and Kubernetes, the deployment of applications is easier

than before. All that is needed is a Kubernetes cluster, a containerized application, and a

description file (container manifest). After deploying the application, Kubernetes takes care of

the service discovery and load balancing. It also makes sure that the application is always

running, by restarting the pod in case of a failure. And completely isolates running applications

from each other. The last feature is very important, especially when a honeypot is deployed in the

cluster.

With the HoneyChart solution (Section 5, p. 45) we achieved fast and automatic deployment of

honeypots in a network. Giving the user the ability to choose which communication protocols to

enable on a honeypot, they can build industrial device profiles so that the honeypot will behave

like an actual factory network device and deceive possible attackers. And finally, using the logs

that the honeypots provide, we can investigate the motives of the attacker and their methods and

also whether the attack originated from inside the network or outside. With this information we

can make our system more secure.
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