
Technical University of Crete
School of Electrical and Computer Engineering

Diploma Thesis

Motion Capture Generation From
Videos Through Neural Networks

Author

Kyriakos Christodoulidis

Chania, September 14, 2022

Thesis Committee

Professor Aikaterini Mania (Supervisor)
Associate Professor Georgios Chalkiadakis

Professor Michail G. Lagoudakis

Thesis

Περίληψη

Οι μέθοδοι λήψης κίνησης είναι είτε πολύ δαπανηρές στην απόκτηση είτε χαμηλότερης

ποιότητας. ΄Ετσι, προτείνουμε μια καινοτόμο μέθοδο που θα δώσει πρόσβαση σε όλους
όσους διαθέτουν έναν σχετικά καλό υπολογιστή, για να δημιουργήσουν δωρεάν τα ψηφι-
ακά κλιπ κίνησης ενός ατόμου. Πρόσφατα, πολλοί ερευνητές προσπαθούν να χρησιμοποιή-
σουν νευρωνικά δίκτυα που θα εκτιμήσουν την τρισδιάστατη ανθρώπινη στάση από ένα

μόνο βίντεο. Στην προσέγγισή μας, αποφασίσαμε να χρησιμοποιήσουμε τρία διαφορετικά
γνωστά προ-εκπαιδευμένα μοντέλα, τα δύο πρώτα για να βρούμε την εκτίμηση 2D πόζας
από κάθε καρέ του βίντεο και το άλλο για να μετατρέψουμε αυτές τις 2D στάσεις σε 3D
πόζες. Στη συνέχεια, υπολογίσαμε τη θέση του ανθρώπου ανά καρέ, βρίσκοντας το βάθος
του ατόμου στην εικόνα. Ο συνδυασμός των τρισδιάστατων στάσεων και της θέσης του
ατόμου στο χώρο είναι τα δεδομένα κίνησης που θέλαμε να βρούμε. Στη συνέχεια, εισά-
γοντας αυτά τα δεδομένα σε έναν Σκελετό που περιέχει όλα τα εκτιμώμενα οστά, μπορούμε
να δημιουργήσουμε ένα αρχείο Bio-vision Hierarchy (BVH), το οποίο μπορεί να εισαχθεί
στο σε όλες τις εφαρμογές που επεξεργάζονται τρισδιάστατα γραφικά. Σε αυτό το σημείο,
το αρχείο BVH που δημιουργείται περιέχει θόρυβο από τις εκτιμήσεως των νευρωνικών
δικτύων, επομένως προτείνουμε τη χρήση ορισμένων φίλτρων για την αφαίρεση αυτού
του θορύβου χωρίς να επηρεάζονται οι πληροφορίες δεδομένων κίνησης. Επιπλέον, μετα-
τρέψαμε τον κώδικα python σε μια Windows εφαρμογή για να δημιουργήσουμε ένα πολύ
πιο φιλικό περιβάλλον στο χρήστη. Τέλος, δημιουργήσαμε κάποιες λειτουργίες μέσα σε
αυτήν την εφαρμογή ώστε ο χρήστης να μπορεί να απεικονίζει και να επεξεργάζεται τα

αποτελέσματα από τα αρχεία BVH.

i

Thesis

Abstract

Motion capture methods are either very expensive to acquire or of poor quality.
Thus, we propose an innovative method that will give access to everyone who has an
above-average computer, to generate for free their single-person digital motion clips.
Recently, many researchers try to use neural networks that estimate the 3D human
pose from a single video. In our approach, we decided to use three different well-known
pre-trained models, the first two to find the 2D pose estimation from each frame of the
video, and the other to convert these 2D poses into 3D poses. Then, we estimated the
position of the human per frame, by calculating the depth of the person in the image.
The combination of the 3D poses and the position consist the motion data that we
wanted to find. Then, by importing these data into a Skeleton that contains all the
estimated bones, we can create a Bio-vision Hierarchy (BVH) file, that can be imported
into the 3D computer graphics software tool-set. At this point, the generated BVH file
contains noise from the neural networks, so we propose using some filters to remove
this noise without affecting significantly the motion data information. Furthermore,
we converted the raw python code into a Windows Application to create a friendly
user environment. Finally, we created some functions within this application so that
the user can visually, process and edit the results from the BVH files.

ii

Thesis

Acknowledgments

First and foremost, I would like to thank my supervisor, Prof. Aikaterini Mania for
her guidance and her fast response as well as her willingness to support me during my
thesis. I am also grateful to Giariskanis Fotios, Andrew Polychronakis, Greg Daskalo-
grigorakis, Yannis Kritikos, Kalliopi Bouraki, Minas Katsiokalis, Michael Roumeliotis
and Froso Sarri who are in the Surreal team of our University for their support and
ideas since without them the implementation would be poorer.

Furthermore, I would like to thank Prof. Georgios Chalkiadakis and Prof. Michail
G. Lagoudakis for their time and support to the thesis committee. I also wanted to
thank Prof. Apostolos Dollas, Prof. Michalis Zervakis, and Prof. Athanasios Liavas
for their advice and recommendations during my graduate applications.

Finally, I would like to thank my family, friends, and my colleague for the support
that they gave me during my thesis time.

iii

Contents
1 Introduction 1

1.1 The increased demand of mocap clips 1
1.2 Thesis aim . 1
1.3 Thesis Structure . 4

2 Background 6
2.1 Motion Capture . 6

2.1.1 Optical Motion Capture . 7
2.1.2 Non-Optical Motion Capture 8

2.2 Neural Networks . 10
2.2.1 Artificial Neural Network . 10
2.2.2 Convolutional Neural Network 14

2.3 Related Work . 15
2.4 Gait mocap clip Generation through a GAN 18

2.4.1 Data Augmentation . 18
2.4.2 Dataset . 19
2.4.3 Generative Adversarial Networks 20
2.4.4 Evaluation of the approach . 22

3 Requirements 23
3.1 Hardware . 23
3.2 Input requirements . 24
3.3 Application’s Workflow . 24

4 Implementation 28
4.1 Benefits of Using Pretrained Models . 28

4.1.1 Available 2D pose estimation Pretrained Models 29
4.1.2 2D pose estimation to 3D pose estimation 33
4.1.3 Orientation and Location Estimation 37
4.1.4 3D Pose to Biovision Hierarchical (BVH) 39

4.2 Animator Tools . 41
4.2.1 Biovision Hierarchical (BVH) 41
4.2.2 BVH Position Tool Editing . 43
4.2.3 BVH Noise Filtering . 44
4.2.4 BVH Video Player . 51

4.3 Windows Application . 53
4.3.1 Tkinter Library . 53
4.3.2 Construction of the Application 54
4.3.3 Application’s Use Case Diagram 59

5 Evaluation 61

iv

Thesis Contents

5.1 AlphaPose Model Evaluation . 61
5.2 VideoPose3D Model Evaluation . 65
5.3 BVH Filters Evaluation . 67

6 Discussion 71
6.1 Our Contribution . 71
6.2 Limitations of our Work . 71
6.3 Future Approaches . 72

v

List of Figures
1 We display a frame from the input video, and the estimated BVH file.

Finally, we display the BVH file when we clean it, convert it into an
FBX file, and import it to Unity. 2

2 Filtering comparison on a BVH file generated by Neural networks based
on our metric system, CRPF . 3

3 MoCap systems Hierarchy . 6
4 Optical Motion Capture suit . 7
5 Inertial sensor suit . 8
6 Mechanical mocap suit . 9
7 Magnetic mocap suit . 10
8 Neural Networks Architecture . 11
9 Artificial Neuron . 11
10 Most common activation functions . 12
11 Backpropagation Algorithm . 13
12 Basic Convolution Neural Network Architecture 15
13 2D Multi-Person high accuracy human Pose estimation 16
14 2D and 3D human Pose difference in estimation 17
15 Examples of human poses in the Human3.6M dataset 17
16 Data Augmentation Techniques . 18
17 A simple GAN architecture . 21
18 MSI GL72M 7RDX performance stats 23
19 Input Phase . 25
20 Editing Phase . 25
21 BVH Video Player . 26
22 Filtering Phase . 27
23 COCO Skeleton that all the models use 30
24 2D Multi-Human pose Estimation Example 30
25 Comparison of each model speed in 2D Multi-Human Pose Estimation . 31
26 2D model summary . 32
27 In the first figure we display the Yolo model Bounding box classification,

and in the second the keypoints of the SPPE model 33
28 The model that takes 2D keypoint sequences (bottom) as input and

generates 3D pose estimates as output (top). 34
29 3D model summary . 35
30 3D pose estimation from a 2D estimated pose 36
31 The multi-color keypoints represent the 17 keypoints that the AlphaPose

model estimated . The white keypoint is the average of all the estimated
keypoints which we will use as the 2D location of the humanoid. 38

32 Human Segmentation using the 17 keypoints from AlphaPose model . . 39

vi

https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcRNmJKWXW9WvSq-LKojP9PJvF245HXHpa7DUA&usqp=CAU
https://www.researchgate.net/profile/Jacek-Hordyj/publication/283152771/figure/fig1/AS:669997391159296@1536751234023/Actor-wearing-suit-adjusted-for-optical-motion-capture-on-the-left-Virtual-model.png
https://www.researchgate.net/profile/Matthew-Field-6/publication/257308000/figure/fig1/AS:613448983531582@1523269043700/a-The-inertial-sensor-MTx-left-14-and-positioning-of-the-sensors-and-wireless.png
https://metamotion.com/images/gypsy4_standing.jpg
https://www.researchgate.net/profile/Jessica-Hodgins-2/publication/2359279/figure/fig4/AS:669524957331457@1536638597171/A-performer-wearing-a-motion-capture-apparatus-The-device-shown-is-a-full-body-magnetic.ppm
https://assets-global.website-files.com/5d7b77b063a9066d83e1209c/60d242974bcba9f8c670e03e_Group%20806.jpg
https://commons.wikimedia.org/wiki/File:ArtificialNeuronModel_english.png
https://datasciencepreparation.com/blog/articles/what-is-an-activation-function-what-are-commonly-used-activation-functions/
https://www.guru99.com/images/1/030819_0937_BackPropaga1.png
https://www.researchgate.net/publication/336805909/figure/fig1/AS:817888827023360@1572011300751/Schematic-diagram-of-a-basic-convolutional-neural-network-CNN-architecture-26.ppm
https://openaccess.thecvf.com/content_cvpr_2017/papers/Cao_Realtime_Multi-Person_2D_CVPR_2017_paper.pdf
https://arxiv.org/pdf/1612.06524.pdf
https://vision.imar.ro/human3.6m/pami-h36m.pdf
https://research.aimultiple.com/wp-content/webp-express/webp-images/uploads/2021/04/data-augmentation-techniques-800x450.png.webp
https://bolster.ai/blog/content/images/2020/04/GAN-1.png
https://i.stack.imgur.com/sdwNy.jpg
https://github.com/CMU-Perceptual-Computing-Lab/openpose
https://raw.githubusercontent.com/CMU-Perceptual-Computing-Lab/openpose/master/.github/media/openpose_vs_competition.png
https://arxiv.org/pdf/1811.11742.pdf
https://arxiv.org/pdf/1811.11742.pdf
https://arxiv.org/pdf/1612.06524.pdf
https://www.pexels.com/search/videos/dance/
https://www.pexels.com/search/videos/dance/
https://www.pexels.com/search/videos/dance/
https://www.pexels.com/search/videos/dance/

Thesis List of Figures

33 The results of the BVH File from a video when we import it into Blender.
The same frame from different camera positions. 40

34 BVH format of the motion and hierarchy for the Skeleton that we are
using. The first line of the motion, sets the skeleton in T-Pose and the
rest contain the motion data. 43

35 Mean Filter procedure with a 3x3 kernel 45
36 1-D Gaussian distribution with mean 0 and σ=1 46
37 2-D Gaussian distribution with mean 0 and σ=1 48
38 A low-pass Butterworth Filter . 49
39 Ideal Frequency Response for a low-pass Butterworth Filter 50
40 We display a frame from the input video, and the estimated BVH file,

in both our video player and Blender. Finally, we display the BVH file
when we clean it, convert it into an FBX file, and import it to Unity. . 52

41 The First Panel of the Application . 55
42 The Second Panel of the Application 57
43 The Third Panel of the Application . 58
44 The Fourth Panel of the Application 58
45 The use Case diagram for the first Main Panel of the Application . . . 59
46 The use Case diagram for the second Main Panel of the Application . . 60
47 Example of normal and a smoothed Precision-recall curve 62
48 Yolov3 model box Average Precision evaluation compared to other model 63
49 Yolov3 Object Detection results on the MS COCO test-dev dataset of

some typical baselines. AP, AP50 , AP75 scores (%). APS:AP of small
objects, APM:AP of medium objects, APL:AP of large objects. 63

50 AlphaPose SPPE model Average Precision tests evaluation compared to
other keypoint Detection Models . 64

51 SPPE model Average Precision tests evaluation on COCO Dataset . . . 64
52 SPPE model Average Precision tests evaluation on OCHuman Dataset. 65
53 VideoPose3D model Average MPJPE tests evaluation compared to other

keypoint Detection Models on Human3.6M Dataset. 66
54 VideoPose3D model Average MPJPE tests evaluation on Human3.6M

Dataset . 67
55 VideoPose3D model Average MPJPE tests evaluation on Human3.6M

Dataset . 67
56 Filtering comparison on a BVH file with sharp moves generated by Neu-

ral networks based on our metric system, CRPF 68
57 Filtering comparison on a BVH file without sharp moves generated by

Neural networks based on our metric system, CRPF 69
58 Professional Mixamo BVH file compared with this file with added normal

distribution noise with our metric system, CRPF 70
59 Filtering comparison based on the mixamo BVH file with the added

noise with normal distribution with our metric system, CRPF 70

vii

https://www.researchgate.net/publication/348548607_The_Challenge_of_Predicting_OAG_Progression_from_the_Initial_Visual_Field_Test/figures?lo=1
https://fiveko.com/assets/pics/math/gauss1d_shape.jpg
https://stackoverflow.com/questions/23981437/visualization-of-gaussian-laplacian-etc-filters-in-matlab
https://upload.wikimedia.org/wikipedia/commons/thumb/6/60/Butterworth_response.svg/2560px-Butterworth_response.svg.png
https://www.electronics-tutorials.ws/wp-content/uploads/2018/05/filter-fil57.gif
https://jonathan-hui.medium.com/map-mean-average-precision-for-object-detection-45c121a31173
https://paperswithcode.com/sota/object-detection-on-coco
https://paperswithcode.com/paper/learning-spatial-fusion-for-single-shot
https://paperswithcode.com/paper/learning-spatial-fusion-for-single-shot
https://paperswithcode.com/paper/learning-spatial-fusion-for-single-shot
https://paperswithcode.com/sota/keypoint-detection-on-coco
https://paperswithcode.com/sota/keypoint-detection-on-coco
https://paperswithcode.com/paper/associative-embedding-end-to-end-learning-for
https://paperswithcode.com/paper/associative-embedding-end-to-end-learning-for
https://paperswithcode.com/sota/3d-human-pose-estimation-on-human36m
https://paperswithcode.com/sota/3d-human-pose-estimation-on-human36m
https://paperswithcode.com/paper/3d-human-pose-estimation-in-video-with
https://paperswithcode.com/paper/3d-human-pose-estimation-in-video-with
https://paperswithcode.com/paper/3d-human-pose-estimation-in-video-with
https://paperswithcode.com/paper/3d-human-pose-estimation-in-video-with

Thesis

Chapter 1

1 Introduction

1.1 The increased demand of mocap clips

Motion Capture (MoCap) is a cutting-edge method of capturing all or part of an
actor’s performance so that it can be translated into the action of a computer gener-
ated 3D character on screen. More specifically, the exact movements of the actor are
captured and rendered onto the digital character.

In the last years, there is a growing demand for MoCap in many fields includ-
ing interactive virtual reality, film production, animation and so forth [1]. However,
capturing motions when needed is often not practical as motion capture systems are
expensive and the capture processes are complex in general. It is often desirable to
retrieve and reuse motion clips that have been captured before and stored in databases.
Straightforwardly, the retrieval may be done based on text labels of motion clips.

Therefore, using MoCap clips for production consists of the following problems.
Firstly, there are a limited amount of MoCap clips that can be used and using something
more unique means that the production must have the budget and the time to support
it. Secondly, the majority of the stored databases of MoCap are not free to use or have
poor quality.

1.2 Thesis aim

The goal of this thesis is to create a Windows application that allows anyone to
convert a human motion from a video into a computerized motion that he can then
import into game engines like Unity. At the moment studios and animators had to buy
a mocap suit in order to create computerized motion. However, the cost of these suits
is too overpriced, so we will propose a new approach to solve this issue.

The new approach to resolving these issues is to address the problem with Neural
Networks. More specifically, in this thesis, we propose a composition of a deep neural
network [2, 24] that will estimate the 3D human pose, and the output of the DNN will
be saved into a Bio-vision Hierarchy (BVH) file. The task is to predict a pose skeleton
for the person in each image of a video. Currently, human pose estimation is one of the
challenging fields of study in computer vision which aims in determining the position
or spatial location of body keypoints (parts/joints) of a person from a given image or
video. In the figures below we demonstrate the procedure that an image needs in order

Page 1 of 76

Thesis 1.2 Thesis aim

to convert it into an animation.

We display a frame from the input video, and the estimated BVH file. Finally, we
display the BVH file when we clean it, convert it into an FBX file, and import it to
Unity.

The first step is to use a pre-trained deep neural network that can estimate these
2D keypoints. Afterward, [3, 4] in order to achieve our goal we will use another pretrain
model that will be fed with a 2D pose estimation as the input, and will try to estimate
the 3D pose. However, estimating a 3D human pose from a single image is more
challenging than 2D cases due to the lack of depth information, so the accuracy drops
significantly. In order to increase the quality of the estimation, we suggest using some

Page 2 of 76

Thesis 1.2 Thesis aim

digital filters that we created. These filters can remove noise from data without affecting
the motion. We propose three different filters that many researchers use to remove noise
from the generated data of DNN. These filter are the mean filter, the Gaussian filter
and the butterworth filter. We created a metric system in order to evaluate our filters,
and in the figure below we demonstrate the filtering results.

Filtering comparison on a BVH file generated by Neural networks based on our metric
system, CRPF

After obtaining the smoothed 3D human pose, we need to create a skeleton, based
on the joints that the first model estimated and import the keypoints to each corre-
sponding bone. Finally, the BVH file will be created and it can be further cleaned
manually by an animator in any 3D computer graphics software (Blender, Maya, Au-
toDesk).

However, the code implementation will be in python, and most animators may
struggle to install and run the code. In order to avoid this issue, we developed a Win-
dows Application, that anyone can use that runs the python code of the Thesis.

The innovation in this idea is that we use Neural networks to estimate the key-
points, avoiding using mocap-suits. Moreover, the fact that we are going to use filters
that will clear the noise from the neural networks is also very interesting. More specif-
ically, these filters will reduce the estimation error that the neural networks are doing.

Page 3 of 76

Thesis 1.3 Thesis Structure

Thus, this will improve the model’s accuracy without doing further training or improv-
ing the neural network architecture.

1.3 Thesis Structure

This thesis is organized in 6 Chapters:

• Chapter 1

In this Chapter we discuss about the problems of the MoCap clips production
and propose a solution to it.

• Chapter 2

In this Chapter, we provide the reader with a overview of some knowledge about
MoCap Clips, as well as some pioneer studies and state the novelties of this study.
Then, we present an approach with Generative Adversarial Networks (GAN’s)
that was a possible solution of the problematic situation, and the reasons that
we aborted this solution.

• Chapter 3

In this Chapter, we show the reader the minimum requirements of the hard-
ware that the proposed DNN needs in order to run. In addition, we suggest to
the users the best case scenarios of the input, in order to improve the algorithm
estimation. Finally, we present the Workflow of the Windows Application.

• Chapter 4

In this Chapter, we explain the implementation of the algorithm as well as some
important knowledge that is covered in the thesis. More specifically, the reader
will be introduced to some pretrained models that are essential to the solution,
and the procedure that these models use in order to estimate the orientation and
location of the person. Having created the BVH file, we develop an Animator
Tool, that animators can use to filter and edit the results. Finally, we present
the python library that allows us to convert the python code to a Windows Ap-
plication, as well as the features of the Application.

• Chapter 5

In this Chapter, we compare the performance of the pretrained models between
other models with some evaluation datasets. Moreover, evaluate the smoothing
of the filters that we are proposing with a metric system which we will propose.

Page 4 of 76

Thesis 1.3 Thesis Structure

• Chapter 6

In this Chapter, we summarize our results and discuss our contribution. Fi-
nally, we address the limitations of our approach as well as some future ideas
that would improve our work.

Page 5 of 76

Thesis

Chapter 2

2 Background

2.1 Motion Capture

Many different disciplines use motion analysis systems to capture human body
movement and posture. Scientists want to learn more about the mechanisms that are
used to translate muscular contractions about articulating joints into functional accom-
plishments like walking. Researchers are increasingly attempting to better understand
the relationship between the human motor control system and gait dynamics.

Motion capture [5] is now widely used in the gaming, film, and animation in-
dustries to provide quick, low-cost body and/or facial animations in order to animate
one or more characters. Animation processes did not see significant innovation un-
til computers were introduced into the process. With the invention of key-framing,
which reduced the number of samples required to create an animation, animators’ jobs
became much easier. This was a time-consuming process because, at the time, each
artist was required to individually animate each pose/frame. With the introduction
of key-framing, the artist specified the beginning and ending frames of the animation,
while the intermediate frames of the movement were generated automatically. Some
animations, however, remained impossible to recreate due to their inherent complexity,
such as the human walking animation, which is too complex due to our articulations.

MoCap systems Hierarchy

Motion analysis data collection protocols, measurement precision, and data re-
duction models have all been developed to meet the needs of their respective settings.
Sport assessments, for example, necessitate higher data acquisition rates due to higher
velocities than normal walking. Furthermore, real-time tracking is required for a real-
istic user experience, so time lag should be kept to a minimum. Years of technolog-
ical advancement have resulted in numerous systems that can be classified as optical
and non-optical, where non-optical category contains mechanical, magnetic, or inertial

Page 6 of 76

https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcRNmJKWXW9WvSq-LKojP9PJvF245HXHpa7DUA&usqp=CAU

Thesis 2.1 Motion Capture

trackers. The human body is frequently viewed as a network of rigid links connected
by joints. Human body parts are not rigid structures, but they are commonly treated
as such during human motion studies.

2.1.1 Optical Motion Capture

Optical Motion Capture suit

Multiple high-speed cameras [6, 8] or video cameras are used in optical motion
capture systems to triangulate the position of each marker on the actor. This method
involves using a series of synchronized cameras to capture markers placed in strategic
locations on the body. More specifically, a number of synchronized cameras, an image
acquisition system, a capturing area, and a special suit with markers are all required for
the implementation of an optical motion capture system.The positions of the markers
on the suit are designed to cover the necessary body parts.

Passive optical marker systems employ a variety of highly reflective markers of
varying sizes that reflect light back to cameras. These markers can be velcroed to a
body suit or applied directly to the skin. A ring of visible red, near red, or infrared
strobe light emitting diodes (LEDs) around the camera lens generates the reflected
light. The cameras’ light sensitivity can be adjusted to reject other sources of light.
Passive markers have the advantage of not requiring a power source such as batteries,
wiring, or other electronic devices. The downside is that to the cameras, all of the
markings appear to be the same. This means that if many markers are occluded and
subsequently reappear in camera view, the cameras are unable to distinguish between
them.

Active optical marker systems employ powered LEDs as markers. Unlike passive
markers, which reflect light back to cameras, these markers emit their own visible
red or infrared light. These markers, like passive markers, can be adhered directly to

Page 7 of 76

https://www.researchgate.net/profile/Jacek-Hordyj/publication/283152771/figure/fig1/AS:669997391159296@1536751234023/Actor-wearing-suit-adjusted-for-optical-motion-capture-on-the-left-Virtual-model.png

Thesis 2.1 Motion Capture

the skin or velcroed to a body suit. The advantages of active markers are that each
LED modulates and emits a unique frequency, resulting in each marker being uniquely
identified. The disadvantage is that each LED must be powered, which necessitates
the use of wires and related devices like batteries and circuit boards.

2.1.2 Non-Optical Motion Capture

Inertial Motion Capture

Figure 5: Inertial sensor suit

Inertial sensors [7] rely on the property of bodies to maintain constant transla-
tional and rotational velocity unless perturbed by forces or torques. The vestibular
system is a biological 3D inertial sensor located in the inner ear. It can detect both
angular motion and linear acceleration of the head. The vestibular system is critical for
maintaining eye balance and stabilization in relation to the environment. Advances in
miniaturized and micro-machined sensor technologies, particularly silicon accelerome-
ters and rate sensors, have made practical inertial tracking possible. A rate gyroscope
measures angular velocity and provides the change in angle with respect to an initially
known angle when integrated over time. Accelerations, including gravitational accel-
eration g, are measured by an accelerometer.

If the sensor’s angle with respect to the vertical is known, the gravity component
can be removed and velocity and position can be calculated using numerical integra-
tion. If no compensation is used, the noise and bias errors associated with small and
inexpensive sensors make tracking orientation and position for long periods of time

Page 8 of 76

https://www.researchgate.net/profile/Matthew-Field-6/publication/257308000/figure/fig1/AS:613448983531582@1523269043700/a-The-inertial-sensor-MTx-left-14-and-positioning-of-the-sensors-and-wireless.png

Thesis 2.1 Motion Capture

impractical. Drift and other errors can be reduced by combining signals from iner-
tial sensors with those from aiding/complementary sensors and using knowledge about
their signal characteristics.

Mechanical Motion Capture

Mechanical mocap suit

Because of the external structure [8] that is attached to the performer, mechanical
motion capture systems are also known as exoskeleton motion capture systems. These
structures, which are typically made of rigid metal or plastic, have articulated joints
with potentiometers that directly measure a performer’s joint angles as he or she moves.
One of the primary benefits of this direct measurement system is the absence of the need
for cameras or other sensors. The system’s main drawbacks are that the performer is
restricted to the degrees of freedom of the structure and that the location of the sensor
placement is fixed. If the performer attempts to move beyond the system’s degrees of
freedom, the structure may be damaged or broken.

Page 9 of 76

https://metamotion.com/images/gypsy4_standing.jpg

Thesis 2.2 Neural Networks

Magnetic Motion Capture

Magnetic mocap suit

Magnetic motion capture systems [8] work by measuring the low-frequency mag-
netic field produced by a source transmitter and relaying it to a receiver. Each trans-
mitter and receiver have three orthogonal coils that measure magnetic flux between
them and calculate the position and orientation of each sensor. One of the key ad-
vantages of these systems is that instead of the more conventional three degrees of
position, each sensor transmitter/receiver pair may capture both orientation and posi-
tion. However, sensors in the system, are susceptible to environmental metal, magnetic
fields, and electrical sources such as rebar walls and floors, lights, cables, monitors, and
computers. Shielding equipment and wiring requires special care. Despite their high
accuracy, the sensors become nonlinear at the extremes of their range.

2.2 Neural Networks

2.2.1 Artificial Neural Network

Machine Learning methods, particularly Artificial Neural Networks (ANNs), have
shown promising capabilities in solving a wide range of complex problems. Neural
networks are a class of machine learning techniques that attempts to recognize under-
lying relationships in a set of data using a process similar to how the human brain
works. An artificial neural network (ANN) is a machine learning algorithm inspired
by biological neural networks. The nodes in each ANN communicate with one another
via connections. A deep network can represent functions of increasing complexity by
adding more layers and units within a layer.

Page 10 of 76

https://www.researchgate.net/profile/Jessica-Hodgins-2/publication/2359279/figure/fig4/AS:669524957331457@1536638597171/A-performer-wearing-a-motion-capture-apparatus-The-device-shown-is-a-full-body-magnetic.ppm

Thesis 2.2 Neural Networks

Neural Networks Architecture

Artificial Neuron

The fundamental building block of a neural network is a single neuron, which is
also called a perceptron. More specifically, each neuron is a machine learning method
that takes a set of features and their targets as input and tries to discover a line, plane,
or hyperplane in two, three, or hyper-dimensional space that separates the classes. The
sigmoid function is used to alter these characteristics.

Artificial Neuron

Simple ANNs have an input layer and an output layer with zero to three hidden
layers, whereas deep neural networks have no limit in the number of hidden layers.
Multiple neurons make up a layer of a multilayer perceptron, and the input values as
well as the bias values are assigned during the training process.

Page 11 of 76

https://assets-global.website-files.com/5d7b77b063a9066d83e1209c/60d242974bcba9f8c670e03e_Group%20806.jpg
https://commons.wikimedia.org/wiki/File:ArtificialNeuronModel_english.png

Thesis 2.2 Neural Networks

Activation function

The Activation function is used to determine whether or not the neuron will be
activated. This means that it will use simpler mathematical operations to determine
whether the neuron’s input to the network is essential or not throughout the predic-
tion phase. These mathematical functions are added to an artificial neural network to
assist it in learning complex patterns in data. The reason that activation functions are
essential parts of a ANN is that the combination of nonlinear activation functions from
different neurons permits the network to approximate complex functions or distribu-
tions of data. Simpler, the most important feature of an activation function is to add
non-linearity to a neural network. There are many activation functions, but here we
show the most used functions.

Most common activation functions

Loss Function

One of the most important aspects of an ANN is the choice of the loss function
[12] . A loss function is incredibly simple at its core: It’s a technique for determining
how well your algorithm models your dataset. If the ANN predictions are completely
incorrect, the loss function will return a higher value. Otherwise, it will return a lower
value. However, minimizing the loss function doesn’t necessarily mean that the predic-
tion is getting closer to the desired results. There are some well-known categories of
loss functions that may work on many simple ANN, but if the problem that the ANN
has to solve is too complicated, it may need a custom loss function, that is special for
the specific problem and ANN architecture.

In particular, the purpose of a loss function in an ANN is to adjust the weights
and the bias during the training. If we could, we would find the perfect weights and
bias for our ANN, but it has not yet been proven a formula that could do it. Therefore,
these functions will try to find the adjustments, that are as close as to the perfect one’s.

Page 12 of 76

https://datasciencepreparation.com/blog/articles/what-is-an-activation-function-what-are-commonly-used-activation-functions/

Thesis 2.2 Neural Networks

Pressingly, the loss function that is used is directly related to the activation func-
tion that is used in the neural network’s output layer. Consider the output layer
configuration to be a choice about the framing of the prediction problem, and the loss
function selection to be the method for calculating the error for a given framing of
the problem. The loss functions can be classified into two major categories depending
upon the type of learning task we are dealing with Regression losses and Classification
losses. In classification, we are trying to predict output from set of finite categorical
values. Regression, on the other hand, deals with predicting a continuous value.

Back-propagation

Backpropagation Algorithm

The essence of neural net training is back-propagation. It is the practice of fine-
tuning a neural net’s weights based on the error rate obtained in the previous epoch.
Proper weight tuning ensures lower error rates, increasing the model’s reliability by
increasing its generalization.

The back-propagation algorithm in neural networks computes the gradient of the
loss function for a single weight using the chain rule. Unlike native direct computation,
it efficiently computes one layer at a time. The back-propagation algorithm, allows the
information from the cost to then flow backwards through the network, in order to
compute the gradient. Back-propagation refers only to the method for computing
the gradient, while another algorithm, such as stochastic gradient descent, is used to
perform learning using this gradient.

Page 13 of 76

https://www.guru99.com/images/1/030819_0937_BackPropaga1.png

Thesis 2.2 Neural Networks

2.2.2 Convolutional Neural Network

Convolutional networks, [9] also known as convolutional neural networks or CNN,
are a specialized kind of artificial neural network for processing data that has a known,
grid-like topology. Examples include time-series data, which can be thought of as a 1D
grid taking samples at regular time intervals, and image data, which can be thought
of as a 2D grid of pixels. Convolutional networks are simply neural networks that use
convolution in place of general matrix multiplication in at least one of their layers.

The main strengths of CNNs are to provide an efficient dense network which per-
forms the prediction or identification etc. efficiently. CNNs are the most popular topic
in the pool of deep learning, which is indeed very vast, and this is usually because of
the ConvNets. Immense datasets are applied to CNNs, it is even considered that larger
the data, greater the accuracy will result, otherwise other operations such as transfer
learning shall be applied to expand the data. The power of CNN is to detect distinct
features from images all by itself, without any actual human intervention.

There are multiple benefits of using this model as the state of art neural network.
As it can be used in various fields and perform major tasks like facial recognition,
analyzing documents, understanding climate, and image recognition and object identi-
fication etc. Deep learning has helped enormously in advancement of the science fields
and CNN is the most popular one as it attains the benefits of providing maximum
performance and efficiency.

Traditional neural network layers use matrix multiplication by a matrix of param-
eters with a separate parameter describing the interaction between each input unit
and each output unit. This means every output unit interacts with every input unit.
Convolutional networks, however, typically have sparse interactions (also referred to
as sparse connectivity or sparse weights). This is accomplished by making the kernel
smaller than the input. For example, when processing an image, the input image might
have thousands or millions of pixels, but we can detect small, meaningful features such
as edges with kernels that occupy only tens or hundreds of pixels. This means that
we need to store fewer parameters, which both reduces the memory requirements of
the model and improves its statistical efficiency. It also means that computing the
output requires fewer operations. These improvements in efficiency are usually quite
large. If there are m inputs and n outputs, then matrix multiplication requires m x n
parameters and the algorithms used in practice have O(m x n) run-time. If we limit
the number of connections each output may have to k, then the sparsely connected
approach requires only k x n parameters and O(k x n) run-time. For many practical
applications, it is possible to obtain good performance on the machine learning task
while keeping k several orders of magnitude smaller than m.

Page 14 of 76

Thesis 2.3 Related Work

Each convolutional layer contains a series of filters known as convolutional kernels.
The filter is a matrix of integers that are used on a subset of the input pixel values,
the same size as the kernel. Each pixel is multiplied by the corresponding value in the
kernel, then the result is summed up for a single value for simplicity representing a grid
cell, like a pixel, in the output channel/feature map. In computer vision the input is
often a 3 channel RGB image. For simplicity, if we take a grey-scale image that has one
channel (a two dimensional matrix) and a 3x3 convolutional kernel (a two dimensional
matrix). The kernel strides over the input matrix of numbers moving horizontally
column by column, sliding/scanning over the first rows in the matrix containing the
images pixel values. Then the kernel strides down vertically to subsequent rows. Note,
the filter may stride over one or several pixels at a time, this is detailed further below.

Basic Convolution Neural Network Architecture

2.3 Related Work

Recent work in the computer graphics and vision sectors have focused on devel-
oping digital tools for reconstructing, tracking, and evaluating human motion using
visual input. More specifically, these digital tools that are easier and much cheaper
to use, than mocap suits, and in the near future these methods have the potential to
surpass the current technology that we talked about in the previous sections. At the
moment, the resulting quality of these tools is not as good as the current technology,
but many scientists propose state-of-the-art approaches in order to improve them.

Page 15 of 76

https://www.researchgate.net/publication/336805909/figure/fig1/AS:817888827023360@1572011300751/Schematic-diagram-of-a-basic-convolutional-neural-network-CNN-architecture-26.ppm

Thesis 2.3 Related Work

2D Multi-Person high accuracy human Pose estimation

Reconstructing 3D human poses from real-world images in a variety of indoor and
outdoor scenarios has a wide range of applications in entertainment, environmental
awareness, and human-computer interaction. There are some ways to achieve that,
but we will focus more on a specific procedure that estimates 3D human poses from a
list of images or a video. Firstly, we will extract the 2D human poses from each image
using some well-known Neural Networks specifically trained for this job. In particular,
deep neural networks [14, 15, 16] have revolutionized 2D pose estimation, producing
accurate predictions even for poses with self-occlusions. These Neural Network can
estimate the 2D human Pose in Real-Time with high accuracy. These networks were
trained with COCO dataset, which contains over 200, 000 images and 250, 000 person
instances labeled with 17 keypoints that are very easily recognisable. Even though the
main difference in these network is the architecture and the training the 2D human
Pose estimation, is very close. The main difference is the speed of the model and the
hardware requirements of each model.

Page 16 of 76

https://openaccess.thecvf.com/content_cvpr_2017/papers/Cao_Realtime_Multi-Person_2D_CVPR_2017_paper.pdf

Thesis 2.3 Related Work

2D and 3D human Pose difference in estimation

In the last decade, the research community has paid close attention to inferring
the 3D human pose from images or video. All the following studies [2, 3, 4, 11]are
proposing a deep neural network that can estimate 3D human poses from a sequence
of 2D human poses. Even though that each paper, proposes a different neural network
architecture, all of them uses Human3.6M dataset and some of them, add to the train-
ing some other smaller datasets for further improvement of the results.

Examples of human poses in the Human3.6M dataset

Recently, there has been some interest in systems whose components are trained
using datasets of human motion capture . More specifically, a well-known and most
used dataset is Human3.6M [13] which is a dataset of 3.6 million accurate 3D human
poses collected by recording the performance of 5 female and 6 male subjects from four
different perspectives in order to train realistic human sensing systems and evaluate
the next generation of human pose estimation models and algorithms.

Page 17 of 76

https://arxiv.org/pdf/1612.06524.pdf
https://vision.imar.ro/human3.6m/pami-h36m.pdf

Thesis 2.4 Gait mocap clip Generation through a GAN

2.4 Gait mocap clip Generation through a GAN

All these methods try to estimate the 3D human Pose from a video. Another very
interesting approach is to try to generate a BVH file that contains the mocap human
pose information. The neural network that can achieve such task is a Generative ad-
versarial network (GAN) [17]. A GAN contains two neural networks the discriminator
and the generator. Before the training starts, the former learns to separate fake data
from real, and in the case of a fake, it includes how far it is from being real. The
latter is creating some data, and its goal is to fool the discriminator by creating virtual
data that looks real. Moreover in GAN’s many researchers uses a type of layer, Long
Short-Term Memory (LSTM) that are a type of recurrent neural network capable of
learning order dependence in sequence prediction problems. Simply, this layer tries to
find every association of the data, in our case, the association between the neighbours
frames of the video. So, this paper, proposed a spatiotemporally-conditioned GAN
that generates a sequence that is similar to a given sequence in terms of semantics
and spatiotemporal dynamics.Using LSTM-based generator and graph ConvNet dis-
criminator, this system is trained end-to-end on a large gathered dataset of gestures,
expressions, and actions.

2.4.1 Data Augmentation

Data augmentation techniques artificially generate different versions of a real
dataset in order to increase its size. Machine learning models can benefit from data aug-
mentation algorithms. A deep learning model with image augmentation outperforms
a deep learning model without augmentation in terms of training loss (the penalty for
a bad prediction), accuracy, validation loss, and accuracy.

Data Augmentation Techniques

Page 18 of 76

https://research.aimultiple.com/wp-content/webp-express/webp-images/uploads/2021/04/data-augmentation-techniques-800x450.png.webp

Thesis 2.4 Gait mocap clip Generation through a GAN

In the above figure we show the most common data augmentation techniques. All
of the techniques purpose is to increase the current dataset size. We will use some of
these techniques to increase our Dataset, but the main goal would be to create a GANs
that will create new examples of the training set that we will use, which is consider
an advanced method of data augmentation. In general, data augmentation would gen-
erate more training samples by introducing some modification to the original training
data whilst keeping the same semantic labels. Often it is considered as a regularization
which can mitigate the notorious over-fitting problem. Data augmentation operations
are often randomly applied to a training sample during training. The common aug-
mentation operations include flipping, rotating, scaling, occluding, and color jittering
and some other as it is shown in the figure above.

However, there are some limitations to this method. The main issue is that aug-
mented data contain biases if the real dataset contains the same, and that confuses
the model during the training. Moreover, data augmentation techniques like GANs are
quite challenging since GANs generations also have some limitations, (some noticeable
differences from the real data).

2.4.2 Dataset

There are not many different walking datasets that can be used for this work.
More specifically, Carnegie Mellon University which was created a huge motion cap-
ture dataset a decade ago that will be used in this Thesis. Moreover, It is possible for
the skeleton that CMU proposed, to be rigged to a mixamo or another more modern
skeleton through the blender and eventually import to game engines like Unity. This
also means that we can increase the quantity of the CMU dataset by adding some
mixamo or other well-known motion capture datasets (in BVH format) clips.

The CMU Graphics Lab Motion Capture Database (CMU) is by far the most ex-
tensive dataset of publicly available motion capture data. Many researchers within the
community have used it to build prior models of human motion. This dataset was in
Acclaim format. In particular, the Acclaim format is made up of two files, a skeleton
file and a motion file. This was done knowing that a single skeleton works for many
different motions most of the time and rather than storing the same skeleton in each
of the motion files, it should be stored just once in another file. The skeleton file is
the ASF file (Acclaim Skeleton File). The motion file is the AMC file (Acclaim Motion
Capture data). In addition, some people created python software that converts the
Acclaim files into BVH files. It means that these files can be imported into the blender
for further usage.

There some other datasets like mixamo, that contains high-quality motion capture
but it is not always free. The primary purpose of these motion capture is game con-

Page 19 of 76

Thesis 2.4 Gait mocap clip Generation through a GAN

struction of video clip animation. In this thesis, it is important to obtain a significant
amount of motion capture, something that only CMU can offer for free. Fortunately,
we can still modify the mixamo dataset (rig the mixamo skeleton to CMU skeleton)
and merge it to the CMU dataset.

This dataset will train a neural network to classify for the training when the skele-
ton model of the dataset is walking. Some approaches train a neural network with the
CMU mocap clips as the dataset. The CMU skeleton has 31 joints, and each joint is
described by the position (XYZ) and the rotation (XYZ), a total of 6 variables. That
sum up to 186 variables for each frame. Each clip has 3198 frames, and we use 1073
clips from the dataset. So the dataset final form is a array with these dimensions
(1073,3198,186).

In addition to these clips, we added some noise z using a normal or uniform distri-
bution to some of the clips in order to classify some of them as fake. This was necessary
for the network, in order to understand, during the training what a false sample looks
like. So, the now has a form of (1500,3198,186), which means that we were added 427
false samples.

However, it is still a small dataset. There a machine learning strategy, that al-
lows you to increase your dataset, it is called data augmentation. More specifically,
data augmentation is a strategy that enables practitioners to significantly increase the
diversity of data available for training models, without actually collecting new data.
The data augmentation in our case includes random rotation ([-45o, 45o]) and random
scale ([0.5, 1.5]). So the final form of the dataset was (10000,3198,186).

2.4.3 Generative Adversarial Networks

As we said before, a Generative adversarial network are two different neural net-
works, the discriminator and the generator .The goal of the discriminator is to learn the
correlation of the data in each of the frames,and the dependencies between them that
comprise a real gait. Recurrent Neural Networks (RNNs) and Long Short Term Mem-
ory Networks (LSTMs) have shown considerable performance in this area. However,
they have difficulties in handling the vanishing and the exploding gradient problems.
The goal of the second neural network, the generator, that will generate movements of
motion to this skeleton to create a walk. This neural network will send the results to
the first network, and the goal would be for this generated motion to be classified as
walking.

Page 20 of 76

Thesis 2.4 Gait mocap clip Generation through a GAN

A simple GAN architecture

In the initial phase, we sample some noise z using a normal or uniform distribution
to the generator’s input, and during the training the noise slowly is transforming to
look like a sample from the training set. When the transformation exceed a threshold,
then we assume that the generator created a sample that could be real. Therefore, the
generator’s task is to learn the distribution of input videos based on human actions,
generate realistic samples, and fool a real/fake discriminator.

Subsequently, just consider that the GAN training as min-max game [18]. A Mini-
max game is domain of Game theory where two or more agents play a game against
each other. These conflicting games both players try to find the Nash equilibrium of
the game, which in GAN’s case is a very hard to find.

More specifically, given a data distribution Pd whose p.d.f is Pd(x) where x ∈ Rd,
the aim of GAN is to train a neural network based generator G such that G(z)(s) fed by
z Pz (i.e., the noise distribution) induce the generated distribution Pg with the p.d.f
Pg(x) coinciding the data distribution Pd by minimizing the divergence between Pg and
Pd, which can be equivalently obtained via solving the following mini-max optimization
problem:

minGmaxD(EPd
[log(D(x))] + EPz [log(1−D(G(z)))])

where D is a neural-network based discriminator and for a given x and D (x) specifies
the probability x drawn from Pd rather than Pg

Page 21 of 76

https://bolster.ai/blog/content/images/2020/04/GAN-1.png

Thesis 2.4 Gait mocap clip Generation through a GAN

2.4.4 Evaluation of the approach

Unfortunately, the results of this approach were terrible. The main reason was
the small dataset that we were able to find for free. Even though we tried to do
data augmentation in our dataset, there is a limitation. The main limitation of data
augmentation arises from the data bias, i.e. the augmented data distribution can be
quite different from the original one. This data bias leads to a sub-optimal performance
of existing data augmentation methods. In particular, the generator could not improve
his results, so the output was something a little better than the noise z using a normal
or uniform distribution that we sampled in the generator in the initial phase and the
humanoid was doing independent random moves in each frame of the motion. The
dataset limitation in this area is something that many researchers have noticed, and
the goal was to try to increase the dataset even with poorer quality with this model.

Page 22 of 76

Thesis

Chapter 3

3 Requirements

3.1 Hardware

As we mentioned in previous sections, models that estimate human pose, par-
ticularly models that estimate 2D poses from a single image, require above-average
hardware. These models can be loaded on the CPU but the speed that the model
needs to run the estimation is about 0.2-0.3 frames per second in Intel Core i7-7700HQ
(2.8GHz) which is considered an above-average CPU. On the other hand, having a
GPU with at least 2 GB VRAM (that is the minimum allocated space that the models
need to be loaded), the speed that the model needs to run the estimation is about 4-5
frames per second in NIVIDIA GeForce GTX 1050 which also is considered an above-
average GPU. The difference in speed is enormous, GPU is about 20 times faster than
the CPU. The application was tested on a laptop, MSI GL72M 7RDX. During the
run-time, the hardware of the laptop is shown in the figure from the application MSI
DRAGON CENTER:

MSI GL72M 7RDX performance stats

Page 23 of 76

Thesis 3.2 Input requirements

3.2 Input requirements

The input of the algorithm is a video. We suggest that the resolution of the video is
at least 720p, in order that every human joint can be easily recognizable by the model.
The best video resolution for the specific version of the application is 1080p, which
maximizes the algorithm speed as well as the resulting quality. However, the results
(depends on the movement complexity) may not be clear enough to be imported directly
to a game engine studio so this application is addressed to animators. Nevertheless,
mocap clips always needed to be cleared (discard some frames and keep the best for
the motion), so it was something to be expected. Moreover, there are some rules that
if the video-creator follow, he will improve the quality of the model estimation. Firstly,
the camera should be motionless, because it affects the position estimation. Secondly,
the person’s joints should be visible, otherwise, the model may struggle to specify left
from right joints, (legs and arms). Another tip is that whole body of the person should
be visible for every frame of the video, and the distance between him and the camera
should be greater than two meters and less than six meters. The most important idea
that would help improve the estimation quality would be if the user could upload a
slow-motion video, that will contain the motion of the video in great detail since all the
sharp movement will now become smoother, more detailed, and slower between each
frame movements.

3.3 Application’s Workflow

The Application’s workflow can be divided into three parts. The first part is quite
simple, the user imports the video of his preference into the Application chooses the
folder that he wants to save the results, and presses submit as it is shown in the figures
above.

Page 24 of 76

Thesis 3.3 Application’s Workflow

Input Phase

In the above figure, in the left image, we show how to give new input to the
Application. In the right image, we show the results that the user should see after a
successful video to animation conversion as well as the way to go to the next panel.

Editing Phase

Page 25 of 76

Thesis 3.3 Application’s Workflow

In the above figure, in the top image, the user can multiply with a number of
his preference for each dimension in R3. By doing so, he can increase or decrease the
position speed. In the right image, the user can press the left button to filter the BVH
motion data in order to reduce the noise, or can press the right button in order to
return to the first panel and animate more videos. In addition, if the user does not
understand something from the application, he can hover the mouse over the question
marks to display some tips.

BVH Video Player

The animators may change several things during this phase, so it would be very
helpful if they could actually see the motion displayed in this panel. Therefore, if the
pressed play, an mp4 of the motion starts playing. If the user changes something in
the motion, either they filter the BVH or edit the position of the skeleton, in order to
reload the mp4, they need to press reset the video. Unfortunately, this procedure is
time-consuming, depending form the CPU the user has the speed of conversion from a
BVH to an mp4, is about 10 frames per second.

Page 26 of 76

Thesis 3.3 Application’s Workflow

Filtering Phase

In this phase the user can choose a filter of his preference, and insert the parameters
that each filter need in order to work. The filter feature is added due to the fact that
the estimation that the neural networks do, contain some noise, and these filters can
significantly reduce it, or in some cases almost vanished it, which saves a lot of time
from the animators.

Page 27 of 76

Thesis

Chapter 4

4 Implementation

In this thesis, we developed an algorithm based on some well-known pre-trained
deep neural networks, that can estimate the 3D human pose from a video. Therefore,
we converted these 3D coordinates into a BVH file, that contains a humanoid with 17
bones. In addition, we created a tool that is useful to all the animators who will use
our algorithm. This tool can be used to clear the noise of the BVH files with some
signal processing filters, to manually fix the location of the humanoid in the space, and
to display the results. Finally, we retarget the animation to an avatar that we found
online, to show that the animators can use this animation for any other character of
their preference.

Both the algorithm and the tool were implemented in python. However, this
thesis is addressed to animators, and many animators do not have good enough python
knowledge to run the code. Therefore, with the help of the Tinker python library, we
converter the raw Python Code into a Windows Application that has a very friendly
user environment. Even though that with the raw python code, animators can adjust
the code to solve their problems, the windows application that we created, in general,
can help them solve many things that may need.

4.1 Benefits of Using Pretrained Models

As we discussed in the previous sections, the first step that we need to implement
in order to estimate the 3D human pose from a video is to estimate the 2D human
pose [2, 11]. Therefore, we have to find a deep neural network that can do such a task.
There are two different ways that we could follow here.

On the one hand, we could build a deep neural network from scratch, which is def-
initely not an easy task to do. This is a very time-consuming procedure since someone
must find a promising architecture for the model, and find an enormous Dataset that
most of the time needs editing and is not free. However, the training of the deep neural
network is the major problem, especially in our case. The goal of the training is to find
the ideal parameters that will minimize the loss function of the network. An epoch is
one complete pass of the training dataset through the algorithm, and the network has
to run many epochs during training to calibrate its weights and bias. Neural network
training is a very slow process that depends on the machine that the DNN runs as well
as the Dataset size and the training parameters (batch size, early stop, etc.). In our
case, the Dataset size that relatives work use contains videos that are many Terabytes

Page 28 of 76

Thesis 4.1 Benefits of Using Pretrained Models

of data, which is an enormous amount. Therefore, the training even though a single
epoch needs many hours in a state-of-the-art machine learning graphic card, means
that in our system would too much time (even days). So, even though we would build
our network, the drawbacks are too many, leaving this option as a last resort.

On the other hand, we could search to find a pre-trained deep neural network
that does our job. Luckily for us, some pre-trained models are trained to estimate
exactly what we needed. These models were constructed by many researchers (profes-
sors, Ph.D. students, etc.). They had a budget, that helped them find a great Dataset,
as well as the latest technology Hardware to train the DNN. The models that we are
discussing are AlphaPose and OpenPose. All of them can estimate the 2D human pose
from an image or a sequence of images with great accuracy. These models are trained
to do much more than we need in this thesis. They can estimate in Real-time the 2D
human pose from a Web-Cam and they can detect and estimate the 2D human pose
from multiple people at once. We only need to estimate the pose from a single person
from a video. By reading the documentation of these models, we can achieve that.

The most important advantage of using a pre-trained model, that satisfies our
needs, is that we can avoid all the drawbacks that we discussed in the case that we
would create our model. In our case, these models are very powerful, they have great
accuracy, so they do not even need further training.

4.1.1 Available 2D pose estimation Pretrained Models

As we discussed in the previous section, we decided that we would try to find some
available pre-trained models that satisfy our needs. We found 2 models that could use
to estimate the 2D human pose from images (AlphaPose and OpenPose). The main
difference in these models is the model size, the number of key points that each model
predicts per human, and the speed of each model. The accuracy is great for all the
models, so it was not a factor to consider. The speed of each model was one of the
major factors of each model. Our Hardware could support loading the model on GPU
only in the case of the AlphaPose model (which needed 2 GB of VRAM) when the other
needed over 3 GB of VRAM. Due to this fact, the difference in speed in AlphaPose
was over 30 times faster than the other two models. Another important factor is that
AlphaPose had fewer key points, which means that it will have greater accuracy, but
poorer quality. At the moment the goal is to create a more stable result, rather than
a more attractive one.

All the models use the same technique to estimate the 2D pose from the images.
They try to estimate some points in the image (x,y) for each joint that they try to find.
Therefore, the models predict 18 key points per human that they find in the image, and
then with a python library cv2, we connect the dots to create the humanoid. Simpler,

Page 29 of 76

Thesis 4.1 Benefits of Using Pretrained Models

having a skeleton with 18 bones, the skeleton from COCO Dataset, the models try to
adjust it in every human that they detect in the image. The figures below, demonstrate
this procedure.

COCO Skeleton that all the models use

2D Multi-Human pose Estimation Example

Page 30 of 76

https://i.stack.imgur.com/sdwNy.jpg
https://github.com/CMU-Perceptual-Computing-Lab/openpose

Thesis 4.1 Benefits of Using Pretrained Models

Comparison of each model speed in 2D Multi-Human Pose Estimation

OpenPose model is better and faster when someone wants to detect all the humans
that participate in a single image, something that we do not need in this thesis. In the
first figure, we show the 2D multi-human pose estimation in an image. In addition, in
the second figure, we show the run-time growth for some models with the number of
people in the image. Therefore, in our case, for one single person, AlphaPose is the
best model in speed and still maintains its max accuracy. Moreover, this OpenPose
pre-trained model couldn’t be loaded into our GPU, since it wanted more VRAM than
we had. Therefore, we would not be able to use this model. In contrast, AlphaPose
model could be loaded in our GPU so this played a very important factor when we
were choosing the 2D model detector that we were going to use.

AlphaPose Method

AlphaPose is a top-down pose estimation algorithm, which chooses Yolo [20, 21]
as human detector and a single person pose estimator (SPPE) [19] with sequential
architecture that detects the human keypoints

Yolo model, can classify 80 different objects and segment them inside a box. In our
case, the only classification that we need is the human classification, so we can simplify
the model in order to get the results faster. Therefore, this model can separate inside

Page 31 of 76

https://raw.githubusercontent.com/CMU-Perceptual-Computing-Lab/openpose/master/.github/media/openpose_vs_competition.png

Thesis 4.1 Benefits of Using Pretrained Models

a box each human that it can find. Then for each box, we have a single person, and in
our case, we will have only one box per frame, since we only accept videos that contain
only a single person.

In the next step, we have to estimate the human pose of the person inside that box
and AlphaPose chose to use the single-person pose estimation. In our case, the pose
estimation problem is simplified by only attempting to estimate the pose of a single
person, and the person is assumed to dominate the image content. In this model, for a
given image, an anchor that is matched against a person stores its entire 2D pose along
with a bounding box. For human pose estimation, it boils down to a single class person
detection problem with each person having 17 associated keypoints, and each keypoint
is again identified with a location and confidence. More specifically, the AlphaPose
model can estimate these 17 keypoints per human that can classify inside a box.

This SPPE that we discussed about, is a CNN-based method to estimate human
poses. The SPPE model is constructed by a simple yet intuitive framework by a series
of basic layers such as convolution, pooling, and full connection to learn a mapping
from input images to joint coordinates. This network slides over the input image with
an overlapped sliding window to detect the presence of joints. More specifically, about
the SPPE architecture, we used the summary function from a python machine-learning
library (torch) and we display the results in the figure below.

2D model summary

Page 32 of 76

Thesis 4.1 Benefits of Using Pretrained Models

In the first figure we display the Yolo model Bounding box classification, and in the
second the keypoints of the SPPE model

In the above figure, the box estimation is very accurate, but we can see that the
keypoints of the model, have a small estimation error on the keypoints that should be
symmetrical but are not exactly (some mm off the right point). We will discuss more
about the models estimation errors in the evaluation section.

4.1.2 2D pose estimation to 3D pose estimation

The model that we discussed about in the previous section gives us a 2D array
(x,y) with 17 keypoints per frame. So, the array’s form we have at this moment is
(N,17,2) where N is the number of frames. However, we want to work in R3 so we
have to estimate the third dimension. Luckily, for us, there is another pre-trained
neural network that can solve this problem. This NN takes as input the array that
the AlphaPose model estimated (N,17,2) and tries to predict the third dimension, so it
returns a new array with form (N,17,3). However, the accuracy of the estimated third
dimension drops significantly.

Predicting the 3D joint positions of a human body is defined as the task of 3D
human pose estimation. The model we chose estimates the relative 3D position of
each joint in relation to the root joint. According to the dataset used (COCO) in the
previous estimation, the number of joints Nj is set to 17 in this paper.

Human3.6M contains 3.6 million video frames for 11 subjects, of which seven are

Page 33 of 76

Thesis 4.1 Benefits of Using Pretrained Models

annotated with 3D poses. Each subject performs 15 actions that are recorded using
four synchronized cameras at 50 Hz. In our case, which falls under the category of 2D-
to-3D estimation there are two methods by which we could convert the 2D keypoints
into 3D. Both methods that we are going to discuss, estimate the 3D pose from the 2D
pose, using this as the main dataset as a reference.

Ground-Truth

Ground truth represents the desired output of an algorithm on an input. The
ground truth would be the ideal output you would hope your algorithm can produce.
It is also the standard you are defining, by which you evaluate an algorithm. The closer
your algorithm is to ground truth the better.

In the context of object tracking, the ground truth would represent the ’true’ state
of the object in each frame. Typically the state of an object is represented by a bound-
ing rectangle which is defined by a width, height, and center, though you can imagine
having a simpler or more complicated state depending on the application.

For example, in our case we want to track a human in a video sequence. Therefore
the ground-truth is going through each frame of the sequence and determining the
bounding rectangle that best encloses the human.

The model that takes 2D keypoint sequences (bottom) as input and generates 3D pose
estimates as output (top).

The first method’s central idea [23] is to take a sequence of n frames with 2D
joint positions as the input and outputs the estimated 3D pose for the target frame
as labeled. This model is a fully convolutional architecture with residual connections

Page 34 of 76

https://arxiv.org/pdf/1811.11742.pdf
https://arxiv.org/pdf/1811.11742.pdf

Thesis 4.1 Benefits of Using Pretrained Models

that takes a sequence of 2D poses as input and transforms them through temporal
convolutions.

More specifically, this approach does not use heat maps like many other models
and instead describes poses with detected keypoint coordinates. This allows the use
of efficient 1D convolution over coordinate time series, instead of 2D convolutions over
individual heat maps (or 3D convolutions over heat-map sequences). In addition, this
idea also makes computational complexity independent of keypoint spatial resolution.
This model can reach high accuracy with fewer parameters and allow for faster training
and inference. When we loaded the model in our GPU, we used the summary function
that is included in the torch library, and it showed that this model has 16,952,371
Trainable parameters. Moreover, we could see the model architecture, in the figure
below, again from this function.

3D model summary

Page 35 of 76

Thesis 4.1 Benefits of Using Pretrained Models

3D pose estimation from a 2D estimated pose

The second method’s central idea [11] is to train a neural network to perform
3D pose estimation using both image features from the input image and 2D pose
information retrieved from another Neural network (AlphaPose). In other words, this
method assumes that the 3D pose X is conditionally independent of the image I, given
the 2D pose x, which is not quite true. Given this assumption, we make use of a
probabilistic formulation over variables including the image I, the 3D pose X ∈ R3N ,
and the 2D pose x ∈ R2N and N is the number of articulated joints. Therefore, we
write the joint probability as:

P (X, x, I) = P (X|x) · P (X|I) · P (I)

where P(X|I) is a nonlinear function, in our case the AlphaPose model that predicts
the 2D keypoints, and P(X|x) is the Neural network that we will use to estimate the
3D keypoints from the AlphaPose model.

Both methods, had great 3D pose reconstruction, while the first method was faster
than the second. The first was tested on a single NVIDIA TITAN RTX GPU and for

Page 36 of 76

https://arxiv.org/pdf/1612.06524.pdf

Thesis 4.1 Benefits of Using Pretrained Models

real-time inference, it can reach 3000 FPS, approximately 0.3 milliseconds to process a
video frame. In NVIDIA GeForce GTX 1050 it can reach about 100 FPS, approximately
10 milliseconds to process a video frame. The other method has more complexity since
it uses both 2D pose estimation and the image as input. Therefore, the speed was
slower, and we decided to choose the faster method since the quality satisfied our needs.

So we chose the first model idea, to estimate the 3D human poses from the already
estimated 2D. Before this estimation, we normalized all the 2D keypoints. These 2D
keypoints were pixels of the image. So we normalized them to have a value between
[-1,1] with the below formula:

2Dposes −
(
V ideowidth

2
,

V ideoheight
2

)
(
V ideowidth

2
,

V ideoheight
2

)
Then, after we normalize the 2D poses, we feed them into the model and we get

the 3D pose estimation.

4.1.3 Orientation and Location Estimation

This whole procedure that we discussed in the previous section, helped us to suc-
cessfully converted each image of the video that contains only a single person into an
array that contains the 3D pose estimation of a human. However, we still are missing
something. What we need is the 6D human pose estimation. At this moment we have
the knowledge of the orientation of each human bone that our humanoid skeleton has.
We have to find the location of the humanoid in the space, which is important if the
user wants to apply the root motion to his avatar. A mocap suit estimates the position
of each bone in the space, so if we need to match the quality of it we should do the
same. However, in our case, the best option was to estimate the location of the parent
bone of the human (the hip) and move into space the humanoid according to the hip
location. Imagine that our human is moving like a marionette, it can rotate each bone
of the body, but the location of the marionette will be according to the actor’s hand
that is controlling it.

Therefore, we came up with a solution to this problem that would help us estimate
the human location from a single image. We can use some knowledge that we already
have from our models. More specifically, the first model, the 2D human pose estimator,
predicts 17 keypoints of the human skeleton, as we have already shown in a figure in
the previous sections. In order to estimate the (x,y) of the position we will find the
average pixel in the image, between these 17 keypoints. If we do so, this point location
should be estimating the human hip position as it is shown in the figure below.

Page 37 of 76

Thesis 4.1 Benefits of Using Pretrained Models

The multi-color keypoints represent the 17 keypoints that the AlphaPose model esti-
mated . The white keypoint is the average of all the estimated keypoints which we will
use as the 2D location of the humanoid.

However, we still are missing the Z dimension of the position. Estimating the
Depth from a single image is something that many researchers try to solve.Some state-
of-the-art works can estimate the 3D location of an object from an image with great
accuracy. The most accurate method is to use two cameras to take the image of the
object from two different positions. This would minimize the depth error estimation.
However, we did not choose this method because it requires two cameras, but we de-
cided to convert the motion of a human from a single video, we wanted our algorithm
to be as simpler as it can get for the user.

Therefore, the solution that we came up with is very fast O(N) (N is the number of
the frames from the input video), but the accuracy in some cases is not great. Again,
using the 17 keypoints of the AlphaPose model, we segmented the human inside a
box, that contains all the keypoints. In order to estimate the depth of the image, we
calculate the log(area)2 of this box, and we normalize this number depending on the
video resolution. Due to the log, small changes due to some limb motion do not affect
the results. The animators can fix some errors in the humanoid position later, but we

Page 38 of 76

https://www.pexels.com/search/videos/dance/
https://www.pexels.com/search/videos/dance/
https://www.pexels.com/search/videos/dance/

Thesis 4.1 Benefits of Using Pretrained Models

will also offer a tool that will help them in this procedure. In the figure below we can
the human box segmentation.

Human Segmentation using the 17 keypoints from AlphaPose model

4.1.4 3D Pose to Biovision Hierarchical (BVH)

We have to convert the pose that we managed to estimate, into a file that animator
software can read. We choose to convert it into a BVH file, as it is the most common
file for computerized mocap clips.

Firstly, we have to create a skeleton in BVH form. This skeleton must be identical
to the skeleton of the datasets that our model used. Therefore we created in python
a skeleton with 17 main bones and 4 limb bones that follow the movement of their
parent bone. We also initialized the first frame of the movement as a T-Pose, to make
the motion retarget easier for the animators.

Page 39 of 76

https://www.pexels.com/search/videos/dance/

Thesis 4.1 Benefits of Using Pretrained Models

The results of the BVH File from a video when we import it into Blender. The same
frame from different camera positions.

In the BVH format, the following relationship holds between the joints:

orientationj = RP (j)offsetj + orientationP (j)

where orientationj indicates the 3D orientation of joint j, P(j) returns the parent
of joint j in whatever DAG (directed acyclic graph) the orientations are modeled in
(generally the DAG starts at the root and points towards the end-effectors) offsetj
indicates the offset of joint j relative to its parent P(j) (aka the connecting limb), and
RP (j) is the 3D rotation that determines how much should offsetj be rotated from an
initial pose (generally a T-pose). In the BVH format, for each parent P(j), we need to
store R−1

P (j)Rj. The main problem was working with joints that had multiple children,
for example, the root joint, which has connections to both legs as well as the spine.
Therefore, we came up with a solution for joints with multiple children, I had to make
copies with offset=0, and assign those as parents of the corresponding chains.

Regarding the position of the humanoid, which in our case only only the hip has,
we can easily convert it. We assume that the hip starts in the frame 0 in the location
(0, hipSkeletonHeight, 0) , so with this point as a reference, we can perfectly convert
the position into an computerized space that the animators will use.

Page 40 of 76

Thesis 4.2 Animator Tools

Finally, we completed the first phase of our goal, we estimated the 6D human
pose, or we estimated the orientation and the location of the human in the video for
each frame and we convert it into a BVH file. Subsequently, we will discuss about some
ways that will improve these results

4.2 Animator Tools

In this section, we will propose some tools for the animators that will help them
process and edit further the BVH file that we created. We created three tools for the
animators. The first allows the user to amplify each dimension of the position speed
for all the frames. In the second tool, we used some digital and Gaussian distribution
filters in order to smooth out the BVH motion data that the neural networks estimated
from the video, which help to reduce the noise between each frame. Finally, we created
a tool that converts the bvh motion data into a mp4 video. More specifically, we
created a 3D space, and we import each joint of the motion as a point for each frame.
We will discuss later in this section more thoroughly about this visualization method.

4.2.1 Biovision Hierarchical (BVH)

The BVH file format was originally developed by Biovision, a motion capture ser-
vices company, as a way to provide motion capture data to their customers. The name
BVH stands for Biovision hierarchical data. This format mostly replaced an earlier
format that they developed, the BVA format, as a way to provide skeleton hierarchy
information in addition to the motion data. The BVH format is an excellent all-around
format, its only drawback is the lack of a full definition of the basis pose (this format
has only translational offsets of children segments from their parent, no rotational off-
set is defined), it also lacks explicit information for how to draw the segments but that
has no bearing on the definition of the motion.

A BVH file has two parts, a header section that describes the hierarchy and initial
pose of the skeleton; and a data section that contains the motion data. The start of
the header section begins with the keyword "HIERARCHY". The following line starts
with the keyword "ROOT" followed by the name of the root segment of the hierarchy
to be defined. After this hierarchy is described it is permissible to define another hi-
erarchy, this too would be denoted by the keyword "ROOT". In principle, a BVH file
may contain any number of skeleton hierarchies. In practice the number of segments
is limited by the format of the motion section, one sample in time for all segments is
on one line of data and this will cause problems for readers which assume a limit to
the size of a line in a file.

Page 41 of 76

Thesis 4.2 Animator Tools

The BVH format now becomes a recursive definition. Each segment of the hier-
archy contains some data relevant to just that segment then it recursively defines its
children. The line following the ROOT keyword contains a single left curly brace ’{’,
the brace is lined up with the "ROOT" keyword. The line following a curly brace is
indented by one tab character, these indentations are mostly to just make the file more
human-readable but some BVH file parsers expect the tabs. The first piece of infor-
mation about a segment is the offset of that segment from its parent, or in the case of
the root object, the offset will generally be zero. The offset is specified by the keyword
"OFFSET" followed by the X, Y, and Z offset of the segment from its parent. The
offset information also indicates the length and direction used for drawing the parent
segment. In the BVH format, there isn’t any explicit information about how a segment
should be drawn. This is usually inferred from the offset of the first child defined for
the parent. Typically, only the root and the upper body segments will have multiple
children.

The line following the offset contains the channel header information. This has
the "CHANNELS" keyword followed by a number indicating the number of channels
and then a list of that many labels indicating the type of each channel. The BVH file
reader must keep track of the channel count and the types of channels encountered
as the hierarchy information is parsed. Later, when the motion information is parsed,
this ordering will be needed to parse each line of motion data. This format appears to
have the flexibility to allow for segments that have any number of channels that can
appear in any order.

You can see that the order of the rotation channels appears a bit odd, it goes Z
rotation, followed by the X rotation, and finally the Y rotation. On the line of data
following the specification of the channel, there can be one of two keywords, either you
will find the "JOINT" keyword or you will see the "End Site" keyword. A joint defini-
tion is identical to the root definition except for the number of channels. This is where
the recursion takes place, the rest of the parsing of the joint information proceeds just
like a root. The end site information ends the recursion and indicates that the current
segment is an end effector (has no children). The end site definition provides one more
bit of information, it gives the length of the preceding segment just like the offset of
a child defines the length and direction of its parent’s segment. The end of any joint,
end site, or root definition is denoted by a right curly brace ’}’. This curly brace is
lined up with its corresponding right curly brace.

The motion section begins with the keyword "MOTION" on a line by itself. This
line is followed by a line indicating the number of frames, this line uses the "Frames:"
keyword (the colon is part of the keyword) and a number indicating the number of
frames, or motion samples that are in the file. On the line after the frame definition is
the "Frame Time:" definition, this indicates the sampling rate of the data. The rest of

Page 42 of 76

Thesis 4.2 Animator Tools

the file contains the actual motion data. Each line is one sample of motion data. The
numbers appear in the order of the channel specifications as the skeleton hierarchy was
parsed. In the figure below, we can see the hierarchy as well as the motion format of
our Skeleton that we discussed in this section.

BVH format of the motion and hierarchy for the Skeleton that we are using. The first
line of the motion, sets the skeleton in T-Pose and the rest contain the motion data.

4.2.2 BVH Position Tool Editing

Unfortunately, the method of the skeleton position estimation, in some cases may
do not satisfy the animators. Therefore, the purpose of this tool is to allow the animator
to make some adjustments of his preference in the motion root of the skeleton. More
specifically, the animator will input three float numbers one for each dimension, that
will multiply for the correspond position of the hip for each frame of the motion data.

Page 43 of 76

Thesis 4.2 Animator Tools

This will amplify the motion root speed if the float number is above one , otherwise
it will decreased it. One last note is that the Skeleton initial height is in the ground,
therefore we do not recommend to amplify the Y dimension of the Skeleton, since the
Skeleton will float into the 3D space.

4.2.3 BVH Noise Filtering

The Neural Networks that we are using, and generally all the neural networks
that estimate or generate something have an error rate, in our case, a missing rate
from the real target. More specifically, our Neural Networks may falsie estimate some
millimeter or centimeter from the real location of that keypoint. That may happen
for each keypoint that they try to estimate for every frame. And every estimation
is completely undependable from another. Therefore, this produces a type of noise
through the motion data, that can be clearly seen even in our video mp4 player (for
better visualization use Blender or another 3D computer graphics software tool-set).

The animators could reduce this noise by hand, correcting each joint location and
orientation for each frame. This procedure is what is happening, even with mocap suits
when the animators want to create flawlessly motion data. However, this procedure
is clearly too time-consuming, since a video may contain over 1000 frames and each
frame contains 17 joints with three or six dimensions each.

Therefore, we came up with a solution that will significantly reduce this noise. It
may need some further editing from the animators, but we will save them again plenty
of time. The best way to reduce the noise is to filter out with smoothing filter the
motion data. We offer to the animators three different filters, the Mean, the Gaussian,
and the Butterworth.

These filters are three well-known filters that many researchers use to reduce the
noise from images. In our case, we want to remove the noise from the motion data.
The form of the motion data is a 2D array, that has the same properties as an image.
However, the fact that the motion data has the form of an image, is not the only reason
that we can use these filters. It is that for every keypoint of the motion data, some
of its neighbors have a dependence on it. For example, the keypoints of a bone have
a dependence on their neighbor frames. This also happens in the images, every pixel
has a dependent on some of its neighbors in order to create some shapes and objects.

Mean Filter

Mean filtering [25] is a simple, intuitive and easy to implement method of smooth-
ing images, i.e. reducing the amount of intensity variation between one pixel and the
next. It is often used to reduce noise in images. So we decided to use this to filter the

Page 44 of 76

Thesis 4.2 Animator Tools

noise from the motion data, imagine that each frame has a similar form of an image,
however it is more sensitive to the noise.

The idea of mean filtering is simply to replace each pixel value in an image with
the mean (’average’) value of its neighbors, including itself. This has the effect of elim-
inating pixel values which are unrepresentative of their surroundings. Mean filtering is
usually thought of as a convolution filter. Like other convolutions it is based around a
kernel, which represents the shape and size of the neighborhood to be sampled when
calculating the mean. Often a 3x3 square kernel is used, as shown in the figure below,
although larger kernels (e.g. 5x5 squares, it has to be an odd number) can be used for
more severe smoothing. (Note that a small kernel can be applied more than once in
order to produce a similar but not identical effect as a single pass with a large kernel.)

Mean Filter procedure with a 3x3 kernel

In general, the Mean filter allows a great deal of high spatial frequency detail to
pass while remaining very effective at removing noise on images where less than half
of the pixels in a smoothing neighborhood have been effected. (As a consequence of
this, mean filtering can be less effective at removing noise from images corrupted with
Gaussian noise.)

Page 45 of 76

https://www.researchgate.net/publication/348548607_The_Challenge_of_Predicting_OAG_Progression_from_the_Initial_Visual_Field_Test/figures?lo=1

Thesis 4.2 Animator Tools

One of the major problems with the mean filter is that it is relatively expensive
and complex to compute. To find the mean it is necessary to sort all the values in the
neighborhood into numerical order and this is relatively slow, even with fast sorting
algorithms such as quicksort (it has an average complexity of O(log(N)) and in worst
case O(N2)). The basic algorithm can, however,be enhanced somewhat for speed. A
common technique is to notice that when the neighborhood window is slid across the
image, many of the pixels in the window are the same from one step to the next, and
the relative ordering of these with each other will obviously not have changed. Clever
algorithms make use of this to improve performance.

In our algorithm, we ask the animator to give us the size of the kernel that he
wants to use in order to filter the motion data. We suggest they use a kernel with a
size smaller than 9x9, but they are free to use whatever they want that will increase
the quality of the motion data and decrease their further editing on it.

Gaussian Filter

1-D Gaussian distribution with mean 0 and σ=1

The Gaussian smoothing operator is a 2-D convolution operator that is used to
’blur’ images and remove detail and noise. In this sense it is similar to the mean filter,
but it uses a different kernel that represents the shape of a Gaussian (’bell-shaped’)
hump. This kernel has some special properties which are detailed below.

Page 46 of 76

https://fiveko.com/assets/pics/math/gauss1d_shape.jpg

Thesis 4.2 Animator Tools

The Gaussian distribution in 1-D has the form:

G(x) =
1√
2πσ

e
−
(x− µ)2

2σ2

where σ is the standard deviation of the distribution. We have also assumed that
the distribution has a mean of zero (i.e. it is centered on the line x=0).

In our case we need a 2-D Gaussian Filter. Therefore, the idea of Gaussian smooth-
ing is to use this 2-D distribution as a ‘point-spread’ function, and this is achieved by
convolution. Since the image is stored as a collection of discrete pixels we need to
produce a discrete approximation to the Gaussian function before we can perform the
convolution. In theory, the Gaussian distribution is non-zero everywhere, which would
require an infinitely large convolution kernel, but in practice it is effectively zero more
than about three standard deviations from the mean, and so we can truncate the kernel
at this point. Figure 3 shows a suitable integer-valued convolution kernel that approx-
imates a Gaussian with a σ of 1.0. It is not obvious how to pick the values of the mask
to approximate a Gaussian. One could use the value of the Gaussian at the centre of
a pixel in the mask, but this is not accurate because the value of the Gaussian varies
non-linearly across the pixel.

Once a suitable kernel has been calculated, then the Gaussian smoothing can be
performed using standard convolution methods. The convolution can in fact be per-
formed fairly quickly since the equation for the 2-D isotropic Gaussian shown above
is separable into x and y components. Thus the 2-D convolution can be performed
by first convolving with a 1-D Gaussian in the x direction, and then convolving with
another 1-D Gaussian in the y direction. (The Gaussian is in fact the only completely
circularly symmetric operator which can be decomposed in such a way.)

The Gaussian distribution in 2-D has the form:

G(x, y) =
1√
2πσ

e
−
(x− µ)2 + (y − µ)2

2σ2

Page 47 of 76

Thesis 4.2 Animator Tools

2-D Gaussian distribution with mean 0 and σ=1

The effect of Gaussian smoothing is to blur an image, in a similar fashion to the
mean filter. The degree of smoothing is determined by the standard deviation of the
Gaussian. (Larger standard deviation Gaussian’s, of course, require larger convolution
kernels in order to be accurately represented.)

The Gaussian outputs a "weighted average" of each pixel’s neighborhood, with
the average weighted more towards the value of the central pixels. This is in contrast
to the mean filter’s uniformly weighted average. Because of this, a Gaussian provides
gentler smoothing and preserves edges better than a similarly sized mean filter.

One of the principle justifications for using the Gaussian as a smoothing filter is
due to its frequency response. Most convolution-based smoothing filters act as low-pass
frequency filters. This means that their effect is to remove high spatial frequency com-
ponents from an image. The frequency response of a convolution filter, i.e. its effect
on different spatial frequencies, can be seen by taking the Fourier transform of the filter.

Page 48 of 76

https://stackoverflow.com/questions/23981437/visualization-of-gaussian-laplacian-etc-filters-in-matlab

Thesis 4.2 Animator Tools

Both filters attenuate high frequencies more than low frequencies, but the mean
filter exhibits oscillations in its frequency response. The Gaussian on the other hand
shows no oscillations. In fact, the shape of the frequency response curve is itself (half
a) Gaussian. So by choosing an appropriately sized Gaussian filter we can be fairly
confident about what range of spatial frequencies are still present in the image after
filtering, which is not the case of the mean filter. This has consequences for some edge
detection techniques, as mentioned in the section on zero crossings. (The Gaussian fil-
ter also turns out to be very similar to the optimal smoothing filter for edge detection
under the criteria used to derive the Canny edge detector.)

In our algorithm, we ask the animator to give us the standard deviation of the
distribution, (the σ) as well as the border(the mean value µ) in order to filter the
motion data. Gaussian filter differs, what happens is to make each frame of the motion
data less sharp and more united between the neighbor frames. Therefore, each motion
data may have a unique ideal standard deviation of the distribution and border that
the animators have to find by hand.

Butterworth Filter

The first two filter were digital filters that many researchers use to clear the noise
from images. We used them to clear the noise from the motion data, which works in
our case due to some similarities that there are in images and our motion data. In this
point, we propose another different type of filter that can also clear our motion data
noise.

A low-pass Butterworth Filter

Page 49 of 76

https://upload.wikimedia.org/wikipedia/commons/thumb/6/60/Butterworth_response.svg/2560px-Butterworth_response.svg.png

Thesis 4.2 Animator Tools

The Butterworth filter is a type of signal processing filter designed to have as flat
frequency response as possible (no ripples) in the pass-band and zero roll off response
in the stop-band. Butterworth filters are one of the most commonly used digital filters
in motion analysis and in audio circuits. They are fast and simple to use. Since they
are frequency-based, the effect of filtering can be easily understood and predicted.
Choosing a cutoff frequency is easier than estimating the error involved in the raw
data in the spline methods. However, one main disadvantage of the Butterworth filter
is that it achieves this pass band flatness at the expense of a wide transition band
as the filter changes from the pass band to the stop band. It also has poor phase
characteristics as well. The ideal frequency response, referred to as a "brick wall" filter
in the figure below.

Ideal Frequency Response for a low-pass Butterworth Filter

The higher the Butterworth filter order, the higher the number of cascaded stages
there are within the filter design, and the closer the filter becomes to the ideal "brick
wall" response. However, in practice this "ideal" frequency response is unattainable as
it produces excessive pass-band ripple. The generalised equation representing a "nth"
Order Butterworth filter, the frequency response is given as:

Page 50 of 76

https://www.electronics-tutorials.ws/wp-content/uploads/2018/05/filter-fil57.gif

Thesis 4.2 Animator Tools

H(jω) =
1√

1 + ϵ2(
ω

ωp

)2n

Where: n represents the filter order, Omega ω is equal to 2πf and Epsilon ϵ is
the maximum pass band gain, (Amax). If Amax is defined at a frequency equal to the
cut-off -3dB corner point (fc), ϵ will then be equal to one and therefore ϵ2 will also be

one. So we simplify the above equation, supposing that we have Amax or
H0

H1

=
√
2

which means that the cut-off frequency is at -3dB, where H0 is the Maximum Pass
band Gain and H1 the Minimum Pass band Gain.

In our algorithm, we ask the animator to give us the cut-off frequency , (the ω),
the order n of the butterworth filter as well as the fast Fourier transform border in
order to filter the motion data.

These are the three filters that we use to clean the noise from the motion data.
To compare these filters someone must run the algorithm, since the output of the
cleaning is a sequence of motion, and it is impossible to upload a video to represent
it in this presentation. Nevertheless, all three of them can clean the majority of the
noise that neural networks generate in the motion data, without affecting the motion
information.

4.2.4 BVH Video Player

We also created a tool that gives the option to the animators to display the results
of the BVH files into a panel in the form of an mp4. In particular, we convert the
information that we get from the motion data into an mp4, and then we display it
to the user. This procedure is quite simple. We read from the BVH file the Skeleton
information, as well as the motion data. We use the matplotlib library that allows
us to create a 3D space, and we import into that space all the keypoints for each
frame. Therefore, we have completed our algorithm. The animators can convert any
human video that meets our requirements into a BVH file. Then they can clear the
motion data, with the tool that we are offering, and afterward render the animation
into an avatar in order to import it to a Game Engine like Unity. In the figure below
someone can see the input video that someone wants to extract the motion compared
to the visualization that we created, the visualization that Blender offers, and finally
the motion inside a Game Engine when it is rendered into a humanoid avatar.

Page 51 of 76

Thesis 4.2 Animator Tools

We display a frame from the input video, and the estimated BVH file, in both our
video player and Blender. Finally, we display the BVH file when we clean it, convert
it into an FBX file, and import it to Unity.

Rendering an Avatar to the BVH file

At this point, we completed the second phase of this Thesis. The final phase is
to create a more friendly environment for the user that will use these algorithms and
tools. The last image of the above figure is the desired output that we want, the FBX
file. This file is the BVH file that we created when we render it into an avatar. More
specifically, the FBX file, in our case, is a motioned BVH Skeleton with humanoid skin.
Someone can find these skins on some online websites, like mixamo, that’s where we got
the skin in that image, or he can create his own avatar in studios like Blender. There

Page 52 of 76

Thesis 4.3 Windows Application

are some other online applications where someone can find an avatar like Polycom, it is
an application that allows you to create high-quality 3D models from photos with any
mobile phone. For a Humanoid 3D model it may need many photos but someone can
create an avatar that looks like himself, and if we combine it with our thesis, someone
can convert his real-life motion into a computerized humanoid avatar that has his form
and motion.

4.3 Windows Application

In the previous chapters, we discussed about our algorithms and the tools that we
offer to the animators. However, the environment that someone has to use in order
to run these algorithms is not very friendly to the users. If someone does not have
excellent knowledge of python and at least the basic knowledge of Neural Networks,
then may struggle to run the raw python code.

Therefore, we converted the raw python code into a Windows Application that
run all the aspects of the code. Firstly, the User will convert the real Video with a
Human motion that meets our requirements into a BVH file, and afterwards he will
use our tool to visualize, clean and edit the motion data that our algorithms estimated.

Notice that these BVH files can be only imported to 3D computer graphics software
tool sets (Maya, Blender, Motion Builder, etc.). If the user wants to import them into
a Game Engine (Unity, Unreal Engine, etc.) he must convert this file into an FBX file.
An FBX (.FBX) file is a format used to exchange 3D geometry and animation data.
All the 3D computer graphics software tool-sets which we mentioned, can easily and
fast convert every BVH file into an FBX.

4.3.1 Tkinter Library

Converting a raw Python code into a Windows Application, can not be done in
many different ways. The way that we chose to follow is to use the Tkinter Python
library. Tkinter is the standard GUI library for Python. Python when combined with
Tkinter provides a fast and easy way to create GUI applications. This Python frame-
work provides an interface to the Tk toolkit and works as a thin object-oriented layer
on top of Tk. The Tk toolkit is a cross-platform collection of ’graphical control ele-
ments’, aka widgets, for building application interfaces.

Many people may think that this library will reduce the raw python performance.
At first glance, it is reasonable to assume that Tkinter is not going to perform well.
While this opinion is true, in modern systems it really does not matter too much.

Page 53 of 76

Thesis 4.3 Windows Application

Tkinter (Tk) consists of a number of modules [28, 29]. The Tk interface is located
in a binary module named _tkinter (this was Tkinter in earlier versions). This module
contains the low-level interface to Tk, and should never be used directly by application
programmers. It is usually a shared library (or DLL), but might in some cases be
statically linked with the Python interpreter. In addition to the Tk interface module,
Tkinter includes a number of Python modules. The two most important modules are
the Tkinter module itself, and a module called Tkconstants.

The main goal is to create a .exe file that the user will open in order to run this
Application. There is a library in python which is called pyinstaller that can import
all the necessary libraries that the raw python code uses into that .exe file. By doing
so, the user can run this application without having installed Python on his system.
However, in order to use this library, (pyinstaller) there are some requirements. This
library does not yet recognize all the python libraries, and we use some less-known.
Therefore, we can not import these libraries into the .exe file and the code crashes.
Again there is another way to convert a python code into a .exe file. We wrote a .bat file
that finds the path of our main.py file and runs the code. Then, we convert this .bat file
with another windows Application tool, the Advanced BAT to EXE Converter v4.23.
So, the user can run the code from a .exe file, but he must install all the necessary
libraries that we are using into his system. In python, this procedure is quite easy. We
will upload a requirements.txt where we will write all the libraries with their version.
In this case, the user will have to right only one command (pip install requirements.txt)
and he will be ready to run our code. This also allows the experience with python and
machine learning users to modify our code to their preferences.

4.3.2 Construction of the Application

The application that we created consists of two main Panels, two optional floating
Panels and one hidden Panel. The main two Panels as well as one of the floating
Panels, contain all the tools and the algorithms. The other floating Panel, contains
information about the Tkinter, and the hidden Panel, is the Parent Panel which help
us to change between each Panel without any error.

First Panel

In the First Panel, with some menu option button, we get the input video and
the output folder from the user, and when he presses the submit button we start the
Algorithm. This procedure is a multi-thread since we wanted one thread to run the
algorithm, and at the same time, another would display to the user some information
about the current state of the algorithm. We display it into a huge editable and scroll-
able entry that we created, and when the algorithm finishes we change the function
of the submit button, to change to the second main Panel. When we change a Panel,

Page 54 of 76

Thesis 4.3 Windows Application

we kill all the widgets and threads of the current Panel. In the figure below, someone
can see the procedure that we described. For more details on the procedure go to
Application Workflow.

The First Panel of the Application

Second Panel

In the second Panel, the user can edit the BVH file that the algorithms in the
previous Panel created. We created some separate frames in this Panel. In the first
frame, the user can edit the position of the BVH file for each dimension. The way that
works, we take the input from each entry space, and we try to cast it to a float. In a
false cast, set the value to one, which is considered a neutral input in the multiplication.
When the user presses submit, a function that edits for each frame every dimension of
the position is being called. Subsequently, the next frame contains the Video Player.

Page 55 of 76

Thesis 4.3 Windows Application

This Video Player loads an mp4 that we create from a BVH file, we discussed it in a
previous section. Then it reads some essential information about this mp4, the frame
rate, the duration, the size, and some more details, and displays it in a fixed size
(700,425) in order to fit and fill the space we left for it in the Application. We give the
user the option to play, stop and search through the video with the skip buttons or by
moving the video bar. The reset button deletes the current mp4 and creates a new,
one with the edited BVH file. This procedure is not very fast, since we have to read
the BVH for each frame, create a new 3D space and import the new keypoints location
and orientation. For that reason, we give information to the user about the state of
that rendering, so while we run that algorithm that converts the BVH file into an mp4
visualization video, we start another thread that displays to the user the frame that
the algorithm is now editing. Finally, in this panel, in the menu options, the user can
press the BVH filtering which opens a floating Panel that allows the user to smooth
with three filters the BVH files and the option to animate another video that returns
the user to the first Panel. We also give some information to help the Users by hovering
the mouse over the questions marks and some buttons.

Page 56 of 76

Thesis 4.3 Windows Application

The Second Panel of the Application

Third Panel

In this Panel, the user can select between three different filters that remove the
Neural networks noise from the BVH file. By hovering the mouse over the question
marks we give the user information about these filters. We also suggest some values
in the spin-boxes, but we give them the freedom to the user to choose his parameters
for each filter. When he presses submit, the filter starts to apply in the BVH file, and
when this procedure is complete, a message box confirms it to the user. Then this
floating window terminates and the user returns to the second Panel.

Page 57 of 76

Thesis 4.3 Windows Application

The Third Panel of the Application

Fourth Panel

This Panel only gives some information about the Application. It opens when the
user presses the About button which is located in the two main Panels, in the Help
menu.

The Fourth Panel of the Application

Hidden Panel

The hidden Panel is the Parent Panel that allows us to generate and destroy any
other child Panel without killing the Application. Since we do not show anything in

Page 58 of 76

Thesis 4.3 Windows Application

this Panel, we made this Panel hidden on purpose

4.3.3 Application’s Use Case Diagram

In the previous sections, we discussed the Application implementation. Now, we
will analyze the use case diagram of the Application. Since our Application contains
many options for the User, we will split the use case diagram into the main Panels of
the Application.

The use Case diagram for the first Main Panel of the Application

Page 59 of 76

Thesis 4.3 Windows Application

The use Case diagram for the second Main Panel of the Application

Page 60 of 76

Thesis

Chapter 5

5 Evaluation

In this Chapter, we will evaluate the performance of the two pre-trained Neural
Networks as well as the filters that we used. In order to evaluate the models, we will
use some well-known metric systems that were developed by some researchers for this
exact purpose. More specifically, we will find the average error in millimeters that each
model does during the estimation. In order to evaluate the models, we need to have
the estimated data from the neural networks as well as the correct data for the same
input, which we will compare to find the error. Luckily for us, these models that we
are using have already been evaluated by many researchers, so will just present the
graphs for the input as well as the metric system that they used in order to evaluate
the models. Regarding the filters, we will just compare the best scenario performance
of each one of them when they try to filter the same motion data, and we will display
the results.

5.1 AlphaPose Model Evaluation

Firstly, we will explain the metric system of the evaluation Dataset that the re-
searchers who wanted to evaluate the AlphaPose as well as many other models used.
More specifically, the evaluation dataset which we are going to discuss is the MS COCO
[30] (Microsoft Common Objects in Context) which is a large-scale object detection,
segmentation, key-point detection, and captioning dataset. The dataset consists of
328K images. It contains 164K images split into training (83K), validation (41K) and
test (41K) sets. Therefore, as we mentioned this Dataset can be used to evaluate both
object detection and key-point detection. Subsequently, we can evaluate the AlphaPose
model which contains two different models, the Yolo model for the object detection and
the keypoints Detection using the SPPE model.

To evaluate these algorithms, the metric system that we will use is the AP [31]
(Average Precision) and mAP (Mean Average Precision). Let’s start with the definition
of precision and recall.

Precision =
tp

tp+ fp

Recall =
tp

tp+ fn

where, tp = true positive, fp = false positive, fn = false negative.

Page 61 of 76

Thesis 5.1 AlphaPose Model Evaluation

In order to verify a result as tp, fp, or fn, there are put some thresholds. For
example, in object detection where we want to classify an object as well as we need
to put it inside a box, we compare the label that we classified, and about the box, we
check the Intersection over the union (IoU) of the true box location and the estimated
box location. Sometimes the IoU threshold is fixed, for example, at 50% or 75%, which
are called AP50 and AP75, respectively.

So basically precision is measuring the percentage of correct positive predictions
among all predictions made, and recall is measuring the percentage of correct positive
predictions among all positive cases in reality. There is always a trade-off between the
two metrics. Imagine if we label everything as positive, then recall will be 1 because
we do not have false negatives, but precision will be horrible because only a small
percentage of our positive predictions are actually correct. In the other extreme case,
we can be very careful about the selection of positive prediction, so prediction will be
very good, but we might have labeled many positive cases as negative and consequently
lowered recall. Generally, Recall values increase as we go down the prediction ranking.
However, precision has a zigzag pattern, where it goes down with false positives and
goes up again with true positives. In the figure below we display this Graph pattern.

Example of normal and a smoothed Precision-recall curve

The general definition for the Average Precision (AP) is finding the area under
the precision-recall curve above. Precision and recall are always between 0 and 1.
Therefore, AP falls within 0 and 1 also. Before calculating AP for the object detection,
we often smooth out the above graph pattern first. Therefore, the AP can be calculated
from the smoothed Precision-recall curve as:

AP =

∫ 1

0

p(r)dr

where p(r) is the Precision-recall curve graph.

At this point, we are ready to display the results of the AlphaPose evaluation with
this metric system. Firstly, the Yolo model which we used compared to many other

Page 62 of 76

https://jonathan-hui.medium.com/map-mean-average-precision-for-object-detection-45c121a31173

Thesis 5.1 AlphaPose Model Evaluation

similar models, the AP in MS COCO Dataset is shown in the figure below :

Yolov3 model box Average Precision evaluation compared to other model

Yolov3 Object Detection results on the MS COCO test-dev dataset of some typical
baselines. AP, AP50 , AP75 scores (%). APS:AP of small objects, APM:AP of medium
objects, APL:AP of large objects.

Regarding the SPPE model, again with the same Dataset as well as the OCHuman
Dataset [32]. OCHuman is focused on heavily occluded humans. It contains 4731
images and 8110 persons labeled with 17 keypoints. In OCHuman, on an average
67% of the bounding box area has overlap with other bounding boxes, compared to
only 0.8% for COCO. Additionally, the number of examples with occlusion IoU > 0.5
is68% for OCHuman, compared to 1% for COCO. This makes the OCHuman dataset
complex and challenging for human pose estimation. In the figure below, we present
the evaluation results for these Dataset, for the AP metric system, as well as the
comparison of AlphaPose SPPE model to similar models.

Page 63 of 76

https://paperswithcode.com/sota/object-detection-on-coco
https://paperswithcode.com/paper/learning-spatial-fusion-for-single-shot
https://paperswithcode.com/paper/learning-spatial-fusion-for-single-shot
https://paperswithcode.com/paper/learning-spatial-fusion-for-single-shot

Thesis 5.1 AlphaPose Model Evaluation

AlphaPose SPPE model Average Precision tests evaluation compared to other keypoint
Detection Models

SPPE model Average Precision tests evaluation on COCO Dataset

Page 64 of 76

https://paperswithcode.com/sota/keypoint-detection-on-coco
https://paperswithcode.com/sota/keypoint-detection-on-coco
https://paperswithcode.com/paper/associative-embedding-end-to-end-learning-for

Thesis 5.2 VideoPose3D Model Evaluation

SPPE model Average Precision tests evaluation on OCHuman Dataset.

5.2 VideoPose3D Model Evaluation

Similar to the previous section, we will first describe the metric system researchers
used to evaluate the models that do 3D pose estimation, and then we will demonstrate
the results and the comparisons. The Dataset that we are going to use for this eval-
uation is the Human3.6M dataset [13]. The Human3.6M dataset is one of the largest
motion capture datasets, which consists of 3.6 million human poses and corresponding
images captured by a high-speed motion capture system. There are 4 high-resolution
progressive scan cameras to acquire video data at 50 Hz. The dataset contains activities
by 11 professional actors in 17 scenarios: discussion, smoking, taking photo, talking
on the phone, etc., as well as provides accurate 3D joint positions and high-resolution
videos. We employ a variation of the standard mean per joint position error (MPJPE)
metric to evaluate our models. The MPJPE metric is the root-relative Euclidean error
averaged over all joints and poses. In a root-relative pose, the hip (the root joint) is
set at the origin. Since we are interested in coordinates in a global space, we do not
move the hip to the origin. We call the latter metric Absolute MPJPE or A-MPJPE
for short. The original MPJPE is called Relative or R-MPJPE to avoid confusion.

In absolute pose estimation there could be two sources of errors: the (root-relative)

Page 65 of 76

https://paperswithcode.com/paper/associative-embedding-end-to-end-learning-for

Thesis 5.2 VideoPose3D Model Evaluation

pose is incorrectly estimated, or the absolute location of the pose is incorrect. The scale
of the second type of error can be much larger then the first type. We report both
metrics to avoid that the absolute error hides an inaccurate pose prediction

To summarize, the definition of the metrics:

• A-MPJPE or Absolute MPJPE: The average Euclidean distance between
the ground truth and predicted joints in millimeters.

• R-MPJPE or Relative MPJPE: The average Euclidean distance between the
ground truth and predicted hip-relative joint coordinates in millimeters. Previous
work calls this the MPJPE metric.

Thus, the A-MPJPE metric is a natural extension of the common MPJPE metric. The
formula of the MPJPE for a frame f and a Skeleton S is:

EMPJPE(f, S) =
1

NS

NS∑
i=1

∥mf
f,S(i)−mf

gt,S(i)∥2

where, NS is the number of the joints in skeleton S. For a set of frames the error is the
average over the MPJPEs of the frames.

VideoPose3D model Average MPJPE tests evaluation compared to other keypoint De-
tection Models on Human3.6M Dataset.

Page 66 of 76

https://paperswithcode.com/sota/3d-human-pose-estimation-on-human36m
https://paperswithcode.com/sota/3d-human-pose-estimation-on-human36m

Thesis 5.3 BVH Filters Evaluation

VideoPose3D model Average MPJPE tests evaluation on Human3.6M Dataset

VideoPose3D model Average MPJPE tests evaluation on Human3.6M Dataset

5.3 BVH Filters Evaluation

To evaluate the noise-removing filters that we proposed, we need a different ap-
proach than the model evaluation method. In this case, we have to invent our own
metric system and display the results. We thought of a simple but effective way to
display the performance of each filter. In this method, we will find the average motion
data for each frame, and we will compute the change rate per frame (CRPF). The unfil-
tered data, due to the noise, should have greater CRPF than the filtered motion data.
Moreover, we will find the best parameters that each filter has for motion data, and

Page 67 of 76

https://paperswithcode.com/paper/3d-human-pose-estimation-in-video-with
https://paperswithcode.com/paper/3d-human-pose-estimation-in-video-with

Thesis 5.3 BVH Filters Evaluation

afterward, we will compare its CRPF in a graph.In the figures below, we demonstrate
the evaluation of the three filters that we use, butterworth, mean and gaussian.

Filtering comparison on a BVH file with sharp moves generated by Neural networks
based on our metric system, CRPF

In the above figure, we can clearly see that in the case that we do not use a filter,
the motion data are too unstable between neighbor frames. This definitely means that
these motion data contain noise. Regarding the filters, we can see that the gaussian
Filter has the smoothest graph. In addition, the results between the mean filter and
the Butterworth filter, are almost the same. At this point, it is worth saying that,
we chose the best performance of each filter, which will remove the maximum amount
of noise without affecting the motion data information. However, in the case that the
motion contains sharp moves, we suggest avoiding using the gaussian filter. The reason
is that this filter may confuse a sharp move which is the important information of the
data, as noise, and therefore it will smooth it. On the other hand, the other two filters
will keep sharp in motion, but they will have more overall noise in motion.

Page 68 of 76

Thesis 5.3 BVH Filters Evaluation

Filtering comparison on a BVH file without sharp moves generated by Neural networks
based on our metric system, CRPF

In the above figure, we can clearly see that the Gaussian filter removes almost
completely the noise without losing the motion’s sharpest moves. The reason is that
the motion itself does not contain any sharp movement, so the filter will not confuse
any sharp movement as noise. Regarding the other two filters, both mean and But-
terworth has almost the same results. Therefore, in this case, we can say that the
Gaussian filter is the best.

For better understanding, we found from the mixamo a professional FBX file,
and we extracted from it the BVH file or its motion. Then we added some normal
distribution noise to this file and then we tried to clean the motion data with our three
filters. Below we demonstrate this procedure in the graphs.

Page 69 of 76

Thesis 5.3 BVH Filters Evaluation

Professional Mixamo BVH file compared with this file with added normal distribution
noise with our metric system, CRPF

We can clearly see how that the right image has noise added in the motion data.

Filtering comparison based on the mixamo BVH file with the added noise with normal
distribution with our metric system, CRPF

Having the original we can clearly see that the Gaussian filter can remove the ma-
jority of the noise, however, it will also affect the important information of the motion
data. Regarding the Butterworth and mean filter, they do not remove completely the
noise, but they do not also affect the motion information that much. Therefore, we
suggest using the Gaussian filter in videos that do not contain any sharp movements,
and the other two on videos that contain sharp movements.

Page 70 of 76

Thesis

Chapter 6

6 Discussion

To summarize, in this thesis, we developed an algorithm that can estimate the 3D
human pose from a video using some well-known pre-trained deep neural networks. As
a result, we converted these 3D coordinates into a BVH file with a humanoid with 17
bones. Furthermore, we developed a tool that will be useful to all animators who will
use our algorithm. This tool can be used to remove noise from BVH files using signal
processing filters, manually fix the location of the humanoid in space, and display the
results. Finally, we converted all the algorithms from raw python code to a Windows
Application with the Tkinter Library.

6.1 Our Contribution

As we discussed in the previous Chapters, we created a Windows Application that
anyone can convert a human motion from a video into a computerized motion, which
he will be able to import into Game Engines like Unity.

At the moment the most popular and accurate method to do such a thing is to use
a motion-capture suit. However these suits cost over 3000 dollars, so we proposed a
method that only needs an input video with a resolution of at least 480p and an above-
average system that nowadays the majority of people, especially the thesis targeted
audience already have. Therefore, we give the option to studios, or animators that
does not have the budget to buy a motion capture suit, to be able to create their own
computerized motion capture clips. Without our method as well as a motion capture
suit, someone in order to create a computerized mocap clip, use a technique similar to
stop motion, using a 3D computer graphics software. Obviously, this procedure is too
time-consuming, so we can reduce a lot the working time of these people. Finally, in
order to reduce even more their working time, we created some filtering and editing
tools that will automatically, improve the quality of a produced computerized motion
capture.

6.2 Limitations of our Work

Despite the benefits of our approach, there are some drawbacks to consider. First
of all, there are some harsh requirements in the input video that we are asking from
the user, that reduces the number of motions that someone can produce.

Page 71 of 76

Thesis 6.3 Future Approaches

Furthermore, the Skeleton that we produce has only 17 bones, containing only the
most essential human bones. In contrast, other methods that produce computerized
motion capture clips, (with mocap-suits) can produce motion data that contains over
100 bones, with great accuracy. Therefore, this number is very low, but if we increase
it with our system and the current models that we are using the accuracy as well as
the quality of the estimated motion data will drop significantly.

In addition, we rejected some models that could estimate a better human pose
due to the lack of the VRAM in our system. The difference would not be that great,
but we chose poorer results to avoid out-of-memory error problems.

Moreover, our approach requires the user to have an above-average system in order
to run our methods even though we rejected some models due to their complexity and
size. Again, someone with a mocap-suit can produce their motion data clip in every
system that can handle at least 3D computer graphics software like Blender.

Finally, we used the best pre-trained models that we could find online. The re-
searchers that created these models, will continue to improve them, however, in our
program, the models would stay stable. More specifically, we will have to keep updating
our models with the newest versions of them in order to have a state-of-the-art method.

6.3 Future Approaches

Despite the shortcomings of our approach, there are numerous disciplines worth
investigating:

• Import Facial and hand models: As we mentioned before, our model con-
tains only 17 bones, if someone could create a model that can estimate facial
and hand points with great accuracy, it would be a massive enhancement for our
Application.

• Import computerized motion clips into Robots: The algorithm runs in
our system runs at 4-5 frames per second in an above-average system. If we use
a better system, it could run in Real-Time. This means that someone could use
a Robot, that contains a camera, that would find a human and would try to copy
his motion in Real-Time.

• Improve the current Neural Network models: In our approach, we used
two pre-trained models in order to estimate the 3D human-Pose from a video.
These models can be improved with further training or with an enhancement to
their architecture. However, this improvement progress is very slow, since there
is not any proven mathematical way that can evaluate each possible architecture.

Page 72 of 76

Thesis References

References

[1] Müller, Meinard and Röder, Tido and Clausen, Michael ACM SIGGRAPH 2005
Papers 677–685

[2] Rayat Imtiaz Hossain, Mir, and James J. Little. "Exploiting temporal information
for 3D pose estimation." arXiv e-prints (2017): arXiv-1711.

[3] Schwarcz, Steven, and Thomas Pollard. "3d human pose estimation from deep
multi-view 2d pose." 2018 24th International Conference on Pattern Recognition
(ICPR). IEEE, 2018.

[4] Park, Sungheon, Jihye Hwang, and Nojun Kwak. "3d human pose estimation using
convolutional neural networks with 2d pose information." European Conference on
Computer Vision. Springer, Cham, 2016.

[5] Rahul, M. "Review on motion capture technology." Global Journal of Computer
Science and Technology (2018).

[6] Guerra-Filho, Gutemberg. "Optical Motion Capture: Theory and Implementa-
tion." RITA 12.2 (2005): 61-90.

[7] Corrales Ramón, Juan Antonio, Francisco A. Candelas-Herías, and Fernando
Torres. Kalman filtering for sensor fusion in a human tracking system. Intech,
2010.

[8] Norton, Jonathan Carey. Motion capture to build a foundation for a computer-
controlled instrument by study of classical guitar performance. Stanford University,
2008.

[9] https://www.deeplearningbook.org/

[10] Mirzaei, Maryam Sadat, et al. "Animgan: A spatiotemporally-conditioned
generative adversarial network for character animation." 2020 IEEE International
Conference on Image Processing (ICIP). IEEE, 2020.

Page 73 of 76

Thesis References

[11] Chen, Ching-Hang, and Deva Ramanan. "3d human pose estimation= 2d pose
estimation+ matching." Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 2017.

[12] Christoffersen, Peter, and Kris Jacobs. "The importance of the loss function in
option valuation." Journal of Financial Economics 72.2 (2004): 291-318.

[13] Ionescu, Catalin, et al. "Human3. 6m: Large scale datasets and predictive
methods for 3d human sensing in natural environments." IEEE transactions on
pattern analysis and machine intelligence 36.7 (2013): 1325-1339.

[14] Cao, Zhe, et al. "Realtime multi-person 2d pose estimation using part affinity
fields." Proceedings of the IEEE conference on computer vision and pattern
recognition. 2017.

[15] Sun, Ke, et al. "Deep high-resolution representation learning for human pose
estimation." Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2019.

[16] Fang, Hao-Shu, et al. "Rmpe: Regional multi-person pose estimation." Proceed-
ings of the IEEE international conference on computer vision. 2017.

[17] Mirzaei, Maryam Sadat, et al. "Animgan: A spatiotemporally-conditioned
generative adversarial network for character animation." 2020 IEEE International
Conference on Image Processing (ICIP). IEEE, 2020.

[18] Kiasari, Mohammad Ahangar, Dennis Singh Moirangthem, and Minho Lee.
"Human action generation with generative adversarial networks." arXiv preprint
arXiv:1805.10416 (2018).

[19] Zhang, Feng, Xiatian Zhu, and Chen Wang. "Single Person Pose Estimation: A
Survey." arXiv preprint arXiv:2109.10056 (2021).

[20] Maji, Debapriya, et al. "YOLO-Pose: Enhancing YOLO for Multi Person Pose Es-
timation Using Object Keypoint Similarity Loss." arXiv preprint arXiv:2204.06806

Page 74 of 76

Thesis References

(2022).

[21] Redmon J, Farhadi A, "YOLOv3: an Incremental Improvement,"
https://arxiv.org/ abs/1804.02767, 2018.

[22] Newell, Alejandro, Kaiyu Yang, and Jia Deng. "Stacked hourglass networks for
human pose estimation." European conference on computer vision. Springer, Cham,
2016.

[23] Liu, Ruixu, et al. "Attention mechanism exploits temporal contexts: Real-time
3d human pose reconstruction." Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 2020.

[24] Pavllo, Dario, et al. "3d human pose estimation in video with temporal convolu-
tions and semi-supervised training." Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 2019.

[25] Chandrinos, Aristeidis. "The Challenge of Predicting OAG Progression from the
Initial Visual Field Test." Signal 4: 6.

[26] Ramamurthy, Arjun. "An All Digital Implementation of Constant Envelope:
Bandwidth Efficient GMSK Modem using Advanced Digital Signal Processing
Techniques." Wireless personal communications 52.1 (2010): 133-146.

[27] Cuadrado, Javier, Florian Michaud, Urbano Lugrís, and Manuel Pérez Soto.
"Using accelerometer data to tune the parameters of an extended kalman filter for
optical motion capture: Preliminary application to gait analysis." Sensors 21, no.
2 (2021): 427.

[28] Lundh, Fredrik. "An introduction to tkinter." URL: www. pythonware. com/li-
brary/tkinter/introduction/index. htm (1999).

[29] Grayson, John E. Python and Tkinter programming. Manning Publications Co.
Greenwich, 2000.

[30] Lin, Tsung-Yi, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C. Lawrence Zitnick. "Microsoft coco: Common

Page 75 of 76

Thesis References

objects in context." In European conference on computer vision, pp. 740-755.
Springer, Cham, 2014.

[31] https://jonathan-hui.medium.com/map-mean-average-precision-for-object-
detection-45c121a31173

[32] Zhang, Song-Hai, Ruilong Li, Xin Dong, Paul Rosin, Zixi Cai, Xi Han, Dingcheng
Yang, Haozhi Huang, and Shi-Min Hu. "Pose2seg: Detection free human instance
segmentation." In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 889-898. 2019.

Page 76 of 76

	Introduction
	The increased demand of mocap clips
	Thesis aim
	Thesis Structure

	Background
	Motion Capture
	Optical Motion Capture
	Non-Optical Motion Capture

	Neural Networks
	Artificial Neural Network
	Convolutional Neural Network

	Related Work
	Gait mocap clip Generation through a GAN
	Data Augmentation
	Dataset
	Generative Adversarial Networks
	Evaluation of the approach

	Requirements
	Hardware
	Input requirements
	Application's Workflow

	Implementation
	Benefits of Using Pretrained Models
	Available 2D pose estimation Pretrained Models
	2D pose estimation to 3D pose estimation
	Orientation and Location Estimation
	3D Pose to Biovision Hierarchical (BVH)

	Animator Tools
	Biovision Hierarchical (BVH)
	BVH Position Tool Editing
	BVH Noise Filtering
	BVH Video Player

	Windows Application
	Tkinter Library
	Construction of the Application
	Application's Use Case Diagram

	Evaluation
	AlphaPose Model Evaluation
	VideoPose3D Model Evaluation
	BVH Filters Evaluation

	Discussion
	Our Contribution
	Limitations of our Work
	Future Approaches

