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Abstract: We apply the Ising model with nearest-neighbor correlations (INNC) in the problem of in-
terpolation of spatially correlated data on regular grids. The correlations are captured by short-range
interactions between “Ising spins”. The INNC algorithm can be used with label data (classification)
as well as discrete and continuous real-valued data (regression). In the regression problem, INNC
approximates continuous variables by means of a user-specified number of classes. INNC predicts
the class identity at unmeasured points by using the Monte Carlo simulation conditioned on the
observed data (partial sample). The algorithm locally respects the sample values and globally aims
to minimize the deviation between an energy measure of the partial sample and that of the entire
grid. INNC is non-parametric and, thus, is suitable for non-Gaussian data. The method is found to
be very competitive with respect to interpolation accuracy and computational efficiency compared to
some standard methods. Thus, this method provides a useful tool for filling gaps in gridded data
such as satellite images.

Keywords: Ising model; spatial classification; interpolation; non-Gaussian data; earth observation;
fast algorithm

PACS: 02.50.-r; 02.50.Ga; 02.60.Ed; 75.10.Hk; 89.20.-a; 89.60.-k

1. Introduction

The current availability of massive remotely sensed georeferenced datasets, pertaining
to land cover, terrain elevation, population, meteorological variables, and atmospheric
pollution creates increasing demands for efficient processing and analysis methods. The
information contained in such Earth-observation data can help to develop reliable tools
for ecosystem management, environmental policy, the design of real-time hazard warning
systems, and various other decision-making tasks. However, the Earth-observation data
typically require preprocessing before they can be used in standard analytic methods.
A typical problem is data heterogeneity, i.e., the fact that data are acquired by different
modalities, using different methodologies and space-time resolutions. Furthermore, data
coverage is often incomplete due to different reasons, such as limited resources (material,
human, and technical), equipment limitations (detection level and resolution), sensor
malfunctions, or adverse meteorological conditions (observations hindered by clouds) [1,2].

Resolution differences between different sensors as well as data gaps create the miss-
ing data problem. In order to apply standard tools for the analysis of space-time earth-
observation data, there is a need to fill the gaps and to unify the resolution. These tasks
involve downscaling (refining) data with sparse resolution and generating optimal es-
timates at points without measurements. The mathematical problem of gap filling is
interpolation: Estimates of the variable under consideration need to be generated at the
target point based on the available data in the vicinity of the target point. Depending on
the nature of the modeled variable, interpolation involves either a classification problem (if
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the values of the variable come from a set of class labels) or regression (if the variable is
continuous or if its values are classes that correspond to closed intervals of real numbers).
The interpolation in such cases can be performed by means of well established interpolation
and classification techniques [3,4] or by means of machine learning methods [5].

However, considering the ever increasing size of spatial data, both classical methods
used in geostatistics (e.g., kriging and its various flavors) and machine learning methods
(e.g., Gaussian processes) can become impractical due to their high computational com-
plexity [4–6]. Namely, the complexity of such methods increases proportionally to the third
power of the data size which renders their application impossible without modification
(see [4,5] and references therein for possible alternatives). Furthermore, methods such as
kriging usually assume a joint Gaussian probability distribution, an assumption that is
often unjustified by the data. In addition, application of such methods typically requires
considerable human (subjective) input [7,8].

An alternative approach focuses on modelling spatial correlations by means of short-
range interactions, inspired from models of statistical physics [9–11]. These works focused
on the development of computationally efficient spatial dependence models applicable
to gridded and scattered Gaussian data. Spatial data on regular grids are often modeled
by means of Gaussian Markov random fields [12] with spatial correlations imposed via
local interactions, which allow for computationally efficient representations. However,
there is considerably less progress on the development of non-Gaussian Markov random
fields [13]. The prototypical non-Gaussian Markov random field is the binary-valued Ising
model, which has found applications mostly within the spin-glass theory, applied to the
image restoration problem [14–18]. In spatial statistics, the Ising model was introduced
in the works of Besag [19]. The Ising model was introduced for data with binary values.
Nonetheless, it can also be applied to multi-valued discrete data within a hierarchical
framework that employs multiple binarization thresholds [20,21].

The objective of the current study is to investigate the performance of the Ising nearest
neighbor correlation (INNC) interpolation method (originally introduced in [20,21]) with
real datasets of environmental interest (soil quality and terrain elevation data), as well as
synthetic data. The analysis of the latter allows us a controlled assessment of the prediction
ability and computational performance of the algorithm for different data sizes. One
of the specific goals of this study is to establish the potential of INNC for interpolating
massive (e.g., satellite product) datasets. Another goal is to evaluate INNC’s ability to
handle different probability distributions, a property which derives from the method’s
non-parametric nature. Finally, INNC is investigated with respect to its ability to generate
accurate predictions with minimal user input, a property that makes it an appealing
candidate for the automatic gap-filling of massive datasets.

2. Definition of the Interpolation Problem

Let us consider a set of sampling points Gs = {~ri}, where~ri = (xi, yi) ∈ R2 and
i = 1, . . . , N. These points are assumed to be distributed on a rectangular grid G̃ of size
NG = Lx × Ly, where Lx and Ly are, respectively, the horizontal and vertical dimensions
of the rectangle (in terms of the unit length) and N < NG. Let zi be a value attributed
to the point~ri. Then, the set Zs = {zi ∈ R}N

i=1 represents the sample of the process. Let
Gp = {~rp}P

p=1 be the set of prediction points where p = 1, . . . , P such that G̃ = Gs ∪ Gp.

For label data, Zs takes values in a set of discrete labels {Cq}Nc
q=1. For regression applica-

tions, Zs can be represented as a realization of an underlying continuously valued random
field Z(~ri). In the following, we discretize the continuous distribution using a number of
classes, Cq, q = 1, . . . , Nc. The classes are defined with respect to a set of threshold levels
tk, k = 1, . . . , Nc + 1, where t1 = min(z1, . . . , zN) and tNc+1 = max(z1, . . . , zN). Each class
Cq corresponds to an interval as follows: Cq = (tq, tq+1] for q = 2, . . . , Nc − 1, C1 = (t1, t2],
and CNc = (tNc−1, tNc).

We define the indicator field IZ(~rp) to take integer values q ∈ {1, . . . , Nc} equal to
the appropriate class index for the value z(~rp). In particular, IZ(~rp) = q implies that
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ẑ(~rp) ∈ Cq (where Cq is a specific label for the classification problem or a specific interval
for the regression problem). The interpolation problem can then be posed as a classification
problem for both classification and regression applications, i.e., each point in Gp is assigned
a class label. In order to estimate the class identity of Z at the prediction points, we use the
well-studied Ising model. Once all the prediction points have been assigned to a class, a
map of the process Z can be generated consisting of equivalent class (isolevel) contours.

3. The Ising Model

For each class q, let us assume a set of variables {sq
i }

N
i=1 (“spins”) that can take the

value sq
i = 1 (“spin-up”) or sq

i = −1 (“spin-down”). The Ising model considers pairwise
interactions between the spins, expressed by the following Hamiltonian (for brevity, we
drop the class index) [22]:

H[{s}] = −∑
i,j

Ji,j si sj −∑
i

hisi, (1)

where the symbol H[{s}] denotes that energy is a function of the set of spin values (spin
configuration).

In general, spin configurations that result in lower energy are more likely to be realized.
The first term in the energy corresponds to the “spin–spin exchange" interaction energy. The
coupling strength Ji,j controls the strength as well as the type of the interaction: if Ji,j > 0, it
is “ferromagnetic” (it favors spins of the same sign), but if Ji,j < 0 it is “antiferromagnetic”
(favoring spins of the opposite sign). The second term corresponds to a symmetry-breaking
bias, which is caused by the presence of a site dependent “external field” hi. Positive
(negative) values of the external field favor spins of the same sign. Hence, hi controls
the overall distribution of the “spin” values between 1 and −1 (the magnetization). The
coupling strength Ji,j is usually considered to be uniform, and its range limited to nearest
neighbors. However, the model can be generalized to include also non-uniform, longer-
range couplings.

The probability density function for a spin configuration {s} is given by the following
Boltzmann–Gibbs exponential expression:

f [{s}] = e−H[{s}]/kBT

Z
, (2)

where kB is Boltzmann’s constant and T the temperature. The partition function Z is a
normalization factor obtained by summing the exponential e−H[{s}]/kBT over all possible
“spin configurations”. Hence, it is only a function of the model parameters Ji,j and hi but
not of a particular configuration.

In the forward problem, the coupling strength and the polarizing field are known, and
one is interested in the most probable spin configurations or in the calculation of the spin
correlation function. In the inverse problem, the “spins” at certain locations are known
(they can be obtained from the sampled field values). The estimation process focuses on
inferring the model parameters (e.g., by means of the maximum likelihood method) that
best represent the observations. Unfortunately, the normalizing constant Z is in most cases
intractable by analytical means, and its numerical evaluation is a computational bottleneck.
Possible approaches to circumvent this problem, such as the maximum pseudo-likelihood
approach [23] or various Markov Chain Monte Carlo estimation techniques [24], can be
either very inaccurate or prohibitively slow, respectively.

Once the model parameters are determined, the optimal values of the “spins” at
non-sampled locations (i.e., where the data gaps are), can be determined by maximizing
the conditional (on the data) probability f (equivalently by minimizing H) with respect to
the unknown values.
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In order to circumvent the difficult problem of parameter estimation, we use a
non-parametric method, explained below, that does not require knowledge of the Ising
model’s parameters.

4. The INNC Multilevel Interpolation Algorithm
4.1. Non-Parametric Nearest-Neighbor Model

In the following, we use the ideas motivating the Ising Hamiltonian (Equation (1)). In
this study, we restrict the scope of the Ising model to the simplest energy functional: We
set the polarizing field uniformly to zero, i.e., hi = 0, i = 1, . . . , N and limit the exchange
interactions to uniform “ferromagnetic” strength only for nearest neighbors (N.NB.), i.e.,
Ji,j = J > 0 if i ∈ N.NB.(j) and Ji,j = 0 otherwise. The choice of zero polarizing field does
not allow explicitly controlling the ratio of “up” versus “down spins”. As explained below,
this is achieved in the simulations by selecting the initial “spin” values so as to reflect the
“up-down” spin distribution of the sample.

If we are dealing with an interpolation problem that involves only two classes, the
interpolation is performed in a single pass. The “data” Zs = {zi}N

i=1 are transformed
into discrete variables (“spins”). If our problem involves multiple classes (resulting from
different labels or from the discretization of continuous value), a hierarchical interpolation
scheme is used. In this scheme, the sample, Gq

s , and prediction, Gq
p, sub-grids are progres-

sively updated as the class index q changes from 1 to Nc. For the lowest class G1
s = Gs

and G1
p = Gp, where Gs and Gp are the initially defined sampling and interpolation grids,

respectively. For all classes, q = 1, . . . , Nc, Gq
p ∪ Gq

s = G̃.
As we increase q, the sites with negative spins join the updated sample subgrid,

and they are simultaneously removed from the prediction subgrid. At each level q, the
discretization is binary with respect to the respective threshold value, i.e., sq

i = −1 if
zi ≤ tq+1 and sq

i = 1 if zi > tq+1 for i = 1, . . . , Nq, where Nq is the number of sites
with known values at level q. For q > 1, the sample (prediction) subgrid is augmented
(diminished) by the grid nodes~rl ∈ Gp for which sq−1

l = −1. It follows that N1 = N and

Nq>1 ≥ N. The set Sq
s = {sq

i }
Nq
i=1 where q = 1, . . . , Nc includes all the spin values for the

class index q. The union of the two sets containing the sample and prediction values at
level q, i.e., S̃q = Sq

s ∪ Sq
p contains the “spin” values over the entire grid G̃ for the specific

level. The Ising model can then be used to represent spatial interactions between the spins
S̃q for level q, which means that the spins are defined with respect to the corresponding
binarization threshold.

The hierarchical scheme outlined above helps to avoid the parameter inference prob-
lem and suggests a non-parametric approach. This approach utilizes a cost function,
U(Sq

p|S
q
s ), that measures the deviation (squared difference) between a suitably normalized

energy, Cq
s , of the sample configuration at level q and the respective energy of the spin

configuration C̃q over the entire grid. This is given by the following:

U(Sq
p | Sq

s ) = (C̃q − Cq
s )

2, (3)

where Cq
s = 〈sq

i sq
j 〉Gq

s
is the spin pair correlation of the sample configuration at the q−level,

and C̃q = 〈sq
i sq

j 〉G̃ is the spin pair correlation over the entire grid; the latter includes both

Sq
p and Sq

s .
Thus, assigning the correct class to the spins Sq

p is reduced to finding the optimal
configuration Ŝq

p, which minimizes the cost function (3) at a fixed temperature T.

Ŝq
p = arg min

Sq
p

U(Sq
p | Sq

s ). (4)
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Algorithm 1: Summary of INNC interpolation algorithm in the non-vectorized
version. The vectorized version is explained in the text.

Input: Gs: sample nodes; Zs: sample set; Gp: interpolation nodes
Input: Define set of thresholds {t1, t2, . . . , tNc}
Input: Define maximum stencil size mmax to be used in Line 8

1 ÎZ(G̃)← NaN // Initialize indicator field on entire grid ;
2 ÎZ(G̃s)← Class(Zs) // Assign class to sample nodes ;
3 q← 1 // Initialize the class index ;
4 Pq ← P // Initialize # prediction sub-grid at level q ;
5 while q ≤ Nc − 1 do // Loop over classes
6 discretize Zs with respect to tq+1 to obtain Sq

s ;
7 calculate the sample correlation energy Cq

s given Sq
s , ;

8 generate Ŝq (0)
p // assign initial values to the spins at Gq

p ;
9 calculate C̃q (0) and U(0) // simulated correlation energy and cost

function ;
10 i← 0 ; ρ← 0 ; ir ← 0 // initialize simulated states counter;

rejection ratio; rejected states counter ;
11 while ρ < 1 do // Repeat while moves are accepted
12 generate new state Ŝq (i+1)

p by perturbing Ŝq (i)
p ;

13 calculate C̃q (i+1) and U(i+1);
14 if U(i+1) < U(i) then
15 accept new state
16 else
17 keep “old” state;
18 ir ← ir + 1 ; // Increase rejected states counter
19 end
20 ρ← ir/Pq ; // Update rejection ratio
21 i← i + 1 ; // Increase simulated states counter
22 if mod (i, Pq) = 0 then
23 ir ← 0
24 end
25 end
26 nq ← 0 ; // # sites assigned −1 at level q
27 for p = 1, . . . , Pq and~rp ∈ G̃ do
28 if Ŝ(i)(~rp) = −1 then
29 ÎZ(~rp)← q; nq ← nq + 1 ; // assign −1 “spins" at level q
30 end
31 end
32 Pq+1 ← Pq − nq ; // Update # prediction sites for next class
33 q← q + 1 ; // increase class index
34 end
35 q← Nc ; // Set non-assigned spins at level Nc
36 for n = 1, . . . , NG do
37 if ÎZ(~rn) = NaN then
38 ÎZ(~rn)← Nc
39 end
40 end
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4.2. Hierarchical Strategy

The hierarchical algorithm proceeds sequentially at the lowest binarization threshold
and proceeds by increasing the class index. The binary discretization and the classification
of the non-measured sites are initially performed with respect to the first class and then
repeated sequentially for the remaining classes. The “gaps” in the prediction subgrid, Gp,
are gradually filled as the algorithm proceeds through consecutive levels. At each level,
all the locations identified as having −1 spin values at the lower levels are used as input
(sample data) in the current stage. The reduced prediction subgrid, Gq

p, for the class index
q contains Pq points so that for q > q′ it holds that Pq ≤ Pq′ and P1 = P. In the case of
continuous variables, the classes Cq can be defined as desired and do not need to represent
intervals of uniform size.

The INNC algorithm uses the rejection ratio, which is defined by the following.

ρ =
number of rejected states

number of simulated states
.

The rejection ratio is constantly updated and is used to control when the algorithm
should stop proposing new states and move on to the next class level q.

The main steps of the INNC method are shown in the pseudocode of Algorithm 1.
This algorithm returns an indicator field ÎZ = IZ(Gs) ∪ ÎZ(Gp), which consists of

the original sample classes and the class estimates at Gp. The indicator values at the
sampling sites are exactly reproduced because the initial state respects these values and the
iterative steps skip over sites in the updated sample set Sq

s . Below, we refer to IZ(Gs) as
the training set.

Note that Algorithm 1 is presented for non-vectorized implementation, but the gener-
ation of new states (line 12) is actually realized using vectorized single-spin Metropolis
updating. The vectorization is enabled owing to the fact that the square grid can be divided
into two interpenetrating subgrids in a checkerboard fashion (checkerboard decomposi-
tion). Hence, by considering the short-range character of the interaction restricted to the
nearest neighbors, the spins in the first subgrid only interact with spins of the second
subgrid and vice versa. By means of this decomposition, it is possible to apply the updating
algorithm to spins belonging to the same subgrid in parallel. The algorithm sweeps through
the lattice several times until the rejection ratio exceeds the threshold value (herein, it is set
to one).

Spin updating is performed at zero temperature. The T = 0 constraint means that
there is no stochastic selection of unfavorable spins. Hence, candidate “spins” to be
updated are flipped unconditionally only if the flip lowers the cost function. This is called
a “greedy” Monte Carlo algorithm [25], and it guarantees convergence, which is usually
very fast. In comparison, in simulated annealing, T is slowly lowered starting from an
initial high-temperature state. This approach is much slower computationally, but the
resulting configuration is less sensitive to the initial state Ŝq (0)

p . The sensitivity of the
greedy algorithm is known to be especially pronounced in high-dimensional spaces with
non-convex energies. In such cases, the greedy algorithm is more likely to become stuck
in the local minima instead of converging to the global minimum. However, this is not a
concern for the interpolation problem. In fact, targeting the global minimum of the cost
function U strongly emphasizes the sample correlation energy per “spin” pair Cq

s , ignoring
that the latter is influenced by sample-to-sample fluctuations.

The initial configuration can be selected with a number of methods. Since the proposed
model aims to provide a fast and automatic interpolation method, the initial configuration
should minimize the relaxation path (in state space) to the equilibrium. It should also
be selected preferably with little or no user intervention. Assuming a certain degree of
spatial continuity, which is common in geospatial data sets, Ŝq (0)

p is determined based
on the “augmented sample” states Sq

s in the immediate neighborhood of each individual
prediction point. The neighborhood of such a node ~rp is determined by an adaptable
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m×m stencil (where m = 2l + 1) centered at~rp. The stencil size m ≤ mmax is adaptively
determined, reflecting local sampling density and spin value distributions. Starting from
an initial value of m = 3, we tested if a clear majority of either positive or negative spin
values is established within the stencil. If this is not the case, we increased m by one, tested
again, and repeated testing as necessary. An arbitrary upper bound mmax is imposed on
the stencil size to prevent oversmoothing and to restrict the computational load (memory
and CPU time). Then, ŝq (0)

p is assigned by majority rule, based on the prevailing value of
its neighbors in Sq

s inside the stencil. If there is no prevailing sign (i.e., if an equal number
of +1 and −1 values are present or if~rp has no neighbors in Sq

s inside the stencil), the initial
value is randomly assigned.

The proposed INNC updates are accepted unconditionally as long as they lower the
cost function of Equation (3). Using the vectorized checkerboard algorithm, the entire
grid is swept in two steps. The simulation terminates for a given class index q if one
complete sweep through the interpolation subgrid Gq

p does not produce a single successful
update. The hierarchical scheme used implies that the computational load is reduced with
increasing q, which is in line with the reduction in size of the subgrid Gq

p.
The input information required by the algorithm, thus, involves the definition of

the class intervals and the maximum stencil size mmax used to generate the initial state.
The number of classes depends on the nature of the problem and the objective of the
study: If the interpolation problem involves discrete class labels, the number of labels is
predetermined and no discretization is needed. If the interpolation problem involves a
continuous-valued process, the discretization depends on the objective of the study. If the
goal is to determine exceedance levels, binary classification is sufficient. For environmental
monitoring and decision-making purposes, a moderate number (e.g., six or eight) of classes
is often sufficient. For example, the Fire Weather Index used to measure fire risk in Europe
is mapped into six classes (very low, low, medium, high, very high, and extreme) [26].
However, a higher number of classes can be used if one desires to resolve the values of the
modeled process in a superior manner.

5. Data Description

The performance of the INNC interpolation method is demonstrated with two envi-
ronmental data sets as well as with synthetic (simulated) data. The first set represents a map
of soil quality data categorized in different classes. This data set contains a finite number
of discrete levels; thus, the prediction of missing data is inherently a classification problem.

The second data set represents a map of surface elevation; the latter is a continuously
valued variable. For the purpose of generating an isolevel elevation map corresponding
to some predefined resolution, the elevation data should be discretized according to the
desired resolution to allow applying INNC.

The above two environmental data sets are used to assess the classification and
regression performance of INNC for gap filling. Both data sets exhibit a skewed non-
Gaussian probability distribution, which allows testing the ability of INNC to operate
under non-Gaussian conditions.

Finally, we generate synthetic sets of spatially correlated data of different sizes. These
enable us to assess the computational complexity and ability of INNC to automatically fill
gaps in very large data sets, such as remote sensing images.

5.1. Soil Quality

This data set describes soil quality for crop production over a major part of Europe and
is obtained from the Harmonized World Soil Database. The latter is a 30 arc second raster
database with over 16,000 different soil mapping units that combines existing regional and
national updates of soil information worldwide with the information contained within the
1:5,000,000 scale FAO-UNESCO Soil Map of the World [Soil data2008].

Our chosen data represent the soil nutrient availability segregated in seven classes ac-
cording to the degree of constraints imposed on soil quality (1—no or slight; 2—moderate;
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3—severe; 4—very severe; 5—mainly no soil; 6—permafrost; 7—water). In this classifica-
tion, lower numbers correspond to “better” soil quality. The spatial domain considered is
a rectangle of 120× 85 pixels. Some summary statistics are as follows: size NG = 10,200,
zmin = 1, zmax = 7, z̄ = 1.785, z0.50 = 2, and σz = 0.984. The value of the skewness
coefficient is 2.02 and of the kurtosis coefficient 9.632. The frequency histogram of soil
quality class values is presented in Section 7.1.

5.2. Surface Elevation

This data set represents the surface elevation on a 5 min latitude/longitude grid
over part of the territory of North America (approximately 80°–110° W, 55°–40° N). The
data form a rectangle comprising 400× 200 pixels [Surface data1988]. Elevation values (in
meters) are referenced to the center of each cell with a resolution of 1 m.

Some summary statistics are as follows: size NG = 80,000, zmin = 1 m, zmax = 3790 m,
z̄ = 774.41 m, z0.50 = 441 m, and σz = 713.17 m. The skewness coefficient is equal to
1.37, and the kurtosis coefficient is equal to 4.07. As evidenced from the above statistics,
the data are non-Gaussian and positively skewed. The elevation frequency histograms
corresponding to the respective class intervals considered in the study are presented in
Sections 7.2–7.4.

5.3. Synthetic Data

The synthetic data are simulated from the joint Gaussian distribution with mean
m = 50 and standard deviation equal to σ = 10, i.e., Z ∼ N(m = 50, σ = 10). The spatial
correlations are imposed by means of the exponential covariance C(r) = σ2 exp(−r/ξ),
where ξ = 5 and r represents the Euclidean distance between any two grid nodes. The
exponential covariance function implies that the spatial process is relatively rough and,
thus, is appropriate for modeling, e.g., soil processes.

The data are generated on square grids with L nodes per side, where L = 32, . . . , 2048
using the spectral simulation method [4,29,30]. The largest grid size examined is typical of
data sets collected by various remote sensing techniques.

6. Missing Data Simulation and INNC Performance Assessment

In order to generate data sets with missing data (gaps), we follow the methodology
described below. From each complete data set, we generated a partial sample Zs of size
N = (1− p)NG by randomly removing P = pNG nodes. The removed values are set aside
for validation purposes. For three different degrees of thinning, p = 0.33, 0.5, and 0.66, we
generate 100 different partial sample configurations. These differ from each other with
respect to the set of grid nodes that have been removed. The values of the process at these
validation nodes are then estimated by using the INNC interpolation Algorithm 1.

In order to assess INNC performance, the estimated values at the validation nodes
are compared with the true values (which were removed from the respective sample). In
classification performance evaluation, the indicator values IZ(Gp) at the validation nodes
are compared with the estimates ÎZ(Gp), obtained after removing the set of nodes Gp from
the data. The originally discrete data (soil quality) are used without further processing.

To test the interpolation performance of continuously valued data (surface elevation
and synthetic), we first discretize the data according to the desired resolution. We use
different resolutions and respective class intervals. For the surface elevation data set,
a resolution of 500 m is used first, which segregates the data into Nc = 8 classes and
Cq = [500(q− 1), 500q), q = 1, . . . , 8. Second, a finer resolution of 250 m is used, resulting
in Nc = 15 classes corresponding to the intervals Cq = [250(q− 1), 250q), q = 1, . . . , 15.
Finally, we gradually increase the resolution up to Nc = 100 classes in order to test the
interpolation performance for data with almost continuous variations.

In the case of synthetic data, we arbitrarily discretize the entire range of observed
values into Nc = 8 classes and test the interpolation performance with increasing domain
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size. This design aims to study the scaling of INNC computational complexity with size.
The INNC algorithm is applied in all cases with a maximum stencil size mmax = 5.

The measure that we use to assess interpolation performance of the INNC algorithm
in the case of classification is the misclassification rate, i.e., the fraction of misclassified
pixels defined by the following:

F =
1
P

P

∑
p=1

[
1− δ

(
IZ(~rp), ÎZ(~rp)

)]
, (5)

where P is the number of validation points, IZ(~rp) is the true value at the validation
points, and ÎZ(~rp) is the INNC estimate; δ(I, I′) = 1 if I = I′, δ(I, I′) = 0 if I 6= I′ is the
Kronecker delta.

In the case of a large number of classes, the root mean square error (RMSE) is a more
suitable measure for evaluating INNC interpolation performance. As will be shown in
the following section, the RMSE typically shows a decrease with increasing Nc up to some
threshold N∗c beyond which it stabilizes and becomes independent of Nc. The value of
N∗c depends on the data set under consideration, but it appears to decrease with sample
sparseness. The RMSE is defined as the following:

RMSE =

√√√√ P

∑
p=1

1
P
[
Z(~rp)− Ẑ(~rp)

]2, (6)

where Z(~rp) is the original true value at the point ~rp, and Ẑ(~rp) is the estimate of the
continuously valued field. This estimate is obtained from the classification of ÎZ(~rp) and a
subsequent back-transformation of the indicator field scale to the original continuum scale.

Ẑ(~rp) = t ÎZ(~rp)
+

1
2

(
t ÎZ(~rp)+1 − t ÎZ(~rp)

)
.

In Section 7, we use RMSE to assess the interpolation of surface elevation data.
Average values of the misclassification rate and the RMSE, respectively, are obtained

from ensembles of different missing-data realizations with the same degree of thinning.
The computations are performed in the Matlab® programming environment on a

desktop computer with 16 GB of RAM and an Intel®Core ™i7-4790 processor with an
3.60 GHz clock.

7. Results
7.1. Soil Quality

The map and the histogram of the complete data are shown in Figure 1. It is evident in
these plots that the first three (1–3) classes clearly dominate over the remaining ones,
covering almost 97% of the spatial domain. Figure 1b, in addition to the histogram
of the class values for the complete data (left bar) also includes the histograms of the
reconstructions by means of INNC classification for the three degrees of thinning (p = 0.33,
0.5, and 0.66). These histograms are shown by the respective bars 2–4 (moving from left to
right) in Figure 1b.

The histograms (bars 2–4 in Figure 1b display mean values obtained from 100 realiza-
tions (missing data configurations for a given p). The match between the distributions of
the original and the reconstructed data deteriorates with increasing p. In particular, the
second class is overestimated at the cost of mainly the third class. Note that the second class
is the closest to the mean value (calculated as the sum of the class values, each multiplied
with the respective probability). Hence, the overestimation of the second class can be
attributed to the averaging effect, which is common in interpolation methods.
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Figure 1. (a) Map of complete soil quality data. (b) Group of histograms. From left to right: Complete
data and reconstructions from the thinned data with p = 0.33, 0.5 and 0.66, respectively. The
histograms of the reconstructed data represent average values obtained from 100 realizations.

Figure 2 presents the reconstructed maps based on INNC. These maps are obtained
from a single realization (the first from the ensemble of one hundred). As already suggested
by the histograms in Figure 1b, the visual agreement between the original map (shown in
Figure 1a) and the reconstructions deteriorates with increasing sparsity of the sampling
subgrid. For example, for p = 0.66, the most apparent misclassification is observed in
the sixth class (permafrost, shown in orange color). This class appears in the complete
data in very small and disconnected clusters, which are surrounded by bigger clusters that
belong in different classes. Therefore, permafrost clusters can be viewed as “hot-spots”,
which are difficult to predict particularly because sampling points in this class are sparse.
Misclassification also occurs along the borders between different classes. Note that the
values on the sampling subgrid Gs (which varies between realizations) do not contribute to
misclassification since INNC by construction honors the values on Gs.
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Figure 2. Class maps of the soil quality data, reconstructed from samples with thinning degrees
p = 0.33, 0.5, and 0.66, respectively.

Table 1 lists quantitative measures of the INNC classification performance based
on statistics calculated over the ensemble of 100 realizations. These include the mean
misclassification rate 〈F∗〉, the standard deviation STDF∗ of the misclassification rate,
and CPU time 〈Tcpu〉. The above are complemented by measures intrinsic to the current
method, such as the mean number of Monte Carlo steps, 〈NMC〉, required to optimize the
cost function and the mean cost function 〈U∗〉 at termination. The averaging of NMC and
Tcpu is performed over individual realizations for the cumulative values all the class levels.
The averaging of the cost function U∗ is performed over both the ensemble of realizations
and all class levels of each realization.
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Table 1. Classification performance measures for the soil quality data using INNC and FKNN
methods: mean misclassification rate 〈F∗〉, misclassification rate standard deviation STDF∗ , and CPU
time 〈Tcpu〉. Additional measures for INNC: mean number of Monte Carlo steps 〈NMC〉 and mean
value of cost function at termination 〈U∗〉. The averaging is performed over 100 realizations.

p = 0.33 p = 0.5 p = 0.66
INNC FKNN INNC FKNN INNC FKNN

7 classes
〈F∗〉 (%) 24.94 45.78 26.43 47.12 28.64 49.19
STDF∗ 0.73 0.66 0.49 0.50 0.49 0.47
〈Tcpu〉 (s) 0.0241 1.88 0.0254 2.34 0.0296 2.36
〈NMC〉 5.74 − 6.23 − 6.68 −
〈U∗〉 1.4× 10−4 − 3.9× 10−4 − 6.9× 10−4 −

To validate the classification ability and computational performance of INNC, we com-
pare it with the commonly used the fuzzy k-nearest neighbor (FKNN) classification algo-
rithm [31] implemented in the Matlabr, function fknn [32]. We chose the FKNN method be-
cause it has been shown to dominate its non-fuzzy counterpart in terms of lower error rates
and also to compare well with other standard more sophisticated classification methods. At
the same time, it is still relatively simple and computationally efficient enough to process
larger data sets (it would be computationally impossible to perform the analysis presented
below by using some more sophisticated classification methods, such as Support Vector Ma-
chines). As expected, the misclassification rate increases with p for both methods. However,
INNC exhibits superior performance. First, the INNC misclassification rate is lower than
the FKNN method’s misclassification rate, i.e., 〈F∗(INNC)〉/〈F∗(FKNN)〉 = 0.54, 0.56,
and 0.58 for p = 0.33, 0.50, and 0.66, respectively. At the same time, the computational
speed of INNC exceeds that of FKNN by two orders of magnitude for all degrees of thin-
ning, namely 〈Tcpu(INNC)〉/〈Tcpu(FKNN)〉 = 0.0128, 0.0109 and 0.0125 for p = 0.33, 0.50,
and 0.66, respectively.

As for the remaining INNC measures, one can notice a slight increase in 〈NMC〉 with
p. However, the total number of steps remains very low, and the difference between the
smallest value for p = 0.33 and the largest value for p = 0.66 does not exceed one MC
sweep. There is also some increase in 〈U∗〉 with p, but all the values obtained reflect a
satisfactory level of convergence to the optimum. We note that even though the greedy
algorithm does not pursue global minima, the values of the cost function are quite close to
zero.

7.2. Surface Elevation: Resolution 500 m—8 Classes

The isolevel map and the histogram of the complete data, discretized according to
the vector of thresholds corresponding to this resolution are shown in Figure 3. In the
map, the elevations in the range of 0 ≤ Z < 500 m (first class) dominate, covering about
55% of the area, while those above 3500 m correspond only to 0.1%. Figure 3b presents
the histogram of the class values for the complete data (left histogram bar) as well as the
histograms of the INNC reconstructions for the three degrees of thinning. The histograms
of the reconstructions based on the training sets with p = 0.33, 0.5, and 0.66 are shown by
the 2–4 (moving from left to right). The histograms represent average values obtained from
100 realizations. The match between the probability distributions of the complete data and
the reconstructions is excellent. As mentioned above, this was achieved without explicit
control by means of an external field, i.e., by using hi = 0 in Equation (1).
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Figure 3. (a) Eight-class isolevel map of the complete surface elevation data at 500 m resolution.
(b) Group of histograms. From left to right: complete data and the reconstructions based on the
thinned data with p = 0.33, 0.5 and 0.66, respectively. The histograms of the reconstructions are
based on mean values obtained from 100 realizations.

Figure 4 helps to visualize the interpolation results in terms of reconstructed maps.
The isolevel maps are obtained from a single realization (the first from the set of one
hundred). We observe that the reconstructed maps provide a close visual match to the
original map, shown in Figure 3a. This is the case not only at lower p but also the spatial
patterns of the original map are reconstructed surprisingly well at p = 0.66.
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Figure 4. Class maps of elevation data in the 8-level classification scheme. The reconstructions are
based on samples with thinning degrees p = 0.33, 0.5, and 0.66, respectively.

The first part of Table 2 presents the quantitative measures of INNC interpola-
tion performance along with the measures obtained by means of FKNN. As expected,
the misclassification rates increase with p for both INNC and FKNN. However, the
INNC misclassification rates are again much lower than those of FKNN method, i.e.,
〈F∗(INNC)〉/〈F∗(FKNN)〉 = 0.74, 0.75 and 0.78 for p = 0.33, 0.50 and 0.66, respectively.
However, in comparison with the soil quality data, the relative differences between the
methods are smaller. On the other hand, the computational efficiency of INNC with respect
to FKNN is even higher, i.e., 〈Tcpu(INNC)〉/〈Tcpu(FKNN)〉 = 0.004, 0.004, and 0.005 for
p = 0.33, 0.50, and 0.66, respectively.
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Table 2. Classification performance measures for the surface elevation data based on the INNC
and FKNN methods: mean misclassification rate 〈F∗〉, misclassification rate standard deviation
STDF∗ , and CPU time 〈Tcpu〉. Additional measures for INNC : mean number of Monte Carlo steps
〈NMC〉 and mean value of cost function at termination 〈U∗〉. The averaging is performed over
100 realizations.

p = 0.33 p = 0.5 p = 0.66
INNC FKNN INNC FKNN INNC FKNN

8 classes

〈F∗〉 (%) 5.84 7.91 6.38 8.46 7.22 9.21
STDF∗ 0.13 0.15 0.11 0.10 0.15 0.10
〈Tcpu〉 (s) 0.23 51.77 0.26 60.66 0.29 55.98
〈NMC〉 7.21 − 8.38 − 11.05 −
〈U∗〉 2.3× 10−5 − 3.1× 10−6 − 8.8× 10−6 −

15 classes

〈F∗〉 (%) 11.55 15.16 12.51 15.98 13.93 17.17
STDF∗ 0.19 0.19 0.16 0.14 0.19 0.12
〈Tcpu〉 (s) 0.44 52.35 0.49 62.34 0.55 56.74
〈NMC〉 13.78 − 15.76 − 20.63 −
〈U∗〉 5.2× 10−5 − 9.0× 10−5 − 1.1× 10−4 −

The values of 〈NMC〉 are slightly higher than for the soil quality data, and their increase
with p is more apparent. While the overall increase in 〈NMC〉 for the surface elevation data
can be ascribed to the increased size of the data set, the increase in 〈NMC〉 with p can be
generally ascribed to the fact that 〈NMC〉 is a measure of the “spin” system’s relaxation time.

On the other hand, increasing p translates into higher P and, thus, a larger state-space
of size 2P. Since the number of prediction nodes, Pq, decreases with q due to the progressive
filling of gaps by the INNC hierarchical scheme, the Metropolis sampler tends to speed up
as q increases. The relaxation time is shortened by proper choice of the initial state.

There are interlevel differences in the value of U(Sq
p|S

q
s ), but their magnitudes remain

relatively small. For example, even at p = 0.66, which results in the highest values of the
cost function, max(U∗) ≤ 10−3. The average CPU time needed for the optimization at any
p is of the order of a fraction of second. The very low values of 〈NMC〉 and 〈Tcpu〉 are also
due to the vectorized implementation of spin updating using the checkerboard algorithm.

7.3. Surface Elevation: Resolution 250 m—15 Classes

Next, we repeat the classification experiment by using a resolution of 250 m. The
isolevel map in Figure 5a clearly has higher resolution than the eight level map in Figure 3a.
The most and least represented classes are the second and last, which contain approximately
34% and 0.1% of the values, respectively.

Due to the higher resolution, an increase in the misclassification rate is expected.
Nevertheless, as is evident in Figures 5b and 6, both the class distributions and the visual
patterns are recovered quite well by the reconstructions in all cases.

By comparing the numerical values of 〈F∗〉 obtained by increasing the number of
classes from 8 to 15, the misclassication rates almost doubles (see the second part of Table 2).
Nevertheless, the ratio of the misclassification rates obtained by means of the INNC and
FKNN methods, i.e., 〈F∗(INNC)〉/〈F∗(FKNN)〉 = 0.76, 0.78, and 0.81 for p = 0.33, 0.50,
and 0.66, respectively, remains similar to the respective ratios for eight levels, showing only
a slight increase.

On the other hand, INNC seems to exhibit a linear increase in computational time
and 〈NMC〉 with Nc; hence, these measures almost doubled when Nc changed from Nc = 8
to Nc = 15. In contrast, the FKNN computational time increased only marginally. There-
fore, the relative computational efficiency of the INNC method decreased, resulting in
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〈Tcpu(INNC)〉/〈Tcpu(FKNN)〉 = 0.008, 0.008, and 0.010 for p = 0.33, 0.50, and 0.66, re-
spectively. Hence, INNC remained quite competitive in terms of computational time with
respect to FKNN.
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Figure 5. (a) Fifteen-class isolevel map of the complete data at 250 m resolution. (b) Group of
histograms. From left to right: complete data and the reconstructions based on the thinned data with
p = 0.33, 0.5, and 0.66, respectively. The histograms of the reconstructions are based on mean values
obtained from 100 realizations.
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Figure 6. Class maps of elevation data in the 15-level classification scheme. The reconstructions are
based on samples with thinning degrees p = 0.33, 0.5, and 0.66, respectively.

7.4. Surface Elevation: Increasing Resolution—Crossover to Continuous Interpolation

It is interesting to investigate the interpolation performance of the INNC method
for gradually increasing number of levels. However, for sufficiently large values of Nc,
it makes more sense to evaluate prediction performance in terms of prediction errors,
such as the RMSE defined in Equation (6). Then, INNC can be compared with a standard
interpolation method. For this purpose we used the inverse distance weighted (IDW)
method [33] implemented in the Matlabr function fillnans [34]. The parameters for
IDW were as follows: power = 2.7 and unlimited search radius.

In Figure 7 we present the evolution of the RMSE of INNC (blue circles) with increasing
number of levels and compared it with the RMSE of IDW (red line) for different degrees of
thinning p. In all the cases, one can observe a gradual decrease in RMSE with increasing Nc
up to a certain threshold value N∗c , beyond which the RMSE levels off. This threshold point
appears to decrease with increasing p: It corresponds to N∗c ≈ 50 for p = 0.33, N∗c ≈ 30 for
p = 0.50, and N∗c ≈ 20 for p = 0.66. In comparison to the IDW method, for p = 0.33, the
RMSE of INNC reaches the IDW value of 81.13± 0.60 at Nc ≈ 25 and beyond N∗c ≈ 50 it
levels off at the value 72.88± 0.92, where the errors represent one standard deviation.
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Figure 7. (a) 〈RMSE〉 and 〈Tcpu〉 as functions of the number of classes in the INNC and IDW methods.
The mean values and error bars are obtained from 5–20 realizations.

The range of RMSE estimates is based on the ensemble of 100 realizations. However,
for larger p, the relative superiority of the INNC method seems to diminish. For p = 0.50,
the optimal RMSE of the INNC method 88.55± 1.03 achieved for Nc > 30 is comparable
with the IDW value of 87.68± 0.81; for p = 0.66, the IDW method is clearly superior with
an RMSE 95.86± 1.26 versus the optimal INNC value of 108.29± 6.26 beyond N∗c ≈ 20.
In addition, we observed that, for all values of p, the dispersion of the RMSE obtained
by INNC is greater than that for IDW. Both of these patterns can be attributed to the fact
that IDW uses information from the entire sample at each prediction node. This results in
improved estimates compared to INNC, especially for sparser data sets (higher p). The
improved performance of IDW compared to INNC for higher p is also due to the spatial
patterns of the elevation, which exhibits spatial correlations that extend over a large portion
of the grid. A different data set with less spatial continuity would be more favorable
for INNC.

The insets in the respective panels of Figure 7 represent the computational efficiency
of the two methods. They show the evolution of the CPU time of the INNC method (blue
circles) with increasing Nc and compared it with that of the IDW method (red line). Since
the CPU time of INNC is relatively very small and only increases linearly with the number
of levels (note the semi-log scale), one can conclude that even for Nc & N∗c , the INNC CPU
times are on average about two orders of magnitude smaller than the CPU time of the IDW
method. This behavior reflects the fact that INNC is a local method, while IDW takes into
account all the data on the sample subgrid for the interpolation at each prediction node.

7.5. Synthetic Data: Scaling with Data Size

Finally, we study the performance of the INNC method on increasing grid sizes NG =
L × L, with L = 2n and n = 5, . . . , 11. We use the above described spatially correlated
synthetic data discretized to obtain Nc = 8 levels. For illustration, in Figure 8 we show
the original data set for the selected size L = 256 after discretization along with the recon-
structions for the thinning values p = 0.33, 0.5, and 0.66. The results showing both the
interpolation and computational performance for different values of L and p are presented
in Figure 9. In particular, Figure 9a shows that the misclassification rates gradually decrease
with increasing grid size from initial values of 〈F∗〉 = (0.46± 0.03, 0.49± 0.03, 0.54± 0.03
for p = (0.33, 0.5, 0.66) and L = 32 down to 〈F∗〉 = (0.31± 0.003, 0.33± 0.004, 0.36± 0.006
for p = (0.33, 0.5, 0.66) and L = 2048. The decrease is less steep at larger L, but nevertheless
it continues for all sizes up to L = 2048.

Figure 9b shows the behavior of the corresponding CPU time versus grid size on a
log–log plot. The plots indicate an almost linear increase with the grid size NG = L2 (the
actual fits produce slightly superlinear scaling with the exponent approximately equal
to 1.05). As already observed in the previous cases, the CPU time also slightly increases
with p.
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Figure 8. Eight-class isolevel map of the complete synthetic data for the selected size L = 256 (a) and
the reconstructions based on the thinned data with p = 0.33 (b), 0.5 (c), and 0.66 (d).
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Figure 9. (a) Mean misclassification rate 〈F〉 and (b) mean computational time 〈Tcpu〉 of the INNC
method versus data size for Nc = 8 classes. The mean values and error bars are obtained from 100
realizations. The dash-dot line in (b) is a visual aid for linear dependence.

8. Conclusions

We investigated the INNC interpolation method which can be used to fill gaps in
gridded spatial data. The latter can represent either processes that take discrete class labels
or real values, discrete, or continuous. We showed that INNC is suitable for automatic
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mapping of large spatial data sets and demonstrated that its interpolation on different
real-world and synthetic data sets is competitive against standard methods.

The INNC method is inspired from the Ising model. It is based on minimizing a cost
function that measures the distance between sample-based, normalized, discrete correlation
energies, and the respective energies of the entire domain (grid). INNC is implemented
by using greedy Monte Carlo simulation conditioned by the sample values. Owing to
a thoughtful initialization of the unknown values on the prediction subgrid, a greedy
optimization approach, and vectorization, INNC is computationally fast. The time needed
for the Monte Carlo relaxation is very short, and the resulting CPU time varies almost
linearly with respect to both the number of classes and the grid size. Furthermore, the
INNC method is universal with regard to the data probability distributions (i.e., it makes
no assumptions thanks to its non-parametric nature). In addition, it is almost automatic
and can be applied with no ad hoc inputs. The only parametrization in the proposed
approach involves the number of discretization classes to be used for continuous data. The
number of classes can be set arbitrarily large if high resolution is needed.

The model is demonstrated herein for regular grids. However, the extension to
irregularly spaced data is straightforward. The interaction constant Ji,j in Equation (1)
can be defined via a kernel function (such as the radial basis function). The interaction
neighborhood (nearest neighbors) of any point~r can be defined to include those points for
which their Voronoi cells share a boundary with~r. Furthermore, possible extensions could
include the incorporation of further-neighbor or/and “multi-spin” correlation energy in the
Hamiltonian. Overall, based on the studies presented herein, INNC has great potential as a
method for gap filling in remote-sensing data products, with minimal if any intervention
by the user. We will investigate this further in forthcoming publications.
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20. Žukovič, M.; Hristopulos, D.T. Classification of missing values in spatial data using spin models. Phys. Rev. E 2009, 80,

011116-1–011116-23. [CrossRef]
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