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Abstract

In the scope of this thesis, we investigate how the rise of quantum computers can
offer a new, potentially more powerful, way of machine learning. The study begins
by defining the framework of quantum computation. This includes the building
blocks of a quantum computer, such as the quantum bits and gates, but also the
postulates of quantum mechanics, that determine their behaviour. Then we move
the discussion to the field of machine learning, where we do a gentle introduction to
the basic machine learning methods with the focal point being neural networks as
generative models. To this end, we introduce a special type of energy based neural
network, the Restricted Boltzmann machine (RBM). We discuss not only the theo-
retical background of the RBM, but also present an example, by coding and training
on the MNIST data set of handwritten digits. Next, we examine Quantum Machine
Learning (QML), the union of quantum computation with machine learning. There
are two approaches of QML, the quantum advantage QML algorithms that have
proven speed-ups over their classical counterparts but require fault-tolerant quan-
tum devices, and hybrid classical-quantum variational models that can be executed
on the Noisy Intermediate Scale Quantum (NISQ) devices of today. The QNNs
models we implement for this study belong to the latter case. We present two QNN
approaches, the digital approach that considers the Quantum Circuit Born Machines
(QCBM) and an analog approach, which refers to qunatum information processing
with analog quantum systems. These models are quantum analogues of classical
neural networks that can be trained, using both classical and quantum resources, to
learn target probability distributions. We demonstrate how they learn from classical
data and at the end, we attempt to compare their capabilities their capabilities of
learning the same dataset. Our novel algorithms have been implemented on classical
simulators as well as real quantum hardware available in cloud from IBM.
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Chapter 1

Introduction

“Nature is not classical, dammit,
and if you want to make a
simulation of nature, you’d better
make it quantum mechanical.”

Richard P. Feynman

Since the dawn of humanity, it was evident that people have an innate need to
have explanations for the world around us. In the ancient days, phenomena such
as droughts, diseases and other natural disasters were explained by myths. People
usually attributed these natural disasters to the bad mood of the gods, and so, they
would gave offerings and prayed to appease them. With the passage of time humans
slowly started poking around and observing patterns and regularities. This really
started to catch on during the enlightenment, were the modern definition of science
was born. It became apparent that the way to systematically study the structure
and behaviour of the natural world was through observation and experiment.

During the 18th and 19th centuries, a broad range of mathematical methods were
discovered, which gave people the tools to analyse data and draw insight from them.
But as the amount of data that was collected increased, it was becoming harder and
harder to crunch the numbers, analyse them and create models to generalize the
findings as it was all done by hand. Then, in midst of the 20th century, a miracle
discovery happened. The invention of the computer. The computer swooped in and
made things easier as now we could process, analyse and discover patterns in data
much faster and much more efficiently.

For years, computers evolved to meet the increasing numbers of collected data,
which they created the need for more computational power. However, nowadays
we are facing yet another challenge. The amount of collected data is growing fast,
while the advancements in computers are slowing down. From their invention until
now, computers evolved according to Moore’s law. Moore’s law indicates that the
number of transistors in a dense integrated system, doubles every two years, which
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results in an increase to the computational power. But there’s a pitfall that will will
inevitably bring this evolution to an end. The issue is that we are running out of
space to store transistors and as we continue to miniaturize the chips the size of the
transistors are getting closer to the atomic size. This is a tipping point as quantum
phenomena will start to kick in and the transistor won’t be able to function as is.

Naturally, people started looking for different computational paradigms, with
one of them being to utilize for our gain the same quantum phenomena that are
causing us problems. Quantum computing attempts to harness the bizarre phe-
nomena of quantum mechanics to perform computations that are faster and more
efficient than on ordinary computers.

Figure 1.1: The evolution of computers.

But our interest in quantum computers does not only stems from the end of
Moore’s law. The entire field of quantum computation began back in the 80’s, long
before the miniaturization of the transistor posed any problems. It is no secret that
conventional computers, due to their binary nature, lack the ability to practically
simulate nature, regardless of the available resources. Roughly speaking, it is hard,
time-wise, for a computer to keep up with problems that grow exponentially. A
question, then, arises: If we can’t use conventional computers, is there a way to
simulate such problems? As Richard P. Feynman stated in 1981, when he alluded to a
quantum computer model [1], should a computer be “build of quantum components”
maybe it wouldn’t fall behind.

On a general scope, a computational problem that can be solved by a classical
computer has the potential to be solved by a quantum computer as well. The other
way around can in principle happen, given enough time. This assumption sparked
the interest of the public, as it implies that it is possible to get a computational
speedup, should we run a problem on a quantum computer instead of a classical.
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Figure 1.2: Along with his work in theoretical physics, Feynman has been credited
with pioneering the field of quantum computing.

In recent years, research in the field has intensified with investments coming from
public and private sectors. Potential applications range from finance, to business,
to system security and artificial intelligence. One of the fields that shows huge
potential of exploiting the “quantum advantage” is machine learning. One may
wonder though, why that is the case. The answer to this is pretty simple. Quantum
mechanics are known for producing atypical patterns in data. Classical machine
learning methods have the capability to not only recognize patterns in data, but also
produce data that possess the same patterns. Thus, there is hope that if a quantum
computer can produce patterns that are not tractable with a classical computer, then
maybe quantum computers can also recognise patterns that a classical computer can
not.

Currently, research in the Quantum Machine Learning (QML) field revolves
around two approaches. The first approach research quantum algorithms that re-
quire a fully functional fault-tolerant quantum computer with millions of qubits.
The problem with this approach is that we don’t have quantum computers are still
at their “infancy”. The most advanced quantum devices today have a few dozen
noisy and error-prone qubits. The second approach is a more pragmatic one, as the
research is focused on utilizing the devices that we have to solve real problems. This
is called Noisy Intermediate Scale Quantum (NISQ).

Thesis Outline

This thesis pertains to the applications of quantum computation in machine learning
and neural networks in NISQ devices. From the very beginning, we would like to
treat this manuscript as a journey of quantum computation and neural networks.
Thus, we start from the beginning and build towards our goal. A brief outline of
this thesis is provided below.

Chapter 2. Quantum Computation. This thesis starts by introducing the
basic principles of quantum computation and providing the necessary mathematical
notation and background of the field.
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Chapter 3. Machine Learning. The third chapter does a brief introduction
to the basic methods of machine learning and focuses on generative generative mod-
eling with neural networks. For this purpose we introduce a special type of energy
based neural network called restricted Boltzmann machine (RBM).

Chapter 4. Quantum Machine Learning. This chapter is the main chapter
of this thesis and regards QML, with quantum neural networks (QNN) on NISQ
devices being the focal point. Specifically, we explain the basic concepts and appli-
cations of digital and analog quantum neural networks. The first approach, which
we will call digital, views a parameterized quantum circuit as a neural network. The
second approach, which we call analog, tunes the physical control parameters of the
quantum device, such as the electromagnetic field strength or a laser pulse frequency,
to train the system. We attempt a comparison in the training accuracy in terms of
simulations and noisy real quantum processors.
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Chapter 2

A Basic Introduction to Quantum
Computation

Computers today are based on the work of the great mathematician Alan Turing.
Turing developed an abstract model of computation, which is now called Turing ma-
chine, that aimed at resolving whether or not there are computational problems that
are considered intractable. An intractable, or ”unsolvable”, computational problem
is one that cannot be solved by an algorithm.

Since the days of Turing, computational problems has been studied extensively
by theoretical computer science. There is an entire field, called computational com-
plexity, that attempts to classify the problems based on the resources they require
to solve them. Unfortunately, the reality of the computation has showed that even
among the “solvable” problems, there are the ones that are solved inefficiently. But
what does this actually mean? Simply put, an efficient algorithm is one that requires
polynomial amount of computation time to solve a problem.

However, many problems that are found in nature are of higher complexity
and as a result cannot be solved by a classical computer, no matter the resources
available. It is evident that the problem lies with the binary nature of information
in a typical computer. Thus, it comes as no surprise that a possible solution, that
may offer computational speed-ups, is to move to a different computing paradigm.

One such paradigm is quantum computing, which utilizes the strange laws of
quantum mechanics to perform computations, instead of the classical mechanics that
are used in a typical microelectronic chip. A computer that uses the phenomena
and laws of quantum mechanics can perform computations faster and more efficiently
than an ordinary computer. This is due to the unconventional and weird way that
information is being processed and stored in a quantum computer.
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2.1 What is a qubit?

The elementary unit of information in a quantum computer is called a quantum bit,
or qubit for short. Similar to a classical bit, that is either 0 or 1, a qubit has also
two basic states, the |0⟩ and |1⟩. The notation ‘|·⟩’ is called ket, and was introduced
by Paul Dirac in 1958 to describe quantum states.

In classical systems, the space of states is a set that contains all the possible
states. For example, the space of states for a bit is {0, 1}. In quantum systems,
however, the space of states is a vector space.

A quantum state is represented by a vector in a complex vector space called
Hilbert space and is denoted byH. We don’t need to give the mathematical definition
for a Hilbert space here, we can just think of it as a generalization of a Euclidean
vector space that may have either a finite or infinite number of dimensions.

In quantum mechanics, the vectors that compose the Hilbert space are rep-
resented by kets. The simplest Hilbert space we can study regards the two-level
quantum systems, where the vector states |0⟩ and |1⟩ form an orthonomal basis for
this vector space and are defined as

|0⟩ =
(
1
0

)
, |1⟩ =

(
0
1

)
.

To make it more concrete we need to introduce some important definitions from
linear algebra.

Definition 2.1.1 (Linear combination). A vector |u⟩ ∈ Cn is a linear combination
of vectors |u1⟩, |u2⟩, · · · , |un⟩, if |u⟩ can be expressed as

|u⟩ =
n∑
i

ci |ui⟩ (2.1)

where ci ∈ C

Definition 2.1.2 (Linear Independence). A set of non zero vectors |u1⟩, |u2⟩, · · · ,
|un⟩ ∈ Cn are linearly independent if

a1 |u1⟩+ a2 |u2⟩+ · · ·+ aN |un⟩ = 0 ⇔ ai = 0 ∀ i = 1, 2, · · · , n (2.2)

Definition 2.1.3 (Spanning set). A spanning set for a vector space is a set of vectors
|u1⟩, |u2⟩, · · · , |un⟩ ∈ Cn, for which any other vector |u⟩ ∈ Cn can be written as a
linear combination |u⟩ =

∑
i ci |ui⟩ of that set of vectors.

Definition 2.1.4 (Basis). A basis is a set of vectors that are a spanning set and
linearly independent.

Definition 2.1.5 (Orthonomal basis). An orthonomal basis is a basis whose vectors
are all unit vectors and orthogonal to each other.

13



At this point it is easy to see that the vectors |0⟩,|1⟩ constitute an orthonomal
basis in C2. This is the most frequent used basis for quantum computation and is
called the computational basis. Some careful readers may notice that a spanning set
is not unique for a given vector space ,and therefore, a basis is not unique either. In
reality, there are many basis used in quantum computation and later on we will see
how we can transition from one basis to another.

The main difference between a qubit and a classical bit, is that a qubit can be in
more than one state at a time. This strange phenomenon is found only in quantum
mechanics and is called superposition. In a mathematical context, superposition
translates to a linear combination of states:

|ψ⟩ = α |0⟩+ β |1⟩ =
(
α
β

)
. (2.3)

The components α and β are complex numbers, and while it is not yet clear
why, they are called probability amplitudes. In fact, α and β by themselves, have
no experimental meaning. However, their magnitudes do. In particular, when we
measure a qubit, we either find it in the state |0⟩ with probability |α|2, or in the
state |1⟩ with probability |β|2. This is called the Born rule and says a lot about the
nature of quantum mechanics. Before measurement, all we have is the state vector
|ψ⟩, which represents the possible states. The act of measurement in computational
basis collapses the superposition and forces the qubit to one of the potential states
with probabilities,

P|0⟩ = |α|2 = α∗α , P|1⟩ = |β|2 = β∗β. (2.4)

There is an important point hidden here that we need to pay attention to. Since
we talk about probabilities, it is important that the total probability sums to unity.
Hence, we must have

|α|2 + |β|2 = 1. (2.5)

More generally, an arbitrary quantum state in Cn can be written as

|ψ⟩ =
n∑
i

ci |ui⟩ (2.6)

where |u1⟩, |u2⟩, · · · , |un⟩ form an orthonomal basis in Cn. The corresponding
probabilities make up a probability distribution, and as such, they must sum to
unity

∑n
i |ci|

2 = c∗i ci = 1.

A geometric interpretation of this principle, is that the state of a quantum system
is represented by a normalized vector in a vector space of states.

14



Definition 2.1.6 (Unit vector). A unit vector or normalized vector, is a vector |u⟩
in Cn that satisfies ∥|u⟩∥ = 1.

This geometric interpretation helps in visualizing such systems, but more on that
later. As we have seen, the ket vectors are complex vectors, and as you may expect,
they have a complex conjugate form. For every ket |ψ⟩, there is a ”bra” vector in
the complex conjugate space, that is denoted by ⟨ψ|. So, if a ket is represented by
a column vector,

|ψ⟩ =̂
(
α
β

)
then the corresponding bra is a row vector

⟨ψ| =̂
(
α∗ β∗) .

This notation will help us define inner products in the form of bra-kets, ⟨ϕ|ψ⟩,
which play an essential part in quantum mechanics.

2.2 Visualizing a qubit

Besides their bizarre nature, qubits can actually be realized by various physical
systems. We will reference two systems that also help with the visualisation. The
first representation of a qubit that we will discuss considers quantum systems with
two discrete energy levels. One such example is an electron that orbits an atom,
as shown in the figure below. In the atomic model there are a lots discrete energy
orbitals that an electron can occupy. To define a qubit, one just need to utilise the
lowest two orbitals, the ground state and the first excited state of the orbitals. The
ground state is the energy state that would be considered normal for an electron and
we use it to represent the |0⟩ state. Respectively, the higher energy states are called
“excited states” and we use the first excited state to represent the |1⟩ state. Should
the electron absorb, or emit, energy that is equal to the energy gap between two
energy states, it is can move from the state |0⟩ to |1⟩ and vice-versa. The simplest
example we can discuss, that helps with the visualization, is the hydrogen atom,
that has a single electron orbiting it’s nucleus.

Figure 2.1: Qubit implementation by two electron orbitals in an atom.
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The second and most common quantum system used as a qubit is the isolated
quantum spin. The concept of spin is derived from particle physics and is one of
the attributes that are attached to elementary particles. Naivly, we can picture the
quantum state of the spin as an arrow that points to some direction. This is where
the geometric interpretation we mentioned earlier fits perfectly. We can rewrite
Equation 1.1 to represent a point in a 3-d unit sphere,

|ψ⟩ = cos
θ

2
|0⟩+ eiϕsin

θ

2
|1⟩ (2.7)

where 0 ≤ θ ≤ π and 0 ≤ ϕ ≤ 2π. This sphere is called Bloch sphere, after the
physicist Felix Bloch, and serves as an excellent way of visualizing a quantum state
as shown in the figure 1.2 below.

Figure 2.2: Bloch sphere representation of a quantum state |ψ⟩.

Later on we will see that every action on a single qubit can be interpreted as
a rotation on the Bloch sphere. However, there is a downside in the Bloch sphere
picture, since it cannot be expanded to multiple qubits.

2.3 Inner products and orthonomal bases

Inner products play an important role in defining vector spaces. We are already fa-
miliar with the concept of dot product from linear algebra. The analogous operation
in quantum computation is defined in the form of product of a bra with a ket

⟨ψ|ϕ⟩ =
(
ψ∗
1 ψ∗

2

)(ϕ1

ϕ2

)
= ψ∗

1ϕ1 + ψ∗
2ϕ2 =

∑
i

ψ∗
i ϕi. (2.8)

The result of an inner product is a complex number, and as with vectors in real
spaces, it shows us the vector projection of one vector over another vector.
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Apart from their definition, inner products should also satisfy some properties,

Linearity : ⟨ψ| (|ϕ⟩+ |χ⟩) = ⟨ψ|ϕ⟩+ ⟨ψ|χ⟩ (2.9)

complex conjugation : ⟨ψ|ϕ⟩∗ = ⟨ϕ|ψ⟩ (2.10)

However, the inner product between complex vectors is not commutative in
general, as opposed to the dot product between two vectors in an Euclidean space.

As we previously mentioned, qubits live in Hilbert spaces, where the basis vec-
tors, that span the space, are orthonomal. A set of vectors is said to be orthonormal
if they are all normalized, and each pair of vectors in the set is orthogonal. This fits
perfectly with the concept of the two mutually exclusive states of a qubit, |0⟩ and
|1⟩.

The demand to be normalized practically means that

⟨0|0⟩ =
(
1 0

)(1
0

)
= 1 and ⟨1|1⟩ =

(
0 1

)(0
1

)
= 1. (2.11)

While the demand to be orthogonal means

⟨0|1⟩ =
(
1 0

)(0
1

)
= 0 and ⟨1|0⟩ =

(
0 1

)(1
0

)
= 0. (2.12)

We can generalize the concept for a Cn space with an orthonomal basis, assuming
n is the dimensions of the space. The basis vector are labeled as |i⟩, where i =
0, 1, · · · , n− 1 . In that case, we have

⟨i|j⟩ = 0 , if i ̸= j (2.13)

⟨i|j⟩ = 1 , if i = j (2.14)

In a more elegant fashion, we can sum up these two equations into one as ⟨i|j⟩ = δij,
where δij is the Kronecker delta.

2.4 Postulates of quantum mechanics

To better understand qubits and how we interact with them, we first need to un-
derstand the rules that govern the quantum world. Conversely to classical physics,
we don’t possess the intuition to understand and visualize quantum. Nevertheless,
we overcame this lack of senses by turning to abstract mathematics.

Postulate 1.
The state of a physical system is represented by a complex vector |ψ⟩ in the Hilbert
space. This vector contains all the information, that are accessible to us, about the
system.
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Postulate 2.
The physical observables are described by linear operators, and specifically, Her-
mitian operators. The observables are quantities we can measure. For example,
observables in quantum mechanics are things like the position, energy and angular
momentum of a particle. But what are Hermitian operators?

Definition 2.4.1 (Linear operators). A linear operator M is a linear transformation
M : V → W , between two vectors spaces V and W. Suppose |ψ⟩ is a state vector in
Cn, then,

M |ψ⟩ =M

(
n∑
i

ci |ui⟩

)
=

n∑
i

ci M |ui⟩ , (2.15)

where ci ∈ C.

Definition 2.4.2 (Hermitian conjugate). The Hermitian conjugate, or adjoint (†),
is the complex conjugate of a transposed matrix

M † = [M∗]T (2.16)

Definition 2.4.3 (Hermitian Operator). Hermitian Operators are linear operators
that are equal to their own Hermitian conjugate

M † =M (2.17)

This postulate brings us back to the conversation about spin qubits. In the
context of quantum mechanics, the quantum state of the spin is represented as a 3
dimensional vector in the Bloch sphere with basis σ̂x, σ̂y, and σ̂z. These operators
are the observable components of the spin and thus, are described by Hermitian
operators. Measuring the spin in one of these directions will yield either 1 or −1.

The measurement is performed by an apparatus that interacts with the system.
For simplicity we can think of the apparatus as a black box, which we can orient
along each axis to measure the respective spin component.

Postulate 3.
Should we measure an observable quantity, the possible measurement results are the
eigenvalues λi of the operator that describes the observable. Moreover, the state for
which we measure with certainty λi is the corresponding eigenstate |λi⟩.

Definition 2.4.4 (Eigenvalues and eigenvectors). An eigenvector |λi⟩ ∈ Cn of an
operator M ∈ Cn×n, is a non-zero vector that satisfies

M |λi⟩ = λi |λi⟩ (2.18)

where λi is a complex number that called eigenvalue. The number of eigenvalues
depends to the dimensions of the operator. So, an operator of n×n dimensions will
have n eigenvectors and n corresponding eigenvalues. Finding these eigenvectors
and eigenvalues requires solving the so-called characteristic equation
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det|M − λI | = 0 (2.19)

where I is the identity matrix.

Definition 2.4.5 (Identity matrix ). The identity matrix is a square matrix that
when it acts on a vector |ψ⟩ ∈ Cn, it leaves the vector it unaffected

I |ψ⟩ = |ψ⟩ (2.20)

The matrix representation of the identity matrix is

In×n=̂

1
. . .

1

 (2.21)

Definition 2.4.6 (Spectral decomposition). Any normal operator M ∈ Cn×n has a
diagonal representation in the following form

M =
∑
i

λi |λi⟩ ⟨λi| (2.22)

where the eigenvectors |λi⟩ form an orthonomal set and λi are their corresponding
eigenvalues. In matrix form we can write this as

M = V DV † (2.23)

where V is a matrix that has the eigenvectors as columns and D is a diagonal matrix
with the eigenvalues as its entries.

Definition 2.4.7 (Normal operator). A linear operator M ∈ Cn×n is said to be
normal if it commutes with its Hermitian conjugate

MM † =M †M (2.24)

Definition 2.4.8 (Commutator). The commutator between two operators A and
B is defined as

[A,B] = AB −BA (2.25)

If [A,B] = 0 we say that the two operators commute

As we mentioned earlier, when an observable component of the spin is mea-
sured, the measuring apparatus will yield nothing else but ±1. Postulate 3 gives
a new meaning to these measurement results. It implies that result of a measure-
ment is always one of the eigenvalues of the corresponding operator. Therefore, the
eigenvalues of the spin operators are ±1.
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Postulate 4.
Suppose that the state of a quantum system is |ψ⟩. If we measure the observable
M, we will obtain λi with a probability

pr(λi) = |⟨ψ|λi⟩|2 = ⟨ψ|λi⟩ ⟨λi|ψ⟩ (2.26)

where λi is an eigenvalue and |λi⟩ an eigenvector of the Hermitian operator that
describes M. Since the operator is Hermitian, the possible measurement are unam-
biguously distinct. In general, we define the product |λi⟩ ⟨λi| as a Projective Operator
Pi.

Definition 2.4.9. A projective operator Pi, also called Von Neumann operator, is
a Hermitian operator that acts on the state space of the system |ψ⟩, and affects it
irreversibly. An operator is projective if

P 2 = P (2.27)

Projective operators are also mutually orthogonal and they form a complete set.
Meaning ∑

i

Pi = I (2.28)

This postulate binds in a beautiful way everything we mentioned on quantum
states and measurement. Everything we can learn about a quantum state is con-
tained within a vector |ψ⟩. Nevertheless, we are unable to access this information
without interacting and permanently altering the state of the system. Thus, any
kind of computation should occur before observing the system.

In the case of spin qubits specifically, the information we can observe about the
system is the three components of the spin, σz, σx, σy. These components, as well as
any observable quantity a quantum system may have, are described by Hermitian
operators. Hermitian operators can be decomposed to a set of mutually orthogonal
eigenvectors, where each eigenvector is associated with a different real number, called
eigenvalue.

Every time we attempt to observe one of the components of the spin, we get as
a measurement result one of the eigenvalues of the respective operator. Since each
eigenvalue has a unique corresponding eigenvector, we can easily deduce the state
the system was prior to observing it.

However, measurement of a specific observable can distinguish without a doubt
only the eigenvector states. So is it possible to observe any state? The answer here
is yes! The eigenvector of each operator constitute an orthonomal basis and hence,
we can write each state as a linear combination of the eigenvectors we intent to
measure. It turns out that, the computational basis {|0⟩ , |1⟩} that we defined earlier
on, is simply the basis formed by the eigenvectors of the σz operator.
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Postulate 5.
The time evolution of a closed quantum system is governed by the Schrödinger
equation

iℏ
∂

∂t
|ψ(t)⟩ = Ĥ |ψ(t)⟩ (2.29)

where ℏ is the Plank’s constant and Ĥ is called the Hamiltonian of the system,
with which we will become very familiar later on. The Hamiltonian is a Hermitian
operator that describes the energy structure of the system. Its eigenvalues are the
values that would result from measuring the energy of a quantum system.

The solution of the Schrödinger equation, with a time independent Hamiltonian,
describes how the quantum states of two different times t1,t0 are connected

|ψ(t1)⟩ = e−iHt/ℏ |ψ(t0)⟩ (2.30)

There is something really interesting and important to mention about the above
equation. The operator that is responsible for the evolution of an isolated quantum
system is unitary.

Definition 2.4.10. Unitary operator A linear operator U ∈ Cn×n is said to be
unitary if it satisfies

U †U = UU † = I (2.31)

where U † is the adjoint or Hermitian conjugate of U and I is the identity operator.
A unitary operator can be expressed in the following form

U = eiK (2.32)

where K is some Hermitian operator.

This conclusion is important because it implies that the action of operators on
quantum states is in fact unitary transformations. We will see in the next section
how we utilize this to realize quantum circuits.

2.5 Single qubit operations

Classical computers consists of microelectronic circuits that work on Boolean logic.
These circuits are composed of wires and logic gates. The wires transfer the electric
signal from one gate to another and the gates process the information that arrives
to them based on a truth table. The logic gates are actual physical systems, made
of silicon, so is the information they process.

21



Similar to a classical computer, the building blocks of a quantum computers
are wires and elementary quantum gates. However, there are some main differences.
Conversely to a logic gate, a quantum gate is described by unitary operators.

One may wonder at this point, why a quantum gate needs to be a unitary
operator. Remember that we defined a quantum state as a unit vector on the Hilbert
space. Quantum gates act on qubits by rotating them. However, this rotation should
not change the length of the qubit. That is, for a qubit α |0⟩+β |1⟩, the normalization
condition |α|2 + |β|2 = 1, must hold after the action of the gate.

Moreover, the time evolution of closed quantum systems is reversible. This
implies that if the action of a quantum gate G is rotating a qubit from a state |s1⟩
to a state |s2⟩, then by applying the inverse of the same gate, we rotate the qubit
back from |s2⟩ to |s1⟩.

These two properties of quantum gates are perfectly encapsulated by unitary
transformations, and hence, every unitary matrix can be used as a quantum gate.

2.5.1 Spin Operators

In spin qubits, we saw that we can express each quantum state as a sum of three ob-
servable components, σz, σx, σy. Now it is time to introduce the Hermitian operators
that they are associated with. These operators are very famous and are called Pauli
operators, after the physicist Wolfgang Pauli that discovered them. In literature,
they can be referenced by are various notations

X ≡ σx ≡ σ1 ≡
(
0 1
1 0

)
Y ≡ σy ≡ σ2 ≡

(
0 −i
i 0

)
Z ≡ σz ≡ σ3 ≡

(
1 0
0 −1

)

The Pauli operators, as well as all the gates we will see later, have a circuit
symbol. This is a way to compress and visualize the operations we perform on
qubits. The symbols of the Pauli gates and their behavior is summed up on the
following table

α |0⟩+ β |1⟩ X β |0⟩+ α |1⟩

α |0⟩+ β |1⟩ Y − iβ |0⟩+ iα |1⟩

α |0⟩+ β |1⟩ Z α |0⟩ − β |1⟩

Interestingly enough, the Pauli matrices can generate arbitrary rotations around
the three coordinates axis x,y and z. To generate these rotation matrices, which we
will call Rx, Ry and Rz, we need to exponentiate the matrices in the following way
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RX = e−iθX/2 = cos
θ

2
I − sin

θ

2
X=̂

(
cos θ

2
−isin θ

2

−isin θ
2

cos θ
2

)
(2.33)

RY = e−iθY/2 = cos
θ

2
I − sin

θ

2
Y =̂

(
cos θ

2
−sin θ

2

sin θ
2

cos θ
2

)
(2.34)

RZ = e−iθZ/2 = cos
θ

2
I − sin

θ

2
Z=̂

(
e−iθ/2 0

0 eiθ/2

)
(2.35)

This may seem strange at first glance. However, there is a way to simplify
things by defining functions for operators. These functions can be defined for normal
matrices that have a spectral decomposition.

Definition 2.5.1 (functions for operators). Let M be a normal operator that can
be decomposed as M =

∑
i λi |λi⟩ ⟨λi|. Then we can define

f(M) =
∑
i

f(λi) |λi⟩ ⟨λi| . (2.36)

An example always helps at this point. Let’s prove that RZ has indeed the
matrix representation that we claimed. Recall that the eigenvectors of σz are the
basis vectors of the computational basis and that the corresponding eigenvalues are
1 and -1, respectively.

e−iθZ/2 = e−iθ/2 |0⟩ ⟨0|+ eiθ/2 |1⟩ ⟨1| =

(
e−iθ/2 0

0 eiθ/2

)

2.5.2 Hadamard gate

Another gate that is essential to quantum computation is the Hadamard gate. This
is the gate that is responsible for creating superposition, given one of the basis states.
The action of this gate can be summarized by the mapping

|0⟩ 7→ |0⟩+ |1⟩√
2

, |1⟩ 7→ |0⟩ − |1⟩√
2

. (2.37)

These states are often denoted in bibliography as |+⟩ and |−⟩, respectively.
These states are of particular interest because upon measurement in computational
basis the qubit will be found 50% of the time in the state |0⟩ and 50% of the time
in the state |1⟩.
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Superposition is the first quantum mechanical phenomenon that quantum com-
putation utilizes to it’s advantage. Naively, we can think superposition as being at
both states at the same time, and therefore, perform calculations for both states at
the same time, which wouldn’t be possible in a conventional computer.

The matrix representation, notation and circuit symbol is summarized below

H ≡ H =̂
1√
2

(
1 1
1 −1

)
(2.38)

2.5.3 Arbitrary single qubit gates

There are many more quantum gates that we could present here. However, as we
seen previously, there are infinite quantum gates. All of them perform some type
rotation on the Bloch sphere by changing the angles θ and ϕ that can be seen in the
Fig(2.2).

It is easy to show that any single qubit quantum gate can be decomposed as

U = eiα

(
e−iβ/2 0

0 eiβ/2

)(
cosγ

2
−sinγ

2

sinγ
2

cosγ
2

)(
e−iδ/2 0

0 eiδ/2

)
(2.39)

The components α, β, γ, δ are real numbers. Determining these components can
generate an exact approximation of any unitary matrix, and hence, any quantum
gate.

2.5.4 Changing Bases

All the definitions of gates we saw was based on the computational basis {|0⟩ , |1⟩}. If
we want to work on a different basis, we need to calculate the matrix representation
ourselves. We use unitary transformations to find the matrix representation of an
operator in a different basis.

Suppose that we want to shift from the orthonomal basis {|ψ1⟩ , |ψ2⟩} ∈ C2 to
the orthonomal basis {|ϕ1⟩ , |ϕ2⟩} ∈ C2. The first step is to calculate the unitary
matrix that is responsible for the change of basis

U =

(
⟨ϕ1|ψ1⟩ ⟨ϕ1|ψ2⟩
⟨ϕ2|ψ1⟩ ⟨ϕ2|ψ2⟩

)
(2.40)

Subsequently, we transform the operator M from the {|ψ1⟩ , |ψ2⟩} basis to the
{|ϕ1⟩ , |ϕ2⟩} as follows

M
′
= UMU † (2.41)

where M
′
is the matrix representation of M in the {|ϕ1⟩ , |ϕ2⟩} basis.
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Besides operators, we also need to transform the state vectors. This is done by
simply acting matrix to the state. Let |u⟩ be a state vector in {|ψ1⟩ , |ψ2⟩}, then

|u′⟩ = U |u⟩ (2.42)

where |u′⟩ is the state vector |u⟩ in the {|ϕ1⟩ , |ϕ2⟩} basis.

The Hadamard matrix transforms the computational basis {|0⟩ , |1⟩} to the com-
plementary basis {|+⟩ , {|−⟩}, where the complementary basis is the eigenvectors of
the σx.

2.6 Tensor products

Single qubit systems are the simplest quantum systems we can study. However, the
computational abilities of a single qubit are quite limited. To perform computations
that a convectional computer is unable to do we need multiple qubits to interact
with each other. But let’s take one step at a time and see how two quantum systems
can combine.

The tensor product, which sometimes also called Kronecker product, plays a
crucial role in quantum mechanics, since it offers a way of combining quantum
systems to create larger ones, which we call composite systems. Concisely, tensor
products are used to merge vector spaces.

Definition 2.6.1 (Tensor product). The tensor product of two vector spaces, namely
V1 ∈ Cd1 and V2 ∈ Cd2 , is defined as

V = V1 ⊗ V2 (2.43)

where V is of d = d1 d2 dimensions. In general, tensor products are not limited with
regard to the number of vector spaces we can put together at the same time.

In the case of qubits, suppose that we have 2 separate state vectors |ψ⟩,|χ⟩ ∈ C2.
The column vector notation of the tensor product is defined as

|ψ⟩ ⊗ |χ⟩ =
(
ψ1

ψ2

)
⊗
(
χ1

χ2

)
=

ψ1 ·
(
χ1

χ2

)
ψ2 ·

(
χ1

χ2

)
 =


ψ1 χ1

ψ1 χ2

ψ2 χ1

ψ2 χ2

 (2.44)

The dimensions of the composite system grow exponentially with the number of
qubits. Meaning that a Hilbert space, where n qubits interact, would be of 2n

dimensions.

Sometimes, to simplify things, we use abbreviations when we write down the
tensor product of states. All the following notations are equivalent

|u⟩ ⊗ |v⟩ = |u⟩ |v⟩ = |u, v⟩ = |uv⟩ (2.45)

As every product in vector spaces, tensor product product has some properties
that it must obey.
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1. Tensor products between state vectors are linear. Let |v1⟩ , |v2⟩ ∈ V and
|w⟩ ∈ W , where V and W are two vector spaces. Then

|w⟩ ⊗ (|v1⟩+ |v2⟩) = |w⟩ ⊗ |v1⟩+ |w⟩ ⊗ |v2⟩ (2.46)

2. Tensor products are associative. If a is a scalar and |v⟩ ∈ V , |w⟩ ∈ W . Then

a(|w⟩ ⊗ |v⟩) = a |w⟩ ⊗ |v⟩ = |w⟩ ⊗ a |v⟩ (2.47)

3. Tensor products are noncommutative. Suppose two states |v⟩ and |w⟩, that
belong to two different vector spaces, V and W, respectively. Then

|w⟩ ⊗ |v⟩ ≠ |v⟩ ⊗ |w⟩ (2.48)

Apart from vectors, tensor products can be applied to operators too. It is defined
in a similar fashion so as to hold all the properties that we mentioned. Suppose that
A and B are linear operators that act on V and W, respectively. Then if |v⟩ ∈ V
and |w⟩ ∈ W

A⊗B(|v⟩ ⊗ |w⟩) = A |v⟩ ⊗B |w⟩ (2.49)

In other words, A⊗B is a well defined linear operator that acts on the V ⊗W
vector space. I understand that this discussion might seem rather abstract. In
matrix notation however, things are more concrete. Let A and B two matrices
of n×n and m×m dimensions, respectively. The matrix representation the tensor
product is

A⊗B =

a11B · · · a1nB
. . .

an1B · · · annB


(nm×nm)

(2.50)

The resulting matrix is of nm×nm dimensions.

2.7 Multi-particle gates

Tensor products play a fundamental role in generalizing quantum gates to multiple
qubits. They allow us to combine any kind of single qubit gates together. These
types of gates are called local.

Definition 2.7.1 (Local operators). Local operators are unitary operators that can
be factorized with a tensor product. In other words, an operator is local if it acts
on only one part of the composite system.
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Some characteristic examples of local gates and their circuit are shown below

X

X

H H Z H

X
Y

X ⊗X H ⊗ I (HZH)⊗X I ⊗ Y

We can expand the tensor product to describe larger systems. Positioning the
operators properly on the tensor product allows us to create any local gate we want.
The wires in the quantum circuit illustration doesn’t automatically imply a physical
wire, but rather they represent the passage of time. We read the circuit from left
to right. This is an important step in understanding how we can translate quantum
operations into circuit illustrations.

However, local gates does not utilize fully the computational ability that quan-
tum mechanics offer. The non-local operators take advantage of the strange quan-
tum phenomena that rise through the interaction between particles. One such
phenomenon is entanglement, that allows us to do calculations that otherwise are
deemed impossible. Entanglement is such a bizarre and fascinating phenomenon
that proves we don’t have the intuition nor the senses to fully comprehend how real-
ity actually works. We will devote the entire next section to elaborate more on this
phenomenon, but for now that’s all we need to know to properly introduce non-local
operators.

Definition 2.7.2 (Non-local operators). Non-local operators are unitary operators
that can’t be factorized into a tensor product of single qubit gates. This due to the
fact that the action of the gate on one qubit is directly controlled by the state of
another qubit.

The most typical class of non-local operators are the control gates. Control gates
has two qubits as inputs, the control and the target. When the control qubit is in the
state |1⟩, we perform a unitary operation on the target qubit. While if the control
qubit is in the state |0⟩, we don’t perform any actions on the second qubit. These
gates are also called Controlled-U

•
U

P0⊗ I + P1 ⊗ U

An important example of these gates is the Controlled-NOT (CNOT), where the
unitary operation is the X gate as illustrated below
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•

P0⊗ I + P1 ⊗X

In order to reduce the abstraction around the CNOT, and get a better under-
standing of tensor products, it is also useful to calculate the matrix representation

CNOT = P0 ⊗ I + P1 ⊗X =

(
I 0
0 X

)
=̂


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (2.51)

The CNOT is the most important multi-qubit gate, because as it turns out it has
a universal behaviour. A universal set of quantum gates, is any set of gates that
any other unitary operation can be expressed as a finite sequence of gates from that
set. CNOT and arbitrary single qubit rotation gates form one such universal set of
quantum gates.

2.8 Entanglement

So far we have seen that quantum mechanics are bizarre and counter-intuitive com-
pared to the reality we are experiencing in a macroscopic level. However, things can
get even more strange. In fact, there is a phenomenon in the quantum world that
is so absurd, that has many physicists consider quantum theory incomplete to this
day.

This phenomenon, that lies at the heart of quantum mechanics, is called quantum
entanglement. We say that two particles are entangled when the quantum state of
each particle cannot be described independently of the state of the other. This
phenomenon was the subject of the famous EPR paper, which was published by
Albert Einstein, Boris Podolski and Nathan Rosen in 1935. In this paper, they
stated that if two particles entangle and then separate, measurement of one of the
particles will also determine the state of the other particle. This holds true even
when the particles are spatially separated and are no longer interacting at the time
of measurement. They deemed that this was impossible, and Einstein even referred
to entanglement as ”spooky action at a distance”.

Nevertheless, despite not fully understanding yet the mechanics behind it, we
utilize entanglement as a valuable resource for computation.

Definition 2.8.1 (Product states). A composite system is in a Product state, or
separable state, if it can be expressed as a tensor product of the individual quantum
states that compose it.
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Definition 2.8.2 (Entangled states). A composite system that is not in a product
state, is entangled.

We can define a qualitative criterion to identify whether or not a composite
system is entangled.

Definition 2.8.3 (Qualitative measure of entanglement). Suppose that we have a
bipartite composite system of two qubits, |q⟩A , |q⟩B, with respective Hilbert spaces
HA and HB. Individually, each qubit is in a 2-dimensional Hilbert space, while the
composite system is in 22 dimensions. Any state vector in the composite system can
be expanded, with respect to the computational basis, as

|ψ⟩ =
1∑

qA=0

1∑
qB=0

aqA |q⟩A ⊗ bqB |q⟩B =


a0 b0
a0 b1
a1 b0
a1 b1

 (2.52)

where aqA , bqB ∈ C and, as probability amplitudes, satisfy∑
q1,q2

|aq1bq2|
2 = 1. (2.53)

Vectors and matrices have an isomorphic relation that allows us to define the coef-
ficient matrix of the state |ψ⟩

C =

(
a0 b0 a0 b1
a1 b0 a1 b1

)
(2.54)

We can positively say that the state |ψ⟩ can be factored as a product stated, if
det(C) = 0. We know from linear algebra that when the determinant of a matrix is
zero, it implies that its columns are linearly independent. This can be generalized
to apply to a composite system of more dimensions.

Apart from just declaring whether or not a set of subsystems is entangled, we
can also quantify the amount of entanglement that is present system.

Definition 2.8.4 (Quantitative measure of entanglement). Suppose that we have
again a bipartite system. The coefficients matrix C, with elements cij = aibj, can
generate the probabilities of each state |i⟩A ⊗ |j⟩B of the system as p(ij) = |cij|2.
The Shannon entropy gives us a quantitative meausure of entanglement

S(p(ij)) = −
1∑

i=0

1∑
j=0

p(ij) log2 (p(ij)) (2.55)

Shannon entropy has its roots in information theory and is used as a measure
of uncertainty. Uncertainty refers to how ”surprising” the average outcome of a
quantum measurement is. Entropy ranges from 0, for a separable product state, to
1 for a maximally entangled state.
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The most famous entangled states are the maximally entangled Bell states. Bell
states form an orthonomal basis in H4 called the Bell basis. These states are special
because by measuring the state of one qubit, we definitively know the state of the
other! ∣∣Φ±〉 = |00⟩ ± |11⟩√

2
(2.56)∣∣Ψ±〉 = |01⟩ ± |10⟩√

2
(2.57)
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Chapter 3

Machine Learning

Humanity throughout history strove to find patterns in nature. This quest, during
the 19th and 20th centuries, gave birth to mathematical techniques for analyzing
data to reveal patterns, such as learning optima via gradient decent and polynomial
interpolation. The development of digital computers during the second half of the
20th century, allowed the mathematical methods of data analysis to be automated.
Machine learning (ML) grew out of the field of artificial intelligence at the late 50’s
when some scientists attempted to allow computer systems to constantly improve
their performance in certain tasks through the use of data and statistical techniques.
It is the study of computer algorithms that pertains to searching for patterns and
correlations in data. ML algorithms build a model based on data, in order to make
decisions or predictions without being explicitly programmed to do so. The accuracy
of the model is improved automatically through the data, albeit it requires a huge
amount of data for a machine learning model to achieve an acceptable accuracy.
The lack of data, back in the 60’s, create a hurdle that forced machine learning to
stay in purely academic cycles for some decades.

The emergence of the Big Data reignited the interest for machine learning. Many
major technological companies saw great success from storing, processing and ex-
tracting value from their huge volume of data. More and more companies start
to follow that path as of late. However, the data sets are becoming too large or
too complex to be dealt with by traditional data-processing methods and analytics.
This is where machine learning fits perfectly, since the more data a system receives,
the more it learns recognize patterns, and thus, offer helpful insights for business
operations.

Besides businesses, machine learning algorithms are slowly integrating to a va-
riety of applications, ranging from medicine and stock market trading to security
systems and speech recognition. This variety of emerging applications is due to the
fact that machine learning employs different approaches to teach computers. In the
theory of machine learning, the learning is traditionally divided into three broad
categories, supervised learning, unsupervised learning and reinforcement learning.
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In supervised learning, the goal is to develop a predictive model that maps an
input to an output. The data set that is used to train the model is labeled and
consists of example input-output pairs. To evaluate the training process, the model
is put to test by feeding it unknown data, with hidden labels, and is instructed to
predict the output based on its knowledge from the training.

Conversely, in unsupervised learning, we don’t have labeled pairs of inputs-
outputs, and hence, the goal is to group and interpret the correlations of the input
data. The figure below sums up the different machine learning approaches. Finally,
reinforcement learning is the mechanism behind the development and study of in-
telligent agents. In the field of artificial intelligence an agent is a computer program
that acts as a player in a game. Agents learn by rewarding (reinforcing) or punishing
the strategy they use to win.

Figure 3.1: Map of machine learning.

This chapter of the thesis is aimed at introducing generative modeling using
neural networks. For the latter, we will use a special type of neural networks that are
very popular in generative modeling, called Restricted Boltzmann Machines (RBMs).
To make the idea more concrete we will start from a single neuron and build our way
up to restricted Boltzmann machines and how we can utilize them for generative
modeling.

3.1 Artificial neurons

Artificial neural networks (ANN) are computing systems inspired by the model of
the human brain. They are a collection of connected units or nodes called artificial
neurons, which loosely model the neurons in a biological brain. Basically, we can

32



think of them as functions that transforms input data to output based on their
training on many data samples.

Figure 3.2: Neural networks are inspired by the brain model and behave as a function

Similar to a biological neuron, an artificial neuron, has weighted inputs from
other neurons. Also, it may have a threshold such that a signal is sent only if the
weighted sum of it’s input signals crosses that threshold. Mathematically the neuron
activation is based on,

z = b+
∑
j

wj · xj (3.1)

where wj are the weights of the inputs, xj are the inputs and b is a constant called
bias. The bias allows to shift the activation by adding a constant to the input. The
output of the neuron is some non-linear function f(z) of the weighted sum of it’s
input signals. There are many functions that can be used at this point. However,
we only need to introduce the one we will use later on, the sigmoid function.

Definition 3.1.1 (Sigmoid function). A sigmoid function is a mathematical function
having a characteristic ”S”-shaped curve and is defined as

f(x) =
1

1 + e−x
=

ex

ex + 1
(3.2)

The output of the sigmoid function is in the [0, 1] range.

Figure 3.3: Computational Model of a Biological Neuron

A collection of connected neurons builds up what we call a neural network.
Typically, the neurons are organised into layers. Neurons of one layer connect only
to neurons of the immediately preceding and immediately following layers. The layer
that receives external data is the input layer, while the the layer that produces the
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ultimate result is the output layer. The layers that are stacked between the input
and output layers are called hidden layers. Any neural network with more than one
hidden layer is called a deep neural network.

Figure 3.4: Structure of a simple neural network.

Depending on the way the neurons are connected it can give rise to various types
of neural networks that have different applications. In general, neural networks are
widely used in supervised learning for classification tasks, where they can reach an
accuracy > 98%. The mathematical description of the learning process of artificial
neuron can be found in Appendix A.

3.2 Restricted Boltzmann Machines

Apart from supervised learning, neural networks can also be used in unsupervised
learning, where the data is unlabeled. Restricted Boltzmann Machines (RBMs) are
a special type of neural networks that was widely used as building blocks in deep
learning architectures and they continue to play an important role in applied and
theoretical machine learning. In this work we will train a RBM to perform generative
modeling.

Generative modeling is a very useful application of neural networks that falls
under the category of unsupervised learning. The model automatically discovers
and learns the correlations of the input data, so as to be able to generate new
instances that could have been possibly drawn from the original data set. Simply
put, the model captures the distribution of the data.

3.2.1 Historical background

In 1982 Hopfield introduced a fully connected network of interacting units that
have the ability to store and retrieve binary patterns [2]. Hopfield networks can be
considered as a dynamical system in which the stable states of the system correspond
to the patterns we want to store. They belong to the category of energy based
models where the desired patterns are associated with the minima of a suitably
defined energy. In the figure below we can see a Hopfield network with 5 neurons.
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Figure 3.5: A graphical representation of the fully-connected Hopfield network con-
sisting of five neurons. The synaptic weights are described by a symmetric matrix
WIJ

The network is initialized randomly and each unit updates its state through a
simple rule that depends on the units it is connected to. Mimicking nature, the
evolution of a Hopfield network constantly decreases its energy. An interesting
question to be raised at this point is where did the inspiration for this ”energy”
concept came from?

Hopfield mentioned a spin glass system based on the Ising model [3]. In physics,
a spin glass is a magnetic state characterized by randomness. In contrast with a
ferromagnet where all the spins align, the spins in a spin glass are aligned randomly
without a regular pattern. This is depicted in the figure below.

Figure 3.6: At the top we have a schematic of random spins in a spin glass and at
the bottom we have the alignment at a ferromagnet

When a external field is applied each magnetic spin tries to align itself to the
local field and in doing so it may flip. However this causes a chain reaction because
it will change the fields at other dipoles. A change at the magnetic fields of other
dipoles may cause them to flip which in turn changes the field at the current dipole.
This process is what we call the evolution of the system and it continues until the
system reaches a minimum energy state. The dipoles stop flipping if any flips results
in increase of energy.

The Hopfield network was very influential in the development of neural network
models in the 80’s. Though successful in storing/retrieving the desired patterns, it
was observed that the Hopfield model has various problems such as limited storing
capacity and spurious minima. In an attempt to mitigate these issues, a stochastic
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version of the Hopfield model, called Boltzmann machine, was proposed [4]. In con-
trast to Hopfield networks, where the units are deterministic, Boltzmann machine
units are stochastic. Each unit updates its state over time in a probabilistic way
depending on the states of the neighboring units. The units of a Boltzmann ma-
chine are divided into ’visible’ units, V, and ’hidden’ units, H. The visible units are
the ones that interact with the environment and work as information input to the
machine, while the hidden units are latent variables forming a conditional hidden
representation of the data.

Figure 3.7: This is a connectivity diagram of a Boltzmann machine. Each undirected
edge represents dependency. In this example there are 3 hidden units and 4 visible
units.

However, learning the parameters of the Boltzmann Machine model is computa-
tionally intensive. To reduce the complexity of learning, a restricted communication
structure was introduced [5, 6, 7]. This model is called the Restricted Boltzmann
Machine.

3.2.2 Structure

A restricted Boltzmann machine is a probabilistic energy based model that pertains
to the mathematical model of interacting particles, like the Ising model. Similar to
a Boltzmann machine, the architecture is organised into two layers, that are most
commonly referred to as the ”visible” and ”hidden” units respectively. However,
unlike Boltzmann machines, lateral connections within a layer are prohibited to
make the computations faster, and hence, the edges are defined as e = {{v, h} : v ∈
V, h ∈ H}. This is illustrated in the figure below.

Figure 3.8: The connections between the two unit layers of a RBM form a bipartite
graph.
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The units of a restricted Boltzmann machine are stochastic binary units that can
be either 0 or 1. The joint state of each layer is represented by vectors v ∈ {0, 1}V
and h ∈ {0, 1}H . Generally, there are other types of units that can be used, such
as Gaussian units, but the most widely used are the stochastic binary units that we
see here.

Each unit has an associated bias and each connection has an associated weight.
As a generative model, a restricted Boltzmann machine represents a probability
distribution. The network assigns a probability to every possible pair of a visible
and a hidden vector as

p(v,h) =
1

Z
e−E(v,h). (3.3)

The probability of a visible sample vector, v, is derived by summing over all
possible hidden vectors

p(v) =
1

Z

∑
h

e−E(v,h). (3.4)

Each joint configuration of all units (v,h) has an energy value E(v,h) which
depends on the pairwise interactions of units and biases

E(v,h) = −
∑

i∈visible

aivi −
∑

j∈hidden

bjhj −
∑
i,j

wijvihj (3.5)

= −aTv − bTh− vTWh (3.6)

where vi, hj are the binary states of the visible unit i and hidden unit j, ai, bj
are their biases and wij is the weight between them.

The ’partition function’, Z, is calculated by summing over all possible pairs of
visible and hidden vectors

Z =
∑
v,h

e−E(v,h). (3.7)

The partition function can be interpreted as a normalizing constant to ensure that
the probabilities sum to 1. However, there is a problem hidden here. With a
careful observation we can see that it is computationally expensive to calculate the
partition function, since the integration over all possible states is only computable for
small toy problems. The partition function, Z, is exponential w.r.t to the number
of the hidden and visible units of the model and complexity theory tells us that
any problem that is exponential in nature should be regarded intractable on any
conventional computer. This is a major issue because it makes the joint probability
distribution p(v,h) intractable.
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The solution to this problem is found in the field of statistics with an algorithm
called Gibbs sampling, which is employed when direct sampling is difficult. In statis-
tics, Gibbs sampling is a Markov chain Monte Carlo algorithm that constructs a
Markov chain whose values converge towards a target distribution. In other words,
instead of calculating the joint configuration (v,h), alternate transitions between v
and h states and sample from p(h|v) and p(v|h) that are easy to calculate. We can
simultaneously and independently sample from all the elements of h given v and the
same holds for v given h. To get an unbiased estimate, we need the Markov chain
to converge to a stationary distribution.

Figure 3.9: Given some visible vector v, calculate the probabilities p(hj = 1|v). Then,
sample according to these probabilities, to obtain a new hidden state vector h. Similarly,
go from h to a new v

′
, using p(vi = 1|h). This process is repeated until the chain converges.

Using Bayes theorem we can derive the probability of the hidden units condi-
tioned on all visible units,

p(h|v) = p(h,v)

p(v)
=

p(v,h)∑
h p(v,h)

=
e−E(v,h)∑
h e

−E(v,h)
(3.8)

=
ea

Tv · ebTh+vTWh∑
h e

aTv · ebTh+vTWh
=

eb
Th+vTWh∑

h e
bTh+vTWh

(3.9)

=
e
∑

j(bjhj +
∑

i wijvihj)∑
h e

∑
j(bjhj +

∑
i wijvihj)

=
∏
j

e(bjhj +
∑

i wijvihj)∑
h e

(bjhj +
∑

i wijvihj)
(3.10)

=
∏
j

e(bjhj +
∑

i wijvihj)

1 + e(bj +
∑

i wijvi)
=
∏
j

p(hj|v). (3.11)

Similarly,

p(v|h) =
∏
i

p(vi|h). (3.12)

An important point to notice here is that we have a product of probabilities. This
implies conditional independence of visible units conditioned on all hidden units and
vice-versa. The conditional independence is also confirmed by the bipartite structure
of the model.
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The above conditional distributions can be expressed as

p(hj = 1|v) = σ

(
bj +

∑
i

wijvi

)
, p(hj = 0|v) = 1 − p(hi = 1|v) (3.13)

p(vi = 1|h) = σ

(
ai +

∑
j

wijhj

)
, p(vi = 0|h) = 1 − p(vi = 1|h) (3.14)

where σ(x) is the sigmoid function that we saw earlier.

3.2.3 Training a Restricted Boltzmann Machine

Training a restricted Boltzmann machine is finding the parameters θ, such that the
distribution represented by the model p(v|θ) closely matches the desired distribution
as indicated by the training data. The parameters, θ, of the RBM include all the
connection weights and the biases.

To find the parameters, θ of the model, we have to minimize the Kullback-Leibler
divergence between the model and the data distribution pdata(v). KL-divergence is
a popular distribution distance measure and is defined as,

dKL(pdata(v) || p(v|θ)) =
∑
v∈S

pdata(v) log

(
pdata(v)

p(v|θ)

)
(3.15)

where S = {v(1),v(2), · · · ,v(N)} are the training samples.

Interestingly minimizing KL-divergence results to maximizing the log-likelihood,

argmin
θ
dKL = argmin

θ

∑
v∈S

(pdata(v) log pdata(v)− pdata(v) log p(v|θ)) (3.16)

= argmax
θ

∑
v∈S

pdata(v) log p(v|θ). (3.17)

Maximizing the log-likelihood is usually done using gradient based optimization
methods. The log-likelihood of θ for a given vector, v, can be calculated by summing
out the hidden units from the joint distribution,

ln p(v|θ) = ln

(
1

Z

∑
h

e−E(v,h)

)
(3.18)

= ln
∑
h

e−E(v,h) − ln
∑
v,h

e−E(v,h). (3.19)
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The gradient of the log-likelihood with respect to the parameters we want to
optimize is evaluated as,

∇θ ln p(v|θ) = ∇θ ln
∑
h

e−E(v,h) −∇θ ln
∑
v,h

e−E(v,h) (3.20)

=

∑
h∇θ e

−E(v,h)∑
h e

−E(v,h)
−
∑

v,h∇θ e
−E(v,h)∑

v,h e
−E(v,h)

(3.21)

= −
∑

h e
−E(v,h)∇θ E(v,h)∑

h e
−E(v,h)

+

∑
v,h e

−E(v,h)∇θ E(v,h)∑
v,h e

−E(v,h)
(3.22)

= −
∑
h

p(h|v)∇θ E(v,h) +
∑
v,h

p(v,h)∇θ E(v,h) (3.23)

For a given set of training samples, S = {v(1),v(2), · · · ,v(N)}, the log-likelihood
gradient is,

1

N

N∑
l=1

∇θ ln p(v(l)|θ) = 1

N

N∑
l=1

−
∑
h

p(h|v)∇θ E(v,h) +
∑
v,h

p(v,h)∇θ E(v,h)

 (3.24)

= Epmodel
[∇θ E(v,h)]− Epdata

[∇θ E(v,h)] . (3.25)

Specifically, the updates for weights and biases are,

∆wij = Epdata [vihj]− Epmodel
[vihj] (3.26)

∆ai = Epdata [vi]− Epmodel
[vi] (3.27)

∆bj = Epdata [hj]− Epmodel
[hj] . (3.28)

The first term is easy to be obtained and is called the positive phase. It calculates
the expectation of the hidden probabilities given the data under the current model.
The second term is called the negative phase and calculates the expectation of the
joint probability of visible and hidden units under the current model. However, the
second term is exponential in the size of the smallest layer 2min(m,n). The following
equations shine some light as to why this the case

∑
v,h

p(v,h)∇θ E(v,h) =
∑
v

p(v)
∑
h

p(h|v)∇θ E(v,h) (3.29)

=
∑
h

p(h)
∑
v

p(v|h)∇θ E(v,h) (3.30)

Thus, once again Markov chain Monte Carlo sampling methods are used to
obtain expectation under the model distribution. The samples are obtained when the
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Markov chain converges to the stationary distribution. But if one waits for the chain
to converge at each iteration, the computational cost becomes large again. To avoid
this large computational cost, we use an algorithm called Contrastive Divergence [7].

The idea is to reduce the computational cost by initializing the Markov chain
close to the desired distribution. This is achieved by initializing the chain with
samples from the data set. Moreover, the expectation is replaced by a single sample
vk that is obtained after running a Markov chain for k steps. This way we eliminate
almost all of the computation that is required to get samples from the converged
distribution.

According to Hinton, we can interpret ’contrastive divergence’ as the differ-
ence between two KL-divergences. He states that instead of simply minimizing the
KL-divergence between the data distribution and the converged distribution of the
Markov chain, we can minimize the following,

dKL(pdata(v) || p(v|θ)) = dKL(pdata(v) || p(v|θ))− dKL(pk(v) || p(v|θ)) (3.31)

where pk(v) is the distribution of the chain after k steps. In practice, only one step
of Gibbs sampling will suffice for most problems.

3.2.4 Learning the MNIST digits

To demonstrate how generative modeling works with a restricted Boltzmann ma-
chine, we coded and trained one to learn the distribution of handwritten digits.
Most people effortlessly recognize handwritten digits, however the ease is deceptive.
Our brains has millions of neurons, that are fine tuned with by thousands of years
of evolution. Practically, we walk around with a supercomputer in our heads, that
is stupendously good at making sense of the visual signals that reach our eyes. So,
it should come at no surprise that recognizing handwritten digits is not trivial for a
convectional computer, let alone generating new samples. Recognizing handwritten
digits is a widely known problem in the field of machine learning and is now con-
sidered solved since there has been networks that can tackle the problem with an
accuracy of over 99 percent. In our experiment, we will not attempt to recognise but
rather generate new samples that could have possibly drawn from the initial data.

Figure 3.10: A random selection of MNIST digits
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As data we utilized the MNIST digits database that is easily accessible and
tailor made for machine learning experiments. The MNIST database consists 60,000
training images and 10,000 testing images. Each image is a 28 by 28 pixel scanned
image of a single handwritten digit. The values of each pixel range from 0 to 255.
However, a RBM has binary units, and thus, we convert the the grayscale images
with values [0,255] to binary with values [0,1]. The mapping is done by setting a
threshold at 128. If the pixel value is below 128 we set the value to 0, otherwise we
set the value to 1.

The visible layer of the network contains units that encode the values of the
input pixels, and hence, we will have 28 × 28 = 784 units. For the hidden layer we
found that 100 units will suffice to get good approximations of the digits. To train
the network we implemented a mini-batch version of the Contrastive Divergence
algorithm according to the Hinton practical guide [8]. Hinton suggests that for data
sets that contain a small number of equiprobable classes, the ideal mini-batch size is
often equal to the number of classes. So, in this case we chose each batch to contain
10 images. Furthermore, in order to avoid changing the learning rate when the size
of a mini-batch is changed, we use as learning rate 1/mini-batch size. The code that
we implemented for our RBM can be found in Appendix A.

Fig(3.11) illustrates how the RBM generates images that bare the same statis-
tical patterns as the MNIST images.

Figure 3.11: Reconstructions of random MNIST digits. Left column indicates a
number to the RBM. Going from left to right we can see new images of the same
digit. Each column is a reconstruction of the previous and is obtain by a step of
Gibbs sampling.
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Chapter 4

Quantum Machine Learning

4.1 Introduction to Quantum Machine Learning

The rapid technological advancements of the last couple of decades has helped ma-
chine learning to escape the academic cycles and slowly integrate into our everyday
lives. However, there are still challenges to overcome, such as the large compu-
tational cost of training or deriving insight from problems that are exponentially
complex. This is where quantum computation is thought that can be of help. Data
analysis and machine learning are based around statistics and linear algebra. But
quantum computation in its core is also linearly algebraic. Thus, the scientific com-
munity thought that research in integrating those two fields may yield computational
benefits. The merging of quantum computation within machine learning algorithms
gave rise to a new field that is called quantum machine learning (QML). This field
promises advantages such as speed-ups in complex matrix and tensor operations
as well as in the training process, while also allows the handling of more complex
network topologies.

Research in the field is divided into two major directions. The first one, pertains
to the theoretical study of algorithms that run on a fault-tolerant quantum computer.
In this approach, the assumption is that the speed-up will be derived from executing
the subroutines of ML algorithms on quantum computers without changing the
structure of the algorithms. In fact, all the evidence that quantum computation
will yield speed-ups to ML comes from this approach. Most proposed quantum
algorithms however require fault-tolerant quantum computers that can be scaled to
a few thousand qubits. Unfortunately, the state of the art quantum processors that
exist today have a few dozens qubits that are noisy and error-prone.

So, have we reached an impasse for the time being? The hurdles of the fault-
tolerant QML sparked a new research interest. After the realization that fault-
tolerant quantum computers won’t be available in the near future, people started to
investigate whether or not we can utilize these noisy devices to solve various general
problems efficiently. This approach is called noisy intermediate scale quantum or
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simply NISQ.

Regardless of the era and the type of quantum computers we possess, QML
algorithms can be also classified by the way they fuse together the disciplines of
machine learning with quantum computation. The most common combination is to
exploit quantum computers to analyse classical data. This is motivated by the belief
that quantum computers would in theory outperform their classical counterparts at
solving specific problems. This is what we consider quantum advantage or speed-up.
Alternatively, one can harness machine learning algorithms in order to process data
from quantum experiments. In total, there are four different ways of merging the
two fields as demonstrated in Fig.(4.1) below. In this thesis, we will be working on
the upper squares, developing hybrid quantum classical algorithms for classical data

Figure 4.1: The first letter shows whether the type of data that are studied are
classical or quantum, where the second letter refers to the nature of the algorithm
that will process the data.

4.1.1 Fault-tolerant Quantum Machine Learning

The fault-tolerant QML was the one that started the whole QML field back in
2009. It works under the premise that the whole algorithm will run on a quantum
computer, and so, those algorithms are evaluated by the speed-up they demonstrate
compared to their classical counterparts. Where does this speed-up comes from
though?

To understand this, we must first introduce a very important algorithm in the
quantum computation field. This algorithm is named after its inventors Harrow,
Hassidim and Lloyd or simply HHL [9]. The algorithm attempts to solve the linear
equation Ax = b in a quantum computer. This problem is actually very simple
to solve in a classical computer but it can get very time consuming. Suppose that
A is an n × n real matrix. The best classical algorithm would require O (n log n)
to go through the entries of A and output the solution for x. HHL promises to
compute the solution in O ((log n)2) by exploiting the exponential character of the
wave function.

Unfortunately, in order for HHL to achieve this, there are some limitations that
need to be overcome. The first major issue is that the algorithm requires a quantum
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RAM (qRAM). Vector b needs to be encoded quickly into the quantum computer’s
memory as the quantum state |b⟩ before the execution of the algorithm. The qRAM
allows to store the classical entry values of b and read them all at once as a super-
position of states,

b = [b1, b2, · · · , bn]T 7→ |b⟩ =
n∑

i=1

bi |i⟩ . (4.1)

The catch is that qRAMs does not exist currently, as the technology has yet to catch
up to theory. However, there is no physical no go theorem why we cannot build one,
it is just quite tough. Should we not use a qRAM and attempt to let the quantum
computer do the encoding itself, we risk loosing the speed-up. The encoding from b
to |b⟩ needs to be done in less than than nc, where c is some constant.

Besides the encoding, the decoding can also pose problems. Once the quantum
computer has finished processing the algorithm, the n values of x are encoded in the
log2(n) amplitudes of the quantum state |x⟩. However, in order to extract all the
information out of the state we are forced to repeat the process n times, and as a
result we kill the speed-up. This is related to the probabilistic nature of measurement
and it is unavoidable, regardless of the basis we choose to measure against.

The third and final issue is the ability of the quantum computer to simulate
efficiently unitary operations of the form exp(−iAt), for various values of t. Similar
to the encoding case, in order to maintain the speed-up, the simulation of the unitary
needs to be done in less than nc. Having a qRAM could help the system apply the
aforementioned unitary transformation in the special case of sparse matrices. A
sparse matrix is a matrix in which most of the its elements are zero. Storing the
non-zero elements and their positions in a qRAM can boost the quantum device to
apply the transformation in time that evolves linearly to the number of the non-zero
elements.

To summarize, it seems like HHL has a lot of drawbacks for us to be excited
about it. The truth is that the excitement is not because HHL is an algorithm
that solves linear equations in logarithmic time. The excitement arise when we view
HHL as a model for other quantum algorithms. It provides a template of to carefully
encode and prepare b, apply unitary transformations and measure |x⟩. But most
importantly it indicates us how to derive the cost of the operations and compare it
against the best classical algorithms. Moreover, should the constraints of the HHL
are carefully met, it can be used as a core subroutine to achieve speed-ups compared
to the classical ML algorithm as shown in the Fig.(4.2) below.
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Figure 4.2: Speedups of various QML algorithms compared to the classical ML
algorithms. [10, 11, 12, 13]

4.1.2 Noisy-Intermediate Scale Quantum (NISQ) Quantum
Machine Learning

The problem with fault-tolerant QML is that even if we satisfy the constraints that
algorithms such as the HHL bare, we don’t have yet the quantum computers that
they require to yield the speed-up. The hurdles emerge from the fact that most
proposed quantum algorithms require error-correcting quantum computers that can
be scaled to a few millions of qubits. This is a far cry from the state of the art
quantum processors that exist today that offer just a few dozen noisy qubits.

So, have we reached an impasse for the time being? ...No! The NISQ-era is
better suitable for the so-called Variational models. They are the leading proposal
for achieving quantum advantage using near-term quantum computers. Variational
models can be thought as hybrid learning that includes both classical and quantum
information processing where we outsource some of the computational expensive
subroutines to a classical computer while keeping the tasks that only quantum com-
puters can do to the quantum devices.

Similar to the fault-tolerant approach, an issue emerges when we have classical
data that are being processed by a quantum computer (CQ). More and more peo-
ple are trying to find real world applications for Variational model, and hence, it is
apparent that the data encoding problem cannot be overlooked. Encoding classical
data into quantum states can be quite challenging as there is no systematic method-
ology of doing it. In practise, encoding is usually tailored to a specific problem or
it is done heuristically. There are a few techniques though for someone to consider,
the Basis encoding, Angle encoding and Amplitude encoding.

In the Basis encoding scheme, we map our data in the computational basis
states. This is convenient when our data are binary in nature because the mapping
is straightforward b1 b2 · · · bn 7→ |b1 b2 · · · bn⟩. In the case the data are arithmetic
but not binary, we can still convert and map them to the basis states. For example,
suppose that we have the following classical data with binary representations x1 −→
01, x2 −→ 11. The mapping would be |00⟩ 7→ 0, |01⟩ 7→ x1, |10⟩ 7→ 0, |11⟩ 7→ x2.

Amplitude encoding is an alternative approach, where we map our data into
amplitude vectors rather than basis states. A quantum state of a system with n
qubits has 2n amplitudes in the state vector and so it can encode 2n-dimensional
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classical data point x. The data are encoded to the qubits by applying some unitary
operation as shown in Fig.(4.3).

Figure 4.3: Amplitude encoding by applying some unitary U(θ). The U(θ) is such
that the output vector matches the classical data x.

Angle encoding requires that we have as many qubits as the dimensions of our
classical data. The data are encoded by rotating each qubit about some chosen axis
by some angle that is dependent on the features in our classical data as shown in
the Fig(4.4).

Figure 4.4: Angle encoding by applying some rotation around the z’ axis, where the
angle of rotation is depended on the classical data.

Besides the encoding process, the way variational models work is quite simple.
Firstly, we have a parametrized quantum circuit U(x; θ), where the data are mapped
into quantum states and passed through the circuit. Then a measurement is made
at the output state to obtain an expectation value. A cost function is then used to
quantify the quality of the estimation, i.e: better prediction will have a lower cost.
The optimal parameters are then found by minimizing the cost function via gradient
descent or gradient-free optimization methods, and the training process is repeated
until the convergence of the cost function. Note that this classical optimization step
is outsourced to the classical optimizer to reduce the workload of quantum devices
as can see in Fig.(4.5).
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Figure 4.5: Variational quantum-classical approach compared to a classical ML
model

The adaptive nature of Variational models is well suited to handle the constraints
of near-term quantum computers. Variational models have now been proposed for
essentially all applications that researchers have envisioned for quantum computers
as they appear to be the best hope for obtaining quantum advantage.

4.2 Quantum Neural Networks

Research around Quantum Neural Network (QNN) models does not have a unified
focus, but rather it is a very broad field. Most QNN proposal involve combining
classical artificial neural networks with the resources of quantum information in order
to develop more efficient algorithms. The motivation behind this research direction
lied heavily on the difficulty of training neural networks in Big Data applications.

One such proposal is the Hybrid quantum autoencoders (HQA) [14]. This is a
hybrid model that incorporates both classical machine learning, in the form of neural
networks, and quantum machine learning, using parameterised quantum circuits
(PQC).
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Figure 4.6: Hybrid Quantum Autoencoder (HQA).

Fig(4.6) shows the structure of the model. The encoder and the decoder are
quantum in nature. The encoder takes an input state |ψin⟩ from the H⊗n

2 space and
maps it to a subset of the real vector space V of dimension v. The decoder performs
the inverse operation. Though the functional form of the encoder and decoder are
defined, the models themselves are not specified. The encoder receives some state
|ψin⟩ , and applies unitary U1(α) on the combined system of the input state with
(v−n) ancilla qubits. The latent vector ξ is formed by measuring the qubits on the
computational basis. Training of the model changes only the weights of the ANN.
The output of the ANN is given as a parameter to the unitary U2(θ) of the decoder.

Another QNN proposal that is drawing attention is the Quantum Generative
Adversarial Networks (QGANs) [15]. This model retains the general structure of
classical generative adversarial networks (GANs) but changes the implementation
of the generator and/or the discriminator. An example is shown in Fig(4.7).

Figure 4.7: Quantum GAN with a generator that is a parametrized quantum circuit
and a classical discriminator, which is a classical neural network acting as classifier.

Note that we can replace any classical neural network with a parametrized quan-
tum circuit, as they can be used and trained like neural networks even though they
bare only little resemblance with the multi-layer perceptron structure. We can ad-
just the control parameters of a quantum computer to train it to learn a pattern.
The QNN models we will study in this thesis, are based on this premise ,and thus,
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are staying true to the variational model approach. These models will potentially
excel at the hard tasks of unsupervised generative modeling, since they exploit the
probabilistic nature of quantum mechanics to learn classical data.

There are a few reasons on why we choose to concentrate on unsupervised gener-
ative modeling rather than discriminative supervised task. First of all, they bypass
the data encoding issue as what we do here is just performing sampling on the output
state and train it to get to some target quantum state. Moreover, it is a well known
fact that the classical computers cannot simulate arbitrary quantum systems as the
resources required for the simulation grows exponentially with the system size. By
turning the argument around, people has conjecture that the quantum computer
can learn some classical unlearnable distribution, and this might leads to potential
quantum advantage.

The following sections presents and compares the performance of two different
approaches, the digital and the analog. Both behave as quantum analogues of classi-
cal neural networks that utilize quantum algorithms to process classical data (CQ).
Generally, the data can be either quantum in nature, or classical that ends up en-
coded as quantum states. The data set that we to chose to test the two approaches
is the Bars and Stripes data set, which is a classical set of synthetic data.

4.2.1 Quantum Digital Circuit Born Machines

The digital approach to QNNs that we are referring to regards a type of quantum
circuits that are called Quantum circuit Born machines. The Quantum Circuit
Born Machine (QCBM) is a recently proposed parametrized quantum circuit model,
that is used for unsupervised generative modeling [16, 17, 18]. The term QCBM
was originally used to describe quantum wave-functions from tensor networks. For
distinguishing purposes, the latter are now referred to as tensor networks Born
machines (TNBMs).

Quantum circuit Born machines fall under the umbrella of the more general class
of Born Machines. These quantum circuits directly generate samples via projective
measurement on the qubits x ∼ Pθ(x) = |⟨x|ψ (θ)⟩|2 according to the Born rule. The
wavefunction |ψ (θ)⟩ is prepared by applying a parametrized unitary,

|ψ (θ)⟩ = U (θ) |0⟩ (4.2)

Generally, U (θ) is chosen based on the capabilities of the NISQ devices that
we have in our possession. As we see in Fig.(4.8), the parametrized unitary U (θ)
can be decomposed in a series of adjustable gates, such as qubit rotations gates or
parametric coupling gates that generate selective entangling interactions. A ben-
efit of this approach is that these circuits are naturally implemented on a noisy
intermediate-scale quantum (NISQ) device. However, we need to bare in mind that
the noise in these devices can pose challenges to the training.
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Figure 4.8: The ansatz for the QCBM is divided into layers of parametrized gates,
where two types of layers are used. One with arbitrary single qubit rotations and
one with entangling gates. We can stack alternating layers until the QCBM learns
the target distribution adequately.

Training a QCBM

Given a dataset D with independent and identically distributed (i.i.d.) samples from
a target distribution PD, the goal is to train a QCBM to generate samples close to
the unknown target distribution. Quantum circuit Born Machines are trained in the
hybrid quantum-classical variational model framework that we mentioned earlier.
The model is trained by sampling the output of a quantum computer and updating
the circuit parameters using a classical optimizer. The training pipeline is illustrated
in the Fig.(4.9) below.

Figure 4.9: Illustration of the QCBM’s training pipeline.

At the start, all the parameters of the unitary are initialized with random val-
ues. Once the initialization is done, the quantum circuit is executed and sampled
M times, in order to reconstruct the state distribution Pθ. A cost function is then
used to quantify the estimated mismatch between the target distribution PD and the
measured distribution Pθ. The optimal parameters are then found by minimizing the
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cost function via gradient descent or gradient-free optimization methods, and the
training process is repeated until the convergence of the cost function. After conver-
gence, the quantum circuit with the optimized parameters produces a wavefunction
|ψ (θopt))⟩ that encapsulates in the amplitudes of states the probability distribution.

Since we are doing generative modeling, the typical choice of cost function is
the Kullback-Leibler (KL) divergence, which quantifies how much two distributions
differ. KL divergence is defined as,

DKL (PD||Pθ) =
∑

x∈{0,1}N
PD(x) · log

(
PD

Pθ

)
(4.3)

In terms of machine learning, DKL (PD||Pθ) is often called the information gain.
We can think of it as the amount of information gained if we use PD instead of Pθ,
or conversely, the amout of information lost when Pθ is used to approximate PD.

Nevertheless, while it is a statistical distance, it’s not a metric. In mathematics,
a metric or distance function is a function that gives a distance between each pair
of point elements of a set. In general, KL divergence is asymmetric and does not
obey the triangle inequality.

Thus, a better approach would be to instead use a variant of the negative log-
likelihood cost function,

Cnll = −
∑

x∈{0,1}N
PD(x) · log {max(ϵ, Pθ(x))} . (4.4)

This variant has a quantity ϵ to avoid singularities. A singularity can occur when
the estimated probability Pθ(x), of some data x, turns out 0. This would lead the
log function to infinity, and hence infinite cost. The ϵ is generally chosen to be very
small and close to zero. Typical values are in the range of ϵ = 0, 001 or ϵ = 0, 01 .

The Bars and Stripes dataset

In this thesis, we considered a specific dataset known as Bars and stripes (BAS)
dataset. Bars and stripes (BAS) is a set of images that has been widely used to
study generative models. The images that belong to the dataset, are a subset of n×m
black and white pictures. Each image consists of any number of either horizontal
stripes or vertical bars. From simple combinatorics it is easy to derive that for n×m
pixels, there are NBAS(n,m) = 2n + 2m − 2 images. The simpler case that we can
study is the NBAS(2,2) which is illustrated in the figure below.
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Figure 4.10: The NBAS(2,2) data set.

Each image in the BAS data set can be viewed as a vector x of N×1 dimensions,
where N = n ·m. The elements of the vectors correspond to the pixels of the images
taken from top to bottom, and each row from left to right. Furthermore, since
the images are black and white, the vectors are binary vectors x ∈ {0, 1}N . The
N-dimensional binary vectors x allow us to make a one-to-one mapping with the
computational basis of the N-qubit quantum systems. That is x ↔ |x1x2 · · ·xN⟩ .
This method of encoding classical data into quantum states is called Basis encoding.
In the case of the Bars and Stripes dataset with 2× 2 images, we can directly map
the images into a 4 qubit system as we see in the figure below.

Figure 4.11: Encoding classical data into quantum states.

The data set D = (x(1), · · · ,x(6)) of the NBAS(2,2) images consists of 6 inde-
pendent and identically distributed images. For simplicity we assume that they are
uniformly distributed,
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Using a Quantum Circuit Born Machine to learn a data set

In this section, we will use the QCBM as a digital quantum generative model to
learn the BAS dataset. We considered three different ansatz for the QCBM: Chain,
star and all-to-all topology Fig(4.13). The ansatz for the QCBM is divided into
layers of parametrized gates, where two types of layers are used. One with arbitrary
single qubit rotations and one with entangling gates between two qubits. The layer
of single qubit rotations involves three rotation gates, that are applied to each qubit
i, specifically,

U (l)(i) = R(l,i)
z (αi) ·R(l,i)

x (βi) ·R(l,i)
z (γi) (4.5)

where l is the layer index. Each arbitrary rotation layer requires 3N trainable pa-
rameters, where N is the number of qubits. An important thing to note here is that
we can remove the first Z rotation in the first layer, as indicated by the dashed box
in the image below, since the circuits are executed from an initial |0 · · · 0⟩ state.
This would reduce the number of parameters at the first layer to 2N.

Figure 4.12: Arbitrary rotations applied on a single qubit.

Moreover, should we use an odd number of layers, we can reduce slightly further
the number of parameters. In this case, the last set of RZ rotations would only add
a phase, which is not measurable when we square the amplitudes with the Born rule.
This reduction in parameters is important, because the more parameters we have,
the more complex and hard the optimization process gets.

The entangling layer applies entangling gates between two qubits. The type of
gates used in this layer is dependent on the experimental platform the we have on
our hands. In previous implementations on trapped-ion quantum computers the
entangling layers consisted of Mølmer-Sørensen gates,

XX(θij) = exp

(
− i

2
θij Xi ⊗Xj

)
(4.6)

=


cos
(

θij
2

)
0 0 −i sin

(
θij
2

)
0 cos

(
θij
2

)
−i sin

(
θij
2

)
0

0 −i sin
(

θij
2

)
cos
(

θij
2

)
0

−i sin
(

θij
2

)
0 0 cos

(
θij
2

)

 (4.7)

where X is the Pauli gate and θij is a parameter.

In this work, we will execute the circuit on the superconducting quantum pro-
cessors offered by IBM. The quantum processors are available to the public through
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the cloud. In this technology, the Mølmer-Sørensen gates, that are native only to
trapped-ions, are replaced by RXX gates,

RXX(θij) = exp

(
− i

2
θij Xi ⊗Xj

)
. (4.8)

Notice that a RXX gate has the same mathematical behaviour as a Mølmer-Sørensen
gate. The only difference is the experimental platform. As for the complexity of this
layer, the number of entangling gates differs, depending on the conectivity we want
to implement.

Before we proceed to numerical simulations, we also need to decide which op-
timization algorithm we will use in order to find the parameters that minimize the
said cost function. We opt to go with the the Particle Swarm Optimization (PSO)
implemented by the PYSWARMS library [19]. This algorithm has been used for
similar simulations with very good results.

PSO is a gradient-free optimization method that imitates the social behaviour
of animals. Particles, where each one represents a possible solution, are scattered
around the search-space. Each particle moves around in the parameter-space search-
ing for an optima. The movement of each particle is affected by both it’s current
performance and the performance of the swarm. In our problem, each particle rep-
resents a point in the parameter-space of the quantum circuit. The performance of
the optimization is affected by the number of particles, as well as their position and
velocity. The value of these parameters are usually determined empirically. There
are three hyper-parameters controlling the swarm dynamics: a cognition coefficient
c1, a social coefficient c2 and an inertia coefficient w. After testing different values,
we conclude that setting c1 = c2 = 1 and w = 0.5 works well for our case. We also
set the number of particles to twice the number of the parameter’s of the circuit.
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Figure 4.13: Three different ansatz of the QCBM. On the left column we can see the
connectivity graph of each ansantz, while middle column and right column illustrate
the QCBMs with 2 and 4 layers, respectively.

For the QCBM, we will perform numerical simulation on a classical computer
for all three topologies, and for different number of layers. We then select the best
model and implement it on the IBM quantum device to see how the generator model
perform under a realistic setup. Note that the training process is done classically
and only the final optimized parameters are implemented on the real hardware.
The numerical simulations are done using Qiskit, which is an open-source software
development kit created by IBM [20]. It provides tools for creating and manipulat-
ing quantum programs and running them on prototype quantum devices on IBM
Quantum Experience or on simulators on a local computer.

As Particle Swarm Optimization (PSO) method is sensitive to the initial “seed”
values of the particles, so we simulate for many different random seeds and keep
the one with the best performance. In practise, we don’t know which seeds will
yield a good result, and thus, we need to try different seeds. This slightly increases
the computational cost, since we need to repeat the training process a few times.
The results from the PSO optimization as well as the distributions generated by the
circuits can be seen in Fig.(4.14) with the training cost history shown in Fig.(4.15).
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Figure 4.14: Distributions generated by the circuits. To create the distributions
each circuit was sampled 1000 using the Born rule. The target distribution is the
blue, while the measured distribution is the green.

Figure 4.15: The graph shows the minimization of the clipped negative log-likelihood
cost function for each circuit.

For the all-to-all connectivity, one rotation layer and one entangling layer suffice
in catching the patterns and correlations of the dataset. That’s not the case for
the star and chain connectivities though. Quantum circuits with star and chain
topologies demonstrate better accuracy with the addition of another pair layers, one
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rotational and one entangling. Yet it still seems that these connectivities are not
complex enough to represent the dataset. Regardless of the connectivity, we stack
alternative layers of arbitrary qubit rotations and entangling layers until the QCBM
can reproduce the target dataset adequately. For this work, we limit ourselves to
4 layers. Deeper circuits oftentimes come with an excess number of parametrized
quantum gates that enhance expressivity but can compromise trainability as well as
create a model that strongly overfits training data.

Execution on an IBM quantum processor on the cloud

At the moment, quantum computers are not yet commercial. A few prototypes are
being developed by some big companies, such are Google or IBM, and some elite
universities around the world,including the Centre for Quantum Technologies where
the author had a chance to spend a few weeks during the work on this thesis. IBM has
launched since 2016 an online platform, the IBM Quantum Experience, that allows
the public access to cloud-based quantum computing services. This includes access
to a set of IBM’s prototype quantum processors, six of which are freely available for
the public.

Figure 4.16: IBM’s quantum processors are made up of superconducting qubits,
located in dilution refrigerators at the IBM Research headquarters at the Thomas J.
Watson Research Center. At the left we can see the dilution refrigerator that cools
down qubits at below 15mK (milli-Kelvin). On the right we can see a quantum chip
with four superconducting qubits.

From the simulations we can clearly see that the circuit with the best recreation
of the Bars and Stripes distribution, is the circuit with the all-to-all qubit connectiv-
ity in the entangling layer. Shallow quantum circuits are generally more preferable
for NISQ quantum devices, as deeper circuits can significantly decrease the fidelity
of the quantum states due to quantum decoherence.

Fidelity, in quantum information theory, is a measure that quantifies how close
are two quantum states. Specifically, it describes the probability that one state will
pass a test to identify as the other. In quantum computation, we use fidelity to
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express the quality of states that a quantum gate generate. Unfortunately, even the
state of the art quantum gates do not have a fidelity of 1. Meaning that the more
gates we apply, the more decoherence we add to the system and we risk a complete
loss of information. Until fault-tolerant quantum computing is on our hands, one
should take into account the fidelity of the gates that a specific quantum computer
offers when designing the depth of the circuit.

Therefore, since longer circuits are subject to greater noise, we are focusing only
on the shallow circuits. If the performance of the shallow circuit turns out bad, we
can directly infer that the result for the longer circuit will also be bad. The ansatz
that we choose to implement on a real IBM quantum processor in the cloud is the
all-to-all topology, as it is the best performing among all three topologies. Note
though that we only implement the optimal parameters on the IBM’s device. The
training is done on a classical computer.

Nonetheless, before running the circuit on a real device there is a few things we
need to consider. First of all, some of the gates that we want to apply may not be
available at the quantum device. Meaning that the gate has to be decomposed to
a series of gates that would overall produce the the same effect. Secondly, we have
to convert one set of gate operations to another set of gate operations, since the
qubit connectivity, i.e. the geometry of the architecture, varies from one quantum
computer to the another.

Figure 4.17: IBMQ-Belem quantum processor. We can see the allowed qubit inter-
action connectivities along with the fidelity of gates and the readout errors of the
chip.

Fig.(4.17) shows the connectivity of the IBMQ-Belem device where the qubits
are not all-to-all connected. Implementing the all-to-all topology on this device will
therefore requires the utilization of lots of swap operators. Additionally, RXX gates
are not available and thus they are decomposed into a series of native gates of the
hardware, which as a result increases the depth of the circuit. The illustration in
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Fig.(4.18) bellow demonstrate the discrepancies between the theoretical model we
wanted to implement and the actual circuit on the quantum computer.

Figure 4.18: Comparison between the theoretical model and the one that is imple-
mented on the IBM quantum computer.

Figure 4.19: QCBM training results with PSO, with simulations (red) and IBM
superconducting quantum computer (green).

After executing the circuit on the quantum computer it is obvious that noise is
prevalent and messes with the results. The poor results compared to the simulation
can be attributed to various reasons. As we said simulated circuits may use gates
that are not native to the real device. Each of these gates are decomposed to a
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series of native gates that results to the increase of the circuit depth. The fidelity of
the gates is not perfect, and thus, for each gate the accuracy drops! In addition to
that, the theoretical model considers the quantum device a closed quantum system.
However, the existing quantum devices are susceptible to disturbance and noise from
their environment, which can lead to loss of information from a system into the
environment. This phenomenon is amplified by the fact that the equipment that
are used to control the qubits are imperfect, causing errors such as the initialization
error or the readout noise.

It is important to note that this noisy results are expected and shouldn’t be
discouraging us from continuing to work with NISQ. Working with a quantum com-
puter that allow us to implement the connectivity we need is essential to reducing
the errors and noise. Previous implementations of this problem in an ion trap quan-
tum computer has shown very promising results for the NISQ-era and the abilities
of variational models.

4.2.2 Analog Quantum Machine Learning

The random parametrized quantum circuits can express complex distributions that
are intractable by a classical computer. Although the digital quantum generative
models are performing well in the noiseless simulation, they under-performed in the
real hardware because of the noise that is prevalent in the NISQ devices. Adding
to that, should we want to increase the learning capabilities of a QCBM, we are
required to increase the number of layers of the quantum circuit. The Bars and
Stripes dataset is a simple dataset that needed only two layers. However, more
complex problems require a much larger number of gate operations, which exceeds
the capabilities of NISQ devices without error correction.

For the near-term quantum computing, an alternate and more ‘native’ approach
would be to built a scale model of the system in an analogue quantum simulator
Fig(4.20). The major advantage is that these analogue simulators can readily scale to
large system sizes, making them a natural frontier to search for a practical quantum
advantage. Analogue quantum simulators require less precise control and are more
easier to realize than the digital quantum computer. The model is built to simulate
the rules that describe physical microscopic quantum systems and thus we can tune
the physical control parameters, such as an electromagnetic field strength or a laser
pulse frequency, to simulate the system. The downside is that they are tailor made
to specific problems, i.e: non fully configurable like a digital quantum computer,
and therefore different quantum simulators need to be built for different problems.
There are various experimental platforms that can be used for analogue quantum
simulations, such as trapped atoms, superconducting circuits, photonic arrays and
spin systems. In this thesis we will utilize the Ising spin systems for our analogue
quantum neural network, as the topology we considered is native to the Ising model.
Also, we are considering the model to be a closed quantum system. When the system
is open then its means noises kick in. In principle open quantum systems can also
be used to do quantum simulation.
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Figure 4.20: Problems could be solved on a fault-tolerant digital quantum computer
or we can build a scale model of the problem in an analogue quantum simulator [21].

Evolution of closed quantum system

To understand how we can achieve calculations with such systems, we first need to
understand their behaviour. Similar to classical mechanics and the laws of motion,
quantum mechanics has equations that fully describe the evolution of a quantum
state in time. While this is not surprising, what may come as a surprise is the fact
that the evolution is deterministic. The basic postulation is that if we know the
quantum state at one time, we can calculate what the state will be in a later time.
But conversely to classical mechanics, knowing the quantum state does not imply
that we can predict the outcome of an experiment with certainty. So, it is not the
same as classical determinism.

The quantum counterpart of the classical laws of motion is the famous Schrödinger
equation, a linear partial differential equation that describes the behaviour and evo-
lution of an undisturbed quantum system. The most general form of the Schrödinger
equation is defined as,

iℏ
∂

∂t
|ψ(t)⟩ = Ĥ |ψ(t)⟩ . (4.9)

In this equation ℏ is a physical constant, called the Plank constant. In practise
it can be absorbed in the Ĥ when doing calculations and hence it’s exact value is
not important to us here. The operator Ĥ is a Hermitian operator called the Hamil-
tonian. The Hamiltonian describes the dynamics of the system as its eigenstates are
the possible energy states that the system can occupy. If we know the Hamiltonian,
the solution of the Schrödinger equation tells us how the state of an undisturbed
system evolves with time.

Yet, figuring out the Hamiltonian that completely describes a system is consid-
ered a very difficult problem in general. In this work we will confine ourselves in the
simple case of two-level spin systems. Spin systems as a two-level system has the
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advantage that are simple to explain and can be transformed and implemented on
other experimental apparatus that are based on two-level systems.

But before we say anything about spins, there are more things to unpack from
the Schrödinger equation. The notation |ψ(t)⟩, besides refering to the state |ψ⟩ at
time t, it also suggests that the state is changing over time. Hence, |ψ(t)⟩ can be
thought of as an expression of the system’s entire history. Solving the Schrödinger
equation will reveal to how two states of the the system, from different points in
time, are connected with each other. Without loss of generality, we can consider the
initial time as zero and the latter time as t. This yields,

|ψ(t)⟩ = e−i·Ĥ·t/ℏ · |ψ(0)⟩ = U(t) · |ψ(0)⟩ (4.10)

where U(t) is unitary operator known as the evolution operator. There is some-
thing important here to unpack. We defined the action of the quantum gates as
unitary operations. Now, quantum mechanics indicates that unitary operations are
just representations of the systems evolution in time under some specific dynamics.
Meaning that what we perceive as quantum gates on the algorithmic level, is just the
controlled evolution of the quantum system. Now we are in a position to compare
the analog approach with the circuit approach. The quantum circuit is as one big
parametrized unitary operation that is implemented on a higher level of the quantum
computer’s architecture, while the analog approach goes into the hardware and tries
to implement the same unitary by tuning directly the physical control parameters
of the system (Fig(4.21)).

Figure 4.21: General architecture of a quantum computer.
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Spin system - the simplest possible qubit

To understand which are the physical parameters of the system that we can adjust
to achieve learning we need to explain the basics of spin systems. Spin is an intrinsic
form of angular momentum that is carried by elementary particles. Electrons belong
in a class of elementary particles, called fermions, that have a spin of 1

2
. The spin

is commonly described as the electron spinning around its axis. It is symbolized
as S⃗ and is mathematically described as a vector with definite values. Quantum
mechanics states that the component of spin angular momentum of an electron
measured along any direction is,

S⃗ = ℏ s σ⃗ (4.11)

where σ⃗ = (σx, σy, σz) is the spin operator and s is the spin quantum number. The
electron as a fermion has a only two possible spin values, 1/2 and -1/2.

An electron in a magnetic field has a magnetic dipole moment, just like a rotating
electrically charged body in classical electrodynamics. The magnetic dipole moment
µ⃗ is proportional to its spin angular momentum S⃗,

µ⃗ = γS⃗ (4.12)

where γ is the gyromagnetic ratio of the electron.

Thus, the energy of the system, which is associated with the torque of the
magnetic dipole moment µ⃗ in a uniform magnetic field B⃗, is proportional to the dot
product of the spin and the magnetic field,

Ĥ = −µ⃗ · B⃗ = γS⃗ · B⃗ =
1

2
ℏ γ σ⃗ · B⃗. (4.13)

Concisely, the Hamiltonian for a spin in a magnetic field can be expressed as,

Ĥ = σ⃗ · ⃗̃B (4.14)

where
⃗̃
B = 1

2
ℏ γB⃗. Notice that the only thing that is not a constant is the amplitude

and the direction of the magnetic field B.

In the Ising model case, we have many spins that interact under an external
magnetic field. The spins are arranged in a graph, allowing each spin to interact
with its neighbors. The Ising model is the simpler interaction model we can explore
as the spins interact only on the z’z axis. For any interaction pair i, j, between two
spins in the graph, there is a coupling constant Jij that determines the strength of
the interaction. The energy of a given configuration is thus given by,

Ĥz′z =
n−1∑
i=1

(
n∑

j=i+1

Jij · σz
i ⊗ σz

j

)
(4.15)
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where n is the number of spins in the graph. The complete dynamics of the system
are described if we add in the factors that regard the interaction of each spin with
the external magnetic field B,

Ĥ =
n−1∑
k=1

σ⃗k ·
⃗̃
Bk +

n−1∑
i=1

(
n∑

j=i+1

Jij · σz
i ⊗ σz

j

)
(4.16)

Spin systems can be a good and simple implementation setup for quantum com-
putation. We can think of a qubit as an electron in a magnetic field. The electron’s
spin may be either in alignment with the field, which is known as a spin-up state
|0⟩, or opposite to the field, which is known as a spin-down state |1⟩. This mapping
between spins and qubits can be seen in the Fig.(4.22) below. The internal states
of an ion can be considered as a spin, and the same holds for the two circulating
states in a superconducting circuit. Similar quantum hardware implementation are
now in the forefront of technological developments. IBM, Google, Riggetti as well as
several leading labs in EU, China and US are using superconducting qubits, where
as ION Q, Inssbruck Austria, Honeywell and others are using ions. There are also
photonic efforts by several groups and recent multi million dollar funded spin offs
like PSI Q and Xanadu, where the photons play the role of the qubit.

Figure 4.22: A spin is a two-state (or two-level) quantum-mechanical system so it
can be utilized as a qubit.

Training and Numerical Simulations

Analog quantum systems can be used as an unsupervised generative model in the
Variational model framework. Similar to the quantum circuit approach, the infor-
mation is encoded to the amplitudes of the wavefunction and the statistics are then
extracted using the Born rule. The difference is that to match the system’s distribu-
tion to the target, we need to find the amplitudes and directions of all the magnetic
fields B, all the coupling constants J and the time t we need to let the system evolve.
Note that the Hamiltonian of the system in question is time-independent, and thus,
does not change while the system evolves in time.
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Figure 4.23: Generative modelling using an analog quantum system.

We choose the initial state to be |++++⟩, as we found empirically that it
yields better optimization than |0000⟩ or |1111⟩. Furthermore, we considered to
have our optimization process bounded. This approach has a few benefits. First of
all, bounding the optimization process will make it more stable as it will constrain the
PSO from doing large value “jumps” when searching the parameter space. Secondly,
by setting thresholds of [-50 MHz, 50 MHz] for J,B and evolution time up 300 ns,
we can later implement our system in real hardware. Previous experiments have
shown that these values can be applied on a real experimental setup [22]. In the
classical simulation, we adapted the re-scaled Hamiltonian H̄ = H/c and the re-
scaled time t̄ = ct, where c = 7 · 106. These re-scaled quantities will give us the

same unitary evolution, i.e: U = e
−iH̄t̄

ℏ = e
−i(H/c)·ct

ℏ = e
−iHt

ℏ , where H(B⃗, J⃗) is the

Ising Hamiltonian in Eqn.(4.16) while H( ⃗̄B, ⃗̄J) is the re-scaled Hamiltonian. This
was done so as to avoid numerical errors and to make the optimization less volatile
to small changes in the parameters.

The distribution generated by the Ising spin system can be seen in Fig.(4.24)
with the physical control parameters of the system shown in Fig.(4.25).
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Figure 4.24: On the left we can see how the cost function is minimized during
the optimization process. On the right we see the distributions generated by both
models after 100 iterations. Blue is the target distribution and red is the measured
distribution.

Figure 4.25: The all-to-all topology for Ising models and the corresponding trained
parameters for the generative modelling on the Bar and Stripes example. These
parameters are within the physically implementable range.

As we have seen from the results of the tests, the simulations of both models
are pretty good. This is to be expected as we implement the same model, that is
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described by the same dynamics, with the only difference being the level of implemen-
tation. The next step would be to implement the analog model on real experimental
platform and see how close to the simulations we can go as decoherence, noise and
calibration errors would take effect. The ultimate limit for analogue quantum sim-
ulation is set by the decoherence timescale, which provides an upper bound on the
timescale on which we can controllably observe coherent quantum dynamics.
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Conclusion and Future Work

The quantum computation revolution has already begun. What started as an brain-
child of the genius physicist Richard Feynman back in 1981, has now materializing
and open endless new possibilities that we can’t help but be excited about. In the
past decade, quantum algorithms such as Shor’s and HHL’s algorithms, with compu-
tational “advantange” compared to their classical counterparts have been proposed.
During the course of this thesis, we saw that quantum computers have, in theory, the
ability to tackle the same tasks as many classical algorithms, but with a significantly
less computational cost. This was the premise that ignited the interest on quantum
computers in the 21st century.

Realizing these quantum algorithms, however, requires fault-tolerant quantum
computers with millions of high quality qubits to implement error-correcting codes
that prevent errors to corrupt the results, ensuring the quantum computers can pro-
cess quantum information reliably and smoothly. Yet, the many engineering chal-
lenges of creating these fault-tolerant quantum computers still need to be tackled in
order to convert dreams into reality. What is available now is the Noisy-Intermediate
Scale-Quantum (NISQ) devices: the noisy version of quantum computers with up
to hundreds of qubits. Chapter 3 introduced a special hybrid quantum-classical
algorithm dedicated to the NISQ devices as this algorithm reduces the quantum
resources by passing some computational workload to classical computer. In this
work, we show the potential of using this hybrid quantum-classical algorithm to
solve some unsupervised machine learning problems.

Specifically, we compared the performance of digital and analog quantum neural
networks (QNN) approaches in solving an unsupervised machine learning task, i.e:
to learn the probability distribution of the Bars and Stripes dataset, and show that
the latter could potentially be better than the former. We numerically compared
the learning performance of the noiseless digital QNNs of different number of layers
for three different topology, i.e: star, chain and all-to-all and showed that the QNNs
with all-to-all connectivity have the best performance. We then implemented the
digital QNN with all-to-all ansatz on the real IBM quantum processor, but with a
small number of layers to reduce the circuit depth, yet the results produced from the
real hardware are very noisy even if we keep the circuit short. This is an expected
result because the circuit depth is increased by two reasons (1) decomposition of
the gates in our theoretical model into the hardware’s native gates (2) the qubits
on the quantum processors are not all-to-all connected so additional SWAP gates
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are implemented to swap the qubits. Nevertheless, it was an amazing experience to
have cloud access to a superconducting based quantum computer chip at 0.01 Kelvin
sitting somewhere in the US. Similarly, we trained the analog QNN - the analog
magnetic spin based approach - with all-to-all topology to learn the probability
distribution of the Bar and Stripes dataset where the training of this magnetic spin
based model could be done by adjusting the control parameters of the system. The
analog system has less control parameters and is easier to train at the near-term.
The ultimate quantitative limitation of the analog system is set by the calibration
accuracy of the model that is implemented.

As follow up works, we will use the analog QNN to learn some practical prob-
ability distribution instead of synthetic datasets like the Bars and Stripes dataset.
These probability distribution could be dataset from industry such as finance and
supply chain industry. On the other hand, we will also study more basic properties
of the model such as the expressibity and trainability, to understand the limitation
and capability of the model. While we focus on the spin model in this thesis, our
method could also be implemented on other quantum simulation platform such as
photonic systems that are currently being developed in several labs and companies
worldwide such as Xanadu, PsiQ and etc.
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Appendix A

Learning process of a neural
network

Once we have defined a design for the neural network, we can proceed to the training
process. Neural networks generally perform supervised learning tasks like classifi-
cation. In supervised learning the neural network is building knowledge from data
sets where the right answer is provided in advance. The idea is to find an algorithm
that compares the network output with the desired output and tune the weights and
biases accordingly. The adjustment of the network parameters aims to approximate
the correct output for all training samples. To measure the deviation from the target
output we define a cost function. In literature sometimes it is also referred to also as
a loss or objective function. One commonly used cost function is the Mean Squared
Error or MSE ,

C(w) =
1

2

〈∑
j

∥∥∥y(n)j − Fj(y
in)
∥∥∥2〉 =

〈
C(w, yin)

〉
(A.1)

where C(w, yin) is the cost for one particular input. It is important at this point to
keep track of the indices carefully.

Definition A.0.1.

ynj : Value of neuron j in layer n, y
(n)
j = F (z

(n)
j )

Fj(y
in) : Desired output of neuron j in output layer

z
(n)
j : Input value for ” y = f(z) ”

w
(n,n−1)
jk : Weight (neuron k in layer n-1 feeding into neuron j in layer n)

There are various cost functions that we could use but this quadratic function
is perfectly suited for understanding the basics of learning in neural networks. The
quadratic cost allow us monitor easily how small changes in the parameters affect
the cost. If we carefully inspect the definition of the MSE we can see that the cost
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is equal to 0 when the output of the network matches the desired output. Thus, the
aim of the training should be to minimize the cost function. Simply put, training is
the process of finding a set of weights and biases which make the cost as small as
possible. Typically, a method called Gradient Descend is used to minimize the cost
function.

The idea behind this method is intuitive. Think of the cost function as a valley
with slopes. Suppose there is a hiker that slowly make his way down the slope trying
to reach the bottom of the valley. The derivatives of the cost function would tell us
everything we need to know about the local “shape” of the valley, and hence how
the hiker should move.

In a mathematical context, the gradient vector ∇f , is a vector that points in
the direction of the steepest ascent of a function. We start at a random initial point
in the function and calculate the negative gradient of the cost function w.r.t. the
model parameters, since we want to move towards the minimum error. We move
towards the minimum by a small step (negative gradient),

(x, y)k+1 = (x, y)k − ρ∇f(x, y)k (A.2)

where (x, y)k and (x, y)k+1 are the coordinate points on the function at a time k and
k + 1 respectively. The step we take in the direction of the minimum is denoted as
ρ and in literature is called learning step. Usually we choose a small learning step
to ensure convergence to at least a local minimum. This process is repeated, over
and over, until we hopefully reach a global minimum.

However, Gradient Descent can be computationally expensive for large training
sets because it goes through all the training set to do a single update on a parameter.
Alternatively, we use a method called Stochastic Gradient Descent (SGD). Stochastic
gradient descent calculates an approximate value of the cost function by averaging
over only a few samples. But how can we apply stochastic gradient descent to learn
in a neural network?

For each step evaluate a few samples and update the weights and biases according
to,

wj −→ wj − ρ · ∂C̃(w)
∂wj

(A.3)

bj −→ bj − ρ · ∂C̃(w)
∂bj

(A.4)

where C̃(w) is the approximate version of C(w).

Specifically, the learning rule of a neuron or a single-layer neural network is
called a Delta Rule. Updating the weights and biases that lead to the output neuron
layer is simple. The gradient of the cost function with respect to a weight (or bias)
of an output neuron layer w∗, is,
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∂C̃(w)

∂w∗
=

∂

∂w∗

(
1

b

∑
b

C(w, yin)

)
(A.5)

where b is the batch size of the samples that we use to approximate the cost function.
This yields,

∂C̃(w)

∂w∗
=

1

b

∑
b

(
y
(n)
j − Fj(y

in)
)
·
∂y

(n)
j

∂z
(n)
j

·
∂z

(n)
j

∂w∗
. (A.6)

Here y=f(z) is the sigmoid activation function, that we defined in equation (2.2).
Thus, the gradient that we are looking for is,

∂C̃(w)

∂w∗
=

1

b

∑
b

(
y
(n)
j − Fj(y

in)
)
· f ′(z

(n)
j )︸ ︷︷ ︸

∆j

·
∂z

(n)
j

∂w∗
. (A.7)

The ∆j is the same for all weights and biases in the output layer. The only things
that changes is the partial derivative of w∗. If w∗ was really a weight then we get,

∂z
(n)
j

∂w
(n,n−1)
jk

= y
(n−1)
k . (A.8)

While if w∗ was really a bias we get,

∂z
(n)
j

∂b
(n)
j

= 1. (A.9)

Unfortunately, things are more complicated for parameters that are further back
in the network. To update a weight (or bias) that is not on the output layer is not
obvious, since we can’t directly measure the impact this parameter has on the output.
The trick here is to propagate the error backwards through the network. This is
called backpropagation.

The derivative with respect to some parameter, somewhere in the network, for
a specific input is,

∂C(w, yin)

∂w∗
=
∑
j

(
y
(n)
j − Fj(y

in)
)
· f ′
(
z
(n)
j

)
︸ ︷︷ ︸

∆j

·
∂z

(n)
j

∂w∗
(A.10)

where,

∂z
(n)
j

∂w∗
=
∑
k

∂z
(n)
j

∂y
(n−1)
k

· ∂y
(n−1)
k

∂z
(n−1)
k

· ∂z
(n−1)
k

∂w∗
(A.11)

=
∑
k

w
(n,n−1)
jk · f ′

(
z
(n−1)
k

)
· ∂z

(n−1)
k

∂w∗
. (A.12)
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This is because we know that the input to a neuron is the weighted sum of it’s
input signals,

z
(n)
j =

∑
k

y
(n−1)
k · w(n,n−1)

jk . (A.13)

We apply this chain rule repeatedly until we reach w∗. If, we look closely, we can
see that the derivative of z

(n)
j with respect to w∗ has two indices. The left index j is a

free index, while k is being summed over. This means that we have a matrix-vector
multiplication. Meaning that each pair of layers (n,n-1) contributes multiplication
with the following matrix,

M
(n,n−1)
jk = w

(n,n−1)
jk · f ′

(
z
(n−1)
k

)
. (A.14)

Hence, we have a repeated matrix multiplication, going down the network,

∂z
(n)
j

∂w∗
=

∑
k,l,...,u,v

M
(n,n−1)
jk ·M (n−1,n−2)

kl · · ·M (ñ,ñ−1)
uv · ∂z

(ñ)
u

∂w∗
. (A.15)

This repeated procedure stops when we finally encounter the parameter with
respect to which we wanted to calculate the derivative of the cost function.
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Appendix B

Code

B.1 Code used for the RBM
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Figure B.1: Positive phase of the Contrastive Divergence algorithm.

Figure B.2: Negative phase of the Contrastive Divergence algorithm.
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Figure B.3: Preparing the MNIST dataset.
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Figure B.4: Defining the model hyperparameters.

B.2 Code used for the QCBM
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B.3 Code used for Analog simulation

87



88



89



Figure B.5: The parameters implemented in the classical simulation for analog gen-
erative modelling. In the classical simulation, we adapted the re-scaled Hamiltonian
H̄ = H/c and the re-scaled time t̄ = ct, where c = 7 · 106. These re-scaled quan-

tities will give us the same unitary evolution, i.e: U = e
−iH̄t̄

ℏ = e
−i(H/c)·ct

ℏ = e
−iHt

ℏ ,

where H(B⃗, J⃗) is the Ising Hamiltonian in Eqn.(4.16) while H( ⃗̄B, ⃗̄J) is the re-scaled
Hamiltonian.
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