
Enhancing data security in the
Internet of Things with blockchain

Anastasios Pateritsas

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING
TECHNICAL UNIVERSITY OF CRETE

A thesis submitted in fulfillment of the requirements for the degree of Diploma in
Electrical and Computer Engineering.

Supervisor: Euripides G.M. Petrakis, Professor
Samoladas Vasileios, Associate Professor

Ioannidis Sotirios, Associate Professor
October 2022, Chania

1

Αbstract

The Web of Things (WoT) initiative aims at unifying the world of
interconnected devices over the Internet. With the significant increase of
IoT, there is a great need for easy, fast, and secure access to data that can be
exploited and o�er useful information to users with the responsibility or
authority to handle this data. However, current blockchain-backed IoT
systems use the blockchain to store access control policies for sensor data
stored in a database. In this Thesis, we propose iBot, a blockchain
architecture that validates and verify the identity of IoT devices, data, and
applications. The di�erence with current blockchain-backed IoT systems is
that the iBot creates a safe environment to develop applications based on
data produced by IoT devices. We use blockchain technology to protect the
data of the devices, users, and services from unauthorized access. We use
Decentralized Identifiers (DID) and Verifiable Credentials (VC) that W3C
proposes for User/IoT Authorization & Authentication to achieve this. The
architecture encompasses di�erent functionalities to serve a 3-tier
architecture model, each serving di�erent functionality for di�erent types
of users (Infrastructure Owners – System Administrators, Application
Developers, Customers). It supports storage for subscriptions to sensors
and their data for real-time updates, and with the help of the blockchain,
there is a reliable recording of the use of the system by each user. iBot uses
the Hyperledger Fabric framework as the blockchain back-end and also
extends the idea that devices have OpenAPI descriptions, adding to the
description and the smart contract definition to protect the device's data.
The experiments show that the architecture can cope with a large workload
in real time without losing information.

2

Contents

Αbstract 2

Contents 3

1 Introduction 5
1.1 Background and Motivation 5
1.2 Problem Definition 6
1.3 Proposed Solution 6
1.4 Contribution Work 8
1.5 Thesis Outline 9

2. Background and Related Work 10
2.1 Service-Oriented Architecture (SOA) 10

2.1.1 REST-Based services 10
2.2 RabbitMQ 11
2.3 Blockchain 12
2.4 Smart Contract 13
2.5 HyperLedger Fabric 14
2.6 Decentralized identifier 15
2.7 Verifiable Credentials 15
2.8 Web Of Things Service 17

2.8.1 OpenAPI Generator 18
2.9 Related Works 18

2.9.1 Blockchain for Large-Scale Internet of Things Data Storage and
Protection 18
2.9.2 Towards Secure and Decentralized Sharing of IoT Data 19
2.9.3 A Permissioned Blockchain based Access Control System for IOT 20
2.9.4 IoTeX 21

3. System Requirements and Design 21
3.1 Use cases 21
3.2 Functional and non-functional system requirements 23

3.2.1 Functional system requirements 24
3.2.2 Non-functional system requirements 28

3.3 Use Case Diagrams 29
3.4 Activity Diagrams 32
3.5 Architecture Diagram 37

3.5.1 Blockchain and smart contracts 39

3

3.5.2 Application Logic service 41
3.5.3 WoT proxy & OpenAPI Generator 42

3.5.3.1 WoT proxy 42
3.5.3.2 OpenAPI Generator 42

3.5.4 Publish Subscribe Service 43
3.5.5 Aggregate Data Service 43
3.5.6 Location Service 44
3.5.7 Security Services 44

3.5.7.1 Auth service 44
3.5.7.2 Policy Enforcement Point (PEP) 46
3.5.7.3 Smart Contract Security 48

3.5.8 Queues 49

4. System Implementation 50
4.1 Ιmplementation of Services in the Cloud Computing 51

4.1.1 Wallet 51
4.1.2 Auth Service 52
4.1.3 Guard NestJS 57
4.1.4 Αpplication Logic 58
4.1.5 Aggregated data service 58
4.1.6 Location Service 59
4.1.7 Queues 60
4.1.8 Publish Subscribe Service 62
4.1.9 Gateway 63
4.1.10 WoT Proxy 64
4.1.11 OpenAPI Generator 65

4.2 Implementation of Blockchain 68
4.3 Implementation Of Smart Contracts 73

4.3.1 Smart Contracts for IoT security 74
4.3.2 Smart Contracts for Data storage 75
4.3.3 Smart Contract for Decentralized Identifiers 80

5. Backend Analysis & Comparisons with related works 81
5.1 Backed Analysis 81
5.2 Comparisons with related works 87

6. Conclusion and Future Work 90
6.1 Conclusion 90
6.2 Future Work 92

7. Bibliography 94

4

1 Introduction
1.1 Background and Motivation
The need to create "Internet of Things" (IoT) applications to control the
operation of an ecosystem (such as a city, a factory, or a house) or to
monitor geo-environmental phenomena is perceived in many areas of
everyday life. In the health sector, where people with compromised health
need to check parameters such as humidity or pollen level of an area before
visiting it. In a smart city, the information on the levels of temperature,
noise pollution, tra�c on the streets, exhaust gases, etc., gives a helpful
picture of the living conditions in the broader area. From the above
assumptions and the significant increase of IoT, there is a need for easy,
fast, and secure access to data that can be exploited and o�er helpful
information to users with the responsibility or authority to handle this data.
There is a need to provide users with validated information securely.

Blockchain technology has shown to be a promising solution in many
distributed applications where trust is a critical factor. As a result, the
research community and the industry can research and implement solutions
combining IoT and blockchain. Blockchain technology can provide a more
advanced security environment [5], [6] than central database security. In
blockchain technology, each block in the chain constantly tracks the list of
records linked to previous blocks using the cryptographic hash function. It
is also a distributed logbook that records transactions and can prevent
distortions. The majority of these proposals [3],[8],[9],[10] follow a hybrid
approach where a storage system (e.g., a cloud provider) hosts the data
itself, and blockchain o�ers services to ensure, e.g., trust distribution and
integrity. So these proposals use blockchain as a "middleware" that checks
for unauthorized or malicious actions.

5

1.2 Problem Definition
There are many approaches to designing IoT systems either using
blockchain or the traditional way. Approaches as the iXen[1] and iSWoT
thesis, which support Semantic Web functionality in a Cloud Computing
environment. iSWoT is an architecture for the automated connection of
devices in the Web of Things1 and data processing in a semantic framework.
iXen is an approach to facilitate the creation of applications based on the
devices and their data sent to the system. Accordingly, technologies such as
Sash[3] or IoTeX2 use blockchain technology to ensure the access and
security of the data transmitted by Things. Νo architecture so far combines
both elements. It is important that, the architecture should provide data
security. Also, it should provide an approach to create applications based on
the devices and their data easily. The blockchain technology, smart
contracts, Verifiable Credentials3, Decentralized Identifiers4, and OpenAPI5

specification are combined technologies that contribute to achieving one of
the above goals. With blockchain and smart contracts, we achieve device
data security and validity(data generated from reliable sources). At the same
time, Verifiable Credentials and Decentralized Identifiers are used to o�er
protection of the identities and credentials of the system's actors so that
proper authorization for users to view or handle IoT information is granted.
Finally, using OpenAPI to describe the devices achieves a general way in
which system users will interact with the devices.

1.3 Proposed Solution
iBot is an Internet of Things (IoT) platform in cloud computing and
blockchain. The platform can manage an extensive collection of sensors of
various models placed in di�erent locations serving di�erent applications
or user needs. The set of sensors can produce a vast range of measurements
(data) sent to the blockchain. Using the blockchain, we manage to safely
store such a large volume of data without worrying about any losses, as long
as the data is stored distributed without a single point of failure. Like other

5 https://swagger.io/specification/
4 https://www.w3.org/TR/did-core/
3 https://www.w3.org/TR/vc-data-model/
2 https://iotex.io/
1 https://www.w3.org/WoT/

6

systems [3],[10], smart contracts, as part of the blockchain, can o�er a
series of "rules" that must satisfy the data sent to the system. With this
addition, our system becomes safe from incorrect measurements or
malicious actions from the devices that are connected to the system.

Interestingly, while the system consists of many sensors of di�erent
specifications, our architecture treats all the devices as if they were services
described by OpenAPI. Devices become part of the Web so that they can be
discovered and reused by di�erent types of users. OpenAPI provides a
method for documenting RESTful services so that a user or another service
can understand their purpose and reuse them in applications. Along with
creating a proxy in the cloud, we can have a virtual image of each Thing as
[2] proposed.

We use the DID to declare the existence of an entity(user/IoT/application) in
the system for authentication and VC to declare the entity type (user,
developer, IoT,..) for authorization. These Credentials are stored in the user
locally and not in a database that has gathered all the user's data. Also, the
credentials contain the DIDs authorized to access (update/delete) the
credentials. The Decentralized Identifier and Verifiable Credentials are W3C
proposal. Decentralized identifiers (DIDs) are new identifier that enables
verifiable, decentralized digital identity. Verifiable credentials (VCs) are an
open standard for digital credentials. They can represent information found
in physical credentials, such as a passport or license, and new things with
no physical equivalent, such as bank account ownership. A traditional
identification method is not used in this work, where the users and their
details are stored and exposed in a database. The blockchain allowed us to
use the Decentralized Identifier(DID) and Verifiable Credentials(VC), with
the result that the user is the owner of his credentials. Using these
Credentials, he can only connect to the system and gain access to services he
is authorized to do based on his role in the system.

Finally, it is worth noting that the system's actors are considered to be all
the participants, such as ordinary users, device owners, programmers, and
the devices themselves with the applications that use them. A business
model can be based on this as long as the blockchain records all the use of
transactions between users and devices or between applications and
devices.

7

1.4 Contribution Work
iBot aims not to compete with any commercial application but to show that
it is possible, using existing technological solutions and open-source tools,
and build a user and data-safe environment (platform) that facilitates the
creation of applications.

The main contributions of this work are the following:

● A key feature of the iBot is the Service Oriented Architecture (see
section 2.1). Each system function is an independent service that
communicates with the others through RESTful interfaces.

● The architecture design follows the "secure by design" tactic,
ensuring the protection of system services in the computing cloud.
This way, the REST interfaces of the services are only accessible by the
system and authorized users. To achieve this, iBot proposes a
decentralized approach for identification and authorization for
system users, devices, or applications interacting with the system and
sensors. The decentralized approach uses the Decentralized
Identifiers and Verifiable Credentials proposed by the W3C.

● It uses an implementation of a Web Thing Proxy [2] service that
exposes Things on the Web and implements all the model's
operations on Things using HTTP6.

● It proposes the usage of blockchain as a more secure data storage
method of the characteristics that record all the operations that take
place around the data and the users. Additionally, as a distributed
system, blockchain provides high data availability. iBot stores almost
all data (device data, user identifier, subscriptions, transactions,
device descriptions) on the blockchain, so we have multiple instances
of these data in di�erent nodes (no single point of failure).

● With smart contracts, we automated operations such as the check for
a device property’s value whet it sends to blockchain.

● It demonstrates how OpenAPI can be applied to describe Things and
their functionality without ambiguities. But it can also be extended
and describe which smart contract is the one that controls the
information sent by a Thing.

● The architecture supports subscriptions to sensor devices that
produce data. By creating subscriptions to sensors, applications can
be developed that use real-time data from the devices.

6 https://developer.mozilla.org/en-US/docs/Web/HTTP

8

● It demonstrates how blockchain can easily integrate a business model
by assigning di�erent roles with rights to each user of the system
according to their status. Along with recording each user's use of the
system, there may be some charge or payment.

1.5 Thesis Outline
Chapter 2 presents the technologies used in the work, but also related work
that unites Blockchain with IoT Devices. Section 3 analyzes the system
design requirements and sets out the functional and non-functional
specifications with UML diagrams. In addition, the system's architecture is
presented, and its components are analyzed. Chapter 4 presents the
technical solution of the architecture proposed in chapter 3. Explains how
we manage blockchain technology for storing IoT devices and their
information, but also how the OpenAPI descriptions of the devices helped us
in this work. Chapter 5 presents experiments performed on the system
based on realistic conditions. The experiments were performed to see how
the system reacts in a realistic environment with many devices. Finally, in
chapter 6, we discuss the conclusions and issues for future work.

2. Background and Related Work

2.1 Service-Oriented Architecture (SOA)
Service Oriented Architecture (SOA) is a service-based architecture model
where a service is a well-defined and self-contained functionality. A service
does not need to know the technical details of another service it interacts
with. This facilitation of communication is achieved through the
implementation of a tightly defined interface, which can perform the
necessary actions to allow data transmission between services. In Service
Oriented Architecture, an application is built by assembling small,

9

self-contained functional units. Therefore, developers can reuse services in
multiple applications regardless of their interactions with other services.
Since a service is an independent entity, it can easily be updated or
maintained without considering other services. Finally, Multiple instances
of a single service can run concurrently on di�erent servers. As a result, it
increases the scalability and availability of the service.

2.1.1 REST-Based services
The Representational State Transfer (REST) architectural standard,
leveraging its significant properties (performance, scalability, and
modifiability), o�ers Web Services the ability to function optimally on the
World Wide Web. Data and functionality are considered resources based on
the REST standard, and access to them is performed through a strictly
defined familiar interface based on standard HTTP methods. In particular,
each resource is accessible through a Uniform Resource Identifier (URI), i.e.,
a hyperlink on the Internet. Also, each resource consists of identity and a
data type and supports a set of actions. The identity of the resource is the
URI as mentioned above, and the standard HTTP methods implement the
actions: retrieve/read (GET), create (POST), update (PUT), and delete
(DELETE). The GET operation retrieves the current state of a resource
(using some representation), the POST operation creates a new resource,
and the PUT operation updates the current state of the resource. Finally, the
DELETE function deletes a specific resource. To indicate the success or
failure of the operation, the HTTP status code is used, where each code has
its interpretation.

2.2 RabbitMQ
With tens of thousands of users, RabbitMQ7 is one of the most popular
open-source message brokers. From T-Mobile to Runtastic, RabbitMQ is
used worldwide at small startups and large enterprises.

It originally implemented the Advanced Message Queuing Protocol (AMQP:
an application layer protocol specification for asynchronous messaging)
and has since been extended with a plug-in architecture to support
Streaming Text Oriented Messaging Protocol (STOMP), MQ Telemetry
Transport (MQTT), and other protocols.

7 https://www.rabbitmq.com/

10

Written in Erlang, the RabbitMQ server is built on the Open Telecom
Platform framework for clustering and failover. Client libraries to interface
with the broker are available for all major programming languages. The
source code is released under the Mozilla Public License.

Basic concepts of RabbitMQ:
● Producer: A producer is the one who sends messages to a queue based

on the queue name.
● Queue: A Queue is a sequential data structure that is a medium

through which messages are transferred and stored.
● Consumer: A consumer is the one who subscribes to and receives

messages from the broker and uses that message for other defined
operations.

● Exchange: An exchange is an entry point for the broker because it
takes messages from a publisher and routes those messages to the
appropriate queue.

● Broker: It is a message broker which provides storage for data
produced. The data is meant to be consumed or received by another
application that connects to the broker with the given parameters or
connection strings.

iBot, as an IoT system, has a lot of data that should manage. That is why the
RabbitMQ queues need to ensure that any information will be lost.
A RabbitMQ Messaging Queue has the below flow:

● The producer first publishes a message to an exchange with a
specified type.

● Once the exchange receives the message, it is responsible for routing
the message. The exchange routes the messages taking into
consideration other parameters such as exchange type, routing key,
etc.

● Now bindings are created from exchange to the RabbitMQ Queues.
Each Queue has a name that helps to separate the two. Then the
exchange routes the message into Queues based on the attributes of
the message.

● Once the messages are enqueued in the Queue, it remains there until
they are handled by a consumer.

● The consumer then handles the message from the RabbitMQ Queue.

11

2.3 Blockchain
Blockchain8 technology is the concept or protocol behind the running of the
blockchain. Blockchain technology makes cryptocurrencies (digital
currencies secured by cryptography) like Bitcoin9 work just like the internet
makes email possible.

The blockchain is an immutable (unchangeable, meaning a transaction or
file cannot be changed) distributed digital ledger (digital record of
transactions or data stored in multiple places on a computer network) with
many use cases beyond cryptocurrencies. Immutable and distributed are
two fundamental blockchain properties. The immutability of the ledger
means you can always trust it to be accurate. Being distributed protects the
blockchain from network attacks. Blockchain as distributed digital ledger
consists of multiple nodes (peer-to-peer network), each of which has a
copy from the ledger. Each transaction or record on the ledger is stored in a
“block.” For example, blocks on the Bitcoin blockchain consist of an
average of more than 500 Bitcoin transactions. The information contained
in a block is dependent on and linked to the information in a previous block
and, over time, forms a chain of transactions. Hence the word blockchain.

There are two types of blockchains. The first types are Public Blockchains
like Bitcoin or Ethereum10, which are open and accessible to anyone to
request or validate a transaction (check for accuracy). Those (miners) who
validate transactions receive rewards. The Private Blockchains, which are
not open, have access restrictions. People who want to join require
permission from the system administrator. For example, Hyperledger11 is a
private, permissioned blockchain.

To continue, it is important to mention the uses of Blockchains in this
work. iBot uses the blockchain to store all the data that it needs. The
advantages of storing the data in blockchain are:

● Protects the data from attacks because blockchain is distributed (all
nodes have a copy of the blockchain).

● The immutability of the ledger adds validity to data.

11 https://www.hyperledger.org/use/fabric
10 https://ethereum.org/en/
9 https://bitcoin.org/el/
8 https://www.blockchain.com/

12

2.4 Smart Contract
Smart contracts12 are programs stored on a blockchain that run when
predetermined conditions are met. They are typically used to automate the
execution of an agreement so that all participants can be immediately sure
of the outcome without any intermediary’s involvement or time loss. They
can also automate a workflow, triggering the following action when
conditions are met.

Smart contracts permit trusted transactions and agreements to be carried
out among disparate, anonymous parties without the need for a central
authority, legal system, or external enforcement mechanism.

Once a smart contract has been added to the blockchain, it generally can’t be
reversed or changed (although there are some exceptions).

Each node stores a copy of all existing smart contracts and their current
state alongside the blockchain and transaction data.

Through smart contracts, we can set “rules” that implement the business
logic and functional requirements of the system (if “x” occurs, then execute
step “y”). For example, we can deploy a smart contract that has functions
that implement steps when a device sends an update for its property. The
smart contract should have functions that check if the property update is
valid (the value is between a range of values). For a temperature sensor, the
steps will be

step 1: if a temperature update.

step 2: then checks if the temperature is between -10 and 50.

step 3: if it is ok, then store it in the blockchain else, abort.

We can deploy smart contracts to securely update or retrieve any data stored
in the blockchain. In public blockchains, anyone can deploy or execute a
smart contract, but in a private blockchain administrator of the blockchain
decides who can deploy or execute a smart contract.

2.5 HyperLedger Fabric
Hyperledger Fabric is an open-source, private blockchain framework
started in 2015 by The Linux Foundation. Fabric blockchains are private,
meaning all participating members' identities are known and authenticated
from administrator. This benefit is functional in healthcare, supply chain,
banking, and insurance industries, where blockchain cannot expose data to

12 https://www.ibm.com/topics/smart-contracts

13

unknown entities. Also, this is a benefit for IoT architecture because this
kind of architecture wants to share the devices' data with authorized users.
The works [9], [3] have use the Hyperledger Fabric for them IoT
architectures.
A Hyperledger Fabric has two types of nodes in the blockchain, the peers
and the orderers:
Orderers

● A node cluster that sorts transactions within the block in a
first-come, first-serve manner. The Orderer recieves
transactions from peers, build the block and after that send the
block to peers to update the blockchain.

Peers
● Are the nodes that has stored the blockchain
● Are responsible for executing the code(smart contracts) and its

life cycle.

Figure 2.1: Example of a Hyperledger network with 4 peers and 1 orderer.
In Hyperledger Fabric, a ledger consists of two distinct, though related,
parts a world state and a blockchain (Figure 2.1).
World State
The world state is a database that holds the current values of a set of ledger
states (e.g. the current value from sensors or any other info that stores in
blockchain). The stored data (value) and the information for identifying the
data (key) are stored as a pair (key-value store or KVS). The state status is
maintained only by peers, and smart contracts can only update the stored
data.
Blockchain
Blockchain provides a verifiable history of all valid and invalid transactions
and successful and unsuccessful status changes. Ordering service

14

manufactures blockchain as a perfectly ordered chain of blocks. Each peer is
responsible for maintaining its ledger and allowing them to repeat the
history of all transactions and reconstruct the current state of the
blockchain.

Figure 2.2: Example of a ledger that is stored on a peer.
Finally, the Fabric supports smart contracts that a developer can create
using Go, Java, and Node.js.

2.6 Decentralized identifier
Decentralized identifier or DIDs are a type of identifier that enables a
verifiable, decentralized digital identity. They are based on the
self-sovereign identity13 paradigm. A DID identifies any subject (e.g., a
person, organization, thing, data model, abstract entity, etc.) that the
controller of the DID decides that it identifies. DIDs are URIs that associate a
DID subject with a DID document allowing trustable interactions associated
with that subject.

A DID:

● Is a globally unique identifier made up of a string of letters and
numbers

13 https://en.wikipedia.org/wiki/Self-sovereign_identity

15

● Is created and owned by the user
● Comes with a private key and a public key that are also made up of a

long string of letters and numbers

Each DID document can express cryptographic material, verification
methods, or service endpoints, which provide a set of mechanisms enabling
a DID controller to prove the ownership of the DID.

In iBot, a user, device, or application has a DID, a private, and a public key.
The DID and public key are stored in the blockchain, an immutable database.
Anyone who wants to verify or authenticate the DID can check the
blockchain to see if the corresponding DID exist. Section 3.5.7.1 and Figures
3.10 and 3.11 explain how we use the DID, public, and private keys for
user/device/application authentication.

2.7 Verifiable Credentials
Credentials are a part of our daily lives; driver's licenses are used to assert
that we are capable of operating a motor vehicle, university degrees can be
used to assert our level of education, and government-issued passports
enable us to travel between countries. These credentials benefit us when
used in the physical world, but their use on the Web remains elusive.
A verifiable credential can represent the same information that a physical
credential represents. The addition of technologies, such as digital
signatures, makes verifiable credentials more tamper-evident and
trustworthy than their physical counterparts.
Holders of verifiable credentials can share them with verifiers to prove they
possess verifiable credentials with specific characteristics.

A role is an abstraction that might be implemented in many di�erent ways.
The following roles are introduced in this specification:

● holder
● A role an entity might perform by possessing one or more

verifiable credentials and share them. Example holders include
students, employees, and customers.

● issuer
● A role an entity performs by asserting claims about one or more

subjects, creating a verifiable credential from these claims, and
transmitting the verifiable credential to a holder. Example
issuers include corporations, non-profit organizations, trade
associations, governments, and individuals.

● subject

16

● A subject is an entity about which claims are made. Example
subjects include human beings, animals, and things. In many
cases, the holder of a verifiable credential is the subject, but in
some instances, it is not. For example, a parent (the holder)
might hold the verifiable credentials of a child (the subject), or a
pet owner (the holder) might have the verifiable credentials of
their pet (the subject).

● verifier
● A role an entity performs by receiving one or more verifiable

credentials, optionally inside a verifiable presentation, for
processing. Example verifiers include employers, security
personnel, and websites.

A verifiable credential is a set of tamper-evident claims and metadata that
cryptographically prove who issued it and who is the holder. A credential is a
set of one or more claims made by the same entity. Credentials might also
include an identifier and metadata to describe properties of the credential,
such as the issuer, the expiry date and time, a representative image, a public
key to use for verification purposes, the revocation mechanism, and so on.
The issuer might sign the metadata.

In the Verifiable Credentials ecosystem, the issuer and holder are required
to use Decentralized Identifiers, or DIDs. The public key associated with the
DID of the organization (which can also be a user or web service) that issued
the credential is stored on the blockchain. So when someone wants to verify
the authenticity of the credential, she/he can check the blockchain to see
who issued it without having to contact the issuing party.

In our case, a holder is a user/device/application, and the issuer is the
service that gives access to the user/device/application to log in to the
system. In iBot, the verifiable credentials contain the role of a party of the
system (any user, device, or application), so through VCs, the party can
claim the role without storing it in any database. The Verifiable Credentials
that contain personal details are securely stored on a decentralized digital
wallet app(a personal place of storage).

2.8 Web Of Things Service
The WoT Service is an e�ort made within the framework of the laboratory. It
is a proxy that exposes Things on the Web. This proxy deploys on a server
(or a gateway) that keeps a virtual image of each Thing (e.g., a JSON
representation). Also, it implements a directory (e.g. a database) with all
Things descriptions. With this proxy, the Things become part of the Web,

17

which can be discovered and reused. The REST API (i.e., endpoints,
payloads, etc) is proposed in the Web Thing Model submission. It adopts the
OpenAPI Specification as the main description language for devices and
their exposed services. This is a novel implementation based on the WoT
Architecture of W3C and builds on the REST API proposed by the Web Thing
Model of W3C; it implements all the model's operations on Things using
HTTP. The OpenAPI service description framework to Web objects (i.e.,
Things) uses a common description template. As a result, OpenAPI
descriptions of Web Things provide complete documentation of the services
exposed by Things and of their capabilities.

2.8.1 OpenAPI Generator
In creating the Web Of Things Service, a mechanism was also created that
produces the OpenAPI descriptions. A user aware of the device
characteristics can provide all the necessary information for the device and
its functionality, including the endpoints, HTTP methods, and data schemas
(e.g., request body and response body schemas) required for the service
operations, etc. Therefore, all this information can be included in the
OpenAPI definition of the Thing, enriched with semantic annotations that
further describe concepts such as sensor, actuator, temperature, etc. Also,
the mechanism is a RESTful API service that the user sends the input
described above.

2.9 Related Works

2.9.1 Blockchain for Large-Scale Internet of Things Data
Storage and Protection
The “Blockchain for Large-Scale Internet of Things Data Storage and
Protection” [10] is a work that mitigates the problems that have traditional
cloud-based IoT structures. These structures impose extremely high
computation and storage demands on the cloud servers, so the strong
dependencies on the centralized servers bring significant trust issues. The
paper proposes a distributed data storage scheme employing blockchain and
certificate-less cryptography. The scheme eliminates the centralized server
and uses Distributed Hash Tables[11] to store the IoT data. The pointer to
the DHT storage address can be stored in the blockchain. In the blockchain,
a group of users, also known as miners, work cooperatively to create blocks
as a public ledger that validate and record transactions. Also, when an
external user/entity requests data from the DHT, the blockchain decides

18

whether the access can be given or not, i.e., the authentication of the
requester is handled by the blockchain instead of a trusted centralized
server. Furthermore, the blockchain can record activities like accessing and
modifying IoT data.

2.9.2 Towards Secure and Decentralized Sharing of IoT Data
The “Towards Secure and Decentralized Sharing of IoT Data” [3] is a work
that proposes a framework named Sash. The Sash uses the FIWARE open
source IoT platform and the Hyperledger Fabric framework as the
blockchain back-end. The blockchain stores access control policies in Sash
and takes access control decisions. The framework stores IoT data o�-chain
but o�oad the access control functionality to the blockchain—currently
handled by a centralized entity such as the IoT broker. Data owners push
their data to the o�-chain storage and advertise it to the smart contract
through an “o�er,” so the Sash creates a data marketplace. The Sash stores
in the blockchain the following data types:

● Users
● Have two types (Data owners, Data Consumers)

● The o�ers from IoT Owners
● The Metadata

● Each MetaData item has a unique fileID, owner information,
storage location, and white-list type ACL(the list that has
access to this certain data)

● Transactions
Furthermore, the framework named Sash has two data-sharing schemes:
ACLs-based and prefix encryption-based.

Figure 2.3: Data sharing scheme based on ACL(Access Control List).

19

Figure 2.4: Data sharing scheme based on prefix encryption-based.

2.9.3 A Permissioned Blockchain based Access Control System
for IOT
The “A Permissioned Blockchain based Access Control System for IOT” [9]
is a work a permissioned blockchain-based access control system for IoT
were a di�erent phase of access control like creating access policy and
making the access control decision happens based on the consensus of all
the stakeholders. Remarkably, the paper proposes a distributed access
control for IoT that uses a permissioned blockchain called Hyperledger
Fabric and leverages its smart-contract and distributed consensus. The
proposal consists of two actors the resource provider/owner and the
requester. The resource provider/owner is the owner of the IoT, and the
requester is any party that accesses data generated by IoT devices is a
requester. The system has two more components the blockchain and the
local IoT network. The blockchain works as a policy enforcement point for
any access request to a particular IoT resource. All attributes and Attribute
Based Access Control (ABAC) policies are stored in the blockchain. Also,
each local IoT network is composed of one or more IoT devices, a sink node,
and a gateway. The sink node works like a network coordinator for all the
IoT devices and is connected to the gateway. The gateway acts as an
interface to the external world to access any resource within the local IoT
network.

20

Figure 2.5: Resource Access.

2.9.4 IoTeX
IoTeX is more than just a blockchain, it is a full-stack platform to enable
trusted data from trusted devices for use in trusted Apps. The platform use
Decentralized Identities that enables users/devices to own their data,
identity, and credentials.This blockchain is compatible with 2 IoT devices
(Pebble Tracker, Ucam). Ucam replaces traditional password-based login
with blockchain-based login and uses the user's private key to end-to-end
encrypt all videos. Also, the Pebble tracker is equipped with a TEE and
multiple sensors (GPS, climate, motion, light). Captures/signs data from the
real world and converts it into verifiable, blockchain-ready data.

3. System Requirements and Design

3.1 Use cases

We have an IoT system consisting of 3 levels. These levels represent
di�erent types of users. The types of users are Infrastructure οwners,
application developers, and ordinary system users. By di�erentiating the
functionality of the system by type of users, we achieve the following:

● Εasier description of the system in subsections or subsystems.
● Ability to develop a flexible commercial use model underlying the

system (Business Model).

21

By adopting a 3-tier architecture model, we create an environment that
makes the best use of devices (by re-using them by multiple applications)
and creates value from the use of the system by potential application users.
Then a brief description of each level is given separately.

Layer 1 is the infrastructure level; the first user group (Infrastructure
Owner) operates at this level. At this level, infrastructure owners have
the right to register new devices in the system, which they can later manage.
The purpose of the users is to o�er devices that provide data
(measurements) and will be able to use them to create applications.

In layer 2, users are active a) the system administrators and b) the
application developers. The purpose of the administrators is the control
(monitoring) of the platform at all levels and the management of users
(creation, recovery, deletion of users) and devices. The second category of
users (application developers) is to create applications using infrastructure
devices after obtaining their usage rights. The latter is achieved by creating
a subscription to the devices that they want to exploit.

In layer 3, the end-users can use the system to view and subscribe to
existing applications that the developer has created.

22

Figure 3.1: 3-tier architecture.

3.2 Functional and non-functional system requirements
The system requirements are then defined, separating functional and
non-functional.

23

3.2.1 Functional system requirements
Functional requirements are defined as the procedures that must be
performed to satisfy the system and are inextricably linked to its
implementation. These requirements may be di�erent for each user group;
therefore, they should all be satisfied for it to be considered an entirely
usable system. In the present work, we consider that the users perform the
functions allowed by the user category to which they belong through
graphics interfaces. Α common element that all user groups have is that
they have a Wallet. The wallet is an application that storages the VC, DID,
public and private keys. The functions related to it are described below each
user category.

Users

● Login system.
● The user enters his login details on the login page to log in.

● Applies for VC and Decentralized Identifier.
● The user fills out a form and submits it to the system. After that,

the system issues the VC and DID. Users use VCs and DID to
access the system and query or view applications that use data
from the system sensors.

● Search for existing applications.
● The user can search for applications, so the user has access to

view the OpenAPI descriptions of the applications.
● Subscription to applications.

● The user can create a subscription to one or more applications
that he is interested in, to have the right to access them.
(Otherwise, it cannot access any application). Respectively, in
the same way, he can cancel an existing subscription to one
application.

● See the cost of the system usage.
● As long as the user can subscribe to applications, there is a

corresponding charge for the use he makes of the system. The
user is charged one transaction every time he subscribes or uses
an application.

Developers

● Login system

24

● The developer enters his login details on the login page to log
in.

● Applies for VC and Decentralized Identifier.
● Developer fills out a form and submits it to the system. After

that, system issues the VC and DID. Developer uses VCs to
access the system.

● Search for IoT and see the OpenAPI description.
● The developer can search for sensors based on geographic

location or through properties/actions. Also, the developer has
the possibility to query the system to see only the descriptions
of the temperature sensors (property: temperature). Through
queries, he can search for sensors and see their descriptions.

● Retrieve Properties of devices
● As long as the developer can see the OpenAPIs of the devices.

Then it can retrieve properties by calling the corresponding
endpoints. With the same logic, a developer can retrieve the
corresponding actions of the device.

● Create VC and DID for apps to connect with the system.
● Once they have been granted access (and have received

VCs/DIDs) they can create VC/DIDs for the applications they
create/posses. The developers who have made the applications
have access to change the rights of the applications. The
applications should also have those wallets with their own VC
and DID as users or developers. In this way, the applications
acquired developer rights.

● Subscription to IoT devices
● The developers can, in turn, search the system for the various

sensors with the criteria described above. Once they find the
sensors they are interested in, they can subscribe to them and
declare the callback URL that will receive notifications when the
price of the sensor they have subscribed to changes. The
subscriptions are stored in the blockchain. Also, the system only
sends subscribers the price of a device that works properly.

● See the cost of the system usage.
● As long as the developer can retrieve/subscribe to the properties

of the devices, then there is a corresponding charge for the use
he makes of the system. The developer is charged one
transaction every time he retrieves/subscribes a
property/action of the connected device having the
corresponding cost.

25

Infrastructure Owners

● Login system
● The developer enters his login details on the login page to log

in.
● Applies for VC and Decentralized Identifier.

● The user fills out a form and submits it to the system. After that,
the system issues the VC and DID.

● Search for IoT and see the OpenAPI description.
● The infrastructure owner can search for sensors based on

geographic location or through properties/actions. That is, the
infrastructure owner has the possibility to query the system to
see only the descriptions of the temperature sensors (property:
temperature). Through queries, he can search for sensors and
see their descriptions. He can see only the descriptions of
owned devices

● Create VC and Decentralized Identifier for devices
● Infrastructure owners are those who own the devices. As the

devices are part of the system’s actors, they should have
credentials (VC & DID). Infrastructure owners are responsible
for creating the VC of the devices and the DID. As a result, the
devices can connect to the system and send information.

● Update / Delete devices
● The infrastructure owners can edit one already existing sensor

entity. Also can delete the device from the system by deleting
the DID & VC of the device. If it is deemed appropriate to delete a
sensor entity that is used by applications and by extension,
included in developer subscriptions, the system should update
via Email to the subscribers a�ected by this change.

● Update Thing Description and OpenAPI for the devices
● Also, infrastructure owners have the right to edit the OpenAPI

of the devices. The device’s OpenAPI is stored in the blockchain.
● See the income from his/her devices.

● The infrastructure owner has the function of seeing his income
from the sensors he has installed in the system.

Admin

● Manage IoT

26

● The admin can change the credentials and decentralized
identifiers of IoT devices. E.g., they can delete a DID from the
system so that a device cannot connect to it if, e.g., considered a
malicious device. When a device is deleted, the subscriptions
related to the device are also deleted. The system should inform
the subscribers a�ected by this change via Email.

● Manage Users
● Admins have the right to edit user data such as credentials and

decentralized identifiers. In this way, they can change a user's
rights from user to Developer. They can also remove new DIDs
from the system, causing users to be unauthenticated, so they
cannot log into the system. The deletion of a user (deletion of
their DID)should be simultaneously deleted from the system
information entities related to him. Suppose the deleted user
belongs to the user category developer. In that case,
applications should be deleted equally: The subscription to
sensors and the applications it has created (Deleting one
application should trigger an informative Email to the final
users who maintained a subscription to it). In the event of the
deletion of an infrastructure owner, the devices belonging to
the owner are also deleted.

● Install smart contracts
● In addition, they can add Smart contracts to the system. This

function is necessary because many devices may not be served
by the system because there is no corresponding smart
contracts related to the proper information acquired by devices
and to prices. Still, there is a possibility in the future to be
created later (the smart contract) and installed on the system.
This functionality belongs only to the admin (as the authority
that monitors the system) because is risky for the system. The
system can be compromised if the smart contract is not
well/properly defined.

IoT Devices
● The only thing a device has the right to do is to be able to send

the information(property/action updates) it produces to the
system. The system stores device’s infos in the blockchain.

27

3.2.2 Non-functional system requirements

Meeting these requirements is unnecessary to perform
an application's basic functionality. However, the degree of their fulfillment
a�ects the quality of the final product accordingly, especially if it is
for commercial application. These include:

● Performance
○ Refers to the response speed of the system under high

conditions load. In the present work, it is considered
appropriate for all the functions defined in subsection 3.2.1 to be
executed in real-time.

● Scalability
○ Refers to the ability of the system to improve and expand its

functionality. In the work system, it is essential to new services,
new smart contracts, new users, new sensors, and new can be
added applications without disturbing the operation of the
system.

● Security
○ It concerns the security of users, i.e., their secure access to the

system and the protection of their identity and personal
property data. All system actors (users, IoT, Services) have DID
and VC, which are stored locally in a wallet for every actor
separately. At the same time, it concerns the system's
protection as a whole and prevents access to services and data
over the network by non-authorized sources (services or users
or IoT). Without DID and VC, the actor can not log in to the
system and generate an access token that uses it in every
request. Additionally protects the system from incorrect data or
malicious actions that a device may send to the system. The
system executes automated checks every time a device sends
data to the system via di�erent types of smart
contracts(depending on the device type). The developed system
infrastructure ensures, by the level of architecture, that all the
requests between its services have the appropriate
authorization, excluding non-authorized users and services to
access the internet in system resources.

● Usability
○ Determines how easy the system is to use. This category

includes features such as graphical interfaces and anything else

28

that aims to improve the application's user experience. It also
determines how easy it is to connect a device to the system and
that the information it sends is secure to the system.

● Availability time
○ As mentioned in the previous chapter, Service-Οriented

Architecture significantly facilitates the maintenance and
expansion of applications through independent services. The
system must always be online and available for use in web
applications. Therefore we want as little downtime as possible.
In addition, the specific architecture allows sharing workload
on di�erent virtual machines, as the services are not necessarily
hosted on the same virtual machine, increasing its system
stability, as there is no single point of failure in the system. In
all of the above, the blockchain adds more stability since it is a
decentralized system, and it is almost impossible for all the
system nodes to stop working.

3.3 Use Case Diagrams
Having described in Section 3.2.1 the functional requirements of users per
user category, they are grouped below in UML (Use Case Diagrams) for the
best capture.

More specifically, the functional requirements formulated in section 3.2.1
are shown in the figure diagram for the end user.

Respectively, for the application developer, the functional requirements, as

29

described in section 3.2.1, are shown in Figure 3.3.1.

For the Infrastructure owner the functional requirements as described in
section 3.2.1 are shown in Figure 3.3.2

30

Finally for the admin the functional requirements as described in section
3.2.1 are shown in Figure 3.3.3

31

The IoT devices as an actor of the system has the following function
requirements

3.4 Activity Diagrams

Here are the activity charts for Developers, users, and devices. The aim is to
present these categories' most important system usage scenarios. The
diagrams for the functions of the system manager as a notification of them
were not the subject of the work.

Figure 3.4 shows the general idea of sending information from sensors
using the blockchain to ensure the information is valid. The devices data is

32

stored in the blockchain, such as the OpenAPIs descriptions. However,
device VC and DID that need to create access are stored in the wallet.

1. The Infrastructure owner should use the VC and DID, that is stored in
the device’s wallet, and send them to the system to log in the device.
After that, the system(Authorization service) will generate an access
token (more details in Section 3.5.7.1).

2. If the credentials are valid, information (the new value of a
property/action) is sent to the blockchain.

3. The blockchain, through smart contracts, checks, if the value sent is
valid.

4. If the value is valid, the system keeps two types of data, Aggregate and
Raw, generated from this value. Furthermore, the system keeps the
current value of a property/action.

5. When the current value is saved, we send it through the Pub/Sub
mechanism that the value of the specific device has changed.

6. In turn, the Pub/Sub mechanism sends this information to the
subscribers.

33

Figure 3.4: Activity Diagram for IoT PUT Properties (shows the flow when a device sends
a value).

Next, the developers' usage scenario for creating subscriptions on the
devices is presented in figure 3.5

1. As a first step, the developer must connect to the system by giving
him the corresponding credentials.

2. If the credentials are valid, then log in to the system.
3. Then, through the graphical interface, he can make queries to see the

IoT devices he is interested in based on these queries; some of these
queries can be queried to find the sensors based on a specific location.

4. You can see each device's description if the query is correct and some
devices are returned.

5. After seeing the description of each device. Then, it can subscribe to
the specific device so that you return this change every time there is a
new piece of information related to it.

34

6. Finally, the subscription is saved in the system (on the blockchain)
after subscribing to a specific device.

Figure 3.5 Activity Diagram for Developer subscription on IoT.

Finally, a scenario worth noting is the developers' creation of a wallet for
Apps. As previously mentioned, developers can create applications with
their Wallet to be able to interact with the system. This scenario is presented
in figure 3.6.

1. As a first step, the developer must connect to the system by giving
him the corresponding credentials.

2. If the credentials are valid, login to the system.
3. Then, the public and private key pairs are created.
4. Open the UI and select: create DID document for an Application.
5. Then, fill out the form with data: role, developer’s DID, and app’s

public key.
6. The Authorization service creates the DID Document and saves it to

the blockchain.

35

7. Auth service returns the DID to the developer.
8. Then, the developer creates the VC with the app’s DID and issues the

VC.
9. Finally, he/she saves the VC to the app’s wallet.

Figure 3.6 Activity Diagram Create VC for Apps.

36

3.5 Architecture Diagram

Figure 3.8: Architecture Diagram

The blockchain is used as a database where each Node of the blockchain has
a non-relational basis. The blockchain contains raw and aggregated
historical data of time series measurements for all sensors connected to the
system. The smart contract undertakes to accept data that are sent to the
blockchain and, in turn, store them either in raw or aggregated data to
maintain the device's measurement history. The smart contract also
undertakes the retrieval of the data from the blockchain.

In addition, the blockchain is used to store any information we want to store
in the system, such as transactions, DID Documents, OpenAPI descriptions,
and subscriptions.

DID Documents are used by the identification and authorization service to
certify the existence of the user/device/service and the validity of the
information sent or requested. Also, the specific service stores the DID
Documents of the new users/devices/services that are created.

37

Subscriptions are stored on the blockchain because it is used by the event
and subscription management service to store the information entities it
manages.

In the present work, the idea is used that each device is treated as a Restful
service. Each device has an OpenAPI description where the endpoints that
each device can execute are described. The specific OpenAPIs are stored in
the blockchain so authorized users can search, see the descriptions, and
interact with the devices through the OpenAPI they provide.

Finally, there is a need to record the interaction of ordinary
users/developers with the system. We store this record as a transaction of
each user with the system. All transactions are also stored on the
blockchain.

Below is a detailed description of the individual services of the system as
well as the cooperation between them to implement the functions as
mentioned above.

3.5.1 Blockchain and smart contracts
One of the system's essential components is the blockchain. The blockchain
is the component that stores all the information we need, as mentioned
above. By nature, it can store a transaction history without being able to
change it. Using this feature, we store the value from devices while
maintaining an unchanging time series history. In addition, we are
interested in storing other information beyond the sensors' measurements,
such as the grouped data. To be able to automatically create the grouped
data every time a new measure enters the system, we use smart contracts.
Smart contracts, as mentioned in the previous section, are programs
installed on the blockchain nodes, which have methods and are called by
services of the system. In the specific implementation, we have di�erent
smart contracts, each of which has methods for the various needs of the
system. Every time an IoT wants to send information to the system, it calls
the method of the smart contract where it stores this value in the
blockchain, but at the same time, the corresponding method of the smart
contract is called, which creates grouped data and stores it in the
blockchain. The data received by blockchain is stored with two tactics:

● Raw: Data is stored raw as received in the relevant sensor
measurement history.

● Aggregated: Aggregated data are statistical values resulting from the

38

combination of the newly arrived data with the existing historical
data of the sensor. These prices concern:

● Maximum value among all samples for a sensor measurement
field in the last month/day/hour.

● Minimum value among all samples for a sensor measurement
field in the last month/day/hour.

● The sum of all samples for a sensor measurement field in the
last month/day/hour.

As can be seen, smart contracts have the role of services that can retrieve or
store di�erent types of information on the blockchain.
In addition, the blockchain is our single "database" as previously
mentioned. For sharing these types of data, we also have di�erent types of
contracts that sometimes communicate between them. The types of smart
contracts are as follows:

● Smart Contract IoT Proxy
● The smart contract implements the methods that WoT Proxy

calls to perform the operation of each device. The methods of
the specific contract are responsible for retrieving or updating
the various components of the devices, such as properties,
actions, subscriptions, thing descriptions, and thing models.

● Smart Contract Security
● The smart contract controls the values that the devices transfer

to the blockchain. If the prices pass the check, then they will be
stored in the system (More details below at section 3.5.7.3).

● Smart Contract Raw Data
● As mentioned above, the smart contract stores the raw data as

received in the measurement history of the relevant sensor.
● Smart Contract Aggregated Data

● As mentioned above, the smart contract stores the aggregated
data.

● Smart Contract Transaction
● It is the smart contract that has the methods that show the use

of a user in the system. With this smart contract, we can see
how many times a user has used a sensor either by asking for a
value or by making a subscription to it. Every time a user
requests to retrieve a sensor value, a transaction is created that
is stored in the user's history.

● Smart Contract DID
● The smart contract is responsible for storing or retrieving the

DID Document used by the identification service.

39

As previously mentioned, smart contracts work together to meet the needs
of the system at the same time. The cooperation scenarios are as follows:

● When a measurement is sent to the blockchain, the corresponding
method is called the Smart Contract IoT Proxy. Then we want to check
if this value is valid, so we call the corresponding form from Smart
Contract Security. In the end, we want to store the raw and aggregated
data when the Smart Contract Raw Data and Smart Contract
Aggregated Data are called.

● Another smart contract collaboration scenario is when a
user(developer type) requests data from the system or subscribes to
some device. When this is done, the Smart Contract IoT Proxy is called
to retrieve the corresponding value or to make a subscription to the
device, while the Smart Contract Transaction is then called to store in
the history that a user requested each value from the specific sensor
or made the corresponding subscription.

● A corresponding collaboration with the previous one is when the
user(developer type) requests aggregated data. The first call is the
Smart Contract Aggregated Data, then the Smart Contract Transaction
to store this usage.

40

Figure 3.9: Smart contract flow examples

In addition, it is not necessary for any smart contract method to cooperate
with anyone else. For example, retrieving the description of a device does
not call any other smart contract but only finds the description stored in the
blockchain and returns it.

3.5.2 Application Logic service

The Application Logic is the heart of the system as it includes the code to
orchestrate the individual services so that the system implements the
functionality defined in the specifications. The user interface system (Web
Application) is considered part of the logical application as it includes the
necessary code to implement the system's graphical interfaces (for all
di�erent types of users). The requests of the system users arise from the

41

user interface system and are forwarded to the application logic for their
appropriate routing. Here is a relevant example of their operations:

● A user through the user interface system requests to enter the system.
The request is routed to the Application Logic service, which in turn
routes it to the Auth service. The Application Logic service then
creates a login session for the user, including their credentials and
corresponding access token. Once the details are verified, the user will
be logged into the system.

Following this logic, all requests arising from the GUIs of the user interface
system are routed through the "application logic" service to their intended
services.

3.5.3 WoT proxy & OpenAPI Generator

3.5.3.1 WoT proxy

To implement the system requirements, we need a Web Thing Proxy that
allows the interaction of clients (i.e., users or devices) with Things on the
Web and proposes a particular Web Service (i.e., a REST API) that
implements particular operations. Each time a Thing registers to Web Thing
Proxy, a new entity is created in the blockchain. A Thing is identified by its
resources: a Web Thing Resource, a Model Resource, a Properties Resource,
an Actions Resource (as long as the Thing supports actions), a Things
Resource, and a Subscriptions Resource. The blockchain stores all data
about Things (i.e. descriptions, properties, measurements, actions, action
executions, and subscriptions to Things). The Web Thing Model service can
retrieve, update, or delete these data.

3.5.3.2 OpenAPI Generator

As previously mentioned, Things are described by specific resources stored
in the blockchain. According to this logic, we use the OpenAPI Web Thing
template that employs a JSON (or YAML) description format, which is
common to all Things. It is a valid OpenAPI document that can be handled
by all known OpenAPI tools (e.g., Swagger editor, code generator, etc.). To
help users create these descriptions, a mechanism that produces OpenaAPI
thing Descriptions has been created. The mechanism generates the OpenAPI
description of a Thing from user input. The input comprises a) the standard
OpenAPI Thing Description template that applies to all Things and b) a

42

payload in JSON with the user settings (e.g., security settings) and the Thing
characteristics that will be instantiated to the template. The user specifies
the necessary information that characterizes the device and the
functionality it supports (e.g., the properties it provides, the actions it
performs, etc.). The output of this mechanism is the OpenAPI description of
the Thing (in YAML or JSON format). The mechanism is a RESTful service.

3.5.4 Publish Subscribe Service

The Publish-Subscribe service is a mediator for sensor subscriber entities.
These entities are stored in JSON format in the blockchain. The JSON
representation of an instance of the "Sensor Subscription" entity refers to a
specific application developer. It is a "list" of the sensors that the developer
has added to his/her subscriptions for all his/her applications. It includes
unique event ID and unique Sensor IDs (Sensor’s DID) and the date of sensor
subscriptions. The service checks every moment if changes are made to the
sensor prices on the blockchain. When any change is made to the current
sensor price, the smart contract creates an event with the value change, the
DID of the device whose value changed, and the subscriptions that exist for
the specific device. The Publish-Subscribe service "listens" to these events
and has the JSON files for the records that contain the callback URLs. The
service sends the changed data to these URLs. In addition, the service has a
non-relational database as cache memory to store the most recent changes.

3.5.5 Aggregate Data Service

The Aggregate Data Service is the RESTful interface of historical data stored
on the blockchain containing raw & aggregated data. It is connected to the
blockchain and provides REST methods for retrieving raw and aggregated
historical time series data about the evolution of system sensor
measurements. For example, in the scenario where we need to retrieve the
maximum temperature measured by the sensor {wt} for each hour of the
last 24 hours, we will use the following REST method:
GET localhost/aggregate-data/{sensor_id}/{property}
{
“method”: [“max”],
“period”:”hours”,
“dateFrom”: “2022-03-12T00:00:00”,

43

“dateTo”:”2022-03-12T23:00:00”
}

3.5.6 Location Service
The Location Service is the RESTful location data interface for sensors
connected to the blockchain. It is connected to the blockchain and provides
REST methods for retrieving the location of a sensor or for retrieving
sensors that open in a geographic zone defined by the user by giving some
limits for latitude and longitude. For example, a user can provide Crete's
geographical length and width and return all the sensors within these
limits.

3.5.7 Security Services
The security of the system, as mentioned in section 3.2.2, results from its
architecture, prohibiting the use of its functions by users and services that
do not belong to the system or do not have access authorization. The three
components responsible for the system's security are the Auth service,
Policy Enforcement Points, and Smart Contracts. The system is now not
only protected from unauthorized users/applications/devices but also from
the malicious information/value a device can send.

Before we explain the usage and functionality of the Authorization service,
we need to clarify the wallet's usage and concept. The wallet is an
application on the user's local computer/mobile/device that keeps the
information the user/IoT/application needs to connect to the system. The
wallet is an application that we developed that stores the VC, public and
private keys, and DID. Also, the wallet has a mechanism that generates a
public and a private key, so the user can, through this mechanism, generate
his/her public and private keys. Another useful mechanism is that a user can
issues a VC with his/her private key (Admin, Developer and Infrastructure
can use this mechanism).

3.5.7.1 Authorization service

We developed this service, which is the system's starting point as it is
responsible for registering and connecting users. When a User wants to
register, he creates a pair of public & private keys. Then, during registration,
the user defines the characteristics that make up his profile, such as role,
public key, and passphrase. These data are sent to the system's router's
Application Logic service. After that, it sends the data to the Authorization
(Auth) service through its RESTful interface, which creates the unique DID
and the DID Document.

44

The DID Document is a JSON which has the format described in section 2. It
consists of the following elements:

● id : Is the DID unique for each document and is also the identifier for
the owner of the DID document. We can retrieve the DID Document
from the blockchain through this specific identifier.

● verificationMethod: A DID document can express verification
methods, such as cryptographic public keys that can be used to verify
data that is signed by the corresponding private key. The verification
method MUST include the id, type, controller, and public key fields.

● id: It is the same DID as the previous id, the only di�erence
being that #keys-1 has been added at the end.

● type: The value of the type property must be a string that
references exactly one verification method type. In this case, we
use the verification method RsaVerificationKey201814.

● controller: the DID of the person who has the right to change
the DID Document/VC elements. The users in the controller
field have the same DID as theirs, while a device has the DID of
its owner because only he can make changes to the device.

● publicKeyMultibase: It is the Public Key that the user has
created with the wallet as described in the previous section. It is
the Key that verifies information signed with the private key of
each user.

After the DID Document is created, the DID Document is sent to the
blockchain for storage. Since the DID Document has been saved, the Auth
service should create the VC of the user. The VC is also a JSON file with the
format described in section 2. The VC has the following fields:

● id: It is the identifier generated by the service (Auth service) and is
unique.

● type: It is the type of Verifiable credential. In this particular case, the
type is iBotLoginCredentials, which describes that it is a credential for
connecting to the system.

● issuer: Enter the identifier of the service that signed and created the
VC in this field. Because the Auth service creates the VCs of the
system, then the link of the service is entered in the specific field.

● issuanceDate: Is the date the VC was created.

14 https://w3c-ccg.github.io/ld-cryptosuite-registry/#rsasignature2018

45

● credentialSubject: This is one of the most important fields in VC. It
consists of the fields id and user. The id field stores the DID of the
actor related to the VC, while the user field stores the type of user that
can be developer, user, infrastructure owner, IoT, application, and
Admin.

● proof: It is the service's signature that the record is valid. The
signature is a JSON Web Signature15(JWS) generated by the service and
contains the user's role, DID, and passphrase. By sending this
information to the service, the service can understand if the file is
valid.

In Figure 3.10, we have an example describing the relation between a
developer's VC and the DID of the admin that issued VC. In the field proof,
the VC has JWS issued from the Authentication service with the admin
private key and has the verification method from Admin DID Document as a
verification method (for the purpose of Thesis this is an automated
mechanism). The verification method from Admin DID Document has the
public key that verifies the VC's signature. Also, the field issuer has the DID
from Admin, while the field credentialSubject has the DID and the
Developer's role.

Figure 3.10: Example of VC and DID from a developer and the admin DID.

Finally, the created verifiable credential is returned to the user to store it in
his wallet and used later as a valid user credential (the process is also
described in Figure 3.11). With this specific implementation, the data is not
exposed to the database, while each user has control over when he wants to

15 https://en.wikipedia.org/wiki/JSON_Web_Signature

46

provide his data. The data, such as the role of the user and the private key
are only in the personal wallet of the user. At the same time, in the
blockchain (that is used as a database), there is only the DID Document that
declares the existence of each user and does not contain any other element.

After that, the applications and the devices are registered in the system in a
similar way process. The di�erence is the VCs for applications and devices
issued by developers and Infrastructure owners, respectively.

47

Figure 3.12: Infrastructure owner creates and issues VC and DID for an IoT.

The Auth Service, through the Restful interface, can identify registered
users/applications/devices and grant them access to the system (Figure
3.13). First, the user should have the following Infos:

● a passphrase encrypted with user's private key.
● The user’s DID.
● The user’s role.
● The field proof from the user’s VC.

Then the Auth service searches the blockchain for the DID Document and
the user's public key. With the user’s public key, Auth service can decrypt
the encrypted passphrase. Then the service with admin public key (that
issues the JWS) and JWS can verify that the data (user’s role, DID, and
passphrase) are valid.

48

Figure 3.13: Flow for JWS creation and verification.

After data validation, the service creates an access token (JSON Web
Token16) that includes the user's role and DID. The access token is a
unique-dynamic token with limited time validity, which acts as the user's
identity within the system.

3.5.7.2 Policy Enforcement Point (PEP)

A PEP is a proxy server that acts as an intermediary for requests from users
seeking resources from other services. PEP proxy is developed by us using
the Guard17 class from NestJS18 framework. A user connects to the proxy
server, requesting some service, such as a file, connection, web page, or
another resource available from a di�erent server. The proxy server
undertakes to forward the request to the server with the specific service
and, after receiving the query response, delivers it to the requester.

18 https://docs.nestjs.com/
17 https://docs.nestjs.com/guards
16 https://jwt.io/

49

Services in the architecture that have resources not legitimately accessible
by unauthorized services or users do not publicly expose their REST
interface. Therefore, to be able to serve external (Relative to the virtual
machine on which it "runs") requests, each service has a local proxy server
that undertakes to accept at its public endpoint the requests intended for it
and forwards them to it.
The Policy Enforcement Proxy is a proxy that requires in the header of the
HTTP requests it receives one of the following two tokens; otherwise, the
requests are ignored:

● Access token: A valid access token corresponds to a user and has been
created by the Auth service upon entering the system.

● Master Key: This secret code is specified during the initialization of
the Policy Enforcement Proxy Server. Each di�erent Policy
Enforcement Proxy in the architecture has its own - unique - Master
key.

If the request it accepts carries the secret code "Master Key" and the Master
key code is correct, the PEP Server forwards it to the service it mediates and
returns its response to the requester (Figure 3.14).

In the following case of requests using an access token, the process is
illustrated in Figure 3.15, and below, the actions performed are analyzed in
the order in which they occur.

50

Figure 3.15: User authentication flow via PEP proxy

1. The PEP Server accepts an HTTP request that includes an access
token.

2. Checks if the token that carries in its header the request it received is a
valid access token. This check happens via REST communication with
the Auth service.

3. Once the validity of the access token is confirmed, the Auth service
returns to the PEP Server the information related to the identity and
roles of the user related to the access token, such as the public key and
the role. In case the access token is not valid, the process stops here.

4. It is now time to evaluate if the request made by the user in step 1) is
approved based on the roles he has.

5. If the request is approved, the PEP Server forwards the request to the
protected service it is mediating.

6. The service returns the request response to the PEP Server.
7. The PEP Server forwards the service response to the user.

As shown in the system architecture diagram (Figure 3.8), every service not
legitimate to o�er its REST interface cooperates publicly with a PEP.

In Figure 3.15, we notice that Auth service returns the user's role. We have
implemented a Role Base Access Control 19(RBAC) mechanism based on a
di�erent level for each user/device/application according to the category to
which it belongs. The PEPs have mapped each user type to a service
operation. We created this mapping when we developed the PEPs. If the user
type and request's operation do not match, the request is rejected.

19 https://en.wikipedia.org/wiki/Role-based_access_control

51

In the remaining functions, where communication occurs between system
services (and not between a system service and a request received from a
user or a service outside the system such as an external IP), there is no need
to identify or configure di�erent levels of authorization. Therefore, in this
scenario, a system service, when it requests another service of the system,
includes in the header of its request the appropriate Master key code of the
responsible PEP. The PEPs, in this case, work according to the process
depicted in the diagram in figure 3.14.

In this way, the system infrastructure ensures that a service that receives
the above "security" is not available to requests outside the system.

3.5.7.3 Smart Contract Security

With the above two sections, we have covered the security cases in which
any system actor cannot communicate with the system services without the
corresponding permission. In addition, another point that leaves the system
exposed to threats is the devices that are connected to the system. A device
can send malicious or wrong information to the system. This can happen for
various reasons, such as the device being damaged or its hardware being
changed by human intervention. To deal with such weaknesses, we used the
advantage that the blockchain gives us, the smart contracts, and the WoT
Proxy described above.
First, by using smart contracts, we can perform some actions the moment
we send information to the blockchain and check if the values are correct
before we store them in the blockchain. With this logic, we can write smart
contracts that execute some procedures before storing the value sent to
them. An example is when a temperature sensor sends its value to a smart
contract to write it on the blockchain, the smart contract should check if
this value is less than 50 and if it is, then writes it on the blockchain. We
focused on this concept and created di�erent types of smart contracts so
that we could control di�erent scenarios. Three scenarios are:

● The value range control.
● The amount of information sent by a sensor.
● The frequency it sends.

Next, we assume that every time a device sends information to the system,
it declares which method from and which smart contract it will use to write
the information to the system. This can be done because we assume each
device is a restful service that can send information.

52

Algorithm:

Figure 3.16: The flow that automatically checks a device's value through the smart
contract.

Done in this way, every information a device sends to the system is checked
by the system itself; if it is valid, it will be written in it.

3.5.8 Queues
The work describes a system of IoT devices. The big problem in an IoT
system with many devices is that it can manage all the information it
receives continuously without losing measurements or crashing the system.
For this reason, we use the blockchain, which by its very nature is secure
and quite di�cult to fail because of the many nodes it has. Additionally, we
use queues to ensure that the requests sent to the blockchain are not lost.
We use queues between the services that send requests to the blockchain,
with the result that we use four queues. The queues are as follows:

● A queue is between the Auth service and the blockchain.
● The second queue is between the Aggregate Data service and the

blockchain.
● The third queue is between the WoT Proxy and the blockchain.
● The fourth queue is between the Location service and the blockchain.

53

With the queues, we temporarily store the continuous messages from the
sensors/users until the blockchain consumes them.

4. System Implementation

Figure 4.1: System architecture implementation diagram

Based on the specifications set in chapter 3, System Requirements and
Design, we proceed to describe the development of the system in cloud
computing. Figure 4.1 shows the system architecture diagram as it results
from its implementation. In section 4.1, "Implementation of Services in the
Computing Cloud", the function and use of the services that structure the
implementation system are analyzed, as shown in the diagram. Then
section 4.2, "Implementation of Blockchain," analyzes how we created the
blockchain, while section 4.2 comes and completes section 4.3, which
analyzes the smart contracts of the architecture and how they contribute to
the implementation of the system.

4.1 Ιmplementation of Services in the Cloud Computing
The term Back-End describes the set of services that "run" in the
computing cloud to process and respond to requests coming from end-user

54

applications (Front-End). The system used the following technologies for
the planning of cloud services:

● Node.js20: Node.js is a software (mainly server) development platform
built on a Javascript environment. Node's goal is to provide an easy
way to build scalable web applications. Unlike most modern network
application development environments, a node process does not rely
on multithreading but an asynchronous I/O communication model.
Node.js o�ers many extensions through the well-known npm
package management tool. The advantage it o�ers is that through the
collection, it is easy to find a package with ready-made methods that
implement the functionality we are looking for. An additional
advantage is that extension packages are included in the code in a
simple and fast way.

● Nest21 is a framework for building e�cient, scalable Node.js
server-side applications. It uses modern JavaScript22, is built with
TypeScript23 (preserves compatibility with pure JavaScript), and
combines elements of OOP (Object Oriented Programming), FP
(Functional Programming), and FRP (Functional Reactive
Programming). Under the hood, Nest uses Express but also provides
compatibility with a wide range of other libraries, like, e.g., Fastify,
allowing for easy use of the numerous third-party plugins available.
All services(Application logic, Auth, Aggregate data, Location, PEPs,
WoT proxy) from architecture developed with NestJs.

● Google Cloud Platform24: is a suite of cloud computing services that
runs on the same infrastructure that Google uses internally for its
end-user products, such as Google Search, Gmail, Google Drive, and
YouTube. We used the GCP to deploy and host the services on the
cloud. We also host the blockchain infrastructure on the cloud.

4.1.1 Wallet
The wallet, as we mentioned in chapter 3, is a NestJS application developed
by us. We need the functions that have the wallet, so a
user/application/device be able to connect to the system. The wallet
perform the following functions:

24 https://cloud.google.com/
23 https://www.typescriptlang.org/
22 https://www.javascript.com/
21 https://nestjs.com/
20 https://nodejs.org/en/

55

● createPublicAndPrivateKeys(passphrase): Create the public & private
key pair using a passphrase.

● login(passphrase): Connect to the wallet using a passphrase. The user
cannot implement the following procedures without connecting to
the wallet.

● issuesData(data): Sign information based on the private key with RSA.
As an example, the data can be VC from an IoT, and the infrastructure
owner needs to issue the VC with his/her private key and creates JWS..

● exportDID(): With this function can export the DID from that is stored
in VC at field credentialSubject. To be able to export the DID document
and VC. This function exists so that the user can send the necessary
information to the network to identify the user's existence and
validity.

● exportVC(): With this function can export VC.
● storeVC(VC): With this function the user can store the VC that he/her

has received from Auth service. We developed the wallet to store more
than one VC.

4.1.2 Authorization Service
Chapter 3 analyses the functionality and the operations that implement the
Authorization(Auth) service. This service aims to identify and authorize the
system's actors (users, IoT, applications) to access the rest of the services.
The service is created with Nest JS. This chapter presents the API
implementation necessary to enforce the service's functionality.

The REST API of the service is described below:
● Method : POST

URL: localhost/register
Payload:
{
“role”: “DEVELOPER”,
“public_key”:”xsadfe93n3sfdmao3sj9j5”
“passphrase”: “1234”,
}
Description: Request for registration in the system. The request
returns the VC that gerated from Auth service.

● Method : POST
URL: localhost/login
Payload:
{

56

“passphrase” : “123”,
“DID” : “did:iBot:213m31”,
"proof": {

"type": "RsaVerificationKey2018",
"created": "2022-02-25T14:58:42Z",

"verificationMethod":"did:iBot:dak…id202ms21asld#key-1",
"jws": "z3FXQjecWufY46yg5ab… L5n2Brbx"

}

}
Description: Request for login to the system. The request return the
JWT that generated from Auth service and the user needs it to request
in any other service.

● Method : POST
URL: localhost/generate-did
Payload:
{
“public_key”: “asdee2wa..kljul”,
“DID” : “did:iBot:213m31”
}
Description: Request to create a DID and a DID document. For
example when an infrastructure owner want to create a DID for an
IoT. The request return the DID.

● Method : GET
URL: localhost/retrieve-did
Description: Request to retrieve a DID document.

● Method : PUT
URL: localhost/{DID}
Payload:
{
“document”: {...}
}
Description: Update specific field from a DID Document.

● Method : DELETE
URL: localhost/{DID}
Description: Request to delete a DID document.

4.1.3 Guard NestJS

57

As the name suggests, it guards something against being accessible without
permissions. Guards25 are a common concept in most backend frameworks,
whether provided by the underlying framework or coded by the developer.
Nestjs simplifies protecting and safeguarding APIs from unauthorized or
unauthenticated users. Every guard you use must implement the
CanActivate interface. The CanActivate interface properties make it easy for
developers to custom code their guard logic. On the other hand, a guard has
access to the ExecutionContext instance and thus knows what is to be
executed exactly after it. They are much like filters and pipes and can
interpose the correct logic at the correct time in a Request-Response cycle.
The Guard operates according to the Policy Enforcement Point Proxy
specification in section 3.6. The implementation of the system includes two
di�erent types of guards. Guards that mediate between services and
requests from system users require the user's JSON Web token in the
request header. In this way, by communicating with the Auth service, the
Guard confirms the identity and roles of the user to whom the token
belongs.

In the communication scenario between system services, Guards require in
the header of the requests they receive the secret Master key. As long as a
request includes the correct Master key, the Guard forwards the
communication to the service it mediates.

4.1.4 Αpplication Logic
The application logic service is the central part of our system as it contains
the code we developed to orchestrate the services and implement the
functional requirements we have captured. We developed the service with
NestJS to execute and route REST requests.

The user interface system forwards user requests using system functions
through graphical interfaces to the application logic. The application logic
receives the requests and routes them to the system services they intend to
execute.

25 https://docs.nestjs.com/guards

58

4.1.5 Aggregated data service
It is a service created in NestJS. It is connected to the blockchain. Through
its RESTful interface, it serves the retrieval of Raw and Aggregated
historical information stored in the blockchain. This information has been
created and stored in the blockchain through the corresponding smart
contracts every time a new value (properties/action updates) enters the
system, as we saw in chapter 3. It will be further analyzed in the next
section. Also, a user can retrieve information about the usage of the system
(the number of requests to devices) or a device owner can retrieve the
transactions of a device(the number of users that requested the device). The
REST API of the service is described in the table below:

Table 4.1: HTTP endpoints for Aggregate data service.

GET localhost/aggregate-da
ta/{sensor_id}/{proper
ty}

{ “method”:
[“max”],
“period”:”hours”
,
“dateFrom”:
“2022-03-12T22:
00:00”,
“dateTo”:”2022-
03-12T23:00:00”
}

We are retrieving
grouped data of a
sensor based on the
time and the method
we want. We can do
more than one
method.

GET localhost/raw/{sensor
_id}/{property}

{
“lastN” : 1
}

Retrieve the last N
data for the sensors.

GET localhost/raw/{sensor
_id}/{property}/query

{dateFrom”:
“2022-03-12T22:
00:00”,
“dateTo”:”2022-
03-12T23:00:00”
}

Retrieval of a
sensor's data based
on time.

GET localhost/transaction/u
ser/{did}

Retrieval of
transactions made
by a user with all the
system's sensors.

GET localhost/transaction/i
ot/{did}

Retrieval of the
users' transactions
with the specific

59

sensor.

4.1.6 Location Service
It is a service created in NestJS. It is connected to the blockchain. Through
its RESTful interface, it serves the retrieval of a device's location based on
the device's DID or the retrieval of multiple sensors based on a geographic
area given as input.

Table 4.2: HTTP endpoints for Location service.

GET localhost/locat
ion/{sensor_id
}/

Retrieve the
location for a
specific sensor.

GET localhost/locat
ion/

{
“min_x” :
34.91,
“max_x” :
35.67,
“min_y” :
26.33,
“max_y” :
23.51,
}

Retrieve
sensors located
in the area is
defined by the
geographic
coordinates we
have given as
limits. Return
an array with
DIDs

4.1.7 Queues

As mentioned in chapter 3, we need queues to keep the system safe from
information loss, whether from the sensors or user requests that remain
unanswered. For this reason, we use RabbitMQ between the service and the
blockchain. In this way, all the queries from the services to the blockchain
are stored in the queue and consumed by the blockchain at the rate it can

60

process them without missing queries. A system that uses a queue consists
of 3 elements:

● Producer: A producer is the one who sends (publishes) messages to a
broker.

● Consumer: On the other hand, a consumer is the one who is listening
and will receive the messages from the broker so it can handle the
tasks in the background.

● Message Broker: Message broker that acts like queuing storage for
API.

First, we create a RabbitMQ instance through the cloud that has a queue
name and an AMQP URL that we will be using to send/receive messages
from the queue.

Implementing producer
Producers are all the services that communicate with the blockchain
through the gateway (which will be analyzed in the next section). Producers
send/publish to the queue with a pattern that is the one that the consumer
app will have to listen to and data that is the one that the consumer app will
receive when it receives the message from the queue. We have four patterns
depending on which queue we send to (IoT-proxy, registry-id,
aggregated-data, location-data). Through the data, the services send the
REST requests to the gateway, having sent the following information:

● The smart contract name
● The method
● and the attribute values of the methods

For example if we have a REST request from the WoT Proxy service of the
form:
GET {wt}/properties/temperature
then to the queue with pattern iot-proxy will be sent:

● smart contract name : iot-proxy which is the name of the smart
contract

● function name : retrieveProperty where is the name of the method
that searches the last value for the corresponding property

● attr[] : {{wt}, temperature, {user DID}} where is a table with the
attributes of the above method. {wt} is the id of the device that will be
searched, while the temperature is the name of the property that
wants to retrieve the value.

Implementing consumer

61

Consumer is the gateway that communicates with the blockchain, which
listens to the above patterns and the messages that the above 4 queues have.
In this way, no query from the services to the blockchain is lost.

Figure 4.2: A producer and a consumer example on architecture.

Additionally, for security issues, each queue has a username and password
so only services that know these details can send information to the queue.

Figure 4.3: Example of the RabbitMQ link

4.1.8 Publish Subscribe Service

As mentioned in chapter 3, the service manages the changes in the devices
and promotes the changes in the values of the devices to those who have
registered. For this reason, we use the rabbit mq, which consists of the
producer-consumer and the message broker, as mentioned in the previous
section. The di�erence is that the producer listens to the changes made in
the blockchain and sends the information to the queue based on these
changes. Then the consumer consumes this information from the queue and
must pass this information to the subscribers. In more detail, users
subscribe to devices, and subscriptions are stored on the blockchain, as
mentioned in a previous chapter. Then every time a value (property/action)

62

https://docs.google.com/document/d/1C3Ex6s06ME2Bj8jG3wAnrh36FTdtX55r-9R7wfXPY-I/edit#D2L_fig_label_Figure%204.4:%20Example%20of%20the%20RabbitMQ%20link

of a device change, the blockchain creates an event with three values: the
DID of the device, the value that changed, and the subscribers of the device.

Figure 4.5: The information that the blockchain sends to Pub/Sub service
The producer then connects to the blockchain with a gRPC connection. Then
it registers the events with the pattern "events" created by the smart
contract every time a new value is stored in the system in the format we
mentioned above. The producer sends this event to the RabbitMQ queue we
created with the "events" pattern. The specific queue has its AMQP URL and
a separate username and password so only the specific producer can send
data.

In turn, the consumer listens to the pattern "events" from the queue and
reads all new incoming events. As mentioned earlier in the event's body, all
system subscribers have the callback URL. Using these URLs, the consumer
makes POST requests to these URLs with the new value of the sensor and the
DID of the sensor.

The whole logic is presented in the image below.

63

https://docs.google.com/document/d/1C3Ex6s06ME2Bj8jG3wAnrh36FTdtX55r-9R7wfXPY-I/edit#D2L_fig_label_Figure%204.5:%20The%20information%20that%20blockchain%20send%20to%20Pub/Sub%20service

Figure 4.6: Architecture behind Pub/Sub mechanism with RabbitMQ

4.1.9 Gateway
It is a service that connects other services with the blockchain and is made
with NestJS. Through this service, the various smart contracts are called so
that the functions of the system and its services can be performed. In other
words, this service is the translator of the REST requests received from the
services into smart contract method calls so that the system services can
retrieve or store information on the blockchain. Initially, this service has a
wallet with public & private keys so that it can be connected to the
blockchain with a gRPC26 connection. Since the connection has been made
with the blockchain, the service has the right to interact with the smart
contracts and call its methods. As mentioned in 4.1.7, the service is also the
consumer of the queues that the services send their requests. Since it reads
the queries from the queues based on the pattern declared, the service
decides which smart contract will call and which method, with the
corresponding attributes completed as they have been sent to the queue.
After a smart contract method call, the service forwards the response from
the blockchain.

4.1.10 WoT Proxy
As mentioned in chapter 3 is an autonomous RESTful service in Python
Flask27 and implements some of the WoT Architecture operations on Things
using HTTP. The WoT Proxy is designed to support Thing operations and
uses the same JSON payloads, API endpoints, and response codes as
described in the W3C Web Thing Model submission of W3C. Specifically,

27 https://www.fullstackpython.com/flask.html
26 https://grpc.io/

64

WoT Proxy supports all operations for retrieving and updating Thing
descriptions and their properties and all Thing model operations. It
implements functions that send a command to a Thing (i.e., an actuator) to
execute or retrieve actions and action executions, as well as functions that
create, retrieve, and delete subscriptions on Web Thing resources. Most of
these operations (i.e., 14 out of 18) are used in the OpenAPI Thing template
proposed in Section 3. More detailed, the specific operations are:
Web Thing Resource

● Retrieve a Web Thing (GET rootUrl/{wt})
● Update a Web Thing (PUT rootUrl/{wt})

Model Resource
● Retrieve the model of a Thing
● Update the model of a Thing

Properties Resource
● Retrieve a list of properties (GET rootUrl/{wt}/properties)
● Retrieve the value of a property (GET

rootUrl/{wt}/properties/{property_name})
● Update a specific property (PUT

rootUrl/{wt}/properties/{property_name})
● Update multiple properties at once (PUT rootUrl/{wt}/properties)

Actions Resource
● Retrieve a list of actions (GET rootUrl/{wt}/actions)
● Retrieve recent executions of an action

(GET rootUrl/{wt}/properties/{action_name})
● Execute an action (POST {wt}/actions/{action_name})
● Retrieve the status of an action (GET

{wt}/actions/{action_name}/{id})
Things Resource

● Retrieve a list of Web Things (GET {wt}/things)
● Add a Web Thing to a gateway (POST {wt}/things)

Subscriptions Resource
● Create a subscription (POST /subscriptions)
● Retrieve a list of subscriptions (GET /subscriptions)
● Retrieve information about a specific subscription (GET

/subscriptions/{id})
● Delete a subscription (DELETE /subscriptions/{id})

65

4.1.11 OpenAPI Generator

In chapter 3 we mentioned the mechanism for generating OpenAPI
description for Things. The diagram that describes the operation of the
mechanism is given below:

Figure 4.7: Generating an OpenAPI Thing Description

However, in this Thesis, we also present the security of the information of
the devices within the smart contracts. The proposal is for the devices to
declare to the endpoints that update the properties and actions of the smart
contracts that control this information. According to this proposal, the
description of the properties and actions should include the object
containing the properties or actions definitions and the smart contract that
can checks this information. For example, for a temperature sensor such as
the DHT22, PUT/properties/temperature in the device description is done
like this:

66

Figure 4.8: Example of an OpenAPI description that include smart contract definition.

67

https://docs.google.com/document/d/1C3Ex6s06ME2Bj8jG3wAnrh36FTdtX55r-9R7wfXPY-I/edit#D2L_fig_label_Figure%204.8:%20Example%20of%20an%20OpenAPI%20description%20that%20include%20smart%20contract%20definition.

In more detail, according to the description, the
PUT/properties/temperature endpoint has also added the
smartContractDefinition object to its payload. The smartContractDefinition
contains the following fields name, function, and params. The name is the
name of the smart contract that contains the function named function.
Finally, the params field is an array of strings that declare the parameters
that must be sent to the "function". The result is that the new endpoint is as
follows:

Figure 4.9: Example of the endpoint with smart contract definition for security

For whether a device description has the declaration of smart contracts in
the properties or the actions, it is declared by the user in the input given as a
JSON file.

4.2 Implementation of Blockchain
As mentioned in Chapter 3, the blockchain is one of the system's essential
components because it stores all the important information the system
needs to fulfill all the functional requirements. To implement the system,
we used Hyperledger Fabric, an open-source blockchain platform managed
by the Linux Foundation, as described in section 2. The Fabric network that
makes up the blockchain deploys the smart contracts (which will be
explained in the next chapter) using Typescript as programming language

68

https://docs.google.com/document/d/1C3Ex6s06ME2Bj8jG3wAnrh36FTdtX55r-9R7wfXPY-I/edit#D2L_fig_label_Figure%204.9:%20Example%20of%20the%20endpoint%20with%20smart%20contract%20definition%20for%20security

and Kafka28 as a consensus mechanism. Previously we mentioned that the
Fabric consists of the Ledger, which stores the transactions (each change or
read in data) that take place in the Fabric, while it also consists of the World
State – a database that holds current values of a set of ledger states. Ledger
states are, by default, expressed as key-value pairs and frequently change,
as states can be created, updated, and deleted. In this case, we use
CouchDB29 as the basis for the World State, which is also the default option
from Fabric. In this section, we will analyze the way we store the data and
the structure they have inside the World State to serve the functional
requirements. Before analyzing the structure of the data we store, we should
mention that each type of data has a unique id because the World State
consists of a key-value pair. In contrast, the management and creation of
the structures is done by the corresponding smart contracts that will be
analyzed in another section. Below is the structure of all the data we use:

● DID Documents: as mentioned in the previous section, it consists of
the elements id, controller, and public key.

Figure 4.10: DID Example

● OpenAPI Descriptions: According to the concept of the system, each
device has its OpenAPI description. In addition, the specific structure
has the field description, which stores the full description of the
device, and the field model, which stores the model of the device. The
JSON that describes this structure consists of the id field, a string of
the form {DID}_openapi. In this way, we create a unique id reason for
the uniqueness of the DID, which is easy to retrieve every time
someone requests the description of the device.

29 https://couchdb.apache.org/
28 https://kafka.apache.org/

69

● Transactions: In this structure, the user's billing is stored based on
his use of a specific device. It consists of the following fields:

○ id: It is of the form {user DID}_{IoT DID}_transaction. With
this form, a pair of the user and the device from which he
requests information is created and is the unique reason for the
uniqueness of the 2 DIDs. It is also easy to search once we know
the 2 DIDs.

○ DID: is the DID of the user who created the request to retrieve a
value from the specific sensor.

○ iotId: It is the device's DID that gave its data to the user.
○ NumberofTrx: It is the number that shows how many times the

user used the sensors. For example, if a user calls the REST
endpoint GET property/temperature of a temperature sensor,
then the NumberofTrx number will increase by one. It is worth
noting that if someone subscribes to a device, this number
increases by one.

○ Value: It is the value that defines the type of transaction that
took place. The two types are [subscription, transaction]

Figure 4.11: Example of a Transaction object.

● Current Data: It is the data that shows the real-time value that the
sensor has sent to the system, whether it is a change in a property or
an action. The location of the sensor is also stored in this structure. In
more detail, the structure consists of the following fields:

● id: It is the unique identifier of the structure and has the format
{DID}_data. {DID} is the DID of the device.

● location_x: It is the global coordinate x for the position of the
sensor.

● location_y: It is the global coordinate y for the position of the
sensor.

● properties: It is the list of properties of a device (a device
doesn't need to have only one property). The properties consist
of two basic characteristics from the id, e.g., temperature, and
the values , which consist of the current values of the sensor

70

and the timestamp of the moment they were last updated. An
example of a temperature property is:
{

"id":"temperature",
"values":{

"temp":22,
"timestamp":"2015-06-14T14:30:00.000Z"

}
}

● actions: The specific field follows the same philosophy since it
stores a device's actions. The di�erence in actions is that in
addition to the id, values, and timestamp, they also consist of
the status field that shows the status of the action. Example of
an action:
{

"id":"233",
"value":{

"delay":50,
"mode":"debug"

},
"status":"executing",
"timestamp":"2015-06-14T14:30:00.000Z"

}

Figure 4.12: Example of a Current Data object.

71

● Aggregate Data: As mentioned in chapter 3, statistical data shows the
maximum/minimum/sum of a property of a sensor concerning
di�erent types of periods such as a month, a day, and an hour. In
more detail, the structure consists of the following fields:

○ id : It is the unique identifier of the structure created to describe
the aggregated data for the specific type of time duration. The
format describes the id

○ {IoT DID}_{property name}_{aggregated
period}_{timestamp}

○ Where {IoT DID} is the DID of the device, {property name} is
the property we want to request, such as temperature,
{aggregated period} describes the period we want to report that
the specific structure shows (hours/day/month). In contrast,
{timestamp} shows the time when the specific structure was
created. {timestamp} depends on {aggregated period} because
if {aggregated period} has the value hours then {timestamp}
has the value 2022-03-12T22 if it is day it has the value
2022-03-12 while if it has the value month then {timestamp} is
2022-03.

○ max_properties: As its name states, it keeps the maximum
value of the sensor throughout its operation. For example, if the
temperature sensor has sent the values 40, 35, and 22, it will
keep the value 40.

○ min_properties: Keeps the minimum value of the sensor
throughout its operation.

○ sum_properties: Holds the sum of all values sent by the sensor.
○ dateFrom: The value indicates the beginning of the time field to

which the structure belongs. For example, if the value was
entered into the system at 2022-03-12T22:30:00 and the
{aggregated period} is hours, the specific field will show
2022-03-12T22.

○ dateTo: Correspondingly, as above, it shows the end of the field
to which the structure belongs. For example, if the value was
entered into the system at 2022-03-12T22:30:00 and the
{aggregated period} is hours, then the specific field will show
2022-03-12T23.

● Subscriptions: This structure stores developer subscriptions made to
sensors. It consists of the following fields:

72

○ id : This field follows the id logic of the OpenAPI description.
That is, its form is of the form {DID}_subscriptions with {DID}
denoting the identifier of the device.

○ subs: Which field is a table consisting of other JSON of the
format id (the DID of the developer), type (subscription type,
e.g., webhook), resource (in which property the user
subscribed), e.g.,/properties/temperature), callback URL (
which is the URL that the developer has declared to receive
feedback from each change made to the sensor).

Figure 4.13: Example of a Subscription object.

4.3 Implementation Of Smart Contracts

From a developer's perspective, a smart contract and the ledger form the
heart of a Hyperledger Fabric blockchain system. Whereas a ledger holds
facts about the current and historical state of a set of business objects, a
smart contract defines the executable logic that generates new facts that are
added to the ledger. To create smart contracts, we must define a common
set of contracts covering common terms, data, rules, concept definitions,
and processes. Taken together, these contracts lay out the business model
that governs all of the interactions between transacting parties. We can turn
these contracts into executable programs – known in the industry as smart
contracts – to open up a wide variety of new possibilities. We have separated
the smart contracts we created into three categories according to the
business rules. The three categories are as follows:

73

● Smart contracts deal with the retrieval/updating of system
information such as properties, action, location, subscriptions,
OpenAPI descriptions, transactions, and aggregated data of
applications.

● The smart contracts that deal with the control of the
information(properties & actions updates) sent by the devices to the
system must be checked if they are correct according to the
specifications of each device.

● The smart contracts deal with the retrieval and creation of
Decentralized Identifiers.

4.3.1 Smart Contracts for IoT security
An essential part of the implementation we present is the automated
security we o�er when a device sends its information to the system. As it
has been emphasized, to write information on the blockchain, it must be
done through a smart contract. Taking advantage of this logic, we can
define di�erent types of smart contracts with sensors' values as an
argument and check if these values are correct according to the "terms" of
the contract. Three smart contracts are currently installed on the blockchain
and implement methods that control device prices and are responsible for
the system's security from malicious devices. In more detail, the three
smart contracts are as follows:

● min_max_value: The specific smart contract consists of 3 methods
the min_value, the max_value, and the min_max_value.

○ min_value: The specific method has as a parameter the value of
the sensor that it sends to the system, while it also accepts a
limit as a second parameter. Then the method checks if the
value is smaller than the value of the limit given to it as input; if
it is, then it returns true; else, it returns false. We use this
method's answer to decide whether the information should be
written to the blockchain or not. When the answer is true, then
the information is invalid.

○ max_value: The specific method is similar to the one above,
with the only di�erence that it checks if the value given by the
sensor is greater than the limit also given as a parameter. If the
value is greater, it will return true; if it is not, it will return false.
We use this method's answer to decide whether the information
should be written to the blockchain or not. When the answer is
true, then the information is invalid.

74

○ min_max_value: This method uses the previous two methods.
It has three parameters, one is the value of the sensor, and the
other 2 are the min/max limits. Then it calls the other two
functions with the min and max limits, respectively. If one of
the 2 returns true, it will also return true; otherwise, it will
return false. When the answer is true, the information is invalid
as it is easy to understand according to the two functions above.

● payload_frequency: This smart contract aims to check if a device
sends too frequent requests (which is sometimes a malicious action
by the device). The contract has a method:

○ check_freq: The method has three parameters; the first 2 are
timestamps, the first being the timestamp when the device sent
the new value, while the 2nd was the timestamp of the most
recent value sent by the device. The third parameter is time in
milliseconds. If the subtraction of the two timestamps gives a
number smaller than that of the 3rd parameter, then the
function returns true, and the information is considered
malicious.

● payload_size: With this smart contract, we check if the size of the
information sent by the device is larger than allowed. The contract
has a method:

○ check_size: The method has two parameters, one is the size (in
bytes) of the value sent by the device, and the other is the limit.
If the size is greater than the limit, then it returns true. The
information is invalid and will not be saved when the answer is
true.

Finally, it is worth noting that in the blockchain, we can add other smart
contracts that will check other types of properties/actions according to the
requirements of the sensors that will be added to the system. Smart
contracts can currently only be added by the blockchain admin.

4.3.2 Smart Contracts for Data storage
As mentioned above, the specific smart contracts deal with the
retrieval/updating of system information. Specifically, there are three smart
contracts, each of which processes one or more data types. In more detail,
each smart contract will be analyzed below:

● aggregated-data-contract: This smart contract implements the
methods we need to create the aggregated data or retrieve it according

75

to the endpoints of the aggregate data service. More specifically, the
methods implemented by the specific contract are:

○ createAggregateData: The parameters we give to this function
are the DID of the sensor, the value of the property of the
sensor, and the property's name. Then the 3 di�erent ids are
created based on the format {IoT DID}_{property
name}_{aggregated period}_{timestamp} for each di�erent
aggregated period (hours/day/month). If the id exists, it
updates the fields max_properties, min_properties,
sum_properties, avg_properties with the property's new value.
If the id does not exist, then it creates a new structure with this
id and initializes the max_properties, min_properties,
sum_properties, avg_properties fields, and additionally
initializes the dateFrom and dateTo fields.

○ readAggregateData: The parameters we give to this function are
the DID of the sensor, property name, aggregated period
(hours/day/month), aggregate method, dateFrom, dateTo.
Based on the parameters, we create one or more IDs and look
them up in the blockchain. For example if we have given
aggregated period=hours and dateFrom=2022-03-12T21:00:00
and dateTo=2022-03-12T23:00:00, then the generated ids are 2
{IoT DID}_{property name} _hours_2022-03-12T21 and {IoT
DID}_{property name}_hours_2022-03-12T23. Finally, the
value of the requested aggregate method is returned.

● transaction-contract: The specific smart contract implements the
methods we need to create transactions every time someone asks for
some system information, as mentioned in the previous section. More
specifically, the methods implemented by the specific contract are:

○ update_transaction: The parameters we give to the specific
function are the DID of the sensor, DID of the user, and the
value. Then it creates the id in the form {user DID}_{IoT
DID}_transaction. Suppose the structure with the specified id
does not exist. In that case, it creates this structure by
initializing the iotid and DID fields with the corresponding data
from the parameters and sets NumberofTrx = 1. End sets value =
transaction | subscription (the function parameter). On the
other hand, if the type structure exists, then the NumberofTrx
increases by one.

○ retrieve_transaction: The parameters of this one are a DID and
a boolean variable that indicates whether the DID is an IoT

76

device or not. If it is, it returns all the structures with the
specific identifier as iotId, with the result that a list of the
transactions of all users with this device is returned. On the
other hand, if the parameter DID is a developer DID, it will
return a list of the transactions concerning the user and all the
devices he has used.

● IoT-proxy-contract: This smart contract implements the functions
that serve the needs of the WoT proxy and its endpoints. As a result,
the specific smart contract has access to the current data, OpenAPI
devices, and Subscriptions. As mentioned earlier, the functions in
question serve the WoT proxy endpoints, for example, there are the
following functions:

○ retrieve_properties: In the specific function, we give the DID of
the sensor. Then it finds the structure with the id with the key
value {DID}_data and returns the list of properties with the
values.

○ retrieve_property: With this method we give the DID of the
sensor we want to retrieve and the property's name (e.g.,
temperature). It then finds the structure with the id with the
key value {DID}_data and returns from the property list the
property with id temperature. It then calls update_transaction
from the transaction-contract smart contract to update the
amount of use the user made to the system.

○ update_properties: With the specific method, we give the DID
and the JSON with the changes to the properties we want to
change. We also provide the details (smart contract name,
method name, and prices) for the smart contract that checks if
the prices are correct so they can be stored in the system.

○ update_property: With the specific method, we give the DID
and the JSON with the change to the property we want to
change. We also provide the details (smart contract name,
method name, and prices) for the smart contract that checks if
the price is correct so the contract can store the value in the
system. Once the smart contract that checks the value we want
is called, we store the value, while in parallel, we call the smart
contract that stores the aggregate data.

○ retrieve_actions: It follows the same logic as
retrieve_properties where we give the DID of the sensor from
which we want to retrieve the list of actions. Then it finds the
structure that has the id with the value {DID}_data and returns

77

the list of actions. It then calls update_transaction from the
transaction-contract smart contract to update the amount of
use the user made to the system.

○ retrieve_action: It follows the same logic as retrieve_property;
we give the DID of the sensor from which we want to retrieve
and the name of the action (e.g., upgrade firmware). Then it
finds the structure with the id with the value {DID}_data and
returns from the action with the id upgrade firmware with the
most recent actions from the list of actions. It then calls
update_transaction from the transaction-contract smart
contract to update the amount of use the user made to the
system.

○ retrieve_action_status: In the specific function, we give the
DID of the sensor from which we want to retrieve the name of
the action (eg, upgrade firmware) but also the id (e.g., 233) of
the action to be able to retrieve the status of the specific action.
Then it finds the structure that has the id with the value
{DID}_data and returns from the list of actions the action with
id upgradefirmware and in the list of the most recent actions, it
is selected with the id we gave it to return the status.

○ update_action: In the specific function, we give the DID of the
sensor and the name of the action (eg upgradefirmware) from
which we want to send a new action. Also, along with the
previous elements, we take the data we want to store for the
specific action in the function.

○ retrieve_model: As parameters to the function, we give the DID
of the sensor, and then it finds the structure with the id
{DID}_openapi and returns the model, which is a JSON that
describes the properties and actions that can be performed on
Things.

○ update_model: As in retrieve_model we give the DID of the
sensor. Then it finds the structure with the id {DID}_openapi
and updates the model field with the model object given as a
parameter to the function.

○ retrieve_thing: The parameters of the function are the DID of
the sensor. If the structure with the id {DID}_openapi is found,
it returns the thing description.

○ update_thing: The parameters of the function are the DID of
the sensor and the thing object. Once the structure with the id
{DID}_openapi is found, it updates the thing description field.

78

○ create_sub: The function parameters are the DID of the sensor
and the subscription object that has the subscription elements.
Then it retrieves the structure with id {DID}_subscriptions and
completes the elements mentioned in the previous section
based on the subscription object given as a parameter and
stores them in the list of subscriptions that the specific
structure has. It then calls update_transaction from the
transaction-contract smart contract to update the amount of
use the user made to the system.

○ retrieve_sub: The parameters of the function are the DID of the
sensor. Then it retrieves the structure with id
{DID}_subscriptions and returns the list of subscriptions.

○ delete_sub: The function's parameters are the DID of the
sensor and the DID of the user who has registered to the specific
sensor. Then retrieve the structure with id
{DID}_subscriptions, and from the list of subscriptions, it is
deleted with id (DID) that the user given as a parameter.

○ init_device: The parameters given to this function are the
sensor's DID and the device's coordinates. Once the DID is
given, it creates and initializes all the related structures such as
{DID}_data, {DID}_subscriptions, {DID}_openapi, and also
stores the location of the device in the {DID}_data structure.

○ retrieve_location: The parameters given to this function are the
DID of the sensor, and if the {DID}_data structure is found, it
returns the device's location.

79

Figure 4.14: Flow when a developer requests for a temperature property.

4.3.3 Smart Contract for Decentralized Identifiers
As mentioned in previous sections, each user (user/developer/infra
owner/IoT device/external application) has their wallet with its elements
such as PKI and VC. In addition, the user also has a DID Document, which is
stored in the blockchain, and its purpose is to keep the user's public key,
thus also showing its validity (if it exists in the blockchain, it cannot be
disputed). To be able to share the information of the DID Document and to
be able to satisfy the needs of the registry id service, we have implemented
the corresponding smart contract. In more detail, the smart contract is
called did-document-contract and consists of the following functions:

● createDid: It is the function that initializes and creates the DID
Document in the blockchain. The function accepts as a parameter a
DID Document object which has all the elements for the initialization
of the DID Document such as the id (DID), the controller (same DID as
id or another) and publicKey. If the function checks that there is no
other structure with the specific DID in the blockchain, it stores the
structure in the system and returns the DID Document.

● readDid: The function accepts a DID as an argument. It then searches
the blockchain for the DID, and if it finds it, then returns the DID
Document that had the DID as an id.

80

● updateDid: The function accepts a DID and a DID Document object as
an argument. Then it uses the id from the DID Document object to
search to find if the DID Document exists by calling readDid with the
id parameter. After readDid returns a DID Document, it checks if the
controller is the same as the DID given as a parameter to the function.
If this restriction is also satisfied, we replace the DID Document with
the new DID Document object given as input.

● deleteDid: The function accepts a DID as input. Then it searches the
blockchain for the DID; if it finds it, it deletes it from the blockchain.

● retrievePyblicKey: The function accepts a DID as an argument. Then it
calls readDid with the DID parameter and returns the public key from
the DID Document returned by readDid.

5. Backend Analysis & Comparisons with
related works

5.1 Backed Analysis

The infrastructure of the implemented system is in the
google cloud, a google service that allows developers to host their services.
The machine that housed the infrastructure consists of the following
characteristics:

CPU x86_64@3.8Ghz

Memory 8GB

HDD 256GB

OS ubuntu 18.04

To determine the system's performance in real conditions, the Jmeter tool
was used, which can create several simultaneous requests. Through
Jmeter30, it is possible to create them load conditions in each service of the
system separately, defining it number of requests it will be asked to serve as
well as how many of them will be executed simultaneously. Each

30 https://jmeter.apache.org/

81

experiment follows the same pattern by including 2000 requests to the
considered function of each system service, with the requests repeated each
time with a di�erent concurrency (Number of Concurrent Requests). The
metrics refer to the average service time per request and are divided into
categories according to the concurrency at which the requests were sent.
These categories are per-one, per-hundred, per-two-hundred,
per-five-hundred (For example with one-by-one synchronization the
requests are sent consecutively, with fifty-one synchronization they are
sent consecutively in groups of fifty requests).
It is also worth noting that before starting the experiments, we initialized
the blockchain, having connected to the system 10 thousand sensors with
random locations. One thousand users are connected and saved together.

5.1 Experiment 1.

Scenario: A developer searches for sensors based on a geographic area
where he wants to see which sensors belong to that area.
Services: The request is routed from the Web Application to the application
logic. The application logic routes the request to the Location Service. The
request is translated into query syntax in a smart contract that the Gateway
will call once it gets the query from the queue. Then the query goes to the
corresponding smart contract, which selects the sensors (from the
structures with the id being of the form {DID}_data) where the location_x
and location_y values are within the geographic area given as input. The
smart contract then returns a list of sensors that meet the specified criteria.
Details: The request considered in the experiment is about finding sensors
that belong to a specific range of geographic coordinates. We requested over
10 thousand sensors, and 3000 of them meet the criteria for the input we
gave.

REST: GET /location/
{
“min_x” : 34.91,
“max_x” : 35.67,
“min_y” : 26.33,
“max_y” : 23.51,
}

82

5.2 Experiment 2.

Scenario: A developer searches for aggregate temperature sensor data for a
24-hour period, wanting to know the maximum temperature every hour
within this interval.
Services: The request is routed from the Web Application to the application
logic. The application logic routes the request to the Aggregate Data Service.
The request is translated into query syntax in a smart contract that the
Gateway will call once it gets the query from the queue. Then the query goes
to the corresponding smart contract which selects the structures with the
form {IoT DID}_{property name}_{aggregated period}_{timestamp}
where {property name}= temperature ,{aggregated period}=hours and
{timestamp} takes the values from 2022-03-12T00 ... to 2022-03-12T23 .
Then the smart contract returns a list of the maximum temperature values
 stored in the max_value field.
Details: The request considered in the experiment concerns finding
maximum temperature values within 24 hours. We requested data collected
by a sensor for two days.
REST: GET /aggregate-data/{sensor_id}/temperature
{ “method”: [“max”],
“period”:”hours”,
“dateFrom”: “2022-03-12T00:00:00”,
“dateTo”:”2022-03-12T23:00:00”
}

5.3 Experiment 3.

Scenario: A developer searches for the latest price of a temperature sensor.
Services: The request is routed from the Web Application to the application
logic. The application logic routes the request to the WoT proxy. The request
is translated into query syntax in a smart contract that the Gateway will call
once it gets the query from the queue. Then the query goes to the
corresponding smart contract (iot-proxy-contract), which selects the
structure with the format {IoT DID}_data. Then the smart contract returns
the value of the property requested by the user (in this case, temperatures).

83

Details: The request considered in the experiment is to find the most recent
temperature value of the requested sensor. We requested over 10 thousand
sensors that are connected to the system.
REST: GET /{sensor_id}/properties/temperature

5.4 Experiment 4.

Scenario: A user (developer) subscribes to a sensor to be able to receive
information on every change in the sensor's values.
Services: The request is routed from the Web Application to the application
logic. The application logic routes the request to the WoT proxy. The request
is translated into query syntax in a smart contract that the Gateway will call
once it gets the query from the queue. Then the query goes to the
corresponding smart contract (iot-proxy-contract), which selects the
structure with the format {IoT DID}_subscriptions. Then the smart
contract adds to the subs field (it is a list of records) the new record sent by
the user.
Details: The request considered in the experiment is about creating a
developer account on a specific device. We requested over 10 thousand
sensors that are connected to the system.
REST: POST /{sensor_id}/subscriptions
{

"id":"did:iBot:dfdsfejkfuan293hb4ksh4",
"type":"webhook",
"resource":"/properties/temperature",

"callbackUrl":"http://www.compose-project.eu/so/ServiceObject-12321321
3/callback"
}

5.5 Experiment 5.

Scenario: A sensor wants to send information to the system to update its
value.
Services: The request is routed by the WoT proxy. The request is translated
into query syntax in a smart contract that the Gateway will call once it gets

84

the query from the queue. Then the query goes to the corresponding smart
contract (iot-proxy-contract), which sends the information to the smart
contract (min_max_value), which checks the value of the sensor if it is
valid. Then if the value is valid, the smart contract (iot-proxy-contract)
finds the structure with the form {IoT DID}_data and updates the value of
the properties field while simultaneously sending the value to the smart
contract (aggregated-data-contract) to update the aggregated data.
Details: The request considered in the experiment concerns updating the
value of recent properties of a device. We requested over 10 thousand
sensors that are connected to the system.
REST: PUT /{sensor_id}/properties/temperature
{

"smartContractDefinition":{
"name":"min_max_value",
"function": "min_value",
"params":[

"-10"
]

},
"values":[

{
"temp": 25

}
]

}

5.6 Experiment 6.

Scenario: A user wants to register in the system and create the necessary
elements to connect to the system in the future.
Services: The request is routed from the Web Application to the application
logic. The application logic routes the request to the Registry Id service. The
request is translated into query syntax in a smart contract that the Gateway
will call once it gets the query from the queue. Then the query goes to the
corresponding smart contract (did-document-contract). Then it creates the
corresponding structure and stores it in the system.
Details: The request considered in the experiment concerns the creation of a
DID Document for a builder. We requested over 1000 users who are
connected to the system.
REST: POST /register

85

{
“role”: “DEVELOPER”,
“public_key”:”xsadfe93n3sfdmao3sj9j5”
“passphrase”: “1234”,
}

Before reporting the results of the experiments, it should be emphasized
that the experiments can be divided into three main categories. These
categories are as follows:

● The category [Write] is where the experiments write some
information to the blockchain, such as experiments 4,5, and 6. The
grouping is done as long as we have the same number of data in all

three experiments and the information is written in the same
database (blockchain), then the results are almost the same.

Figure 5.1: Time diagram for write operations.

● The category [Read] is where the experiments read some information
from the blockchain, such as experiment 3.

86

Figure 5.2: Time diagram for read operations.

● The category [Range Query] is the category that the experiments that
read and return a volume of data that meets some criteria, such as

experiments 1 and 2. Also, the grouping is done as long as we have the
same number of data in both cases.

Figure 5.3: Time diagram for range query operations.

87

5.2 Comparisons with related works
The current implementation, as mentioned earlier, is an attempt to create a
platform that tries to preserve and protect the data of IoT devices and the
users who preserve the platform. To achieve something like this, we used
blockchain technology and already existing technologies used in IoT
frameworks & platforms. In this section, we compare the system presented
in chapters 3 & 4 with related works starting with the use of blockchain in
conjunction with IoT presented in section 2.9. This particular comparison is
divided into six parts. It is worth emphasizing that the system that we
present was created based on the functional and non-functional
requirements presented in section 3.2. None of the related works supports
all these requirements together.

User / IoT protection
As previously mentioned, iBot system uses DID and VC to secure users/IoT
and their data/property. As we can see in IoTex, the users/devices store their
connection data in DIDs, so no centralized base has this data. The paper [10]
mentions that the users have a public and private key where the blockchain
can recognize if the user's request is valid based on the specific public key.
The devices interacting with the system create a public and private key pair
with the corresponding logic. The other two works [3] and [9] do not
mention how they manage the information of their users/devices.

User Storage
As is logical, a complementary role in protecting users/devices is also where
the respective information is stored. In our proposal, we use DID and VC, as
previously mentioned. Based on this, VCs are stored locally in a wallet, while
DIDs are stored on the blockchain. With this logic, the DIDs used in IoTeX
are also stored in the blockchain. Then in the following works [3],[9],[10]
that use only one wallet with a public and private key, the private key is
stored locally in a wallet while the public key is known throughout the
blockchain.

Data protection
One of the most basic criteria for comparing architectures is the protection
that each implementation provides for the data of the devices connected to

88

it. In our proposal, the data is protected within the smart contracts since
access to the data is made only through the calls of the smart contracts.
There is also the possibility of checking the value of a device first written in
the system. In contrast, IoTeX provides a kind of encryption to protect the
data. On the other hand, the works [10], [9], [3] provide security to the data
of the devices through smart contracts, so the smart contracts are
responsible for deciding whether the requester can have access to the data
they are requesting. In work [3], data encryption is supported as an
additional security layer.

Data storage
Equally important in the comparison is where the data produced by the
devices is stored. In the present implementation, the data is stored in the
blockchain, while data stored in IoTeX have a corresponding treatment. The
work [3] has stored the devices' data in the cloud using the blockchain to
access the data and not as a data storage. Correspondingly, the work [9] has
the data stored in a local network and, like [3], uses the blockchain to access
the data. A special case is a work [10] that stores the data in a Distributed
Hash Table, thus keeping the decentralized character.

Indexing
Based on the previous part (Data storage), an essential element of
comparison is whether the storage part can provide a function for indexing
the data. In iBot we use Hyperledger Fabric which uses CouchDB to store
system data. Since CouchDB supports data indexing, we can create indexes
for the data produced in iBot. On the part of IoTeX, it can support data
indexing through The Graph31 protocol. Then the work [10] uses the
Distributed Hash Table to store the data where it is not mentioned in the
work if indexing is supported. The work [3] stores the data in the cloud at
the cloud-based platform FIWARE32 (consists of 2 main parts IoT Edge and
IoT backend) so it can use data indexing. Finally, in work [9], the local
network that stores the data is an SQLite33 database that also supports data
indexing.

Usability
In this part, we compare the ease of connecting devices to each
implementation. In our implementation, OpenAPI is used to describe the

33 https://www.sqlite.org/index.html
32 https://www.fiware.org/
31 https://thegraph.com/en/

89

devices. In this way, all devices are treated as services, having their API, so it
becomes very easy for a developer to develop applications using the devices
as services in his application. The rest of the implementations do not
support such functionality. IoTeX supports connection with only two
devices, such as Pebble & Ucam. At the same time, works [10], [9], and [3]
support the registration of devices in each system to be able to send
information to the system. A general way of managing the devices'
information in each system is not supported so that a developer can use the
information in a common way.

Subscriptions
As in the previous comparison, IoTeX and the rest of the works [10], [9], [3]
do not support the possibility of subscription to any device, with the result
that no user/developer can be informed in real-time about the changes and
the data sent by the devices. In contrast to all these, our implementation has
this functionality.

Table 5.1: Comparison system/features.

User / IoT
protection

Data
Protection

Usability Data
Storage

Indexing User
Storage

Subscription
s

iBoT DID & VC via smart
contract.
Also
checks the
value of the
property.

Uses
OpenAPI
to behave
on
devices as
an API
service.

Blockchain Yes Hybrid:
Local (VC)
&
Blockchain
(DID
Documents
)

Yes

IoTeX DID Only
encrypted
data
without
extra check

Only 2 IoT
devices
can
connect to
the
network

Blockchain Yes,
through
The
Graph
protocol

Blockchain No

[10] From
blockchain

via smart
contract
check if the
data from a
device is
accessible
from
requester

Τhere is
no
common
way to
gain
access to
any
device.

Distributed
Hash
Table

N/A Blockchain No

Sash [3] N/A via smart
contract
check if the
data from a
device is
accessible
from the

Τhere is
no
common
way to
gain
access to
any

Cloud
(FIWARE
cloud-base
d platform)

Yes Blockchain No

90

requester,
encrypted
data

device.

[9] N/A via smart
contract
check if the
data from a
device is
accessible
from the
requester

There is
no
common
way to
gain
access to
any
device.

At Local
Network
(SQLite)

Yes Blockchain No

Table 5.2: Comparisons between systems/works.

6. Conclusion and Future Work

6.1 Conclusion
The use of Service-Oriented Architecture and specifically RESTful
services greatly facilitated communication between services
and, thus, the planning of the services orchestration structure (App
logic). A great advantage o�ered by the architecture was flexibility in
using di�erent programming languages for each system's function and ease
of intervention modifications of individual services without a�ecting the
overall system.
In addition, the development of the architecture with the help of
Decentralized technologies such as blockchain, Decentralized Identifiers,
and Verifiable Credentials helped us make our architecture more secure for
data protection cases, users, and external applications created by
developers. The blockchain as a technology has no single-point failure, and
the system always remains available even if a peer is down.

Evaluating the architecture, we could list the following positives o�ered by
the combination of the above technologies:

1. Users' identities cannot be exposed en masse since the information
about their identity is stored only in their wallets and not in a
database. The architecture has 2 factors for authentication and
authorization, one factor is the wallet and the other one is the
passphrase. A user needs wallet and passphrase to login at system.

2. In the blockchain, no one else can connect and send information other
than the gateway that signs that it sends information with its wallet.

3. Blockchain also o�ers us the security that every transaction is
recorded and cannot be changed. It helps our implementation by
o�ering validity, that every use of the system by a user is recorded
and cannot be disputed.

4. A very powerful feature is storing OpenAPI descriptions for devices.
This feature allows developers to read sensor descriptions and

91

interact with the sensors as web services by connecting the WoT
proxy.

5. Through the various smart contracts, we can simultaneously check if
the value that sends(updates a property/action) a device is correct or
not. In other circumstances, if we did not use the blockchain, we
would have to create a microservice for each type of check, which
would act as an intermediary between the corresponding API and the
database. This procedure would be time-consuming, and every time
we add a new check (a new microservice or update the existing one),
we would have to update the existing services and connect to the new
one. In contrast to the current implementation, we must create smart
contracts and install them on the blockchain. Any device that wants to
use a smart contract to check its properties/actions declares it in its
description and in the payload it provides.

As is logical, there is no perfect architecture without
negatives/disadvantages. For this reason, it is worth referring to these
weaknesses in more detail. Below are the following negatives:

1. It was mentioned above about the positives o�ered by each user
having their wallet so that the user's information is not exposed on
any database or service. Beyond the positives it o�ers, this
functionality for the user to be the owner of his credentials also
contains certain weaknesses. The most significant disadvantage is
that the credentials depend on how secure the user's wallet is.
However, many implementations of di�erent wallets, either separate
hardware or web browser extensions, keep the information encrypted
and di�cult to recover from a third party.

2. Another weakness of the system is that there are too many types of
devices, each sending its own type of information. Based on this
diversity, it isn't easy to cover all scenarios for the security of all these
types of information with smart contracts.

3. As a new technology, blockchain has a lot of room for improvement.
One of them is the processing times of transactions (importing or
retrieving information from the system) which are currently slower
than current databases (such as Redis, MongoDB, etc.). Also, the
implementation method of smart contracts plays an important role,
as happens with the code of any architecture. The downside of slow
transactions is trying to be countered by too many blockchain
implementations as more and more are created or improved over
time.

92

6.2 Future Work

Implementing the system as designed can finally satisfy the specifications
set (Functional - non-functional system requirements, Chapter 3),
achieving the development of a fully scalable IOT platform for device
management and application creation following the architecture model's
three levels. However, the work as it was prepared within a certain time
frame is inevitable to have some weaknesses, which will be described above,
accompanied by possible suggestions for their solution.

An improvement that the system accepts is searching for a better
blockchain infrastructure or creating a better infrastructure using the
Hyperledger Fabric. Some studies show that with a proper setup of the
infrastructure of a Fabric system, 20000 transactions per second can be
supported. At the same time, with the creation of better smart contracts,
reducing the complexity, we can achieve very good results of transactions
per seconds measurements. While another study[7] proposes the
PBFT-DPOC Consensus Algorithm and achieves 10000 transactions per
second(tps).

In addition, after the analysis of some papers mentioned in chapter 2 but
also in conjunction with some components of the FIWARE34 suite, such as
the Orion35 context broker, Cygnus36 and STH COMET37 we can replace some
objects that are stored in the blockchain but store them o�-chain in some
database that will be connected to these services. With this logic, each
infrastructure owner will have a node consisting of one WoT Proxy instance,
one Orion context broker instance, Cygnus, and STH COMET. In each
instance, there will be information about the infrastructure owner's
devices, such as the subscriptions, current data & OpenAPI description, and
the aggregated and raw historical data. Using this architecture, the
blockchain will have the information of the users (DID Document) as
analyzed in this work. Still, it will also have smart contracts for checking the
information of the devices before they are written to the node described
previously. In addition, users will send queries back to the blockchain,
which will be selected from which node will request the information to
answer the query. We will achieve that the huge amount of information that

37 https://fiware-sth-comet.readthedocs.io/en/latest/
36 https://fiware-cygnus.readthedocs.io/en/latest/
35 https://fiware-orion.readthedocs.io/en/master/
34 https://www.fiware.org/

93

the devices continuously produce is not stored in the blockchain but is
stored and distributed. The blockchain will act as an intermediary that will
select the correct node where the information is located each time. The
architecture is presented in more detail in the image:

Figure 6.1: Future Architecture.

Finally, all requests between system services are implemented with the
use of the HTTP protocol. Significant improvement in its security area
the system is the communication protocol to change to HTTPS38 as it is -
by its architecture- a more secure protocol for transmission
"sensitive" information (Authorization tokens, Master keys, etc.).

38 https://el.wikipedia.org/wiki/HTTPS

94

7. Bibliography
[1] Xenofon Koundourakis, Euripides G.M.Petrakis, ed. n.d. “iXen:

context-driven service oriented architecture for the internet of things in the

cloud.”

https://www.sciencedirect.com/science/article/pii/S1877050920304488.

[2] Aimilios Tzavaras; Nikolaos Mainas; Fotios Bouraimis; Euripides G.M.

Petrakis, ed. n.d. “OpenAPI Thing Descriptions for the Web of Things.”

https://ieeexplore.ieee.org/document/9643304.

[3] Hien Thi Thu Truong, Miguel Almeida, Ghassan Karame, Claudio

Soriente, ed. n.d. “Towards Secure and Decentralized Sharing of IoT Data.”

https://ieeexplore.ieee.org/document/8946129.

[4] “Building the Connected World.” IoTeX. https://iotex.io/research.

[5] Islam M. Momtaz A. Sadek; Muhammed Ilyas. n.d. “Securing IoT Devices

using Blockchain Concept.” https://ieeexplore.ieee.org/document/9659792.

[6] K. M. Giannoutakis, G. Spathoulas, C. K. Filelis-Papadopoulos, A. Collen,

M. Anagnostopoulos, K. Votis, N. A. Nijdam. n.d. “A Blockchain Solution for

Enhancing Cybersecurity Defence of IoT.”

https://ieeexplore.ieee.org/document/9284690.

[7] Shitang Yu; Kun Lv; Zhou Shao; Yingcheng Guo; Jun Zou; Bo Zhang. n.d.

“A High Performance Blockchain Platform for Intelligent Devices.”

https://ieeexplore.ieee.org/document/8606017.

[8] Vagif A. Gasimov; Shahla Kh. Aliyeva. n.d. “Using blockchain technology

to ensure security in the cloud and IoT environment.”

https://ieeexplore.ieee.org/document/9461397.

95

[9] MD Azharul Islam; Sanjay K. Madria. n.d. “A Permissioned Blockchain

based Access Control System for IOT.”

https://ieeexplore.ieee.org/document/8946172.

[10] Ruinian Li , Tianyi Song, Bo Mei, Hong Li , Xiuzhen Cheng. n.d.

“Blockchain for Large-Scale Internet of Things Data Storage and

Protection.” https://ieeexplore.ieee.org/document/8404099.

[11] M. F. Kaashoek and D. R. Karger. n.d. “Koorde: A simple degree

optimal distributed hash table.”

https://www.researchgate.net/publication/2942766_Koorde_A_Sim

ple_Degree-Optimal_Distributed_Hash_Table.

96

