
Technical University of Crete
School of Electrical & Computer Engineering

DIPLOMA THESIS

Vasileios Papadopoulos

Flow-Based Programming support with
OpenAPI in the Web of Things

Supervisor: Euripides G.M. Petrakis, Professor, TUC

Examination Committee

Euripides Petrakis
Professor

Stelios Sotiriadis
Associate Professor

Georgios Chalkiadakis
Associate Professor

Abstract

In the Internet of Things (IoT) people, devices and other physical objects are
connected to a common network, providing services and exchanging data with
one another. However, the IoT brings in complexities that stem from the fact
that different protocols and standards coexist in the network, as the number
of the connected Things increases. The Web of Things, or WoT, aims to ex-
tend the Internet of Things by eliminating the difficulty in communication and
management of all different objects. In this paradigm, each resource exposes
its functionalities as a Web service, therefore making Things a part of the
web. Using standards such as REST, HTTP and URIs, the WoT concept at-
tempts to deal with the fragmentation of technologies in the IoT and facilitate
the interoperability between Things. In this work a system is proposed called
Mashup of OpenAPI Nodes (MoON). MoON suggests a way of overcoming the
difficulties in communication and compatibility utilizing OpenAPI. Using the
OpenAPI Specification (OAS), Things in a WoT or IoT architecture can be de-
scribed in detail and become readable and accessible by both humans and other
Things. Due to the fact that every Thing is described according to the OAS,
a uniform representation for all Things is achieved. Furthermore, in order to
combine Things in a way that allows application composition, an efficient plat-
form that will utilize the OpenAPI descriptions is necessary. MoON includes a
mashup service for a Web of Things environment. Mashup is defined as a way
to compose a new service from existing services. In this architecture, every
object is described using OpenAPI. The result is an application that consists
of a set of objects. A mechanism is introduced to generate OpenAPI descrip-
tions for the produced applications, containing information about all Things
that comprise them. The application creation process is based on Flow Based
Programming tools, such as Node-RED. The generated OpenAPI Description
of the applications adds additional flexibility in the application creation pro-
cess, since all services, things and applications are uniformly represented using
OAS and, additionally, they can be combined in any meaningful way to form
new applications. This description can, also, be an input to a more complex
application of a bigger scale. For instance, a smart neighbourhood’s OpenAPI
can be a part of a smart city application. The process is facilitated by incor-
porating the visual representation and code generation tool of OpenAPI with
those of a flow programming engine (i.e Node Red).

Keywords

IoT, WoT, Mashup, OpenAPI, Flow Based Programming, Thing Description, Service

1

Oriented Architecture, OpenAPI Generator, Node-RED, REST

2

Περίληψη

Στο Διαδίκτυο των Πραγμάτων (ΔτΠ) οι άνθρωποι, οι συσκευές και άλλα αντι-

κείμενα, είναι συνδεδεμένα σε ένα κοινό δίκτυο, παρέχοντας υπηρεσίες και ανταλ-

λάσσοντας δεδομένα μεταξύ τους. Το ΔτΠ, επιφέρει πολυπλοκότητα, η οποία

προκύπτει από τα διάφορα πρωτόκολλα και τους τρόπους επικοινωνίας, καθώς ο

αριθμός των συνδεδεμένων συσκευών αυξάνεται. Ο Ιστός των Πραγμάτων (ΙτΠ),

επεκτείνει το Διαδίκτυο των Πραγμάτων, εκμηδενίζοντας τις δυσκολίες όσον αφο-

ρά την επικοινωνία των συσκευών και τη διαχείριση των διαφόρων αντικειμένων.

Σε αυτό το μοντέλο, οι πόροι αποκαλύπτουν τις ιδιότητές τους ως υπηρεσίες ιστο-

ύ, ενσωματώνοντας, έτσι, τα Πράγματα στον ιστό. Χρησιμοποιώντας τεχνολογίες

όπως REST, HTTP και URIs, ο Ιστός των Πραγμάτων στοχεύει στην αντιμε-
τώπιση της ετερογένειας του Διαδικτύου των Πραγμάτων και στην διευκόλυνση

της διαλειτουργικότητας. Η συγκεκριμένη εργασία, προτείνει ένα σύστημα που

ονομάζεται Mashup of OpenAPI Nodes (MoON). Το MoON παρουσιάζει έναν
τρόπο να ξεπεραστούν οι δυσκολίες που αφορούν την επικοινωνία και τη συμβα-

τότητα αξιοποιώντας το OpenAPI. Χρησιμοποιώντας το OpenAPI Specification
(OAS), τα πράγματα μίας αρχιτεκτονικής ΔτΠ ή ΙτΠ, μπορούν να περιγραφούν
λεπτομερώς και εξασφαλίζεται η κατανόηση και η αλληλεπίδραση τόσο από αν-

θρώπους, όσο και από άλλα Πράγματα. Εξαιτίας του γεγονότος ότι κάθε Πράγ-

μα περιγράφεται σύμφωνα με το OAS , μπορεί να επιτευχθεί ομοιομορφία κατά
την αναπαράστασή τους. Προκύπτει, ακόμα, η ανάγκη για μία αποτελεσματική

πλατφόρμα, στην οποία αξιοποιούνται οι περιγραφές OpenAPI για το συνδυασμό
Πραγμάτων με τέτοιο τρόπο ώστε να συνθέτονται εφαρμογές. Στην παρούσα ερ-

γασία, παρουσιάζεται μια αρχιτεκτονική ενός συστήματος σύνθεσης εφαρμογών

στο περιβάλλον του Ιστού των Πραγμάτων. Ως σύνθεση εφαρμογών ορίζεται η

διαδικασία κατά την οποία ο συνδυασμός υπαρχόντων αντικειμένων ή υπηρεσιών

(Πραγμάτων), έχει ως αποτέλεσμα τη δημιουργία νέων. Στη συγκεκριμμένη αρ-

χιτεκτονική, κάθε Πράγμα συνοδεύεται απο την αντίστοιχη περιγραφή OpenAPI.
Το αποτέλεσμα της διαδικασίας αυτής είναι μια εφαρμογή η οποία αποτελείται α-

πό ένα σύνολο αντικειμένων. Επιπρόσθετα, παρουσιάζεται ένας μηχανισμός, με

τον ποίο μπορεί να παραχθεί περιγραφή OpenAPI για κάθε νέα εφαρμογή που συ-
ντίθεται και περιέχει πληροφορία που αφορά όλα τα Πράγματα που την αποτελούν.

Η σύνθεση εφαρμογών βασίζεται σε εργαλεία Προγραμματισμού Ροής, όπως το

Node-RED. Η παραγόμενη περιγραφή OpenAPI των εφαρμογών έχει στόχο την
αύξηση της ευελιξίας δημιουργίας τους και την κατανόηση της λειτουργεικότητας

τους, μέσω των διαφόρων εργαλείων που παρέχει το OpenAPI. Η περιγραφή αυτή
μπορεί, επίσης, να χρησιμοποιηθεί ως είσοδος και να αποτελέσει ένα μέρος μίας

πιο σύνθετης εφαρμογής μεγαλύτερης κλίμακας. Για παράδειγμα, η περιγραφή O-
penAPI μίας έξυπνης γειτονιάς μπορεί να είναι μέρος μίας εφαρμογής που αφορά
την έξυπνη πόλη.

3

Λέξεις Κλειδιά.

Διαδίκτυο των Πραγμάτων, Ιστός των Πραγμάτων, Σύνθεση Εφαρμογών, OpenAPI,
Προγραμματισμός με χρήση ροών, Περιγραφή Πραγμάτων, Υπηρεσιοκεντρική Αρχιτε-

κτονική, Παραγωγή OpenAPI, Node-RED, REST

4

Acknowledgements

Foremost, I would like to express my sincere gratitude to my thesis supervisor, Pro-
fessor Euripides Petrakis, for his continuous support of my thesis. His constant
guidance helped me at every stage of this work. Moreover, I wish to show my ap-
preciation to all the laboratory members for the support and insight that I received.
Last but not least, I am thankful to my family and friends for their unfailing moral
support and continuous encouragement.

5

Contents

Abstract 1

Περίληψη 3

Acknowledgements 5

1 Introduction 8
1.1 Scope of Thesis . 8

1.1.1 Internet of Things & Web of Things 8
1.1.2 Problem Definition . 10

1.2 Proposed Solution . 10
1.3 Contributions . 10
1.4 Thesis Outline . 11

2 Background and Related Work 12
2.1 Infrastructure and Tools . 12

2.1.1 Web of Things & Web of Things Architecture 12
2.1.2 RESTful web services . 13
2.1.3 OpenAPI . 13
2.1.4 Flow Based Programming . 16
2.1.5 Node-RED . 17
2.1.6 Extra Nodes . 18

2.1.6.1 openapi-red Extra Node 18
2.1.6.2 MongoDB Extra Node 19

2.1.7 Publish/Subscribe Service . 20
2.1.8 Service-Oriented Architecture 21
2.1.9 OpenAPI Thing Template . 21
2.1.10 OpenAPI Thing Generator . 22
2.1.11 Web Thing Model service (WTMs) 24

2.2 Related Work . 24
2.2.1 loT Mashups with the WoTKit 24
2.2.2 IoT Mashup as a Service: Cloud-based Mashup Service for the

Internet of Things . 25
2.2.3 Webifying Heterogenous Internet of Things Devices 25
2.2.4 Comparison . 26

3 System Architecture 28
3.1 Database . 28
3.2 MoON’s Subsystems . 29
3.3 Subsystem 1: Thing insertion . 32
3.4 Subsystem 2: Application Development & Execution 32

6

3.4.1 Node-RED Output . 35
3.5 Subsystem 3: Applications OpenAPI Generator 37
3.6 The complete System Architecture 41

4 Use Case Scenario & Example Applications 45
Example 1 . 45
Example 2 . 47
Example 3 . 48
Example 4 . 49

4.1 Response Time Measurements . 53

5 Conclusion & Future Work 54
5.1 Conclusion . 54
5.2 Future Work . 55

References 56

Appendices 58

A Thing OpenAPI Documents 58

B Node-RED Output 58

C Application OpenAPI Documents 58

D User Input for the OpenAPI Generator 58

7

1 Introduction

1.1 Scope of Thesis

1.1.1 Internet of Things & Web of Things

The Internet of Things is a network of connected devices, software and other tech-
nologies. Within this network, these objects can collect, transfer and exchange data,
communicate with each other and form new services. These services can find applica-
tion in many aspects of everyday life such as health, security, agriculture, transporta-
tion etc. IoT applications that are, already, widely used, include smart lightbulbs
that can be switched on using a smartphone, smart sensors, smart thermostats and
biometric measuring smart watches with the ability to instantly inform a hospital in
case of an emergency. Moreover, by minimizing human intervention, IoT applications
reduce the cost and time needed to provide such applications. Figure 1 presents a
typical IoT architecture divided into layers. The bottom layer includes smart de-
vices, such as sensors and actuators. Fogs and gateways, also known as the network
layer, are responsible for transmitting the data collected by the devices, by connect-
ing them to other objects, servers and network devices. Additionally, a certain level
of data processing can be done in this level, for applications where speed is the most
desired parameter. The data processing required by the IoT solution takes place,
for the most part, in cloud-hosted applications. Moreover, this layer holds enough
storage for extensive quantities of data and it can provide monitoring and analytics.
A key challenge that IoT systems face, is the heterogeneity between the communi-
cation protocols of the connected devices, the data models for exchanging payloads,
and security requirements. Also, IoT applications are usually developed for specific
use cases, therefore it is difficult to extend and maintain them long-term.

The World Wide Web Consortium (W3C) [20] is an international community where
organizations cooperate with developers and the public to develop Web standards.
As proposed by the W3C, the Web of Things (WoT) concept, while preserving and
complementing existing IoT standards and solutions, strives for enabling interoper-
ability across IoT platforms and application domains. The Web of Things (WoT)
Architecture [19] is a recommendation that is based on modular building blocks that

8

work together. These building blocks are the Thing Description, Binding Templates,
Scripting API and Security and Privacy Guidelines. This work focuses on the Thing
Description, making an attempt to implement it and improve it using OpenAPI. Ob-
jects that are connected in the Web (Things) must have a Thing Description (TD).
The Thing Description is a fundamental building block of the WoT Architecture and
provides a data format for describing the metadata and network-facing interfaces of
Things. Thing Descriptions, by default, are encoded in a JSON format that also
allows JSON-LD processing. A TD instance has five main components. The first is
textual metadata about the Thing itself. The second, is a set of Interaction Affor-
dances that indicate how to interact with the Thing. The third main component is
schemas for the data exchanged with the Thing for machine-understandability. The
fourth is Security Definitions to provide metadata about the security mechanisms
that must be used for interactions. Finally the fifth component is Web links to
express any formal or informal relation to other Things or documents on the Web.

Figure 1: Layers of Internet of Things architecture

9

1.1.2 Problem Definition

As IoT systems become more prevalent, the need to standardize the technology land-
scape of Things arises. Typically, different vendors and manufacturers develop their
own unique systems, which are usually incompatible with others, applying diversi-
ties such as data formats, APIs, communication protocols and security requirements.
What is more, the process of re-using Things in new applications and handling their
APIs can become extremely complex as there can be lack of documentation. One
way of countering the aforementioned heterogeneity, is treating all Things as ser-
vices. This idea, enables Things to be discoverable and reusable, while also allowing
the developers to interact with them in a standard, predefined way. In addition to
that, there is a necessity to provide an efficient platform to combine those services
effectively as well as lessen the entry barrier to application creation in regards to
required knowledge for developers.

1.2 Proposed Solution

This work proposes a system called Mashup of OpenAPI Nodes (MoON), which is
a mashup system for IoT application generation by combining existing resources.
Mashup is the process of creating a new service by combining existing services (i.e.
Things). Flow Based Programming, is a programming paradigm that facilitates the
composition of new applications without requiring specific knowledge, as most of
the coding takes place in the background. In addition to that, while an OpenAPI
definition is capable of fully describing a Web Thing, OpenAPI Specification (OAS)
suggests a description format for REST APIs which fulfills the purpose of unifying
the representation of Things as REST services. Things described by an OpenAPI
document, follow an OpenAPI Thing Template [22] to achieve uniformity of rep-
resentation among all the different services. Additionally, there is the ability to
generate OpenAPI Descriptions for both Things and Applications, which allows for
understandability using the visual representation that SwaggerHub provides, as well
as consistency in the way that the services operate and are interacted with.

1.3 Contributions

A Mashup Service Oriented Architecture (SOA) approach is proposed that utilizes
OpenAPI descriptions and streamlines the process of creating new applications from

10

existing Things or applications. One of its components, is a mechanism that gener-
ates OpenAPI descriptions for Things. Things that have an OpenAPI description can
be treated in a common manner, as RESTful Web services. Another core component
is a Flow Based Programming tool that uses these OpenAPI descriptions to com-
pose new applications. Last but not least, an OpenAPI generator for applications is
introduced, that creates descriptions, containing information about all Things that
comprise them. Using their OpenAPI descriptions, both Things and applications
can serve as a part of a more complex application of a larger scale. For instance, an
application of a Smart Home’s energy consumption can function as a part of a Smart
City’s energy application. The descriptions of both Things and applications are ex-
tended with x-properties to add extra fields such as Geo-location in order to provide
more functionality to the users in terms of discoverability. Using MoON, a variety of
applications of different scales can be created ranging from a device-to-device level
up to a Smart City scenario. The OpenAPI generator for applications that is pro-
posed, has the advantage of not requiring any knowledge regarding OpenAPI from
the user, as the input to this mechanism is provided directly from Node-RED.

1.4 Thesis Outline

The remainder of the thesis is organized as follows.

In chapter two, background work and related technologies to this work are presented.

In chapter three, the architecture and the services that comprise the system are
analysed.

In chapter four, Use Case Scenarios of the system as well as example applications
are provided.

In chapter five, conclusions are presented and future work is suggested.

11

2 Background and Related Work

2.1 Infrastructure and Tools

2.1.1 Web of Things & Web of Things Architecture

The Web of Things (WoT) paradigm aims to unify the world of interconnected
devices over the Web. WoT suggests that Things should expose their identity and
properties on the Web so that, they can be discovered by Web search engines and
be reused in applications. Following this concept, Things become part of the web
and are able to communicate with each other over existing Web protocols, such as
HTTP, HTTPS and Websockets. Things can be represented using data-interchange
formats (JSON, XML, etc.), while their functionality is implemented using the REST
architectural style.

The Web of Things Architecture is a recommendation by W3C and proposes an
abstract architecture for the WoT. The WoT Architecture defines a model to de-
scribe a consumer’s interaction with Things and it is based on modular building
blocks that work together. These building blocks are the Thing Description, Binding
Templates, Scripting API and Security and Privacy Guidelines. Thing Description
provides a machine-readable data format for describing a Thing’s properties and it is
used to expose a Thing’s metadata on the Web, so that other Things or clients can
interact with it. Binding Templates aim to define network interfaces in Things for
IoT protocols and ecosystems. Scripting API is an optional block that enables the
implementation of the application logic of a Thing. Finally, the Security and Pri-
vacy Guidelines provide guidelines for the secure implementation and configuration
of Things. Being abstract, this architecture recommendation is not specific to any
particular application or communication protocols and it does not describe a specific
implementation.

12

2.1.2 RESTful web services

Representational State Transfer (REST) is an architectural style for developing web
services. This architectural style specifies a set of constraints and the services that
satisfy these constraints are called “RESTful”. RESTful web services are advanta-
geous in terms of performance, scalability, and modifiability which ensues optimized
functionality of the services on the Web. REST is based on client/server architec-
ture while the data and functionality are considered resources. Resources can be
either static or dynamic and are accessed using Uniform Resource Identifiers (URIs),
typically links on the Web. To interact with resources, a set of simple, well-defined
operations can be used through a stateless communication protocol, typically HTTP.
In the REST architecture style, clients and servers exchange representations of re-
sources by using a standardized interface and protocol. The supported HTTP opera-
tions are GET, to retrieve the current state of a resource, POST and PUT, to create
and update a resource and finally the DELETE method to delete a resource. In the
architecture proposed in this Thesis, all Things are considered RESTful Web services,
hence resources and can be acted upon by using the aforementioned operations.

2.1.3 OpenAPI

OpenAPI Specification (OAS) [13] defines a standard, language-agnostic specifica-
tion to describe REST APIs. It is a widely adopted standard endorsed by Linux
Foundation and supported by large software vendors like Google, Microsoft, IBM,
Oracle and many others. OpenAPI format is based on JSON or YAML, and com-
prises a large set of properties for composing service descriptions. OAS also allows
both humans and computers to discover and understand the capabilities of the service
without access to source code, documentation, or through network traffic inspection.
When properly defined, a consumer can understand and interact with the remote
service with a minimal amount of implementation logic. Moreover, a valid OpenAPI
document can be used by documentation generation tools, code generation tools,
testing tools and more [15]. In this implementation SwaggerHub is used (Figure 3).
It is an editor that provides instant visualization of an OpenAPI document able to
run locally or online and expose the APIs publicly. Figure 3 is a visual representa-
tion of a REST API with a title (SmartHome), description, information about the
developer and the servers, as well as various endpoints (GET, POST) grouped by
tags (Web Thing, Properties, Actions).

13

Figure 2: OAS 3.0 Structure

The basic structure of an OpenAPI document (Figure 2) consists of the following
parts (objects). Firstly, the version of the OpenAPI specification, 3.0 in this case, is
stated. The Info object contains metadata about the API such as the title and the
description, Terms of Service, a license, contact information of the provider and the
version of the service. The Servers object provides information on where the API
servers are located.In this object, one or multiple host servers can be defined with
a URL alongside a description for each server. The Components object holds a set
of reusable objects for different aspects of the OAS. They can then be referenced
in other objects or they can be linked to each other. The Security object defines
security schemes for the services. These can be HTTP authentication, API keys
in headers, query string or cookies, OAuth2 and OpenID Connect. These security
schemes are declared in the Components unit of reusable objects. The Paths object
comprises the available paths for the service’s endpoints and the operations of the
API. The path is appended to a URL in the Servers object in order to construct

14

the full URL. The Tag object is composed by additional metadata that are used by
the specification, with the purpose of grouping operations. Last but not least, in
the externalDocs object, additional external documentation about the service can be
provided.

Figure 3: Visual Representation of an API in SwaggerHub

15

2.1.4 Flow Based Programming

IoT mashups compose a new service from existing services, therefore enabling users
to connect devices, manage data and create personalized applications in various
domains like healthcare, agriculture and home automation. For instance, in a smart
city context, sensors placed in buildings and streets can collect measurements and
monitor the air quality, thus making the cities friendlier to residents and visitors.

Flow-Based Programming (FBP) is a programming paradigm that defines a graphical
way of creating computer applications with flows, i.e., a network of “black box”
processes with well-defined ports. By connecting the output of a component with
the input of another, as shown in Figure 4, data is exchanged and processed and
therefore a variety of applications can be developed. A black box may implement a
device or service that constitutes an application, in which way mashups are achieved.
Tools that follow the FBP paradigm streamline the application creation process
by providing a visual user interface, as well as reducing the technical knowledge
requirements, as most of the coding takes place in the background.

Figure 4: Example of a FBP flow

16

2.1.5 Node-RED

There are several runtime environments that approach IoT systems in a FBP manner.
For instance, Flowhub [4] and NoFlo [9], CppFBP [2], WotKit [1]. The one that
gained particular interest in the IoT and is used in this work, is the Node-RED [8]
platform.

Figure 5: Example of a data flow in Node-RED

Node-RED is built on Node.js which makes it ideal to run at the edge of the network
on low-cost hardware such as the Raspberry Pi as well as in the cloud. In the graph-
ical interface, the “black box” components (nodes), can be wired together to create
a new application. These nodes may contain functionality that ranges from logical
operators to complete JavaScript functions. Furthermore, the code that determines
the functionality of each node, is predefined and runs in the background which en-
ables developers to create applications without requiring expertise in this particular
field. After a flow (i.e. application) is formed, it can be exported in JSON file format
that can also be imported into Node-RED in order to deploy the application. It is
important to note that Node-RED does not export executable code, but only the
JSON file that can be imported and executed in Node-RED. Node-RED’s output
will be discussed in detail in section 3.4.1

17

Figure 5 displays a sample of a flow in Node-RED. On the left side (dashboard), there
is a list of the various available nodes, while on the right side some selected nodes
are wired together and a programming flow is formed. In this particular example
of a weather station, there is a sensor that collects data, the data gets processed in
function nodes and some mails and notifications are sent according to an event.

2.1.6 Extra Nodes

Apart from the nodes that Node-RED provides by default, developers have the ability
to contribute custom nodes which are called extra nodes. These extra nodes have
more specific functionality than the basic ones and can be shared among the users
in places like npm and GitHub. In this work, two extra nodes were used, the first
one being openapi-red and the second one being mongodb.

2.1.6.1 openapi-red Extra Node

Openapi-red [14] is an extra node, that once added to Node-RED it allows to interact
with APIs that have an OpenAPI description of version 3 (OAS 3.0) and above,
which are currently the latest versions. In the current architecture, every Thing
(device or service) that is connected with the system is treated as a REST API
and an OpenAPI description is provided. That makes it possible to interact with
the Things through the Node-RED graphical environment and wire them with other
nodes, such as other Things, timestamps and HTTP requests. Using this node
and with the practicality that OpenAPI provides, more specifically the grouping
of operations with tags and metadata, explained in section 2.1.3, it is possible for a
user to get all the interactions that are available with a particular Thing according to
their tags, set various parameters (e.g. JSON request bodies) and handle the outputs
by connecting them to other nodes to get processed further. Figure 6 presents an
example of a Smart Door’s operations grouped by the “Actions” tag, while in Figure
7, an example of a JSON payload (i.e. request body) to execute a lock action is
shown.

18

Figure 6: Example of a Smart Door Actuator in an openapi-red node

Figure 7: Example of a JSON payload to execute a lock action on a Smart Door

2.1.6.2 MongoDB Extra Node

MongoDB [6] is a non-relational (NoSQL), open source database. Contrary to rela-
tional databases, MongoDB is a Dynamic Schema Document-Oriented Database that
stores data in JSON-like documents. This is advantageous due to the fact that data
structures are not required to have a strict format. Therefore, the same database
can be used to store OpenAPI documents, sensor data and subscriptions, as befitted
the architecture.

The MongoDB extra node [7] serves the purpose of connecting to a running Mon-
goDB server through Node-RED’s graphical environment. This is particularly useful

19

as Things and services require continuous communication with the database. For
instance, Things that support subscriptions need to publish their data in the context
broker’s database, as well as subscribers need to read data from that database. An-
other example is sensors that store their measurements and, consequently, actuators
that read those measurements to decide upon an action.

2.1.7 Publish/Subscribe Service

Publish/Subscribe messaging is an asynchronous service-to-service communication
method where publishers submit data to a topic which then gets received by all
subscribers of that topic. A Context Broker is responsible of handling the topics,
along with the delivery of the messages to the relevant units. Using this model of
communication, event-driven architectures can be achieved, as well as loose coupling
between components resulting in a better performance, reliability and scalability.

The Context Broker of choice for this specific work is Orion Context Broker [16] and
it is part of the FIWARE [3] platform. Figure 8 presents Orion’s architecture. It is an
NGSIv2 server implementation to manage context information and its availability.
Orion Context Broker comes with its own MongoDB as a database to store the
published data.

NGSIv2 is the API exported by Orion Context Broker, used for the integration be-
tween FIWARE platform components and by applications to update or consume
context information. The core components that comprise the NGSI model are En-
tities, Attributes and Metadata. An entity may represent any physical or logical
object, such as a device or a room. Every entity, obligatorily, has an identifier (id)
and a type (e.g. sensor). What is more, entities may have one or more Attributes.
Attributes describe the entity they belong to. For instance, “current temperature”
and “average temperature” could be attributes of the entity “room”. Name, type
and value are the mandatory properties that define an Attribute. Attributes may
also have one or more metadata objects. Metadata serves the purpose of describing
the value of the attribute they are referring to. For example, metadata with the
value “Celsius” can describe an attribute “current temperature”. In like manner as
attributes, metadata have name, type and value fields.

20

Figure 8: Orion Context Broker Architecture

2.1.8 Service-Oriented Architecture

Service-Oriented Architecture (SOA), defines a way to make software components
reusable and interoperable, through a communication protocol over a network. Ser-
vices use common interface standards and an architectural pattern so they can be
rapidly incorporated into new applications. Each independent service in this ar-
chitecture is responsible to execute a complete, discrete functionality which ensures
loose coupling and reduces the dependencies between services and applications. By
following the SOA model in this work, the services developed can be integrated into
other IoT or WoT systems with minimal or no modifications.

2.1.9 OpenAPI Thing Template

OpenAPI Thing Template [22] seeks to provide an alternative to W3C’s Thing De-
scription that was presented in section 1.1.1. The central idea of this work is to
map Thing Description properties to OpenAPI properties. The template is a valid

21

OpenAPI document, and consequently implements a JSON or YAML data format
that is common to all things. Thing properties are described in this document, as
well as actions and subscriptions in the case of Things that support those. Similar
to W3C’s TD, the OpenAPI Thing Description is composed of four building blocks,
its resources.

The first resource, the Thing resource, provides an abstract description of a Web
Thing. This can be achieved with an HTTP GET request to the root URL of the
Thing. The second block, the Properties resource, defines the properties of a Thing,
such as the measurements, or the state of a device. After issuing an HTTP GET
request to the corresponding URL, a JSON array describing the Thing properties is
returned. Following the Properties resource, the Actions resource defines the allowed
actions on a Thing. This resource enables the execution of actions by issuing an
HTTP POST request, the retrieval of all available actions of a Thing and all recent
executions of a specific action, as well as an operation to retrieve the status of an
action execution using its execution identifier with an HTTP GET request. The last
building block is the Subscriptions Resource, which describes subscriptions to Web
Things. This resource employs an operation to create and store new subscriptions
with an HTTP POST request, an operation to retrieve a list of subscriptions made
to a specific Thing or Web Thing resource, and an operation to retrieve a specific
subscription using its subscription identifier using an HTTP GET request and an
operation to delete a subscription using its identifier by issuing an HTTP DELETE
request.

2.1.10 OpenAPI Thing Generator

A mechanism to generate an OpenAPI Description for a Web Thing was introduced
in this work [22] [12]. In Figure 9 the flowchart of this mechanism is presented. The
input consists of a JSON payload with the user settings (e.g. security settings) and
the Thing characteristics that will be instantiated to the template. Furthermore,
additional information that characterize the Thing and its functionality, such as
available properties and actions, are declared by the user. This mechanism can be
applied to any Thing, as long as its functionality can be exposed using REST, and
the output is the OpenAPI description of the Thing in JSON or YAML format.

Firstly, Info, Security, Servers and Schema objects are created and appended in
the OpenAPI Thing template. If the user has specified external documentation, an

22

External Documentation object will also be created. Next, the Thing’s description
payload, if provided by the user, is appended under the Webthing model object,
as a Schema object, and it contains information about the device and its features.
Following that, the security schemes (e.g. HTTP Authentication, OAuth2.0, OpenID
Connect) are defined in the Security Requirement object. Then, the process reads a
list of available servers as an array of Server objects. For each supported property
or action that is defined in the input (e.g. a state property or a lock action), the
corresponding paths are appended to the service description, along with a relative
standard tag (e.g. Actions Tag).

Figure 9: OpenAPI Thing Description Generator flowchart

23

2.1.11 Web Thing Model service (WTMs)

The Web Thing Model service (WTMs) [21] is an autonomous RESTful service in
Python Flask and implements some of the WoT Architecture operations on Things
using HTTP. It is designed to support operations for retrieving and updating Thing
descriptions and their properties, as well as all Thing model operations. Moreover,
it implements functions that support actions (i.e. through an actuator), retrieval
of action executions and functions related to subscriptions on Web Thing resources.
Essentially WTMs implements the REST API that allows consumers (i.e. users or
Things) to interact with all Things that are connected to the system, since they all
follow the OpenAPI Thing Template discussed in section 2.1.9.

2.2 Related Work

2.2.1 loT Mashups with the WoTKit

In this paper [1], the development of an IoT mashup platform, called the Web of
Things Toolkit (WoTKit) is discussed. WotKit is a Java web application that aims
to address key requirements for loT mashup developers in one system. The data
model consists of sensors with fields describing either a sensor or actuator. The
communication between components is implemented with Active MQ, a standard
Java Messaging Service and allows for aggregating data from a variety of sensors,
and passing simple control messages to actuators. Also, while certain applications
are provided as core system facilities, users have the option to develop their own. In
this architecture, Thing integration within an application is implemented by means
of gateways, which are web clients implemented with simple scripts that register
discovered sensors, collect data from the sensors they serve, and push data into the
system. A flow-based programming environment based on Node-RED is provided
with the toolkit where modules are connected to form pipes that process data and
create new systems.

24

2.2.2 IoT Mashup as a Service: Cloud-based Mashup Service for the
Internet of Things

This work [5] proposes a mashup service model, called IoT mashup as a service
(IoTMaaS), based on cloud computing paradigm. The three core blocks that com-
prise this application are thing model, software model, and computation resource
model. Also, a cloud platform on which IoTMaaS is served, is proposed. Sensors
and actuators that are connected to the system, have exposed functionalities, that
become sensing and actuation services and, additionally, an identifier for each thing
is created. Thing model consists of an identifier, device profile, services it provides,
relationship with other Things, and configuration methods. Software is defined as an
assembly description of software components. Things serve the role of data sources
and consumers, while software plays the role of processing instructions. Computation
resource includes available CPU, RAM, storage etc. To counter the heterogeneity
of platforms and protocols, it is assumed that manufacturers provide a thing service
driver (TSD) component which is a representation of things in the software compo-
nent model to provide the programming interface to other software of IoTMaaS. In
order to create an application, a professional service planner (SP) creates templates
which are then chosen by end users. Users can customize the template by selecting
things and configuring their parameters. Next, the preconfigured virtual machines
are launched, according to the instantiation request, which includes the IoTMaaS
template, customization parameters, and thing identifiers. Then, a request is sent
to the service deployer and an instance of the IoTMaaS is composed. Finally, the
deployment command is sent from the service deployer and the instance begins to
run, connecting to things and retrieving the data, thus providing the new service.

2.2.3 Webifying Heterogenous Internet of Things Devices

This paper [10] approaches the problem of enabling application development using
devices with different protocols by introducing the WoTDL2API (Web of Things
Description Language to API) tool. This tool employs an ontology and is capable
of generating and deploying RESTful APIs for devices that are instances of this
ontology using OpenAPI. Web of Things Description Language (WoTDL) ontology,
is an extension of existing WoT models, able to describe IoT/WoT devices and
environments. Initially, all the Things are described with the WoTDL ontology.
The process begins by identifying the available devices and their capabilities for

25

the desired IoT scenario, which is defined by the developer, followed by a toolchain
that will create an API for the devices, by transforming their WoTDL model to an
OpenAPI description. Using the OpenAPI model, the OpenAPI Generator [11] is
utilized to produce the REST API code, which is then deployed, and the API is run.
The central “WoTDL Hub” is responsible for handling HTTP requests by managing
the physical IoT devices at runtime. A developer can choose a set of HTTP endpoints
that correspond to WoT devices to create applications “regardless of the hardware
type and its communication technology”.

2.2.4 Comparison

Comparing these works, it is apparent that each has advantages and disadvantages.
WoTKit offers a full featured IoT platform with an intuitive visual Flow-Based Pro-
gramming tool, giving the ability to users to develop their own applications, however
it lacks a uniform representation of the devices. To compensate for that, gateways
gather all device data and push it into the system. IoTMaas comes with the most
complex design as it also proposes a Cloud structure on which it is executed. This
system provides uniformity of representation regarding Things, as well as allows for
custom applications. A notable drawback of this system is that Things are not de-
scribed in a standard way, but it is assumed that manufacturers provide a Thing
Service Driver (TSD) for each device. Additionally, the process of combining devices
to form applications seems convoluted, as users that have the Service Planner (SP)
role need to create templates that contain the application’s configuration (devices,
parameters, resources to allocate) in a format that is tailored specifically to this
work. WoTDL2API uses OpenAPI to represent things and the users can develop ap-
plications using HTTP and REST. Nevertheless, a platform to create applications by
combining existing services is missing, as developers create applications by manually
choosing from “the set of HTTP endpoints provided for the WoT devices”.

26

System WoTKit IoTMaaS WoTDL2API MoON
Representation - TSD OpenAPI OpenAPI
Uniformity No Yes Yes Yes

Communication Active MQ
Internet Exchange
Client (ICE)

HTTP-REST HTTP-REST

Custom
Applications

Yes Yes Yes Yes

Planning Node-RED IoTMaaS Template - Node-RED
Flow-Based Yes No No Yes

27

3 System Architecture

3.1 Database

The database system used in this architecture is MongoDB. The database consists
of four collections, “things”, “applications”, “entities” and “subscriptions”. Figure
10 presents the database’s structure along with the collections and the documents in
each collection. The “things” collection contains OpenAPI descriptions of things, the
“applications” collection contains OpenAPI descriptions of applications, the “enti-
ties” and “subscriptions” are two collections provided by the Orion Context Broker,
in order to store measurements, subscriptions, device state, action executions etc.

When a new Thing is registered through user’s input, it is stored in the “things”
collection of the database. For each new document (i.e. Thing’s OpenAPI) inserted
in the collection, MongoDB automatically creates a unique identifier “ id” field. After
each document’s insertion, a URL is created with the identifier being the last part
of this URL (e.g. http://172.16.1.1:5001/things/6238e9b5e3447e4e4d13006e, where
6238e9b5e3447e4e4d13006e is the value of the “ id” field). As a consequence of the
identifier being unique, all the URLs are also unique. The URL exposes the contents
of the document, which in this case is the OpenAPI Thing Description of the Thing
it is referring to and will later be used in Node-RED.

The “applications” collection is responsible for storing the OpenAPI Descriptions of
applications generated through the Application OpenAPI Generator (section 3.5).
Similar to the Thing Descriptions, MongoDB automatically creates a unique identi-
fier “ id” field for each new application stored. Following that, for every document
in the collection a unique URL is created, where the last part of this URL is the
value of the identifier. This URL exposes the OpenAPI document of the application
it describes and it will be used as an input of a node (i.e. openapi-red node) in
Node-RED if the developer wants to use the application as a Thing.

The “entities” and “subscriptions” collections refer to the data coming from the
Context Broker. The “entities” collection stores information about NGSI entities.
Each document in the collection corresponds to an entity, which can be properties
(e.g. temperature, humidity, pressure), device’s internal state, action executions,

28

recent actions or a list of available actions. The “subscriptions” collection contains
subscriptions to various entities.

Figure 10: The structure of MongoDB Database with Collections and Documents

3.2 MoON’s Subsystems

In this section the proposed architecture will be described, along with the components
that comprise it. The three options (subsystems) that are available to the user are
the following: Insert a new Thing in the system, create or execute applications in
Node-RED and, finally, generate OpenAPI Descriptions for the applications.

1. Insert a new Thing in the system
To insert a new Thing into the system (Figure 11a), the user’s input is a JSON
file, that can either be a valid OpenAPI document, or a file that follows the
OpenAPI Generator constraints. In both cases, the output is the OpenAPI
description of a Thing, which will be stored in MongoDB.

2. Create or execute applications in Node-RED
“Node-RED” is the core block of the mashup service where users can create,

29

import or export applications (Figure 11b). To create an application, the
user creates a flow of connected items, such as sensors, relational operators
and computing functions, in the form of black boxes (i.e. nodes). After an
application is created, it can be exported as a JSON file, which can, then, be
given as user input to import it back into Node-RED in order to execute the
application.

3. Generate OpenAPI Descriptions for applications
User’s input to the Applications OpenAPI Generator (Figure 11c) comprises
a title and a short description for the application, in addition to Node-RED’s
JSON export (i.e. flow of the application described in a JSON file). Following
that, the applications’ OpenAPI Generator will produce an OpenAPI descrip-
tion for the application and store it in MongoDB.

The OpenAPI Descriptions of both things and applications have been extended with
“x-properties”. An “x-property” is a property that is not defined in the OpenAPI
Specification and is added to serve a specific purpose in this architecture. The de-
scriptions of Things have a location x-property, which lets the users discover services
based on their location, while the application descriptions have been extended with
an “x-devicesUsed” x-property which is an array of the services used in a specific
application and enables their discovery based on this property. Figure 12 presents
an example of an application that is implemented with a Motion Sensor and a Smart
Lamp Actuator. The “x-devicesUsed” field contains an array of the devices that
comprise this application and a user has the ability to filter applications based on
this field, for example, search for applications implemented with motion sensors.

In the following sections, an analysis of the architecture’s subsystems will be pre-
sented. More specifically, there will be focus on the application development process
in Node-RED, the Node-RED output and the Applications OpenAPI Generator.
Finally, the complete system’s architecture incorporating these components will be
presented.

30

(a) Insert a new Thing
(b) Create or execute appli-
cations in Node-RED

(c) Generate an applica-
tion’s OpenAPI description

Figure 11: The three options (subsystems) that are available in the system

Figure 12: Example of an x-property (“x-devicesUsed”) in an application’s OpenAPI

31

3.3 Subsystem 1: Thing insertion

In order to insert a new Thing, the user provides as an input, either a valid OpenAPI
description of a Thing, or a JSON file that follows the user input constraints of the
OpenAPI Generator. If the user’s input is an OpenAPI document, the OpenAPI
Generator, will validate it and it will be stored in the MongoDB database. In case
it is not an OpenAPI, it will be parsed by the OpenAPI Generator to produce an
OpenAPI Thing Description. This JSON file must contain the Thing Description
according to the Thing Template and extra characteristics of the Thing. Such char-
acteristics are external documentation, supported actions, the type of the Thing,
security settings or more necessary information to describe the service. After the
OpenAPI description is generated, it will be stored in the MongoDB database. Each
new Thing stored in the database is assigned with a unique URL that exposes its
OpenAPI description.

3.4 Subsystem 2: Application Development & Execution

An application is the outcome of the combination (i.e. a flow) of nodes in Node-
RED’s visual programming interface. Nodes (i.e. black boxes) may implement de-
vices, relational operators, computing functions, provide timestamps or time intervals
and output messages for debugging. Additionally, there are function nodes that al-
low JavaScript code to be run and provide functionality that is not included in other
basic nodes (e.g. a Random Number Generator). For applications that use Things
such as sensors and actuators, the minimum requirement is that Node-RED com-
municates with the “things” collection of the database to get the Thing’s OpenAPI
descriptions, as well as with the “entities” collection in order to execute actions or
retrieve properties (i.e. states, measurements) during run-time. For instance, an
application with a sensor needs this collection to store temperature measurements,
as well as read measurements to decide upon actions.

In this system, Things are implemented using their OpenAPI descriptions. A major
advantage of describing Things with OpenAPI, is that they have a uniform rep-
resentation. This stems from the fact that their OpenAPI descriptions follow the
OpenAPI Thing Template, that is common for all Things. This allows for other
components of applications to interact in a common way with all the Things that
exist in the database and requires no additional knowledge from the developer when

32

it comes to the specific Thing’s APIs, protocols or other dissimilarities.

In order to interact with a Thing, the OpenAPI description URL is given as an input
in the openapi-red extra node. Figure 14 presents an example of a Thing node. The
user has the choice of operations related to the selected tag. Tags group operations
by type and are convenient for the user to find the desired one, choosing from a
list of all the operations that the device offers. In this particular example, the Tag
“Actions” is chosen and a list of available actions is shown. There is also a field
where a JSON payload can be inputted which gets passed into the HTTP requests
when they are issued, in case a request body is necessary. The openapi-red node,
is used as an interface for the device’s REST API that it is referring to, while the
device’s API itself is implemented using the Web Thing Model Service. In Figure 13,
a JSON payload to execute a lock action on the Smart Door is shown. To perform
actions that require data stored in the database, such as a device’s state or certain
measurements, the MongoDB extra node is used. The database’s port, name and the
collection’s name are required as an input, while the queries are passed from other
function nodes (JavaScript). In Figure 15, an example of a connection to a collection
using this node is shown. In this example the node is connected to the “entities”
collection of the database to get temperature measurements with a find operation.
In this way, temperature measurements can be retrieved from the database and be
passed to the next node to process them.

Node-RED is the core of the subsystem responsible for the application development
process. The openapi-red nodes get OpenAPI descriptions of Things as an input and
serve the purpose of connecting devices in the applications. These nodes combined
with other basic or extra Node-RED nodes, such as relational operators and HTTP
request nodes, are able to form applications. Some examples are shown in section 4.
After an application is created, a JSON output can be exported from Node-RED.
This exported file can either be imported back into Node-RED to execute the corre-
sponding application, or used to generate an OpenAPI description for the application
through the “Applications OpenAPI Generator” block. After the application’s Ope-
nAPI description is created, it can be used either as a visual representation for better
understanding of the application’s API (e.g. endpoints, request bodies) or it can be
deemed to be a Thing and therefore become a new input for the “openapi-red” node.

33

Figure 13: Example of a JSON payload to execute a lock action on a Smart Door

Figure 14: Example of a Smart Door Actuator in an openapi-red node

34

Figure 15: Example of MongoDB extra node’s configuration to connect to a collection

3.4.1 Node-RED Output

After an application is created, it can be exported from Node-RED as a JSON file.
The exported file comprises all information that was used in the application. It con-
tains the entirety of the configuration settings for each different node, along with
information about the wiring of the node, the payloads and functions. Moreover,
parameters for the whole flow are included and, also, additional metadata, descrip-
tions and comments from the developer. The output file is a key component for the
Applications OpenAPI Generator that will be discussed in section 3.5. Node-RED’s
output file is not executable code; in order to deploy and execute an application, it
has to be imported back into Node-RED.

Figure 16a presents an example of how a switch node is described in Node-RED’s
output file. This node functions as a relational operator (> or ≤) and depending on
the result, the output will be passed to a different node. The node has an identifier
“id” and the type “switch”. The most important part of this node is the “rules” field
that contains the operations (> 40 and ≤ 40) and the “wires” field that dictates the
“id” of the next node that the output is passed to, depending on the comparison.

Figure 16b shows an example of another node that is a part of the application in
the exported file. In this particular example, the node refers to a MongoDB instance
that serves the purpose of finding the available devices in the database. It contains
information about which collection it is connected to (“things”), which operation is

35

performed (“find”) and which node it is wired to (“a77023ba0c97f3fa”, which is the
id of another node).

(a) Switch Node (b) MongoDB Node

Figure 16: Example nodes in Node-RED’s output file

36

3.5 Subsystem 3: Applications OpenAPI Generator

In this section, a mechanism is introduced to generate an OpenAPI description for
applications created in Node-RED. The user needs to provide a title for the applica-
tion and a short description. The description may contain information about what
the application is capable of doing with the purpose of helping a user understand its
functionality. In addition to the title and the description, the user provides the JSON
file that was exported from Node-RED. A remarkable advantage of this mechanism,
is that no technical knowledge is required by the user, as the input, aside from the
textual metadata, is provided directly from Node-RED. What is more, describing ap-
plications with OpenAPI offers scalability and reusability, as these descriptions can
be reused and be part of more complex applications of a larger scale. For example,
applications of smart cars can be combined and comprise a new service to monitor
the traffic, or a smart home’s application can be reused in a smart city context.

Node-RED’s export is a JSON file that contains the configuration settings, such
as name, wiring and functionality, from each node used in the flow. As previously
explained, the URL of the Things is an input to the openapi-red nodes and therefore
it is included in the file as a configuration setting. Figure 17 presents the flow chart
of the algorithm’s functionality.

The process begins by parsing the JSON file (i.e. exported from Node-RED), in
order to find the various URLs of Things used (step 1). Then, each URL found, will
be split into parts and only the last part will be kept. As explained in section 3.1, the
last part of the URL is the identifier (“ id” field) of the Thing in MongoDB. During
the second step, using this identifier, the OpenAPI description of the corresponding
Thing will be searched in the database (i.e. “things” collection in MongoDB).

In order to create the various OpenAPI objects, Python’s dictionaries are utilized.
Using dictionaries, it is ensured that there will not be any duplicates in case a Thing
is used more than once in the same application. In the third step, for each Thing
found in the database using the identifier, a dictionary for each JSON object is
created. The info object will be appended to an “info” dictionary along with the
title and the description that the user initially provided. These will be the title and
description of the final OpenAPI Document. Following that, the tags array object
will be appended to a “tags” dictionary, the paths object in a “paths” dictionary
and the components object in a “components” dictionary. Using this approach, each
dictionary will contain all the information regarding the corresponding OpenAPI

37

object of all the devices. For example, the “info” object will contain the info objects
of all the devices, the “paths” object will contain all the paths objects etc. Finally,
the aforementioned dictionaries, are appended to a final dictionary (dictionary of
dictionaries), thus containing all the OpenAPI objects and fields that each separate
Thing comprised (step 4). The process ends in the fifth step by converting the
final dictionary into a JSON file which is the output of the algorithm (i.e. the final
OpenAPI description of the application).

When a new application description is generated, it is stored in the “applications”
collection. A unique identifier “ id” is assigned to each new application document
insertion by MongoDB, and a URL is created, where the last part of the URL is
the value of the identifier. The URL exposes the contents of the document (i.e.
the OpenAPI of the application) and after declaring the correct server URLs in the
OpenAPI servers field, the document can be reused in new applications. Since the
application consists of Things that follow the OpenAPI Thing Template, and have
a common REST API (i.e. the WTM service), the application, as a whole, will also
follow the template and be implemented with the WTM service REST API (Section
2.1.11).

38

Figure 17: Generation process of OpenAPI description for an application

Figure 18 depicts the Info Object of the application’s generated OpenAPI Descrip-
tion in SwaggerHub’s UI. The title and description from the user input is included in
this object. This example is an application that uses a Motion Sensor’s and a Smart

39

Lamp’s OpenAPI descriptions. When motion is detected through the sensor, the
Smart Lamp gets switched on. Figure 19 presents the Paths Object. In this Object
the properties, actions and subscriptions (Figure 20) of the Things are included. In
this particular example, both the Motion Sensor and the Smart Lamp support prop-
erties and subscription operations, while only the Smart Lamp supports actions. In
this figure, the available endpoints (e.g. /actions/lampOn) along with their requests
(i.e. GET, POST) are shown. Last but not least, in Figure 21 the Components
Object of all Things used in the application are shown, for instance the request body
to switch on the Smart Lamp (i.e. LampOnRequestBody) or to retrieve the state of
a device (i.e. State).

Figure 18: Example Info Object of a generated OpenAPI for an application

Figure 19: Example Paths Object of a generated OpenAPI for an application

40

Figure 20: Example Subscriptions Object of a generated OpenAPI for an application

Figure 21: Example Components Object of a generated OpenAPI for an application

3.6 The complete System Architecture

In this section the complete system’s architecture, that comprises all the aforemen-
tioned components will be discussed. As it was described in Section 3.2, there are
three options (subsystems) given to the user, each consisting of different components
and having different inputs and outputs. Thus, the final system, shown in Figure 22,

41

is a merge of those subsystems (i.e. Figure 11), enriched with the Context Broker
and the REST API provided by the Web Thing Model Service. Figure 22 will be
analysed further in this section.

The central idea is to provide a Service Oriented Architecture, where Things are
described with OpenAPI as a way to expose their functionality and make them dis-
coverable and reusable, as well as to give the ability to users to interact with them
as RESTful services. The “openapi-red” extra node, provides a User Interface for
OpenAPI Documents in Node-RED, which results in an efficient way of interacting
with Things, due to the fact that operations, payload schemas and endpoints are
conviniently visible, grouped by the relevant tags and described with textual meta-
data explaining each operation’s functionality. For example Figure 14 presents an
openapi-red node of a Smart Door Actuator. Selecting the tag “Actions” reveals all
the available actions that this particular device supports.

Starting from the first available option, after a user inserts a new Thing’s description,
it will be stored in the MongoDB database’s “things” collection. This OpenAPI
description describes the Thing’s REST API which is implemented with the WTM
Service. When an HTTP request is issued towards a Thing, the REST API will
communicate with the Context Broker and either store or retrieve data regarding
this request.

In order to compose a new application, Node-RED’s interface provides a variety of
nodes, which are black boxes with various functionality. As explained in Section 3.4,
the user creates a flow of these nodes in a way that achieves the goal of the scenario
that was planned. To implement a Thing, the openapi-red node gets the Thing’s
OpenAPI description as an input, hence the other nodes are able to communicate
with the Thing’s REST API (i.e. WTM Service) through HTTP requests. When an
application is created, it can be exported from Node-RED in a JSON file that was
explained in section 3.4.1. This output can be imported back into Node-RED to exe-
cute the application, or become the input for the application’s OpenAPI Generator,
which is the user’s third option.

To generate an application’s OpenAPI description, the user needs to provide Node-
RED’s exported file as an input. After the description is produced, it will be stored
in “applications” collection in MongoDB. The application’s REST API is, also, im-
plemented with the Web Thing Model Service, since its endpoints are identical with
the Things it includes. Therefore, applications can be treated as Things and their

42

OpenAPI can be used in Node-RED to become a part of applications of a larger
scale.

In this architecture, it is mandatory for Things to have an OpenAPI description,
due to the fact that it is the way that Things are integrated in application flows
and other components of the application can communicate with them. Apart from
that, by describing Things with OpenAPI, it is ensured that they can be used with-
out knowledge requirements about source code or documentation, as well as they
can be reused to compose new applications. Regarding the system’s infrastructure
components, such as the MongoDB or the Context Broker, OpenAPI provides doc-
umentation and, additionally, it indicates how these components can be used in
applications by exposing endpoints where HTTP requests can be issued towards.

In this system Node-RED, MongoDB, the Context Broker, the Things OpenAPI
Generator and the WTM Service are existing technologies and they were described in
Section 2.1 (Infrastructure and Tools). In the case of the Thing OpenAPI Generator,
it was modified, so that it is able to accept a JSON file, instead of a JSON payload
in an HTTP Request, as well as being able to accept a valid OpenAPI document in
addition to the JSON file with the defined user input. This work proposes the design
of the architecture and the utilization of OpenAPI to connect Things in Node-RED.
Moreover, the Applications OpenAPI Generator was designed from the ground up
to suit the needs of this system, both in terms of application description and the
ability to reuse applications in Node-RED.

43

Figure 22: The complete System Architecture of MoON

44

4 Use Case Scenario & Example Applications

The mashup service can be used to create applications of various scales. In the
following examples, the applications range from a device-to-device level up to a
Smart City scenario. Users create the plan of the application’s functionality in
Node-RED’s visual programming tool by connecting disparate items such as sensors,
relational operators and computing functions, in the form of black boxes.

The Things used in these examples are a Smart Door Actuator, a Smart Lamp
Actuator, an Air Conditioner, a Motion Sensor and a DHT22 Sensor that gets tem-
perature and humidity measurements. OpenAPI descriptions of applications that
include these devices, are composed of all of their Thing resources (i.e. properties,
operations, endpoints etc.). Smart Homes are created using these descriptions and
contain combinations of the aforementioned Things. It is, then, possible to use the
Smart Homes as Things in an application regarding a Smart City.

The openapi-red node, which is the purple node in the following flows, is used as
an interface for the other parts of the application to interact with the device’s API.
In order to form applications, the user is required to have basic knowledge of Node-
RED’s environment and JavaScript in order to form more complex functions whose
functionality is not already provided by the basic nodes. The API implementation
of the devices is handled through OpenAPI’s interface that offers textual metadata,
therefore the user does not need any technical knowledge in terms of understandabil-
ity.

MoON provides all the required components to store Things, create and execute
applications, and generate OpenAPI descriptions for applications. These components
are the MongoDB database, the Context Broker, Node-RED, the REST API and the
OpenAPI Generators for Things and applications. In this regard, it can function as
a standalone mashup system. Apart from that, it can be integrated into any Internet
of Things or Web of Things system and provide a Mashup environment, as long as
the aforementioned components are either provided or integrated as well. Being a
Service Oriented Architecture, it enables seamless integration with more complex
systems in order to provide the additional functionality.

Example 1

45

The functionality of the first application is to switch on the Smart Lamp at 20:00
and then switch it off at 02:00. The values of the time range are provided by the
user before run time. As shown in Figure 23, the starting point of the application is
the inject node (light blue) that triggers the flow. The second node is a Time Range
Node (orange). Using this node the next step is decided based on a time range (20:00
- 02:00 in this instance). The executeLampOnAction and executeLampOffAction
(purple nodes) are nodes to execute an action on the device using their OpenAPI
Description. With this node the Smart Lamp will be switched on or off depending
on the time range output of the previous step. Finally, there is the msg.payload
(green node) that outputs a message to the user for debugging purpose. Figure 24
shows an extension of this application with the addition of a Smart Door Actuator
and an action to lock or unlock the Smart Door will be executed during the time
range 24:00 - 09:00.

Figure 23: Application to switch ON/OFF the lights depending on time

46

Figure 24: Application to switch ON/OFF the lights and lock/unlock the door de-
pending on time

Example 2

The second application (Figure 25) has the purpose to switch on the Air Conditioner
when the temperature surpasses a certain threshold, that is set by the user. The
inject node (light blue) triggers the flow to start the application and the user sets
an interval to repeat the process. The bottom row that comprises two HTTP re-
quests nodes (yellow) and a function node (orange), simulates the functionality of
the sensor, with the function node generating a random number as a temperature
and then issuing an http request to the Context Broker. With the delay node (pink),
the developer dictates the rate that the temperature will be observed. Following the
delay, the retrieveTempProperty node (purple) retrieves the temperature measure-
ment using the DHT22 Sensor’s OpenAPI Description. Using a switch node (gold), a
temperature threshold is set by the user and with a relational operator (≥ or <) the
next node will either switch OFF the AC by interacting with the Thing through the
executeSwitchOffAction node or switch ON the AC through the executeSwitchOn-
Action (purple nodes).

47

Figure 25: Application to switch ON/OFF the AC depending on a temperature
threshold

Example 3

In this example, a motion sensor is used that has two states, “IDLE” and “DE-
TECTED”, and depending on its state, whether motion is detected or not, a Smart
Lamp gets switched on. Figure 26 presents the components that comprise this func-
tionality. The third example operates in a similar way as the second. Initiating
with a timestamp node (light blue), the application starts and a time interval is
set by the developer. Subsequently, through the function node (orange) a random
state is generated, either IDLE or DETECTED, and is then submitted to the Con-
text Broker through an HTTP request (yellow node). Using the delay node (pink),
the developer dictates the rate that the state will be observed after it is updated.
With the retrieveProperty node (purple), the state of the Motion Sensor will be ex-
amined and passed to the switch node (gold). In this node, a relational operator
(state = IDLE or state = DETECTED) will dictate the next step and execute an
action, either switch ON the Smart Lamp with the executeLampOnAction or switch
OFF the Smart Lamp using the executeLampOffAction (purple nodes).

48

Figure 26: Application to switch ON/OFF the lights when motion is detected
through the Motion Sensor

Example 4

The fourth application presents a smart city example. In this application the Ope-
nAPI of Smart Homes and DHT22 sensors were used. The goal of this example is to
calculate the average energy consumption due to ACs being switched on. As shown
in Figure 27, a city comprises four neighbourhoods which are consisted of four houses
each.

Figure 28 focuses on one of the neighbourhoods. The application starts with an
inject node (light blue) that retriggers the flow in an interval of ten seconds. The
first HTTP request node (yellow) initializes the device’s state, followed by a function
node (orange) that initializes the counters. The counter variables hold the number
of repetitions as well as a counter of how many ACs are switched on at any given
time. The second row contains two HTTP requests (yellow nodes) and a function
(orange node), simulating the functionality of the sensor and generating a random
number as a temperature. Following the delay node (pink) that issues a delay of
one second, the temperature is retrieved using the retrieveProperty node (purple)
through the DHT22 Sensor’s OpenAPI Description. Using a switch node (gold)
the threshold is set by the user and with a relational operator (≥ or <) the next
node (i.e. yellow HTTP request node) will change the AC’s state to ON or OFF
by issuing and HTTP request to the Orion Context Broker, depending on the result
of the switch node. If the AC gets switched on, the function node increments a
global counter of switched on devices. The next step will either switch OFF the AC
by interacting with the device through the executeSwitchOffAction node or switch
ON the AC through the executeSwitchOnAction node (purple nodes) using their

49

OpenAPIs. This process is repeated for each neighbourhood of the Smart City and
finally after a delay of seven seconds (pink node) a function node calculates the
average number of devices switched on by dividing the counter with the number of
repetitions. The flow ends with a message node (green) that outputs the average
number of ACs that are switched on.

In this way, assuming an average consumption of 1KW per hour of a switched on
device, the average energy consumption of the Smart City can be calculated. As
presented in Figure 29, this Smart City had an average of 6.2 switched on devices
over the course of 360 cycles of ten seconds each, which would result in an energy
consumption of 6.2 KWh.

50

Figure 27: Application to calculate the average energy consumption by ACs in a
Smart City

51

Figure 28: One neighbourhood of the Smart City application

Figure 29: Average number of ACs switched on after one hour

52

4.1 Response Time Measurements

Application Response Time (ms)
Application to switch on the
lights depending on time
(Figure 23)

18 ms

Application to switch on the
lights and lock the door de-
pending on time (Figure 24)

32 ms

Application to switch on the
AC depending on a temper-
ature threshold (Figure 25)

29 ms

Application to switch on the
lights when motion is de-
tected through the Motion
Sensor (Figure 26)

30 ms

Application to calculate the
average energy consump-
tion by ACs in a Smart City
(Figure 27)

298 ms

The first application consists of only one device and therefore it has the lowest
response time (18 ms). The next 3 flows issue requests to the API of 2 devices,
thus they have similar response times. The third and fourth flows (i.e. Examples
2 and 3) are very similar in implementation as they use the same endpoints of the
API. The first operation retrieves a property, while the second operation performs
an action on the device and their similar response time is justified. The fifth flow
(Example 4) uses a lot of devices, since there are sixteen Smart Homes that comprise
the city which leads to a significantly longer response time. It should be noted that
the aforementioned response times include some delays introduced by the machine
they were measured on.

53

5 Conclusion & Future Work

5.1 Conclusion

Treating all Things as RESTful Web services to facilitate the interoperability in
application scenarios made the communication among the Things easier and, con-
sequently, streamlined the process of interacting with those services. A notable
advantage of MoON, is that, being Service Oriented, it allows for not only scalabil-
ity, but it also enables the users to modify the individual services while maintaining
the core functionality.

Even though W3C attempted to propose a solution for the problems that stem
from the IoT concept by recommending the description of Web Things using the
W3C WoT Thing Description (TD), OpenAPI can maintain the core notion but
also complement it further to provide detailed descriptions of any kind of Thing as
a RESTful Web service. Utilizing this standard, that is also compliant with the
industry, ensures uniformity among the representations of the services and creates a
common way in which they are interacted with.

Flow-Based Programming tools are able to diminish the steep learning curve of the
application creation process by lessening the knowledge requirements due to having a
large part of the coding take place in the background. This particular work makes use
of Node-RED, but can be compatible with more tools with negligible modifications.
What is more, the graphical interface of the Flow-based programming tools provides
a visual environment with a description of the application’s logic, thus rendering
them understandable by users of minimal experience. Extending Node-RED with
OpenAPI specific nodes provides ease of use, both in a graphical sense, making the
application more compact and avoiding using more nodes to achieve the same result,
and in a practical sense, requiring less coding knowledge and instantly providing the
desired endpoints.

This work is based on many existing tools and prior knowledge, however it presents
a new concept that can find application in a variety of real world scenarios. The
OpenAPI Thing Template, the idea of replacing W3C’s Thing Descriptions with
OpenAPI descriptions and the Flow Based Programming tools are progress made
in the past, but combining all these ideas together, to make a Mashup system that
utilizes OpenAPI to expose Things and make them Web Services, brings a new
system with a lot of potential in IoT and WoT architectures.

54

5.2 Future Work

The implementation of this work meets the requirements set during the planning
process of this assignment, and provides a scalable Mashup system where every
service is accompanied by an OpenAPI description, as well as an OpenAPI generating
tool to provide descriptions that allow for the understandability and reusability of
the produced applications. Nevertheless, due to the fact that this thesis had a limited
time frame there are some weak points that will be presented below along with a
proposed solution as future work.

The first improvement that can be made is adding security services. An example of
that is FIWARE’s PEP Proxy - Wilma [17] that allows the access to system resources
only by authenticated and authorized users. The addition of such services is of utmost
importance in case this system is implemented in a real world application.

Another extension of MoON could be the implementation of the OpenAPI QL, a
query language for querying OpenAPI service descriptions [18]. The basic idea be-
hind OpenAPI QL approach is that the OpenAPI document is a description of a
REST request with the corresponding responses. The addition of such a query lan-
guage specifically for OpenAPI documents would make the discoverability of Things
in the system easier and more detailed, as the queries are able to contain all the
information that the user is searching for.

Last but not least, an improvement that would make MoON compatible with more
IoT architectures, would be to make it possible to replace Node-RED with any other
Flow-Based Programming tool. This would mainly require modifications on the way
that the OpenAPI Generator for applications works in order to recognise the output
files of more FBP tools.

55

References

[1] Michael Blackstock and Rodger Lea. ≪IoT mashups with the WoTKit≫. In:
Proceedings of 2012 International Conference on the Internet of Things, IOT
2012 (Oct. 2012), pp. 159–166. doi: 10.1109/IOT.2012.6402318.

[2] C++ Implementation of Flow-Based Programming (FBP). url: https : / /
github.com/jpaulm/cppfbp.

[3] FIWARE Platform. url: https://www.fiware.org/.

[4] Flowhub IDE. url: https://flowhub.io/ide/.

[5] Janggwan Im, Seonghoon Kim, and Daeyoung Kim. ≪IoT Mashup as a Ser-
vice: Cloud-Based Mashup Service for the Internet of Things≫. In: 2013 IEEE
International Conference on Services Computing. 2013, pp. 462–469. doi: 10.
1109/SCC.2013.68.

[6] MongoDB Documentation. url: https://www.mongodb.com/docs/.

[7] MongoDB Extra Node for Node-RED. url: https://www.npmjs.com/package/
node-red-node-mongodb.

[8] Node-RED Documentation. url: https://nodered.org/docs/.

[9] NoFlo Documentation. url: https://noflojs.org/documentation/.

[10] Mahda Noura, Sebastian Heil, and Martin Gaedke. ≪Webifying Heterogenous
Internet of Things Devices≫. In: Apr. 2019, pp. 509–513. isbn: 978-3-030-19273-
0. doi: 10.1007/978-3-030-19274-7_36.

[11] OpenAPI Generator. url: https://openapi-generator.tech/.

[12] OpenAPI Generator mechanism. url: https://github.com/Emiltzav/wot_
openapi_generator.

[13] OpenAPI Specification. url: https://swagger.io/specification/.

[14] openapi-red Extra Node for Node-RED. url: https : / / www . npmjs . com /

package/openapi-red.

[15] OpenAPI.Tools. url: https://openapi.tools.

[16] Orion Context Broker Documentation. url: https://fiware-orion.readthedocs.
io/en/master/.

[17] PEP Proxy - Wilma. url: https://fiware-pep-proxy.readthedocs.io/
en/latest/.

56

https://doi.org/10.1109/IOT.2012.6402318
https://github.com/jpaulm/cppfbp
https://github.com/jpaulm/cppfbp
https://www.fiware.org/
https://flowhub.io/ide/
https://doi.org/10.1109/SCC.2013.68
https://doi.org/10.1109/SCC.2013.68
https://www.mongodb.com/docs/
https://www.npmjs.com/package/node-red-node-mongodb
https://www.npmjs.com/package/node-red-node-mongodb
https://nodered.org/docs/
https://noflojs.org/documentation/
https://doi.org/10.1007/978-3-030-19274-7_36
https://openapi-generator.tech/
https://github.com/Emiltzav/wot_openapi_generator
https://github.com/Emiltzav/wot_openapi_generator
https://swagger.io/specification/
https://www.npmjs.com/package/openapi-red
https://www.npmjs.com/package/openapi-red
https://openapi.tools
https://fiware-orion.readthedocs.io/en/master/
https://fiware-orion.readthedocs.io/en/master/
https://fiware-pep-proxy.readthedocs.io/en/latest/
https://fiware-pep-proxy.readthedocs.io/en/latest/

[18] Ioanna Stergiou Maria and Euripides G.M. Petrakis. “Searching in REST Ser-
vice Catalogues with OpenAPI Descriptions”. In: ().

[19] The Web of Things architecture. url: https : / / www . w3 . org / TR / wot -

architecture/.

[20] The World Wide Web Consortium (W3C). url: https : / / www . w3 . org /
Consortium/.

[21] Aimilios Tzavaras. ≪Thing descriptions for the semantic Web of Things≫. MA
thesis. School of Electrical and Computer Engineering, Technical University of
Crete, Chania, Greece, 2022. doi: https://doi.org/10.26233/heallink.
tuc.92084.

[22] Aimilios Tzavaras, Nikolaos Mainas, Fotios Bouraimis, and Euripides G.M.
Petrakis. “OpenAPI Thing Descriptions for the Web of Things”. In: 2021 IEEE
33rd International Conference on Tools with Artificial Intelligence (ICTAI).
2021, pp. 1384–1391. doi: 10.1109/ICTAI52525.2021.00220.

57

https://www.w3.org/TR/wot-architecture/
https://www.w3.org/TR/wot-architecture/
https://www.w3.org/Consortium/
https://www.w3.org/Consortium/
https://doi.org/https://doi.org/10.26233/heallink.tuc.92084
https://doi.org/https://doi.org/10.26233/heallink.tuc.92084
https://doi.org/10.1109/ICTAI52525.2021.00220

Appendices

A Thing OpenAPI Documents

https://github.com/baspap54/Thesis-Appendix/tree/main/Appendix/OpenAPI/

OpenAPI%20Documents

B Node-RED Output

https://github.com/baspap54/Thesis-Appendix/tree/main/Appendix/Node-RED%

20Output%20Examples

C Application OpenAPI Documents

https://github.com/baspap54/Thesis-Appendix/tree/main/Appendix/OpenAPI/

Application_OpenAPI

D User Input for the OpenAPI Generator

https://github.com/baspap54/Thesis-Appendix/tree/main/Appendix/OpenAPI/

JSON%20User%20Input

58

https://github.com/baspap54/Thesis-Appendix/tree/main/Appendix/OpenAPI/OpenAPI%20Documents
https://github.com/baspap54/Thesis-Appendix/tree/main/Appendix/OpenAPI/OpenAPI%20Documents
https://github.com/baspap54/Thesis-Appendix/tree/main/Appendix/Node-RED%20Output%20Examples
https://github.com/baspap54/Thesis-Appendix/tree/main/Appendix/Node-RED%20Output%20Examples
https://github.com/baspap54/Thesis-Appendix/tree/main/Appendix/OpenAPI/Application_OpenAPI
https://github.com/baspap54/Thesis-Appendix/tree/main/Appendix/OpenAPI/Application_OpenAPI
https://github.com/baspap54/Thesis-Appendix/tree/main/Appendix/OpenAPI/JSON%20User%20Input
https://github.com/baspap54/Thesis-Appendix/tree/main/Appendix/OpenAPI/JSON%20User%20Input

	Abstract
	Περίληψη
	Acknowledgements
	Introduction
	Scope of Thesis
	Internet of Things & Web of Things
	Problem Definition

	Proposed Solution
	Contributions
	Thesis Outline

	Background and Related Work
	Infrastructure and Tools
	Web of Things & Web of Things Architecture
	RESTful web services
	OpenAPI
	Flow Based Programming
	Node-RED
	Extra Nodes
	openapi-red Extra Node
	MongoDB Extra Node

	Publish/Subscribe Service
	Service-Oriented Architecture
	OpenAPI Thing Template
	OpenAPI Thing Generator
	Web Thing Model service (WTMs)

	Related Work
	loT Mashups with the WoTKit
	IoT Mashup as a Service: Cloud-based Mashup Service for the Internet of Things
	Webifying Heterogenous Internet of Things Devices
	Comparison

	System Architecture
	Database
	MoON's Subsystems
	Subsystem 1: Thing insertion
	Subsystem 2: Application Development & Execution
	Node-RED Output

	Subsystem 3: Applications OpenAPI Generator
	The complete System Architecture

	Use Case Scenario & Example Applications
	Example 1
	Example 2
	Example 3
	Example 4

	Response Time Measurements

	Conclusion & Future Work
	Conclusion
	Future Work

	References
	Appendices
	Thing OpenAPI Documents
	Node-RED Output
	Application OpenAPI Documents
	User Input for the OpenAPI Generator

