
Technical University of Crete

School of Electrical and Computer Engineering

Vision-Based Autonomous Robotic Arm

for Pick-and-Stack Applications in the

Gazebo-ROS Environment

Charalampos Theodorakis

Thesis Committee

Professor Michail G. Lagoudakis (ECE)

Professor Michalis Zervakis (ECE)

Associate Professor Georgios Chalkiadakis (ECE)

 Chania, October 2022

ii

iii

Πολυτεχνείο Κρήτης

Σχολή Ηλεκτρολόγων Μηχανικών

και Μηχανικών Υπολογιστών

Αυτόνομος Ρομποτικός Βραχίονας Βασισμένος

σε Όραση για Εφαρμογές Pick-and-Stack

στο Περιβάλλον Gazebo-ROS

 Χαράλαμπος Θεοδωράκης

Εξεταστική Επιτροπή

Καθηγητής Μιχαήλ Γ. Λαγουδάκης (ΗΜΜΥ)

Καθηγητής Μιχάλης Ζερβάκης (ΗΜΜΥ)

Αναπληρωτής Καθηγητής Γεώργιος Χαλκιαδάκης (ΗΜΜΥ)

Χανιά, Οκτώβριος 2022

iv

v

Abstract

 In recent years, the use of robots as a part of the automation process is a rapidly expanding

field. The most prevalent type of robot in industrial environments is robotic arms. This type of

robots is capable of performing a variety of operations, including transportation, assembly,

packing and welding. The complexity of the tasks assumed for these growing disciplines is also

rising. Thus, the ability of the robot to comprehend the surrounding environment is a required

feature to carry out new tasks. Interacting with the environment and being aware of the

changing conditions enables the robot to make autonomous decisions in more complex

situations. This thesis describes the implementation of an autonomous 6-DOF (Degrees Of

Freedom) robotic manipulator with visual guidance, where the objective for the robot arm is to

stack cylinder blocks, recreating a gradually-presented structured tower pattern. The available

blocks, initially placed randomly in the robot workspace, have unique ArUco markers

displayed on them, so they can be identified. The manipulator is equipped with vacuum

grippers and a 2D camera attached to its end effector. The robot acquires information about the

desired tower pattern from a remote stationary camera, responsible to track the spawning of

building blocks. Since the robotic arm is equipped with its own camera, it employs computer

vision techniques to locate the desired cylinder and, consequently, constructs a trajectory to

pick and stack that cylinder to its correct position using motion planning algorithms. The entire

project has been implemented within the Robot Operating System (ROS) and Gazebo open-

source 3D robotics simulator. The proposed robotic system has been tested extensively in

simulations to ensure its reliability and investigate its efficiency.

vi

vii

Περίληψη

 Τα τελευταία χρόνια, η χρήση ρομποτικών συστημάτων ως μέρος της διαδικασίας

αυτοματισμού είναι ένας ταχέως αναπτυσσόμενος τομέας. Ο πιο διαδεδομένος τύπος ρομπότ

σε βιομηχανικά περιβάλλοντα είναι οι ρομποτικοί βραχίονες. Αυτός ο τύπος ρομπότ είναι

ικανός να εκτελεί μια ποικιλία λειτουργιών, όπως μεταφορά, συναρμολόγηση, συσκευασία και

συγκόλληση. Η πολυπλοκότητα των εργασιών που αναλαμβάνονται για αυτούς τους

αναπτυσσόμενους κλάδους αυξάνεται επίσης, επομένως η ικανότητα του ρομπότ να κατανοεί

το περιβάλλον του είναι απαραίτητο χαρακτηριστικό για την εκτέλεση νέων εργασιών. Η

αλληλεπίδραση με το περιβάλλον και η επίγνωση των μεταβαλλόμενων συνθηκών επιτρέπει

στο ρομπότ να παίρνει αυτόνομες αποφάσεις σε πιο περίπλοκες καταστάσεις. Η παρούσα

διπλωματική εργασία περιγράφει την υλοποίηση ενός αυτόνομου ρομποτικού χειριστηρίου 6-

DOF (Degrees Of Freedom – Βαθμών Ελευθερίας) με οπτική καθοδήγηση, όπου ο στόχος είναι

ο ρομποτικός βραχίονας να στοιβάζει κυλίνδρους, ανακατασκευάζοντας ένα πρότυπο

δομημένου πύργου που παρουσιάζεται σταδιακά. Τα δομικά στοιχεία, αρχικά τοποθετημένα

τυχαία στον χώρο εργασίας του ρομπότ, έχουν μοναδικούς δείκτες ArUco που εμφανίζονται

σε αυτά, ώστε να μπορούν να αναγνωριστούν. Ο βραχίονας είναι εξοπλισμένος με άρπαγες

κενού αέρος και μια κάμερα 2D συνδεδεμένη στην απόληξη του. Το ρομπότ αποκτά

πληροφορίες σχετικά με το επιθυμητό πρότυπο πύργου από μια απομακρυσμένη σταθερή

κάμερα, υπεύθυνη για την παρακολούθηση της διαδοχής των δομικών στοιχείων. Δεδομένου

ότι ο ρομποτικός βραχίονας είναι εξοπλισμένος με δική του κάμερα, χρησιμοποιεί τεχνικές

μηχανικής όρασης για να εντοπίσει τον επιθυμητό κύλινδρο και, στη συνέχεια, σχεδιάζει μια

τροχιά για να σηκώσει και να στοιβάξει τον συγκεκριμένο κύλινδρο στη σωστή του θέση

χρησιμοποιώντας αλγόριθμους σχεδιασμού κίνησης. Η εργασία στο σύνολό της έχει

υλοποιηθεί χρησιμοποιώντας το Robot Operating System (ROS) και το περιβάλλον

ρομποτικής προσομοίωσης Gazebo. Το προτεινόμενο ρομποτικό σύστημα έχει δοκιμαστεί

εκτενώς σε προσομοιώσεις, για να διασφαλιστεί η αξιοπιστία του και να διερευνηθεί η

αποτελεσματικότητά του.

viii

ix

Acknowledgements

First of all, I would like to thank my Professor Michail G. Lagoudakis for his guidance and

advice throughout this project.

I would also like to thank my colleagues and friends for their assistance and support, which

was essential for the completion of this work.

Last, but not least, I am grateful to my family for their continuous help and support.

x

xi

Contents

1 Introduction .. 1

1.1 Thesis Contribution ... 2

1.2 Thesis Outline ... 3

2 Background .. 4

2.1 UR5 Robot Arm .. 4

2.2 Robot Operating System and Gazebo ... 7

2.3 MoveIt! .. 8

2.4 Kinematics ... 11

2.4.1 Forward Kinematics ... 11

2.4.2 Singularities ... 12

2.4.3 Inverse Kinematics... 13

2.4.4 Inverse Jacobian Technique ... 16

2.5 Robot Vision and ArUco Markers ... 17

3 Problem Statement ... 19

3.1 Autonomous Vision Based Control For Robot Manipulator 19

3.2 Related Work ... 20

4 Our Approach ... 21

4.1 Simulation Environment ... 21

4.2 UR5 Robot Modeling .. 22

4.3 System Synchronization and management .. 25

4.4 ArUco Marker Detection ... 26

4.5 Robot Control and Motion Planning ... 30

5 Results .. 34

xii

5.1 Simulation ... 35

5.2 Object Pose Estimation ... 41

6 Conclusions .. 42

6.1 Conclusion ... 42

6.2 Future work ... 43

6.2.1 Real Robot Application .. 43

6.2.2 Motion planners ... 43

7 References .. 44

8 Appendix A .. 48

xiii

List of Figures

Figure 2.1 : UR5 collaborative robot arm .. 4

Figure 2.2 : UR5 Technical Specifications .. 5

Figure 2.3 : A ROS message example .. 8

Figure 2.4 : Move_group Architecture... 9

Figure 2.5 : Planning scene pipeline .. 10

Figure 2.6 : UR5 DH parameters ... 12

Figure 2.7 : Inverse Kinematics example of a 2-link robotic arm ... 14

Figure 2.8 : Comparison of some common Fiducial markers .. 17

Figure 2.9 : ArUco Marker with ID = 4 ... 18

Figure 4.1 : Gazebo environment. Workbench 1 (left), Workbench 2 (right) 21

Figure 4.2 : Workspace 1, target stacks spawn .. 22

Figure 4.3 : UR5 Robot model equipped with the additional modules and the vacuum

grippers configuration .. 23

Figure 4.4 : UR5 tf tree .. 24

Figure 4.5 : Tf tree view in RVIZ plugin ... 24

Figure 4.6 : FSM .. 25

Figure 4.7 : ArUco Marker ID=4 and the corresponding cylinder blender model 27

Figure 4.8 : Marker cells .. 28

Figure 4.9 : ArUco Markers' IDs detection by the UR5’s .. 28

Figure 4.10 : Motion planning pipeline ... 31

Figure 4.11 : Start and Goal State .. 32

Figure 4.12 : Motion planning ... 33

Figure 5.1 : ROS Nodes Graph showing all nodes and topics ... 34

Figure 5.2 : Example 1, Simulation start ... 35

Figure 5.3 : Example 1, Iteration 1. Detection (left) Picking (center) Placing (right) 35

file:///C:/Users/User/Desktop/thesis_Theodorakis.docx%23_Toc116923606
file:///C:/Users/User/Desktop/thesis_Theodorakis.docx%23_Toc116923607
file:///C:/Users/User/Desktop/thesis_Theodorakis.docx%23_Toc116923608
file:///C:/Users/User/Desktop/thesis_Theodorakis.docx%23_Toc116923609
file:///C:/Users/User/Desktop/thesis_Theodorakis.docx%23_Toc116923610
file:///C:/Users/User/Desktop/thesis_Theodorakis.docx%23_Toc116923611
file:///C:/Users/User/Desktop/thesis_Theodorakis.docx%23_Toc116923612
file:///C:/Users/User/Desktop/thesis_Theodorakis.docx%23_Toc116923613
file:///C:/Users/User/Desktop/thesis_Theodorakis.docx%23_Toc116923614
file:///C:/Users/User/Desktop/thesis_Theodorakis.docx%23_Toc116923615
file:///C:/Users/User/Desktop/thesis_Theodorakis.docx%23_Toc116923616
file:///C:/Users/User/Desktop/thesis_Theodorakis.docx%23_Toc116923617
file:///C:/Users/User/Desktop/thesis_Theodorakis.docx%23_Toc116923617
file:///C:/Users/User/Desktop/thesis_Theodorakis.docx%23_Toc116923618
file:///C:/Users/User/Desktop/thesis_Theodorakis.docx%23_Toc116923619
file:///C:/Users/User/Desktop/thesis_Theodorakis.docx%23_Toc116923620
file:///C:/Users/User/Desktop/thesis_Theodorakis.docx%23_Toc116923621
file:///C:/Users/User/Desktop/thesis_Theodorakis.docx%23_Toc116923622
file:///C:/Users/User/Desktop/thesis_Theodorakis.docx%23_Toc116923623
file:///C:/Users/User/Desktop/thesis_Theodorakis.docx%23_Toc116923624
file:///C:/Users/User/Desktop/thesis_Theodorakis.docx%23_Toc116923625
file:///C:/Users/User/Desktop/thesis_Theodorakis.docx%23_Toc116923626
file:///C:/Users/User/Desktop/thesis_Theodorakis.docx%23_Toc116923627
file:///C:/Users/User/Desktop/thesis_Theodorakis.docx%23_Toc116923628
file:///C:/Users/User/Desktop/thesis_Theodorakis.docx%23_Toc116923629

xiv

Figure 5.4 : Example 1, Iteration 2 .. 35

Figure 5.5 : Example 1, Iteration 3 .. 36

Figure 5.6 : Example 1, Iteration 4 .. 36

Figure 5.7 : Example 1, Iteration 5 .. 36

Figure 5.8 : Example 1, Iteration 6 .. 36

Figure 5.9 : Example 1, Iteration 7 .. 37

Figure 5.10 : Example 1, Iteration 8 .. 37

Figure 5.11 : End of simulation (8 cylinders) .. 37

Figure 5.12 : Example 2, Iteration 1 .. 38

Figure 5.13 : Example 2, Iteration 2 .. 38

Figure 5.14 : Example 2, Iteration 3 .. 38

Figure 5.15 : Example 2, Iteration 4 .. 38

Figure 5.16 : Example 2, Iteration 5 .. 39

Figure 5.17 : Example 2, Iteration 6 .. 39

Figure 5.18 : Example 2, Iteration 7 .. 39

Figure 5.19 : Example 2, Iteration 8 .. 39

Figure 5.20 : Example 2, Iteration 9 .. 39

Figure 5.21 : Example 2, Iteration 10 .. 40

Figure 5.22 : End of simulation (10 cylinders) .. 40

file:///C:/Users/User/Desktop/thesis_Theodorakis.docx%23_Toc116923630
file:///C:/Users/User/Desktop/thesis_Theodorakis.docx%23_Toc116923631
file:///C:/Users/User/Desktop/thesis_Theodorakis.docx%23_Toc116923632
file:///C:/Users/User/Desktop/thesis_Theodorakis.docx%23_Toc116923633
file:///C:/Users/User/Desktop/thesis_Theodorakis.docx%23_Toc116923634
file:///C:/Users/User/Desktop/thesis_Theodorakis.docx%23_Toc116923635
file:///C:/Users/User/Desktop/thesis_Theodorakis.docx%23_Toc116923636
file:///C:/Users/User/Desktop/thesis_Theodorakis.docx%23_Toc116923637
file:///C:/Users/User/Desktop/thesis_Theodorakis.docx%23_Toc116923638
file:///C:/Users/User/Desktop/thesis_Theodorakis.docx%23_Toc116923639
file:///C:/Users/User/Desktop/thesis_Theodorakis.docx%23_Toc116923640
file:///C:/Users/User/Desktop/thesis_Theodorakis.docx%23_Toc116923641
file:///C:/Users/User/Desktop/thesis_Theodorakis.docx%23_Toc116923642
file:///C:/Users/User/Desktop/thesis_Theodorakis.docx%23_Toc116923643
file:///C:/Users/User/Desktop/thesis_Theodorakis.docx%23_Toc116923644
file:///C:/Users/User/Desktop/thesis_Theodorakis.docx%23_Toc116923645
file:///C:/Users/User/Desktop/thesis_Theodorakis.docx%23_Toc116923646
file:///C:/Users/User/Desktop/thesis_Theodorakis.docx%23_Toc116923647
file:///C:/Users/User/Desktop/thesis_Theodorakis.docx%23_Toc116923648

1 Introduction

Chapter 1

1 Introduction

In recent years, automation is one of the most effective tools of industry, thanks to the

constant advancements in computation, electronics and control algorithms. It enables the

completion of specific tasks quickly, efficiently and safely. The use of robots as a part of the

automation process is a rapidly expanding field. The most prevalent type of robot, in industrial

environments, are robotic arms. This type of robot is capable of performing a variety of

operations, including transportation, assembly, packing and welding.

The complexity of the tasks assumed for these growing disciplines is also rising.

Furthermore, robots are required to coexist and cooperate with humans in tasks like assisted

industrial manipulation, collaborative assembly etc. Thus, the ability of the robot to

comprehend the surrounding environment is a required feature to carry out the new tasks.

Interacting with the environment and being aware of the changing conditions enables the robot

to make autonomous decisions in more complex situations.

Obtaining knowledge about the surroundings can be accomplished by computer vision

(CV). A computer vision system includes a camera that captures images, processes them and

extracts information about the environment. The ability of vision provides the robot with the

necessary tools to identify objects in its physical environment and select the best way to interact

with them.

The development of computer vision has completely revolutionized the problem solving

approach in many different industries like retail, manufacturing, warehousing and agriculture.

Repetition in those types of industries is typically the key factor that makes automation easy to

apply. However, when there is some variability in the task, an effort should be made to lessen

the uncertainty, or a human should be recruited to make the judgments. Thanks to intelligent

systems, decision making is now possible with the aid of perceptual systems, such as computer

2 Introduction

vision. Visual servoing is the term used to describe this technique. It gathers data via visual

sensors in order to control the robot.

Commercial systems provided by robot manufacturers include not only the physical robot

but also the software and methodology for controlling it. Oftentimes, in the pursuit of friendly

user interaction and intuitive development, these systems are mainly proprietary and focus on

solving easy and generic tasks. For the implementation of more advance features developing

third party programs and connecting them with the system is required. For this reason, a variety

of software tools is available, regardless of the robot’s manufacturer, that can integrate tasks

like CV, robot control and advanced trajectory planning. Complex issues can be resolved by a

later interface between the developed software and the robot.

1.1 Thesis Contribution

This thesis describes the implementation of an autonomous 6-DOF robotic manipulator with

visual guidance, where the objective is for the robot arm to stack cylinder blocks, recreating

randomly generated towers. The blocks have different, unique ArUco markers displayed on

them so they can be identified. The robot is equipped with vacuum grippers to achieve the

grasping of the objects. Also, a 2D camera is attached to its end effector, to enable the robot

system to make decision and function autonomously by providing visual feedback.

In an area adjacent to the robot’s workspace, cylinder blocks are being spawned, one at a

time, in three different locations creating towers. A camera, placed above the aforementioned

area, makes use of an object recognition algorithm to detect every newly spawned cylinder and

extract information about its coordinates and identification. This information is transferred to

the robot arm to proceed with its task.

The robot arm has a similar set of cylinders blocks, laid out in front of it. By exploiting the

data communicated to it by the camera, it is able to determine which block it is required to

stack and at what position. Since the robotic arm is equipped with a camera, it employs

computer vision techniques to locate the desired cylinder. Consequently, it constructs a

trajectory to position its end effector directly above the cylinder by making use of motion

planning algorithms. After the pick and place task has been completed the process repeats for

the next cylinder block.

 The entire project has been implemented within the Robot Operating System (ROS). In the

absence of a real robotic manipulator the whole environment was simulated in the Gazebo

open-source 3D robotics simulator. However, the present approach could be applied to the

actual robot arm, after minor adjustments, since all the packages used to describe and control

the robot are provided and tested from the manufacturer.

3 Introduction

1.2 Thesis Outline

In Chapter 2 we present all the background information needed for this thesis. We provide the

characteristics and specifications of the selected robot arm and an overview of all the

frameworks and software packages used for this thesis. Additionally, basic knowledge of

concepts like computer vision and kinematics is discussed.

In Chapter 3 the basic problems of our approach are stated and also similar robotic projects are

referenced.

In Chapter 4 we describe in detail the implementation steps of our approach. The exact

environment setup is presented, as well as the methods and proposed algorithm to solve

computer vision, robot control and path planning problems.

Chapter 5 contains the results of the approach in the simulated environment.

Finally, in Chapter 6 conclusion and future work to extend our approach is presented.

4 Background

Chapter 2

2 Background

2.1 UR5 Robot Arm

 The UR5 is a 6-axis robot arm developed by the Danish company Universal Robots. It is

regarded as a collaborative robot, meaning that it is safe to operate alongside humans, as they

are equipped with force sensors in their joints which will stop the motion as soon as they

detect a collision with an object. An image of such a robotic arm can be seen at Figure 2.1

along with the dimensions of all the links.

Figure 2.1 : UR5 collaborative robot arm

5 Background

The UR5 a lightweight, adaptable robot that tackles medium-duty applications designed for

industrial environments. It is one of the industry’s most popular cobot because of its portability

combined with the long-term flexibility of the UR5’s higher payload and longer reach.

The specifications given by Universal Robots are provided in Figure 2.2.

Figure 2.2 : UR5 Technical Specifications

6 Background

There are six revolving joints in the robotic arm. These joints are referred to as Base,

Shoulder, Elbow, Wrist1, Wrist2, and Wrist3. For these kinds of robotic arms, the UR5 features

a layout that is very typical. The Shoulder and Elbow joint are rotating perpendicular to the

Base joint. The main purpose of the wrist joints is to move the Tool Center Point (TCP) into

the proper orientation.

The Degree of Freedom (DOF) for a robot arm is the configuration space dimension, which

in turn is the minimum number needed to describe this space. The degrees of freedom for a

mechanism are calculated using Grubler's formula [22] by deducting the freedom of a joint

from the number of independent constraints.

For a robot arm with J number of joints this formula become :

Where m is the number of freedoms for a single rigid body. For planer bodies, m equals three

with one rotational and two transitional in 2D space. In our case, for spatial bodies in a 3D

environment, m equals six with three rotational and three transitional. N is the total number of

bodies including the ground. Six revolute joints make up UR5, and when ground is added, N

becomes seven. Finally, c is the constraint between two rigid bodies. For revolute joints, c is

equal to 5. The aforementioned equation can be used to obtain the UR5 robot arm's DOF by

entering these numbers.

7 Background

2.2 Robot Operating System and Gazebo

Robot Operating System ROS [17] is a flexible collaborative framework for robotic

software development, and consists of a large collection of tools, libraries and templates.

Research organizations, labs, and individuals can use ROS as the programming platform to

contribute their algorithms, also known as ROS packages, and build software by utilizing pre-

existing modules.

Numerous ROS and ROS-Industrial [18] packages are being used for the purposes of this

project. The latter are designed specifically for industrial robotic applications with the support

of the robotics industry and research institutions. ROS-Industrial provides numerous sensor

plugins, robot controller packages and planning algorithms in order to enhance agile industrial

robotics for a wide range of automation tasks and industrial manufacturing.

Additionally, ROS framework comes with a wide variety of tools to help with real time

environment configuration and monitoring, data visualization tools, like Rviz [23] and the

transformation system tf [24].

In the ROS environment each process performing computation is called a ROS node and

represents a device. ROS middleware integrates a communication infrastructure in order for

the nodes to interact with each other, via a peer-to peer network. The capabilities, provided for

inter -process communication, are described as follows:

• Message passing via publishing and subscribing systems. ROS nodes exchange

messages in an asynchronous way through ROS Topics. A ROS node that generates and

publishes data to a particular ROS Topic is referred to as a publisher. Any ROS node

can subscribe to a ROS subject and receive information if it is interested in the

published data. A publishing ROS node is not aware of the identities of the subscribers

to its subjects in this manner of communication. Through a single topic, numerous

publications and subscribers can interact.

• Remote procedure calls (RPC) in request-response systems. RPC that provide request

and reply interactions are called ROS services. The RPC interactions in ROS are

defined by a pair of ROS messages. A provider ROS node registers the service under a

namespace (a directory of names), and a client calls the service by sending a request

message and waiting for a reply.

8 Background

• Distributed parameter server. A shared dictionary to store static and non-binary

parameters. The parameters stored in the server can be retrieved globally by all ROS

nodes and they provide and registration services to the rest of the nodes.

 ROS messages are defined using a simplified message description language, which enables

ROS to automatically create source code for several languages. A ROS message is a collection

of constant definitions and descriptions for data fields. The built-in or self-defined description

is the field type listed in the left column. The field type is followed by the field name, which

provides the name of the data structure and is bounded by a space. Although it is not necessary,

a data field's description can be added after the comment symbol (#), as seen in the figure

below.

The workspace environment was simulated and tested using Gazebo, a robotics simulator.

Gazebo uses Open Dynamic Engine (ODE) for dynamics simulation. Also, high-quality

rendering is supported by the Object-Oriented Graphics Rendering Engine (OGRE). A variety

of sensors and robotic models are included in the Gazebo library. Various command line tools

are available to users, and customized plugins for robot, sensor and environment control can

be programmed in Python or C++ and integrated into Gazebo.

2.3 MoveIt!

MoveIt! [19] Motion Planner is a set of software packages integrated with the ROS and

designed specifically to provide motion planning capabilities, especially for the manipulators.

It is state–of–the–art software for mobile manipulation and it provides the latest advances in

motion planning, manipulation, 3D perception, robot kinematics and control. MoveIt! packages

support the UR5 robot and were used as a convenient platform to implement the motion

planning pipeline.

The system architecture for the primary node, move_group, is shown in Figure 2.4. It

combines controllers, sensors, libraries and all the other components to provide a set of ROS

Figure 2.3 : A ROS message example

9 Background

actions (red lines), services (blue lines) and topics (green lines). This node obtains three

different types of information from the ROS parameter server:

• URDF which is the robot_description file on the ROS parameter server.

• SRDF which is the robot_description_semantic parameter on the ROS parameter server.

The MoveIt! Setup Assistant is commonly used by a developer to generate the SRDF

just once.

• MoveIt! Configuration which includes MoveIt specific settings, such as kinematics,

joint limits, motion planning, perception, and other data.

Topics and actions are used by the move group node to communicate with the robot. Joint

state information is published on the /joint state ROS topic and transform tree data is published

on the /tf topic. Information on the robot transform tree is published by the robot state publisher.

The state of the robot and its surrounding environment is defined as a planning scene in a scene

monitor. In order to compute the trajectory, the motion planning algorithm retrieves the data

from the planning scene.

Figure 2.4 : Move_group Architecture

10 Background

MoveIt! Includes motion planning plugins that allow the user to take advantage of multiple

open-source planning libraries such as the Open Motion Planning Library (OMPL) [20]. OMPL

is used as the primary or default set of planners in MoveIt. The planners in OMPL are abstract,

thus they no concept of a robot. Instead, MoveIt! sets up OMPL and supplies the back-end

needed for OMPL to work with robotics-related issues. The structure of OMPL can be seen in

Figure 2.5.

Figure 2.5 : Planning scene pipeline

11 Background

2.4 Kinematics

The branch of mechanics that studies the motion of a body or a system of bodies, without

consideration given to its mass or the forces acting on it, is known as kinematics. Hence, the

study of the kinematics of robotic manipulators refers to all the geometrical and time-based

properties of the motion. From the mechanical structure point of view, the UR5 robot is an open

kinematic chain connected by 6 revolute joints, so the 6-DOF robotic manipulator's kinematic

model can be developed.

2.4.1 Forward Kinematics

Forward kinematics is the method for determining the orientation and position of the end

effector, given the joint angles and link lengths of the robot arm.

The transformation matrix 𝐻𝑗
𝑖 is the matrix mapping point p in reference frame Ψi into Ψj.

For a robotic arm it is convenient to begin with the base frame Ψ0 and start from the zero vector

in xyz.

The transformation matrices can be multiplied to conveniently map into

other reference frames.

The position of the joints of the UR5 are used to construct every homogeneous transformation

matrix and represent the transformation from joint i−1 to joint i. Where θ1 is the Base joint and

θ6 is the Wrist3. Eventually a mapping from the base frame to the position of the TCP can be

constructed.

12 Background

The transformation matrices can be easily constructed in accordance with the Denavit-

Hartenberg convention [21], which is a commonly used to define four parameters that describe

how the reference frame of each link is attached to the robot manipulator.

These Denavit-Hartenberg parameters are known for the UR5 and listed in Figure 2.6.

2.4.2 Singularities

 In robotics, singularity is a common problem. When a robot is in a singular configuration it

cannot track the desired trajectory. How a singularity occurs and how it affects the manipulator

will be discussed.

The transformation matrix from the joint velocity space to the end effector velocity space is

called the Jacobian.

 Geometric Jacobian

 Analytic Jacobian

Figure 2.6 : UR5 DH parameters

13 Background

There is a difference between the geometric Jacobian and the analytic Jacobian. While ω

represents the angular velocity �̇� represents the change of orientation of the end-effector frame

φ. ω and 𝜑 ̇ are in general not the same.

The geometric Jacobian for a robot with only revolute joints can be constructed as follows [25]:

Where Zi are the first three elements of the third column of transformation matrix 𝐻𝑖
0 and oi are

the first three elements of the fourth column of 𝐻𝑖
0

Singularity happens when a rank is dropped in the Jacobian. There are two types of singular

configurations for robotic arms, boundary singularities and internal singularities. If the robot is

requested to move outside its workspace, a boundary singularity will occur. Typically, this takes

place when the arm is fully extended. Internal singularities are usually caused by the alignment

of two or more of the robot's axes. As a result, the action of one joint can be cancelled by

another joint. In this situation, there are infinite possibilities for the movement, leaving the

action undetermined.

Near-singularities pose also a problem. In the case, when the determinant of the Jacobian

becomes small, the inverted Jacobian will become large. This means that some joints must

perform a considerable movement for a small end-effector movement. That can lead to the

joint’s velocity operating outside its physical range, making it impossible for the end-effector

to move according to the intended trajectory.

2.4.3 Inverse Kinematics

In section 2.4.1 the mapping from the joint space to the cartesian space for the robotic

manipulator was discussed. This is a fairly easy problem since the transformation matrix has

only one solution and only depends on the known joint angles.

Finding the joint variables for given end–effector positions is a much more complicated

issue known as inverse kinematics. The joint angles, which are unknown in this instance, are

also a factor in the transformation matrix. Additionally, given a single Cartesian coordinate,

there are often eight distinct configurations that are feasible. The two main types of inverse

kinematics techniques are iterative techniques and closed form solutions.

14 Background

The robotic arm's geometrical properties are utilized by the closed-form solution, which can

directly solve the inverse kinematics problem. To illustrate this concept, a two DOF robotic

arm example [26] is explained below.

A 2-link arm is shown in figure 2.7. Link 1 and 2 are respectively l1 and l2. The angle from

link 1 to the x-axis is expressed as θ1. The angle between link 2 and link 1 is expressed as θ2.

The position of the end effector in the Cartesian space is expressed in p.

The Forward Kinematics for the position of the end effector of this robotic arm are

straightforward.

Where px is the x-coordinate and py is the y-coordinate of the end effector.

The Inverse Kinematics is more complicated. The challenge is to find the angles θ1 and θ2 ,

knowing the desired position of the end effector, p.

Figure 2.7 : Inverse Kinematics example of a 2-link robotic arm

15 Background

The Rule of Cosine can be used to determine the angle of θ2, where cos(γ) =−cos(θ2). There

will be two solutions for θ2 .because of the arccos, meaning −θ2 will also be a solution.

The Rule of Sine can be used to determine the angle of θ1. Angle θ1 is dependent on θ2, but

there are no different solutions for a same θ2.

As a result, there will typically be two alternative configurations for a given point in the

Cartesian plane.

This was a simplified example with only two links. Finding a closed form solution for a 6 DOF

robotic arm is significantly more complicated.

Using iterative techniques is another method to perform the inverse kinematics. Iterative

numerical approaches are one of those techniques. A search algorithm like the Newton-

Raphson can be used. The transformation matrix 𝐻6
0 can be used to create the cost function for

this optimization algorithm. The cost functions derived from the DH-parameters of the UR5,

that can be used for various minimization algorithms, are described in Appendix A.

16 Background

2.4.4 Inverse Jacobian Technique

The method to calculate the inverse Kinematics of the UR5 is the inverse Jacobian

technique. Although it is impossible to reverse the joint space to Cartesian space mapping for

position, it is possible to do so for rates. As we mentioned in section 2.4.2, this mapping is

known as the Jacobian and it is only dependent on the angles of the joints, thus in can be

inverted.

The plan is to differentiate the 6D position and rotation vector. The resulting vector, which

contains the TCP's velocities, is multiplied by the Jacobian's inverse. The present angles of the

joints are used to calculate this Jacobian as described on section 2.4.2. The resulting vector

represents the joints’ velocities and it is finally summed to produce the vector with the joint

angles. The whole process is briefly presented below. Here pi is the position and rotation vector

for instant i. JG is the geometric Jacobian and θi is the vector for the angles of all six joints for

instance i.

It should be noted that the order in which the rotation matrices are multiplied affects the

angle. There is no way to compute the difference without introducing an error. Furthermore,

the present position affects the Jacobian used to determine the following position. This will,

also, produce an error since θ is generally not constant. In order to avoid problems, the steps

must be very small so the errors are not significant.

17 Background

2.5 Robot Vision and ArUco Markers

Computer vision is a field that enables computers and systems to perceive the world around

them and derive meaningful information by analysing digital images, videos and other visual

inputs. Robot vision is a related branch where the host computer not only processes the

environment data collected from cameras or sensors but also uses the information to control

the client robot.

The most used software to handle computer vision problems is the OpenCV [27], an open

source cross-platform programming language. This library implements many functions useful

to handle cameras, intrinsic calibrate them and to manage and parse images.

A very useful tool for computer vision systems are fiducial markers. These markers are

image like objects, which are designed to be detectable and typically contain an interpretable

meaning. They come in a variety of sizes and shapes, ranging from tiny dots to intricate bar-

code images.

For the purposes of this thesis the ArUco markers [11] are best suited. These markers are

comprised by an external black border and an inner region that encodes a binary pattern. There

are several dictionaries for ArUco markers which differ in the number of markers they contain

Figure 2.8 : Comparison of some

common Fiducial markers

18 Background

and the number of inner squares that encode the binary pattern. In this application, the marker

is a 7x7 grid with the outer rows and columns used as a black border, leaving a 5x5 grid for the

encoding. Only two squares on each row are utilized for the actual code, with the remaining

used for error checking.

This evaluates to 11111111112 = 102310 , resulting to 1024 unique IDs.

The large squares in this design makes it easy and fast to detect, compared to something like

a QR-code, while it is still able to contain an encoded ID. Therefore, we can preserve all the

needed information while any unnecessary complexity is eliminated. Another advantage of

these markers is that each of them provides a 4-point vector representing the pixel coordinates

of the corners. When the corners are known, the position of the center can be calculated and

because of the asymmetry of the binary code, the orientation of the marker can be determined.

Figure 2.9 : ArUco Marker with ID = 4

19 Problem Statement

Chapter 3

3 Problem Statement

3.1 Autonomous Vision Based Control For Robot

Manipulator

 The use of robot manipulators is a continuously developing area, especially in industrial and

manufacturing environments. As a result, there is a growing need for agile and adaptable

autonomous robotic systems. In order for the robots to be considered autonomous, they must

be able to perceive the surrounding environment and make decisions about the order of actions.

 This thesis is focused on developing autonomous control of the UR5 robot arm, by the means

of computer vision, recognition and tracking, in order to complete picking, handling and

stacking tasks. The robot must be able to operate autonomously, without user input.

Furthermore, it should be able to interact with its environment and recognize objects of interest.

This is crucial in order for the robot arm to adapt to potential changes of its surroundings, and

operate under random conditions of the workspace.

 The introduction of extra features like, robot vision and grasping, calls for the integration of

the appropriate modules. Additionally, the tools for the trajectory planning, robot control and

object recognition must be implemented. Due to the need of performing the tasks accurately

and reliably, synchronization and efficient algorithm development is a key factor for the success

of the system.

20 Problem Statement

3.2 Related Work

Autonomous robotic manipulators have been an area of increasing research interest, due to

their extensive use in industrial and manufacturing applications. Robot arms with 6DOF are

complex enough to take the place of humans and perform complicated tasks. Many approaches

focus on the integration of robotic arms in industrial environments [1], [2], [5]. These

approaches utilize vision systems to enable the robot to perceive its surroundings. The Amazon

Picking Challenge (APC) [3] is a well-known competition, organized every year by the amazon

company, in order to promote shared and open solutions to some of the big problems in

unstructured automation. This challenge focuses on pick-and-stow operations where a robot

recognizes target items, picks items from shelves and places them in shipping boxes.

Moreover, visual guidance systems are examined in [4], [7], [6]. In those approaches

different camera systems have been used, from simple 2D USB camera to the more advanced

Kinect depth camera. Also, the recognition tasks vary, as some approaches focus on color

recognition, while others deal with shapes and object detection. In our approach, we used

ArUco markers [11] for the object detection. These markers are commonly used in robotics,

not only for object tracking but also for localization and navigation [8], [9]. Since there are

ways to extract information about the object’s distance from the camera, if you possess

knowledge about the markers’ dimensions, the use of a depth camera is not necessary.

Robot arm kinematics and motion planning are also topics with great interest in robotics.

Specifically, for the UR5 manipulator the kinematic and dynamic modeling is explained in

[10],[12]. Different approaches for the motion control of the robot have been investigated in

the past, including the Proportional Integral Derivative method and the Fuzzy Logic Control

[13],[14]. These techniques are especially useful for controlling the hardware of the real UR5

robot. Finally, the motion planning strategy for the 6-DoF robot has been studied in several

publications [15],[16] which contain the conditions and parameters involved in robot trajectory

planning.

21 Our Approach

Chapter 4

4 Our Approach

4.1 Simulation Environment

The first step was to create the environment for the simulation in the Gazebo platform. The

environment consists of two workbenches. The first one, that will be referred to as workbench

1, is the place where the towers, which the robotic arm is called to recreate, are being spawned.

A stationary 2D camera is placed directly above, so that its field of view covers the entirety of

the area. The second workbench (workbench 2) includes the UR5 manipulator and 8 cylinders

with unique ArUco markers displayed on top of them. This is the operation area of the robot

arm. The goal is for the robotic manipulator to handle the cylinder blocks on its workbench to

recreate the spawning of stacks that takes place in workbench 1.

Figure 4.1 : Gazebo environment. Workbench 1 (left), Workbench 2 (right)

22 Our Approach

The process by which the stacks, that we are called to copy, are being spawned is described

as follows. In each iteration a single cylinder, from a set identical to the one described above,

is being spawned randomly in one of three positions, on workbench 1. The order by which the

IDs spawn is random. The stationary camera is responsible for detecting the cylinder and

identify its ArUco ID and position. The robotic manipulator is able to acquire this data via the

ROS Service /latest_aruco_id, in order to continue with the pick and place task.

4.2 UR5 Robot Modeling

 For the UR5 robotic arm ROS Industrial universal_robot package was used. Universal robot

descriptions, drivers, gazebo resources, kinematic, ROS messages and MoveIt! packages are

included. Robots in ROS are modelled in The Universal Robotic Description Format (URDF)

which is XML file format. For speeding up of tedious writing in URDF language serves XML

Figure 4.2 : Workspace 1, target stacks spawn

23 Our Approach

macro (Xacro). Xacro enables the developer to define repeating properties and create own

macros. Several addition had to be introduced in the original ur5.urdf.xacro file in order to add

the desired functionalities to the robot.

First, vacuum grippers were attached to the manipulator’s end effector. The grippers are

available as a Gazebo ROS dynamic plugin. They operate by collecting data from a ROS topic

and applying wrench to a body accordingly. Since the vacuum gripper only provides limited

force, nine identical grippers were added in order to lift the object. An extra link and a joint are

added to the URDF file for every gripper.

The robot was also equipped with a camera module attached to its end effector, available as

a gazebo sensor plugin, for the detection and tracking of the cylinders. The camera is displayed

in the simulation as a green cube. All camera’s image raw data are published at the

/ur5/usbcam/image_raw topic.

In the discipline of robotics, each component of a robot is described by its coordinate system

and its origin, which are provided by a position and a rotation vector relative to another

reference system. Additionally, for moving robots the relation between two subsystem parts is

dependent to time. ROS has an integrated transform library, called tf [24], which is utilized as

the main method of tracking positional data. This information is very useful to determine robot

poses and objects’ position at a given timestamp. The tf tree of the complete UR5 with the

additions of the extra modules and views in Rviz plugin are presented in Figure 4.4 and Figure

4.5 respectively.

Figure 4.3 : UR5 Robot model equipped with the additional modules and the vacuum

grippers configuration

24 Our Approach

Figure 4.4 : UR5 tf tree

Figure 4.5 : Tf tree view in RVIZ plugin

25 Our Approach

4.3 System Synchronization and management

Synchronizing every subtask is crucial to ensure the smooth operation of the system. Delays

in the simulation can cause loss of data, during the communication of different nodes, resulting

in errors. To solve this problem a simple finite state machine (FSM) was implemented which

controls the robot’s behavior and the function of all the other modules. The complete finite

state machine is shown in figure 4.6.

The starting point is the Initialization State, IS. The FSM will remain in this state until the

simulation environment is built. When the robot, the workbenches, the scene 1 camera and the

cylinders are spawned, we transition to the next state.

Figure 4.6 : FSM

26 Our Approach

 HS stands for Home State, during this state the arm goes to its home pose. In this pose, the

robot’s camera is aimed at the cylinder blocks that must be stacked. During this state, a cylinder,

whose placement the robot must recreate, spawns on workbench 1.

The next state is Detection Scene 1, DS1. The 2D camera located above workbench 1

recognizes the newly spawned ArUco ID and based on its coordinates it determines in which

of the three towers it was stacked. This information is communicated to the robot via ROS

Services request and reply messages. The camera node stores information about all the ArUco

IDs it has previously encountered, that way we ensure that only the information about the most

recently spawned cylinder will get transferred to the robot.

The next transition in to the Detection Scene 2 state, DS2. Now the robot arm in called to

detect the cylinder with the same ArUco ID, from the block set located in front of it, using the

attached camera on its end effector. Furthermore, the cylinders position must be estimated for

the next step.

It is finally time for the pick and place task, PPS. The robot arm has knowledge about the

coordinates of the desired cylinder and the stack on which it should be placed, thus the motion

planning can be implemented. When the placement is completed, the FSM transitions to the

Home State for the loop to repeat. When we run out of cylinder blocks the program will

progress to the End State.

4.4 ArUco Marker Detection

The detection algorithms were implemented using OpenCV, since it provides a large set of

image processing algorithms. Additionally, a library specifically for ArUco markers detection,

developed by Rafael Muñoz and Sergio Garrido [11] is available for OpenCV.

The script from Github repository [28] was used, under MIT License, to create the ArUco

markers. Then, using Blender open source 3D creation suite, COLLADA files were created

describing the mesh, material and texture of each cylinder based on the ArUco image files. An

example of a generated ArUco marker and the corresponding blender model is shown in Figure

4.7.

27 Our Approach

Before we proceed with the detection, it is necessary to ensure that we are accepting the

camera’s latest frame. For that reason, we discard the first 20 frames the camera provided in

each detection state, which is equivalent to 2 seconds since the camera operates at 10 frames

per second. This is enough time to make sure that delays in the simulation or in the publishing

of the camera’s recorded image on the ROS Topic, will not cause any issues.

The first step of the detection process is finding marker candidates. In order to do that, an

adaptive threshold [29] is applied to the image. Window sliding is used in adaptive thresholding

to obtain the best greyscale value for each window. Values below the calculated value will be

black and above is white. Contours can now be extracted from the binary image [30]. If they

are not convex or close to a square shape, they will be discarded. The size of the edges or the

separations between them, among other filters, are used to define these conditions [31].

Now that the square shaped candidates have been selected, the next step in to determine if

they are in fact ArUco markers with a valid ID. The candidates will be subjected to perspective

transform. This form is known as the canonical form. Otsu thresholding [32] will then be

applied. The goal of Otsu thresholding is finding an optimum point of the histogram of the

image so that the disparity between the black and white (foreground and background)

distributions is minimum.

For the purpose of this thesis the 5x5 ArUco dictionary was used, so the last version of the

images will be divided into 5x5 sub-images (with the border, 7x7). Since they are already

thresholded, it is easy to convert the binary images to a binary matrix. These matrices will be

searched in the dictionary and if they match with the markers their IDs will be determined.

Figure 4.7 : ArUco Marker ID=4 and the corresponding cylinder blender model

28 Our Approach

Figure 4.9 : ArUco Markers' IDs detection by the UR5’s

end effector camera

Figure 4.8 : Marker cells

29 Our Approach

The final step is to estimate the positions of the markers. ArUco detect function returns the

coordinates of the corners for each marker, in pixel units, in the camera field of view. The depth

can be calculated if we take into account the exact dimensions of the marker. In our case, the

square’s side length is 7.81 centimeters. If we pass this data, along with the camera’s distance

coefficient and position, as parameters in the function estimatePoseSingleMarkers(), which is

included in the ArUco library, it will return 2 vectors, the translation (position) and rotation of

the marker. The rotation vector is not relevant for its application since cylinder blocks are used,

thus their orientation in not significant. The translation vector is the coordinates of the ArUco

marker corners translated to the camera coordinate system. Using simple geometry, we can

deduce the center point of the square marker by calculating the means of the corners’ x and y

coordinates.

In order to command the robot to move its end effector, the position must be relevant to the

robot’s base coordinate system. To do that we use the homogeneous transformation matrix H,

that represents position and orientation of one coordinate frame relative to another coordinate

frame.

To find the homogeneous transformation matrix we need the rotation matrix, R and the

translation vector, t.

30 Our Approach

The camera pose relative to the robot base can be acquired using the get_current_pose

function. In ROS the preferred representation for orientation are quaternions, a 4-tuple

representation (x, y, z, w). A unit quaternion q can be converted to a rotation matrix R as

follows:

The same transformation has to be performed to get the vector that describes the pose of the

marker in the camera coordinate system. By multiplying the two terms together we get the

position of the object in the robotic arm reference frame.

4.5 Robot Control and Motion Planning

For the robot motion MoveIt! was used to define the required control groups both for the

arm and the vacuum grippers, perform the motion planning and solve the inverse kinematics.

Motion plan creation by MoveIt is advantageous since only the goal pose needs to be defined

if the motion path is irrelevant.

What we want from the motion planner to perform is specified in the motion plan request.

Typically, the motion planner is asked to move the arm to a new pose or the end effector to a

different location. By default, collisions, including self-collisions, are checked. The desired

trajectory will be generated to move the arm according to the plan request. It should be noted

that the result will be a trajectory, not just a path, meaning that velocity and acceleration

constraints at the joint level must be taken into consideration.

31 Our Approach

A motion planner is a part of the entire motion planning pipeline, which also includes

planning request adapters. Pre-processing motion plan requests and post-processing motion

plan responses are both possible with planning request adapters. Pre-processing is helpful in a

variety of circumstances, such as when a robot's initial state is just barely outside of its defined

joint limits. Other processes, such converting paths generated for a robot into time-

parameterized trajectories, require post-processing.

To generate the MoveIt configuration package the setup assistant tool GUI can be used. The

URDF/xacro file that defines the robot is the only file needed to execute this tool. Also, the

ROS Industrial package provides all the necessary MoveIt configuration YAML files for the

UR5 manipulator, including controllers, joint limits, kinematic solvers and OMPL planning.

One of the simplest and most useful MoveIt user interfaces is through the Python-based

Move Group Interface. The functionality for all the needed operations can be provided by these

wrappers. To use the Python MoveIt interfaces, the moveit_commander namespace must be

imported in the python script responsible for robot movement. This namespace provides us

with a MoveGroupCommander class, which is an interface to a planning group or group of

joints, and a RobotCommander class, which has information about the robot’s kinematic model

and the current joint states. Additionally, a GripperCommander class was created in order to

turn the grippers on and off.

Figure 4.10 : Motion planning pipeline

32 Our Approach

In order to plan a motion for the robot arm, such as picking or placing an object and moving

to home pose, we require a start and a goal state. For the starting state, we can acquire the

robot’s pose using the get_current_pose() function. For the goal state we can just define the

x,y,z coordinates the arm’s end effector should end up after the motion is completed. These

coordinates are predefined if the robot needs to move to the home position, or if it is required

to place a cylinder in one of the three stacks. Of course, in the placing case, the z-coordinate

adjusts depending on the height of the tower. In the picking scenario the coordinates are

provided from the ArUco detection and they correspond to the cylinders position in the world.

The Cartesian space path planning is implemented by the use of compute_cartesian_path()

function. This function computes a sequence of waypoints to make the end effector move in

straight line segments in order to move from the start to the goal state. A value is requested, as

a parameter, to determine the distance that configurations are computed, in our case that

distance is 2 centimeters. The system computes the joint positions using inverse kinematics for

each interpolated waypoint and the planned path is, finally, executed. In Figure 4.10 the start

state (green) and the goal state (orange) of a simple motion are depicted. The Cartesian path

and the waypoints of the computed motion plan are shown in Firure 4.11.

Figure 4.11 : Start and Goal State

33 Our Approach

Figure 4.12 : Motion planning

34 Results

Chapter 5

5 Results

 An overview of the whole approach can be viewed using rqt_graph, a tool that offers

graphical representation of all the nodes and the topics used for communication between them.

Figure 5.1 : ROS Nodes Graph showing all nodes and topics

35 Results

5.1 Simulation

Complete simulations of the robot stacking all the cylinders, in order to recreate the desired

towers, is presented step by step in the figures below. First, an example with 8 cylinders:

Figure 5.2 : Example 1, Simulation start

Figure 5.3 : Example 1, Iteration 1. Detection (left) Picking (center) Placing (right)

Figure 5.4 : Example 1, Iteration 2

36 Results

Figure 5.5 : Example 1, Iteration 3

Figure 5.6 : Example 1, Iteration 4

Figure 5.7 : Example 1, Iteration 5

Figure 5.8 : Example 1, Iteration 6

37 Results

Simulation ends when all cylinder blocks are stacked. The final result is two identical sets of

towers.

Figure 5.11 : End of simulation (8 cylinders)

Figure 5.9 : Example 1, Iteration 7

Figure 5.10 : Example 1, Iteration 8

38 Results

In the second example, a simulation with 10 cylinders is presented:

Figure 5.12 : Example 2, Iteration 1

Figure 5.13 : Example 2, Iteration 2

Figure 5.12 : Example 2, Iteration 3

Figure 5.13 : Example 2, Iteration 4

39 Results

Figure 5.14 : Example 2, Iteration 5

Figure 5.15 : Example 2, Iteration 6

Figure 5.16 : Example 2, Iteration 7

Figure 5.17 : Example 2, Iteration 8

Figure 5.18 : Example 2, Iteration 9

40 Results

In the above examples, we used 8 and 10 cylinders with ArUco markers, even though the

project was originally designed to incorporate 16 markers. Unfortunately, the system, this

application was developed on, was not able to successfully run the simulation for more than 10

cylinders, since the Gazebo simulator is a resource demanding program. However, the code for

all 16 cylinders is implemented and is included in the package.

Figure 5.19 : Example 2, Iteration 10

Figure 5.20 : End of simulation (10 cylinders)

41 Results

5.2 Object Pose Estimation

The performance of the robot vision algorithm is shown in the table below. We can conclude

that the estimation of the cylinder poses is accurate, since the maximum deviation is 2-3

millimeters. The z axis presents the biggest differences from the true coordinates. Fortunately,

the addition of 9 vacuum grippers and the reduced cylinder’s mass, enable the robot arm to

consistently pick up the blocks. Failure to pick a cylinder is extremely rare and dropping a

block mid motion has yet to encountered.

 True world coordinates Estimated coordinates

ArUco ID x y z x y z

1 0.5 0 0.025 0.502 0.001 0.028

2 0.7 0 0.025 0.699 0 0.022

3 0.6 -0.1 0.025 0.601 -0.101 0.023

4 0.6 0.1 0.025 0.600 0.102 0.028

5 0.74 -0.14 0.025 0.741 -0.139 0.025

6 0.74 0.14 0.025 0.741 0.140 0.024

7 0.46 -0.14 0.025 0.461 -0.141 0.022

8 0.46 0.14 0.025 0.459 0.141 0.026

42 Conclusions

Chapter 6

6 Conclusions

6.1 Conclusion

This thesis describes the implementation of an autonomous 6-DOF robotic manipulator with

visual guidance, where the objective is for the robot arm to stack cylinder blocks, recreating

randomly generated towers. The blocks have unique ArUco markers displayed on them so they

can be identified. The manipulator is equipped with vacuum grippers and a 2D camera attached

to its end effector.

The robot receives information about the towers that it is required to copy from a stationary

camera, responsible to track their spawning. Since the robotic arm is equipped with a camera,

it employs computer vision techniques to locate the desired cylinder. Consequently, it

constructs a trajectory to pick and stack each cylinder by making use of motion planning

algorithms.

This approach is a proof of concept for a manipulator robot that can perceive its

surroundings and operate autonomously, in a closed-loop, according to the changes. In real life

scenarios, the prototype towers could be constructed by a human, instead of being randomly

generated. Additionally, the information about the sequence that the robot arm has to stack the

building blocks, can vary. As an example, in a real-world application if the robot arm was

utilized in the warehousing industry, a list of how the packages need to be stacked could be

provided to the robot. Subsequently the robot would be able to recognize markers on the

packages and place them on wooden pallets according to the requested way, so that they can

be conveniently shipped or delivered.

The entire project has been implemented within the Robot Operating System (ROS) and

Gazebo 3D robotics simulator and is available as an open source package.

43 Conclusions

6.2 Future work

6.2.1 Real Robot Application

The results of this project are theoretical and simulation-based. The next

step is to test the designed system on an actual robot and observe how the planners and

computer vision perform in real-world scenarios. Motion planners probably require adjustment

of the planning parameters, to take the environmental disturbances and the actual robots

limitation into account, in order to achieve optimal planning process. Also, lighting conditions

and environmental noise might hinder the computer vision algorithm’s performance.

6.2.2 Motion planners

There is a variety of motion planners available for robotic manipulators. To name a few

Rapidly-exploring Random Trees (RRT), Expansive Space Trees (EST) and Path-Directed

subdivision Trees (PDST) are all available in the Open Motion Planning Library (OMPL). It is

worth investigating if implementing any of those or any other motion planning algorithm, can

improve the robots arm precision, solution smoothness or planning time. Additionally, different

motion planners could be deployed for more complex environments with introduced obstacles.

44 References

7 References

[1] Ali, M.H., Aizat, K., Yerkhan, K., Zhandos, T., and Anuar, O. (2018). Vision–based

robot manipulator for industrial applications. Procedia Computer Science, 133, 205–

212.

[2] A. Djajadi, F. Laoda, R. Rusyadi, T. Prajogo and M. Sinaga, "A MODEL VISION OF

SORTING SYSTEM APPLICATION USING ROBOTIC MANIPULATOR",

Journal.uad.ac.id, 2017.

[3] Robohub. Amazon picking challenge. [Online] Available: https://robohub.org/tag/

amazon-picking-challenge/ [Accessed: Sept. 12, 2022]

[4] Juang, Jih-Gau, Yi-Ju Tsai, and Yang-Wu Fan. "Visual recognition and its application

to robot arm control." Applied Sciences 5, no. 4 (2015): 851-880.

[5] "Object Sorting System Using Robotic Arm", Journaldatabase.info, 2013. [Online].

Available:

http://journaldatabase.info/articles/object_sorting_system_using_robotic.html.

[Accessed: Sept. 18, 2022].

[6] Kumar, Rahul, et al. "Object detection and recognition for a pick and place Robot."

Computer Science and Engineering (APWC on CSE), 2014 Asia-Pacific World

Congress on. IEEE, 2014.

[7] R. Raja and S. Kumar, “A Hybrid Image Based Visual Servoing for a Manipulator using

Kinect,” in Proceedings of the Advances in Robotics. ACM, 2017,

p. 52.

[8] M. F. Sani, G. Karimian, Automatic navigation and landing of an indoor AR. drone

quadrotor using ArUco marker and inertial sensors, in 2017 International Conference

on Computer and Drone Applications (IConDA), Nov. 2017, pp. 102–107.

DOI: 10.1109/ICONDA.2017.8270408

https://robohub.org/tag/%20amazon-picking-challenge/
https://robohub.org/tag/%20amazon-picking-challenge/

45 References

[9] I. Lebedev, A. Erashov, A. Shabanova, Accurate Autonomous UAV Landing Using

Vision-Based Detection of ArUco-Marker, in International Conference on Interactive

Collaborative Robotics, Springer, 2020, pp. 179–188. DOI: 10.1007/978-3-030-60337-

3_18

[10] P. M. Kebria, S. Al-Wais, H. Abdi, and S. Nahavandi, “Kinematic and Dynamic

Modelling of UR5 Manipulator,” in Proceedings of the IEEE International Conference

on Systems Man and Cybernetics (SMC), pp. 4229–4234, Budapest, Hungary, 2016.

[11] S. Garrido-Jurado, R. Muñoz-Salinas, F. J. Madrid-Cuevas, and M. J. Marín-Jiménez.

2014. "Automatic generation and detection of highly reliable fiducial markers under

occlusion". Pattern Recogn. 47, 6 (June 2014), 2280-2292.

DOI=10.1016/j.patcog.2014.01.005

[12] B. Liang, Y. Cheng, X. Zhu, H. Liu and X. Wang, "Calibration of UR5 manipulator

based on kinematic models," 2018 Chinese Control And Decision Conference (CCDC),

2018, pp. 3552-3557, doi: 10.1109/CCDC.2018.8407738.

[13] M. N. Hidayati, D. Adzkiya and H. Nurhadi, "Motion Control Design and Analysis of

UR5 Collaborative Robots Using Fuzzy Logic Control (FLC) Method," 2021

International Conference on Advanced Mechatronics, Intelligent Manufacture and

Industrial Automation (ICAMIMIA), 2021, pp. 162-167, doi:

10.1109/ICAMIMIA54022.2021.9807732.

[14] S. Wahyuningtri, D. Adzkiya and H. Nurhadi, "Motion Control Design and Analysis

of UR5 Collaborative Robots Using Proportional Integral Derivative (PID) Method,"

2021 International Conference on Advanced Mechatronics, Intelligent Manufacture and

Industrial Automation (ICAMIMIA), 2021, pp. 157-161, doi:

10.1109/ICAMIMIA54022.2021.9807805.

[15] Amato, N.M., Wu, Y.: A randomized roadmap method for path and ma-

 nipulation planning. In: Proceedings of IEEE International Conference on

 Robotics and Automation. Volume 1. (Apr 1996) 113–120 vol.1

[16] Stilman, M.: Task constrained motion planning in robot joint space. In: 2007

 IEEE/RSJ International Conference on Intelligent Robots and Systems. (Oct

 2007) 3074–3081

[17] Stanford Artificial Intelligence Laboratory et al. Robotic Operating System. Available

from: https://www.ros.org

46 References

[18] ROS Industrial [Online] Available : https://rosindustrial.org

[19] Ioan A. Sucan and Sachin Chitta. “MoveIt!”. [Online] Available : https://moveit.

ros.org.

[20] Ioan A. S¸ucan, Mark Moll, and Lydia E. Kavraki. The Open Motion Planning Library.

IEEE Robotics & Automation Magazine, 19(4):72–82, December 2012. http://ompl.

kavrakilab.org.

[21] J. Denavit and R. S. Hartenberg, “A kinematic notation for lower-

pair mechanisms based on matrices.” Trans. of the ASME. Journal

of Applied Mechanics, vol. 22, pp. 215–221, 1955.

[22] J. Angeles, Rational Kinematics, ser. Springer Tracts in Natural Philosophy. Springer

New York, 2013. ISBN 9781461239161. [Online]. Available:

https://books.google.se/books?id=WUXTBwAAQBAJ

[23] Kam, H., Lee, S.H., Park, T., Kim, C.H.: Rviz: a toolkit for real domain data

visualization. 60 (10 2015) 1–9 12

[24] Foote, T.: tf: The transform library. In: Technologies for Practical Robot Applications

(TePRA), 2013 IEEE International Conference on. Open-Source Software workshop

(April 2013) 1–6 12, 49

[25] R. L. Williams II, “Notesbook supplement for me 4290/5290 mechanics and control

of robotic manipulators,” pp. 71–72, 2014

[26] S. Goto, ed., Robot Arms. Intech, 2011

[27] “OpenCV Online Documentation.” [Online]. Available:

https://docs.opencv.org/4.1.1/index.html.

[28] Nate Dimick, Gazebo Fiducial Spawner (2020), GitHub repository. [Online]

Available : https://github.com/NateDimick/gazebo_fiducial_spawner

[29] Sezgin, M., Sankur, B.: Survey over image thresholding techniques and quantitative

performance evaluation. J. Electron. Imaging 13(1), 146–165 (2004)

https://rosindustrial.org/
https://github.com/NateDimick/gazebo_fiducial_spawner

47 References

[30] Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by

border following. Comput. Vis. Graph. Image Process. 30(1), 32–46 (1985)

[31] Wu, S.-T., da Silva, A.C.G., Márquez, M.R.G.: The Douglas-peucker algorithm:

sufficiency conditions for non-self-intersections. J. Braz. Comp. Soc. 9(3), 67–84

(2004)

[32] Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst.

Man Cybern. 9(1), 62–66 (1979)

48 Appendix A

8 Appendix A

Transformation Matrix

The equations in this Appendix form the transformation matrix for the Forward Kinematics of

the UR5, as defined in Chapter 2. In these equations si+j = sin(θi+θj) and ci+j = cos(θi+θj).

Furthermore the Denavit-Hartenberg (DH) coefficients for di and ai can be found in Figure 2.6.

These equations can be used in the cost function in an optimization algorithm to find the Inverse

Kinematics.

49 Appendix A

