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ABSTRACT

Mapping of the spatial variability of sparse groundwater-level measurements is usually achieved by means of geostatistical methods. This work

tackles the problem of deficient sampling of an aquifer, by employing an innovative integer adaptive genetic algorithm (iaGA) coupled with geos-

tatistical modelling by means of ordinary kriging, to optimise the monitoring network. Fitness functions based on three different errors are used

for removing a constant number of boreholes from the monitoring network. The developed methodology has been applied to the Mires basin in

Crete, Greece. The methodological improvement proposed concerns the adaptive method for the GA, which affects the crossover–mutation

fractions depending on the stall parameter, aiming at higher accuracy and faster convergence of the GA. The initial dataset consists of 70 moni-

toring boreholes and the applied methodology shows that as many as 40 boreholes can be removed, while still retaining an accurate mapping of

groundwater levels. The proposed scenario for optimising the monitoring network consists of removing 30 boreholes, in which case the esti-

mated uncertainty is considerably smaller. A sensitivity analysis is conducted to compare the performance of the standard GA with the

proposed iaGA. The integrated methodology presented is easily replicable for other areas for efficient monitoring networks design.

Key words: adaptive genetic algorithm, geostatistical modelling, groundwater monitoring network optimisation, kriging-based genetic

algorithm optimisation

HIGHLIGHTS

• Development of an innovative adaptive genetic algorithm for optimising groundwater-level monitoring networks.

• Coupling of evolutionary algorithms with geostatistics for monitoring network optimisation.

• Development of a monitoring network design optimisation tool, easily applicable to any area, which considerably reduces sampling efforts,

while achieving accurate mapping of groundwater levels.
INTRODUCTION

Protecting water resources is part of the sixth goal of the United Nations proposed to transform our world in order to promote
prosperity while protecting the planet (United Nations 2018). The growing world population as well as a 40% estimated shortfall

in freshwater resources by 2030 are leading towards a global water crisis. Groundwater monitoring networks provide essential
information for water resources management, especially in areas with significant groundwater exploitation for agricultural and
domestic use. Data from such networks are typically used by competent authorities and scientists to validate groundwater flow
and contaminant transport models, to assess the response of groundwater levels to pumping, artificial recharge and changing

climatic variables and to regulate groundwater exploitation to ensure the sustainability of aquifer resources. Given the high main-
tenance costs of monitoring networks, the development of tools, which can be used by regulators for efficient network design, is
essential. The design of a groundwater monitoring network depends on the spatial and temporal distribution of water levels in

the aquifer and the location of potential contaminant sources. These distributions depend on hydrogeological parameters, aqui-
fer characteristics (e.g. confined, unconfined aquifers), physical aquifer boundaries, hydraulic connection between groundwater
and surface water bodies, etc. A typical objective for long-term monitoring of groundwater quality is the development of a cost-

effective design that adequately characterises a contaminant plume. For long-term monitoring of water levels, the typical objec-
tive is the development of a cost-effective network that retains the monitoring boreholes, which contribute to the accurate
representation of the spatial variability of the aquifer’s groundwater level and excludes boreholes that add little or no beneficial
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information to groundwater-level mapping of the area. At the same time, network design tools can indicate the expansion of a

monitoring network to areas of increased uncertainty for groundwater level or quality variables.
In relevant publications found in the literature, two common heuristic search approaches have been followed for optimis-

ing groundwater monitoring networks by identifying the optimum set of observation wells and specifying redundant sampling

locations: decision support tools (e.g. Cameron & Hunter 2000; Aziz et al. 2002) and mathematical optimisation (e.g. Reed
et al. 2000; Gangopadhyay et al. 2001; Asefa et al. 2004; Nunes et al. 2004a, 2004b; Kollat & Reed 2005; Wu et al. 2005;
Theodossiou & Latinopoulos 2006; Li & Hilton 2007; Khan et al. 2008; Dhar & Datta 2010; Fisher 2013; Thakur 2015).
These approaches have been combined with numerical groundwater flow and contaminant transport simulation models,

deterministic (e.g. inverse distance weighting, IDW) or stochastic (e.g. ordinary kriging, OK) interpolation methods and/or
statistical analysis to estimate groundwater levels or contaminant concentrations (Li & Hilton 2007). Decision support
tools have been applied for improving existing monitoring networks by analysing current and historical groundwater moni-

toring data. For example, Aziz et al. (2002) developed the monitoring and remediation optimisation system (MAROS).
MAROS is a decision support tool that uses Delaunay triangulation combined with a ranking rule-based approach, based
on spatial data analysis, to reduce the number of sampling locations, and statistical analysis of time series data (trend esti-

mation) to reduce sampling frequency. Cameron & Hunter (2000) developed the geostatistical temporal/spatial
optimisation algorithm, which is a site-specific statistical method based on kriging for reducing large monitoring networks.
The main disadvantage of decision support tools is that they use manual iterative processes rather than automatic optimis-

ation, and therefore global optimal search and sensitivity analysis under different constraints are not included. Therefore,
mathematical optimisation techniques have been adopted much more widely for network design problems.

In general, the optimisation of groundwater monitoring networks is a nonlinear combinatorial problem and, therefore, is
well suited for heuristic optimisation algorithms, such as genetic algorithms (GAs) (Jiabao et al. 2008), simulated annealing

(SA), artificial neural networks (ANNs), support vector machines (SVMs) and ant colony optimisation (ACO). For example,
Cieniawski et al. (1995) optimised groundwater monitoring networks using GAs combined with Monte Carlo simulation.
Reed et al. (2000) applied IDW and OK combined with GAs. Villas-Boas et al. (2017) used ANNs to assess the redundancy

of a water quality monitoring network and rank parameters and monitoring locations based on their relevance. Nunes et al.
(2004a) employed SA to accurately map the spatial variability of groundwater-level networks, while the methodology used in
Asefa et al. (2004) is based on SVMs and Li & Hilton (2007) applied an ACO algorithm combined with IDW. In subsequent

works, GAs have been used in optimal control and monitoring of water and sewage applications (e.g. Johns et al. 2014;
Soroush & Abedini 2019; Mounce et al. 2020) using standard GA methodology and geostatistical algorithms.

In this work, a monitoring network optimisation tool is presented, which couples geostatistical modelling with a GA
method. The purpose of the optimisation tool is to determine which boreholes to exclude from the monitoring network if

they add little or no beneficial information to groundwater-level mapping of a specific area. Unlike previous relevant inves-
tigations, the network optimisation tool presented here uses OK with the recently established non-differentiable Spartan
semivariogram for groundwater-level mapping (Varouchakis et al. 2012; Varouchakis & Hristopulos 2013). The geostatistical

model has been coupled with an integer adaptive Genetic Algorithm (iaGA) coded in MATLAB (2019a). An improvement
made to the classic GA is the change of the mutation and crossover fraction in an adaptive setting with respect to the
change of the mean fitness value. This results to a randomness in reproduction, if the solution converges, to avoid local

minima or in a more educated reproduction (higher crossover ratio) when there is higher change in the mean fitness value.
The paper is structured as follows: the methodological formulation is described in the ‘Methodology’ section, which

includes the geostatistical modelling formulation and the GA introduction. Along with the introduction of the evolutionary

algorithm, the methodology employed to improve the GA and to overcome difficulties in implementation is presented, intro-
ducing alterations to MATLAB’s optimisation toolbox. In the ‘Results and discussion’ section, the results obtained, the
semivariogram fittings and the residual error estimations are discussed, and the different removal scenarios are analysed,
including a sensitivity analysis of the proposed aiGA compared to the classical GA technique. Finally, the ‘Conclusions’ sec-

tion summarises the findings and novelties of this work.
METHODOLOGY

An overview of the methodological approach, coupling geostatistical modelling with GA optimisation, is shown in Figure 1.
Geostatistical modelling is employed to estimate the spatial distribution of groundwater levels, or groundwater-level mapping
://iwaponline.com/jh/article-pdf/23/5/1066/938912/jh0231066.pdf
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Figure 1 | Flow diagram of the methodological approach.
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for the area of interest, based on an initial dataset of existing boreholes. Then, a random population of a predetermined
number of removals (herein called scenario) is assembled, and the error to be minimised between the reduced population
mappings and the target initial population mapping is calculated. Following the standard GA procedure, the population is

sorted and split into three groups so that they either undergo crossover, mutation or they are kept unaltered (elitism). An inno-
vative part of the methodological tool is shown at step 4, in which the adaptivity step based on the stall parameter is
introduced and affects each GA iteration based on the performance of the current population, as is discussed more in

depth in the following section. After the main operations of the GA, the new population is assembled and sorted in order
to either terminate with a criterion or repeat the procedure from step 4 using the newest population.

The developed methodology has been applied to the Mires basin in Crete, Greece, an area of high socio-economic and agri-

cultural interest, which suffers from groundwater overexploitation leading to a significant decrease in groundwater levels. The
study area is shown in Figure 2 indicating the dense grid of 70 boreholes, which operate in the area for groundwater abstrac-
tion and water-level monitoring. Regarding geostatistical modelling, OK with the non-differentiable Spartan semivariogram

leads to optimal groundwater-level mapping based on a previous geostatistical study in the area (Varouchakis et al. 2012;
Varouchakis & Hristopulos 2013). Overall, the Spartan semivariogram resulted in the most accurate groundwater-level esti-
mates followed closely by the power-law model. The optimisation algorithm has been applied to find the set of boreholes
whose removal leads to the minimum error between the original water-level mapping using all the available boreholes in

the network and the groundwater-level mapping using the reduced borehole network (error is defined as the two-norm of
the difference between the original mapping matrix with 70 wells and the mapping matrix of the reduced well network).
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Figure 2 | Mires basin in Crete, Greece, with 70 boreholes where groundwater-level measurements are available.
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The solution to the optimisation problem depends on the total number of boreholes that are chosen to be removed, which is

an a priori problem-specific management decision. To achieve the optimum solution in the minimum possible computational
time, a ‘stall generations’ termination criterion was selected.

The choice of an integer GA in MATLAB poses the restriction of adding custom selection and crossover–mutation func-

tions. Therefore, custom population and crossover–mutation–selection functions have been created to set the initial
population type to custom and have the ability to change the mutation crossover probability in respect to the convergence
of the GA, thus achieving higher accuracy. The use of a GA was necessitated by the sophistication level of the geostatistical
tool and the numerous combinations of borehole removal scenarios. It is important to note that a hard search of all the poss-

ible scenarios of boreholes/measurements removal from the initial dataset of 70 boreholes would take approximately 108

years. Additionally, in order to estimate the minimum error between the original mapping and the reduced mapping, the pro-
blem would not be easily solved as a typical gradient-based optimisation, as there is no closed form of the function for

differentiation. More details on the geostatistical modelling and the GA optimisation are given in the following subsections.
Geostatistical modelling

It is assumed that the hydraulic head is represented by a spatial random field (SRF), which herein will be denoted by Z(s). A pre-
requisite is a sampled field at measurement points which is denoted by Z(si)with i being an index of these points. The goal is the
derivation of estimates z(s0) for every point s0 in a given rectangular grid. Prior to the application of OK, a normalising transform-
ation has been applied to the available dataset, since OK is an optimal estimator if data follow a multivariate normal distribution

and the true semivariogram is known (Clark & Harper 2000). Motivated by the Box-Cox transformation applied to hydrological
data (Thyer et al. 2002), the modified Box-Cox transformation has been used to distribute the available data into approximately
Gaussian, and then, after the OK, a suitable back transformation has been implemented. Details on the OKmethod and the modi-

fied Box-Cox transformation can be found in Varouchakis et al. (2012) and Varouchakis & Hristopulos (2013).
Under the second-order stationarity hypothesis, the semivariogram and the covariance function are equivalent. For reasons

of convenience, the semivariogram structure is preferred. After the definition of a lag, which is an interval size for the discre-

tisation length of the distances between the measurements, the discrete empirical semivariogram has been defined by using
the standard Matheron method-of-moments estimator, which reads to,

ĝ(r) ¼ 1
2N(r)

XN(r)

i¼1

{[z(si)� z(si þ r)]2} (1)

where N(r) is the number of pairs at lag r (Kitanidis 1997).
://iwaponline.com/jh/article-pdf/23/5/1066/938912/jh0231066.pdf
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There were no distinct anisotropies in the dataset as shown in Varouchakis & Hristopulos (2013), so the empirical semi-

variogram could be fitted with omnidirectional model functions. The classical semivariogram functions (Table 1) as well as
the Spartan family variograms (Varouchakis et al. 2012) have been tested. The definition of a theoretical semivariogram is
achieved by defining the covariance function between the measurement points gz(r) ¼ s2

z � Cz(h). So, the Spartan covariance

function is defined as follows:

Cz(h) ¼

h0e
�hb2

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jh2

1 � 4j
q sin (hb1)

hb1

� �
, for jh1j , 2

h0e
�h

8p
, for h1 ¼ 2

h0(e
�hv1 � e�hv2 )

4p(v2 � v1)h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jh2

1 � 4j
q , for h12

8>>>>>>>>>><
>>>>>>>>>>:

(2)

where h0 is the scale factor, h1 is the rigidity coefficient, b1,2 ¼ j2+ h1j1=2=2, v1,2 ¼ (jh1 + Dj=2)1=2, D ¼ jh2
1 � 4j1=2, j is

a characteristic length, h ¼ r=j is the normalised lag vector and h ¼ jhj is the Euclidean norm (Hristopulos 2003, 2020).

GA optimisation

GAs belong to the family of evolutionary algorithms and use heuristic mechanisms in order to minimise a fitness function (e.g.
Holland 1984; Sivananda & Deepa 2008). To justify the need of a heuristic algorithm, other optimisation techniques must be
ruled out, since heuristic algorithms are very computationally intense, and do not guarantee the calculation of the global mini-

mum (Yu & Gen 2010). In addition, if the function has multiple minima, the GA is only guaranteed to find or approximate
one of them, with no information on the plurality of local minima.

To justify the use of the GA, the irregularity of the function to be minimised is presented in Figure 3, where the output is
obtained with the removal of just one borehole. In this simplistic scenario, a trial-and-error technique can be used to find the

minimum, which is given when borehole number 68 is removed from the sample. The corresponding value of the output
(root-mean-square deviation (RMSD)¼ 0.3292, explained in the ‘Results and discussion’ section) is the error one calculates
by removing this borehole from the initial mapping. This error function is obviously not differentiable, and no smoothening or

closed form can easily be applied in order to find a minimum with other classical methods.
Additionally, in order to compute all the possible reduced network mappings using the current state-of-the-art computers

and a trial-and-error technique, one would need roughly 108 years, e.g. a 30-removal scenario, which renders the problem

intractable with a brute force method (Parasyris 2016). To proceed with the proposed GA, the error metrics to be optimised
must be defined. Three error metrics have been introduced for the GA minimisation. Their properties and the corresponding
results have been compared in order to determine the optimum reduced network for an accurate geostatistical mapping. Two

of these errors have been applied by only making an estimate on the missing boreholes; therefore, computations are very fast,
Table 1 | Theoretical model functions

Exponential: gz(r) ¼ s2
z 1� exp � jrj

j

� �� �

Gaussian: gz(r) ¼ s2
z 1� exp � r2

j2

� �� �

Spherical: gz(r) ¼ s2
z

1:5jrj
j

� 0:5
jrj
j

� �3

q(j� jrj)
" #

, where j ¼ 0, ifj� jrj, 0, j ¼ 1, ifj� jrj . 0f g

Power� law: gz(r) ¼ cjrj2H , 0 , H , 1

Linear: gz(r) ¼ cjrj

Matérn: s2
z 1� 21�v

G(v)
jrj
j

� �v

Kv
jrj
j

� �� �

s2
z is the variance, jrj is the Euclidean norm of the lag vector r, j is the correlation length, c is the coefficient, H is the Hurst exponent, v is the smoothness parameter, G( � ) is the

Gamma function and Kv ( � ) is the modified Bessel function of the second kind of order v.
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Figure 3 | Error function to be minimised with the removal of one borehole.
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but generally lack accuracy. In contrast, the third error metric uses the whole prediction matrix; therefore, it is expected to
be more accurate but subsume a significant amount of computational time for the heuristic optimisation step. More specifi-
cally, the first metric, RMSE (root-mean-square error), is inspired by the leave-one-out cross-validation process. Instead of

leaving one borehole out of the computations, a scenario of well removals is designed, and by initially randomly selecting
which boreholes to leave out, a reduced dataset is produced. After the geostatistical analysis for the reduced dataset is con-
ducted, the predicted and observed groundwater-level values that are left out of the dataset are compared. To formulate it, we

define:

eRMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

[z�(si)� z(si)]
2

vuut (3)

where N is the number of boreholes that have been left out, z�(si) is the kriging estimated groundwater level using the remain-
ing (n�N) dataset and z(si) is the measured groundwater level at the corresponding point/boreholes that have been removed

from the dataset.
The second metric is the Akaike criterion (Akaike 2011), and it has also been calculated at the cross-validation stage; there-

fore, it is also expected to be optimised by the GA with very little computational cost. The metric that will be referred hereby

as Akaike error is defined as follows:

IAIC ¼ n log

Pn
i¼1

(ĝ(ri)� g(ri))
2

n

0
BB@

1
CCAþ 2m (4)

where n is the lag number, ĝ(ri) is the value of the experimental semivariogram at lag i, g(ri) is the value of the theoretical
semivariogram at lag i and μ is the number of degrees of freedom that each theoretical semivariogram has. This criterion
has been mainly used to compare the semivariograms’ fitting efficiency (the lower the better), and it also takes into account

the number of semivariogram parameters. Minimising with this metric not only gives an excellent fit to the experimental semi-
variogram but also gives an indication of which is the best theoretical semivariogram that fits optimally with each reduced
network.
://iwaponline.com/jh/article-pdf/23/5/1066/938912/jh0231066.pdf
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The third metric gives the most accurate reduced mapping in comparison to the original mapping, and it is defined to be the

RMSD between every point of the discretised SRF. It is defined as follows:

eRMSD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
M

XM
i¼1

[zinit(si)� ẑ(si)]
2

vuut (5)

where M is the number of points inside the convex hall in the grid (for the Mires basin application, a 100� 100 grid was
selected), zinit(si) are the predicted values at the M points using the original monitoring network and ẑ(si) are the predicted

values at the same M points using the reduced monitoring network.
The basic processes of a GA include (e.g. Yu & Gen 2010):

• the Creation of the original population,

• the Evaluation of these initial candidates (called parents) using the function to be minimised (called fitness function),

• the Crossover operation, which acts on two parents by exchanging genes with each other,

• the Mutation operation in which parents that are less well fitted have their genes randomly altered and

• the Elitism operation in which parents are transferred unaltered into the next generation.

In this work, the fitness function takes as input a set of removals (boreholes) and has as output one of the errors mentioned
above. A sorting occurs, based on the fitness function output. The pivotal step takes place at the stage, where the next popu-
lation (offspring) is created by using the parents’ genes. Every parent is a set of integer indices that correspond to monitoring
borehole numbers. This is achieved in three ways: First, the higher percentage of the population undergoes the Crossover

operation. To choose which genes will be exchanged, the uniform crossover technique has been selected with a certain cross-
over probability, initially set to 50% but changed adaptively afterwards. Secondly, a smaller percentage of the population
undergoes the Mutation operation. This is beneficial in case the optimal candidate is not included in the initial population,

so mutation offspring can search for genes (in this work borehole numbers) that could not be replicated by using the mixing
mechanism of Crossover. Lastly, to ensure that the best-fitted candidate is kept in the next generation, the Elitism operation
has been employed for a very small percentage of the best-fitted parents. Following the creation of the new population, the GA

checks if certain termination criteria have been met; otherwise, it returns to the initial step of Evaluation. The most common
termination criterion used is based on the stall generations, which are the generations that have been passed without the best
candidate to change. Other termination criteria could be based on the tolerance of the fitness function, a time limit, a total
generation limit, etc.

The idea of an adaptive GA is not new and can be traced back to Srinivas & Patnaik (1994), but the methodology by which
each author implements adaptivity can differ and be novel. In Pellerin et al. (2004), the authors have reviewed the improve-
ments in GA methods, leading to the introduction of an adaptive GA. More precisely, the proposed adaptive GA method

alters the crossover and mutation probabilities based on the genetic diversity measure (gdm), which is defined as the ratio
between the mean and maximum values of the fitness value for each generation. This way, better convergence times of
the GA as well as better fitness values are achieved. The idea is based on the fact that the rate at which mutation occurs

needs to grow when the gdm is close to unity, whereas the crossover operation is used more when the gdm is lower than
one. The resulting algorithm adjusts the probabilities for each operation accordingly.

Based on the work of Pellerin et al. (2004), an alternative version of the adaptive GA developed and presented in this work,

which changes these rates and probabilities, is based on the value of the stall parameter. This approach does not necessitate
the calculation of any additional metrics and is also simpler to implement than the method of Pellerin et al. (2004). Moreover,
the adaptive GA proposed in this work shows improved accuracy and convergence speed compared to the standard GA, as
shown by the sensitivity analysis conducted, discussed in the ‘Results and discussion’ section. More specifically, when the stall

generations are higher than a given threshold – the chosen value was every 5 stall generations, but this is a problem-based
decision – a gradual increase in the mutation probability and an analogous reduction of the crossover probability are intro-
duced. Another innovative feature is that the fraction of the population to undergo crossover and mutation is modified in a

similar manner, which contributes towards a higher accuracy and lower computational time of the proposed adaptive GA.
Initial values of 80% crossover, 15% mutation and 5% elitism fractions have been chosen in this work. When the stall gen-
erations parameter reaches 10, the mutation fraction is increased by 10% whereas the crossover fraction is decreased by 10%.
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The procedure continues to alter these fractions until either a fraction threshold of 80% is reached or a better candidate is

found that reduces the stall parameter to zero. In the latter case, the GA is designed to return to the initial fraction
values. This will result in an increased randomness when a higher stall generation is detected, where the GA is unable to
improve its best candidate using the existing population. On the other hand, this variable fraction GA method allows for a

higher-than-normal crossover fraction at the initial stage, whereas in fixed fraction GAs, lower crossover might be used to
account for the randomness that is not necessary at the initial stage of the GA. The proposed adaptive GA is referred to
as an iaGA since the input are vectors with integers (number of boreholes to be removed), which was not available in the
software used for the implementation (MATLAB 2019a). To resolve this issue, the GA optimisation tool of MATLAB was

customised accordingly by altering appropriately the functions for the creation of initial population, crossover and mutation.

RESULTS AND DISCUSSION

Borehole removal scenarios

The semivariogram fitting process for the initial dataset showed that the Spartan semivariogram followed by the power-law

(Figure 4) provides the best fits validating the results reported in Varouchakis & Hristopulos (2013). Semivariograms do not
reach a sill, denoting that long-distance variations exist in the study area. A comprehensive comparison between other semi-
variogram methods for the dataset of the Mires basin can be found in Varouchakis & Hristopulos (2013). In Table 2, the

optimised parameters for the two model semivariograms used herein (Spartan and power-law) are shown. In this work,
we have not focused on a detailed investigation of semivariogram calculation for the initial groundwater-level data mapping,
as this is scrutinised in the cited work. The authors conclude that the Spartan and power-law semivariograms show the lowest
errors. Therefore, in this study, these two semivariograms have been compared in a reduced monitoring network scenario to

observe how these statistical models behave during the coupling with the iaGA. The OK interpolation results regarding the
initial dataset by means of the Spartan and power-law variograms are presented in Figures 5 and 6.

Considering that the Spartan and power-law variograms provide the most accurate interpolation results, these variograms

have been employed as the basic spatial dependence functions to test the mapping efficiency during the optimisation
Table 2 | Optimised parameters for the two semivariograms used (Spartan and power-law)

Parameters

Methods

Spartan Power-law

s2
z or c 0.2507 0.1903

j 0.4905 N/A

Nugget N/A 0.0042

Other parameters h1 ¼ �1.9799 H¼ 1.7052

Figure 4 | Fitting of the Spartan and power-law semivariograms on the experimental semivariogram.
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Figure 5 | Spartan initial groundwater-level mapping (a) and initial estimated uncertainty (b). Units are in masl (meters above sea level).

Figure 6 | Power-law initial groundwater-level mapping (a) and initial estimated uncertainty (b). Units are in masl (meters above sea level).
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procedure of the monitoring network. The network optimisation scenarios investigated include the removal of 30, 40 and 50
monitoring boreholes. Tables 3 and 4 indicate that removing 30 or 40 boreholes from the initial 70-borehole monitoring net-
work (i.e. removing 43 and 57% of the existing monitoring points) can be considered as efficient monitoring network design

scenarios, since for both cases, a high-quality mapping of groundwater levels is retained. The corresponding maps of ground-
water-level spatial distribution and of the associated uncertainty, for the reduced monitoring network, using the Spartan
variogram function are presented in Figures 7–12. The maps of 30 and 40 removal scenarios are shown here, as the removal
of 50 wells resulted in significant errors and is not considered as an effective design solution for the physical problem inves-

tigated. Results of this study are comparable to the findings of Fisher (2013) for the optimisation of a groundwater-level
monitoring network in the Eastern Snake River Plain Aquifer. Fisher (2013) concluded excluding 12% (considered a safe
scenario) or 23% (considered a moderate scenario) of existing wells in the monitoring network. Differences in findings

could be owed to the sample variability and density, or the geometry and scale of the areas considered.
Tables 3 and 4 depict the minimum of the errors that the iaGA recorded for the different metrics as well as the deviation from

the initial mapping when RMSD is not minimised using the iaGA. This essentially quantifies the deviation of the reduced
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Table 4 | Power-law optimisation errors

Scenarios

30 40 50

RMSD optimisation 0.8693 1.0608 1.4854

RMSE optimisation 6.6399 10.8327 18.7995

Corresponding RMSDs 0.9169 1.3339 2.2506

Akaike optimisation �163.3718 �160.4464 �186.1825

Corresponding RMSDs 5.1526 4.3471 10.4693

Smallest possible value for the Root Mean Squared Deviation (RMSD), Root Mean Squared Error (RMSE) and Akaike. The corresponding RMSD error is given for the RMSE and Akaike

optimisation.

Figure 7 | Groundwater-level mappings with the Spartan variogram; optimisation based on the RMSD criterion for the removal scenario of 30
(a) and 40 (b) boreholes, respectively. Units are in masl (meters above sea level).

Table 3 | Spartan optimisation errors

Scenarios

30 40 50

RMSD optimisation 0.5671 0.8250 1.3542

RMSE optimisation 6.8550 14.2811 17.9336

Corresponding RMSDs 0.9528 0.9621 1.1672

Akaike optimisation �158.3399 �165.3199 �192.8193

Corresponding RMSDs 2.2906 4.9930 8.6190

Smallest possible value for the RMSD, RMSE and Akaike. The corresponding RMSD error is given for the RMSE and Akaike optimisations.
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network groundwater-level mapping from the original network mapping using RMSE and Akaike criterion. Most of the errors
in Table 3 (Spartan) are lower than the corresponding ones in Table 4 (power-law), which indicates that the Spartan variogram

requires less data points for a quality estimation of the spatial distribution of groundwater levels for the specific dataset. Another
observation is that the iaGA using the Akaike optimisation can achieve lower error values, as the number of removed
://iwaponline.com/jh/article-pdf/23/5/1066/938912/jh0231066.pdf
RSITY OF CRETE (FREE TRIAL) user



Figure 9 | Groundwater-level mappings with Spartan variogram; optimisation based on the RMSE criterion for the removal scenario of 30
(a) and 40 (b) boreholes, respectively. Units are in masl (meters above sea level).

Figure 8 | Uncertainty estimation mappings with Spartan variogram; optimisation based on the RMSD criterion for the removal scenario of
30 (a) and 40 (b) boreholes, respectively. Units are in masl (meters above sea level).
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monitoring boreholes is increased. This does not account for a better overall solution as it is observed that RMSD increases
significantly, but merely to a better fit of the semivariogram when a reduced number of data points is used.

Another observation is that in the cases with low RMSD, RMSE values (which results in a similar mapping to the original),

the kriging variance increases. This is to be expected, since fewer measurements are used for the same prediction domain.
Furthermore, when an optimisation with respect to Akaike error is implemented to obtain the monitoring network that pro-
vides the best variogram fit (Figures 11 and 12), a smoother distribution formed by the remaining monitoring stations is

observed. However, this does not lead to improved interpolation, since the corresponding RMSD and RMSE errors increase.
Regarding the behaviour of the iaGA in relation to the specific attributes of boreholes that were finally removed from the

monitoring network, it is depicted in Figures 7 and 9 that using RMSD and RMSE metrics for the optimisation, removed
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Figure 11 | Variogram fittings with the best iaGA solution using the Spartan variogram; removal of 30 (left) and 40 (right) boreholes,
respectively, based on the Akaike criterion.

Figure 10 | Uncertainty estimation mappings with Spartan variogram; optimisation based on the RMSE criterion for the removal scenario of
30 (a) and 40 (b) boreholes, respectively. Units are in masl (meters above sea level).
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boreholes constitute monitoring points that not only from areas with high sampling density, but also showing little variability
between their values. For example, borehole number 9, which is the one historically exhibiting the lowest groundwater-level

values, in the northeast of the aquifer, was not removed in the cases of network optimisation with RMSE and RMSD metrics.
For the Akaike error minimisation case, extreme groundwater-level values, as those for borehole number 9, are in fact
excluded from the optimised monitoring network, and a smoother mapping is created as a result. This should be taken

into account when designing a cost-efficient, reliable monitoring network, whether minimising with respect to the best var-
iogram fit is appropriate for the physical problem at hand.

In Tables 5–7, a sensitivity analysis of the iaGA to the population size and the termination criterion stall parameter is pre-
sented. The sensitivity analysis has been performed for the case of removing 30 monitoring boreholes, as it has been

concluded that this network design scenario is the most cost-efficient, while still retaining an accurate groundwater-level map-
ping and introducing the least uncertainty. The sensitivity analysis showed that the total time of the RMSD optimisation is
considerably high in comparison to the RMSE and Akaike methods. This was expected, as in the latter cases, the fitness func-

tion did not include the OK computation on the whole computational grid. The weak dependence of the results on these
parameters (population/stall) is also shown, with optimal values found around the 100–200 population size and around
20–40 stall parameters, always considering the computational cost, which increases as these two parameters increase. This
://iwaponline.com/jh/article-pdf/23/5/1066/938912/jh0231066.pdf
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Figure 12 | Groundwater-level mappings (a,b) and uncertainty obtained (c,d) with the Spartan variogram fittings of Figure 11; Akaike criterion
minimisation of 30 (a,c) and 40 (b,d) boreholes, respectively. Units are in masl (meters above sea level).

Table 5 | Spartan optimisation with RMSD sensitivity analysis on the population number and on the stall termination criterion. Values in bold
indicate a comparably low RMSD in combination with a low computational cost of the iGA

Population Stall RMSD Gen Time/Gen Approx. Total Time

50 20 0.8690 97 100 sec 9700 sec

50 40 0.8145 98 100 sec 9800 sec

100 20 0.7618 60 226 sec 13560 sec

100 40 0.5785 98 226 sec 22148 sec

200 20 0.5671 72 410 sec 29520 sec

200 40 0.5543 86 410 sec 35220 sec

400 20 0.5445 67 830 sec 55610 sec
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Table 8 | Sensitivity analysis comparing the standard GA with the adaptive and semi-adaptive GA

Generations Fvals RMSE

Adaptive GA 118 5,950 8.042

Semi-adaptive GA 103 5,200 9.004

Standard GA 94 4,750 10.27

Table 7 | Spartan optimisation with Akaike sensitivity analysis on the population number and on the stall termination criterion. Values in bold
indicate the lowest Akaike values in combination with a low computational cost of the iGA

Population Stall Akaike Fval Total Time

100 20 –160.3098 3800 136.4 sec

100 40 –161.4695 7800 227.4 sec

100 60 –173.9747 16700 595.7 sec

200 20 –156.2765 10800 365.1 sec

200 40 –159.0287 14000 536.1 sec

200 60 –169.9933 23400 834.1 sec

400 20 –167.4112 18800 1457.6 sec

400 40 –168.7725 41600 1604.3 sec

400 60 –157.2270 30400 1046.6 sec

Table 6 | Spartan optimisation with Root Mean Squared Error (RMSE) sensitivity analysis on the population number and on the stall termin-
ation criterion. Values in bold indicate the lowest RMSE values in combination with a low computational cost of the iGA

Population Stall RMSE Fval Total Time

50 20 11.0236 2100 76.1 sec

50 40 7.34644 10400 410.9 sec

50 60 10.9571 8350 310.1 sec

100 20 8.9570 6200 241.37 sec

100 40 8.5808 11000 427.05 sec

100 60 6.6969 21000 741.1 sec

200 20 6.8550 14200 509.2 sec

200 40 9.0513 14000 496 sec

200 60 7.1665 47600 1723.2 sec

400 20 7.8840 22000 811.8 sec

400 40 7.7831 35200 1351 sec

400 60 6.7133 90400 3171 sec
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is not a strict rule, as there is some randomness in the iaGA process, but is an observable trend which is to be expected, and as

such, it verifies the hypothesis for the advantages of the iaGA.
To recommend a Population and Stall parameter from these tests, one has to take into account the total time that the algor-

ithm needed in accordance with the improvement of the optimised value. In Table 5, it is clearly shown that the RMSD did

not decrease significantly after the value 0.5785 was reached and so one can prefer the 100 population–40 stall choice, since
the computational time increased considerably for higher population and stall combinations. With regard to the optimisation
of the RMSE depicted in Table 6, one can choose the 200 population–20 stall combination that required just 509 s and

returned an error value of 6.855. Lastly, from Table 7 it can be concluded that the 100 population–60 stall choice of par-
ameters was the best one amongst the ones tried, since in just 595 s, the lowest value amongst the analysis was reached.
://iwaponline.com/jh/article-pdf/23/5/1066/938912/jh0231066.pdf
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The increase in computational time for the RMSD optimisation (Table 5) should also be noted, in contrast to the RMSE and

Akaike optimisations presented in Tables 6 and 7. Hence, if computational time is of essence, then the RMSE error, which
also shows a low corresponding RMSD compared to the Akaike optimisation (see Tables 3–4), should be preferred.

iaGA sensitivity analysis

A sensitivity analysis has been conducted to compare the iaGA proposed in this work, with the standard GA method, for the
30-borehole removal scenario, using the RMSE error. In the standard GA, a 0.85 crossover fraction is being used uniformly

and a 0.1 fraction was chosen as the mutation population. The remaining 0.05 fraction of the population is used for elitism. In
the iaGA case, it is proposed to start with a 0.85 crossover fraction, and in every 5 stalled generations, the percentage is
reduced by 10%. A semi-adaptive case has also been implemented for comparison purposes, in which crossover fraction
begins with 0.85 and it drops to 0.5 in the case that the best candidate is being kept the same over 10 iterations/generations

(stall¼ 10). The results presented in Table 8 were obtained running a GA with a population of 50 candidates and a stall ter-
mination criterion of 20 generations for benchmarking purposes. The results presented in Table 8 indicate that as the
adaptivity level increases from standard GA to semi-adaptive and then to the fully adaptive case, the RMSE error drops

from 10.27 to 8.042. On the other hand, more generations and function evaluations (Fvals) are needed, which agrees with
the iaGA rationale, in which the crossover fraction is decreased as the stall generations increase, and the possibility of finding
another optimum is increased. Hence, the stall generations will drop again to zero once the new minimum has been found

and more Fvals are needed overall.

CONCLUSIONS

In this work, the groundwater monitoring network of the Mires basin was optimised based on the Spartan variogram function

in terms of OK interpolation and an adaptive optimisation algorithm in terms of RMSE/RMSD error. Results show that
around half of the monitoring boreholes can be removed from the original dataset with a relatively small error. More specifi-
cally, the application of the network optimisation tool to Mires indicates that as many as 40 monitoring boreholes out of 70
can be removed with a small increase in the proposed error metrics. However, this study suggests that the optimal, cost-

efficient and reliable monitoring network design scenario is to exclude 30 boreholes from the network, which results both
in high-quality groundwater-level mapping, compared to the mapping produced for the initial 70-borehole network, and also
introduces low uncertainty in the estimations. The results indicate the robustness of the network optimisation tool: boreholes

were removed from high-density monitoring areas while preserving the spatial pattern of the original groundwater-level map.
New adaptivity methods were considered here for the GA, and the newly established Spartan variogram was used, which is
proved to produce superior results for the given basin. The error metric that provided the most accurate results in terms of

the optimisation procedure was RMSD, which also provided improved uncertainty estimations. On the other hand, RMSE
gave comparable results to the RMSD, with the added benefit of a lower computational cost. Lastly, the iaGA sensitivity analysis
showed improved results compared to the standard GA approach, providing thus a useful optimisation tool.
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