
   

 

1 

 

TECHNICAL UNIVERSITY OF CRETE 

SCHOOL OF ELECTRICAL & COMPUTER ENGINEERING 

 

 
 

THESIS 
 

UTILIZATION OF SOCIAL MEDIA IN TRANSMEDIA STORYTELLING OF  

HISTORICAL EVENTS AND USER PERSONALIZATION 

 

MARKODIMITRAKIS IOANNIS  

 

COMΜΙΤΕΕ: 
 

Professor Antonios Deligiannakis, ECE TUC (Supervisor)  
 

Professor Mania Aikaterini, ECE TUC 

Professor Petrakis G.M. Euripides, ECE TUC 

 

 
 

CHANIA 2022 



   

 

2 

 

  

 

ABSTRACT 

 

Η διαμεσική αφήγηση είναι ένας ολοένα και πιο διαδεδομένος όρος ειδικά στην 

εποχή της ψηφιακής επικοινωνίας που διανύουμε και ορίζεται ως η διαδικασία κατά 

την οποία μια ιστορία εκτυλίσσεται μέσω διαφορετικών μέσων και πλατφορμών επι-

κοινωνίας. Μεμονωμένα κομμάτια πληροφορίας με ξεχωριστή συνεισφορά το κα-

θένα, ομαδοποιούνται και συνεργάζονται με σκοπό την παροχή μια εξατομικευμένης 

εμπειρίας στο “ξεδίπλωμα” της ιστορίας από τον χρήστη.  

Σκοπός της παρούσας διπλωματικής είναι ο σχεδιασμός και η υλοποίηση ενός 

πλαισίου τεχνολογιών για την προσωποποιημένη διαμεσική αφήγηση ιστοριών και 

την αξιοποίηση κοινωνικών δικτύων, το οποίο θα εφαρμοστεί στην περιγραφόμενη 

διαδικτυακή πλατφόρμα διaμεσικών αφηγήσεων με τίτλο STSP, με στόχο την παρουσί-

αση ιστορικών γεγονότων στον ελλαδικό χώρο και την προώθηση της τοπικής επιχει-

ρηματικότητας. Αναλυτικότερα η πλατφόρμα επιτρέπει την αναπαράσταση διαφό-

ρων ιστοριών και την συλλογή μετρικών στοιχείων από τα κοινωνικά δίκτυα 

(Facebook) που αφορούν την αλληλεπίδραση των χρηστών με αυτές. Επιπλέον δίνε-

ται η δυνατότητα στους χρήστες να σχολιάσουν αλλά και να αξιολογήσουν με ποικί-

λους τρόπους τις ιστορίες και να βρουν στην αρχική τους σελίδα αυτές που παρου-

σιάζουν ομοιότητα με εκείνες που έχουν αλληλοεπιδράσει ήδη. Οι προτάσεις ιστοριών 

δημιουργούνται με έναν αλγόριθμο item-based collaborative filtering, δηλαδή με 

βάση την ομοιότητα μεταξύ των βαθμολογημένων και μη, ιστοριών του χρήστη.  

Το πλαίσιο εργασίας αποτελείται από διάφορα δομικά στοιχεία με διακριτούς 

ρόλους που επιτελούν συγκεκριμένες λειτουργίες, με ξεχωριστή συνεισφορά στο τε-

λικό αποτέλεσμα. Η πρότυπη υλοποίηση των στοιχείων αυτών έγινε για την συγκεκρι-

μένη πλατφόρμα αλλά με τις κατάλληλες μετατροπές το περιγραφόμενο πλαίσιο ερ-

γασίας μπορεί να αποτελέσει ένα επαναχρησιμοποιούμενο πακέτο λογισμικού που 

θα αποσκοπεί στην διαχείριση του υλικού μιας πλατφόρμας με στόχο την παραγωγή 

εξατομικευμένου περιεχομένου αλλά και την οργάνωση και προβολή του υπάρχο-

ντος, με κριτήρια αξιολόγησης που θα αξιοποιούν την πληροφορία που θα έρχεται 

από το εκάστοτε κοινωνικό δίκτυο και την αλληλεπίδραση των χρηστών. 

 

 

 

 



   

 

3 

 

 

 

 

Table of Contents 

  

1. Introduction .......................................................................................................... 5 

      1.1 Thesis Contribution .......................................................................................... 5 

      1.2 Structure of the Thesis ...................................................................................... 6 

2. Important Software & Terms ................................................................................. 8 

2.1 Digital Storytelling .......................................................................................... 8 

2.2 Recommendation Systems ........................................................................... 9 

2.3 STSP Data Model .......................................................................................... 10 

2.4 Social Media Integration ............................................................................. 14 

2.5 Τechnological Background ........................................................................ 16 

3. Requirements Specification and Use Cases ..................................................... 21 

3.1 Requirements Analysis ................................................................................ 21 

3.2 Reference Architecture ............................................................................... 24 

4. Framework Implementation .............................................................................. 26 

4.1 Architecture ................................................................................................. 26 

4.2 Implementation Technologies .................................................................... 29 

 4.2.1 React ................................................................................................... 30 

 4.2.2 NextJs .................................................................................................. 31 

 4.2.3 Typescript ............................................................................................ 32 

 4.2.4 Αpollo .................................................................................................. 32 

 4.2.5 Hasura ................................................................................................. 35 

 4.2.6 PostgreSQL........................................................................................... 36 

 4.2.7 OAuth2 ................................................................................................ 37 



   

 

4 

 

          4.2.8 Continuous Integration ....................................................................... 38 

5. Framework Application ..................................................................................... 40 

5.1 Approach ................................................................................................... 40 

5.2 GUI .............................................................................................................. 40 

5.3 Applying Personalization to STSP .............................................................. 45 

6. Conclusions – Future Work ................................................................................. 47 

6.1 Conclusions ............................................................................................... 47 

6.2 Future Work ................................................................................................ 48 

7. References .......................................................................................................... 49 

  

 

 

 

 

 

 

 

 

 

 

  



   

 

5 

 

 

1. Introduction 
 

The web has evolved significantly in the last 20 years, and nowadays web ap-

plications incorporate visual and audio storytelling to captivate users’ attention and 

offer an exclusive and highly individualized experience. This has led to a massive in-

crease in interest in recommendation systems in an attempt to enhance user expe-

rience and potentially increase sales. From choosing the best item to purchase and 

reading the “hottest article” in a newspaper, to watching a similar video on our fa-

vorite platform, recommendation systems play a vital role in increasing time spent 

on a website, and time usually is associated with money in the world of digital ad-

vertisement. At this point it is crucial to mention that a large percentage of users do 

not return to a website or application after their initial visit, thus suggesting that before 

businesses and organizations have the chance to recommend content to users, their 

focus should be aimed at ensuring users will keep returning to their platforms to view 

and interact with more content of interest as well as express their opinions and views 

about it. For this matter, a storytelling approach is often adopted, an approach that 

guarantees to etch a brand or service in audiences’ minds. Storytelling is one of the 

most captivating techniques to convey messages and information. The main idea is 

to create engaging stories that make people vigilant listeners and if utilized properly 

on social media, turn online audiences into ardent followers. 
 

1.1 Thesis Contribution 
 

The aim of the current thesis is the design and implementation of a framework 

for personalized transmedia storytelling that will allow online platforms to utilize social 

media to increase user interaction and drive traffic to their websites, thus creating 

potential clients for their products/services. The framework consists of several com-

ponents with clearly defined functionality, and there will be a detailed analysis of 

how they were implemented. The platform that was utilized for the framework’s im-

plementation is STSP, a digital platform for spatiotemporal visualization of historical 

events that have taken place in Crete and the promotion of services and products 

of local businesses in the field of tourism. The platform has adopted a storytelling ap-

proach to make the content unique and captivating, which will lead to increased 

user engagement and the addition of user-produced content. The end goal is the 

creation of personalized services and experiences for the users about their prefer-

ences and likes. 

As we have already discussed, the main goal of the framework was to increase 

the transmedia storytelling capabilities of the platform. The first main feature of the 

framework in this direction is to support users' commenting and interacting with other 

users, as well as declare their fondness and interests in the form of ratings, likes, and 

bookmarks regarding the contents of each story. The second main feature was the 



   

 

6 

 

establishment of a connection between each story and Facebook posts on the plat-

form’s official Facebook page, to initially publish stories on social media and subse-

quently collect data about user engagement regarding a specific historical event. 

Thirdly, the framework supports the collection of comments, reactions, and shares 

about a story that comes from the platform’s Facebook page and stores them in the 

platform’s database to model and analyze user interaction coming from social me-

dia. After the storage, these can be viewed on the platform’s relative page along 

with the original comments that were made on the platform itself. Evaluation of user 

interactions coming from both the platform and the Facebook page leads to the 

fourth and final feature of the framework, which is to support the creation of a smart 

recommendation system using the collaborative filtering algorithm. The algorithm 

considers a user's previous interactions with a story and proposes one or more stories 

that show a high resemblance to those he has already visited and rated. 

A very important aspect of the framework is the fact that it is highly flexible, 

meaning that it can be viewed as a solution for businesses looking to incorporate 

user interactions coming from all types of social media networks and adjust their con-

tent and marketing strategy according to specific metrics of popularity as well as 

create smart recommendations for each user. Certain tweaks are required for the 

framework to incorporate certain social media networks, thus allowing for a large 

degree of customization for the platform owner. The Agile methodology was se-

lected to ensure that frequent inspections would be made, leading to high software 

quality and organization. The process of constant re-evaluation led to a scalable 

and well-organized system, where each component of the architecture was metic-

ulously tested before proceeding to the design of the next one. 
 

1.2 Structure of the Thesis 
 

There will be an overview of the content of each chapter of the thesis in this 

section. 

Chapter 1 sets the frame regarding transmedia storytelling in modern web applica-

tions, the importance of recommendation systems, and the motivation behind the 

development of the framework that was designed, as well as a brief analysis of the 

functionality that it provides.  

Chapter 2 explains the necessary terms that are required for a proper understanding 

of the work that was conducted. There will be an explanation of the term "storytell-

ing" along with the commonly used storytelling tools. The chapter continues with 

mentions of modern recommendation systems and the data model of the platform 

on which the framework was implemented. Lastly, the chapter explains the im-

portance of social media in transmedia storytelling and points to some of the most 

commonly used tools for social media integration.  

Chapter 3 presents the requirements analysis that was conducted and displays the 

reference architecture of the framework that was designed.  



   

 

7 

 

Chapter 4 provides a detailed analysis of the architecture diagram of the framework, 

which contains all the necessary components and subcomponents along with their 

functionality. Additionally, the chapter provides diagrams of the core technologies 

that were used for the implementation of the framework and its interconnection with 

the storytelling platform. 

Chapter 5 demonstrates the framework's use in the storytelling platform and clarifies 

the data model components that were used. It displays the necessary interventions 

in the graphical user interfaces of the platform and the mechanism behind the pro-

duction of personalized content.  

Chapter 6 summarizes the results that were obtained during the design and imple-

mentation process. It refers to general good practices in software development and 

the importance of social media integration in storytelling platforms. Finally, there are 

some proposals regarding future work on the framework. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

 

8 

 

2. Important Software & Terms 
 

 This chapter describes in detail all the important terms and tools that were uti-

lized to describe how the framework was developed. All the above are state-of-the-

art technologies that are being widely used in the industry and play a vital role in 

developing modern web applications that are safe, fast, and coherent. The below-

mentioned terms include external code libraries, code editors, version control sys-

tems, database systems, servers, package managers, storytelling tools and frame-

works, and some general elements and principles regarding how modern web de-

velopment operates, all of which will be analyzed further in the upcoming para-

graphs. 
 
 

2.1  Digital Storytelling  
 

To understand better what transmedia storytelling is, there was a detailed study 

of the work of H.Jenkins. He defines transmedia storytelling as “The process where 

integral elements of fiction get dispersed systematically across multiple delivery 

channels to create a unified and coordinated entertainment experience”. This pro-

cess originated in the entertainment industry and mainly cinemas, but since then 

marketers have adopted it to promote products and brands in a way that is more 

appealing to young audiences. The digital era that we are all currently experiencing 

has paved the way for new forms of storytelling and complex narratives. In a world 

of digital connectivity, a new cultural context is being created where social media, 

connectivity, and online-data exchange are of great importance, and this leads 

businesses to change their marketing strategies appropriately. Overall, digital story-

telling leverages an expanded and more participatory sense of audience because 

it can connect learners in disparate places and situations. Individuals create, post, 

share, respond to others, critique, and engage in other participatory activities 

around their digital stories [1].  

There are several tools available online for both businesses and individuals so they 

can create their own unique stories, but the most commonly used ones are the be-

low-mentioned: 
 

• Microsoft Timeline Storyteller: It is an open-source expressive visual storytelling 

environment for presenting timelines in the browser. Its main use is to present 

different aspects of timeline data using a palette of timeline representations, 

scales, and layouts, as well as controls for filtering, highlighting, and annotat-

ing. The creator of a story must design a series of scenes for each story, where 

each scene is in a unique state and consists of designs, images, colors, and 

captions. Timeline  Storyteller also allows animated transitions between scenes 

creating a coherent and desirable user experience [2]. 
 

• Pageflow: Pageflow is an open-source software and publishing platform for 

Visual Storytelling, jointly developed with the West German Broadcasting 

https://github.com/Microsoft/timelinestoryteller


   

 

9 

 

Corporation “WDR“. Its modular structure allows the continuous addition of 

new types of pages and features. The latter is the main aim of it, which is to 

merge various multimedia elements and in conjunction with the full-screen 

capability, offer a great storytelling experience. The use of HTML5 instead of 

Flash allows it to be viewed on all devices, making it a great way to avoid 

using different tools for transmedia storytelling for desktop and mobile [3]. 
 

• StoryΜapJS: A free JavaScript library that helps in telling stories on the web 

that highlight the locations of a series of events. A different slide can be used 

for each different location in our story, inside an easily customizable and inter-

active map that contains all our points of interest in a story. One can add 

events as part of a larger narrative or even mark the local businesses that can 

be associated with the location of the story. This is the tool that was selected 

for the project [4]. 
 

• Europeana: Digital Storytelling Prototype, which can be seen as a service, that 

allows users to create and publish collections of content and mix their uploads 

with content in Europeana and on YouTube. More than 3,000 institutions 

across Europe have contributed to Europeana, including the Rijksmuseum, 

the British Library, and the Louvre. Records of over 10 million cultural and sci-

entific artifacts have been brought together on Europeana's platform and are 

presented in a variety of ways relevant to modern users, such 

as smartphones or APIs [5]. 
 

2.2  Recommendation Systems 
 

In the digital era that we are experiencing, the amount of information that is 

available is increasing exponentially. This increase in data has led to an increase in 

interest in filtering these data from the existing storage, leading researchers to pro-

pose the concept of recommender systems. Recommendation systems are infor-

mation filtering systems that deal with the issue of the constant production of infor-

mation by filtering vital parts of the dynamically generated data according to user 

interests, preferences, and observed behavior about items. These systems make a 

well-designed and detailed analysis before they generate a prediction on whether 

a user would prefer interacting with an item, based on a set of characteristics that 

depend on the main idea behind the design of the recommendation algorithm. 

Recommendation systems are beneficial to both service providers and users. 

They aid the decision-making process and help in making more accurate assump-

tions in a business environment. In an online shopping environment, they reduce the 

transaction costs of finding and selecting an item. In an e-commerce setting, rec-

ommender systems increase revenues, since they are effective means of selling 

more products. All these examples of recommendation systems utilization demon-

strate the need for a smart and efficient system that will provide useful and relevant 

recommendations to the end users. 



   

 

10 

 

There are three main approaches as far as designing recommendation algo-

rithms is concerned. These approaches utilize either collaborative filtering, content-

based filtering, or hybrid filtering. Collaborative filtering algorithms work by searching 

a large group of people and finding a smaller set of users with likings similar to a par-

ticular user. It looks at the items they like and combines them to create a ranked list 

of suggestions. On the other hand, content-based recommendation algorithms 

work by trying to recommend items to users based on their profiles. The user’s profile 

revolves around the user’s preferences and likings as well as other characteristics of 

the user’s behavior that the system can recognize. Both of the previously mentioned 

approaches face the issue of not being able to construct a relationship between 

the users and the items in the event of insufficient initial data, something which is very 

evident in the initial period after an application or website launch. In such cases, a 

possible solution is to use a hybrid recommendation algorithm, which could be im-

plemented in various ways, such as using content and collaborative-based methods 

to generate predictions separately and then combining the prediction or adding the 

capabilities of collaborative-based methods to a content-based approach(and vice 

versa) [6]. 

 

2.3  STSP Data Model 
 

This section presents the data model that was designed and implemented for 

the needs of the platform. Every story that takes place in the context of a story world 

is governed by a set of rules and constraints and is unique regarding a set of char-

acteristics (era, architecture, tradition, etc.). The main elements of a story are time 

and place, along with things such as artifacts, language, technology, ideas, and 

beliefs, all of which can be utilized when describing a story world. In the context of 

the STSP platform, a detailed analysis of multiple historical sources was conducted to 

ensure that each historical event would be presented accurately and in an effective 

way. This process was needed to ensure that all the important parameters of a story 

would be included during the design and creation of our database. The basic build-

ing block of a story is an element. An element takes place in a specific geographic 

area at a given time. Several interconnected elements constitute a story. Some of 

them are larger in size and detail and can be viewed as smaller, independent stories 

with their own media resources. 

Apart from the main stories the platform initially contains, there is an infrastruc-

ture to support the addition of extra stories that could be individual experiences or 

narratives of people and could be used by the media to promote products and 

services. These unique elements are called "user elements" and can be either linked 

to other user elements or elements from the original real-life stories of the platform, 

thus forming "chains" of events. In this way, relations have been created between all 

the basic building blocks of the story platform. 

Figure 2.3-1 is a representation of all the entities that exist in the data model and the 

conceptual relationships between them. 



   

 

11 

 

 

 

Term 

 

The symbol in 

the UI 

 

Description 

 

Notes 

 

Super User(Historian) 

 

 

- 

The User creates a story, 

modifies, formats, and 

controls the content that is 

stored in the system. 

Not to be confused with 

the system admin who has 

all the rights for the tech-

nical aspects of the sys-

tem. 

 

User 

 

- 

An authenticated user 

can add user elements, 

create event chains and 

polls, share, comment, 

and react to a story. 

Not to be confused with 

the guest user, who can 

only view the content of 

the platform. 

 

Story Element 

 

- 

 

The building block of infor-

mation of every Story. 

Provided and controlled 

by the Super User(Histo-

rian). 

 

User-contributed Story 

Element 

 

- 

The building block of infor-

mation of every Story(Pro-

vided by Users). 

Even though it is provided 

by the User, it is controlled 

by the Super User of the 

Story. 

 

Story 

 

 

Story Elements and User 

Contributed Story Ele-

ments that are linked. 

Provided initially by the Su-

per User(Story Elements) 

and afterward by the 

User(User Contributed 

Story Element). 

 

Chain 

 

Type of Story that links Story 

Elements and User Contrib-

uted Story Elements.  

Provided by both the User 

and the Super User. 

 

Relation 

 

Type of Story that links indi-

vidual Stories. 

Provided by the Super 

User. 

 

 

 

 

 

Figure 2.3-1 Terminology Table of the STSP Model 



   

 

12 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

❶  Story Elements are the basic units of information. In each story, there are one or 

more and they could potentially be linked with media resources. Super Users are 

responsible for the creation and management of linked relationships. 

❷ User’s contribution to the platform’s stories. Similarly, to the story elements, there 

can be a great number of them and can be linked with media resources. Super 

Users manage them, but they are created by authorized platform Users. 

❸ Resources can be video, photographs, sound clips, and texts as well as all the 

necessary meta-data for their utilization. 

❹ Stories are the higher-level structural units of the platform. They consist of story 

elements and potentially user-contributed story elements. These elements are 

placed in chronological order inside a story. 

Figure 2.3-2 Basic Building Blocks of the Data Model and their Interconnections 



   

 

13 

 

❺ One or more user-contributed elements could be linked to create a story event 

that is displayed in a story. The platform encourages the user to make this link them-

selves. 

❻ Relation is a type of story that consists of other stories that are linked to each other. 

These linked relationships are controlled by the superuser(Historian).  

❼ Chain is a type of story that consists of story elements and user-contributed story 

elements that are linked to form a new type of story. 

❽ Chain can be used to demonstrate a relation between story elements. 

❾ A story element could belong to one or more stories. 

❿ Some story elements are not available from the start when a viewer clicks on a 

story. They can be shown only after a user has completed certain tasks or spent 

enough time in the platform, and can be characterized as bonus elements, and are 

part of the general marketing strategy. 

⓫ User-contributed elements can be willingly linked to a story element inside a story 

(see 5). 

⓬ A single user-contributed element can be linked to a story element inside a story 

(see 5). 

⓭ User-contributed elements can be displayed either inside a chain or inside a story   

(Although they cannot be considered official parts of the story, due to them being 

shown only under the condition that they are linked to a pre-existing story element.) 

⓮ Several stories can be linked to create a relation, which is effectively a series of 

stories. One story can appear in different relations. 

 ⓯ Story elements can be part of a chain (see 7). 

 ⓰ Different relations can pave the path for the creation of new relations, which are 

up to individual preferences and choices, through their linked stories (see 6). 
 

 

The last diagram of the subsection is the visual representation of the relations 

that exist between all major and minor STSP components. It contains details about 

the spatiotemporal state of a story, the main actors, and their actions as well as parts 

of the social media aspect of the platform. This is the first edition of the data model 

and is bound to change in the future. 

 

 

 

 



   

 

14 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.4  Social Media Integration 
 

Social media integration is the act of using social media accounts as an ad-

dition to your marketing. It can be viewed as a tool that will promote brand aware-

ness and increase the visibility of marketing campaigns by creating opportunities on 

various social platforms for customers to link or share information between the web-

site and social media. The two main ways through which integration of social media 

can be accomplished are: 
 

• Display of information derived from the web platforms to social media to en-

courage users to visit and interact. 

• Allowance of social media accounts to be easily accessible on websites or 

applications. 

            Figure 2.3-3  STSP Basic Entities Model (1st Version) 



   

 

15 

 

It is important to note that the existence of social media-derived elements on 

the website doesn’t directly translate into user engagement, so it is crucial to ac-

complish this integration without compromising user experience (UX) [7]. There are a 

few ways to facilitate social media integration, and below there will be a brief anal-

ysis of the most used ones : 
 

• Social Media Sharing Links: Tools such as Mashable integrate a ‘Share button’, 

which is linked to social media, blogs, and product pages, making the sharing 

of product pages or blog pages from customers to their social channels easy 

[8]. This is a very common strategy mirrored by many media companies and 

corporations to aid their website conversions. 
 

• Social Widgets: To create a form of two-way communication between the 

website and the social media platform, brands and organizations utilize widg-

ets, which essentially are an easy way for customers to share information or 

products that they have found with their network. 
 

• Social Embeddings: This is the most common way for businesses to integrate 

customers' social media into the web platform. Social Logins are a single sign-

on for users that utilizes existing information from a social network provider such 

as Facebook, Twitter, Google, or Pinterest. Social media providers can give 

additional information to the applications, such as location, interests, birth-

days, and more. The utilization of this data is very crucial as it can help in tar-

geting personalized content to the user, which is something that this thesis fo-

cuses greatly on. 
 

• Display Social Media Multimedia Content: Embedding social media videos, 

images, and audio is another great way of driving traffic from websites to so-

cial media channels. This process is simple and many tools are available to 

simplify it, especially WordPress plugins such as Smash Balloon Facebook Feed 

Plugin [9] and RafflePress [10]. Each one of the plugins has different features, 

but the main idea behind all of them is to showcase custom content fascinat-

ingly and subsequently attract more views, followers, subscribers, etc. The 

main disadvantages of many of these plugins are that, firstly, they require pay-

ment to be efficiently used in a production environment, and secondly, some-

times they significantly slow page speed and are more susceptible to hacks 

due to infrequent security updates. 
 

• Social Media-Based Commenting System: Commenting is a very important 

part of online engagement. By utilizing commenting systems, businesses in-

crease the involvement of customers with the application’s content and en-

courage the expression of ideas and opinions. Large companies such as Fa-

cebook and Google have developed such systems that are easily integrated 

into existing web platforms. There are also different styles of commenting sys-

tems, such as Disqus [11], that provide customized dashboards, analytics, and 

real-time commenting mechanisms. 



   

 

16 

 

 

By displaying reviews, testimonials, and shoutouts, brands can showcase that 

they are credible and maintain a following. This motivates new customers to engage 

with the content and helps in maintaining existing customers that stay associated 

with the platform. Some of the ways that social proof can be accomplished is by 

incorporating social media feeds and posts coming from networks such as Twitter 

and Facebook where users explain their experiences with the product or services. 

To sum up, to create a strong digital presence, businesses focus on integrating 

social media to expand their customer pool. Choosing the right social plugins for a 

website is crucial to facilitate the increase of user engagement and increase brand 

recognition. At this point, it should be mentioned that there is not an all-around solu-

tion for real-time integration of social media, as the current ones can be viewed 

more as external components that are utilized. Practically this means, that currently 

most tools revolve around solely displaying content coming from social media. The 

framework of discussion in this thesis aims to offer additional capabilities to storytelling 

platforms and organizations through the storage of content and interactions coming 

from social media and their utilization to produce user-specific content as well as its 

association with the native content of the platforms. All the above mentioned will 

lead to a more systematic integration of social media into the storytelling platforms 

but more on this matter will be analyzed in the upcoming chapters. 
 

2.5  Τechnological Background 
 

Since 1989 and the invention of the WWW(World Wide Web), most of the phys-

ical services have been transferred to the cloud. Until that period, for a user to per-

form online activities, they would have to install different desktop applications, but 

the rapid evolution of the internet changed every aspect of this process Thanks to 

WEB 2.0 and WEB 3.0, we can now enjoy dynamic, responsive, and interactive web 

applications just by having access to the internet and owning a computer. Along 

with the evolution of the WEB protocols, a major change also took place, related to 

the web architecture. The traditional, monolithic client-server model shifted to a 

highly scalable microservices one with an emphasis on the ability to handle large 

loads of data and user traffic [12]. There are some common building blocks, though, 

no matter what architectural style one chooses, with which every developer (or web 

enthusiast) should be familiar before attempting to build web applications. 
 

Server 
 

A computer(or network of computers) that provides a service(or multiple ser-

vices) over a private network or internet can be referred to as a server. Other de-

vices, known as clients, can connect through different network ports to obtain the 

provided service. Servers are named based on the type of service they provide, and 

we may see different servers in a single application, such as Web Servers, Authenti-

cation Servers, Database Servers, Application Servers, File Servers, and Mail Servers. 



   

 

17 

 

 

 

Client 
 

The client can be described as a computer, software, or website that con-

nects with servers to consume their services or resources. The standard example of a 

client is our web browser when we are visiting a website. The naming convention for 

clients is similar to the server’s, meaning that clients' names are based on the service 

they consume. The types of clients that we see most often are Web Clients, Data-

base Clients, Email Clients, Online Communication Clients, and File Clients. 
There are two main client types: A) Thick clients and B) Thin clients. 
Thick clients don’t depend on a server and can be viewed as a standalone app 

that persists data. Thin clients on the other side, depend entirely on a server similar 

to SPA(Single Page Applications). 

 

 

 

 

 

 

 

 

       Figure 2.5-1 Client-Server Model in Web Applications 

 

Single Page Applications  
 

A SPA(Single Page Application) is a type of web app that loads only a single 

web document, and then updates the body content of that single document via 

JavaScript APIs, without refreshing the whole page leading to performance gains 

and a more dynamic experience without the need of loading new external files. 

The goal is to minimize the refresh time and escape from the typical request-re-

sponse cycle. The main advantage of SPA is speed and as Amazon quotes “1 

second of additional delay in page load costs 1% of sales (which, considering 

Amazon’s number of sales, is $1.6 billion per year.)”,so it is easily understandable 

why SPAs gain more and more attention from developers every single day. [13] 

It is important to note though, that it is not always better to build an application 



   

 

18 

 

as a SPA, because if users have low-power devices, they will experience poor 

performance and memory leaks may be observed. [14] 
 

 

Figure 2.5-2 Traditional Architecture vs SPA 
 

Representational State Transfer (REST) 
 

Representational State Transfer, or simply Rest, is an architectural style to facil-

itate communication between computer systems on the web. Systems that have 

adopted this style are called restful and are characterized by how they are stateless 

and separate the concerns of the client and server. Practically, this means that we 

can develop and implement the client and the server independently, without infor-

mation about how the first, or the latter, was developed. The greatest advantage of 

this method is that potential changes to one do not affect the other, thus achieving 

client-server separation. The only requirement to maintain this modularity/separation 

is that each side knows the format of the message to send to the other one. By using 

REST interfaces, different clients hit the same REST endpoints, perform the same ac-

tions, and receive the same responses. 

 
 



   

 

19 

 

Microservices 
 

The traditional client-server model entails some dangers as a malfunction in 

one of the parts affects the whole system, and this can lead to a constant need for 

maintenance work. The microservices architecture model aims to decompose large 

systems into small services that operate independently and constitute building 

blocks for larger systems. A microservice refers to a loosely coupled and isolated ser-

vice that is responsible for a particular process. In real-world web-based software 

systems, most microservices are RESTful APIs running inside a virtual machine or con-

tainer. The main benefit of this architectural style is that systems can be easily scaled, 

and faults can be isolated and fixed much more resiliently.  
 

 

Figure 2.5-3 Monolithic Architecture vs Microservices Architecture 
 

 

GraphQL 
 

GraphQL is an alternate option to build APIs in REST. It is a query language that 

is used in many applications, as most of them have data hosted on a remote server 

in a database. The API only must expose an interface to put-away information that 

meets application requirements. GraphQL defines specifications on how the client 

will request all sorts of data from a remote server. The server’s response is sent back 

as a result of the client’s specific query. Overall, the main advantages of GraphQL 

over REST are the fact that firstly, we can obtain multiple resources with a single re-

quest, instead of multiple requests to different endpoints, and secondly, we can 

specify exactly what type of information we want to fetch from a server, thus avoid-

ing over fetching which can lead to performance issues. [15] 

 

 

 



   

 

20 

 

 

 

 

 

  

       

 

            Figure 2.5-4 GraphQL Interface for Data Retrieval from a Backend Source 
 

Web Components 

Over the last decade, web components have evolved due to industry 

change. Some of these are tools, some are ideas, and others are approaches, but 

all of them are related on the basis that they are being used to manage a balance 

of complex requirements and performance with safety and simplicity. The need for 

a faster and richer user experience led to the creation of concepts such as single-

page web apps. Lightweight and dynamic applications that could manage large 

amounts of data exchange and rapid state changes, with the unique characteristic 

of being able to manage application logic on the server rather than the browser. 

This changed the old-fashioned view of the distinction between frontend and 

backend technologies and paved the way for new, innovative frameworks such as 

Node.js, React.js, Angular.js, etc. [16]. 
 

There are three main elements of modern-day web components : 
 

• Custom elements are a set of JavaScript APIs that you can call and define in 

a customizable way to fulfill the application’s needs. 
 

• This acts as a "DOM" that is attached to the page’s components. In this way, 

all unique elements and recourses are isolated, which makes the develop-

ment process easier and offers better performance for users. 
 

• Html Templates: readily available pages of HTML that can be reused and 

called when needed. 
 

• By using them, developers aim to handle more complexity and workload while 

minimizing resources and time spent on development. 

 

Moving forward, there will be an attempt to showcase the analysis that was 

conducted for the documentation of framework requirements, the corresponding 

reference architecture that was designed, and the relevant use case diagram. 

 



   

 

21 

 

3. Requirements Specification and Use Cases 
 

This chapter describes all the requirements that were set for the platform that 

has been developed [17]. Firstly, there will be a brief mention of the requirements 

that were set and relate to both the framework and platform functionality along with 

the corresponding use case diagrams. Secondly, having established these require-

ments, there is going to be a display of the reference architecture of the system and 

brief analysis of the functionality that each. It is crucial to mention that the develop-

ment process began, only after the design and cost analysis were completed. 
 

3.1 Requirements Analysis 
 

This section analyzes firstly all the requirements that were set for the framework 

to support the desired functionality and have certain quality characteristics. Sec-

ondly, there were some requirements for the platform to be able to support the in-

terconnections to the framework and facilitate the framework development. For 

each set of requirements, there will also be a relevant use case diagram. 
 

Framework Requirements 
 

  It is important to note, that each of these requirements was set to secure that 

the framework implementation in the application is leading to the accomplishment 

of four major goals: Personalized content served to people at the right times(recom-

mendation engine), the interaction of the users with the content (co-creation and 

co-management of user-contributed elements), collection of social media interac-

tions and publishment of platform stories to social networks. 
 

1. The framework should transfer a story from the web platform to the social me-

dia page once it’s published. 

2. The framework should collect comments, ratings, and reactions from the plat-

form’s social media page. 

3. The framework should check at regular intervals about new content that is 

posted on the social media page and subsequently transfer it to the platform. 

4. The framework should transfer new comments that are made to a story page 

to the relevant social media page. 

5. The framework should store the content from social media and display it on 

the relevant story page. 

6. The framework should adapt the inbound content from Facebook to the plat-

form’s storage model. 

7. The framework should adapt the outbound content from the platform to the 

social media API model. 

8. The framework should utilize the stored reactions, ratings, and comments from 

both social media and the native platform to create the necessary vector 

matrices for the recommendation algorithm. 



   

 

22 

 

9. The framework should run the recommendation algorithm at regular intervals 

to produce new and updated personalized story suggestions. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1-1 Framework Requirements Use Case Diagram 

 

Storytelling Platform Requirements 
 

In general, storytelling platforms have the infrastructure to support a specific 

data model as well as user interaction such as commenting systems or forms of rat-

ing. Having established this, emphasis on the requirements analysis will be given to 

those that mainly facilitate the development of the framework. The first thing that 

should be ensured and refers to the data model of the platform, which is utilized by 

the framework, is that changes to the basic structure of stories in the form of additions 

or extensions should be simple and not cause malfunctions. Extending the list of sto-

ries should be done simply. Any type of interconnections that have been made be-

tween basic data blocks of the platform such as story elements, user-contributed 

elements, social media elements, chains, relations, stories, and authorized users 

should never be affected. 

As far as the web platform is concerned, it was deemed necessary that it 

should fill a series of requirements, a lot of which are crucial for the proper function-

ality of the framework and its interconnection to the platform, such as :  
 

1. The platform should support role-based access control and make the distinc-

tion between authorized and non-authorized users. 

2. The platform should support user registration and authentication. 

3. The platform should support viewing specific story elements inside a story. 



   

 

23 

 

4. The platform should support viewing the tags of a story. 

5. The platform should support the rating, commenting, and sharing of a story. 

6. The platform should support comment replying. 

7. The platform should support user-contributed media elements additions to 

stories. 

8. The platform should support users’ addition of a story to their favorite stories. 

9. The platform should support users’ bookmarking of a story. 

10. The platform should support the creation of a profile page for each user. 

11. The platform should support the modification of users’ personal information 

on their profile pages. 

12.   The platform should support users’ viewing of the list of their favorite stories. 

13. The platform should support users’ viewing of the list of their bookmarked sto-

ries. 

14. The platform should support users’ viewing of the stories that they have re-

cently accessed. 

15. The platform should support users’ viewing of the average rating of each 

story. 

16. The platform should support users’ viewing of their chains. 

17. The platform should support user’s viewing of their story relations 

 

Figure 3.1-2  displays the use case diagram of platform requirements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 3.1-2 Platform Requirements Use Case Diagram 



   

 

24 

 

 

3.2 Reference Architecture 
 

In figure 3.2-1 there is a display of the reference architecture of the frame-

work that highlights its features and its interconnections to the web platform, as well 

as the communication with the social media APIs. 
 

 

Figure 3.2-1 Reference architecture of the framework-Interconnections between 

the Framework and STSP Platform 
 

It is important to emphasize that the five components (Story Publishing, Con-

tent Adaptation, User Content Syncing, User Content Observation, and Recommen-

dation Engine) that are located inside the yellow container are the main compo-

nents of the framework that carry out the desired functionality, which was a product 

of the requirements analysis that was done in the previous subchapter. Each of the 

components fulfills the below-mentioned requirements that were set for the frame-

work. The number next to each subcomponent refers to the corresponding require-

ment number in the previous subchapter: 
 

• Story Publishing: 1 



   

 

25 

 

• Content Adaptation: 6,7 

• User Content Syncing: 2,4,5 

• User Content Observation: 3 

• Recommendation: 8,9 
 

Social Media API could be any major API of a social network, but in our case 

Graph API of Facebook was utilized. As one can notice, at the storage level there is 

content that is derived both natively from the platform as well as coming from social 

media and is managed by the super users of the platform. The number next to each 

part of the storytelling platform refers to the corresponding platform requirements 

numbers in the previous subchapter: 
 

• Platform’s interconnection to the framework: 1,2,5,6,7,8,9 

• Presentation of transmedia content in the platform: 

3,4,10,11,12,13,14,15,16,17 
 

The next step in the description of the framework is to go in-depth into its struc-

tural units of it and reference the technologies that were used for their implementa-

tion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

 

26 

 

 

4. Framework Implementation 
 

 

This chapter will present the main components of the framework architecture 

that were touched upon in subchapter 3.2 along with their proposed functionality to 

obtain a better idea of the thought process behind the framework design. Each major 

component will be analyzed along with its subcomponents, their role in the frame-

work, and their position in the architecture layer. Additionally, in subsection 4.2, there 

will be a deeper dive into the technologies that were selected to design these com-

ponents as well as the thought process behind choosing them. 
 

4.1 Architecture  

 

Figure 4.1-1 displays the two-layered component and subcomponent archi-

tecture of the framework. Having recognized the five main components of the 

framework from chapter 3, their implementation was based on fulfilling the major 

requirements that were set for it in subchapter 3.2 and related to social media inte-

gration, an increase of user interaction, story content publishing, and personalized 

content suggestions. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 4.1-1 Framework Component Architecture-Display of Subcom-

ponents and Their Main Functionality 



   

 

27 

 

 

Content Synchronizer 
 

To ensure that the transfer between the native STSP platform and the social 

media page is updated, it was necessary to create a component that would handle 

this process. Sync loggers are keeping track of what content has been transferred at 

any given moment, and event listeners are being utilized to send platform-gener-

ated content to social media pages right after its creation. To automate the process 

of receiving content from the page, a Cron scheduler was used that executed this 

task at specified intervals. 
 

Social Media Client 
 

This component's purpose is the integration of any API of major social media 

networks. It handles the type of content that is shown in social media, and the proper 

metadata, and establishes communication with the API. 
 

Content Adaptor 
 

The major functionality is handling the structure of the content that is ex-

changed between the storytelling platform and social media. The social media-gen-

erated content needs to be adapted to the storage component data model and, 

correspondingly, the content that is transferred from the platform to the social media 

page needs to be adapted to the API standards. 
 

Client of a Storytelling Platform 
 

This represents the functionality that is being executed on the native storytell-

ing platform that interconnects to the framework and mainly refers to the content 

that is stored there and CRUD operations on it. 
 

 

Content Recommender 
 

This chapter describes the algorithm behind the implementation of the rec-

ommendation engine component, which is a crucial part of the proposed frame-

work. In more detail, it is an item-based collaborative filtering recommendation sys-

tem that utilizes cosine similarity [18]. 

Cosine similarity is a metric used to measure how similar the two items or documents 

are irrespective of their size. It measures the cosine of an angle between two vectors 

projected in multi-dimensional space. This allows us to measure the similarity of doc-

uments of any type. It is defined as follows: 
 



   

 

28 

 

 

Figure 4.1-2 Cosine Similarity Equation for Computing Similarity between 

 Two Vectors 
 

 

The next step is the most important one, and it is to generate the output inter-

face in terms of prediction. As soon as the set of most similar items based on the 

similarity measures is isolated, the focus is shifted to examining the target user ratings 

and using a technique to obtain a prediction. In this implementation of the algo-

rithm, the weighted sum method was utilized, which is essentially a method that com-

putes the prediction of item i for a user u by computing the sum of the ratings given 

by the user on the items that are similar to i. The total rating of a user for a story is 

calculated based on his star rating and whether they have liked or bookmarked a 

story. Each rating is weighted by the corresponding similarity Si,j between items i and 

j. The final step is to scale the weighted sum by the sum of the similarity terms to make 

sure the prediction is within the predefined range. 
 

 

Figure 4.1-3 Prediction of Rating of an Item for a Specific User 
 

  

For example, if User 1 has rated two items (Story 1 and Story 3) out of a set of 

three stories, the algorithm will calculate the potential rating for Story 2. The following 

figure illustrates the above-mentioned process more clearly. 

 

 

Figure 4.1-4  Rating of Item_2 for User_1 
 

• r(U1,I1)= Rating of Item_1 by User_1 



   

 

29 

 

• r(U1,I3)= Rating of Item_3 by User_1 

• r(U1,I2)= Proposed Rating of Item_2 for User_1 

• SI1 I2 = Similarity between Item_1 and Item_2 

• SI3 I2 = Similarity between Item_3 and Item_2 
 

The same process continues for all possible ratings of an item that can be cal-

culated for a user. The final step is to compute the item with the highest rating, which 

will be the outcome of the algorithm. 
 

4.2 Implementation Technologies 
 

In this subchapter, there will be a quick presentation of each of the core im-

plementation technologies that were utilized in the framework and the mechanisms 

that were developed for the framework's interconnection with the web platform. 

Figures 4.2-1 and 4.2-2 display these technologies and their use in the architecture. 

The same core technologies were utilized to implement the framework functionality.  

 

 

 

 
 

 

 

Figure 4.2-1 Three-Tier Web Architecture for the Creation and Enrichment of 

Multimedia Stories 



   

 

30 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2-2 Three-Tier Web Architecture for Creation and Reproduction of  

Personalized Content 

 

1.1.1 4.2.1 React 
 

React is a JavaScript framework for building user interfaces simply and effi-

ciently. Launched in 2013 by the Facebook developers’ team, it quickly rose in pop-

ularity and today it is used in most large companies (Apple, PayPal, Netflix, etc.). By 

using it, we build encapsulated, autonomous components that manage their state 

and can be used as building blocks for complex UIs. What makes React one of the 

most used frontend libraries is that it’s very fast, something that is achieved by the 

unique ability to update and change only the right components whenever a 

change is detected in the state of the page data. 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
Figure 4.2-3 React.js Main Features 

 

 



   

 

31 

 

 

Reusability 

Developers can create components that will be used in multiple applications, 

thus effectively reducing time spent in development and debugging mode and en-

suring flawless performance. The blend of HTML and JavaScript is also a defining fac-

tor in making it simpler, as the library contains various functions that transform Html 

components into the required functions. 
 

Virtual Dom 
React has the unique ability to tackle a common search engine failure to read 

JavaScript-heavy apps. As a solution, it can run on the server, rendering, and return-

ing the virtual DOM to the browser as a regular webpage [20].  

One-way Data Binding 
 

 React is using a unidirectional flow of data, something that forces developers 

to use the callback feature to edit components and prevents them from editing 

them directly. The Js component that ensures that controlling of data flow is being 

accomplished from a single point is called Flux. By utilizing it, developers achieve 

more flexible and effective apps that can be controlled a lot easier. 
 

Helpful Developer Toolset 
 Facebook has included several developer tools for React and both Chrome 

and Firefox in the React.js framework, all of which aid developers immensely in ob-

serving component hierarchies, checking present state, discovering parent and 

child components, etc. The list of tools is constantly updated not only by the Face-

book team but also by the community, so one must be constantly updated about 

new additions in the React toolset that could greatly reduce debugging time and 

ease the development process. 
 
 

1.1.2 4.2.2 NextJs 
 

In an attempt to improve the platform’s performance and incorporate server-

side rendering, NextJs was chosen. NextJs is a wrapper for the React framework, ef-

fectively expanding development capabilities with the most useful ones being the 

ability to render pages on the server and an improvement in the site’s ranking in 

Google search engines. Pre-rendering is an incredibly useful feature as the HTML is 

generated at build time, so it can be reused on each request. More specifically, 

pages are cached by the CDN with no extra configuration to boost performance 

[21]. NextJs supports a unique file-based system based on the concept of pages, 

along with the ability to do client-side transitions between them, similar to how a SPA 

works. Interpolation can also be used for path creation when we want to achieve 

dynamic route segments. The latter feature proved to be very crucial in our applica-

tion, as the need to have dynamic URLs in a multitude of API calls was evident. To 

use code over specific configurations, NextJS uses middlewares. The native Web API 

 



   

 

32 

 

Objects are extended to give more control over how one manipulates and config-

ures a response based on incoming requests. The most common types of modifica-

tions that are dependent on these incoming requests are rewriting, redirecting, add-

ing headers, or even streaming HTML. 
 

1.1.3 4.2.3 Typescript 
 

A very common bug that is seen in large JavaScript applications is that of-

ten a variable can be reassigned or coerced into a value of a different type with 

no issues or warning, thus leading to bugs that are often hard to locate. Typescript 

was created in 2012 to allow for optional static type checking, which would be 

particularly useful when developing large-scale applications. TypeScript will 

check types at compile time and throw an error if the variable is ever given a 

value of a different type. However, the error does not prevent the code from ex-

ecuting. It can be viewed as spellcheck that will inform the developer if something 

is problematic but won’t alter how the code executes. By using Typescript, it was 

ensured that runtime errors and debugging time would be minimized. 
 

1.1.4 4.2.4 Αpollo 
 

Apollo is an implementation of GraphQL that can transfer data between the 

server and the UI of an application [22]. Apollo’s platform is made up of a combina-

tion of components that fall into three main categories: 
 

• Open-Source Components: Apollo contains both server and client compo-

nents. Server components define the schema that will be used and a group 

of resolvers, each with a specific role in schema implementation. Commercial 

plugins can be connected to any requests sent to the server, making it rather 

extensible. The client component is set up, so it can manage the application’s 

data. It is very commonly used with JavaScript frontend frameworks such as 

React, Angular, Vue, etc. 
 

• Cloud Services: The Apollo platform consists of a service that registers 

GraphQL schemas. It can register every client of the schema and the known 

operations that can be performed on it. Additionally, a pipeline exists along 

with a storage layer that takes in information about the GraphQL operations 

processed by the Apollo server. 
 

• Platform-Gateway: Apollo’s platform gateway is essentially a configuration of 

the server and the plugins. Smaller "schemas" refer to each other in a larger 

"master schema". When answering queries, the gateway builds a query plan, 

fetches the data from the GraphQL server, and combines everything into a 

single result. 
 

 Figure 4.2-4 displays these components in a clearer manner.  
 



   

 

33 

 

 

Figure 4.2-4 Apollo Major Components 

 

 

 Figure 4.2-5 Apollo GraphQL Usage in the Architecture – Data Fetching Process 

 



   

 

34 

 

As figure 4.2-5  demonstrates, by sending a GraphQL request in the proper 

JSON form through the GraphQL API, the server can manage it and subsequently 

request the data from the database server. Finally, the requested data is sent back 

in a JSON object. At this point, the need for management of this data arises. The tool 

that is utilized to resolve that need is Apollo Client, a comprehensive state manage-

ment library for JavaScript that enables the management of both local and remote 

data with GraphQL. Apollo’s unique ability to cache queries and store query results 

saves computational resources and automatically updates UI components upon 

query result change or arrival. These characteristics of Apollo dramatically improve 

performance and make it a definite choice for dynamic content-serving platforms, 

which require the fetching of page data for server-side rendered pages. 

As has already been mentioned, a major goal of the platform was to incorpo-

rate user interaction within each unique story. To manage and store the data that is 

created by the users, additional rendering is being done, but this time it’s on the cli-

ent side by utilizing Apollo Client. In this way, server-side rendering is combined with 

client-side rendering to make sure that each page that is pre-rendered on the server 

is updated in real-time (GraphQL subscription) after each user's contribution to a 

story. This is a very crucial mechanism of the architecture as it guarantees that each 

page of the platform always has updated data. By having updated data in each 

user interface, we can support commenting, rating, reacting, bookmarking, and ac-

curate story recommendations to authenticated users of the platform. 

Figure 4.2-6 is a brief depiction of the above-mentioned mechanism, which, as we 

have already discussed, ensures that pages are being pre-rendered at the server 

and, additionally, are being enriched by user-contributed elements in real time. 

 

 

Figure 4.2-6 Usage of Apollo Client in managing Server-Side Rendered Page Data in the 

Web Application  
 



   

 

35 

 

Figure 4.2-7 Αpollo Client's Usage for Managing Client-Side Data- Example of 

GraphQL Subscription for Fetching Data in Real Time 
 

1.1.5 4.2.5 Hasura 
 

Hasura is a real-time GraphQL API engine that makes data from databases 

instantly accessible over a real-time GraphQL API, offering developers a fast and 

reliable way to build APIs and ship apps. For Hasura to work, it must be connected 

to whatever databases, Rest servers, GraphQL servers, or third-party APIs we want to 

have a unified, instantaneous, real-time GraphQL API. In our platform, it related to 

the Postgres database tables, all of which(along with their relationships) were subse-

quently reflected directly in the structure [23].  
 

Figure 4.2-8 Hasura Actions Model Flow Diagram 



   

 

36 

 

In our application, Hasura was used to create a unified data access layer. By 

connecting Hasura to the database, we achieved real-time access to all our data 

sources without having to write any backend code. Actions are a way to extend the 

Hasura schema with custom business logic using custom queries and mutations. Ac-

tions can be added to Hasura to handle various use cases such as data validation, 

data enrichment from external sources, and any other complex business logic. There 

are two main types of actions used in our application : 
 

• Query Action: After querying some data from an external API or doing some 

validations or transformations before sending back the data, a Query Action 

can be used. 

• Mutation Action: To perform data validations or do some custom logic before 

manipulating the database, a Mutation Action can be used. 
 

Along with Hasura Actions, it was deemed necessary to also utilize Hasura 

Event Triggers. Event triggers reliably capture events on specified tables of our data-

base and invoke webhooks to carry out our custom logic. After a mutation opera-

tion, triggers can call a webhook asynchronously [24].  

 

 

 
 
 

 

 

 

 

 

 

 

Figure 4.2-9 Integrating Hasura in an Application Environment to both add Custom 

Business Logic and Manage Database 
 

 

1.1.6 4.2.6 PostgreSQL 
 

PostgreSQL is an open-source object-relational database system that 

came out in 1986 and was created as a part of a semester project for the Univer-

sity of California at Berkeley. It extends the SQL language and offers features that 

safely store and scale complex data workloads, while simultaneously ensuring 

that the database remains secure with tools such as TDE and data masking. Being 



   

 

37 

 

an open-source project, PostgreSQL allows companies to use, modify, and imple-

ment it as per business needs, thus ensuring a large degree of freedom during the 

development process. The constant contribution of the community has been driv-

ing innovation for the past 25 years to such a degree that PostgreSQL currently 

supports a multitude of extensions not only for SQL data models but also for 

NoSQL. 

The choice to use PostgreSQL in our project was made as it was the best-

fitting option for our type of data. The joint clause was a major benefit as it ena-

bled us to retrieve all the necessary data from the chosen tables using SQL mech-

anisms. If we chose a NoSQL database with JSON-style data, such as MongoDB, 

we would add unnecessary complexity to our requests [25]. 
 

1.1.7 4.2.7 OAuth2 
 

The OAuth2 authorization framework is a protocol that allows a user to grant 

a third-party website or application access to the user's protected resources without 

necessarily revealing their credentials or even their identity. OAuth introduces an au-

thorization layer and separates the role of the client from that of the resource owner. 

In OAuth, the client requests access to resources controlled by the resource owner 

and hosted by the resource server and is issued a different set of credentials than 

those of the resource owner. Instead of using the resource owner's credentials to 

access protected resources, the client obtains an access token—a string denoting 

a specific scope, lifetime, and other access attributes. Access tokens are issued to 

third-party clients by an authorization server with the approval of the resource owner. 

Then the client uses the access token to access the protected resources hosted by 

the resource server [26]. The previously mentioned process is viewed in figure 4.2-10. 

 

 

Figure 4.2-10 OAuth2 Implementation Diagram 
 



   

 

38 

 

In our application, an OAuth2 protocol was selected with JWT as bearer to-

kens as it allows us to encode all relevant parts of an access token into the access 

token itself instead of having to store them in a database. JSON Web Token (JWT) is 

an open standard (RFC 7519) that defines a compact and self-contained way of 

securely transmitting information between parties as a JSON object. This information 

can be verified and trusted because it is digitally signed [27]. 

Our GraphQL engine is configured to use JWT authorization mode to authorize 

all incoming requests to the Hasura GraphQL engine server. The idea is that the au-

thorization server will return JWT tokens, which are decoded and verified by the 

GraphQL engine, to authorize and get metadata about the request. The JWT is de-

coded, the signature is verified, and then it is asserted that the requested role of the 

user (if specified in the request) is in the list of allowed roles. If the desired role is not 

specified in the request, then the default role(public) is applied. If the authorization 

passes, then all the x-Hasura-* values in the claim are used for the permission system. 

Figure 4.2-11 illustrates this mechanism in a flow diagram which showcases its use in 

the architecture. 

Figure 4.2-11 JWT-Based Authentication and Authorization System 
 

4.2.8 Continuous Integration  
 

Continuous integration (CI) is the practice of automating the integration of 

code changes from multiple developers into a single software project. It allows 

developers to frequently merge code changes into a central repository, where 

builds and tests are then run. Automated tools are used to assert the new code’s 

correctness before integration.  



   

 

39 

 

A source code version control system is the crux of the CI process. The ver-

sion control system is also supplemented with other checks like automated code 

quality tests, syntax style review tools, and more. CI is intended to be used in com-

bination with automated unit tests written through the practices of test-driven de-

velopment. This is done by running and passing all unit tests on the developer's 

local computer before committing to the main project. This helps avoid one de-

veloper's work-in-progress breaking another developer's copy. It was a major tool 

in the development of the framework as it allowed for tracking of code changes 

and reverting to a previous version of the code when it was deemed necessary. 
 

So far, even though the analysis of the framework architecture and its imple-

mentation technologies has been completed, there has not been a lot of discussion 

on how the framework was applied to the platform except for some sporadic refer-

ences in the initial chapters. Chapter 5 will dive deeper into this matter and complete 

the description of the interconnections between the framework and the platform. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

 

40 

 

5. Framework Application 
 

The chapter describes the necessary elements that were utilized from the STSP 

platform to make the implementation of the framework feasible. There will be an 

analysis of what was created from a social media standpoint, what parts of the data 

model were utilized, the interventions in the GUI and lastly how item-based collabo-

rative filtering was applied in the platform.  
 

5.1 Approach 
 

For the platform to be able to integrate the framework and successfully utilize 

its features, there were a series of tasks that had to be fulfilled. Firstly, in the context 

of communicating with social media and more specifically with Facebook, a dedi-

cated Facebook page was created that would serve as a way of displaying the 

platform’s content and an environment that would encourage user interaction. 

Every story that was published on the platform was subsequently transferred to the 

official Facebook page in a dedicated post along with its dedicated story elements 

such as images, text, audio, etc. 

Comments and ratings coming from the Facebook page are being utilized 

along with ratings, bookmarks, and reactions that are made in the native STSP plat-

form as input in the recommendation engine. Using both types of reactions and rat-

ings, the recommendation engine produces a story suggestion which is displayed 

on the home page of STSP along with other similar stories. Additionally, elements that 

come from social media, such as pictures and videos, are stored in the STSP storage 

component and could become potential story elements in the form of user-contrib-

uted elements. 

For real-time comment fetching, the subscription mechanism of the STSP web 

client that was mentioned in the previous chapter is being utilized to show real-time 

comments that are being made on the STSP platform as well as replies to them, but 

in chronological order. 
 

5.2 GUI 
 

This chapter will present some of the basic user interfaces of the platform and 

the elements of them that were utilized in the development of the framework. The 

main design pattern that was followed was the Atomic Design pattern [28]. The goal 

was to make digital interaction as simple, fluid, intuitive, and efficient as possible. By 

utilizing Jacob’s Nielsen 10 usability heuristics, it was ensured that the whole user in-

terface design was held up to a high business standard [29].  

It should be noted that slight changes may have occurred since the writing of this 

chapter, as the development process of the platform is ongoing. 

Figures 5.2-1 and 5.2-2 present the home page, in which the users can perform 

a series of tasks that are interconnected to the framework's features such as : 



   

 

41 

 

• Share a story on their personal Facebook page 

• Explore their recommended story for the day 

• Check their bookmarked stories 

• Check their liked stories 

• Check the stories that are related to their preferences 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2-1 STSP Home Page-User Recommended Story 



   

 

42 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figures 5.2-3 and 5.2-4 present the details of the story of the platform. They 

contain important information related to each historical event that is part of a story, 

user-contributed elements, multimedia elements, related stories, and an interactive 

comment section. The subscription mechanism of the STSP client is utilized here to 

ensure new comments are being shown in real-time. Overall users can : 

• Comment 

• Like 

• Rate 

• Bookmark 

• Share 

• Contribute to the story 

 

Figure 5.2-2  Home Page of STSP- Liked, Recently Viewed and Bookmarked Sto-

ries, Recommended Story, Popular Stories, Average Rating of Stories 



   

 

43 

 

 

Figure 5.2-3  Rating, Share, Like, Bookmark of a Story 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2-4  Exploring of Story Elements -User Contributed Elements 



   

 

44 

 

 

 

 

 

 

 

 

   Figure 5.2-3 Story Comment Section-Display of Facebook Comments 

 

 

 

 

 

 

 

 

 

Figure 5.2-5 Story Comment Section-Display of Facebook Comments 
 

 

Figure 5.2-6 presents the profile page where users can edit personal infor-

mation. Additionally, they can see stories that they have interacted with in the past, 

such as favorite stories, recently viewed stories or stories that have been rated. They 

can change any type of action they have performed in a story(bookmark, like, rat-

ing, etc. ), something that will influence the recommendation engine when the pro-

cess for a new suggestion of a story arrives. 



   

 

45 

 

 
 Figure 5.2-6 User Profile Page- Recently Viewed, Bookmarked, Liked,  

Commented Stories of the User 
 

 

5.3 Applying Personalization to STSP  
 

It has already been discussed that the recommendation engine of the plat-

form works by implementing an item-based collaborative filtering algorithm. In this 

subchapter, there will be a more detailed analysis of the process and a reference to 

the STSP components that are being utilized. As it was mentioned previously, both 

STSP comments from the native platform and comments from social media are be-

ing stored in the database in specific tables. Apart from them, the framework also 



   

 

46 

 

ensures that ratings, bookmarks, and reactions coming from both sources are stored. 

All this data is being stored in the 5 major tables which are named: sm_com-

ment,sm_comment_react, sm_post, sm_post_react, story_user_rater. Immediately 

after the storage of a new type of rating or comment, a series of Hasura triggers are 

activated, which are responsible for producing a total rating, which refers to the 

opinion of a user about a story. The total rating final number is calculated by consid-

ering a series of factors such as whether the user has bookmarked/rated/liked/com-

mented on a story as well as the average rating of a story, and it is subsequently 

stored in a new table, named story_user_rater, which will be used to compute the 

required similarities.  

Moving forward, after the similarities have been calculated, they are stored in 

the story_story_similarity table of the database, with the next step being their utiliza-

tion for computing the potential rating for each unexplored story for the user. The 

highest-rated story becomes the recommendation for the user that is displayed on 

the home page of the STSP platform and is stored in the table named user_story_sug-

gestion. 

The final step is to check the user’s rated stories at regular intervals using Cron 

Triggers to ensure that the recommended story that he views on the main page 

hasn’t been rated because, in the event of that, there is a need for the story to be 

removed from the user_story_suggestion matrix and the recommendation algorithm 

to run again and suggest a new story [30]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

 

47 

 

6. Conclusions – Future Work 
 

In this section, there is going to be a brief overview of the conclusions of this 

thesis and some suggestions for future modifications that will improve the system’s 

functionality. 
 

6.1 Conclusions 
 

The main goal of this thesis was to design a framework for transmedia storytell-

ing platforms that would aid the utilization of social media. The uniqueness lies in the 

fact that to create and manage the components that would execute the desired 

functionality, there was a necessity for learning several new technologies and frame-

works, as well as testing libraries and getting familiar with continuous integration. In 

particular, the following conclusions have been drawn from this process are: 
 

• Storytelling is a very crucial aspect of modern web applications that strive to 

integrate user engagement. Having a well-designed and executed storytell-

ing strategy will help captivate the user and will influence him to interact with 

the platform and potentially buy products and services. More and more sto-

rytelling tools are being created every day, meaning that it is very important 

to pick the right one to create memorable emotions for the user.  
 

• Being part of a professional project in development requires methodical work 

and time management. The standards for the code are different and more 

emphasis is given on whether something works efficiently rather than just being 

functional. 
 

• Building a secure application should be the number one goal for every mod-

ern web developer. Optimal web application security starts in the design 

phase and continues well after the web application release, therefore, it is 

very crucial to take an agile approach. Role management is vital as the sys-

tem should only permit the right people to access the right resources at the 

right time and for the right reasons. 
 

• The microservices architecture fits very well into the agile development model. 

Each developer can own and focus on one service, thus working more effec-

tively and efficiently as the potential conflicts with other developers are elimi-

nated. Since microservices are loosely coupled, developers can add new 

features and upgrades without having to upgrade the entire system. In addi-

tion, the microservice architecture can allow for various modifications to be 

implemented. Developers can add new frameworks, data sources, and lists 

without having to undergo a system-wide reconfiguration. 
 

• Social media integration is crucial for platforms that wish to expand their audi-

ence. In our case, the Graph API (Facebook API) was the way to get data 

into and out of the Facebook platform. Overall, the implementation of 



   

 

48 

 

Graph’s API was hard as it is a large and complex API with documentation 

and examples written in PHP and CURL. Additionally, the Facebook approval 

process for scope permissions is the most rigorous of any network. One needs 

to write up testing steps, submit a video, and detail the reasoning for needing 

the permissions. Rejection is almost guaranteed, even for the slightest missing 

step in the video process. Also, every new permission requires starting the pro-

cess over again. Having all these in mind, the application currently operates 

with test users and hasn’t been approved as the development process is con-

tinuing, thus meaning that were we to ask for Facebook's approval to go live, 

the permissions would be revoked after each new feature that was added. 

 

6.2 Future Work 
 

Below are two major aspects of the system that could be improved in the fu-

ture to ensure a better recommendation system and the integration of additional 

social media APIs to gather user attention from multiple platforms. 
 

• Since at the moment it is difficult to assess the platform’s traffic rate, it is crucial 

to note that the proposed item-based collaborative filtering algorithm for the 

system may not work as intended in the beginning, mainly because of the 

initially low number of users. This is known as the "new community problem," 

and it refers to the startup of the system when virtually no information the rec-

ommender can rely upon is present [31]. In our case, in the beginning, only a 

few interactions are available, and even though the collaborative algorithm 

will produce some recommendations, the quality of those recommendations 

will be poor. To resolve this, the system could potentially force the user to pro-

vide some personal data for their preferences in the sense that the user must 

dedicate an amount of effort to using the system in its "dumb" state—contrib-

uting to the construction of their user profile—before the system can start 

providing any intelligent recommendations. This technique is called prefer-

ence elicitation, and it can be implemented either explicitly (by querying the 

user) or implicitly (by observing the user's behavior). 
 

• The database model is currently able to support the integration of data com-

ing mainly from Facebook. It would be beneficial to support data exchange 

between other social media networks as it would attract a large number of 

users that could potentially interact with the platform and participate in the 

upcoming advertising campaigns. 
 

A detailed study of each API of these networks as well as changes in the 

model of the database is required to incorporate these different APIs. Brand promo-

tion should include a social media API strategy to reap maximum benefits from the 

social media influence on consumers. 
 



   

 

49 

 

7. References 
 

[1]  K. T. A. a. P. H. CHUA, "Digital Storytelling as an Interactive Digital Media Context," 2010. 

[Online]. Available: https://idnarrative.pressbooks.com/chapter/digital-storytelling-as-

an-interactive-digital-media-context/. 

[2]  Microsoft, "Microsoft Timeline Storyteller," Microsoft, 2017. [Online]. Available: 

https://timelinestoryteller.com/. 

[3]  Pageflow., Codevice Solutions, 2022. [Online]. Available: 

https://www.pageflow.io/en/. 

[4]  K. lab, "StoryMapJS," 2022. [Online]. Available: 

http://orangeline.knightlab.com/templates/pages/storymap.html. 

[5]  Europeana, Europeana Foundation, 2017. [Online]. Available: 

https://pro.europeana.eu/data/digital-storytelling-prototype. [Accessed 2022]. 

[6]  Y. F. O. F.O. Isinkaye, "Recommendation systems: Principles, methods, and evaluation," 

Egyptian Informatics Journal, 2015.. 

[7]  G. Belani, "6 Examples of Effective Social Media Integration," Quintly, 2021. [Online]. 

Available: https://www.quintly.com/blog/social-media-integration. 

[8]  Mashable, 2022. [Online]. Available: https://mashable.com/. 

[9]  M. inc., "Smash Ballon," 2022. [Online]. Available: 

https://smashballoon.com/?smashid=1635. 

[10]  Rafflepress, 2022. [Online]. Available: https://rafflepress.com/about/. 

[11]  Disqus, "Disqus," [Online]. Available: https://disqus.com/. [Accessed 2022]. 

[12]  S. Suranga, "BetterProgramming," July 2020. [Online]. Available: 

https://betterprogramming.pub/10-must-know-concepts-of-modern-web-architecture-

9ecbefef8bc. 

[13]  K. Eaton, Benton Institute, March 2012. [Online]. Available: 

https://www.benton.org/headlines/how-one-second-could-cost-amazon-16-billion-

sales. 

[14]  HUSPI, "HUSPI BLOG," 2019. [Online]. Available: https://huspi.com/blog-open/definitive-

guide-to-spa-why-do-we-need-single-page-applications/. 

[15]  A. Sikandaar, "Mobile Live," 2020. [Online]. Available: 

https://www.mobilelive.ca/blog/graphql-vs-rest-what-you-didnt-know/. 

[16]  M. Developers, "MDN Web Docs," 2021. [Online]. Available: 

https://developer.mozilla.org/en-US/docs/Web/Web_Components. 



   

 

50 

 

[17]  M. Dabbagh, "Functional and non-functional requirements prioritization: An empirical 

evaluation of IPA, AHP-based, and HAM-based approaches," 2015.  

[18]  J. P. M. Jiawei Han, "ScienceDirect," 2021. [Online]. Available: 

https://www.sciencedirect.com/topics/computer-science/cosine-similarity. 

[19]  G. K. J. K. a. J. R. Badrul Sarwar, "Item-Based Collaborative Filtering Recommendation," 

University of Minnesota, 2001. 

[20]  S. Stefanov, "React: Up & Running: Building Web Applications," 2019.  

[21]  Vercel, "NextJs," 2020. [Online]. Available: https://nextjs.org/. 

[22]  R. S, "Bits and Pieces," February 2019. [Online]. Available: https://blog.bitsrc.io/should-i-

use-apollo-for-graphql-936129de72fe. 

[23]  S. Kurzynowski, "The Software House," July 2020. [Online]. Available: 

https://tsh.io/blog/hasura-instant-realtime-graphql-apis/. 

[24]  H. Inc., "https://hasura.io," June 2021. [Online]. Available: 

https://hasura.io/learn/graphql/hasura/custom-business-logic/. 

[25]  M. Borozenets, "PostgreSQL for the next project," FULCRUM, [Online]. Available: 

https://fulcrum.rocks/blog/why-use-postgresql-database/. [Accessed 2021]. 

[26]  T. McKinnon, "auth0," auth0, 2022. [Online]. Available: 

https://auth0.com/docs/authenticate/protocols/oauth. 

[27]  A. D. Team, "JWT.IO," 2022. [Online]. Available: https://jwt.io/introduction. 

[28]  B. Frost, "Atomic Design Methodology," 2016. [Online]. Available: 

https://atomicdesign.bradfrost.com/chapter-2/. 

[29]  J. Nielsen, "10 Usability Heuristics for User Interface Design," April 1994. [Online]. 

Available: https://www.nngroup.com/articles/ten-usability-heuristics/. 

[30]  H. Inc., "Hasura.io," 2021. [Online]. Available: https://hasura.io/docs/latest/scheduled-

triggers/create-cron-trigger/. 

[31]  G. K. R. Al Mamunur Rashid, "Learning preferences of new users in recommender 

systems: an information theoretic approach," December 2008.  

 

 


