
2580  |  Mol Ecol Resour. 2021;21:2580–2587.wileyonlinelibrary.com/journal/men

1  |  INTRODUC TION

Linkage disequilibrium (LD) is the nonrandom association between
alleles at different genetic variants (Slatkin, 2008). It is widely em-
ployed in evolutionary biology and human genomics to provide
insights into the genome structure of populations and the action
of recent and strong positive selection (selective sweeps). Due to
recombination, LD is mostly expected at nearby genetic variants
(Koch et al., 2013). Using large- scale sequencing data, however, re-
cent studies revealed that long- range LD is prevalent in the human
genome (Park, 2019), which can provide insights into evolutionary
forces at work, such as population admixture, epistatic selection and

genetic drift. Yet, limited efforts have been reported on assessing
LD patterns between variants separated by a large genetic distance
(Koch et al., 2013; Park, 2019).

State- of- the- art software tools for linkage analyses, such as
PLINK (Chang et al., 2015) and PopGenome (Pfeifer et al., 2014),
compute LD- related summary statistics for all pairs of single nucle-
otide polymorphisms (SNPs) in one genomic region. This limitation
restricts their applicability for long- range LD studies, leading to pro-
hibitively long execution times and the need for enormous memory
resources when large genomic regions are analysed. Furthermore,
these tools do not fully exploit the processing power of multicore
CPUs or accelerators, for example GPUs. To this end, we build upon

Received: 16 February 2021  | Revised: 14 May 2021  | Accepted: 26 May 2021

DOI: 10.1111/1755-0998.13438

R E S O U R C E A R T I C L E

quickLD: An efficient software for linkage disequilibrium
analyses

Charalampos Theodoris1 | Tze Meng Low2 | Pavlos Pavlidis3  | Nikolaos Alachiotis4

This is an open access article under the terms of the Creative Commons Attribution- NonCommercial License, which permits use, distribution and reproduction
in any medium, provided the original work is properly cited and is not used for commercial purposes.
© 2021 The Authors. Molecular Ecology Resources published by John Wiley & Sons Ltd.

1Technical University of Crete, Chania,
Greece
2Carnegie Mellon University, Pittsburgh,
USA
3Foundation for Research and
Technology- Hellas, Heraklion, Greece
4University of Twente, Enschede, The
Netherlands

Correspondence
Nikolaos Alachiotis, University of Twente,
Enschede, The Netherlands.
Email: n.alachiotis@utwente.nl

Abstract
Software tools for linkage disequilibrium (LD) analyses are designed to calculate LD
among all genetic variants in a single region. Since compute and memory require-
ments grow quadratically with the distance between variants, using these tools for
long- range LD calculations leads to long execution times and increased allocation of
memory resources. Furthermore, widely used tools do not fully utilize the compu-
tational resources of modern processors and/or graphics processing cards, limiting
future large- scale analyses on thousands of samples. We present quickLD, a stand-
alone and open- source software that computes several LD- related statistics, includ-
ing the commonly used r2. quickLD calculates pairwise LD between genetic variants
in a single region or in arbitrarily distant regions with negligible memory requirements.
Moreover, quickLD achieves up to 95% and 97% of the theoretical peak performance
of a CPU and a GPU, respectively, enabling 21.5× faster processing than current state-
of- the- art software on a multicore processor and 49.5× faster processing when the
aggregate processing power of a multicore CPU and a GPU is harnessed. quickLD can
also be used in studies of selection, recombination, genetic drift, inbreeding and gene
flow. The software is available at https://github.com/pephc o/quickLD.

K E Y W O R D S
computer program, high- performance software, linkage disequilibrium

 17550998, 2021, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1755-0998.13438 by T

echnical U
niversity C

rete, W
iley O

nline L
ibrary on [20/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

www.wileyonlinelibrary.com/journal/men
https://orcid.org/0000-0002-8359-7257
mailto:
https://orcid.org/0000-0001-8162-3792
http://creativecommons.org/licenses/by-nc/4.0/
mailto:n.alachiotis@utwente.nl
https://github.com/pephco/quickLD
http://crossmark.crossref.org/dialog/?doi=10.1111%2F1755-0998.13438&domain=pdf&date_stamp=2021-06-19

    |  2581THEODORIS ET al.

prior work (Alachiotis et al., 2016; Binder et al., 2019; Theodoris
et al., 2020) to present quickLD, a stand- alone software to effi-
ciently compute a variety of LD statistics, such as D, D′ (Lewontin,
1964), and the commonly used r2 (VanLiere & Rosenberg, 2008), for
all SNP pairs in a single region or between arbitrarily distant genomic
regions. Thus, in addition to long- range LD, quickLD can also be used
to study factors that affect linkage disequilibrium in populations,
such as selection, recombination, genetic drift, inbreeding and gene
flow. This work extends our previous work (Theodoris et al., 2020)
by combining both CPUs and GPUs into a unified high- performance
framework, computing more LD- related statistics than the prior
framework and providing additional capabilities such as the auto-
mated generation of heatmaps.

quickLD implements a sequence of data- transformation
steps that allow the computation of LD between distant ge-
nomic regions with minimal memory requirements, irrespective
of their genetic distance. Furthermore, quickLD computes LD as
a matrix– matrix multiplication, allowing the exploitation of high-
performance CPU/GPU implementations from dense linear al-
gebra (DLA). To assess performance, we used various data sets
with up to 100,000 sequences and up to 20,000 SNPs and com-
pared processing times with PLINK (second- generation) (Chang
et al., 2015), which, to the best of our knowledge, is the current
state- of- the- art software for large- scale genome association
studies. We observed between 3.2× and 12.2× faster execution
than PLINK1.9 with one CPU core and between 6.1× and 21.5×
faster execution with four CPU cores on a personal laptop. For
the same runs, the GPU- accelerated version of quickLD run up
to 49.5× faster than PLINK1.9. Both the CPU implementation and
the GPU- accelerated version achieve more than 95% of the pro-
cessor's theoretical peak performance thanks to leveraging les-
sons learnt from high- performance dense linear algebra to design
efficient LD kernels for CPUs and GPUs.

2  |  MATERIAL S AND METHODS

2.1  |  Implementation

quickLD is an open- source C code for Linux environments. The
CPU implementation is based on the de facto algorithm for high-
performance matrix– matrix multiplication on multicore CPU sys-
tems and utilizes the BLAS- Like Instantiation Software (BLIS) (Van
Zee & Van De Geijn, 2015) for high- performance DLA. The acceler-
ated version extends the work in BLIS to computing LD on the GPU
(Binder et al., 2019).

2.2  |  Input/output

A quickLD command specifies a list of variant call format (VCF)
input files (compressed files are also supported) and a list of
genomic region pairs to be combined (regions in different VCF

files can be paired as well). Optionally, a list of samples to be
included in the analysis can be provided, as well as the number
of CPU cores and/or GPUs to be deployed. By default, quickLD
calculates r2, applying a cut- off threshold of r2

th
= 0.2 to reduce

the output report size; the threshold value can be defined by the
user. quickLD handles missing data using a probabilistic genotype
imputation method that operates on a per SNP basis. A random
seed can be used to estimate how much scatter this method in-
troduces; the random seed can be defined by the user. Optional
parameters can be used to schedule large- scale calculations on
personal computers with limited processing and memory re-
sources. quickLD generates a report per region pair (PLINK for-
mat) that comprises all pairwise LD scores for all possible pairs of
SNPs. The tool can also graphically display the results in the form
of a heatmap.

2.3  |  Computational workflow

quickLD separates data accessing from processing to improve
performance and reduce the overhead of accessing large input
files. A large VCF file is initially split into smaller VCF files that
can be easily managed and processed on personal computers.
Thereafter, a number of genomic region pairs are loaded from the
input list, based on the amount of available memory in the sys-
tem. Each pair of regions corresponds to a processing task, and
all loaded tasks are processed in parallel using a scheduling algo-
rithm that distributes tasks to the CPU cores and/or GPUs. When
all the loaded tasks have been completed, the process continues
by loading the next set of genomic region pairs (tasks), using the
previously allocated memory. The above steps are repeated until
all the region pairs have been processed, with every new set
of tasks using the same memory space. This allows large- scale
analyses to be conducted on off- the- shelf workstations since
the memory requirements do not increase with the number of
genomic regions pairs.

F I G U R E 1  Example of the genomic matrix G. Each row
represents a sample while each column describes a SNP. The
allocated memory per SNP is a multiple of 64 bits. This is achieved
through padding by adding extra zeros to the end of each SNP.
Adapted from (Alachiotis & Weisz, 2016)

 17550998, 2021, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1755-0998.13438 by T

echnical U
niversity C

rete, W
iley O

nline L
ibrary on [20/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

2582  |    THEODORIS ET al.

2.4  |  Casting LD as a matrix– matrix multiplication

The key idea behind quickLD is that LD can be computed as a
matrix– matrix multiplication with only ones and zeros. This for-
mulation of the LD computation allows us to leverage decades
worth of knowledge in the high- performance dense linear algebra
domain to develop efficient LD implementations. This section pro-
vides a succinct summary of the underlying idea that was previ-
ously described for CPUs (Alachiotis et al., 2016) and GPUs (Binder
et al., 2019).

Each SNP is represented by a vector of ones and zeros. Multiple
SNPs in a genomic region can then be described as a Nseq × k matrix,
G, where Nseq is the sample size and k is the number of SNPs. Each

row in the matrix represents the alleles of a sample while each col-
umn represents a single SNP. Exploiting the fact that values in the
genomic matrix G consist of only ones and zeros, we can reduce the
storage of G by using a single bit to represent an allele. This means
that each SNP is represented by a group of Nint unsigned integers
(64- bit long each), with Nint defined as follows:

An example of matrix G is illustrated in Figure 1. We refer to G as
the genomic matrix. In our formulation of G, we ensure that the allo-
cated memory per SNP is a multiple of 64 bits by adding extra zeros

(1)Nint =

⌈

Nseq

64

⌉

.

TA B L E 1  Performance comparison (throughput and speedup) between quickLD (C denotes CPU execution; G denotes GPU execution)
and PLINK for increasing number of samples when one region and a pair of regions are processed. The region size is 5000 SNPs. Processing
one region entails the calculation of 12.5 × 106 LD scores, while processing a region pair leads to the calculation of 25 × 106 LD scores

Samples (×103)

Single region Pair of regions

Throughput (LD × 106/s) Speedup (×) over PLINK 1.9 Throughput (LD × 106/s)

quickLD_C quickLD_G PLINK quickLD_C quickLD_G quickLD_C quickLD_G

2.5 16.53 36.55 5.14 3.21 7.11 36.76 73.10

10 11.44 27.96 1.36 8.44 20.63 14.34 55.93

20 6.60 21.48 0.69 9.61 31.25 10.35 42.96

30 4.87 17.58 0.46 10.48 37.88 5.53 35.16

40 3.79 14.76 0.35 10.75 41.88 4.23 29.52

50 3.06 13.51 0.28 10.87 48.00 3.39 27.03

60 2.60 11.19 0.23 11.11 47.79 2.86 22.38

70 2.26 8.80 0.20 11.43 44.48 2.46 17.59

80 1.98 8.08 0.17 11.56 47.22 2.17 16.16

90 1.75 7.49 0.15 11.57 49.44 1.92 14.99

100 1.61 7.01 0.14 11.69 51.06 1.74 14.03

TA B L E 2  Performance comparison (throughput and speedup) between quickLD (_C denotes CPU execution, _G denotes GPU execution)
and PLINK for increasingly larger regions in terms of SNPs size when a single SNP region and a pair of regions are processed. The sample size
is 100,000 sequences

SNPs (×103)

Single region Pair of regions

LD scores
(×106)

Throughput (LD × 106/s) Speedup (×) over PLINK
LD scores
(×103)

Throughput (LD × 106/s)

quickLD_C quickLD_G PLINK quickLD_C quickLD_G quickLD_C quickLD_G

1 0.50 1.14 2.07 0.14 8.45 15.35 1.00 1.43 4.15

2 2.00 1.39 3.68 0.14 9.97 26.29 4.00 1.60 7.35

3 4.50 1.51 4.96 0.14 11.04 36.27 9.00 1.67 9.92

4 8.00 1.56 6.32 0.14 11.13 44.98 16.00 1.70 12.64

5 12.50 1.59 7.12 0.14 11.59 51.71 25.00 1.73 14.24

6 18.00 1.62 7.95 0.14 11.57 56.81 36.00 1.75 15.89

7 24.50 1.64 8.44 0.14 11.86 60.91 49.00 1.76 16.88

8 32.00 1.67 8.97 0.14 12.01 64.52 64.00 1.77 17.95

9 40.50 1.68 8.60 0.14 12.05 61.55 81.00 1.77 17.19

10 50.00 1.69 9.25 0.14 12.19 66.91 100.00 1.77 18.51

 17550998, 2021, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1755-0998.13438 by T

echnical U
niversity C

rete, W
iley O

nline L
ibrary on [20/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

    |  2583THEODORIS ET al.

to the end of each SNP, referred to as ‘padding’ in Figure 1. Different
genomic regions are differentiated via subscripts (e.g. G1 and G2).

The desired haplotype frequency matrix, Hi,j, that is used to com-
pute LD can be computed from the genomic matrices Gi and Gj as
follows:

Equation 2 computes the haplotype frequencies and stores
them in matrix H. The above formulation of H is a specific form of
the general matrix multiplication (GEMM) operation (C = αAB + βC)
in the level 3 basic linear algebra subprograms (BLAS3), a widely
used set of dense linear algebra routines. Here, α = 1/Nseq and
β = 0. Using our formulation of the genomic matrix, one can sub-
stitute the dot product by counting the total number of ones (set

bits) remaining after a pairwise logical AND (&) operation is per-
formed. This counting of set bits can be performed using the in-
trinsic POPCNT operation. Thus, the haplotype frequencies can be
computed as follows:

Thereafter, we can compute matrix D that contains LD values by
subtracting the product of the allele frequencies from H as shown
in Equation 4:

where Pi and Pj are vectors of per SNP alleles frequencies that are de-
rived from the genomic matrices Gi and Gj, respectively.

(2)H =

1

NseqG
T
i
Gj

.

(3)Pij =
1

Nseq

POPCNT(si& sj).

(4)D = H − PiP
T
j

F I G U R E 2  Execution times for increasing number of samples (top left) and increasing numbers of SNPs when the sample size is
2500 sequences (top right), 10,000 sequences and 100,000 sequences (bottom row)

 17550998, 2021, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1755-0998.13438 by T

echnical U
niversity C

rete, W
iley O

nline L
ibrary on [20/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

2584  |    THEODORIS ET al.

3  |  RESULTS AND DISCUSSION

3.1  |  Experimental setup

We employed a personal laptop with an Intel Core i5- 8300H proces-
sor with 4 cores running at 2.3 GHz (8GB of main memory) and an
Nvidia GTX 1050- M GPU with 640 Cuda cores running at 1.3 Ghz
(4GB of main memory). To evaluate performance, we compare
quickLD with PLINK 1.9 (Chang et al., 2015), the most widely used
software for linkage analyses, to the best of our knowledge. We re-
port performance in terms of execution times and throughput. Note
that we do not provide a comparison of memory consumption be-
tween quickLD and PLINK1.9 because such a comparison would not
be fair since these tools handle memory in a fundamentally different
way: quickLD allocates the necessary amount of memory given the

data to be processed and the degree of parallelism requested by the
user. PLINK1.9 follows a system- driven memory allocation approach
that attempts to allocate half of the available memory of the system,
and if this is not possible, then less memory is allocated, irrespective
of the input data size. More information about the PLINK memory
allocation scheme can be found at: https://www.cog- genom ics.org/
plink/ 2.0/other.

3.2  |  Sequential execution

quickLD and PLINK differ in the way they calculate pairwise LD
scores. While PLINK processes one region (one input file) and com-
putes a diagonal matrix with pairwise LD scores, quickLD switches
between different variants of matrix– matrix multiplication for

F I G U R E 3  Parallel performance comparison between quickLD and PLINK1.9 in terms of execution times for 10,000 samples (top left)
and 100,000 samples (top right), as well as respective speedups (bottom row). ‘HETER’ refers to heterogeneous execution using both the
CPU and the GPU. Note the logarithmic scale for the execution times

 17550998, 2021, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1755-0998.13438 by T

echnical U
niversity C

rete, W
iley O

nline L
ibrary on [20/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://www.cog-genomics.org/plink/2.0/other
https://www.cog-genomics.org/plink/2.0/other

    |  2585THEODORIS ET al.

efficiency purposes, depending on whether LD is computed be-
tween two different regions or within a single region. When com-
puting with multiple regions, quickLD casts the computation as a
general matrix– matrix multiplication (gemm). For single- region LD
computations, quickLD switches to a symmetric rank- k update (syrk)
routine where only the upper (or lower) half of the matrix is com-
puted. The observation here is that the output matrix is symmetric
when computing LD on the same region. Switching to a different
variant allows quickLD to avoid redundantly computing the same LD
scores.

We measured performance in terms of throughput for an
increasing number of samples (Table 1) and number of SNPs
(Table 2). We distinguish between processing one region and a re-
gion pair. As can be observed in the tables, quickLD is between
3.2× and 11.7× faster than PLINK1.9 when the sample sizes in-
crease from 2500 sequences to 100,000 sequences and between
8.4× and 12.2× faster when the region size increases from 1000
SNPs to 10,000 SNPs. When quickLD deploys a GPU accelerator,
it becomes between 7.1× and 51× faster than PLINK1.9 (which ex-
ecutes on the CPU) as the number of samples increases, and be-
tween 15.4× and 66.9× faster when the number of SNPs increases.

Figure 2 illustrates quickLD and PLINK1.9 execution times when
the sample size increases up to 100,000 sequences (Figure 2A), and
when the number of SNPs increases up to 10 k for fixed sample
sizes of 2,5 k (Figure 2B), 10 k (Figure 2C) and 100 k (Figure 2D).
Expectedly, execution times increase linearly with the number of
samples and quadratically with the number of SNPs.

3.3  |  Parallel execution

To assess performance of the parallel execution of quickLD over
PLINK1.9, we compare execution times and report speedups when

data sets with 10,000 and 100,000 sequences, with an increasing
number of SNPs (up to 10,000), are processed. The results illustrated
in Figure 3 show speedups up to 21.4× for the parallel guickLD CPU
execution and up to 49.5× when the GPU is deployed. When the ag-
gregate CPU/GPU performance is used by quickLD, overall through-
put performance improves by up to 35%.

An important aspect of the parallel quickLD performance is the
way it scales with the number of CPU cores. To assess this, we an-
alysed 1000 arbitrarily sized, in terms of SNP size, region pairs, de-
ploying up to 20 CPU cores/threads. For these runs, we employed a
20- core Intel Xeon E5- 2660v3 processor running at 2.6 GHz (32 GB
of main memory). The SNP size varied between 1000 and 10,000
SNPs. As can be observed in Figure 4, quickLD speedups are nearly
linear for up to 16 cores, achieving 16.8× faster execution when de-
ploying all 20 CPU cores.

3.4  |  Application on real data

3.4.1  |  Human Chromosome 22

Using a data set from the 1000 Genomes Project (1000 Genomes
Project Consortium et al., 2015) (downloaded from http://
ftp.1000g enomes.ebi.ac.uk/vol1/ftp/relea se/20130 502/), we
tested the performance of quickLD against PLINK 1.9 in an arbi-
trarily chosen region of chromosome 22. There are 106,730 SNPs
in the chosen region (bp positions from 16050075 to 20128290).
The report threshold was set to 0.8, which reduced the report
file size to 30 MB and allowed for a more accurate comparison of
processing times. Using 4 CPU threads, PLINK 1.9 required 429 s,
whereas quickLD, also using 4 CPU threads, finished in 69.72 s.
When quickLD employed a GPU in addition to the 4 CPU threads,
the execution time was reduced to 51.76 s. Note that in this case,

F I G U R E 4  quickLD speedups for up to 20 CPU cores/threads when processing 1000 tasks (arbitrarily sized regions between 1000 and
10,000 SNPs) with 10,000 sequences (left) and 100,000 sequences (right)

 17550998, 2021, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1755-0998.13438 by T

echnical U
niversity C

rete, W
iley O

nline L
ibrary on [20/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/

2586  |    THEODORIS ET al.

1 CPU thread is exclusively used for controlling the GPU, thus
leaving 3 CPU threads available for processing.

quickLD took 69.72, 91 and 51.76 s using 4 CPU threads, 1 GPU
thread and the entire system (3 CPU threads, since one thread is
dedicated to control the GPU, and the GPU), respectively. quickLD is
effectively up to 8.3× faster than PLINK 1.9, using the entire system

(heterogeneous CPU/GPU execution). Figure 5 illustrates a heatmap
of a subregion of this data set, using the visualization capabilities of
quickLD.

3.4.2  |  SARS- CoV- 2 Genomes

We employed 39,941 high- coverage SARS- CoV- 2 genomes from the
GISAID database (https://www.gisaid.org/). We used sequences
with length equal or larger than 29,000 base pairs and trimmed
ambiguous states (N) from the beginning and the end. We also ex-
cluded sequences that contained more than eight Ns and used the
experimental MAFFT version (Katoh & Standley, 2013) for closely
related viral genomes for multiple sequence alignment (FASTA
format). The resulting data set, after applying the aforementioned
filters to discard sequences, comprised 22,554 genomes. The
snp- sites (Page et al., 2016) software was used for converting the
FASTA file to a VCF file, and we invoked the tool's built- in option
to discard columns that did not contain A, C, G, T, exclusively. The
resulting data set comprised 5730 variants. PLINK 1.9 executed in
12.8 s, while quickLD ran in 0.870, 0.630 and 0.475 s using 4 CPU
threads, the GPU and the entire system (3 CPU threads and the
GPU), respectively. The maximum speedup of quickLD over PLINK
1.9 was 26.8×, which was observed when the aggregate system
performance of the multicore CPU and the GPU accelerator was
exploited. Figure 6 illustrates the quickLD- generated heatmap of
the LD scores.

ACKNOWLEDG EMENTS
We would like to thank the anonymous reviewers and the editor
for their comments that helped us to improve the clarity of this
manuscript.

AUTHOR CONTRIBUTIONS
C.T. and N.A. designed the software; C.T. implemented the soft-
ware; T.M.L. implemented the CPU/GPU kernels; P.P. tested the
tool and analysed the real data; C.T., T.M.L. and N.A. wrote the
manuscript.

DATA AVAILABILITY STATEMENT
The source code of quickLD, run scripts, execution instructions and
user manual are available through the quickLD GitHub repository:
[https://github.com/pephc o/quickLD]. The first release of quickLD
is archived at: [https://doi.org/10.6084/m9.figsh are.14431268]
(Theodoris et al., 2021).

ORCID
Pavlos Pavlidis https://orcid.org/0000-0002-8359-7257
Nikolaos Alachiotis https://orcid.org/0000-0001-8162-3792

R E FE R E N C E S
1000 Genomes Project Consortium, Auton, A., Brooks, L. D., Durbin,

R. M., Garrison, E. P., Kang, H. M., Korbel, J. O., Marchini, J. L.,

F I G U R E 5  A quickLD- generated heatmap of all pairwise LD
scores for 10,000 SNPs in the region 16,050,075 bp– 17,050,075 bp
of human chromosome 22 (2504 samples, human genome assembly
GRCh37). The depicted region contains LD scores in the range of
0.2 to 1

F I G U R E 6  A quickLD- generated heatmap of all pairwise LD
scores for 5730 variants obtained from the analysis of 22,554
SARS- CoV- 2 whole genomes. The depicted region contains LD
scores in the range of 0.8 to 1

 17550998, 2021, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1755-0998.13438 by T

echnical U
niversity C

rete, W
iley O

nline L
ibrary on [20/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://www.gisaid.org/
https://github.com/pephco/quickLD
https://doi.org/10.6084/m9.figshare.14431268
https://orcid.org/0000-0002-8359-7257
https://orcid.org/0000-0002-8359-7257
https://orcid.org/0000-0001-8162-3792
https://orcid.org/0000-0001-8162-3792

    |  2587THEODORIS ET al.

McCarthy, S., McVean, G. A., & Abecasis, G. R. (2015). A global ref-
erence for human genetic variation. Nature, 526(7571), 68– 74.

Alachiotis, N., Popovici, T., & Low, T. M. (2016). Efficient computation
of linkage disequilibria as dense linear algebra operations. In 2016
IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW) (pp. 418– 427). IEEE.

Alachiotis, N., & Weisz, G. (2016). High performance linkage disequilibrium:
FPGAs hold the key. In Proceedings of 2016 ACM/SIGDA International
Symposium on Field- Programmable Gate Arrays (pp. 118– 127).

Binder, E., Low, T. M., & Popovici, D. T. (2019). A portable GPU framework
for SNP comparisons. In 2019 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW) (pp. 199– 208). IEEE.

Chang, C. C., Chow, C. C., Tellier, L. C. A. M., Vattikuti, S., Purcell, S. M., &
Lee, J. J. (2015). Second- generation PLINK: Rising to the challenge
of larger and richer datasets. Gigascience, 4(1), s13742– 015.

Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment
software version 7: Improvements in performance and usability.
Molecular Biology and Evolution, 30(4), 772– 780.

Koch, E., Ristroph, M., & Kirkpatrick, M. (2013). Long range linkage dis-
equilibrium across the human genome. PLoS One, 8(12), e80754.–
https://doi.org/10.1371/journ al.pone.0080754

Lewontin, R. C. (1964). The interaction of selection and linkage. I. General
considerations; heterotic models. Genetics, 49(1), 49– 67. https://
doi.org/10.1093/genet ics/49.1.49

Page, A. J., Taylor, B., Delaney, A. J., Soares, J., Seemann, T., Keane, J. A.,
& Harris, S. R. (2016). SNP- sites: rapid efficient extraction of SNPs
from multi- FASTA alignments. Microbial Genomics, 2(4), e000056.
https://doi.org/10.1099/mgen.0.000056

Park, L. (2019). Population- specific long- range linkage disequilibrium in
the human genome and its influence on identifying common disease

variants. Scientific Reports, 9(1), 1– 13. https://doi.org/10.1038/
s4159 8- 019- 47832 - y

Pfeifer, B., Wittelsbürger, U., Ramos- Onsins, S. E., & Lercher, M. J. (2014).
PopGenome: An efficient Swiss army knife for population genomic
analyses in R. Molecular Biology and Evolution, 31(7), 1929– 1936.

Slatkin, M. (2008). Linkage disequilibrium— Understanding the evolution-
ary past and mapping the medical future. Nature Reviews Genetics,
9(6), 477– 485. https://doi.org/10.1038/nrg2361

Theodoris, C., Alachiotis, N., Low, T. M., & Pavlidis, P. (2020). qLd: High-
performance computation of linkage disequilibrium on cpu and
gpu. In 2020 IEEE 20th International Conference on Bioinformatics
and Bioengineering (BIBE) (pp. 65– 72). IEEE.

Theodoris, C., Low, T. M., Pavlidis, P., & Alachiotis, N. (2021). quickLD:
An efficient software for linkage disequilibrium analyses. figshare,
Software. https://doi.org/10.6084/m9.figsh are.14431268

Van Zee, F. G., & Van De Geijn, R. A. (2015). BLIS: A framework for rapidly
instantiating BLAS functionality. ACM Transactions on Mathematical
Software (TOMS), 41(3), 1– 33.

VanLiere, J. M., & Rosenberg, N. A. (2008). Mathematical properties of
the r2 measure of linkage disequilibrium. Theoretical Population
Biology, 74(1), 130– 137.

How to cite this article: Theodoris, C., Low, T. M., Pavlidis, P., &
Alachiotis, N. quickLD: An efficient software for linkage
disequilibrium analyses. Molecular Ecology Resources.
2021;21:2580– 2587. https://doi.
org/10.1111/1755- 0998.13438

 17550998, 2021, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1755-0998.13438 by T

echnical U
niversity C

rete, W
iley O

nline L
ibrary on [20/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1371/journal.pone.0080754
https://doi.org/10.1093/genetics/49.1.49
https://doi.org/10.1093/genetics/49.1.49
https://doi.org/10.1099/mgen.0.000056
https://doi.org/10.1038/s41598-019-47832-y
https://doi.org/10.1038/s41598-019-47832-y
https://doi.org/10.1038/nrg2361
https://doi.org/10.6084/m9.figshare.14431268
https://doi.org/10.1111/1755-0998.13438
https://doi.org/10.1111/1755-0998.13438

