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1  |  INTRODUC TION

Linkage disequilibrium (LD) is the nonrandom association between 
alleles at different genetic variants (Slatkin, 2008). It is widely em-
ployed in evolutionary biology and human genomics to provide 
insights into the genome structure of populations and the action 
of recent and strong positive selection (selective sweeps). Due to 
recombination, LD is mostly expected at nearby genetic variants 
(Koch et al., 2013). Using large- scale sequencing data, however, re-
cent studies revealed that long- range LD is prevalent in the human 
genome (Park, 2019), which can provide insights into evolutionary 
forces at work, such as population admixture, epistatic selection and 

genetic drift. Yet, limited efforts have been reported on assessing 
LD patterns between variants separated by a large genetic distance 
(Koch et al., 2013; Park, 2019).

State- of- the- art software tools for linkage analyses, such as 
PLINK (Chang et al., 2015) and PopGenome (Pfeifer et al., 2014), 
compute LD- related summary statistics for all pairs of single nucle-
otide polymorphisms (SNPs) in one genomic region. This limitation 
restricts their applicability for long- range LD studies, leading to pro-
hibitively long execution times and the need for enormous memory 
resources when large genomic regions are analysed. Furthermore, 
these tools do not fully exploit the processing power of multicore 
CPUs or accelerators, for example GPUs. To this end, we build upon 
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Abstract
Software tools for linkage disequilibrium (LD) analyses are designed to calculate LD 
among all genetic variants in a single region. Since compute and memory require-
ments grow quadratically with the distance between variants, using these tools for 
long- range LD calculations leads to long execution times and increased allocation of 
memory resources. Furthermore, widely used tools do not fully utilize the compu-
tational resources of modern processors and/or graphics processing cards, limiting 
future large- scale analyses on thousands of samples. We present quickLD, a stand- 
alone and open- source software that computes several LD- related statistics, includ-
ing the commonly used r2. quickLD calculates pairwise LD between genetic variants 
in a single region or in arbitrarily distant regions with negligible memory requirements. 
Moreover, quickLD achieves up to 95% and 97% of the theoretical peak performance 
of a CPU and a GPU, respectively, enabling 21.5× faster processing than current state- 
of- the- art software on a multicore processor and 49.5× faster processing when the 
aggregate processing power of a multicore CPU and a GPU is harnessed. quickLD can 
also be used in studies of selection, recombination, genetic drift, inbreeding and gene 
flow. The software is available at https://github.com/pephc o/quickLD.
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prior work (Alachiotis et al., 2016; Binder et al., 2019; Theodoris 
et al., 2020) to present quickLD, a stand- alone software to effi-
ciently compute a variety of LD statistics, such as D, D′ (Lewontin, 
1964), and the commonly used r2 (VanLiere & Rosenberg, 2008), for 
all SNP pairs in a single region or between arbitrarily distant genomic 
regions. Thus, in addition to long- range LD, quickLD can also be used 
to study factors that affect linkage disequilibrium in populations, 
such as selection, recombination, genetic drift, inbreeding and gene 
flow. This work extends our previous work (Theodoris et al., 2020) 
by combining both CPUs and GPUs into a unified high- performance 
framework, computing more LD- related statistics than the prior 
framework and providing additional capabilities such as the auto-
mated generation of heatmaps.

quickLD implements a sequence of data- transformation 
steps that allow the computation of LD between distant ge-
nomic regions with minimal memory requirements, irrespective 
of their genetic distance. Furthermore, quickLD computes LD as 
a matrix– matrix multiplication, allowing the exploitation of high- 
performance CPU/GPU implementations from dense linear al-
gebra (DLA). To assess performance, we used various data sets 
with up to 100,000 sequences and up to 20,000 SNPs and com-
pared processing times with PLINK (second- generation) (Chang 
et al., 2015), which, to the best of our knowledge, is the current 
state- of- the- art software for large- scale genome association 
studies. We observed between 3.2× and 12.2× faster execution 
than PLINK1.9 with one CPU core and between 6.1× and 21.5× 
faster execution with four CPU cores on a personal laptop. For 
the same runs, the GPU- accelerated version of quickLD run up 
to 49.5× faster than PLINK1.9. Both the CPU implementation and 
the GPU- accelerated version achieve more than 95% of the pro-
cessor's theoretical peak performance thanks to leveraging les-
sons learnt from high- performance dense linear algebra to design 
efficient LD kernels for CPUs and GPUs.

2  |  MATERIAL S AND METHODS

2.1  |  Implementation

quickLD is an open- source C code for Linux environments. The 
CPU implementation is based on the de facto algorithm for high- 
performance matrix– matrix multiplication on multicore CPU sys-
tems and utilizes the BLAS- Like Instantiation Software (BLIS) (Van 
Zee & Van De Geijn, 2015) for high- performance DLA. The acceler-
ated version extends the work in BLIS to computing LD on the GPU 
(Binder et al., 2019).

2.2  |  Input/output

A quickLD command specifies a list of variant call format (VCF) 
input files (compressed files are also supported) and a list of 
genomic region pairs to be combined (regions in different VCF 

files can be paired as well). Optionally, a list of samples to be 
included in the analysis can be provided, as well as the number 
of CPU cores and/or GPUs to be deployed. By default, quickLD 
calculates r2, applying a cut- off threshold of r2

th
= 0.2 to reduce 

the output report size; the threshold value can be defined by the 
user. quickLD handles missing data using a probabilistic genotype 
imputation method that operates on a per SNP basis. A random 
seed can be used to estimate how much scatter this method in-
troduces; the random seed can be defined by the user. Optional 
parameters can be used to schedule large- scale calculations on 
personal computers with limited processing and memory re-
sources. quickLD generates a report per region pair (PLINK for-
mat) that comprises all pairwise LD scores for all possible pairs of 
SNPs. The tool can also graphically display the results in the form 
of a heatmap.

2.3  |  Computational workflow

quickLD separates data accessing from processing to improve 
performance and reduce the overhead of accessing large input 
files. A large VCF file is initially split into smaller VCF files that 
can be easily managed and processed on personal computers. 
Thereafter, a number of genomic region pairs are loaded from the 
input list, based on the amount of available memory in the sys-
tem. Each pair of regions corresponds to a processing task, and 
all loaded tasks are processed in parallel using a scheduling algo-
rithm that distributes tasks to the CPU cores and/or GPUs. When 
all the loaded tasks have been completed, the process continues 
by loading the next set of genomic region pairs (tasks), using the 
previously allocated memory. The above steps are repeated until 
all the region pairs have been processed, with every new set 
of tasks using the same memory space. This allows large- scale 
analyses to be conducted on off- the- shelf workstations since 
the memory requirements do not increase with the number of 
genomic regions pairs.

F I G U R E  1  Example of the genomic matrix G. Each row 
represents a sample while each column describes a SNP. The 
allocated memory per SNP is a multiple of 64 bits. This is achieved 
through padding by adding extra zeros to the end of each SNP. 
Adapted from (Alachiotis & Weisz, 2016)
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2582  |    THEODORIS ET al.

2.4  |  Casting LD as a matrix– matrix multiplication

The key idea behind quickLD is that LD can be computed as a 
matrix– matrix multiplication with only ones and zeros. This for-
mulation of the LD computation allows us to leverage decades 
worth of knowledge in the high- performance dense linear algebra 
domain to develop efficient LD implementations. This section pro-
vides a succinct summary of the underlying idea that was previ-
ously described for CPUs (Alachiotis et al., 2016) and GPUs (Binder 
et al., 2019).

Each SNP is represented by a vector of ones and zeros. Multiple 
SNPs in a genomic region can then be described as a Nseq × k matrix, 
G, where Nseq is the sample size and k is the number of SNPs. Each 

row in the matrix represents the alleles of a sample while each col-
umn represents a single SNP. Exploiting the fact that values in the 
genomic matrix G consist of only ones and zeros, we can reduce the 
storage of G by using a single bit to represent an allele. This means 
that each SNP is represented by a group of Nint unsigned integers 
(64- bit long each), with Nint defined as follows:

An example of matrix G is illustrated in Figure 1. We refer to G as 
the genomic matrix. In our formulation of G, we ensure that the allo-
cated memory per SNP is a multiple of 64 bits by adding extra zeros 

(1)Nint =

⌈

Nseq

64

⌉

.

TA B L E  1  Performance comparison (throughput and speedup) between quickLD (C denotes CPU execution; G denotes GPU execution) 
and PLINK for increasing number of samples when one region and a pair of regions are processed. The region size is 5000 SNPs. Processing 
one region entails the calculation of 12.5 × 106 LD scores, while processing a region pair leads to the calculation of 25 × 106 LD scores

Samples (×103)

Single region Pair of regions

Throughput (LD × 106/s) Speedup (×) over PLINK 1.9 Throughput (LD × 106/s)

quickLD_C quickLD_G PLINK quickLD_C quickLD_G quickLD_C quickLD_G

2.5 16.53 36.55 5.14 3.21 7.11 36.76 73.10

10 11.44 27.96 1.36 8.44 20.63 14.34 55.93

20 6.60 21.48 0.69 9.61 31.25 10.35 42.96

30 4.87 17.58 0.46 10.48 37.88 5.53 35.16

40 3.79 14.76 0.35 10.75 41.88 4.23 29.52

50 3.06 13.51 0.28 10.87 48.00 3.39 27.03

60 2.60 11.19 0.23 11.11 47.79 2.86 22.38

70 2.26 8.80 0.20 11.43 44.48 2.46 17.59

80 1.98 8.08 0.17 11.56 47.22 2.17 16.16

90 1.75 7.49 0.15 11.57 49.44 1.92 14.99

100 1.61 7.01 0.14 11.69 51.06 1.74 14.03

TA B L E  2  Performance comparison (throughput and speedup) between quickLD (_C denotes CPU execution, _G denotes GPU execution) 
and PLINK for increasingly larger regions in terms of SNPs size when a single SNP region and a pair of regions are processed. The sample size 
is 100,000 sequences

SNPs (×103)

Single region Pair of regions

LD scores 
(×106)

Throughput (LD × 106/s) Speedup (×) over PLINK
LD scores 
(×103)

Throughput (LD × 106/s)

quickLD_C quickLD_G PLINK quickLD_C quickLD_G quickLD_C quickLD_G

1 0.50 1.14 2.07 0.14 8.45 15.35 1.00 1.43 4.15

2 2.00 1.39 3.68 0.14 9.97 26.29 4.00 1.60 7.35

3 4.50 1.51 4.96 0.14 11.04 36.27 9.00 1.67 9.92

4 8.00 1.56 6.32 0.14 11.13 44.98 16.00 1.70 12.64

5 12.50 1.59 7.12 0.14 11.59 51.71 25.00 1.73 14.24

6 18.00 1.62 7.95 0.14 11.57 56.81 36.00 1.75 15.89

7 24.50 1.64 8.44 0.14 11.86 60.91 49.00 1.76 16.88

8 32.00 1.67 8.97 0.14 12.01 64.52 64.00 1.77 17.95

9 40.50 1.68 8.60 0.14 12.05 61.55 81.00 1.77 17.19

10 50.00 1.69 9.25 0.14 12.19 66.91 100.00 1.77 18.51
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    |  2583THEODORIS ET al.

to the end of each SNP, referred to as ‘padding’ in Figure 1. Different 
genomic regions are differentiated via subscripts (e.g. G1 and G2).

The desired haplotype frequency matrix, Hi,j, that is used to com-
pute LD can be computed from the genomic matrices Gi and Gj as 
follows:

Equation 2 computes the haplotype frequencies and stores 
them in matrix H. The above formulation of H is a specific form of 
the general matrix multiplication (GEMM) operation (C = αAB + βC) 
in the level 3 basic linear algebra subprograms (BLAS3), a widely 
used set of dense linear algebra routines. Here, α = 1/Nseq and 
β = 0. Using our formulation of the genomic matrix, one can sub-
stitute the dot product by counting the total number of ones (set 

bits) remaining after a pairwise logical AND (&) operation is per-
formed. This counting of set bits can be performed using the in-
trinsic POPCNT operation. Thus, the haplotype frequencies can be 
computed as follows:

Thereafter, we can compute matrix D that contains LD values by 
subtracting the product of the allele frequencies from H as shown 
in Equation 4:

where Pi and Pj are vectors of per SNP alleles frequencies that are de-
rived from the genomic matrices Gi and Gj, respectively.

(2)H =

1

NseqG
T
i
Gj

.

(3)Pij =
1

Nseq

POPCNT(si& sj).

(4)D = H − PiP
T
j

F I G U R E  2  Execution times for increasing number of samples (top left) and increasing numbers of SNPs when the sample size is 
2500 sequences (top right), 10,000 sequences and 100,000 sequences (bottom row)

 17550998, 2021, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1755-0998.13438 by T

echnical U
niversity C

rete, W
iley O

nline L
ibrary on [20/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



2584  |    THEODORIS ET al.

3  |  RESULTS AND DISCUSSION

3.1  |  Experimental setup

We employed a personal laptop with an Intel Core i5- 8300H proces-
sor with 4 cores running at 2.3 GHz (8GB of main memory) and an 
Nvidia GTX 1050- M GPU with 640 Cuda cores running at 1.3 Ghz 
(4GB of main memory). To evaluate performance, we compare 
quickLD with PLINK 1.9 (Chang et al., 2015), the most widely used 
software for linkage analyses, to the best of our knowledge. We re-
port performance in terms of execution times and throughput. Note 
that we do not provide a comparison of memory consumption be-
tween quickLD and PLINK1.9 because such a comparison would not 
be fair since these tools handle memory in a fundamentally different 
way: quickLD allocates the necessary amount of memory given the 

data to be processed and the degree of parallelism requested by the 
user. PLINK1.9 follows a system- driven memory allocation approach 
that attempts to allocate half of the available memory of the system, 
and if this is not possible, then less memory is allocated, irrespective 
of the input data size. More information about the PLINK memory 
allocation scheme can be found at: https://www.cog- genom ics.org/
plink/ 2.0/other.

3.2  |  Sequential execution

quickLD and PLINK differ in the way they calculate pairwise LD 
scores. While PLINK processes one region (one input file) and com-
putes a diagonal matrix with pairwise LD scores, quickLD switches 
between different variants of matrix– matrix multiplication for 

F I G U R E  3  Parallel performance comparison between quickLD and PLINK1.9 in terms of execution times for 10,000 samples (top left) 
and 100,000 samples (top right), as well as respective speedups (bottom row). ‘HETER’ refers to heterogeneous execution using both the 
CPU and the GPU. Note the logarithmic scale for the execution times
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    |  2585THEODORIS ET al.

efficiency purposes, depending on whether LD is computed be-
tween two different regions or within a single region. When com-
puting with multiple regions, quickLD casts the computation as a 
general matrix– matrix multiplication (gemm). For single- region LD 
computations, quickLD switches to a symmetric rank- k update (syrk) 
routine where only the upper (or lower) half of the matrix is com-
puted. The observation here is that the output matrix is symmetric 
when computing LD on the same region. Switching to a different 
variant allows quickLD to avoid redundantly computing the same LD 
scores.

We measured performance in terms of throughput for an 
increasing number of samples (Table 1) and number of SNPs 
(Table 2). We distinguish between processing one region and a re-
gion pair. As can be observed in the tables, quickLD is between 
3.2× and 11.7× faster than PLINK1.9 when the sample sizes in-
crease from 2500 sequences to 100,000 sequences and between 
8.4× and 12.2× faster when the region size increases from 1000 
SNPs to 10,000 SNPs. When quickLD deploys a GPU accelerator, 
it becomes between 7.1× and 51× faster than PLINK1.9 (which ex-
ecutes on the CPU) as the number of samples increases, and be-
tween 15.4× and 66.9× faster when the number of SNPs increases.

Figure 2 illustrates quickLD and PLINK1.9 execution times when 
the sample size increases up to 100,000 sequences (Figure 2A), and 
when the number of SNPs increases up to 10 k for fixed sample 
sizes of 2,5 k (Figure 2B), 10 k (Figure 2C) and 100 k (Figure 2D). 
Expectedly, execution times increase linearly with the number of 
samples and quadratically with the number of SNPs.

3.3  |  Parallel execution

To assess performance of the parallel execution of quickLD over 
PLINK1.9, we compare execution times and report speedups when 

data sets with 10,000 and 100,000 sequences, with an increasing 
number of SNPs (up to 10,000), are processed. The results illustrated 
in Figure 3 show speedups up to 21.4× for the parallel guickLD CPU 
execution and up to 49.5× when the GPU is deployed. When the ag-
gregate CPU/GPU performance is used by quickLD, overall through-
put performance improves by up to 35%.

An important aspect of the parallel quickLD performance is the 
way it scales with the number of CPU cores. To assess this, we an-
alysed 1000 arbitrarily sized, in terms of SNP size, region pairs, de-
ploying up to 20 CPU cores/threads. For these runs, we employed a 
20- core Intel Xeon E5- 2660v3 processor running at 2.6 GHz (32 GB 
of main memory). The SNP size varied between 1000 and 10,000 
SNPs. As can be observed in Figure 4, quickLD speedups are nearly 
linear for up to 16 cores, achieving 16.8× faster execution when de-
ploying all 20 CPU cores.

3.4  |  Application on real data

3.4.1  |  Human Chromosome 22

Using a data set from the 1000 Genomes Project (1000 Genomes 
Project Consortium et al., 2015) (downloaded from http://
ftp.1000g enomes.ebi.ac.uk/vol1/ftp/relea se/20130 502/), we 
tested the performance of quickLD against PLINK 1.9 in an arbi-
trarily chosen region of chromosome 22. There are 106,730 SNPs 
in the chosen region (bp positions from 16050075 to 20128290). 
The report threshold was set to 0.8, which reduced the report 
file size to 30 MB and allowed for a more accurate comparison of 
processing times. Using 4 CPU threads, PLINK 1.9 required 429 s, 
whereas quickLD, also using 4 CPU threads, finished in 69.72 s. 
When quickLD employed a GPU in addition to the 4 CPU threads, 
the execution time was reduced to 51.76 s. Note that in this case, 

F I G U R E  4  quickLD speedups for up to 20 CPU cores/threads when processing 1000 tasks (arbitrarily sized regions between 1000 and 
10,000 SNPs) with 10,000 sequences (left) and 100,000 sequences (right)
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1 CPU thread is exclusively used for controlling the GPU, thus 
leaving 3 CPU threads available for processing.

quickLD took 69.72, 91 and 51.76 s using 4 CPU threads, 1 GPU 
thread and the entire system (3 CPU threads, since one thread is 
dedicated to control the GPU, and the GPU), respectively. quickLD is 
effectively up to 8.3× faster than PLINK 1.9, using the entire system 

(heterogeneous CPU/GPU execution). Figure 5 illustrates a heatmap 
of a subregion of this data set, using the visualization capabilities of 
quickLD.

3.4.2  |  SARS- CoV- 2 Genomes

We employed 39,941 high- coverage SARS- CoV- 2 genomes from the 
GISAID database (https://www.gisaid.org/). We used sequences 
with length equal or larger than 29,000 base pairs and trimmed 
ambiguous states (N) from the beginning and the end. We also ex-
cluded sequences that contained more than eight Ns and used the 
experimental MAFFT version (Katoh & Standley, 2013) for closely 
related viral genomes for multiple sequence alignment (FASTA 
format). The resulting data set, after applying the aforementioned 
filters to discard sequences, comprised 22,554 genomes. The 
snp- sites (Page et al., 2016) software was used for converting the 
FASTA file to a VCF file, and we invoked the tool's built- in option 
to discard columns that did not contain A, C, G, T, exclusively. The 
resulting data set comprised 5730 variants. PLINK 1.9 executed in 
12.8 s, while quickLD ran in 0.870, 0.630 and 0.475 s using 4 CPU 
threads, the GPU and the entire system (3 CPU threads and the 
GPU), respectively. The maximum speedup of quickLD over PLINK 
1.9 was 26.8×, which was observed when the aggregate system 
performance of the multicore CPU and the GPU accelerator was 
exploited. Figure 6 illustrates the quickLD- generated heatmap of 
the LD scores.
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