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Spatiotemporal geostatistical analysis of precipitation

combining ground and satellite observations

Emmanouil A. Varouchakis, Dionissios T. Hristopulos, George P. Karatzas,

Gerald A. Corzo Perez and Vitali Diaz
ABSTRACT
Precipitation data are useful for the management of water resources as well as flood and

drought events. However, precipitation monitoring is sparse and often unreliable in regions with

complicated geomorphology. Subsequently, the spatial variability of the precipitation distribution is

frequently represented incorrectly. Satellite precipitation data provide an attractive supplement to

ground observations. However, satellite data involve errors due to the complexity of the retrieval

algorithms and/or the presence of obstacles that affect the infrared observation capability. This work

presents a methodology that combines satellite and ground observations leading to improved

spatiotemporal mapping and analysis of precipitation. The applied methodology is based on

space–time regression kriging. The case study refers to the island of Crete, Greece, for the time

period of 2010–2018. Precipitation data from 53 stations are used in combination with satellite

images for the reference period. This work introduces an improved spatiotemporal approach for

precipitation mapping.

Key words | Crete, precipitation, satellite data, space–time kriging, Spartan variogram, sum-metric

variogram
HIGHLIGHTS

• Space-time precipitation trend model incorporating satellite measurements and elevation.

• Application of 3D distance metric for spatiotemporal prediction.

• Application of the non-separable Spartan space–time variogram in precipitation data.

• Space–time residual kriging in geostatistical analysis of non-stationary data.
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INTRODUCTION
Climate change is expected to have severe consequences

for humans and ecosystems. The impact of climate change

will be exacerbated by population growth and economic

development. The Mediterranean region is among the ‘hot

spots’ to be affected by climate change, which is expected

to cause increased frequency and intensity of droughts and
hot weather conditions. In the eastern Mediterranean, day-

time temperatures are expected to increase and annual

precipitation is expected to decrease (Lelieveld et al. ).

The spatiotemporal modeling and analysis of precipitation

and the accurate and reliable estimation of its spatial and

temporal variability at ungauged locations can provide

useful information. The latter can help to identify spatial

patterns and areas with significant shortage of water avail-

ability and to assist in water resources balance analysis

and recharge under different climate change scenarios.
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Therefore, new mapping methodologies are necessary that

can exploit observations in order to model spatiotemporal

variations and correlations. Such methodologies should

also be capable of incorporating auxiliary information to

produce accurate and reliable maps.

In the Mediterranean region, precipitation regimes exhi-

bit significant heterogeneity and strong seasonal variability

in many areas. The intensity, frequency, duration, and total

amount of precipitation vary substantially over annual

and decadal time scales. The patterns of precipitation and

evapotranspiration are expected to be affected by climate

change, and these changes will perturb the dynamic balance

of the hydrological system. These effects will cause vari-

ations in the frequency and intensity of hydrological

extremes as well as changes in the spatial–temporal

hydrological patterns, with severe impact on water

availability, economy, ecosystems, and the environment

(Mathbout et al. , ).

Precipitation in the Mediterranean region has decreased

during the past decades, and the decline has been combined

with significant changes in spatiotemporal variability.

Increased evaporation and intense rain have been detected

in most regions of the Mediterranean, whereas regional

mean precipitation is either steady or declining. It has also

been observed that rainfall duration is shorter and the aver-

age rainfall depth is lower nowadays in the South-Eastern

Mediterranean region (Hoegh-Guldberg et al. ). The

main rainfall events in this region tend to occur between

October and May, while heavy precipitation peaks between

December and May. Spring and autumn also contribute to a

significant amount of precipitation (Tarolli et al. ).

One of the major patterns of atmospheric variability and

surface climate in the North Hemisphere is the North Atlan-

tic Oscillation (NAO) index. NAO is believed to be one of the

most important modes of atmospheric circulation for the

Mediterranean region (Dayan et al. ). Especially, Eastern

Mediterranean rainfall variability is caused by anomalies

associated with the North Atlantic climate variability (Eshel

& Farrell ). Phases of strong positive NAO are associated

with below normal precipitation over southern and central

Europe. Opposite patterns are observed during strong NAO

negative phases (Drake ; Hertig & Jacobeit ).

This work focuses on the island of Crete, which is

located in the southern part of Greece, in the southeastern
://iwaponline.com/hr/article-pdf/52/3/804/901195/nh0520804.pdf
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part of the Mediterranean basin (Figure 1). Crete is the

largest island of Greece and the fifth largest island of

the Mediterranean. The island has a length of 260 km,

width ranging from 12 to 57 km, a coastline of 1,306 km

in length, and it covers an area of 8,336 km2; the mean

elevation is 460 m and the average slope is 22.8%. Crete

has a dry sub-humid Mediterranean climate with long hot

and dry summers and relatively humid and cold winters.

There are variations among different regions of the island

due to distance from the sea and altitude. The lower

altitudes have a climate characterized by xerothermic

conditions and considerable water deficiency. Crete is

characterized by very short spring and exceptionally long

summer seasons. Spring starts at the end of March and

lasts until May. Summer begins in June and lasts until the

end of September with the warmer months being July and

August. Autumn starts in October and lasts until the end

of December. Winter begins at the end of December and

lasts until the end of March. Crete is administratively

divided into four prefectures, namely from West to East:

Chania, Rethymnon, Heraklion, and Lassithi (Special

Water Secretariat of Greece ).

According to the recent Water Resources Management

Plan, the historic average annual precipitation on the

island of Crete is approximately 927 mm (Special Water

Secretariat of Greece ). On the other hand, a recent

study for the period 1981–2014 found an average annual

rainfall of approximately 798.3 mm (Varouchakis et al.

). Two recent studies have assessed the temporal rainfall

variability in Crete for the last 40 years (Varouchakis et al.

; Agou et al. ). Both studies have concluded that

for the entire island, annual rainfall rates have, on average,

remained almost stable with no significant decreasing

trend. Recent studies have also identified a decreasing

precipitation gradient from West to the East of the

island (Naoum & Tsanis ; Vrochidou & Tsanis ;

Varouchakis et al. ; Agou et al. ). The rainfall varia-

bility in Crete was found to be related to the NAO index

variability: a statistically significant negative correlation of

the island’s rainfall variability with the NAO has been ident-

ified for the years 1981–2015 (Varouchakis et al. ). The

number of rainy days on Crete has decreased during recent

years by almost 15% compared with the early 80s, while the

intensity of rainfall events has increased (Varouchakis et al.



Figure 1 | Global location of the island of Crete (top). Digital elevation map of Crete including the locations of the meteorological stations (bottom). Please refer to the online version of this

paper to see this figure in color: http://dx.doi.org/10.2166/nh.2021.160.
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). This observation agrees with a similar finding for the

entire country (Nastos et al. ). An extensive precipitation

monitoring network has been established on the island

(Figure 1). This network, installed and operated from the

National Observatory of Greece (Lagouvardos et al. ),

provides the opportunity, by applying an appropriate meth-

odology, to analyze the space–time dynamics of

precipitation and to estimate its spatial variability at

ungauged locations.
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Space–time kriging methods have been successfully

used in water resources and hydrology to estimate the

spatial and/or temporal variations of physical variables.

This work introduces methodology based on space–time kri-

ging principles that combines satellite and ground-based

precipitation observations. The incorporation of satellite

data helps to improve the spatiotemporal mapping and

analysis of precipitation. The proposed methodology

employs standard geostatistical features that can enhance

http://dx.doi.org/10.2166/nh.2021.160
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the spatiotemporal analysis of precipitation. Such features

include the application of an anisotropic 3D distance

metric to measure the data interdependence, the introduc-

tion of a novel space–time trend model that involves

satellite precipitation measurements and high-resolution

elevation, and the application of two well-established

space–time variogram models for the joint space–time

interdependence of precipitation data. The proposed meth-

odology provides an improved model for the space–time

dynamics of precipitation variations which can lead to

more accurate predictions at unobserved locations and

times than existing geostatistical approaches. In addition,

it considers explicitly and transparently preliminary geosta-

tistical testing and analysis of the samples, calculation of

data interdependence, validation of method’s estimation

capability, and estimation of uncertainty, in order to deliver

accurate and reliable predictions. A common concern in

precipitation modeling is how to handle the non-stationarity

of precipitation data (Wadoux et al. ; Lebrenz &

Bárdossy ). In this study, we assume that precipitation

over the area of interest and for a selected time period is a

spatially stationary process (Bárdossy & Pegram ). This

is a reasonable assumption, given the spatial extent of

the island and taking into account that the selected

time period is not long enough to observe climate change

non-stationary effects.

Space–time kriging has been successfully applied to

different datasets such as groundwater level (Hoogland

et al. ; Júnez-Ferreira & Herrera ; Manzione et al.

; Ruybal et al. ; Varouchakis & Hristopulos ;

Varouchakis et al. ) and precipitation. Especially for

the latter, kriging-based approaches have been widely

used to investigate the spatial variation of precipitation

(e.g. Goovaerts ; Durão et al. ; Verdin et al. ;

Varouchakis et al. ; Agou et al. ; Lebrenz &

Bárdossy ). Furthermore, space–time kriging has been

used to design rainfall networks and analyze precipitation

or other meteorological variations in both space and time

(Biondi ; Hu et al. ; Martínez et al. ; Raja et al.

; Zhang et al. ; Hu & Shu ; Yang et al. ;

Cassiraga et al. ; Naranjo-Fernández et al. ; Takafuji

et al. ). Rescaled space–time ordinary kriging was

compared to copulas with respect to rainfall interpolation

(Bárdossy & Pegram ). The space–time sum variogram
://iwaponline.com/hr/article-pdf/52/3/804/901195/nh0520804.pdf
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model was applied to analyze rainfall variability (Subyani

). These works endorse the applicability of space–time

kriging to precipitation data. Research which combines sat-

ellite precipitation data with kriging methods (Li & Shao

; Tang et al. ; Shi et al. ; Verdin et al. ;

Verdin et al. ; Wadoux et al. ; Yan & Bárdossy

) is limited to either the spatial or temporal domains.

A space–time application uses as covariates satellite data

of a different variable than precipitation such as NDVI

(Hu et al. ). This work combines ground-based and sat-

ellite-derived precipitation data in a space–time framework.

The accurate and detailed estimation of spatiotemporal

variability of precipitation on the island of Crete can provide

reliable and accurate maps that will be useful for hydrologi-

cal and climate change studies in the region.
METHODOLOGY

Data availability and management

The available observation dataset consists of daily measure-

ments at 53 meteorological stations (Lagouvardos et al. )

randomly distributed over the four prefectures of Crete

during the period covering the hydrological years from

2009–2010 until 2017–2018 (see Figure 1 for spatial

locations). The precipitation data include both observed

cumulative and satellite precipitation measurements at

the annual scale (over a hydrological year). Satellite precipi-

tation products for the aforementioned period and elevation

(50 × 50 m digital elevation map of Crete is shown in

Figure 1) were used as covariates. Space–time modeling of

precipitation is performed for the reference observation

period 2009–2010 to 2016–2017 to estimate the space–

time interdependence of the available data. The method’s

predictive (forecasting) capability is tested by comparing

predictions with the available data for the year 2017–2018.

CMORPH CDR processing system and PERSIANN

Cloud Classification System (PERSIANN-CCS) (Nguyen

et al. ) satellite precipitation products were compared

with ground precipitation measurements from the 53 moni-

toring stations for the aforementioned study period using

correlation analysis (Figure 1). The analysis showed that

CMORPH data are strongly correlated (Pearson correlation
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coefficient around 81%) to the ground measurements, while

the correlation of the latter with PERSIANN is weaker

(Pearson correlation coefficient around 71%). Thus, the

CMORPH satellite data were used in this work. The

CMORPH CDR processing system generates bias-corrected,

integrated satellite precipitation estimates over the global

domain. The spatial resolution is set by an 8 km-by-8 km

grid and the temporal resolution is 30-min (Xie et al. ).

Data were downloaded and processed to extract those for

the area of Crete under a global project that studies the

space–time variation of drought events (Diaz et al. a,

b). The derived data were then processed to calculate

cumulative annual precipitation for a period of 9 years,

2009/2010–2017/2018, at the aforementioned resolution.

Here, the assumption that the calculated precipitation is

homogeneously distributed inside each grid cell applies.

The derived satellite precipitation dataset is available upon

request due to potential copyright of the source info.

Geostatistical method

Space–time geostatistical modeling is based on the joint

spatial and temporal dependence between observations in

a probabilistic framework. Non-stationarity of observation

data in kriging applications is an important concern. How-

ever, the non-stationarity present in precipitation data can

be approximated using external covariates. The use of cov-

ariates, such as the Digital Elevation Map (DEM) and the

average precipitation, improves the precipitation estimates

compared with those derived by a stationary model; how-

ever, Wadoux et al. () showed in their work that

increasing the number of covariates does not clearly further

improve rainfall estimation. Kriging methods, which incor-

porate external covariates, such as external drift kriging,

universal kriging, and regression kriging, have been used

in several applications that involve non-stationary geostatis-

tical interpolation (Lebrenz & Bárdossy ). Detrending of

precipitation produces a residual component. If the residual

can be considered stationary, standard geostatistical

methods can be applied. A stationarity test of precipitation

time series using the Augmented Dickey Fuller (ADF) test

was applied in this work (Dickey & Fuller ). After

detrending, the geostatistical analysis follows the standard

approach: (i) variogram estimation based on the residuals,
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(ii) theoretical variogram model fitting, (iii) jackknifing in

order to validate the variogram estimates, and (iv) kriging

estimation of the residuals followed by the addition of the

trend model to obtain the interpolated values.

In this work, a spatiotemporal geostatistical analysis of

precipitation is performed using space–time regression (or

residual) kriging (STRK). The interpolation performance of

the method is compared with space–time ordinary kriging.

The geostatistical analysis using the proposed methods and

tools was performed in Matlab® environment using original

code. The spatiotemporal data observed at N space–time

coordinates are represented by Z(s, t), while data values in

space and time are based on Z(si, ti),…,Z(sN , tN). The

spatial model can be decomposed into a mean component

mZ(s, t) representing the trend and a residual Z0(s, t) corre-

sponding to fluctuations in space–time according to

Equation (1). The trend function can be modeled using cor-

related auxiliary variables (Kitanidis ).

Z(s, t) ¼ mZ(s, t)þ Z0(s, t) (1)

In this work, two geostatistical features are used for the

first time in spatiotemporal analysis. The first is a modified

anisotropic distance metric instead of the 3D Euclidean dis-

tance to account for the fact that monitoring sites are

located at significant variable elevation (5–1,250 m). Thus,

the proposed distance metric between two points in a 3D

coordinate system is applied.

dsi,j ¼ ((xj � xi)
2 þ (yj � yi)

2 þ ϑ(φj � φi)
2)1=2 (2)

where dsi,j is the distance (m), and ϑ is a dimensionless

elevation scaling factor used to account for the difference

between the horizontal distance in the x–y plane and

elevation φ. The second feature is defined from the

function: Yobs(s, t)¼m2(s, t)¼ β1X1(s, t)þβ2X2(s)þβ0 and

describes the application of a space–time trend (residual)

model. The term β denotes the regression coefficients,

while X1(s, t) and X2(s) are covariates related to observed

precipitation. The first covariate denotes the satellite preci-

pitation estimates (over the reference a period of 9 years),

and the second covariate is the elevation at the observation

locations s. The correlation between the cumulative annual
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precipitation and topography is equal to 0.73. The methodo-

logical steps are presented in the flowchart (Figure 2) and in

the following equations.

The experimental spatiotemporal variogram model of

the residuals is given by:

γ̂Z(rs, rt)¼
1

2N(rs, rt)

X
N(rs,rt)

[Z0(si, ti)�Z0(sjþ rs, tjþ rt)]
2, (3)

where rs ¼ kdsi,jk (Equation (2)), rt ¼ |ti – tj|, and Nðrs, rtÞ is

the number of space–time pairs in the corresponding lags.
Figure 2 | Flowchart of the proposed methodological process. STRK: space–time residual krig

://iwaponline.com/hr/article-pdf/52/3/804/901195/nh0520804.pdf
RSITY OF CRETE (FREE TRIAL) user
The space–time kriging estimator is a weighted linear

combination of data values inside a specified space–time

neighborhood. Using residual data notation, the estimator

is given below:

Ẑ
0
(s0, t0) ¼

X
{i:si ,ti∈S0}

λ iZ0(s i, t i), (4)

where S0 is the set of sampling points in the search neigh-

borhood of (s0, t0), Ẑ
0
(s0, t0) is the estimate at an

unsampled location time, Z0(si, t i) is the sampled location-
ing; STOK: space–time ordinary kriging.
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time neighbors, and λ i is the corresponding space–time

kriging weights. The kriging weights λi follow from the

minimization of the mean square error of the estimate and

are given by the following linear system of equations:

X
{i:si,ti∈S0}

λ iγZ0 (si, sj; ti, tj)þ μ ¼ γZ0 (sj, s0; tj, t0),

j ¼ 1, . . . , N0,
(5)

X
{i:si,ti∈S0}

λ i ¼ 1, (6)

where N0 is the number of points in S0, γZ0 (si, sj; ti, tj) is the

variogram between two sampled points si and sj at times ti
and tj, γZ0 (sj, s0; tj, t0) is the variogram between sj,tj and

the estimation point s0, t0, and μ is the Lagrange multiplier

enforcing the zero-bias constraint. Equation (6) enforces

the zero-bias condition.

STRK estimates are expressed as follows:

Ẑ(s0, t0) ¼ mZ(s0, t0)þ Ẑ
0
(s0, t0), (7)

where mZ(s0, t0) is the estimated trend function, and Ẑ
0
(s0, t0)

is the interpolated residual obtained by means of STOK.

The variance of the spatiotemporal residual kriging

estimator is given by:

Var (Ẑ(s0, t0)� Z(s0, t0))¼ σ2{(s0, t0)}

þ
Xn
i¼1

λi �γST(si� s0, ti� t0)þ μ

 !

(8)

where γST denotes the space–time variogram function, while

the variance component due to trend uncertainty is given by:

σ2{mZ(s0, t0)}¼ (x0�XTC�1c0)
T (XTC�1X)�1(x0�XTC�1c0)

(9)

In Equation (9), C is the sample residual covariance

matrix at the observation locations, X is the sample matrix

of covariates at the observation locations, x0 is the vector

of covariates at the prediction locations, and c0 is the

residual covariance vector between the observation and pre-

diction locations. The variance is used to quantify the

uncertainty associated with the kriging predictions.
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Variography

Two broad families of variogram models commonly used in

space–time geostatistics involve separable and non-separ-

able functions. In the first, the space and time correlations

are modeled separately using standard variogram functions.

The space and time components are then combined under a

joint sum, product, or product-sum type function (De Iaco

; Heuvelink et al. ). For the second, functions that

include entangled combinations of space and time are

used. These are mainly inspired from dynamic processes

(e.g. diffusion equation and Gibbs law) or general mathemat-

ical laws (Kolovos et al. ; Hristopulos & Tsantili ;

Varouchakis & Hristopulos ). Following standard prac-

tice (e.g. De Iaco ; Raja et al. ), we assess well-

known space–time variograms from both categories. More

specifically, the sum-metric separable space–time variogram

(Equation (10)) and the non-separable Spartan space–time

variogram function (Equation (11)) are studied.

The sum-metric model is given by the following function

(Hoogland et al. ; Heuvelink et al. ):

γST(rs, rt) ¼ γST1
(rs, 0)þ γST2

(0, rt)þ γST3
(h),

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2s þ α r2t

q
,

(10)

where γST(rs, 0), γST(0, rt), and γST(h) are, respectively, the

spatial, temporal, and joint variograms, while α is an aniso-

tropic ratio parameter that approximates the space–time-

scale variance. In the present work, different variogram

models were used for the three terms of the sum-metric var-

iogram to determine the optimal space–time model through

cross-validation.

The Spartan space–time covariance family is provided

by the following group of equations (Hristopulos & Elogne

; Varouchakis & Hristopulos ),

CZ(h)¼

η0e�hβ2

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jη21�4j

q sin (hβ1)
hβ1

� �
, for jη1j<2, σ2

z ¼
η0

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jη21�4j

q
η0e�h

8π
, for η1 ¼2, σ2

z ¼
η0
8π

η0(e�hω1 �e�hω2 )

4π(ω2�ω1)h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jη21�4j

q , for η1>2, σ2
z ¼

η0

4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jη21�4j

q

8>>>>>>>>>><
>>>>>>>>>>:

,

(11)
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where η0 is the scale factor, η1 is the rigidity coefficient,

β1 ¼ j2� η1j1=2=2 is a dimensionless wavenumber,

β2 ¼ j2þ η1j1=2=2 and ω1,2 ¼ (jη1 ∓ Δj=2)1=2, Δ ¼ jη21 � 4j1=2,
ξ stands for the correlation length, h ¼ r=ξ is the normalized

lag vector, h ¼ jhj is the separation distance norm, and σ2
Z is

the variance. The spatiotemporal Spartan function is a non-

separable model, which is derived by replacing the spatial

lag h with the composite space–time lag

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2
r þ α h2

t

q
, hr ¼ r=ξr, ht ¼ t=ξt, where t is the time

lag and α the relative weight of the time versus the spatial

lag, as in Equation (10). The corresponding variogram

model is obtained from the respective covariance function

by means of γST(h) ¼ CZ(0)� CZ(h).
Cross-validation

A cross-validation procedure is applied to assess the predic-

tion (forecast) performance of the method. The estimates at

the interpolation points are compared with the observations

of the selected hydrological year (2017/2018) using the per-

formance metrics listed below.

Bias (the optimum value is zero; positive or negative

sign of the bias denotes, respectively, overestimation or

underestimation):

εBIAS ¼ 1
N

XN
i¼1

[Ẑ(si)� Z(si)] (12)

Mean absolute error (MAE) (optimum value is 0):

εMAE ¼ 1
N

XN
i¼1

jẐ(si)� Z(si)j (13)

Mean absolute relative error (MARE) (optimum value is

zero, provided that the observations do not include zero

values):

εMARE ¼ 1
N

XN
i¼1

Ẑ(si)� Z(si)
Z(si)

�����
����� (14)

where Ẑ(si) and Z(si) are, respectively, the estimated and

true values at the point si.
://iwaponline.com/hr/article-pdf/52/3/804/901195/nh0520804.pdf
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RESULTS AND DISCUSSION

In this study, the spatial and temporal stationarity of the pre-

cipitation data was investigated. Spatially stationary data do

not exhibit significant spatial trends. However, herein due to

the geomorphology of Crete, there is a significant corre-

lation (on average equal to 73%) between precipitation

and elevation denoting a significant spatial trend. This

means that the precipitation model is spatially non-station-

ary. The stationarity of the precipitation time series was

tested using the ADF test. The ADF test uses the null hypoth-

esis of time stationarity (Dickey & Fuller ). The

estimated t-values at all monitoring stations are greater

than the critical value of the Dickey–Fuller test at α¼ 0.05,

indicating that the series have a unit root. Therefore, the pre-

cipitation time series are also non-stationary at every

location (Jarvis et al. ; Modarres & Ouarda ). To

account for the space–time non-stationarity, a spatiotem-

poral trend function, which was based on the satellite

precipitation data and elevation, was removed from the

ground-based precipitation data.

The assumption of stationarity for the residuals is sup-

ported by the behavior of their spatiotemporal variogram

(Figure 3) which approaches a constant sill (Gregorich &

Carter ; Varouchakis ; Ruybal et al. ; Varoucha-

kis & Hristopulos ). The variogram shows a general

increasing tendency with the time lag, indicating that pre-

cipitation residuals become less similar with increasing

temporal distance. The study period of 2009/2010–2016/

2017 includes hydrological years that exhibit highly variable

rainfall which explains the dissimilarity. The precipitation

residuals also become less similar with increasing spatial

distance. This is due to the observed East-West and South-

North precipitation gradients on the island of Crete

(Vrochidou & Tsanis ). As the spatial lag increases, the

geomorphology of the island and the gradients’ effect leads

to less similar precipitation values.

A spatial nugget (discontinuity at zero lag) is present in

the experimental variogram. The nugget term usually

appears if the target variable fluctuates on scales shorter

than the experimental resolution or due to measurement

errors (Carrasco ). The resolution effect is probably pre-

sent in our data due to the sparseness of the monitoring

network and the complexity of the geomorphology which



Figure 3 | Fit of the theoretical spatiotemporal variogram models (gray) to the experimental variogram estimates (white). The sum-metric variogram fit is presented on the left and the

Spartan model fit on the right.
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impacts precipitation. On the other hand, the rainfall

stations are monitored by the same organization with simi-

lar monitoring systems, thus reducing the potential for

measurement errors. However, the residuals are obtained

after subtracting a trend function which is based on the sat-

ellite precipitation product; it is thus possible that errors

inherent in the satellite data are propagated to the residuals.

Hence, a nugget term is added to both theoretical space–

time models and successfully captures the discontinuity of

the experimental variogram at the origin.

The fit of the sum-metric model to the experimental var-

iogram is shown in Figure 3. The optimal sum-metric space–

time model is composed of a spatial Matérn model (15), a

temporal spherical model (16), and a joint Exponential

model (17).

The Matérn variogram function (Matérn ; Stein

; Pardo-Iguzquiza & Chica-Olmo ) is defined as:

γZ(rs) ¼ σ2
Z 1� 21�ν

Γ(ν)
jrsj
ξr

� �ν

Kν
jrsj
ξr

� �� 	
þ σ2

nug, (15)

where σ2
Z >0 is the variance (sill), σ2

nug is the nugget variance

term, ξr > 0 is the spatial scale (or range) parameter, ν > 0 is

the smoothness parameter, Γ(�) is the gamma function, Kν(�)
is the modified Bessel function of the second kind of order ν,

and |rs| is the spatial separation distance.
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The spherical variogram function is formed in terms of

the temporal separation distance rt,

γZ(rt) ¼
σ 2

Z [1:5 jrtj=ξt � 0:5 (jrtj=ξt)3], for 0 � rt � ξt
σ 2

Z, for rt > ξt

(
,

(16)

where ξt > 0 is the temporal scale (or range) parameter. In

addition, the joint variogram function is expressed

in terms of the exponential model (17) using the joint dis-

tance metric, Equation (10), and a joint scale (or range)

parameter ξJ .

γZ(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2s þ α r2t

q
) ¼ σ2

Z 1� exp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2s þ α r2t

q
ξJ

0
@

1
A

2
4

3
5: (17)

The sum-metric model fits well the experimental vario-

gram, although it underestimates the sill. On the other

hand, the Spartan variogram model fits (also shown in

Figure 3) accurately the overall structure of the experimental

variogram.

The Spartan variogram model parameters are as fol-

lows: σ2
z ¼ 110:56 mm2, η1 ¼ �1:92, α ¼ 0:84, ξt ¼ 4 years,

ξr ¼ 0:29 or 75:4km, nugget variance c ¼ 9:25 mm2
, and

elevation scaling factor ϑ¼ 0.0012. The negative value of

the rigidity coefficient (Hristopulos & Elogne ) allows



Table 2 | Coefficients of the multiple linear regression model for precipitation using

satellite precipitation data X1 and elevation X2 as covariates

Trend model coefficients β0 β1 β2

2009/2010 186 0.78 0.44

2010/2011 208 0.64 0.49

2011/2012 145 1.12 0.64

2012/2013 158 0.84 0.57

2013/2014 161 0.71 0.48

2014/2015 173 0.81 0.51

2015/2016 201 0.76 0.54

2016/2017 167 0.56 0.46

2017/2018 195 0.62 0.39
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the model to trace the observed dip of the experimental var-

iogram at 0.28 units of normalized distance. The temporal

correlation length is similar to a secondary return period

of annual precipitation in Crete (equal to 4 years) which

was identified via spectral analysis (Varouchakis et al. ).

The parameters of the optimal sum-metric variogram are

presented in Table 1. In addition, the parameters of the

space–time trend model, which was used to obtain the

residuals, are presented in Table 2.

The performance of different spatial models with respect

to estimating the annual precipitation values of the hydrolo-

gical year 2017/2018 at the 53 observation locations is

presented in Table 3 and in Figure 4. The incorporation of

the satellite rainfall data as covariates significantly improves

the performance, as STRK is shown to be more accurate

than STOK. In addition, as evidenced in the results shown

in Table 3, the use of the 3D anisotropic distance metric

of Equation (2) significantly improves performance com-

pared with the use of the planar Euclidean distance. It

should be noted that the use of the anisotropic 3D distance

metric is formally equivalent to the assumption of transverse

isotropy which employs different correlation lengths in

the vertical and the horizontal directions (Agou et al. ;

Hristopulos ). Regarding variogram functions, the esti-

mation metrics for the Spartan and the sum-metric

variogram favor the former. In addition, the compact form

of the Spartan variogram model provides faster (by about

36% running Matlab in Windows 10 environment on a com-

puter with CPU: i7-8750, 2.2 GHz, RAM: 16G) space–time

interpolation compared with the sum-metric model. Thus,

the use of the Spartan variogram function is more suitable

for fast mapping requirements.

A further analysis of variogram suitability involved the

application of a separability test (Cappello et al. ;

Manzione et al. ). Following the steps described in

Cappello et al. (), a non-separable model was
Table 1 | Parameters of the sum-metric variogram models

Model Sill σ2
Z (mm2) Range ξ

Spatial Matérn 121 0.33 or 86 km

Temporal spherical 102 2 yr

Joint exponential 116 0.81

The parameter ν is the shape coefficient of the Matern model, while the range parameter corr
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determined suitable for this dataset (the null hypothesis of

separability was rejected at confidence level a¼ 0.05 with

the test statistic value: TS¼ 64.45, and a p-value of

0.0006). This result validates the results of this work and

explains the better performance of the Spartan model in

spatiotemporal interpolation. Non-stationarity tests have

rarely been applied in similar works. The best-performing

variogram model is typically selected based on cross-vali-

dation analysis. However, the use of non-stationarity tests

can provide a priori guidance for selecting separable

versus non-separable space–time variograms.

The scatterplot shown in Figure 5 compares the obser-

vations with the predicted values and illustrates the

accuracy performance of STRK equipped with the Spartan

variogram function and the 3D anisotropic distance

metric. The plot includes a diagonal line with a 45� slope

as a guide to the eye. Perfect agreement would be indicated

by all the markers aligned with the line. As evidenced in

Figure 5, the estimates are very close to the observed

values, with a Pearson correlation coefficient equal to

0.91. In addition, Figure 6 shows the bias plotted versus

the Easting coordinate of the monitoring stations, thus
Nugget σ2
nug ν α ϑ

8.02 mm2 0.81 1.12 0.0012

0 NA

0 NA

esponds to the correlation length of the models.



Table 3 | Validation metrics of different spatial models

Method MAE (mm) MARE (%) Bias (mm)

Space–time residual kriging/sum-metric variogram/3D distance (STRK SM 3D) 46.30 0.09 � 18.20

Space–time residual kriging/Spartan variogram/3D distance (STRK SP 3D) 39.54 0.07 � 15.78

Space–time residual kriging/sum-metric variogram/Euclidean distance (STRK SM E) 64.71 0.16 21.70

Space–time residual kriging/Spartan variogram/Euclidean distance (STRK SP E) 62.23 0.15 18.80

Space–time ordinary kriging/sum-metric/3D distance (STOK SM 3D) 71.24 0.17 � 26.51

Space–time ordinary kriging/Spartan variogram/3D distance (STOK SP 3D) 68.15 0.17 � 24.34

The metrics are obtained by comparing the models’ forecasts with the observed annual precipitation values for the hydrological year 2017/2018. The averages are calculated over all

locations of the monitoring network.

Figure 4 | Validation metrics for the spatial models used in this study. The metrics are obtained by comparing the models’ forecasts with the observed annual precipitation values for the

hydrological year 2017/2018. The averages are calculated over all locations of the monitoring network.
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illustrating the geographical distribution of the estimation

errors. A significant observation is that the locations with

the highest bias are mainly located in the central West

part of the island, where the monitoring network is sparse.

Moreover, the highest errors (in absolute value) are obtained

at the locations which exhibit lower correlation values (less

than 70%) between ground observations and satellite data.

Overall, the bias of cross-validation estimations for the

entire dataset is equal to 21.50 mm.

The spatial distribution of the estimated precipitation

over the entire island of Crete based on the optimal STRK
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L UNIVERSITY OF CRETE (FREE TRIAL) user
2022
model and the associated uncertainty of the estimates for

the year 2017/2018 is presented in Figures 7 and 8. The esti-

mated precipitation map, shown in Figure 7, agrees with

established patterns, i.e., the relationship of the elevation

with the precipitation amount, and the precipitation gradi-

ents from East to West and from South to North. The

uncertainty map (Figure 8) is clearly affected by the nugget

effect which sets a lower bound on the estimation uncer-

tainty. Another notable feature is the higher uncertainty

in the Eastern part of the island, especially along the

South coast, which reflects the higher variability of the



Figure 5 | Scatter plot illustrating the cross-validation performance of the STRK method

using the Spartan variogram function and the 3D distance metric of Equation

(2) for the hydrological year 2017/2018.
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precipitation on the Eastern side. This result is also in gen-

eral agreement with previous research (Agou et al. ).

Another metric which can be used to evaluate the

method’s performance is the reproduction of spatiotemporal

continuity which is reflected in the variogram reproduction.

Cross-validation assessments of spatial models often

focus on univariate measures of performance, such as those

presented above. Stochastic interpolation methods, however,
Figure 6 | Geographical distribution of STRK prediction bias for the hydrological year 2017/20

Equation (2).
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allow comparing the experimental variogram with the vario-

gram obtained from the leave-one-out cross-validation

estimates as a test of spatiotemporal continuity reproduction.

The spatiotemporal variogram of the leave-one-out cross-vali-

dation estimates obtained for the entire dataset (including the

estimates for the validation year) using the optimal STRK

approach is shown in Figure 9. This variogram exhibits a

space–time structure very similar to that of the variogram

obtained from the original dataset. This agreement further

validates the STRK method’s reliable representation of the

precipitation space–time structure on the island of Crete.

In comparison to similar works focusing on Crete

(Naoum & Tsanis ; Voudouris et al. ; Tzoraki

et al. ; Varouchakis et al. ; Agou et al. ) which

applied spatial methods of analysis, the spatiotemporal

STRK approach presented here provides significantly

improved results. Specifically, it leads to a reduction of

MAE and MARE by at least 50%. In addition, the fusion

of the satellite precipitation and elevation data with the

observed precipitation by means of the proposed trend

model, the employment of the 3D anisotropic distance

metric, and the application of the Spartan variogram on

the residuals provided estimation metrics that compete

with those achieved by recent similar applications which

employ spatiotemporal kriging (e.g. Raja et al. ; Yang

et al. ; Naranjo-Fernández et al. ).
18. STRK is applied using the Spartan variogram function and the 3D distance metric of



Figure 7 | Spatial distribution of STRK precipitation estimates for the year 2017–2018. STRK is applied using the Spartan variogram function and the 3D distance metric of Equation (2).

Please refer to the online version of this paper to see this figure in color: http://dx.doi.org/10.2166/nh.2021.160.

Figure 8 | Uncertainty of STRK precipitation estimates for the year 2017–2018. STRK is applied using the Spartan variogram function and the 3D distance metric of Equation (2). Please refer

to the online version of this paper to see this figure in color: http://dx.doi.org/10.2166/nh.2021.160.
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The proposed space–time geostatistical methodology

can be investigated with other satellite products for different

applications in hydrology and the environment to model

variables such as temperature, evapotranspiration, NDVI,

and soil moisture. In addition, STRK can be used to com-

bine auxiliary information from different sources, e.g.,

geophysics, for the estimation of groundwater levels in aqui-

fers. Furthermore, it could be employed in hydrological data

fusion applications (e.g. Benoit ) and as a general frame-

work for incorporating data from different sources (e.g.
om http://iwaponline.com/hr/article-pdf/52/3/804/901195/nh0520804.pdf
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radar and sensors) and different geostatistical tools (e.g. dis-

tance metrics, variograms, data transformation methods,

and simulation techniques) to improve the efficiency of

spatiotemporal predictions.
CONCLUSIONS

This paper introduces a novel STRK method for the interp-

olation and short-term forecasting of precipitation data. The

http://dx.doi.org/10.2166/nh.2021.160
http://dx.doi.org/10.2166/nh.2021.160


Figure 9 | Comparison of the spatiotemporal experimental variogram obtained from the

original precipitation residuals (white) with the experimental variogram of the

STRK leave-one-out cross-validation estimates (gray).
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key findings of this study are as follows. (i) It is established

that the correlation between precipitation and topography

is significant in terms of annual average data. (ii) The

Spartan spatiotemporal model fits better the precipitation

residuals (after a trend function is removed) compared

with the sum-metric model, leading to improved inter-

polation performance (bias and uncertainty estimation).

The Spartan variogram models can capture (depending on

the value of the rigidity coefficient) wave-like behavior of

the experimental variogram. (iii) The anisotropic 3D dis-

tance metric used here enhances the predictions’ accuracy.

(iv) The proposed trend model improves the variogram fit

of the residuals and leads, by means of space–time residual

kriging, to improved accuracy compared with ordinary

space–time kriging. The aforementioned results apply to

the present case study but not necessarily in areas with

different geomorphological and climate characteristics.

The basic reason for the improved accuracy of the pre-

cipitation estimates achieved in this work is the

incorporation of the joint space–time interdependence in

the estimation procedure. The latter helps to capture the

dynamic behavior of precipitation on the island of Crete in

terms of the auxiliary information (satellite precipitation

product) and the joint space–time variogram. In addition,

the development of a trend model that comprises satellite

precipitation data and elevation data as well as the use of
://iwaponline.com/hr/article-pdf/52/3/804/901195/nh0520804.pdf
RSITY OF CRETE (FREE TRIAL) user
the 3D anisotropic distance metric enhanced the predictive

performance of the spatiotemporal model.
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