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Abstract

This paper presents some aspects of TrafficFluid-Sim, a lane-free microscopic simu-
lator aimed for vehicle-to-vehicle (V2V) and/or vehicle-to-infrastructure (V2I) connected
and automated vehicles. The simulator builds on and extends the SUMO simulation in-
frastructure to model traffic environments featuring two novel vehicle characteristics: (i)
vehicles can be located at any arbitrary lateral position within the road boundaries; and
(ii) vehicles may exert, based on their automated driving and connectivity capabilities, “ve-
hicle nudging” to other surrounding vehicles. Special care is taken during the development
so that no inter-tool “communication” delays, which could affect efficiency and user expe-
rience, are introduced. As such, we provide the user with a dynamic library for lane-free
vehicle movement control, the incorporation of which allows one to avoid all commutation
cost between SUMO and an external application. Various components are involved in the
development process, including the implementation of lane-free vehicle movement; how the
simulator handles external traffic and appropriately inserts vehicles at entry points under
the lane-free paradigm; the development of an Application Programming Interface (API)
for information retrieval and vehicle control in lane-free environments; and, finally, the ca-
pability to utilize the bicycle kinematic model additionally to the double-integrator model
as a more realistic model of vehicle movement dynamics.

1 Introduction

The arrival of Connected and Automated Vehicles (CAVs) [4] promises the dawn of a new
era of road transportation, that is linked to the emergence of novel, safer, and more efficient
than existent traffic flow paradigms [15, 6]. Even though CAVs are still fledging, the need to
enhance existing [10, 1, 2] or develop entirely new traffic simulators that will allow their design
and study at the traffic level is obvious and well recognized in the traffic research community.
This is due to the fact that certain key aspects, and characteristics of the prevalent pre-CAV
traffic are linked to assumptions or constraints that are likely to become obsolete; while novel
features, enabled by the superb CAV capabilities, are emerging and need to be captured in
traffic simulation.

In particular, parallel road lanes emerged as a safety-fostering measure at the mid-20th
century, when the density of automobiles increased strongly in road transportation. Traffic
lanes simplify the driving operations and undoubtedly improve on safety and average driving
speed, yet they introduce some disadvantages. A considerable proportion of traffic accidents
(10%) occur due to lane changes [17], an operation that all drivers perform on a regular basis,
either for overtaking or to follow a specific route. Another important limitation is that lanes
have a fixed width according to a presumed maximum vehicle width, which results in lower
lateral road occupancy, and hence lower road capacity. Such compromises are unavoidable with
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human drivers, given their high reaction times and limited visual capabilities. However, in traffic
environments with high CAV penetration rates, such limitations will soon be strongly mitigated,
as CAVs have superb sensing capabilities, allowing continuous and reliable monitoring of their
environment on a 360◦ basis; as well as efficient computer-based decision-making. Thus, in
recent years, there is a drive to conceive and investigate novel traffic paradigms—e.g., notably,
the TrafficFluid [14] concept— which entails the need for developing corresponding new traffic
simulators to accommodate the novel characteristics of these paradigms.

2 The TrafficFluid Concept

TrafficFluid [14] is a novel paradigm for vehicular traffic, which is being investigated within
its namesake ERC Advance Grant, and targets fully automated vehicles (at SAE Levels 4 or
5) [13], equipped with vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communica-
tion systems. TrafficFluid is based on two key principles:

1. Lane-Free Traffic: Vehicles can be in any lateral position within the road boundaries, thus
lifting the lane changing task.

2. Nudging: Vehicles can exert a “nudging” effect, i.e., apply a pushing force, on front vehi-
cles. This concept implies that slower downstream vehicles may be nudged to move aside
so as to facilitate faster upstream vehicles to pass. More importantly, at a macroscopic
level, nudging has a capacity increasing and stabilizing effect on traffic flow [14, 8].

Results obtained so far in TrafficFluid (e.g., in [14, 23, 26, 9]) showcase aspects of the con-
cept’s potential. In order to further examine emerging approaches and, in particular, implica-
tions at the traffic level, there is an imminent need for a traffic simulator that incorporates these
core principles, while retaining a flexible approach. The simulator’s structure has to be modu-
lar, so as to integrate and evaluate approaches originating from many different research fields,
ranging from Control Theory [3] to Artificial Intelligence [19], Machine Learning [12, 22, 5], and
Multi-Agent Systems [24].

In what follows, we present in some detail our design and implementation choices for the
simulator. Among other things, we explain how lane-free vehicle movement is achieved; how
the simulator handles external traffic and appropriately inserts vehicles at entry points, offering
the user two alternative functionalities: (a) the option to laterally position the vehicles in such
a way that the entire capacity of the road is exploited; or (b) the option to sample each vehicle’s
desired speed from a pre-defined distribution, and then assign a lateral position for the vehicle
that is proportional to its respective desired speed. In addition, we discuss the features of the
Application Programming Interface (API) for information retrieval and vehicle control under
the lane-free paradigm. Furthermore, we address the possibility to model the vehicle movement
dynamics, either with a bicycle kinematic model or with a simpler double-integrator model. We
also present envisaged extensions of the simulator, most of which actually correspond to work
currently in progress. We note that a (previous) version of our simulator has already been used
for obtaining the results of [23], and more recently for the results in [26].

3 Simulator Overview

The purpose of this work is to build a simulator that enables various control strategies for
lane-free vehicle movement, for CAVs, including the nudging effect. We choose SUMO [10]
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(Simulation of Urban MObility) as the traffic platform to build upon, since, as an open-source
project, it can easily be adjusted to our needs.

Due to the popularity of SUMO, multiple frameworks (e.g. VEINS, iCS, VsimRTI) exist
that can connect with SUMO via its traffic control interface (TraCI), in order to provide addi-
tional functionalities, such as enhanced vehicle communication (see Section 9 for more details).
Our primary endeavour is to create a modular approach regarding the road infrastructure char-
acteristics (including space-time varying internal boundary separating the two traffic directions
of a road, see [11]) and the vehicles and their movement design (physical dimensions, controllers,
connectivity with surrounding CAVs and infrastructure, desired speeds, etc.), thus providing a
contained and flexible environment to systematically evaluate novel approaches at various levels
(vehicle movement, infrastructure, traffic control).

TraCI enables communication with SUMO, giving access to information regarding the sim-
ulation environment, and managing many aspects of it online. However, TraCI imposes certain
time limitations, which escalate as the number of controllable vehicles rises. This motivated us
to directly extend the code-base of SUMO, rather than relying on TraCI. While SUMO does
not support connected vehicles or vehicles with custom controllers, we implement such func-
tionalities by “overriding” its default behavior. Therefore, our contribution can be viewed as
an additional plug-in to the existing SUMO implementation.

We should mention here that, besides TraCI, one alternative option would be to consider
Libsumo, a low-level Application Programming Interface (API) that does not exhibit the com-
putational limitations imposed by socket communication. However, this choice was deemed to
be rather restrictive, and thus inappropriate for our requirements. Note that Libsumo does
not support the GUI application, meaning that it works only with the command line version of
SUMO. In addition, the functionalities of the APIs (TraCI or Libsumo) would be limiting for
some of the extensions we provide; or would require additional computational tasks to monitor
or control the traffic environment properly. By working directly with the open-source code-base
of SUMO, we can meticulously exploit the existing infrastructure and extend it appropriately.

Thus, we retain the current functionality and develop complementary components that can
both monitor online a lane-free traffic environment, and also control vehicles considering the
lane-free paradigm. This is achieved via an additional dynamic library we implemented, which
allows development in C/C++.1 In more detail, the library provides the user with the ability
to follow a core coding structure, which contains an initialization (and finalization) function.
These functions, as the naming suggests, are executed once at the initialization (respectively, the
termination) of the traffic environment. Also, a function that is executed in every simulation
time-step is introduced. There, a user can develop code in order to test lane-free vehicle
controllers, emulating vehicle connectivity aspects via retrieving of information from SUMO,
since we provide a concrete and easy to use API, enabling the direct communication with
SUMO, without any time-related overhead (that TraCI imposes). Controllers not necessarily
tied to TrafficFluid can be also incorporated, such as [7], which tackles lane-free environments
and shares similarities to the TrafficFluid concept [14]. However, SUMO, and by extension
TrafficFluid-Sim, is a discrete-time simulator, therefore controllers with continuous-time models
should be transformed to quasi-equivalent discrete-time controllers beforehand. Figure 1 shows
an overview of the components that form the TrafficFluid-Sim tool.

By means of this library, a user can utilise the provided API in order to obtain information
regarding:2 the vehicles’ properties (type, length, width, etc.) or current status (position, speed,
etc.); properties of a specific road segment (IDs of vehicles operating in this segment, length,

1.dll file (or .so file in Linux)
2Here we simply highlight the features, as they will be presented in more detail in the following sections.
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Figure 1: An overview of the components that constitute our lane-free microscopic simulation
tool.

width, additional information for given regions of the road); and online information from loop
detectors. Additionally, one can control the vehicles through their unique ID with the API,
where, depending on the selected vehicle model, either longitudinal and lateral accelerations or
steering angle and forward acceleration are supplied as control inputs to the relevant function.

Figure 2 shows a snapshot of the application for a lane-free traffic scenario with an on-
ramp. It is evident that the vehicles operate with no restrictions whatsoever regarding lateral
placement within the road boundaries. Lane-markings only exist to indicate the acceleration
lane for the vehicles to merge on the lane-free mainstream.

In the following sections, we outline key features and functionalities offered; and present the
different aspects of the implementation in more detail.

4 Lane-Free Vehicle Movement

In this section we first discuss how SUMO handles longitudinal and lateral dynamics for lane-
based applications and how to adapt them appropriately for lane-free settings. Then, we present
the two alternative options for lane-free vehicle movement, namely the double-integrator model
and the bicycle kinematic model.

4.1 Longitudinal and Lateral Dynamics in SUMO

Networks in SUMO are composed by multiple connected road segments (edges), essentially
depicted by a graph representation, and SUMO maintains local coordinates for each vehicle,
with respect to the road segment the vehicle is residing. For the longitudinal coordinate, the
value is essentially reflecting the distance from the respective segment’s starting point. In a lane-
free environment, this value is suitable, hence no substantial changes are needed. However, this
is not the case for the lateral coordinate, where the value we can obtain from SUMO (besides
information about the lane we are currently in), is the lateral distance from the respective
lane’s center. Moreover, SUMO does not actually consider lateral dynamics, since it does not
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Figure 2: A snapshot of a lane-free traffic scenario with an on-ramp.

involve anywhere lateral speed or acceleration. One can find information about lateral speeds
only within the Sublane model3 of SUMO, but this is only relevant to the lane-changing model,
whereby the vehicles simply move by providing a new lateral distance deviation value. The
adjustment of the Sublane model’s behavior and of its safety precautions is essentially tied with
a lane-based environment, which led to the decision to directly interfere within the code and
provide an independent module that explicitly handles lateral dynamics.

More specifically, Sublane is not adequate for our purposes, as, in order to model lane-free
movement, we need to consider both longitudinal and lateral dynamics with constant respective
accelerations for each simulation time-step. SUMO supports this only for the longitudinal
motion of vehicles, through the ‘Ballistic-Update’ option of SUMO. Thus, we added information
about the lateral speed of the vehicles “internally” (i.e., by altering the existing SUMO simulator
code), and modified the update process of the vehicles’ lateral position.

Regarding the positioning of the vehicles, the local coordinates (x, y) of the rectangular-
shaped vehicles that we consider are as follows: The longitudinal position x of the vehicle is
now the distance of its center point from the starting point of the road segment. Accordingly,
the lateral position y measures the distance from the right road boundary to the vehicles’ center
point. Hence, the vehicles observe a single lateral position, without knowledge about lateral
placement w.r.t. to lane centers, as this information is not meaningful anymore for design-
ing a vehicle movement control strategy under lane-free settings. Although TrafficFluid-Sim
addresses lane-free environments, it could also potentially simulate lane-based traffic with con-
tinuous lateral dynamics (as the Sublane model), provided that the associated vehicle controller
is designed accordingly, i.e., conforming to virtual lane placements.

4.2 Double-Integrator Model

The ‘Ballistic-Update’ option of SUMO for the longitudinal movement, and the incorporation
of lateral dynamics in a similar manner, constitute a double-integrator model for the vehicle

3Sublane depicts more realistic lane-changing behavior.
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movement dynamics. The orientation of the vehicle is always in parallel with the road for
the double-integrator. This approximation is good enough for highways, where we typically
consider vehicles moving with high longitudinal speeds. In the next Section 4.3, we present
an alternative approach, namely the bicycle kinematic model, which provides a more realistic
depiction of movement dynamics, since it incorporates the orientation of the vehicle as well.

The associated controller for vehicles employing the double-integrator model should provide
a longitudinal and lateral acceleration (in m/s2) value in every time-step. Now, under the
lane-free paradigm, where vehicles can be placed anywhere laterally within the road bound-
aries, a collision between two vehicles is reported when their rectangular forms overlap. This
is a straightforward check, given the vehicles’ information regarding positioning and their di-
mensions (length, width), and provided that their orientation is always in parallel with the
road.

4.3 Bicycle Kinematic Model

An important development, necessary to enable microscopic simulation of approaches such
as [9], is the incorporation of the bicycle kinematic model [16] into the simulator. In this
model, the vehicle’s front (and back) wheels are abstracted to a unique front (and back) wheel
located at the respective middle point, where only the front wheel is steerable, controlling
the vehicle’s orientation. We refer the interested reader to the relevant paper [16] for more
details regarding this kinematic model. This model is generally more accurate in describing
vehicle movements than the double-integrator model and is particularly interesting in a lane-
free environment, when vehicles are driving in curves at relatively low speeds, such as in urban
networks and roundabouts. In such cases, the user has the option to select an alternative
method for vehicle movement dynamics in lane-free traffic. The bicycle model’s state variables
are, beyond the longitudinal and lateral vehicle position (x, y), the vehicle orientation θ and
the forward speed v; while the control variables are the forward acceleration and the steering
angle. Figure 3 illustrates the state variables of the bicycle model, where we do not have
two separate dynamics for longitudinal and lateral movements, but rather a unified and more
realistic movement, depicting the actual orientation resulting from steering the vehicle.

In terms of technical developments for the simulation, this involved an internal implemen-
tation regarding the position (x, y) and speed v update process of the vehicles, according to the
bicycle kinematic model. Information regarding the orientation θ of the vehicle and the ability
to directly change it is already available through SUMO, so we can adjust its value through
internal extensions within the source code. The local coordinates (x, y) of the vehicle again
refer to its center, as discussed earlier, and as depicted in Figure 3. However, the bicycle model
utilizes the position corresponding to (xb, yb) in Figure 3, i.e., vehicles’ orientation changes
with respect to this point. This is considered within our implementation, and this point is
also directly available to the user who wishes to design a movement strategy using the bicycle
model. User access to the orientation of the vehicles is granted through the API, providing
either global (with respect to the global coordinate system of SUMO) or local (with respect to
the longitudinal axis of the current road vehicles reside) coordinates. The associated lane-free
controller should simply provide the value for the forward acceleration F (in m/s2) and the
steering angle δ (in rad) as control inputs for every time-step (instead of the longitudinal and
lateral accelerations).

Again, the local coordinate system of SUMO is utilized for the bicycle model, and as such,
controllers do not need to take into account the geometry of the residing road. Hence, the
operating orientation of the vehicles is local, with respect to the residing road, so turning oper-
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Figure 3: Illustration of a vehicle utilizing the bicycle model.

ations (e.g., at junction points) are handled through SUMO. However, for certain applications,
we may be interested in controlling this operation instead of letting SUMO automatically han-
dle such procedures. We also provide the option to do so, in a way that does not affect or cause
regression to existing functionalities. One can utilize the bicycle kinematics along with global
coordinate control for more realistic behavior, that does not succumb to the road structure,
but is rather based on the global Cartesian coordinates (x, y). This feature serves to facilitate
an impending application that involves lane-free movement in a roundabout, where we wish
to work with junctions for vehicles entering and exiting, and utilize polar coordinates instead
of Cartesian ones for vehicles operating within the roundabout. This provides a much more
realistic depiction of the actual traffic behavior compared to the use of the standard local co-
ordinate system SUMO provides, of course with the expected trade-off being that the we need
to properly design the above-mentioned behaviors.

For this feature, the use of internal mapping from global to local coordinates (and vice-
versa) was crucial, given that the existing infrastructure and our extensions rely on the local
coordinate system that SUMO provides. If we completely neglected the local coordinates in fa-
vor of simplicity in the development process, then certain features would not function properly,
e.g., the observation capabilities on surrounding vehicles (see Section 6.1), and as such, essen-
tial information for the design of vehicle movement strategies would not be available. Global
coordinate control is tied only with the bicycle kinematics, since it would be quite restrictive
for the double-integrator model, due to the absence of orientation control.

As of now, we have a simplified way that incorporates the orientation of the vehicles for the
collision check. Essentially, we draw a rectangle that is in parallel to the road and contains the
vehicle (red rectangular in Figure 3), and report a collision if these rectangular regions of two
vehicles overlap. Of course, this procedure may report a collision even if two vehicles do not
actually collide. However, it also guarantees that no collision will be disregarded.

5 Handling of Demand

In contrast to real traffic networks, any simulated network infrastructure has upstream bound-
aries, at which vehicles need to be inserted, given a corresponding pre-specified demand rate.
This is a delicate operation, because the simulated traffic conditions (e.g. dense traffic or
congestion) may not allow for the whole specified demand to enter, as this might lead to un-
realistically high vehicle densities just after insertion. Thus, vehicles should only be inserted if
there is enough space to the vehicle in front; and with an insertion speed that would not lead
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to immediate strong deceleration. Vehicles that cannot be inserted, due to such restrictions,
are placed in a virtual queue to be considered for insertion later on. On the other hand, the
vehicle insertion method should not be too conservative, as this might lead to the creation of
virtual queues even in cases where the demand is lower than the road capacity.

In a regular lane-based scenario, one normally specifies a demand of vehicles either for indi-
vidual lanes, or for the whole edge (road segment). For the latter option, SUMO automatically
distributes the demand to each lane. Contrary to a lane-based environment, where a simple
time-gap or space-gap method can be applied, such a method is not appropriate for lane-free
environments, since it would not exploit laterally the actual capacity of the road, which consti-
tutes one of the intrinsic properties when operating under the lane-free paradigm. Recall that
the space-gap (sg) is the distance from the front bumper of the vehicle attempting to enter, to
the rear bumper of the front one, and the time-gap (tg) is defined as tg = sg/vp, where vp is
the insertion speed of the vehicle attempting to enter. Thus, if we have any two quantities, we
can calculate the remainder one using the equation above.

For the reasons mentioned, we designed a new method that determines where (laterally) a
vehicle shall be inserted in the road; as well as whether it should actually be inserted or stay
in a virtual queue of vehicles, in case of lack of sufficient space due to other vehicles in front.
In the latter case, the vehicle has to wait for the next time-step before re-attempting insertion.
To this end, we need to establish how the vehicles will spawn at an entry point, when defining
a global cross-section, in a way that is organically tied to a lane-free environment. Essentially,
we use a constant time-gap method (provided by the user) customised for this setting, which
must also account for the width of the vehicle when entering. As such, each vehicle attempting
to enter (according to the demand) has a set of available lateral regions that it can spawn.

Initially, the vehicle considers a single lateral region that usually corresponds to the whole
road width. Of course, in case of vehicles with preferences to lateral placements on the road,
the initial lateral region can be smaller, e.g., the right hand side of the road for slow vehicles
such as trucks. Then, its insertion speed will be the minimum of the user-defined departure
speed and the average speed of the front n = 5 vehicles. Of course, this choice for n may be too
small for large roads, and in the future it will be generalized so that its value depends on the
width of the road. This bounding serves to prevent collisions in case the region is congested,
where the vehicles move with lower speed (or even in extreme cases they cannot move at all).
Given the insertion speed and the pre-specified time-gap, the corresponding required space-gap
in front of the vehicle is calculated, and the next step is to obtain a lateral position to spawn
according to the downstream traffic.

To achieve that, we first scan for this initial lateral region (in ascending order, according
to longitudinal position) the front vehicles until one is found that conforms to the calculated
space-gap. Then, for all front vehicles that have a space-gap less that the required value, we
restrict, according to their widths and lateral positions on the road, the available lateral regions.
Finally, the vehicle randomly spawns in one of the remaining lateral regions, which guarantees
that there is no vehicle in front with less than the required space-gap. Figure 4 illustrates
the aforementioned procedure. Of course, if, at any point in the above procedure, the set of
available lateral regions becomes empty (i.e., there is no lateral position to insert the vehicle
with an acceptable space-gap in front of it), then the procedure is stopped, and the vehicle
does not spawn, but is preserved in the virtual queue of SUMO, and has a chance to enter
in the next time-step, when front vehicles will have advanced. It should be noted that in the
aforementioned process, we impose a minimum lateral distance between the vehicles, that is
selected by the user. In Figures 5, 6, we illustrate instances of lateral vehicle placement for two
different respective demands, according to the aforementioned insertion method.

8



Extending SUMO for Lane-Free Microscopic Simulation Troullinos et al.

Figure 4: Vehicle is inserted randomly within the range of one of the available lateral regions
(indicated with light blue). The red zones are forbidden for the entering vehicle due to other
vehicles in front.

Simulated vehicles possess a desired speed that they strive to achieve when and where the
traffic conditions allow. This desired speed is decided at insertion point, and accompanies the
vehicles, until their exit from the network. The user may select desired speeds for the entering
vehicles via the API, by providing a range of desired speeds [vd,low, vd,high], sampled according
to a specified distribution (e.g. uniform). The desired speed distribution may be independent
of the lateral vehicle insertion positions, but a specific consideration for the selection of desired
speeds may be to establish a mapping with the range of initial lateral placements. Specifically,
some vehicle movement strategies favor a lateral vehicle position, while driving, that is pro-
portional to the vehicle’s desired speed, i.e., vehicles with higher desired speed tend to drive
further left on the road, compared to vehicles with lower desired speed (e.g. trucks). In such
cases, it is reasonable to relate accordingly the lateral insertion position of each vehicle with its
assigned desired speed at the entry points, so as to avoid unrealistic weaving maneuvers after
insertion. For instance, each desired speed vd can be assigned based on a linear mapping from
the lateral position range to the range [vd,low, vd,high] of desired speeds (accounting also for
the width of the vehicle, e.g., when the vehicle has width wv, and the road has width wr, the
vehicle considers the lateral region [wv/2, wr −wv/2], so if it spawns at wv/2, then the selected
desired speed will be vd,low).

The aforementioned insertion method aims to fully exploit the available lateral space. How-
ever, notice that this method, along with the mentioned linear mapping will not result in a
uniform (or other desired) distribution of desired speeds. Therefore, for specific simulation sce-
narios requiring a specific probability distribution, we also developed an alternative insertion

Figure 5: Vehicle placement for a demand of 7, 500 veh/h, time-gap of 0.5 s, minimum lateral
distance of 0.25m.
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Figure 6: Vehicle placement for a demand of 12, 000 veh/h, time-gap of 0.5 s, minimum lateral
distance of 0.25m.

method, in which we refrain from exploiting fully the lateral space.

In the alternative insertion method, we initiate the process of introducing a new vehicle
to an entry point by drawing a sample vd from the user-chosen distribution (provided by the
API), within the range [vd,low, vd,high]. This sample value vd will be the desired speed of the
vehicle. Thereafter, the method decides upon the lateral placement for the vehicle. This is done
via a linear mapping from the range [vd,low, vd,high] to the range of available lateral positions
[wv/2, wr − wv/2], according to the sampled vd value. Next, the first vehicle in front of the
vehicle to be inserted is identified, and a candidate insertion speed vp is calculated according to
the time-gap provided by the user and the space-gap between the two vehicles. Note that we
consider that a vehicle is in front, if the lateral regions resulting from their lateral placements
and width overlap. This is also noticeable in Figure 7, where we show visually the above
procedure. The vehicle will be inserted with insertion speed vinsert = min{vp, vd}, unless
vinsert < min{vd, vf}, where vf is the speed of the vehicle in front. In that case, the vehicle
will remain in the virtual queue and attempt reentering with the same desired speed (and,
consequently, the same lateral position) in the next time-step.

In what follows, we showcase its use (assuming uniform distribution for the desired speeds),
against that of the first method in a scenario with an extremely high value of demand, specif-
ically, one of 18, 000 veh/h. This is a demand clearly beyond the capacity of any lane-based

Figure 7: Vehicle has a predefined initial lateral position according to its desired speed; and it
obtains an insertion speed according to the space-gap from the vehicle in the front.
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Figure 8: Measured flows of inserted vehicles from a detector placed 100 meters downstream of
the entry point.

approach for a road width as the one in Table 1, corresponding to a conventional road com-
prising 3 lanes. We compare the two insertion methods in terms of the flow values achieved in
each case.

We collect measurements of the flow with a sampling period of T = 2min. All relevant
parameters are tuned according to Table 1, where dlat,min is the minimum lateral distance the
vehicles are allowed to have upon entering; lv, wv are the length and width of the vehicles,
respectively (which are equal for all vehicles in this scenario, for simplicity); and wr is the
width of the road.

As observed in Figure 8, where we display measured flows for the two different inser-
tion methods, the first one (indicated as method 1 in the figure) yields an average flow of
12, 998 veh/h. This effectively sets an upper bound for the achievable maximum flow, given
the parameter choices of Table 1. The vehicle movement strategy used to obtain these results
is an ad-hoc strategy presented in [14]. On the other hand, the alternative method (indicated
as method 2 in the figure), using a uniform distribution U(25, 35), leads to under-utilisation of
the road capacity. We now have vehicles spawning with desired speeds according to a uniform
distribution within the range of [25, 35]m/s, as desired, but this results in a lower average flow
of 8, 312 veh/h. Thus, maintaining such a distribution comes with a “cost” of reducing by 36%
the average flow inserted (w.r.t. the one achieved by method 1). These results indicate the

Table 1: Parameter choices for the demand examined.

time-gap dlat,min lv wv wr

0.5s 0.25m 3.2m 1.6m 10.2m
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expected trade-off between demand insertion at the capacity of the road versus guaranteeing
that the desired distribution of desired speeds will be exactly mapped with the lateral insertion
position of entering vehicles.

6 Using a Dynamic Library for Lane-Free Vehicle Control

Normally, vehicle strategies in lane-based SUMO are structured according to two types of
models, a “Car-Following” model, and a “Lane-Changing” one, that regulate the longitudinal
speed and the lane-placement accordingly. This modelling structure is obviously not appropriate
for lane-free vehicle controllers. Also, something crucial, that we need to address, is the fact
that these models are pre-compiled and constitute a part of the SUMO environment. This
means that the users can select one of the available models, and ‘tune’ them via model-related
parameters. There is no flexibility to easily incorporate different controller designs to this
environment, unless we do so by accessing the open-source code-base of SUMO (or via TraCI).

Especially for a novel traffic paradigm like TrafficFluid, a more flexible design, that allows for
diverse vehicle control approaches and refined control of the vehicles, is fundamental. Therefore,
we have made the necessary developments to make use of an external dynamic library (that is
linked with the main application at execution time) in order to enable the implementation of
any type of vehicle controller. such controllers receive information about the current state of
the vehicle and its environment; and respond with the appropriate control input (longitudinal
and lateral acceleration values or forward acceleration and steering angle) for each simulation
time-step. Importantly, this essentially means that any vehicle strategy can be incorporated
without the need to re-compile SUMO; moreover, after its compilation, the library is essentially
treated for all purposes as an integral part of the application, thus avoiding all communication
costs between SUMO and external frameworks (that would have been otherwise unavoidable).
In conclusion, we have the benefit of flexibility, but without the cost of communication delays.

6.1 Dynamic Library Structure and API features

Our library consists of 3 core functions that can be utilised:

� simulation initialize: Executed once before the first time-step; intended for initialization
of variables, memory, files, etc.

� simulation step: Executed once in every time-step. Within this function, users can control
the vehicles and monitor online the traffic environment

� simulation finalize: Executed once before exiting the simulation; intended for deallocation
of memory, saving log files, etc.

The user can build upon the development environment and communicate directly with
SUMO via the API provided by our implementation (see Figure 1). Regarding the memory
structure that contains the vehicles for a given road segment, vehicles are always retained
in ascending order, according to their respective longitudinal position x. This information is
updated dynamically, since vehicles have different speeds and, also, are following a route and
may thus change road segments. This information is quite convenient for many reasons. First,
it allows us to perform collision checks much more efficiently; and to perform the dynamic
allocation of vehicles to road segments much faster. Furthermore, this information can be
provided to the user via the API. For the remainder of this subsection, we showcase the current
capabilities of our API:
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Figure 9: The appointed vehicle, located on an on-ramp and about to merge in the highway,
has direct access to the vehicles located in the next segment.

6.1.1 Vehicles

A user can obtain information, such as: the IDs of all vehicles in the network; or only the IDs of
vehicles in a specific road segment. In the latter case, the IDs are obtained in ascending order
according to their (local) longitudinal position. Given a specific vehicle’s ID value, information
relevant to this vehicle is easily available, such as: its longitudinal and lateral positions (either
local coordinates, as specified in Section 4, or global coordinates); longitudinal and lateral
speeds, dimensions (length, width); the vehicle’s type id (as defined when setting up the traffic
environment); the vehicle’s name (the one displayed by SUMO).

Besides information retrieval, one can control a vehicle via its ID, providing the appropriate
control input to the relevant function. Moreover, through the API, the user can manually insert
a new vehicle, either at the initialization phase, or at any arbitrary simulation time-step. In this
case, the initial conditions and additional information should be provided by the user. That
information involves: initial position and speed (longitudinal and lateral), a (valid) vehicle type,
and a (valid) route for the vehicle to follow. We also retain internally a desired speed for each
vehicle; and, through the API, we can obtain or change the existing value.

As mentioned, we use local coordinates, something quite convenient for designing a vehicle
movement strategy, since the vehicle just follows a given route, and does not need to take into
account the geometry of the road. However, this poses a limitation when a vehicle needs to
observe downstream traffic in the next road segment, as the local coordinates of downstream
vehicles correspond to a different road segment. For this reason, considering two vehicles
that can potentially be located on different road segments, we provide information about the
longitudinal and lateral distance from the perspective of one of the two vehicles. Complementary
to the aforementioned functions is another feature that allows for each vehicle to easily observe
downstream and upstream traffic, according to their routing scheme, i.e., they can observe
vehicles that may be located in the upcoming or previous road segments. This essentially
translates to obtaining an array of all the downstream (upstream) vehicles’ ID values (up to a
specified distance), in ascending order, based on the longitudinal distance from the ego-vehicle
that requests such information, even if the downstream (upstream) vehicles are beyond the
current road segment. For example, a vehicle in an on-ramp, which is advancing to merge
on the mainstream, can directly observe downstream traffic from the main highway and be
properly informed about the distances, as illustrated in Figure 9.

Moreover, we developed the necessary components to emulate a ring-road scenario using a
single road segment. In this case, the vehicles are directly “transmitted” to the starting point
of the segment instead of exiting. Longitudinal distance dx(i, j) is properly adjusted for this
feature, e.g., a vehicle towards the end of the road segment will properly observe vehicles at
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the start of the segment. In order to introduce vehicles in the ring-road, the recommended
solution is to utilise the API, and place the vehicles at the desired density when initializing
the simulation. When this functionality is extended to incorporate multiple road segments, the
demand can be alternatively generated from an on-ramp, connected to the main highway that
emulates the ring-road.

6.1.2 Road Segments

Similarly, users can obtain an array of the road segments’ ID values in the network. For a
given road segment, a user can obtain its properties (length, width), and additional online
information for user-defined regions. Essentially, at any simulation step, we can directly gain
information for a specific region of the road segment regarding the traffic density at that region,
or the average speed of the vehicles. This is illustrated in Figure 10, where such information
will be provided only according to the vehicles within the appointed region.

In addition, there is the flexibility to use these functions only for a specific type of vehicles,
i.e., we can independently monitor each type of vehicles in the network. For instance, in
Figure 10, we may be interested only in the type of vehicles indicated with pink color, thus the
information we will receive will be calculated from the shown 2 pink vehicles only. The outlined
functionalities related to road segments are valuable for several possible applications, including
real-time traffic management via emulated V2I communication.

6.1.3 Detectors

One of the features of SUMO, when designing a traffic scenario, is the support of multiple
types of detectors, which can be placed anywhere throughout the network. The simple ‘E1’
Loop Detectors of SUMO are integrated with our internal extensions. These loop detectors
are represented by unique ID values. With this, we can monitor online the number of vehicles
that have passed the corresponding detector. Additionally, we retain the same flexibility here
regarding monitoring specific types of vehicles.

Lastly, a set of event-based functions has been embedded, triggered when specific situations
occur, such as: a new vehicle entering the network, a vehicle reaching a final destination; a
collision4 between two vehicles; or a vehicle being located out of the road boundaries. Obviously,
these functions are accommodated with information regarding the involved vehicles’ IDs.

Figure 10: We can directly request information about density or average speed just by providing
the upper and lower bounds of the region, e.g., if what is displayed is the total road segment,
its length is 150 meters, and we are interested only in the last 50 meters, we define the region
as [100, 150].

4In lane-free vehicle movement, we consider that vehicles have a rectangular form (due to their length and
width). Therefore, a collision between two vehicles is reported when their rectangular forms overlap.
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7 Designing a Lane-Free Traffic Scenario

We should emphasise that we can design traffic scenarios exactly as we would normally do for
the standard SUMO application. In order to design a traffic scenario, the core components
that we need is a road network, specification of vehicle types along with their properties, and
finally the demands. Lane-free vehicles can now be incorporated through the definition of a
vehicle type. We have included an additional ‘virtual’ model option (besides the ones provided
by SUMO), that the assigned vehicle types can now employ. When a user specifies the model as
“lane-free”, it will not conform to any standard lane-based model, but the user will be granted
access to the control of all vehicles of this type through the dynamic library. Thus, these vehicles
will now move according to the developed movement strategy. Any type of lane-free controller
can be developed and adapted to the same structure, provided that it yields the appropriate
control input, i.e., either the longitudinal and lateral accelerations (in m/s2) or the forward
acceleration (in m/s2) and steering angle (in rad) (depending on the selection of movement
dynamics, see Section 4) in every simulation time-step.

8 Future Extensions

Currently, vehicles are operating according to a predefined route, simply following a specified
path from origin to destination. We rely on SUMO, which requires either just an origin and
a destination segment (then a valid path is automatically generated upon initialization of the
vehicles), or a (valid) full path consisting of the full sequence of road segments the vehicle
should follow, if we wish more refined control. Also, SUMO provides some options regarding
re-routing (either online or offline) of the vehicles, but none of them conforms with the flexibility
we need in order to support the design of V2I applications for traffic management in a lane-free
environment. One impending extension is to provide the necessary functionalities for allowing
the user to assign turn probabilities at bifurcation nodes of the road network, in a lane-free traffic
environment, omitting the origin-destination routing of the vehicles for specific applications.

Another forthcoming extension is the incorporation of lateral boundaries based on the de-
sired path for vehicles to follow, along with the capability to control them at execution time
through the API for emergent applications. In lane-based environments, vehicles can follow
any (feasible) path by simply choosing lanes appropriately. For instance, a vehicle entering a
highway from an on-ramp will typically need to perform a lane-change in order to merge on
the highway. SUMO provides information regarding the availability of the road downstream
through information on available lanes downstream. In our case, a vehicle adhering to the
lane-free paradigm, wishing to enter a highway through an on-ramp, will again need to merge
on the highway appropriately. Then, it is important to introduce an equivalent notion in a
lane-free domain, since providing information on available lanes downstream is not appropriate
in lane-free environments.

As of now, such maneuvers are performed with ad-hoc techniques, tied to specific traffic
scenarios. Yet, there is a need to establish a formal way for vehicles to follow left and right
boundaries on the road, guiding them to always operate within an appropriate lateral region, so
as to comply with their routing. This is illustrated in Figure 11, where we observe a vehicle with
a route initiating from the on-ramp and leading to the off-ramp. The blue lines indicate the
left and right lateral bounds, relevant to the path vehicles need to follow. As such, the vehicle
will be able to request information regarding these two lateral bounds through the API, at any
longitudinal distance relevant to its position. Therefore, the vehicle will have the necessary time
to adjust its behavior in order to be located within the bounds, and as a consequence to follow
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Figure 11: Left and right lateral boundaries for vehicles entering or scheduled to exit from the
off-ramp.

its desired routing scheme. Besides the application for on-ramps and off-ramps, this feature is
crucial to enable microscopic simulation on emerging applications such as internal boundary
control in lane-free traffic for two-way streams, as introduced in [11]. This will also involve an
online update process for the boundaries’ lateral level through the API.

9 Related Work

In this section we provide a brief overview of some of the most popular external frameworks for
SUMO, and further motivate our choice to directly extend this open-source project.

To begin with, Veins [21] is a network simulator that emphasizes on the realistic depic-
tion of communication structures, simulating IEEE 802.11p and IEEE 1609.4 DSRC/WAVE
network layers, and providing an extensive list of useful metrics. “iTETRIS Control System”
(iCS) [18] delivers a platform for large-scale simulation and assessment of Cooperative Intelli-
gent Transportation Systems (C-ITS). They additionally aspire to develop novel traffic control
and communication strategies, along with new metrics that capture the overall performance of
the network in terms of common traffic issues, such as: vehicle emissions, traffic congestion,
travel time etc. VSimRTI [20] is aimed at providing a comprehensive and user-friendly envi-
ronment. It embraces likewise realistic communication structures and energy consumption and
is suitable for large-scale simulations. Flow [25] is a modular framework that facilitates the use
of machine learning (in particular, reinforcement learning) methods to address the complexity
of traffic dynamics. Likewise, Flow communicates with SUMO via TraCI, and is developed in
Python. It also facilitates the creation of a generic simulator, appropriate for microscopic traffic
modelling and the embedding of custom vehicle controllers.

All aforementioned frameworks are flexible and extensible, at least to a certain extent. Still,
to accommodate our needs, considerable source code modifications and extensions would have
been required, since no single framework provides our desired capabilities for lane-free traffic
environments, while any such framework would induce a substantial additional overhead (w.r.t.
time and memory) for communicating with SUMO. This led us to the choice of developing a
direct extension of the SUMO framework, purpose-built for modeling the novel lane-free traffic
paradigm.

Finally, apart from these frameworks based on SUMO, we should mention that AIMUSUN [1]
provides a Software Development Kit with an API that enables users to develop custom con-
trollers, in a way that is slightly resembling of our dynamic library. However, due to lack of
access in the open-source code, AIMSUN could not be alternatively considered for lane-free
microscopic simulation.
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10 Conclusions

We presented TrafficFluid-Sim, a new, modular, and extensible simulator extension of SUMO,
that supports a novel paradigm of lane-free traffic, the one coined by TrafficFluid [14]. We
discussed the main components of the extensions, as well as forthcoming implementations. The
simulator is already employed for the evaluation and expansion of vehicle movement strate-
gies [14, 23, 26] under the novel traffic paradigm. Videos illustrating the presented insertion
policies, and a simulation example with one on-ramp when employing an ad-hoc movement
strategy (see [14]), are available at https://bit.ly/3tf53jD.5 We intend to expand the ex-
isting components and, following its evaluation and feedback by the community, to elevate it
into a fully-fledged, feature-rich platform that will enable the rapid progress of novel lane-free
traffic research approaches; and, more generally, serve the community’s needs and demands.
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