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Abstract— In this paper, we design decentralized control
strategies (per vehicle) for the two-dimensional movement of
autonomous vehicles on lane-free roads, where each vehicle
determines its control input based on its own state and the
relative speeds and distances from adjacent vehicles and from
the boundaries of the road. It is shown that the vehicles do
not collide with each other or with the road boundaries, and
all vehicle speeds converge to a given longitudinal speed set-
point. Moreover, we present sufficient conditions for the emu-
lated (sampled-data) controllers that ensure collision avoidance
between vehicles and with the road boundaries, as well as
speed positivity, bounded speed and bounded orientation of
the vehicles. Finally, we numerically investigate the maximum
allowable sampling period and present periodic and non-
periodic sampling algorithms where each vehicle has its own
sampling period.

I. INTRODUCTION

Vehicle automation has made tremendous advances in the
last decades and addresses different kinds of driver support
systems ranging from Adaptive Cruise Control (ACC) and
lane-assist systems to Cooperative ACC (CACC) and fully
autonomous driving (see [2], [4], [10], [14], [18], [19]).

Recently, launched by [13], new principles were proposed
for autonomous vehicles operating on lane-free roads ([9],
[11], [16], [20]) that may improve traffic flow and increase
capacity of highways. The vehicles do not abide to a lane
discipline, as in conventional traffic, and can move on the
two-dimensional surface of the lane-free road. In addition to
lane-free traffic, another associated concept that can improve
the flow of vehicles on a road is the concept of ‘nudging’
[13]. Nudging implies a virtual force that vehicles apply to
the vehicles in front of them, and it has been shown that
nudging can increase the flow in a ring-road and can have a
strong stabilizing effect; see [6] and references therein.

Some microscopic models have been recently proposed,
attempting to describe vehicle movement with low lane
discipline by their human drivers; see [1], [5], [12]. The
performance of such models, however, is naturally limited
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by the limited perception and decision capabilities of human
drivers, which are strongly inferior to the potential capabili-
ties of autonomous vehicles.

In this paper, we consider identical autonomous vehicles
described by the bicycle kinematic model. The bicycle kine-
matic model is selected because of its ability to capture non-
holonomic constraints of the actual vehicle (see [14]). We
design a family of novel nonlinear decentralized controllers
for the safe operation of the vehicles on lane-free roads
with the following features, which hold globally (Theorem
1): (i) the vehicles do not collide with each other or with
the boundary of the road; (ii) the speeds of all vehicles are
always positive and remain below a given speed limit; (iii)
all vehicle speeds converge to a given longitudinal speed
set-point; and (iv) the accelerations, lateral speeds, angular
speeds and orientations of all vehicles tend to zero.

Moreover, we investigate the sample-and-hold implemen-
tation of the derived continuous-time controllers and present
sufficient conditions for the emulated (sampled-data) con-
trollers that ensure collision avoidance between vehicles and
with the road boundaries, as well as speed positivity, bounded
speed and bounded orientation of the vehicles (Lemma 1 and
Lemma 2). Finally, we demonstrate that the proposed suffi-
cient conditions can also be used for non-periodic sampling
of the controllers where each vehicle has its own sampling
period.

The structure of the paper is as follows. Section II is
devoted to the presentation of the continuous-time controller
and its properties. Section III contains the sampled-data
model and certain sufficient conditions for the sample-and-
hold implementation of the controllers; and in Section IV
we numerically investigate the maximum allowable sampling
period with the emulated controllers. In Section V, we
present numerical examples to demonstrate the efficiency of
the proposed decentralized cruise controllers under periodic
and (state-dependent) non-periodic sampling. Finally, some
concluding remarks are given in Section VI.

Notation. Throughout this paper, we adopt the following
notation. R+ := [0,+∞) denotes the set of non-negative
real numbers. By |x| we denote both the Euclidean norm of
a vector x ∈ Rn and the absolute value of a scalar x ∈ R. By
|x|∞ = max {|xi|, i = 1, ..., n} we denote the infinity norm
of a vector x = (x1, x2, ..., xn)′ ∈ Rn. Let A ⊆ Rn be an
open set. By C0(A,Ω), we denote the class of continuous
functions on A ⊆ Rn, which take values in Ω ⊆ Rm. By
Ck(A; Ω), where k ≥ 1 is an integer, we denote the class of
functions on A ⊆ Rn with continuous derivatives of order
k, which take values in Ω ⊆ Rm.



II. CONTINUOUS-TIME MODEL

Consider n vehicles on a lane-free road of width 2a > 0,
where the movement of each vehicle is described by the
bicycle kinematic model

ẋi = vi cos(θi)
ẏi = vi sin(θi)

θ̇i = σ−1vi tan(δi)
v̇i = Fi

(1)

for i = 1, ..., n, where σ > 0 is the length of each vehicle,
(a constant). Here, (xi, yi) ∈ R × (−a, a) is the reference
point of the i-th vehicle in an inertial frame with Cartesian
coordinates (X,Y ), with i ∈ {1, ..., n} and is placed at the
midpoint of the rear axle of the vehicle, vi ∈ (0, vmax) is
the speed of the i-th vehicle, where vmax > 0 denotes the
road speed limit, θi ∈

(
−π2 ,

π
2

)
is the orientation of the i-th

vehicle with respect to the X axis, δi is the steering angle
of the front wheels relative to the orientation θi of the i-th
vehicle, and Fi is the acceleration of the i-th vehicle. Fi, δi ∈
R are the control inputs of the model. Let v∗ ∈ (0, vmax) be
given (the speed set-point) and define the set

S := Rn × (−a, a)
n × (−ϕ,ϕ)

n × (0, vmax)n (2)

where ϕ ∈
(
0, π2

)
is an angle that satisfies

cos (ϕ) >
v∗

vmax
(3)

The set S in (2) describes all possible states of the system
of n vehicles. More specifically, each vehicle should stay
within the road, i.e., (xi, yi) ∈ R× (−a, a) for i = 1, ..., n,
the vehicles should not be able to turn perpendicular to the
road, i.e., θi ∈ (−ϕ,ϕ), i = 1, ..., n, and the speeds of all
vehicles should always be positive, i.e., no vehicle moves
backwards; and respect the road speed limits. The constant
ϕ is a safety constraint, to restrict the movement of a vehicle.

In what follows, we assume that the distance between
vehicles is defined by

di,j :=
√

(xi − xj)2 + p(yi − yj)2 for i, j = 1, ..., n (4)

where p > 0 is a weighting factor. Note that for p = 1
we obtain the standard Euclidean distance, while for larger
values of p > 1, we have an “elliptical” metric which will
allow to approximate more accurately the dimensions of a
vehicle. The optimal selection of p can be found in [7].

Let

w = (x1, ..., xn, y1, ..., yn, θ1, ..., θn, v1, ..., vn)′ ∈ R4n (5)

Due to the various constraints that were explained above, the
state space of the model (1) is

Ω := {w ∈ S : di,j > L, i, j = 1, ..., n , j 6= i } (6)

where L is a given positive constant (the minimum inter-
vehicle distance). Notice that the state space Ω is not a linear
subspace of R4n, but an open set.

Let V : (L,+∞) → R+ and U : (−a, a) → R+be a C2

functions that satisfy the following properties

lim
d→L+

(V (d)) = +∞ (7)

V (d) = 0, for all d ≥ λ (8)
lim

y→(−a)+
(U(y)) = +∞, lim

y→a−
(U(y)) = +∞ (9)

U(0) = 0 (10)
κ(d) =0, for all d ≥ λ (11)

where λ > L is a constant. The functions V and U above are
potential functions, which have been widely used to avoid
collisions between vehicles and the boundary of the road
(see for instance [4], [15], [17], [19]). The function κ will
be used in the subsequent analysis to characterize the derived
controllers in terms of relative speeds from adjacent vehicles.

We apply, next, a control Lyapunov function methodol-
ogy to design decentralized feedback laws that ensure the
following properties:
(P1) For w(0) ∈ Ω, then w(t) ∈ Ω for all t ≥ 0, which

according to (6) implies that there are no collisions
between vehicles (di,j(t) > L for t ≥ 0, i, j =
1, ..., n, j 6= i) or with the boundary of the road
(yi(t) ∈ (−a, a) for t ≥ 0); the speeds of all vehicles
are always positive and remain below the given speed
limit, (vi(t) ∈ (0, vmax) for all t ≥ 0); and the
orientation of each vehicle is always bounded by the
given value ϕ ∈

(
0, π2

)
, (θi(t) ∈ (−ϕ,ϕ) for t ≥ 0).

(P2) The orientation of each vehicle satisfies lim
t→+∞

θi(t) =

0, i = 1, ..., n, and the speed of all vehicles satisfy
lim

t→+∞
vi(t) = v∗, i = 1, ..., n, for a given a longitudi-

nal speed set-point v∗ ∈ (0, vmax).
(P3) The accelerations, angular speeds, and lateral speeds

of all vehicles tend to zero, i.e., lim
t→+∞

Fi(t) = 0,

lim
t→+∞

θ̇i(t) = 0, and lim
t→+∞

ẏi(t) = 0, i = 1, ..., n.

We define the Control Lyapunov Function, for all w ∈ Ω,

H(w) :=
1

2

n∑
i=1

(vi cos(θi)− v∗)2 +
1

2

n∑
i=1

v2i sin2(θi)

+

n∑
i=1

U(yi) +
1

2

n∑
i=1

∑
i6=j

V (di,j)

+A

n∑
i=1

(
1

cos(θi)− cos(ϕ)
− 1

1− cosϕ

) (12)

where A > 0, β > 1 are parameters of the controller and the
Lyapunov function, v∗ ∈ (0, vmax) is the given longitudinal
speed set-point, and ϕ ∈

(
0, π2

)
is a constant that satisfies

the inequality (3). This Lyapunov function is based on the
mechanical energy of the system plus a penalty term to
restrict the orientation of the vehicles, see [7] for details.

In what follows, we use the input transformation δi :=
arctan

(
v−1i σui

)
in (1), to obtain the following system

ẋi = vi cos(θi), ẏi = vi sin(θi), θ̇i = ui, v̇i = Fi (13)

for i = 1, ..., n, where ui and Fi, are the inputs of the system.



The feedback laws for each vehicle i = 1, ..., n can be
designed using (12), and the potential functions V and U
that satisfy (7), (8) and (9), (10), respectively, as well as the
function κ in (11):

ui=

Gi(w)− U ′(yi)− p
∑
j 6=i

V ′(di,j)
(yi − yj)
di,j

− sin(θi)Fi


×

(
v∗ +

A

vi (cos(θi)− cos(ϕ))
2

)−1
(14)

Fi = − 1

cos(θi)
(ki(w) (vi cos(θi)− v∗) + Λi(w)) (15)

where

Gi(w) = −µ1vi sin(θi)+
∑
j 6=i

κ(di,j) (vj sin(θj)− vi sin(θi))

(16)

Λi(w) =
∑
j 6=i

V ′(di,j)
(xi − xj)
di,j

−
∑
j 6=i

κ(di,j) (vj cos(θj)− vi cos(θi))
(17)

and

ki(w) = µ2 +
Λi(w)

v∗
+

vmax cos(θi)

v∗(vmax cos(θi)− v∗)
f (−Λi(w))

(18)
and f ∈ C1(R) is any function that satisfies

max(0, x) ≤ f(x) for all x ∈ R (19)

The term ki(w) in the acceleration Fi(t) given by (15), is
a state-dependent controller gain which guarantees that the
speed of each vehicle will remain positive and less than the
speed limit. The first term that appears on the right-hand
side of (17), is the summation of repulsive forces (V ′(d))
from vehicles that are in close proximity to vehicle i, and
the summation of relative longitudinal speeds from vehicles
that are in close proximity to vehicle i. If V in (14), (15)
is decreasing, then, the second term of (14) is positive if
vehicle j is behind vehicle i, i.e., (xi − xj) > 0. Indeed, in
this case, we have that −V ′(di,j)(xi−xj)d−1i,j > 0, and this
term represents the effect of nudging, since vehicles that are
close and behind vehicle i will also exert a “pushing” force
towards it that will increase its acceleration.

The following theorem addresses all properties (P1), (P2),
and (P3).

Theorem 1: For every w0 ∈ Ω there exists a unique
solution w(t) ∈ Ω of the initial-value problem (13), (14),
(15) with initial condition w(0) = w0 . The solution w(t) ∈
Ω is defined for all t ≥ 0 and satisfies for i = 1, ..., n

lim
t→+∞

(vi(t)) = v∗, lim
t→+∞

(θi(t)) = 0 (20)

lim
t→+∞

(ui(t)) = 0, lim
t→+∞

(Fi(t)) = 0 (21)

Moreover, there exist non-decreasing functions Qk : R+ →
R+ (k = 1, 2 ) such that |Fi(t)| ≤ Q1(H(w(0))), |ui(t)| ≤
Q2(H(w(0))), for all t ≥ 0, i = 1, ..., n and for every
solution w(t) ∈ Ω of (13), (14), (15).

Remarks: (i) Properties (7) and (11) guarantee that the
feedback laws (14), (15) depend only on information from
adjacent vehicles, namely from vehicles that are located at a
distance less than λ > 0.
(ii) Compared to [7], the feedback laws (14), (15) also
depend on the lateral relative speed, and longitudinal relative
speed from vehicles in the vicinity of vehicle i, (see (16) and
(17), respectively). This modification of the controllers gives
a smoother convergence to the speed set-point v∗.
(iii) Due to space constraints the proof of Theorem 1 is
omitted. The reader is referred to [8] for the proofs of a
general result that includes the results of Theorem 1 and
also the case of vehicles of different lengths.

III. SAMPLED-DATA MODEL

For the actual implementation of the controllers, a typical
approach is that of emulation: a continuous-time controller is
designed initially to satisfy certain closed-loop control spec-
ifications; and then it is implemented as a digital controller.
More specifically, the control inputs Fi, δi are digitalized and
produce a sequence of control values Fi(tk), δi(tk) using the
sampled version of the system’s state w(tk) at each sampling
instant tk+1 = tk + T , k = 0, 1, 2, ..., T > 0, t0 being the
initial time, (see [3] and references therein).

We consider next the emulation of the controllers (14),
(15). For brevity and conciseness, let

ωi := σ−1 tan(δi), for i = 1, . . . , n. (22)

where δi := arctan
(
v−1i σui

)
. Assuming therefore, that

Fi, ωi are constant on the time interval [t, t + T ), T > 0,
t ≥ 0, we obtain with direct integration from (1), the
following exact discrete bicycle model:
If ωi 6= 0

xi(t+ s)=xi(t)

+
1

ωi

(
sin

(
θi(t) + ωi

(
vi(t) +

1

2
sFi

)
s

)
− sin(θi(t))

)
yi(t+ s)=yi(t)

+
1

ωi

(
cos(θi(t))− cos

(
θi(t) + ωi

(
vi(t) +

1

2
sFi

)
s

))
θi(t+ s)=θi(t) +

(
vi(t) +

1

2
sFi

)
sωi

vi(t+ s)=vi(t) + sFi
(23)

for all s ∈ [0, T ]; and if ωi = 0

xi(t+ s)=xi(t) + vi(t) cos(θi(t))s+ Fi cos(θi(t))
s2

2

yi(t+ s)=yi(t) + vi(t) sin(θi(t))s+ Fi sin(θi(t))
s2

2
θi(t+ s)=θi(t)

vi(t+ s)=vi(t) + sFi
(24)

for all s ∈ [0, T ].
The following lemma gives certain sufficient conditions

for the sampling period T in order for a vehicle i to
avoid collisions with other adjacent vehicles and the road



boundaries, and to have bounded orientation and bounded
speed within speed limits.

Lemma 1: Let T > 0 and consider model (23), (24) with
Fi(t) ≡ Fi,ωi(t) ≡ ωi for all t ∈ [0, T ], k = 1, ..., n. Let
w(0) ∈ Ω be given, where Ω is defined by means of (6). Let
also an arbitrary index i ∈ {1, ..., n}be given and suppose
that for each j = 1, ..., n, j 6= i it holds that vj(T ) ∈
(0, vmax) and θj(T ) ∈ (−ϕ,ϕ). Moreover, assume that the
following inequalities hold

T < min

 a− |yi(0)|
vmax sin(ϕ)

,

min
j 6=i
{di.j(0)− L}

δ

 (25)

−vi(0)

T
< Fi(0) <

vmax − vi(0)

T
(26)

−ϕ− θi(0)

vi(0)T + 1
2FiT

2
< ωi(0) <

ϕ− θi(0)

vi(0)T + 1
2FiT

2
(27)

where δ =
√

2vmax

√
1 + (2p− 1) sin2(ϕ). Then, vi(t) ∈

(0, vmax), θi(t) ∈ (−ϕ,ϕ), yi(t) ∈ (−a, a), and di,j(t) > L,
for all t ∈ [0, T ], j = 1, ..., n, j 6= i.

Lemma 1 provides an upper bound on the sampling period
for a vehicle i to satisfy property (P1). In practice, each
vehicle has its own internal clock and may also have its
own sampling period, even in the case of identical vehicles.
Lemma 1, can therefore be exploited to select the sampling
period for each vehicle based on the distance of other
vehicles and the road boundaries, see Section V.

Lemma 2: Let w(0) ∈ Ω be given, where Ω is defined by
means of (6) and consider model (23), (24) with Fi(t) ≡ Fi,
ωi(t) ≡ ωi ∈ R, i = 1, ..., n being constant for all t ∈ [0, T ]
Suppose also that (25), (26) and (27) hold for all i = 1, ..., n.
Then w(t) ∈ Ω for all t ∈ [0, T ].

Lemma 2 suggests that if T is the same for all vehicles
and satisfies (25), (26) and (27) for all i = 1, ..., n, then the
following implication holds: w(0) ∈ Ω ⇒ w(t) ∈ Ω for all
t ∈ [0, T ]. Lemma 2 can also be exploited for non-periodic
sampling with all vehicles having the same period T . Due to
space constraints the proofs of the above lemmas are omitted.

IV. NUMERICAL INVESTIGATION OF MAXIMUM
ALLOWABLE SAMPLING PERIOD

In this section, we examine the Maximum Allowable
Sampling Period (MASP) for the sampled-data system (23)
with the controller (14), (15). Namely, we investigate the
maximum T > 0 for which w(t) ∈ Ω, t ≥ 0 for all
w(0) ∈ Ω. Let

V (d) =

{
q1

(λ−d)3
d−L , L < d ≤ λ
0 , d > λ

(28)

U(y) =


(

1
a2−y2 −

c
a2

)4 ,−a < y < −a
√
c−1√
c

and a
√
c−1√
c

< y < a

0 −a
√
c−1√
c
≤ y ≤ a

√
c−1√
c

(29)

κ(d) =

{
q2(λ− d)2 , L < d ≤ λ

0 , d > λ
(30)

f(x) =
1

2ε


0 if x ≤ −ε

(x+ ε)
2

if − ε < x < 0
ε2 + 2εx if x ≥ 0

(31)

where 0 < L < λ, ε > 0, c > 1 and q1 > 0, q2 ≥ 0.
To study numerically the MASP of the model, we consider

initial conditions w(0) ∈ Ω which satisfy H(w(0)) = ` ∈
R+ for certain values of ` > 0, where H is defined in (12).
Finally, we will consider both the case where the vehicles
only measure the distance from neighboring vehicles (q2 = 0
in (30)) and the case where the vehicles can also use the
relative speeds of adjacent vehicles (q2 6= 0 in (30)).

Fig. 1 shows the MASP for both cases q2 = 0 and q2 6= 0
for increasing values of H(w(0)). With blue is the MASP
when q2 = 0, with red is the MASP when q2 = 0.03, and
with yellow the MASP when q2 = 0.1. It can be seen that,
as the value of H increases, the MASP decreases, while the
MASP is larger for higher values of q2.
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Fig. 1: The sampling times T for increasing values of H , for the
system (23) with (14), (15).

For the previous results, we have used n = 10, σ = 5m,
vmax = 35m/s, a = 7.2m, v∗ = 30m/s, ϕ = 0.25 (in order
to satisfy condition (2.3)), p = 5.11, L = 5.59m, ε = 0.2,
µ1 = 0.5, µ2 = 0.1, q1 = 3 · 10−3, λ = 25m, A = 1 and
c = 1.5. The selection of those values was based on [7],
which also includes a general description on the selection of
appropriate gains. It should be noted that the approximation
of the MASP above, corresponds to the specific selection
of the potential functions V , U and the various constants
associated with them. For a different selection, it is possible
to obtain higher values for the MASP.

V. SIMULATIONS

In the following simulation scenarios, we consider the
use of periodic, non-periodic and state-dependent sampling
periods T. We will consider both the cases κ(d) satisfying
(11), and the case κ(d) ≡ 0, by selecting q2 in (30)
appropriately. Our standing assumption is that for all vehicles
the initial sampling time is at t = 0.

We consider n = 10 vehicles on a lane-free road modeled
by (1) with the feedback laws (14), (15), and f given by
means of (31). The vehicle-repulsive potential function V
and the boundary-repulsive potential function U are defined
in (28), (29), respectively. In all simulation scenarios below,
we consider the same initial conditions and we use the same
parameters and controller gains as in Section IV.
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Fig. 3: Maximum acceleration |Fi(tk)|∞ for q2=0 and q2 6= 0.

Scenario 1: In this scenario, we consider a constant
sampling period T > 0 (the same for all vehicles) that is
selected to satisfy the conditions of Lemma 2. It is observed
that, for q2 = 0 and T = 0.01, no collisions occur, whereas
in the case of T = 0.02 there are collisions with the boundary
of the road. When q2 = 0.001 and T = 0.044, no collisions
occur, whereas in the case of T = 0.047 there are collisions.
Note that for the specific initial conditions of this scenario,
the values of T above, are much larger than the MASP, which
for this case (H(w(0)) = 96), is TMASP = 5 · 10−3 (recall
that the MASP is approximated by over all w0 ∈ Ω). Fig.
2 shows the convergence of the speed to the speed set-point
v∗ for q2 = 0 (blue) and q2 6= 0 (red). It can be seen that the
speed converges faster to v∗ when q2 6= 0. Fig. 3 shows the
accelerations |Fi(tk)|∞. For q2 6= 0 we have higher initial
acceleration which contributes to the faster convergence of
the speed to the longitudinal speed set-point.

Scenario 2: In this scenario, the sampling period T (same
for all vehicles) is not constant, but is dynamically calculated
on the basis of Lemma 2. In particular, T is calculated
according to the formula

Tk = max

{
α, β min

i=1,...,n

{
a−|yi(tk)|
vmax sin(ϕ) ,

min
j 6=i
{di.j(tk)−L}

δ

}}
where tk+1 = tk + Tk, k = 0, 1, ..., α > 0, β ∈ (0, 1).
The constant α > 0 provides a lower bound on the sampling
period, and β adjusts the sampling period in order for (25)
to hold. We set α = 10−4 and β = 0.9. Fig. 4 shows the
non-periodic sampling instants for both cases of q2 = 0
and q2 6= 0 compared to the periodic sampling of Scenario
1. When q2 6= 0, the sampling period T becomes larger
when the vehicles’ speed approaches the set-point v∗ and
approaches a constant value depending on the minimum
inter-vehicle distance and the minimum distance from the
road boundaries for all 10 vehicles. Finally, it can be seen
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Fig. 4: The aperiodic sampling instants for q2 = 0 and q2 6= 0
compared to the periodic sampling of Scenario 1.
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Fig. 5: Convergence of |vi(t) − v∗|∞ for q2 = 0 and q2 = 0.001
in Scenario 2.

from Fig. 5, that, when q2 6= 0, the vehicle speeds converge
faster to their desired speed. For the time-interval [0, 300s],
the simulation’s runtime was 47s for q2 = 0 and 41s for
q2 6= 0, on a machine powered by Intel Core i5−6200, 2.30
Ghz, with Matlab. For Scenario 1, the simulation’s runtime
was 204s for q2 = 0 and 80s for q2 6= 0,

Note that the computation of Tk calls for data from all
vehicles, hence this handling of sample time may be valuable
to speed up the simulation, but it is not for use by real
vehicles. In Scenario 3 below, we consider state-dependent
sample times, which are different for each vehicle and can
be computed based on decentralized data.

Scenario 3: In this particular simulation scenario, we
consider the case where each vehicle has its own sampling
period Ti that changes dynamically at each sampling instant
tik, k = 0, 1, . . . (tik denotes the sampling time of vehicle
i). We assume that at each sampling time tik, vehicle i can
measure through sensors, the relative speeds and distances
from adjacent vehicles and the distance from the boundary
of the road. Each vehicle’s sampling period Ti is calculated
on the basis of Lemma 1, according to the formula

T ik =

max

α, βmin

a− |yi(tik)|
vmax sin(ϕ)

,

min
j 6=i

{
di.j(t

i
k)− L

}
δ




where tik+1 = tik + T ik, k = 0, 1, ..., α > 0, β ∈ (0, 1),
provided that constraints (26) and (27) hold. Fig. 6 and Fig.
7 show the (state-dependent) sampling periods of 4 of the
vehicles for q2=0 and q2=0.001, respectively. It can be seen
that all vehicles have different sampling periods which is
adjusted based on their distance from other adjacent vehicles
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Fig. 6: The sampling periods of 4 of the vehicles during the episode
for q2 = 0.
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Fig. 7: The sampling periods of 4 of the vehicles during the episode
for q2 = 0.001.

and the boundary of the road. Also, it should be noted that,
when q2 = 0 the average T is smaller. More specifically, the
average T across all vehicles for 300s of simulation time,
when q2 = 0, is Tavg = 0.149, and for the case of q2 6= 0,
we have Tavg = 0.159. Notice that in Scenario 2, we have
that Tavg = 0.051 and Tavg = 0.054 for q2 = 0 and q2 6= 0,
respectively, which are almost equal to Tavg of vehicle 10 in
Fig. 6 and Fig. 7 of Scenario 3. Fig. 8 presents the minimum
inter-vehicle distance between all vehicles establishing that
there are no collisions among vehicles.

VI. CONCLUSION

We have presented decentralized (per vehicle) controllers
for autonomous vehicles operating on lane-free roads that
guarantee that there are no collisions among vehicles and
with the road boundaries, and all vehicles attain a desired
speed. Moreover, we have investigated the sample-and-hold
implementation of the continuous-time controllers and we
have demonstrated the use of non-periodic sampling where
each vehicle has its own sampling period. In future work,
we will study the qualitative properties of the emulated
controller, (stability, convergence etc.) with both periodic and
non-periodic sampling. The difficulty of this subject stems
from the facts that the closed-loop system evolves on an
open set (a case not studied in the literature where the state
space is usually the space Rn) and the function H is not a
strict Lyapunov function; and therefore standard techniques
from sampled-data feedback and self-triggered control are
not directly applicable.
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