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Abstract. In this paper we present an application of Deep Reinforce-
ment Learning to lane-free traffic, where vehicles do not adhere to the
notion of lanes, but are rather able to be located at any lateral position
within the road boundaries. This constitutes an entirely different prob-
lem domain for autonomous driving compared to lane-based traffic, as
vehicles consider the actual two dimensional space available, and their
decision making needs to adapt to this concept. We also consider that
each vehicle wishes to maintain a (different) desired speed, therefore cre-
ating many situations where vehicles need to perform overtaking, and
react appropriately to the behaviour of others. As such, in this work, we
design a Reinforcement Learning agent for the problem at hand, consid-
ering different components of reward functions tied to the environment
at various levels of information. Finally, we examine the effectiveness of
our approach using the Deep Deterministic Policy Gradient algorithm.

Keywords: deep reinforcement learning · lane-free traffic · autonomous
driving

1 Introduction

Applications of Reinforcement Learning (RL) in the field of autonomous driving
are gaining momentum in recent years [1] due to advancements in Deep RL [11,
2], giving rise to novel techniques [4, 1]. Another important reason for this mo-
mentum is an increasing interest towards autonomous vehicles (AVs), as the
current and projected technological advancements in the automotive industry
can enable such methodologies in the real-world [8, 7].

As a result, novel traffic flow research endeavours have already emerged, such
as TrafficFluid [12], which primarily targets traffic environments with 100% pen-
etration rate of AVs (no human drivers). TrafficFluid examines traffic environ-
ments with two fundamental principles, namely: (i) Lane-free vehicle movement,
⋆ The research leading to these results has received funding from the European Re-
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meaning that AVs under this paradigm do not consider lane-keeping, but are
rather free to be located anywhere laterally;and (ii) Nudging, where vehicles
may adjust their behavior so as to assist vehicles in their rear that attempt
overtake.

In the context of lane-free driving, multiple vehicle movement strategies have
already been proposed [12, 15, 17, 6]. To the best of our knowledge, so far there
is no work that tackles the problem with RL techniques, while there is an abun-
dance of (Deep) RL applications for conventional (lane-based) traffic environ-
ments [1, 8, 4]. In this work, we view the problem of designing an RL agent that
learns a vehicle movement strategy in lane-free traffic environments. Specifically,
we examine the Deep Deterministic Policy Gradient (DDPG) algorithm, which
was designed to handle continuous action domains.

The reward design is crucial and determines the overall efficiency of the re-
sulting policy [8]. Given the nature of the algorithms, their ability to properly
learn only with delayed rewards and obtain a (near) optimal policy is uncer-
tain, so we propose a set of different reward components, ranging from delayed
rewards to more elaborate and therefore more informative regarding the prob-
lem’s objectives. The learning objectives in our environment are twofold, and
include safety, i.e., collision avoidance among vehicles, and that our agent is able
to maintain a desired speed of choice.

2 Background And Related Work

This section presents the theoretical background of the Deep Deterministic Pol-
icy Gradient algorithm that we utilised, as well as related work tied to lane-free
environments.

2.1 Deep Deterministic Policy Gradient

Deep Deterministic Policy Gradient (DDPG) [10] is an off-policy, actor-critic,
deep reinforcement learning algorithm based on the Deterministic Policy Gradi-
ent (DPG) [10], developed specifically for continuous action domains.

It uses experience replay and target networks, as in DQN [11], solving the
issues of network learning stability. The target networks are two separate net-
works which are copies of the actor and critic network and track the learned
networks with soft target updates.

The update for the critic is given by the standard DQN [11] update by
taking targets yt = rt + γQ(st+1, µ(st+1; θ

µ−); θQ−), where Q(s, a; θQ−) and
µ(s; θµ−) refer to the target networks for the critic and actor respectively. The
actor network is updated according to the sampled policy gradient, as stated in
the Deterministic Policy Gradient Theorem [10].

2.2 Related Work

Under the lane-free traffic paradigm, multiple vehicle movement strategies [12,
15, 17, 6] have already been proposed, with approaches stemming from Control
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Theory, Optimal Control and Multi-agent decision making. In more detail, [12]
introduces a lane-free vehicle movement strategy based on heuristic rules that
involve the notion of “forces” being applied to vehicles, in the sense that vehicles
“push” one another so as to overtake, or in general to react appropriately. Now,
[17] introduces a policy for lane-free vehicles based on optimal control methods,
and more specifically model predictive control, where each vehicle optimizes its
behavior for a specified future horizon, considering the trajectories of nearby
vehicles as well. Furthermore, [6] designs a two-dimensional cruise controller for
lane-free traffic, with more emphasis on Control Theory. Finally, [15] tackles the
problem with the use of the max-plus algorithm, and constructs a dynamic graph
structure of the vehicles, considering communication among vehicles as well. In
this work, we introduce an alternative movement strategy based on Deep RL,
providing various configurations for the reward function.

3 Our Approach

In this section we first present in detail the lane-free traffic environment we
consider, and then the various aspects of the MDP formulation, specifically the
State Representation, and Action Space, along with the different components
proposed for the Reward Function Design.

3.1 The Lane-Free Traffic environment

As a training environment, we consider a ring-road traffic scenario populated
with multiple automated vehicles applying the lane-free driving behavior, as
outlined in [12]. Our agent is a vehicle that adopts the proposed MDP formula-
tion, learning a policy through observation of the environment. The observational
capabilities of our agent includes the position (x, y), speed (vx, vy) of nearby ve-
hicles and its own. Both the position and speed are observed as 2-dimensional
vectors, consisting of the associated longitudinal (x axis) and lateral (y axis)
values. All the observable vehicles share the same dimensions and movement
dynamics. Each vehicle selects randomly a desired speed vd, within a specified
range ([vd,min, vd,max]), and this information can also be monitored. Our agent
controls 2 (continuous) variables, namely the longitudinal and lateral acceler-
ation values (ax, ay), and determines the acceleration/deceleration through ax,
and left/right steering through ay. Fig. 1 illustrates the traffic environment. The
examined ring-road scenario is emulated through a highway, by having vehicles
reaching the end-point reenter the highway appropriately. Vehicles’ observations
are adjusted accordingly, so that they observe a ring-road, e.g., vehicles towards
the end of the highway observe vehicles in front, located after the highway’s
starting point.

As mentioned, other vehicles follow the lane-free vehicle movement strategy
in [12], which does not involve learning, i.e., other agents follow a deterministic
behavior w.r.t. their own surroundings. In addition, we disable nudging [12]
for other vehicles—since when enabled, other vehicles move aside whenever we
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Fig. 1. Snapshot of the Lane-Free Traffic environment

attempt an overtake maneuver, effectively easing the environment of our RL
agent and leading it to learn an unrealistically aggressive driving policy.

3.2 State Representation

The state space describes the environment and must contain sufficient informa-
tion for choosing the appropriate action. Thus, our observation space contains
information about both the state of the agent in the environment and the sur-
rounding vehicles. More specifically, regarding the state of the agent, it was
deemed necessary to store its lateral position y, as well as both its longitudinal
and lateral speed vx, vy. On the other hand, as far as the environment and the
surrounding vehicles are concerned, matters are more complicated, due to the
nature of our problem. In particular, in lane-based environments, the state space
can be defined in a more straightforward manner, as an agent can be trained
by utilizing information about the front and back vehicles on its lane, and the
position of its previous vehicle on the adjacent lanes, in case it handles lane-
changing movement as well. By contrast, in a lane-free environment, we need a
more extensive set of information that depicts our environment in its entirety,
as the number of surrounding vehicles in the 2D space we consider varies.

Our state needs to include information about a predefined number of vehicles,
so only the n closest vehicles are considered in the state space, while ‘placeholder’
vehicles appearing far away may be included in the event that the number of
vehicle is lower than n. This is necessary since the MDP formulation does not
handle state vectors with variable size.

We store information about the speed of the surrounding vehicles, both lon-
gitudinal and lateral. Additionally, intending to have a sufficient state represen-

Fig. 2. Observed information of surrounding vehicles
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tation, we include information regarding the longitudinal (dx) and lateral (dy)
distances of the agent among our car’s center and the cars within an at most d
meters’ (longitudinal) distance—as shown in Fig. 2. Finally, the state space of
our experiments contains our agent’s desired speed vd.

3.3 Action Space

In this work, the primary objective is to find an optimal policy that generates
the appropriate high-level driving behavior for the agent to move efficiently in
a lane-free environment. Hence, our action space consists of two principal ac-
tions: one concerning the car’s longitudinal movement by addressing braking
and accelerating commands; and one relevant to the lateral movement through
acceleration commands for acceleration towards the left or right direction. Since
the DDPG method, which we used in this work, is developed on to environments
with continuous action spaces, we formed our action space into a vector a ∈ R2,
coinciding with the two desired types of actions: a longitudinal acceleration and
a lateral acceleration.

3.4 Reward Function Design

Finding an appropriate reward function for this problem is quite arduous due
to the novel traffic environment. In particular, most of the related work in the
literature on RL techniques for traffic is typically based on the existence of
driving lanes, which constitutes a different problem altogether. For this reason,
a reward function was constructed specifically for lane-free environments.

Several components of reward functions were investigated to explore their
mechanism of influence, as well as to find the most effective form. Before pre-
senting the various components, we first determine the agent’s objectives within
the lane-free traffic environment.

The designed reward function should combine the two objectives of our prob-
lem, that is, maintaining the desired speed vd and avoiding collisions with other
vehicles. All of the presented reward components attempt to tackle these two ob-
jectives. Some are more targeted only towards the end goal, and do not provide
the agent with information for intermediate states, i.e., delayed rewards, while
others are more elaborate and informative, and consequently tend to better guide
the agent towards the aforementioned goals. Naturally, the more informative re-
wards aid in the learning process, and for the baseline algorithms examined, we
also observe a strong influence in the results.

Longitudinal Target Regarding the desired speed objective, we utilize a linear
function that focuses on maintaining the desired speed. In detail, the function is
linear with respect to the current longitudinal speed vx and calculates a reward
based on the the deviation from the desired speed vd of the agent at that specific
time-step. To achieve this, the following mathematical formula is used:
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cx =
|vx − vd|

vd
(1)

It is evident that this function tends to be minimized at 0 whenever we ap-
proach the respective goal. As such, the form of the total reward rt is a reciprocal
function that contains a weighted form of cx in the denominator. That being the
case, we determined that our evaluation function should reverse this, so we select
a reciprocal form (1/x), and we put cx as a denominator.

rt =
ϵr

ϵr + wx · cx
(2)

where rt is the total reward at any time-step t, while ϵr is a parameter that
allows the reward to be maximized at 1 whenever cx tends to 0. We choose a
small value for ϵr, specifically ϵr = 0.1, so as to make the minimum reward be
close to 0 when cx is maximized.

Overtake Motivation Term In our preliminary experiments, we determined
that our agent tends to stuck behind slower vehicles, as it is deemed a "safer"
action. However, this behavior is not ideal, as it usually leads to a greater devi-
ation from the desired speed. To address this particular problem, we created a
function that motivates the agent to overtake its surrounding vehicles.

In detail, a positive reward covertake is attributed whenever our agent over-
takes one of its neighboring vehicle. However, this reward is received only in
cases that there are no collisions.

rt,o =

{
rt + covertake if agent does not collide & overtakes a vehicle;
rt otherwise

(3)

Collision Avoidance Term During the experimental evaluation of the afore-
mentioned methods, we noticed that even though a significant number of colli-
sions seemed to be averted, there were still some occurring that our agent did
not manage to avoid. Based on that, the next logical step was to incorporate
the collisions into our reward function. In this light, we examined numerous
components, with the first being a “simpler” reward, by incorporating the train-
ing objective directly into the reward, aiming to “punish” the agent whenever a
collision occurs.

This is exclusively based on the collisions between our agent and its sur-
rounding vehicles. Specifically, a negative reward ccollide is received whenever a
collision occurs. Essentially, provided with a reward rt according to one of the
aforementioned forms, the reward rt,c that the agent receives is calculated as:

rt,c =

{
rt + ccollide if agent is involved in a collision;
rt otherwise

(4)
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However, this imposes the issue of delayed rewards, as our agent only receives
a negative reward due to a collision with another vehicle. Especially in our
domain of interest, our agent can be in many situations where a collision is
inevitable, even many time-steps before the collision actually occurs, depending
on the speed of our agent, along with the speed deviation and distance from the
colliding vehicle.

Potential Fields To tackle the problem above, we also employ an alternative,
more informative reward component, one that “quantifies” the danger of colli-
sion among two vehicles. The use of ellipsoid fields has been already utilized for
lane-free autonomous driving as a measurement of collision danger with other ve-
hicles [15, 17]. Provided with a pair of vehicles, the form of the ellipsoid functions
calculates a utility that evaluates the danger of collision, taking into account the
longitudinal and lateral distances, along with the respective longitudinal and
lateral speeds of the vehicles and their deviations, adopted from [15].

Given our agent and a neighboring vehicle j, with longitudinal and lateral dis-
tance dxj , dyj , and longitudinal and lateral speed deviation dvx,j , dvy,j , the form
of the ellipsoid functions is as follows: uj = Ec(dxj , dyj)+Eb(dxj , dyj , dvx,j , dvy,j).
Both Ec(dxj , dyj) and Eb(dxj , dyj , dvx,j , dvy,j) contain an ellipsoid function and
capture a critical and broad region respectively. Essentially, the critical region is
based only on the distance of the two vehicles, while the broader region stretches
appropriately according to the speed deviations, so as to properly inform on the
danger of collision from a greater distance, and consequently the agent has more
time to respond appropriately. The interested reader may refer to [15] for more
information on these functions.

Moreover, we also need to accumulate the corresponding values for all neigh-
boring agents, i.e., ut =

∑
j uj for each neighboring vehicle j within our state

observation at a given time-step t. Finally, to bound the associated reward,
we have cfields = min{ut, 1}. We know that each ellipsoid function is bounded
within [0,mu], where mu is a tuning parameter. As such, each utility uj is
bounded within [0, 2mu]. Therefore, m is set accordingly (mu = 0.5), so as to
normalize each uj values to [0, 1]. Thus, the reward rt,fields is adjusted according
to rt in Eq. 2 so as to incorporate this new component, and is calculated as:

rt,fields =
ϵr

ϵr + wx · cx + wf · cfields
(5)

Table 1. Hyper-parameters for RL algorithms

Parameter Value Parameter Value
Optimizer Adam Learning rate α 0.001
Mini-Batch size 64 Actor Act. Function ReLU(Hidden), TanH(Output)
Discount factor γ 0.98 Critic Act. Function ReLU(Hidden), Linear(Output)
Replay Memory size 100000 Actor Layer Size 256,128,2
Soft update parameter 0.001 Critic Layer Size 256,128,1
Training episodes N 625 Noise Process Ornstein-Uhlenbeck
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Notice that rt,fields = rt whenever there is no captured danger with neighboring
vehicles, i.e., the ellipsoid functions for each neighbor j returns uj = 0.

All-Components Reward Function To further improve our agent’s perfor-
mance, we combine all of the previous components in a single reward function
rt,all, that contains rt,fields (Eq. 5) and the additional terms for overtake (Eq. 3)
and collision avoidance (Eq. 4).

4 Experimental Evaluation

In this section we present our experimental results via a comparative study of
the different reward functions that we propose, aiming to showcase trade-offs
between the two objectives.

4.1 RL Algorithm and Simulation Setup

DDPG was the prevalent choice for testing the proposed design, as it tackles
continuous action domains. DQN (and popular variants) were also examined
with a discretized action domain, but exhibited inferior performance. The hyper-
parameters used in our implementation are provided in Table 1. We empirically
examined different parameter tunings, and selected the ones that provide the
best overall results.

We train and evaluate our method on a lane-free extension of the Flow [16]
simulation tool, as described in [15]. Moreover, to facilitate our experiments,
we utilized the Keras-RL library [13]. The Keras-RL framework implements
some of the most widely used deep reinforcement learning algorithms in Python
and seamlessly integrates with Tensorflow and Keras. However, technical adjust-
ments and modifications were necessary to make this library compatible with our
problem and environment. Furthermore, the proposed lane-free driving behavior
decision-making model was tested in the highway scenario as specified in Sec. 3.1
with the specified parameter choices of Table 2, whereas in Table 3, we provide
the parameter settings related to the MDP formulation.

4.2 Results and Analysis

As discussed in Sec. 3.4, we proposed several reward components. Their effec-
tiveness is evaluated based on three metrics. These are: the average reward value,

Table 2. Simulation Parameters

Parameter Value Parameter Value
Highway length 500 m Vehicles’ length 3.5 m
Highway width 10.2 m Vehicles’ width 1.8 m
Types of vehicles 2 Num. of vehicles 35
Agent’s length 3.2 m Time-Interval 0.25 s
Agent’s width 1.6 m Execution Time 200 s
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Table 3. Parameter choices related to MDP formulation

Parameter Value Parameter Value
agent’s desired speed vd 20m/s wx 0.65
other vehicles’ desired speed [18− 22]m/s covertake 2
num. of vehicles in state n 5 ccollide −2.5
longitudinal observation distance d 80 wf 1

the speed deviation from the desired speed (for each step, we measure the devi-
ation of the current longitudinal speed from the desired one (vx − vd), in m/s),
and the average number of collisions. All results are averaged from 10 runs.

In Figs. 3, 4 and 5 we demonstrate our agent’s average reward, speed devia-
tion, and the number of collisions respectively. In each of these figures, there are
five curves that depict the performance of the proposed reward functions. Specif-
ically, in each examined reward function, the Longitudinal Target reward 3.4 is
combined with an associated component to tackle the collision avoidance objec-
tive. We refer to the reward associated with the Collision Avoidance Term (Eq. 4)
as ‘Collision Avoidance Reward Functions’, while the addition of the overtaking
motivation in that specific reward function, (Eq. 3), is labeled as ‘Overtake and
Avoid Collision Reward Function’. Furthermore, the use of the fields (Eq. 5)
for that objective is labeled as ‘Fields Reward Function’ and ’Fields and Avoid
Collision Reward Function’ when combined with the Collision Avoidance Term.
Finally, the assembly of all components in a single reward function (see Sec. 3.4)
is referred to as ‘All-Components Reward Function’. All of the aforementioned
functions demonstrate how the agent’s policy has improved over time.

As evident in Figs. 4 and 5, the ‘Collision Avoidance Reward Function’ man-
ages to maintain a longitudinal speed close to the desired one. Yet, it does
not manage to decrease the number of collisions sufficiently. Moreover, the ad-
dition of the overtaking component, in ‘Overtake and Avoid Collision Reward
Function’, achieves a longitudinal speed slightly closer to the desired one, while
the collision number is still relatively high. On the contrary, the ‘Fields Reward

Fig. 3. Reward over time for different reward functions
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Fig. 4. Collisions over time for different reward functions

Table 4. Comparing the different Collision related components

Function Coll. Overtake &Coll. Fields Fields &Coll. All-Components
Collisions 2.26 2.29 1.76 0.72 0.64
Speed Dev. (m/s) −0.13 −0.05 −0.32 −0.69 −0.61

Function’ exhibits a similar behavior to the previous mentioned reward functions,
with a slight improvement on collision occurrences. Finally, both the ‘Fields and
Avoid Collisions Reward Function’ and the ‘All-Components Reward Function’
perform slightly worse in terms of speed deviations. However, they obtain sig-
nificantly better results in terms of collision avoidance, therefore balancing the
two objectives much better. On closer inspection though, the ‘All-Components
Reward Function’ manages to maintain a smaller speed deviation and number of
collisions, thus making it the prevalent choice for a more effective policy overall.

To further demonstrate this point, we present in Table 4 a detailed compar-
ison between these 5 reward functions. The reported results are averaged from
the last 50 episodes of each variant, where the learned policy has converged in all

Fig. 5. Speed Deviation over time for different reward functions
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cases, as noticeable in Fig. 3. Policies resulting from different parameter tunings
that give more priority to terms related to collision avoidance (ccollide, wf ) do in
fact further decrease collision occurrences, but we always observed a very simplis-
tic behavior where the learned agent just follows the speed of a slower moving
vehicle in front, i.e., is too defensive and never attempts overtake. Therefore,
such policies were neglected.

Evidently, higher rewards do not coincide with fewer collisions, meaning that
the reward metric should not be taken at face value, as we compare different re-
ward functions. This is particularly noticeable in the case of the ‘All-Components
Reward Function’ and the ‘Fields and Avoid Collisions Reward Function’, where
there is a reduced reward over episodes, but when observing each objective, they
clearly exhibit the best performance (cf. Fig. 4 , Fig. 5 and Table 4). This is ex-
pected, since the examined reward functions have different forms. In Table 4
we also observe the effect of the ‘Overtake’ component. Its influence in the final
policy is apparent only when combined with ‘Fields and Avoid Collisions Reward
Function’, i.e., forming the ‘All-Components Reward Function’.3

Finally, we must point out that a slight deviation from the desired speed in
our experiments is to be expected. Maintaining the desired speed throughout an
episode is not realistic. Throughout our experiments, it is obvious that the two
objectives are countering each other since a vehicle operating with slower speed
is more conservative, while a vehicle wishing to maintain higher speed than its
neighbors needs to overtake in a safe manner, and consequently has to learn a
more complex policy that performs such an elaborate maneuvering.

5 Conclusions and Future Work

In this work, we formulated the problem of single agent autonomous driving in
a lane-free traffic environment, and introduced a set of reward functions at var-
ious levels of information in order to tackle the two objectives, namely collision
avoidance and targeting a specific speed of interest. Moreover, we evaluated our
formulation and compared the proposed reward functions, utilizing a popular
Deep RL algorithm, DDPG. In future work, we plan on examining different RL
algorithms, such as NAF [5], PPO [14], other noteworthy advancements from the
Deep RL literature [2], and also methods that do not necessarily involve learning,
such as Monte-Carlo tree search (MCTS) [3]. Finally, it would be interesting to
utilize Deep RL to explicitly tackle multi-objective problems [9].
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