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Abstract. The recently introduced lane-free traffic paradigm removes
the restrictions of the traffic lanes, so that autonomous vehicles can move
anywhere laterally across the road’s width. Previous research in this do-
main has employed the celebrated max-plus message-passing algorithm
in order to allow the coordination of all (connected and autonomous)
vehicles in the environment. However, when allowing for the realistic
perspective that there exist vehicles that are unable or unwilling to com-
municate with others, the uncertainty introduced renders the aforemen-
tioned coordination approach ineffective. To combat this, in this paper we
adjust the Max-plus algorithm accordingly so that agents using max-plus
for coordination can also observe and take into consideration indepen-
dent agents via emulated messages. We put forward different methods
to form these messages—namely the Maximax, Maximin, Hurwicz, Min-
imax Regret and Laplace decision-making criteria. Finally, we provide a
thorough evaluation of our approach, including a detailed comparison of
all criteria used for message-forming.

Keywords: Max-plus algorithm · Uncertainty · Lane-Free Traffic.

1 Introduction

In recent years, there have been significant advancements in the field of automo-
biles and the automation of vehicular traffic. While research in this field mainly
focuses on lane-based traffic, a recent development is the investigation of the
novel lane-free traffic paradigm [11, 10].

In our work, we also consider agents operating in a lane-free environment,
specifically on a lane-free one-way highway. As such, vehicles are not restricted
by the lanes as in traditional highways, but can instead move freely across the
⋆ The research leading to these results has received funding from the European Re-

search Council under the European Union’s Horizon 2020 Research and Innovation
programme/ ERC Grant Agreement n. [833915], project TrafficFluid.
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entire highway width. Connected and Autonomous Vehicles (CAVs) enter the
highway at random positions, with randomly assigned desired speeds. In their
attempt to reach their desired speed and exit the highway with minimum delay,
they may accelerate and move past other agents, and this kind of maneuvers
may result into collisions among them.

Now, in existing work, the max-plus algorithm [7, 14] is used to coordinate
the movement of the CAV agents, and assist them in reaching their desired
speeds while avoiding collisions. Note that this line of work has only focused
on homogeneous environments, where every agent in the highway decides upon
its actions using the max-plus algorithm. By contrast, we introduce additional
agents whose movement is independent of the max-plus algorithm, and modify
max-plus in order to incorporate them within the algorithm. However, due to
the lack of communication, this imposes uncertainty for max-plus agents. To
this end, we adopt a range of different decision-making criteria to be embedded
in our adjusted version of max-plus, so as to incorporate uncertainty within
the algorithm. The incorporated criteria include: Maximax, Maximin, Hurwicz,
Minimax Regret, Laplace; and also a simple opponent modelling technique we
devised for our domain. Our experimental evaluation shows that the embedding
of decision-making criteria in the face of uncertainty within max-plus, does in
fact reduce collision occurrences; and that the more elaborate criteria provide
incremental improvements.

In what follows, in Section 2 we provide the relevant background work, that
will be used as our foundation to address the issues of uncertainty in the lane-free
environment, while in Section 3 we present our approach involving the adjust-
ment of max-plus algorithm and the incorporation of multiple criteria that ad-
dress the uncertainty imposed by individual agents. In Section 4 we present our
experimental evaluation and discuss the effectiveness of our approach by com-
paring each criterion in terms of reducing collisions among max-plus-coordinated
and independent agents. Finally, in Section 5 we conclude our work and address
potential future endeavors.

2 Background and Related Work

In this section, we present the technical background of this work, namely the
framework of Coordination Graphs and the max-plus Algorithm, along with
related work, with more focus towards the existing work that we build upon.

2.1 Coordination Graphs

Coordination Graphs (CGs) [4] are used in multi-agent systems to model coor-
dination among agents. In a multi-agent environment, there is not always a need
for explicit coordination among all agents. Local coordination between agents
that interact with each other is often enough to achieve the global coordination
task. CGs take advantage of this, allowing for scalability in the number of par-
ticipating agents, and making the joint action of a set of agents that maximizes
the global utility more easily obtainable.
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In CGs, the agents are represented by a node in the graph, and the cross-agent
interactions take the form of edges denoting a need for coordination between the
connected agents. Each agent i ∈ N , where N is the set of nodes (agents),
performing an action ai ∈ A, where A is the action domain of ai, has a local
utility fi(ai), while fij(ai, aj) corresponds to a shared utility related to the edge
i, j ∈ E, where N is the set of edges. As such, the global utility u(a) is defined
as :

u(a) =
∑
i∈N

fi(ai) +
∑

(i,j)∈E

fij(ai, aj) (1)

2.2 The Max-plus Algorithm

The Max-plus algorithm [7] is a message-passing algorithm that provides a so-
lution to a CG representation of a coordination problem, i.e., provides an action
for each participating agent i.

In every iteration, each agent i sends locally maximized messages µij(aj)
according to their current maximizing action ai, to each one of their neighboring
agents j connected with an edge in the graph i((i, j) ∈ E∀j ∈ Ni. Each message
can be calculated by:

µij(aj) = maxai
{fi(ai) + fij(ai, aj) +

∑
k∈Ni\{j}

µki(ai)}+ cij (2)

Convergence is only guaranteed when the CG does not contain cycles. A nor-
malizing value of cij = − 1

|Nk|
∑

k µik(ak) can be added to normalize the values
of messages, so that they do not constantly accumulate when cycles exist in the
graph. Finally, each agent i selects the action ai that maximizes the received
local messages µji(ai) along with i’s local payoff fi(ai): ai = argmaxai

{fi(ai)+∑
j∈Ni

µji(ai)}. Max-plus is an iterative algorithm, and is executed until con-
vergence of the passing messages µij , or until a stopping criterion is met.

2.3 Max-plus in the Lane-Free environment

The adoption of the max-plus algorithm in the lane-free environment involves
the construction of a CG as defined by the local interaction among agents [13].
Each lane-free vehicle is an agent i depicted by a node i ∈ N in the graph. Its
interaction with nearby agents depends primarily on the distance between them.
An agent i considers nearby vehicles on the front and back within a certain
longitudinal distance dx, which is set at 50m. Now, each agent does not form
connections with all observed agents, but only with those that there is an actual
need for coordination, so as to avoid a potential collision. As such, the authors
in [13] adopt Artificial Potential Fields to quantify the danger of collision between
two agents i and j, and incorporate this function into the local utilities. For that,
the authors select the ellipsoid function to capture the potential collision in this
domain. The form of the ellipsoid used is:

E(dx, dy) =
m(

( |dx|α )px + ( |dy|b )py + 1
)pt

(3)
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where dx, dy are the longitudinal and lateral distance of the respective center
points of the vehicles i, j. The parameters a, b are used to adjust the range of the
field for the x, y axis, while the px.py, pt affect the overall shape, and m defines
the magnitude when the distances are close to 0.

The local utility function contains two components, namely the “critical re-
gion” and “broader regions”, as:

Uij(sij) = Ec(dxij , dyij) + Eb(dxij , dyij , dvx,ij , dvy,ij) (4)

Authors use a tuple of information relevant to the local state among the two
agents with sij . The critical region Ec is based solely on the distance of the
agents, providing a positive value when agents are too close, while the broader
region Eb also accounts for the relative speed of the vehicles in both axes, captur-
ing a broader view of the vehicles, informing when a collision is about to happen
when vehicles approach one another with high speed. For more information on
the Artificial Potential Fields used for the local utilities, we refer the interested
reader to [13]. The maximum number of edges for forwards and backwards agents
is also restricted, in order to control the graph’s density. This selection process
is performed based on the euclidean distance between agent i and each neighbor
agent j.

The agents’ goal is to avoid collisions with their neighboring agents while
trying to reach and/or maintain their assigned desired speed vd,i. The local
payoff fij(ai, aj) incorporates that as a local edge utility function. The transition
function is used for all combinations of joint action pairs, to provide the value
of the potential field for the resulting state at the next time-step (depicted with
s′ij) to the local payoff fij(ai, aj), that “informs” the agents on the outcome of
their interaction.

Thus, the local payoff function fij(ai, aj) shared by i, j at local state sij is:

fij(ai, aj) =

{
−Uij(s

′
ij), Uij(s

′
ij) ̸= 0

cs · rv,ij , else
(5)

rv,ij = rv,i ·
1

|Ni|
+ rv,j ·

1

|Nj |
(6)

where |Ni| is the number of edges that contain agent i. The form of rv,ij is a linear
function based on current speed vx,i, normalized according to the desired speed
vd,i. This speed utility component is defined as: rv,i = (vd,i − |vd,i − vx,i|)/vd,i.
When the agents are close enough and in danger of a collision, the local payoff
fij(ai, aj) is negative. Otherwise, it is positive and reflects the goal of reaching
the desired speed.

Finally, the action domain A is discretized in order to comply with the max-
plus algorithm, and each agent considers a set of 5 possible actions:

– a0: zero acceleration in both axes.
– a1: longitudinal acceleration of 2m/s2.
– a2: longitudinal deceleration of 2m/s2.
– a3: lateral acceleration 1m/s2 towards left.
– a4: lateral acceleration 1m/s2 towards right.
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2.4 Related Work

Regarding the lane-free traffic application domain, many works already exist that
propose relevant vehicle movement strategies, which tackle the problem from
different research fields. First, the authors in [11] propose a rule-based vehicle
movement strategy by adopting the notion of forces being applied to nearby
vehicles, and this strategy is employed by the independent vehicles we introduce
in the lane-free environment. Moreover, the work of [16] introduces an optimal
control approach for the problem of lane-free driving, with vehicles optimizing
their behavior by considering a future horizon and updating their trajectories
online based on model-predictive control. Finally, the authors in [6] design a two-
dimensional lane-free cruise controller with more emphasis on control theory.

Within the framework of CGs, there are works that tackle uncertainty in
the environment already, but to the best of our knowledge, there is no work
that extends max-plus based on our formulation, addressing the uncertainty of
independent agents with decision-making criteria. In more detail, authors in [1]
tackle coordination problems under uncertainty by devising Fuzzy Coordination
Graphs, as they view the problem from the perspective of fuzzy games [8] and
propose a variant of the variable elimination algorithm [4] to obtain the joint
action. Moreover, in [9], agents’ interactions are depicted in a graph structure, as
in CGs, and the authors address the uncertainty for decentralized planning under
uncertainty regarding the agents’ observations. To do so, they incorporate the
notion of beliefs into the Monte Carlo Tree search algorithm used for planning
and use heuristic-based policies to predict other agents’ actions.

3 Max-plus under Uncertainty

The main goal of this work is to extend the use of the max-plus algorithm to
non-homogeneous lane-free environments. A non-homogeneous lane-free environ-
ment consists of additional agents that do not operate following the max-plus
algorithm. We introduce new independent agents, with different behavior, that
have no form of communication with other agents. This restriction imposes the
challenge of predicting and modeling these agents in a way that is compatible
with the max-plus algorithm, i.e., the message-passing operation of locally max-
imized messages sent among communicating agents. As such, to incorporate this
new type of agent into the max-plus algorithm we emulate the messages that
would be sent from independent agents to max-plus agents.

3.1 Emulated Messages

To apply the max-plus algorithm in a non-homogeneous lane-free environment,
we first incorporate the independent agents in the CG accordingly. We consider
a CG modeled as in [13], where each agent is represented by a node in the graph.
Now, as in [13], we assume that each agent possesses observational capabilities,
therefore agents can observe their surrounding vehicles’ current status (position,
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speed, dimensions). As such, max-plus agents also observe independent agents
nearby. Therefore, the observed independent agents are again represented by
nodes, and edges that indicate a need for coordination can be formed (only)
from the perspective of max-plus agents. However, the coordination between
max-plus and independent agents cannot be achieved since there is no actual
communication with independent agents.

The inability of non-cooperative agents to receive and read messages sent
from max-plus agents means that sending any messages to them is ineffective.
Thus, we establish a one-way communication between non-cooperative and max-
plus in the form of emulated messages sent only from (observed) independent to
max-plus agents. These messages are only emulated when the respective max-
plus agents do observe independent agents and an edge that connects them
exists within the CG. As mentioned, max-plus agents’ can detect their neighbors’
position and speed. This means that during the calculation of these messages,
the longitudinal and lateral position of non-cooperative agents can be considered
known, as well as the speed of the vehicles in both axes.

In Fig. 1 we present an example of our non-homogeneous environment and
visualize the messages exchanged or emulated. Agents 2 and 3 follow the max-
plus algorithm, while the agents 1 and 4 are independent, and they receive no
messages. Agents 2 and 3 exchange messages for their actions, and also emulate
messages from the observed agents 1 and 4.

3.2 Prediction Under Uncertainty

We reformulate the max-plus algorithm in order to incorporate emulated mes-
sages from other agents and take them into account for the decision-making
process regarding the actions of the max-plus agents. For each neighbor, the
agent checks if it is a max-plus agent, a fact ascertained by the receipt of the
corresponding µij message from that agent. Otherwise, they emulate the mes-
sage from that agent. The pseudocode of our max-plus extension is provided in
Algorithm 1. Messages emulated from observed agents that are not operating

Fig. 1. The messages that each agent will receive.
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Algorithm 1 Max-plus algorithm with independent agents
1: procedure Max_Plus(N,E,A, class)
2: for i ∈ N do ▷ N is the set of agents
3: neighbors← ∪∀(i,j)∈E{j} ▷ ∀(i, j) ∈ E, only i may be independent
4: for j ∈ neighbors do
5: for a_j ∈ A do
6: if class(i) ∈ maxplus then
7: µij(aj)← maxai [fi(ai)+fij(ai, aj)+

∑
k∈neighbors\i µki(ai)]+cij

8: action[i]← max_g_action(A, i, µ, neighbors)
9: else

10: µij(aj)← µ_toEmulate(aj , i, j, A)
11: end if
12: end for
13: end for
14: end for
15: return action
16: end procedure

according to max-plus, are calculated based on the “µ_toEmulate”. Finally, the
“max_g_action” simply returns the action for agent i that maximizes its re-
ceived messages µji(ai) (see [7] for more details). We should note that we also
employ the anytime implementation of max-plus [7], but do not include it in this
pseudocode in order to maintain simplicity. In what follows, we provide multi-
ple criteria for the calculation of emulated messages, i.e., the implementation of
“µ_toEmulate”.

We now must specify the content of those emulated messages. Max-plus
agents shall choose the best action for them and their neighbors, while still
abiding by the max-plus algorithm, by choosing the action that maximizes the
summation of the received messages. Considering there is no way of knowing
for certain the intentions of non-communicative agents, our best option is to
make assumptions regarding their action and the emulated messages should re-
flect this. These conditions of uncertainty, render the use of decision rules (or
decision-making criteria) under uncertainty necessary. The ones examined in this
paper are: the Maximax criterion; the Wald’s Maximin criterion; the Hurwicz
criterion; the Savage’s Minimax Regret ; and the Laplace’s criterion.

Maximax, Maximin and Hurwicz’s Criterion First, we examine three
standard approaches for problems under uncertainty, the Maximax, Wald’s Max-
imin [15] and Hurwicz [5] criteria. The Maximax criterion is an optimistic ap-
proach, since it makes the assumption that the best case scenario will always
occur, and suggests an action that fits those conditions. On the contrary, Max-
imin considers the worst-case scenario due to the uncertainty that is associated
with the complete lack of information about the possibilities, leading to a more
pessimistic decision-making process. The Hurwicz criterion [5], introduced by
Leonid Hurwicz in 1951, offers a “middle ground” option between the Maximax
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and Maximin criteria. The Hurwicz criterion attempts to find a balance be-
tween the extremes of the pessimism of Maximin and the optimism of Maximax.
Hurwicz makes use of a β temperature parameter, which acts as a measure of
confidence in the decision maker regarding the probability of the best case sce-
nario occurring, i.e., the β value reflects the decision maker’s willingness to take
risks. The variable β can take any value between 0 and 1.

When β is set to 1, the Hurwicz criterion is reduced to the Maximin criterion,
while β = 0 reduces Hurwicz to the Maximax criterion.

When the Maximax criterion is adopted, for an independent agent i and
a max-plus agent j, the message associated with an action aj of agent j in
accordance to the actions of agent i is calculated as:

µmax,ij(aj) = maxai
{fij(ai, aj)} (7)

Likewise, for the Maximin criterion:

µmin,ij(aj) = minai
{fij(ai, aj)} (8)

For the Hurwicz criterion, the message associated with each aj results from
the weighted average of maximum payoff (multiplied by β) and minimum payoff
(multiplied by 1 - β). For any value assigned to β, the message value that will
be sent is formed by:

µji(aj) = β · µmax,ji(ai) + (1− β) · µmin,ji(ai) (9)

Dynamic calculation of β in Hurwicz Criterion Typical uses of the Hur-
wicz criterion make use of β as a constant, with a value between 0 and 1. How-
ever, our lane-free environment contains dynamic interactions among agents, and
they encounter situations of interactions where a predetermined degree of opti-
mism/pessimism may not be appropriate. As such, we consider that the distance
between agents i and j can affect the optimism for the outcome of i’s action. A
simple way of modelling a dynamic β based on the distance between two agents
is calculating the longitudinal distance between them and normalizing that value
accordingly so that β ∈ [0, 1]. Therefore, β is calculated as:

β =
|dxij |
dxmax

(10)

where |dxij | is the longitudinal distance between i and j, and dxmax is the
maximum distance that two vehicles can be apart in the x axis, and still be
considered neighbors in the CG.

Savage’s Minimax Regret Savage’s Minimax Regret criterion [12] is an ex-
tension of Wald’s Maximin criterion. Minimax Regret provides an alternative
approach that tackles the unpredictability of the environment, by incorporating
the notion of regret. To handle the uncertainty of the choices of other agents, in-
stead of just maximizing the minimum possible payoff, we calculate the regret of
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each action. An action’s regret in a specific state refers to the difference between
the best payoff in that state, and the actual payoff produced when a particu-
lar action is performed. The Minimax Regret criterion minimizes the maximum
regret an action of agent j may have across all actions of agent i.

In systems with two agents i and j, the regret of an action of j is defined
based on the possible outcomes when i performs any of its available actions (of
the set of actions A). Consequently, there are |A| possible states. In the lane-free
environment, a max-plus agent may have multiple neighbors, whose combination
of actions result into different states. If |Nj | is the number of agents neighboring
a max-plus agent j in the CG, the number of possible states occuring are |A||Nj |.
First, considering only one independent agent i observed by a max-plus agent j,
for any state that is generated by the selected action ai, the maximum regret of
an action aj is defined as:

R(aj) = maxai∈A{maxak∈A{fij(ai, ak)} − fij(ai, aj)} (11)

where the calculation within the max operator for the actions of i depicts the
element ai, aj of the regret table.

The criteria we examined so far only form messages based on the actions of
individual neighbors. However, for Minimax Regret, viewing each neighbor in-
dividually is inappropriate, as the resulting messages, consisting of regret values
are not properly combined through a simple summation process. As such, Mini-
max Regret takes into account all independent neighbors from the perspective of
each max-plus agent. Consequently, we must calculate the payoffs for each state
created by the combination of action of the neighbors. Thus, given a max-plus
agent j, and a set of p independent agents {i1, · · · , ip} connected with j within
the CG, the maximum regret of each action aj is calculated as:

R(aj) = max{ai1
,··· ,aip}∈Ap

{
maxak∈A

{ ip∑
i=i1

fij(ai, ak)
}
−

ip∑
i=i1

fij(ai, aj)
}

(12)

where we are interested in minimizing R(aj) instead of maximizing. As such,
the associated message is: µij(aj) = −R(aj), where the index i now reflects the
whole set of independent agents that j observes and is connected to, meaning
that in contrast to all other criteria, we emulate a single set of messages for all
independent agents connected to j.

To calculate R(aj),∀j ∈ A, we use a tree to construct the joint action space,
and obtain the sum of the local functions associated with each independent agent.
Starting at the root, we create |A| children and attach to them the associated
local message payoff, resulting from the joint action of j with the neighbor i1.
We then iteratively expand each child node according to the actions of the ik
neighbor and attach to each node the associated local message payoff plus the
value of parent node. This is repeated for all neighbors p. As such, each leaf
node will contain the sum of local payoffs associated with the corresponding
joint action of all neighbors.
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Laplace’s Equal Likelihood Criterion The Laplace criterion [3] is based
on the principle of insufficient reason. Essentially, it states that if there is no
sufficient reason to assume the probabilities of any scenario occurring, we can
only infer that all possible outcomes occur with the same probability. For each
action agent i may take, we assign the same probability. Since we consider all
agents in our environment have the same set of available actions as our agents,
the probability assigned to each action is 1

5 = 0.2. The message attached to
the action aj of max-plus agent j from non-cooperative agent i, is formed by
calculating the average payoff for all actions of i:

µij(aj) =
∑
ai∈A

1

|A|
· (fij(ai, aj)) (13)

Thus, the Laplacian criterion considers each action to be occurring with the
same frequency. This of course cannot possibly hold true for autonomous agents
in a lane-free environment, which are expected to be adopting different driv-
ing behaviours and strategies. As such, we expect that classifying independent
agents into different behavioural types, and tracking their actions in an oppo-
nent modelling fashion, could be beneficial in terms of computing more accurate
average payoff estimates and thus coordination messages.

As a first step towards that direction, we devise a simple opponent model by
classifying each independent agent according to its surroundings. We detail that
model immediately below.

Opponent Modelling The behavior of drivers in real-life scenarios is heavily
dependent on the vehicles in close proximity. For instance, a driver will not
accelerate when another is directly in front of her and will be reluctant to slow
down to avoid hitting cars that are in her rear.

We use a simple heuristic in order to classify each independent agent by the
number of their respective neighbors. For an independent agent i, we distinguish
each neighbor k (within distance of do = 50m from the perspective of i) based
on the relative position from i, i.e., we recognize that k is in front of i when
its relative longitudinal position is greater than 0 (dx = xk − xi). Similarly, k
is considered to be on the left or right w.r.t. i based on their respective lateral
placement. Based on these values we consider each neighbor of the independent
agent to be either at its front-left, front-right, rear-left or rear-right.

An illustrative example is provided in Fig. 2, where vehicle 0 is an inde-
pendent agent with five other agents 1, 2, 3, 4 and 5 in its surroundings. Each
neighboring agent of 0 must be in one of the 4 regions to be characterised as a
front-left, front-right, rear-left or rear-right neighbor. Based on these areas, we
consider be 1 on the rear-left, 2 and 3 on the rear-right, 4 on the front-right, and
5 on the front-left of independent agent 0.

Then, for independent agent i we count the number of neighbors on each
region and classify i by this information. To bound the number of classes, we
consider at most five agents within each aforementioned region, prioritizing ac-
cording to the agents’ distance from i. That means each agent i belongs to a
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Fig. 2. Showcasing the assignment of an independent agent’s neighbors to each region.

category described by a tuple: ⟨n0, n1, n2, n3⟩, where elements are the number of
front-left, front-right, rear-left, and rear-right neighbors respectively. This results
in 64 = 1296 different classes of agents (each element has six possible states, from
0 to 5 agents). To determine the probability of an action that an independent
agent may take, we first observe their actions and update the frequencies of their
actions accordingly.

Notice that the acceleration of independent agents can be observed implicitly
by the max-plus agents at each time-step, through the speed update. Thus, the
acceleration of an independent vehicle is calculated by ac = vt−vt−1

time_step , where
vt−1, vt is the longitudinal speed of an independent agent at two consecutive
time-steps. Any independent agent may operate directly in the continuous do-
main, i.e., have continuous values for acceleration. We convert these to the avail-
able set of discrete actions in order to be compatible with max-plus. We remind
the reader that we have a set of 5 discrete actions, with action a0 being equiv-
alent to zero acceleration across all axes. We set a threshold value of ct. If the
acceleration of an independent agent does not exceed these threshold in both
axes, we assume they perform the action a0. The actions a1, a2 that correspond
to movement in the x axis (acceleration and deceleration respectively), are as-
sumed when the agent’s longitudinal acceleration exceeds ct in the corresponding
direction. Similarly for the lateral acceleration.

Finally, after collecting information from independent agents, the emulated
message attached to the action aj of a max-plus agent from an independent
agent i, is formed by calculating the weighted average payoff for all actions of i,
and Equation 13 now becomes:

µij(aj) =
∑
ai∈A

wclass(i, ai) · (fij(ai, aj)) (14)

where wclass(i, ai) returns the measured weight (i.e., frequency of occurrence)
of action ai for the associated class of i, by accessing information regarding i’s
neighbors for the classification.
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4 Experimental Evaluation

In this section we present our experimental evaluation where we first introduce
independent lane-free agents. In order to investigate more “extreme” conditions,
we also examine independent agents with added noise, which naturally adds
to the uncertainty. Then, we provide our experimental results for 2 different
distributions of lane-free agents and independent agents, and for all levels of
noise considered.

4.1 Lane-free Independent Agents (with Noise)

We introduce independent agents based on a rule-based approach in lane-free
traffic environments [11]. These agents behave rationally, in the sense that they
try to maximize speed while actively trying to avoid collisions with other agents
by observing nearby vehicles. We refer the interested reader to [11] for more
information on these agents’ movement strategy. In order to properly evaluate
our proposed approach, and increase the uncertainty induced, we add noise to
the control of these independent agents. The two acceleration values ax, ay of
each independent agent in a particular time step, resulting from its policy, is
filtered with additional noise. The actions a′x and a′y that the agent will actually
perform are: a′x = ax + npx · ax & a′y = ay + npy · ay, where np ∼ U(−cp, cp)
and U is a uniform distribution. Note that for small values of ax, ay, i.e., when
the agents maintain the same speed, the added noise will have a negligible effect
since it depends on the values of the initially chosen accelerations ax, ay. As
such, we also examine a second type of noise, n, which is independent of the
accelerations of the new vehicles, a′x = ax + nx & a′y = ay + ny, n ∼ U(−c′, c′),
and has an increased effect as we observe from the experimental evaluation.

Summarizing, the three types of independent agents we introduce to our
environment are:

– Type A: Lane-free agents with no noise
– Type B: Lane-free agents with noise np ∼ U(−0.5, 0.5)
– Type C: Lane-free agents with noise n ∼ U(−1.0, 1.0)

As mentioned, the independent agents incorporate a different policy, that
does not rely on communication/coordination among agents. Also, their accel-
eration values are continuous, while max-plus agents operate on a discretized
action domain, thus making the prediction of what the next action for each
agent will be even more difficult.

4.2 Simulation environment

To examine the effectiveness of each criterion we use an extension of SUMO,
designed for lane-free traffic [13]. We extend the SUMO environment setup in [7],
to include both max-plus agents and agents based on [11], and can adjust the
distribution of the different varieties of agents (e.g., max-plus and independent in
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Table 1. Simulation parameters.

Parameter Value
Highway Length 5 km
Highway Width 10.2 m
Vehicle length 3.2 m
Vehicle width 1.6 m
Simulation time 1 hr
time-interval 0.25 s
vd (desired speed) [25, 35]m

s

vx,init (initial speed) 25m
s

Inflow rate 7200 veh
hr

our case) entering the simulation environment. This gives us the opportunity to
control the penetration rate of max-plus and independent agents in the highway,
and observe the interaction between them. In this environment, we examine
and compare the number of collisions between max-plus agents and independent
ones. In every time-step, we consider that a collision occurs when two vehicles’
positions overlap.

4.3 Experiments and Results

For our evaluation, we introduce a baseline criterion with a simplistic assump-
tion, to provide more incentives for the use of decision-making criteria. Specifi-
cally, as a baseline criterion, we assume that independent agents always perform
action a0, i.e., 0 acceleration in both axes, meaning that the emulated messages
have the form: µij(aj) = fij(a0, aj).

The parameters relevant to the lane-free scenario we examined are shown in
Table 1. We examined two different configurations regarding the distribution of
vehicles. Specifically, in our first scenario, 40% of our CAVs population consists
of independent agents; while in the second scenario, the independent agents
are 60% of all CAVs. Both distributions contain results for the three types of
independent agents (i.e., types A, B, and C), as discussed in Sec. 4.1.

Results Experimental results are provided in Figs. 3 and 4, for our first and
second scenario respectively. The results shown are averages across 10 runs with
different seed values each (the seed value for each run are the same across all
experimental configurations). Code was written in Python 3, and simulations
were executed on a PC with an Intel i7-7700k CPU and 16GB of RAM. Each
run of 1 hour of simulation required approximately 45 minutes, with the Minimax
Regret criterion adding a small overhead of around 5 minutes. We report that
we observed an average speed within the range [28.6, 29.3]m/s for all different
seed values. The speed deviation between each criterion was not significant, and
variations were observed due to the different seed values.

Regarding collisions, a first observation is that the baseline criterion exhibits
more collisions than any of the criteria we used: as shown in both figures, for each
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Fig. 3. Collisions per hour for experiments with a distribution of 60% max-plus agents
and 40% non-max-plus agents.

independent agent type, the performance of the baseline approach is consistently
worse than any decision-making criterion used. This motivates the use of more
elaborate ways to address the uncertainty regarding other agents, as it clearly
affects performance. It is important to note that while the baseline performs
worse when compared to the agents following the more elaborate decision-making
criteria, agents using the baseline criterion still use our extension of the max-plus
algorithm and do observe the other vehicles in the highway.

Hurwicz allows us to balance both the best- and worst-case scenarios. How-
ever, standard uses of Hurwicz under-perform, resulting into more collisions when
compared even to the more naive Maximax criterion. Only the use of a dynamic
β provides a noticeable improvement, which allows us to adjust our optimism
depending on how close the vehicles are. This leads to fewer collisions compared
to the use of the Hurwicz criterion with fixed β. Intuitively, one could assume
that the pessimism of Maximin may be excessive, especially when there is no
noise added. This intuition proved false, as Maximin performs better than both
Maximax and Hurwicz with constant β, presumably due to the fact that indepen-
dent agents have a distinct methodology of choosing their actions that does not
match with the local functions of max-plus agents. That means the conservative
approach of Maximin fairs better with them than initially expected.

The performance of the Minimax Regret approach lies between that of Max-
imin and Hurwicz with dynamic β, but Minimax Regret provides somewhat
better results for the high noise levels (Type C agents), as can be observed in
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Fig. 4. Collisions per hour for experiments with a distribution of 40% max-plus agents
and 60% non-max-plus agents.

both figures. Apparently, the notion of regret along with the joint view of all in-
dependent agents, helps in environments with higher unpredictability (increased
noise levels).

The Laplacian approach provides similar results with all aforementioned cri-
teria, and has a slight advantage when the levels of noise are high.

However, for lower noise levels (i.e., for independent agents of Type A & B),
the Hurwicz with dynamic β provides slightly better results, indicating that our
heuristic function for β performs better in low noise environments.

For the opponent model, we set the associated threshold to ct = 0.5, and
collect data from 10 1-hour simulations (with different seed values) using the
Laplacian approach. Opponent modeling provides only a marginal improvement
w.r.t. the Laplacian when the vehicles do not have noise for the first configu-
ration (cf Fig. 3), since the observations used for estimating the frequencies of
actions for each class do coincide with the policy of the independent agents (not
filtered with noise). Of course, this is not the case when noise is added, due
to the observed behavior being partially inconsistent. We believe that a more
refined opponent model would enhance the results, and therefore it constitutes
an imminent future research endeavor.

In general, replacing max-plus agents with more independent agents leads to
more uncertainty in our decision making (cf Fig. 4), resulting in more collisions
and smaller margins between both the different criteria, and the different types.
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5 Conclusions and Future work

In this paper we extended the application of the max-plus algorithm to the lane-
free environment [13] in order to render it compatible with agents not obeying
the same algorithm. We did so by estimating the actions of the other agents using
different criteria that tackle uncertainty, and our experimental evaluation exhib-
ited improvement when those criteria are in effect. Notably, max-plus agents now
encounter vehicles whose available range of actions is significantly larger than
their own set of actions.

In future work, we plan to expand our work and establish ways to incorporate
continuous actions of observed agents on the emulated messages. Moreover, it
would be interesting to combine the proposed approach with the work of [14]
which introduces a dynamic discretization variant of the algorithm, that enables
its use in continuous action domain by lifting the task of predetermining a con-
stant number of appropriate discrete actions. Furthermore, as mentioned already,
the opponent model is quite simplistic, and can be re-examined so as to incorpo-
rate more features that are important (such as the speed of the vehicles)—and to
also address the quantification of uncertainty, potentially by using probabilistic
opponent modelling techniques [2] along with incorporation of domain knowl-
edge (i.e., the expected behavior of vehicles). Finally, we intend to investigate
the application of the distributed max-plus variant [7], and compare with our
work in this paper.
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