
Technical University of Crete

School of Electrical and Computer Engineering

Intelligent Systems Laboratory

Diploma Thesis

Web proxy service for the Web of Things

Isidoros Paterakis

Thesis Examination Commitee
1. Professor Euripides G. M. Petrakis

2. Professor Michael Lagoudakis
3. Associate Professor Vasilis Samoladas

Submitted in part fulfilment of the requirements for the degree of
Integrated Master of Engineering in Electrical and Computer Engineering at the

Technical University of Crete, December 2022

Abstract

Nowadays, devices have become part of people’s daily lives in a variety of fields, such as

healthcare, transportation, agriculture, education, environmental purposes, monitoring, phys-

ical exercise and many other application domains. Smart cities, smart buildings and smart

factories are based on Internet of Things (IoT) devices and companies constantly develop IoT

applications. WoT is a relatively new concept. There is no universal application layer protocol

to enable Things and services to communicate. The interconnection of Things is commonly

supported by sensor-specific protocols (e.g. Bluetooth, ZigBee, etc.) rather than by HTTP

directly. The Web of Things approach by W3C and other investigators suggests that the inter-

connection of Things should not depend on peculiarities of IoT protocols that would require an

extra layer of complexity in an implementation. Ideally, the Web of Things approach requires

that Things receive (each one) an IPv6 address and have a Web server installed. However,

this is not always possible, especially for resource-constrained devices. A workaround to this

problem is to deploy a Web proxy on a server (or on a gateway) that keeps the virtual im-

age of each Thing (e.g. a JSON representation). Web proxy implements a directory (e.g. a

database) with all Things (i.e. instances, their types, descriptions and services supported).

Things become part of the Web and can be accessed via their Web Proxy (i.e. they can be

published, consumed, aggregated, updated and searched for). Web services exposed by Things

can then be discovered by users or other services. Therefore, Thing descriptions become an

important component of any architecture intended for the WoT, so that devices and their APIs

become discoverable. The focus of this work is on designing and implementing a Web Proxy

service (Nexus) for exposing Things / Applications on the Web that decouples the Thing’s

functionality and its management. Nexus is a RESTful Service-Oriented Architecture that can

be deployed in the Cloud. OpenAPI is a universal language that can be used to accurately and

completely describe Things / Applications in a universal way that is understandable by both

humans and machines. In this proposed architecture, we consider that all Things / Applications

are described by an OpenAPI description.

i

ii

Acknowledgements

I would like to express my gratitude to my thesis advisor Euripides G. M. Petrakis.

All this project could not be done without the help of Aimilios Tzavaras.

I must express my profound gratitude to my parents.

Finally, I must thank all my friends.

iii

iv

Contents

Abstract i

Acknowledgements iii

1 Introduction 1

1.1 Background and Motivation . 2

1.2 Problem Definition . 4

1.3 Proposed Solution . 5

1.4 Contributions of the Work . 6

1.5 Thesis Outline . 7

2 Background and Related Work 8

2.1 Web of Things (WoT) . 8

2.2 Web of Things (WoT) Architecture . 10

2.3 Service-Oriented Architecture (SOA) . 15

2.4 RESTful Web Services . 16

2.5 Cloud Computing . 18

v

vi CONTENTS

2.6 SOA and Cloud Computing . 18

2.7 WoT and Cloud Computing . 19

2.8 OpenAPI Specification . 19

2.9 Semantic OpenAPI . 21

2.10 OpenAPI Thing Generator . 25

3 System Requirements and Design 32

3.1 Use Case . 32

3.2 Functional Requirements . 32

3.3 Non-Functional Requirements . 35

3.4 Class Diagram . 36

3.5 Activity Diagrams . 37

3.6 Architecture . 41

3.6.1 Application Logic . 42

3.6.2 User IDM . 44

3.6.3 Access Control . 45

3.6.4 Policy Enforcement Point Proxy . 46

3.6.5 Publish-Subscribe . 47

3.6.6 OAQL2 Server . 48

3.6.7 History Data . 49

3.6.8 WTMs . 50

3.6.9 OpenAPI Generator . 52

4 System Implementation 53

4.1 System’s Authentication API . 53

4.2 System’s Application Logic API . 54

4.3 System’s Administrators API . 61

4.4 System’s UseManagementService API endpoint 67

5 System Performance 77

5.1 Specs . 77

5.2 Experiments . 78

5.3 Results . 80

6 Conclusion 81

6.1 Future Work . 81

References 82

vii

viii

List of Tables

3.1 Application Logic Access Control Checks . 43

4.1 System’s Authentication API . 53

4.2 System’s Application Logic API Part 1 . 55

4.3 System’s Application Logic API Part 2 . 56

4.4 System’s Administrator API Part 1 . 62

4.5 System’s Administrator API Part 2 . 62

4.6 System’s UseManagementService API endpoint Part 1 68

4.7 System’s UseManagementService API endpoint Part 2 69

5.1 System’s Performance with concurrency 50 . 78

5.2 System’s Performance with concurrency 100 . 79

5.3 System’s Performance with concurrency 150 . 79

ix

x

List of Figures

2.1 Well-known Operation types for the Web of Things 13

2.2 Swagger Editor preview . 20

2.3 Swagger UI preview . 20

2.4 OpenAPI document structure . 23

2.5 OpenAPI extension properties for semantic annotations 25

2.6 OpenAPI Generator Flowchart . 26

2.7 OpenAPI Web Thing Template . 27

3.1 Class Diagram . 36

3.2 Activity Diagram 1: Create Orion Entity . 37

3.3 Activity Diagram 2: Get Available Applications 38

3.4 Activity Diagram 3: Store Application OpenAPI Description 39

3.5 Activity Diagram 4: Subscribe To Thing . 40

3.6 The Complete Architecture . 42

3.7 Application Logic . 43

3.8 User IDM . 44

xi

3.9 Access Control . 45

3.10 PEP Proxy . 47

3.11 Publish Subscribe . 47

3.12 OAQL2 Server . 48

3.13 Historic Data . 49

3.14 WTMs . 50

3.15 OpenAPI Generator . 52

xii

Listings

2.1 User input for a smart door OpenAPI description 28

4.1 Example payload of GetAccessToken endpoint 54

4.2 Example payload of SignUp endpoint . 54

4.3 Example payload of CreateOpenAPIDescription endpoint 55

4.4 Example payload of EnableHistoricDataCollection endpoint 57

4.5 Example payload of MakeApplicationSubscription endpoint 57

4.6 Example payload of MakeHistoricDataQuery endpoint 58

4.7 Example payload of MakeOpenAPIDescriptionQuery endpoint 59

4.8 Example payload of MakeThingSubscription endpoint 59

4.9 Example payload of StoreOpenAPIDescription endpoint 60

4.10 Example payload of UpdateSubscription endpoint 60

4.11 Example payload of UseManagementService endpoint 61

4.12 Example payload of GetAdminToken endpoint 61

4.13 Example payload of GetAllUsers endpoint . 62

4.14 Example payload of GetUserInfo endpoint . 63

4.15 Example payload of GetUserIdFromUsername endpoint 63

xiii

xiv LISTINGS

4.16 Example payload of UpdateUser endpoint . 63

4.17 Example payload of DeleteUser endpoint . 64

4.18 Example payload of GetOrganizationId endpoint 64

4.19 Example payload of CheckOrganizationMembership endpoint 65

4.20 Example payload of GetLogs endpoint . 65

4.21 Example payload of DeleteLogs endpoint . 65

4.22 Example payload of GetAccessRights endpoint 66

4.23 Example payload of UpdateAccessRights endpoint 66

4.24 Example payload of DeleteAccessRights endpoint 67

4.25 Example payload of CreateEntity . 68

4.26 Example payload of GetEntity . 69

4.27 Example payload of UpdateEntity . 69

4.28 Example payload of DeleteEntity . 70

4.29 Example payload of CreateEntityProperty . 70

4.30 Example payload of GetEntityProperties . 71

4.31 Example payload of GetEntityProperty . 71

4.32 Example payload of UpdateEntityProperty . 72

4.33 Example payload of DeleteEntityProperty . 72

4.34 Example payload of CreateEntityActions . 73

4.35 Example payload of GetEntityActions . 73

4.36 Example payload of GetEntityActionRecentExecutions 74

4.37 Example payload of ExecuteEntityAction . 74

4.38 Example payload of GetEntityActionExecution 75

4.39 Example payload of DeleteEntityActions . 75

4.40 Example payload of GetEntitySubscription . 75

4.41 Example payload of DeleteEntitySubscription 76

xv

xvi

Chapter 1

Introduction

Nowadays [19], devices have become part of people’s daily lives in a variety of fields such as

healthcare, transportation, agriculture, education, environmental purposes, monitoring, phys-

ical exercise and many other application domains. Smart cities, smart buildings and smart

factories are based on Internet of Things (IoT) devices and companies constantly develop IoT

applications. Today, there are more than 20 billion interconnected devices in the world and the

number is still growing rapidly.

The use of Web technologies is now being applied for the development of services and appli-

cations in the IoT field. Application Programming Interfaces (APIs) have now dominated the

Web. Research has led to the conclusion that the interconnection of devices can be facilitated

using existing Web technologies. The Web of Things (WoT) initiative [8] is an evolved version

of the Internet of Things that aims at unifying the world of interconnected devices over the

Internet. The term Thing may refer to any device: a temperature or proximity sensor, a win-

dow actuator, a coffee machine, a smart TV, a Wi-Fi connected garage door or a smart car.

WoT suggests that each Thing should be published on the Web, thus advertising its identity

and properties. As a result, a Thing can be discovered by Web search engines and reused in

different applications.

1

2 Chapter 1. Introduction

Cloud Computing [16] allows access to unlimited computing resources that could be managed

effectively. Individuals and organizations can make use of scalable IT infrastructures at lower

costs, while processing power can be accessed based on demand and budget allowance. These

advantages make Cloud Computing an ideal application development environment for the IoT

and the WoT.

WoT and cloud computing are complementary technologies. Cloud services can be built

around IoT devices based on the principles of WoT. As the number and diversity of cloud

providers and IoT devices are increasing, the need for standardizing technologies that publish

WoT applications and services to developers is becoming of crucial importance for their adoption

and market success. In this context, Web services exposed by IoT devices should be properly

described and documented so that any authorized client (i.e. user or service) can use them.

1.1 Background and Motivation

WoT is a relatively new concept. There is no universal application layer protocol to enable

Things and services to communicate. Devices may implement any protocol from a wide range of

application-specific protocols (e.g. Bluetooth, MQTT, ZigBee, LoRa, etc.). WoT suggests that

communication should be protocol-independent. In fact, IoT protocols should be translated to

a common Web protocol (e.g. HTTP) to enable communication; in this way, implementations

do not depend on particular IoT protocols. Existing standards (such as HTTP and REST

APIs) should be adopted to implement the integration of Things (e.g. devices) within the Web.

The fact that Web technologies are now very popular in the world of programmers facilitates

the development of new frameworks and tools for WoT.

The Web of Things (WoT) Architecture recommendation of W3C [12] defines an abstract

architecture and sets the requirements for interacting with Things in the Web using the REST

architectural style [7].

1.1. Background and Motivation 3

The emergence of REST generated new difficulties in the representation of hypermedia driven

APIs [1]. In fact, hypermedia-driven APIs are consistent with the idea of the dynamic discovery

of resources at runtime (referred to as HATEOAS [9]), which is actually a constraint of the

REST architectural style. According to the HATEOAS principle, the interaction of clients with

REST applications should be driven by hypermedia. Hypermedia controls are used to guide

clients on what resources they can retrieve and on what operations (i.e. requests) they may

perform. In other words, they can provide clients with the information of available state tran-

sitions in an application and show clients how they can perform these transitions. Applications

can drive clients to a desired outcome, so they are named as hypermedia-driven applications or

APIs. For example, hypermedia controls can be located in the headers of an HTTP request or

response or inside a JSON payload in the form of links. These links can instruct clients on how

to retrieve additional resources and also inform them on how these resources are related to the

original ones (e.g. an additional resource could be documentation for the original resource).

To increase the adoption of services for WoT by software developers and enterprises, these

must be accompanied by appropriate service descriptions. Services need to be exposed us-

ing API specifications and thus introduce themselves to users or other services in order to be

able to use them. In other words, services should make their APIs and functionality public

and accessible to others. Likewise, the functionality of devices and thus their exposed services

must be properly defined and documented in detail, in order to be useful to users and services.

Developers and cloud providers usually describe their services in plain text (i.e. code documen-

tation). However, service definitions should no longer be provided in plain text format, but in

a format that is understandable by both humans and machines. In addition, web services need

to be described in a way that eliminates ambiguities so that they can be uniquely identified

by users or machines. As long as devices and their services are accurately defined, they can be

discoverable and easy to use when published on the Web. Consequently, the need for efficient

and accurate service description and discovery for Things seems to be a significant challenge

for the WoT research area.

4 Chapter 1. Introduction

1.2 Problem Definition

The interconnection of Things is commonly supported by sensor-specific protocols (e.g. Blue-

tooth, ZigBee, etc.) rather than by HTTP directly. The Web of Things approach by W3C and

other investigators suggests that the interconnection of Things does not depend on peculiarities

of IoT protocols that would require an extra layer of complexity in an implementation. Ideally,

the Web of Things approach requires that Things receive (each one) an IPv6 address and have

a Web server installed. However, this is not always possible, especially for resource-constrained

devices. Although lightweight Web servers1 can be embedded in small devices, IoT devices usu-

ally feature limited resources and the solution is not optimal in terms of autonomy and cost.

A workaround to this problem is to deploy a Web proxy on a server (or on a gateway) that

keeps the virtual image of each Thing (e.g. a JSON representation). Web proxy implements a

directory (e.g. a database) with all Things (i.e. instances, their types, descriptions and services

supported). Things become part of the Web and can be accessed via their Web Proxy (i.e. they

can be published, consumed, aggregated, updated and searched for). Web services exposed by

Things can then be discovered by users or other services. Therefore, Thing descriptions become

an important component of any architecture intended for the WoT so that devices and their

APIs become discoverable.

The focus of this work is on designing and implementing a Web Proxy service for exposing

Things on the Web. A Web Thing Proxy service must be based on the principles of the

WoT initiative. The proposed approach for defining the functionality of Things should be

universal (i.e. applicable to any Thing); it should describe all the operations offered by a Thing

regardless of its physical or other characteristics. The detailed description of these services

allows the implementation of efficient and accurate service discovery mechanisms for Things

and their functionality. Provided that devices themselves can be considered as Web services,

they need to be described in a way that eliminates ambiguities and provides descriptions that

are both uniquely defined and discoverable. This would allow users and machines to know all

1https://linux.com/news/which-light-weight-open-source-web-server-right-you/

1.3. Proposed Solution 5

the service operations they can perform on a device and how to interact with it. Therefore, a

description language is required that would allow for both syntactic and semantic description

of services exposed by Things.

OpenAPI (formerly known as Swagger) suggests a description format for REST APIs. It is a

mature framework providing both, human and machine-readable descriptions of Web services.

It can be enriched with text descriptions so that users can easily discover and understand

the service and interact with it. Given an OpenAPI service description, a client can easily

understand and discover the functionality of a Thing and how to interact with it with minimum

implementation logic. OpenAPI provides the needed information about service endpoints,

service operations, the exchanged message formats and the conditions which need to be fulfilled

before invoking the service. Finally, OpenAPI is supported by a complete tools palette2 (e.g.

it provides tools for interactive documentation and client SDK generation).

OpenAPI is mainly focused on human-readable service descriptions. An OpenAPI service

description needs to be formally defined and its content be semantically enriched in order

for a machine to understand the meaning of the description. Semantic OpenAPI [15] [14]

has proposed that OpenAPI service descriptions can be semantically annotated by associating

OpenAPI entities to entities of an ontology (e.g. domain ontology). This work utilizes the

Semantic OpenAPI approach, so it can be adopted for the description of devices and their

exposed REST APIs.

1.3 Proposed Solution

The focus of this work is on designing and implementing a Web Proxy service (Nexus) for

exposing Things / Applications on the Web that decouples the Thing’s functionality and its

management. OpenAPI is a universal language that, according to [19], can be used to accurately

and completely describe Things / Applications in a universal way that is understandable by

2https://openapi.tools/

6 Chapter 1. Introduction

both humans and machines. In this proposed architecture, we consider that all Things /

Applications are described by an OpenAPI description. Nexus can be deployed in either the

Cloud or a Gateway. Nexus’s API is RESTful. Nexus provides a platform for Infrastructure

Owners to store their Things as services, expose them to the web and manage them with

the tools provided to them. It is also a platform for Application Developers to store their

Applications, search for exposed Things that interest them, subscribe to them and use them

in their Applications. Finally, it allows anyone to register as a Normal User and subscribe to

any application. Nexus contains a generator for OpenAPI descriptions of Things, a server for

storing and querying OpenAPI descriptions of Things / Applications and a publish-subscribe

system for Things / Applications. It also contains a tool for managing Things / Applications

according to the OpenAPI description format. Finally, it contains a database API for storing

and querying historic values of Things / Applications.

1.4 Contributions of the Work

Nexus achieves the following:

• The must important thing Nexus achieves is that it decouples the Thing’s functionality

from its management.

• It allows a single Thing to be used in many different Applications as multiple Application

developers can subscribe to it.

• It supports all kinds of Things / Applications provided that they have an OpenAPI

description and their input data is in JSON format. Even if an Infrastructure Owner

does not have an OpenAPI description of the Thing, the OpenAPI Generator can be

used to create one with a simple user input.

• Many Things are stored and Application Developers can make queries about them. They

can choose any Thing they want to subscribe to for a fee and use it in any number of

their Applications.

1.5. Thesis Outline 7

• It can be deployed in either Cloud or a Gateway. The data it receives are from http

requests where the payload is in JSON format. That means that the data can be handled

easily without taking into account the Thing’s transmission protocol or peculiarities.

• The system’s design can support a business model by assigning different role to each user.

• Nexus is secure by design. It contains many security mechanisms that protect the system

services, Things / Applications stored and the user data.

1.5 Thesis Outline

This thesis has been organized into six chapters. This section outlines the description of each

chapter:

• In Chapter 2, we provide a brief introduction to basic concepts and technologies which

are used throughout the Thesis.

• In Chapter 3, we analyze the system requirements and the system design.

• In Chapter 4, we present the system’s API and how it is used

• In Chapter 5, we analyze the system’s performance.

• In Chapter 6, we expose our final thoughts with future work possibilities.

Chapter 2

Background and Related Work

2.1 Web of Things (WoT)

The Web of Things (WoT) concept aims at integrating objects (Things) within the Web so

that they can become part of the Web and communicate with each other (and also with clients).

Devices used in everyday life (such as smartphones, cars, coffee machines, washing machines,

humidity sensors, etc) should communicate with the Web using existing Web protocols rather

than application-specific protocols. For instance, common Web protocols (e.g. HTTP, HTTPS,

Websockets, etc.) can be used for the communication of Things with applications, while data

interchange formats (JSON, XML, etc.) can be used for the representation of Things (i.e.

of their functionality, identity, purpose and of data they provide). Even simple technologies

like HTML (Hypertext Markup Language) could be used for the representation of Things in a

webpage, for example in order to create User Interfaces (UIs) for Things.

The actual functionality that Things offer (i.e. by means of Web services) can be implemented

using the REST architectural style; each Thing may expose a REST API that implements the

operations supported by the Thing. Alongside, WoT may utilize additional useful technologies

for the interaction with Things such as API security mechanisms (e.g. Basic authentication,

API key authentication, OAuth2.0 protocol) for authentication and authorization, mechanisms

8

2.1. Web of Things (WoT) 9

for service composition and synthesis of Things in applications (e.g. Node-RED), etc. To be

scalable, WoT implementations can be deployed in the cloud. WoT leverages Cloud computing

which is capable of providing IoT solutions that may involve thousands to millions of devices.

Things may use any protocol (e.g. ZigBee, Wi-Fi, Bluetooth, 6LoWPAN, 3/4/5G, NFC) to

communicate. HTTP (HyperText Transfer Protocol) is an application layer protocol that is

widely used to support RESTful communication of services in the cloud and over TCP. Due

to its high overhead (i.e. high power consumption, header size and complexity of handshakes),

HTTP is not suitable for the IoT and resource constrained devices that exchange small amounts

of information and are not connected to a sustainable power source. It implements a request-

reply communication where the server responds to the requests of a client. This is good for

communication between services but not for devices that send information to a server without

a prior request. CoAP is a lightweight protocol over UDP. It is similar to HTTP (e.g. with a

similar command set) but for resource-constrained environments. In the following, we assume

that communication in the Web of Things is realized using an HTTP protocol following the

basic assumption of the Web of Things and W3C.

As long as Things get connected to a network, it is plausible to assume that Things also con-

nect to a protocol translation service whose role is to convey Thing related data (i.e. identifier,

description and payload) to the application using HTTP and JSON. Communication of Things

and services in WoT relies on common IoT protocols. Things can become part of the Web

and be accessible via a Web Proxy. The operations that Things may support can be regarded

as Web services that can be advertised, discovered and used by clients (users or services) that

search for them on the Web. The Semantic Web of Things (SWoT) [3] is the semantic extension

of WoT that allows Things to become machine discoverable on the Web using Semantic Web

tools such as SPARQL.

10 Chapter 2. Background and Related Work

The concept of WoT has received considerable attention from IoT vendors and from many

investigators over the past few years. The WoT Working group1 is an ongoing effort to create

standards-track specifications and test suites. For example, the Thing Description specification

of W3C (Working Draft) [10] defines how Things and their functionality can be represented

using JSON Thing Descriptions (TD information model). The results of the W3CWoT research

effort are summarized by the WoT Architecture which suggests a list of possible operations to

be supported by a WoT implementation2.

2.2 Web of Things (WoT) Architecture

The Web of Things (WoT) Architecture recommendation of W3C proposes an abstract ar-

chitecture for W3C WoT. The document includes terminology and use cases (i.e. different

application domains for WoT) and sets the requirements for the interaction with Things in the

Web using RESTful APIs. The recommendation does not bind to any application and it does

not depend on specific communication protocols. In addition, it does not describe a specific

implementation or mechanism, but an abstract architecture approach for the Web of Things.

The WoT Architecture defines an interaction model that describes the interaction of a con-

sumer (i.e. client) with Things. Things may offer particular Interaction Affordances (i.e. meta-

data showing how a client can interact with Things) such as Web links, Properties, Actions

and Events. Properties are used to define the state that Things expose (e.g. humidity value).

Actions are used to describe the functions that Things may perform (e.g. a smart window that

opens and closes). Events are used to represent the transition of the Thing’s state (e.g. the

state property of a smart window turning to open). Interaction Affordances can be described

using JSON Thing Descriptions (TDs).

1https://www.w3.org/WoT/wg/
2https://www.w3.org./WoT/IG/wiki/Implementations

2.2. Web of Things (WoT) Architecture 11

The term Events is used in WoT Architecture to represent Thing state transitions. An

Event is defined by the recommendation as “An interaction affordance that describes an event

source, which asynchronously pushes event data to Consumers (e.g. overheating alerts)”3.

In other words, an event source sends event data from the Thing to the subscribed clients.

Events are closely related to subscriptions. The WoT Architecture of W3C defines operations

for subscribing and unsubscribing to events (e.g. overheating of a device), as highlighted in

2.1. That is, clients can only subscribe or unsubscribe to an event and receive asynchronous

notifications (alerts) when the event occurs. There are no other operations related to events.

A subscription is the result of subscribing to a specific event related to a Thing. A client could

subscribe, for example, with a Webhook callback URI.

The WoT Architecture also proposes the use of hypermedia controls for the interaction of

clients with Things. Two kinds of hypermedia controls are used in the W3C WoT: Web links4

and Web forms. Web links are referred to as “the well-established control to navigate the Web”.

That is, they provide navigation affordances that allow clients to discover linked resources. For

example, a link may provide a link target attribute and a link relation type to relate a Thing

with another resource that is represented by a hyperlink. Web forms are referred to as “a

more powerful control to enable any kind of operation”. That is, they allow clients to perform

particular operations that may even change the state of a Thing (e.g. turn on a device) and

not just navigate to discover resources. The recommendation highlights that web links are

already used in other IoT standards and IoT platforms5 such as CoRE Link Format6, OMA

LWM2M7, and OCF8, whereas form is a new concept. Besides W3C WoT, the concept of forms

is introduced by the Constrained RESTful Application Language (CoRAL)9 defined by the

IETF.

3https://www.w3.org/TR/wot-architecture/#terminology
4https://httpwg.org/specs/rfc8288.html
5https://www.w3.org/TR/wot-architecture/#dfn-iot-platform
6https://datatracker.ietf.org/doc/html/rfc6690
7http://openmobilealliance.org/release/LightweightM2M/V1 1-20180710-A/OMA-TS-

LightweightM2M Core-V1 1-20180710-A.pdf
8https://openconnectivity.org/developers/specifications/
9https://datatracker.ietf.org/doc/html/draft-hartke-t2trg-coral

12 Chapter 2. Background and Related Work

Links can be followed by both users and machines. A link may include (at least) the URI of

a resource (i.e. target resource) which can be followed to fetch the representation of a resource.

The recommendation highlights that Web links are used in the WoT to discover Things and also

to express relations to other Web documents. Hypermedia controls such as links are discovered

during the interaction of the Web client with a server. A link comprises: a) a link context, b)

a relation type, c) a link target, and d) optionally target attributes.

Forms allow Web clients to perform specific operations to manipulate the state of a Thing.

Clients are instructed on how to perform these operations by sending a proper request to their

submission target. The recommendation states that “W3C WoT defines forms as new hyper-

media control”. A form comprises: a) a form context, b) an operation type, c) a submission

target, d) a request method, and e) optionally form fields. In other words, Web forms in the

WoT are used to perform operations on Things.

The recommendation also defines a number of well-known operation types for the Web of

Things. Web forms can specify how these operations can be performed. The operation types

are presented in Figure 2.1. The operations are related to Thing properties (e.g. an operation

to read a property or an operation to update a property), to Thing actions (i.e. an operation to

invoke an action) and to events related to Things (e.g. an operation to subscribe to an event).

In relation to Thing properties, a client may also “observe” a specific property of a Thing. As

a result, whenever a Thing property is updated, a client can be notified of the new value(s)

of the property. To stop these notifications, a client can simply “unobserve” the selected (i.e.

observed) property. The observe and unobserve operations refer to the CoAP protocol10 that

allows a client to register to a resource and thus get notified of its changes over time. More

specifically, a CoAP client (called observer), which is interested in the state of a resource at

any given time, can send a modified CoAP GET request to register to the resource and create

an observation relationship between the client and the server resource. After the registration,

the client can get notifications over a period of time.

10https://tools.ietf.org/id/draft-ietf-core-observe-01.html

2.2. Web of Things (WoT) Architecture 13

Figure 2.1: Well-known Operation types for the Web of Things

14 Chapter 2. Background and Related Work

W3C TD is a central building block of the WoT Architecture. It is used to define the

functions as well as the interfaces of devices. TD can provide the entry point for discovering

services as well as resources related to a Thing. In other words, TD exposes Thing metadata on

the Web. The WoT Architecture also suggests that TDs are hosted in a directory service (on

a gateway or the cloud) which actually provides a Web interface for registering and searching

for Things. The architectural aspects of a Thing (i.e. Behavior, Interaction Affordances, Data

Schemas, Security Configuration, Protocol Bindings) are also included in the recommendation.

A detailed specification of the Thing Description is given in the Thing Description Working

Draft document [10].

The Web of Things (WoT) Thing Description document11 is a recommendation of W3C

that describes the model and the representation of Things using TDs. It includes terminology

about TDs and presents the TD information model in detail. The document describes the

TD representation and serialization format and demonstrates how Things can be represented

by Thing Descriptions using examples. TD is a short and abstract description of a Thing,

including its functions and interfaces. The JSON representation of a TD can be enriched with

semantic annotations to become machine-understandable. TD’s JSON serialization format can

be enhanced with a context field (@context) for converting the JSON format to JSON-LD.

The WoT TD Working Draft includes Class definitions for the vocabularies used in the

TD information model for semantic annotations and defines temporary namespaces for the

vocabularies. The document defines core vocabulary classes that represent basic concepts such

as Thing, interaction affordances, properties, actions, events, etc. It also defines the vocabulary

classes used to describe data schemas, API security mechanisms and hypermedia controls.

Moreover, the document defines the Thing Model, which is the information model of a Thing.

It is used as a general template description for a type of Things that have common properties;

11https://www.w3.org/TR/2020/REC-wot-thing-description-20200409/

2.3. Service-Oriented Architecture (SOA) 15

it is not used to describe a particular Thing instance.

2.3 Service-Oriented Architecture (SOA)

Service-Oriented Architecture (SOA) is an architecture style that intends to enhance the

efficiency, agility, and productivity of an enterprise by designing, developing, deploying and

managing systems, based on service orientation. Service orientation is a design paradigm that

suggests that all functional components of a system are viewed as services that communicate

with each other through well defined interfaces by message passing. A service is essentially

a well-defined, self-contained and independent (i.e. of other services) function. That is, a

service does not need to be aware of the technical details of another service to interact with it.

This is achieved through the implementation of a strictly defined interface that can perform

the necessary actions to enable the transmission of data between services, thus facilitating

communication. The invoker of a service actually needs to be aware of its interface only and

not its implementation. SOA, as an architectural style, does not impose a specific technology

for the communication of services. With the emergence of machine communication protocols

such as HTTP and representation formats such as XML, RDF and JSON, SOA is becoming

the most common approach for building distributed systems (i.e. communicating systems in

general) in terms of communicating services.

Some of the advantages of SOA Architectures are the following:

• Reusability: In SOA, an application is created with the usage of many autonomous parts.

Therefore, services can be reused in multiple applications despite their connections with

other services.

• Easy service Maintenance: Provided a service is an autonomous entity, it can be updated

without taking into account other services. That means that big and complex applications

can be easily managed in cases of updates, upgrades and maintenance.

16 Chapter 2. Background and Related Work

• Reliability: Applications based on SOA are more reliable because smaller and independent

services can be tested and fixed much easier than big chunks of code.

• Scalability and Availability: Many instances of a service can be deployed at the same

time in different servers. That increases the scalability and availability of the service.

• Flexibility: SOA makes the development of a complex product easier by implementing

many different products from different providers ignoring the platform and background

technology.

2.4 RESTful Web Services

Web services technology was initially built on existing standards such as Extensible Markup

Language (XML) [4], Simple Object Access Protocol (SOAP) [17], Web Services Description

Language (WSDL) [5] and Universal Description Discovery and Integration (UDDI) [6]. XML

[4] was selected, due to its popularity at the time, as the main data format for machine to

machine communication. Fielding suggested a different flavor of Web Services, introducing

REpresentational State Transfer (REST) architectural style [7] in 2000. REST defines a set

of architectural principles, based on which Web services are designed to focus on a system’s

resources, including how resource states are addressed and transferred over HTTP by a wide

range of clients written in different languages. The primary abstraction of information in

REST is a resource. A resource is anything important enough to be referenced as a thing in

itself [13], such as a document or image, a collection of other resources, a non-virtual object

(e.g. a cat). Resources can either be static (i.e. like a book) or dynamic, like a news report

(i.e. it always changes, but still it is a resource). REST uses a resource identifier (URI)

to identify the particular resource involved in an interaction between components. REST

has gained massive adoption, including Cloud Services, compared to other approaches (e.g.

SOAP, WSDL). REST-based services are actually simpler to express, faster to process and

make efficient use of bandwidth, as they don’t require additional parsing for messages and are

much less verbose than SOAP-based services. In contrast to SOAP-based services, REST-based

2.4. RESTful Web Services 17

services are designed to be stateless and also enable caching that improves performance and

scalability. Moreover, REST-based services may support multiple data formats (e.g. XML and

JSON), whereas SOAP-based services are only limited to the use of XML. Nevertheless, the

term REST has been misused as most Web services that claim to be RESTful (i.e. REST APIs)

are actually not. Although in most cases services are based on the REST architecture, they

often violate the hypermedia constraint (HATEOAS) [9]. It is worth mentioning that Fielding

himself highlighted this fact in a blog post12 and explained that a service is considered RESTful

only if all REST principles are met. The term Hypermedia API [1] has emerged to describe

services that are implemented incorporating the hypermedia constraint.

Some of the REST principles are the following:

• Stateless: Every HTTP request contains all the necessary information for its execution.

That means that neither the client nor the server have to store a previous state to satisfy

the request.

• Resources are always handled by the URI: URI is the unique identifier of every resource

in a REST architecture. Getting information about a resource, changing its content,

deleting it or executing a related action are only accessible with the URI.

• Data transfer with JSON and XML: Most REST architectures tend to use either of those

data representation formats for data exchange between clients and servers. Between many

different data formats, the integrated confirmation properties of XML and the flexibility

of JSON helped them become the most popular formats in RESTful communication.

JavaScript Object Notation (JSON) is a lightweight data exchange format that is easy to

read and write for a human and also easy to parse and be generated by machines. Those

properties make JSON ideal for data exchange.

12https://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-riven

18 Chapter 2. Background and Related Work

2.5 Cloud Computing

Cloud Computing allows the allocation of computing resources (e.g. servers, applications,

etc) using the Internet. Many users (i.e. individuals and organizations) can have access to the

same service or infrastructure at the same time, using the ability of Cloud computing to allow

the consumption of their resources on a large scale. In fact, resources in Cloud computing are

available on-demand. Therefore, users are allowed to use them based on their needs and be

charged exclusively for that use. In addition, the scalability of a Cloud infrastructure makes it

easier to serve the demands of the ever-increasing amount of users and applications.

2.6 SOA and Cloud Computing

SOA (Section 2.3) and Cloud Computing (Section 2.5) are technologies that can exist sep-

arately, since neither depends on the other. However, an integrated architecture with these

two solutions can offer many advantages in terms of cost, speed of development, management,

and ease of maintenance. Cloud computing provides computational resources, such as software

and hardware, for the delivery and deployment of scalable applications and services. However,

it doesn’t impose any particular method for the efficient use and management of the services

that it offers. SOA intends to fill this gap by providing guidelines, principles, and techniques

for the development of applications and services, and strictly defines the architecture of service

oriented systems. Cloud services are typically API or service-driven, and thus service-oriented.

Therefore, Cloud providers organize their services in directories or service registries to enable

discovery of services that best fit the needs of customers as well as reuse and better management

of services.

2.7. WoT and Cloud Computing 19

2.7 WoT and Cloud Computing

WoT (Section 2.1) and Cloud Computing (Section 2.5) are also separate technologies but

they can be complementary as well. Cloud services can expose the functionality of IoT devices,

while following the requirements of WoT. For example, a client can communicate and interact

with a Thing through the cloud using HTTP. Therefore, WoT benefits from Cloud computing

and its features (e.g. scalability), and exposes Things on a large scale, based on the effective

and efficient management of resources. Although IoT solutions may incorporate thousands

to millions of devices, cloud allows users to take advantage of scalable IT infrastructures (at

lower costs) to expose Things or interact with them as consumers. In other words, WoT utilizes

existing Web technologies to allow interaction with any IoT device; Cloud computing facilitates

and improves this interaction. For instance, consumers can purchase Web services that expose

real world devices (e.g. temperature sensors, smart home actuators, etc) and can rapidly be

scaled up or down, depending on their user requirements.

2.8 OpenAPI Specification

The OpenAPI Specification (OAS) [18], formerly known as Swagger, is probably the most

heavily adopted approach for the description of RESTful services (Section 2.4). OpenAPI sug-

gests a description format for REST APIs. It is an open-source, language-agnostic specification,

through which a consumer can understand and use a service with minimum implementation

logic. Service descriptions are offered in either JSON or YAML13 format, which can be pro-

duced and served statically, or be generated dynamically from the application. This allows the

design and implementation of APIs to follow either a top-down (i.e. the service description is

initially created and then the service is implemented) or bottom-up approach (i.e. the service

description is generated from the service implementation).

13https://yaml.org

20 Chapter 2. Background and Related Work

Figure 2.2: Swagger Editor preview

Figure 2.3: Swagger UI preview

OpenAPI is a simple, yet complete and powerful framework, supported by a large set of

tools for designing, building and documenting RESTful services. The Swagger Editor14 is

an open source Web-based editor for designing, defining and documenting RESTful services

(Figure 2.2). It provides instant visualization and interaction with the API while still defining

14https://github.swagger-api/swagger-editor

2.9. Semantic OpenAPI 21

it. The Swagger Codegen15 is an open-source code generator to build server code and client

SDKs directly from an OpenAPI service description in almost any programming language and

framework (PHP, Java, NodeJS). (Swagger UI16 is an open-source HTML5-based user interface

to visually render documentation for an OpenAPI service description (Figure 2.3).)

OpenAPI is a widely adopted industry standard. It is endorsed by Linux Foundation and

supported by large software vendors like Google, Microsoft, IBM, Oracle and many others.

OpenAPI format is based on JSON (or YAML) and comprises a large set of properties for

composing service descriptions. OpenAPI 3.0 is the first major update of the specification

released in 2017. Version 3.1 (as of February 2021) provides full JSON Schema support (i.e.

all keywords of JSON Schema vocabulary can be used in OpenAPI 3.1) while being fully

compatible with version 3.0. OpenAPI can be enriched with text descriptions so that users can

easily discover and understand the service and interact with it.

2.9 Semantic OpenAPI

WSDL and WADL could not be satisfying for the description of Cloud services. Despite being

a W3C recommendation, WSDL has not been adopted widely by developers; they considered it

complex and with not enough tooling support. Moreover, WSDL is preferred for the description

of SOAP-based services, thus not leveraging the interoperability of the REST architectural style.

WADL, on the other hand, was meant to enable the description of RESTful services. However,

the approach was not adopted widely by developers either.

In this context, the OpenAPI framework, which is an industry standard, could be a very

interesting and powerful solution for the description of RESTful services. However, Semantic

OpenAPI [14] analyzed the reasons that cause ambiguities in OpenAPI service descriptions,

taking into consideration version 3.0 of the specification. For example, the same OpenAPI

15https://github.com/swagger-api/swagger-codegen
16

22 Chapter 2. Background and Related Work

property may appear with different names within the same service document or, its meaning

may not be defined at all in service definition. The authors suggest that OpenAPI properties

should be semantically enriched, “by associating OpenAPI entities to entities of a domain

ontology”. In other words, they showed that, in order to eliminate ambiguities, each ambiguous

property must be semantically annotated and mapped to a semantic model (e.g. a semantic

vocabulary or an ontology).

Semantic OpenAPI introduces some extra properties (i.e. extension properties) to annotate

existing OpenAPI properties. Therefore, the meaning of OpenAPI entities (e.g. an operation

or a schema) can be defined and thus not be vague. In addition, [14] suggests that it is plausi-

ble to transform semantically annotated OpenAPI descriptions to ontologies. This allows the

application of query languages (e.g. SPARQL) for service discovery, and reasoning tools for

detecting inconsistencies in service descriptions. The ontology proposed in [14] incorporates

features of Hydra to model service operations along with models not foreseen in Hydra (e.g.

security features, header, constraints). Classes along with constraints on class properties are de-

scribed using SHACL [11], which describes OpenAPI objects and validates Schema descriptions

against the ontology.

Figure 2.4 illustrates the structure of an OpenAPI service document. It comprises many parts

(objects). Each object specifies a list of properties that can be objects as well. Objects and

properties defined under the Components unit of an OpenAPI document can be reused by other

objects or they can be linked to each other (e.g. using keyword ref). However, these links are

not always explicitly expressed. For example, there can be properties with the same name, but

with no reference to one another or an external model. The Info object provides non-functional

information such as the names of the service and the service provider, license information and

terms of the service. The Server object provides information about where the API servers are

located. Servers can be defined for different operations (locally declared servers override global

servers). The service description contains an Info object with some non-functional information

for the service, an External Documentation object and Tag objects, which are used to group

2.9. Semantic OpenAPI 23

operations by resources or any other qualifier. For instance, in our work, a Web Thing tag, a

Properties tag, an Actions tag and a Subscriptions tag are used to group properties by type or

resource.

Figure 2.4: OpenAPI document structure

The description includes a Paths object that holds all the available service paths (i.e. end-

points) and their operations, which may also specify Parameter objects. The Paths object

provides information about expressing HTTP requests to the service and about the responses

of the service. It describes the supported HTTP methods (e.g. GET, PUT, POST, etc.) and

24 Chapter 2. Background and Related Work

defines the relative paths of the service endpoints (which are appended to a server URL to

construct the full URLs of the operations). The Responses object describes the responses of an

operation, its message content and the HTTP headers that a response may contain. The Pa-

rameters object describes parameters that operations use (i.e. path, query, header and cookie

parameters). The Components object lists reusable objects. That includes (among others) def-

initions of schemas, responses, headers, parameters and security schemes. The Security object

lists the security schemes of the service. The specification supports HTTP authentication, API

keys, OAuth2 common flows or grants (i.e. ways of retrieving an access token) and OpenID

Connect.

The Schemas object describes the request and response messages based on JSON Schema17.

A Schema object can be a primitive (string, integer), an array or a model or an XML data type

and may also have properties of its own accord (i.e. externalDocs). New data types can be

defined as a composition or specialization of existing ones using properties allOf, oneOf, anyOf

and not. Schema properties do not have semantic meaning and, consequently, their meaning

can be vague. In addition, there can be Schema properties with different names that share the

same meaning. A human might easily resolve ambiguities either by the element names or by the

description that may be provided but a machine cannot. The problem is solved by associating

each Schema object with a semantic model [20]. OpenAPI properties are semantically annotated

and associated with entities of a semantic model using the x-refersTo extension property. The

x kindOf extension property defines a specialization between an OpenAPI property and a

semantic model (e.g. a class). The x-mapsTo extension property denotes that a Schema

property is semantically equivalent to another property in the same document. Additional

extension properties are defined to clarify the meaning of the members in a collection of objects

(x collectionOn), for grouping Schema objects by type (x-onResource) and for clarifying the

meaning of operations (x-operationType). Figure 2.5 illustrates all the extension properties for

semantic annotations proposed in Semantic OpenAPI.

17https://json-schema.org/

2.10. OpenAPI Thing Generator 25

Figure 2.5: OpenAPI extension properties for semantic annotations

2.10 OpenAPI Thing Generator

The flow-chart of Figure 2.6 summarizes the mechanism that generates the OpenAPI de-

scription of a Thing from user input. The input comprises: a) the standard OpenAPI Thing

26 Chapter 2. Background and Related Work

Figure 2.6: OpenAPI Generator Flowchart

Description template of Figure 2.7 that applies to all Things and, b) a payload in JSON with

the user settings (e.g. security settings) and the Thing characteristics that will be instantiated

to the template. The user specifies the necessary information that characterizes the device and

the functionality it supports (e.g. the properties it provides, the actions it performs, etc.). The

output of this mechanism is the OpenAPI description of the Thing (in YAML or JSON format).

The mechanism is a RESTful service itself which is implemented in Python Flask and is avail-

able on Github18 for download and testing. It applies to any device as long as its functionality

can be exposed using REST. As a use case, the complete OpenAPI Thing descriptions for a

smart door and a DHT22 sensor device (along with their corresponding JSON files given as

input to the mechanism), can be found in the same Github address.

Initially, the process creates the OpenAPI objects for the Web Thing description: Info, Secu-

rity, Servers, Schema and (optionally) External document objects are created and appended in

the OpenAPI Thing template. As long as the user has set external documentation information,

the process creates an External Documentation object. Next, the process appends the Thing’s

description payload (as a Schema object) under the Webthing model object. This payload

18https://github.com/Emiltzav/wot

2.10. OpenAPI Thing Generator 27

Figure 2.7: OpenAPI Web Thing Template

describes the device and its features. Basic payload attributes (e.g. identifier, name, descrip-

tion, etc.) are mandatory. Available, Security Requirement objects are set next (e.g. HTTP

Authentication, OAuth2.0, OpenID Connect). The process reads a list of available servers as

an array of Server objects. The values of all OpenAPI objects are defined and instantiated to

the respective objects in the next stages.

Schemas, parameters, paths (i.e. endpoints), operations and security information are defined.

For example, apart from the /properties path which is standard for all Things, a new path is

appended to the service description for each particular property of the device. If the device

supports actions, the mechanism appends a standard Action Tag. Input regarding the Actions

resource and their security settings is provided. For example, the /actions path (standard

for all Things that perform actions) is appended to the Paths object. All relative action

execution operations and their response payload models (Schemas) are also defined in the

input. If the user wishes to set a request body for the action execution operations (i.e. the

commands to lock or unlock the smart door), this can be specified in the input as well. If the

device supports subscriptions, a Subscriptions Tag is added to subscription objects (i.e. paths,

operations, schemas, etc.) along with the security settings related to the Subscription resource.

28 Chapter 2. Background and Related Work

Subscription paths, operations and Schemas are predefined in the OpenAPI Thing Description

template (i.e. they are the same for all Things).

Listing 2.1 is a short but indicative example of the user input that can be provided for

the mechanism in JSON format for a typical smart door device description. This example

includes only some essential information specified by the user for the device. For example, the

device type (i.e. actuator), the properties and the actions it supports, the information that

subscriptions can be supported, the Webthing schema (i.e. abstract description of the device)

and also some non-functional information about the service are included. For the sake of brevity,

the rest of the schemas that could also be defined by a user have been omitted. However, the

user is allowed to specify many more schemas for the description (e.g. the payload of an action

execution request or an action execution retrieval response payload), by properly including them

in the input of the mechanism. If the user does not define them (i.e. as in the example below),

default schemas, which are predefined by the OpenAPI Thing template, are appended to the

service description. The smart door OpenAPI description example provided in the Appendix

includes several default schemas of the template such as the schema used to return a list of

actions supported by the device (i.e. realized by sending an HTTP GET request to the /actions

endpoint). All default schemas are appended to the OpenAPI Thing description, in case they

have not been specified by the user.

{

” i n f o ” : {

” t i t l e ” : ”A Smart Door dev i ce OpenAPI Thing d e s c r i p t i o n ” ,

” d e s c r i p t i o n ” : ”An OpenAPI Thing d e s c r i p t i o n f o r a smart door

dev i ce

that exposes i t s cur r ent s t a t e and supports l o ck and unlock a c t i on s

(c l i e n t

commands) . ” ,

” contact ” : {

2.10. OpenAPI Thing Generator 29

” emai l ” : ” atzavaras@i sc . tuc . gr ”

} ,

” l i c e n s e ” : {

”name” : ”Example l i c e n s e ” ,

” u r l ” : ” h t tp : //www. example . com/ l i c e n s e s /LICENSE−2.0 . html”

}

} ,

” externa lDocs ” : {

” d e s c r i p t i o n ” : ”Find out more about the smart door actuator ” ,

” u r l ” : ” h t t p s : //www. example . com/ ac tua to r s /smart−door”

} ,

” s e r v e r s ” : [

{

” u r l ” : ” h t tp : // l o c a l h o s t : 5 0 0 0 /smart−door” ,

” d e s c r i p t i o n ” : ”A t e s t i n g s e r v e r ”

}

] ,

” t yp e o f t h i n g ” : ” actuator ” ,

” suppo r t ed p rope r t i e s ” : [” s t a t e ”] ,

” suppor t ed ac t i on s ” : [” l o ck ” , ” unlock ”] ,

” sub support ” : ” yes ” ,

”webthing schema” : {

” r equ i r ed ” : [

” id ” ,

”name” ,

” type ”

] ,

” type ” : ” ob j e c t ” ,

”x−r e f e r sTo ” : ” h t tp : //www.w3 . org /ns/ sosa /Actuator ” ,

30 Chapter 2. Background and Related Work

” p r op e r t i e s ” : {

” id ” : {

” type” : ” s t r i n g ” ,

” d e f au l t ” : ”SmartDoor” ,

”x−kindOf” : ” h t tp : //schema . org / i d e n t i f i e r ”

} ,

”name” : {

” type” : ” s t r i n g ” ,

”example” : ”IoTSmartDoor” ,

”x−kindOf” : ” h t tp : //schema . org /name”

} ,

” d e s c r i p t i o n ” : {

” type” : ” s t r i n g ” ,

”example” : ”A Smart Door i s an e l e c t r o n i c door which can be sent

commands to be locked or unlocked remotely . I t can a l s o r epor t on

i t s cur r ent

s t a t e (OPEN, CLOSED or LOCKED) . ” ,

”x−r e f e r sTo ” : ” h t tp : //schema . org / d e s c r i p t i o n ”

} ,

” createdAt ” : {

” type” : ” s t r i n g ” ,

” format ” : ”date−time”

} ,

”updatedAt” : {

” type” : ” s t r i n g ” ,

” format ” : ”date−time”

} ,

” tags ” : {

” type” : ” array ” ,

2.10. OpenAPI Thing Generator 31

” items ” : {

” type” : ” s t r i n g ” ,

”example” : ” smart door”

}

}

} ,

”xml” : {

”name” : ”Webthing”

}

}

}

Listing 2.1: User input for a smart door OpenAPI description

Chapter 3

System Requirements and Design

3.1 Use Case

Consider a WoT Proxy architecture. The 4 types of users it supports are Administrators,

Infrastructure Owners, Application Developers and Normal Users.

Administrators are responsible for managing the users and setting up their access rights.

Infrastructure Owners register and manage their Things. Application Developers subscribe

to Things and use them to create Applications. Finally, Normal Users just subscribe to ap-

plications. Each user can access different parts of the system. Infrastructure Owners and

Application Developers are subclasses of Normal Users and inherit their properties.

3.2 Functional Requirements

The functional requirements are the functions the system must implement. Those require-

ments are different for each user category. The functional requirements for each user role are

presented below.

32

3.2. Functional Requirements 33

Normal Users:

• SignUp: Users provide their personal information to register in the system.

• GetAccessToken: Users log in to the system with their email and password.

• MakeApplicationSubscription: Users select an application they want and subscribe to it.

• UpdateSubscription: Users update one of their subscriptions.

• DeleteSubscription: Users delete one of their subscriptions.

• GetSubscription: Users get information about one of their subscriptions.

• GetAllUserSubscriptions: Users get information about all subscriptions they have made.

• GetAvailableApplications: Users get all applications they can subscribe to.

• MakeOpenAPIDescriptionQuery: Users make a query on all stored OpenAPI descriptions.

• GetSubscriptionStatus: Users get the status of one of their subscriptions.

• DisableSubscription: Users disable one of their subscriptions.

• EnableSubscription: Users enable one of their subscriptions.

Infrastructure Owners:

• GetAllEntitySubscriptions: Users get all subscriptions made to a Thing they own.

• CreateOpenAPIDescription: Users use the OpenAPIGenerator to make an OpenAPI

description of a Thing

• EnableHistoricDataCollection: Users allow the collection of historic data of one of their

Things with STH-Comet or Cygnus.

• StoreOpenAPIDescription: Users store the OpenAPIDescription of one of their Things.

• CreateAccessRights: Users create the rights to access one of their Things.

• UseManagementService: Users use WTMs to manage their Things.

34 Chapter 3. System Requirements and Design

Application Developers:

• GetAllEntitySubscriptions: Users get all subscriptions made to an Application they own.

• MakeThingSubscription: Users make a subscription to an available Thing.

• EnableHistoricDataCollection: Users allow the collection of historic data of one of their

Applications with STH-Comet or Cygnus.

• MakeHistoricDataQuery: Users make a query on the historic data of one of the Things

they have a subscription on.

• GetAvailableThings: Users get all Things they can subscribe to.

• StoreOpenAPIDescription: Users store the OpenAPIDescription of one of their Applica-

tions.

• CreateAccessRights: Users create the rights to access one of their Things.

• UseManagementService: Users use WTMs to manage their Things.

Administrators:

• GetUserIdFromUsername: Users get the Id of a user from their username.

• UpdateUser: Users update a user.

• DeleteUser: Users delete a user.

• GetAllUsers: Users get all registered users.

• GetAdminToken: Users get the special admin token.

• GetUserInfo: Users get the personal information of a user.

• GetOrganizationId: Users get the Id of a user role.

• CheckOrganizationMembership: Users check whether a user has a specific role.

3.3. Non-Functional Requirements 35

• GetLogs: Users get the system logs.

• DeleteLogs: Users delete the system logs.

• GetAccessRights: Users get the access rights of users.

• UpdateAccessRights: Users update the access rights of users.

• DeleteAccessRights: Users delete the access rights of users.

3.3 Non-Functional Requirements

The non-functional requirements are not mandatory for the system to perform its basic

functionality. However, better non-functional requirements result in a better final product

especially in commercial applications. The non-functional requirements are presented below.

• Performance: The response time of the system. All functions of the system are executed

in real time (bellow 300 ms).

• Scalability: It is important that when new users, Things or Applications are added, the

rest of the system functions are not affected.

• Security: It is important that users can log in to the system safely and their private

information is protected. Also it is important that services are protected by preventing

unauthorized accesses to them. With the usage of OAuth2, Service Proxy and Access

Control the above are satisfied in this system.

• Usability: How easily the system can be used. The system has a detailed documentation,

all services are RESTful and the payload is in either JSON format or is plain text. The

above make the system easy to use by any user.

• Uptime: In web applications it is important that the system is online and can accept user

requests almost always. Therefore, it is important that the system downtime is as low

as possible. Downtime can happen because of maintenance, error on the cloud provider’s

36 Chapter 3. System Requirements and Design

side or changes on the actual code. The above are satisfied because Nexus is a SOA. SOA

makes maintenance and scalability easier and there is no single point of failure.

3.4 Class Diagram

Figure 3.1: Class Diagram

The system’s functional requirements can be displayed in a UML Class Diagram. The sys-

tem’s Class Diagram is shown in Figure 3.1. The attributes of each class are shown with the

minus(-) sign and the operations with the plus(+) sign. It is shown that each user has an Id, a

Role, a Username, an Email, a Password and finally a list of Subscriptions. Each subscription

has an Id, a Subject (target entity), a Notification, A Status, an Expiration date and poten-

tially a Throttling field. Infrastructure Owners and Application Developers are an extension

of Normal Users. Infrastructure Owners have a list of Things they own and Application De-

velopers have a list of Applications they own. Each Thing / Application has its own OpenAPI

3.5. Activity Diagrams 37

Description and its own Publish-Subscribe entity. The arrows between each class are explain

their relation in regards of type and cardinality.

3.5 Activity Diagrams

In the Figures 3.2, 3.3, 3.4 and 3.5, four Activity Diagrams, and their explanations, for four

of the system’s basic functionalities are shown.

Figure 3.2: Activity Diagram 1: Create Orion Entity

1. The user logs in the system with the email and password.

2. The system checks whether the provided credentials are correct or not. If the credentials

are correct, then the user is granted a token that is used to make the request to the

system’s application logic service. If the credentials are wrong, then the user is not

granted an access token.

3. The system proxy checks if the token used to access the service is valid or not. If the

token is valid, then the request is forwarded to the service. If the token is invalid, then

the request is denied.

38 Chapter 3. System Requirements and Design

4. The system checks whether the user is a Normal User or not. If the user is a Normal

User, then the request is denied. If the user is not a Normal User (which means the user

is either an Infrastructure Owner or an Application Developer), then the check passes.

5. The system checks whether the user has the required Access Rights to create that entity.

If the user does not have them, then the request is denied. If the user has them, then the

check passes.

6. The system checks if the request payload id and type are correct. If they are not, then

the request is denied. If they are correct then the request is forwarded to WTMs.

7. WTMs executes the related code functionality.

Figure 3.3: Activity Diagram 2: Get Available Applications

1. The user logs in the system with the email and password.

3.5. Activity Diagrams 39

2. The system checks whether the provided credentials are correct or not. If the credentials

are correct, then the user is granted a token that is used to make the request to the

system’s application logic service. If the credentials are wrong, then the user is not

granted an access token.

3. The system proxy checks if the token used to access the service is valid or not. If the

token is valid, then the request is forwarded to the service. If the token is invalid, then

the request is denied.

4. A fixed request is made to the OAQL2 Server.

5. The OAQL2 Server answer is returned.

Figure 3.4: Activity Diagram 3: Store Application OpenAPI Description

1. The user logs in the system with the email and password.

2. The system checks whether the provided credentials are correct or not. If the credentials

are correct, then the user is granted a token that is used to make the request to the

system’s application logic service. If the credentials are wrong, then the user is not

granted an access token.

40 Chapter 3. System Requirements and Design

3. The system proxy checks if the token used to access the service is valid or not. If the

token is valid, then the request is forwarded to the service. If the token is invalid, then

the request is denied.

4. The system checks whether the user is an Application Developer or not. If the user is

not an Application Developer, then the request is denied. If the user is an Application

Developer, then the check passes.

5. The system checks whether the user has the required subscriptions to the Things the

Application uses. If the user does not have them, then the request is denied. If the user

has them, then the check passes.

6. The OpenAPI description of the Application is stored to the OAQL2 Server.

Figure 3.5: Activity Diagram 4: Subscribe To Thing

1. The user logs in the system with the email and password.

2. The system checks whether the provided credentials are correct or not. If the credentials

are correct, then the user is granted a token that is used to make the request to the

3.6. Architecture 41

system’s application logic service. If the credentials are wrong, then the user is not

granted an access token.

3. The system proxy checks if the token used to access the service is valid or not. If the

token is valid, then the request is forwarded to the service. If the token is invalid, then

the request is denied.

4. The system checks whether the user is an Application Developer or not. If the user is

not an Application Developer, then the request is denied. If the user is an Application

Developer, then the check passes.

5. The subscription on the Orion Context Broker is made.

6. The Access Control Subscription entry is added.

7. The Orion Context Broker subscription Id is returned.

3.6 Architecture

The system architecture is shown in Figure 3.6. Consider that each service is protected by

Wilma Pep Proxy. To avoid making the figure too crowded, the service proxies are not shown.

The arrows show the RESTful communication between the system’s services. Each service

is represented with different colour. Shapes with the same colour mean that the services are

linked. The services are explained below.

• Grey: Application Logic Service, Frontend, Authentication.

• Red: User Management Service, Keyrock, Users Database.

• Light Blue: Access Control, Access Control Database.

• Green: Publish-Subscribe Service (Orion Context Broker), Publish-Subscribe Database.

42 Chapter 3. System Requirements and Design

• Blue: OAQL2 Server, OpenAPI Descriptions Database.

• Yellow: History Data.

• Light Green: Web Thing Model Service.

• Blue Grey: OpenAPIGenerator.

Figure 3.6: The Complete Architecture

3.6.1 Application Logic

Application Logic serves as the main service that connects all the system services. It im-

plements the system’s functional requirements. Users, through the system’s Frontend service,

make a request to the Authentication service to get an access token (or register if they are not

registered yet). After they get a token, they can freely make their requests to the Application

Logic endpoints. The Application Logic port is exposed to the outside world and through that

requests to the other system services are made. Depending on the endpoint of the service,

different access control checks are made. The service is protected by a proxy so all requests

made must contain, on the request headers, the OAuth2 token that was previously generated.

All access control checks made to the endpoints are explained in Table 3.6.1. It is important to

note that on the UseManagementService endpoint, the validity of the payload is also checked.

The related parts of the architecture are shown in Figure 3.7.

3.6. Architecture 43

Figure 3.7: Application Logic

Table 3.1: Application Logic Access Control Checks
Endpoint Role Access Rights Subscriptions

CreateAccessRights YES NO NO
CreateOpenAPIDescription YES NO NO

DeleteSubscription NO NO YES
DisableSubscription NO NO YES

EnableHistoricDataCollection YES YES NO
EnableSubscription NO NO YES

GetAllEntitySubscriptions YES YES NO
GetAllUserSubscriptions NO NO YES
GetAvailableApplications NO NO NO

GetAvailableThings YES NO NO
GetSubscription NO NO YES

GetSubscriptionStatus NO NO YES
MakeApplicationSubscription NO NO NO

MakeHistoricDataQuery YES NO YES
MakeOpenAPIDescriptionQuery NO NO NO

MakeThingSubscription YES NO NO
StoreOpenAPIDescription YES YES NO

UpdateSubscription NO NO YES
UseManagementService YES YES NO

44 Chapter 3. System Requirements and Design

3.6.2 User IDM

Figure 3.8: User IDM

These services are the gate of the system. They are responsible for user registration and

authentication. During registration, users provide their personal information, including user-

name, email, password and role. To generate a token for the user, the user must provide to

the system the personal email and password. If these credentials are valid, Keyrock 1 generates

an OAuth2 2 token, that encodes the user’s identity. OAuth2 token is a unique identifier, that

expires after a time period, that acts as the user’s identity inside the system. A new token is

generated every time a new session is initiated. The generated token is used in most services

to check the user’s Id, role and access rights. Registered users and their roles are saved in Key-

rock’s SQL database. Administrators, through the User Management service, can manage the

system’s users. They can get their personal information, update or delete them. The related

parts of the architecture are shown in Figure 3.8.

1https://keyrock.doc.apiary.io/#reference/keyrock-api/role
2https://oauth.net/2/

3.6. Architecture 45

3.6.3 Access Control

Figure 3.9: Access Control

Access Control services acts as a secondary security mechanism for the system. It holds logs

of all unauthorized access attempts. Specifically, each log entry contains the id of the user that

attempted to make an unauthorized request, the attempted request, the date of the request

attempt and a description explaining the reason the request that unauthorized. Possible reason

are the user did not have the required role to make the request, did not have the required access

rights to access the Thing / Application or did not have the required subscriptions to the Things

used in the Application that was attempted to store. Administrators can review the system’s

logs and delete them. Access Control also holds all the users’ access rights. Each access rights

entry contains the Id of the user that owns the Thing / Application, the Thing’s / Application’s

URI and the confirmation status. By default, the user access rights are not confirmed and only

administrators can confirm them. Administrators can view the users’ access rights, update

and delete them. Finally, Access Control, holds the subscriptions each user has made. Each

entry contains the Id of the user that made the subscription, the Id of the Orion Entity the

subscription was made on and the Id of the Orion subscription. Every time a user attempts

46 Chapter 3. System Requirements and Design

to access a subscription, Access Control is responsible for confirming that the subscription is

indeed made by that user. Also, during the storing of an OpenAPI description of an application,

a check must be made to confirm that the user that attempts to store the OpenAPI description

has made the required subscriptions to the Things used in the Application. Access Control

provides the answer to that. The related parts of the architecture are shown in Figure 3.9.

3.6.4 Policy Enforcement Point Proxy

Services are protected by a security mechanism. This is especially important if the services is

offering a public interface. This security mechanism is realised by means of Policy Enforcement

Proxy (PEP) 3 service. Each service is protected by a separate PEP service. It is a responsibility

of this service to approve or reject a request to the protected service. Each user request is

forwarded to Application Logic service which dispatches the request to the appropriate service.

The request comes with a token in its header. The PEP service will check if the token is valid

by sending a request to User IDM service. If the token is valid (and the session is active), the

request is approved and it is forwarded to the protected service. At this step the user’s role

is not taken into account in the decision to forward or reject the request. The user’s role is

checked inside the Application Logic code execution. Most services do not accept requests by

users. Most services are accepting requests only through Application Logic. Those services

are still protected by a separate PEP service. Those services are protected by a security key,

referred to as master key. In this case, PEP service stores the master key. Only requests with

the correct key in their header can access the protected service. In Figure 3.10 is shown how

PEP Proxy works with the master key in the request header. It works exactly the same with

the OAuth2 token in the header instead of the master key. PEP Proxy is mandatory only for

services whose port is exposed to the outside world, like the Application Logic service.

3https://fiware-pep-proxy.readthedocs.io/en/latest

3.6. Architecture 47

Figure 3.10: PEP Proxy

3.6.5 Publish-Subscribe

Figure 3.11: Publish Subscribe

Things and Applications stored in the system can publish information to Publish-Subscribe

service (Orion Context Broker 4). After a Thing / Application receives new information, a

notification is sent to the users that made a subscription to it. Orion Context Broker holds

only the most recent values of all registered entities. All Things / Applications stored in the

system have an entity in Orion Context Broker that users can subscribe to. The Infrastructure

Owner of the Thing and the Application Developer of the Application register the entity on

4https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/Orion+Context+Broker

48 Chapter 3. System Requirements and Design

Orion Context Broker with the key-value pairs they want. However, there are some constraints.

The Id of the entity must match the URI of the Thing / Application and the type of the

entity must either be Thing or Application for Infrastructure Owners’ Things and Application

Developers’ Applications respectively. Normal Users can only subscribe to Applications and

subscriptions to Things can only be made by Application Developers. A typical Orion Context

Broker entity contains at least the Id, a name, a description and the type. Users can make

as many subscriptions as they want. Each subscription has an Id, a description, a subject,

an expiration date, a status and a notification. Users can choose what the condition of the

notification is. Users can update their subscriptions, disable / enable them and delete them.

The related parts of the architecture are shown in Figure 3.11.

3.6.6 OAQL2 Server

Figure 3.12: OAQL2 Server

OAQL2 Server [2] is responsible for storing the OpenAPI descriptions of the Things / Ap-

plications registered in the system and for performing queries about them. OpenAPI Query

3.6. Architecture 49

Language 2 is a language for querying OpenAPI documents. OAQL2 has a syntax similar to

SQL and supports querying most of the fields in an OpenAPI document as well as the special

”x-” fields. OpenAPI descriptions, inside the info object, must contain the fields ”x-type”, ”x-

id” and ”x-devicesUsed” (for Applications only). ”x-type” must have either the value Thing or

Application and ”x-id” must have the URI of the Thing / Application. In cases of Applications,

the field ”x-devicesUsed” must be an array with the URIs of all the Things that it uses. The

related parts of the architecture are shown in Figure 3.12.

3.6.7 History Data

Figure 3.13: Historic Data

This services collects data flows (history values) from Orion Context Broker. The time series

created from the history of data are stored in a MongoDB 5 as either raw (unprocessed) values

as received from Things / Applications or aggregated (processed) values. More specifically,

maximum, minimum and average values over predefined time intervals (e.g. every hour, day,

5https://www.mongodb.com

50 Chapter 3. System Requirements and Design

week etc.) are stored. This service is implemented using Cygnus 6 and STH-Comet 7. By default

no historic data is collected. Infrastructure Owners must enable the collection of historic data

for their Things using either Cygnus or STH-Comet. Application Developers can make historic

data queries, on Things they have subscriptions on, with the STH-Comet API. The related

parts of the architecture are shown in Figure 3.13.

3.6.8 WTMs

Figure 3.14: WTMs

WTMs is a tool for managing Things / Applications. Infrastructure Owners / Application

developers can make requests like they would if their Thing / Application was stored in the

web as a web service. WTMs uses Orion Context Broker for its implementation its MongoDB

as a database. The related parts of the architecture are shown in Figure 3.14. Specifically,

WTMs supports the following functions:

6https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/Cygnus
7https://fiware-sth-comet.readthedocs.io/en/latest/index.html

3.6. Architecture 51

1. Register a Web Thing / Application.

2. Get a Web Thing / Application.

3. Update a Web Thing / Application.

4. Delete a Web Thing / Application.

5. Register a Web Thing’s / Application’s property.

6. Get a Web Thing’s / Application’s properties.

7. Get a Web Thing’s / Application’s specific property.

8. Update a Web Thing’s / Application’s specific property.

9. Delete a Web Thing’s / Application’s specific property.

10. Register a Web Thing’s / Application’s actions.

11. Get a Web Thing’s / Application’s actions.

12. Get a Web Thing’s / Application’s recent action executions.

13. Execute a Web Thing’s / Application’s action.

14. Get a Web Thing’s / Application’s action execution.

15. Delete a Web Thing’s / Application’s actions.

16. Get a Web Thing’s / Application’s specific subscription.

17. Delete a Web Thing’s / Application’s specific subscription.

52 Chapter 3. System Requirements and Design

3.6.9 OpenAPI Generator

Figure 3.15: OpenAPI Generator

OpenAPI Generator is a mechanism that generates the OpenAPI description of a Thing

from user input. The user input is a payload in JSON with the user settings (e.g. security

settings). The user specifies also the necessary information that characterizes the device and

the functionality it supports (e.g. the properties it provides, the actions it performs, etc.). The

output of this mechanism is the OpenAPI description, in JSON format, of the Thing. The

related parts of the architecture are shown in Figure 3.15. The mechanism flowchart is shown

in Figure 2.6. OpenAPI Generator is explained in detail in Chapter 2.10.

Chapter 4

System Implementation

Below you can see the tables with the complete API of the system. All HTTP requests on

the system are with the POST method. All payloads are in the form of ”Content-type”. All

requests require the ”Authorization”: ”Bearer ’user token’” header if the request was made

with JavaScript or the ”X-auth-token”: ’user token’ header if the request was made with cURL

(except for the Authentication service). In the Payload Example columns you can see listings

with payload examples for each endpoint. In the related listings consider that organization is

the user’s role.

4.1 System’s Authentication API

In Table 4.1 you can see the system’s Authentication API.

Table 4.1: System’s Authentication API
Endpoint Payload Type Payload Description Payload Example

GetAccessToken application/json The email and password 4.1
SignUp application/json The personal user information 4.2

53

54 Chapter 4. System Implementation

{

”name” : ”admin@test . com” ,

”password” : ”1234”

}

Listing 4.1: Example payload of GetAccessToken endpoint

The payload contains the user’s credentials(email and password).

{

” o rgan i z a t i on ” : ” In f ra s t ructureOwners ” ,

”name” : {

”username” : ” testusername ” ,

” emai l ” : ” te s temai l@t . com” ,

”password” : ” tes tpassword ”

}

}

Listing 4.2: Example payload of SignUp endpoint

The organization refers to the user’s desired role and the JSON value of the name key contains

the user’s personal information.

4.2 System’s Application Logic API

In Tables 4.2 and 4.2 you can see the system’s Application Logic API. In the Roles column,

consider that IO means Infrastructure Owners, AD means Application Developers, NU means

Normal Users and ALL means all user roles. For the UseManagementService endpoint, all

different functions are shown in a separate table.

4.2. System’s Application Logic API 55

Table 4.2: System’s Application Logic API Part 1
Endpoint Roles Payload Type

CreateAccessRights IO / AD text/plain
CreateOpenAPIDescription IO application/json

DeleteSubscription ALL text/plain
DisableSubscription ALL text/plain

EnableHistoricDataCollection IO / AD application/json
EnableSubscription ALL text/plain

GetAllEntitySubscriptions IO /AD text/plain
GetAllUserSubscriptions ALL text/plain
GetAvailableApplications ALL text/plain

GetAvailableThings AD text/plain
GetSubscription ALL text/plain

GetSubscriptionStatus ALL text/plain
MakeApplicationSubscription ALL application/json

MakeHistoricDataQuery AD text/plain
MakeOpenAPIDescriptionQuery ALL text/plain

MakeThingSubscription AD application/json
StoreOpenAPIDescription IO / AD application/json

UpdateSubscription ALL application/json
UseManagementService IO / AD application/json

{

” openapi ” : ” 3 . 0 . 0 ” ,

” i n f o ” : {

” t i t l e ” : ”CustomerAPI” ,

”x−type” : ”Thing” ,

”x−id ” : ”CustomerAPI” ,

” d e s c r i p t i o n ” : ”This i s an API f o r HPlusSport customers ” ,

” contact ” : {

” emai l ” : ” you@hplussport . com” } ,

” l i c e n s e ” : {

”name” : ”Apache 2 .0 ” ,

” u r l ” : ” h t tp : //www. apache . org / l i c e n s e s /LICENSE−2.0 . html” } ,

” v e r s i on ” : ” 2 . 0 . 0 ” } ,

” s e r v e r s ” : [

56 Chapter 4. System Implementation

{ ” u r l ” : ” h t t p s : // v i r t s e r v e r . swaggerhub . com/ ande r sonard i l a /

customer / 2 . 0 . 0 ” ,

” d e s c r i p t i o n ” : ”SwaggerHub API Auto Mocking” }] ,

” tags ” : [

{ ”name” : ”Thing” ,

” d e s c r i p t i o n ” : ”This i s a Web Thing” } ,

{ ”name” : ” customer” ,

” d e s c r i p t i o n ” : ”Customer r e l a t e d c a l l s ” }]

}

Listing 4.3: Example payload of CreateOpenAPIDescription endpoint

The JSON user input contains the details that are specific for each Thing and not universal,

like the info and servers object. The info field must contain the x-type and x-id fields so that

the OpenAPI description created will be compliant with the rest of the Architecture.

Table 4.3: System’s Application Logic API Part 2
Endpoint Payload Description Payload Example

CreateAccessRights The Id of the Thing / Application ’ThingId’
CreateOpenAPIDescription The user settings 4.3

DeleteSubscription The Id of the subscription ’SubscriptionId’
DisableSubscription The Id of the subscription ’SubscriptionId’

EnableHistoricDataCollection The subscription payload 4.4
EnableSubscription The Id of the subscription ’SubscriptionId’

GetAllEntitySubscriptions The Id of the entity ’ThingId’
GetAllUserSubscriptions Nothing –
GetAvailableApplications Nothing –

GetAvailableThings Nothing –
GetSubscription The Id of the subscription ’SubscriptionId’

GetSubscriptionStatus The Id of the subscription ’SubscriptionId’
MakeApplicationSubscription The subscription payload 4.5

MakeHistoricDataQuery The url query 4.6
MakeOpenAPIDescriptionQuery The query 4.7

MakeThingSubscription The subscription payload 4.8
StoreOpenAPIDescription The OpenAPI description 4.9

UpdateSubscription The updated subscription 4.10
UseManagementService The request details 4.11

4.2. System’s Application Logic API 57

{

” d e s c r i p t i o n ” : ”A h i s t o r i c s ub s c r i p t i o n on STH−Comet” ,

” sub j e c t ” : {

” e n t i t i e s ” : [

{ ” idPattern ” : ”{ThingId}” }] } ,

” n o t i f i c a t i o n ” : {

”httpCustom” : {

” u r l ” : ” h t tp : // sth−comet:8666 / no t i f y ” ,

” headers ” : {

” f iware−s e r v i c e ” : ”{ThingId}” ,

” f iware−s e r v i c epa th ” : ”/{ThingId}/” } } ,

” attrsFormat ” : ” l egacy ” }

}

Listing 4.4: Example payload of EnableHistoricDataCollection endpoint

The historic subscription JSON payload contains a description that explains the purpose of

the subscription, a subject which contains the target Thing that the historic subscription is

made on and a notification which contains the historic data API endpoint. The notification

should be httpCustom, the url should be the one shown in the listing and the headers must

contain fiware-service and fiware-servicepath with the followed values so that the historic values

will be stored in target specific sub-directory in the history database.

{

” d e s c r i p t i o n ” : ”Appl i ca t ion sub s c r i p t i o n ” ,

” sub j e c t ” : {

” e n t i t i e s ” [

{ ” id ” : ”CustomerAPIApplication” ,

58 Chapter 4. System Implementation

” type” : ”App l i ca t ion ” }] ,

” cond i t i on ” : {

” a t t r s ” : [

” employees ”] } } ,

” n o t i f i c a t i o n ” : {

”http ” : {

” u r l ” : ” h t tp : //myserver :80 / Ge tSub s c r i p t i onNot i f i c a t i on ” } ,

” a t t r s ” : [

” employees ”] } ,

” e xp i r e s ” : ”2030−01−1T14:00:00 .00Z” ,

” t h r o t t l i n g ” : 3

}

Listing 4.5: Example payload of MakeApplicationSubscription endpoint

The subscription JSON payload contains a description that explains the purpose of the

subscription, a subject which contains the target Application that the subscription is made

on and a notification which contains the endpoint that the user wants the notifications to be

sent to. It also contains an expiration date and potentially throttling. It is important that the

entities section contains only 1 Id and it is of type Application.

’ h t tp : // sth−cometproxy:1035 /STH/v1/ con t ex tEn t i t i e s / type/Thing/

id /CustomerAPI/ a t t r i b u t e s / employees ? h l im i t=20 ’

Listing 4.6: Example payload of MakeHistoricDataQuery endpoint

The query is made through the historic data API endpoint url. The url should be like the

one in the listing. After the endpoint it should include /type followed by the entity’s type,

4.2. System’s Application Logic API 59

/id followed by the entity Id and then finally the /attributes section that contains the query.

Fiware’s STH-Comet website API 1 contains a detailed explanation of the queries.

’SELECT ∗ FROM Serv i c e s WHERE s . x−id = ”{ThingId}” ’

Listing 4.7: Example payload of MakeOpenAPIDescriptionQuery endpoint

The payload is just the query. All the queries that can be made are explained in [2] in great

detail.

{

” d e s c r i p t i o n ” : ”Thing sub s c r i p t i o n ” ,

” sub j e c t ” : {

” e n t i t i e s ” [

{ ” id ” : ”CustomerAPI” ,

” type” : ”Thing” }] ,

” cond i t i on ” : {

” a t t r s ” : [

” employees ”] } } ,

” n o t i f i c a t i o n ” : {

”http ” : {

” u r l ” : ” h t tp : //myserver :80 / Ge tSub s c r i p t i onNot i f i c a t i on ” } ,

” a t t r s ” : [

” employees ”] } ,

” e xp i r e s ” : ”2030−01−1T14:00:00 .00Z” ,

” t h r o t t l i n g ” : 3

}

Listing 4.8: Example payload of MakeThingSubscription endpoint

1https://fiware-sth-comet.readthedocs.io/en/latest/index.html

60 Chapter 4. System Implementation

The subscription JSON payload contains a description that explains the purpose of the

subscription, a subject which contains the target Thing that the subscription is made on and

a notification which contains the endpoint that the user wants the notifications to be sent to.

It also contains an expiration date and potentially throttling. It is important that the entities

section contains only 1 Id and it is of type Thing.

{

” id ” : ”{ThingId}” ,

” openap id e s c r i p t i on ” : {OpenAPI Desc r ip t i on in JSON format}

}

Listing 4.9: Example payload of StoreOpenAPIDescription endpoint

The JSON payload contains the Id of the Thing / Application and its OpenAPI Description.

{

” subid ” : ”{ Subsc r ip t i on Id }” ,

”payload” : {

” d e s c r i p t i o n ” : ”Updated Desc r ip t i on ” }

}

Listing 4.10: Example payload of UpdateSubscription endpoint

The JSON payload contains the Id of the subscription to be updated and the payload that

contains the attributes of the subscription to be updated (ex. the description).

4.3. System’s Administrators API 61

{

” u r l ” : ”{ThingId}/” ,

”method” : ”GET” ,

” conta inspay load ” : ” f a l s e ”

}

Listing 4.11: Example payload of UseManagementService endpoint

The JSON payload contains the http request parameters for the WTMs. Specifically it

contains the url endpoint of the Thing / Application, the method and the payload for non-

GET methods. The WTMs payloads are explained in great detail in Tables 4.4 and 4.4

4.3 System’s Administrators API

In Tables 4.3 and 4.3 you can see the system’s Administrator API. All requests have payload

in application/json format. For all User Management service requests, the xtoken generated by

the admin, must be included. For the Access Control queries, the options value can determine

whether all entries are affected or a specific one that satisfies the values of the other fields.

{

”name” : ”admin@test . com” ,

”password” : ”1234”

62 Chapter 4. System Implementation

Table 4.4: System’s Administrator API Part 1
Endpoint Service Payload Description

GetAdminToken User Management The email and password
GetAllUsers User Management The admin token only
GetUserInfo User Management The user’s Id

GetUserIdFromUsername User Management The user’s username
UpdateUser User Management The user’s id and updates
DeleteUser User Management The user’s id

GetOrganizationId User Management The role’s name
CheckOrganizationMembership User Management The user’s and role’s Ids

GetLogs Access Control The query and the query options
DeleteLogs Access Control The query and the query options

GetAccessRights Access Control The query and the query options
UpdateAccessRights Access Control The query
DeleteAccessRights Access Control The query and the query options

Table 4.5: System’s Administrator API Part 2
Endpoint Payload Example

GetAdminToken 4.12
GetAllUsers 4.13
GetUserInfo 4.14

GetUserIdFromUsername 4.15
UpdateUser 4.16
DeleteUser 4.17

GetOrganizationId 4.18
CheckOrganizationMembership 4.19

GetLogs 4.20
DeleteLogs 4.21

GetAccessRights 4.22
UpdateAccessRights 4.23
DeleteAccessRights 4.24

}

Listing 4.12: Example payload of GetAdminToken endpoint

The JSON payload contains the Administrator’s credentials used for acquiring an xtoken.

{

”xtoken” : ”{xtoken}”

4.3. System’s Administrators API 63

}

Listing 4.13: Example payload of GetAllUsers endpoint

The JSON payload contains the Administrator’s xtoken.

{

”xtoken” : ”{xtoken}” ,

” id ” : ”{UserId}”

}

Listing 4.14: Example payload of GetUserInfo endpoint

The JSON payload contains the Administrator’s xtoken and the Id of the user whose personal

information the Administrator wants to get.

{

”xtoken” : ”{xtoken}” ,

”username” : ”{Username}”

}

Listing 4.15: Example payload of GetUserIdFromUsername endpoint

The JSON payload contains the Administrator’s xtoken and the username of the user whose

Id the Administrator wants to find.

{

”xtoken” : ”{xtoken}” ,

” u s e r i d ” : ”{UserId}” ,

64 Chapter 4. System Implementation

” user ” : {

”username” : ”newusername” ,

” emai l ” : ”newemail@t . com” ,

”password” : ”newpassword” }

}

Listing 4.16: Example payload of UpdateUser endpoint

The JSON payload contains the Administrator’s xtoken, the Id of the user that is to be

updated and a user object that contains the updated user information.

{

”xtoken” : ”{xtoken}” ,

” u s e r i d ” : ”{UserId}”

}

Listing 4.17: Example payload of DeleteUser endpoint

The JSON payload contains the Administrator’s xtoken and the Id of the user to be deleted.

{

”xtoken” : ”{xtoken}” ,

”orgname” : ” In f ras t ructureOwners ”

}

Listing 4.18: Example payload of GetOrganizationId endpoint

The JSON payload contains the Administrator’s xtoken and the name of the users’ role.

4.3. System’s Administrators API 65

{

”xtoken” : ”{xtoken}” ,

” o rg id ” : ”{RoleId}” ,

” u s e r i d ” : ”{UserId}”

}

Listing 4.19: Example payload of CheckOrganizationMembership endpoint

The JSON payload contains the Administrator’s xtoken, the Id of the users’ role and the Id

of the user whose role is checked.

{

” u s e r i d ” : ”{UserId}” ,

” r eque s t ” : ”MakeThingSubscription” ,

” date ” : ” 14/10/2022” ,

” author i zed ” : ” f a l s e ” ,

” d e s c r i p t i o n ” : ”User did not have the r equ i r ed r o l e . . . ” ,

” opt ions ” : ” s p e c i f i c ”

}

Listing 4.20: Example payload of GetLogs endpoint

The JSON payload contains the values that the query should satisfy and the options that

state whether the query should return a specific entry or all entries.

{

” u s e r i d ” : ”{UserId}” ,

” r eque s t ” : ”MakeThingSubscription” ,

” date ” : ” 14/10/2022” ,

66 Chapter 4. System Implementation

” author i zed ” : ” f a l s e ” ,

” d e s c r i p t i o n ” : ”User did not have the r equ i r ed r o l e . . . ” ,

” opt ions ” : ” a l l ”

}

Listing 4.21: Example payload of DeleteLogs endpoint

The JSON payload contains the values that the query should satisfy and the options that

state whether the query should delete a specific entry or all entries.

{

” u s e r i d ” : ”{UserId}” ,

” e n t i t y i d ” : ”{Ent i tyId }” ,

” conf irmed ” : ” f a l s e ” ,

” opt ions ” : ” a l l ”

}

Listing 4.22: Example payload of GetAccessRights endpoint

The JSON payload contains the values that the query should satisfy and the options that

state whether the query should return a specific entry or all entries.

{

” u s e r i d ” : ”{UserId}” ,

” e n t i t y i d ” : ”{Ent i tyId }” ,

” conf irmed ” : ” f a l s e ” ,

”newconfirmed” : ” t rue ”

}

Listing 4.23: Example payload of UpdateAccessRights endpoint

4.4. System’s UseManagementService API endpoint 67

The JSON payload contains the values that the query should satisfy and the updated value

for the attribute confirmed.

{

” u s e r i d ” : ”{UserId}” ,

” e n t i t y i d ” : ”{Ent i tyId }” ,

” conf irmed ” : ” f a l s e ” ,

” opt ions ” : ” s p e c i f i c ”

}

Listing 4.24: Example payload of DeleteAccessRights endpoint

The JSON payload contains the values that the query should satisfy and the options that

state whether the query should delete a specific entry or all entries.

4.4 System’s UseManagementService API endpoint

In Tables 4.4 and 4.4 you can see examples for the UseManagementService endpoint. The

payload must always be in JSON format and contain the following key values pairs:

• ”url”: Mandatory.

• ”method”: Mandatory with one of the following values (POST, GET, PUT, DELETE).

• ”containspayload”: Mandatory with one of the following values (true, false).

• ”payload: Optional. Only if the ”containspayload” value is true.

68 Chapter 4. System Implementation

Table 4.6: System’s UseManagementService API endpoint Part 1
url method containspayload

{EntityId}/ POST true
{EntityId}/ GET false
{EntityId}/ PUT true
{EntityId}/ DELETE false

{EntityId}/properties POST true
{EntityId}/properties GET false

{EntityId}/properties/{PropertyId} GET false
{EntityId}/properties/{PropertyId} PUT true
{EntityId}/properties/{PropertyId} DELETE false

{EntityId}/actions POST true
{EntityId}/actions GET false

{EntityId}/actions/{ActionId} GET false
{EntityId}/actions/{ActionId} POST true

{EntityId}/actions/{ActionExecutionId} GET false
{EntityId}/actions DELETE false

{EntityId}/subscriptions/{SubscriptionId} GET false
{EntityId}/subscriptions/{SubscriptionId} DELETE false

{

” u r l ” : ”{Ent i tyId }/” ,

”method” : ”POST” ,

” conta inspay load ” : ” t rue ” ,

”payload” : {

” id ” : ”CustomerAPI” ,

” type” : ”Thing” ,

”name” : ”Customer API” ,

” d e s c r i p t i o n ” : ”This i s an API f o r HPlusSport customers ” ,

” createdAt ” : { ” type” : ” s t r i n g ” , ” format ” : ”date−time” } ,

”updatedAt” : { ” type” : ” s t r i n g ” , ” format ” : ”date−time” } ,

” employees ” : 30 ,

” customers ” : 120

}

}

Listing 4.25: Example payload of CreateEntity

4.4. System’s UseManagementService API endpoint 69

The JSON payload contains the url of the entity to create, the method of the request and a

payload that contains the details of the entity, including its name, type, Id and description.

Table 4.7: System’s UseManagementService API endpoint Part 2
url Full Payload

{EntityId}/ 4.25
{EntityId}/ 4.26
{EntityId}/ 4.27
{EntityId}/ 4.28

{EntityId}/properties 4.29
{EntityId}/properties 4.30

{EntityId}/properties/{PropertyId} 4.31
{EntityId}/properties/{PropertyId} 4.32
{EntityId}/properties/{PropertyId} 4.33

{EntityId}/actions 4.34
{EntityId}/actions 4.35

{EntityId}/actions/{ActionId} 4.36
{EntityId}/actions/{ActionId} 4.37

{EntityId}/actions/{ActionExecutionId} 4.38
{EntityId}/actions 4.39

{EntityId}/subscriptions/{SubscriptionId} 4.40
{EntityId}/subscriptions/{SubscriptionId} 4.41

{

” u r l ” : ”{Ent i tyId }/” ,

”method” : ”GET” ,

” conta inspay load ” : ” f a l s e ”

}

Listing 4.26: Example payload of GetEntity

The JSON payload contains the url of the entity to get and the method of the request.

{

” u r l ” : ”{Ent i tyId }/” ,

70 Chapter 4. System Implementation

”method” : ”PUT” ,

” conta inspay load ” : ” t rue ” ,

”payload” : {

” employees ” : {

” value ” : 60 }

}

}

Listing 4.27: Example payload of UpdateEntity

The JSON payload contains the url of the entity to update, the method of the request and

a payload that contains the details of the entity to be updated.

{

” u r l ” : ”{Ent i tyId }/” ,

”method” : ”DELETE” ,

” conta inspay load ” : ” f a l s e ”

}

Listing 4.28: Example payload of DeleteEntity

The JSON payload contains the url of the entity to delete and the method of the request.

{

” u r l ” : ”{Ent i tyId }/ p r op e r t i e s ” ,

”method” : ”POST” ,

” conta inspay load ” : ” t rue ” ,

”payload” : {

{

4.4. System’s UseManagementService API endpoint 71

” id ” : ”CustomerAPI\ t e s t p r op e r t y ” ,

” type” : ” property ” ,

” en t i t y ” : ”CustomerAPI” ,

”name” : ”TestProperty ” ,

” property ” : ”Test ” ,

” va lue s ” : {

” t e s t ” : ”25” ,

” timestamp” : ”2020−06−14T14:30:00 .000Z” }

}

}

Listing 4.29: Example payload of CreateEntityProperty

The JSON payload contains the url of the entity whose properties are created, the method of

the request and a payload that contains the details of the entity’s properties entity, including

its name, entity, type, Id and attributes.

{

” u r l ” : ”{Ent i tyId }/ p r op e r t i e s ” ,

”method” : ”GET” ,

” conta inspay load ” : ” f a l s e ”

}

Listing 4.30: Example payload of GetEntityProperties

The JSON payload contains the url of the entity’s properties to get and the method of the

request.

{

72 Chapter 4. System Implementation

” u r l ” : ”{Ent i tyId }/ p r op e r t i e s /{PropertyId }” ,

”method” : ”GET” ,

” conta inspay load ” : ” f a l s e ”

}

Listing 4.31: Example payload of GetEntityProperty

The JSON payload contains the url of the entity’s specific property to get and the method

of the request.

{

” u r l ” : ”{Ent i tyId }/ p r op e r t i e s /{PropertyId }” ,

”method” : ”PUT” ,

” conta inspay load ” : ” t rue ” ,

”payload” : {

” value ” : 30 }

}

Listing 4.32: Example payload of UpdateEntityProperty

The JSON payload contains the url of the entity’s specific property to update, the method

of the request and a payload that contains the details of the entity’s property to be updated.

{

” u r l ” : ”{Ent i tyId }/ p r op e r t i e s /{PropertyId }” ,

”method” : ”DELETE” ,

” conta inspay load ” : ” f a l s e ”

}

Listing 4.33: Example payload of DeleteEntityProperty

4.4. System’s UseManagementService API endpoint 73

The JSON payload contains the url of the entity’s property to delete and the method of the

request.

{

” u r l ” : ”{Ent i tyId }/ a c t i on s ” ,

”method” : ”POST” ,

” conta inspay load ” : ” t rue ” ,

”payload” : {

” id ” : ”CustomerAPI\ a c t i o n s ” ,

” type” : ” a c t i on s ” ,

” en t i t y ” : ”CustomerAPI” ,

”name” : ”TestAct ions ” ,

” a c t i on s ” : [

{ ” id ” : ” t e s t a c t i o n 1 ” ,

”name” : ” testname1” } ,

{ ” id ” : ” t e s t a c t i o n 2 ” ,

”name” : ” testname2” }]

}

}

Listing 4.34: Example payload of CreateEntityActions

The JSON payload contains the url of the entity whose actions are created, the method of

the request and a payload that contains the details of the entity’s actions, including its Id,

type, name and specific actions.

{

” u r l ” : ”{Ent i tyId }/ a c t i on s ” ,

”method” : ”GET” ,

” conta inspay load ” : ” f a l s e ”

74 Chapter 4. System Implementation

}

Listing 4.35: Example payload of GetEntityActions

The JSON payload contains the url of the entity’s actions to get and the method of the

request.

{

” u r l ” : ”{Ent i tyId }/ a c t i on s /{ActionId}” ,

”method” : ”GET” ,

” conta inspay load ” : ” f a l s e ”

}

Listing 4.36: Example payload of GetEntityActionRecentExecutions

The JSON payload contains the url of the entity’s recent action executions to get and the

method of the request.

{

” u r l ” : ”{Ent i tyId }/ a c t i on s /{ActionId}” ,

”method” : ”POST” ,

” conta inspay load ” : ” t rue ” ,

”payload” : {

” id ” : ” acex” ,

” type” : ” execut ion ” ,

” ac t i on ” : ”CustomerAPI” ,

”name” : ” t e s t a c t i o n 1 ”

}

}

Listing 4.37: Example payload of ExecuteEntityAction

4.4. System’s UseManagementService API endpoint 75

The JSON payload contains the url of the entity’s action to execute, the method of the

request and a payload that contains the details of the entity’s action execution, including its

name, type, and action.

{

” u r l ” : ”{Ent i tyId }/ a c t i on s /{ActionExecut ionId }” ,

”method” : ”GET” ,

” conta inspay load ” : ” f a l s e ”

}

Listing 4.38: Example payload of GetEntityActionExecution

The JSON payload contains the url of the entity’s action execution to get and the method

of the request.

{

” u r l ” : ”{Ent i tyId }/ a c t i on s ” ,

”method” : ”DELETE” ,

” conta inspay load ” : ” f a l s e ”

}

Listing 4.39: Example payload of DeleteEntityActions

The JSON payload contains the url of the entity’s actions to delete and the method of the

request.

{

” u r l ” : ”{Ent i tyId }/ s ub s c r i p t i o n s /{ Subsc r ip t i on Id }” ,

”method” : ”GET” ,

” conta inspay load ” : ” f a l s e ”

76 Chapter 4. System Implementation

}

Listing 4.40: Example payload of GetEntitySubscription

The JSON payload contains the url of the entity’s subscription to get and the method of the

request.

{

” u r l ” : ”{Ent i tyId }/ s ub s c r i p t i o n s /{ Subsc r ip t i on Id }” ,

”method” : ”DELETE” ,

” conta inspay load ” : ” f a l s e ”

}

Listing 4.41: Example payload of DeleteEntitySubscription

The JSON payload contains the url of the entity’s subscription to delete and the method of

the request.

Chapter 5

System Performance

The purpose of the experiments is to evaluate the system’s run-time performance in normal

workloads and under stress.

5.1 Specs

The experiments were performed on a single VM. The VM’s specs are shown below.

• OS: Ubuntu 18.04

• CPU: 6 Cores 2.8GHz

• RAM: 8192 MB

• Storage: 25GB HDD

77

78 Chapter 5. System Performance

5.2 Experiments

The stress experiments were performed with the Locust service. There were 3 experiments

with 3 different number of users making parallel requests (concurrency = number of users).

Each experiment featured approximately 10000 system requests, split amongst the different

endpoints. The first column is the API that received the request and the other 3 columns

are the system’s response times in milliseconds. There are 3 different MakeOpenAPIDescrip-

tionQuery entries on the tables. This because each query was different and satisfied different

amounts of returned data. MakeOpenAPIDescriptionQuery 1 returned approximately 40% of

OpenAPI descriptions stored, MakeOpenAPIDescriptionQuery 2 returned approximately 25%

of OpenAPI descriptions stored and MakeOpenAPIDescriptionQuery 3 returned a single Ope-

nAPIDescription. The experiments are shown in the tables 5.2, 5.2 and 5.2.

Table 5.1: System’s Performance with concurrency 50
API Median 90%ile Average

CreateOpenAPIDescription 11 12 11
UseManagementService (Create Entity) 87 150 96

MakeThingSubscription 16 22 18
UseManagementService (Get Entity) 8 10 8

MakeHistoricDataQuery 10 27 15
MakeOpenAPIDescriptionQuery 1 15 22 17
MakeOpenAPIDescriptionQuery 2 14 21 16
MakeOpenAPIDescriptionQuery 3 11 18 13

StoreOpenAPIDescription 68 120 77
UseManagementService (Update Entity) 81 110 87

Aggregated 14 74 25

5.2. Experiments 79

Table 5.2: System’s Performance with concurrency 100
API Median 90%ile Average

CreateOpenAPIDescription 10 15 12
UseManagementService (Create Entity) 74 120 83

MakeThingSubscription 15 25 19
UseManagementService (Get Entity) 7 11 9

MakeHistoricDataQuery 9 34 16
MakeOpenAPIDescriptionQuery 1 15 25 18
MakeOpenAPIDescriptionQuery 2 13 22 15
MakeOpenAPIDescriptionQuery 3 11 18 13

StoreOpenAPIDescription 65 91 68
UseManagementService (Update Entity) 74 120 82

Aggregated 13 67 24

Table 5.3: System’s Performance with concurrency 150
API Median 90%ile Average

CreateOpenAPIDescription 12 19 14
UseManagementService (Create Entity) 120 430 479

MakeThingSubscription 23 60 81
UseManagementService (Get Entity) 10 21 14

MakeHistoricDataQuery 7 13 9
MakeOpenAPIDescriptionQuery 1 23 72 38
MakeOpenAPIDescriptionQuery 2 19 62 33
MakeOpenAPIDescriptionQuery 3 16 53 29

StoreOpenAPIDescription 110 300 319
UseManagementService (Update Entity) 120 310 355

Aggregated 19 110 78

80 Chapter 5. System Performance

5.3 Results

The experiments show that the system’s performance is optimal in concurrency=100. It has

worse performance with concurrency 50 and a lot worse performance with concurrency=150.

The slowest endpoints are the UseManagementService (for entity creation and update) and

StoreOpenAPIDescription. The UseManagementService endpoint for entity creation and up-

date is slow because it makes requests on many services (Application Logic, Access Control, User

Management, WTMs, Publish-Subscribe) unlike the CreateOpenAPIDescription and MakeHis-

toricDataQuery endpoints which are really fast. The StoreOpenAPIDescription endpoint is also

slow because for an OpenAPIDescription to be stored, multiple requests on multiple collections

in MongoDB must be made. Slow endpoints are not an issue provided that the requests made

on them are rare. StoreOpenAPIDescription and UseManagementService for entity creation

are generally rare requests so them being slow is not a problem. The most common requests are

the GET requests and the query requests. The results on the MakeOpenAPIDescriptionQuery,

MakeHistoricDataQuery and UseManagementService to GET an entity endpoints are great.

Finally, the system responds in real time even under stress(concurrency=150) proving that it

can handle big workloads.

Chapter 6

Conclusion

Nexus is a complete IoT architecture that can support all IoT functionalities Infrastructure

Owners and Application Developers potentially need. Inside Nexus, Things / Applications

and described with OpenAPI which is a universal language, and industry standard, that is

understandable easily by both humans and machines. Nexus contains tools for searching for

stored Things / Applications and for managing them. It is also secured by design since it

contains security mechanisms like OAuth2, proxies and role specific endpoints. Finally, it is a

SOA and has all the advantages explained in Chapter 2.3.

6.1 Future Work

One important security update for Nexus is replacing the HTTP protocol of the requests

with HTTPs for outside connections. This will secure the requests by providing encryption on

the data sent. Requests between system’s services can still work with standard HTTP provided

that the services are in the same Cloud platform.

One other potential change is to replace Orion Context Broker with a faster Publish-Subscribe

system like RabbitMQ1. This means that WTMs should also be changed to work independently

1https://rabbitmq.com/

81

82 Chapter 6. Conclusion

from Orion Context Broker and a new Historic Data API should be incorporated since STH-

Comet and Cygnus also have their functionality tied with Orion Context Broker.

Like the current OpenAPI Generator for Things, an OpenAPI Generator for Applications

can be added in the architecture.

OpenIdConnect is a mechanism for authentication that allows the users to register and log

in the system by using the token they obtained from another system. This allows them to

use the system effectively without needing to use their credentials to log in every time. The

system is compatible with any server authentication service provided it supports OAuth2 and

its users have matching roles with the Nexus. Incorporating OpenIdConnect in the system is a

nice addition.

Bibliography

[1] M. Amundsen. Building Hypermedia APIs with HTML5 and Node. ” O’Reilly Media,

Inc.”, 2011.

[2] I. Apostolakis. Simple querying service for OpenAPI descriptions with Semantic Web

extensions. Diploma thesis, School of Electrical and Computer Engineering, Technical

University of Crete (TUC), Chania, Crete, Greece, May 2022.

[3] T. Berners-Lee, J. Hendler, O. Lassila, et al. The semantic web. Scientific american,

284(5):28–37, 2001.

[4] T. Bray, J. Paoli, C. Sperberg-McQueen, E. Maler, F. Yergeau, and J. Cowan. Exten-

sible markup language (xml) 1.1-w3c recommendation. World Wide Web Consortium.

http://www. w3. org/TR/xml11/, 2006.

[5] R. Chinnici, J.-J. Moreau, A. Ryman, and S. Weerawarana. Web Services Description

Language (WSDL) Version 2.0 Part 1: Core Language, June 2007. W3C Recommendation.

[6] L. Clement, A. Hately, C. von Riegen, T. Rogers, et al. Uddi version 3.0. 2, uddi spec

technical committee draft. OASIS UDDI Spec TC, 2004.

[7] R. Fielding. Fielding dissertation: Chapter 5: Representational state transfer (rest). Re-

cuperado el, 8, 2000.

[8] D. Guinard and V. Trifa. Building the Web of Things. Manning Publications Co., Green-

wich, CT, USA, 2016.

[9] L. Gupta. HATEOAS Driven REST APIs, Oct. 2021.

83

84 BIBLIOGRAPHY

[10] S. Kaebisch, T. Kamiya, M. McCool, V. Charpenay, and M. Kovatsch. Web of Things

(WoT) Thing Description, Apr. 2020. W3C Recommendation.

[11] H. Knublauch and D. Kontokostas. Shapes Constraint Language (SHACL), July 2017.

[12] M. Kovatsch, R. Matsukura, M. Lagally, T. Kawaguchi, K. Toumura, and K. Kajimoto.

Web of Things (WoT) Architecture, Apr. 2020. W3C Recommendation.

[13] M. Lanthaler. Creating 3rd generation web apis with hydra. In Proceedings of the 22nd

International Conference on World Wide Web, pages 35–38. ACM, 2013.

[14] N. Mainas and E. Petrakis. SOAS 3.0: Semantically Enriched OpenAPI 3.0 Descriptions

and Ontology for REST Services. In IEEE Intern. Conf. on Semantic Computing (ICSC

2020), pages 207–210, San Diego, California, Feb. 2020.

[15] N. Mainas, E. Petrakis, and S. Sotiriadis. Semantically Enriched Open API Descriptions

in the Cloud. In IEEE Intern. Conf. on Software Engineering and Service Science (IEEE

ICSESS), pages 66–69, Beijing, China, Nov. 2017.

[16] P. Mell and T. Grance. The nist definition of cloud computing. 2011.

[17] N. Mitra and Y. Lafon. SOAP Version 1.2 Part 0: Primer (Second Edition), Apr. 2007.

[18] RedHat. An Introduction to OpenAPI Specification, 8 2009.

[19] A. Tzavaras, N. Mainas, F. Bouraimis, and E. G. Petrakis. OpenAPI Thing Descrip-

tions for the Web of Things. In IEEE International Conference on Tools with Artificial

Intelligence (ICTAI 2021), Virtual, Nov. 2021.

[20] Web Thing Model, Aug. 2015. W3C member submission.

	Abstract
	Acknowledgements
	Introduction
	Background and Motivation
	Problem Definition
	Proposed Solution
	Contributions of the Work
	Thesis Outline

	Background and Related Work
	Web of Things (WoT)
	Web of Things (WoT) Architecture
	Service-Oriented Architecture (SOA)
	RESTful Web Services
	Cloud Computing
	SOA and Cloud Computing
	WoT and Cloud Computing
	OpenAPI Specification
	Semantic OpenAPI
	OpenAPI Thing Generator

	System Requirements and Design
	Use Case
	Functional Requirements
	Non-Functional Requirements
	Class Diagram
	Activity Diagrams
	Architecture
	Application Logic
	User IDM
	Access Control
	Policy Enforcement Point Proxy
	Publish-Subscribe
	OAQL2 Server
	History Data
	WTMs
	OpenAPI Generator

	System Implementation
	System's Authentication API
	System's Application Logic API
	System's Administrators API
	System's UseManagementService API endpoint

	System Performance
	Specs
	Experiments
	Results

	Conclusion
	Future Work

	References

