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Abstract 

Το πρόβλημα της ασυμμετρίας της πληροφορίας (information asymmetry) έχει μελετηθεί 

εκτενώς όπως και οι συνέπειές του στο χρηματοπιστωτικό χώρο. Έτσι η ανταλλαγή 

πληροφοριών και δεδομένων οικονομικής συμπεριφοράς, μέσω μηχανισμών όπως τα 

γραφεία πίστης (Credit bureaus) λειτούργησε ως αντίβαρο στην ασυμμετρία αυτή και ως 

υποστηρικτικό εργαλείο στις πιστοδοτικές αποφάσεις. Από το τα τέλη του 19ου αιώνα που 

λειτούργησε το πρώτο γραφείο πίστης Dun & Bradstreet, αναπτύχθηκαν μεθοδολογίες για 

την υποστήριξη της πιστοληπτικής αξιολόγησης υποψηφίων δανειοληπτών.  Η βασικότερη 

ίσως μεθοδολογία των γραφείων πίστης διεθνώς είναι η πιστοληπτική βαθμολόγηση 

και συνίσταται στη χρήση στατιστικών και αλγοριθμικών μεθόδων που αποσκοπούν στο 

μετασχηματισμό των δεδομένων  σε αριθμητικές μετρήσεις οι οποίες μπορούν να 

χρησιμοποιηθούν για την αυτοματοποιημένη "κατάρτιση προφίλ" υποψηφίων 

δανειοληπτών.  Μεθοδολογικά η πιστοληπτική βαθμολόγηση αρχικά στηρίζονταν σε 

αμιγώς στατιστικές προσεγγίσεις (π.χ. λογιστική παλινδρόμηση, δέντρα αποφάσεων κλπ), 

ωστόσο η σχετικά πρόσφατη "έκρηξη" των μεθόδων μηχανικής μάθησης (machine 

οδήγησε σε αντίστοιχη ανάπτυξη των σχετικών μεθόδων και υποδειγμάτων που 

χρησιμοποιούνται στην πιστωτική βαθμολόγηση.  

Παρόλα αυτά η εφαρμογή αυτών των μεθόδων συναντά θεωρητικά αλλά και πρακτικά 

προβλήματα, το βασικότερο των οποίων είναι η πληθυσμιακή μετατόπιση (population 

πιστοληπτικής βαθμολόγησης αντιμετωπίζουν το πρόβλημα της πληθυσμιακής 

μετατόπισης (population drift), όταν οι στατιστικές κατανομές του υπό μοντελοποίηση 

πληθυσμού, αναπόφευκτα, μεταβάλλονται στο χρόνο. Αυτό το πρόβλημα αντιμετωπίζεται 



Adaptive Credit Scoring using Local Classification Methods 4 

με τη διαρκή παρακολούθηση (Monitoring) των επιδόσεων των υποδειγμάτων 

Λαμβάνοντας υπόψη το γεγονός ότι για την ανάπτυξή τέτοιων μοντέλων χρειάζονται 

δεδομένα κατ' ελάχιστο 2 ετών και προθέτοντας και τον απαιτούμενο  χρόνο υλοποίησης 

και θέσης σε παραγωγική λειτουργία, σε πρακτικό επίπεδο εντείνεται ακόμα περισσότερο 

το πρόβλημα της πληθυσμιακής μετατόπισης. 

Στην παρούσα διατριβή προτείνεται η αντιμετώπιση του προβλήματος της πληθυσμιακής 

μετατόπισης με αυτόματη και δυναμική προσαρμογή των υποδειγμάτων βαθμολόγησης 

με χρήση τοπικών μεθόδων ταξινόμησης (local classification). Συγκεκριμένα το 

προτεινόμενο σχήμα συνίσταται στον υπολογισμό της πιστοληπτικής βαθμολόγησης 

χρησιμοποιώντας μεθόδους Lazy learning για κάθε ένα εισερχόμενο αίτημα score (σημείο 

εισόδου ή query instance), χρησιμοποιώντας  μόνο εκείνο το υποσύνολο των ομοειδών 

εγγραφών προς το εισερχόμενο σημείο (Instance selection, local region of competence). Η 

έννοια της ομοιότητας (similarity) καθορίζεται από την απόσταση (distance) με 

συγκεκριμένη μετρική (π.χ. ευκλείδια απόσταση) μεταξύ της εισερχόμενης εγγραφής και 

του n-διάστατου χώρου του συνόλου των εγγραφών (feature space), όπου είναι το πλήθος 

των διαφορετικών μεταβλητών (attributes ή characteristics),  όπου n είναι το πλήθος των 

πεδίων κάθε εγγραφής. To υποσύνολο των ομοειδών εγγραφών κάθε εισερχόμενου 

σημείου προσδιορίζεται με τη μέθοδο των πλησιέστερων γειτόνων (kNN) . Έτσι κάθε 

γειτονιά χρησιμοποιείται ως σύνολο εκπαίδευσης (training set) ενός υποδείγματος 

πιστωτικής βαθμολόγησης αποκλειστικά για το συγκεκριμένο σημείο εισόδου. 
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Συγκρίνονται μεθοδολογίες στατιστικές και μηχανικής μάθησης (λογιστική παλινδρόμηση 

που λαμβάνεται και ως σημείο αναφοράς, Random Forests και Gradient Boosting Trees), 

χρησιμοποιώντας πραγματικά δεδομένα γραφείου πίστης για ένα βάθος 11 ετών (2009-

2019) ανά τρίμηνο με συνολικά 3,520,000 εγγραφές και 125 διαφορετικές μεταβλητές. Για 

τον υπολογισμό των μέτρων επίδοσης (performance measures) χρησιμοποιήθηκαν τα AUC 

Measure με κατάλληλες στατιστικές μεθοδολογίες σύγκρισης διαφορετικών ταξινομητών 

Friedman’s aligned ranks σε συνδυασμό με το post-hoc Nemenyi test 

Ειδικότερα διερευνήθηκαν οι εξής στατιστικές υποθέσεις: 

H

Έχουν καλύτερες επιδόσεις οι τοπικές μέθοδοι (local classification methods) σε σχέση με 

τις καθολικές (global);  H

Υπάρχει σημαντικά στατιστική διαφοροποίηση μεταξύ των μεθόδων μάθησης και της 

λογιστικής παλινδρόμησης? H

Επηρεάζει η επιλογή των γειτόνων με βάση την ομοιότητα (KNN) τα αποτελέσματα? Η διερεύνηση των ανωτέρω υποθέσεων καταδεικνύει ότι οι τοπικές μέθοδοι επιφέρουν 

κατά περίπτωση καλύτερα αποτελέσματα σε σχέση με τις καθολικές, ωστόσο η διαφορές 

είναι στατιστικά σημαντικές μόνο στην περίπτωση της λογιστικής παλινδρόμησης.  

Ιδιαίτερα ενδιαφέρον παρουσιάζει το γεγονός ότι, σε συμφωνία με τα ευρήματα της 

βιβλιογραφίας, οι μέθοδοι μηχανικής μάθησης που εφαρμόστηκαν είναι περίπου 6%-7% 

καλύτερες (με μετρική AUC) σε σχέση με την καθολική λογιστική παλινδρόμηση, ωστόσο 

η τοπική λογιστική παλινδρόμηση βρίσκεται περίπου στο ίδιο επίπεδο επιδόσεων με τις 

μεθόδους μηχανικής μάθησης. Τέλος η επιλογή γειτόνων με βάση την ομοιότητα ως προς 
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το σημείο εισόδου αποδεικνύεται ότι φέρει σημαντική βελτίωση στην επίδοση, σε σχέση 

με την επιλογή τυχαίων σημείων χωρίς να λαμβάνεται υπόψη η γειτνίαση. 
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Abstract 

Despite the advances in machine learning methods which are also applied in credit scoring 

with overall positive results, there are still very important unresolved issues, pertaining not 

only to academia but to practitioners and the industry as well, such as model drift as an 

inevitable consequence of population drift and the strict regulatory obligations for 

transparency and interpretability of the automated profiling methods. We present a novel 

adaptive behavioral credit scoring scheme which uses online training for each incoming 

inquiry (a borrower) by identifying a specific region of competence to train a local model. 

We compare different classification algorithms i.e. logistic regression with state of the art 

machine learning methods (random forests and gradient boosting trees) that have shown 

promising results in the literature machine learning). Our data sample has been derived 

from a proprietary credit bureau database and spans a period of 11 consequent years with 

quarterly sampling frequency consisting of more than 3,520,000 record-month 

observations. Rigorous performance measures used in credit scoring literature and practice 

(such as AUROC and H-Measure) indicate that our approach deals effectively with 

population drift and that local models outperform their corresponding global ones in all 

cases. Furthermore, when using simple local classifiers such as logistic regression we can 

achieve comparable results with the global machine learning ones which are considered 

“black box” methods. 

Keywords:  concept/population drift; adaptive learning; local classification; 

behavioral credit scoring; lazy learning; region of competence 
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1 Information Asymmetry, Credit Bureaus and 

Credit Scoring 

In economic theory information asymmetry has far reaching and well-studied 

consequences in the operation of financial markets. According to (Akerlof, 1978), whose 

work on information asymmetry is among the oldest and best known, when only the 

average quality of the good can be assumed in markets with a good of indeterminate quality, 

over time goods of above-average quality will be driven out and will threaten the viability 

of the market for the good. In lending, the problem of asymmetric information stems from 

the fact that a lender’s knowledge of a borrower’s likelihood to repay (their "risk profile") 

is imprecise and must be inferred based upon available information. Thus in the case of 

consumer credit markets, the riskiness of a borrower can be thought of as the “good” that 

the lender “purchases”. The assessment of risk is crucial as loans involve an agreement to 

pay in the future. In their seminal work, (Stiglitz & Weiss, 1981) suggested that even in a 

competitive equilibrium, credit markets can witness rationing (i.e. given two individuals 

with identical risk profiles and preferences, one will receive a loan and another will not) 

owing to insufficient information. Given information asymmetries, lenders rely on a 

combination of pricing (interest rates) and rationing to maximize returns. However, higher 

interest rates, while covering the risk of borrower default, are also likely to result in adverse 

selection. That is, higher interest rates attract borrowers seeking to make risky investments 

with the potential for high rates of return. (Stiglitz & Weiss, 1981) further argue that the 

price mechanism alone might not clear loan markets because as interest rates increase to 

compensate for rising risk, riskier applicants are attracted. Moreover, some borrowers will 
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have an incentive to make riskier investments to cover the price of credit. Faced with this 

“moral hazard” (the relative lack of penalty for non-payment) and with the problem of 

adverse selection that stems from asymmetric information, lenders will ration credit.  

This all suggests that with more information about the borrowers being available, 

the pool of borrowers should improve, the risks of defaults should be reduced, and in some 

circumstances, the volume of lending should increase. The study by  (Padilla & Pagano, 

1997) confirms these notions: when information sharing takes place among lenders default 

rates are lower when information sharing takes place, interest rates are predicted to 

decrease and the total volume of lending to increase. In line with that, (Bennardo et al., 

2015) also show in their theoretical work that information sharing reduces default and 

interest rates. The model of (McIntosh & Wydick, 2009) decomposes the overall effect of 

credit information sharing into three: a screening effect, an incentive effect with lower 

borrower default rates, and a credit expansion effect which increases default rates from 

larger loans (even though the former seem to overwhelm the latter in an overall view). In 

another model, (Padilla & Pagano, 2000) show that the disciplinary effect on borrowers 

from sharing information between lending institutions reduces default and interest rates. 

However, they show that this depends also on the type of information that is shared.  

Thus, credit reporting systems have emerged (as early as the late 19th century where 

the a newly founded company Dun & Bradstreet solicited information in order to systemize 

a borrower's "character and assets"1) as the means of credit information sharing to reduce 

information asymmetry and support the efficiency of credit institutions in their lending 

                                                 

 

1 (Kaufman, 2018), The History of the FICO® Score, https://tinyurl.com/yc4y2aye  

https://tinyurl.com/yc4y2aye
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making processes, and in tasks such as credit limit management, debt collection, cross-

selling, risk based pricing, prevention of fraud, etc (J. Breeden et al., 2007; Hand & Henley, 

1997; Thomas & Malik, 2010). These credit reporting systems are comprised by the actors, 

rules, procedures, standards, and technology that facilitate the flow of information relevant 

to credit agreement decision  making.  Those actors refer to specific entities:  individuals, 

Credit Reporting Service Providers (CRSPs), data providers, authorities, regulators, and 

supervisors. In particular, CRSPs can be further categorized2  as follows (World Bank 

Group, 2019): 

 Credit bureaus that collect and provide credit information on individuals 

and SMEs. More often than not these entities are private corporations or 

owned by the lenders. The compiled information is made available on 

request to customers of the credit bureau for purposes of credit risk 

assessment, credit scoring, or other similar purposes; consumer bureau 

customers include banks and other financial institutions that evaluate 

individuals for credit. 

 Credit registries which generally are considered public entities and their 

role is to support the state and competent authorities in their supervisory 

and policy making responsibilities. 

 Commercial credit reporting companies which collect information on 

businesses, including sole proprietorships, partnerships, and corporations. 

The compiled information is made available on request to customers of the 

                                                 

 

2 It shall be noted here that this distinction is indicative and is not a strict taxonomy   
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commercial reporting company for the purposes of credit risk assessment, 

credit scoring, or other similar purposes, such as the extension of trade 

credit. Commercial credit reporting company customers include banks and 

other financial institutions that evaluate businesses for trade credit or 

insurance for business purposes 

For the purpose of this thesis we shall collectively refer to all CRSPs as “credit 

bureaus”. One of the principal tools of credit bureaus is credit scoring. Credit scoring can 

be defined as|: 

 "[credit scoring is] the term used to describe formal statistical methods used 

for classifying applicants for credit into ‘good’ and ‘bad’ risk classes. (Hand 

& Henley, 1997) 

 "the use of statistical models to transform relevant data into numerical 

measures that guide credit decisions" (R. Anderson, 2007).  

 "the set of predictive models and their underlying techniques that aid 

financial institutions in the granting of credits. These techniques decide who 

will get credit, how much credit they should get, and what further strategies 

will enhance the profitability of the borrowers to the lenders. Credit scoring 

techniques assess the risk in lending to a particular client. They do not 

identify “good” or “bad” (negative behaviour is expected, e.g. default) 

applications on an individual basis, but they forecast probability, that an 

applicant with any given score will be “good” or “bad”." (Rezac & Rezac, 

2011) 
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 "A credit score is a model-based estimate of the probability that a borrower 

will show some undesirable behavior in the future... for example, lenders 

employ predictive models, called scorecards, to estimate how likely an 

applicant is to default  (probability of default)" (Lessmann et al., 2015) 

The scientific background to modern credit scoring was laid down by the 

pioneering work of Ronald. A. Fisher (Fisher, 1936) and it was  (Durand, 1941) a little later 

who recognized that the same approach could be used to distinguish between good and bad 

loans. Nevertheless, the automated and thus widespread application of credit scoring did 

not take place until the 1980’s, when computing power to perform sophisticated 

calculations became affordable and FICO developed its first scorecard using statistical 

methods3. For the next decades despite some methodological advances in the academic 

research, such as usage of artificial neural networks, SVMs, self-organizing maps, MARS 

(multivariate adaptive regression splines) (see indicatively, (Boyacioglu et al., 2009; F.-L. 

Chen & Li, 2010; Ping & Yongheng, 2011; Sarlija et al., 2006; C. F. Tsai & Wu, 2008; West, 

2000; P. Yao, 2009) etc.) the field (and the practice of credit scoring) remained largely 

unchanged; credit scoring has relied on linear statistical methods (mainly logistic 

regression) and a limited number of fixed variables to calculate a borrower’s credit score. 

This changed after 2010 where the proliferation of  “big data” combined with the successful 

application of more sophisticated Machine Learning (ML) methods such as “deep learning” 

(referring to multi-layered neural networks) (Hinton & Salakhutdinov, 2006), Deep Neural 

                                                 

 

3 (Kaufman, 2018), The History of the FICO® Score, https://tinyurl.com/yc4y2aye  

 

https://tinyurl.com/yc4y2aye
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Networks (LeCun et al., 2015) and similar advancements revolutionized the field of credit 

scoring (among others).  

Despite all the radical advances, credit scoring still faces many methodological and 

practical challenges such as:  

 Lack of adequate, real-world and large-scale credit related data. Small datasets have 

been noted in the literature that may introduce unwanted artifacts and the models 

built upon them do not scale up when put into practice (Jamain & Hand, 2009; 

Perlich et al., 2003).  

 All predictive models suffer from population (or concept) drift, i.e. changes in the 

socio-economic environment cause the underlying distribution of the modeled 

population to change over time; credit scoring is no exclusion (Adams et al., 2010; 

Bifet et al., 2011; Gama et al., 2004, 2014; Klinkenberg, 2004; Žliobaitė, 2009; 

Žliobaitė et al., 2016). To tackle this problem in practical terms, credit bureaus 

implement continuous monitoring cycles and periodic re-calibration or re-

development of their models (R. Anderson, 2007; Jung et al., 2015; Siddiqi, 2005).  

 Development of behavioral credit scoring models require historical data of at least 

1-2 years. Without counting the monetary cost incurred by such operations, adding 

the time to implement and put into production a new generation of models, 

sometimes results in a difference of three or more years between actual data that 

reflect the current population dynamics and the data used to build the models. This 

lag between data at model development time and actual time to be put into 

production has become more obvious as data are generated in an ever-increasing 

pace and this acceleration puts an equally pressing pace in operations. relationships 
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(especially on untransformed data) and increase the performance of generalized 

linear models (R. Anderson, 2019), which are even today the "golden standard" in 

the credit scoring industry (although to a far lesser extent than in past decades, due 

to the above mentioned proliferation of ML methods).  

 This proliferation, on the other hand, besides (expected) performance 

improvements (Alonso & Carbó, 2020) introduced issues such as transparency, bias 

and fairness (Bussmann et al., 2020; Gilpin et al., 2018; Guidotti et al., 2018; Hardt 

et al., 2016a; Suresh & Guttag, 2019; Zafar et al., 2017) which in the context of 

credit scoring have received special attention (N. Aggarwal, 2021; Hurlin et al., 

2021; Kozodoi et al., 2022) especially in light of the statutory and regulatory 

constraints (cf. GDPR, EU AI Act: COM/2021/206 final). 

 From a purely methodological standpoint, besides the advances in developing 

credit scoring models with novel methods, there are also advancements that 

received little attention in the literature such as a) use of novel performance 

measures and b) statistical comparison between classifiers (Lessmann et al., 2015).  

o Specifically, regarding point (a), most studies rely on a single performance 

measure or measures such such as the Area Under the ROC (AUC), the 

GINI index and the Kolmogorov-Smirnov distance or the F-measure. 

However, in the literature there has been a skepticism over their 

appropriateness and especially of the widely used AUC measure (Hand & 

Anagnostopoulos, 2013). A coherent alternative namely the H-measure 

(Hand, 2009; Hand & Anagnostopoulos, 2013, 2021) has been proposed, 

which to the author’s knowledge is not frequently used. 
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o Regarding point (b) statistical hypothesis testing is often neglected or 

employed inappropriately. Common mistakes include using parametric tests 

(e.g., the t-test) or performing multiple comparisons without controlling the 

family-wise error level. The approaches are inappropriate because the 

assumptions of parametric tests are violated in classifier comparisons 

(Demsar, 2006). Similarly, pairwise comparisons without p-value 

adjustment increase the actual probability of Type-I errors beyond the stated 

level of α (e.g., García et al., 2010).  

1.1 Significance of the study 

In this work, we investigate the use of local classification models for dynamic 

adaptation in consumer credit risk assessment aiming to handle the population drift and 

avoid the time-consuming endeavor of continuous monitoring and re-calibration/re-

development procedures. The proposed adaptive scheme, searches the feature space for 

each candidate borrower ("query instance") to construct a "micro-segment" or local region 

of competence, using the K nearest neighbors algorithm (kNN). Thus, a region of 

competence is exploited as a localized training set to feed a classification model for the 

specified individual. Such a specialized local model serves as an instrument to achieve the 

desired adaptation for the classification process. We compare various classifiers (logistic 

regression as well as ML methods such as Random Forests and Gradient Boosting Trees). 

All the explored algorithms are fed to training features extracted from a credit bureau 

proprietary database and evaluated in an out-of-sample/out-of-time validation setting in 

terms of performance measures including AUC and H-Measure (Hand, 2009) and 
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comparing classifiers using use the Friedman’s aligned ranks with post-hoc Nemenyi test 

(Demsar, 2006).  

We thus explore the following hypotheses: 

H1: Do local methods outperform their corresponding global ones? 

H2: Do results using ML methods differ significantly from logistic regression in the 

global as well as in the local setup? 

H3: Does the choice of kNN-based local neighborhoods affects model 

performance? 

The results demonstrate the competitiveness of the proposed approach as opposed 

to the established methods. Thus, our contributions can be summarized as follows:  

 Our analysis is using a real-world, pooled cross-sectional data set spanning a period 

of 11 years, including an economic recession, and containing in total more than 

3,520,000 records and 125 variables.  

 Using local classification methods there is no need for continuous calibration of the 

models; adaptation to concept drift is part of the dynamic and automated model 

building process. 

 Predictive models are always trained on the latest available data. The predictors 

used in the models are not fixed but they are always picked up to fit the changing 

conditions, thus bypassing the problem of omitted variables. 

 For each query, a specialized micro-segment or region of competence is created 

dynamically, thus reaping the benefits of segmentation.  
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 We focus on the performance aspect and we compare statistical classification 

models versus well-advertised machine learning methods using appropriate 

performance measures and statistical comparison testing.    

 

The structure of this thesis is as follows: 

 Section 2 provides the related theoretical background and reviews the 

corresponding research literature emphasizing in the areas of concept drift, 

advancements and challenges in credit scoring, adaptive and local 

classification. 

 Section 3 describes the overall experimental setup and formulates the 

problem. 

 Section 4 provides the empirical results and 

 section 5 concludes with discussion of these results and possible directions 

of future work.  
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2 Background and Related Theoretical 

Framework 

2.1 Credit Scoring 

We can roughly summarize the different kinds of credit scoring as follows4 based 

on the objective of the modeling and the data availability/usage by the predictive model 

(Bijak & Thomas, 2012; Paleologo et al., 2010; Phua et al., 2010): 

 Application scoring: it refers to the assessment of the credit worthiness for 

new applicants. It quantifies the risks, associated with credit requests, by 

evaluating the social, demographic, financial, and other data collected at the 

time of the application. Application scoring models quantify the probability 

of default, by taking characteristics found in loan applications e.g. 

demographic attributes (such as age and family status), salary etc. This is 

historically the first type of credit scoring developed and by far the most 

researched and widely applied. 

 Behavioral scoring: it involves principles that are similar to application 

scoring, with the difference that it refers to existing customers. As a 

consequence, the analyst already has evidence of the borrower’s behavior 

                                                 

 

4
 We shall note here that there is an ever expanding body of research in credit scoring –and 

especially behavioral scoring- to support decisions in areas such as marketing, through the use of  propensity 

scores (Bijak, 2011; Thomas, 2003; Thomas et al., 2005); there are response models (will the consumer 

respond to marketing offers), usage models (will the consumer use a credit line) and attrition models (will a 

customer continue with the lender). A recent trend is also profit scoring, that is the use of scorecards to 

maximize profit (Andreeva et al., 2007; J. N. Crook et al., 2007; Finlay, 2010). 
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with the lender. Behavioral scoring models analyze the consumer’s 

behavioral patterns to support dynamic portfolio management processes. 

The extra information in behavioral models is data based on the credit lines' 

repayment performance. We shall note here that the distinction between 

behavioral and application scoring is not clear-cut in the sense that if an 

existing customer applies for a new credit line all available information 

(behavior and application data) will be used. 

 Collection scoring: collection scoring is used to divide customers with 

different levels of insolvency into groups, separating those who require 

more decisive actions from those who don’t need to be attended to 

immediately. These models are distinguished according to the degree of 

delinquency (e.g. early, middle, late recovery) and allow a better 

management of delinquent customers, from the first signs of delinquency 

(30–60 days) to subsequent phases and debt write-off 

 Fraud detection: fraud scoring ranks the applicants according to the 

relative likelihood that a credit application may be fraudulent.  

In terms of dependent variable there are credit scoring models that estimate 

probability of default (PD), the exposure at default (EAD), and the loss given default 

(LGD) in accordance with Basel II Capital Accord requires financial institutions to estimate, 

respectively. Although PD models are especially well researched and continue to attract 

much interest, EAD and LGD models have become as well a popular research topic (e.g., 

(Bag & Jacobs, 2012; Bellotti & Crook, 2012; Calabrese, 2014; Gürtler et al., 2018; 
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Kaposty et al., 2017; K. Li et al., 2021; Loterman et al., 2012; Tobback et al., 2014; E. N. 

Tong et al., 2016, 2016; Yang & Tkachenko, 2012; X. Yao et al., 2015).  

The techniques utilized in building credit scoring models rely mostly on 

classification methods and can be roughly categorized into groups such as (Abdou & 

Pointon, 2011; Lessmann et al., 2015; L. Yu, Wang, & Lai, 2008): 

1. Statistical models: Logistic, probit or linear regression, linear discriminant analysis 

(LDA), classification trees, k-nearest neighbor etc.  

2. Survival analysis: The latter facilitates estimating not only whether but also when a 

customer defaults (E. N. C. Tong et al., 2012). In addition, a special type of survival 

model called mixture cure model facilitates predicting multiple events of interest; for 

example default and early repayment (Dirick et al., 2015; F. Liu et al., 2015). 

3. Mathematical programming methods: linear programming, integer programming, etc.  

4. Artificial intelligence approaches (also referred as machine learning or data mining or 

soft computing techniques5): These include classic techniques like artificial neural 

networks, and support vector machines, as well as expert-based ones like genetic 

algorithms, fuzzy logic, rough sets, etc. However, recently more sophisticated ML 

methodologies such as Deep Neural Networks (DNN), Gradient Boosting Machines 

(GBM) and Random Forests (RF) came into play significantly impacting credit scoring 

research as well as practice (Bhatore et al., 2020; Dastile et al., 2020). We will address 

these developments specifically in the next section.  

                                                 

 

5 For the rest of the thesis we will refer collectively to these methods as “Machine Learning” or ML. 
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5. Hybrid and Ensemble methods: These methods include hybrid approaches (a 

hybridization approach is based on combining two or more different machine learning 

techniques, but only one single predictor is applied (Verikas et al., 2010)). For example, 

a hybrid classification model can be composed of one unsupervised learner (clustering 

method) to pre-process the training data and one supervised learner (classifier) to learn 

the clustering result or vice versa (C.-F. Tsai & Chen, 2010). Similar to hybrid 

approaches, an ensemble of classifiers uses more than one predictors but (unlike hybrid 

methods) the final prediction aggregates in some way the outputs of them.    

Conventionally, the most widely applied method in the credit scoring industry was 

logistic regression (Thomas et al., 2005) followed by other linear methods, such as LDA. 

This preference is not without a good reason since linear models provide in practice a very 

good compromise between classification accuracy (compared with soft computing 

methods) and simplicity and interpretability (L. Yu, Wang, Lai, et al., 2008). Especially 

financial institutions are more reluctant to adopt less intuitive, "black box" approaches 

(Sousa et al., 2013) since their legislative and operational framework imposes constraints6 

on data availability, transparency, verifiability and interpretability of their risk evaluation 

methods and processes.  

                                                 

 

6 Just to name a few: the European Consumer Credit Directive 2008/48/EC stipulates among other that an 

applicant has the right to be comprehensively informed about the reasons of a rejection; The Basel Accords 

(http://www.bis.org/publ/bcbsca.htm) imposes specific requirements for risk evaluation that have to be 

accredited. See also GDPR and recent EU AI act (COM/2021/206 final)  
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2.1.1 Credit Scoring Formalization  

Credit scoring models in general classify customers into dichotomous “good” or 

“bad” (non-default / default) risk classes7 which indicate the probability of a credit line to 

be repaid or not respectively. Assuming a classification train set {(x1, y1), … , (xn, yn)}, x ∈

ℝn, y ∈ {0, 1}, where xi denotes the feature or attribute vector for each one of the i=1…n, 

prospective borrowers and yithe corresponding class label. Thus, according to Bayesian 

Decision Theory (Duda et al., 2000)  credit scoring refers to calculating the probability of 

an applicant being “good” given its feature vector x: 

𝑝(𝐺|𝑥) =
𝑝(𝑥|𝐺)𝑝(𝐺)

𝑝(𝑥)
 

Where:  

p(x|G) and p(x|B) refer to the conditional probabilities of the risk classes (the distributions 

of the classes)  

p(G|x) refers to the posterior probabilities of classes. 

p(G) and p(B) denote the proportion of applicants who are good or bad correspondingly 

(prior probabilities). 

2.1.2 Recent Advances 

As mentioned, credit scoring prior to 2010 mainly has relied on linear statistical 

methods and a limited number of fixed variables to calculate a borrower’s credit score. 

This approach reflects both demonstrated statistical correlation between a borrower’s credit 

history and their likely credit risk, as well as traditional limits on lenders’ access to non-

financial, non-credit-related data about borrowers or credit data from new non-traditional 

or alternative lenders (e.g. “payday lenders”, “buy now pay later” schemes, peer-to-peer 

                                                 

 

7 Multi-class credit risk classification has not being extensively studied or applied in practice (see  (Y. 

Chen, 2012; Hsieh et al., 2010; Tang & Qiu, 2012) for an example of multi-class SVM for credit scoring).  
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lending etc who do not participate in the formal credit reporting system). The massive 

growth in the volume of available data, and advances in ML methods starting in the mid-

2000s, combined with the contraction in bank lending following the 2008 global financial 

crisis, gave rise to “algorithmic credit scoring” (N. Aggarwal, 2021). Algorithmic credit 

scoring8 builds on traditional credit scoring in two principal ways:  

(i) by leveraging a much larger volume and variety of data (so-called 

“alternative data” or “big data”)9 for credit scoring; and  

(ii) by using more sophisticated ML techniques to analyze these data.  

 

Alternative data have been studied in the context of credit scoring, ranging from 

call-detail records (Óskarsdóttir et al., 2019), social network and media data (Gül et al., 

2018; Wei et al., 2015), utility and rent data (Michael Turner et al., 2015; Turner et al., 

2012; Turner & Agarwal, 2008), to psychometric data (Djeundje et al., 2021) and digital 

footprints (Tobias Berg et al., 2018). The usefulness of alternative data especially for “thin-

file” or “no-file”10 prospective borrowers has been firmly established so that European 

credit bureaus are trying to widen their databases with such data ( 

                                                 

 

8 Here the terms “algorithmic” is not used as a connotation to a computerized execution of the credit scoring 

models; in that sense conventional forms of statistical credit scoring are also ‘algorithmic’. 
9 There is no consensus on a single definition of “alternative data”; it usually refers to data that is generated 

by the increasing use of digital tools and information systems (ICCR, 2018). Two categories of alternative 

data can be identified with respect to credit scoring: (i) structured data, for example, rental, utility and mobile 

phone payment data, transactional data, data on transactions from P2P lending platforms, invoices, accounts 

payables etc and (ii) unstructured data such as e.g. digital footprints from social media and internet usage, 

emails, GPS data, mobile usage, psychometric data etc.  

As far “big data” is concerned they are characterized typically in terms of 5 Vs: Volume, Variety, Velocity, 

Veracity and Value. Strictly speaking they are not identical to alternative data; however both definitions are 

vague enough and we use these terms interchangeably in this thesis.  

10 Customers with very few or non-existent traditional financial data, which are considered also “credit 

invisibles” since they do not meet the mainstream criteria for getting credit. 
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Table 1). 

Table 1: Data coverage width of European Credit Registries (CRAs) 
(Source: ACCIS (2020),  ACCIS Membership Survey 2020”, numbers above countries indicate numbers of bureaus per 

country) 

 
Appendix A provides an example of traditional and alternative data used for credit 

scoring. A special mention shall be given to transactional data11 where their application in 

credit score (since they are closely related to payments) has been well studied (Hibbeln et 

al., 2019; Tobback & Martens, 2019; Torrent et al., 2020). Table 2 highlights some 

                                                 

 

11 The Revised Payments Services Directive (PSD2) Directive (EU) 2015/2366 PSD 2 requires banks to 

provide access to their customers’ payment account data to third-party providers of payment services, subject 

to customer consent, to enable them to offer new, differentiated services based on the use of these data. PSD2 

proliferated the usage of transactional data in a multitude of applications and catalyzed open banking 

(Stiefmueller, 2020) and the digitization of services both in traditional banking institutions as well as it 

spawned an entire new “breed” of financial service providers (neo-banks, digital banks, challenger banks etc 

fintech companies)  
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indicative products from credit bureaus and fintech companies that utilize alternative data 

in credit scoring: 

Table 2: Alternative credit scoring products 
(Source: (Hurley & Adebayo, 2016) and author’s analysis) 

Company & Product Example Data Inputs 

LexisNexis - RiskView Residential stability, asset ownership, life-stage analysis, 

property deeds and RiskView mortgages, tax records, criminal 

history, employment and address history, liens and judgments, 

ID verification, and professional licensure 

FICO – Expansion score  Purchase payment plans, checking accounts, property data, 

public records, demand deposit account records, cell and landline 

utility bill information, bankruptcy, liens, judgments, 

membership club records, debit data, and property asset 

information. 

Experian – Alternative 

Data 

Rental payment data, public record data, transactional data 

Equifax – Decision 360 Telco utility payments, verified employment, modeled income, 

verified income, spending capacity, property/asset information, 

scheduled monthly payments, current debt payments, debt-to-

income ratio, bankruptcy scores. 

TransUnion - 

CreditVision 

Address history, balances on trade lines, credit limit, amounts 

past due, actual payment amount. 

ZestAI Major bureau credit reports and other variables including 

financial information, technology usage, and how quickly a user 

scrolls through terms of service 

Kreditech Location data (e.g., GPS), social graphing (likes, friends, 

locations, posts), behavioral analytics (movement and duration 

on a webpage), e-commerce shopping behavior, device data 

(apps installed, operating systems) 

Experian Boost Transactional data PSD2 used to pay bills and verify positive 

payment history 

Lenddo/EFL Leverages social media data (big data) and combines it with other 

pieces of information, including credit bureau data if available, 

to develop credit scores for potential borrowers 

Earnerst Current job, salary, education history, balances in savings or 

retirement accounts, online profile data (e.g., Linkedln), and 

credit card information 
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Combined with alternative data, advanced ML methods created a paradigm shift 

for the credit scoring (Addo et al., 2018; Albanesi & Vamossy, 2019; Alonso & Carbó, 

2020; Barddal et al., 2020; Bequé & Lessmann, 2017; Chang et al., 2018; Dumitrescu et 

al., 2022; Gunnarsson et al., 2021; Hamori et al., 2018; Kvamme et al., 2018; Luo et al., 

2017; Marceau et al., 2019; Petropoulos et al., 2019; Sigrist & Hirnschall, 2019; Siham et 

al., 2021; Sirignano et al., 2016; Sirignano & Cont, 2018; Stelzer, 2019; Tomczak & Zięba, 

2015; Tripathi et al., 2021; Xia et al., 2017). Surveys conducted by supervising authorities 

(Bank of England, 2019; Institute of International Finance, 2019) show that credit 

institutions are gradually adopting more ML techniques in different areas of credit risk 

management, such as regulatory capital, provisions, credit scoring and monitoring. 

According to (Institute of International Finance, 2019) the most common use of ML in the 

financial industry is in the field of credit scoring. In this regard, credit institutions seem to 

have shifted their preferred use from regulatory purposes, such as capital calculation, stress 

testing and even provisions, to business-related solutions such as decisions on granting new 

credit, monitoring outstanding loans and refinancing non-performing exposures, and early-

warning systems. In fact, the survey of (Institute of International Finance, 2019) reveals 

that 37% of the 60 international institutions consulted have fully operational ML models 

dedicated to automating credit scoring processes.  

ML techniques can unleash the power of big data by parsing large, unstructured and 

high-dimensional datasets, to find features and patterns that are relevant to predicting a 

borrower’s creditworthiness. Importantly, ML can more accurately capture nonlinear 

relationships in data, as well as reflect changes in the population and environment in order 

to more accurately estimate a borrower’s creditworthiness—for example, by offsetting 
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evidence of historic payment default with more recent evidence of prompt payment, or 

factoring in expected payments from flexible working arrangements that are increasingly 

common in the ‘gig’ economy. The use of a much larger number of data points on the 

consumer can also reduce the risk that errors in the data will be determinative — for 

example, where living consumers are recorded as deceased (so-called ‘credit zombies’), or 

discharged debts remain on a consumer’s credit record (Hurley & Adebayo, 2016). 

The following Figure 1 depicts the performance gain of a wide range of ML 

methods when compared to a logit model, by a comprehensive literature review conducted 

by (Alonso & Carbó, 2020). On the horizontal axis the reviewed papers are ranked by the 

authors based on their perceived algorithmic complexity. On the vertical axis the gain in 

predictive power (AUC) relative to the discriminatory power obtained using a Logit model 

on the same sample. While the sample sizes and the nature of the underlying model designs 

differ between studies, they all highlight that the more advanced ML techniques (e.g. 

random forest and deep neural networks) predict better than traditional statistical models. 

The predictive gains are very heterogeneous, reaching up to 20% and not behaving 

monotonically as we advance towards more algorithmically complex models. However, we 

empirically observe that with the exception of a few studies (Petropoulos et al., 2019; 

Sigrist & Hirnschall, 2019; Sirignano & Cont, 2019) which are on the upper spectrum of 

performance gains or (Guégan & Hassani, 2018; Turiel & Aste, 2019) on the opposite (and 

can be considered as “outliers”), the performance gain reported from the rest of the papers 

lies within the range of 2% - 8%. 
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Figure 1: Performance gain of ML methods versus Logit 

(Source: (Alonso & Carbó, 2020) 

 

Despite their revolutionary potential, ML methods combined with alternative data 

pose some important challenges in terms of fairness, bias etc and which we will address in 

the following section. 

 

2.1.3 Challenges and Issues 

2.1.3.1 Challenges 

Credit scoring modeling and related methodologies face theoretical issues as well 

as practical ones (as operated in practice by all credit bureaus): 

 Lack of adequate, real-world and large-scale credit related data. Small 

datasets have been noted in the literature that may introduce unwanted 

artifacts and the models built upon them do not scale up when put into 

practice (Jamain & Hand, 2009; Perlich et al., 2003).  

 As is the case with all predictive models, credit scoring suffers from 

population (or concept) drift, i.e. changes in the socio-economic 
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environment cause the underlying distribution of the modeled population to 

change over time. (Adams et al., 2010; Bifet et al., 2011; Gama et al., 2004, 

2014; Klinkenberg, 2004; Žliobaitė, 2009; Žliobaitė et al., 2016). To tackle 

this problem in practical terms, credit bureaus implement continuous 

monitoring cycles and periodic re-calibration or re-development of their 

models (R. Anderson, 2007; Jung et al., 2015; Siddiqi, 2005). We will 

examine concept drift in detail in the following section. 

 Development of credit scoring models require historical data of at least 1-2 

years. Without counting the monetary cost incurred by such operations, 

adding the time to implement and put into production a new generation of 

models, sometimes results in a difference of three or more years between 

actual data that reflect the current population dynamics and the data used to 

build the models. This lag between data at model development time and 

actual time to be put into production has become more obvious as data are 

generated in an ever-increasing pace and this acceleration puts an equally 

pressing pace in operations. 

 Moreover, as credit scoring models depend on pre-defined sets of predictor 

(input) variables when their weights are updated from time to time, they 

may lose their relevance and end up with a weight zero or close to zero. 

These predictors are called omitted variables and it has been shown that the 

omission of variables related to local economic conditions seriously bias 

and weaken scoring models (Avery et al., 2000).  
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 Credit bureaus do not use a single scoring model (sometimes referred to as 

"scorecard”) for a specific purpose (such as estimation of the probability of 

default) but rather split the population into various segments using either 

demographic criteria, or risk-based ones. This happens for various reasons 

such as data availability (e.g., new accounts versus existing customers), 

policy issues (e.g., different credit policies for mortgages), inherently 

different risk-groups, etc., in order to: a) capture significant interactions 

between variables among the sub-population that are not statistically 

important within the entire population (Thomas, 2007) or cause the 

relevance of predictors to change between groups (R. Anderson, 2019), b) 

capture non-linear relationships (especially on untransformed data) and 

increase the performance of generalized linear models (R. Anderson, 2019), 

which are even today the "golden standard" in the credit scoring industry 

(although to a far lesser extent than in past decades) and c) improve the 

prediction efficiency by treating the heterogeneous borrowers separately 

(Lim & Sohn, 2007).  Despite the fact that there is not enough academic 

consensus about the effects of segmentation in scorecards'  performance 

(Bijak & Thomas, 2012; Thomas, 2007), segmentation is a de facto 

approach throughout the credit scoring industry for another reason: 

robustness.  

 From a purely methodological standpoint, besides the advances in 

developing credit scoring models with ML methods, there are also 

advancements that received little attention in the literature such as a) use of 
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novel performance measures and b) statistical comparison between 

classifiers (Lessmann et al., 2015).  

o Specifically, regarding point (a), most studies rely on a single 

performance measure or measures such such as the Area Under the 

ROC (AUC), the GINI index and the Kolmogorov-Smirnov distance 

or the F-measure. However, in the literature there has been a 

skepticism over their appropriateness and especially of the widely 

used AUC measure (Hand & Anagnostopoulos, 2013). A coherent 

alternative namely the H-measure (Hand, 2009; Hand & 

Anagnostopoulos, 2013, 2021) has been proposed, which to the 

author’s knowledge is not frequently used. 

o Regarding point (b) statistical hypothesis testing is often neglected 

or employed inappropriately. Common mistakes include using 

parametric tests (e.g., the t-test) or performing multiple comparisons 

without controlling the family-wise error level. The approaches are 

inappropriate because the assumptions of parametric tests are 

violated in classifier comparisons (Demsar, 2006). Similarly, 

pairwise comparisons without p-value adjustment increase the 

actual probability of Type-I errors beyond the stated level of α (e.g., 

García et al., 2010).  

 As mentioned, the proliferation in usage of alternative data and ML methods 

raise serious issues of transparency, bias and fairness (Bussmann et al., 

2020; Gilpin et al., 2019; Guidotti et al., 2018; Hardt et al., 2016b; Suresh 



Adaptive Credit Scoring using Local Classification Methods 39 

& Guttag, 2019; Zafar et al., 2017). This issues have received special 

attention in the context of credit scoring (N. Aggarwal, 2021; Hurlin et al., 

2021; Kozodoi et al., 2022) enhanced by the to the statutory and regulatory 

constraints (cf. GDPR, EU AI Act: COM/2021/206 final). Specifically 

(EBA, 2020) highlights the following challenges or “elements of trust” for 

ML as they are referred:  

o Ethics: in line with the Ethics guidelines for trustworthy AI from 

the European Commission’s High-Level Expert Group on AI12, the 

development, deployment and use of any AI solution should adhere 

to some fundamental ethical principles, which can be embedded 

from the start in any AI project, in a sort of ‘ethical by design’ 

approach.  

o Explainability and interpretability: A model is explainable when 

its internal behavior can be directly understood by humans 

(interpretability) or when explanations (justifications) can be 

provided for the main factors that led to its output. The significance 

of explainability is greater whenever decisions have a direct impact 

on customers/humans and depends on the particular context and the 

level of automation involved. Explainability is just one element of 

transparency. Transparency consists in making data, features, 

                                                 

 

12 https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai  

https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai
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algorithms and training methods available for external inspection 

and constitutes a basis for building trustworthy models.  

o Fairness and avoidance of bias: Fairness requires that the model 

ensure the protection of groups against (direct or indirect) 

discrimination. Discrimination can be a consequence of bias in the 

data, when the data are not representative of the population in 

question. 

o Traceability and auditability: the use of traceable solutions assists 

in tracking all the steps, criteria and choices throughout the process, 

which enables the repetition of the processes resulting in the 

decisions made by the model and helps to ensure the auditability of 

the system.  

o Data and consumer protection: consumer rights should be 

respected and protected in compliance with pertaining legislation 

(e.g. GDPR)  

o Security: new technology trends also bring new attack techniques 

exploiting security vulnerabilities that need to be addressed 

 

2.1.3.2 Criticisms about credit scoring  

Despite these challenges credit scoring has been vital in the “...phenomenal growth 

in the consumer credit over the last five decades. Without [credit scoring techniques, as] 

an accurate and automatically operated risk assessment tool, lenders of consumer credit 

could not have expanded their loan (effectively)” (Thomas et al., 2002). This doesn’t mean 
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thought that the application of credit scoring in practice is without its criticisms, some of 

which are summarized below:  

 Credit scores use any characteristic with a strong correlation with the 

dependent variable (i.e. PD in our case) in spite of whether a clear link with 

a likely repayment can be justified (i.e. they rely on association and not 

causality cf. (Fahner, 2012; G. Xu et al., 2020)). 

 As with any predictive model, misclassification is always an issue and with 

it comes the possibility of indirect discrimination. As mentioned in (Abdou 

& Pointon, 2011) (citing (Chandler & Coffman, 1979) a credit scoring 

system can “reject a creditworthy applicant because he/she changes address 

or job”.  

  “Credit invisibles” (Turner et al., 2006, 2009) (individuals or companies 

with not adequately credit history and data depth from which a credit score 

to be calculated) pose a serious problem for expanding financial inclusion. 

As mentioned in section 2.1.1 use of alternative data can widen the 

separable population (Michael Turner et al., 2015) and subsequently access 

to credit, especially to low income individuals (Turner et al., 2012; Turner 

& Agarwal, 2008). 

 

2.2 Concept Drift and Adaptive Learning  

Concept drift refers to changes in the socio-economic environment that cause the 

underlying distribution of the modeled population to change over time (Adams et al., 2010; 
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Bifet et al., 2011; Daumé III & Marcu, 2006; Gama et al., 2004, 2014; Klinkenberg, 2004; 

Tsymbal, 2004; Žliobaitė, 2009; Žliobaitė et al., 2016).  

In general, adaptive learning refers to updating predictive models online during 

their operation to react to concept drifts. There can be distinguished two learning modes 

(Gama et al., 2014): offline learning and online learning. In offline learning, the whole 

training data must be available at the time of model training. Only when training is 

completed can the model be used for predicting. In contrast, online algorithms process data 

sequentially. They produce a model and put it in operation without having the complete 

training dataset available at the beginning. The model is continuously updated during 

operation as more training data arrives. Less restrictive than online algorithms are 

incremental algorithms that process input examples one by one (or batch by batch) and 

update the decision model after receiving each example. Typically, in incremental 

algorithms, for any new presentation of data, the update operation of the model is based on 

the previous one. Streaming algorithms are online algorithms for processing high-speed 

continuous flows of data.  

(Gama et al., 2014) provided a taxonomy  of  adaptive learning based on four key 

components: 

(i) Memory i.e. which data are used for learning and which (old) data are 

discarded (forgetting mechanism). Sliding windows of either fixed or 

variable size, which store the most recent observations, are an example of 

memory mechanism.   

(ii) Change detection i.e. the techniques and mechanisms for explicit drift and 

change detection. It characterizes and quantifies concept drift by 
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identifying change points or small time intervals during which changes 

occur. However, an adaptive learner can also work without detecting drift 

e.g. online learning systems, without any explicit change detection 

mechanism, can adapt to evolving data. 

(iii) Learning component refers to the techniques and mechanisms for 

generalizing from examples and updating the predictive models from 

evolving data. For example retraining learning mode discards the current 

model and builds a new model from scratch using buffered data, whereas 

incremental adaptation updates the model. 

(iv) Finally, loss estimation is an estimation mechanism based on 

environment feedback. E.g. (Klinkenberg & Joachims, 2000) recognize 

and handle concept changes using the properties of support vector 

machines. 

The evolution of data distributions over time in a dynamic, non-stationary 

environment (Tsymbal, 2004; Widmer & Kubat, 1996; Žliobaitė, 2009) naturally affects 

also credit scoring. Specifically, when the population distributions change over time then 

we refer to population drift, a very common phenomenon in economy. Formally speaking, 

population drift can occur in three ways (Kelly et al., 1999; Pavlidis et al., 2012):  

(i) change of risk classes prior probabilities p(G) and p(B),  

(ii) change in the class conditional probabilities p(x|G), p(x|B) and  

(iii) change in the posterior probabilities p(G|x), p(B|x).  

It’s worth mentioning that changes in class priors and/or class conditional 

probabilities do not necessarily lead to change in posterior probabilities, in which case the 
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predictive decision will remain unaffected (Gama et al., 2014; Kelly et al., 1999). However, 

in reality we could only observe the changes in the joint probabilities:  𝑝(𝑥, 𝐺) =

𝑝(𝐺|𝑥)𝑝(𝑥) or 𝑝(𝑥, 𝐵) = 𝑝(𝐵|𝑥)𝑝(𝑥) making it hard to distinguish whether actually p(x) 

or p({G,B}|x) has changed (Gao et al., 2007). 

In order to handle population drift  credit bureaus implement continuous monitoring 

cycles thus retraining (or calibrating) continuously their models (R. Anderson, 2007; Jung 

et al., 2015; Siddiqi, 2005). The calibration of credit scoring models or actually the lack 

thereof, has been mentioned in the literature as one reason (among others) for the subprime 

mortgage crisis of 2008 (Rona-Tas & Hiss, 2008). Specifically, FICO scores have been 

shown to having become a worse predictor of default between 2003 to 2006 (Ashcraft & 

Schuermann, 2008; Demyanyk & Van Hemert, 2008) that despite the rapid and severe 

deterioration of subprime portfolio quality, corresponding scores remained fairly stable (J. 

Breeden, 2014). Thus static credit scoring models based on historical data may fail to 

accommodate the inherent cyclicality of banking business (in accordance with the 

economic cycles of recession and expansion) and the shift this entails to the entire loss 

distribution (Allen & Saunders, 2002; Niklis et al., 2014).  

 

2.3 Adaptive credit scoring 

Tightly intertwined within population drift, is the degradation of the scoring models 

over the business cycles and the more general impact this degradation has over risk 

modeling (J. L. Breeden et al., 2012; J. L. Breeden & Thomas, 2008; J. N. Crook et al., 

1992; Takada & Sumita, 2011). Specifically, Basel II capital accord stipulates that a rating 
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system that remains relatively constant through different business conditions is a “through-

the-cycle” (TTC) rating system whilst a rating system that changes period by period is a 

“point-in-time” (PIT) rating system. Borrowers in the same risk category of a PIT rating 

system would share similar unstressed PDs, and borrowers in a risk category of a TTC 

rating system would share similar stressed PDs. Thus, the characteristics of PDs associated 

with each risk category are determined by the underlying rating system and the type of 

information used. The information needed to forecast the defaults can be aggregate 

information, which typically includes macroeconomic variables such as GDP growth rates, 

exchange rates and interest rates, and specific borrower information that includes 

characteristics of and relevant financial information on borrowers. A TTC score should take 

into consideration specific borrower characteristics plus macroeconomic conditions, (e.g., 

(Bonfim, 2009)), but a PIT score would be based mainly on current information on 

borrowers. 

Thus adaptive learning in the context of credit scoring and risk modeling, has been 

approached mainly in two ways: 

(i) One approach (focusing on the learning component as specified by (Gama 

et al., 2014)) tries to incorporate macroeconomic variables in the modeling 

process (Bellotti & Crook, 2014; J. Breeden et al., 2007; J. Crook & Bellotti, 

2010; Saha & Siddiqi, 2011; Tony Bellotti & Jonathan Crook, 2013), 

sometimes using two-stage models:  PIT risk is captured usually through 

standard scorecards and then an adaptation (e.g., in the form of linear 

regression) captures the system risk  (Papouskova & Hajek, 2019; Sousa et 

al., 2013, 2014). Survival analysis was often used as a methodology for 
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including macroeconomic variables (Bellotti & Crook, 2008), by 

incorporating random effects into survival models (Djeundje & Crook, 

2018; Figlewski et al., 2012; Leow & Crook, 2014) or by including a time-

dependency mechanism for capturing temporal phenomena in proportional 

hazards survival model (Im et al., 2012). Also Markov chain transition 

matrixes have been used to capture the dynamics of transition the PD from 

time t-1 to t (Grimshaw & Alexander, 2011; Malik & Thomas, 2012). 

(ii) Another generic approach is by using various forms of online learning. 

(Whittaker et al., 2006) proposed the application of Kalman filter to 

adaptively estimate parameters β as new information (i.e. from new 

applicants) becomes available, so that current observations are given higher 

weight than previous observations, which are increasingly discounted. 

(Anagnostopoulos et al., 2009, 2012; Pavlidis et al., 2011, 2012) propose a 

way of estimating logistic regression online in a temporally adaptive 

manner using forgetting factors, that provide a smooth means of putting less 

weight on older data. This approach can be regarded as a continuous 

analogue to sliding window methods and may be employed in conjunction 

with incremental updating. (Danenas & Garsva, 2012) proposed a hybrid 

method based on linear Support Vector Machines classification and Particle 

Swarm Optimization in combination with sliding windows, in order to 

identify general trends.(Elliott & Filinkov, 2008) use Hidden Markov 

Models to create a self-tuning, risk estimation model. (S. Guo et al., 2019) 

use a multi-stage self-adaptive classifier ensemble model.  (Lim & Sohn, 
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2007) propose a cluster-based dynamic scoring model which predicts the 

borrowers’ credibility by clustering the data set and setting separate 

classifiers for each cluster at various time points. (Sousa et al., 2016) 

propose a dynamic modeling framework that considers that data is 

processed batch-by-batch. Sequentially, at each monthly window, a new 

model is learned from a previous selected window, including the most 

recent month. (J. Sun & Li, 2011) use instance selection to develop a 

dynamic financial distress prediction model, by using sliding windows of 

different sizes. 

 

2.4 Local Classification 

Usually, the classification process is a two-phase approach that is separated 

between processing training and test instances: 

 Training Phase: a model is constructed from the training instances.  

 Testing Phase: the model is used to assign a label to an unlabeled test instance. 

In global or eager learning, the first phase creates pre-compiled abstractions or 

models for learning tasks which describe the relationship between the input variables and 

the output over the whole input domain (C. Aggarwal, 2014).  In instance-based learning 

(also called lazy or local learning) the specific test instance (query instance), which needs 

to be classified, is used to create a model that is local to that instance. Thus, the classifier 

does not fit the whole dataset but performs the prediction of the output for a specific query 

(Aha et al., 1991; Bontempi et al., 2001, 2002; Bottou & Vapnik, 1992).  
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The most obvious local model is a k-nearest neighbor classifier (kNN). However, 

there are other possible methods of lazy learning, such as locally-weighted regression, 

decision trees, rule-based methods, and SVM classifiers (Atkeson et al., 1997; Domeniconi 

et al., 2001, 2002; Zhang et al., 2006).  Instance-based learning is related to but not quite 

the same as case-based reasoning (Aamodt & Plaza, 1994; Jo et al., 1997; Vukovic et al., 

2012; R. Xu et al., 2016), in which previous examples may be used in order to make 

predictions about specific test instances. Such systems can modify cases or use parts of 

cases in order to make predictions. Instance-based methods can be viewed as a particular 

kind of case-based approach, which uses specific kinds of algorithms for instance-based 

classification.  

Inherent to the local learning methods is the problem of prototype or instance 

selection where it can be defined as the search for the minimal set S in the same vector 

space as the original set of instances T, subject to accuracy(S) ≥ accuracy(T), where the 

constraint means that the accuracy of any classifier trained with S must be at least as good 

as that of the same classifier trained with  (Garcia et al., 2012; Leyva et al., 2015; Olvera-

López et al., 2010).  Instance selection methods can be distinguished based on their 

properties such as the direction of search for defining S (e.g. incremental search, where 

search begins with an empty S) and wrapper vs filter methods, where the selection criterion 

is based on the accuracy obtained by a classifier such as kNN, vs not relying on a classifier 

to determine the instances to be classified (Garcia et al., 2012). 

However, we shall distinguish instance selection from instance sampling (de Haro-

García et al., 2019), where the purpose is to formulate a suitable sampling methodology 

for constructing the training and test datasets from the entire available population. Instance 
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sampling deals in particular with issues such as sample size and sample distribution 

(balancing) (Ali et al., 2015; Bischl et al., 2016; Kuncheva et al., 2019; More, 2016) and 

has been displayed to be of significant importance for credit scoring due to the inherent 

imbalance in the credit scoring data domain  (Crone & Finlay, 2012).  

There are three primary components in all local classifiers (C. Aggarwal, 2014; Aha 

et al., 1991): 

1. Similarity or Distance Function: This computes the similarities between the 

training instances, or between the test instance and the training instances. This is 

used to identify a locality around the test instance.   

2. Classification Function: This yields a classification for a particular test instance 

with the use of the locality identified with the use of the distance function. In the 

earliest descriptions of instance-based learning, a nearest neighbor classifier was 

assumed, though this was later expanded to the use of any kind of locally optimized 

model.  

3. Concept Description Updater: This typically tracks the classification performance, 

and makes decisions on the choice of instances to include in the concept description. 

A specific mention shall also be made to the concept of local weighted regression 

(Atkeson et al., 1997; Cleveland et al., 1988; Loader, 1999; Schaal & Atkeson, 1998) where 

the core idea lies on local fitting by smoothing: the dependent variable is smoothed as a 

function of the independent variables in a moving fashion analogous to a moving average. 

In similar manner kernel regression uses a kernel as a weighting function to estimate the 

parameters of the regression i.e. the Nadaraya-Watson estimator (Nadaraya, 1964; Watson, 

1964). 
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Local classification methods have not been studied extensively specifically in the 

context of credit scoring. Simple models such as basic kNNs expectedly do not yield 

satisfying results (Lessmann et al., 2015) and thus reasonably have not drawn much of the 

interest of the academic community nor the practitioner’s for that matter. Some effort using 

advanced and/or hybrid methodologies such as self-organizing maps for clustering  

(Schwarz & Arminger, 2005), combining kNN with LDA and decision trees (F.-C. Li, 

2009), clustered support vector machines (Harris, 2015), fuzzy-rough instance selection (Z. 

Liu & Pan, 2018), instance-based credit assessment using kernel weights (Y. Guo et al., 

2016) displayed somewhat promising results, albeit bearing into consideration the issues 

airing from the datasets used (size, relevance, real-world applicability).   

 

2.5 Local Regions of Competence 

Ensemble methods also known as Multiple Classifier Systems (MCS) combine 

several base classifiers through a conceptual three phase process (Britto et al., 2014; 

Dietterich, 2000; Kuncheva, 2004, 2008): 

1. Pool generation, where diverse pool of classifiers is generated,  

2. Selection, where one or a subset of these classifiers is selected and  

3. Integration, where a final prediction is made based on fusing the results of the 

selected classifiers.  

 The selection phase can be static or dynamic. Static selection consists of selecting 

base models once and use the resulting ensemble to predict all test samples whereas in 

dynamic selection specific classifiers are selected for each test instance through evaluation 

of their competence in the neighborhood or otherwise on a local region of the feature space 
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where the test instance is located. Thus, the neighbors of the test instance define a local 

region which is used to evaluate the competence of each base classifier of the ensemble.  

The definition of the local region has been shown to be of importance to the final 

performance of the dynamic selection methods (Cruz et al., 2011, 2017, 2018) and there 

are papers that point out that this performance can be improved by better defining these 

regions and selecting relevant instances (Cruz et al., 2017; V. García et al., 2012; V. García, 

Sánchez, et al., 2019). One of the most common methodologies for defining local regions 

is kNNs (including its variations such as extended kNNs especially for imbalanced data, 

which as mentioned is of particular importance to credit scoring), but methods such as 

clustering (e.g. K-Means) (Kuncheva, 2000; Soares et al., 2006) can also be found in the 

literature.  

Dynamic selection techniques in the context of credit scoring have received the 

attention in the literature (Abellán & Castellano, 2017; Ala’raj & Abbod, 2016a, 2016b; 

Feng et al., 2018; He et al., 2018; Lessmann et al., 2015). E.g. in a recent paper (Melo 

Junior et al., 2020) have proposed a modification to the kNN called Reduced Minority 

kNNs (RMkNN) which aim to balance the set of neighbors used to measure the competence 

of the base classifiers. The main idea is to reduce the distance of the minority samples from 

the predicted instance. As mentioned, imbalancing of the distribution of the classes is an 

important factor when considering sampling for credit scoring (Bischl et al., 2016; Crone 

& Finlay, 2012; V. García, Marqués, et al., 2019; He et al., 2018; Marqués et al., 2012; 

Zhang & Liu, 2019) which becomes even more important when dynamic selection 

techniques are applied.  
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A related approach is the Mixture of Experts which is composed of many separate 

neural networks, each of which learns to handle a subset of the complete set of training 

cases (Lasota et al., 2014; Masoudnia & Ebrahimpour, 2014; Titsias & Likas, 2002; L. Xu 

& Amari, 2009).  This method is established based on a divide-and-conquer principle 

(Jacobs et al., 1991) where the feature space is partitioned stochastically into a number of 

subspaces through special employed error function and “experts” become specialized on 

each subspace. However, the main problem is that as base classifier is used only multilayer 

perceptron neural networks (Britto et al., 2014; Cruz et al., 2018). Mixture of Experts has 

not been extensively applied in the context of credit scoring and there are but a few studies 

on the subject (Liang et al., 2021; West, 2000; J.-M. Yu, 2018). 

 

2.6 Imbalanced Classification  

Imbalanced datasets occur as the number of observations in one class (referred to 

as a minority class) in a dataset is usually much lower than the number of observations in 

the other class (referred to as a majority class). There are quite a few studies and approaches 

in literature analyzing the impact of imbalancing in classification in general (Ali et al., 

2015; Branco et al., 2016; Ganganwar, 2012; Kaur et al., 2019; Rahman & Davis, 2013; 

Sarmanova & Albayrak, 2013; Y. Sun et al., 2009; Q. Wang et al., 2017; S. Wang et al., 

2018) and within the context of credit scoring in particular (Bischl et al., 2016; Brown & 

Mues, 2012; Crone & Finlay, 2012; V. García et al., 2012; He et al., 2018; Marqués et al., 

2012).  

For example, (Brown & Mues, 2012) showed that the random forest and gradient 

boosting classifiers perform very well in a credit scoring context and are able to cope 



Adaptive Credit Scoring using Local Classification Methods 53 

comparatively well with pronounced class imbalances in the datasets. On the other hand, 

when faced with a large class imbalance, the C4.5 decision tree algorithm, quadratic 

discriminant analysis and k-nearest neighbors perform significantly worse than the best 

performing classifiers. (Douzas et al., 2021; Douzas & Bacao, 2017, 2018) tackle the 

problem of imbalanced datasets by using a novel oversampling method, Self-Organizing 

Map-based Oversampling (SOMO). There are a number of over-sampling (applied on 

minority class) or under-sampling techniques (applied on majority class) that can be found 

in literature. For example, (Chawla et al., 2002) proposed Synthetic Minority Over-

sampling Technique (SMOTE). The SMOTE over-samples the minority class by taking 

each minority class sample and creating synthetic examples (along the line segments 

joining any/all of the k minority class nearest neighbors). Thereafter, neighbors from the k 

nearest neighbors are randomly chosen, depending on the amount of over-sampling 

required. For instance, if the amount of over-sampling needed is 300%, only three 

neighbors are chosen and one sample is generated in the direction of each. Synthetic 

samples are generated by taking the difference between the feature vector (sample) under 

consideration and its nearest neighbor. Thereafter this difference is multiplied by a random 

number between 0 and 1, and is added to the feature vector under consideration to form a 

synthetic feature vector. There were many applications and/or modifications of SMOTE 

proposed thereafter (Han et al., 2005; Qazi & Raza, 2012; Q. Wang et al., 2017). Most 

recently (Camacho et al., 2022; Douzas et al., 2021) proposed a modification called G-

SMOTE which allows the generation of synthetic instances in a geometric region around 

the selected instances rather than in the line segment that joins the two selected instances. 

There are other techniques that neither do over-sampling nor under-sampling to deal with 
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class imbalance, such as wavelet data transformation and linear dependence approach. For 

example (Saia et al., 2018) proposed a discrete wavelet transformation to deal with 

imbalanced data in credit scoring. Wavelets are small waves and wavelet transform 

captures both the time and frequency domains. (Saia et al., 2018)   approach outperformed 

the random forest model regardless of data distributions.  

 

2.7 Methodological issues in classifiers’ performance measures and 

comparisons  

2.7.1 Performance measures 

There is a keen interest of the scientific research community regarding the 

appropriateness of the established performance measures used to evaluate classification 

models and especially those which are used in credit scoring applications, considering also 

the inherent imbalance of the credit scoring datasets (Japkowicz & Shah, 2011; Luque et 

al., 2019; Parker, 2011). (Japkowicz & Shah, 2011) defined an ontology of performance 

measures (Figure 2) where they categorize classifiers as follows:  

 Deterministic algorithms output a fixed class label for each instance and 

hence can be better measured in terms of the zero–one loss. That is, the loss 

of misclassifying an example (assigning a wrong class label to the instance) 

is one; and zero otherwise.  

 Probabilistic classifiers, on the other hand, issue a probability estimate on 

the class membership of the example for various classes. To obtain 

deterministic class assignments from probabilistic classifiers, typically 

either a maximum a posteriori (MAP) or a Bayesian estimate is considered 
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 Scoring classifiers are thresholded so as to obtain deterministic labels for 

test examples. In a binary classification scenario, a classifier that outputs 

scores on each test instance in a fixed interval [a, b] can be thresholded at 

some point st ∈ [a, b] such that all the examples with a score greater than st 

are classified as positive whereas the examples scoring less than st are 

labeled as negative. 

 
Figure 2: An ontology of performance metrics 

(Source: (Japkowicz & Shah, 2011)
13

) 

  

Specifically the credit scoring setup gives rise to methodological  problems such as 

the accuracy paradox (Uddin, 2019; Valverde-Albacete & Peláez-Moreno, 2014) and the 

different misclassification cost between Type I and Type II errors (Hand, 2009). As a result, 

the most commonly used approach avoids accuracy as a scorecard performance metric and 

                                                 

 

13 KL=Kullback-Leibler, BIR=Bayesian information reward, K&B IR= Kononenko and Bratko 

information reward 
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has adopted measures such as the Area Under the ROC (AUC), the GINI index and the 

Kolmogorov-Smirnov distance or the F-measure. However, in the literature there has been 

a skepticism over their appropriateness and especially of the widely used AUC measure 

(Hand & Anagnostopoulos, 2013). A coherent alternative namely the H-measure 

(Anagnostopoulos et al., 2019; Hand, 2009; Hand & Anagnostopoulos, 2013, 2021) has 

been proposed in the literature which handles different misclassification costs and is 

indicated to be a better suited performance metric for the credit scoring context (Parker, 

2011). Thus in this work, we use both AUC and H-measure in accordance with above 

findings. 

 

2.7.2 Comparison of Classifiers 

Comparisons among classification algorithms on different datasets arise in machine 

learning when a new proposed algorithm is compared with the existing state of the art. 

(Japkowicz & Shah, 2011) identified the following cases that shall be considered upon 

deciding which is the appropriate approach to statistical comparison: 

 The comparison of two algorithms on a single domain,  

 The comparison of multiple algorithms on a single domain,  

 The comparison of multiple algorithms on multiple domains. 

Figure 3 depicts these possible combinations of classifiers and datasets and  

proposes the suitable procedure for each case. There are some points worth noting: 

 In the case of two algorithms compared on multiple domains, there are 

proposed only non-parametric tests. 
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 Both ANOVA and Friedman’s test, in the case of multiple algorithms 

compared on multiple domains, should be followed (when the null 

hypothesis is rejected) by a post hoc test, in order to establish where the 

difference was located. 

 
Figure 3: Statistical tests for comparing multiple classifiers 

(Source: (Japkowicz & Shah, 2011)
14

) 

Thus, from a statistical point of view, the correct way to deal with multiple 

hypothesis testing is by, firstly, comparing all the classification algorithms together by 

means of an omnibus test to decide whether all the algorithms have the same performance. 

Then, if the null hypothesis is rejected, we can compare the classification algorithms by 

pairs using post-hoc tests. In these kinds of comparisons, common parametric statistical 

tests such as ANOVA are generally not adequate as the omnibus test. The arguments are 

similar to those against the use of the t-test: The scores are not commensurable among 

different application domains and the assumptions of the parametric tests (normality and 

                                                 

 

14 KL=Kullback-Leibler, BIR=Bayesian information reward, K&B IR= Kononenko and Bratko 

information reward 
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homoscedasticity in the case of ANOVA) are hardly fulfilled (Demsar, 2006; S. García et 

al., 2010; Garcıa & Herrera, 2008; Santafe et al., 2015). We use Friedman’s aligned rank 

test as our omnibus test to obtain the p-values on the performance differences, testing for 

null-hypothesis, (i.e. that all models perform equally well, is rejected if p < 0.05). The 

chosen test is applied to the 
k(k−1)

2
   pairwise comparisons, where k is the number of 

models. Due to the multiple application of the test, some p-value correction method has to 

be used in order to control the familywise error rate. This problem was tackled by (Schaffer, 

1993), where there were proposed two procedures to correct the p-values: 

(i) In the first one (sometimes called Shaffer static) the particular ordering of 

the null hypothesis is not taken into account and only the maximum number 

of simultaneous hypotheses is considered.  

(ii) The second one further limits the number of possible hypotheses by 

considering which particular hypotheses have been rejected. This increases 

the power of the method, but it is computationally very expensive. Instead 

of this procedure, in (Garcıa & Herrera, 2008), the authors propose to use 

Bergmann and Hommel’s method (Bergmann & Hommel, 1988) 

Thus, in this work we use Friedman’s Aligned Rank Test adjusted with Bergmann 

and Hommel’s method. 

Once the null-hypothesis is rejected, the Nemenyi test is performed as a post-hoc 

test. The Nemenyi test is used to compare classifiers pairwise, where the best performing 

classifier per measure is tested against all other models (Demsar, 2006).  
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3 Experimental Setup and Methodology 

3.1 Problem Formulation  

Assuming a classification train set {(x1, y1), … , (xn, yn)}, x ∈ ℝn, y ∈ {0, 1}, M is a 

global model trained on all {(xi, yi)}i=1
n , the local region of competence for a given test 

instance x (assuming its k-Nearest Neighbors) is denoted by Nx = {x1, x2, … , xk} and the 

learning set for the local classifier Mx is {(xi, yi)}xi∈Nx
. 

Specifically, for the credit scoring binary classification problem {xi}, i = 1, … , n, is 

considered the feature or variable space, denoting the characteristics of each borrower i 

and yi is the corresponding objective or target variable denoting the class label (non-default 

or default sometimes referred also as “Good” or “Bad”). Each feature vector xi is observed 

at a point in time T0, called observation point, whereas the corresponding response yi is 

recorded at a subsequent performance point T1 = T0 + τ, where τ ≥ 1 is usually defined 

in months. The collected input data span an observation time window (or observation 

window) covering the period from [T0 − τ′, T0] to   (τ′ ≥ 1 denoting months), whereas the 

outcome window refers to the period (T0, T1]  where the class label of yi is defined (see 

Figure 4). For the context of behavioral credit scoring the feature space contains variables 

related the financial performance and behavior of borrowers such as credit amounts, 

delinquency status etc.   

 

Figure 4: Observation and Outcome windows 

Observation 

Point 

(T0) 

Performance 

Point 

(T1) 

Observation Window Outcome Window 

GOOD / BAD 
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The credit scoring literature has not provided definitive answers to defining optimally 

these parameters (default definition, observation window, outcome window. The 

recommendations in the literature vary the length of observation and outcome windows 

from 6 to 24 months (Mays, 2005; Thomas et al., 2002; Thomas & Malik, 2010).  

Regarding the definition of default, Anderson (2007) designated that financial 

institutions choose between: (a) a current status definition that classifies an account as good 

or bad based on its status at the end of the outcome window, and (b) a worst status approach 

that uses a time-period during the outcome window. Regulatory requirements are also of 

paramount importance and must be taken into consideration, such as a 90 days past due 

worst status approach that is commonly used in practice in behavioral scorecards and 

complies with the Basel II Capital Accord and used also in the new definition of default by 

the European Banking Authority (EBA). (Kennedy et al., 2013) have made a comparative 

study of various values for these parameters. Their results indicated that behavioral credit 

scoring models using: 

 default definitions based on a worst status approach outperformed those 

with current status. 

 a 12-month observation window outperformed the ones with 6- and 18-

month windows in combination with shorter (12 months or less) outcome 

windows. 

 6-months outcome window and a current status default definition 

outperformed longer outcome windows; for the worst status approach the 

degradation occurs when outcome window extends beyond 12 months. 
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3.2 Data and Variables 

Our data set (pooled cross-sectional data) has been derived from a proprietary credit 

bureau database in Greece and spans a period of 11 years (2009q1 to 2019q4), resulting in 

total 44 snapshots (11 years by 4 quarters). At each snapshot, a random sample of 80,000 

borrowers was retrieved with all their credit lines, including paid off and defaulted, 

resulting in 3,520,000 record-months observations.  

In total, 125 proprietary credit bureau behavioral variables were calculated at the 

borrower level which fall within the following dimensions: 

 Type of credit (consumer loans, mortgages, revolving credit such as 

overdrafts, credit cards, restructuring loans, etc.). 

 Delinquencies (months in arrears, delinquent amount, etc.). 

 Amounts (Outstanding balance, disbursement amount, credit limit, etc.). 

 Time (months since approval, time from delinquencies, etc.). 

 Inquiries made to the credit bureau database. 

 Derogatory events, such as write-offs or events from public sources such as 

courts. 

Besides “elementary” variables such as the ones described above, other 

derivative/combinatory variables along various dimensions were calculated, such as 

various ratios (ratio of delinquent balance over current balance for the last 𝑋 months for a 

specific type of credit line), utilizations and their rate of their increase or decrease over a 

specific time-window (e.g., consecutive increase over last 𝑋 months), giving the total of 

125 variables. 
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Appendix B: List of Variables provides a detailed list of variables as well as some 

basic descriptive statistics.  

3.3 Scoring Parameters 

Our scoring parameters are defined as follows: 

 Observation window: Time windows of 12 months prior to each observation 

point 𝛵0 . Our initial observation point has been at 2009q1 and every 

subsequent quarter thereafter up to 2018q4.  

 Scorable population: At each observation point 𝑇0, all following cases are 

excluded from the analysis: a) borrowers already having delinquency of 90 

days past due (dpd) or more at 𝑇0, b) cases lacking sufficient historical data 

i.e., less than 6 months of credit history, credit cards which are inactive 

balance within the observation window. The remaining observations 

constitute the scorable population for the specific 𝑇0. The last 𝑇0 is taken at 

2018q4.  

 Outcome window: a 12-month window after the observation point. For each 

observation point 𝑇0 , the period 𝑇1 = 𝑇0 + 12  is used as the outcome 

window. Thus, the last 𝑇1 is taken at 2019q4. 

 Default definition: The labeling of the scorable population for each 𝑇0 either 

as GOOD=0 (majority class), BAD=1 (minority or “default” class), 

depending on the information available during 𝑇1, takes place using a worst 

delinquency approach for each outcome window, resulting in the 

corresponding classes: (a) 𝑦 = 1  is assigned to cases with worst 
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delinquency ≥ 90 dpd or a derogatory event during the outcome period, (b) 

𝑦 = 0 is assigned to all other cases 

 

3.4 Methodology 

Our approach is based on training local and global classifiers on the same sample and 

comparing their performance. Local classifiers are trained for each instance 𝐱 of the test 

data set of each snapshot using the feature space defined by its neighborhood or region of 

competence within the training data set. A local model 𝑀𝑥  is then used to predict the 

probability and the class label of the specific instance for which it was trained. 

Correspondingly, global classification models are trained on the entire train set and then 

used to predict the class probabilities of each instance on the test data set. For better 

simulating a real-world scenario, we retrain global classifiers every two years. The 

classifiers used both in the global as well as in the local scheme are logistic regression, 

random forests (RF), and extreme gradient boosting machines (XGB). The choice of the 

specific ML models was made based on recent credit scoring literature findings where they 

seem to be on par or outperform other machine learning and deep learning methods. 

Specifically, Gunnarsson et al. (2021) found that XGBoost and RF outperformed Deep 

Belief Networks (DBN), Hamori et al. (2018) found XGB to be superior to Deep Neural 

Networks (DNN) an RF. Marceau et al. (2019) found that XGB performed better than DNN, 

and Addo et al. (2018) concluded that both XGB and RF outperform DNN. 

During the training phase, the input data have been pre-processed using an expert-based 

process flow to: 
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 handle missing values, by excluding variables with greater than 70% 

missing values and filling the remaining blanks with a constant (since the 

variables are missing at random (MAR), in this work we use -1 as constant 

value), 

 retain only the useful variables, by removing those with zero variance or 

near zero variance, 

 isolating non-correlated variables using an exclusion threshold of 0.7, and 

 select the most discriminative among the remaining variables using the 

Information Value (IV) criterion for the Logistic Regression (LR). The 

exclusion thresholds were selected to match a practitioner’s rule mentioned 

in the literature (Siddiqi, 2005), where a variable is removed in case of 

having an IV lower than 0.3 and greater than 2.5. For the ML methods we 

let the default (implicit) algorithm parameters on the entire feature space. 

However, for testing purposes we also try the same variables selected for 

LR (IV-based). 

Finally, as it has been noted in section 3, credit scoring data are inherently imbalanced. 

In our case, the imbalancing is also observed in the regions of competence, which are used 

to build the local classification models. Such a fact, inevitably yields in some cases to non-

convergence errors, when local logistic regression is used as a classification algorithm and 

the local region of competence contains very few minority class (default) cases for the 

algorithm to converge. In our experiments we found this non-convergence error to be on 
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average 1.9% over all executions15. To address the non-convergence issue, in this work, we 

use a simple heuristic rule: anytime logistic regression algorithm fails to predict a class 

label for a test instance, the algorithm assigns the majority class from test instance’s region 

of competence.  

  

 

3.4.1 Local Classification 

As detailed below, for each snapshot, the k Nearest Neighbors (k-NN) algorithm is used 

to define its local region of competence 𝑁𝑥 for each test instance 𝐱. A local model 𝑀𝑥 is 

trained on this specific region 𝑁𝑥, which serves as an instrument to achieve the desired 

adaptation for the classification process. Figure 5 shows the overall flow for the proposed 

scheme: 

                                                 

 

15 In total we executed 120 runs for local LR models (one run over all 40 snapshots  for each k, where 

k={2000,4000,6000} the size of kNNs.  
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Figure 5: High-level flow for the proposed local classification scheme (|S| denotes the cardinality 

of a set S) 

 

The set-up procedure is as follows: for each snapshot, the scorable population is defined 

as a random set (of 80,000 instances), sampled without replacement from the total 

population and the resulting data set is separated through a 50-50 split into training and test 

sets, to form the training and test sub-spaces of the original feature space. The distance 

metric used to define the local region of competence for each test instance, is determined 

using the Euclidean or the Mahalanobis distance. Such a region of competence serves as a 

borrower-specific localized training set that will be used to build a local classification 

model for that borrower.  
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Regarding the size of the 𝑘 parameter required by the Nearest Neighbors algorithm, it 

is worth to note a common rule of thumb that defines the selection of 1500 to 2000 

examples per class, dating from the very beginning of credit scoring model development 

(Lewis, 1992) and mentioned in many works thereafter (R. A. Anderson, 2022; Finlay, 

2010; Siddiqi, 2005). Although the subject is not extensively researched, recent academic 

studies pointed to the direction that larger samples can improve the performance of linear 

models (Crone & Finlay, 2012; Finlay, 2010) but there seems to be a plateau after 6000 

goods/bads and almost no further benefit above 10000. As a result, aiming to evaluate both 

claims, in this work we selected a 𝑘 parameter that ranges from 2000 to 6000 examples  

(k ∈ 22000, 4000, 6000)). The resulting region of competence is used to train a local 

classification model, 𝑀𝑥, which is specialized for the corresponding test instance/borrower. 

In this study, local classification models are built using the classification algorithms 

considered in the analysis (i.e., logistic regression, Random Forests, Gradient Boosting 

Trees). Figure 6 depicts the training phase for the proposed scheme (pre-processing refers 

to the flow described in section 3.4). 

 

 

Figure 6: Training phase for the proposed local classification scheme (|S| denotes the cardinality 

of a set S) 
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To assess the performance of each local classification model 𝑀𝑥𝑖
, which had been built 

for each test instance 𝐱𝐢 on its specific region of competence 𝑁𝑥𝑖
, i=21,...|TS_L|) (where i 

is the number of the data points in the test set #L) is used to predict the probability of 

default (PD) for the considered test instance/candidate borrower and assign a GOOD or 

BAD class label. This is compared to the actual labels available for the test instances. 
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3.4.2 Global Classification 

As a baseline to benchmark our proposed local classifiers we implement and evaluate 

a standard credit scoring classification scheme commonly used both by the scientific 

community and practitioners alike. In the global classification approach, the adaptation to 

population drift is achieved by retraining the models using new data from the contextual 

snapshot. Figure 7 shows the overall flow for the global scheme. 

 

 
Figure 7: Global classification scheme (|S| denotes the cardinality of a set S) 
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redevelopment is a process applied in practice by all commercial credit scoring models). 

The performance of global models over all snapshots degrades significantly in case of 

training only once for the initial snapshot data (see section 4.1). 
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4 Empirical Results 

In the empirical results we use the following notation: 

LR   = Logistic Regression 

XGB  = xgboost 

RF   = Random Forest 

G   = Global Model 

L   = Local model 

2k, 4k, 6k = 2000, 4000, 6000, count of k for kNNs 

euc  = Euclidian distance 

mah   = Mahalanobis distance  

IV  = feature selection based on Information Value (IV) process 

FS  = implicit feature selection for ML models 

n  = no retraining (training takes place only at 2099q1) 

 

 

 

4.1 Global classifiers and Population drift 

We first examined the impact of population drift by training the global models at 

the beginning of our data period (2009q1) and compared their performance when we 

retrained them every 2 years (i.e. 2009q1, 2013q1, 2015q1, 2017q1), as mentioned in 

section 3.4.2. Table 3 summarizes the results over all snapshots. Detailed results are 

provided in  Appendix D: Detailed Results in Table A-9 (AUC) and Table A-10 (H-

Measure). 

 

 

Table 3: Performance measures of global classifiers (no retrain=shaded rows) over all snapshots 

with different feature selection mechanisms 
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(LR=Logistic Regression, RF=Random Forrest, XGB=Gradient Boosting, G=Global Classifier, IV=feature selection based on IV, 

FS=implicit feature selection, n=no retrain) 

Model Mean  

AUC 

Standard Deviation 

AUC 

Mean  

H-Measure 

Standard Deviation 

H-Measure 

LR_G_n _IV 0.821 0.036 0.464 0.015 

LR_G_ IV 0.873 0.016 0.499 0.034 

XGB_G_n_FS 0.899 0.013 0.577 0.014 

XGB_G_FS 0.931 0.014 0.643 0.012 

XGB_G_IV 0.928 0.012 0.635 0.012 

RF_G_n_FS 0.918 0.011 0.623 0.014 

RF_G_FS 0.933 0.012 0.659 0.012 

RF_G_IV 0.930 0.012 0.648 0.012 

Figure 8 and Figure 9 visualize the detailed performance over all snapshots for all 

model above results in violin plots16. 

 
Figure 8: AUC of global classifiers (y-axis not starting from zero) 

(LR=Logistic Regression, RF=Random Forrest, XGB=Gradient Boosting, G=Global Classifier, IV=feature selection based on IV, 

FS=implicit feature selection, n=no retrain,) 

 

                                                 

 

16 The violin plots in this thesis display the kernel density plot, along with the mean value of the distribution 

(a blue dot) and one standard deviation above and below the mean, as a blue line. 
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Figure 9: H-Measure of global classifiers (y-axis not starting from zero) 
(LR=Logistic Regression, RF=Random Forrest, XGB=Gradient Boosting, G=Global Classifier, IV=feature selection based on IV, 

FS=implicit feature selection, n=no retrain,) 

From a first analysis our initial conclusions confirm the corresponding findings in 

literature: 

 Population drift affects model performance; this is solidly confirmed 

across all models. Retraining (expectedly) benefits model performance in 

all cases. All models with retraining perform better than the corresponding 

ones without retraining. 

 XGB and RF outperform LG. Specifically referring only to the retrained 

models, in terms of AUC the performance difference is 6.6% and 6.9% for 

XGB and RF over LG correspondingly (which is within the average range 

observed in other studies; see section 2.1.2) and for H-Measure the 

corresponding differences are 29.0% and 32.1%. We will elaborate further 

upon this finding when examining also local classification.  
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 In ML models embedded feature selection seem to outperform IV-based 

feature selection:  For ML models (XGB and RF) allowing them the 

freedom to “work” with all feature space, gives them an apparent edge over 

constraining them to the same set of variables (through the IV criterion) that 

were chosen for the LR global models. 

 As discussed in section 2.7.2 to test for statistical significance of these differences 

(i.e. comparing of multiple methods on multiple data sets as noted in Demsar (2006)) we 

use Friedman’s Aligned Rank Test (García et al., 2010) to obtain the p-values on the 

performance differences and correcting them using  Bergmann and Hommel procedure 

(Garcıa & Herrera, 2008). Figure 10 and Figure 11 visualize the corrected p-value matrices 

(a=0.05) for AUC and H-Measure based performances correspondingly. 

 
Figure 10:  AUC based statistical differences of global classifiers (p-value matrix) 

 (LR=Logistic Regression, RF=Random Forrest, XGB=Gradient Boosting, G=Global Classifier, IV=feature selection based on IV, 

FS=implicit feature selection, n=no retrain,) 
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Figure 11:  H-measure statistical differences of global classifiers (p-value matrix) 

 (LR=Logistic Regression, RF=Random Forrest, XGB=Gradient Boosting, G=Global Classifier, IV=feature selection based on IV, 

FS=implicit feature selection, n=no retrain,) 

It becomes evident that RF and XGB global models with retraining are statistically 

similar and the differences in feature selection methods (embedded FS vs IV) for these 

models are not statistically significant, although FS ranks better than IV. To better depict 

the results we draw a ranking graph (Figure 12) where the models we compare are the 

nodes and two nodes are linked if the null hypothesis of being equal cannot be 

rejected. Within each node the average rank of the model is printed. The green node 

indicates the model with the highest relative rank. As it is evidenced: 

 RF and XGB outperform LR in all cases.   

 Retraining always outranks models trained once at the beginning of the 

examined period 
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 Feature selection method (FS vs IV) ranks always better intra-model (i.e. 

RF_G_FS is better ranked than RF_G_IV and XGB_G_FS is better than 

XGB_G_IV).  

 As far as the comparison between XGB and RF is concerned, RF seem to 

fare better but not statistically significant.  

We will elaborate on all these themes as we move in the local classifiers 

analysis of results. 

AUC 

 

H-Measure 

 

Figure 12: Graph of rankings for global models 
(LR=Logistic Regression, RF=Random Forrest, XGB=Gradient Boosting, G=Global Classifier, IV=feature selection based on IV, 

FS=implicit feature selection, n=no retrain,) 

 

Visualizing the timeseries of performance measures (Figure 13 and Figure 14)17, 

we observe that additional to the apparent superiority of the retrained models over their 

“static” ones (in the sense of no retraining), as LR degrades quite significantly over time  

(-15.71% drop in AUC between 2009q1 and 2018q4 and -30.81% drop in H-Measure 

correspondingly), whereas XGB and RF keep their corresponding performance. Population 

                                                 

 

17 We kept only the “*_ FS” models for XGB and RF (i.e. the ones fed the entire feature space, not with an 

IV-based feature selection 
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drift is also showcased as it becomes evident after the first retraining point (2011q1) where 

the performance deviation grows thereafter. 

 

 
Figure 13: AUC degradation of global classifiers with and without retraining  

(y-axis not starting from 0) 
(LR=Logistic Regression, RF=Random Forrest, XGB=Gradient Boosting, G=Global Classifier, dashed lines=no retrain)  

 

 
Figure 14: : H-Measure degradation of global classifiers with and without retraining  

(y-axis not starting from 0) 
(LR=Logistic Regression, RF=Random Forrest, XGB=Gradient Boosting, G=Global Classifier, dashed lines=no retrain) 

 

Thus for the rest of the thesis we will solely use the retrained global models as our 

benchmark for comparing global and local models and for XGB and RF the FS option for 
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feature selection. For brevity in the following sections we will omit the feature selection 

procedure from the labels of the models (e.g. XGB_G_FS will be shorthanded to XGB_G) 

 

4.2 Local classification  

4.2.1 Euclidean vs Mahalanobis Distance and size of k (kNN) 

For tackling the hypothesis regarding the superiority of local models over their 

global counterparts, we started by examining whether the choice of distance metric and the 

size of the local region impacts the classification performance. Since we are using LR as a 

baseline we tried different kNN sizes (k=22000,4000,6000)) for Euclidean as well the 

Mahalanobis distance metric for this classifier. Table 4 summarizes the performance (AUC, 

H-Measure) results and Table A-11and Table A-12 in Appendix D provide the detailed 

results over all snapshots. Figure 15 and Figure 16 depict graphically these results. 

Table 4: Performance measures of LR_L using different distance metrics and local region sizes 
(LR=Logistic Regression,2k,4k,6k=k in kNN, euc=Euclidion dist. mah=Mahalanobis) 

Model Mean  

AUC 

Standard 

Deviation AUC 

Mean  

H-Measure 

Standard 

Deviation H-

Measure 

LR_L_2k_euc 0.926 0.009 0.636 0.028 

LR_L_2k_mah 0.891 0.013 0.559 0.021 

LR_L_4k_euc 0.926 0.012 0.630 0.030 

LR_L_4k_mah 0.905 0.008 0.585 0.021 

LR_L_6k_euc 0.926 0.012 0.627 0.031 

LR_L_6k_mah 0.911 0.009 0.595 0.023 
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Figure 15: AUC of LR_L using different distance metrics and local region sizes (y-axis 

not starting from zero) 
(LR=Logistic Regression,2k,4k,6k=k in kNN, euc=Euclidion dist. maha=Mahalanobis) 

 
Figure 16: H-Meausre of LR_L using different distance metrics and local region sizes (y-

axis not starting from zero) 
(LR=Logistic Regression,2k,4k,6k=k in kNN, euc=Euclidion dist. maha=Mahalanobis) 

As evidenced the choice of 𝑘 does not have a significant impact performance of 

logistic regression, when Euclidian distance is used as distance metric for the choice of 
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kNNs. Specifically, we observe that when using the H-measure, the performance results 

are slightly and non-significantly decreasing as 𝑘 increases (mean=0.6360, 0.6298, 0.6270 

for 𝑘=2000, 4000, 6000, correspondingly) see Figure 17, whereas the opposite holds when 

using AUC as performance measure (mean=0.9256, 0.9259, 0.9265 for corresponding 

k’s)- see Figure 18.  

However, there is an obvious a statistically significant difference between 

Euclidean distance and Mahalanobis distance in the choice of local regions, with the first 

clearly outperforming the second one. The p-value matrixes (Figure 17, Figure 18) indicate 

two distinct “groups” (Euclidean - Mahalanobis); whereas the null hypothesis can’t be 

rejected intra-group, we safely can reject the inter-group null hypothesis. 

 
Figure 17:  AUC based statistical differences of LR-L using different distance metrics 

and local region sizes (p-value matrix) 
(LR=Logistic Regression,2k,4k,6k=k in kNN, euc=Euclidion dist. maha=Mahalanobis) 
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Figure 18:  H-Measure  based statistical differences of LR-L using different distance 

metrics and local region sizes (p-value matrix) 
(LR=Logistic Regression,2k,4k,6k=k in kNN, euc=Euclidion dist. maha=Mahalanobis) 

 

Thus, for the rest of our process we choose to use k=2000 for local models since 

model performance is not significantly affected, whereas computational performance and 

memory requirements are considerably improved with lower k’s and we will use only 

Euclidian distance. 

 

 

4.2.2 Local vs Global Classifiers 

Summing up our findings this far, we compared the following classifiers: 

LR-L_2k = Local LR using 2000 kNNs with Euclidean distance (and IV 

feature selection) 

XGB-L_2k  = Local XBG on the same local regions with LR (no IV features) 

RF-L_2k = Local RF on the same local regions with LR (no IV features) 
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LR-G   = Global LR with retraining every 2 years (and IV feature selection) 

XGB-G = Global XBG with retraining every 2 years (no IV features) 

RF-G  = Global RF with retraining every 2 years (no IV features) 

 

Comparing visually the performance timeseries of the local classifiers with their 

corresponding global ones, we get a mixed picture (see Table A-13 and Table A-

14inAppendix D: Detailed Results): whereas local LR models characteristically 

outperform their global counterparts, for XGB and RF the differences between global and 

local classifiers do not appear to be significant (Figure 19).  

 

 

 

 
 

 

 

 

 

 

 

 

 

Figure 19: Pairwise timeline comparison between local/global classifiers sizes (y-axis not 

starting from zero) 
(different y-axis scales, LR=Logistic Regression, RF=Random Forrest, XGB=Gradient Boosting, solid blue line denotes local 

classifier, red line with markers global classifier) 

Table 5 summarizes average performance and Figure 20 and Figure 21 depicts. 

RF-L_2k is the best performing classifier in terms of average performance. 
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Table 5: Performance of Local vs Global Classifiers 
(LR=Logistic Regression, RF=Random Forrest, XGB=Gradient Boosting, L=Local classifier, G=Global Classifier, 2k=2000 for 

kNN, , bold indicate the best classifier for the specific snapshot)) 

Model Mean  

AUC 

Standard 

Deviation AUC 

Mean  

H-Measure 

Standard 

Deviation H-

Measure 

LR-L_2k 0.9256 0.0086 0.6360 0.0278 

XGB-L_2k 0.9267 0.0118 0.6445 0.0368 

RF-L_2k 0.9366 0.0111 0.6695 0.0351 

LR-G 0.8729 0.0161 0.4987 0.0344 

XGB-G 0.9306 0.0138 0.6435 0.0382 

RF-G 0.9334 0.0123 0.6588 0.0348 

 

 

Figure 20: AUC of Local  vs Global Classifiers (y-axis not starting from zero) 
LR=Logistic Regression, RF=Random Forrest, XGB=Gradient Boosting, L=Local classifier, G=Global Classifier, 2k=2000 for kNN) 
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Figure 21: AUC of Local  vs Global Classifiers (y-axis not starting from zero) 
LR=Logistic Regression, RF=Random Forrest, XGB=Gradient Boosting, L=Local classifier, G=Global Classifier, 2k=2000 for kNN) 

 

Displaying the average ranking of the local and global models used (Figure 22), we 

observe two things: 

 The overall order is grouped by the algorithm used: 1-RF, 2-XGB, 3-LR  

 Within each group local model outperforms its corresponding global 

AUC 

 

H-Measure 

 

Figure 22: Graph of rankings for global models 
(LR=Logistic Regression, RF=Random Forrest, XGB=Gradient Boosting, G=Global Classifier, IV=feature selection based on IV, 

FS=implicit feature selection, n=no retrain,) 
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Analyzing the statistical differences ( 

Figure 23 and Figure 24) we observe that in both measures (AUC and H-Measure) LR-G 

differs significantly from all other classifiers. Going in more details, in the AUC-based 

matrix two “clusters” of classifiers emerge for which the null hypothesis of not been equal 

cannot be rejected: a) XGB-G, RF-G, RF-L_2k and b) LR-L_2k and XGB-L_2k.  For the 

H-measure-based p-value matrix the analogous “clusters” observed are: a) RF-L_2k, RF-

G and b) XGB-G, XGB-L_2k, LR-L_2k. Thus, there seems to be an “interlacing” between 

the performance of all ML models (both local and global) and LR-L_2k which cannot be 

statistically rejected and strengthens the evidence that local models are at least on par with 

their global counterparts. Especially for LR-L it is clearly evidenced that it outperforms 

LR-G with statistical significance. 

 

 
Figure 23:  AUC based statistical differences of Local vs Global Classifiers (p-value matrix) 
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Figure 24:  H-Measure based statistical differences of Local vs Global Classifiers (p-

value matrix) 

 

 

As a next step we use the Nemenyi post-hoc test that is designed to check the 

statistical significance between the differences in the average rank of a set of predictive 

models. In the resulting Critical Distance (CD) graph (Figure 25) the horizontal axis 

represents the average rank position of the respective model. The null hypothesis is that the 

average ranks of each pair of predictive models do not differ with statistical significance 

of 0.05. Horizontal lines connect the lines of the models for which we cannot exclude the 

hypothesis that their average ranks are equal. Any pair of models whose lines are not 

connected with a horizontal line can be seen as having an average rank that is different with 

statistical significance. On top of the graph a horizontal line is shown with the required 

difference between the average ranks (known as the critical distance or difference) for two 

pair of models to be considered significantly different. 
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To test for statistical differences between all classifiers (i.e. the case of multiple 

methods on multiple data sets as noted in Demsar (2006)) we use Friedman’s Aligned Rank 

Test (García et al., 2010) to assess all the pairwise differences between algorithms and then 

correct the p-values for multiple testing (Figure 6 visualizes the results in matrix format).  

 

AUC 

 

H-Measure 

 
Figure 25: Critical Distances between local and global classifiers 

(LR=Logistic Regression, RF=Random Forrest, XGB=Gradient Boosting, L=Local classifier, G=Global Classifier, 2k=2000 for kNN) 

 

Thus, it is evidenced that the case of local LR consistently and statistically 

significantly outperforms global LR although the same conclusion does not seem to hold 

for RF and XGB, despite the minor difference in favor of the local methods when 

comparing average performance.  

 

 

4.3 Random regions of competence vs kNNs 

To examine whether the choice of a specific local region based on kNNs vs random 

sub-sampling plays a role in the performance, we trained a series of models LR-L_2k_rnd 

where for each test instance 𝐱 its local region 𝑁𝑥 is a set of randomly selected training cases, 

instead of employing the kNNs scheme. Appendix D: Detailed Results Table A-15provided 

in Table A-15 whereas the following Figure 26 and Figure 27 highlight the fact that 

selecting local regions through kNNs does makes a difference and the performance gain 



Adaptive Credit Scoring using Local Classification Methods 88 

with respect to a random choice of regions is statistical significant. It should be noted here 

that the performance of LR-L_2k_rnd appears somewhat similar to the global one LR-G. 

This is of no surprise, since the attributes of a random sample are, by selection, more similar 

to the overall population from which the sample is drawn than from a sub-region with 

specific characteristics chosen by their similarity (in terms of a distance metric) to the query 

instance. 

AUC 

 

H-Measure 

 

 

Figure 26: kNNs vs random regions (different y-axis scales)  
(LR=Logistic Regression, G=Global Classifier, 2k=2000 for kNN, *= training snapshot for global LR) 

 
AUC 

 

H-Measure 

 

Figure 27: Statistical differences of kNNs vs random regions 

  

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

LR-L_2k LR-G LR-L_2k_rnd



Adaptive Credit Scoring using Local Classification Methods 89 

5 Conclusions and Future Work  

The development of reliable models for credit scoring remains a challenge for 

researchers and practitioners. Technological advances in ML/AI provide new capabilities 

in this field, enabling the exploitation of large amounts of data. However, as conditions in 

the economic and business environment are in constant change, credit scoring models 

require regular updating. Motivated by this finding, we presented an adaptive behavioral 

credit scoring scheme which uses online training to provide estimates for the probability 

of default through an instance-specific basis. 

Going back to our research hypotheses we can draw our conclusions: 

H1: With respect to the potential gain of local methods vis-a-vis their global 

counterparts our results indicate clearly that local logistic regression outperforms and 

outranks the baseline global logistic regression. This does not seem to hold for the ML 

methods we used (RF and XGB) where the differences between local and global models 

are not statistically significant.  

H2: Concerning the superiority of ML methods over baseline LR-G our results fall 

within a range of performance improvement of 2% - 8% (AUC) observed in various credit 

scoring applications of ML/AI found in literature (Addo et al., 2018; Albanesi & Vamossy, 

2019; Alonso & Carbó, 2020; Gunnarsson et al., 2021; Hamori et al., 2018; Kvamme et al., 

2018). However, it is quite important to observe that the performance of Local LR is on 

par with RF and XGB.  Thus, the performance of Local LR (LR_L) does not differ 

statistically from the ML algorithms, contrasting the case of global LR (LR_G) which is 

vastly outranked and outperformed. The gain, when comparing the AUC of these classifiers 

to the “baseline” global LR, is within the range of 6%-8% (Table 6), which is well within 
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the empirical range observed in other studies (Alonso & Carbó, 2020) comparing ML 

algorithms to the basic logistic regression in credit scoring.  

Table 6: Performance of Local vs Global Classifiers 
(LR=Logistic Regression, RF=Random Forrest, XGB=Gradient Boosting, L=Local classifier, G=Global Classifier, 2k=2000 for kNN) 

 H-Measure AUC 

XGB-GL 29.02% 6.61% 

RF-GL 32.09% 6.94% 

XGB-L 29.22% 6.16% 

RF-L 34.24% 7.31% 

LR-L_2k 27.53% 6.04% 

 

Another important observation is that the choice of feature selection method (using 

in ML models the same variables which were used for LR based on their Information Value) 

affects negatively ML performance. This is quite understandable as ML methods build 

explicitly on exploring the entire feature space and therefore constricting their feature space 

does not allow them to capture all the inherent dynamics.  

H3: Finally, our analysis clearly indicates that the performance of a local model is 

affected by the selection of a region of competence based on similar characteristics with 

the queried test instance. A random selection of points from the feature space provides 

inferior results compared to the kNN approach adopted in this study. Also we observed that 

the distance used plays an important role: Although both LR_L methods based on different 

distance metric outperform LR_G, Euclidean distance is in all cases better than 

Mahalanobis. This is quite interesting and it may be a result of the way that Mahalanobis 
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distance works based on the covariance matrix. However, this is a good point for further 

research.  

 Bearing into consideration the volume of the real-world data used and the extensive 

out-of-sample validation performed, thus safeguarding for overfitting, our work clearly 

indicates that using local LR methods can provide real-time adaptation therefore providing 

a solution to the problem of population drift and the need for continuous re-calibration 

(which holds for LR and ML models alike), yielding comparable results with complex 

state-of-the-art ML algorithms. Additionally, LR per se is not a “black box” model which 

is extremely beneficial for regulatory purposes. However, dealing with the complexities of 

model risk management and governance (Guégan & Hassani, 2018; Kiritz & Sarfati, 2018; 

Morini, 2011) in the case of using real-time, adaptive local models may pose equal or even 

greater challenges for their practical application. 

Another issue that yields further examination is the reason that the tested ML 

methods do not get the benefit of applying the same local regions as in LR. One possible 

answer tends towards the direction of the intrinsic way that RF and XGB are working by 

exploiting combinations of predictors within the feature space, thus better capturing the 

specific dynamics of a sub-region. This needs to be further examined.   

Further work can also be performed towards the direction of: 

 exploring advanced balancing techniques such as SMOTE (Chawla et al., 

2002), G-SMOTE or G-SOMO (Camacho et al., 2022; Douzas et al., 2021) 

or RUSBoost (Seiffert et al., 2010) for local sampling considering the highly 

imbalancing nature of credit datasets (Bischl et al., 2016; He et al., 2018) 

where balancing may affect not only performance in terms of 
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misclassification errors but also non-convergence errors when using local 

LR;  

 usage of penalized methods such as LASSO or Ridge (Wang et al., 2015; 

Wang et al., 2017);  

 usage of additional distance metrics (e.g., Manhattan)  

 usage of different algorithms for choosing local regions instead of the basic 

kNNs, such as Reduced Minority kNNs (Melo Junior et al., 2020).  

 

 

 



Appendix A: Alternative Data 

Table A-7: Alternative data in Credit Scoring Source: (ICCR, 2019) 

 

Table A-8: Types of  data used in Credit Scoring Source: (ICCR, 2019) 
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Appendix B: List of Variables 

 Feature Description  

1  RH_N_NUM Number or HOUSING loans 

2  RR_N_NUM Number or RETAIL 

3  RS_N_NUM Number or RESTRUCTURING (ρυθμίσεις) 

4  R_N_NUMGR Number of loans as guarantor 

5  RH_N_DEL_1_MAX Max delinquency (months in arrears) of HOUSING 

LOANS, for the last 1 month (current delinquency), 

3,6,12, 18 months 

6  RH_N_DEL_3_MAX 

7  RH_N_DEL_6_MAX 

8  RH_N_DEL_12_MAX 

9  RH_N_DEL_18_MAX 

10  RR_N_DEL_1_MAX Max delinquency (months in arrears) of RETAIL 

LOANS for the last 1 month (current delinquency), 

3,6,12, 18 months 

11  RR_N_DEL_3_MAX 

12  RR_N_DEL_6_MAX 

13  RR_N_DEL_12_MAX 

14  RR_N_DEL_18_MAX 

15  RS_N_DEL_1_MAX Max delinquency (months in arrears) for 

RESTRUCTURING LOANS for the last 1 month 

(current delinquency), 3,6,12, 18 months 

16  RS_N_DEL_3_MAX 

17  RS_N_DEL_6_MAX 

18  RS_N_DEL_12_MAX 

19  RS_N_DEL_18_MAX 

20  R_N_DELGR_MAX Max. current delinquency (months in arrears) for 

all loans as GUARANTOR 

21  RH_A_CURBAL_1_MAX MAX of CURRENT BALANCE of HOUSING 

LOANS for the last 1 month (current month), 

3,6,12, 18 months 

22  RH_A_CURBAL_3_MAX 

23  RH_A_CURBAL_6_MAX 

24  RH_A_CURBAL_12_MAX 

25  RH_A_CURBAL_18_MAX 

26  RR_A_CURBAL_1_MAX MAX of CURRENT BALANCE of RETAIL 

LOANS for the last 1 month (current month), 

3,6,12, 18 months 

27  RR_A_CURBAL_3_MAX 

28  RR_A_CURBAL_6_MAX 

29  RR_A_CURBAL_12_MAX 

30  RR_A_CURBAL_18_MAX 

31  RS_A_CURBAL_1_MAX MAX of CURRENT BALANCE of 

RESTRUCTURING LOANS for the last 1 month 

(current month), 3,6,12, 18 months 

32  RS_A_CURBAL_3_MAX 

33  RS_A_CURBAL_6_MAX 

34  RS_A_CURBAL_12_MAX 

35  RS_A_CURBAL_18_MAX 

36  RH_A_DELBAL_1_MAX MAX of Delinquent BALANCE of HOUSING 

LOANS for the last 1 month (current month), 

3,6,12, 18 months 

37  RH_A_DELBAL_3_MAX 

38  RH_A_DELBAL_6_MAX 

39  RH_A_DELBAL_12_MAX 

40  RH_A_DELBAL_18_MAX 

41  RR_A_ DELBAL _1_MAX MAX of Delinquent BALANCE of RETAIL 

LOANS for the last 1 month (current month), 

3,6,12, 18 months 

42  RR_A_ DELBAL _3_MAX 

43  RR_A_ DELBAL _6_MAX 

44  RR_A_ DELBAL _12_MAX 
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 Feature Description  

45  RR_A_ DELBAL _18_MAX 

46  RS_A_ DELBAL _1_MAX MAX of Delinquent BALANCE of 

RESTRUCTURING LOANS for the last 1 month 

(current month), 3,6,12, 18 months 

47  RS_A_DELBAL_3_MAX 

48  RS_A_DELBAL_6_MAX 

49  RS_A_DELBAL_12_MAX 

50  RS_A_DELBAL_18_MAX 

51  RH_A_CLIM_1_SUM Current Credit Limit (for revolving = credit limit, 

for rest = approval amount), Housing loans 

 

52  RR_A_CLIM_1_SUM Current Credit Limit (for revolving = credit limit, 

for rest = approval amount), retail loans 

 

53  RS_A_CLIM_1_SUM Current Credit Limit (for revolving = credit limit, 

for rest = approval amount), restructuring loans 

 

54  R_R_BALRATIO_1_MAX Max. Ratio of [Current delinquent balance / Current 

balance] among all loans, for the last 1 month 

(current month), 3,6,12, 18 months 

55  R_R_BALRATIO_3_MAX 

56  R_R_BALRATIO_6_MAX 

57  R_R_BALRATIO_12_MAX 

58  R_R_BALRATIO_18_MAX 

59  RH_R_ BALRATIO_1_MAX Max. Ratio of [Current delinquent balance / Current 

balance] // Housing Loans, for the last 1 month 

(current month), 3,6,12, 18 months 

 

60  RH_R_ BALRATIO_3_MAX 

61  RH_R_ BALRATIO_6_MAX 

62  RH_R_ BALRATIO_12_MAX 

63  RH_R_ BALRATIO_18_MAX 

64  RR_R_ BALRATIO_1_MAX Max. Ratio of [Current delinquent balance / Current 

balance] // Retail Loans, for the last 1 month 

(current month), 3,6,12, 18 months 

 

65  RR_R_ BALRATIO_3_MAX 

66  RR_R_ BALRATIO_6_MAX 

67  RR_R_ BALRATIO_12_MAX 

68  RR_R_ BALRATIO_18_MAX 

69  RS_R_ BALRATIO_1_MAX Max. Ratio of [Current delinquent balance / Current 

balance] // Restructuring Loans, for the last 1 

month (current month), 3,6,12, 18 months 

70  RS_R_ BALRATIO_3_MAX 

71  RS_R_ BALRATIO_6_MAX 

72  RS_R_ BALRATIO_12_MAX 

73  RS_R_ BALRATIO_18_MAX 

74  R_R_UTILIZATION_1_MAX Max. Utilization =[ Current balance / Credit limit] 

// all loans, for the last 1 month (current month), 

3,6,12, 18 months for the last 1 month (current 

month), 3,6,12, 18 months 

75  R_R_UTILIZATION_3_MAX 

76  R_R_UTILIZATION_6_MAX 

77  R_R_UTILIZATION_12_MAX 

78  R_R_UTILIZATION_18_MAX 

79  RH_R_UTILIZATION_1_MAX Max. Utilization =[ Current balance / Credit limit] 

// housing loans, for the last 1 month (current 

month), 3,6,12, 18 months for the last 1 month 

(current month), 3,6,12, 18 months  

80  RH_R_UTILIZATION_3_MAX 

81  RH_R_UTILIZATION_6_MAX 

82  RH_R_UTILIZATION_12_MAX 

83  RH_R_UTILIZATION_18_MAX 

84  RR_R_UTILIZATION_1_MAX Max. Utilization =[ Current balance / Credit limit] 

// retail loans, for the last 1 month (current month), 

3,6,12, 18 months for the last 1 month (current 

month), 3,6,12, 18 months  

85  RR_R_UTILIZATION_3_MAX 

86  RR_R_UTILIZATION_6_MAX 

87  RR_R_UTILIZATION_12_MAX 
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 Feature Description  

88  RR_R_UTILIZATION_18_MAX 

89  RS_R_UTILIZATION_1_MAX Max. Utilization =[ Current balance / Credit limit] 

// restructuring loans, for the last 1 month (current 

month), 3,6,12, 18 months for the last 1 month 

(current month), 3,6,12, 18 months 

90  RS_R_UTILIZATION_3_MAX 

91  RS_R_UTILIZATION_6_MAX 

92  RS_R_UTILIZATION_12_MAX 

93  RS_R_UTILIZATION_18_MAX 

94  R_R_CONSEC12_UTIL100_MAX Maximum Number of Consecutive Months with 

over 100% of Percent Credit Utilization in last 12 

Months 

95  R_R_CONSEC6_UTIL100_MAX Maximum Number of Consecutive Months with 

over 100% of Percent Credit Utilization in last 6 

Months 

96  R_R_NUM6_UTIL90_MAX Total Number of Months with over 90% of Percent 

Credit Utilization in last 6 months 

97  RR_R_CONSEC12_UTILINCR_MAX Number of Months with Consecutive Increase of 

Maximum Percent Credit Utilization in last 12 

Months // retail loans 

98  RR_R_CONSEC6_UTILINCR_MAX Number of Months with Consecutive Increase of 

Maximum Percent Credit Utilization in last 6 

Months // retail loans  

99  R_T_AGEDIFF Χρόνος μεταξύ νεότερης & παλιότερης χορήγησης 

100  RH_T_AGENEW Νεότερη χορήγηση -HOUSING  

101  RR_T_AGENEW Νεότερη χορήγηση -Retail 

102  RS_T_AGENEW Νεότερη χορήγηση -Restructured  

103  RH_T_18MOS1P Months Since 1+ months delinquency in last 18 

months - Housing 

104  RR_T_18MOS1P Months Since 1+ months delinquency in last 18 

months - Retail 

105  RS_T_18MOS1P Months Since 1+ months delinquency in last 18 

months - Restructured 

106  RH_T_18MOS2P Months Since 2+ months delinquency in last 18 

months - Housing 

107  RR_T_18MOS2P Months Since 2+ months delinquency in last 18 

months - Retail 

108  RS_T_18MOS2P Months Since 2+ months delinquency in last 18 

months - Restructured 

109  RH_N_6OCC1P Number of Occurrences of Delinquency 1+months - 

Last 6,12,18 Months //HOUSING 110  RH_N_12OCC1P 

111  RH_N_18OCC1P 

112  RR_N_6 OCC1P Number of Occurrences of Delinquency 1+months - 

Last 6,12,18 Months //Retail 113  RR_N_6 OCC1P 

114  RR_N_18 OCC1P 

115  RS_N_6OCC1P Number of Occurrences of Delinquency 1+months - 

Last 6,12,18 Months// Restructured 116  RS_N_6OCC1P 

117  RS_N_6OCC1P 

118  D_T_NEWSET Newest (in months) settled NEGATIVE excluding 

mortgages 
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 Feature Description  

119  D_T_NEWUNSET Newest (in months) unsettled NEGATIVE 

excluding mortgages  

120  D_N_MORTGAGE Number of mortgages 

121  D_N_NEGATIVE Number of negative excluding mortgages 

122  I_N_1ALL No. of inquiries last 1 month 

123  I_N_3ALL No. of inquiries last 3 months 

124  I_N_12ALL No. of inquiries last 12 months 

125  I_T_OLDEST Months since oldest inquiry 
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Skim summary statistics 
 n obs: 3200000 (2009q1 – 2018q12) 
 n variables: 125  
 
── Variable type:integer  
                   variable missing complete       n        mean         sd   p0     p25     p50     p75       p100     hist 

                     ALLRCS       0  3200000 3200000       3.78        3.16    1       2       3       5  131       ▇▁▁▁▁▁▁▁ 

               D_N_MORTGAGE 2771606   428394 3200000       1.34        0.78    0       1       1       2   44       ▇▁▁▁▁▁▁▁ 

               D_N_NEGATIVE 2771606   428394 3200000       0           0       0       0       0       0    0       ▁▁▁▇▁▁▁▁ 

                 D_T_NEWSET 3189510    10490 3200000      59.72       32.34   12      30      59      85  220       ▇▇▆▅▁▁▁▁ 
               D_T_NEWUNSET 3200000        0 3200000     NaN          NA      NA      NA      NA      NA   NA                

                  I_N_11ALL 2023992  1176008 3200000       3.21        4.05    1       1       2       4  497       ▇▁▁▁▁▁▁▁ 

                   I_N_1ALL 2023992  1176008 3200000       0.27        0.77    0       0       0       0   56       ▇▁▁▁▁▁▁▁ 

                   I_N_3ALL 2023992  1176008 3200000       0.77        1.51    0       0       0       1  149       ▇▁▁▁▁▁▁▁ 

                 I_T_OLDEST 2023992  1176008 3200000       7.99        3.36    1       5       9      11   12       ▂▂▃▂▂▅▃▇ 

              R_N_DELGR_MAX 2701541   498459 3200000       0.33        2.04   -1      -1       0       0    9       ▇▁▁▁▁▁▁▁ 

                  R_N_NUMGR       0  3200000 3200000       0.24        0.7     0       0       0       0   34       ▇▁▁▁▁▁▁▁ 

   R_R_CONSEC12_UTIL100_MAX       0  3200000 3200000       0.57        2.01    0       0       0       0   12       ▇▁▁▁▁▁▁▁ 

    R_R_CONSEC6_UTIL100_MAX       0  3200000 3200000       0.32        1.15    0       0       0       0    6       ▇▁▁▁▁▁▁▁ 

        R_R_NUM6_UTIL90_MAX       0  3200000 3200000       1.2         2.23    0       0       0       1    6       ▇▁▁▁▁▁▁▂ 

                R_T_AGEDIFF       0  3200000 3200000      73.1        96.68    0       0      48     112 1000       ▇▂▁▁▁▁▁▁ 

               RH_N_12OCC1P 2212980   987020 3200000       0.9         2.34    0       0       0       0   12       ▇▁▁▁▁▁▁▁ 

               RH_N_18OCC1P 2212980   987020 3200000       1.3         3.32    0       0       0       0   18       ▇▁▁▁▁▁▁▁ 

                RH_N_6OCC1P 2212980   987020 3200000       0.46        1.27    0       0       0       0    6       ▇▁▁▁▁▁▁▁ 

             RH_N_DEL_1_MAX 2212980   987020 3200000       0.01        0.7    -1       0       0       0    9       ▇▁▁▁▁▁▁▁ 

            RH_N_DEL_12_MAX 2212980   987020 3200000       0.39        1.39   -1       0       0       0    9       ▇▁▁▁▁▁▁▁ 

            RH_N_DEL_18_MAX 2212980   987020 3200000       0.5         1.53   -1       0       0       0    9       ▇▂▁▁▁▁▁▁ 

             RH_N_DEL_3_MAX 2212980   987020 3200000       0.12        0.96   -1       0       0       0    9       ▇▁▁▁▁▁▁▁ 

             RH_N_DEL_6_MAX 2212980   987020 3200000       0.23        1.17   -1       0       0       0    9       ▇▁▁▁▁▁▁▁ 

                   RH_N_NUM       0  3200000 3200000       0.45        0.82    0       0       0       1   29       ▇▁▁▁▁▁▁▁ 

               RH_T_18MOS1P 2957066   242934 3200000       5.48        5.04    1       1       3       9   18       ▇▂▂▁▁▁▁▁ 

               RH_T_18MOS2P 3086648   113352 3200000       6.05        5.19    1       1       4      10   18       ▇▂▂▂▁▁▁▁ 

                RH_T_AGENEW 2212980   987020 3200000     102.36       58.86   -1      57      98     139  999       ▇▃▁▁▁▁▁▁ 

               RR_N_12OCC1P  268960  2931040 3200000       1           2.51    0       0       0       0   12       ▇▁▁▁▁▁▁▁ 

               RR_N_18OCC1P  268960  2931040 3200000       1.46        3.55    0       0       0       1   18       ▇▁▁▁▁▁▁▁ 

                RR_N_6OCC1P  268960  2931040 3200000       0.52        1.36    0       0       0       0    6       ▇▁▁▁▁▁▁▁ 

             RR_N_DEL_1_MAX  268960  2931040 3200000       0.16        1.05   -1       0       0       0    9       ▇▁▁▁▁▁▁▁ 

            RR_N_DEL_12_MAX  268960  2931040 3200000       0.52        1.56   -1       0       0       0    9       ▇▁▁▁▁▁▁▁ 

            RR_N_DEL_18_MAX  268960  2931040 3200000       0.62        1.68   -1       0       0       1    9       ▇▂▁▁▁▁▁▁ 

             RR_N_DEL_3_MAX  268960  2931040 3200000       0.27        1.21   -1       0       0       0    9       ▇▁▁▁▁▁▁▁ 

             RR_N_DEL_6_MAX  268960  2931040 3200000       0.37        1.36   -1       0       0       0    9       ▇▁▁▁▁▁▁▁ 
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                   RR_N_NUM       0  3200000 3200000       2.99        2.78    0       1       2       4  131       ▇▁▁▁▁▁▁▁ 

 RR_R_CONSEC12_UTILINCR_MAX  268960  2931040 3200000       2.05        1.97    0       1       2       3   12       ▇▆▁▁▁▁▁▁ 

  RR_R_CONSEC6_UTILINCR_MAX  268960  2931040 3200000       1.58        1.37    0       1       1       2    6       ▃▇▅▂▁▁▁▁ 

               RR_T_18MOS1P 2436257   763743 3200000       5.37        5.05    1       1       3       9   18       ▇▂▁▁▁▁▁▁ 

               RR_T_18MOS2P 2849625   350375 3200000       5.84        5.26    1       1       4      10   18       ▇▂▂▁▁▁▁▁ 

                RR_T_AGENEW  268960  2931040 3200000      68.79       66.25   -1      22      49      95  999       ▇▁▁▁▁▁▁▁ 

               RS_N_12OCC1P 3025129   174871 3200000       2.92        3.83    0       0       1       5   12       ▇▂▁▁▁▁▁▁ 

               RS_N_18OCC1P 3025129   174871 3200000       4.2         5.43    0       0       1       7   18       ▇▁▁▁▁▁▁▁ 

                RS_N_6OCC1P 3025129   174871 3200000       1.53        2.1     0       0       0       3    6       ▇▁▁▁▁▁▁▁ 

             RS_N_DEL_1_MAX 3025129   174871 3200000       0.57        1.62   -1       0       0       1    9       ▇▂▁▁▁▁▁▁ 

            RS_N_DEL_12_MAX 3025129   174871 3200000       1.71        2.65   -1       0       1       2    9       ▇▃▂▂▁▁▁▂ 

            RS_N_DEL_18_MAX 3025129   174871 3200000       2           2.82   -1       0       1       3    9       ▇▃▂▂▁▁▁▂ 

             RS_N_DEL_3_MAX 3025129   174871 3200000       0.93        2      -1       0       0       1    9       ▇▂▁▁▁▁▁▁ 

             RS_N_DEL_6_MAX 3025129   174871 3200000       1.28        2.33   -1       0       0       2    9       ▇▂▂▂▁▁▁▁ 

                   RS_N_NUM       0  3200000 3200000       0.097       0.53    0       0       0       0   34       ▇▁▁▁▁▁▁▁ 

               RS_T_18MOS1P 3100653    99347 3200000       4.03        4.45    1       1       2       6   18       ▇▁▁▁▁▁▁▁ 

               RS_T_18MOS2P 3130307    69693 3200000       4.96        4.84    1       1       3       8   18       ▇▂▁▁▁▁▁▁ 

                RS_T_AGENEW 3025129   174871 3200000      38.08       35.79   -1      12      26      55  999       ▇▁▁▁▁▁▁▁ 
 
── Variable type:numeric  
                variable missing complete       n      mean       sd p0      p25      p50       p75          p100     hist 

      R_R_BALRATIO_1_MAX  358869  2841131 3200000     3        14.96  0     0        0         0        461.54    ▇▁▁▁▁▁▁▁ 

     R_R_BALRATIO_12_MAX  182489  3017511 3200000     7.3      22.4   0     0        0         1.35     999.99    ▇▁▁▁▁▁▁▁ 

     R_R_BALRATIO_18_MAX  170478  3029522 3200000     8.92     24.71  0     0        0         2.26     999.99    ▇▁▁▁▁▁▁▁ 

      R_R_BALRATIO_3_MAX  285042  2914958 3200000     4.07     16.95  0     0        0         0        461.54    ▇▁▁▁▁▁▁▁ 

      R_R_BALRATIO_6_MAX  236354  2963646 3200000     5.29     19.16  0     0        0         0        999.99    ▇▁▁▁▁▁▁▁ 

   R_R_UTILIZATION_1_MAX   99718  3100282 3200000    51.9      67.82  0     8.41    48.01     85.66     999.99    ▇▁▁▁▁▁▁▁ 

  R_R_UTILIZATION_12_MAX   52240  3147760 3200000    64.18     71.17  0    23.88    66.88     96.56     999.99    ▇▁▁▁▁▁▁▁ 

  R_R_UTILIZATION_18_MAX   46050  3153950 3200000    68.01     72.7   0    28.82    73.03     99.31     999.99    ▇▁▁▁▁▁▁▁ 

   R_R_UTILIZATION_3_MAX   83714  3116286 3200000    55.36     68.57  0    13.05    53.18     88.59     999.99    ▇▁▁▁▁▁▁▁ 

   R_R_UTILIZATION_6_MAX   70356  3129644 3200000    58.94     69.43  0    17.5     58.79     91.83     999.99    ▇▁▁▁▁▁▁▁ 

         RH_A_CLIM_1_SUM 2337632   862368 3200000 90087.69  3e+05     0 32281.73 62900    111518.71   1e+08       ▇▁▁▁▁▁▁▁ 

       RH_A_CURBAL_1_MAX 2337632   862368 3200000 51298.83  74720.23  0 12196.2  34069.85  67551.93       1.2e+07 ▇▁▁▁▁▁▁▁ 

      RH_A_CURBAL_12_MAX 2302523   897477 3200000 53587.99  77729.79  0 13495.72 36056.84  70305.24       1.4e+07 ▇▁▁▁▁▁▁▁ 

      RH_A_CURBAL_18_MAX 2288498   911502 3200000 54618.96  79006.76  0 14116.5  37003.82  71578.9        1.5e+07 ▇▁▁▁▁▁▁▁ 

       RH_A_CURBAL_3_MAX 2328361   871639 3200000 51811.22  75301.08  0 12485.66 34518.92  68189.08       1.3e+07 ▇▁▁▁▁▁▁▁ 

       RH_A_CURBAL_6_MAX 2319247   880753 3200000 52460.23  76234.93  0 12853.12 35052.78  68984.38       1.3e+07 ▇▁▁▁▁▁▁▁ 

       RH_A_DELBAL_1_MAX 2337632   862368 3200000   209.2    6876.51  0     0        0         0      2e+06       ▇▁▁▁▁▁▁▁ 

      RH_A_DELBAL_12_MAX 2302523   897477 3200000   451.25   9669.31  0     0        0        39.66 4561912       ▇▁▁▁▁▁▁▁ 

      RH_A_DELBAL_18_MAX 2288498   911502 3200000   528.03  10168.79  0     0        0       110.16 4561912       ▇▁▁▁▁▁▁▁ 

       RH_A_DELBAL_3_MAX 2328361   871639 3200000   277.83   7406.32  0     0        0         0      2e+06       ▇▁▁▁▁▁▁▁ 
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       RH_A_DELBAL_6_MAX 2319247   880753 3200000   351.19   9204.07  0     0        0         0    4561912       ▇▁▁▁▁▁▁▁ 

     RH_R_BALRATIO_1_MAX 2340835   859165 3200000     0.75      6.94  0     0        0         0        100       ▇▁▁▁▁▁▁▁ 

    RH_R_BALRATIO_12_MAX 2306197   893803 3200000     2.24     11.5   0     0        0         0.12     109.12    ▇▁▁▁▁▁▁▁ 

    RH_R_BALRATIO_18_MAX 2292160   907840 3200000     2.71     12.79  0     0        0         0.39     109.12    ▇▁▁▁▁▁▁▁ 

     RH_R_BALRATIO_3_MAX 2331698   868302 3200000     1.13      8.17  0     0        0         0        100       ▇▁▁▁▁▁▁▁ 

     RH_R_BALRATIO_6_MAX 2322826   877174 3200000     1.57      9.54  0     0        0         0        106.81    ▇▁▁▁▁▁▁▁ 

  RH_R_UTILIZATION_1_MAX 2337634   862366 3200000    67.21     77.89  0    39.53    66.92     86.58     999.99    ▇▁▁▁▁▁▁▁ 

 RH_R_UTILIZATION_12_MAX 2302528   897472 3200000    71.44     79.04  0    44.45    71.47     90.12     999.99    ▇▁▁▁▁▁▁▁ 

 RH_R_UTILIZATION_18_MAX 2288503   911497 3200000    73.35     79.68  0    46.86    73.55     91.66     999.99    ▇▁▁▁▁▁▁▁ 

  RH_R_UTILIZATION_3_MAX 2328363   871637 3200000    68.11     78.18  0    40.61    67.89     87.33     999.99    ▇▁▁▁▁▁▁▁ 

  RH_R_UTILIZATION_6_MAX 2319252   880748 3200000    69.28     78.43  0    42.01    69.18     88.33     999.99    ▇▁▁▁▁▁▁▁ 

         RR_A_CLIM_1_SUM  435563  2764437 3200000 10618.79  31616.81  0  2300     6000     13400      4e+07       ▇▁▁▁▁▁▁▁ 

       RR_A_CURBAL_1_MAX  435563  2764437 3200000  3238.54  15090.62  0    58.96   682.68   3652.41 9592551.33    ▇▁▁▁▁▁▁▁ 

      RR_A_CURBAL_12_MAX  372458  2827542 3200000  4069.35  18538.11  0   291.45  1349.03   4964.14       1.3e+07 ▇▁▁▁▁▁▁▁ 

      RR_A_CURBAL_18_MAX  355451  2844549 3200000  4391.62  20370.24  0   366.68  1542.21   5434.21       1.3e+07 ▇▁▁▁▁▁▁▁ 

       RR_A_CURBAL_3_MAX  418626  2781374 3200000  3444.41  15176.43  0   120.83   892.74   3964.31 9592551.33    ▇▁▁▁▁▁▁▁ 

       RR_A_CURBAL_6_MAX  401125  2798875 3200000  3678.17  15330.81  0   189.85  1074.39   4330.47 9592551.33    ▇▁▁▁▁▁▁▁ 

       RR_A_DELBAL_1_MAX  435563  2764437 3200000    93.06   1315.71  0     0        0         0     248569.33    ▇▁▁▁▁▁▁▁ 

      RR_A_DELBAL_12_MAX  372458  2827542 3200000   171.45   8207.13  0     0        0         0          1.3e+07 ▇▁▁▁▁▁▁▁ 

      RR_A_DELBAL_18_MAX  355451  2844549 3200000   201.74  11461.37  0     0        0        29.35       1.3e+07 ▇▁▁▁▁▁▁▁ 

       RR_A_DELBAL_3_MAX  418626  2781374 3200000   112.72   1441.27  0     0        0         0     593303.5     ▇▁▁▁▁▁▁▁ 

       RR_A_DELBAL_6_MAX  401125  2798875 3200000   134.03   1551.66  0     0        0         0     593303.5     ▇▁▁▁▁▁▁▁ 

     RR_R_BALRATIO_1_MAX  882935  2317065 3200000     3.23     15.59  0     0        0         0        461.54    ▇▁▁▁▁▁▁▁ 

    RR_R_BALRATIO_12_MAX  648329  2551671 3200000     7.64     23.01  0     0        0         1.4      999.99    ▇▁▁▁▁▁▁▁ 

    RR_R_BALRATIO_18_MAX  615449  2584551 3200000     9.31     25.32  0     0        0         2.46     999.99    ▇▁▁▁▁▁▁▁ 

     RR_R_BALRATIO_3_MAX  793318  2406682 3200000     4.33     17.57  0     0        0         0        461.54    ▇▁▁▁▁▁▁▁ 

     RR_R_BALRATIO_6_MAX  727801  2472199 3200000     5.58     19.77  0     0        0         0        999.99    ▇▁▁▁▁▁▁▁ 

  RR_R_UTILIZATION_1_MAX  524569  2675431 3200000    40.4      50.61  0     2.06    26.06     75.74     999.99    ▇▁▁▁▁▁▁▁ 

 RR_R_UTILIZATION_12_MAX  437360  2762640 3200000    54.45     56.45  0    11.34    51.41     94.22     999.99    ▇▁▁▁▁▁▁▁ 

 RR_R_UTILIZATION_18_MAX  412607  2787393 3200000    58.59     58.58  0    14.59    59.37     98.32     999.99    ▇▁▁▁▁▁▁▁ 

  RR_R_UTILIZATION_3_MAX  501284  2698716 3200000    44.48     51.89  0     4.59    33.71     81.01     999.99    ▇▁▁▁▁▁▁▁ 

  RR_R_UTILIZATION_6_MAX  476305  2723695 3200000    48.6      53.54  0     7.28    41.01     86.5      999.99    ▇▁▁▁▁▁▁▁ 

         RS_A_CLIM_1_SUM 3039443   160557 3200000 46802.67  1e+05     0  7583.89 18600     50000          1.3e+07 ▇▁▁▁▁▁▁▁ 

       RS_A_CURBAL_1_MAX 3039443   160557 3200000 31115.44  55603.63  0  5854.73 14776.11  35923.2  3342022.89    ▇▁▁▁▁▁▁▁ 

      RS_A_CURBAL_12_MAX 3033233   166767 3200000 32157.8   57484.08  0  6298.91 15482.15  36983.72 3478702.4     ▇▁▁▁▁▁▁▁ 

      RS_A_CURBAL_18_MAX 3031883   168117 3200000 32491.65  58018.09  0  6466.38 15700     37320.57 3540281.09    ▇▁▁▁▁▁▁▁ 

       RS_A_CURBAL_3_MAX 3037078   162922 3200000 31497.29  56611.6   0  5976.16 15002.67  36321.24 3343346.93    ▇▁▁▁▁▁▁▁ 

       RS_A_CURBAL_6_MAX 3035327   164673 3200000 31718.71  56902.13  0  6087.52 15157.2   36571.83 3343346.93    ▇▁▁▁▁▁▁▁ 

       RS_A_DELBAL_1_MAX 3039443   160557 3200000   580.94   5943.98  0     0        0        76.57  721648.14    ▇▁▁▁▁▁▁▁ 

      RS_A_DELBAL_12_MAX 3033233   166767 3200000  1334.6    9664.2   0     0       72.91    345.39 1590429.57    ▇▁▁▁▁▁▁▁ 

      RS_A_DELBAL_18_MAX 3031883   168117 3200000  1561.19  10370.71  0     0      106.07    449.88 1590429.57    ▇▁▁▁▁▁▁▁ 
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       RS_A_DELBAL_3_MAX 3037078   162922 3200000   768.68   6680.09  0     0        0       150.33  721648.14    ▇▁▁▁▁▁▁▁ 

       RS_A_DELBAL_6_MAX 3035327   164673 3200000  1005.88   8716.38  0     0       22.51    224.35 1590429.57    ▇▁▁▁▁▁▁▁ 

     RS_R_BALRATIO_1_MAX 3039860   160140 3200000     3.65     16.6   0     0        0         0.6      100       ▇▁▁▁▁▁▁▁ 

    RS_R_BALRATIO_12_MAX 3033539   166461 3200000     7.9      22.9   0     0        0.55      2.93     126.58    ▇▁▁▁▁▁▁▁ 

    RS_R_BALRATIO_18_MAX 3032130   167870 3200000     9.26     24.63  0     0        0.85      3.7      128.7     ▇▁▁▁▁▁▁▁ 

     RS_R_BALRATIO_3_MAX 3037380   162620 3200000     4.77     18.33  0     0        0         1.36     124.15    ▇▁▁▁▁▁▁▁ 

     RS_R_BALRATIO_6_MAX 3035646   164354 3200000     6.04     20.27  0     0        0.07      1.99     124.83    ▇▁▁▁▁▁▁▁ 

  RS_R_UTILIZATION_1_MAX 3039454   160546 3200000   103.46    118.86  0    81.22    96.29    100        999.99    ▇▁▁▁▁▁▁▁ 

 RS_R_UTILIZATION_12_MAX 3033245   166755 3200000   108.72    118.46  0    89.35    99.7     100.94     999.99    ▇▁▁▁▁▁▁▁ 

 RS_R_UTILIZATION_18_MAX 3031895   168105 3200000   110.48    117.75  0    92.64   100       101.24     999.99    ▇▁▁▁▁▁▁▁ 

  RS_R_UTILIZATION_3_MAX 3037089   162911 3200000   105.07    120.15  0    82.98    97.14    100.22     999.99    ▇▁▁▁▁▁▁▁ 

  RS_R_UTILIZATION_6_MAX 3035338   164662 3200000   106.44    119.5   0    85.31    98.08    100.57     999.99    ▇▁▁▁▁▁▁▁ 
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Appendix C: Execution Environment  

For implementation we used Microsoft R Open v3.5.1 and the corresponding R 

libraries: speedglm 0.3-2, randomForest 4.6-14 and xgboost 0.71.2. In all cases, default 

parameter values were used and no hyper-parameter optimization was performed other 

than internally used by the methods. 

We used default values for the parameters for the calculation of H-measure as 

defined in the corresponding R-Package. 

Below detailed information about the execution environment is provided: 

─ Session info ─────────────────────────────────────────────────────────── 

 setting  value                        

 version  R version 3.5.1 (2018-07-02) 

 os       Ubuntu 16.04.7 LTS           

 system   x86_64, linux-gnu            

 ui       RStudio                      

 language (EN)                         

 collate  en_US.UTF-8                  

 tz       Europe/Athens                

 date     2022-06-28                   

 

─ Packages ─────────────────────────────────────────────────────────────── 

 package       * version    date       source       
'*': whether the package is attached to the search path                    

 abind           1.4-5      2016-07-21 CRAN (R 3.5.1)                      

 assertthat      0.2.0      2017-04-11 CRAN (R 3.5.1)                      

 backports       1.1.2      2017-12-13 CRAN (R 3.5.1)                      

 base64url       1.4        2018-05-14 CRAN (R 3.5.1)                      

 BBmisc          1.11       2017-03-10 CRAN (R 3.5.1)                      

 bindr           0.1.1      2018-03-13 CRAN (R 3.5.1)                      

 bindrcpp        0.2.2      2018-03-29 CRAN (R 3.5.1)                      

 BiocGenerics  * 0.26.0     2020-03-13 Bioconductor                        

 boot          * 1.3-20     2017-08-06 CRAN (R 3.5.1)                      

 Boruta        * 6.0.0      2018-07-17 CRAN (R 3.5.1)                      

 broom           0.5.0      2018-07-17 CRAN (R 3.5.1)                      

 caret         * 6.0-80     2018-05-26 CRAN (R 3.5.1)                      

 cellranger      1.1.0      2016-07-27 CRAN (R 3.5.1)                      

 checkmate       1.8.5      2017-10-24 CRAN (R 3.5.1)                      

 class         * 7.3-14     2015-08-30 CRAN (R 3.5.1)                      

 cli             1.0.0      2017-11-05 CRAN (R 3.5.1)                      

 clisymbols      1.2.0      2017-05-21 CRAN (R 3.5.1)                      

 codetools       0.2-15     2016-10-05 CRAN (R 3.5.1)                      
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 colorspace      1.3-2      2016-12-14 CRAN (R 3.5.1)                      

 crayon          1.3.4      2017-09-16 CRAN (R 3.5.1)                      

 CVST            0.2-2      2018-05-26 CRAN (R 3.5.1)                      

 data.table    * 1.11.4     2018-05-27 CRAN (R 3.5.1)                      

 dbscan        * 1.1-2      2018-05-19 CRAN (R 3.5.1)                      

 ddalpha         1.3.4      2018-06-23 CRAN (R 3.5.1)                      

 DEoptimR        1.0-8      2016-11-19 CRAN (R 3.5.1)                      

 dgof          * 1.2        2013-10-25 CRAN (R 3.5.1)                      

 digest          0.6.15     2018-01-28 CRAN (R 3.5.1)                      

 dimRed          0.1.0      2017-05-04 CRAN (R 3.5.1)                      

 doMC          * 1.3.5      2017-12-12 CRAN (R 3.5.1)                      

 doParallel      1.0.11     2017-09-28 CRAN (R 3.5.1)                      

 dplyr         * 0.7.6      2018-06-29 CRAN (R 3.5.1)                      

 drake         * 5.3.0      2018-07-19 CRAN (R 3.5.1)                      

 DRR             0.0.3      2018-01-06 CRAN (R 3.5.1)                      

 e1071         * 1.7-0      2018-07-28 CRAN (R 3.5.1)                      

 evaluate        0.11       2018-07-17 CRAN (R 3.5.1)                      

 extrafont       0.17       2014-12-08 CRAN (R 3.5.1)                      

 extrafontdb     1.0        2012-06-11 CRAN (R 3.5.1)                      

 fastmatch       1.1-0      2017-01-28 CRAN (R 3.5.1)                      

 filelock      * 1.0.1      2018-02-07 CRAN (R 3.5.1)                      

 flexclust     * 1.3-5      2018-02-14 CRAN (R 3.5.1)                      

 forcats       * 0.3.0      2018-02-19 CRAN (R 3.5.1)                      

 foreach       * 1.4.4      2017-12-12 CRAN (R 3.5.1)                      

 formatR         1.5        2017-04-25 CRAN (R 3.5.1)                      

 Formula         1.2-3      2018-05-03 CRAN (R 3.5.1)                      

 fs              1.2.5      2018-07-30 CRAN (R 3.5.1)                      

 fst           * 0.8.8      2018-06-07 CRAN (R 3.5.1)                      

 geometry        0.3-6      2015-09-09 CRAN (R 3.5.1)                      

 ggplot2       * 3.0.0      2018-07-03 CRAN (R 3.5.1)                      

 glmnet        * 2.0-16     2018-04-02 CRAN (R 3.5.1)                      

 glue            1.3.0      2018-07-17 CRAN (R 3.5.1)                      

 gower           0.1.2      2017-02-23 CRAN (R 3.5.1)                      

 graph         * 1.58.2     2018-10-09 Bioconductor                        

 gridExtra       2.3        2017-09-09 CRAN (R 3.5.1)                      

 gtable          0.2.0      2016-02-26 CRAN (R 3.5.1)                      

 hashr         * 0.1.0      2015-08-06 CRAN (R 3.5.1)                      

 haven           1.1.2      2018-06-27 CRAN (R 3.5.1)                      

 hmeasure      * 1.0        2012-09-10 CRAN (R 3.5.1)                      

 hms             0.4.2      2018-03-10 CRAN (R 3.5.1)                      

 hrbrthemes    * 0.5.0      2018-04-24 CRAN (R 3.5.1)                      

 htmltools       0.3.6      2017-04-28 CRAN (R 3.5.1)                      

 httr            1.3.1      2017-08-20 CRAN (R 3.5.1)                      

 igraph          1.2.2      2018-07-27 CRAN (R 3.5.1)                      

 Information   * 0.0.9      2016-04-09 CRAN (R 3.5.1)                      

 inum            1.0-0      2017-12-12 CRAN (R 3.5.1)                      

 ipred           0.9-6      2017-03-01 CRAN (R 3.5.1)                      

 iterators     * 1.0.10     2018-08-01 local                               

 jsonlite        1.5        2017-06-01 CRAN (R 3.5.0)                      
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 JuliaCall     * 0.17.1     2019-12-08 Github (Non-Contradiction/JuliaCall

@5ed8563) 

 KernelKnn     * 1.0.8      2018-01-16 CRAN (R 3.5.1)                      

 kernlab         0.9-26     2018-04-30 CRAN (R 3.5.1)                      

 knitr           1.20       2018-02-20 CRAN (R 3.5.1)                      

 labeling        0.3        2014-08-23 CRAN (R 3.5.1)                      

 lattice       * 0.20-35    2017-03-25 CRAN (R 3.5.1)                      

 lava            1.6.2      2018-07-02 CRAN (R 3.5.1)                      

 lazyeval        0.2.1      2017-10-29 CRAN (R 3.5.1)                      

 libcoin         1.0-1      2017-12-13 CRAN (R 3.5.1)                      

 logiBin       * 0.3        2018-05-21 CRAN (R 3.5.1)                      

 lubridate       1.7.4      2018-04-11 CRAN (R 3.5.1)                      

 magic           1.5-8      2018-01-26 CRAN (R 3.5.1)                      

 magrittr      * 1.5        2014-11-22 CRAN (R 3.5.1)                      

 MASS          * 7.3-50     2018-04-30 CRAN (R 3.5.1)                      

 Matrix        * 1.2-14     2018-04-13 CRAN (R 3.5.1)                      

 mefa4         * 0.3-5      2018-03-25 CRAN (R 3.5.1)                      

 MLmetrics     * 1.1.1      2016-05-13 CRAN (R 3.5.1)                      

 mlr           * 2.12.1     2018-03-29 CRAN (R 3.5.1)                      

 ModelMetrics    1.1.0      2016-08-26 CRAN (R 3.5.1)                      

 modelr          0.1.2      2018-05-11 CRAN (R 3.5.1)                      

 modeltools    * 0.2-22     2018-07-16 CRAN (R 3.5.1)                      

 munsell         0.5.0      2018-06-12 CRAN (R 3.5.1)                      

 mvtnorm         1.0-8      2018-05-31 CRAN (R 3.5.1)                      

 nlme            3.1-137    2018-04-07 CRAN (R 3.5.1)                      

 nnet            7.3-12     2016-02-02 CRAN (R 3.5.1)                      

 pacman        * 0.4.6      2017-05-14 CRAN (R 3.5.1)                      

 parallelMap     1.3        2015-06-10 CRAN (R 3.5.1)                      

 ParamHelpers  * 1.11       2018-06-25 CRAN (R 3.5.1)                      

 partykit        1.2-2      2018-06-05 CRAN (R 3.5.1)                      

 pbapply       * 1.3-4      2018-01-10 CRAN (R 3.5.1)                      

 pillar          1.3.0      2018-07-14 CRAN (R 3.5.1)                      

 pkgconfig       2.0.1      2017-03-21 CRAN (R 3.5.1)                      

 pls             2.6-0      2016-12-18 CRAN (R 3.5.1)                      

 plyr            1.8.4      2016-06-08 CRAN (R 3.5.1)                      

 pROC          * 1.12.1     2018-05-06 CRAN (R 3.5.1)                      

 prodlim         2018.04.18 2018-04-18 CRAN (R 3.5.1)                      

 ps            * 1.3.0      2018-12-21 CRAN (R 3.5.1)                      

 purrr         * 0.2.5      2018-05-29 CRAN (R 3.5.1)                      

 R.methodsS3     1.7.1      2016-02-16 CRAN (R 3.5.1)                      

 R.oo            1.22.0     2018-04-22 CRAN (R 3.5.1)                      

 R.utils         2.6.0      2017-11-05 CRAN (R 3.5.1)                      

 R6              2.2.2      2017-06-17 CRAN (R 3.5.0)                      

 ramify        * 0.3.3      2016-12-17 CRAN (R 3.5.1)                      

 randomForest  * 4.6-14     2018-03-25 CRAN (R 3.5.1)                      

 ranger        * 0.10.1     2018-06-04 CRAN (R 3.5.1)                      

 Rcpp            0.12.18    2018-07-23 CRAN (R 3.5.1)                      

 RcppRoll        0.3.0      2018-06-05 CRAN (R 3.5.1)                      

 readr         * 1.1.1      2017-05-16 CRAN (R 3.5.1)                      
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 readxl        * 1.1.0      2018-04-20 CRAN (R 3.5.1)                      

 recipes         0.1.3      2018-06-16 CRAN (R 3.5.1)                      

 reshape2      * 1.4.3      2017-12-11 CRAN (R 3.5.1)                      

 RevoUtils     * 11.0.1     2018-08-01 local                               

 RevoUtilsMath * 11.0.0     2018-08-01 local                               

 Rgraphviz     * 2.26.0     2018-10-30 Bioconductor                        

 rlang           0.2.1      2018-05-30 CRAN (R 3.5.1)                      

 rlist           0.4.6.1    2016-04-04 CRAN (R 3.5.1)                      

 rmarkdown       1.10       2018-06-11 CRAN (R 3.5.1)                      

 robustbase      0.93-2     2018-07-27 CRAN (R 3.5.1)                      

 rpart           4.1-13     2018-02-23 CRAN (R 3.5.1)                      

 rprojroot       1.3-2      2018-01-03 CRAN (R 3.5.1)                      

 rstudioapi      0.7        2017-09-07 CRAN (R 3.5.1)                      

 Rttf2pt1        1.3.7      2018-06-29 CRAN (R 3.5.1)                      

 rvest           0.3.2      2016-06-17 CRAN (R 3.5.1)                      

 scales          0.5.0      2017-08-24 CRAN (R 3.5.1)                      

 scmamp        * 0.2.55     2016-10-21 CRAN (R 3.5.1)                      

 scorecard     * 0.1.8      2018-06-12 CRAN (R 3.5.1)                      

 sessioninfo   * 1.0.0      2017-06-21 CRAN (R 3.5.1)                      

 sfsmisc         1.1-2      2018-03-05 CRAN (R 3.5.1)                      

 snow          * 0.4-2      2016-10-14 CRAN (R 3.5.1)                      

 speedglm      * 0.3-2      2017-01-09 CRAN (R 3.5.1)                      

 storr         * 1.2.0      2018-05-31 CRAN (R 3.5.1)                      

 stringi         1.2.4      2018-07-20 CRAN (R 3.5.1)                      

 stringr       * 1.3.1      2018-05-10 CRAN (R 3.5.1)                      

 strip         * 0.1.1      2017-01-13 CRAN (R 3.5.1)                      

 survival        2.42-3     2018-04-16 CRAN (R 3.5.1)                      

 testthat        2.0.0      2017-12-13 CRAN (R 3.5.1)                     

          

 tibble        * 1.4.2      2018-01-22 CRAN (R 3.5.1)                      

 tictoc        * 1.0        2014-06-17 CRAN (R 3.5.1  

 tidyr         * 0.8.1      2018-05-18 CRAN (R 3.5.1  

 tidyselect      0.2.4      2018-02-26 CRAN (R 3.5.1  

 tidyverse     * 1.2.1      2017-11-14 CRAN (R 3.5.1  

 timeDate        3043.102   2018-02-21 CRAN (R 3.5.1  

 txtq          * 0.0.4      2018-06-15 CRAN (R 3.5.1  

 viridis       * 0.5.1      2018-03-29 CRAN (R 3.5.1  

 viridisLite   * 0.3.0      2018-02-01 CRAN (R 3.5.1  

 withr           2.1.2      2018-03-15 CRAN (R 3.5.1  

 xgboost       * 0.71.2     2018-06-09 CRAN (R 3.5.1  

 xml2            1.2.0      2018-01-24 cran (@1.2.0  

 xxhashlite    * 0.2.1      2021-01-05 Github (coolbutuseless/xxhashlite@3

2df619)   
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Appendix D: Detailed Results  

Table A-9: Performance (AUC) for Global Classifiers 
LR=Logistic Regression, RF=Random Forrest, XGB=Gradient Boosting, G=Global Classifier, SD= Standard deviation, IV=feature 

selection based on IV, FS=implicit feature selection, n=no retrain) 
 LR_G_n _IV LR_G_ IV XGB_n_FS XGB_G_FS XGB_G_IV RF_G_n_FS RF_G_FS RF_G_IV 

2009-Q1 0.8885 0.8885 0.9158 0.9158 0.9124 0.9193 0.9193 0.9162 

2009-Q2 0.8806 0.8806 0.9113 0.9113 0.9167 0.9213 0.9213 0.9198 

2009-Q3 0.8889 0.8889 0.9159 0.9159 0.9204 0.9246 0.9246 0.9259 

2009-Q4 0.8784 0.8784 0.9170 0.9170 0.9170 0.9214 0.9214 0.9223 

2010-Q1 0.8829 0.8829 0.9183 0.9183 0.9193 0.9251 0.9251 0.9270 

2010-Q2 0.8749 0.8749 0.9208 0.9208 0.9214 0.9276 0.9276 0.9289 

2010-Q3 0.8720 0.8720 0.9118 0.9118 0.9143 0.9198 0.9198 0.9242 

2010-Q4 0.8619 0.8619 0.9111 0.9111 0.9143 0.9169 0.9169 0.9215 

2011-Q1 0.8498 0.8701 0.8994 0.9246 0.9206 0.9093 0.9265 0.9218 

2011-Q2 0.8366 0.8618 0.8962 0.9222 0.9187 0.9028 0.9236 0.9182 

2011-Q3 0.8397 0.8599 0.8820 0.9114 0.9113 0.8979 0.9168 0.9125 

2011-Q4 0.8393 0.8613 0.8773 0.9166 0.9151 0.8987 0.9196 0.9146 

2012-Q1 0.8257 0.8589 0.8875 0.9219 0.9221 0.9096 0.9264 0.9234 

2012-Q2 0.8304 0.8587 0.8910 0.9243 0.9232 0.9112 0.9275 0.9234 

2012-Q3 0.8233 0.8519 0.8841 0.9209 0.9198 0.9048 0.9251 0.9200 

2012-Q4 0.8099 0.8389 0.8814 0.9169 0.9168 0.9032 0.9197 0.9130 

2013-Q1 0.8057 0.8591 0.8745 0.9253 0.9209 0.9010 0.9256 0.9182 

2013-Q2 0.8138 0.8617 0.8839 0.9237 0.9174 0.9052 0.9248 0.9178 

2013-Q3 0.8014 0.8516 0.8687 0.9142 0.9096 0.8915 0.9154 0.9086 

2013-Q4 0.8201 0.8757 0.8919 0.9271 0.9224 0.9128 0.9288 0.9239 

2014-Q1 0.8227 0.8790 0.8954 0.9299 0.9255 0.9190 0.9318 0.9277 

2014-Q2 0.8046 0.8628 0.8875 0.9265 0.9238 0.9115 0.9302 0.9249 

2014-Q3 0.8108 0.8722 0.8932 0.9333 0.9332 0.9198 0.9392 0.9343 

2014-Q4 0.8012 0.8708 0.8916 0.9330 0.9315 0.9190 0.9369 0.9321 

2015-Q1 0.8006 0.8878 0.8911 0.9397 0.9366 0.9167 0.9404 0.9362 

2015-Q2 0.8054 0.8941 0.9033 0.9452 0.9417 0.9249 0.9470 0.9432 

2015-Q3 0.8123 0.8958 0.9084 0.9457 0.9400 0.9274 0.9455 0.9404 

2015-Q4 0.8095 0.8960 0.9046 0.9426 0.9392 0.9288 0.9442 0.9399 

2016-Q1 0.8158 0.8975 0.9091 0.9489 0.9450 0.9331 0.9515 0.9481 

2016-Q2 0.8113 0.8980 0.9038 0.9428 0.9392 0.9279 0.9454 0.9394 

2016-Q3 0.8098 0.8959 0.9004 0.9437 0.9400 0.9251 0.9473 0.9424 

2016-Q4 0.8106 0.9082 0.9175 0.9540 0.9509 0.9382 0.9566 0.9526 

2017-Q1 0.8109 0.8725 0.9163 0.9559 0.9508 0.9384 0.9571 0.9499 

2017-Q2 0.8051 0.8776 0.9124 0.9518 0.9483 0.9355 0.9516 0.9483 

2017-Q3 0.7913 0.8676 0.8942 0.9432 0.9384 0.9227 0.9426 0.9368 

2017-Q4 0.7787 0.8649 0.8941 0.9439 0.9398 0.9229 0.9451 0.9392 

2018-Q1 0.7707 0.8686 0.8994 0.9462 0.9407 0.9278 0.9460 0.9403 

2018-Q2 0.7388 0.8635 0.9024 0.9470 0.9427 0.9285 0.9491 0.9454 

2018-Q3 0.7707 0.8583 0.8977 0.9402 0.9358 0.9218 0.9389 0.9324 

2018-Q4 0.7487 0.8455 0.9009 0.9375 0.9330 0.9228 0.9352 0.9290 
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Table A-10: Performance (H-Measure) for Global Classifiers 
LR=Logistic Regression, RF=Random Forrest, XGB=Gradient Boosting, G=Global Classifier, SD= Standard deviation, IV=feature 

selection based on IV, FS=implicit feature selection, n=no retrain) 
 LR_G_n _IV LR_G_ IV XGB_n_FS XGB_G_FS XGB_G_IV RF_G_n_FS RF_G_FS RF_G_IV 

2009-Q1 0.8885 0.8885 0.9158 0.9158 0.9124 0.9193 0.9193 0.9162 

2009-Q2 0.8806 0.8806 0.9113 0.9113 0.9167 0.9213 0.9213 0.9198 

2009-Q3 0.8889 0.8889 0.9159 0.9159 0.9204 0.9246 0.9246 0.9259 

2009-Q4 0.8784 0.8784 0.9170 0.9170 0.9170 0.9214 0.9214 0.9223 

2010-Q1 0.8829 0.8829 0.9183 0.9183 0.9193 0.9251 0.9251 0.9270 

2010-Q2 0.8749 0.8749 0.9208 0.9208 0.9214 0.9276 0.9276 0.9289 

2010-Q3 0.8720 0.8720 0.9118 0.9118 0.9143 0.9198 0.9198 0.9242 

2010-Q4 0.8619 0.8619 0.9111 0.9111 0.9143 0.9169 0.9169 0.9215 

2011-Q1 0.8498 0.8701 0.8994 0.9246 0.9206 0.9093 0.9265 0.9218 

2011-Q2 0.8366 0.8618 0.8962 0.9222 0.9187 0.9028 0.9236 0.9182 

2011-Q3 0.8397 0.8599 0.8820 0.9114 0.9113 0.8979 0.9168 0.9125 

2011-Q4 0.8393 0.8613 0.8773 0.9166 0.9151 0.8987 0.9196 0.9146 

2012-Q1 0.8257 0.8589 0.8875 0.9219 0.9221 0.9096 0.9264 0.9234 

2012-Q2 0.8304 0.8587 0.8910 0.9243 0.9232 0.9112 0.9275 0.9234 

2012-Q3 0.8233 0.8519 0.8841 0.9209 0.9198 0.9048 0.9251 0.9200 

2012-Q4 0.8099 0.8389 0.8814 0.9169 0.9168 0.9032 0.9197 0.9130 

2013-Q1 0.8057 0.8591 0.8745 0.9253 0.9209 0.9010 0.9256 0.9182 

2013-Q2 0.8138 0.8617 0.8839 0.9237 0.9174 0.9052 0.9248 0.9178 

2013-Q3 0.8014 0.8516 0.8687 0.9142 0.9096 0.8915 0.9154 0.9086 

2013-Q4 0.8201 0.8757 0.8919 0.9271 0.9224 0.9128 0.9288 0.9239 

2014-Q1 0.8227 0.8790 0.8954 0.9299 0.9255 0.9190 0.9318 0.9277 

2014-Q2 0.8046 0.8628 0.8875 0.9265 0.9238 0.9115 0.9302 0.9249 

2014-Q3 0.8108 0.8722 0.8932 0.9333 0.9332 0.9198 0.9392 0.9343 

2014-Q4 0.8012 0.8708 0.8916 0.9330 0.9315 0.9190 0.9369 0.9321 

2015-Q1 0.8006 0.8878 0.8911 0.9397 0.9366 0.9167 0.9404 0.9362 

2015-Q2 0.8054 0.8941 0.9033 0.9452 0.9417 0.9249 0.9470 0.9432 

2015-Q3 0.8123 0.8958 0.9084 0.9457 0.9400 0.9274 0.9455 0.9404 

2015-Q4 0.8095 0.8960 0.9046 0.9426 0.9392 0.9288 0.9442 0.9399 

2016-Q1 0.8158 0.8975 0.9091 0.9489 0.9450 0.9331 0.9515 0.9481 

2016-Q2 0.8113 0.8980 0.9038 0.9428 0.9392 0.9279 0.9454 0.9394 

2016-Q3 0.8098 0.8959 0.9004 0.9437 0.9400 0.9251 0.9473 0.9424 

2016-Q4 0.8106 0.9082 0.9175 0.9540 0.9509 0.9382 0.9566 0.9526 

2017-Q1 0.8109 0.8725 0.9163 0.9559 0.9508 0.9384 0.9571 0.9499 

2017-Q2 0.8051 0.8776 0.9124 0.9518 0.9483 0.9355 0.9516 0.9483 

2017-Q3 0.7913 0.8676 0.8942 0.9432 0.9384 0.9227 0.9426 0.9368 

2017-Q4 0.7787 0.8649 0.8941 0.9439 0.9398 0.9229 0.9451 0.9392 

2018-Q1 0.7707 0.8686 0.8994 0.9462 0.9407 0.9278 0.9460 0.9403 

2018-Q2 0.7388 0.8635 0.9024 0.9470 0.9427 0.9285 0.9491 0.9454 

2018-Q3 0.7707 0.8583 0.8977 0.9402 0.9358 0.9218 0.9389 0.9324 

2018-Q4 0.7487 0.8455 0.9009 0.9375 0.9330 0.9228 0.9352 0.9290 
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Table A-11: Comparison of different local region sizes (kNNs) using Euclidean distance 

(LR=Logistic Regression, L=Local classifier, 2k=2000, 4k=4000, 6k=6000 for kNN) 
 AUC H-Measure 

 LR-L_2k LR-L_4k LR-L_6k LR-L_2k LR-L_4k LR-L_6k 

2009-Q1 0.9100 0.9112 0.9134 0.5983 0.6003 0.6000 
2009-Q2 0.9236 0.9265 0.9255 0.6276 0.6306 0.6267 
2009-Q3 0.9278 0.9302 0.9298 0.6395 0.6392 0.6329 
2009-Q4 0.9212 0.9225 0.9224 0.6228 0.6240 0.6204 
2010-Q1 0.9282 0.9284 0.9283 0.6400 0.6350 0.6328 
2010-Q2 0.9269 0.9279 0.9294 0.6385 0.6382 0.6374 
2010-Q3 0.9222 0.9272 0.9260 0.6206 0.6248 0.6193 
2010-Q4 0.9254 0.9242 0.9227 0.6289 0.6194 0.6148 
2011-Q1 0.9169 0.9146 0.9137 0.6075 0.6030 0.5953 
2011-Q2 0.9123 0.9084 0.9096 0.5944 0.5833 0.5799 
2011-Q3 0.9113 0.9031 0.9116 0.5942 0.5759 0.5894 
2011-Q4 0.9129 0.9115 0.9166 0.6019 0.5991 0.6004 
2012-Q1 0.9240 0.9223 0.9233 0.6246 0.6195 0.6183 
2012-Q2 0.9256 0.9200 0.9231 0.6264 0.6129 0.6169 
2012-Q3 0.9178 0.9110 0.9149 0.6176 0.6004 0.6037 
2012-Q4 0.9171 0.9092 0.9138 0.6151 0.6024 0.6090 
2013-Q1 0.9171 0.9161 0.9108 0.6083 0.6013 0.5916 
2013-Q2 0.9185 0.9117 0.9071 0.6015 0.5852 0.5774 
2013-Q3 0.9098 0.9018 0.8957 0.5840 0.5653 0.5538 
2013-Q4 0.9235 0.9230 0.9212 0.6166 0.6081 0.5995 
2014-Q1 0.9259 0.9252 0.9228 0.6304 0.6231 0.6144 
2014-Q2 0.9235 0.9157 0.9146 0.6140 0.5913 0.5854 
2014-Q3 0.9285 0.9301 0.9301 0.6440 0.6363 0.6313 
2014-Q4 0.9286 0.9322 0.9350 0.6433 0.6426 0.6400 
2015-Q1 0.9293 0.9315 0.9298 0.6462 0.6434 0.6317 
2015-Q2 0.9327 0.9355 0.9364 0.6552 0.6480 0.6466 
2015-Q3 0.9317 0.9310 0.9359 0.6614 0.6516 0.6503 
2015-Q4 0.9314 0.9352 0.9364 0.6548 0.6550 0.6553 
2016-Q1 0.9314 0.9353 0.9352 0.6570 0.6583 0.6573 
2016-Q2 0.9216 0.9290 0.9324 0.6289 0.6299 0.6294 
2016-Q3 0.9232 0.9321 0.9300 0.6370 0.6421 0.6410 
2016-Q4 0.9407 0.9472 0.9484 0.6891 0.6896 0.6910 
2017-Q1 0.9417 0.9449 0.9460 0.6949 0.6882 0.6822 
2017-Q2 0.9402 0.9434 0.9446 0.6791 0.6757 0.6790 
2017-Q3 0.9377 0.9380 0.9374 0.6699 0.6642 0.6565 
2017-Q4 0.9402 0.9393 0.9397 0.6731 0.6606 0.6586 
2018-Q1 0.9337 0.9367 0.9366 0.6693 0.6613 0.6558 
2018-Q2 0.9351 0.9359 0.9397 0.6730 0.6624 0.6649 
2018-Q3 0.9306 0.9347 0.9359 0.6549 0.6439 0.6393 
2018-Q4 0.9239 0.9309 0.9333 0.6581 0.6548 0.6522 

Mean 0.926 0.926 0.926 0.636 0.630 0.627 

StdDev 0.009 0.012 0.012 0.028 0.030 0.031 
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Table A-12: Comparison of different local region sizes (kNNs) using Mahalanobis distance 

(LR=Logistic Regression, L=Local classifier, 2k=2000, 4k=4000, 6k=6000 for kNN) 
 AUC H-Measure 

 LR-L_2k LR-L_4k LR-L_6k LR-L_2k LR-L_4k LR-L_6k 

2009-Q1 
0.8982 0.9020 0.9022 0.5714 0.5686 0.5738 

2009-Q2 
0.9065 0.9129 0.9145 0.5891 0.6045 0.6031 

2009-Q3 
0.9127 0.9173 0.9183 0.5972 0.6022 0.6004 

2009-Q4 
0.9032 0.9115 0.9152 0.5790 0.5962 0.6007 

2010-Q1 
0.9104 0.9185 0.9208 0.5985 0.6107 0.6176 

2010-Q2 
0.8993 0.9126 0.9201 0.5841 0.6045 0.6116 

2010-Q3 
0.9024 0.9097 0.9145 0.5737 0.5857 0.5897 

2010-Q4 
0.9031 0.9122 0.9152 0.5822 0.5958 0.5973 

2011-Q1 
0.8970 0.9047 0.9062 0.5536 0.5707 0.5709 

2011-Q2 
0.9002 0.9002 0.9021 0.5668 0.5646 0.5660 

2011-Q3 
0.8935 0.9025 0.9040 0.5516 0.5683 0.5736 

2011-Q4 
0.8997 0.9052 0.9081 0.5631 0.5750 0.5783 

2012-Q1 
0.9029 0.9077 0.9092 0.5671 0.5826 0.5861 

2012-Q2 
0.9083 0.9131 0.9165 0.5849 0.5942 0.6021 

2012-Q3 
0.8998 0.9047 0.9085 0.5687 0.5735 0.5828 

2012-Q4 
0.8957 0.9038 0.9082 0.5596 0.5744 0.5853 

2013-Q1 
0.8927 0.9011 0.9032 0.5547 0.5624 0.5777 

2013-Q2 
0.8916 0.9042 0.9097 0.5458 0.5670 0.5835 

2013-Q3 
0.8813 0.8899 0.8951 0.5265 0.5429 0.5615 

2013-Q4 
0.8850 0.8981 0.9077 0.5279 0.5529 0.5794 

2014-Q1 
0.8862 0.9064 0.8963 0.5469 0.5805 0.5639 

2014-Q2 
0.8843 0.8982 0.9070 0.5273 0.5673 0.5785 

2014-Q3 
0.8934 0.9075 0.9126 0.5499 0.5817 0.5912 

2014-Q4 
0.8925 0.9116 0.9187 0.5486 0.5850 0.6033 

2015-Q1 
0.8789 0.9071 0.9150 0.5340 0.5778 0.5940 

2015-Q2 
0.8934 0.9108 0.9211 0.5564 0.5886 0.6124 

2015-Q3 
0.8872 0.9093 0.9200 0.5490 0.5946 0.6144 

2015-Q4 
0.8550 0.8845 0.8942 0.5202 0.5724 0.5806 

2016-Q1 
0.8754 0.8975 0.9069 0.5495 0.5789 0.5980 

2016-Q2 
0.8700 0.8829 0.8922 0.5206 0.5403 0.5437 

2016-Q3 
0.8617 0.8916 0.9011 0.5234 0.5702 0.5823 

2016-Q4 
0.8776 0.9014 0.9091 0.5611 0.6152 0.6239 

2017-Q1 
0.8889 0.9154 0.9249 0.5805 0.6322 0.6462 

2017-Q2 
0.8989 0.9187 0.9272 0.5817 0.6211 0.6397 

2017-Q3 
0.8908 0.9018 0.9082 0.5712 0.6118 0.6280 

2017-Q4 
0.8928 0.9061 0.9191 0.5658 0.5930 0.6181 

2018-Q1 
0.8923 0.8993 0.9040 0.5650 0.5937 0.6056 

2018-Q2 
0.8795 0.9077 0.9154 0.5481 0.6026 0.6157 

2018-Q3 
0.8845 0.9040 0.9156 0.5472 0.5885 0.6028 

2018-Q4 
0.8781 0.9096 0.9226 0.5614 0.6144 0.6331 

Mean 
0.891 0.905 0.911 0.559 0.585 0.595 

StdDev 
0.013 0.008 0.009 0.021 0.021 0.023 
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Table A-13:  Local vs Global Classifiers (AUC)   

(LR=Logistic Regression, RF=Random Forrest, XGB=Gradient Boosting, L=Local classifier, G=Global Classifier, 2k=2000 for kNN,  

*= training snapshot for global classifiers, bold indicate the best classifier for the specific snapshot) 

 AUC  

 LR-L_2k XGB-L_2k RF-L_2k LR-G XGB-G RF-G 

2009-Q1* 0.9100 0.9059 0.9202 0.8885 0.9158 0.9193 

2009-Q2 0.9236 0.9174 0.9267 0.8806 0.9113 0.9213 

2009-Q3 0.9278 0.9219 0.9336 0.8889 0.9159 0.9246 

2009-Q4 0.9212 0.9218 0.9305 0.8784 0.9170 0.9214 

2010-Q1 0.9282 0.9235 0.9335 0.8829 0.9183 0.9251 

2010-Q2 0.9269 0.9249 0.9368 0.8749 0.9208 0.9276 

2010-Q3 0.9222 0.9238 0.9322 0.8720 0.9118 0.9198 

2010-Q4 0.9254 0.9201 0.9298 0.8619 0.9111 0.9169 

2011-Q1* 0.9169 0.9141 0.9257 0.8701 0.9246 0.9265 

2011-Q2 0.9123 0.9154 0.9238 0.8618 0.9222 0.9236 

2011-Q3 0.9113 0.9115 0.9232 0.8599 0.9114 0.9168 

2011-Q4 0.9129 0.9101 0.9216 0.8613 0.9166 0.9196 

2012-Q1 0.9240 0.9218 0.9299 0.8589 0.9219 0.9264 

2012-Q2 0.9256 0.9214 0.9312 0.8587 0.9243 0.9275 

2012-Q3 0.9178 0.9173 0.9297 0.8519 0.9209 0.9251 

2012-Q4 0.9171 0.9176 0.9267 0.8389 0.9169 0.9197 

2013-Q1* 0.9171 0.9128 0.9239 0.8591 0.9253 0.9256 

2013-Q2 0.9185 0.9118 0.9233 0.8617 0.9237 0.9248 

2013-Q3 0.9098 0.9059 0.9154 0.8516 0.9142 0.9154 

2013-Q4 0.9235 0.9218 0.9321 0.8757 0.9271 0.9288 

2014-Q1 0.9259 0.9236 0.9366 0.8790 0.9299 0.9318 

2014-Q2 0.9235 0.9240 0.9338 0.8628 0.9265 0.9302 

2014-Q3 0.9285 0.9337 0.9416 0.8722 0.9333 0.9392 

2014-Q4 0.9286 0.9318 0.9413 0.8708 0.9330 0.9369 

2015-Q1* 0.9293 0.9286 0.9392 0.8878 0.9397 0.9404 

2015-Q2 0.9327 0.9348 0.9448 0.8941 0.9452 0.9470 

2015-Q3 0.9317 0.9332 0.9419 0.8958 0.9457 0.9455 

2015-Q4 0.9314 0.9307 0.9434 0.8960 0.9426 0.9442 

2016-Q1 0.9314 0.9338 0.9462 0.8975 0.9489 0.9515 

2016-Q2 0.9216 0.9305 0.9418 0.8980 0.9428 0.9454 

2016-Q3 0.9232 0.9301 0.9439 0.8959 0.9437 0.9473 

2016-Q4 0.9407 0.9453 0.9561 0.9082 0.9540 0.9566 

2017-Q1* 0.9417 0.9477 0.9580 0.8725 0.9559 0.9571 

2017-Q2 0.9402 0.9467 0.9556 0.8776 0.9518 0.9516 

2017-Q3 0.9377 0.9416 0.9506 0.8676 0.9432 0.9426 

2017-Q4 0.9402 0.9437 0.9524 0.8649 0.9439 0.9451 

2018-Q1 0.9337 0.9440 0.9517 0.8686 0.9462 0.9460 

2018-Q2 0.9351 0.9446 0.9526 0.8635 0.9470 0.9491 

2018-Q3 0.9306 0.9412 0.9446 0.8583 0.9402 0.9389 

2018-Q4 0.9239 0.9362 0.9389 0.8455 0.9375 0.9352 

Mean 0.9256 0.9267 0.9366 0.8729 0.9306 0.9334 

StdDev 0.0086 0.0118 0.0111 0.0161 0.0138 0.0123 
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Table A-14: Local vs Global Classifiers (H-Measure)  

(LR=Logistic Regression, RF=Random Forrest, XGB=Gradient Boosting, L=Local classifier, G=Global Classifier, 2k=2000 for kNN,  

*= training snapshot for global classifiers, bold indicate the best classifier for the specific snapshot) 

 H-Measure  

 LR-L_2k XGB-L_2k RF-L_2k LR-G XGB-G RF-G 

2009-Q1* 0.5983 0.5936 0.6224 0.5485 0.6005 0.6151 

2009-Q2 0.6276 0.6156 0.6412 0.5590 0.6109 0.6337 

2009-Q3 0.6395 0.6347 0.6607 0.5695 0.6168 0.6418 

2009-Q4 0.6228 0.6266 0.6475 0.5534 0.6100 0.6297 

2010-Q1 0.6400 0.6369 0.6620 0.5607 0.6188 0.6396 

2010-Q2 0.6385 0.6332 0.6639 0.5525 0.6231 0.6438 

2010-Q3 0.6206 0.6257 0.6474 0.5281 0.5965 0.6230 

2010-Q4 0.6289 0.6237 0.6543 0.5156 0.5931 0.6217 

2011-Q1* 0.6075 0.6064 0.6330 0.4887 0.6215 0.6316 

2011-Q2 0.5944 0.6023 0.6243 0.4779 0.6169 0.6244 

2011-Q3 0.5942 0.5866 0.6182 0.4839 0.5840 0.6113 

2011-Q4 0.6019 0.5964 0.6230 0.4809 0.5953 0.6155 

2012-Q1 0.6246 0.6191 0.6448 0.4726 0.6203 0.6387 

2012-Q2 0.6264 0.6180 0.6463 0.4842 0.6230 0.6405 

2012-Q3 0.6176 0.6168 0.6464 0.4726 0.6225 0.6417 

2012-Q4 0.6151 0.6193 0.6416 0.4555 0.6089 0.6275 

2013-Q1* 0.6083 0.6066 0.6374 0.5005 0.6265 0.6378 

2013-Q2 0.6015 0.6019 0.6267 0.4867 0.6174 0.6285 

2013-Q3 0.5840 0.5865 0.6090 0.4806 0.5934 0.6055 

2013-Q4 0.6166 0.6274 0.6494 0.5034 0.6244 0.6377 

2014-Q1 0.6304 0.6368 0.6675 0.5188 0.6347 0.6476 

2014-Q2 0.6140 0.6299 0.6553 0.4977 0.6216 0.6418 

2014-Q3 0.6440 0.6597 0.6801 0.5236 0.6433 0.6677 

2014-Q4 0.6433 0.6544 0.6813 0.5181 0.6423 0.6587 

2015-Q1* 0.6462 0.6539 0.6778 0.4916 0.6703 0.6766 

2015-Q2 0.6552 0.6661 0.6911 0.4982 0.6865 0.6940 

2015-Q3 0.6614 0.6784 0.6944 0.5042 0.6870 0.6909 

2015-Q4 0.6548 0.6576 0.6899 0.5072 0.6732 0.6809 

2016-Q1 0.6570 0.6787 0.7051 0.5005 0.6918 0.7022 

2016-Q2 0.6289 0.6562 0.6865 0.5053 0.6769 0.6886 

2016-Q3 0.6370 0.6600 0.6897 0.4939 0.6776 0.6886 

2016-Q4 0.6891 0.7052 0.7307 0.5385 0.7117 0.7241 

2017-Q1* 0.6949 0.7172 0.7361 0.4776 0.7225 0.7341 

2017-Q2 0.6791 0.6947 0.7184 0.4846 0.7041 0.7176 

2017-Q3 0.6699 0.6906 0.7122 0.4779 0.6816 0.6916 

2017-Q4 0.6731 0.6952 0.7165 0.4702 0.6769 0.6952 

2018-Q1 0.6693 0.7039 0.7220 0.4669 0.6883 0.7026 

2018-Q2 0.6730 0.6981 0.7195 0.4435 0.6872 0.7002 

2018-Q3 0.6549 0.6882 0.7028 0.4373 0.6707 0.6806 

2018-Q4 0.6581 0.6767 0.7031 0.4192 0.6670 0.6778 

Mean 0.6360 0.6445 0.6695 0.4987 0.6435 0.6588 

StdDev 0.0278 0.0368 0.0351 0.0344 0.0382 0.0348 
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Table A-15: kNNs vs Random sub-sampling   

(LR=Logistic Regression, L=Local classifier, G=Global Classifier, 2k=2000 for kNN, rnd=random,  

*= training snapshot for global classifiers) 

 AUC H-Measure 

 LR-L_2k LR-G* LR-L-rnd LR-L_2k LR-G* LR-L-rnd 

2009-Q1* 0.9100 0.8885 0.8872 0.5983 0.5485 0.5499 

2009-Q2 0.9236 0.8806 0.8818 0.6276 0.5590 0.5576 

2009-Q3 0.9278 0.8889 0.8948 0.6395 0.5695 0.567 

2009-Q4 0.9212 0.8784 0.8859 0.6228 0.5534 0.553 

2010-Q1 0.9282 0.8829 0.8913 0.6400 0.5607 0.5543 

2010-Q2 0.9269 0.8749 0.858 0.6385 0.5525 0.5342 

2010-Q3 0.9222 0.8720 0.8156 0.6206 0.5281 0.4827 

2010-Q4 0.9254 0.8619 0.8043 0.6289 0.5156 0.4644 

2011-Q1* 0.9169 0.8701 0.8223 0.6075 0.4887 0.4725 

2011-Q2 0.9123 0.8618 0.8186 0.5944 0.4779 0.4607 

2011-Q3 0.9113 0.8599 0.8114 0.5942 0.4839 0.4607 

2011-Q4 0.9129 0.8613 0.8366 0.6019 0.4809 0.4839 

2012-Q1 0.9240 0.8589 0.8389 0.6246 0.4726 0.4904 

2012-Q2 0.9256 0.8587 0.8523 0.6264 0.4842 0.5015 

2012-Q3 0.9178 0.8519 0.8539 0.6176 0.4726 0.4866 

2012-Q4 0.9171 0.8389 0.8571 0.6151 0.4555 0.4852 

2013-Q1* 0.9171 0.8591 0.8525 0.6083 0.5005 0.4721 

2013-Q2 0.9185 0.8617 0.8618 0.6015 0.4867 0.4854 

2013-Q3 0.9098 0.8516 0.8494 0.5840 0.4806 0.4743 

2013-Q4 0.9235 0.8757 0.8772 0.6166 0.5034 0.5317 

2014-Q1 0.9259 0.8790 0.8792 0.6304 0.5188 0.5284 

2014-Q2 0.9235 0.8628 0.8681 0.6140 0.4977 0.5055 

2014-Q3 0.9285 0.8722 0.8823 0.6440 0.5236 0.5316 

2014-Q4 0.9286 0.8708 0.8758 0.6433 0.5181 0.5177 

2015-Q1* 0.9293 0.8878 0.8789 0.6462 0.4916 0.5162 

2015-Q2 0.9327 0.8941 0.8758 0.6552 0.4982 0.5169 

2015-Q3 0.9317 0.8958 0.8809 0.6614 0.5042 0.5191 

2015-Q4 0.9314 0.8960 0.8686 0.6548 0.5072 0.502 

2016-Q1 0.9314 0.8975 0.879 0.6570 0.5005 0.524 

2016-Q2 0.9216 0.8980 0.8787 0.6289 0.5053 0.5079 

2016-Q3 0.9232 0.8959 0.8811 0.6370 0.4939 0.5126 

2016-Q4 0.9407 0.9082 0.8935 0.6891 0.5385 0.5326 

2017-Q1* 0.9417 0.8725 0.8929 0.6949 0.4776 0.536 

2017-Q2 0.9402 0.8776 0.8948 0.6791 0.4846 0.5359 

2017-Q3 0.9377 0.8676 0.8872 0.6699 0.4779 0.5329 

2017-Q4 0.9402 0.8649 0.8877 0.6731 0.4702 0.5299 

2018-Q1 0.9337 0.8686 0.8868 0.6693 0.4669 0.5377 

2018-Q2 0.9351 0.8635 0.8865 0.6730 0.4435 0.547 

2018-Q3 0.9306 0.8583 0.8872 0.6549 0.4373 0.5524 

2018-Q4 0.9239 0.8455 0.8787 0.6581 0.4192 0.5513 

Mean 0.9256 0.8729 0.8674 0.6360 0.4987 0.5151 

StdDev 0.0086 0.0161 0.0253 0.0278 0.0344 0.0301 
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