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Abstract

Cellular networks have gone through significant changes in infrastruc-
ture during the last few decades. The technological advance along with
the massive increase of population keep pushing the mobile network’s
capabilities to their limits. As the network usage requirements become
larger, so do the radio expert’s needs for accurate and timely informa-
tion regarding the status of the cellular network. With that information
at hand, they have the ability to foresee and prevent unwanted cir-
cumstances, such as network failure due to unmanageable overload. In
this thesis, I propose a Neural Network structure which aims to make
both swift and precise forecasts of such undesirable events. I make
use of well-known Neural Network architectures such as the Graph
Neural Network(GNN) and the Recurrent Neural Network(RNN), a
combination which allows for monitoring and learning both spatial and
temporal patterns that the cellular network may exhibit. In addition,
a Graph partition is introduced, which effectively splits the original
graph into much smaller and manageable sub-graphs with the idea of
further increasing the Neural Networks performance metrics while also
significantly scaling down its time complexity. Furthermore, I propose
the addition of an Hierarchical model in the original architecture, an
addition which nearly maximizes the precision in most use-cases. The
proposed architecture succeeds in increasing the precision of its predic-
tions compared to other known implementations. Moreover, it has a
steady performance across various sizes of historical data provided to
the network and across different targeted prediction horizons.
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1 Introduction

In recent years, our society has undergone an immense and unfore-
seen urbanization in nearly every country throughout the globe. In
addition, ever since the first mobile network came out in 1983, the
global population has seen a nearly 70% increase, meaning that the
demand for mobile network usage has significantly gone up. The techno-
logical advance in this same time period has led to larger requirements
from cellular networks, since the vast majority of the population is
using at least one device in need of Internet access on a daily basis.
These factors have contributed in the desideratum for better cellular
infrastructure, one which could support all the requests made from its
users. However, such infrastructure is not easy to maintain. Despite
the upgrades that it has undergone, there are still cases in which the
circumstances may lead to unwanted events such as network overload
leading to user inconvenience or system failure. When a cellular an-
tenna is overloaded, it is often referred to as a ”hotspot” by radio
experts. In order for the cellular companies to maintain a smooth
operation for the mobile network, they require accurate and timely
provided information regarding the status of antenna cells.

The status of a cellular network however, may depend on several
factors which are not always linked to its design. As explained above,
urbanization is one of the factors that may result in repeatedly occur-
ring problems since the original design of the network in that specific
location was not meant to support the needs of more people than the
ones that it was built for. Another thing worth mentioning is that in our
days, tourism activity is constant and most of the times unpredictable.
The most common way of monitoring a network’s performance in such
cases, is by examining the system’s Key-Performance-Indicators other-
wise known as KPIs. These KPIs provide all the necessary information
about an antenna cell’s status including active users, bandwidth and
many other metrics. They can also be utilized by Machine Learning
(ML) algorithms in the attempt to adapt to the patterns that the data
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may exhibit and learn to make accurate predictions for these so-called
hotspot events.

One of the most efficient ML algorithms which is being applied
for the purpose of solving forecasting problems, are the Artificial
Neural Networks (ANNs). The reason why ANNs have been getting
increased traction in such fields, is that they can absorb large amounts
of information, while requiring less storage resources compared to other
methods. They have the advantage of being capable to approximate
non-linear functions and with the benefit of having hidden layers they
can achieve much higher performance metrics. One of the companies
which has shown interest in this field is Telefonica, and through project
manager Ioannis Arapakis has provided the real-world data (KPIs)
from a cellular network and has also introduced two target goals. The
initial goal was to design an Neural Network architecture with the
attribute of high sensitivity in the attempt to predict the maximum
possible performance drops. This task was handled by co-student and
co-worker Georgios Koutroumpas. The latter of the two objectives,
which will be presented in this thesis, was to create an architecture
capable of providing high quality predictions by minimizing the error
rate of the classifier.
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2 Problem Formulation

2.1 Thesis Objective and Motivation

In this thesis, I propose the design and development of a Neural
Network which is capable of detecting possible hotspot cases of cellular
antennas in the near future. The data input used for this project is part
of real world data in a multivariate time series format with a time-step
of one hour. In this time-series, all antenna cells’ KPIs are included,
which provide the information that each of the antenna’s sensors have
collected within that hour, as well as some static information regarding
their geo-location and structural design.

The target goal is to create an architecture that will be able to
cover various prediction horizons and maximize the precision of the
Neural Network. The reason why it is essential to have as few false
positive(FP) cases as possible, is due to the fact that every time the
model predicts a hotspot case, a technician will be assigned to verify the
result and take preemptive measures in the attempt to avoid network
overload or failure. If the model provides false predictions, then its
services will not only be inefficient in terms of time, since the radio
experts will devote their time investigating a false case, but also in
terms of bad cellular network services. Mobile networks have been so
deeply integrated in almost everyone’s daily routines [10], that in case
of malfunctions, the problems will not just be about user inconvenience
but perhaps an obstruction of professional work. Several organizations
as well as certain individuals conduct their business which in many
cases is almost entirely contingent on continuous and stable connection
to the network.

In a worst case scenario where network downtime cannot be avoided,
having an insight of when a system malfunction might occur, enables
IT specialists and radio experts to inform their clients about imminent
connection disruption, or scheduled maintenance. The purpose of this
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project is to provide this option to the tech-teams dealing with such
incidents and hopefully contribute in eliminating as many of these
cases as possible. In collaboration with Telefonica, which is also the
source of the real-world data, the desired output which is hoped to be
achieved is having above 0.85% regarding the NNs precision metric.

2.2 Challenges

Handling large amounts of data when it comes to Deep Learning
Neural Networks can be quite challenging. As mentioned above, the
data is in a multivariate time series format, for each of the cellular
antennas with an one hour step, meaning there are millions of samples
which the NN has to process. This does not only impair the model’s
capacity of giving accurate results but it also means that it may suffer
from quite large time complexity. Another concern regarding the nature
of the data is the huge class imbalance that they exhibit, with only
0,25% of the samples containing positive cases(hotspots), and when it
comes to antenna statistics, only 9,3% of the antenna’s show at least
one positive case throughout the dataset. Having this information, one
should initially expect facing difficulties creating a pipeline that would
be capable of adapting to patterns shown by positive cases. Last but
not least, the proposed architecture is required to provide its results
within certain time-constraints in order to be efficient in real-world
applications.

2.3 Related Work

Lately, the topic of traffic or cellular hotspot forecasting has been
getting increased traction and there have been several related works on
this subject. When dealing with datasets in multi-variate time-series
formats and being tasked to predict future states of certain variables,
one of the first things that come in mind is the implementation of
an RNN. In [11], there is an in-depth analysis on a number of well
known Recurrent Neural Network(RNN) architectures, such as the
vanilla-RNN, the Long-Short Term Memory (LSTM) and the Gated
Recurrent Unit(GRU) regarding their performance on network traffic
forecasting.
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However, in many cases there might exist not only temporal depen-
dencies in the dataset but also spatial dependencies. In such cases,
there is the option to organize the data into a Graph structure which
will allow for the implementation a Graph Neural Network in order
to investigate these spatial dynamics and how they might affect the
model. In [12], a GAT is being used in combination with a Gated
Recurrent Unit to learn traffic patterns. Here, the GAT part of the
model learns from the topology of the road network through graph
convolution with the attention coefficient while the GRU unit learns
from past information.

Besides the RNN-type models, there are also other ways of dealing
with temporal dynamics. As proposed in [13], Temporal Convolutional
Neural Networks (TCNs) present another approach to this problem.
They are far superior in terms of training time and have the capability
of accepting a much larger receptive field of historical data without
causing memory or vanishing/exploding gradient issues. Combined
with a Graph Neural Network architecture, they have been used in
order to moderate urban traffic as shown in [14], by using Chebyshev
Polynomials to track down spatial patterns.

Finally, regarding the research of cellular hotspot forecasting in
particular, which is also the work which my model’s evaluations and
performance will be compared to, is the [15] which implements tree-
based models. It takes a multi-variate time-series dataset as its input
and makes use of Random Forest Regression trees in order to make
short-sighted predictions. However this method disregards any spatial
dependencies that the input data may exhibit. This is a drawback also
present in [16]. In this work, a Long-Short Term Memory is applied,
which is an RNN architecture, effectively learning from the temporal
dynamics that exist in the data.

2.4 Contribution

My model consists of a Graph Convolutional Neural Network com-
bined with a Recurrent Neural Network. With this structure, I can
investigate patterns for each antenna individually in the arrow of time,
as well as between the antennas which will be considered neighbors once
the Graph structure is defined. In this implementation, I propose a
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partition of the initial graph into smaller and more manageable groups,
which significantly decreases time complexity and in the meantime it
improves the model’s capacity of achieving the desirable precision in
its predictions.

The idea is that I to separate the cellular antennas into two groups,
the first group that does not show any active case throughout the data,
and the second one in which each antenna shows at least one active
case. The second group is then split into K sub-graphs of the same
size, on which a separate instance of the NN is trained. Finally, these
K models will go through a process of cross validation, proving that
a trained instance of the model is also highly transferable, meaning
it can perform well on sub-graphs that are different than the one it
was trained on. These classifiers will be defined in this thesis as “weak
classifiers”. In the end, the implementation of an Hierarchical model
is proposed, which changes the nature of the pipeline into ensemble
learning and will act as the thesis “strong classifier”. The goal of the
Hierarchical model is to combine the results of all the weak classifiers
like a voting system in the attempt to maximize the model’s precision.

The NN architecture and the design of this pipeline have some
significant advantages over some of its counterparts which are not
only limited to the performance metrics. The implementation of sub-
graphs and the transfer-ability of the model make it possible to run the
model locally, on targeted geographic areas without having the need
to examine the entire graph. Furthermore, big organizations, such
as cellular network providers, usually have problems in bypassing the
latency caused while communicating information from one single device
across the network to a centralized computing system or server. This
latency may be small in the scale of milliseconds or much larger reaching
several minutes. On top of that, there are some remote locations which
can be far away from the central server, where connectivity might be
very limited or even non existent from time to time. In such cases,
most organizations would prefer edge-computing to cloud-computing,
in order to significantly boost the speed of the decision making process
of the Machine Learning Algorithms that they are using. The design of
this project allows for the usage of very efficient processing hardware
devices such as the Field Programmable Gate Arrays(FPGAs), that
could notably decrease the time needed for the NN’s inference phase.
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3 Background

3.1 Data Imputation

Time series is a sequence of data points organized in a temporal
manner. It is a sequence of discrete-time data which are drawn at
successive equally spaced points in time and is a very common format
for modern day datasets regarding forecasting. When dealing with
difficult tasks and highly complex pipelines, it is crucial to ensure high
quality of data. One of the main threats to data quality that frequently
appears in machine learning applications, is the occurrence of missing
values. The reasons why a dataset might include missing values could
be attributed to equipment malfunctions, human error, inability of the
system to record the measured data at the time, or network failure.

3.1.1 Types of Non-Response

There are two main categories of non-response when dealing with
missing values, which are very common and in many cases unavoidable
for most datasets. Considering a household survey during which the
participants are required to fill a questionnaire:

• Item non-response occurs when one of the respondents manages
to provide most of the required information but fails to do so for
a small part of them. This type of non-response is considered to
be the least threatening between the two and is usually treated
separately.

• Unit non-response, poses a much larger threat to data quality, as
it refers to complete absence of data from one or more households.

3.1.2 Techniques

In general, there exist several methods that help prevent the occur-
rences of missing data, however it is a phenomenon that cannot be fully
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Figure 3.1: The two different categories of non-response

avoided. Two of the most common ways of dealing with this problem
are list-wise and pairwise deletion. On the one hand, list-wise deletion
eliminates all samples containing missing values, while on the other
hand, pairwise deletion only removes samples if the items missing are
required for the analysis. Both cases have a high chance of decreasing
the efficiency of the analysis by ruining data continuity, especially if
the number of missing values is high and not randomly distributed.

Data imputation refers to the process of substituting missing fields
with an estimated value, instead of removing the entire sample. Im-
putation techniques might be simple and fast, or more sophisticated
and slow. Each dataset reacts differently to the various imputation
techniques, according to the nature and distribution of their missing
values. For the purpose of this thesis, the following algorithms have
been implemented and tested:

• Zero Filling : Substitutes missing values with zero.

• Mean / Median / Most-Frequent Imputation : Calculates the
mean / median / most-frequent of the recorded values for the
target variable and uses it to impute missing ones.
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• Hot / Cold deck Imputation : The hot deck imputation algorithm
will randomly choose a value from another sample that is similar
to the one under examination, but does not have a missing value
in the variable under examination. It will then replace the missing
value with the randomly selected one. On the other hand, cold
deck imputation uses the exact same value for the imputation
from the same sample.

• K-Nearest-Neighbors Imputation : This algorithm will search for
K number of samples which are considered close to the sample
which shows a missing value. Two samples are considered close to
each other, if the non-missing features are close. This proximity
is usually estimated by calculating the nan-euclidian distance
between the sample elements. After finding the K closest samples,
the algorithm calculates the mean value of those samples on the
same variable as the one which the sample under question has
the missing value, and use it for the imputation.

The aforementioned methods are applied in order to tackle the
item non-response issues. In order to deal with unit non-response, a
different approach will be used, one that estimates the mean values
(for all items) between the sample that was lastly observed before the
unit non-response and the item that is observed right after. In case of
consecutive unit non-response cases, the algorithm will start estimating
the innermost missing samples and then work its way to the outermost
missing samples.

3.2 Feature Importance

Every dataset consists of a number of columns, which are the vari-
ables/features that a NN will use to calculate an output. If the NN
is a classifier, the term feature importance is used to describe how
important a certain feature is to the classification process. Each feature
has its own unique contribution to this process which may vary de-
pending on the type and nature of the model. In this thesis, I examine
several feature analysis techniques which will allow us to rank the most
important features to this classification problem, and perhaps discard
the ones that are deemed unnecessary. This elimination process does
not only reduce time complexity, but it might also help improve the
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accuracy of the classifier. For this task I will investigate three different
types of feature selection methods which are described as follows:

• Wrapper Methods : These methods use a ML algorithm (in this
case a classification algorithm) to evaluate the importance of
the features, each time using a subset. Iteratively, they evaluate
the possible combinations of features through a greedy search
algorithm and select the combination that yields the optimal
results according to the evaluation criterion.

1. Forward Selection : This algorithm starts with zero features
and attempts to fit the model with every feature one at a
time. The first feature that will be selected is the one that
returns the minimum p-value. In every step, the algorithm
will re-fit the model trying combinations of previously se-
lected features with the remaining features. This process
is repeated until it reaches a subset of features having an
individual p-value that is less than a designated threshold.

2. Backward Selection : It works in the opposite way that
Forward Selection does. In this cases the model starts with
all the features and in each step it removes the one with
the highest p-value, repeating the process until a subset of
features having an individual p-value that is not higher than
the designated threshold has been reached.

3. Step-wise Selection : A combination of Forward and Back-
ward Selection methods. Starting with zero features, the
algorithm first adds the feature with the lowest p-value and
in the next step it will add the second most important fea-
ture into the set. After that, it goes into a loop, during which
every time an important feature is added, the algorithm will
also check the importance of already selected features and
remove those that have an insignificant p-value. This algo-
rithm is an improvement to the Forwards and Backwards
Selection methods, where if a feature is added/removed, it
will not be re-examined in later iterations. It also takes
into account the interactions between features, saying that
a feature might have a significant p-value on its own, but
this value might change drastically by adding more features
into the set.
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Figure 3.2: Forward, Backward and Step-wise selection methods [1].

It is important to note that even though wrapper methods never
fail to reach a conclusion and provide a decent performing subset,
they are characterized by extremely high time complexities since
they have to evaluate on the given model during each iteration.
Such techniques are usually not suggested for large datasets, or
for datasets with many features.

• Filter Methods : Filter methods use a descriptive measure in
order to rank each feature in the dataset, and then select the
highest ranking ones for the final subset. They implement various
statistical tests in order to find the correlation between every
individual feature and the variable noted as ground truth.

1. Variance Threshold : This method is a very simple and
baseline approach for selecting features. The algorithm
will eliminate all the features which have a variance that
does not meet a specified threshold. This works under the
assumption that features with little to zero variance have
considerably less useful information to offer than the ones
with high variance. Though extremely quick as a method, it
is completely blind to relationships between features and is
usually never adopted as the only feature selection method
in a project, rather it is combined with one of the others.

2. Correlation Coefficients : One way to check the relationships
between features is calculating their correlation coefficients.
This method operates under the theory that if two variables
are highly correlated with each other, we can use one of
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them to predict the other, therefore only one of them will
be of significant value to our final model. The first step is
to calculate a correlation map and see all the coefficients
that the features have between each other as shown in 3.3.
Then we define a coefficient threshold, effectively selecting
all features that are highly correlated between each other,
either with a positive or a negative correlation coefficient.
Once we have these pairs, we check the correlations between
each feature in a pair and the target variable and remove the
feature that will have the largest coefficient. This process is
repeated for all the highly correlated pairs that we can find.

Figure 3.3: Correlation Map.

Generally, filter methods are much faster than any wrapper
method especially when dealing with large datasets. However,
the majority of them are fully blind to feature-to-feature relations
and in some cases might even prove to be unsuccessful in reaching
their goal.

• Embedded Methods : Embedded methods are known to have the
benefits of both wrapper and filter methods and in the meantime
minimize their disadvantages. They include feature interactions,
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have considerably less computational cost than wrapper methods
and are generally much better at reducing over-fitting potential.
In these cases, the feature selection algorithm is integrated as
part of the learning algorithm , which performs feature selection
and in our case, classification, at the same time.

1. Ridge Regression : Ridge regression offers the option of
keeping all the features in the final model while penalizing
the beta coefficients of the model for being too large by using
L2 Regularization penalty. The algorithm ensures that all
the features will be kept in the final model by not letting
their coefficients be shrank to zero. This technique is usually
preferred when the data suffers from multicollinearity, as it
scales down the strength of correlation of the variables that
are as significant as others for the prediction process. The
regression is accomplished by penalizing the betas with a
lambda parameter that is tuned with cross-validation.

2. LASSO Regression : LASSO Regression works similarly to
the Ridge Regression, but instead uses L1 Regularization
penalty and enforces some restrictions on the sum of the
model parameter values which effectively shrinks some of
the coefficients to zero. All features with coefficients shrank
to zero will be removed from the final model, meaning the
model complexity will be lowered. LASSO Regression makes
use of a lambda operator as well, which again needs to be
tuned with cross-validation.
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Figure 3.4: Process of each feature selection type method, as explained above [2].

3.3 Neural Networks

Neural networks, are a category of ML which falls under the category
of deep learning algorithms. Their structure is much similar and
inspired by biological neural networks, and their learning process
mimics the way that human beings learn and adapt to patterns. Their
architecture consists of node layers, containing an input layer, one
or more hidden layers, and an output layer. Each node, or artificial
neuron, connects to another and has an associated weight and threshold.
If the output of any individual node is above the specified threshold
value, that node is activated, sending data to the next layer of the
network. Otherwise, no data is passed along to the next layer of the
network.

The training process of NNs, is based on training, validation and
evaluation sets of data. The training set is the one which the NNs use
in order to improve their accuracy over time by iterating through a
number of training epochs. The validation set is often used in order to
fine-tune the model’s hyper-parameters in order to maximize accuracy
and efficiency, and the evaluation set is where we can apply the trained
NN and get our classification, clustering, or regression results depending
on what type of NN we are training.
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In the beginning of the training process, an input layer is defined
and the model’s weights are assigned. The higher the weight of a
single variable, the more significant it is to the process compared to
other variables. Once the weights are assigned, all input features are
multiplied by their respective weights and summed.
The output of a layer is determined by an activation function. Es-

sentially, the activation function will “activate” the node if its output
exceeds a certain threshold, so that the data may pass to the next
layer, becoming the input of another node. There are several different
activation functions and their usage depends on the type of problem
at hand. Some of the most commonly used functions are presented in
Figure 3.5.
The process of passing data from one node to another in further

layers, defines the NN as a feed-forward network.

Figure 3.5: Well-known Activation Functions [3].

At the end of each training epoch, the model’s performance is
evaluated through a cost / loss function. This cost function basically
tells our model how far away it is from its target and how much more
it needs to be improved in order to reach it, thereby the objective is to
minimize it. As the model adjusts its weights and bias, it uses the cost
function and reinforcement learning to reach the point of convergence,
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Figure 3.6: Feedforward Neural Network example [4].

or the local minimum. This weight adjustment is made with the use of
gradient decent, a process during which the neural network determines
which direction to take in order to reduce its errors. Some of the
well-known loss functions are demonstrated in Figure 3.7. The choice
of the function is contingent on the type of problem that the model
is trying to solve. For classification tasks, two commonly used loss
functions are the Binary Cross Entropy and the Hinge-Loss.
With each training example, the parameters of the model adjust

to gradually converge at the minimum. Once a training epoch is
concluded, back-propagation can be used, in order to feed the loss
backwards in a way that the model’s weights and parameters can be
fine-tuned.
Three of the most basic and well known categories of NNs are:

• The Perceptron: Perceptrons consist of an input layer, hidden
layer(s), and an output layer, being one of the simplest types of
NNs. [17].

• Convolutional Neural Networks (CNNs), [18], which are most
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Figure 3.7: Well-Known Loss Functions [5]
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of the times applied for image recognition, pattern recognition,
and/or computer vision. They detect patterns by using matrix
multiplication instead of the usual summation which occurs in
other types of NNs.

Figure 3.8: Convolutional Neural Network example [6].

• Recurrent neural networks (RNNs) which are mostly used against
time-series formatted datasets, as they take advantage of past
information in order to make predictions about future values
Recurrent Neural Networks are based on the work made by [19].

Aside from the loss function, there are certain performance metrics
which are used by analysts in order to evaluate a model. The most
common performance metrics which will also be referred to in this
thesis for the evaluation of the classifier are:

• Confusion Matrix : It is a 2× 2 matrix containing the values of
the True Positive(TP), False Positive(FP), False Negative(FN)
and True Negative(TN) predictors in the output of the Neural
Network

• Accuracy : The ratio of the correct predictions and the total
number of predictions. In several cases, this metric might be
misleading, especially in highly-imbalanced datasets, in which it
is easy for the model to predict negative cases but not positive
ones.

Accuracy =
TP + TN

TP + TN + FP + FN
(3.1)
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• Precision : The precision of a model defines the ratio of the
correct predictions and the total number of positive predictions.
An important metric in cases where a high number of False
Positive labels could be concerning

Precision =
TP

TP + FP
(3.2)

• Recall(Sensitivity) : Defines how many of the actual positive
cases were successfully predicted by the model.

Recall =
TP

TP + FN
(3.3)

• F1-Score : A harmonic mean of the precision and recall of the
model

F1 = 2 ∗ Precision ∗Recall

Precision+Recall
(3.4)

• F-beta : F-beta is another version of F1-Score, which introduces
a beta coefficient in the equation. It is mostly used in classifica-
tion/regression problems in which the precision and the recall are
not equivalent in terms of importance. This beta coefficient can
be defined by the user, depending on the classification/regression
needs.

F − beta = (1 + beta2) ∗ 2 ∗ Precision ∗Recall

beta2 ∗ Precision+Recall
(3.5)

• AUC-ROC : The Area Under the Curve (AUC) measures the
ability of the classifier to distinguish the classes. The Receiver
Operator Characteristic (ROC) plots the True Positive Rate
against the False Positive Rate.
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3.3.1 Recurrent Neural Networks

When it comes to time series forecasting, it is quite possible that the
input data will exhibit strong temporal dynamics. Recurrent Neural
Networks(RNNs) are capable of recognizing sequential characteristics
and detect temporal patterns which enable them to predict future
values. Most RNNs share the same characteristics:

1. The input and output sizes may vary

2. There are three important vectors, the input vector, the hidden
state vector and the output vector.

3. The hidden state vector, usually initialized to zero, represents the
past knowledge. In each RNN layer, the hidden state vector from
the previous layer, along with the current input vector, form the
current hidden state vector which is used to provide the current
output vector.

4. The vectors, the parameters and the activation functions of the
RNN will remain the same throughout the entire process and
only be updated in each layer.

5. There are four widely used RNN types which are categorized by
the input/output vector sizes. There’s one-to-one, one-to-many,
many-to-one, and many-to-many.
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Figure 3.9: The four different RNN architectures as explained above [7]

The most popular RNN architecture is the Long-Short-Term-Memory
(LSTM), originally proposed in [20]. Differing from the Vanilla RNN
architecture, it introduces three types of selected memories known as
Gates :

• The Input Gate : The input gate filters the information in the
input, by not allowing non essential information to be included.

• Considering that the information changes while time passes, some
of it might lose its value. This information is filtered out.

• The output gate chooses only the essential information to send
in the output, the rest will be stored in the hidden state.

Furthermore, there’s a Sigmoid activation function which allows
the model to represent the percentage of information in all the three
mentioned gates.
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Figure 3.10: The architecture of a basic LSTM with an input gate it, an output
gate Ot and a hidden state ht [8].

Another RNN architecture which is very popular is the Gated-
Recurrent-Unit(GRU), originally proposed by [21]. A similar approach
to the LSTM, GRU also gives a solution to the vanishing gradient
problem that Vanilla RNNs are struggling with. This time, the gates
that are used are:

• The Update Gate : Enables the model to evaluate what per-
centage of past information should be passed down to future
steps.

• The Reset Gate : Helps the model determine what percentage of
past information should be forgotten.
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Figure 3.11: The architecture of a basic GRU with a reset gate Rt, and an update
gate Zt [9].

3.3.2 Graph Neural Networks

The design and implementation of Graph Neural Networks (GNNs)
has been getting increased traction over the last few years. An idea
originally proposed by [22], GNNs can be applied to most types of
Graphs and have proven to be very useful for forecasting models
especially if the input data exhibit strong spatial dependencies. As
we know, a graph consists of nodes and edges which can both have
a unique set of features. The goal of a GNN is to make use of graph
convolution and predict the state of the node in the next layer, by using
a function based on the features of that node as well as its neighbors.
The most widely known GNN architectures which were also reviewed
for the project of these thesis belong in two major categories for GNN
architectures which are:

• Spectral Methods : Spectral methods in [23] use Fourier transform
in order to create a representation of the graph in the spectral
domain, conduct the convolution operation with element-wise
multiplication and then use inverse Fourier transform to trans-
form the signal back to its original domain. The convolution
operator is defined as:
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g ∗ x = F−1[F (g) ∗ F (x)] = U(UTg ∗ UTx) (3.6)

where U is the matrix defined by the eigenvectors of the L =
UΛUT , and Λ being the diagonal matrix with the eigenvalues of
the graph.

The spectral methods that were considered for this thesis are :

1. ChebNets : Proposed by [24], ChebNets make use of Cheby-
shev expansion of order K to define a K-Localized convolu-
tion which will be computed using Chebyshev polynomials.

2. Graph Convolutional Networks(GCNs) : Proposed by [25],
GCNs simplify the K-Localized convolution proposed by
ChebNets by setting K equal to 1. In addition, they intro-
duce self-connections by adding the identity matrix I to the
adjacency matrix A:

Ã = A+ I (3.7)

They implemented the symmetric normalization of the
Laplacian L:

Lnorm = D
−1
2 ∗ L ∗D

−1
2 = I −D

−1
2 ∗ A ∗D

−1
2 (3.8)

And finally, they created a renormalization to minimize
exploding/vanishing gradient problems:

I +D− 1
2 ∗ A ∗D− 1

2 → D̃− 1
2 ∗ Ã ∗ D̃− 1

2 (3.9)

where D̃ij is the degree matrix of the graph and it gives us
information about the degree of each node which is basically
the number of the node’s neighbors plus one and is created
through row-wise summation of its adjacency matrix

D̃ij =
M∑
j=1

(Ãij) (3.10)

24



To summarize all of the above, this is the update rule of the
GCNs:

H(l+1) = σ(D̃− 1
2 ∗ Ã ∗ D̃− 1

2 ∗H(l) ∗W (l)) (3.11)

where H is the feature matrix, l is the layer, and W the
trainable weight.

• Spatial Methods : In Spatial Graph Convolutions, the neural
network will attempt to learn a function f that is invariant to
permutations of node orderings (ex. sum,mean) which will gener-
ate a projection of the node’s feature vector and update it based
on itself as well as the aggregated neighborhood representation.
The algorithms that were considered in this thesis are:

1. Message Passing Neural Networks (MPNNs) : The MPNNs
[26] have the ability to send messages across the edges of
a graph which are computed using a multi-layer percep-
tron function fe. The message between two nodes can be
described as:

mij = fe(hi, hj, eij, ) (3.12)

In this case, the updated feature vector of the node is created
by using the aggregated representation of all the inbound
messages to the node via another multi-layer-perceptron
function fv. The update rule is:

hi = fv(hi,

Ni∑
j

mij) (3.13)

2. Proposed by [27], Graph Attention Networks (GATs) in-
troduce an attention mechanism to the graph convolution.
While in GCNs the attention coefficient is calculated explic-
itly from the graph structure, GATs consider this coefficient
as a learnable parameter.

αij = attention(hi, hj) (3.14)
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Each neighbor’s node features as well as edge features, if
any, will be the parameters that will define the attention
coefficient. An important note is that in GATs, the struc-
ture of the graph is not taken into consideration for the
computation of the attention coefficient. Finally, the update
rule of the GAT is:

h
(l)
i = σ(

Nj∑
i

αij ∗W ∗ hj) (3.15)

Comparing the aforementioned architectures simply from a theoreti-
cal point of view, we know that the GNNs are the most computationally
efficient, while GATs have the capacity of giving different attention
to each neighboring node which may lead to better results. Message
Passing Neural Networks is a quite generic GNN architecture and
has decent transfer-ability from graph to graph, however they lack
scale-ability since they require additional processing and storing due
to the messages.
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4 Implementation

4.1 Graph Creation

The real world data consist of the key performance indicators (KPIs)
of approximately ten thousand cellular antennas, as well as some meta-
data features describing the structural specifications of the antenna
and its geo-location. Three of these features will contribute in the
creation of the Graph, two of which are the latitude and longitude of
the cellular antenna, while the third being the identifier of the cell site
in which that cellular antenna belongs to.

In order to perform a Graph Convolutional Layer, a graph needs
to be defined. It is an undirected graph G = (V , E) where V denotes
the vertices or nodes vi ∈ V and E denotes the edges (vi , vj ∈ E). The
nodes V of the graph represent the antenna cells and the edges E
represent their physical distance, in essence describing whether or not
two antennas are considered neighbors. Using the features which define
the antenna’s geo-location through their latitude and longitude, the
pairwise Geodesic Distance is calculated, by first finding the angle
between two cells and then multiplying it by the circumference of the
earth:

angle = arccos(celli ∗ cellj)
dist = angle ∗ pi ∗R (4.1)

where celli, cellj are the latitude and longitude values of the two
cells and R is the radius of the earth.

This process provides a strictly upper triangular distance matrix
D ∈ R|M |×|M |, with M being the total number of antenna cells in the
network. The adjacency matrix A is defined by setting a distance
threshold t. If dist ≦ t, cells celli, cellj are considered neighbors. This
will result in a strictly upper triangular adjacency matrix A ∈ R|M |×|M |
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which essentially defines which of the antennas are considered to be
neighbors.

It is important to remember that the dataset is characterized by
class imbalance. In order for the model to be able to efficiently detect
spatial patterns, the Graph needs to be defined with no more than
the absolute necessary connections between the antenna cells. If the
threshold t is a relatively high number, the above process will provide
a quite exuberant adjacency matrix. As a result, the training of the
model would have increased time complexity, much larger memory
requirements while also having significant noise in the calculations for
the detection of spatial patterns.

4.2 Data Pre-processing

Aside from the KPIs which give information about an antenna’s
geolocation and structural information, there are others which provide
information about the antenna’s status. These features are the most
important ones for the model since they contain the spatial and tempo-
ral patterns which the model will try to detect. The meta-features are
not relative to this classification problem and are completely removed
from the dataset after the graph is created. The next step is to deal
with the missing values problem.

4.2.1 Imputation

In the dataset there exist about twenty eight million samples and
seventy seven total features, which is roughly 2,15 billion values out
of which 15% is missing. As for the unit non-response, it is estimated
that about 2 million samples are missing from the dataset. Such cases
can be detected by iterating through the samples of any antenna and
checking the time-stamp difference between two subsequent samples.
The cases of item non-response and unit-non-response will be dealt
with separately. It is also worth mentioning that in this case, the values
are missing completely at random (MCAR), meaning that no specific
pattern can be detected in the abscence of data point.

The first category of missing values that will be handled, is the item
non-response. The imputation techniques applied for this task are the
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Figure 4.1: Imputation Validation process. Comparing the values removed from
the original subset with the values that resulted from the imputation.

ones mentioned in the Data Imputation section 3.1 and compare each
of the algorithm’s time complexity and imputation accuracy. In order
to validate the imputation results, I select a subset of the dataset in
which there are no missing items in the samples and then randomly
select some of these values to be set to null while also keeping the
original values for the validation process.

The algorithms which applied for this task are the zero filling, mean
/ median / most-frequent imputation, hot and cold deck imputation
and K-Nearest-Neighbors.

Zero Filling Mean Median Most Frequent Hot Deck Cold Deck KNN

Imputation Accuracy(%) 0.39 0.61 0.57 0.48 0.60 0.58 0.64
Run-Time(sec) 5,732 10,621 9,105 9,009 16,318 15,758 25,122

Table 4.1: Performance of the different imputation methods.

Though the least time consuming algorithm is the Zero-Filling, which
was to be expected since there are no extra computations to be made,
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it is also the least accurate of the algorithms. The KNN algorithm
is capable of producing the best results, however due to the nature
of the data it has an extremely high time complexity which exceeds
the time-constraints which are set for the project. The best all around
option between the above algorithms is the Mean Imputation approach.

4.2.2 Prediction Horizons

Each of the antennas has a feature which provides the intelligence
of whether or not an antenna is overloaded at a given time. It is a
binary feature and it will act as the target variable for the classification
problem. In order to create the prediction horizons, for each antenna
cell in the time-series, some new features need to be created, one for
each hotspot prediction horizon. The new features will have the same
values as the original target variable but shifted to the right according
to the H factor which is the horizon time-step.

The creation of the prediction horizons also marks the point at which
my data is ready to be processed by the Neural Network.

4.3 The Neural Network

In this section, I present all the necessary steps and decisions which
were made for the creation of the Neural Network’s architecture.

4.3.1 Capturing Spatial Dependencies

The first step is to determine which of the three GNN architectures
that initially considered for this project in section 3.3.2 should be the
final choice. To this end, I need to consider the following requirements:

• Efficiency : The primary target of the model is to maximize
the precision of its forecasting. In my baseline models, the
architecture that will provide the best precision metrics will be
the most likely candidate for the final choice.
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• Time Complexity : It is essential that the model can be trained
and evaluated on real world data quickly. The goal of this applica-
tion is to be both fast and accurate, since most of the forecasting
horizons that I have created make predictions not further than
a twenty-four hour window. Out of the aforementioned archi-
tectures, the GCN is by far the least time consuming, since the
MPNN needs to calculate more variables due to the edge features
while the GAT has more learning parameters.

• Memory : The size of the dataset is quite large, containing
samples for every hour within four months for about ten thousand
cellular antennas. In order to create a model applicable for most
machines I need to consider the memory requirements. The
MPNN architecture is a needy algorithm in terms of memory as
it requires the storage and calculation of both node features and
edge features. Taking into account that I will be dealing with
a considerably large number of nodes in the graph, the idea of
MPNNs was abandoned.

In order to evaluate the performance of the remaining two architec-
tures, a very small subset of the dataset is selected, which will be the
product of a down-sampling technique in order to take care of the class
imbalance. In all these experiments, the exact same model parameters
are used.

hz = 12 hz = 24 hz = 48 All Horizons

Pre Rec Pre Rec Pre Rec Time per Epoch (sec)

GCN 0.07 0.02 0.05 0.03 0.03 0.02 12,849
GAT 0.04 0.02 0.04 0.04 0.03 0.01 14,296

Table 4.2: Performance of the GCN and GAT architectures across prediction hori-
zons hz ∈ {12, 24, 48} hours.

Taking into consideration the results of the baseline, the final choice
is the Graph Convolutional Neural Network. The goal here is to
detect the patterns that exist between the behavioral status of cellular
antennas. The depth of this search is determined by the number of the
GCN layers that implemented in the model. In each layer, the model
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predicts the next hidden state by aggregating the feature vectors of all
neighboring antennas as explained in the theoretical section 3.3.2 and
shown in Figure 4.2.

Figure 4.2: GCN Process in the Cellular Network.

Once again, I will make a reference to the class imbalance that the
data suffers from, which in this particular case means that the more
antennas I add into the aggregation, the more noise I will have in the
output signal. This in turn means that the initial precision score will
not be the desirable one.

Another parameter I need to consider is the ratio between input and
output channels of each layer. In the initial approach they are set to
be equal.

4.3.2 Capturing Temporal Dependencies

For the choice regarding the RNN architecture, both the LSTM and
the GRU architectures will be evaluated in order to compare their
efficiency, time complexity and also memory usage in the same baseline
example with the exact same parameters.
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hz = 12 hz = 24 hz = 48 All Horizons

Pre Rec Pre Rec Pre Rec Time per Epoch (sec)

m
b
=

12 GRU 0.19 0.13 0.18 0.11 0.15 0.09 15,108

LSTM 0.18 0.14 0.13 0.12 0.13 0.09 15,894
m
b
=

24 GRU 0.29 0.13 0.24 0.10 0.18 0.11 16,322

LSTM 0.26 0.11 0.22 0.15 0.17 0.12 17,488

m
b
=

48 GRU 0.21 0.10 0.17 0.11 0.16 0.09 18,292

LSTM 0.19 0.08 0.13 0.15 0.14 0.10 20,094

Table 4.3: Performance of the GRU and LSTM architectures across prediction
horizons hz ∈ {12, 24, 48} hours with different layers mb ∈ {12, 24, 48}.

As shown in Table 4.3, these two algorithms yield almost the same
results, however since the GRU is slightly better than the LSTM it will
be my final choice for the Neural Network. In my initial approach I
will use a default twenty-four-layer GRU which means I will be looking
back twenty four time-steps to get the temporal information in order
to achieve my forecast. As for the hidden state and the output state
feature vectors I will set them to be the same size as the input vector.

4.3.3 Full Model Representation

Combining the aforementioned modules, we have the GCN that
creates an aggregated feature vector, based on the information of each
antenna combined with its neighbors, which I then want to pass as
input to the GRU module. The final layer in my model will be a fully
connected linear layer which will provide us with a single-shot prediction
for my target variable. It’s important to note that this architecture
supports multiple consecutive GCN layers to be added depending on
the size of the Graph that is being tested and the complexity of the
problem, as well as variant sized stacked Gated Recurrent Unit layers
which would change the historical depth of past data.
After each GCN layer, a Rectified Linear Unit (ReLU) activation
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function is applied which eliminates all negative values in the output
of the layer. The ReLU helps dealing with the vanishing gradient
problem since its derivative for values larger than zero equals to one,
therefore the product of the multiplication 1x1 always gives one as
many times as it is used. Furthermore it introduces sparsity in the
Network with benefits such as information disentangling, efficient
variable-size representation and linear separability [28]. After the fully
connected layer, a Sigmoid activation function is applied, resulting in
the probability of each antenna to become a hotspot at the specified
time.

Figure 4.3: Model architecture shown in a block diagram.

The decision threshold is 0,5%, which means that every antenna
having a probability higher than 0,5% will be predicted to be a hotspot
at the target forecasting horizon.
The loss of the model after each iteration is calculated by the Binary

Cross Entropy with Logits(BCE) function, since I am dealing with a
binary classification problem.

L = l1, ..., lN
ln = −wn,c[pc ∗ yn,c ∗ log σ(xn,c) + (1− yn,c) ∗ log(1− σ(xn,c))]

(4.2)
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where c is the class number(in my case c = 1 as I am dealing with a
binary classification problem), n is the number of samples in the batch,
wn,c is a re-scaling weight for the loss function, and pc is the positive
weight that I use to multiply the positive examples in my data.

In the end, a reduction rule is applied to the L which can be either
mean or sum.

4.3.4 Initial Design Results

The initial model design was trained on the entire graph using a
default number of training epochs and neurons. The memory buffer
used in this experiment is mb = 24 hours.

hz = 12 hz = 24 hz = 48 All Horizons

Pre Rec Pre Rec Pre Rec Time per Epoch (sec)

GCN 0.07 0.02 0.05 0.03 0.03 0.02 12,849
GRU 0.29 0.13 0.24 0.10 0.18 0.11 15,108

GCNGRU 0.39 0.08 0.36 0.05 0.30 0.06 20,575

Table 4.4: Performance of the GCN, GRU and GCN-GRU across prediction horizons
hz ∈ {12, 24, 48} hours.

As shown in Table 4.4, the initial goal of the project is far from
being accomplished. One of the reasons behind the initial failure is
the massive class imbalance of my dataset. The BCE loss function
supports the application of class weights in order to help tackle this
issue. In [equation], I can try a variety of combinations between the
scaling factor and the posweight in my attempt to reach a desirable
outcome. From the documentation of the BCEWithLogitsLoss, I know
that adding a posweight < 1 should improve the precision of the model.

Again, none of the above combinations is capable of improving the
results. The issue can not be handled by simply adding class weights,
so the solution has to be a down-sampling technique.
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hz = 12 hz = 24 hz = 48 All Horizons

Pre Rec Pre Rec Pre Rec Time per Epoch (sec)

GCN 0.09 0.01 0.08 0.03 0.04 0.01 12,849
GRU 0.31 0.12 0.27 0.07 0.22 0.06 15,108

GCNGRU 0.42 0.08 0.38 0.04 0.35 0.03 20,575

Table 4.5: Performance of the GCN, GRU and GCNGRU across prediction horizons
hz ∈ {12, 24, 48} hours, with added class weights.

4.4 Hyper-parameter Tuning

4.4.1 Feature Selection

As explained in the theoretical background section, a crucial factor
that could help improve the precision of the Neural Network’s predic-
tions is the application of a feature selection algorithm. Incorporating
feature selection in the pipeline ensures that all of the features that
will be used as input for the training process are important for the
classification process, while the non-important features will be elim-
inated to avoid noise and unnecessary calculations thus also saving
some time.

The first algorithm that will be used is the variance thresholding. A
small number of the features are static values, which do not contribute
at all in the forecasting task, but rather increase training time and
consume memory. By applying the method VarianceThreshold from
the scikit-learn library and setting the threshold to be equal to 0 all of
the static features will be eliminated from the training set.

The rest of the features will need to be evaluated through more
elaborate techniques and algorithms, therefore the the wrapper, filter
and embedded methods will be applied as explained in the theoretical
section. Once again, the algorithm that will be used will be selected
based on its efficiency and time complexity. For the evaluation regard-
ing wrapper and embedded methods, a subset of the original dataset
will be used.

As expected, the wrapper methods are the most time consuming
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Forward Backward Stepwise CorMap LASSO RIDGE

Precision 0.49 0.47 0.52 0.43 0.55 0.51
Time(sec) 4,027 3,918 9,878 193 2,519 2,384

Table 4.6: Performance of the different feature selection algorithms.

solutions and the filter methods the least efficient ones. As a result I
will be using the Lasso Regression algorithm for the feature selection.
Finally, I compare the results provided by using the original dataset
with the results that came from the subset of the selected features. The
feature analysis has improved the precision of the Neural Network’s
predictions and slightly decreased its training time.

4.4.2 Graph Partitioning

Since my data is presented in a time-series format, down-sampling
can not happen on a sample level, so it has to be on a node level. The
goal here is to help reduce the system requirements in terms of memory,
speed-up the training and evaluation process and in the meantime
deal with the class imbalance that I am facing. For my initial test, I
will randomly select 100 antenna cells from the grid, and perform the
calculations on that sub-graph, as shown in the figure below.

hz = 12 hz = 24 hz = 48 All Horizons

Pre Rec Pre Rec Pre Rec Time per Epoch (sec)

GCN 0.47 0.11 0.46 0.14 0.39 0.11 1,917
GRU 0.63 0.14 0.64 0.09 0.48 0.12 11,917

GCNGRU 0.75 0.09 0.71 0.13 0.070 0.14 13,028

Table 4.7: Performance of the GCN, GRU and GCNGRU across prediction horizons
hz ∈ {12, 24, 48} hours.
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Figure 4.4: Overview of the selection of the sub-graph in a targeted area.

The results shown in Table 4.7 are quite close to the original goal.
This sparked the idea and main contribution of this thesis, which is to
detect all antennas with at least one active case in the training data
and then split them into groups of 100 creating K different sub-graphs.
Then, a different model is trained on each sub-graph, and afterwards
it is evaluated it not only on the sub-graph that it was trained on, but
also all the rest K-1 sub-graphs, as well as sub-graphs that contain
antennas with zero active cases. In Table 4.8 the average precision
and recall of the models were calculated using the aggregated confusion
matrices.

This solution is not only better in terms of efficiency, but is also a lot
less time consuming and does not have as large memory requirements
as the initial approach. Furthermore, it gives us the option to train
and evaluate the model locally, meaning it is not required to have
the entire graph as the input if the research is only interested in the
behavior of a specific group of antenna cells.

In addition, I can compare the transfer-ability of each model from
one graph to another by also looking at the similarities between the
graphs. The similarity grading algorithm that I will use calculates
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SG1 SG2 SG3 SG4 SG5 SG6 SG7 SG1−7 SG1−7

Pre Rec Pre Rec Pre Rec Pre Rec Pre Rec Pre Rec Pre Rec Avg Pre Avg Rec

m
b
=

24
h
ou

rs
SG1 0.70 0.51 0.53 0.35 0.67 0.40 0.65 0.38 0.52 0.22 0.81 0.44 0.59 0.41 0.66 0.39
SG2 0.66 0.09 0.77 0.27 0.55 0.13 0.72 0.22 0.57 0.11 0.90 0.36 0.63 0.15 0.71 0.30
SG3 0.63 0.41 0.57 0.27 0.63 0.46 0.64 0.26 0.45 0.18 0.75 0.48 0.54 0.32 0.61 0.43
SG4 0.66 0.45 0.54 0.44 0.53 0.33 0.68 0.57 0.42 0.25 0.67 0.63 0.55 0.43 0.60 0.45
SG5 0.61 0.41 0.53 0.37 0.68 0.32 0.65 0.41 0.48 0.02 0.64 0.29 0.59 0.39 0.60 0.38
SG6 0.74 0.29 0.61 0.36 0.62 0.25 0.72 0.40 0.53 0.19 0.86 0.59 0.68 0.33 0.70 0.35
SG7 0.68 0.33 0.62 0.10 0.72 0.18 0.58 0.38 0.44 0.13 0.58 0.16 0.76 0.40 0.63 0.27

GCN 0.29 0.08 0.00 0.00 0.35 0.09 0.21 0.02 0.00 0.00 0.00 0.00 0.11 0.06
GRU 0.61 0.39 0.30 0.28 0.25 0.28 0.51 0.41 0.38 0.33 0.59 0.29 0.41 0.47

Table 4.8: Performance of the GCNGRU, the GCN and the GRU across all sub-
graphs (SG1-SG7), for forecasting horizon hz = 12 hrs. Average Precision
and Recall were calculated using the aggregated confusion matrices.

the Laplacian Eigenvalues of each sub-graph’s adjacency matrix as
proposed in [29]. Then for each sub-graph, I find the smallest k such
that the sum of the k largest eigenvalues constitutes at least 90% of
the sum of all of the eigenvalues. Then if the values of k are different
between the two sub-graphs, I use the smaller one. Finally, the sum of
the squared differences between the largest k eigenvalues between the
sub-graphs is the similarity metric and is defined as:

sim =
k∑

i=1

(λ1i − λ2i)
2

where k is chosen so that,

min
j

{∑k
i=1(λji)∑k
i=1(λji)

> 0.9
} (4.3)

where sim ∈ [0,+∞) for the two sub-graphs SG1 and SG2 and

lim
sim→0

f(SG1, SG2) (4.4)

suggests that the two sub-graphs are similar.

This algorithm can be applied in this classification problem to inves-
tigate the sub-graph similarity. The reason why it is necessary for such
inquiry to be conducted, is due to the fact that the NN implementation
that is being tested makes use of GCN-Layers. As explained in the
theoretical section 3.3.2, the structural information of the graph is also
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being used for the computations, therefore graph similarity is bound to
influence the performance of the model depending on what sub-graph
it is being evaluated on.

SG1 SG2 SG3 SG4 SG5 SG6 SG7

SG1 0.00 422.81 366.03 347.03 790.57 136.38 478.85
SG2 422.81 0.00 367.33 248.12 492.47 137.24 480.34
SG3 366.03 367.33 0.00 247.54 791.29 136.68 479.51
SG4 247.03 248.12 247.54 0.00 793.26 137.57 480.91
SG5 790.57 792.47 791.29 793.26 0.00 795.67 475.56
SG6 136.38 137.24 136.68 137.57 795.67 0.00 482.97
SG7 478.85 480.34 479.51 480.91 475.56 482.97 0.00

Table 4.9: sub-graph Similarity matrix. The largest the value, the more dissimilar
the sub-graphs are.

With the results provided from the similarity analysis which is
demonstrated by Table 4.9, one can already detect some patterns.
For example the SG5 sub-graph is seemingly the most dissimilar one
compared to the others and it has the lowest performance metrics. I
will further investigate these results as well as their correlation with
the transfer-ability later.

4.4.3 Neurons

Another parameter that can be tuned in order to provide more
accurate results is the number of neurons that I am using in the hidden
state between the GCN layer and the GRU module. In my initial
approach I used 32 neurons which is about the same size as the input
features of the data.

Generally, if I use too many neurons for the training then the model
will tend to over-fit to the training data while also increasing the
memory requirements. However, if I use fewer than necessary then the
training time which is required to reach a desirable result will increase.
For this reason, I conducted some experiments with various neurons in
order to select the optimal number.
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Figure 4.5: Precision-Neurons diagram for different hotspot horizons.

4.4.4 Optimizing training time

Up until this point, I have been using a default of twenty epochs for
the training of each model. However, this is also a parameter that can
be tuned and potentially increase the values of my target performance
metrics, which are first the precision and second the recall of the model.

In order to optimize the number of epochs that each model will be
trained for, I introduce two new hyper-parameters, Patience(P) and
Delta(D). I will also be using a validation set aside from the train and
test sets. The validation set will be the means through which I will
decide the values of my two new hyper-parameters.

• The Patience hyper-parameter is a positive integer that deter-
mines the number of epochs that the model will keep training
if a target goal is not being reached. Since my first priority is
to maximize the precision, this will be the target metric. When
this hyper-parameter reaches zero, the model will stop training.

• This hyper-parameter will act as a threshold. After an epoch
of training is concluded, if the precision of the model has not
improved by a specific margin defined by Delta, then the Patience
hyper-parameter will be reduced by one.
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SG1 SG2 SG3 SG4 SG5 SG6 SG7 SG1−7 SG1−7

Pre Rec Pre Rec Pre Rec Pre Rec Pre Rec Pre Rec Pre Rec Avg Pre Avg Rec
m
b
=

24
h
ou

rs

SG1 0.86 0.25 0.60 0.05 0.81 0.16 0.92 0.15 0.68 0.04 0.86 0.20 0.96 0.19 0.85 0.15
SG2 0.67 0.00 1.00 0.04 0.83 0.03 0.83 0.01 1.00 0.01 1.00 0.02 0.00 0.00 0.91 0.01
SG3 0.83 0.23 0.50 0.06 0.77 0.22 0.86 0.21 0.61 0.09 0.83 0.25 0.91 0.25 0.80 0.19
SG4 0.74 0.24 0.63 0.21 0.71 0.16 0.83 0.34 0.66 0.10 0.79 0.43 0.69 0.16 0.75 0.24
SG5 1.00 0.00 0.57 0.03 0.00 0.00 0.73 0.03 0.88 0.02 0.00 0.00 0.00 0.00 0.67 0.01
SG6 0.62 0.11 0.88 0.07 0.80 0.10 0.87 0.13 0.49 0.04 0.95 0.33 0.98 0.19 0.83 0.14
SG7 1.00 0.03 0.00 0.00 1.00 0.03 1.00 0.05 0.00 0.00 0.83 0.04 1.00 0.07 0.96 0.03

GCN 0.37 0.10 0.00 0.00 0.42 0.12 0.26 0.02 0.00 0.00 0.00 0.00 0.19 0.08
GRU 0.61 0.49 0.36 0.28 0.35 0.38 0.63 0.47 0.46 0.38 0.68 0.33 0.49 0.56

Table 4.10: Performance of the GCNGRU across all sub-graphs (SG1-SG7), for
forecasting horizon hz = 12 hrs with optimized training time.

As I can see, the optimization of training time is another crucial
factor which can drastically improve my performance metrics. Also,
in most cases there is a trade-off between precision and recall as
more and more training epochs pass. This is to be expected as in
early training the model is only capable of predicting the strongest
patterns, both temporal and spatial, while with increased training
time it becomes more generalized, can detect more patterns, however
it increases the chances of making FP predictions. Since minimizing
these FP predictions is one of my target goals, the combinations of P
and D that I will select for each model are the ones which accomplish
this goal.

4.4.5 Optimizing Memory Buffer Size

The RNN module of my model can be optimized as well. In the
previously shown experiments, the input vector had a default size of 24,
meaning my historical input dated back as far as one day. Since I am
training more than one model, the input vector needs to be optimized
for each individual model separately. Though increasing the amount
of input data results in larger training times, it does not necessarily
provide better results.

The results shown in Table 4.11 provide some interesting information
regarding the temporal patterns in my dataset. Clearly none of the
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SG1 SG2 SG3 SG4 SG5 SG6 SG7 SG1−7 SG1−7

Pre Rec Pre Rec Pre Rec Pre Rec Pre Rec Pre Rec Pre Rec Avg Pre Avg Rec

m
b
=

12
h
ou

rs
SG1 0.82 0.31 0.76 0.15 0.86 0.27 0.83 0.23 0.79 0.08 0.88 0.44 0.84 0.30 0.84 0.25
SG2 0.94 0.03 0.82 0.08 0.88 0.02 0.83 0.04 0.78 0.02 0.96 0.05 0.74 0.08 0.83 0.04
SG3 0.89 0.18 0.76 0.05 0.80 0.19 0.85 0.24 0.54 0.05 0.83 0.25 0.82 0.19 0.82 0.17
SG4 0.84 0.15 0.73 0.17 0.65 0.13 0.83 0.09 0.55 0.07 0.92 0.36 0.60 0.11 0.78 0.19
SG5 0.76 0.18 0.45 0.08 0.76 0.17 0.70 0.21 0.58 0.11 0.61 0.08 0.71 0.19 0.67 0.25
SG6 0.62 0.17 0.48 0.06 0.52 0.05 0.78 0.19 0.43 0.06 0.94 0.36 0.75 0.32 0.72 0.16
SG7 0.87 0.09 0.81 0.04 0.84 0.12 0.86 0.15 0.50 0.02 0.87 0.23 0.91 0.16 0.86 0.12
GCN 0.37 0.10 0.00 0.00 0.42 0.12 0.26 0.02 0.00 0.00 0.00 0.00 0.19 0.08
GRU 0.61 0.13 0.56 0.17 0.54 0.40 0.67 0.48 0.46 0.41 0.73 0.18 0.54 0.47

m
b
=

24
h
ou

rs

SG1 0.86 0.25 0.60 0.05 0.81 0.16 0.92 0.15 0.68 0.04 0.86 0.20 0.96 0.19 0.85 0.15
SG2 0.67 0.00 1.00 0.04 0.83 0.03 0.83 0.01 1.00 0.01 1.00 0.02 0.00 0.00 0.91 0.01
SG3 0.83 0.23 0.50 0.06 0.77 0.22 0.86 0.21 0.61 0.09 0.83 0.25 0.91 0.25 0.80 0.19
SG4 0.74 0.24 0.63 0.21 0.71 0.16 0.83 0.34 0.66 0.10 0.79 0.43 0.69 0.16 0.75 0.24
SG5 1.00 0.00 0.57 0.03 0.00 0.00 0.73 0.03 0.88 0.02 0.00 0.00 0.00 0.00 0.67 0.01
SG6 0.62 0.11 0.88 0.07 0.80 0.10 0.87 0.13 0.49 0.04 0.95 0.33 0.98 0.19 0.83 0.14
SG7 1.00 0.03 0.00 0.00 1.00 0.03 1.00 0.05 0.00 0.00 0.83 0.04 1.00 0.07 0.96 0.03
GCN 0.37 0.10 0.00 0.00 0.42 0.12 0.26 0.02 0.00 0.00 0.00 0.00 0.19 0.08
GRU 0.63 0.51 0.38 0.29 0.33 0.41 0.62 0.48 0.41 0.39 0.62 0.36 0.48 0.59

m
b
=

36
h
ou

rs

SG1 0.83 0.33 0.72 0.25 0.79 0.27 0.91 0.30 0.68 0.11 0.87 0.49 0.82 0.26 0.82 0.29
SG2 0.81 0.03 1.00 0.04 1.00 0.02 0.74 0.05 1.00 0.01 0.94 0.07 0.73 0.03 0.85 0.04
SG3 0.94 0.13 0.57 0.06 0.84 0.13 0.93 0.15 0.62 0.08 0.85 0.20 0.89 0.16 0.84 0.15
SG4 0.87 0.23 0.71 0.14 0.82 0.15 0.85 0.37 0.60 0.08 0.87 0.44 0.91 0.21 0.84 0.24
SG5 1.00 0.01 0.83 0.01 0.67 0.01 0.78 0.01 1.00 0.02 0.63 0.01 0.50 0.01 0.80 0.02
SG6 0.69 0.44 0.58 0.24 0.68 0.20 0.77 0.33 0.64 0.11 0.85 0.46 0.70 0.33 0.72 0.31
SG7 0.86 0.17 0.87 0.07 0.83 0.11 0.99 0.19 0.75 0.34 0.82 0.16 0.99 0.17 0.90 0.23
GCN 0.37 0.10 0.00 0.00 0.42 0.12 0.26 0.02 0.00 0.00 0.00 0.00 0.19 0.08
GRU 0.72 0.45 0.51 0.31 0.57 0.38 0.64 0.41 0.43 0.35 0.19 0.07 0.38 0.34

m
b
=

48
h
ou

rs

SG1 0.82 0.27 0.71 0.12 0.83 0.19 0.94 0.22 0.71 0.09 0.84 0.29 0.90 0.19 0.84 0.20
SG2 1.00 0.01 0.89 0.04 0.50 0.01 1.00 0.01 0.40 0.00 0.95 0.09 0.70 0.02 0.86 0.03
SG3 0.89 0.22 0.65 0.06 0.85 0.17 0.93 0.21 0.74 0.08 0.87 0.29 0.98 0.23 0.86 0.18
SG4 0.63 0.25 0.67 0.17 0.70 0.16 0.88 0.35 0.80 0.09 0.88 0.45 0.80 0.21 0.78 0.25
SG5 0.82 0.02 1.00 0.15 0.90 0.03 0.91 0.03 1.00 0.02 1.00 0.01 1.00 0.02 0.93 0.02
SG6 0.72 0.30 0.51 0.29 0.65 0.26 0.64 0.41 0.53 0.19 0.86 0.55 0.57 0.40 0.65 0.35
SG7 1.00 0.00 0.00 0.00 1.00 0.03 1.00 0.04 0.00 0.00 0.86 0.01 1.00 0.05 0.98 0.04
GCN 0.37 0.10 0.00 0.00 0.42 0.12 0.26 0.02 0.00 0.00 0.00 0.00 0.19 0.08
GRU 0.69 0.438 0.71 0.23 0.66 0.43 0.73 0.11 0.57 0.38 0.58 0.21 0.77 0.41

Table 4.11: Performance of my Architecture across all sub-graphs (SG1-SG7), for
forecasting horizon hz = 12 hrs and memory buffer mb ∈ {12, 24, 48}
hrs.

input buffer sizes can be considered as the best one globally, for all the
sub-graphs and models. In addition, it is obvious that by modifying
the number of the historical data could result in better results for each
model not only on an individual level but also in their transfer-ability.
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4.4.6 Hierarchical Model

The next step is to incorporate an ensemble learning module in the
architecture. This Hierarchical module aims to combine the results of
the previously trained and optimized model instances and essentially
act as a voting system. The goal here is to create the final strong
classifier which will benefit from the findings of all the weak classifiers,
gaining an even better precision with some trade-off from recall. To this
end, I aggregate the predictions produced by all models and validate
them against one sub-graph at a time. Considering that each of the
weak classifiers was trained on a different set of parameters as well
as a different part of my original data, they will all have a significant
contribution in the ensemble learning since they have adapted to learn
and predict unique patterns.

Figure 4.6: Hierarchical Model Architecture.

The architectural design of the Hierarchical model may vary depend-
ing on the forecasting horizon. The number of linear layers required in
order to reach the desired outcome generally increases as the model
tries to predict farther into the future. Once again, the Sigmoid activa-
tion function is applied at the end of the linear layers which provides
each of the antennas’ probability of becoming a hotspot.
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The training for this module requires less epochs than the weaker
classifiers, but also significantly less optimization. This time the
optimization process is limited to simply selecting the proper learning
rate for the model, optimize the training time and use the right amount
of neurons on each linear layer. Even with the addition of this procedure,
the entire pipeline is still well within the time constraints of the initial
goal. The results of the Hierarchical model will be shown in the next
section.
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5 Results

5.1 Final Pipeline Representation

In the end, all the previously mentioned modules and steps are
combined in order to form the final pipeline of the project as shown
in Figures 5.1, 5.2. Initially, the information is drawn from each
antenna individually depending on network traffic and is then passed
through the mobile network’s server to the Neural Network’s pipeline.
There, the data is processed. Once the data has been cleaned from any
occurring duplicate data points and the missing values are imputed,
the original graph is created followed by its partition into smaller
sub-graphs. The data is then passed on to the Neural Network and
the training process for each trainable sub-graph begins, optimizing
the model’s hyper-parameters until the results reach satisfying levels
with primary target the precision and secondary the recall. After the
complete training of all the weak classifiers, their output is passed
down to the Hierarchical model (strong classifier) in order to combine
the results. The trained and optimized strong classifier produces the
final output for the cellular hotspot prediction.
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Figure 5.1: System Architecture.
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Figure 5.2: Pipeline Architecture.
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5.2 Evaluation Results

In this section we will present the final results of the pipeline. First
of all we present the weak classifier results for different forecasting
horizons with various memory buffer sizes as shown in Table 5.1 , 5.2
and 5.3 as well as the performance of the baseline GCN and GRU
architectures. The final output of the pipeline which is the result of
the strong classifier provided by the Hierarchical Model is shown in
Table 5.4.

SG1 SG2 SG3 SG4 SG5 SG6 SG7 SG1−7 SG1−7

Pre Rec Pre Rec Pre Rec Pre Rec Pre Rec Pre Rec Pre Rec Avg Pre Avg Rec

m
b
=

12
h
ou

rs

SG1 0.82 0.31 0.76 0.15 0.86 0.27 0.83 0.23 0.79 0.08 0.88 0.44 0.84 0.30 0.84 0.25
SG2 0.94 0.03 0.82 0.08 0.88 0.02 0.83 0.04 0.78 0.02 0.96 0.05 0.74 0.08 0.83 0.04
SG3 0.89 0.18 0.76 0.05 0.80 0.19 0.85 0.24 0.54 0.05 0.83 0.25 0.82 0.19 0.82 0.17
SG4 0.84 0.15 0.73 0.17 0.65 0.13 0.83 0.09 0.55 0.07 0.92 0.36 0.60 0.11 0.78 0.19
SG5 0.76 0.18 0.45 0.08 0.76 0.17 0.70 0.21 0.58 0.11 0.61 0.08 0.71 0.19 0.67 0.25
SG6 0.62 0.17 0.48 0.06 0.52 0.05 0.78 0.19 0.43 0.06 0.94 0.36 0.75 0.32 0.72 0.16
SG7 0.87 0.09 0.81 0.04 0.84 0.12 0.86 0.15 0.50 0.02 0.87 0.23 0.91 0.16 0.86 0.12
GCN 0.37 0.10 0.00 0.00 0.42 0.12 0.26 0.02 0.00 0.00 0.00 0.00 0.19 0.08
GRU 0.61 0.13 0.56 0.17 0.54 0.40 0.67 0.48 0.46 0.41 0.73 0.18 0.54 0.47

m
b
=

24
h
ou

rs

SG1 0.86 0.25 0.60 0.05 0.81 0.16 0.92 0.15 0.68 0.04 0.86 0.20 0.96 0.19 0.85 0.15
SG2 0.67 0.00 1.00 0.04 0.83 0.03 0.83 0.01 1.00 0.01 1.00 0.02 0.00 0.00 0.91 0.01
SG3 0.83 0.23 0.50 0.06 0.77 0.22 0.86 0.21 0.61 0.09 0.83 0.25 0.91 0.25 0.80 0.19
SG4 0.74 0.24 0.63 0.21 0.71 0.16 0.83 0.34 0.66 0.10 0.79 0.43 0.69 0.16 0.75 0.24
SG5 1.00 0.00 0.57 0.03 0.00 0.00 0.73 0.03 0.88 0.02 0.00 0.00 0.00 0.00 0.67 0.01
SG6 0.62 0.11 0.88 0.07 0.80 0.10 0.87 0.13 0.49 0.04 0.95 0.33 0.98 0.19 0.83 0.14
SG7 1.00 0.03 0.00 0.00 1.00 0.03 1.00 0.05 0.00 0.00 0.83 0.04 1.00 0.07 0.96 0.03
GCN 0.37 0.10 0.00 0.00 0.42 0.12 0.26 0.02 0.00 0.00 0.00 0.00 0.19 0.08
GRU 0.63 0.51 0.38 0.29 0.33 0.41 0.62 0.48 0.41 0.39 0.62 0.36 0.48 0.59

m
b
=

36
h
ou

rs

SG1 0.83 0.33 0.72 0.25 0.79 0.27 0.91 0.30 0.68 0.11 0.87 0.49 0.82 0.26 0.82 0.29
SG2 0.81 0.03 1.00 0.04 1.00 0.02 0.74 0.05 1.00 0.01 0.94 0.07 0.73 0.03 0.85 0.04
SG3 0.94 0.13 0.57 0.06 0.84 0.13 0.93 0.15 0.62 0.08 0.85 0.20 0.89 0.16 0.84 0.15
SG4 0.87 0.23 0.71 0.14 0.82 0.15 0.85 0.37 0.60 0.08 0.87 0.44 0.91 0.21 0.84 0.24
SG5 1.00 0.01 0.83 0.01 0.67 0.01 0.78 0.01 1.00 0.02 0.63 0.01 0.50 0.01 0.80 0.02
SG6 0.69 0.44 0.58 0.24 0.68 0.20 0.77 0.33 0.64 0.11 0.85 0.46 0.70 0.33 0.72 0.31
SG7 0.86 0.17 0.87 0.07 0.83 0.11 0.99 0.19 0.75 0.34 0.82 0.16 0.99 0.17 0.90 0.23
GCN 0.37 0.10 0.00 0.00 0.42 0.12 0.26 0.02 0.00 0.00 0.00 0.00 0.19 0.08
GRU 0.72 0.45 0.51 0.31 0.57 0.38 0.64 0.41 0.43 0.35 0.19 0.07 0.38 0.34

m
b
=

48
h
ou

rs

SG1 0.82 0.27 0.71 0.12 0.83 0.19 0.94 0.22 0.71 0.09 0.84 0.29 0.90 0.19 0.84 0.20
SG2 1.00 0.01 0.89 0.04 0.50 0.01 1.00 0.01 0.40 0.00 0.95 0.09 0.70 0.02 0.86 0.03
SG3 0.89 0.22 0.65 0.06 0.85 0.17 0.93 0.21 0.74 0.08 0.87 0.29 0.98 0.23 0.86 0.18
SG4 0.63 0.25 0.67 0.17 0.70 0.16 0.88 0.35 0.80 0.09 0.88 0.45 0.80 0.21 0.78 0.25
SG5 0.82 0.02 1.00 0.15 0.90 0.03 0.91 0.03 1.00 0.02 1.00 0.01 1.00 0.02 0.93 0.02
SG6 0.72 0.30 0.51 0.29 0.65 0.26 0.64 0.41 0.53 0.19 0.86 0.55 0.57 0.40 0.65 0.35
SG7 1.00 0.00 0.00 0.00 1.00 0.03 1.00 0.04 0.00 0.00 0.86 0.01 1.00 0.05 0.98 0.04
GCN 0.37 0.10 0.00 0.00 0.42 0.12 0.26 0.02 0.00 0.00 0.00 0.00 0.19 0.08
GRU 0.69 0.438 0.71 0.23 0.66 0.43 0.73 0.11 0.57 0.38 0.58 0.21 0.77 0.41

Table 5.1: Performance of my Architecture across all sub-graphs (SG1-SG7), for
forecasting horizon hz = 12 hrs and memory buffer mb ∈ {12, 24, 36, 48}
hrs.
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SG1 SG2 SG3 SG4 SG5 SG6 SG7 SG1−7 SG1−7

Pre Rec Pre Rec Pre Rec Pre Rec Pre Rec Pre Rec Pre Rec Avg Pre Avg Rec

m
b
=

12
h
ou

rs
SG1 0.80 0.30 0.60 0.16 0.86 0.35 0.83 0.39 0.53 0.15 0.94 0.30 0.84 0.37 0.79 0.29
SG2 0.00 0.00 0.77 0.02 1.00 0.01 0.84 0.06 0.27 0.01 0.00 0.00 0.64 0.02 0.70 0.02
SG3 0.94 0.11 0.55 0.04 0.90 0.17 0.85 0.18 0.69 0.02 0.88 0.08 0.93 0.15 0.86 0.11
SG4 0.83 0.28 0.58 0.11 0.92 0.22 0.87 0.33 0.50 0.04 0.95 0.21 0.89 0.28 0.83 0.22
SG5 0.88 0.15 0.51 0.11 0.91 0.15 0.79 0.19 0.72 0.04 0.93 0.07 0.94 0.16 0.80 0.13
SG6 0.78 0.18 0.58 0.16 0.82 0.36 0.88 0.33 0.61 0.19 0.89 0.32 0.84 0.29 0.79 0.26
SG7 0.84 0.08 0.55 0.06 0.90 0.22 0.84 0.21 0.53 0.12 0.85 0.09 0.89 0.21 0.81 0.14
GCN 0.67 0.26 0.66 0.05 1.00 0.00 0.79 0.36 0.00 0.00 1.00 0.03 0.76 0.07
GRU 0.70 0.41 0.59 0.37 0.88 0.29 0.84 0.53 0.60 0.23 0.73 0.51 0.74 0.43

m
b
=

24
h
ou

rs

SG1 0.83 0.33 0.70 0.10 0.83 0.34 0.86 0.36 0.60 0.10 0.94 0.25 0.89 0.37 0.84 0.27
SG2 0.50 0.00 1.00 0.05 0.97 0.07 0.81 0.08 0.00 0.00 0.00 0.00 0.97 0.08 0.87 0.04
SG3 0.86 0.27 0.68 0.07 0.85 0.33 0.83 0.32 0.63 0.11 0.85 0.20 0.92 0.29 0.83 0.24
SG4 0.82 0.30 0.69 0.08 0.83 0.30 0.89 0.35 0.69 0.09 0.93 0.21 0.90 0.29 0.85 0.25
SG5 0.85 0.24 0.60 0.09 0.91 0.21 0.86 0.24 0.60 0.04 0.93 0.07 0.93 0.20 0.83 0.17
SG6 0.88 0.26 0.60 0.08 0.81 0.32 0.86 0.30 0.69 0.12 0.94 0.28 0.94 0.28 0.83 0.23
SG7 0.87 0.27 0.69 0.09 0.85 0.32 0.85 0.33 0.58 0.11 0.90 0.24 0.88 0.34 0.83 0.25
GCN 0.67 0.26 0.66 0.05 1.00 0.00 0.79 0.36 0.00 0.00 1.00 0.03 0.76 0.07
GRU 0.70 0.59 0.58 0.36 0.86 0.35 0.79 0.22 0.65 0.18 0.74 0.53 0.69 0.24

m
b
=

36
h
ou

rs

SG1 0.90 0.23 0.64 0.02 0.91 0.26 0.91 0.26 0.57 0.01 0.97 0.09 0.95 0.21 0.91 0.17
SG2 0.58 0.02 0.86 0.10 0.96 0.05 0.70 0.12 0.00 0.00 0.00 0.00 0.85 0.09 0.74 0.05
SG3 0.87 0.01 0.67 0.01 0.82 0.22 0.82 0.22 0.33 0.00 0.67 0.06 0.91 0.18 0.84 0.15
SG4 0.87 0.27 0.63 0.07 0.89 0.24 0.92 0.33 0.47 0.02 0.93 0.17 0.94 0.25 0.88 0.21
SG5 0.80 0.10 0.51 0.10 0.92 0.16 0.80 0.18 0.73 0.04 0.92 0.06 0.93 0.15 0.79 0.13
SG6 0.81 0.31 0.63 0.16 0.81 0.40 0.83 0.35 0.62 0.17 0.89 0.31 0.84 0.35 0.80 0.30
SG7 0.93 0.15 0.55 0.04 0.90 0.25 0.89 0.25 0.57 0.04 0.83 0.08 0.89 0.20 0.86 0.15
GCN 0.67 0.26 0.66 0.05 1.00 0.00 0.79 0.36 0.00 0.00 1.00 0.03 0.76 0.07
GRU 0.80 0.39 0.71 0.13 0.84 0.19 0.79 0.54 0.63 0.20 0.77 0.43 0.80 0.39

m
b
=

48
h
ou

rs

SG1 0.85 0.29 0.73 0.08 0.83 0.32 0.90 0.36 0.57 0.08 0.93 0.26 0.89 0.35 0.85 0.26
SG2 0.50 0.01 1.00 0.03 0.96 0.06 0.78 0.05 0.00 0.00 0.00 0.00 0.93 0.07 0.84 0.03
SG3 0.88 0.27 0.70 0.05 0.85 0.36 0.89 0.33 0.56 0.05 0.89 0.21 0.88 0.24 0.86 0.24
SG4 0.85 0.28 0.70 0.08 0.84 0.29 0.91 0.35 0.60 0.06 0.95 0.25 0.93 0.33 0.87 0.24
SG5 0.72 0.39 0.50 0.25 0.84 0.32 0.81 0.36 0.60 0.21 0.65 0.23 0.82 0.44 0.74 0.32
SG6 0.73 0.50 0.56 0.32 0.76 0.50 0.79 0.44 0.61 0.27 0.86 0.41 0.81 0.56 0.76 0.43
SG7 0.93 0.20 0.71 0.05 0.88 0.23 0.92 0.28 0.50 0.05 0.91 0.19 0.92 0.24 0.88 0.19
GCN 0.67 0.26 0.66 0.05 1.00 0.00 0.79 0.36 0.00 0.00 1.00 0.03 0.76 0.07
GRU 0.79 0.53 0.64 0.39 0.82 0.44 0.83 0.51 0.63 0.24 0.76 0.46 0.77 0.41

Table 5.2: Performance of my Architecture across all sub-graphs (SG1-SG7), for
forecasting horizon hz = 24 hrs and memory buffer mb ∈ {12, 24, 36, 48}
hrs.
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SG1 SG2 SG3 SG4 SG5 SG6 SG7 SG1−7 SG1−7

Pre Rec Pre Rec Pre Rec Pre Rec Pre Rec Pre Rec Pre Rec Avg Pre Avg Rec

m
b
=

12
h
ou

rs
SG1 0.80 0.22 0.59 0.15 0.80 0.23 0.81 0.24 0.50 0.05 0.84 0.15 0.92 0.20 0.84 0.18
SG2 0.00 0.00 1.00 0.09 1.00 0.04 0.81 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.89 0.05
SG3 0.93 0.13 0.54 0.03 0.89 0.13 0.85 0.16 0.61 0.01 0.81 0.02 0.93 0.10 0.85 0.09
SG4 0.85 0.21 0.73 0.08 0.93 0.13 0.86 0.11 0.49 0.02 1.00 0.09 0.93 0.07 0.84 0.13
SG5 0.85 0.06 0.74 0.04 0.84 0.05 0.70 0.05 0.71 0.06 0.75 0.03 0.91 0.06 0.77 0.06
SG6 1.00 0.03 0.68 0.02 0.78 0.07 0.89 0.09 0.91 0.03 1.00 0.08 0.86 0.11 0.85 0.07
SG7 0.80 0.03 0.54 0.02 0.86 0.13 0.80 0.19 0.69 0.05 0.84 0.08 0.96 0.17 0.84 0.08
GCN 0.80 0.14 0.47 0.04 0.77 0.03 0.64 0.17 0.00 0.00 0.51 0.07 0.61 0.01
GRU 0.80 0.19 0.38 0.08 0.71 0.15 0.70 0.17 0.53 0.14 0.66 0.20 0.59 0.23

m
b
=

24
h
ou

rs

SG1 0.81 0.36 0.59 0.05 0.83 0.33 0.83 0.35 0.61 0.05 0.88 0.14 0.86 0.32 0.82 0.25
SG2 0.71 0.02 1.00 0.04 0.87 0.11 0.77 0.03 0.72 0.03 0.82 0.01 0.92 0.06 0.81 0.06
SG3 0.83 0.28 0.70 0.02 0.81 0.31 0.83 0.27 0.66 0.04 1.00 0.12 0.94 0.04 0.88 0.19
SG4 0.81 0.21 0.84 0.05 0.92 0.14 0.94 0.27 0.64 0.03 1.00 0.12 0.95 0.04 0.92 0.13
SG5 0.81 0.21 0.70 0.12 0.86 0.16 0.81 0.21 0.90 0.13 0.87 0.16 0.88 0.29 0.81 0.20
SG6 0.83 0.31 0.71 0.06 0.88 0.29 0.80 0.29 0.74 0.08 0.96 0.22 0.95 0.24 0.85 0.22
SG7 0.92 0.20 0.65 0.05 0.88 0.24 0.82 0.28 0.68 0.23 0.95 0.10 1.00 0.23 0.88 0.17
GCN 0.81 0.11 0.40 0.05 0.70 0.00 0.60 0.22 0.00 0.00 0.00 0.00 0.63 0.02
GRU 0.78 0.20 0.40 0.22 0.70 0.11 0.74 0.09 0.63 0.07 0.70 0.17 0.61 0.19

m
b
=

36
h
ou

rs

SG1 0.85 0.18 0.65 0.01 0.89 0.19 0.88 0.17 0.77 0.01 0.90 0.08 0.90 0.18 0.88 0.14
SG2 0.68 0.01 1.00 0.07 0.90 0.28 0.72 0.07 0.00 0.00 0.80 0.03 0.85 0.04 0.81 0.10
SG3 0.85 0.02 0.77 0.03 0.80 0.17 0.79 0.16 0.77 0.01 0.80 0.05 0.92 0.15 0.80 0.11
SG4 0.90 0.22 0.76 0.04 0.91 0.18 1.00 0.26 0.69 0.01 0.96 0.13 0.98 0.21 0.90 0.14
SG5 0.80 0.21 0.60 0.11 0.88 0.16 0.84 0.21 0.91 0.04 0.86 0.15 0.80 0.21 0.81 0.16
SG6 0.80 0.35 0.68 0.20 0.88 0.28 0.81 0.31 0.71 0.13 0.87 0.31 0.86 0.32 0.82 0.28
SG7 0.84 0.05 0.70 0.06 0.89 0.18 0.81 0.16 0.75 0.08 0.88 0.04 0.99 0.25 0.84 0.11
GCN 0.76 0.14 0.41 0.03 0.64 0.01 0.61 0.09 0.00 0.00 0.00 0.00 0.00 0.00
GRU 0.79 0.22 0.59 0.30 0.73 0.04 0.00 0.00 0.00 0.00 0.68 0.12 0.64 0.20

m
b
=

48
h
ou

rs

SG1 0.79 0.16 0.70 0.02 0.84 0.21 0.93 0.20 0.68 0.02 0.89 0.18 0.83 0.14 0.80 0.11
SG2 0.00 0.00 1.00 0.02 1.00 0.03 1.00 0.01 0.00 0.00 0.00 0.00 0.67 0.03 0.91 0.02
SG3 0.84 0.23 0.73 0.01 0.81 0.32 0.84 0.27 0.66 0.03 0.90 0.14 0.89 0.17 0.81 0.16
SG4 0.87 0.20 0.74 0.05 0.83 0.22 0.92 0.29 0.66 0.03 0.92 0.23 0.90 0.30 0.84 0.20
SG5 0.00 0.00 0.00 0.00 0.80 0.06 0.89 0.09 0.90 0.18 0.00 0.00 0.00 0.00 0.83 0.10
SG6 0.80 0.14 0.79 0.05 0.80 0.29 0.81 0.25 0.71 0.20 0.90 0.19 0.87 0.24 0.81 0.19
SG7 1.00 0.16 0.78 0.03 0.91 0.15 1.00 0.23 0.00 0.00 0.89 0.13 1.00 0.21 0.92 0.16
GCN 0.62 0.03 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GRU 0.77 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.65 0.15 0.69 0.17

Table 5.3: Performance of my Architecture across all sub-graphs (SG1-SG7), for
forecasting horizon hz = 48 hrs and memory buffer mb ∈ {12, 24, 36, 48}
hrs.
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mb = 12h mb = 24h mb = 36h mb = 48h

Pre Rec Pre Rec Pre Rec Pre Rec

SG1 1.00 0.13 1.00 0.12 0.95 0.23 0.90 0.21
SG2 0.49 0.09 0.77 0.08 0.89 0.10 1.00 0.04
SG3 1.00 0.16 1.00 0.05 1.00 0.11 0.88 0.11
SG4 1.00 0.10 1.00 0.02 1.00 0.21 1.00 0.15
SG5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SG6 1.00 0.02 1.00 0.07 0.94 0.28 1.00 0.26
SG7 1.00 0.13 1.00 0.10 1.00 0.16 1.00 0.13

Table 5.4: Performance of the Hierarchical Model for SG1−7, for forecasting horizon
hz=12 hrs and memory buffer mb ∈ {12, 24, 36, 48} hrs based on aggre-
gated results across all seven sub-graphs.

The results from the weak classifiers, prove that the model’s transfer-
ability is, for the most part, steady across all tested memory buffer
sizes and forecasting horizons. However, no particular pattern can be
detected in the behavior of the model. One conclusion to be made is
that with a slight majority, most use-cases are performing better if
the forecasting horizon does not exceed the memory buffer in its input.
This was to be expected as the farther into the future the model is
trying to predict, the more information it should require. Another
observation is that in the forecasting horizon hz = 48 hrs there is a
noticeable and steady drop in the classifier’s recall metrics, as it is
getting harder for the classifier to detect patterns. As demonstrated in
Table 4.4, the RNN module has significantly larger contribution to
the results than its GCN counterpart. Stretching the horizon means
that the temporal dependencies will become scarcer and hence the less
desirable outcome.

Regarding model transfer-ability, I can now investigate how much it
can be influenced by the sub-graph similarity values shown in Table
4.9. For this research, two new variables are introduced, the Precision
and Recall Ratios. These ratios will be calculated for each model
instance, in order to estimate the difference of performance that the
each model has as it’s being applied to different sub-graphs. Then,
the Spearman correlation can be applied for the Precision and Recall
ratios against the similarity values in order to verify if this coefficient is
statistically significant. The results used for this test are non-optimized
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and the output will be expressed in the one-tailed p-value. The different
instances of the model have been named alphabetically.

A B C D E F G

Pre Rec Pre Rec Pre Rec Pre Rec Pre Rec Pre Rec Pre Rec

0.14 0.01 0.11 0.13 0.03 0.07 0.01 0.09 0.17 0.19 0.12 0.18 0.11 0.15

Table 5.5: Spearman Correlation Results.

It is known theory that if a p-value is below 0.1 it is considered
statistically significant and if it is below 0.05 it is highly statistically
significant. Therefore, as shown in the results of Table 5.5, in several
cases it is proven that having a low transfer-ability may have severe
impact in the model’s performance.

The conclusion drawn by the strong classifier results, is that in almost
all cases the target performance metric which is the precision of the
model is maximized. There are cases however where the strong classifier
fails to produce satisfactory results. Specifically, in the case of the
sub-graph SG5 we can see that the results are all zeroes. This can be
explained by the fact that in the results of the weak classifiers regarding
this sub-graph, even though the model achieved a high precision, the
recall of the model was significantly low. It was low enough that the
input passed down to the Hierarchical Model was extremely biased
towards the negative cases making it hard for the classifier to detect
patterns. This can also be explained via the similarity table 4.9, where
it is demonstrated that this particular sub-graph is the most dissimilar
compared to the others.

In cases where the strong classifier fails, the pipeline will select the
results of the weak classifier, in order to maintain stable performance
across all sub-graphs without having inconsistencies.
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6 Conclusions

6.1 Thesis Conclusion

This thesis presents a Neural Network architecture which is capable
of early detection of cellular hotspot cases by taking advantage of the
spatio-temporal dynamics exhibited by the the dataset consisting of
the cellular KPIs. The proposed architecture with ensemble learning
and the implementation of sub-graphs has the benefits of a timely
executed training process with large amounts of data, and the target
performance metrics of the model are higher than any other baseline
method it has been compared to, or other existing solutions regarding
this matter. The model has the capacity of forecasting on different
prediction horizons while maintaining its high accuracy and precision,
and in the meantime be almost invariant to the amount of input
historical data that is fed in its input.

Furthermore, it is shown that the model’s attribute of transfer-ability
through different graphs is relatively high considering the fact that
the implementation makes use of Graph Convolution Neural Networks.
This has the benefit of training and evaluating the model locally in
targeted areas of interest without having the need of using the entire
set of data which would significantly rise the time complexity. With
ensemble learning, incorporating an Hierarchical Model at the end of
the pipeline, the Network has the potential of maximizing its precision
metric with a small trade-off from recall by combining the results
provided by all the weak classifiers.

Even in some presented cases where the strong classifier fails to
produce a satisfying output in terms of precision, the pipeline will
choose the weak classifier instead which yields results always withing
the acceptable ranges. The final results provided show that regardless
of the sub-graph, the memory buffer size, or the prediction horizon,
the pipeline is capable of accomplishing the initial goal.
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6.2 Future Work

In future work, the implementation of a better graph partitioning
algorithm is suggested, one that could potentially create the sub-graphs
in a way that their similarities could reach minimum values, meaning
that the sub-graphs would be near identical. This is crucial since the
Graph Convolution Layers are known to make calculations by using
the structural information of the graph, which concludes that the less
similar the sub-graphs are, the less transfer-ability the model shall
have.

In addition, the model’s performance could increase by increasing
the quality of the input data. The mean imputation though efficient,
is not the most accurate algorithm for data imputation. In the last
few years, more advanced techniques have been developed such as the
Edge-To-Edge Generative Adversarial Network (E2GAN) from [30]
or the Bidirectional Recurrent Imputation for Time-Series (BRITS)
proposed in [31].

There might also be ways of improving the Neural Network’s perfor-
mance with a few changes in its architecture. Instead of implementing
an RNN to capture temporal dependencies, it is possible to apply
temporal convolutions. Based on their theory, temporal convolutions
have the ability to learn temporal patterns significantly faster than
any RNN and with a much larger receptive field. If dilation is applied,
that receptive field could become even larger, which counters not only
exploding/vanishing gradient problems for large historical data, but
also requires much less memory.

Finally, as discussed in previous sectors, this pipeline allows for
the application of hardware processing devices which would allow
the network companies to speed up the inference phase of the Neural
Network while also running it on edge. The idea would be to incorporate
a device
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Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio.
Learning phrase representations using RNN encoder–decoder for
statistical machine translation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language Processing
(EMNLP), pages 1724–1734, Doha, Qatar, October 2014. Associa-
tion for Computational Linguistics.

[22] Marco Gori, Gabriele Monfardini, and Franco Scarselli. A new
model for earning in raph domains. volume 2, pages 729 – 734 vol.
2, 01 2005.

[23] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann Lecun.
Spectral networks and locally connected networks on graphs. In In-
ternational Conference on Learning Representations (ICLR2014),
CBLS, April 2014, 2014.
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