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Abstract

In this Diploma thesis, we study the Logistic Regression (LR), which is a widely used

method for classification. We start by presenting the regularized LR cost function and

computing its gradient and Hessian. It is well known that the LR is a convex function.

Our main aim is to study the performance (convergence speed and solution accuracy) of

deterministic versus stochastic algorithms for the minimization of the regularized LR cost

function. First, we present two variants of the deterministic (full) gradient algorithm,

one with a “naive” step-size and one with backtracking line search. Next, we move to

the (Nesterov-type) accelerated full gradient algorithm. Then, we present variants of the

stochastic gradient descent with step-sizes computed by various methods. For example,

(1) by exploiting the strong convexity property of the regularized LR, (2) by using Armijo

line-search using only a subset of the data determined by the batch size, (3) by using an

ad-hoc line-search based on the angle of two successive stochastic gradients, etc. We test

the performance of the various algorithms by using synthetic data (linearly separable and

linearly non-separable). We observe that some stochastic variants (especially the variant

which exploits the strong convexity of the regularized LR) perform quite well during the

first epochs, while the accelerated gradient algorithms become more accurate after the

first epochs. In general, accelerated stochastic gradient-type algorithms are fast during

the first epochs but not very accurate. Thus, more sophisticated accelerated stochastic

algorithms must be pursued.
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Chapter 1

Introduction

1.1 Logistic Regression

The Logistic Regression is a supervised learning model used for classification (and not

regression analysis, despite its name). It is not uncommon to see the LR model used

as the activation function of a neural network end-node, to classify or infer on the final

outcome [8], [9].

From an optimization perspective, we view the LR cost function as a convex function,

which we must minimize [4]. Using techniques such as regularization, we augment the

cost function in order to improve the model’s accuracy [2], [3].

1.2 Purpose

In this thesis, we minimize the regularized Logistic Regression cost function using various

algorithms. Our aim is to determine which are most suitable for the solution of the problem

under different conditions. These conditions regard different categories of data (linearly

separable versus linearly non-separable), regularization parameter values and mini-batch

sizes. We test various line search methods and exploit cost function properties to improve

the convergence of certain algorithms.

1.3 Notation

Vectors are denoted by small bold letters and matrices are denoted by capital bold letters,

for example, x,X. Elements of vectors or matrices are denoted by small, non-bold letters

with appropriate sub-scripts, such as xi,j .

Sets are denoted by blackboard bold capital letters; for example, R denotes the set of

real numbers. Rn denotes the n-dimensional vector space of real numbers. The identity

matrix of size n × n is denoted by In (we omit the subscript n whenever it is clear from

the context).

The gradient of a differentiable function f : Rn → R is defined as

∇f(x) =


∂f(x)
∂x1
...

∂f(x)
∂xn

 .
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The Hessian matrix of a twice differentiable function f : Rn → R is defined as

∇2f(x) =


∂2f(x)
∂x2

1
· · · ∂2f(x)

∂xn∂x1

...
. . .

...
∂2f(x)
∂x1∂xn

· · · ∂2f(x)
∂x2

n

 .

The Euclidean norm of a vector x = (x1, x2, . . . , xn) is defined as

∥x∥ = ∥x∥2 =
√

x21 + · · ·+ x2n.

1.4 Thesis Outline

This thesis is organized as follows:

• In Chapter 2, we define the Logistic Regression cost function and compute its gra-

dient and Hessian.

• In Chapter 3, we present full gradient-type algorithms that are used for the solution

of our problem.

• In Chapter 4, we present variants of stochastic gradient algorithms for the solution

of our problem.

• In Chapter 5, we experimentally study the convergence characteristics of the algo-

rithms studied.

• In Chapter 6, we make conclusions about the algorithms studied and make remarks

on possible future work.
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Chapter 2

Problem Formulation

In this chapter, we define the Logistic Regression cost function and compute its gradient

and Hessian, which are used in the algorithms we shall study. Then, we characterize the

Logistic Regression cost function in terms of convexity.

2.1 Definitions

2.1.1 Hypothesis Function

The hypothesis function used for Logistic Regression is the Logistic Function. The name

is derived from its functionality, as it converts the logarithm of the odds (the log-odds) of

the two possible outcomes of our problem into probability [4].

To model these outcomes, we use a binary logistic model whose possible values are “1”

and “0”. These values can be considered as two different classes we try to fit the given

data x into or the probability that the given data belong in a particular class. We call

these values the labels of our problem and are represented by the binary variable y. We

show how these labels are derived, using the Logistic Function, in a following subsection

[15], [4].

The Logistic Function is the binary logistic model used to model the binary dependent

variable mentioned, or more accurately, to infer the probability that the data belong in a

certain class [15], [4].

Definition 2.1.1. The Logistic Function has the general form:

h(x) :=
1

1 + e−(wTx+w0)
=

e(w
Tx+w0)

1 + e(wTx+w0)
. (2.1)
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Figure 2.1: Plot of Logistic Function, where w = 1 and w0 = 0.
Data are represented by a 1-dimensional vector.

Figure 2.2: Plot of Logistic Function, where w = 1 and w0 = 0.
Data are represented by a 2-dimensional vector.
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2.1.2 Parameters

By parameters, we refer to a vector θ which we try to compute by minimizing the LR

cost function using iterative methods, such as the optimization algorithms we are about

to study.

Definition 2.1.2. We define the parameters of the problem as the augmented vector

θ := (w0,w), (2.2)

which contains the constant intercept w0 of the Logistic Function as well a weight vector

w. Without loss of generality, we will call vector θ the weight vector of the problem

[4].

In the end of the minimization procedure, the weight vector θ will contain the optimal

solution of the problem.

Definition 2.1.3. Having defined the weight vector θ, we define the simpler Logistic

Function form we study in this thesis:

hθ(x) :=
1

1 + e−(θTx)
, (2.3)

which is parameterized by θ.

The value of hθ(x) is considered to be the probability that the sample x belongs in the

first binary class and the value of 1− hθ(x) that it belongs in the other class.

2.1.3 Linear Classifier

Logistic Regression leads to a linear classifier. Linear classifiers are the classifiers whose

decision boundaries are hyperplanes [13].

Definition 2.1.4. The decision boundary for binary classification using LR can be com-

puted as:

hθ(x) = 1− hθ(x), (2.4)

meaning that the two classes have the same probability.

That leads us to

1

1 + e−(θTx)
=

e−(θTx)

1 + e−(θTx)
⇔ e−(θTx) = 1 ⇔ θTx = 0. (2.5)

Equation (2.5) defines the hyperplane that separates the two classes of our problem.

Thus, if θTx > 0, the model classifies sample x in the first class, otherwise, if θTx ≤ 0,

classifies it in the other class [13].
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2.2 Cost Function

In the last section, we talked about the function we use for classification. In order to

fit the data as accurately as possible, we must compute the optimal values of the weight

vector θ.

To find these values, we must use a cost function that maximizes the probability of the

odds that the samples belong in a certain class, in the sense that the probability inferred

by the hypothesis function maximizes the likelihood of these odds.

2.2.1 Definition

Definition 2.2.1. We define the cost function as

J(θ) :=
n∑

k=1

−ykθ
Txk + log

(
1 + e−θTxk

)
. (2.6)

This cost function is called the negative log-likelihood cost function or, as it is called in

machine learning literature, the (Binary) Cross-Entropy cost function [4].

The cost function in equation (2.6) is derived from the form [4]

J(θ) =
n∑

k=1

−{yk log(hθ(xk)) + (1− yk) log(1− hθ(xk))} . (2.7)

This form can be used to intuitively justify our choice of cost function, as shown be-

low. This choice can be further clarified by studying its probabilistic interpretation from

[4].

Since yk takes binary values, and without loss of generality, hθ(xk) also takes binary values,

we have that:

yk log(hθ(xk)) =

0, if yk = 1 and hθ(xk) = 1,

−∞, if yk = 1 and hθ(xk) = 0,

(1− yk) log(1− hθ(xk)) =

0, if yk = 0 and hθ(xk) = 0,

−∞, if yk = 0 and hθ(xk) = 1.

What we can interpret from the above is that this cost function takes very large, or

infinitely large, values if the inferred label hθ(xk) does not match the true label yk. By

minimizing this cost function, we are forced to find such inferred labels so that all the

data samples xk are as closely matched with the true labels yk as possible [4].
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2.2.2 Convexity

In this section, we prove the convexity of the cost function by proving that the two terms

that make up the cost function are convex.

From equation (2.6), we observe that the term

−ykθ
Txk (2.8)

is linear, thus, it is convex. In order to prove convexity for the cost function, we need to

further prove that the term

log(1 + e−θTxk) (2.9)

is also convex. To easier prove its convexity, we reform the cost function utilizing its form

in equation (2.7) as follows:

J(θ) =
n∑

k=1

−{yk log(hθ(xk)) + (1− yk) log(1− hθ(xk))}

=
n∑

k=1

−
{
yk

(
hθ(xk)

1− hθ(xk)

)
+ log(1− hθ(xk))

}

=

n∑
k=1

−
{
ykθ

Txk + log(1− hθ(xk))
}
, (2.10)

so we have that log(1 + e−θTxk) = − log(1− hθ(xk)) [4].

First, we compute the gradient of the function in equation (2.9), utilizing (2.10), as

n∑
k=1

∇[− log(1− hθ(xk))] =
n∑

k=1

−∇
[
log

(
1− 1

1 + e−θTxk

)]

=
n∑

k=1

−∇

[
log

(
e−θTxk

1 + e−θTxk

)]

=
n∑

k=1

−∇
[
−θTxk − log(1 + e−θTxk)

]
=

n∑
k=1

xk +∇
[
log(1 + e−θTxk)

]
=

n∑
k=1

xk +

(
−e−θTxk

1 + e−θTxk

)
xk

=

n∑
k=1

hθ(xk)xk. (2.11)
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The Hessian of the function in equation (2.9) is

n∑
k=1

∇2[− log(1− hθ(xk))] =

n∑
k=1

∇[hθ(xk)xk]

=

n∑
k=1

∇
[(

1

1 + e−θTxk

)
xk

]

=

n∑
k=1

(
1

(1 + e−θTxk)2

)(
−e−θTxk

)
xkx

T
k

=

n∑
k=1

(
1

1 + e−θTxk

)(
1− 1

1 + e−θTxk

)
xkx

T
k

=

n∑
k=1

hθ(xk)[1− hθ(xk)]xkx
T
k . (2.12)

Now we must prove that the Hessian in equation (2.12) is a positive semi-definite matrix

in order for the term in equation (2.9) to be convex. For any vector v ∈ RN

vT∇2[− log(1− hθ(x))]v =

vT [hθ(x)[1− hθ(x)]xx
T ]v =

(hθ(x)[1− hθ(x)])∥vTx∥2 ≥ 0, (2.13)

where the last inequality holds because

0 ≤ hθ(x) ≤ 1 =⇒ hθ(x)[1− hθ(x)] ≥ 0. (2.14)

Hence, the cost function is convex as a sum of convex functions.

2.2.3 Gradient of Cost Function

The gradient vector of the cost function has the following form:

∇[J(θ)] = −
n∑

k=1

ykxk + hθ(xk)xk =
n∑

k=1

xk (hθ(xk)− yk) . (2.15)

2.2.4 Hessian of Cost Function

The Hessian matrix of the cost function has the following form:

∇2[J(θ)] =
n∑

k=1

∇[−ykxk] +
n∑

k=1

∇[hθ(xk)xk] =
n∑

k=1

hθ(xk)[1− hθ(xk)]xkx
T
k . (2.16)
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2.3 Regularization

When minimizing a cost function, often noise is present in the data. By noise we refer to

actual noise in the data or samples which do not represent the properties of the majority

of samples. When using such data, the resulting weight vector dictates a more flexible

model for the problem but presents an added risk that the model can be easily susceptible

to errors when using less noisy data. In machine learning literature, this phenomenon is

called overfitting [3], [6].

By adding a regularization term to our cost function, we regularize the risk of this phe-

nomenon occuring during optimization, decreasing the flexibility of our model, by bound-

ing its ability to missclassify data samples. Smaller values for the regularization constant

λ make the model less flexible by penalizing samples that affect the model parameters

negatively. Larger values for the regularization constant λ make the model more flexible,

instead [6].

In our model, we use a regularization technique which uses the l2-norm of the weight

vector [6].

Definition 2.3.1. The regularization used in our model has the following form:

1

2
λ

n∑
k=1

θ2k =
1

2
λ∥θ∥2 = 1

2
λθTθ. (2.17)

2.4 Regularized Cost Function

When adding regularization to the cost function, we get the following form:

J(θ) =
1

n

n∑
k=1

J(θk) +
1

2
λθTθ

=
1

n

n∑
k=1

(
−ykθ

Txk + log
(
1 + e−θTxk

))
+

1

2
λθTθ. (2.18)

The gradient vector of the regularized cost function is

∇[J(θ)] = − 1

n

n∑
k=1

ykxk + hθ(xk)xk + λθ

=
1

n

n∑
k=1

xk(hθ(xk)− yk) + λθ, (2.19)

and the Hessian matrix of the regularized cost function is

∇2[J(θ)] =
1

n

(
n∑

k=1

∇[−ykxk] +
n∑

k=1

∇[hθ(xk)xk]

)
+ λI

=
1

n

n∑
k=1

hθ(xk)[1− hθ(xk)]xkx
T
k + λI. (2.20)
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2.5 Strong Convexity

As proven in section 2.2.2, we know that the cost function in equation (2.6) is convex, but

it may not be strongly convex. Adding the regularization term λθTθ, the cost function

becomes λ-strongly convex [18].

This is an important property, which we can be used to our advantage, since certain

algorithms make use of that property to improve their performance.
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Chapter 3

Full Gradient Algorithms

In this chapter, we present gradient descent based algorithms, where the gradient vector

is computed using the whole data-set D. Such algorithms are also called full gradient

algorithms. Data-set D is comprised of pairs (xi, yi), with xi being a data sample and yi

its label.

We start with the Gradient Descent algorithm and continue with more advanced algo-

rithms that make use of momentum and acceleration. We study their descent steps, derive

the best step-sizes and present their convergence rates. We present a simple method to

compute an upper bound for the Lipschitz constant L, which is used in the derivation of

the step-size of many algorithms. Lastly, we mention the improvements in performance

for these algorithms when optimizing µ-strongly convex cost functions.

3.1 Gradient Descent

Gradient Descent is one of the most notable, if not the most notable, of all optimization

algorithms, as it sees big usage because of its simplicity and robustness. It is a first-order

iterative method for optimizing differentiable cost functions by finding their local or global

minima. The algorithm was proposed long before the era of modern computers, generally

attributed to Cauchy, who first suggested it in 1847 [5].

As it was increasingly studied and used, it has led to numerous improved versions, as

needs shifted to other directions in the field of optimization. We must note that it is

the cornerstone of many first-order methods in optimization, as many notable algorithms

are variants of GD, by using its descent step in many different forms, to solve differently

formulated problems or to achieve better convergence rates.

3.1.1 Descent Step

The basic idea for the descent step of the algorithm is that we must take the steepest

descent step to the minimum, when optimizing convex functions. To make the steepest

possible descent in the direction of the minimum, we choose to take a step in the opposite

direction of the gradient of the cost function, that is −∇J(θ).

Definition 3.1.1. The descent step of the Gradient Descent algorithm is as follows:

θk+1 := θk − αk∇J(θk), (3.1)
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where αk is the step-size and ∇J(θk) is the gradient of the cost function in iterate k

[12].

3.1.2 Step-size

We can compute the optimal step-size for GD if we exploit some important properties of

the cost function. By the term optimal we refer to a step-size that can achieve the best

rate of convergence. We derive the following results in this subsection based on [3], [11]

and [17].

First, let us define L-smoothness for convex functions.

Definition 3.1.2. A (convex) function f is called L-smooth on the sample space X if, for

any x,y ∈ X, it holds true that

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥. (3.2)

If the function is twice differentiable, that is the Hessian ∇2f(x) exists on X, then equation

(3.2) is equivalent to

∥∇2f(x)∥ ≤ L, ∀x ∈ X ⇐⇒ |λmax(∇2f(x))| ≤ L, ∀x ∈ X. (3.3)

If we suppose that function f is L-smooth for some L, then for any x,y ∈ X, it holds true
that

f(y) = f(x) +∇f(x)T (y − x) +
1

2
(y − x)T∇2f(w)(y − x)

≤ f(x) +∇f(x)T (y − x) +
L

2
∥y − x∥2, (3.4)

for some w = λx+ (1− λ)y for 0 ≤ λ ≤ 1.

Using (3.4) and the GD descent step in (3.1), we obtain

f(xk+1) ≤ f(xk)− αk∥∇f(xk)∥2 +
Lα2

k

2
∥∇f(xk)∥2

= f(xk)− αk

(
1− Lαk

2

)
∥∇f(xk)∥2. (3.5)

Thus the function decrement is

f(xk)− f(xk+1) ≥ αk

(
1− Lαk

2

)
∥∇f(xk)∥2. (3.6)

The lower bound of the function decrement is positive if, and only if,

1− Lαk

2
> 0 ⇐⇒ 0 < αk <

2

L
, (3.7)

and is maximized for α = 1
L .
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From (3.3), we have

|λmax(∇2J(θ))| ≤ L, (3.8)

and given the convexity of the cost functon J(θ), we get

λmax

(
∇2J(θ)

)
≤ L =⇒ (3.9)

λmax

(
1

n

n∑
k=1

hθ(xk)[1− hθ(xk)]xkx
T
k

)
+ λ ≤ L, (3.10)

where λmax is the maximum eigenvalue of the term in parentheses.

Thus, the optimal Lipschitz constant Lk can be computed as follows:

Lk = λmax

(
1

n

n∑
k=1

hθ(xk)[1− hθ(xk)]xkx
T
k

)
+ λ, (3.11)

for each iterate k.

We derive the optimal step-size for each iteration of GD as follows:

αk =
1

Lk
=

1

λmax

(
1
n

∑n
k=1 hθ(xk)[1− hθ(xk)]xkx

T
k

)
+ λ

. (3.12)

Summarizing, in order to get the optimal convergence rate for the GD algorithm, the step-

size has to be the inverse of the Lipschitz constant of the function we try to minimize.

The cost function in equation (2.18) is Lipschitz smooth and we use this property in order

to get an optimal rate of convergence when we use GD for its minimization.

The step-size in equation (3.12) is used in other algorithms, as well, but the need to

recompute its value in every iterate k deems it very inefficient for many applications.

Thus, we seek to efficiently derive a less computationally intensive method to compute

that step-size. In the next subsection, we examine how we can derive a simple upper

bound for the Lipschitz constant L.

3.1.3 A Simple Upper Bound for the Lipschitz Constant

The data-set D remains unchanged for all iterations. Since xk is a rather large vector,

xkx
T
k is a rather large matrix to compute in each iteration. Moreover, calling hθ(xk)

in order to compute hθ(xk)[1 − hθ(xk)] in each iteration, adds a large overhead. Thus,

we observe that we make unnecessary, demanding, calculations to find the optimal Lk,

only because the parameters of the hypothesis function (weight vector θ) change in every

iteration.

We will use the formulation in equation (3.3) to derive a simple upper bound for the

Lipschitz constant L of the cost functon J(θ). Using this value to compute the step-size

we hope to get close to optimal convergence.
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Since 0 ≤ hθ(xk) ≤ 1, we have that

0 ≤ hθ(xk)(1− hθ(xk)) ≤
1

4
. (3.13)

Therefore we have that

0 ≤ ∇2J(θk) ≤
1

4n

n∑
k=1

xkx
T
k + λI. (3.14)

Hence, we can reformulate equation (3.11) as

Lk = L = λmax

(
1

4n

n∑
k=1

xkx
T
k

)
+ λ (3.15)

and the step-size can be reduced to

αk = α =
1

L
=

1

λmax(
1
4n

∑n
k=1 xkx

T
k ) + λ

. (3.16)

Utilizing this upper bound for the Hessian matrix, we reduce the computations needed

in each iteration, as we compute a simple upper bound for the constant L only one time

before running any algorithm.

3.1.4 Accuracy and Terminating Condition

In order to set a terminating condition for the algorithm, we must first define accu-

racy.

With the term accuracy, or solution accuracy, we refer to the magnitude of the difference

between the solution an algorithm converges to, as opposed to a predetermined solu-

tion.

Definition 3.1.3. We mathematically define accuracy at the k-th iteration as:

J(θk)− p∗, (3.17)

where θk is the optimal weight vector computed at the k-th iteration using any optimiza-

tion algorithm and p∗ is the solution to the problem.

To determine if an algorithm needs to be terminated, considering it has obtained a solution

of certain accuracy, we need to define a terminating condition that takes accuracy into

consideration. The target accuracy ϵ for any algorithm to attain for a problem, is set

according to the application’s particular requirements.

The terminating condition we used for GD is the following [12]:∥∥∥∥θk − θk−1

θk−1

∥∥∥∥ < ϵ. (3.18)
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If the above condition is met, essentially, the algorithm has reached a point where the

difference between two subsequent iterates of θ is insignificant, since it is below our target

accuracy ϵ. The extend in which the solution is accurate, or the solution error is small, is

determined by the value of the term in (3.18).

In the algorithms that follow, unless another terminating condition is stated, the term in

(3.18) is used as the algorithm’s terminating condition.

3.1.5 Convergence Rate

It can be proved [11] that, the convergence rate of GD for a cost function with an L-smooth

gradient is

J(θk)− J(θ∗) = O
(
1

k

)
. (3.19)

A sufficient condition to attain accuracy J(θk)− p∗ ≤ ϵ is to perform

k∗ = O
(
1

ϵ

)
(3.20)

iterations.

This rate of convergnece is referred to as sub-linear convergence.

3.2 Gradient Descent With Backtracking Line Search

This algorithm is a variant of the Gradient Descent algorithm that uses a backtracking

line search method to compute the step-size in each iteration.

3.2.1 Backtracking Line Search

Backtracking line search methods are used to grant a proper step-size for the descent step

of an algorithm, for every iteration. Such methods are particularly helpful when there

is no information available about the smoothness of a cost function or it is difficult to

compute a smoothness constant [3]. When using backtracking schemes, we are guaranteed

to make a descent step using the computed gradient [12].

Backtracking Condition

For this algorithm we use Armijo Backtracking Line Search [21], where the condition it

seeks to satisfy is as follows:

J(θ − ηk∇J(θ)) ≤ J(θ)− c · ηk∥∇J(θ)∥2, (3.21)

where hyperparameter c is used to modify how strict the backtracking condition is and ηk

is the step-size in iteration k.

We use a different notation for the step-size in this GD variant to distinguish it from the
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step-size α = 1
L , which is used in non-backtracking algorithms and remains constant across

iterations.

3.2.2 Algorithm

Algorithm 1 btGD Algorithm

repeat

while
(
J(θk − ηk∇J(θk)) > J(θk)− c · ηk∥∇J(θk)∥2

)
do

ηk = β · ηk
end while

θk+1 = θk − ηk∇J(θk)

until convergence

3.2.3 Parameters

Parameter c of the backtracking condition can be tuned to determine the aggressiveness

of the backtracking condition. With smaller values, the backtracking loop iterates more

times than with larger values, as in that case, the condition is easily met. Parameter c is

recommended to take values in the range (0, 0.5) for this algorithm [12].

Factor β determines how much the step-size is getting shrinked in every iteration. In

a way, it determines the speed of the algorithm as smaller step-sizes tend to slow down

convergence but are a good characteristic near the optimum, by means of accuracy. Pa-

rameter β in concordance with parameter c of the backtracking loop, can determine the

speed and degree of descent for each iteration. Parameter β is recommended to receive

values in the range (0, 1) for this algorithm [12].

3.3 Nesterov Accelerated Gradient

Before we introduce Nesterov’s algorithm, we must mention momentum-type gradient

descent algorithms. The general idea is to add a momentum factor to the descent step

in order to accelerate the descent itself, having confidence that the steps we choose to

make are in the proper direction [2], [7], [19]. This addition has the goal to accelerate

convergence, when comparing to GD, and to tackle any delays in the convergence caused

by the slope of the cost function, mainly in ill-conditioned problems [22].

3.3.1 Descent Steps of Accelerated Algorithms

Informally speaking, these methods use a momentum factor that makes the algorithm

take bigger descent steps in the opposite direction of the gradient of the cost function,

accelerating convergence. Most momentum algorithms use an intermediate vector v that

acts as the velocity of the current iterate, using an analogy of a ball going down a slope

(iterates descending down a convex function) [7], [19], [22].
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Simple descent steps for an algorithm of that type have the form

vk+1 = γvk − αk∇J(θk) (3.22)

θk+1 = θk + vk+1, (3.23)

where αk is the step-size for iterate k and the momentum factor γ is a predetermined con-

stant. Usually γ < 1, acting as a decay for the velocity vector, to mitigate for unnecessary

large descent steps in later iterates [2], [19].

Equivalently, for the sake of simplicity, we describe those steps in a single descent step as

follows [2]:

θk+1 = θk − αk∇J(θk) + γ(θk − θk−1), (3.24)

where we easily observe that the descent step of equation (3.24) is that of GD augmented

by the acceleration term (θk−θk−1) multiplied by the momentum factor γ. An algorithm

that incorporates this descent step is referred to as the Heavyball Method, credited to Boris

T. Polyak [5].

This formulation can further be used to describe a broader class of accelerated algorithms,

with the term acceleration loosely used to describe the usage of the term γ(θk − θk−1) in

their descent step.

3.3.2 Algorithm

Nesterov’s Accelerated Gradient algorithm is a full gradient algorithm that incorporates

a non-constant momentum factor [19]. It differs from the more basic momentum methods

in the sense that it first makes a descent step and then computes the gradient vector to

update weight vector θ, rather than the opposite [7].

Algorithm 2 NAG Algorithm

repeat

tk+1 =
1+
√

4t2k+1

2

θk = θ̃k − α∇J(θ̃k)

θ̃k+1 = θk +
(
tk−1
tk+1

)
(θk − θk−1)

until convergence

where α = 1
L is the step-size also used in GD, tk is the non-constant momentum factor

and y is an intermediate vector implementing the acceleration.

3.3.3 Convergence Rate

It can be proved [2] that, the algorithm’s convergence rate for a cost function with an

L-smooth gradient is

J(θk)− J(θ∗) = O
(

1

k2

)
, (3.25)
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and can be obtained in

k∗ = O
(

1√
ϵ

)
(3.26)

iterations.

It can be proved [2] that this is the optimal convergence rate a full gradient algorithm can

attain.

3.4 Strong Convexity Variants

It can be quite computationally expensive to derive the Lipschitz smoothness constant

L for the cost function’s gradient when dealing with rather large data-sets, as we have

already mentioned. The same is also true for the strong convexity constant µ when it is

not easily available, as it needs to be computed before running each algorithm.

We have proven that the regularized form of our cost function is strongly convex, with

the strong convexity constant being equal to the regularization constant, that is µ = λ.

Many full gradient algorithms use that property to further accelerate their convergence,

enabling them to obtain linear rates of convergence [1].

We can compute the term √
Q− 1√
Q+ 1

, (3.27)

where Q = L
µ = L

λ is the condition number of the problem, to use it as the momentum

factor of the descent step of NAG, in order to accelerate its convergence when minimizing

a strongly convex cost function [1], [19], [22].

The strong convexity constant µ has a constant value across iterations for our problem

formulation, but the Lipschitz constant L can change across iterations. With the method

of computing the upper bound of the optimal Lipschitz constant L, as we describe it in

subsection 3.1.3, we can avoid such expensive computations. If we do not use this method,

we not only need to compute Lk in every iteration, but we also need to recompute Q and

the term in equation (3.27).

We now introduce the version of NAG that uses the above to obtain faster convergence,

ommiting the diminishing momentum factor tk and replacing it with the term of equation

(3.27).

Algorithm 3 NAG Algorithm (Utilizing Strong Convexity)

repeat

θk = θ̃k − α∇J(θ̃k)

θ̃k+1 = θk +
(√

Q−1√
Q+1

)
(θk − θk−1)

until convergence

This variant is the one we use to gather experimental results in Chapter 5.
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The GD algorithm showcases improved performance when optimizing a strongly convex

cost function, without the need for any explicit changes in the algorithm.

3.4.1 Convergence Rates

Gradient Descent Utilizing Strong Convexity

The improved convergence rate of GD is

J(θk)− J(θ∗) = O

((
1− 1

Q

)k
)

(3.28)

and can achieve ϵ-accuracy in

k∗ = O
(
Q log

(
1

ϵ

))
(3.29)

iterations [11] [17].

This convergence rate is linear and is considered better than the sub-linear rate GD can

achieve for a non-strongly convex cost function.

Nesterov Accelerated Gradient Utilizing Strong Convexity

The improved convergence rate of NAG is

J(θk)− J(θ∗) = O

((
1− 1√

Q

)k
)
, (3.30)

and can achieve ϵ-accuracy in

k∗ = O
(√

Q log

(
1

ϵ

))
(3.31)

iterations [2].

This convergence rate is also linear.
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Chapter 4

Stochastic Gradient Algorithms

In this chapter, we study stochastic optimization algorithms. At first, we introduce the dif-

ferences between full gradient and stochastic gradient algorithms and how we approached

particular methods. We form the basis of our study on stochastic methods by introducing

Stochastic Gradient Descent and then we introduce variants that are based on it. We con-

tinue by studying backtracking line search variants and more advanced algorithms.

4.1 Preliminaries

4.1.1 Sampling

A typical implementation of the Stochastic Gradient Descent algorithm uses one random

sample in each iteration. Other variants make use of mini-batches, which are essentially a

fraction of samples from data-set D.

When referring to indexing or sampling, we mean that we get randomized indeces, thus

random data samples and their corresponding labels.

Definition 4.1.1. The sampling routine we used is as follows:

• We pick random indeces mbk = {ik1, ik2, . . . , ikmb} uniformly at random, from {1, . . . , n}

• We select the data samples {xik1
,xik2

, . . . ,xikmb
} from data-set D and their corre-

sponding labels {yik1 , yik2 , . . . , yikmb
}

where mb refers to the size of the mini-batch and k is the current iterate.

Data sample replacement is not one of our concerns and it does not affect the performance

of any algorithm.

4.1.2 Gradient Evaluations

One of the main reasons researchers shifted their interest towards stochastic algorithms is

their less computationally expensive iterations. Stochastic algorithm iterations tend to be

less expensive than their full gradient counterparts, due to the fact that they utilize less

data in each iteration. This simplifies computations, so less time is required for certain

computations, especially in rather large data-sets.

The downside is that, in order for stochastic algorithms to achieve the same accuracy as

full gradient algorithms, they need to run for more iterations. Since these iterations are not
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as computationally expensive, it is computationally feasible to run stochastic algorithms

for many more iterations than full gradient algorithms.

The problem that arises when comparing the performance of stochastic and full gradient

algorithms for a certain problem, is how to correctly calculate how many stochastic iter-

ations are needed to make a full gradient evaluation. When referring to a full gradient

evaluation, we mean the usage of the whole data-set to evaluate the cost function in an

iteration. In this sense, one must correctly calculate what fraction of the full gradient a

stochastic algorithm computes in each iteration, or equivalently, how many iterations are

needed in order to compute a full gradient of size n.

With this in mind, a simple stochastic algorithm that only uses one sample of the data

in each iteration must be run for n iterations to make a full gradient evaluation. When

using mini-batches, the algorithm makes a fraction of a full gradient evaluation, namely
n
mb , where mb is the size of the mini batch and n is the size of the whole data-set D.

4.1.3 Epoch

An epoch consists of n stochastic gradient evaluations or, in the case of mini-batching, n
mb

stochastic gradient evaluations. It is clear that, full gradient algorithms make one step in

every epoch. We use this framework to solve the problem mentioned when comparing full

gradient algorithms with stochastic gradient algorithms.

4.1.4 Stochastic Cost Function Form

We recall the regularized Logistic Regression cost function, in the full gradient setting:

J(θ) =
1

n

n∑
i=1

Ji(θ) +
λ

2
∥θ∥2, (4.1)

where each deterministic summand function Ji(θ) is associated with the i-th data pair

(xi, yi), n refers to the number of data pairs in D and the term λ
2∥θ∥

2 refers to the

regularization.

Definition 4.1.2. At the k-th iteration, the stochastic cost function is:

Ik(θ) : =
1

mb

∑
i∈mbk

Ji(θ) +
λ

2
∥θ∥2

=
1

mb

∑
i∈mbk

(
−yiθ

Txi + log
(
1 + e−θTxi

))
+

1

2
λθTθ, (4.2)

where we sum each random realization of the cost function Ji(θ) up to the size of the

mini-batch mb, and according to the selected random indeces mbk. Lastly, we add the

appropriate regularization term 1
2λθ

Tθ = λ
2∥θ∥

2.
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4.1.5 Unbiased Estimator

It can be proven [16] that, stochastic gradients are unbiased estimators of the full gradient,

that is

E[∇Ik(θ)] = ∇J(θ). (4.3)

4.1.6 About Convergence Rates

We only provide convergence rates for the Stocahstic Gradient algorithm and its strongly

convex counterpart. We study the convergence characteristics of the other algorithms in

experiments.

4.2 Stochastic Gradient Descent

4.2.1 Algorithm

The algorithm’s steps are similar to those of Gradient Descent, with the addition of the

sampling routine, for the computation of the stochastic gradient vector in each iteration.

Additionally, the formula for computing the step-size is different, incorporating a dimin-

ishing sequence [2].

Algorithm 4 SGD Algorithm

repeat

{ Run Sampling Routine }

tk+1 =
1

∥∇Ik(θk)∥
√
k+1

θk+1 = θk − tk+1∇Ik(θk)

until convergence

4.2.2 Step-size

It has been proven [2] that, for a fixed step-size, SGD converges in a neighborhood of the

optimal value but does not converge to the optimum. On the other hand, if the step-

size is appropriately decreasing, then, in expectation, the sequence of cost function values

converges to the optimum value. Thus, one can use a fixed step-size and try to converge

to the optimum but after some iterations the noise in the stochastic gradients will prevent

further progress.

To accommodate for this behavior, the step-size we choose for SGD has the following form

[2]:

tk =
1

∥∇Ik(θk)∥
√
k
. (4.4)
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4.2.3 Convergence Rate

The convergence rate of SGD is as follows:

E[J(θk)− J(θ∗)] = O
(

1√
k

)
, (4.5)

and accuracy ϵ can be obtained in

k∗ = O
(

1

ϵ2

)
(4.6)

iterations.

The algorithm’s convergence rate falls in the category of sub-linear convergence rates [2],

[20], [17].

4.3 Stochastic Gradient Descent Utilizing Strong

Convexity

As already mentioned, taking advantage of the property of strong convexity of a cost

function can improve the performance of an algorithm. As in the full gradient setting,

considering strong convexity in the design of a stochastic algorithm can positively affect

its convergence rate.

4.3.1 Algorithm

The descent steps for this variant of SGD are the same as the original algorithm. The

only step that changes is the update of the step-size, since this variant utilizes a different

step-size update rule.

Algorithm 5 SGDSC Algorithm

repeat

{ Run Sampling Routine }

tk+1 =
2

µ(k+1) =
2

λ(k+1)

θk+1 = θk − tk+1∇Ik(θk)

until convergence

4.3.2 Step-size

This variant’s step-size also incorporates a diminishing sequence in order to reduce variance

when near the optimum, in the same philosophy as its non-strongly convex counterpart.

The norm of the gradient vector in the denominator of the term has been replaced with the

strong convexity constant µ. To reiterate, in our problem the strong convexity constant

is equal to the regularization constant, that is µ = λ [2], [20].
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The step-size of SGDSC has the following form:

tk =
2

µk
=

2

λk
. (4.7)

4.3.3 Convergence Rate

As expected, like in the full gradient setting, when utilizing the strong convexity property

of the cost function, the convergence rate of the algorithm gets improved.

It can be proved [20] that, the convergence rate for the strongly convex variant of SGD is

as follows:

E[J(θk)− J(θ∗)] = O
(
1

k

)
, (4.8)

and accuracy ϵ can be obtained in

k∗ = O
(
1

ϵ

)
(4.9)

iterations.

This is also a sub-linear convergence rate, but is faster than that of SGD. Since the function
1
k converges faster than 1√

k
as k → ∞, the strongly convex variant convergences faster

than the original algorithm [2].

4.4 Stochastic Gradient Descent with Armijo Backtracking

Line Search

This algorithm is a variant of Stochastic Gradient Descent. Instead of using a constant or

decreasing step-size, it uses a backtracking line search routine to compute the step-size in

each iteration.

The majority of the material for this algorithm is from [21].

4.4.1 Backtracking Condition

Armijo backtracking line search is mainly used in the deterministic setting [12], as we have

seen it in the btGD algorithm in 3.2.1. It can be adapted to be used in the stochastic

setting as well, where the condition it seeks to satisfy is as follows:

Ik(θk − ηk∇Ik(θk)) ≤ Ik(θk)− c · ηk∥∇Ik(θk)∥2, (4.10)

where c < 1 is a hyperparameter used to modify how strict the backtracking condition is

and ηk is the step-size for iteration k.

The addition of the backtracking line search condition adds computational overhead to

the algorithm, compared to SGD or SGDSC, in the form of reevaluating the cost function

Ik, at least once and until the condition is met. It is important to note that these extra
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computations are made using the mini-batch scheme and no full function evaluations are

required.

4.4.2 Algorithm

Algorithm 6 SGD+Armijo Algorithm

repeat

{ Run Sampling Routine }

ηk = ηmax

repeat

ηk = β · ηk
θ̃k = θk − ηk∇Ik(θk)

until Ik(θ̃k) ≤ Ik(θk)− c · ηk ∥∇Ik(θk)∥2

θk+1 = θ̃k

until convergence

4.4.3 Parameters

The initial step-size value for each iteration can be set using any method available but, by

design, it is recommended to reset it to ηmax in every iteration. A recommended maximum

value for the step-size is ηmax = 1.

A recommended value for the step-size shrinkage factor is β = 0.8, for this particular

algorithm.

A recommended value for the parameter of the aggressiveness of the backtracking condition

in this particular algorithm is c = 0.1.

4.4.4 Step-size

Since this algorithm uses a backtracking line search method, the designers made some

assumptions for the maximum value that the step-size can take. In this way, the step-

size is constrained in a range properly set, so that the backtracking condition in (4.10) is

satisfied.

Having said that, the step-size ηk is constrained to lie in the range (0, ηmax] and satisfies

the following inequality:

ηk ≥ min

{
2(1− c)

Lk
, ηmax

}
, (4.11)

with Lk being the Lipschitz constant of the stochastic gradient for iteration k.

When information about smoothness is available, the initial step-size can be set as the

usual α = 1
L . In this case it is not, so with a sufficiently large ηmax value and c ≤ 0.5, the

step-size appears to be at least as large as 1
L .
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4.5 Stochastic Nesterov Accelerated Gradient with Armijo

Backtracking Line Search

In the same philosophy as we transitioned from GD with backtracking line search to its

counterpart in the stochastic setting, we continue with the study of a NAG-type stochastic

algorithm with Armijo backtracking line search. This is the corresponding stochastic

variant of NAG we studied in the full gradient setting, inheriting all of its benefits, while

extending its flexibility with the utilization of a backtracking line search scheme.

The majority of the material in this section is also from[21].

4.5.1 Algorithm

Algorithm 7 Nesterov+Armijo Algorithm

repeat

{ Run Sampling Routine }

ηk = ηmax

repeat

ηk = β · ηk
θ̃k = θk − ηk∇Ik(θk)

until Ik(θ̃k) ≤ Ik(θk)− c · ηk ∥∇Ik(θk)∥2

θk+1 = (1− τ)θ̃k + τθk

tk+1 =

(
1+
√

1+4t2k

)
2

τ = 1−tk
tk+1

until convergence

The descent steps of the algorithm can be simplified in the same way as in the full gradient

Nesterov algorithm, using the momentum term upper bound and by combining the terms

in the descent steps, without compromising the computed terms needed for the evaluation

of the backtracking condition.

4.5.2 Parameters

For this algorithm, the step-size update rule and initial value tuning, follow the same rules

as in the case of SGD+Armijo. To reiterate, the initial value for the step-size is recom-

mended to be ηmax = 1 and it is advised to be reset to that value in each iteration.

The shrinkage parameter of the step-size in the backtracking loop is recommended to be

set as β = 0.8, like in SGD+Armijo.

The aggressiveness parameter of the backtracking condition is recommended to be set to

a larger value than SGD+Armijo, in order for the backtracking loop to not have such

a strong effect on the shrinkage of the step-size. What this means is that, we tend to
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get faster convergence but accuracy near the optimum might suffer. This parameter is

recommended to be set as c = 0.5.

4.6 Random Adaptive Coordinate Descent Method

This algorithm is inspired by a random coordinate descent method of Nesterov. It intro-

duces a different backtracking scheme than the one we have studied thus far in the thesis.

Albeit the algorithm’s simplicity, it obtains good performance, comparable to that of the

other backtracking algorithms we studied, as observed in experiments.

The majority of the material is from [14], which introduces the line-search method.

4.6.1 Algorithm

Our slightly modified version of the algorithm, is as follows:

Algorithm 8 RACDM Algorithm

repeat

{ Run Sampling Routine }

while
(
∇Ik(θk) · ∇Ik(θ̃) < 0

)
do

θ̃ = θk − ηk · ∇Ik(θk)

ηk = 1
2 · ηk

end while

θk+1 = θ̃

until convergence

4.6.2 Backtracking Method

The backtracking method of RACDM, in every iteration k, searches for a gradient ∇Ik(θ̃)

that has an acute angle with ∇Ik(θk). It does so, in order to make a descent step in the

correct descent direction. Intuitively, it searches for a gradient and a step-size that do not

make the algorithm take a bigger descent step than needed and diverge to a point further

from the optimal point θ∗.

This backtracking method provides the algorithm with the same advantageous character-

istics such as other backtracking methods.
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4.7 Adaptive Moment Estimation Algorithm

This algorithm is designed to work with stochastic cost functions and is based on adaptive

estimates of their low-order moments to formulate its descent steps. Due to the fact that it

can solve problems with unknown cost function properties and that it can handle problems

with very large data-sets, it has been a very popular choice of optimizer for many machine

learning problems. It requires minimal hyperparameter tuning, in contrast to the back-

tracking methods mentioned above, and even with the proposed default values provides

good performance even for a problem such as regularized Logistic Regression.

The majority of analysis is based on [10], which introduces the algorithm.

4.7.1 Algorithm

Algorithm 9 ADAM Algorithm

{ Run Sampling Routine }

m0 = 0

v0 = 0

repeat t = 1, 2, . . .

mt = β1 ·mt−1 + (1− β1) · ∇Ik(θt−1)

vt = β2 · vt−1 + (1− β2) · (∇Ik(θt−1) . ∗ ∇Ik(θt−1))

m̂t =
mt

1−βt
1

v̂t =
vt

1−βt
2

θt = θt−1 − α ·
(
m̂t ./ (

√
v̂t + ϵADAM )

)
until convergence

4.7.2 Moment Estimates

The first moment estimate m refers to the mean. When we refer to the mean, we refer

to the mean of a distribution. When optimizing with ADAM, or any other algorithm, the

data distribution may not be available. Thus, we consider the distribution of the data to

be the collection of all stochastic gradients at each timestep t of the optimization process.

It is obvious that, we do not know the total distribution until the optimization process is

done. Hence, without loss of generality, we consider the mean to be zero asymptotically,

with the mean actually flactuating as it is being computed at each timestep t. Intuitively,

this means that we do not value positive gradients to be more probable than negative

gradients, and vice versa.

Considering the above, it seems unclear how we can compute the raw second moment

estimate v using the mean. From the definition of the variance, we can obtain it as the

expectation of the stochastic gradient at timestep t squared, since the mean equals to

zero. From the formulation of stochastic algorithms, we observe that this is actually the

stochastic gradient squared. Thus, the variance is nothing but the squared stochastic
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gradient at timestep t and is computed without explicit knowledge of any underlying

probability distribution.

4.7.3 Hyperparameters

Other than the step-size, the hyperparameters of ADAM consist of the exponential decay

rates for the moment estimates and a constant that helps avoid division by zero. All of the

default values discussed are said to be tested with machine learning problems and provide

good results. Thus, we use them for solving regularized LR, as well.

The exponential decay rates that are responsible for the scaling of the moment estimates

are β1 for the mean and β2 for the uncentered variance. The default values provided for

these hyperparameters are β1 = 0.9 and β2 = 0.999. Since β1 and β2 are in the range

(0, 1), the moment estimates are computed as convex combinations. During the estimation

process, the estimates generate a bias, which is corrected after their updates with m̂t and

v̂t, respectively.

These hyperparameters play the role of decay rates for the minimization of the moment

estimation terms and are parameterized by the timestep t. This is the reason that vari-

ance is introduced in later iterates in the sequence of cost function values produced by

the algorithm, since the moment estimates obtain very small values and fail to influence

the weight vector update (thus the cost function values), as much as in earlier stages of

convergence.

Hyperparameter ϵADAM is used as a means to avoid division by zero when the variance

estimate converges to zero. The default proposed value is ϵADAM = 10−8.

4.7.4 Step-size

The constant step-size α for ADAM essentially serves the same purpose as in the other

algorithms we have studied, but its actual value has a more important meaning.

If we assume that the hyperparameter ϵADAM = 0 and the estimate of the second moment

v is not zero, then the effective descent step for the algorithm is

∆t = α · m̂t√
v̂t

. (4.12)

Thus, the step-size has the following bounds:

|∆t| ≤ α · 1− β1√
1− β2

, when (1− β1) >
√

1− β2, (4.13)

|∆t| ≤ α, when (1− β1) <
√

1− β2, (4.14)

where the first case appears only when the gradient has been zero in all timesteps except

the current timestep, meaning cases that large sparsity exists in the gradient iterates. For

less sparse cases, the step-size, thus the descent step, will be smaller.



4.7. Adaptive Moment Estimation Algorithm 45

Lastly, we have that

|∆t| < α, when (1− β1) =
√

1− β2, (4.15)

since | m̂t√
v̂t
| < 1.

In most cases, we have that | m̂t√
v̂t
| ≈ ±1, since | E[∇Ik(θ)]√

E[∇Ik(θ).∗∇Ik(θ)]
| ≤ 1, hence, without loss

of generality, we conclude that the effective descent step of the algorithm is bounded by

the step-size as follows:

|∆t| ⪅ α. (4.16)

Intuitevely, the above bound offers a trust region for the current weight vector (parameter)

values, in which the gradient estimate provides sufficient and useful information in order

to effectively descent further. In that way, the step-size itself sets an upper bound for the

magnitude of the number of descent steps in which we can reach the optimal point θ∗,

from its initial values.

Therefore, it is obvious that, the proper selection of the step-size is crucial for the per-

formance of the algorithm and offers insight for its convergence characteristics, prior to

running it, more easily than the other algorithms studied. The proposed default value for

the step-size is α = 0.001.
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Chapter 5

Experiments

In this chapter, we study the behavior of the algorithms presented in this thesis. As

already mentioned, we are interested in the performance of the algorithms in different

conditions, as well as their convergence characteristics.

Preliminaries

The size of the data-set was set to be n×N , where n = 1000 is the number of data pairs

in data-set D, and N = 20 their dimensions.

The initial values of the weight vector θ0 are set as zeros, for all algorithms.

Regularization constant λ was set as λ = 0.01, as larger values give faster convergence,

but with lower accuracy, and smaller values give slower convergent algorithms with better

accuracy.

The target solution accuracy ϵ for our experiments is ϵ = 10−6, being a realistic target for

the algorithms and data-set tested.

The optimal point p∗ for each realization of the problem is computed by using the CVX

convex optimization tool.

We keep the number of iterations performed by the Gradient Descent algorithm as a

benchmark, to bound the maximum number of iterations all the algorithms will perform,

in order to eliminate favoring during their performance evaluation.

Lastly, in order to make convergence plots more readable, plot averaging was used, mean-

ing that the plot data provided were an average over 5 different realizations of the prob-

lem.

We keep all the above values constant across all experiments.

5.1 Data Types Considered

In this section, we visualize two simple cases of the problem in R2, for separable and

non-separable data, as an introduction to the two categories of data that we considered

during experimentation.
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5.1.1 Separable Data

To further clarify the term (linearly) separable data, we speak of data that can be separated

by a line on a two-dimensional plane. When studying problems of higher dimensions, that

separating line has the form of a separating hyperplane. Such data favor the performance

of linear classifiers such as LR, since they can easily infer on the hyperplane that can

distinguish the underlying data classes.

5.1.2 Non-Separable Data

What differentiates separable from non-separable data is the existance of a hyperplane

that can distinguish their classes. Non-separability can be an intrinsic characteristic of a

data-set or the result of the existance of noise in the data. In this case, it is impossible to

linearly separate the data, so misclassifications occur when data labels are inferred using

a linear classifier such as LR.

A hundred separable data points
(n = 100) on R2.

A hundred non-separable data points
(n = 100) on R2.

5.2 Data Creation

In this section, we formulate the method used for creating our pseudorandom data-sets

for each category of data considered during experimentation. To create our data-set D

in each experiment, we use normally distributed pseudorandom numbers. Data and label

pairs (xi, yi) are designed in a way that favors implementation, so we can make the data

non-separable, from separable, with the simple addition of more noise.

We choose a vector

µ = δ · 11×N , (5.1)

where δ is an arbitrarily chosen number and N is the dimension of the problem. This

vector will be vertical to the separating hyperplane of our binary classified data.
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We create n binary labels using pseudorandom numbers from the normal distribution and

the sign function as:

y = sign(Nn×1), (5.2)

with y = {y1, y2, . . . , yn}.

With that formulation, we get labels that take the values −1 and 1. With those labels,

we must use a differently formulated cost function.

In order for our labels to take the values 0 and 1, which are the labels our cost function

is designed for, we reformulate the label vector as:

y =
sign(Nn×1) + 1

2
. (5.3)

Using that formulation for y, we get labels that are compatible with our cost func-

tion.

Data-set D is created using the random labels y, multiplied by vector µ, with the addition

of random noise produced by a normal distribution as:

xi = yi · µ+ ϵnoise, (5.4)

where ϵnoise ∼ N (0, σ2I), with σ2 being the noise variance.

Choosing a small value for σ2, the data remain separable, as we can observe in subsection

5.1.1 for an example set in R2. Choosing a larger value makes the data non-separable, as

with the existance of significant noise, the data points no longer take values close to 0 or

δ, as we can observe in subsection 5.1.2, for δ = 2.
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5.3 Experiments with Separable Data for λ = 0.01.

5.3.1 Convergence Rates of Full Gradient Algorithms for Separable

Data

Figure 5.2: Full gradient algorithms convergence graphs for separable data.

Summary

From all the full gradient algorithms tested, we observe that NAG obtains the faster

convergence, in this and subsequent experiments. More accurate results are obtained

by btGD and GD, but in considerably more epochs, with GD being the slowest in our

experiments.
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5.3.2 Convergence Rates of Stochastic Algorithms for Separable Data

and Different Mini-batch Sizes

Figure 5.3: Stochastic gradient algorithms convergence graphs for separable data and
mini-batch size = 10.

Summary

For this case, we observe that SGDSC has the best performance, both in terms of speed

and accuracy. SGD has the worst performance, in terms of convergence speed and accu-

racy, compared to other algorithms. All the remaining algorithms in this graph seem to

obtain similar convergence characteristics, which can be more easily observed in the next

figure.
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Figure 5.4: Stochastic gradient algorithms convergence graphs for separable data and
mini-batch size = 10, bounded to 200 epochs.

Summary

In this graph, we focus on the first 200 epochs of the convergence of the algorithms. In this

case, the above remarks still hold true, but we can observe that from all the algorithms

that showcased similar performance, SGD+Armijo performance is comparable to SGDSC,

with the two being the most accurate. In these earlier stages of convergence, SGD remains

the least accurate and ADAM showcases slower asymptotic convergence than the other

algorithms.
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Figure 5.5: Stochastic gradient algorithms convergence graphs for separable data and
mini-batch size = 50.

Summary

From this experiment, with a larger mini-batch size, we can observe that previous observa-

tions do not hold true in their entirety. Although, the algorithm with the best convergence

is again the SGDSC algorithm, all the other algorithms have different behavior than with

the smaller mini-batch size. SGD is observed to be the least performant algorithm in

this case, too. RACDM, and the Armijo backtracking variants obtain relatively the same

accuracy, but RACDM is the fastest in earlier stages of convergence. ADAM is the slowest

of the algorithms in terms of asymptotic convergence, but obtains comparable accuracy

to the other algorithms in later epochs.
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Figure 5.6: Stochastic gradient algorithms convergence graphs for separable data and
mini-batch size = 50, bounded to 200 epochs.

Summary

In this graph, previous observations about the earlier stage of convergence are more promi-

nent. We additionally observe, that, SGD albeit being the worst in terms of accuracy,

achieves asymptotic convergence very fast and can be directly compared to the speed of

SGDSC, in that stage of convergence. Apart from ADAM, the other algorithms demon-

strate similar convergence characteristics, with RACDM being the fastest, as mentioned.

This puts RACDM to an advantage over ADAM and the Armijo variants when run for

200 epochs, since it obtains comparable accuracy to that of SGDSC in that case.
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5.3.3 Comparison Between Full and Stochastic Gradient Algorithms

for Separable Data

Figure 5.7: Comparison of convergence graphs of all algorithms studied for separable data
and mini-batch size = 10.

Summary

Comparing full gradient algorithms with stochastic gradient algorithms in the same num-

ber of epochs, we observe that stochastic algorithms converge faster, but full gradient

algorithms are more accurate. Only SGDSC obtains comparable accuracy with full gradi-

ent algorithms, except NAG. NAG achieves the best accuracy with speed comparable to

that of stochastic algorithms. Although, it is not a fair comparison for the other stochastic

algorithms since we utilize strong convexity in SGDSC and the full gradient variants.
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Figure 5.8: Comparison of convergence graphs of all algorithms studied for separable data
and mini-batch size = 50.

Summary

Utilizing a bigger mini-batch size, the accuracy of all stochastic algorithms is comparable

to that of full gradient algorithms. In addition, stochastic algorithms remain faster in this

case, although, most are observed to attain convergence speed close to that of NAG in the

earlier stages of convergence. Most stochastic algorithms are observed to obtain accuracy

close to that of the other full gradient algorithms in later epochs. The most accurate

algorithm remains NAG and obtains asymptotic convergence with comparable speed to

stochastic algorithms in this case, too.
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5.4 Experiments with Non-Separable Data for λ = 0.01.

5.4.1 Convergence Rates of Full Gradient Algorithms for

Non-separable Data

Figure 5.9: Full gradient algorithms convergence graphs for non-separable data.

Summary

In the case of non-separable data, full gradient algorithms present the same convergence

characteristics, but obtain slightly less accurate results than the separable data case, and

achieve those results in a larger number of epochs. The most performant algorithm is

NAG, which obtains even more accurate results in this case. GD and btGD present the

same convergence characteristics, as in the case of separable data.
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5.4.2 Convergence Rates of Stochastic Algorithms for Non-separable

Data and Different Mini-batch Sizes

Figure 5.10: Stochastic gradient algorithms convergence graphs for non-separable data
and mini-batch size = 10.

Summary

In this experiment, we observe some similar results with its separable data counterpart,

but the differences in accuracy between the algorithms are prominent. The best accuracy is

obtained by SGDSC and the worst from SGD. All the other algorithms have comparable

performance in all stages of convergence, with SGD+Armijo showcasing the next best

accuracy.
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Figure 5.11: Stochastic gradient algorithms convergence graphs for non-separable data
and mini-batch size = 10, bounded to 200 epochs.

Summary

Focusing on less epochs, we observe that the similarities between the algorithms’ conver-

gence characteristics previously mentioned are clearer in this plot. In this case too, most

algorithms have the same convergence speed in earlier epochs, with ADAM being the slow-

est. The accuracy of SGDSC and SGD+Armijo in earlier epochs is directly comparable,

with SGD+Armijo being slower.
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Figure 5.12: Stochastic gradient algorithms convergence graphs for non-separable data
and mini-batch size = 50.

Summary

In this case, it is important to focus on the improvement in accuracy for all algorithms

with the bigger mini-batch size, which is obtained in a similar number of epochs. SGD

remains the least performant algorithm. SGDSC has the best performance overall, with

the other algorithms obtaining comparable results.
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Figure 5.13: Stochastic gradient algorithms convergence graphs for non-separable data
and mini-batch size = 50, bounded to 200 epochs.

Summary

Focusing in the earlier stages of convergence, we observe that the algorithms do not present

the similarities they present asymptotically. SGD and its strongly convex variant SGDSC

are the fastest, but in the 200 epoch mark, obtain similar accuracy with all the other algo-

rithms, albeit them being slower in earlier epochs. ADAM remains the slowest converging

algorithm in earlier epochs, in the non-separable case.
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5.4.3 Comparison Between Full and Stochastic Gradient Algorithms

for Non-separable Data

Figure 5.14: Comparison of convergence graphs of all algorithms studied for non-separable
data and mini-batch size = 10.

Summary

As mentioned in the experiment with the full gradient algorithms, no algorithm obtains the

same accuracy in the case of non-separable data as that in the separable data experiments.

Contrary to the separable data case, we can observe that stochastic algorithms no longer

attain comparable accuracy to full gradient algorithms. Although, stochastic algorithms

remain faster than full gradient algorithms. The most favorable performance is that of

NAG, even if not being as fast as stochastic algorithms.
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Figure 5.15: Comparison of convergence graphs of all algorithms studied for non-separable
data and mini-batch size = 50.

Summary

Utilizing a larger mini-batch size, stochastic algorithms obtain better accuracy, but, in

this case too, is not comparable to the accuracy of full gradient algorithms. The faster

algorithms are observed to be the SGD variants and the most accurate algorithm is NAG,

with the other full gradient algorithms displaying similar accuracy. We can observe that,

like the separable data case, with a larger mini-batch size stochastic algorithms are slower

and their speed is comparable to that of NAG, in earlier epochs.
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Chapter 6

Conclusion and Future Work

In this thesis we studied various algorithms to solve the well established problem of reg-

ularized Logistic Regression. We defined the functions formulating the problem, derived

the cost function’s gradient and Hessian and studied its properties, in order to utilize them

to improve the performance of the algorithms studied. We studied and implemented full

and stochastic gradient algorithms, from the well known Gradient Descent to the more

complex ADAM algorithm, in order to study the differences in the convergence of these

algorithms. We performed various experiments to practically prove the theoretical results

of the algorithms studied, using frameworks such as mini-batches and regularization to

further illuminate the differences between the algorithms, as well as their advantages and

disadvantages.

Future work could be consisted of further experimentating with hyperparameters values,

other than their default values, more strict models by using smaller regularization con-

stants and more complex algorithms to study possible gains in performance.

Regarding regularization, we could completely change the regularization scheme to observe

the differences between the algorithms’ performance and resulting accuracy.

Another factor that could influence performance and accuracy, could be the terminating

condition in 3.1.4 we used in many algorithms. Choosing another terminating condi-

tion could lead to entirely different results in certain aspects of the algorithms’ perfor-

mance.

Other than tuning the algorithmic side of the problem, we could study methods such as

data reformulations or augmentations, to take advantage of certain characteristics that

may favor the performance of the algorithms, or even this specific formulation of the cost

function, in order to eliminate data-driven limitations.

Lastly, we could rewrite some of the algorithms studied in a more efficient manner,

mostly regarding the overhead that some steps may introduce to the optimization proce-

dure.
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