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Abstract

Microservices-based architectures become a very popular method to design cloud-based
containerized applications. Kubernetes is a container orchestration system for automating
software deployment, scaling, and management. The Kubernetes cluster consists of nodes
(VMs) and the microservices are placed in pods into the nodes.The default kubernetes
scheduler selects an optimal node to run newly created or unscheduled pods, but it does not
adapt to workload changes, so the default placement is static. Microservices (Pods) should
be placed in nodes, so that they are minimizing the infrastructure cost by minimizing
the egress traffic (traffic between nodes), the number of nodes and also the response
time. In modern applications due to high workloads, services need to run in multiple
instances to keep up with high traffic. In Kubernetes a Horizontal Pod Autoscaler (HPA)
automatically updates a workload (Service), with the aim of automatically scaling the
workload to match demand, but if starting from a sub-optimal placement (using the default
Kubernetes Scheduler) this solution can be sub-optimal overall. In this work we aim to
improve the initial placement of application services in Pods. The problem is handled
as a graph clustering one, to minimize the applications cost and the latency. Graph
clustering needs to be fuzzy, so it will allow pods to belong in more than one node. In this
thesis two microservice-based applications were deployed in the Kubernetes of the GCP
(Google Cloud Platform) to test the service placement solution, iXen an IoT application
and Google’s OnlineBoutique an e-shop application. The experimental results reveal that
the fuzzy placement solution can reduce the total response time of the application and the
total monetary cost compared to default kubernetes scheduler and with or without the use
of Kubernetes horizontal pod autoscaler.
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Introduction

Problem Definition

Nowadays,modern web applications tend change from monolithic architectures to
microservice-based architectures.Monolithic architectures can be faster to develop and
deploy than an application that uses microservices,however monolithic applications suffers
from lack of scalability and even for a minor change, the entire application must be
redeployed. In microservices approach each element can be scaled independently and the
entire process can be more cost and time effective than with monoliths.Also on-premises
infrastructures switches to microservices-base archtectures on the cloud to reduce the total
cost and make it easier to maintain and migrate applications. The continues evolution
of microservices-based applications brings the need for technologies that create, orches-
trate, maintain, observe, schedule, and manage microservices such as containerization
technologies, like Kubernetes. Kubernetes enabling a lightweight packing of services and
ease the deployment of applications across different types of infrastructures and manages
microservices-based applications.

It is important to know how the consumer is billed in the cloud. Cloud providers
charge on the number of reserved virtual machines, the resources of the machines (
CPU,Memory,Disk and Operating System) and the traffic between the virtual machines.The
advantages of high availability, vertical and horizontal scalability that Kubernetes offer
can easily result in high costs.High traffic between nodes placed in different regions and
additional virtual machines that are not necessary for the applications requirements can
increase infrastructure costs significantly.

Configuring a Kubernetes cluster is not a simple task, the scheduler need to place the
application services with high communication in the same node (VM) to optimize the
deployment of the application in the cloud and minimize the cost and response time.This
problem is referred to as the service placement problem (SP) and has raised concerns about
the optimal placement solution of an application’s services into a Cloud infrastructure’s



virtual machines. Controlling which VM each service is hosted on reduces the overall
number of VMs required for the application as well as total egress traffic, minimizing the
total monetary costs of the infrastructure.

Scope of the Thesis

The scope of Thesis is to reduce the nodes needed to place our application microservices ,
the egress traffic between the nodes (VMs) and the response time of the application requests
by solving the Service Placement problem using a fuzzing partitioning technique and also
analyze the effect of Kubernetes Horizontal Pod Autoscaler (HPA) on that technique.We
can partition the application services using graph partitioning method by modeling the
application as a graph that represents services as graph-nodes and traffic between services
as edges.These algorithm aim to create the best possible partitions, allowing services
with high traffic rates to coexist in the same partition in our application graph. The
amount of traffic transferred between the VMs in the infrastructure, or "egress traffic,"
is decreased when these services are placed in the same partition.In contrast to other
placement algorithms which are flat, a fuzzy placement enable placing several instances
of particular services in various nodes (VMs).The workload of each service replica is
decreased when more than one instance of the service (replicas) is deployed in the cluster
by distributing the incoming requests across the replicas,as a result, requests are processed
more quickly, leading to quicker application response times.

Although the fuzzy placement requires more pods to host the application services due
to the fact that more than one instance can be placed in different nodes, the bin packing
method we apply to the graph partitioning result distributes the services in VMs based on
the partitioning results, the traffic between services, and the available VM resources.As
a result, the use of VM resources is optimized, and the number of VMs required to host
the application could be decreased. This reducing the monetary cost of the infrastructure
without raising the application response time significantly.

In addition, in this Thesis the placement solution was automated unlike other works where
Placement is done manually by the users.When the algorithm outputs the final service
placement, the services migrate and/or replicate on the appropriate Nodes automatically
without requiring any user intervention.

Contributions

Below is a summary of the present work’s contributions.
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• Introduce a service placement algorithm that automates the service (Pod) migration
between the nodes

• Compare the fuzzy service placement to the default Kubernetes service placement
and other flat service placements

• Compare the impact of HPA on service placement strategies

Thesis Structure

This Thesis is organized in 4 main chapters including the Introduction.In chapter 1 the
Thesis background and related work is presented including the background work related
to the service placement problem, and the related algorithms used in our solution. The
theoretical background of Kubernetes environment and the features of kubernetes like
Horizontal Pod Autoscaler are presented in Chapter 2 of this thesis as well as the tools to
produce the application graph and stress the applications in our experiments.Chapter 3
includes the architecture of the kubernetes cluster , the affinity metrics for the communica-
tion evaluation and the Horizontal Pod Autoscaler.Furthermore this chapter presents the
proposed placement strategy ,and the algorithm that is automating the Service Placement
solution.Also this Chapter includes a presentation of the applications used in our experi-
ments.The experiments conducted to evaluate the effectiveness of the suggested placement
method with and without the use of Kubernetes Horizontal Pod Autoscaler compared with
the default Kubernetes scheduler , a flat placement solution and a Heuristic single-step
processing algorithm proposed by related works are presented in the thesis final chapter 4.
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Chapter 1

Background and Related Work

This chapter’s first section will include some background information and a review of
previous research in the area of service placement problem.The definition of flat and fuzzy
clustering and an introduction to relevant research and algorithms that were modified
and applied in this Thesis to provide our solution to the service placement problem are
presented in the second section of this chapter.

1.1 Related Work on Service Placement

In “Improving microservice-based applications with runtime placement adaptation” [1]
authors suggest a heuristic strategy to move services with higher affinity (high traffic
communication rates) in order to optimize service placement in the current infrastruc-
ture.The suggested algorithm, a Heuristic First-Fit version algorithm, computes a new
placement for the application services by accessing the cluster Nodes and Pods’ resource
utilization as well as the cluster’s available host machines.In this version of algorithm, the
First-Fit reorganizes the microservices in the cluster’s available host machines (VMs) so
that microservices with high affinity are co-located, while taking into account microservice
resource utilization and host resource availability.The proposed algorithm improved the
infrastructure monetary cost but, it can significantly increase the response time. Recent
research by Aznavouridis, Tsakos, and Petrakis [2] aimed to solve the Service Placement
issue with the goal of lowering the infrastructure’s overall monetary cost.They used a
weighted, directed graph to describe the application, using two distinct affinity metrics that
focused on the number of requests made to each service (Requests Per Second ) and the
amount of data transferred between them (Weighted Bidirectional Affinity). A Kubernetes
cluster with a predetermined number of available nodes was used to perform all the experi-

10



1.2. Related work on Clustering

ments,which experiments were performed on real applications.In this work they examined
a variety of different flat graph partitioning algorithms that produced graph partitions with
the least amount of communication feasible across partitions before passing the partitions
to the placement algorithm, which placed the services in the available nodes.Furthermore
they also examined a non-clustering algorithm, the Heuristic First-Fit [1] as mention before.
The graph partitioning algorithms used in this work [2] are flat, and their final placement
limits each service to a single instance.

In “Service deployment strategies for efficient execution of composite SaaS applications
on cloud platform” Huang and Shen [3] developed a service deployment strategy that
decreases application response times but their proposed approach did not attempt to reduce
infrastructure cost for the application.They used a graph to represent communication costs
and service parallelism in order to model the application, then they applied a minimum
k-cut to the modeled graph.On Amazon’s cloud architecture, they conducted experiments
for four service deployment methodologies. All the experiments were conducted on a
single virtual machine (VM) without the use of Kubernetes.

1.2 Related work on Clustering

The purpose of cluster analysis or clustering is to organize a collection of objects into
groups that are more similar (in some ways) to one another than to objects in other groups
(clusters).Cluster analysis is a general problem to be solved, not a particular algorithm.
Different algorithms that have quite different ideas of what clusters are and how to find
them effectively can accomplish it.The aim of optimal clustering is to place items with
the greatest degree of similarity in the same clusters and items with the least degree of
similarity in different clusters.

An analysis of clusters may be flat (hard) or fuzzy (soft).A point can either belong to or
not belong to a subset according to flat clustering, which means that the subsets of a set
are mutually exclusive.Flat clustering methods that will be used in this work is Heuristic
first fit, and bisecting K means (Algorithms in section 1.3). On the other hand a clustering
method known as fuzzy clustering assigns one data or object to one or more clusters. In
this work we are using MODSOFT who is a fuzzy clustering method (Algorithm in section
1.3).

Cannon, Dave, and Bezdek, in 1986 [4], extended the work of Dunn [5] on the Fuzzy
c-Means (FCM) algorithm, it can be used if the objects of interest are represented as points
in a multi-dimensional space and is the most well-known fuzzy clustering algorithm.By
attempting to minimize the objective function, the FCM algorithm, which is very similar

11



Chapter 1. Background and Related Work

to the k-means algorithm, generates a matrix wij that indicates the extent to which element
xi belongs to cluster cj .

Fuzzy Partitioning

In the graph partitioning problem, which is a modified clustering problem, nodes are
divided into graph partitions, which are smaller groupings of nodes.We can make the
analysis of a graph simpler by dividing it into smaller partitions.Flat (or hard) partitioning
and fuzzy (or soft) partitioning are the two types of graph partitioning.Producing flat
partitions of a graph means that each node belongs to exactly one partition. Fuzzy
partitioning, on the other hand, encodes ambiguities in node-to-partition assignments
since each node is awarded a membership grade to each fuzzy partition.

The FCM algorithm [4] expanded by Yan and Hsiao [6] to address the issue of graph
bisection.A graph is partitioned into two divisions in the graph bisection problem so that the
weights of the edges connecting these two partitions are optimized.Their approach provides
a feasible fuzzy graph partition of the vertex set V by iterative optimization of the objective
function J(U, v).The first stage in their algorithm is to define the clustering distance matrix
dij , which is defined as the weight of edge wij if there is a direct edge between vertex vi
and vertex vi, or the shortest path between the two vertices if no such edge exists.Then,
two arbitrary divisions of the vertices are initialized to create a fuzzy matrix U .The fuzzy
U matrix is a n× 2 matrix, where n is the number of nodes and represents the degree of
membership of each service to each of the 2 initialized partitions.In each iteration, the
objective function is minimized to determine two partition centers. The Fuzzy U matrix is
then updated by calculating a degree of membership based on the distance between each
vertex and the center of the partition.After the Fuzzy U matrix converges, the iteration
ends, and the matrix outputs the degree of memberships for each vertex to each partition.
Finally, after sorting the vertices into groups, all vertices will be split into two even subsets
with a minimal cut for graph bisection.

1.3 Related Algorithms

Flat Clustering Algorithm

The algorithms that will be utilized during the implementation phase will be described and
analyzed briefly in this section.

12



1.3. Related Algorithms

Heuristic First-Fit

As we mentioned before Sampaio et al. [1] propose a heuristic approach to optimize
service placement and minimize the monetary cost of the infrastructure by migrate services
with higher affinity on the same node (VM).The Heuristic First Fit ( presented in algorithm
1) iterates across affinities in descending order and attempts to co-locate microservices
with higher traffic communication rates on the same host machine.In line 5 for every
pair of affinities and for each corresponding pair of microservices mi, mj the algorithm
in lines 10-13 tries to assign mj onto the host of mi, (Hi) since they are connected by
an affinity.If Hi lacks sufficient resources, the algorithm attempts to place mi on the
host of mj , (Hj) (lines 14-17). If neither host has sufficient resources to co-locate mi

and mj , these microservices will remain at their original hosts.When a microservice is
transferred to a new host, it is recorded as moved and cannot be moved again, even if it is
linked to another service in the application with lower affinity traffic rates (lines 19-21).
Finally, a list of movements (Final Placement) with microservice IDs and new locations
is constructed.This algorithm does not guarantee that the list of movements generated is
optimal for a given cluster of microservices.

Algorithm 1 Heuristic First Fit [1]
1: Input: Hosts (H), microservices (m), resources (r)
2: Output: Placement Solution
3: moved← [ ]
4: //Affinities are sorted in decreasing order
5: for every pair of affinities do
6: mi ∈ Hi // mi located at host Hi

7: mj ∈ Hj // mj located at host Hj

8: mj ̸=mi, Hj ̸= Hi

9: hasMoved← False
10: if r(mi) + r(mj) ≤ r(Hi) ∧mj /∈ moved then
11: Hj ← Hj - mj

12: Hi← Hi ∪mj

13: hasMoved← True
14: else if r(mi) + r(mj) ≤ r(Hj) ∧mi /∈ moved then
15: Hi← Hi - mi

16: Hj ← Hj ∪mi

17: hasMoved← True
18: end if
19: if hasMoved then
20: moved← moved ∪ [mi, mj]
21: end if
22: end for

13



Chapter 1. Background and Related Work

Bisecting K-Means

Based on the K-Means algorithm, Bisecting K-Means is a divisive hierarchical clustering
algorithm [7].Given a data set, the algorithm uses the K-Means algorithm to choose the
two best fit sub-clusters to divide the data points into. All of the available data points are
initially assigned to a single cluster.Sum of Squares Error (SSE) is determined for each
iteration in order to quantify the inter-cluster dissimilarity and thereafter choose the next
centroids. In lines 4-12 the proposed sub-cluster is then chosen and split into two new
sub-clusters based on the SSE and this procedure is repeated until the algorithm generates
K clusters in the desired number, which is determined by the users’ input.The algorithm
creates a binary clustering hierarchy, however it may not reach the global optimum because
of how the initial centroids are chosen.The Bisecting K-Means algorithm is shown in 2.

Algorithm 2 Bisecting K-Means [7]
1: Input: Cluster C, number k of desired clusters
2: Output: k Clusters of Application
3: i← 1
4: while i < k do
5: Select a parent cluster, C to split
6: for fixed number of iterations do
7: Use K-Means to split C into C1 and C2

8: Calculate inter-cluster dissimilarity for C1 and C2

9: end for
10: Select the sub-clusters with highest inter-cluster dissimilarity
11: i← 1 + 1
12: end while

Fuzzy Clustering Algorithms

Modularity-based Graph Clustering

Hollocou, Bonald, and Lelarge [8] propose in their work a modification of the modularity
optimization issue that Newman and Girvan first proposed [9], witch it has a large-scale
usage in community detection in big networks.A function called modularity measures how
well a graph is partitioned and it is described as the difference between the likelihood
that two randomly chosen graph nodes will be placed on the same partition as well as
the likelihood that two nodes of graph G will be on the same partition.The modularity
function introduced by Newman and Girvan [9] is known as hard modularity, whereas the
MODSOFT [8] algorithm is relaxation of the modularity maximization problem, results in
fuzzy partitions.

Contrary to other proposed relaxation algorithms, the proposed algorithm (Listing1.1)
does not require prior knowledge of the number of potential clusters.It is efficient because
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1.3. Related Algorithms

it doesn’t need to process the entire network because any particular node’s membership
information only depends on its immediate neighbors.By updating the t parameter, the
algorithm can produce soft or hard partitions.

The weighted average vector p is initialized as the weighted degree of each node, and
the membership matrix (n by n matrix) is initialized as a one’s matrix (I) during the
initialization phase of the algorithm.The membership matrix displays a number between
0 and 1 that represents the probability that each node (matrix row) belongs to the same
partition as another node (matrix column).

The following stages can be used to describe one epoch of the MODSOFT algorithm.
In line 1 as an update rule for the membership of each node, a gradient descent step is
performed for each node.The algorithm’s gradient descent phase is local, as it only uses
the neighbors of each node to update the node’s membership and attempts to maximize
modularity. In line 2 a projection is performed and finaly in line 3 the weighted average
vector p is updated. Each epoch represents an algorithm iteration, and at the end of each
iteration, the modularity is computed, evaluating the partitions’ optimality.The algorithm
is repeated until the modularity growth falls below a predetermined threshold.The mem-
bership matrix is the final result of the MODSOFT algorithm, with each cell representing
the probability of the row-node being in the same partition as the column-row.

Listing 1.1. MODSOFT Algorithm [8]

◦ Initialization : p← I and p← w/w.
◦ One Epoch: For each node i ∈ V ,

1: ∀k ∈ suppi(p), p̂ik ← pik + t′
∑

j∼i Wij (pjk − p̄k)

2: p+
i. ← project (p̂i.)

3: p← p+ (wi/w)
(
p+
i. − pi.

)
and pi. ← p+

i. .

Placement Algorithms

Bin-Packing Problem

The bin packing problem is an optimization problem, in which items of different sizes
must be packed into a finite number of bins or containers, each of a fixed given capacity, in
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Chapter 1. Background and Related Work

a way that minimizes the number of bins used [10][11]. The problem is computationally
NP-hard, and the equivalent decision problem is NP-complete. Despite its worst-case
hardness, advanced algorithms such as the first-fit algorithm, which provides a rapid but
often non-optimal solution, can produce ideal solutions to very large instances of the issue.
In practice, bin packing happens when items can share space when packed into a bin. In
particular, a collection of items may take up less space when packed together than the
total of their individual sizes. This variation is known as Virtual Machine (VM) packing
because when virtual machines are packed in a server, their overall memory and CPU
requirements may drop due to shared pages that only need to be saved once. If items can
share space in any way they like, the bin packing problem is difficult to even approach.
However, if the space sharing fits into a hierarchy, as in virtual machine memory sharing,
the bin packing problem can be easily approximated.

Heuristic Packing

Aznavouridis, Tsakos, and Petrakis [2] proposed a Heuristic Packing algorithm, witch is
a placement finding algorithm that can be thought of as a multi-dimensional bin packing
challenge.The algorithm takes the created partitions as input and attempts to arrange each
partition in one of the available host machines (VMs) using two greedy heuristics to find
the optimal placement.The Most-Loaded Situation (ml), which is a scalar value of the load
between the available resources in the host machine and the requested resources from the
currently processing part, and the Traffic Awareness (tf), which is the sum of the traffic
rate between the services in the current processing part and the already processed partition
services.The Most-Loaded heuristic prioritizes the machines in which services will be
placed when Traffic Awareness factors are equal.Heuristic Packing is shown in algorithm 3
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Algorithm 3 Heuristic Packing algorithm
1: Input: Partition P = (S1, S2...SN ) of application, vectors of available resources on

each machine V = (V1, V2...VM )
2: Output: a placement solution X
3: Calculate vectors of resource demands of each part a (D′

1, D′
2...D′

N )
4: X← [xij = 0] for every part and host machine
5: for i← 1; i ≤ N

′; i++ do
6: tf← 0, ml← 0, y← 0
7: for j← 1; j ≤M; j++ do
8: if part Si can be packed into machine mj then
9: tf←

∑
tuv

10: ml←
∑R

k=1
d
′k
i

vkj

11: if tfj ≥ tf then
12: tf← tfj , ml←mlj , y← j
13: else if tfj == tf and mlj > ml then
14: tf← tfj , ml←mlj , y← j
15: end if
16: end if
17: end for
18: if y == 0 then
19: Return null
20: else
21: Vy ← Vy - D′

i

22: xiy ← 1
23: end if
24: end for
25: Return X
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Chapter 2

Infrastructure and Tools

The infrastructure and tools for our suggested solution are presented in the second chapter
of this thesis, along with the tools used to test and evaluate the effectiveness of our
approach.

2.1 Kubernetes

The microservice architecture is designed so that application functionality can execute
in independent, separated containers that are connected through APIs (Application Pro-
gramming Interfaces).Large, complicated applications can be delivered quickly, often, and
reliably thanks to the microservice architecture, with each microservice implementing
a particular aspect of the application logic.Containers [12] is used to run each microser-
vice,consequently the program operates efficiently and dependably in various computing
environments.

The emergence of architectures based on microservices created a demand for microser-
vice orchestration tools like Kubernetes [13].Kubernetes is a portable extensible, open-
source platform for managing containerized applications.It provides automation’s for
containerized applications management,deployment and scaling.Kubernetes provides the
tools and frameworks to run distributed systems resiliently and handle the behavior and
maintenance of containerized services by providing load balancing, storage orchestra-
tion,automatic bin packing,security,automated rollouts,self-healing, rollbacks and service
discovery.Nonetheless Kubernetes is not a traditional, all-inclusive PaaS (Platform as a
Service) system, it provides the building blocks for building developer platforms, but
preserves user choice and flexibility where it is necessary.
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2.1.1 Kubernetes Components

To create a Kubernetes cluster its necessary first to configure a Node Pool.A Node Pool
according to the needs of each application contains the CPU, RAM, storage, and OS speci-
fications that each initialized virtual machine (Node) must meet.The user is responsible to
define the number of nodes that the Node Pool must generate.Then the virtual machines
(Nodes) will boot and connect to the Kubernetes cluster.Each virtual machine (Node) can
hosts multiple Pods (containers) and each pod can host numerous microservices,but is
recommended that each pod host only one microservice.

Figure 2.1. Kubernetes Components [14]

A cluster is created when Kubernetes is deployed.A group of worker machines, known
as nodes, that run containerized applications make up a Kubernetes cluster. There is at
least one worker node in each cluster.The Pods that make up the application workload
are hosted on the worker node(s).A kubelet component, which is an agent that ensures
that containers are running in Pod and manages the containers that Kubernetes creates,
and is operated by each Node.The Kubernetes Service concept is implemented in part via
kube-proxy, a network proxy that runs on each node in the cluster and maintains network
rules on nodes.These network rules permit network communication to the Pods from
network sessions both inside and outside of your cluster.
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The control plane manages the worker nodes and the Pods in the cluster and make global
decisions about the cluster. The Control Plane (CP) consist of five main components, API
server, etcd, controller manager, cloud controller manager and scheduler.The API server
exposes the Kubernetes API and it operates as the control plane’s front end. Additionally,
API server can scale by adding additional instances and balance traffic between those
instances .Etcd is a consistent and highly-available key value store used by Kubernetes to
store all cluster data.The controller-manager runs all controller processes, although each
controller runs as a separate process, they are all compiled into a single binary and operated
in a single process to reduce complexity.The cloud-controller-manager is a component
that embeds cloud-specific control logic. The cloud controller manager lets you link your
cluster into your cloud provider’s API, and distinguishes between components that only
communicate with your cluster and those that communicate with that cloud platform.The
cloud-controller-manager only runs if the cluster is deployed on the cloud, if the cluster is
on your own premises the cluster does not have a cloud controller manager.

2.1.2 Scheduling Process

Kube-scheduler ensures that Pods and Nodes are matched so that Kubelet can run them,is
one of the most important components.A scheduler keeps track of newly created Pods
that are unassigned to any Nodes.For every Pod that the scheduler detects, the scheduler
becomes responsible for finding the best Node for that Pod to run on.Individual and group
resource requirements, hardware, software, and policy restrictions, affinity and anti-affinity
specifications, data locality, inter-workload interference, and other considerations must
all be made while making scheduling decisions.The Kubernetes scheduler selects the
first unscheduled Pod from his priority queue throughout the scheduling cycle, discovers
feasible nodes, and then executes a series of functions to assess each Node.In a procedure
known as binding, the scheduler assigns the Pod to the feasible node with the greatest
score and notifies the kube-apiserver of his choice. Three main factors are taken into
consideration when the scheduler make a decision.First factor is the hardware, where a pod
might have mentioned in the deployment file that it needs a certain type of hardware.The
second factor is data locality,it places a Pod in a specified availability zone, ensuring faster
reads and greater write throughput.The third and last factor is data locality, by co-locating
highly communicative pods in a single availability zone.

Additionally you can customise the behavior of the kube-scheduler.A scheduling Profile
(configuration file) allows you to configure the different stages of scheduling in the kube-
scheduler.A point of extension exposes each stage (an extension point can be the score

who provides a score to each node). Plugins implement one or more of these extension
points to offer scheduling behaviors. The scheduling happens in a series of stages that are
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exposed through the extensions points and the plugins implement one or more of these
extension points.Two interesting plugins ( and why they were not used in this Thesis) is
the following :

• PodTopologySpread : This can help to achieve high availability as well as efficient
resource utilization. Pods are spread across your cluster among failure-domains
such as regions, zones, nodes, and other user-defined topology domains. One of
the problem of current Kubernetes version is that the Kubernetes Scheduler doesn’t
ignore Nodes Tainted with NoSchedule when Evaluating. This could be a disaster
when you are trying to resolve an incident or do maintenance and rescheduled pods
are silently getting stuck in a “pending” state. Also, you don’t reduce the cost of the
cluster.

• NodeResourcesBalancedAllocation : Favors nodes that would obtain a more balanced
resource usage if the Pod is scheduled there. We achieve more balanced nodes, but
we don’t reduce cost. We may reduce latency for a small number of users, then we
will need again the Horizontal Pod Autoscaler (HPA).

2.1.3 Services

A kubernetes service is an abstract method of making an application running on a set of
Pods available as a network service.Each Kubernetes Pod is connected to its corresponding
Service, and the Service is in charge of sending all traffic to the Pod. When created, each
Service is assigned a unique IP address. This address is tied to the lifespan of the Service,
and will not change while the Service is alive.The Service discovers the IP address of the
Pod upon creation or update and exposes a permanent address (user-defined in Service
YAML) and a port to enable communication with other services.The types of Kubernetes
services include ClusterIP, NodePort, LoadBalancer, and External Name and have the
following behaviour :

• ClusterIP : This is the default value that is used if you don’t specify the type for
the Service, it exposes the Service on a cluster-internal IP and makes Service only
reachable from within the cluster.

• NodePort : Exposes the Service on each Node’s IP at port (static port called Node-
Port) and makes the Service accessible through the external network.

• LoadBalancer : Exposes the Service externally using the cloud provider’s load
balancer.

• External Name : Provides a mapping between the Service and the content in the
externalName field.
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The kube-proxy component is accessible as long as there is at least one healthy node in
the cluster and has access to all of the Kubernetes Services communication information.If
more than one Pod instance is associated to the Service, Kubernetes Services function as a
load balancer for the incoming traffic. In Figure 2.2 we display the Service Architecture
with clusterIP, the internal incoming traffic come into the Kubernetes serive and load
balanced into the replicated pods of the same service . In Figure 2.3 we display the
Service Architecture with External Load Balancer, the internal or external incoming traffic
come into the Kubernetes serive and load balanced into the replicated pods of the same
service. The Service will select the best Pod to route each request if there is a replica
set of pods, according to the Kubernetes Documentation.In our thesis, we assume that, if
such a destination Pod is placed in the same Node as the request source Pod, the Service
will choose to redirect the requests there, otherwise the service will choose randomly a
different node were the pod exists.

Figure 2.2. Service Architecture clusterIP

2.1.4 Horizontal Pod Autoscaler

In modern applications the network traffic can increase significantly and therefore
the performance of the application will decrease and users will face high response
times.Kubernetes have the ability to scale pods horizontally.The reaction to an increase in
traffic is to deploy more Pods, which is known as horizontal scaling. With the intention of
automatically scaling the workload to match demand, a Horizontal Pod Autoscaler (HPA)
[15] automatically changes a workload resource such as a Deployment (figure 2.4).
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Figure 2.3. Service Architecture with External Load Balancer

As mentioned in documentation [15] Horizontal Pod Autoscaler is implemented as a
controller and a Kubernetes API resource, and the resource determines the behavior
of the controller.When operating within the Kubernetes control plane, the horizontal
pod autoscaling controller regularly modifies the target’s desired number of pods (e.g
deployment) to match observed metrics like average CPU consumption, average memory
utilization, or any other custom metric you provide.

Horizontal pod autoscaling is implemented by Kubernetes as as a control loop that runs
periodically, but is not a continuous process.The interval is set by the user and the default
interval value is 15 seconds. In each period the Horizonta lPod Autoscaler specified metrics
definition’s are checked against the resource utilization by the controller manager.The
controller manager finds the target resource,then selects the pods and gets the metrics from
the resource metrics API or from other custom metrics API.There is three types of recourse
metrics, per-pod resource metrics , per-pod custom metrics , and, object and external
metrics.For per-pod resource metrics like CPU the controller retrieves the metrics for each
Pod that the Horizontal Pod Autoscaler has selected from the resource metrics API, then the
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usage value is determined by the controller as a proportion of the corresponding resource
request on each Pod’s containers,or if the target raw value has been determined, the raw
metric data are used.The controller then calculates a ratio to scale the number of required
replicas by taking the mean of the utilization or raw value across all targeted Pods.For
per-pod custom metrics the controller works similarly to per-pod resource metrics, except
that it works only with raw values.Lastly for object and external metrics it retrieves a single
metric that describes the object in query. To create the ratio we describe above, this metric
is compared with the desired value.

The HorizontalPodAutoscaler controller functions by dividing the desired metric value by
the current metric value as is shown bellow :

desiredReplicas = ceil[currentReplicas∗(currentMetricV alue/desiredMetricV alue)]

For instance, if the current metric value of CPU is 100m and the desired value is 50m

quantity of replicas will be doubled, because 100/50 == 2. On the contrary, if the current
value is 25m the quantity of replicas will be reduced by half, because 25/50 == 0.5.

Figure 2.4. Horizontal Pod Autoscaler
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2.2 Service Mesh and Istio

Typically, modern applications are designed as distributed collections of microservices,
with each collection of microservices carrying out a specific application function.A service
mesh is a specific layer of infrastructure for applications that enhances features like
observability, traffic management, and communication security.As a Kubernetes-based
system expands and becomes more complicated, it could be more difficult to comprehend
and control.A service mesh can address requirements like discovery, load balancing, failure
recovery, metrics, and monitoring.Both the type of software you use to accomplish this
design and the security or network domain that is generated when you employ that software
are referred to as "service mesh" [16].The service mesh’s Control Plane injects a Sidecar
Proxy service as a third-party application, which performs all of the above-mentioned
logic.In figure Figure 2.5 we show the sidecar proxy injected to pod.

Figure 2.5. Istio envoy proxy

Istio is an open-source service mesh and overlays current distributed applications in a
transparent way. Istiod is the Control Plane of Istio.Istiod deploys an Envoy Sidecar
Proxy service in each newly formed Pod after automatically identifying new services and
endpoints in the cluster.Additionally, Istiod monitors all certificates and sets up secure TLS
connection between services and collects metrics from each Pod and exports telemetry
data, which may be accessed by a monitoring server like Prometheus. Istio supports
application level protocols such as HTTP , which includes HTTP/1.1, HTTP/2, and gRPC
,TLS, which includes HTTPS and TCP. In the figure Figure 2.6 the Istio architecture is
presented.

25



Chapter 2. Infrastructure and Tools

Figure 2.6. Istio Architecture

2.3 Metrics Tools

2.3.1 Prometheus

Prometheus is an open-source systems monitoring and alerting toolkit firstly build at
SoundCloud.It continuously checks its targets, finds issues before they even occur, and
sends out alerts when a crash does occur.Prometheus collects and stores its metrics as
time-series data, i.e., metrics information is stored with the timestamp at which it was
recorded, alongside optional key-value pairs called labels [17].A target must expose its
metrics in the proper format and through the Prometheus endpoints in order for Prometheus
to monitor it.Since many services lack native Prometheus support, an additional component
called Exporter is required to receive the service’s metrics, convert them into a compatible
format, and expose the endpoint so that Prometheus may retrieve them.

Prometheus cant pull metrics from the node by-itself.Each VM in the cluster has Node
Exporter installed and injected into it so it can fetch Node data.Node exporter is a tool
that exports hardware and kernel measurements as well as physical and virtual machine
metrics from Linux nodes and they must be configured to listen on a dedicated port.The
Node exporter makes it possible to measure the usage of various VM resources, including
memory, disk, and CPU.

Prometheus pulls metrics from its targets and stores them in text- based format,and the
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metrics can be requested by another tool or by a user.The Prometheus server and more
sophisticated visualization tools like Grafana may both display the metrics.

2.3.2 Kiali

Kiali [18] is a management console for an Istio-based service mesh.It offers dashboards,
observability, and allows for the operation of a service mesh with powerful configuration
and validation features.By modelling traffic topology, it illustrates the service mesh’s
structure and indicates the mesh’s overall health.It retrieves Istio configurations and data
that are made available via Prometheus and the Cluster API.Kiali communicates directly
with Prometheus and makes use of the information stored there.Visualizing the topology of
the service mesh is made effective by the Kiali graph. It shows the communication between
the services as well as their individual traffic rates and latencies, making it easier to visually
spot problem regions and swiftly narrow down any issues.Since Kiali is implemented as a
service, it provides an API that can be used to access the Kiali graph and mesh data.

Kiali is a management console for an Istio-based service mesh. It retrieves Istio data
and configurations, which are exposed through Prometheus and the Cluster API. Kiali
communicates with Prometheus directly and uses the data stored in Prometheus to figure
out the mesh topology, show metrics, calculate health, show possible problems, etc . Kiali
provides a powerful way to visualize the topology of the service mesh by creating the Kiali
Graph, which displays the services’ network communication protocol, their traffic rates,
and the latency between them. Kiali is deployed as a service, and it offers an API through
which the mesh information and the Kiali graph can be obtained.

The Kiali graph shown the communication between microservices, the graph is weigthed
and directed.The deployments and the corresponding Kubernetes service components
are represented by the graph’s nodes, while the graph’s edges show the weighted traffic
between the microservices.The weight of this traffic is Requests per Second for the HTTP
and gRPC communication protocols and Bytes per Second (BPS) for the TCP traffic.Finally
for the purpose of visualizing the traffic communication between the microservices in
HTTP, gRCP and TCP protocols, Kiali graph supports traffic animation.
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2.4 Application Stressing Tool

Locust

Locust [19] is a simple, scriptable, and scalable performance testing tool.Instead of being
constrained by a UI or a restrictive domain-specific language, you specify the behavior
of your users in standard Python code, and it can be deployed as a microservice even
without a UI, applying the predetermined behavior.It provides an application for distributed
event-based requests and can can support thousands of users at once. It has an intuitive
user interface, exports data in several formats, and gives different evaluation metrics, such
as average latency, 90ile percentile, median repsonce time, etc.

Locust can be run from insight the cluster and sent requests on application endpoints using
the front-end private IP, or can be run locally on a linux machine and performs requests on
application endpoints using the front-end public IP.

Locust is used in both stress tests of our application.The default workload consists of 10
users. To have more users we set the numbers of users and the spawn rate, e.g. 300 users
with spawn rate 30users/second ( figure 2.7). We can choose any number of users we want
as long as we don’t exceed the CPU and MEMORY capacity of the computer running
Locust.

Figure 2.7. Locust User Interface [19]
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Cluster Architecture and
Implementation

This chapter presents the System architecture that was utilized to achieve the Thesis re-
quirements as well as the affinity metrics that we developed to measure communication
between microservices.This Chapter also introduces and analyzes the benchmark appli-
cations we used to test and implement our placement techniques, the automated service
placement algorithm we implemented, and the configuration of the Kubernetes Horizontal
Pod Autoscaler in our System.

3.1 System Architecture

To enable the communication of all of its microservices, each application operating on a Ku-
bernetes Cluster must be initially properly configured.In our Thesis we set up a Kubernetes
Cluster figure (3.1) in Google Cloud Platform (GCP).In the cloud, the Google Kuber-
netes Engine is in charge of managing the Cluster, and the Virtual Machines (Kubernetes
Nodes) are located on the Google Compute Engine.The cluster is homogeneous,which
means that every Node (VM) in the cluster have the same hardware specification, the same
operating system and the same network configurations. As we wish to specify the initial
number of Nodes that will be used to host each application and the specific resources for
each Node, we have disabled the Kubernetes extensions for controlling Node size and
resource allocation known as Horizontal and Vertical auto-scaling. In our work we only
enable the kubernetes Horizontal Pod Autoscaler for the experiments.

Each Pod has a specific Service attached to it that enables network connection.It is nec-
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essary to configure Pods by injecting Istio Envoy Proxies into each application’s Pod in
order to integrate the Istio Service Mesh into the application.Istiod is the istio control plane
that is randomly placed in a single Node and is in charge of injecting Envoy Proxies into
the newly created Pods and monitoring the status of the current Envoys.All the network
traffic (internal or external) on the cluster is re-directed through the Envoy proxies injected
into the Pods.Every newly created Node has a Prometheus Node exporter installed, which
is in charge of exporting Node metrics from the Prometheus Server.These metrics can
be retrieved and stored in real-time by the Prometheus Server. In a similar vein for the
purpose of building the application’s graph, Kiali is deployed in a cluster Node and obtains
these data from the Prometheus Server.

Figure 3.1. System Architecture in Google Cloud Platform

Each Kubernetes cluster has a specific number of Nodes that is user defined, based on the
needs of each application.The Node and Pod creation and management are at the control
of the Kubernetes cluster.The Envoy Proxies of the Pods in every Node in the cluster
communicate via the Istio’s Data Plane.Every Pod in a Node contains a micriservice as a
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deployment and the Envoy Proxy.Each microservice has an associated Kubernetes service
that is in charge of handling all microservice traffic.Microservice is configured to talk to the
Kubernetes Service, and know that communication to the Kubernetes will be automatically
load-balanced out to some replicated pod that is a member of the Service. Additionally as
we mentioned before services can be NodePort and LoadBalancer type and communicate
with the external network.In our work we only use NodePort types because LoadBalancer
type is charged by the cloud provider and thus the results of our experiments would not be
reliable.

In Figure Figure 3.2, the architecture of the Node and the communication between the Istio
Services and the application’s Pods are shown.

Figure 3.2. Node’s Architecture
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3.2 Microservices Performance-Affinity Metrics

We propose two performance metrics in this section that we utilize to build our services
graph and which we refer to as affinity metrics.These affinity metrics is incorporated into
the application graph as weights.

Requests per Second (RPS)

Requests per Second (RPS) measures the network traffic rates between two microser-
vices.Only the specified traffic rate between services is provided and no additional infor-
mation regarding message size or number is provided.The Kiali Graph file includes data
on the number of requests made per second for each pod for gRCP and TCP traffic over
the course of a given period of the application’s life.For TCP traffic, Kiali calculates the
Bytes Per Second metric because in that case RPS metric is not reliable. In 3.1 we present
the formula of RPS affinity metric

RPSSi→Sj
=

Sum of Requests from Si to Sj in Tsec

Tsec

(3.1)

Where,

• Si is the Source Service
• Sj is the Destination Service
• Tsec is the Total Seconds of Measurement

Weighted Bidirectional Affinity (WBA)

Weighted Bidirectional Affinity (WBA) proposed by Adalberto R. Sampaio Jr [20] , Julia
Rubin, Ivan Beschastnikh, Nelson S. Rosa [[1]].In order to calculate the affinity metric
between two microservices, this metric takes advantage of the size of the messages that
were sent in bytes and their overall number.The Weighted Bidirectional Affinity (WBA)
formula is presented below.

Aa,b = w · ma,b

m
+ (1− w) · da,b

d
(3.2)

• Aa,b is the affinity metric between service a and service b

• m is the total number of messages exchanged
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• ma, b is the messages exchanged between a and b

• d is the total amount of data exchanged in bytes
• da,b is the amount of data exchanged in bytes between service a and service b

• w is the weight, such that {w ∈ R | 0 ≤ w ≤ 1}, used to define the significance of
each affinity variable (size or count of messages)

The weights (w) is selected according to the importance of the variables, which are
calculated to get the total affinity metric between two microservices. The importance of
message size and number of messages can be equal to 0.5 because we don’t have any
strong preference between these two variables.

For example, if we choose w = 0.2 then we have a strong preference for the size of the
messages, but because we use this metric in different applications that most probably we
don’t have any prior knowledge about their behavior is preferable to use w=0.5 and give
equal preference to the size and number of messages.
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3.3 Application Graph

Below is a presentation of the Kiali Graph we obtained for e-Shop and iXen applications.
Circles are used to symbolize the deployments (Pods), while triangles are used to represent
the corresponding Kubernetes Services.Green lines (measured in RPS) reflect HTTP and
gRPC traffic between Pods, whereas blue lines (TCP traffic) are shown (and measured in
BPS).

Based on data obtained from the Prometheus server and metrics taken from the Kiali
API, our application graph is created.We use Kiali to extract the application microservices
(Pods) and add a node for each microservice to our graph.The graph’s edges are built
using the communication edges exported by Kiali, and the edges weights are determined
using the chosen affinity metric.For RPS affinity we use information from Kiali, for WBA
affinity we use information’s from Kiali and metrics extracted from the Prometheus server
( information obtained from Istio Service Mesh ).

Figure 3.3. Kiali Graph for e-Shop
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Figure 3.4. Kiali Graph for iXen

3.4 Benchmark Algorithms

3.4.1 Heuristic First-Fit

The Heuristic First Fit (HFF) algorithm is a processing algorithm that takes as input the
application’s initial service placement and configures it by relocating microservices with
high affinity traffic rates on the same host machine.The microservices affinities of the
application must be sorted in a descending order, in this manner, microservices with a
higher affinity metric (RPS or WBA ) are processed first, resulting in the most effective
service placement possible.We save the source and destination nodes, their initial hosting
VMs, and their resource requests in separate values during each iteration of the algorithm
and for each processed affinity edge to make the algorithm execution process easier.If
two services belong to the same Node, the algorithm terminates the current iteration
and services are marked as migrated in order to remain on the same Node until the
algorithmic execution ends.In contrary if microservices belongs at two separate Nodes,
the algorithm looks at whether the destination service can move to the source host or if
the source service can move to the destination host. Contrary to the other algorithms we
use (Bisecting K-means , MODSOFT ), Heuristic First Fit algorithm is not a clustering
algorithm, but a single-step processing algorithm.The algorithm is only executed once,
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and since microservices that have already been validated and tagged as moved cannot
be moved for subsequent iterations,thus most executions result in suboptimal placement
solutions.Additionally, it cannot be ensured that repeated iterations of the algorithm for the
current service placement would result in the creation of an optimal service placement, and
in some cases, it may possibly result in a solution wih higher eggres traffic. In algorithm 4
the HFF is presented, the explanation of the algorithm is presented in chapter 2.

Algorithm 4 Heuristic First Fit [1]
1: Input: Hosts (H), microservices (m), resources (r)
2: Output: Placement Solution
3: moved← [ ]
4: //Affinities are sorted in decreasing order
5: for every pair of affinities do
6: mi ∈ Hi // mi located at host Hi

7: mj ∈ Hj // mj located at host Hj

8: mj ̸=mi, Hj ̸= Hi

9: hasMoved← False
10: if r(mi) + r(mj) ≤ r(Hi) ∧mj /∈ moved then
11: Hj ← Hj - mj

12: Hi← Hi ∪mj

13: hasMoved← True
14: else if r(mi) + r(mj) ≤ r(Hj) ∧mi /∈ moved then
15: Hi← Hi - mi

16: Hj ← Hj ∪mi

17: hasMoved← True
18: end if
19: if hasMoved then
20: moved← moved ∪ [mi, mj]
21: end if
22: end for

3.4.2 Bisecting K-Means (BKM)

Given a set of microservices, the Bisecting K-Means (BKM) algorithm generates a finite
group of services with high affinity traffic.The number of K clusters we used is four
( K=4 ) based on the work in [2].BKM uses the K-Means algorithm and the Sum of
Squared Errors (SSE), which is calculated from each cluster point using the centroid
point.Bisecting K-Means algorithm primarily depends on the edges of affinities between
the microservices.The affinity metric of the microservices can be used to estimate the error
in order to satisfy the requirements of the Microservice Architecture and effectively apply
the BKM algorithm. In line 5 algorithm iterates while the Initial partition (P) is smaller
than the Number K of desired clusters . In lines 6-13 two sub-clusters with a greater affinity
score should be created by separating microservices with low to no affinity metric and it
is preferable that there be no communication edge between these microservices because
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the algorithm will choose them as two clusters and stop processing the subsequent affinity
edges. In line 20 if there is no affinity edge or clear preference between them, the remaining
microservices in the processed cluster are distributed randomly or in accordance with the
affinity metric with the centroids of the chosen subclusters.Additionally, the assignment
of microservices to the available cluster centroids is done only based on the affinity score
with the cluster centroid, not with the other affinities pairs with the microservices inside the
original cluster.Although this version of the BKM algorithm frequently yields suboptimal
results it can be improved even more using heuristic packing. In algorithm 5 the BKM is
presented.

Algorithm 5 Bisecting K-Means for Microservices Architecture
1: Input: Service-based application (S), Initial partition (P), Number K of desired

clusters,
2: Service affinities (A)
3: Output: Partition of Services in K Clusters
4: P ← {S}
5: while size{P} < K do
6: Select a cluster from P with the least sum of service affinities rates in total, Ci

7: P ← P − {Ci}
8: Pick and remove two microservices - centroids, msx and msy, from Ci

9: with no or the least affinity rate between them
10: Ci← Ci - {msx, msy}
11: Cx←msx
12: Cy ←msy
13: P ← P ∪ {Cx, Cy}
14: for every microservice (msi) in Ci do
15: if A(msi → msx) > A(msi → msy) then
16: Cx← Cx ∪ {msi}
17: else if A(msi → msx) < A(msi → msy) then
18: Cy ← Cy ∪ {msi}
19: else
20: Select and place msi randomly among Cx and Cy

21: end if
22: end for
23: end while
24: Return P

3.4.3 Fuzzy Partitioning Algorithm

The implementation of the algorithm [21] consists of three procedures, one for efficiently
projecting the membership probabilities, one for calculating the modularity of the partitions,
and one for initializing and updating the membership matrix p using gradient descent
step.First in lines 5-8 we have the initialization,it compute the graph’s overall weight
during initialization by adding the weights of all of the graph’s edges.The weights of the
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edges connecting each node in the graph are then added to determine the node’s weighted
degree.After that, it adds the weights of all the edges that connect each node in the graph to
determine the node’s weighted degree. In lines 11-16 the MODSOFT membership update
function is used to update the membership matrix p during the partitioning stage.The
likelihood that each service will be in the same partition as another service is represented
in the membership matrix p, and the probability distribution is represented by each row of
this matrix, which adds up to 1.The projection step and the membership update function
are both part of the update membership step, which returns the updated membership matrix
p.

The modularity of the suggested partitions is assessed after the membership matrix p
has been changed.Using the given modularity function (explained in Chapter 2) from the
MODSOFT repository, it is simple to calculate.After the partitioning stage, modularity
is computed, and the partitioning procedure is repeated until the rise in modularity drops
below a threshold that has been established at 0.01.Calculating our service partitions using
iterations of the final membership matrix p is the last step.The membership matrix’s rows
and columns stand in for the application services, and each cell’s value is a number between
0 and 1 that denotes the likelihood that the row-service and column-service will be in the
same partition. In lines 18-24 for each row-service, a partition is constructed, and for each
column-service whose value exceeds the threshold of 0.1 , we add it to the partition of
the row-service.Then we produce the partitions, arrange them according to the number of
services in each partition, and then return them. MODSOFT algorithm produces fuzzy
partitions, and by modifying the fuzziness parameter as we mentioned in Chapter 2, we can
control how fuzzy the produced partitions will be, where more fuzzy partitions mean that
there will be more services belonging to more than one partition. Finally, to ensure that the
placement solution will fit in the available Nodes of the cluster and that the solution will
be as optimal as possible by way of costs and resources, the Heuristic Packing algorithm
is used, which produces our fuzzy placement. The implementation of the algorithm is
presented in Listing 3.1.
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Listing 3.1. Fuzzy Partitioning Algorithm

1: Input: Services Graph (G), Graph Nodes (N), Application Services (S) ,
Threshold (T), Modularity Threshold (MT), Fuzzyness Parameter ( t )

2: Output: Application Partitions (P)
3:
4: # Initialization
5: Calculate the total weight of graph G, total_weight
6: Calculate the weighted degree of each node N, degreenode

7: i← 0, modularityi ← 0

8: for node in G do:
pnode ← 1

9:
10: # Partitioning
11: do:
12: i← i+ 1

13: # Update Membership matrix using MODSOFT [??]
14: p ← update_membership(p, t)
15: modularityi ← modularity_func(p)
16: while: modularityi − modularityi−1 ≤MT
17:
18: k ← 1

19: for service i in p do:
20: Pk ← {Si}
21: for service j in pi do:
22: if pij > T then:
23: Pk ← Pk

⋃
{Sj}

24: Sort P by partitions with most services , return P

3.5 Automated Placement Algorithm

In this section we present the algorithm 6 that automates the service placement in the
cluster . First is necessary to authenticate to the cluster with a client library (for using the
Kubernetes API) and be able to update the deployments for each service. This algorithm
uses Application Default Credentials to provide a Service Account key. Also is necessary
before running the algorithm to run the default Kubernetes scheduler that will place the
microservices (pods) to the nodes of the cluster and have the initial placement. Then, when
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a service placement algorithm run and calculate the new host for each service the algorithm
automatically update the YAML of each service (deployment) to migrate the service to the
new host. In case of the MODSOFT algorithm we can also replicate a service (because
MODSOFT is a Fuzzy Partitioning Algorithm). The algorithm for automated service
placement can run inside the cluster (for example in a pod running python) or outside of the
cluster and connect remotely to authenticate and run the algorithm to migrate/replicate the
services (so we don’t waste cluster resources). Here we show the steps of the algorithm:

Line 4 First, we get the Application Default credentials, the project_id is the Service
Accounts,and this may differ to the clusters PROJECT name.

Line 7-9 Will gets the cluster config (configuratios) from GCP. The input ClusterCred
consist of the project name, cluster name, and the zone of the cluster.

Line 12-13 Will generates and loads a ‘kubectl‘ config necessary for the authentication
in the cluster. The kubectl config in Listing 3.2 has the following form where NAME is
arbitrary, SERVER is the cluster endpoint and CERT is the cluster certificate. The ‘cluster’
object from line 8 contains the SERVER and CERT variables needed for kubectl config.

Listing 3.2. Example - Affinity in Deployment YAML

NAME="cname" # arbitrary
CONFIG=
apiVersion: v1
kind: Config
clusters :
− name: {NAME}

cluster :
certificate −authority−data: {CERT}

server: https : //{ SERVER}
contexts:
− name: {NAME}

context:
cluster : {NAME}
user: {NAME}

current−context: {NAME}
users:
− name: {NAME}

user:
auth−provider:
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name: gcp
config:

scopes: https : // www.googleapis.com/auth/cloud−platform

Line 16 Will creates a cluster instance to be able to run kubectl commands to the cluster
and make changes in the deployments.

Line 19-21 First, we get the initial placement of the services in the nodes of the cluster.
Then we choose one of the three placement algorithms to execute using the input AlgoName
who is the name of the placement algorithm we want to run, they are three options,
BKM(K=4) – HP , HFF and MODSOFT - HP. Finally, we execute the selected placement
algorithm and get the new placement (finalPlacement) of the services.

Line 23-27 For each service in the finalPlacement we check if the service was on a different
host in the initial placement relative to the final placement, if that’s true then we migrate
the service to the new host. To migrate the service, we change the YAML file of the
deployment service using Note Affinities. During the scheduling cycle, the Scheduler
checks the Node Affinity specifications which state conditions that a Node must or must
not include in order to be a feasible Node for the Pod’s deployment. We specified the
node affinity as the hostname of the new node that the service should migrate. In case of
MODSOFT algorithm we also specified the number of replicas if a microservice have. If
the microservice spawn’s replicas then we specified the hostnames (because of replicas
hostnames can be multiple).

When we migrate a service to a new node in the cluster, Kubernetes will wait until the
service status in the new node is RUNNING, after that the service will be terminated in the
old node. In that way we don’t have any downtime in the application.

3.6 Benchmark Applications

To implement and evaluate the suggested service placement strategies, we use two bench-
marking applications.The first application employs the HTTP and gRPC protocols and has
11 microservices, whereas the second application has 15 microservices.In a GKE Cluster
(with specified resources which are discussed in more detail in the following chapter
and the same infrastructure), both applications are deployed in a single, homogenous
environment.
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Algorithm 6 Automated Microservice Placement On GCP
1: Input : ClusterCred : consist of the project name, cluster name, and the zone of the

cluster
2: AlgoName : The name of the placement algorithm to run
3:
4: credentials, projectid = getDefaultCredentials()
5:
6: //Get the cluster config from GCP
7: clusterManager = clusterManagerClient(credentials)
8: cluster = clusterManagerGetCluster(ClusterCred, clusterManager)
9: configuration = getClientConfiguration(cluster)

10:
11: //Create’s a kubectl config
12: config = createConfig(ClusterCred, cluster)
13: kubeconfig = load(config)
14:
15: //Create Cluster Instance
16: apiInstance = createClusterInstance(configuration)
17:
18: //Service placement logic
19: initialP lacement = getInitialP lacement()
20: SelectedAlgorithm = chooseAlgorithm(AlgoName)
21: finalP lacement = executeAlgorithm(SelectedAlgorithm)
22:
23: for service ∈ finalP lacement do
24: if initialP lacement(service) ̸= finalP lacement(service) then
25: updateDeploymentY aml(service)
26: end if
27: end for

3.6.1 Google Online Boutique e-Shop

In order to show how to utilize tools like Kubernetes, Istio, and the gRPC protocol, Google
uses the Online Boutique eShop [22], a cloud-native microservices example application
.It is an 11 microservice web-based e-commerce application that allows users to carry
out various e-commerce-related actions.The application is robust, it is implemented and
is optimized for use with both the Google Kubernetes Engine and Istio, and it uses
five different programming languages and two of the most popular service-to-service
communication protocols (HTTP and gRPC). As a result, it is the perfect application to
apply our architecture and our placement algorithms.On figure Figure 3.5 the application
architecture is displayed. The application architecture for each service is presented bellow
as described in [22].

• Frontend Service (Go): Exposes an HTTP server that serves the website to the web
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Figure 3.5. e-Shop Architecture [22]

and generates session IDs for all users automatically.
• Cart Service (C#): Stores and retrieves the items, users place on their shopping cart,

in a Redis Database.
• Product Catalog Service (Go): Provides the list of products (read from a JSON file)

and the ability to search and get individual products.
• Currency Service (Node.js): Fetches real currency values from the European Central

Bank and converts one money amount to another currency. It is the highest QPS1

service.
• Payment Service (Node.js): Charges the user-provided credit card info (mock) with

the payment amount and returns a transaction ID.
• Shipping Service (Go): Estimates shipping cost based on the shopping cart and

ships items to the given address (mock).
• Email Service (Python): Sends user an order confirmation email (mock).
• Checkout Service (Go): Retrieves the user cart, prepares the order, and orchestrates

the payment, shipping, and email notification.
• Recommendation Service (Python): Recommends products based on what the user

placed in its cart.
• Ad Service (Java): Provides text ads based on given context words.
• Load Generator Service (Python/ Locust): Simulates application traffic by con-

tinuously sending requests imitating realistic user shopping flows to the frontend
service.

1Queries per Second
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3.6.2 iXen

The Technical University of Crete’s Intelligence Lab developed the iXen [23] prototype
application.It is an IoT (Internet of Things) application based on the service oriented
architecture (SOA). For our work, we deployed the application in a GKE Cluster using the
Kubernetes configurations that were supplied by Konstantinos Tsakos, who converted the
application to a microservice-based architecture with independent microservices that can
be deployed in a Google Kubernetes Cluster for orchestration.

Each tier of iXen’s 3-tier architecture design model implements distinct logic specifically
for its respective target user group.The infrastructure owners and system administrators,
who have the ability to install and connect devices in the infrastructure, are included in the
first-tier user group.Application developers, who can subscribe to sensors and construct
applications using those sensors, are the second-tier user group.Customers who subscribe
to developer-made applications make up the final user group.The iXen microservices are
shown below on figure Figure 3.6 as they are described in the [23], along with a "load
generator" microservice we created by the standards of the corresponding Boutique eShop
service.

• Web Service: Provides a web interface via which users can interact with the appli-
cation.

• Keyrock Identity Management Service: Provides a REST API for user registration,
user rights policies, and uses OAuth2 tokens to authorize users.

• AuthZForce Service: XACML format is used to describe the respective user access
privileges.

• PEP Proxy Services: Providing a security feature for services with a public interface.
Each request to the "public" services is being forwarded through its respective PEP
Proxy, and only requests from authorized users with service access are forwarded to
the service.

• Querying Sensors Service: Converts a custom query syntax to mongo queries
on the Mongo DB where devices are stored as entities, for the purpose of finding
a device based on location, model type, type of measurement, or the unit of the
measurement.

• Orion Context Broker Service: Publish/Subscribe service collects measurements
from devices and makes them available to other services and users based on their
subscriptions.

• Cygnus Service: Accepts data streams formatted in accordance with the NGSI
model and is capable of storing them in a variety of databases.

• Comet Service: Reads Orion entities stored in a MongoDB and manages historical
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sensor data.
• Mashup Service: Responsible for creating developers’ applications with the aid of

Node-Red, an open-source flow-based programming tool for the Internet of Things
(IoT).

• Load Generator Service: Written in Python, this service continuously applies
distributed requests (defined by the user ) on the application’s endpoints, simulating
realistic user traffic and IoT devices’ measurements - updates.

Figure 3.6. iXen Architecture
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Experimental Results

The tests used in our benchmarking applications will be introduced in this chapter, and their
results will be analyzed.The infrastructure where the experiments were conducted will also
be described, along with its costs.Then, for both applications, iXen and OnlineBoutique
eShop, the application stress testing modules, the types of requests, and the distribution
of these requests will be examined and presented.Finally, for the default Kuberenetes
placement and the service placement algorithms the results will be displayed in bar graphs.

4.1 Infrastructure

For the Kubernetes environment, we launch a Kubernetes cluster on the Google Cloud
Platform (GCP), specifically the Google Kubernetes Engine (GKE), which will host the
required cluster.The cluster was launched in the europe-west3-c region and the GKE
version is 1.23.13.The horizontal and vertical cluster auto scaling are disabled so that the
available Nodes (VMs) and their resource allocation remain the same for the algorithms
implementation and experiments.Additionally the external load balancer of the GKE was
also disabled to avoid any extra charges. The external load balancer defines how external
traffic reaches our microservices and how the traffic is routed to our application. In our
experiments it is not necessary because we use load balancer services to load balance traffic
into the replicated pods of the same service. Anthos Service Mesh is disabled because in
our implementation we use Istio service mesh.Cloud logging and Cloud Monitoring at the
cluster were also disabled.
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Cluster Attributes Configuration

Location Type Zonal
Zone europe-west3-c

Release Channel Regular
Cluster Version 1.23.13-gke.900

Horizontal Autoscaling Disabled
Vertical Autoscaling Disabled

HTTP Load Balancing Disabled
Anthos Service Mesh Disabled

Cloud Logging Disabled
Cloud Monitoring Disabled

Table 4.1. Cluster Characteristics

Our kubernetes cluster contains a node pool.The node pool consist of the VMs that will
be created as Nodes (VMs) in our cluster.Because our infrastructure is homogeneous, all
the virtual machines that is created insight the node pool is e2-standard-2 type,this means
that each has two virtual CPUs, eight gigabytes of RAM, and a typical boot drive with 40
gigabytes of storage.Furthermore the node pool,and therefore the Nodes are located in one
zone of our region.The Operating System of each machine is a Container-Optimized OS.
The Nodes of the Node Pool are not preemptible, thus we initialize each application by
allocating resources or holding a limited number of virtual machines (VMs) on demand.

Node Pool Attributes Configuration

Machine Type e2-standard-2
vCPU 2
RAM 8 GB
Zone europe-west3-c
Image Container-Optimized OS with containerd

Autoscaling Disabled
Boot Disk Type Standard
Boot Disk Size 40 GB

Table 4.2. Node Pool Characteristics

The benchmarking application used to test our placement algorithms in addition to Istio,
Kiali, and Prometheus require at least 2 host machines (Nodes) to operate effectively as
mentioned in the previous work in [2].We set up our cluster with 4 Nodes as the upper
limit for our experiments and execute our placement algorithms to see if an optimized
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placement can make use of fewer machines than our upper limit.Finally,It is considered
surplus to host these applications with an initialized volume of Nodes greater than 4.

4.2 Benchmark Application Stressing

This section describes the stress testing procedure used to generate traffic flows for each
application.To apply the stressing test for our application we use locust.With locust, we
sent distributed requests to simulate a load from concurrent users on our application
endpoints.We apply the stressing test for our benchmark applications with the Kubernetes
default placement, and with the placement solutions produced by our algorithms and the
Horizontal Pod Autoscaler disabled. Another set of stressing is applied with the Horizontal
Pod Autoscaler enabled and the aforementioned algorithms to examine also the impact
of HPA in the response times for each request and the monetary cost of the cluster.The
stressing methods used for both iXen and OnlineBoutique applications will be thoroughly
presented in the next subsections.

4.2.1 Google Online Boutique e-Shop Stress Testing

The default load generator for Google Online Boutique e-Shop is simulating 10 users.We
altered this service and create two loads, one has 150 concurrent users, while the largest
load has 300 concurrent users.For the stressing of 150 concurrent users we apply about
28,000 requests, and for the stressing of 300 concurrent users we apply about 57,000
requests. In tables 4.3 and 4.4 we display the request distribution.

Request Request Type # Requests Distribution

Visit Homepage GET 1249 4%
Show items in Cart GET 3808 13%
Add item to Cart POST 3816 13%
Submit an order POST 1269 4%
Get a Product GET 16197 56%

Change Currency POST 2514 9%

# Total Requests 28853

Table 4.3. Stress Testing Requests for Online Boutique e-Shop 150 users

4.2.2 iXen Stress Testing

For the Stress Testing of the iXen application, we needed to create a load generator service
that would imitate 100 users making about 5.000 requests.We have already configured the
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Request Request Type # Requests Distribution

Visit Homepage GET 2498 4%
Show items in Cart GET 7616 13%
Add item to Cart POST 7632 13%
Submit an order POST 2538 4%
Get a Product GET 32339 56%

Change Currency POST 5028 9%

# Total Requests 57651

Table 4.4. Stress Testing Requests for Online Boutique e-Shop 300 users

sensors and mashup applications, and developers and users can subscribe to them.Each
simulated user first logs into the program and receives a cookie, which we keep and utilize
for authentication in all subsequent requests he makes. In table 4.5 we display the request
distribution.

Request Request Type # Requests Distribution

Visit Homepage GET 957 17%
Search Available Sensors POST 632 11%

Subscribe Developer to Sensor POST 545 10%
Search Applications POST 639 12%

Search Application Subscriptions GET 654 12%
Search Subscriptions to Sensors GET 580 11%

Send Measurement to Sensor POST 604 11%
Subscribe to Application POST 264 5%

Deploy a Mashup Application POST 91 2%
Access Mashup Application GET 545 10%

Login into the App POST 100 2%

# Total Requests 5520

Table 4.5. Stress Testing Requests for iXen 10 users

4.2.3 Horizontal Pod Autoscaler Configurations

To use the HPA we need configure some basic characteristics.It is mandatory to set the
minimum and maximum number of pods that the HPA can create, and also the average
CPU utilization that the HPA uses to scale a service (HPA controller will increase and
decrease the number of replicas to maintain an average CPU utilization across all Pods).

The average CPU utilization is set to 90percent, the minimum number of pods is set to 1

49



Chapter 4. Experimental Results

and the maximum number of pods is set to 10.The maximum number of pods is set to a
high number so no service can reach that number of replicas, this was done in order not to
limit the HPA and get the right results.if we set a low limit and the HPA was not allowed
to produce additional replicas that could possibly give us better results, then we would not
have reliable results.

4.3 Placement Strategies

We have tested four different placement strategies.First placement strategy is the default
kubernetes scheduler who performs a default placement.When an application is deployed
in Kubernetes without defining the Pod relations or Nodes that each Pod must be placed in
(using Node and Pod affinities), the Kubernetes Scheduler produces a placement that is
based mostly on available Node resources and the requested resources of each Pod.The
second strategy we use is the Heuristic First Fit (HFF) [1] that minimizes the number of
Nodes (VMs) and the Egress network traffic.The third method is the Bisecting K Means
with the Heuristic Packing proposed in [2].As we mentioned in chapter 3 we use K = 4
as the number of clusters based on the work in [2].BKM-HP also reduces the total Nodes
(VMs) number and egress traffic. The fourth and last placement is the fuzzy partitioning
algorithm followed by Heuristic Packing (HP) and will be mentioned as MODSOFT-HP in
the following chapters.

The figures bellow demonstrates the service placement and optimization of the traffic
between the pods with the use of the fuzzy clustering with the Horizontal Pod Autoscaler
(HPA) enabled and disabled.

In figure 4.1 we display the default service placement of eshop application from the
Kubernetes Scheduler.Blue lines represent the egress service-to- service traffic, while gray
lines represent the ingress traffic.

In figure 4.2 we display the fuzzy placement with the HPA disabled.The front-end service
replicate in a different node, and because the service communicated with 7 more services
most of the egress traffic converts to ingress traffic.Additionally, the productcatalog service
also replicates in all available nodes to reduce the response time by reducing the overall
load of each replica of the service.

In figure 4.3 we display the fuzzy placement with the HPA enabled.A replica of recom-
mendation service and currency service is placed in the upper-left node and a replica of
front-end service and currency service is placed on the bottom node.
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Figure 4.1. Traffic between services for Default Online Boutique e-Shop Placement

Figure 4.2. Traffic between services for MODSOFT-HP Online Boutique e-Shop Place-
ment and HPA disabled
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Figure 4.3. Traffic between services for MODSOFT-HP Online Boutique e-Shop Place-
ment and HPA enabled

4.4 Infrastructure Cost and Cost Function

This section will display the cost function of our deployed cluster and identify the variables
that can change this function. Our Kubernetes cluster run on GCP, and therefore the cost
function is based on GCP charges [24] .The allocation of CPU and RAM is the major aspect
that GCP charges for, and rates vary by area, for example the price of CPU and RAM in the
region of Iowa(us-central1) differs from the region of London(europe-west2).Additionally
the storage space is charged by GCP, but is relatively low in our cluster Nodes in relation
to CPU, RAM and is regarded negligible.GCP only charges the egress traffic base on the
amount of the exchanged bytes.The ingress traffic in not charged.In table 4.6 we present
the prices for CPU,RAM and traffic for each VM.

Resource Cost (USD)

Predefined vCPU $0.028103/vCPU/hour
Predefined RAM $0.003766/GB/hour

Egress Traffic $0.01/GB

Table 4.6. GCP pricing for e2-standard machine type

Each machine’s CPU and memory costs are determined by the resources allocated every
hour by GCP.The CPU is charged by virtual core per hour and the RAM is charged by
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the amount of GB allocated in our virtual machine.As displayed bellow the total cost of a
Node (VM) in our cluster is the sum of the total vCPU used and the amount of allocated
RAM.

CostCPU = 2vCPU× vCPUcost × hours

= 2× 0.028103× hours

= 0.056206× hours (4.1)

CostRAM = 8GB× RAMcost × hours

= 8× 0.003766× hours

= 0.030128× hours (4.2)

Based on the volume of traffic exchanged between nodes, each cluster’s network traffic is
charged (egress traffic).The CGP only charged the bytes from the requests and not from
the responces.The total cost of egress traffic can be calculated by adding the requested
bytes between microservices in different Nodes.The price per GB it depends in the location
(region) of each Node. In our work all the Nodes are in the same Google Cloud region
and the price is 0.01 dollars per our.On the contrary, if we have egress from Indonesia or
Oceania to any other Google Cloud region the price can be up to 0.15 dollars per hour who
is a significant change.Bellow we present the egress traffic cost function for our cluster.

CostTraffic =
N∑
i

N∑
j

te(i→ j)× costegress

=
N∑
i

N∑
j

te(i→ j)× 0.01 (4.3)

Where,

te(i→ j) =

t(i→ j), if i, j not in the same node

0, in the same node
(4.4)

The total cost of the cluster for any number of Nodes can be calculated using the following
formula:
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TotalCost = TotalCostCPU + TotalCostRAM + TotalCostTraffic

= n× (CostCPU + CostRAM) + TotalCostTraffic

= n× (0.086334× hours) + 0.01× GBegress (4.5)

Because in this work as we mentioned before we used 4 machines as Nodes, we can
calculated the initial placement cost of our cluster using the following function:

TotalCost = 0.345336× hours + 0.01× GBegress (4.6)

4.5 Experiemntal Results

In this section we will analyze the results of fuzzy service placement MODSOFT-HP
compare to the default Kuberenetes Scheduler, the hard clustering Bisecting K Means
with Heuristic Packing service placement (BKM-HP), and the Heuristic First Fit (HFF)
service placement algorithm.Additionally the Horizontal Pod Autoscaler (HPA) replicate
pods (like fuzzy clustering) if overloaded with requests.We present a set of experiments
with the HPA enabled and with the HPA disabled to examine the impact of Horizontal Pod
Autoscaler.

For each service placement, we will display the execution time, the number of hosts
used,the egress traffic,the infrastructure cost and the average response time of requests. All
experiments (except Execution Time ) display the results with the HPA enabled and HPA
disabled and with RPS and WBA affinities.

4.5.1 Execution Time

An important factor of each placement strategy is the execution time of each algo-
rithm.Execution time, is the time each algorithm needs to produce the final service
placement.The graph creation is not part of the execution time.In figures 4.4 and 4.5
we present the execution time of each placement algorithm. As we expected, the lowest
execution time is from the HFF algorithm, this is because the HFF is a heuristic algorithm
and a single-step processing algorithm.The execution time of MODSOFT-HP is greater
than execution time of HFF and BKM-HM.The MODSOFT-HP generates more service
replicas and more partitions than the BKM-HP, therefore the higher execution time it is
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expected.The RPS affinity in both application is a little faster than the WBA affinity, but
the execution for both affinities in both applications as we can see,completes within a few
milliseconds and is acceptable.Finally all algorithms run on a local machine with 2.6 GHz
processor power, 4 cores, and 16 GB RAM.

Figure 4.4. Execution Time for Online Boutique e-Shop

Figure 4.5. Execution Time for iXen

4.5.2 Number of Hosts

In figures 4.6 , 4.7 and 4.8 we display the Node utilization for each service placement.The
numbers of utilized Nodes is critical in terms of costs of the infrastructure.The default
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Kuberenetes scheduler as we mentioned previously is utilizing 4 Nodes.With the Horizontal
Pod Autoscaler (HPA) disabled the HFF produced a placement that utilizes 2 Nodes for
both affinities for the Online Boutique e-Shop experiments and 3 Nodes for the iXen.
BKM-HP utilizes 3 Nodes for iXen but for Online Boutique e-Shop that number can be
reduced in just 2 nodes for RPS affinity in the Online Boutique e-Shop with 150 users
and during the WBA affinity for Online Boutique e-Shop with 300 users.MODSOFT-HP
requires 3 nodes for Online Boutique e-Shop and 4 Nodes for iXen experiments, this is
expected because MODSOFT-HP produces more pods due to replication of services.With
the Horizontal Pod Autoscaler (HPA) enabled all service placement in iXen utilizes 4
Nodes and 3 nodes in the Online Boutique e-Shop experiments.

Figure 4.6. Number of utilized Hosts for Online Boutique e-Shop with 150 users

Figure 4.7. Number of utilized Hosts for Online Boutique e-Shop with 300 users
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Figure 4.8. Number of utilized Hosts for iXen

4.5.3 Egress Traffic

Figures 4.9,4.10 and 4.11 presents the results for the egress traffic reduction using the
service placement algorithms.In general for eShop and iXen applications we achieve a
large reduction in requested egress traffic per hour for both affinities (RPS and WBA).

Figure 4.9. Hourly requested MBs for Online Boutique e-Shop with 150 users
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Figure 4.10. Hourly requested MBs for Online Boutique e-Shop with 300 users

Figure 4.11. Hourly requested MBs for iXen

The HFF algorithm achieve the lowest egress traffic for eshop with 150 users for both
affinities and for eshop with 300 users with WBA affinitie, this was expected beacuase
HFF utilize only 2 Nodes and in most cases is places as many services as he can on the
same Node. In iXen, MODSOFT-HP reduce the monthly egress traffic by 92% while in
eshop the reduction in monthly egress traffic is around 89%.Additionaly, as we can see
from the results for both applications, egress traffic was not significantly impacted by HPA.

4.5.4 Total Monthly Infrastructure Cost

In this section we calculated the monthly infrastructure cost for each service placement
algorithm using the Equation 4.5.We can see from the Equation that the cost depends
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mostly on how many virtual machines are used to host each placement and the type of
virtual machines.Since we use homogeneous cloud environment the type of VMs is the
same for every placement and this is not considered a comparing variable.Furthermore,
again due to homogeneous cloud environment the total cost is also impacted by egress
traffic, but not as much as the number of utilized VMs.In case of a heterogeneous cloud
environment the total cost of egress traffic can be even 15 times more expensive.

Figure 4.12. Estimated Monthly Cluster cost for Online Boutique e-Shop with 150 users

Figure 4.13. Estimated Monthly Cluster cost for Online Boutique e-Shop with 300 users
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Figure 4.14. Estimated Monthly Cluster cost for iXen

In 4.12,4.13 and 4.14 we display the total monthly cost for each placement for both
affinities and with the HPA enabled and disabled.In eshop BKM-HP and MODSOFT-HP
reduce the total cost by at least 25%, while the HFF in some cases can reduce the total
cost by 50%.The MODSOFT-HP is unable to decrease the iXen application’s monthly cost
while the HFF and BKM-HP reduce the total cost by at least 25%.MODSOFT-HP was
expected to be unable to reduce the monlthy cost because it produces more pods due to
replication of services.The impact of HPA in the total cost is insignificant in most cases,
we observe only an increase in cost when the algorithm utilizes 2 nodes in eshop and in
BKM-HP with WBA affinite in iXen.

4.5.5 Average Response Time

Response time is a critical factor for every application.In figures 4.15,4.16 and 4.17 we
present the average aggregated response times for both application,service affinities, and
with HPA enabled and disabled.The three different stress testing we applied with their
corresponding distribution is shown in Table 4.3,Table 4.4 and Table 4.5.As we can
see MODSOFT-HP significantly decreased the average response time for both applica-
tions.That was expected because services that have a heavy load (receives a big volume
requests) are replicated in multiple instances, and the incoming requests are load-balanced
between the replicated services and requests can forwarded faster to their targets.This
results in an overall reduction in response time.

Additionally, the response time was not reduced by any placement algorithm in e-Shop
experiments during the RPS affinity,but with WBA affinity BKM-HP and MODSOFT-HP
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both reduce the response time. In case of iXen application MODSOFT-HP reduce the
response time by an outstanding 84% using the RPS affinity.In general MODSOFT-HP
reduced in almost all cases the response times of the applications, especially with the HPA
disabled.When HPA is enabled it creates replicas of services to balance the load, and so in
almost all experiments we can see a performance improvement.

Furthemore, the HFF service placement algorithm in both eshop experiments significantly
increases the application response time.This happens in both affinitiy metrics and is due
to the fact that HFF algorithm reduced the utilized nodes from 4 to 2.Consequently, the
same load of requests is split between 2 nodes (where is the minimun number of required
Nodes), resulting in worst response times due to the VM’s load.

Figure 4.15. Average Response Time for Online Boutique e-Shop with 150 users

Figure 4.16. Average Response Time for Online Boutique e-Shop wih 300 users
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Figure 4.17. Average Response Time for iXen

4.5.6 Response Time for the 90%ile of Requests

In figures 4.18,4.19 and 4.20 we present the results of the response times for the 90%ile of
requests.The 90%ile refer to the 90% of the faster requests. MODSOFT-HP reduce the
90%ile response time for iXen application but not significantly,because as we can see the
response times was already reduced.In eshop experiments using WBA affinity,MODSOFT-
HP and BKM-HP produces the best results by reducing the response time, while HFF in
both affinity metrics produces a significant increase simirarly to the average response time
experiments.

Figure 4.18. Response Time for the 90%ile of Requests for Online Boutique e-Sho with
150 users
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Figure 4.19. Response Time for the 90%ile of Requests for Online Boutique e-Shop with
300 users

Figure 4.20. Response Time for the 90%ile of Requests for iXen

For iXen in general we can see a significant reduce of of the 90%ile response time in
contrast with the average response time.This happens because we leave out the 10% of the
requests with a significant slow response time.
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In this work we examine the service placement problem in a homogeneous Kubernetes
Cloud Environment. We aimed to reduce the responce time of the application, but also
the overall cost of the infrastructure using a fuzzy placement algorithm and the effect of
HPA on that algorithm.To reduce the response time of an application you need to create
and run multiple instances (replicas) of a service on a cluster to reduce and balance the
load of high-utilized services. The service placement problem is addresses as graph-base
clustering where services represents the nodes of the graph and the service affinities
represent the edges.The two affinity metrics we use to calculate the communications
affinities is the Request Per Second (RPS ) and Weighted Bidirectional Affinity (WBA).The
fuzzy placement uses a heuristic packing method to place the generated partitions into the
Nodes of the Cluster, in such a way that network traffic and resource (CPU,RAM) use are
optimized and also reduce the infrastructure cost.

Additionally, we create an algorithm to automate the service placement.The algorithm
works as an extension of the Kubernetes default scheduler. Is necessary before running the
algorithm to run the default Kubernetes scheduler that will place the microservices (Pods) to
the nodes of the cluster and have the initial placement.The algorithm for automated service
placement can run inside the cluster (for example in a pod running python) or outside of
the cluster and connect remotely to authenticate and run the algorithm to migrate/replicate
the services (so we don’t waste cluster resources).Furthermore with automated service
placement algorithm when we migrate a service to a new node in the cluster we don’t have
any downtime in the application.

To test the service placement algorithm we utilize two applications, the Google’s Online
Boutique e-Shop and the iXen IoT application.We integrated an Istio Service Mesh into
these applications to monitor the Pods and Nodes resources and calculate the performance
metrics required to apply the placement strategies.

The experimental results show that MODSOFT-HP can reduce the average response time up
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to 80% compare to Default Kubernetes Scheduler, BKM-HP and HFF with the Horizontal
Pod Autoscaler (HPA) disabled.If HPA is enabled we can see a response time reduction
up to 15%.The effect of the MODSOFT-HP with the HPA disabled it is much larger due
the the fact that the HPA create replicas of services at run time and reduce the response
time.Additionally, MODSOFT-HP can reduce the infrastructure cost by 25% compared
to the degault Kubernetes Scheduler.The HFF and BKM-HP placement algorithms can
reduce the infrastructure cost up to 50% but have a significant increase in response time.
The fuzzy placement can also reduce the egress traffic up to 92% compared to default
placement.In our work we use a homogeneous cloud environment and the price impact of
egress traffic its not significant, but in a heterogeneous cloud environment the price can
even be 15 times more expensive and the impact in the overall infrastructure cost will be
significant.

Furthermore, additional work can be implemented in the service placement problem.We
propose for future work a dynamic service placement who adapts in the application work-
loads without downtime and services can migrate in different nodes when the distribution
of request changes significantly.Along with our work, this can be implemented using the
Automated Service Placement algorithm we created and have zero down-time.

In real-life scenarios a homogeneous environment with VMs with the same CPU and RAM
is not always feasible, and in most cases the VMs will vary in resource allocation due to
the specific needs of each application.We propose for future work a fuzzy placement in
a Heterogeneous Multi-Cluster Cloud environment and/or a Heterogeneous Fog - Edge
environment where the egress traffic have a significant impact in the infrastructure cost
and the reduction of response time is very important.

Finally, for future work, we propose using latency between services as the affinity metric.
Latency metrics will have more impact on VMs placed in different networks, zones, and
regions and because response times depend on microservices latency, it could be a more
precise affinity metric for optimizing respose time.
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