
Technical University of Crete
School of Electrical & Computer Engineering

Pro-active Automatic scaling support for
Apache Flink in Kubernetes in the Cloud

by

Alexandros Nikolaos Zafeirakopoulos

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DIPLOMA OF ELECTRICAL AND COMPUTER

ENGINEERING

THESIS COMMITTEE
Professor Euripides G. M. Petrakis, Thesis Supervisor

Associate Professor Vasileios Samoladas
Professor Michail Zervakis

Chania, November 2022

“Sic Parvis Magna - Greatness from Small Beginnings”
Sir Francis Drake, English Explorer

1

Abstract

Apache Flink is a framework and distributed processing engine for stateful
computations over unbounded and bounded data streams. It executes arbi-
trary dataow programs in a data-parallel and pipelined manner in event-
driven applications such as, fraud detection (i.e. detection of suspicious trans-
actions), anomaly detection (i.e. detection of rare or suspicions events), rule-
based alerting (i.e. identi�cation of data which satisfy one or more rules) and
many more. Despite its versatility, Apache Flink cannot automatically and
optimally adjust the utilization of its underlying computing resources when
streaming sources produce data at varying speeds. In order to address this
issue, we describe an autonomous agent to support dynamic autoscaling for
Apache Flink on Kubernetes. This agent monitors, models and adjusts Flink’s
behaviour by optimally modifying its allocated resources in order to match
the incoming workload while achieving minimum cost. The decision making
process is based on operator idleness and changes to the input’s record lag.
We prove that our model not only successfully maintains the performance
of the application while minimizing infrastructure costs, but can provide a
better performance-to-cost ratio compared to already existing work on Flink
autoscaling. The e�ectiveness of our model is supported by an exhaustive set
of synthetic and real life workloads aimed to simulate a plethora of possible
scenarios.

2

Contents

Abstract 2

1 Introduction 6
1.1 Problem De�nition . 6
1.2 Scope of Thesis . 7
1.3 Thesis Structure . 8

2 Related Work 9
2.1 Background . 9
2.2 Related Work . 12

3 Infrastructure and Tools 15
3.1 Apache Flink . 15

3.1.1 Stream and Batch Processing 15
3.1.2 Use Cases . 16
3.1.3 Flink Jobs . 18
3.1.4 Stateful Stream Processing . 20
3.1.5 Flink Cluster Architecture . 21
3.1.6 Cluster Modes . 23

3.2 Kubernetes . 25
3.2.1 Overview . 25
3.2.2 Infrastructure and Components 26
3.2.3 Services and Network Tra�c 27

3.3 Apache Kafka . 28
3.3.1 Apache Zookeeper . 30

3.4 Prometheus . 31

4 Autoscaler Model for Apache Flink 33
4.1 System Architecture in Kubernetes 33
4.2 HYAS: Hybrid Autoscaling Agent for Apache Flink 38

5 Evaluation 44
5.0.1 Smilax . 44
5.0.2 Horizontal Pod Autoscaler (HPA) 45
5.0.3 Flink application: Clicks Fraud Detection 46

5.1 Testbed . 47
5.1.1 Con�gurations . 47

3

5.1.2 Infrastructure Cost Calculating Function 50
5.2 Experiments . 52

5.2.1 Gaussian . 52
5.2.2 Spike . 58
5.2.3 FIFA 98 World Cup Dataset 62

6 Conclusions 68

7 Future Work 69

References 71

List of Figures

1 Microservice Architecture . 9
2 Vertical vs Horizontal scaling . 10
3 Traditional vs Virtualized vs Container deployment 11
4 Bounded vs Unbounded data streams 15
5 traditional vs event-driven application architecture 16
6 batch vs streaming analytics . 17
7 An example of a streaming dataow 18
8 An abstract depiction showing the variety of systems that can connect

to Flink either as a source or sink operators 19
9 How a streaming dataow can be depicted in parallel view 19
10 A typical Flink Cluster with one JobManager and two TaskManagers 21
11 Abstract depiction of scaling the whole pipeline from 1 to 2 TaskMan-

agers which will result in a parallelism of 2 for each operator 22
12 An anatomy of a Kubernetes cluster and its components. 26
13 Anatomy of a Kakfa topic. 30
14 Zookeeper's ensemble of servers and its clients connections. 30
15 Abstract system architecture of our infrastructure on Kubernets in

the cloud depicting a Flink cluster with 2 TaskManagers. 33
16 System architecture of our infrastructure with 4 TaskManagers present

on the Flink cluster in Node A. Note that the autoscaler is not depicted 35
17 System architecture of our infrastructure with 3 TaskManagers present

each populating its own node . 37
18 Reactive Mode of Apache Flink . 48

4

19 Gaussian Distribution Workload. Note that our workload curve starts
from zero and hitting a peak of� 18000 records/s over a period of 1
hour. 52

20 Time Shift for each Algorithm . 54
21 Average Usage of Task Managers . 55
22 Average Hourly Cost (Gaussian) . 55
23 Average Monthly Cost (Gaussian) . 56
24 Time for each Algorithm to Empty the Kafka Queue 57
25 Maximum Observed Queue Lag Under Stress 57
26 Abstract form of a Spike Workload 58
27 Time Shift for each Algorithm . 59
28 Maximum Observed Queue Lag Under Stress 59
29 Time for each Algorithm to Empty the Kafka Queue 60
30 Average Hourly Cost (Spike) . 61
31 Average Monthly Cost (Spike) . 61
32 FIFA 98 World Cup Workload . 62
33 Time Shift for HYAS and HPA . 63
34 Time Shift for HYAS and Smilax . 64
35 Average Usage of Task Managers . 65
36 Average Monthly Cost (FIFA 98) . 66
37 Time for each Algorithm to Empty the Kafka Queue 67
38 Maximum Observed Kafka Lag Under Stress 67

5

1 Introduction

1.1 Problem De�nition

In the ever growing world of cloud-computing, dynamic resource management is im-
perative in order to achieve a healthy balance between cost and performance. The
microservice architecture model [30] consists of several �ne-grained services that
are independently scalable and deployable. A scalable service should be able to
handle dynamically varying workloads without noticeable degradation in system
performance while simultaneously making sure that no signi�cant resource under-
utilization occurs.

Stream processing enables a variety of brand-new applications characterized by
increased data generation and low latency response. Apache Flink is an open-source,
distributed stream processing engine for stateful computations over unbounded and
bounded data streams. Streaming jobs are typically long running and thus workload
variations are expected to occur over an application's lifetime. Static provisioning of
cloud resources, by setting the job's parallelism at launch-time, can prove ine�cient
and costly. If too few resources are allocated (under-provisioning), the application
will not keep up with the increasing workload. If too many resources are allocated,
so as to match the maximum workload, the system will run over-provisioned for a
signi�cant portion of the time and incur unnecessary infrastructure costs.

The parallelism of a Flink application cannot be modi�ed during runtime [25]. It
can only be changed by manually stopping the job, taking a savepoint of the current
state of the stream and then restarting the job with a di�erent parallelism from this
snapshot.

When restarting a job, the state must be written either on a persistent storage or
on memory (depending on its size) [41]. This action can be done asynchronously so
as to not disturb the ow of the pipeline, therefore any time delay can be considered
negligible. However, restoring from this savepoint can take a signi�cant amount of
time in which no incoming records are being processed until the pipeline is restored
to its previous state. This means that when the application is successfully restarted
it must try to catch up to any accumulated records that were not being processed
during this downtime.

Decision making models which take into consideration the above limitation while
simultaneously adapting to the incoming workload allow for e�cient and dynamic
scaling of Apache Flink applications with the goal of minimizing the expected down-
time.

6

1.2 Scope of Thesis

In this thesis we present HYAS, a hybrid, threshold-based decision making agent
which attempts to model the behaviour of a Flink cluster when under load and suc-
cessfully react to various changes in the workload by provisioning or un-provisioning
the required infrastructure resources e�ciently.

There are two main types of autoscaling methods to consider when implementing
elasticity in a cloud environment. Reactive scaling and proactive scaling. With
reactive scaling, resources are scaled based on changes in the workload which are
monitored in real-time. Alternatively in proactive scaling, machine learning and
arti�cial intelligence techniques are used to analyze workloads and predict when
more or fewer resources will be needed by training a behaviour model. HYAS can be
considered a hybrid approach of these two methods since it relies on metrics from a
real-time monitoring system in order to calculate the rate of change of unprocessed
records of its input and predict whether a scale up or scale down decision must be
made without the need of training a machine learning model.

We compare HYAS with Smilax's exploration mode [19], a reactive autoscaling
agent for Apache Flink as well as with Kubernetes' own Horizontal Pod Autoscaler
(HPA) [21], a general purpose scaling controller for container-based applications.
From these comparisons, we can claim that HYAS provides better resource utilisation
(cost reduction) and performance when deployed on a cloud environment from both
Smilax and HPA. This can be attributed to HYAS's unique decision making process
which monitors the rate of change of records not yet processed by Flink (decreasing
or increasing) and allows for a more accurate and cost-e�cient scaling action to be
made.

Lastly, as stated on paragraph 1.1 Flink requires a minimum amount of down-
time when rescaling to a new parallelism as the job must be �rst be stopped and
then restarted. In this thesis, we have not found an adequate solution in order to
tackle this issue and thus we have implemented a minimum amount of downtime (90
seconds) between scaling actions. That is, that no scaling decisions will be made for
this period of time. The Flink community is aware of this limitation but no plans
of presenting a solution are underway since this would require changing Flink from
a stateful stream processing engine to a stateless one [36].

7

1.3 Thesis Structure

The remainder thesis structure is as follows:

ˆ Chapter 2 provides some necessary background on scaling a microservice ar-
chitecture as well as the related work on Flink Autoscaling.

ˆ Chapter 3 has a more in depth look at the inner workings and con�gurations
of Apache Flink. It also presents the Kubernetes environment, all the features
of Kubernetes that we use in this work along with all the tools and services
used for our infrastructure.

ˆ Chapter 4 presents the architecture of our cluster, which was deployed in the
Google Cloud Platform. This chapter also describes the implementation of our
work in the form of the autoscaling agent and its behaviour.

ˆ Chapter 5 presents the experiments implemented to test the e�ciency of the
proposed autoscaling model as well as all the results and comparisons between
other autoscaling methods.

ˆ Chapter 6 and 7 generalize the conclusions of this work and provide input on
possible future work respectively.

8

2 Related Work

2.1 Background

Microservices

Microservices are an architectural and organizational approach to software develop-
ment where software is composed of small independent services that communicate
over well-de�ned APIs [44]. Microservices architectures make applications easier to
scale and faster to develop, enabling innovation and accelerating time-to-market for
new features.

A well de�ned aspect of microservices is autonomy and specialization. Each com-
ponent service in a microservices architecture can be developed, deployed, operated,
and scaled without a�ecting the functioning of other services while simultaneously,
each service is designed for a set of capabilities and focuses on solving a speci�c
problem.

Figure 1: Microservice Architecture

One of the key bene�ts of adopting this architectural approach is scalability.
Microservices allow each service to be independently scaled to meet demand for the
application feature it supports. In cloud computing there are two main forms in
which a service can be scaled, horizontal and vertical scaling.

Horizontal scaling, commonly referred to as scale-out, is the capability to au-
tomatically add services/instances in a distributed manner in order to handle an
increase in load [22]. Conversely, with vertical scaling (scaling up or down), you
can increase or decrease the capacity of existing services/instances by upgrading the

9

memory (RAM), storage, or processing power (CPU) [42]. One common example of
both of these kinds of scalability involves a hardware server. Suppose that network
demand means a server has to handle signi�cantly more data transfers. IT managers
could add processing power or memory to the single server to increase its capability,
or they could link it to other servers. The former approach illustrates vertical scaling
while the latter illustrates horizontal scaling.

Figure 2: Vertical vs Horizontal scaling

When designing an autoscaler mechanism in a cloud environment the are two
main techniques one must adopt in order to best suit its needs. These auto-scaling
techniques are classi�ed into two major groups [34]:

ˆ Reactive techniques, where the scaling action is in reaction to a change in the
system, and therefore does not anticipate such a change.

ˆ Predictive or proactive techniques, which attempt to anticipate future changes
in the system by performing the necessary scaling actions before such changes
occur.

When de�ning a scaling action to be made by a controller, we essentially need
to describe what form of resources must be scaled (e.g. processing power, memory,
storage, read/write speeds), when should the action be taken, how many resources

10

must adjusted (added or removed) and which scaling method must be used (horizon-
tal or vertical). This scaling action will be made based on one or more inputs (SLA
violations, workload changes, predictive models) and result in the system changing
on a reactive or proactive manner.

Containers

Each microservice runs in a container [17], a standard unit of software that packages
up code and all its dependencies, so the application runs quickly and reliably from
one computing environment to another.

Figure 3: Traditional vs Virtualized vs Container deployment

In a traditional deployment, applications would run on physical servers. There
was no way to allocate speci�c resources for each application in a physical server and
thus one application would take up most of the resources, and as a result, the other
applications would underperform.

To counteract this problem, virtualization was introduced. It allows multiple
Virtual Machines (VMs) to run on a single physical server's CPU. Virtualization
allows applications to be isolated between VMs and provides a level of security as
the information of one application cannot be freely accessed by another application.
Each VM is a full machine running all the components, including its own operating
system, on top of the virtualized hardware.

A natural extension of this era are containers, which are similar to virtual ma-
chines, with the ability to share the Operating System (OS) between the applications.
As they are decoupled from the underlying infrastructure, they are portable across
clouds and OS distributions.

11

A few key bene�ts of packaging an application in a container are:

ˆ Lightweight application deployment and creation.

ˆ Environmental consistency across development, testing, and production. Runs
the same on a laptop as it does in the cloud.

ˆ Cloud and OS distribution portability

ˆ Resource isolation

ˆ Loosely coupled, distributed and elastic microservices. Applications are broken
into smaller, independent pieces and can be deployed and managed dynamically

2.2 Related Work

The main idea of our hybrid decision making agent has been described initially in
[41]. Varga et al. present an architecture that automatically scales the parallelism
of Flink jobs by utilizing the Horizontal Pod Autoscaler (HPA) framework provided
by Kubernetes and adjusting the available number of TaskManagers in the cluster
thus, scaling the parallelism of the whole job accordingly. The scaling policy receives
metrics from Kafka and Flink through Prometheus (record lag, throughput, idle time
of operators) and makes a decision whether a scale up or down action must be taken.

Additionally, they analyze the downtime caused by the scaling operation and how
it is a�ected by the size of the application state Flink has to store before restarting
its job. They were able to establish a linear relationship between state size and the
duration of savepointing to a persistent storage.

Contrary to our work, Varga et al. have not compared their autoscaling agent
against other autoscaling systems. Additionally, our autoscaling agent is not imple-
mented using HPA's framework but is running as separate python script independent
of the Kubernetes cluster. While we have based our own scaling policy from the equa-
tions of [41], our goal was to establish if there was room to implement a more cost
e�cient and e�ective scaling agent speci�cally for Flink compared to Kubernetes'
HPA and Smilax under a dynamic workload.

Smilax [19] is a statistical machine learning autoscaler agent for applications run-
ning on Apache Flink. Smilax agent acts proactively by predicting the forthcoming
workload in order to adjust the allocation of workers to the actual needs of an ap-
plication ahead of time.

12

During an online training phase (exploration mode), Smilax builds a model which
maps the performance of the application to the minimum number of servers. Dur-
ing the work (optimal) phase, Smilax maintains the performance of the application
within acceptable limits (i.e. de�ned in the form of SLAs) while minimizing the
utilization of resources. Apache Flink and Smilax are deployed on Docker Swarm, a
low-footprint virtualization platform based on Docker containerization.

In our work, we will be using Smilax as a baseline benchmark for our decision
making agent in terms of both performance and cost comparisons.

The DS2 controller [25] is an automatic scaling controller for dynamic resource
allocation of streaming analytic applications at the operator level. While DS2 was
designed to be stream engine agnostic it was tested on Apache Flink, Apache Heron
[10] and Timely Dataow [39] on native machines running Debian GNU/Linux. It is
able to calculate, in real-time, the optimal parallelism for each operator by detect-
ing possible bottlenecks in the dataow (i.e. which operator slows down the whole
application) and thus it operates online and in a reactive manner.

In contrast to our work, which monitors and scales applications at job level (i.e.
multiple operators or tasks may execute in a job), DS2 is designed to adjust the
parallelism of each operator separately in order to maintain high throughput. This
is a desirable and more �ne-grained approach to autoscaling streaming applications
which can be applied to HYAS if our scaling policy is changed to calculate the true
(i.e. maximum) and observed processing rates of each operator as described on [25].

Ververica Autopilot [43] is a proprietary solution for autoscaling Apache Flink
resources developed by Ververica and introduced in Ververica Platform 2.2. The
autoscaler performs dynamic resource adjustments horizontally, in a reactive man-
ner on Apache Flink applications by scaling the whole pipeline (i.e. changing the
parallelism of the whole executed job).

Autopilot supports applications with multiple sources, while in our work, the
supported applications contain only one source.

Lastly, Wybe J. C. Koper presents in his Masters thesis [26] a comparison be-
tween di�erent autoscaling techniques, speci�cally for Apache Flink, based on average
number of resources used, average latency and the number of scaling actions. Koper
implements modi�ed versions of DS2 [25], Varga et al. [41], Dhalion [1] as well as
Kubernetes' Horizontal Pod Autoscaler (HPA). The evaluation of each algorithm is
made using three di�erent queries from the Nexmark benchmark suite [40] with a
sinusoidal load pattern. Results from each comparison highlight the signi�cance of

13

a cooldown period between scaling actions, the importance of message queue spe-
ci�c metrics when scaling and that general purpose autoscaling controllers based
on coarse metrics such as CPU utilization and memory are ill-equipped for stream
applications.

In contrast to our work, we compare our autoscaling agent with only HPA and
Smilax using a single application (query) running on Flink (instead of 3) but with 3
di�erent workload variations (instead of 1). Additionally, we examine the cost dis-
crepancies of each algorithm when deployed on Google's Kubernetes Engine (GKE).

The following autoscaling solutions where not designed speci�cally for Apache
Flink or any stream processing engine but for general purpose web-applications.

Arabnejad et al. [13] compare two di�erent autoscaling types of Reinforcement
Learning (RL), which is SARSA and Q-learning. The autoscaler dynamically resizes
Web applications in order to meet the quality of service requirements.

Bibal Benifa and D. Dejey [24] propose the RLPAS algorithm, which applies RL
using a neural network in order to reduce the time for convergence to an optimal
policy.

Rossi, Nardelli and Cardellini [37] propose RL solutions for controlling the hor-
izontal and vertical elasticity of container-based applications in order to cope with
varying workloads.

14

3 Infrastructure and Tools

3.1 Apache Flink

Apache Flink is a framework and distributed processing engine for stateful computa-
tions over unbounded and bounded data streams [6]. `Stateful' means that applica-
tions can maintain an aggregation or summary of data that has been processed over
time as a state.

3.1.1 Stream and Batch Processing

Any kind of data is produced as a stream of events. Credit card transactions, sensor
measurements, machine logs, or user interactions on a website or mobile application,
all of these data are generated as a stream [38]. Data can be categorized in unbounded
and bounded streams.

As depicted on �gure 4, bounded streams have a de�ned start and a �nite end
and thus each portion of the stream can �rst be consumed in its entirety before being
processed. This is calledbatch processing , where the entire dataset is ingested to
a batch processor (e.g. Flink) before producing any results. Conversely, unbounded
streams have a de�ned start but no �nite end as they are constantly producing data
that must be continuously processed. This is calledstream processing , where the
input may never end, and so the data has to be processed at the moment it arrives.

In our work we will be handling inputs in the form of unbounded data streams
which are generated constantly and must be promptly handled after they have been
ingested.

Figure 4: Bounded vs Unbounded data streams

15

3.1.2 Use Cases

Event-driven Applications

An event-driven application is a stateful application that is characterized by the
need to trigger an action based on incoming events [9]. An event is a change in state,
or an update, like an item being placed in a shopping cart on an e-shop website.

Figure 5 depicts the di�erences between the traditional application architecture
and an event-driven architecture. In the traditional application design, applications
read and store data to a remote transactional database which is independent of
the application. The main di�erence between the traditional application design and
an event-driven application, which is based on stateful stream processing, is that
data and computation are co-located within the application (as depicted on �gure
5) which in turn achieves local (in-memory or disk speed) data access. A persistent
remote storage is only used in fault-tolerance which is achieved by periodically writing
asynchronous checkpoints to said storage.

Figure 5: traditional vs event-driven application architecture

Typical real life examples of an event-driven applications are [9]:

ˆ Fraud detection

ˆ Anomaly detection

ˆ Rule-based alerting

ˆ Web application (social network)

16

Data Analytics Applications

Analytical jobs ingest raw data with the purpose of obtaining information, pat-
terns and insights [9]. Figure 6 is helpful in visualizing some key di�erences between
streaming and batch analytical applications. Traditionally, batch analytics are pro-
cessed as a collection of periodic queries or applications on bounded data sets. When-
ever new data changes need to be incorporated to the result of the analysis, new data
must �rst be added to the existing dataset and the query needs to be resubmitted
or any applications rerun. This is in contrast with streaming analytics which have
the ability to ingest real-time event streams in the form of continuous queries as un-
bounded data sets. This allows for the continuous production of up-to-date analytical
results as new events are consumed in a streaming manner.

The results can then be stored to a persistent storage (for both batch and stream
analytics), produced in a user friendly format as reports (for batch analytics) or
retained as an internal state to be queried by dashboard applications in a real-time
fashion (for stream analytics).

Figure 6: batch vs streaming analytics

Typical real life examples of data analytics applications are [9]:

ˆ Quality monitoring of Telcommunication networks

ˆ Analysis of product updates and experiment evaluation in mobile applications

ˆ Ad-hoc analysis of live data in consumer technology

ˆ Large-scale graph analysis

17

3.1.3 Flink Jobs

In Apache Flink, applications (or Jobs) are composed of streaming dataows that
can be transformed by user-de�ned operators which contain custom functions. These
dataows form directed graphs (i.e. data pipelines) that start with one or more
sources, and end in one or more sinks [3].

Figure 7 presents an example of a streaming dataow in the form of a data
pipeline. In this particular example, records are entering the dataow through a
source operator (e.g. a Kafka consumer), they are transformed [18] consecutively by
two operators with one or more functions and lastly they exit the dataow through
a sink.

Figure 7: An example of a streaming dataow

Figure 8 depicts an abstract form of the several connectors that can act as source
and sink operators for Flink. An application can ingest real-time data from streaming
sources such as message queues or distributed logs, like Apache Kafka [11] or Amazon
Kinesis [2] in the form of source operators. Flink also supports the ability to consume
bounded data-sets and historic data from transactional databases or any other �le
repository [3]. Similarly, the streams of results being produced by a Flink application
can be sent to a wide variety of systems that can be connected as sinks (i.e other
applications, databases, streams).

18

Figure 8: An abstract depiction showing the variety of systems that can connect to
Flink either as a source or sink operators

Applications running in Flink are inherently parallel and distributed [3]. Figure
9 presents a parallel view of a dataow with all operators having a parallelism of 2
except for the sink operator which has 1.

A stream has one or more stream partitions (depicted as edges on �g. 9) and
each operator has one or more operator subtasks (depicted as nodes on �g. 9). The
operator subtasks are independent and execute in di�erent threads or even di�erent
machines. The number of operator subtasks is the parallelism of the whole operator.
Di�erent operators of the same program can have di�erent levels of parallelism (as
seen with with the sink operator on �g. 9).

Figure 9: How a streaming dataow can be depicted in parallel view

19

3.1.4 Stateful Stream Processing

Operations in Apache Flink can be stateful. In simple terms this can mean that past
events can inuence the way a current event is being processed.

Some examples of stateful operations: [8]

ˆ When an application searches for certain event patterns, the state will store
the sequence of events encountered so far.

ˆ When aggregating events per minute, the state holds the aggregates.

ˆ When training a machine learning model over a stream of data points, the state
holds the current version of the model parameters.

ˆ When historic data needs to be managed, the state allows e�cient access to
events that occurred in the past.

In Flink, the state is considered a snapshot of an individual operator at any given
time which holds information about the application's execution till a particular point
in time. Multiple snapshots of all the operators in the dataow are able to capture
the entire state of the pipeline and store it in memory or at a persistent storage.
This way Flink can keep track of how many and which records have been processed
up to a certain point.

There are two main types of snapshots:

ˆ Checkpoint [5]: a snapshot takenautomatically by Flink for the purpose of
being able to recover from faults.

ˆ Savepoint [7]: a snapshot triggeredmanually by a user (or an API call).

When a failure occurs or a manual restart of the job graph is triggered (i.e. when
a rescaling action is made) the state is accessed either remotely or locally and is
then redistributed across all parallel instances allowing processing to resume from
the point in time which the snapshots have been taken.

20

3.1.5 Flink Cluster Architecture

The Flink runtime consists of two types of processes: a JobManager and one or more
TaskManagers [4]. Figure 10 depicts a typical Flink Cluster including the client.

Figure 10: A typical Flink Cluster with one JobManager and two TaskManagers

The Client is not part of the runtime and program execution, but is used to
prepare and send a dataow to the JobManager.

JobManager

The JobManager has a number of responsibilities related to coordinating the dis-
tributed execution of Flink Applications. It decides when to schedule the next task
(or set of tasks), reacts to �nished tasks or execution failures, coordinates checkpoints
and coordinates recovery on failures [4].

The JobManager consists of three di�erent components:

ˆ The ResourceManager, which is responsible for resource de-/allocation and
provisioning in a Flink cluster (task slots).

ˆ The Dispatcher, which provides a REST interface to submit Flink applications
for execution and starts a new JobMaster for each submitted job.

ˆ A JobMaster, which is responsible for managing the execution of a single Job-
Graph.

21

TaskManager [4]

The TaskManagers execute the tasks of a dataow and exchange the data streams.
The smallest unit of resource scheduling in a TaskManager is a task slot. The number
of task slots in a TaskManager indicates the number of concurrent processing tasks
(operators). Flink requires that at least one TaskManager must be present at all
times in a cluster.

Each worker (TaskManager) is a JVM (Java Virtual Machine) process, and may
execute one or more subtasks in separate threads. Each task slot represents a �xed
subset of resources of the TaskManager. A TaskManager with three slots, for exam-
ple, will dedicate 1/3 of its managed memory and CPU to each slot.

In our work, each TaskManager will be con�gured with only one task slot con-
taining a part of the executed parallel dataow as depicted on �gure 11. This will
mean that each time we add or remove a TaskManager the whole pipeline will be
scaled accordingly as more operator subtasks are created or destroyed.

Figure 11: Abstract depiction of scaling the whole pipeline from 1 to 2
TaskManagers which will result in a parallelism of 2 for each operator

22

3.1.6 Cluster Modes

The jobs of a Flink Application can either be submitted to a long-running Flink
Session Cluster, a dedicated Flink Job Cluster, or a Flink Application Cluster [4].
The di�erence between these options is mainly related to the cluster's life cycle and
to resource isolation guarantees.

We will analyze only the di�erences between a Flink Session Cluster and a Flink
Application Cluster since a Flink Job Cluster is deprecated.

Flink Application Cluster

ˆ Cluster Lifecycle: a Flink Application Cluster is a dedicated Flink cluster that
only executes jobs from one Flink Application and where the main() method
runs on the cluster rather than the client. There is no need to start a Flink
cluster �rst and then submit a job to the existing cluster session instead, the
application logic and dependencies are packaged into an executable job JAR
and the cluster entry-point is responsible for calling the main() method to
extract the JobGraph. This allows a Flink Application to be deployed like
any other application on Kubernetes, for example. The lifetime of a Flink
Application Cluster is therefore bound to the lifetime of the Flink Application.

ˆ Resource Isolation: in a Flink Application Cluster, the ResourceManager and
Dispatcher are scoped to a single Flink Application, which provides a better
separation of resources than the Flink Session Cluster.

Flink Session Cluster

ˆ Cluster Lifecycle: in a Flink Session Cluster, the client connects to a pre-
existing, long-running cluster that can accept multiple job submissions. Even
after all jobs are �nished, the cluster (and the JobManager) will keep running
until the session is manually stopped. The lifetime of a Flink Session Cluster
is therefore not bound to the lifetime of any Flink Job.

ˆ Resource Isolation: TaskManager slots are allocated by the ResourceManager
on job submission and released once the job is �nished. Because all jobs are
sharing the same cluster, there is some competition for cluster resources |
like network bandwidth in the submit-job phase. One limitation of this shared
setup is that if one TaskManager crashes, then all jobs that have tasks running
on this TaskManager will fail.

23

In most cases, users will deploy Flink as an Application Cluster as it provides by
far the easiest con�guration needed since all the application logic is packaged into a
executable job JAR. However, if multiple jobs need to run on a single cluster a Flink
Session Cluster is much better suited due to the independence provided between the
cluster lifecycle and any Flink job.

In our work, we have chosen to deploy Flink as an Application Cluster primarily
because we wanted to utilize Flink's Reactive Mode [35] (further analyzed on section
5.1.1) which is available only on this cluster mode for the time being.

24

3.2 Kubernetes

3.2.1 Overview

Kubernetes, is an open source container orchestration platform that automates many
of the manual processes involved in deploying, managing, and scaling containerized
applications. It provides a framework with which to run distributed systems e�-
ciently.

Kubernetes' main bene�ts include [28]:

ˆ Service discovery and load balancing: Kubernetes can expose a container using
the DNS name or using their own IP address. If tra�c to a container is high,
Kubernetes is able to load balance and distribute the network tra�c so that
the deployment is stable.

ˆ Storage orchestration: Kubernetes allows for automatic mounting of various
storage systems such as local storages, public cloud providers, and more.

ˆ Automated rollouts and rollbacks: By describing the desired state of a deployed
container using Kubernetes, this state can be maintained at a controlled rate.
For example, Kubernetes can automate the creation of new containers for a
deployment, remove existing containers and adopt all their resources to the
new container.

ˆ Automatic bin packing: A user-de�ned cluster of nodes can be de�ned to run
containerized tasks with a set amount of CPU and memory for each container.
Kubernetes can then �t containers onto those nodes accordingly in order to
make the best use of available resources automatically.

ˆ Self-healing: Kubernetes restarts containers that fail, replaces containers, kills
containers that don't respond to user-de�ned health checks and doesn't adver-
tise them to clients until they are ready to serve.

ˆ Secret and con�guration management: Kubernetes lets you store and manage
sensitive information, such as passwords, OAuth tokens, and SSH keys. Secrets
and application con�gurations can be deployed and updated without the need
to rebuild container images.

25

3.2.2 Infrastructure and Components

A Kubernetes cluster consists of a set of worker machines, called nodes, that run
containerized applications in the form of Pods. Every cluster has at least one worker
node. The worker node(s) host the Pods that are the components of the application
workload. The control plane manages the worker nodes and the Pods in the cluster.

Figure 12 presents the architecture and the components of a Kubernetes cluster.

Figure 12: An anatomy of a Kubernetes cluster and its components.

The control plane's components make global decisions about the cluster [27] (i.e.
scheduling as well as detecting and responding to cluster events).

ˆ The API server is a component that exposes the Kubernetes API. The API
server is the front end for the Kubernetes control plane.

ˆ Etcd is a consistent key-value storage used by Kubernetes to store all cluster
data.

ˆ The scheduler is a component that watches for newly created Pods with no
assigned node, and selects a node for them to run on.

ˆ The kube-controller-manager runs all controller processes, and the cloud-controller-
manager is responsible for linking the cluster to the cloud provider's API and

26

exposes the components that interact with the cloud platform if the cluster is
not running locally.

Node components run on every node, maintaining running pods and providing
the Kubernetes runtime environment [27].

ˆ kubelet is an agent that runs on each node in the cluster that makes sure that
containers are running in a Pod and manages the containers that Kubernetes
creates.

ˆ The kube-proxy component is responsible for maintaining network rules on the
Node, which allow the Pods to communicate with other services inside and
outside of the cluster.

3.2.3 Services and Network Tra�c

Kubernetes uses IP addresses to enable communication between services and com-
ponents. A Pod is assigned an IP address upon creation, but this IP address is
temporary and changes every time the Pod restarts (due to a crash or update). For
this reason, Kubernetes introduced a resource called Kubernetes Services [29].

Kubernetes Services are abstractions that allow the Pod to use the network to
communicate (either for internal cluster communication or external network commu-
nication). Each Pod bounds with its respective Kubernetes Service, and the Service
is responsible for forwarding any tra�c to the Pod. The Service discovers the Pod's
IP address upon creation or change and exposes a permanent address (user-de�ned
in the Kubernetes Service YAML con�guration) and a port so that other services can
communicate. A Kubernetes Service can be a ClusterIP, NodePort, LoadBalancer
or External Name type.

The LoadBalancer type exposes the Service to the external network, using the
cloud provider's load balancer routes. The NodePort type exposes the Service on
each Node's IP at a prede�ned port. Allowing this port through the cluster's �rewall
makes the Service accessible through the external network. The ClusterIP service is
the most used one and exposes the Service on a cluster-internal IP, so it's accessible
to the rest of the cluster's services.

27

3.3 Apache Kafka

Apache Kafka is an open-source distributed event streaming platform used by thou-
sands of companies for high-performance data pipelines, streaming analytics, data
integration, and mission-critical applications [11].

Event streaming is the practice of capturing data in real-time from event sources
like databases, sensors, mobile devices, cloud services, and software applications in
the form of streams of events. Event streaming thus ensures a continuous ow and
interpretation of data so that the right information is at the right place, at the right
time.

Some key use case examples for event streaming are [11]:

ˆ To process payments and �nancial transactions in real-time, such as in stock
exchanges, banks, and insurances.

ˆ To track and monitor cars, trucks, eets, and shipments in real-time, such as
in logistics and the automotive industry.

ˆ To continuously capture and analyze sensor data from IoT devices or other
equipment, such as in factories and wind parks.

ˆ To serve as the foundation for event-driven architectures and microservices.

Kafka combines three key capabilities for event streaming [11]:

1. To publish (write) and subscribe to (read) streams of events, including contin-
uous import/export of your data from other systems.

2. To store streams of events durably and reliably for as long as you want.

3. To process streams of events as they occur or retrospectively.

Kafka is a distributed system consisting of servers and clients that communicate
via a high-performance TCP network protocol. Kafka is run as a cluster of one or
more servers that can span multiple datacenters or cloud regions. Some of these
servers form the storage layer, called the brokers. Clients are considered distributed
applications and microservices that read, write, and process streams of events in
parallel, at scale, and in a fault-tolerant manner even in the case of network problems
or machine failures.

28

Events

Kafka reads and writes data in the form of events. Conceptually, an event has a
key, value, timestamp, and optional metadata headers.

ˆ Event key: "Alice"

ˆ Event value: "Made a payment of$200 to Bob"

ˆ Event timestamp: "Jun. 25, 2020 at 2:06 p.m."

Producers are those client applications that publish (write) events to Kafka, and
consumers are those that subscribe to (read and process) these events. In Kafka,
producers and consumers are fully decoupled and agnostic of each other, which is
a key design element to achieve the high scalability. For example, producers never
need to wait for consumers.

Events are organized and durably stored in topics. A topic is similar to a folder
in a �lesystem, and the events are the �les in that folder. Topics in Kafka are al-
ways multi-producer and multi-subscriber (i.e a topic can have zero, one, or many
producers that write events to it, as well as zero, one, or many consumers that sub-
scribe to these events). Events in a topic can be read as often as needed, and unlike
traditional messaging systems, events are not deleted after consumption. Instead, if
event deletion is necessary, a custom duration for how long Kafka should retain said
events can be de�ned through a per-topic con�guration setting.

Partitions

Topics are partitioned, meaning a topic is spread over a number of "buckets"
located on di�erent Kafka brokers. This distributed placement of data is very im-
portant for scalability because it allows client applications to both read and write
the data from/to many brokers at the same time. When a new event is published
to a topic, it is appended to one of the topic's partitions. Events with the same
event key (e.g., a customer or vehicle ID) are written to the same partition, and
Kafka guarantees that any consumer of a given topic-partition will always read that
partition's events in exactly the same order as they were written.

Figure 14 depicts a topic which has four partitions P1 to P4. Two di�erent
producer clients are publishing, independently from each other, new events to the
topic by writing events over the network to the topic's partitions. Events with the
same key (denoted by their color in the �gure) are written to the same partition.
Note that both producers can write to the same partition if appropriate.

29

Figure 13: Anatomy of a Kakfa topic.

3.3.1 Apache Zookeeper

ZooKeeper is a distributed, open-source coordination service for distributed applica-
tions. It exposes a simple set of primitives that distributed applications can build
upon to implement higher level services for synchronization and con�guration main-
tenance [12].

ZooKeeper allows distributed processes to coordinate with each other through a
shared hierarchical namespace which is organized similarly to a standard �le system.
The namespace consists of data registers, called znodes, and these are similar to �les
and directories. Unlike a typical �le system, which is designed for storage, ZooKeeper
data is kept in-memory, which means ZooKeeper can achieve high throughput and
low latency numbers.

Figure 14: Zookeeper's ensemble of servers and its clients connections.

30

Like the distributed processes it coordinates, ZooKeeper itself is intended to be
replicated over a set of hosts called an ensemble. The servers that make up the
ZooKeeper service must all know about each other. They maintain an in-memory
image of state, along with a transaction logs and snapshots in a persistent store.
As long as a majority of the servers are available, the ZooKeeper service will be
available.

Clients connect to a single ZooKeeper server. The client maintains a TCP con-
nection through which it sends requests, gets responses, gets watch events, and sends
heart beats. If the TCP connection to the server breaks, the client will connect to a
di�erent server.

3.4 Prometheus

Prometheus is an open-source systems monitoring and alerting toolkit. Prometheus
collects and stores its metrics as time series data, i.e. metrics information is stored
with the timestamp at which it was recorded, alongside optional key-value pairs
called labels [33].

Metrics, in their most simple term, are numeric measurements. Time series means
that changes are recorded over time. What users want to measure di�ers from ap-
plication to application. For a web server it might be request times, for a database
it might be number of active connections or number of active queries etc.

Prometheus fundamentally stores all data as time series, meaning streams of
timestamped values belonging to the same metric and the same set of labeled di-
mensions. Besides stored time series, Prometheus may generate temporary derived
time series as the result of queries [31].

Every time series is uniquely identi�ed by its metric name and optional key-value
pairs called labels. The metric name speci�es the general feature of a system that is
measured (e.g. httprequeststotal - the total number of HTTP requests received).
Labels enable Prometheus' dimensional data model. Any given combination of la-
bels for the same metric name identi�es a particular dimensional instantiation of
that metric (for example: all HTTP requests that used the method POST to the
/api/tracks handler). The query language (PromQL) allows �ltering and aggregation
based on these dimensions. Changing any label value, including adding or removing
a label, will create a new time series.

31

The Prometheus client libraries o�er four core metric types [32].

ˆ Counter: A counter is a cumulative metric that represents a single monoton-
ically increasing counter whose value can only increase or be reset to zero on
restart. For example, a counter can be used to represent the number of requests
served, tasks completed, or errors.

ˆ Gauge: A gauge is a metric that represents a single numerical value that can
arbitrarily go up and down. Gauges are typically used for measured values like
temperatures or current memory usage, but also "counts" that can go up and
down, like the number of concurrent requests.

ˆ Histogram: A histogram samples observations (usually things like request du-
rations or response sizes) and counts them in con�gurable buckets. It also
provides a sum of all observed values.

ˆ Summary: Similar to a histogram while also providing a total count of obser-
vations and a sum of all observed values, it calculates con�gurable quantiles
over a sliding time window.

32

4 Autoscaler Model for Apache Flink

4.1 System Architecture in Kubernetes

In this thesis, we have deployed our Apache Flink cluster in Kubernetes both lo-
cally and in a cloud environment. Figure 15 depicts an abstract architecture of our
infrastructure with one Kubernetes cluster and two worker nodes running in the
cloud.

It should be noted that each Pod runs a containerized application each with its
own respective Kubernetes service (as described on section 3.2.3) responsible for all
internal node communications as well as forwarding any external requests (i.e. any
metrics scraped by Prometheus will be sent to our autoscaler) outside of the cluster
as required.

Figure 15: Abstract system architecture of our infrastructure on Kubernets in the
cloud depicting a Flink cluster with 2 TaskManagers.

33

In node A we have deployed our Apache Flink Cluster with one JobManager and
at least one TaskManager (up to a maximum of 6) as containerized applications each
running in one Pod. The number of allocated TaskManagers varies over time and
is adjusted by our Autoscaler running outside the Kubernetes cluster (or even out-
side of the cloud environment) as a separate python script. The Autoscaler, receives
metrics from both Kafka and Flink from Prometheus (also present on node A) which
in turn are used as inputs for the decision making process of our autoscaling agent.
Any scaling actions are then forwarded in Kubernetes' command line tool (kubectl)
which communicates with the cluster's control plane and modi�es the number of
TaskManagers (pods) available for Flink accordingly.

Node B contains all the necessary deployments for our Kafka cluster. The Kafka
producer houses a custom load testing application (described on section 5.1.1) nec-
essary for stressing our Flink job at various intervals. This application does not
necessarily need to be present inside the Kubernetes cluster and can also receive
input from outside sources such as news streams, twitter etc. Records are produced
at varying quantities (from the Kafka producer) which are then in turn written to
a speci�c Kafka topic in our broker. The Kafka broker is used as publish/subscribe
system and acts as Flink's input stream. Each TaskManager depicts a Kafka con-
sumer which has subscribed to a speci�c topic in the Kafka broker and can read from
one or more partitions present there. Lastly, Zookeeper is a dependency of Apache
Kafka since it has the responsibility of managing the Kafka cluster. It has a list of
all the Kafka brokers and thus is able to notify Kafka if any broker or partition goes
down and if any new brokers or partitions are up.

In order to monitor Kafka, a JMX agent is used. The direct connection between
Kafka and Prometheus was not possible, so we use a JMX agent to retrieve any
necessary metrics from the Kafka broker such as the volume of records written to each
topic which when aggregated depicts the workload created by our Kafka producer.
Java Management Extensions (JMX) is a technology which enables managing and
monitoring applications, system objects, devices, and service-oriented networks [23].
The agent retrieves metrics from Kafka and makes them available by exposing a
HTTP server (housed inside the JMX exporter). Prometheus retrieves the Kafka
metrics by querying the HTTP endpoint of JMX exporter. In this way, we are able
to monitor the workload of Kafka topics and thus the workload of the running job.

34

Figure 16 presents our system architecture after a scaling action with 4 TaskMan-
agers (Pods) all present within a single node. Notice how only the pods containing
TaskManagers have been scaled (compared to �gure 15) and no other resources in
both Nodes A and B.

Figure 16: System architecture of our infrastructure with 4 TaskManagers present
on the Flink cluster in Node A. Note that the autoscaler is not depicted

This is the default behaviour when adjusting the number of pods on a speci�c
deployment (i.e. TaskManager) in a Kubernetes environment. Each pod created or
destroyed is part of a single node unless the node capacity is exceeded (by default
up to 110 pods can exist in a single node) in which case a new node is created if
possible.

35

At this point it should be noted that the Google Cloud Platform (GCP), the cloud
provider which we have deployed our cluster, includes charges per virtual machine
(node) in a Kubernetes cluster. Our autoscaling algorithm (explained in detail on
section 4.2) adjusts the allocated resources on a per-pod basis in a node as depicted
in �gure 16. This would mean that we would see no cost di�erence between our
implementation when compared to HPA and Smilax since the number of nodes would
remain the same through the whole scaling operation.

Normally, this is not an issue since a better pod allocation method on the same
amount of nodes would still entail fewer infrastructure costs implicitly. In �gure 16 we
have made the assumption that in Node A only Apache Flink would be present and
no other resource intensive application. By loosening this assumption and populating
the node with a multitude of applications suddenly we have no way of knowing if the
node will be stressed either by Flink or any of the other applications, which would
result in the creation of additional nodes and thus incurring further infrastructure
costs. It is thus made clear that even in the scenario of having Flink's entirety of
TaskManagers in one node, e�cient resource allocation is still paramount in order
to achieve unnecessary costs.

The ideal scenario for an autoscaling agent which adjusts the number of pods in a
cluster would be to stress a kubernetes node with only Apache Flink. However, this
is not possible with our current processing capabilities since a node has a maximum
capacity of 110 pods, far above the maximum number of TaskManagers (6) we have
chosen for our evaluations.

Therefore, in order to better simulate the cost discrepancies between our al-
gorithm and it's competitors, we have elected to make the assumption that each
TaskManager of Apache Flink would populate its own node. This would mean that
on the creation of a TaskManager a node would also be created and subseqeuntly at
the deletion of a TaskManager its corresponding node would also be deleted. This
scenario has been tested with all our experiments and has no practical limitations
by both Kubernetes and Apache Flink.

This can be better visualized on �gure 17 in which a scaling action has resulted
in the creation of 3 TaskManagers (pods) and the subsequent creation of a node for
each one of them. Notice that Flink did not require the scaling of the pod containing
the JobManager which can still communicate with each TaskManager now present
on di�erent nodes. Additionally neither Prometheus needed to be scaled and can
populate the original node containing the JobManager.

36

Figure 17: System architecture of our infrastructure with 3 TaskManagers present
each populating its own node

37

4.2 HYAS: Hybrid Autoscaling Agent for Apache Flink

The implemented scaling policy used by our agent is based on [41]. The algorithm
assumes that the streaming job of Flink reads input data from a Kafka topic, per-
forms some sort of calculations over the records (i.e. identifying fraud events) and
then either discards the results or feeds them again on another Kafka topic. The
records produced in the topic are evenly distributed among partitions resulting in
each consumer processing an equal workload.

In our work, a Kafka consumer exists in the form of a TaskManager. Each
consumer (TaskManager) reads data from a Kafka topic which can have one or more
partitions contained in the Kafka broker. The Kafka producer is responsible for
creating and writing said data on the broker.

In Kafka, if the rate of production of records exceeds the rate at which they
are being consumed, consumers will exhibit lag. This lag can be described as the
di�erence between the number of records read by a consumer (committed o�set) and
the total number of records produced (latest o�set) at a certain point in time.

The committed o�set can only be calculated by the consumers (i.e. Flink), how-
ever accurately calculating this di�erence is not possible therefore Flink provides an
upper bound for the total lag using therecords lag max metric which indicates how
far a consumer is behind the head of the message queue. In other words it represents
the maximum lag in terms of number of records for any partition read by a consumer.

To better visualize this metric lets assume, for example, a Kafka topic containing
100,000 records evenly distributed between 10 partitions (i.e. each partition hav-
ing 10,000 records) and 5 Kafka consumers (TaskManagers). For each consumer 2
partitions would be assigned each with 10,000 records. As the job is started, mes-
sages will begin to be consumed from each partition (faster than they are produced)
decreasing the number of records on each partition (i.e. the lag) and thus the met-
ric records lag max would give the largest value between the 2 partitions for each
consumer.

By summing this value for each source task of Flink (i.e. for each consumer) we
model the total lag of our application using equation (1).

totalLag =
X

i 2 T askManager

record lag maxi (1)

A constant value of (1) indicates that our current amount of task managers are
able to keep up with the workload. If this value is increasing, we need to scale up

38

since we are underprovisioned. If this value is decreasing it means that we might be
overprovisioned for the current workload.

Since we are looking whether the value from equation (1) is increasing or decreas-
ing and not its numerical value a better representation of this would be to calculate
the derivative of (1) as the rate of change of the total lag (in records/second) over a
1 minute period. Additionally, we calculate the total rate at which our job consumes
records (throughput) by summing therecords consumedrate metric from Flink for
each consumer. Equation (2) summarizes this.

throughput =
X

i 2 T askManager

records consumedratei (2)

The ratio between the derivative of (1) and (2) produces a dimensionless value
which represents the rate at which the total lag of our Kafka queue is increasing
(when having a positive value) or decreasing (when having a negative value) relative
to the current throughput of our Flink cluster. This relation can be summarized in
equation (3).

relativeLagChangeRate=
deriv(totalLag)

throughput
(3)

With equation (3) we have answered the questionwhen should we scale our
resources which represents a prediction that the application will soon become over-
provisioned or underprovisioned without the aid of a machine learning algorithm.
A natural continuation of this thought would be how muchshould we scale our in-
frastructure. We begin by presenting the relation between thethroughput of our
system and the number of deployed TaskManagers (deployments or replicas). In an
ideal scenario we would say that this is a one to one relationship. Meaning that if
we double the number of our TaskManagers the throughput would also double (and
vice versa an increase in throughput by a factor of two would mean that we have
added double the number of machines).

To answer the question of how many task managers we need to add in order to
match the incoming workload we basically need to answer the question of how much
throughput we need in order for (3) to be equal to zero. Since equation (3) is a ratio
it's value can only be zero only if the numerator is also zero.

Consider the following example with which we base our reasoning. Let the rate
of change of the total lag be 4000 records/s and the throughput of our system 4000
records/s as well. The ratio of equation (3) would give us the dimensionless value of
1 as its result. In order for as to reduce the value of the numerator to zero we need
to increase our throughput to a value of 8000 records/s so as to match the rate at

39

	Abstract
	Introduction
	Problem Definition
	Scope of Thesis
	Thesis Structure

	Related Work
	Background
	Related Work

	Infrastructure and Tools
	Apache Flink
	Stream and Batch Processing
	Use Cases
	Flink Jobs
	Stateful Stream Processing
	Flink Cluster Architecture
	Cluster Modes

	Kubernetes
	Overview
	Infrastructure and Components
	Services and Network Traffic

	Apache Kafka
	Apache Zookeeper

	Prometheus

	Autoscaler Model for Apache Flink
	System Architecture in Kubernetes
	HYAS: Hybrid Autoscaling Agent for Apache Flink

	Evaluation
	Smilax
	Horizontal Pod Autoscaler (HPA)
	Flink application: Clicks Fraud Detection

	Testbed
	Configurations
	Infrastructure Cost Calculating Function

	Experiments
	Gaussian
	Spike
	FIFA 98 World Cup Dataset

	Conclusions
	Future Work
	References

