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TECHNICAL UNIVERSITY OF CRETE

Abstract
School of Electrical and Computer Engineering

Electrical and Computer Engineer

Embedded System for Real-time Detection of Escape

Openings Towards Unmanned Aerial Vehicle Navigation

by GEORGIOS LOUKOPOULOS CHATZIGIOSIS

Unmanned aerial vehicles (UAVs), also known as drones, have emerged as
versatile tools for various applications, including surveillance, inspection,
delivery, and search and rescue missions. The increasing popularity of UAVs
has led to a growing demand for advanced autonomous navigation systems
to enable them to perform complex tasks independently. Autonomous navi-
gation refers to the ability of UAVs to navigate and maneuver without human
intervention, relying on onboard sensors, algorithms, and decision-making
processes.

Two of the critical tasks in UAV autonomous navigation is localization, which
refers to determining the drone’s position and orientation relative to its en-
vironment, and mapping which is the ability of the drone to build a map of
its surroundings. Another important aspect is the detection of escape open-
ings, which are critical in emergency situations, allowing the UAV to navi-
gate through narrow or complex environments.

In this work, we present an approach that addresses the challenges of local-
ization, mapping, and escape opening detection in UAV autonomous naviga-
tion, while minimizing cost, energy consumption, and resource usage. Our
solution leverages the power of Computer Vision algorithms and sensors, en-
abling accurate and robust localization and mapping, as well as an efficient
escape opening detection.
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ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ

Περίληψη

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Ηλεκτρολόγος Μηχανικός και Μηχανικός Υπολογιστών

Ενσωματωμένο Σύστημα Πραγματικού Χρόνου για Εύρεση Ανοιγμάτων

Διαφυγής με Σκοπό την Πλοήγηση Μη Επανδρωμένου Εναέριου Οχήματος

Λουκοπουλος Χατζηγιωσης Γεωργιος

Τα μη επανδρωμένα αεροσκάφη (UAV’s), γνωστά και ως drones, αποτελούν πολύ
χρήσιμα εργαλεία για διάφορες εφαρμογές, συμπεριλαμβανομένων της παρακολο-

ύθησης, του ελέγχου, της παράδοσης και των αποστολών έρευνας και διάσωσης.

Η αυξανόμενη ενσωμάτωση των UAVs έχει οδηγήσει σε μια αυξανόμενη ζήτηση
για προηγμένα συστήματα αυτόνομης πλοήγησης. Η αυτόνομη πλοήγηση ανα-

φέρεται στην ικανότητα των UAV’s να πλοηγούνται και να μανοβράρουν χωρίς
ανθρώπινη παρέμβαση, βασιζόμενα σε αισθητήρες, αλγόριθμους και διαδικασίες

λήψης αποφάσεων που βρίσκονται στο εσωτερικό τους.

Δύο από τις πιο κρίσιμες προκλήσεις στην αυτόνομη πλοήγηση των UAVs είναι
η τοποθέτηση, και ο χαρτογραφικός προσανατολισμός, που αφορά τη δυνατότη-

τα του δρονε να δημιουργήσει ένα χάρτη του περιβάλλοντός του προκειμένου να

πλοηγηθεί σε αυτόν. ΄Ενα άλλο σημαντικό στοιχείο είναι η ανίχνευση των ανοιγ-

μάτων διαφυγής, τα οποία είναι κρίσιμα σε επείγουσες καταστάσεις, επιτρέποντας

στο UAV να πλοηγηθεί μέσα από στενά ή πολύπλοκα περιβάλλοντα.

Σε αυτή την εργασία, παρουσιάζουμε μια προσέγγιση που αντιμετωπίζει τις προ-

κλήσεις της τοποθέτησης, του χαρτογραφικού προσανατολισμού και της ανίχνευ-

σης ανοιγμάτων απόδρασης στην αυτόνομη πλοήγηση των UAVs , επιχειρώντας
την ελαχιστοποίηση το κόστους, της κατανάλωσης ενέργειας και της υπολογι-

στικής ισχύος ενσωματώνοντας αλγορίθμους μηχανικής όρασης και αισθητήρες,

διασφαλίζοντας ακριβή και ανθεκτική τοποθέτηση και χαρτογράφηση, καθώς και

αποδοτική ανίχνευση ανοιγμάτων απόδρασης.
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Chapter 1

Introduction

Looking at how living beings operate to navigate in an unknown space and
what stimulus the brain requires to make decisions about the next move
helps us understand how to approach a solution on how robots would achieve
the same goal. Being aware of the surrounding space is the first and most
crucial prerequisite for navigation. Furthermore, the ability to detect several
other attributes (doors, windows) leads to improved movement flexibility
(moving along rooms), extra information about the environment, and better
spatial perception.

Simultaneous Localization and Mapping (SLAM) is the computational prob-
lem of constructing or updating a map of an unknown environment while si-
multaneously keeping track of an agent’s location within it [1]. The research
on SLAM dates back to 1986, when the idea of using estimation-theoretic
methods for robot localization and mapping were first discussed in IEEE
Robotics and Automation Conference held in San Francisco.

Today, many variations of SLAM have been introduced by researchers re-
garding different ways of approaching SLAM problems depending on the
conditions of each problem.

1.1 Motivation and Scientific Contributions

In UAV autonomous navigation, a Visual SLAM system leverages 3D vi-
sion to perform location and mapping functions when neither the environ-
ment nor the location of the sensor is known.It works by tracking set points
through successive camera frames to triangulate their 3D position, while si-
multaneously using this information to approximate camera pose. Basically,
the goal of these systems is to map their surroundings in relation to their own
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location for the purposes of navigation. This, can provide a basic navigation
and path planning system.

Though, when it comes to buildings inspection where more complex envi-
ronments need to be traversed and analysed, the SLAM output may not be
enough. The ability of the system to recognize several features inside a 3D
space can lead in a more robust navigation.

In this study, we propose:

• An additional feature to the navigation system that would have to do
with detecting escape openings inside the surrounding indoor environ-
ment providing the system with the ability to navigate through differ-
ent spaces or escaping through narrow openings on emergency situa-
tions. Also another challenge of the work was to try to minimze the sys-
tems energy workload, the hardware modules used and the required
computational resources.

• This is achieved by integrating an Optical Sensor, an embedded system
and a Flight Controller and developing and utilizing SLAM and other
Computer Vision Algorithms in order to obtain the required data for
the autonomous navigation .

• The system was tested by assembling a real custom-made drone under
realistic circumstances inside buildings in Technical University of Crete
and the results are based on these datasets.

• The Results are sufficiently accurate regarding the localization and map-
ping, especially considering the hardware modules utilized and the in-
tegrated algorithms. The Opening Detection feature provides accurate
and efficient identification of escape routes in complex environments.
However, it’s important to note that the effectiveness of this feature
may be limited in certain circumstances, such as low light and obscured
environments.

1.2 Thesis Outline

• Chapter 2 - Theoretical Background: In this chapter, we aim to pro-
vide a comprehensive explanation of the basic terms and theories that
are essential for our work. The purpose of this chapter is to lay the
foundation for a clear understanding of the concepts that are relevant
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to our research. We will delve into the relevant literature and present
the most important theories that have shaped our understanding of the
topic.

• Chapter 3 - Related Work: In this chapter, we present an overview of
the related work in our field of study. Our goal is to provide a compre-
hensive overview of the various approaches and strategies that have
been used to address similar problems or research questions. By exam-
ining the previous work, we aim to highlight the similarities and dif-
ferences between our study and other studies in the field. We will also
analyze the different strategies that we took and explain why we chose
these strategies. This chapter is an important part of our research as it
provides insights into the current state of the field and sets the stage for
the next chapters.

• Chapter 4 - Theoretical Modeling: In this chapter, we delve into the
details of the methods and theoretical background that we used to ap-
proach the problems of this work. The purpose of this chapter is to
provide a comprehensive explanation of our approach and the reason-
ing behind our choices. We will present the mathematical models and
algorithms that we used to solve the problems and describe the steps
that we took to integrate these models.

• Chapter 5 - System Level Design: In this chapter, we focus on the de-
sign and development of the system. We analyze the hardware and
tools that we used to build the system and describe how we integrated
them to develop our final solution. The purpose of this chapter is to
provide a comprehensive explanation of the hardware and software
components that we used to build the system, and how we integrated
them to create a complete and functional system. We will provide de-
tailed descriptions of the hardware and software components, includ-
ing the specifications, features, and design trade-offs. We will also de-
scribe the process of integrating these components, including the chal-
lenges that we faced and how we overcame them.

• Chapter 6 - Results: In this chapter, we present and analyze the results
of our work. The purpose of this chapter is to provide a comprehen-
sive evaluation of the performance of the system and to showcase the
results of our efforts. We will present the data and metrics that we
used to evaluate the system, including experiments and tests that we
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conducted. We will also provide a detailed analysis of the results, in-
cluding the strengths and weaknesses of our system and any insights
that we gained from the data.

• Chapter 7 - Conclusions and Related Work: In this chapter, we sum-
marize the main findings and conclusions of our work and discuss fu-
ture directions for further research. The purpose of this chapter is to
reflect on the results of our work and to provide insights into how our
work contributes to the field. We will summarize the main contribu-
tions of our work, including the results and performance of the sys-
tem. We will also discuss the limitations of our work and any areas
for improvement. Finally, we will present our vision for future work
in the field, including any potential avenues for further research and
improvement.
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Chapter 2

Theoretical Background

The objective of this chapter is to furnish a detailed elucidation of the funda-
mental terms and theories that are crucial for our study. Its aim is to establish
the basis for a lucid comprehension of the ideas that pertain to our research.
We will examine the pertinent literature and highlight the key theories that
have influenced our perception of the subject matter.

2.1 Aircraft

An aircraft is a vehicle or machine that is able to fly by gaining support from
the air. It counters the force of gravity by using either static lift or by using the
dynamic lift of an airfoil, or in a few cases the downward thrust from jet en-
gines. Common examples of aircraft include airplanes, helicopters, airships
(including blimps), gliders, paramotors, and hot air balloons [2].
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FIGURE 2.1: Cessna 172 Skyhawk

Source: www.nycaviation.com

2.2 Unmaned Aerial Vehicles

An unmanned aerial vehicle (UAV), commonly known as a drone, is an air-
craft without any human pilot, crew, or passengers on board. UAVs are a
component of an unmanned aircraft system (UAS), which includes adding a
ground-based controller and a system of communications with the UAV. The
flight of UAVs may operate under remote control by a human operator, as
remotely-piloted aircraft (RPA), or with various degrees of autonomy, such
as autopilot assistance, up to fully autonomous aircraft that have no provi-
sion for human intervention.[3]
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FIGURE 2.2: Mavic-3: www.dji.com.

Source: www.dji.com

2.3 Inertial Measurement Units (IMUs)

An inertial measurement unit (IMU) is an electronic device that measures
and reports a body’s specific force, angular rate, and sometimes the orien-
tation of the body, using a combination of accelerometers, gyroscopes, and
sometimes magnetometers.. An IMU system is essential as it comes to flying
or generally maneuvering for the reason that it provides the pilot or the path
planing system vital information regarding the attitude of the aircraft real-
time. Modern IMUs provides us with three-dimensional measurements. A
modern IMU typically consists of:

• Accelerometers: A 3-axis accelerometer measures linear acceleration
along the three principle axis X (longitudinal) Y(lateral) and Z(vertical).
The corresponding rotations are called roll, pitch and yaw

https://www.dji.com/gr/mavic-3
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• Gyroscopes: A three axis gyroscope measures the angular velocity of
its rotation in a reference frame along its three sensitivity axes. For an
ideal sensor, these outputs are equal to the projections of the rotation
angular velocity on the sensitivity, that is, intrinsic coordinate system
axes..

• Magnetometers: Three axis magnetometers provide orientation data to
the magnetic north pole.

FIGURE 2.3: The principal axis

Source: A.R. Parrot 2.0

2.4 Visual Simultaneous Localization and Mapping

(vSLAM) algorithm

Simultaneous localization and mapping (SLAM) is one of the most funda-
mental, yet most challenging problems in mobile robotics. To achieve full
autonomy a robot must possess the ability to explore its environment with-
out user-intervention, build a reliable map, and localize itself in the map. In
particular, if global positioning sensor (GPS) data and external beacons are
unavailable, the robot must somehow, by itself, determine what are appro-
priate reference points, on which to build a map. [4]
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The vSLAM algorithm uses odometry data and image feed in order to calcu-
late the robots pose. This is being achieved by recognizing specific landmarks
using computer vision algorithms, estimating their distance and by fusing
the odometry data,constantly updating and correcting its pose and map of
its surroundings.

The inputs to the system are odometry and images, and the output is the
robot pose and an abstract vSLAM map.

FIGURE 2.4: Block diagram of vSLAM

Source: [4]

The visual landmarks are “created” along the path of the robot. Each land-
mark is associated with a landmark pose, defined as the robot pose (x, y, and
θ) when the landmark was created. In the first module of vSLAM, the images
are processed and compared with previously created landmarks. If a recog-
nition is made, an estimate is computed on where the robot is located relative
to where it was located when the landmark was created. If a recognition is
not made, the module attempts to create a new visual landmark.If a visual
landmark was recognized in the Visual Front- end and a visual measurement
is computed, then the second module, the Pre-filter, assess the reliability of
the measurement. If the measurement is considered unreliable, it is rejected
and thrown away. However, if it is accepted, it is used as an input to the
SLAM module. The SLAM module is a feedback system taking odometry
data and relative pose measurements as inputs, to be fused and compared
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to a current map. First the robot pose is estimated based on the most up-to-
date map and the two inputs. Then, the map is updated to reflect the new
information.[4]

2.5 Stereo Vision

Stereo vision is a triangulation-based range-finding technique in which two
(or more) cameras are used to reconstruct the three-dimensional structure of
a scene, as illustrated in figure 2.5.. The fundamental computational problem
in stereo is the correspondence problem, which requires finding correspondence
points pl and pr in the two images. Given such points and the relative geome-
try of the cameras, it is a simple matter to compute the depth, or the distance
from the cameras, of the associated world point P. In principle, we can find
the distance to every point in the scene by finding the corresponding point
in the right image for every pixel in the left image. The resulting representa-
tion of scene depth at every pixel in the image, known as a depth map, is a
starting point for computing a 3-D model of the scene.[5]

FIGURE 2.5: Stereoscopic Vision

Source: First Principles of Computer Vision
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2.6 Stereo Block Matching

In order to deal with the correspondence problem, many approaches have been
developed. The basic idea of Stereo Block Matching is to segment the target
image into fixed size blocks and find for each block the corresponding block
that provides the best match from the reference image as shown in figure 2.6.
The distance along the X-Axis between the matching block in the left image
and the one in the right image is called Disparity. Depth at any given point
can be computed if the disparity at that point is known. Disparity measures
the displacement of a point between two images. The higher the disparity,
the closer the object.

FIGURE 2.6: Stereo Block Matching

Source: www.cs.cornell.edu/

Disparity estimation algorithms fall into two broad categories: local meth-
ods and global methods. Local methods evaluate one pixel at a time, con-
sidering only neighboring pixels. Global methods consider information that
is available in the whole image. Local methods are poor at detecting sud-
den depth variation and occlusions, and hence global methods are preferred.
Semi-global matching uses information from neighboring pixels in multiple
directions to calculate the disparity of a pixel. Analysis in multiple direc-
tions results in a lot of computation. Instead of using the whole image, the
disparity of a pixel can be calculated by considering a smaller block of pix-
els for ease of computation. Thus, the Semi-Global Block Matching (SGBM)
algorithm uses block-based cost matching that is smoothed by path-wise in-
formation from multiple directions.[6]
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2.7 SGBM Algorithm

The SGBM algorithm takes a pair of rectified left and right images as input.
The pixel data from the raw images may not have identical vertical coordi-
nates because of slight variations in camera positions. Images need to be rec-
tified before performing stereo matching to make all epi-polar lines parallel
to the horizontal axis and match vertical coordinates of each corresponding
pixel.

The SGBM algorithm implementation has three major modules: Matching
Cost Calculation, Directional Cost Calculation and Post-processing.

FIGURE 2.7: SGBM block diagram

Source: docs.opencv.org

2.7.1 Matching Cost Calculation

On this stage , at first the model computes the Center-Symmetric Census
Transform on each of the left and right images using a sliding window. For
a given pixel. CSCT for the center pixel in that window is estimated by com-
paring the value of each pixel with its corresponding center-symmetric coun-
terpart in the window. If the pixel value is larger than its corresponding
center-symmetric pixel, the result is 1, otherwise the result is 0.

Afterwards, In the Hamming Distance module, the CSCT outputs of the left
and right images are pixel-wise XOR’d and set bits are counted to generate
the matching cost for each disparity level. To generate D disparity levels, D
pixel-wise Hamming distance computation blocks are used. The matching
cost for D disparity levels at a given pixel position, p, in the left image is
computed by computing the Hamming distance with (p to D+p) pixel posi-
tions in the right image. The matching cost, C(p,d), is computed at each pixel
position, p, for each disparity level, d. The matching cost is not computed for
pixel positions corresponding to the first D columns of the left image.[6]
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2.7.2 Directional Cost Calculation

The second module of SGBM algorithm is directional cost estimation. In gen-
eral, due to noise, the matching cost result is ambiguous and some wrong
matches could have lower cost than correct ones. Therefore additional con-
straints are required to increase smoothness by penalizing changes of neigh-
boring disparities. This constraint is realized by aggregating 1-D minimum
cost paths from multiple directions. It is represented by aggregated cost from
r directions at each pixel position, S(p, d), as given by[6]

S(p, d) = ∑r Lr(p, d)

The 1-D minimum cost path for a given direction, Lr(p, d), is computed as
shown in the equation.

Lr(p, d) = C(p, d)+min(Lr(p− r, d), Lr(p− r, d− 1)+ P1, Lr(p− r, d+ 1))+
minLr((p− r, i) + P2)−minLr(p− r, k)

where

Lr(p, d) = current cost of pixel p and disparity d in direction r

C(p, d) = matching cost at pixel p and disparity r

Lr(p− r, d− 1) = previous cost of pixel in r direction at disparity d− 1

Lr(p− r, d + 1) = previous cost of pixel in r direction at disparity d + 1

miniLr(p− r, i) = minimum cost of pixel in r direction for previous compu-
tation

P1, P2 = penalty for discontinuity

2.7.3 Post Processing

The third module of SGBM algorithm is Post-processing. This module has
three steps: minimum cost index calculation, interpolation, and a unique-
ness function. Minimum cost index calculation finds the index correspond-
ing to the minimum cost for a given pixel. Sub-pixel quadratic interpola-
tion is applied on the index to resolve disparities at the sub-pixel level. The
uniqueness function ensures reliability of the computed minimum disparity.
A higher value of the uniqueness threshold marks more disparities unreli-
able. As a last step, the negative disparity values are invalidated and re-
placed with -1.[6]
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2.8 Canny Edge Detector

The Canny Edge Detector is an edge detection operator that uses a multi-
stage algorithm to detect a wide variety of edges in images. It was devel-
oped in 1986 by John F. Canny [7]. With the use of the Canny edge detection
technology, the amount of data that needs to be processed can be drastically
reduced while still extracting meaningful structural information from vari-
ous vision objects. It is frequently used in many computer vision systems.
According to Canny, the prerequisites for applying edge detection to vari-
ous vision systems are largely the same. Thus, a solution for edge detection
that meets these needs can be used in a variety of contexts. The standard
parameters for edge detection include of:

• Edge detection that has a low error rate, which implies that it should
correctly identify as many edges as possible in the picture.

• The operator’s edge point detection should precisely locate on the edge’s
center.

• If at all feasible, picture noise should not produce false edges, and an
edge in the image should only be marked once.

Canny utilized the calculus of variations, a method for locating the function
that best optimizes a given functional, to fulfill these objectives. The best fit
for Canny’s detector is given by the sum of four exponential components,
however the first derivative of a Gaussian can be used to approximate it.

The process of Canny edge detection algorithm can be broken down to five
different steps:

2.8.1 Gaussian Filter

Since edge detection is susceptible to noise in the image, first step is to re-
move the noise in the image by convolving the image with a Gaussian ker-
nel. This step will slightly smooth the image to reduce the effects of obvious
noise on the edge detector. The equation for a Gaussian filter kernel of size
(2k + 1)× (2k + 1) is given by:

Hij =
1

2πσ2 exp(− (i−(k+1))2+(j−(k+1))2

2σ2 )
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2.8.2 Finding Intensity Gradient of the Image

Smoothened image is then filtered with a Sobel kernel in both horizontal
and vertical direction to get first derivative in horizontal direction (Gx) and
vertical direction (Gy). From these two images, we can find edge gradient
and direction for each pixel as follows:

Edge_Gradient(G) =
√

G2x + G2y

Angle(θ) = tan−1(
Gy
Gx
)

Gradient direction is always perpendicular to edges. It is rounded to one of
four angles representing vertical, horizontal and two diagonal directions.

2.8.3 Non-maximum Suppression

Once the gradient’s magnitude and direction have been determined, the en-
tire image is scanned to set apart any extraneous pixels that might not be the
edge. This is accomplished by checking each pixel to see if a local maximum
exists in the area around it in the gradient’s direction.

FIGURE 2.8: Non-maximum Suppression

Source: docs.opencv.org

Point A is on the edge ( in vertical direction). Gradient direction is normal to
the edge. Point B and C are in gradient directions. So point A is checked with
point B and C to see if it forms a local maximum. If so, it is considered for
next stage, otherwise, it is suppressed ( put to zero). The result of this stage
is to obtain "thin" edges
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2.8.4 Hysteresis Thresholding

At this stage, it is determined which edges are actually edges and which ones
are not.There are two required values for this stage. minVal and maxVal.
Any edges with gradients of intensity greater than maxVal are certain to be
edges, and any below minVal are certain to be non-edges, so they should
be discarded. Based on their connectivity, those who fall between these two
thresholds are categorized as edges or non-edges. They are regarded as being
a part of edges if they are linked to "sure-edge" pixels. If not, they are also
thrown away.[8]

FIGURE 2.9: Canny Edge Detector
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2.9 Hough Line Transform

The Hough transform is a feature extraction technique used in image analy-
sis, computer vision, and digital image processing. The purpose of the tech-
nique is to find imperfect instances of objects within a certain class of shapes
by a voting procedure. This voting procedure is carried out in a parameter
space, from which object candidates are obtained as local maxima in a so-
called accumulator space that is explicitly constructed by the algorithm for
computing the Hough transform [9].

FIGURE 2.10: (r,theta) line representation

Source: docs.opencv.org

The simplest case of Hough transform is detecting straight lines. The lin-
ear Hough transform algorithm estimates the two parameters that define a
straight line. The transform space has two dimensions, and every point in
the transform space is used as an accumulator to detect or identify a line de-
scribed by r = x cos θ + y sin θ 2.10. Every point in the detected edges in the
image contributes to the accumulators 2.11.
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FIGURE 2.11: Accumulators

Source: docs.opencv.org

Taking into account the quantized values of r and in the pair (r, θ), the di-
mension of the accumulator is equal to the number of unknown parameters,
or two. The Hough transform method assesses if there is sufficient proof of
a straight line at each pixel at (x, y) and its surrounding areas. If so, it will
determine the (r, θ) parameters of that line, then look for the accumulators
bin where the parameters lie, and increase the value of that bin. The most
likely lines can be retrieved, together with their geometric definitions, by
seeking for the bins with the greatest values, often by searching for local max-
ima in the accumulator space. By using a threshold, which controls which
lines are detected and how many, it is easiest to locate these peaks. Finding
which parts of the image correspond to which lines is frequently important
in the following step because the lines returned do not contain any length
information. The output of the linear Hough transform is a two-dimensional
array (matrix) is similar to the accumulator, where one dimension is made up
of the quantized angle θ.and the other is made up of the quantized distance
r. The value of each matrix component is equal to the total of the points or
pixels that are situated along the line denoted by the quantized parameters
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(r, θ). Accordingly, the element with the highest value represents the straight
line that appears the most in the input image.

FIGURE 2.12: Hough Line Transform
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Chapter 3

Related Work

On this chapter, we aim to present a thorough overview of the different tech-
niques and methods that have been employed to tackle comparable issues
or research queries. Through an examination of past research, we endeavor
to underscore the similarities and divergences between our study and oth-
ers in the field. We will also scrutinize our own approach and explicate the
reasoning behind our chosen strategies. This chapter holds a crucial position
in our research as it furnishes insights into the present condition of the field
and establishes the foundation for the ensuing chapters.

3.1 Indoor UAV Navigation

While autonomous UAV navigation on indoor environments provides many
capabilities to UAV’s and offers sollutions to very important problems, many
approaches have been developed in order to achieve sufficient results. Re-
garding the environment circumstances, prior knowledge and target use of
the system, different approaches and technologies can be integrated to achieve
the best possible results. The most common approaches are Vision-based
combined with inertial sensor localization, sollutions based on Lidar integra-
trion and finally by utilizing SLAM through stereo or mono optical sensors.

3.1.1 Vision-based and inertial sensor-based localization ap-

proaches

The environment simply has to be minimally instrumented for vision-based
approaches, which merely need to employ affordable, everyday cameras as
perception sensors. The latest 3D tracking methods in dynamic contexts,
such building sites, were developed by 2D monitoring the same objects of
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interest in two or more cameras and 3D triangulating the tracked 2D obser-
vations[10]. These solutions, however, rely on permanent cameras that are
placed in locations with wide baselines, require complicated calibration pro-
cedures, have a fixed field of vision, and are inevitably obstructed by objects
like equipment or temporary constructions.

3.1.2 Lidar-based SLAM

Lidar-based SLAM has drawn more and more attention from researchers,
particularly those who are interested in localization and mapping in dynamic
interior situations like construction sites, because of its excellent accuracy
and an ever-increasing number of open source implementations.

This work [11] presents a method for generating and visualizing floor plans
in real-time using portable laser range-finders (LIDAR) and simultaneous
localization and mapping (SLAM). The authors demonstrate the effective-
ness of their approach on a backpack mapping platform that achieves real-
time mapping and loop closure at a 5 cm resolution while operating under
limited computational resources. To achieve real-time loop closure, the pa-
per proposes a branch-and-bound approach for computing scan-to-submap
matches as constraints. Experimental results and comparisons to other estab-
lished techniques show that the proposed approach is competitive in terms
of quality. In comparison to our works goal, in order for a drone to navigate
effectively requires a 3D representation instead of 2D.
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FIGURE 3.1: 2D loo[ closure Lidar SLAM]

Source: [11]

Another study’s [12] main goal is to create a highly automated system that
can produce an ideal 3D-reconstructed map for the construction industry
with a minimal amount of static scanning and little processing time. The sys-
tem’s output is a fully registered point cloud with color information. The ar-
chitecture 3.4 proposed consists of five 2D Lidars in specific layout in order to
obtain 3D information, a DSLR camera for adding texture to the pointcloud,
object avoidance sensors and an IMU for localization. A SLAM algorithm
makes use of the laser scan data from the horizontal LiDAR to determine the
position and orientation of the mobile robot on the horizontal plane. In order
to obtain a pose estimation and a planar map of the environment, the Hector
SLAM algorithm was integrated in this study to perform laser scan matching
between the most recent LiDAR scan and an incrementally-built map. The
translation and rotation parameters of the current scan are obtained for each
set of raw scan data from the horizontal LiDAR acquired from a 2D single
planar sweep by performing scan matching with the most recent estimated
map of the environment 3.3.
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FIGURE 3.2: Architecture

Source: [12]

FIGURE 3.3: Mapping

Source: [12]
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3.1.3 vSLAM and RGBD based approaches

In general, vSLAM is more affordable than laser scanners since it uses one or
more cameras as the primary perception sensors. It also offers competitive
localization performance on a variety of datasets. Another advantage is that,
even if extra odometry or IMU input can aid further increase accuracy and
robustness, vSLAM can operate with simply frame observations. This sug-
gests that the only necessary hardware setup for utilizing a vSLAM solution
is to place one or more common cameras on an existing mobile platform or
the tracked objects.

The paper [13] discusses the potential of using drones for indoor farming and
livestock management, which is limited by the challenges and constraints of
GPS unavailability and limited physical space. The study compares two vi-
sual simultaneous localization and mapping algorithms using a monocular
camera onboard a small drone to investigate drone positioning in these in-
door workspaces. The results show that ORB-SLAM algorithm is the most
suitable for these workspaces, allowing for aerial VSLAM and potential ben-
efits in plant and cattle monitoring. However, for the current work that re-
quires a precise 3D representation, a different approach may be required.

FIGURE 3.4: Monocular SLAM

Source: [13]

Stereo cameras are commonly used to extract sparse distance information
from the disparity of the textured regions of each image. In contrast to his
SLAM, which is laser-based, Visual SLAM systems typically extract sparse
keypoints from camera images. Visual landmarks have the advantage of
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being more prominent than typical geometric structures and simplify data
mapping. Common generic keypoint detectors and descriptors include SIFT,
SURF and ORB [14]. In his research, [15] Shinya Kawabata proposes a RGBD
based SLAM system for indoor infrastructure inspection deploying it in a
custom made UAV. The system includes a flight controller embedded with
IMUsensors, four motors to rotate propellers, four drivers so-called ESC to
provide power to motors according to control command from flight con-
troller, companion computer, depth camera, and receiver of wireless com-
munication and so on. The depth camera is connected to the companion
computer which manipulates 3D depth information and computes vehicle
position with SLAM algorithm. For providing stable position information of
drone itself,

FIGURE 3.5: UAV system

Source: [15]

SLAM algorithm was utilized in this research. In most cases of inspection
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task, 3D map for autonomous navigation is not provided. So the drone is
required to have capability of both making map near the target position and
estimating its position. Therefore, SLAM technology is appropriate for this
application. SLAM software library for RealSense ZR300 depth camera de-
veloped by Intel corporation was employed in this research for map building
and localization. It updates position information 30 times per a second with
sensor data of depth camera.

FIGURE 3.6: Control Hardware

Source: [15]

Experimental work to confirm the capabilities of map generation and local-
ization was performed on a development system using a depth camera and
a software library of SLAM algorithms. The system has started a linear move
from the origin to the midpoint. After reaching the passing point in linear
motion from the origin, return to the origin at in a circular orbit. The co-
ordinates estimated by the method developed when the system was at the
midpoint were (x, y, z) = (0.02,−0.02, 1.08)[m], but the actual coordinates
were (x, y, z). = (0, 0, 1) [m], resulting in an error of about 8 [cm] in the z
direction. The coordinates of the experimental system after returning to the
origin were (x, y, z) = (−0.04, 0.00,−0.04)[m]
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3.2 Real time Openings Detection

3.2.1 LIDAR approach

C. Fernández-Caramés ,V. Moreno · B. Curto, J. F. Rodríguez-Aragón, F. J. Ser-
rano, in their work [16] present a door detection system that combines data
from an end-user camera and a laser rangefinder to enable robots to detect
doors for more flexible and complex navigation. The approach uses Haar-
like features and the Integral Image to reduce computation time, making it
more efficient than other methods in the literature. However, the system re-
quires an additional hardware module, a laser rangefinder, which adds to the
overall cost and complexity of the system. In our approach, we aim to mini-
mize the hardware components needed and explore alternative methods for
door detection that can be implemented with existing sensors.

FIGURE 3.7: Lidar Openings detection

Source: [16]

3.2.2 CNN’s Approach

Onder Alparslan and Omer Cetin, In their study, [17] considering the UAV’s
navigation inside the disaster chamber, doors, windows, and stairs are con-
sidered possible gates, and they should all be classified as open or closed. To
provide this validation, an approach was developed that matches the camera
view with other sensor data to ensure that the object pose exists. Addition-
ally, the width of the detected object is calculated and controlled whether it
is greater than the width of the UAV. Incidentally, safe traverse spaces are
marked as possible gateways to another space or spaces and used for UAV
trajectory planning.In this study, a method was developed to detect whether
an object is open or closed by fusing lidar data provided by optical sensors
with classified object data. For this purpose, LIDAR and optical cameras are
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used as sensors. CNN indoor object detection algorithm and fusion method
developed as part of the research.

FIGURE 3.8: System Modeling

Source: [17]

The main purpose of this research is to collate different kinds of data without
delay from different sensors that can perceive different properties of objects
and environments in the field of view. To this end, the fusion method should
be applicable without knowledge of the physical properties of the sensor and
independent of sensor architecture, manufacturer and model. Considering
payload, one of the biggest challenges of small platforms, he should priori-
tize equipment that is as light as possible. Indoor unmanned aerial vehicles
must also be miniaturized so that they can easily navigate confined spaces.
To focus on this point, a regular optical camera and a 2D LIDAR device were
chosen as sensors. The Logitech Brio camera offers a 90-degree close-up view
in 4K. It produces at least 30 fps and weighs only 63 grams. A RP Lidar-A2
was used as the 2D lidar sensor. One of the most important features is the
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0.25 ms sampling time compatible with cameras producing 30 frames per
second. The goal is to demonstrate the efficiency of 2D LIDAR on a UAV
that can move vertically in 3D space because it is lightweight and easy to
implement.

FIGURE 3.9: Hardware

Source: [17]

While hovering, the flying platform detects crossing sites in real-time and
inquires as to whether they are open or closed using LIDAR. The returning
data is incorporated into the object’s labeling algorithm and used to deter-
mine whether it is open or closed.The key distinction between the door and
window characteristics was their height from the ground, even though it was
the goal of this study to identify the doors, windows, and transition zones
inside the building. Glass surfaces do not interfere with the system’s opera-
tion, and the proposed method can be simply modified to detect additional
transitions. The technology was tested with doors and windows. In both
situations, the crossing point is effectively classified. Additionally, the ob-
ject’s breadth and distance are measured. The information can be used for
car navigation with positive results as a result.
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FIGURE 3.10: Results

Source: [17]

3.3 The Hardware Perspective

According to all the previously described ways of approaching each prob-
lem specifically we must carefully examine each way seperately to extract the
way of this approach depending on the core needs the work, but also how to
combine the technologies in order to integrate them together in the system
to achieve the right results. The primary objective of the specific work is to
achieve as much as accurate possible results, processing a sufficient number
of frames per second consuming the less possible resources. Also a really
important parameter that needs to taken into account is that the system be-
ing made for inspection it needs be economic in a power matter. This need
leads us to the result that the system needs to have the minimum hardware
modules as possible consuming the less possible energy.

In the above solutions we saw approaches using combinational layouts with
Lidars, monocular and depth camera sensors and GPU’s. For the current
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work it is greatly important to keep the power consumption to the least
needed, thus the goal is to focus on aquiring all the data for localiyation.
mapping and openings detection with one optical unit and make the whole
processing using just a CPU.

3.4 Thesis Approach

As mentioned in the above section, this works primary goal is to achieve
viable results by minimizing the energy workload and hardware resources.
For that reason the solution for each sub problem must take into account the
specifications for the other problem as for the hardware, to the computational
procedures as well.

Due to the fact that the problem contains feature detection and extraction,
using a camera provides the system with more alternatives and methods for
achieving sufficient results. Furthermore, the depth extraction is essential
for obtaining the space perception the system requires in order to achieve
robust indoor navigation. This thought, leads us to the use of a stereo camera.
With a stereo camera the system should be able to perform visual odometry
extraction, depth extraction and feature detection for the openings detection
sub problem. With this design, we can obtain all the information needed by
skipping the use of a LIDAR module and by using only the stereo camera.
However, the computational requirement for all these procedures could be
large enough drop the systems performance significantly. For that reason,
as far as the detection module is concerned, the proposed approach contains
low cost Image Processing filters based on Canny Edge Detection where by
fine tuning their parameters to match the camera attributes, it provides the
system sufficient openings extraction.
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Chapter 4

Theoretical Modeling

This chapter focuses on the methods and theoretical background used to ad-
dress the problems in this work. The aim is to provide a thorough expla-
nation of the approach and rationale for the decisions made. Mathematical
models and algorithms utilized to solve the problems will be presented, and
the steps taken to integrate these models will be described.

4.1 Localization Module

Localization is a very crucial problem regarding autonomous navigation.
Various localization methods have been proposed regarding different envi-
ronmental conditions. The most approach is Global Navigation Satellite Sys-
tem (GNSS) which refer to a constellation of satellites providing signals from
space that transmit positioning and timing data to GNSS receivers. In this
work the UAV need operates mostly on indoor environments, where there
is no access to GNSS signals. The proposed architecture should be able to
provide positioning data using sensor fusion.

IMU Data

The main source of information about attitude will be IMU data. IMUs can
provide accurate three-dimensional estimates of angular velocity and linear
acceleration in addition to steady data on the present attitude. The attitude
information that an IMU provides is based on absolute readings that are im-
pervious to cumulative inaccuracies. Finally, considering that the UAV can
get to really narrow places, the IMU required for this study should be able to
produce data with really high accuracy.
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Stereo Camera

The camera can determine the distance to a conspicuous feature that is be-
ing utilized as a reference point by the algorithm by comparing the images
from the two cameras and computing the differences between them. In par-
ticular, a larger distance to the feature correlates to a higher difference in the
positions of the feature as seen by each of the two cameras. The accuracy
of these estimations is then improved by observing them across consecutive
camera frames and adding data from the IMU. Over time, a map of the loca-
tions of visual features develops. This is called Visual-inertial odometry. Re-
localization refers to the camera’s capacity to identify when it has returned
to a familiar location by utilizing the features it has previously observed. The
algorithm can re-localize, for instance, if a drone performs an aerial loop be-
fore returning to its initial location by comparing the visual surroundings to
its database of significant elements and their locations in space. The camera
can locate its point of origin by comparing its position to that static frame of
reference.

FIGURE 4.1: Visual-inertial re-localization, using visual points
of reference to infer position

Source: Intel

The input data will be fused correctly in order to produce a final Localization
vector that contains direction, pose and the estimated location given a certain
initial point as shown in figure 4.2.
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FIGURE 4.2: Localization Diagram

4.2 Mapping Module

Mapping is also a prior challenge in this work. The UAV must be able to per-
form robust path planning, avoiding obstacles and estimating correctly the
attributes of any opening in order to finally navigate through it. A precise
three dimensional representation of the space is a prerequisite for that prob-
lem. The mapping method this work proposes is the use of binocular vision
and depth extraction techniques. The pipeline of the mapping procedure is
described in these next steps.

4.2.1 Camera Callibration

A camera is a device that converts the 3D world into a 2D image. A camera
plays a very important role in capturing three-dimensional images and stor-
ing them in two-dimensional images. To know the mathematics behind it is
extremely fascinating. The following equation can represent the camera.
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x = PX

Here x denotes 2-D image point, P denotes camera matrix and X denotes 3-D
world point.

FIGURE 4.3: Vector representation of x = PX

Source: opencv.docs

Camera calibration is frequently used word in image processing or computer
vision field. The camera calibration method is intended to identify the geo-
metric characteristics of the image creation process. This is a vital step to
perform in many computer vision applications, especially when metric in-
formation on the scene is needed. The camera is often categorized on the ba-
sis of a set of intrinsic parameters such as skew of the axis, focal length, and
main point in these applications, and its orientation is expressed by extrinsic
parameters such as rotation and translation. Linear or nonlinear algorithms
are used to estimate intrinsic and extrinsic parameters utilizing known points
in real-time and their projections in the picture plane

Camera calibration can be defined as the technique of estimating the charac-
teristics of a camera. It means that we have all of the camera’s information
like parameters or coefficients which are needed to determine an accurate
relationship between a 3D point in the real world and its corresponding 2D
projection in the image acquired by that calibrated camera.

In most cases, this entails recovering two types of parameters.

Intristic Parameters

It allows mapping between pixel coordinates and camera coordinates in the
image frame. E.g. optical center, focal length, and radial distortion coeffi-
cients of the lens.
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Extrinsic Parameters

It describes the orientation and location of the camera. This refers to the
rotation and translation of the camera with respect to some world coordinate
system.

The camera matrix is unique to a specific camera, so once calculated, it can
be reused on other images taken by the same camera. It is expressed as a 3x3
matrix.

FIGURE 4.4: 3x3 Camera Matrix

Source: opencv.docs

To find these parameters, we must provide some sample images of a well
defined pattern (e.g. a chess board). We find some specific points of which we
already know the relative positions (e.g. square corners in the chess board).
We know the coordinates of these points in real world space and we know
the coordinates in the image, so we can solve for the distortion coefficients.
For better results, we need at least 10 test patterns

FIGURE 4.5: Chessboard
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4.2.2 Image Undistortion

On this step, undistortion and rectification transformation maps are com-
puted by using the camera’s intristic and extrinstic parameters camera pa-
rameters. This new image is oriented differently in the coordinate space, ac-
cording to rectification transformation in the object space (3x3 matrix). That,
for example, helps to align two heads of a stereo camera so that the epipolar
lines on both images become horizontal and have the same y- coordinate (in
case of a horizontally aligned stereo camera).

Additionally, the maps needed by the inverse mapping algorithm are con-
structed. In more detail, the function calculates the matching coordinates in
the source image for each pixel (u, v) in the destination (corrected and recti-
fied) image (that is, in the original image from camera). The procedure used
is as follows:
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FIGURE 4.6: Image Undistortion

4.2.3 Disparity and filtering

The next step in the Mapping Pipeline is the disparity extraction of the given
left and right images. The proposed method for this stage is using Semi-
Global Block Matching where the pair of rectified left and right images are
passing into the SGBM blocks producing the first version of the disparity
map.Stereo matching algorithms, that are intended for real-time processing
on CPU, tend to make quite a few errors on challenging sequences. These er-
rors are usually concentrated in uniform texture-less areas, half-occlusions
and regions near depth discontinuities. One way of dealing with stereo-
matching errors is to use various techniques of detecting potentially inac-
curate disparity values and invalidate them, therefore making the disparity
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map semi-sparse.For the reason that navigation requires extremely high ac-
curacy in the depth-map, this study proposes the use a of filtering proce-
dure to align the disparity map edges with those of the source image and
to propagate the disparity values from high- to low-confidence regions like
half-occlusions. This procedures pipeline is presented in the next steps.

• We start by loading the source recitified stereo-pair.

• Afterwards we perform downscaling of the views to speed-up the match-
ing stage at the cost of minor quality degradation.

• We are using StereoSGBM to provide best possible quality. The filter
instance is created by providing the StereoMatcher instance that we in-
tend to use. Another matcher instance is created for the right Image.
These two matcher instances are then used to compute disparity maps
both for the left and right views, that are required by the filter

• Disparity maps computed by the respective matcher instances, as well
as the source left view are passed to the filter. Note that we are using
the original non-downscaled view to guide the filtering process. The
disparity map is automatically upscaled in an edge-aware fashion to
match the original view resolution.

FIGURE 4.7: Disparity extraction pipeline using stereo SGBM
matching and WLS post filtering
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FIGURE 4.8: Filtered Disparity Output

4.2.4 Pointcloud Generation

Depth is inversely proportional to disparity. The more the disparity is, the
closer the object is to the baseline of the camera. The less the disparity is, the
farther the object is to the baseline. In binocular stereo where the two camera
axes are parallel, depth can easily be calculated given the disparity (the shift
in position for corresponding points between the images). If the focal length
of both cameras is f , the baseline b and disparity d, then the depth z is given
by

z = f ∗ b/d
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FIGURE 4.9: 3D-Pointcloud Extracted from the disparity output

4.3 Openings Detection Module

The openings detection module is the feature of this work taking it a step
further to achieve more robust navigation and better structural perception
making the system able to recognize more features regarding the space which
has been deployed. The real-time factor which is a core requirement for the
specific work enables some standard requirements for the specific feature.
Furthermore, the fact that the system is hosted in an embedded processor
with restricted memory and processing power conclude that the following
requirements must be met in order to have successful tests. The requirements
are the following:

• The module must be able to autonomously detect an opening.

• The module must be able to process and analyze several camera frames
per second in order to constantly have information about the suround-
ing openings.
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• Due to the restricted memory and processing power, the module must
be implemented in respectful way to the available resources.

Related works such as (..related works..) integrate convolutional neural net-
works in order to clasify potential openings with really remarkable results.

FIGURE 4.10: Window detection using CNN

Source: [17]

However, the restrictions that mentioned earlier, require to explore more
"economic" ways to achieve sufficient results. The method that the specific
work proposes is using a specific pipeline that consists of passing the left
camera frame through a Canny Edge Detector in order to obtain the edges.
The reason that we are using the left camera frame as input is because the
extracted disparitys pixels from the SGBM are aligned directly to the left
frame.The Canny Edge Detectors output enters a Hough Line Transform
module in order to extract lines from the detected edges.Finally the lines
enter a custom module that is responsible for extracting rectangulars from
the detected lines. Both Canny Edge Detectors and Hough Line Transforms
thresholds must be utilized with respect to specific attributes of the operating
camera. The proposed pipeline is presented to the following figure.
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FIGURE 4.11: Openings Detection Diagram

The Extract Rectangulars module is responsible for extracting rectangulars
from the detected lines. This is achieved by classifying the lines to horizontal
and vertical, finding the intersecting points of these lines with respect to each
lines angle to the x-axis and finally forming rectangulars from these intersec-
tion points.The number of the extracted shapes is relevant to the computa-
tional power is available in the current hardware.The most basic version is
forming a rectangular from two consecutive points of a raw and a columnn.

FIGURE 4.12: Openings Detection
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Chapter 5

System Level Design

This chapter is dedicated to the design and development of our system, where
we extensively analyze the hardware and tools utilized to build the system.
We aim to provide a thorough explanation of the various hardware and soft-
ware components used in our final solution and illustrate how we integrated
them to develop a functional system. A detailed description of each hard-
ware and software component, including its specifications, features, and de-
sign trade-offs, will be presented. Furthermore, we will discuss the integra-
tion process, including the obstacles we encountered and how we tackled
them to ensure the system’s successful development.

FIGURE 5.1: Top Level of the Hardware Components Layout
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FIGURE 5.2: Top Level of the Software Components Layout

5.1 Overview

The design of the specific system was developed based on certain attributes
that was set as principles of the whole idea as discussed in the previous chap-
ter. First of all due to the fact that the system s designed to operate indoors it
had to be relatively small in order to move in a flexible way even in narrow
spaces. Secondly due to the fact that it is meant for space exploration, it is
necessary to consume as less energy as possible and the battery needs to last
as much as possible for not having to pause the exploration process halfway
through the space. With those two constraints we tried to make the design as
efficient as possible with the use of specific hardware modules and software
tools.

In the next sections, we are going to present and analyze, the hardware used
in the specific design including the Drones frame, motors, battery, flight con-
troller, camera, CPU and also all the software tools and frameworks that were
used in order to develop the logic of the system.
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FIGURE 5.3: Primal Version of thesis UAV

5.2 Host Aerial Platform

On this section we are going to analyze the "Host Aerial Platform" compo-
nent of the Top Level 5.1. The selection process for the host aerial platform
of the system was made by taking into account all the hard requirements in
order to find the most suitable drone type to integrate in the current work.
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First of all, the fact that the drone should be as small as possible in order
to be able to maneuver through narrow spaces is an important aspect that
leaded us to our choice. Also it should be as less as energy consuming pos-
sible, so it’s own weight should be minimized as well. Of course the host
platform should also offer flight stability, precise control as well as the ability
to maintain its position in order for the navigation system to provide the best
possible results.

The category that was selected after studying all the possible designs is a
multicopter rotorcraft with four number of rotors which is stable and precise
enough for the purposes of our work, it’s frames come in sufficiently small
sizes fulfilling that requirement as well, and also due to the fact that there are
four rotors mounted instead of six or eight, it can be less energy consuming
than the other types.

FIGURE 5.4: Quadcopter Rotorcraft

Source: DJI Mini 2

5.2.1 Quadcopter’s Frame

The frame used is a QAV250 FPV Race Drone frame made of carbon fiber.
Carbon fiber is a material composed of a long chain of carbon atoms. The
fibers are extremely strong and light. The joining of fibers creates composite
components. Due to the nature of the fibers, the strength-to-weight ratio of a
carbon fiber component is much higher than that of steel.



5.2. Host Aerial Platform 49

FIGURE 5.5: QAV250 FPV Race Drone frame

Source: Amazon

5.2.2 Propulsion

The Propulsion modules are composed of four 5045, 5-inch, Tri Blade pro-
pellers coupled with four 2300KV Brushless DC Motors. The propellers are
split into two groups. Two are clockwise and two counter clock wise.This
design eliminates gyroscopic effects when there is equal thrust distribution.
Each motor weights 28.8g and their total thrust is 2.5 kg, making it more than
eligible to support the whole system and capable for future upgrades.

FIGURE 5.6: Propulsion modules

Source: Amazon
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5.2.3 Electronic Speed Controllers

Driving a three-phase brushless DC motor is a challenging task as large sums
of power and continuous monitoring of the electromagnetic fields generated
in the motor. The units responsible for the precise control of the motors are
the electronic speed controllers (ESC) of the copter. These units are controlled
by the flight control unit (FCU) and float the motors by continuously ad-
justing the switching interval of each motor phase. As are the engines syn-
chronously, the units must accurately measure the back electromotive force
between motor phases to estimate rotor orientation and adjust commutation
timing. This aircraft has four Makerstack ESCs that support 35A continuous
current treatment at 22.2 volts.

FIGURE 5.7: Electronic Speed Controllers

Source: Amazon
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FIGURE 5.8: Electronic Speed Controllers

Source: How to Mechatronics

5.2.4 Battery

A OEM 4S1P 30C 2500mAh 14.8V battery is integrated into the system as a
power source. The "4S" in the name refers to the number of cells in the bat-
tery, which are connected in series and provide a nominal voltage of 14.8V.
The "30C" rating refers to the maximum continuous discharge rate of the bat-
tery, or how quickly it can be discharged without damaging the cells. The
"2500mAh" rating refers to the capacity of the battery, or how much energy it
can store.

Integrating this battery into the drone is important for energy management
because it determines how long the drone can fly and how much payload it
can carry. It is also important for limiting the weight of the drone, as a larger,
heavier battery would add weight and potentially decrease the drone’s per-
formance. By carefully selecting a battery with the appropriate capacity and
discharge rate, we optimized the energy usage and weight of the drone to
meet the specific needs of the specific application.
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FIGURE 5.9: Power Source

Source: https://www.gensace.de/

5.2.5 Flight Controller Unit

A flight controller is a device that is used to stabilize and control the flight
of a drone or other unmanned aerial vehicle (UAV). It is typically a small
computer that is mounted on the UAV and is responsible for receiving input
from various sensors and peripherals, such as gyroscopes, accelerometers,
and GPS modules, and using this information to calculate the appropriate
control signals for the motors and other actuators. The flight controller is
the brains of the drone, and it plays a crucial role in ensuring stable and safe
flight. For the specific study the chosen flight controller is the Pixhawk 4.
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FIGURE 5.10: Pixhawk 4

Source: https://docs.px4.io/

The Pixhawk 4 is a popular flight controller used in unmanned aerial vehi-
cles (UAVs) for a variety of applications, including mapping, inspection, and
search and rescue. In this section, we will explore the hardware and features
of the Pixhawk 4 and discuss how it can be integrated into a UAV.

The Pixhawk 4 is built on the STM32F765 microcontroller, which has a pow-
erful Cortex-M7 processor running at 216 MHz. It also has 1 MB of flash
memory and 512 MB of RAM, providing plenty of storage and processing
power for flight control algorithms and data logging. The Pixhawk 4 also
has a variety of sensors and peripherals, including a gyroscope, accelerom-
eter, magnetometer, barometer, and GPS module. These sensors are used to
measure the orientation, position, and velocity of the UAV and provide feed-
back to the flight control system.

Firmware

The Pixhawk 4 runs the PX4 flight stack, which is an open-source firmware
developed by the PX4 project. The PX4 flight stack is designed for flexible
and reliable control of UAVs and other autonomous systems, and it supports
a wide range of sensors and peripherals. The PX4 flight stack includes a va-
riety of flight modes, such as manual, stabilize, altitude hold, and waypoint
navigation, which can be accessed through the ground station software or a
radio control transmitter.
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Compatibility

The Pixhawk 4 is compatible with a variety of ground station software, in-
cluding QGroundControl, Mission Planner, and MAVLink Inspector. These
programs allow the user to configure and tune the flight control parameters,
upload waypoints, and view real-time telemetry data. The Pixhawk 4 is also
compatible with a range of radio control transmitters, including the FrSKY
Taranis and the Spektrum DX9, which can be used to override the flight con-
trol system and manually control the UAV.

Integration with Robot Operating System (ROS)

The Pixhawk 4 can be integrated with the Robot Operating System (ROS)
using the mavros package. ROS is a powerful platform for building au-
tonomous systems, and it provides a variety of tools for perception, localiza-
tion, and control. The mavros package is a ROS wrapper for the MAVLink
communication protocol, which is used by the Pixhawk 4 to communicate
with ground station software and other autonomous systems. By integrating
the Pixhawk 4 with ROS, it is possible to use a variety of ROS packages and
libraries to build advanced autonomous applications for the UAV. In our case
it gives the ability to our autonomous system to communicate with the flight
controller and to secure back and forth communication with our autonomous
system.

RC Overriding through mavROS

The Pixhawk 4 can be overridden using the RC radio control transmitter
through the mavros package in ROS. This can be useful in situations where
the flight control system is not behaving as expected or if manual control is
needed for certain tasks. In the case of the Pixhawk 4 flight controller, RC
overriding can be achieved through the mavros package in the Robot Oper-
ating System (ROS). The mavros package is a ROS wrapper for the MAVLink
communication protocol, which is used by the Pixhawk 4 to communicate
with ground station software and other autonomous systems. By using the
mavros package, it is possible to control the UAV using code, rather than
manually using the radio control transmitter.
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5.2.6 Overview

The diagram presents an overview of the "host aerial platform" architecture
in our Top Level diagram 5.1, divided into three main sections: the Energy
section, the Flight Controller, and the Propulsion section. These three layers
work together to provide stable flights for our system. The diagram gives
a clear and simple representation of the system’s components and their in-
teractions, providing a good starting point for understanding the system’s
architecture.

FIGURE 5.11: Host Aerial Platform Overview

5.3 Optical Sensor

This part has to do with the "Optical Sensor" component of the Top Level
5.1 which is a crucial component of our project as it is responsible for gath-
ering vital data necessary to achieve this works goals. Among the various
options available, we have chosen to utilize the Intel RealSense T265 for its
advanced capabilities and high level of accuracy.The Intel RealSense T265 is
an essential component of our project as it provides us with the ability to
extract localization data, while maintaining the advantages of an optical sen-
sor.As mentioned in the previous chapters, this work required a sensor that



56 Chapter 5. System Level Design

could provide precise real-time location data, as well as the ability to extract
information about the environment which is to be deployed. The T265 is a
tracking camera that uses proprietary visual inertial odometry (VIO) tech-
nology to achieve this, making it an ideal choice for our work. Unlike Lidar
sensors, T265 provides the benefits of an optical sensor such as capturing vi-
sual information in addition to motion data which make it ideal for fulfilling
all the goals of the specific application. In this section, we will delve deeper
into the features and capabilities of the T265 and how it contributes to the
overall success of our project by providing the best of both localization and
mapping without sacrificing any advantages of an optical sensor.

FIGURE 5.12: Intel RealSense T265

Source: intelrealsense.com

The Intel RealSense T265 is equipped with a range of advanced hardware
modules that allow it to perform its visual inertial odometry (VIO) technol-
ogy. The device includes two fisheye cameras that capture stereo images, a
6-axis inertial measurement unit (IMU) to track device rotation and accelera-
tion, and an Intel Myriad 2 VPU that processes the sensor data which is based
on the MA2450 chip. The MA2450 contains several specialized vision proces-
sors and a general-purpose processor. These include a stereo depth engine, a
motion engine, and a general-purpose image processor. These specialized vi-
sion processors are designed to perform specific computer vision tasks, such
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as stereo depth calculation, object recognition, and image processing, in real-
time.

The MA2450 chip also contains a general-purpose processor that is used to
control the vision processors and manage the overall operation of the Myriad
2 VPU. This general-purpose processor can be programmed to perform cus-
tom tasks, such as data management and communication with other devices.

The multicore architecture of the MA2450 enables the Myriad 2 VPU to per-
form multiple tasks in parallel, which improves the performance and effi-
ciency of the VPU. Additionally, the chip is designed to be low power, which
makes it suitable for use in mobile and battery-powered devices.

FIGURE 5.13: Intel RealSense T265 Block Diagram

Source: intelrealsense.com

5.4 On board Processing Unit

in this section the "On board Processing Unit" component of the Top Level
5.1 is going to be analyzedThe Nvidia Jetson Nano is a powerful and versa-
tile platform that has been widely adopted in the field of embedded systems
and edge computing. It has been used in a variety of applications, includ-
ing robotics, drones, and smart cameras. In our system, we have chosen to
use the Jetson Nano as the base processing unit due to its high performance,
low power consumption, and rich set of features. With its powerful CPU and
GPU, the Jetson Nano provides the necessary computational power to handle
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the demanding tasks of our system. Additionally, its small form factor and
low power requirements make it an ideal choice for use in portable or em-
bedded systems. With its wide range of interfaces and ports, the Jetson Nano
can easily connect to other devices and peripherals, making it a versatile and
flexible platform for our system.

In our system, we have chosen to integrate only the CPU of the Jetson Nano
in order to keep the power consumption low while still maintaining a high
level of performance. This approach allows us to run our system on a smaller
and more power-efficient device, making it suitable for use in portable or
mobile applications. Additionally, we have not used any other hardware be-
cause of the limited resources available in our lab. The Jetson Nano’s CPU
provides a good balance of performance and power consumption, making it
an ideal choice for our system given the available resources in our lab. Using
the Jetson Nano’s CPU also allows us to take advantage of its rich set of fea-
tures, such as its support for multiple operating systems and programming
languages, which makes it easy for us to develop and deploy our system.

FIGURE 5.14: Nvidia Jetson Nano

Source: developer.nvidia.com
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5.4.1 Technical Overview

The Jetson Nano runs on a quad-core ARM Cortex-A57 CPU, which pro-
vides high performance and power efficiency. The device comes with 4GB
of LPDDR4 memory, which provides ample space for running multiple ap-
plications and storing data. Additionally, the Jetson Nano has a variety of
interfaces and ports, including Gigabit Ethernet, USB 3.0, HDMI, and 40-pin
GPIO, which provide flexibility for connecting to other devices and peripher-
als. The device also runs on a Linux-based operating system, which provides
a familiar programming environment for developers. Without the GPU part,
it can still handle tasks that are compute-intensive and real-time, such as im-
age and video processing, machine learning inferencing, and more.

The Cortex-A57 is a 64-bit processor based on ARMv8 architecture, which
offers improved energy efficiency, performance and security over its prede-
cessor, the Cortex-A9. The quad-core configuration of the Cortex-A57 al-
lows for efficient multitasking and parallel processing, making it ideal for
running multiple applications simultaneously. Additionally, the Cortex-A57
supports a wide range of instruction sets and features such as virtualization,
big.LITTLE processing, and NEON advanced SIMD instructions. This makes
it a versatile processor that can handle a wide range of tasks, including im-
age and video processing, machine learning inferencing, and real-time data
analysis.

5.5 Tools and Frameworks

5.5.1 Robot Operating System (ROS)

For our system’s inter-communication between the sensors, the Flight Con-
troller and the central processing module we integrated The Robot Operating
System (ROS). ROS is an open-source, meta-operating system for robots. It
provides a set of libraries and tools for software development, and is de-
signed to be a flexible framework for building robot applications.

ROS is built on top of the Linux operating system and provides a set of ab-
stractions for common functionality such as communication between nodes,
hardware abstraction, and package management.

ROS is composed of several key components, including:
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• Nodes: These are the individual processes that make up a ROS-based
system. They can perform tasks such as sensor processing, control, and
decision-making.

• Topics: Nodes can publish and subscribe to data on topics, which al-
lows for easy communication between nodes. This allows for a loosely-
coupled architecture, where nodes can be added or removed without
affecting the rest of the system.

• Services: Nodes can also offer and use services, which allow for request-
response communication between nodes. Services are typically used
for tasks that require a specific response, such as requesting the current
robot state.

• Messages: ROS uses a standardized message format for communica-
tion between nodes. This allows for easy interoperability between dif-
ferent nodes, regardless of the programming language they are imple-
mented in.

• Parameters: Nodes can also store and retrieve parameters, which al-
lows for easy configuration of the system.

• Master: The master is responsible for registering and tracking nodes,
topics, and services. It also provides a naming service that allows nodes
to easily find each other.

• tf: A transform library that allows for keeping track of the relationship
between different reference frames in a robot system.

ROS also provides a set of libraries and tools for common functionality such
as navigation, perception, and control. These libraries are designed to be
modular and can be easily integrated into a ROS-based system.

ROS is widely used in the robotics community and has a large user base and
active development community. It is supported by a number of companies
and organizations, and is used in a wide range of applications, including
industrial automation, search and rescue, and space exploration.

5.5.2 OpenCV

For this works Image Processing needs we integrated OpenCV (Open Source
Computer Vision). OpenCV was founded by Gray Bradsky and it is a library
of programming functions mainly aimed at real-time computer vision. It is



5.6. Implementation 61

an open-source library written in C++ and available for C++, Python, and
Java. The library has more than 2500 optimized algorithms for image and
video analysis. These algorithms can be used to detect and recognize faces,
identify objects, classify human actions in videos, track camera movements,
track moving objects, extract 3D models of objects, produce 3D point clouds
from stereo cameras, etc.

OpenCV is widely used in the field of computer vision, image processing
and machine learning. Some of its main features include.

• Image processing: OpenCV provides a wide range of image process-
ing functions, including filtering, color space conversion, thresholding,
edge detection, and feature extraction..

• Object detection: OpenCV provides pre-trained classifiers for object
detection, including face detection, upper body detection, full body de-
tection, and more.

• Video analysis:It provides functions for video analysis such as motion
estimation, background subtraction, and object tracking.

• Camera calibration: OpenCV includes functions for camera calibra-
tion, which can be used to correct lens distortion and other lens arti-
facts.

• 3D reconstruction:It provides functions for 3D reconstruction, includ-
ing stereo reconstruction and structure from motion.

• Hardware acceleration:OpenCV can leverage the power of various hard-
ware platforms such as GPUs and TPUs to accelerate its algorithms.

5.6 Implementation

Beneath, we are presenting a diagram that illustrates the code structure of
the system’s implementation. The diagram shows the different modules and
components that make up the system, and how they interact with each other.
It provides a clear and concise overview of the system’s architecture, and
how the different components are connected and interact with each other.
The diagram also shows the relationship between the different layers of the
system, such as the Optical layer, the processing layer, and the navigation
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layer. This diagram is a useful tool for understanding the system’s imple-
mentation and for identifying any potential areas for improvement or opti-
mization. It will help in understanding the flow of the system, any depen-
dencies and how the system interacts with external devices.

FIGURE 5.15: Implementation Block Diagram

5.6.1 Localization and Mapping

The first layer of our system is the localization layer, where the our systems
input is acquired by our optical sensor capturing frames with its fisheye cam-
eras. This Intel Realsense T265 utilizes visual odometry (vSLAM) to produce
precise and accurate estimates of our systems position and orientation in real-
time. The fisheye cameras provide a wide field of view, which helps to im-
prove the robustness of the vSLAM algorithm by allowing it to extract key
features and track them over time, even in challenging conditions. Overall,
this localization layer forms the foundation for the rest of the system.
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FIGURE 5.16: Odometry Extraction

The Mapping Layer consists of two components. The Undistortion compo-
nent and the Depth Extraction component.

Undistortion Component

The first component of the mapping layer is the undistortion component. It
takes as input the two fisheye streams and it produces as output the undis-
torted forms of these two streams. Since the two fisheye lenses are already
calibrated The system has already loaded the camera intristic and extrinsic
parameters in memory in order to perform the undistortion. The undistor-
tion takes place by utilizing openCV function "cv::fisheye::initUndistortRectifyMap".
This function is used to generate maps for image rectification and undistor-
tion. These maps can be used with the cv::remap function to transform an
image captured by a fisheye camera into a rectified image, which has reduced
distortion and improved geometric properties. The function takes in several
parameters such as the camera matrix, distortion coefficients, and the size of
the output image. Additionally, it also allows the user to specify the recti-
fication method (e.g. "stereographic", "equidistant", "equisolid", etc.) which
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determine how the undistorted image will be projected. The output of the
function is a pair of maps (one for x-coordinates and one for y-coordinates)
that can be used with the cv::remap function in order to produce the final
undistorted versions of the fisheye images.

FIGURE 5.17: Undistortion

The second component of the mapping layer is divided into two submodules.
The Disparity Estimation module and the Pointcloud Generation module.

Disparity Estimation

The Disparity module is responsible for calculating the disparity map be-
tween the two undistorted fisheye images. The disparity represents the rela-
tive depth of each pixel in the images, which is used to create a 3D represen-
tation of a scene. The method for producing the disparity is by integrating
OpenCV’s Stereo SGBM matcher function where by passing to it the appro-
priate parameters that are based on the current camera model it produces
the shift of pixels in the left image relative to the corresponding pixels in the
right image. At this work in order to achieve sufficient results, the disparity
needs to be continuous and detailed enough for it to provide depth values
for almost every pixel, thus we are passing the matcher output from a WLS
filter smoothing it out significantly.
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FIGURE 5.18: Disparity

Pointcloud Generation

The last step of the depth extraction is the Pointcloud generation where the
final 3D map is constructed from the disparity feed. The procedure we inte-
grate to achieve this is by applying Stereo Vision using the formula.

depth = ( f ocallength ∗ baseline)/disparity (5.1)

The focal length is the distance between the image plane and the camera lens,
and it determines the field of view of the camera. baseline is the distance
between the two cameras in the stereo setup.

So the equation calculates the depth of a pixel as the ratio of the product of
focal length, baseline, and 16 to the disparity value. The lower the disparity
value, the greater the depth.
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FIGURE 5.19: Implementation Block Diagram

5.7 Openings Detection Layer

The Openings Detection layer is the last stage of our pipeline as it receives
the produced Odometry from the Localization layer, the left undistorted fish-
eye feed and the Disparity map from the Mapping Layer and it outputs the
most suitable target for the drone to come through in the surrounding en-
vironment. This layer is splitted in two different modules. The Openings
Detection unit and the Target Selection unit. Algorithm 1 represents the high
level logic of the Openings Detection feature.

Algorithm 1 Openings Detection Top Level

1: openings← []
2: f rames← left undistorted image
3: rectangulars← DetectRectangulars()
4: for rectangular in rectangulars do
5: valid← compute3D(rectangular)
6: if valid then
7: openings.append(rectangular)
8: TargetSelection(openings)



5.7. Openings Detection Layer 67

5.7.1 Opening Detection Unit

The Openings Detection is taking as input an undistorted image and it out-
puts detected rectangulars that have opening properties. The opening prop-
erties is firstly to have sufficient depth, and secondly to it’s area to be suf-
ficiently large in order for the vehicle to fit through it. The first step of
the Openings Detection Unit is the Rectangulars Detection 2. On this step
the image is passed through OpenCV’s Canny Edge Detector, with specific
threshold and window size specifically tuned for our camera model, after-
wards the edges are passed through OpenCV’s Hough Line transform in
order to acquire all the potential lines of the image. After the lines are ac-
quired, we are segmenting them regarding their relative angle to the x-axis
in horizontal and vertical. The next step is to find intersections between those
lines and start combining these intersecting points to detect rectangulars. For
dealing with the fact that in some cases the number of the intersecting points
is significantly large, we simplify the process by classifying the intersecting
points into vertical and horizontal lines forming a grid of potential openings
in the picture. Finally for each rectangular inside the grid we examine the
disparity values in the corresponding disparity input and we calculate the
area of them, in order to determine which of these rectangulars can act as
openings.

Algorithm 2 DetectRectangulars

1: function DETECTRECTANGULARS(undistortedle f t)
2: edges← CANNYEDGEDETECTOR(undistortedle f t) ▷ Apply Canny

Edge Detection to extract the edges of the Image
3: lines← HOUGHLINES(edges) ▷ Apply Hough Lines Transform to the

edges to extract lines of the image
4: segmented← SEGMENTBYANGLE(lines, undistortedle f t) ▷ Segment

the lines by angle to estimate if a line is horizontal or vertical
5: intersections← SEGMENTEDINTERSECTIONS(segmented) ▷ Detect the

intersections between the horizontal and vertical lines
6: verticals← SPLITTOVERTICAL(intersections) ▷ Classify the

intersection based on the vertical line of the point
7: rectangulars← FORMRECTANGULARS(verticals) ▷ Form the final

Rectangulars by combining the produced vertical points
8: return rectangulars
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FIGURE 5.20: Rectangular Extraction

5.7.2 Target Selection Unit

The Target Selection is the following and last process of the system. It re-
ceives the detected openings of of the previous modules and it extracts a
single target. This module provides the system with two features. The first
is an automated selection where the system estimates the closest target to the
center of the camera and it locks it. The second one is manual selection of
target where the operator selects the target by passing input to the system
through the RC controller.
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Chapter 6

System Verification and
Performance Evaluation

In this chapter, we showcase and assess the outcomes of our work. The aim
of this chapter is to provide an all-inclusive assessment of the system’s per-
formance and exhibit the results of our efforts. We will display the data and
metrics that we employed to appraise the system, including experiments and
tests that we carried out. Additionally, we will furnish a meticulous evalua-
tion of the results, comprising the advantages and drawbacks of our system,
and any valuable knowledge that we gained from the data.

6.1 Specification of Compared Platforms

For evaluating and testing the system we performed field tests on both Jetson
Nano and an Ubuntu Desktop environments in order to observe the system
behaviour on each platform regarding the power consumption,latency, scal-
ability and accuracy of the results. An important feature of the system is that
in the way it is developed, it can be integrated into any Ubuntu platform giv-
ing it the flexibility to change processing platform regarding on the need of
each potential application.

6.1.1 Nvidia Jetson

The NVIDIA Jetson series are embedded computing boards known for their
low weight and power consumption. Nvidia Jetson was selected as a host
platform due to the current availability on our lab. It could be hosted on a
different ubuntu embedded platform as Raspberry Pi with the same specifi-
cations for the same perfomance
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Spec Nvidia Jetson Nano

CPU Quad-core ARM Cortex-A57 MPCore processor @ 1.47 GHz

RAM 4 GB 64-bit LPDDR4, 1600MHz

Storage 16 GB eMMC 5.1

Size 69.6 mm x 45 mm

Power 5 Watts

Spec Nvidia Jetson Agx Xavier

CPU 8-core Nvidia Carmel ARM v8.2 64-bit CPU

RAM 16 GB 256-bit LPDDR4x @ 2133 MHz

Storage 32 GB eMMC 5.1

Size 87mm x 16mm

Power 10-30 W

6.1.2 Ubuntu Desktop Computer

Tests were also performed on a Dekstop computer, to observe the system’s
behaviour on an environment providing much more resources and power.

Spec Ubuntu Desktop

CPU six core Intel Core i5-11400H @ 4.50 GHz

RAM 16 GB DDR4, 3200 MHz

Storage 512 GB PCIe 3.0 NVMe M.2 SSD

Size 359 x 256 x 24,7 mm

Power 150 Watts

6.2 Datasets and Performance Metrics

The datasets used in this work were collected by us, covering a variety of
environments to provide a comprehensive evaluation of the system. This
allows for testing the system under various conditions and helps to demon-
strate its performance in different settings, which is crucial for real-world
applications. By including a range of environments, the results of the evalu-
ation provide a more robust and accurate picture of the system’s capabilities.
This helps to ensure that the system’s performance is not just dependent on
a single type of environment, but instead represents a generalization of its
abilities across different scenarios.
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The performance of the system is evaluated using two main metrics: frames
per second (FPS) and accuracy of the detected openings. FPS measures the
speed at which the system can process images based on the pipeline describes
in the previous chapter, while the accuracy of the detected landmarks in-
dicates how closely the system’s output aligns with the actual position of
landmarks in the real world. By evaluating the system using both FPS and
accuracy, we can get a comprehensive understanding of its performance and
identify areas for improvement. Additionally, testing the system in a vari-
ety of environments helps us to ensure that it performs well under different
conditions and with different types of input data.

6.3 Evaluation

6.3.1 Localization

This subsection focuses on presenting the localization outputs from two en-
vironments to assess the precision of our localization module. Our localiza-
tion system is crucial for accurately determining the location of an object or
device in real-time. In order to verify the performance of our module, we
attached the odometry output of our localization module to satellite images
from google maps. Also we attach images taken from our system during the
process of aquiring the odometry to verify or data.

The Visual Odometry is being produced by the system on a rate of 30FPS in
all the platforms, ensuring that the UAV would have very detailed informa-
tion about it’s pose, even on more difficult circumstances.

Dataset from Science Building, Technical University of Crete

This dataset includes a route to the circular core of Ktirio Epistimon building
in Technical University Of Crete.
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FIGURE 6.1: Sample images from route
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FIGURE 6.2: Odometry Output

FIGURE 6.3: Odometry Output

Dataset from MHXOP, Technical University of Crete

This dataset includes a route on around the floor outside SenseLab at MHXOP
building in Technical University of Crete.
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FIGURE 6.4: Sample images from route
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FIGURE 6.5: Odometry Output

6.3.2 Mapping

To evaluate the Mapping feature of the system, we test several snapsots of
the undistorted image of the camera and their corresponding pointclouds.
The system requires space perception in order to be able to navigate itself
through an indoor environment.Therefore there must be information about
the basic layout of the space for detecting the presence of obstacles and other
kind of blockers.

The system is able to perform the Mapping task with the rate of 15.4 FPS
ON Ubuntu Desktop, 4,7 FPS On Jetson Xavier and 1,7 FPS on Jetson Nano.
Having 3D mapping data in that frequency, the system is eligible of gaining
space perception constantly without information loss if we take as a fact that
on inspection missions the speed of the UAV is relatively slow.

The results have shown that the Mapping Module is delivering accurate
represantations of the surrounding environment making it capable of "sens-
ing" which directions have open space for it to navigate and which spots
contain obstacles. (Figures 6.6, 6.7, 6.8, 6.9 ).

6.3.3 Openings Detection

The Openings Detection was tested in several environments and it is ob-
served that in it’s current state, it is able to detect openings in realtime un-
der specific circumnstances. Firstly, the openings center must be as near as
possible to the camera center. Secondly, the opening must be rectangular as
the methods integrated for acquiring the openings use detect lines. Lastly
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FIGURE 6.6: Snapsot 1
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FIGURE 6.7: Snapsot 2
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FIGURE 6.8: Snapsot 3
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FIGURE 6.9: Snapsot 4
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the Openings Detector operates better when there is more light in the scene
rather that in dark scenes.

The system is able to perform the openings detection pipeline with the rate
of 25 FPS ON Ubuntu Desktop, 15 FPS on Jetson Xavier and 10 FPS on Jetson
Nano. This specific rate is sufficient for examining all the potential areas of
the environment that might contain an escape opening.

FIGURE 6.10: Openings Detection



6.3. Evaluation 81

FIGURE 6.11: Openings Detection
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FIGURE 6.12: Openings Detection
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

The evaluation of the localization and mapping system has revealed that suf-
ficient results can be obtained with a reduction in hardware modules. Un-
like related work that typically employs two hardware modules, our ap-
proach utilizes only one, resulting in a significant reduction in both cost and
power consumption. This not only provides cost-saving benefits, but also re-
duces the overall energy footprint of the system, making it more sustainable.
The results of this evaluation emphasize the importance of optimizing hard-
ware utilization in the development of localization and mapping systems and
demonstrate that high performance can still be achieved with a streamlined
design.

The results of the evaluation of the openings detection module, developed
using computer image processing techniques, show that while it may not be
as accurate as the CNN solutions used in related work, it still delivers satis-
factory results. Despite this, there is potential for further improvement, and
with the incorporation of more techniques, this module can become as re-
liable as the other solutions. This study highlights the value of continued
research and development in the field of computer image processing and its
potential for delivering accurate and efficient solutions for openings detec-
tion. We believe that with continued effort and refinement, our approach can
become a competitive alternative to existing CNN solutions.

In conclusion, our evaluation of the system has shown promising results
in terms of accuracy and reliability. By reducing energy consumption and
hardware modules used in the construction of these systems, we are able to
achieve similar performance on most factors while also extending the opera-
tion time and reducing the overall cost. This demonstrates that effective and
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efficient design can lead to better outcomes without sacrificing performance.
The results of this study highlight the importance of considering energy con-
sumption and hardware utilization in the design process, and we hope to
continue exploring these strategies in future developments.

7.2 Future Work

7.2.1 Openings Detection Improvement

As future work, we firstly aim to enhance the performance of our openings
detection algorithm to make it even more accurate and robust. This will in-
volve a thorough analysis of current limitations and a systematic approach
to address these issues, incorporating advanced image processing techniques
and adding more filtering layers to our results. By improving the accuracy
and robustness of the algorithm, we hope to increase its reliability and make
it capable of handling more difficult detection tasks."

7.2.2 Autonomous Navigation

Another exciting area for future work is the implementation of an autonomous
navigation module using the space perception capabilities that we have de-
veloped. By utilizing the existing base of our localization and mapping sys-
tem, we can enable devices to navigate through their environment with great
independence. This will require the integration of advanced Artificial In-
telligence navigation algorithms into our localization and mapping system.
The result will be a comprehensive solution for autonomous navigation that
leverages the strengths of our existing system.
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