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EuqaristÐec

Ja  jela na euqarist sw idiaitèrwc ton epiblèponta kajhght  mou, Anaplhrwt 

Kajhght  k. Ajan�sio Li�ba, gia thn polÔtimh upost rix  tou, episthmonik 

kai yuqologik , thn upomon , tic eukairÐec kai ton qrìno pou mou afièrwse

ta dÔo aut� qrìnia. QwrÐc thn diark  kajod ghsh kai bo jei� tou, den ja

 tan dunat  h olokl rwsh thc paroÔsac diatrib c, kai ìqi mìno.



NOTATION

TxWF transmit Wiener filter

EMSE excess mean-square error

MMSE minimum mean-square error

SOS second-order statistics

H channel matrix

P pre-coding (or pre-equalization) matrix

P̃ scaled pre-coding matrix

nt number of transmit antennas

nr number of receive antennas

σ2 noise variance

Rs input covariance matrix

Rn noise covariance matrix

Etr transmit power

αo inverse SNR

∆H channel estimation error

Ntr dimension of the training block

∆Rn noise SOS estimation error
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Abstract

We consider the behavior of the transmit Wiener filter under channel and noise second-order

statistics (SOS) uncertainties. We study the influence of channel and noise SOS uncertainties

separately, by assuming that only one quantity is estimated at a time, while the other is perfectly

known. Using results from matrix perturbation theory, we derive second-order approximations to

the excess mean-square error (EMSE) induced by using the channel and noise estimates as if they

were the true quantities. In the high SNR cases, we develop simple and informative approximations

to the EMSE for both cases. In the scenario we study, it turns out that channel estimation errors

are much more significant than noise SOS estimation errors.
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I. INTRODUCTION

Joint optimization of transmit and receive filters for combatting frequency selectivity and/or

interstream interference in MIMO or multiuser systems has been extensively studied (see, for

example, [1], [2] and the references therein).

If we want to keep the mobile units as simple as possible, then we may consider separate transmit

or receive processing. The transmit matched filter (TxMF), the transmit zero-forcing filter (TxZF)

and the transmit Wiener filter (TxWF) are three linear precoding (or pre-equalization) structures that

combat frequency selectivity and/or inter-stream interference and keep the receivers simple, because

the only assumed receiver processing is a scalar scaling (see [1], [2] and the references therein).

This is particularly appealing in the broadcast scenario, where we want to keep the receivers of

non-cooperative users as simple as possible.

The TxWF outperforms the two other structures in terms of mean-square error (MSE) and bit-

error rate (BER). If the channel matrix and the input and noise second-order statistics (SOS) are

perfectly known at the transmitter (due to, for example, TDD or feedback information channel), then

the TxWF can be computed. If the channel and/or the noise SOS are unknown at the transmitter,

as it is usually the case, then a common approach towards the design of the TxWF is to estimate

the unknown quantities and use the estimates as if they were the true quantities.

We consider that only one quantity is estimated at a time, while the other is perfectly known,

and develop second-order approximations to the excess MSE (EMSE) in terms of the

1) channel estimation error covariance matrix

2) noise SOS estimation error first and second-order statistics.

Then, we consider optimal training and derive simple and informative EMSE bounds in the high

SNR cases. The bounds appear to be good approximations to the EMSE. It turns out that in
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case 1) the EMSE is proportional to the minimum MSE (MMSE), while in case 2) the EMSE is

proportional to the squared noise variance, σ4. We observe that the error induced by the channel

estimation error is more significant than that induced by the noise SOS estimation error.

A. Notation and useful matrix results

We use T , ∗ and H for the transpose, componentwise conjugate and conjugate transpose, re-

spectively. E[·] denotes expectation, IM denotes the M × M identity matrix, Re{·} extracts the

real part of a complex number, tr(·) and || · ||F denote, respectively, the trace and the Frobenius

norm of the matrix argument. A⊗B denotes the Kronecker product of A and B and vec(·) is the

vectorization operator.

Next, we present some useful matrix results used in this work. If A ∈ CM×N and α ∈ C then

[1]

(AHA + αIN )−1AH = AH(AAH + αIM )−1. (1)

If ∆A is a perturbation to matrix A, then a first-order approximation to the inverse of A + ∆A is

given by [4, p. 131]

(A + ∆A)−1 = A−1 −A−1∆AA−1. (2)

For matrices with compatible dimensions [3, ch. 2, 4 and 9]

tr(ABCD) = vecT
(
DT

) (
CT ⊗A

)
vec(B) (3)

vec(ABC) =
(
CT ⊗A

)
vec(B) (4)

AB ⊗ CD = (A⊗ C) (B ⊗D) (5)

vec(AT ) = Kmnvec(A) (6)

Kpm(A⊗B)Knq = (B ⊗A), A(m× n), B(p× q) (7)
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tr(A⊗B) = tr(A)tr(B) (8)

where Kmn is the mn×mn commutation matrix [3, p. 9].

The trace of a m×m matrix A is defined as

tr(A) =
m∑

i=1

Aii.

If the eigenvalues of A are, λi, i = 1, . . . , m, then it can be shown that

tr(A) =
m∑

i=1

λi. (9)

Some useful results, concerning the derivatives of matrix functions are [6]

∂tr (AX)
∂X

= AT (10)

∂tr
(
AXH

)

∂X
= 0 (11)

∂tr
(
XA0X

HA1

)

∂X
= AT

1 X∗AT
0 (12)

∂AX∗

∂X∗ = AT . (13)

We also remind that for a function g of a complex-valued matrix X [7]

∇2
X(g) , ∇X∗ [∇X(g)] .

The structure of this report is as follows. In Section II, we present the derivation of the TxWF,

assuming that the channel and the noise SOS are known at the transmitter [2]. In Section III,

we develop second-order approximations to the excess MSE, assuming either channel or noise

SOS estimation errors. We continue with Section IV, where we support our theoretical results with

simulations.
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Fig. 1. System model

II. TRANSMIT WIENER FILTER

We consider the pre-equalized, baseband-equivalent, discrete-time MIMO system, with nt trans-

mit antennas and nr receiver antennas (with nr ≤ nt), depicted in Fig. 1 and described by the

expression

ŝ = HP s + n (14)

where s is the nr × 1 input signal, P is the nt × nr pre-coding matrix, H is the nr × nt channel

matrix and n is the nr × 1 additive channel noise. This model is particularly appealing in the

broadcast scenario, when the users cannot cooperate in order to combat inter-symbol and/or inter-

stream interference; thus, the need for pre-equalization is imperative. In this case, the i-th element

of vector s is the symbol intended for the i-th receiver. Vectors s and n are complex-valued, circular,

zero-mean, independent with covariance matrices Rs and Rn, respectively. Further, the noise n is

assumed to be Gaussian.

Our aim is to find the transmit filter that minimizes the MSE, E
[‖s− ŝ‖2

2

]
, under the transmit

power constraint

E
[‖P s‖2

2

]
= Etr. (15)

It can be shown that in order to fulfill this power constraint, we should allow the transmit filter

to generate a receive signal with possibly different amplitude from the original desired signal [1].

Therefore, we replace the estimate ŝ by the weighted version β−1ŝ (β ∈ R+), and the MSE function
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is defined as [1]

mse(P, β) , E
[‖s− β−1ŝ‖2

2

]
. (16)

We can write function mse(·) analytically as

mse(P, β) = tr(Rs)− β−1tr(HPRs)− β−1tr(RsP
HHH) + β−2tr(HPRsP

HHH) + β−2tr(Rn).

(17)

Using (15) and (16), the optimization problem becomes [1]

(Po, βo) = arg min
P,β

mse(P, β) s.t. E
[‖P s‖2

2

]
= Etr. (18)

In order to solve this problem, we construct the Langrangian function

L(P, β, λ) = mse(P, β)− λ
(
tr(PRsP

H)−Etr

)
(19)

with λ ∈ R, and set its derivatives with respect to P , β and λ equal to zero. By setting the derivative

of L with respect to P equal to zero, and using (17) and (10)-(12), we obtain

∂L

∂P
= −β−1HT RT

s + β−2HT H∗P ∗RT
s − λP ∗RT

s

= (−β−1HT + β−2HT H∗P ∗ − λP ∗)RT
s = 0.

(20)

Since RT
s is invertible, solving (20) with respect to P , we get

P = β(HHH − λβ2Int
)−1HH . (21)

From the constraint (15), using (21), we obtain

Etr = tr
(
β

(
HHH − λβ2Int

)−1
HHRsH

(
HHH − λβ2Int

)−1
β
)

= β2tr
(
(HHH − λβ2Int

)−2HHRsH
)
.

(22)

The weight β is

β =

√√√√ Etr

tr
(
(HHH − λβ2Int

)−2 HHRsH
) . (23)
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Unfortunately it is not possible to solve for β in (23). Thus, we shall proceed in a indirect way. If

we put α = −λβ2, (α ∈ R), in (23) we obtain

β =

√√√√ Etr

tr
(
(HHH + αInt

)−2 HHRsH
) .

Thus, β and P are functions of α

β(α) =

√√√√ Etr

tr
(
(HHH + αInt

)−2 HHRsH
)

and

P (α) = β(α)(HHH + αInt
)−1HH .

Thus, the constrained optimization of (18) can be reduced to the following unconstrained optimiza-

tion with respect to α, since the constraint is fulfilled with the choice of β [1]

αo = arg min
α

ε (α) (24)

where

ε(α) , mse (P (α) , β (α)) = tr(Rs)− 2tr
(
H(HHH + αInt

)−1HHRs

)

+ tr
(
H(HHH + αInt

)−1HHRsH(HHH + αInt
)−1HH

)

+ tr
(
(HHH + αInt

)−2HHRsH
) tr(Rn)

Etr
.

(25)

Using (1), we rewrite the term of the second line of (25) as

tr
(
H(HHH + αInt

)−1HHRsH(HHH + αInt
)−1HH

)

= tr
(
(HHH + αInt

)−2HHHHHRsH
)
. (26)

Using the expression of (26), function ε(·) from (25) becomes

ε(α) = tr(Rs)− 2tr
(
(HHH + αInt

)−1HHRsH
)

+ tr
(
(HHH + αInt

)−2HHHHHRsH
)

+ tr
(
(HHH + αInt

)−2HHRsH
) tr(Rn)

Etr
.

(27)
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At this point, we can find the optimal α by setting the derivative of ε(α), with respect to α, equal

to zero

∂ε(α)
∂α

= 2tr
(
(HHH + αInt

)−2HHRsH
)

− 2tr
(
(HHH + αInt

)−3HHHHHRsH
)

− 2tr
(
(HHH + αInt

)−3HHRsH
) tr(Rn)

Etr
= 0.

(28)

Because of the linearity of the trace, the above equation can be written as

tr
((

HHH + αInt

)−3
(

αInt
− tr(Rn)

Etr
Int

)
HHRsH

)
= 0 (29)

which is equivalent to

(
α− tr(Rn)

Etr

)
tr

((
HHH + αInt

)−3
HHRsH

)
= 0.

Using the fact that tr
((

HHH + αInt

)−3
HHRsH

)
> 0, we obtain

αo =
tr(Rn)
Etr

. (30)

Term αo has been used in [2, eq. 5] as a measure of inverse SNR. Thus, as high SNR cases we

consider the cases that lead to αo ¿ 1.

Thus, using (21), (23) and (30), the closed form solution of the optimization problem (18) is

Po = βoP̃o and βo =

√
Etr

tr(P̃oRsP̃H
o )

with P̃o =
(
HHH + αoInt

)−1
HH . (31)

In the sequel we assume that the covariance matrix of s is

Rs = Inr
. (32)

Using that Po = βoP̃o, we express the minimum MSE (MMSE) as

MMSE , mse(Po, βo) = tr(Inr
)− 2tr(P̃oH) + tr(HP̃oP̃

H
o HH) + αo tr(P̃oP̃

H
o ). (33)
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III. COMPUTATION OF THE EXCESS MSE

We continue with the computation of the excess MSE assuming channel and noise SOS estimation

errors. We start by giving a general expression for the excess MSE. We denote with ˆ̃P the estimate

for the scaled pre-coding matrix P̃o, for the cases where we have estimated either the channel or

the noise SOS. We will consider separately each case in detail further on.

We return to (16) and use the pre-coding matrix estimate P̂ = β̂ ˆ̃P as if it were the true pre-coding

matrix. Then, the MSE achieved by ˆ̃P is

MSE( ˆ̃P ) , mse(P̂ , β̂) = tr(Int
)− 2Re

(
tr( ˆ̃PH)

)
+ tr(H ˆ̃P ˆ̃PHHH) +

tr( ˆ̃P ˆ̃PH)
Etr

tr(Rn). (34)

Expanding function MSE(·) around P̃o, we obtain the second-order expansion

MSE( ˆ̃P ) = MSE(P̃o + ∆P̃ ) = MSE(P̃o) + tr(∆P̃HMSE′′(P̃o)∆P̃ ) (35)

where MSE′′(P̃o) is the second derivative of the MSE evaluated at the point P̃o and ∆P̃ , ˆ̃P − P̃o.

Using (12) and (13) we obtain

MSE′′(P̃o) = HHH + αoInt
. (36)

A general expression for the excess MSE (EMSE) can be obtained by taking expectation in (35)

with respect to estimation errors

EMSE( ˆ̃P ) , E
[
MSE( ˆ̃P )−MSE(P̃o)

]

= E
[
tr
(
∆P̃HMSE′′(P̃o)∆P̃

)]

(36)
= E

[
tr
(
∆P̃H(HHH + αoInt

)∆P̃
)]

.

(37)

From (37), we can derive the EMSE for the above mentioned cases, by expressing the term ∆P̃

in the appropriate form.
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A. Channel estimation errors

Starting with the channel estimation errors, we express the estimate of the filtering matrix Ĥ as

Ĥ , H + ∆H (38)

where ∆H denotes the channel estimation error. ∆H is assumed to be zero-mean, complex-valued,

circular, with

Rvec(∆H) , E
[
vec(∆H)vecH(∆H)

]
= Σ.

If we use Ĥ as if it were the true channel matrix in (31), we compute the scaled pre-coding matrix

ˆ̃P =
(
ĤHĤ + αoInt

)−1
ĤH . (39)

We continue by applying (2) to (39), taking into consideration (38) and ignoring products of error

terms

ˆ̃P =
(
ĤHĤ + αoInt

)−1
ĤH

=
(
(HH + ∆HH)(H + ∆H) + αoInt

)−1
(HH + ∆HH)

=
(

HHH + αoInt︸ ︷︷ ︸
A

+HH∆H + ∆HHH︸ ︷︷ ︸
K∆

)−1
(HH + ∆HH)

(2)
=

[
(HHH + αoInt

)−1 − (HHH + αoInt
)−1K∆(HHH + αoInt

)−1
]
(HH + ∆HH)

= P̃o − (HHH + αoInt
)−1(K∆P̃o −∆HH).

(40)

Thus, a first-order approximation to term ∆P̃ is

∆P̃ = −(HHH + αoInt
)−1(K∆P̃o −∆HH). (41)
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Having expressed ∆P̃ as a function of the channel estimation error ∆H we return to (37) and

write for the EMSE, using (3)

EMSE( ˆ̃P ) = E
[
tr

(
∆P̃H(HHH + αoInt

)∆P̃
)]

= E
[
tr
(
(HHH + αoInt

)−1(K∆P̃o −∆HH) Inr
(K∆P̃o −∆HH)H

)]

(3)
= E

[
tr
(
vecH

(
K∆P̃o −∆HH

)(
Inr

⊗ (HHH + αoInt
)−1

)
vec(K∆P̃o −∆HH)

)]

= tr
((

Inr
⊗ (HHH + αoInt

)−1
)
E

[
vec(K∆P̃o −∆HH)vecH

(
K∆P̃o −∆HH

)])
.

(42)

Before taking the expectation in (42), we express term T1 , vec(K∆P̃o −∆HH), using (4) and

the definition of K∆ from (40), as

T1 , vec
(
K∆P̃o −∆HH

)
= vec

(
HH∆HP̃o

)
+ vec

(
∆HHHP̃o

)
− vec(∆HH)

= vec(HH∆HP̃o) + vec
(
Int

∆HH
(
HP̃o − Inr

))

(4)
= (P̃ T

o ⊗HH)vec(∆H) +
(
(P̃ T

o HT − Inr
)⊗ Int

)
vec(∆HH).

(43)

Using (6) and noting that the expectation of the cross terms of the product T1T H
1 vanishes, due to

the circular symmetry of vec(∆H), we can go back to (42) and write for the EMSE

EMSE( ˆ̃P ) = tr
(
(Inr

⊗ (HHH + αoInt
)−1) E

[T1T H
1

] )

= tr
((

Inr
⊗ (HHH + αInt

)−1
)
(P̃ T

o ⊗HH)Rvec(∆H)(P̃
∗
o ⊗H)

)

+ tr
((

Inr
⊗ (HHH + αoInt

)−1
)(

(P̃ T
o HT − Inr

)⊗ Int

)
Kntnr

R∗vec(∆H)K
T
ntnr

(
(H∗P̃ ∗

o − Inr
)⊗ Int

))

= A1 +A2

(44)

where

A1 , tr
((

Inr
⊗ (HHH + αoInt

)−1
)
(P̃ T

o ⊗HH)Rvec(∆H)(P̃
∗
o ⊗H)

)

= tr
(
(P̃ ∗

o ⊗H)
(
Inr

⊗ (HHH + αoInt
)−1

)
(P̃ T

o ⊗HH)Rvec(∆H)

)

(5)
= tr

((
P̃ ∗

o P̃ T
o ⊗H(HHH + αoInt

)−1HH
)
Rvec(∆H)

)
.

(45)
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and

A2 , tr
((

Inr
⊗ (HHH + αoInt

)−1
)(

(P̃ T
o HT − Inr

)⊗ Int

)
Kntnr

R∗vec(∆H)K
T
ntnr

(
(H∗P̃ ∗

o − Inr
)⊗ Int

))

= tr
(
KT

ntnr

(
(H∗P̃ ∗

o − Inr
)⊗ Int

)(
Inr

⊗ (HHH + αoInt
)−1

)(
(P̃ T

o HT − Inr
)⊗ Int

)
Kntnr

R∗vec(∆H)

)

= tr
(
KT

ntnr

(
(H∗P̃ ∗

o − Inr
)(P̃ T

o HT − Inr
)⊗ (HHH + αoInt

)−1
)
Kntnr

R∗vec(∆H)

)

(7)
= tr

((
(HHH + αoInt

)−1 ⊗ (H∗P̃ ∗
o − Inr

)(P̃ T
o HT − Inr

)
)
R∗vec(∆H)

)
.

(46)

We have expressed the EMSE in terms of Rvec(∆H). Expressions (44)-(46) are admittedly compli-

cated and do not provide significant insight. In the sequel, we shall consider the high SNR cases

and derive a simple and informative expression for the EMSE.
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1) Simplifications in the high SNR cases: For sufficiently high SNR, we can derive a simple

approximation for the EMSE. First, we determine the covariance matrix of vec(∆H), assuming

that we have estimated the channel in an optimal way.

Assuming that we have used training-based estimation with optimal training block and the noise

is spatially and temporally white, circularly symmetric complex Gaussian with variance σ2 (see

Appendix), the covariance matrix of vec(∆H) is given by [5, p.175]

Rvec(∆H) =
σ2

Ntr
Intnr

(47)

where Ntr is the number of independent columns of the training block we used for estimating H .

We continue by writing terms A1 and A2, from (45) and (46) respectively, in a more simple

form. We start with A1, which becomes

A1 =
σ2

Ntr
tr
(
P̃ ∗

o P̃ T
o ⊗H(HHH + αoInt

)−1HH
)
. (48)

At this point we will examine term H(HHH + αoInt
)−1HH . It can be shown that ([4, p. 138])

λi

(
H

(
HHH + αoInt

)−1
HH

)
=

λi

(
HHH

)

λi (HHH) + αo
≤ 1 (49)

where λi(·) denotes the i-th eigenvalue of the matrix argument. Thus, for the trace of this term we

can write that

tr
(
H

(
HHH + αoInt

)−1
HH

)
(49)
=

nr∑

i=1

λi

(
HHH

)

λi (HHH) + αo

(αo¿1)≈ tr (Inr
) . (50)

In the high SNR cases (αo ¿ 1), matrix H(HHH + αoInt
)−1HH is very close to the identity

matrix Inr
. We return to term A1, and using (8) and (50) we get

A1 =
σ2

Ntr
tr

(
P̃ ∗

o P̃ T
o ⊗H(HHH + αoInt

)−1HH
)

(8),(50)≈ σ2

Ntr
tr

(
P̃ ∗

o P̃ T
o

)
tr (Inr

)

=
nrσ

2

Ntr
tr

(
P̃ ∗

o P̃ T
o

)
.

(51)
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We continue with term A2, and using (47) we obtain

A2 =
σ2

Ntr
tr
(
(HHH + αoInt

)−1 ⊗ (H∗P̃ ∗
o − Inr

)(P̃ T
o HT − Inr

)
)
. (52)

At this point, we will examine term
(
(H∗P̃ ∗

o − Inr
)(P̃ T

o HT − Inr
)
)

. Using the expression of P̃o

from (31) it can be shown that the eigenvalues of this term are

λi

(
(H∗P̃ ∗

o − Inr
)(P̃ T

o HT − Inr
)
)

=
α2

o

(λi (HHH) + αo)
2 . (53)

For the high SNR case we study (αo ¿ 1)

λi

(
(H∗P̃ ∗

o − Inr
)(P̃ T

o HT − Inr
)
)

=
α2

o

(λi (HHH) + αo)
2 ≈ 0. (54)

Thus, for the trace of this term we have that

tr
(
(H∗P̃ ∗

o − Inr
)(P̃ T

o HT − Inr
)
) (54)≈ 0. (55)

Then, using (8), term A2 becomes

A2 =
σ2

Ntr
tr

((
HHH + αoInt

)−1
)

tr
((

H∗P̃ ∗
o − Inr

)(
P̃ T

o HT − Inr

)) (55)≈ 0. (56)

Thus, we conclude that term A2 is negligible compared with A1 (this claim is confirmed in the

simulations section). We return to the EMSE expression and using (51) we get

EMSE( ˆ̃P ) ≈ A1 ≈ nrσ
2

Ntr
tr

(
P̃ ∗

o P̃ T
o

)
=

nrσ
2

Ntr
||P̃o||2F . (57)

We can simplify (57) further, if we examine term tr(P̃ ∗
o P̃ T

o ) which is equal to tr(P̃oP̃
H
o ). Using

(33) and (50), we obtain that for the high SNR cases

MMSE = tr(Inr
)− 2tr(P̃oH) + tr(P̃oP̃

H
o HHH) + αo tr(P̃oP̃

H
o )

= tr(Inr
)− 2tr

((
HHH + αoInt

)−1
HHH

)

+ tr
((

HHH + αoInt

)−1
HHH

(
HHH + αoInt

)−1
HHH

)
+ αo tr(P̃oP̃

H
o )

(αo¿1)≈ tr(Inr
)− 2tr(Inr

) + tr(Inr
) + αo tr(P̃oP̃

H
o )

= αo tr
(
P̃oP̃

H
o

)
.

(58)
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Thus, from (58) we get

tr
(
P̃oP̃

H
o

)
≈ 1

αo
MMSE . (59)

We return to the EMSE expression (57), which becomes

EMSE( ˆ̃P ) ≈ nrσ
2

Ntr

1
αo

MMSE

=
Etr

Ntr
MMSE.

Thus, in the high SNR cases we have that

EMSE( ˆ̃P ) ≈ Etr

Ntr
MMSE. (60)

As we see from (60), we derived a simple and informative bound for the EMSE. In extensive

simulation studies we have observed that this is a very good approximation to the true EMSE. We

observe that the EMSE is proportional to the MMSE, which decreases for increasing SNR. The

proportionality factor is the ratio of transmit power Etr and the dimension of the training block

Ntr.

Expression (60) can be used as a criterion for the choice of the length of the training block Ntr,

and/or the total transmit power Etr.
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B. Noise estimation errors

In this section, we assume that the channel is perfectly known at the transmitter and we estimate

the SOS of the received noise. The estimate of the noise covariance matrix is expressed as

R̂n , Rn + ∆Rn. (61)

The scaled pre-coding matrix becomes

ˆ̃P =
(
HHH +

tr(Rn + ∆Rn)
Etr

Int

)−1
HH . (62)

Next, we apply (2) to (62) in order to compute ∆P̃

ˆ̃P =
(

HHH + αoInt︸ ︷︷ ︸
A

+
tr(∆Rn)

Etr
Int

︸ ︷︷ ︸
∆A

)−1
HH

= P̃o − tr(∆Rn)
Etr

(
HHH + αoInt

)−1
P̃o.

(63)

Thus, a first-order approximation to ∆P̃ is

∆P̃ = − tr(∆Rn)
Etr

(
HHH + αoInt

)−1
P̃o. (64)

Having expressed ∆P̃ as a function of the noise covariance matrix estimation error ∆Rn, we return

to (37) and we write for the EMSE using (64)

EMSE( ˆ̃P ) = E
[
tr
(
∆P̃H(HHH + αoInt

)∆P̃
)]

(64)
=

E
[
tr2(∆Rn)

]

E2
tr

tr
(
P̃oP̃

H
o (HHH + αoInt

)−1
)

EMSE( ˆ̃P ) =
E

[
tr2(∆Rn)

]

E2
tr

tr
(
P̃oP̃

H
o (HHH + αoInt

)−1
)
. (65)

We have expressed the EMSE as a function of E
[
tr2(∆Rn)

]
. In the sequel, we consider the high

SNR cases and derive a simple and informative expression for the EMSE.
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1) Simplifications in the high SNR cases: In the high SNR cases, we can simplify expression

(65) and give a simple approximation to the EMSE.

We start by making specific assumptions for the noise SOS estimate. Considering that we have

estimated the channel, we can estimate the noise covariance matrix, using the channel estimate.

More specifically, we prove in the Appendix that for the spatially and temporally white Gaussian

noise case we consider, the unbiased estimator of the noise variance given by [5, p. 174], has

variance

E
[(

σ2 − ˆ̂σ2
)2

]
=

σ4

nr(Ntr − nt)
. (66)

Using the assumptions we made for the noise, we return to (65) and using (66) we obtain

EMSE( ˆ̃P ) =
E

[
tr2(∆Rn)

]

E2
tr

tr
(
P̃oP̃

H
o (HHH + αoInt

)−1
)

=
nrE

[(
σ2 − ˆ̂σ2

)2
]

E2
tr

tr
(
P̃oP̃

H
o (HHH + αoInt

)−1
)

=
σ4

E2
tr (Ntr − nt)

tr
(
P̃oP̃

H
o (HHH + αoInt

)−1
)

.

(67)

Next, we examine term tr
(
P̃oP̃

H
o (HHH + αoInt

)−1
)

. Using (31), we obtain

tr
(
P̃oP̃

H
o (HHH + αoInt

)−1
)

= tr
(
H

(
HHH + αoInt

)−3
HH

)
. (68)

It can be shown that the eigenvalues of the matrix inside the trace are ([4, p. 138])

λi

(
H

(
HHH + αoInt

)−3
HH

)
=

λi

(
HHH

)

(λi (HHH) + αo)
3

and for the high SNR case (αo ¿ 1)

λi

(
H

(
HHH + αoInt

)−3
HH

)
≈ 1

λ2
i (HHH)

(∗)
=

1
λ2

i (HHH)

where at point (*) we used that if λ1, . . . , λnr
are the eigenvalues of HHH , then λ1, . . . , λnr

, 0, . . . , 0
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are the eigenvalues of HHH . Thus, for the trace of (68) we get

tr
(
P̃oP̃

H
o (HHH + αoInt

)−1
)

= tr
(
H

(
HHH + αoInt

)−3
HH

)

≈
nr∑

i=1

1
λ2

i (HHH)

=
nr∑

i=1

λi

((
HHH

)−2
)

= tr
((

HHH
)−2

)

= || (HHH
)−1 ||2F .

(69)

Thus, combining expressions (67) and (69), we obtain

EMSE( ˆ̃P ) ≈ σ4

E2
tr (Ntr − nt)

|| (HHH
)−1 ||2F . (70)

This approximation states that the EMSE is proportional to the squared noise variance, σ4, which

decreases “fast” enough for increasing SNR. The proportionality factor is determined by the transmit

power, Etr, the length of the training block used for channel estimation, Ntr, and the number of

the transmit antennas, nt. The Frobenius norm || (HHH
)−1 ||2F is also a constant which depends

on the specific realization of the channel matrix. In the simulations section we will see that this

bound is a good approximation to the EMSE, especially at high SNR.
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Table I

Elements of channel matrix H

-0.0648+0.0388*j -0.0547+0.2974*j 0.2588-0.0954*j

0.4186+0.2072*j -0.5157-0.3955*j 0.3897-0.1856*j

IV. SIMULATIONS

In this section, we present simulations which support our theoretical results. We consider a

broadcast system with nt = 3 transmit antennas and nr = 2 non-cooperative receivers.

The filtering matrix H is a realization of a 2× 3 random matrix, with elements i.i.d. complex,

circular, zero-mean Gaussian random variables, normalized so that ‖H‖2
F = 1. Its elements are

given in Table I.

The noise is spatially and temporally white, circularly symmetric complex Gaussian. We assume

that the noise variance is σ2, the same for all receivers.

We set the transmit power Etr = nt. We assume that the training block is composed of Ntr = 20

columns.

Simulation 1. Channel estimation errors.

In Fig. 2, we plot the theoretical second-order approximation (44), the corresponding experi-

mentally computed EMSE and the bound (60). We observe that the experimental and theoretical

EMSE values practically coincide for SNR higher than 5 dB, while expression (60) is a good

approximation to the EMSE, especially at high SNR. Analogous results have been observed in

extensive simulations.

In Fig. 3, we plot terms A1 and A2 of the theoretical EMSE of (44). We observe that, for

SNR higher than 15 dB, the contribution of term A2 to the EMSE is negligible compared to the

contribution of term A1. Thus, our claim that the EMSE is approximately equal to term A1 for
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Fig. 2. Theoretical EMSE (second-order approximation), experimentally computed EMSE and bound (60) for the case

of channel estimation errors.

the high SNR cases (57), is confirmed.
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Fig. 3. Terms A1 and A2 of the second-order approximation EMSE (44) for the case of channel estimation errors.

Simulation 2. Noise estimation errors.

In Fig. 4, we present the theoretical second-order approximation (67), the corresponding exper-

imentally computed EMSE and the bound (70). We observe that the first two quantities coincide.

Regarding the bound, we observe that it is a very good approximation to the EMSE for SNR higher

than 15 dB.

Comparing the EMSEs for the two cases we study (see Fig. 2 and Fig. 4), we observe that the

error induced by the channel estimate is much more significant than that induced by the noise SOS

estimate.
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Fig. 4. Theoretical EMSE (second-order approximation), experimentally computed EMSE and bound (70) for the case

of noise SOS estimation errors.

V. CONCLUSION

In this work, we considered the behavior of the transmit Wiener filter (TxWF), under channel

and noise SOS uncertainties. Using matrix perturbation theory, we developed second-order approx-

imations to the EMSE in terms of channel and noise SOS estimation errors. We derived simple

EMSE bounds in the high SNR cases. In particular, for the case of channel estimation errors we

concluded that the EMSE is proportional to the MMSE, with the proportionality factor determined

by the transmit power Etr and the length of the training block Ntr. For the case of noise SOS

estimation errors, we showed that the EMSE is proportional to the squared noise variance, σ4. A

comparison of the EMSEs for the two cases we study, shows that the error induced by the channel

estimate is much more significant than that induced by the noise SOS estimate.
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APPENDIX

CHANNEL AND NOISE VARIANCE ML ESTIMATES

The ML estimate of the channel gain matrix H and the noise variance estimate can be derived

from training-based estimation [5]. Using the training block Xt of dimension nt×Ntr, the received

block of dimension nr ×Ntr is given by [5]

Yt = HXt + Et

where Et is the corresponding nr×Ntr noise matrix. The additive noise is assumed to be spatially

and temporally white Gaussian.

A. ML estimate of the channel matrix

The ML estimate of the channel H based on the received training block Yt is given by [5, p.

174]

Ĥ = YtX
H
t

(
XtX

H
t

)−1
.

This estimate is unbiased and the covariance matrix of vec(∆H) is given by [5, p. 175]

Σ , E
[
vec(∆H)vecH(∆H)

]
= σ2

((
XtX

H
t

)−T ⊗ Inr

)
.

As shown in [5, p. 176], the optimal training block Xt should satisfy

XtX
H
t ∝ Int

.

B. ML noise variance estimate

Having estimated the channel matrix H , the ML noise variance estimate is [5, p. 174]

σ̂2 =
1

Ntrnr
tr

(
YtP⊥

XH
t

Y H
t

)
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where P⊥
XH

t
is the orthogonal projector onto the orthogonal complement of the column space of

XH
t . It can be shown that this estimate is biased. More specifically,

tr
(
YtP⊥

XH
t

Y H
t

)
= tr

(
(HXt + Et)P⊥

XH
t

(
XH

t HH + EH
t

))

= tr
(
EH

t EtP⊥
XH

t

)

giving that

E tr
(
YtP⊥

XH
t

Y H
t

)
= (Ntr − nt) nrσ

2.

Thus, an unbiased estimate of σ2 is given by

ˆ̂σ2 =
1

nr(Ntr − nt)
tr

(
YtP⊥

XH
t

Y H
t

)
=

1
c

tr
(
YtP⊥

XH
t

Y H
t

)
.

where

c , nr (Ntr − nt) .

We continue with the computation of the variance of the unbiased noise variance estimator

varˆ̂σ2 = E
[∣∣∣σ2 − ˆ̂σ2

∣∣∣
2
]

= E

[∣∣∣∣σ2 − 1
c
tr

(
P⊥

XH
t

EH
t Et

)∣∣∣∣
2
]

= σ4 − 2
c

σ2Re


E

[∣∣∣tr
(
P⊥

XH
t

EH
t Et

)∣∣∣
]

︸ ︷︷ ︸
=c σ2


 +

1
c2

E
[∣∣∣tr

(
P⊥

XH
t

EH
t Et

)∣∣∣
2
]

= −σ4 +
1
c2

E
[∣∣∣tr

(
P⊥

XH
t

EH
t Et

)∣∣∣
2
]

︸ ︷︷ ︸
B

.

In order to compute term B, we examine tr
(
P⊥

XH
t

EH
t Et

)

tr
(
P⊥

XH
t

EH
t Et

)
= tr

(
P⊥

XH
t

EH
t Inr

Et

)

(3)
= vecT

(
ET

t

)
︸ ︷︷ ︸

,eT

(
Inr

⊗P⊥
XH

t

)
vec(EH

t )︸ ︷︷ ︸
=e∗

= eT
(
Inr

⊗P⊥
XH

t

)
e∗.



26

Thus,

B = E
[∣∣∣tr

(
P⊥

XH
t

EH
t Et

)∣∣∣
2
]

= E
[
tr

(
P⊥

XH
t

EH
t Et

)
trH

(
P⊥

XH
t

EH
t Et

)]

= E
[
eT

(
Inr

⊗P⊥
XH

t

)
e∗ eT

(
Inr

⊗P⊥
XH

t

)
e∗

]

= E
[
tr

((
Inr

⊗P⊥
XH

t

)T
e∗eT

(
Inr

⊗P⊥
XH

t

)
e∗eT

)]

(3)
= E

[
vecT

(
eeH

) (
Inr

⊗P⊥
XH

t

)T
⊗

(
Inr

⊗P⊥
XH

t

)
vec

(
e∗eT

)]

= E
[
tr

((
Inr

⊗P⊥
XH

t

)T
⊗

(
Inr

⊗P⊥
XH

t

)
vec

(
e∗eT

)
vecT

(
eeH

))]

= tr
((

Inr
⊗P⊥

XH
t

)T
⊗

(
Inr

⊗P⊥
XH

t

)
E

[
vec

(
e∗eT

)
vecT

(
eeH

)])
.

Terms vec
(
e∗eH

)
and vecT

(
eeT

)
can be computed analytically, by writing down the exact form

of each vector. Thus, having computed these terms, we take expectation, using [8, p. 508]

E (x∗i xjx
∗
kxl) = E (x∗i xj)E (x∗kxl) + E (x∗i xl)E (xjx

∗
k) .

Applying this property to the last term of B, we obtain

E
[
vec

(
e∗eH

)
vecT

(
eeT

)]
= σ4InrNtr

+ σ4vec (InrNtr
) vecH (InrNtr

) .

Thus, term B becomes

B = tr
((

Inr
⊗P⊥

XH
t

)T
⊗

(
Inr

⊗P⊥
XH

t

) (
σ4InrNtr

+ σ4vec (InrNtr
) vecH (InrNtr

)
))

= σ4tr
((

Inr
⊗P⊥

XH
t

)T
⊗

(
Inr

⊗P⊥
XH

t

))

+ σ4tr
(

vecH (InrNtr
)
((

Inr
⊗P⊥

XH
t

)T
⊗

(
Inr

⊗P⊥
XH

t

))
vec (InrNtr

)
)

(3),(8)
= σ4n2

r (Ntr − nt)
2 + σ4tr

((
Inr

⊗P⊥
XH

t

)(
Inr

⊗P⊥
XH

t

))

= σ4n2
r (Ntr − nt)

2 + σ4tr
(
Inr

⊗P⊥
XH

t

)

= c2σ4 + c σ4.

Now, we return to varˆ̂σ2, which becomes

varˆ̂σ2 = −σ4 +
1
c2

(
c2σ4 + c σ4

)
=

1
c

σ4.
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Thus, for the unbiased case of the noise variance estimate, the variance is given by

varˆ̂σ2 = E
[(

σ2 − ˆ̂σ2
)2

]
=

σ4

nr(Ntr − nt)
.
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