

μ,

, μ μμ

μ

μ μ ,

.

		μ				μ		μ		μ		
						μ			μ		,	
								μ			μ	
				μ		μ						
					μ			μμ	μ			
μ					μ			μ				2012
						μ	l		,	μ		
		μ			μ			μ		μ		μ
	RES	2DINV,								μ		
RES3D	INV.											
	μ	μ				μ LD1	1]	BH3		
	μ			μ			25 m.					μ
	μμ	μ								,	μ	
						•						
			μ	μ					μ	μ		
					μ			μ				
μ		15 m.					μ					
		μ	μ	l								

	i
	ii
	1
1. 1.1 1.2	
	2
2.1 2.2	7 7
	3
3.1. 3.2 3.3 3.4	
3.5	19
. 3.5.1	

4.		
4.1		23
4.2	RES2DINV	23
4.3	RES3DINV	

5.1		
5.2		
5.2.1	LB1	
5.2.2	LB2	
5.2.3	LD1(LB3)	
5.2.4	LD2(LB4)	
5.2.5	LD3(LB5)	
5.2.6	LD4	40
5.2.7	LD7	41
5.2.8	LD10	
5.2.9	LD11	
5.3		
5.3.1		46
5.3.2		49
5.4		54

6.1	
6.2	
	50

μ μ μ

•

μ

,

1.1 μ

				μ		,	μ		
		μ		μ					
μ		μ	μμ RE	ES2DINV	RE	S3DINV			
1.1									
		μ					(6)		,
μ		μ	μ						
		μ	μ	μ			μ		
μ				2					
μ							μ		3
		μ			μ				
	μ.	4					μμ	l	
μ				RES2DIN	V	RES3DINV.	5		
				μ					
	μ	. 6					μ	μ	

1.2

 1.2 μ μ .

 μ μ μ μ

 μ μ μ (μ),

 (μ).

2

,

<< µ μ μ μ >> μ (μ). μ μ μ μ μ μ μ , μ μ μ , μ μ . : μ μ μ • , μ μ μ μ μ μ μ μ μ μ μ, , • μ μ μμ μ

μ μ μ μ μ μ μ μ μ μ μ • , μ μ , (μμ). μ μμ

,

μ

μ		μ		μ
	μ	μ	μ	
			μ	
		μ	μ	

μ	μ	μ			μ
	μ			,	μ
		п			

. μ .

(. ,2003).

.

μ μ ., 2004), (Hudyma et al.,2005). (μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ, , μ μ , , μ μ

μ μ.

μ

,

2.2

μ	,			μ		μ	μ
		μ	μμ			,	μ
	,	μ	μ		μ		,
	μ				μ	: µ	-
	,	μμ	,				μμ
μμ	,	μ	μ				

(al, dl), $\mu\mu$ (al), : (pl), (al), μμ (pl), μμ μ (pl), μ (pl), (3, 3, 2, 2),(sc). μ (**ph**) : μ μ • (s-k) : μ μ , μ μ μ μ μ. (**T**, **k**-**D**): μ μ • μ

μμ.

μμμ. μμμμ μ

(PC-k): μ μμμ. . μμ, μ, . μμμ μ. •

,

•

μ	μ	(ph-D-k) :		,
μ,μ		,		. μ	
				μ (,
	, μμ ,μ).		
				_	
	- (, 1972).		μμ	
			. (1972,	
&	1969,	et al. 2004)			

___μ_μ___

,	μμ	,	

μ

μ

, μ

,

μ

, μ μ μ μμ

μ

.μ

•

μ

μ

μ 2.3

3. 3. 3.1. μ μ μ

μ , μ μ μ μ μ μ μ μ • μ μ μ. μ μ . μ μ μ μ μ

ι μ. , μ :

 $\rho = \frac{\mathbf{RA}}{\mathbf{L}} \tag{3.1}$

(SI) μμ μ μ ohm.m. μ μ (= 1/), μ μ μ Siemens/m. μ μ 3.1 μ μ μ AB μ . μ μ μ μ μ MN μ μ

, MN , μ μ . μ μ hm

:

$$\rho = 2\pi \frac{V_{MN}}{I} \left(\frac{1}{r_1} - \frac{1}{r_2} - \frac{1}{R_1} + \frac{1}{R_2} \right)^{-1}$$
(3.2)

μ 3.1 μ (,) μ (,).

Wenner

•

_

Schlumberger

μ 3.2

•

μ

3.2

_

μ . μ μ , μ , .

3.3.

μ μ μ μ μ , μ μ • , μ μ , μ μ μ,

μ μ μ μ μ μμ μ • μ μ μ , μ μ μ μ •

μ μ μ μ μ 28 μ μ μμ μ μ (. . .). μ μ μ μ , μ μ μ .

μ μ μ μ μ μ μ μ μ

μ μ μ μ μ. •

•

8 μ μμ μ μ μ μ μ: $\mu \quad Sting \ R1 \ - \ Swift \qquad \qquad Advanced \ Geosciences \ Inc. \ (AGI)$ μ . 45 cm 70 cm, μ 9.5 mm) (μ μ μ μ •

μ 12 Volt.

•

•	μμ	μ	:()
μ	Wenner	Schlumberger.	

3.5

μ

$$Pa = 2\pi \frac{V_{\rm MN}}{I} \left(\frac{1}{\alpha} - \frac{1}{2\alpha} - \frac{1}{2\alpha} + \frac{1}{\alpha}\right)^{-1} = 2\pi\alpha \frac{V_{\rm MN}}{I}$$

•

$$2\pi \left(\frac{1}{\alpha} - \frac{1}{2\alpha} - \frac{1}{2\alpha} + \frac{1}{\alpha}\right) = 2\pi\alpha$$

$$\mu \qquad \mu \qquad \mu \qquad \mu \qquad \mu$$

Wenner μ

,

μμ

,

μ 3.1.

μ,

$$= 2L = 2b = 1 (\mu 3.3), 2b \mu$$

$$\mu \qquad \mu \qquad 2L \mu$$

$$\mu \qquad :$$

$$K = 2\pi \left(\frac{1}{L-b} - \frac{1}{L+b} - \frac{1}{L+b} + \frac{1}{L-b}\right)^{-1} = \left(L^2 - b^2\right) \frac{\pi}{2b}$$

$$\mu \quad (L>>b) \qquad (L2-b2) \sim L2, \qquad \mu$$

μ

•

$$\rho_{\alpha} = \frac{\pi L^2}{2b} \frac{\Delta V}{i}$$

p		() enne		
	Schlumberger	μ		
•		μ	μ	μ
	μ	μ	μ	μ
			μ	μ
		μ	μ	μ
	μ			μ.

3.5.1

٠

					μ	μ	
		μ	μ				
			μ	μ	μ		-
			μ				
	:						
•	μ						

: Wenner, Schlumberger, - . • μ μ μ

Wenner Schlumberger.
 μ μ μ

,

,

Schlumberger Wenner μ μ μ μ μ , (μ μ μ μ • μ) μ μ μμ . Schlumberger μ μ μ μ μ μ. , • μ (Schlumberger), μ μ .

μ,,,, μ, μ μ .

μ _ μ

μ μ μμ. μ (- 2006, 2003).

4

4.

4.1

				μ		ŀ	l						
	μ	l	μ				μ	•				μμ	
()		μ					μ	,			
	μ						μμ		•			μ	,μ
μ		μ	μμ			h	l	l	μμ				μ
								,				μ	
		μ			μ		μμ	•			μ		
		μ	μμ			μ		μ			μμ	•	
						μ	μμ			μ		,	
		μ		ĥ	l	μ	μμ						
		μμ				μ							
μμ							μ			μ			
				μ			•					μ	
	μ				,	μ			μ	μ	μμ		μ
	μ		μμ										μ
				μ		μ	μμ	•				μ	
		μ	,			μ		μ				μ	
	μ	μ	ιμ	•					μ		μ		
			μ		μμ						(, 2001).	

4.2 RES2DINV

	μ	μ μ	μ
μ	Res2Dinv	Geotomo Software.	μ
	μ	μ (outliers) μ	

. μ « » (robust blocky) (Claerbout and Muir, 1973) μ μ (Hamdan and Vafidis, 2009).

μ

μ

•

			μμ	RES2	DINV						,	
		, μ	μ		•				μ			
						μμ			μ		μ	
	μ							μ				
						,		μ				
		μ									μ	
	μ	,						μμ		μ	μ.	
				,	μ		μ		μ	μ		
						μ					μμ	
	μμ	RES2D	INV.					,				
μ	μ						μ		μ			

	μ	4.2		μ		μ	μμ	μ	•	1
			μ		μ	μ			,	2
μ				μ	μ	μ				3
		μ				•				

	μ	μ				
(μ	μ	μ	μ)	
(μ).		μ		μ
	μ μ					
μ		μ	Ļ	l		
,	μ,		μ	Ļ	ı	
	μ				μ.	μ
		μ	μ	μ		μ
.2 ₽ .*—0(5p(♠̀	μ.			, 1	\$ 2	

. μ μ μμ .

μ

μμ μμ • RES3DINV µ μ μ μμ μ μ • μ μ μ μ μ μ μ μ μ μ . μ 4.3 . μ μ μ μ μμ RES3DINV μ μ μ μμ , μμ μ μ RES3DINV, . μμ μ μ μ . μμ RES3DINV μ 4.3 μ 4.3 . μ μ μ μ μ μ . (µ 4.3). μ μ μ μ ,

μ μ. , μ μ . , μ μ μ . μ .

μ	4.3 Τ μ	μ		.)µ					
		μ μ		x y ,)µ					
	μ	μ	μ	,)μ					
	μ	μ	μ						

	5		
5.			
5.1			
		2012	

μ	μ		2012			μ
	μμ	μ		μμ	LB1	LB2

 $\boldsymbol{\mu} \quad \textbf{5.3} \qquad \boldsymbol{\mu} \quad (\qquad \qquad : \text{Google Earth}^{\text{TM}}).$

μ 5.1

μμ

μ.

			μ		μ	μ	
μ			Wenner	Schlumberger.			μ
μ			μμ Res2Dii	nv	μ	μ	
				μ	,		μ,
		μ	μ,				35
ohm.m	μ	,	1000 ohm.m.			μ	μ
						μ	
μ.							

5.2.1 LB1

		μμ	μ	L	B 1						_			
		•				55							μ	10
	μ.	μμ	μ		μ	5	40 μ					100 µ		
		h	ı 5.2						μ					
	μ			μ				μ				μ	μ	(Measured)
		μ	ι		μ	(Calc	ulate	d Ap	paren	t Resistiv	ity P	seudose	ction),	
				μ									(I	nverse Model
	Resistiv	ity Secti	on).	μ						I	μ		μ	μ
		μ		μ		11.2	%.							
		μ	,	2			μ	:						
1.			μ			μ		μ		μμ	μ			
	μ							μ		35 –	350	m.		
2.			μ									μ		
		1	50 μ			μμ	μ		μ	170			62 µ	

μ LB1 –

.

5.2.2

LB2

Η μμ μ LB2 . 55 10 μ . μ μμ μ 540 μ 100 µ . μ μ 5.3 μ (Measured) μ μ μ μ μ . μ (Calculated Apparent Resistivity Pseudosection), μ μ (Inverse Model Resistivity Section). μ μμ μ μ 11.6 % . μ μ 3 μ: μ 1. 15µ μ μ μ μ . 100 µ , 150 – 200 80 μμ μ > 560 m. 250 - 300. μ 2. To μ μ μ μμ μ 35 μ μ μ μ . – 350 m. 140 µ 3. μμ 320 μ μμ μ 50- 100 μ • μ μ >560 m. μ

11,6 %. μμ μ μμ μ μ. Η μμ μ LB2 .

5.2.3 LD1

	Η μμ μ	LD1					
			55			μ	5
μ	. μμ μ	μ	270 μ		50 μ	•	
	μ 5.4			μ			
μ		μ		μ	μ	μ	(Measured)
	μ	μ (Calculated	Apparent Re	esistivity Pseudosec	tion),	
		μ				(In	verse Model
D	· · · · · · · ·						

Resistivity Section).

μ				μ	μ	μ	μ	μ
	μ	18.1 % .						
	μ	3	μ	:				
1.	Ļ	ı		μ		μ	μ 1	Ομ .
			μμ	μ		60	μ	μμ μ
	120 -	—140. μ	l				> 560	m.
2. To		μ	μ	μ		μμ μ	ı	
	μ		μ	1	3	μ.	μ	
	μ	μ	35 - 350	m.				
3.	μ	μ		μ		μμ μ		μ
100	200		$9-45\;\mu$		μ			
> 560	m.							
Ps.Z -0.0		80.0	Sting/Swiftpr	g:W55h 160.	.0		240.0	n.
2.60								

μ 5.4 μ (a) μ (b) μ μ μ μ . . (c) μμ μ LD1. μ μμ 18.1%. μμ μ μμ μ μ. Η μμ μ LD1 . 5.2.4 LD2

LD2 Η μμ μ 55 5 μ . 270 μ 50 μ μ μμ μ μ . μ 5.5 μ (Measured) μ μ μ μ μ . μ (Calculated Apparent Resistivity Pseudosection), μ (Inverse Model μ Resistivity Section). μ μμ μ μ μ 9.7 % . μ 3 μ μ: 10µ 1. μ μ μ μ μ μ μμ μ μ . > 560 m. 2. To μ μ μ μμ μ μ 1 μ. μ μ 3 35 – 350 m. μ μ 3. μ μ μ μμ μ μ 110 170 $26 - 50 \mu$. μ < 560 m.

μ 5.5

5.2.6 LD4

		Η	μμ	μ	LD4	4										
						55								μ		5
	μ.		μμ μ		μ	27	70 µ					50 µ	J.			
			μ	5.7				μ								
	μ				μ			μ				μ	μ	ι ((Measure	ed)
			μ		μ	(Calcu	ulated	Appa	irent]	Resi	stivity	Pseudo	osectio	n),		
					μ									(Inv	erse Moo	del
	Resistiv	vity S	ection)	•												
		μ						μ	μ		μ	μ			μ	
		μ	1	7.9 % .												
		μ		3			μ :									
1.			μ						μ		10 µ		μ			
		μμ	μμ		μ								>560	m.		
2.			μ				μ			μμ	μ					•
	μ							μ			35 – 3	350 m	•			
3.			μμ	ı			μ			μμ	μ			μ	L	
	100 µ		150	μ		μμ	μ					17 –	50 μ		μ	
						>5	60 n	1.								

	Ps.Z			Sting/Swif	tprg:LD4				
	2.60								
		μ 5.7 μ	(a)	μ (b)	μ		μ	μ	μ
		(c) 17.1%.	μμ μ μμ	LD4. μ	μ μμ			μμ μ.Η	Η μμ
	μ	LD4					•		
5.2.7			LD7						
		и							
		π μμ μ	LD/					4	•
				μμ	μ	EE		4	
		μ	μ -	μ.		22	250		
		μ	5μ.	μμ	μ	μ	270 μ		
		50μ.							
		μ 5.8			μ				
	μ		μ	•	μ		μ	μ (Me	easured)
		μ	μ (Ca	alculated A	Apparent R	esistivity	Pseudosed	ction),	
			μ					(Inverse	e Model
	Resis	tivity Section).							

5.2.8 LD10

		Н	μμ μ	LD1	0					
			•		55				μ	5
	μ.	Ļ	ιμ μ	μ	270 μ			50 μ		
			μ 5.9			μ				
	μ			μ	•	μ		μ	μ	(Measured)
			μ	μ	(Calculate	d Apparent	Resistivity	Pseudose	ction),	
				μ					(In	verse Model
	Resisti	vity Se	ction).							
		μ				μμ	μ	μ		μ
		μ	18 % .							
		μ	3		μ	:				
1.			μ		, μ		μι	ιμ		
	μ 1	1μ	. μ				>:	560 m.		
2.			μ	μ			μ	μ		
			35 - 350	m.						
3.			μ μ		Ļ	l	150	μ	μ	μμ
	μ	165		43	μ.	μ				>560
	m.									

P- 7							
^{rs.2} 0.0 2.60		80.0			160.0	240.0	n.
	μ 5.9	μ (a)	μ	(b)	μ	μ	μ μ
	•	(c) µ 18%.	μμμ μμμ	LD10. μ μμ			μμ μ.Η μμ
μ	LD10						
9		ſ	LD11				
-		-					
	μμ LD11						μμ (135 m
μ			BH3	μ			μ
	u	25	m u	u	и	u	
	1	_	r.	1		E.	
	•						-
	•	55				μ	5μ.

50 μ

μ

•

μ

.

 μ (Calculated Apparent Resistivity Pseudosection),

270 μ

μ

μ

μ

μ 5.10

μμ μ

μ

(Measured)

44

μ

μ

(Inverse Model Resistivity Section).

μ

	μ				μ	μ	μ		
		μ			μ		•	μ	
	4529 μ		μ				,		μ
	Wenne	er-Schlumbe	rger.						
			μ			μ		μ	
μ		RES3DI	NV.	μμ	RE	S3DINV	μ		
	, μ			μ					
		μ		,				μ	
μ									
		μ				μ		()	
		μμ μ		,		()		μ	
μμ				,		μ		,	
	μ	. μ		μ		μ (35	μ – 10	00 μ).	
5.3.1						-	•		
						μ			μ
								μ	μ
μ		μ	μ			μμ	μ		
	μ	72.5µ	•						

μ

0-21.9 μ -

5.3.2									
	μ						μ		
	μμ	μ		79,2 μ					
			•		μμ			6	
μ			μ	30 µ		μμ μ			
				Lines *					
μ 5.13		μ 10	-40 µ			.μ	μ		

5.4

		μ	μ			μ
	5.2.				μ μ	
		μ	μ	-		μμ
	(μ	8μ)μμ	μ			>560 m
μ		μμ μ (μ 5.11).			μ
		μ	5.6-5.7-5.9	5.10.		μμ
μ			μ		9-12 µ	μ 180 - 240
μ		μμ μ (μ 5.11).		μ	μ 5.2.
		μμ			μ	20 µ
		μ	μ	μμ	μ	(μ 5.12).
		μμ				μ.
		μ μ			μ	
	μ	>560 m			μ (μ	5.12-5.21).
		μμ	10- 1	79 μ	μ	μ μ
	(μ 5.13-5.14-5.1	5).			

6

6. 6.1

	μ			μ	l		μ		μ
μ									
		μ	μ						
	μ	μ			μ	LD11		BH3	

	μ			μ		25 m.			μ
μμ	μ						,	μ	
			μ	μ				μμ	
			μ			μ		μ	15 m.
			μ	μ	μ			μ	
μ		15m.				μ			

μ μ.

6.2

	μ	μ								μ		
μ			μ			μ	μ		μ			
μ		μ	l	μ				μ	μ			μ
					()				μ	μ	
μ					μ		•					

1.	, ., (1993), " , .	μμ		",	μ	,
2.	, ., (2001), " , .	μμ		",	μ	,
3.	, ., (2000), "	, .	μ		",	
4.	, ., ., (2003) "	, ., μ	, μ μ	•,	, • ,	, ·, ".
5.	, ., (2006), " μ ",	μ	,		μ , .	μ
6.	Hamdan, H., (2002), " μ ", μ	,		,	μ.	

, ., Soujon, A. and Jacobshagen, V., (2001), "

μ μ μ μ μ

Alevras, N., H. A. Hamdan, A. Vafidis, E. Manoutsoglou (2007), "Geoelectrical Mapping of the Omalos Plateau/Polje", 13 th European Meeting of Environmental and Engineering Geophysics, Istanbul, Turkey, 3-5 September 2007.

- 9. Robinson, E. S. & Coruh, C., (1988), "Basic Exploration Geophysics", New York: Johny Wily.
- 10. CorelDraw Graphics Suite 12, (2003), Manual, Corel Corporation

, .,

7.

- 11. Reynolds, M. J., (1997), "An Introduction To Applied And Environmental Geophysics", John Wiley & Sons Ltd, Chichester, ISBN 0-471-95555-8.
- 12. Milanovic, P., (1981), "Water Resources Engineering in Karst", CRC PRESS
- 13. Res2dinv, (2001), μ , Manual, Version 3.4, Geotomo Software.