
TECHNICAL UNIVERSITY OF CRETE
DEPARTMENT OF ELECTRONIC & COMPUTER ENGINEERING

NeuralStream
A Distributed framework for online pattern discovery in multiple

streaming time-series.

Andrew Grammenos

This thesis is submitted in partial fulfillment for the
degree of Electronic & Computer Engineering

Thesis committee
Professor Minos Garofalakis, Thesis supervisor

Assistant Professor Vasilis Samoladas
Associate Professor Antonios Deligiannakis

Chania, March 2015

https://www.tuc.gr
https://www.ece.tuc.gr
http://users.isc.tuc.gr/~agrammenos/
http://www.softnet.tuc.gr/~minos/
http://www.softnet.tuc.gr/~vsam/
http://www.softnet.tuc.gr/~adeli/

“Never underestimate the attention, risk, money and time that an opponent will put into

reading (your) traffic.”

The one and only, Robert "Bob" Morris.

Abstract

Developing a scalable, streaming, fast and flexible framework for online pattern discovery

amongst thousands of streams is highly desirable. This is especially evident today since

multiple use cases have surfaced for monitoring and analyzing thousands of data-streams

in real time while retrieving accurate and reliable metrics from them in a timely manner.

In order to scale the computation beyond what a single node can do we have to find a

way to split and distribute the vast computational load amongst all the nodes as evenly

as possible while maintaining the correctness of our algorithm. As one might think

this is not always a trivial task, especially when taking in account the domain of each

application.

Through this diploma thesis the author tries to tackle the aforementioned problem by

advancing the already existing algorithmic domain. This is achieved by expanding on

the already available methods to sufficiently address this problem as well as provide

a usable and flexible framework called NeuralStream that other users can employ to

perform real-time monitoring of thousands of streams. Through NeuralStream one can

find the representative trends in all of the streams while also offering the flexibility

to monitor the streams of each node independently. Thanks to its architecture our

framework is extremely robust while also being able to provide processing guarantees in

case of multiple node failures; it can also scale extremely well and can optimally split

the load given the amount of streams to monitor and the number of available compute

nodes in the cluster. The final aggregation of patterns depending on the user preferences

is stored and updated by the application, in real-time through a web interface that can

be used for displaying charts with the representative trends that exist currently in the

monitored streams.

Keywords: Streaming, Online, Distributed Systems, Time-Series, Monitoring, Feature

Extraction, Big Data, Distributed Principal Component Analysis, Distributed Projection

Approximation Subspace Tracking

Acknowledgements

First off I’d like to thank my thesis supervisor Professor Minos Garofalakis for trusting

me and giving me the opportunity to work with him on this intriguing subject. He gave

me complete freedom of action and direction while also being there to straighten me up

when I deviated from the course we set on and for that I am really indebted to him.

Additionally huge thanks and shout-outs go to Assistant Professor Vasilis Samoladas for

always being available to geek out and be part of extremely entertaining conversations

with insightful endings. Personal thanks also have to be handed to Associate Professor

Antonis Deligiannakis who was always there when I required some feedback or generally

guide me through some choices I had to make throughout.

I would not being able to finish my Diploma without the constant support of my parents

Antonis and Margarita that wholeheartedly support me for the last 26 and something

years; your support means a lot, thank you!

Lastly I’d like to thank my brother for being, well my brother! AS well as the numerous

friends that I made while I ventured through this adventure (you know who you are)!

The final and most personal thanks must be handed to V. for bearing with me all these

years (I know it’s not easy) while also constantly motivating me to do more stuff with

my life than just write code.

iii

Contents

Abstract ii

Acknowledgements iii

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 Motivation . 1
1.2 Introduction to NeuralStream . 2
1.3 Thesis Contribution . 2
1.4 Thesis overview . 2

2 Related Work 4
2.1 Data-Stream Approximation . 4

2.1.1 Data as a stream . 4
2.1.2 Data-Stream Approximation Overview 5

2.1.2.1 Approximate Query Estimation 5
2.1.2.2 Approximate Join-Size Estimation 6
2.1.2.3 Aggregation Estimation 6
2.1.2.4 Data Mining Applications 7

2.1.3 Synopsis Design considerations . 7
2.1.3.1 Broad Domain Application 8
2.1.3.2 Pass Constraints . 8
2.1.3.3 Time Efficiency . 9
2.1.3.4 Space Efficiency . 9
2.1.3.5 Robustness . 9
2.1.3.6 Drift-Awareness . 9

2.1.4 Data-Stream Approximation Techniques 9
2.1.4.1 Sampling . 10
2.1.4.2 Histogram Generation . 10
2.1.4.3 Sketching . 10
2.1.4.4 Wavelet Transformations 11
2.1.4.5 Linear Transformations 11

iv

Contents v

2.2 Data Mining on Streams . 12
2.2.1 Clustering . 12
2.2.2 Classification . 12
2.2.3 Frequency Counting . 13
2.2.4 Time Series Analysis . 13

3 Problem Statement 15
3.1 Preliminaries . 15
3.2 Problem Formalization . 16
3.3 PCA Decomposition . 17
3.4 Subspace Tracking . 18
3.5 Local Pattern Discovery . 19

3.5.1 Local Pattern Disocvery for fixed k 19
3.5.2 Local Pattern Discovery for variable k 20
3.5.3 Making Local Pattern Discovery more Robust 23

3.6 Global Pattern Discovery . 25
3.7 Tree Expansion . 25

4 Implementation 27
4.1 Lambda Architecture . 27
4.2 Apache Storm . 29

4.2.1 Streams in Storm . 29
4.2.2 Storm Architecture Introduction 30
4.2.3 Storm Architecture Detailed . 30
4.2.4 Storm Stream Producers (spouts) 32
4.2.5 Storm Stream Consumers (bolts) 32
4.2.6 Storm Topologies . 33
4.2.7 Storm Parallelism . 34
4.2.8 Storm Grouping . 37

4.3 Ruby On Rails . 38
4.4 Discovering Patterns using NeuralStream framework 38

4.4.1 Stream Bucket Granularity . 39
4.4.2 Merging Extracted Patterns Efficiently 42
4.4.3 Further Optimizations . 44

4.4.3.1 Optimizing Matrix operations 44
4.4.3.2 Economy-Sized QR-Decomposition 47
4.4.3.3 Optimal Stream Splitting 47

5 Performance Evaluation 48
5.1 Algorithmic evaluation . 48
5.2 Framework comparison . 52

5.2.1 Light data . 54
5.2.2 Humidity data . 57
5.2.3 Humidity-Temperature data . 60
5.2.4 Voltage data . 63

5.3 NeuralStream cluster evaluation . 66
5.3.1 Amdahl’s Law bound . 66

Contents vi

5.3.1.1 Limitations and Assumptions 68
5.3.2 NeuralStream expected speedup 69
5.3.3 NeuralStream real-world performance 71

5.3.3.1 NeuralStream performance using 10 stream groups 72
5.3.3.2 NeuralStream performance using 20 stream groups 73
5.3.3.3 Performance Analysis . 74

6 Conclusion 79

Bibliography 81

List of Figures

4.1 Lambda Architecture Layout . 28
4.2 Example Storm Tuple Stream . 29
4.3 Typical Storm topology . 30
4.4 Storm Component Architecture . 31
4.5 spout representations . 32
4.6 bolt representations . 33
4.7 A sample worker process layout . 35
4.8 A sample topology graph . 36
4.9 A sample running topology layout . 36
4.10 A 2-Stream NeuralStream overview . 39
4.11 2 Stream bucket join . 40
4.12 An incomplete 2 Stream bucket join . 41
4.13 Fixing 2 Stream bucket join using interpolation 41
4.14 Fixing 2 Stream bucket join using value averaging 42
4.15 Example of pattern merging . 43
4.16 Example of pattern merging using a different balance factor 44
4.17 Transpose execution of a matrix with and without preallocation 45
4.18 QR-Decomposition execution of a matrix with and without preallocation . 45
4.19 Approximate required storage (in Mb) for each S-group for dimension

(x-axis) and k-patterns . 46

5.1 T and Block size graphs for different σ (x-axis) and dimension 50
5.2 N samples required for ε-accurate recovery for k = 10 51
5.3 T and Block size graphs for different σ (x-axis) and dimension 51
5.4 N samples required for ε-accurate recovery for k = 10 52
5.5 Patterns extracted from Light dataset . 54
5.6 Light data reconstruction . 55
5.7 NeuralStream patterns in the larger dataset 55
5.8 SPIRIT patterns in the larger dataset . 56
5.9 Light data reconstruction in the larger dataset 56
5.10 Patterns extracted from Humidity dataset 57
5.11 Humidity data reconstruction . 57
5.12 NeuralStream patterns in the larger dataset 58
5.13 SPIRIT patterns in the larger dataset . 58
5.14 Humidity/Temperature data reconstruction in the larger dataset 59
5.15 Patterns extracted from Humidity/Temperature dataset 60
5.16 Humidity/Temperature data reconstruction 60
5.17 NeuralStream patterns in the larger dataset 61

vii

List of Figures viii

5.18 SPIRIT patterns in the larger dataset . 61
5.19 Humidity/Temperature data reconstruction in the larger dataset 62
5.20 Patterns from voltage dataset . 63
5.21 Voltage data reconstruction . 63
5.22 NeuralStream patterns in the larger dataset 64
5.23 SPIRIT patterns in the larger dataset . 64
5.24 Voltage data reconstruction in the larger dataset 65
5.25 Amdahl’s Law thread curves (x-axis n-threads, y-axis speedup factor) . . 67
5.26 Amdahl’s Law parallel curves . 68
5.27 NeuralStream performance function Rtt sensitivity 70
5.28 NeuralStream performance function sensitivity 70
5.29 NeuralStream performance using 10 groups 72
5.30 NeuralStream performance using 20 groups 73
5.31 NeuralStream latency scaling when using 10 groups 74
5.32 NeuralStream latency scaling when using 20 groups 75
5.33 NeuralStream message size scaling for given dimensions 76
5.34 NeuralStream total (stage 1) message length scaling when using 10, 20

groups . 77
5.35 NeuralStream largest bottleneck . 78

List of Tables

5.1 Reconstruction Quality comparison for Light dataset 54
5.2 Reconstruction Quality comparison for Light dataset (4x) 56
5.3 Reconstruction Quality comparison for Humidity dataset 58
5.4 Reconstruction Quality comparison for Humidity dataset (4x) 59
5.5 Reconstruction Quality comparison for Temperature/Humidity dataset . . 61
5.6 Reconstruction Quality comparison for Temperature/Humidity dataset (4x) 62
5.7 Reconstruction Quality comparison for Voltage dataset 64
5.8 Reconstruction Quality comparison for Voltage dataset (4x) 65
5.9 NeuralStream soft-cluster system configuration 71
5.10 Soft-Node configuration . 71

ix

List of Algorithms

1 PCA using the Block-Stochastic Power Method 18

2 Local Pattern Discovery in D-SPIRIT . 19

3 Local Pattern Discovery in NeuralStream (fixed k) 20

4 Local Pattern Discovery in NeuralStream (variable k) 22

5 Local Pattern Discovery in NeuralStream (variable k, better E capture) . 24

6 Global Pattern Discovery in NeuralStream 25

x

Chapter 1

Introduction

1.1 Motivation

Extracting useful and representative trends from datasets has always been an active topic

in scientific research. Useful patterns and trends that are extracted from a number of

data-streams find many uses in real world applications...and as one might think, many of

them are of particular interest due to their high impact. The applications of such caliber

include detecting network anomalies, leakage in sewage pipes, outliers in (distributed)

sensor networks and many others.

The main problem that the scientific community has tried to tackle lately is how to scale

the detection of such patterns/trends in hundreds or even thousands of streams while

maintaining a high quality of detection with feasible computational and storage require-

ments. This is especially evident in recent years particularly due to the introduction of

cloud computing and the rapidly increasing dataset sizes. Also another problem that

is of particular interest is how to perform infinite detection of patterns that is required

when our dataset does not have a fixed size but instead is ever-expanding in real-time as

data arrives (i.e. our sources are streaming).

Scaling to accurately monitor thousands of data-streams, extracting the representative

patterns within them while providing processing and fail-over guarantees with all of the

challenges involved into materializing that system is, essentially, what motivated me to

pursue this thesis.

1

Chapter 1 Introduction 2

1.2 Introduction to NeuralStream

This thesis introduces NeuralStream, which is a highly scalable pattern extraction frame-

work that meets the previously mentioned requirements and is built on top of Apache

Storm [1]. Apache Storm is an elegant stream processing framework that is ideal for

our use-case as it can provide the desirable processing and fail-over guarantees with ease

while also being flexible enough to allow the implementation of our pattern extraction

algorithms without any hurdles.

Additionally NeuralStream is able through a web interface to dynamically report a user

selectable number of representative trends for the monitored streams in real-time and

is designed to run on any cluster that is capable of running Apache Storm without any

additional requirements.

1.3 Thesis Contribution

Through this thesis we create a distributed and scalable framework that is able to ex-

tract and track the representative trends out of all the monitored data-streams with high

quality and fault-tolerance. Additionally it combines the best traits of two algorithms in

order to increase its detection effectiveness. This is achieved through firstly performing

a streaming and memory limited Principal Component Analysis (PCA) approximation

using the algorithm proposed by Mitliagkas et al. in [2] which has very tight theoretical

bounds. Then after each of our computation nodes has performed at each step its own

approximation we use the techniques outlined by Yang through his Projection Approx-

imation Subspace Tracking (PAST) in [3] to extract k number of projections and "bias"

each of node subspaces so that we can make them converge to the global one, thus ex-

tracting our representative global patterns out of all our monitored data-streams. To

our knowledge this is the first work that attempts to tackle this problem using ideas

stemming from these two algorithms and trying to scale the monitoring to thousands of

data-streams while also providing strict processing and fail-over guarantees.

1.4 Thesis overview

This thesis is divided into multiple Chapters; and are 6 in total. Chapter 2 explains the

related work that has been done from the scientific community in recent years regard-

ing our topic. Inside Chapter 3 we provide the problem statement and gives a formal

definition of the problem we are trying to solve; it also introduces our algorithm and

Chapter 1 Introduction 3

how we expanded the methods of Mitliagkas et al. [2] and Yang [3] in order to devise it.

Chapter 4 describes our implementation and introduces Apache Storm stream processor

and the reasoning behind its selection. Chapter 5 performs a performance evaluation

and genral comparisons against a similar framework such as D-SPIRIT in [4]. Finally

the closing Chapter 6 discusses the thesis in general and outlines its possible expansion

through future work.

Chapter 2

Related Work

This chapter will outline the related work that has been recently performed by the

scientific community and that is most closely related with our work, although briefly we

will perform an overview of the most commonly used techniques on data-streams. We

selected to split this chapter two main sections, the first one involves the related work

that has been done for stream approximation in general while the second is related on

actual feature extraction (which, in essence, is data-mining) from captured streams.

2.1 Data-Stream Approximation

2.1.1 Data as a stream

Normally our data has a finite and known length, which is given usually by the dataset

size as out input; in contrast when we define a data-stream we imply that the size of

the actual data length is not known a-priori. In our case we consider a data stream as

an unbounded data-sequence of consecutive tuples s that each have a ∆ > 0 positive

and real time-interval between them. Essentially the formal definition of a single-source

data-stream is the ordered pair (s,∆) where s is the tuple sequence and ∆ is a real and

positive sequence that indicates the time-interval that each tuple has.

Besides the general definition given above, three dominant models have been introduced

to describe data-streams; each of which allows or restricts what can be done with current,

next and previous values. We will now present these models and describe what they allow

to be performed in the data-stream sequence.

• Time-Series Model: This is a very computationally friendly model, has vast

applications in telecommunications and has been studied extensively. This model

4

Chapter 2 Related Work 5

restricts each tuple to update only the current block of the sequence. That es-

sentially means that given a sequence A[T1, T2, ...Tt] and a tuple T that arrives at

time t+ 1 then this tuple can only be placed (and affect) A[t+ 1]-th block of the

sequence, so A[t+ 1] := T .

• Cash-Register Model: Another popular model, which allows incremental up-

dates of the sequence blocks as each update at time t has the form of 〈i, pi〉t where
i is the sequence block to update pi is a positive number (usually, pi = 1) and is

increment-only. Typically a tuple T at time t contains a multi-set of items that

are to be incremented.

• Turnstile Model: The turnstile model is the most general data-stream model of

them all; it allows updates of multiple sequence blocks at any given time while

also allowing negative increments for tuples; in essence though, the main difference

between this and the Cash-Register model is that pi can be either positive, or

negative and usually it is pi = ±1.

It has to be noted that each problem requires different approaches depending on the

streaming model used. Naturally when operating with the turnstile model problems are

usually significantly more difficult to solve. This is due to the fact that turnstile model

is quite general and allows a lot of flexibility, which in turn presents the designer with

significant challenges that need to be resolved.

2.1.2 Data-Stream Approximation Overview

Naturally when we operate in a streaming scenario exact results are not feasible due

to extraordinary computation and storage requirements, hence methods to perform an

approximation of the sequence need to be devised. Depending on the application different

approaches to the nature of these techniques are needed and loosely we can group them

into the following categories.

2.1.2.1 Approximate Query Estimation

It has been observed that many applications can allow some degree of flexibility in the

error bounds of the answer given and that means we can exploit this flexibility to give

approximate answers to increase performance This is especially the case for exploratory

queries on the data, where the asker would be satisfied with a "close-enough" answer

should they of course come in a timely manner. A popular technique that has been

extensively used to accelerate the execution times of queries, at the cost of course in

Chapter 2 Related Work 6

their accuracy, is to answer the query based on its execution into a significantly smaller,

carefully selected (or sampled) portion of the dataset. In fact the approximation esti-

mation of queries is the most common use of actual synopsis structures and it is also

of particular importance from a computational efficiency and latency standpoint due

to the fact that most queries have to be answered in online time. Hence most of the

known methods for data-stream approximation have been adapted to solve this problem.

Recently Garofalakis et al. [5] used sketches to provide approximate query answers on

distributed sliding-window data-streams. Chakrabarti et al. [6] have used multidimen-

sional wavelets in order to provide approximate query answers entirely in the coefficient

domain with very promising results. Ioannidis et al. [7] have used histograms to provide

approximations of set-valued query answers. Gibbons et al. [8] have used sampling tech-

niques in order to generate stream summary statistics to provide improved answers when

executing approximate queries on data-streams. Finally it has to be noted that although

approximate error bounds are normally given very recently Agarwal et al. [9] claims that

these bounds are not kept when using real query workloads while also proposing a way

to accurately detect when it occurs and a potential solution to amend it.

2.1.2.2 Approximate Join-Size Estimation

Another problem that is actively researched in data-streams is the join-size estimation

which is usually a particularly challenging problem in streams, especially when the do-

main of the join attributes is extremely large. A lot of techniques have been introduced to

solve this problem, and a vast majority of them use sketching. This is due to the fact that

sketching can "capture" with enough accuracy the skew of data in various ways, which is

particularly important when estimating the join-size of two (or more) attributes. Alon

et al. in [10] proposed a solution to track join and self-join sizes when having storage

constraints; they employ sketching techniques to create their synopsis data structures

while also supporting insertions and deletions with very promising results. Dobra et al.

in [11] use again sketching but in conjunction with already gathered statistical infor-

mation on existing data to improve the quality of the calculated approximations. Again

Dobra et al. in [12] use sketch sharing in order to provide better join-size approximations

for multiple concurrent queries over data-streams. Ganguly et al. in [13] used skimmed

sketches in order to provide approximate answers on data-stream join-aggregates.

2.1.2.3 Aggregation Estimation

For many data-streams one might desire the computation of aggregation metrics such as

counts, quantiles and heavy hitters just to name a few. In each case a variety of synopsis

Chapter 2 Related Work 7

data-structures might be applicable these data structures include but are not limited to

sketches, wavelets and others. For example Datar et al. in [14] used sketching alongside

exponential histograms in order to provide aggregations such as average, summation,

histograms and others over data-streams using the sliding window model. Charicar et

al in [15] introduce the count-sketch data-structure that allows the discovery of top-k

frequent items in a data-stream using very little space and time. Cormode et al. in [16]

devised a very clever data structure using sketching called count-min which was able to

summarize data-streams in sublinear space and allows the execution of range, point and

inner product based queries while providing answers very fast.

2.1.2.4 Data Mining Applications

These applications, including our own do not require the use of individual data points but

instead require a temporal synopsis of the stream which provides a general overview of the

data-stream behavior through time. Methods such as clustering [17] and sketches [18]

can be used for effective change detection in such use cases. Additionally classifica-

tion [19] methods can also be used on a supervised synopsis of the data stream. Linear

decomposition techniques such as Principal Component Analysis and Singular Value De-

composition have been successfully applied to provide an accurate synopsis of multiple

data-streams; indicative works are [2, 20, 21]. Blind Source Separation is closely related

with PCA and specifically incremental PCA in order to track the subspace of the orthonor-

mal basis and has been successfully applied in the past for separating the main trends of

the data-streams using methods similar to our own where Papadimitriou et al. presented

SPIRIT in [22] provide a PAST based streaming algorithm for extracting the top-k most

dominant patterns out of n streams in O (kn) space and time. Later Sun et al. in [4]

expanded SPIRIT while keeping space and time complexity the same into a distributed

algorithm D-SPIRIT thus scaling the algorithm to monitor a larger amount of streams

concurrently. Another very interesting approach is the one of Zhu et al. which presented

StatStream in [23] where they decomposed thousands of data-streams using DFT and by

placing their coefficients into a grid structure are able to extract stream correlations very

fast and with high accuracy.

2.1.3 Synopsis Design considerations

The designer of each synopsis structure must tailor it to the application domain that

needs to be solved. Therefore each synopsis incarnation must be implemented in such a

way that is friendly to the needs and constraints that apply to each particular domain

that the designer wishes to apply that specific method. For instance a synopsis structure

Chapter 2 Related Work 8

that will be used for query estimation is much more likely to be very different from a

synopsis structure that will be used for data-mining problem such as data-stream drift

and trend detection. In general though, we should assume that the desire is to construct

a synopsis structure so that it has as wide availability as possible across all the broad

classes of problems. This might not always be the case as one might imagine, due to

various domain constraints that each problem might have; thus preventing us from using

that synopsis for applications in different domains. Loosely the design parameters that

one might usually consider when designing a synopsis data-structure are outlined below.

2.1.3.1 Broad Domain Application

The domain of each application is essentially what will have the most significant impact

during the synopsis algorithm design and the trade-offs that need to be made. Addition-

ally as it was said previously generic synopsis structures that have broad availability with

few adjustments are highly desirable as this can reduce the time and effort one needs

to make in order to tailor each structure for a particular problem domain. Of course

as one might imagine, if our synopsis algorithm has a narrow field of applications then

a different structure would likely be designed for each application. This can increase

the time and space requirements for many use-cases, especially in data-mining. This

will happen due to the fact that usually we need to extract multiple metrics from the

data-streams often requiring more than one synopsis structure to accurately represent

all the required attributes, hence having a generic structure that offers us the flexibility

required is a very good (and hard to find) trait.

2.1.3.2 Pass Constraints

Due to the high possibility of that our data-set will involve processing multiple, high-

dimensional data-streams, more often than not we do not have the luxury of storing some

or any data-points for multiple pass processing due to obvious storage and computational

limitations. This imposes the restriction that our synopsis algorithm must be able to

process our data in a limited number of passes but it is usually only one. This constraint

is then transformed to its more strict version called single-pass constraint.

Chapter 2 Related Work 9

2.1.3.3 Time Efficiency

Our synopsis structure must have feasible computational time-complexity, ideally sub-

linear, especially when trying to scale the solution both vertically (e.g. number of data-

streams processed) and horizontally (e.g. time observed). For example traditional syn-

opsis methods such as histograms have super-linear requirements for their calculation

which, of course is not feasible when considering a streaming scenario.

2.1.3.4 Space Efficiency

The case of space requirements for our synopsis must follow a similar bound as with the

time-requirements mentioned previously and optimally we would like to have a sub-linear

storage requirement with respect to the size of the data-stream(s). Such is the case when

using methods such as sketches, where the space complexity is designed to be on the

logarithmic scale in the domain-size of our stream(s).

2.1.3.5 Robustness

The synopsis must be accurate enough and ideally have user specifiable error quality

bounds ε that allow the user to tailor the structure to its needs making the necessary

trade-offs that are specific to its problem domain (for example sacrificing synopsis recon-

struction accuracy for reduction in processing time).

2.1.3.6 Drift-Awareness

Data-streams are in their nature constantly evolving and it would be unreasonable to

assume that changes or drifts are unlikely to occur. Hence our algorithms must be able

to capture those drifts in order to maintain the quality of our synopsis. Techniques that

have been shown to have good results to account for time-drifts in data-streams are

exponential forgetting [22, 24], clustering [17] and various other techniques. Carefully

designed synopsis structures that handle time-drifts well can and have been be used to

perform query or value forecasting [25].

2.1.4 Data-Stream Approximation Techniques

In this section we will briefly summarize the most widely used techniques that are used

for data-stream approximation. Most methods stem from other fields such as Signal or

Image processing among others and have been adapted to be applicable in data-streams.

Chapter 2 Related Work 10

2.1.4.1 Sampling

Sampling techniques are among the most basic and simple ways to construct a data-

stream synopsis; these synopses are also relatively easy to use with applications into a

wide variety of domains due to their not specialized representation and because they

use the same multi-dimensional representation as the their originating data streams. In

particular most sampling techniques in some way originated from Reservoir-Sampling

from Vitter et al. [26] and have evolved into techniques such as Concise-Sampling by

Gibbons et al. [8] and more recently into Weighted Random-Sampling by Efraimidis et

al. [27].

2.1.4.2 Histogram Generation

Histogram based methods are widely used in many scientific fields and data-streams are

not an exception as they provide useful information for the data-stream value distribu-

tion. Unfortunately traditional techniques for constructing histograms have super-linear

space and time requirements for their calculation and this stems from the use of dy-

namic programming techniques for optimal histogram generation. Recent adaptations

have tried to tackle this obstacle using clever techniques and some indicative work is

the calculation in linear time and polylogarithmic space of the Optimal-V histogram

with a bounded approximation error 1 + ε, which was introduced by Guha et al. [28].

Another indicative work is that of Datar et al. [14] where they introduce the notion

of exponential-histogram that can be used to maintain accurate stream statistics such

as average, summation over the sliding window data-stream modem with a bounded

approximation error ε.

2.1.4.3 Sketching

Sketching was introduced in the seminal paper of Alon et al. [10], it has its roots in

Wavelet techniques and in fact they should be considered a randomized version of such.

Sketches are among (if not) the most space-efficient approximation structure. However,

due to the obstacles that present when trying to interpret a sketch based approximation

they are not always easy to adapt in an arbitrary application. In fact, the generalization

of sketch based methods in the multi-dimensional case is still an open problem. Indicative

works regarding sketching are: the count-min sketch a novel sketch-based data structure

by Cormode et al. in [16], Manku et al. used sketching in [29] to approximate the

frequency counts over data-streams and Karl et al. in [30] used sketching to provide

a simpler algorithm for finding the most frequent algorithms in data-streams. Another

Chapter 2 Related Work 11

interesting application of sketches are in probabilistic data-streams and indicative works

by Garofalakis et al. [31] and Cormode et al. in [32] present interesting techniques on

how to adapt sketches for such use-cases.

2.1.4.4 Wavelet Transformations

Wavelet based transformations have been traditionally used in image and signal pro-

cessing, namely in JPEG2000 standard [33] and Dirac video codec [34] to name a few

notable use-cases. They have also been used in databases for performing a hierarchical

decomposition and summarization of its contents. In the streaming scenario wavelets

have been adapted mostly using the Haar Wavelet technique; this is due to the fact that

Haar Wavelets are easy to implement and has been widely used for successfully perform-

ing hierarchical decompositions. The basic idea of wavelet transformations is to perform

and maintain a decomposition of the data characteristics into a set of wavelet and basis

functions. The property of such methods is that the higher the order of coefficients the

more indicative are for the broad data-trends whereas the more localized and outlier

trends are captured by the lower order coefficients. Again indicative works regarding

data-streams and wavelets are by Gilbert et al. in [35] where they use wavelet-based

approximations while using little space and few computational resources, another inter-

esting work is that of Cormode et al. in [36] where they present a fast approximation of

wavelet tracking over data-streams.

2.1.4.5 Linear Transformations

These transformations have been used to summarize the data, by usually performing

orthogonal operations to reduce the dimensionality of our data-streams to a more man-

ageable dimension. For example eigenvector decomposition allows us to factorize a matrix

into its eigenvalues and eigenvectors; this is extremely useful as we can sort these values

in increasing (or decreasing) weight hence extracting the top-k most significant compo-

nents, additionally if we so desire we can sacrifice accuracy and drop some eigenvalues

(and their corresponding eigenvectors) in order to perform a dimensionality reduction.

Techniques such as eigenvector decomposition, orthonormal bases, subspaces [3], singular

value decomposition [37] are very frequently used and will be discussed later as they are

closely related to our method.

Chapter 2 Related Work 12

2.2 Data Mining on Streams

Data-Mining on streams has attracted a lot of attention from the scientific community

in the last decade or so and for obvious reasons; the need for more efficient and scalable

methods to extract features from streaming or static data-sets has sparked the interest

of researchers and a number of algorithms have already been proposed. In section will

describe the related work that has been recently done regarding data-mining on data-

streams with particular interest in the scalability and accuracy of each method.

2.2.1 Clustering

This technique has been used with great results in the past; CluStream [17] is a great

example of data stream clustering due to the fact that it introduced the notion of

micro/macro-clusters and with the use of both online/offline components achieved great

performance and accuracy but due to the heuristic nature of the used algorithm no

theoretical quality guarantees are provided. After Clustream Aggarwal along with his

co-authors developed in [38] a competing system call HPStream that bested CluStream in

almost every benchmark. Recently the density of the data-streams has been studied as

a clustering method and indicative works are the DenStream [39] algorithm which com-

bines micro-clustering with a density-estimation process for effective clustering. Another

very popular algorithm called k-median has been adapted to be used in data-streams

very effectively. An indicative work is that of Charikar et al. in [40] where they propose

a solution to overcome the increasing approximation factors that the previous meth-

ods had, by increasing the number of levels used which resulted in a divide & conquer

algorithm.

2.2.2 Classification

Classification in data-stream mining is incredibly useful as it allows to extract cate-

gories from multiple data-streams. For example ideal use-case for classification would

be real-time decision support in business analytics, critical astronomical applications or

monitoring of cell phone activity in a city for security reasons are important and ideal

use cases for classification. Additionally classifiers can be tailored into taking in account

the infinite length and evolving nature of streams as it was shown by Wang et al in [41]

who developed a scalable system for classifying drifting data-streams. They perform

this using a novel technique using weighted classifier ensembles for mining the streams.

Aggarwal et al. in [19] introduced a novel on demand classification algorithm for data-

streams, which adapt the idea of micro-clustering from CluStream into the classification

Chapter 2 Related Work 13

domain, with very promising results. Another notable mention is that of Domingos et

al. in [42] where they introduce VFDT or Very-Fast-Decision-Tree; which is a tree-based

learning system based on Hoeffding trees, again with promising results.

2.2.3 Frequency Counting

Frequency counting is a very interesting topic for due to the fact that can display with

accuracy the skew of data and in many applications this is a desirable feature to extract.

Cormode et al. in [43] present a novel technique that uses randomized algorithms to

track the "hot" (i.e. most frequent) items and is designed to be used in the turn-stile

data-stream model, which computationally is the hardest to analyze. Another interesting

work is that of Manku et al. in [29] where he devises a novel algorithm for approximate

frequency counts that uses all the previously observed historical data to calculate the

patterns that are frequent in the monitored data-streams incrementally. Giannela et al.

in [44] have devised an algorithm that discovers the most frequent item-sets over a data-

stream. They use incrementally maintained time-tilted windows for each frequent pattern

at multiple time granularities in conjunction with an FP-Tree inspired data-structure to

store each frequent pattern found; it has to be noted that this method does not use any

of the most commonly synopsis methods of today.

2.2.4 Time Series Analysis

Time-Series analysis has been used due to the fact that its definition is almost identical

to the definition of a data-stream, hence most of the study models used in this field are,

usually with modifications, applicable to data-streams as well. Indyk et al. in [45] have

devised and proposed an algorithm that uses sketches in pools to produce approximate

solutions with probabilistic error bounding to two problems in the time-series domain,

the relaxed periods and average trends. Zhu et al. in [23] have devised a clever decompo-

sition of data-streams using DFT that they can extract fast and accurate the correlations

between data-streams. Additionally Cole et al. in [46] proposed a sketching method in

order to find the stream correlations with greater accuracy and space complexity when

we are dealing with uncooperative time-series. Chen et al. in [47] introduced the no-

tion of regression-cubes for data-streams; they have proposed to use multidimensional

regression analysis in order to create a compact cube that could be used for answering

aggregate queries over the monitored data-streams. Papadimitriou et al. in [22] have

used Yang’s PAST algorithm to extract the top-k most dominant patterns; they define

a pattern as the projection of each eigencomponent onto the current monitored-stream

Chapter 2 Related Work 14

values. Sakurai et al. in [48] have introduced BRAID, an elegant framework to find the

group-lag correlations amongst many data-streams.

Chapter 3

Problem Statement

In this chapter we will give a formal definition of the problem that we are trying to

solve, while also explaining the techniques used in order to create our algorithm. After

formalizing both the problem and techniques used we will present our algorithm that

provides an adequate solution to the problem.

3.1 Preliminaries

In this problem we model each data-stream using the time-series model and as such a

stream data-source, for our purposes is an unbounded sequence of tuples in time-order.

For specificity we assume that such data-streams produce one tuple per time-unit. To

find such patterns more efficiently a sound technique is to find a method to distribute

the workload amongst many workers. This is performed by splitting the input data-

streams into groups and incrementally finding the patterns in each of the groups. As

one might think, finding the patterns in each of the groups is considerably less expensive

than finding all the patterns at once; this step is called local-pattern-discovery. Then

by having discovered each of the groups’ local-patterns find efficiently the global-patterns

that are representative for all of our monitored streams.

For the purpose of this thesis we view the original data-streams as points in a high-

dimensional space, where as stated above produce one tuple per time-unit. After group-

ing the streams; each of the groups’ local-patterns are extracted using low-dimensional

projections of the original points. It has to be noted that for reconstruction purposes the

basis of the low-dimensional spaces is kept and incrementally updated for each group.

Another noteworthy fact is that the tuples of each group are assumed to be synchronized

15

Chapter 3 Problem Statement 16

in the time-axis; if a value is not received within a specified window it is assumed to be

lost while also possibly indicating malfunction1.

3.2 Problem Formalization

Givenm groups of data-streams that each one consists of {n1, ..., nm} co-evolving numeric

data-streams, we want to devise an elegant solution that will solve the following two

problems:

• Incrementally find the top-k most dominant patterns Li ∈ R1×k within a single

group i ∈ [1,m] using FL function.

• Efficiently combine the each one of them local patterns Li to find the representative

global patterns G ∈ R1×k using FG function of all monitored streams in each group.

Before we introduce these two aforementioned functions we have to first describe the

data-stream distribution amongst each group. Let a group be denoted as S then each

i-th group Si is comprised out of an unbounded sequence of ni-dimensional vectors where

ni is the number of data-streams contained in the group Si with 1 ≤ i ≤ m and m being

the total number of monitored groups. Si can also be represented as a matrix with ni
columns and an unbounded number of rows. The intersection of matrix Si, defined as

Si(t, l) is the t-th row and the l-th column of Si; this represents the value of the l-th

stream recorded at time t in the i-th group. Finally using the definitions described above

we are now able to define the functions for monitoring per-group local-patterns FL and

the aggregated global-patterns FG.

Function FL definition for local-pattern calculation:

FL : (Si(t+ 1, :), B)→ Li(t+ 1, :) (3.1)

FL takes as input Si(t+ 1, :) ∈ R1×ni vector which contains current values for each data-

stream monitored by the group i at time (t+ 1) and the block-size that we current have,

usually this is a static value throughout the execution of our system.

The function FL has to incrementally maintain the local-patterns Li ∈ R1×d which is

then shared with the aggregators in order to produce the global-patterns in a way that

will be explained later. In a similar fashion like FL the definition for the global-pattern

detection function FG follows in full.
1usually it is not a fault of the actual system but the stream producer (e.g. spout)

Chapter 3 Problem Statement 17

FG : (L1(t+ 1, :), Lm(t+ 1, :))→ G(t+ 1, :) (3.2)

The FG function takes as arguments all the local-patterns Li, i ∈ [1,m] for each one of

the m groups that were generated at time (t + 1) and produces a global-pattern vector

G(t+1, :) at each time-step which is then propagated to each one of the m groups and is

also our final output that holds the top-k most dominant trends of all monitored streams.

3.3 PCA Decomposition

Principal component analysis is a linear transformation, specifically it uses an orthogonal

transformation to covert a set of observed possibly correlated values into a set of val-

ues of linearly uncorrelated variables that are called principal components. The number

of principal components of a lossless transformation is the same as the number of the

original variables before performing PCA. The dimensionality reduction comes when we

are allowed to perform a lossy PCA transformation, this can be done easily as the prin-

cipal components can be sorted based on their significance using the eigenvalues; this

allows to "drop" a number of non-significant principal components in order to perform

the dimensionality reduction. Hence PCA transformation is a great way to reduce the

dimensionality of data and would ideally suit our needs; yet the classic method for com-

puting PCA is limited by the prohibitive cost of forming the empirical covariance matrix,

which typically is when having a stream of n-dimensional vectors a n× n dense matrix

that in turn requires O
(
n2
)
space. The quadratic cost of space is, as one might imagine,

barred for large datasets or in streaming scenarios and poses a major bottleneck for its

potential applications.

The output of PCA when operating on streaming vectors of n-dimensions is a set of

k ∈ [1, n], n-dimensional principal components which span the subspace created by PCA

transformation. Naturally a lossless application of PCA means that k = n and would

result in a n × n matrix but a relaxation of the lossless decomposition is expected and

we would be allowed to have a significantly reduced number of principal components.

Mitliagkas et al. in [2] proposed a novel algorithm with strict theoretical bounds on

approximation quality that required O (kn) space which by definition is the lowest pos-

sible when performing PCA. They base their method in the classic Power-Method as

described in [49] and adapt into a block-wise stochastic variant with great results. The

intuition behind their algorithm stemmed from the fact that most stochastic methods

for PCA approximation had a variable and possible large variance at each step and hence

Chapter 3 Problem Statement 18

the standard concentration of inequalities would give vacuous bounds. Their proposed

method used a block-wise algorithm that had a variance reduction step built in; in essence

they would update the basis Qτ of PCA once every block using a QR-decomposition while

within each block they would average-out the noise thus reducing the variance contained

in processed values. The proposed algorithm they devised is shown in Algorithm 1 which

follows in full below.

Algorithm 1 PCA using the Block-Stochastic Power Method
Input: X = x1, ..., xn Block size: B

1: H i ∼ N (0, Ip×p), i ≤ i ≤ k . Initialization

2: H = Q0R0 . Get initial Qτ basis by QR-Decomposition

3: for τ = 0, ..., n/B − 1 do

4: Sτ+1 ← 0

5: for t = Bτ + 1, ..., B(τ + 1) do

6: Sτ+1 ← Sτ+1 + 1
Bxtx

T
t Qτ . Within block, average out noise.

7: end for

8: Sτ+1 = Qτ+1Rτ+1 . Update basis Qτ using QR-Decomposition

9: end for

output

The subspace basis approximation at each step is contained inQτ and as we see is updated

once per block when performing the QR-decomposition at line 8. Due to its performance

and high accuracy we selected this algorithm to perform the PCA approximation in each

one of the m nodes.

3.4 Subspace Tracking

Subspace tracking is was introduced by Yang in [3] and Sun et al. in [4] adapted it

to be used for tracking these projections in a distributed manner. Each pattern is the

defined as the projection of each column of the participation matrix Wt ∈ Rk×n against

the remainder of x ∈ R1×n and in total we would have k numbers each being the repre-

sentative projection value for each principal component. This method is closely related

to PCA but again, unlike the classic method of performing PCA it does not require the

entire data-set in order to find the low-rank approximations as well as the participation

weights correctly; hence this method is incremental only requiring the current values of

the data-streams at time t. Also the algorithm is resilient enough to be able to accurately

converge to the correct participation weights even when data-streams of Si(t, :) do not

Chapter 3 Problem Statement 19

follow any particular distribution. The incremental update algorithm for local-pattern

discovery that is used in D-SPIRIT is the following:

Algorithm 2 Local Pattern Discovery in D-SPIRIT

Input: new vector of values Si(t+ 1, :), old global patterns G(t, :)
Output: local patterns Li(t+ 1, :)
1: −→x1 := Si(t+ 1, :) . Initialize to new values
2: for all 1 ≤ j ≤ k do . At each time-step do for all k patterns
3: yj := −→xjWi,t(j, :)

T . project −→xj onto Wi,t(j, :)
4: if G(t, :) is null then . boundary case, use yj instead as G(t, :)
5: G(t, :) := yj
6: end if
7: dj ← λdj + y2j . local energy E, determines the update magnitude
8: −→e := −→xj −G(t, j)Wi,t(j, :) . the error, −→e ⊥Wi,t(j,:)

9: Wi,t+1(j, :)←Wi,t(j, :) + 1
dj
G(t, j)−→e . update participation weight

10: −−→xj+1 := −→xj −G(t, j)Wi,t+1(j, :) . repeat with the rest of −→x
11: end for
12: return Li(t+ 1, :) := Si(t+ 1, :)W T

i,t+1 . The updated i-th patterns

For each j (out of k patterns) −→xj is the component of Si(t + 1, :) in the orthogonal

complement of the space that is spanned by the updated weight Wi,t+1(j
′
, :), 1 ≤ j′ ≤ j.

The column vectors of Wi,t+1 are ordered based on their contribution significance to the

patterns; more specifically they are actually ordered based on their decreasing eigenvalue

magnitude (energy). It also is shown in both that under stationary assumptions we have

a very quick convergence to the actual principal directions.

3.5 Local Pattern Discovery

Taking ideas from both Mitliagkas et al. [2] from their block-based PCA algorithm as well

as the projection tracking from Yang [3] in order to create our own algorithm, we extended

these two concepts to use the higher quality PCA approximation while discovering the

top-k most dominant patterns by projecting the values of Si onto the current basis

approximation Qτ .

3.5.1 Local Pattern Disocvery for fixed k

As it was previously stated the function FL within each group is responsible for the

calculation at each time-step for the low-dimensional projections Li(t, :) and to update

Chapter 3 Problem Statement 20

the subspace basis approximation Qτ if it is needed as it only happens once per each

block. Generally we need a metric to measure the quality of the stream reconstruction

at any given time, this is accomplished by ensuring that the square-difference which is

defined as follows: ||Si(t, :)− Ŝi(t, :)||2 is predictably small. The reconstruction of Si(t, :)

is defined as Ŝi(t, :) = Li(t, :) × QTi,τ . The initial algorithm for detection of the top-k

most dominant patterns using a fixed k follows in full.

Algorithm 3 Local Pattern Discovery in NeuralStream (fixed k)

Input: S = s1, ..., sn ∈ Rp×1 Block size: B
1: H i ∼ N (0, Ip×p), i ≤ i ≤ k . Initialization
2: H = Q0R0 . Get initial Qτ basis by QR-Decomposition
3: for τ = 0, ..., n/B − 1 do
4: Dτ+1 ← 0
5: for t = Bτ + 1, ...B(τ + 1) do
6: Dτ+1 ← Dτ+1 + 1

B sts
T
t Qτ . Within block, average out noise.

7: Lt = −sTt Qτ . calculate the projections
8: end for
9: Dτ+1 = Qτ+1Rτ+1 . Update basis Qτ using QR-Decomposition

10: end for
output

3.5.2 Local Pattern Discovery for variable k

Algorithm 3 that is shown above has a fixed number of k-dimensions and in turn principal

directions. Due to the fixed number of k we cannot guarantee that the reconstruction

error will be predictably small over time at all times as we have no way of adjusting the

number of principal directions on-the-fly depending on the reconstruction quality. Hence

the number of local-patterns per group needs to be adjusted over time (either increased

or decreased) as we cannot possibly expect to know beforehand the number of patterns

to expect.

As indicated in [50] a suitable method to obtain the number of needed patterns on the fly

is Energy-Thresholding; thus we employ a technique that is based on that principle as it

helps us to estimate the number of principal components needed to accurately represent

the monitored streams at any given time. In practice we need to track two quantities in

order to successfully apply this method; the first one is the actual total captured energy

of the streams per group, formally given by Equation 3.3 that follows.

Chapter 3 Problem Statement 21

Ei,t :=
1

t

t∑
τ=1

||Si(τ, :)||2 =
1

t

t∑
τ=1

ni∑
j=1

Si(τ, j)
2 (3.3)

The second quantity that we need to keep track of is the total energy Êi,t captured by

the reconstruction approximation Ŝi(t, :); which in a similar fashion as in Equation 3.3

above is given by Equation 3.4 that follows.

Êi,t :=
1

t

t∑
τ=1

||Li(τ, :)||2 (3.4)

Lemma 1. Assuming that the basis at time τ , Qτ ∈ Rp×k has orthonormal columns, and

the patterns of the i-th group again at time τ are Li(τ, :) ∈ R1×k then we have

Êi,t :=
1

t

t∑
τ=1

||Ŝi(τ, :)||2 =
1

t

t∑
τ=1

||Li(τ, :)×QTi,τ ||2 =
1

t

t∑
τ=1

||Li(τ, :)||2 (3.5)

Proof. Since the columns of basis transpose QTτ are also orthonormal, then we can easily

show that the Euclidean norm of the reconstruction Ŝτ is ||Ŝτ ||2 = ||Lτ,1QTτ,1 + · · · +
Lτ,kQ

T
τ,k||2 = L2

τ,1||QTτ,1||2 + · · · + L2
τ,k||QTτ,k||2 = L2

τ,1 + · · · + L2
τ,k = ||Lτ ||2. The final

results follows by summing over τ .

The above formula concludes to that result assuming Qi,τ has orthonormal columns;

although we can further simplify it to this form:

Êi,t :=
1

t

t∑
τ=1

||Li(τ, :)||2 =
t− 1

t
Êi,t−1 +

1

t
||Li(t, :)||2 (3.6)

This form is much more convenient and shows the incremental nature of updating the

energy captured; it is this form that is used in our implementation. To accurately adhere

to each of the monitored groups’ pattern features we use a separate threshold for each of

the groups; to that end we use a low-energy and a high-energy threshold called fE and FE
respectively. The actual retained energy range is always between: [fE ·Ei,t, FE ·Ei,t] and
whenever the boundaries are exceeded we increase or decrease the number of patterns

kept accordingly. Now let’s prove that the actual captured energy by the reconstruction

Ŝ is indeed bound within the specified interval [fE, FE].

Chapter 3 Problem Statement 22

Lemma 2. The relative squared error of the reconstruction Ŝ is bounded by the following

inequality:

1− FE ≤
∑t

τ=1 ||Ŝτ − Sτ ||2∑
t ||Sτ ||2

≤ 1− fE (3.7)

Proof. From the orthogonality of Sτ and the complement Ŝτ −Sτ we have that the quan-
tity: ||Ŝτ −Sτ ||2 is equal to ||Sτ ||2−||Ŝτ ||2 which by using Lemma 1 can be transformed

as: ||Sτ ||2−||Lτ ||2. Then the results follows from the definitions of E, Ê and by summing

over τ .

Based on what was previously mentioned the updated version of our algorithm using the

captured stream energy as a threshold measurement in order to increase/decrease the

number of tracked principal components dynamically is presented in full below.

Algorithm 4 Local Pattern Discovery in NeuralStream (variable k)

Input: S = s1, ..., sn ∈ Rp×1 Block size: B
1: H i ∼ N (0, Ip×p), i ≤ i ≤ k . Initialization
2: H = Q0R0 . Get initial Qτ basis by QR-Decomposition
3: for τ = 0, ..., n/B − 1 do
4: Dτ+1 ← 0
5: for t = Bτ + 1, ...B(τ + 1) do
6: Dτ+1 ← Dτ+1 + 1

B sts
T
t Qτ . Within block, average out noise.

7: Lt = −sTt Qτ . calculate the projections
8: Et ← λ(t−1)Et+s2t

t . Update actual energy

9: Êt ← λ(t−1)Êt+L2
t

t . Update approximation energy
10: end for
11: if Êt < fEEt then . Check if we need to increase k
12: Initialize a new column for Sτ and left-pad it, resize all tables
13: else if Êt > FEEt then . Check if we need to decrease k
14: Drop the right-most column of all tables.
15: end if
16: Dτ+1 = Qτ+1Rτ+1 . Update basis Qτ using QR-Decomposition
17: end for
output

As we can see at each time step we calculate the representative local-patterns Lt+1 and

when needed we resize our tables accordingly so that we increase or decrease the mon-

itored patterns based on the actual energy that our reconstruction is able to capture.

It has to be noted that both for performance and noise-reduction reasons the adjusting

step is only performed at the end of each block.

Chapter 3 Problem Statement 23

3.5.3 Making Local Pattern Discovery more Robust

Another issue that arises is, that when operating in the streaming case time value can get

extremely high, extremely fast; this rapid increase will create a lot of number stability

problems in the long run concerning the captured energy of the streams. Thankfully by

altering a bit the equations and using the reconstruction/actual energy ratio helps us

alleviate these problems. Thus instead of keeping track the normalized energies at time

t we keep the actual aggregated value of the energies at time t.

The actual total captured energy at time t is given by:

Etotal :=

t∑
τ=1

||Si(τ, :)||2 (3.8)

The reconstruction total captured energy at time t is given by:

Êtotal :=
t∑

τ=1

||Li(τ, :)||2 (3.9)

Now to actually avoid this problem we have to use exponential forgetting λ ∈ (0, 1) factor

in order to "forget" the energy captured so that we don’t run to any number stability

problems while also keeping the quality of the reconstruction within the desired bounds.

To achieve that we exploit the fact that the following holds true.

Lemma 3. Given a sequence of the form: xi = λxi + y with x0 = 0, λ ∈ (0, 1) and y a

scalar value then the value of xi asymptotically will have the value y
λ−1 . The rate that

this convergence happens is determined by the value of λ factor.

Proof. Expanding the recursive relation above we can easily find that asymptotically it

has the following solution: xi = y(λi−1)
λ−1 . Since i→∞, λi → 0 hence xi = y

1−λ .

Using Lemma 3 we transform the relations so that xi is asymptotically as close as possible

to the value of y; typical values in that case would be in the range of λ ∈ [0.9, 1).

The total captured energy by the actual observed values at time t using exponential

forgetting with a λ factor is given by:

Etotal = λ

t−1∑
τ=1

||Si(τ, :)||2︸ ︷︷ ︸
Etotal,t−1

+ ||Si(t, :)||2︸ ︷︷ ︸
Et

(3.10)

Chapter 3 Problem Statement 24

The total captured energy of the reconstruction at time t using exponential forgetting

with a λ factor is given by:

Êtotal = λ
t−1∑
τ=1

||Li(τ, :)||2︸ ︷︷ ︸
Êtotal,t−1

+ ||Li(t, :)||2︸ ︷︷ ︸
Êt

(3.11)

So instead of checking if the actual normalized energy of the reconstruction at the end

of each block B which occurs at time τ ∈ [B,nB] is within the bounds specified; we

now have to ensure that at the end of each block (in other words at the same time τ as

before) that the following inequality holds true:

fE ≤
Êtotal
Etotal︸ ︷︷ ︸
Eratio

≤ FE (3.12)

Now the updated algorithm for the local-pattern detection function FL using the notions

and techniques outlined above for making the stream energy capture more robust follows

in full.

Algorithm 5 Local Pattern Discovery in NeuralStream (variable k, better E capture)

Input: S = s1, ..., sn ∈ Rp×1 Block size: B
1: H i ∼ N (0, Ip×p), i ≤ i ≤ k . Initialization
2: H = Q0R0 . Get initial Qτ basis by QR-Decomposition
3: for τ = 0, ..., n/B − 1 do
4: Dτ+1 ← 0
5: for t = Bτ + 1, ...B(τ + 1) do
6: Dτ+1 ← Dτ+1 + 1

B sts
T
t Qτ . Within block, average out noise.

7: Lt = −sTt Qτ . calculate the projections
8: Etotal,t ← λEtotal,t + s2t . Update actual energy
9: Êtotal,t ← λÊtotal,t + L2

t . Update approximation energy
10: end for
11: Eratio,t ← Êtotal,t/Etotal,t . Update the energy ratio at time t
12: if Eratio,t < fE then . Check if we need to increase k
13: Initialize a new column for Sτ and left-pad it, resize all tables
14: else if FE < Eratio,t then . Check if we need to decrease k
15: Drop the right-most column of all tables.
16: end if
17: Dτ+1 = Qτ+1Rτ+1 . Update basis Qτ using QR-Decomposition
18: end for
output

Chapter 3 Problem Statement 25

3.6 Global Pattern Discovery

Now we will describe in detail the method for discovering the aggregated global-patterns

amongst all monitored groups; in essence, we will now formally give the declaration of

function FG. Global-patterns, in a similar fashion as local-patterns are the low-dimensional

projections of all the monitored streams across all groups. This is essentially having to

discover all of the patterns from all the monitored streams centrally but using decen-

tralized computation. The complete definition of function FG that is responsible for

global-pattern discovery follows in full.

Algorithm 6 Global Pattern Discovery in NeuralStream

Input: all local-patterns L1(t, :), ..., Lm(t, :)

Output: current global-patterns G(t, :)

1: k ← max(ki)

2: for 1 ≤ j ≤ k do

3: G(t, j) :=
∑m

i=1 Li(t, j)

4: end for

The above algorithm can be formulated as G(t, :) = FG([L1(t, :), ..., Lm(t, :)]), this is true

due to the fact that the global-patterns are essentially the summation of all the local-

patterns of each group; in other words G(t, :) = FG([L1(t, :), ..., Lm(t, :)]) is equivalent

to the following statement G(t, :) =
∑m

i=1(Li(t, :). Of course for this to work all of the

Li(t, :) must have the same number of principal components. In the case that it’s not we

can easily alleviate the problem by expanding the Li(t, :) from the groups that have fewer

principal components to match the dimensions of the group having the most (without of

course polluting the result).

3.7 Tree Expansion

As a natural expansion to the scheme outlined in [4] described, the algorithm modification

that is proposed is the following: Let’s assume that we have a n-level hierarchy and that

each level of the hierarchy has one or multiple groups with the only restrictions being

i) that each level must have less groups from its previous one and ii) each group must

only propagate its patterns to one of the available groups from the next level; using this

recursive definition we can build a tree that propagates the patterns distributing their

discovery amongst many levels enabling our system to scale better and with greater

flexibility.

Chapter 3 Problem Statement 26

Lemma 4. Let’s assume, without loss of generality, that we have a n-level tree such that

at each depth its nodes are data-stream groups as defined previously and that each of

the tree levels have fewer groups than their parent level (starting from top to bottom).

Then by applying function FL at the tree leafs and FG at each subsequent upper-level we

can discover all common patterns across all levels of the n-level tree. and in essence the

definition is transformed as follows G(t, :) = Fi,G(Fi−1,G) which in turn can be expressed

as G(t, :) =
∑n

i=1

∑mi
j=1Gi,j(t, :). (mi is the number of groups each tree level has).

Proof. The tree will have at least two levels, which is the basic level hierarchy that

is presented in [4]; assuming that we have more than two-stages we can decompose

easily the tree to multiple 2-stage equivalent hierarchies. This can be done by following

the restrictions outlined above with an additional rule: that we can only join (two)

consecutive levels to perform the decomposition; for example should we have a 3 stage

level tree we can decompose its to the following 2-stage equivalents the first one containing

levels: 1 & 2 and second: 2 & 3. The correctness of the 2-stage tree scheme is proved in

[4], hence further action is not needed.

Chapter 4

Implementation

This chapter will first describe the tools we used in order to implement the NeuralStream

framework. Then each each component implementation that comprises our framework

will be detailed and analyzed. Finally we will outline all the implementation-specific

design choices that we made along the way in order to increase robustness, speed or

efficiency.

4.1 Lambda Architecture

This architecture for data-processing systems that Storm was designed to be a part of,

well devised in order to be able to handle massive amounts of data by taking advantage

of both batch and stream processing frameworks. This approach is an attempt to balance

the constraints and trade-offs that one can make when asking a particular query. For

example one might require an answer of high accuracy to the query submitted into the

system but that would not be possible using the stream processing framework, so instead

this query would be answered by the batch processing framework with higher latency of

course. Instead most answers are able to have relaxed constraints and would be answered

by the streaming framework. Additionally the streaming framework can be enabled to

use some of the previously computed answers by the batch processing framework to boost

its response quality.

This architecture is comprised out of three distinct components which are the following:

• Batch Layer: The batch layer uses a framework that provides higher latency

answers and (usually) of higher quality than the streaming one. Hence this layer

aims at providing excellent accuracy by being able to afford to process all available

27

Chapter 4 Implementation 28

data when answering a query. An example framework that would be used in this

layer of the architecture would be Apache Hadoop [51].

• Speed Layer: This layer attempts to process data-streams in real time and with-

out the quality requirements that an answer of the batch layer would have. This

layer would ideally have a very high throughput as it aims to minimize the latency

of answer response by providing that answer by only processing a recent portion or

synopsis of the observed data. Typically answers provided by this layer have very

small latency and are not as accurate; our selected framework Storm was designed

to be an ideal candidate for that role.

• Servicing Layer: The output of both layers are stored within the servicing layer,

which is responsible for handling the ad-hoc queries by returning the precomputed

or executed answers that each query requires. Example technologies of that include

Apache Cassandra [52], Apache HBase [53] amongst others.

A higher view of the aforementioned architecture is presented in Figure 4.1 that follows.

Batch Layer

Speed Layer

Distributed Queue
Service Layer Queries

Figure 4.1: Lambda Architecture Layout

This application only focuses on the Speed-Layer of this architecture and is implemented

as such, while the servicing layer at this point is a web-service that provides access to

the processing results.

Chapter 4 Implementation 29

4.2 Apache Storm

Apache Storm [1] initially developed by Nathan Marz at Twitter and now an official

Apache Foundation project, is a free open-source project that provides an elegant frame-

work for performing fast, scalable yet efficient distributed real-time computations using

unbounded data-stream sources. It’s a polyglot-enabled framework and bindings for a

lot of languages already exist. It also allows great flexibility of input data sources, as

it can be used with a number of popular distributed, high-throughput reliable queuing

systems such as Kafka, Kestrel and others. The great flexibility, proven robustness

and reliability made the selection of Apache Storm as the framework on top of which to

develop NeuralStream a very ideal choice.

4.2.1 Streams in Storm

A stream in Storm is defined as the unbounded sequence of tuples that are processed and

created in parallel in a distributed fashion; it also is the main data abstraction that the

framework provides. To define a data stream in Storm one must first define the stream’s

schema, which names the fields in each of the stream’s tuples. Stream Tuples can contain

in each field any data-type that is serializable; if one is not (such as many user defined

Java classes) then one can write a custom serializer to make this functionality possible.

Each stream in a topology is assigned with a unique id when declared; in the very common

case of a topology having only single-stream spouts and bolts they are all assigned the

default id by Storm. An example stream that shows the consecutive tuples as well as an

indicative tuple schema is shown in Figure 4.2.

. . . Ti Ti+2 Ti+3 Ti+4 Ti+5 Ti+6 Ti+7 Ti+8 . . .

Field 1 | · · · | Field n

Figure 4.2: Example Storm Tuple Stream

Chapter 4 Implementation 30

4.2.2 Storm Architecture Introduction

On a higher level Storm actually only exposes to its users the notion of topologies along

with its two basic primitives. Storm has two basic computational units, spouts which

are only content producers and bolts which can be consumers as well as producers.

These two basic primitives can be employed to perform tasks such as transformations,

accumulations and many other things on the data contained in the streams flowing

through the system. Finally these primitives are connected to each other and they form

a topology, which essentially defines the path of each stream within the system and

its layout cannot be changed without first restarting the affected topology (but not

Storm itself). A typical topology can be viewed in the following Figure 4.3, where taps

represent spout primitives while the others represent bolt primitives.

Figure 4.3: Typical Storm topology

4.2.3 Storm Architecture Detailed

Storm has multiple components in order to provide the advertised functionality. Actually

architecturally Storm shares a lot of design phylosophies with another very popular frame-

work for big-data processing Hadoop; albeit Hadoop’s primary focus is batch-processing

whereas Storm is used primarely for real-time applications. The main difference between

Hadoop and Storm from a user’s perspective is that when a job is assigned in Hadoop it

has to finish at some point, whereas when a topology is started on a Storm cluster it

will never stop running, unless it is terminated by the user.

Chapter 4 Implementation 31

There are two kinds of nodes that reside in a Storm cluster; the master-node and the

worker-nodes. The master-node runs a daemon that’s called Nimbus which is analogous

to Hadoop’s JobTracker daemon. The Nimbus daemon is responsible for distributing

the topologies code around the cluster nodes, assigning worker tasks and doing failure

monitoring. Each of the worker nodes that are in the cluster execute another daemon

called the Supervisor; this daemon listens for potential Nimbus orders, such as what

to execute and when. This means that each Supervisor daemon is allowed to assign,

start, stop as necessary any number of worker processes within each node based on what

Nimbus has assigned to it. Naturally, usually only a subset of a topology is executed

in each node; hence running a topology actually consists of spawning many worker

processes across the cluster nodes so that each executes a portion of the topology’s total

workload.

Master andWorker nodes must be able to communicate, more accurately Nimbusmust be

able to receive and deliver reliably, messages to the Supervisors that run on each cluster

node and vice-versa. To achieve reliable coordination amongst the Supervisor and Nimbus

daemons Storm uses another Apache Foundation project, the Zoopkeeper [54]; which

is quoted from the project’s page "a centralized service for maintaining configuration

information, naming, providing distributed synchronization as well as providing group

services" . It has to be noted that to boost the reliability of Storm, both Nimbus and

Supervisor daemons have been designed as stateless and fail-fast while their state is kept

within the Zookeeper cluster, stored in a physical disk or both. Figure 4.4 shows this

architecture structure and how its interconnected components communicate.

Supervisor

Supervisor

Supervisor

Supervisor

Zookeeper

Nimbus

Figure 4.4: Storm Component Architecture

Chapter 4 Implementation 32

As we can see in the above figure the Zookeeper is responsible for the bi-directional

communication and coordination between Nimbus and Supervisor daemons that reside

in the Master and Worker nodes respectively.

4.2.4 Storm Stream Producers (spouts)

In Storm, spouts are one of the two basic primitives that the user at his disposal in order

to perform the needed computations. A spout can be thought as a "tap" that produces

tuples at a constant, variable or event driven rate; spouts usually read or "consume"

data from external sources1 and emit them into the topology for further processing.

Depending on the user preferences a spout can be reliable or unreliable. This essentially

means that a reliable spout is able to replay a tuple should its processing fails for any

reason; in the unreliable case each tuple is sent once and then it is forgotten as soon it

is emitted, regardless of its successful processing. Normally a spout is often depicted as

a "tap" or a "rectangle box" in topology design drawings as it is shown in Figures 4.5a

and 4.5b.

(a) Tap Representation

Spout

(b) Box Representation

Figure 4.5: spout representations

The default setting is that each spout will emit a single output stream that usually has

the default id assigned to it; but this by no means a limitation as the user can declare at

will any number of output streams from any spout.

4.2.5 Storm Stream Consumers (bolts)

The "workhorses" of each topology that is running in a Storm cluster is done using the

second of the two primitives that are provided; they are called bolts and are responsible

for all the transformations and processing that happens within each of the currently

running topologies in the cluster. That includes for example tuple filtering, aggregation,
1such as Apache Kafka, Twitter Kestrel and others

Chapter 4 Implementation 33

joins, database interactions and a lot more. They are usually depicted in design drawings

as a "lighting" or an ellipse as it is shown in Figure 4.6a and 4.6b.

(a) Thunder Repre-
sentation

Bolt

(b) Ellipse Representation

Figure 4.6: bolt representations

Bolts are designed as computation units that perform lightweight operations and if one

needs to do complex processing or transformations then that functionality is recom-

mended to be decomposed into multiple stages and hence, multiple bolts; one for each

processing/transformation stage. Additionally, as was mentioned previously bolts in

a similar fashion with spouts have initially one stream but the user can declare an

arbitrary number of them.

Another differentiating characteristic when comparing spouts and bolts is that the

former can only declare output streams while the latter can also declare output streams

but is able to also subscribe to an arbitrary number of already declared streams these

are called input streams and may be from different components, bolts or spouts.

4.2.6 Storm Topologies

A user of Storm that desires to perform any kind of processing or computation must

first define a topology which is essentially a pre-configured graph of computation. Each

vertex of the topology graph contains specific processing logic, defines the links that

this node has and how the tuples should be passed around between the connected nodes.

A Storm cluster can have a lot of topologies running at the same time while also

performing the required load-balancing to have an even distribution of the available

resources amongst them.

Mainly there are two distinct types of topologies in Storm; the default one that has high

throughput but may process some tuples more than once and one that offers an exactly-

once processing at the cost of lower-throughput; these topologies are called Trident

topologies. Since Storm will process each tuple at-least-once (regardless of processing

Chapter 4 Implementation 34

failure) we can get that sort of processing guarantee in both types of topologies. What

normal topologies can guarantee however is that each tuple in the topology graph is

process only-once; that guarantee is a bit tricky to provide and Storm uses a lot of acking

and state-keeping across the topology’s nodes in order to archive that; hence the extra

communication cost overhead as well as the work required to support stateful nodes is

what leads to the reduced performance when compared to regular topologies.

4.2.7 Storm Parallelism

Storm uses three distinct entities that are what actually run the topology in the cluster

and we will now describe each one of them below.

• Worker Processes: A worker process executes a subset or subsets of the topology

as a whole. Additionally a particular worker process is owned by exactly one

topology and many run one or more executors (threads) for one or more bolts or

spouts that belong to that topology.

• Executors: An executor is Storm’s notation for a thread that is spawned by a

particular worker process; that thread many run one or more tasks of that topology

(but usually we use one executor per task).

• Tasks: A task is that actually performs the actual data processing and manip-

ulation; each of the spout or bolt implemented is executed by the use of many

tasks that are spawned within executers at one or more worker processes that are

started across the Storm cluster. It has to be noted that the amount of tasks

remains the same throughout the lifetime of each running topology, but the num-

ber of executors for a particular component can change over time. That means

that the following condition is true at any given time within each of the running

topologies: number of executors ≤ number of tasks, but usually and as stated

before we prefer to run one task per executor.

Chapter 4 Implementation 35

Figure 4.7 that follows outlines the internal structure of a worker process graphically and

shows what runs where and with what analogy.

Executors

Task C

Task B Task A

Task A

A Worker Process

Figure 4.7: A sample worker process layout

Now that we have established the notions above we can now explain what parallelize

options are provided by Storm for making the execution of topologies more efficient.

First off, Storm uses a parallelism-hint that can be set individually for each of the prim-

itives that are within a topology, this does not mean however, that we will spawn more

bolts or spouts based on that hint; what it does mean is that it gives a suggestion to

Storm on how many initial executors (threads) that primitive will have. Aside from the

parallelism hint setting that is specific for each primitive, Storm gives us the means to

configure the total number of worker processes that the topology can spawn across the

cluster as well as the number of tasks per primitive.

Chapter 4 Implementation 36

Now let us assume that we have the topology execution graph that is shown in Figure 4.8.

Green BoltRed BoltYellow Spout

Figure 4.8: A sample topology graph

Additionally to the above let us assume that we have configured the bolts and spouts

of that topology graph as follows:

• Yellow Spout: Parallelism Hint: 2, default number of tasks.

• Red Bolt: Parallelism Hint: 3, default number of tasks.

• Green Bolt: Parallelism Hint: 3, spawn 7 tasks.

Finally let us assume that we also instructed Storm programmatically to use 3 workers for

the aforementioned topology graph. The graph above given the previously mentioned

constrains would have a similar layout in its working processes as it is shown in Figure 4.9

that follows.

Running Topology

Executors Executors

Task D

Task C Task A

Task A

A Worker Process

Task D

Task C Task A

Task A

Task A

A Worker Process

Executors

Task D

Task A

Task A

A Worker Process

Figure 4.9: A sample running topology layout

It has to be noted that these mechanics are very useful due to the fact that Storm allows

to perform rebalancing without taking the affected topology offline. This is a very handy

Chapter 4 Implementation 37

feature as one might image because it allows the topology to scale without changing its

actual code or layout, hence avoiding its mandatory restart that these operations require.

The topology rebalancing can be performed using two ways, one via the command line

and one through the web-interface provided by Storm itself. The settings for rebalancing

have two different scopes, one for the whole topology where we can change the number

of available worker processes that it has and the other scope is per primitive and allows

us to change the number of its executors (i.e. threads).

4.2.8 Storm Grouping

Storm provides methods for grouping tuples using various ways which will be explained

below. It has to be noted that these groupings should not be confused with actual routing;

these groupings have only an effect within the same computation bolt and defines how

the tuples are going to be distributed amongst the spawned tasks by that particular bolt.

• Shuffle Grouping: The most "usual" case, tuples are distributed as evenly as

possible amongst the spawned bolt workers. Hence worker tasks will get, on

average, the same amount of tuples for processing.

• Fields Grouping: The stream is partitioned based on its schema field(s) and as

such the tuples that have equal key-fields will end up in the same task, while tuples

with different are more likely to end up in different tasks.

• All Grouping: This grouping just sends to all spawned tasks a copy fo each

received tuple, hence this grouping type has to be used with caution as it can

generate a lot of extra, possible unneeded, work!

• Global Grouping: This particular grouping just indicates that the entire tuples

of the stream are received by the bolt task that has the lowest task-id.

• None Grouping: This mean that we don’t care how the stream is grouped;

currently this grouping type is equal to Shuffle-Grouping. The eventual result

though is, that Storm will push down bolts with none groupings to be executed

in the same thread as the bolt or spout they subscribe from (when possible, i.e.

they are only subscribed to one primitive).

• Direct Grouping: This particular grouping is a bit special; when a stream has

this type of grouping for its tuples then the producer of the said tuples decides

on which worker task of the consumer will receive this tuple. This to be enabled

requires a direct stream declaration between the producer and consumer primitives.

Chapter 4 Implementation 38

The producer primitive can probe Storm at any time in order to receive the id’s of

its consumer tasks so that it can distribute its tuples accordingly.

• Local or Shuffle Grouping: Should the linked bolt has one or more worker

tasks in the same process, then these tuples will be shuffled to just those in-process

tasks. Otherwise, this grouping actually reverts to the default behavior that a

normal shuffle grouping has.

4.3 Ruby On Rails

This is an open-source framework [55] that is written in Ruby [56] and provides a full-

stack framework that is used to develop web applications that employ the Active-Record

and Model-View-Controller design patterns. Using the provided tools and libraries we

developed the front-end of our application that is used to show the processing results

with ease. Additionally it provides scalability and adherence to recent web-standards

with relatively no effort required. Hence due to the ease of use and features we selected

this framework to develop the front end of our Servicing-Layer.

4.4 Discovering Patterns using NeuralStream framework

Since we require strong ordering and exactly one processing then we have to make use of

Storm’s Trident API which enables the exactly once processing semantics. Unfortunately

this comes at the cost of performance 2 as to provide the exactly once processing guaran-

tee and strong ordering a lot more info needs to be exchanged inside the topology. Now

in order to successfully implement NeuralStream’s local pattern extraction algorithm

some design decisions had to be made.

First off in NeuralStream each batch has a fixed length but not height (which is the

number of monitored streams by that group) for all of the groups regardless of the

total number of monitored streams. We also assume that at each time tick something

will be emitted from the spouts and in case of sensor inactivity/time-out then a value

that indicates that fact is emitted instead or we substitute the missing values using the

reconstruction Ŝi(t, :) at time t. We also must introduce the notion of stream bucket

granularity which is necessary to avoid possible confusion in the system that might occur

in some corner cases as we will later explain but first let’s make an high-level illustration

of how NeuralStream is actually structured; a basic example of a 2-Stream case is shown

in Figure 4.10 that follows.
2when compared to regular non-Trident topologies

Chapter 4 Implementation 39

T3 T2 T1

Extract Local Patterns

Group-By

T3 T2 T1

Extract Local Patterns

Add Patterns

S1 Spout

S2 Spout

Join

Figure 4.10: A 2-Stream NeuralStream overview

As we can see we have two Spouts each indicating a separate group, say S1 and S2,

that emit tuples which contain the values of the monitored streams and an immutable

timestamp indicating when these values were taken. Afterwards for each one of group

tuples we perform the pattern extraction for all of the received tuples using Algorithm

5. The extracted patterns are then emitted and using the bucketization and joins are

aggregated, joined and afterwards summed in order to produce the global patterns using

Algorithm 6 for each time-bucket.

In the general case, we would have initially Si, i ∈ [1,m] number of groups that each one

of them is assigned to monitor a number of streams. Each of the m groups performs

the local pattern extraction and then forwards the result in order to calculate the global

patterns as it was previously explained in detail within Chapter 3.

4.4.1 Stream Bucket Granularity

The need for granularity adjustments only presents itself in the multi-node scenario and

occurs when we need to perform a bucketization operation on the time-measurements in

order to be able to place them on the correct time bucket for processing. More specifically

the problem occurs usually when we need to perform the bucketization operation in high

emit frequency scenarios as there might be synchronization issues, not in the processing

system itself but from the group clocks. To illustrate this problem let us first present

the diagram in Figure 4.11 that follows.

Chapter 4 Implementation 40

T3

T3 T2 T1

T2 T1

G3 G2 G1Join

Figure 4.11: 2 Stream bucket join

In Figure 4.11 we see two tuple streams and let us assume that each one of the tuples

transmitted are received in increasing order. The fields that each tuple has is a sensor

value and a timestamp indicating when it was taken. When we perform the join operation

it is normal to assume that the joins would be normally performed with a frequency

equal to the tuple emit rate. Now the thing is, that this kind of discrete processing

is costly and only possible if we have a tuple emit period that is large enough for it

to be feasible (for example one tuple per second), but becomes very hard to perform

in higher emit frequencies. This is due to the fact that we usually have some timer

inconsistencies within each group emit timer thus causing a possible confusion. Enforcing

strict timer synchronization is a sound solution albeit it becomes very hard to enforce

when need to synchronize clocks of higher frequencies. A concrete example of the problem

manifestation would be if node that executes a stream group Si, i ∈ [1,m] experiences

a sudden CPU usage spike (that is out of our control) and processing is delayed by

some milliseconds, hence the timestamp of that tuple will be incorrect (delayed). This

of course does-not mean tuples are being lost or that strong ordering is not preserved as

the tuples will both arrive and will be in the correct order but they will not have the

expected timestamp so they will probably end up in the wrong timestamp bucket.

It has to be noted that is not a distributed systems challenge but an epistemological

challenge as we need to enforce the domain knowledge in order to solve this problem.

There are many solutions to this, such as enforcing a strict (timer) synchronization

amongst all of the m groups, using incremental counters that are in-sync within each

of the groups and others. All of the examined solutions in practice add quite a bit of

unnecessary complexity to the system and are not providing the necessary performance

and stability improvement that we would like; thus in the end we opted to implement a

simple, yet elegant workaround for this problem using timestamps instead. Additionally

to avoid problems when having to deal with different timezones timestamps are generated

using the UTC timezone time and are parsed as such.

To solve this problem we have implemented a couple of solutions and the user depending

on the trade-offs that need to be made can select the best one that suits the particular

needs of his/her application as one of the two can be active at any given time throughout

Chapter 4 Implementation 41

the topology groups. The first solution is based on using interpolation to fill the missing

values and the other one is to perform averaging of the slots within each bucket. Details

on how we implement these techniques are explained later but first let us present in

Figure 4.12 that follows an example of the aforementioned problem.

T3

T2 T1

T2 T1

G3 G2 G1Join

Figure 4.12: An incomplete 2 Stream bucket join

Here we see that the top stream has started emitting tuples slightly sooner than the

bottom stream, hence in that time bucket after the bucketization operation the second

stream will have one less tuple as it is shown above. Now using interpolation we would

use it’s nearest value in order to fill in the missing values (in this case the values from

G2 orange tuple), thus we would have the following result as it is indicated in Figure

4.13 that follows.

T3

T2 T1

T2 T1

G3 G2

G1

G2

G3 G2 G1Join

Figure 4.13: Fixing 2 Stream bucket join using interpolation

Now the other solution that we have built in to rectify the problem is to perform an

averaging of the values in the time-bucket, effectively producing only one particular

value for that time bucket and will probably "play-down" or smooth the intensity of

Chapter 4 Implementation 42

the extracted patterns which in some cases might be desirable. Figure 4.14 that follows

shows an example of how the application of this method would look like in practice.

T3

T2 T1

T2 T1

(T1+T2+T3) / 3

(T1+T2) / 2

G3 G2 G1Join

Figure 4.14: Fixing 2 Stream bucket join using value averaging

Since this is a solution that uses domain knowledge to resolve the aforementioned prob-

lem, we give the user of our system the ability to define a value for the stream bucket

granularity, which shows how large the bucket buffer will be compared to the real tuple

emit-rate. As we said previously this is only necessary when we have a very rapid tuple

emit rate and is only used then. For example an acceptable bucket granularity if we emit

100 times per second (that is 1 tuple is emitted per 10ms) would be around the range

of 250 or 100 ms and should be a multiple of the expected single tuple emit time (which

in this case is 10 ms). As a rule of the thumb the granularity value should be a little

higher than the time bucket you wish to have, e.g. a 100ms bucket would have a suitable

granularity of 115 ≈ 120 ms.

4.4.2 Merging Extracted Patterns Efficiently

Using the stream bucket granularity notion as it was described in the previous section we

can essentially guarantee that each of the generated time buckets will have a valid value.

Each of the buckets will have a length equal to the granularity setting (e.g. 100 ms)

and contain, depending on the method used to resolve the missing values (if any), one or

multiple generated patterns from the group it originated; moreover, by design, all of the

buckets from all groups will have the same number of values. This enables us to merge

the local patterns in various ways with ease; this is attributed to the fact that these

operations do not depend on the actual timestamp of the values but on a time-bucket

that is linked to a particular time slot equal to the granularity value.

Chapter 4 Implementation 43

This enables us to perform merging with great flexibility; this is also aided by the fact that

Storm topologies cannot be changed after creation and thus we need to "hardwire" its

layout; although as it was previously noted we can perform a topology rebalance but this

is not applicable due to the nature of our particular application. Naturally we have built

into NeuralStream some basic features in order to provide a level of adjustment in the

fan-out that we allow in the join stage, although it would be unreasonable to have more

than one stage considering the network overhead but the option is still offered should one

desire to change it. This factor essentially builds a balanced tree using that parameter.

Two examples that use different balance factors for the join stages are depicted in Figures

4.15 and 4.16 that follow.

Join

Join

Global Pattern Stream

Spout Pattern Extraction

Spout Pattern Extraction

Bucketize

Bucketize

Spout Pattern Extraction

Spout Pattern Extraction

Bucketize

Bucketize

Spout Pattern Extraction

Spout Pattern Extraction

Bucketize

Bucketize

Spout Pattern Extraction

Spout Pattern Extraction

Bucketize

Bucketize

Join

Join

Join

Join

Join

Figure 4.15: Example of pattern merging

The above balance factor is 2; now, a tree that has a different balance factor of 8 for the

join stage is illustrated in Figure 4.16 that follows.

Chapter 4 Implementation 44

Global Pattern Stream

Spout Pattern Extraction

Spout Pattern Extraction

Bucketize

Bucketize

Spout Pattern Extraction

Spout Pattern Extraction

Bucketize

Bucketize

Spout Pattern Extraction

Spout Pattern Extraction

Bucketize

Bucketize

Spout Pattern Extraction

Spout Pattern Extraction

Bucketize

Bucketize

Join

Figure 4.16: Example of pattern merging using a different balance factor

4.4.3 Further Optimizations

Generally in every stage, we try to perform as many optimizations as possible in order to

increase the throughput of our framework and in this section we will outline some that

are worth mentioning as they provide significant performance increases.

4.4.3.1 Optimizing Matrix operations

One of the worst performance hits and bottlenecks that you can have when you are exe-

cuting a Java application is having to frequently invoke the garbage collector. This can

cause huge delays in application responsiveness during the collection phase as memory

is cycled from the JVM heap. The best way of (mostly) avoiding this problem is to pre-

allocate the variables used in order to avoid for as long as possible the invocation of the

garbage collector.

To better illustrate the problem let us use an example. We use two different methods

of matrix generation before performing a transpose operation on a randomly generated

matrix; the first one uses preallocation while the other one creates a new matrix for every

trial. We run 100 trials for each point taking the average execution time for each one. It

has to be noted that we use a High-Resolution-Timer (HRT) to measure the execution

Chapter 4 Implementation 45

time with an accuracy far greater than a jiffy3. The results are presented in Figure 4.17

that follows.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.005

0.01

0.015

0.02

0.025

0.03

prealloc

normal

Figure 4.17: Transpose execution of a matrix with and without preallocation

We see that the performance impact between the two is dramatic, the effects are even

more evident when we perform the most intensive method of our algorithm, the QR-

decomposition that is performed at the end of each block. The results are shown in

Figure 4.18 that follows.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

prealloc

normal

Figure 4.18: QR-Decomposition execution of a matrix with and without preallocation

3This is not a joke, it’s an actual metric when you are not using a high-resolution timer; for more
information please refer to Linux man pages

Chapter 4 Implementation 46

The results are even better than the previous one, the matrix that uses preallocation

follows a linear curve as we increase the dimensionality while the normal one follows

steeper curve which in the end tends to be exponential.

Now the question to ask is this: is it worth to have that performance-space trade-off?

Well, to accurately answer that we have to first model how much space we expect to

have allocated for each of our Si, i ∈ [1,m] groups that we will have in our topology and

then we can accurately have an answer to that question based on the node specifications

that we expect to have in our cluster. Let us have an example of the required space of

two largest matrices that we need to keep, which are S,Q ∈ Rp×k as they are shown

in Algorithm 5 and give us an upper bound of the space we need4. In Figure 4.19 we

can see an approximation of the storage required in order to store our tables in memory

using preallocation.

×10
4

0 1 2 3 4 5 6 7 8 9 10

0

5

10

15

20

25

k=5

k=10

k=15

Figure 4.19: Approximate required storage (in Mb) for each S-group for dimension
(x-axis) and k-patterns

As we can see, in the worst case that is shown in Figure 4.19 we require to track the

top-15 patterns out of 100k monitored streams in each group. To achieve that we need

only about 25Mb of memory for each of the m groups; couple that with the fact that

RAM today is readily available in servers at much larger capacities than it used to, we

think that in the majority of the cases we will be able to have that performance-space

trade-off.

In practice, we give the user the ability to provide the maximum amount of desired

patterns to be tracked at any given time within each of the m groups in the topology;
4Throughout our system we use double precision; hence each singular element requires 8-bytes (64-

bits)

Chapter 4 Implementation 47

knowing that allows us to perform the preallocation of every vector or matrix that we

will need as well as the generation of the p random disjoint variables. This preallocation

results in a dramatic increase of throughput as it is indicated from the above graphs and

is mainly responsible for maintaining the online processing for much higher dimensions.

4.4.3.2 Economy-Sized QR-Decomposition

Normally QR-decomposition requires a full-rank matrix, meaning that the resulting ma-

trix would have to be square (e.g. Q ∈ Rp×p), but this is prohibitive for obvious reasons.
As indicated in Algorithm 5 (as well as its previous iterations) we use a Q basis that

is Rp×k, which depending on k can be considerably smaller in size than the squared

one. This is due to the fact that we can perform QR-decomposition in "economy" mode

that is sufficient in most cases and is obtained by solving using back-substitution the

upper-triangular system shown in Equation 4.1.

R1x = QT1 b (4.1)

This equation finds a suitable x that minimizes ||b−Ax||2 norm thus providing a solution

to the least-squares problem, while keeping the size of Q1 at the desired size Rp×k.
Thankfully we only require the QR-factorization portion, so we do not have to "pay" in

our case the cost of solving the least-squares problem that will find a suitable x. Our

implementation uses Apache Mahout [57] math libraries for performing these operations

since these are widely tested and have a solid numerical stability ensuring that our results

will be accurate.

4.4.3.3 Optimal Stream Splitting

The splitting of the monitored streams amongst the available nodes is of utmost im-

portance in order to archive a balance between scalability and throughput. Although

NeuralStream offers the flexibility to have uneven number (dimensions) of monitored

streams in each of the m groups it is highly discouraged to do so, as Storm will not

be able to have an even computational load in each of the groups and as a result the

load-balancing will probably suffer. Thus, as a basic suggestion (and as per Storm’s hints

for performance) you should have 1 worker per node and an even (or very close to even)

distribution of monitored streams in the m groups that the topology will have.

Chapter 5

Performance Evaluation

This chapter can be outlined into two main sections. The first section being the evalu-

ation of the general algorithmic performance of our solution whilst performing a direct

comparison with a very similar framework (SPIRIT [22]). The second part will be the

actual performance evaluation of NeuralStream while it is being executed on an actual

Storm cluster.

5.1 Algorithmic evaluation

Our algorithm as we have seen before in Chapter 3 is a combination of the algorithm

presented by Mitliagkas [2] which provides the PCA approximation and subsequent basis

to project onto while extracting the top-k patterns using the projection idea stemmed

from Yang’s [3] work.

Now we will delve a bit into the expected performance of our algorithm based on the

theoretical bounds that are given in the Qτ basis quality; we know from [2] that the

subspace basis Qτ after Ω(Cσ,λkp log(p/ε)/ε2)1 sample ticks will, with high probability,

satisfy the following inequality dist(Qτ , U) ≤ ε. The dist function is the largest-pricipal-

angle-based distance function between any two given subspaces of the same rank (as

defined in [2]) and for completeness its definition follows in full.

Definition 1. Let U, V ∈ Rp×k which represent the orthogonal basis of subspaces span(U)

and span(V), respectively. Then, the distance between span(U) and span(V) is given

by:

dist(span(U), span(V)) = dist(U, V) = ||U>⊥V ||2 = ||V >⊥ U ||2 (5.1)

1Cσ,λk > 0 constant and only depends on σ, λk

48

Chapter 5 Performance Evaluation 49

where U⊥ and V⊥ represent an orthogonal basis of the perpendicular subspace to span(U)

and span(V) respectively.

For the finite sample analysis of the proposed PCA algorithm in [2] the authors assume a

probabilistic generative model, from which the data is sampled at each step t; specifically

each xt is sampled from:

xt = Azt + wt (5.2)

where A ∈ Rp×1 is a fixed matrix, zt ∈ Rk×1 is a multivariate normal random distribution

variable; i.e.,

zt ∼ N (0k×1, Ik×k) (5.3)

Finally wt ∈ Rp×1 is the "noise" vector that is applied and is again sampled from a

multivariate normal distribution such as,

wt ∼ N (0p×1, σ
2Ip×p) (5.4)

Now the complete theorem for ε-accurate recovery of the top-k principal components

follows.

Theorem 5.1. Let X = {x1, ..., xn} where xt ∈ Rp for every t that is generated using

Equation 5.2 and the SV D of A ∈ Rp×k is given by A = UΛV >. Let, without loss of

generality, λ1 = 1 ≥ λ2 ≥ ... ≥ λk ≥ 0. Also let T be defined as follows:

T = Ω

(
log(p/kε)/ log

(
σ2 + 0.75λ2k
σ2 + 0.5λ2k

))
(5.5)

Now let the block size be defined as follows:

B = Ω

((
(1 + σ)2

√
k + σ

√
1 + σ2k

√
p
)2

log(T)

λ4kε
2

)
(5.6)

Chapter 5 Performance Evaluation 50

Then, after T block-updates, with probability 0.99 the inequality dist(U,Qτ) ≤ ε will be

satisfied. Hence, the sufficient number of samples to achieve an ε-accurate recovery of

all the top-k principal components is:

N = Ω

(((1 + σ)2
√
k + σ

√
1 + σ2k

√
p
)2

log

(
log(p/kε)/ log

(
σ2+0.75λ2k
σ2+0.5λ2k

))
λ4kε

2

)
(5.7)

Moreover we can suppress the extra log factor that is placed upon T in favor of exposition

clarity as T already appears in the expression linearly. Thus the above Equation 5.7 can

be written as:

N = Ω̃

((
(1 + σ)2

√
k + σ

√
1 + σ2k

√
p
)2

log(p/kε)

λ4kε
2 log

(
σ2+0.75λ2k
σ2+0.5λ2k

))
(5.8)

For a detailed proof of this theorem one can refer to [2]. Now using the above equations

for T , B and N respectively we can observe the following.

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

34

36

38

40

42

44

46

48

50

52

T1

T2

(a) T plot

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

×10
4

0

2

4

6

8

10

12

14

B1

B2

(b) Block size

Figure 5.1: T and Block size graphs for different σ (x-axis) and dimension

The T scales more linearly than the block itself and is very sensitive to the value of

σ. It has to be noted that these are very extreme cases as the dimension (p) for the

blue and red lines are 100000 and 50000 respectively; both graphs depict the results for

the weakest principal component (k = 10 in both cases). Now we can see in Figure 5.2

that the required samples to recover the largest (and subsequently weakest) principal-

component with ε-accuracy follows a pattern that is similar to the Block graph shown in

Figure 5.1b.

Chapter 5 Performance Evaluation 51

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

×10
6

0

0.5

1

1.5

2

2.5

3

3.5

4

N1

N2

Figure 5.2: N samples required for ε-accurate recovery for k = 10

To see a more realistic scenario, let us use some reasonable p values, such as 1000, 500

respectively and keeping all other parameters the same. We now have the following

graphs as shown in Figure 5.3.

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

17

18

19

20

21

22

23

24

25

26

27

T1

T2

(a) T plot

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0

20

40

60

80

100

120

140

B1

B2

(b) Block size

Figure 5.3: T and Block size graphs for different σ (x-axis) and dimension

The block size as we can see remains within a reasonable range as well as the number of

block updates (T) that we require for an ε-accurate recovery. Now let us observe what

happens to the number of samples in Figure 5.4, which again follows a similar pattern

with respect to the block size as it is shown in Figure 5.3b.

Chapter 5 Performance Evaluation 52

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0

500

1000

1500

2000

2500

N1

N2

Figure 5.4: N samples required for ε-accurate recovery for k = 10

Thus, if we assume that the total variance within our time-series will be small, we can use

the framework using a tiny block size while still being able to retrieve with the desired ε-

accuracy all the principal-components. Interestingly enough, this is not an unreasonable

assumption to make as it is indicated from our experiment results which we will see in

the comparison graphs that follow.

5.2 Framework comparison

Now we will compare our algorithm and test its accuracy against another very popular

and successful framework which was introduced in [22]. The aforementioned framework

uses the complete PAST algorithm for projection approximation tracking outlined by

Yang [3] for extracting the patterns out of multiple streaming time-series. In order to

perform a similar and fair comparison we used the same datasets and compared the

extracted pattern quality as well as the reconstruction quality across the datasets using

objective metrics.

Additionally testing was performed on a second set of datasets as well; these datasets

contain basically an extended version of the initial datasets (4 times the length of the orig-

inal ones). These datasets were constructed by simply padding multiple initial datasets

together thus creating a longer set of the same values and patterns. Interestingly enough,

as will see from the benchmarks that follow NeuralStream is able to extract a greater

Chapter 5 Performance Evaluation 53

number of patterns from the dataset as well as achieve a better reconstruction quality in

the long run across all of the datasets.

The following settings where used for SPIRIT throughout all the dataset executions (in-

cluding both the regular as well as the expanded datasets),

• initial value of k = 3 (the default).

• Energy threshold was [0.95, 0.98] (the default).

• exponential forgetting λ factor was 0.96.

• hold-off ticks was 100 (the default).

For NeuralStream we used the following settings again throughout all the dataset exe-

cutions (including both the regular as well as the expanded datasets),

• initial value of k = 3.

• Energy threshold was [0.96, 0.99].

• exponential forgetting λ factor was 0.96.

• block size was 6.

• hold-off was equal to block size.

It has to be noted that since the frameworks construct their PCA approximations in

completely different ways the parameters above have different actual effects on each one of

them and should not be assumed to be the same. Finally the metrics used for measuring

the actual quality of the reconstruction is to measure the Peak SNR2 observed throughout

as well as the total mean-square-error (MSE) of the reconstruction. Finally in each table

we will display after each dataset execution the energy ratio of the reconstruction against

the actual data that is captured at that time from both frameworks.
2SNR: Signal-to-Noise ratio

Chapter 5 Performance Evaluation 54

5.2.1 Light data

The first dataset, contains light measurements from sensors; we see that this dataset has

a lot of patterns throughout its duration. NeuralStream’s pattern extraction for this

dataset is shown in Figure 5.5a while SPIRIT’s pattern extraction for the same dataset is

shown in Figure 5.5b. As we can see NeuralStream is able to accurately detect a greater

number of patterns when compared against SPIRIT; especially ones that have low-energy.

0 1000 2000 3000 4000 5000 6000 7000

-4000

-2000

0

2000

4000

6000

8000

10000

(a) NeuralStream patterns

0 1000 2000 3000 4000 5000 6000 7000

-6000

-4000

-2000

0

2000

4000

6000

8000

10000

(b) SPIRIT patterns

Figure 5.5: Patterns extracted from Light dataset

Now we compare and see the reconstruction quality of both methods against the original

data; this combined plot is shown in Figure 5.6 that follows. NeuralStream’s reconstruc-

tion is drawn using a red-colored line, SPIRIT is drawn using a green-colored line and

finally the actual data are drawn using a blue-colored line.

We see that NeuralStream can more accurately follow the actual data, and the recon-

struction quality remains high; additionally especially in high-peaked noise scenarios

SPIRIT can over-estimate the reconstruction. Now to objectively compare the two we

include the measured error metrics in Table 5.1 that follows.

Reconstruction Quality Comparison for Light Dataset
Metric NeuralStream SPIRIT
MSE 1.166550e+ 04 2.874328e+ 04

Peak SNR 7.461772e+ 00 3.545440e+ 00

Energy Ratio 95.94 95.03

Table 5.1: Reconstruction Quality comparison for Light dataset

Based on these metrics NeuralStream is marginally better to SPIRIT when comparing

the MSE and the peak SNR is approximately two times better in SPIRIT. We will now

present the results for the padded (larger) dataset and perform the same comparison.

Chapter 5 Performance Evaluation 55

0 1000 2000 3000 4000 5000 6000 7000

-500

0

500

1000

1500

2000

2500

Figure 5.6: Light data reconstruction

Figure 5.7 shows the NeuralStream’s pattern extraction while Figure 5.8 shows SPIRIT’s

pattern extraction for the same dataset.

×10
4

0 0.5 1 1.5 2 2.5 3

-8000

-6000

-4000

-2000

0

2000

4000

6000

8000

10000

Figure 5.7: NeuralStream patterns in the larger dataset

As we can see the results are similar to the ones above, but now let’s see the actual

reconstruction for this dataset which is drawn using the same notation as previously3

which is shown in Figure 5.9 that follows.
3NeuralStream: red-line, SPIRIT: green-line, Actual-data: blue-line

Chapter 5 Performance Evaluation 56

×10
4

0 0.5 1 1.5 2 2.5 3

-6000

-4000

-2000

0

2000

4000

6000

8000

10000

Figure 5.8: SPIRIT patterns in the larger dataset

×10
4

0 0.5 1 1.5 2 2.5 3

-500

0

500

1000

1500

2000

2500

3000

Figure 5.9: Light data reconstruction in the larger dataset

Again a similar graph as it was previously but it will be interesting to see how the quality

metrics were affected by the increased dataset size; we display those results in Table 5.2

that follows.

Reconstruction Quality Comparison for Light Dataset (4x)
Metric NeuralStream SPIRIT
MSE 1.145179e+ 04 2.858552e+ 04

Peak SNR 7.542068e+ 00 3.569343e+ 00

Energy Ratio 96.17 95.03

Table 5.2: Reconstruction Quality comparison for Light dataset (4x)

As it is shown above the Peak SNR is slightly increased in both cases while the most

important metric, the MSE, is further (slightly) reduced in both frameworks but as before

NeuralStream substantially lower MSE shows that it again produced a marginally better

reconstruction when compared to SPIRIT.

Chapter 5 Performance Evaluation 57

5.2.2 Humidity data

The second dataset, contains humidity measurements from sensors, again using the same

notation as above Figure 5.10a shows NeuralStream’s pattern extraction while Figure

5.10b shows SPIRIT’s pattern extraction on the same dataset.

0 1000 2000 3000 4000 5000 6000 7000

-300

-200

-100

0

100

200

300

400

(a) NeuralStream patterns

0 1000 2000 3000 4000 5000 6000 7000

-300

-200

-100

0

100

200

300

400

(b) SPIRIT patterns

Figure 5.10: Patterns extracted from Humidity dataset

We observe again that NeuralStream is able to capture more patterns, even if they have

low-energy. Now let us graph the actual reconstruction for this dataset which is shown

in Figure 5.11 that follows; using of course the same notation as before4.

0 1000 2000 3000 4000 5000 6000 7000

-10

0

10

20

30

40

50

60

Figure 5.11: Humidity data reconstruction

4NeuralStream: red-line, SPIRIT: green-line, Actual-data: blue-line

Chapter 5 Performance Evaluation 58

Again NeuralStream is able to reconstruct the data more accurately than SPIRIT and

this evident from the quality metrics that are shown in Table 5.3 that follows.

Reconstruction Quality Comparison for Humidity Dataset
Metric NeuralStream SPIRIT
MSE 1.922531e+ 01 1.943809e+ 01

Peak SNR 3.529207e+ 01 3.524427e+ 01

Energy Ratio 96.27 106.73

Table 5.3: Reconstruction Quality comparison for Humidity dataset

As we can see from the table above NeuralStream is able to achieve a better recon-

struction quality as its MSE is lower while the Peak SNR value remains close in both

frameworks, albeit SPIRIT edges here a bit. Now we will observe what happens when

we use the extended Humidity dataset instead. Figure 5.12 shows the NeuralStream’s

pattern extraction while Figure 5.13 shows SPIRIT’s pattern extraction for the extended

Humidity dataset.

×10
4

0 0.5 1 1.5 2 2.5 3

-300

-200

-100

0

100

200

300

400

Figure 5.12: NeuralStream patterns in the larger dataset

×10
4

0 0.5 1 1.5 2 2.5 3

-400

-300

-200

-100

0

100

200

300

400

Figure 5.13: SPIRIT patterns in the larger dataset

Chapter 5 Performance Evaluation 59

The above graphs are a great example that showing NeuralStream ability at detect-

ing patters with extremely high accuracy; for example the pattern that captures the

most energy (drawn in both graphs with a blue line) has a lot of differences between

NeuralStream and SPIRIT. But if we look at the original data reconstruction shown

in Figure 5.14 the stream trend that is more evident resembles a lot more the pattern

extracted by NeuralStream than the pattern that is extracted using SPIRIT.

×10
4

0 0.5 1 1.5 2 2.5 3

-20

-10

0

10

20

30

40

50

60

Figure 5.14: Humidity/Temperature data reconstruction in the larger dataset

Of course to back-up our claims we have to again compare the objective metrics which

are presented in Table 5.4 that follows.

Reconstruction Quality Comparison for Humidity Dataset (4x)
Metric NeuralStream SPIRIT
MSE 1.759700e+ 01 1.960188e+ 01

Peak SNR 3.567642e+ 01 3.520783e+ 01

Energy Ratio 96.28 98.30

Table 5.4: Reconstruction Quality comparison for Humidity dataset (4x)

As we can see the MSE of the reconstruction for the extended dataset of NeuralStream

is considerably lower than the one produced by SPIRIT while the Peak SNR values

remain close still backing our claims that the reconstruction quality is quite higher in

NeuralStream.

Chapter 5 Performance Evaluation 60

5.2.3 Humidity-Temperature data

The third dataset, contains humidity/temperature measurements from sensors; using

the same notation as above Figure 5.15a shows NeuralStream’s pattern extraction while

Figure 5.15b shows SPIRIT’s pattern extraction on the regular Humidity/Temperature

dataset.

0 1000 2000 3000 4000 5000 6000 7000

-200

-100

0

100

200

300

400

500

600

700

800

(a) NeuralStream patterns

0 1000 2000 3000 4000 5000 6000 7000

-400

-200

0

200

400

600

800

(b) SPIRIT patterns

Figure 5.15: Patterns extracted from Humidity/Temperature dataset

Now the actual combined reconstruction graph for the Humidity/Temperature dataset

is shown in Figure 5.16 using the same notation as in the previous graphs5.

0 1000 2000 3000 4000 5000 6000 7000

-20

0

20

40

60

80

100

120

140

160

Figure 5.16: Humidity/Temperature data reconstruction

5NeuralStream: red-line, SPIRIT: green-line, Actual-data: blue-line

Chapter 5 Performance Evaluation 61

Similarly with the previous graphs NeuralStream is able to reconstruct the original values

with grater accuracy than SPIRIT; this is also shown by the MSE and Peak SNR values

of Table 5.5 that follows.

Reconstruction Quality Comparison for Temperature/Humidity Dataset
Metric NeuralStream SPIRIT
MSE 6.004453e+ 01 7.577711e+ 01

Peak SNR 3.034607e+ 01 2.933542e+ 01

Energy Ratio 99.74 96.89

Table 5.5: Reconstruction Quality comparison for Temperature/Humidity dataset

Of course now we must apply both frameworks in the extended Humidity/Temperature

dataset. Figure 5.17 shows the NeuralStream’s pattern extraction while Figure 5.18

shows SPIRIT’s pattern extraction for the extended Humidity/Temperature dataset.

×10
4

0 0.5 1 1.5 2 2.5 3

-800

-600

-400

-200

0

200

400

600

800

Figure 5.17: NeuralStream patterns in the larger dataset

×10
4

0 0.5 1 1.5 2 2.5 3

-400

-200

0

200

400

600

800

Figure 5.18: SPIRIT patterns in the larger dataset

Chapter 5 Performance Evaluation 62

The actual reconstruction for the extended Humidity/Temperature dataset is shown in

Figure 5.19 that follows.

×10
4

0 0.5 1 1.5 2 2.5 3

-50

0

50

100

150

200

Figure 5.19: Humidity/Temperature data reconstruction in the larger dataset

Although the reconstruction of NeuralStream quality again is significantly higher than

SPIRIT in the extended set but, interestingly enough MSE is slightly reduced when

compared to the regular dataset as it is shown in Table 5.6 that follows. It has also to

be noted that this is the only extended dataset that MSE takes a slight hit; but as we

previously stated the MSE remains marginally better when compared to SPIRIT.

Reconstruction Quality Comparison for Temperature/Humidity Dataset (4x)
Metric NeuralStream SPIRIT
MSE 6.092705e+ 01 7.745539e+ 01

Peak SNR 3.028270e+ 01 2.924029e+ 01

Energy Ratio 99.76 96.89

Table 5.6: Reconstruction Quality comparison for Temperature/Humidity dataset
(4x)

Chapter 5 Performance Evaluation 63

5.2.4 Voltage data

The fourth and final dataset, contains voltage measurements from sensors; using the

same notation as above Figure 5.20a shows NeuralStream’s pattern extraction while

Figure 5.20b shows SPIRIT’s pattern extraction on the regular Voltage dataset.

0 1000 2000 3000 4000 5000 6000 7000

-5

0

5

10

15

20

(a) NeuralStream patterns

0 1000 2000 3000 4000 5000 6000 7000

-5

0

5

10

15

20

(b) SPIRIT patterns

Figure 5.20: Patterns from voltage dataset

Again NeuralStream is able to capture more patterns than SPIRIT can, but as we will

see later on in Table 5.7 that follows the MSE for NeuralStream’s reconstruction is a

little bit lower than SPIRIT’s. Now the actual reconstruction for this dataset through

one run is the following:

0 1000 2000 3000 4000 5000 6000 7000

-1

-0.5

0

0.5

1

1.5

2

2.5

3

Figure 5.21: Voltage data reconstruction

Chapter 5 Performance Evaluation 64

Interestingly enough NeuralStream shows that is able to actually perform very decently

following the actual data very closely; it has to be also noted that the MSE reported

by both frameworks in this dataset is the lowest of all the other datasets reconstruction

errors (and actually is very low).

Reconstruction Quality Comparison for Voltage Dataset
Metric NeuralStream SPIRIT
MSE 8.907373e− 02 7.175533e− 02

Peak SNR 5.863331e+ 01 5.957226e+ 01

Energy Ratio 99.13 96.30

Table 5.7: Reconstruction Quality comparison for Voltage dataset

Now let us see the performance that both frameworks have in the extended dataset. Fig-

ure 5.22 shows the NeuralStream’s pattern extraction while Figure 5.23 shows SPIRIT’s

pattern extraction for the extended voltage dataset.

×10
4

0 0.5 1 1.5 2 2.5 3

-15

-10

-5

0

5

10

15

20

Figure 5.22: NeuralStream patterns in the larger dataset

×10
4

0 0.5 1 1.5 2 2.5 3

-5

0

5

10

15

20

Figure 5.23: SPIRIT patterns in the larger dataset

Chapter 5 Performance Evaluation 65

Now the actual reconstruction for the extended voltage dataset is shown in Figure 5.24

that follows. It has to be noted that the notation used is the same as in the previous

reconstruction graphs.

×10
4

0 0.5 1 1.5 2 2.5 3

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

Figure 5.24: Voltage data reconstruction in the larger dataset

As we see from Table 5.8 the MSE of NeuralStream’s reconstruction suffers when com-

pared to SPIRIT’s but the Peak SNR remains still favorable to NeuralStream albeit

the differences are very small. Generally the MSE is very low for both frameworks and

accurately capture enough energy.

Reconstruction Quality Comparison for Voltage Dataset (4x)
Metric NeuralStream SPIRIT
MSE 8.202285e− 02 7.464013e− 02

Peak SNR 5.899145e+ 01 5.940108e+ 01

Energy Ratio 99.31 96.30

Table 5.8: Reconstruction Quality comparison for Voltage dataset (4x)

As a final note we find noteworthy that NeuralStream is able to capture the low-energy

patterns that are missed by SPIRIT in all of the above cases. In the next section we will

perform an evaluation of our framework when it is run on a Storm cluster.

Chapter 5 Performance Evaluation 66

5.3 NeuralStream cluster evaluation

In this section we will examine the actual performance of the multiple-node implementa-

tion of NeuralStream when it is executed on an actual Storm cluster. Before we present

any of our results we have to have a solid expectation of what speedup to expect.

5.3.1 Amdahl’s Law bound

Gene Amdahl made an argument in the seminal paper [58] that was presented in the

AFIPS conference in 1967 and gave an expectation on the theoretical speedup that one

can have given the parallel portion of the algorithm as a percentage. More specifically

he stated that given the n ∈ N threads of execution and B ∈ [0, 1] the fraction of the

algorithm that is strictly serial then by using Amdahl’s argument we can deduce that

the approximate time T (n) that an algorithm takes to finish when being executed on n

number of threads is given by the Equation 5.9 that follows.

T (n) = T (1)

(
B +

1

n
(1−B)

)
(5.9)

Additionally given the formula presented in Equation 5.9 we can calculate the expected

speedup of a program against the number of threads that it’s going to be used for its

execution using Equation 5.10.

S(n) =
T (1)

T (n)
=

T (1)

T (1)

(
B + 1

n(1−B)

) =
1

B + 1
n(1−B)

(5.10)

So, using Equation 5.10 that was shown above we can get an approximation on the

expected speedup that we will get when trying to use more threads on the same machine.

We can also extend Amdahl’s argument into multiple-processors as well; so given the

percentage of the strictly parallel portion of the algorithm as P ∈ [0, 1] (1 − P being

the strictly non-parallel portion) and N the number of processors that will be used for

Chapter 5 Performance Evaluation 67

its execution the updated formula for calculating the expected speedup when using a

multi-core scheme is given by Equation 5.11 that follows.

S(n) =
1

(1− P) + P
N

(5.11)

Thus, using Equation 5.9 and Equation 5.11 we can now draw the desired curves in

order to get an approximate speedup when using more computation resources for our

algorithm. First we draw the speedup curves using Equation 5.9 which is shown in

Figure 5.25 that follows.

0 10 20 30 40 50 60 70 80 90 100

0

5

10

15

20

25

b=0.03

b=0.1

b=0.16

b=0.23

Figure 5.25: Amdahl’s Law thread curves (x-axis n-threads, y-axis speedup factor)

We see that after one point using more threads yields limited or very small benefit unless

the algorithm is massively parallel (e.g. strictly serial part b being ≤ 0.05). Unfortunately

in the parallel version of the Amdahl’s argument the benefit of using more processors

diminishes even more quickly and this effect can be attributed to many things which

Chapter 5 Performance Evaluation 68

are out of the scope of this thesis; the speedup curves based on the parallel version of

Amdahl’s argument using Equation 5.11 are shown in Figure 5.26 that follows.

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

18

p=0.65

p=0.75

p=0.85

p=0.95

Figure 5.26: Amdahl’s Law parallel curves

5.3.1.1 Limitations and Assumptions

However the Amdahl’s law does not take in account the problem size changes and assumes

that the problem will have a finite and fixed size; thus in our case we can apply Amdahl’s

law using the assumption that we will measure the expected speedup that we will have

for each time-tick, as in our case each time-tick (which we define as the time required

to process a tuple that initially belongs in R1×p from start to finish) has a finite and

fixed size that remains, by design, approximately the same throughout our topology

execution.

It has to be noted that Gustafson’s law [59] as well as the Universal scalability law [60]

are more modern and built upon Amdahl’s law in order to better approximate the results;

for the needs and purposes of the analysis performed in this thesis we find that the basic

Amdahl’s argument will suffice.

Chapter 5 Performance Evaluation 69

5.3.2 NeuralStream expected speedup

Firstly, to get a good estimation of the expected speedup and be able to fit it against the

equations provided in the previous section need to model for each time-tick as a function;

additionally we expect that each time-tick will take approximately the same resources to

be completed (using the worst case each time). Hence a function that would be able to

model each time-tick would be the following.

Tns = Rtts + Pproc +Rttp + ceil(
M

Jfanout
)(Rttj + Jproc) (5.12)

Additionally, if we make the assumption that Rtts = Rttp = Rttj and to be equal to

(Rtts +Rttp +Rttj)/3 Equation 5.12 can further be transformed into the following:

Tns = 2Rtt+ Pproc + ceil

(
M

Jfanout

)
(Rtt+ Jproc) (5.13)

Where Rtt is the average round-trip-time at each stage and includes any data transfer

required, Pproc the pattern extraction processing time required within each group, ceil is

the ceiling function, M is the number of S groups in our topology, Jproc is the average

time taken for each join operation as well as Jfanout which is the fanout setting for the

join stages. We also assume the worst case regarding the number of Rtt’s required, which

is the one where each stage resides in a separate node.

The function is simple, and tries to model the actual processing stages as they are shown

in Figure 4.15 and Figure 4.16. Each of the expected values is taken as an average,

for example the Rtt value is the expected average of all Rtt’s that occur in each tuple

life-cycle. Of course the batching of each stage would have to be adjusted depending on

the number of monitored streams for each group, it would be unreasonable to have a

small batch when we monitor a relatively small amount of streams and vice-versa.

Chapter 5 Performance Evaluation 70

Now, using the function above we plot it using different values for the Rtt against the

number of monitored streams per group, the results are shown in Figure 5.27 that follows.

100 200 600 2400 12000

100

200

300

400

500

600

700

ref

rtt/2

rrt*2

Figure 5.27: NeuralStream performance function Rtt sensitivity

We see that, understandably, the overall latency of our system depends a lot on the

network performance but up to around 12000 streams per group we see that the latency

remains under 1 second; which is the desired functionality if we want to keep the online-

processing claim. Additionally let us see how other factors affect the scaling as well; in

Figure 5.28 that follows we adjust the join stage fanout values as well as the total groups

for the same amount of streams as before.

100 200 600 2400 12000
200

250

300

350

400

450

500

550

600

ref

p/j stage/2

p/j stage*2

pgroups*2

Figure 5.28: NeuralStream performance function sensitivity

Chapter 5 Performance Evaluation 71

As we can see from Figure 5.28 in both cases that use lower fanout values or more groups

we end up practically increasing the amount of stages we have and hence the Rtt’s that

have to "paid". In the other hand if we increase the allowed fanout value we see that we

actually reduce the required stages and in turn the network transfer needed; thus, ending

up with a better result overall.

5.3.3 NeuralStream real-world performance

Now using the findings of the previous sections we can analyze the real-world performance

that we got when running NeuralStream on an actual Storm soft-cluster, which had the

specifications shown in Table 5.9.

Soft-Cluster Configuration
CPU Core i7 3930K @ 4Ghrz (6-cores, 12 hardware threads)
RAM 8 × Corsair Dominator 4GB modules @ 1600Mhrz
Storage 2 × Samsung 840 Pro 256GB SSD in RAID0

Network Hypervisor Ethernet Adapter (at least Gigabit)
Bare-metal OS Ubuntu 14.10 Server

Table 5.9: NeuralStream soft-cluster system configuration

In order to simplify as well as standardize the soft-cluster creation we used Wirbelsturm

which automates almost all of the hassle required for the node VM creation as well as

their configuration; hence making executing topologies on soft-clusters and some cloud

providers a breeze. Based on our hardware we used the configuration shown in Table 5.10

for each of the VM nodes generated and is not changed throughout our experiments.

Soft-Node Configuration
CPU 1 vCPU with 2 vCores
RAM 3GB vRAM
Storage 10GB
Network VirtualBox Network Adapter (at least Gigabit)
VM OS CentOS

VM Hypervisor VirtualBox

Table 5.10: Soft-Node configuration

Our target is to saturate the machine resources (or come close) trying to optimally extract

patterns out of as many streams as possible using the hardware configuration of Table 5.9,

while keeping the online-requirement. That basically means the total processing time

Chapter 5 Performance Evaluation 72

from start to finish for each time-tick has to be kept lower than 1000ms, which as shown

in the previous section and Figures 5.27, 5.28 is expected to be around 12000 monitored

streams per group; the goal now is to find how many groups can we effectively process

before we start to lag. To find out we use four different populations of computation

nodes in order to not only find out how many streams we can concurrently process but

to evaluate the scalability of our system.

5.3.3.1 NeuralStream performance using 10 stream groups

In Figure 5.29 that follows we see the performance that we extract from our framework

using 2,4,6 and 8 nodes while each one of them having the amount of streams in each

iteration shown in the x-axis of Figure 5.29 while the y-axis represents the respective

time-tick processing latency that we get for each run. Also join stage fanout was set at 4

and was equal for all configurations; additionally the maximum tracked patterns setting

was set to 6 and was kept the same throughout our experiments.

We also had to adjust the number tuples in each batch depending on the of total moni-

tored streams; more specifically we had to decrease it in order to avoid latency problems

that would be introduced by having extremely large batches when we monitored a large

amount of streams (e.g. ≥ 2000). The stream granularity setting was set to be equal to

the batch emit rate, which was equal to 200ms at all cases.

0 2000 4000 6000 8000 10000 12000

0

100

200

300

400

500

600

700

n=2

n=4

n=6

n=8

Figure 5.29: NeuralStream performance using 10 groups

Chapter 5 Performance Evaluation 73

Performance was sustained was within acceptable limits at all cases (i.e. was online);

favoring in the end the most nodes at the most strenuous settings for this configuration

(concurrently monitoring 120k streams amongst 10 stream groups).

5.3.3.2 NeuralStream performance using 20 stream groups

Since we were significantly below the 1000ms latency mark, we will now double the

number of stream groups (20 in total) as well as the fanout value for both stages to 8

while keeping all the other parameters the same for each experiment.

0 2000 4000 6000 8000 10000 12000

0

200

400

600

800

1000

1200

1400

n=2

n=4

n=6

n=8

Figure 5.30: NeuralStream performance using 20 groups

In Figure 5.30 that is shown above it appears that we are starting to really saturate the

hardware processing capabilities as we pass the 1000ms mark by a significant margin

when we are using only two nodes at the most strenuous experiment, while all others

are close to the 1000ms mark; additionally the gains are not as large when compared to

the previous experiment (which is to be expected). Thus we can deduce that approxi-

mately we can monitor 240k streams in total using 8 VM nodes when using the hardware

configuration of Table 5.9.

Chapter 5 Performance Evaluation 74

5.3.3.3 Performance Analysis

In order to quantify the scaling of our framework a bit better we shall now plot the

scaling factors of the NeuralStream latency against the number of monitored streams

in both cases; Figure 5.31 and Figure 5.32 show the latency scaling factors when using

10 and 20 stream groups respectively. The graphs show the factor that the overall

processing latency has decreased (or if it is ≤ 0, increased) against the reference 2-node

case. Figure 5.31 that shows the latency scaling for 10 stream groups follows.

0 2000 4000 6000 8000 10000 12000

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

n=2

n=4

n=6

n=8

Figure 5.31: NeuralStream latency scaling when using 10 groups

Now we see that at best we can expect to have a latency reduction factor around 2.3x.

As one might expect when we increase the dataset size and come close to the saturation

point the returns (and hence the scaling factor) are diminished as Figure 5.32 that follows

clearly shows.

Chapter 5 Performance Evaluation 75

0 2000 4000 6000 8000 10000 12000

1

1.2

1.4

1.6

1.8

2

2.2

n=2

n=4

n=6

n=8

Figure 5.32: NeuralStream latency scaling when using 20 groups

Unfortunately the above figures seem that we are not getting very large speedup factors

but in truth the speedup is actually very good and we shall now explain why. The

scaling of the processing part against the maximum dimension of a stream group has

nearly linear scaling as it was shown previously in Figure 4.18 6 but sadly, the network

speed and more importantly its latency does not. In fact the processing latency per

tuple increases as we try to increase the total number of groups, stages or dimensions

(the worst case of course being if you combine all three!); this happens not due to actual

processing resource saturation but due to network restrictions.

Actually for monitoring thousands of streams we mandate the use of at least Gigabit

Ethernet for that exact reason; if we fall-back to the order 100Mbit Ethernet standard

then the theoretical processing throughput is cut by an order of magnitude, due to

network restrictions as with 100Mbit one would be lucky to manage sustained network

speeds of ≈ 9MB/s per NIC. On the other hand using Gigabit Ethernet we are able to

cap ourselves (with an average quality NIC) around ≈ 85Mb/s per NIC; although, to

achieve such (sustained) speeds one requires a very capable I/O subsystem (NAS-Arrays

or SSD’s) as well as a way to process network messages fast (which means either the

NIC has hardware packet processing or the host computer has a beefy CPU). In fact if
6albeit it shows only for the QR-decomposition part, but generally the pattern extraction algorithm

follows a linear scale-up curve; so this figure will suffice

Chapter 5 Performance Evaluation 76

we look back at Table 5.9 we use two SSD drives in RAID0 7, which essentially doubles

their performance; this was done in order to limit or eliminate in most cases the I/O

subsystem bottleneck.

To better indicate the size of network transfer we will now show how the tuple size

increase as we jump up the the monitored streams per group. Figure 5.33 shows the

amount of space (in Megabytes) each tuple takes against the range of tested amount of

streams per group.

0 2000 4000 6000 8000 10000 12000
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

msg len (MB)

Figure 5.33: NeuralStream message size scaling for given dimensions

7In this configuration these drives can serve 200K IOPS and perform sustained Reads at ≈ 1.1GB/s
and Writes at ≈ 1GB/s

Chapter 5 Performance Evaluation 77

Another important metric that we have to show is the amount of stress stage-18 puts to

our network. Figure 5.34 shows the aggregated tuple size as well as the total traffic per

second when using 10 and 20 groups respectively; for simplification we also assume that

at all cases we emit 1 tuple per batch which is not always the case, especially when using

lower dimensions.

0 2000 4000 6000 8000 10000 12000
0

1

2

3

4

5

6

7

8

9

10

g=10

g=20

g=10/s

g=20/s

Figure 5.34: NeuralStream total (stage 1) message length scaling when using 10, 20
groups

Additionally since we perform a dimensionality reduction the bucketization and join

stages on the order hand will be performed on tuples that belong in R1×max(k) so com-

pared to the stage-1 transfer costs will be basically free. Storm is also exceptionally good

at performing such aggregations when we have reduced the problem size to R1×max(k)

and thus happen extremely fast.

Another side benefit that is worth mentioning is that after stage-1 the size of the produced

tuples remains bound on the value of k regardless of the dimensions we have to monitor in

each group. That fact is a feature and as is shown in Algorithm 6 tuple size depends only

on the value of the maximum allowed patterns to be tracked in each group (max(ki), i ∈
[1,m]). As it was previously stated, it has to be noted that in the Rtt latency was taken as

8Stage-1 is defined as the stage from the Spouts → Pattern Extraction bolts

Chapter 5 Performance Evaluation 78

the average of all expected network latencies and includes the network transfers; further

complicating the analysis by using separate Rtt values for each stage would yield slightly

better results but at the cost of readability. For illustration purposes Figure 5.35 that

follows shows where this bottleneck is.

Join

Join

Global Pattern Stream

Spout Pattern Extraction

Spout Pattern Extraction

Bucketize

Bucketize

Spout Pattern Extraction

Spout Pattern Extraction

Bucketize

Bucketize

Spout Pattern Extraction

Spout Pattern Extraction

Bucketize

Bucketize

Spout Pattern Extraction

Spout Pattern Extraction

Bucketize

Bucketize

Join

Join

Join

Join

Join

Biggest Bottleneck (network)

Figure 5.35: NeuralStream largest bottleneck

As a final note, we have to mention that the topology spouts in order to test the

scalability of the system were assigned to emit a predefined and preallocated pattern

which had the shape of a square pulse that was served in a way that saved as much

memory as possible; this was what enabled us to scale out as much as we did because

tuple generation is a very CPU intensive task; thus if generated the tuples completely in

each spout then we would not be able to generate 5-tuples per second that had 12000

entries each. This was done in order to emulate the data being fetched outside of our

system and not generated inside the spouts themselves, which would be the case in a

production environment.

Chapter 6

Conclusion

In this thesis we tackled the problem of extracting representative patterns out of a vast

amount of concurrent data streams that use the time-series representation model. Our

experiments show that our algorithm is able to detect the top-k patterns out of n moni-

tored streams with extremely high accuracy even if these have low energy, while having

the lowest possible storage complexity O (kn). Furthermore scalability is unaffected as

in the distributed version of our algorithm n is actually bound by the largest amount

of streams in a group and not by the total amount of monitored streams. This novel

approach is the heart of our NeuralStream pattern extraction framework which we in-

troduce as an example use-case for our algorithm.

Natural expansion of this work would be to further refine the distributed version of

the algorithm using an Ei,τ (i-th group at τ block update) correction matrix after the

QR-decomposition step (which updates the projection base Qi,τ) within each group so

that we can more accurately bias the local subspaces in order to ensure that the global

projections converge at a much faster rate. Performing this in a way that will ensure

the correctness of our algorithm without impacting performance is not a trivial task and

requires significant effort.

Additionally, improvements to the usability of our pattern extraction framework would

be another likely area of focus; with the most useful feature being the ability to provide

pluggable spout implementations for fetching data from a reliable distributed queue

(such as Apache Kafka). It has to be noted that although this feature does not require

significant effort to be implemented it has been intentionally omitted. This is because

Kafka at the moment 1 is undergoing a major consumer API redesign which will be

released along with 0.9 version; hence, for the sake of future-proofing this feature should

be delayed until the new consumer API is rectified and pushed into the stable channel
1at the time of writing the version on the stable channel was 0.8.2

79

Chapter 6 Conclusion 80

(which will probably happen in the second or third quarter of 2015). Finally the front-

end of the framework is provided as a proof-of-concept and there are a lot of usability

improvements that can be made should one wants to use it in a production environment.

Bibliography

[1] N. Marz et al. Storm Processor: A Distributed and fault-tolerant realtime compu-

tation framework. https://storm.apache.com/, 2013-.

[2] Ioannis Mitliagkas, Constantine Caramanis, and Prateek Jainm. Streaming,

memory-limited pca. 2013.

[3] Bin Yang. Projection approximation subspace tracking. Signal Processing, IEEE

Transactions on, 43(1):95–107, 1995.

[4] Jimeng Sun, Spiros Papadimitriou, and Christos Faloutsos. Distributed pattern dis-

covery in multiple streams. In Advances in Knowledge Discovery and Data Mining,

pages 713–718. Springer, 2006.

[5] Odysseas Papapetrou, Minos Garofalakis, and Antonios Deligiannakis. Sketch-based

querying of distributed sliding-window data streams. Proceedings of the VLDB

Endowment, 5(10):992–1003, 2012.

[6] Kaushik Chakrabarti, Minos Garofalakis, Rajeev Rastogi, and Kyuseok Shim. Ap-

proximate query processing using wavelets. The VLDB Journal—The International

Journal on Very Large Data Bases, 10(2-3):199–223, 2001.

[7] Yannis E Ioannidis and Viswanath Poosala. Histogram-based approximation of set-

valued query-answers. In VLDB, volume 99, pages 174–185, 1999.

[8] Phillip B Gibbons and Yossi Matias. New sampling-based summary statistics for

improving approximate query answers. In ACM SIGMOD Record, volume 27, pages

331–342. ACM, 1998.

[9] Sameer Agarwal, Henry Milner, Ariel Kleiner, Ameet Talwalkar, Michael Jordan,

Samuel Madden, Barzan Mozafari, and Ion Stoica. Knowing when you’re wrong:

Building fast and reliable approximate query processing systems.

[10] N Alon, P Gibbons, Y Matias, and M Szegedy. Tracking joins and self joins in

limited storage. In ACM PODS Conference, 1999.

81

https://storm.apache.com/

Bibliography 82

[11] Alin Dobra, Minos Garofalakis, Johannes Gehrke, and Rajeev Rastogi. Processing

complex aggregate queries over data streams. In Proceedings of the 2002 ACM SIG-

MOD international conference on Management of data, pages 61–72. ACM, 2002.

[12] Alin Dobra, Minos Garofalakis, Johannes Gehrke, and Rajeev Rastogi. Sketch-based

multi-query processing over data streams. In Advances in Database Technology-

EDBT 2004, pages 551–568. Springer, 2004.

[13] Sumit Ganguly, Minos Garofalakis, and Rajeev Rastogi. Processing data-stream

join aggregates using skimmed sketches. In Advances in Database Technology-EDBT

2004, pages 569–586. Springer, 2004.

[14] Mayur Datar, Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Maintaining

stream statistics over sliding windows. SIAM Journal on Computing, 31(6):1794–

1813, 2002.

[15] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items in

data streams. In Automata, Languages and Programming, pages 693–703. Springer,

2002.

[16] Graham Cormode and S Muthukrishnan. An improved data stream summary: the

count-min sketch and its applications. Journal of Algorithms, 55(1):58–75, 2005.

[17] Charu C Aggarwal, Jiawei Han, Jianyong Wang, and Philip S Yu. A framework for

clustering evolving data streams. In Proceedings of the 29th international conference

on Very large data bases-Volume 29, pages 81–92. VLDB Endowment, 2003.

[18] Robert Schweller, Ashish Gupta, Elliot Parsons, and Yan Chen. Reversible sketches

for efficient and accurate change detection over network data streams. In Proceedings

of the 4th ACM SIGCOMM conference on Internet measurement, pages 207–212.

ACM, 2004.

[19] Charu C Aggarwal, Jiawei Han, Jianyong Wang, and Philip S Yu. On demand clas-

sification of data streams. In Proceedings of the tenth ACM SIGKDD international

conference on Knowledge discovery and data mining, pages 503–508. ACM, 2004.

[20] Christos Boutsidis, Dan Garber, Zohar Karnin, and Edo Liberty. Online principal

component analysis.

[21] Matthew Brand. Fast low-rank modifications of the thin singular value decomposi-

tion. Linear algebra and its applications, 415(1):20–30, 2006.

[22] Spiros Papadimitriou, Jimeng Sun, and Christos Faloutsos. Streaming pattern dis-

covery in multiple time-series. In Proceedings of the 31st international conference

on Very large data bases, pages 697–708. VLDB Endowment, 2005.

Bibliography 83

[23] Yunyue Zhu and Dennis Shasha. Statstream: Statistical monitoring of thousands

of data streams in real time. In Proceedings of the 28th international conference on

Very Large Data Bases, pages 358–369. VLDB Endowment, 2002.

[24] Rudolf Kulhavỳ. Restricted exponential forgetting in real-time identification. Au-

tomatica, 23(5):589–600, 1987.

[25] Charu C Aggarwal. On futuristic query processing in data streams. In Advances in

Database Technology-EDBT 2006, pages 41–58. Springer, 2006.

[26] Jeffrey S Vitter. Random sampling with a reservoir. ACM Transactions on Mathe-

matical Software (TOMS), 11(1):37–57, 1985.

[27] Pavlos S Efraimidis and Paul G Spirakis. Weighted random sampling with a reser-

voir. Information Processing Letters, 97(5):181–185, 2006.

[28] Sudipto Guha, Nick Koudas, and Kyuseok Shim. Data-streams and histograms.

In Proceedings of the thirty-third annual ACM symposium on Theory of computing,

pages 471–475. ACM, 2001.

[29] Gurmeet Singh Manku and Rajeev Motwani. Approximate frequency counts over

data streams. In Proceedings of the 28th international conference on Very Large

Data Bases, pages 346–357. VLDB Endowment, 2002.

[30] Richard M Karp, Scott Shenker, and Christos H Papadimitriou. A simple algorithm

for finding frequent elements in streams and bags. ACM Transactions on Database

Systems (TODS), 28(1):51–55, 2003.

[31] Minos Garofalakis, Johannes Gehrke, and Rajeev Rastogi. Querying and mining

data streams: you only get one look a tutorial. In SIGMOD Conference, volume

635, 2002.

[32] Graham Cormode and Minos Garofalakis. Sketching probabilistic data streams. In

Proceedings of the 2007 ACM SIGMOD international conference on Management of

data, pages 281–292. ACM, 2007.

[33] Michael W Marcellin. JPEG2000 Image Compression Fundamentals, Standards and

Practice: Image Compression Fundamentals, Standards, and Practice, volume 1.

springer, 2002.

[34] K Onthriar, Kok-Keong Loo, and Z Xue. Performance comparison of emerging

dirac video codec with h. 264/av. In Digital Telecommunications„ 2006. ICDT’06.

International Conference on, pages 22–22. IEEE, 2006.

Bibliography 84

[35] Anna C Gilbert, Yannis Kotidis, S Muthukrishnan, and Martin Strauss. Surfing

wavelets on streams: One-pass summaries for approximate aggregate queries. In

VLDB, volume 1, pages 79–88, 2001.

[36] Graham Cormode, Minos Garofalakis, and Dimitris Sacharidis. Fast approximate

wavelet tracking on streams. In Advances in Database Technology-EDBT 2006, pages

4–22. Springer, 2006.

[37] Volker Strumpen, Henry Hoffmann, and Anant Agarwal. A stream algorithm for

the svd. 2003.

[38] Charu C Aggarwal, Jiawei Han, Jianyong Wang, and Philip S Yu. A framework for

projected clustering of high dimensional data streams. In Proceedings of the Thirtieth

international conference on Very large data bases-Volume 30, pages 852–863. VLDB

Endowment, 2004.

[39] Feng Cao, Martin Ester, Weining Qian, and Aoying Zhou. Density-based clustering

over an evolving data stream with noise. In SDM, volume 6, pages 326–337. SIAM,

2006.

[40] Moses Charikar, Liadan O’Callaghan, and Rina Panigrahy. Better streaming al-

gorithms for clustering problems. In Proceedings of the thirty-fifth annual ACM

symposium on Theory of computing, pages 30–39. ACM, 2003.

[41] Haixun Wang, Wei Fan, Philip S Yu, and Jiawei Han. Mining concept-drifting

data streams using ensemble classifiers. In Proceedings of the ninth ACM SIGKDD

international conference on Knowledge discovery and data mining, pages 226–235.

ACM, 2003.

[42] Pedro Domingos and Geoff Hulten. Mining high-speed data streams. In Proceedings

of the sixth ACM SIGKDD international conference on Knowledge discovery and

data mining, pages 71–80. ACM, 2000.

[43] Graham Cormode and S Muthukrishnan. What’s hot and what’s not: tracking most

frequent items dynamically. ACM Transactions on Database Systems (TODS), 30

(1):249–278, 2005.

[44] Chris Giannella, Jiawei Han, Jian Pei, Xifeng Yan, and Philip S Yu. Mining frequent

patterns in data streams at multiple time granularities. Next generation data mining,

212:191–212, 2003.

[45] Piotr Indyk, Nick Koudas, and S Muthukrishnan. Identifying representative trends

in massive time series data sets using sketches. In VLDB, pages 363–372, 2000.

Bibliography 85

[46] Richard Cole, Dennis Shasha, and Xiaojian Zhao. Fast window correlations over un-

cooperative time series. In Proceedings of the eleventh ACM SIGKDD international

conference on Knowledge discovery in data mining, pages 743–749. ACM, 2005.

[47] Yixin Chen, Guozhu Dong, Jiawei Han, Benjamin W Wah, and Jianyong Wang.

Multi-dimensional regression analysis of time-series data streams. In Proceedings of

the 28th international conference on Very Large Data Bases, pages 323–334. VLDB

Endowment, 2002.

[48] Yasushi Sakurai, Spiros Papadimitriou, and Christos Faloutsos. Braid: Stream

mining through group lag correlations. In Proceedings of the 2005 ACM SIGMOD

international conference on Management of data, pages 599–610. ACM, 2005.

[49] Raman Arora, Andrew Cotter, Karen Livescu, and Nathan Srebro. Stochastic op-

timization for pca and pls. In Allerton Conference, pages 861–868. Citeseer, 2012.

[50] Ian Jolliffe. Principal component analysis. Wiley Online Library, 2005.

[51] Apache Hadoop. Hadoop, 2009.

[52] Apache Cassandra. The apache software foundation. URL: http://cassandra.

apache. org/(visited on 01/05/2013).

[53] Apache HBase. The apache hadoop project.

[54] Apache Foundation. ZooKeeper: A Distributed and fault-tolerant highly reliable

distributed coordination environment. https://zookeeper.apache.com/.

[55] David Heinemeier Hansson et al. Ruby on rails. Website. Projektseite: http://www.

rubyonrails. org, 2009.

[56] Yukio Matsumoto and K Ishituka. Ruby programming language, 2002.

[57] Apache Mahout. Scalable machine learning and data mining, 2012.

[58] Gene M Amdahl. Validity of the single processor approach to achieving large scale

computing capabilities. In Proceedings of the April 18-20, 1967, spring joint com-

puter conference, pages 483–485. ACM, 1967.

[59] John L Gustafson. Reevaluating amdahl’s law. Communications of the ACM, 31

(5):532–533, 1988.

[60] Neil J Gunther, Shanti Subramanyam, and Stefan Parvu. A methodology

for optimizing multithreaded system scalability on multi-cores. arXiv preprint

arXiv:1105.4301, 2011.

https://zookeeper.apache.com/

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Introduction to NeuralStream
	1.3 Thesis Contribution
	1.4 Thesis overview

	2 Related Work
	2.1 Data-Stream Approximation
	2.1.1 Data as a stream
	2.1.2 Data-Stream Approximation Overview
	2.1.2.1 Approximate Query Estimation
	2.1.2.2 Approximate Join-Size Estimation
	2.1.2.3 Aggregation Estimation
	2.1.2.4 Data Mining Applications

	2.1.3 Synopsis Design considerations
	2.1.3.1 Broad Domain Application
	2.1.3.2 Pass Constraints
	2.1.3.3 Time Efficiency
	2.1.3.4 Space Efficiency
	2.1.3.5 Robustness
	2.1.3.6 Drift-Awareness

	2.1.4 Data-Stream Approximation Techniques
	2.1.4.1 Sampling
	2.1.4.2 Histogram Generation
	2.1.4.3 Sketching
	2.1.4.4 Wavelet Transformations
	2.1.4.5 Linear Transformations

	2.2 Data Mining on Streams
	2.2.1 Clustering
	2.2.2 Classification
	2.2.3 Frequency Counting
	2.2.4 Time Series Analysis

	3 Problem Statement
	3.1 Preliminaries
	3.2 Problem Formalization
	3.3 PCA Decomposition
	3.4 Subspace Tracking
	3.5 Local Pattern Discovery
	3.5.1 Local Pattern Disocvery for fixed k
	3.5.2 Local Pattern Discovery for variable k
	3.5.3 Making Local Pattern Discovery more Robust

	3.6 Global Pattern Discovery
	3.7 Tree Expansion

	4 Implementation
	4.1 Lambda Architecture
	4.2 Apache Storm
	4.2.1 Streams in Storm
	4.2.2 Storm Architecture Introduction
	4.2.3 Storm Architecture Detailed
	4.2.4 Storm Stream Producers (spouts)
	4.2.5 Storm Stream Consumers (bolts)
	4.2.6 Storm Topologies
	4.2.7 Storm Parallelism
	4.2.8 Storm Grouping

	4.3 Ruby On Rails
	4.4 Discovering Patterns using NeuralStream framework
	4.4.1 Stream Bucket Granularity
	4.4.2 Merging Extracted Patterns Efficiently
	4.4.3 Further Optimizations
	4.4.3.1 Optimizing Matrix operations
	4.4.3.2 Economy-Sized QR-Decomposition
	4.4.3.3 Optimal Stream Splitting

	5 Performance Evaluation
	5.1 Algorithmic evaluation
	5.2 Framework comparison
	5.2.1 Light data
	5.2.2 Humidity data
	5.2.3 Humidity-Temperature data
	5.2.4 Voltage data

	5.3 NeuralStream cluster evaluation
	5.3.1 Amdahl's Law bound
	5.3.1.1 Limitations and Assumptions

	5.3.2 NeuralStream expected speedup
	5.3.3 NeuralStream real-world performance
	5.3.3.1 NeuralStream performance using 10 stream groups
	5.3.3.2 NeuralStream performance using 20 stream groups
	5.3.3.3 Performance Analysis

	6 Conclusion
	Bibliography

