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Abstract

The exterior appearance and structural stability of buildings are negatively impacted by
defects in the fagades of residential and historical structures. During maintenance,
manual labor is usually used to address fagade defects in buildings. This method takes a long
time, produces arbitrary outcomes, and may end in mishaps or casualties. Ultimately, it is ideal
to prevent all types of defects in the design or construction stages, but this is a very difficult
goal to achieve. Thus, there is a need for a method to effectively monitor defects in the
maintenance phase and actively respond to the occurrence of the defects. Therefore, it is
necessary to develop a technology that can continually and automatically monitor defects in
residential buildings that minimize the dependence on manpower. Furthermore, there are
various types of defects in residential building, and each defect type in the real world appears
in an irregular pattern. To consider the characteristics of these defects, automated defect
monitoring technology should be able to simultaneously detect and effectively classify various
types of defects in image data.

To address this proposal, plenty of methods have been implemented, utilizing different types
of deep learning models. The current thesis emphasizes on two different methodologies,
which are expanded upon and combined, in order to more efficiently manage defects by
minimizing the involvement of manpower.

The dataset used for training a deep-learning-based network contains actual residential and
historical building facade images. Faster regions with a convolutional neural network (Faster
R-CNN) structure are employed for more accurate defect detection in such environments. As
it is difficult to detect defects in a training environment, it is necessary to improve the
performance of the network. However, the object detection network employed in this
dissertation yields an excellent performance in complex real-world images, indicating the
possibility of developing a system that would detect a great number of defects in more types
of building facades.

Summarizing the contents of the present thesis, that combines two distinct methodologies,
and presents the results from the implementation on real historical buildings. The ultimate
purpose of the paper is to expand the use of non-traditional methods in defects in historical
building’s facades, that depend less on manpower. In the end of the dissertation, the results
are going to be evaluated in terms of their accuracy and their efficiency, concluding in some
key aspects the field will benefit from the transition to a more automated model.



NepiAnyn

Ta eAaTTWUATA OTLG TIPOCOWYELG KATOLKLWY KAl LOTOPLKWY KTLplwv emnpedlouv tn SouLkn
OKEPALOTNTA TWV KTLplwv Kot uTtoBabuilouv tnv efwteptkn gpdavion. Ta EAaTIWUOTA OTNV
npocoPn evoc KTipiou avteTwrnilovial cuviBwe e T Xpron epyatikol SUVALKOU KATA TN
ouvtnpnaon. Autr n MPoaEyyLon sival xpovoBopa, anodEPEL UTIOKELLEVIKA ATTOTEAECLOTO KOLL
umopel va 08nynoeL og atuxnuata i akoun kat Bopata. “Etoy, ivat tdavikn n mpoAndn oAwv
TWV TUMWV EAATTWHATWY oTa oTAdla Tou oXeSLACUOU 1] TNG KATAOKEUNG, 0AAA auTog eival
£€vag oAU SUOKOAOC oTOX0G va eTiiteuxOel. EMOPUEVWG, UTIAPXEL avayKn yla pa péBodo yla
TNV QMOTEAECUATLKA TIapaKkoAoBNoN Twv EAATTWUATWY oTn $Acn TNG CUVTNHPNONG Kal ThY
gvepyn 6pdon otnv sudavion Twv eANTTWUATWY. Q¢ ek ToUTOU, £ival amapaitnto va
avarnrtuxBel pla texvoloyia mou va UMOpPel va mopakoAouBel ocuvexwg Kal autopaTa
EAATTWUATO OF KTLPLA KATOLKLWY TIOU EAAXLOTOTOLOUV TV ££APTNON amod tov avOpwrmivo
napayovta. EnumAéov, umtdpyxouv S1ddpopol TUTOL EAATTWHATWY O€ KTipLo KATOLKLWV Kal KABe
TUTIOG EAQTTWHOTOC OTOV MPAYHATIKO KOOUO edavileTal He akavovioTo potifo.

MNa va AndBouv umodn Ta YoPAKTNPLOTIKA QUTWY TWV EANTTWHATWY, N CUTOMOTOTOLNMEVN
texvoloyia mapakoAouBnong eAattwpdtwy Ba mpEMeL va ivol os B€on va evtomilel kot va
taflvopel amotedeopatikd Stadopoug TUTIOUC EAATTWHATWY ota dedopéva eikovag. MNa thv
OVTLUETWITLON QUTAG TNG PoTtaong, £xouv edappootel MOAAEG HEBOBOL, XPNOLLOTIOLWVTAG
SladopeTikoug TUTOUC HovTtEAwWY Bablac ekpabnong. H mapovoa Siatplpn divel éudaon os
600 Sladopetikéc pebBodoloyieg, oL omoieg enekteivovral kal cuvdudlovtal, TPOKELUEVOU VA
SLAXELPLOTOUV QIMOTEAEOUATIKOTEPA TA EAATTWHATA, EACXLOTOMOLWVTAG TN CUUUETOXA TOU
avOpwrvou duvaplkou.

To oUvoAo eSopévwy TIOU XpNOLUOTIOLELTAL YLa TNV ekmaibeuon evog Siktvou mou Baaciletal
oe PBabld ekudOnon TEPLEXEL TIPAYUOTIKEG ELKOVEG TPOCOWNG KATOWKLWY KOl LOTOPLKWVY
KTiplwv. TaxUtepeg MePLOXEG HE Sopr OGUVEAIKTIKOU veupwvikoU &iktuou (Faster R-CNN)
XPNOLLOTIOLOUVTAL VLA TILO AKPLP EVIOTIOUO EAATTWHATWY o€ TETola TeptBaAiovta. Kabwg
elvalt SUOKOAO va €VTIOMIOTOUV EAQTTWUOTA O £€vOl EKMALSEUTIKO TEPLBAMOV yla TO
VEUPWVLKO 6iKTUO, gival amapaitnto va BeAtiwbel n anddoaon tou Siktuou. Qotdoo, To SikTuo
oviXveuong OVTIKELUEVWY TIOU XpnoLlUoToLeital o autr tn Slotplp amodidel e€alpetikn
anodoon oe OUVOETEG ELKOVEG TPAYMOTIKOU KOOUOU, UTIOSELKVUOVTAG TN Suvatotnta
ovamtuéng evog ouotnpato¢ mou Ba  oaviyveus peydAo aplBud eAATTWHATWV Of
TEPLOCOTEPOUG TUTIOUC TIPOCOWEWV KTLpiwv.

Yuvoyifovtag, n mapovoa SumAwpatik epyacio cuvSualet Vo Slakpltég pebodoloyiec, Kot
TMAPOUCLAlEL T AMOTEAECUATA QMO TNV €hOPUOYN O TPAYUATIKA LoTopLlKA Ktipla. O
QMWTEPOG OKOTOC TNG EPYACLOC ElVOL VO ETIEKTELVEL TN Xprion KN mapadootakwyv HeBodwv oe
EAATTWHATA OTLG TIPOCOYELS TWV LOTOPLKWY KTlpiwv, mou efoptwvtal Alyotepo amd To
avOpwrvo SuVapLKO. ITo TEAOG TNG SLaTPLPAG, TA AMOTEAECATA TPOKELTAL VA aLoAoynBolv
WG¢ POG TNV OKPIBELA KOL TNV OMOTEAECUATIKOTNTA TOUG, KATAANYOVTAG OE OPLOUEVEC BAGLKEG
mituxég otLto redio Oa emwdeAnOei amod tn petdPacn g £Vl IO AUTOATOTIOLNUEVO LOVTENO.
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CHAPTER 1 - INTRODUCTION

1.1 Problem Assessment and State of the Art

Defects in residential and especially historic buildings compromise the structural stability of
the structures and diminish their exterior appeal [1]. Building facades, in particular are
regarded as significant components of structures as they affect the buildings' beauty,
structural safety, and insulation while also acting as an outside barrier against the elements
and pollution. However, compared to other building components, aging is accelerated
substantially more quickly by prolonged exposure to unfavorable climatic conditions.
Eventually, this phenomenon shows up as a variety of defects on the building's structure [2,3].

Building facade defects are frequently repaired with manual labor during maintenance, a
method that is associated with various issues, such as the subjectivity of the results arising
from human-centered inspection, time consumption and anincrease in labor costs. Therefore,
a technique to efficiently detect defects in the maintenance phase and take prompt action
when they appear is required. It is essential to create technology that can continuously and
automatically detect defects in residential structures in order to reduce the reliance on human
labor. This technology has to be versatile and accessible, in order to better be incorporated in
the field of structural engineering [1, 4, 5].

A variety of trials of new technologies have been implemented by combining drones or robots
with imaging devices (e.g., infrared or multispectral camera, laser scanner, and RGB camera),
or a combination of these devices [2], to obtain the visual information of the fagade.

For instance, a technique known as SAR interferometry, first developed for airborne or
spaceborne applications [6], can be usefully exploited in ground-based radar. Typical
applications are topographic mapping [7] and more recently monitoring of ground
displacements [8]. Preliminary results have shown the method to be promising as a non-
invasive and remote sensing technique for structural monitoring of buildings [9]. Additional
non-destructive techniques, include infrared thermal imaging [10], ultrasound wave
propagation velocity [11], acoustic emission [12], and electrical resistivity [13]. The definition
of which test to use depends on the pathology type and the material to be inspected [14].
Some studies have proposed, that the use of UAVs for visual inspections can be an alternative
to costly photogrammetric measurements and time-consuming field measurements that
historical building inspection needs [15,16,17]. As stated, UAV data acquisition can be
successfully used in the energy sector for inventories of power lines and inspecting the state
of the energy infrastructure. Utilizing UAVs for inspections of hard-to-reach or hazardous
locations plus increases the safety of work [5].



Among these new technologies, RGB image-based visual inspection is the most conveniently
adopted choice in the industry and the most widely explored topic in the academia, because
it can provide detailed visual information with a satisfactory resolution and high speed [18].

Another recent approach to gathering information about a building’s fagade and structure
presents itself in the form of 3d reconstructions of the building. For instance, structure from
motion (SfM) and multiple-view stereopsis (MVS) can generate detailed models as textured
meshes to reconstruct 3D scenes after earthquake events [19]. Another more convenient
approach due to the size of the resulting files in the SfM, is the approach of models such as
level of detail (LOD) models, which contain simplified geometrical information about the
asset. Usually, LOD models are generated by post-processing 3D raw in- formation output
from laser scanner and/or photogrammetry pipelines [20] and may require some manual
intervention [21]. This model can be combined with damage information in the form of a
Digital Twin (DT). A DT is a precise digital representation of a physical object, in this case a
building, that can contain varying information depending on the application and is linked to
the physical entity via data or services. Especially useful have been the geometric digital twins
(GDT), which are 3D models that contain detailed information about the geometry of a
physical asset. To form a damage-augmented digital twin (DADT), these GDTs are combined
with damage information detected using image data [22].

Several studies in recent years have had promising results utilizing DTs to monitor the
structural health of buildings. For example, a study presented, to monitor and define
structural maintenance, the use of DT in the form of building information models (BIM) [23]
and another that used DTs to study the integrity of the structural system of historic masonry
buildings and specifically analyze the system response [24]. Another team of authors, Shabani
et al. [25], assessed different challenges and strategies for using DT to assess the building
response under different load scenarios. For damage assessments after natural disasters and
structural maintenance, a key application of DTs, another paper [26] presented ‘“‘regular”
post-earthquake assessment procedures and pioneered new technologies such as
photogrammetry and laser scanning after the Zagreb and Petrinja earthquakes in 2022. Lastly
a DT framework was proposed for post-earthquake building evaluation with unmanned aerial
vehicle imagery, component identification, and dam- age evaluation [27],[22]. However, the
process of extracting useful information from the collected images and models still remains
quite challenging.

A promising approach to this problem presents itself in the form of deep learning techniques.
Deep learning techniques are data-driven, rule-free processes. The sole steps in the process
of creating a model are choosing an appropriate network structure, a function to evaluate the
model output, and an efficient optimization algorithm. Deep learning techniques are driving
advances in computer vision to tackle the drawbacks of classical defect detection models that
allow the automatic capture of intricate structures of large-scale data with models comprising
multiple processing layers. However, this alternative approach poses a new set of setbacks
regarding its use in residential and historical building maintenance, and each one shows up in
the actual world in an irregular pattern. Automated defect monitoring system should be able
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to simultaneously detect and accurately categorize numerous types of faults in picture data
in order to take into account the characteristics of these problems [1].

Current studies and have applied various machine and deep learning algorithms to classify,
localize, and detect fagade defects that will be analyzed in the segments to follow. However
various building designs in raw images used, make it difficult to detect defects on their fagades
because of their various types and complex architecture and backgrounds [22]. Also, many
developed models generate predictions that are overlapping with each other, due to the
unpredictable nature of the defects, which could cause overestimation of the severity if using
the number of bounding boxes to calculate the number of defects. On the other hand, despite
the fact that certain research has suggested strategies for defining assessment areas for
condition evaluation in accordance with I1SO standards, the established evaluation areas are
insufficiently effective to deliver appropriate and objective information for the evaluation of
facade condition. Many techniques made the assumption that any random area may serve as
an evaluation area. So, when a number of defects are concentrated in a restricted area of the
evaluation area, this assumption could result in an underestimating of the severity level [3].
In addition to these problems, systems developed for defect detection, need to be able to
detect and classify a number of distinct defects that may occur in a building facade, which is
rarely a simple task.

The efforts of the present dissertation attend to approach the aforementioned problems
utilizing the already developed technologies of deep learning, computer vision and
automation. In the segments to follow, current studies will be analyzed, with the goal of
understanding the contributions made in the field of automated facade defect detection. Each
study is analyzed in each own chapter, with the original papers cited in the title of the
individual chapter. Furthermore, their efforts will be combined and expanded upon, with the
purpose of producing a complete model that is flexible enough to work with all kinds of
infrastructure, in real world conditions.

-11 -



1.2 Building Facade Defects

As stated above, visual assessments of building damage can be cumbersome, time-consuming,
arbitrary, and often challenging to record. The goal of the present thesis is to develop a system
that can generate pictorial guides for preliminary visual inspection of Historical buildings with
multiple fagades, concerning five (5) main defects [28]:

e cracks

e mold

e peeling paint

e stairstep cracks

e and water seepage

» Cracks account for the vast majority of all defects present in building facades, both
residential and especially historical. They are easy to form especially with the passage of
time weathering the facade materials and structure. Cracks can be classified according to
their depth and the area that is afflicted by the defect, requiring different levels of urgency
in the measures needed.

» Mold is most common in historical and heritage building facades, that are close to a body
of water or in an area prone to frequent rainfalls. Another common reason, is the leakage
from pipes or sewage that promotes the growth of fungi and other biological growths.

» Peeling paint occurs when moisture collects under a painted surface. Moisture enters the
surface from the unpainted side, gets absorbed and then dries. This repeated swelling and
shrinking of wood causes the paint to pull away from the surface, which results in cracking
and peeling paint.

> Stairstep cracks are a special kind of crack that form usually on brick, concrete or stone
block walls. This defect can be hazardous especially in the case of historical buildings as it
compromises the structural integrity of the whole building.

> Lastly water seepage occurs when water is leaking and comes into contact with the wall.
This can be cause by a variety of reasons and can also be the first step in the development
of other defects, such as mold and peeling paint. Hence the reason it should be
counteracted promptly.

These five defects are the defects the present dissertation will focus on detecting as they are
some of the most common and also urgent in the maintenance process. It is important to
note, that some defects on fagade may have similar appearances and are less distinguishable
than infrastructure defects, which makes it more difficult to categorize different defects to
generate a high-quality dataset. In addition, the diverse occurrence rate of fagcade defects
causes severer imbalance dataset problem than infrastructure defects. This is a potential
problem in the dataset creation process that will be addressed in later segments.
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Figure 1. Example of Defects: (a) Crack, (b) Mold, (c) Peeling paint, (d) Staircase Crack, (e) Water seepage
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1.3 Deep Machine Learning applied in Building Defect Detection and
Characterization

The term "deep learning" has become prevalent in the computer industry. Many real-time
applications utilize it, and it is a division of Machine Learning as a whole. To make decisions
regarding new data, deep learning needs a large amount of data, which is essential. Data
processing is done using neural networks that are categorized as Deep Neural Networks
(DNN). The phrase "deep neural networks" has gained popularity since neural networks are
frequently utilized in deep learning techniques. Convolutional-Neural Networks (CNNs) are
among the most often utilized deep neural networks. It is not necessary for humans to extract
features from CNN. The CNN directly extracts the characteristics from a dataset of raw images
with related features not pre-learned when networks are train on a batch of images. The most
accurate learning model for computer vision tasks such as object identification,
categorization, and recognition are this automated feature extraction method. Machine
Learning techniques that rely on human feature extraction and a different algorithm to
categorize each object have been around for a long time. However, in Deep Learning
techniques, the network itself extracts the features without involving the user and classifies
the items using several hidden layers [29]. Figure 2 depicts this.

Input layer Hidden layers Output layer
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Figure 2: Deep Learning representation
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Convolutional neural networks (CNNs) are characterized by their capacity to automatically
learn spatial hierarchies of features from raw input data. This property allows CNNs to identify
global structures, local patterns, and semantic representations. In most cases, convolutional,
pooling, and fully connected layers structure a CNN. Kernels are convolved with the input data
in the convolutional layers in order to extract the most important features and create feature
maps. The network is capable of handling translations and changes more efficiently due to the
pooling layers' assistance in reducing the spatial dimensions of the feature maps. Ultimately,
the retrieved features are combined and the classification is carried out by the completely
linked layers. To maximize performance, the output of the first layer is being provided as an
input of the next layer, which in turn will extract other complex features of the input image
like corners and combinations of edges [30].

Fully

Convolution Connected

Input

Feature Extraction Classification

Figure 3. In depth CNN representation

The layers of CNNs are made up of several artificial neurons. Artificial neurons are
mathematical functions that are used to calculate the sum of numerous inputs and give output
in the form of an activation value. They are analogous to the neuron cells that are utilized by
the human brain for conveying various sensory input signals and other responses. The value
of each CNN neuron's weights determines how it will behave. The artificial neurons of a CNN
can recognize a variety of visual traits and specifications when provided with pixel values. The
deeper into the convolutional neural network, the more the layers start detecting various
higher-level feature [30].

A great number of studies have incorporated Deep Neural Networks together with image
computing techniques, for the purposes of defect detection in historical building fagades. The
most common deep learning approaches that can be used for detection of objects and defects
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from the 2D/3D images in the architecture, engineering and constructing industry are the
convolutional neural networks (CNNs)-based image classification and patch-wise
segmentation [31] and fully convolutional networks (FCNs)-based pixelwise segmentation
[32],[33]. Therefore, a great number of authors have made contributions such as an
automated defect detection and classification method from closed-circuit television (CCTV)
inspections based on a deep convolutional neural network (DCNN) that takes advantage of
the large volume of inspection data [34], a condition-aware model of structures that
incorporated a textured 3D building model with defects detected by deep learning models
and mapped using UV mapping [35], a vision-based method for concrete crack detection and
density evaluation using a deep fully convolutional network (FCN) [37], a transfer learning
method based on multiple DCNN knowledge for crack detection [38] and an automated defect
detection system with an object detector based on a convolutional neural network (CNN),
commonly known as the YOLOV3 network [39]. Shen et al. [40] developed a Fourier-
transform-based steel bridge coating defect-detection approach (FT-DEDA) that makes use of
the fact that the differences between background pixels are not as large as the differences
between defect pixels to detect their existence. However, as image data obtained in the real
world are quite diversified, IPT using prior knowledge are limited in recognizing defects in
image data [41]. [1]

In general, detectors used in academia are divided into three types: detectors to classify the
image into a specific type of defect, detectors to localize the defect using a bounding box, and
detectors to segment the defect areas in the image. First, the model for classification is mainly
based on various architectures of CNN such as GoogleNet [42], VGG network [43, 44, 4] and
ResNet [28] to extract features and achieve image classification directly. These classification
models are still inefficient or inaccurate enough for defects localization even though they are
commonly integrated with different tools and algorithms. Thus, many studies used more
complex models to locate the defects with bounding boxes including one-stage detectors such
as the single shot multibox detector (SSD) [45, 46] and two-stage detectors such as Faster R-
CNN [3].

-16 -



1.4 Performance Evaluation Metrics

Some metrics that are broadly applicable across different object detection models, consist of
the following [47].

e Precision and Recall: Precision quantifies the proportion of true positives (TP) among
all positive predictions, assessing the model's capability to avoid false positives (FP).
On the other hand, Recall calculates the proportion of true positives (TP) among all
actual positives, measuring the model's ability to detect all instances of a class.

Precisi TP Recall TP
recision = TP+ FP ecall = TP + FN

e F1 Score: The F1 Score is the harmonic mean of precision and recall, providing a
balanced assessment of a model's performance while considering both false positives
(FP) and false negatives (FN).

Precision X Recall
F1 Score = 2-

Precision + Recall

e Confidence: The confidence scores that YOLOv8 outputs is a combination of two
confidence scores, box confidence and class confidence. This enables it to balance
between how certain it is that a box contains an object and how certain it is about
which class this object belongs to.

The most commonly used metric for evaluating the performance of object detection models
is the Average Precision (AP), traditionally called Mean Average Precision (mAP). It measures
the average precision across all categories, providing a single value to compare different
models. The mAP metric is based on precision-recall metrics, handling multiple object
categories, and defining a positive prediction using Intersection over Union (loU) [48].

Multiple object categories in an image must be located and identified by object detection
models. The mAP measure confronts this by computing the average precision (AP) for each
category separately and then averaging these APs across all categories. This approach ensures
that the model's performance is evaluated for each category individually, providing a more
comprehensive assessment of the model's overall performance [48]. By predicting bounding
boxes, object detection attempts to locate objects in images with high accuracy. To evaluate
the accuracy of the predicted bounding boxes, the AP metric incorporates the Intersection
over Union (loU) measure. loU is the ratio of the intersection area to the union area of the
predicted bounding box and the ground truth bounding box. It measures the overlap between
the ground truth and predicted bounding boxes (Fig. 4) [48].
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Figure 4: Intersection over Union (loU). a) The loU is calculated by dividing the intersection of the two boxes by
the union of the boxes b) examples of three different loU values for different box locations.
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CHAPTER 2 — DAMAGE AUGMENTED DIGITAL
TWINS (DADT) FOR INSPECTION OF
BUILDINGS [22]

2.1 Purpose of the study

The first essential study used for the present thesis proposes an end-to-end pipeline that
generates damage-augmented digital twins (DATs) for buildings at LOD3, including
geometrical information as well as data pertaining to damage condition and its
characterization. As the authors state, current procedures for the rapid inspection of buildings
and infrastructure are subjective, time-consuming, and cumbersome to document,
necessitating new technologies to automate the process. Though they have not yet been
included in infrastructure applications, recent advancements in image technology and
artificial intelligence, such as computer vision, provide the required tools for this automation
to take place. In their framework, multiple-views images are used to classify damage, segment
damage information, and build a level of detail model. The structure from motion, which is
utilized to recreate the architectural scene, and machine learning models that segment and
characterize damage form the basis of the technique.

In addition to this, the study focuses on crack detection and characterization, as cracks are the
most commonly observed form of damage during inspection, particularly in brittle structures
including concrete or masonry, making it crucial to segment cracks from images. According to
the paper, although image-based methods have used digital image correlation methodologies
for the characterization of cracks with fairly accurate results, they are restricted by the need
for a particular configuration of image devices and sometimes the structure itself.

To overcome this, Pantoja-Rosero et al. proposed a novel method for describing crack
kinematics based on 2D point registration, which employed as input binary masks that
represent crack patterns obtained through techniques such as deep learning, a methodology
valuable for automating damage assessments of real structures.

Computer vision techniques for damage assessment have also been used to automatically
generate 3D models. For example, structure from motion (5fM) and multiple-view stereopsis
(MVS) can generate detailed models as textured meshes to reconstruct 3D scenes after
earthquake events with good accuracy but resulting in big files for a large number of assets.
Because they provide streamlined geometrical information about the object, models like level
of detail (LOD) models are more practical to employ. In this study, LOD models for buildings
are built using CityGML 2.0, a standard for storing and transferring virtual 3D city models.
Building models are categorized into five levels of detail in accordance with CityGML 2.0,
ranging from LODO (the least detailed) to LOD4 (the most detailed), as shown below.
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Figure 5: The five LODs defined by CityGML 2.0. The geometric detail and the semantic complexity increase, ending
with LOD4, which contains indoor features. Source: Figure taken from Pantoja-Rosero et al.

The objective of the effort is an end-to-end pipeline that automatically creates a rich 3D model
with damage information in the form of a digital twin (DT) at LOD3 rather than individually
tackling the tasks necessary for a building damage assessment with the goal of partial
automation. A DT is an exact digital representation of a real-world object that connects to the
real thing through data and/or services and can hold a variety of information. The authors are
interested in geometric digital twins (GDT), which are 3D modelsthat contain detailed
information about the geometry of a physical asset. To form a damage-augmented digital
twin (DADT), these GDTs will be combined with damage information detected using image
data, specifically relating to cracks and their characterization via kinematic algorithms to
determine their propagation mode (mode | and mode Il), useful for planning future
interventions and decisions.

Several examples of recent studies had promising results using DTs are given, each indicating
the importance of implementing frameworks for the data collected from new technologies
to improve damage assessment in terms of objectivity, time, and documentation. Drawbacks
of these studies are also listed, such as the generation of very large documentation outputs
that are difficult to store, often focusing on a single asset, and rarely serve for rapid damage
assessments. So, the proposition is an end-to-end automated pipeline for creating DADT for
free-standing buildings using as input multiple-view RGB photographs of the building asset
using computer vision and machine learning to address these problems. This approach
produces a light-weight DADT model that is suitable for quick inspections, allows the addition
of semantic data derived from image data, does not concentrate on a single asset, is flexible
enough to be applied to other types of infrastructure.

The hereby proposed methodology requires as input multiple-view images of the building
asset suitable for SfM. SfM processes the images, producing camera poses and a point cloud
that are used to generate a LOD3 model. A CNN trained to detect cracks processes the images
used to generate the 3D model. The cracks are then characterized by computing their
kinematics with a least-squares-based 2D registration algorithm (crack displacements in
mode | and model II). Finally, using the SfM information, the damage information is mapped
to the LOD3 model to generate the desired DADT output, that includes a 3D reconstructed
geometry of a building asset with cracks and their characterization. The results generated
with this pipeline represent a significant step towards an automated infrastructure damage
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assessment, quoting the authors.

2.2 Methodology of the study

In the first study cited in this thesis, the authors offered a complete system for automatically
creating damage-augmented digital twins for automated building inspection. The objective is
to encode geometrical information about buildings as well as segment and characterize cracks
based on their kinematics using computer vision and machine learning algorithms including
SfM, CNN, and least-squares. This leads to the integration of a 3D LOD3 simplified model of
the building with damage data and its characterization, paving the way for automated damage
assessments for tracking an asset throughout its service life.

The pipeline begins with the collection of multiple-view RGB images which are then processed
by the SfM framework to reconstruct the structure (point clouds) and motion (camera poses)
of the building scene. From this information, an LOD2 model of the building is created by
clustering plane primitives in the structure, and an LOD3 model is created by projecting
openings segmented by deep learning models using camera poses and epipolar geometry.
Before mapping to the LOD3 model with the camera positions provided by the SfM technique,
damage is segmented using a trained CNN to generate binary crack patterns that are
described by a crack kinematics algorithm, providing the building's DADT. The pipeline
proposed in the current study is depicted below.
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Figure 6: Pipeline for generating LOD3 models of freestanding buildings [31]. Top: LOD models are generated using
the Polyfit framework. Bottom: LOD2 models are upgraded to LOD3 by segmenting and triangulating the 3D openings.

Firstly, the geometrical model (LOD3) has to be generated. To do this, the previously published
work of Pantoja-Rosero et al. is utilized, in which the authors created the model using a
combination of SfM and semantic segmentation. As shown in Fig. 6, their workflow starts by
using SfM (Meshroom software) to create point clouds and camera projection matrices for
each perspective of the building asset. The Polyfit algorithm processes the point cloud,
grouping the points into planar primitives to produce candidate faces. These candidate faces
are then selected using linear optimization to produce a LOD2 model.

To upgrade the LOD2 model to an LOD3 containing information about the building openings,
the authors used images registered in the SfM pipeline and their corresponding camera
projection matrix P to segment the openings and then triangulate them to 3D space using
epipolar geometry. In their pipeline, the openings in 3D are represented by their corners X,
whose triangulation is possible by determining their corresponding 2D image coordinates in
two views (X, X’) and the camera projection matrix of these two views (P, P’) and by using
singular value decomposition to solve the equation below derived from epipolar geometry:
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where A and A’ are constants denoting the location of the point X over the rays connecting it
to the respective camera centers. To extract information about the openings that is
triangulated to 3D, facade segmentation is carried out using trained deep learning models in
the image correspondent to the first view (detection of openings’ corners x). The deep
learning model uses the TernausNet architecture and a dice loss function. After inference, the
trained models generate three outputs as binary masks: opening corners, openings, and
facade. These are combined to define the (X, X') opening corner points to compute their 3D
correspondences (X) by solving the equation.

SfM point cloud Clustered planar primitives Candidate faces LOD2

Figure 7: Pipeline for generating LOD3 models of freestanding buildings. Top: LOD models are generated using the Polyfit framework.
Bottom: LOD2 models are upgraded to LOD3 by segmenting and triangulating the 3D openings.

The next essential step employed by the authors, is crack segmentation. The pipeline

automatically projects detected cracks in images into three dimensions. The trained model

developed by Pantoja-Rosero et al. is used for this purpose, which combines the FCNN
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TernausNet architecture with a loss function that takes the topological information of the
cracks into account. The loss function, TOPO-Loss, penalizes the loss value for pixels that result
in discontinuous cracks in the forecasts while the ground truth crack is continuous by using
the maximin connectivity technique. This method is utilized, in addition to its cutting-edge
results for crack continuity, because the data set supplied and used for training in that study
includes pictures of masonry buildings with the same typology as the examples here. The
example shown in Fig. 8 illustrates how the deep-learning approach used in the pipeline

segments cracks.

(a) (b)

(¢) ()

Figure 8: Crack segmentation using the deep-learning methodology developed by Pantoja-Rosero et al. [21]. (a) Input image of a
damaged building. (b) Binary mask output from the deep-learning model. (c) Segmented cracks overlaid on the input image. (d)
Cracks filtered using segmented facade and openings overlaid on the input image.

According to the study, it is crucial to accurately characterize the damage in order to ascertain

how structural damage develops over time. By employing kinematics to characterize the

cracks, the authors' research identifies the manner of crack propagation. In the framework,

the problem is framed and treated as a 2D point-set registration problem, and the crack

kinematics are calculated using a least-squares-based algorithm developed by Pantoja-Rosero

et al. According to their research, crack propagation is characterized by displacements of the
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crack pattern's edges throughout its length that are both normal and tangential. In order to
calculate this, opposite edges along the crack were detected in a binary mask representing
the segmentation of the crack pattern and then registered using non-linear least-squares to
find an optimal transformation matrix that encodes the crack displacements during its
propagation. In the current paper, the binary mask generated by the trained CNN is used as
input.

To map these aforementioned cracks, the pipeline provides raycasting functionality that
traces a ray beginning at the camera center of an image view with camera projection P, passes
by a point x in the image that belongs to the crack, and intersects X in its 3D correspondence
with one of the planes of the LOD3 model IT= AX + BY + CZ + D = 0 (with unitary plane normal
pn = [A4, B, C]). There is a lot more depth to the technique, which is beyond the scope of the
present thesis.

Finally, this process is applied to each crack skeleton point to obtain their 3D correspondences,
which are then merged with the LOD3 model to generate the DADT final output as shown in
Fig. 9.

it
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Figure 9: DADT—damage mappéa to 3D and merged with an LOD3 model to generate the DADT. (a) DADT composed of LOD3 and
cracks. (b) DADT composed of LOD3, cracks and tt/tn. (c) DADT composed of LOD3, cracks and tn. (d) DADT composed of LOD3,
cracks and tt
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The final deliverable of the process is a simplified geometry of the structure containing
damage information. Nevertheless, the same procedure can be used to map the identified
damage of more accurate models such as MVS, as shown in Fig. 10. Though these models
require a considerable amount of storage space. Instead, the selected LOD3 models are
compact and easy to store, making them ideal for use in situations in which numerous assets
must be inspected, such as in post-earthquake damage assessments.

An essential feature of the proposed pipeline, is that similar to the process for cracks, the
implementation can map any extracted semantic information from SfM-registered images,
including linear shapes and polygons that can be defined by points (X), as the DADT is
generated by augmenting a geometric model with cracks and kinematics. As an example, Fig.
10 depicts a building in which painted graffiti on a facade surface are manually segmented
from images by selecting polygonal vertices x and are then mapped to 3D to find X as the
intersection of rays with geometric model planes. When other types of damage, such as out-
of-plane deformations, spalling, leaching, rebar exposure, etc., are automatically segmented
and need to be mapped to a 3D space to obtain a more comprehensive DADT representation
for subsequent interventions, this feature becomes especially important. As for the accuracy
of crack segmentation, the Fl-score is employed, which is the most frequent metric for
evaluating the results of binary segmentation methods.

(a) (b) (c)

Figure 10:. Augmenting models with extra semantic information. (a) Semantic information segmented from images. (b) MVS textured model, cracks
and extra semantic information. (c) DADT composed of LOD3, cracks and extra semantic information.

-26 -



2.3 Results and Conclusions

In the results segment, the authors present a variety of case studies that apply the proposed
pipeline. The input data correspond to multiple-view images of free-standing masonry
buildings in Croatia that were damaged by the 2020 Zagreb and Petrinja earthquakes, one of
which is shown in Fig. 11. The results presented demonstrate the viability of this approach,
which will allow for a more comprehensive representation of building damage that can be
monitored over time.

Figure 11: DADT for free-standing masonry buildings whose damage is mainly cracks—View 2 (buildings A to E from top-down). (a) Image
view of damaged building. (b) 3D textured models of the buildings merged with spatial information of the cracks. (c) DADT of LOD3 +
cracks characterized via kinematics.

The values of the F1 score in regard to fracture detection are acceptable and showed that the
majority of the cracks were found. The measure below indicates that on average 68% of the
cracks are found. Although this number appears to be low when compared to other studies
for crack segmentation, the goal of this study is to improve quick damage assessment practice,
not crack detection accuracy, by providing a tool for documenting damage. However, as this
methodology is independent of the crack segmentation technique, it is easily adaptable if the
user has superior trained models.
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Table 1

Quantitative performance evaluation for DADT models.

LoDz LOoD3 Crack detection File size DADT [ME]

FRDS IMF FRDS IMF F1 Textured LOD
Building A 0.97 0.0252 0.94 0.0125 0.71 383.0 0.0424
Building B 0.94 0.0194 0.90 0.0146 0.69 405.9 0.1092
Building C 0.96 0.0659 0.94 0.0391 0.69 279.2 0.0546
Building D 0.91 0.0839 0.87 0.0782 0.69 222.2 0.0257
Building E 0.95 0.0477 0.94 0.0365 0.60 268.3 0.0326
Building F - fast 0.96 0.0471 0.94 0.0264 0.72 65.8 0.0190
Building G - extra 0.92 0.0280 0.90 0.0184 0.68 163.8 0.0173
Building H - extra 0.86 0.0520 0.84 0.0441 0.67 32.0 0.0222

The success of the methodology, the scientists observed in their conclusion, depends on the
quality of the image data. They contend that uncertainty analyses for each pipeline
component must be added in order to fully evaluate the pipeline as it is presented here; this
work will be considered future. One significant aspect that is not evaluated in this work is
damage characterization as the dataset at hand lacked information on crack measurements.

In conclusion the present study, proposes an end-to-end pipeline for automatically generating
DADTs of freestanding buildings comprised of 3D simplified models and cracks. In the
framework, multiple-view images of a building are processed via SfM, the output of which is
used to generate a simplified polygonal surface model of the building. Cracks detected by a
deep learning model are mapped to the geometrical model using SfM information to generate
the DADT. This combines three cutting-edge methods to generate LOD3 models of buildings,
semantically segment cracks, and characterize cracks with their kinematics. Contrary to
existing techniques that use DTs of buildings for structural health monitoring, this particular
pipeline does not call for manual user intervention, outputs a lightweight model that is perfect
for storage and quick assessments, makes it easy to add information from image data, can be
applied to multiple assets, and is flexible enough to work with other kinds of infrastructure.
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CHAPTER 3 — RULE-BASED DEEP LEARNING
METHOD FOR BUILDING FACADE DEFECT
DETECTION [3]

3.1 Purpose of the study

Another very interesting study, that focuses on a different set of problems with the purpose
of expanding the use of non-traditional methods in defects in historical building’s fagades, and
improving the efficiency and accuracy of the existent techniques, outlines a rule-based deep
learning approach for evaluation-oriented fagade defects detection that can be utilized to
generate useful evaluation areas using the data required for condition evaluation. As the
paper suggests, the methods in current research studies mainly focus on accuracy
improvement rather than providing effective evaluations of defects according to the
requirement of industry standards. In addition, traditional machine learning algorithms are
unable to achieve satisfying performance in detecting defects with higher complexity (e.g.,
spalling) or multi-class classification of defects. Therefore, this study proposes a rule-based
deep learning method to achieve evaluation-oriented facade defects detection, which can be
used to provide effective evaluation areas containing the necessary information (e.g., type,
location, quantity, and size of facade defects) for condition evaluation.

As stated, in recent years, various standards have been published regarding various types of
facades. According to the standards from the International Organization for Standardization
(1SO), the type, location, quantity, and size of facade defects are the key indices for evaluating
the condition of such facade. Rather than simply aggregating the information of each
individual defect on the facade, I1SO standards (i.e., the series of ISO 4628) require to define a
certain evaluation area and evaluate its condition by rating the quantity and the average size
of defects in the evaluation area. However, there is a disconnect between the demand for
ISO-compliant condition evaluation and the state of defect detection research today. On the
one hand, earlier research focused more on improving the classification, identification, or
segmentation of problems than on offering helpful data for condition assessment.
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For example, many developed models generated predictions that were overlapping with each
other as shown in Fig. 12(a), which could cause overestimation of the severity if using the
number of bounding boxes to calculate the number of defects. On the other hand, despite the
fact that certain research has suggested strategies for defining assessment areas for condition
evaluation in accordance with ISO standards, the established evaluation areas are
insufficiently effective to deliver appropriate and objective information for the evaluation of
facade condition. Many techniques made the assumption that any random area may serve as
an evaluation area. When a number of defects are concentrated in a restricted area of the
evaluation area, this assumption could, however, result in an underestimating of the severity
level, such as Fig. 12(b).

(b)

Figure 12: (a): Example of predictions that were overlapping with each other. (b): Example of number of defects
concentrated in a restricted area of the evaluation area.

The purpose of the present study, is to propose a rule-based deep learning method for facade
defects detection to automatically generate effective evaluation areas suitable for facade
condition evaluation, according to I1SO standards. Mask R-CNN is utilized as the foundational
model to accomplish this goal, and it is further modified utilizing the created rules. The three
stages of the development process—model training, model prediction, and dataset creation—
all incorporate the designed rules. The designed rule is put into practice in each phase to alter
the data generated to meet the needs of the evaluation region and increase detection
accuracy.

As stated by the authors, building a training dataset is the first stage in achieving deep
learning-based errors identification. To ensure that the detector performs as expected, the
dataset must adhere to certain specifications. First, the dataset's fundamental requirement is
the precise categorization of a variety of flaws. Some research used pre-existing guidelines,
such as an official design handbook or a particular inspection operation code, to satisfy this
criterion. Other studies developed their own categorization rule to produce the dataset. To
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achieve the function of localization, the locations of defects should be annotated. The most
convenient method used by a number of studies is to use bounding boxes to localize the
defects, where the bounding boxes should be created close to the boundaries of defects.
Confusion during the training stage resulted from the flaw covering the entire image, which
was frequently labeled inconsistently. Furthermore, the bounding boxes employed in earlier
research were simply used for localization and had no bearing on the assessment of the
condition.

Related studies tried to tackle this problem, nonetheless, the proposed methods can be
confusing and could cause inconsistency in the dataset for localization. Quoting the authors,
although previous studies have explored the annotation rules for classification and
segmentation, there are very few studies that proposed a rule to instruct the localization of
the defects and took the requirement of evaluation into consideration when creating a
dataset.

Using the created dataset, the developed deep learning model for defects detection can be
trained to achieve the supposed functions. As the most widely adopted defects detector, the
Faster R-CNN model contains a feature extractor to generate feature maps, a region proposal
network (RPN) to provide proposals, and a region of interest (ROI) head to predict the location
and class of each proposal.

To calculate the loss for backward computation and updating the parameters, the proposals
generated by RPN should first be matched with ground truth bounding boxes with the largest
intersection over union (loU) to assign ground truth labels. Then, the proposals are randomly
sampled for the next stage of prediction and loss calculation by comparing with the assigned
ground truth labels. However, considering the irregular shapes of defects, the defects may not
occupy the entire area of the ground truth bounding box. Instead, although having an IOU
value above the threshold, the recommendations might only address a very tiny percentage
of the defects. These suggestions should actually be classified as background defect items
rather than foreground defect objects, which would turn into noise while determining the
classification loss. However, this issue wasn't addressed in any of the earlier investigations.

Additionally, as the predictions made by these detectors frequently overlap, the number of
bounding boxes used to calculate the number of defects might overestimate the severity of
the problem. Instance segmentation approaches such Mask R-CNN, which can pinpoint the
defect using a bounding box and segment the area of defect inside the bounding box, were
used by some researchers to solve this issue, the authors note. Nonetheless, considering that
the Mask R-CNN model is developed based on the Faster R-CNN model, the problems
appeared in the Faster R-CNN model when dealing with defects detection still exist in Mask R-
CNN.

In conclusion, as the authors note, directly using the Mask R-CNN model cannot provide an
effective evaluation area as there are problems in all of the steps mentioned above. Firstly,
during the dataset construction process, inconsistent annotations may result from a lack of
specific and unambiguous annotation rules, particularly for the bounding boxes, which may
cause confusion during the formation of evaluation areas. Then, at the model training step,
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the quality of proposals is unstable due to special defects shapes, which can cause noises for
the classification of the evaluation areas and lastly, at the model prediction step, several
overlapped predictions may be generated with the same defect type which can cause
repetitive computation on the evaluation area.

3.2 Methodology of the study

In the methodology segment of the study, the authors present a summary of their techniques
used. The summary is explained in the Fig. 13 below and the methods are expanded upon in
the following segments. To solve the aforementioned research problems for generating
effective evaluation areas, this study optimizes the development procedure for achieving
facade defects detection according to the requirement of condition evaluation standards. As
shown in, the procedure consists of three steps: (1) dataset creation, (2) model training, and
(3) model prediction.

(1) Dataset Creation (2) Model training (3) Model prediction
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Figure 13: Development procedure for the evaluation-oriented fagade defects detector.

First, at the dataset creation step, the annotators are required to manually annotate the
boundary of each object using polygons and assign a defect category to each polygon. Then,
a bounding box would be automatically generated for each polygon using an algorithm.
Segmentation and classification guidelines are provided to the annotators in order to
standardize the manual annotation labor for the evaluation of facade condition. For
segmentation, the annotators must employ polygons to precisely identify all the regions
afflicted by the defects as masks, and the annotation of the masks must be as thorough as
feasible. For classification, the authors’ previous study has proposed a classification rule for
six defect categories. A bounding box is first constructed for each mask before localization.
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Then, a localization rule is created to organize the annotations of individual defects into
groups rather than directly output them to create rule-based annotations.

To create efficient evaluation zones for condition evaluation, defects are clustered. It makes
more sense to combine two defects that are adjacent to one another and belong to the same
defect category to create a wider bounding box for the evaluation area. In order to determine
if two defects should be grouped together and placed in the same evaluation area, a distance
threshold should be established. After interviewing several qualified facade inspectors for the
purposes of the present study, it is found that inspectors usually define the grouping of defects
based on their own experience and the evaluation precision required by the building owner.
Hence, different distance thresholds are adopted in different scenarios.

As a result, the algorithm created in this work may categorize defects based on any given
distance threshold d. According to the pseudo-code shown in Fig. 14, The algorithm will
iterate until no annotations should be merged, ensuring that every annotation is correctly
clustered in accordance with the distance threshold. Finally, all facade images have rule-based
annotations created automatically for the model's training, including labels, bounding boxes,
and masks.
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Algorithm 1 Merge the annotations in an image based on the localization rule

1:

woaoww

o N2

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:

Input: L = {[,}N.1,B = {ba}N.1, M = (mu}¥_.,d /L, B, M: lists of labels, bounding boxes, and masks
U « unique (L) = {c,}Y_; // obtain the unique class of labels
initialize merge < 1
while merge > 0 do
group {L, B, M} as {(Ly = (L}, B, =(bi}}",, My = {m,}}‘;,)}:ﬂ. where I; « ¢, forl; in L, and $Y., K, « N
initialize merge < 0, Lo < [, Bpew < [ Mpew <[]
foru = 1to Udo //forcach unique class
initialize Bperge < [ ] Mmerge < []
fori = 1to K, - 1do // for each box corresponding to the unique class
forj = i+ 1to K, do // for the each of the rest boxes corresponding to the unique class
if distance (b;, bj) < d or distance (b;, b)) < d then // decide whether b; and b; should be merged
merge « merge +1
Bnerge © Bmerge U [bis by}, Mimerge « Mmerge U [myi, my]
end if
end for
end if
end for
Lew < Lpew Y (In)l-,, where H « len (cluster (Bmerge)) and I, « ¢, // cluster the boxes as groups
Bpew < Bpew U merge (cluster (B,,.4.)) // merge each group of boxes
Mo & My, U merge (cluster (M, ,.)) // merge each group of masks
fori = 10K, do
if by N Bypeyrge == 0 then
Lnew < Lnew * lis Bnew ¢ Bnew + bis Mpew ¢ Mpew +m;
end if
end for
end for
L« Lpew, B « Byoy, M « M,,,, // update the annotations
end while // only when there are no boxes to be merged in the updated annotations can end the loop
Return L, B, M

Figure 14: Pseudo code for the algorithm to merge annotations in an image based on the localization rule.

-~~~ Threshold boundary for box 1

—— bounding box for box 1
-~~~ Threshold boundary for box 2

——— bounding box for box 2

I
.~ box1
1 d

Figure 15: Deciding whether bounding boxes 1 and 2 should be merged based on distance threshold d.
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Secondly, at the model training step, the model is optimized by combining a proposal
weighting rule to selectively learn from the proposals. To accomplish the goals of delivering
assessment information through instance segmentation, the model is built on Mask R-CNN
design. The pixel-level instance of each object inside the image is identified by instance
segmentation. The architecture of the suggested model is shown in Fig. 16. The proposal
weighting rule is put between the RPN module and the ROI head in this study's proposed
optimized model with a proposal weighting rule to enhance training quality.

ROI head

CNN backbone FPN [ Weighted proposals |
i | ROI align /S

[

I £ 7 Bounding box

fually u-'u:n‘cdu
/ o |
ayer .
Fagade image : 4 » Class

Figure 16: Architecture of the proposed facade defects detector based on Mask R-CNN model.

This model uses a standard ResNet-50 architecture for encoding the input facade images. At
every convolutional layer, the sizes of feature maps are reduced by half and the number of
feature maps is doubled through the CNN backbone. Through this feedforward calculation
from a bottom-up pathway, four feature maps are generated from lower convolutional layers
to upper convolutional layers. To generate final feature maps for processing in RPN, the
original feature maps are processed via a top-down pathway by hallucinating higher
resolution features to upsample the spatially coarser but semantically stronger feature maps
from higher pyramid levels. Then, the features are combined using lateral connections from
the bottom-up pathway and the top-down pathway to construct a feature pyramid that has
rich semantics at all levels. The above processing steps on feature maps are formed as FPN.
For each point in the feature maps, a set of anchors with various sizes and ratios are placed
using the anchor box generator and sliding window. The RPN then uses each anchor's two
output types of predictions—classification and bounding box regression—by combining them
with the feature maps for each anchor. For categorization, two scores are produced: one for
background (i.e., not a fault) and one for foreground (i.e., a defect). In bounding box
regression, four scores are calculated for each of the four offset values (x, y, w, h), where (x,
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y) corresponds to the center point's coordinates and (w, h) to the anchor's width and height,
respectively.

After the anchors predicted as foreground have their offsets determined, the offsets are
applied to those anchors to get the actual ROIs as proposals. The neighborhood anchors have
somewhat comparable scores and are regarded as proposals for the same candidate region
because the anchors are produced by the sliding window. Due to this, hundreds of thousands
of redundant proposals are generated, and processing them is labor-intensive. The Non-
Maximum Suppression (NMS) technique is used to reduce the overlapped proposals by
filtering the foreground proposals depending on a threshold value of loU.

These approaches nevertheless present a burden for subsampling calculations that require
more computing. Furthermore, only a very small part of these region proposals—which are
first categorized as foreground—are positive (i.e., defective), while the majority are negative
(i.e., not defective), as the authors of the present study state.

Arandom sampler is used to select a predetermined number of proposals with predetermined
ratios of positive and negative in order to solve these issues. An loU matrix comprising the loU
between each proposal's bounding box and its ground truth is first calculated. The ground
truth with the highest loU value is determined for each proposal, and its bounding box and
label are taken into consideration as the proposal's matching ground truths. Therefore, if the
biggest U value already acquired above a specific loU threshold, the proposition is said to be
positive. If not, the proposition is deemed to be a negative one. Usually, the loU threshold to
classify the proposals is set as 0.5. However, the mask of the defect may only occupy a small
portion of the area of the bounding box in comparison to the backdrop due to the particular
forms of either the individual defect or defects group.

To solve the additional problem of the proposal only covering a very small part of the mask
while the 10U is still larger than 0.5, which will make the proposal to be defined as a positive
one and assigned a label of defect as ground truth during training, proposal weighting rule is
designed to adjust the weights of proposals by preferring proposals with higher quality.

In this study, the proposal quality is determined by the value of mask ratio, which is calculated
as the ratio between the area of ground truth mask inside the proposal and the total area of
ground truth mask. A proposal with a higher mask ratio is supposed to have a higher quality
on classification. Considering that some proposals may have high mask ratio but low loU,
directly using the mask ratio to substitute the loU would influence the performance on
regression. As a result, the loU and mask ratio are combined in this study's proposals. The
mask ratio is utilized to specify the weight of the proposal for the purpose of calculating
classification loss, but the I0U threshold is still used as the index to give the ground truth label
to the proposal. The weight increases as the mask ratio rises. The significance of the
suggestion with a lower mask ratio would therefore be diminished in the overall loss.
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Algorithm 2 Rewceight the proposals

1: Input: L = {{, .. B = {5, oy // L, R: lists of ground truth labels and mask ratios of the sampled proposals
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Figure 17: lllustration of the calculations of loU and mask ratio.

In addition, this study also uses the proposal weighting rule to alleviate the imbalance problem
of proposals. The imbalance problem of proposals is caused by the various sizes of objects in
an image. Because the anchors are generated for each point of feature maps, there can be
much more anchors matching the ground truth of larger objects than smaller objects.
Therefore, the proposal weighting rule is further improved by assigning the same total weight
to each group of proposals with the same label to alleviate the imbalance problem. Fig. 17
presented the pseudo-code to reweight the proposals according to the proposal weighting
rule.

In summary, this proposal weighing rule added a weight to each proposal while maintaining
the Mask R-CNN model's structural integrity. The mask ratio defines the proposals with
greater quality, and the weight contributes to emphasize such offers. Because a proposal with
a greater mask ratio implies that it contains a higher proportion of the object rather than the
backdrop inside the bounding box, it should be emphasized that the weight would only be
relevant for classification. Furthermore, by balancing the overall weights of suggestions with
various labels, the weight also resolves the issue of imbalance on proposals between small
defects and major defects.

Finally, the optimized model outputs a series of proposals with predicted coordinates for
bounding box, a predicted label with a score, and a predicted mask of the defect. A
rectification rule is used to adjust the raw predictions into rule-based predictions, as some
proposals are still overlapped with each other or could not meet the defined distance for
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evaluation. As the authors state, even those who created the model cannot fully comprehend
how the variables are merged by the model to make predictions, despite the fact that the
current training method has increased prediction accuracy. As a result, it's possible that the
deep learning model won't create predictions that closely adhere to the dataset's predefined
criteria.

To rectify the model predictions of defects to meet the requirement of condition evaluation,
the raw predictions are further adjusted according to a rectification rule. This rectification rule
is mainly based on the localization rule as shown in Figure 14.

So as explained before, to reduce invalid predictions with low confidence, predictions with
scores lower than a threshold are filtered out. Predictions with low confidence would
influence the adjustment quality based on the rectification rule and the prediction quality
based on the detection accuracy. It should be noted, according to the authors, that because
the score threshold is only applied to test images during application, it has no impact on the
model's training performance. If two anticipated defects share the same defect category and
are closer together than the threshold d, they will be combined. Additionally, the final score
of a combined prediction result is the highest score among the merged forecasts. As a result,
the rectification rule might be used to optimize the predictions for condition evaluation.

3.3 Experiments and Results

Two experiments were planned to test the performance improvement and to discuss the
ability of the suggested strategy, with various distance threshold settings, in order to confirm
the viability for constructing an evaluation-oriented fagade faults detector.

For Experiment 1, four facade defects detector development settings were created:

1) Setting 1: original development procedure without rule,

2) Setting 2: development procedure with rule-based dataset creation,

3) Setting 3: development procedure with rule-based dataset creation and rule-based
model training, and

4) Setting 4: development procedure with rule-based dataset, rule-based model training
and rule- based model prediction.

The distance threshold for Experiment 1 is the 25th percentile, which is 246 pixels.

The goal of the second Experiment was to demonstrate that the suggested approach could be
used with various distance threshold values to address various facade condition evaluation
scenarios. In order to compare the three distances, which were chosen based on the
distribution of distances between all manual annotations of defects with the same label, three
distances were examined. As a result of the discovery that the majority of image defects could
already be grouped using the distance value at the 50th percentile of all distances, the upper
limit of the distance threshold for comparison in Experiment 2 is set at the 50th percentile, or
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675 pixels. The other two distance thresholds for comparison are 96 pixels and 246 pixels,
which are the 12.5" percentile and the 25th percentile, respectively.

d =0 pixel d =96 pixels d = 246 pixels d = 675 pixels
(12.5" percentile) (25" percentile) (50" percentile)

Figure 18: Examples of dataset under different settings of distance threshold: (a) example with crack and (b)
example with blistering and delamination.

The visualization results in the following Table, show the comparison in the results of the first
Experiment for the four Settings.

mAP30 (localization) mAPS) (segmentation)

Min Max Mean Variance Min Max Mean Variance
Setting 1 0.5036 0.5143 0.5080 0.1340 04609 0.4683 0.4640 0.0906
Setting 2 0.6196 0.6345 0.6281 0.2320 0.5530 0.5612 0.5470 0.0021
Setting 3 0.6460 06406 0.6480 0.0148 03740 03774 0.37a7 0.0103
Setting 4 0.6480 0.6337 0.6500 0.0217 03814 0.3835 0.5837 0.0157

Comparison of mAP50 (localization) and mAP50 (segmentation) for the four settings

Experiment 1's findings can be summed up by asserting that the comparison showed how the
designed rules, which were implemented in three steps—dataset creation, model training,
and model prediction—successfully enhanced the performance of the facade defects detector
in both localization and segmentation. The deep learning model was able to offer bounding
boxes that were better suited for condition evaluation and had a greater detection accuracy
thanks to the rule-based dataset creating process. By producing more proposals that were
correctly classified and enhancing the training quality to stabilize the training process, the
rule-based model training stage further increased the detection accuracy. Furthermore, the
rule-based model prediction step rectified the predictions into effective evaluation areas.
Although the total running time for training and testing after applying the three designed rules
had increased, according to the study, the detection accuracy (i.e., mAP50) in localization and
segmentation had improved by 27.9% (from 0.5089 to 0.6509) and 25.8% (from 0.4640 to
0.5837), respectively. Besides, the results of Setting 4 were much more effective for condition
evaluation compared to the results of Setting 1. Therefore, Experiment 1 demonstrated
superior performance compared to the traditional model.
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As for the second Experiment conducted in this study, as shown in Fig. 19, the value of mAP50
of Setting 2 did not have an obvious change as the distance increased. However, the values of
mAP50 for both Settings 3 and 4 increased with the increase of distance. The predictions of
Settings 3 and 4 had a similar trend because the model of Setting 4 was inherited from Setting
3. There are two potential reasons that caused the increase of mAP50 for Settings 3 and 4. On
the one hand, the dataset itself became easier to be learned and verified because number of
small objects was decreased with the increase of distance and the bounding boxes became
coarser on localization. On the other hand, the rule-based model training in both Settings 3
and 4 kept the quality of training stable by always highlighting high-quality proposals.
However, Setting 2 could not benefit from the dataset with a larger distance setting because
the model of Setting 2 could generate more low- quality proposals with the increase of
distance, considering that the proportion of background further increased with the increase
of distance. This problem also caused the increase of variance for Setting 2 as the distance
increased, whereas the predictions from Settings 3 and 4 remained stable.
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Figure 19: Comparison of the results for the three distance settings: (a) mAP50 of localization and (b) variance of
mAP50 of localization.

Additionally, it became clear that predictions made using Setting 4 consistently had the
highest mAP50, demonstrating the ability of the rule-based model prediction to rectify the
predictions under different distance settings. The rectification rule for model prediction was,
however, sensitive to the predictions due to the substantially higher variance of Setting 4
compared to Setting 3, even minute changes to the anticipated bounding boxes from Setting
3 might produce completely different predictions from Setting 4. Regardless of the
adjustments to the distance setting, the three rule-based settings all performed better than
Setting 1 overall. Furthermore, the model from Setting 4 consistently outperformed other
models at various distance settings, and the change in distance settings had no
significant impact on its performance.
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3.4 Conclusions of the study

By enhancing the development of the existing Mask R-CNN model, this study aims to provide
helpful information, especially effective evaluation regions, for achieving visual evaluation of
facade condition in accordance with ISO standards. By confronting the research gaps in
computer vision-based condition evaluation for building facades and offering a novel method
for fusing the particular needs of civil engineering with the comprehensive model from the
field of computer science, the proposed rule-based deep learning method makes a valuable
contribution to the research community. On the other hand, this work also makes a
contribution to the construction industry by offering a method for detecting evaluation-
oriented facade defects that might produce effective evaluation areas for rating the condition
in accordance with ISO standards. However, quoting the authors, there is still space for
improvement in the detection precision of the final predictions. In this study, segmentation
optimization work was also largely neglected. Future research needs to add more training
data to significantly increase detection accuracy. Moreover, by optimizing the segmentation
branch of prediction in subsequent studies, the size and quantity of defects included in an
evaluation area can be more precisely calculated.
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CHAPTER 4 — YOLO MODEL: USES AND
ARCHITECTURE

4.1 Introduction

The YOLO (You Only Look Once) framework has become a central real-time object detection
system for robotics, driverless cars, and video monitoring applications [48]. In this short
segment, a comprehensive analysis of YOLO’s architecture and use cases is presented,
examining the innovations and contributions in each iteration from the original YOLO
accentuating the Ultralytics developed versions, YOLOV5 and especially YOLOv8, which was
used in the specific dissertation. There is a plethora of improvements made across YOLO's
evolution encompassing various aspects such as network design, loss function modifications,
anchor box adaptations, and input resolution scaling. This underscores the importance of
considering the context and requirements of specific applications when selecting the most
appropriate YOLO model, aiming to justify the use of the new YOLOvVS for the present thesis
[48].

Among the various object detection algorithms, the YOLO framework has stood out for its
remarkable balance of speed and accuracy, enabling the rapid and reliable identification of
objects in images. YOLO’s real-time object detection capabilities have been invaluable in
autonomous object detection applications, enabling quick identification and tracking of
various objects [48]. These capabilities have been applied in numerous fields, including action
recognition in video sequences for surveillance, sports analysis, and human-computer
interaction [48]. In order to support precision agriculture methods and automate farming
procedures, YOLO models have been used in agriculture to identify and categorize crops,
pests, and diseases. Additionally, they have been modified for use in biometrics, security, and
facial recognition systems for face detection tasks. YOLO has been employed in the medical
field for pill identification, skin segmentation, and cancer detection. This has improved
diagnostic accuracy and streamlined treatment procedures. Land use mapping, urban
planning, and environmental monitoring have all benefited from its application in remote
sensing, which involves the detection and classification of objects in satellite and aerial
imagery. For real-time video feed monitoring and analysis, security systems have incorporated
YOLO models. This enables quick identification of suspicious activity, social distancing, and
face mask detection. Additionally, for the purpose of managing ecosystems and conserving
biodiversity, they have been used in the detection and monitoring of wildlife. Finally, YOLO
has been applied extensively in robotics and drone object detection [48].

Traditionally, object detection algorithms can be divided into two main categories: single-shot
detectors and two-stage detectors. R-CNN, Fast R-CNN, Faster R-CNN and Mask R-CNN are
two-stage detectors that use regions to localize the objects with in image. The network looks
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at some parts of the image which have the highest probabilities of containing the object. YOLO
is an object detection algorithm which is different from the regions-based algorithms (R-CNN,
Fast R-CNN, Faster R-CNN, Mask R-CNN). In YOLO, a single Convolutional Neural Network
predicts the bounding boxes and the class probabilities for these boxes [49].

In order to decrease the amount of overlapping bounding boxes and enhance the overall
detection quality, object detection algorithms including the YOLO framework employ the
post-processing technique known as non-maximum suppression (NMS). Multiple bounding
boxes surrounding the same object are frequently created by object detection algorithms,
each with a distinct confidence score. Only the most precise bounding boxes are retained after
NMS filters out unnecessary and unimportant ones [48].

4.2 YOLOv1

Beginning from the original YOLO version, the YOLO model is made up of the three key
components, found in most modern detector models: the head, neck, and backbone [49], as
shown in Fig. 20.

e The backbone is where the convolution layers detect the key features of the image
for processing. This is typically pretrained on a classification dataset.

e The neck takes the features from the backbone into fully connected layers to predict
the bounding box coordinates and classification probabilities.

e Finally, the final output layer is the head. It can be interchanged with other layers with
the same input shape for transfer learning.
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Figure 20: The three key components, comprising a CNN’s architecture.
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YOLOv1 architecture comprises of 24 convolutional layers followed by two fully-connected
layers that predict the bounding box coordinates and probabilities. All layers use leaky
rectified linear unit activations (ReLU) except for the last one that uses a linear activation
function. YOLO uses 1 x 1 convolutional layer to reduce the number of feature maps and keep
the number of parameters relatively low.

The YOLOv1 model unified the object detection steps by detecting all the bounding boxes
simultaneously. To accomplish this, YOLO divides the input image into a S x S grid and predicts
B bounding boxes of the same class, along with its confidence for C different classes per grid
element.

Each bounding box prediction consists of five values: P ¢, bx, by, bh, bw where P c is the
confidence score for the box that reflects how confident the model is that the box contains
an object and how accurate the box is. The bx and by coordinates are the centers of the box
relative to the grid cell, and bh and bw are the height and width of the box relative to the full
image. The output of YOLO is a tensor of S x S x (B x 5 + C) optionally followed by non-
maximum suppression (NMS) to remove duplicate detections [48].

Fig. 21 shows a simplified output vector considering a three-by-three grid, three classes, and
a single class per grid for eight values. In this case, the output of YOLO would be a3 x3 x 8
tensor. YOLOv1 achieved an average precision (AP) of 63.4 on the PASCAL VOC2007 dataset.

] —— Existance of object

— Bounding box

— Class labels

i
-

Figure 21: YOLO output prediction. The figure depicts a simplified YOLO model with a three-by-three grid, three
classes, and a single class prediction per grid element to produce a vector of eight values.
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YOLOv1 used a loss function composed of multiple sum-squared errors. In the loss function
there are scale factor that give more importance to the bounding boxes predictions, and
decrease the importance of the boxes that do not contain objects. The first two terms of the
loss represent the localization loss. The third and fourth loss terms represent the confidence
loss. The third term measures the confidence error when the object is detected in the box (1
obj ij ) and the fourth term measures the confidence error when the object is not detected in
the box (1 noobj ij ). The final loss component is the classification loss that measures the
squared error of the class conditional probabilities for each class only if the object appears in
the cell (1 obj i) [48].
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The simple architecture of YOLO, along with its novel full-image one-shot regression, made it
much faster than the existing object detectors allowing real-time performance. However,
while YOLO performed faster than any object detector, the localization error was larger
compared with state-of-the-art methods such as Fast R-CNN. There were three major causes
of this limitation [48]:

1. It could only detect at most two objects of the same class in the grid cell, limiting its ability
to predict nearby objects.

2. It struggled to predict objects with aspect ratios not seen in the training data.

3. It learned from coarse object features due to the down-sampling layers.

4.3 YOLOVS

YOLOV5 was released in 2020 by Glen Jocher, founder and CEO of Ultralytics. It uses many
features present in former releases but is developed in Pytorch instead of Darknet. YOLOvV5
incorporates an Ultralytics algorithm called AutoAnchor. This pre-training tool checks and
adjusts anchor boxes if they are ill-fitted for the dataset and training settings, such as image
size. It first applies a k-means function to dataset labels to generate initial conditions for a
Genetic Evolution (GE) algorithm. The GE algorithm then evolves these anchors over 1000
generations by default, using CloU loss and Best Possible Recall as its fitness function. Fig. 22
shows the detailed architecture of YOLOV5S [48].

The backbone is a modified CSPDarknet53 that includes convolutional layers that extract
relevant features from the input image after a Stem, a strided convolution layer with a large
window size to reduce memory and computational costs. The upsample layers improve the
resolution of the feature maps, while the SPPF (spatial pyramid pooling fast) layer and the
subsequent convolution layers process the features at different scales. Through the pooling
of features from various scales into a fixed-size feature map, the SPPF layer seeks to accelerate
network computation. SiLU (sigmoid function) activation and batch normalisation (BN)
follow each convolution [48]. The neck uses SPPF and a modified CSP-PAN, while the head
resembles YOLOv3. YOLOVS uses several augmentations such as Mosaic, copy paste, random
affine, MixUp, HSV augmentation, random horizontal flip, as well as other augmentations
from the albumentations package. It also improves the grid sensitivity to make it more stable
to runaway gradients [48].
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Figure 22: YOLOV5's architecture
4.4YOLOvV8

YOLOv8 was released in January 2023 by the same company that developed YOLOVS,
Ultralytics. It provided five scaled versions: YOLOv8n (nano version), YOLOv8s (small version),
YOLOv8m (medium version), YOLOvSI (large version) and YOLOv8x (extra-large version), with
mAP values and speed average increasing the larger the version. YOLOv8 supports multiple
vision tasks such as object detection, segmentation, pose estimation, tracking, and
classification. Figure 23 shows the detailed architecture of YOLOv8 [9]. YOLOVS uses a similar
backbone as YOLOv5 with some changes on the CSPLayer, now called the C2f module. The C2f
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module (cross-stage partial bottleneck with two convolutions) combines high-level features
with contextual information to improve detection accuracy.

This specific version of YOLO uses an anchor-free model with a decoupled head to
independently process classification, objectness and regression tasks. This means it is able to
automatically detect the central point of an object rather than the object's offset from the
center of the pre-defined anchor box for that region. This design is essentially allowing each
branch to focus on its specific task improving the model’s overall accuracy and speed. Anchor
free detection reduces the number of box predictions, which speeds up Non-Maximum
Suppression (NMS) [50]. In the output layer of YOLOvS, the sigmoid function is used as the
activation function for the objectness score, representing the probability that the bounding
box contains an object. It uses the softmax function for the class probabilities, representing
the probability of the object belonging to each possible class. YOLOv8 uses CloU and DFL loss
functions for bounding box loss and binary cross-entropy for classification loss. The use of
those loss functions has improved the performance of the object detection mode, especially
when dealing with smaller objects, which have been proven particularly difficult to confront
[51].

This version also provides a semantic segmentation model called YOLOv8-Seg model. The
backbone is a CSPDarknet53 feature extractor, followed by a C2f module instead of the
traditional YOLO neck architecture. The C2f module is followed by two segmentation heads,
which learn to predict the semantic segmentation masks for the input image. The model has
similar detection heads to YOLOVS, consisting of five detection modules and a prediction layer
[51].
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Figure 23: YOLOV8 Architecture

The YOLOv8-Seg model has achieved state-of-the-art results on various object detection and
semantic segmentation benchmarks while maintaining high speed and efficiency. YOLOv8 can
be run from the command line interface (CLI), or it can also be installed as a PIP package. In
addition, it comes with multiple integrations for labeling, training, and deploying [51].
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CHAPTER 5 - METHODOLOGY

5.1 The Combination of the two methods

As the subject of the present dissertation divulges, the goal is to capture facade images of
historical buildings in order to analyze them, detecting defects and assessing any risks for
further damage. This way the time-consuming and subjective inspections that have to be
executed on a regular basis, in order to preserve these buildings, can be automated. The
results will have to be objective and consistent with the current way defects are being
characterized.

To automatically achieve visual evaluation of facade condition with high accuracy, studies
have applied various machine learning and deep learning algorithms to classify, localize, and
segment the defects. However, this approach poses a new set of setbacks regarding its use in
historical building maintenance, and each one shows up in the real world in an irregular
pattern [1]. Automated defect monitoring systems should be able to simultaneously detect
and accurately categorize numerous types of faults in picture data in order to take into
account the characteristics of these problems. The methodology this paper is proposing, is a
combination of the ideas from the two distinct studies covered above, expanding on them to
solve core issues with the current techniques used.

On the one hand, by generating DADTSs of historical buildings, as proposed in Chapter 2 [22],
a 3D reconstructed geometry of a building asset can be provided, without the interference of
lighting conditions and even foreground and background foreign objects. This way the
complex backgrounds and the subjectivity of the images provided are eliminated.
Consequently, the automatically generating DADTSs, are excellent to provide clear images of
each fagade in the building. This methodology grants complete and convenient access to every
outer surface of the building, offering detailed images of its facades, rendering the
complicated defects as clear as possible. Therefore, this technique is essential for the
purposes of the present study, where real world images of historical buildings are employed.

On the other hand, the thorough study in Chapter 3 of the present thesis, made clear through
the experiments it conducted, that the common approaches used to cater the need of
automated visual evaluation of facade condition are not sufficient. These approaches,
focused, almost exclusively on maximizing the accuracy of their predictions, not accounting
for the use of their methods in real world scenarios, where the defects are of much higher
complexity [3]. Therefore, the study proposed a method, implementing essential rules in
different parts of the prediction process, to satisfy the evaluation requirement based on I1SO
standards.

The present dissertation, implements a CNN approach to the issue, modifying the
aforementioned methods and combining them into one comprehensive and efficient
automated model. The segments to follow, explain the methodology of the approach,

initiating with the development of the rule-based CNN model and the DADT generation of
-50-



real-world historical buildings. Then the methods are combined and the results are evaluated
in regards to the accuracy and efficiency of the resulting model.

5.2 Dataset and annotations

In order to achieve the aforementioned efficiency and accuracy in the results, the deep
learning model had to be thoroughly trained for the specific application it will be used in:
Facade Defects Detection. The term ‘training’ of a neural networks is defined as the process
of adjusting the value of the weights of the model and is the step where the model is ‘learning’
[30].

Firstly, the CNN initiates with the random weights. During the training of CNN, the neural
network is presented with a large dataset of images being labeled with their corresponding
class labels (crack, mold, peeling paint etc.). Then the CNN processes each image with its
values being assigned randomly and makes comparisons with the class label of the input image
[30]. In the case of the output not matching the class label, which is most common at the
beginning of the training process and therefore makes a respectively small adjustment to the
weights of its CNN neurons, in order for the output to correctly match the class label image.
The corrections to the value of the weights are being made employing a technique known as
backpropagation. Backpropagation, short for "backward propagation of errors,” is an
algorithm for supervised learning of artificial neural networks using gradient descent. The
approach determines the gradient of the error function with regard to the weights of the
artificial neural network given an error function and an artificial neural network [52].

Each and every run of the training of the image dataset is being called an “epoch.” The CNN
model goes through several series of epochs during the process of training, adjusting its
weights as per the required amounts. After each epoch step, the neural network becomes
more accurate and confident at classifying and correctly predicting the class of the training
images. As the CNN improves, the adjustments being made to the weights become
proportionally smaller and smaller accordingly [30].

Subsequently a separate, validation set of data is used to evaluate and fine-tune the machine
learning model, helping to assess the model’s performance and make various adjustments. By
evaluating a trained model on the validation portion of the dataset, its ability to generalize to
unseen and unknown data is assessed. This assessment helps identify potential issues such as
overfitting, which can have a significant impact on the model’s performance in real-world
scenarios [53]. A machine learning model can be tailored to the training set of data and
becomes overfitted losing its ability to generalize and generate accurate predictions on new
data. As such, Overfitting negatively impacts the model’s performance in predicting test and
validation sets, in contrast to the training set. The validation set is also essential for
hyperparameter tuning. Hyperparameters are settings that control the behavior of the model,
such as learning rate or regularization strength [53]. This process fine-tunes the model and
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maximizes its performance, providing the user with invaluable data in regards to the efficiency
of the network.

After the training of the CNN and the validation of its performance is performed, a test dataset
is used to verify its accuracy. The test dataset is a set of labelled images that are not included
in the training or the validation process so that they are foreign to the model. Each image is
presented to the CNN, and the output is compared to the actual annotated class label of the
test image. Essentially, this step serves as an unbiased measure of how well the model
generalizes to unseen data, assessing its generalization capabilities in real-world scenarios. By
keeping the test set separate throughout the development process, a reliable benchmark of
the model’s performance is obtained [53]. The test dataset represents unseen data that the
model has never encountered before, evaluating the model fit on the test set provides an
unbiased metric into its practical applicability [53]. We can ascertain from this evaluation
whether the trained model has effectively picked up pertinent patterns and is capable of
producing precise predictions outside of the training and validation contexts.

The CNN model employed in the present dissertation, was trained on two combined public
datasets. It is critical to note that each CNN model needs the image labeling to conform to a
specific annotating format. Therefore, online datasets, even if they are pre-annotated, need
to be adjusted to the annotating format in order to be used for the training process. The first
dataset included closeup images of both historical and residential buildings, with defects
present and annotated in the COCO JSON Format, that had to be converted [54] and the
second dataset used was not labeled [55].

For the purpose of annotating the datasets correctly and then combining them for this
dissertation, a computer vision dedicated platform was employed, RoboFlow. This framework
improved the speed and convenience of the dataset creating process exponentially. Using
RoboFlow the final dataset employed, was generated:

e Firstly, the labels of the formerly annotated images, which were annotated in a
foreign format for the model used, are converted to the format employed by it
(YOLOvS8 PyTorch TXT).

e Then the unannotated data of the second set, are labeled by hand, using the labeling
tool already imbedded in the platform, utilizing the bounding boxes technique.

e Subsequently the separate datasets are uploaded in the platform and seamlessly
combined into the final dataset used to train the model.

After the completion of the aforementioned steps, a complete dataset is generated. The
resulting set is segregated into the three segments, as mentioned above, training set,
validation set and test set. This functionality is also embedded in the platform. The generated
dataset has the following layout:
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test
train
valid

E data.yaml

With each set including the images and their corresponding labels.
e Thesegment 5.3, covers briefly the RoboFlow platform, its uses, as well as its features.

In the next step of the dataset generation, as the study in Chapter 3 states, for the creation of
the final dataset used to train the model, the defects have to be clustered. According to the
authors, it makes more sense to combine two defects that are adjacent to one another and
belong to the same defect category to create a wider bounding box for the evaluation area
[3]. In order to determine if two defects should be grouped together and placed in the same
evaluation area, a distance threshold should be established. Also in their own experience,
different distance thresholds are adopted in different scenarios.

The code shown below is designed according to the pseudo-code shown in Fig. 14, in the third
chapter, to merge the bounding boxes of each image in the dataset generated based on the
localization rule. The distance threshold used is 30 pixels as it produced great results in the
aforementioned study and also great results in the present dissertation.

Additionally, an overlapping rule is designed, in order to manage some cases, where
overlapping of the bounding boxes is occurring and the distance rule cannot be employed.
The overlapping threshold, after experimentation, is set at 0.2. That essentially means that if
two annotation bounding boxes of two defects belonging to the same category overlap 20%
or more, the bounding boxes will be merged to create a wider bounding box for the evaluation
area. The code merges overlapping bounding boxes iteratively, checking the distance
threshold for each bounding box in an image with the previously merged bounding box and
saves the merged annotations in the same format.
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Distance Rule:

The distance rule evaluates the proximity of bounding boxes in terms of the distance between
their edges. Specifically, it calculates the horizontal and vertical distances between box edges
and checks if either of these distances is less than or equal to a predefined distance threshold
of 30 pixels. If the boxes are within this threshold, they are merged. This rule prioritizes spatial
proximity and ensures that close objects are represented by a single bounding box.

Overlap (Proximity) Rule:

The overlap rule measures the degree of overlap between two bounding boxes. It computes
the overlap in both horizontal and vertical dimensions and checks if the overlap area exceeds
a certain threshold, 20%. If the boxes overlap sufficiently, they are merged. This rule captures
cases where objects are partially or completely embedded within each other and need to be
merged to create a more accurate representation.

The code follows the following workflow:

e It reads aset of YOLOv8 annotation files from the specified input folder.

e For each annotation file, it parses the lines to extract class labels and bounding box
coordinates. These coordinates are converted from YOLOvS8 format to absolute image
pixel values.

e The distance-based rule is applied first to merge bounding boxes that are within the
defined distance threshold.

e The overlap rule (proximity rule) is subsequently applied to the merged bounding
boxes. It further merges boxes that exhibit a significant degree of overlap, capturing
cases where objects intersect or partially overlap.

o The final merged bounding boxes are saved to new annotation files in the specified
output folder, maintaining the YOLOv8 format.
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The proposed methods effectiveness in reducing redundant bounding boxes while preserving
object information, is demonstrated in Fig. 24. By first applying the distance-based rule and
then the overlap rule, the code ensures a systematic and comprehensive merging process.
This results in a more concise and accurate representation of objects in the annotation files.

(@) (b)

Figure 24: (a) Annotated Image with water seepage, (b) Annotated Image after applying clustering rules

In the final generated dataset, all images have rule-based annotations created automatically
for the model's training, including labels and bounding boxes.
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5.3 RoboFlow computer vision platform

RoboFlow is a computer vision platform that allows users to build computer vision models
faster and more accurately through the provision of better data collection, preprocessing, and
model training techniques. The computer vision developer framework allows users to upload
custom datasets, draw annotations, modify image orientations, resize and modify image
contrast and perform data augmentation. It encompasses a universal annotation conversion
tool that allows users to upload and convert annotations from one format to another without
having to write conversion scripts for custom object detection datasets. It supports a variety
of popular annotation formats for the most widely used computer vision models, which it can
be used to train [56].

Model libraries already supported by the framework include models such as EfficientNet,
MobileNet, Yolo, TensorFlow, PyTorch, etc. Thereafter model deployment and visualization
options are also available hence. Also, the entire workflow can be coordinated with teams
within the framework.

Roboflow is used in a wide area of computer vision related applications, as it severely
simplifies and streamlines the whole process needed to obtain a well-trained model
specifically for the current need. In the present thesis it was primarily used as an annotator
and it also provided an essential Google Colab notebook, partially used to train the complex
model YOLOV8m on the large dataset needed to achieve the desirable level of accuracy and
confidence.
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5.4 LOD3 Generation

As a result of the previous segments, a prediction model is generated, with satisfying
performance and accuracy. The next step of the process is to generate a 3D LOD model of a
real-world historical building, utilizing the great efforts of the engineers in the study presented
in Chapter 2 of the present thesis [22]. The data and code of the aforementioned study, are
public, which is a major help in the efforts of the thesis.

Firstly, the project is installed, following the comprehensive and explanatory instructions, that
the authors kindly provided. Next, the captured images, are inserted as instructed in the
Meshroom Software, using SfM to create point clouds and camera projection matrices for
each perspective of the building asset [57]. Consequently, the Polyfit algorithm processes the
point cloud, grouping the points into planar primitives to produce candidate faces. These
candidate faces are then selected using linear optimization to produce a LOD3 model of the
building [58].

For the purposes of the present dissertation, the LOD (Level of Detail) representation of the
building, offers a clear and objective image of the building’s facade, not influenced by the
complex background and foreground objects. The goal is to employ the generated facade
images as a source for the model’s prediction. In order to achieve this, the image is processed
through masks, removing the doors and windows of the building, as well as the black borders
generated by the given pipeline. Afterwards, the resulting clear facade image is divided into
320x320 pixel tiles, resulting in several close images of the facade, to be presented to the
model for effective defect detection and classification.

Additionally, a modification was implemented in the established pipeline, that can greatly
assist the users of the present methodology. The pipeline was already detecting the openings
of the building facade and identifying them utilizing a SDD (Small Data Driven) deep learning
network, with the architecture U_Netl16. The modification implemented, occurs after the
opening detection process and counts the real openings found, displaying the number to the
user. This information is invaluable, especially in real world civil engineering scenarios.

The following code segment, is used to implement the aforementioned functionality:
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e |Insummary, this code creates a directory to store the image tiles, divides the cropped
image into 320x320 pixel tiles, handles padding for smaller tiles, and saves each tile

as a separate image file, as presented in the following Figs.
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CHAPTER 6 — RESULTS AND DISCUSSION

6.1 Model Training and Validation

The ensuing step in employing the model, is training it using the specified dataset and
hyperparameters. This way the model's parameters can be optimized so that it can accurately
predict the classes and locations of objects in a real-world image. For the purposes of the
present thesis, the model YOLOv8m is employed. Being the medium model in the YOLOvV8
‘family’, it serves as a really accurate and precise neural network, while being relatively quick
to train and predict.

The first very small portion of the training process, started in an environment with Python
3.10, Pytorch 2.0.1, CUDA 12.2 on a Windows 10 system, utilizing the CUDA cores of a GTX
1060 with 6GB of video memory and 16 GB of RAM. This part of the training took a significantly
large amount of time to train the complex model YOLOV8m on the large dataset, to achieve
the desirable level of accuracy and confidence. Therefore, for the purpose of improving the
speed of the process, the training was resumed employing a Google Colab notebook, provided
by the RoboFlow framework, on the CUDA cores of a much more powerful GPU, the T4 Tensor
Core developed by Nvidia and 32 GB of RAM.

A total of 100 epochs were carried out training and at the end of them, the threshold of score
for filtering out low-quality predictions was set at 0.5. After every training epoch was
performed, a validation step was also employed in order to evaluate the performance of the
model in unknown images and monitor its learning process. Finally, after the training process
concluded, the YOLO model saved the following table of graphs (Fig. 25), that show the
progress of the model during training.
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Figure 25: Performance Graphs of the model
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As the graphs make apparent, the training process was successful in significantly improving

the model’s performance. The box, cls and dfl loss graphs show that the loss decreased with

each epoch and the precision and recall graphs show an increase in the ability to identify and

classify objects, as indicated by the mAP and mAP (50-95) metrics.

Next, the validation step was performed, presenting the model with unknown images in order

to evaluate its overall performance through different metrics. The process generated scores

for each class regarding the Precision and Recall of the model, as well as the mAP50 and mAP
(50-95) mentioned in the introduction Chapter (Fig. 26).

Figure 26: Model Validation scores

Additionally, graphs evaluating the model’s performance are generated by the validation step

and are presented in Fig. 27.
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Figure 27: Validation Performance Graphs: (a): Precision-Confidence Graph. (b): F1-Confidence Graph. (c): Precision-Recall Graph.

(d): Recall-Confidence Graph.

These graphs generated by the validation process, plot a different aforementioned metric on

each of their axis and are essential in the evaluation of the model as presented below [47]:

e Precision-Confidence Curve: A graphical representation of precision values at

different thresholds. This curve helps in understanding how precision varies as the
confidence increases.

e F1 Score-Confidence Curve: This curve represents the F1 score across various

confidence thresholds. Interpreting this curve can offer insights into the model's

balance between false positives and false negatives over different thresholds.
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e Precision-Recall Curve: An integral visualization for any classification problem, this
curve showcases the trade-offs between precision and recall at varied confidence
thresholds. It becomes especially significant when dealing with imbalanced classes.

e Recall-Confidence: This graph illustrates how the recall values change across different
thresholds.

The scores and graphs generated by the validation process show that the training of the model
was successful in improving the accuracy and performance of the neural network. The mAP
scores are especially satisfactory, when taking into account the limited nature of the datasets
available for the training of Deep Neural Networks in Facade Defects Detection.

It is important to note that, as shown in the table, the defect classes in the dataset are not
represented equally. This has to do with the frequency of each defect appearing in a building
facade varying greatly from the another. This variance becomes more apparent in the
stairstep crack class, having lower instance count than the others, resulting in improved scores
but some possible overfitting, even though the results that follow show excellent performance
in predicting this specific class. Another noteworthy observation, is that the model performed
worse than expected in the water seepage defect class. The decline in performance can be
attributed in the similarities between some defect classes as they appear in the real world,
especially the mold, peeling paint and water seepage defects. These defects often appear
alongside each other in building fagades, or comprise an evolved state of each other. In the
final Chapter of the present thesis, this problem is addressed in greater detail.

Lastly the test dataset is used to verify the model’s accuracy. The test dataset is a set of labeled
images that were not being included in the training or the validation process so that they are
foreign to the model. Each image is presented to the CNN, and the output is compared to the
actual annotated class label of the test image. The comparison is presented in Fig. 28 below.
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Figure 28: (a): Images as labeled in the dataset. (b): Images as predicted by the model
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6.2 Implementation of the method in Historical Buildings in Chania

Case Studies:

086¢ BeviZéhou Biha KovvSoupou (Hp. MoAutexveiou) Oikog euynpiag Ay. Avva mpwnv KAWLKH

Mntootakn (086¢ Akpwtnptou)

Ktipto Manadonetpou (066¢ Tlavakakn)

Ktipto TEE/TAK (086¢ Nedpyou)

086¢ Hp. NoAutexveiou Staot. Kpokidd

After the building facades are divided into tiles, the resulting images are given as input to the
Neural Network for fagade defects prediction, with a confidence threshold of 0.5 for filtering
out redundant predictions. The localization rule designed for the database creation, based on
the pseudocode presented in Fig. 14 [3]. The method is effective in reducing redundant
bounding boxes while preserving object information. A showcase of the most severe defect
cases in conjunction with the predicted bounding boxes, for every building examined, is
presented in the following figures.
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Case Study 1(086¢ BeviZélou):

peeling_paint 0.55

water_seepage 0.62

crack 0.521

peeling_paint 0.63
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Case Study 2(BiAa Kouvdoupou (Hp. MoAutexvelouv)):

mold 0.80

mold 0.66
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Case Study 3(Oikog euynplog Ay. Avva pwnv KAWVIK Mntootdkn (060G Akpwtnplou)):

crack 0.72

crack 0.69

water_seepage 0.79
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Case Study 4(086¢ Hp. NoAuteyveiou Staot. Kpokida):

water_seepage 0.63

Case Study 5 Ktipto Nanadonetpou (0666 T{avakakn):

mold 0.94
mold 0.50

crack O.71q




Case Study 6(Ktiplo TEE/TAK (066¢ Nedpyxou)):

water_seepage 0.65

:M’
NG
7
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The buildings examined in the present thesis are real world historical buildings from the city
of Chania Crete, Greece. The results of the prediction model make apparent that most of
them, suffer a variety of defects in their fagade, requiring further maintenance. It is important
to note, that the selection of images presented in this paper, is curated, in order to best
showcase the most severe defects present in each building, requiring urgent attention and
maintenance. Additionally, for the purposes of the study, the variety of defects present in
each image was taken into account, showcasing the methods performance and versatility in
dealing with real world, complex, multiclass detections.

e Case Study 1(086¢ BeviZéhou): The first building analyzed, shows several cases of
paint peeling of the facade, as well as some water damage. Most importantly some
severe, deep cracks are present requiring urgent attention. The model detected the
defects accurately with great confidence, especially in the most severe cases.

e Case Study 2(Bila KoUvdoupou (Hp. MoAuteyveiou)): As the images make apparent,
the fagade of the second building suffers from plenty of paint peeling off, as well as
several cases of minor water seepage and mold, that the model detected.

e (Case Study 3(Oikog euynpiag Ay. Avwa mpwnv KA Mntootdkn (060¢
Akpwtnptou)): This building’s facade was built utilizing a variety of architectural
patterns, presenting a challenging case for the model. The neural network detected
cracks, peeling paint and mold cases, even when they are present among these
complex backgrounds with sufficient confidence and accuracy. As such, this case
proves the ability of the model to perform in complex real-world environments.

e (Case Study 4(0806¢ Hp. MoAutexveiou dlact. Kpokida): The fourth building examined
showed little damage in its facade and was primarily void of defects, with the
exemption of some water seepage in limited places.

e (Case Study 5 Ktipto Mamadonetpou (066¢ Tlavakakn): The neural network model
performed with great accuracy in detecting peeling paint and slight mold in the
facades of this building which were the most severe and common defects present.

e (Case Study 6(Ktipto TEE/TAK (066¢ Nedpxou)): In this particular building’s facades,
there is a great concentration of surface level cracks along with peeling paint. The
model managed to detect most of the defects with satisfying accuracy, except for
some cases where the defects are concentrated in a small area, or there are complex
patterns present in the facade of the building.

An important result to note, is that, due to the complex patterns on several building fagades,
totally accurate detection and classification of each and every defect present, becomes
difficult. Additionally, in images where there is a high concentration of different kinds of
defects, the model often detects some of them. These problems become apparent from the
resulting images and highlight that manual visual inspection of the buildings, may still be
essential to effectively maintain the condition of their facades.
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CHAPTER 7 — CONCLUSIONS AND FUTURE
WORK

Multiple defects occur in various locations in actual buildings. To minimize the negative effects
of these defects on the sustainability of buildings, there is a need for a technology that can
efficiently monitor and classify those defects. Convolutional neural networks (CNN)-based
image processing is a novel approach in the architecture heritage domain with proven high
performance in detecting and classifying the defects.

The present thesis, aims to aid with the maintenance of real-world historical and heritage
buildings, being evaluated in building from the city of Chania. These real-world cases usually
exhibit building facades composed of various shapes, patterns and colors. This means that the
background irregularities of image data are quite common, thus, reliably detecting defects
becomes very challenging. The combination of the two methods analyzed, showed promising
results regarding the accuracy and confidence of the predictions made by the model.
Generating a LOD representation of the building provided complete and convenient access to
every outer surface of the building, offering detailed images of its facades, rendering the
complicated defects as clear as possible. Additionally, the essential rules that were
implemented during the dataset creation and the prediction processes enhanced the model’s
performance, in accordance with ISO standards. The application performance of the YOLOvS8
model used was verified through the collected data, and the average performance of each
defect type was approximately 0.7 based on mAP50 metric. This is considered to be a
meaningful result, justifying the possibility of multiple defect detection using a deep learning
model. To achieve a satisfying performance in this application, the dataset used to train the
model, was not built under refined conditions. Real-world data were used where irregularities
always exist, and various image interferences occur.

In conclusion, this approach can allow for reducing failures and errors in judgment, rating, and
evaluation in the architectural heritage field. Addressing several issues like the subjectivity of
the results arising from human-centered inspection, time consumption and an increase in
labor costs, defects in historical buildings facades, can be detected and classified effectively
in the maintenance phase, and prompt action can be taken when required.

However, there are still some limitations in this method to consider. Firstly, obtaining high
quality images from the facades of historical and heritage buildings can be difficult and
resource intensive. Another approach can be utilized like the use of UAVs (unmanned aerial
vehicle), or SAR interferometry (Synthetic Aperture Radar). Future work on the rules
implemented in this study, may involve fine-tuning the distance and overlap thresholds to
optimize the merging process further. Additionally, exploring machine learning techniques for
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adaptive threshold selection could be a valuable extension. Also, it is necessary to expand the
database for training and make it well-balanced across all of the defect categories, to increase
the accuracy of the model proposed in this thesis. It is essential that the image data present
in the dataset, are images of real-world buildings, to most effectively train the model for the
application it is intended. Lastly, as the results make apparent, manual visual inspection of the
building facades cannot be entirely replaced with deep learning techniques. Several defects
can be layered on top of each other, and the lines distinguishing them can be blurred. There
is a need for trained experts to access the results of the object detection models, utilizing
them effectively and efficiently.
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