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Abstract

Unmanned Aerial Vehicles (UAVs) have experienced great growth and as of 2020 at
least 100 countries use UAVSs in tactical missions, while at the same time even more
commercial applications deploy drones, for example photography and filmmaking,
smart crops, smart cities, emergency handling, drug delivery, traffic management, etc.
The big success of UAVs came due to the huge growth of electronics and the revolution
of data. One of the most popular application of drones is object detection before
designing the planned operation, e.g. differentiate pedestrians from cars or bikes in
cross-road management systems. Deep Learning algorithms have been proven to be the
best solution in such kind of problems. This diploma thesis collects and studies some
of the mostwell-known detection systems, itanalyzes in theoryand in practice an object
detector, the famous single-stage detector RetinaNet. Furthermore, a modified model is
proposed that utilizes more Convolutional Blocks and combines features from different
levels of the Neural Network. The extra convolutionblock is a mirror of the Feature
Pyramid Network; therefore, the new model is called “Two-Phase Feature Pyramid
Network Retina”. Since the goal is to compare those models, the classic RetinaNet and
the modified model, were trained and tested usingthe Stanford Drone Dataset, a dataset
designed to train object detectors for UAVs. The modified model achieves an accuracy
score 6% higher than the baseline model, and it seems to outperform the original model
in every metric, such as Precision, Sensitivity and F1 score. Finally, both the original
and the modified Retina, were compared with other well-known object detectors such
as YOLO, Faster RCNN, SSD, etc. The proposed architecture seems to outperform
almost every object detector from the literature in terms of mean Average Precision. In
conclusion, the modified model can be used to detect small objects in applications
where accuracy is a critical factor.
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2 0yxpion Lvotnudtwv Teyvntne Nonuooovyg yio tov
Evromiouo Avrikeiuévav oe Eixcoveg oamo un-
Eravopwuéva.

TPIMAX XPHXTOX

Ilepiinwn

To un enavopopéva IMTALEVE OYNIOTO £(OVV TOPOVGLAGEL TEPAGTIO EEEMEN
kot and 10 2020 tovAdyiotov 100 y®dpeg ¥PNOLOTOI0VV Un EXAVOPOUEVA GE
TOKTIKES AmOGTOAEC. TautOYpOVA XPTNGLOTOLOVVTOL OAOEVO KO TEPICCOTEPO GE
EUTOPIKES EPUPLOYES, OTMG 1 QOTOYPaQia, o1 EEvmveg KaAlMépyeleg, £Evmveg
TOAELS, EMLYEPNOELS O1AoMONG Kol OlayElplong KpIGEWV, OITOGLUPOPNGT 0OTKDV
aptnpov KAT.. H peydin emrvyio tov pn enavopopévov oymuatov npbs pe mmy
e€EMEN  TOV MAEKTPOVIKAOV KOl TNV €NAVACTOOT TOV  O08d0UEVAOV  TTOV
YPNOLOTO10VVTAL GE EEVTTVA GUOTNHLOTO, OTTOPAGEDV. Mia amd TICTI0 O10LOEO0 PEVES
eQapoyég Tmv drones givat n avayvopion avIIKEWEV®VY Y10 TOV akpipn} oyedoud
™G OMKNG AETOVPYING TOL GUGTNUOTOC, T.Y. OY®PIGHOS TV TeEl®V amd To
aVTOKIVITO KOl TIG UNYOVEG o€ GLoTHHOTA doyelptong ™ KukAopopiog. Ot
alyopOpot fabiac punyovikng pdbnong xovv amodeybel g 1 kalvtepn Abon oe
npofAparto tétolov Tomov. H mapovca SumtAopatikn epyacio GUAAEYEL Kol LEAETA
HEPIKA Ot TOL TTO YVIOGOTE LOVTEAL OVOLYVDPLIONG OVTIKELLEVOV, YIVETOL L0t TATPNG
avaivon 1060 oe BewpnTikd, 060 Kol G TPOKTIKO €MImMedO, €VOG OVIYVELTN
avTiKeWévmv, Tov yvootov RetinaNet. ExuAéov, tpoteivetar pia tpomomoinon v
RetinaNet pue Tpocnkn emrAéov cUVEMKTIK®V UTAOK Ko cuvdvaoud features omd
drapopetikd eninedo Tov Nevpovikod Awtdov. Kabndg o 61dy06 eival n chykpion
aVTOV TOV HOVTEA®V, TG0 T0 KAaoowo RetinaNet, 660 ka1 10 tpomomoinuévo
Hovtélo, ekmoidevovtal kKot eléyyovtal méve oto Stanford Drone Dataset, éva.
dataset yio TV ekmaidevon HOVTEA®V OVOYVOPIONG OVIIKEWEVOV Oomd U
emovopouéva. To tpomomompévo povtéro etvyaivel avEnon akpifelog and 1o
KAGGKO povtédo ¢ Tdéng Tov 6%, evd amodidel KaidTepa 6e OAN T EMimEdD
obyKplonGg oG TPog TV akpifela, v evacnoio kat to F1 score. Téhog, yiveton
o ovykpton 1660 tov RetinaNet, 660 kot tov modified RetinaNet pe dAlovg
YVOGTOVG AV VELTES avTiKEEVQV, 0nmg ta YOLO, Faster RCNN, SSD, kAn kon
YEVIKA 1 TPOTEWOUEVT] OPYLITEKTOVIKY] QoiveTal va Eemepva oyedov OAQ Ta GAALL
HOVTEAD ®G TPOG TOV PéEGO Opo akpifeloc. TOUTEPAGUOTIKA, TO TPOTEWVOLEVO
HOVTELO paiveTal vo eivol KATAAANAO Y10 aviVELGT] MKPDOV OVTIKEUEVOV, OTOV 1|
akpifelo amotedel TO KLPLOTEPO KPITNPLO EXAOYNG OLVI(VELTY).
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1. Introduction

1.1) Unmanned Aerial VVehicles

Unmanned systems are typically known as powered vehicles that do not carry a
human operator, can be operated autonomously or remotely and can carry a variety of
payloads depending on their type, functionality and mission objectives.

Unmanned Aerial Systems, also referred to as drones, have experienced the
greatest growth. As of 2020, at least seventeen countries have armed UAVs, and more
than 100 countries will be using UAVSs in a military capacity by 2021. The global
military UAV market is dominated by companies based in the United States and China.
With extensive cost reduction in electronics, the defense forces around the globe are
utilizing UAVs for applications such as logistics, communications, attack and combat,
while commercial applications include aerial photography and filmmaking, cargo
transport and detection of disasters [1].

Figure 1: RQ-4 Global Hawk.

Whether it comesto the detection of objects of interest (refugee waves, tracking
target), prison surveillance or information gathering of a battlefield, UAVshaveproven
their usefulness. For example, the US Air Force uses large UAVs for strategic
reconnaissance, such as the RQ-4 Global Hawk (Figure 1), a 13-meter-long jet that
carries a variety of sensors, radars and photographic sensors.

A significant contribution to the development of UAVS, played the evolution of
cameras. The cameras on-board UAVs are a rich source of information that can be
processed in order to extract meaningful information. Besides the cameras, the
development of other advanced hardware and software technologies allow drones to
carry out their missions without human intervention, such as computer vision, object
detection, machine learning, thermal sensorsand deep neural networks.
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1.2) Object Detection and Algorithmic Solutions

Objectdetection is acomputer technology related to computer vision andimage
processingthatdeals with localization and identification of semantic objects of a certain
class, in digital images and videos. In other words, given an image or a video stream,
anobjectdetector can identify-classify objects of interestand provide information about
their positions within the image.

Figure 2 Object Detection Example

With the evolution of cameras and the oversimplification of data gathering and
processing, object detection can be used in the following commercial areas:

Surveillance.

Search and Rescue missions.
Anomaly detection.

e Autonomous driving

The basic idea of object detection, is that every object class has its own special
features that helps in classifying the class- for example all circles are round. Object
detection models learn those special features and create patterns on the object’s
properties. Features may be specific structures in the image such as points or edges.
More broadly a feature is any piece of information which is relevant for solving the
computational task related in computer vision applications. The feature extraction
process can be a computational expensive and many times due to time constraints, a
higher-level algorithm may be used to guide the feature detection stage, so that only
certain parts of image are searched for features.

There are two kinds of object detection methods:

1) Neural Network approaches.
2) Non-Neural approaches.

Non-Neural approachesuse one of the following techniques for feature extraction
and an algorithm such as Support Vector Machines for classification of those features.
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e Viola-Jones object detector using Haar features.
e Scale-Invariant feature transformation.
e Histogram of oriented gradients.

In the last few years, due to the revolution of Data, most reliable object detectors
fall in the category of Deep Learning systems. Neural Network approaches can be
distinguished in to two-stage detectors and single-stage detectors. The first ones use a
box proposal algorithm as the firststage, and the second stage classifies those proposals,
while the second ones detect objects and classify them in the image in one pass through
the network.

The most known detectors are:

1) Regional Proposal Networks like R-CNN or Faster R-CNN: Regional proposal
algorithms are a family of deep learning algorithms. They are two-stage detectors,
meaning in the first stage of detection, an algorithm like Selective Search or a neural
network locates the proposing areas of a detection. The second stage is responsible for
feature learning and classification/regression. R-CNN was the first two-stage
architecture that was introduced for object detection. Fast R-CNN and Faster R-CNN
are modern architectures that rely on the R-CNN model, but they perform faster and
with significant more accuracy. Region-based networks have been used for tracking
objectsfroma UAV-mounted camera, locating textwithin animage and enablingobject
detection in Google Lens.

2) Single Shot MultiBox Detector: While Faster R-CNN is considered the state of the
artin terms of accuracy in object detection, the whole process of detection is very slow
when it comes to real-time applications. Therefore, SSD was introduced to speed up
the process by eliminating the need for region proposal networks. The SSD is a single -
stage architecture, which means the tasks of object localization and classification are
done in a single pass of the network. The SSD has two components: a backbone model
and SSD head. Backbone model usually is a pre-trained network like VGG that works
as a feature extractor. The SSD head are convolutional layers added to the backbone to
interpretboundingboxesand classes of objects. SSD is used in a variety of applications
such as smart crops, crowd counting and many more.

3) You Only Look Once (YOLO): Prior work on object detection repurposes
classifiers and localizers to perform detection, instead the YOLO architecture frames
object detection as a regression problem to spatially separated bounding boxes and
corresponded class probabilities. YOLO network is the most famous architecture so far
and large companies, such as Tesla, are utilizing the model foravariety of applications.
YOLO can outperform R-CNN by 1000x.

4) Retina-Net: RetinaNetis one of the bestsingle-stage object detectorsthathas proven
to work well with dense and small-scale objects. Its aim is to improve the Feature
Pyramid Network by simply applying a sophisticated loss function called Focal Loss.
Like SSD it utilized pre-trained backbone networks for feature learning and has two
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smaller fully Convolutional networks for classification and box regression. RetinaNet
is widely used for detection of objects in aerial or satellite imagery.

1.3) Motivation and Contribution

Unlike fixed position cameras, UAV surveillance has higher mobility and can
cover larger areas for surveillance. Contrary to traditional object detection systems,
drones have to deal with a huge amount of data, imbalanced datasets and many tiny
object instances. Apart from the data and their sizes that may vary, depending the
application of the UAV the spatial resolution might vary, making the detection an even
more challenging problem. As previously mentioned, considerable work has been done
in object detection by large companies and big academic institutions. RetinaNet is a
Deep Learning architecture designed by Facebook A.I. Research team, and introduces
a new Loss Function to train a system purely designed by simpler Convolutional
Models. The Focal loss as they named it, had a huge success especially in imbalanced
datasets, as it down-weighted the importance of easy examplesand gave more attention
in hard examples. The simplicity of the architecture and the introduction of Focal Loss,
made RetinaNet the perfect “real-time” object detection system to deploy in a UAYV,
due to the small resources it required compared to other models. In this diploma thesis
the Retina model is being tested in real world data from the Stanford Drone Dataset.
After analyzing and testing the architecture, this work aims to further explore the
potential of the model by introducing more complexity and depth to a rather simple
architecture. Therefore, an expansion of the base model is introduced by using a two -
phase mirror Feature Pyramid Network. The new model is also trained and tested in the
Stanford Drone Dataset with the same parameters as the base-model in order to compare
the two inequalterms. To furtherevaluatethe modified model, a 5-foldcross validation
is performed in both the original and the modified RetinaNet. The introduction of the
two-phase FPN seemsto provide significant higher accuracy than the base-model, a
crucial factor for applications like surveillance or traffic management.
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2. Theoretical Background

Nowadays, the word Artificial Intelligence or A.l. sounds everywhere and it is
used increasingly. A.l. refers to the simulation of human intelligence in computer
systems, that were designed to think and act like humans. The term may additionally
be applied to any machine that exhibits traits related with the human mind such as
learning and problem-solving.

The most common applications of A.l. are: autonomous cars, voice and face
recognition, data analysis, virtual assistance and other applications in various
industries. Subfields of Artificial Intelligence are machine learning and deep learning.

Artificial intelligence

Machine learning

Deep learning

Figure3:Al.,M.L.andD.L.

2.1) Machine Learning

The concept of machine learning dramatically changes the way of how classical
programming works. In the classical method, someone providesthe data and defines
the rules of the program to obtain an answer. In machine learningor ML, someone gives
the data with the answers and demands from the machine to create the rules. The rules
can then be applied to new data to confirm the results and to generate new answers. In
other words, ML consists of algorithms that improve automatically through experience
and by the use of data.

A subset of Machine Learning is Deep Learning.
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2.2) Deep Learning

From Machine Learning Deep Learning was born. D.L. is an element of a
broader family of machine learning algorithms supported by artificial neural networks
with feature learning. Deep-learning architecture such as deep neural networks and
convolutional neural networks have been applied to fields including computer vision
and image analysis.

A Deep Neural Network (DNN) is an artificial neural network with multiple
layers between the input and the output layers. In computer vision the most used class
of deep neural networks are Convolutional Neural Networks or CNNs.

2.3) Convolutional Neural Networks

A Convolutional Neural Network is a Deep Learning algorithm which can take
in an input image, assign importance to various objects in the image and be able to
differentiate one from the other. ConvNets require less pre-processing compared to
other classification algorithms.

The architecture of a CNN is proportional to that of the connectivity pattem of
Neurons in the Human Brain and the inspiration came from the organization of the
visual cortex. Individual neuronsrespond to stimulations only in a restricted region of
the visual field known as the Receptive Field. A collection of such overlap cover the
entire visual area.

An image is a matrix of pixel values. A lot of times images contain objects that
have pixel dependencies throughout the image. A CNN is able to successfully capture
spatial dependencies in an image through the application of relevant filters and the
network can be trained to understand the sophistication of the image better.

In image [4],an RGB image, which has been separated by its three color planes,
is represented. Although this example has small dimensions, real images can reach
higher dimensions, for example an 8K image has 7680x4320x3 dimensions, making
object detection in such dimensions a computational intensive procedure. The role of
CNN is to reduce the image into a form which is easier to process the image, but at the
same time without losing features which are critical for getting good predictions.
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3 Colour Channels

]

Height: 4 Units
(Pixels)

Width: 4 Units
(Pixels)

Figure4: AnRGB Image

ConvNets, usually, are divided into two parts, the convolutional and the densely
connected. The first one applies various layers such as Convolution and Pooling to
reduce the dimensions and retain the important features of the image, while the second
one is responsible for classification. In the following image [5], an example of a CNN
architecture is shown.

fc_3 fc 4
Fully-Connected Fully-Connected
Neural Network Neural Network
Conv_1 Conv_2 RelU activation
Convolution Convolution )| K—M
s X 5) kernel Max-Pooling (5x5) kernel  pfax.pooling (with
valid padding (2x2) valid padding (2x2) oot
@0
e
4 .','A . 2
INPUT nl channels nl channels n2 channels n2 channels 5 ' 9
(28x28x1) (24 x24 xn1) {12x12xn1) (8x8xn2) (4x4xn2) | __ | OUTPUT

n3 units

Figure5: A4 layer CNN

2.3.a) Convolution Layer

In a ConvNet, the input is an image (tensor) with a shape: (H) x (W) x (C),
representingheight, width and number of channels respectively. After passingthe input
through the convolutional layer, the image becomes abstracted to a feature map, with
new shape: (Feature Map Height) x (Feature Map Width) x (Feature Map Channels).
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Generally, a convolutional layer has the following attributes/hyperparameters:

e Convolutional filters, also known as kernels.

e The number of inputand output channels.

e Padding (augmentation of the kernel) and Stride (size of the step the kernel
parses an image).

A convolutional kernel is basically a matrix that is applied throughout the image.
Each filter is convolved across the width and height of the input image, computing the
dot product between the filter entries and the input, resulting to a feature map of that
filter. The network learns filters that activate when it detects particular types of features
at some spatial position of the input.

Given a two-dimensional Image | as input and a two-dimensional kernel K the
convolution operation can be described [2]:

S(ij) = (I« K)(i,j) = zz I(mn)K(i—m,j —n)

0
0

é—'l-‘O
E!_\

N

B

w

[
o
o
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w
N

|00 |OC|=

1
1
01,
0
1

110409,

Figure 6: Originaland Convolved Image

In image [6], the kernel shifts 9 times in the orginal image, performing every
time a matrix multiplication operation between the kernel and the portion of the image
overwhichthe kernelishoveringatthe time. In thisexample, the filter parses the image
with a stride of 1.

In cases of images with multiple channels such as RGB (Image [7]), the kernel
has the same depth as that of the inputimage, and matrix multiplication is performed
between the Kernelsand each Channel. The results then are summed to give a squashed
one-depth channel Convolved Feature Map.

The goal of Convolution operations is to extract high-level semantically rich
features fromthe inputimage. One layer is not enough to achieve this, therefore CNNs
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need notto be limited to only one convolutional layer. The first layers are responsible
for Low-Level features such as edges. With more depth in the network, the architecture
adapts to the High-Level features as well, providing a network which understands the
whole image.

e|o|o|o|e|oe oloe|o|o|e|oe olo|lo|e|o]oe
o | 156|255 | 156 | 258 | 158 o | 367 | 166 | 167 | 369 | 389 | . o | 168 165
o |19 | 354 | 397 | 399 | 130 o |36e| 265|268 | 270 | 330 o |10 16
o |2as | 151 | 255 | 158 | 139 o |60 | 262|166 | 369 | 120 | . o |15 166
o | 246 | 146 | 1e9 | 133 | 150 o | 336|156 | 159 | 163 | 360 o |19 | 398 | 3se | 162 | 147
o |45 | 140 | 143 | 248 | 150 o | 155 | 153 | 153 | 138 | 168 o |15a 132 182|157 | 167
Input Channel #1 (Red) Input Channel #2 (Green) Input Channel #3 (Blue)
1|11} 1 1100
0|14 1|11
10 [0 Ve B § 10|41
Kernel Channel #1 Kernel Channel #2 Kernel Channel #3
- \ = Output
]! J U as | e m&an
158 + —14 + 653 28 | 787 | 798

Figure 7: RGB example of convolution

To add more layers (depth) to the network, there are two types of operation. One
in which the convolved feature is reduced in dimensionality (Valid padding) compared
to the input, and the other in which the dimensionality remains the same or it is
increased (Same padding).

Figure 8: Same padding with zeros

The same padding operation that is shown in Image [8] has been achieved by
augmenting the input image from 5x5x1 to 6x6x1 and then applying the 3x3x1 kemel
over the augmented image. If the valid padding operations were performed, the
convolved matrix will have the same dimensions with the kernel.
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2.3.b) Pooling Layer

Similar to the convolutional layer, the Pooling layer is responsible for reducing
the spatial size of the convolved feature. The goal of pooling layer is to decrease the
computational power required to process the data and to extract dominant features
through dimensionality reduction.

. 3-{} 3-0

3.0| 3.0 3.0 210

(== B ST SO LT
=l || =]

3.0]2.0|)3.0

Figure 9: Anexample of pooling

Most common types of Pooling operations: Max Pooling and Average Pooling.

Max pooling returns the maximum value from a portion of the image | covered
by a kernel K. It can be used as a Noise Suppressant, discarding the boisterous
activations altogether and hence performing de-noising and dimensionality reduction
at the same time.

Average pooling returns the average of all the values from the portion of the
image | covered by a kernel K and as result performs dimensionality reduction.

max pooling

20|30

112 37
12120 | 30
8 [12] 2
34|70 37| 4 average pooling
112100} 25 | 12 13] 8

79| 20

Figure 10: Avg and Max pooling

After repeating convolution and pooling layers for several times, the model will
successfully understand low and high level features. The final step is to feed those
features to either an Artificial Neural Network or use another technique to perform
classification.
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2.3.c) Fully Connected Layer

Adding a Fully-Connected (FC) layer is a cheap way of learning non-linear
combinations of the high-level features as represented by the output of the convolution
and pooling layers. In more details, the input to the FC layer is the output from the final
convolutional or pooling layer, which is flattened and then fed into the fully connected
layer.

5 2 ,
¢ 18 « 0 '
£ | ¥ Y

/ X i 3 /

J

Figure 11: AFully Connected Network

The output after performing convolutions and pooling layers is a 3-d matrix. To
flatten the output, each value of the matrix is stacked and the result is huge vector. The
flattened vector is then connected to fully connected layers which are Artificial Neural
Nets. Each layer of the ANN applies the following function:

gWx+b)
Where,
x is the input vector with dimension: d1 = (number of neurons, 1).
W is the weight matrix with dimensions:
d2 = (number of neurons in previous layer, number of neurons in the current layer).
b is the bias vector with dimensions: d3 = (number of neurons in current layer, 1).
g is the activation function.

After passing through the FC layers, the final layer uses an activation function
(see next subsection) to get the probabilities of the input and classify them into a
particular class.
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2.3.d) Activation Functions

Also known as Transfer Function, is a way to extract the output of a node in an
Artificial Neural Network. It maps the resulting values in a well-defined space,
depending the function.

Activation functions can be basically divided into 2 types:

1. Linear Activation Functions.
2. Non-Linear Activation Functions.

Linear of Identity Activation Function:
The function is a line ranging between (-0, o).
Equation: f(x) = x.

8 Linear Function

linear(x)
o

-8 ~6 —a -2z 0 2 a 6 8
X
Figure 12: Linear Activation Function

Sigmoid or Logistic Activation Function:

A sigmoid function ranges between (0, 1), therefore making it useful in models that
predict probabilities as an output. The function is differentiable and monotonic.

s TF o |
1
E)= ———
b (2) 1+ e—=
= o5}
0.0
—8 —6 —a —2 o 2 4 6 F:!

Figure 13: Sigmoid Function
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A huge disadvantage isthatthe logistic function can cause a neural networkto get stuck
during the training phase. This is because, if a strongly-negative input is provided, it
outputs the value very near to zero. This behavior is slowing down the update of the
learnable parameters, such as weights and bias.

Equation: ¢(z) =1/(e7?+1)

Rectified Linear Unit (ReLU) Activation Function:

This function maps every negative value immediately to zero. It ranges from zero to
infinity, and the function and its derivative are monotonic.

Equation: R(z) = max(0, z)

-10.0 7.5 —5.0 —2.5 0.0 2.5 5.0 7.5

Figure 14: ReL.U Activation Function

Softmax Activation Function:

Softmax maps the output in range between [0, 1]. Furthermore, the total sum of the
mapped output is 1. Therefore, the output of Softmax is a probability distribution.

Equation:

e’i

G(Z)j - 5—1 eZk

For j=1,....K.
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2.3.e) Loss Functions

In Neural Networks, the term Loss refers to the prediction error of the Neural
Network. The calculation of the loss with the use of a function is called Loss Function.
Loss function is responsible for the update of weights of the Neural Network.

Thereare various Loss functionsand the selectionof the one that fits the bestto a model
depends on various factors, such as the type of problem (Regression or Classification),
the model architecture and many more.

Few of the most known Loss Functions are:

Cross Entropy: One of the most known loss functions, it measures the performance of
a classification model whose output is a probability value.

10 Log Loss when true label = 1

log loss

0.0 0.2 0.4 0.6 0.8 1.0
predicted probahility

Figure 15: Cross-entropy loss

Cross-entropy can be described by the following equation

M
L(©) = - ) yilog 3
i=1

where, M is the number of the classes, log the natural logarithm, y the binary indicator
(0 orl)ifclass label i is the correct classification and y _hat is the predicted label.

Kullback-Leibler divergence: Also called relative entropy, it is the gain or loss of
entropy when switching from distribution one to distribution two — and it allows to
compare the two distributions.

KL divergence is primarily used in Variational Autoencoders or in multiclass
classification scenarios. Mathematically can be described by the following equation:
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p(X)
q(X)

Smooth L1: Mostly used in object detectors for bounding box regression.

KL(P||Q) = Z p(X)log (4=

After defining L1 or Manhattan distance:

L, —(abN)—>Z|a l]I:(abN)—>Z|al

The smooth L1 can be defined:
smooth;; := (x) - piecewise(|x| < 1,0.5x2,|x| — 0.5) =
x — piecewise(|x| < 1,0.5x2,|x| — 0.5)
where X is the Manhattan distance between 2 vectors.

From the above equation the smooth L1 can be re-written:

x| — 0.5, if Ixl>1
sL1 = 2 .
0.5x2, elseif Ixl<1
. I ' T A
L1
L2 /
2 smooth L1 | -
’
D ' A i i 3
3 -2 -1 0 ' 2 3

Figure 16: Smooth L1 Loss

In a more general way, the smooth L1 loss can be re-written:

|x —yl, if lx—yl>a

L1=<1
s m(x—y)z, elseif Ix—yl<a

In other words, the goal of smooth L1 is to minimize the absolute difference between
the target and the estimated value.

Focal Loss [3]: Focal loss is a modification of the cross-entropy function, that reduces
the contribution from easy examples and increases the importance of correcting
misclassified examples.
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From the Cross-Entropy function:

—log(p), y=1

—log(1 - p) ,otherwise (1

CE(p,y) = {

Modifying the above loss function in more simplistic terms:

_{p y=1
Pt = {1 — p,otherwise 2)

By applying (2), in equation (1):

CE(p,y) = CE(p,) = —log (p,) 3)

At this point, Cross-Entropy handles only the weight of positive and negative
examples. Positive examples are the target class and negative examples are non-target
class or background information. However, in object detection there are samples that
were correctly classified as positive or negative example, and there are samples
misclassified as negative or positive examples. Those are easy and hard
positives/negatives respectively and Cross-Entropy does not handle them at all. Apart
from that, usually dataset suffer from class imbalance, making the network biased
towards the dominant class.

To solve those problems, Focal Loss adds a modulating factor to the cross-
entropy loss, with a tunable hyper-parameter.

FL(p,) = (1 —p)?log (pe)

CE(p:) = — log(p:)
FL(p) = —(1 — p) 7 log(p)

111

o

ON=00

well-classified
examples

e
) M e — —

0 0.2 0.4 0.6 0.8 1
probability of ground truth class

Figure 17: Focal Loss

If the gamma parameter gets the value zero, then the focal loss becomes cross-entropy.

There are other loss functions, suchas categorical cross-entropy, hinge loss, Huber loss,
Mean Square Error and many more.
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With the combination of the layers described previously, various ConvNets
architectures can be builtand deployed, dependingon the task. Traditionally, CNNsare
a good option for classification problems, but modern object detection pipelines utilize
CNNs as feature extractors as well. This chapter, describes some of the most well
established ConvNets and two Fully Convolutional Networks that have make a
significant contribution in Computer Vision.

2.4) Visual Geometry Group (VGGNet)

Designed by the Department of Science and Engineering of Oxford University,
VGGNets [4] are a series of convolutional neural networkmodels. The original purpose
of VGG’s research on the depth of ConvNets, was to understand how the depth of NN
affects the accuracy of image classification and recognition. Beginning with VGG, two
more upgraded models were designed VGG16 and VGG19, with the number
representing the depth of the model.

1x1x4096 1x1x1000

Lk ( 1‘ convolution +RelU
max pooling
fully nected + Rell

softmax

Figure 18: VGG16architecture

Oxford University proposed the idea of seeing the design of a neural network
architecture more abstractand firstintroduced the idea of blocks and repeating pattems.
Visual Geometry Group Networks can be split into six blocks. As can be seen in Image
[16], the input image is passed through five blocks. Each block is a sequence of
Convolution, Rectified Linear Unit and max pooling layers. The final block, flats the
output and uses SoftMax for classification.

One important feature of VGG Net is that it uses convolutional blocks based on
3x3 modules. For example, in the first block each of the output characteristics depends
on a 3x3 region of the original image, in the second conv block it depends on 5x5 of
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currentoquie = (3 + 2n)x(3 + 2n)

Wheren =0, 1, ,.., number of blocks.

the original image and so on. Therefore, each block has a dependency from the original
image, that follows this rule:

ConvNet Configuration
A A-LRN B C D E
11 weight | 11 weight | 13 weight | 16 weight | 16 weight | 19 weight
layers layers layers layers layers layers
mnput (224 x 224 RGB image)

conv3-64 conv3-64 conv3-64 conv3-64 conv3-64 conv3-64
LRN conv3-64 conv3-64 conv3-64 conv3-64

maxpool
conv3-128 | conv3-128 | conv3-128 | conv3-128 | conv3-128 | conv3-128
conv3-128 | conv3-128 | conv3-128 | conv3-128

maxpool
conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256
conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256
convl-256 | conv3-256 | conv3-256
conv3-256

maxpool
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
convl-512 | conv3-512 | conv3-512
conv3-512

maxpool
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
convl-512 | conv3-512 | conv3-512
conv3-512

maxpool

FC-4096

FC-4096

FC-1000

soft-max

Figure 19: VGGNets

VGG shows a simple structure where lower blocks can extract global,
semantically rich featuresand the higher blocks canprocessthe higher resolution pixels
of the image.

2.5) Residual Networks (ResNet)

Designing deep neural networks can be a very challenging task to complete. As
more layers were stacked in @ CNN, more problems were emerging (exploding or
vanishing gradient problem). It is important that the addition of layers makes the
network strictly more accurate, more expressive rather than just different.

Considering F is the class of functions that a specific network architecture can
reach, then Vf € F exists some set of parameters (biases, weights) that can be obtained
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through training on a suitable dataset. If f* is the target function and it belongs in F,
then the network is in a good “shape”. Unfortunately, this is rather unlucky, so instead
the network tries to find some f which best fits within J. Given a dataset with features
X and labels y, the network tries to solve the following optimization problem:

fr €argmax L(X,y, f) subjectto f €F
f

It is only reasonable to assume that designing a differentand more powerful
architecture J it should arrive at a better outcome. However, if F is not a subsample of
F’ then it is not guaranteed that the architecture will perform better. In other words,
non-nested function classes do not always move closer to the target function, as
illustrated in Image [20]. However, if each architecture is as good as the previous one
with the addition of extra complexity (nested functions), then each new model will
move towards the target function.

Figure 20: Non-nested and Nested function classes

For deep neural networks, the newly-added layer can be trained into an identity
function f(x) = x, the new model will be as effective as the original model. As the new
model may get a finer solution to fit the training dataset, the extra layer might make it
easier to minimize training errors.

Assuming a classical convolutional neural network exists then it maps the input
x to the outputy = f(x). A residual network will use a replica of the input x to the output
of the network and the learning algorithm will only learn the differences between the
input and the output. Therefore, the output of the network is f(x)+x. The advantage of
this method (residual block), is that it creates layersthat they are at least efficient as the
previous ones. Furthermore, the architecture of the model is relatively simple, since the
same topology is repeated through the entire network.
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X

Y

weight layer
F(x) | relu
weight layer

F(x)+x

Figure 21: Residual Block

X

identity

ResNetor Residual Networks were invented by Microsoftto solve the problems
that were stated in the beginning. There are many architectures such as ResNet 18,
ResNet 34, ResNet50, Resnet101 and ResNet152, with the number representing the

number of layers in each architecture.

layer name | output size 18-layer I 34-layer I 50-layer 101-layer 152-layer
convl 112x112 7x7, 64, stride 2
3x3 max pool, stride 2
[ 1x1,64 ] [ 1x1,64 ] [ 1x1,64 ]
sinon : ’ R
S| [ ; ; z ]x'_’ [ zxi‘gj ]x3 3x3,64 |x3 3x3,64 | x3 3x3,64 | x3
S | 1x1,256 | | 1x1,256 | | 1x1,256 |
[ 1x1,128 ] [ 1x1,128 ] [ 1x1,128 ]
5 5 ; ; ;
conv3x | 28x28 [ 2:2 :;: ]xz [ ::: :;2 ]x4 3x3,128 [ x4 3x3,128 [ x4 3x3,128 [ x8
Bt i | 1x1,512 | | 1x1,512 | | 1x1,512 |
1x1,256 ] [ 1x1,256 ] [ 1x1,256 ]
2 2
convdx | 14x14 [ZX:‘;zz]xz [:":;;2 ]xs 3x3,256 |x6 || 3x3,256 [x23 || 3x3.256 |x36
gl o | 1x1,1024 | | 1x1,1024 | | 1x1,1024 |
[ 11,512 1x1,512 1x1,512
2 2 ’ ’
covsx | 7x7 [ e ]x- [ o ]x3 3x3,512 [x3| | 3x3,512 |x3 | | 3x3,512 |x3
RS el [ 1x1,2048 | 1x1,2048 11,2048

Ix1

Figure 22: Residual Networksarchitecture

average pool, 1000-d fc, softmax

ResNet34[5] for example has five convolutional blocks and one block for
classification. In each convolutional block the spatial dimensions are reduced by a
factorof 0.5, while the number of filtersdoublesin eachblock. Inthe lastblock, average
pooling is applied and a fully connected layer, to flatten the network in the appropriate
number of classes. To classify the objects, a softmax layer is applied at the end.

A
w3 conw, 256, /2

Figure 23: ResNet34 architecture
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2.6) U-Net

Convolutional Networks are powerful visual models that yield hierarches of
features. All models described in previous sections utilized fully connected layers for
classification. Unlike classic CNNs, a Fully Convolutional Network (FCN) does not
have fully connected layers. The neural network can only perform convolution and
pooling operations (for FCN pooling is either up-sampling or down-sampling). The
CNNs layers typically reduce or down-sample the spatial dimensions of the input
(height and width), or keep it unchanged. For a Fully Convolutional Network
architecture, since they perform pixel-wise classification most of the times, it will be
convenient if the spatial dimensions of the inputand output are the same. To achieve
this, especially after the spatial dimensions are reduced after each convolution step,
anothertype of layer called transposedconvolutioncan be used to increase (up -sample)
the spatial dimensions of the intermediate feature maps.

Given a ny X n,,input tensor and k; X k,kernel. Sliding the kernel window
with stride of one for n,,times in each row and n,times in each column yields a total of
npnyintermediate results. Each intermediate resultis a (ny, + kp, — 1) X (n,, + ky, —
1)tensor that are initialized as zeros. To compute each intermediate tensor, each
element in the input tensor is multiplied by the kernel so that resulting k;, X k,,tensor
replaces a portion in each intermediate tensor. In the end, all intermediate results are
summed together to produce the output of the transposed convolution. An example can
be seen in the following Image.

Input Kernel

01 Transposed 011
Output
00O ol 1 0101
= |[RONNO + 213|+]10]2 + 013|=]0)]4]|F6
4|6 6|9 4 |12 9

Figure 24: Transpose Convolution example

Anexample of fully convolutional network is the U-net[6]. It inherited its name
because of its distinct U shape, which can be seen in Image [24]. The network consists
of a contracting path (top-down pathway) and an expansive path (bottom-up pathway).
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Figure 25: U-netarchitecture

The top-down path follows the architecture of a simple ConvNet, consisting of
convolutionsand max pooling operations. At first, two 3x3 zero-padded convolutions
are applied, each followed by a ReLU and a 2x2 max polling operation with stride of 2
channels. Ateach down-sampling step the spatial dimensions are reduced by a factor
of 0.5 and the number of feature channels are doubled.

Every step in the bottom-up pathway consists of an up-sampling operation of
the feature map, followed by a 2x2 “up-convolution” that halves the number of feature
channels, followed by a concatenation with the corresponding cropped feature map
from the dilated path and two 3x3 convolutions, followed by a ReLU. The cropping
operation is necessary to match the size of the new feature map that is produced after
each convolution step. As a final layer a 1x1 convolution is used to map each
component feature vector to the desire number of classes.

U-netwas initially developed for biomedical-segmentation, butitis widely used
in semantic segmentation problems (pixel-wise classification).

2.7) Feature Pyramid Network (FPN)

Detectingobjectsin differentscalesis arather challengingtask, especially when
it comes to small objects. Feature pyramids on top of image pyramids form the root of
a standard solution to this challenge. Those pyramids are scale-invariant meaning that
an object’s scale changes the offset by shifting its level in the pyramid. This property,
allows a model to identify and detect objects across a large range of scales by scanning
the model over both positions and pyramid levels.

Featurized image pyramids [7] were heavily used in the era of hand-engineered
features. In the modern days, tasks like recognition and object detection use features
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that have been computed by an algorithm or by another deep learning model and not by
hand.

{ predict

/ /yedncti

Figure 26: Featurized Image Pyramids

Furthermore, featurizing each level of an image pyramid has various limitations.
Inference time increases considerably, making this approach impractical for real
applications. Also, training a deep neural network end-to-end on an image pyramid is
memory consuming.

Another way to compute a multi-scale feature representation is by using a
ConvNet. ACNN computes a feature “hierarchy” layerby layer and with sub-sampling
layers the hierarchy gets a multiscale pyramidal shape.

/P»yp(edlct |

/ 2 7 4
[_ﬁ/
*

Figure 27: Single Feature Map

This hierarchy produces feature maps of different spatial resolutions, but introduces
large semantic gaps caused by different depths. As the network goes deeper, the
resolution of the image reduces, but semantically strong features are being extracted.
The single feature map model misses the opportunity to reuse higher-resolution maps,
consequently misses the detection of object of different sizes.

Feature Pyramid Network or FPN combines low-resolution but semantically
strong features with high resolution but semantically weak features. To achieve this, it
utilizes a bottom-up and a top-down pathway with lateral or skip connections.
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The bottom-up pathway uses a ConvNet like ResNet or VGG. From one
convolution module to the next, the spatial dimensions are reduced by '2. The output of
each convolution module is later used in the top-down pathway.

—d 121 COMV |

Figure 28: FPNarchitecture

Each outputof the bottom-up pathway is used as inputin the top-down pathway.
To fit the dimensions, the FPN uses lateral connections, which is simple a 1x1
convolution filter to reduce the output channel depth. Going down the path, each
previous layer is up-sampled by 2, using nearest neighbors up-sampling (Figure 29).

Figure 29: Up-sampling

The result is an image with double the size of the spatial dimensions. Again, a 1x1
convolution is applied to the corresponding feature maps in the bottom-up pathway.
Then the results are added element-wise. Finally, a 3x3 convolution filter is applied to
all merged layers. This final filter isapplied to reduce the aliasing effect of the up/down-
sampling that takes place.
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Figure 30: U-netvs FPN

Both U-net and Feature Pyramid network are Fully Convolutional Networks.
While they seem to have big similarities, the main difference is that FPN utilizes lateral
connections, while U-net only copies and concatenates the cropped areas.

Object detection systems, based on the architecture, can be classified in two
detector categories:

e Single-stage detectors.
e Two-stage detectors.

The difference between the two pipelines is that two-stage detectors use in the first
stage an algorithm or even an entire Neural Network to create possible locations of
objects in an image and the second stage is responsible for classification and box
location correction, while single-stage detectors localize an object and classify it in a
single pass.

Two-stage detectors were designed foraccuracy, while single-stage detectors for speed.
As deep neural networks advanced over the years, so did object detector systems, to the
pointwere two-stage and single-stage detectors perform atthe same accuracyand speed
level.
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Figure 31: Object Detection Pipelines

2.8) Two-stage architectures

The problem of object detection can be separated into two sub-problems. Box
localization and classification of the proposed location. Due to unknown number of
instances of an object in an image, a simple ConvNet architecture is not enough. As an
alternative, the image can be divided in a fixed number of regions, and the ConvNet
can classify if the image contains a certain class of objects. The problem with this
approach is that different objects have different spatial locations within an image and
different aspect ratios. Hence, a huge number of regions must be selected, makingita
huge computational problem.

To bypass this problem various methods were proposed aiming the reduction of
the proposed locations. The Networks that utilize that kind of techniques were known
as Region-based Convolutional Neural Networks (RCNNSs) or two-stage detectors.

2.8.a) Regional CNN (R-CNN)

The first Region Proposal Network [8] (R-CNN) took an image as input and
produce asetof boundingboxesasoutput, where each boundingbox contains an object
and also the category of the object. In order to keep the number of proposed locations
small, R-CNN utilizes in the first stage of the pipeline a mechanism called Selective
Search to extract regions of interest (ROI). Each ROI is a rectangle that may represent
the boundary of an object in an image.
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SELECTIVE SEARCH USING HIERARCHICAL GROUPING

Input: Image.

Output: Set of object location hypotheses L.

Obtain initial regions R = {ry, ..., } using F&H method.
Initialize similarity set S = 0.

foreach neighboring region pair (r;,r;) do

Calculate similarity s(rj, ;).

S=SUs(n,1)

while S# @ do

Get highest similarity s(rj,r;) = max(S)

Merge corresponding regions r; = 7; U 7;

© 00 N o o A W DN B

Remove similarities regarding r;: S = S s(r;,7.)

=
o

Remove similarities regarding ;: S = S s(r,,7;)
Calculate similarity set S; between r;and its neighbors.
S=SuUS,

13 R=Run

14  Extractobject location boxesL from regions in R.

s
N

Usually, selective search [9] calculates approximately 2.000 possible object locations.
After that, each ROI is warped into a square and fed through a convolutional neural
network that produces an output feature vector. Each ROI’s feature output is fed into a
Support Vector Machine to classify the presence of the object within that candidate
region proposal. In addition to predicting the presence of an object within the region
proposals, the algorithm also predicts four values, which are offset values to increase
the precision of the bounding box. In other words, the algorithm uses these 4 values to
adjust the coordinates of the region proposal, as close as possible to the ground truth.
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Figure 32: RCNNarchitecture

In Figure 32, the architecture of RCNN can be seen. In this particular image
example, there are three region proposals that are warped into a fix size rectangle and
they are fed into a ConvNet. Each feature vector is then used to adjust the bounding
box and classify the object within the region. Although the example looks simple, in a
real dataset they would be around 2.000 proposals for each image, making the whole
process a difficult computational problem. Furthermore, the selective search algorithm
is a fixed algorithm and no learning is happening at that stage. This could lead to the
generation of bad candidate region proposals.

2.8.b) Fast R-CNN

The main performance bottleneck of an R-CNN lies in the independent CNN
forward propagation for each region proposal. Fast R-CNN [10] proposed a different
mechanism to the region proposal extraction. The algorithm, but instead of feeding the
region proposal to the CNN, the input image is fed to the ConvNet to generate a
convolutional feature map. Then, from the convolutional feature map, the region
proposals are identified through selective search and warped into squares of fixed size.
To achieve that, Fast R-CNN introduces Region of Interest pooling layer, which is a
similar operation to max-pooling.approach is similar to the R-CNN.
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Figure 33: A2x2 ROI pooling layer example

The feature outputfrom the ConvNetand the region proposals from the selective search
algorithm are inputinto the ROI pooling layer, outputting concatenated features that
are further extracted for all the region proposals. The output of the ROI pooling layer
is called ROI feature vector. Each of these feature vectors are of fixed size, and they
can be fed into a fully connected layer to flatten down the dimensions, and later used
as input into a softmax layer to predict the class of the proposed region and also the
offset values for the bounding box.

Unlike R-CNN, Fast R-CNN does not have to feed 2.000 region proposals to
the ConvNet every time, instead the convolution operation is done only once per image
and a feature map is generated from it.

Class Bounding box
prediction prediction

l\ /I
t

| Rol pooling |

i

| CNN | | Selective search

o 2

.rﬁ

Figure 34: FastR-CNN architecture
2.8.c) Faster R-CNN

Both R-CNN and Fast R-CNN use the selective search algorithm to extract the
region proposals. Selective search is a rather slow and time-consuming algorithmic
processthataffectscritically the performanceof the network. Instead of using Selective
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Search algorithm on the feature map to identify the region proposals,a separate network
is used to predict the region proposals, called Region Proposal Network (RPN).

Region Proposal Networks follow these three steps:

e Generate Anchor boxes.
o Classify each anchor box whether it is foreground of background.
e Learn the shape offsets for anchor boxes to them for objects.

Anchor boxes[11] “are a set of predefined bounding boxes of a certain height and
width ”. They are defined to capture the scale and aspect ratio of specific object classes
that need to be detected and they are typically chosen based on object sizes in the
training dataset.

Figure 35: Anchor boxes example

After producing the anchor boxes, the RPN predicts the binary class (background or
object) and bounding box for each anchor box. Sometimes, due to the large number of
boxes produced, more than one bounding box predicts the same object. To remove
overlapped results, non-maximum suppression [11] isapplied. The remaining predicted
bounding boxes for objects are the region proposals required by the ROI pooling layer.
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Non-Max suppression
1 Procedure NMS(B,c)
2 Bms< O

3 forb;eBdo

4 Discard < False
5 forb; € Bdo
6

7

8

9

If same (bi,bj) > Aums then
If score (c,b;) >score(c,b;) then
Discard < True
If not discard then
10 Bims € Bpms U b;
11 Return Bpyms

Faster R-CNN [12] is an upgrade of the Fast R-CNN. They follow the same
architecture, but Faster R-CNN utilizes RPN instead of Selective Search.

Class Bounding box
prediction prediction

I EG | Binary class
T prediction

| i
' I
' I

I = —
; let ] Bounding box !
| Rol pooling [ : l NMS [ prediction Anchor box :
! :
' I
|

I

< |

| CNN }

'b a Region proposal network

Figure 36: Faster R-CNN architecture

As part of the whole model, the region proposal network is jointly trained with the rest
of the model. In other words, the loss or objective function of the Faster R-CNN
includesnotonly the class and boundingbox prediction in objectdetection, butalso the
binary class and bounding box prediction of anchor boxesin the RPN. The result is an
end-to-end training method, where the RPN learns how to generate high-quality region
proposals, so as to stay accurate in object detection with a reduced number of region
proposals that are learned from data.
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2.9) Single-stage architectures

Single stage model architectures, unlike Regional Neural Networks, directly
predict object bounding boxes and classification score for an image. There is no
intermediate task like detecting region proposals through a neural network or with an
algorithm like Selective Search. The resultis a much simpler and faster architecture.

Usually, Single Stage architectures utilize a ConvNet such as VGG or ResNet
as a backbone network. The backbone network is responsible for feature extraction.
Then, usually, two more Fully Convolutional Networks are deployed for box regression
and object classification.

2.9.a) You Only Look Once (YOLQ)

YOLO [13] is a family of deep learning models, designed for fast object
Detection. At the moment, there are three YOLO versions. YOLOv1 (Figure 37)
proposed the general architecture, where the second version introduced anchor boxes
to improve the bounding box proposal. Version number three proposed changes in the
training process of the model.

YOLO Architecture
Series of Comvolution + Max Pool Layers
Max Max
Input Image =®  CNN layer [~ Pool =+ CNN layer [ Pool = FC [—*| FC |—| Output

Figure 37: YOLO architecture

As seen in Figure 37, the basic architecture of YOLO relied on a series of Convolutions
and Max Pooling layers. Finally, for YOLOv1, two fully connected layers are
responsible for predicting the bounding boxes. In v2, the fully connected layers were
removed and instead, the anchor boxes are responsible for box regression.

In general, YOLO is a very successful object detector. The simplicity of the
architecture, allows YOLO to be trained quite fast and version three is as accurate as
the best two-stage object detector.

2.9.b) Retina Network

Focal loss was introduced with RetinaNet. The goal was that a simple Fully
Convolutional architecture with the appropriate loss function could fix the extreme
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foreground-background class imbalance problem that came with single-stage
architectures.

RetinaNet [12] consists of a backbone network (ConvNet +FPN) and two task
specific fully convolutional networks, one for box regression and one for object
classification.

class+box |
+ subnets class
subnet
—— WxH WixH
$ IPg— class+box v $256 *KA
» | _subnets 2
74

class+box
subnets

box
subnet

(a) ResNet (b) feature pyramid net (c) class subnet (top) (d) box subnet (bottom)

Figure 38: RetinaNetarchitecture

The backbone network is responsible for computing a convolutional feature map over
an entire image and is off-the-self convolutional network.

As previously stated, networks that utilize anchor boxes suffer from extreme
foreground-background class imbalance due to dense sampling of anchor boxes. In
RetinaNet, each Feature Pyramid level can contain thousands of anchor boxes. Only a
few will be assigned to a ground-truth object, while the rest will be background class.
These easy examples or detections with high probability, although resulting in small
loss values can collectively overwhelm the model. For that reason, Focal Loss was
chosen as loss function in the model training phase. FL reduces the loss contribution
from easy examples and increases the importance of correcting misclassified examples
(see also section 2).

There are many more single-stage detectors such as Single Shot Detector or
SSD, SqueezeDet, DetectNet. Also, there are variations of the well-known detectors
such as Tiny or Fast YOLO that have been developed for more speed or less computing
power.
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3. Base model (RetinaNet)

The RetinaNet can be separated in three major components:

1) The backbone Network, which consists of a bottom-up and a top-down
pathway.

2) Two subnetworks for classification and regression.

3) The loss function to train the model.

3.1) Backbone Network

As mentioned in 2.9.b the backbonenetis a fully convolutional network with
lateral connection. It consists of an encoder and a decoder. In the original paper the
encoder was a residual network such as ResNet50 and the decoder was a Feature
Pyramid Network. The original image gets fed into the encoder, which processes the
image through convolutional kernels and generates deep features. The bottom-up
pathway as it is also called can be any convolutional network, as long as it does not
contain any fully connected layers.

Convs (C5) | = * : FPN
0.5x M5 3x3 — P5
- - l 2X
Conv4 (C4) |+— “1x1 —«<+’
0.5x E Ma ,'3x3 _Ipa
: : : T
ResNet : |Conv3 (C3) |+ 1 —*{_«Iﬁi 2x
0.5x M3 —°— '3x3 —| P3
Conv2 (C2) :
0.5x :
Conv1l (C1) :
image

Figure 39: Backbone Network

As seen in Figure 39, moving from the bottom all the way to the top, the spatial
dimensions are reduced at each convolutional block by a factor of 0.5.
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For each feature map produced by the ResNet, the FPN does the exactly opposite
operation. It up-samples the spatial resolution of each feature map input by a factor of
two. The resultis then merged with the correspondingbottom-up map, which undergoes
a 1x1 convolution to reduce channel dimension for element-wise addition.

3.2) Classification/Reqgression Networks

The classification and regression networks are two Fully Convolutional
Networks with simple architecture. The classification network predicts the probability
of an object to present at each spatial position for each of the A anchors and K object
classes, while the regression net predicts the relative offset between anchor and the
ground truth box.

The classification network design is simple. As input takes a feature map with
C (256) channels from a pyramid level. Then itapplies four 3x3 convolutional layers,
each with C filters, followed by ReLU activation functions, followed by a 3x3
convolutional layers with KA filters. As last layer, sigmoid function is attached to
output the KA predictions per spatial location.

B
subnet

(<) class subnet (top) (d) box subnet (bottom)

Figure 40: Classification/Regression Networks

The bounding box regression network has an identical design, with the difference of
having 4A linear outputs per spatial location.

These two small FCNs are attached to each FPN level. Meaning if the FPN has
four levels, 8 subnetworks are needed to perform object detection. Furthermore,
although the two networks share identical architecture, they use separate parameters
(weights, biases).
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3.3) Loss Functions

For classification, RetinaNet uses a modification of the Cross-Entropy loss
function, called Focal Loss (see 2.3.e) or FL. Focal Loss reduces the contribution from
easy examples and increases the importance of correcting misclassified examples.

For box regression uses smooth L1 (see 2.3.e) or Least absolute deviation or
Least Absolute Error, asa loss function. The goal is to minimize the absolute difference
between the target value and the estimated value.

3.4) Why Retina?

Choosing a deep learning model to complete a certain task is quite challenging.
The evaluation process depends on many factors such as the challenge, the data, the
application of the model and many more. In order to have a general idea how a network
performs organizations and companies release from time-to-time huge datasets with
many classes and evaluate their models with them. One of those datasets is Microsoft’s
Common Objects in Context or the COCO dataset.

The COCO image dataset was created with the goal of advancing image
recognition. The dataset contains demanding, image or video datasets for computer
vision or object detection, mostly state-of-the-art neural networks. It is often used to
compare the performance of object detection algorithms. It contains 80 classes of
objects and most of the well-known object detectors come with a pre-trained model on
the COCO dataset.

Havingall the above in mind, the following chart, showcases the Mean Average
Precision of different Object Detectors using the COCO dataset.
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Figure41: COCO MAP results
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At the particular time, comparing to the other famous object detectors, RetinaNet really
standsout. Takingin to consideration the factthatitisa Single Stage Detector, therefore
it is fast, it was only logical to select this deep learning architecture as our base model
for comparison.
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4. Dataset

4.1) Stanford Drone Dataset (SDD) description

The SDD[14] is a massive data set of aerial images collected by drones over the
Stanford campus. The particular dataset is ideal for computer vision task such as object
detection ortarget tracking. It contains more than 60 aerial videos or 69GB of data. The
dataset consists of eight unique scenes. For each video, a model can detect 6 different
agents — “Pedestrians”, “Bikers”, “Skaters”, “Carts”, “Cars” and “Bus”. Unfortunately,
the dataset is biased, since the classes of Pedestrians and Bikers are covering more than
80% of the annotations.

. _IEEEResEud o ERBETEEY

Figure 42: SDD image example
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4.2) Changes in the Dataset

For the experiments that were conducted, some of the agents were merged into
new classes. To be more precise, the “Pedestrian” and “Skater” classes merged into a
new class called “Person”. The “Biker” class remained as it is. The “Car” and “Cart”’
agents were combined and the class kept the name “Car”. The “Bus” class remained
also asitis.

After all the editing, the Training and Testing annotations for the experiments were:

Classes (Training Annotations) Number
Person 22.673
Biker 11.479
Car 1.512
Bus 101
Total 35.765
Classes (Testing Annotations) Number
Person 5.558
Biker 1.204
Car 23
Bus 31
Total 6.816

The dataset is stored in a csv file in the Pascal VOC format:
(image, x1,y1, x2,y2, class_name)

Where x1, x2, y1, y2 are the four coordinates needed to locate an object.
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5. Evaluation Metrics

5.1) Intersection Over Union (1oU)

Intersection Over Union[15] is a metric that evaluates the overlap between two
bounding boxes. It requires the true coordinates of the object that needs to be detected
(the ground truth box By, and a bounding box B, that was predicted. By applying the
loU we can evaluate whether a detection is valid (True Positive) or not (False Positive).

loU is given by the overlapping area between the prognosticated bounding box B, and
the By, divided by the area of union between them:

area (B, NBgy,)
area(B, UBg)

IoU =

To represent the above equation in terms of detection, the image below illustrates the
loU between a ground truth bounding box in green and a detected bounding box in red.

[l

area of overlap
10U = oL overap _

area of union

Figure 43: loU representation

Using loU the following concepts can be defined:

e True Positive (TP): A correct detection. IoU > threshold.

o False Positive (FP): A wrong detection. loU <threshold.

o False Negative (FN): A ground truth object not detected.

e True Negative (TN): In object detection this metric has no use, since it
represents a corrected misdetection and in object detection there are many
possible boundingboxesthatshould notbe detected within an image. Therefore,
True Negative would be all possible bounding boxes that were correctly not
detected.
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The threshold is a constant that is metric dependent. It is usually set to values above
0.5 or 50%.

5.2) Metrics

Using the concepts that were defined in section 5.1, the following metrics can
also be extracted:

TP
TP +FP + FN

Accuracy =

Classification Accuracy is the simplest metric to use and it is defined as the
number of correct predictions, divided by the total number of predictions.

TP

p . . —
recision —TP T FP

Precision is the ratio of true positives divided by the total positives that were
predicted.

Many times, accuracy is not enough to determine whether a model behaves ideally.
Therefore, precision needs to be considered. A precision score towards 1 will signify
thatthe model did notmissany true positivesand isable to classify well between correct
and incorrectlabeling. Alow precision score on the other hand, means that the classifier
has a high number of false positives which can be an outcome of imbalanced class or
untuned model hyperparameters.

TP

* Recall = Sensitivity = TP-l-—FN

Sensitivity, is essentially the ratio of true positives to all the positives in ground
truth. Recall towards 1 will signify that the model did not miss any true positives and it
is able to classify well between correctly and incorrectly labeling. A low recall score,
means that the classifier has a high number of false negatives which can be an outcome
of imbalanced class or again untuned model hyperparameters.

2 x precision * recall
precision + recall

Flscore =

The F1-score metric, is a combination of precision and recall. To be more
accurate, F1 is the harmonic mean of the two metrics.
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A high F1-score, translates as a high precision and high recall scores. It presents a good
balance between precision and recall and gives good results on imbalanced
classification datasets.

A low F1 score is difficult to explain. Both of the metrics can be responsible for a low
F1-score. Low sensitivity means that the model did not do well on very much of the
entire test set. Low precision means that among the cases that were identified as
positive, the model did not get many of them right.

Precision measures how the accurate the predictions of the model are, while
Recall measures how well the model finds all the positives. The combination of those
two metrics for various thresholds allow to produce another metric called Precision-
Recall Curve or PR-curve. For each class, the area below the PR-curve represents the
Average Precision of that class. Weight summing each AP over each class, we get the
mean Average Precision of the model.

1 k=n
mAP = = Z APy
n

k=1

Where APy the Average Precision of class k and n the number of classes[16].

*For this diploma thesis the Sensitivity or Recall score is defined, butin the equation
the None class (see confusion matrix in the experiments section) is not taken into
account, therefore the results tend to be significantly higher, but that is the result of the
proposed Recall metric. If the None class is taken into consideration the Sensitivity
score is closer to 0.75 for confidence threshold of 0.6 in the first experiment.
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6. Base model Experiments

To create a base case, the original RetinaNet model was trained using a simple
split of the dataset. Eighty percent of the data were used in the training process and
twenty percent for testing.

For convenience, the training process took place in Google Colab. For the
training process, NVIDIA Tesla P100/V100 GPU accelerators were deployed.

Tesla P100 is powered by NVIDIA Pascal architecture [17]. There are 3.584
CUDA cores and the accelerator can perform at4.7 TeraFLOPS. The memory of the
GPU is 16GB CoWoS HBM2 at 732 GB/s, with maximum power consumption at
250W.

Tesla V100 is powered by the Volta architecture [18]. It combines Tensor and
Cuda Cores within a unified architecture. To be more specific, itis equipped with 640
Tensor cores and 5.120 CUDA cores. It performs at 7 TeraFlops and the GPU memory
is 32GB HBM2. With a combination of improved raw bandwidth of 900GB/s and
higher DRAM utilization efficiency, the V100 delivers 1.5X higher memory bandwidth
over the P100. The maximum Power consumption is at 250W like the P100.

Both the P100 and V100 support every major deep learning framework such as
Tensorflow, PyTorch, Caffe2, etc.

6.1) Simple Split

For the first experiment, the process was relatively simple. First the data were
split into training and testing data, 80/20 split. Then the training annotations were fed
into the network as input images. The model was trained for 100 epochs using the
NVIDIA Tesla P100 GPU accelerator. To make the training process faster, a pre-trained
ResNet in the COCO dataset was utilized. Therefore, only the classification and
regression networks needed to be trained and readjust their weightsto detect the objects
of the SDD.

. - Feed Training annotations Training for 100 epochs on
Data Split (Training/Test). to Network. NVIDIA Tesla P100.

Figure 43: Training/Testing process
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In the following matrix the metrics of the experiment are represented. For a
prediction to be classified as True, a 0.6 threshold of confidence was chosen. That
means that if a detection has an loU score confidence over the loU threshold, then to
be classified asa TP, the confidence score of the detected object needs to exceed the
prediction threshold.

To evaluate how well the model performs over each class, a confusion matrix
was constructed. Furthermore, a None class was added to the CM, representing class
objects the model found, but they were not in the set of the testing annotations.

0.800

0.847
0.934
0.889

0.611/0.870

Table[1]: Simplesplitresults

From the results in table No.2 the precision for each class can be calculated:

p -1 920
Tperson = 4859 1415 =

738

Prbiker = m = 0.559

=0.733

Prous = 55778
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Person 4829 582 0 0

Biker 415 738 0 0

Bus 0 0 22 0

Car 0 0 8 17

None 410 173 1 6
Person Biker Bus Car

Table[2]: Confusion Matrix

The experiment was repeated for confidence score threshold 0.7 and the
Intersection over Union threshold remained the same at 0.5.

0.746

0.776

0.950

0.854

0.596/0.847

Table[3]: Simplesplitresults confidence threshold 0.7
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Person 4661 898 0 0

Biker 630 661 0 0

Bus 0 0 25 0

Car 0 0 6 17

None 207 67 1 6
Person Biker Bus Car

Table[4]: Confusion Matrixfor confidencethreshold 0.7

Figure 44: Example of Detection
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6.2) K-fold Cross-Validation

Cross-validation is a technique for evaluating further a deep learning model and
testing its performance. There are various CV algorithms, but for this evaluation the K-
fold CV was chosen.

K-fold Cross-Validation

Split Data into Training/Testing sets.
Split the Training dataset into k equal (if possible) parts called folds.
For each fold:

Evaluate the model using the current fold.

1
2
3
4 Train the model using the remaining training data.
5
6 Evaluate the model in the Testing set.

7

Extract a mean value from every Validation and Testing results.

Feed
Training Test in Test each
Split Data Datain the modelin
(Training/ the Validation the Test
Test). Network. Data. set.

Split Training Repeat5 Obtain a
Training 20 times mean
Data epochs. total average
(Training/ - from the
Validation) 5-fold
cross
validation.

Figure 45:5-fold CV pipeline

For convenience, the training set was split in 5 folds. For each validation and
testing the Accuracy, Precision, Recall and F_1 score metrics were calculated. Finally,
the mean values of those metrics were calculated as can be seen in Matrix No.5.
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0.795 [ 0.789 | 0.792 | 0.748 | 0.584 | 0.657 | 0.689 | 0.742 | 0.821 | 0.796 | 0.736 | 0.746
0.865 | 0.857 | 0.866 | 0.853 | 0.818 | 0.849 | 0.841 | 0.859 | 0.853 | 0.852 [ 0.848 | 0.854
0.908 | 0.899 | 0.902 | 0.900 | 0.670 | 0.655 | 0.792 | 0.788 | 0.955 | 0.943 | 0.845 | 0.837
0.886 | 0.888 | 0.883 | 0.886 | 0.737 | 0.711 | 0.816 | 0.817 | 0.897 | 0.901 | 0.843 [ 0.840
Val Test Val Test Val Test Val Test Val Test Val Test

Table[5]: 5-fold Metrics
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7. Two-phase FPN Retina model

In order to improve the RetinaNet model further, another layer of convolutions
added. The improved RetinaNet utilizes an extra bottom-up pathway to deepen the
network and furtherimprovethe quality of features extracted in each convolutionblock.

As seen in the image above the architecture has not changed drastically. The
loss function remains the same as the original paper proposed, since the dataset is full
of imbalances and Focal Loss is the best choice when it comes to class imbalances. The
box regression loss also remains the same.

Figure 46: Modified RetinaNet

The extra bottom-up pathway is a combination of the Convolution blocks C3-C5, in
order to produce even better high resolution/ semantically low and low resolution /
semantically high features. Since the output of C4 and P3 after the appropriate
convolutionsare the same, the kernel function is altered so that the merged outcome
(P4) is a combination of features produced by different convolution kernels. As seen in
Figure 46, an extra level has been added in the pyramid P6, which is simple another
convolution block.

The rest of the architecture is the same as the original RetinaNet, with the difference
that P6 passes through a 1x1 Convolution and produces N6. This new block, N6,
contributes in the creation of N5 block after it gets up-sampled and merged with P5.
Also since the N6 block has been created through a series of convolution, holds high

(1]

68

—
| —



quality features, therefore through a 3x3 convolution the output of N6 is fed as input
into the classification and regression networks.

-

IMG

Figure 47: The newarchitecture

Just like the original Retina, the modified Retina was evaluated through Simple
Split and k-fold Cross Validation. The training and testing process was the same as it
was described insection 6.1and 6.2. The followingtable displays the results for Simple
Split evaluation of the model.

0.849

0.887

0.943

0.914

0.632/0.897

Table[6]: Simplesplitresults
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From the results in matrix No.7 the precision for each class can be calculated:

P = 1972 = 0.933
Tperson = 4975 1355 -
842
Prbiker = m = 0.625
22
Pry,s = 718 =0.733
14
Pregr = 14 =1
Person 4972 504 0 0
Biker 355 842 0 0
Bus 0 0 23 0
Car 0 0 8 17
None 397 192 1 6
Person Biker Bus Car

Table[7]: Confusion Matrix
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0.811 | 0.808 | 0.776 | 0.756 | 0.603 | 0.688 | 0.749 | 0.777 | 0.860 | 0.819 [ 0.759 [ 0.770
0.887 | 0.846 | 0.844 | 0.877 | 0.834 | 0.854 | 0.866 | 0.898 | 0.901 | 0.875 [ 0.866 | 0.870
0.912 | 0.901 | 0.909 | 0.920 | 0.705 | 0.703 | 0.819 | 0.800 | 0.963 | 0.966 [ 0.861 | 0.858
0.899 [ 0.873 | 0.875 ] 0.897 | 0.764 | 0.771 | 0.841 | 0.846 | 0.930 | 0.918 | 0.861 | 0.861
Val Test Val Test Val Test Val Test Val Test Val Test

Table[8]: 5-fold Metrics
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8. Comparison

8.1) Comparison with RetinaNet

Due to the extra Convolution blocks in the modified RetinaNet, the training time
is significant bigger, compared to the original Retina architecture. But since the goal of
this diploma thesis is to compare the models only in terms of the metrics specified in
previous section, the time complexity for the training and testing has not been taken in
consideration.

When it comes to metrics such as Accuracy, Precision, Recall and F1 score, the
modified model seems to perform better than the original:

e 6% increase in terms of Accuracy
e 49 increase in terms of Precision
e 1% increase in terms of Sensitivity
e 2% increase in terms of F1-score

All the above lead to the conclusion, that the extra layer of Convolution blocks,
as well as the extra depth of the model improved the performance of the model in terms
of “accuracy” metrics. It is worth noted that both models were trained with the same
data for the same number of epochs. Furthermore, they both share the same loss
functions for classification and regression loss.

8.2) Comparison with other models

The purpose of this work is to compare various Deep Learning models on the
Stanford Drone Dataset and extract results about their performance. To make the
comparison possible the following results have been taken by Mahdi Maktab Dar
Oghaz, Manzoor Razaak, and Paolo Remagnino and their paper with title “Enhanced
Single ShotSmall Object Detector for Aerial Imagery Using Super-Resolution, Feature
Fusion and Deconvolution” [20].

In theirwork they compared various single-stage and two-stage detectors, based
on their mean Average Precision. In Matrix No0.9 the comparison of YOLOVS,
FasterRCNN, SSD, RetinaNet and modified Retina are displayed.
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Model mAP(%)

FasterRCNN 59.60
SSD 64.31
YOLOv3 57.42
RetinaNet 61.10
Modified Retina 63.27

Table[9]: Comparison of the based and proposed models with the literature
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9. Conclusions

The two-phase FPN modified RetinaNet:

Outperformed the base model by 6% in terms of Accuracy
Outperformed most of the detectors in the literature

Suitable for small object detections such as people, cars, etc

Can be deployed in applicationswhere accuracy is a critical factor

+ o+ + o+

On the other side, the proposed model also has its drawbacks:

— Requires extremely high computational power systems for training
— Requires significant more time for training and prediction than the base model

9.1) Limitations

Deep Learning is a science that requires strong computational power in order to
perform experiments in real data, with models that have millions of trainable
parameters. Unfortunately, the Google Colab platform and their limited access to GPU
made this study a rather challenging task. Moreover, the complexity of the models and
the large size of the dataset demanded huge time amount to complete the training. As
result, the margin for error was really small, because a failed training phase could mean
hours of lost work.

9.2) Future Work

The whole comparative study was a good exercise to learn an object detector
from start to finish, from the design and training process, to testing the model in real
data and extract critical results. Furthermore, the modifications on the model helped
understand how a simple change in the architecture can have significant impact in the
accuracy of the model. A good way to continue thisstudy will be to fine tune even more
the training parameters of the model while also test various other loss functions such as
the Kullback-Leibler divergence.

Itis also worth mentioned thatboth of the models that were trained, had as input
data from the Stanford dataset. That means that if we test the model with images or
videos that have different angle or the camera is at different height, the models might
not be able to detect correctly the subjects. One way to overcome those problems will
be to use fusion. Aerial images from various angles and different heights so that the
model can be used in to a real-life application.

Last butnotleast, it will be very interestingto deploy the modified Retina model
into a real UAV or another surveillance system and try to make some real-life
predictions.
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