
TECHNICAL UNIVERSITY OF CRETE

DIPLOMA THESIS

Design Space Exploration of
Hardware Accelerated Continual

Learning Methods in
Convolutional Neural Networks

Author:
Emmanouil PERAKIS

Thesis Committee:
Prof. Apostolos DOLLAS

Prof. Michail LAGOUDAKIS

Asst. Prof. Grigorios

TSAGKATAKIS (UOC)

A thesis submitted in fulfillment of the requirements
for the diploma of Diploma Thesis

in the

School of Electrical and Computer Engineering

Microprocessor and Hardware Laboratory

13/09/2023

Chania, September 2023

https://www.tuc.gr/
http://example.com/
http://example.com/
http://example.com/
http://example.com/
http://example.com/
https://www.ece.tuc.gr/
https://www.mhl.tuc.gr/

iii

TECHNICAL UNIVERSITY OF CRETE

Abstract
School of Electrical and Computer Engineering

Diploma Thesis

Design Space Exploration of Hardware Accelerated Continual Learning
Methods in Convolutional Neural Networks

by Emmanouil PERAKIS

Artificial Intelligence (AI) and Machine Learning (ML) have seen indisputable
advancements over the years, spanning a large number of branches from
medicine and industry related machinery to data analytics and Internet of
Things. One way in which Machine Learning on the edge falters is to learn
from new, never seen before data, without having access to the previous data.
If the model is left as is without any intervention, trying to learn new classes
results in catastrophic forgetting. By training a classifier that is separated
from the network’s parameters the model can learn new tasks without for-
getting previously learned ones, and do this at inference time. This is where
Continual Learning, and more importantly to this thesis, Streaming Linear
Discriminant Analysis comes into play. In this thesis, an accelerator for the
previously mentioned method was fully implemented and downloaded on
a Field Programmable Gate Array (FPGA) device and compared to other
platforms, such as modern CPUs and Graphical Processing Units (GPUs).
This accelerator results in fixed point latency that is two orders of magnitude
smaller than even CPUs and GPUs, and hundrends of times more energy effi-
cient. The floating point latency speedup is a lot smaller, but still comparable
to modern devices, while retaining the energy efficiency.

HTTPS://WWW.TUC.GR/
https://www.ece.tuc.gr/

v

TECHNICAL UNIVERSITY OF CRETE

Abstract
School of Electrical and Computer Engineering

Diploma Thesis

Design Space Exploration of Hardware Accelerated Continual Learning
Methods in Convolutional Neural Networks

by Emmanouil PERAKIS

Η Τεχνητή Νοημοσύνη και η Μηχανική Μάθηση έχουν δει αναμφισβήτητη πρόο-

δο τα τελευταία χρόνια, βρίσκοντας χρήση σε διάφορους κλάδους από την ιατρική

και τα μηχανήματα που χρησιμοποιούνται στη βιομηχανία μέχρι την Ανάλυση Δε-

δομένων και το Διαδίκτυο των Πραγμάτων (ΙοΤ). ΄Ενας τρόπος με τον οποίο η

Μηχανική Μάθηση στα υπολογιστικά άκρα (εδγε ςομπυτινγ) αποτυγχάνει είναι

το να μάθει από νέα, πρωτοφανή δεδομένα, χωρίς να έχει πρόσβαση στα προηγο-

ύμενα δεδομένα. Αν μέινει το μοντέλο ως έχει χωρίς κάποια παρέμβαση, τότε η

προσπάθεια εκμάθησης νέων κλάσεων οδηγεί σε ένα φαινόμενο που ονομάζεται κα-

ταστροφική λήθη. Εκπαιδεύοντας έναν ταξινομητή, ο οποίος είναι διαχωρισμένος

από τις παραμέτρους ενός δικτύου, το μοντέλο μπορεί να μάθει νέες έννοιες, χω-

ρίς να ξεχνάει τις προηγούμενες, και όλα αυτά σε χρόνο συμπερασμού. Εδώ είναι

που «εισέρχεται στην εξίσωση» η Συνεχής Μάθηση, και σημαντικότερα για τη

συγκεκριμένη διατριβή, η Εισρέουσα Γραμμική Διακριτική Ανάλυση (Στρεαμινγ

Λινεαρ Δισςριμιναντ Αναλψσις). Στην παρούσα διπλωματική εργασία υλοποιήθηκε

ένας επιταχυντής για την προαναφερθείσα μέθοδο και προσαρμόστηκε σε συσκευή

Προγραμματιζόμενης Συστοιχίας Πυλών Πεδίου (ΦΠΓΑ) και συγκρίθηκε με άλλες

πλατφόρμες, όπως μοντέρνους επεξεργαστές και Επξεργαστικές Μονάδες Γραφι-

κών (ΓΠΥς). Ο επιταχυντής επιτυγχάνει, σε αριθμητική σταθερής υποδιαστολής,

καθυστέρηση που είναι δύο τάξεις μεγέθους χαμηλότερη από επεξεργαστές, ακόμα

και από Επξεργαστικές Μονάδες Γραφικών, αλλά ταυτόχρονα είναι εκατοντάδες

φορές πιο ενεργειακά αποδοτικός. Η βελτίωση στην καθυστέρηση, σε αριθμητι-

κή κινητής υποδιαστολής, είναι πολύ μικρότερη, αλλά συγκρίσημη με σύγχρονες

συσκευές, παράλληλα διατηρώντας την προαναφερθείσα ενεργειακή απόδοση.

HTTPS://WWW.TUC.GR/
https://www.ece.tuc.gr/

vii

Acknowledgements
I would like to express my gratitude to my supervisor Prof. Apostolos Dol-
las who made this thesis possible through his irreplaceable guidance and
wisdom regarding computer architecture and work ethic in general. The
valuable lessons I learned will remain with me forever, and inspire me to
keep learning. Being part of the MHL laboratory was also a privilege to have
through the new acquaintances I made and the help I was able to provide to
fellow undergraduate students.

Furthermore, I would like to deeply thank Asst. Prof. Grigorios Tsagkatakis
(UoC), for the invaluable assistance he provided me with regarding more
contemporary Machine Learning methods that broadened my horizons in
the field. Additionally, his contributions concerning the direction of this the-
sis were of immense value and helped shape the path to the final results.

I would also like to thank Prof. Michail Lagoudakis for taking the time to
review my thesis.

Moreover, I have to thank Dr. Andreas Brokalakis and Laboratory Teaching
Staff Markos Kimionis that helped in keeping the systems in the laboratory
operate as expected and even upgrading them when needed.

Last but not least, I would like to express my deepest gratitude to my family
and friends that helped me push forward through thick and thin and made
me become the person I am today.

ix

Contents

Abstract iii

Abstract v

Acknowledgements vii

Contents ix

List of Figures xiii

List of Tables xv

List of Algorithms xvii

List of Abbreviations xix

1 Introduction 1
1.1 Motivation . 2
1.2 Scientific Contributions . 2
1.3 Thesis Outline . 4

2 Theoretical Background 5
2.1 Artificial Intelligence . 5
2.2 Machine Learning . 5
2.3 Deep Learning . 7

2.3.1 Perceptron . 7
2.3.2 Activation Function . 8

2.4 Neural Network Training Steps 11
2.4.1 Feedforward Neural Network 11

Forward Propagation . 11
2.4.2 Loss Function . 12
2.4.3 Backpropagation and Gradient Descent 13

2.5 Convolutional Neural Networks 14

x

2.5.1 Convolutional Layers 15
2.5.2 Subsampling Layers . 17

2.6 Continual Learning . 19
2.7 Continual Learning algorithms that assess the Catastrophic For-

getting problem . 20
2.7.1 Elastic Weight Consolidation (EWC) 20
2.7.2 Learning without Forgetting (LwF) 21
2.7.3 Gradient Episodic Memory (GEM) 21
2.7.4 Deep Streaming Linear Discriminant Analysis (Deep

SLDA) . 22

3 Related Work 25
3.1 CNN architectures . 25

3.1.1 AlexNet . 25
3.1.2 VGG . 26
3.1.3 ResNet . 27
3.1.4 DenseNet . 27
3.1.5 MobileNets . 28

3.2 Datasets previously used in Continual Learning Tasks 31
3.2.1 CIFAR-10/100 . 31
3.2.2 CoRE50 . 32
3.2.3 ImageNet . 33
3.2.4 CUB200-2011 . 33

3.3 Thesis Approach . 33
3.4 Hardware designs for Matrix-Vector multiplication 34

3.4.1 GPU based designs . 34
3.4.2 FPGA based designs . 34
3.4.3 Google TPU . 35

4 Robustness Analysis 39
4.1 Arithmetic Representation . 39

4.1.1 Fixed Point Representation 39
4.1.2 Fixed Point operations: Advantages and Disadvantages 40
4.1.3 Static SLDA over Plastic SLDA 42
4.1.4 Static SLDA algorithms 43
4.1.5 Software Implementation of Static SLDA 44
4.1.6 NumPy . 44
4.1.7 CuPy . 45

Pretrained Python CNNs 46

xi

Dataset and Data orderings 46
Network Base Initialization 46
SLDA among different platforms and programming lan-

guages . 46

5 System Architecture and FPGA Implementation 49
5.1 Hardware Architecture . 49

5.1.1 Update Means Unit . 53
5.1.2 Compute Weights Unit and Compute Biases Unit . . . 55
5.1.3 Compute Scores Unit . 58

5.2 Tools Used . 60
5.2.1 Vitis High Level Synthesis (HLS) 60

Optimization Directives 61
5.2.2 Vivado IDE . 62
5.2.3 Vitis Unified Software Platform 63

5.3 Platforms and Xilinx Cores . 63
5.3.1 ZCU102 . 63

6 System Verification and Performance Evaluation 67
6.1 System Verification . 67
6.2 Specification of Compared Platforms 67

6.2.1 Intel Core i7-11800H . 67
6.2.2 NVIDIA RTX 3050 Ti Mobile 68
6.2.3 ZCU102 . 69

6.3 Implemented Accelerator Characteristics 69
6.4 Experiments that were sought through 70
6.5 Throughput and Latency Speedup 71

6.5.1 Amdahl’s Law . 71
6.5.2 Metrics used for latency and throughput 72
6.5.3 Comparison of the accelerator to other platforms . . . 72

6.6 Power Consumption and Energy Consumption 77
6.7 Accuracy Metrics . 79
6.8 Results Discussion . 81

7 Conclusions and Future Work 83
7.1 Conclusions . 83
7.2 Future Work . 84

xii

8 Appendix A - FPGA design from High Level Synthesis to Applica-
tion level testing 87
8.1 Vitis HLS algorithms . 87

8.1.1 Compute Weights Unit Algorithm 87
8.1.2 Compute Biases Unit Algorithm 89
8.1.3 Compute Scores Unit Algorithm 90

8.2 Vivado IDE block design . 90
8.3 Embedded application using the Vitis Software Platform . . . 92

References 97

xiii

List of Figures

2.1 Neuron . 8
2.2 Perceptron . 9
2.3 Activation Functions . 11
2.4 FeedforwardNN . 12
2.5 backpropagation . 14
2.6 LeNet-5 . 15
2.7 1DConvoloution . 16
2.8 2D Convolution . 17
2.9 MaxPooling . 18
2.10 AvgPooling . 19
2.11 EWC . 21
2.12 LwF . 22

3.1 AlexNet . 26
3.2 VGG . 27
3.3 Resnet . 29
3.4 Densenet . 30
3.5 MobileNets . 30
3.6 MobileNets . 31
3.7 MobileNets . 31
3.8 Core50 . 32
3.9 GEMM . 35
3.10 SLDA . 36
3.11 SLDA . 36
3.12 TPU . 37
3.13 TPU arch . 37

4.1 FixedPoint Sign magnitude . 40
4.2 FixedPoint 1’s complement . 41
4.3 Distribution . 42

5.1 SLDA top top . 51

xiv

5.2 SLDA top . 52
5.3 Means . 54
5.4 Weights . 56
5.5 Biases . 57
5.6 Scores . 59
5.8 ZCU102 . 65

6.1 util percentage . 70
6.2 Static SLDA latency among different platforms. 75
6.3 Static SLDA throughput among different platforms. 76
6.4 Static SLDA on ZCU102 total on-chip power. 78
6.5 Accuracy metrics of the continual learning process on two dif-

ferent splits of the CIFAR10 dataset. 80

8.1 SLDAconnections . 92

xv

List of Tables

5.1 ZCU102 specification table. URL 64

6.1 Intel Core i7-11800H Processor specifications. URL 68
6.2 NVIDIA RTX 3050 Ti Mobile specifications. URL 68
6.3 ZCU102 PL fabric specifications. 69
6.4 Static SLDA accelerator for fixed point operations specifications. 69
6.5 Static SLDA accelerator for floating point operations specifica-

tions. 70
6.6 Static SLDA classifier latency and throughput metrics on CPU

with the use of NumPy and without the use of NumPy. 72
6.7 Static SLDA classifier latency and throughput metrics among

the different platforms for feature vectors of dimensionality
N = 512. These results are without the data transferring opti-
mizations . 73

6.8 Static SLDA classifier latency and throughput metrics among
the different platforms for feature vectors of dimensionality N
= 512. These results include the data transferring optimizations 74

6.9 Latencies of the whole inference process + the training of the
SLDA classifier . 77

6.10 Static SLDA classifier power and energy metrics for floating
point arithmetic. 79

6.11 Static SLDA classifier power and energy metrics for 16-bit Fixed
Point arithmetic. 79

https://docs.xilinx.com/v/u/en-US/ug1182-zcu102-eval-bd
https://ark.intel.com/content/www/us/en/ark/products/213803/intel-core-i711800h-processor-24m-cache-up-to-4-60-ghz.html
https://www.techpowerup.com/gpu-specs/geforce-rtx-3050-ti-mobile.c3778

xvii

List of Algorithms

1 Init means algorithm . 43
2 Update means, weights and biases algorithm 44
3 Compute Scores algorithm . 44

xix

List of Abbreviations

ALU Arithmetic Logic Unit
ASIC Application Specific Integrated Circuit
BRAM Block Random Access Memory
CPU Central Processor Unit
CS Computer Science
DDR4 Double Data Rate type texbf4 memory
DRAM Dynamic Random Access Memory
DSP Digital Signal Processor
FF Flip Flops
FPGA Field Programmable Gate Array
GDDR6 Graphics Double Data Rate type 6 memory
GPU Graphic Processor Unit
HBM High Bandwidth Memory
HDL Hardware Description Language
HLS High Level Synthesis
HPC Hight Performance Computing
LUT Look Up Table
MPSoC Multi Processor System on Chip
PL Programmable Logic
PS Processing System
RAM Random Access Memory
SDK Software Development Kit
SIMD Single Instruction Multiple Data
SLDA Streaming Linear Discriminant Analysis
SSE Streaming SIMD Extensions
SSD Solid State Drive
TDP Thermal Design Power
URAM Ultra Random Access Memory
USD United States Dollar

xxi

Dedicated to my family and friends. . .

1

Chapter 1

Introduction

Over the last few years, Artificial Intelligence (AI) and Machine Learning
(ML) in particular, have taken the world by storm and have found their way
into almost every gadget, machine or system around us. This has become
possible due to both the advancements in machine learning algorithms and
models, that achieve state of the art accuracy (sometimes even better than
humans in some tasks) and the hardware architectures that specifically tar-
get Machine Learning acceleration and perform the tasks needed faster than
ever. These advancements have carried the AI scene from just theoretical
models to real life applications that better and simplify our lives.

On the CPU front, an evolution in electronics has taken place over the decades,
achieving smaller and smaller transistor sizes (currently under 10nm) as it
was expected from Moore’s Law. Sadly, due to physical limitations on the
quantum level the size of transistors can only get so smaller, or else their
operation is hindered. That is why many researchers direct their studies to
quantum computing or optical computing, which operates using electromag-
netic waves. Moreover, the amount of cores in CPUs is steadily increasing as
to have greater parallelism and computational capabilitie.

GPUs, or Graphical Processing Units have started developing with one target
in mind, accelerating graphics in video games and simulations. Neverthe-
less, due to high demands in gaming performance they reached a place that
renders them of great assistance to ML model training and inference. This be-
comes possible architecturally because GPUs contain a lot more smaller and
simpler processing units that are optimized to perform specific operations.

Naturally, with the rise of ML large companies such as Google have adopted
their ASIC design for accelerating inference and training. The Google Tensor

2 Chapter 1. Introduction

Processing Unit is such a device that boasts great inference capabilities in
exchange of flexibility in comparison to its aforementioned counterparts.

Most ML models require a period of training that, depending on the size of
the dataset, can take minutes, hours, or even days. On the other hand, in-
ference, that is the pass of the data through a trained model to receive a pre-
diction, is a lot faster. That is the reason most edge devices that require real
time prediction capabilities, only perform inference caclculations on board.
Training is most of the time prohibitive in edge devices as it requires a lot
more resources and energy than inference.

1.1 Motivation

As it was mentioned in the previous section training on the edge is most
of the time prohibited. If the edge device has access to the internet it can
connect to a server that performs training and receive back the new model
parameters. This has very high latency due to the satellite links needed and
may not meet the time requirements needed in many applications such as
autonomous driving and real time image classification tasks. Even when
putting aside the round-trip communication overhead some edge devices
designed for space or deep ocean exploration may not have access to the
internet, making training on servers impossible.

Because of the limitations described, Continual Learning or Incremental Learn-
ing can play a massive role in accommodating real time training of the mod-
els on new classes without compromising speed. These types of training
methods attempt to train a model on only previously unseen data without
destroying the prior knowledge acquired on different data.

This thesis attempts to accelerate one of the many continual learning algo-
rithms, the Streaming Linear Discriminant Analysis (SLDA) algorithm, on
an FPGA device. The aim is to perform training on new data with as little
overhead as possible and as low energy consumption as possible. These are
the two main constraints of a real time edge system.

1.2 Scientific Contributions

This thesis is a deep dive into the SLDA algorithm and how its inner cal-
culations work so that it can be constructed and run efficiently on an FPGA

1.2. Scientific Contributions 3

device, in this case the ZCU102. By researching the best ways to incorporate
the whole process on a single FPGA device, it can benefit the user who is
going to desire just connecting the classifier at the end of a classic inference
model using a CPU, GPU or DPU. Furthermore it can benefit the whole de-
vice that is running on as there will be no constant communication between
the host and the accelerator, leading to lower latency and energy efficient
designs, that are critical especially in battery powered devices.

The overall design of the accelerator takes full advantage of the BRAMs and
DSPs provided by the FPGA to achieve high levels of parallelism when faced
with linear algebra operations, even when compared to contemporary CPUs
and GPUs. The design of the architecture resembles more closely the design
of the TPU rather than that of the two other platforms. The main way it
can perform matrix and vector operations with such high speed is the really
wide vectors that are loaded from memory and processed in parallel inside
a grid of systolic arrays. The philosophy behind this design is to transfer
data in and get data out, without a lot of control overhead and instruction
fetching. This simplicity allows for the SLDA accelerator to soar to other
domains that require fast linear algebra operations such as other Machine
Learning algorithms or solving systems of linear equations fast (eg. weather
prediction).

The whole design was made using the high level synthesis (HLS) tool pro-
vided by Xilinx and the testing and comparisons was made using a combi-
nation of optimized Python libraries, CUDA libraries and C++ libraries.

To sum up the contributions of this thesis in a list:

• An FPGA-based accelerator to be used in power critical systems as the
energy efficiency is a lot better than the GPU or CPU counterparts

• The newly developed accelerator has substantially better performance
than GPUs or CPUs when it comes to fixed point operations, namely
1̃000x latency speedup

• The accelerator achieves 7466x latency speedup for fixed point opera-
tions while the floating point operation latency speedup sits at 1.534x,
with the baseline being NumPy. The energy efficiency for fixed point
sits at 7900x and for floating point at 106x

• Simple to use SLDA accelerator, exported as an IP core, that can be
plugged in any system (edge or not) to perform continual learning.

4 Chapter 1. Introduction

• With a few tweaks, the user can obtain an accelerator that perfoms gen-
eral matrix-matrix and matrix-vector multiplications, resembling an ar-
chitecture similar to the TPU. The difference here, is that this accelerator
is open source.

1.3 Thesis Outline

• Chapter 2 - Theoretical Background: The second chapter dives into the
history of Artificial Intelligence and how it evolved over the years from
the simple perceptron to CNNs finally leading to the continual learning
problem description.

• Chapter 3 - Related Work: This chapter explores the works of other
researchers in Convolutional Neural Networks architecture, in dataset
creation, in Continual Learning algorithms and ultimately in hardware
architectures for Machine Learning and Matrix Multiplication.

• Chapter 4 - Robustness Analysis: In Robustness Analysis a deep look
into the software algorithms and numerical operations is conducted.
Furthermore, a thorough description of the custom hardware architec-
ture of this thesis and the ways it can achieve good performance is
done.

• Chapter 5 - FPGA Implementation: As the custom accelerator was
specifically designed for FPGAs a plethora of tools and platforms were
used to achieve the final result. This chapter describes these tools and
platforms and what they have to offer. Additionally, the algorithms for
the High Level Synthesis tool are presented.

• Chapter 6 - Results: This chapter contains an assessment of the ac-
celerator compared to other CPU and GPU platforms, both in latency,
throughput and in power, energy consumption. At the end, a discus-
sion over the results is performed.

• Chapter 7 - Conclusions and Future Work: The final chapter sums up
the contributions of this thesis and suggests some ways that can im-
prove the performance and accessibility of the proposed IP core.

5

Chapter 2

Theoretical Background

In this chapter, a brief summary of the AI and ML advancements over the
years is included for completeness. Furthermore, an introduction to the catas-
trophic forgetting problem, that is being assessed by continual learning, is
written. Alongside it, a few continual learning methods are presented.

2.1 Artificial Intelligence

Artificial Intelligence is a relatively contemporary field in Engineering and
Science that has emerged almost a century ago and attempts to imitate hu-
man level intelligence in all kinds of electronic devices.

This field studies the ways a machine can accomplish Problem Solving, Rea-
soning, Knowledge Representation, Planning and Decision Making using
primarily the mathematical tools of Probability Theory, Logic Theory and
Optimization under specific constraints.[1]

Aside from the theoretical and philosophical restlessness on the subject, that
has its merits, AI finds applications in entertainment, like synthesising cre-
ative art forms (images, poems, text, speech etc.), and tackles real life prob-
lems such as pandemic control and prediction, medical condition diagnosis
and traffic management, to name a few.

2.2 Machine Learning

Machine learning (or ML for short) is a subfield of Artificial Intelligence and
it was first proposed from the AI researcher Arthur Samuel [2] as “the field
of study that gives computers the ability to learn without explicitly being

6 Chapter 2. Theoretical Background

programmed”. To be more analytical, Machine Learning is the field that ex-
amines the ways a computer can analyze data to extract information and
recognize patterns that may help it improve itself and make accurate predic-
tions given a specific task. To achieve this the machine must reprogram some
of its parameters employing algorithms that take as input large amounts of
training data, receive insights, and make informed decisions.

The three predominant types of machine learning are Supervised Learning,
Unsupervised Learning and Reinforcement Learning [1]. There is also Semisu-
pervised Learning which encompasses the uncertainties that may occur in
Supervised Learning (eg. some labels might be missing). More details about
each type are given below.[3][4][5]

• Supervised Learning: This type of Machine Learning technique needs
some knowledge about the training data so that it can map the inputs
to the outputs. When provided with a new input, in testing, the agent
will assign it an output (labeling) according to the previously acquired
knowledge. Mathematically this can be expressed as:

Given a training set of N example input–output pairs

(x1, y1), (x2, y2), ...(xN, yN)

, where each
yj ∈ R

was generated by an unknown function y = f(x), and

xj ∈ RN

, the input feature vector, discover a function h that approximates the
true function f.

The main subcategories of Supervised Learning are Regression and Clas-
sification. Some algorithms that fall under these categories are Naive
Bayes, Nearest Neighbor, Discriminant Analysis, Linear Regression,
Support Vector Machines, Decision Trees, Ensemble Methods and Neu-
ral Networks [6].

• Unsupervised Learning: Learning in this way does not need any prior
knowledge about the nature of the data and attempts to infer patterns

2.3. Deep Learning 7

on the input. The main subcategory of Unsupervised Learning is Clus-
tering which includes algorithms like K-means, Fuzzy C-means, Hier-
archical, Gaussian Mixture and Hidden Markov Models.

• Reinforcement Learning: In Reinforcement Learning the AI agent learns
through a series of rewards and penalties just as a child learns by using
its senses and acting accordingly. Therefore, agents that learn through
interaction and try to maximize a reward function use Reinforcement
Learning. Algorithms that fall under this category are Q-Learning,
SARSA, Deep Q Network (DQN), Deep Deterministic Policy Gradient
(DDPG), Trust Region Policy Optimization (TRPO) [7] [1].

2.3 Deep Learning

Deep Learning is a subset of Machine Learning that takes advantage of the
capabilities of Artificial Neural Networks (ANNs) that have three or more
layers, that means apart from the input and output layers there exists at least
one hidden layer. ANNs, or simply Neural Networks (NNs), are inspired by
the biological brain of animals and tries to imitate its function by introducing
a network of neurons that is fully connected. Each connection of the network
is called an edge of the network. [8][9][10]

Initially, for a complete comprehension of how Neural Networks function,
it is imperative to describe the behavior and anatomy of a biological neuron
(nerve cell). As shown in figure 3.1, anatomically a neuron mainly consists
of dendrites, the soma, the axon and synaptic terminals. The artificial neuron
receives multiple inputs, from edges, and sums them up, just like biological
dendrites, to produce an output (or activation, representing a neuron’s action
potential which is transmitted along its axon). [11]

2.3.1 Perceptron

A perceptron, in the context of Machine Learning, is a binary algorithm that
takes an input vector x and produces an output f (x) that takes values in the
binary set S = {0, 1}. The term was first coined by Warren McCulloch and
Walter Pitts in 1943 [12] and thus the perceptron is also called the McCulloch-
Pitts neuron. Each one of the outputs represents a class, so the algorithm
learns a binary classifier called a threshold function or activation function. This

8 Chapter 2. Theoretical Background

FIGURE 2.1: Anatomy of a Neuron: https://www.physio-
pedia.com/Neurone.

function takes as input a vector of real values and produces a vector of binary
values at the output[13][14][15]. Mathematically, this can be expressed as:

Assume F(x) is the activation function and N = datadimensionality. Then
the output of a perceptron f(x) can be described as:

f (x) = F(w · x + b)

,

where w · x is the inner product of the N-dimensional vector x ∈ RN with
an N-dimensional weight vector w ∈ RN and b ∈ R is a bias that controls
the position of the decision boundary and is input independent. A graphical
representation is shown in figure 3.2.

2.3.2 Activation Function

An Activation or Transfer function’s nature is to determine whether or not a
neuron is activated and should be taken into consideration when calculating

https://www.physio-pedia.com/Neurone
https://www.physio-pedia.com/Neurone

2.3. Deep Learning 9

FIGURE 2.2: The Perceptron:
https://towardsdatascience.com/what-the-hell-is-perceptron-

626217814f53.

the next outputs. This behavior simulates the way a brain cell decides if it
should fire, based on some threshold.

Although, the linear perceptron, that was mentioned in the previous section
can make predictions in simple environments for a larger Neural Network
with more complex tasks at hand, it is not ideal. If the output of every neu-
ron in every layer is a linear function then the composite of these functions
is also a linear function. Therefore, the model is reduced to a linear regres-
sion model. This linearity proves to be insufficient in problems with more
than two classes. Consequently, the activation function is used to add non-
linearity to the output of the network. [16][17]

• Binary Step Function: The Binary Step function assigns outputs, that
belong in the binary set S = {0, 1}, according to some threshold. If the
input surpasses the threshold then it is assigned an 1, alternatively it is
assigned a 0. The mathematical representation is:

f (x) =

{
0 if x ≤ 0
1 if x > 0

• Linear Activation Function: The Linear Activation Function is consid-
ered the identity function in Neural Networks, as it just passes the input
to the output. The mathematical representation is:

f (x) = x, x ∈ R

https://towardsdatascience.com/what-the-hell-is-perceptron-626217814f53
https://towardsdatascience.com/what-the-hell-is-perceptron-626217814f53

10 Chapter 2. Theoretical Background

Both of the afore mentioned functions are only useful in linear regres-
sion problems.

• Sigmoid or Logistic Function: The Sigmoid Function is a continuous
function that takes values in the open interval (0, 1). Inputs that are
larger than 0 have an output closer to 1, while inputs that are less than
0 have an output closer to 0. The mathematical representation is:

f (x) =
1

1 + e−x , x ∈ R

• Tanh or Hyperbolic Tangent: Similar to the Sigmoid function with the
sole difference being that it receives values in the open interval (−1, 1).
The mathematical representation is:

f (x) =
ex − e−x

ex + e−x , x ∈ R

• RELU: It combines the Binary Step function with the Linear function,
rendering itself non linear. The mathematical representation is:

f (x) = max (0, x), x ∈ R

• Softmax: It can be considered as a mixture of multiple Sigmoids. The
SoftMax function returns the probability of each class.

It is most commonly used as an activation function for the last layer of
the neural network in the case of multi-class classification. The mathe-
matical representation is:

sigmoid(zi) =
exp (zi)

∑j exp(zj)
, x ∈ R

2.4. Neural Network Training Steps 11

FIGURE 2.3: Plots of the Activation Functions that were de-
scribed: https://en.wikipedia.org/wiki/Activation f unction.

2.4 Neural Network Training Steps

2.4.1 Feedforward Neural Network

A Feedforward Neural Network is the simplest form of a Neural Network,
where there are no cycles between nodes and data flows from the input layer
to the output layer. The most stripped-down Feedforward NN is the sin-
gle layer perceptron, which was described in detail in section 3.3.1. A more
complex but more functional form of Feedforward NNs is the multilayer per-
ceptron, which is illustrated and detailed below.

Forward Propagation

Following the entry of the raw data through the input layer, each node pro-
duces an output using the perceptron algorithm and applying an activation
function to it. Going forward, all the outputs are propagated to the next hid-
den layer. Each neuron in one layer has directed connections to the neurons
of the subsequent layer. This process is repeated until the data reach the out-
put layer and a prediction is made.[18][19]

https://en.wikipedia.org/wiki/Activation_function

12 Chapter 2. Theoretical Background

FIGURE 2.4: Architecture of a simple feedforward Neu-
ral Network: https://www.turing.com/kb/mathematical-

formulation-of-feed-forward-neural-network.

2.4.2 Loss Function

Loss Functions constitute an integral part in how a Neural Network learns
how the input data correlate with the output data. In layman’s terms, it
learns from its mistakes, just like any other living organism.

In Machine Learning, the loss function measures how accurate the predicted
value is in comparison to the target value. In all cases, for a deep learning
model to perform with adequate accuracy the loss function should be mini-
mized. Therefore, an optimization problem is introduced, with the variables
that can be tweaked being the weights and the biases of the network. Math-
ematically this problem can be expressed as:
Minimize J(wT, b), where

J(wT, b) =
1
m

m

∑
i=1

L(ŷ(i), y(i))

Furthermore, according to the use case of the model different loss functions
are employed[20]. Supervised Learning models more commonly take advan-
tage of loss functions, without it excluding Unsupervised Learning models
that are gaining ground in recent years, most notably in image and text gen-
eration. A list of problems and the respective loss functions that are used are
shown below.

https://www.turing.com/kb/mathematical-formulation-of-feed-forward-neural-network
https://www.turing.com/kb/mathematical-formulation-of-feed-forward-neural-network

2.4. Neural Network Training Steps 13

• Regression Problems:

– Mean Square Error (MSE):

MSE =
1
m

m

∑
i=1

(ŷ(i) − y(i))2

– Mean Absolute Error (MAE):

MAE =
1
m

m

∑
i=1
|ŷ(i) − y(i)|

• Binary Classification Problems:

– Binary Cross Entropy/ Log Loss:

LL = −(yi log(ŷi)) + (1− yi)(log(1− ŷi))

• Multi-class Classification Problems:

– Categorical Cross Entropy Loss:

CELoss = − 1
n

N

∑
i=1

M

∑
j=1

yij log(pij)

2.4.3 Backpropagation and Gradient Descent

A method that is quintessential in making Neural Networks learn, is Back-
propagation. It was popularized by DE Rumelhart, GE Hinton, RJ Williams in
their paper "Learning Representations by backpropagating errors" [21]. Funda-
mentally, this method tries to find a local minimum in the loss function by
adjusting the weights and biases of the network. The direction of this adjust-
ment (increase or decrease) in each individual weight and bias is determined
by the gradients of the loss function. These gradients are calculated using the
Leibniz chain rule.[22][23][24][25][26]

Generally, in multivariate calculus, the negative gradient of a function shows
the direction of steepest descent.This theorem is used by The most popular
method in finding local minima during backpropagation, called Gradient De-
scent.

14 Chapter 2. Theoretical Background

FIGURE 2.5: The Backpropagation algo-
rithm illustrated: http://galaxy.agh.edu.pl/ vl-

si/AI/backp_t_en/backprop.html.

2.5 Convolutional Neural Networks

Previously, the simple Feedforward Neural Network was discussed, and even
though it still finds applications in some simple tasks, it has become obsolete
in more recent years due to advancements in other network architectures and
more specifically the Convolutional Neural Network (or CNN). The CNN
took its first steps as an idea that stemmed from the paper "Neocognitron: A
Self-organizing Neural Network Model for a Mechanism of Pattern Recognition Un-
affected by Shift in Position "[27] by Kunihiko Fukushima. Later, the first actual
CNN was introduced in 1998, by Yann LeCun, Leon Bottou, Yoshua Ben-
gio and Patrick Haffner’s "Gradient-based learning applied to document recogni-
tion"[28] in the form of the LeNet-5. Since then, many other CNN architec-
tures have sprouted and produced excellent accuracy in image recognition
tasks.

CNNs find applications in a number of real life problems, such as face recog-
nition, autonomous driving, medical image analysis, time series classifica-
tion and many more [29].

Diving deeper, CNNs are deep Artificial Neural Networks that do not rely
on the user to apply preprocessing to the data, instead it finds useful pat-
terns itself and extracts them through image manipulation techniques like

http://galaxy.agh.edu.pl/~vlsi/AI/backp_t_en/backprop.html
http://galaxy.agh.edu.pl/~vlsi/AI/backp_t_en/backprop.html

2.5. Convolutional Neural Networks 15

convolutions (hence the name) and subsampling.

Moreover, after a certain amount of convolution + subsampling layers the
data have become one-dimensional and can be fed to a fully connected mul-
tilayer perceptron. The classification process is performed there through the
means that were detailed in previous chapters.

An image of the first CNN ever engineered, the LeNet-5 is shown below

FIGURE 2.6: LeNet-5 Architecture: [28].

It is important to mention, that the input data are two-dimensional in this ex-
ample but generally speaking the input of a CNN is a tensor with dimensions
HxWxD, where H = Height of the image in pixels, W = Width of the image
in pixels, D = Depth of the image, or the number of channels (eg. 3 channels
for RGB images). In many APIs such as Tensorflow and Pytorch the number
of images in a batch is considered the fourth dimension of the tensor.

2.5.1 Convolutional Layers

Convolution is a mathematical operation that can be performed in N dimen-
sions but this thesis focuses only on 1D and 2D data. It is basically the sliding
dot product between a kernel g and the data f . The two functions must be in
the same dimension.

Convolution on 1D data is typically needed in time series manipulation. The
kernels in this example are windows of certain width that slide through the
dimension of time and produce features that are also time series. This math-
ematical operation is expressed as:

Assume
g[n] = [g1, g2, ..., gN]

16 Chapter 2. Theoretical Background

f [n] = [f1, f2, ..., fM]

, then

(f ∗ g)[n] =
N

∑
i=1

f [i] · g[n− i]

When trying to implement this operation in a programming language, the
user should always remember to zero pad the input function f so as to in-
clude the corner cases of convolution, and produce a result with M + N − 1
elements. The exact same procedure is followed in the case of image process-
ing, which will be described later.

FIGURE 2.7: The convolution operation in the time domain:
https://e2eml.school/convolution_one_d.html.

Furthermore, in applications that have 2D images as input data, the 2D con-
volution is applicable. At its core it follows the exact same principles as the
1D case, apart from the fact that the functions that take part in the operation
are receive inputs from two-dimensional space. That means that the kernels
are usually square windows with a WIDTH and a HEIGHT. These two met-
rics make up the SIZE of the window. Another critical value that must be
defined in this case is the STRIDE which dictates how many pixels to skip in
the next iteration, both horizontally and vertically. The mathematics of the
2D convolution are given below:

Assume

g[3, 3] =

g11 g12 g13

g21 g22 g23

g31 g32 g33



https://e2eml.school/convolution_one_d.html

2.5. Convolutional Neural Networks 17

is the kernel and

f [h, w] =


f11 f12 ... f1W

f21 f22 ... f2W

.
fH1 fH2 ... fHW


is the input image, then the convolution of these two can be computed as

(f ∗ g)[h, w] =
1

∑
i=−1

1

∑
j=−1

g[i, j] · f [h− i, w− j]

If the desired output has to have the same dimension as the input image,
then zero padding is imminent. The zeros that are added in all four sides of
the image are calculated as follows, assuming a square kernel:

#zeros = ⌊KernelWidth
2

⌋

FIGURE 2.8: Convolution of an image with a 3x3 ker-
nel: https://medium.com/@draj0718/zero-padding-in-

convolutional-neural-networks-bf1410438e99.

2.5.2 Subsampling Layers

Convolutional Neural Networks (CNNs) employ the subsampling approach
to shrink the spatial dimensions of the input feature maps. The model be-
comes less computationally difficult as a result, and it also becomes more

https://medium.com/@draj0718/zero-padding-in-convolutional-neural-networks-bf1410438e99
https://medium.com/@draj0718/zero-padding-in-convolutional-neural-networks-bf1410438e99

18 Chapter 2. Theoretical Background

resilient to changes in the input. These layers more often than not proceed
the Convolutional Layers. In CNNs, two popular subsampling techniques
are used:

• Max Pooling: In max pooling, the maximum value in a rectangular
neighborhood of the input feature map is selected and used as the out-
put value. The neighborhood is defined by the size of the pooling win-
dow and the stride of the pooling operation. Max pooling is the most
common subsampling method in CNNs, as it has been found to work
well in practice.

FIGURE 2.9: Max pooling on a 4x4 image, applying a 2x2
pooling window: https://paperswithcode.com/method/max-

pooling.

• Average Pooling: In average pooling, the average value in a rectangu-
lar neighborhood of the input feature map is computed and used as
the output value. Like max pooling, the neighborhood is defined by
the size of the pooling window and the stride of the pooling operation.
Average pooling is less commonly used than max pooling, but it can
be useful in some cases where the input features have a more uniform
distribution.

Other pooling processes, such as L2 pooling, stochastic pooling, and frac-
tional pooling, exist in addition to these two popular subsampling techniques.
Although these techniques are less frequently utilized in actual practice, they
can be helpful in some particular applications.

https://paperswithcode.com/method/max-pooling
https://paperswithcode.com/method/max-pooling

2.6. Continual Learning 19

FIGURE 2.10: Average pooling on a 4x4
image, applying a 2x2 pooling window:

https://paperswithcode.com/method/average-pooling.

2.6 Continual Learning

All of the previous sections were introductory to the way Artificial Neural
Networks operate and which architectures are suitable for each job. Nonethe-
less, the main topic of this thesis revolves around Continual Learning, or Life-
long Learning. Continual Learning studies the ability of Machine Learning
algorithms to learn patterns from non-stationary data and without forgetting
previously learned patterns. The last phenomenon is called Catastrophic For-
getting ” [30] and it is the primary reason why building Continual Learning
models is not a trivial task.

Catastrophic forgetting stems from the fact that when training on a new task
the dataset may have a different distribution from the original data the model
was trained on. That means, the weights and biases, that are updated ac-
cording to the new dataset, fail to produce an adequate prediction on some
previously learned classes. The "Stability- Plasticity dilemma" examines this
exact phenomenon[31]. When a Neural Network focuses only on stability

https://paperswithcode.com/method/average-pooling

20 Chapter 2. Theoretical Background

then the new data, that is used for training, is not coded correctly in the Net-
work, whereas focus on plasticity can impede on the already encoded data,
from previous training sessions.

Many strategies for addressing catastrophic forgetting have been proposed.
Elastic Weight Consolidation (EWC), one regularization strategy, prevents
the network’s weights from drifting too far from their initial values. Replay
techniques, such generative replay and experience replay, keep track of past
data and use it to train the network for a new task. To prevent cross-task in-
terference, parameter isolation techniques like Learning without Forgetting
and Gradient Episodic Memory separate the network’s parameters for each
task.[32][33]. Some of these techniques will be presented in detail in the next
chapter.

2.7 Continual Learning algorithms that assess the

Catastrophic Forgetting problem

2.7.1 Elastic Weight Consolidation (EWC)

In the research paper “Overcoming catastrophic forgetting in neural net-
works”James Kirkpatrick et al. [32] set to prevent catastrophic forgetting in
deep Neural Networks. By examining the human brain, they found that the
synapses associated with previously learned tasks, on a critical level, tend
to show decreased levels of plasticity. This is called synaptic consolidation.
Elastic Weight Consolidation (or EWC) attempts to mimic this behaviour in
ANNs, by constraining important parameters to be altered less easily.

A new task is learned in ANNs by adjusting the weights and biases θ of the
network. It is significant to mention, that many configurations of θ result in
the same performance. EWC tries to find a configuration θ∗B ,for task B, that
still falls in the low error region for the previous task A, with parameters θ∗A.
That means that EWC protects task A by restraining the parameters critical
to its performance. This constraint is implemented as a quadratic penalty,
and can therefore be imagined as a spring anchoring the parameters to the
previous solution, hence the name elastic.

As seen in 2.11, restricting all the parameters equally (green arrow) does not
allow the model to learn task B. Not restricting them at all (blue arrow) allows
the learning of task B to the detriment of task A. EWC is the red arrow.

2.7. Continual Learning algorithms that assess the Catastrophic Forgetting
problem

21

FIGURE 2.11: The low error regions of the configurations
for tasks A and B, with their intersection being the re-
gion where both of those tasks do not lose performance:

https://arxiv.org/abs/1612.00796.

2.7.2 Learning without Forgetting (LwF)

Learning without Forgetting is a continual learning algorithm, that aims to
achieve comparable results between performance on old tasks and new tasks,
when receiving as input only data from the new task. Zhizhong Li and Derek
Hoiem’s work [34] is related to networks that transfer knowledge from one
network to the other, such as knowledge distillation methods. With each
new task, new parameters θn are added to the last classification layer and are
randomly initialized. The new nodes represent the classes of the new task.
Lastly, the network is trained to minimize loss for all tasks.

2.7.3 Gradient Episodic Memory (GEM)

First introduced by David Lopez-Paz and Marc’Aurelio Ranzato [35], Gra-
dient Episodic Memory (or GEM) is a continual learning model that tries
to learn tasks that arrive in an episodic manner. The authors, unlike their
contemporary counterparts, focus on solving a more "human- like" problem
where i) the number of tasks is large, ii) the number of training examples per
task is small, iii) the learner observes the examples concerning each task only
once, and iv) reported metrics measure both transfer and forgetting. GEM
uses an episodic memory Mt which stores a subset of the observed examples
task t.

https://arxiv.org/abs/1612.00796

22 Chapter 2. Theoretical Background

FIGURE 2.12: Graphical representation of different methods for
learning θn with the assistance of previously learned parame-

ters θs: https://arxiv.org/abs/1606.09282.

2.7.4 Deep Streaming Linear Discriminant Analysis (Deep

SLDA)

Originally termed Incremental Linear Discriminant Analysis (ILDA), this method
has risen to the surface by Shaoning Pang, Seiichi Ozawa and Nikola Kasabov
[36] to alleviate the problem of streaming data classification, something vanilla
LDA and PCA do not solve. This method derives a new discriminant eigenspace,
when fed with sequential chunks of data, that are random in size and con-
tain new classes, then adds it to the existing discriminant eigenspace. The
end results show promising conservation of the classification accuracy.

Inheriting the aforementioned idea, Tyler L. Hayes and Christopher Kanan
[37] were the first to use deep SLDA for feature classification of deep CNNs
with an emphasis on large scale image classification datasets. This stream-
ing learning method is ideal for edge devices as it is neither memory nor
computationally intensive.

To get into more detail on how this method works, it is assumed that a CNN
can be described as a function composition yt = F(G(Xt)), where Xt is the
input image. In this case, G(·) describes the first J layers of the network
whereas F(·) describes the final fully connected layer, with parameters θG

and θF, respectively. G(·) is trained during base initialization on a fraction of
the dataset while F(·) is trained in a streaming manner using the remainder

https://arxiv.org/abs/1606.09282

2.7. Continual Learning algorithms that assess the Catastrophic Forgetting
problem

23

of the dataset. The authors adapted SLDA to train a linear decoder

F(G(Xt)) = Wzt + b

where zt = G(Xt) ∈ Rd, W ∈ RKxd is the weight matrix and b ∈ RK is the
bias vector. K is the number of classes and d is the dimensionality of the data.

The mean for each class is a vector µk ∈ Rd, that is stored alongside the count
ck ∈ R and the shared covariance matrix Σ ∈ Rdxd. Each class mean vector
is updated whenever a new sample passes through the network. Assume
the sample is (zt, y), that belongs in class y, then the new mean vector and
associated count are updated as follows:

µ(k=y,t+1) ←
c(k=y,t)µ(k=y,t) + zt

c(k=y,t) + 1

c(k=y,t+1) = c(k=y,t) + 1

For Plastic SLDA the covariance matrix is also updated as follows:

Σt+1 =
tΣt + ∆t

t + 1

where ∆t is:

∆t =
t(zt − µ(k=y,t))(zt − µ(k=y,t))

T

t + 1

On the contrary Static SLDA uses a pre-initialized covariance matrix, without
updating it.

The authors also use shrinkage regularization to compute the precision ma-
trix Λ = [(1− ϵ)Σ + ϵI]−1. The rows of the weight matrix W are then com-
puted as:

wk = Λµk

,and the individual elements of the bias vector b are computed as:

bk = −
1
2
(µk ·Λµk)

25

Chapter 3

Related Work

In the following chapter a number of CNN architectures and datasets that can
be used in continual learning applications are presented for completeness.
In this thesis, the CNN that was ultimately used is the ResNet18 alongside
the CIFAR-10 dataset. Furthermore, attempts at implementing some of the
continual learning algorithms in chapter 2 on FPGA platforms are shown.
Finally, some works related to how certain hardware architectures handle
the linear algebra calculations needed in continual learning, and Machine
Learning in general, are discussed.

3.1 CNN architectures

We will talk about, CNN architectures, Continual Learning and hardware
architectures.

3.1.1 AlexNet

The Alexnet was first introduced by Alex Krizhevsky, Ilya Sutskever, Ge-
offrey E. Hinton [38] and won the 2012 Imagenet Competition by achiev-
ing top-1 and top-5 error rates of 37.5% and 17.0% respectively. These re-
sults considerably outpaced the comptetition and thus became one of the
most prevalent CNN architectures of its time. The architecture is comprised
of three Convolutional+Max Pooling layers, two Convolutional layers and
three Fully Connected Layers.

Some of the techniques that made AlexNet so accurate were:

• ReLU Nonlinearity and Local Response Normalization

• Multiple GPUs that processed data in parallel

26 Chapter 3. Related Work

• Overlapping Pooling

• Data Augmentaion, for an increase in the training dataset

• Dropout of Neurons

The AlexNet does not come without its drawback, in the form of computa-
tional workload. Each image during the feedforward pass through the net-
work reaches a billion computations. Figure 4.1 illustrates the architecture of
AlexNet.[39]

FIGURE 3.1: AlexNet architecture:
https://www.kaggle.com/code/blurredmachine/alexnet-

architecture-a-complete-guide/notebook.

3.1.2 VGG

VGG, or VGGNet as it is commonly referred as, is a deep CNN architecture
that excelled at the ILSVRC competition in 2014, and since then it is one of
the pioneering models for image recognition. VGG, which stands for Visual
Geometric Group, supports two versions; VGG16 which is comprised of 16
Convolutional layers, and VGG19 which consists of 19 Convolutional layers.
It was first proposed by A. Zisserman and K. Simonyan in their paper “Very
Deep Convolutional Networks for Large-Scale Image Recognition.”[40].

The VGGNet receives as input colored images with dimensions 224x224. The
convolutions are performed using small kernels of size 3x3 and sequentially
applying ReLU activation function to add non-linearity. The large number
of small kernels increases the non-linearity of the model while the avoidance

https://www.kaggle.com/code/blurredmachine/alexnet-architecture-a-complete-guide/notebook
https://www.kaggle.com/code/blurredmachine/alexnet-architecture-a-complete-guide/notebook

3.1. CNN architectures 27

of Local Response Normalization decreases memory consumption and train-
ing speed. On the other hand, one major problem of this architecture is the
Vanishing Gradient phenomenon, due to the large depth.[41]

FIGURE 3.2: VGGNet architecture: https://viso.ai/deep-
learning/vgg-very-deep-convolutional-networks/.

3.1.3 ResNet

Deep Residual Neural Networks, or ResNet for short, are the next novel ar-
chitectures for CNNs, attempting to surpass VGGNet and ultimately suc-
ceeding. First introduced by Kaiming He, Xiangyu Zhang, Shaoqing Ren,
Jian Sun in their study “Deep Residual Learning for Image Recognition” [42]
that won the ILSVRC COCO 2015 competition.

It addresses the problem of Vanishing Gradient by introducing a type of
block, called residual block, that allows connections between layers to be
skipped. Furthermore, this assures that the performance of a layer does not
show signs of declining in comparison to previous layers. This technique,
allows for a network depth of up to 152 layers - 8x the layers of a VGGNet.
In addition, this type of CNN will be primarily used during the experiments
of this thesis.[43][44]

3.1.4 DenseNet

In their research paper “Densely Connected Convolutional Networks”, Gao
Huang, Zhuang Liu, Laurens van der Maaten and Kilian Q. Weinberger [45]
observed that shorter connections between layers that are in close proximity

https://viso.ai/deep-learning/vgg-very-deep-convolutional-networks/
https://viso.ai/deep-learning/vgg-very-deep-convolutional-networks/

28 Chapter 3. Related Work

to the input and layers that are near the output, can deduce more accuracy,
depth and training efficiency in the network. Following this observation,
the DenseNet was born, a network where each layer is connected to all the
subsequent layers, in a feedforward fashion. As a result, the connections be-
tween layers sum up to L(L+1)

2 , whereas in previous architectures this sum
was equal to the number of layers L. Moreover, DenseNets offer a variety
of appealing benefits, including the elimination of the vanishing-gradient is-
sue, improved feature propagation, promoted feature reuse, and significantly
fewer parameters.

3.1.5 MobileNets

The MobileNets, produced by researchers at Google Inc. [46], have as their
primary purpose not to redefine CNN architecture but to adapt them in such
a way so that image classification becomes doable in mobile and edge de-
vices. This is achieved, through techniques that decrease the number of pa-
rameters and the number of MAC calculations[47]. MobileNets employ per-
formance enhancing procedures such as:

• Depth-wise and Point-wise convolution: Both of these techniques re-
duce the computational cost of plain convolution.

• Width multiplier: Further reduction in computational cost through model
thinning.

• Resolution multiplier: On top of the previous techniques, this one re-
duces computational cost by means of reduced representation.

3.1. CNN architectures 29

FIGURE 3.3: The ResNet architecture. By introducing resid-
ual blocks (curved arrows) the vanishing gradient problem
is controlled and the per layer performance is not degraded:

https://arxiv.org/pdf/1512.03385.pdf.

https://arxiv.org/pdf/1512.03385.pdf

30 Chapter 3. Related Work

FIGURE 3.4: The DenseNet architecture. In this architec-
ture each layer is connected to all the subsequent layers:

https://arxiv.org/pdf/1608.06993.pdf.

FIGURE 3.5: MobileNets depth-wise convolution and point-
wise convolution. These technniques enable the MobileNets to
reduce the computational cost and run on edge and mobile de-

vices: https://arxiv.org/pdf/1704.04861.pdf.

https://arxiv.org/pdf/1608.06993.pdf
https://arxiv.org/pdf/1704.04861.pdf

3.2. Datasets previously used in Continual Learning Tasks 31

3.2 Datasets previously used in Continual Learn-

ing Tasks

3.2.1 CIFAR-10/100

The CIFAR-10 dataset was composed by Alex Krizhevsky, Vinod Nair, and
Geoffrey Hinton. It contains 60000 images with size 32x32. It is a subset of
the 80 million tiny images dataset. The dataset is divided into 10 classes with
6000 images per class. There are 50000 images split into five training batches
and 10000 images for testing.

The CIFAR-100 dataset has the exact same number of images, that means
60000 but divided into 100 classes. As a result each class has a 10x less im-
ages in comparison to the CIFAR-10. This makes classification of these im-
ages more challenging. The 100 classes in the CIFAR-100 are grouped into
20 superclasses. Each image comes with a "fine" label (the class to which it
belongs) and a "coarse" label (the superclass to which it belongs).

Both datasets can be found at https://www.cs.toronto.edu/ kriz/cifar.html.

FIGURE 3.6:
CIFAR-10:
https://www.cs.toronto.edu/ kriz/-

cifar.html.

FIGURE 3.7:
CIFAR-100:
https://www.cs.toronto.edu/ kriz/-

cifar.html.

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html

32 Chapter 3. Related Work

3.2.2 CoRE50

The CoRE50 dataset was first introduced by Vincenzo Lomonaco Davide
Maltoni [48] as a dataset that is specifically designed for Continual Learn-
ing Object Recognition tasks. It is comprised of 50 domestic objects that fall
under 10 distinct categories. The ten categories are: plug adapters, mobile
phones, scissors, light bulbs, cans, glasses, balls, markers, cups and remote
controls. Each object in each category is captured in video in 11 different
sessions. That means that there are 300 RGB-D frames (20fpsx15seconds) for
every item in a session.

Furthermore, three different scenarios are taken into consideration when at-
tempting benchmarking with this dataset:

• New Instances (NI): New training patterns of the same classes become
available in subsequent batches

• New Classes (NC): New training patterns from different classes become
available in subsequent batches

• New Instances and Classes (NIC): New training patterns belonging
both to known and new classes becomes available in subsequent train-
ing batches

FIGURE 3.8: Poses of the 50 different objects of the CoRE50:
https://vlomonaco.github.io/core50/.

https://vlomonaco.github.io/core50/

3.3. Thesis Approach 33

3.2.3 ImageNet

ImageNet is a very large dataset containing more than 20000 categories with
a total of approximately 14 million images. The most highly-used subset of
ImageNet is the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
2012-2017 image classification and localization dataset. This dataset spans
1000 object classes and contains 1,281,167 training images, 50,000 validation
images and 100,000 test images [49].

3.2.4 CUB200-2011

The Caltech-UCSD Birds-200-2011 dataset(CUB200-2011) is a challenging dataset
consisting of 200 species of birds, with double the number of images per class
compared to CUB200. It also provides part location annotation. The total
number of images in the dataset is 11788[50].

3.3 Thesis Approach

This thesis main approach is to adapt the previously mentioned SLDA algo-
rithm on an FPGA device. This will lead to an accelerator that will not only
perform inference in real time but also train the linear classifier at the same
time. Moreover, a thorough examination of the behaviour of the accelerator,
and consequently the nature of the algorithm, when faced with low precision
data is carried out.

The SLDA algorithm, along with a plethora of other ML techniques and al-
gorithms, relies heavily on Linear Algebra. This of course means that the
employed hardware must have the capabilities to perform vector operations
(addition, subtraction, scaling), dot products and matrix multiplications, in
an efficient manner.

These operations demand a high degree of parallelism, which cannot be
achieved with CPUs, even modern ones, due to their sequential nature. On
the other hand, GPUs and FPGAs are made to produce results with substan-
tial throughput and low latency. Moving forward, some common designs for
matrix multiplication on the aforementioned platforms will be discussed.

34 Chapter 3. Related Work

3.4 Hardware designs for Matrix-Vector multipli-

cation

3.4.1 GPU based designs

Graphical Processing Units (GPUs), as implied by their name, were focused
on accelerating graphics rendering algorithms, most often utilized by the
video game industry but not limited to it. With the evolution of the capabil-
ities of the GPU when faced with a naturally parallelizable algorithm, came
the realization that other non-graphical applications may put use to them.

General Matrix Multiplications (GEMMs) on GPUs are performed using a
tiling method. To elaborate further, both the input matrices (A and B) and
the output matrix (C) are divided into tiles, that are then assigned to thread
blocks. For every output tile, the corresponding inputs from A and B are
loaded from memory and for every individual element of C the row of A and
the column of B are multiplied and accumulated. This achieves high levels
of parallelism as all the tiles in C are generated in parallel[51]. An illustration
of the above method is depicted in 3.9.

3.4.2 FPGA based designs

In recent years, a lot of research has been carried out on accelerating Matrix
Multiplication on FPGAs [sources]. Most importantly though, in the context
of this thesis, the work of Duvindu Piyasena, Siew-Kei Lam and Meiqing Wu
“Accelerating Continual Learning on Edge FPGA”[52], proposes a design for
accelerating some of the computations of SLDA, which are first introduced
in [37]. The authors’ design is shown in 3.10.

The Compute Unit is split into two core; a GEMM core, for matrix multi-
plication and outer product calculation, and a Vector Processing Unit (VPU)
for vector operations (eg. vector addition). Both cores communicate with
four banks of BRAM, so that the amount of data fetched in every cycle is not
limited to the two ports of a single BRAM module. Each core consists of Pro-
cessing Elements (PEs) that operate in parallel, with every PE contributing
one element of the resulting vector or matrix. In 3.11 the architecture of a
single PE is demonstrated.

3.4. Hardware designs for Matrix-Vector multiplication 35

FIGURE 3.9: GEMM using tiles on GPU. Each tile of A (blue)
and each tile of B (yellow) are processed by a thread block, pro-

ducing a tile of C (green): [51].

3.4.3 Google TPU

The Tensor Processing Unit (TPU) was designed and deployed by Google
when they realised that the demands of the users regarding inference tasks,
starting in 2013, could not be met by their pre-existing datacenters. Thus
a custom ASIC that can accelerate inference tasks was given high priority to
produce. At its heart the Google TPU using a 128x128 systolic array of MACs
that can perform 8-bit Multiply-and-Add operations on signed and unsigned
integers. The TPU is on average about 15X - 30X faster than an Nvidia K80
GPU or a server-class Intel Haswell CPU, with TOPS/Watt about 30X - 80X
higher. Moreover, using the GPU’s GDDR5 memory in the TPU would triple
achieved TOPS and raise TOPS/Watt to nearly 70X the GPU and 200X the
CPU [53]. In 3.12 the TPU board is displayed as well as block diagrams of the
architecture in 3.13a, 3.13b.

36 Chapter 3. Related Work

FIGURE 3.10: Hardware accelerator for SLDA, deployed
on an FPGA device. Each Processing Element (PE)
produces one element of the resulting vector or matrix:

https://ieeexplore.ieee.org/document/9556356.

FIGURE 3.11: Processing Element used in GEMM core and
VPU: https://ieeexplore.ieee.org/document/9556356.

https://ieeexplore.ieee.org/document/9556356
https://ieeexplore.ieee.org/document/9556356

3.4. Hardware designs for Matrix-Vector multiplication 37

FIGURE 3.12: Google TPU top view. As can be seen there are
four ASICs computing machine learning operations in parallel:

https://cloud.google.com/tpusection-3.

(A) Google TPU block diagram:
https://arxiv.org/pdf/1704.04760.pdf

(B) Google TPU sys-
tolic array architecture:

https://arxiv.org/pdf/1704.04760.pdf

FIGURE 3.13: TPU architectures. On the left side the top level
architecture alongside with the IO and interconnections be-
tween the modules of the TPU is shown. On the right side
the Matrix Multiply Unit systolic array architecture is shown:

https://cloud.google.com/tpusection-3.

https://cloud.google.com/tpu##section-3
https://arxiv.org/pdf/1704.04760.pdf
https://arxiv.org/pdf/1704.04760.pdf
https://cloud.google.com/tpu##section-3

39

Chapter 4

Robustness Analysis

This chapter focuses on the fact that the Static SLDA algorithm updates its
internal parameters while the CNN’s parameters remain still. This means
that the base initialization step performed to initially train the CNN can be
done with full precision. On the other hand the output vectors (which are
in floating point) of the initialized CNN can be translated into a fixed point
representation and be fed to the SLDA accelerator. This way the accelerator
can leverage the high throughput of the fixed point operations without com-
promising on accuracy and network stability. Of course, the right fixed point
representation must be picked and so an analysis on the distribution of the
feature vectors is needed. The CNN used for the software impelementation
of the continual learning system is the ResNet18 coupled with the CIFAR-10
dataset. This dataset is not particularly made for continual learning applica-
tions making the task at hand more challenging.

4.1 Arithmetic Representation

4.1.1 Fixed Point Representation

Numbers in any kind of hardware are represented as a sequence of 1s and
0s and the way these sequences are interpreted either as fixed point numbers
or floating point numbers. Fixed point number terminology is going to be
discussed in this section.

Signed binary numbers in hardware can be represented in three different
ways [54] [55], which are:

• Sign Magnitude Form: In this form the sign of the number is repre-
sented by the MSB (Most Significant Bit). If the MSB is 0 then the num-
ber is positive, if it is 1 then the number is negative. The remaining bits

40 Chapter 4. Robustness Analysis

determine the magnitude of the number (e.g. if the number is 8-bit then
only the first 7 bits can be used for the number magnitude)

The sign magnitude form of a binary number is illustrated in ??.

FIGURE 4.1: Fixed Point Number sign magnitude representa-
tion: https://www.mathworks.com/help/dsp/ug/concepts-

and-terminology.html.

• 1’s complement: By complementing each bit in a signed binary integer,
the 1’s complement of a number can be derived. A result is a negative
number when a positive number is complemented by 1. Similar to this,
complementing a negative number by 1 results in a positive number
4.2. An illustration can be seen in figure 4.2.

• 2’s complement: By adding one to the signed binary number’s 1’s com-
plement, a binary number can be converted to its 2’s complement. There-
fore, a positive number’s 2’s complement results in a negative number.
The complement of a negative number by two yields a positive number.
An illustration can be seen in figure 4.2.

In this work, the representation that is used by the libraries, both in soft-
ware and in hardware, is the sign magnitude form, which means that when
a signed fixed point number is declared the first bit can only be used to show
the sign.

4.1.2 Fixed Point operations: Advantages and Disadvantages

Machine Learning applications and structures predominantly make use of
the high precision that is provided by floating point numbers, especially
when it comes to training and optimization algorithms. During the back-
propagation algorithm gradients are propagated through the network, with

https://www.mathworks.com/help/dsp/ug/concepts-and-terminology.html
https://www.mathworks.com/help/dsp/ug/concepts-and-terminology.html

4.1. Arithmetic Representation 41

FIGURE 4.2: Fixed Point Number 1’s com-
plement and 2’s complement representation:
https://www.geeksforgeeks.org/fixed-point-representation/.

each layer iteration further diminishing the gradients. Fixed point opera-
tions, with their limited precision, further exacerbate this phenomenon lead-
ing to the problem of the vanishing gradient. On the other hand, Zhang
et al.[56] observed that the degradation of training accuracy is mainly at-
tributed to the dramatic change of data distribution, which may lead a more
efficient way to do backpropagation using fixed point representation.

This thesis’ novelty stems from the fact that the SLDA algorithm does not rely
on updating the network, only on the output feature vector that is produced
after a feedforward pass of the data through the network. Thus, even though
the accuracy of the continual learning algorithm takes a toll over the lower
precision arithmetic, it is not catastrophic. This revelation means that the
FPGA can utilize the fixed point operations to achieve higher throughput
and speedup.

The data type that was selected for the accelerator is 8-bit fixed point, that
pertains to all the submodules. Furthermore, the integer part uses the 4 most
significant bits and therefore the fractional part uses the remaining 4 least
significant bits .The aforementioned bitwidth is deduced by receiving all the
feature vectors that are produced by forward passing images through the
CNN and finding the distribution of the data, put differently the mean and
the variance. The expected distribution is a normal distribution, as the pop-
ulation of data is immense and the Law of Large numbers applies. This is
visible in 4.3

https://www.geeksforgeeks.org/fixed-point-representation/

42 Chapter 4. Robustness Analysis

FIGURE 4.3: Distribution of the elements of the feature vectors.
As can be seen the largest possible value does not exceed the 3

bit precision of the integer part.

Using 3 bits for the integer part (excluding the sign bit) the range of integers
that can be portrayed in unsigned fixed point numbers is [0, 7], as the small-
est number is 000 and the largest is 111 = 1 ∗ 20 + 1 ∗ 21 + 1 ∗ 22 = 7. The
probability of receiving a value that is out of range in a feature vector is zero
judging by the distribution. This is not guaranteed though as the distribu-
tion varies between datasets and CNN architectures. From the above, the
bitwidth satisfies the conditions that need to be met by the integer part.

The smallest number that can be represented with 5 fractional bits (except 0)
is 00001 = 2−4 = 0.0625 which does not allow for high precision but it is
adequate for the application.

4.1.3 Static SLDA over Plastic SLDA

Initially when studying the works of [52][37] one comes to the realization
that there are two primary versions of SLDA; Static SLDA, where the shared
covariance matrix remains unaltered throughout the training process, and
Plastic SLDA, where the shared covariance matrix updates with each itera-
tion of the algorithm. The evaluation of both methods in the articles show

4.1. Arithmetic Representation 43

that the gain in accuracy is apparent, in Plastic SLDA, without the difference
being dramatic. In this thesis only the Static SLDA algorithm is supported
as the goal is not to achieve state of the art accuracy results but to make a
fully operational low-cost machine learning system with continual learning
capabilities.

Furthermore, the proposed accelerator is designed to perform all matrix mul-
tiplications and vector operations, which means that the updating of the
shared covariance matrix would take up most of the resources and band-
width on the FPGA, due to the inverse matrix calculation needed to compute
Lambda

Λ = [(1− ϵ) · Σ + ϵ · I]−1

. The trade off is not advantageous, especially when it comes to smaller edge
devices.

4.1.4 Static SLDA algorithms

The algorithms that are essential for the operation of Static SLDA are pre-
sented here, in the form of pseudo code.

First of all the means matrix and the covariance matrix must be initialized
based on the feature vectors that are produced in the base initialization stage.
The covariance matrix is determined using the Oracle Shrinkage Estima-
tor[57], and is calculated in full precision. The means matrix is calculated
using the code in Algorithm 1.

Algorithm 1 Init means algorithm

Require: f eature_vector, label, class_counters
1: means[label]← class_counters[label]×means[label]+ f eature_vector

class_counters[label]
2: class_counters[label]← class_counters[label] + 1

The Lambda matrix is initialized and remains unaltered using the equation

Λ = [(1− ϵ) · Σ + ϵ · I]−1

.

The Static SLDA method needs to update the Weights and biases of the clas-
sifier after every feature vector passes through it. Algorithm 2 showcases
how this update is performed.

44 Chapter 4. Robustness Analysis

Algorithm 2 Update means, weights and biases algorithm

Require: f eature_vector, label, class_counters, Lambda
1: means[label]← class_counters[label]×means[label]+ f eature_vector

class_counters[label] ▷ Update class
mean

2: class_counters[label]← class_counters[label] + 1
3: Weights← Lambda ·means ▷ Matrix multiply Lambda with means
4: while i ≤ num_classes− 1 do
5: biases[i]← −0.5× (means[i] ·Weights[:, i]) ▷ Dot product between

every row of means and every column of Weights
6: i← i + 1
7: end while
8: return Weights, biases

In Algorithm 2 all the elements of the feature vector, the means matrix, the
Lambda matrix, the weights matrix and the biases vector can be in floating
point or fixed point representation, depending on the user’s needs.

Finally, when desiring to test the capabilities of the classifier Algorithm 3
computes the prediction scores for a single image, and consequently the fea-
ture vector that is generated from it.

Algorithm 3 Compute Scores algorithm

Require: f eature_vector, Weights, biases
1: scores←Weights · f eature_vector + biases ▷ Matrix-vector multiply

between Weights and featurevector
2: return scores

4.1.5 Software Implementation of Static SLDA

4.1.6 NumPy

NumPy is a Python package that is regularly utilized in scientific computing,
implementing most linear algebra operations and other mathematical oper-
ations, such as trigonometric operations. Some of the operations are shape
manipulation, sorting, selecting, I/O, discrete Fourier transforms, basic lin-
ear algebra, basic statistical operations and random simulation. The basic
block of the NumPy package is the ndarray that is an array of identical data
type elements that are stored in contiguous memory.

Numpy uses a plethora of optimizations that render it one of the best options
for linear algebra calculations that rival even naive GPU kernels. Some of the
optimizations are listed below[58][59][60]:

4.1. Arithmetic Representation 45

• Vectorized Operations (SIMD): NumPy utilizes the vector instructions
provided by the specific architecture of the CPU used (x86) and can
process multiple data with one instructions, without the use of explicit
for loops. These operations are implemented using highly optimized C
and Fortran routines, making them much faster than traditional Python
loops.

• Multithreading: By defaut, NumPy utilizes multithreading if possible.
Therefore, a modern multicore CPU is used to its full extent.

• Optimized C/Fortran routines: NumPy is a light wrapper that includes
many routines that are written in optimized C/Fortran. The algorithms
used for linear algebra are state of the art and use the BLAS library
under the hood.

• Contiguous memory layout: All ndarrays in NumPy are stored con-
tiguously in memory, which allows for efficient access and manipula-
tion of array elements.

4.1.7 CuPy

CuPy is a drop-in replacement of NumPy, that leverages the capabilities of
parallel computing on NVIDIA or AMD GPUs. Furthermore, it is a library
that enables the user to easily access GPU-accelerated kernels from a Python
API. Under the hood, it uses other low level GPU-accelerated libraries such
as CuBLAS, CuFFT, CuSPARSE, CuSOLVER, CuRAND and CuTENSOR to
achieve the best possible performance.

Some of the optimizations over NumPy are [61]:

• GPU acceleration: CuPy uses the GPU capabilities to accelerate the
NumPy methods.

• Implemented in CUDA: The whole API is implemented in CUDA and
so it is natively optimized to run on GPUs.

• CUDA kernel generation: CuPy automatically generates optimized
CUDA kernels for array operations, such as element-wise arithmetic,
broadcasting, and reductions.

• Memory transfer optimizations: The memory transfers from CPU to
GPU and vice versa, are optimized in CuPy

46 Chapter 4. Robustness Analysis

Pretrained Python CNNs

The ResNet18 CNN is utilized for the continual learning experiments that are
going to be used as a baseline for comparison with the FPGA-implemented
counterpart. This CNN model is pretrained on ImageNet1K-V1 and is pro-
vided by the Pytorch API. A detail worth mentioning is that since the ResNet18
is trained on a dataset that contains 1000 classes, the final fully connected
layer dimensions must be altered according to the number of classes in the
dataset. As will be described below, the CIFAR-10 dataset that has been opted
contains only 10 classes so the fully connected layer has dimensions [10, 1].

Dataset and Data orderings

Many datasets are among the options for continual learning applications,
such as the ImageNet1K, CoRE50, CUB200-2011 and many more. Emphasis
was given though to the CIFAR10 dataset, as it is large enough for assessment
of the SLDA algorithm while not taking too long to train on.

The dataset is split into five subsets of classes, with each subset containing
two classes. For each new epoch, after base initialization, two more never
seen classes are presented to the model, to classify without modifying the
networks parameters.

The goal of this thesis is not to achieve the highest accuracy rates for state of
the art datasets, but to compare the efficiency of SLDA, and continual learn-
ing methods in general on different platforms.

Network Base Initialization

Before attempting to continually train a network on CIFAR10, a base initial-
ization of the network must take place. Therefore, the whole ResNet18 is
trained and tested on the first two classes of the CIFAR10 dataset, using back-
propagation and an SGD optimizer. The learning rate is set to lr = 0.1.

SLDA among different platforms and programming languages

The platforms that were used for assessing the SLDA performance were:

• CPU: Intel Core i7 11800H

• GPU: NVIDIA RTX 3050Ti

• Google TPU

4.1. Arithmetic Representation 47

• FPGA: ZCU102

On the CPU side, SLDA was implemented in C++, along with the Eigen Lin-
ear Algerbra library, and Python, along with NumPy. The data types tested
in C++ are 16-bit fixed point, 32-bit fixed point and float, while the data types
tested in Python are 16-bit fixed point and float.

On the GPU side, a C++ CUDA kernel was implemented for 32-bit floating
point data types, using the CuBLAS library that provides optimized kernels
for matrix multiplication, vector operations and dot products.

On the FPGA side, the accelerator was implemented in Vitis HLS, using 16-
bit fixed point arithmetic and floating point arithmetic.

49

Chapter 5

System Architecture and FPGA
Implementation

In this chapter the tools provided by Xilinx for designing, implementing
and downloading hardware architectures on an FPGA device, are presented.
Moreover, a thorough analysis is performed on how the architectural deci-
sions were made regarding the SLDA accelerator’s internal behaviour. Also
included with the analysis are detailed block diagrams that are presented
from top to bottom showcasing the whole system’s IO and compute capabil-
ities.

5.1 Hardware Architecture

The accelerator of the whole system has as the main focus to accelerate the
computations needed for the training process of Static SLDA as well as the
inference process. The accelerator is divided in four primary units, which
are:

• Update Means Unit (Training): This Unit updates the means of the
different classes according to the Static SLDA algorithm

• Compute Weights Unit (Training): This Unit computes the Weight ma-
trix according to the Static SLDA algorithm

• Compute Biases Unit (Training): This Unit computes the bias vector
according to the Static SLDA algorithm

• Compute Scores Unit (Inference): This Unit uses the produced Weight
matrix and bias vector to transform the feature vector and compute the
scores for each class

50 Chapter 5. System Architecture and FPGA Implementation

As can be understood from the above, the granularity that was chosen is not
extremely fine-grained, and as a result the level of abstraction, when com-
pared to similar works [52], is higher. This decision was made intentionally
as the purpose of the core is not to provide general purpose functionalities
but to accelerate very specific mathematical operations over a predetermined
data type (16 bit fixed point data). The target of this accelerator is to per-
form all the computations of the Static SLDA on the FPGA, without having
to transfer data from the PL side to the PS side.

All the inputs are received from the PS side initially through the use of streams
that are synthesised as FIFOs that buffer them and store them in cache on the
accelerator. The width of the data streams is 128-bits uniformly, and as a con-
sequence 16 8-bit integers can be transferred simultaneously. The data width
cannot reach higher limits as the Master and Slave AXI ports on the ZCU102
are at best 128-bits wide.

All the intermediate results produced by the submodules are stored in frag-
mented BRAM and can be accessed very quickly in succeeding iterations of
the algorithm.

The output of the accelerator is stored in BRAM that is memory mapped and
is easily accessible by the PS side, through AXI-Interconnect.

More details on how the PS side communicates with the PL side are discussed
in chapter 5.

A block diagram of the top module of the SLDA accelerator, with details
on how the data get transferred to and from the PS is illustrated in figure
5.1. A lower level image of the SLDA accelerator is illustrated in figure 5.2,
and includes information on how the different modules in the accelerator
produce and consume data.

5.1. Hardware Architecture 51

FIGURE 5.1: A higher level top module of the Static SLDA ac-
celerator, including the connections betweens the PS and PL.

52 Chapter 5. System Architecture and FPGA Implementation

FIGURE 5.2: The top module of the Static SLDA accelerator, that
shows in more detail the inner working of the accelerator.

5.1. Hardware Architecture 53

5.1.1 Update Means Unit

The Update Means Unit reads the values of the feature vector and the means
of the classes and then updates the means and stores them in the local cache
for the subsequent unit to be able to access the data faster. There is no need
for the application running on the ARM processor to have knowledge about
the new means of the classes. That leads to the fact that after base initial-
ization the means can be accessed from cache without needing to read them
from the DDR. Only the feature vector needs to be read from DDR in every
single iteration of the algorithm.

The operation to update the means is the following[52][37]:

µk,t+1 =
counterk

counterk + 1
· µk,t +

xt

counterk + 1

where counterk is the number of samples encountered in class k. The counter
of class k is updated as follows when a new sample belonging in that class is
found.

counterk = counterk + 1

.

The division and addition operations are performed on blocks of data that
are 128 bits wide, as to perform multiple of these operations per cycle.

The block diagram of the Compute Means Unit is shown in figure 5.3

54 Chapter 5. System Architecture and FPGA Implementation

FIGURE 5.3: The submodule that updates the means required
for computing the weights and biases of the linear classifier.

5.1. Hardware Architecture 55

5.1.2 Compute Weights Unit and Compute Biases Unit

These Units sits at the heart of the accelerator and take up most of the re-
sources and the area on the FPGA. The main target of the cores is to produce
the Weight matrix and the bias vector of the linear classifier used in SLDA as
fast and as efficiently as possibble.

The input vectors of data have a width of 128 bits, that means that 16 8-bit
fixed point values can be transferred to the module with one read operation
on the BRAM. The blocks of cache memory that store the values of Λ and µ

partitioned in a way which enables the access of all the rows of Λ ∈ RNxN,
where N = 32, matrix and all the columns of µ ∈ RNxM, where M = number
of classes, at the same time.

Moreover, The unit consists of MxN small systolic arrays of size S = 16 =

4x4 = data_trans f erred_per_read_op that perform Multiply and Accumu-
late operations on the 8-bit data. Each individual PE element of the sys-
tolic array computes a partial sum that is then transferred to the next PE el-
ement.Consequently, The last PE element computes the correct weight value
that is ready to be transferred. Lastly, The weight matrix is also outputted in
blocks of data that, with each block being produced by the respective systolic
array.

The architecture of the Compute Weights Unit is shown in 5.4.

56 Chapter 5. System Architecture and FPGA Implementation

FIGURE 5.4: The submodule that computes the weights re-
quired for the linear classifier. The PE elements are notated with

"MAC".

5.1. Hardware Architecture 57

The Compute Biases Unit utilizes the same size systolic arrays used in the
Compute Weights Unit. The grid of systolic arrays though is one dimen-
sional, just as the bias vector, and the dot products that need to be computed
are only ten in contrast to the 320 needed for the computation of the weight
matrix. Consequently, this unit is a lot smaller but uses the same principles
as the previously mentioned unit.

The architecture of the Compute Biases Unit is shown in 5.5.

FIGURE 5.5: The submodule that computes the biases required
for the linear classifier. The PE elements are notated with

"MAC".

58 Chapter 5. System Architecture and FPGA Implementation

5.1.3 Compute Scores Unit

Inference is performed in the Compute Scores Unit, on every sample that
is processed by the neural network and used to update the means and the
counters of each class. The mathematical operation is a simple linear trans-
formation of the feature vector denoted as

scores = W · xt + b

, where xt is the feature vector [52][37].

The feature vector is loaded from external memory after the CNN has com-
puted it.

For the calculation of the Matrix-Vector multiplication a similar unit to the
Compute Biases Unit was used, with the only difference being the introduc-
tion of an adder at the end of each systolic array output, to add the bias value
to the product. A block diagram of the Compute Biases Unit is illustrated in
figure 5.6.

All the algorithms concerning the implementation and testing of the afore-
mentioned units are included in Appendix A 8.

5.1. Hardware Architecture 59

FIGURE 5.6: The submodule that computes the final scores
for the image classification. The PE elements are notated with

"MAC".

60 Chapter 5. System Architecture and FPGA Implementation

5.2 Tools Used

The tools that are used to develop the accelerator, connect it to the proces-
sor on the ZCU102 and develop the application that tests the accelerator
are all provided by Xilinx ,in its Vitis Unified Software Platform, and are
going to be presented in detail in this section. The Vitis Unified Software
Platform succeeded the Vivado Software Development Kit (SDK) bringing
alongside it some indispensable features such as Vitis AI Development Envi-
ronment, Vitis Accelerated Libraries, Xilinx Runtime Library and Vitis HLS
[Xilinx_Vitis_Unified].

The workflow, when utilizing the tools that are provided by the Vitis Unified
Platform, goes as follows:

• Identify the performance-critical portions of the application that de-
mands acceleration. In this case the Continual Learning algorithm.

• Design the Accelerator using Vitis High Level Synthesis in C,C++, OpenCL
or RTL. C++ was the programming language of choice.

• Build, Analyze and Debug to verify functional correctness and validate
performance goals are met.

• Export the module to be used in Vivado IDE, where the whole platform,
including the ways the PS side communicates with the PL, is designed.

• Deploy Accelerated Application on the ZCU102 using Vitis Unified Plat-
form. The drivers of the custom made accelerator and other modules
are inferred by the platform automatically.

5.2.1 Vitis High Level Synthesis (HLS)

Vitis HLS is a tool that allows the user to generate complex RTL designs by
synthesizing C/C++ functions. HLS can enable the path of creating high-
quality RTL, rather quickly than manually writing error-free RTL. The de-
sign and the macro-architecture of it, fall to the hands of the developer who
should specify the constraints, like clocking and performance, and the inter-
faces used to communicate with the outside world. The micro-architecture
decisions are all handled by the tool (FSMs, datapath, register pipelines) so
the process of designing RTLs is a lot simpler that using HDL languages[62].

In 5.7a the development flow of the HLS tool is shown, while in 5.7b the
design processes are illustrated.

5.2. Tools Used 61

(A) Vitis HLS development flow:
https://docs.xilinx.com/r/en-
US/ug1399-vitis-hls/Introduction-

to-Vitis-HLS

(B) Vitis HLS design processes:
https://docs.xilinx.com/r/en-
US/ug1399-vitis-hls/Navigating-

Content-by-Design-Process

Optimization Directives

The optimization directives provided by Vitis HLS allow the user to alter
the synthesized design to their liking, without having to interfere with the
source code across different solutions. Regularly these directives optimize
the design further rendering them almost essential to use in many applica-
tions. The directives are added into the code by using the pragma command
of the preprocessor. Alternatively, they can be added using the tcl command
set_directive_*[63].

The directives that were used in this thesis are explained below while the
directives that were not used are just mentioned for completion.

• Array Partition: Partitions an array into smaller arrays or individual el-
ements. Results in RTL with multiple small memories or multiple reg-
isters instead of one large memory. Effectively increases the amount of
read and write ports for the storage. Potentially improves the through-
put of the design. Requires more memory instances or registers.

• Dataflow: Specifies that dataflow optimization be performed on the
functions or loops, improving the concurrency of the RTL implementa-
tion.

• Interface: Is only supported for use on the top-level function, and can-
not be used for sub-functions of the HLS component. The INTERFACE

https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Introduction-to-Vitis-HLS
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Introduction-to-Vitis-HLS
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Introduction-to-Vitis-HLS
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Navigating-Content-by-Design-Process
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Navigating-Content-by-Design-Process
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Navigating-Content-by-Design-Process

62 Chapter 5. System Architecture and FPGA Implementation

pragma or directive specifies how RTL ports are created from the func-
tion arguments during interface synthesis. The Vitis HLS tool automat-
ically determines the I/O protocol used by any sub-functions.

• Unroll: Transforms loops by creating multiples copies of the loop body.

• Pipeline: Reduces the initiation interval (II) for a function or loop by
allowing the concurrent execution of operations. A pipelined function
or loop can process new inputs every N clock cycles, where N is the
initiation interval (II). An II of 1 processes a new input every clock cycle.

• Stream: If the data stored in the array is consumed or produced in a se-
quential manner, a more efficient communication mechanism is to use
streaming data, where FIFOs are used instead of RAMs. When an argu-
ment of the top-level function is specified as INTERFACE type ap_fifo,
the array is automatically implemented as streaming. When the array
is implemented in a DATAFLOW region, it is common to the use the
-depth option to reduce the size of the FIFO.

Vitis HLS supports other directives that are not used in this thesis.

5.2.2 Vivado IDE

The Vivado IDE provides the users with an interface that makes hardware
designing more intuitive and faster. All the tools can be used through the
IDE’s GUI or through tcl commands on the tcl console. The Vivado Design
Suite replaces the ISE Design Suite. It replaces all of the ISE Design Suite
point tools, such as Project Navigator, Xilinx Synthesis Technology (XST),
implementation, CORE Generator tool, Timing Constraints Editor, ISE Sim-
ulator (Vivado simulator), Vivado, Chip Scope Analyzer, Power Analyzer,
FPGA Editor, PlanAhead design tool, and SmartXplorer[64].

Users can integrate to their designs IPs that are given by Xilinx for free or
their custom made IPs that are exported from Vitis HLS.

After running Synthesis and Implementation on the design, on vivado cre-
ates a variety of reports such as timing report, methodology report, DRC
report, utilization report, power report and schematic. These reports are es-
sential for the architect to validate the correctness of the design. Through
them the architect can also check how the entire system is implemented un-
der the hood.

5.3. Platforms and Xilinx Cores 63

Moreover, when a design passes the implementation part, a bitstream can be
created and exported so that it can be downloaded onto a platform, or used
in Vitis Software platform to develop an application.

5.2.3 Vitis Unified Software Platform

The Vitis Unified Software Platform is the Environment where the embed-
ded application development is performed. It provides the user with all the
libraries and tools for debugging and building the application. The applica-
tions are written in C/C++ and can be targeted for baremetal or for linux OS,
like Petalinux and FreeRTOS[65] [66] [67].

Firstly, one must import a hardware platform in the form of a bitstream file,
that is exported from Vivado IDE. Then Vitis generates the required drivers
for all the cores that are used for accessing the hardware through software.
Additionally, Vitis let the user interfere with the BSP settings and config-
ure STDIO peripheral settings, compiler flags, add/remove libraries, assign
drivers to peripherals etc.

The user can transmit the program through JTAG locally and debug it that
way or build a hardware server and set a new debug configuration that con-
nects to the server’s IP and sends the program that way. One must be cau-
tious that the hardware server must be the same exact version as the Vitis
Unified Software Platform.

5.3 Platforms and Xilinx Cores

5.3.1 ZCU102

The platform of choice in this dissertation is the ZCU102 Zynq Ultrascale+MPSoC.
The ZCU102 is a general purpose evaluation board for rapid-prototyping
based on the Zynq® UltraScale+™ XCZU9EG-2FFVB1156E MPSoC (mul-
tiprocessor system-on-chip). High speed DDR4 SODIMM and component
memory interfaces, FMC expansion ports, multi-gigabit per second serial
transceivers, a variety of peripheral interfaces, and FPGA logic for user cus-
tomized designs provides a flexible prototyping platform[68].

The specifications of the board are listed in table 5.1 and can be found in de-
tail in the following link https://doodle.com/meeting/participate/id/dLJrmMja

https://doodle.com/meeting/participate/id/dLJrmMja

64 Chapter 5. System Architecture and FPGA Implementation

HD banks 5 banks, total of 120 pins
HP banks 4 banks, total of 208 pins

MIO banks 3 banks, total of 78 pins
PS-side GTR 6 Gb/s transceivers 4 PS-GTRs

PL-side GTH 16.3 Gb/s transceivers 24 GTHs
Logic cells 599,550

CLB flip-flops 548,160
Max. distributed RAM 8.8 Mb

Total block RAM 32.1 Mb
DSP slices 2,520

TABLE 5.1: ZCU102 specification table. URL

https://docs.xilinx.com/v/u/en-US/ug1182-zcu102-eval-bd

5.3. Platforms and Xilinx Cores 65

The Top Level block diagram of the ZCU102 is illustrated in 5.8

FIGURE 5.8: Top level block diagram of the ZCU102 :
https://docs.xilinx.com/v/u/en-US/ug1182-zcu102-eval-bd.

https://docs.xilinx.com/v/u/en-US/ug1182-zcu102-eval-bd

67

Chapter 6

System Verification and
Performance Evaluation

In this chapter, the results of the implemented hardware design are put to the
table and compared with implementations on relatively new hardware and
software that is considered state of the art in linear algebra calculations.

6.1 System Verification

To verify the correct operation of the Static SLDA accelerator the whole de-
sign was downloaded on a ZCU102 FPGA platform. The following results
are gained from different runs on the FPGA platform. The feature vectors
that are fed to the SLDA classifier are first exported from Pytorch, after the
images pass through the CNN.

6.2 Specification of Compared Platforms

6.2.1 Intel Core i7-11800H

The Intel Core i7-11800H is a high-end octa-core SoC for gaming laptops
and mobile workstations. It is belongs to the Tiger Lake H45 family and
was announced in mid 2021. It integrates eight Willow Cove processor cores
(16 threads thanks to Hyper-Threading). The base clock speed depends on
the TDP setting and is 2.3 GHz at 45 W. The single core Boost can be as
high as 4.6 GHz while all cores can run at up to 4.2 GHz. The CPU offers
24 MB of Level 3 cache and supports DDR4-3200 memory. The specifica-
tions of the Intel Core i7-11800H are shown in 6.1 and can also be found in

68 Chapter 6. System Verification and Performance Evaluation

https://ark.intel.com/content/www/us/en/ark/products/213803/intel-core-
i711800h-processor-24m-cache-up-to-4-60-ghz.html

Lithography 10 nm
Recommended Customer Price 435.00 USD

Total Cores 8
Total Threads 16

Max Clock Frequency 4.60 GHz
Cache 24 MB

Configurable TDP-up 2.30 GHz
Configurable TDP-down 1.90 GHz
Max Memory Bandwidth 51.2 GB/s

TABLE 6.1: Intel Core i7-11800H Processor specifications. URL

6.2.2 NVIDIA RTX 3050 Ti Mobile

The GeForce RTXTM 3050 is built with the powerful graphics performance of
the NVIDIA Ampere architecture. It offers dedicated 2nd gen RT Cores and
3rd gen Tensor Cores, new streaming multiprocessors, and high-speed G6
memory. The detailed specifications of the NVIDIA RTX 3050 Ti Mobile are
shown in 6.2 and can also be found in https://www.techpowerup.com/gpu-
specs/geforce-rtx-3050-ti-mobile.c3778.

Architecture Ampere
Lithography 8 nm

Base Clock - Boost Clock 735 MHz - 1035 MHz
CUDA Cores 2560
Tensor Cores 80

Memory 4 GB GDDR6
Memory Bandwidth 192.0 GB/s

TDP 75 W

TABLE 6.2: NVIDIA RTX 3050 Ti Mobile specifications. URL

https://ark.intel.com/content/www/us/en/ark/products/213803/intel-core-i711800h-processor-24m-cache-up-to-4-60-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/213803/intel-core-i711800h-processor-24m-cache-up-to-4-60-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/213803/intel-core-i711800h-processor-24m-cache-up-to-4-60-ghz.html
https://www.techpowerup.com/gpu-specs/geforce-rtx-3050-ti-mobile.c3778
https://www.techpowerup.com/gpu-specs/geforce-rtx-3050-ti-mobile.c3778
https://www.techpowerup.com/gpu-specs/geforce-rtx-3050-ti-mobile.c3778

6.3. Implemented Accelerator Characteristics 69

6.2.3 ZCU102

An overview of the ZCU102 board specifications are presented in 5.1. A more
in depth look at the logic components present in the PL fabric of the ZCU102,
that can be found in the Vivado IDE implementation summary, are shown in
6.3.

CLB LUTs 274080
CLB Registers 548160

CARRY8 34260
F7 Muxes 137040

CLB 34260
LUT as Logic 274080

LUT as Memory 144000
Block RAM 912

DSPs 2520

TABLE 6.3: ZCU102 PL fabric specifications.

6.3 Implemented Accelerator Characteristics

The proposed accelerator’s specifications as obtained by Viavdo IDE, after
the implementation process, are shown in 6.4.

Clock Frequency 116 MHz
CLB LUTs 28386 (11%)

CLB Registers 17558 (3%)
CARRY8 1597 (5%)
F7 Muxes 35 (<1%)

CLB 6148 (18%)
LUT as Logic 26406 (10%)

LUT as Memory 1980 (1%)
Block RAM 122 (13%)

DSPs 1472 (58%)

TABLE 6.4: Static SLDA accelerator for fixed point operations
specifications.

As can be deduced from the above results the static SLDA accelerator, along-
side the DMAs and AXI interconnects, only covers a small percentage of the
resources found on the ZCU102, except for the DSPs that play an essential
role in performing the linear algebra operations. An interesting look into
this, makes clear that multiple duplicates of the accelerator can be used to

70 Chapter 6. System Verification and Performance Evaluation

achieve even greater throughput. Alas, in this thesis a single SLDA accelera-
tor is being looked into for assessing the base performance.

The utilization of the floating point implementation is shown in 6.5, as it was
reported from the Vitis HLS tool.

Clock Frequency 116 MHz
LUT 172364 (62%)
FF 303469 (55%)

DSP 646 (25%)
BRAM 1411 (77%)

TABLE 6.5: Static SLDA accelerator for floating point opera-
tions specifications.

A histogram that shows the difference utilization percentages between the
fixed point implementation and the floating point implementation is illus-
trated in 6.1.

FIGURE 6.1: Utilization percentage histogram. The vertical axis
measures the percentage of the resource that the design needs.

6.4 Experiments that were sought through

To confirm the efficiency and usability of the Static SLDA accelerator, and
therefore other continual learning methods, on FPGAs a number of experi-
ments were sought through both in comparing different hardware architec-
tures (CPU, GPU) and different numerical precisions (floating point, 16-bit

6.5. Throughput and Latency Speedup 71

fixed point).

For the latency, throughput, energy consumption and power consumption
metrics:

On the Intel i7-11800H CPU, a naive implementation running on a single core
was written in C++ Eigen Linear Algebra library, examining matrices with
floating point data and matrices with 16-bit fixed point data. Along those
lines, a Python NumPy implementation was written that utilizes all the cores
of the CPU examining again the same data types.

On the NVIDIA RTX 3050 Ti, a naive implementation using CuBLAS with-
out any memory transfer optimizations and kernel optimizations was writ-
ten alongside a Python CuPy implementation that leverages all of the GPU’s
potential.

For the accuracy metrics on the CIFAR10, the ResNet-18 CNN was employed.
The SLDA classifier’s aptness was assessed for both floating point calcula-
tions and fixed point calculations.

6.5 Throughput and Latency Speedup

6.5.1 Amdahl’s Law

Amdahl’s law was first mentioned from Gene M. Amdahl in AFIPS spring
joint computer conference, 1967[69][70]. It practically states that the perfor-
mance gain in any task is limited from the fraction of the task that is serial.
Mathematically this can be expressed as:

Speedup =
Latencybaseline

Latencynew
=

1

f + 1− f
P

, where:

• f : fraction of the task that is serial

• 1− f : fraction of the task that is parallelizable

• P: Number of processors

Speedupmax = lim
P→∞

Speedup =
1
f

72 Chapter 6. System Verification and Performance Evaluation

6.5.2 Metrics used for latency and throughput

Latency or response time in hardware systems is the amount of time it takes a
module or a system to produce the corresponding result. In general, it is the
time between the start and the completion of an event. In this work, latency
is measured from the transferring of the feature vector to the device to the
storing of the resulting scores in memory

In contrast, Throughput or Bandwidth is the amount of tasks that can be pro-
cessed by the module or system in a given time. Usually throughput is mea-
sured per every second of work. In this work, two types of throughput are
measured, the first being f eature vectors

second , and the second being dot products
second . The

second measurement is more widely useful as it can assess the capability of
the SLDA accelerator (that is tailor made to perform continual learning) to
perform more general matrix-matrix, matrix-vector and vector-vector opera-
tions.

6.5.3 Comparison of the accelerator to other platforms

CPU
(NumPy)

CPU
(Naive)

GPU (CuPy)
GPU
(Naive)

FPGA
(ZCU102)

Clock Frequency (MHz) 4200 4200
Latency 16-bit FxP 112 ms 24.7 ms
Latency FP32 477.2 µs 11.08 ms
Latency Speedup 16-bit FxP 1x 4.93x
Latency Speedup FP32 1x 0.043x
Throughput1 16-bit FxP
(feature vectors/s)

8.92 40.48

Throughput2 16-bit FxP
(dot products/s)

45.848K 208.1K

Throughput 16-bit FxP
Speedup

1x 4.53x

Throughput1 FP32
(feature vectors/s)

2096.4 90.25

Throughput2 FP32
(dot products/s)

10.77M 463.88K

Throughput FP32 Speedup 1x 0.043x

TABLE 6.6: Static SLDA classifier latency and throughput met-
rics on CPU with the use of NumPy and without the use of

NumPy.

6.5. Throughput and Latency Speedup 73

CPU
(NumPy)

GPU
(CuPy)

GPU
(Naive)

FPGA
(ZCU102)

Clock Frequency (MHz) 4200 1035 1035 116
Latency 16-bit FxP 112 ms 1.35 ms NA 50 µs
Latency FP32 477.2 µs 1.33 ms 8.1 ms 2.4 ms
Latency Speedup 16-bit FxP 1x 82.96x NA 2240x
Latency Speedup FP32 1x 0.358x 0.058x 0.198x
Throughput1 16-bit FxP
(feature vectors/s)

8.92 740.74 NA 20000

Throughput2 16-bit FxP
(dot products/s)

45.848K 3.8M NA 102.8M

Throughput 16-bit FxP
Speedup

1x 83.04x NA 2242x

Throughput1 FP32
(feature vectors/s)

2096.4 751.8 123.4 416.6

Throughput2 FP32
(dot products/s)

10.77M 3.86M 634.27K 2.14M

Throughput FP32 Speedup 1x 0.358x 0.058x 0.198x

TABLE 6.7: Static SLDA classifier latency and throughput met-
rics among the different platforms for feature vectors of dimen-
sionality N = 512. These results are without the data transfer-

ring optimizations

The results shown in 6.7 indicate that the FPGA implementation of the Static
SLDA algorithm outclasses the other platforms when it comes to Fixed Point
operations, as it was expected. The GPU and CPU libraries and modern ar-
chitectures all contain specialized units and processor instructions that opti-
mize floating point operations. This becomes apparent when comparing the
FP32 latency of CuPy and NumPy to the FPGA, which is not optimized for
floating point operations.

It is worth mentioning though, that a large fraction of the time needed to
execute the SLDA computations on the FPGA is taken by the transferring of
the data of the Lambda and the Means matrix. When N = 512 the elements
in the Lambda matrix are 262144, which dictates that at least 262144 clock
cycles are needed for the FIFO to receive all the data.

To counteract this limitation, the Lambda and Means matrices are stored in
local cache (BRAM) banks and blocks of data can be accessed in parallel.

After the initial data transfer the accelerator can operate by recycling the ma-
trices, that means loading them from BRAM, processing them and storing
them back. For iterative methods, such as some continual learning methods,
the accelerator works best (6.8)

74 Chapter 6. System Verification and Performance Evaluation

CPU
(NumPy)

GPU
(CuPy)

GPU
(Naive)

FPGA
(ZCU102)

Clock Frequency (MHz) 4200 1035 1035 116
Latency 16-bit FxP 112 ms 1.35 ms NA 15 µs
Latency FP32 477.2 µs 1.33 ms 8.1 ms 310.89 µs
Latency Speedup 16-bit FxP 1x 82.96x NA 7466x
Latency Speedup FP32 1x 0.358x 0.058x 1.534x
Throughput1 16-bit FxP
(feature vectors/s)

8.92 740.74 NA 66666.6

Throughput2 16-bit FxP
(dot products/s)

45.848K 3.8M NA 342.66M

Throughput 16-bit FxP
Speedup

1x 83.04x NA 7473x

Throughput1 FP32
(feature vectors/s)

2096.4 751.8 123.4 3216.57

Throughput2 FP32
(dot products/s)

10.77M 3.86M 634.27K 16.53M

Latency Speedup FP32 1x 0.358x 0.058x 1.534x

TABLE 6.8: Static SLDA classifier latency and throughput met-
rics among the different platforms for feature vectors of dimen-
sionality N = 512. These results include the data transferring

optimizations

In 6.2 6.3 the latency and throughput of the different platforms are presented
in the form of a bar plot accordingly. The y axis is in logarithmic scale to
render the differences more easily visible.

6.5. Throughput and Latency Speedup 75

FIGURE 6.2: Static SLDA latency among different platforms.

76 Chapter 6. System Verification and Performance Evaluation

FIGURE 6.3: Static SLDA throughput among different plat-
forms.

6.6. Power Consumption and Energy Consumption 77

Going forward, an analysis on the speedup of the whole inference process
is sought through. Amdahl’s algorithm is ever present in this case and is
used to compute the speedup, when taken into consideration that the first
layers of the CNN are the fraction of the process that is not parallelized. On
the other hand, the SLDA algorithm is the fraction that can become faster.
The inference time of the CNN is measured to be T = 5.5ms running on the
NVIDIA RTX 3050 Ti GPU.

CPU
(NumPy)

CPU
(Naive)

GPU
(CuPy)

GPU
(Naive)

FPGA
(ZCU102)

Latency 16-bit FxP 117.5 ms 30.2 ms 6.85 ms NA 5.51 ms
Latency FP32 5.97 ms 16.58 ms 6.83 ms 13.6 ms 5.81 ms
Latency Speedup
16-bit FxP

0.25x 1x 4.4x NA 5.48x

Latency Speedup FP32 2.77x 1x 2.42x 1.21x 2.85x

TABLE 6.9: Latencies of the whole inference process + the train-
ing of the SLDA classifier

It becomes clear from table 6.9 that by accelerating the SLDA classifier on
an FPGA the theoretical best speedup governed by Amdahl’s law is best ap-
proximated. This leads to the realisation that an inference model can also
learn new tasks without compromising its speed and power efficiency.

6.6 Power Consumption and Energy Consumption

In this section the power consumption of the different platforms is compared.
Power in physics is the amount of energy transferred or converted per unit
time. In other words it is the rate of change of the energy or work with respect
to time, denoted as:

P =
dW
dt

=
dE
dt

(W)

. Power is measured in Watts. Average power is computed using the follow-
ing formula

Pavg =
∆W
∆t

=
∆E
∆t

(W)

.

The average on-chip power for the different scenarios of the SLDA classifier
are obtained from the powertop tool in the case of CPU implementation(naive
and NumPy), the nvtop tool in the case of GPU implementation (naive and
CuPy) and finally from the Vivado IDE in the case of FPGA implementation
(ZCU102).

78 Chapter 6. System Verification and Performance Evaluation

Alongside the power metrics, the energy efficiency of the different platforms
are measured, in Joules, by using the following formula:

E = Pavg · T = Pavg · Latencyavg(Joules)

, where

• E = average energy consumption

• Pavg = average power consumption

• T = total runtime

• Latencyavg = The latency of SLDA, starting from the data transfers to
the classifier and ending when the results are written into memory

FIGURE 6.4: Static SLDA on ZCU102 total on-chip power.

6.7. Accuracy Metrics 79

CPU
(NumPy)

CPU
(Naive)

GPU
(CuPy)

GPU
(Naive)

FPGA
(ZCU102)

Clock Frequency (MHz) 4200 4200 1035 1035 116
Power Consumption (Watts) 19.2 19.2 25 25 7
Power Efficiency 1x 1x 0.76x 0.76x 2.74x
Energy Consumption (Joules) 0.009 0.212 0.033 0.202 0.002
Energy Efficiency 23.55x 1x 6.42x 1.04x 106x

TABLE 6.10: Static SLDA classifier power and energy metrics
for floating point arithmetic.

CPU
(NumPy)

CPU
(Naive)

GPU
(CuPy)

GPU
(Naive)

FPGA
(ZCU102)

Clock Frequency (MHz) 4200 4200 1035 1035 116
Power Consumption (Watts) 19.2 19.2 25 25 4.25
Power Efficiency 1x 1x 0.76x 0.76x 4.51x
Energy Consumption (Joules) 2.150 0.474 0.033 NA 0.00006
Energy Efficiency 0.22x 1x 14.36x NA 7900x

TABLE 6.11: Static SLDA classifier power and energy metrics
for 16-bit Fixed Point arithmetic.

6.7 Accuracy Metrics

The accuracy metrics show the competency of the Static SLDA algorithm to
learn new classes without updating the weights of the network. To mea-
sure the ability of the continual learning algorithm to learn new tasks the
paradigm proposed by [48] is employed, which is the New Classes (NC) sce-
nario with a full test dataset for validation. That means, in every epoch of
training only new classes are shown to the network. After the training of the
classifier it is then tested on the full test dataset containing samples from all
the classes, even unseen ones.

The dataset of choice is split-CIFAR10, which is split in two different forms:

• The first form includes only the first two classes of CIFAR10 at the base
initialization step (see [37]) and at every epoch a new pair of classes is
presented to the network without changing the weights of it.

• The second form includes the first four classes of CIFAR10 as to have
better representation of the feature space of the dataset, at the base ini-
tialization step. At every epoch a pair of new classes is presented except
for the last epoch where only already seen classes are presented.

In 6.5 it can be observed that by initializing the network with more classes
the learning process is faster and results in better final accuracy. The final

80 Chapter 6. System Verification and Performance Evaluation

accuracy for the first split is 42.94% and for the second split 44.27%

FIGURE 6.5: Accuracy metrics of the continual learning process
on two different splits of the CIFAR10 dataset.

The accuracy results show the ability of the SLDA classifier to learn new
classes of data without compromising the previously learned information.
From a measly 10% accuracy at the first epoch it reaches almost 50% accuracy
when all the classes are learned.

It is important to state that these accuracy results can be achieved in both
floating point and fixed point precision, with a small difference in actual ac-
curacy gain over the epochs. By choosing the precision of the fixed point
numbers correctly, there is no important information loss, and the SLDA ac-
celerator can still classify the images with good accuracy. This observation
ultimately means that the best latency provided by the fixed point SLDA im-
plementation can be leveraged to produce accurate results extremely fast.

6.8. Results Discussion 81

6.8 Results Discussion

The evaluation of the aforementioned results show the advantages, both in
latency and power efficiency, of a fully FPGA-based design of the Static SLDA
algorithm. The FPGA accelerator in the worst-case scenario (floating point
without data movement optimizations) is comparable to state of the art Hard-
ware (CPU, GPU) and APIs (NumPy, CuPy). In the best case scenario it
achieves latency and energy efficiency that is two orders of magnitude better
than the CPU and GPU counterparts.

This can be explained by examining two major factors that are in play here.

First of all the disaggregated memory of the FPGA, that is found is small
banks, is on a level that even high speed GDDR6 GPU memory cannot sur-
pass. By sacrificing the clock frequency of the accelerator the parallelism that
can be achieved is immense. If more parallelism is needed from a user, it can
be accomplished by loading even more data from BRAM in one clock cycle,
by widening the data. This of course comes with a high demand in resources.

Secondly, the matrix sizes in this kind of application is not very large and
cannot utilize the high bandwidth GPU memory or the multiple CUDA cores
that are present. In streaming continual learning the computations must be
performed on the fly without leaving open the possibility to first gather all
the feature vectors and labels and perform a batched Matrix-Matrix multipli-
cation on the GPU. In batch continual learning theoretically a modern GPU
can achieve the same performance as in streaming learning, but in this case
the FPGA will fall quickly behind due to its limited resources. That said, a
more modern FPGA that includes a lot more resources or a QFDB[71], that
contains four ZCU102 on a chip, may be able to surpass even these limita-
tions when met with very large matrx sizes.

Moreover the systolic arrays used in the architecture can perform a dot prod-
uct calculation in one clock cycle, without having to perform multiple load-
stores in memory.

On the power and energy efficiency front, the FPGA implementation again
takes the lead as the ZCU102 consumes a lot less energy than the 8-core 16-
thread CPU and the RTX3050 Ti GPU. As can be seen in 6.4 a large percentage
of the total on-chip power is on the PS side of the board. Still the ARM 4-core
embedded processor is not that power hungry as it is expected from this kind

82 Chapter 6. System Verification and Performance Evaluation

of board. The PL side is very power efficient due to many factors, some of
which are:

• No Instruction Fetch Overhead

• Reduced Data Movement, as the data are closer to the processing units

• Low leakage power

• Specialized hardware blocks such as DSPs, BRAMs etc.

Compared to the work of [52] both the Weights and biases of SLDA are com-
puted on the FPGA and not externally. This adds some latency and resources
to the developed accelerator. Thus, a fair comparison to the authors’ plat-
form is not possible, as most of the computational capacity of the FPGA is
possessed by the Weights Compute Unit.

83

Chapter 7

Conclusions and Future Work

This chapter sums up the thesis and suggests some ways it could be ex-
panded in a way that can benefit both the scientific research domain and
the industry standard AI accelerators, that become more and more popular.

7.1 Conclusions

In summary, Artificial Intelligence has been all around us in the last few
years, having generated a vast amount of research topics that are looked into
by both academics and industries alike. The powerful capabilities that Ma-
chine Learning models have acquired over the last few years are admirable
and have pushed forward many applications such as autonomous driving,
text generation, speech generation, graphics performance acceleration and
medical analysis. This revolution of ML models owes a lot to the advance-
ments in hardware technology that produces more and more capable systems
spaning from NVIDIA high-end GPUs to the Google TPU, that specifically
accelerates AI, to the Apple M1 and the rumored meteor lake ntel CPU, that
are going to include an embedded system on chip that will be used for linear
algebra acceleration.

In this work, the focus was given to continual learning applications that can
benefit real time edge inference models without any intervention by a hu-
man being, such as unmanned flight, space exploration, ocean exploration
and more. The accelerator that was developed on the ZCU102 can be used
as a standalone IP that can be implemented in any other FPGA platform, as
it is a complete classifier module that does not need any external processing
unit (GPU or CPU) to produce the results needed. By leveraging the paral-
lelism and low memory footprint of a systolic array, as well as the memory
partitioning of BRAMs and the specialized DSPs provided, the accelerator

84 Chapter 7. Conclusions and Future Work

can outperform state of the art CPU and GPU platforms, when it comes to
throughput and latency, for a fraction of the power and energy consump-
tion. It is also worth mentioning that the IP core that was developed may
be proven useful in many other applications where matrix multiplication is
needed, especially when it comes to low precision arithmetic, where FPGA
acceleration truly shines.

In the next section some possible next steps for the hardware design and for
some more general use cases of the accelerator are presented.

7.2 Future Work

Due to the limited amount of time required for the completion of this thesis
some ideas were left out of the examination that was performed. Neverthe-
less, some of them are going to be listed here for further exploration on the
subject for whoever finds interest in it.

• Complete inference model running on the FPGA: Through the usage
of the Deep Learning Processing Unit (DPU) and the Vitis-AI frame-
work provided by AMD-Xilinx a complete inference model running
only on the FPGA without any assistance from a CPU or GPU could be
developed. The DPU over the last two years has been greatly advanced
and includes state of the art models such as CNNs, Yolov5, transform-
ers and more. By quantizing the model and pruning it, it can fit inside
the FPGA alongside the SLDA accelerator performing inference and
very fast speeds and extremely low power. When on the edge a plat-
form that is power efficient is crucial to the success of the mission.

• Testing performed on more modern Machine Learning models and
datasets: An interesting direction that this thesis can follow is to try
to apply continual learning, and more specifically SLDA, to modern
ML models like the YOLOv5 for object detection or Transformers and
other generative models. Alongside these models more recent datasets
and datasets that are more tailor made for continual learning, such as
the CORe50 dataset [48], can be and should be examined. This study
can also provide data on the scalability of the SLDA accelerator as the
feature vectors get larger.

7.2. Future Work 85

• Assessment of more streaming learning algorithms that run on FP-
GAs: Besides the Static SLDA method more continual learning meth-
ods running on FPGAs should be examined as they have the poten-
tial to be accelerated and produce similar, if not better, results that the
SLDA implementation [33]. A few of these methods that retain a fixed
network are: PathNet[72], PackNet[73], Piggyback[74], HAT[75].

• Incorporate a bigger accelerator or multiple smaller accelerators on
the QFDB[71]: As it was described in chapter 6 a lot more dot product
operations per second can be performed if multiple duplicates of the ac-
celerator could fit on the ZCU102 or if the systolic array grid was larger,
meaning more resource hungry. These limitations could be surpassed
if an implementation using the Quad Daughter FPGA Board or a more
contemporary version of the ZCU102 was developed. The parallelism
can be increased by widening the data in the BRAMs even more than
128-bit that is currently now. Furthermore, if the grid of systolic arrays
increases in size the latency needed to compute a matrix multiplication
will decrease.

• Inspect the Vitis HLS directives further: Some of the directives of Vitis
HLS that were not used in this implementation may prove to be useful
in decreasing latency, resource utilization or both.

• Test FPGAs that connect through PCIe to a conventional CPU or GPU:
The IP core that is developed can be tweaked to receive data through
PCIe connection and thus be able to connect to some more powerful
server CPUs or GPUs, leaving behind the limitations that come from
the 4-core ARM edge CPU on the ZCU102. This way continual learn-
ing can be used in mainstream applications, and not be limited to the
ZCU102 users.

• Inspect scalability of the accelerator as a matrix multiplication unit:
The Static SLDA accelerator was made to perform the specific compu-
tations needed for the algorithm to make correct predictions. These
computations are heavy on dot product calculations leading to the real-
isation that it can be used for General matrix-matrix and matrix-vector
multiplications. Assume that C = AB is the matrix multiplication of
matrices A ∈ RNxN and B ∈ RNxM while D = Cx is the multipli-
cation of the matrix C ∈ RNxM with the vector x ∈ RNx1. In this
thesis N=512 and M=10, which is small in size compared to what a
contemporary GPU can handle. For N ∈ {1024, 2048, . . . , 65536, . . .}

86 Chapter 7. Conclusions and Future Work

and M ∈ [10, 1000] the dot products needed to be computed are or-
ders of magnitude larger in size and amount. Theoretically speaking,
if the QFDB was to be used the matrices of N=2048 could be computed
with the same latency (as with N=512, L=15 µs) and 4x the throughput
(at 1̃.37 Giga dot products/second = 5̃.61 TIOPS(Integer Operations per
Second)) meaning that for larger matrix sizes the accelerator may per-
form on par with high end GPUs.

• Iterative methods that take advantage of matrix multiplications should
be examined: Iterative mathematical methods such as the Gauss-Seidel
and Jacobi methods for solving systems of linear equations, the Power
Iteration method for finding the dominant eigenvector and eigevalue
of a square matrix and the PageRank algorithm all can benefit from the
recycling of matrices in the FPGA without the overhead of having to
transport new matrices every time from the host to the FPGA. These
methods can be accelerated to their fullest as seen by the latencies in
table 6.8. If the recycling of matrices is not possible then the latencies
from table 6.7 are more realistic.

87

Chapter 8

Appendix A - FPGA design from
High Level Synthesis to
Application level testing

8.1 Vitis HLS algorithms

The whole SLDA accelerator was developed using the tools provided by Vitis
HLS. Some of the algorithms that were used to produce the desired hardware
architecture are shown below.

8.1.1 Compute Weights Unit Algorithm

First and foremost, the algorithm that produces the Compute Weights Unit
is displayed. The directives pragma HLS partition initially inform the com-
piler to divide the 2-dimensional matrices, stored in a big BRAM, into rows
of matrix A and columns of matrix B (small blocks of BRAM). This way all
the rows and all the columns can be accessed and processed simultaneously.
Continuing, there are five encapsulated for loops, where the first two are
pipelined with Initiation Interval 1. That means that every clock cycle a row
and a column are loaded and begin processing without waiting for the first
result to be computed. Following this, the next loops traverse the elements of
a row and a column, in a blocking manner which enables the user to adjust
for better latency or better utilization. Each block element contains 16 8-bit
integers that are accessed in parallel as the loop gets unrolled using the direc-
tive pragma HLS unroll. As can be deduced from listing 8.1 the module can
be customized by using the PIPELINE and UNROLL directives in different
loops.

1

88
Chapter 8. Appendix A - FPGA design from High Level Synthesis to

Application level testing

2 void compute_weights_with_matrix_mult(ap_int <DATA_WIDTH > A[N][N
], ap_int <DATA_WIDTH > B[N][M]) {

3
4 #pragma HLS ARRAY_PARTITION variable=A block factor =32 dim=2
5 #pragma HLS array_partition variable=B block factor =32 dim=1
6 #pragma HLS ARRAY_PARTITION variable=W block factor =32 dim=2
7 //#pragma HLS array_partition variable=C block factor =32 dim

=1
8
9 // Perform matrix multiplication

10 WEIGHTS_LOOP:
11 for(int i = 0; i < M; i++) { // Iterate columns of B
12 for(int j = 0; j < N; j++) { // Iterate rows of A
13 #pragma HLS PIPELINE II=1
14 W[i][j] = 0;
15 ap_int <DATA_WIDTH > temp = 0; //Used to store partial

results from the systolic arrays
16 for(int k = 0; k < N; k+=P) { // Determines how many

blocks are accessed in parallel
17 for(int p = 0; p < P; p++) {// Process the blocks

in parallel using unrolling
18 #pragma HLS unroll factor =32
19 int x1[P] = {0};
20 int x2[P] = {7,7,7,7,7,7,7,7,
21 7,7,7,7,7,7,7,7,
22 7,7,7,7,7,7,7,7,
23 7,7,7,7,7,7,7,7};
24 for(int l = 0; l < 16; l++){// process all 16

elements in the 128bit vector
25 temp += ap_ufixed <8, 4, AP_RND_CONV , AP_WRAP >(

A[j][k+p]. range(x2[p], x1[p])) * ap_ufixed <8, 4, AP_RND_CONV
, AP_WRAP >(B[k+p][i]. range(x2[p], x1[p]));

26 #ifndef __SYNTHESIS__
27 std::cout << "W[" << i << "][" << j << "] : "

<< std::fixed;
28 std::cout << ap_ufixed <8, 4, AP_RND_CONV ,

AP_WRAP >(temp.range(x2[p],x1[p])) << std::endl;
29 #endif
30 temp << 8;
31 x1[p] += 8;
32 x2[p] += 8;
33 }
34 }
35 }
36 W[i][j] = temp; //Write the output vector in BRAM
37 }

8.1. Vitis HLS algorithms 89

38 }
39 }

LISTING 8.1: Compute Weights Unit code in Vitis HLS

8.1.2 Compute Biases Unit Algorithm

The Compute Biases Unit uses the same directives as the aforementioned unit
to fragment the matrices into smaller arrays. The difference lies in the oper-
ations that take place inside of the loops. Each element of the bias vector is
calculated by taking the dot product of the mean of each class with the crre-
sponding column of the Weight matrix. This essentially renders this unit as a
dot product calculation unit and can perform perform multiple dot product
calculations in parallel. The code in listing 8.2 shows how the dot product
calculations are performed.

1 BIASES_LOOP:
2 for(int j = 0; j < M; j++) {// Iterate columns of D and rows

of W
3 #pragma HLS PIPELINE II=1
4 //b[j] = 0;
5 ap_int <32> temp = 0; //Used to store partial results from

the systolic arrays
6 for(int k = 0; k < N; k+=P) {// Determines how many

blocks are accessed in parallel
7 for(int p = 0; p < P; p++) {// Process the blocks in

parallel using unrolling
8 #pragma HLS unroll factor =32
9 int x1 = 0;

10 int x2 = 7;
11 for(int l = 0; l < 16; l++){// process all 16 elements in the

128 bit vector
12 temp += ap_ufixed <8, 4, AP_RND_CONV , AP_SAT_SYM >(W[j][k+p].

range(x2 , x1)) * ap_ufixed <8, 4, AP_RND_CONV , AP_SAT_SYM >(D[
k+p][j]. range(x2, x1));

13 x1 += 8;
14 x2 += 8;
15 }
16 }
17 }
18 b[j] = temp;
19 }

LISTING 8.2: Compute Biases Unit code in Vitis HLS

90
Chapter 8. Appendix A - FPGA design from High Level Synthesis to

Application level testing

8.1.3 Compute Scores Unit Algorithm

The Compute Scores Unit follows the same logic as the Compute Biases Unit
to compute the matrix vector multiplication of the linear classifier W · xt. At
first, the feature vector elements, that are used to perform the W · xt calcu-
lation, are loaded sequentially from a FIFO. At the end of each dot product
calculation the corresponding bias element is added to the result.

1 [language=C++, caption=Compute Scores Unit code in Vitis HLS ,
label=lst:Compute_Scores_Code]

2 ap_int <DATA_WIDTH > fv_data[N];
3
4 for(int k = 0; k < N; k++){
5 fv_data[k] = feature_vector.read().data;
6 }
7
8 SCORES_LOOP:
9 for(int j = 0; j < M; j++) {

10 #pragma HLS PIPELINE II=2
11 //b[j] = 0;
12 ap_int <32> temp = 0;
13 for(int k = 0; k < N; k+=P) {
14 #pragma HLS unroll factor =32
15 for(int p = 0; p < P; p++) {
16 int x1 = 0;
17 int x2 = 7;
18 for(int l = 0; l < 16; l++){
19 temp += ap_ufixed <8, 4, AP_RND_CONV , AP_SAT_SYM >(W[j][k+p].

range(x2 , x1)) * ap_ufixed <8, 4, AP_RND_CONV , AP_SAT_SYM >(
fv_data[k+p].range(x2 , x1));

20 x1 += 8;
21 x2 += 8;
22 }
23 }
24 }
25 scores[j] = temp + b[j];
26 }

8.2 Vivado IDE block design

The next step into running the accelerator on the targeted platform is to use
the Vivado IDE to connect the Vitis HLS module to the PS system. The four
inputs of the final SLDA implementation are loaded directly from external

8.2. Vivado IDE block design 91

memory with the use of four DMAs that are configured to perform only read
operations on data with 128 bit width.

The control signals and the output that is stored in BRAM communicate with
the PS side through an AXI interconnect that connects the corresponding
ports to the Master ports of the Zynq Ultrascale+.

The DMAs are controlled form the Master ports of the Zynq Ultrascale+
while they load the data from the slave ports of the Zynq Ultrascale+. They
are also clocked at the same frequency as the PL clock.

The clock of the SLDA module is the same as the PL clock that is configured
to be set at 115 MHz. The reset comes from an external reset generator and is
common with the ZCU102 reset.

All the discussed connections are presented in the block diagram of figure
8.1.

92
Chapter 8. Appendix A - FPGA design from High Level Synthesis to

Application level testing

FIGURE 8.1: The diagram portrays the connections that feed
the custom IP core with input data and the way the outputs are

accessible from the PS.

8.3 Embedded application using the Vitis Software

Platform

First of all, before running the system the SLDA module and the DMAs must
be initialized.

The initialization of the SLDA module is shown in listing 8.3

1 int status;
2 // Initialize custom made accelerator
3 ip_xconfig = XSlda_final_LookupConfig(

XPAR_XSLDA_FINAL_0_DEVICE_ID);

8.3. Embedded application using the Vitis Software Platform 93

4 if(ip_xconfig == NULL){
5 printf("Failed to initialize device slda_final with id: %d",

XPAR_XSLDA_FINAL_0_DEVICE_ID);
6 return -1;
7 }
8
9 status = XSlda_final_CfgInitialize (& ip_instance , ip_xconfig);

10 if(status != XST_SUCCESS){
11 printf("Failed to initialize device slda_final with id: %d",

XPAR_XSLDA_FINAL_0_DEVICE_ID);
12 return -2;
13 }

LISTING 8.3: SLDA initialization in Vitis

The initialization of a DMA module is shown in listing 8.4

1 // Initialize dma 0
2 dma_xconfig_0 = XAxiDma_LookupConfig(XPAR_AXIDMA_0_DEVICE_ID);
3 if(dma_xconfig_0 == NULL){
4 printf("Failed to initialize device axi dma 0 with id: %d",

XPAR_AXIDMA_0_DEVICE_ID);
5 return -3;
6 }
7
8 status = XAxiDma_CfgInitialize (& dma_instance_0 , dma_xconfig_0);
9 if(status != XST_SUCCESS){

10 printf("Failed to initialize device axi dma 0 with id: %d",
XPAR_AXIDMA_0_DEVICE_ID);

11 return -4;
12 }
13
14 XAxiDma_IntrDisable (& dma_instance_0 , XAXIDMA_IRQ_ALL_MASK ,

XAXIDMA_DMA_TO_DEVICE);
15 XAxiDma_IntrDisable (& dma_instance_0 , XAXIDMA_IRQ_ALL_MASK ,

XAXIDMA_DEVICE_TO_DMA);

LISTING 8.4: DMA initialization in Vitis

The main function of the application first initializes the DDR memory space
of the four DMAs with the corresponding data, that are: the means of the
classes, the two duplicate feature vectors (for achieving greater levels of par-
allelism) and the Lambda matrix. The data type and the amount of data to
be transeffered depend on the scenario that is being run at the moment.

94
Chapter 8. Appendix A - FPGA design from High Level Synthesis to

Application level testing

After that, the program falls into an infinite loop that transfers data through
the DMAs, after the cache is flushed for coherency, then waits for the accel-
erator to complete processing the data before outputting the final scores to
the console. For measuring the latency of the accelerator a global timer of the
PSU starts before the data transfers and stops after the final result is stored
in RAM.

All of the above are shown in 8.5

1 int main(){
2
3 // Initialize the platform
4 init_platform ();
5
6 // Initialize IPs
7 init_IPs ();
8
9 int8_t* axi_dma_tx_0 = (int8_t *) TX_DATA_BASE_ADDR_0;

10 int8_t* axi_dma_tx_1 = (int8_t *) TX_DATA_BASE_ADDR_1;
11 int8_t* axi_dma_tx_2 = (int8_t *) TX_DATA_BASE_ADDR_2;
12 int8_t* axi_dma_tx_3 = (int8_t *) TX_DATA_BASE_ADDR_3;
13 // timer_t timer;
14 XTime start , startHW , end , endHW;
15
16 int counter = 0;
17 int8_t constant1 = 0x01;
18 int8_t constant2 = 0x02;
19
20 // Initialize the mean matrix data
21 for(int i = 0; i < 640; i+=2){
22 axi_dma_tx_0[i] = constant1;
23 axi_dma_tx_0[i+1] = constant2 ;
24 }
25
26 //There are 2 feature vectors so that predictions and updates

can be performed independently
27 // feature vector used for updating means
28 for(int i = 0; i < 64; i+=2){
29 axi_dma_tx_1[i] = constant1 + i;
30 axi_dma_tx_1[i+1] = constant2 + i;
31 }
32
33 // feature vector used for the prediction
34 for(int i = 0; i < 64; i+=2){
35 axi_dma_tx_2[i] = constant1;
36 axi_dma_tx_2[i+1] = constant2;

8.3. Embedded application using the Vitis Software Platform 95

37 }
38
39
40 // Initialize the Lambda matrix data
41 for(int i = 0; i < 2048; i+=2){
42 axi_dma_tx_3[i] = constant1 + i;
43 axi_dma_tx_3[i+1] = constant2 + i;
44 }
45
46 while (1){
47
48 XTime_GetTime (&start);
49 XSlda_final_Start (& ip_instance);
50
51 Xil_DCacheFlushRange ((INTPTR)axi_dma_tx_0 , sizeof(int8_t)

*5120);
52 Xil_DCacheFlushRange ((INTPTR)axi_dma_tx_1 , sizeof(int8_t)*512)

;
53 Xil_DCacheFlushRange ((INTPTR)axi_dma_tx_2 , sizeof(int8_t)*512)

;
54 Xil_DCacheFlushRange ((INTPTR)axi_dma_tx_3 , sizeof(int8_t)

*262144);
55 // Xil_DCacheFlushRange ((INTPTR)axi_dma_rx_0 , sizeof(int64_t)*

ELEMENTS_TO_RECEIVE);
56 printf("Send data to the ip core via dma");
57 XTime_GetTime (& startHW);
58 XAxiDma_SimpleTransfer (& dma_instance_0 , (UINTPTR)axi_dma_tx_0 ,

sizeof(int8_t)*5120, XAXIDMA_DMA_TO_DEVICE);
59 XAxiDma_SimpleTransfer (& dma_instance_1 , (UINTPTR)axi_dma_tx_1 ,

sizeof(int8_t)*512, XAXIDMA_DMA_TO_DEVICE);
60 XAxiDma_SimpleTransfer (& dma_instance_2 , (UINTPTR)axi_dma_tx_2 ,

sizeof(int8_t)*512, XAXIDMA_DMA_TO_DEVICE);
61 XAxiDma_SimpleTransfer (& dma_instance_3 , (UINTPTR)axi_dma_tx_3 ,

sizeof(int8_t)*262144 , XAXIDMA_DMA_TO_DEVICE);
62
63
64 /* printf (" Receive data from the dma");
65 XAxiDma_SimpleTransfer (& dma_instance , (UINTPTR)axi_dma_rx ,

sizeof(int32_t)*ELEMENTS_TO_RECEIVE , XAXIDMA_DEVICE_TO_DMA);
66 while(XAxiDma_Busy (& dma_instance , XAXIDMA_DEVICE_TO_DMA));
67 XTime_GetTime (&endHW);
68 Xil_DCacheInvalidateRange ((INTPTR)axi_dma_rx , sizeof(int32_t)*

ELEMENTS_TO_RECEIVE);*/
69
70 while(! XSlda_final_IsDone (& ip_instance));
71 XTime_GetTime (&endHW);

96
Chapter 8. Appendix A - FPGA design from High Level Synthesis to

Application level testing

72
73 XTime_GetTime (&end);
74
75 printf("Time in microseconds for app execution: %llu\n", 2*(

end -start));
76 printf("app execution took %.2f us.\n",
77 1.0 * (end - start) / (COUNTS_PER_SECOND /1000000));
78
79 printf("Time in microseconds for hw execution: %llu\n", 2*(

endHW -startHW));
80 printf("Hw execution took %.2f us.\n",
81 1.0 * (endHW - startHW) / (COUNTS_PER_SECOND

/1000000));
82
83 for(int k = 0; k < ELEMENTS_TO_RECEIVE; k++){
84 printf("scores [%d]: %d\n", k, scores[k]);
85 }
86 }
87 return 0;
88 }

LISTING 8.5: Main function

97

References

[1] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Ap-
proach. 3rd ed. Prentice Hall, 2010.

[2] A. L. Samuel. “Some Studies in Machine Learning Using the Game
of Checkers”. In: IBM Journal of Research and Development 3.3 (1959),
pp. 210–229. DOI: 10.1147/rd.33.0210.

[12] Warren Mcculloch and Walter Pitts. “A Logical Calculus of Ideas Im-
manent in Nervous Activity”. In: Bulletin of Mathematical Biophysics 5
(1943), pp. 127–147.

[21] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. “Learn-
ing representations by back-propagating errors”. In: Nature 323 (1986),
pp. 533–536. URL: https://api.semanticscholar.org/CorpusID:
205001834.

[27] Kunihiko Fukushima. “Neocognitron: A self-organizing neural network
model for a mechanism of pattern recognition unaffected by shift in
position”. In: Biological Cybernetics 36 (1980), pp. 193–202. URL: https:
//api.semanticscholar.org/CorpusID:206775608.

[28] Y. Lecun et al. “Gradient-based learning applied to document recog-
nition”. In: Proceedings of the IEEE 86.11 (1998), pp. 2278–2324. DOI:
10.1109/5.726791.

[30] Michael McCloskey and Neal J. Cohen. “Catastrophic Interference in
Connectionist Networks: The Sequential Learning Problem”. In: Psy-
chology of Learning and Motivation 24 (1989). Ed. by Gordon H. Bower,
pp. 109–165. ISSN: 0079-7421. DOI: https://doi.org/10.1016/S0079-
7421(08)60536-8. URL: https://www.sciencedirect.com/science/
article/pii/S0079742108605368.

[32] James Kirkpatrick et al. “Overcoming catastrophic forgetting in neu-
ral networks”. In: Proceedings of the national academy of sciences 114.13
(2017), pp. 3521–3526.

[33] Matthias De Lange et al. “A continual learning survey: Defying forget-
ting in classification tasks”. In: IEEE transactions on pattern analysis and
machine intelligence 44.7 (2021), pp. 3366–3385.

https://doi.org/10.1147/rd.33.0210
https://api.semanticscholar.org/CorpusID:205001834
https://api.semanticscholar.org/CorpusID:205001834
https://api.semanticscholar.org/CorpusID:206775608
https://api.semanticscholar.org/CorpusID:206775608
https://doi.org/10.1109/5.726791
https://doi.org/https://doi.org/10.1016/S0079-7421(08)60536-8
https://doi.org/https://doi.org/10.1016/S0079-7421(08)60536-8
https://www.sciencedirect.com/science/article/pii/S0079742108605368
https://www.sciencedirect.com/science/article/pii/S0079742108605368

98 References

[34] Zhizhong Li and Derek Hoiem. “Learning without Forgetting”. In: (2017).
arXiv: 1606.09282 [cs.CV].

[35] David Lopez-Paz and Marc’Aurelio Ranzato. “Gradient Episodic Mem-
ory for Continual Learning”. In: (2022). arXiv: 1706.08840 [cs.LG].

[36] Shaoning Pang, S. Ozawa, and N. Kasabov. “Incremental linear dis-
criminant analysis for classification of data streams”. In: IEEE Transac-
tions on Systems, Man, and Cybernetics, Part B (Cybernetics) 35.5 (2005),
pp. 905–914. DOI: 10.1109/TSMCB.2005.847744.

[37] Tyler L. Hayes and Christopher Kanan. Lifelong Machine Learning with
Deep Streaming Linear Discriminant Analysis. 2020. arXiv: 1909.01520
[cs.LG].

[38] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet
classification with deep convolutional neural networks”. In: Communi-
cations of the ACM 60.6 (2017), pp. 84–90.

[40] Karen Simonyan and Andrew Zisserman. “Very deep convolutional
networks for large-scale image recognition”. In: arXiv preprint arXiv:1409.1556
(2014).

[42] Kaiming He et al. “Deep residual learning for image recognition”. In:
Proceedings of the IEEE conference on computer vision and pattern recogni-
tion. 2016, pp. 770–778.

[45] Gao Huang et al. “Densely Connected Convolutional Networks”. In:
(2017), pp. 2261–2269. DOI: 10.1109/CVPR.2017.243.

[46] Andrew G. Howard et al. “MobileNets: Efficient Convolutional Neu-
ral Networks for Mobile Vision Applications”. In: (2017). arXiv: 1704.
04861 [cs.CV].

[48] Vincenzo Lomonaco and Davide Maltoni. “CORe50: a New Dataset
and Benchmark for Continuous Object Recognition”. In: (2017). arXiv:
1705.03550 [cs.CV].

[52] Duvindu Piyasena, Siew-Kei Lam, and Meiqing Wu. “Accelerating con-
tinual learning on edge fpga”. In: 2021 31st International Conference on
Field-Programmable Logic and Applications (FPL). IEEE. 2021, pp. 294–
300.

[53] Norman P Jouppi et al. “In-datacenter performance analysis of a tensor
processing unit”. In: Proceedings of the 44th annual international sympo-
sium on computer architecture. 2017, pp. 1–12.

[56] Xishan Zhang et al. “Fixed-point back-propagation training”. In: Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern recog-
nition. 2020, pp. 2330–2338.

https://arxiv.org/abs/1606.09282
https://arxiv.org/abs/1706.08840
https://doi.org/10.1109/TSMCB.2005.847744
https://arxiv.org/abs/1909.01520
https://arxiv.org/abs/1909.01520
https://doi.org/10.1109/CVPR.2017.243
https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1705.03550

References 99

[57] Yilun Chen et al. “Shrinkage Algorithms for MMSE Covariance Es-
timation”. In: IEEE Transactions on Signal Processing 58.10 (Oct. 2010),
pp. 5016–5029. DOI: 10.1109/tsp.2010.2053029. URL: https://doi.
org/10.1109%2Ftsp.2010.2053029.

[69] Gene M. Amdahl. “Validity of the Single Processor Approach to Achiev-
ing Large Scale Computing Capabilities, Reprinted from the AFIPS
Conference Proceedings, Vol. 30 (Atlantic City, N.J., Apr. 18–20), AFIPS
Press, Reston, Va., 1967, pp. 483–485, when Dr. Amdahl was at Inter-
national Business Machines Corporation, Sunnyvale, California”. In:
IEEE Solid-State Circuits Society Newsletter 12.3 (2007), pp. 19–20. DOI:
10.1109/N-SSC.2007.4785615.

[71] Khoa Pham et al. “Moving Compute towards Data in Heterogeneous
multi-FPGA Clusters using Partial Reconfiguration and I/O Virtualisa-
tion”. In: (2020), pp. 221–226. DOI: 10.1109/ICFPT51103.2020.00038.

[72] Chrisantha Fernando et al. “PathNet: Evolution Channels Gradient De-
scent in Super Neural Networks”. In: (2017). arXiv: 1701.08734 [cs.NE].

[73] Arun Mallya and Svetlana Lazebnik. “PackNet: Adding Multiple Tasks
to a Single Network by Iterative Pruning”. In: (2018). arXiv: 1711.05769
[cs.CV].

[74] Arun Mallya, Dillon Davis, and Svetlana Lazebnik. “Piggyback: Adapt-
ing a Single Network to Multiple Tasks by Learning to Mask Weights”.
In: (2018). arXiv: 1801.06519 [cs.CV].

[75] Joan Serrà et al. “Overcoming catastrophic forgetting with hard atten-
tion to the task”. In: (2018). arXiv: 1801.01423 [cs.LG].

https://doi.org/10.1109/tsp.2010.2053029
https://doi.org/10.1109%2Ftsp.2010.2053029
https://doi.org/10.1109%2Ftsp.2010.2053029
https://doi.org/10.1109/N-SSC.2007.4785615
https://doi.org/10.1109/ICFPT51103.2020.00038
https://arxiv.org/abs/1701.08734
https://arxiv.org/abs/1711.05769
https://arxiv.org/abs/1711.05769
https://arxiv.org/abs/1801.06519
https://arxiv.org/abs/1801.01423

101

External Links

[3] Machine Learning Explained. URL: https://mitsloan.mit.edu/ideas-
made-to-matter/machine-learning-explained.

[4] AI vs ML. URL: https : / / cloud . google . com / learn / artificial -
intelligence-vs-machine-learning.

[5] Mathworks ML. URL: https://www.mathworks.com/discovery/machine-
learning.html.

[6] Mathworks Supervised. URL: https://www.mathworks.com/discovery/
supervised-learning.html.

[7] Stanford Reinforcement Learning. URL: https://web.stanford.edu/
class/cs234/.

[8] Deep Learning. URL: https://en.wikipedia.org/wiki/Deep_learning.
[9] Mathworks Deep Learning. URL: https://www.mathworks.com/discovery/

deep-learning.html.
[10] IBM Deep Learning. URL: https://www.ibm.com/topics/deep-learning.
[11] Neuron. URL: https://en.wikipedia.org/wiki/Neuron.
[13] Artificial euron. URL: https://en.wikipedia.org/wiki/Artificial_

neuron.
[14] Artificial Neural Network. URL: https : / / en . wikipedia . org / wiki /

Artificial_neural_network.
[15] Perceptron. URL: https://en.wikipedia.org/wiki/Perceptron.
[16] ANNs activation functions. URL: https : / / www . v7labs . com / blog /

neural-networks-activation-functions.
[17] Activation Function. URL: https://en.wikipedia.org/wiki/Activation_

function.
[18] Feedforward Neural Network. URL: https://en.wikipedia.org/wiki/

Feedforward_neural_network.
[19] Feedforward Neural Network. URL: https : / / deepai . org / machine -

learning-glossary-and-terms/feed-forward-neural-network.
[20] Loss Functions. URL: https://towardsdatascience.com/loss-functions-

and-their-use-in-neural-networks-a470e703f1e9.

https://mitsloan.mit.edu/ideas-made-to-matter/machine-learning-explained
https://mitsloan.mit.edu/ideas-made-to-matter/machine-learning-explained
https://cloud.google.com/learn/artificial-intelligence-vs-machine-learning
https://cloud.google.com/learn/artificial-intelligence-vs-machine-learning
https://www.mathworks.com/discovery/machine-learning.html
https://www.mathworks.com/discovery/machine-learning.html
https://www.mathworks.com/discovery/supervised-learning.html
https://www.mathworks.com/discovery/supervised-learning.html
https://web.stanford.edu/class/cs234/
https://web.stanford.edu/class/cs234/
https://en.wikipedia.org/wiki/Deep_learning
https://www.mathworks.com/discovery/deep-learning.html
https://www.mathworks.com/discovery/deep-learning.html
https://www.ibm.com/topics/deep-learning
https://en.wikipedia.org/wiki/Neuron
https://en.wikipedia.org/wiki/Artificial_neuron
https://en.wikipedia.org/wiki/Artificial_neuron
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Perceptron
https://www.v7labs.com/blog/neural-networks-activation-functions
https://www.v7labs.com/blog/neural-networks-activation-functions
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Feedforward_neural_network
https://en.wikipedia.org/wiki/Feedforward_neural_network
https://deepai.org/machine-learning-glossary-and-terms/feed-forward-neural-network
https://deepai.org/machine-learning-glossary-and-terms/feed-forward-neural-network
https://towardsdatascience.com/loss-functions-and-their-use-in-neural-networks-a470e703f1e9
https://towardsdatascience.com/loss-functions-and-their-use-in-neural-networks-a470e703f1e9

102 External Links

[22] Understanding the Backpropagation Algorithm. URL: https://towardsdatascience.
com/understanding-backpropagation-algorithm-7bb3aa2f95fd.

[23] Backpropagation. URL: https://en.wikipedia.org/wiki/Backpropagation.
[24] Backpropagation 3Blue1Brown. URL: https://www.youtube.com/watch?

v=IHZwWFHWa-w.
[25] Convolutions 3Blue1Brown. URL: https://www.youtube.com/watch?v=

KuXjwB4LzSA.
[26] ContinualAI, Understanding Catastrophic Forgetting. URL: https://www.

youtube.com/watch?v=UnCAdBtvZhc.
[29] CNNs a brief history. URL: https://medium.com/appyhigh-technology-

blog / convolutional - neural - networks - a - brief - history - of -

their-evolution-ee3405568597.
[31] The stability-plasticity dilemma. URL: https://www.frontiersin.org/

articles/10.3389/fpsyg.2013.00504/full.
[39] Alexnet the architecture that changed CNNs. URL: https://towardsdatascience.

com/alexnet-the-architecture-that-challenged-cnns-e406d5297951.
[41] VGG very deep CNNs. URL: https://viso.ai/deep-learning/vgg-

very-deep-convolutional-networks/.
[43] A practical experiment for comparing lenet alexnet vgg and resnet models

with their advantages. URL: https://tejasmohanayyar.medium.com/a-
practical-experiment-for-comparing-lenet-alexnet-vgg-and-

resnet-models-with-their-advantages-d932fb7c7d17.
[44] Resnet residual neural network. URL: https://viso.ai/deep-learning/

resnet-residual-neural-network/.
[47] An overview on mobilenet an efficient mobile vision cnn. URL: https://

medium.com/@godeep48/an-overview-on-mobilenet-an-efficient-

mobile-vision-cnn-f301141db94d.
[49] Imagenet. URL: https://www.image-net.org/about.php.
[50] CUB200-2011. URL: https://www.vision.caltech.edu/datasets/

cub%5C_200%5C_2011/.
[51] GPU GEMM architecture. URL: https://docs.nvidia.com/deeplearning/

performance/dl-performance-matrix-multiplication/index.html.
[54] Fx representation. URL: https : / / www . geeksforgeeks . org / fixed -

point-representation/.
[55] Digital Design book, Morris, Mano. URL: https://docs.google.com/

file/d/0B8-drkZsESDnN2NmYTQxYjQtYTMwZi00N2IzLTkxNjgtZjI1NTZiN2FjNDli/

edit?pli=1&resourcekey=0-Yk8bAsCt9I5epBNFTG8KMQ.

https://towardsdatascience.com/understanding-backpropagation-algorithm-7bb3aa2f95fd
https://towardsdatascience.com/understanding-backpropagation-algorithm-7bb3aa2f95fd
https://en.wikipedia.org/wiki/Backpropagation
https://www.youtube.com/watch?v=IHZwWFHWa-w
https://www.youtube.com/watch?v=IHZwWFHWa-w
https://www.youtube.com/watch?v=KuXjwB4LzSA
https://www.youtube.com/watch?v=KuXjwB4LzSA
https://www.youtube.com/watch?v=UnCAdBtvZhc
https://www.youtube.com/watch?v=UnCAdBtvZhc
https://medium.com/appyhigh-technology-blog/convolutional-neural-networks-a-brief-history-of-their-evolution-ee3405568597
https://medium.com/appyhigh-technology-blog/convolutional-neural-networks-a-brief-history-of-their-evolution-ee3405568597
https://medium.com/appyhigh-technology-blog/convolutional-neural-networks-a-brief-history-of-their-evolution-ee3405568597
https://www.frontiersin.org/articles/10.3389/fpsyg.2013.00504/full
https://www.frontiersin.org/articles/10.3389/fpsyg.2013.00504/full
https://towardsdatascience.com/alexnet-the-architecture-that-challenged-cnns-e406d5297951
https://towardsdatascience.com/alexnet-the-architecture-that-challenged-cnns-e406d5297951
https://viso.ai/deep-learning/vgg-very-deep-convolutional-networks/
https://viso.ai/deep-learning/vgg-very-deep-convolutional-networks/
https://tejasmohanayyar.medium.com/a-practical-experiment-for-comparing-lenet-alexnet-vgg-and-resnet-models-with-their-advantages-d932fb7c7d17
https://tejasmohanayyar.medium.com/a-practical-experiment-for-comparing-lenet-alexnet-vgg-and-resnet-models-with-their-advantages-d932fb7c7d17
https://tejasmohanayyar.medium.com/a-practical-experiment-for-comparing-lenet-alexnet-vgg-and-resnet-models-with-their-advantages-d932fb7c7d17
https://viso.ai/deep-learning/resnet-residual-neural-network/
https://viso.ai/deep-learning/resnet-residual-neural-network/
https://medium.com/@godeep48/an-overview-on-mobilenet-an-efficient-mobile-vision-cnn-f301141db94d
https://medium.com/@godeep48/an-overview-on-mobilenet-an-efficient-mobile-vision-cnn-f301141db94d
https://medium.com/@godeep48/an-overview-on-mobilenet-an-efficient-mobile-vision-cnn-f301141db94d
https://www.image-net.org/about.php
https://www.vision.caltech.edu/datasets/cub%5C_200%5C_2011/
https://www.vision.caltech.edu/datasets/cub%5C_200%5C_2011/
https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html
https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html
https://www.geeksforgeeks.org/fixed-point-representation/
https://www.geeksforgeeks.org/fixed-point-representation/
https://docs.google.com/file/d/0B8-drkZsESDnN2NmYTQxYjQtYTMwZi00N2IzLTkxNjgtZjI1NTZiN2FjNDli/edit?pli=1&resourcekey=0-Yk8bAsCt9I5epBNFTG8KMQ
https://docs.google.com/file/d/0B8-drkZsESDnN2NmYTQxYjQtYTMwZi00N2IzLTkxNjgtZjI1NTZiN2FjNDli/edit?pli=1&resourcekey=0-Yk8bAsCt9I5epBNFTG8KMQ
https://docs.google.com/file/d/0B8-drkZsESDnN2NmYTQxYjQtYTMwZi00N2IzLTkxNjgtZjI1NTZiN2FjNDli/edit?pli=1&resourcekey=0-Yk8bAsCt9I5epBNFTG8KMQ

External Links 103

[58] NumPy documentation. URL: https : / / numpy . org / devdocs / user /
whatisnumpy.html.

[59] What is BLAS and LAPACK in NumPy. URL: https://superfastpython.
com/what-is-blas-and-lapack-in-numpy/.

[60] NumPy multithreaded parallelism. URL: https://superfastpython.com/
numpy-multithreaded-parallelism/.

[61] CuPy Documentation. URL: https : / / docs . cupy . dev / en / stable /
overview.html.

[62] Vitis HLS Guide. URL: https://docs.xilinx.com/r/en-US/ug1399-
vitis-hls/Navigating-Content-by-Design-Process.

[63] Vitis HLS optimization directives. URL: https : / / docs . xilinx . com /
r/en- US/ug1399- vitis- hls/Optimization- Directives?tocId=

RzqCJW4MAxgfOBgirykUsw.
[64] Vivado Design Suite User Guide. URL: https://docs.xilinx.com/r/en-

US/ug910-vivado-getting-started/What-is-the-Vivado-Design-

Suite.
[65] Vitis Application Acceleration Development Flow. URL: https://docs.

xilinx.com/r/en-US/ug1393-vitis-application-acceleration.
[66] Vitis Embedded Software Development Flow. URL: https://docs.xilinx.

com/r/en-US/ug1400-vitis-embedded.
[67] Methodology For Accelerating Applications. URL: https://docs.xilinx.

com/r/en-US/ug1393-vitis-application-acceleration/Methodology-

for-Accelerating-Data-Center-Applications-with-the-Vitis-

Software-Platform.
[68] ZCU102 Evaluation Board User Guide. URL: https://docs.xilinx.com/

v/u/en-US/ug1182-zcu102-eval-bd.
[70] Amdahl’s Law. URL: https://link.springer.com/referenceworkentry/

10.1007/978-0-387-09766-4_77.

https://numpy.org/devdocs/user/whatisnumpy.html
https://numpy.org/devdocs/user/whatisnumpy.html
https://superfastpython.com/what-is-blas-and-lapack-in-numpy/
https://superfastpython.com/what-is-blas-and-lapack-in-numpy/
https://superfastpython.com/numpy-multithreaded-parallelism/
https://superfastpython.com/numpy-multithreaded-parallelism/
https://docs.cupy.dev/en/stable/overview.html
https://docs.cupy.dev/en/stable/overview.html
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Navigating-Content-by-Design-Process
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Navigating-Content-by-Design-Process
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Optimization-Directives?tocId=RzqCJW4MAxgfOBgirykUsw
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Optimization-Directives?tocId=RzqCJW4MAxgfOBgirykUsw
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Optimization-Directives?tocId=RzqCJW4MAxgfOBgirykUsw
https://docs.xilinx.com/r/en-US/ug910-vivado-getting-started/What-is-the-Vivado-Design-Suite
https://docs.xilinx.com/r/en-US/ug910-vivado-getting-started/What-is-the-Vivado-Design-Suite
https://docs.xilinx.com/r/en-US/ug910-vivado-getting-started/What-is-the-Vivado-Design-Suite
https://docs.xilinx.com/r/en-US/ug1393-vitis-application-acceleration
https://docs.xilinx.com/r/en-US/ug1393-vitis-application-acceleration
https://docs.xilinx.com/r/en-US/ug1400-vitis-embedded
https://docs.xilinx.com/r/en-US/ug1400-vitis-embedded
https://docs.xilinx.com/r/en-US/ug1393-vitis-application-acceleration/Methodology-for-Accelerating-Data-Center-Applications-with-the-Vitis-Software-Platform
https://docs.xilinx.com/r/en-US/ug1393-vitis-application-acceleration/Methodology-for-Accelerating-Data-Center-Applications-with-the-Vitis-Software-Platform
https://docs.xilinx.com/r/en-US/ug1393-vitis-application-acceleration/Methodology-for-Accelerating-Data-Center-Applications-with-the-Vitis-Software-Platform
https://docs.xilinx.com/r/en-US/ug1393-vitis-application-acceleration/Methodology-for-Accelerating-Data-Center-Applications-with-the-Vitis-Software-Platform
https://docs.xilinx.com/v/u/en-US/ug1182-zcu102-eval-bd
https://docs.xilinx.com/v/u/en-US/ug1182-zcu102-eval-bd
https://link.springer.com/referenceworkentry/10.1007/978-0-387-09766-4_77
https://link.springer.com/referenceworkentry/10.1007/978-0-387-09766-4_77

	Abstract
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	List of Abbreviations
	Introduction
	Motivation
	Scientific Contributions
	Thesis Outline

	Theoretical Background
	Artificial Intelligence
	Machine Learning
	Deep Learning
	Perceptron
	Activation Function

	Neural Network Training Steps
	Feedforward Neural Network
	Forward Propagation

	Loss Function
	Backpropagation and Gradient Descent

	Convolutional Neural Networks
	Convolutional Layers
	Subsampling Layers

	Continual Learning
	Continual Learning algorithms that assess the Catastrophic Forgetting problem
	Elastic Weight Consolidation (EWC)
	Learning without Forgetting (LwF)
	Gradient Episodic Memory (GEM)
	Deep Streaming Linear Discriminant Analysis (Deep SLDA)

	Related Work
	CNN architectures
	AlexNet
	VGG
	ResNet
	DenseNet
	MobileNets

	Datasets previously used in Continual Learning Tasks
	CIFAR-10/100
	CoRE50
	ImageNet
	CUB200-2011

	Thesis Approach
	Hardware designs for Matrix-Vector multiplication
	GPU based designs
	FPGA based designs
	Google TPU

	Robustness Analysis
	Arithmetic Representation
	Fixed Point Representation
	Fixed Point operations: Advantages and Disadvantages
	Static SLDA over Plastic SLDA
	Static SLDA algorithms
	Software Implementation of Static SLDA
	NumPy
	CuPy
	Pretrained Python CNNs
	Dataset and Data orderings
	Network Base Initialization
	SLDA among different platforms and programming languages

	System Architecture and FPGA Implementation
	Hardware Architecture
	Update Means Unit
	Compute Weights Unit and Compute Biases Unit
	Compute Scores Unit

	Tools Used
	Vitis High Level Synthesis (HLS)
	Optimization Directives

	Vivado IDE
	Vitis Unified Software Platform

	Platforms and Xilinx Cores
	ZCU102

	System Verification and Performance Evaluation
	System Verification
	Specification of Compared Platforms
	Intel Core i7-11800H
	NVIDIA RTX 3050 Ti Mobile
	ZCU102

	Implemented Accelerator Characteristics
	Experiments that were sought through
	Throughput and Latency Speedup
	Amdahl's Law
	Metrics used for latency and throughput
	Comparison of the accelerator to other platforms

	Power Consumption and Energy Consumption
	Accuracy Metrics
	Results Discussion

	Conclusions and Future Work
	Conclusions
	Future Work

	Appendix A - FPGA design from High Level Synthesis to Application level testing
	Vitis HLS algorithms
	Compute Weights Unit Algorithm
	Compute Biases Unit Algorithm
	Compute Scores Unit Algorithm

	Vivado IDE block design
	Embedded application using the Vitis Software Platform

	References

