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Chapter 1

Introduction

Since its earliest days as a discipline, machine learning has made use of optimization formulations
and algorithms. Likewise, machine learning has contributed to optimization, driving the develop-
ment of new optimization approaches that address the significant challenges presented by machine
learning applications. This influence continues to deepen, producing a growing literature at the in-
tersection of the two fields while attracting leading researchers to the effort [62]. While techniques
proposed twenty years ago continue to be refined, the increased complexity, size, and variety of
today’s machine learning models demand a principled reassessment of existing assumptions and
techniques. This thesis makes a small step toward such a reassessment. It describes novel contexts
of established frameworks such as convex relaxation, splitting methods, and regularized estimation
and how we can use them to solve significant problems in data mining and statistical learning.

The thesis is organised in two parts. In the first part, we present a new clustering algorithm.
The task of clustering aims at discovering structures in data. This algorithm is an extension of
recently proposed convex relaxations of k-means and hierarchical clustering [47, 58, 37]. In the
second part, we present a new algorithm for discovering dependencies among common variables
in multiple undirected graphical models. Graphical models are useful for the description and mod-
elling of multivariate systems [45]. In the appendix, we comment on a core problem underlying the
whole study and we give an alternative solution based on recent advances in convex optimization.
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Chapter 2

Preliminaries

We will make extensive use of convex optimization to formulate and solve statistical learning
problems. In order to illustrate our aim more concretely, in the next pages we make a brief review
of convex analysis [11, 7].

2.1 Convex optimization in machine learning

Most machine learning problems reduce to optimization problems. Consider the machine learning
analyst in action solving a problem for some set of data. She formulates the problem by selecting
an appropriate model among many others and transforms the data into an appropriate format [38].
Then, the model is typically trained by solving a core optimization problem. The research area
of mathematical programming intersects with machine learning through these core optimization
problems.

In general, we shall be concerned with constrained optimization problems, with real parameter
vectors x ∈ Rn of the form

min
x∈S

f0(x)

s.t fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p,

(2.1)

where

• the domain S ⊆ Rn, S =
⋂m

i=0 domfi ∩
⋂p

i=1 domhi of the optimization problem is a
non-empty set,

• x = ([x]1 · · · [x]n)T is the vector of optimization variables,

• f0 : Rn → R is the objective function to be minimized,

• fi : Rn → R, i = {1, . . . ,m} are the inequality constraints, and

• hi : Rn → R, i = {1, . . . , p} are the equality constraints.

A point x ∈ S is feasible if it satisfies the constraints fi(x) ≤ 0, i = 1, . . . ,m and hi(x) =
0, i = 1, . . . , p. The problem (2.1) is said to be feasible if there exists at least one feasible point,
and infeasible otherwise. The set of all feasible points is called the feasible set or the constraint
set. In Figure 2.1, we plot two convex functions, the l1 and l2-norms, and a non-convex one, the
l0-pseudonorm defined as ||x||0 = I(x) = 1, if x &= 0 and 0 otherwise.
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Figure 2.1: Two convex functions and one non-convex with global minima equal to 0. blue: the
l2-norm (convex), black: the l1-norm (convex), green: the l0-pseudo-norm (non-convex).

Optimality conditions for convex functions

A function f : Rn → R is convex if for all x, y ∈ Rn, and for all θ ∈ R such that 0 ≤ θ ≤ 1, we
have

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y), (2.2)

and strictly convex if, for 0 < θ < 1,

f(θx+ (1− θ)y) < θf(x) + (1− θ)f(y). (2.3)

The definition of convexity means that the chord (i.e., line segment) between any two points
(x, f(x)) and (y, f(y)) lies above the graph of f . Convexity plays a key role in mathematical
programming; every local minimum of a convex problem is also a global one. If a function f is
differentiable, the gradient ∇f(x) ∈ Rn at the point x ∈ Rn is the vector of partial derivatives

∇f(x) =

(

∂f(x)

∂x1
· · · ∂f(x)

∂xn

)T

. (2.4)

The gradient allows us to characterize the stationary points of f . In particular, we know that any
point x such that ∇f(x) = 0 is either a local minimum , a local maximum or a saddle point of f .
For every differentiable convex function f that achieves its minimum value p" at x", we have

f(x") = p" ⇔ ∇f(x") = 0. (2.5)

When a function is nondifferentiable, we use the subgradients. We define the subgradient for
any convex function f : Rn → R at a point x, as

∂f(x) = {d ∈ R
n|f(x)− f(y) ≥ dT (x− y) for any y ∈ R

n}. (2.6)
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(a) l1-norm |x|.

(b) Subgradient ∂|x|.

Figure 2.2: The function f(x) = |x| and its subdifferential ∂f(x) as a function of x. At x = 0,
the subdifferential is ∂|x| ⊆ [0, 1].
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If f is convex and differentiable at x, then ∂f(x) = {∇f(x)}, i.e., its gradient is its only sub-
gradient. We plot the non-differentiable function, |x|, with its subgradient in Figure 2.2. This
function has an infinite set of tangent planes at x = 0, and so its subgradient at this point is the set
of scalars {d ∈ R|d ∈ [0, 1]} If the subdifferential of a convex function f at x contains the zero
vector 0 ∈ ∂f(x), then x is a minimum of f :

f(x) = p" ⇔ 0 ∈ ∂f(x). (2.7)

When f is smooth this reduces to the usual gradient optimality condition ∇f(x) = 0.

The Lagrangian function and duality

The basic idea in duality is to take the constraints in (2.1) into account by augmenting the objective
function f with a weighted sum of the constraint functions. Then the Lagrangian associated with
the primal problem (2.1) is the function L : Rn × Rm × Rp → R defined as

L(x,λ, ν) = f0(x) +
m
∑

i=1

λifi(x) +
p
∑

i=1

νihi(x). (2.8)

The vectors λ and ν are called the dual variables or Lagrange multiplier vectors associated with
the primal problem. Having the Lagrangian L we define another important function called the
Lagrange dual function D : Rm × Rp → R as the minimum value of the Lagrangian over x: for
λ ∈ Rm, ν ∈ Rp,

D(λ, ν) = inf
x∈S

L(x,λ, ν) = inf
x∈S

(

f0(x) +
m
∑

i=1

λifi(x) +
p
∑

i=1

νihi(x)

)

. (2.9)

When the Lagrangian is unbounded below in x, the dual function takes on the value −∞. Since
the dual function is the point-wise infimum of a family of affine functions of (λ, ν), it is concave,
even when the primal problem is not convex. For any λ - 0, D(λ, ν) provides a lower bound
for (2.1), that is

D(λ, ν) ≤ p". (2.10)

This property is called weak-duality and holds for both convex and non-convex problems. Weak
duality can be used to find lower bounds for difficult problems. When the problem is convex and
its feasible set has non-empty interior, strong duality holds, that is

max
λ"0,ν

D(λ, ν) = p". (2.11)

A problem of the form (2.1) is convex when f0, fi, and hi are affine functions.

Regularized optimization

Though the contexts in machine learning vary widely, the objective remains the same; we have
a function f : Rn → R that is the loss or empirical risk associated with our chosen model
for the data, and we aim to obtain a solution x that minimizes f so as to tune the model. The
common thread is to search for solutions x that are simple in some well defined sense. In this case,
sparsity is a synonym for simplicity, that is, we search for solutions x = ([x]1 · · · [x]n) with many
components [x]i equal to 0. There are some reasons behind the search for sparse solutions [70, 3].
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Constrained formulation I Penalized formulation

min f(x)

s.t g(x) ≤ 0
min f(x) + γg(x)

Table 2.1: Three main formulations of machine learning optimization problems.

First, simple explanations of the observations are preferable to complicated explanations. Second,
sparse solutions sometimes are more robust to data inexactness, and third, sparse solutions conform
better to prior knowledge. Prior knowledge on the structure of x is expressed through the constraint
g.

We will encounter problems in two main formulations as summarized in Table 2.1. Penalized

formulation is the Lagrangian associated with the constrained formulation I. We focus on the
penalized formulation of learning problems, that is problems of the form

minimize
x∈S

f(x) + γg(x), (2.12)

where f is convex red and g may be nonconvex and nonsmooth. Parameter γ is a non-negative
scalar that weights the relative importance of optimality and simplicity of the solution, and S ⊆ Rn

is a convex set.

Algorithms for convex optimization

There are several practical methods or “solvers” that one can use to solve (2.12); from black-box
optimizers [63, 42] that we “feed” with the function to be minimized and return the solution,
to specific designed algorithms that exploit the special structure of the problem [18]. A major
difficulty that arises in solving problems of the form (2.12) is the possible non-differentiability of
g, which rules out traditional techniques, e.g., gradient descent, Newtons’ method etc.

In this study, we make extensive use of alternating direction minimization algorithms [10, 30],
especially the alternating direction method of multipliers (ADMM) [8] and the alternating mini-

mization algorithm (AMA) [68]. These methods have become particularly important in computer
vision and machine learning communities. They are designed to solve problems of the form

min f(x) + g(z)

s.t. Ax+Bz = c,
(2.13)

with variables x ∈ Rn and z ∈ Rm, where A ∈ Rp×n, B ∈ Rp×m, and c ∈ Rp. We will assume
that f and g are convex, and g possibly non-smooth. The regularized problem (2.12) is in the
form (2.13) with z = x, A = Ip×n, B = −Ip×m, where I is the identity matrix, and c = 0.

The optimal value for the problem (2.13) is

p" = inf {f(x) + g(z)|Ax+Bz = c}.

The Lagrangian L for (2.13) is

L(x, z,λ) = f(x) + g(z) + λT (c−Ax−Bz), (2.14)

while the augmented Lagrangian Lρ is

Lρ(x, z,λ) = L(x, z,λ) + (ρ/2)||c−Ax−Bz||22
= f(x) + g(z) + λT (c−Ax−Bz) + (ρ/2)||c−Ax−Bz‖|22.

(2.15)
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Note that L0 = L. Before moving on to discuss ADMM and AMA, it is helpful to recall [22] how
ones calculates the dual function D of the problem (2.13)

D(λ) = inf
x,z

L0(x, z,λ) (2.16)

= inf
x,z

{f(x) + g(z) + λT (c−Ax−Bz)} (2.17)

= inf
x

{f(x)− λTAx}+ inf
z

{g(z)− λTBz}+ λT c (2.18)

= −f"(λTA)− g"(λTB) + λT c, (2.19)

involving the Fenchel conjugates [49]

f"(y) = sup
x∈domf

(yTx− f(x)) and g"(y) = sup
z∈domg

(yT z − g(z)).

The ADMM is an iterative algorithm and can be described as follows [10]. If we assume that
at iteration k we have computed zk and λk, then at the iteration (k + 1) we compute

xk+1 := argmin
x

Lρ(x, z
k,λk)

zk+1 := argmin
z

Lρ(x
k+1, z,λk)

λk+1 := λk + ρ(c−Axk+1 +Bzk+1).

(2.20)

A simpler ADM algorithm is AMA that takes a slightly different path and updates x without
augmentation, assuming f(x) is strongly convex. This change is accomplished by setting the
positive tuning constant ρ to be 0. The overall algorithm iterates according to [68]

xk+1 := argmin
x

L0(x, z
k,λk)

zk+1 := argmin
z

Lρ(x
k+1, z,λk)

λk+1 := λk + ρ(c−Axk+1 +Bzk+1).

(2.21)

Although this alternating minimization appears to complicate matters, it often simplifies optimiza-
tion, as in the cases we study here.

Finally, one of the fastest ways to write the code that solves (2.12) is using disciplined convex
programming. Using this technique, a library such as cvxmod [32] is used to write code that
describes the optimization problem. Then, the cvxmod library analyzes the program, translates it
into standard form (2.1), and applies a standard solver. cvxmod supports a number of standard
problem types, including linear and quadratic programs (LPs/QPs), second-order cone programs
(SOCPs), and semidefinite programs (SDPs).
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Chapter 3

Clustering with Non-Convex

Penalties

Abstract of this chapter: In this chapter, we solve the clustering problem by transform-
ing it to a penalized non-convex regression problem. We present an iterative algorithm that
calculates the regularization path of solutions, by approximating the initial non-convex prob-
lem with a series of l1-norm constrained problems. We discuss the convergence properties
of this iterative procedure and experimentally compare its performance against other state-of-
the-art clustering algorithms. Results show that our method is a strong candidate for cluster-
ing non-convex datasets and outperforms all other previously proposed convex relaxations of
k-means and hierarchical clustering.

3.1 Introduction

Clustering is an unsupervised method where the goal is to partition a set of samples into groups
called clusters. Intuitively, the samples within a cluster are more similar to each other than to those
from other clusters. Standard clustering algorithms such as k-means, hierarchical clustering, and
Gaussian mixture models are effective and robust but they can get trapped in local minima, either
because they are cast as hard combinatorial optimization problems [2], or because of the hard
thresholding of distances, e.g., cutting the dendrogram of an agglomerative clustering algorithm at
a specific height [26].

Regularized methods for regression have been used extensively since the initial works of [12,
65]. These methods minimize a function that generally is the sum of two terms; a loss term
and a regularization term. The latter is frequently non-smooth in order to prevent over fitting and
promote sparsity, and in recent works non-convex [14, 24], in order to promote sparsity even more,
making it hard to minimize.

In this chapter, we present a majoration/minimization based clustering algorithm that solves
a non-convex penalized regression problem. To find a solution, the algorithm iteratively approxi-
mates the non-convex problem with a series of l1-norm constrained problems. Similar clustering
formulations to ours were previously presented in [58, 47, 37]. However, all the aforementioned
studies approximate the (non-convex) cardinality l0-norm with a convex norm, where, in our ap-
proach, we use a family of non-convex functions, like the lq quasi-norm for q ∈ (0, 1), that better
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approximate the l0-norm and favor sparse solutions even more. Another work, that of [56], uses
a non-convex penalty, the truncated l1-norm, which is shown to outperform convex norms. The
authors of [56] approximate the original non-convex problem using quadratic problems. Instead,
we solve a series of l1-norm problems to better approximate our initial non-convex problem, in-
corporating the benefits that arise from the sparsity-promoting nature of the l1-norm. We note that,
since the initial problem we solve is non-convex, the algorithms developed in this chapter produce
local optimal solutions.

The rest of this chapter is structured as follows. In Section 2, we present the clustering problem
as a penalized regression problem. In Section 3, we provide a detailed description of the proposed
algorithm. Finally, in Section 4, we compare our method with other state-of-the art clustering
methods and conclude.

3.2 Clustering as penalized regression

Let X ∈ Rn×p be a data matrix where n is the number of samples in the dataset and p the
dimension of each sample. Every point xi ∈ Rp, i = 1, . . . , n, has an associated centroid µi ∈ Rp.
All centroids are aggregated in a matrix M ∈ Rn×p. Now, consider a function g : Rm

+ → R+ that
is separable in its input:

g(|z|) =
m
∑

l=1

ζ(|[z]l|), (3.1)

where z ∈ Rm, [z]l is the l-th element of z, and ζ : R+ → R+. We use the notation R+ =
{t ∈ R : t ≥ 0} and R++ = {t ∈ R : t > 0}. The absolute value vector |z| is to
be understood coordinate-wise, that is |z| = (|[z]1|, . . . , |[z]m|)T . We assume that ζ(t) has the
following properties:

1. it has a global minimum at t = 0,

2. it is twice continuously differentiable on R++,

3. ζ ′(t) > 0, ∀t ∈ R++ (increasing on R++),

4. ζ ′′(t) ≤ 0, ∀t ∈ R++ (concave on R++), and

5. ζ ′′(0+) ≤ ζ ′′(t), ∀t ∈ R++ (maximally concave at 0).

Later, we will make use of functions ζ parametrized by a positive scalar parameter ε > 0 and we
shall use the notation ζε to denote the parametrized form.

A clustering of the rows of matrix X can be obtained by solving the optimization problem [58,
16]

min
M

f(M ; γ) =
1

2
||X −M ||2F + γ

∑

j<i

wijg(|µi − µj |), (3.2)

where || · ||F is the Frobenius norm, γ ≥ 0, and wij ≥ 0. The function g is used as a penalty
for the number of different centroids. Parameter γ controls the number of different centroids and
the weights wij are chosen to improve clustering quality (and computational efficiency). The set
of solutions {M(γ0), . . . ,M(γ∞)} of the problem (3.2) for γ0 < · · · < γ∞ is called cluster-

path [37]. To provide a graphical interpretation for the clustering problem, consider that every
sample xi corresponds to a node in a weighted graph G = (V,E,W ). The number of nodes |V | is
equal to the number of points n and an edge eij ∈ E between xi and xj exists whenever wij > 0
(Figure 3.1). The number of edges |E| is equal to the number of non-zero weights wij in the set
W .
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(b) Unconnected graph with 2 con-
nected components.

Figure 3.1: Examples of clustering graphs.

Constraining the weights to be non-zero in a neighborhood around a point xi corresponds
to defining a nearest-neighbor graph G. Our goal is to have a nearest-neighbor graph such that
subgraphs induced by points from the same cluster are connected, while subgraphs corresponding
to different clusters are not connected to each other. Let kNN(xi) denote the set of the knn nearest
neighbors of xi. We choose weights of the form [16, 37]

wij = I{i,j} exp(−φ||xi − xj ||22), (3.3)

where I{i,j} = 1 if xi ∈ kNN(xj) and/or xj ∈ kNN(xi). As such, we measure the density of
different assigned data points in a local neighborhood employing a similar mechanism as in the
histogram density estimator. The kind of knn-nearest neighbor graph, e.g., symmetric or mutual
nearest-neighbor graph, has little importance compared to the number knn of nearest-neighbors.
As a rule of thumb, knn should be small enough in order to reduce computational load, but not as
small so as to loose in clustering accuracy [50].

As γ → ∞, if G is connected (Figure 3.1(a))1 then all points have equal centroids and coalesce
into a single cluster with centroid x̄, where x̄ is the mean of xi [58, 16]. On the other hand,
assume that G is partitioned into κ subgraphs (connected components) Gk, for k = 1, . . . ,κ, each
one with nk nodes (Figure 3.1(b)). In that case, for γ → ∞, the points coalesce into κ clusters
with centroids

x̄k =
1

nk

∑

i∈Gk

xi, k = 1, . . . ,κ. (3.4)

Note that, in case of κ connected components, f(M ; γ) can be rewritten as

κ
∑

k=1







∑

i∈Gk

||xi − µi||22 + γ
∑

i,j∈Gk

wijg(|µi − µj |)







. (3.5)

By inspection of (3.5) and the fact that g has global minimum at 0 (property 1 of ζ), after simple
algebraic computations, we arrive at the solution (3.4). Thus, with an appropriate choice of weights
wij , we are able to decompose the original problem into κ small problems. Summarising, when
using penalized regression for clustering, the problem of clustering n points into K clusters is
transformed to the problem of identifying a set of K centroids {µ1, . . . , µK}.

3.2.1 Decomposability of the objective function

We proceed to examine the issues that arise when we solve problem (3.2) using functions g of
different forms. Since g is acting coordinate-wise, the cost function f in (3.2) can be decomposed

1The assumption of connectivity implies that all nodes interact with each other.
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as

f(M ; γ) =
1

2
||X −M ||2F + γ

∑

j<i

wijg(|µi − µj |)

=
1

2

n
∑

i=1

||xi − µi||22 + γ
∑

j<i

wijg(|µi − µj |)

=
1

2

n
∑

i=1

p
∑

l=1

|[xi]l − [µi]l|2

+ γ
∑

j<i

wij

p
∑

l=1

ζ(|[µi]l − [µj ]l|)

=
p
∑

l=1





1
2 ||x

l − µl||22 + γ
∑

j<i

wijζ(|[µl]i − [µl]j |)





=
p
∑

l=1

f1(µ
l; γ),

where µl ∈ Rn and xl ∈ Rn are the l-th columns of matrices M and X , respectively. Thus, the
minimization with respect to every column µl corresponds to solving p problems of the form

min
µ

f1(µ; γ) =
1

2
||x− µ||22 + γ

∑

j<i

wijζ(|[µ]i − [µ]j |), (3.6)

dropping the superscript l from x and µ for ease of notation.
The set of m =

(n
2

)

distinct differences [µ]i − [µ]j form a column vector z ∈ Rm that can be
written as

z = Dµ =







[µ]2 − [µ]1
...

[µ]n − [µ]n−1






,

where D ∈ Rm×n is a sparse matrix, with every row containing only two nonzero elements, −1
and 1, placed at the appropriate positions. With D at hand, we can write (3.6) as

min
µ

f1(µ; γ) =
1

2
||x− µ||22 + γ

m
∑

l=1

wlζ(|[Dµ]l|), (3.7)

where l corresponds to a pair (i, j) with j < i.
As far as function ζ is concerned, there are many choices that promote sparsity. A popular

choice is ζ(|t|) = |t|, that leads to an l1-norm regularization problem. In this work, we focus on
its non-convex variants, the lq-quasinorm

ζε(|t|) = (|t|+ ε)q, (3.8)

for 0 < q < 1, and the log penalty

ζε(|t|) = log(ε|t|+ 1). (3.9)
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(a) q = 0,
ε = 0

(b) q = 0.5,
ε = 0.01

(c) log, ε =
2

(d) q = 1, ε =
0.01

(e) q = 2,
ε = 0.01

(f) q = ∞,
ε = 0.01

Figure 3.2: Unit balls in two dimensions for g(|x|) =
∑2

1 ζε.

Figure 3.3: Contours (red ellipses) of a quadratic objective function and constraint regions for the
l0.5 (left), l1 (middle), and l2-norms (right).

The unit balls of g for the previous parametrized functions ζε are plotted in Figure 3.2. The mo-
tivation behind the use of concave penalties is that they induce more sparsity than the l1-norm,
while they can be optimized with continuous optimization [13, 55] as opposed to greedy methods.
Figure 3.3 helps understand this motivation; it depicts the l0.5, l1, and l2-norm constrained mini-
mization of a quadratic function f : R2 → R. The objective function has elliptical contours, cen-
tered at the unconstrained global minimum. The constraint regions are (|[x]1|0.5 + |[x]2|0.5) ≤ a,
(|[x]1| + |[x]2|) ≤ a, and (([x]1)2 + ([x]2)2) ≤ a, where a ∈ R is a constant. The solution for
each problem occurs when the elliptical contours first hit the constraint region. When the solution
occurs at a corner, then one of the estimated parameters is equal to zero. Figure 3.3 suggests that,
it seems more likely that the solution will be at a corner of the constraint region for the case of the
non-convex norm l0.5.

3.3 Non-Convex Clusterpath

We now present an algorithm for the computation of non-convex clusterpath for the general case
of a concave penalty ζ. The matrix X is assumed to be standardized with every column having
zero mean and unit l2-norm. The basic idea is as follows. Starting from a sufficiently large γ,
we iteratively compute M(γ) for smaller values, using the estimates from previous iterations as
warm start. Details are presented in Algorithm 1. For a specific value of γ, at every loop of the
repeat statement in line 4, a column µ ∈ Rn of M(γ) is estimated via the solution of a non-
convex problem. The general framework we shall use to solve this non-convex problem is the
majorization/minimization (MM) algorithm [40]. According to the MM, at the (k+1)-th iteration
a convex over-estimator of the objective f1(µ; γ) is minimized. The over-estimator is constructed
so as to be tangent to the graph of f1 at the previous estimate. Surrogate convex functions with
these properties are obtained easily by exploiting the concavity of the penalty function which
always lies below its tangent [13].

The minimization problem (3.7), and its equivalent in line 4 of Algorithm 1, is an instance of
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Algorithm 1: Algorithm to compute the clusterpath

Data: Data Xn×p, matrix Dm×n with m =
(p
2

)

, weights wij , grid of decreasing γ values
{γ∞, . . . , γ0}

Result: Clusterpath M(γ∞), . . . ,M(γ0)
1 foreach value of γ do
2 foreach column µ of M(γ) do
3 repeat

4 µ = argmin
µ

f1(µ; γ), where f1(µ; γ) =
1
2 ||x

l − µ||22 + γ
∑m

l=1 wlζ(|[Dµ]l|);

5 until until convergence;

6 end
7 store M(γ);
8 end

9 return {M(γ∞), . . . ,M(γ0)}

the general form of problems encountered in machine learning and computer vision [55]

argmin
µ

F (µ) = F1(µ) + F2(|Dµ|), (3.10)

where F1 : Rn → R+ is a smooth convex function, bounded from below, and F2 : Rm
+ → R+ is

a continuous, concave and increasing. In our case

F1(µ) =
1
2 ||x− µ||22 (3.11)

and

F2(|Dµ|) = γ
m
∑

l=1

wlζε(|[Dµ]l|). (3.12)

For solving the more general optimization problem (3.10) we use the following iterative pro-
cedure [55] where at the (k + 1)-th iteration we solve the following approximation of (3.10)

µ(k+1) = argmin
µ

F (k)(µ)

:= argmin
µ

F1(µ) +∇F2(|Dµ(k)|)T |Dµ|,
(3.13)

where Dµ ∈ Rm. Since F2 is by assumption increasing, the components of ∇F2(|Dµ(k)|) have
non-negative values. To explain this, consider the first order Taylor approximation of F2 around
|Dµ(k)|

F2(|Dµ(k)|) +∇F2(|Dµ(k)|)T (|Dµ|− |Dµ(k)|). (3.14)

Minimizing the sum of F1 plus (3.14) leads to a convex problem of the form

argmin
µ

F1(µ) +∇F2(|Dµ(k)|)T |Dµ|,

which is equivalent to (3.13). This is our building block and the analysis of convergence for
Algorithm 1 boils down to the analysis of the iterative scheme (3.13).
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(a) Blue: ζε(|x|) = (|x|+ ε)q . Red: convex surrogate ζ′ε(|x
(k)|)|x|+ C at x(k).

(b) Blue: f(x) + ζε(|x|). Red: f(x) + ζ′ε(|x
(k)|)|x|+ C

Figure 3.4: Functions and their surrogates involved in the MM Algorithm 1 for the one dimen-
sional case. f is quadratic.
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For ζε(|t|) = (|t|+ ε)q and ζε(|t|) = log(1 + ε|t|), the derivatives with respect to |t| are

ζ ′ε(|t|) =
q

(|t|+ ε)1−q
(3.15)

and
ζ ′ε(|t|) =

ε

1 + ε|t| , (3.16)

respectively. When F2 is of the form (3.12), the gradient of F2 at |Dµ(k)| is

∇F2(|Dµ(k)|) = (ζ ′ε(|[Dµ(k)]1), . . . , ζ
′
ε(|[Dµ(k)]m|))T . (3.17)

In order to solve the l1-convex problem (3.13), we use the algorithm in [16] which is an instance of
the alternating minimization algorithm (AMA)[68, 30]. In our case, the computational complexity
per iteration of AMA is O(|E|), where |E| is the number of non-zero weights wij .

3.3.1 Analysis of convergence

In order to analyze the iterative scheme (3.13):

1. we show in Proposition 1 that the sequence {F (µ(k)} is monotonically decreasing and con-
verges, and

2. we show in Proposition 2 the existence of an accumulation point for the sequence {µ(k)}.

3. we show in Proposition 3 that when F2 is of the form (3.12), any accumulation point of the
sequence µ(k) is a stationary point for (3.10).

Our analysis proceeds the same way as [15, 55].

Proposition 1. The sequence {F (µ(k))} generated by Algorithm (3.13) monotonically decreases

and converges.

Proof. Le µ(k+1) be a local minimizer of F (k)(µ). According to the Karush-Kuhn-Tucker condi-
tions

0 ∈ ∂F (k)(µ(k+1)) = ∂F1(µ
(k+1)) + ξ(k) 0 ∂||Dµ(k+1)||1DT , (3.18)

where 0 denotes the component-wise product of vectors. By assumption, we have

ξ(k) ∈ ∂F2(|Dµ(k)|) = {∇F2(|Dµ(k)|)}, (3.19)

that is, the gradient of F2 is its only subgradient. Equivalently, there exist vectors

d(k+1) ∈ ∂F1(µ
(k+1)) = {∇F1(µ

(k+1))} and c(k+1) ∈ ∂||Dµ(k+1)||1, (3.20)

such that
0 = d(k+1) + ξ(k) 0 c(k+1)DT ⇔ d(k+1) = −ξ(k) 0 c(k+1)DT . (3.21)
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In the sequel, we prove that the difference F (µ(k))− F (µ(k+1)) is non-negative.

F (µ(k))− F (µ(k+1))

= F1(µ
(k))− F1(µ

(k+1)) + F2(|Dµ(k)|)− F2(|Dµ(k+1)|)
≥ (d(k+1))T (µ(k) − µ(k+1))

+ (ξ(k))T (|Dµ(k)|− |Dµ(k+1)|)
(a)
= (−ξ(k) 0 c(k+1)DT )T (µ(k) − µ(k+1))

+ (ξ(k))T (|Dµ(k)|− |Dµ(k+1)|)
= (ξ(k))T (|Dµ(k)|− |Dµ(k+1)|

− c(k+1) 0Dµ(k) + c(k+1) 0Dµ(k+1))

(b)
= (ξ(k))T (|Dµ(k)|

− |Dµ(k+1)|− c(k+1) 0Dµ(k) + |Dµ(k+1)|)
= (ξ(k))T (|Dµ(k)|− c(k+1) 0Dµ(k))

(c)
≥ 0,

(3.22)

which means that the sequence decreases. In the first inequality, we use the definition of subgra-
dient

||Dµ(k)||1 − ||Dµ(k+1)||1 ≥ (c(k+1))T (|Dµ(k)|− |Dµ(k+1)|),
and the fact

F2(|Dµ(k)|) + (ξ(k))T (|Dµ(k+1)|− |Dµ(k)|)
≥ F2(|Dµ(k+1)|)

⇐⇒
F2(|Dµ(k)|)− F2(|Dµ(k+1)|)

≥ (ξ(k))T (|Dµ(k)|− |Dµ(k+1)|),

(3.23)

since F2 is concave. In equality (a) we use (3.21) and in (b) the fact that c(k+1) 0 Dµ(k+1) =
|Dµ(k+1)|. The last inequality (c) holds because ξ(k) ∈ Rm

+ and |[Dµ(k)]l| ≥ [c(k+1)]l[Dµ(k)]l, as

|[c(k+1)]l| ≤ 1. The sequence {F (µ(k)} decreases and, by property (assumption) of F1 is bounded
from below. Hence, it converges.

In order to show that the sequence {µ(k)} has an accumulation point, it suffices to show F is
coercive, that is

F (µ) → ∞ as ||µ||2 → ∞.

This is true, since F is the sum of a bounded from below convex function plus an increasing
function.

Proposition 2. Let {µ(k)} be a sequence generated by Algorithm (3.13), then the sequence {µ(k)}
is bounded and has at least one accumulation point.

Proof. By Proposition 1, {F (µ(k))} is a monotonically decreasing sequence, and therefore the
sequence {µ(k)} is contained in the closed level set

S(µ(0)) := {µ : F (µ) ≤ F (µ(0))}.
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Since F is coercive, we conclude boundedness of the set S(µ(0)). This allows us to apply the
Bolzano-Weierstrass theorem, which guarantees he existence of an accumulation point.

For further analysis of Algorithm (3.13), we need to make additional assumptions about the
function F2. If we assume that F2 satisfies the conditions (C1) and (C2) stated in [55] then, we
can show that any accumulation point µ" of the sequence {µ(k)} generated by Algorithm (3.13) is
a local minimizer for F in (3.10). In fact, Lemma 3 from [55] proves that F2 as defined in (3.12)
fulfills the following conditions:

(C1) F2 is twice continuously differentiable in Rm
+ and there exists a subspace Rm

c ⊂ Rm such
that for all Dµ ∈ Rm holds: hT∂2F2(|Dµ|)h < 0 if h ∈ Rm

c and hT∂2F2(|Dµ|)h = 0 if
h ∈ (Rm

c )⊥.

(C2) F2 can be expressed as the sum of a convex function and a smooth continuously differen-
tiable function.

Assuming (C1) and (C2) and using Lemma 1 from [55] that states

lim
k→∞

(∂F2(|Dµ(k)|)− ∂F2(|Dµ(k+1)|)) = 0, (3.24)

where 0 denotes the zero vector, we have the following Proposition.

Proposition 3 ([55]). Let {µ(k)} be a sequence generated by Algorithm (3.13) and consider F2

defined in (3.12)

F2(|Dµ|) = γ
m
∑

l=1

wlζε(|[Dµ]l).

Suppose that µ" is an accumulation point of {µ(k)}. Then, µ" is a stationary of F (µ) = F1(µ) +
F2(|Dµ|), that is, 0 ∈ ∂F (µ").

Proof. Proposition 2 guarantees the existence of an accumulation point, that is the existence of the
limit of a subsequence {µ(kj)} of {µ(k)} converging to µ". Passing to a subsequence {µ(kj)} and
using (3.21) we have:

0 = d(kj+1) + ξ(kj) 0 c(kj+1)DT .

Combining the previous equation with (3.24), we conclude that at the limit j → ∞ we have

lim
j→∞

ω(kj+1) = 0, ω(kj+1) := d(kj+1) + ξ(kj+1) 0 c(kj+1), (3.25)

and
ω(kj+1) ∈ ∂F (µ(kj+1)). (3.26)

Using the following well known property (Proposition 16.28 in [6] and Remark 2.2 in [23]) about
the subdifferential of a C1-perturbation of a convex function, that is, a function of the form F =
F1 + F2, where F1 is lower semi-continuous, and F2 is of class C1:

ω(kj+1) ∈ ∂F (µ(kj+1)), µ(kj+1) → µ", ω(kj) → ω =⇒ F (µ(kj)) → F (µ"), ω ∈ ∂F (µ"),

and combining with (3.25)-(3.26), we have that 0 ∈ ∂F (µ"), which concludes the proof. So, every
accumulation point µ" of Algorithm (3.13) is also a local minimizer for F .
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3.3.2 Algorithm implementation

As a convex minimization problem, the inner problem of (3.13) can be solved efficiently with the
AMA algorithm. We focus on the (outer) non-convex problem (3.7). Let µ(k) be the sequence
generated by the MM algorithm in Algorithm 1, where the index k refers to the outer iterations.
Execution is terminated when

f(µ(k))− f(µ(k+1))

f(µ(0))
< τ or k > mouter, (3.27)

where τ is a threshold defining the desired accuracy and mouter the maximal number of iterations.
The output of the AMA algorithm in (3.13), consists of the vectors µl and zl = Dµl for every

column l of the data matrix X . The columns zl form a matrix Z ∈ Rm×p. The euclidean norm
||zr||22 of row zr of Z, where r represents a pair (i, j), j < i, defines the distance between the
centroids µi and µj . In order to make cluster assignments, we form the matrix C = (cij) with
cii = 0, and cij = 1 if the distance ||zr||22 is below a user defined threshold τ , otherwise cij = 0.
Then final clusters are the connected components of the undirected graph with adjacency matrix
C [64].

The proposed iterative algorithm can be directly applied to problems with hundreds of points.
Moreover, it scales well for thousands of points by taking advantage of the decomposability of the
problem across its p dimensions. In this case, we can solve p distributed problems on different
processors. As an alternative, we can first cluster the data into a large number of clusters using
k-means or minimax linkage, and then cluster the resulting centroids into bigger clusters using our
proposed method.

3.4 Experiments

In this section, we test the accuracy of our method. Our proposed method, the non-convex cluster-
path with ζε(|t|) = (|t| + ε)q , q = 0.5, and ε = 0.001, is compared to the following algorithms:
i) convex clusterpath with ζ(|t|) = |t|, ii) convex clusterpath with ζ(|t|) = |t|2, iii) k-means, iv)
spectral k-means, v) Gaussian mixtures, and vi) minimax linkage clustering.

The convex clusterpath with either the l1 or the l2-norm is the method proposed in [37, 16].
In both cases, convex and noncovex, a threshold value of τ = 0.0001 was set for the convergence
of the algorithms. Spectral k-means is the usual k-means algorithm applied to the matrix formed
by the k-largest eigenvectors of the similarity matrix L defined in [54]. Minimax linkage [9] is a
new agglomerative clustering algorithm based on the definition of a new linkage function called
minimax linkage. Last, Gaussian mixtures [26] were trained using the default setting from the R
package [25].

The performance of the algorithms is measured using the normalized rand index [39] which
varies from 1, that denotes a perfect match, to 0, denoting a completely random assignment. For
the experimental datasets, we consider a scenario with noise added to the original samples. The
noise follows a two-variate normal distribution N

(

µ = (0, 0)T ,Σ−1 =
[

σ 0
0 σ

])

, where σ is a
positive scalar. As far as the choice of weights (3.3) is concerned, in the experiments with artificial
data, we set knn = 15 and φ = 0 and 0.5. In Algorithm 1, we set the number of inner iterations
minner = 1200 and the number of outer iterations mouter = 6. In all experiments, the number of
clusters are known to the algorithms.
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Figure 3.5: Example plots of the artificial datasets when the Gaussian noise added to each dimen-
sion has zero mean and variance σ. Different colors denote different clusters.
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3.4.1 Results on non-convex clusters

We consider three datasets [46]: the“half-moon”, the “cassini”, and the “smiley” which have non-
convex shapes that we proceed to describe (see also Figures 3.5(a)-(c)).

Half-moon dataset

The n = 600 samples in this dataset come from two half-moon entagled clusters, which we used
as input for the algorithms we test. Table 3.1 shows the adjusted rand index for each algorithm
for 20 simulations of the half-moon dataset. Hierarchical clustering and k-means fail because
the datasets have non-convex shapes. The performance of convex and non-convex clusterpath is
comparable for low level noise (σ = {0, 0.25}) and both of them, along with spectral k-means,
are able to identify the true clusters. In the noisy case of σ = 0.5, clusterpath is more robust
compared to all other methods. We note that the choice of φ for the weights does not influence the
performance of clusterpath methods.

Smiley dataset

The smiley dataset has n = 300 points and consists of: 2 Gaussian eyes, a trapezoid nose and
a parabola mouth (with vertical Gaussian noise). The standard deviation for eyes and for mouth
is σ. Noise does not affect the performance of our method, as shown in Table 3.2. A possible
explanation for this phenomenon is the increased convexity of the dataset as the noise level gets
higher. Also, the best results for the clusterpath algorithms are obtained for φ = 0.5.

Cassini dataset

The n = 300 samples in the cassini dataset are uniformly distributed on a two dimensional space
within three structures. The two external classes are banana-shaped structures and in between
them there is a circle. The robustness of non-convex penalty in the presence of noise is evident
(Table 3.3); non-convex clusterpath is able to identify the correct clusters in most of the cases.
Also, the value of φ has little influence on its performance, compared to the convex clusterpath
which is more sensitive to the choice of φ.

3.4.2 Verification on convex-clusters

We tested our algorithm in with a dataset of 25 Gaussian clusters arranged in a 5 × 5 two di-
mensional grid. For each cluster, we generate 20 data points (Figure 3.5(d)). Clusterpath goes
remarkably well and scores the highest rand index along with Gaussian mixtures (Table 3.4). Note
that Gaussian mixtures can be considered as the optimal method to cluster such samples, since
it assumes that all the data points are generated from a mixture of a finite number of Gaussian
distributions, and this is the actual case.

3.4.3 Fisher’s Iris dataset

This Fisher’s iris data set gives the measurements of four variables, for 50 flowers from each
of 3 species of iris. Two out of three classes overlap, so Gaussian mixture model is the only
algorithm capable of accurately detecting these clusters. Surprisingly, as shown in Tables 3.5-3.6,
the performance of non-convex clusterpath is 1 when knn ∈ [15, 20), regardless the value of φ. To
further investigate this case, we plot the estimated regularization paths in Figure 3.8 when φ = 0.5
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Table 3.1: Adjusted rand index for 20 simulation on the half moon dataset for several values of σ.
σ

algorithm 0.0 0.25 0.5
k-means 0.56 0.51 0.51

spectral k-means 1.00 0.73 0.49
Gaussian mixtures 0.25 0.54 0.52
minimax linkage 0.5 0.47 0.44

clusterpath q = 0.5 1.00 1.00 0.99
φ = 0.0 clusterpath q = 1 1.00 0.99 0.99

clusterpath q = 2 1.00 0.99 1.00

clusterpath q = 0.5 1.00 1.00 1.00
φ = 0.5 clusterpath q = 1 1.00 0.95 0.72

clusterpath q = 2 1.00 0.95 0.55

Table 3.2: Adjusted rand index for 20 simulation on the smiley dataset for several values of noise
levels σ.

σ
algorithm 0.0 0.25 0.5
k-means 0.52 0.52 0.43

spectral k-means 0.74 0.7 0.5
Gaussian mixtures 0.99 0.87 0.65
minimax linkage 0.38 0.62 0.41

clusterpath q = 0.5 0.7 0.85 1.00

φ = 0.0 clusterpath q = 1 0.59 0.54 0.54
clusterpath q = 2 0.83 0.81 0.8

clusterpath q = 0.5 1.00 1.00 1.00

φ = 0.5 clusterpath q = 1 1.00 0.98 0.55
clusterpath q = 2 1.00 0.97 0.52

Table 3.3: Adjusted rand index for 20 simulation on the cassini dataset for several values of σ.
σ

algorithm 0.0 0.1 0.2
k-means 0.21 0.19 0.18

spectral k-means 0.55 0.3 0.22
Gaussian mixtures 0.99 0.55 0.35
minimax linkage 0.28 0.2 0.18

clusterpath q = 0.5 1.00 1.00 0.99

φ = 0.0 clusterpath q = 1 0.6 0.5 0.4
clusterpath q = 2 0.6 0.52 0.41

clusterpath q = 0.5 0.98 0.97 0.98
φ = 0.5 clusterpath q = 1 0.93 0.4 0.39

clusterpath q = 2 0.44 0.35 0.32
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Table 3.4: Adjusted rand index for 20 simulation on the Gaussian grid dataset for several values
of σ.

σ
algorithm 0.0 0.5 1
k-means 0.81 0.85 0.85

spectral k-means 0.84 0.8 0.83
Gaussian mixtures 1.00 1.00 0.95
minimax linkage 1.00 0.99 0.95

clusterpath q = 0.5 0.99 0.99 0.88
φ = 0.0 clusterpath q = 1 0.09 0.13 0.1

clusterpath q = 2 0.11 0.13 0.1

clusterpath q = 0.5 1.00 1.00 0.85
φ = 0.5 clusterpath q = 1 1.00 1.00 0.42

clusterpath q = 2 0.34 0.3 0.26

Table 3.5: Iris dataset. Performance of benchmark algorithms.

algorithm rand index

k-means 0.58

spectral k-means 0.56

Gaussian mixtures 0.90

minimax linkage 0.6

Table 3.6: Iris dataset. Performance of clusterpath for q ∈ {0.5, 1, 2} when knn ∈ [15, 20) and
knn ∈ [20, 50).

knn ∈ [15, 20]
algorithm rand index

clusterpath q = 0.5 1.00

φ = 0.0 clusterpath q = 1 0.56
clusterpath q = 2 0.56

clusterpath q = 0.5 1.00

φ = 0.5 clusterpath q = 1 0.57
clusterpath q = 2 0.57

knn ∈ (20, 50]
algorithm rand index

clusterpath q = 0.5 0.6

φ = 0.0 clusterpath q = 1 0.56
clusterpath q = 2 0.56

clusterpath q = 0.5 0.6

φ = 0.5 clusterpath q = 1 0.57
clusterpath q = 2 0.57
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Table 3.7: Glass dataset. Performance of tested algorithms.
algorithm rand index
k-means 0.22

spectral k-means 0.28
Gaussian mixtures 0.20
minimax linkage 0.18

clusterpath q = 0.5 0.49
φ = 0.0 clusterpath q = 1 0.1

clusterpath q = 2 0.1

clusterpath q = 0.5 0.48

φ = 0.5 clusterpath q = 1 0.1
clusterpath q = 2 0.1

and knn = 15. The upper row in Figure 3.8 corresponds to the l1-regularization path while the
bottom row to the l0.5-regularization path. The structure of l0.5-regularization path is much more
balanced, especially for the features sepal length and petal width, making it possible to infer that
the number of true classes in the dataset is three. Also, we note that in the case of the l1-clusterpath,
we are not able to guarantee that ||µi−µj ||1 = 0 as γ → ∞ even approximately; in the l1-solution
path the centroids tend to remain in two clusters as γ increases. The issue of an lq-norm penalty
with q ≥ 1 in yielding possibly severely biased estimates is well known in penalized regression,
which partially motivated the development of non-convex penalties [56]. In Figure 3.6, we plot
the clusterpaths (black lines) for the l1-norm and the l0.5-norm when knn ∈ [15, 20]. Parameter
φ has less influence on the clusterpath solutions compared to knn which dramatically affects their
performance.

3.4.4 Dentition of mammals

We consider the problem of clustering 27 mammals based on their dentition [20]. This experiment
is motivated by a recently proposed method to solve the one-way ANOVA problem [34]. The tooth
patterns concerned are the number of top incisors, bottom incisors, top canines, bottom canines,
top premolars, bottom premolars, top molars, and bottom molars. Figure 3.7 shows the resulting
clustering paths when knn = 5 for φ = 0 and 0.5. The nonconvex clusterpath, despite the highly
“zig-zag” lines, gives a different and perhaps more sensible solution than the convex clusterpath.
For example, in Figure 3.7(a) the opposum, htailmole, and common mole are considered more
similar even though the distance between them is too large in the first two PCA coordinates. Also,
fur seal and sea otter are considered more similar in non-convex clusterpath rather than the convex
one. Finally, the wolf and raccoon are considered less similar in the non-convex rather than the
convex clusterpath, although their corresponding rows in the data matrix differ only in one element.

3.4.5 Glass Identification dataset

In this setting, we test our algorithm on a dataset initially used for classification, the glass identifi-
cation dataset [4]. This dataset contains 214 observations on 10 variables of the chemical analysis
of 6 different types of glass. The study was motivated by criminological investigation; at the scene
of the crime, the glass left can be used as evidence. The classification problem lies on forecast-
ing the type of glass based on its chemical analysis. Here, instead of the classification problem
we solve the clustering problem. Once again, we test the performance of our method against the
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benchmarks of the previous subsections. The results are shown in Table 3.7. Non-convex clus-
terpath achieves the highest score followed by spectral k-means and the usual k-means. Convex
clusterpath fails due to the increased overlap of the true classes.

3.5 Conclusions

In this work, we extend the previous convex relaxations of k-means and hierarchical clustering to
also cover the use of non-convex penalties in clustering. For the penalty minimization problem we
used a majorization/minimization algorithm, that iteratively minimizes l1-norm approximations of
the objective function. Experimental evaluations showed that the use of non-convex penalties in
clustering, is a strong candidate for analyzing non-convex datasets. As future work, we consider to
use more general loss function rather than the squared error loss of k-means and we plan to build
a distributed implementation and test it on very large datasets. The decomposable nature of the
objective function, implies that our algorithm will scale well.
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Figure 3.6: The calculated l0.5 non-convex and l1 convex clusterpaths (black lines) projected onto
the first and second principal components. The weights wij are decreasing and constrained to be
non-zero in a neighborhood knn = 15.
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Figure 3.7: Non-convex and convex clustering paths for the mammals dataset projected onto the
first two principal components. The weights wij are decreasing and constrained to be non-zero in
a neighborhood knn = 5.
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Figure 3.8: Solution paths µi for the l1-clusterpath (upper row) and the l0.5-clusterpath (bottom
row). In both cases φ = 0.5 and knn = 15.
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Chapter 4

Joint Estimation of Multiple

Undirected Graphical Models

Abstract of this chapter: Gaussian graphical models are of great interest in statistical
learning. Since the conditional independence between different nodes correspond to zero en-
tries in the inverse covariance matrix of the Gaussian distribution, one can learn the structure
of the graph by estimating a sparse inverse covariance matrix from sample data. This is usu-
ally done by solving a convex maximum likelihood problem with an l1-regularization term.
In this chapter, we develop an estimator for such models appropriate for data from several
datasets that share the same set of variables and a common network substructure. We assume
that the differences among the network under study are generated due to edge perturbations;
there are a few different edges among the networks while the others (edges) are common. To
this end, we form an optimization problem that exploits the problem’s special structure and
we propose a first-order method for its solution based on the alternating direction method of
multipliers. We confirm the performance improvement of our method over existing methods
in finding the dependence structure on simulated and real datasets.

4.1 Introduction

The aim of this chapter is to analyze the underlying interactions or dependencies among variables
that are common across multiple datasets. A major challenge in complex systems, e.g., stock
market, gene regulatory networks, or sensors systems, is not to simply construct an accurate pre-
dictive model, but rather to discover meaningful interactions among the variables of the system.
The properties of samples from such systems dynamically emerge over time or due to changes in
surrounding environment. Such effects cause data to have different behavior under different con-
ditions. Probabilistic graphical models, such as Markov random networks, are a popular tool to
analyze complex dependencies among many variables. We adopt Markov random networks over
Gaussian random variables, also known as Gaussian graphical models (GGM) [45], as the basis of
our method.

In the GGM framework, we aim to infer the graph of dependencies among p variables of a
Gaussian random vector x ∈ Rp ∼ Np(µ,Σ) from a given set of samples. This task is equivalent
to learning the zero entries of precision matrix Θ = Σ−1. A precision matrix is translated to an
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adjacency matrix for a graph G through the following process [45]. If the entry θij of Θ is zero,
then there is no edge between xi and xj , indicating that xi and xj are conditional independent
given all other variables. Otherwise, there exists an edge between xi and xj , indicating that, given
all other variables, xi and xj are correlated. This approach produces a graph from an inferred
precision matrix Θ. The latter, cannot be produced by an unconstrained maximum likelihood
estimation (ML), since ML produces a full matrix with probability 1 and thus a useless fully
connected graph.

Identification of zero entries in Θ was first studied by [21], as a covariance selection problem
where the task is formulated as a combinatorial problem of optimizing the location of zeros in a
matrix. Since then, a number of algorithms have been proposed ranging from stepwise selection
methods, for detecting significant edges, to convex optimization methods. Stepwise selection
procedures start from a fully connected graph and remove edges until all remaining edges are
significant according to a partial correlation test. A significant drawback of the latter methods
is large computational complexity. Usually, only a small number of the relevant search space is
searched leading to inaccurate network estimates [35].

More recently, the focus has shifted to a relaxed setting [51, 5, 72, 27] where covariance
selection is formulated as a convex optimization problem using a l1-regularization that induces
zeros in the resulting precision matrix. However, these formulations assume that observations
are identically drawn from a single Gaussian distribution. In our context, the objective is not to
estimate the structure of a single graph from a single dataset, but the structure of several graphs
coming from distinct but related datasets.

There is some recent work in this direction, that is the estimation of multiple graphical models,
where many sparse regression methods have been utilized for this purpose. For example, group
lasso [41] was generalized to joint estimation of undirected gaussian networks with the assumption
that all networks share a common pattern of sparsity [69]. To overcome the latter assumption,
authors in [33] considered a similar method although the problem they solve is not convex. Fused
lasso [66] is another regreesion method used to find invariant patterns among many networks [19,
71]. Sign coherence on the precision estimated precision matrices was proposed in [17], while
other studies have used time series data to define time varying networks [1, 73].

Our contribution. First, we formulate a convex optimization problem for joint estimation
that unifies existing methods in the field and, second, we develop a simple alternating direction
method of multipliers (ADMM) algorithm for its solution. The closeness assumption between
graphical models is rendered into i) an empirical prior for the sample covariance matrix and ii)
l1-norm differences among precision matrices we expect to be similar. We confirm the validity of
our method in finding the dependence structure on simulated and real datasets.

4.2 Methodology

Assume we are given K ≥ 2 datasets X(k) ∈ Rnk×p, for k = 1, . . . ,K, where p is the number of
features common to all datasets. The total number of samples is n =

∑K
k=1 nk, where nk is the

number of samples in dataset k. We further assume that samples within each X(k) are identically
distributed according to Np(µ(k),Σ(k)). We seek to estimate (Σ(k))−1, for all k, by formulating a
convex optimization problem with arguments {Θ} = {Θ(1), . . . ,Θ(K)}, where Θ(k) = (Σ(k))−1.
The solution Θ̂(k) is an estimate of (Σ(k))−1. The most direct way to find a solution is to minimize
the negative log likelihood [10] for the data in k-th category

l(Θ(k);S(k)) = −nk(log detΘ
(k) − tr(S(k)Θ(k))), (4.1)
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where S(k) is the sample covariance matrix. However, the estimated matrix Θ̂(k) will be dense
and the corresponding network will be a useless fully connected graph.

4.2.1 Separable estimation method

The most direct way to deal with K different is to separately estimate K individual sparse graph-
ical models. We can compute l1-regularized estimators [27], by solving K problems of the form
min
Θ(k)

l(Θ(k)) + λ1||Θ(k)||1 or equivalently the problem

min
{Θ}={Θ(1),...,Θ(K)}

K
∑

k=1

l(Θ(k);S(k)) + λ1

K
∑

k=1

||Θ(k)||1, (4.2)

where the minimum is taken over all symmetric positive definite matrices Θ(k). Term λ1 is a non-
negative tuning parameter that controls the sparsity in the estimated precision matrices. We will
refer to this approach as separate estimation method [27] and use it as a baseline to compare with
the joint estimation method we propose next and other already proposed joint estimation methods.

4.2.2 Joint estimation method

To benefit from the fact that networks may share an unknown and common substructure, we pro-
pose the following. We modify the data fitting term S(k) in (4.1) as the convex combination

S̃(k) = αS(k) + (1− α)S̄, (4.3)

where 0 ≤ α ≤ 1, and S̄ = n−1
∑K

k=1 nkS(k) ∈ Rp×p is the weighted average of the K empirical
covariance matrices. We call S̄ the pooled covariance matrix [28]. The presence of α leads to a
reduction of variance in the estimated precision matrices at the expense of potentially increased
bias between them [17]. The value α = 0 implies no interaction among the estimated networks,
while α = 1 pools all the estimated networks towards a common one. The greater α is the more
biased the estimated graphs are. The idea behind this approach is taken from regularized dis-
criminant analysis [28] but here we aim to bias empirical distributions towards a common model.
Intuitively, if log p/nk → 0 for all k, then α → 0, since in this case we have a large sample dataset
to accurately estimate each precision matrix Θ(k) [59].

In the case of known interactions among the different datasets and their corresponding graph-
ical networks, we introduce another set of parameters, called λ(k,k′), and consider the modified
penalty

P ({Θ}) = λ1

K
∑

k=1

||Θ(k)||1 +
∑

(k,k′)∈E!

k )=k′

λ(k,k′)||Θ(k) −Θ(k′)||1, (4.4)

where E" is the edge set of a known graph G" = (V ", E") with |V "| = K nodes. In Figure 4.1(a),
the solid black lines correspond to known interactions among four graphs G(k), k = 1, . . . , 4. In
order to promote similarity between two graphs, we apply a l1-norm penalty on the difference
of the corresponding precision matrices. The graph G" that defines the fusion penalties among
the K graphical networks is essentially a network of networks, where each node corresponds to a
precision matrix Θ(k). If the edge (k, k′) appears in G", then there is a fusion between the corre-
sponding elements of the pair (Θ(k),Θ(k′)). In this case, a term of the form λ(k,k′)||Θ(k)−Θ(k′)||1
appears in (4.4) and when λ(k,k′) is large this pair of matrices will also have close elements.
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Table 4.1: Special cases of (4.5) for different values of α and λ(k,k′).

method α λ(k,k′) G"

graphical lasso [27] α = 1 λ(k,k′) = 0 empty
intertwined lasso [17] α &= 1 λ(k,k′) = 0 empty

fused graphical lasso [19, 71] α = 1 λ(k,k′) &= 0 fully connected, 1-d chain
proposed method α &= 1 λ(k,k′) &= 0 arbitrary

To better understand our rationale behind the “network of networks” G", consider a complex
system, like a network of sensors [36] or the interaction of proteins in a biological cell [57], that
is evolving over time. This system varies into more specialized systems with known interactions
among them. These red interactions can be represented as a graph G" that directly defines the
relations among the estimated networks. Our approach makes use of G" to define specific fusion
penalties for joint estimation of multiple undirected graphical models. Putting it all together we
come up with the following problem

min
{Θ}

K
∑

k=1

l(Θ(k); S̃(k)) + P ({Θ})

s.t Θ(k) 5 0, for k = 1, . . . ,K,

(4.5)

with S̃(k) in place of S(k). The solution {Θ̂} = {Θ̂(1), . . . , Θ̂(K)} consists of the jointly estimated
precision matrices.

We note that the reliance of our algorithm on tuning parameters λ1 and λ(k,k′) is an advantage
rather than a drawback: unlike the proposals which involve a single tuning parameter that controls
both sparsity and similarity [33], by adopting our method one can configure separately the enforced
amount of similarity and sparsity in the network estimates. Also, our method is closely related
to the fused graphical lasso (FGL) [19] and TREEGL [57]. However, FGL makes the rather
unrealistic assumption that each graph is connected to all the remaining graphs. In TREEGL, the
penalty has many similarities with (4.4) but there is no modification in the log-likelihood (in our
case we replace the sample covariance matrix S with S̃ in (4.3)). Our algorithm incorporates the
graph G" and is much more flexible. In Table 4.1, we summarise some known forms of (4.5) as
the tuning parameters α,λ(k,k′), and G" vary.

4.3 Optimization via ADMM

ADMM [10] is an algorithm that is intended to blend the decomposability of dual ascent with the
convergence properties of the method of multipliers. ADMM solves the problem

min
{x,z}

f(x) + g(z) s.t Ax+Bz = c, (4.6)

where {x, z} ∈ Rn, c ∈ Rp, and A,B are matrices with appropriate dimensions. Many regu-
larized sparse estimation problems in statistical learning, including the one studied here, have the
form of (4.6), where f(·) is a proper loss function and g(·) the regularizer. Next, we present an
ADMM reformulation of (4.5) which exhibits separable structure in both the objective and the
constraints and we further describe the procedure for solving the subproblems emerging in the
implementation.
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4.3.1 ADMM reformulation

We introduce an additional set of variables {Z} = {Z(1), . . . , Z(K)} and rewrite problem (4.5) as

min
{Θ},{Z}

K
∑

k=1

l(Θ(k); S̃(k)) + P ({Z})

s.t Θ(k) − Z(k) = 0, Θ(k) 5 0 and Z(k) 5 0, for k = 1, . . . ,K, (4.7)

where P ({Z}) has the form of (4.4). Also, we assign Lagrange multipliers Y (k) ∈ R(p×p) to the
linear constraints Z(k) −Θ(k) = 0. Then, the scaled augmented Lagrangian [10] for (4.7) is

Lρ({Θ}, {Z}, {U}) =
K
∑

k=1

l(Θ(k); S̃(k)) + P ({Z})

+
ρ

2

K
∑

k=1

||Θ(k) − Z(k) + U (k)||2F

where U (k) = (1/ρ)Y (k) are the scaled dual variables and ρ > 0 is the penalty parameter for
the violation of the linear constraints. The i-th iteration of the ADMM algorithm consists of three
steps

1. {Θ(i)} := argmin
{Θ}

Lρ({Θ}, {Z(i−1)}, {U(i−1)})

2. {Z(i)} := argmin
{Z}

Lρ({Θ(i)}, {Z}, {U(i−1)})

3. {U(i)} := {U(i−1)}}+ {Θ(i)}− {Z(i)}.

(4.8)

Steps 1 and 2 are further separable as described next.

4.3.2 Solving subproblems of ADMM

Step 1 is equivalent to solving K problems of the form

argmin
Θ(k)*0

{

−nk(log detΘ
(k) − tr(S̃(k)Θ(k))) +

ρ

2
||Θ(k) − Z(k)

(i−1) + U (k)
(i−1)||

2
F

}

. (4.9)

Let V (k)D(k)(V (k))T denote the eigendecomposition of S̃(k) − ρ/nk

(

Z(k)
(i−1) + U (k)

(i−1)

)

. Then

the solution to (4.9) is given by Θ̂(k) = V (k)D̃(k)(V (k))T [72], where D̃(k) is the diagonal matrix
with jth diagonal element

D̃(k)
jj =

nk

2ρ

(

−D(k)
jj +

√

(D(k)
jj )2 + 4ρ/nk

)

.

The complexity of Step 1 is O(Kp3) since the cost of computing the eigenvalue decomposition of
a p× p matrix is O(p3).

Step 2 can be written as

{Z(i)} := argmin
Z(k)*0

{

P ({Z}) + ρ

2

∥

∥{Z}− {A(i)}
∥

∥

2

F

}

(4.10)
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where
{A(i)} = {A(1)

(i) , . . . , A
(K)
(1) } = {Θ(i)}+ {U(i−1)}

⇔ A(k)
(i) = Θ(k)

(i) + U (k)
(i−1), k = 1, . . . ,K.

(4.11)

Equation (4.10) is separable with respect to each pair of matrix elements (i, j) and thus one can
solve p2 problems of the form

argmin
{Zij}















λ1

K
∑

k=1

∣

∣

∣
Z(k)
ij

∣

∣

∣
+

∑

(k,k′)∈E!

k )=k′

λ(k,k′)

∣

∣

∣
Z(k)
ij − Z(k′)

ij

∣

∣

∣

+
ρ

2

K
∑

k=1

(

Z(k)
ij −A(k)

ij

)2
}

,

(4.12)

for each element Z(k)
ij of Z(k), with {Zij} = {Z(1)

ij , . . . , Z(K)
ij }.

This is a special case of the generalized lasso problem [67] that we solve using the split Breg-
man method [31], and is called sparse fused lasso over an arbitrary graph G" = (V ", E"). Equa-
tion (4.12) can be rewritten in the form

min
x,d

||d||1 +
ρ

2
||a− z||22

s.t d = Dz.
(4.13)

Now the coordinates of a ∈ RK correspond to nodes in the graph G" (recall that |V "| = K),
and we penalize the difference between each pair of nodes joined by an edge. The matrix D =
[Λ;λ1I] ∈ R(m+K)×K consists of two matrices, Λm×K , where m = |E"|, and the identity matrix
IK×K . The rows of Λ have −λ(k,k′) and +λ(k,k′) in the appropriate positions, corresponding to
an edge in the graph G". This yields the constrained problem

min
z,d

||d||1 +
ρ

2
||a− z||22

s.t d = Dz.
(4.14)

To enforce the constraints in this formulation, we add the penalty function term

min
z,d

||d||1 +
ρ

2
||a− z||22 +

λ

2
||d−Dz||22. (4.15)

Finally, we apply the Bregman iteration [31] to get

min
z,d

||d||1 +
ρ

2
||a− z||22 +

λ

2
||d−Dz − b(t)||22, (4.16)

where b(t+ 1) is given by

b(t+ 1) = b(t) + (Dz(t+ 1)− d(t+ 1)). (4.17)

We alternatively minimize (4.16) over z and d, that is at the t-th iteration, we first solve

z(t+ 1) = min
z

ρ

2
||a− z||22 +

λ

2
||d(t)−Dz − b(t)||22 (4.18)
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to get z, then solve

d(t+ 1) = min
d

||d||1 +
λ

2
||d− z(t+ 1)− b(t)||22, (4.19)

to get d, and last we update b as in (4.17). After some simple algebraic computations, (4.18)
becomes

z(t+ 1) = min
z

1

2
zT (ρI + λDTD)z − (ρaT + λg(t)TD)z +

ρaT a

2
+

λg(t)T g(t)

2
, (4.20)

where the superscript T denotes the transpose of a vector and g(t) = d(t) − b(t). This is an
unconstrained quadratic problem, where the matrix P = (ρI + λDTD) is positive definite and
this has a unique solution,

z(t+ 1) = −P−1q, (4.21)

with q = −(ρa+ λDT g(t)).
We can explicitly compute the optimal value for d in (4.19) using the element-wise shrinkage

operator [12] as
dj(t+ 1) = shrink(Dzj(t+ 1) + bj(t), 1/λ) (4.22)

where
shrink(z,λ) =

z

|z| · max(|z|− λ, 0)

and the subscript of vectors denotes an element from them. We note that, instead of the split
Bregman method, we could use again the ADMM algorithm to solve (4.10). In fact, there is an
equivalence [22] between the alternating split Bregman and ADMM algorithm and the updates
in (4.18), (4.19), and (4.17) are the same for ADMM.

In our implementation, we used the screening algorithm proposed in [19]. The screening
algorithm serves the purpose of identifying block diagonal structure in the estimated precision
matrices Θ(k) and thus reducing the high dimension p to moderate size. For instance, suppose that,
for a given choice of λ1 and λ2, we determine that matrices Θ(k) are block diagonal after some
permutation of features, each with the same R = 2 blocks, the rth of which contains pr features,
∑R=2

r=1 pr = p. Then, in each iteration of the ADMM, we only compute eigendecompositions
of matrices of dimension p1 × p1 and p2 × p2, leading to reduction in computational complexity
from O(p3) to O(max(p31, p

3
2)). This screening rule is derived from the perspective of convex

optimization (Karush-Kuhn-Tucker conditions), and does not affect the statistical accuracy.

4.4 Joint estimation of multiple Gaussian copula graphical mod-

els

The proposed method can be applied directly to jointly estimate nonparanormal graphical models.
Nonparanormal (NPN) [48] models are a special case of semiparametric Gaussian copulas [53]
and are useful in cases where the normality assumption for data is violated. They extend Gaus-
sian graphical models by marginally transforming the variables using smooth monotone func-
tions. The primary goal is to estimate the underlying sample covariance matrix to better recover
the underlying undirected graph. Still, the underlying distribution is assumed to be a p-variate
Gaussian distribution Np(0,Σ) by introducing a collection of monotone functions f̂j’s such that

(f̂1(x1), . . . , f̂p(xp))T ∼ Np(0,Σ). The Gaussian copula family is much richer than the normal
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family. However, the conditional independence graph is still encoded by the sparsity pattern of
Θ = Σ−1 [48]; that is, θij = 0 ⇔ xi ⊥ xj |x\{xi, xj}.

Let Ŝ(k) = (Ŝ(k)
ij )p×p be the correlation matrix of transformed data in the k-th dataset. A

two-step procedure to jointly estimate multiple nonparanormal graphical models is:

1. transform the observations in X(k), by the corresponding transformations f̂k
j , and

2. replace the sample covariance matrix S(k) with Ŝ(k) and solve (4.5).

The transformation functions for a sample x = (x1, . . . , xp) ∈ X(k) are given by

f̂k
j (xj) = Φ−1(Tδnk

[F̂ k
j (xj)]), j = 1, . . . , p,

where Φ−1(·) is the inverse cumulative distribution function (CDF) of a standard Gaussian dis-
tribution, Tδn is a Winsorization (or truncation) operator, and F̂ k

j (·) is the empirical CDF. The
operator Tδn is defined as

Tδn(x) = δn · I(x < δn) + x · I(δn ≤ x ≤ 1− δn)

+ (1− δn) · I(x > 1− δn),

where I(·) is the indicator function, and F̂ k
j (x) = 1/nk

∑nk

i=1 I(xij < x), xij ∈ X(k), is the
empirical CDF. In fact, we can use any nonparametric rank-based statistics including Spearman’s
rho and Kendall’s tau [44] to directly estimate the correlation matrices S(k). Then, the estimated

correlation matrices, Ŝ(k)
τ and Ŝ(k)

ρ for Kendall’s tau and Sperman’s rho, respectively, can be
directly plugged into (4.5) to obtain the final precision matrix and graph estimates. In a vari-
ety of applications with nonparanormal models, the truncation level δn is set to 1/(n + 1) or to
1/(4π1/4

√
π log n). The latter value controls the trade-off of bias and variance in high dimen-

sions [48].

G(2)

G(1)

G(3)

G(4)

!!!!!
""

""
"

(a) Simulation set-up. Solid
lines correspond to the geneal-
ogy of graphs. Dotted lines are
extra penalties imposed by our
algorithm.

pkc activation

akt activation

erk activation

pkc inhibition

!!!!! ##
##

##

(b) Real world application. We don’t im-
pose a similarity penalty between the net-
works from pkc inhibition and pkc activation.

Figure 4.1: Dependence graphs among the networks in simulated and real datasets. Two adjacent
graphs are constrained to be similar.

4.5 Experiments

4.5.1 Artificial datasets

We compare the following estimation methods on simulated and real datasets: i) graphical lasso
(GL), ii) intertwined graphical lasso (iGL), iii) fuse graphical lasso (FGL) over a fully connected
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Figure 4.2: ROC curves. Number of perturbed edges between adjacent graphs is δ = 17 (45% of
their edges are different).
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Figure 4.3: ROC curves. Number of perturbed edges between adjacent graphs is δ = 25 (65% of
their edges are different).
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graph, vi) group graphical lasso (GGL), and v) our method (igFGL); see also Table 4.1. We
decided to left out of comparison the method proposed in Guo et al.[33] since authors in [19]
compared their algorithm FGL to that of [33] and showed that FGL performs better.

We created K = 4 graphs G(k) = (V,E(k)), for k = 1, . . . ,K. We set the number of
nodes |V | = 50, the number of edges |E(k)| = 37, and the maximum node degree to be 4.
The graphs were generated following the genealogy shown in Figure 4.1(a) (solid black edges).
The dotted edges define extra penalties imposed by our method igFGL, that is we fuse every pair
of graphs except from G(2) and G(4). In the FGL algorithm this pair of graphs is fused. We
conducted different experimental scenarios, each time varying the sample size nk and the number
of different edges δ between the adjacent networks. As such, we expect to evaluate the accuracy of
the algorithms for small sample size nk, that is for nk ≤ p, a common case in biological studies.

The dataset for the experiment is generated as follows:

1. Generate an Erdós Rényi random graph G(1) = (V,E(1)) for k = 1 (root node in the tree of
Figure 4.1(a)). Then for k = 2 to K randomly add and then remove δ edges from the parent
graph Gπ(k), where π(k) is the parent of G(k). In Figure 4.1(a), we plot the genealogy graph
G" for the simulated networks with solid black lines.

2. To get the samples from each graph G(k), we generate the inverse covariance matrix Θ(k) as

Θ(k) =











1 if i = j

0.3 if (i, j) ∈ E(k)

0 otherwise,

where the value 0.3 guarantees positive definiteness of Θ(k) when max degree is 4.

3. For each k, we sample nk data points xi ∈ Rp, for i = 1, . . . , nk, from a multivariate
Gaussian distribution N (µ,Σ(k)), with mean µ = (0.5, . . . , 0.5) and covariance matrix
Σ(k) = (Θ(k))−1. The sample mean µ is common for all the Gaussian distributions and
only the covariance matrix varies.

We consider two cases, a low perturbation case, where the number of different edges between
adjacent graphs is δ = 17, and a high perturbation case, where the number of different edges is
δ = 25; these cases correspond to {45%, 65%} of different edges between the parent graph and the
child, respectively. We performed experiments with nk ∈ {15, 25, 35, 50}, that is, we start with
datasets having a small number of samples and continue with bigger datasets, until the number of
samples in each dataset becomes equal to the number of features p = 50.

Let Ĝ(k)
λ1

= (V, Ê(k)
λ1

) be an estimated graph using the regularization parameter λ1; here λ1

varies from 1 to 0.1 with step size 0.08. For simplicity, we manually set λ(k,k′) = λ2 = 0.05

for a pair of adjacent graphs (G(k),G(k′)) with (k, k′) ∈ G". The same value for λ2 was also
used for the FGL and GGL algorithm. This value for λ2 gave the most interpretable results for
FGL, GGL, and our method. Note that in most cases, network estimation is performed as a part of
exploratory data analysis and the tuning parameters λ1 and λ(k,k′) should be guided by practical
considerations, such as network interpretability, stability, and the desire for an edge set with low
false discovery rate [52, 19]. Since λ2 is considered fixed, the precision and recall rate for each
value of λ1 are

Precisionλ1 =
1

K

K
∑

k=1

|Ê(k)
λ1

∩ E(k)|

|Ê(k)
λ1

|
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and

Recallλ1 =
1

K

K
∑

k=1

|Ê(k)
λ1

∩ E(k)|
|E(k)|

,

respectively. To avoid parameter tuning, term α in (4.3) was set to 1/2. More refined choices
for α are postponed for future research. We independently simulate the above procedure 50 times
and adopt precision-recall rates to evaluate the performance of each method in retrieving the true
graph edges. Each point in the (precision, recall) plane is the average of 50 points obtained for
each simulation.

Figures 2(a)-(d) and 4.3(a)-(d) display the ROC curves for six prototype conditions. In Fig-
ures 2(a)-(d) the number of perturbed edges is δ = 17 while in Figure 4.3(a)-(d) is δ = 25. From
subfigure (a) to (d) the sample size nk for each graph increases from 0.3p to p. As we can see,
the lower the samples size nk and the higher the recall rate, the more our method outperforms
the others; except from Figure 4.3(d). This figure represents the large-sample high-perturbation
condition where all joint estimation methods have comparable performance. In this case, networks
differ significantly and there are enough data to estimate each network independently; in this case
we have log p/nk = 0 for k = 1, . . . ,K, an indication that fusion is unnecessary. Our method
(igFGL), followed by intertwined graphical lasso (iGL), is very robust in the sense that always
performs favorably compared to the best baseline method over the whole spectrum of situations.

4.5.2 Inferring protein signaling networks

Only a few real data sets come with a reliable and exhaustive ground-truth allowing quantitative
assessments. We make use of a biological dataset measuring protein concentration levels in a T-
cell signalling pathway [60]. A cell signalling pathway describes a group of proteins in a cell that
interact to control one or more cell functions, such as cell division or cell death. In our case, the
T-cell signaling pathway involves 11 proteins and 20 known interactions described extensively in
the literature [60]. Figure 4.5(a) describes these interactions in terms of an undirected graphical
model; the nodes represent the proteins and the edges the interactions among them. Fourteen ex-
perimental conditions (datasets), each one with roughly 700 samples, have been conducted, aiming
to reveal different parts of the network. These datasets were created under different experimen-
tal conditions by activating or inhibiting the production of a given protein on the network. Here,
we use only K = 4 random chosen conditions (akt inhibition, pkc inhibition, pkc activation, erk
activation) and try to infer the true underlying network of interactions in Figure 4.5(a). We use
a small number of conditions to show that our algorithm in the case of “wet” lab data is able to
produce accurate results with small sample size datasets. When applying our method (igFGL),
the graph G" describing the interactions among the networks, each one of them representing a
different experimental condition, is shown in Figure 4.1(b); all conditions are dependent except
from two, the pair (pkc inhibition, pkc activation). Graphs inferred separately, using samples
from one condition at a time, show that each dataset really focus on different part of the true net-
work (Figure 4.4). The samples from each dataset were modeled as nonparanormals, since they
remained non-normal even after log transformation. To show this, we conduct the normality test
at significance level of 0.05 as in Table 4.2. The truncation level in NPN transformation functions
was set to δnk

= 1/(4π1/4
√
π log nk), where nk is the number of samples from each dataset X(k).

As the estimated protein signaling network for a particular method, we consider the graph sum
of the four graphs estimated by this method. The graph sum of two graphs A and B is the graph C
with adjacency matrix given by the sum of adjacency matrices of A and B.
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Table 4.2: Values indicate the number out of 11 proteins rejecting the null hypothesis of normality.
normality test

log-transformed dataset Cramer-von Mises Lilliefors Shapiro-Francia Andreson-Darling

1 11 10 9 11

2 10 11 10 11

3 11 11 10 11

4 11 11 10 11

Figure 4.4: Networks inferred separately. From left to right, we have respectively graphs inferred
from a dateset : inhibiting akt, inhibiting pkc, activating pkc, activating erk.
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Figure 4.5: Ground truth pathway (a) and precision-recall curves (b)-(d) when nk = 5, 10 and 15.
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The various inference algorithms perform almost equally well for large sample size. Fig-
ures 4.5(b)-(d) display the results obtained for small sample sizes nk = {5, 10, 15}. Here also,
the precision recall curves are averaged over 50 independent random draws with n = 4nk obser-
vations over the four datasets. Parameter λ1 varies from 0.7 to 0.1 with step size 0.035 while λ2

is fixed to 0.05 for both igFGL, FGL, and GGL. In this situation, our proposal dominates the rest
joint estimation methods. It is worth noticing that the large sample size limit is almost obtained
for nk = 20, that is, more samples do not benefit our algorithm neither the others.

4.5.3 The 4 Universities data set

This data set contains www-pages collected from computer science departments of various uni-
versities in January 1997 by the World Wide Knowledge Base (WebKB) project of the CMU
text learning group. The 8.282 pages were manually classified into the following K = 8 cat-
egories: student (1641 webpages), faculty (1124), staff (137), department (182), course (930),
project (504), and other (3764). The original dataset was preprocessed by Cardoso-Cachopo and
is availiable at http://web.ist.utl.pt/~acardoso/datasets/. The log-entropy weighting
function was used to calculate the term document matrix X(k) = (xij)n(k)×p for each category

k, k = 1, . . . , 8, with n(k) and p denoting the number of webpages in each class and distinct
words, respectively. We applied the nonparanormal transformation and jointly estimate Σ(k) with
a fusion penalty to every pair of precision matrices. We choose the largest categories and p = 100
terms with the highest log-entropy weights out of total 4800 terms. The networks inferred with
our method are shown in Figures 4.6-4.9. The area of the circle representing a node is proportional
to its log-entropy weight, while the thickness of an edge is proportional to the magnitude of the
associated partial correlation.

The inferred graphs share a common structure but also have major differences. As an example
we provide the comparative graph for the categories faculty and student. The comparative is a
merged graph where edges in both categories and common edges are distinguished by colors,
while nodes are represented as pie charts according to the proportion of edges belonging to either
categories. It can be seen that nodes like “number”, “note”, “fall”, and ’colleg’ appear only in the
“student” category, while nodes like “assist”, “architect”, “group”, and paper only in the “project”
category. Also, common nodes that have high degree in one category happens to have low degree in
the other, e.g., the nodes “graduat” and “studi”. Node “graduat” has high degree in “project” with
links to nodes like “research”, “work”, and “update”, although, in “student” category it has only
one link with the node site. Similarly, node “studi” has high degree in “student” category with links
to nodes like “person”, “recent”, and “resourc”, while, it has only one link in category “student”
with the node “problem”. Overall, the method gFGL captures the basic common semantic structure
of the websites, but also identifies meaningful differences across the various categories. A similar
analysis on the same dataset was done by [33] and their inferred graphs exhibit similarities with
the graphs the graphs estimated by our algorithm.

4.5.4 Application for discriminant analysis

The proposed joint estimation method has potential applications beyond the framework of sparse
GMMs, like discriminant analysis with adaptively pooled covariance matrices [61]. The spar-
sity of the difference between two precision matrices again shows up if we consider the decision
boundaries of discriminant analysis. The general quadratic classifier [29] for the usual two class
problem may be expressed as

h(x) = β0 + βT + xTΓx/2, (4.23)
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Figure 4.6: “Faculty” graph
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Figure 4.7: “Project” graph
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Figure 4.8: “Student” graph

and if h(x) > 0 then sample x is classified to class 2, otherwise to class 1. Here, β0, βT , and Γ are
a scalar, a vector, and a matrix respectively. When we have n = n1 + n2 total number of samples
(with n1 samples in class 1 and n2 in class 2) and assume that within each class k = {1, 2} the
samples are independent normally distributed according to Np(µ(k),Σ(k)), then

β0 = log(π1/π/2) + (µ(2))T (Σ(2))−1µ(2)/2

− (µ(1))T (Σ(1))−1µ(1)/2

β = (Σ(1))−1µ(1) − (Σ(2))−1µ(2)

Γ/2 = (Σ(2))−1 − (Σ(1))−1.

(4.24)

In linear discriminant analysis (LDA) we assume that Σ = Σ(k), ∀k, and thus the resulting es-
timation Γ is identically zero. On the other hand, in quadratic discriminant analysis (QDA) we
assume that Σ(k) &= Σ(k′), ∀k &= k′ and Γ is entirely non-zero. As long as Spool = (n1S(1) +
n2S(2))/(n1 + n2) is full rank, we can use our joint estimation method in (4.5) to get a sparse
estimate Γ̂ and thus to define a classifier intermediate between LDA and QDA; The nonzero terms
in Γ̂ correspond to pairs of dimensions in which the decision boundary is quadratic rather than
linear.

4.6 Conclusions

We have proposed a method for estimating sparse precision matrices on the basis of distinct though
related datasets. The observations are modeled either as multivariate Gaussian distributions or as
semiparametric Gaussian copulas. We use an ADMM algorithm to solve a convex optimization
problem whose solution is the jointly estimated precision matrices. Our method has potential ap-
plications beyond estimation of sparse precision matrices. For example, in Linear Discriminant
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Figure 4.9: “Course” graph
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Figure 4.10: Comparative graph for “student” and “project” categories. Common edges are
marked light gold, while edges in “students” and “project” are marked red and green, respectively.

50



analysis (LDA) we estimate a single, pooled covariance matrix, while for Quadratic Discriminant
analysis we estimate a separate covariance matrix for each group; one could use our method to
define classifiers intermediate between QDA and LDA. Also, it can be used with Gaussian mix-
ture models to jointly estimate the covariance matrices of mixture components. Our experimental
results show that our proposal is valuable and robust, consistently performing at least as well as the
best of the two baseline solutions. The algorithms developed in this paper are made available in
the R programming language from the authors’ site. As future work, we plan provide asymptotic
sparsistency and consistency of the proposed estimator, here it corresponds to the asymptotic con-
vergence of the set of detected edges towards the set of true edge, and also we plan to experiment
with non-convex penalties in place of the convex ones.
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Appendix A

A split Bregman algorithm for the

generalized signal approximation

problem

The core problem underlying Chapters 3 and 4 is the generalized lasso problem

min
x∈Rp

1

2
||y −Ax||22 + γ||Dx||1, (A.1)

where A ∈ Rn×p, D ∈ Rm×p are known matrices, and y ∈ Rn. This problem penalizes the
l1-norm of a matrix D times the estimated regression vector and has a wide range of applications.
When A = I , the case of an identity matrix, the problem has a special name: generalized signal
approximation. In Chapter 3, where we discussed convex clustering with sparsity inducing norms,
the matrix D defined the support for a sample y, that is the number of nearest neighbors taking
into account. In Chapter 4, D defines the network of interactions among the datasets under study.
In this appendix, we give a brief overview of the applications for the general problem of signal
approximation and we present a Bregman iterative algorithm for its solution [31]. Recently, Breg-
man algorithms have attracted much attention because of their performance for solving this kind of
problems. Also, their increased study is a result of their neat connections to classical Lagrangian
methods for minimizing the sum of two convex functions under linear constraints.

A.1 Applications of the general signal approximation problem

Taking A = I , the generalized lasso (A.1) gives an interesting class of problems

min
x∈Rp

1

2
||y − x||22 + γ||Dx||1. (A.2)

In this setup, we observe data y ∈ Rn which is a noisy realization of an underlying signal, and
the rows of D ∈ Rm×n reflect some believed structure or geometry in the signal. The solution of
problem (A.2) fits adaptively to the data while exhibiting some of these structural properties [67].
We begin by looking at piecewise constant signals, and then address more complex applications.
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Figure A.1: Solution of (A.1) with A = I and D = D1d (left panel) and Dtf,1 (middle panel), and
arbitrary D (right panel)

The 1d fused lasso

Suppose that y follows a 1-dimensional structure, that is the coordinates of y correspond to suc-
cessive positions on a straight line. If D is the (n− 1)× n matrix

D1d =









−1 1 0 . . . 0 0
0 −1 1 . . . 0 0

. . .
0 0 0 . . . −1 1









, (A.3)

then problem (A.1) penalizes the absolute differences in adjacent coordinates of x, and is known
as the 1d fused lasso [66]. This gives a piecewise constant fit, and is used in settings where
coordinates in the true model are closely related to their neighbors. Figure A.1 shows for an
example of the 1d fused lasso.

Linear and polynomial trend filtering

Suppose again that y follows a 1-dimensional structure, but now D is the (n− 2)× n matrix

Dtf,1 =









−1 2 −1 . . . 0 0 0
0 −1 2 . . . 0 0 0

. . .
0 0 0 . . . −1 2 −1









. (A.4)

Then problem (A.1) is equivalent to linear trend filtering (also called l1 trend filtering [43]). Just
as the 1d fused lasso penalizes the discrete first derivative, this technique penalizes the discrete
second derivative, and so it gives a piecewise linear fit. This has many applications, namely,
any settings in which the underlying trend is believed to be linear with (unknown) changepoints
(Figure A.1).
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General fused lasso

We can further extend this idea by defining adjacency according to an arbitrary graph structure,
with n nodes and m edges. Now the coordinates of y ∈ Rn correspond to correspond to nodes in
the graph, and we penalize the difference between each pair of nodes joined by an edge. Hence
D is m × n, with each row having a −1 and 1 in the appropriate spots, corresponding to an edge
in the graph. In Chapter 3, D defines the neighborhood region for a sample x; for each x there
exists a row in D penalizing the distance between the attached centroid to x and the centroids of
its neighbors. In the right panel of Figure A.1, we plot the estimated signal when the matrix D
penalizes the distance between a sample y and all of the remaining samples.

A.2 Split Bregman method for the l1-norm minimization

The general form of problems that Split Bregman method solves is

min
u

H(u) + ||Φ(u)||1, (A.5)

where both Φ(u) and H(u) are convex functions. The key to this method is that it ”decouples” the
l1 and l2 portions of (A.5) and considers the equivalent problem,

min
u,d

H(u) + ||d||1

s.t d = Φ(u).
(A.6)

To solve the above problem, first we convert it into an unconstrained problem,

min
u,d

H(u) + ||d||1 +
λ

2
||d− Φ(u)||22, (A.7)

and then apply the split Bregman iteration,

(u(t+ 1), d(t+ 1)) = min
u,d

||d||1 +H(u) +
λ

2
||d− Φ(u)− b(t)||22 (A.8)

b(t+ 1) = b(t) + (Φ(u(t+ 1))− d(t+ 1)) . (A.9)

Now, the problem (A.7) is reduced to a sequence of unconstrained optimization problems and
updates. In order to minimize (A.8) we iteratively minimize with respect to u and d separately,

Step 1: u(t+ 1) = min
u

H(u) +
λ

2
||d(t)− Φ(u)− b(t)||22

Step 2: d(t+ 1) = min
d

||d||1 +
λ

2
||d− Φ(u(t+ 1))− b(t)||22.

To solve Step 1, the optimization problem that we must solve for u is now differentiable and thus
we can use a variety of optimization techniques. In Step 2, there is no coupling between elements
of d thus we can explicitly compute the optimal value of d using shrinkage operators. The complete
generalized Split Bregman method is the following,
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Generalized Split Bregman Algorithm

w h i l e
||u(t+1)−u(t)||2

||u(t)||2
> tol

f o r n = 1 t o N

u(t+ 1) = min
u

H(u) + λ
2 ||d(t)− Φ(u)− b(t)||22

d(t+ 1) = min
d

||d||1 + λ
2 ||d− Φ(u(t+ 1))− b(t)||22

end
b(t+ 1) = b(t) + (Φ(u(t+ 1))− d(t+ 1))

end

When N = 1, this becomes ADMM (2.20) which can be interpreted as alternately minimizing
the augmented Lagrangian with respect to u, then d and then updating the Lagrange multiplier
λ [22]. Note that this equivalence between split Bregman and ADMM is not in general true when
the constraints are not linear. It is found empirically that for many application where high accuracy
is not the goal, optimal efficiency is obtained when only one iteration (N = 1) of the inner “for”
loop is performed [31]. It may be necessary to perform more iterations (N > 1) in applications
where high precision is important.

Application of split Bregman method to the general signal approximation case.

To apply Bregman splitting on (A.2), we first replace γDak with d. This yields the constrained
problem

min
x

||d||1 +
1

2
||y − x||22

s.t d = γDx.
(A.10)

To weakly enforce the constraints in this formulation, we add the penalty function term

min
x,d

||d||1 +
1

2
||y − x||22 +

λ

2
||d− γDx||22. (A.11)

Finally, we strictly enforce the constraints by applying the Bregman iteration (A.8)-(A.9) to get

min
x,d

||d||1 +
1

2
||y − x||22 +

λ

2
||d− γDx− b(t)||22, (A.12)

where the proper values for b(t) are chosen through Bregman iteration.
To solve this minimization problem, we iteratively apply the minimization algorithm, which

requires us for the t-th iteration to solve

x(t+ 1) = min
x

1

2
||y − x||22 +

λ

2
||d(t)− γDx− b(t)||22 (A.13)

and

d(t+ 1) = min
d

||d||1 +
λ

2
||d− γDx(t+ 1)− b(t)||22. (A.14)

After some simple algebraic computations (4.18) becomes

x(t+ 1) = min
x

1

2
xT (I + γ2λDTD)x− (yT + γλz(t)kTD)x

+
yT y

2
+

λz(t)kT z(t)k

2
,

(A.15)
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where the superscript T denotes the transpose of a vector and z(t)kT = d(t) − b(t). This is an
unconstrained quadratic problem, where the matrix P = (I + γ2λDTD) is positive definite and
thus have a unique solution,

x(t+ 1) = −P−1q, (A.16)

with q = −(y + λγDT z(t)).
We can explicitly compute the optimal value for d in (A.14) using the element-wise shrinkage

operator as
[d]j(t+ 1) = shrink(γ[Dx]j(t+ 1) + [b]j(t), 1/λ) (A.17)

where
shrink(x,λ) =

x

|x| ∗ max(|x|− λ, 0).

56



Bibliography

[1] Amr Ahmed and Eric P Xing. Recovering time-varying networks of dependencies in social
and biological studies. Proceedings of the National Academy of Sciences, 106(29):11878–
11883, 2009.

[2] Daniel Aloise, Amit Deshpande, Pierre Hansen, and Preyas Popat. Np-hardness of euclidean
sum-of-squares clustering. Machine Learning, 75(2):245–248, 2009.

[3] Francis Bach and Guillaume Obozinski. Sparse methods for machine learning theory and
algorithms. ECML/PKDD Tutorial, 2010.

[4] Kevin Bache and Moshe Lichman. Uci machine learning repository. Irvine, CA: University

of California, School of Information and Computer Science, 2013.

[5] Onureena Banerjee, Laurent El Ghaoui, and Alexandre d’Aspremont. Model selection
through sparse maximum likelihood estimation for multivariate gaussian or binary data. The

Journal of Machine Learning Research, 9:485–516, 2008.

[6] Heinz H. Bauschke and Patrick L. Combettes. Convex analysis and monotone operator

theory in Hilbert spaces. Springer, 2011.

[7] Dimitri P Bertsekas. Nonlinear programming. 1999.

[8] Dimitri P Bertsekas and John N Tsitsiklis. Parallel and distributed computation. 1989.

[9] Jacob Bien and Robert Tibshirani. Hierarchical clustering with prototypes via minimax link-
age. Journal of the American Statistical Association, 106(495):1075–1084, 2011.

[10] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Distributed op-
timization and statistical learning via the alternating direction method of multipliers. Foun-

dations and Trends R© in Machine Learning, 3(1):1–122, 2011.

[11] Stephen Poythress Boyd and Lieven Vandenberghe. Convex optimization. Cambridge uni-
versity press, 2004.

[12] Alfred M Bruckstein, David L Donoho, and Michael Elad. From sparse solutions of systems
of equations to sparse modeling of signals and images. SIAM review, 51(1):34–81, 2009.

[13] Emmanuel J Candes, Michael B Wakin, and Stephen P Boyd. Enhancing sparsity by
reweighted l1 minimization. Journal of Fourier Analysis and Applications, 14(5-6):877–905,
2008.

57



[14] Rick Chartrand. Exact reconstruction of sparse signals via nonconvex minimization. Signal

Processing Letters, IEEE, 14(10):707–710, 2007.

[15] Xiaojun Chen and Weijun Zhou. Convergence of the reweighted l1 minimization algorithm
for l2-lp minimization.

[16] Eric C Chi and Kenneth Lange. Splitting methods for convex clustering. arXiv preprint

arXiv:1304.0499, 2013.

[17] Julien Chiquet, Yves Grandvalet, and Christophe Ambroise. Inferring multiple graphical
structures. Statistics and Computing, 21(4):537–553, 2011.

[18] Patrick L Combettes and Jean-Christophe Pesquet. Proximal splitting methods in signal
processing. In Fixed-Point Algorithms for Inverse Problems in Science and Engineering,
pages 185–212. Springer, 2011.

[19] Patrick Danaher, Pei Wang, and Daniela M Witten. The joint graphical lasso for inverse
covariance estimation across multiple classes. Journal of the Royal Statistical Society: Series

B (Statistical Methodology), 2013.

[20] Jan de Leeuw and Patrick Mair. Gifi methods for optimal scaling in R: The package homals.
Journal of Statistical Software, 31(4):1–20, 2009.

[21] Arthur P Dempster. Covariance selection. Biometrics, pages 157–175, 1972.

[22] Ernie Esser. Applications of lagrangian-based alternating direction methods and connections
to split bregman. CAM report, 9:31, 2009.

[23] Massimo Fornasier and Francesco Solombrino. Linearly contrained nonsmooth and noncon-
vex minimization. Technical report, 2012.

[24] Simon Foucart and Ming-Jun Lai. Sparsest solutions of underdetermined linear systems via
lq-minimization for 0¡q¡1. Applied and Computational Harmonic Analysis, 26(3):395–407,
2009.

[25] Chris Fraley and Adrian E Raftery. Mclust version 3: an r package for normal mixture
modeling and model-based clustering. Technical report, DTIC Document, 2006.

[26] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of statistical learning,
volume 1. Springer Series in Statistics, 2001.

[27] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Sparse inverse covariance estimation
with the graphical lasso. Biostatistics, 9(3):432–441, 2008.

[28] Jerome H Friedman. Regularized discriminant analysis. Journal of the American statistical

association, 84(405):165–175, 1989.

[29] Keinosuke Fukunaga. Introduction to Statistical Pattern Recognition. Academic Press, 2
edition, 1990.

[30] Tom Goldstein, Brendan O’Donoghue, and Simon Setzer. Fast alternating direction opti-
mization methods. CAM report, pages 12–35, 2012.

58



[31] Tom Goldstein and Stanley Osher. The split bregman method for l1-regularized problems.
SIAM Journal on Imaging Sciences, 2(2):323–343, 2009.

[32] Michael Grant, Stephen Boyd, and Yinyu Ye. Cvx: Matlab software for disciplined convex
programming, 2008.

[33] Jian Guo, Elizaveta Levina, George Michailidis, and Ji Zhu. Joint estimation of multiple
graphical models. Biometrika, 98(1):1–15, 2011.

[34] Pierre Gutierrez, Guillem Rigaill, and Julien Chiquet. A fast homotopy algorithm for a large
class of weighted classification problems.

[35] David J. Hand. Graphical models with r by sren hjsgaard, david edwards, steffen lauritzen.
International Statistical Review, 81(2):316–316, 2013.

[36] Satoshi Hara and Takashi Washio. Learning a common substructure of multiple graphical
gaussian models. arXiv preprint arXiv:1203.0117, 2012.

[37] Toby Hocking, Jean-Philippe Vert, Francis Bach, and Armand Joulin. Clusterpath: an al-
gorithm for clustering using convex fusion penalties. In Lise Getoor and Tobias Scheffer,
editors, Proceedings of the 28th International Conference on Machine Learning (ICML-11),
ICML ’11, pages 745–752, New York, NY, USA, June 2011. ACM.

[38] Toby Dylan Hocking. Learning algorithms and statistical software, with applications to
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