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Abstract

Reinforcement learning refers to a broad class of learning problems. Autonomous

agents typically try to learn how to achieve their goal solely by interacting with

their environment. They perform a trial-and-error search and they receive delayed

rewards (or penalties). The challenge is to learn a good or even optimal decision

policy, one that maximizes the total long-term reward. A decision policy for an

autonomous agent is the knowledge of what to do in any possible state in order

to achieve the long-term goal efficiently.

Several recent learning approaches within decision making under uncertainty sug-

gest the use of classifiers for the compact (approximate) representation of policies.

However, the space of possible policies, even under such structured representa-

tions, is huge and must be searched carefully to avoid computationally expensive

policy simulations.

In this dissertation, our first contribution uncovers policy structure by deriv-

ing optimal policies for two standard two-dimensional reinforcement learning do-

mains, namely the Inverted Pendulum and the Mountain Car. We found that

optimal policies have significant structure and a high degree of locality, i.e. dom-

inant actions persist over large continuous areas within the state space. This
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observation provides sufficient justification for the appropriateness of classifiers

for approximate policy representation.

Our second and main contribution is the proposal of two Directed Policy Search

algorithms for the efficient exploration of policy space provided by Support Vec-

tor Machines and Relevance Vector Machines. The first algorithm exploits the

structure of the classifiers used for policy representation. The second algorithm

uses an importance function to rank the states, based on action prevalence. In

both approaches, the search over the state space is focused on areas where there

is change of action domination. This directed focus on critical parts of the state

space iteratively leads to refinement and improvement of the underlying policy

and delivers excellent control policies in only a few iterations with a relatively

small rollout budget, yielding significant computational time savings.

We demonstrate the proposed algorithms and compare them to prior work on

three standard reinforcement learning domains: Inverted Pendulum (two-dimensional),

Mountain Car (two-dimensional), Acrobot (four-dimensional). Additionally, we

demonstrate the scalability of the proposed approaches on the problem of learn-

ing how to control a 4-Link, Under-Actuated, Planar Robot, which corresponds

to an eight-dimensional problem, well-known in the control theory community. In

all cases, the proposed approaches strike a balance between efficiency and effort,

yielding sufficiently good policies without excessive steps of learning.
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Περίληψη

Η ενισχυτική μάθηση αναφέρεται σε μια ευρεία κατηγορία προβλημάτων μάθησης.

Οι αυτόνομες οντότητες τυπικά προσπαθούν να μάθουν να επιτυγχάνουν το στόχο

τους αποκλειστικά μέσω της αλληλεπίδρασης με το περιβάλλον τους. Κάνουν διε-

ρευνητικές προσπάθειες αναζήτησης μέσω δοκιμών και ελέγχων και λαμβάνουν με

καθυστέρηση ανταμοιβές (ή ποινές). Η πρόκληση είναι να μάθουν μια ικανοποιη-

τική ή ακόμα και βέλτιστη πολιτική λήψης αποφάσεων, η οποία να μεγιστοποιεί τη

συνολική μακροπρόθεσμη ανταμοιβή. Μια πολιτική λήψης αποφάσεων για μια αυ-

τόνομη οντότητα είναι η γνώση του τι πρέπει να κάνει σε κάθε πιθανή κατάσταση

προκειμένου να επιτευχθεί αποτελεσματικά ο μακροπρόθεσμος στόχος.

Πολλές πρόσφατες προσεγγίσεις μάθησης για τη λήψη αποφάσεων υπό αβεβαιότητα

προτείνουν τη χρήση ταξινομητών για την συμπαγή (προσεγγιστική) αναπαράσταση

πολιτικών. Ωστόσο, ο χώρος των πιθανών πολιτικών, ακόμα και κάτω από τέτοιες

δομημένες αναπαραστάσεις, είναι τεράστιος και πρέπει να αναζητηθεί προσεκτικά για

να αποφευχθούν υπολογιστικά ακριβές προσομοιώσεις πολιτικών.

Σε αυτή τη διατριβή, η πρώτη μας συμβολή σχετίζεται με την ανίχνευση δομής σε

βέλτιστες πολιτικές. Εξετάσαμε βέλτιστες πολιτικές για δύο βασικά πεδία ενισχυτι-

κής μάθησης δύο διαστάσεων, το Inverted Pendulum και το Mountain Car. Δια-

πιστώσαμε ότι οι βέλτιστες πολιτικές τους έχουν σημαντική δομή και υψηλό βαθμό
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τοπικότητας, δηλαδή οι κυρίαρχες ενέργειες παραμένουν ίδιες σε μεγάλες συνεχείς

περιοχές εντός του χώρου καταστάσεων. Η παρατήρηση αυτή παρέχει επαρκή αιτιο-

λόγηση για την καταλληλότητα των ταξινομητών για προσεγγιστική αναπαράσταση

πολιτικών.

Η δεύτερη και κύρια συμβολή μας είναι η πρόταση δύο αλγορίθμων για την κατευ-

θυνόμενη αναζήτηση του χώρου πολιτικών με τη χρήση των ταξινομητών SVM και

RVM. Ο πρώτος αλγόριθμος εκμεταλλεύεται τη δομή των ταξινομητών που χρησι-

μοποιούνται για την αναπαράσταση της πολιτικής. Ο δεύτερος αλγόριθμος χρησι-

μοποιεί μια συνάρτηση σημαντικότητας των καταστάσεων, βάσει της επικράτησης

των ενεργειών. Και στις δύο προσεγγίσεις, η αναζήτηση στον χώρο καταστάσε-

ων επικεντρώνεται σε περιοχές όπου υπάρχει αλλαγή κυρίαρχης ενέργειας. Αυτή

η κατευθυνόμενη εστίαση σε κρίσιμα τμήματα του χώρου καταστάσεων οδηγεί ε-

παναληπτικά σε εκλέπτυνση και βελτίωση της τρέχουσας πολιτικής. Λίγες μόνο

επαναλήψεις αρκούν για την παραγωγή εξαιρετικών πολιτικών με σχετικά χαμηλό

αριθμό προσομοιώσεων, καταλήγοντας σε σημαντική εξοικονόμηση χρόνου.

Παρουσιάζουμε τους προτεινόμενους αλγόριθμους και τους συγκρίνουμε με τις προη-

γούμενες εργασίες σε τρία βασικά πεδία μελέτης της ενισχυτικής μάθησης: Inverted

Pendulum (δύο διαστάσεων), Mountain Car (δύο διαστάσεων) και Acrobot (τεσ-

σάρων διαστάσεων). Επιπροσθέτως, επιδεικνύουμε την επεκτασιμότητα των προτει-

νόμενων προσεγγίσεων στο πρόβλημα της μάθησης για τον έλεγχο ενός 4-Link Pla-

nar Robot, το οποίο αντιστοιχεί σε ένα πρόβλημα οκτώ διαστάσεων, γνωστό στην

κοινότητα της θεωρίας ελέγχου. Σε όλες τις περιπτώσεις, οι προτεινόμενες προσεγ-

γίσεις επιτυγχάνουν μια ισορροπία μεταξύ αποτελεσματικότητας και προσπάθειας,

αποδίδοντας επαρκώς καλές πολιτικές σε σύντομο χρονικό διάστημα, χωρίς υπερ-

βολικό αριθμό βημάτων μάθησης.
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Introduction

Learning Reinforcement

Learning

by doing or learning by trial-and-error is a significant way of learning

in living creatures. Learners interact with their environment and use their

experience to either choose or avoid certain actions based on rewards or penal-

ties they receive. Reinforcement Learning (Sutton and Barto, 1998) describes a

large class of such learning problems and typically refers to autonomous agents

learning by interacting with their environment. These problems are sequen-

tial decision-making problems with delayed rewards. The agent, the decision

maker, may take a long sequence of actions receiving little or no information

about the quality of its decisions, and finally, may arrive at a terminal state

with success or failure. Such problems are typically modeled as Markov Deci-

sion Processes (MDPs) (Puterman, 1994). The goal is to find a good decision

policy, one that maximizes the cumulative reward received over time. The pol-

icy is the agent’s knowledge of what to do in any particular state, to achieve

the goal efficiently.

A Deterministic

policy

deterministic policy is a mapping from states to actions. Good deterministic

policies can be approximately represented using classifiers over the entire state

space; each action is viewed as a distinct class and the states are the instances

to be classified. Moreover, such policies for common domains are not arbitrary,
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but rather exhibit significant structure. Several learning approaches based on

the approximate policy iteration framework suggest the use of classifiers for

capturing this structure and representing policies compactly (Lagoudakis and

Parr, 2003a; Fern et al., 2004; Langford and Zadrozny, 2005). Such classifiers

can be learned using appropriate training data sets that reveal the desired

action choice over a finite set of states.Elimination of

the Value

Function

The most attractive benefit of this

approach is the elimination of the need for value function representation; in-

stead, the focus is put directly on policy learning. While it is known (Anderson,

2000) that it is easier to represent a policy, rather than a value function, the

full potential of the reinforcement learning through classification approach, for

various learning problems, has barely been explored.

The space of possible policies, even under such structured representations, is

huge and needs to be explored carefully to avoid computationally expensive

simulations, i.e., rollouts. It is therefore desirable to have guidance for the

selection of the subset of state space where the improved policy is probed,

to form the training set for the classification problem. This aspect has been

given little attention in the past, nevertheless it plays a crucial role, considering

that each probe requires a significant amount of computational resources in

simulation, and therefore they better be focused on critical states which can

potentially lead to policy improvement.

1.1 Contribution Summary

Our purpose is to efficiently explore the policy space and produce near optimal

policies. Initially,Our Work we derived optimal policies for two standard two-dimensional

reinforcement learning domains which are appropriate for visualization and in-

spection (Rexakis and Lagoudakis, 2008). Our goal was to uncover the struc-

ture that exists in optimal policies and get an idea of the kind of information

we are looking for. An optimal deterministic policy is a map from states to

actions and optimal actions tend to gather in large coherent areas within the
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state space. We direct the exploration of policy space using policy rollouts

and uncover the areas where an action prevails over the others. We use a col-

lection of binary classifiers to separate action areas within the state space and

represent a policy; there is no representation for any kind of value function.

At the core of this thesis, we developed and proposed two approaches for di-

rected exploration of policy space. The first one exploits the structure of the

classifiers used for policy representation. The second one uses a state impor-

tance function based on action prevalence. In both approaches, the search is

focused on areas where there are changes of action domination. This directed

focus on critical parts of the state space iteratively leads to refinement and

improvement of the underlying policy and delivers excellent control policies in

only a few iterations.

Our work, apart from contributing to the field of reinforcement learning, also

has a potential for significant impact on real-world applications. In robotics,

several control problems, such as balancing, walking, and recovering from dis-

turbances, are commonly viewed as learning problems, as robots with many

degrees of freedom (number of joints) become more and more common. Nowa-

days, a typical humanoid robot has at least 20 degrees of freedom, which

implies a multi-dimensional state space that includes at least the angle and

the angular velocity of each joint. Exploring such spaces efficiently is a crucial

factor in achieving acceptable learning times. Although current robot technol-

ogy does not allow extensive trial-and-error experimentation on the physical

robots, in the future, algorithms, such as the ones proposed in this thesis,

will be significant in making robot learning realizable in the real world in

real time. Another field which could benefit from our work in the future is

satellite technology, where the state space may be characterized by a large

number of angles of the various satellite parts and components, whereas the

degrees of control may be few (underactuated systems). Yet another field

of application could be the development of competitive agents with learning

capabilities in realistic, modern computer games, which are characterized by
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complex, multi-agent, multi-dimensional environments. In general, our work

can be applicable to any multi-dimensional real-world domain, on the condi-

tion that a sampling procedure over the state space can generate valid states

to which the underlying system can be initialized for the purpose of probing

action values. Additionally, the impact of our work could become broader, if

combined with the expressiveness and efficiency of deep learning classification

technology.

1.2 Outline

Chapter 2 provides the basic definitions and introduces the notations necessary

to follow the work presented in this thesis. It reviews several Reinforcement

Learning topics, such as Markov Decision Processes, Policy Learning and Plan-

ning Algorithms, as well as Supervised learning topics, such as Classification,

Regression, Loss Functions, and Regularization.

Chapter 3 describes the problem studied in this thesis and sets forth the goal

of our research work. It begins with a review of the Rollout Classification

Policy Iteration algorithm as the starting point of our work and lists a number

of unanswered research questions.

Chapter 4 surveys previous work in the area of reinforcement learning com-

bined with supervised learning (classification and regression), reviewing the

most representative publications.

Chapter 5 details the Inverted Pendulum, Mountain Car, Acrobot and 4-Link

Planar Robot domains, which are widely known benchmark domain and we

used the test and evaluate our algorithms.

Chapter 6 is the core of our contribution; it describes our analysis of policy

representations, our methods for uncovering and exploiting structure and fi-

nally our two Directed Policy Search approaches, which can be instantiated

either using Support Vector Machines or Relevance Vector Machines.
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Chapter 7 contains our experimental work. It includes first a computational

approximation and visualization of optimal policies for the two-dimensional

domains, Inverted Pendulum and Mountain Car. Then, it proceeds with an

exhaustive experimental study of our approaches/algorithms for efficient explo-

ration of the structure of policy space. Demonstration of the new algorithms

is provided on a variety of control problems: Inverted Pendulum, Mountain

Car, Acrobot and 4-Link Planar Robot.

Finally, Chapter 8 presents the summary and conclusion of this thesis, as well

as some ideas for future research directions of our work.
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2

Background

Machine learning is the field of artificial intelligence, probability, control, and

optimization theory that deals with the extraction of a model from sample

data and the use of that model to make a prediction or strategy. The gist

of machine learning is the art of representation and generalization. How to

extract a model that is strict enough to represent training data samples, and

at the same time generalize well on unseen data samples.

Learning algorithms differ in the types of training data available, the order and

method by which training data is received and the test data used to evaluate

them. They are classified by the desired outcome of the algorithm or the type

of input available during training.

Supervised learner uses labeled examples as training data and makes pre-

dictions for all unseen ones. This is (or at least it used to be) the most

common case in machine learning, and it is associated with the classifi-

cation, regression, and ranking problems. The email spam detection is

an example of supervised learning.

Unsupervised learner receives unlabeled training data, discovers structure

and patterns in the data, and delivers more compact approximate repre-
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sentations of the data. Since in general no labeled examples are available

in this setting, it can be difficult to quantitatively evaluate the perfor-

mance of a learner. Clustering is an example of unsupervised learning.

Semi-supervised learner gets labeled and unlabeled training samples and

makes predictions for new ones. Semi-supervised learning is common in

cases where unlabeled data are readily available, but labels are expen-

sive to get. Various types of problems found in applications, including

classification, regression, or ranking tasks, can be framed as instances of

semi-supervised learning. The hope is that the distribution of unlabeled

data accessible to the learner can help him achieve a better performance

than in the supervised setting. The analysis of the conditions under

which this can indeed be realized is the topic of much modern theoreti-

cal and applied machine learning research.

On-line learner involves multiple rounds of intermixed training and testing

phases. The essential characteristic of online learning is that soon after

the prediction is made, the true label of the instance is discovered. This

information can then be used to refine the prediction hypothesis used by

the algorithm. The goal of the algorithm is to make predictions that are

close to the true labels.

Reinforcement learner learns by trial and error in a setting where training

and testing phases are intermixed. To collect information, the learner ac-

tively interacts with the environment and receives an immediate reward

for each action. The objective of the learner is to maximize the total

reward over the course of interactions with the environment, a long-term

reward. However, the learner faces the exploration versus exploitation

dilemma; explore the unknown or exploit the already collected informa-

tion?
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2.1 Sequential Decision Making Model

The sequential decision-making methodology is applied in multi-stage plan-

ning or learning problems. Such a problem or domain consists of one or more

decision makers, the agents, and their environment with which they interact.

Sequential decision making has been studied in many diverse fields, includ-

ing AI planning, decision analysis, operations research, control theory, and

economics.

A basic sequential decision-making model has only two subsystems. One is the

decision maker or agent, and the other one is the environment. A state of the

system is the description of everything that may influence the decisions of the

agent or be changed by its actions. At every time step, the agent is responsible

for making a decision, and also take an action in response to that decision,

to change the state of the environment (Figure 2.1). State changes are also

affected stochastically by uncertainty in the environment. A rational agent has

a goal to achieve. Reward is a numerical value given to the agent in response

to an action. Total reward is a way of accumulating immediate rewards given

to the agent and it indicates the goodness or badness of the agent’s situation

towards the goal. Rewards, either immediate or total, are delayed information

about the agent’s course of actions.

Agent Environment

Action

State

Reward

Figure 2.1: The agent interacts with the environment. At any state, the agent takes
an action that changes the current state and receives a reward

The model is typically formulated using the Markov Decision Process frame-

work. It consists of a set of states, a set of actions, rules of transitioning

between states, rules that determine the immediate reward of a transition,

and rules that describe what the agent observes. A policy is the agent’s
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knowledge of what do at any specific state, in order to achieve its goal ef-

ficiently. Algorithms to find a good or optimal policy comes in two flavors

depending of whether the model is known. Model-based algorithms are plan-

ning algorithms and they are usually implemented as dynamic programming1

algorithms. Model-free algorithms are the reinforcement learning algorithms,

where either the model is unknown or there is no analytic solution. A simula-

tor may be available or information is collected by the agent interacting with

the environment.

2.1.1 Markov Decision Process

Markov Decision Process or MDP (Bellman, 1957a; Puterman, 1994) is named

after the Russian mathematician Andrey Markov and provides a mathematical

framework for decision making in optimization problems where the outcome

is random or unpredictable. An MDP is a discrete time stochastic control

process. Discrete time is denoted by l.

AState space state of the MDP is a situation where the agent has a decision to take.

The different situations in which decisions must be made forms the entire

state space S of the process. State space can be a finite or discrete set, S “

ts1, s2, . . . , s|S|u, but infinite or continuous state spaces are also possible. A

state s P S is a complete description of the status of the process at a given

time, and it is commonly given as a vector of real numbers. The size of that

vector is the dimensionality of the state space and is related to the domain’s

complexity.

TheAction space agent’s possible action choices at each state form the action space A. We

assume that action space A is a finite set, A “ ta1, a2, . . . , a|A|u. It is possible

that all actions are not available in each state, but for the sake of simplicity,

it is assumed that all actions in A are available in all states.

1 programming refers to planning, not to computer programming.
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At time l, while in state sl, Transfer

function

the agent takes an action al and moves to the

next state sl`1. The next state sl`1 is given by the transition function. The

MDP may have deterministic or stochastic transitions. The deterministic case

is much simpler, the transition function is a map P : S ˆAÑ S, and returns

the next state sl`1 after taking action al at state sl:

sl`1 “ Ppsl, alq (2.1)

In a stochastic MDP, the transition probability density function P̃psl, al, sl`1q

is a map P̃ : S ˆAˆ S Ñ r0,8q. The probability the next state sl`1 belongs

to a region Sl`1 Ď S is:

P psl`1 P Sl`1|sl, alq “

ż

Sl`1

P̃psl, al, s1qds1

In case of a countable state space (e.g., discrete) the transition function is a

map P̄ : SˆAˆS Ñ r0, 1s, and the probability to move to state sl`1 is:

P psl`1|sl, alq “ P̄psl, al, sl`1q

The Rewardsagent moves from state sl to state sl`1 after taking action al and gets

an immediate reward value rl`1 as an indication of how good the move was.

The immediate reward in the stochastic MDP setting is given by a map ρ̃ :

S ˆAˆ S Ñ R and is computed by:

rl`1 “ ρ̃psl, al, sl`1q

All values of ρ̃ must be finite. The immediate reward function in the determin-

istic MDP setting is reduced to ρpsl, alq “ ρ̃psl, al,Ppsl, alqq, since sl`1 is given

by the deterministic transfer function Ppsl, alq, and it is a map ρ : S ˆ A Ñ

R:

rl`1 “ ρpsl, alq

An Markov

property

MDP has the Markov property or memoryless property. Given the transi-

tion function P and the reward function ρ, the current state sl and the current

11



action al are enough to calculate the next state sl`1 and the reward rl`1 in the

deterministic case, and the probability of the next state sl`1 and the reward

rl`1 in the stochastic case. Therefore, there is no dependency on past states

and actions; the current state and action are sufficient to predict the next

step(s).

TheDiscount factor agent will perform a series of actions, forming a trajectory in the state

space, aiming to achieve his goal. However, in general, a shorter trajectory

(less steps) is preferable to a longer one. We compute the total discounted

reward as R

R “ r1 ` γr2 ` γ
2r3 ` ¨ ¨ ¨ γ

H´1rH “
H´1
ÿ

l“0

γlrl`1

to evaluate a trajectory ofH steps, where γ P p0, 1s is the discount factor, which

discounts the reward values exponentially over time, since in general rewards

received in the initial steps are more important than later ones. Infinite horizon

(H Ñ 8) is possible with a discount factor γ P p0, 1q (Sutton and Barto,

1998).

R “
8
ÿ

l“0

γlrl`1

Discount factor γ should be large enough, so that late rewards received upon

reaching a terminal state are still detectable.

AtInitial state

distribution

time l “ 0, the system is initialized, and the starting state is drawn from

the initial state distribution D over S. In common problems, the starting

state is deterministically chosen, and therefore D assigns probability 1 to the

departure state.

SomeEpisode MDPs have terminal states. The agent’s interaction with the envi-

ronment breaks naturally into subsequences, called episodes or trials. Each

episode is a trajectory that starts at some starting state and ends upon reach-

ing a terminal or absorbing state. Then, a new episode starts.

12



The set of rules the agent uses to choose an action at each state forms a Policypolicy.

The main objective is to find a policy π that serves best the given purpose.

A stationary policy is a policy that does not change with time. A stationary

deterministic policy π is a simple mapping from states to actions π : S ÞÑ A;

it is a function that returns the action al to take in state sl.

al “ πpslq

A stationary stochastic policy π is a mapping π : S ÞÑ ΩpAq, where ΩpAq

is the set of all probability distributions over A. The function πpal|slq is the

conditional probability of action al to be taken at state sl at time step l. Given

a finite set of actions A, the conditional probability π in any state s P S has

the following property:
ÿ

aPA
πpa|sq “ 1.

The goal of the agent is to maximize the return, the expected cumulative

reward over the course of agent’s interactions with the environment. The

expected total discounted reward for infinite horizon, starting from state s

drawn from D, following policy π (i.e., action al is drawn from πp¨|slq), making

transitions according to the transition function P̃ (i.e., sl`1 is drawn from

P̃psl, al, ¨q), and receiving rewards rl at each step, is formulated as:

Es„D; al„π; sl„P̃; rl„ρ̃

˜

8
ÿ

l“0

γlrl`1

ˇ

ˇ

ˇ
s0 “ s

¸

This value measures the efficiency of a policy π. An optimal policy π˚ is a

policy that maximizes the total discounted reward for any possible starting

state:

π˚ “ arg max
π

#

Es0„D; al„π; sl„P̃; rl„ρ̃

˜

8
ÿ

l“0

γlrl`1

ˇ

ˇ

ˇ
s0 “ s

¸+

Infinite-horizon Stationary

deterministic

policies

discounted-return MDPs, under certain conditions, have at

least one stationary deterministic optimal policy (Bertsekas and Shreve, 1978,

1979). In this thesis, we mainly focus on stationary deterministic optimal and

near-optimal policies.
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2.1.2 Value Functions, Bellman Equation and optimality

AState value

function

state value function Vπpsq is an estimate of “how good” is for an agent to be

in a certain state s when following policy π. This value is a real number, and

it is expressed as the expected discounted sum of rewards returned when the

agent starts interacting with the environment at state s, and follows policy π

thereafter:

Vπpsq “

˜

8
ÿ

l“0

γlrl`1

ˇ

ˇ

ˇ
s0 “ s

¸

, for the deterministic setting (2.2)

Vπpsq “ Eal„π; sl„P̃; rl„ρ̃

˜

8
ÿ

l“0

γlrl`1

ˇ

ˇ

ˇ
s0 “ s

¸

, for the stochastic setting (2.3)

where 0 ă γ ă 1 is the discount factor to keep the return finite. As a con-

sequence, early accomplishments are preferable to later ones. With γ values

near zero, the agent becomes myopic, i.e., time is critical to achieving the goal,

with the risk of never reaching it. As γ approaches one, future rewards are

nearly as significant as the early ones, and the time to achieve the goal be-

comes invariant. We use the term V-function in place of state value function,

and the termV-value in place of value of state value function.

AState action

value function

state action value function Qπps, aq is a convenient measure of “how good”

for an agent, is to take action a while being in state s and following policy π in

future steps. That value is the expected discounted sum of rewards returned

when the agent starts at state s, takes action a, and then follows policy π

thereafter:

Qπps, aq “

˜

r1 `

8
ÿ

l“1

γtrl`1

ˇ

ˇ

ˇ
s0 “ s, a0 “ a

¸

, deterministic (2.4)

Qπps, aq “ Eal„π; sl„P̃; rl„ρ̃

˜

r1 `

8
ÿ

l“1

γtrl`1

ˇ

ˇ

ˇ
s0 “ s, a0 “ a

¸

, stochastic (2.5)

We use the term Q-function in place of state action value function, and the

term Q-value in place of value of state action value function.
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The relation between V -function and Q-function is:

Vπpsq “ Qπps, πpsqq, for deterministic policy (2.6)

Vπpsq “
ÿ

aPA
πpa|sqQπps, aq, for stochastic policy (2.7)

In Deterministic

vs. Stochastic

setting

the analysis below we use the term deterministic setting for an MDP with

a deterministic transition function, following a deterministic policy, since the

analysis is much simpler and instructive. Otherwise, we use the term stochastic

setting.

2.1.2.1 Deterministic setting

Bellman Bellman

equations

equations are recursive forms of the above value functions’ equations.

The Q-function (2.4) for policy π is a map Qπ : S ˆ A Ñ R. It returns the

discounted cumulative reward when starting in state s, taking action a, and

following policy π:

Qπps, aq “ ρps, aq ` γVπpPps, aqq (2.8)

where the initial state and action is the pair ps, aq, the next state is given by

the transfer function Pps, aq (2.1), the value of the immediate reward function

ρps, aq is the r1 reward in Equation (2.4), and VπpPps, aqq (2.2) is the V -value

of the next state following the current policy π. It is easy to derive the Bellman

equation (2.8) from equation (2.4)

Qπps, aq “ ρps, aq `
8
ÿ

l“1

γtrl`1

“ ρps, aq ` γ
8
ÿ

l“1

γl´1rl`1

“ ρps, aq ` γVπpPps, aqq (2.9)

A recursive version of the above Qπ function is:

Qπps, aq “ ρps, aq ` γQπpPps, aq, πpPps, aqqq (2.10)
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AGreedy policy greedy policy is a deterministic policy that selects the action with the largest

Q-value at every step:

πpsq “ arg max
aPA

Qπps, aq

It is an obvious selection and leads to exploiting existing knowledge without

allowing new actions to be explored. Therefore, regarding exploration, a greedy

policy is myopic.

TheOptimal

Q-function

optimal state action value function Qπ˚ or Q˚ yields the largest Q-value

achieved by any policy:

Q˚ps, aq “ max
π

Qπps, aq (2.11)

The recursive Bellman equation (2.10) can be written for the optimal Q-

function:

Q˚ps, aq “ ρps, aq ` γmax
a1PA

Q˚pPps, aq, a1qq (2.12)

AnOptimal policy optimal policy π˚ selects actions that maximize theQ˚-value at any state:

π˚psq “ arg max
aPA

Q˚ps, aq (2.13)

TheOptimal

V -function

optimal V *-function yields the maximum of all V -values that can be

obtained by any policy:

V ˚psq “ max
π

Vπpsq “ max
aPA

Q˚ps, aq (2.14)

An optimal policy π˚ is easily derived from the Bellman equation (2.9) and

the definition of the optimal V ˚ value function (2.14):

π˚psq “ arg max
aPA

!

ρps, aq ` γV ˚pPps, aqq
)

(2.15)

The Bellman equation for the V -function is derived from equation (2.9):

Vπpsq “ ρps, πpsqq ` γVπpPps, πpsqqq (2.16)

and the Bellman equation for the optimal V -function is derived from (2.12):

V ˚psq “ max
aPA

!

ρps, aq ` γV ˚pPps, aqq
)

(2.17)
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2.1.2.2 Stochastic setting

In Bellman

equations

a stochastic setting, transitions are stochastic and the next state sl`1 is

drawn from P̃psl, al, ¨q. Q-function is the expected discounted return:

Qπps, aq “ Es1„P̃ps,a,¨q

!

ρ̃ps, a, s1q ` γVπps
1
q

)

(2.18)

The Optimal

Q-function, and

optimal

policy

definitions of the optimal state action value function Q˚ and an optimal

policy π˚ are repeated here for convenience:

Q˚ps, aq “ max
π

Qπps, aq, π˚psq “ arg max
aPA

Q˚ps, aq

The Bellman equation for the Q-function is:

Qπps, aq “ Es1„P̃ps,a,¨q

!

ρ̃ps, a, s1q ` γQπps
1, πps1qq

)

(2.19)

and the Bellman equation for the optimal Q˚ value function is:

Q˚ps, aq “ Es1„P̃ps,a,¨q

!

ρ̃ps, a, s1q ` γmax
a1PA

Q˚ps1, a1q
)

(2.20)

In the Countable state

space

case of a countable (e.g., discrete) state space, the Bellman equation

becomes:

Qπps, aq “
ÿ

s1PS
P̄ps, a, s1q

!

ρ̃ps, a, s1q ` γQπps
1, πps1qq

)

(2.21)

and the optimal Bellman equation:

Q˚ps, aq “
ÿ

s1PS
P̄ps, a, s1q

!

ρ̃ps, a, s1q ` γmax
a1PA

Q˚ps1, a1q
)

(2.22)

Equation Bellman

equation in

matrix

form

(2.21) is a system of linear equations and can be rewritten as:

Qπps, aq “
ÿ

s1PS
P̄ps, a, s1q

!

ρ̃ps, a, s1q ` γ
ÿ

a1PA
πpa1|s1qQπps

1, a1q
)
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and in matrix form

Qπ “ R` γPΠπQπ (2.23)

where Qπ and R are vectors of size |S||A|, P is a stochastic matrix of size

|S||A| ˆ |S| that contains transition probabilities :

P
`

ps, aq, s1
˘

“ P̄ps, a, s1q,

and Ππ is a stochastic matrix of size |S|ˆ |S||A|

Ππ

`

s1, ps1, a1q
˘

“ πpa1|s1q

Equation (2.23) is a linear system that can be solved analytically or itera-

tively:

Qπ “ pI´ γPΠπq
´1R

TheOptimal

V -function

optimal V ˚-function is repeated here:

V ˚psq “ max
π

Vπpsq

The optimal policy π˚ is given by:

π˚psq “ arg max
aPA

Es1„P̃ps,a,¨q

!

ρ̃ps, a, s1q ` γV ˚π ps
1
q

)

(2.24)

The Bellman equation for the V -function is:

Vπpsq “ Es1„P̃ps,πpsq,¨q

!

ρ̃ps, πpsq, s1q ` γVπps
1
q

)

(2.25)

and the Bellman equation for the optimal V ˚-function is:

V ˚psq “ max
aPA

Es1„P̃ps,a,¨q

!

ρ̃ps, a, s1q ` γV ˚ps1q
)

(2.26)

In the case of a countable (e.g., discrete) state space, the optimal Bellman

equation becomes:

V ˚psq “ max
a1PA

ÿ

s1PS
P̄ps, a, s1q

!

ρ̃ps, a, s1q ` γV ˚ps1q
)

(2.27)
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2.1.2.3 Bellman optimality operator - contraction mapping

The Bellman optimality operator T is a mapping from value functions to value

functions. Let Q be the space of all Q-functions, then T is a mapping T : QÑ

Q. Using the Bellman equations, the Bellman optimality operator T is defined

as:

rTQsps, aq “ ρps, aq ` γmax
a1PA

QπpPps, aq, a1qq, for deterministic setting

(2.28)

rTQsps, aq “ Es1„P̃ps,a,¨q

!

ρ̃ps, a, s1q ` γmax
a1PA

Qπps
1, a1q

)

, for stochastic setting

(2.29)

rTQsps, aq “
ÿ

s1PS
P̄ps, a, s1q

!

ρ̃ps, a, s1q ` γmax
a1PA

Qps1, a1q
)

, for countable spaces

(2.30)

It maps a Q-function to an improved Q-function as follows:

QÐ TQ (2.31)

The above equation is a contraction mapping with rate equal to the MDP

discount factor γ P p0, 1q under the infinity norm:

‖TQ´ TQ1‖8 ď γ‖Q´Q1‖8

The contraction mapping T : QÑ Q has a unique fixed point, i.e. the equation

Q “ TQ has a unique solution Q˚, where Q˚ “ TQ˚ is the optimal solution,

and there is no further improvement.

The Bellman Iterative

solution

equation is appropriate for iterative solution, since in each iter-

ation k, T maps Qk to an improved Qk`1:

Qk`1 “ TQk

2.2 Algorithms for Solving MDPs

The solution of an MDP is to find an optimal policy π˚, that is, one that

maximizes the cumulative discounted return. In this section, we assume that
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there are enough computational resources (memory) to represent the V -value

or Q-value of any state. There are two main categories of algorithms: the

model-based or dynamic programming algorithms, where the transfer function

P and the reward function ρ are known, and the model-free or reinforcement

learning algorithms, where the data are obtained from interaction with the

process. The most commonly used approaches in each category are, value

iteration and policy iteration. Both approaches can be formulated in terms of

either V or Q values. However, due to our interest in learning methods, in this

section, we will focus only on the Q-values formulation of value iteration and

policy iteration.

2.2.1 Value Iteration

ValueModel-based

value iteration

iteration (Bellman, 1957b) algorithm is just a repeated application of

the Bellman optimality operator to the state action value function Q, shown

in Algorithm 1. The Q-function is initialized to an arbitrary value, e.g., 0, and

eventually, converges to the optimal Q˚. An optimal policy π˚ is derived from

a greedy policy over the computed Q˚. The algorithm terminates when the

maximum change of the Q-values between successive iterations, is less than the

stopping criterion ε, a small positive value. The loss is bounded by (Williams

and Baird, 1993):

‖Q´Q˚‖8ď 2ε
γ

1´ γ

where γ is the discount factor. The cost per iteration is Op|S|2|A|q, but the

number of iterations required to achieve a certain level of accuracy can grow

exponentially with the contraction rate.

2.2.2 Q-Learning

Q-LearningModel-free value

iteration.

Q-Learning

algorithm (Watkins, 1989; Watkins and Dayan, 1992) is a widely

used model-free value iteration algorithm. It uses action value function Qps, aq

initialized to an arbitrary value, usually zero. Q values are updated without
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Algorithm 1 Value iteration for stochastic countable state space

1: Input: set of states S, set of actions A, transition function P̄ , immediate
reward function ρ̃, stopping criterion ε

2: Q “ 0 {Initialize arbitrarily}
3: repeat
4: Q1 “ Q
5: for every pairps P S, a P Aq
6: Qps, aq “

ÿ

s1PS
P̄ps, a, s1q

!

ρ̃ps, a, s1q ` γmax
a1PA

Q1ps1, a1q
)

7: end
8: until ‖Q´Q1‖8 ă ε
9: @s P S, πpsq “ arg max

aPA
Qps, aq

10: return π

requiring a model. Updates are based on transition samples that come from

the process as tuples of psl, al, sl`1, rl`1q, where sl is the MDP state at time l,

al is the action taken at time l, sl`1 the next state at time l ` 1, and rl`1 the

reward given at time l` 1 for taking action al at state sl and moving to state

sl`1. For each tuple, the update to the Q values is the following:

Ql`1psl, alq “ Qlpsl, alq ` αl
“

rl`1 ` γmax
a1PA

Qlpsl`1, a
1
q ´Qlpsl, alq

‰

(2.32)

where αl P p0, 1s is the Learning

rate

learning rate, and l is the time step. The term

rl`1 ` γmaxa1PAQlpsl`1, a
1q is the updated estimate of the Qpsl, alq and the

term Qlpsl, alq is its current estimate. The difference between these two terms

is called the temporal difference. The Ql`1 value in the next time step is the

current Ql value updated by the learning rate portion of the temporal dif-

ference. Q-learning asymptotically converges to the optimal Q˚ state-action

value function under certain conditions:

1. The state and action spaces are finite.

2. The sum

8
ÿ

l“0

αl “ 8, w.p.1

3. There exist some constant C P R such that

8
ÿ

l“0

α2
l ď C, w.p.1
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4. All state-actions pairs are visited infinitely often.

Conditions 2 and 3 are easily satisfiable, e.g., αl “ 1{l. These conditions have

been studied by Watkins and Dayan (1992); Tsitsiklis (1994); Jaakkola et al.

(1994).

Algorithm 2 presents Q-learning with ε-greedyε-greedy action

selection

exploration. The ε-greedy ac-

tion selection, was suggested by Sutton and Barto (1998) and selects action al

using the current policy with probability 1 ´ ε (exploitation), or a uniformly

random action with probability ε (exploration). As time passes, the learned

value function and policy improve, and the need for exploration diminishes.

Thus, ε may be implemented as a function of time, e.g., εl “ 1{l.

Algorithm 2 Q-learning with ε-greedy exploration

Input: set of states S, set of actions A, exploration probability εl, learning
rate αl

initialize Q0 arbitrarily, e.g. Q0ps, aq “ 0, @s P S, a P A
draw s0 from initial state distribution

for time step l “ 0, 1, 2, . . . , H

al “

#

a P arg maxa1PAQlpsl, a
1q, with probability 1´ εl // exploitation

a uniformly random action, with probability εl // exploration

take action al in sl and get next state sl`1 and reward rl`1

Ql`1psl, alq “ Qlpsl, alq ` αlrrl`1 ` γmax
a1PA

Qlpsl`1, a
1
q ´Qlpsl, alqs

end
@s P S, πpsq “ arg max

aPA
QH`1ps, aq

return π

Q-learning is an “off policy” algorithm (Sutton and Barto, 1998), because it

evaluates a greedy policy and uses a different policy for data collection, the

one that controls the process of exploration.

2.2.3 Policy iteration

Policy iteration is a general algorithm (Figure 2.2) for solving MDPs, and it is

a two step iterative process. In each iteration, the first step, policy evaluation,

is the computation of the value function for the current policy. The second

one, policy improvement, is the improvement of the current policy in a greedy

22



way. The initial policy can be a random or an arbitrary one. Policy iteration,

shown in Algorithm 3, converges to an optimal policy, usually in just a few

iterations.

Policy Evaluation

Policy Improvement

Figure 2.2: Policy iteration process. In
the policy evaluation step, the value function
is calculated for some or all states using the
current policy. In the policy improvement
step, the algorithm improves the previous pol-
icy based on values obtained in the policy eval-
uation step

Algorithm 3 Policy iteration

1: Input: set of states S, set of actions A
2: initialize π arbitrarily
3: repeat
4: π1 “ π

5: {Policy evaluation}
6: compute Q for policy π e.g. by solving Bellman equation

7: {Policy improvement}
8: @s P S, πpsq “ arg max

aPA
Qps, aq

9: until π “ π1
10: return π

In the case that the model is known, i.e., transition and reward functions are

known, the policy evaluation step is achieved by solving the Bellman equation.

Bellman Bellman

operator for

policy

operator for policy π is a mapping Tπ : QÑ Q where Q is the space

of all Q-functions.

The Bellman operator Tπ for policy π is defined as:

rTπQsps, aq “ ρps, aq ` γQpPps, aq, πpPps, aqqq, for deterministic setting

(2.33)

rTπQsps, aq “ Es1„P̃ps,a,¨q tρ̃ps, a, s
1
q ` γQps1, πps1qqqu , for stochastic setting

(2.34)

rTπQsps, aq “
ÿ

s1PS
P̄ps, a, s1q tρ̃ps, a, s1q ` γQps1, πps1qqu , for countable spaces

(2.35)
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The iterative form of the Bellman equation solution for policy π and iteration

k starting from an arbitrary Q0
π

Qk`1
π “ TπpQ

k
πq (2.36)

will converge to a fixed point Qπ, since the operator Tπ is a contraction, i.e.,

for discount factor γ ă 1 and any pair of Qk
π, Qπ functions:

‖TπQk
π ´ TπQπ‖8 ď γ‖Qk

π ´Qπ‖8

Therefore, Qk
π will converge to Qπ for increasing iterations k. The complete

algorithm is shown as Algorithm 4.

Algorithm 4 Policy iteration

Input: set of states S, set of actions A, transition function P̄ , immediate
reward function ρ̃, stopping criterion ε

initialize π, Q arbitrarily
repeat
π1 “ π
{Policy Evaluation}
repeat
Q1 “ Q
for every pairps P S, a P Aq
Qps, aq “

ÿ

s1PS
P̄ps, a, s1q tρ̃ps, a, s1q ` γQ1ps1, πps1qqu

end
until ‖Q´Q1‖8ă ε
{Policy Improvement}
@s P S, πpsq “ arg max

aPA
Qps, aq

until π “ π1
return π

Bellman equation 2.35 for policy iteration has a significant advantage over

Bellman optimality equation 2.30 for value iteration, since the first one is

linear, while the Bellman optimality equation is highly nonlinear due to the

max operator at the right-hand side. Policy evaluation is easier to compute

than value iteration.

2.2.4 SARSA

PolicyModel-free

policy iteration

iteration can be used in case the model is not known. Here we will

describe a SARSA algorithm (Rummery and Niranjan, 1994). The name comes
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from the form of training data tuples, psl, al, rl`1, sl`1, al`1q, i.e., at the current

state sl action al was taken and a reward rl`1 was given for moving to the next

state sl`1, where the next action taken was al`1. The SARSA algorithm starts

with an arbitrary Q-value (Q0) and updates Ql values at each time step using

the tuples described above.

Ql`1psl, alq “ Qlpsl, alq ` αrrl`1 ` γQlpsl`1, al`1q ´Qlpsl, alqs (2.37)

where α P p0, 1s is the learning rate and l is the time step. The term rl`1 `

γQlpsl`1, al`1q is the updated estimate of the Qpsl, alq and the term Qlpxl, alq is

its current estimate. The difference between two terms is called the temporal

difference. The Ql`1 value in the next time step is the current Ql estimate

updated by the learning rate portion of the temporal difference. Algorithm 5

presents SARSA with ε-greedy exploration. Learning rate al and ε-greedy

exploration is discussed at the Q-learning section 2.2.2.

Algorithm 5 SARSA with ε-greedy exploration

Input: set of states S, set of actions A, exploration probability εl, learning
rate αl

initialize Q0 arbitrarily, e.g. Q0ps, aq “ 0, @s P S, a P A
draw s0 from initial state distribution
a0 “ a uniformly random available action

for time step l “ 0, 1, 2, . . . , H
take action al in sl and get next state sl`1 and reward rl`1

compute next action al`1

at`1 “

#

a P arg maxa1PAQtpsl`1, a
1q, with probability 1´ εl // exploitation

a uniformly random action, with probability εl // exploration

Ql`1psl, alq “ Qlpsl, alq ` αlrrl`1 ` γQlpsl`1, al`1q ´Qlpsl, alqs
end
@s P S, πpsq “ arg max

aPA
QH`1ps, aq

return π

SARSA is an “on policy” algorithm (Sutton and Barto, 1998), because it eval-

uates the policy that is used to control the process and collect the data.
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2.3 Approximation Architectures

In the case of very large or infinite state space, exact representation is infea-

sible. Exact value function, either V or Q, requires storage of the return for

every state or state-action pair respectively. Given that the value function is

smooth enough, there are satisfactory approximation methods. Looking back

at value iteration algorithm (Algorithm 1), there are some questions about

how to modify the algorithm from exact (tabular) value function representa-

tion to an approximated one. In particular, there are issues beyond the obvious

approximation error:

1. lines 5 to 7, sweep through all states performing Bellman backups on

each one, which is impractical or even impossible in large state spaces.

2. line 6, moving from state s after taking action a to a next state s1 P S, s1

can be any possible state in the state space and each one of them must

be accounted for, an enormous task to deliver.

3. line 6, assigns a value to Qps, aq, but it is not clear how to assign a single

value in a non-tabular, approximate representation.

Let’s now take a look at the trajectory-sampled value iteration algorithm (Al-

gorithm 6) and discuss the alternatives to issues 1 and 2. The first issue is

resolved by replacing global state sweeps, with multiple trajectory sweeps using

the current policy (Barto et al., 1995):

tpsi, ai, ri`1qu
H
i“0

where H is the trajectory length. The second one is alleviated by drawing L1

samples, possible next states s1j, per state s and action a from the P̄ps, a, ¨q

distribution. Given state s and action a, Qps, aq is estimated as:

1

L1

L1
ÿ

i“1

!

ρ̃ps, a, s1iq ` γmax
a1PA

Qps1i, a
1
q

)
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As L1 Ñ 8, the estimate becomes exact with probability one. The third issue

will be discussed in next subsection in detail. For now, let us assume that the

state action value function has a tabular representation. Also, note that there

is no reason to store the policy explicitly; it is easily extracted from Q:

πpsq “ arg max
aPA

Qps, aq

Algorithm 6 Trajectory sampled value iteration

1: Input: set of states S, set of actions A, transition function P̄ , immediate
reward function ρ̃, stopping criterion ε, number of samples L1 per state

2: Q “ 0 {Initialize arbitrarily}
3: repeat {for each trajectory}
4: Q1 “ Q
5: repeat {for each ps, aq pair in a trajectory following current policy}
6: Draw L1 samples (next states)

 

s1i „ P̄ps, a, ¨q, i “ 1..L1

(

7: Qps, aq “
1

L1

L1
ÿ

i“1

!

ρ̃ps, a, s1iq ` γmax
a1PA

Q1ps1i, a
1
q

)

8: until the end of trajectory, i.e., reaching a terminal state
9: until ‖Q´Q1‖8 ă ε

10: πpsq “ arg max
aPA

Qps, aq {there is no need to store policy}
11: return π

Classification of approximation methods is based on the explicit or implicit use

of parameters. Parametric approximation uses explicitly declared parameters,

while non-parametric approximation uses implicitly declared parameters that

are automatically extracted from the given data.

2.3.1 Parametric Approximation

In this section we will study Q-function approximation (Sutton and Barto,

1998; Bertsekas and Tsitsiklis, 1996). The exact Qps, aq function will be re-

placed by the approximated function pQps, a;wq, where w is a vector of n

parameters forming the parameter space. Let’s define operator F to be an

approximation mapping F : Rn Ñ Q, from the parameter space w P Rn to the

space of value functions Q:

pQps, a;wq “ rFwsps, aq
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Instead of storing a Q-value for every pair ps, aq, we store only n parameters

w “ pw1, w2, ¨ ¨ ¨ , wn). Usually the size n of the parameter space is much

smaller than the size of the state-action space (|S| ¨ |A|). However, since

operator F maps parameters w to a subset of all possible value functions Q,

it introduces an approximation error.

Operator F may be nonlinear in terms of the parameter vector w. However,

linearly parameterized approximators are well studied, the resulting algorithms

are easy to implement, and their theoretical properties easy to analyze. A com-

mon form of the approximated Q-function, pQ, is a weighted linear combination

of a vector φ of n basis functions or features

φps, aq “

»

—

—

—

–

φ1ps, aq
φ2ps, aq

...
φnps, aq

fi

ffi

ffi

ffi

fl

where φi : S ˆAÑ R, and a vector w of n parameters:

pQps, a;wq “ rFwsps, aq

“

n
ÿ

i“1

φips, aqwi

“ φT ps, aqw (2.38)

InpQ

approximation

in matrix form

the case of discrete state and action spaces the above equation 2.38 may be

rewritten in matrix form:

pQ “ Φw (2.39)

where pQ is a vector of size |S||A| containing all Qps, aq values:

pQ “

»

—

—

—

—

—

—

—

—

—

–

Qps1, a1q

Qps1, a2q
...

Qps2, a1q

Qps2, a2q
...

Qps|S|, a|A|q

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl
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and Φ is a matrix of size |S||A|ˆ n:

Φ “

»

—

—

—

—

—

—

—

—

—

–

φ1ps1, a1q φ2ps1, a1q ¨ ¨ ¨ φnps1, a1q

φ1ps1, a2q φ2ps1, a2q ¨ ¨ ¨ φnps1, a2q
...

φ1ps2, a1q φ2ps2, a1q ¨ ¨ ¨ φnps2, a1q

φ1ps2, a2q φ2ps2, a2q ¨ ¨ ¨ φnps2, a2q
...

φ1ps|S|, a|A|q φ2ps|S|, a|A|q ¨ ¨ ¨ φnps|S|, a|A|q

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Each row of Φ contains the value of all the basis functions for a specific ps, aq

pair and each column of Φ contains the value of a particular basis function

for all pairs ps, aq. The basis functions φ are usually implemented as polyno-

mial functions or Gaussian radial basis functions (RBF). The approximation

is clearly linear with respect to the parameters w, whereas in general the ba-

sis functions φ are nonlinear. The linearity regarding parameters w greatly

simplifies the analysis of approximated models. Parametric approximation effi-

cacy depends on the design of the parametric model, i.e., the selection of basis

functions, which is not a trivial task. Too many basis functions will result in

an increased computational time and may introduce numerical errors, while

too few may result in an inadequate representation. There are algorithms for

automatic selection of the basis functions.

Figure 2.3 shows the best approximation pQ of the state action value function

Q given some set of basis functions. Q P R|S||A| is projected onto the subspace

spanned by matrix Φ, which depends on the selection of basis functions. The

parameter vectorw is acquired during the value or policy function optimization

process.

Figure 2.3: Projection of state-action
value function Q onto the space spanned ma-
trix Φ
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Let’sTrajectory

sampled value

iteration

algorithm

now see the approximated version of our previous algorithm (Algorithm

6) “trajectory sampled value iteration”. We use the above linear approximation

pQps, aq “ φT ps, aqw for state action value function. The question now is to

transform the update of Qps, aq at line 7 into an update of the w parameters.

Let Qps, aq be the current estimate and Qnew the new target value. The idea

is to incrementally update the parameters w using the reverse direction of the

squared difference between Qps, aq and Qnew.

δ “
BpQnew ´Qps, aqq

2

Bw

“
BpQnew ´ φ

T ps, aqwq2

Bw

“ ´2φps, aqpQnew ´ φ
T
ps, aqwq (2.40)

“ ´2φps, aqpQnew ´Qps, aqq (2.41)

The rule for parameter update is w Ð w´αδ where α P p0, 1s is the learning

rate. The complete algorithm for “trajectory sampled value iteration with

approximated Q-function” is Algorithm 7.

Algorithm 7 Trajectory sampled value iteration - Approximated Q-function

1: Input: set of states S, set of actions A, transition function P̄ , immediate
reward function ρ̃, stopping criterion ε, number of samples L1 per state

2: w “ 0 {Initialize arbitrarily}
3: repeat {for each trajectory}
4: w1 “ w
5: repeat {for each ps, aq pair in a trajectory following current policy}
6: Draw L1 samples (next states)

 

s1i „ P̄ps, a, ¨q
(L1

i“1

7: Qnew “
1

L1

L1
ÿ

i“1

!

ρ̃ps, a, s1iq ` γmax
a1PA

Q1ps1i, a
1
q

)

8: δ “ ´2φps, aqpQnew ´Qps, aqq
9: w “ w ´ αδ

10: until {the end of trajectory, i.e. a terminal state, is reached }
11: until ‖w1 ´w‖ ă ε or {there is no more time}
12: πpsq “ arg max

aPA
Qps, aq {there is no need to store policy}

13: return π
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2.3.2 Non-parametric Approximation

In the case of non-parametric approximation, there are parameters, and they

are automatically extracted from the data. Typical examples of the non-

parametric approximator class are the kernel based ones. The unknown Qps, aq

value for some input pattern ps, aq is expected to have some similarity with

the known Qpsi, aiq value for the input pattern psi, aiq used for training. A

similarity measure (the kernel) that serves this purpose has the form:

κ :|S|ˆ |A|ˆ |S|ˆ |A|Ñ R

ps, a, si, aiq ÞÑ κps, a, si, aiq,

where κ is a function of two input patterns ps, aq and psi, aiq and returns a real

value as a similarity measure. The kernel function κ is a symmetric function.

The approximated Q-function takes the following form:

pQps, aq “
m
ÿ

i“1

wiκps, a, si, aiq `w0

where tpsi, aiqu
m
i“1, are input patterns that come from data, wi coefficients

are non-zero values given by the optimization process, and w0 is the bias. A

common choice for kernels are polynomial functions or Gaussian radial basis

functions (RBF). Kernel based machine learning algorithms were introduced

by Boser et al. (1992). An extensive study of kernel based algorithms was done

by Scholkopf and Smola (2001).

2.3.3 Projection Methods for Linear Architectures

Here we discuss two methods for obtaining the parameter vector w optimized

for the nearest approximation pQ to Q (Figure 2.3), given the basis functions,

i.e. matrix Φ. Recall that the exact Q is not known, and these methods have

to rely on the information contained in the Bellman equation and the Bellman

operator to find a “good” w. Figure 2.4 illustrates an R|S||A| space, the space

of exact Q-functions, and a plane spanned by Φ, the subspace of approxi-

mated Q-functions and demonstrates the application of Bellman operator T
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on approximated function pQ giving Q1. Finally Q1 is projected back on plane

pQ
1

, and the distance ‖pQ
1

´Q1‖ is minimum. The first method for projection

minimizes the blue line and the second the red one.

Figure 2.4: The plane is spanned by
Φ and is the subspace of approximated Q-

functions and pQ is a point on it. Operator T

maps pQ to a point Q1 anywhere in the space of
Q-functions and, in general, outside the plane.

Approximation of Q1 is given by its pQ1 projec-
tion onto the plane

2.3.3.1 Bellman Residual Minimizing Approximation

We are repeating here, for convenience, the matrix form of the Bellman equa-

tion (2.23) for finite discrete state and action spaces.

Q “ R` γPΠπQ

We replace the Q with the approximated pQ and if the approximation is suc-

cessful the two sides of the equation should be close,

pQ « R` γPΠπ
pQ

The result is an overconstrained system of |w| equations. Replacing pQ by

Φw

Φw « R` γPΠπΦw

and reforming the equation to get the parameter vector w

pΦ´ γPΠπΦqw « R

This is overconstrained linear system of equations in the form Aw “ R. Where

A “ Φ´ γPΠπΦ. The least squares solution is

w “ pATAq´1ATR

This method is graphically shown at Figure 2.4 as minimization of the blue

line, and is trying to find the point on the Φ plane where the Bellman operator

makes the smallest jump towards the true value function, Q.
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2.3.3.2 Least-Squares Fixed-Point Approximation

The second method seeks to minimize the red line in Figure 2.4. In essence, it

attempts to find a fixed point (see pQ) on the Φ plane under one application

of the Bellman operator (see Q1) followed by orthogonal project back to the Φ

plane (see pQ
1

). We will see that this (red line) error can be made zero, therefore

this fixed point property can be actually achieved. This second objective is

formulated as

min
w
‖pQ´ pQ

1

‖2

Projection of Q1 onto the plane is orthogonal, and the projection operator is

P “ ΦpΦTΦq´1ΦT . The goal becomes

min
w
‖pQ´ΦpΦTΦq´1ΦT

pT pQq‖2

We are forcing the above expression to zero, at the fixed point (pQ “ Q1), and

we solve the system of equations, finding the parameters w.

pQ “ ΦpΦTΦq´1ΦT
pT pQq

pQ “ ΦpΦTΦq´1ΦT
pR` γPΠpQq

Φw “ ΦpΦTΦq´1ΦT
pR` γPΠΦwq

w “ pΦTΦq´1ΦT
pR` γPΠΦwq

ΦTΦw “ ΦT
pR` γPΠΦwq

ΦTR “ ΦT
pΦ´ γPΠΦqw

w “ pΦT
pΦ´ γPΠΦqq´1ΦTR (2.42)

The expression ΦT pΦ´ γPΠΦq is an nˆ n matrix, where n is the number of

the basis functions, and this system has a solution as long as this matrix can

be inverted.

The pQ calculated using this method may be far from Q. It has been shown

that under certain conditions the approximation error is bounded (Tsitsiklis
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and Roy, 1999; Bertsekas, 2007).

‖Q´ pQ‖ ď 1
a

1´ γ2
‖Q´ PQ‖

There is an extended error bound study for approximations from projected

linear equations (Yu and Bertsekas, 2010).

2.3.4 Least-Squares Policy Iteration

Here we will study an advanced reinforcement learning algorithm, the Least-

Squares Policy Iteration (LSPI) (Lagoudakis and Parr, 2003b). First, we will

cover the policy evaluation part, which is based on a modification of the Least-

Squares Temporal Difference (LSTD) Learning algorithm (Bradtke and Barto,

1996), and then we will integrate it into a complete policy iteration algorithm

following a greedy fashion.

Let us continue from the previous equation 2.42, the solution of the system of

linear equations AwT “ b, where A “ ΦT pΦ´γPΠΦq and b “ ΦTR. In the

general case, matrix P and vector R are unknown or impractical to compute,

either because the complete MDP model is not available or because the state

space is huge. However, in such cases, matrix A and vector b of the linear

system can be estimated. Let’s take a closer look at their structure:
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A “ ΦT
pΦ´ γPΠΦq

“
ÿ

sPS

ÿ

aPA
φps, aq

˜

φps, aq ´ γ
ÿ

s1PS

P̄ps, a, s1qφ
`

s1, πps1q
˘

¸T

“
ÿ

sPS

ÿ

aPA

ÿ

s1PS

P̄ps, a, s1q
„

φps, aq
´

φps, aq ´ γφ
`

s1, πps1q
˘

¯T


(2.43)

b “ ΦTR

“
ÿ

sPS

ÿ

aPA
φps, aq

ÿ

s1PS

P̄ps, a, s1qρ̃ps, a, s1q

“
ÿ

sPS

ÿ

aPA

ÿ

s1PS

P̄ps, a, s1q
”

φps, aqρ̃ps, a, s1q
ı

(2.44)

Examining their strcture, it is easy to see that matrix A and vector b can

be easily estimated from a set of samples of interaction with the process in

the form of tuples S “ tpsi, ai, r
1
i, s

1
iqu

m
i“1. These samples can be collected

from complete trajectories in the state space or, in the presence of a simulator,

sampled next states s1 and rewards r1 can be drawn from P̄ps, a, ¨q and ρ̃ps, a, s1q

given any state s and action a. For m samples, A and b can be estimated

as:

rA “
1

m

m
ÿ

i“1

„

φpsi, aiq
´

φpsi, aiq ´ γφ
`

s1i, πps
1
iq
˘

¯T


(2.45)

rb “
1

m

m
ÿ

i“1

rφpsi, aiq r
1
is (2.46)

Factor 1
m

can be dropped, since it appears on both sides of AwT “ b. Given

any arbitrary policy π and a large enough sample set, the above estimation

scheme can be used to estimate the linear system and upon solution to provide

the weights of the approximate Qπ-function of policy π. This is the Least-

Squares Temporal Difference Learning for the Q-function (LSTDQ) algorithm,

which is shown as Algorithm 8.
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Algorithm 8 Least-Squares Temporal Difference Learning (LSTDQ) algorithm

Input: set of data tuples D, basis functions φ, discount factor γ, policy for
evaluation π

rA “ 0
rb “ 0
for each ps, a, r1, s1q P D

rA “ rA` φps, aq
´

φps, aq ´ γφ
`

s1, πps1q
˘

¯T

rb “ rb` φps, aqr1

end

rw “ rA´1
rb

return rw

Given that LSTDQ can be used to evaluate any policy using a single sample

set, it is intuitive to use LSTDQ iteratively to evaluate progressively better

policies obtained at each iteration through greedy policy improvement. It is

important to note that there is no need to represent any such policy explicitly;

only the weights of the approximate value function of the previous policy are

sufficient to compute the greedy improved (next) policy on demand (at any

given state). This is the main idea behind the Least-Squares Policy Iteration

(LSPI) algorithm shown below as Algorithm 9.

Algorithm 9 Least-Squares Policy Iteration (LSPI) algorithm

Input: set of data tuples D, basis functions φ, discount factor γ, stopping
criterion ε

w1 “ 0 // initialize parameters
repeat
w “ w1
rA “ 0
rb “ 0
for each ps, a, r1, s1q P D
a1 “ arg max

a2PA
φps1, a2qTw

rA “ rA` φps, aq
´

φps, aq ´ γφ
`

s1, a1
˘

¯T

rb “ rb` φps, aqr1

end

w1 “ rA´1
rb

until ‖w ´w1‖ ă ε

return πpsq “ arg max
aPA

φT ps, aqw
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2.3.5 Fitted Q-iteration

Fitted Q-iteration is a model-free, approximate value iteration algorithm, where

transition and reward functions are unknown. In such cases, only sets of sam-

ples in the form of tuples psi, ai, r
1
i, s

1
iq are available. These samples may be

collected from observed trajectories or from a simulator. For the Q-function

approximation, any regression algorithm, parametric or non-parametric, may

be used. The fitted Q-iteration algorithm was introduced by (Ernst et al.,

2005). In this example, we are going to use least-squares regression to fit the

estimated Q-values. Least-squares regression is a parametric method, and we

assume that basis functions φ are given or chosen. Approximated Q-function

is expressed as pQ “ φT ps, aqw. Each fitted Q-iteration uses a sample set

tpsi, ai, r
1
i, s

1
iqu

m
i“1 to estimate the improved Q-value qi for state si, action ai

and current parameters w. Then, it uses all psi, ai, qiq tuples to train the

least-squares regressor, that will be used in the next iteration. The complete

fitted Q-iteration algorithm is shown as Algorithm 10 below.

Algorithm 10 Fitted Q-Iteration (FQI) algorithm

1: Input: basis functions φ, discount factor γ, stopping criterion ε, number
of samples m

2: w1 “ 0 // initialize parameters
3: repeat
4: w “ w1
5: Get samples tpsi, ai, r

1
i, s

1
iqu

m
i“1 from the simulator

6: for i “ 1 to m
7: qi “ r1i ` γmax

a1PA

“

φT ps1i, a
1
qw

‰

8: end

9: w1 “ arg min
w

m
ÿ

i“1

`

qi ´ φ
T
psi, aiqw

˘2

10: until ‖w ´w1‖ ă ε

11: return πpsq “ arg max
aPA

φT ps, aqw

2.4 Supervised Learning

Supervised learning is a learning process supervised by a teacher. Training

data come in tuples or examples in the form px, tq, where x P X (i.e., RN) is
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the input pattern, and t P R is the observed target value or label given by the

teacher. A model is trained using a training data set Dtrain “ tpxi, tiqu
m
i“1 and

an appropriate training algorithm and rules/parameters are extracted. Then,

the trained model is tested for accuracy using a different set of unseen examples

Dtest “ tpxi, tiqu
k
i“1.

Classification is the identification of the category, class, or label the input

pattern x belongs to. Binary classification is the most common form and

target variable t takes two values (t P t´1,`1u). Regression is the estimation

of a real value for input pattern x, and the target variable is real (t P R).

Predicted values ypxq are typically approximated as a linear sum of (typically,

nonlinear) basis functions φpxq:

ypxq “ w0 ` w1φ1pxq ` ¨ ¨ ¨ ` w1φnpxq

“ wTφpxq ` w0 (2.47)

There are n basis functions φipxq, n ` 1 parameters wi, and w0 is the called

the bias term. Sometimes, an additional basis function φ0pxq “ 1 is defined

to cover the bias in a uniform way and ypxq becomes

ypxq “ w0φ0pxq ` w1φ1pxq ` ¨ ¨ ¨ ` w1φnpxq

“ wTφpxq (2.48)

where w “ pw0, w1, . . . , wnq
T and φ “ pφ0, φ1, . . . , φnq

T .

Loss function Lpx, t, ypxqq is a map L : X ˆ R ˆ R Ñ r0,8q , whereLoss function x is the

input pattern, t is the observed value, and ypxq is the prediction function, and

has the property of Lpx, t, tq “ 0 for all x P X and t P R. It measures the

discrepancy between the observed value t and the predicted value ypxq. The

exact definition depends on the learning goal. In the binary classification case,

t P t´1,`1u, a common loss function simply counts the misclassified examples

Lpx, t, ypxqq “ 1
2
|t ´ ypxq|. For regression problems, we may measure the

residual |t´ ypxq| or the square of it pt´ ypxqq2.

Let’s now define the expected risk. We assume that our examples px, tq areExpected risk
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drawn out of a P px, tq probability distribution, and are independent and iden-

tically distributed. The risk is defined as the expected loss over all possible

training patterns.

Rrys “ ErLpx, t, ypxqqs “
ż

XˆR
Lpx, t, ypxqqdP px, tq (2.49)

However, the computation of the expected risk is an intractable problem, since

we don’t know P px, tq explicitly. We only have the training examples and

therefore we can replace the unknown distribution P px, tq by its empirical

estimate. Now we are ready to define the empirical risk. Empirical risk

Remprys “
1

m

m
ÿ

i“1

Lpxi, ti, ypxiqq (2.50)

We can minimize the empirical risk function by fitting the predictor ypxq to

the specific training examples. This is called overfitting and leads to bad gener-

alization performance and numerical instabilities. One technique to overcome Regularization

this issue is regularization. We add a stabilization term Ωrys to the empirical

risk to penalize the complexity of the model, the prediction function ypxq.

Rregrys “ Remprys ` λΩrys (2.51)

Minimizing Rregrys, the regularization parameter λ ą 0 specifies the tradeoff

between minimization of Remprys and the smoothness or simplicity of ypxq

which is enforced by small Ωrys. Ωrys may be chosen to be convex, with one

easy to find, global minimum. A common choice for the stabilization term is

Ωrys “
1

2
‖w‖2.

2.4.1 Kernel-based Supervised Learning algorithms

Non-parametric methods do not use explicit parameters, but keep the training

data points or a subset of them and use them during the prediction phase.

Kernel-based methods, a case of non-parametric methods, use the inner prod-

uct of the feature space mapping φpxq:

κpx,x1q “ φT pxqφpx1q (2.52)
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Kernel κpx,x1q is a symmetric positive semidefinite function, which measures

the similarity of x and x1. The kernel concept first was introduced into the

machine learning field by Aizerman et al. (1964) and in the context of large

margin classifiers by Boser et al. (1992). Kernels are used in algorithms inKernel trick place

of the inner product φT pxqφpx1q, thus there is no need to know the exact (and,

possibly, high-dimensional or even infinite-dimensional) feature space mapping

φpxiq. This is called kernel trick or kernel substitution.

The simplest kernel is the linear one, κpx,x1q “ xTx1, where φpxq “ x.

The homogeneous polynomial kernel κpx,xq “ pxTxqd, d P N, is widely used.

Another commonly used kernel is κpx,x1q “ exp

ˆ

´
‖x´ x1‖2

2σ2

˙

, where σ ą 0,

the Gaussian kernel, suggested by Boser et al. (1992); Guyon et al. (1993);

Vapnik (1995). The Sigmoid kernel κpx,x1q “ tanhpαxTx1 ` βq, where α ą 0

and β ă 0, despite not being positive semidefinite, has been successfully used

in practice (Vapnik, 1995). There are certain rules for combining basic kernels

to construct composite ones. The inhomogeneous polynomial kernel κpx,xq “

pxTx` cqd, (d P N, c ě 0), is such an example.

2.4.2 Support Vector Machines for Classification (SVM)

Here, we will discuss a two-class or binary classification algorithm. There is

a training set of m tuples, tpxi, tiqu
m
i“1, where xi P X is the input vector and

target value ti P t´1,`1u the observed class or label for data sample i. Our

prediction is based on a linear model of the form

ypxq “ wTφpxq ` b (2.53)

Let us now study the toy problem shown in Figure 2.5. There are two separable

classes of data, the circles and the squares, and three hyperplanes in a two-

dimensional space. The first hyperplane is in the middle wTx ` b “ 0, the

decision border, a sample that comes to the left of it is classified as a circle, and

a sample that resides to the right is classified as a square. Our decision function
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comes in the form2 fpxq “ signpwTx` bq. The question is how to optimize w

to get the “best” hyperplane, the one that behaves well on unseen examples

and tolerates noise comfortably. The idea is to maximize the distance between

the left (wTx` b “ ´1) and the right (wTx` b “ `1) hyperplanes.

Let x1 be a point on right hyperplane and x2 a point on the left one.

wTx1 ` b “ `1
wTx2 ` b “ ´1

*

ñ wT
px1 ´ x2q “ 2

wT

‖w‖
px1 ´ x2q

margin length

“
2

‖w‖
(2.54)

where
w

‖w‖
is the unit vector atw direction and

2

‖w‖
the length of the margin.

Our goal is to maximize the margin and keep the circles on the left and squares

on the right. This can be formulated as quadratic optimization:

minimize
1

2
‖w‖2 (2.55)

subject to tipw
Txi ` bq ě 1, for all i “ 1 . . m (2.56)

The optimization objective (2.55) is equivalent to maximizing
2

‖w‖
(the mar-

gin). The constraints (2.56), for ti “ `1 resolve to wTxi ` b ě `1 and for

ti “ ´1 resolve to wTxi ` b ď ´1. The Support

vectors

examples that reside on and define

the hyperplanes are called support vectors, i.e. tipw
Txi ` bq “ 1.

Let us now leave the convenient two-dimensional input space and map the

input vector x to feature vector φpxq. There is no need to know the exact

φp¨q transformation. All we need to know about the feature space H is that

the inner product is defined, and it is given by the kernel function κpx,x1q “

φT pxqφpx1q we picked. Now, the optimization goal becomes:

minimize
1

2
‖w‖2 (2.57)

subject to tipw
Tφpxiq ` bq ě 1, for all i “ 1 . . m (2.58)

2 signp¨q function returns values t´1,`1u.
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Figure 2.5: Maximum
margin classifiers. The mid-
dle hyperplane is the decision
boundary. The left and right
hyperplanes are defining the
margin. Margin is maximized
with no examples in it. The
examples that lay on the left
and right hyperplanes are the
support vectors

The first line (2.57) is the objective function and the second one (2.58) the

inequality constrains. WeLagrangian introduce the Lagrangian function (Nocedal and

Wright, 2006):

Lpw, b,αq “
1

2
‖w‖2

´

m
ÿ

t“1

αiptipw
Tφpxiq ` bq ´ 1q (2.59)

where α “ pα1, α2, . . . , αmq, α ě 0 are the Lagrangian multipliers or dual

variables. The goal now becomes: minimize L with respect to the primal

variables w and b and maximize with respect to the dual variables α. The

solution is a saddle point and the partial derivatives of L with respect to the

primal variables w and b must vanish.

BLpw, b,αq

Bb
“ 0 ñ

m
ÿ

t“1

αiti “ 0 (2.60)

BLpw, b,αq

Bw
“ 0 ñ w “

m
ÿ

i“1

αitiφpxiq (2.61)

By substituting (2.60) and (2.61) into the Lagrangian (2.59), we eliminate the
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primal variables w and b and the Lagrangian becomes:

pLpαq “
m
ÿ

i“1

αi ´
1

2

m
ÿ

i“1

m
ÿ

j“1

αiαjtitjφ
T
pxiqφpxjq

By replacing the inner product φT pxiqφpxjq with the kernel function κpxi,xjq,

that is the kernel trick, we get the dual optimization problem:

minimize pLpαq “
m
ÿ

i“1

αi ´
1

2

m
ÿ

i“1

m
ÿ

j“1

αiαjtitjκpxi,xjq (2.62)

subject to αi ě 0, for all i “ 1 . . m (2.63)

m
ÿ

t“1

αiti “ 0 (2.64)

The solution gives the α coefficients. The αi’s that correspond to examples

that lay on the left or on the right hyperplanes are non-zero. These examples

are the support vectors; the remaining αi coefficients are zero.

This optimization problem has a solution on the condition that examples

are separable in the feature space, which is set by choosing the kernel func-

tion. However, in practice class conditional distributions overlap, noise cor-

rupts data, and absolute separation of training data leads to poor generaliza-

tion.

Let’s Soft margin hy-

perplanes

now relax the above algorithm to allow some training examples to be

misclassified. We introduce slack variables ξi ě 0, one for each training exam-

ple (Bennett and Mangasarian, 1992; Cortes and Vapnik, 1995). The examples

on the margin borders and outside of it have ξi “ 0, and the ones inside the

margin yield ξi “ |ti ´ wTφpxq ´ b|. If an example lies on the separating

border, it will have ξ “ 1; examples with ξ ă 1 are correctly classified and

examples with ξ ą 1 are misclassified (Figure 2.6).
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Figure 2.6: Soft mar-
gin hyperplanes. Two square
class samples are in the mar-
gin. The one with ξ ă 1 is
correctly classified, the other
one with ξ ą 1 is misclassified.
all points on or outside margin
borders have ξ “ 0

Thus, the primary optimization problem now becomes:

minimize
1

2
‖w‖2

` C
m
ÿ

i“1

ξi (2.65)

subject to tipw
Tφpxiq ` bq ě 1´ ξi, for all i “ 1 . . m (2.66)

ξi ě 0 (2.67)

where C ą 0, is the trade off between the slack variables penalty and maxi-

mization of the margin. At the limit C Ñ 8 slack variables vanish, and we

get the earlier support vector machines for separable data.

The Lagrangian now becomes:

Lpw, b,αq “
1

2
‖w‖2

`C
m
ÿ

i“1

ξi´
m
ÿ

t“1

αiptipw
Tφpxiq`bq´1`ξiq´

m
ÿ

i“1

µiξi (2.68)

where αi and µi are the Lagrange multipliers. The Karush-Kuhn-Tucker
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(KKT) conditions (Nocedal and Wright, 2006) that must be satisfied are:

αi ě 0 (2.69)

tipw
Tφpxiq ` bq ´ 1` ξi ě 0 (2.70)

αiptipw
Tφpxiq ` bq ´ 1` ξiq “ 0 (2.71)

µi ě 0 (2.72)

ξi ě 0 (2.73)

µiξi “ 0, for all i “ 1 . . m (2.74)

The partial derivatives of L with respect to the primal variables w, b and ξi

should vanish.

BLpw, b,αq

Bw
“ 0 ñ w “

m
ÿ

i“1

αitiφpxiq (2.75)

BLpw, b,αq

Bb
“ 0 ñ

m
ÿ

t“1

αiti “ 0 (2.76)

BLpw, b,αq

Bξi
“ 0 ñ αi “ C ´ µi (2.77)

We eliminate w, b, and ξi in the Lagrangian above and we get the dual opti-

mization problem:

minimize pLpαq “
m
ÿ

i“1

αi ´
1

2

m
ÿ

i“1

m
ÿ

j“1

αiαjtitjκpxi,xjq (2.78)

subject to 0 ď αi ď C, for all i “ 1 . . m (2.79)

m
ÿ

t“1

αiti “ 0 (2.80)

This is a quadratic optimization problem. If we substitute (2.75) into the

decision function ypxq , we get:

ypxq “ sign
`

wTφpxq ` b
˘

(2.81)

“ sign

˜

m
ÿ

i“1

αitiφ
T
pxiqφpxq ` b

¸

(2.82)

“ sign

˜

m
ÿ

i“1

αitiκpxi,xq ` b

¸

(2.83)
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However, only a few αi coefficients that correspond to support vectors are non-

zero. Let’s say thatM is the set of indexes in the training set that correspond

to support vectors. The final form of the decision function is:

ypxq “ sign

˜

ÿ

iPM
αitiκpxi,xq ` b

¸

Now, only the bias term b needs to be estimated. Since slack variable ξi for

support vectors vanish, we have:

ti

˜

ÿ

jPM
αitiκpxj,xiq ` b

¸

“ 1

For a stable numerical estimation we obtain b by averaging over all support

vectors:

b “
1

|M|
ÿ

iPM

˜

ti ´
ÿ

jPM
αjtjκpxi,xjq

¸

(2.84)

2.4.3 Support Vector Machines for Regression (SVR)

The concept of support vectors and large margin is extended to regression

(Vapnik, 1995; Drucker et al., 1997). The margin here takes the form of an ε-

insensitive tube (Figure 2.7). The solid line is the prediction and the doted lines

are the borders of the ε-tube. Any examples inside the ε-tube are considered

error free. Examples xi outside the ε-tube have an error of ξi or ξ˚i value.

We have a training set of m examples, tpxi, tiqu
m
i“1, where xi P X is the input

vector and ti P R is the target value. Our algorithm is based on a linear model

of the form:

ypxq “ wTφpxq ` b (2.85)

The ε-insensitive error function is given by:

Eεpx, tq “ maxp0, |t´ ypxq|´ εq (2.86)

For each point i outside the tube, there is either a ξi or a ξ˚i non-zero error.

For these points above the ε-tube, the second is zero, for the points below the
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Figure 2.7: The solid line
is the predicted values. Dot-
ted lines form the ε-tube. Ex-
amples inside the ε-tube are
considered error free. For
those examples above the ε-
tube an error value of ξi is de-
fined, and for those examples
below the ε-tube there is an er-
ror of ξ˚i magnitude

ε-tube the first one is zero. Inside the ε-tube both are zero. The total error

becomes Eεpxi, tiq “ ξi`ξ
˚
i and the primal optimization problem is formulated

as:

minimize
1

2
‖w‖2

` C
m
ÿ

i“1

pξi ` ξ
˚
i q (2.87)

subject to ti ´ pw
Tφi ` bq ď ε` ξi, for all i “ 1 . . m (2.88)

pwTφi ` bq ´ ti ď ε` ξ˚i (2.89)

ξi ě 0 (2.90)

ξ˚i ě 0 (2.91)

We define a Lagrangian:

Lpw, b,α,α˚q “
1

2
‖w‖2

` C
m
ÿ

i“1

pξi ` ξ
˚
i q ´

m
ÿ

i“1

pµiξi ` µ
˚
i ξ
˚
i q

´

m
ÿ

i“1

αipε` ξi ` pw
Tφi ` bq ´ tiq

´

m
ÿ

i“1

α˚i pε` ξ
˚
i ´ pw

Tφi ` bq ` tiq (2.92)

where αi, α
˚
i , µi, µ

˚
i ě 0 are the Lagrange multipliers. The Karush-Kuhn-

Tucker (KKT) conditions (Nocedal and Wright, 2006) that must be satisfied
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are:

αipε` ξi ` pw
Tφpxiq ` bq ´ tiq “0, for all i “ 1 . . m (2.93)

α˚i pε` ξ
˚
i ` pw

Tφpxiq ` bq ´ tiq “0 (2.94)

pC ´ aiqξi “0 (2.95)

pC ´ a˚i qξ
˚
i “0 (2.96)

The partial derivatives of L with respect to the primal variables w, b, ξi and

ξ˚i should vanish, therefore we have:

BLpw, b,α,α˚q

Bw
“ 0 ñ w “

m
ÿ

i“1

pαi ` α
˚
i qφpxiq (2.97)

BLpw, b,α,α˚q

Bb
“ 0 ñ

m
ÿ

t“1

pαi ` α
˚
i q “ 0 (2.98)

BLpw, b,α,α˚q

Bξi
“ 0 ñ αi ` µi “ C (2.99)

BLpw, b,α,α˚q

Bξ˚i
“ 0 ñ α˚i ` µ

˚
i “ C (2.100)

Using the above equations and the kernel function κpxi,xjq in place of φT pxiqφpxjq,

we formulate the Lagrangian (2.92) with respect to αi α
˚
i :

maximize pLpα,α˚q “ ´
1

2

m
ÿ

i“1

m
ÿ

j“1

pαi ´ α
˚
i qpαj ´ α

˚
j qκpxi,xjq

´ ε
m
ÿ

i“1

pαi ` α
˚
i q `

m
ÿ

i“1

pαi ´ α
˚
i qti (2.101)

subject to 0 ď αi ď C, for all i “ 1 . . m (2.102)

0 ď α˚i ď C (2.103)

m
ÿ

t“1

pαi ´ α
˚
i q “ 0 (2.104)

From the KKT conditions (2.93) we note that αi coefficients can be non-zero

only on the upper ε-tube border or above the ε-tube, and from (2.94) α˚i
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coefficients can be non-zero only on the lower ε-tube border or below the ε-

tube. In all other cases, αi and α˚i are zero. Support vectors are the examples

pxi, tiq that lay on the ε-tube border or outside of it, where either αi or α˚i is

non-zero.

LetM be the set of indexes of support vectors in the training set. By substitut-

ing (2.97) into (2.85), we get the final kernel-based prediction function:

ypxq “
ÿ

iPM
pαi ´ α

˚
i qκpx,xiq ` b (2.105)

Again, here we have to estimate the bias b from (2.93). We choose a point for

which 0 ă αi ă C, which means from (2.95) that ξi “ 0, and from (2.93) that

the term ε` ξi ` pw
Tφpxiq ` bq ´ ti “ 0.

b “ ti ´ ε´w
Tφpxiq

“ ti ´ ε´
ÿ

iPM
pαi ´ α

˚
i qκpx,xiq (2.106)

An analogous result can be obtained by considering the 0 ă α˚i ă C points and

equation (2.94). A numerically stable b is given by averaging all 0 ă αi, α
˚
i ă C

cases.

Support vector machines have been used in various classification and regression

applications with excellent generalization properties and sparse kernel repre-

sentation. However, there are some drawbacks. The most outstanding one is

the growth of the number of the support vectors with the size of the training

set. Also, there is the C parameter, and the ε parameter in the case of regres-

sion, to be set. Furthermore, predictions are not probabilistic. And finally,

the kernel function must be positive definite.

2.4.4 Relevance Vector Machines (RVM) for Regression

The relevance vector machine is a probabilistic sparse kernel linear model that

has a prediction function similar to that of the SVM. We have a training set
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of m examples, tpxi, tiqu
m
i“1 where xi P X is the input vector and target value

ti P R. Our prediction function has the form:

ypxq “
m
ÿ

i“1

wiκpx,xiq ` w0, (2.107)

where κpx,xiq is the kernel function. By setting:

φpxiq “ r1, κpxi,x1qs, κpxi,x2q, . . . , κpxi,xmqs
T

the above prediction function (2.107) is rewritten as:

ypxq “ wTφpxq (2.108)

We define Φ P Rmˆpm`1q, the design matrix, as:

Φ “ rφT px1q,φ
T
px2q, . . . ,φ

T
pxmqs

T

We assume that targets ti are samples of the above model (2.108) with the

addition of noise εi:

ti “ ypxiq ` εi, (2.109)

where εi are independent and identically distributed samples drawn from a

zero-mean Gaussian distribution with variance σ2. The conditional distribu-

tion for the target variable ti given the input vector xi takes the form:

ppti|xi,w, σ
2
q “ N

`

ti|ypxiq, σ
2
˘

, (2.110)

a Gaussian distribution over ti with mean ypxiq and variance σ2. Based on the

assumption that targets ti are independent, the likelihood of the data is:

ppt|X,w, σ2
q “

m
ź

i“1

ppti|xi,w, σ
2
q

“ p2πσ2
q
´m{2 exp

"

´
1

2σ2
‖t´Φw‖2

*

(2.111)

where X is a matrix whose ith row is xTi , and t is the vector ttiu
m
i“1. For a less

cluttered notation, we omit implicit conditioning on input vectors xi and X,

e.g. the ppt|X,w, σ2q will be noted as ppt|w, σ2q.
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Direct maximum likelihood estimation of w and σ2 from the above equa-

tion (2.111) will lead to overfitting. We need to impose a complexity penalty

on the parameters, like the margin in the SVM paradigm. We implement

our preference for smoother functions by setting a zero mean Gaussian prior

distribution over parameter w:

ppw|αq “
m
ź

i“0

N pwi|0, α´1
i q (2.112)

where α is a vector of m`1 hyperparameters, one for every weight. The use of

an individual hyperparameter ai for every weight wi is the key for the sparsity

of RVMs. The hyperparameters α and noise precision β “ σ´2 are given by

Gamma priors (Berger (1985)):

ppαq “
m
ź

i“0

Gammapαi|a, bq, (2.113)

ppβq “ Gammapβ|c, dq, (2.114)

where:

Gammapα|a, bq “
baαa´1e´bα

Γpaq
, Gamma distribution

Γpaq “

ż 8

0

ta´1e´tdt, Gamma function

We make these priors non-informative, parameters a, b, c, d are set to zeros

(a “ b “ c “ d “ 0) (Tipping, 2001). This setting leads to uniform hyperpri-

ors. This setting is called Automatic Relevance Determination or ARD in the

context of neural networks (MacKay, 1994; Neal, 1996), and it leads to sparse

representations.

The Inferencepredictive distribution takes the form:

ppt˚|tq “

ż

ppt˚|w,α, σ
2
qppw,α, σ2

|tq dw dα dσ2 (2.115)

where t˚ is prediction for the sample x˚. We need the posterior over all un-

knowns:

ppw,α, σ2
|tq “

ppt|w,α, σ2qppw,α, σ2q

pptq
(2.116)
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However, we cannot compute the normalizer pptq in the denominator. Alter-

natively, by decomposing the posterior:

ppw,α, σ2
|tq “ ppw|t,α, σ2

qppα, σ2
|tq (2.117)

equation (2.115) becomes:

ppt˚|tq “

ż

ppt˚|w,α, σ
2
qppw|t,α, σ2

qppα, σ2
|tq dw dα dσ2 (2.118)

The posterior distribution for the weights is Gaussian and is given by:

ppw|t,α, σ2
q “ N pw|µ,Σq

“ p2πq´
m`1

2 |Σ|´
1
2 exp

"

´
1

2
pw ´ µqT |Σ|´1

pw ´ µq

*

(2.119)

where the posterior covariance and mean are given by:

Σ “ pσ´2ΦTΦ`Aq´1 (2.120)

µ “ σ´2ΣΦT t (2.121)

where A “ diagpαq. The second term of the right hand side in equation (2.117),

the hyperparameter posterior ppα, σ2|tq, cannot be computed analytically. A

workaround is to approximate it with the delta function at its mode, i.e. the

most probable values αMP and σ2
MP :

ppα, σ2
|tq « δpαMP , σ

2
MP q (2.122)

Looking for the hyperparameter posterior mode, we can maximize the hyper-

parameter posterior ppα, σ2|tq9ppt|α, σ2qppαqppσ2q with respect to α, σ2. We

assume uniform hyperpriors and we ignore ppαq and ppσ2q. We only need to

maximize the marginal likelihood3 ppt|α, σ2q:

ppt|α, σ2
q “

ż

ppt|w, σ2
qppw|αq dw

“ p2πq´m{2|C|´1{2 exp

"

´
1

2
tTC´1t

*

(2.123)

3 Marginal likelihood is also known as evidence for the hyperparameters, (MacKay, 1992).
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where C “ σ2I `ΦA´1ΦT . This type of maximization is also known known

as type-II maximum likelihood method (Berger, 1985).

We cannot get analytically the valuesα and σ2 that maximize equation (2.123).

The log marginal likelihood takes the form:

ln ppt|α, σ2
q “ ´

1

2

 

m lnp2πq ` ln|C|` tTC´1t
(

(2.124)

Differentiating equation (2.124) with respect to α and equating to zero we

get:

αi “
γi
µ2
i

(2.125)

where µi is the i-th component of the posterior mean (2.121), and the quantity

γi is defined as:

γi “ 1´ αiΣii (2.126)

Σii is the i-th diagonal component of the posterior covariance (2.120). Differ-

entiation of (2.124) with respect to the noise variance σ2 and setting to zero

gives:

σ2
“
‖t´Φµ‖2

m´ Σiγi
(2.127)

Assuming that the kernel function κp¨, ¨q is chosen and the training set is given,

estimation of αMP and σ2
MP is done iteratively (Tipping, 2001; Tzikas et al.,

2006):

1. create the design matrix Φ.

2. choose initial values for α, and σ2.

3. calculate Σ “ pσ´2ΦTΦ`Aq´1 and µ “ σ´2ΣΦT t

4. update αi “
γi
µ2
i

and σ2
“
‖t´Φµ‖2

m´ Σiγi

5. prune αi and the basis functions φip¨q, if αi ą αthreshold

6. repeat steps 3, 4 and 5 until convergence is satisfactory
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A hyperparameters αi greater than αthreshold is assumed that is tending to in-

finity and thus the respective wi parameter is set to zero. The relevance vectors

xi are the remaining data points, namely those with αi below αthreshold. The

prediction distribution (2.115) for a new point x˚ using (2.119) becomes:

ppt˚|t,αMP , σ
2
MP q “

ż

ppt˚|w, σ
2
MP qppw|t,αMP , σ

2
MP q dw

“ N pt|µTφpx˚q, σ2
˚q (2.128)

The predictive mean is the prediction function ypx˚q “ µTφpx˚q and the

predictive variance is σ2
˚ “ σ2

MP `φpx˚q
TΣφpx˚q the estimated noise on the

data.

2.4.5 Relevance Vector Machines (RVM) for Classification

The RVM framework has been extended to classification. We assume two

classes with binary target variables ti P t0, 1u. The prediction function takes

the form:

ypxq “ σpwTφpxqqq (2.129)

where σpzq “
1

1` expp´zq
is the logistic sigmoid function and ypxq P p0, 1q.

The likelihood probability is based on the Bernoulli distribution :

ppt|wq “
m
ź

i“1

ypxiq
tir1´ ypxiqs

1´ti (2.130)

We use a prior ppw|αq for the weights, as in the case of regression (equation

2.112). Unlike the RVM regression case, we cannot obtain an analytic form of

the marginal likelihood ppt|αq by integrating out weights w. A workaround is

to use Laplace approximation4. For fixed values of α, the mode of the posterior

4 Laplace approximation for posterior distributions is to find the mode of the posterior and
then fit a Gaussian centered at the mode.
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distribution over weights w is given by maximizing:

ln ppw|t,αq “ ln
ppt|wqppw|αq

ppt|αq

“ lntppt|wqppw|αqu ´ ln ppt|αq

“

m
ÿ

i“1

tti ln yi ` p1´ tiq lnp1´ yiqu ´
1

2
wTAw ` const (2.131)

where yi “ ypxiq and A “ diagpαq. Equation (2.131) is a penalized logis-

tic log-likelihood function, which can be maximized w.r.t. w, using iterative

reweighted least squares (IRLS) (Nabney, 1999), to find wMP , the mode of

ln ppw|t,αq. We need the gradient vector and the Hessian of the log posterior

distribution:

∇ ln ppw|t,αq “ ΦT
pt´ yq ´Aw (2.132)

∇∇ ln ppw|t,αq “ ´pΦTBΦ`Aq (2.133)

where y “ py1, y2, . . . , ymq and B “ diagryip1 ´ yiqs
m
i“1. By setting (2.132) to

zero, we get the mean and the covariance of the Gaussian approximation, for

the mode of the posterior distribution.

wMP “ A´1ΦT
pt´ yq (2.134)

Σ “ pΦTBΦ`Aq´1 (2.135)

The prediction function finally becomes:

ypxq “ σ
`

wT
MPφpxq

˘

(2.136)
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3

Challenge and Contributions

A key distinction among reinforcement learning algorithms relies on whether

there is a representation of the value function, the policy, or both. Value

function based algorithms have received much criticism in recent years due

to difficulties associated with the estimation and representation of value func-

tions. Many learning problems of interest lead to nonlinear and nonsmooth

value functions that can hardly be compactly represented. On the other hand,

advocates of direct policy learning have employed parametric representations

that differ little from their value function representation counterparts. Most

of them rely on representations of stochastic policies that take the form of a

softmax over a parametric real-valued function, which is similar to a typical

value function.

3.1 Starting Points

There is a trend in policy learning attempts (Lagoudakis and Parr, 2003a;

Fern et al., 2004) to exploit the generalization abilities of modern classification

technology, under the assumption that optimal or good deterministic policies

for real-world learning problems are not arbitrarily complex, but rather exhibit

a high degree of structure. Recall that a deterministic policy is a mapping from
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states to actions, πpsq : S ÞÑ A. On the other hand, a multiclass classifier is a

mapping of inputs to classes. Therefore, it is clear that a deterministic policy

can be approximated over the entire state space of the process using a multi-

class classifier over the same space; each action is viewed as a distinct class

and the states of the process are the instances (inputs) to be classified (Figure

3.1). It should, therefore, be plausible to learn a good policy using only a small

set of training data consisting of selected states over the state space labeled

with the actions that are deemed to be best in those states.

Classifier
(policy)

input
(state)

classes
(actions)

Figure 3.1: A multiclass classifier used to map states to actions

ToReinforcement

Learning as

Classification

illustrate the learning process under such representations, we briefly review

the Rollout Classification Policy Iteration (RCPI) algorithm (Lagoudakis and

Parr, 2003a). The key idea behind RCPI is to cast the problem of policy

learning as a classification problem. Finding a good policy becomes equivalent

to finding a classifier that generalizes well over the state space and maps states

to “good” actions, where the goodness of an action is measured regarding its

contribution to the long-term goal of the agent. The state-action value function

Qπ

Qπps, aq “
ÿ

s1PS
P̄ps, a, s1q

!

ρ̃ps, a, s1q ` γQπps
1, πps1qq

)

provides such a measure given a fixed base policy π; the action that maximizes

Qπ in state s is a “good” action in that state, whereas any action with strictly

smaller Qπ value is a “bad” one. The policy π1 formed by choosing maximizing

actions in each state

π1psq “ arg max
aPA

Qπps, aq

is guaranteed to be at least as good as π, if not better. A training set

tpsi, π
1psiqqu

m
i“1 for policy π1 could be easily formed, if the Qπ values for all

58



actions were available for a subset of states tsiu
m
i“1. Thus, policy learning

can be seen as classifier learning (Figure 3.2). Once trained, the classifier

can deliver the estimated action choice pπ1psq of policy π1 for any input state

s P S.

classifier

Figure 3.2: Policy learning as classifier learning

The Monte-Carlo estimation technique of rollouts (Bertsekas and Tsitsiklis,

1996; Tesauro and Galperin, 1997) provides a way of accurately estimating

Qπ at any given state-action pair ps, aq without requiring an explicit repre-

sentation of the value function or the full MDP model. Rollouts require only

a generative model (a simulator) of the process; more specifically, given any

state-action pair ps, aq, such a model returns a next state s1 and a reward r1

sampled from the (unknown) true MDP model distributions (transition model

and reward function). A rollout for ps, aq amounts to simulating a trajectory

of the process beginning from state s, choosing action a for the first step and

actions according to policy π thereafter up to a certain horizon H, and com-

puting the total discounted reward along this trajectory. The observed total

discounted reward is averaged over a number of rollouts (also called trials)

K, to yield an accurate estimate of Qπps, aq. Thus, using a sufficient amount

of rollouts, it is possible to create a training example of the improved pol-

icy π1 in any chosen state s. A collection of such examples over a finite set

of states forms a valid training set for the improved policy π1 over any base

policy π.

The goal of the learner is not only to improve a policy, but rather to find a

good or even optimal policy. Therefore, RCPI employs an approximate policy
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Algorithm 11 Rollout Classification Policy Iteration (RCPI)

Input: policy π0, trials K, horizon H, sample size Ur

k “ ´1
repeat
k “ k ` 1
Sk`1 “ a uniformly random subset of S of size Ur (uniform sampling)
Tk`1 “ ∅ (initialization of the training set)
for (each s P Sk`1)

for (each a P A)
estimate Qπkps, aq using K rollouts of length H (simulation)

end
if (a dominating action a˚ exists in state s) then
Tk`1 “ Tk`1 Y tps, a

˚q`u (positive example for dominating action a˚)
Tk`1 “ Tk`1 Y tps, aq

´u (negative examples for dominated actions a)
end

end
πk`1 = TrainClassifier(Tk`1) (classifier/policy learning)

until (πk`1 is not better than πk) (end of policy iteration)
return πk

iteration scheme for repeated improvements, as described in Algorithm 11. At

each iteration, a new policy/classifier is produced using training data obtained

by rolling out the previous policy on a generative model of the process. Begin-

ning with any initial policy π0, at each iteration k a training set over a subset

of states Sk is formed by querying the rollout procedure to identify dominating

actions in the states of Sk. Notice that the training set contains both positive

(`) and negative (´) examples for each state, wherever a clear action domi-

nation is found. A new classifier is trained using these examples to yield an

approximate representation of the improved policy over the previous one. This

cycle is repeated until a termination condition is met. Given the approximate

nature of this policy iteration scheme, the termination condition cannot rely

on convergence to a single optimal policy. Rather, it terminates when the per-

formance of the new policy (measured again via simulation) does not exceed

that of the previous policy. The empirical expected total discounted reward

from states drawn from D obtained from and averaged over multiple runs is

used as the policy performance criterion.

The RCPI algorithm, shown graphically in Figure 3.3, yielded promising results

(Lagoudakis and Parr, 2003a) in the pendulum and the bicycle domains using

Support Vector Machines (SVMs) and Multi-Layer Perceptrons (MLPs) as
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Figure 3.3: Rollout Classification Policy Iteration (RCPI) algorithm

classifiers.

3.2 Questions and Challenges

The reinforcement learning as classification experience, despite subsequent

progress, still leaves us with several open research questions:

• Do good policies for typical decision problems exhibit significant structure?

• Can classifiers capture and generalize policy structure efficiently?

• How big of a training set for the classifier is required?

• What is the effect of the distribution of states in the training set?

• Are there critical areas of the state space where examples are required?

• How can such critical areas of the state space be identified?

• Does the classifier/policy itself reveal information about these areas?

• Can we use the classifier/policy to direct state sampling to critical areas?

• Which classification technology balances performance and complexity?

The Rollout Classification Policy Iteration (RCPI) algorithm gives us a strong

indication that the questions posted above can be answered positively. There-
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fore, in this dissertation,Hypothesis

under test

we took up the challenge to show that we can effi-

ciently explore the policy space by exploiting hints of the classifiers we use for

the representation of policies.

3.3 Contributions

Our initial effort was to uncover and study the optimal policy structureOptimal policy

structure

for typ-

ical two-dimensional reinforcement learning domains, such as the Inverted Pen-

dulum and the Mountain Car, which are appropriate for visualization and in-

spection (Rexakis and Lagoudakis, 2008). The results clearly demonstrate that

good policies exhibit significant structure, which can potentially be learned and

exploited for representational purposes. An optimal deterministic policy is a

mapping from states to actions, and optimal actions persist over large areas

in the state space.

Our focus then moved to finding how to direct the exploration of policy space

using rollouts and uncover areas, where an action prevails, in a smart and

systematic way. We tried to avoid the use of value functions due to the known

difficulties associated with their representation. Instead, we focused on using

policy rollouts, which can provide accurate estimates of Q-values in any state

by repeated simulations. We use a collection of binary classifiers to separate

action areas and represent a policy. A binary classifier separates within the

state space a dominant action from all the others.

We developed two methods for directed exploration of policy space, using SVM

and RVM classifiers. In the first one (Rexakis and Lagoudakis, 2011), we are

exploiting the structure of the classifier to direct samplingDirected

exploration of

policy space

. In the second one

(Rexakis and Lagoudakis, 2012, 2014), we utilize a regressor, approximating

the action advantage in any given state, to estimate the importance of each

state, using readily available data, while improving upon the current policy. In

both approaches, the search is focused on areas where there is a change/switch

of action domination. This directed focus on critical parts of the state space
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iteratively leads to refinement and improvement of the underlying policy and

delivers excellent control policies in only a few iterations.

The proposed methods have been thoroughly tested on three well-known learn-

ing domains: Inverted Pendulum, Mountain Car, and Acrobot. The first two

domains are appropriate for visualization and inspection thanks to their low,

two-dimensional state space. The third domain however is four-dimensional

and reveals the usefulness of the proposed directed exploration methods to-

wards discovering the most critical parts of the state space. Additionally,

we demonstrate the scalability of the proposed approaches on the problem of

learning how to control a 4-Link, Under-Actuated, Planar Robot, which cor-

responds to an eight-dimensional problem, well-known in the control theory

community. In all cases, the proposed Directed RCPI algorithms yield poli-

cies of excellent performance and demonstrate significants savings in rollout

sampling compared to the original RCPI algorithm.
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4

Related Work

There is a large body of literature in the area of reinforcement learning com-

bined with supervised learning (classification and regression). This chapter

reviews the most representative publications in this area, following a chrono-

logical order.

Dietterich and Wang (2001) proposed a reinforcement learning approach based

on batch value function approximation. They use a set of states with known

values of the V -function and they train an SVM-like regressor with (state,

V -value) tuples, to generalize the value function over the entire state space.

They exploit the full MDP model and use three different linear programming

formulations (supervised, Bellman, and advantage learning). Their algorithms

were applied to 10 maze problems and delivered promising results.

Yoon et al. (2002) use an inductive policy selection method for probabilistic

STRIPS domains (blocks world, paint world, logistics world). They do not

compute a value function in large domains, but they attempt to generalize

good policies from domains with few objects to get a useful policy for domains

with many objects. Their policies are represented as ensembles of decision

lists, using a taxonomic concept language, and they use bootstrap aggregation

(bagging) to resolve.
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Kakade and Langford (2002) reduced reinforcement learning to regression and

they introduced the Conservative Policy Iteration algorithm. They define a

policy advantage function, and they perform policy updates wherever the ad-

vantage function takes significant values.

The Rollout Classification Policy Iteration (RCPI) algorithm was proposed by

Lagoudakis and Parr (2003a) as an alternative to standard approximate policy

iteration. They replace the value function Vπpsq learning step with rollout es-

timates of the action value function Qπps, aq over a finite number of states for

all the actions in the action space, and they cast the policy improvement step

as a multi-class classification problem. The RCPI algorithm yielded promis-

ing results in the pendulum and the bicycle domains using Support Vector

Machines (SVMs) and Multi-Layer Perceptrons (MLPs) as classifiers.

A similar algorithm proposed by Fern et al. (2004, 2006, 2007) yielded satisfy-

ing results in seven deterministic and stochastic relational planning domains

from the AIPS-2000 planning competition using Decision Lists as the under-

lying classifier. The primary difference with RCPI is the form of the classi-

fication problem produced on each iteration. Lagoudakis and Parr (2003a)

generate standard multi-class classification problems, whereas they generate

cost-sensitive problems.

Bagnell et al. (2004) introduced an algorithm for learning non-stationary poli-

cies in reinforcement learning. For a specified horizon H, their approach learns

a sequence of H policies. At each iteration, all policies are fixed except for one,

which is optimized by forming a classification problem via policy rollout.

Langford and Zadrozny (2005) provided a formal reduction from reinforce-

ment learning to classification, showing that ε-accurate classification implies

near optimal reinforcement learning. They use an optimistic variant of sparse

sampling to generate H classification problems, one for each horizon time step

(1, 2, 3, . . . , H).
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Li et al. (2004, 2007) suggested a focused attention reinforcement learning

scheme. The main difference with Lagoudakis and Parr (2003a) is that they

use a cost function based on a Q-value advantage function, to grade the state

importance, construct a training set with pstate, action, costq tuples and train

a cost sensitive classifier.

Dimitrakakis and Lagoudakis (2008a) proposed a variant of a policy itera-

tion scheme which addresses the core sampling problem in evaluating a pol-

icy through simulation as a multi-armed bandit machine. They view the set

of rollout states as a multi-armed bandit machine, where each state corre-

sponds to a single lever (arm). Pulling a lever corresponds to sampling the

corresponding state once, i.e., perform a single rollout for each action in that

state. They employed heuristic variants of well-known algorithms for bandit

problems, such as Upper Confidence Bounds (Auer et al., 2002) and Succes-

sive Elimination (Even-Dar et al., 2006), and they presented experiments on

two standard reinforcement learning domains, the Inverted Pendulum and the

Mountain Car.

Dimitrakakis and Lagoudakis (2008b) offer theoretical insight into the rollout

sampling problem. They analyze the sample allocation methods described

in Dimitrakakis and Lagoudakis (2008a). They compared the performance of

Count and Fixed allocation schemes with additional ones inspired by the Upper

Confidence Bounds (Auer et al., 2002) and Successive Elimination (Even-Dar

et al., 2006) algorithms. They found that all methods outperform the Fixed

scheme in practice, sometimes by an order of magnitude.

Gabillon et al. (2010) suggest a sampling scheme for classification-based policy

iteration algorithms similar to Dimitrakakis and Lagoudakis (2008a). They

use strategies to allocate the available budget of rollouts at each iteration over

states and actions. They applied their algorithm in two domains, the Inverted

Pendulum and the Mountain Car.

Rachelson and Lagoudakis (2010) introduced the active learning scheme of
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Localized Policy Iteration (LPI), an active learning version of Rollout-based

Policy Iteration. They link the Lipschitz continuity of a Markov Decision

Process to the Lipschitz continuity of value functions. They introduce the

notion of influence radius of a state-action pair ps, aq, where a is the best

action in s, and define a volume around s in the state space, where the best

action a is guaranteed to be dominant. They tested it on a standard Inverted

Pendulum problem.

Lazaric et al. (2010) derive a finite-sample analysis of a Classification-based

API algorithm - called Direct Policy Iteration (DPI). The use a cost-sensitive

loss function, weighing each classification error by its regret (the difference

between the action-value of the greedy action and the action chosen by the

current policy). They explicitly assume that the action space is two dimen-

sional and they study how the expected error propagates through algorithm

iterations.

Gabillon et al. (2011) suggest the addition of a critic, a value function approx-

imation component, to rollout classification-based policy iteration algorithms.

They present a new RCPI algorithm, called Direct Policy Iteration with Critic

(DPI-Critic). They provide its finite-sample analysis when the critic using the

LSTD method. The idea is to use a critic to approximate the return after

we truncate the rollout trajectories. This allows us to control the bias and

variance of the rollout estimates of the action-value function. They use a cost-

sensitive loss function, the same they used in the DPI paper (Lazaric et al.,

2010), and they train a cost-sensitive multi-class classifier to return a policy

that minimizes the empirical error.

Cheng et al. (2011); Fürnkranz et al. (2012) proposed a preference-based exten-

sion of approximate policy iteration. They use a preference learning method

called label ranking, to allow sorting of available actions from most promising

to least promising for each state, and they train a label ranker instead of a

classifier. They present experiments on Inverted Pendulum, Mountain Car,
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and cancer clinical trials domains.

Farahmand et al. (2012, 2013, 2014, 2015) analyze a general algorithm of

Classification-based Approximate Policy Iteration (CAPI) theoretically. They

define an action-gap weighted loss function, and then they minimize that func-

tion. They exploit the action-gap regularity (Farahmand, 2011) in the analysis

of classification-based reinforcement learning.
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5

Benchmark Domains

In this thesis, we chose to study four standard domains in reinforcement learn-

ing: Inverted Pendulum, Mountain Car, Acrobot and 4-Link Planar Robot.

The first two problems are defined on two-dimensional continuous state spaces,

and therefore they are appropriate for visualization and inspection. The third

and fourth problems, are defined on a four-dimensional continuous state space

and a eight-dimensional continuous state respectively, and therefore are ap-

propriate for verifying that rollout sampling for learning is indeed directed to

important parts of the state space.

5.1 Inverted Pendulum

The Inverted Pendulum problem is to balance a pendulum of unknown length

and mass at the upright position by applying forces to the cart it is attached

to (Figure 5.1). Three actions are allowed: left force LF (´50 Newtons), right

force RF (`50 Newtons), or no force NF (0 Newtons). In the stochastic version

of the problem, all three actions are noisy; Gaussian noise with µ “ 0 and

σ2 “ 10 is added to the chosen action. There is no noise in the deterministic

version. The state space of the problem is continuous and consists of the

vertical angle θ and the angular velocity 9θ of the pendulum. The transitions
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are governed by the nonlinear dynamics of the system (Wang et al., 1996)

and depend on the current state and the current (noisy or noiseless) control

u:

:θ “
g sinpθq ´ αmlp 9θq2 sinp2θq{2´ α cospθqu

4l{3´ αml cos2pθq

where g is the gravity constant (g “ 9.8m{s2), m is the mass of the pendulum

Figure 5.1: Inverted Pendulum

(default: m “ 2.0 kg), M is the mass of the cart (default: M “ 8.0 kg), l is

the length of the pendulum (default: l “ 0.5 m), and α “ 1{pm `Mq. The

simulation step is 0.1 seconds. Thus the control input is given at a rate of 10

Hz, at the beginning of each time step, and is kept constant during any time

step. A reward of `1 is given as long as the angle of the pendulum does not

exceed π{2 in absolute value (the pendulum is above the horizontal line). An

angle greater than π{2 in absolute value signals the end of the episode and a

reward of 0. The discount factor of the process is set to 0.95.

5.2 Mountain Car

The Mountain Car problem is to drive an underpowered car from the bottom

of a valley between two mountains to the top of the mountain on the right

(Figure 5.2). The car is not powerful enough to climb any of the hills directly

from the bottom of the valley even at full throttle; it must build some energy
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by climbing first to the left (moving away from the goal) and then to the right.

Three actions are allowed: forward throttle FT (+1), reverse throttle RT (-1),

or no throttle NT (0). In the deterministic version of the problem, as originally

specified (Sutton and Barto, 1998), there is no noise. In the stochastic version,

to make the problem a little more challenging, we have added noise to all three

actions; Gaussian noise with µ “ 0 and σ2 “ 0.2 is added to the chosen action.

The state space of the problem is continuous and consists of the position x

Goal

Figure 5.2: Mountain Car

and the velocity 9x of the car. The transitions are governed by the simplified

nonlinear dynamics of the system (Sutton and Barto, 1998) and depend on the

current state pxptq, 9xptqq and the current (noisy or noiseless) control uptq:

xpt` 1q “ Boundxrxptq ` 9xpt` 1qs

9xpt` 1q “ Bound 9xr 9xptq ` 0.001uptq ´ 0.0025 cosp3xptqqs

where Boundx is a function that keeps x within r´1.2, 0.5s, while Bound 9x

keeps 9x within r´0.07, 0.07s. The point p´0.5, 0q corresponds to the bottom

of the valley when the car is not moving. If the car hits the bounds of the

position x, the velocity 9x is set to zero. A reward of 0 is given at each step

as long as the position of the car is below the right bound (0.5). As soon as

the car position hits the right bound of position, it has reached the goal; the

episode ends successfully, and a reward of `1 is given. The discount factor of

the process is set to 0.99.
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5.3 Acrobot

The Acrobot is a nonlinear dynamical system composed of a two-link underac-

tuated robot arm which is allowed to rotate around a fixed point at the shoulder

joint (Figure 5.3). Torque τ can be applied to the elbow joint only. The goal is

to swing the arm around the fixed point so that the other end reaches a height

which is one link’s length higher than the fixed point. This system has been

studied by robotics and control engineers (Spong, 1994; DeJong and Spong,

1994).

Goal level

shoulder joint, acrobot
rotates around this point

elbow joint, torque
is applied here

Figure 5.3: Acrobot

Three levels of torque are allowed: positive (`1), negative (´1), or no torque

(0). Gaussian noise (µ “ 0, σ2 “ 0.2) is added to the chosen action. The sys-

tem is described by four state variables: shoulder angular position θ1 P r0, 2πs,

shoulder angular velocity 9θ1 P r´4π,`4πs, elbow angular position θ2 P r0, 2πs,

elbow angular velocity 9θ2 P r´9π,`9πs. Any values of θ1, θ2 outside r0, 2πs

are wrapped into r0, 2πs by subtracting 2kπ, where k P Z. The transitions are

governed by the nonlinear dynamics of the system (Spong, 1994; Sutton and

Barto, 1998) and depend on the current state pθ1, 9θ1, θ2, 9θ2q and the current
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control τ :

:θ1 “ ´
pd2

:θ2 ` φ1q

d1

, :θ2 “
pτ ` d2

d1
φ1 ´m2`1`c2 9θ2

1 sin θ2 ´ φ2q

pm2`2
c2 ` Ic2 ´

d22
d1
q

d1 “ m1`
2
c1 `m2p`

2
1 ` `

2
c2 ` 2`1`c2 cos θ2q ` Ic1 ` Ic2

d2 “ m2p`
2
c2 ` `1`c2 cos θ2q ` I2

φ1 “ ´m2`1`c2 9θ2
2 sin θ2 ´ 2m2`1`c2 9θ1

9θ2 sin θ2 `

pm1`c1 `m2`1qg cos
´

θ1 ´
π

2

¯

` φ2

φ2 “ m2`c2g cos
´

θ1 ` θ2 ´
π

2

¯

where g “ 9.8m{s2 is the gravity constant, m1 “ m2 “ 1Kg are the masses

of the links, l1 “ l2 “ 1m are the lengths of links, goal level l3 “ 1m above

rotation point, lc1 “ lc2 “ 0.5m are the lengths to the center of mass of the

links, and Ic1 “ Ic2 “ 1 Kg ¨ m2 are the moments of inertia of the links. A

time step of 0.05 seconds was used in the simulation, with actions chosen after

every four time steps, a total of 0.2 seconds per action. The angular velocities

are limited so that they stay within their bounds. The discount factor of the

process is set to 0.98.

The Acrobot

Reward

classic reward for the Acrobot, suggested by (Sutton and Barto, 1998),

is 1 upon reaching the goal and 0 otherwise. We propose here a shaping

reward for the Acrobot, because the original delayed reward scheme could not

provide any guidance to the initial random controller. We define the reward

for transitioning from state s to state s1 by taking action a as ρ̃ps, a, s1q “

E1ps
1qˆE2ps

1q´E1psqˆE2psq, where E1psq and E2psq is the total mechanical

energy for state s for the shoulder and the elbow arm, respectively. Consider

the Acrobot shown in Figure 5.4. Intuitively, a policy that drives the Acrobot

tip to the goal (level `3 above the shoulder joint) is a policy that maximizes

the mechanical energy of both arms. In a system where the upper arm is

moving slowly and the elbow is spinning, the mechanical energy of the system

is high, but the upper arm will not make it high enough for the tip to reach
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the goal.

Goal level

Figure 5.4: Acrobot reward

The shoulder arm is a line segment AB with length `1 and the elbow arm is

a line segment BC with length `2. The center of mass is D for the shoulder

arm and E for elbow arm. The mechanical energy for the shoulder arm is

E1 “ U1 ` K1. The gravitational potential energy is U1 “ h1m1g, where

h1 “ `c1 p1´ cospθ1qq. The kinetic energy of the shoulder arm due to rotation

about the shoulder joint A is:

K1 “
1

2
I1A

9θ1

2
(5.1)

where the I1A “ Ic1 ` m1`
2
c1 computed from Ic1 using parallel axis theorem.

Similarly, the mechanical energy for the elbow arm is E2 “ U2 ` K2. The

potential energy due to the gravity is U2 “ h2m2g, where h2 “ p`1 ` `c2q ´

p`1 cospθ1q ` `c2 cospθ1 ` θ2qq. The kinetic energy of the elbow arm:

K2 “
1

2

ÿ

i

mi 9rT 9r (5.2)

where mi the mass of point i of the elbow arm, r is the distance from the

shoulder joint A, and 9r the speed of point i. Let `i be the distance of point i
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from the elbow joint B.

r “

„

`1 sinpθ1q `i sinpθ1 ` θ2q

´`1 cospθ1q ´`i cospθ1 ` θ2q



and

9r “

„

`1
9θ1 cospθ1q `ip 9θ1 `

9θ2q cospθ1 ` θ2q

`1
9θ1 sinpθ1q `ip 9θ1 `

9θ2q sinpθ1 ` θ2q



9rT 9r “

„

`1
9θ1 cospθ1q `1

9θ1 sinpθ1q

`ip 9θ1 `
9θ2q cospθ1 ` θ2q `ip 9θ1 `

9θ2q sinpθ1 ` θ2q



(5.3)

„

`1
9θ1 cospθ1q `ip 9θ1 `

9θ2q cospθ1 ` θ2q

`1
9θ1 sinpθ1q `ip 9θ1 `

9θ2q sinpθ1 ` θ2q



“`2
1

9θ1

2
cos2

pθ1q ` `
2
i p

9θ1 `
9θ2q

2 cos2
pθ1 ` θ2q`

2`1
9θ1 cospθ1q`ip 9θ1 `

9θ2q cospθ1 ` θ2q`

`2
1

9θ1

2
sin2

pθ1q ` `
2
i p

9θ1 `
9θ2q

2 sin2
pθ1 ` θ2q`

2`1
9θ1 sinpθ1q`ip 9θ1 `

9θ2q sinpθ1 ` θ2q

Using the identity cospθ1q cospθ1 ` θ2q ` sinpθ1q sinpθ1 ` θ2q “ cospθ2q and the

above K2 equation becomes

K2 “
1

2

ÿ

i

mi

´

`2
1

9θ1

2
` 2`1`i 9θ1p

9θ1 `
9θ2q cospθ2q ` `

2
i p

9θ1 `
9θ2q

2
¯

(5.4)

given that the inertia of the elbow around joint B is:

I2B “
ÿ

i

mi`
2
i

and the distance from B to the elbow center of mass:

`c2 “

ř

imi`i
m2

K2 equation becomes:

K2 “
1

2

`

m2`
2
1 ` I2B ` 2m2`1`c2 cospθ2q

˘

9θ1

2
` (5.5)

1

2
I2B

9θ2

2
`

`

I2B `m2`1`c2 cospθ2q
˘

9θ1
9θ2
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where I2B “ Ic2 `m2`
2
c2 .

A state s is a tuple pθ1, 9θ1, θ2, 9θ2q recording the two angles and the two angular

velocities. Given the above formulas for the potential and kinetic energies, the

immediate reward ρ̃ps, a, s1q is defined as:

ρ̃ps, a, s1q “ E1ps
1
qE2ps

1
q ´ E1psqE2psq,

“ pU 11 `K
1
1qpU

1
2 `K

1
2q ´ pU1 `K1qpU2 `K2q (5.6)

The justification for this definition is that the immediate reward represents

the momentary difference in the products of total energy between the new and

the old state; the product of total energies of the elbow and shoulder joints

implies that energy gains are attributed to both arms.
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5.4 4-Link Planar Robot

The 4-Link Planar Robot is a nonlinear dynamical system composed of a four-

link underactuated robot arm with actuation only on the middle joint (Figure

5.5). In particular, torque pτ3q is applied to the third joint. The goal for the

robot is to swing around the first joint, a fixed rotation point, so that the other

end reaches the 80% of the maximum height the robot can achieve above the

rotation point.

Three levels of torque are allowed: positive (`10), negative (´10), or no

torque (0). Gaussian noise (µ “ 0, σ2 “ 2) is added to the chosen action.

The system is described by eight state variables, the absolute angle of each

joint θ1, θ2, θ3, θ4 P r0, 2πs and the angular velocity of each joint 9θ1, 9θ2, 9θ3, 9θ4 P

r´2π,`2πs. Any values of θ1, θ2, θ3, θ4 outside r0, 2πs are wrapped back into

r0, 2πs by subtracting 2kπ, where k P Z. The dynamics of this system have

been studied by robotics and control engineers (Xin and Liu, 2014). The tran-

sitions are governed by the nonlinear dynamics of the system and depend on

the current state pθ1, θ2, θ3, θ4, 9θ1, 9θ2, 9θ3, 9θ4q and the current control τ3 applied to

third joint. The gravity constant is g “ 9.8m{s2, m1 “ m2 “ m3 “ m4 “ 0.5Kg

are the masses of the links, `1 “ `2 “ `3 “ `4 “ 0.5m are the lengths of links,

`c1 “ `c2 “ `c3 “ `c4 “ 0.25m are the lengths to the center of mass of the links,

and J1 “ J2 “ J3 “ J4 “ 0.0417 Kg ¨ m2 are the moments of inertia of the

links. Time step is 0.06 seconds. The discount factor of the process is set to

0.92.

The Equation of

motion

motion equation of the robot is:

Mpqq:q `Hpq, 9qq `Gpqq “ τ,

where vector q P R4 holds the relative angles q1 “ θ1, q2 “ θ2 ´ θ1, q3 “

θ3 ´ θ2, q4 “ θ4 ´ θ3; Mpqq P R4ˆ4 is a symmetric positive definite inertia

matrix; vector Hpq, :qq P R4 contains the Coriolis and centripetal terms; vector
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passive joint, robot
rotates around this point

Goal level

active joint, torque
is applied here

Figure 5.5: 4-Link Planar Robot with active third joint

Gpqq P R4 contains the gravitational terms; and vector τ P R4 holds the torque

applied to each joint. In our case, τ “ r0, 0, τ3, 0s where τ3 is the torque applied

to the third joint.

The non-zero entries of matrix Mpqq P R4ˆ4 are shown below; all others are

80



zero.

M11 “a11 ` a22 ` a33 ` a44 ` 2a12 cos q2 ` 2a13 cos pq2 ` q3q`

2a14 cos pq2 ` q3 ` q4q ` 2a23 cos q3 ` 2a24 cos pq3 ` q4q ` 2a34 cos q4

M12 “a22 ` a33 ` a44 ` a12 cos q2 ` a13 cos pq2 ` q3q ` a14 cos pq2 ` q3 ` q4q`

2a23 cos q3 ` 2a24 cos pq3 ` q4q ` 2a34 cos q4

M13 “a33 ` a44 ` a13 cos pq2 ` q3q ` a14 cos pq2 ` q3 ` q4q`

a23 cos q3 ` a24 cos pq3 ` q4q ` 2a34 cos q4

M14 “a44 ` a14 cos pq2 ` q3 ` q4q ` a24 cos pq3 ` q4q ` a34 cos q4

M22 “a22 ` a33 ` a44 ` 2a23 cos q3 ` 2a24 cos pq3 ` q4q ` 2a34 cos q4

M23 “a33 ` a44 ` a23 cos q3 ` a24 cos pq3 ` q4q ` 2a34 cos q4

M24 “a44 ` a24 cos q3 ` q4 ` a34 cos q4

M33 “a33 ` a44 ` 2a34 cos q4

M34 “a44 ` a34 cos q4

M44 “a44

where the axx constants are

a11 “ J1 `m1`
2
c1 ` pm2 `m3 `m4q`

2
1

a12 “ m2`1`c2 ` pm3 `m4q`1`2

a13 “ m3`1`c3 `m4`1`3

a14 “ m4`1`c4

a22 “ J2 `m2`
2
c2 ` pm3 `m4q`

2
2

a23 “ m3`2`c3 `m4`2`3

a24 “ m4`2`c4

a33 “ J3 `m3`
2
c3 `m4`

2
3

a34 “ m4`3`c4

a44 “ J4 `m4`
2
c4
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the entries of the H vector are

H1 “´ a12 9q2p2 9q1 ` 9q2q sin q2 ´ a23 9q3p2p 9q1 ` 9q2q ` 9q3q sin q3

´ a34p2 9q2 9q3 ` 9q4p2p 9q1 ` 9q3q ` 9q4qq sin q4

´ a13p 9q2 ` 9q3qp2 9q1 ` 9q2 ` 9q3q sin pq2 ` q3q

´ a24pp 9q3 ` 9q4q
2
` 2 9q1p 9q3 ` 9q4q ` 4 9q2 9q3q sin pq3 ` q4q

´ a14p 9q2
2 ` 4 9q2 9q3 ` p 9q3 ` 9q4q

2
` 2 9q1p 9q2 ` 9q3 ` 9q4qq sin pq2 ` q3 ` q4q

H2 “a12 9q2
1 sin q2 ´ a23 9q3p2p 9q1 ` 9q2q ` 9q3q sin q3

´ a34 9q4p2p 9q1 ` 9q2 ` 9q3q ` 9q4q sin q4 ` a13 9q2
1 sin pq2 ` q3q

´ a24pp 9q3 ` 9q4q
2
` 2 9q1p 9q3 ` 9q4q ` 2 9q2p 9q3 ´ 9q4qq sin pq3 ` q4q

H3 “a23p 9q1 ` 9q2q
2 sin q3 ´ a34 9q4p2p 9q1 ` 9q2 ` 9q3q ` 9q4q sin q4

` a13 9q2
1 sin pq2 ` q3q ` a24p 9q1 ` 9q2q

2 sin pq3 ` q4q

` a14 9q2
1 sin pq2 ` q3 ` q4q

H4 “a34p 9q1 ` 9q2 ` 9q3q
2 sin q4 ` a24p 9q1 ` 9q2q

2 sin pq3 ` q4q

` a14p 9q1q
2 sin pq2 ` q3 ` q4q

the entries of the G vector are

G1 “´ b1 sin q1 ´ b2 sin pq1 ` q2q ´ b3 sin pq1 ` q2 ` q3q

´ b4 sin pq1 ` q2 ` q3 ` q4q

G2 “´ b2 sin pq1 ` q2q ´ b3 sin pq1 ` q2 ` q3q ´ b4 sin pq1 ` q2 ` q3 ` q4q

G3 “´ b3 sin pq1 ` q2 ` q3q ´ b4 sin pq1 ` q2 ` q3 ` q4q

G4 “´ b4 sin pq1 ` q2 ` q3 ` q4q

and the bx constants are

b1 “pm1`c1 ` pm2 `m3 `m4q`1qg

b2 “pm2`c2 ` pm3 `m4q`2qg

b3 “pm3`c3 `m4`3qg

b4 “m4`c4g

We4-Link Planar

Robot Reward

define the reward for transitioning from state s to state s1 by taking action

a as ρ̃ps, a, s1q “ Eps1q ´ Epsq, where Epsq is the total mechanical energy of
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the system. Intuitively, a policy that drives the tip to the goal is a policy that

maximizes the mechanical energy of the system. The total energy is the sum

of the kinetic energy Ki and the potential energy Ui of all links:

Epsq “
4
ÿ

i“1

Ki `

4
ÿ

i“1

Ui

To simplify notation we use (Xin and Liu, 2014):

`ij “

$

’

&

’

%

`j, for j ă i,

`ci, for j “ i,

0 for j ą i

Kk “
1

2
Jk 9θk

2
`

1

2

4
ÿ

i“1

4
ÿ

j“1

mk`ki`kj cos pθj ´ θiq 9θi 9θj

The potential energy is calculated relative to the level `U “ `1 ` `2 ` `3 ` `c4

below rotation point.

Uk “ mkgp
k
ÿ

i“1

`kicosθi ` `Uq
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6

Directed Sampling

In this section, we are going to explicate our main contribution in reinforce-

ment learning through classification. In particular, we will show how, given

a policy, we identify a subset of selected states, which will be probed to form

a training set for the new (improved) policy. For this selection, we use hints

from the current, approximate policy representation to focus on critical states,

which can potentially lead to policy improvement using fewer computational

resources. Before we proceed, let’s define how we value states and how we

perform classification of actions. Note that from this point on, we consider

multi-dimensional, continuous state spaces and therefore states will be denoted

as vectors, s.

6.1 Action Advantage Function

We identify as important areas for probing, areas in the state space, where

changes in action domination take place. Given policy π, we say that an

action a dominates other actions in some state s, when the state-action value

function Qπps, aq for that action is greater that the rest of the actions. It’s

worth noting here that there may exist more than one dominating actions over

large areas of the state space (Rexakis and Lagoudakis, 2008), all of which will

85



share the same value in that area.

A first approach to identify areas in the state space that are worthy of further

examination, is to find states that exhibit a difference in Qπps, aq values for at

least two actions. The rationale is that if there is no difference between action

values, all actions in that state are equally bad (or equally good) and makes

no difference which action is chosen. We define the maximum difference in Q

values for state s over all actions in the action as follows:

fpsq “ max
a1PA

!

pQπps, a
1
q

)

´min
a2PA

!

pQπps, a
2
q

)

Then, we define the action advantage function ∆Qpsq as follows:

∆Qpsq “ 2

˜

1

1` expp´fpsqq
´ 0.5

¸

Function ∆Qpsq is based on a scaled and shifted sigmoid:

Sptq “ 2

˜

1

1` expp´tq
´ 0.5

¸

which is shown in Figure 6.1.
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Figure 6.1: The scaled and shifted sigmoid function Sptq

The maximum difference in Q values for state s is always greater than or

equal to zero (fpsq ě 0) and, thus, the advantage function ∆Qpsq is in the
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range r0, 1q. ∆Qpsq is used in both our directed exploration proposals, sample

filtering and importance sampling, described later in this chapter.

6.2 Training Set Formation and Filtering Limit

In our work, we represent (approximately) a deterministic policy using a multi-

class classifier. To obtain such a classifier-based policy, we need to train a

classifier, and therefore we form a training set as follows. We identify a set of

candidate states (using two directed sampling methods that will be described

later) and we perform rollouts from these states, using the previous policy to

estimate Qps, aq values for all states in the set and for all actions. Then, we

calculate the advantage function values ∆Qpsq for all these states. Finally, Sample

filtering

we

form the training set for new the classifier using data only from states with

∆Q ą ε, where ε is a filtering limit used to clear out noise in action domination.

States with ∆Q ď ε have low action domination probability, are not reliable,

and are therefore discarded from the formation of the training set.

The main objective of filtering is to remove the smaller values of ∆Q, the ones

that are close to zero. Let us define A to be the set of all distinct ∆Q values

and Aε Ď A be the set of all ∆Q ď ε values from A, where ε is a member of

the A set. All states with ∆Q values in Aε are discarded. The filtering limit ε

is determined as follows:

hpεq “
ÿ

qPAε

q ´ c
ÿ

q1PA

q1

ε “ arg min
εPA

hpεq, such that hpεq ě 0

where c P p0, 1q is a small positive value. The c value we used for all domains

is 10´6. The calculation of the filtering limit is shown in Algorithm 12. In

short, this procedure isolates the smaller ∆Q values which add up to a tiny

fraction (defined by c) of the total sum of all ∆Q values.
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Algorithm 12 Filtering limit calculation

Input: DeltaQ : array of ∆Q values, c: small constant
Output: ε : filtering limit

limit “ sumpDeltaQq ˚ c
DeltaQ sorted “ sortpDeltaQ,AscendingOrderq
s “ 0
for each ε P DeltaQ sorted
s “ s` ε
if s ą limit then

return ε
end

end

6.3 Binary Classifiers

In most reinforcement learning problems, there are more than two action

choices in each state and, therefore, the resulting problem in RCPI is a multi-

class classification problem. We propose the use of a set of binary classifiers

(Rexakis and Lagoudakis, 2008) to represent a policy. Each binary classifier

corresponds to one action; each action/classifier is trained against all others.

If yapsq is the prediction function of the classifier for action a in state s, we

use:

arg max
aPA

yapsq

to resolve conflicts (select the best action), when many action claim the state.

For both SVM and RVM classifiers, we have:

yapsq “
m
ÿ

i“1

taiα
a
i κpsi, sq ` b

a

While this scheme works well (Scholkopf and Smola, 2001), it is somewhat

heuristic. The binary classifiers are trained on different binary classification

problems and it is unclear whether their yapsq values are scaled evenly. How-

ever, using class probabilities does not improve multiclass decisions; it only

adds one more computational step.

The main advantage of representing a policy that way is that each classifier

separates one action from the rest and defines aBorder in State

Space

clear border within the state

space. The alternative method of training each action against each other and
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using voting to resolve conflicts, usually requires more binary classifiers, one

classifier for each pair of actions, that is
`

|A|
2

˘

“
|A|p|A|´1q

2
classifiers, instead

of |A| classifiers needed in the one against all others case, which implies more

time to train and many more separating borders to deal with.

6.4 Directed Policy Search

In this thesis, we propose two methods for directed policy search. Both are

based on exploiting the structure of modern classifiers. Support Vector Ma-

chines [14; 18; 75] and Relevance Vector Machines [68; 69] share a common pre-

diction function structure that depends only on a selected subset of input

vectors, which we consider as active1. These are chosen by the corresponding

training/optimization process to describe the separating border, by assigning

non-zero value to their αi coefficients. It is worth noting here that most of the

alpha coefficients are zero, giving a sparse prediction function:

ypsq “
ÿ

iPM
tiαiκpsi, sq ` b (6.1)

whereM is the set of the active vector indexes in the training set tpsi, tiqu
m
i“1

and tαiu
m
i“1 the corresponding alpha coefficients. For convenience, we define the

active vectors tuple set
 

p 9si, 9ti, 9αiq
(G

i“1
, with 9α being the non-zero α coefficients

and G “ |M| being the number of active vectors. Therefore, the prediction

function becomes:

ypsq “
G
ÿ

i“1

9ti 9αiκp 9si, sq ` b (6.2)

These active input vectors hold significant “positions” in the state space. This

observation gave rise to the idea that, if these classifiers are used to represent

policies in RCPI, then there should be a way to guide the selection of the next

set of rollout states around the action boundaries of the current policy.

1 Active input vectors are the support vectors in SVMs and the relevance vectors in RVMs.
They are the input vectors that have non-zero corresponding α coefficients in the decision
function (6.1).
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We use an ensemble of binary classifiers, one for each action to represent a

deterministic policy. Our analysis focuses on the C-SVM and RVM classifiers.

Given a set of training data tpsi, tiqu
m
i“1 for a certain action a, where si is an N -

dimensional input vector (a state) and ti P t´1,`1u is a class identifier (action

a chosen or not in that state), an N ´ 1 dimensional surface is constructed

by the decision function (6.2) of the classifier in the input (state) space to

separate the two classes. Any point s in the input space can then be classified

using equation (6.2). If ypsq yields a positive number, s is classified in the `1

class and the action a claims state s, otherwise it is classified in the ´1 class

and state s is left to be claimed by other actions.

6.4.1 Policy Evaluation

Since our policies are represented by classifiers, classification accuracy is nec-

essary for reliability. However, this is not necessarily related to reinforcement

learning performance. Therefore, performance of a learned policy is evaluated

in terms of expected total discount reward. This kind of policy evaluation is

achieved through rollout testing: we start a number of independent trajecto-

ries of several steps each, from states drawn from the initial state distribution

to obtain empirical averages in all tested domains. This ensures us that we

keep optimizing the reinforcement learning goal.

6.4.2 Directed Policy Search using Active Input Vectors (DRCPI-AIV)

We use binary classifiers to represent policies and the state space is the input

space for the classifier. Active input vectors are some key states found in the

training set and define the boundary (6.2) between different action choices.

As discussed above, an attempt to improve the currently represented policy

will certainly have to probe the states around this boundary. To perform state

resampling, we initially draw the line that goes through an active input vector

and is perpendicular to the separating boundary defined by the classifier. The
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normal to the boundary for point s in the input space has a direction given

by (Riley et al., 2006):

gdpsq “ ∇sypsq “ ∇s

˜

G
ÿ

i“1

9ti 9αiκp 9si, sq ` b

¸

For the gaussian kernel (radial basis functions)

κRBFps
1, sq “ exp

`

´ β‖s1 ´ s‖2
˘

, β ą 0 (6.3)

we have

gdpsq “ 2β
G
ÿ

i“1

9ti 9αip 9si ´ sqκRBFp 9si, sq .

Now that we have the direction, we seek to find the projections of the support

vectors on the separating boundary, given that the support vectors lie at critical

areas along the edge. In particular, for each active vector 9si, we seek a point

ui (Figure 6.2) that satisfies the following two conditions:

λigdpuiq ` ui ´ 9si “ 0
G
ÿ

j“1

tj 9αjκp 9sj,uiq ` b “ 0

se
pe
rat

ing border ṡi

ui

Figure 6.2: Projection ui of active
input vector 9si onto separating border

For each support vector, this is a system of N ` 1 non-linear equations with

unknowns ui (N -dimensional vector) and λi (scalar) (Riley et al., 2006). An

efficient arithmetic solution to this system can be given by Powell’s hybrid

algorithm (Powell, 1970) using rsi, 0s
T as an initial guess for rui, λis

T . Solutions

ui that fall outside the input space are discarded. Given a valid ui, the unit

(normalized) vector gdi at point ui which is perpendicular to the separating

boundary is gdi “ gdpuiq{‖gdpuiq‖. A new input point zipdq along this line at

distance d from ui will be zipdq “ ui ` dgdi, where d P R.
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Let k be the policy iteration number. Given the above derivation and any pol-

icy πk represented as an SVM or RVM classifier with active vectors

 

9ski
(Gk

i“1
, it is straightforward to select a new set of states around the sep-

arating boundary to probe with rollouts. We cover a zone wide enough to

accommodate possible mistakes of the next policy in identifying a more pre-

cise border between different action choices. First, we define the locus for the

centers used for Gaussian resampling to be the two parallel hyper surfaces to

the border, one on each side, shown with a red line and a green line in Fig-

ure 6.3. These surfaces have a dimensionality of N ´ 1 and lie at distance dk

from the separating border, where dk is the average distance of all active vec-

tors ski from the border. Then, we perform resampling of rollout states from

an N -dimensional Gaussian, centered on the intersection of the perpendicular

line that passes through the active vector ski and the two parallel surfaces, with

covariance matrix Σ “ dkI, where I is the N -dimensional unit matrix. The

total number of rollout states is M , the resampling size, and they are equally

distributed to all active vectors, that is mi points per active vector, satisfying

the condition
řGk

i“1m
k
i “ M . More specifically, the next set of rollout states

(probes) is:

Sk`1“
 

si,j „N puki ` p´1qjdkgd
k
i q, d

k
i Iq : i“1 . . . Gk, j“1 . . .mk

i

(

(6.4)

where i is an index over active vectors and j is an index over samples per active

vector. Note that, for each active vector, half the samples are taken on one

side and half on the other, based on the odd or even value of j. The proposed

DRCPI-resampling procedure is depicted in Figure 6.3.

Note that the first iteration begins with a purely random, but deterministic,

policy and therefore S1 cannot be formed in the way described above, since

there is no classifier to represents π0. The set S1 with size U is simply a

uniformly random selection of states from the entire state space to guarantee

full coverage at the beginning2.

2 Without domain knowledge, uniform sampling is the only option to ensure that no part
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ṡk3
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Figure 6.3: DRCPI-Resampling: using active input vectors from the k-th iteration to
select a new set of states for the pk ` 1q-th iteration

After the selection of rollout states, we have to form a training set for each

action to train the corresponding binary classifier for the improved policy.

Probing a particular state s for the improved policy over a base policy π boils

down to estimating the Qπ values for all actions in that state using rollouts

and identifying the dominating action(s) (if any). Say that these estimated

values are pQπps, aq, a P A. To include state s in some training set, we need

to identify at least one dominating action, whose value significantly exceeds

the value of some other action. To quantify this difference we use the action

advantage function ∆Qpsq.

If ∆Qpsq ą ε, then any action a˚ “ arg max
a1PA

t pQπps, a
1
qu that maximizes

pQπps, a
1q in state s is considered dominating and a pair ps, a˚q is inserted

in the training set for the classifier of action a˚ as a positive (`) example; all

will remain initially unexplored. In particular cases, domain knowledge could be used to
perform a focused non-uniform sampling.
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Figure 6.4: Directed RCPI with Active Input Vectors (DRCPI-AIV)

other actions a ‰ a˚, whose value is significantly less (ε) than the value of a˚,

are considered dominated and, for each one of them, a pair ps, aq is inserted in

the training set for action a as a negative (´) example. Note that some actions

may be neither dominating, nor dominated; no training data will be produced

for such actions. States with ∆Qpsq ď ε do not yield any training data at

all. This simple dominance criterion is sufficient in most cases for dealing with

estimation noise.

We should stress that our approach requires the estimation of action values

at few isolated points (rollout states) only; nowhere does it need a full value

function over the entire state-action space. Therefore, the known issues of

value function approximation are not applicable. These required values are

obtained as unbiased estimates from Monte-Carlo simulation (policy rollouts)

and can be estimated to any desired accuracy provided sufficient simulation

time.

To summarize, the complete algorithm is shown graphically in Figure 6.4.

Given a policy πk at iteration k represented as an SVM/RVM classifier, the

active input vectors in πk are used to select the new subset of states Sk`1 at
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which the improved policy πk`1 will be probed. Each probe will yield pairs

of data in the training set Tk`1, if domination is detected. Once the training

set is formed, a new classifier is trained to represent πk`1 and the process

repeats from the beginning. Clearly, there is no guarantee for monotonic policy

improvement in this iterative scheme, however the chances can be increased by

repeating some iteration if no improvement was achieved; since each iteration is

randomized, it is likely that another run may produce better results. Therefore,

if policy πk`1 is not better than πk (tested through simulation), iteration k is

repeated for a maximum of L attempts until an improved policy is found. If all

attempts are exhausted without improvement, the algorithm terminates. The

entire Directed RCPI (DRCPI) algorithm for policy search utilizing Active

Input Vectors (AIV) for guiding the search, called DRCPI-AIV, is shown in

Algorithm 13.
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Algorithm 13 Directed RCPI-AIV (DRCPI-AIV)

Input: policy π0, attempts L, trials K, horizon H, size U , points M

k “ ´1 (policy iteration)
repeat
k “ k ` 1
l “ 0 (repeated attempts)
repeat
l “ l ` 1
if (k “ 0) then
Sk`1 “a uniformly random subset of S of size U (uniform sampling)

else
{directed sampling}
 

9ski
(Gk

i“1
Ð active input vectors in πk

 

uki
(Gk

i“1
Ð projections of 9ski on boundary

 

gd
k
i

(Gk
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Ð perpendicular directions at uki
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end
Tk`1 “ ∅ (initialization of training sets)
for (each s P Sk`1)

for (each a P A)
estimate Qπkps, aq using K rollouts of length H (simulation)

end
ε = FilteringLimit(∆Qpsq @ s P Sk`1)
if (∆Qpsq ą ε) then
Tk`1“Tk`1 Y tps, a

˚q`u (for dominating actions α˚)
Tk`1“Tk`1 Y tps, aq

´u (for dominated actions α)
end

end
πk`1 = TrainClassifiers(Tk`1)

until
`

(πk`1 is better than πk) or (l “ L)
˘

(end of repeated attempts)
until (πk`1 is not better than πk) (end of policy iteration)
return πk

6.4.3 Directed Policy Search using Importance Sampling (DRCPI-IS)

In this section, we strive to identify important areas for probing by exploiting,

this time, the action advantage function ∆Q and a particle-filter-like resam-

pling procedure. Once again, we use rollouts to estimate state-action values

Qps, aq and ∆Qpsq in selected states s.

ImportantImportance

sampling

areas of the state space do not lie strictly on the policy boundaries.
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Consider the case of only two actions; the advantage function ∆Qpsq is ei-

ther zero along the border or some kind of discontinuity occurs at the border.

Intuitively, the border itself is not so important; however, the area around

the border, where ∆Q is significant and changes fast is quite important as

it indicates a potential policy change. In order to identify these areas of sig-

nificance, we use the importance function, which is a function based on the

product ∆Qpsq ¨ ‖∇∆Qpsq‖2, where ∇∆Qpsq is the gradient vector of ∆Qpsq.

Note that this product takes high value, only if the value of ∆Qpsq is high and

its gradient is high. Intuitively, the importance function offers a quantitative

measure of potential action change and, therefore, can be used to characterize

important parts of the state space.

But, where can one find this gradient vector, when even ∆Qpsq itself is not

analytically known? Our approach towards estimating this gradient vector is

a simple solution that takes advantage of the already available information to

minimize overhead. At the end of each iteration, the estimated values of ∆Qpsq

that were used to form the training set Tk`1 for the next classifier(s) are still

available. We use these values to form another training set T 1k`1 of
`

s,∆Qpsq
˘

pairs in order to generalize and approximate the function ∆Qpsq over the entire

state space by regression. Since differences in Qps, aq are not important for ∆Q

estimation, we do not use filtering here. We train an SVM/RVM regressor on

these data, not only because we seek to exploit the same technology and benefit

from the advantages it offers, but also, more importantly, because the learned

function can be analytically differentiated to yield the desired gradient vector.

Specifically, the SVM/RVM regressor approximation of the action advantage

function ∆Qpsq is

qpsq “
G
ÿ

i“1

9αi∆Qp 9siqκp 9si, sq ` b

where t 9siu
G
i“1 are the active vectors of the regressor, ∆Qp 9siq are their target

values from the corresponding training pairs, and 9αi, b are the parameters of

the SVM/RVM regressor.
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For the Gaussian (radial basis functions) kernel3,

κRBFps
1, sq “ exp

`

´ β‖s1 ´ s‖2
˘

, β ą 0, (6.5)

the gradient of qpsq can be analytically derived as

gqpsq “ 2β
G
ÿ

i“1

9αi∆Qp 9siqκgp 9si, sqp 9si ´ sq

Thus, we estimate the desired gradient vector, practically at no additional

cost, other than a single SVM/RVM regression, since training data are already

available. Let Sp P S be the set of rollout states for the current iteration. The

approximation of ∆Qpsq ¨ ‖∇∆Qpsq‖2 is given by qpsq ¨ ‖gqpsq‖2. We define

our state importance function as follows:

importancepsq “ log

ˆ

qpsq ¨ ‖gqpsq‖2 ´ min
s1PSp

´

qps1q ¨ ‖gqps1q‖2

¯

` 1

˙

The logarithm function logpxq is positive for values of x greater than one.

∆Q is greater than or equal to zero by definition, but it’s estimation qpsq

may slip to the negative side of reals, due to approximation errors. Therefore,

to assure that the importance function is non-negative, the transformation
`

qpsq¨‖gqpsq‖2´min
s1PSp

pqps1q¨‖gqps1q‖2q`1
˘

is used to shift all approximate values

qpsq ¨ ‖gqpsq‖2 above one. The use of the logarithm allows the importancepsq

function to retain significance within comparable values for several orders of

magnitude of qpsq ¨ ‖gqpsq‖2 (Figure 6.5).

The next obstacle we have to overcome is the identification of areas of the

state space where importancepsq values are large and direct our sampling of

rollout states to those areas. Despite the availability of the estimation of the

gradient in closed form, an analytical solution for the maxima poses a hard

nonlinear problem. Additionally, we have to take into account that the set of

rollout states becomes more and more focused over iterations and, therefore,

3 Note that other kernels can be used as long as they can be differentiated.
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Figure 6.5: logpx` 1q vs x graph

(a) (b) (c) (d)
Figure 6.6: Directed sampling of rollout states: (a) rollout states of previous policy
and class boundary, (b) generation of candidate rollout states for next policy (particles)
around the previous states, (c) weighting of generated particles according to the importance
function (size of particle proportional to weight), and (d) resampling of particles (more
selection chances with higher weight)

the SVM/RVM regressor ends up being trained on points representing only

a small part of the state space. As a result, the regressor function cannot

be trusted in areas away from the rollout states of the previous iteration.

To address these problems, we apply a resampling procedure inspired by the

resampling operations in a particle filter (Doucet et al., 2001).

Initially, we sample a large number of candidate states (particles), by repeating

the following: pick uniformly in random one point from the current unfiltered

training set T 1 and add to it zero-mean normal noise to obtain a new sample

state from its neighborhood. This step ensures that all candidate rollout states

lie in areas where the regressor can be trusted. Next, to weigh each particle,

we are using the importancepsq function defined above. Finally, we apply a

resampling procedure to keep only the desired number of rollout states for the
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Algorithm 14 ImportanceSampling: Sampling Rollout States

Input: number of samples M , number of particles Z, regressor training
set T 1, covariance matrix Σ, ∆Q estimation function qpsq, ∇∆Q estimation
function gqpsq

for j “ 1 to Z
sample

`

s,∆Qpsq
˘

„ T 1 uniformly (sample state)
sj “ s`N p0,Σq (add noise)
wj “ qpsjq‖gqpsjq‖2 (weigh state)

end
w “ logpw ´minpwq ` 1q (importance function)
w “ w{‖w‖2 (normalize weights)

{particle resampling}
S “ H, r „ uniformp0,M´1q, c “ w1, j “ 1
for m “ 1 to M
u “ r ` pm´ 1q ˆM´1

while u ą c
j “ j ` 1
c “ c` wj

end while
S “ S Y tsju

end
return S

next iteration. This particle-filtering-like resampling ensures that only those

candidate states with significant weight are promoted. The entire procedure

is illustrated by a simple example in Figure 6.6 and is shown in Algorithm 14.

Note that its time complexity is only OpZq, where Z is the number of particles.

If Z is taken to be a multiple of M , the number of rollout states in each

iteration, the cost of obtaining the next set of rollout states is only linear in

its size.

Now, we can summarize the entire algorithm, which is graphically shown in

Figure 6.7. Given a policy πk at iteration k represented as an SVM/RVM clas-

sifier, the corresponding SVM/RVM regressor is used to select a new focused

subset of states Sk`1 at which the improved policy πk`1 will be probed. Each

probe will yield pairs of data in the training set Tk`1 for the next classifier,

if domination is detected, and a pair of data in the training set T 1k`1 of the

corresponding regressor. Once the training sets are formed, a new classifier

and a new regressor are trained to represent πk`1 and the process repeats from

the beginning.
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Figure 6.7: Directed Policy Search using Importance Sampling

There is no guarantee for monotonic policy improvement in this iterative

scheme. However, the chances can be increased by attempting to repeat some

iteration, if no improvement was achieved; since each iteration is randomized,

it is likely that another attempt may produce better results. Therefore, if

policy πk`1 is not better than πk (tested through simulation), iteration k is

repeated for a maximum of L attempts until an improved policy is found. If all

attempts are exhausted without improvement, the algorithm terminates. Note

that the ∆Q estimation regressor is trained only when the policy improves,

that is, only once per iteration; it should not change, if an improvement at-

tempt fails. Note also that the first iteration begins with a purely random,

but deterministic, policy and therefore S1 cannot be formed in the way de-

scribed above, since there is no classifier and regressor for π0. S1 is simply a

uniformly random selection of states from the entire state space to guarantee

full coverage at the beginning. Without domain knowledge, uniform sampling

is the only option to ensure that no part of the state space will remain initially

unexplored. In particular cases, domain knowledge could be used to perform a

focused non-uniform sampling over the state space. The entire Directed RCPI

(DRCPI) algorithm for policy search utilizing Importance Sampling (IS) for

guiding the search, called DRCPI-IS, is shown in Algorithm 15.
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Algorithm 15 DRCPI-IS: Directed RCPI using Importance Sampling

Input: policy π0, attempts L, trials K, horizon H, size U , points M , par-
ticles Z, covariance matrix Σ

k “ ´1 (policy iteration)
repeat
k “ k ` 1
l “ 0 (repeated attempts)
repeat
l “ l ` 1
if (k “ 0) then
Sk`1 “ a uniformly random subset of S of size U (uniform

sampling)
else
Sk`1 “ ImportanceSamplingpM,Z, T 1k`1,Σ, gqk`1q (directed

sampling)
end
Tk`1 “ ∅, T 1k`1 “ ∅ (initialization of training sets)
for (each s P Sk`1)

for (each a P A)
estimate Qπkps, aq using K rollouts of length H (simulation)

end
ε = FilteringLimit(∆Qpsq @s P Sk`1)
if (∆Qpsq ą ε) then
Tk`1“Tk`1 Y tps, a

˚q`u (for dominating actions a˚)
Tk`1“Tk`1 Y tps, aq

´u (for dominated actions a)
end
T 1k`1“T

1
k`1 Y

 `

s,∆Qpsq
˘(

(regressor example)
end
πk`1 = TrainClassifierspTk`1q (classifier learning)

until
`

(πk`1 is better than πk) or (l “ L)
˘

(end of repeated attempts)
qk`1 = TrainRegressorpT 1k`1q (regressor learning)
gqk`1 = Differentiatepqk`1q (differentiation)

until (πk`1 is not better than πk) (end of policy iteration)
return πk
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7

Experimental Results

Our experiments with the proposed methodologies were performed in two ar-

eas. The first area is the computational approximation and visualization of

optimal policies for the two-dimensional domains, namely the Inverted Pendu-

lum and the Mountain Car. The third domain, the acrobot (four-dimensional),

and the fourth domain, the 4-Link Planar Robot (eight-dimensional), cannot

be easily visualized. Our experiments yield evidence that indeed optimal poli-

cies exhibit significant structure. The second area is the experimental analysis

of our directed exploration algorithms. All four domains were utilized in this

case; our proposed algorithms were tested against the original RCPI algorithm

that receives no guidance during the process of exploring the probes for the im-

proved policy. Our results indicate that indeed our proposed algorithms allow

for efficient exploration of policy space using guidance derived from the policy

representation itself and thus learning of the same task in less time.

7.1 Optimal Policy Structure

Our first goal is to uncover the structure of optimal policies for each domain.

Even though the model of the underlying MDP is known, applying an exact

algorithm for solving the MDP and obtaining a truly optimal policy is infea-
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sible due to the continuous nature of the state space. Instead, we used a fine

discretization of the two-dimensional state space into a uniform grid, a large

number of ps, a, r, s1q samples at each discrete tile ps, aq, and the Least-Squares

Policy Iteration (LSPI) algorithm (Lagoudakis and Parr, 2003b) with indicator

basis functions over the state grid and all actions, to converge to a near-optimal

policy. Notice that the only source of suboptimality in this procedure is the

resolution of the discretization itself, as well as the number of samples collected

at each point; there is no error due to the approximation of the value function

or the policy. The error due to discretization cannot be avoided. However,

the error due to sampling could be practically eliminated by a large number of

samples. Alternatively, one could analytically determine the transition model

over the state grid, that is, the possible next states and the related transition

probabilities at each tile of the grid. Despite the theoretical feasibility of such

a difficult task, we chose to use a sampling approach instead, to accommodate

any change in the system (different levels of control noise, simulation step,

discretization resolution, parameter values, etc.) without changes. Finally, in

deriving an optimal policy from the resulting optimal value function, the action

values were compared within an ε-margin to eliminate small numerical errors.

The settings we used were: a grid of 250 ˆ 250 tiles with 25 uniform samples

per tile for each action in the deterministic versions, a grid of 250 ˆ 250 tiles

with 500 uniform samples per tile for each action in the stochastic versions,

and ε “ 10´5.

7.1.1 Inverted Pendulum

The structure of an optimal policy for the stochastic Inverted Pendulum prob-

lem over the two-dimensional state space is shown in Figure 7.1. The horizontal

axis is the angle θ of the pendulum ranging from ´π{2 to π{2 and the vertical

axis is the angular velocity 9θ ranging from ´6 to 6. The point of full balance

is the point p0, 0q in the middle of the state space.
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Figure 7.1: Optimal policy for the stochastic Inverted Pendulum. Top: dominating
action loci including tied cases. Bottom: individual (non-pure) domination locus for each
action.

One can clearly identify large areas where a single action consists the best

choice. In general, as soon as the angle θ becomes positive enough, the best

action choice is to apply a right force. This is also true when the angular

velocity 9θ takes on positive values, even though the angle θ itself might be

negative; a right force will proactively prevent the pendulum from falling on

the right side. Of course, beyond some values of θ and 9θ any action is hopeless;

the pendulum is doomed to falling. Since the problem is symmetric, similar

action choices appear on the left side of the state space. Notice that there is a

small area around the balancing point where the best action to perform is to

apply no force at all and a small zone around this area where the left or no force

actions are equally good, and the right or no force actions are equally good. As

expected, there are no areas where the left and right force actions are equally
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good simultaneously. Apparently, the optimal policy bears sufficient structure

to facilitate the classification problem. Especially, the critical area around the

balancing point poses no difficulties in classifying the states correctly to the

corresponding actions. The thin stripes on the left and right sides are not

intuitive and may be challenging from a classification viewpoint. However, a

good enough policy will most likely prevent the pendulum from ever reaching

those areas. Therefore, the performance loss from misclassification in those

areas will be minimal.

Figure 7.2: Optimal policy for the deterministic Inverted Pendulum. Top: dominating
action loci including tied cases. Bottom: individual (non-pure) domination locus for each
action.

The optimal policy for the deterministic Inverted Pendulum problem over the

two-dimensional state space is shown in Figure 7.2. Surprisingly, this policy

exhibits richer structure. The critical area around the balancing point is wider

and somewhat more relaxed, but there are more and thinner stripes and many
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more ties between the left/none actions and the right/none actions. As ex-

pected there are no ties between the left/right actions. One would expect a

simpler policy for a simpler problem, but apparently, the optimal policy for

the deterministic version of the problem poses a somewhat more challenging

classification problem. We conjecture that the richer and more complex struc-

ture is, in fact, an artifact of the deterministic nature of the problem, the

discretization resolution, the time step of the simulation, and the boundary

conditions.

7.1.2 Mountain Car

The optimal policy for the stochastic Mountain Car problem over the two-

dimensional state space is shown in Figure 7.3. The horizontal axis is the

position x of the car ranging from ´1.2 to 0.5 and the vertical axis is the

velocity 9x ranging from ´0.07 to 0.07. The point p´0.5, 0q corresponds to

the bottom of the valley when the car is not moving. Again, one can clearly

identify large areas where a single action consists the best choice. In general,

the critical decision seems to be the choice of an action that gives more thrust

in the direction the car is currently moving towards; forward/right throttle for

positive velocity and reverse/left throttle for negative velocity. Apparently,

such a policy can help the car build the necessary energy for exiting the valley.

Note that the no throttle action barely constitutes the best action choice in

any state, which is somewhat expected. Again, as expected, there are no areas

where the left and right force actions are equally good. At bottom-left and

top-right extremes, all actions are indifferent, corresponding to the cases where

the car is going to exit the valley or hit the left barrier anyway, independently

of the action choice. Again, the optimal policy bears sufficient structure to

facilitate the classification problem. The critical area around the bottom of

the valley point poses no particular difficulties in classifying the states correctly

to the corresponding actions.
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Figure 7.3: Optimal policy for the stochastic Mountain Car. Top: dominating action
loci including tied cases. Bottom: individual (non-pure) domination locus for each action.

The optimal policy for the deterministic Mountain Car problem over the two-

dimensional state space is shown in Figure 7.4. This policy does not differ

significantly from the optimal one for the stochastic version, unlike the pen-

dulum policies; this is explained by the lesser impact of the action choices on

state changes in the Mountain Car domain.
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Figure 7.4: Optimal policy for the deterministic Mountain Car. Top: dominating action
loci including tied cases. Bottom: individual (non-pure) domination locus for each action.

7.2 Directed RCPI experiments

In Implementa-

tion

this section we are going to test our hypothesis, namely that the policy

representation offered by a classifier can be used to guide the exploration of

policy space. Our only assumption is that a domain simulator is available. We

applied our proposed approaches to the four benchmark domains described

above to test their effectiveness: two domains with two dimensions, the In-

verted Pendulum, and Mountain Car, one domain with four dimensions, the

Acrobot, and one domain with eight dimensions, the 4-Link Planar Robot.

Table 7.1 lists all algorithm tested and compared in the experiments. This

list includes the original RCPI algorithm with uniform sampling, implemented

both with SVMs and RVMs, as well as our four implementations of the pro-
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posed Directed RCPI (DRCPI) approaches based on the use of Active Input

Vectors (AIV) or Importance Sampling (IS) and SVMs or RVMs.

All algorithms tested were implemented using Matlab; SVM classifiers and re-

gressors are implemented using the libSVM (Chang and Lin, 2001) package,

and RVM classifiers and regressors using the SparseBayesV2 (Tipping, 2009)

package. All policies were represented using either SVM or RVM binary clas-

sifiers. In the approach based on Active Input Vectors, we use Powell’s hybrid

method, which was taken from the GNU Scientific Library (Galassi et al.,

2003), for solving the nonlinear system. In the approach based on Importance

Sampling, we also use SVM or RVM regressors. All kernels used were imple-

mented using Radial Basis Functions (RBF) kernels. The initial policy π0 in

all experiments was a purely random deterministic policy. Each dimension of

the state spaces was scaled to r´1,`1s. The ∆Q filtering limit ε is automat-

ically calculated using the method described earlier. The parameters of our

algorithms were tested selectively within their range to find operational values;

the selected values are domain dependent.

Table 7.1: Algorithms tested

Nomenclature State Sampling Basic Classifier
Method Algorithm Technology

RCPI-SVM uniform RCPI SVM
RCPI-RVM uniform RCPI RVM
DRCPI-AIV-SVM Active Input vectors DRCPI SVM
DRCPI-IS-SVM Importance Sampling DRCPI SVM
DRCPI-AIV-RVM Active Input vectors DRCPI RVM
DRCPI-IS-RVM Importance Sampling DRCPI RVM

WeResampling provide visualized examples of resampling methods used for the two-

dimensional domains Inverted Pendulum and Mountain Car. All our exper-

iments use uniform sampling for the first iteration. Resampling for the rest

of iterations are either based on Active Input Vectors (AIV), or Importance

Sampling (IS) for DRCPI. RCPI uses uniform sampling for all iterations.
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Policies Policy represen-

tation

are approximated using SVM or RVM classifiers, and action advantage

functions were approximated using SVM or RVM regressors. We did not try to

optimize the parameters of the classifiers/regressors, since our ultimate goal is

to employ simple off-the-shelf classification/regression solutions for the benefit

of reinforcement learning. For Support Vector Machines in the libSVM library,

there are two important parameters to select. The first is the regularization

coefficient C in the primal optimization problem, which controls the trade

off between minimizing training errors and controlling model complexity; the

second is the β parameter of the radial basis functions kernel. For Relevance

Vector Machines in the SparseBayesV2 library, there is only one parameter,

namely the β parameter of the radial basis functions kernel.

We Statisticsprovide separate statistics in each domain. We completed 200 runs for

each algorithm in Table 7.1 and each domain. Each run used the exact same

settings, but with different random seeds at initialization. For fairness, we

added the multiple improvement attempts in the two RCPI variations (Algo-

rithm 16), so that the only difference between the algorithms under compari-

son is the choice of the rollout states in terms of multitude and location. We

run the two RCPI variants under two extreme conditions; on one hand, we

used a full count of uniformly distributed rollout states throughout all iter-

ations (UU “ 200, for Inverted Pendulum, Mountain Car, and Acrobot; and

UU “ 100, for 4-Link Planar Robot). To demonstrate the value of directed

sampling, on the other hand, we run the two RCPI variants using a low count

of uniformly distributed rollout states throughout all iterations (UUL “ 40,

for Inverted Pendulum, Mountain Car, and Acrobot; and UUL “ 20, for 4-

Link Planar Robot). We run the four DRCPI variants using the full count of

uniformly distributed states in the first iteration (due to lack of any domain

knowledge) and the low count of selected rollout states (through directed sam-

pling) in all subsequent iterations. As expected, in the latter RCPI case (the

one with the low count) performance deteriorates (less in the Mountain Car,

more in the Inverted Pendulum the Acrobot, and 4-link Planar Robot), im-
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Algorithm 16 Rollout Classification Policy Iteration (RCPI) with attempts

Input: policy π0, attempts L, trials K, horizon H, size Ur

k “ ´1
repeat
k “ k ` 1
l “ 0
repeat
l “ l ` 1
Sk`1 “ a uniformly random subset of S of size Ur (uniform sampling)
Tk`1 “ ∅ (initialization of the training set)
for (each s P Sk`1)

for (each a P A)
estimate Qπkps, aq using K rollouts of length H (simulation)

end
if (a dominating action a˚ exists in state s) then
Tk`1 “ Tk`1 Y tps, a

˚q`u (for dominating action a˚)
Tk`1 “ Tk`1 Y tps, aq

´u (for dominated actions a)
end

end
πk`1 = TrainClassifiers(Tk`1) (classifier/policy learning)

until
`

(πk`1 is better than πk) or (l “ L)
˘

(end of repeated attempts)
until (πk`1 is not better than πk) (end of policy iteration)
return πk

plying that the proposed focused (directed) selection of rollout states plays a

significant role in performance, when the rollout/simulation budget is low. All

other settings were kept identical for all runs.

For each experiment, we provide averages for the total number of rollouts per-

formed, the total number of simulated steps required, the total discounted

reward accumulated by the learned policy, the number of improvement at-

tempts before termination of policy iteration, the time to complete the entire

experiment, and the number of successful runs. We also provide histograms

showing the distribution of the total discounted reward, the number of success-

ful runs, the number of steps to complete successful runs in the Mountain Car

the Acrobot and the 4-Link Planar Robot domain, and the number of steps in

failed runs for the Inverted Pendulum domain. A successful run corresponds

to 3000 steps of balancing in the Inverted Pendulum domain, exiting from the

valley in the first 3000 steps in the Mountain Car, reaching the goal in the first

3000 steps in the Acrobot domain, and reaching the goal in the first 500 steps

in the 4-Link Planar Robot domain.
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Table 7.2: DRCPI parameters for Pendulum domain

S
y
m

b
ol

D
R

C
P

I-A
IV

D
R

C
P

I-IS

R
C

P
I

Description

P
en

d
u
lu

m
U X X initial sample size for uniform sampling 200
M X X subsequent sample size constructed using

previous policy hints
40

L X X X number of attempts to improve previous
policy for a given iteration

4

K X X X trials - the number of rollouts used to esti-
mate Qps, aq values for a given state s

50

H X X X horizon - number of steps per rollout 100
Z X number of particles 10 ¨M (i.e. 400)
Σ X covariance matrix Σ used in resampling us-

ing particles
diagp0.2q

UU X uniform sample size for RCPI, for all steps U (i.e. 200)
UUL X uniform low sample size for RCPI for all

steps
M (i.e. 40)

Policy Assessment
(values are used to estimate the efficiency of the policy)

Ktest X X X trajectories - number of rollouts 100
Htest X X X horizon - number of steps per rollout 3000

Table 7.3: Library parameters for Pendulum domain

LibSVM SparseBayesV2
Procedure Algorithms used β C β

Classification DRCPI-AIV, DRCPI-IS, RCPI 1{4 100 5

Regression DRCPI-IS 1{4 50 5

7.2.1 Inverted Pendulum

The values used in the experiments with the Inverted Pendulum are reported

in Table 7.2 and the library parameters in Table 7.3. The initial policy π0 was

a random deterministic policy.

7.2.1.1 Sampling

Resampling for Active Input Vectors (AIV) using SVMs is shown in Figure 7.5.

Active input vectors in the left sub-figure are the support vectors of the SVM

binary classifiers that are used to represent the current policy. The support
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Figure 7.5: Inverted Pendulum domain using AIV and SVMs (DRCPI-AIV-SVM):
Active Input Vectors (left) and resampled rollout states (right) over the state space.

vectors in SVMs are chosen by the optimization process to represent the border

between the classes. Our goal is to refine the border to obtain an improved

policy. Resampling is done as described in Section 6.4.2. In the right sub-figure

the new set of states for sampling (rollout positions) is shown. Note that the

new rollout states are placed around the border on both sides.

Importance sampling (IS) using SVMs is shown in Figure 7.6. The top three

sub-figures are: the action advantage function ∆Qpstateq, the norm of it’s

gradient ‖∇∆Qpstateq‖2, and the state importance 6.4.3 function. The three

bottom sub-figures are: the previous iteration sampling points, the new parti-

cles that are normally distributed around the old sampling points, and in the

last sub-figure the new sampling points (rollout positions) for the new and pos-

sibly improved policy. Resampling is done as described in Section 6.4.3.

Figure 7.7 shows Active Input Vectors (AIV) resampling using RVMs. Active

input vectors in the left sub-figure are the relevance vectors of the RVM binary

classifiers that are used to represent the current policy. Relevance vectors in

RVMs are chosen by the optimization process to represent the border between

the classes. Our goal is to refine the border to obtain an improved policy.

Resampling is done as described in Section 6.4.2. In the right sub-figure the

new set of states for sampling (rollout positions) is shown. It is worth noting

that the number of relevance vectors of the RVM classifiers is much less than
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Figure 7.6: Inverted Pendulum domain using IS and SVMs (DRCPI-IS-SVM). Deriva-
tion of the state importance function (top) and importance sampling of rollout states (bot-
tom) over the state space.
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Figure 7.7: Inverted Pendulum domain using AIV and RVMs (DRCPI-AIV-RVM):
Active Input Vectors (left) and resampled rollout states (right) over the state space.

the support vectors of the SVM classifiers for similar policies in the same

domain.

Importance sampling (IS) using RVMs is shown in Figure 7.8. The top three

sub-figures are: the action advantage function ∆Qpstateq, the norm of its gra-

dient ‖∇∆Qpstateq‖2, and the state importance function (6.4.3). The three

bottom sub-figures are: the previous iteration sampling points, the new parti-

cles that are normally distributed around the old sampling points, and in the

last sub-figure the new sampling points (rollout positions) for the new and pos-
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Figure 7.8: Inverted Pendulum domain using IS and RVMs (DRCPI-IS-RVM). Deriva-
tion of the state importance function (top) and importance sampling of rollout states (bot-
tom) over the state space.

sibly improved policy. Resampling is done as described in Section 6.4.3.

7.2.1.2 Policy

The Inverted Pendulum is a two-dimensional domain; the horizontal axis is

the angle and the vertical axis is the angular velocity. We show here selected

examples of policy improvement through policy iteration. The selected policies

fully improve in three iterations, chosen for illustration. Unsuccessful attempts

are not shown here. In all policy iteration examples discussed below, after the

initial uniform distribution, the rollout states are positioned mostly around,

but not on, the action boundaries. The goal in this domain is to balance the

pendulum for 3000 steps.

Figure 7.9 shows a typical run of DRCPI-AIV-SVM on the Inverted Pendulum

domain. The first iteration delivered a policy that yields a discounted return of

19.58 with no successful trials of balancing the pendulum, falling after 387 steps

on average; this was subsequently improved with the second policy which yields

a discounted return of 19.98, 53% of successful trials and 47% of unsuccessful

trials, balancing for 1382 steps on average. The third policy in row yields a
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Figure 7.9: DRCPI-AIV-SVM on the Inverted Pendulum: three successive policies from
a typical run. Dominating actions are shown in color: blue for left force, yellow for no force,
and green for right force. Rollout states after filtering are shown as little circles colored with
the dominating action color (inputs and targets of the training set).
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Figure 7.10: DRCPI-AIV-SVM learned policy for the Inverted Pendulum: the binary
SVM classifiers for each action of the final balancing policy π3 in the experiment of Figure 7.9.
Each dominating class is shown in color: blue for left force, yellow for no force, green for right
force; other classes are shown in red color. The corresponding training set T3 is depicted
in black for positive examples and white for negative examples; the derived support vectors
are shown in bold.

discounted return of 20 (the highest possible) and 100% successful trials of

balancing the pendulum. The fourth iteration did not manage to improve

further the policy, as expected, and policy iteration terminated. Figure 7.10

shows the three binary SVM classifiers representing the final policy π3.

Figure 7.11 shows a typical run of DRCPI-IS-SVM on the Inverted Pendu-

lum domain. The first iteration delivered a policy that yields a discounted

return of 19.90 with 42% successful trials to balance the pendulum, and un-

successful trials 58% falling after 1187 steps on average; this was subsequently

improved with the second policy which yields a discounted return of 19.99, 35%

of successful trials and 65% of unsuccessful trials, balancing for 1248 steps on

average. The third policy in row yields a discounted return of 20 (the highest

possible) and 100% successful trials of balancing the pendulum. The fourth

iteration did not manage to improve further the policy, as expected, and pol-
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Figure 7.11: DRCPI-IS-SVM on the Inverted Pendulum: three successive policies from
a typical run. Dominating actions are shown in color: blue for left force, yellow for no force,
and green for right force. Rollout states after filtering are shown as little circles colored with
the dominating action color (inputs and targets of the training set).
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Figure 7.12: DRCPI-IS-SVM learned policy for the Inverted Pendulum: the binary
SVM classifiers for each action of the final balancing policy π3 in the experiment of Fig-
ure 7.11. Each dominating class is shown in color: blue for left force, yellow for no force,
green for right force; other classes are shown in red color. The corresponding training set
T3 is depicted in black for positive examples and white for negative examples; the derived
support vectors are shown in bold.

icy iteration terminated. Figure 7.12 shows the three binary SVM classifiers

representing the final policy π3.

Figure 7.13 shows a typical run of DRCPI-AIV-RVM on the Inverted Pendulum

domain. The first iteration delivered a policy that yields a discounted return of

18.70 with no successful trials of balancing the pendulum, falling after 166 steps

on average; this was subsequently improved with the second policy which yields

a discounted return of 19.99, 41% of successful trials and 59% of unsuccessful

trials, balancing for 1211 steps on average. The third policy in row yields a

discounted return of 20 (the highest possible) and 100% successful trials of

balancing the pendulum. The fourth iteration did not manage to improve

further the policy, as expected, and policy iteration terminated. Figure 7.14

shows the three binary RVM classifiers representing the final policy π3.

Figure 7.15 shows a typical run of DRCPI-IS-RVM on the Inverted Pendu-
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Figure 7.13: DRCPI-AIV-RVM on the Inverted Pendulum: three successive policies
from a typical run. Dominating actions are shown in color: blue for left force, yellow for
no force, and green for right force. Rollout states after filtering are shown as little circles
colored with the dominating action color (inputs and targets of the training set).
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Figure 7.14: DRCPI-AIV-RVM learned policy for the Inverted Pendulum: the binary
RVM classifiers for each action of the final balancing policy π3 in the experiment of Fig-
ure 7.13. Each dominating class is shown in color: blue for left force, yellow for no force,
green for right force; other classes are shown in red color. The corresponding training set
T3 is depicted in black for positive examples and white for negative examples; the derived
support vectors are shown in bold.

lum domain. The first iteration delivered a policy that yields a discounted

return of 19.99 with 73% successful trials to balance the pendulum, and un-

successful trials 27% falling after 1467 steps on average; this was subsequently

improved with the second policy which yields a discounted return of 20.00, 75%

of successful trials and 25% of unsuccessful trials, balancing for 1452 steps on

average. The third policy in row yields a discounted return of 20 (the highest

possible) and 100% successful trials of balancing the pendulum. The fourth

iteration did not manage to improve further the policy, as expected, and pol-

icy iteration terminated. Figure 7.16 shows the three binary RVM classifiers

representing the final policy π3.
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Figure 7.15: DRCPI-IS-RVM on the Inverted Pendulum: three successive policies from
a typical run. Dominating actions are shown in color: blue for left force, yellow for no force,
and green for right force. Rollout states after filtering are shown as little circles colored with
the dominating action color (inputs and targets of the training set).
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Figure 7.16: DRCPI-IS-RVM learned policy for the Inverted Pendulum: the binary
RVM classifiers for each action of the final balancing policy π3 in the experiment of Fig-
ure 7.11. Each dominating class is shown in color: blue for left force, yellow for no force,
green for right force; other classes are shown in red color. The corresponding training set
T3 is depicted in black for positive examples and white for negative examples; the derived
support vectors are shown in bold.

7.2.1.3 Statistics

In this section, we provide statistics for the Inverted Pendulum. Each row in

Table 7.4 represents averages of 200 independent runs with identical settings,

but with different random seeds, for each algorithm shown in Table 7.1. The

Simulation tab shows the total number of simulation steps needed for each run,

while the Rollouts tab shows the total number of rollouts executed in each run.

The Attempts tab shows the number of improvement attempts (the number

of iterations is less than or equal to that) before termination and the Time

tab shows the real time (seconds) taken by each run. Finally, the Return and

Success tabs show the total expected discounted reward and the success rate

respectively of the final learned policy (both measured by policy rollout from

the initial state). Each run is evaluated by taking the average performance of

100 independent policy rollouts using the learned policy starting the pendulum
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at position p0, 0q for pθ, 9θq and ending after 3000 steps of balancing or after the

pendulum has fallen. Trajectories balancing the pendulum for 3000 simulation

steps (5 minutes) are considered successful.

Consider first the two RCPI- algorithms with the full count of 200 uniformly

distributed rollout states in each iteration. While both algorithms exhibit good

learning performance (Return), the computational cost is high, as indicated

by the Simulation and Time tabs. Moving on to the DRCPI- variations, we

use a set of 200 (full count) uniformly distributed rollout states only in the

first iteration and a set of 40 (low count) rollout states from directed sampling

afterwards. Clearly, the DRCPI- variations yield significant savings in terms of

Rollouts, Simulation, Attempts, and Time compared to the RCPI- algorithms

with the full count, while delivering policies of comparable performance (Re-

turn). Finally, to appreciate the value of directed sampling, one can consider

the RCPI- variations using a low count of only 40 uniformly distributed roll-

out states throughout all iterations. It is clear that in this case performance

deteriorates in both Return and Success, implying that the proposed focused

(directed) selection of rollout states plays a significant role in performance,

when the rollout/simulation budget is low.

Comparing policy Return, which is the metric optimized by learning, SVM

versions have a slight advantage over the corresponding RVM versions in all

cases, albeit at the cost of increased Simulation and Time. Within the DRCPI

variants, IS resampling also exhibits slight advantage over AIV resampling for

both SVM and RVM. Finally, the Return delivered by the DRCPI variants

is close to those delivered by RCPI with the full count of rollout states and

significantly better compared to those delivered by RCPI with the low count.

Nevertheless, all DRPCI variants exhibit lower simulation requirements and

execution times compared to RCPI with full count and compare favorably to

RCPI with low count.

Figures 7.17 through 7.24 include for each algorithm three histograms display-
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ing the distribution of the corresponding 200 runs in terms of: (a) the policy

return values, (b) the percentage of successful trails, and (c) the number of

average steps per run before pendulum failure for nonbalancing trials.

Table 7.4: Inverted Pendulum (200/40 rollout states, 4 attempts): collective results of 200
runs and comparison of algorithms in terms of computational and learning performance.

Algorithm States Simulation Rollouts Attempts Time Return Success

RCPI-SVM 200 4385104 1390 7.0 23.7 19.9968 87.26%
RCPI-RVM 200 4049872 1307 6.5 10.1 19.9894 94.12%
DRCPI-AIV-SVM 200/40 2508683 412 6.3 13.7 19.9807 83.34%
DRCPI-IS-SVM 200/40 936752 422 6.5 5.0 19.9880 81.48%
DRCPI-AIV-RVM 200/40 903757 384 5.7 3.2 19.9347 77.61%
DRCPI-IS-RVM 200/40 986029 404 6.1 3.5 19.9700 80.89%
RCPI-SVM 40 879649 304 7.6 2.9 19.8356 68.27%
RCPI-RVM 40 776526 314 7.8 2.6 19.5958 49.56%
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Figure 7.17: Inverted Pendulum using DRCPI-AIV-SVM.

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

120

140

160

180

200

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

140

0 500 1000 1500 2000 2500 3000
0

2

4

6

8

10

12

14

16

18

Total discounted reward Success percentage Number of average steps before falling

Figure 7.18: Inverted Pendulum using DRCPI-IS-SVM.
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Figure 7.19: Inverted Pendulum domain using DRCPI-AIV-RVM.
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Figure 7.20: Inverted Pendulum using DRCPI-IS-RVM.
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Figure 7.21: Inverted Pendulum using RCPI-SVM with a full count of rollout states.
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Figure 7.22: Inverted Pendulum using RCPI-RVM with a full count of rollout states.
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Figure 7.23: Inverted Pendulum using RCPI-SVM with a low count of rollout states.

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

120

140

160

180

200

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

140

0 500 1000 1500 2000 2500 3000
0

2

4

6

8

10

12

14

16

18

Total discounted reward Success percentage Number of average steps before falling

Figure 7.24: Inverted Pendulum using RCPI-RVM with a low count of rollout states.

7.2.2 Mountain Car

The values used in the experiments with the Mountain Car are reported in

Table 7.5 and the library parameters in Table 7.6. The initial policy π0 was a
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Table 7.5: DRCPI parameters for Mountain Car domain

S
y
m

b
ol

D
R

C
P

I-A
IV

D
R

C
P

I-IS

R
C

P
I

Description

M
ou

n
tain

C
ar

U X X initial sample size for uniform sampling 200
M X X subsequent sample size constructed using

previous policy hints
40

L X X X number of attempts to improve previous
policy for a given iteration

4

K X X X trials - the number of rollouts used to esti-
mate Qps, aq values for a given state s

50

H X X X horizon - number of steps per rollout 100
Z X number of particles 10 ¨M (i.e. 400)
Σ X covariance matrix Σ used in resampling us-

ing particles
diag(0.2)

UU X uniform sample size for RCPI, for all steps U (i.e. 200)
UUL X uniform low sample size for RCPI for all

steps
M (i.e. 40)

Policy Assessment
(values are used to estimate the efficiency of the policy)

Ktest X X X trajectories - number of rollouts 100
Htest X X X horizon - number of steps per rollout 3000

Table 7.6: Library parameters for mountain Car domain

LibSVM SparseBayesV2
Procedure Algorithms used β C β

Classification DRCPI-AIV, DRCPI-IS, RCPI 1{2 200 5

Regression DRCPI-IS 1{2 200 5

random deterministic policy.

7.2.2.1 Sampling

Resampling for Active Input Vectors (AIV) using SVMs is shown in Fig-

ure 7.25. Active input vectors in the left sub-figure are the support vectors of

the SVM binary classifiers that are used to represent the current policy. The

support vectors in SVMs are chosen by the optimization process to represent

the border between the classes. Our goal is to refine the border to obtain an

improved policy. Resampling is done as described in Section 6.4.2. In the right
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Figure 7.25: Mountain Car domain using AIV and SVMs (DRCPI-AIV-SVM): Active
Input Vectors (left) and resampled rollout states (right) over the state space.

sub-figure the new set of states for sampling (rollout positions) is shown. Note

that the new rollout states are placed around the border on both sides.

Importance sampling (IS) using SVMs is shown in Figure 7.26. The top three

sub-figures are: the action advantage function ∆Qpstateq, the norm of it’s

gradient ‖∇∆Qpstateq‖2, and the state importance 6.4.3 function. The three

bottom sub-figures are: the previous iteration sampling points, the new parti-

cles that are normally distributed around the old sampling points, and in the

last sub-figure the new sampling points (rollout positions) for the new and pos-

sibly improved policy. Resampling is done as described in Section 6.4.3.

Figure 7.27 shows Active Input Vectors (AIV) resampling using RVMs. Active

input vectors in the left sub-figure are the relevance vectors of the RVM binary

classifiers that are used to represent the current policy. Relevance vectors in

RVMs are chosen by the optimization process to represent the border between

the classes. Our goal is to refine the border to obtain an improved policy.

Resampling is done as described in Section 6.4.2. In the right sub-figure the

new set of states for sampling (rollout positions) is shown. It is worth noting

that the number of relevance vectors of the RVM classifiers is much less than

the support vectors of the SVM classifiers for similar policies in the same

domain

Importance sampling (IS) using RVMs is shown in Figure 7.28. The top three
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Figure 7.26: Mountain Car domain using IS and SVMs (DRCPI-IS-SVM). Derivation
of the state importance function (top) and importance sampling of rollout states (bottom)
over the state space.
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Figure 7.27: Mountain Car domain using AIV and RVMs (DRCPI-AIV-RVM): Active
Input Vectors (left) and resampled rollout states (right) over the state space.

sub-figures are: the action advantage function ∆Qpstateq, the norm of its gra-

dient ‖∇∆Qpstateq‖2, and the state importance function (6.4.3). The three

bottom sub-figures are: the previous iteration sampling points, the new parti-

cles that are normally distributed around the old sampling points, and in the

last sub-figure the new sampling points (rollout positions) for the new and pos-

sibly improved policy. Resampling is done as described in Section 6.4.3.
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Figure 7.28: Mountain Car domain using IS and RVMs (DRCPI-IS-RVM). Derivation
of the state importance function (top) and importance sampling of rollout states (bottom)
over the state space.

7.2.2.2 Policy

The Mountain Car is a two-dimensional domain; the horizontal axis is the

position, and the vertical axis is the velocity. We show here selected examples

of policy improvement through policy iteration. The selected policies fully

improve in three iterations, chosen for illustration. Unsuccessful attempts are

not shown here. In all policy iteration examples discussed below, after the

initial uniform distribution, the rollout states are positioned mostly around,

but not on, the action boundaries. The goal in this domain is to get the car

out the value within the first 3000 steps.

Figure 7.29 shows a typical run of DRCPI-AIV-SVM on the Mountain Car

domain. The first iteration delivered a policy that yields a discounted return

of 0.0000 with 38% successful trials to exit the valley after 2018 steps on

average; this was subsequently improved with the second policy which yields

a discounted return of 0.2355, successful trials 99% to exit the valley after

245 steps on average. The third policy in row yields a discounted return of

0.3330, successful 100% to exit the valley after 109 steps on average. The

fourth iteration did not manage to improve further the policy, as expected,
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Figure 7.29: DRCPI-AIV-SVM on the Mountain Car: three successive policies from a
typical run. Dominating actions are shown in color: blue for left force, yellow for no force,
and green for right force. Rollout states after filtering are shown as little circles colored with
the dominating action color (inputs and targets of the training set).
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Figure 7.30: DRCPI-AIV-SVM learned policy for the Mountain Car: the binary SVM
classifiers for each action of the final balancing policy π3 in the experiment of Figure 7.29.
Each dominating class is shown in color: blue for left force, yellow for no force, green for right
force; other classes are shown in red color. The corresponding training set T3 is depicted
in black for positive examples and white for negative examples; the derived support vectors
are shown in bold.

and policy iteration terminated. Figure 7.30 shows the three binary SVM

classifiers representing the final policy π3.

Figure 7.31 shows a typical run of DRCPI-IS-SVM on the Mountain Car do-

main. The first iteration delivered a policy that yields a discounted return

of 0.0000 with 7% successful trials to exit the valley after 2271 steps on av-

erage; this was subsequently improved with the second policy which yields a

discounted return of 0.0795, successful trials 92% to exit the valley after 704

steps on average. The third policy in row yields a discounted return of 0.3024,

successful 100% to exit the valley after 119 steps on average. The fourth

iteration did not manage to improve further the policy, as expected, and pol-

icy iteration terminated. Figure 7.32 shows the three binary SVM classifiers

representing the final policy π3.

Figure 7.33 shows a typical run of DRCPI-AIV-RVM on the Mountain Car
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Figure 7.31: DRCPI-IS-SVM on the Mountain Car: three successive policies from a
typical run. Dominating actions are shown in color: blue for left force, yellow for no force,
and green for right force. Rollout states after filtering are shown as little circles colored with
the dominating action color (inputs and targets of the training set).
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Figure 7.32: DRCPI-IS-SVM learned policy for the Mountain Car: the binary SVM
classifiers for each action of the final balancing policy π3 in the experiment of Figure 7.31.
Each dominating class is shown in color: blue for left force, yellow for no force, green for right
force; other classes are shown in red color. The corresponding training set T3 is depicted
in black for positive examples and white for negative examples; the derived support vectors
are shown in bold.

domain. The first iteration delivered a policy that yields a discounted return

of 0.0010 with 90% successful trials to exit the valley after 1343 steps on

average; this was subsequently improved with the second policy which yields

a discounted return of 0.3111, successful trials 100% to exit the valley after

116 steps on average. The third policy in row yields a discounted return of

0.3493, successful 100% to exit the valley after 104 steps on average. The

fourth iteration did not manage to improve further the policy, as expected,

and policy iteration terminated. Figure 7.34 shows the three binary SVM

classifiers representing the final policy π3.

Figure 7.35 shows a typical run of DRCPI-IS-RVM on the Mountain Car do-

main. The first iteration delivered a policy that yields a discounted return

of 0.0379 with 100% successful trials to exit the valley after 483 steps on av-

erage; this was subsequently improved with the second policy which yields a
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Figure 7.33: DRCPI-AIV-RVM on the Mountain Car: three successive policies from a
typical run. Dominating actions are shown in color: blue for left force, yellow for no force,
and green for right force. Rollout states after filtering are shown as little circles colored with
the dominating action color (inputs and targets of the training set).
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Figure 7.34: DRCPI-AIV-RVM learned policy for the Mountain Car: the binary RVM
classifiers for each action of the final balancing policy π3 in the experiment of Figure 7.33.
Each dominating class is shown in color: blue for left force, yellow for no force, green for right
force; other classes are shown in red color. The corresponding training set T3 is depicted
in black for positive examples and white for negative examples; the derived support vectors
are shown in bold.
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Figure 7.35: DRCPI-IS-RVM on the Mountain Car: three successive policies from a
typical run. Dominating actions are shown in color: blue for left force, yellow for no force,
and green for right force. Rollout states after filtering are shown as little circles colored with
the dominating action color (inputs and targets of the training set).

discounted return of 0.2521, successful trials 100% to exit the valley after 137

steps on average. The third policy in row yields a discounted return of 0.3265,

successful 100% to exit the valley after 111 steps on average. The fourth

iteration did not manage to improve further the policy, as expected, and pol-

icy iteration terminated. Figure 7.36 shows the three binary SVM classifiers

representing the final policy π3.
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Figure 7.36: DRCPI-IS-RVM learned policy for the Mountain Car: the binary RVM
classifiers for each action of the final balancing policy π3 in the experiment of Figure 7.35.
Each dominating class is shown in color: blue for left force, yellow for no force, green for right
force; other classes are shown in red color. The corresponding training set T3 is depicted
in black for positive examples and white for negative examples; the derived support vectors
are shown in bold.

7.2.2.3 Statistics

In this section, we provide statistics for the Mountain Car. Each row in Ta-

ble 7.7 represents averages of 200 independent runs, but with different random

seeds, for each algorithm shown in Table 7.1. The Simulation tab shows the

total number of simulation steps needed for each run, while the Rollouts tab

shows the total number of rollouts executed in each run. The Attempts tab

shows the number of improvement attempts (the number of iterations is less

than or equal to that) before termination and the Time tab shows the real

time (seconds) taken by each run. Finally, the Return and Success tabs show

the total expected discounted reward and the success rate respectively of the

final learned policy (both measured by policy rollout from the initial state).

Each run is evaluated by taking the average performance of 100 independent

policy rollouts using the learned policy starting the car at position p´.5, 0q for

px, 9xq and ending when successfully exiting the valley in less than 3000 steps

or after 3000 steps of simulation with no exit. Trajectories in which the car

fails to exit within 3000 simulation steps are considered unsuccessful.

Consider first the two RCPI- algorithms with the full count of 200 uniformly

distributed rollout states in each iteration. While both algorithms exhibit good

learning performance (Return), the computational cost is high, as indicated

by the Simulation and Time tabs. Moving on to the DRCPI- variations, we
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use a set of 200 (full count) uniformly distributed rollout states only in the

first iteration and a set of 40 (low count) rollout states from directed sam-

pling afterwards. Clearly, the DRCPI- variations yield significant savings in

terms of Rollouts, Simulation, Attempts, and Time compared to the RCPI-

algorithms with the full count, while delivering policies of comparable perfor-

mance (Return) in most cases. Finally, to appreciate the value of directed

sampling, one can consider the RCPI- variations using a low count of only 40

uniformly distributed rollout states throughout all iterations. It is clear that in

this case performance deteriorates in both Return and Success (especially for

SVM), implying that the proposed focused (directed) selection of rollout states

plays a significant role in performance, when the rollout/simulation budget is

low.

Comparing policy Return, which is the metric optimized by learning, RVM

versions have a slight advantage over the corresponding SVM versions in all

cases. Within the DRCPI variants, AIV resampling also exhibits advantage

over IS resampling for both SVM and RVM. Finally, the Return delivered by

the DRCPI variants is close to those delivered by RCPI with the full count

of rollout states and significantly better compared to those delivered by RCPI

with the low count. Nevertheless, all DRPCI variants exhibit lower simula-

tion requirements and execution times compared to RCPI with full count and

compare favorably to RCPI with low count.

Figures 7.37 through 7.44 include for each algorithm three histograms display-

ing the distribution of the corresponding 200 runs in terms of: (a) the policy

return values, (b) the percentage of successful trails, and (c) the number of

average steps per run for successful exit only for exiting trials.
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Table 7.7: Mountain Car (200/40, four attempts), collective results of 200 runs and com-
parison of algorithms in terms of computational and learning performance

Algorithm States Simulation Rollouts Attempts Time Return Success

RCPI-SVM 200 17031407 1986 9.9 95.8 0.2711 99.52%
RCPI-RVM 200 14402231 1683 8.4 14.6 0.2953 100.00%
DRCPI-AIV-SVM 200/40 5908725 573 8.6 16.3 0.2440 98.74%
DRCPI-IS-SVM 200/40 5198928 490 6.5 10.1 0.1786 89.07%
DRCPI-AIV-RVM 200/40 4572201 461 7.6 3.2 0.2663 98.93%
DRCPI-IS-RVM 200/40 4137240 480 7.3 3.0 0.2497 99.37%
RCPI-SVM 40 3302827 343 8.6 5.3 0.2183 84.30%
RCPI-RVM 40 3098182 338 8.5 3.3 0.2732 98.52%
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Figure 7.37: Mountain Car using DRCPI-AIV-SVM.
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Figure 7.38: Mountain Car using DRCPI-IS-SVM.
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Figure 7.39: Mountain Car domain using DRCPI-AIV-RVM.
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Figure 7.40: Mountain Car using DRCPI-IS-RVM.
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Figure 7.41: Mountain Car using RCPI-SVM with a full count of rollout states.
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Figure 7.42: Mountain Car using RCPI-RVM with a full count of rollout states.
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Figure 7.43: Mountain Car using RCPI-SVM with a low count of rollout states.
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Figure 7.44: Mountain Car using RCPI-RVM with a low count of rollout states.

7.2.3 Acrobot

The values used in the experiments with the Acrobot are reported in Table 7.8

and the library parameters in Table 7.9. The initial policy π0 was a random

136



Table 7.8: DRCPI parameters for Acrobot domain

S
y
m

b
ol

D
R

C
P

I-A
IV

D
R

C
P

I-IS

R
C

P
I

Description

A
crob

ot
U X X initial sample size for uniform sampling 200
M X X subsequent sample size constructed using

previous policy hints
40

L X X X number of attempts to improve previous
policy for a given iteration

4

K X X X trials - the number of rollouts used to esti-
mate Qps, aq values for a given state s

50

H X X X horizon - number of steps per rollout 100
Z X number of particles 10 ¨M (i.e. 400)
Σ X covariance matrix Σ used in resampling us-

ing particles
diag(0.2)

UU X uniform sample size for RCPI, for all steps U (i.e. 200)
UUL X uniform low sample size for RCPI for all

steps
M (i.e. 40)

Policy Assessment
(values are used to estimate the efficiency of the policy)

Ktest X X X trajectories - number of rollouts 100
Htest X X X horizon - number of steps per rollout 3000

Table 7.9: Library parameters for Acrobot domain

LibSVM SparseBayesV2
Procedure Algorithms used β C β

Classification DRCPI-AIV, DRCPI-IS, RCPI 1{6 100 1{6

Regression DRCPI-IS 1{6 50 1{6

deterministic policy.

In this section, we provide statistics for the Acrobot. We display experimental

results for both the energy shaping reward and the classic reward. We added

a column with average steps to reach the goal, for performance comparison

between the two different reward schemes. Table 7.10 holds data for energy

based reward, each row represents averages of 200 independent runs with iden-

tical settings, but with different random seeds, for each algorithm shown in

Table 7.1. Table 7.11 shows results for classic reward, each row represents

averages of 200 independent runs with identical settings, but with different
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random seeds, for each algorithm. The Simulation tab shows the total number

of simulation steps needed for each run, while the Rollouts tab shows the total

number of rollouts executed in each run. The Attempts tab shows the num-

ber of improvement attempts (the number of iterations is less than or equal

to that) before termination and the Time tab shows the real time (seconds)

taken by each run. Finally, the Return and Success tabs show the total ex-

pected discounted reward and the success rate respectively of the final learned

policy (both measured by policy rollout from the initial state). Each run is

evaluated by taking the average performance of 100 independent policy roll-

outs using the learned policy starting the Acrobot at position p0, 0, 0, 0q for

pθ1, 9θ1, θ2, 9θ2q and ending when successfully reaching the goal in less than 3000

steps or after 3000 steps of simulation with no success. Trajectories in which

the Acrobot fails to reach the goal within 3000 simulation steps are considered

unsuccessful.

Consider first the two RCPI- algorithms with the full count of 200 uniformly

distributed rollout states in each iteration. While both algorithms exhibit good

learning performance (Return), the computational cost is high, as indicated

by the Simulation and Time tabs. Moving on to the DRCPI- variations, we

use a set of 200 (full count) uniformly distributed rollout states only in the

first iteration and a set of 40 (low count) rollout states from directed sampling

afterwards. Clearly, the DRCPI- variations yield significant savings in terms

of Rollouts, Simulation, Attempts, and Time (only for RVM) compared to the

RCPI- algorithms with the full count, while delivering policies of comparable

performance (Return) in most cases. Finally, to appreciate the value of directed

sampling, one can consider the RCPI- variations using a low count of only 40

uniformly distributed rollout states throughout all iterations. It is clear that in

this case performance deteriorates in both Return and Success (especially for

SVM), implying that the proposed focused (directed) selection of rollout states

plays a significant role in performance, when the rollout/simulation budget is

low.
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Comparing policy Return, which is the metric optimized by learning, RVM

versions have a significant advantage over the corresponding SVM versions in

all cases. The Return delivered by the DRCPI variants is not too far from those

delivered by RCPI with the full count of rollout states and better compared to

those delivered by RCPI with the low count. Nevertheless, all DRPCI variants

exhibit lower simulation requirements and execution times compared to RCPI

with full count and compare favorably to RCPI with low count. Finally, there

is a clear difference in the number of steps to reach the goal with the energy

based reward being superior to the classic one.

For the energy shaping reward we provide figures 7.45 through 7.52 include.

For each algorithm we give three histograms displaying the distribution of

the corresponding 200 runs in terms of: (a) the policy return values, (b) the

percentage of successful trails, and (c) the number of average steps per run for

successfully reaching the goal only for successful trials.

Table 7.10: Acrobot with energy based reward, (200/40, attempts 4), collective results of
200 runs and comparison of algorithms in terms of computational and learning performance

Algorithm States Simulation Rollouts Attempts Time Return Success Steps

RCPI-SVM 200 3154392 1553 7.8 49.8 42.080 98.19% 179
RCPI-RVM 200 3357657 1656 8.3 8.7 88.109 99.00% 119

DRCPI-AIV-SVM 200/40 1119830 460 7.5 16.0 25.221 97.34% 257
DRCPI-IS-SVM 200/40 987650 448 7.2 10.2 23.579 97.21% 261
DRCPI-AIV-RVM 200/40 921737 427 6.7 4.2 56.138 97.57% 194
DRCPI-IS-RVM 200/40 925931 416 6.4 4.6 42.235 97.00% 246

RCPI-SVM 40 649828 320 8.0 6.8 19.640 98.00% 294
RCPI-RVM 40 683208 334 8.3 4.7 31.746 96.00% 275

Table 7.11: Acrobot with classic reward, (300/120, attempts 4), collective results of 200
runs and comparison of algorithms in terms of computational and learning performance

Algorithm States Simulation Rollouts Attempts Time Return Success Steps

RCPI-SVM 300 5746237 2925 8.1 64.8 0.018965 98.43% 316
RCPI-RVM 300 5203445 2610 7.2 11.5 0.024965 96.67% 372

DRCPI-AIV-SVM 300/120 4244549 1373 8.2 42.9 0.013555 98.12% 355
DRCPI-IS-SVM 300/120 2611023 1239 7.2 20.4 0.012617 98.01% 387
DRCPI-AIV-RVM 300/120 2243563 1006 6.0 6.5 0.008405 93.37% 580
DRCPI-IS-RVM 300/120 2418309 1165 6.2 6.7 0.010783 95.96% 472

RCPI-SVM 120 1882391 932 7.8 13.0 0.008467 97.14% 430
RCPI-RVM 120 1482727 720 6.0 5.1 0.005368 91.66% 834
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Figure 7.45: Acrobot using DRCPI-AIV-SVM.
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Figure 7.46: Acrobot using DRCPI-IS-SVM.
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Figure 7.47: Acrobot domain using DRCPI-AIV-RVM.
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Figure 7.48: Acrobot using DRCPI-IS-RVM.
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Figure 7.49: Acrobot using RCPI-SVM with a full count of rollout states.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

160

180

200

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

140

160

180

0 500 1000 1500 2000 2500 3000
0

20

40

60

80

100

120

140

160

180

200

Total discounted reward Success percentage Number of average steps to complete

Figure 7.50: Acrobot using RCPI-RVM with a full count of rollout states.
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Figure 7.51: Acrobot using RCPI-SVM with a low count of rollout states.
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Figure 7.52: Acrobot using RCPI-RVM with a low count of rollout states.
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Table 7.12: DRCPI parameters for 4-link Planar Robot domain

S
y
m

b
ol

D
R

C
P

I-A
IV

D
R

C
P

I-IS

R
C

P
I

Description

4-lin
k

P
lan

ar
R

ob
ot

U X X initial sample size for uniform sampling 100
M X X subsequent sample size constructed using

previous policy hints
20

L X X X number of attempts to improve previous
policy for a given iteration

4

K X X X trials - the number of rollouts used to esti-
mate Qps, aq values for a given state s

50

H X X X horizon - number of steps per rollout 100
Z X number of particles 20 ¨M (i.e. 400)
Σ X covariance matrix Σ used in resampling us-

ing particles
diag(0.2)

UU X uniform sample size for RCPI, for all steps U (i.e. 100)
UUL X uniform low sample size for RCPI for all

steps
M (i.e. 20)

Policy Assessment
(values are used to estimate the efficiency of the policy)

Ktest X X X trajectories - number of rollouts 100
Htest X X X horizon - number of steps per rollout 500

Table 7.13: Library parameters for 4-link Planar Robot domain

LibSVM SparseBayesV2
Procedure Algorithms used β C β

Classification DRCPI-AIV, DRCPI-IS, RCPI 1{16 64 1{2

Regression DRCPI-IS 1{30 2 1{4

7.2.4 4-Link Planar Robot

The values used in the experiments with the 4-Link Planar Robot are reported

in Table 7.12 and the library parameters in Table 7.13. The initial policy π0

was a random deterministic policy.

In this section, we provide statistics for the 4-Link Planar Robot. Each row in

Table 7.14 represents averages of 200 independent runs with identical settings,

but with different random seeds, for each algorithm shown in Table 7.1. The
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Simulation tab shows the total number of simulation steps needed for each run,

while the Rollouts tab shows the total number of rollouts executed in each run.

The Attempts tab shows the number of improvement attempts (the number

of iterations is less than or equal to that) before termination and the Time

tab shows the real time (seconds) taken by each run. Finally, the Return and

Success tabs show the total expected discounted reward and the success rate

respectively of the final learned policy (both measured by policy rollout from

the initial state). Each run is evaluated by taking the average performance of

100 independent policy rollouts using the learned policy starting the 4-Link

Planar Robot at position pπ, π, π, π, 0, 0, 0, 0q for pθ1, θ2, θ3, θ4, 9θ1, 9θ2, 9θ3, 9θ4q and

ending when successfully reaching the goal in less than 500 steps or after 500

steps of simulation with no success. Trajectories in which the 4-link Planar

Robot fails to reach the goal within 500 simulation steps are considered un-

successful.

Consider first the two RCPI- algorithms with the full count of 100 uniformly

distributed rollout states in each iteration. While both algorithms exhibit good

learning performance (Return), the computational cost is high, as indicated

by the Simulation and Time tabs. Moving on to the DRCPI- variations, we

use a set of 100 (full count) uniformly distributed rollout states only in the

first iteration and a set of 20 (low count) rollout states from directed sampling

afterwards. Clearly, the DRCPI- variations yield significant savings in terms of

Rollouts, Simulation, Attempts, and Time compared to the RCPI- algorithms

with the full count, while delivering policies of comparable performance (Re-

turn) in most cases. Finally, to appreciate the value of directed sampling, one

can consider the RCPI- variations using a low count of only 20 uniformly dis-

tributed rollout states throughout all iterations. It is clear that in this case

performance deteriorates in both Return and Success, implying that the pro-

posed focused (directed) selection of rollout states plays a significant role in

performance, when the rollout/simulation budget is low.

Comparing policy Return, which is the metric optimized by learning, RVM
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versions have a significant advantage over the corresponding SVM versions in

all cases. Finally, the Return delivered by the DRCPI variants is not too far

from those delivered by RCPI with the full count of rollout states and better

compared to those delivered by RCPI with the low count. Nevertheless, all

DRPCI variants exhibit lower simulation requirements and execution times

compared to RCPI with full count and compare favorably to RCPI with low

count.

Figures 7.53 through 7.60 include for each algorithm three histograms display-

ing the distribution of the corresponding 200 runs in terms of: (a) the policy

return values, (b) the percentage of successful trails, and (c) the number of

average steps per run for successfully reaching the goal only for successful

trials.

Table 7.14: 4-link Planar Robot (100/20, attempts 4), collective results of 200 runs and
comparison of algorithms in terms of computational and learning performance

Algorithm States Simulation Rollouts Attempts Time Return Success

RCPI-SVM 100 11393856 884 8.8 307.9 1.288465 93.41%
RCPI-RVM 100 11226298 888 8.9 222.4 1.293182 96.45%
DRCPI-AIV-SVM 100/20 3482916 258 8.8 75.8 1.286796 93.37%
DRCPI-IS-SVM 100/20 3525170 263 9.1 75.9 1.285163 92.46%
DRCPI-AIV-RVM 100/20 3423388 257 9.0 65.7 1.290313 95.01%
DRCPI-IS-RVM 100/20 3508169 273 9.6 67.2 1.293007 95.99%
RCPI-SVM 20 2116878 162 8.1 45.9 1.273024 89.61%
RCPI-RVM 20 2253847 176 8.8 45.0 1.286189 94.87%
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Figure 7.53: 4-link Planar Robot using DRCPI-AIV-SVM.
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Figure 7.54: 4-link Planar Robot using DRCPI-IS-SVM.
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Figure 7.55: 4-link Planar Robot domain using DRCPI-AIV-RVM.
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Figure 7.56: 4-link Planar Robot using DRCPI-IS-RVM.
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Figure 7.57: 4-link Planar Robot using RCPI-SVM with a full count of rollout states.
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Figure 7.58: 4-link Planar Robot using RCPI-RVM with a full count of rollout states.
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Figure 7.59: 4-link Planar Robot using RCPI-SVM with a low count of rollout states.
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Figure 7.60: 4-link Planar Robot using RCPI-RVM with a low count of rollout states.
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8

Conclusion and Future Work

In this dissertation we studied extensions of Rollout Classification Policy It-

eration, a class of reinforcement learning algorithms that do not use explicit

value function representation. These algorithms skip the difficult to approx-

imate and possibly discontinuous value function and they learn good policies

directly through rollouts (simulation). Rollouts are used to probe the im-

proved policy at selected points in state space by repeatedly executing the

current policy. Policies are generally greedy and deterministic and, thus, they

can be represented by classifiers. A classifier representing a policy maps states

into dominant actions (classes). The classifier training set at each iteration of

policy improvement consists of (state, dominant action) pairs obtained using

policy rollouts for estimating the return of the current policy from selected

states and subsequently identifying the dominant action (if any).

8.1 Contributed Work

Our initial contribution was to uncover the structure that exists in optimal

policies by deriving optimal policies for two standard two-dimensional rein-

forcement learning domains. We found that optimal policies have significant

structure and a high degree of locality, i.e. dominant actions persist over large
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continuous areas within the state space. This observation provides sufficient

justification for the appropriateness of classifiers for approximate policy rep-

resentation.

Then, we focused our research on how to identify critical parts of the state

space where there are changes in action domination. A change in action domi-

nation is represented by the separating border of a binary classifier. The border

separates an action from all other actions. We use a collection of binary clas-

sifiers, one for each action, to form a multiclass classifier to represent a policy.

Our aim is minimize the use of policy rollouts in our quest for an improved pol-

icy, by using the already caught policy structure. We developed two methods

for directed exploration of policy space. The first one exploits the structure of

the classifiers used for policy representation. The second one uses a state im-

portance function based on action prevalence. In both approaches, the search

is focused on areas where there is change of action domination. This directed

focus on critical parts of the state space iteratively leads to refinement and

improvement of the underlying policy and delivers excellent control policies in

only a few iterations with a relatively small rollout budget.

8.2 Future Work

Future work may be applied to several directions. A challenging extension of

DRCPI would be its adaptation for domains with continuous actions. Appar-

ently, in such domains, multiclass or binary classifiers cannot be used directly

for policy representation. Nevertheless, our work on DRCPI can be combined

with the work of Pazis and Lagoudakis (2009), whereby a continuous action

policy is approximated to any desired accuracy using a series of binary deci-

sions for each continuous action choice. These binary decisions can be made

by a binary policy represented using binary classifier(s) and therefore DRCPI

could be used to learn such policies efficiently.

Another direction of future work, which may eliminate the need for the at-
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tempts loop in our algorithms, is to adopt a stepwise update during policy

improvement. In particular, at each policy iteration the resulting policy will

be derived as a combination of two policies, partly from the old policy and

partly from the new one, combined in a way that guarantees improvement.

Such an update can help eliminate possible performance discontinuities, which

dictated the use of attempts in our work. However, under such “mixed” rep-

resentations each policy will be represented by a collection of classifiers, which

will require careful management.

Another possible direction of future work is to exploit online classification

methods for incremental policy refinement. Under this idea, there is only a

single policy representation by a classifier, which is gradually refined at each

step by feeding the online training algorithm with additional training data.

The benefit of this approach is the granular processing and exploitation of

any additional information and the smooth policy improvement. Our directed

exploration methods are still relevant in this context, since the increment policy

refinement can be directed to focus at selective areas over the state space at

each step.

Finally, the recent explosion of deep learning technologies (Mnih et al., 2015)

both for classification and regression opens new future research directions. Our

first approach, based on active input vectors, depends on exploiting the inter-

nal structure of the SVM and RVM classifiers, therefore cannot be combined

easily with deep learning. However, our second approach, based on impor-

tance sampling, only requires the use of a general-purpose classifier and a

general-purpose regressor; in this case, combining our work with deep learning

classifiers and regressors is straight-forward. The expressiveness and efficiency

of such technology could enhance the effectiveness of policy representation

provided by our algorithms.
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8.3 Epilogue

Our investigation of structure within policy representations produced many

positive results. It allowed us to uncover this structure for the benefit of policy

improvement. We introduced two novel reinforcement learning approaches

that exploit iteratively the known policy structure while uncovering it, in the

quest for an improved, and ideally optimal, policy. This dissertation sheds

some light to the problem of learning by bringing together two large areas,

namely reinforcement learning and supervised learning; our small contribution

of scientific knowledge to the society.
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Mohammad Ghavamzadeh. Classification-based approximate policy itera-
tion: Experiments and extended discussions. CoRR, abs/1407.0449, 2014.

Amir Massoud Farahmand, Doina Precup, André da Motta Salles Barreto,
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