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Abstract

Reinforcement learning refers to a broad class of learning problems. Autonomous
agents typically try to learn how to achieve their goal solely by interacting with
their environment. They perform a trial-and-error search and they receive delayed
rewards (or penalties). The challenge is to learn a good or even optimal decision
policy, one that maximizes the total long-term reward. A decision policy for an
autonomous agent is the knowledge of what to do in any possible state in order

to achieve the long-term goal efficiently.

Several recent learning approaches within decision making under uncertainty sug-
gest the use of classifiers for the compact (approximate) representation of policies.
However, the space of possible policies, even under such structured representa-
tions, is huge and must be searched carefully to avoid computationally expensive

policy simulations.

In this dissertation, our first contribution uncovers policy structure by deriv-
ing optimal policies for two standard two-dimensional reinforcement learning do-
mains, namely the Inverted Pendulum and the Mountain Car. We found that
optimal policies have significant structure and a high degree of locality, i.e. dom-

inant actions persist over large continuous areas within the state space. This



observation provides sufficient justification for the appropriateness of classifiers

for approximate policy representation.

Our second and main contribution is the proposal of two Directed Policy Search
algorithms for the efficient exploration of policy space provided by Support Vec-
tor Machines and Relevance Vector Machines. The first algorithm exploits the
structure of the classifiers used for policy representation. The second algorithm
uses an importance function to rank the states, based on action prevalence. In
both approaches, the search over the state space is focused on areas where there
is change of action domination. This directed focus on critical parts of the state
space iteratively leads to refinement and improvement of the underlying policy
and delivers excellent control policies in only a few iterations with a relatively

small rollout budget, yielding significant computational time savings.

We demonstrate the proposed algorithms and compare them to prior work on
three standard reinforcement learning domains: Inverted Pendulum (two-dimensional),
Mountain Car (two-dimensional), Acrobot (four-dimensional). Additionally, we
demonstrate the scalability of the proposed approaches on the problem of learn-
ing how to control a 4-Link, Under-Actuated, Planar Robot, which corresponds
to an eight-dimensional problem, well-known in the control theory community. In
all cases, the proposed approaches strike a balance between efficiency and effort,

yielding sufficiently good policies without excessive steps of learning.
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[eptAngm

H evioyutin| pdinon avagépeton ot Wi evpetor xatrnyopla mtpofAnudtwy pdinorng.
Ov autdvopec ovtotnteg TUTd TpooTadoly va pddouv vo ETLTUYYEvVouY To GTdY 0
TOUG OMOXAEO TG €O TNG aAANAETidpaon Ue To TepBdihov Toug. Kdvouv die-
peuyNTEC Tpoondleleg avalATNoNG UECL BOXYWY %ok EAEY YWY XL AauBdvouy e
xohuo tépnon avtapoBéc (1 mowéc). H mpdxhnon elvon vor pddouv pia ixavomoln-
T 1) oxopar xou BEATIO T ToMTW APNG amopdocwy, 1) omola Vo UEYLoToTOoLEL TN
cLYOAXY| daxporpddeoun aviapgol3r). Mo ol AMPNe amopdcewy Yo i ou-
TOVOUY OVTOTNTA ElVal 1) YVOOT TOU TL TEETEL Vo xdvel o xdde mdovy| xotdo Toon

TEOXEWEVOU VoL ETULTELYVEl ATOTEAECUATING O UaxPOTEOVEGUOC GTOYOC.

Iohhég mpdogatec mpooeyyioelg pdinong yia T An aropdoewy und aeBardtnTo
TEOTEVOLY TN YEYoN TEVOUNTOY Yiot TNV cuunayt (TpooeyyioTxy) avanapdotacn
TONTIX®Y. 20T0C0, 0 YWEOS TWV TWHAVDY TOAMTIXWDY, OXOUA Xl XATW oAb TETOLEC
OOUNUEVES AVITOPUOTACELS, Efval TEpdoTIOC Xon TEETEL Var arval NTNIel ToooeX TN Yol

VoL amtoeUyJolV UTONOYIGTIX OXELBEC TEOGOUOLOOELS TOATIXOV.

Ye auth| T dttelfn, N TewTn Yo cLUPoAr oyetileTon e TNV aviyveuorn dourc o
Bértioteg molTnég. Eetdooue BéATioTe TOMTIXES Yo 500 Baocixd Tedla evioyuTi-
xfc udinong dvo dlactdoewy, to Inverted Pendulum xou to Mountain Car. Awa-

TG TOOUPE OTL 0L BEATIOTEC TOMTIXES TOUC €Y 0LV GTUOYTIXT| BoUT| xou UYNAS Bordud

X1



TOTUXOTNTOG, ONAADY Ol XUPLUPYES EVEQYEIEG TUPUUEVOLY (DIEC OE UEYIAEG CUVEYEIS
TEPLOYEC EVTOC TOL YWpou xatactdocwy. H mopatipnon auth| tapéyet emaoxr outto-
AOYNOT YL TNV XATOAANAGTNTA TWV TAEVOUNTOY Yol TROCEYYIO TIXT) AVITOOAOC OO

TOALTIXOV.

H debtepn xon x0pla oupfBoln pag ebvar 1 mpdtaom dVo alyopldumy Yo TNV xateu-
Yuvopevn avalATNoT TOL YWEOL TOMTIXOY UE TN YeHon Twv Tadvountomy SVM xa
RVM. O mpitog alyopriuog exetahhelETon T O0UT| TwV TAEVOUNTMY TOU YeNol-
HoToto0VTAL YloL TNV avamoedc Taon TNe ToAtixic. O dedtepog alydprduog yenot-
HOTIOLEL Lot GUVEETNOT CNUAVTIXOTNTAS TWV XATUAC TUOEWY, BACEL TN ETXEATNOTNS
TV evepyedy. Ko otic 800 mpooeyyloeic, n avalAtnorn 6Tov yoHpo xatao tdoe-
OV ETXEVTIPWVETAL OE TEPLOYEC OTOU UTEYEL ahhoryt) xuplapyng evépyelog. Auth
1 %xaTeLYUVOUEYY €0 ToOT) OF XEIOWO TUAUAUTO TOU YMEOU XATUCTUCEWY 0ONYel €-
TovoANTTIXd o exAémtuvon xou BeAtinon tng Teéyoucuc mohtAc. Alyeg uédvo
emovOAAPES aEX00V YLoL TNV TRy WYY EEUPETIXOV TOMTIXWY UE OYETIXE YAUUNAO

oELIUO TEOCOUOLOCEWY, XUTOUAYOVTOS GE ONUAVTIXY| ECOLXOVOUNOT) YPOVOU.

Hopouotdloupe ToUC TEOTEWVOUEVOUS AAYORLILOUC X0l TOUS GUYXEIVOUUE UE TIC TIROT
youpeveg epyaoieg ot tplo Bacund medla ueétng tng evioyutrc udinone: Inverted
Pendulum (800 dotdoenmv), Mountain Car (800 diactdoewy) xou Acrobot (teo-
odpwv Slotdoewy). Emnpocdétng, entdetxvioude Ty ENEXTUCUOTNTA TWY TEOTEL-
VOUEVWY TPOOEYYIoEWY 0T0 TeoBAnUa Tng udinong yio Tov EAeyyo evog 4-Link Pla-
nar Robot, 1o onolo avtioTtotyel o éva TpéBANU 0XTE BLUCTACEWY, YVWOTO TNV
xowotnta g Yewplag ehéyyou. e OAEC TIC TEPITTWOELS, Ol TPOTEWVOUEVES TPOCEY-
yioewg emtuyydvouy Wi looppoTia YeTal) AMOTEAECUATIXOTNTOC XoU TEOCTEVELNCS,
amodldovTag EMUEXMS KAAEG TOATIXEC GE GUVTOUO YEOVIXO Do TNUY, Ywelc utep-
Boluxd apriud Brudtwy pdinong.

xii
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Symbols and Abbreviations

Symbols

z A

S 0 =R =

Set of real numbers

Set of natural numbers

Dimensionality of input samples
Input space RY
Space of all Q-functions

Number of input samples

Sequential decision-making context

= O

S
aj

P(Sl,al)

P(Sz, a, Sl+1)

P(Sz, a, Sl+1)

ﬁ(Sl, ar, 31+1)

State space
Action space

Initial state distribution

The MDP time step, an integer variable, the first time step
is zero (I = 0)

State of MDP at time step [
Action taken at time step [

Deterministic MDP transition function, returns next state
s;41 after taking action a; at state s

Stochastic MDP transition probability density function from
state s; taking action a;, the probability that the next state
si+1 belongs to a region §;.1 € S is:

P(si41 € Sipalsi, ar) = P(s1, 1,8 )ds'

Sit1

Stochastic MDP transition function for countable or dis-
crete state space, returns the probability to move to state
s141 after taking action a; at state s; i.e., P(s;11]s;, ;)

Immediate reward function after taking action a; at state s;
and moving to state s;,1
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Ty

R(s,a)

p(s1—1,a;-1, ;) i.e., immediate reward value at time [ after
taking action a;_; at state s;_; and moving to state s;

Expected reward function for countable space, after taking
action a at state s,

R(s,a) = Z P(s,a,s)p(s,a,s)
s'eS
in case of deterministic MDP,
R(s,a) = p(s,a,P(s,a))
Discount factor € (0, 1]
Policy
Optimal policy
Policy function, the action returned by policy 7 at state s.
o A deterministic policy 7(s) : S — A returns the cho-
sen action a at state s with probability 1.

e A stochastic policy m(s) : & — Q(A) returns action
a at state s with probability 7(als) taken from the
chosen probability distribution 2(.A) over A.

Probability of policy 7 taking action a at state s
State value function

State value function for policy 7

State value function for optimal policy 7*
State-action value function

State-action value function for policy m
State-action value function for optimal policy 7*

probability of random action in e-greedy policy

Supervised learning context

Input vector x € X
Target value t € R, for binary classification ¢t € {—1, +1}
Input (training) data

Prediction function (alpha) coefficient for input vector x;,
computed by the optimization process

Set of indexes in the dataset {(:Izz,tl)}fil where the cor-
responding «; is non-zero. The set of indexes for active
vectors.

Prediction function for input @

Kernel function, gives a measure of similarity for the input
vectors &’ and x
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Directed Policy Search

=

~ X O~

Abbreviations

RL

API

MDP
RBF

SVM
RVM
LSPI
RCPI
DRCPI
DRCPI-AIV
DRCPI-IS

State vector s € X

Action advantage function in state s

Filtering limit

Active vector (with non-zero alpha coefficient)

Number of active input vectors

Prediction function set of parameters: active vector s;, tar-
get value t;, and non-zero «; coefficient

Projection of active vector s; onto the separating border
Gradient vector of decision function gg(s) = V,y(s)

Gradient vector of action advantage function approximation
9ga(s) = Vsq(s)
Distance of active vector s; from separating border

Number of repetitions (trials) of a rollout of policy = for
state s and action a in order to estimate @, (s, a) (average)

Number of time steps (horizon) for a rollout

Number of attempts to get an improved policy w1 over 7
Initial uniformly-sampled training set size

Directed sampled training set size (M < U)

Policy iteration number

Reinforcement Learning

Approximate Policy Iteration

Markov Decision Process

Radial Basis Function

Support Vector Machines

Relevance Vector Machines

Least-Squares Policy iteration

Rollout Policy Iteration

Directed Rollout Policy Iteration

Directed Rollout Policy Iteration using Active Input Vectors

Directed Rollout Policy Iteration using Importance Sam-
pling
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1

Introduction

Learning by doing or learning by trial-and-error is a significant way of learning
in living creatures. Learners interact with their environment and use their
experience to either choose or avoid certain actions based on rewards or penal-
ties they receive. Reinforcement Learning (Sutton and Barto, 1998) describes a
large class of such learning problems and typically refers to autonomous agents
learning by interacting with their environment. These problems are sequen-
tial decision-making problems with delayed rewards. The agent, the decision
maker, may take a long sequence of actions receiving little or no information
about the quality of its decisions, and finally, may arrive at a terminal state
with success or failure. Such problems are typically modeled as Markov Deci-
sion Processes (MDPs) (Puterman, 1994). The goal is to find a good decision
policy, one that maximizes the cumulative reward received over time. The pol-
icy is the agent’s knowledge of what to do in any particular state, to achieve

the goal efficiently.

A deterministic policy is a mapping from states to actions. Good deterministic
policies can be approximately represented using classifiers over the entire state
space; each action is viewed as a distinct class and the states are the instances

to be classified. Moreover, such policies for common domains are not arbitrary,
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Elimination of
the Value

Function

Our Work

but rather exhibit significant structure. Several learning approaches based on
the approximate policy iteration framework suggest the use of classifiers for
capturing this structure and representing policies compactly (Lagoudakis and
Parr, 2003a; Fern et al., 2004; Langford and Zadrozny, 2005). Such classifiers
can be learned using appropriate training data sets that reveal the desired
action choice over a finite set of states. The most attractive benefit of this
approach is the elimination of the need for value function representation; in-
stead, the focus is put directly on policy learning. While it is known (Anderson,
2000) that it is easier to represent a policy, rather than a value function, the
full potential of the reinforcement learning through classification approach, for

various learning problems, has barely been explored.

The space of possible policies, even under such structured representations, is
huge and needs to be explored carefully to avoid computationally expensive
simulations, i.e., rollouts. It is therefore desirable to have guidance for the
selection of the subset of state space where the improved policy is probed,
to form the training set for the classification problem. This aspect has been
given little attention in the past, nevertheless it plays a crucial role, considering
that each probe requires a significant amount of computational resources in
simulation, and therefore they better be focused on critical states which can

potentially lead to policy improvement.

1.1 Contribution Summary

Our purpose is to efficiently explore the policy space and produce near optimal
policies. Initially, we derived optimal policies for two standard two-dimensional
reinforcement learning domains which are appropriate for visualization and in-
spection (Rexakis and Lagoudakis, 2008). Our goal was to uncover the struc-
ture that exists in optimal policies and get an idea of the kind of information
we are looking for. An optimal deterministic policy is a map from states to

actions and optimal actions tend to gather in large coherent areas within the



state space. We direct the exploration of policy space using policy rollouts
and uncover the areas where an action prevails over the others. We use a col-
lection of binary classifiers to separate action areas within the state space and
represent a policy; there is no representation for any kind of value function.
At the core of this thesis, we developed and proposed two approaches for di-
rected exploration of policy space. The first one exploits the structure of the
classifiers used for policy representation. The second one uses a state impor-
tance function based on action prevalence. In both approaches, the search is
focused on areas where there are changes of action domination. This directed
focus on critical parts of the state space iteratively leads to refinement and
improvement of the underlying policy and delivers excellent control policies in

only a few iterations.

Our work, apart from contributing to the field of reinforcement learning, also
has a potential for significant impact on real-world applications. In robotics,
several control problems, such as balancing, walking, and recovering from dis-
turbances, are commonly viewed as learning problems, as robots with many
degrees of freedom (number of joints) become more and more common. Nowa-
days, a typical humanoid robot has at least 20 degrees of freedom, which
implies a multi-dimensional state space that includes at least the angle and
the angular velocity of each joint. Exploring such spaces efficiently is a crucial
factor in achieving acceptable learning times. Although current robot technol-
ogy does not allow extensive trial-and-error experimentation on the physical
robots, in the future, algorithms, such as the ones proposed in this thesis,
will be significant in making robot learning realizable in the real world in
real time. Another field which could benefit from our work in the future is
satellite technology, where the state space may be characterized by a large
number of angles of the various satellite parts and components, whereas the
degrees of control may be few (underactuated systems). Yet another field
of application could be the development of competitive agents with learning

capabilities in realistic, modern computer games, which are characterized by



complex, multi-agent, multi-dimensional environments. In general, our work
can be applicable to any multi-dimensional real-world domain, on the condi-
tion that a sampling procedure over the state space can generate valid states
to which the underlying system can be initialized for the purpose of probing
action values. Additionally, the impact of our work could become broader, if
combined with the expressiveness and efficiency of deep learning classification

technology.

1.2  Outline

Chapter 2 provides the basic definitions and introduces the notations necessary
to follow the work presented in this thesis. It reviews several Reinforcement
Learning topics, such as Markov Decision Processes, Policy Learning and Plan-
ning Algorithms, as well as Supervised learning topics, such as Classification,

Regression, Loss Functions, and Regularization.

Chapter 3 describes the problem studied in this thesis and sets forth the goal
of our research work. It begins with a review of the Rollout Classification
Policy Iteration algorithm as the starting point of our work and lists a number

of unanswered research questions.

Chapter 4 surveys previous work in the area of reinforcement learning com-
bined with supervised learning (classification and regression), reviewing the

most representative publications.

Chapter 5 details the Inverted Pendulum, Mountain Car, Acrobot and 4-Link
Planar Robot domains, which are widely known benchmark domain and we

used the test and evaluate our algorithms.

Chapter 6 is the core of our contribution; it describes our analysis of policy
representations, our methods for uncovering and exploiting structure and fi-
nally our two Directed Policy Search approaches, which can be instantiated
either using Support Vector Machines or Relevance Vector Machines.

4



Chapter 7 contains our experimental work. It includes first a computational
approximation and visualization of optimal policies for the two-dimensional
domains, Inverted Pendulum and Mountain Car. Then, it proceeds with an
exhaustive experimental study of our approaches/algorithms for efficient explo-
ration of the structure of policy space. Demonstration of the new algorithms

is provided on a variety of control problems: Inverted Pendulum, Mountain

Car, Acrobot and 4-Link Planar Robot.

Finally, Chapter 8 presents the summary and conclusion of this thesis, as well

as some ideas for future research directions of our work.






2

Background

Machine learning is the field of artificial intelligence, probability, control, and
optimization theory that deals with the extraction of a model from sample
data and the use of that model to make a prediction or strategy. The gist
of machine learning is the art of representation and generalization. How to
extract a model that is strict enough to represent training data samples, and

at the same time generalize well on unseen data samples.

Learning algorithms differ in the types of training data available, the order and
method by which training data is received and the test data used to evaluate
them. They are classified by the desired outcome of the algorithm or the type

of input available during training.

Supervised learner uses labeled examples as training data and makes pre-
dictions for all unseen ones. This is (or at least it used to be) the most
common case in machine learning, and it is associated with the classifi-
cation, regression, and ranking problems. The email spam detection is

an example of supervised learning.

Unsupervised learner receives unlabeled training data, discovers structure

and patterns in the data, and delivers more compact approximate repre-



sentations of the data. Since in general no labeled examples are available
in this setting, it can be difficult to quantitatively evaluate the perfor-

mance of a learner. Clustering is an example of unsupervised learning.

Semi-supervised learner gets labeled and unlabeled training samples and
makes predictions for new ones. Semi-supervised learning is common in
cases where unlabeled data are readily available, but labels are expen-
sive to get. Various types of problems found in applications, including
classification, regression, or ranking tasks, can be framed as instances of
semi-supervised learning. The hope is that the distribution of unlabeled
data accessible to the learner can help him achieve a better performance
than in the supervised setting. The analysis of the conditions under
which this can indeed be realized is the topic of much modern theoreti-

cal and applied machine learning research.

On-line learner involves multiple rounds of intermixed training and testing
phases. The essential characteristic of online learning is that soon after
the prediction is made, the true label of the instance is discovered. This
information can then be used to refine the prediction hypothesis used by
the algorithm. The goal of the algorithm is to make predictions that are

close to the true labels.

Reinforcement learner learns by trial and error in a setting where training
and testing phases are intermixed. To collect information, the learner ac-
tively interacts with the environment and receives an immediate reward
for each action. The objective of the learner is to maximize the total
reward over the course of interactions with the environment, a long-term
reward. However, the learner faces the exploration versus exploitation
dilemma; explore the unknown or exploit the already collected informa-

tion?



2.1 Sequential Decision Making Model

The sequential decision-making methodology is applied in multi-stage plan-
ning or learning problems. Such a problem or domain consists of one or more
decision makers, the agents, and their environment with which they interact.
Sequential decision making has been studied in many diverse fields, includ-
ing AI planning, decision analysis, operations research, control theory, and

economics.

A basic sequential decision-making model has only two subsystems. One is the
decision maker or agent, and the other one is the environment. A state of the
system is the description of everything that may influence the decisions of the
agent or be changed by its actions. At every time step, the agent is responsible
for making a decision, and also take an action in response to that decision,
to change the state of the environment (Figure 2.1). State changes are also
affected stochastically by uncertainty in the environment. A rational agent has
a goal to achieve. Reward is a numerical value given to the agent in response
to an action. Total reward is a way of accumulating immediate rewards given
to the agent and it indicates the goodness or badness of the agent’s situation
towards the goal. Rewards, either immediate or total, are delayed information

about the agent’s course of actions.

State

Reward

<«Reward . Enyironment

Action

FIGURE 2.1: The agent interacts with the environment. At any state, the agent takes
an action that changes the current state and receives a reward

The model is typically formulated using the Markov Decision Process frame-
work. It consists of a set of states, a set of actions, rules of transitioning
between states, rules that determine the immediate reward of a transition,

and rules that describe what the agent observes. A policy is the agent’s



State space

Action space

knowledge of what do at any specific state, in order to achieve its goal ef-
ficiently. Algorithms to find a good or optimal policy comes in two flavors
depending of whether the model is known. Model-based algorithms are plan-
ning algorithms and they are usually implemented as dynamic programming®
algorithms. Model-free algorithms are the reinforcement learning algorithms,
where either the model is unknown or there is no analytic solution. A simula-
tor may be available or information is collected by the agent interacting with

the environment.

2.1.1 Markov Decision Process

Markov Decision Process or MDP (Bellman, 1957a; Puterman, 1994) is named
after the Russian mathematician Andrey Markov and provides a mathematical
framework for decision making in optimization problems where the outcome
is random or unpredictable. An MDP is a discrete time stochastic control

process. Discrete time is denoted by [.

A state of the MDP is a situation where the agent has a decision to take.
The different situations in which decisions must be made forms the entire
state space S of the process. State space can be a finite or discrete set, S =
{s1,52,...,5|s/}, but infinite or continuous state spaces are also possible. A
state s € § is a complete description of the status of the process at a given
time, and it is commonly given as a vector of real numbers. The size of that
vector is the dimensionality of the state space and is related to the domain’s

complexity.

The agent’s possible action choices at each state form the action space A. We
assume that action space A is a finite set, A = {a1,as,...,a4/}. It is possible
that all actions are not available in each state, but for the sake of simplicity,

it is assumed that all actions in A are available in all states.

1 programming refers to planning, not to computer programming.
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At time [, while in state s;, the agent takes an action a; and moves to the
next state s;,1. The next state s;;q is given by the transition function. The
MDP may have deterministic or stochastic transitions. The deterministic case
is much simpler, the transition function is a map P : S x A — S, and returns

the next state s, after taking action a; at state s;:

Si41 = P(sl,al) (21)

In a stochastic MDP, the transition probability density function 75(sl, ap, Si41)
isamap P:S x AxS — [0,0). The probability the next state s;,; belongs

to a region §;,1 € S is:

P(s141 € Siyalsi, @) = f P(si,a1,8")ds’

Si+1

In case of a countable state space (e.g., discrete) the transition function is a

map P : S x Ax S — [0, 1], and the probability to move to state s;; is:

P(31+1’317al) = 75<Sl>al731+1)

The agent moves from state s; to state s;;q after taking action a; and gets
an immediate reward value 7, as an indication of how good the move was.
The immediate reward in the stochastic MDP setting is given by a map p :

S x A xS — R and is computed by:

Ti+1 = ﬁ(sh ar, Sl+1)

All values of p must be finite. The immediate reward function in the determin-
istic MDP setting is reduced to p(si, a;) = p(s1, ar, P(s1, 1)), since s;41 is given
by the deterministic transfer function P(s;,@;), and it is a map p : S x A —
R:

Ti+1 = ,0(31, al)

An MDP has the Markov property or memoryless property. Given the transi-
tion function P and the reward function p, the current state s; and the current

11
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Discount factor

Initial state

distribution

Episode

action a; are enough to calculate the next state s;,; and the reward r;,; in the
deterministic case, and the probability of the next state s;.; and the reward
r;41 in the stochastic case. Therefore, there is no dependency on past states

and actions; the current state and action are sufficient to predict the next

step(s).

The agent will perform a series of actions, forming a trajectory in the state
space, aiming to achieve his goal. However, in general, a shorter trajectory
(less steps) is preferable to a longer one. We compute the total discounted

reward as R
H-1
2 H-1 !
R=ri+yry+rs+---v TH=ZV7’1+1
1=0

to evaluate a trajectory of H steps, where v € (0, 1] is the discount factor, which
discounts the reward values exponentially over time, since in general rewards
received in the initial steps are more important than later ones. Infinite horizon
(H — o0) is possible with a discount factor v € (0,1) (Sutton and Barto,
1998).

o0
R = Z ’Vlrl+1
1=0

Discount factor v should be large enough, so that late rewards received upon

reaching a terminal state are still detectable.

At time [ = 0, the system is initialized, and the starting state is drawn from
the initial state distribution D over §. In common problems, the starting
state is deterministically chosen, and therefore D assigns probability 1 to the

departure state.

Some MDPs have terminal states. The agent’s interaction with the envi-
ronment breaks naturally into subsequences, called episodes or trials. Each
episode is a trajectory that starts at some starting state and ends upon reach-

ing a terminal or absorbing state. Then, a new episode starts.

12



The set of rules the agent uses to choose an action at each state forms a policy.
The main objective is to find a policy 7 that serves best the given purpose.
A stationary policy is a policy that does not change with time. A stationary
deterministic policy 7 is a simple mapping from states to actions 7 : S — A;

it is a function that returns the action q; to take in state s;.
a; = m(sy)

A stationary stochastic policy 7 is a mapping 7 : S — Q(A), where Q(A)
is the set of all probability distributions over 4. The function 7(a,|s;) is the
conditional probability of action a; to be taken at state s; at time step [. Given
a finite set of actions A, the conditional probability 7 in any state s € S has
the following property: Z m(als) = 1.
acA

The goal of the agent is to maximize the return, the expected cumulative
reward over the course of agent’s interactions with the environment. The
expected total discounted reward for infinite horizon, starting from state s
drawn from D, following policy 7 (i.e., action q; is drawn from 7 (-|s;)), making
transitions according to the transition function P (i.e., s;41 is drawn from

P(si;,ar,+)), and receiving rewards r; at each step, is formulated as:

0
- l —
ES~D; aj~T; s|~Pri~p Z Y Ti+1|S0 = S
=0

This value measures the efficiency of a policy 7. An optimal policy 7* is a
policy that maximizes the total discounted reward for any possible starting
state:

0
* _ ! -
T = arg max {E50~D; ay~rs s~ Ti~ (Z’V 7"z+1‘80 = s) }

i 1=0

Infinite-horizon discounted-return MDPs, under certain conditions, have at
least one stationary deterministic optimal policy (Bertsekas and Shreve, 1978,
1979). In this thesis, we mainly focus on stationary deterministic optimal and
near-optimal policies.
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2.1.2  Value Functions, Bellman FEquation and optimality

A state value function Vy(s) is an estimate of “how good” is for an agent to be
in a certain state s when following policy 7. This value is a real number, and
it is expressed as the expected discounted sum of rewards returned when the
agent starts interacting with the environment at state s, and follows policy 7

thereafter:
00]
Va(s) = <Z ylmﬂ)so = s) , for the deterministic setting (2.2)
1=0

o0

Vi(8) = By on yuBirimip <Z ’ylrlﬂ‘so = s> , for the stochastic setting (2.3)
1=0

where 0 < 7 < 1 is the discount factor to keep the return finite. As a con-
sequence, early accomplishments are preferable to later ones. With v values
near zero, the agent becomes myopic, i.e., time is critical to achieving the goal,
with the risk of never reaching it. As ~ approaches one, future rewards are
nearly as significant as the early ones, and the time to achieve the goal be-
comes invariant. We use the term V-function in place of state value function,

and the term V-value in place of value of state value function.

A state action value function Q,(s,a) is a convenient measure of “how good”
for an agent, is to take action a while being in state s and following policy 7 in
future steps. That value is the expected discounted sum of rewards returned
when the agent starts at state s, takes action a, and then follows policy =
thereafter:
o
Qr(s,a) = (7“1 + Z'ytrlﬂ‘sg =38, ag = a) , deterministic (2.4)
=1

0

Qnr(8,0) = By r anfoomims (7‘1 + thrlH’so =35, ag = a) , stochastic (2.5)

=1

We use the term @Q-function in place of state action value function, and the

term Q-value in place of value of state action value function.

14



The relation between V-function and @)-function is:

Vi(s) = Q(s,m(s)), for deterministic policy (2.6)
Ve(s) = Z m(als)Qx(s,a), for stochastic policy (2.7)
acA

In the analysis below we use the term deterministic setting for an MDP with
a deterministic transition function, following a deterministic policy, since the
analysis is much simpler and instructive. Otherwise, we use the term stochastic

setting.
2.1.2.1 Deterministic setting

Bellman equations are recursive forms of the above value functions’ equations.
The @-function (2.4) for policy 7 is a map @Qr : S x A — R. It returns the
discounted cumulative reward when starting in state s, taking action a, and

following policy

QW(Sv CL) = p(S, CL) + ’}/VW(P(S, a)) (28>

where the initial state and action is the pair (s, a), the next state is given by
the transfer function P(s, a) (2.1), the value of the immediate reward function
p(s,a) is the r; reward in Equation (2.4), and V(P(s,a)) (2.2) is the V-value
of the next state following the current policy 7. It is easy to derive the Bellman

equation (2.8) from equation (2.4)

QW(S’ CL) = p(‘S? CL) + Z Vtrl-i-l

=1

0
= p(s,a) +7 D7 i
=1

= p(s,a) + 7Vz(P(s,a)) (2.9)
A recursive version of the above @), function is:
Qx(s,a) = p(s,a) + 7Qx(P(s,a), 7(P(s,a))) (2.10)
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A greedy policy is a deterministic policy that selects the action with the largest
@-value at every step:

7(s) = argmax Q. (s, a)
aceA

It is an obvious selection and leads to exploiting existing knowledge without
allowing new actions to be explored. Therefore, regarding exploration, a greedy

policy is myopic.

The optimal state action value function Q.+ or QQ* yields the largest ()-value

achieved by any policy:
Q*(s,a) = max Q,(s,a) (2.11)

The recursive Bellman equation (2.10) can be written for the optimal Q-

function:

Q*(5.) = p(s @) + 7y max Q" (P(s,0), ) (212

An optimal policy 7* selects actions that maximize the QQ*-value at any state:

7 (s) = argmax Q*(s, a) (2.13)
acA

The optimal V *function yields the maximum of all V-values that can be

obtained by any policy:
V*(s) = max V,(s) = max Q*(s,a) (2.14)
™ ae

An optimal policy 7* is easily derived from the Bellman equation (2.9) and

the definition of the optimal V* value function (2.14):

7 (s) = arg max {p(s, a) +yV*(P(s, a))} (2.15)
acA

The Bellman equation for the V-function is derived from equation (2.9):
Vi(s) = p(s,7(s)) +7Va(P(s,m(s))) (2.16)

and the Bellman equation for the optimal V-function is derived from (2.12):

V*(s) = max {p(s, a) +yV*(P(s, a))} (2.17)

aceA
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2.1.2.2 Stochastic setting

In a stochastic setting, transitions are stochastic and the next state s;,; is

drawn from 75(31, a;,-). Q-function is the expected discounted return:

Qn(5:0) = By (o | ls,0,5) + 2Ve(s)] (2.18)

The definitions of the optimal state action value function * and an optimal

policy 7* are repeated here for convenience:

Q*(s,a) = max Q. (s,a), 7*(s)=argmaxQ*(s,a)
77 acA

The Bellman equation for the ()-function is:

Qr(s,a) = ES,~75(87a7,){ﬁ(3, a,s') +vQx(s, W(S/))} (2.19)

and the Bellman equation for the optimal Q* value function is:

Q(5,0) = Eyopoan{fls.08) + ymax@*(sa) | (2:20)

In the case of a countable (e.g., discrete) state space, the Bellman equation

becomes:

Qr(s,a) = Z P(s,a, S’){ﬁ(s, a,s) + Q. (s, W(s'))} (2.21)

s'eS

and the optimal Bellman equation:

Zpsas { (s,a,8") +ymaxQ*(s, a)} (2.22)

a'eA

Equation (2.21) is a system of linear equations and can be rewritten as:

Zpsas{sas +72 /|5Q7r3a)}

s'eS a’e A
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Optimal

V-function

and in matrix form

Qﬂ' =R+ ,}/PHFQW (223)

where Q. and R are vectors of size |S||A|, P is a stochastic matrix of size

|S||A| x |S| that contains transition probabilities :
P((s,a),s') = P(s,a,s),
and II, is a stochastic matrix of size |S| x [S||A]
IL. (s, (s',a)) = m(d'|s)
Equation (2.23) is a linear system that can be solved analytically or itera-

tively:
Q. = (I-4PIL,) 'R

The optimal V*-function is repeated here:

V*(s) = max Vi (s)

The optimal policy 7* is given by:

T (s) = argmax Ey_p,, ,){,5(5, a,s’) + ’YV:(SI)} (2.24)
acA w

The Bellman equation for the V-function is:

Vals) = By p(ono {75 7(), ) + 7Vals) | (2.25)
and the Bellman equation for the optimal V*-function is:

V*(5) = max By (o) { (s, 0,8) + V() | (2.26)

In the case of a countable (e.g., discrete) state space, the optimal Bellman
equation becomes:
V*(s) = max Y P(s,a, s’){ﬁ(s, a,s') + ’}/V*(S/)} (2.27)

!
a’'e A
s'eS
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2.1.2.3  Bellman optimality operator - contraction mapping

The Bellman optimality operator 7" is a mapping from value functions to value
functions. Let Q be the space of all Q-functions, then 7" is a mapping T : Q —
Q. Using the Bellman equations, the Bellman optimality operator T is defined
as:

[TQ](s,a) = p(s,a) + 7 max Q- (P(s,a),a’)), for deterministic setting

(2.28)

[TQ](s,a) = Ey_p(s.a.) {/3(5, a,s’) + 7 max Qx (s, a')} , for stochastic setting
Fhad] a/e

(2.29)
[TQ](s,a) = Z P(s,a,s’) {[)(s, a,s’) + 7 max Qs a’)} , for countable spaces
" (2.30)

It maps a @-function to an improved @-function as follows:
Q—TQ (2.31)

The above equation is a contraction mapping with rate equal to the MDP

discount factor € (0, 1) under the infinity norm:

ITQ — TQ oo < YQ — Q'l]oc

The contraction mapping T : @ — Q has a unique fixed point, i.e. the equation
@ = T'Q) has a unique solution Q*, where Q* = T'Q)* is the optimal solution,

and there is no further improvement.

The Bellman equation is appropriate for iterative solution, since in each iter-

ation k, T maps Q) to an improved Q. 1:

QkH = TQk

2.2 Algorithms for Solving MDPs

The solution of an MDP is to find an optimal policy 7*, that is, one that
maximizes the cumulative discounted return. In this section, we assume that
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Model-based

value iteration

Model-free value
iteration.

Q-Learning

there are enough computational resources (memory) to represent the V-value
or ()-value of any state. There are two main categories of algorithms: the
model-based or dynamic programming algorithms, where the transfer function
P and the reward function p are known, and the model-free or reinforcement
learning algorithms, where the data are obtained from interaction with the
process. The most commonly used approaches in each category are, value
iteration and policy iteration. Both approaches can be formulated in terms of
either V' or @) values. However, due to our interest in learning methods, in this
section, we will focus only on the ()-values formulation of value iteration and

policy iteration.

2.2.1 Value Iteration

Value iteration (Bellman, 1957b) algorithm is just a repeated application of
the Bellman optimality operator to the state action value function @), shown
in Algorithm 1. The Q-function is initialized to an arbitrary value, e.g., 0, and
eventually, converges to the optimal Q*. An optimal policy 7* is derived from
a greedy policy over the computed @Q*. The algorithm terminates when the
maximum change of the ()-values between successive iterations, is less than the
stopping criterion €, a small positive value. The loss is bounded by (Williams

and Baird, 1993):

HQ - Q*”oo< 2¢

1=y
where 7 is the discount factor. The cost per iteration is O(|S|?|.A|), but the

number of iterations required to achieve a certain level of accuracy can grow

exponentially with the contraction rate.

2.2.2  (@Q)-Learning

Q-Learning algorithm (Watkins, 1989; Watkins and Dayan, 1992) is a widely
used model-free value iteration algorithm. It uses action value function Q(s, a)

initialized to an arbitrary value, usually zero. @) values are updated without
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Algorithm 1 Value iteration for stochastic countable state space

1: Input: set of states S, set of actions A, transition function P, immediate
reward function p, stopping criterion e

Q) =0 {Initialize arbitrarily}
repeat
Q=Q
for every_pair(s € S,a € A)
Qsa) = 3 Ps,0,8){pls. a0, 8) + 7 max (s, o)}
a’e A

s'eS

end
until ||Q — Q|| < €
Vse S, w(s)=argmaxQ(s,a)
acA

10: return w

requiring a model. Updates are based on transition samples that come from
the process as tuples of (s, a;, $;4+1,7141), where s; is the MDP state at time ,
a; is the action taken at time [, s;,1 the next state at time [ + 1, and r;; the
reward given at time [ + 1 for taking action q; at state s; and moving to state

s;4+1. For each tuple, the update to the () values is the following:
Quii(si, ) = Qu(sp, ) + ay[rr + 7 max Qulsii1,d) — Qu(si, )] (2.32)

where a; € (0,1] is the learning rate, and [ is the time step. The term
Tie1 + ymaxgeq Qi(S41,a") is the updated estimate of the Q(s;,q;) and the
term Q;(s;, a;) is its current estimate. The difference between these two terms
is called the temporal difference. The ;1 value in the next time step is the
current ¢); value updated by the learning rate portion of the temporal dif-
ference. Q-learning asymptotically converges to the optimal QQ* state-action

value function under certain conditions:
1. The state and action spaces are finite.

2. The sum

Lp-gs
2
l
8
=
T
—_

3. There exist some constant C' € R such that

af < O, w.p.1

s

—
Il
o
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selection

4. All state-actions pairs are visited infinitely often.

Conditions 2 and 3 are easily satisfiable, e.g., a; = 1/I. These conditions have
been studied by Watkins and Dayan (1992); Tsitsiklis (1994); Jaakkola et al.
(1994).

Algorithm 2 presents (Q-learning with e-greedy exploration. The e-greedy ac-
tion selection, was suggested by Sutton and Barto (1998) and selects action a;
using the current policy with probability 1 — e (exploitation), or a uniformly
random action with probability € (exploration). As time passes, the learned
value function and policy improve, and the need for exploration diminishes.

Thus, € may be implemented as a function of time, e.g., ¢, = 1/

Algorithm 2 Q-learning with e-greedy exploration

Input: set of states S, set of actions A, exploration probability ¢;, learning
rate o

initialize @y arbitrarily, e.g. Qo(s,a) =0,Vse S,ae A
draw sg from initial state distribution

for time step [ =0,1,2,... . H

a € argmax 4 Qi(s;,a’), with probability 1 —¢, // exploitation
ap =
a uniformly random action, with probabilitye;  // exploration

take action a; in s; and get next state s;.1 and reward r;
Qui1(s1, @) = Qu(s1, ) + ayfriyr + ’Y%}S} Qi(S5141, a’) — Qi(s1, )]
end
Vse S, m(s)=argmaxQpy1(s,a)

acA
return =«

Q-learning is an “off policy” algorithm (Sutton and Barto, 1998), because it
evaluates a greedy policy and uses a different policy for data collection, the

one that controls the process of exploration.

2.2.3 Policy iteration

Policy iteration is a general algorithm (Figure 2.2) for solving MDPs, and it is
a two step iterative process. In each iteration, the first step, policy evaluation,
is the computation of the value function for the current policy. The second
one, policy improvement, is the improvement of the current policy in a greedy
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way. The initial policy can be a random or an arbitrary one. Policy iteration,
shown in Algorithm 3, converges to an optimal policy, usually in just a few

iterations.

FIGURE 2.2: Policy iteration process. In
the policy evaluation step, the value function
V or Q is calculated for some or all states using the

T ™ current policy. In the policy improvement
step, the algorithm improves the previous pol-
icy based on values obtained in the policy eval-
uation step

Policy Improvement

Algorithm 3 Policy iteration

1: Input: set of states S, set of actions A

initialize 7 arbitrarily
repeat
=

{Policy evaluation}
compute @ for policy 7 e.g. by solving Bellman equation

7. {Policy improvement}

8 VseS, m(s)=argmaxQ(s,a)
acA

9: until 7 = 7’

10: return 7

In the case that the model is known, i.e., transition and reward functions are
known, the policy evaluation step is achieved by solving the Bellman equation.
Bellman operator for policy 7 is a mapping T, : @ — Q where Q is the space

of all @Q-functions.

The Bellman operator T for policy 7 is defined as:
[T:Q](s,a) = p(s,a) + yQ(P(s,a), 7(P(s,a))), for deterministic setting
(2.33)

[T:Q1(s,0) = By _p(sa.)10(s:a,8") +79Q(s',7(s')))} , for stochastic setting
(2.34)

[T,Q](s,a) = Z P(s,a,s") {p(s,a,s) +~vQ(s',m(s")}, for countable spaces
s'eS

(2.35)
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policy iteration

The iterative form of the Bellman equation solution for policy 7 and iteration

k starting from an arbitrary Q%

Qi = T (QF) (2.36)

will converge to a fixed point @), since the operator T is a contraction, i.e.,

for discount factor v < 1 and any pair of Q¥, Q. functions:

I T2 Q% — T Qxlloo < Y[ Q5 — Qrlloo

Therefore, Q will converge to @, for increasing iterations k. The complete

algorithm is shown as Algorithm 4.

Algorithm 4 Policy iteration

Input: set of states S, set of actions A, transition function P, immediate
reward function p, stopping criterion e

initialize 7, () arbitrarily

repeat
/

=
{Policy Evaluation}
repeat
Q'=Q
for every_pair(s € S,a € A)
Qs,a) = 3 P(s,0,5) {7(s,0,8) + 1@ (s, 7(s)
s'eS
end )
until ||Q — Q'[|x< €
{Policy Improvement }
Vse S, m(s)=argmax@(s,a)
aceA

until 7 = 7’
return

Bellman equation 2.35 for policy iteration has a significant advantage over
Bellman optimality equation 2.30 for value iteration, since the first one is
linear, while the Bellman optimality equation is highly nonlinear due to the
max operator at the right-hand side. Policy evaluation is easier to compute

than value iteration.

2.2.4 SARSA

Policy iteration can be used in case the model is not known. Here we will
describe a SARSA algorithm (Rummery and Niranjan, 1994). The name comes
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from the form of training data tuples, (s;, a;, 7141, Si+1, @141), 1-€., at the current
state s; action a; was taken and a reward 7,1 was given for moving to the next
state s;,1, where the next action taken was a; 1. The SARSA algorithm starts
with an arbitrary @Q-value (Q) and updates @, values at each time step using

the tuples described above.

Qz+1(8z, az) = Qz(Sz, az) + 04[7”1+1 + 7@z(8z+1, al+1> - Ql(sla al)] (2-37>

where v € (0,1] is the learning rate and [ is the time step. The term 7,1 +
YQi(S14+1, a141) is the updated estimate of the Q(s;, a;) and the term Q;(x;, a;) is
its current estimate. The difference between two terms is called the temporal
difference. The ;1 value in the next time step is the current @); estimate
updated by the learning rate portion of the temporal difference. Algorithm 5
presents SARSA with e-greedy exploration. Learning rate a; and e-greedy

exploration is discussed at the Q-learning section 2.2.2.

Algorithm 5 SARSA with e-greedy exploration

Input: set of states S, set of actions A, exploration probability ¢;, learning
rate o

initialize @)y arbitrarily, e.g. Qo(s,a) =0,Vse€ S,ae A
draw sg from initial state distribution
ag = a uniformly random available action

for time step [ =0,1,2,..., H
take action a; in s; and get next state s;.; and reward r;

compute next action a;yq
a € arg maxy e 4 Qi(si11,a"), with probability 1 —¢ // exploitation
ar+1 =
i a uniformly random action, with probability ¢ // exploration
Quia(s, ar) = Qu(s, ar) + aulrier +YQi(si41, ary1) — Qul(se, ar)]
en
Vse S, m(s)=argmaxQg.1(s,a)

ac A
return =

SARSA is an “on policy” algorithm (Sutton and Barto, 1998), because it eval-

uates the policy that is used to control the process and collect the data.

25



2.3 Approximation Architectures

In the case of very large or infinite state space, exact representation is infea-
sible. Exact value function, either V' or @), requires storage of the return for
every state or state-action pair respectively. Given that the value function is
smooth enough, there are satisfactory approximation methods. Looking back
at value iteration algorithm (Algorithm 1), there are some questions about
how to modify the algorithm from exact (tabular) value function representa-
tion to an approximated one. In particular, there are issues beyond the obvious

approximation error:

1. lines 5 to 7, sweep through all states performing Bellman backups on

each one, which is impractical or even impossible in large state spaces.

2. line 6, moving from state s after taking action a to a next state s’ € S, s
can be any possible state in the state space and each one of them must

be accounted for, an enormous task to deliver.

3. line 6, assigns a value to Q(s, a), but it is not clear how to assign a single

value in a non-tabular, approximate representation.

Let’s now take a look at the trajectory-sampled value iteration algorithm (Al-
gorithm 6) and discuss the alternatives to issues 1 and 2. The first issue is
resolved by replacing global state sweeps, with multiple trajectory sweeps using

the current policy (Barto et al., 1995):

{(Si> g, 7“i+1)}¢H:0

where H is the trajectory length. The second one is alleviated by drawing L,
samples, possible next states s}, per state s and action a from the P(s,a,-)

distribution. Given state s and action a, Q(s,a) is estimated as:

1 &

L ;

{ﬁ(s, a,s;) + max Q(s, a')}
a’e
i=1
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As L; — o0, the estimate becomes exact with probability one. The third issue
will be discussed in next subsection in detail. For now, let us assume that the
state action value function has a tabular representation. Also, note that there
is no reason to store the policy explicitly; it is easily extracted from Q:

m(s) = argmax Q(s, a)
aeA

Algorithm 6 Trajectory sampled value iteration

1: Input: set of states S, set of actions A, transition function P, immediate
reward function p, stopping criterion e, number of samples L; per state

2. Q =0 {Initialize arbitrarily}
3: repeat {for each trajectory}
4: "=
5:  repeat {for each (s,a) pair in a trajectory following current policy}
6: Draw L; samples (next states) {s; ~ P(s,a,-),i = 1..L, }
Ly

1

o Qsa) = 73 {asas) +ymaxQ(sha)}

i=

8: until the end of trajectory, i.e., reaching a terminal state

9: until ||Q — Q'||l» <€

10: m(s) = argmax Q(s, a) {there is no need to store policy}
acA

11: return =«

Classification of approximation methods is based on the explicit or implicit use
of parameters. Parametric approximation uses explicitly declared parameters,
while non-parametric approrimation uses implicitly declared parameters that

are automatically extracted from the given data.
2.3.1 Parametric Approximation

In this section we will study @Q-function approximation (Sutton and Barto,
1998; Bertsekas and Tsitsiklis, 1996). The exact Q(s,a) function will be re-
placed by the approximated function @(s,a;w), where w is a vector of n
parameters forming the parameter space. Let’s define operator F' to be an
approximation mapping F': R" — Q, from the parameter space w € R" to the

space of value functions Q:

~

Q(s, a; w) = [Fw](s, a)
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Instead of storing a ()-value for every pair (s,a), we store only n parameters
w = (wy,ws, -+ ,wy,). Usually the size n of the parameter space is much
smaller than the size of the state-action space (|S| - |A|). However, since
operator F' maps parameters w to a subset of all possible value functions O,

it introduces an approximation error.

Operator F' may be nonlinear in terms of the parameter vector w. However,
linearly parameterized approximators are well studied, the resulting algorithms
are easy to implement, and their theoretical properties easy to analyze. A com-
mon form of the approximated @-function, @, is a weighted linear combination

of a vector ¢ of n basis functions or features

bu(s,0)

where ¢; : S x A — R, and a vector w of n parameters:

~

Q(s,a;w) = [Fw](s,a)

oi(s, a)w;

l

~
I
—_

¢" (s, a)w (2.38)

@ In the case of discrete state and action spaces the above equation 2.38 may be
approximation rewritten in matrix form:

in matrix form @ = dw (2.39)

where Q is a vector of size |S||A| containing all Q(s,a) values:

[ Q(517 al) |
Q(317a2)

Q(s5,a1)
Q(527a2)

QO
I

_Q(S|5\‘,G|A|)_
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and @ is a matrix of size |S||A| x n:

[ di(si,a1)  Ba(si,an) o @ulsian) |
¢1(81>a2) ¢2(817<12) ¢n(81,02)
P = ¢1(32,a1) ¢2(32,C;J1) ¢n(32,al)
¢1(52,a2) 9252(52,@2) ¢n(827a2)

| D1(81s), aja))  P2(8s), dlAI) e Ou(S)s), aja)) |

Each row of ® contains the value of all the basis functions for a specific (s, a)
pair and each column of ® contains the value of a particular basis function
for all pairs (s,a). The basis functions ¢ are usually implemented as polyno-
mial functions or Gaussian radial basis functions (RBF). The approximation
is clearly linear with respect to the parameters w, whereas in general the ba-
sis functions ¢ are nonlinear. The linearity regarding parameters w greatly
simplifies the analysis of approximated models. Parametric approximation effi-
cacy depends on the design of the parametric model, i.e., the selection of basis
functions, which is not a trivial task. Too many basis functions will result in
an increased computational time and may introduce numerical errors, while
too few may result in an inadequate representation. There are algorithms for

automatic selection of the basis functions.

Figure 2.3 shows the best approximation @ of the state action value function
Q given some set of basis functions. @ € RISIM! is projected onto the subspace
spanned by matrix ®, which depends on the selection of basis functions. The

parameter vector w is acquired during the value or policy function optimization

process.
Q
FIGURE 2.3: Projection of state-action
value function @) onto the space spanned ma-
trix @
Q = dw
P
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algorithm

Let’s now see the approximated version of our previous algorithm (Algorithm
6) “trajectory sampled value iteration”. We use the above linear approximation
@(s, a) = ¢T(s,a)w for state action value function. The question now is to
transform the update of Q(s,a) at line 7 into an update of the w parameters.
Let Q(s,a) be the current estimate and (., the new target value. The idea

is to incrementally update the parameters w using the reverse direction of the

squared difference between Q(s, a) and Qe-

6 — a(@new - Q(S7 &))2

ow
 AQuew — 7 (5, )w)?
ow
= —2¢(5,a)(Qnew — @' (5, a)w) (2.40)
= —2¢(s,a)(Qnew — Qs,a)) (2.41)

The rule for parameter update is w <« w — ad where a € (0, 1] is the learning
rate. The complete algorithm for “trajectory sampled value iteration with

approximated )-function” is Algorithm 7.

Algorithm 7 Trajectory sampled value iteration - Approximated Q-function

1: Input: set of states S, set of actions A, transition function P, immediate
reward function p, stopping criterion €, number of samples L; per state

2: w=0 {Initialize arbitrarily}
3: repeat {for each trajectory}
4 w=w

5 rep;at {for each (s,a) pair in a trajectory following current policy}
6: Draw L; samples (next states) {s; ~ P(s,a, >}sz11
Ly
1
7: Qnew = L—lg{ﬁ(s,a,s;) +7r;/13j<@/(3;,a/)}
8: 0 =—-2¢(s,a)(Qnew — Q(s,0a))
9: w=w— ad

10:  until {the end of trajectory, i.e. a terminal state, is reached }
11: until |]w’ — w|| < € or {there is no more time}

12: w(s) = argmax Q(s, a) {there is no need to store policy}
€A
13: return 7ra
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2.3.2  Non-parametric Approzimation

In the case of non-parametric approximation, there are parameters, and they
are automatically extracted from the data. Typical examples of the non-
parametric approximator class are the kernel based ones. The unknown Q(s, a)
value for some input pattern (s,a) is expected to have some similarity with
the known Q(s;, a;) value for the input pattern (s;,a;) used for training. A
similarity measure (the kernel) that serves this purpose has the form:

k| S| JA] < |S] x |A] = R

(s,a,s;,a;) — K(s,a,s;,a;),

where £ is a function of two input patterns (s, a) and (s;, a;) and returns a real
value as a similarity measure. The kernel function x is a symmetric function.

The approximated @)-function takes the following form:

m
Q(s,a) = Z w;k(S, a, si,a;) + W

i=1
where {(s;,a;)};",, are input patterns that come from data, w; coefficients
are non-zero values given by the optimization process, and wy is the bias. A
common choice for kernels are polynomial functions or Gaussian radial basis
functions (RBF). Kernel based machine learning algorithms were introduced

by Boser et al. (1992). An extensive study of kernel based algorithms was done
by Scholkopf and Smola (2001).

2.3.83  Projection Methods for Linear Architectures

Here we discuss two methods for obtaining the parameter vector w optimized
for the nearest approximation @ to Q (Figure 2.3), given the basis functions,
i.e. matrix ®. Recall that the exact @Q is not known, and these methods have
to rely on the information contained in the Bellman equation and the Bellman
operator to find a “good” w. Figure 2.4 illustrates an RISIMl space, the space
of exact ()-functions, and a plane spanned by ®, the subspace of approxi-
mated (-functions and demonstrates the application of Bellman operator T
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on approximated function Q giving @'. Finally @’ is projected back on plane
@/, and the distance H@/ — @'|| is minimum. The first method for projection

minimizes the blue line and the second the red one.

FIGURE 2.4: The plane is spanned by
® and is the subspace of approximated Q-

functions and @ is a point on it. Operator T
maps @ to a point Q' anywhere in the space of
Q@-functions and, in general, outside the plane.
Approximation of @’ is given by its Q' projec-
tion onto the plane

2.3.3.1 Bellman Residual Minimizing Approzimation

We are repeating here, for convenience, the matrix form of the Bellman equa-

tion (2.23) for finite discrete state and action spaces.
Q=R ++PILQ

We replace the @ with the approximated @ and if the approximation is suc-

cessful the two sides of the equation should be close,
Q ~ R +7PIL.Q

The result is an overconstrained system of |w| equations. Replacing @ by
dw
dw ~ R + yPIL, dw

and reforming the equation to get the parameter vector w
(& —~vPIL,?)w ~ R

This is overconstrained linear system of equations in the form Aw = R. Where

A = — ~yPII,®. The least squares solution is
w=(ATA)'ATR

This method is graphically shown at Figure 2.4 as minimization of the blue
line, and is trying to find the point on the ® plane where the Bellman operator
makes the smallest jump towards the true value function, Q.
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2.3.3.2  Least-Squares Fized-Point Approximation

The second method seeks to minimize the red line in Figure 2.4. In essence, it
attempts to find a fixed point (see @) on the ® plane under one application

of the Bellman operator (see Q') followed by orthogonal project back to the ®

plane (see @,) We will see that this (red line) error can be made zero, therefore
this fixed point property can be actually achieved. This second objective is

formulated as
. ~ ~/
min||Q — Q |?
w

Projection of @' onto the plane is orthogonal, and the projection operator is

P = ®(®7®)"'®T. The goal becomes

min||Q — ®(®7®) "' 87T (TQ)|?

We are forcing the above expression to zero, at the fixed point (@ =Q'), and

we solve the system of equations, finding the parameters w.
Q=2(@"®) 2" (TQ)
Q= 3@ %) '®" (R + +PIIQ)
dw = ®(®7P) '¢T (R + YPIIPw)
w= (®7®)"'dT (R + yPIIdw)
" dw = (R + yPIIPw)
&R = (& — YPII®)w
w = (&7 (® — yPIIP)) '®’'R (2.42)
The expression ®7(® — yPIIP) is an n x n matrix, where n is the number of

the basis functions, and this system has a solution as long as this matrix can

be inverted.

The @ calculated using this method may be far from Q. It has been shown

that under certain conditions the approximation error is bounded (Tsitsiklis
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and Roy, 1999; Bertsekas, 2007).

~ 1
1Q — Q| < \/1—_—72||Q — PQ||

There is an extended error bound study for approximations from projected

linear equations (Yu and Bertsekas, 2010).
2.3.4  Least-Squares Policy Iteration

Here we will study an advanced reinforcement learning algorithm, the Least-
Squares Policy Iteration (LSPI) (Lagoudakis and Parr, 2003b). First, we will
cover the policy evaluation part, which is based on a modification of the Least-
Squares Temporal Difference (LSTD) Learning algorithm (Bradtke and Barto,
1996), and then we will integrate it into a complete policy iteration algorithm

following a greedy fashion.

Let us continue from the previous equation 2.42, the solution of the system of
linear equations Aw” = b, where A = ®7(® —yPII®) and b = $TR. In the
general case, matrix P and vector R are unknown or impractical to compute,
either because the complete MDP model is not available or because the state
space is huge. However, in such cases, matrix A and vector b of the linear

system can be estimated. Let’s take a closer look at their structure:
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A = d7(® — PII®)

=22, ¢(5a) (¢><s, W) =7 3, Pls.a. )95’ w<8’>))

seS ac A s'eS

= Z Z Z P(s,a,s) lﬁb(s, a) ((b(s, a) — ’y(,‘b(sl, 7'('(8/))>T] (2.43)
seS ac A s'eS

b=®"R

:Zztb(saz s,a,8)p(s,a,s")
seS ae A s'eS

=20 2 Pls.as)| pls.a)ils.a. ) | (2.44)
seS aeA s'eS

Examining their strcture, it is easy to see that matrix A and vector b can
be easily estimated from a set of samples of interaction with the process in
the form of tuples S = {(si,a;, 7%, s;)};-,. These samples can be collected
from complete trajectories in the state space or, in the presence of a simulator,

sampled next states s’ and rewards 7’ can be drawn from P(s, a, -) and (s, a, s')

given any state s and action a. For m samples, A and b can be estimated

A= L3 oa)(stsu0) —aon() | )
b= %i d(si,a;) i (2.46)

Factor % can be dropped, since it appears on both sides of Aw” = b. Given
any arbitrary policy 7 and a large enough sample set, the above estimation
scheme can be used to estimate the linear system and upon solution to provide
the weights of the approximate @) -function of policy m. This is the Least-
Squares Temporal Difference Learning for the Q-function (LSTDQ) algorithm,

which is shown as Algorithm 8.
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Algorithm 8 Least-Squares Temporal Difference Learning (LSTDQ) algorithm

Input: set of data tuples D, basis functions ¢, discount factor -, policy for
evaluation m

~

A=0

~

for each (s,a,r’,s') € D
o T
A= R+ ¢(5.0) (¢(s5.0) — 195/ (") )
b=b+¢(s,a)

end
w=A""!

return w

T

Given that LSTDQ can be used to evaluate any policy using a single sample
set, it is intuitive to use LSTDQ iteratively to evaluate progressively better
policies obtained at each iteration through greedy policy improvement. It is
important to note that there is no need to represent any such policy explicitly;
only the weights of the approximate value function of the previous policy are
sufficient to compute the greedy improved (next) policy on demand (at any
given state). This is the main idea behind the Least-Squares Policy Iteration

(LSPI) algorithm shown below as Algorithm 9.

Algorithm 9 Least-Squares Policy Iteration (LSPI) algorithm

Input: set of data tuples D, basis functions ¢, discount factor «, stopping
criterion €

w’ = 0 // initialize parameters
repeat
w=w
A=0
b=0
for each (s,a,r’,s')e D
d' = argmax ¢(s', a") w
a’e A

= b+ ¢(s,a)r

untilﬂw —w'| <e

return 7(s) = argmax ¢’ (s, a)w
aceA
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2.3.5 Fitted Q)-iteration

Fitted Q-iteration is a model-free, approximate value iteration algorithm, where
transition and reward functions are unknown. In such cases, only sets of sam-
ples in the form of tuples (s;,a;, 7}, s;) are available. These samples may be
collected from observed trajectories or from a simulator. For the @)-function
approximation, any regression algorithm, parametric or non-parametric, may
be used. The fitted Q-iteration algorithm was introduced by (Ernst et al.,
2005). In this example, we are going to use least-squares regression to fit the
estimated ()-values. Least-squares regression is a parametric method, and we
assume that basis functions ¢ are given or chosen. Approximated Q-function
is expressed as @ = ¢T(s,a)w. Each fitted Q-iteration uses a sample set
{(si,ai,rl, s5)}i", to estimate the improved @-value g; for state s;, action a;
and current parameters w. Then, it uses all (s;,a;,¢;) tuples to train the

least-squares regressor, that will be used in the next iteration. The complete

fitted Q-iteration algorithm is shown as Algorithm 10 below.

Algorithm 10 Fitted Q-Iteration (FQI) algorithm

1: Input: basis functions ¢, discount factor «, stopping criterion €, number
of samples m

w’ =0 // initialize parameters

repeat
/

/ /
i 53

)}Wil from the simulator

w
Get samples {(s;, a;, 7 ;

for ¢ = 1 tom
6 =ri+max]e
end
m
w' = arg minz (g — & (si,a;)w)
W=l
10: until [|[w —w'|| <€

" (si,a)w]

2

11: return 7(s) = argmax ¢’ (s, a)w
acA

2.4 Supervised Learning

Supervised learning is a learning process supervised by a teacher. Training

data come in tuples or examples in the form (z,t), where € € X (i.e., RY) is
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Loss function

Expected risk

the input pattern, and ¢ € R is the observed target value or label given by the
teacher. A model is trained using a training data set Diyqin, = {(2;, )}, and
an appropriate training algorithm and rules/parameters are extracted. Then,
the trained model is tested for accuracy using a different set of unseen examples

Dtest = {(.’L’l, tz)}le

Classification is the identification of the category, class, or label the input
pattern @ belongs to. Binary classification is the most common form and
target variable ¢ takes two values (t € {—1,+1}). Regression is the estimation
of a real value for input pattern @, and the target variable is real (¢t € R).
Predicted values y(x) are typically approximated as a linear sum of (typically,

nonlinear) basis functions ¢(x):
y(x) = wo + widr(x) + -+ + wign(x)

= wT¢($) + wo (247)

There are n basis functions ¢;(x), n + 1 parameters w;, and wy is the called
the bias term. Sometimes, an additional basis function ¢o(x) = 1 is defined

to cover the bias in a uniform way and y(x) becomes
y(@) = wogo(x) + w11 (x) + -+ + WiPy(x)

= w’ ¢(x) (2.48)
where w = (wo, wy, ..., w,)" and ¢ = (¢, b1, ..., 0n)".

Loss function L(x,t,y(x)) isamap L : X x R x R — [0,00) , where x is the
input pattern, ¢ is the observed value, and y(«) is the prediction function, and
has the property of L(x,t,t) = 0 for all x € X and t € R. It measures the
discrepancy between the observed value ¢ and the predicted value y(x). The
exact definition depends on the learning goal. In the binary classification case,
t € {—1,+1}, a common loss function simply counts the misclassified examples

L(x,t,y(x)) = 3|t — y(z)|. For regression problems, we may measure the

residual |t — y(x)| or the square of it (t — y(x))%.

Let’s now define the expected risk. We assume that our examples (x,t) are
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drawn out of a P(«,t) probability distribution, and are independent and iden-
tically distributed. The risk is defined as the expected loss over all possible

training patterns.

mm=Ewwmmwn=LR£@mmmmmaw (2.49)

However, the computation of the expected risk is an intractable problem, since
we don’t know P(x,t) explicitly. We only have the training examples and
therefore we can replace the unknown distribution P(x,t) by its empirical

estimate. Now we are ready to define the empirical risk.

1 m
emp = EZ wzatuy wz)) (250)

We can minimize the empirical risk function by fitting the predictor y(x) to
the specific training examples. This is called overfitting and leads to bad gener-
alization performance and numerical instabilities. One technique to overcome
this issue is regularization. We add a stabilization term Q[y] to the empirical

risk to penalize the complexity of the model, the prediction function y(x).
Rrcgly] = Remply] + AQ[y] (2.51)

Minimizing R,.,4[y], the regularization parameter A > 0 specifies the tradeoff
between minimization of Re,,[y] and the smoothness or simplicity of y(x)
which is enforced by small Q[y]. Q[y] may be chosen to be convex, with one

easy to find, global minimum. A common choice for the stabilization term is

1
fy) = 5 ]
2.4.1 Kernel-based Supervised Learning algorithms

Non-parametric methods do not use explicit parameters, but keep the training
data points or a subset of them and use them during the prediction phase.
Kernel-based methods, a case of non-parametric methods, use the inner prod-

uct of the feature space mapping ¢(x):

Kz, @) = ¢ (z)p() (2.52)
39
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Kernel trick

Kernel k(x, ') is a symmetric positive semidefinite function, which measures
the similarity of & and «’. The kernel concept first was introduced into the
machine learning field by Aizerman et al. (1964) and in the context of large
margin classifiers by Boser et al. (1992). Kernels are used in algorithms in place
of the inner product ¢’ (z)¢(x’), thus there is no need to know the exact (and,
possibly, high-dimensional or even infinite-dimensional) feature space mapping

¢(x;). This is called kernel trick or kernel substitution.

The simplest kernel is the linear one, k(x,z’) = x'x', where ¢(x) = =.
The homogeneous polynomial kernel k(z, ) = (zx)?, d € N, is widely used.

e — a'||?

= ),Wherea>0,
o

Another commonly used kernel is x(x, ') = exp <—

the Gaussian kernel, suggested by Boser et al. (1992); Guyon et al. (1993);
Vapnik (1995). The Sigmoid kernel k(x, ') = tanh(axz’x’ + 3), where o > 0
and [ < 0, despite not being positive semidefinite, has been successfully used
in practice (Vapnik, 1995). There are certain rules for combining basic kernels
to construct composite ones. The inhomogeneous polynomial kernel k(x, x) =

(xTx + )¢, (de N, ¢ = 0), is such an example.
2.4.2 Support Vector Machines for Classification (SVM)

Here, we will discuss a two-class or binary classification algorithm. There is
a training set of m tuples, {(x;,t;)};" |, where x; € X is the input vector and
target value t; € {—1, 41} the observed class or label for data sample i. Our

prediction is based on a linear model of the form

y(x) = wi¢(x) + b (2.53)

Let us now study the toy problem shown in Figure 2.5. There are two separable
classes of data, the circles and the squares, and three hyperplanes in a two-
dimensional space. The first hyperplane is in the middle w'x + b = 0, the
decision border, a sample that comes to the left of it is classified as a circle, and
a sample that resides to the right is classified as a square. Our decision function
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comes in the form? f(x) = sign(w’x +b). The question is how to optimize w
to get the “best” hyperplane, the one that behaves well on unseen examples
and tolerates noise comfortably. The idea is to maximize the distance between

the left (w”x + b = —1) and the right (w'x + b = +1) hyperplanes.

Let @1 be a point on right hyperplane and x5 a point on the left one.

wle, +b = +1

RSN LU RS

w? 2
(T — T2) = —— (2.54)
ool @7 ]

margin length

w 2
where —— is the unit vector at w direction and —— the length of the margin.

]l [wll

Our goal is to maximize the margin and keep the circles on the left and squares

on the right. This can be formulated as quadratic optimization:
o 1 9
minimize §Hw|\ (2.55)

subject to t;(w'x; +b) =1, foralli=1..m (2.56)

2
The optimization objective (2.55) is equivalent to maximizing —— (the mar-

[ewl]

gin). The constraints (2.56), for ¢; = +1 resolve to w'x; + b > +1 and for
t; = —1 resolve to wlx; + b < —1. The examples that reside on and define Support

the hyperplanes are called support vectors, i.e. t;(wlax; +b) = 1. vectors

Let us now leave the convenient two-dimensional input space and map the
input vector x to feature vector ¢(x). There is no need to know the exact
¢(-) transformation. All we need to know about the feature space H is that
the inner product is defined, and it is given by the kernel function k(x,x’) =

¢T(z)p(x') we picked. Now, the optimization goal becomes:
1
minimize §HwH2 (2.57)

subject to  t;(w'¢(x;) +b) =1, foralli=1..m (2.58)

2 sign(-) function returns values {—1, +1}.
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Lagrangian

FIGURE 2.5: Maximum
margin classifiers. The mid-
dle hyperplane is the decision
boundary. The left and right
hyperplanes are defining the
margin. Margin is maximized
with no examples in it. The
examples that lay on the left
and right hyperplanes are the
support vectors

Y

The first line (2.57) is the objective function and the second one (2.58) the
inequality constrains. We introduce the Lagrangian function (Nocedal and

Wright, 2006):

1 m
L(w,b,a) = §Hw]|2 = > ai(ti(w” dp(a;) +b) — 1) (2.59)
t=1
where a = (g, q9,...,0p,), @ = 0 are the Lagrangian multipliers or dual

variables. The goal now becomes: minimize L with respect to the primal
variables w and b and maximize with respect to the dual variables ae. The
solution is a saddle point and the partial derivatives of L with respect to the

primal variables w and b must vanish.

obw.ba) o ait; = 0 (2.60)
ob P
OL(w,b,a) RS

By substituting (2.60) and (2.61) into the Lagrangian (2.59), we eliminate the

42



primal variables w and b and the Lagrangian becomes:

Ela) = Y~ 2 30 auaytit; o (@) b(a,)
i=1 i=1j=1

By replacing the inner product ¢ (z;)¢(x;) with the kernel function x(x;, x;),

that is the kernel trick, we get the dual optimization problem:

. m 1 m m
ini 1 L - A 7 tlt 'l') y 2.62
minimize L(a) ; =3 ; j; o titik(T, ;) (2.62)
subject to «; >0, foralli=1..m (2.63)
Dlat; =0 (2.64)
t=1

The solution gives the a coefficients. The «;’s that correspond to examples
that lay on the left or on the right hyperplanes are non-zero. These examples

are the support vectors; the remaining «; coefficients are zero.

This optimization problem has a solution on the condition that examples
are separable in the feature space, which is set by choosing the kernel func-
tion. However, in practice class conditional distributions overlap, noise cor-
rupts data, and absolute separation of training data leads to poor generaliza-

tion.

Let’s now relax the above algorithm to allow some training examples to be
misclassified. We introduce slack variables & > 0, one for each training exam-
ple (Bennett and Mangasarian, 1992; Cortes and Vapnik, 1995). The examples
on the margin borders and outside of it have & = 0, and the ones inside the
margin yield & = |t; — wl¢(x) — b|. If an example lies on the separating
border, it will have £ = 1; examples with £ < 1 are correctly classified and

examples with £ > 1 are misclassified (Figure 2.6).
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FIGURE 2.6: _Soft mar-
gin hyperplanes. Two square

class samples are in the mar-
gin. The one with £ < 1 is
correctly classified, the other
one with £ > 1 is misclassified.
all points on or outside margin
borders have £ =0

Thus, the primary optimization problem now becomes:

minimize —||w||2 + CZ & (2.65)
i=1

subject to  t;(wl ¢(x;) +b) =1 &, foralli=1..m (2.66)

&=0 (2.67)

where C' > 0, is the trade off between the slack variables penalty and maxi-
mization of the margin. At the limit C' — oo slack variables vanish, and we

get the earlier support vector machines for separable data.

The Lagrangian now becomes:

L(w,b, @) = —HwH?wZa Zau (w' (i) +b)—1+&) 2% (2.68)

i=1

where «a; and p; are the Lagrange multipliers. The Karush-Kuhn-Tucker
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(KKT) conditions (Nocedal and Wright, 2006) that must be satisfied are:

a; =0 (2.69)

ti(wlp(xy) +b) —1+& =0 (2.70)
ai(ti(w  p(x;) +b) —1+&) =0 (2.71)
f1i =0 (2.72)

& =0 (2.73)

& =0, foralli=1..m (2.74)

The partial derivatives of L with respect to the primal variables w, b and &;

should vanish.

OL(w,ba) Ry

a—w =0 = w = ;aztld)(azl) <275>
OL(w,b,a) S _

T =0 = ;Oéltz =0 (276>
oba) o L oo @17

We eliminate w, b, and &; in the Lagrangian above and we get the dual opti-

mization problem:

~ m 1 m m
minimize L(a) = Z =g Z Z a;ajtitik(x;, ;) (2.78)
i=1 i=1j=1
subject to 0 < a; < C,| foralli=1..m (2.79)
t=1

This is a quadratic optimization problem. If we substitute (2.75) into the

decision function y(x) , we get:

y(x) = sign (v’ ¢(z) + b) (2.81)
= sign (i ait;d” (z;)p(x) + b) (2.82)

= sign (Z a;tik(x;, ) + b) (2.83)
i=1
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However, only a few «; coefficients that correspond to support vectors are non-
zero. Let’s say that M is the set of indexes in the training set that correspond

to support vectors. The final form of the decision function is:

y(x) = sign (Z aitik(x;, ) + b)

ieM
Now, only the bias term b needs to be estimated. Since slack variable &; for

support vectors vanish, we have:

t; (Z O[itili(wj,ﬂ'}i) + b) =1

JEM
For a stable numerical estimation we obtain b by averaging over all support
vectors:

b= ﬁ Z (tz — Z Oéjtjli(il?i,wj)> (284)

1EM JEM
2.4.8  Support Vector Machines for Regression (SVR)

The concept of support vectors and large margin is extended to regression
(Vapnik, 1995; Drucker et al., 1997). The margin here takes the form of an e-
insensitive tube (Figure 2.7). The solid line is the prediction and the doted lines
are the borders of the e-tube. Any examples inside the e-tube are considered
error free. Examples x; outside the e-tube have an error of & or & value.
We have a training set of m examples, {(x;,;)};",, where x; € X is the input
vector and t; € R is the target value. Our algorithm is based on a linear model
of the form:

y(x) = whé(x) + b (2.85)

The e-insensitive error function is given by:

E.(x,t) = max(0, [t — y(x)| — ¢) (2.86)

For each point ¢ outside the tube, there is either a §; or a £ non-zero error.
For these points above the e-tube, the second is zero, for the points below the
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FIGURE 2.7: The solid line
is the predicted values. Dot-

ted lines form the e-tube. Ex-
amples inside the e-tube are

considered error free. = For
those examples above the e-

tube an error value of ; is de-
fined, and for those exampleb

> below the e-tube there is an er-
x ror of £¥ magnitude

e-tube the first one is zero. Inside the e-tube both are zero. The total error

becomes E.(x;, t;) = &+&F and the primal optimization problem is formulated

as:
minimize —HwH2 + CZ &+E) (2.87)
i=1
subject to t; — (wl ¢ +b) <e+ &, foralli=1..m (2.88)
(whep; +b) —t; <e+ & (2.89)
§& =0 (2.90)
& =0 (2.91)

We define a Lagrangian:

1 % S
L(w, b, o, o) = ||w]* + C D& + &) — Y. (i + 1€,
2 i= =1
- Z ai(e + &+ (whe; +0) —t;)
=1
— Z af(e + & — (whe +b) +1t;) (2.92)

where «;, o, p;, uf = 0 are the Lagrange multipliers. The Karush-Kuhn-
Tucker (KKT) conditions (Nocedal and Wright, 2006) that must be satisfied
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are:

ai(e + &+ (whp(x;) +b) —t;) =0, foralli=1..m (2.93)
(e + & + (whd(x;) +b) — ;) =0 (2.94)
(C = a;)& =0 (2.95)
(C —al)&r =0 (2.96)

The partial derivatives of L with respect to the primal variables w, b, &; and

¢F should vanish, therefore we have:

OL(w, b, o, ) N :

- 0 =  w= ;(ai + o) () (2.97)
OL(w,b,a, ) S £\ _

> =0 = g}l(ozz +a)=0 (2.98)
6L(wa b: o, o ) =0 — o; + i = C (299)

0

Using the above equations and the kernel function x(x;, ;) in place of ¢* (x;)p(x;),

we formulate the Lagrangian (2.92) with respect to «a; o

. ' =R 1 m m
maximize L(a, o 522 — o )k(xy, x;)

i=1j=

—_

m

—e >+ af) + D (s — af)t; (2.101)

i=1 i=1

subject to 0 < a; < C,| foralli=1..m (2.102)
0<a*<C (2.103)
diai—af) =0 (2.104)
t=1

From the KKT conditions (2.93) we note that «; coefficients can be non-zero

only on the upper e-tube border or above the e-tube, and from (2.94) «
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coefficients can be non-zero only on the lower e-tube border or below the e-
tube. In all other cases, o; and o are zero. Support vectors are the examples
(x;,t;) that lay on the e-tube border or outside of it, where either «; or af is

non-zero.

Let M be the set of indexes of support vectors in the training set. By substitut-
ing (2.97) into (2.85), we get the final kernel-based prediction function:
y(x) = > (s — af)u(m, ;) + b (2.105)
ieM
Again, here we have to estimate the bias b from (2.93). We choose a point for
which 0 < o; < C, which means from (2.95) that & = 0, and from (2.93) that
the term € + & + (wh¢p(x;) +b) — t; = 0.

b=t —c—w ¢(x;)

—ti—e— Y (o — af)k(x, x;) (2.106)

ieM
An analogous result can be obtained by considering the 0 < o < C points and
equation (2.94). A numerically stable b is given by averaging all 0 < «a;, af < C

cases.

Support vector machines have been used in various classification and regression
applications with excellent generalization properties and sparse kernel repre-
sentation. However, there are some drawbacks. The most outstanding one is
the growth of the number of the support vectors with the size of the training
set. Also, there is the C parameter, and the £ parameter in the case of regres-
sion, to be set. Furthermore, predictions are not probabilistic. And finally,

the kernel function must be positive definite.
2.4.4 Relevance Vector Machines (RVM) for Regression

The relevance vector machine is a probabilistic sparse kernel linear model that

has a prediction function similar to that of the SVM. We have a training set
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of m examples, {(x;,t;)};", where x; € X is the input vector and target value

t; € R. Our prediction function has the form:
y(x) = Y wik(z, ;) + wo, (2.107)
i—1
where k(x, x;) is the kernel function. By setting:

o(x;) = [1,k(xs, 21)], (x5, 22), . . ., 5(2s, )]

the above prediction function (2.107) is rewritten as:

y(x) = w' () (2.108)

We define ® € R™*(m+1) the design matriz, as:

® = [¢p"(z1), 9" (z2),....0" (n)]"

We assume that targets ¢; are samples of the above model (2.108) with the
addition of noise ¢;:

where ¢; are independent and identically distributed samples drawn from a
zero-mean Gaussian distribution with variance o2. The conditional distribu-

tion for the target variable ¢; given the input vector x; takes the form:
ptilxi, w,0%) = N (tily(x;),0?) (2.110)

a Gaussian distribution over ¢; with mean y(z;) and variance 0. Based on the

assumption that targets ¢; are independent, the likelihood of the data is:

p(t|X7 w, 02) = Hp(tz|mz7 w, 02)
i=1

1
= (2rg?)~™? exp{—ﬁﬂt—@wlﬁ} (2.111)

" row is &I, and ¢ is the vector {t;};-,. For a less

where X is a matrix whose 7*
cluttered notation, we omit implicit conditioning on input vectors x; and X,
e.g. the p(t|X, w, 0?) will be noted as p(tjw, o?).
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Direct maximum likelihood estimation of w and o? from the above equa-
tion (2.111) will lead to overfitting. We need to impose a complexity penalty
on the parameters, like the margin in the SVM paradigm. We implement
our preference for smoother functions by setting a zero mean Gaussian prior
distribution over parameter w:

m

plwla) = HN(wi\O,ajl) (2.112)

i=0
where o is a vector of m + 1 hyperparameters, one for every weight. The use of
an individual hyperparameter a; for every weight w; is the key for the sparsity

2

of RVMs. The hyperparameters o and noise precision § = o~ are given by

Gamma priors (Berger (1985)):

pla) = 1_[ Gamma(«;|a, b), (2.113)

i=0
p(8) = Gamma(Ble, ), (2.114)
where:

baaafl efba

O Gamma distribution

Gamma(a|a, b) =

Q0
[(a) =J t*te tdt, Gamma function
0

We make these priors non-informative, parameters a,b, c,d are set to zeros
(a =b=c=d=0) (Tipping, 2001). This setting leads to uniform hyperpri-
ors. This setting is called Automatic Relevance Determination or ARD in the
context of neural networks (MacKay, 1994; Neal, 1996), and it leads to sparse

representations.

The predictive distribution takes the form:
p(talt) = fp<t*|w, o, 02)p(w, v, 02|t) duw dex do” (2.115)

where t, is prediction for the sample x,. We need the posterior over all un-

knowns:

p(t)

plw, o, 0°[t) =

(2.116)

o1
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However, we cannot compute the normalizer p(t) in the denominator. Alter-

natively, by decomposing the posterior:
p(w, o, ?[t) = p(wlt, v, 0?)p(ex, o?|t) (2.117)

equation (2.115) becomes:
p(ts|t) = fp(t*'w,a,02)p(w|t,a,02)p(a,02|t) dw da do? (2.118)

The posterior distribution for the weights is Gaussian and is given by:

p(wlt, e, 0%) = N(wlp, X)

- @0 P en -y - WIS w -} (2119

where the posterior covariance and mean are given by:
Y= (c?®"®+ A)! (2.120)

u=o’S®’t (2.121)

where A = diag(a). The second term of the right hand side in equation (2.117),
the hyperparameter posterior p(a, o%|t), cannot be computed analytically. A
workaround is to approximate it with the delta function at its mode, i.e. the

most probable values oy p and o2y p:
pla, d[t) ~ d(aprp, 0% np) (2.122)

Looking for the hyperparameter posterior mode, we can maximize the hyper-
parameter posterior p(a, o%|t)ocp(t|a, 0?)p(a)p(o?) with respect to a, 2. We
assume uniform hyperpriors and we ignore p(c) and p(c?). We only need to

maximize the marginal likelihood® p(t|c, o2):

plta, 0?) = f p(thw, 0)p(w]e) dw

= (2m)"™2|C|7 2 exp {—%tTC‘lt} (2.123)

3 Marginal likelihood is also known as evidence for the hyperparameters, (MacKay, 1992).
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where C = 0?1 + ®A'®7. This type of maximization is also known known

as type-II mazimum likelihood method (Berger, 1985).

We cannot get analytically the values v and 0% that maximize equation (2.123).

The log marginal likelihood takes the form:
1
Inp(tla, 0?) = ) {mIn(27) + In|C| + t' C~'¢} (2.124)

Differentiating equation (2.124) with respect to @ and equating to zero we
get:

o =1 (2.125)

M
where y; is the i-th component of the posterior mean (2.121), and the quantity

v; is defined as:
Vi =1— ;X (2.126)

Y;i is the i-th diagonal component of the posterior covariance (2.120). Differ-
entiation of (2.124) with respect to the noise variance o2 and setting to zero
gives:

o It —@p|?
L . s L 2.127
7 m — % ( )

Assuming that the kernel function (-, -) is chosen and the training set is given,

estimation of aiprp and o2 y;p is done iteratively (Tipping, 2001; Tzikas et al.,

2006):
1. create the design matrix P.
2. choose initial values for o, and o2.
3. calculate ¥ = (07 2®T® + A)~! and p = 0 2XPTt

i t— dul?
4. update a; = 12 and o2 = It = 2pfl”
5 m — X

5. prune «; and the basis functions ¢;(-), if @; > Qpreshola

6. repeat steps 3, 4 and 5 until convergence is satisfactory
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A hyperparameters «; greater than up,esnoig is assumed that is tending to in-
finity and thus the respective w; parameter is set to zero. The relevance vectors
x; are the remaining data points, namely those with «; below aypreshorg- The

prediction distribution (2.115) for a new point x, using (2.119) becomes:
p(tslt, op, 0’ p) = fp(t*huaUQMP)p(w|t7aMP702MP) dw

= N(t|jp" p(x.), 0%) (2.128)

The predictive mean is the prediction function y(z,) = p’¢(x,) and the
predictive variance is 02, = 02y p + @(x4)T X () the estimated noise on the

data.
2.4.5  Relevance Vector Machines (RVM) for Classification

The RVM framework has been extended to classification. We assume two
classes with binary target variables ¢; € {0,1}. The prediction function takes

the form:

y(@) = o(w” $(@))) (2.129)

where o(z) is the logistic sigmoid function and y(x) € (0,1).

T 1+ exp(—=z)
The likelihood probability is based on the Bernoulli distribution :

m

p(tlw) = | [y(@)"[1 - y(@)]' " (2.130)

i=1

We use a prior p(w|a) for the weights, as in the case of regression (equation
2.112). Unlike the RVM regression case, we cannot obtain an analytic form of
the marginal likelihood p(t|a) by integrating out weights w. A workaround is

to use Laplace approximation®. For fixed values of o, the mode of the posterior

4 Laplace approximation for posterior distributions is to find the mode of the posterior and
then fit a Gaussian centered at the mode.
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distribution over weights w is given by maximizing:

_, plthwpplle)
Inp(wlt,a) =1 Dt

= In{p(tjw)p(w|c)} — Inp(t|cx)

“ 1
- Z{tz Iny;, + (1 —¢;)In(1 —y;)} — inA’w + const  (2.131)
i=1

where y; = y(x;) and A = diag(a). Equation (2.131) is a penalized logis-
tic log-likelihood function, which can be maximized w.r.t. w, using iterative
reweighted least squares (IRLS) (Nabney, 1999), to find wj;p, the mode of
Inp(w|t, a). We need the gradient vector and the Hessian of the log posterior

distribution:
Vinp(wlt,a) = 1 (t —y) — Aw (2.132)
VVinp(wlt,a) = —(®"BP + A) (2.133)
where y = (y1,¥2,...,Ym) and B = diag[y;(1 — y;)]!™,. By setting (2.132) to

zero, we get the mean and the covariance of the Gaussian approximation, for

the mode of the posterior distribution.
wyp = AR (t - y) (2.134)

Y= (®"B® +A)! (2.135)
The prediction function finally becomes:

y(@) = o (wpd(x)) (2.136)

95






3

Challenge and Contributions

A key distinction among reinforcement learning algorithms relies on whether
there is a representation of the value function, the policy, or both. Value
function based algorithms have received much criticism in recent years due
to difficulties associated with the estimation and representation of value func-
tions. Many learning problems of interest lead to nonlinear and nonsmooth
value functions that can hardly be compactly represented. On the other hand,
advocates of direct policy learning have employed parametric representations
that differ little from their value function representation counterparts. Most
of them rely on representations of stochastic policies that take the form of a
softmax over a parametric real-valued function, which is similar to a typical

value function.
3.1 Starting Points

There is a trend in policy learning attempts (Lagoudakis and Parr, 2003a;
Fern et al., 2004) to exploit the generalization abilities of modern classification
technology, under the assumption that optimal or good deterministic policies
for real-world learning problems are not arbitrarily complex, but rather exhibit
a high degree of structure. Recall that a deterministic policy is a mapping from
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Reinforcement
Learning as

Classification

states to actions, w(s) : S — A. On the other hand, a multiclass classifier is a
mapping of inputs to classes. Therefore, it is clear that a deterministic policy
can be approximated over the entire state space of the process using a multi-
class classifier over the same space; each action is viewed as a distinct class
and the states of the process are the instances (inputs) to be classified (Figure
3.1). It should, therefore, be plausible to learn a good policy using only a small
set of training data consisting of selected states over the state space labeled

with the actions that are deemed to be best in those states.

&3]

@ classes
% (actions)
— Q4|

Classifier
(policy)

input
(state)

FIGURE 3.1: A multiclass classifier used to map states to actions

To illustrate the learning process under such representations, we briefly review
the Rollout Classification Policy Iteration (RCPI) algorithm (Lagoudakis and
Parr, 2003a). The key idea behind RCPI is to cast the problem of policy
learning as a classification problem. Finding a good policy becomes equivalent
to finding a classifier that generalizes well over the state space and maps states
to “good” actions, where the goodness of an action is measured regarding its

contribution to the long-term goal of the agent. The state-action value function

Qr
Qr(s,a) = 2 P(s,a, s'){ﬁ(s, a,s’) + Q. (s, ﬂ(s'))}

provides such a measure given a fixed base policy 7; the action that maximizes
Q- in state s is a “good” action in that state, whereas any action with strictly
smaller @) value is a “bad” one. The policy 7’ formed by choosing maximizing
actions in each state

7'(s) = argmax Q, (s, a)
acA

is guaranteed to be at least as good as m, if not better. A training set
{(si,7'(s:))};~, for policy 7’ could be easily formed, if the @, values for all
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m
1=

actions were available for a subset of states {s;}; ;. Thus, policy learning
can be seen as classifier learning (Figure 3.2). Once trained, the classifier
can deliver the estimated action choice 7’(s) of policy 7’ for any input state

seS.

{(sixm (i)} .2,

A
s —» classifier —>»7'(s)
\ 4
FIGURE 3.2: Policy learning as classifier learning

The Monte-Carlo estimation technique of rollouts (Bertsekas and Tsitsiklis,
1996; Tesauro and Galperin, 1997) provides a way of accurately estimating
()x at any given state-action pair (s,a) without requiring an explicit repre-
sentation of the value function or the full MDP model. Rollouts require only
a generative model (a simulator) of the process; more specifically, given any
state-action pair (s,a), such a model returns a next state s’ and a reward r’
sampled from the (unknown) true MDP model distributions (transition model
and reward function). A rollout for (s,a) amounts to simulating a trajectory
of the process beginning from state s, choosing action a for the first step and
actions according to policy 7 thereafter up to a certain horizon H, and com-
puting the total discounted reward along this trajectory. The observed total
discounted reward is averaged over a number of rollouts (also called trials)
K, to yield an accurate estimate of @, (s,a). Thus, using a sufficient amount
of rollouts, it is possible to create a training example of the improved pol-
icy " in any chosen state s. A collection of such examples over a finite set
of states forms a valid training set for the improved policy «’ over any base

policy 7.

The goal of the learner is not only to improve a policy, but rather to find a

good or even optimal policy. Therefore, RCPI employs an approximate policy
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Algorithm 11 Rollout Classification Policy Iteration (RCPI)

Input: policy 7, trials K, horizon H, sample size U,

k=1
repeat
k=Fk+1
Sk+1 = a uniformly random subset of S of size U,  (uniform sampling)
Th1 =9 (initialization of the training set)

for (each s € Sky1)
for (each a € A)
estimate Qr, (s, a) using K rollouts of length H (simulation)

end
if (a dominating action a* exists in state s) then

Trs1 = Ter1 U {(s,a*)*} (positive example for dominating action a™*)
Tir1 =Tre1 U {(s,a)"} (negative ezamples for dominated actions a)

end
end
Tg4+1 = TRAINCLASSIFIER(T)41) (classifier/policy learning)
until (74,1 is not better than ) (end of policy iteration)
return m;

iteration scheme for repeated improvements, as described in Algorithm 11. At
each iteration, a new policy/classifier is produced using training data obtained
by rolling out the previous policy on a generative model of the process. Begin-
ning with any initial policy mg, at each iteration k£ a training set over a subset
of states Sy, is formed by querying the rollout procedure to identify dominating
actions in the states of Si. Notice that the training set contains both positive
(+) and negative (—) examples for each state, wherever a clear action domi-
nation is found. A new classifier is trained using these examples to yield an
approximate representation of the improved policy over the previous one. This
cycle is repeated until a termination condition is met. Given the approximate
nature of this policy iteration scheme, the termination condition cannot rely
on convergence to a single optimal policy. Rather, it terminates when the per-
formance of the new policy (measured again via simulation) does not exceed
that of the previous policy. The empirical expected total discounted reward
from states drawn from D obtained from and averaged over multiple runs is

used as the policy performance criterion.

The RCPI algorithm, shown graphically in Figure 3.3, yielded promising results
(Lagoudakis and Parr, 2003a) in the pendulum and the bicycle domains using

Support Vector Machines (SVMs) and Multi-Layer Perceptrons (MLPs) as
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FIGURE 3.3: Rollout Classification Policy Iteration (RCPI) algorithm
classifiers.

3.2 Questions and Challenges

The reinforcement learning as classification experience, despite subsequent

progress, still leaves us with several open research questions:

e Do good policies for typical decision problems exhibit significant structure?
e Can classifiers capture and generalize policy structure efficiently?

e How big of a training set for the classifier is required?

e What is the effect of the distribution of states in the training set?

e Are there critical areas of the state space where examples are required?

e How can such critical areas of the state space be identified?

e Does the classifier/policy itself reveal information about these areas?

e Can we use the classifier /policy to direct state sampling to critical areas?

e Which classification technology balances performance and complexity?

The Rollout Classification Policy Iteration (RCPI) algorithm gives us a strong

indication that the questions posted above can be answered positively. There-
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Hypothesis

under test

Optimal policy

structure

Directed
exploration of

policy space

fore, in this dissertation, we took up the challenge to show that we can effi-
ciently explore the policy space by exploiting hints of the classifiers we use for

the representation of policies.

3.3  Contributions

Our initial effort was to uncover and study the optimal policy structure for typ-
ical two-dimensional reinforcement learning domains, such as the Inverted Pen-
dulum and the Mountain Car, which are appropriate for visualization and in-
spection (Rexakis and Lagoudakis, 2008). The results clearly demonstrate that
good policies exhibit significant structure, which can potentially be learned and
exploited for representational purposes. An optimal deterministic policy is a
mapping from states to actions, and optimal actions persist over large areas

in the state space.

Our focus then moved to finding how to direct the exploration of policy space
using rollouts and uncover areas, where an action prevails, in a smart and
systematic way. We tried to avoid the use of value functions due to the known
difficulties associated with their representation. Instead, we focused on using
policy rollouts, which can provide accurate estimates of ()-values in any state
by repeated simulations. We use a collection of binary classifiers to separate
action areas and represent a policy. A binary classifier separates within the

state space a dominant action from all the others.

We developed two methods for directed exploration of policy space, using SVM
and RVM classifiers. In the first one (Rexakis and Lagoudakis, 2011), we are
exploiting the structure of the classifier to direct sampling. In the second one
(Rexakis and Lagoudakis, 2012, 2014), we utilize a regressor, approximating
the action advantage in any given state, to estimate the importance of each
state, using readily available data, while improving upon the current policy. In
both approaches, the search is focused on areas where there is a change /switch
of action domination. This directed focus on critical parts of the state space
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iteratively leads to refinement and improvement of the underlying policy and

delivers excellent control policies in only a few iterations.

The proposed methods have been thoroughly tested on three well-known learn-
ing domains: Inverted Pendulum, Mountain Car, and Acrobot. The first two
domains are appropriate for visualization and inspection thanks to their low,
two-dimensional state space. The third domain however is four-dimensional
and reveals the usefulness of the proposed directed exploration methods to-
wards discovering the most critical parts of the state space. Additionally,
we demonstrate the scalability of the proposed approaches on the problem of
learning how to control a 4-Link, Under-Actuated, Planar Robot, which cor-
responds to an eight-dimensional problem, well-known in the control theory
community. In all cases, the proposed Directed RCPI algorithms yield poli-
cies of excellent performance and demonstrate significants savings in rollout

sampling compared to the original RCPI algorithm.
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4

Related Work

There is a large body of literature in the area of reinforcement learning com-
bined with supervised learning (classification and regression). This chapter
reviews the most representative publications in this area, following a chrono-

logical order.

Dietterich and Wang (2001) proposed a reinforcement learning approach based
on batch value function approximation. They use a set of states with known
values of the V-function and they train an SVM-like regressor with (state,
V-value) tuples, to generalize the value function over the entire state space.
They exploit the full MDP model and use three different linear programming
formulations (supervised, Bellman, and advantage learning). Their algorithms

were applied to 10 maze problems and delivered promising results.

Yoon et al. (2002) use an inductive policy selection method for probabilistic
STRIPS domains (blocks world, paint world, logistics world). They do not
compute a value function in large domains, but they attempt to generalize
good policies from domains with few objects to get a useful policy for domains
with many objects. Their policies are represented as ensembles of decision
lists, using a taxonomic concept language, and they use bootstrap aggregation

(bagging) to resolve.
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Kakade and Langford (2002) reduced reinforcement learning to regression and
they introduced the Conservative Policy Iteration algorithm. They define a
policy advantage function, and they perform policy updates wherever the ad-

vantage function takes significant values.

The Rollout Classification Policy Iteration (RCPI) algorithm was proposed by
Lagoudakis and Parr (2003a) as an alternative to standard approximate policy
iteration. They replace the value function V(s) learning step with rollout es-
timates of the action value function Q(s,a) over a finite number of states for
all the actions in the action space, and they cast the policy improvement step
as a multi-class classification problem. The RCPI algorithm yielded promis-
ing results in the pendulum and the bicycle domains using Support Vector

Machines (SVMs) and Multi-Layer Perceptrons (MLPs) as classifiers.

A similar algorithm proposed by Fern et al. (2004, 2006, 2007) yielded satisfy-
ing results in seven deterministic and stochastic relational planning domains
from the AIPS-2000 planning competition using Decision Lists as the under-
lying classifier. The primary difference with RCPI is the form of the classi-
fication problem produced on each iteration. Lagoudakis and Parr (2003a)
generate standard multi-class classification problems, whereas they generate

cost-sensitive problems.

Bagnell et al. (2004) introduced an algorithm for learning non-stationary poli-
cies in reinforcement learning. For a specified horizon H, their approach learns
a sequence of H policies. At each iteration, all policies are fixed except for one,

which is optimized by forming a classification problem via policy rollout.

Langford and Zadrozny (2005) provided a formal reduction from reinforce-
ment learning to classification, showing that e-accurate classification implies
near optimal reinforcement learning. They use an optimistic variant of sparse
sampling to generate H classification problems, one for each horizon time step

(1,2,3,..., H).
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Li et al. (2004, 2007) suggested a focused attention reinforcement learning
scheme. The main difference with Lagoudakis and Parr (2003a) is that they
use a cost function based on a ()-value advantage function, to grade the state
importance, construct a training set with (state, action, cost) tuples and train

a cost sensitive classifier.

Dimitrakakis and Lagoudakis (2008a) proposed a variant of a policy itera-
tion scheme which addresses the core sampling problem in evaluating a pol-
icy through simulation as a multi-armed bandit machine. They view the set
of rollout states as a multi-armed bandit machine, where each state corre-
sponds to a single lever (arm). Pulling a lever corresponds to sampling the
corresponding state once, i.e., perform a single rollout for each action in that
state. They employed heuristic variants of well-known algorithms for bandit
problems, such as Upper Confidence Bounds (Auer et al., 2002) and Succes-
sive Elimination (Even-Dar et al., 2006), and they presented experiments on
two standard reinforcement learning domains, the Inverted Pendulum and the

Mountain Car.

Dimitrakakis and Lagoudakis (2008b) offer theoretical insight into the rollout
sampling problem. They analyze the sample allocation methods described
in Dimitrakakis and Lagoudakis (2008a). They compared the performance of
Count and Fized allocation schemes with additional ones inspired by the Upper
Confidence Bounds (Auer et al., 2002) and Successive Elimination (Even-Dar
et al., 2006) algorithms. They found that all methods outperform the Fized

scheme in practice, sometimes by an order of magnitude.

Gabillon et al. (2010) suggest a sampling scheme for classification-based policy
iteration algorithms similar to Dimitrakakis and Lagoudakis (2008a). They
use strategies to allocate the available budget of rollouts at each iteration over
states and actions. They applied their algorithm in two domains, the Inverted

Pendulum and the Mountain Car.

Rachelson and Lagoudakis (2010) introduced the active learning scheme of
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Localized Policy Iteration (LPI), an active learning version of Rollout-based
Policy Iteration. They link the Lipschitz continuity of a Markov Decision
Process to the Lipschitz continuity of value functions. They introduce the
notion of influence radius of a state-action pair (s,a), where a is the best
action in s, and define a volume around s in the state space, where the best
action a is guaranteed to be dominant. They tested it on a standard Inverted

Pendulum problem.

Lazaric et al. (2010) derive a finite-sample analysis of a Classification-based
APT algorithm - called Direct Policy Iteration (DPI). The use a cost-sensitive
loss function, weighing each classification error by its regret (the difference
between the action-value of the greedy action and the action chosen by the
current policy). They explicitly assume that the action space is two dimen-
sional and they study how the expected error propagates through algorithm

iterations.

Gabillon et al. (2011) suggest the addition of a critic, a value function approx-
imation component, to rollout classification-based policy iteration algorithms.
They present a new RCPI algorithm, called Direct Policy Iteration with Critic
(DPI-Critic). They provide its finite-sample analysis when the critic using the
LSTD method. The idea is to use a critic to approximate the return after
we truncate the rollout trajectories. This allows us to control the bias and
variance of the rollout estimates of the action-value function. They use a cost-
sensitive loss function, the same they used in the DPI paper (Lazaric et al.,
2010), and they train a cost-sensitive multi-class classifier to return a policy

that minimizes the empirical error.

Cheng et al. (2011); Fiirnkranz et al. (2012) proposed a preference-based exten-
sion of approximate policy iteration. They use a preference learning method
called label ranking, to allow sorting of available actions from most promising
to least promising for each state, and they train a label ranker instead of a

classifier. They present experiments on Inverted Pendulum, Mountain Car,
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and cancer clinical trials domains.

Farahmand et al. (2012, 2013, 2014, 2015) analyze a general algorithm of
Classification-based Approximate Policy Iteration (CAPI) theoretically. They
define an action-gap weighted loss function, and then they minimize that func-
tion. They exploit the action-gap regularity (Farahmand, 2011) in the analysis

of classification-based reinforcement learning.
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5

Benchmark Domains

In this thesis, we chose to study four standard domains in reinforcement learn-
ing: Inverted Pendulum, Mountain Car, Acrobot and 4-Link Planar Robot.
The first two problems are defined on two-dimensional continuous state spaces,
and therefore they are appropriate for visualization and inspection. The third
and fourth problems, are defined on a four-dimensional continuous state space
and a eight-dimensional continuous state respectively, and therefore are ap-
propriate for verifying that rollout sampling for learning is indeed directed to

important parts of the state space.
5.1 Inverted Pendulum

The Inverted Pendulum problem is to balance a pendulum of unknown length
and mass at the upright position by applying forces to the cart it is attached
to (Figure 5.1). Three actions are allowed: left force LF (—50 Newtons), right
force RF (+50 Newtons), or no force NF (0 Newtons). In the stochastic version
of the problem, all three actions are noisy; Gaussian noise with ¢ = 0 and
0% = 10 is added to the chosen action. There is no noise in the deterministic
version. The state space of the problem is continuous and consists of the

vertical angle 6 and the angular velocity 6 of the pendulum. The transitions
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are governed by the nonlinear dynamics of the system (Wang et al., 1996)
and depend on the current state and the current (noisy or noiseless) control

u:

i_ 9 sin(f) — aml(0)?sin(20)/2 — a cos(0)u
41/3 — aml cos?(0)

where g is the gravity constant (g = 9.8m/s?), m is the mass of the pendulum

(default: m = 2.0 kg), M is the mass of the cart (default: M = 8.0 kg), [ is
the length of the pendulum (default: [ = 0.5 m), and o = 1/(m + M). The
simulation step is 0.1 seconds. Thus the control input is given at a rate of 10
Hz, at the beginning of each time step, and is kept constant during any time
step. A reward of +1 is given as long as the angle of the pendulum does not
exceed 7/2 in absolute value (the pendulum is above the horizontal line). An
angle greater than 7/2 in absolute value signals the end of the episode and a

reward of 0. The discount factor of the process is set to 0.95.

5.2 Mountain Car

The Mountain Car problem is to drive an underpowered car from the bottom
of a valley between two mountains to the top of the mountain on the right
(Figure 5.2). The car is not powerful enough to climb any of the hills directly
from the bottom of the valley even at full throttle; it must build some energy
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by climbing first to the left (moving away from the goal) and then to the right.
Three actions are allowed: forward throttle FT (41), reverse throttle RT (-1),
or no throttle NT (0). In the deterministic version of the problem, as originally
specified (Sutton and Barto, 1998), there is no noise. In the stochastic version,
to make the problem a little more challenging, we have added noise to all three
actions; Gaussian noise with p = 0 and 02 = 0.2 is added to the chosen action.

The state space of the problem is continuous and consists of the position x

Goal

¥

FIGURE 5.2: Mountain Car

and the velocity x of the car. The transitions are governed by the simplified
nonlinear dynamics of the system (Sutton and Barto, 1998) and depend on the

current state (z(t), z(t)) and the current (noisy or noiseless) control u(t):

z(t+1) BounD,[z(t) + @(t + 1)]

z(t+1) BounD;[z(t) + 0.001u(t) — 0.0025 cos(3z(t))]

where BOUND,, is a function that keeps z within [—1.2,0.5], while BOUND,
keeps & within [—0.07,0.07]. The point (—0.5,0) corresponds to the bottom
of the valley when the car is not moving. If the car hits the bounds of the
position x, the velocity z is set to zero. A reward of 0 is given at each step
as long as the position of the car is below the right bound (0.5). As soon as
the car position hits the right bound of position, it has reached the goal; the
episode ends successfully, and a reward of +1 is given. The discount factor of

the process is set to 0.99.
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5.3 Acrobot

The Acrobot is a nonlinear dynamical system composed of a two-link underac-
tuated robot arm which is allowed to rotate around a fixed point at the shoulder
joint (Figure 5.3). Torque 7 can be applied to the elbow joint only. The goal is
to swing the arm around the fixed point so that the other end reaches a height
which is one link’s length higher than the fixed point. This system has been
studied by robotics and control engineers (Spong, 1994; DeJong and Spong,
1994).

Goal level

sho:ulderjoint, acrobot
rotates around this point

elbow joint, torque
is applied here

Three levels of torque are allowed: positive (+1), negative (—1), or no torque
(0). Gaussian noise (= 0, 0 = 0.2) is added to the chosen action. The sys-
tem is described by four state variables: shoulder angular position 6; € [0, 27],
shoulder angular velocity 6, € [—4m, +47], elbow angular position 65 € [0, 27],
elbow angular velocity 0, € [—97, +97]. Any values of 0y, 05 outside [0, 27]
are wrapped into [0, 27| by subtracting 2km, where k € Z. The transitions are
governed by the nonlinear dynamics of the system (Spong, 1994; Sutton and

Barto, 1998) and depend on the current state (01,91,02, 92) and the current
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control T:

i~ _ (dsby + qbl)’ G, — (T + 21 — Mol (e Siil Oy — ¢2)
dy (mol2y + I — j—f)

d, = mlfgl + mg(ff + EEQ + 20109 cos0y) + I + Lo

dy = mo(l% + (1l cosby) + I

b1 = —mplilef2 sin Oy — 2malyl,o0, 05 sin by +

(mléd + m2€1)g COS <01 — g) + ¢2

(e

Oo = maleog cos (91 + 0y — 5)

where g = 9.8m/s? is the gravity constant, m; = my, = 1Kg are the masses
of the links, [y = [ = 1m are the lengths of links, goal level I3 = 1m above
rotation point, I.; = l.s = 0.5m are the lengths to the center of mass of the
links, and I; = I, = 1 Kg-m? are the moments of inertia of the links. A
time step of 0.05 seconds was used in the simulation, with actions chosen after
every four time steps, a total of 0.2 seconds per action. The angular velocities
are limited so that they stay within their bounds. The discount factor of the

process is set to 0.98.

The classic reward for the Acrobot, suggested by (Sutton and Barto, 1998),
is 1 upon reaching the goal and 0 otherwise. We propose here a shaping
reward for the Acrobot, because the original delayed reward scheme could not
provide any guidance to the initial random controller. We define the reward
for transitioning from state s to state s’ by taking action a as p(s,a,s’) =
Ey(s') x Ey(s") — E1(s) x Es(s), where Ey(s) and Es(s) is the total mechanical
energy for state s for the shoulder and the elbow arm, respectively. Consider
the Acrobot shown in Figure 5.4. Intuitively, a policy that drives the Acrobot
tip to the goal (level ¢35 above the shoulder joint) is a policy that maximizes
the mechanical energy of both arms. In a system where the upper arm is
moving slowly and the elbow is spinning, the mechanical energy of the system

is high, but the upper arm will not make it high enough for the tip to reach
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the goal.

Goal level

gl + 602

FIGURE 5.4: Acrobot reward

The shoulder arm is a line segment AB with length ¢; and the elbow arm is
a line segment BC' with length /5. The center of mass is D for the shoulder
arm and E for elbow arm. The mechanical energy for the shoulder arm is
E, = U, + K;. The gravitational potential energy is U; = hymg, where
hy = ¢ (1 — cos(f;)). The kinetic energy of the shoulder arm due to rotation
about the shoulder joint A is:

1 )
Kl = 5]11491 (51)

where the 1y = 1.1 + mlﬁgl computed from I.; using parallel axis theorem.
Similarly, the mechanical energy for the elbow arm is Fy = Uy + K5. The
potential energy due to the gravity is Us = homag, where hy = ({1 + leo) —

(01 cos(0y) + Leo cos(0y + 63)). The kinetic energy of the elbow arm:

1 T
K2 = §Z£Jmi’l"T'l" (52)

where m; the mass of point ¢ of the elbow arm, r is the distance from the

shoulder joint A, and r the speed of point i. Let ¢; be the distance of point ¢
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from the elbow joint B.

o 51 sin(@l) gz sin(91 + 92)
| —flicos(0y) —L;cos(6y + 05)

and

_ [€1€:1 cos(fy) fi(é} + 92) cos(f; + «92)]
200 sin(@l) &(91 + 92) sin(01 + 92)
T . [ ) 619"1 COS(el) ] 619:1 Sin(91) ] (5 3)
_Z,-(@l + 92) COS(91 + 02) 61(91 + 02) Sin(91 + 92) ‘

_€1é1 cos(fy) &(9:1 + 02) cos(by + 92)]
_6101 sin(@l) fz(gl + 02) sin(01 + 02)

2@912 cos?(01) + (01 + 05)? cos® (01 + 05)+
20,6, cos(@l)&(@.l + (92) cos(0y + 63)+
g%é12 sin2(91) + é?(@l + é2)2 Sin2(91 + 92)+
2619.1 sm(@l)&(el + 92) sin(@l + (92)

Using the identity cos(6) cos(6y + 02) + sin(6; ) sin(f; + 65) = cos(6) and the

above K, equation becomes

Ky = szz <£%912 + 201036, (61 + ) cos(0a) + (7 (61 + 92)2) (5.4)

given that the inertia of the elbow around joint B is:
]2 B = Z msz
i

and the distance from B to the elbow center of mass:

2 mils
fo = S
mgy
K5 equation becomes:
1 .
K2 :5 (TRQE% + IQB + 2m2€1662 COS(QQ)) 912+ (55)

1 -2
—I>50
512802 +

(IQB + mgglfd COS(@Q))éléQ
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where Irg = Lo + maol?, .

A state s is a tuple (6, 91, 05, 92) recording the two angles and the two angular
velocities. Given the above formulas for the potential and kinetic energies, the

immediate reward p(s, a, s’) is defined as:
p(s,a,s") = Ei(s") Ea(s") — Ei(s)Ea(s),
= (U] + K})(Uy + K3) — (Uy + K1)(Uzy + K>) (5.6)
The justification for this definition is that the immediate reward represents
the momentary difference in the products of total energy between the new and

the old state; the product of total energies of the elbow and shoulder joints

implies that energy gains are attributed to both arms.
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5.4 4-Link Planar Robot

The 4-Link Planar Robot is a nonlinear dynamical system composed of a four-
link underactuated robot arm with actuation only on the middle joint (Figure
5.5). In particular, torque (73) is applied to the third joint. The goal for the
robot is to swing around the first joint, a fixed rotation point, so that the other
end reaches the 80% of the maximum height the robot can achieve above the

rotation point.

Three levels of torque are allowed: positive (+10), negative (—10), or no
torque (0). Gaussian noise (u = 0, 0? = 2) is added to the chosen action.
The system is described by eight state variables, the absolute angle of each
joint 01,605, 05,0, € [0,27] and the angular velocity of each joint 0,,05,05.0,
[—27, +27]. Any values of 01,605, 05,6, outside [0, 27] are wrapped back into
[0, 27] by subtracting 2km, where k € Z. The dynamics of this system have
been studied by robotics and control engineers (Xin and Liu, 2014). The tran-
sitions are governed by the nonlinear dynamics of the system and depend on
the current state (61, 0o, 03, 04, 91, 92, 93, 94) and the current control 73 applied to
third joint. The gravity constant is g = 9.8m/s?, m; = mg = m3 = my = 0.5Kg
are the masses of the links, ¢, = ¢, = {3 = ¢, = 0.5m are the lengths of links,
by =Ll = L3 = Loy = 0.25m are the lengths to the center of mass of the links,
and J; = J, = J3 = J; = 0.0417 Kg - m? are the moments of inertia of the
links. Time step is 0.06 seconds. The discount factor of the process is set to

0.92.
The motion equation of the robot is:
M(q)G + H(q,q) + G(q) =,
where vector ¢ € R* holds the relative angles ¢ = 01, ¢ =0y — 01, q3 =

O3 — 0y, qu = 04— 03, M(q) € R** is a symmetric positive definite inertia

matrix; vector H(q, ) € R* contains the Coriolis and centripetal terms; vector
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Goal level

Egoal

- passive joint, robot
,,,,,,,,,,,,,,,,,, e © rotates around this point
2

active joint, torque
is applied here

FIGURE 5.5: 4-Link Planar Robot with active third joint

G(q) € R* contains the gravitational terms; and vector 7 € R* holds the torque
applied to each joint. In our case, T = [0, 0, 73, 0] where 73 is the torque applied

to the third joint.

The non-zero entries of matrix M(q) € R*** are shown below; all others are
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Zero.

My =aq1 + ass + ass + agq + 2a12 cos qo + 2a13 cos (¢2 + q3)+
2a14 o8 (g2 + q3 + q4) + 2a23 cos g3 + 2as4 cos (g3 + qa) + 2asz4 coS q4
M =agy + as3 + ags + a12 €08 @2 + a13c0s (g2 + q3) + ara cos (g2 + q3 + qu)+
2a93 €08 g3 + 2a24 €0s (g3 + qq) + 2a34 COS 4
M3 =ass + agq + a3 cos (g2 + q3) + ajgcos (2 + g3 + q4)+
(23 COS G3 + 24 OS (G5 + q4) + 2a34 COS @4
My =agq + a14¢08 (Go + q3 + qa) + a4 08 (g3 + q4) + azq COS qy
My =ags + a3z + ayq + 2a93 €OS G5 + 2a94 €OS (G5 + q4) + 2a34 COS q4
Mss =asz3 + aygq + a3 cOs q3 + a4 COS (q3 + Q4) + 2a34 cOS q4
May =a44 + a24 0S8 q3 + G4 + a34 COS G4
Ms3 =a33 + aqq + 2a34 cOs q4
Msy =ayy + aszqcosqy

My =aqq

where the a,, constants are
an = Ji + mlﬁzl + (mg + ms3 + m4)€%

mgglécg + (m3 + m4)£1€2

Q12

mgﬁlécg + m4€1€3

a13

a4 = Malrleq

a22 Jo + mgﬂé + (mg + m4)€§

agz = malales + mulals

agq = Malaley

ass Js + m3€Z3 + m4€§

azq = Malsley

2
Aqq4 = J4 + m4€C4
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the entries of the H vector are

Hy = — a12G2(2¢1 + Go) sin g2 — a23G3(2(q1 + G2) + ¢3) sin g3

— a34(242G3 + G4(2(¢1 + ¢3) + Ga)) sinqu

—a13(G2 + ¢3)(2¢1 + ¢2 + ¢3) sin (g2 + g3)

— a2 ((Gs + 4a)” + 261(qs + qa) + 4dads) sin (g3 + qu)

— a14(5 + 4G2q3 + (43 + 4a)* + 241(G2 + G + a)) sin (g2 + g3 + q4)
Hy =a1247 sin qa — a33(2(G1 + G2) + ¢s) sin gs

— 344 (2(q1 + G2 + d3) + da) Sin s + @137 sin (g2 + g3)

— a4 ((G3 + G4)* + 261(G3 + Ga) + 2Ga(ds — 4a)) sin (g3 + qu)

Hs =as3(qy + ¢2)7 sin gz — asaqa(2(¢1 + G2 + G3) + Ga) sings
+ ar3q7 sin (g2 + g3) + a2a(d1 + o) sin (g3 + qu)
-2 .
+ a4gisin (¢ + g3 + qu)
Hy =ass(¢i + o + ¢3)? sinqa + asa(qr + ¢2)*sin (g3 + qa)
+ a14(1)? sin (g2 + g3 + qa)

the entries of the G vector are

Gy = —bysing — bysin (¢ + q2) — bz sin (¢ + ¢2 + q3)
—bysin (q1 + ¢2 + g3 + qu)
G = —bysin(q1 + ¢2) — bssin (g1 + g2 + ¢3) — basin (g1 + @2 + g3 + q4)
Gy =—bssin(q1 + g2 + q3) — basin(q1 + q2 + g3 + @)
Gy=—bysin(q + @2 + g3 + @)
and the b, constants are
by =(miley + (Mo + mg + my)ly)g
by =(moles + (M3 + my)ls)g
by =(mgles + myls)g

by =m4€c49

4-Link Planar ~ We define the reward for transitioning from state s to state s’ by taking action
Robot Reward a as p(s,a,s’) = E(s") — E(s), where E(s) is the total mechanical energy of
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the system. Intuitively, a policy that drives the tip to the goal is a policy that
maximizes the mechanical energy of the system. The total energy is the sum

of the kinetic energy K; and the potential energy U; of all links:

4 4
E(s) =) K+ .U
i=1 i=1

To simplify notation we use (Xin and Liu, 2014):

¢, for j <,
Uiy = lei, for j =1,
0 for j >4

1 2 lahe ) 4
Ky = SJibk + 5 2, > milkili; cos (0; — 0:)0:0);

i=1j=1

The potential energy is calculated relative to the level fy; = €1 + ly + 3 + Loy

below rotation point.

k
Uk = mkg(Z Ekicosﬁi + EU)

=1
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6

Directed Sampling

In this section, we are going to explicate our main contribution in reinforce-
ment learning through classification. In particular, we will show how, given
a policy, we identify a subset of selected states, which will be probed to form
a training set for the new (improved) policy. For this selection, we use hints
from the current, approximate policy representation to focus on critical states,
which can potentially lead to policy improvement using fewer computational
resources. Before we proceed, let’s define how we value states and how we
perform classification of actions. Note that from this point on, we consider
multi-dimensional, continuous state spaces and therefore states will be denoted

as vectors, s.
6.1 Action Advantage Function

We identify as important areas for probing, areas in the state space, where
changes in action domination take place. Given policy w, we say that an
action a dominates other actions in some state s, when the state-action value
function @, (s,a) for that action is greater that the rest of the actions. It’s
worth noting here that there may exist more than one dominating actions over
large areas of the state space (Rexakis and Lagoudakis, 2008), all of which will
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share the same value in that area.

A first approach to identify areas in the state space that are worthy of further
examination, is to find states that exhibit a difference in Q. (s, a) values for at
least two actions. The rationale is that if there is no difference between action
values, all actions in that state are equally bad (or equally good) and makes
no difference which action is chosen. We define the maximum difference in )

values for state s over all actions in the action as follows:

£(s) = max {Qu(s. @) } — min {Qu(s.a")}

a’eA

Then, we define the action advantage function AQ(s) as follows:

1
A0Qls) =2 (1 Y1) 0'5)

Function AQ(s) is based on a scaled and shifted sigmoid:

S(t) =2 (H%p(_t) - 0.5)

which is shown in Figure 6.1.

1

09t |
08l |
07t |
06f |
;}5 05f ]
04 1
03l |

0.2 1

0.1 4

0

0 1 2 3 4 5 6
t

FIGURE 6.1: The scaled and shifted sigmoid function S(¢)

The maximum difference in ) values for state s is always greater than or
equal to zero (f(s) = 0) and, thus, the advantage function AQ(s) is in the
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range [0,1). AQ(s) is used in both our directed exploration proposals, sample

filtering and importance sampling, described later in this chapter.
6.2 Training Set Formation and Filtering Limit

In our work, we represent (approximately) a deterministic policy using a multi-
class classifier. To obtain such a classifier-based policy, we need to train a
classifier, and therefore we form a training set as follows. We identify a set of
candidate states (using two directed sampling methods that will be described
later) and we perform rollouts from these states, using the previous policy to
estimate (s, a) values for all states in the set and for all actions. Then, we
calculate the advantage function values AQ(s) for all these states. Finally, we Sample
form the training set for new the classifier using data only from states with filtering
AQ > €, where € is a filtering limit used to clear out noise in action domination.
States with AQ < € have low action domination probability, are not reliable,

and are therefore discarded from the formation of the training set.

The main objective of filtering is to remove the smaller values of AQ), the ones
that are close to zero. Let us define A to be the set of all distinct AQ) values
and A, € A be the set of all AQ < e values from A, where € is a member of
the A set. All states with AQ) values in A, are discarded. The filtering limit €
is determined as follows:

o)=Y ag—cddq

qEA, qJ'eA

e = argmin h(e), such that h(e) =0
ecA

where ¢ € (0,1) is a small positive value. The ¢ value we used for all domains
is 1075, The calculation of the filtering limit is shown in Algorithm 12. In
short, this procedure isolates the smaller AQ values which add up to a tiny

fraction (defined by c) of the total sum of all AQ values.
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Border in State

Space

Algorithm 12 Filtering limit calculation

Input: Delta@ : array of AQ values, ¢: small constant
Output: ¢ : filtering limit

limit = sum(DeltaQ) = ¢
DeltaQ_sorted = sort(Delta@, AscendingOrder)

8 et
for each e € Delta()_sorted
S=S8+E€
if s > limit then
return e
end
end

6.3 Binary Classifiers

In most reinforcement learning problems, there are more than two action
choices in each state and, therefore, the resulting problem in RCPI is a multi-
class classification problem. We propose the use of a set of binary classifiers
(Rexakis and Lagoudakis, 2008) to represent a policy. Each binary classifier
corresponds to one action; each action/classifier is trained against all others.
If y*(s) is the prediction function of the classifier for action @ in state s, we
use:

arg max y(s)
acA

to resolve conflicts (select the best action), when many action claim the state.

For both SVM and RVM classifiers, we have:

m

y(s) = Zt?a?ﬁ(si, s) +b*

i=1

While this scheme works well (Scholkopf and Smola, 2001), it is somewhat
heuristic. The binary classifiers are trained on different binary classification
problems and it is unclear whether their y%(s) values are scaled evenly. How-
ever, using class probabilities does not improve multiclass decisions; it only

adds one more computational step.

The main advantage of representing a policy that way is that each classifier
separates one action from the rest and defines a clear border within the state

space. The alternative method of training each action against each other and
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using voting to resolve conflicts, usually requires more binary classifiers, one
classifier for each pair of actions, that is ('é') = W classifiers, instead
of |A| classifiers needed in the one against all others case, which implies more

time to train and many more separating borders to deal with.
6.4 Directed Policy Search

In this thesis, we propose two methods for directed policy search. Both are
based on exploiting the structure of modern classifiers. Support Vector Ma-

s 141875 and Relevance Vector Machines % %9 share a common pre-

chine
diction function structure that depends only on a selected subset of input
vectors, which we consider as active'. These are chosen by the corresponding
training/optimization process to describe the separating border, by assigning
non-zero value to their «; coefficients. It is worth noting here that most of the
alpha coefficients are zero, giving a sparse prediction function:

y(s) = Z tioik(si, 8) + b (6.1)

ieM

where M is the set of the active vector indexes in the training set {(s;, )},

and {a;};" | the corresponding alpha coefficients. For convenience, we define the

active vectors tuple set {(si, t;, oz,-)} with & being the non-zero a coefficients

=1’

and G = | M| being the number of active vectors. Therefore, the prediction

function becomes:
G .
y(s) = Y ticur(8;,8) + b (6.2)
i=1

These active input vectors hold significant “positions” in the state space. This
observation gave rise to the idea that, if these classifiers are used to represent
policies in RCPI, then there should be a way to guide the selection of the next

set of rollout states around the action boundaries of the current policy.

1 Active input vectors are the support vectors in SVMs and the relevance vectors in RVMs.
They are the input vectors that have non-zero corresponding « coefficients in the decision
function (6.1).
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We use an ensemble of binary classifiers, one for each action to represent a
deterministic policy. Our analysis focuses on the C-SVM and RVM classifiers.
Given a set of training data {(s;,#;)};", for a certain action a, where s; is an N-
dimensional input vector (a state) and t; € {—1, +1} is a class identifier (action
a chosen or not in that state), an N — 1 dimensional surface is constructed
by the decision function (6.2) of the classifier in the input (state) space to
separate the two classes. Any point s in the input space can then be classified
using equation (6.2). If y(s) yields a positive number, s is classified in the +1
class and the action a claims state s, otherwise it is classified in the —1 class

and state s is left to be claimed by other actions.

6.4.1 Policy Fvaluation

Since our policies are represented by classifiers, classification accuracy is nec-
essary for reliability. However, this is not necessarily related to reinforcement
learning performance. Therefore, performance of a learned policy is evaluated
in terms of expected total discount reward. This kind of policy evaluation is
achieved through rollout testing: we start a number of independent trajecto-
ries of several steps each, from states drawn from the initial state distribution
to obtain empirical averages in all tested domains. This ensures us that we

keep optimizing the reinforcement learning goal.

6.4.2 Directed Policy Search using Active Input Vectors (DRCPI-AIV)

We use binary classifiers to represent policies and the state space is the input
space for the classifier. Active input vectors are some key states found in the
training set and define the boundary (6.2) between different action choices.
As discussed above, an attempt to improve the currently represented policy
will certainly have to probe the states around this boundary. To perform state
resampling, we initially draw the line that goes through an active input vector

and is perpendicular to the separating boundary defined by the classifier. The
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normal to the boundary for point s in the input space has a direction given

by (Riley et al., 2006):

G
gd(s) = Vsy(s) =V, (Z tza/z/f(sl, S) + b)

For the gaussian kernel (radial basis functions)
Sune(8',8) = exp (— Blls' — s||?), >0 (6.3)
we have

G
ga(s) = 252 t:0(8; — 8)kppr(8i, 8) .
i—1

Now that we have the direction, we seek to find the projections of the support
vectors on the separating boundary, given that the support vectors lie at critical
areas along the edge. In particular, for each active vector s;, we seek a point

u; (Figure 6.2) that satisfies the following two conditions:

A
S.
e\“au\“\g border // ‘
< /’U,7,
Aiga(wi) +u; —8; = 0 / \/
a ’
’
. . ’
Z théjli(Sj, ’U,z) +b = 0 //
j=1

FIGURE 6.2: Projection u; of active
input vector s; onto separating border

For each support vector, this is a system of N + 1 non-linear equations with
unknowns wu; (N-dimensional vector) and \; (scalar) (Riley et al., 2006). An
efficient arithmetic solution to this system can be given by Powell’s hybrid
algorithm (Powell, 1970) using [s;, 0]7 as an initial guess for [u;, A;]*. Solutions
u; that fall outside the input space are discarded. Given a valid u;, the unit
(normalized) vector g4; at point w; which is perpendicular to the separating
boundary is g4; = ga(w;)/||ga(w;)||. A new input point z;(d) along this line at

distance d from u; will be z;(d) = u; + dgq4;, where d € R.
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Let k be the policy iteration number. Given the above derivation and any pol-

icy 7, represented as an SVM or RVM classifier with active vectors

{sf}ikl, it is straightforward to select a new set of states around the sep-
arating boundary to probe with rollouts. We cover a zone wide enough to
accommodate possible mistakes of the next policy in identifying a more pre-
cise border between different action choices. First, we define the locus for the
centers used for Gaussian resampling to be the two parallel hyper surfaces to
the border, one on each side, shown with a red line and a green line in Fig-
ure 6.3. These surfaces have a dimensionality of N — 1 and lie at distance dr
from the separating border, where d* is the average distance of all active vec-
tors s¥ from the border. Then, we perform resampling of rollout states from
an N-dimensional Gaussian, centered on the intersection of the perpendicular
line that passes through the active vector s¥ and the two parallel surfaces, with
covariance matrix ¥ = dF] , where [ is the N-dimensional unit matrix. The
total number of rollout states is M, the resampling size, and they are equally

distributed to all active vectors, that is m; points per active vector, satisfying

the condition ZZG;I mF = M. More specifically, the next set of rollout states

(probes) is:

Spir={8i; ~N(ulf + (1) drgat),d* 1) 1 i=1...Gy,j=1...mF}  (6.4)

)

where 7 is an index over active vectors and j is an index over samples per active
vector. Note that, for each active vector, half the samples are taken on one
side and half on the other, based on the odd or even value of j. The proposed

DRCPI-resampling procedure is depicted in Figure 6.3.

Note that the first iteration begins with a purely random, but deterministic,
policy and therefore S; cannot be formed in the way described above, since
there is no classifier to represents my. The set S; with size U is simply a
uniformly random selection of states from the entire state space to guarantee

full coverage at the beginning?.

2 Without domain knowledge, uniform sampling is the only option to ensure that no part
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FIGURE 6.3: DRCPI-Resampling: using active iﬁput vectors from the k-th iteration to
select a new set of states for the (k 4+ 1)-th iteration

After the selection of rollout states, we have to form a training set for each
action to train the corresponding binary classifier for the improved policy.
Probing a particular state s for the improved policy over a base policy 7 boils
down to estimating the @), values for all actions in that state using rollouts
and identifying the dominating action(s) (if any). Say that these estimated
values are @W(s, a), a € A. To include state s in some training set, we need
to identify at least one dominating action, whose value significantly exceeds
the value of some other action. To quantify this difference we use the action
advantage function AQ(s).

If AQ(s) > ¢, then any action a* = argriax{éﬂ(s,a’)} that maximizes

a’e
@W(s,a’ ) in state s is considered dominating and a pair (s,a*) is inserted

in the training set for the classifier of action a* as a positive (+) example; all

will remain initially unexplored. In particular cases, domain knowledge could be used to
perform a focused non-uniform sampling.
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FIGURE 6.4: Directed RCPI with Active Input Vectors (DRCPI-AIV)

other actions a # a*, whose value is significantly less (¢) than the value of a*,
are considered dominated and, for each one of them, a pair (s, a) is inserted in
the training set for action a as a negative (—) example. Note that some actions
may be neither dominating, nor dominated; no training data will be produced
for such actions. States with AQ(s) < € do not yield any training data at
all. This simple dominance criterion is sufficient in most cases for dealing with

estimation noise.

We should stress that our approach requires the estimation of action values
at few isolated points (rollout states) only; nowhere does it need a full value
function over the entire state-action space. Therefore, the known issues of
value function approximation are not applicable. These required values are
obtained as unbiased estimates from Monte-Carlo simulation (policy rollouts)
and can be estimated to any desired accuracy provided sufficient simulation

time.

To summarize, the complete algorithm is shown graphically in Figure 6.4.
Given a policy 7 at iteration k represented as an SVM/RVM classifier, the

active input vectors in 7 are used to select the new subset of states Si.; at
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which the improved policy 71 will be probed. Each probe will yield pairs
of data in the training set Ty, if domination is detected. Once the training
set is formed, a new classifier is trained to represent 7,1 and the process
repeats from the beginning. Clearly, there is no guarantee for monotonic policy
improvement in this iterative scheme, however the chances can be increased by
repeating some iteration if no improvement was achieved; since each iteration is
randomized, it is likely that another run may produce better results. Therefore,
if policy 741 is not better than 7 (tested through simulation), iteration k is
repeated for a maximum of L attempts until an improved policy is found. If all
attempts are exhausted without improvement, the algorithm terminates. The
entire Directed RCPI (DRCPI) algorithm for policy search utilizing Active
Input Vectors (AIV) for guiding the search, called DRCPI-AIV, is shown in
Algorithm 13.
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Algorithm 13 Directed RCPI-ATV (DRCPI-AIV)
Input: policy 7y, attempts L, trials K, horizon H, size U, points M

k=-1 (policy iteration)
repeat
k=k+1
[=0 (repeated attempts)
repeat
l=1+1

if (k =0) then
Sk+1 =a uniformly random subset of S of size U (uniform sampling)

else
{directed sampling}

{sf}gl < active input vectors in

{uf}ikl < projections of §¥ on boundary
{gdf}gl « perpendicular directions at u¥
{df}ikl «— distances of s; from the boundary

d* — average distance of of §; from the boundary
Gk
{mf}zl < num of samples, Z mi=M
i—1
Sk+1 = {Siyj ~N(uf + (—1)j%gdf), df[) i=1... Gk,jz 1... mf}
end
Ths1 =2 (initialization of training sets)
for (each s € Sy41)
for (each a € A)
estimate Qr, (s, a) using K rollouts of length H (simulation)

end
¢ = FilteringLimit(AQ(s) ¥V s € Sk41)
if (AQ(s) > ¢€) then

Tei1=Tki1 U {(s,a*)"} (for dominating actions o*)
Tis1=Trs1 U {(s,a)"} (for dominated actions «)
end
end

Tk+1 = TRAINCLASSIFIERS(7)41)
until ( (g4 is better than m;) or (I = L) ) (end of repeated attempts)

until (7, is not better than my) (end of policy iteration)
return

6.4.3 Directed Policy Search using Importance Sampling (DRCPI-1S)

In this section, we strive to identify important areas for probing by exploiting,
this time, the action advantage function AQ and a particle-filter-like resam-
pling procedure. Once again, we use rollouts to estimate state-action values

Q(s,a) and AQ(s) in selected states s.

Importance Important areas of the state space do not lie strictly on the policy boundaries.

sampling
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Consider the case of only two actions; the advantage function AQ(s) is ei-
ther zero along the border or some kind of discontinuity occurs at the border.
Intuitively, the border itself is not so important; however, the area around
the border, where AQ is significant and changes fast is quite important as
it indicates a potential policy change. In order to identify these areas of sig-
nificance, we use the importance function, which is a function based on the
product AQ(s) - [|[VAQ(s)]|2, where VAQ(s) is the gradient vector of AQ(s).
Note that this product takes high value, only if the value of AQ(s) is high and
its gradient is high. Intuitively, the importance function offers a quantitative
measure of potential action change and, therefore, can be used to characterize

important parts of the state space.

But, where can one find this gradient vector, when even AQ(s) itself is not
analytically known? Our approach towards estimating this gradient vector is
a simple solution that takes advantage of the already available information to
minimize overhead. At the end of each iteration, the estimated values of AQ(s)
that were used to form the training set Ty, for the next classifier(s) are still
available. We use these values to form another training set T} of (s, AQ(s))
pairs in order to generalize and approximate the function AQ)(s) over the entire
state space by regression. Since differences in Q(s, a) are not important for AQ
estimation, we do not use filtering here. We train an SVM/RVM regressor on
these data, not only because we seek to exploit the same technology and benefit
from the advantages it offers, but also, more importantly, because the learned
function can be analytically differentiated to yield the desired gradient vector.
Specifically, the SVM/RVM regressor approximation of the action advantage
function AQ(s) is

q(s) = Z @ AQ(8i)k(8i,8) + b

where {sl}lel are the active vectors of the regressor, AQ(s;) are their target
values from the corresponding training pairs, and ¢;, b are the parameters of

the SVM/RVM regressor.
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For the Gaussian (radial basis functions) kernel?,
Kuor(8',8) = exp (— B||s' = s|?), B>0, (6.5)

the gradient of ¢(s) can be analytically derived as

G
9q(s) =28 Z & AQ(8:)ky(8:,8)(8; — 8)

Thus, we estimate the desired gradient vector, practically at no additional
cost, other than a single SVM /RVM regression, since training data are already
available. Let Sp € § be the set of rollout states for the current iteration. The
approximation of AQ(s) - [[VAQ(s)||2 is given by ¢(s) - ||gq(s)|l2. We define

our state importance function as follows:

importance(s) = log (q<s> Nlga(s)ll2 — min (a(s)- lga(s")]2) + 1)

The logarithm function log(x) is positive for values of = greater than one.
AQ is greater than or equal to zero by definition, but it’s estimation ¢(s)
may slip to the negative side of reals, due to approximation errors. Therefore,
to assure that the importance function is non-negative, the transformation

(a(s)-]lgq(s) ]\2—mgn(q(s’)-|]gq(s’) [|2)+1) is used to shift all approximate values
s'eSp

q(s) - ||lgq(s)|l2 above one. The use of the logarithm allows the importance(s)
function to retain significance within comparable values for several orders of

magnitude of ¢(s) - ||gq(s)]|2 (Figure 6.5).

The next obstacle we have to overcome is the identification of areas of the
state space where importance(s) values are large and direct our sampling of
rollout states to those areas. Despite the availability of the estimation of the
gradient in closed form, an analytical solution for the maxima poses a hard
nonlinear problem. Additionally, we have to take into account that the set of

rollout states becomes more and more focused over iterations and, therefore,

3 Note that other kernels can be used as long as they can be differentiated.
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FIGURE 6.5: log(x + 1) vs x graph

FIGURE 6.6: Directed sampling of rollout states: (a) rollout states of previous policy
and class boundary, (b) generation of candidate rollout states for next policy (particles)
around the previous states, (c) weighting of generated particles according to the importance
function (size of particle proportional to weight), and (d) resampling of particles (more
selection chances with higher weight)

the SVM/RVM regressor ends up being trained on points representing only
a small part of the state space. As a result, the regressor function cannot
be trusted in areas away from the rollout states of the previous iteration.
To address these problems, we apply a resampling procedure inspired by the

resampling operations in a particle filter (Doucet et al., 2001).

Initially, we sample a large number of candidate states (particles), by repeating
the following: pick uniformly in random one point from the current unfiltered
training set 7" and add to it zero-mean normal noise to obtain a new sample
state from its neighborhood. This step ensures that all candidate rollout states
lie in areas where the regressor can be trusted. Next, to weigh each particle,
we are using the importance(s) function defined above. Finally, we apply a

resampling procedure to keep only the desired number of rollout states for the
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Algorithm 14 IMPORTANCESAMPLING: Sampling Rollout States

Input: number of samples M, number of particles Z, regressor training
set 7", covariance matrix %, AQ) estimation function ¢(s), VAQ estimation
function g4(s)

for j=1to 2
sample (S,AQ(S)) ~ T" uniformly (sample state)
s; =s+N(0,%) (add noise)
w; = q(s;)l1gq(s;)ll2 (weigh state)
end
w = log(w — min(w) + 1) (importance function)
w = w/|wls (normalize weights)

{particle resampling}
S =&, r~uniform(0, M 1), c=wy, j =1
form=1to M
u=r+(m-—1)x M~!
while u > ¢
J=J+1
C=cC+ wj
end while
S =5u{s;}
end
return S

next iteration. This particle-filtering-like resampling ensures that only those
candidate states with significant weight are promoted. The entire procedure
is illustrated by a simple example in Figure 6.6 and is shown in Algorithm 14.
Note that its time complexity is only O(Z), where Z is the number of particles.
If Z is taken to be a multiple of M, the number of rollout states in each
iteration, the cost of obtaining the next set of rollout states is only linear in

1ts size.

Now, we can summarize the entire algorithm, which is graphically shown in
Figure 6.7. Given a policy 7y, at iteration k represented as an SVM/RVM clas-
sifier, the corresponding SVM/RVM regressor is used to select a new focused
subset of states Si,1 at which the improved policy w1 will be probed. Each
probe will yield pairs of data in the training set Ty, for the next classifier,
if domination is detected, and a pair of data in the training set 7}, of the
corresponding regressor. Once the training sets are formed, a new classifier
and a new regressor are trained to represent w1 and the process repeats from

the beginning.
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FIGURE 6.7: Directed Policy Search using Importance Sampling

There is no guarantee for monotonic policy improvement in this iterative
scheme. However, the chances can be increased by attempting to repeat some
iteration, if no improvement was achieved; since each iteration is randomized,
it is likely that another attempt may produce better results. Therefore, if
policy 741 is not better than 7 (tested through simulation), iteration k is
repeated for a maximum of L attempts until an improved policy is found. If all
attempts are exhausted without improvement, the algorithm terminates. Note
that the AQ estimation regressor is trained only when the policy improves,
that is, only once per iteration; it should not change, if an improvement at-
tempt fails. Note also that the first iteration begins with a purely random,
but deterministic, policy and therefore S; cannot be formed in the way de-
scribed above, since there is no classifier and regressor for my. 57 is simply a
uniformly random selection of states from the entire state space to guarantee
full coverage at the beginning. Without domain knowledge, uniform sampling
is the only option to ensure that no part of the state space will remain initially
unexplored. In particular cases, domain knowledge could be used to perform a
focused non-uniform sampling over the state space. The entire Directed RCPI
(DRCPI) algorithm for policy search utilizing Importance Sampling (IS) for
guiding the search, called DRCPI-IS, is shown in Algorithm 15.
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Algorithm 15 DRCPI-IS: Directed RCPI using Importance Sampling

Input: policy my, attempts L, trials K, horizon H, size U, points M, par-
ticles Z, covariance matrix X

k=-1 (policy iteration)
repeat
k=k+1
=0 (repeated attempts)
repeat
l=1+1
if (k =0) then
Sk+1 = a uniformly random subset of S of size U (uniform
sampling)
else
Sk+1 = IMPORTANCESAMPLING(M, Z, T}, 1, ¥, 9q;., 1) (directed
sampling)
end
Thy1 =2, T, =@ (initialization of training sets)

for (each s € Si41)
for (each a € A)
estimate Qr, (s, a) using K rollouts of length H (simulation)

end
¢ = FilteringLimit(AQ(s) Vs € Si11)
if (AQ(s) > ¢€) then

Tis1=Tr+1 v {(s,a*)"} (for dominating actions a*)
Ti1=Tkr1 v {(s,a)"} (for dominated actions a)

end
Ti =T v {(s,4Q(s))} (regressor example)

end

Tk+1 = TRAINCLASSIFIERS(T)41) (classifier learning)
until ( (741 is better than ) or (I = L) ) (end of repeated attempts)
¢r+1 = TRAINREGRESSOR(T} ;) (regressor learning)
9qj,.1 = DIFFERENTIATE(qg 1) (differentiation)
until (74,1 is not better than ) (end of policy iteration)

return
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7

Experimental Results

Our experiments with the proposed methodologies were performed in two ar-
eas. The first area is the computational approximation and visualization of
optimal policies for the two-dimensional domains, namely the Inverted Pendu-
lum and the Mountain Car. The third domain, the acrobot (four-dimensional),
and the fourth domain, the 4-Link Planar Robot (eight-dimensional), cannot
be easily visualized. Our experiments yield evidence that indeed optimal poli-
cies exhibit significant structure. The second area is the experimental analysis
of our directed exploration algorithms. All four domains were utilized in this
case; our proposed algorithms were tested against the original RCPI algorithm
that receives no guidance during the process of exploring the probes for the im-
proved policy. Our results indicate that indeed our proposed algorithms allow
for efficient exploration of policy space using guidance derived from the policy

representation itself and thus learning of the same task in less time.
7.1 Optimal Policy Structure

Our first goal is to uncover the structure of optimal policies for each domain.
Even though the model of the underlying MDP is known, applying an exact
algorithm for solving the MDP and obtaining a truly optimal policy is infea-
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sible due to the continuous nature of the state space. Instead, we used a fine
discretization of the two-dimensional state space into a uniform grid, a large
number of (s, a,r, s") samples at each discrete tile (s, a), and the Least-Squares
Policy Iteration (LSPI) algorithm (Lagoudakis and Parr, 2003b) with indicator
basis functions over the state grid and all actions, to converge to a near-optimal
policy. Notice that the only source of suboptimality in this procedure is the
resolution of the discretization itself, as well as the number of samples collected
at each point; there is no error due to the approximation of the value function
or the policy. The error due to discretization cannot be avoided. However,
the error due to sampling could be practically eliminated by a large number of
samples. Alternatively, one could analytically determine the transition model
over the state grid, that is, the possible next states and the related transition
probabilities at each tile of the grid. Despite the theoretical feasibility of such
a difficult task, we chose to use a sampling approach instead, to accommodate
any change in the system (different levels of control noise, simulation step,
discretization resolution, parameter values, etc.) without changes. Finally, in
deriving an optimal policy from the resulting optimal value function, the action
values were compared within an e-margin to eliminate small numerical errors.
The settings we used were: a grid of 250 x 250 tiles with 25 uniform samples
per tile for each action in the deterministic versions, a grid of 250 x 250 tiles
with 500 uniform samples per tile for each action in the stochastic versions,

and € = 107°.

7.1.1 Inverted Pendulum

The structure of an optimal policy for the stochastic Inverted Pendulum prob-
lem over the two-dimensional state space is shown in Figure 7.1. The horizontal
axis is the angle 6 of the pendulum ranging from —7/2 to 7/2 and the vertical
axis is the angular velocity 9 ranging from —6 to 6. The point of full balance

is the point (0,0) in the middle of the state space.
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Inverted pendulum optimal policy
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FIGURE 7.1: Optimal policy for the stochastic Inverted Pendulum. Top: dominating
action loci including tied cases. Bottom: individual (non-pure) domination locus for each
action.

One can clearly identify large areas where a single action consists the best
choice. In general, as soon as the angle 6 becomes positive enough, the best
action choice is to apply a right force. This is also true when the angular
velocity 0 takes on positive values, even though the angle 6 itself might be
negative; a right force will proactively prevent the pendulum from falling on
the right side. Of course, beyond some values of 6 and 0 any action is hopeless;
the pendulum is doomed to falling. Since the problem is symmetric, similar
action choices appear on the left side of the state space. Notice that there is a
small area around the balancing point where the best action to perform is to
apply no force at all and a small zone around this area where the left or no force
actions are equally good, and the right or no force actions are equally good. As

expected, there are no areas where the left and right force actions are equally
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good simultaneously. Apparently, the optimal policy bears sufficient structure
to facilitate the classification problem. Especially, the critical area around the
balancing point poses no difficulties in classifying the states correctly to the
corresponding actions. The thin stripes on the left and right sides are not
intuitive and may be challenging from a classification viewpoint. However, a
good enough policy will most likely prevent the pendulum from ever reaching
those areas. Therefore, the performance loss from misclassification in those

areas will be minimal.

Inverted pendulum optimal policy
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FIGURE 7.2: Optimal policy for the deterministic Inverted Pendulum. Top: dominating
action loci including tied cases. Bottom: individual (non-pure) domination locus for each
action.

The optimal policy for the deterministic Inverted Pendulum problem over the
two-dimensional state space is shown in Figure 7.2. Surprisingly, this policy
exhibits richer structure. The critical area around the balancing point is wider

and somewhat more relaxed, but there are more and thinner stripes and many
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more ties between the left /none actions and the right/none actions. As ex-
pected there are no ties between the left/right actions. One would expect a
simpler policy for a simpler problem, but apparently, the optimal policy for
the deterministic version of the problem poses a somewhat more challenging
classification problem. We conjecture that the richer and more complex struc-
ture is, in fact, an artifact of the deterministic nature of the problem, the
discretization resolution, the time step of the simulation, and the boundary

conditions.

7.1.2 Mountain Car

The optimal policy for the stochastic Mountain Car problem over the two-
dimensional state space is shown in Figure 7.3. The horizontal axis is the
position z of the car ranging from —1.2 to 0.5 and the vertical axis is the
velocity & ranging from —0.07 to 0.07. The point (—0.5,0) corresponds to
the bottom of the valley when the car is not moving. Again, one can clearly
identify large areas where a single action consists the best choice. In general,
the critical decision seems to be the choice of an action that gives more thrust
in the direction the car is currently moving towards; forward /right throttle for
positive velocity and reverse/left throttle for negative velocity. Apparently,
such a policy can help the car build the necessary energy for exiting the valley.
Note that the no throttle action barely constitutes the best action choice in
any state, which is somewhat expected. Again, as expected, there are no areas
where the left and right force actions are equally good. At bottom-left and
top-right extremes, all actions are indifferent, corresponding to the cases where
the car is going to exit the valley or hit the left barrier anyway, independently
of the action choice. Again, the optimal policy bears sufficient structure to
facilitate the classification problem. The critical area around the bottom of
the valley point poses no particular difficulties in classifying the states correctly

to the corresponding actions.
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FIGURE 7.3: Optimal policy for the stochastic Mountain Car. Top: dominating action
loci including tied cases. Bottom: individual (non-pure) domination locus for each action.

The optimal policy for the deterministic Mountain Car problem over the two-
dimensional state space is shown in Figure 7.4. This policy does not differ
significantly from the optimal one for the stochastic version, unlike the pen-
dulum policies; this is explained by the lesser impact of the action choices on

state changes in the Mountain Car domain.
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FIGURE 7.4: Optimal policy for the deterministic Mountain Car. Top: dominating action
loci including tied cases. Bottom: individual (non-pure) domination locus for each action.

7.2 Directed RCPI experiments

In this section we are going to test our hypothesis, namely that the policy Implementa-
representation offered by a classifier can be used to guide the exploration of tion

policy space. Our only assumption is that a domain simulator is available. We

applied our proposed approaches to the four benchmark domains described

above to test their effectiveness: two domains with two dimensions, the In-

verted Pendulum, and Mountain Car, one domain with four dimensions, the

Acrobot, and one domain with eight dimensions, the 4-Link Planar Robot.

Table 7.1 lists all algorithm tested and compared in the experiments. This

list includes the original RCPI algorithm with uniform sampling, implemented

both with SVMs and RVMs, as well as our four implementations of the pro-
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Resampling

posed Directed RCPI (DRCPI) approaches based on the use of Active Input
Vectors (AIV) or Importance Sampling (IS) and SVMs or RVMs.

All algorithms tested were implemented using Matlab; SVM classifiers and re-
gressors are implemented using the 1ibSVM (Chang and Lin, 2001) package,
and RVM classifiers and regressors using the SparseBayesV2 (Tipping, 2009)
package. All policies were represented using either SVM or RVM binary clas-
sifiers. In the approach based on Active Input Vectors, we use Powell’s hybrid
method, which was taken from the GNU Scientific Library (Galassi et al.,
2003), for solving the nonlinear system. In the approach based on Importance
Sampling, we also use SVM or RVM regressors. All kernels used were imple-
mented using Radial Basis Functions (RBF) kernels. The initial policy 7y in
all experiments was a purely random deterministic policy. Each dimension of
the state spaces was scaled to [—1,+1]. The AQ filtering limit € is automat-
ically calculated using the method described earlier. The parameters of our
algorithms were tested selectively within their range to find operational values;

the selected values are domain dependent.

Table 7.1: Algorithms tested

Nomenclature State Sampling Basic Classifier
Method Algorithm Technology
RCPI-SVM uniform RCPI SVM
RCPI-RVM uniform RCPI RVM
DRCPI-AIV-SVM  Active Input vectors DRCPI SVM
DRCPI-IS-SVM Importance Sampling  DRCPI SVM
DRCPI-AIV-RVM  Active Input vectors DRCPI RVM
DRCPI-IS-RVM Importance Sampling ~ DRCPI RVM

We provide visualized examples of resampling methods used for the two-
dimensional domains Inverted Pendulum and Mountain Car. All our exper-
iments use uniform sampling for the first iteration. Resampling for the rest
of iterations are either based on Active Input Vectors (AIV), or Importance

Sampling (IS) for DRCPI. RCPI uses uniform sampling for all iterations.
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Policies are approximated using SVM or RVM classifiers, and action advantage
functions were approximated using SVM or RVM regressors. We did not try to
optimize the parameters of the classifiers/regressors, since our ultimate goal is
to employ simple off-the-shelf classification /regression solutions for the benefit
of reinforcement learning. For Support Vector Machines in the libSVM library,
there are two important parameters to select. The first is the regularization
coefficient C' in the primal optimization problem, which controls the trade
off between minimizing training errors and controlling model complexity; the
second is the [ parameter of the radial basis functions kernel. For Relevance
Vector Machines in the SparseBayesV2 library, there is only one parameter,

namely the § parameter of the radial basis functions kernel.

We provide separate statistics in each domain. We completed 200 runs for
each algorithm in Table 7.1 and each domain. Each run used the exact same
settings, but with different random seeds at initialization. For fairness, we
added the multiple improvement attempts in the two RCPI variations (Algo-
rithm 16), so that the only difference between the algorithms under compari-
son is the choice of the rollout states in terms of multitude and location. We
run the two RCPI variants under two extreme conditions; on one hand, we
used a full count of uniformly distributed rollout states throughout all iter-
ations (Uy = 200, for Inverted Pendulum, Mountain Car, and Acrobot; and
Uy = 100, for 4-Link Planar Robot). To demonstrate the value of directed
sampling, on the other hand, we run the two RCPI variants using a low count
of uniformly distributed rollout states throughout all iterations (Uy; = 40,
for Inverted Pendulum, Mountain Car, and Acrobot; and Uy, = 20, for 4-
Link Planar Robot). We run the four DRCPI variants using the full count of
uniformly distributed states in the first iteration (due to lack of any domain
knowledge) and the low count of selected rollout states (through directed sam-
pling) in all subsequent iterations. As expected, in the latter RCPI case (the
one with the low count) performance deteriorates (less in the Mountain Car,

more in the Inverted Pendulum the Acrobot, and 4-link Planar Robot), im-
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Algorithm 16 Rollout Classification Policy Iteration (RCPI) with attempts

Input: policy 7y, attempts L, trials K, horizon H, size U,

k=-—1
repeat
k=Fk+1
=0
repeat
l=1+1
Sk+1 = a uniformly random subset of S of size U, (uniform sampling)
Thii1 =9 (initialization of the training set)
for (each s € Siy1)
for (each a € A)

estimate Qr, (s, a) using K rollouts of length H (simulation)
end
if (a dominating action a* exists in state s) then
Tii1 = Tpe1 U {(s,a*)"} (for dominating action a*)
Tii1 = Ter1 v {(s,a)"} (for dominated actions a)
end
end
Tk+1 = TRAINCLASSIFIERS(7)41) (classifier/policy learning)
until ( (w44 is better than m;) or (I = L) ) (end of repeated attempts)
until (7, is not better than my) (end of policy iteration)
return m;

plying that the proposed focused (directed) selection of rollout states plays a
significant role in performance, when the rollout/simulation budget is low. All

other settings were kept identical for all runs.

For each experiment, we provide averages for the total number of rollouts per-
formed, the total number of simulated steps required, the total discounted
reward accumulated by the learned policy, the number of improvement at-
tempts before termination of policy iteration, the time to complete the entire
experiment, and the number of successful runs. We also provide histograms
showing the distribution of the total discounted reward, the number of success-
ful runs, the number of steps to complete successful runs in the Mountain Car
the Acrobot and the 4-Link Planar Robot domain, and the number of steps in
failed runs for the Inverted Pendulum domain. A successful run corresponds
to 3000 steps of balancing in the Inverted Pendulum domain, exiting from the
valley in the first 3000 steps in the Mountain Car, reaching the goal in the first
3000 steps in the Acrobot domain, and reaching the goal in the first 500 steps

in the 4-Link Planar Robot domain.
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Table 7.2: DRCPI parameters for Pendulum domain

g
g ae)
2 A =z = g
=) CEE S Description =
S, > D =
= @ =)
U v v initial sample size for uniform sampling 200
M v v subsequent sample size constructed using 40
previous policy hints
L v Vv number of attempts to improve previous 4
policy for a given iteration
K v’ v/ v trials - the number of rollouts used to esti- 50
mate (s, a) values for a given state s
H v v horizon - number of steps per rollout 100
Z v number of particles 10 - M (i.e. 400)
z v covariance matrix X used in resampling us- diag(0.2)
ing particles
Uy v uniform sample size for RCPI, for all steps U (i.e. 200)
Uvr V' uniform low sample size for RCPI for all M (i.e. 40)
steps
Policy Assessment
(values are used to estimate the efficiency of the policy)
Kiese v v v trajectories - number of rollouts 100
His v v v horizon - number of steps per rollout 3000
Table 7.3: Library parameters for Pendulum domain
LibSVM SparseBayesV2
Procedure Algorithms used s C 6]
Classification DRCPI-AIV, DRCPIL-IS, RCPI Y/, 100 5
Regression DRCPI-IS Yy 50 5

7.2.1 Inverted Pendulum

The values used in the experiments with the Inverted Pendulum are reported
in Table 7.2 and the library parameters in Table 7.3. The initial policy my was

a random deterministic policy.

7.2.1.1  Sampling

Resampling for Active Input Vectors (AIV) using SVMs is shown in Figure 7.5.
Active input vectors in the left sub-figure are the support vectors of the SVM
binary classifiers that are used to represent the current policy. The support

113



- -6
—ni2 -4 0 w4 w2 -2 B 0 w4 w2

Active Input Vectors New rollout positions

FIGURE 7.5: Inverted Pendulum domain using AIV and SVMs (DRCPI-AIV-SVM):
Active Input Vectors (left) and resampled rollout states (right) over the state space.

vectors in SVMs are chosen by the optimization process to represent the border
between the classes. Our goal is to refine the border to obtain an improved
policy. Resampling is done as described in Section 6.4.2. In the right sub-figure
the new set of states for sampling (rollout positions) is shown. Note that the

new rollout states are placed around the border on both sides.

Importance sampling (IS) using SVMs is shown in Figure 7.6. The top three
sub-figures are: the action advantage function AQ(state), the norm of it’s
gradient ||VAQ(state)||2, and the state importance 6.4.3 function. The three
bottom sub-figures are: the previous iteration sampling points, the new parti-
cles that are normally distributed around the old sampling points, and in the
last sub-figure the new sampling points (rollout positions) for the new and pos-

sibly improved policy. Resampling is done as described in Section 6.4.3.

Figure 7.7 shows Active Input Vectors (AIV) resampling using RVMs. Active
input vectors in the left sub-figure are the relevance vectors of the RVM binary
classifiers that are used to represent the current policy. Relevance vectors in
RVMs are chosen by the optimization process to represent the border between
the classes. Our goal is to refine the border to obtain an improved policy.
Resampling is done as described in Section 6.4.2. In the right sub-figure the
new set of states for sampling (rollout positions) is shown. It is worth noting

that the number of relevance vectors of the RVM classifiers is much less than
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Previous sampling points Particles New sampling points
FIGURE 7.6: Inverted Pendulum domain using IS and SVMs (DRCPI-IS-SVM). Deriva-
tion of the state importance function (top) and importance sampling of rollout states (bot-
tom) over the state space.
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FIGURE 7.7: Inverted Pendulum domain using AIV and RVMs (DRCPI-AIV-RVM):
Active Input Vectors (left) and resampled rollout states (right) over the state space.

the support vectors of the SVM classifiers for similar policies in the same

domain.

Importance sampling (IS) using RVMs is shown in Figure 7.8. The top three
sub-figures are: the action advantage function AQ(state), the norm of its gra-
dient ||[VAQ(state)|s, and the state importance function (6.4.3). The three
bottom sub-figures are: the previous iteration sampling points, the new parti-
cles that are normally distributed around the old sampling points, and in the

last sub-figure the new sampling points (rollout positions) for the new and pos-
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FIGURE 7.8: Inverted Pendulum domain using IS and RVMs (DRCPI-IS-RVM). Deriva-
tion of the state importance function (top) and importance sampling of rollout states (bot-
tom) over the state space.

sibly improved policy. Resampling is done as described in Section 6.4.3.

7.2.1.2  Policy

The Inverted Pendulum is a two-dimensional domain; the horizontal axis is
the angle and the vertical axis is the angular velocity. We show here selected
examples of policy improvement through policy iteration. The selected policies
fully improve in three iterations, chosen for illustration. Unsuccessful attempts
are not shown here. In all policy iteration examples discussed below, after the
initial uniform distribution, the rollout states are positioned mostly around,
but not on, the action boundaries. The goal in this domain is to balance the

pendulum for 3000 steps.

Figure 7.9 shows a typical run of DRCPI-AIV-SVM on the Inverted Pendulum
domain. The first iteration delivered a policy that yields a discounted return of
19.58 with no successful trials of balancing the pendulum, falling after 387 steps
on average; this was subsequently improved with the second policy which yields
a discounted return of 19.98, 53% of successful trials and 47% of unsuccessful

trials, balancing for 1382 steps on average. The third policy in row yields a
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FIGURE 7.9: DRCPI-AIV-SVM on the Inverted Pendulum: three successive policies from
a typical run. Dominating actions are shown in color: blue for left force, yellow for no force,
and green for right force. Rollout states after filtering are shown as little circles colored with
the dominating action color (inputs and targets of the training set).

ph iy

73: binary classifier for left force  73: binary classifier for no force  m3: binary classifier for right force

FIGURE 7.10: DRCPI-AIV-SVM learned policy for the Inverted Pendulum: the binary
SVM classifiers for each action of the final balancing policy 73 in the experiment of Figure 7.9.
Each dominating class is shown in color: blue for left force, yellow for no force, green for right
force; other classes are shown in red color. The corresponding training set T3 is depicted
in black for positive examples and white for negative examples; the derived support vectors
are shown in bold.

discounted return of 20 (the highest possible) and 100% successful trials of
balancing the pendulum. The fourth iteration did not manage to improve
further the policy, as expected, and policy iteration terminated. Figure 7.10

shows the three binary SVM classifiers representing the final policy 3.

Figure 7.11 shows a typical run of DRCPI-IS-SVM on the Inverted Pendu-
lum domain. The first iteration delivered a policy that yields a discounted
return of 19.90 with 42% successful trials to balance the pendulum, and un-
successful trials 58% falling after 1187 steps on average; this was subsequently
improved with the second policy which yields a discounted return of 19.99, 35%
of successful trials and 65% of unsuccessful trials, balancing for 1248 steps on
average. The third policy in row yields a discounted return of 20 (the highest
possible) and 100% successful trials of balancing the pendulum. The fourth

iteration did not manage to improve further the policy, as expected, and pol-
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FIGURE 7.11: DRCPI-IS-SVM on the Inverted Pendulum: three successive policies from
a typical run. Dominating actions are shown in color: blue for left force, yellow for no force,
and green for right force. Rollout states after filtering are shown as little circles colored with
the dominating action color (inputs and targets of the training set).
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m3: binary classifier for left force  m3: binary classifier for no force  73: binary classifier for right force

FIGURE 7.12: DRCPI-IS-SVM learned policy for the Inverted Pendulum: the binary
SVM classifiers for each action of the final balancing policy 73 in the experiment of Fig-
ure 7.11. Each dominating class is shown in color: blue for left force, yellow for no force,
green for right force; other classes are shown in red color. The corresponding training set
T3 is depicted in black for positive examples and white for negative examples; the derived
support vectors are shown in bold.

icy iteration terminated. Figure 7.12 shows the three binary SVM classifiers

representing the final policy ;.

Figure 7.13 shows a typical run of DRCPI-AIV-RVM on the Inverted Pendulum
domain. The first iteration delivered a policy that yields a discounted return of
18.70 with no successful trials of balancing the pendulum, falling after 166 steps
on average; this was subsequently improved with the second policy which yields
a discounted return of 19.99, 41% of successful trials and 59% of unsuccessful
trials, balancing for 1211 steps on average. The third policy in row yields a
discounted return of 20 (the highest possible) and 100% successful trials of
balancing the pendulum. The fourth iteration did not manage to improve
further the policy, as expected, and policy iteration terminated. Figure 7.14

shows the three binary RVM classifiers representing the final policy 7.

Figure 7.15 shows a typical run of DRCPI-IS-RVM on the Inverted Pendu-
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FIGURE 7.13: DRCPI-AIV-RVM on the Inverted Pendulum: three successive policies
from a typical run. Dominating actions are shown in color: blue for left force, yellow for
no force, and green for right force. Rollout states after filtering are shown as little circles
colored with the dominating action color (inputs and targets of the training set).
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73: binary classifier for left force  73: binary classifier for no force  m3: binary classifier for right force

FIGURE 7.14: DRCPI-AIV-RVM learned policy for the Inverted Pendulum: the binary
RVM classifiers for each action of the final balancing policy ms in the experiment of Fig-
ure 7.13. Each dominating class is shown in color: blue for left force, yellow for no force,
green for right force; other classes are shown in red color. The corresponding training set
T3 is depicted in black for positive examples and white for negative examples; the derived
support vectors are shown in bold.

lum domain. The first iteration delivered a policy that yields a discounted
return of 19.99 with 73% successful trials to balance the pendulum, and un-
successful trials 27% falling after 1467 steps on average; this was subsequently
improved with the second policy which yields a discounted return of 20.00, 75%
of successful trials and 25% of unsuccessful trials, balancing for 1452 steps on
average. The third policy in row yields a discounted return of 20 (the highest
possible) and 100% successful trials of balancing the pendulum. The fourth
iteration did not manage to improve further the policy, as expected, and pol-
icy iteration terminated. Figure 7.16 shows the three binary RVM classifiers

representing the final policy 7.
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FIGURE 7.15: DRCPI-IS-RVM on the Inverted Pendulum: three successive policies from
a typical run. Dominating actions are shown in color: blue for left force, yellow for no force,
and green for right force. Rollout states after filtering are shown as little circles colored with
the dominating action color (inputs and targets of the training set).
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m3: binary classifier for left force  m3: binary classifier for no force  73: binary classifier for right force

FIGURE 7.16: DRCPI-IS-RVM learned policy for the Inverted Pendulum: the binary
RVM classifiers for each action of the final balancing policy ms in the experiment of Fig-
ure 7.11. Each dominating class is shown in color: blue for left force, yellow for no force,
green for right force; other classes are shown in red color. The corresponding training set
T3 is depicted in black for positive examples and white for negative examples; the derived
support vectors are shown in bold.

7.2.1.8 Statistics

In this section, we provide statistics for the Inverted Pendulum. Each row in
Table 7.4 represents averages of 200 independent runs with identical settings,
but with different random seeds, for each algorithm shown in Table 7.1. The
Simulation tab shows the total number of simulation steps needed for each run,
while the Rollouts tab shows the total number of rollouts executed in each run.
The Attempts tab shows the number of improvement attempts (the number
of iterations is less than or equal to that) before termination and the Time
tab shows the real time (seconds) taken by each run. Finally, the Return and
Success tabs show the total expected discounted reward and the success rate
respectively of the final learned policy (both measured by policy rollout from
the initial state). Each run is evaluated by taking the average performance of

100 independent policy rollouts using the learned policy starting the pendulum
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at position (0,0) for (4,6) and ending after 3000 steps of balancing or after the
pendulum has fallen. Trajectories balancing the pendulum for 3000 simulation

steps (5 minutes) are considered successful.

Consider first the two RCPI- algorithms with the full count of 200 uniformly
distributed rollout states in each iteration. While both algorithms exhibit good
learning performance (Return), the computational cost is high, as indicated
by the Simulation and Time tabs. Moving on to the DRCPI- variations, we
use a set of 200 (full count) uniformly distributed rollout states only in the
first iteration and a set of 40 (low count) rollout states from directed sampling
afterwards. Clearly, the DRCPI- variations yield significant savings in terms of
Rollouts, Simulation, Attempts, and Time compared to the RCPI- algorithms
with the full count, while delivering policies of comparable performance (Re-
turn). Finally, to appreciate the value of directed sampling, one can consider
the RCPI- variations using a low count of only 40 uniformly distributed roll-
out states throughout all iterations. It is clear that in this case performance
deteriorates in both Return and Success, implying that the proposed focused
(directed) selection of rollout states plays a significant role in performance,

when the rollout/simulation budget is low.

Comparing policy Return, which is the metric optimized by learning, SVM
versions have a slight advantage over the corresponding RVM versions in all
cases, albeit at the cost of increased Simulation and Time. Within the DRCPI
variants, IS resampling also exhibits slight advantage over AIV resampling for
both SVM and RVM. Finally, the Return delivered by the DRCPI variants
is close to those delivered by RCPI with the full count of rollout states and
significantly better compared to those delivered by RCPI with the low count.
Nevertheless, all DRPCI variants exhibit lower simulation requirements and
execution times compared to RCPI with full count and compare favorably to

RCPI with low count.
Figures 7.17 through 7.24 include for each algorithm three histograms display-
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ing the distribution of the corresponding 200 runs in terms of: (a) the policy

return values, (b) the percentage of successful trails, and (¢) the number of

average steps per run before pendulum failure for nonbalancing trials.

Table 7.4: Inverted Pendulum (200/40 rollout states, 4 attempts): collective results of 200
runs and comparison of algorithms in terms of computational and learning performance.

Algorithm States Simulation Rollouts Attempts Time Return Success
RCPI-SVM 200 4385104 1390 7.0 23.7 19.9968 87.26%
RCPI-RVM 200 4049872 1307 6.5 10.1 19.9894 94.12%
DRCPI-AIV-SVM  200/40 2508683 412 6.3 13.7 19.9807 83.34%
DRCPI-IS-SVM 200/40 936752 422 6.5 5.0 19.9880 81.48%
DRCPI-AIV-RVM  200/40 903757 384 5.7 3.2 19.9347 77.61%
DRCPI-IS-RVM 200/40 986029 404 6.1 3.5 19.9700 80.89%
RCPI-SVM 40 879649 304 7.6 29 19.8356 68.27%
RCPI-RVM 40 776526 314 7.8 2.6 19.5958 49.56%
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FIGURE 7.17: Inverted Pendulum using DRCPI-AIV-SVM.
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FIGURE 7.18: Inverted Pendulum using DRCPI-IS-SVM.
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FIGURE 7.19: Inverted Pendulum domain using DRCPI-AIV-RVM.
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FIGURE 7.21: Inverted Pendulum using RCPI-SVM with a full count of rollout states.

160

140 100

120

100

20
20 2
0
o 2 4 0 ® 0 12 14 e

w20 o 0 20 a0 40 s e 70 8 s o0 o 500 1000 1500 2000 2500 2000

Total discounted reward Success percentage Number of average steps before failing

FIGURE 7.22: Inverted Pendulum using RCPI-RVM with a full count of rollout states.
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FIGURE 7.23: Inverted Pendulum using RCPI-SVM with a low count of rollout states.
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FIGURE 7.24: Inverted Pendulum using RCPI-RVM with a low count of rollout states.

7.2.2 Mountain Car

The values used in the experiments with the Mountain Car are reported in

Table 7.5 and the library parameters in Table 7.6. The initial policy my was a
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Table 7.5: DRCPI parameters for Mountain Car domain

) =
» T 3 2
< Q o o) =
=) o 5 Q Description &
o ! — o =
=5 > T
= @ &
U v v initial sample size for uniform sampling 200
M v v subsequent sample size constructed using 40
previous policy hints
L v' v/ Vv number of attempts to improve previous 4
policy for a given iteration
K v’ v v trials - the number of rollouts used to esti- 50
mate (s, a) values for a given state s
H v v horizon - number of steps per rollout 100
Z v number of particles 10 - M (i.e. 400)
z v covariance matrix ¥ used in resampling us- diag(0.2)
ing particles
Uy v uniform sample size for RCPI, for all steps U (i.e. 200)
Uvr v'  uniform low sample size for RCPI for all M (i.e. 40)
steps
Policy Assessment
(values are used to estimate the efficiency of the policy)
Kt v v v trajectories - number of rollouts 100
Hi.o. v v v horizon - number of steps per rollout 3000
Table 7.6: Library parameters for mountain Car domain
LibSVM SparseBayesV2
Procedure Algorithms used 6 C 16
Classification DRCPI-AIV, DRCPI-IS, RCPT Y5, 200 5
Regression DRCPI-IS Yy 200 5

random deterministic policy.

7.2.2.1 Sampling

Resampling for Active Input Vectors (AIV) using SVMs is shown in Fig-
ure 7.25. Active input vectors in the left sub-figure are the support vectors of
the SVM binary classifiers that are used to represent the current policy. The
support vectors in SVMs are chosen by the optimization process to represent
the border between the classes. Our goal is to refine the border to obtain an

improved policy. Resampling is done as described in Section 6.4.2. In the right
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FIGURE 7.25: Mountain Car domain using AIV and SVMs (DRCPI-AIV-SVM): Active
Input Vectors (left) and resampled rollout states (right) over the state space.

sub-figure the new set of states for sampling (rollout positions) is shown. Note

that the new rollout states are placed around the border on both sides.

Importance sampling (IS) using SVMs is shown in Figure 7.26. The top three
sub-figures are: the action advantage function AQ(state), the norm of it’s
gradient ||VAQ(state)||2, and the state importance 6.4.3 function. The three
bottom sub-figures are: the previous iteration sampling points, the new parti-
cles that are normally distributed around the old sampling points, and in the
last sub-figure the new sampling points (rollout positions) for the new and pos-

sibly improved policy. Resampling is done as described in Section 6.4.3.

Figure 7.27 shows Active Input Vectors (AIV) resampling using RVMs. Active
input vectors in the left sub-figure are the relevance vectors of the RVM binary
classifiers that are used to represent the current policy. Relevance vectors in
RVMs are chosen by the optimization process to represent the border between
the classes. Our goal is to refine the border to obtain an improved policy.
Resampling is done as described in Section 6.4.2. In the right sub-figure the
new set of states for sampling (rollout positions) is shown. It is worth noting
that the number of relevance vectors of the RVM classifiers is much less than
the support vectors of the SVM classifiers for similar policies in the same

domain

Importance sampling (IS) using RVMs is shown in Figure 7.28. The top three
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FIGURE 7.26: Mountain Car domain using IS and SVMs (DRCPI-IS-SVM). Derivation
of the state importance function (top) and importance sampling of rollout states (bottom)
over the state space.
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FIGURE 7.27: Mountain Car domain using AIV and RVMs (DRCPI-AIV-RVM): Active
Input Vectors (left) and resampled rollout states (right) over the state space.

sub-figures are: the action advantage function AQ(state), the norm of its gra-
dient ||[VAQ(state)|s, and the state importance function (6.4.3). The three
bottom sub-figures are: the previous iteration sampling points, the new parti-
cles that are normally distributed around the old sampling points, and in the
last sub-figure the new sampling points (rollout positions) for the new and pos-

sibly improved policy. Resampling is done as described in Section 6.4.3.
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FIGURE 7.28: Mountain Car domain using IS and RVMs (DRCPI-IS-RVM). Derivation
of the state importance function (top) and importance sampling of rollout states (bottom)
over the state space.

7.2.2.2  Policy

The Mountain Car is a two-dimensional domain; the horizontal axis is the
position, and the vertical axis is the velocity. We show here selected examples
of policy improvement through policy iteration. The selected policies fully
improve in three iterations, chosen for illustration. Unsuccessful attempts are
not shown here. In all policy iteration examples discussed below, after the
initial uniform distribution, the rollout states are positioned mostly around,
but not on, the action boundaries. The goal in this domain is to get the car

out the value within the first 3000 steps.

Figure 7.29 shows a typical run of DRCPI-AIV-SVM on the Mountain Car
domain. The first iteration delivered a policy that yields a discounted return
of 0.0000 with 38% successful trials to exit the valley after 2018 steps on
average; this was subsequently improved with the second policy which yields
a discounted return of 0.2355, successful trials 99% to exit the valley after
245 steps on average. The third policy in row yields a discounted return of
0.3330, successful 100% to exit the valley after 109 steps on average. The

fourth iteration did not manage to improve further the policy, as expected,
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FIGURE 7.29: DRCPI-AIV-SVM on the Mountain Car: three successive policies from a
typical run. Dominating actions are shown in color: blue for left force, yellow for no force,
and green for right force. Rollout states after filtering are shown as little circles colored with
the dominating action color (inputs and targets of the training set).
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73: binary classifier for 73: binary classifier for 73: binary classifier for
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FIGURE 7.30: DRCPI-AIV-SVM learned policy for the Mountain Car: the binary SVM
classifiers for each action of the final balancing policy w3 in the experiment of Figure 7.29.
Each dominating class is shown in color: blue for left force, yellow for no force, green for right
force; other classes are shown in red color. The corresponding training set T3 is depicted
in black for positive examples and white for negative examples; the derived support vectors
are shown in bold.

and policy iteration terminated. Figure 7.30 shows the three binary SVM

classifiers representing the final policy 3.

Figure 7.31 shows a typical run of DRCPI-IS-SVM on the Mountain Car do-
main. The first iteration delivered a policy that yields a discounted return
of 0.0000 with 7% successful trials to exit the valley after 2271 steps on av-
erage; this was subsequently improved with the second policy which yields a
discounted return of 0.0795, successful trials 92% to exit the valley after 704
steps on average. The third policy in row yields a discounted return of 0.3024,
successful 100% to exit the valley after 119 steps on average. The fourth
iteration did not manage to improve further the policy, as expected, and pol-
icy iteration terminated. Figure 7.32 shows the three binary SVM classifiers

representing the final policy 7.

Figure 7.33 shows a typical run of DRCPI-AIV-RVM on the Mountain Car
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FIGURE 7.31: DRCPI-IS-SVM on the Mountain Car: three successive policies from a
typical run. Dominating actions are shown in color: blue for left force, yellow for no force,
and green for right force. Rollout states after filtering are shown as little circles colored with
the dominating action color (inputs and targets of the training set).
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FIGURE 7.32: DRCPI-IS-SVM learned policy for the Mountain Car: the binary SVM
classifiers for each action of the final balancing policy 73 in the experiment of Figure 7.31.
Each dominating class is shown in color: blue for left force, yellow for no force, green for right
force; other classes are shown in red color. The corresponding training set T3 is depicted
in black for positive examples and white for negative examples; the derived support vectors
are shown in bold.

06

domain. The first iteration delivered a policy that yields a discounted return
of 0.0010 with 90% successful trials to exit the valley after 1343 steps on
average; this was subsequently improved with the second policy which yields
a discounted return of 0.3111, successful trials 100% to exit the valley after
116 steps on average. The third policy in row yields a discounted return of
0.3493, successful 100% to exit the valley after 104 steps on average. The
fourth iteration did not manage to improve further the policy, as expected,
and policy iteration terminated. Figure 7.34 shows the three binary SVM

classifiers representing the final policy 7.

Figure 7.35 shows a typical run of DRCPI-IS-RVM on the Mountain Car do-
main. The first iteration delivered a policy that yields a discounted return
of 0.0379 with 100% successful trials to exit the valley after 483 steps on av-

erage; this was subsequently improved with the second policy which yields a
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FIGURE 7.33: DRCPI-AIV-RVM on the Mountain Car: three successive policies from a
typical run. Dominating actions are shown in color: blue for left force, yellow for no force,
and green for right force. Rollout states after filtering are shown as little circles colored with
the dominating action color (inputs and targets of the training set).
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FIGURE 7.34: DRCPI-AIV-RVM learned policy for the Mountain Car: the binary RVM
classifiers for each action of the final balancing policy w3 in the experiment of Figure 7.33.
Each dominating class is shown in color: blue for left force, yellow for no force, green for right
force; other classes are shown in red color. The corresponding training set T3 is depicted
in black for positive examples and white for negative examples; the derived support vectors
are shown in bold.
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FIGURE 7.35: DRCPI-IS-RVM on the Mountain Car: three successive policies from a
typical run. Dominating actions are shown in color: blue for left force, yellow for no force,
and green for right force. Rollout states after filtering are shown as little circles colored with
the dominating action color (inputs and targets of the training set).

discounted return of 0.2521, successful trials 100% to exit the valley after 137
steps on average. The third policy in row yields a discounted return of 0.3265,
successful 100% to exit the valley after 111 steps on average. The fourth
iteration did not manage to improve further the policy, as expected, and pol-
icy iteration terminated. Figure 7.36 shows the three binary SVM classifiers

representing the final policy 7.
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FIGURE 7.36: DRCPI-IS-RVM learned policy for the Mountain Car: the binary RVM
classifiers for each action of the final balancing policy 73 in the experiment of Figure 7.35.
Each dominating class is shown in color: blue for left force, yellow for no force, green for right
force; other classes are shown in red color. The corresponding training set T3 is depicted
in black for positive examples and white for negative examples; the derived support vectors
are shown in bold.

7.2.2.8 Statistics

In this section, we provide statistics for the Mountain Car. Each row in Ta-
ble 7.7 represents averages of 200 independent runs, but with different random
seeds, for each algorithm shown in Table 7.1. The Simulation tab shows the
total number of simulation steps needed for each run, while the Rollouts tab
shows the total number of rollouts executed in each run. The Attempts tab
shows the number of improvement attempts (the number of iterations is less
than or equal to that) before termination and the Time tab shows the real
time (seconds) taken by each run. Finally, the Return and Success tabs show
the total expected discounted reward and the success rate respectively of the
final learned policy (both measured by policy rollout from the initial state).
Each run is evaluated by taking the average performance of 100 independent
policy rollouts using the learned policy starting the car at position (—.5,0) for
(z,2) and ending when successfully exiting the valley in less than 3000 steps
or after 3000 steps of simulation with no exit. Trajectories in which the car

fails to exit within 3000 simulation steps are considered unsuccessful.

Consider first the two RCPI- algorithms with the full count of 200 uniformly
distributed rollout states in each iteration. While both algorithms exhibit good
learning performance (Return), the computational cost is high, as indicated

by the Simulation and Time tabs. Moving on to the DRCPI- variations, we
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use a set of 200 (full count) uniformly distributed rollout states only in the
first iteration and a set of 40 (low count) rollout states from directed sam-
pling afterwards. Clearly, the DRCPI- variations yield significant savings in
terms of Rollouts, Simulation, Attempts, and Time compared to the RCPI-
algorithms with the full count, while delivering policies of comparable perfor-
mance (Return) in most cases. Finally, to appreciate the value of directed
sampling, one can consider the RCPI- variations using a low count of only 40
uniformly distributed rollout states throughout all iterations. It is clear that in
this case performance deteriorates in both Return and Success (especially for
SVM), implying that the proposed focused (directed) selection of rollout states
plays a significant role in performance, when the rollout/simulation budget is

low.

Comparing policy Return, which is the metric optimized by learning, RVM
versions have a slight advantage over the corresponding SVM versions in all
cases. Within the DRCPI variants, AIV resampling also exhibits advantage
over IS resampling for both SVM and RVM. Finally, the Return delivered by
the DRCPI variants is close to those delivered by RCPI with the full count
of rollout states and significantly better compared to those delivered by RCPI
with the low count. Nevertheless, all DRPCI variants exhibit lower simula-
tion requirements and execution times compared to RCPI with full count and

compare favorably to RCPI with low count.

Figures 7.37 through 7.44 include for each algorithm three histograms display-
ing the distribution of the corresponding 200 runs in terms of: (a) the policy
return values, (b) the percentage of successful trails, and (c¢) the number of

average steps per run for successful exit only for exiting trials.
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Table 7.7: Mountain Car (200/40, four attempts), collective results of 200 runs and com-
parison of algorithms in terms of computational and learning performance

Algorithm States Simulation Rollouts Attempts Time Return Success

RCPI-SVM 200 17031407 1986 9.9 958 0.2711  99.52%
RCPI-RVM 200 14402231 1683 8.4 14.6 0.2953 100.00%
DRCPI-AIV-SVM  200/40 5908725 573 8.6 16.3 0.2440 98.74%
DRCPI-IS-SVM 200/40 5198928 490 6.5 10.1 0.1786  89.07%
DRCPI-AIV-RVM  200/40 4572201 461 76 3.2 02663 98.93%
DRCPI-IS-RVM 200/40 4137240 480 7.3 3.0 0.2497  99.37%
RCPI-SVM 40 3302827 343 8.6 53 02183 84.30%
RCPI-RVM 40 3098182 338 85 3.3 02732 98.52%
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FIGURE 7.38: Mountain Car using DRCPI-IS-SVM.
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FIGURE 7.39: Mountain Car domain using DRCPI-AIV-RVM.

180 180
1201
160] 160
1001 140| 140
120] 120
s
100 100
6o
80 8
wl 60 0
0 40
200
20 20
o 0
(] 005 o1 015 02 0 500

025 oa 0% o4 o 0w s 4 s s 7 s % o [T ) Z500 000
Total discounted reward Success percentage Number of average steps to complete

FIGURE 7.40: Mountain Car using DRCPI-IS-RVM.
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FIGURE 7.41: Mountain Car using RCPI-SVM with a full count of rollout states.
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FIGURE 7.42: Mountain Car using RCPI-RVM with a full count of rollout states.
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FIGURE 7.43: Mountain Car using RCPI-SVM with a low count of rollout states.
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FIGURE 7.44: Mountain Car using RCPI-RVM with a low count of rollout states.

7.2.3 Acrobot

The values used in the experiments with the Acrobot are reported in Table 7.8

and the library parameters in Table 7.9. The initial policy my was a random
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Table 7.8: DRCPI parameters for Acrobot domain

g o
£ 8% =z z
=) 2 & 3 Description S
S = L = S
2 wn
U v v initial sample size for uniform sampling 200
M v v subsequent sample size constructed using 40
previous policy hints
L v v number of attempts to improve previous 4
policy for a given iteration
K v’ v/ v trials - the number of rollouts used to esti- 50
mate ()(s,a) values for a given state s
H v v horizon - number of steps per rollout 100
Z v number of particles 10 - M (i.e. 400)
z v covariance matrix X used in resampling us- diag(0.2)
ing particles
Uy v uniform sample size for RCPI, for all steps U (i.e. 200)
Uvr V' uniform low sample size for RCPI for all M (i.e. 40)
steps
Policy Assessment
(values are used to estimate the efficiency of the policy)
Kiese v v v trajectories - number of rollouts 100
Hio. v v v horizon - number of steps per rollout 3000
Table 7.9: Library parameters for Acrobot domain
LibSVM SparseBayesV2
Procedure Algorithms used 6 C 16
Classification DRCPI-AIV, DRCPI-IS, RCPI Y5 100 Ys
Regression DRCPI-IS Ys 50 Ys

deterministic policy.

In this section, we provide statistics for the Acrobot. We display experimental

results for both the energy shaping reward and the classic reward. We added

a column with average steps to reach the goal, for performance comparison

between the two different reward schemes. Table 7.10 holds data for energy

based reward, each row represents averages of 200 independent runs with iden-

tical settings, but with different random seeds, for each algorithm shown in

Table 7.1. Table 7.11 shows results for classic reward, each row represents

averages of 200 independent runs with identical settings, but with different
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random seeds, for each algorithm. The Simulation tab shows the total number
of simulation steps needed for each run, while the Rollouts tab shows the total
number of rollouts executed in each run. The Attempts tab shows the num-
ber of improvement attempts (the number of iterations is less than or equal
to that) before termination and the Time tab shows the real time (seconds)
taken by each run. Finally, the Return and Success tabs show the total ex-
pected discounted reward and the success rate respectively of the final learned
policy (both measured by policy rollout from the initial state). Each run is
evaluated by taking the average performance of 100 independent policy roll-
outs using the learned policy starting the Acrobot at position (0,0,0,0) for
(04, 01, 0o, 92) and ending when successfully reaching the goal in less than 3000
steps or after 3000 steps of simulation with no success. Trajectories in which
the Acrobot fails to reach the goal within 3000 simulation steps are considered

unsuccessful.

Consider first the two RCPI- algorithms with the full count of 200 uniformly
distributed rollout states in each iteration. While both algorithms exhibit good
learning performance (Return), the computational cost is high, as indicated
by the Simulation and Time tabs. Moving on to the DRCPI- variations, we
use a set of 200 (full count) uniformly distributed rollout states only in the
first iteration and a set of 40 (low count) rollout states from directed sampling
afterwards. Clearly, the DRCPI- variations yield significant savings in terms
of Rollouts, Simulation, Attempts, and Time (only for RVM) compared to the
RCPI- algorithms with the full count, while delivering policies of comparable
performance (Return) in most cases. Finally, to appreciate the value of directed
sampling, one can consider the RCPI- variations using a low count of only 40
uniformly distributed rollout states throughout all iterations. It is clear that in
this case performance deteriorates in both Return and Success (especially for
SVM), implying that the proposed focused (directed) selection of rollout states
plays a significant role in performance, when the rollout/simulation budget is

low.
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Comparing policy Return, which is the metric optimized by learning, RVM
versions have a significant advantage over the corresponding SVM versions in
all cases. The Return delivered by the DRCPI variants is not too far from those
delivered by RCPI with the full count of rollout states and better compared to
those delivered by RCPI with the low count. Nevertheless, all DRPCI variants
exhibit lower simulation requirements and execution times compared to RCPI
with full count and compare favorably to RCPI with low count. Finally, there
is a clear difference in the number of steps to reach the goal with the energy

based reward being superior to the classic one.

For the energy shaping reward we provide figures 7.45 through 7.52 include.
For each algorithm we give three histograms displaying the distribution of
the corresponding 200 runs in terms of: (a) the policy return values, (b) the
percentage of successful trails, and (c) the number of average steps per run for

successfully reaching the goal only for successful trials.

Table 7.10: Acrobot with energy based reward, (200/40, attempts 4), collective results of
200 runs and comparison of algorithms in terms of computational and learning performance

Algorithm States Simulation Rollouts Attempts Time Return Success

Steps

RCPI-SVM 200 3154392 1553 7.8 49.8 42.080 98.19% 179
RCPI-RVM 200 3357657 1656 83 87 88.109 99.00% 119
DRCPI-AIV-SVM  200/40 1119830 460 7.5 16.0 25.221 97.34% 257
DRCPI-IS-SVM 200/40 987650 448 7.2 10.2 23,579 97.21% 261
DRCPI-AIV-RVM  200/40 921737 427 6.7 4.2 56.138 97.57% 194
DRCPI-IS-RVM 200/40 925931 416 6.4 4.6 42235 97.00% 246
RCPI-SVM 40 649828 320 8.0 6.8 19.640 98.00% 294
RCPI-RVM 40 683208 334 83 4.7 31.746 96.00% 275

Table 7.11: Acrobot with classic reward, (300/120, attempts 4), collective results of 200
runs and comparison of algorithms in terms of computational and learning performance

Algorithm States Simulation Rollouts Attempts Time Return Success

Steps

RCPI-SVM 300 5746237 2925 8.1 64.8 0.018965 98.43% 316
RCPI-RVM 300 5203445 2610 7.2 11.5 0.024965 96.67% 372
DRCPI-AIV-SVM  300/120 4244549 1373 8.2 429 0.013555 98.12% 355
DRCPI-IS-SVM 300/120 2611023 1239 7.2 204 0.012617 98.01% 387
DRCPI-AIV-RVM  300/120 2243563 1006 6.0 6.5 0.008405 93.37% 580
DRCPI-IS-RVM 300/120 2418309 1165 6.2 6.7 0.010783 95.96% 472
RCPI-SVM 120 1882391 932 7.8 13.0 0.008467 97.14% 430
RCPI-RVM 120 1482727 720 6.0 5.1 0.005368 91.66% 834
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FIGURE 7.46: Acrobot using DRCPI-IS-SVM.
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FIGURE 7.47: Acrobot domain using DRCPI-AIV-RVM.
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FIGURE 7.50: Acrobot using RCPI-RVM with a full count of rollout states.
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FIGURE 7.51: Acrobot using RCPI-SVM with a low count of rollout states.
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FIGURE 7.52: Acrobot using RCPI-RVM with a low count of rollout states.
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Table 7.12: DRCPI parameters for 4-link Planar Robot domain

Description

[oquIAg
AIV-IdDUd
SI-IdDYd
1dDY

52 S 1090y TeUR[d Yul[F

U v v initial sample size for uniform sampling
M v v subsequent sample size constructed using
previous policy hints
L v v Vv number of attempts to improve previous 4
policy for a given iteration
K v’ v/ v trials - the number of rollouts used to esti- 50
mate Q(s,a) values for a given state s
H v' v' v horizon - number of steps per rollout 100
Z v number of particles 20 - M (i.e. 400)
Y v covariance matrix X used in resampling us- diag(0.2)
ing particles
Uy v uniform sample size for RCPI, for all steps U (i.e. 100)
UvrL v/ uniform low sample size for RCPI for all M (i.e. 20)
steps
Policy Assessment
(values are used to estimate the efficiency of the policy)
Kyt v v v trajectories - number of rollouts 100
Hiow v v v horizon - number of steps per rollout 500
Table 7.13: Library parameters for 4-link Planar Robot domain
LibSVM SparseBayesV2
Procedure Algorithms used 6 C o]
Classification DRCPI-AIV, DRCPI-IS, RCPI Y4 64 Y,
Regression DRCPI-IS Ysg 2 Yy

7.2.4 4-Link Planar Robot

The values used in the experiments with the 4-Link Planar Robot are reported
in Table 7.12 and the library parameters in Table 7.13. The initial policy

was a random deterministic policy.

In this section, we provide statistics for the 4-Link Planar Robot. Each row in
Table 7.14 represents averages of 200 independent runs with identical settings,

but with different random seeds, for each algorithm shown in Table 7.1. The
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Simulation tab shows the total number of simulation steps needed for each run,
while the Rollouts tab shows the total number of rollouts executed in each run.
The Attempts tab shows the number of improvement attempts (the number
of iterations is less than or equal to that) before termination and the Time
tab shows the real time (seconds) taken by each run. Finally, the Return and
Success tabs show the total expected discounted reward and the success rate
respectively of the final learned policy (both measured by policy rollout from
the initial state). Fach run is evaluated by taking the average performance of
100 independent policy rollouts using the learned policy starting the 4-Link
Planar Robot at position (7,7, m, 7, 0,0,0,0) for (61, 65,03, 0y, 91, Oy, 05, 94) and
ending when successfully reaching the goal in less than 500 steps or after 500
steps of simulation with no success. Trajectories in which the 4-link Planar
Robot fails to reach the goal within 500 simulation steps are considered un-

successful.

Consider first the two RCPI- algorithms with the full count of 100 uniformly
distributed rollout states in each iteration. While both algorithms exhibit good
learning performance (Return), the computational cost is high, as indicated
by the Simulation and Time tabs. Moving on to the DRCPI- variations, we
use a set of 100 (full count) uniformly distributed rollout states only in the
first iteration and a set of 20 (low count) rollout states from directed sampling
afterwards. Clearly, the DRCPI- variations yield significant savings in terms of
Rollouts, Simulation, Attempts, and Time compared to the RCPI- algorithms
with the full count, while delivering policies of comparable performance (Re-
turn) in most cases. Finally, to appreciate the value of directed sampling, one
can consider the RCPI- variations using a low count of only 20 uniformly dis-
tributed rollout states throughout all iterations. It is clear that in this case
performance deteriorates in both Return and Success, implying that the pro-
posed focused (directed) selection of rollout states plays a significant role in

performance, when the rollout/simulation budget is low.

Comparing policy Return, which is the metric optimized by learning, RVM
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versions have a significant advantage over the corresponding SVM versions in
all cases. Finally, the Return delivered by the DRCPI variants is not too far
from those delivered by RCPI with the full count of rollout states and better
compared to those delivered by RCPI with the low count. Nevertheless, all
DRPCI variants exhibit lower simulation requirements and execution times
compared to RCPI with full count and compare favorably to RCPI with low

count.

Figures 7.53 through 7.60 include for each algorithm three histograms display-
ing the distribution of the corresponding 200 runs in terms of: (a) the policy
return values, (b) the percentage of successful trails, and (¢) the number of
average steps per run for successfully reaching the goal only for successful

trials.

Table 7.14: 4-link Planar Robot (100/20, attempts 4), collective results of 200 runs and
comparison of algorithms in terms of computational and learning performance

Algorithm States Simulation Rollouts Attempts Time Return Success
RCPI-SVM 100 11393856 884 8.8 307.9 1.288465 93.41%
RCPI-RVM 100 11226298 888 8.9 2224 1.293182 96.45%
DRCPI-AIV-SVM  100/20 3482916 258 8.8 758 1.286796 93.37%
DRCPI-IS-SVM 100/20 3525170 263 9.1 759 1.285163 92.46%
DRCPI-AIV-RVM  100/20 3423388 257 9.0 65.7 1.290313 95.01%
DRCPI-IS-RVM 100/20 3508169 273 9.6 67.2 1.293007 95.99%
RCPI-SVM 20 2116878 162 8.1 459 1.273024 89.61%
RCPI-RVM 20 2253847 176 8.8 45.0 1.286189 94.87%
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FIGURE 7.53: 4-link Planar Robot using DRCPI-AIV-SVM.

Total discounted reward Success percentage Number of average steps to complete

FIGURE 7.54: 4-link Planar Robot using DRCPI-IS-SVM.
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FIGURE 7.55: 4-link Planar Robot domain using DRCPI-AIV-RVM.
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FIGURE 7.56: 4-link Planar Robot using DRCPI-IS-RVM.

145



160

140

120
100
&
6
o
2

2 122 124 126 128 13 122 134 138 148 14

o s 10 150 200 250 a0 as0 400 450 500

Total discounted reward Success percentage Number of average steps to complete

FIGURE 7.57: 4-link Planar Robot using RCPI-SVM with a full count of rollout states.
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FIGURE 7.58: 4-link Planar Robot using RCPI-RVM with a full count of rollout states.
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FIGURE 7.59: 4-link Planar Robot using RCPI-SVM with a low count of rollout states.
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FIGURE 7.60: 4-link Planar Robot using RCPI-RVM with a low count of rollout states.
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8

Conclusion and Future Work

In this dissertation we studied extensions of Rollout Classification Policy It-
eration, a class of reinforcement learning algorithms that do not use explicit
value function representation. These algorithms skip the difficult to approx-
imate and possibly discontinuous value function and they learn good policies
directly through rollouts (simulation). Rollouts are used to probe the im-
proved policy at selected points in state space by repeatedly executing the
current policy. Policies are generally greedy and deterministic and, thus, they
can be represented by classifiers. A classifier representing a policy maps states
into dominant actions (classes). The classifier training set at each iteration of
policy improvement consists of (state, dominant action) pairs obtained using
policy rollouts for estimating the return of the current policy from selected

states and subsequently identifying the dominant action (if any).
8.1 Contributed Work

Our initial contribution was to uncover the structure that exists in optimal
policies by deriving optimal policies for two standard two-dimensional rein-
forcement learning domains. We found that optimal policies have significant

structure and a high degree of locality, i.e. dominant actions persist over large
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continuous areas within the state space. This observation provides sufficient
justification for the appropriateness of classifiers for approximate policy rep-

resentation.

Then, we focused our research on how to identify critical parts of the state
space where there are changes in action domination. A change in action domi-
nation is represented by the separating border of a binary classifier. The border
separates an action from all other actions. We use a collection of binary clas-
sifiers, one for each action, to form a multiclass classifier to represent a policy.
Our aim is minimize the use of policy rollouts in our quest for an improved pol-
icy, by using the already caught policy structure. We developed two methods
for directed exploration of policy space. The first one exploits the structure of
the classifiers used for policy representation. The second one uses a state im-
portance function based on action prevalence. In both approaches, the search
is focused on areas where there is change of action domination. This directed
focus on critical parts of the state space iteratively leads to refinement and
improvement of the underlying policy and delivers excellent control policies in

only a few iterations with a relatively small rollout budget.

8.2 Future Work

Future work may be applied to several directions. A challenging extension of
DRCPI would be its adaptation for domains with continuous actions. Appar-
ently, in such domains, multiclass or binary classifiers cannot be used directly
for policy representation. Nevertheless, our work on DRCPI can be combined
with the work of Pazis and Lagoudakis (2009), whereby a continuous action
policy is approximated to any desired accuracy using a series of binary deci-
sions for each continuous action choice. These binary decisions can be made
by a binary policy represented using binary classifier(s) and therefore DRCPI

could be used to learn such policies efficiently.

Another direction of future work, which may eliminate the need for the at-
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tempts loop in our algorithms, is to adopt a stepwise update during policy
improvement. In particular, at each policy iteration the resulting policy will
be derived as a combination of two policies, partly from the old policy and
partly from the new one, combined in a way that guarantees improvement.
Such an update can help eliminate possible performance discontinuities, which
dictated the use of attempts in our work. However, under such “mixed” rep-
resentations each policy will be represented by a collection of classifiers, which

will require careful management.

Another possible direction of future work is to exploit online classification
methods for incremental policy refinement. Under this idea, there is only a
single policy representation by a classifier, which is gradually refined at each
step by feeding the online training algorithm with additional training data.
The benefit of this approach is the granular processing and exploitation of
any additional information and the smooth policy improvement. Our directed
exploration methods are still relevant in this context, since the increment policy
refinement can be directed to focus at selective areas over the state space at

each step.

Finally, the recent explosion of deep learning technologies (Mnih et al., 2015)
both for classification and regression opens new future research directions. Our
first approach, based on active input vectors, depends on exploiting the inter-
nal structure of the SVM and RVM classifiers, therefore cannot be combined
easily with deep learning. However, our second approach, based on impor-
tance sampling, only requires the use of a general-purpose classifier and a
general-purpose regressor; in this case, combining our work with deep learning
classifiers and regressors is straight-forward. The expressiveness and efficiency
of such technology could enhance the effectiveness of policy representation

provided by our algorithms.
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8.3 Epilogue

Our investigation of structure within policy representations produced many
positive results. It allowed us to uncover this structure for the benefit of policy
improvement. We introduced two novel reinforcement learning approaches
that exploit iteratively the known policy structure while uncovering it, in the
quest for an improved, and ideally optimal, policy. This dissertation sheds
some light to the problem of learning by bringing together two large areas,
namely reinforcement learning and supervised learning; our small contribution

of scientific knowledge to the society.
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