

•

μ, μ μ

μ .

							μ			μ					
μ	l			μ											•
					μ	ι				μμ	μ		115	450)
μ			•												
							μ	μ				μ		μ	
			μ	μ				μμ	μ						
		μ	μ												
				μ										μ	
	μ											μ			
				μ	μ	μ		300) ohm	.m.					
										μ			μ	μ	
				μ					μ			μ			•
												μ		20)

70μ.

	iii
	•
 	1V

 $\begin{array}{c}1\\1.1\\1.2\\1.3\end{array}$

	2	
2.1 2.1.1 2.1.2 2.1.3		
2.2 2.2.1 2.2.2 2.2.3		
2.3 2.3.1 2.3.2		22 24
2.4 2.4.1 2.4.2		25 28
	3	
3.1		

0.11	
3.1.1	30
3.1.2	31
3.1.3	32

3.2		
3.2.1		
3.2.2		35
3.2.3		36
3.3		
3.3.1		39
3.3.2		
3.3.2.1		39
3.3.2.2		42
3.4		
3.4.1		- 44
3.4.2		
	1	
	4	
4.1		53
4.2		
	5	
	5	
		-

_____1

1.1

μ μ μ , μ μ μ . . μ μ . μ μ , μ μ μ μ μ μ μ μ μ μ μ (), μ μ μ μμ), (. μ μ μ 2 115 m 7 μ μμ μ μ μμ μ μ 450 m μ. μ μ , SeisImager μ μ μ μ μ

 $(\mu \mu) \mu Krisis(),$ $\mu \mu \mu \mu \mu$ $\mu RES2DINV RES3DINV .$

		μ	μ		μ		μ						,	
			μ			μ		(μ)	,			
					(μ)(. , 2	2003).		
	μ	μ		<<	μ	μ	>>							μ
μ					(μ	μ	μ).				
	,		μ		μ						μ	μ		
			μ		Ļ	ι		μ					,	
μ		μ	•											
					μ					:				
•			μ			μ			,				•	
•		μ			μ								•	
•		μ	l					μ				μ		
		ł	ι μ		μ								μ	
μ		μ	,											
		,												
(. , 200)3).											
											μ	μ		
	μμ						μ						μ	,μ
	μ										μ			
						μ			μ	μ			μ	
		μ									μ	,		
	μ						μ							μ
	μ	•										μ,		
	μ									μ				
								,				,		μ
	μ	μ			(μμ).							
		μμ		μ								μ		
	•							μ						,
		μ									μ		μ	

μ μ , μ μ μ. , μμ . , μ μ μ PVC (), μ (HDPE) (μ μ - COEX). μ μμ μ μ μ μ μ μ μ . μ μ μ μ , μ μ μ μ μ μ μ μ μ μ μ μ μ μ • , μ << μ >> μ μ μ , μ . μ μ μ , , μ μ . << μ >> (. , 2003). μ μ μ μ μ μ ., 2004, Hudyma et al., 2005). (μ μ μ μ μ μ μ μ μ μ μ μ , μ μ, μ μ , , μ μ μ μ .

1960, µ μμ , , μ μ μ & 1965; 1969, (μ Creutzburg & Seidel 1975, Xavier 1976, 1980), & (μ μ, 1969). μ μ μ μ μ μ μ μμ μ μ μ 2-3 μ μ μ . μμ , μ μ . μ (Creutzburg & Seidel 1975), (μ μμ) μ • μ μ μμ μ μ μ μ μ 1.1). μ (μμ μ μ • μ μ μ μ μ μ μ , μ μ , / μ μ μ μ μ ,μ μ μ μ μ μ μ μ μ μ μ μ μ μ μμ μμ μ μ μ .

4

.

μ μ μ , μ μ μ , (Milanovic, 1981). μ μ μ μ μ μ , , μ • μ μ , ,μ μ μ μ μ • μ ~ μ» , μ , 2003). (μ , μ μ , μ . μ μ μ μ . μ , , μ μ μ μ μ μ μ • μ μ μ μ . μμ , μ μμ μ μ • (Milanovic, 1981). μ μ • μ μ μ μ μ μ μ μ •

μ μ μ . μ
. μ μ .
.
μ μμ μ μ.
.
(Milanovic, 1981).

μ.

6

,

μ μμ μ	ι
--------	---

•

• μ μ • μ μ , μ μ μ • μ

2

2.1

2.1.1.

μ μ μ μ ,μ μ μ (μ2.1a). , i₀, V₁ V₂ μ μ i2, μ μ Snell :

 $p = \frac{\sin(i_0)}{V_1} = \frac{\sin(i_2)}{V_2}$ (2.1)

.H µ μ р μ V2 > V1 μ (μ 2.1b). μ μ Snell :

 $\sin(i_c) = \frac{V_1}{V_2}$ (2.2)

μ . μ μ μ : a)µ

8

μ

μ μ ' .(1993)

2.1.2

μ

μ : μ μ μ ES2401 EG&G Geometrics ©. 24 μ • • 24 14 Hz Mark Products ©. 12 Volt μ μ .

• μ - μ • μ 12 10 m μ μ

• 8 kg µ µ .

• 20 cm x 20 cm

Mark Products © µ

 $(\text{triggering}) \qquad \mu \qquad .$

• µ µ

• μ 50 m μ 30 m.

μμ μ . μ .

μ (μ

μ) :

 1.
 μ
 μμ
 μ
 μ

 μ
 μ
 μ
 μμ
 60

 m
 .
 .
 .
 .

 2.
 μ
 μ
 μ

μ.

10

.

3.										μ	
							μ			. J	ı
					μ	μ					
	μ										
4.						μ		μ			μμ μ
			μ	μ	μ	μ	,μ				•
5.								μ			μ
		(– shot ga	ther)				
		•									
6.								4	5	μ	
	I	μ			μμ	μ				μ	μμ μ
								(μ)	
	μ			μ		•					
										μ	μ,
				μ		μ		μ			
7			1	6	Ш			1	П		
u			-		r. U		٢	u	٣		 []
r.,					r- 11			r. 11			۰۳ ۱۱

. , µ µµ µ µµ µ .

2.1.3

μ μ : • μ μ . • μ μ μ.

• μ μ (picking)

•

•μ μ.

• .

• μ μ μ μ (μμ). μ , μ

•

μ 2.3: μ μ μ μ μ μ (.

 μ μ (shot gather)

μ μμ , () μ μ 2.5m μ . μ 2.4. μ μ μ μ SeisImager OYO Corporation. (PickWin, μ μμ

PlotRefa) μ μ SeisImager.

- μ μ μ μ :
- μ μ μμ
- μ μ
- μ μ μ

μ μ μμ

			μμ			μ
(μ		μμ).	μμ		
		μ	μ		μ	μ

PLOTREFA	OYO Corporation	μ	•

μ μ

	μ				μ	I	μ			μ		,	
		μ			μ	μ	l					,	
					μ		μ	(I	μ	μ		,
μ	μ	ι	,		,	μ).	μ					
μ	Ļ	ı		μ			μ	,					

•

μ

	μ					μμ
μ		a-prio	ori		μ	μ
(μ		μ	μ)	μ	μ
μ						

μμ

	1	u			μ,	
μ	μ	(μ) μ	ł	u	(
		μ)	μμ	μ	μ	(μ
μ).					

2.2

2.2.1

μ

.

μ μμμ . μ μ μ μ . . μ μ μ . . μ μμ,

μ . μ μ 1827 George Simon Ohm (Robinson, 1988), µ μ R (V (Volt) Ohm) μ μ I (Ampere) μ ,

 $R = \frac{\Delta V}{I}$ (2.3) $\mu \qquad \mu \qquad \mu \qquad \mu \qquad L \qquad ,$ $\mu \qquad \mu \qquad \mu \qquad A \qquad \mu \qquad \mu \qquad L \qquad ,$ $\mu \qquad \mu \qquad (\mu \ 2.6).$

$$R = \dots \frac{L}{A}$$
(2.4)

μ 2.6: μ μ

(SI) µ 1 μμ μ 1 m = 100 cm.1 cm m. μ μ μ μ $\mu ~~\mu ~~$ $10^{-6} ~~m$ μ μ μ . 10¹⁵ m , μ μ μ . μ μ 10⁻⁶ 10-1 μ m 10^{8} 10^{5} m. μ μ μ μ μ μ, μ. μ μ μ , , ,

μ , μ, μ . μ μ, , μ μ , μ

μ μ . μ,μ μ

16

,

			μ		μ	μ	μ	
		μμ			(μμ	μ)	μ
		μ						
R			μ	μ	μ		μ ()
d,	μ	μ	(2.5)	μ				
μ		d	μ	$2 d_2$	μ			
		$R = \dots \frac{d}{2fd^2} =$	$={2fd}$					(2.5)
		Vd	μ ν	0		μ	\mathbf{V}_{d}	μ
		d					μ,	I,
μ		μ	μ :					
		$\Delta V_d = V_d - V_d$	$I_0 = IR = \frac{I_{\dots}}{2fa}$	Ī				(2.6)
	Н		μ	μ	μ		μ	μ
	μ		μ	,	I	μ	μ	
	μ						- V 0.	
	μ				,	, μ	μ	μμ
μ						•	μ	μ
	dμ					R		μ
μ	μ	(2.5)		μ	μ	-V	ď	μ
		d		h	ı		$-\mathbf{V}_0$:
	$-\Delta V_{a}$	$U_d = -V_d - (-V_0)$	$) = V_0 - V_d =$	$=-IR=-rac{I}{2fa}$	Ī			(2.7)
							μ,	
μ	μ		,				μ	,
				μμ	l	μ		
	,	I	μ	ł	μ		μ	l
	(μ 2.7).	μμ μ				μ	

17

μ

μ (2000, 2000) μ

μ

$$\dots_{\Gamma} = K \frac{\Delta V}{I}$$

$$K = 2f \left(\frac{1}{\mathrm{AM}} - \frac{1}{\mathrm{BM}} - \frac{1}{\mathrm{AN}} + \frac{1}{\mathrm{BN}}\right)^{-1} \qquad \mu$$

$$(2.8)$$

2.2.2

	μ	μ	μ	
μ	Wen	ner-Schlumberger		:
)	Wenner:			

Wenner	μ
, = = = ,	μ 2.8, μ
	:

,

$$Pa = 2f \frac{V_{MN}}{I} \left(\frac{1}{a} - \frac{1}{2a} - \frac{1}{2a} + \frac{1}{a}\right)^{-1} = 2f \Gamma \frac{V_{MN}}{I}$$
(2.9)

$$2f\left(\frac{1}{r} - \frac{1}{2r} - \frac{1}{2r} + \frac{1}{r}\right)^{-1} = 2fr$$
(2.10)

μ	μ				μ	μ	•	μ	μ
							•		μ
	Wenner				,				
μμ			μ,						
Wenner		μ					μ	μ	μ,
	μ			μ		μ			
				μ		μ			

) Schlumberger:

Schlumberger, μ L μμ μ • b μ . = 2L = 2b (μ 2.8), 2b µ $2L \mu$ μ μ μ : . μ

$$K = 2f \left(\frac{1}{L-b} - \frac{1}{L+b} - \frac{1}{L+b} + \frac{1}{L-b}\right)^{-1} = (L^2 - b^2)\frac{f}{2b}$$

$$\mu$$
 (L>>b) (L²-b²)~L², μ :

$$\dots_{\Gamma} - \frac{fL^2 \Delta V}{2bi}$$
(2.12)

 $\begin{array}{ccc} \mu & Schlumberger & ,\\ \mu & \mu & \\ \mu & \mu & . & \mu \\ \mu \mu & . & . \end{array}$

(2.11)

,

•

2.2.3

		μ		μ			
μ		μ			,	μ	
		•	μ	,			μ
	μ	μ					
		,					
μ	μ,	μ.					

μ	μ	μ	μ	μ

(pseudosection).

μ

2.3 (3D)

a). 1-D Model $P_1 \xrightarrow{\begin{array}{c} C_1 & P_1 & P_2 & C_2 \\ \hline \rho_2 & & & & & \\ \hline \rho_2 & & & & \\ \hline \end{array}}$ b). 2-D Model c). 3-D Model $P_3 \xrightarrow{\begin{array}{c} \rho_1 \\ \hline \rho_3 \end{array}}$

 ρ_3

μ

P2

μ

μ μ , μ μ μ . μ μ .

μ . μ . 8000 μ .

μ μ 16x16 μ μ . 256 . μ

μ, μ. μ μμ

μ μ μμ . , μμ RES3DINV μ μ μ μ μ μμ .

μ μ μ μ • μ μ μ μμ μ μ μ μ μ μ . μ μ μ •

μ .

μ μ μ . μ μ . . μ μ . . μμ

,

μ

μ

μ

μ

•

²⁴

quasiμ μ μ μ Newton Gauss-Newton. μ μ μ μ . μ, μ μ μ , , μ μ μ μ • μ μ μ (Sasaki 1994). μ μ μ . μ μ μ, μ μμ μ . μ RMS. μ μ μ (x-y) μ μ (x-z) . μ μ

2.4

2.4.1

μ μ μ μ μ μ μ . μ μ μ μμ μ μ μ . Love (L) μ μ μ . $SH \quad \mu$ Reyleigh μ μ, μ SV (R) μ Ρ μ μ (Gregersen, 1976). μ μ μ

R L. μ μ μ . μ μ μ μ . μ μ μ μ μμ μ ,

μ

μ μ μ .

,

2.4.2

			μ	μ	μ			
		μ	(Multicha	nnel Anal	ysis of	Surface Wa	ives – MA	SW)
		μ	μ					
	μ	μ		S	μ	μ		
	μ	μ	(Krisis)					
(.,2010)							
			μ	μ				
	μ	Reyleigh					μ	
μ		μ			μ			
				μ				
μ								
						μ		
μ	μ				μ	Reyleigh		
					,	μ		
	,	μ	μ					
		μ				μ	μ	
μ,	μ		Tho	omson-Has	kell (Haskell,195	3,Schwab	and
Knopoff,1	972).							
				μ			μ	
	μ		μ	()	. ,	

3.1

3.1.1

μ	ł	ı		μ	•
μ	μμ	ıμ	μ 3.1	μ	
	3.1.				

	3.1:	μ μ	μμ		
μμ		(WGS)	(WGS)	x ()	y ()
μ	5	23,53'21"70	35,19'44''86	489796	3909260
μ	5	23,53'24"'08	35,19'48"07	489856	3909359
μ	7	23,53'20"63	35,19'45''96	489769	3909294
μ	7	23,53'22"81	35,19'49''24	489824	3909395

μ 3.1: μ μμ μμ μ (μ μ *Google arth*)
3.1.2

3.1.3

<u>µµ 5:</u>

μ μ μ . μμ μ 115	
. μμ μ 115	ı
	5m.
μ μ (μ) $0m$ $8m$.	
μ μ μ 400 900 m/s.	
μ μ μ (μ) 8 30	6m
μ μ 1000 2750 m/s.	
μ μ μ (μ μ) μ 3000 m/s.	

μ 3.4: μ μμ 5 μ

- - μ 3.5 μ μ

- μ μ
- μμ . μμ μ
- μ 115m.

	μ	μ (μ)	0m	6m.	
μ		μ	μ	400 900)m/s.	μ
μ	μ (μ)	6m	36m	
	μ	μ	1100	2800m/s.	μ	μ
μ (μ μ)	μ		3000r	n/s.	
μ	μ				μμ	
μ		μμ	•	μ	μ	

μ 3.5: μ μμ 7 μ

3.2.1

3.2: μ

μμ	(WGS)	(WGS)	X ()	y ()
1	23,53'19"93	35,19'36"84	489751	3909013
1	23,53'28''83	35,19'50"25	489976	3909426
2	23,53'19"34	35,19'37"29	489736	3909027
2	23,53'28''23	35,19'50''70	489961	3909440
3	23,53'18"62	35,19'37"48	489718	3909033
3	23,53'27"56	35,19'50"87	489944	3909445

μμ

4	23,53'17"87	35,19'37"68	489699	3909039
4	23,53'26"88	35,19'51"06	489927	3909451
5	23,53'17"20	35,19'37"97	489682	3909048
5	23,53'25"97	35,19'51"45	489904	3909463
6	23,53'16"68	35,19'38"55	489669	3909066
6	23,53'25"54	35,19'51"97	489893	3909479
7	23,53'16"05	35,19'38"94	489653	3909078
7	23,53'24"86	35,19'52"39	489876	3909492

(μ μ $\mu\mu$ μ

3.2.2

- Wenner-Schlumberger µ μ μ 10m. : μ
- μ μμ μ μ μ
 - μ μμ μ μμ . μ .
 - μ μμμ. ,

•	μ						μ	
	μ	•						
•								μ
μ	,		μ	μ	μ	μ		

μ.

3.2.3

				μ			μ		μ		
	μ		RES2D	DINV.		μμ RES2	2DINV	μ		μ	μ
μ		μ							μ	μ	μ
	μ		μ					, μ		μ	
				μ	,						
	μ		•			μ				l	u
μ	μ	μ		μ						μ	μ
	μ							μ		μ	,
		μ	μ		μ		,			μ	
					μ	μ		μ			

μ.

40-80 m.

3.3.1

			μ		μ	μ
μ		(§3.2.2),		μ		μ
	(μ 3.6).	μ		3620 µ	μ
		,		μ	Wenner-	Schlumberger.

-

3.3.2

	μ		μ		μ	
μ	RES3DINV.	μμ	RES3DINV	μ		
, μ		μ				
	μ	,			ł	J
μ						

3.3.2.1

							μ	(RMS	11.1%),
μ							μ	μ	
	μ	•		μ					μ
			μ	20m.		xμ	μ		
	•				μ	μ			
			μμ μ						
			μ		μ	Y-Z			μ
					μ		μ	20m	X

BA

¥

μ μ (§3.2.3, μ 3.7-3.13) μ . μμμ .

3.3.2.2

μ 3.20 7 μ 0-55.3m. (μ μ , μ μμ μ) μ , μ 45 m. μμ μ , 25m, μ μ μ μ μ (μ μ)

μ.

3.4.1

μ μ μ μ (§2.4). μ 4μ μ μ μ μμμ 5 (2 μ 2) 4 μ μ μ μ μμμ 7 (2 μ 2).

3.4.2

μ :

μμ μ 5 2 μ (522)

3.33: μ μμ μ 7 2 μ (724)

	μ		μ			3.21-3.34,			μ		μ	
				Р	μ				170-23	80m/	s.	
μ							Р	μ				
300-450m/s.		μ										Р
μ			450-600m	n/s.							μ	,
μ		μ	μμ	μ		,	μ				μμ	μ
μ			μμ	h	l			μ	μ	μ		

•

- 4.
- μ μμμ 5 7 μ μμ .
- 4.1

		μ	4.1					μ	μ		(μμ	5)
			μ	ı 5.			μ		μ	μ		
	l	μ		μ				μ		. T		μ
μ	μ											μ
μ	μ		μ									μ.
	h	ı				μ						
		μ				μ				μ		
3000m/s				μ						35	50 m	
μ								μ	μ.			
		μ	4.2					μ	μ		(μμ	7)
			μ	7.	μ						μ	μ
				μ			μ	μ		μ	μ	•

	μ 4.3	3					μ	S
μ	Ρµ	l	μμ	μ	5 –μ		μ	μμ
5.		514			μ			μ
μ						800 m.		522
524		μ	,			μ	μ	
			350	m	(μ	μ	4.3
μ 4.5).								

-

NΔ

NΔ

ΒA

ΒA

	μ 4.5			μ	S
μ	Ρμ	μμ μ	5.	514	
μ	(267,5m)	μ		41 m.	
	μ		1000 m/s	μ	
μ	3000 m/s.		522		μ
(327,5m)	μ		27 n	1.	
μ	700	0 m/s	μ	μ	
2000 m/s.	524		μ	(327,5m)	
μ	23 m.			μ	
700 m/s	μ		μ	2000 m/s.	

μ	4.6:				μ	S	μ	Р	μ
μμ	μ	7 (μ	μ	4.4)					

	μ 4.6				μ	S
μ	Ρμ	μμ μ	7.		712	
μ	(247,5m)	μ			24 m.	
	μ		700 m/s	5	μ	
μ	3	8000 m/s.			μ	
(332,5m)	μ		26 m.			
μ		800 m/s	μ		μ	
2000	m/s.	724		μ	(332,5m)	
μ		23 m.			μ	
600 m	/s µ		μ		2000 m/s.	

μ μ μ μ μ μ μ μ μ μ : μ μ μ μ • 3000m/s μ μ μ 400 m. μ μ μ μ • μ μ μ . μ μ 40m μ μ •

•

μ 100m

1.	, ., (μ	2006), "	μ	",	μ	,	μ	
2.	, ·, 	(2009), " ι μ	μ		μ	",	μ μ	
3.	, ,	, ., (2003),	••		μ	μ	",	
4.	, . ,	, (2005), "	μ μ .		μ ",	μ μ		,
5.	, ·,	, . (1993), "	μμ.		",	μ	l	
6.	, ·,	(2001), "	μμ		",	h	l	
7.	, , Å., Ha	mdan, H., A	,	, N.,	, •:	,	, • ,	
	, , μ, ,, μ	, μ μ μ	, ., , μ .Ο	μ ., μ	, ., , ., ,	(2004), "	, ., μ , .	
8.	, .,	(2000), "	, -	μ		, .	"	
9.	(1972),	,		,	1:50000,			
10.	, ., , .,	., (4 ",	,,, 2003)" μ	μ	, ., ŀ	μ μ ι μ	, . ,	
	μ	μ	,	20-21	199	5,	•	

- 11. ., (2008), " μ)", (μ , . 12. ., Soujon, A. and Jacobshagen, V., (2001), , •, , " μ ", μ μ .34/1:29-36, . ., (2007), " 13. μ , ", μ , , • 14. ., (2010), "Χαρακτηρισμός εδάφους (ευρωκώδικας 8) με τις
- 14. , ., (2010), "Χαρακτηρισμός εδάφους (ευρωκώδικας 8) με τις μεθόδους σεισμικής τομογραφίας και ανάλυσης επιφανειακών κυμάτων. Εφαρμογή στην περιοχή του Ακρωτηρίου (νέο κατάστημα Χαλκιαδάκη) και στην Πολυτεχνειούπολη", μ , .
- 15. , ., (2007), " μ μ μ ", μ ,
- 16. , ., (2010), "μ μ μ μμμ μ μ ", μ , , , .
- **17.** , ., (**2000**), " μ μμ , .", Μ
- **18.** , . . & , . . (1969), 1:50.000, - (....). **19.** , . (1980), μ . -, . 146 S.

- 17. CorelDraw Graphics Suite 12, (2003), Manual, Corel Corporation
- 18.
 COORD_GR, (2002),
 μ
 , Manual, Version 1.6.0,

 Syngros Y.
 Σ

,

- Creutzburg, N & Seidel, E. (1975), Zum Stand der Geologie des Präneogens auf Kreta. - N. Jb. Geol. Paläont. Abh., 149: 363-383, Stuttgard.
- **20.** GoogleEarth, μ Google (<u>http://www.google.com/earth/index.html</u>).
- 21. Hudyma, N., Ruelke, T., and Samakur, C., (2005), "Characterization of a Sinkhole Prone Retention Pond Using Multiple Geophysical Surveys and Closely Spaced Borings", Conference Proceeding Paper, San Antonio Texas, pp 555-561.
- 22. KriSIS, (2010), μ , Manual, Version 1.04, Kritikakis G.
- 23. Milanovic, P., (1981), "Water Resources Engineering in Karst", CRC PRESS
- 24. Res2dinv, (2001),μμManual, Version3.4,Geotomo Software.
- **25.** Res3dinv, (2010), μ , Manual, Version 2.22, Geotomo Software.
- 26. Reynolds, M. J., (1997), "An Introduction To Applied And Environmental Geophysics", John Wiley & Sons Ltd, Chichester, ISBN 0-471-95555-8
- 27. Robinson, E.S. & Coruh, C., (1988), "Basic Exploration Geophysics", New York: John Wiley.
- 28. SeisImager, (2003), μ , Manual, Version 3.0, OYO
 Corporation.
- **29.** Tataris, A.A. & Christodoulou, G. (1965), The geological structure of the Levka Mountains (Western Crete). *Bull. geol. Soc. Greece.* 6: 319-347, Athens
- Xavier, J.-P. (1976), Contribution a l'étude géologique de l'arc égéen: la Crète occidentale, secteurs d'Omalos et de Kastelli. Thèse 3 me Cycle, Université Pierre et Marie Curie, 101 p., Paris.

μμ μ 4

<u>μμ 5:</u>

μ