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Abstract 
Frequency hopped complex sinusoids are most appealing due to their resistance to 
interference and the difficulty of being intercepted. They are extensively used in wireless 
and in military communications. Therefore, the problem of tracking the frequency of a 
frequency hopped signal is widely spread and quite interesting. In this thesis we 
propose a spectrogram segmentation-based approach using edge detection. In the end of 
the thesis, we present simulation runs of the algorithm, for which we used a stochastic 
state-space model, and discuss its performance compared to two alternative approaches: 
one using particle filtering tools and one using the spectrogram.     

Keywords: Frequency hopping, spectral analysis, time-frequency distribution, edge 
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Chapter 1 
The first chapter functions as an introduction to the entire thesis. It provides some parts 
of the theory background needed to better comprehend the problem that is stated in the 
thesis. Furthermore, it contains information about the stochastic state-space model that 
was used and about the first steps that led to the development of the spectrogram 
segmentation-based approach. 

1.1 Introduction 

Frequency–hopping spread spectrum (FHSS) is a modulation technique by which SS 
signals rapidly switch frequencies using a random sequence known to both receiver and 
transmitter. Spread spectrum transmission is widely used due to three main advantages 
over fixed–frequency transmission: SS signals are highly resistant to interference, 
difficult to intercept and can share bandwidth with many types of conventional 
transmissions with minimal interference. FHSS transmission is often used in wireless 
and military communications for the purpose of mitigating interference and for its 
resistance to jamming.  

Tracking the frequency of a FHSS signal can be rather interesting considering it is a 
problem that arises in various applications. For example, in speech processing, tracking 
formant frequencies is quite common. In wireless communications, the receiver could 
have no prior knowledge of the hopping pattern, or could just be out of sync with the 
transmitter’s generator.  

In this thesis we present a spectrogram segmentation–based approach for tracking a 
frequency-hopped (FH) signal. Later on, it is compared to two alternative algorithms: 
one using spectrogram and one using particle filtering (PF). The data model all the 
above algorithms have worked on is actually a simple and stochastic state-space model. 

 

1.2 Data Model 

The data model that was used by the algorithms, as they are presented in the thesis,    
was first proposed in [6] (also see chapter 3, section 3.2.1) and it is in fact a non-linear 
non-Gaussian stochastic state-space model of a frequency-hopped complex sinusoid. It 
is also presented here for simplicity reasons.  



Let xk := [ωk, Ak]T, where ωk ∈[-π, π) and Ak ∈C denote the frequency and amplitude at 

time k. Let uk :=[bk, kω% , kA% ]T denote an auxiliary sequence of independent and 

identically distributed (i.i.d) vectors with independent components and the following 
marginal statistics: bk is a binary random variable with probability P(bk = 1) = h; kω%  is 

uniformly distributed over [-π, π), denoted U([-π, π)); and kA%  is CN(0, σ2Α), i.e., complex 

circular Gaussian of variance σ2Α. Then 
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where vk denotes i.i.d CN(0, σ2n) measurement noise, and uk(1) the hop variable. 

It is important to point out the fact that the above state space formulation does not 
assume that frequency hops periodically, in contrast to traditional models of frequency 
hopping. It is motivated by one main consideration: it is often required, especially in 
military communications, to intentionally jitter the hopping time in order to reduce the 
risk of data interception (anti-jamming). The expected number of hops, according to the 
presented probabilistic model, over a long observation interval T is hT, where h denotes 
the hopping probability. Probabilistic modeling is more accurate if the hop period is 
inaccurate.  

 

1.3 The Idea 

This work is based on the distribution approach of S. Barbarossa and A. Scaglione [1] for 
tracking a FH signal. They proposed a non - parametric algorithm based on the time-
frequency representation of the observed signal. In particular, they suggested the 
Wigner-Ville distribution (WVD) as the time frequency distribution for the algorithm.  

The WVD can be interpreted as the time-frequency energy distribution of a signal. On 
the whole it gives better temporal and frequency resolution, relative to other time-
frequency distributions, such as the spectrogram, at the expense, though, of computation 
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complexity (the presence of cross terms also adds up to it) and the introduction of 
negative values, which would correspond in negative energy (this is not physically 
possible and represents a significant defect of this method). However, these problems 
are well known and there are ways to compensate them. WVD is also a member of the 
large family of time-frequency distributions known as Cohen’s class and presents a 
number of desirable mathematical properties. For example, it is always real-valued. 

Let x(n) denote the sequence of samples of the observed signal, where n = 0, …, N-1 (N 
samples). The estimation algorithm they proposed consists of the following steps: 

• Computation of the discrete WVD (Wx) of the signal x 
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• Computation of the smoothed WVD (Ws(x,k)) using a lowpass filter 

• Computation of the maxima of Ws(x,k) for each n (y(n)) 

• Estimation of  T (= number of samples per hop) as the period of y(n)  

• Estimation of the number of segments (NS) falling within the observation 

interval (Ns= ) /N T⎡ ⎤⎢ ⎥

• Computation of the function 
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• Estimation of the time offset n0 as 
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• Estimation of the frequency fl as: 
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It is important to note that Barbarossa and Scaglione’s estimation algorithm applies for 
models where the frequency hops periodically (see fourth step above). The probabilistic 
model we used, though, does not assume that. So, the algorithm we present in this 
thesis, in order to estimate the hop timing, uses the technique of edge detection.  

 

1.4 The algorithm  

The proposed algorithm consists of fours basic steps: 1) Calculation of the spectrogram 
as the time-frequency distribution of the observed signal, 2) Calculation of a vector 
containing the frequency mode (location of peak of the spectrogram as a function of 
time), 3) Application of the edge detection technique in order to acquire the times the 
frequency hops, 4) Use of the periodogram method in order to estimate the signal’s 
frequency for each of the time intervals, resulting from using edge detection. The 
algorithm is thoroughly explained step by step in the following chapter. 

Notice that we could estimate the frequency of the signal just by using the data obtained 
from the spectrogram of the signal. The purpose of the edge detection is to spot the exact 
time the frequency hops. At the spectrogram’s estimation the hopping occurs gradually 
(ramp). For example, if the true hop occurs at time t = 50, the spectrogram’s frequency 
hop estimation could arise within a time interval: 48-53. Now, the edge detector, 
theoretically at least, locates the true time the frequency hops. This, along with the fact 
that by splitting the signal into segments, within which the signal’s frequency is fixed, 
and then estimating the frequency at each dwell, the estimation is much more accurate.  
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Chapter 2 
This chapter is actually the main one of the thesis. It describes the proposed algorithm 
step by step including the theory for each and every one of them. In particular, every 
section describes a step of the algorithm: 4 steps, 4 sections, and each one cites 
information concerning the corresponding theory. 

 

2.1 Time - Frequency Distribution 

In order to choose the best time-frequency distribution for the given data model, both 
WVD and spectrogram were tested for many variations of white Gaussian noise. The 
spectrogram offered much better results. The spectrogram is the result of calculating the 
power spectrum of window frames of a signal as it changes over time. In order to 
calculate the power spectrum, it uses the periodogram power spectrum estimation via 
Fast Fourier Transform (FFT, section 2.1.1).   

More specifically, let T denote the length of the window frames and nfft (nfft >= T) 
denote the number of frequencies at which the Fourier Transform (FT) is computed. 
Usually, the frames overlap by a number of n samples and the process begins after 
acquiring at least T samples. Therefore, it computes one value for every (T – n) samples 
and it uses future samples to estimate the frequency at a present time (non-causal 
windowing). Though that is the most common format of the spectrogram, we used a 
running - window spectrogram (RWS). The choice was made based on the results that 
were obtained after performing a number of simulations on both of them.  

The difference between the two lies in the samples processed at each frame.  In the 
running – window spectrogram that was used, the process begins as soon as the first 
sample is acquired and the empty (T – 1) slots are filled with zeroes. The process 
continues respectively until (T + 1) samples are obtained. After that, the frames contain 
T samples and the overlapping number is (T – 1), similarly to the usual format (for n = 
T-1). Hence, it computes one value for each sample and without using any future 
samples (causal windowing). 

 

 



2.1.1 The Periodogram 

As it has already been mentioned, our data model is random, meaning that its variation 
in the future can not be known exactly. A random signal can be described as a random 
sequence which consists of a set of possible realizations, each of which has some 
associated probability to occur.  The realizations, viewed as discrete-time sequences 
(samples), do not have finite energy but they usually have finite average power. 
Therefore, they can be described by an average power spectral density (PSD) [3]. 

 

k

The PSD estimator we used is called periodogram spectral estimator: if we have a signal 

that is exponential of amplitude A embedded in AWGN: i k
ky Ae wω= +  then, the 

frequency at which the periodogram, which is defined as the squared-magnitude of the 
DTFT of yk: 
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peaks, is the estimated frequency ω of the signal. 

 

2.2 Maximum Power Spectral Density 

After the computation of the time frequency distribution, we obtain a vector containing 
for each sample the frequency at which the PSD is maximum. As it has already been 
mentioned above, nfft is the number of frequencies at which the FFT is calculated. 
Additionally, due to the fact that in the beginning of the spectrogram’s frequency 
estimation there are not enough temporal samples, the estimation seems to delay for a 
couple of time samples. So, we discard the estimated frequencies of the first two samples 
and extend the last one. In other words, we shift the estimation sequence to the left and 
fill in the last two empty spots with the value of the last estimated frequency. That, 
though, is as if we used non-causal windowing for the spectrogram estimation because 
in fact, we use future samples to accurately detect an edge in the “present”: imagine, for 
example, the causal–window consisting of 8 samples that are used for the frequency 
estimation of the 8th sample: 

 

 

1     2    3    4    5    6    7    8
8 

 



Next, we shift the estimation two slots to the left as if we had a non-causal window of 
length 8 that we used for the frequency estimation of the 6th sample: 
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2.3 Edge Detection 

2.3.1 Introduction 

Edge detection is one of the most commonly used operations in image processing since 
edges form the outline of an object. This can become clearer if we think an edge as the 
boundary between an object and the background and among overlapping objects. This 
means that if the edges can be accurately identified, all the objects can be traced and 
basic properties such as area, perimeter and shape can be measured. Considering, then, 
that image analysis involves the identification and classification of objects in an image, 
edge detection is an essential tool.  

 

2.3.2 Canny Edge Detector 

2.3.2.a Introduction 

One of the best advanced edge detection techniques is the one introduced by John 
Canny in 1986 [5]. Canny defined a set of goals for an edge detector and described an 
optimal method for achieving them. These are: 

1. Good Detection - The edge detector should, ideally, respond only to real edges and 
should find all of them.  

2. Good Localization - The distance between the edge pixels as found by the edge 
detector and the actual edge should be as small as possible. 



3. Response - The edge detector should not identify multiple edge pixels where only 
a single one exists. 

Canny assumed a step edge subject to white Gaussian noise. The edge detector was 
assumed to be a convolution filter f which would smooth the noise and locate the edges. 
The problem was to identify the one filter (f(x)) that optimizes the three edge detection 
criteria. 

As the input signal (G(x)) to the edge detector, Canny used a step edge of amplitude A 
bathed in white Gaussian noise:  

( ) ( ) ( )G x Au x n x= +  

where u(x) is the unit step function which is defined as follows, 

{0,   for   x<0
1,   for   x 0( )u x ≥=  

Canny expressed the first criterion as the maximization of the SNR which was defined as 
the ratio of the output response to the step only to the square root of the mean squared 
noise response. 

Let x0 be the centre of the step edge, then the output O(x0) of the convolution with the 
input signal G(x) is given by  

0 0( ) ( ) ( )O x G x f x x dx
+∞

−∞

= −∫  

The output response due to the step only for x0=0 is 

0

0( ) ( ) ( ) ( )sO x f x Au x dx A f x dx
+∞

−∞
−∞

= − =∫ ∫  

The mean squared response to noise is 

2
2 2 2 2

0( ) ( ) = ( ) ( ) ( )E f x n x dx E f x n x dx n f x dx
+∞

+∞ +∞

−∞ −∞
−∞

⎡ ⎤ ⎡ ⎤− − =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦∫ ∫ ∫  

where = E[ ] (noise input variance). 2
0n 2 ( )n x
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Therefore the SNR can be expressed as  

0

2
0

( )

( )

A f x dx
SNR

n f x d

−∞

+∞

−∞

= ∫

∫ x

The Localization value was defined as the reciprocal of the distance of the located edge 
from the true edge and should be as large as possible, too. Canny chose to mark edges at 
the maximum of the output O(x0) and in order to find x0, we set 

differantiation  
theorem for
convolution

' '
0 0 0( ) ( ) ( ) = ( ) ( ) 0dO x f x G x x dx f x G x x dx

dx
+∞ +∞

−∞ −∞
= − −∫ ∫ =

0

 (1) 

Once again we use the linearity for convolution in order to get the derivative of the 
output to the step only (O’s(x0))  

0' ' '
0 0( ) ( ) ( ) ( ) ( )

x

sO x f x Au x x dx Af x dx Af x
+∞

−∞ −∞
= − = =∫ ∫  

and the derivative of the output due to noise (O’n(x0)) which will be a Gaussian random 
variable with mean zero and variance 

'2 2 '2
0( ) ( )nE O x n f x dx
+∞

−∞

⎡ ⎤ =⎣ ⎦ ∫         (2) 

By adding the constraint for the f(x) to be antisymmetric and using the Taylor expansion 
we get:  

' '
0 0 0( ) ( ) (0)sO x Af x x Af= ≈  (3) 
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Finally, we have 
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0 0 0

' '
0 0

'2 '2
0 0

2 '2
0(2),(3)

2
0 2 '2

(1) ( ) ( ) ( ) 0

( ) ( )

( ) ( )

( )

(0)

s n

s n

s n

O x O x O x

O x O x

E O x E O x

n f x dx
E x

A f

+∞

−∞

⇒ = +

⇒ = −

⎡ ⎤ ⎡ ⎤⇒ =⎣ ⎦ ⎣ ⎦

⎡ ⎤⇒ ≈⎣ ⎦
∫

=

 

where 2
0E x⎡ ⎤⎣ ⎦  is the standard deviation of the distance of the located edge from the 

true edge. 

So, the Good Localization criterion is expressed as the maximization of: 

'

0 '2

(0)

( )

fALocalization
n

f x dx
+∞

−∞

=

∫
 

Thus, Canny tried to find the filter that maximizes the product SNR*Localization which is 
both amplitude and scale independent [7]. However, the edge detector that is derived 
from this combination of the first two criteria provides multiple responses to the true 
edge (multiple maxima which are close to each other) which was defined as the centre of 
the step edge. That is due to interaction of the responses (to a noisy step edge) at 
numerous points near the edge. 

Hence, Canny added an extra constraint: the value of the distance between adjoining 
maxima in the filtered response or zero-crossings of their derivatives will be twice the 
value of the mean distance xzc: A result due to Rice (1944, 1945) states that the average 
distance between zero-crossings of the response of a function g to Gaussian noise is 

1
2

' '

(0)
(0)ave

Rx
R

π
⎛ ⎞−

= ⎜ ⎟
⎝ ⎠

 

where R(τ) denotes the autocorrelation of the function g.  
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So, since 2(0) ( )R g x dx
+∞

−∞

= ∫  and '' '2(0) ( )R g x dx
+∞

−∞

= − ∫  we get that   
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x = π

f'' (x)dx
 

 

The result of the maximization of the product SNR*Localization subject to the multiple 
response constraint, though, was too complex to be solved analytically. But the first 
derivative of a Gaussian function turned out to be a much satisfying approximation.  

 

2.3.2.b The Canny edge detection algorithm 

Recall, that in the presented algorithm we need the Canny edge detector to find when 
the frequency hops and that as an input to the algorithm we use the vector containing 
the frequencies obtained from the Spectrogram frequency distribution. Before 
proceeding, though, to the edge detection, we need to smooth the input by performing a 
multidimensional filtering using convolution with a one-dimensional Gaussian mask. In 
particular, we used the following Gaussian:  

 

2

a⎛ ⎞
⎜ ⎟
⎝ ⎠

1 k-
2 N/2

wG [k +1] = e  

where N is the length of the window,  k = [-N/2:N/2] and α is the reciprocal of the 
standard deviation. They both are parameters to the edge detector. The above Gaussian 
was chosen through experimental simulations and was found in the signal processing 
Matlab toolbox. 

Now that we have smoothed the input (Is), using the above Gaussian mask, we may 
continue to the edge detection. 

The first step would be to perform a multidimensional convolution of Is with the 
derivative of a Gaussian Mask. Let σ be the standard deviation of this Gaussian: this is 
also a parameter to the edge detector and it determines the length of the Gaussian mask. 
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Specifically, we arbitrarily set a number of possible widths w (i.e. 1:30) and calculate the 
corresponding values of the following Gaussian function [4]: 

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

w 2

2-
2σGaussian(w) = e  

The greatest value of width w, that gives a value larger than a certain value (i.e. 0.001), is 
the number used to create a vector y: y = [-w : w]. So, we obtain the following one-
dimensional Gaussian mask: 

2πσ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

2

2-
2σ1f( ) = e

2

y

y  

 

The derivative of the above Gaussian 2σ
⎛ ⎞−⎜ ⎟
⎝ ⎠

'f ( ) = f( )yy y  is the one that is used for the 

convolution (first step of the edge detector). Let  denote the result of that convolution.  c
sI

 

Next, we must simply estimate the magnitude M of at each point. Now, assuming that 

in fact the value of the magnitude at a certain point is large, if it is an edge, and smaller, 
if it is not, the next step is a non-maximum suppression step, where points that are not 
local maxima are removed: the points presumed to be edges are the ones with a value 
greater than the value of their adjacent pixels (above and below).  So, the non-maximum 
suppression step provides a set of possible edges.  

c
sI

 

As a last step, Canny (in image processing (2D)) suggested thresholding using hysteresis 
rather than simply selecting a threshold value to apply everywhere. Hysteresis 
thresholding uses a high threshold Thigh and a low threshold Tlow. Both thresholds are 
parameters to the algorithm. All pixels that have a value* greater than Thigh are 
presumed to be edge pixels (strong edges) and are marked as such immediately. The 
pixels with a value larger than Tlow are possible edges (weak edges) and are marked as 
real edges only if they are connected to a strong edge, directly or through a chain of 
weak edges. For example, imagine 3 pixels in a row. Let the first two pixels be weak 
edges and the third one to be a strong edge. The second one is, in the end, marked as an 
edge because it is directly connected to a strong edge (third pixel). The first one is also 
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marked as an edge because it is connected to a weak edge (second pixel) which is next to 
a strong one (third pixel, connecting through a chain). The result the Canny edge 
detector finally presents is an array of aces and zeroes (black and white image), where 
the ones indicate the edges (white) and the zeroes (black) the background.                                                      

In the presented algorithm we work in one dimension. Plus, in the presented application 
of the Canny edge detector, there is no way there will be adjoining edges. Thus, we do 
not need hysteresis thresholding and we should just apply one threshold value 
everywhere, instead. That though did not give good results (see section 3.1, chapter 3). 
That is why we chose to use a threshold, to eliminate most of the non-edges and the 
weak edges, plus a rejection of the smaller dwells. This rejection was decided because an 
estimated small dwell is not true, most of the time, and when there actually is one it is 
really hard for the algorithm to accurately detect it. So, we group the shorter ones in 
longer ones. This process consists of two parts: Let E denote the vector with the 
maximum magnitudes obtained after thresholding. First, we nullify the first f and the 
last l values of vector E. It is a common phenomenon for the edge detection algorithm to 
detect false edges in the beginning and in the end of the observed sequence, especially as 
the noise variance grows. Second, when an edge is detected, if another one is detected in 
less then t samples, we only keep the first one. All variables f, l and t are parameters to 
the algorithm. 

Before we proceed, allow us to point out that, for simplicity reasons, the parameters N, α 
and σ could be set to the following values respectively: 8, 6 and 0.7 (these values were 
used for the simulations that are presented later on). They offer satisfying results for a 
great set of different cases. 

 

2.4 Final Frequency Estimation 

In the final step, we divide the signal into segments, correspondingly to the edges 
detected, and process them separately. In order to estimate the frequency of the signal 
within each dwell, we use the periodogram method. If the dwells are large enough and, 
therefore, there are enough samples, the estimation is very accurate.  
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Chapter 3 
In this chapter we present a variety of simulations for the proposed algorithm and for 
the algorithm that uses particle filtering (PF) tools. To start with, we comment on each 
algorithm’s performance separately. For the particle filtering we provide, in addition, 
some general information on PF and on the corresponding PF algorithm [6]. 

 

3.1 Proposed Algorithm Simulations 

We will now present the simulation results for the proposed algorithm. The following 
table contains the Root Mean Square Error (RMSE) of the frequency estimation of the 
algorithm for a variety of White Gaussian noise. The parameters used for the 
simulations are the following: h = 0.01, σ2Α = 1, T = 100. The number of Monte-Carlo 
(MC) simulations is 300. In addition to the RMSE we present the mean number of 
estimated edges and the hop-range compared to the original ones in order to estimate 
the edge detector’s performance. Furthermore, so as to support our choice of edge 
detecting (section 2.3.3, chapter 2), we present the values of the RMSE, the mean and the 
range of the number of estimated hops for the case where just one threshold value is 
used instead.  

In the following table, the case where one threshold value is used is divided into two 
different sets of results. The first one corresponds to the results of the algorithm when 
trying to reach the minimum RMSE, and the second one corresponds to the results when 
the aim was to estimate, by average, the same number of hops as the one provided by 
the algorithm for the proposed edge detection. 

 

 

 

 

 

 



17 

 

σn2=0.2,  
True Mean #Hops  = 0.9400,  

True Hop-Range  = 0 - 4 
RMSE Estimated 

Mean #Hops  
Estimated  

 Hop-Range  
Time for 1 

simulation (sec) 

Proposed  edge detector 0.1841 0.9533 0 - 5 0.0695 

Single threshold value 0.3163 3.1100 0 - 24 0.0695 

σn2=0.3,  
True Mean #Hops  = 1.0200,  

True  Hop-Range = 0 - 5 
RMSE Estimated 

Mean #Hops  
Estimated  

 Hop-Range  
Time for 1 

simulation (sec) 

Proposed  edge detector 0.2543 1.0800 0 - 5 0.1654 

Single threshold value 0.4157 3.4667 0 - 28 0.1648 

σn2=0.5,  
True Mean #Hops  = 0.8700,  

True  Hop-Range = 0 – 4 
RMSE Estimated 

Mean #Hops  
Estimated  

 Hop-Range  
Time for 1 

simulation (sec) 

Proposed  edge detector 0.2744 1.4600 0 - 5 0.1187 

Single threshold value 0.4826 1.6800 0 - 14 0.1587 

σn2=0.8,  
True Mean #Hops  = 0.8933,  

True  Hop-Range = 0 - 5 
RMSE Estimated 

Mean #Hops  
Estimated  

 Hop-Range  
Time for 1 

simulation (sec) 

Proposed  edge detector 0.3668 2.3300 0 - 5 0.1464 

Single threshold value 0.5819 2.3600 0 - 15 0.1320 

 

Let us, first, comment on the performance of the proposed edge detector (section 2.3.3, 
chapter 2) compared to the one using a single threshold value. As the above simulations 
of the presented algorithm show, the RMSE we obtained when we used the proposed 
detection method, is much smaller, and rather good in general for σn2=0.2, than the RMSE 
obtained from the algorithm when we used only one threshold value. 
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 Another advantage of the detection method we propose, is the fact that it can provide, 
at least for white Gaussian noise with a standard deviation less than 0.5, a lower RMSE 
than the single threshold value, for approximately the same mean number of estimated 
hops as the original one. Certainly, as the noise power grows, the number of estimated 
“possible” edges (local maxima) increases, making it harder and harder for the detector 
to discern the true hops from the false ones. That is why for σn2=0.8, for example, the 
mean of estimated edges, even when we used the proposed edge detection, is more than 
21/2 times the original one. In other words, we let many false edges pass for true ones, as 
that offered a more desirable RMSE. Additionally, the range of the number of estimated 
hops that is provided by the algorithm when the proposed edge detection is used, 
always remains close to the true hop-range: which is a good thing considering it hardly 
estimates more edges than there could actually be there. On the contrary, when a single 
threshold value is used, the corresponding hop-range is much greater than the true one. 
Even in case where the mean number of estimated hops is close to the original one, the 
hop-range is much wider: which practically means that the algorithm either estimates 
too few edges or too many! 

Furthermore, the proposed edge detection does not add up to the complexity of the 
algorithm, as shown from the time needed for a single data sequence to be processed. 
Plus, it helps the algorithm to be a bit more resistant to noise. The difference between the 
RMSE of the simulations for σn2=0.2 and σn2=0.8 and for the proposed edge detection, is 
approximately 0.18 when for the single threshold value is around 0.27. 

An original edge might be missed due to two main reasons: First, if the frequency hops 
to a value close to the current one or a hop occurs in a short period of time, the edge is 
not that strong and it is hard to even pass through the non-maximum suppression 
process (not a local maximum). This, though, does not, usually, add up significantly to 
the overall RMSE. Second, if within a data sequence there are, for example, 3 edges (four 
dwells), there is a high probability that one, at least, edge will have a magnitude of a 
much lower value than, not only the magnitude values of the remaining edges, but of 
false ones, too. If false edges have large magnitude values, it is usually due to noise. That 
is why in the proposed thresholding we mostly use a relatively low threshold value: to 
let more original edges pass through. And that is why we group the shorter dwells into 
longer ones: to eliminate more false edges. Small dwells are frequently the consequence 
of the high magnitude values of false edges. This, though, sometimes costs in RMSE (if a 
true small dwell is missed) but we had to find a suitable trade-off! 

Considering that a RMSE up to 0.15 - 0.2 is satisfying, the proposed algorithm for white 
Gaussian noise with a standard deviation σn2 = 0.2, noise that is not negligible at all, 



works relatively good. For a standard deviation of σn2 = 0.3 there is a noticeable increase 
in the RMSE that remains nearly the same for up to σn2 = 0.5. For σn2 = 0.8 the increase of 
the RMSE is significant. That happens probably because as the noise power grows: the 
spectrogram produces a less accurate estimation, more intense false hops are produced 
plus the periodogram in the final step does not always estimate the frequency 
accurately. Even so, the RMSE is less than one would expect it to be. 

Additionally, the presented algorithm is simple and fast. The execution time for a single 
simulation of 100 temporal samples is less than 0.1 sec for σn2=0.2 and less than 0.2 sec 
for all the presented cases.  

The following figures show the performance of the algorithm in terms of the RMSE for 
σn2=0.2, 0.3, 0.5, 0.8 and a few simulation runs of the algorithm. 

 

 

 

Figure 1: Performance of the algorithm in terms of the 
RMSE using the proposed edge detector vs. using a 

single threshold value 
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Figure 2: Performance of the algorithm in terms of the 
estimated mean number of hops using the proposed 

thresholding vs. using a single threshold value 

 

 

 

Figure 3: Typical sample simulation run of the proposed 
algorithm 
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Now, the following table contains the results of some more simulations of the algorithm 
for a higher hopping probability and for data sequences consisting of more than 100 
temporal samples. The parameters of the simulations are: σn2=0.2, σA2=1, MC = 300. 

 

 RMSE Estimated Mean 
#Hops  

Estimated  
Hop-Range  

Time for 1 
simulation (sec) 

h = 0.01, T = 100 

True Mean #Hops  = 0.9400 

True  Hop-Range  =      0 - 5 

0.1841 

 

0.9533 

 

 

0 - 5 

 

 

0.0695 

h = 0.02, T = 100 

True Mean #Hops  = 2.0133 

True  Hop-Range  =      0 - 7 

 

0.4041 

 

 

2.0633 

 

 

0 - 8  

 

 

0.0702 

h = 0.03, T = 100 

True Mean #Hops  = 3.0233 

True  Hop-Range  = 0 - 9 

 

0.5492 

 

 

3.4833 

 

 

0 - 9 

 

 

0.0727 

 RMSE Estimated Mean 
#Hops  

Estimated  
Hop-Range  

Time for 1 
simulation (sec) 

h = 0.01, T = 100 

True Mean #Hops  = 0.9400 

True  Hop-Range  = 0 - 5 

 

0.1841 

 

 

0.9533 

 

 

0 - 5 

 

 

0.0695 

h = 0.01, T = 200 

True Mean #Hops  = 2.0667 

True  Hop-Range  = 0 – 7  

 

0.3061 

 

 

2.5467 

 

 

0 - 11 

 

 

0.1700 

h = 0.01, T = 300 

True Mean #Hops  = 2.9600 

True  Hop-Range  = 0 – 8 

 

0.3400 

 

 

3.8800 

 

 

0 - 12 

 

 

0.2166 

 



As the results above show, there is a significant increase of the RMSE when the hopping 
probability increases. That was expected because a higher hopping probability indicates 
more hops, true and false, and it gets harder for the edge detector to detect all the true 
hops and distinguish them from the false ones. When we increase the number of 
temporal samples, though the hopping probability remains constant, the overall number 
of frequency hops of the observed signal still increases. Hence, the RMSE increases as 
well, just not as much as when the hopping probability grows. Moreover, the range of 
the estimated edges remains close to the real one as the hopping probability increases, 
which is a good thing. But it is significantly affected by the increase of the number of 
samples. 

The execution time of a single run is not affected as the hopping probability increases, as 
the above simulations indicate. That is probably because, even for a lower hopping 
probability, many more than the original hops are detected and considered to be true 
ones until they are rejected. But, if we increase the number of temporal samples the 
execution time increases significantly compared to the case where T = 100. That was 
expected as it takes longer for all the three main steps of the algorithm to perform the 
same process operations, for example, 200 or 300 samples instead of 100. Is should take 
approximately twice or three times as long, correspondingly, and as it appears, it does. 

Next, we present a few plots showing the algorithm’s results for a higher hopping 
probability and for an increased number of temporal samples. 
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Figure 4: Typical sample simulation run of the proposed 
algorithm 

Parameters: σn2=0.2, σA2=1, h=0.02, T=100  



 

 Figure 5: Typical sample simulation run of the proposed 
algorithm 

Parameters: σn2=0.2, σA2=1, h=0.01, T=200  
 

 

3.2 Particle Filtering Algorithm – Simulations 

3.2.1 Particle Filtering basics 

Sequential state filtering methods are of vital importance to the statistical analysis of 
stochastic non-linear and/or non-Gaussian state space models. These methods have 
been developed using the Kalman filter, analytical approximations and particle filtering. 
In particle filtering (PF), continuous distributions are approximated by discrete random 
measures which consist of “particles” and associated weights: 

1

( ) ( )
N

n n
n

p x w x xδ
=

= −∑ , 

where wn denotes the weights and δ(· ) denotes the Dirac delta functional. 

In an on-line (PF) algorithm the aim is to estimate the state at time k using the 
measurements up to and including time k. The density that captures all information in 
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these measurements is the posterior density . Direct sampling from the 

posterior function, though, is not feasible. So, an alternative function which is similar to 
the posterior and it is called importance function is used instead. The basic operation of PF 
consists of a random initialization of the state distribution and, as new measurements 
are received, the derivation of new random measures through importance sampling.  

1( |{ } )k
k l lp x y =

In particle filtering, though, the weights have the tendency to become negligible after a 
few iterations (degeneracy). This drawback can be mitigated via re-sampling techniques. 

In this thesis, we refer to the three PF algorithms that were developed by N.D. 
Sidiropoulos, A. Swami and A. Valyrakis [6] for tracking the frequency of a frequency 
hopping complex sinusoid. As it has already been mentioned in section 1.2, the data 
model that was proposed in [6] is actually the one that we used.  
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)
The first algorithm they developed uses the prior importance 

function: , , 1( ,n k n k kx f x u−=    and the updated weights: , , 1 ,( | )n k n k k n kw w p y x−= .The 

second one uses the optimal importance function:  

, 1
, 1

, 1

( | ) ( | )
( | , )

( | ) ( | )
k k k n k

k n k k
k n k

x

p y x p x x
p x x y

p y x p x x dx
−

−
−

=
∫

 

 and the updated weights: , , 1 , 1 , 1 ,( | ) ( , )n k n k k n k n k k n kw w p y x w D y x 1− − − −∞ =  

where
, 1 , 1( , ) ( | ) ( | )k n k k n k

x

D y x p y x p x x d x− = ∫ −
. The optimal importance function takes into 

consideration, contrary to the prior importance function, even the newest available 
measurement for the particle update. The last algorithm uses a rejection-based sampling 
of the importance function. For further information regarding the above PF algorithms, 
please refer to [6]. 
 

3.2.2 Particle Filtering simulations 
For the simulations that follow we used the Matlab code that was developed by A. 
Valyrakis [6] for the PF algorithm that uses the optimal importance function. We chose 
to present this one over the one that uses the prior importance function due to the fact 
that it results to a better RMSE for a smaller number of particles. And we chose it over 
the rejection-based sampling of the importance function because its execution time is 
lesser for a number of particles greater than 1000. We used the multinomial resampling 
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function for the simulations and the following parameters: h=0.01, MC = 100, σA2 = 1, T = 
100. The results that we obtained were close to those of A. Valyrakis [6]. 

 

 RMSE Time for 1 simulation (sec) 

σn2=0.2, N = 3000 0.4724 32.6125 

σn2=0.2, N = 4000 0.4269 50.8527 

 RMSE Time for 1 simulation (sec) 

σn2=0.3, N = 3000 0.5194 31.2961 

σn2=0.3, N = 4000 0.4852 49.3421 

 RMSE Time for 1 simulation (sec) 

σn2=0.5, N = 3000 0.7062 32.6783 

σn2=0.5, N = 4000 0.6854 47.9872 

 RMSE Time for 1 simulation (sec) 

σn2=0.8, N = 3000 0.7465 31.9747 

σn2=0.8, N = 4000 0.7277 51.4547 

 

 

The above simulation runs for 3000 and for 4000 particles are for the same data 
sequences. As we can see, the RMSE decreases as the number of particles is increased. 
The decrease, though, is getting smaller as the noise power increases. But, it has the 
advantage that by increasing the number of particles we can decrease the RMSE. Notice 
that the complexity of particle filtering is O(NT), which is manageable and therefore, we 
can increase the number of particles until we reach a satisfying RMSE. However, 
though, the constants are large. 
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 RMSE Time for 1 simulation (sec) 

h = 0.01, T = 100, N = 4000 0.4269 50.8527 

h = 0.02, T = 100, N = 4000 0.7543 67.6559 

h = 0.03, T = 100, N = 4000 0.8814 87.3280 

 RMSE Time for 1 simulation (sec) 

h = 0.01, T = 100, N = 4000 0.4269 50.8527 

h = 0.01, T = 200, N = 4000 0.5677 121.7219 

h = 0.01, T = 300, N = 4000 0.7919 215.8426 

 

The simulations show that the algorithm is affected by both the increase of the hopping 
probability and the increase of the number of samples. The effect is greater for the 
hopping probability’s value change as the RMSE is mostly caused by the difficulty of the 
hop timing estimation. But, the execution time for the increase in samples is affected 
way more than for the increment of the hopping probability. The execution time of the 
algorithm in general is less than O(NT) and it also depends on the hopping probability. 
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Chapter 4 

The final chapter contains the simulation results, for the exact same data, of the RWS 
approach in addition to the two previously presented algorithms. Later on in the 
chapter, we compare the proposed algorithm with the other two approaches.  

4.1 Comparison – Conclusions 

The simulations results that follow are for the same data sequences for all three 
algorithms: spectrogram segmentation - based, particle filtering and RWS. The 
parameters we used are: MC = 100, T = 100, σA2=1 and h = 0.01, unless it is indicated 
otherwise inside the table. 

 

RMSE Proposed Algorithm Particle Filtering 
Algorithm (N = 4000) RWS Estimation 

σn2=0.2 0.1709 0.4003 0.6525 

σn2=0.3 0.2588 0.4852 0.6482 

σn2=0.5 0.2609 0.5165 0.7922 

σn2=0.8 0.3827 0.7277 0.8374 

RMSE Proposed Algorithm Particle Filtering 
Algorithm (N = 4000) RWS Estimation 

σn2=0.2, h = 0.02, T = 100 0.4802 0.7543 1.1262 

σn2=0.2, h = 0.03, T = 100 0.6268 0.8814 1.4281 

RMSE Proposed Algorithm Particle Filtering 
Algorithm (N = 4000) RWS Estimation 

σn2=0.2, h = 0.01, T = 200 0.2867 0.5677 1.0552 

σn2=0.2, h = 0.01, T = 300 0.3584 0.7919 1.3283 
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Time for 1 simulation (sec) Proposed Algorithm Particle Filtering 
Algorithm (N = 4000) RWS Estimation 

σn2=0.2 0.0748 53.7275 0.0545 

σn2=0.3 0.0769 49.3421 0.0651 

σn2=0.5 0.0791 45.4673 0.0633 

σn2=0.8 0.0983 31.9747 0.0687 

Time for 1 simulation (sec) Proposed Algorithm Particle Filtering 
Algorithm (N = 4000) RWS Estimation 

σn2=0.2, h = 0.02, T = 100 0.0948 67.6559 0.0762 

σn2=0.2, h = 0.03, T = 100 0.0967 87.3280 0.0658 

Time for 1 simulation (sec) Proposed Algorithm Particle Filtering 
Algorithm (N = 4000) RWS Estimation 

σn2=0.2, h = 0.01, T = 200 0.1305 121.7219 0.1102 

σn2=0.2, h = 0.01, T = 300 0.1617 215.8426 0.1631 

 

Spectrogram segmentation-based algorithm vs. RWS estimation 
According to the simulation runs above, both algorithms are just as fast. Notice that the 
RWS is in fact the first step of the proposed algorithm. The latter performs better in 
terms of RMSE than the RWS for all the different standard deviations of white Gaussian 
noise. That proves that the idea we had (section 1.4, chapter 1) about using edge 
detection and how that would help decrease the frequency estimation error, was 
insightful.  

The RWSE, although it does not offer a better RMSE, is a bit more resistant to noise as 
the only significant RMSE-increment occurs for σn2=0.5 unlike the proposed algorithm’s 
RMSE that rises significantly twice: σn2=0.3 and σn2=0.8. 

 Now, as the hopping probability rises or the quantity of temporal samples increases, 
both algorithms show significant weakness in terms of RMSE. But, relatively speaking, 
the proposed algorithm acts more efficiently: its RMSE increment each time is less than 
half the corresponding one for the RWS estimation. 
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Spectrogram segmentation-based algorithm vs. PF algorithm 
As indicated by the simulation runs, both algorithms show a significant increase in 
RMSE for σn2=0.3, the RMSE for up to σn2=0.5 is pretty much the same and σn2=0.8 the 
RMSE increment is great. Additionally, they are both sensitive to the increment of the 
hopping probability and the quantity of samples (less to the latter). In other words, they 
provide a much worse RMSE in those cases. But, the proposed algorithm, compared to 
the PF estimation for N=4000, performs much better in terms of RMSE for all the 
scenarios above. PF though has the advantage that by increasing the number of particles, 
if we can afford to pay the complexity cost, we can decrease the frequency estimation 
error. If there is no saturation after a certain number of particles, than the PF algorithm 
could perhaps compensate this great difference in RMSE (0.25–0.35) with the 
spectrogram segmentation-based algorithm. 

The time it takes the PF algorithm to process a data sequence for 4000 particles is too 
long in comparison with the corresponding one of the proposed algorithm. This 
execution time will keep growing considerably if we keep increasing the number of 
particles, while the time the proposed algorithm needs remains constant. 

 

A major drawback of the presented algorithm over the RWS and the PF method is that it 
is non-causal: it uses future samples to go back and detect previous hops and then 
estimate the frequency at a “past” and at a “present” time. Although we could use a 
causal RWS (see section 2.2) the method does not apply for a causal approach. That is 
because even if we could use dynamic edge detection, in the final step the periodogram 
would still use future samples for the frequency estimation.  
 

 

 

 

 

 

 

 

 



 The plots that follow show the performance in terms of the RMSE of all three algorithms 
plus a few sample runs for a variety of white Gaussian noise as well as for a higher 
hopping probability and for a number of temporal samples more than T = 100.  

 
 

 

Figure 6: Performance of the algorithms in terms of the 
RMSE  
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Figure 7: Typical sample simulation run of all three 
approaches 

   Parameters: σn2=0.2, σA2=1, h=0.01, T=100  

 

 



 
 
 
 

 

Figure 8: Typical sample simulation run of all three 
approaches 

   Parameters: σn2=0.5, σA2=1, h=0.01, T=100  
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Figure 9: Typical sample simulation run of all three 
approaches 

   Parameters: σn2=0.2, σA2=1, h=0.02, T=100  



 
 

Figure 10: Typical sample simulation run of all three 
approaches 

   Parameters: σn2=0.2, σA2=1, h=0.01, T=200  

 
 
 
 
Conclusions 
The spectrogram segmentation-based algorithm we have developed makes use of the 
RWS estimation in a more sophisticated and intuitive way. As a result, we got a more 
efficient algorithm with no complexity cost whatsoever.  
 
Now, the PF algorithm can compete the performance of the proposed algorithm only by 
increasing the number of particles and by paying great, relatively speaking, complexity 
cost. That of course, if there is no saturation after a particular number of particles. Even 
so, at least for the occasion where the temporal samples are 100 and the standard 
deviation of white Gaussian noise is σn2=0.2, the spectrogram segmentation-based 
algorithm is more attractive due to its good estimation (RMSE 0.15-0.2) and its really 
small complexity cost. Still, though, the presented algorithm is at disadvantage in that it 
is non-causal: it uses future samples for the hop-detection and the frequency estimation.  
 
 
 
 
 
 

32 

 



33 

 

Bibliography 

[1] Barbarossa, S. and Scaglione, A., “Parameter estimation of spread spectrum 
frequency-hopping signals using time-frequency distributions”,  Signal 
Processing Advances in Wireless Communications, 1997 First IEEE Signal 
Processing Workshop on Volume , Issue , 16-18 Apr 1997 Page(s):213 – 216 

[2] Andrieu, C., Doucet, A., Tadic, V.B., “On-Line Parameter Estimation in 
General State-Space Models”, Decision and Control, 2005 and 2005 European 
Control Conference. 44th IEEE Conference on Volume, Issue, 12-15 Dec. 2005 
Page(s): 332 - 337 

[3] Petre Stoica, Randolph Moses, “Introduction to spectral analysis”. Printed: 
February 1997, Publisher: Prentice Hall 

[4] Chapter 1: “Advanced edge detection techniques” of “Algorithms for image 
processing and computer vision” by James R. Parker. Printed: November 1996, 
Publisher: Wiley, John & Sons, Incorporated 

[5] Canny, J.F., “A computational approach to edge detection”, IEEE Trans 
Pattern Analysis and Machine Intelligence, 8(6):679-698, Nov 1986 

[6] Sidiropoulos, N.D. ,  Swami, A.  and Valyrakis, A., “Tracking a Frequency 
Hopped Signal Using Particle Filtering”, Acoustics, Speech and Signal 
Processing,  ICASSP 2006 Proceedings, 2006 IEEE International Conference on 
14 - 19 May 2006, Volume: 3,  On page(s): III-III. 

[7] Master Thesis by J.F. Canny, “Finding Edges and Lines in images”, MIT 
Library, Artificial Intelligence Laboratory 

 

 

 


