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ITegiMdn

Ot yevetweot adyopipor (I'A) eivar akyoptbpot ebpeonc-Beltiotonoinong mov Baoilovrot
oty Bewpia e€eMEng Tov AapBivov. Xpnotpuonotobvial eVEEWS GTNY GNIEQLVY] ETOYY] APOL
LTEETEQOLY OE OYECY] PE GAAOLG evpELoTIXOolLS ahyopibpoug yiati o) ayvouvy ce évav
minbuopd and Adoetg, B)dev yoetalovtat var yvwEllovy AETTOUEQELES VLot TIC THOXUETOOLG
TOL TEOBAMMUATOC TOL  HXAOLVTOL VX  ETULADGOLY, XL Y)UAT TNV EXTEAEGY] TOULG
yonotponoovy  xavoveg  petaPoaong mouv  Poaoctloviar o mbavotnteg uow Oyt oe
vietepuvtoTna povieha. Emiong emhbovy molbmhoxa mpoPinpata ypnyopodtepx and

ailoug akyopifuoug yratt vTooTNEILoLY TAEUAANMGUO.

211V TaEOoLON SITAWUXTINY EQYXOLX 08 TEWTY YOy TEAyUxTOTOMONUE entevng
éoevvar twv I'A mov éyovv viomowmbel oe FPGAs. Xt ouvvéyetor  avaddbOnuov
YALQAATNQLOTINE OTIWS O YEOVOG EXTEAEONC TwV aAyopifuwy, ot mopotl mov nutalopavovy
010 LAMXO Tou vAomomMONuay, nal EYlve GLYUQELOY] O OYECY HE TIC LAOTOWOELS OE

AOYLOPNO.

2y ovvéyeta yonotponoinre évag I'A mov 7 oyediaorn tov oe LAXO LENEYE
ahka elye vhomownfel yioo madxtoTEE TAATYPOQUA uat pOVO Y 11 BEATLOTOTOINGY TG
owvdpmorc F(x)=2x. Agod éyvav ot xatdhnhes adhoyéc o alyoetbuoc vhomorOnue yro
™V epmopny] mhatoppx XUP mouv meptéyet v Virtex II Pro FPGA. Xty mhatpdopa
avty  yonowponombnue o evowpxtwuevog emcéepynotic IBM  PowerPc yur v
ETUMOVWYIX [E TOV ULTOAOYIOTY] péow oetptaxng Bbpog RS-232 xabog uor yroa v
ETMOWLVIX Pe TO LAMO 610 ornoto vlomoinxe o I'A. Apobd motonombnure 1 opbotnTa
¢ LAOTOINGNG, OTY OLVEYELX TEOCTEONUAY TEQLOOOTEQES OGULVXETNCELS TNG KOEYYQ
F(x)=ax’+bx*+cx+d. [ ™ oyediaon yonoponomdnue to epyadeio Xilinx ISE 7.1 o
Yt v Tpocopoiwoy o Modelsim SE 6.2. Télog o yevetndg ahyoptbpog natéfrnne oty
mhatpoopa XUP pe 1o Xilink EDK 7.1. To anotéheopa eivar poe TANEWS AELTOLOYIXY
TAATPOQUA YOt EXTEAECY] TELQAUXTOV PE TOV OLYXEXQLUEVO YeveTxd oAyoptfpo yux

Bektiotonoinom 6 cuVaETNOEWY.
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Agiepwon

2toug yoveig pov Xtépavo nat Kuptaur, ota adépypra pov Aéomowva naw Anuvton no oe

OAX TOL UYUTIYUEVE OV TOOCWTOX.
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Evyagtotieg

Oa NBeha va evyaptotow tov xolbnynn x. lwavvn Tanaevotabiov yro v emiBredrn now v
#BodNyMoN oL UXTA TN SLAEUELX TNG EUTOVNONG TNG TXEOLOAS SIMAWUATING EQYXATLAG.
Emmkéov, O nbeho vor Tov eLYAQLOTNOW Yl TIG OYUAVTIXEG EUTIELQIEG TIOL OV TOOCEPEQE

1t 1) SLpxetx G epyoiag pov ato Epyaotipto Minpoene€epynotonv xat YxoD.

Emniong bo nbeho va euyaplomow ta vmokotma pély g e€eTaoTMNG EMTEOTNG, TOV
nobnynm n Amoctoho AdMa xar tov xabnymt % Awovdoro Ilvevpotindto yuor v

OULVELGPOQE TOLG GE AVTHV TNG EQYUOLX.

ISwitepa B hehor v evyaptomow tov Kumptavd Tamadnpntetov yo v emiBredn san vy
noALTIY Bonbetx tov oty StmhwpaTinn pov spyacin. Oa Nbeka, eniong, va euYAELOTNOW
tov Anunten Meiviavn mov #tav mavto mpobupog va mpooypepet 11 Bonbetd tov dmote
yoetlotay. Eniong euyaptote OAOLG TOLG TEOTTLYIXXODG UKL UETATTUYLAUOLG POLTYTEG TOL

epyxoTnElov.

Evyaptote, entong, 6Aoug Toug gikouvg pov, tov ArEEn, tov Xopmnoto, tov I'avvy, tov I'woyo,
vAm. (€pete otot eiotel), yua ™) ovpnapaotaoy uul v Nl LTOCoTEIEN TOLG OAX XLTA Ta

YOOVLX TV GTIOLOWY UOL OTX XaVLA.

Teéhog, Ba Nbeka vor evYXEIGTNOW TNV OOYEVELX OV, TIOL pe oTNELée nat pe otneilet, Oyt

HOVO OTIC OTIOLBES POV, XAAL G OAOLG TOLG TOPELS TNG LWNG JOv.
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Chapter 1

Introduction

1.1. An Introduction on Genetic algorithms

Genetic algorithms (GAs) are search-optimization techniques based on Darwin’s
theory about evolution. They were invented by John Holland at University of Michigan
in the early 1970s [10]. Genetic algorithms are simple to implement and they can solve

complex problems in contrast to other heuristic algorithms because they:

° Search from a population of points and not a single point. Most other
algorithms can only explore the solution space to a problem in one direction at
a time, and if the solution they discover turns out to be suboptimal, there is
nothing to do but abandon all work previously completed and start over.
However, since GAs have a population of points, they can explore the solution
space in multiple directions at once. If one path turns out to be a dead end,
they can easily eliminate it and continue work on more promising avenues,

giving them a greater chance each run of finding the optimal solution.
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. Use objective function - otherwise denoted as fitness function - information and
not other auxiliary knowledge. GAs knows nothing about the problems they are
deployed to solve. Instead of using previously known domain-specific
information to guide each step and making changes they make random changes
to their candidate solutions and then use the fitness function to determine

whether those changes produce an improvement.

o Use probabilistic transition rules and not deterministic rules. The search-
optimization process is based on probabilities which give flexibility to the genetic
algorithm. If the problem has changed, the genetic algorithm can solve it because

it doesn’t based on standard parameters but based on probabilities.

. Work with the coding of the parameter set and not the parameters themselves.
Many real-wortld problems cannot be stated in terms of a single value to be
minimized or maximized, but must be expressed in terms of multiple
objectives, usually with tradeoffs involved. GAs manipulates many parameters

simultaneously.
These four characteristics make them powerful, flexible and robust.

Genetic algorithm is a stochastic technique with simple operations based on
natural selection. The basic operations are selection, crossover, and mutation. Initially,
we have a randomly generated population of candidate solutions of the problem in
order to cover the entire range of possible solutions. A fitness function selects the
parents by evaluating each member’s fitness value. The selection of the individuals is
performed according to their fitness values. The fittest member has more chances to be
selected. Genetic operations such as crossover and mutation are applied on the
parents and the new individuals are generated, called children. Finally a substitution
between the old and the new population is made. The algorithm runs until a
termination condition is met, number of generation. An indicative flowchart of a

genetic algorithm is presented in Figure 1 [25].
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Randomly
generated
population

Evaluate fitness
of each member

Reach number

End Yes :
of generations

Selection

Crossover

Mutation

New population

Figure 1: Generic — Type flowchart of a Genetic Algorithm
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The basic steps of a genetic algorithm are:

1)

2)

3)

4)

5

6

7)

Start: Generate random population of # chromosomes (suitable solutions for

the problem).

Fitness: Evaluate the fitness of each chromosome x of the population

according to a fitness function F(x).

Selection: Select two parent chromosomes from a population according to

their fitness i.e. the better fitness, the bigger chance to be selected.

Crossover: Crossover the parents to form two new offsprings, or children,
according to a crossover probability. If no crossover is performed, offsprings

are an exact copy of parents.

Mutation: Mutate new offspring at each locus (position in chromosome)

according to a mutation probability.

New population: Use the generated population for a new execution of the

algorithm.

Check: If the termination condition is satisfied, stop and return the best

solution in the current population else go to step 2.

The chromosome should contain information about the solution it represents in some

way. The most common way is encoding with a binary string. Each bit in this string

can represent some characteristic of the solution, or, the entire string can represent a

number. The chromosome then could look like this (see Table 1):

Chromosome 1 Chromosome 2
10110100101001 00001110111010

Table 1: Encoding of a chromosome

10
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There are many other ways of encoding which depend on the nature of the problem.
Permutation encoding, value encoding and tree encoding are some of the methods used

with success in the field of genetic algorithms.

According to Darwin’s theory of evolution, the best chromosomes should survive
and form the new population. There are many methods of selection such as roulette
wheel selection, rank selection, steady-state selection, and elitism. In roulette wheel
selection method, the chromosomes with better fitness values have more chances to be
selected than others with small fitness values. Imagine a roulette wheel where all
chromosomes from the population are placed on it. Each chromosome has its place on
the roulette according to its fitness value (see Figure2). Then a marble is thrown there
and selects the chromosome. Chromosome with bigger fitness will be selected more
times. The roulette wheel method could not select the best chromosome because the

whole process is randomly (spin the roulette is a random operation).

@ Chramosarne 1
& Chriomosore 2
O Chramosorme 3

O Chiomosome 4

Figure 2: Roulette wheel selection

The previous selection method might face problems when the fitnesses differ very
much. For example, if the best chromosome fitness has the 90% of the roulette wheel
place, then the other chromosomes that share the 10% of the remaining space will have

very few chances to be selected [25].

Rank selection first ranks the population and then every chromosome receives
fitness from this ranking. The worst will have fitness 1, second worst 2etc. and the best

will have fitness /N which equals the number of chromosomes in the population. After

11
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ranking, all the chromosomes have a chance to be selected. But this method can lead to
slower convergence, because the best chromosomes do not greatly differ from other

ones.

Steady — state selection method is not particular of selecting parents. The main
idea of this selection is that a large part of chromosomes should survive and included in
the next generation. GA then works in a following way: In every generation a few
chromosomes with high fitnesses values are selected for creating a new offspring. Then
some bad chromosomes with low fitness value are removed and the new offspring is

placed in their place. The rest of population survives in the new generation.

When creating a new population with crossover and mutation, there is a big
possibility, that the best chromosome will be lost. Elitism is a method, which first
copies the best chromosome, or a few best chromosomes to the new population. The
rest is done in the classical way. Elitism can very rapidly increase the GA performance,

because it prevents from losing the best found solution.

Crossover operation selects genes from the parent chromosomes and creates two
offsprings. The simplest way to do this is to randomly choose a crossover point and

swap the suffixes of the two parents (see Table 2).

Chromosome 1 11011 | 00100110110
Chromosome 2 11111 | 11000011110
Offspring 1 11011 | 11000011110
Offspring 2 11111 | 00100110110

Table 2: Crossover example

Different types of crossover exist, such as single point crossover, two point crossover,

and uniform crossover.

Single point crossover: One crossover point is selected randomly, and binary

string from the beginning of chromosome up to the crossover point is copied from one

12
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parent, the rest is copied from the second parent. The second offspring is produced

with a similar process. This is shown in Figure 3.

Parent A Parent B Offspring A Offspring B
B |+ B - N + | [ ]

Figure 3: One point crossover

Two point crossover: Two crossover points are selected randomly, a binary string
from the beginning of chromosome to the first crossover point is copied from one
parent, the part from the first to the second crossover point is copied from the second

parent and the rest is copied from the first parent again. This is shown in Figure 4.

Parent A Parent B Offspring A Offspring B
B B+ N - N +

Figure 4: Two point crossover

Uniform Crossover: As shown in Figure 5, bits are randomly copied from the

first or from the second parent.

Parent A Parent B Offspring A Offspring B

Figure 5: Uniform crossover

After the crossover is performed, mutation operation takes place. This is to prevent
from falling all solutions in population into a local optimum of solved problem.
Mutation changes randomly the new offspring. For binary encoding we can flip a few

randomly chosen bits from 1 to 0 or from 0 to 1 (see Table 3).

Original offspring 1 1101111000011110

13



Chapter 1 — Introduction

Original offspring 2 | 1101100100110110
Mutated offspring 1 1100111000011110

Mutated offspring 2 1101101100110110

Table 3: Mutation example

Genetic algorithms have been applied successfully to many hard optimization
problems such as: VLSI layout optimization, job scheduling, function optimization,
code breaking, Boolean satisfiability, traveling salesman problem, Hamiltonian circuit

problem, bioinformatics, financial.

1.2. Motivation for implementing genetic algorithms on hardware

A Genetic Algorithm is an optimization method based on natural selection. But
application of GAs to increasingly complex problems can overwhelm software
implementations of GAs, causing unacceptable delays in the optimization process. This
is true for any non-trivial application of GAs if the search space is large. Therefore, a
hardware implementation of a GA would be applicable for dealing with problems too
complex for software-based GAs. Because a general-purpose GA engine requires
certain parts of its design to be easily changed, e.g. the function to be optimized,
Hardware-based Genetic Algorithm (HGA) can benefit from field-programmable gate
arrays (FPGAs). Reprogrammable FPGAs that are programmed via bit patterns stored

in static RAMs are powerful candidates for the development of HGA system [10].

A simple empirical analysis of software-based GA’s indicated that a small number
of simple operations and the function to be optimized were executed frequently during
the run. Neglecting I/O, these operations accounted for 80-90% of the total execution
time. If 7 is the population size (number of strings manipulated by the GA in iteration)
and g is the number of generations, a typical GA would execute each of its operations
mg times. For complex problems, large values of 7 and g are required, so it is imperative

to make the operations as efficient as possible. A work by Spears and De Jong [27]

14
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indicates that for NP-complete problems, =100 and values of g in the order of 10* —
10° may be necessary to obtain a good result and avoid premature convergence to a
local optimum. Pipelining and parallelization can help providing the desired efficiency,
and they are easily implemented in hardware. The nature of GA operators is such that
GAs lends themselves well to pipelining and parallelization. For example, selection of
population members can be parallelized to the practical limit of area of the chip(s) on
which selection modules are implemented. Once these modules have made their
selections, they can pass the selected members to the modules, which perform
crossover and mutation, which in turn pass the new members to the fitness modules
for evaluation. This way a coarse-grained pipeline is implemented. The capability for

parallelization and pipelining helps in efficiently mapping GA to hardware [3], [10].

1.3. The selected hardware genetic algorithm

After making a research for genetic algorithms implemented on FPGAs, we decided to
occupy with the hardware based genetic algorithm proposed by Scott [10]. The main
reason was that the VHDL implementation was available through the Internet [26]. The
initial design was implemented under the Mentor framework targeting a BORG board
with Xilinx FPGAs. We ported the design to a modern platform, XUP, and verified its

correct operation.

1.4. Contributions of this work
The contributions of this thesis are the following:
e Implementation of a genetic algorithm on a Virtex II Pro FPGA platform.

e VHDL coding and synthesis with Xilinx ISE 7.1 tools, post place and route
simulation and verification with Modelsim 6.0. In addition, Xilinx EDK 7.1 was

used for including the embedded PowerPC processor.

15
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e Six fitness functions were implemented for extension as compared to one

fitness function implemented on the initial implementation.

e Results evaluation from a different point of view compared to the initial

implementation.

16
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Chapter 2

A survey of genetic algorithms and their implementations

2.1. Introduction

Genetic algorithms are known from the beginning of 90’s for their assistance in new
technologies. They are simple to implement and they can solve complex problems in
contrast to other heuristic algorithms. They use techniques such as selection, crossover

and mutation as they were described in Chapter 1.

2.1.1. A genetic algorithm example

As a simple example, imagine a population of four strings having five bits each. Also
imagine a fitness function F(x) = 3x which simply returns the integer value of three
times the binary integer (e.g. F (00000) = 0, F (00001) = 3, F (00010) = 6, etc.). The

goal is to optimize in this case maximize the fitness function over the domain 0 < x <

17
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31. Now imagine a population of the four strings generated randomly before genetic
algorithm starts. The corresponding fitness values and percentages come from the

fitness function F (x) [10], [23].

In the following Tables, 4 and 5 the “% of Total” column contains the probability
of each string’s selection. So initially 11010 has 41.2 % chance of selection, 01101 has
20.6 % chance, and so on. The selection process can be thought as spinning a
“weighted roulette wheel” like in Figure 2. The results from the spins are given in the
“Actual Count” column of Table 4. As expected these values follow the corresponding

values of the “Expected Count” column.

After selecting the strings the genetic algorithm randomly pairs the newly selected
members and looks at each pair individually. For each pair, e.g. A = 11010 and B =
01101, the genetic algorithm decides whether or not to perform crossover. If it does
not, then both strings in the pair are placed into the population with possible
mutations. If it does then a random crossover point is selected and crossover proceeds.
Then the children A’ and B’, are placed in the population with possible mutations. The
genetic algorithm invokes the mutation operator on the new bit strings very rarely
usually in the order of less than 0.01 probability, generating a random number for each
bit and flipping that bit if the random number is less than or equal to the mutation

probability.

After the current generation’s selections, crossovers and mutations are completed,
the new strings are placed in a new population representing the next generation. In this
example generation, average fitness increased by 38 % and maximum fitness increased
by 11%. This simple process would continue for several generations until a termination

criterion is met.
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i String String Fitness % of Total Expected Actual
(Binary) (Decimal) F(xi)= 3xi F(xi) / Zfi Count Count
xi xi F(xi)/(mean)F
1 11010 26 78 0.412 1.65 2
2 01101 13 39 0.206 0.82 1
3 10110 22 66 0.35 1.39 1
4 00010 2 6 0.031 0.12 0
Sum (XF) 189 1 3.98 4
Avg (mean 47.25 0.25 0.995 1
F) 78 0.412 1.65 2
Max

Table 4: Four strings and their fitness values

i After selection Mate Crossover Point After Crossover Fitness
F) = 3x
1 11]010 X3 2 11101 87
2 1/1010 X4 1 10110 66
3 01101 X1 2 01010 30
4 10110 X2 1 11010 78
Sum 261
Avg 65.25
Max 87

Table 5: The population after selection and crossover

2.2. Implementations of genetic algorithms on FPGAs

In this section we present 18 implementations of genetic algorithms on FPGAs. We
present the current status of genetic algorithms in FPGAs and give an overview of the

existing approaches and their trade offs.
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2.2.1. Koonar et al

Koonar et al. proposed a genetic algorithm for circuit partitioning in VLSI physical
design automation. The design consists of 9 modules including the external memories

(see Figure 6) [3].

The control registers are loaded with appropriated values using the CPU interface
and the process starts with an active high pulse. After the process starts, the system
takes the netlist from the Top-level IO’s and stores it into the netlist memory. Then the
core of the system generates the initial population randomly and stores it into the
chromosome memory. The selection module chooses parents with good fitness values
and sends the addresses in the crossover and the mutation module. In this module the
two functions of crossover and mutation performed on the parents and the new
population is generated. The fitness module is responsible for creating the fitness values
for the children. Main controller checks the modules by sending control signals. The
selection module uses Tournament selection, choosing the one with the best fitness
value for crossover and the children are in the chromosome memory. The selection
module reads four random fitness values from the fitness memory. It compares two
pairs of fitness values and chooses the best from each pair. The addresses of these two
best values stored until the selection module will be enabled again. These addresses
represent the starting address of the parents in the chromosome memory. The
chromosome memory is separated in two parts. Parents stored in the first part and
children in the other. One word from each parent is read from the memory and a
counter is increased for the words of the chromosomes. The crossover module creates
a random crossover mask for each word of the parents. The crossover and mutation
rates compared with a random 8-bit number. If this number is smaller than the
crossover and mutation rates these operations are performed, otherwise the parents are
copied to the children. The results are stored word by word in the memory. The
starting memory address of the children obtained from the main control state machine
and the process repeated until the counter reaches the length of the chromosome.
When the population is generated, the fitness module creates values for the children.

The fitness module defines for each net if the partitioning of the chromosome
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generates a cut. For each chromosome 0, the fitness counter becomes 0 and the
chromosome and the net are read word by word from the chromosome and the net
memory. Moreover, for each word of the chromosome and the net, an ‘AND’
operation followed by an ‘OR’ operation. This generates information, based on the
present word of the chromosome, in which partition the net belongs. If a net is met in
a specific partition the bit it indicates this is kept. If both of the bits are ‘1’ this shows a
cut and the fitness counter increments. This is repeated for each word and the final

fitness is modified in comparison with the number of cells that exists in each partition.

The main controller starts reading the input netlist, after receives a signal and loads
it into the netlist memory. Then it generates random chromosomes and random
population in the chromosomes memory. After initializing the memories, three
functions are executed by the main controller. Fitness, selection and crossover and

mutation function, using some control signals to produce the final population.

CPU interface

4+ to Control
Registers
F
Control
Registers
Top-level b 4 | b J - - r l B
Data and Crossove
Control 10°s Main Selection & _| Fitness
: ™| controller Module » Mutation[—*| Module
Module
Memory Mux

Fy k. F 3

r r r

Fitness Chromosome Hetlist
Memory Memony Memory

Figure 6: Architecture of the genetic algorithm processor

We present Tables 6, 7, 8 and 9 with results below for hardware and software

implementations for different generation count and population size:
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Name Number of nets Number of modules
Pcbl 32 24
Chip1 294 300
Chip3 239 274

Table 6: Benchmarks

Benchmarks Generation Count Software Time(ms) Hardware Time(ms)
Pcbl 20 200 1.63

Nnets=32 60 600 491

Nmods=24 100 900 7.20

Chip1 20 1,700 40.5

Nnets=294 60 4,800 121.25

Nmods=300 100 8,100 202.32

Chip3 20 1,200 23.23

Nnets=239 60 3,400 69.52

Nmods=274 100 5,900 116.23

Table 7: Performance results for Hardware GA and Software
GA for different Generation Count

Benchmarks Generation Count Software Time(ms) Hardware Time(ms)
Pcbl 20 200 1.63

Nnets=32 60 700 4.82

Nmods=24 100 1,100 7.20

Chip1 20 1,700 40.5

Nnets=294 60 4,900 122.25

Nmods=300 100 8,800 203.6

Chip3 20 1,200 23.23

Nnets=239 60 3,800 69.36

Nmods=274 100 5,700 115.32

Table 8: Performance results for Hardware GA and Software
GA for different Population Size
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Parameters Parameters Value
Population Size 20
Generation Count 20
Crossover Rate 0.99
Mutation Rate 0.01
Crossover Type Uniform
Mutation Type Tournament

Table 9: Default genetic parameters

During the simulation results we realize that hardware implementation is much faster

than software design.

2.2.2. Tang et al

Wallace et al. implemented a hardware genetic algorithm using FPGA known as FGA.
The PCI based hardware GA processor consists of 2 FPGAs. The first is used for the
bus interface and the control unit with the implementation of the genetic operators.
The second is used for the implementation of an objective function [4]. The block

diagram is presented in Figure 7 below:
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Figure 7: Block Diagram of FGA

First of all, it is a PCI interface with two dual port RAMs. The genetic operations
are implemented in hardware and they are programmable. The fitness function can be
modified by a single FPGA. In this design, the genetic operators are implemented in
parallel and pipelined architectures, using FPGA. The parts of the genetic operators are
the pseudo random number generator, the selection module, the crossover module and
the mutation stage. The pseudo random number generator consists of a fast
asynchronous clock 100MHz and the random number it generates, it is 96 bit length.
For the selection module we use roulette wheel selection with optimized hardware. In
the crossover module if the random string of bits generated from the random number
generator is smaller than the value of the register for crossover and if another register is
high than the crossover begins. Two 16-bit registers produced from the parents. There
are 3 types of crossover, the one point crossover, the multi point crossover and finally
the uniform crossover. There are four types of mutation, the one bit mutation, the
multi bit mutation, masked mutation and random mutation. To test this

implementation proposed above they used population size of 256. They used the
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uniform crossover method with crossover rate 0.9 and the random mutation method
with mutation rate 0.09. It took 500 psec to initialize the population with the single
FGA in contrast with 5.34 msec in Pentium 2.4 GHz machine. So we realize that with

FGA boards we can achieve linear speedups.

2.2.3. Aporntewan et al

Aporntewan et al. proposed a hardware implementation of the compact genetic
algorithm. The compact genetic algorithm is implemented in VHDL and fabricated in
FPGA. Moreover, the compact genetic algorithm, represent a population as a vector
with 1 dimension, where /is the length of the chromosome. I dimension of the vector is
the probability to be 1 or 0. So, the compact genetic algorithm manages the vector
instead of the population and this decreases the number of the bits demanded to keep
the stored population. Consequently, we can use registers for the probability vector. We
have the population (n), which represented as an | dimension probability vector and the
chromosome length (1).The p (i) is the probability of 7 bit and initially is 0.5. Then we have
the @ (z) and 4 (z) which generated according to p.

The a (2) is 1 with probability p(z) and O elsewhere. Afterwards, we have the fitnesses for
a, b.1f f,> fyand if a (i) = 1 and & (i) = 1, the p (i) increased by 1/n, otherwise decreased
by 1/n. This continues until the p (i) takes the value 0 or 1. Finally p gives us the finally
solution [2]. The pseudo code for the compact genetic algorithm is shown in Figure 8

below:
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Compact GA parameters:
n: population size.
{: chromosome length.

fori=1tol do

pli] = 0.5;
repeat
fori=1tol do . . )
ali] = with probability p[i]

0 otherwise

bi] = { 1  with prgbabilityp[i]
0 otherwise

endfor

// Fitness calculation
Jo = fitness(a)
fr = fitness(b)

fori=1to!l do
if f, = fi then
if al[i] = 1 and b[¢] = O then

pli] = min(1. p[i] + 1)
if a[?] =0 and b[i] = 1 then
[

p[i] = max(0, p[i] - %j
else

if ai] and b[¢] = 0 then

1

a]_ max(0. p[i] - -

[ =
if a[?] =0 and b[i] = 1 then
pli] =min(1, p[i] + 1)
endif
endfor

until each p[i] € {0.1}

Figure 8: Pseudo code of the compact genetic algorithm

For the random number generator we use one dimensional two state cellular
automata. We use 8 bit for the number which is satisfied for a random process. When
we have a lot of bits we have best quality. The numbers of the random number
generators are the same with the length of the chromosome. The probability register is
a module that keeps the p(7), which is an 8 bit integer. The population must be a power
of two. The hardware organization shown below consists of comparators which
compare two integers and if 7># the output is 1, otherwise is 0. In the design below we
can see the buffers where they keep the 4(7) and the 4(z). There are also two fitness
evaluator modules to compute the values of 4, 4. The hardware organization is shown

in Figure 9 below:
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Figure 9: Hardware Ortganization

The compact genetic algorithm is more suitable for hardware implementations than the
simple genetic algorithm. The hardware genetic algorithm is 1000 times faster than a
version of software (see Table 10). This compact genetic algorithm is targeted into a

Xilinx Virtex VIO00FG680 FPGA chip.

Software Hardware Speedup
(200 MHz Ultra Sparc 2) (FPGA 20 MHz)

2:30 min 0.15sec 1000

Table 10: Comparison between software and hardware

27



Chapter 2 — A survey of genetic algorithms and their implementations

2.2.4. Tommiska et al

Tommiska et al. suggest a genetic algorithm with ALTERA hardware description
language implemented in a 10K FPGA. The hardware consists of a Pentium
microprocessor with 4 PCI slots. The population is located in the EABs (embedded
array blocks), which are flexible RAM. The fitness function is located in the LABs
(logic array blocks), which are for arithmetic operations [8]. The random number
generator is very important, so they choose a linear shift register (LSHR), which is
simple to implement and it generates good random numbers. In this design, there are
three LSHR because of the periodicity of the random numbers. The random number
generator consists of a noise diode, an amplifier and an analog to digital converter. In
the mutation stage, they use one point mutation with rate 1 or different. The genetic
algorithm run in a pipeline and consists of four stages, which are separated by register
banks. The register banks are used for the synchronization of the pipeline and for the
safety of the chromosomes addresses. This means that the memory address we read the
chromosome is the same we write it. In the first stage, we select two random
chromosomes from the memory. The memory is implemented synchronous with
distinctive read and write ports. In the second part of the pipeline the two random
chromosomes are submitted for crossover and mutation and they pass through the
third stage with the offsprings. The crossover is selected randomly and the offsprings
are submitted for mutation, which is implemented as invert of the random selected bit
in the 32 bit chromosome. In this implementation Tommiska et al used crossover rate
equal to 1 and mutation rate equal to 0.31. The fitness evaluation module has the four
chromosomes (parents and offsprings). The fitness function is implemented as a simple
comparison of the 32 bit quantities. The chromosomes are compared with round robin
algorithm and the number of comparisons is six (one with other three). The best two
chromosomes are selected and write back to the last stage of the pipeline. Finally, these
two chromosomes are written back to the same memory address, where they had read

before. The process described above is presented in Figure 10.

The design proposed here is very fast (4 clock cycles) in comparison with software

implementations. FPGAs are faster than microprocessors for a genetic algorithm. The
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clock cycle of the entire pipeline is 80 ns. The selection, crossover mutation, fitness
evaluation and write back operations spent 160ns. They run the same algorithm coded
in C language in a Pentium processor and they realize that the genetic operations took

34 psec. This means that the implementation they proposed is 212 times faster than

software.

random
control number
generator
& 3 F |
i | | T X
3 - Eirpl NI SR el B L
2 | [32azbrs g mutation g g logic
stage 1 stage 2 siege 3 stage 4

TuBOns

Figure 10: Genetic algorithm pipeline on four stages

2.2.5. Emam et al

Emam et al. introduced an FPGA based genetic algorithm in the application of the
blind signal separation. The variables are represented as genes in a chromosome. The
natural selection guarantees that chromosomes with best fitness values will be

generated in the new population because they result from parents with the best fitness
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values. Blind signal separation means that we detect mixtures of independent sources
and making use of these signals, we recover the original signals. We can take these

mixtures signals instantaneous [11].
X)) =AXs (1)

A: the mixture matrix, s (t): sources vector and x (t): the final vector (without noise).

The sources can be separated by finding a matrix w that
wXA=PXxXD
P: modified matrix, D: diagonal matrix. So the signal we recover is:
Yl =w Xx () =>y @) =P XD Xl

The chromosomes of the application composed of the filter factors and the fitness
value. Their length is 64 bits, 48 bits for the filter factors and 16 bits for the fitness

value. Figure 11 presents the chromosome representation.

fitness
Wizt | Wizz |Wizs [ Wa12 | W21z |Waaz | yalue
48 bits 16 bits

Figure 11: Chromosome representation

Genetic algorithms are responsible for optimizing the factors of the filters, which
are used to separate two mixed signals. Initially, the factors of the filters take random
values and these values are sent to the filters in the DSP. The output signals are tested
for separation and evaluated by the fitness function. The fitness function represents the

similarity between the real and the estimated model.

F=1—c(k) ande(®k)=y(k)—y (k)
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The factors of the filters and the fitness values are placed in a matrix with the
probability of mutation, in order that registers will be generated in the FPGA. The
genetic operator will choose the chromosomes through the selection. The operations of
crossover and mutation will recombine the chromosomes to take the offspring. The
new generation goes back to the DSP processor so that the output signals will be
estimated for the separation. This system described above implemented in a PCI board
consists of a DSP processor and an FPGA. The size of the population is 80 and the
mutation probability is 0.1. Figure 12 presents the process we described. The results are
shown in Table 11. Hardware genetic algorithm is a very good implementation for real

time application where the time of the whole application depends on the fitness

function.

Block Total Number of Number of Maximum Maximum
Name Number of Equivalent IOB Gates Path Delay Frequency

Slices Design Gates (ns) (MHz)

RNG 41 721 1,776 15.67 173.13

Selector 440 5,264 1,392 63.366 62.449

Crossover 193 2,354 1,392 27.138 63.291

Mutation 148 1,834 1,392 38.79 83.486

Total GO 1,081 12,618 1,392 69.789 58.782

Table 11: Results
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Figure 12: Genetic algorithm in Blind signal separation

2.2.6. Scott et al.

Scott et al. suggested a hardware-based genetic algorithm implemented in VHDL [10].
The first part denoted as front-end of the HGA, consists of an interface running on a
computer. This interface takes the parameters from the user and writes them in a
shared memory standing between the first and the second part, denoted as back-end, of
the HGA. User defines the fitness function in C or VHDL. All of the modules have

been written in behavioral non synthesizable VHDL except the memory [10], [23].

Initially, all the parameters are loaded into the shared memory. The memory

module plays the role of the HGA controller. It receives a signal of the front end part
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and connects the interface with the back-end. The memory interface module updates
fitness module, crossover and mutate module, random number generator and the
population sequencer that the HGA starts. Each module mentioned above asks for the
parameters it needs from the memory module. The population sequencer initiates the
pipeline operation, asking from the memory module the members of the population to
pass them through the selection module. The selection module takes the members from
the population sequencer and decides for them until a suitable pair come. When the
pair passes to the crossover and mutation module, the selection module resets itself and
restarts the selection process. When the crossover and mutation stage takes the pair
from the selection module, decides if it makes crossover and mutation and when it
finished the offsprings are sent to the fitness module. In the fitness module the two
members are evaluated and are written to the memory interface. Then, the fitness

module continues its work and when it finished sends a signal to the front end.

The design is coarse — grained pipeline. When a module finishes a process, waits
for another input to continues. So, genetic functions are not good to be interrupted if
others are running. The parallelism can be inserted putting two selections modules. The
population sequencer is the most time — consuming part of this design. Scott et al
simulated the system for several fitness functions and they have proven its speedup

over the software approach. An extended presentation of this work is available in

Chapter 3.

2.2.7. Mostafa et al

Mostafa et al. proposed an implementation of a parallel — pipelined hardware genetic
algorithm using VHDL for programming the FPGA. The proposed pipelined —
parallelized hardware genetic algorithm (PPHGA) consists of five parts. First of all, the
random number generator supplies the system with all the random numbers it needs.
They suggested linear cellular automation technique for the pseudo random bit —

strings. There are 16 different bit — strings and the clock cycle is huge. In this way, they
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have more randomness than the linear feedback shift register. The output of the RNG
supplies the selection module and the crossover and mutation module. The sequencer
module is used for drawing the members of the population in sequence from the
memory due to a protocol, which is used for all the methods. After the sequencer
module there is the selection module, which selects the members that are going to be
crossover and mutated. The fourth module is crossover and mutation, which is
responsible for the crossover and the mutation of the bit — strings. The fifth module is
the fitness module which calculates the fitness values of the members and decides if the

program must be stopped [9].

There is a 32bit floating point module to make operations with the decimal point.
Finally, there is the memory and the control unit which organizes the process between
the modules and the memory. Moreover, Mostafa et al used three 32 bit floating point
registers: BR, AC, QR. Each register is separated in two parts. The registers give delay
in the design and the biggest delay is observed in the fitness module. The PPHGA has
practical applications which are the linear function interpolation, the thermistor data
processing and the computation of vehicle lateral acceleration. In these applications

they realize that the PPHGA perform better than other search algorithms.

2.2.8. Peter Martin

Peter Martin presented a hardware implementation of a genetic programming system
using FPGAs and Handel — C. Handel — C is a high level programming language which
is located in the centre of the hardware. The output of this language is a file that is used
for inserting data in the FPGA. The syntax is like C language. The advantage of the
parallel hardware generation is that we use hardware and we can achieve parallelization
directly. In a computer with simple processor this can be succeeded with the division of
time. Handel — C supports parallelization and integers. The communication between
hardware and the outside world is accomplished with interfaces. In addition, the

expressions take 1 clock cycle and are constructed from combined logic. In other hand,
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does not support stack and recursive functions directly. A Handel — C code is portable
and it can be used for several times. From the genetic operations only the fitness
function is prepared on the FPGA. The other functions such as crossover and mutation
are implemented in a host computer. By way of experiment FPGA is 200 times faster
than a Pentium processor of 750 MHz. Sometimes, the fitness function and the initial
population are implemented in the FPGA. In an experiment they put 4 FPGAs for
each operation and utilizing a pipeline each FPGA passes its results to the others. They
compared this design with an implementation in software in 125 MHz workstation and
they realized that the results were 4 times better. Peter Martin implemented a complete

genetic programming system with Handel — C in hardware [1].

Handel — C supports direct parallelization by activating effective implementation of
instructions and this increment the efficiency. Random number generator is used twice.
Firstly, to generate the initial population and secondly to choose which of the genetic
operators is going to be used. The linear feedback shift register was used and the word
length was 32. The pseudo random number is generated in one clock cycle. In the
breeding policy, the tournament selection was used and the mutation probability was
0.1, the crossover probability equal to 0.7 and the copy of the individuals was 0.2. The
mutation function can change zero, one or more contents of the instructions.
Thereafter, the crossover operator copies segments from one program to another. Peter
Martin runs two problems in 2 different environments. The first problem is the
regression which Peter Martin runs it in the power PC and in the Handel-c

environments (see Table 12).

Measurement Power Pc Simulation Handel-C (Single fitness Handel-C (4
evaluation) parallel fitness
evaluation)

Cycles 16,612,624 351,178 188,857

Clock Frequency 200 25 19
(MHz)

Estimated Gates n/a 142,443 228,624

Number of Slices n/a 4,250 6,800
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Percentage of slices n/a 22% 35%
used
Speedup (cycles) 1 47 88
Speedup(time) 1 6 8

Table 12: Results from the regression problem

Furthermore, Peter Martin runs the XOR problem in the previous two environments

and the results he realized are shown below in the Table 13.

Measurement Power Pc Simulation Handel-C Handel-C
(Single fitness (4 parallel fitness
evaluation) evaluation)
Cycles 27,785,750 715,506 384,862
Clock Frequency 200 22 18
(MHz)
Estimated Gates n/a 89,205 228,624
Number of Slices n/a 4,630 7,434
Percentage of slices n/a 24% 38%
used
Speedup (cycles) 1 38 72
Speedup(time) 1 4 6

Table 13: Results from the XOR problem

For the Handel-c simulation and hardware implementation the CELOXICA RC1000

FPGA board was exploited shown in the Figure 13 below.
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Figure 13: Block diagram of the CELOXICA RC1000 FPGA board

2.2.9. Tachibana et al

Tachibana et al proposed a hardware implementation method of multi objective genetic
algorithm. Multi objective genetic algorithms (MOGASs) are techniques to solve
multiple objective optimization problems. MOGAs have a set of optimal solutions
called pareto and that’s why they demand a lot of calculating time. In this method we
need to have a variety of individuals because this decrements the comparisons. In the
hardware implementation of the single objective genetic algorithm, the crossover and
mutation modules must be implemented separately, but their outputs must have the
same structure in order to implement the pipeline. At the minimal generation gap
model two members are choose from the population and be subject to crossover and
mutation. The selection module chooses the member with the best fitness value and
replaces it with the worst, in the family of parents. The advantage of this method is that
we can benefit from the pipeline and the parallelization and reduces the required
memory for the population. The parallel architecture proposed here utilizes the island
genetic algorithm. This technique separates the population in several sets. Each of the

sets is regarded like an island and is independent. Small part of the population migrates
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periodically in order to all the islands cooperating to find the optimal solution. In the
proposed method crossover and mutation are the same with the single objective genetic
algorithm. The selection module has two operations, the normal and the biased
selection. In the first one we compare two parents and choose the best one. After the
choice we compare the parent with the offspring and the offspring is replaced with the
parent. Biased operation we have when the offspring is compared with all the possible
solutions. If there are individuals with the same chromosomes as the offspring, are
removed. For the parallel execution of the multi objective genetic algorithm we use the
island technique described above with one difference. We keep the diversity of the
individuals by letting one island to use the normal selection and the others the biased.
The immigration of the individuals chooses from k biased islands one by one in a single
period. They are compared and we choose the dominant individuals for immigration in
a normal island. The same time one member is choose from the normal island to

immigrate to a biased island, after we make it double [6].
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Figure 14: The block diagram of the architecture

This is the block diagram, Figure 14, of the whole architecture consists of the
management module, the crossover module, the mutation module, the evaluation

module, the selection module and the overlap rejection module. The management
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module is the place where we keep the population. It reads individuals from the
memory and sends them to the crossover module. Moreover it accepts members from
overlap rejection module. In the crossover module we have a register which keeps
chromosomes, address and the fitness value from the first parent. It makes crossover to
the two parents and generates the new population. It also combines the fitness values
of the two parents and sends the fitness value and the address of the dominant. The
mutation module mutates the children it takes from the previous stage and sends the
offspring 2 and the contents of two parents to the next module. Evaluation module
calculates the fitness value of the offspring 2 and sends it to the selection module. The
inputs of the selection module are the chromosome and the fitness of the offspring 2,
the addresses and the fitnesses of the parents. The last module updates the population

controlling for repeats and removes them. Figure 15 introduce the parallel architecture.
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Figure 15: The parallel architecture
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Tachibana et al. compared the proposed method with a software version called NSGA
II. The selected parameters were: 64 individuals, crossover rate 0.6 and mutation rate
0.02 and they realize that the method they proposed performs better for the FPGA of
100 — 140 MHz than the NSGA 1II software. The Table 14 below shows the results of

the two methods.

Method Pareto Evaluations per Total Evaluations Processing time

Solutions Island (sec)

Normal Method(1) 34.6 1,000,000 1,000,000 0.01
Normal Method(2) 36.1 1,000,000 2,000,000 0.01
Normal Method(4) 39 1,000,000 4,000,000 0.01
Normal Method(6) 39.6 1,000,000 6,000,000 0.01
Biased Method(3) 46.6 1,000,000 3,000,000 0.01
NSGA-II 33.8 320,000 320,000 43.2

Table 14: Comparison of FPGA and NSG

2.2.10. Koza et al

Koza et al. described how the parallelism of the Xilinx XC6216 FPGA can accelerate
the fitness function in a genetic algorithm. The most time-consuming task is the fitness
evaluation of each individual. All the individuals are implemented in hardware. The
Xilinx XC6216 FPGA contains a 64 X 64 two dimensional array. Moreover, it consists
of 4096 logical cells and each of these cells contains multiplexers and a flip-flop. For
the routing are used 24 bits and the combination of these 24 bits doesn’t create
conflicts and also there are located in the address space of the host computer. Sorting
networks are algorithms for sorting elements using comparisons and exchanges if this is
needed. In the Figure 16 below we have 4 elements A, A,, Ay and A,. We compare A,
and A, with the vertical line shown below and if A, is grater than A, are exchanged. So
with this algorithm we put the grater element at the bottom. Consequently, the

algorithm makes 5 steps for the 4 elements of the network [7].
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Figure 16: Minimal sorting network

After describing the sorting network above, Koza et al. tried to map the problem
onto the chip. All the processes run on the host computer but the fitness evaluation is
performing in the Xilinx FPGA because it is the most time-consuming operation of the
algorithm. Figure 17 shows the placement on 64 vertical columns and 32 horizontal
rows of the XC6216 Xilinx of 8 fields. The A sector is the control sector and B creates
the fitness cases. In addition, the fitness cases are sorted in fields C, D and E and are
evaluated in areas F and G. Moreover the C area corresponds to a compare-exchange
function. The D operates as a forward field from the C area to E. The output of E is
controlled from the F module to make sure that everything is good. The 16 bit
accumulator G is incremented by 1 if the bits are sorted suitable. The 2 areas C and E
represent the candidate sorting network. In C area, each cell in a 16 X 1 vertical column
is configured with 3 different ways. One of the 16 cells is configured as a two argument
Boolean AND function. One other cell is configured as a two argument Boolean OR
function, and the third way of configuration of the other 14 cells is “pass through”
cells, which pass their input to the next vertical column. These 3 ways of configurations
are also the same in area E. The output of each logic cell is one bit length and it’s stored
in a flip-flop. Then, the 16 flip-flops in a vertical column are inputs to the next vertical
column. When the process starts all the 16 X 80 flip-flops (C and E area) are initialized
to zero. So the first 87 vectors (80 from C and E area, 7 from IF and G area), consists of
16 zeros and the accumulator G doesn’t increment. Then the counter B starts counting
(past zero flip-flop is enable) from 2'° — 1 and when it reaches 2'° — 87, area A stops the
increment of accumulator G. The output from G (fitness raw) is taken from the

reporting register H and the done flip-flop is set 1, so the host computer understands
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that XC6216 has completed the fitness measurement for one individual. Koza et al run
the design at 20 MHz in the XC6216 which is 10 times slower than a serial
microprocessor. It is important that all of the operations performed in areas A, B, C, D,
E, F, G, H are parallelized in the FPGA. Moreover, Boolean AND numerous and OR
operations are performed parallel. The 19 step 8 sorter was evolved on 58 generation
with population size = 60,000. In other hand, the 25 step 9 sorter was evolved on 105
generation with population size = 100,000. Finally, both of these sorting networks

implemented in FPGA were minimal.
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Figure 17: Placement of a 32 X 64 portion of XC6216 FPGA chip

2.2.11. Heywood et al

Heywood et al proposed a register based genetic programming on FPGA. The FPGA
computing platform is used for linearly structured genetic programs where the
individuals are described as number of pages and page length. Before introducing the

instruction format we must talk about register machine. Register machine, as defined by
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Von Neumann is computer machine consists of registers which are depended on the
operations of CPU. The basic functions are fetching, decoding instruction and
manipulating the contents of several registers. The simplest Von Neumann register
machines have limited set of simple registers. If the order of instructions is wrong the
program stops. We can use four register addressing modes. The 0-, 1-, 2- and the 3-

register addressing mode.

We observe that when we use small addresses in registers we benefit of hardware
but the code we produce isn’t efficient. The operations of a genetic program are 1) the
decoding cycle, 2) the calculating of the cost function, 3) the crossover and mutation
operations, 4) memory management and 5) stochastic selection. The bottleneck of this
system is the memory access. It is assumed that the initial population of individuals is
performed by the host computer. The stochastic selection is achieved either using
hardware random generator with left shift register or the random numbers are
produced off-line. For the computation of the cost function a scalar square error is
assumed. In the classic implementation of the crossover operation we face the problem
of memory management because code segments with different length size are
crossover. So it must be bounded enough memory space for each individual. A lot of
jump instructions are used to control the program flow. This implementation requires a
lot of clock cycles and the two instances are implemented directly in hardware. So
Heywood et al, proposed a different approach for the crossover function. They
initialize the individuals by defining the number and the size of program pages. The
pages consist of a number of instructions and the crossover operator chooses which
pages are going to be swapped between the two parents. Only one page per time is
crossover of the two parents. The memory reads programs and copies the contents of
the parents to children. In the case of mutation operator random instructions are
selected and then performing an EX — OR operation with second random integer.
Moreover, the exchange between two instructions of the same individual is performed
because the order that the instructions are executed has effect on the efficient of the
system. A technique indicating the calculation attempt of the algorithm for the 4

different address formats is the relationship between the generation and the number of
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individuals processed. We present the best and the worst result in the Figures 18, 19
below. For the 1-address format the individuals the algorithm processed for 20,000
generations are 750,000. In the other hand, when we use the 3-address format for the

same number of generations the genetic algorithm processed 400000 individuals.
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Figure 18: 1-address instruction format
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Figure 19: 3-address instruction format
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2.2.12. Perkins et al

Perkins et al, presented a self-contained FPGA based implementation of a spatially-
structured evolutionary algorithm for signal processing. This algorithm provides
speedup because of the computation of individuals in parallel. In addition, we get
enough space and we can work efficiently in the FPGA [13]. Finally, we put the entire
algorithm in the FPGA and we benefit in speedup due to the minimizing of the time
required for the chip - host computer communication. In this paper, Perkins et al,
evolved the population of a non linear digital filter, into a simple Virtex FPGA in order
to solve a non trivial 1 X dimensional reconstruction signal problem. An important
class of reconstructed filters is stack filters. The stack filter is a sliding window non
linear filter and the output in each position of the window is determined by applying a
positive Boolean function (PBF) on a decomposed threshold. We apply the stack filter
on the 1 X dimensional string. The result is a two dimensional wall whose the height is
the position value. Each of the one dimensional rows of the wall gives a Boolean string
where ‘true’ represents inside the wall and ‘false” out of the wall. Then we apply the
PBF. The threshold decomposition part of the stack filter is time — consuming. For 8-
bit signal we take 256 different levels and each operation of the filter requires 256
calculations of PBF. Utilizing Chen’s technique based on binary search we have PBF
calculations equal to bits of the signal. The input values of the filter arrived as parallel
bit-streams, most significant bit first (MSB). Firstly, the PBF applied to the MSB and
we take the MSB of the output. If there are input bits which have different value from
the output bit then the input bit locked’ in its present value. PBF is applied to other
bit- streams producing the output bit and this process repeats. Chen’s method results
are almost the same as stack filter when the Boolean function is positive. Although,
producing Boolean functions and check if they are positive is time - consuming for the
genetic algorithm. In this genetic algorithm proposed by Perkins we use a window of 5
clements and the Boolean function defined by a truth table with 32 X 1-bit values. So,
we have 2% possible truth tables but 7581 only represent positive Boolean function.
The filter used here is an arbitrary Boolean filter and it is stack if the Boolean function

is inside the 7581 values and something else otherwise. We call these filters ‘stick’ filter.
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For a 5- element window the arbitrary Boolean function is represented by a 32 element
truth table. We use direct genomic representation and the genome for each individual in
the genetic algorithm is a binary string giving the truth table for each Boolean function.
We have a population of 48 cells 6 X 8 grid on FPGA. Cells are initialized with random
truth tables and each cell has an error counter which is initially set to zero. After the
initialization, each cell receives a corrupted Sc and in-corrupted signal Su. In each step
we apply the stick filter in a window consists of 5 samples of Sc signal and we produce
the 5, reconstructed signal. Then we take the difference between S, and Su and this
number added in error E. If the cells have error, the genetic algorithm operates at the
breeding mode. Each cell checks its error with 4 neighbor cells at north, east, south and
west. When the fittest found, we have uniform crossover between the selected cell and
the fittest. If the cell we select is the fittest we don’t change anything. After the
crossover operation, it is the point mutation on each element in the truth table of each
cell with probability Pm. When breeding operations are finished the error counter is set
again to zero and we repeat the process. We target this genetic algorithm on Annapolis
Microsystems Wildcard. This PCMCIA card contains a Xilinx Virtex 300 part and two
independent banks of 256Kbytes SRAM. The results of these implementations are

shown in Table 15 below.

Component Number of CLB Slices Percentage of Total
48 Cell Atray 1904 62
Controller 43 1.5
Wildcard Interfaces 549 18
Total 2496 81.5

Table 15: Results

2.2.13. Tachibana et al

In this section we introduce a general architecture for hardware implementation of
genetic algorithm proposed by Tatsuhiro Tachibana. The architecture below consists of
4 modules, the management module, the crossover module, the mutation module and

finally the evaluation module. Each chromosome is coded as a string of n bits [14]. The
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buses between two successive modules have width of m bits. If each module receives m
bits of data and outputs m bits in a clock cycle then n/m clocks are used to process the
chromosome. Moreover, all the modules receive and process data in parallel. For
eliminating the required memory we assume the minimal generation gap model. We
select two individuals (parents) from the population and we perform crossover and

mutation so the offspring is generated.

The first module is the management module which stores the population in
memory. The address and the fitness function of the parent with the worst fitness value
and the chromosome and the fitness value of the offspring are received from the
evaluation module. We compare the two fitness values and if offspring’s fitness value is
higher we send the address and the chromosome of the offspring to the crossover
module. In the crossover module we have a register which retains the address and the
fitness value of the last individual received from the management module. We apply
crossover in this individual and the individual arrived from the management module
and we generate the offspring. We compare the fitness values of the parents and we
send the worst one and the address in the next stage. The chromosome of the offspring

is also sent.

After the crossover module there is the mutation module which mutate the
offspring and the resulting offspring is sent to the next module. In addition, we send
the fitness value and the address of the worst parent. In the last evaluation module we
calculate the fitness value of the resulting offspring and we send the address and the
fitness value of the worst parent and the fitness value and the chromosome of the
offspring. We have better results with this technique than the software genetic

algorithm. With more pipeline levels we obtain lower fitness value and best efficiency.
2.2.14. Lei et al

Lei et al proposed a hardware implementation of genetic algorithm with FPGA. The
hardware architecture of the genetic algorithm consists of 1/O interface, processing

unit and control unit. The operations of the processing unit include the initial
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population, the calculation of fitness, selection, crossover and mutation. The control

unit operates as control state machine [15].

In this design there are five modules in the processing unit: 1) generation, 2)
mutation, 3) crossover, 4) random number generator and 5) selection. The state
machine of control unit is used to decide the sequence of these five modules and sends
control signals at the processing unit. Processing and control unit are cooperating for
the total function of the genetic algorithm. Hardware of the genetic algorithm is
controlled by three outside signals. The RUN signal which specifies the global startup,
the global RESET signal and the clock CLK signal. The control state machine of
control unit generates five output control signals and is controlled by four signals o1-04
from processing unit signal. The modules of processing units are controlled by the
control state machine and are operating in two states, active and sleep. Below we
explain the functions of these five modules and the control state machine. Random
number generator is implemented as LSFR register and the numbers it generates have
size n=12 bits. A random pseudo number is outputted from two ports, doutl (8bits)
and dout2 (3bits) by a control signal which is generated from the state machine of
control unit. Storage module is the first step of the genetic operator running in two
modes, generation and storage. Generates the initial population and calculates the
fitness values of individuals when is working in generation mode. Reads the new
population from population output ports of mutation module and stores the new
population into registers. Moreover, calculates the fitness values, when is working on

storage mode. A divider is applied for the evaluation of the fitness values.

After the storage module there is the selection stage which reads the population
and the fitness values from storage module and selects the individuals depending on
their fitness values. The roulette wheel algorithm is used where all the fitness values are
used for the evaluation of the probability values. Given a random data, the roulette
runs, and the pointer points the area of fitness value. The individual corresponding to
this area is selected. This is done four times and the new population consists of the
selected individuals which are stored into an array called #new_mem. The individual that

has the highest value has more probabilities to be chosen. In the crossover module we
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read the population and three random data and we target them into registers. We use
single point crossover and this operation is finished randomly. The mutation module is
the final step of the genetic algorithm. It keeps the diversity and avoids converging local
results so eatly. The probability is small (1 / 512) and the point of mutation is selected
randomly. Finally, the control state machine is the core of control unit. It can achieve
high speed transformations but small setup time in each I/O. It consists of six states:

idle, birth, storage, selection, crossover and mutation.

The genetic algorithm described above was implemented with VHDL in a Xilinx
xc25100 FPGA. At 20 MHz clock frequency it took 0.15 seconds for 1,000 generations

and it was 1000 times faster than the software implementation with 200MHz.

2.2.15. So et al

So et al. presented a four-step genetic algorithm (4GS) implemented in FPGA. The cost
of calculation is similar to three step genetic algorithm. 4GS can be applied in video

encoding hardware [10].

At the initial population each chromosome represents a motion vector. The length
of the chromosome is 4 and the maximum displacement 1 is 7 pixels. Continuing there
is the evaluation stage where the fitness value of each chromosome is calculated. In this
design four chromosomes of the total 16 are selected for reproduction. In the
reproduction stage n chromosomes are selected for reproduction from N and are
transferred at the mutation pool. This method is similar with the roulette wheel. The
mutation pool consists of N new reproduced chromosomes. Each of these mutated
form a pair of operators. The size of mutation depends on each generation. For the
three first generations the size is two and for the fourth is one. We must mention that
we have 8 different pairs of operations. Motion vector is the chromosome with the
lowest fitness value in the population. N chromosomes are selected of the 2N in each
generation and these with the smaller fitness value are selected for the next generation.

The steps from evaluation stage till selection are repeated for 4 generations and the
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search algorithm is terminated when we have 4 generations or the fitness function

becomes zero.

Describing the hardware of the four-step genetic algorithm, it is worth noticing
that is separated in two parts, the interface module and the core module. The first is
responsible for the memory and the core and the last one searches the motion vector.
The external frame memory consists of several memory blocks. In this implementation
they choose block size 16 X 16. The total number of memory blocks is 16 and the
width of memory bank is 512. Moreover, the size of each memory bank is 16k. So, used
a 16 bit random number and the fitness function is evaluated by an array. The array is
calculating the difference between pixels and partial fitness function. The difference
unit consists of two subtractors and a multiplexer. We have a one dimensional array
with 3X3 size. The evaluation module takes the fitness function (2 X 16 — 1) cycles later
and examines which of the chromosomes are matching for this environment. The
population module controls the whole searching procedure. In each generation N
chromosomes are produced but in the end n survive. The population unit initializes the
searching algorithm in each block. A randomly selected chromosome parent will be
mutated from this unit. The evaluation unit evaluates new chromosome every M cycles
and the population unit produces new chromosome every M cycles. When the
searching procedure is finished the population unit updates the value of the motion
vector and the fitness function. In each generation are produced chromosomes every

16 cycles, so there are 16 new chromosomes and only 4 survive.

For his design So used two Xilinx 4025 chips with 60% CLB utilization of the total
number of 1024 CLB’s each. For searching one motion vector, the 4GS needs 1,152
clock cycles. With minimum clock frequency at 11,4Mhz the proposed design can
handle video sequence with 352 X 240 size and frame rate 30Hz. In the case of MPEG-
2 the frame size is 750 X 576 with block size 16 X 16 at 30 Hz rate and the maximum

clock period is 17,86nsec.
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2.2.16. Graham et al

Graham et al described a hardware genetic algorithm for the traveling salesman
problem on SPLASH 2. SPLASH 2 parallel genetic algorithm, is a hardware based
genetic algorithm searching for an optimal solution in traveling salesman problems.
This family of problems is searching the shortest path between n cities visiting each city
once and returning at the initial city. Each possible solution of the population consists
of an ordered list describing the sequence in which each city is visited, called tour. The
fitness of each tour is related with its length. Two tours are selected for crossover and a
random cut point is selected, so the tours are cut at this point. The head of tour A
becomes head in the offspring A and the head of tour B, head in offspring B. The tail
of offspring A is formed by taking the cities form tour B not contained in the head of
tour A. The tail of offspring B is formed in a similar way. Mutation is performing on
the selected tours by reversing the order of cities visited within a sub-tour contained

within the original tour. The endpoints of sub-tour are selected randomly [17].

SPLASH 2 is a reconfigurable computer consists of an interface board and a
collection of processor array boards. It is programmed with VHDL. The basic
computational module is a processor consisting of 4 FPGAs Xilinx 4010s and their
memories. These four FPGAs are forming a pipeline. During the execution, memories
store the current generation, the new generation, the fitness values of tours, the array of
distances between the cities and some other operation parameters. The initial data are

supplied by the host address. The function of each FPGA is presented below.

FPGA 1 uses biased selection, choosing pairs of tours from the memory. This is
achieved with hardware-pipelined roulette wheel algorithm. Initially, one random
number is produced, called the target. Tour fitness values are sequentially accumulated
until the target reaches a specific value. The tour that causes overflow is the one that is
selected. Tours with highest fitness values are preferred than tours with lowest values.
As soon as two pairs of tours are selected, their index numbers transferred into FPGA
2 through a pipeline path. FPGA 2 has two choices: it can copy the tours at the right

without changing anything or it can combine them through crossover and send the new
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offspring at the right. This decision is taken from a random number generator on the
chip and the crossover probabilities are 10% to 60%. FPGA 3 calculates the fitness
values of the tours produced from crossover. In addition, it randomly selects tours for
mutation and sends the tour pairs and their fitness values to FPGA 4. FPGA 4 writes
the new population into memory determining the best and worst tours of the current
population. The above process repeated until the population size becomes equal to the
original size of FPGA 4. The pipeline, copies the new population and the fitness values

back at memories of FPGA 1 and FPGA 2 and this terminates the first generation.

The implementation proposed by Graham et al. requires 3500 code lines in
VHDL. Assuming maximum clock frequency at 11 MHz the CLB utilization found
from 37% to 60% for all FPGAs. The performance of a software implementation at

125 MHz HPPA-RISC Workstation is compared with SPGA in Table 16 below.

Number | Population Crossovet Mutation Average Average Software/
of Cities Size Probability Probability Execution Execution Hardware
Time (sec) Time (sec)
Hardware Software
24 128 10 10 4.38 43.7 9.97
24 256 10 10 11.23 118.7 10.57
120 256 60 10 295 1999.9 6.78

Table 16: Comparison of hardware and software execution times

Two parallel implementations proposed by Graham, the trivially parallel model and the
island model. The implementation described above utilizes 4 FPGAs with simple
SPLASH 2 board. The remaining 30 FPGAs and the memories at SPLASH 2 two-
board are idle. In fact, there is no need of SPLASH 2 for the basic implementation.
However, given a SPLASH 2 two-board, it is an extension for running 7 additional
copies of the algorithm and isn’t required additional hardware design. The copies of the
algorithm don’t interact each other and the time we spent is the initialization time of
the memories. An 8-fold increase in search rate is possible with the trivially parallel

model. The other approach of parallelization of the algorithm is the island model.
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Several searches are performing in the periodically migration of the solutions between
the islands. During the migration, each island broadcasts a subset of tours to other
islands via crossover and the islands that receive these tours replace the old with the
new ones. In contrast with the trivially parallel model, it is needed modifications of the
SPGA. With a comparison between the three proposed methods, the 8-processor
trivially method searches faster than software from 54 to 85 times. However, speedups
don’t indicate better solution in the terms of quality but a greater number of
evaluations. So, if our goal is to find the best solution, the 8-processor parallel version
is 4% better than single and 4-processor island model is better by about 6%. If we aim
for a quick solution than island model is the best of all. At 500 million cycles 4-
processor island model finds a solution when 990 million cycles is needed for 8-

processor trivially parallel version and 1.7 billion cycles for the single processor.

2.2.17. Glette et al

An online evolution for a high-speed image recognition system implemented on a
Virtex-II Pro FPGA has been proposed by Glette et al [18]. The architecture is
implemented as circuit and the behavior and the configurations of it are controlled by
configurations registers. The system consists of three main parts: 1) the classification

module, 2) the evaluation module and 3) the CPU. This is shown below in Figure 20.
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Figure 20: Top-Level view of online evolvable system

The classification module operates uniquely except the reconfiguration
accomplished by the CPU. The evaluation module cooperates with the CPU for the
evolution of new configurations and accepts a configuration bit-string called genome
computing its fitness value. This information is used by the CPU to run the genetic
algorithm. The classifier system consists of K category detection modules (CDMs), one
for each category. The input data to be classified is presented in each CDM the same
time via common input bus. The CDM with maximum output value is localized from
maximum detector and the number of this category will be the output of the system.
Each CDM consists of M rules or functional units (FU) and each FU row has N FU’s.
The inputs of the circuit pass on the inputs of each FU. The 1-bit outputs of FU’s are
getting into N-input AND gate sequentially. This means that all of the outputs must be
1 to activate the rule. In addition, the outputs of the gates are connected on an input
counter which counts the number of activated FU rows. FU’s are the reconfigurable
elements of this architecture. Their behavior is controlled by configuration lines which

are connected to configuration registers. Each FU has all input bits on the system
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available at its inputs, but 1 data element (1 byte) is selected, depending on the
configuration lines. This data is then get into the appropriate functions whom number
and type are varied. The unit is configured by a constant number C, so this value and
the input data element are used by the function for the computation of the output of

the FU. In this implementation Glette et al. utilize 8 FU’s.

The fitness function of the face image recognition is based on the ability of the
system to recognize the correct person from several faces. These faces are taken from a
database that has 400 images, that is to say 10 images from 40 different persons. The
image resolution is 92 X 112 pixels, 8-bit gray scale. For reducing noise and inputs,
Glette et al. down-sample the images to 8 X 8 pixels, 8-bit gray scale. The input pattern
is 64 pixels and types of functions in FU’s are greater than and lees than or equal. The
constant value is 8 bits. For the FU implementation they used a scheme where 1-bit
exists in the FU in a single time. The 64 pixels are presented sequentially, one in each
clock cycle with its address. Functional unit check the address of the input pixel for
matching with the address of pixel exists in the configuration register and if they are the
same, the value of the output of FU is stored into a memory element. This method
requires 64 clock cycles, before FU selects its input. In the evaluation module, is
computed the fitness value for a FU row which is the phenotype for an individual in
the evolution. After the configuration of the FU via the register, FU row must be fed
with all the faces of all the categories. There are 360 images (9 face images for 40
categories) and they are loaded before the process in the image memory Xilinxk BRAM
which is located at the evaluation module. As soon as the configuration register is
written, the process starts. The address generator produces addresses for images.
Control logic cells urge fitness counter to sample the output of FU row and this
happens after the 64 pixels have been cycled. Then an interrupt is sent to the CPU and
the fitness value is read. Moreover, fitness value can be duplicated for extended
parallelization. In this design there are 8 FU rows in parallel for the computation 8

individuals.

The genetic algorithm follows the pattern of simple GA and the algorithm is
running at Power PC 405 core in Xilinx Virtex-II Pro FPGA. 15-bits for each FU are

55



Chapter 2 — A survey of genetic algorithms and their implementations

required for the encoding in genome, 6 for pixel the address, 1 for the function and 8
for the constant. So, 120-bits (15 X 8 FU rows) are the total number of bits for 1 FU
row. The fitness evaluation is done by the hardware evolution module and other
individuals are produced by the CPU. The evaluation module sends an interrupt to the
CPU that finishes its work and takes the next individual. Online evolvable hardware
system run the fitness evaluation in a Virtex-II Pro xc2vp30 FPGA at 131 MHz with
1393 slices of total 13696 (10%), and the other genetic operations run on 300Mhz

Power PC. The population size was 16. These results are presented in Table 17.

Resource Used Available Percent
Slices 1,393 13,696 10
Slice Flip Flops 1,419 27,392 5
4 Input LUTS 1,571 27,392 5
18 Kb BRAMS 17 136 12

Table 17: Device utilization for the 8 row evaluation module

In conclusion, we compare the EHW with a software version Intel Xeon 5160
workstation which had from 10 to 30 times the clock speed of EHW. The speedup
over software was found 1.01 totally for 1000 generations. It is worth noticing that
Xeon spends a lot of time for fitness evaluation because it is implemented in software.
In EHW the fitness evaluation is implemented in hardware and this indicates the

significant differences in times. The results are presented in Table 18.

EHW Xeon Xeon/EHW

GA Clock Frequency (MHz) 300 3,000 10
Fitness Clock Frequency(MHz) 100 3,000 30
GA Time (ms) 926 9 0.01
Fit. Eval. Time (ms) 623 1,323 2.12
Total Time (ms) 1,313 1,323 1.01

Table 18: Speed comparison between Xeon and EHW
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2.2.18. Shackleford et al

A high - performance pipelined FPGA genetic algorithm machine proposed by
Shackleford et al. The population of 7, chromosomes with the fitness value stored in a
1-dimensional array called population. Each entry in the array consists of n. data bits
and 7, fitness bits. The function random (7) returns a random number from 0 to (i-7) for
each 7 >0. Fitness (c.,) function evaluates how fit is the solution and returns an integer
from 0 to (2*"). The best solution is represented by the greater value of fitness values.
The crossover (cut_prob, parentl, parent?) function results the child which is a
combination of parents from cut in random points. The crossover probability could be
0 (for single point crossover), 0 — 0.5 (for multi point crossover) and 0.5 (for uniform
crossover). The mutation (wutation_prob, ¢,,) function changes the data of the selected
chromosome. The mutation probability takes values from 0 to 0.5 for single, multi and
randomization mutation. A mutation probability of 1 inverts the selected for mutation
chromosome. The algorithm is terminated when the evolutionary stasis function

returns a true value [19].

Initially, random chromosomes produced with their fitness value and stored into
the population array. The old parent 1 becomes the new parent 2 and the new parent 1
is selected randomly from the population array. Only 1 memory access cycle required
for each crossover operation. The basic idea of this steady state genetic algorithm is the
survival of the fittest child and parents with worst fitness values that are randomly
selected for crossover and mutation, are candidates for replacing by the survival child.
There are 2 variables, “worst_fittness” and “worst_address” which store the fitness and
the address of the worst parent. Two parents are selected and the child chromosome is
created by the crossover and mutation operations. Its survival depends on its fitness
value which if is better than less fitter parent, the child chromosome is stored in the
population array at the worst parent’s address. So, the total fitness of the population is
incremented until a terminate condition is met. The population array because of a
steady state GA, is implemented like simple memory which results in chip are savings.
Parents are selected randomly and we don’t need a circuit to choose the best one.

Crossover and mutations operations performed each clock cycle creating a child
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chromosome in this time period. In addition, crossover and mutation architectures are

based on shifting template register which eliminates long wires.

The FPGA-based GA machine consists of 6 six-stage pipeline. The first three
stages are dedicated for parent selection, the fourth stage performs crossover and
mutation, fifth stage is responsible for the fitness evaluation and the last stage is the
survival stage. Random number generator (RNG) is implemented as cellular automata
and in every clock cycle several random numbers are produced. During the population
memory access cycle, memory can either be read or written. This is decided by a
comparator at sixth stage and when comparator’s output is zero reads the address from
RNG and when it is one writes the address from the last stage of the pipeline. First
parent stage stores the first parent with his address and his fitness value. Loading
registers from this stage are cut off and the reason is to prevent the survival child,
written to memory, to affect the evolution. At the beginning of second parent stage, old
parent 1 becomes new parent 2. So, even if the memory has one single read port, a new
pair of parents is presented for crossover in every cycle. Crossover and mutation are
performing at the same time and the worst parent is selected for replacing. At the fifth
stage the fitness value of child chromosome is evaluated and if fitness function contains
long logic paths a pipeline is required. After fitness evaluation, the new child exists on
register child and is compared with worst parent stored at the least-fit register. If is
better, it replaces the worst parent in the population memory and the worst parent is

discarded.

Datapath represents a significant portion of GA machine, so it should be
implemented efficiently. When a surviving child is written to the population memory, it
should be prevented from re-entering the pipeline. So, there are hold controls on the
parent registers which are active when we are at population memory write cycle. Each
bit requires a two input multiplexer to select the parents. The control of multiplexers is
achieved by sending a crossover template to all multiplexers via shift register. This
requires 1 flip-flop for each slice and permits several values for cut-points between 0,05
to 0,5. The crossover pattern is created probabilistically by a comparator connected to

threshold register and a RNG which generates a random number. When the random
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number is less than threshold, the comparator output is true causing the change of the
state of flip-flop and the selection pattern applied in the template shift register. The
information of mutation is transmitted to the data bits serially through shift registers. In
order to reduce the probability of mutual influence we have two bit-streams which
travel in a different direction. The occurrence of mutation for a bit is defined as two
ones appearing simultaneously in the same position in each shift register. This incident
is realized by a two input AND gate which causes the XOR gate to invert the bit at the
position from the crossover multiplexer. These two gates are implemented as 3 input
LUTs. The two bit-streams are constructed as the template of crossover but the flip-
flop isn’t connected at the output of comparator. Mutation probabilities take values
from 0.01 to 0.05. The result from crossover and mutation is kept at child register
which is connected to both the fitness function and final stage of pipeline which sends
it to data input register in population memory. We should notice that every stage from
the pipeline has the same processing time. Figure 21 shows the FPGA-based GA
machine. Shackleford considers two problems for his proposed FPGA machine, the set
covering and the protein folding problems. For the first one, he utilized Aptix AXB-
MP3 FPCD device which consists of 6 FPGAs, 3 for GA pipeline and 3 for fitness
evaluation. Each FPGA is ALtera EPF81188 chip and has 1,008 logic elements. For
population size of 256 and a maximum clock frequency of 1 MHz his implementation
was 2200 times faster than a software version on 100 MHz workstation. For the protein
folding problem he used 70-bit chromosomes and a Xilinx XCV300 FPGA. Pc
interface, GA pipeline and fitness function uses 2,000 from possible 6,144 LUTSs. At 66
MHz clock frequency he found that his implementation is 322 times faster than a
366Mhz Pentium II. To achieve better speedup over software (9,600 times software),

he proposed a larger FPGA with 64K LUTs and 30 parallel fitness functions.
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2.3. Evaluation and comparison of hardware implementations

This section is devoted to the analysis of the hardware implementation of the genetic
algorithms according to criteria such as hardware complexity in terms of configurable

logic blocks or slices, execution time and speedup over software.

2.3.1. Hardware complexity

The first comparison criterion between the genetic algorithms presented in this section
is hardware complexity which concerns the number of configurable logic blocks or
slices needed for the design. Koonar et al [3], utilized a Virtex XCV50E device and the
synthesis report shown that 334 slices out of 768 (43%) were used. Moreover, 167
configurable logic blocks was enabled. Tang et al [4], used two FPGAs, a FLEX 10K50
with 360 logic area blocks and a FLEX 6K with 88 blocks. The architecture proposed
by Peter Martin [1], was implemented in the CELOXICA RC1000 FPGA Board for
two different problems. For the regression problem he realized 4250 slices out of 19200
(22%,) for single fitness evaluation and 6800 slices (35%) for the four parallel fitness
evaluation. On the other hand for the XOR problem the results were 4630 slices (24%)
for the single version and 7434 slices (38%) for the parallel environment. For the
compact genetic algorithm Aporntewan [2], exploited the Xilinx Virtex V1000 FPGA
with 813 slices out of 12288 (6%), and Emam [11] utilized a Virtex XCV300 device
with 1081 slices. A different approach was proposed by Scott [10], implementing the
genetic algorithm in Borg’s board which consists of five Xilinx FPGAs and a
prototyping area which consists of three Xilinxk FPGAs. He used 2 XC4003S with 100
configurable logic blocks (CLBs) each, 2 XC4002S with 64 CLBs each and finally 1
XC4003 with 100 CLBs for Borg’s board. For the prototyping area he utilized 3 XC
40058 with 196 CLBs each. Consequently, the total number of CLBs used was 1016.
Continuing Mostafa [9], implemented the parallel-pipelined hardware genetic algorithm
in three chips. The first was an XC4005 FPGA with 196 CLBs, the second was an XC
25100 chip with 600 CLBs and the last one was a Virtex XCV800 chip with 4,704
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CLBs. In addition, Koza [7], test his algorithm into a Xilinx XC6216 board with 4096
cells and Tommiska [8], utilized the Altera Flex 10K50 FPGA with 360 logic area
blocks. The space utilization in the Virtex 300 used by Perkins [13], is 2496 CLB slices
with the percentage of 81.5%. Lei [15], implemented his genetic algorithm in a Xilinx
XC28100 chip with 600 CLBs. The four-step genetic search algorithm proposed by So
[16] was utilizing two Xilinx 4025 chips with 1024 CLBs each (60%). SPLASH 2
parallel genetic algorithm proposed by Graham [17], was implemented in four FPGAs
Xilinx 4010s with 400 CLBs each, and the utilization ranged from 37% to 60%. The
fitness evaluation of the genetic algorithm implemented in a Virtex-II Pro XC 2VP30
FPGA at 131 MHz with 1393 slices of total 13696 (10%) for 8 FU row evaluation
module, proposed by Glette [18]. Finally, the FPGA-based GA machine proposed by
Shackleford [19], was tested for two different problems. For the set covering problem
he utilized the Aptix AXB-MP3 FPCD with 6 FPGAs Altera EPF81188 with 1,008
logic elements each. The protein folding problem was applied on xilinx XCV300 FPGA
with 2,000 of possible 6144 LUTs.

2.3.2. Evaluation time

The second criterion of comparison is the evaluation time of each design (speed).
Koonar [3], assuming clock cycle of 50 MHz, simulates his design with three different
benchmarks for different generations count and different population size. The
hardware and software times are shown in Table 19. Tang [4], realized that the time is
needed to initialize the population of 256 and 60 generations with the single FGA is
500psec. For the implementation of the genetic algorithm using Handel-c, Peter Martin
[1] runs two tests. In the regression problem, the calculation of single fitness evaluation
with Handel-c took 351,178 cycles and the 4 parallel took 188,857 cycles. For the XOR
problem the computation of single fitness evaluation took 715506 cycles and the 4
parallel took 384,862 cycles. Aporntewan [2] proves that only 0.15 sec execution time is
needed for the FPGA to run the compact genetic algorithm for 256 population size.

Only 25.124psec is the time that the genetic algorithm proposed by Emam [11], needs
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for 360 generations and population size 80. Tommiska [8] ascertains that the genetic
algorithm requires 160ns for processing time and Perkins [13] genetic algorithm runs in
1.65msec for 50 generations. For 20 MHz clock frequency only 0.15 seconds were
needed for 1000 generations in the genetic algorithm proposed by Lei [15]. Searching
one motion vector, 4GS took 1152 clock cycles in the design by So [16]. In the case of
MPEG-2 the frame size is 750 x 576 with block size 16 x 16 at 30 Hz rate and the
maximum clock period is 17,86nsec. The basic algorithm implementation described by
Graham [17], took 4.38sec for 24 cities and population size 128 and 295sec for 120
cities and population size 256 as presented in Table 16. He also realized that 500 million
cycles are needed for the 4-processor island model to find a quick solution which is
faster from the 8-processor trivially parallel method (990 million cycles) and the single
processor version (1.7 billion cycles). The total time of the EHW proposed by Kyrre
Glette [18], was found 1313 ms for 1000 generations. From this time, 623 ms was for
the fitness evaluation in the Virtex-II XC2VP30 device at 131 MHz and 926 ms for the

other genetic operators implemented on the Power PC at 300 MHz.

2.3.3. Speedup over software

Speedup over software is the last criterion of comparison between the genetic
algorithms in FPGAs. It is worth noticing that speedup= cycles in (software) / cycles in
(FPGA), as mentioned in Peter Martin [1] implementation. To start with, Koonar [3],
assuming a clock cycle of 50 MHz he finds out a speedup over software is almost 50
and with max clock frequency of 120 MHz the improvement in speed is 100 times the
SUN ULTRA10 440 MHz processor system. Tang [4], realized that speedup over
software is 10 for 2.4 GHz Pentium 4. The speedup between Handel-c single fitness
evaluation with clock frequency 25Mhz, and the Power Pc 200Mhz for the regression
problem was 47, in Peter Martin’s [1] implementation. In the same problem the 4-
parallel Handel-c fitness evaluation at 19 MHz was 88 times faster than Power PC at

200 MHz. For the XOR problem, speedup between Handel-c single fitness evaluation
with clock frequency 22 MHz and the Power Pc 200 MHz was 38 and 4 parallel
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Handel-c fitness evaluation at 18 MHz was 72 times faster than Power PC at 200 MHz.
In the compact genetic algorithm presented by Aporntewan [2], speedup over 200Mhz
Ultra SParc 2 was 1000. Scott [10], found speedup over software in a range between 12
and 18 for several fitness functions. In Tommiska [8] implementation, the speedup over
120 MHz Pentium processor was 212. The same algorithm was also run for HP C110
workstation (SPECint92 _167) with HPUX operating system and speedup over this
software is 275. Perkins [13], in his design with 20MHz clock rates finds speedup over
software almost 1090. In addition, Tachibana [6], compared his proposed multi-
objective genetic algorithm to a software version called NSGA 1II in a Pentium 2.4Ghz
and realized that speedup over software is 4320. Lei [15] found that FPGA
implementation at 20 MHz was 1000 times faster than software version at 200Mhz.
Graham [17] assuming maximum clock frequency of 11 MHz found, speedups over
software from 6.78 to 10.57 for the basic implementation of SPGA. The software
implementation was on 125 MHz HPPA-RISC Workstation. The 8-processor trivially
parallel method searches faster than software by factors 54 to 85. Comparing the three
methods for the best solution in terms of quality, 8-processor trivially parallel version
finds a solution 4% better than single processor and 4-processor island model is better
by about 6% for a long execution of 3.5 billion cycles. For a quick solution, 4-processor
island model is 1.98 times faster than 8-processor trivially parallel method and 3.4 times
faster from the single implementation. The speedup between EHW (131Mhz for fitness
evaluation and 300Mhz for other genetic operators) and Xeon Intel 5160 workstation at
3000Mhz was totally 1,01 for 1000 generations as described by Glette [18]. For the
fitness evaluation speedup over software was 2.12 because of the FPGA
implementation but for other GA operators speedup found 0.012. In Conclusion,
Shackleford [19] for the set covering problem with 1 MHz maximum clock frequency,
and population size 250, realized that it was 2200 times faster than a workstation of 100
MHz. For the protein folding problem, the speedup between XCV300 with clock
frequency 66 MHz and a Pentium II at 366 MHz was 320. In Shackleford’s design it
was also proposed that with a larger FPGA, with 64K LUTs and 30 parallel fitness

functions, it can be achieved a speedup over software equals to 9600.
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2.4. Conclusions

® In this chapter we compare genetic algorithms which are implemented in
FPGA and we realize that they generally run more efficiently in hardware than
software. This is because GA’s can benefited from hardware techniques like

pipeline and parallelization.

® As seen in Table 19 parameters such as population size, crossover and mutation
probabilities vary from algorithm to algorithm, so a comparison between them

is relative.

® Hach genetic algorithm has been implemented differently regarding the basic
operations such as selection, crossover, mutation and fitness function and they

have been targeted into different FPGAs boards.

® In many of the genetic algorithms described above the compilation and
configuration times are not always exposed clearly but speedups achieved by

hardware implementations to software versions are significant.

From Table 19 it is clearly observed that the least complexity genetic algorithm in
terms of CLBs is Mostafa et al implementation which utilized only 196 CLBs on a
Xilinx XC4005 FPGA. The most complex implementation is Shackleford genetic
algorithm which was implemented into an Aptix AXB-MP3 board with 6,048 logic
elements. From all the implementations described above the faster one is Emam’s et al
implementation. For populations size equals to 80 and 360 generations the genetic
algorithm run for 0.025 msec on a Uni DAC PCI Board (DSP and Virtex
XCV300PQ240). The multi-objective genetic algorithm of Tachibana et al and the
compact genetic algorithm of Aporntewan et al were run very fast but they consist two
different categories of genetic algorithms than other simple genetic algorithms
implementations. The most time-consuming hardware implementation was Graham et
al genetic algorithm which spent 295,000 ms for 256 members and 120 numbers of

cities for the Traveling salesman problem run on the SPLASH 2 fabric.
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Chapter 3

The initial implementation of the hardware-based genetic algorithm

3.1. The hardware genetic algorithm

Scott et al. suggested a hardware-based genetic algorithm using VHDL. The entire
system consists of two parts. The first part called front end is a program in C language
running in a UNIX environment on a host computer. The second part, called back-end,

contains the implementation of the genetic algorithm [10], [23].

The hardware genetic algorithm consists of seven ports:

® Memory interface module (MIM)
® Population sequencer (PS)

® Random number generator (RNG)
® Selection module (SM)

® Crossover and Mutation module (CMM)
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® Fitness module (FM)

® Shared memory (MEM)

After loading the initial parameters into the shared memory, front-end part signals
back-end part with a “g@o” signal. The memory interface detects the “go” signal and
initializes the population sequencer, the random number generator, the crossover and
mutation and the fitness module. Each of these modules requests appropriate user —
defined parameters from the shared memory, and the memory interface module fetches
them and transmits them. The population sequencer starts the pipeline by requesting
population members from the memory interface module and passes them to the
selection module. The selection module receives the members and decides whether a
member will be selected according to a Roulette wheel selection algorithm. If this
member is selected, the selection module waits for another member to be selected and
pairs these members. After mating, selection module sends the pair to crossover and
mutation module and resets itself. The crossover and mutation module receives the two
members and decides whether it will apply crossover and mutation based on a random
number sent from the random number generator. Finally, the new members are sent to
fitness module where they are evaluated by the appropriate fitness function. After the
completion of this process, fitness module writes the two members into the shared
memory via the memory interface module. The steps described above are executed
until the hardware genetic algorithm is finished. This decision is taken by the fitness
module which determines the current state of genetic algorithm. As soon as the
algorithm finishes, the fitness module notifies the memory interface module which
sends the “done” signal to the front-end part. Then the user reads the final population

from the shared memory.
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3.2. The platform

The genetic algorithm was implemented on a BORG board connected on a PCI bus of

a host Computer. BORG board contains five FPGA’s:

® Two xc4003S containing user-specified logic
® Two xc4002S containing user-specified interconnects between the xc4003s

® One xc4003 for controlling the interface to the PCI bus

Moreover it contains 8 Kbytes SRAM and an 8 MHz oscillator. Because the board
did not fit the entire algorithm, additional FPGA’s were inserted on the BORG
prototyping area. The pseudo random number generator and the crossover and
mutation module were placed on an XC4003S FPGA. Furthermore, the memory
interface and the population sequencer were shared one of the three xc4005S FPGAs
of the prototyping area. The other two XC4005S house the selection module and the
fitness module. In Figure 22, 23 two schematics of the BORG board and its

prototyping area are presented.

[ ]
—e— CLK
X1
Prototyping
Agma X0
Area SRAM
\__‘ .....__.'E
é
X1, X2 =Logic FPGAs SRAM = 8K x 8 Static EAM
El. B2 =Fouting FPGAs CLE = 8MHz System Clock BUS
X0=FPGA Controlling PC Bus Interface BUS = PC Bus Interface

Figure 22: Schematic of the Xilinx BORG prototyping board
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Figure 23: Schematic of the FPGA in the BORG board’s prototyping area

3.3. The modules and their operations

In this section the operations of the modules of the hardware genetic algorithm are
presented in detail. In Figure 24, we present the block diagram of the initial
implementation of the genetic algorithm. The modules communicate via a simple
asynchronous handshaking protocol. When transferring data from the initiating module
I to the participating module P, I signals P by raising a request signal to “1” and waits
an acknowledgement. When P agrees to participate in the transfer, it raises an
acknowledgement signal. When I receive the acknowledgement, it sends to P the data
to be transferred and lowers its request, signalling P that the information was sent.
When P receives the data, it no longer needs to interact with I, so P lowers its

acknowledgement. This signals [ that the information was received. Now the transfer is

complete and [ and P are free to continue processing.

3.3.1. The memory interface module

The MIM provides a transparent interface to the shared memory for the rest system. It

consists of the control of the overall design because it initializes other modules as soon
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as it detects the “go” signal from the front-end. The population sequencer, the random
number generator, the crossover and mutation and the fitness module request
parameters from memory interface module by raising a request signal and awaiting an
acknowledge from it. As soon as they receive the acknowledgement, each of them
sends the address of the parameter it needs to the memory interface module which
fetches the data from the specified address of the shared memory. The parameter

received from memory is then passed to the requesting module.

As mentioned above there are two populations in the shared memory, the current
population from which the population sequencer reads and the next population where
the fitness module writes. Memory interface module examines a signal “toggle” driven
by the fitness module which specifies which population is being read from and which is

being written to. This value is toggled by fitness module after every generation [20].

3.3.2. The population sequencer

The PS requests the population size from the memory, by raising a request to the
memory interface module. The memory interface module accepts this transaction by
sending an acknowledgement to the population sequencer. Furthermore, population
sequencer after receiving the acknowledgement it sends the address of the parameter it
needs from the shared memory to memory interface module and MIM fetches it from
the shared memory. After reception of the parameter i.e. population size, it repeats the
process to get the first member from the shared memory. Then it passes it to the

selection module and waits for the next member from the shared memory [20].

3.3.3. The random number generator

The RNG generates a sequence of pseudorandom bit strings based on the theory of
cellular automata. Cellular automata generate better random bit strings than linear

feedback shift register (LFSR) [28], [29]. The cellular automata consist of 16 alternating
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cells which change their states based to rules 90 and 150 [20]. The meaning of these

rules is given below:
Rule 90: §;" = S,, XOR S,
Rule 150: S, = S,, XOR §; XOR S,

In the above equations, S, is the current state of cell i in the linear array and S, is the
next state for S;. Rule 90 changes S, state according to its neighbours only, but Rule 150
takes care of its own state as well when updating. In this implementation the sequence
150 — 150 — 90 — 150 ...90 — 150 that produces more randomness than LFSR because it
cycles through all the possible bit patterns 2'® except all 0’s. Moreover the random
number generator is a key component of the HGA system as its outputs are used by
SM and the CMM. RNG feeds the SM with random numbers for scaling down the sum
of fitnesses of the current population. This scaled sum is used during the selection of
members from the population. In addition it supplies CMM with random numbers for
determining whether to perform crossover and mutation, and for choosing the

crossover and mutation points.

3.3.4. The selection module

The SM utilizes the roulette wheel technique found on the software-based genetic
algorithm. The difference is that Scott implementation selects a pair of members A and
B, simultaneously instead of one member selected by software genetic algorithm.
Initially, it receives the sum of fitnesses of the current population from FM and then
two random real numbers are received from the RNG in order to scale down this sum

of fitnesses [20].

S..=1t XS

scale ~— a sumoffitnesses

Sscalc = rb X Ssumofﬁtncsscs
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Furthermore each member of the population is examined for selection and its fitness

value is stored in a running sum of fitnesses Sra. If S > S, then the member under

scale
examination is selected. The same process is performed for member B. When the
selection module has the random pair of members it signals the CMM module with a
request and if receives an acknowledgement it forwards the selected members to the
CMM module. After this process finishes, it resets itself and waits for more input. In

each generation the SM receives the new sum of fitnesses and repeats the above

process until the end of the algorithm.

3.3.5. The crossover and mutation module

When the algorithm starts, the CMM module requests from the MIM the crossover and
mutation probabilities with the handshaking protocol described above (§ 3.3). These
probabilities are specified by the user and placed in the 2™ and 3" position of the
shared memory. Moreover the CMM receives the selected members from the SM, and
four random numbers from RNG. It compares the first random number “rand,” with
the crossover probability “P_.” and if “rand1<P_” then crossover is performed between
the selected members resulting into two new members A’ and B’. A second random
number “rand,” is received indicating the crossover point. If rand,2P_ then the two
members A and B are copied to the new members A’ and B’. After the crossover
operation is finished, the mutation operation is performed. The random number rand,
is compared with the mutation probability and if rand;<P_ then mutation is performed
on a single bit of A’ indicated by the random number rand, The new members A’ and

B’ are then forwarded to the FM for evaluation by the fitness function [20].

3.3.6. The fithess module

The scope of the FM is to evaluate the two members received from the CMM, with

defined fitness function, and write them to the appropriate locations in the shared
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memory via the MIM. As soon as the algorithm starts, it sends a request to the MIM to
fetch three genetic parameters from the memory: 1) population size, 2) sum of fitnesses
and 3) number of generations. Then it receives a request from the CMM module to get
the two members for evaluation. The FM incorporates the fitness function F(x) = 2x
only, which evaluates each member’s fitness value in a single clock cycle. Moreover, the
FM has the knowledge of the current sum of fitnesses of the population, and sends the
value to the SM after each generation. If the algorithm runs for the specified number of
generations, then FM informs the MIM and sends a “done” signal to the front-end to

inform it that algorithm is finished [20], [23].

3.3.7. The shared memory

Shared memory is the medium where the genetic parameters and the initial population
are stored in. It is not an actual part of the hardware genetic algorithm but is presented
here for further understanding. Before the algorithm starts, the front-end writes the
parameters and the initial population to this memory which is shared with the back-end.
The algorithm starts and the MIM sends the appropriate parameters to the appropriate
modules. The PS reads the current population and the FM writes the next population
during a run. Finally, when the genetic algorithm is finished, the final population is

stored in the shared memory. [23].
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3.4. Pipeline and parallelization

The modules defined above operate concurrently with each other and form a coarse-
grained pipeline with 5 stages (Figure 25). The PS starts the pipeline by requesting
members from the MIM, passing them to the SM. Selection module decides if it selects
a pair of member according to roulette wheel method and then passes the pair to
crossover and mutation module and restarts itself, awaiting new members from
population sequencer. Crossover and mutation module after processesing the members
it received, passes them to fitness module for evaluation and waits for a new selected
pair of members. Finally, fitness module evaluates the two members and writes them to

the shared memory [23].

’ PS SM |[CMM | FM | MEM

PS SM |CMM | FM | MEM

PS SM [CMM | FM | MEM

PS SM |[CMM| FM | MEM

PS SM |CMM | FM | MEM

Figure 25: The stages of the pipeline

If sufficient chip area is available then different types of parallelization can be
added (Figure 26). Multiple selection modules can be inserted for speeding up the
selection process. The original code provides the option to use a second selection
module. However this inserts complexity to the design because the PS should pass
members to both the SMs and then the CMM must check the two SM to receive
requests. Moreover to extend the parallelism, selection, crossover and mutation and
fitness pipeline can be replicated several times in order to form parallel pipelines.
Finally the highest degree of parallelism can be achieved by inserting several numbers
of selection, crossover and mutation and fitness modules. Each selection would be
connected to each crossover and mutation and each crossover and mutation to each

fitness module.
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3.5. Scalability of the design

All the modules above are written in VHDL language within the Mentor Graphics
Environment [10]. There is also a package file where the number of bits of some basic
parameters is placed. This allows for easy modifications on the size of some basic
parameters which would then be applied on the entire design. Some basic parameters
are: 1) the maximum width in bits of the population members (n), ii) the maximum
width in bits of the fitness value (f), iii) the maximum size of the population (m) and iv)

the maximum number of generations (g).

3.6. The C code of the host computer

As mentioned above the application with C that runs on the host computer is
responsible for producing the input file to the system. User determines the fitness
function which will be applied on each member of the population. In addition, some
parameters are also defined by the user such as the member width (n), the fitness value
width (f), the number of generations (g), the crossover and mutation probabilities, the
population size (m), the memory word’s width and memory size. The output of this

program is a text file with 128 lines:

At the first six lines (0 - 5) of the file, 6 genetic parameters are placed:

® Population size

® Random number generator seed

® Mutation probability

® Crossover probability

® Sum of fitnesses of the first population

® Number of generations
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In the next 32 lines (6 - 37) the initial population is placed the first population. Then
lines (38 - 09) represent the generated population and finally lines (70 — 127) are

unused.

All parameter values are represented in binary and interpreted as unsigned integers.
Moreover, each entry in the population consists of n bits for the member followed by f
bits for its fitness. On the other hand, the back-end is the hardware where the genetic
algorithm runs on. These parameters and the initial population are loaded into a

memory which is shared between the front-end and the back-end.

The program generates the initial population according to the fitness function to
be used. More specifically the latter affects the width of the members. For example, if
n=4 and the function to be used is F(x)=2x, then f=5 and thus the width of the
members will be n+{=9 bits. The initial population is generated randomly with a “rand”
function used into the C code. However, for a specific problem the initial population

members can be inserted by the user.

3.7. Results

The hardware-based genetic algorithm proposed by Scott was compared against the
software genetic algorithm implemented on a Silicon Graphics 4D /440 with four MIPS
R3000 CPUs each running at 33 MHz. The first 6 tests were run on the prototype while
the last 6 tests were run on a VHDL simulator. All I/O times were removed from the
comparisons. The HGA prototype used an average 6.8 % as many clock cycles as the
SGA and the execution time grows quadratically with m and linearly with g.
Furthermore, the tests on the prototype utilized a population size m = 16, member
width n = 3, two SMs and fitness value width f = 4. The tests on the VHDL simulator
used m = 32, n = 4, one SM and f = 12. The results are presented in the Table 20. The

first six tests refer to the BORG board whereas the rest refer to the simulation.
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Fitness Function Number of SGA Clock HGA Clock HGA
F(x) Generations Cycles Cycles Speedup(Cycles)

X 10 97,064 5,636 17.222

X 20 168,034 10,622 15.819

x+5 10 99,825 5,585 17.874

x+5 20 170,279 10,945 15.558

2x 10 101,019 5,390 18.742

2x 20 170,241 10,659 15.972

x2 10 334,210 22,892 14.599

x2 20 574,046 45,019 12.751

2x3— 45x% + 300x 10 342,806 22,892 15.178
2x3— 45x% + 300x 20 589,863 44,503 13.254
= 15x2+ 500 10 333,701 21,362 15.621
x*>—15x%+ 500 20 579,176 44,317 13.069

Table 20: Performance of the SGA and the HGA

It is worth noticing that the clock of the prototype was 2 MHz because the glitches or

noise in the wire wrapped part of the prototype prevented faster clocking.
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Chapter 4

Implementation of a hardware-based genetic algorithm on a Virtex

IT Pro FPGA

4.1. Resources utilization analysis for the implementation on the

XUP platform

Before proceeding with the implementation we checked whether the initial
implementation could be accommodated by the XUP platform. Moreover, we made a
comparison between the available resources of the BORG and the XUP boards.
Regarding the BORG board no published information exists regarding the resources
utilization of the HGA. Therefore, we only present information on the available
resources of the FPGAs mounted on the BORG board that were used for the HGA. As
described in the Chapter 3, BORG board and its prototyping area contains eight Xilinx
FPGAs. Originally the BORG board contains two XC4003S, two Xilinx XC4002S and
one Xilinx XC4003, whereas on the BORG prototyping area three more XC4005s
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FPGAs were placed. More information on the resources of the above FPGAs is given

in Table 21. The total number of CLBs is 1016.

Device Logic CLB Total | Number Max Max IOBs | Program
Cells Matrix CLBs | of Flips Logic RAM data
Flops Gates bits

XC4002s 152 8§X8 64 256 1,600 2,048 64 61,052
X(C4003/XC4003s 238 10X 10 100 360 3,000 3,200 80 53,936
XC4005s 466 14X 14 196 616 5,000 6,272 112 94,960

Table 21: Resources analysis of BORG board and its prototyping area

Tables 22 and 23 have the resources analysis of the XC2VP30 FPGA of the XUP
[21]. It contains 3424 CLBs which is much bigger than the number of CLBs in BORG
board. Moreover, the CLB unit of the XC2VP30 is more complex and carries more
logic as compared to the above devices. Therefore, the initial implementation of the

genetic algorithm can be easily fit into the XC2VP30 FPGA.

Device Rocket IO | PowerPC | Logic Slices Max 18X 18 Maximum | DCMs
Transceiver | Processor Cells Distributed | Multiplier user I/O
Blocks blocks RAM blocks Pads
XC2VP30 8 2 30,816 | 13,696 428 Kbits 136 644 8

Table 22: Resources analysis of the Virtex II Pro FPGA (1)

Max Block | Configuration CLB Number | Number | BRAM Flip LUTs Number of

RAM Bits Array: of Carry | of SOP 18Kb Flops 3-State
Row X Chains Chains Blocks Buffers
Column
2,448Kbits 11,589,920 80 X 46 92 160 136 27,392 | 27,392 6,348

Table 23: Resources analysis of the Virtex II Pro FPGA (2)
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4.2. The Virtex IT Pro FPGA

The FPGA used was the XC2VP30 FPGA of the Xilinx Virtex II Pro family. It is
organized as a column based array of logic elements. The basic element is the
configurable logic block (CLB) which contains look-up tables (LUT) as the basic
function generators. The XC2VP30 FPGA device has an 80x46 CLB array. Each CLB
has four slices and two three-state buffers. Each slice has two function generators, f &
g, two storage elements and arithmetic logic gates. The architecture can be
characterized as fine-grained due to the small function generators which can be
programmed in bit-level. Moreover this FPGA family is hybrid due to the several
specialized circuits such as Block SelectRAM (BRAM) resources, multiplier blocks and
Digital Clock Manager (DCM) modules [22]. The perimeter of the FPGA is occupied
by Input/Output blocks (IOB) which are responsible for managing the FPGA pins. All
logic is connected via programmable routing resources organized in a hierarchical
Global Routing Matrix (GRM). In addition, two hard core IBM PowerPC 405

processors are incorporated into the FPGA fabric.

4.3. Modifications for porting the HGA on the Virtex II Pro FPGA

The initial implementation of the HGA was implemented in VHDL within the Mentor
Graphics environment [26]. We proceeded with modifications on the code and its
porting using Xilinx ISE 7.1 environment. In order to perform this, we initially
removed the mge_portable library which was supported in the Mentor Graphics
environment only, and we then replaced the gsim_state and gsim_state_vector data types
with the identical bz and bit_vector data types. This was also suggested in Scott’s work
[20]. Moreover there were two types of functions in the VHDL code such as
to_qsim_state(r,s) and to_integer(r). The first function, i.e. fo_gsim_state(is), converts an
integer 7 to gsim_state_pector of s bits wide. The second function, i.e. zo_znteger(r), converts
a gsim_state_vector to an integer. These two functions have been replaced with the

to_bitvector and #o_integer functions respectively, which are supported by Xilinx.
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Furthermore, the implemented shared memory is intended for simulation
purposes only, as it supports read and write functions from/to a text file and is not
synthesizable. Therefore, the non-synthesizable shared memory was removed and we
generated a structural dual port memory, using Xilinx Core Generator, with 128 entries
of 9 bits each. The 4 bits concern the member width, and the following 5 bits concern
the fitness value. It is worth noticing that the dual port memory generated with the
Core Generator supports std_logic and std_logic_vector data types, so the bit and bit_vector
data types were substituted with the s#d_/logic and std_/Jogic_vector data types respectively.
The shared memory now stands between the PowerPC and the HGA core, and both

can access it for reading/writing purposes, each from a different port.

Firstly, we compiled and simulated the VHDL code using Modelsim 6 SE and we
verified that the design worked properly. Then we synthesized, and implemented the
HGA core with the Xilinx ISE 7.1. Finally, we incorporated the PowerPC processor
and we downloaded the design on the XC2VP30 FPGA using the Xilinx EDK 7.1.

Table 24 has the resources utilization after place and route.

Number of Slice Flip Flops 1,557 out of 27,392 5%
Total Number 4 input LUT's 2,380 out of 27,392 8%
Number of PowerPC405s 1 outof 2 50%
Number of Block RAMs 9 out of 136 6%
Number of MULT18X18s 1 out of 136 1%
Number of GCLKs 2 out of 16 12%
Number of DCMs 1 out of 8 12%
Number of External IOBs 4 out of 556 12%
Number of LOCed IOBs 4 out of 4 100%
Number of BUFGMUXs 2 out of 16 12%
Number of 4 input LUTSs 2,061 out of 27,392 7%
(Logic)
Number of SLICEs 1,689 out of 13,696 12%

Table 24: Resources utilization of the XC2VP30 FPGA for the HGA with F(x) = 2x
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The BRAM resources are allocated by the main memory of the PowerPC we selected
during setup of the processor, and the shared memory standing between the PowerPC
and the HGA core. The maximum clock frequency on which the design operates is 100
MHz. It should be noticed that the original implementation contains only the fitness
function F(x)=2x in behavioural code. Thus the resources utilization is kept low in this

implementation. In the next phase of the work we incorporated more fitness functions.

4.3.1. Fitness functions and their implementation with DSPs

Due to the limited FPGA resources, Scott implemented the fitness function F(x)=2x
only on the BORG board. However, he simulated the genetic algorithm with more

fitness functions which are shown in Table 25.

Number Fitness Function F(x)
1 Fx) = x
2 Fx)=x+5
3 F(x) = 2x
4 Fx) = x2
5 F(x) = 2x3 — 45x2 + 300x
6 F(x) = x* — 15x2 + 500

Table 25: Fitness functions

In order to support the above fitness functions we added a new module which we call
fitness evaluation module. It consists of five multipliers and four adders, produced with
the Core Generator, a multiplexer and a functional controller. The multipliers have
been implemented in a pipelined manner - the maximum pipeline parameter was enabled
in the Core Generator - with output latency 1. The adders are non-pipelined. The
multiplexer selects the appropriate output according to the fitness function that is used.
Finally, the functional controller controls the RDY signals of the multipliers to inform

the FM when the fitness value of the evaluated member is ready.
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Several modifications have been made to incorporate all the fitness functions. In
order to support larger fitness values the width of bits of the fitness value was changed
from 5 to 14. This is illustrated in Table 26. Furthermore, due to the change of the
fitness value width, modifications have been made to parameters such as the memory
data width and the sum of fitnesses width. Some changes have been also made on the
FM of the initial design. More specifically, in the initial implementation the fitness
function calculated the fitness value of each member in a single clock cycle. In the new
implementation, due to the pipelinining of the multipliers, the fitness value of each
member needs more than one clock cycle to be calculated. Moreover, each multiplier
has a dedicated output, the RDY signal, which indicates when the result is ready.
Therefore, the evaluation of the fitness values of members is performed in more than
one clock cycle depending on the fitness function and it finishes after the activation of
RDY signal. The fitness evaluation module is shown in Figure 27 and is described later

in more detail.

Member Fitness Function Fitness Value Member & Fitness
n F(x) f Value (n &f)
Scott 1101 2x 11010 110111010
Our 1101 2x3 — 45x2 + 300x 00001010110001 110100001010110001

Approach

Table 26: Example of parameters width

The above design can be slightly changed to support even more fitness functions.
A generalized fitness function of the form ax’+bx’+ex+d can be used for evaluation, in
which the coefficients would be valued externally by the user. Although this entails
minor effort it has not been implemented and it is planned as future work. We should
also notice that there is a limitation on the maximum size of the polynomial coefficients

that present implementation allows, as shown in Table 27.

Polynomial coefficients Maximum coefficients width Maximum decimal value

a 6 63
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b 6 63
c 12 4095
d 14 16383

Table 27: Maximum sizes of the polynomial coefficients

As the operation is applied on a pair of members, two components of the fitness
evaluation module have been instantiated. Therefore, when the CMM module outputs
the two new members, i.e. the offsprings, it sends them to the FM and the two fitness
evaluation modules. More specifically, both are sent to the FM, and in parallel, each of
them is separately sent to a fitness evaluation module. This is performed in order to
start the evaluation of the fitness values of the two members in parallel as soon as they
are ready from the CMM module. In the initial implementation this process is
performed differently. More specifically, when the new members are ready from the
CMM module they are passed to the FM where the fitness values are evaluated in a
single clock cycle without an external fitness evaluation module. In our implementation
we decided to insert these two fitness evaluation components in order to support more

complex fitness functions.

At this point we explain the functionality of the fitness evaluation module
presented in Figure 27. From the Table 25, assume that the fitness function to be
optimized is the first one. Then the input of this module will drive its output directly,
L.e. input equals output. Regarding the second fitness function, the output is taken by
the F2 given by ADDER 4 of the Figure 27. All the outputs of the above fitness
functions are connected to a multiplexer, and in this way the user selects the fitness
function to be optimized. In the present version this is performed by changing a value
in the PowerPC code. Thus the selector signal of the multiplexer in the HGA core is
driven by the PowerPC. In the next version of the system it is suggested this value to be

given externally from an application running on the host computer.

We should mention that after the incorporation of the fitness evaluation module in

the HGA core, due to misleading observation of the clock frequency that the synthesis
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report, we decided to utilize a Digital Clock Manager (DCM) in order to adjust it (§
4.4.2). Although the synthesis report produces the clock of the design it gives
inaccurate results. After the place and route timing report of Xilinx EDK 7.1 tool we

realized that the clock was 100 MHz. As a consequence, we threw out the DCM.

4.3.2. Multipliers implementation

As it mentioned above the multipliers were generated from the Core Generator. We
tested all the possible configurations with Core Generator, in order to realize which
gives us the maximum frequency. Moreover the Core Generator of Xilinx ISE 7.1
didn’t give us the opportunity to select the output latency of the multipliers, which can
be done with the Core Generator of Xilinx ISE 9.1 design tool. The results are

presented in Table 28.

i Maximum Minimum Output Register Register Maximum
pipeline pipeline latency input output Frequency of

overall design

(MHz)
1 V — 1 — — 101
2 V — 2 x/ V 102
3 V — 1 3 — 102
4 V — 1 — V 105
5 V 0 — — 60
6 — V 2 V V 94
7 — V 1 V — 98
8 — V 1 — V 99

Table 28: Performance of multipliers

It can be observed that multipliers implemented with maximum pipeline run faster than

multipliers implemented with minimum pipeline. The last column indicates the overall
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design’s maximum frequency. The maximum frequency was achieved utilizing the
fourth multiplier of the Table 28 and the overall minimum frequency was achieved
using the fifth multiplier. So the five multipliers that are placed in each fitness

evaluation module were produced with maximum pipeline and output latency 1.

91



P + ,Xq — Xe = (X)4 ‘94
X0 + ,Xg — Xe = (X)4 ‘G4
X =(X)4 ¥4

X2 = (X)d ‘g4
P+x=(x)d 24

—

6

SIS A SUORIUNT SSIUILT ifZ IINSLT

uonouny ssaull 109195

|

J8]|o1u0D uonoUN -

—Apeal Jnsay—

X =(X)4 L4 t
APy ozileniu) % ! GApy
7
2Apd LAPY
|-
[0:2]uonouny ssauly 108|9S X2 SLINN |
cd
_ L4 —
~—€d— g
~ndino XA 2Xq —— ¥ LINW 2
R 4= l« z

*

Gd —
]

xo+mx_n+mxm o
" L .
¢ 43dav _XG XE— I 93Aaav € L1NIN - x— ¢ 11NN X L 1NN 5
P+ Xq+ XE
€ d3aav —P+X— ¥ 43Aaav .
L ad

VO 03 [ XMTA € UO WIPIFOS[E dNIUaS aremprey € Jo uoneiuowa(dwy — 4 11dey))



Chapter 4 — Implementation of a hardware genetic algorithm on a Virtex II Pro FPGA

4.4. The PowerPC and the Software

Until now, the system description has been focused on the hardware side of the FPGA
system. The master peripheral of the FPGA is the PowerPC, meaning that is the only
one that can initiate communicates. The PowerPC receives the data from UART and
stores them into a table (array) in its BRAM. Furthermore, we give inputs to our system
by writing appropriate values to the memory mapped registers. For example, if we want
to start the genetic algorithm in the FPGA we must set the input go signal with the
value “1”. The PowerPC writes to the register 0, which is connected with the input go,
the value 1, using the function XIo_Outl16. If we want to read a value from an input or
an output we use the Xlo_I#76 function. Below the two functions for read and write

operation are shown.
Xlo_Out16 (XPAR_HGA_0_BASEADDR +0x0, 1) this is for the write operation

Short Register0=Xlo_In16 (XPAR_HGA_0_BASEADDR + 0x0)= this is for the read

operation

After initializing the inputs of the genetic algorithm, the PowerPC sends the data
from the table (array) to the shared memory and activates the go signal. When the
algorithm is finished, the done output becomes high. When this is detected from the
PowerPC, the latter reads the data in the shared memory and stores them in a table
(array). Then the data are sent to the host computer via hyper terminal, for the user to

read the final population.

4.5. The embedded system

An application in C running on UNIX environment on a host computer generates the
text file with the genetic parameters and the initial population. The values of this text
file must be then inserted in the shared memory. In order to send these values from the

host computer to the shared memory implemented in the XC2VP30 FPGA we used
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the RS232 port of the XUP. For this reason the windows hyper terminal was used and

the PowerPC 405 embedded processor was utilized for UART communication.

The text file binary representation was converted to hexadecimal, and then to
ASCII with a program in C [23]. Because the hyper terminal can send 1 byte at a time,
and the width in the shared memory is 18 bits, the data were sent in the following way:
we send the first 8 bits and then we send the second 8 bits. The remaining 2 bits are
sent within a byte and its LSB is filled in with six zeros. An example is shown in the
Table 29. If the 110100000000011010 bit string is to be sent to the shared memory, it is
segmented in three bytes and their ASCII values, DO, 06 and 80 are sent. Inside the
PowerPC there is a code segment that recovers the original bit string, and then sends it

to the shared memory.

Row in text file First byte Second byte Third byte
Binary 110100000000011010 11010000 00000110 10000000
representation
Hexadecimal 3401A DO 06 80
representation

Table 29: Representation of input file

The FPGA system is illustrated in the Figure 28 and is formed by a number of
components and their interconnections. The components can be distinguished into two

categories, buses and peripherals.

Two different buses are available:

e Processor Local Bus (PLB). It is the system’s high speed bus and is intended for

communication between high speed peripherals.

e  On-chip Peripheral Bus. It is the system’s low speed bus and is intended for use

by peripherals where there is no need for high-speed communications.
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e PLB to OPB BRIDGE. This component connects the OPB bus with the PLLB
bus.

The following peripherals have been instantiated:

e PowerPC405. It is the hard core of an IBM PowerPC processor. It is a PLB
master and its maximum frequency of operation is 300 MHz. The program
code is executed in this peripheral.

e PLB_BRAM block. This is the system main memory. All the program sections
are located in this memory.

e PLB_BRAM_if_cntrl. This peripheral is a PLB slave and controls the BRAM.

e DCM module. This component synthesizes the processor’s 300 MHz
frequency from the board’s 100 MHz clock.

e Proc_sys_reset. This component creates the necessary reset signals.

e opb_uatrlite. This is an OPB slave peripheral for handling the serial
communication with the personal computer.

e HGA core. This is a custom OPB slave peripheral where the genetic algorithm
is placed on. The top module of our design is instantiated in the user_logic
module where the inputs and outputs signals are connected to memory
mapped registers. Moreover, the user_logic is instantiated in the HGA core

which is connected to the opb_bus.
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UART
PPC405
PLB to
5 SR p—
o bridge O
PLB_BRAM @ PLB_BRAM @
block _if_cntrl HGA

Figure 28: The FPGA System

4.5.1. System Operation

The flowchart of the system operation is presented in Figure 29. Firstly, the user selects
the genetic parameters and the fitness function to be optimized by the genetic
algorithm. Then, the input file, after its conversion from binary to hexadecimal, is
transferred via the RS232 of the host computer to the PowerPC. The PowerPC receives
the input file and stores it into a table in its BRAM. These data will then be inserted in
the shared memory. Then, the PowerPC activates the go signal in order to trigger the
genetic algorithm and enters an awaiting state until the done signal is activated. This
indicates the completion of the algorithm execution. Then, the PowerPC reads memory
contents and stores them in a table. Finally, the PowerPC transfers the data to the host
via the RS232 port and enters an awaiting state. In this state if the user wants to send a

new input file the above process is repeated, otherwise it finishes.

We should mention that the Virtex II Pro FPGA is in general a loosely coupled
architecture. This is due to the buses and the registers that intervene for the
communication between the processor and the peripherals. This results to latencies that

can not be predicted by the designer. For this reason, a controller has been
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implemented as part of the HGA core which controls the communication between the
PowerPC and the peripheral. The controller checks when the address is changed, and
when this happens it sets high the enable signal of the memory port A for one cycle. To
achieve this, for each memory we want the PowerPC to have access, we inserted one
register. This keeps the previous address, in order to compare it with the current one.
The two addresses are compared to examine whether a new address appears on the

input of the memory address lines.

Host Computer sends the input file
via RS232

J

PowerPc receives data and store
them into a table

|

PowerPc sends data to peripheral’'s
memory

|

PowerPc sends a “go” signal to
peripheral (start the GA)

|

PowerPc awaits the “done” signal
(GA finished)

Yes
+

PowerPc reads memory

l

PowerPc stores data to a table

l

PowerPc sends data to Host via
RS232

Another
function to be
optimized

Figure 29: Flowchart of the system operation
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4.5.2. Digital Clock Manager (DCM)

The DCM is a component produced with the Core Generator and is used for frequency
synthesizing. In our design the DCM takes a clock input of a specified frequency and
produces two clock outputs. It takes the input of the OPB clock which is 100 MHz,
and it outputs a clock with 100 MHz frequency and a clock with 90 MHz frequency.
The 100 MHz clock is connected to the port A and the 90 MHz clock is connected to
the port B of the dual port shared memory. The 90 MHz clock also drives the HGA
core to work propetly. The read and write operations between the PowerPC and the
shared memory are performed with a clock of 100 MHz. The read and write operations
between the HGA core and the shared memory are performed with the 90 MHz clock.
The design with the DCM was downloaded on Virtex II Pro FPGA and its correct

functionality was verified. Figure 30 illustrates the DCM.

90 MHz

—H0VHz

300 MHz 100 MHz [+

DOM |00 e RO o) Deaemory KA

PowerPc
controller

Enable

PortB

100 MHz

Figure 30: Digital clock manager
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4.5.3. Extensions for measurements

After we have simulated and synthesized the VHDL code, extensions for
measurements have been made. A dual port memory with 128 entries X 19 bits was
generated to store the intermediate sum of fitnesses of each population. By observing
the sum of fitnesses we have a quality criterion for the populations that have been
generated by the algorithm. This helped us to make our experiments that are discussed

in next chapter.

Moreover a new component was included in the overall design to count the clock
cycles for each run. It is a counter that counts the clock cycles while dore signal is set to
zero, which means that the HGA core executes. I/O timings have been removed
because we are mainly interested in the execution time of the HGA core. Figure 31

represents the block diagram of the HGA after our modifications.
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4.6. Implementation results

We have inserted two dual port RAM’s; one for the genetic parameters, the initial and
the final populations, and the second for the sum of fitnesses of each generated
population. The system’s clock frequency is 100 MHz. We downloaded the final
implementation on Virtex II Pro to verify its correct operation in hardware. The results
are shown in Table 30. The minimum period after post place and route synthesis with

EDK 7.1 was 100 MHz.

Number of Slice Flip Flops 2,024 out of 27,392 7%
Total Number 4 input LUT's 3,190 out of 27,392 11%
Number of PowerPC405s 1 out of 2 50%

Number of Block RAMs 10 out of 136 7%

Number of MULT18X18s 11 out of 136 8%
Number of GCLKs 2 out of 16 12%
Number of DCMs 1 outof 8 12%
Number of External IOBs 4 out of 556 12%
Number of LOCed IOBs 4 out of 4 100%
Number of BUFGMUXs 2 out of 16 12%
Number of 4 input LUTSs 2,783 out of 27,392 10%

(Logic)
Number of SLICEs 2261 out of 13696 16%

Table 30: Resources Utilization of HGA with more fitness functions

4.7. Weaknesses of our implementation

After the analysis of our implementation we present here some weaknesses of our

design:

e In the VHDL code we download from the internet it was included a package
file that supports parameterized and scalable design. In order to download the

genetic algorithm in the Virtex II Pro FPGA, we took out this file because
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Xilinx ISE 7.1 tool couldn’t recognize it. In the other hand Xilinx ISE 9.1
supports package files but we didn’t employ it for stability reasons which are
provided by the Xilinx ISE 7.1 design tool. In the future, the package can be

included to support parameterized and scalable design.

e Another design weakness was that we want to implement the six fitness
functions which were presented in Scott Master thesis, so the vector sizing of
the coefficients was chosen for supporting these fitness functions. If user
wants to implement different fitness functions, he should change the width of
the inputs and outputs of the multipliers and the adders. In addition, changes
to the VHDL code should be done to the coefficients of the fitness functions

which by the way support the 6 fitness functions of Scott Master thesis.

e In current version the selector signal of the multiplexer that controls the
output of the fitness evaluation module is driven by the PowerPC. In the next
version of the system it is suggested this value to be given externally from an

application running on the host computer.

o A generalized fitness function of the form ax’+bx’+ex+d is not supported yet.

In a future version the coefficients could be valued externally by the user.
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Chapter 5

Experimental results and validation

5.1. Experimental results

In order to make the experiments we inserted a new dual port memory to keep the
intermediate sum of fitnesses of each generation. Moreover, a counter was
implemented to count the clock cycles from hardware implementation of the genetic

algorithm.

Six populations were produced from the C code of the host computer for each of
the 6 fitness functions described in chapter 4. The experiments were done for
population size m = 32, member width n = 4 and fitness value width f = 14. The
algorithm runs for the 36 initial populations, and we take results that are presented

below in Figure 32.
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As we can see from Figure 32 above the populations are well optimized in a few
generations. Fitness function F(x) = x’ — 15x” + 500 was optimized in 12 generations
while other fitness functions need 20 and 30 generations to be optimized. This
probably happens because F(x) = x* — 15x* + 500 is converging to 0 and 15, which are
the two optima. Moreover, this convergence was depended on the random number
generator, the probabilities of crossover and mutation and most importantly the initial
population. We observe that 35 numbers of generations are enough for all the fitness
functions to be optimized. Moreover, fitness function F(x) = 2x° — 45x” + 300x, was
optimized after 32 generations because it is the most complex function. Table 31 below
presents the optimization performance average results, and timing results of the HGA
runs on the 6 fitness functions. We observe that the evaluation time differs for each
fitness function. This is due to the variations of the initial populations that are

generated from the C code running on the host computer for each fitness function.

F(x) Number of Sum of Sum of Increase Clock

Generations Fitnesses Fitnesses Percentage Cycles
© (Initial (Final (%)
Population) Population)

X 100 201 478 137 218,839
x+5 100 351 639 82 217,947
2x 100 437 937 118 218,225
x2 100 2121 7180 238 217,363
2x3 — 45 x2 + 300x 100 16536 35,571 96 218,038
x3 — 15x% + 500 100 7187 15,972 118 216,610

Table 31: Optimization performance and timing results

Below we present the figures of each fitness function optimization. In Figure 33,
we test 6 different populations for fitness function F(x) = x. the algorithm runs for 30
generations. We can observe that the average threshold is generation g = 22. After this

point no significant increment sum of fitnesses is performed.
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Sum of Fitnesses
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Figure 33: Optimization of fitness function F(x) = x

Figure 34 indicates the optimization of fitness function F(x) = x + 5. Six different

populations were tested and the average threshold of the number of generations was

25.
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Figure 34: Optimization of fitness function F(x) = x + 5
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In Figure 35 fitness function F(x) = 2x was optimized for six populations and the

results indicate that after 28 generations the sum of fitnesses has the same value for all

the populations.
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g 800 —e—1). Fi) = 2x
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- / 4, F(x) = 2x
E j _ ——8). F(x) = 2x
@ 400 928 —e—B). Fx) = 2x
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0 5 10 15 20 25 30 35

Number of Generations (g)

Figure 35: Optimization of fitness function F(x) =2 x

Continuing our optimization analysis of our experiments the next fitness function

under examination was F(x) = x* (Figure 36). The threshold was g = 22 generations.
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Figure 36: Optimization of fitness function F(x) = x°
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The last two complex fitness functions were examined for the optimization process.
For the F(x) = 2x’ — 45x° + 300x (Figure 37) we can conclude that need the most
number of generations to be optimized (g = 31). In the other hand F(x) = x’ — 15x” +

500 (Figure 38) needs only 12 generations to be optimized.

40000
35000 +
30000
9 —e— 1) F(x) = 23 - 45x" +300x
R /., —a 7). F(¥) = 269 - 4542 + 300x
E = DynT L AS
S e 3. Fx) = 2003 - 4502 + 300
s g =31 4. Fi) = 273 - 48302 + 300x
E el —e— 5}, F(x) = 2¢°3 - 452 + 300%
n —e—FB). Fx) = 2x°3 - 452 + 300x
10000
5000
0 T T T T T T T
] 5 10 15 20 25 30 35 40
Number of Generations (g)
Figure 37: Optimization of fitness function F(x) = 2x? — 45x? + 300x
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Figure 38: Optimization of fitness function F(x) = x> — 15x? + 500
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As we can observe from the Table 31 above all of the fitness functions needs
almost the same clock cycles to be optimized for specified number of generations. This
happens because we implemented them having one entire control unit so the results are
the expected. It is worth noticing that for the HGA runs only one selection module was

used. More specific analysis will be done in section 5.2 and 5.3.

5.2. Validation

We didn’t found any output file of the Scott implementation in order to validate our
results. Two levels of functional verification were used. First each module was
individually tested to confirm that it operated correctly under all conceivable
conditions. Testbenches were used to confirm the correct functionality of each module
and of the overall design. Modelsim 6 SE was used for the simulations we described
above. The second level of functional verification involved simulating the HGA on
different fitness function in order to see how well the functions were optimized. In all
tests, the population was optimized well. In a small number of generations, average

fitness increased substantially.

First of all, the VHDL code of the HGA we found at the internet, included only
fitness function F(x) = 2x, although Scott supports that more fitness functions were
implemented in simulation mode. The member’s width was n = 4 bits and the fitness
value width of bits, was only f = 5 bits. From simulation analysis we found that fitness
function F(x) = 2x was optimized for 20 generations at the same clock cycles as Scott
supports in his Master thesis. Moreover the average fitness of the final population was
increased. These observations lead us to the validation with Scott implementation. The
design was downloaded in a Virtex II Pro FPGA platform and the results were the

same as simulation.

Furthermore, because of the small resoutrces of the HGA in the FPGA we inserted
more fitness functions to be optimized. In order to support more complex fitness

functions the fitness value width was increased to f = 14. Moreover a lot of vectors
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were changed inside the VHDL code due to this change. So from the architecture of 9
bits we pass to the 18 bits architecture (n + f = 4 + 14 =18). The fitness evaluation
module implemented with DSP’s was first tested individually to verify correct
functionality. Then we simulate it with the entire design and check the overall’s system
functionality. The algorithm was first run for the fitness function F(x) = 2x and was
compared with the first implementation. We didn’t get the same results (the same
members at the final population) because of the pipeline of the fitness evaluation
module. Moreover the RNG seed of the first implementation was 9 bits and becomes
18 bits. As we previously mentioned RNG is a key component of the system, and its
output depends on the RNG seed input. Just like a software-based pseudo random
number generator, the RNG module is deterministic so using the same initial RNG
seed will yield the same sequence of random numbers. The algorithm was run almost
for the same clock cycles but the average fitness of the final population was increased in
the same number of generations. This implementation with the DSP’s was downloaded
for all the fitness functions and the results were the same as the simulation. Here we

present Table 32 from Scot’s Master Thesis that indicates the correct functionality:

F(x) Number of Mean Fitness Mean Fitness Increment Clock
Generations (Initial (Final Percentage Cycles
) Population) Population) (%)
X 15 7.3 14 92 32,429
2x 6 14.62 27.94 91 13,139
x2 20 74.5 215.2 214 45,019
2x3 — 45 x2 + 300x 20 572.62 1,049 83 44,503
x3 —15x% + 500 20 248.19 492.25 98 44,317

Table 32: Optimization results from Scott implementation
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Generations

F(x) Number of
®
X 15
2x 6
x2 20
2x3 — 45 x2 + 300x 20
x3 - 15x% + 500 20

Mean Fitness

(Initial

Population)
6.2
13.6
66.3
516.8

224.6

Mean Fitness
(Final

Population)
14.43
25.1
2221
1,111.6

498.9

Percentage

(o)

132
84
234
115

122

Table 33: Optimization results from our implementation

Clock Cycles

32,002
12,881
42,529
43,210

44,399

From Tables 32 and 33 above, we can conclude that average fitness increased by almost

the same coefficient for several fitness functions for the same number of generations.

Moreover, Scott supports that the actual evaluation time of completion of the

algorithm grows linearly with the number of generations. This was realized from us

when we conducting the experiments for several number of generations. So, observing

Tables 32, 33 we can say that algorithm runs almost at the same clock cycles for several

fitness functions.

5.3. Considerations for improvement

The above analysis of the HGA leads us to propose several design improvements:

e Increase parallelization of the selection modules as indicated in Figure 26. At

this point we must mention that our implementation supports only one

selection module (n

). Scott supports that inserting two parallel selection

modules can reduce the number of clock cycles significant (at the half).

Moreover there is a limit (n

sel

the fitness module and no significant speedup achieved.
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e Parallelize the selection-crossover-fitness pipelines, but this would require more
complex inter-module communication protocol than the aynchronous

handshaking protocol used in this design.

e Make the inter-module communication protocol more efficient. The current
handshaking protocol requires four clock cycles per data transfer. If these

delays were reduced the entire HGA would run much faster.

e Speed up the selection module polling method used by the crossover and
mutation module. Presently the crossover and mutation module polls only one
selection module per clock cycle. There would be time to poll several selection

modules in a single clock cycle.

e Buffer the outputs of all the modules would reduce the delays associated with
some modules waiting for service and blocking others that are waiting upstream

in the pipeline.
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Chapter 6

Present status and future work

6.1. Present status

The present status of this thesis is that we have an embedded system that implements a
function optimization using a genetic algorithm. A lot of functions can be optimized as
described in previous chapter. We achieve 50 X speedup than Scott implementation
only with porting the design from BORG’s board to a Virtex II pro FPGA platform.
This is because the clock frequency of the BORG’s board was 2 MHz and the Xilinx
university platform has a 100 MHz clock. Our implementation supports more fitness
functions that are implemented in hardware than Scott implementation which supports

only one (F(x) = 2x).
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6.2. Future work

The state of the art in FPGA technology will surely advance in the future so improved
FPGA technologies could be exploited to improve HGA’s capabilities. For example,
the genetic parameters of this design could be scaled up so the HGA could handle
larger strings, larger populations, more complex fitness functions and more advanced
genetic operators. As it analyzed in Chapter 2, the present status of the genetic
algorithms implemented in FPGAs indicates that the maximum population size is
100,000 and the maximum number of generations is 1,000,000. The genetic algorithm
could be extended by implementing other genetic algorithm operators including multi-
point crossover and mutation. Furthermore, HGA could also support alternative

encoding schemes such as floating point or signed integer coding.

To increase parallelism multiple selection, crossover and mutation and fitness
modules could be added in order to speed up the genetic algorithm. Parallelizing the

selection modules will reduce the clock cycles at the half.

We also propose the idea of partial reconfiguration. Probably, not all of the fitness
functions should be placed in the FPGA, so we can change the function which is going
to be optimized on the fly. User will select onlu the fitness function he wants to
optimize and the other fitness functions will not exist in the FPGA. This process could
be done by building several bitstreams for fitness function and store them to System
Ace Memory. Each time the appropriated bitsream will run for the specified fitness

function. This will reduce utilization resources and maybe the speed of the algorithm.

Moreover user could send via PowerPC the coefficients of the polynomial fitness
function ax’ + bx’ + ex + d he wants to be optimized. Furthermore, the selection of the
fitness function that is going to be optimized can be added to the input file so the user

doesn’t have to re-download the design.
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Thesis

Appendix A

In appendix A we present the inputs and the outputs ports of basic modules of our

design.

Signals

40

RST

datain[17:0]
toggle

CLK

reqrng

addrrng(2:0]

regxov

addrxov[2:0]

regseq[1:0]

Description

INPUTS

Go ahead signal from PowerPC to start the algorithm. If go=1 the

algorithm starts

Asynchronous signal from PowerPC to reset the algorithm. If reset=1

the algorithm doesn’t run

Data arrived from memory and they are forwarded to other modules

Tells which population to access for fitness and population sequencer

System clock

Request from RNG module

The address received from RNG which tells the MIM where in the

memory is stored the seed for RNG

Request from crossover and mutation module

The address received from crossover and mutation module which tells
the MIM where in the memory is stored the address of crossover and

mutation probability

Request from population sequencer module, regseq(7) indicates that
population sequencer wants to read a member and regseq(0) that PS

wants to read the population size
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addrseq[4:0]

reqfit(1:0]

valfitin[17:0]

fitdone

addrfit/4:0]

done

it

address[6:0]

dataont[17:0]

toggleout

Thesis

The address received from population sequencer module initially tells
the MIM where in the memory is stored the address of population size

and then addrseq tells the MIM the address of member it wants to read

Request from fitness module, regfi#(0) indicates that FM wants to read
population size, sum of fitness and number of generations and regfi#(1)

that FM wants to write to MIM a new member

Receives a2 new member from fitness module

If this signal is high, this indicates the end of the algorithm and it

comes from the fitness module

Firstly MIM receives addresses of sum of fitnesses, number of
generations and population size and then it receives the address of the

new member that FM wants to write

OUTPUTS

This signal indicates the end of algorithm and MIM send it to Power

Pc

It initializes the other modules (PS,FM,CMM,RNG). If RST is high

then init is low and conversely

This signal sent to MEMORY ecither for reading or writing the address

of a member or requesting an HGA run-time parameter

Data of a new member sent to MEMORY which received from FM

module

Read or write signal sent to MEMORY (0 is for reading operation and

1 for writing)

Shows the final value of toggle sent to Power Pc(0 means that final

population is located in positions 6-37 in MEMORY and 1 in positions
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ackrng

ackxoy

ackseq

ackfit

valont[18:0]

Signals

ackxover

50f[18:0]

rand1 [3:0]

rand2/3:0]

reset

CLK

dup

Thesis

38-69)

An acknowledge signal to RNG module

An acknowledge signal to Crossover and Mutation module

An acknowledge signal to Population Sequencer module

An acknowledge signal to Fitness Module

MIM passes data to whoever requested them

Table 34: Memory Interface Module

Description

INPUTS

An acknowledge signal from Crossover and Mutation module and if it

is 1 then selection module outputs the pair of selected members

The sum of fitnesses of the current population

Gets random number from RNG module to scale down the sum of

fitness

Gets random number from RNG module to scale down the sum of

fitness

Fitness module resets the Selection module when the current

generation has ended and the populations have switched

System clock

This signal is set to ‘1’ when we have the same input as previous
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input[17:0]

aout(3:0]

bout[3.0]

regxover

Signals

it

CLK

ackmen

param[15:0]

reqment

domnt[3:0]

doxcover/3:0]

Thesis

A new member received from Population Sequencer

OUTPUTS

The first member selected and send it to Crossover and Mutation

module

The second member selected and send it to Crossover and Mutation

module

Sends a request to Crossover and Mutation module when the pair of

members is ready. This signal is set high randomly.

Table 35: Selection Module

Description

INPUTS

An initiallizing signal send from MIM

System clock

Acknowledge signal from MIM

Value of RNG seed sent from MIM

OUTPUTS

A request sent to MIM

Random bit string sent to Crossover and Mutation module for

determining whether to perform mutation

Random bit string sent to Crossover and Mutation module for

determining whether to perform crossover
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mutpt[1:0]

xoverpt[1:0]

addr/2:0]

randsell [3:0]

randsel2[3:0]

Signals

it

CLK

domnt[3:0]

doxcover[3:0]

nutpt[1:0]

xoverpt[1:0]

ain[3:0]

bin[3:0]

Thesis

Shows what the mutation point is

Shows what the crossover point is

Send RNG seed address

Random bit string send to the Selection Module for scaling down the

sum of fitness

Random bit string send to the Selection Module for scaling down the

sum of fitness

Table 36: Random Number Generation

Description

INPUTS

An initializing signal send from MIM

System clock

Random bit string received from RNG module for determining

whether to perform mutation

Random bit string received from RNG module for determining

whether to perform crossover

Shows what the mutation point is

Shows what the crossover point is

The first member received from Selection module

The second member received from Selection module
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reqsel

ackfit

ackmen

param[3:0]

acksel

reqfit

aout(3:0]

bout[3:0]

regnient

addr/3:0]

Signals

wea

clka

clkb

Thesis

Bus request from Selection module

Bus acknowledge from Fitness module

Bus acknowledge from MIM

The crossover and the mutation probabilities received from MIM

ouUTPUTS

Bus acknowledge to Selection module

Bus request to Fitness module

First member to fitness module

Second member to fitness module

Bus request to MIM

Address of initial parameters(crossover and mutation probabilities)

Table 37: Crossover and Mutation Module

Description
INPUTS
This signal is for the write operation in A port of the Memory. It is
high when we want to write something to Memory and low for reading
operation

System clock at port A

System clock at port B
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dinaf17:0]

dinb[17:0]

web

ena

enb

addral6:0]

addrb[6:0]

donta[17:0]

douth[17:0]

Signals

clock

75t

x/[3:0]

init_mult_ctrl

Thesis

Data stored into port A of Memory

Data stored into port B of Memory

This signal is for the write operation in B port of the Memory. It is

high when we want to write something to Memory and low for reading

operation

If this signal is high then read or write operations performed in port A

If this signal is high then read or write operations performed in port B

The address of the data we want to write to port A of Memory

The address of the data we want to write to port B of Memory

OUTPUTS

Memory outputs data to other modules from port A

Memory outputs data to other modules from port B

Table 38: Memory Module

Description

INPUTS

System clock

System reset

The member sent from fitness module for evaluation

Input from fitness module which enables first fitness evaluation

module
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selfitfunc/2:0]

output[13:0]

resultrdy

Signals

it

CLK

value[17:0]

ackmem

dup

reqmem[1:0]

addr[4:0]

Thesis

Select one of the six functions to be optimized

OUTPUTS

The output of the address that becomes input for Memory module

Informs fitness module that fitness value from first fitness evaluation

module is ready

Table 39: Fitness Evaluation Module

Description

INPUTS

An initializing signal send from MIM

System clock

This signal has the population size sent from Memory Interface

Module

If this signal is set means that Population sequencer got Memory

acknowledge

OUTPUTS

If this signal is high means that the same member as last one was

passed to selection module

Request sent to Memory Interface Module. If reqmem (0)=1 it request
memory access and if reqmem(0)=0, tells Memory Interface Module
that address sent. If reqmem(1)=1, prepares to write new members to

memory

This is sent to memory interface module for request data from
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output[17:0]

Signals

it

CLK

regxover

toggleinit

ackmen

param[18:0]

ain[3:0]

bin[3:0]

offchipfitresa[13:0]

offchipfitresb[13:0]

Thesis

specified address

The member passed to selection module

Table 40: Population Sequencer

Description
INPUTS
An initializing signal send from MIM
System clock
Bus request from Crossover and Mutation module
A signal shows in which area of memory is placed the initial population
(0 means that initial population is located in positions 6-37 in

MEMORY and 1 in positions 38-69)

If this signal is set it indicates that Fitness Module got memory

acknowledge

The sum of fitnesses, population size and number of generations of

current population send from Memory Interface Module

The first member received Crossover and Mutation module

The second member received from Crossover and Mutation module

The fitness value of the first member calculated by the Fitness

Evaluator

The fitness value of the second member calculated by the Fitness

Evaluator
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resultrdy1

resultrdy2

done

ackxover

reset

50f[18:0]

toggle

regmem [1:0]

addrmem [4:0]

newmenmber [17:0]

init_mult_ctrll

nit_mult_ctrl2

writement

Thesis

It is set to high indicating that the result from first fitness evaluation

module has evaluated the fitness value from the first member.

It is set to high indicating that the result from second fitness evaluation

module has evaluated the fitness value from the second member.

ouUTPUTS

This signal tells the Memory Interface Module to shut down

Acknowledge the Crossover and Mutation Module

If this signal is high, resets the Selection Module

Sum of fitnesses of the current population sent to Selection Module

This signal is sent to Memory Interface Module to inform it which is

the current population

Request sent to Memory Interface Module. If reqmem (0) =1 it request
memory access and if reqmem (0)=0, tells Memory Interface Module
that address sent. If reqmem(1)=1, prepares to write new members to

memory
Send address of the population size, the number of generations, sum of
fitnesses and also the address of the new member to be written in

Memory

The new member sent to Memory Interface Module to be written in

Memory

Enables the first fitness evaluation module

Enables the second fitness evaluation module

Write enable signal for the sum of fitnesses memory
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memaddr[6:0]

meni_suni_enb

Signals

wea

clkea

clkb

dina[18:0]

dinb[18:0]

web

ena

enb

addral6:0]

addrb[6:0]

Thesis

Send address to sum of fitnesses memory

Enables sum of fitnesses memory for read and write operation

Table 41: Fitness Module

Description

INPUTS
This signal is for the write operation in A port of the Sum of Fitnesses
Memory. It is high when PowerPC writes something to Sum of
Fitnesses Memory and low for reading operation
System clock at port A
System clock at port B
Data stored into port A of Sum of Fitnesses Memory.
Data stored into port B of Sum of Fitnesses Memory.
This signal is for the write operation in B port of the Sum of Fitnesses
Memory. It is high when we want to write something to Sum of

Fitnesses Memory and low for reading operation

Only if this signal is high then read or write operations performed in

port A

Only if this signal is high then read or write operations performed in

port B

The address of the data we want to write to port A of Sum of

Fitnesses Memory

The address of the data we want to write to port B of Sum of
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Fitnesses Memory

OUTPUTS
donta[18:0] Sum of Fitnesses Memory outputs data to other modules from port A
donth[18:0] Sum of Fitnesses Memory outputs data to other modules from port B

Table 42: Sum of Fitnesses Memory

Signals Description
INPUTS
10[13:0] The fitness value of the first fitness function
11/13:0] The fitness value of the second fitness function
12[13:0] The fitness value of the third fitness function
13/13:0] The fitness value of the fourth fitness function
14/13:0] The fitness value of the fifth fitness function
I5/13:0] The fitness value of the sixth fitness function
S5/2:0] The selection for the multiplexer is the fitness function choice
(selfitfunc)
OUTPUTS
O[13:0] Outputs one of the inputs depending on the selection signal

Table 43: Multiplexer
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Thesis

Signals Description
INPUTS

clk System clock

rst System reset

rdyl Result ready from first multiplier

rdy2 Result ready from second multiplier

rdy3 Result ready from third multiplier

rdy4 Result ready from fourth multiplier

rdy5 Result ready from fifth multiplier

init_mult_ctrl

Initialize signal from fitness module to functional controller module

OUTPUTS

ndl New data to first multiplier

sclrl Synchronous clear to first multiplier

sclr2 Synchronous clear to second multiplier
sclr3 Synchronous clear to third multiplier

sclrd Synchronous clear to fourth multiplier
sclrd Synchronous clear to fifth multiplier

resultrdy Output to fitness module to inform that result is ready

Table 44: Functional Controller
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We don’t present the second fitness evaluation module because it has the same

structure.

Signals Description
INPUTS
1/6:0] The address for memory which is sent from the PowerPC
clk System clock
load This signal is set to high to enable register
0[6:0] The address from the input is outputted after a clock cycle if load is
high
OUTPUTS
0/6:0] The address from the input is outputted after a clock cycle if load is
high

Table 45: Register

The second register is not presented here because has the same structure.

Signals Description
INPUTS
x[6:0] The address for data memory which is sent from the PowerPC
/6:0] The address for sum of fitnesses memory which is sent from the
PowerPC
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clk

done

PowerPC_ena_out

PowerPC_sum_ena

hag_enb_ont

Thesis

System clock

This signal indicated the end of the algorithm when is high

OUTPUTS

This signal is high for one clock cycle, when we have change on the

address sent from PowerPC to enable port A of the data memory.

This signal is high for one clock cycle, when we have change on the
address sent from PowerPC to enable port A of the sum of fitnesses

memory.

This signal is high while done signal is set to low, to enable port B of

the data memory.

Table 46: Synchronization controller

Appendix B

In this appendix a detailed block diagram with all the signals of the HGA is presented

(Figure 39). Due to restricted area some modules and their signals are omitted.
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