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Περίληψη 

Οι γενετικοί αλγόριθµοι (ΓΑ) είναι αλγόριθµοι εύρεσης-βελτιστοποίησης που βασίζονται 

στην θεωρία εξέλιξης του ∆αρβίνου. Χρησιµοποιούνται ευρέως στην σηµερινή εποχή αφού 

υπερτερούν σε σχέση µε άλλους ευριστικούς αλγορίθµους γιατί α) ψάχνουν σε έναν 

πληθυσµό από λύσεις, β)δεν χρειάζονται να γνωρίζουν λεπτοµέρειες για τις παραµέτρους 

του προβλήµατος που καλούνται να επιλύσουν, και γ)κατά την εκτέλεσή τους 

χρησιµοποιούν κανόνες µετάβασης που βασίζονται σε πιθανότητες και όχι σε 

ντετερµινιστικά µοντέλα. Επίσης επιλύουν πολύπλοκα προβλήµατα γρηγορότερα από 

άλλους αλγορίθµους γιατί υποστηρίζουν παραλληλισµό. 

Στην παρούσα διπλωµατική εργασία σε πρώτη φάση πραγµατοποιήθηκε εκτενής 

έρευνα των ΓΑ που έχουν υλοποιηθεί σε FPGAs. Στη συνέχεια αναλύθηκαν 

χαρακτηριστικά όπως ο χρόνος εκτέλεσης των αλγορίθµων, οι πόροι που καταλαµβάνουν 

στο υλικό που υλοποιήθηκαν, και έγινε σύγκριση σε σχέση µε τις υλοποιήσεις σε 

λογισµικό. 

Στην συνέχεια χρησιµοποιήθηκε ένας ΓΑ που η σχεδίαση του σε υλικό υπήρχε 

αλλά είχε υλοποιηθεί για παλαιότερη πλατφόρµα και µόνο για τη βελτιστοποίηση της 

συνάρτησης F(x)=2x. Αφού έγιναν οι κατάλληλες αλλαγές ο αλγόριθµός υλοποιήθηκε για 

την εµπορική πλατφόρµα XUP που περιέχει την Virtex II Pro FPGA. Στην πλατφόρµα 

αυτή χρησιµοποιήθηκε ο ενσωµατωµένος επεξεργαστής ΙΒΜ PowerPc για την 

επικοινωνία µε τον υπολογιστή µέσω σειριακής θύρας RS-232 καθώς και για την 

επικοινωνία µε το υλικό στο οποίο υλοποιήθηκε ο ΓΑ. Αφού πιστοποιήθηκε η ορθότητα 

της υλοποίησης, στη συνέχεια προστέθηκαν περισσότερες συναρτήσεις της µορφής 

F(x)=ax3+bx2+cx+d. Για τη σχεδίαση χρησιµοποιήθηκε το εργαλείο Xilinx ISE 7.1 και 

για την προσοµοίωση το Modelsim SE 6.2. Τέλος ο γενετικός αλγόριθµος κατέβηκε στην 

πλατφόρµα XUP µε το Xilinx EDK 7.1. Το αποτέλεσµα είναι µια πλήρως λειτουργική 

πλατφόρµα για εκτέλεση πειραµάτων µε τον συγκεκριµένο γενετικό αλγόριθµο για 

βελτιστοποίηση 6 συναρτήσεων. 
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1.1.  An Introduction on Genetic algorithms 

Genetic algorithms (GAs) are search-optimization techniques based on Darwin’s 

theory about evolution. They were invented by John Holland at University of Michigan 

in the early 1970s [10]. Genetic algorithms are simple to implement and they can solve 

complex problems in contrast to other heuristic algorithms because they: 

• Search from a population of points and not a single point. Most other 

 algorithms can only explore the solution space to a problem in one direction at 

 a time, and if the solution they discover turns out to be suboptimal, there is 

 nothing to do but abandon all work previously completed and start over. 

 However, since GAs have a population of points, they can explore the solution 

 space in multiple directions at once. If one path turns out to be a dead end, 

 they can easily eliminate it and continue work on more promising avenues, 

 giving them a greater chance each run of finding the optimal solution. 
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• Use objective function - otherwise denoted as fitness function - information and 

 not other auxiliary knowledge. GAs knows nothing about the problems they are 

 deployed to solve. Instead of using previously known domain-specific 

 information to guide each step and making changes they make random changes 

 to their candidate solutions and then use the fitness function to determine 

 whether those changes produce an improvement. 

• Use probabilistic transition rules and not deterministic rules. The search-

 optimization process is based on probabilities which give flexibility to the genetic 

 algorithm. If the problem has changed, the genetic algorithm can solve it because 

 it doesn’t based on standard parameters but based on probabilities. 

• Work with the coding of the parameter set and not the parameters themselves. 

 Many real-world problems cannot be stated in terms of a single value to be 

 minimized or maximized, but must be expressed in terms of multiple 

 objectives, usually with tradeoffs involved. GAs manipulates many parameters 

 simultaneously. 

These four characteristics make them powerful, flexible and robust. 

Genetic algorithm is a stochastic technique with simple operations based on 

natural selection. The basic operations are selection, crossover, and mutation. Initially, 

we have a randomly generated population of candidate solutions of the problem in 

order to cover the entire range of possible solutions. A fitness function selects the 

parents by evaluating each member’s fitness value. The selection of the individuals is 

performed according to their fitness values. The fittest member has more chances to be 

selected. Genetic operations such as crossover and mutation are applied on the 

parents and the new individuals are generated, called children. Finally a substitution 

between the old and the new population is made. The algorithm runs until a 

termination condition is met, number of generation. An indicative flowchart of a 

genetic algorithm is presented in Figure 1 [25]. 
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Figure 1: Generic – Type flowchart of a Genetic Algorithm 
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The basic steps of a genetic algorithm are: 

1) Start: Generate random population of n chromosomes (suitable solutions for 

the problem).  

2) Fitness: Evaluate the fitness of each chromosome x of the population 

according to a fitness function F(x). 

3) Selection: Select two parent chromosomes from a population according to 

their fitness i.e. the better fitness, the bigger chance to be selected.  

4) Crossover: Crossover the parents to form two new offsprings, or children, 

according to a crossover probability. If no crossover is performed, offsprings 

are an exact copy of parents.  

5) Mutation: Mutate new offspring at each locus (position in chromosome) 

according to a mutation probability.  

6) New population: Use the generated population for a new execution of the 

algorithm.  

7) Check: If the termination condition is satisfied, stop and return the best 

solution in the current population else go to step 2. 

The chromosome should contain information about the solution it represents in some 

way. The most common way is encoding with a binary string. Each bit in this string 

can represent some characteristic of the solution, or, the entire string can represent a 

number. The chromosome then could look like this (see Table 1): 

Chromosome 1 Chromosome 2 

10110100101001 00001110111010 

Table 1: Encoding of a chromosome 
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There are many other ways of encoding which depend on the nature of the problem. 

Permutation encoding, value encoding and tree encoding are some of the methods used 

with success in the field of genetic algorithms.  

According to Darwin’s theory of evolution, the best chromosomes should survive 

and form the new population. There are many methods of selection such as roulette 

wheel selection, rank selection, steady-state selection, and elitism. In roulette wheel 

selection method, the chromosomes with better fitness values have more chances to be 

selected than others with small fitness values. Imagine a roulette wheel where all 

chromosomes from the population are placed on it. Each chromosome has its place on 

the roulette according to its fitness value (see Figure2). Then a marble is thrown there 

and selects the chromosome. Chromosome with bigger fitness will be selected more 

times. The roulette wheel method could not select the best chromosome because the 

whole process is randomly (spin the roulette is a random operation).  

 

Figure 2: Roulette wheel selection 

  

The previous selection method might face problems when the fitnesses differ very 

much. For example, if the best chromosome fitness has the 90% of the roulette wheel 

place, then the other chromosomes that share the 10% of the remaining space will have 

very few chances to be selected [25].  

Rank selection first ranks the population and then every chromosome receives 

fitness from this ranking. The worst will have fitness 1, second worst 2 etc. and the best 

will have fitness N which equals the number of chromosomes in the population. After 
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ranking, all the chromosomes have a chance to be selected. But this method can lead to 

slower convergence, because the best chromosomes do not greatly differ from other 

ones.  

Steady – state selection method is not particular of selecting parents. The main 

idea of this selection is that a large part of chromosomes should survive and included in 

the next generation. GA then works in a following way: In every generation a few 

chromosomes with high fitnesses values are selected for creating a new offspring. Then 

some bad chromosomes with low fitness value are removed and the new offspring is 

placed in their place. The rest of population survives in the new generation.  

When creating a new population with crossover and mutation, there is a big 

possibility, that the best chromosome will be lost. Elitism is a method, which first 

copies the best chromosome, or a few best chromosomes to the new population. The 

rest is done in the classical way. Elitism can very rapidly increase the GA performance, 

because it prevents from losing the best found solution.  

Crossover operation selects genes from the parent chromosomes and creates two 

offsprings. The simplest way to do this is to randomly choose a crossover point and 

swap the suffixes of the two parents (see Table 2). 

Chromosome 1 11011 | 00100110110 

Chromosome 2 11111 | 11000011110 

Offspring 1 11011 | 11000011110 

Offspring 2 11111 | 00100110110 

Table 2: Crossover example 

 

Different types of crossover exist, such as single point crossover, two point crossover, 

and uniform crossover. 

Single point crossover: One crossover point is selected randomly, and binary 

string from the beginning of chromosome up to the crossover point is copied from one 
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parent, the rest is copied from the second parent. The second offspring is produced 

with a similar process. This is shown in Figure 3.  

Figure 3: One point crossover 

Two point crossover: Two crossover points are selected randomly, a binary string 

from the beginning of chromosome to the first crossover point is copied from one 

parent, the part from the first to the second crossover point is copied from the second 

parent and the rest is copied from the first parent again. This is shown in Figure 4.  

Figure 4: Two point crossover 

Uniform Crossover: As shown in Figure 5, bits are randomly copied from the 

first or from the second parent.  

Figure 5: Uniform crossover 

After the crossover is performed, mutation operation takes place. This is to prevent 

from falling all solutions in population into a local optimum of solved problem. 

Mutation changes randomly the new offspring. For binary encoding we can flip a few 

randomly chosen bits from 1 to 0 or from 0 to 1 (see Table 3). 

Original offspring 1 1101111000011110 
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Original offspring 2 1101100100110110 

Mutated offspring 1 1100111000011110 

Mutated offspring 2 1101101100110110 

Table 3:  Mutation example 

 

Genetic algorithms have been applied successfully to many hard optimization 

problems such as: VLSI layout optimization, job scheduling, function optimization, 

code breaking, Boolean satisfiability, traveling salesman problem, Hamiltonian circuit 

problem, bioinformatics, financial.  

 

1.2. Motivation for implementing genetic algorithms on hardware 

A Genetic Algorithm is an optimization method based on natural selection. But 

application of GAs to increasingly complex problems can overwhelm software 

implementations of GAs, causing unacceptable delays in the optimization process. This 

is true for any non-trivial application of GAs if the search space is large. Therefore, a 

hardware implementation of a GA would be applicable for dealing with problems too 

complex for software-based GAs. Because a general-purpose GA engine requires 

certain parts of its design to be easily changed, e.g. the function to be optimized, 

Hardware-based Genetic Algorithm (HGA) can benefit from field-programmable gate 

arrays (FPGAs). Reprogrammable FPGAs that are programmed via bit patterns stored 

in static RAMs are powerful candidates for the development of HGA system [10]. 

A simple empirical analysis of software-based GA’s indicated that a small number 

of simple operations and the function to be optimized were executed frequently during 

the run. Neglecting I/O, these operations accounted for 80-90% of the total execution 

time. If m is the population size (number of strings manipulated by the GA in iteration) 

and g is the number of generations, a typical GA would execute each of its operations 

mg times. For complex problems, large values of m and g are required, so it is imperative 

to make the operations as efficient as possible. A work by Spears and De Jong [27] 
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indicates that for NP-complete problems, m=100 and values of g in the order of 104 – 

105 may be necessary to obtain a good result and avoid premature convergence to a 

local optimum. Pipelining and parallelization can help providing the desired efficiency, 

and they are easily implemented in hardware. The nature of GA operators is such that 

GAs lends themselves well to pipelining and parallelization. For example, selection of 

population members can be parallelized to the practical limit of area of the chip(s) on 

which selection modules are implemented. Once these modules have made their 

selections, they can pass the selected members to the modules, which perform 

crossover and mutation, which in turn pass the new members to the fitness modules 

for evaluation. This way a coarse-grained pipeline is implemented. The capability for 

parallelization and pipelining helps in efficiently mapping GA to hardware [3], [10].  

 

1.3. The selected hardware genetic algorithm 

After making a research for genetic algorithms implemented on FPGAs, we decided to 

occupy with the hardware based genetic algorithm proposed by Scott [10]. The main 

reason was that the VHDL implementation was available through the Internet [26]. The 

initial design was implemented under the Mentor framework targeting a BORG board 

with Xilinx FPGAs. We ported the design to a modern platform, XUP, and verified its 

correct operation. 

  

1.4. Contributions of this work  

The contributions of this thesis are the following: 

• Implementation of a genetic algorithm on a Virtex II Pro FPGA platform. 

• VHDL coding and synthesis with Xilinx ISE 7.1 tools, post place and route 

simulation and verification with Modelsim 6.0. In addition, Xilinx EDK 7.1 was 

used for including the embedded PowerPC processor.  
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• Six fitness functions were implemented for extension as compared to one 

fitness function implemented on the initial implementation. 

• Results evaluation from a different point of view compared to the initial 

implementation. 
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A survey of genetic algorithms and their implementations 

 

 

 

 

2.1. Introduction 

Genetic algorithms are known from the beginning of 90’s for their assistance in new 

technologies. They are simple to implement and they can solve complex problems in 

contrast to other heuristic algorithms. They use techniques such as selection, crossover 

and mutation as they were described in Chapter 1. 

 

2.1.1. A genetic algorithm example 

As a simple example, imagine a population of four strings having five bits each. Also 

imagine a fitness function F(x) = 3x which simply returns the integer value of three 

times the binary integer (e.g. F (00000) = 0, F (00001) = 3, F (00010) = 6, etc.). The 

goal is to optimize in this case maximize the fitness function over the domain 0 < x < 
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31. Now imagine a population of the four strings generated randomly before genetic 

algorithm starts. The corresponding fitness values and percentages come from the 

fitness function F (x) [10], [23]. 

In the following Tables, 4 and 5 the “% of Total” column contains the probability 

of each string’s selection. So initially 11010 has 41.2 % chance of selection, 01101 has 

20.6 % chance, and so on. The selection process can be thought as spinning a 

“weighted roulette wheel” like in Figure 2. The results from the spins are given in the 

“Actual Count” column of Table 4. As expected these values follow the corresponding 

values of the “Expected Count” column.  

After selecting the strings the genetic algorithm randomly pairs the newly selected 

members and looks at each pair individually. For each pair, e.g. A = 11010 and B = 

01101, the genetic algorithm decides whether or not to perform crossover. If it does 

not, then both strings in the pair are placed into the population with possible 

mutations. If it does then a random crossover point is selected and crossover proceeds. 

Then the children A’ and B’, are placed in the population with possible mutations. The 

genetic algorithm invokes the mutation operator on the new bit strings very rarely 

usually in the order of less than 0.01 probability, generating a random number for each 

bit and flipping that bit if the random number is less than or equal to the mutation 

probability.  

After the current generation’s selections, crossovers and mutations are completed, 

the new strings are placed in a new population representing the next generation. In this 

example generation, average fitness increased by 38 % and maximum fitness increased 

by 11%. This simple process would continue for several generations until a termination 

criterion is met.  
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i String 

(Binary) 

xi 

String 

(Decimal)  

xi 

Fitness  

F(xi)= 3xi 

% of Total  

F(xi) / Σfi 

Expected 

Count  

F(xi)/(mean)F 

Actual 

Count 

1 

2 

3 

4 

11010 

01101 

10110 

00010 

26 

13 

22 

2 

78 

39 

66 

6 

0.412 

0.206 

0.35 

0.031 

1.65 

0.82 

1.39 

0.12 

2 

1 

1 

0 

 Sum (ΣF) 

Avg (mean 

F) 

Max 

 189 

47.25 

78 

1 

0.25 

0.412 

3.98 

0.995 

1.65 

4 

1 

2 

Table 4: Four strings and their fitness values 

 

i After selection Mate Crossover Point After Crossover Fitness   

     F(x) =   3x 

1 

2 

3 

4 

11|010 

1|1010 

01|101 

1|0110 

x3 

x4 

x1 

x2 

2 

1 

2 

1 

11101 

10110 

01010 

11010 

87 

66 

30 

78 

 Sum 

Avg 

Max 

   261 

65.25 

87 

Table 5: The population after selection and crossover 

 

2.2. Implementations of genetic algorithms on FPGAs 

In this section we present 18 implementations of genetic algorithms on FPGAs. We 

present the current status of genetic algorithms in FPGAs and give an overview of the 

existing approaches and their trade offs. 
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2.2.1. Koonar et al 

Koonar et al. proposed a genetic algorithm for circuit partitioning in VLSI physical 

design automation. The design consists of 9 modules including the external memories 

(see Figure 6) [3]. 

The control registers are loaded with appropriated values using the CPU interface 

and the process starts with an active high pulse. After the process starts, the system 

takes the netlist from the Top-level IO’s and stores it into the netlist memory. Then the 

core of the system generates the initial population randomly and stores it into the 

chromosome memory. The selection module chooses parents with good fitness values 

and sends the addresses in the crossover and the mutation module. In this module the 

two functions of crossover and mutation performed on the parents and the new 

population is generated. The fitness module is responsible for creating the fitness values 

for the children. Main controller checks the modules by sending control signals. The 

selection module uses Tournament selection, choosing the one with the best fitness 

value for crossover and the children are in the chromosome memory. The selection 

module reads four random fitness values from the fitness memory. It compares two 

pairs of fitness values and chooses the best from each pair. The addresses of these two 

best values stored until the selection module will be enabled again. These addresses 

represent the starting address of the parents in the chromosome memory. The 

chromosome memory is separated in two parts. Parents stored in the first part and 

children in the other. One word from each parent is read from the memory and a 

counter is increased for the words of the chromosomes. The crossover module creates 

a random crossover mask for each word of the parents. The crossover and mutation 

rates compared with a random 8-bit number. If this number is smaller than the 

crossover and mutation rates these operations are performed, otherwise the parents are 

copied to the children. The results are stored word by word in the memory. The 

starting memory address of the children obtained from the main control state machine 

and the process repeated until the counter reaches the length of the chromosome. 

When the population is generated, the fitness module creates values for the children. 

The fitness module defines for each net if the partitioning of the chromosome 
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generates a cut. For each chromosome 0, the fitness counter becomes 0 and the 

chromosome and the net are read word by word from the chromosome and the net 

memory. Moreover, for each word of the chromosome and the net, an ‘AND’ 

operation followed by an ‘OR’ operation. This generates information, based on the 

present word of the chromosome, in which partition the net belongs. If a net is met in 

a specific partition the bit it indicates this is kept. If both of the bits are ‘1’ this shows a 

cut and the fitness counter increments. This is repeated for each word and the final 

fitness is modified in comparison with the number of cells that exists in each partition.  

The main controller starts reading the input netlist, after receives a signal and loads 

it into the netlist memory. Then it generates random chromosomes and random 

population in the chromosomes memory. After initializing the memories, three 

functions are executed by the main controller. Fitness, selection and crossover and 

mutation function, using some control signals to produce the final population.  

 

Figure 6: Architecture of the genetic algorithm processor 

 

We present Tables 6, 7, 8 and 9 with results below for hardware and software 

implementations for different generation count and population size: 
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Name Number of nets Number of modules 

Pcb1 

Chip1 

Chip3 

32 

294 

239 

24 

300 

274 

Table 6: Benchmarks 

 

Benchmarks Generation Count Software Time(ms) Hardware Time(ms) 

Pcb1 

Nnets=32 

Nmods=24 

20 

60 

100 

200 

600 

900 

1.63 

4.91 

7.20 

Chip1 

Nnets=294 

Nmods=300 

20 

60 

100 

1,700 

4,800 

8,100 

40.5 

121.25 

202.32 

Chip3 

Nnets=239 

Nmods=274 

20 

60 

100 

1,200 

3,400 

5,900 

23.23 

69.52 

116.23 

Table 7: Performance results for Hardware GA and Software 
GA for different Generation Count 

 

Benchmarks Generation Count Software Time(ms) Hardware Time(ms) 

Pcb1 

Nnets=32 

Nmods=24 

20 

60 

100 

200 

700 

1,100 

1.63 

4.82 

7.20 

Chip1 

Nnets=294 

Nmods=300 

20 

60 

100 

1,700 

4,900 

8,800 

40.5 

122.25 

203.6 

Chip3 

Nnets=239 

Nmods=274 

20 

60 

100 

1,200 

3,800 

5,700 

23.23 

69.36 

115.32 

Table 8: Performance results for Hardware GA and Software 
GA for different Population Size 
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Parameters Parameters Value 

Population Size 

Generation Count 

Crossover Rate 

Mutation Rate 

Crossover Type 

Mutation Type 

20 

20 

0.99 

0.01 

Uniform 

Tournament 

Table 9: Default genetic parameters 

 

During the simulation results we realize that hardware implementation is much faster 

than software design. 

 

2.2.2. Tang et al 

Wallace et al. implemented a hardware genetic algorithm using FPGA known as FGA. 

The PCI based hardware GA processor consists of 2 FPGAs. The first is used for the 

bus interface and the control unit with the implementation of the genetic operators. 

The second is used for the implementation of an objective function [4]. The block 

diagram is presented in Figure 7 below: 
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Figure 7: Block Diagram of FGA 

 

First of all, it is a PCI interface with two dual port RAMs. The genetic operations 

are implemented in hardware and they are programmable. The fitness function can be 

modified by a single FPGA. In this design, the genetic operators are implemented in 

parallel and pipelined architectures, using FPGA. The parts of the genetic operators are 

the pseudo random number generator, the selection module, the crossover module and 

the mutation stage. The pseudo random number generator consists of a fast 

asynchronous clock 100MHz and the random number it generates, it is 96 bit length. 

For the selection module we use roulette wheel selection with optimized hardware. In 

the crossover module if the random string of bits generated from the random number 

generator is smaller than the value of the register for crossover and if another register is 

high than the crossover begins. Two 16-bit registers produced from the parents. There 

are 3 types of crossover, the one point crossover, the multi point crossover and finally 

the uniform crossover. There are four types of mutation, the one bit mutation, the 

multi bit mutation, masked mutation and random mutation. To test this 

implementation proposed above they used population size of 256. They used the 
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uniform crossover method with crossover rate 0.9 and the random mutation method 

with mutation rate 0.09. It took 500 µsec to initialize the population with the single 

FGA in contrast with 5.34 msec in Pentium 2.4 GHz machine. So we realize that with 

FGA boards we can achieve linear speedups.  

 

2.2.3. Aporntewan et al 

Aporntewan et al. proposed a hardware implementation of the compact genetic 

algorithm. The compact genetic algorithm is implemented in VHDL and fabricated in 

FPGA. Moreover, the compact genetic algorithm, represent a population as a vector 

with l dimension, where l is the length of the chromosome. I dimension of the vector is 

the probability to be 1 or 0. So, the compact genetic algorithm manages the vector 

instead of the population and this decreases the number of the bits demanded to keep 

the stored population. Consequently, we can use registers for the probability vector. We 

have the population (n), which represented as an l dimension probability vector and the 

chromosome length (l).The p (i) is the probability of i bit and initially is 0.5. Then we have 

the a (i) and b (i) which generated according to p. 

The a (i) is 1 with probability p(i) and 0 elsewhere. Afterwards, we have the fitnesses for 

a, b. If fa ≥ fb and if a (i) = 1 and b (i) = 1, the p (i) increased by 1/n, otherwise decreased 

by 1/n. This continues until the p (i) takes the value 0 or 1. Finally p gives us the finally 

solution [2]. The pseudo code for the compact genetic algorithm is shown in Figure 8 

below: 



Chapter 2 – A survey of genetic algorithms and their implementations 

 

  

26 

 
Figure 8: Pseudo code of the compact genetic algorithm 

 

For the random number generator we use one dimensional two state cellular 

automata. We use 8 bit for the number which is satisfied for a random process. When 

we have a lot of bits we have best quality. The numbers of the random number 

generators are the same with the length of the chromosome. The probability register is 

a module that keeps the p(i), which is an 8 bit integer. The population must be a power 

of two. The hardware organization shown below consists of comparators which 

compare two integers and if m>n the output is 1, otherwise is 0. In the design below we 

can see the buffers where they keep the a(i) and the b(i). There are also two fitness 

evaluator modules to compute the values of a, b. The hardware organization is shown 

in Figure 9 below: 
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Figure 9: Hardware Organization 

 

The compact genetic algorithm is more suitable for hardware implementations than the 

simple genetic algorithm. The hardware genetic algorithm is 1000 times faster than a 

version of software (see Table 10). This compact genetic algorithm is targeted into a 

Xilinx Virtex V1000FG680 FPGA chip. 

Software 

(200 MHz Ultra Sparc 2) 

Hardware 

(FPGA 20 MHz) 

Speedup 

2:30 min 0.15sec 1000 

Table 10: Comparison between software and hardware 
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2.2.4. Tommiska et al 

Tommiska et al. suggest a genetic algorithm with ALTERA hardware description 

language implemented in a 10K FPGA. The hardware consists of a Pentium 

microprocessor with 4 PCI slots. The population is located in the EABs (embedded 

array blocks), which are flexible RAM. The fitness function is located in the LABs 

(logic array blocks), which are for arithmetic operations [8]. The random number 

generator is very important, so they choose a linear shift register (LSHR), which is 

simple to implement and it generates good random numbers. In this design, there are 

three LSHR because of the periodicity of the random numbers. The random number 

generator consists of a noise diode, an amplifier and an analog to digital converter. In 

the mutation stage, they use one point mutation with rate 1 or different. The genetic 

algorithm run in a pipeline and consists of four stages, which are separated by register 

banks. The register banks are used for the synchronization of the pipeline and for the 

safety of the chromosomes addresses. This means that the memory address we read the 

chromosome is the same we write it. In the first stage, we select two random 

chromosomes from the memory. The memory is implemented synchronous with 

distinctive read and write ports. In the second part of the pipeline the two random 

chromosomes are submitted for crossover and mutation and they pass through the 

third stage with the offsprings. The crossover is selected randomly and the offsprings 

are submitted for mutation, which is implemented as invert of the random selected bit 

in the 32 bit chromosome. In this implementation Tommiska et al used crossover rate 

equal to 1 and mutation rate equal to 0.31. The fitness evaluation module has the four 

chromosomes (parents and offsprings). The fitness function is implemented as a simple 

comparison of the 32 bit quantities. The chromosomes are compared with round robin 

algorithm and the number of comparisons is six (one with other three).The best two 

chromosomes are selected and write back to the last stage of the pipeline. Finally, these 

two chromosomes are written back to the same memory address, where they had read 

before. The process described above is presented in Figure 10.  

The design proposed here is very fast (4 clock cycles) in comparison with software 

implementations. FPGAs are faster than microprocessors for a genetic algorithm. The 
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clock cycle of the entire pipeline is 80 ns. The selection, crossover mutation, fitness 

evaluation and write back operations spent 160ns. They run the same algorithm coded 

in C language in a Pentium processor and they realize that the genetic operations took 

34 µsec. This means that the implementation they proposed is 212 times faster than 

software.  

 

Figure 10: Genetic algorithm pipeline on four stages 

 

 

2.2.5. Emam et al 

Emam et al. introduced an FPGA based genetic algorithm in the application of the 

blind signal separation. The variables are represented as genes in a chromosome. The 

natural selection guarantees that chromosomes with best fitness values will be 

generated in the new population because they result from parents with the best fitness 
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values. Blind signal separation means that we detect mixtures of independent sources 

and making use of these signals, we recover the original signals. We can take these 

mixtures signals instantaneous [11]. 

x (t) = A × s (t) 

A: the mixture matrix, s (t): sources vector and x (t): the final vector (without noise). 

The sources can be separated by finding a matrix w that 

w × A = P × D 

 P: modified matrix, D: diagonal matrix. So the signal we recover is: 

y (t) = w  × x (t) => y (t) = P × D × s (t). 

The chromosomes of the application composed of the filter factors and the fitness 

value. Their length is 64 bits, 48 bits for the filter factors and 16 bits for the fitness 

value. Figure 11 presents the chromosome representation. 

 
Figure 11: Chromosome representation 

 

Genetic algorithms are responsible for optimizing the factors of the filters, which 

are used to separate two mixed signals. Initially, the factors of the filters take random 

values and these values are sent to the filters in the DSP. The output signals are tested 

for separation and evaluated by the fitness function. The fitness function represents the 

similarity between the real and the estimated model.  

F = 1 – e (k)    and e (k) = y (k) – y’ (k) 
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The factors of the filters and the fitness values are placed in a matrix with the 

probability of mutation, in order that registers will be generated in the FPGA. The 

genetic operator will choose the chromosomes through the selection. The operations of 

crossover and mutation will recombine the chromosomes to take the offspring. The 

new generation goes back to the DSP processor so that the output signals will be 

estimated for the separation. This system described above implemented in a PCI board 

consists of a DSP processor and an FPGA. The size of the population is 80 and the 

mutation probability is 0.1. Figure 12 presents the process we described. The results are 

shown in Table 11. Hardware genetic algorithm is a very good implementation for real 

time application where the time of the whole application depends on the fitness 

function. 

Block 

Name 

Total 

Number of 

Slices 

Number of 

Equivalent 

Design Gates 

Number of 

IOB Gates 

Maximum 

Path Delay 

(ns) 

Maximum 

Frequency 

(MHz) 

RNG 41 721 1,776 15.67 173.13 

Selector 440 5,264 1,392 63.366 62.449 

Crossover 193 2,354 1,392 27.138 63.291 

Mutation 148 1,834 1,392 38.79 83.486 

Total GO 1,081 12,618 1,392 69.789 58.782 

Table 11: Results 
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Figure 12: Genetic algorithm in Blind signal separation 

 

2.2.6. Scott et al. 

Scott et al. suggested a hardware-based genetic algorithm implemented in VHDL [10]. 

The first part denoted as front-end of the HGA, consists of an interface running on a 

computer. This interface takes the parameters from the user and writes them in a 

shared memory standing between the first and the second part, denoted as back-end, of 

the HGA. User defines the fitness function in C or VHDL. All of the modules have 

been written in behavioral non synthesizable VHDL except the memory [10], [23]. 

Initially, all the parameters are loaded into the shared memory. The memory 

module plays the role of the HGA controller. It receives a signal of the front end part 



Chapter 2 – A survey of genetic algorithms and their implementations 

 

  

33 

and connects the interface with the back-end. The memory interface module updates 

fitness module, crossover and mutate module, random number generator and the 

population sequencer that the HGA starts. Each module mentioned above asks for the 

parameters it needs from the memory module. The population sequencer initiates the 

pipeline operation, asking from the memory module the members of the population to 

pass them through the selection module. The selection module takes the members from 

the population sequencer and decides for them until a suitable pair come. When the 

pair passes to the crossover and mutation module, the selection module resets itself and 

restarts the selection process. When the crossover and mutation stage takes the pair 

from the selection module, decides if it makes crossover and mutation and when it 

finished the offsprings are sent to the fitness module. In the fitness module the two 

members are evaluated and are written to the memory interface. Then, the fitness 

module continues its work and when it finished sends a signal to the front end.  

The design is coarse – grained pipeline. When a module finishes a process, waits 

for another input to continues. So, genetic functions are not good to be interrupted if 

others are running. The parallelism can be inserted putting two selections modules. The 

population sequencer is the most time – consuming part of this design. Scott et al 

simulated the system for several fitness functions and they have proven its speedup 

over the software approach. An extended presentation of this work is available in 

Chapter 3.  

 

2.2.7. Mostafa et al 

 Mostafa et al. proposed an implementation of a parallel – pipelined hardware genetic 

algorithm using VHDL for programming the FPGA. The proposed pipelined – 

parallelized hardware genetic algorithm (PPHGA) consists of five parts. First of all, the 

random number generator supplies the system with all the random numbers it needs. 

They suggested linear cellular automation technique for the pseudo random bit – 

strings. There are 16 different bit – strings and the clock cycle is huge. In this way, they 
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have more randomness than the linear feedback shift register. The output of the RNG 

supplies the selection module and the crossover and mutation module. The sequencer 

module is used for drawing the members of the population in sequence from the 

memory due to a protocol, which is used for all the methods. After the sequencer 

module there is the selection module, which selects the members that are going to be 

crossover and mutated. The fourth module is crossover and mutation, which is 

responsible for the crossover and the mutation of the bit – strings. The fifth module is 

the fitness module which calculates the fitness values of the members and decides if the 

program must be stopped [9].  

There is a 32bit floating point module to make operations with the decimal point. 

Finally, there is the memory and the control unit which organizes the process between 

the modules and the memory. Moreover, Mostafa et al used three 32 bit floating point 

registers: BR, AC, QR. Each register is separated in two parts. The registers give delay 

in the design and the biggest delay is observed in the fitness module. The PPHGA has 

practical applications which are the linear function interpolation, the thermistor data 

processing and the computation of vehicle lateral acceleration. In these applications 

they realize that the PPHGA perform better than other search algorithms.  

 

2.2.8. Peter Martin  

Peter Martin presented a hardware implementation of a genetic programming system 

using FPGAs and Handel – C. Handel – C is a high level programming language which 

is located in the centre of the hardware. The output of this language is a file that is used 

for inserting data in the FPGA. The syntax is like C language. The advantage of the 

parallel hardware generation is that we use hardware and we can achieve parallelization 

directly. In a computer with simple processor this can be succeeded with the division of 

time. Handel – C supports parallelization and integers. The communication between 

hardware and the outside world is accomplished with interfaces. In addition, the 

expressions take 1 clock cycle and are constructed from combined logic. In other hand, 
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does not support stack and recursive functions directly. A Handel – C code is portable 

and it can be used for several times. From the genetic operations only the fitness 

function is prepared on the FPGA. The other functions such as crossover and mutation 

are implemented in a host computer. By way of experiment FPGA is 200 times faster 

than a Pentium processor of 750 MHz. Sometimes, the fitness function and the initial 

population are implemented in the FPGA. In an experiment they put 4 FPGAs for 

each operation and utilizing a pipeline each FPGA passes its results to the others. They 

compared this design with an implementation in software in 125 MHz workstation and 

they realized that the results were 4 times better. Peter Martin implemented a complete 

genetic programming system with Handel – C in hardware [1].  

Handel – C supports direct parallelization by activating effective implementation of 

instructions and this increment the efficiency. Random number generator is used twice. 

Firstly, to generate the initial population and secondly to choose which of the genetic 

operators is going to be used. The linear feedback shift register was used and the word 

length was 32. The pseudo random number is generated in one clock cycle. In the 

breeding policy, the tournament selection was used and the mutation probability was 

0.1, the crossover probability equal to 0.7 and the copy of the individuals was 0.2. The 

mutation function can change zero, one or more contents of the instructions. 

Thereafter, the crossover operator copies segments from one program to another. Peter 

Martin runs two problems in 2 different environments. The first problem is the 

regression which Peter Martin runs it in the power PC and in the Handel-c 

environments (see Table 12). 

Measurement Power Pc Simulation Handel-C (Single fitness 

evaluation) 

Handel-C (4 

parallel fitness 

evaluation)                                            

Cycles 16,612,624 351,178 188,857 

Clock Frequency 

(MHz) 

200 25 19 

Estimated Gates n/a 142,443 228,624 

Number of Slices n/a 4,250 6,800 
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Percentage of slices 

used 

n/a 22% 35% 

Speedup (cycles) 1 47 88 

Speedup(time) 1 6 8 

Table 12: Results from the regression problem 

 

Furthermore, Peter Martin runs the XOR problem in the previous two environments 

and the results he realized are shown below in the Table 13. 

Measurement Power Pc Simulation Handel-C              

(Single fitness 

evaluation) 

Handel-C                    

(4 parallel fitness 

evaluation)                                            

Cycles 27,785,750 715,506 384,862 

Clock Frequency 

(MHz) 

200 22 18 

Estimated Gates n/a 89,205 228,624 

Number of Slices n/a 4,630 7,434 

Percentage of slices 

used 

n/a 24% 38% 

Speedup (cycles) 1 38 72 

Speedup(time) 1 4 6 

Table 13: Results from the XOR problem 

 

For the Handel-c simulation and hardware implementation the CELOXICA RC1000 

FPGA board was exploited shown in the Figure 13 below. 
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Figure 13: Block diagram of the CELOXICA RC1000 FPGA board 

 

2.2.9. Tachibana et al 

Tachibana et al proposed a hardware implementation method of multi objective genetic 

algorithm. Multi objective genetic algorithms (MOGAs) are techniques to solve 

multiple objective optimization problems. MOGAs have a set of optimal solutions 

called pareto and that’s why they demand a lot of calculating time. In this method we 

need to have a variety of individuals because this decrements the comparisons. In the 

hardware implementation of the single objective genetic algorithm, the crossover and 

mutation modules must be implemented separately, but their outputs must have the 

same structure in order to implement the pipeline. At the minimal generation gap 

model two members are choose from the population and be subject to crossover and 

mutation. The selection module chooses the member with the best fitness value and 

replaces it with the worst, in the family of parents. The advantage of this method is that 

we can benefit from the pipeline and the parallelization and reduces the required 

memory for the population. The parallel architecture proposed here utilizes the island 

genetic algorithm. This technique separates the population in several sets. Each of the 

sets is regarded like an island and is independent. Small part of the population migrates 



Chapter 2 – A survey of genetic algorithms and their implementations 

 

  

38 

periodically in order to all the islands cooperating to find the optimal solution.  In the 

proposed method crossover and mutation are the same with the single objective genetic 

algorithm. The selection module has two operations, the normal and the biased 

selection. In the first one we compare two parents and choose the best one. After the 

choice we compare the parent with the offspring and the offspring is replaced with the 

parent. Biased operation we have when the offspring is compared with all the possible 

solutions. If there are individuals with the same chromosomes as the offspring, are 

removed. For the parallel execution of the multi objective genetic algorithm we use the 

island technique described above with one difference. We keep the diversity of the 

individuals by letting one island to use the normal selection and the others the biased. 

The immigration of the individuals chooses from k biased islands one by one in a single 

period. They are compared and we choose the dominant individuals for immigration in 

a normal island. The same time one member is choose from the normal island to 

immigrate to a biased island, after we make it double [6]. 

 
Figure 14: The block diagram of the architecture 

 

This is the block diagram, Figure 14, of the whole architecture consists of the 

management module, the crossover module, the mutation module, the evaluation 

module, the selection module and the overlap rejection module. The management 
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module is the place where we keep the population. It reads individuals from the 

memory and sends them to the crossover module. Moreover it accepts members from 

overlap rejection module. In the crossover module we have a register which keeps 

chromosomes, address and the fitness value from the first parent. It makes crossover to 

the two parents and generates the new population. It also combines the fitness values 

of the two parents and sends the fitness value and the address of the dominant. The 

mutation module mutates the children it takes from the previous stage and sends the 

offspring 2 and the contents of two parents to the next module. Evaluation module 

calculates the fitness value of the offspring 2 and sends it to the selection module. The 

inputs of the selection module are the chromosome and the fitness of the offspring 2, 

the addresses and the fitnesses of the parents. The last module updates the population 

controlling for repeats and removes them. Figure 15 introduce the parallel architecture.  

Figure 15: The parallel architecture 
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Tachibana et al. compared the proposed method with a software version called NSGA 

II. The selected parameters were: 64 individuals, crossover rate 0.6 and mutation rate 

0.02 and they realize that the method they proposed performs better for the FPGA of 

100 – 140 MHz than the NSGA II software. The Table 14 below shows the results of 

the two methods. 

Method Pareto 

Solutions 

Evaluations per 

Island 

Total Evaluations Processing time 

(sec) 

Normal Method(1) 34.6 1,000,000 1,000,000 0.01 

Normal Method(2) 36.1 1,000,000 2,000,000 0.01 

Normal Method(4) 39 1,000,000 4,000,000 0.01 

Normal Method(6) 39.6 1,000,000 6,000,000 0.01 

Biased Method(3) 46.6 1,000,000 3,000,000 0.01 

NSGA-II 33.8 320,000 320,000 43.2 

Table 14: Comparison of FPGA and NSG 

 

2.2.10. Koza et al 

Koza et al. described how the parallelism of the Xilinx XC6216 FPGA can accelerate 

the fitness function in a genetic algorithm. The most time-consuming task is the fitness 

evaluation of each individual. All the individuals are implemented in hardware. The 

Xilinx XC6216 FPGA contains a 64 × 64 two dimensional array. Moreover, it consists 

of 4096 logical cells and each of these cells contains multiplexers and a flip-flop. For 

the routing are used 24 bits and the combination of these 24 bits doesn’t create 

conflicts and also there are located in the address space of the host computer. Sorting 

networks are algorithms for sorting elements using comparisons and exchanges if this is 

needed. In the Figure 16 below we have 4 elements A1, A2, A3 and A4. We compare A1 

and A2 with the vertical line shown below and if A1 is grater than A2 are exchanged. So 

with this algorithm we put the grater element at the bottom. Consequently, the 

algorithm makes 5 steps for the 4 elements of the network [7]. 
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Figure 16: Minimal sorting network 

 

After describing the sorting network above, Koza et al. tried to map the problem 

onto the chip. All the processes run on the host computer but the fitness evaluation is 

performing in the Xilinx FPGA because it is the most time-consuming operation of the 

algorithm. Figure 17 shows the placement on 64 vertical columns and 32 horizontal 

rows of the XC6216 Xilinx of 8 fields. The A sector is the control sector and B creates 

the fitness cases. In addition, the fitness cases are sorted in fields C, D and E and are 

evaluated in areas F and G. Moreover the C area corresponds to a compare-exchange 

function. The D operates as a forward field from the C area to E. The output of E is 

controlled from the F module to make sure that everything is good. The 16 bit 

accumulator G is incremented by 1 if the bits are sorted suitable. The 2 areas C and E 

represent the candidate sorting network. In C area, each cell in a 16 × 1 vertical column 

is configured with 3 different ways. One of the 16 cells is configured as a two argument 

Boolean AND function. One other cell is configured as a two argument Boolean OR 

function, and the third way of configuration of the other 14 cells is “pass through” 

cells, which pass their input to the next vertical column. These 3 ways of configurations 

are also the same in area E. The output of each logic cell is one bit length and it’s stored 

in a flip-flop. Then, the 16 flip-flops in a vertical column are inputs to the next vertical 

column. When the process starts all the 16 × 80 flip-flops (C and E area) are initialized 

to zero. So the first 87 vectors (80 from C and E area, 7 from F and G area), consists of 

16 zeros and the accumulator G doesn’t increment. Then the counter B starts counting 

(past zero flip-flop is enable) from 216 – 1 and when it reaches 216 – 87, area A stops the 

increment of accumulator G. The output from G (fitness raw) is taken from the 

reporting register H and the done flip-flop is set 1, so the host computer understands 
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that XC6216 has completed the fitness measurement for one individual. Koza et al run 

the design at 20 MHz in the XC6216 which is 10 times slower than a serial 

microprocessor. It is important that all of the operations performed in areas A, B, C, D, 

E, F, G, H are parallelized in the FPGA. Moreover, Boolean AND numerous and OR 

operations are performed parallel. The 19 step 8 sorter was evolved on 58 generation 

with population size = 60,000. In other hand, the 25 step 9 sorter was evolved on 105 

generation with population size = 100,000. Finally, both of these sorting networks 

implemented in FPGA were minimal.  

 

Figure 17: Placement of a 32 × 64 portion of XC6216 FPGA chip 

 

2.2.11. Heywood et al 

Heywood et al proposed a register based genetic programming on FPGA. The FPGA 

computing platform is used for linearly structured genetic programs where the 

individuals are described as number of pages and page length. Before introducing the 

instruction format we must talk about register machine. Register machine, as defined by 
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Von Neumann is computer machine consists of registers which are depended on the 

operations of CPU. The basic functions are fetching, decoding instruction and 

manipulating the contents of several registers. The simplest Von Neumann register 

machines have limited set of simple registers. If the order of instructions is wrong the 

program stops. We can use four register addressing modes. The 0-, 1-, 2- and the 3- 

register addressing mode. 

We observe that when we use small addresses in registers we benefit of hardware 

but the code we produce isn’t efficient. The operations of a genetic program are 1) the 

decoding cycle, 2) the calculating of the cost function, 3) the crossover and mutation 

operations, 4) memory management and 5) stochastic selection. The bottleneck of this 

system is the memory access.  It is assumed that the initial population of individuals is 

performed by the host computer. The stochastic selection is achieved either using 

hardware random generator with left shift register or the random numbers are 

produced off-line. For the computation of the cost function a scalar square error is 

assumed. In the classic implementation of the crossover operation we face the problem 

of memory management because code segments with different length size are 

crossover. So it must be bounded enough memory space for each individual. A lot of 

jump instructions are used to control the program flow. This implementation requires a 

lot of clock cycles and the two instances are implemented directly in hardware. So 

Heywood et al, proposed a different approach for the crossover function. They 

initialize the individuals by defining the number and the size of program pages. The 

pages consist of a number of instructions and the crossover operator chooses which 

pages are going to be swapped between the two parents. Only one page per time is 

crossover of the two parents. The memory reads programs and copies the contents of 

the parents to children. In the case of mutation operator random instructions are 

selected and then performing an EX – OR operation with second random integer. 

Moreover, the exchange between two instructions of the same individual is performed 

because the order that the instructions are executed has effect on the efficient of the 

system. A technique indicating the calculation attempt of the algorithm for the 4 

different address formats is the relationship between the generation and the number of 
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individuals processed. We present the best and the worst result in the Figures 18, 19 

below. For the 1-address format the individuals the algorithm processed for 20,000 

generations are 750,000. In the other hand, when we use the 3-address format for the 

same number of generations the genetic algorithm processed 400000 individuals.  

 

Figure 18: 1-address instruction format 

 

 

Figure 19: 3-address instruction format 
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2.2.12. Perkins et al 

Perkins et al, presented a self-contained FPGA based implementation of a spatially-

structured evolutionary algorithm for signal processing. This algorithm provides 

speedup because of the computation of individuals in parallel. In addition, we get 

enough space and we can work efficiently in the FPGA [13]. Finally, we put the entire 

algorithm in the FPGA and we benefit in speedup due to the minimizing of the time 

required for the chip - host computer communication. In this paper, Perkins et al, 

evolved the population of a non linear digital filter, into a simple Virtex FPGA in order 

to solve a non trivial 1 × dimensional reconstruction signal problem. An important 

class of reconstructed filters is stack filters. The stack filter is a sliding window non 

linear filter and the output in each position of the window is determined by applying a 

positive Boolean function (PBF) on a decomposed threshold. We apply the stack filter 

on the 1 × dimensional string. The result is a two dimensional wall whose the height is 

the position value. Each of the one dimensional rows of the wall gives a Boolean string 

where ‘true’ represents inside the wall and ‘false’ out of the wall. Then we apply the 

PBF. The threshold decomposition part of the stack filter is time – consuming. For 8-

bit signal we take 256 different levels and each operation of the filter requires 256 

calculations of PBF. Utilizing Chen’s technique based on binary search we have PBF 

calculations equal to bits of the signal. The input values of the filter arrived as parallel 

bit-streams, most significant bit first (MSB). Firstly, the PBF applied to the MSB and 

we take the MSB of the output. If there are input bits which have different value from 

the output bit then the input bit ‘locked’ in its present value. PBF is applied to other 

bit- streams producing the output bit and this process repeats. Chen’s method results 

are almost the same as stack filter when the Boolean function is positive. Although, 

producing Boolean functions and check if they are positive is time - consuming for the 

genetic algorithm. In this genetic algorithm proposed by Perkins we use a window of 5 

elements and the Boolean function defined by a truth table with 32 × 1-bit values. So, 

we have 232 possible truth tables but 7581 only represent positive Boolean function. 

The filter used here is an arbitrary Boolean filter and it is stack if the Boolean function 

is inside the 7581 values and something else otherwise. We call these filters ‘stick’ filter. 
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For a 5- element window the arbitrary Boolean function is represented by a 32 element 

truth table. We use direct genomic representation and the genome for each individual in 

the genetic algorithm is a binary string giving the truth table for each Boolean function. 

We have a population of 48 cells 6 × 8 grid on FPGA. Cells are initialized with random 

truth tables and each cell has an error counter which is initially set to zero. After the 

initialization, each cell receives a corrupted Sc and in-corrupted signal Su. In each step 

we apply the stick filter in a window consists of 5 samples of Sc signal and we produce 

the Sr reconstructed signal. Then we take the difference between Sr and Su and this 

number added in error E. If the cells have error, the genetic algorithm operates at the 

breeding mode. Each cell checks its error with 4 neighbor cells at north, east, south and 

west. When the fittest found, we have uniform crossover between the selected cell and 

the fittest. If the cell we select is the fittest we don’t change anything. After the 

crossover operation, it is the point mutation on each element in the truth table of each 

cell with probability Pm. When breeding operations are finished the error counter is set 

again to zero and we repeat the process. We target this genetic algorithm on Annapolis 

Microsystems Wildcard. This PCMCIA card contains a Xilinx Virtex 300 part and two 

independent banks of 256Kbytes SRAM. The results of these implementations are 

shown in Table 15 below. 

Component Number of CLB Slices Percentage of Total 

48 Cell Array 

Controller 

Wildcard Interfaces 

1904 

43 

549 

62 

1.5 

18 

Total 2496 81.5 

Table 15: Results 

 

2.2.13. Tachibana et al 

In this section we introduce a general architecture for hardware implementation of 

genetic algorithm proposed by Tatsuhiro Tachibana. The architecture below consists of 

4 modules, the management module, the crossover module, the mutation module and 

finally the evaluation module. Each chromosome is coded as a string of n bits [14]. The 
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buses between two successive modules have width of m bits. If each module receives m 

bits of data and outputs m bits in a clock cycle then n/m clocks are used to process the 

chromosome. Moreover, all the modules receive and process data in parallel. For 

eliminating the required memory we assume the minimal generation gap model. We 

select two individuals (parents) from the population and we perform crossover and 

mutation so the offspring is generated. 

The first module is the management module which stores the population in 

memory. The address and the fitness function of the parent with the worst fitness value 

and the chromosome and the fitness value of the offspring are received from the 

evaluation module. We compare the two fitness values and if offspring’s fitness value is 

higher we send the address and the chromosome of the offspring to the crossover 

module. In the crossover module we have a register which retains the address and the 

fitness value of the last individual received from the management module. We apply 

crossover in this individual and the individual arrived from the management module 

and we generate the offspring. We compare the fitness values of the parents and we 

send the worst one and the address in the next stage. The chromosome of the offspring 

is also sent.  

After the crossover module there is the mutation module which mutate the 

offspring and the resulting offspring is sent to the next module. In addition, we send 

the fitness value and the address of the worst parent. In the last evaluation module we 

calculate the fitness value of the resulting offspring and we send the address and the 

fitness value of the worst parent and the fitness value and the chromosome of the 

offspring. We have better results with this technique than the software genetic 

algorithm. With more pipeline levels we obtain lower fitness value and best efficiency. 

2.2.14. Lei et al 

Lei et al proposed a hardware implementation of genetic algorithm with FPGA. The 

hardware architecture of the genetic algorithm consists of I/O interface, processing 

unit and control unit. The operations of the processing unit include the initial 
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population, the calculation of fitness, selection, crossover and mutation. The control 

unit operates as control state machine [15]. 

In this design there are five modules in the processing unit: 1) generation, 2) 

mutation, 3) crossover, 4) random number generator and 5) selection. The state 

machine of control unit is used to decide the sequence of these five modules and sends 

control signals at the processing unit. Processing and control unit are cooperating for 

the total function of the genetic algorithm. Hardware of the genetic algorithm is 

controlled by three outside signals. The RUN signal which specifies the global startup, 

the global RESET signal and the clock CLK signal. The control state machine of 

control unit generates five output control signals and is controlled by four signals o1-o4 

from processing unit signal. The modules of processing units are controlled by the 

control state machine and are operating in two states, active and sleep. Below we 

explain the functions of these five modules and the control state machine. Random 

number generator is implemented as LSFR register and the numbers it generates have 

size n=12 bits. A random pseudo number is outputted from two ports, dout1 (8bits) 

and dout2 (3bits) by a control signal which is generated from the state machine of 

control unit. Storage module is the first step of the genetic operator running in two 

modes, generation and storage. Generates the initial population and calculates the 

fitness values of individuals when is working in generation mode. Reads the new 

population from population output ports of mutation module and stores the new 

population into registers. Moreover, calculates the fitness values, when is working on 

storage mode. A divider is applied for the evaluation of the fitness values. 

After the storage module there is the selection stage which reads the population 

and the fitness values from storage module and selects the individuals depending on 

their fitness values. The roulette wheel algorithm is used where all the fitness values are 

used for the evaluation of the probability values. Given a random data, the roulette 

runs, and the pointer points the area of fitness value. The individual corresponding to 

this area is selected. This is done four times and the new population consists of the 

selected individuals which are stored into an array called new_mem. The individual that 

has the highest value has more probabilities to be chosen. In the crossover module we 
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read the population and three random data and we target them into registers. We use 

single point crossover and this operation is finished randomly. The mutation module is 

the final step of the genetic algorithm. It keeps the diversity and avoids converging local 

results so early. The probability is small (1 / 512) and the point of mutation is selected 

randomly. Finally, the control state machine is the core of control unit. It can achieve 

high speed transformations but small setup time in each I/O. It consists of six states: 

idle, birth, storage, selection, crossover and mutation. 

The genetic algorithm described above was implemented with VHDL in a Xilinx 

xc2s100 FPGA. At 20 MHz clock frequency it took 0.15 seconds for 1,000 generations 

and it was 1000 times faster than the software implementation with 200MHz. 

 

2.2.15. So et al 

So et al. presented a four-step genetic algorithm (4GS) implemented in FPGA. The cost 

of calculation is similar to three step genetic algorithm. 4GS can be applied in video 

encoding hardware [16].  

At the initial population each chromosome represents a motion vector. The length 

of the chromosome is 4 and the maximum displacement l is 7 pixels. Continuing there 

is the evaluation stage where the fitness value of each chromosome is calculated. In this 

design four chromosomes of the total 16 are selected for reproduction. In the 

reproduction stage n chromosomes are selected for reproduction from N and are 

transferred at the mutation pool. This method is similar with the roulette wheel. The 

mutation pool consists of N new reproduced chromosomes. Each of these mutated 

form a pair of operators. The size of mutation depends on each generation. For the 

three first generations the size is two and for the fourth is one. We must mention that 

we have 8 different pairs of operations. Motion vector is the chromosome with the 

lowest fitness value in the population. N chromosomes are selected of the 2N in each 

generation and these with the smaller fitness value are selected for the next generation. 

The steps from evaluation stage till selection are repeated for 4 generations and the 
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search algorithm is terminated when we have 4 generations or the fitness function 

becomes zero. 

Describing the hardware of the four-step genetic algorithm, it is worth noticing 

that is separated in two parts, the interface module and the core module. The first is 

responsible for the memory and the core and the last one searches the motion vector. 

The external frame memory consists of several memory blocks. In this implementation 

they choose block size 16 X 16. The total number of memory blocks is 16 and the 

width of memory bank is 512. Moreover, the size of each memory bank is 16k. So, used 

a 16 bit random number and the fitness function is evaluated by an array. The array is 

calculating the difference between pixels and partial fitness function. The difference 

unit consists of two subtractors and a multiplexer. We have a one dimensional array 

with 3X3 size. The evaluation module takes the fitness function (2 X 16 – 1) cycles later 

and examines which of the chromosomes are matching for this environment. The 

population module controls the whole searching procedure. In each generation N 

chromosomes are produced but in the end n survive. The population unit initializes the 

searching algorithm in each block. A randomly selected chromosome parent will be 

mutated from this unit. The evaluation unit evaluates new chromosome every M cycles 

and the population unit produces new chromosome every M cycles. When the 

searching procedure is finished the population unit updates the value of the motion 

vector and the fitness function. In each generation are produced chromosomes every 

16 cycles, so there are 16 new chromosomes and only 4 survive. 

For his design So used two Xilinx 4025 chips with 60% CLB utilization of the total 

number of 1024 CLB’s each. For searching one motion vector, the 4GS needs 1,152 

clock cycles. With minimum clock frequency at 11,4Mhz the proposed design can 

handle video sequence with 352 X 240 size and frame rate 30Hz. In the case of MPEG-

2 the frame size is 750 X 576 with block size 16 X 16 at 30 Hz rate and the maximum 

clock period is 17,86nsec. 
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2.2.16. Graham et al 

Graham et al described a hardware genetic algorithm for the traveling salesman 

problem on SPLASH 2. SPLASH 2 parallel genetic algorithm, is a hardware based 

genetic algorithm searching for an optimal solution in traveling salesman problems. 

This family of problems is searching the shortest path between n cities visiting each city 

once and returning at the initial city. Each possible solution of the population consists 

of an ordered list describing the sequence in which each city is visited, called tour. The 

fitness of each tour is related with its length. Two tours are selected for crossover and a 

random cut point is selected, so the tours are cut at this point. The head of tour A 

becomes head in the offspring A and the head of tour B, head in offspring B. The tail 

of offspring A is formed by taking the cities form tour B not contained in the head of 

tour A. The tail of offspring B is formed in a similar way. Mutation is performing on 

the selected tours by reversing the order of cities visited within a sub-tour contained 

within the original tour. The endpoints of sub-tour are selected randomly [17]. 

SPLASH 2 is a reconfigurable computer consists of an interface board and a 

collection of processor array boards. It is programmed with VHDL. The basic 

computational module is a processor consisting of 4 FPGAs Xilinx 4010s and their 

memories. These four FPGAs are forming a pipeline. During the execution, memories 

store the current generation, the new generation, the fitness values of tours, the array of 

distances between the cities and some other operation parameters. The initial data are 

supplied by the host address. The function of each FPGA is presented below. 

FPGA 1 uses biased selection, choosing pairs of tours from the memory. This is 

achieved with hardware-pipelined roulette wheel algorithm. Initially, one random 

number is produced, called the target. Tour fitness values are sequentially accumulated 

until the target reaches a specific value. The tour that causes overflow is the one that is 

selected. Tours with highest fitness values are preferred than tours with lowest values. 

As soon as two pairs of tours are selected, their index numbers transferred into FPGA 

2 through a pipeline path. FPGA 2 has two choices: it can copy the tours at the right 

without changing anything or it can combine them through crossover and send the new 
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offspring at the right. This decision is taken from a random number generator on the 

chip and the crossover probabilities are 10% to 60%. FPGA 3 calculates the fitness 

values of the tours produced from crossover. In addition, it randomly selects tours for 

mutation and sends the tour pairs and their fitness values to FPGA 4. FPGA 4 writes 

the new population into memory determining the best and worst tours of the current 

population. The above process repeated until the population size becomes equal to the 

original size of FPGA 4. The pipeline, copies the new population and the fitness values 

back at memories of FPGA 1 and FPGA 2 and this terminates the first generation. 

The implementation proposed by Graham et al. requires 3500 code lines in 

VHDL. Assuming maximum clock frequency at 11 MHz the CLB utilization found 

from 37% to 60% for all FPGAs. The performance of a software implementation at 

125 MHz HPPA-RISC Workstation is compared with SPGA in Table 16 below. 

Number 

of Cities 

Population 

Size 

Crossover 

Probability 

Mutation 

Probability 

Average 

Execution 

Time (sec) 

Hardware 

Average 

Execution 

Time (sec) 

Software 

Software/ 

Hardware 

24 128 10 10 4.38 43.7 9.97 

24 256 10 10 11.23 118.7 10.57 

120 256 60 10 295 1999.9 6.78 

Table 16: Comparison of hardware and software execution times 

 

Two parallel implementations proposed by Graham, the trivially parallel model and the 

island model. The implementation described above utilizes 4 FPGAs with simple 

SPLASH 2 board. The remaining 30 FPGAs and the memories at SPLASH 2 two- 

board are idle. In fact, there is no need of SPLASH 2 for the basic implementation. 

However, given a SPLASH 2 two-board, it is an extension for running 7 additional 

copies of the algorithm and isn’t required additional hardware design. The copies of the 

algorithm don’t interact each other and the time we spent is the initialization time of 

the memories. An 8-fold increase in search rate is possible with the trivially parallel 

model. The other approach of parallelization of the algorithm is the island model. 



Chapter 2 – A survey of genetic algorithms and their implementations 

 

  

53 

Several searches are performing in the periodically migration of the solutions between 

the islands. During the migration, each island broadcasts a subset of tours to other 

islands via crossover and the islands that receive these tours replace the old with the 

new ones. In contrast with the trivially parallel model, it is needed modifications of the 

SPGA. With a comparison between the three proposed methods, the 8-processor 

trivially method searches faster than software from 54 to 85 times. However, speedups 

don’t indicate better solution in the terms of quality but a greater number of 

evaluations. So, if our goal is to find the best solution, the 8-processor parallel version 

is 4% better than single and 4-processor island model is better by about 6%. If we aim 

for a quick solution than island model is the best of all. At 500 million cycles 4-

processor island model finds a solution when 990 million cycles is needed for 8-

processor trivially parallel version and 1.7 billion cycles for the single processor. 

 

2.2.17. Glette et al 

An online evolution for a high-speed image recognition system implemented on a 

Virtex-II Pro FPGA has been proposed by Glette et al [18]. The architecture is 

implemented as circuit and the behavior and the configurations of it are controlled by 

configurations registers. The system consists of three main parts: 1) the classification 

module, 2) the evaluation module and 3) the CPU. This is shown below in Figure 20. 
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Figure 20: Top-Level view of online evolvable system 

 

The classification module operates uniquely except the reconfiguration 

accomplished by the CPU. The evaluation module cooperates with the CPU for the 

evolution of new configurations and accepts a configuration bit-string called genome 

computing its fitness value. This information is used by the CPU to run the genetic 

algorithm. The classifier system consists of K category detection modules (CDMs), one 

for each category. The input data to be classified is presented in each CDM the same 

time via common input bus. The CDM with maximum output value is localized from 

maximum detector and the number of this category will be the output of the system. 

Each CDM consists of M rules or functional units (FU) and each FU row has N FU’s. 

The inputs of the circuit pass on the inputs of each FU. The 1-bit outputs of FU’s are 

getting into N-input AND gate sequentially. This means that all of the outputs must be 

1 to activate the rule. In addition, the outputs of the gates are connected on an input 

counter which counts the number of activated FU rows. FU’s are the reconfigurable 

elements of this architecture. Their behavior is controlled by configuration lines which 

are connected to configuration registers. Each FU has all input bits on the system 
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available at its inputs, but 1 data element (1 byte) is selected, depending on the 

configuration lines. This data is then get into the appropriate functions whom number 

and type are varied. The unit is configured by a constant number C, so this value and 

the input data element are used by the function for the computation of the output of 

the FU. In this implementation Glette et al. utilize 8 FU’s.  

The fitness function of the face image recognition is based on the ability of the 

system to recognize the correct person from several faces. These faces are taken from a 

database that has 400 images, that is to say 10 images from 40 different persons. The 

image resolution is 92 X 112 pixels, 8-bit gray scale. For reducing noise and inputs, 

Glette et al. down-sample the images to 8 X 8 pixels, 8-bit gray scale. The input pattern 

is 64 pixels and types of functions in FU’s are greater than and lees than or equal. The 

constant value is 8 bits. For the FU implementation they used a scheme where 1-bit 

exists in the FU in a single time. The 64 pixels are presented sequentially, one in each 

clock cycle with its address. Functional unit check the address of the input pixel for 

matching with the address of pixel exists in the configuration register and if they are the 

same, the value of the output of FU is stored into a memory element. This method 

requires 64 clock cycles, before FU selects its input. In the evaluation module, is 

computed the fitness value for a FU row which is the phenotype for an individual in 

the evolution. After the configuration of the FU via the register, FU row must be fed 

with all the faces of all the categories. There are 360 images (9 face images for 40 

categories) and they are loaded before the process in the image memory Xilinx BRAM 

which is located at the evaluation module. As soon as the configuration register is 

written, the process starts. The address generator produces addresses for images. 

Control logic cells urge fitness counter to sample the output of FU row and this 

happens after the 64 pixels have been cycled. Then an interrupt is sent to the CPU and 

the fitness value is read. Moreover, fitness value can be duplicated for extended 

parallelization. In this design there are 8 FU rows in parallel for the computation 8 

individuals.  

The genetic algorithm follows the pattern of simple GA and the algorithm is 

running at Power PC 405 core in Xilinx Virtex-II Pro FPGA. 15-bits for each FU are 
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required for the encoding in genome, 6 for pixel the address, 1 for the function and 8 

for the constant. So, 120-bits (15 X 8 FU rows) are the total number of bits for 1 FU 

row. The fitness evaluation is done by the hardware evolution module and other 

individuals are produced by the CPU. The evaluation module sends an interrupt to the 

CPU that finishes its work and takes the next individual. Online evolvable hardware 

system run the fitness evaluation in a Virtex-II Pro xc2vp30 FPGA at 131 MHz with 

1393 slices of total 13696 (10%), and the other genetic operations run on 300Mhz 

Power PC. The population size was 16. These results are presented in Table 17. 

Resource Used Available Percent 

Slices 

Slice Flip Flops 

4 Input LUTS 

18 Kb BRAMS 

1,393 

1,419 

1,571 

17 

13,696 

27,392 

27,392 

136 

10 

5 

5 

12 

Table 17: Device utilization for the 8 row evaluation module 

 

In conclusion, we compare the EHW with a software version Intel Xeon 5160 

workstation which had from 10 to 30 times the clock speed of EHW. The speedup 

over software was found 1.01 totally for 1000 generations. It is worth noticing that 

Xeon spends a lot of time for fitness evaluation because it is implemented in software. 

In EHW the fitness evaluation is implemented in hardware and this indicates the 

significant differences in times. The results are presented in Table 18. 

 EHW Xeon Xeon/EHW 

GA Clock Frequency (MHz) 

Fitness Clock Frequency(MHz) 

GA Time (ms) 

Fit. Eval. Time (ms) 

Total Time (ms) 

300 

100 

926 

623 

1,313 

3,000 

3,000 

9 

1,323 

1,323 

10 

30 

0.01 

2.12 

1.01 

Table 18: Speed comparison between Xeon and EHW 
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2.2.18. Shackleford et al 

A high - performance pipelined FPGA genetic algorithm machine proposed by 

Shackleford et al. The population of np chromosomes with the fitness value stored in a 

1-dimensional array called population. Each entry in the array consists of nd data bits 

and nf fitness bits. The function random (i) returns a random number from 0 to (i-1) for 

each i >0. Fitness (cdata) function evaluates how fit is the solution and returns an integer 

from 0 to (2n
f 

-1). The best solution is represented by the greater value of fitness values. 

The crossover (cut_prob, parent1, parent2) function results the child which is a 

combination of parents from cut in random points. The crossover probability could be 

0 (for single point crossover), 0 – 0.5 (for multi point crossover) and 0.5 (for uniform 

crossover). The mutation (mutation_prob, cdata) function changes the data of the selected 

chromosome. The mutation probability takes values from 0 to 0.5 for single, multi and 

randomization mutation. A mutation probability of 1 inverts the selected for mutation 

chromosome. The algorithm is terminated when the evolutionary stasis function 

returns a true value [19]. 

Initially, random chromosomes produced with their fitness value and stored into 

the population array. The old parent 1 becomes the new parent 2 and the new parent 1 

is selected randomly from the population array. Only 1 memory access cycle required 

for each crossover operation. The basic idea of this steady state genetic algorithm is the 

survival of the fittest child and parents with worst fitness values that are randomly 

selected for crossover and mutation, are candidates for replacing by the survival child. 

There are 2 variables, “worst_fittness” and “worst_address” which store the fitness and 

the address of the worst parent. Two parents are selected and the child chromosome is 

created by the crossover and mutation operations. Its survival depends on its fitness 

value which if is better than less fitter parent, the child chromosome is stored in the 

population array at the worst parent’s address. So, the total fitness of the population is 

incremented until a terminate condition is met. The population array because of a 

steady state GA, is implemented like simple memory which results in chip are savings. 

Parents are selected randomly and we don’t need a circuit to choose the best one. 

Crossover and mutations operations performed each clock cycle creating a child 
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chromosome in this time period. In addition, crossover and mutation architectures are 

based on shifting template register which eliminates long wires. 

The FPGA-based GA machine consists of 6 six-stage pipeline. The first three 

stages are dedicated for parent selection, the fourth stage performs crossover and 

mutation, fifth stage is responsible for the fitness evaluation and the last stage is the 

survival stage. Random number generator (RNG) is implemented as cellular automata 

and in every clock cycle several random numbers are produced. During the population 

memory access cycle, memory can either be read or written. This is decided by a 

comparator at sixth stage and when comparator’s output is zero reads the address from 

RNG and when it is one writes the address from the last stage of the pipeline. First 

parent stage stores the first parent with his address and his fitness value. Loading 

registers from this stage are cut off and the reason is to prevent the survival child, 

written to memory, to affect the evolution. At the beginning of second parent stage, old 

parent 1 becomes new parent 2. So, even if the memory has one single read port, a new 

pair of parents is presented for crossover in every cycle. Crossover and mutation are 

performing at the same time and the worst parent is selected for replacing. At the fifth 

stage the fitness value of child chromosome is evaluated and if fitness function contains 

long logic paths a pipeline is required. After fitness evaluation, the new child exists on 

register child and is compared with worst parent stored at the least-fit register. If is 

better, it replaces the worst parent in the population memory and the worst parent is 

discarded.  

Datapath represents a significant portion of GA machine, so it should be 

implemented efficiently. When a surviving child is written to the population memory, it 

should be prevented from re-entering the pipeline. So, there are hold controls on the 

parent registers which are active when we are at population memory write cycle. Each 

bit requires a two input multiplexer to select the parents. The control of multiplexers is 

achieved by sending a crossover template to all multiplexers via shift register. This 

requires 1 flip-flop for each slice and permits several values for cut-points between 0,05 

to 0,5. The crossover pattern is created probabilistically by a comparator connected to 

threshold register and a RNG which generates a random number. When the random 
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number is less than threshold, the comparator output is true causing the change of the 

state of flip-flop and the selection pattern applied in the template shift register. The 

information of mutation is transmitted to the data bits serially through shift registers. In 

order to reduce the probability of mutual influence we have two bit-streams which 

travel in a different direction. The occurrence of mutation for a bit is defined as two 

ones appearing simultaneously in the same position in each shift register. This incident 

is realized by a two input AND gate which causes the XOR gate to invert the bit at the 

position from the crossover multiplexer. These two gates are implemented as 3 input 

LUTs. The two bit-streams are constructed as the template of crossover but the flip-

flop isn’t connected at the output of comparator. Mutation probabilities take values 

from 0.01 to 0.05. The result from crossover and mutation is kept at child register 

which is connected to both the fitness function and final stage of pipeline which sends 

it to data input register in population memory. We should notice that every stage from 

the pipeline has the same processing time. Figure 21 shows the FPGA-based GA 

machine. Shackleford considers two problems for his proposed FPGA machine, the set 

covering and the protein folding problems. For the first one, he utilized Aptix AXB-

MP3 FPCD device which consists of 6 FPGAs, 3 for GA pipeline and 3 for fitness 

evaluation. Each FPGA is ALtera EPF81188 chip and has 1,008 logic elements. For 

population size of 256 and a maximum clock frequency of 1 MHz his implementation 

was 2200 times faster than a software version on 100 MHz workstation. For the protein 

folding problem he used 70-bit chromosomes and a Xilinx XCV300 FPGA. Pc 

interface, GA pipeline and fitness function uses 2,000 from possible 6,144 LUTs. At 66 

MHz clock frequency he found that his implementation is 322 times faster than a 

366Mhz Pentium II. To achieve better speedup over software (9,600 times software), 

he proposed a larger FPGA with 64K LUTs and 30 parallel fitness functions. 
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Figure 21: FPGA-based GA machine 
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2.3. Evaluation and comparison of hardware implementations 

This section is devoted to the analysis of the hardware implementation of the genetic 

algorithms according to criteria such as hardware complexity in terms of configurable 

logic blocks or slices, execution time and speedup over software. 

 

2.3.1. Hardware complexity 

The first comparison criterion between the genetic algorithms presented in this section 

is hardware complexity which concerns the number of configurable logic blocks or 

slices needed for the design. Koonar et al [3], utilized a Virtex XCV50E device and the 

synthesis report shown that 334 slices out of 768 (43%) were used. Moreover, 167 

configurable logic blocks was enabled. Tang et al [4], used two FPGAs, a FLEX 10K50 

with 360 logic area blocks and a FLEX 6K with 88 blocks. The architecture proposed 

by Peter Martin [1], was implemented in the CELOXICA RC1000 FPGA Board for 

two different problems. For the regression problem he realized 4250 slices out of 19200 

(22%) for single fitness evaluation and 6800 slices (35%) for the four parallel fitness 

evaluation. On the other hand for the XOR problem the results were 4630 slices (24%) 

for the single version and 7434 slices (38%) for the parallel environment. For the 

compact genetic algorithm Aporntewan [2], exploited the Xilinx Virtex V1000 FPGA 

with 813 slices out of 12288 (6%), and Emam [11] utilized a Virtex XCV300 device 

with 1081 slices. A different approach was proposed by Scott [10], implementing the 

genetic algorithm in Borg’s board which consists of five Xilinx FPGAs and a 

prototyping area which consists of three Xilinx FPGAs. He used 2 XC4003S with 100 

configurable logic blocks (CLBs) each, 2 XC4002S with 64 CLBs each and finally 1 

XC4003 with 100 CLBs for Borg’s board. For the prototyping area he utilized 3 XC 

4005S with 196 CLBs each. Consequently, the total number of CLBs used was 1016. 

Continuing Mostafa [9], implemented the parallel-pipelined hardware genetic algorithm 

in three chips. The first was an XC4005 FPGA with 196 CLBs, the second was an XC 

25100 chip with 600 CLBs and the last one was a Virtex XCV800 chip with 4,704 
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CLBs. In addition, Koza [7], test his algorithm into a Xilinx XC6216 board with 4096 

cells and Tommiska [8], utilized the Altera Flex 10K50 FPGA with 360 logic area 

blocks. The space utilization in the Virtex 300 used by Perkins [13], is 2496 CLB slices 

with the percentage of 81.5%. Lei [15], implemented his genetic algorithm in a Xilinx 

XC2S100 chip with 600 CLBs. The four-step genetic search algorithm proposed by So 

[16] was utilizing two Xilinx 4025 chips with 1024 CLBs each (60%). SPLASH 2 

parallel genetic algorithm proposed by Graham [17], was implemented in four FPGAs 

Xilinx 4010s with 400 CLBs each, and the utilization ranged from 37% to 60%. The 

fitness evaluation of the genetic algorithm implemented in a Virtex-II Pro XC 2VP30 

FPGA at 131 MHz with 1393 slices of total 13696 (10%) for 8 FU row evaluation 

module, proposed by Glette [18]. Finally, the FPGA-based GA machine proposed by 

Shackleford [19], was tested for two different problems. For the set covering problem 

he utilized the Aptix AXB-MP3 FPCD with 6 FPGAs Altera EPF81188 with 1,008 

logic elements each. The protein folding problem was applied on xilinx XCV300 FPGA 

with 2,000 of possible 6144 LUTs.   

 

2.3.2. Evaluation time 

The second criterion of comparison is the evaluation time of each design (speed). 

Koonar [3], assuming clock cycle of 50 MHz, simulates his design with three different 

benchmarks for different generations count and different population size. The 

hardware and software times are shown in Table 19. Tang [4], realized that the time is 

needed to initialize the population of 256 and 60 generations with the single FGA is 

500µsec. For the implementation of the genetic algorithm using Handel-c, Peter Martin 

[1] runs two tests. In the regression problem, the calculation of single fitness evaluation 

with Handel-c took 351,178 cycles and the 4 parallel took 188,857 cycles. For the XOR 

problem the computation of single fitness evaluation took 715506 cycles and the 4 

parallel took 384,862 cycles. Aporntewan [2] proves that only 0.15 sec execution time is 

needed for the FPGA to run the compact genetic algorithm for 256 population size. 

Only 25.124µsec is the time that the genetic algorithm proposed by Emam [11], needs 
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for 360 generations and population size 80. Tommiska [8] ascertains that the genetic 

algorithm requires 160ns for processing time and Perkins [13] genetic algorithm runs in 

1.65msec for 50 generations. For 20 MHz clock frequency only 0.15 seconds were 

needed for 1000 generations in the genetic algorithm proposed by Lei [15]. Searching 

one motion vector, 4GS took 1152 clock cycles in the design by So [16]. In the case of 

MPEG-2 the frame size is 750 x 576 with block size 16 x 16 at 30 Hz rate and the 

maximum clock period is 17,86nsec. The basic algorithm implementation described by 

Graham [17], took 4.38sec for 24 cities and population size 128 and 295sec for 120 

cities and population size 256 as presented in Table 16. He also realized that 500 million 

cycles are needed for the 4-processor island model to find a  quick solution which is 

faster from the 8-processor trivially parallel method (990 million cycles) and the single 

processor version (1.7 billion cycles). The total time of the EHW proposed by Kyrre 

Glette [18], was found 1313 ms for 1000 generations. From this time, 623 ms was for 

the fitness evaluation in the Virtex-II XC2VP30 device at 131 MHz and 926 ms for the 

other genetic operators implemented on the Power PC at 300 MHz. 

 

2.3.3. Speedup over software 

Speedup over software is the last criterion of comparison between the genetic 

algorithms in FPGAs. It is worth noticing that speedup= cycles in (software) / cycles in 

(FPGA), as mentioned in Peter Martin [1] implementation. To start with, Koonar [3], 

assuming a clock cycle of 50 MHz he finds out a speedup over software is almost 50 

and with max clock frequency of 120 MHz the improvement in speed is 100 times the 

SUN ULTRA10 440 MHz processor system. Tang [4], realized that speedup over 

software is 10 for 2.4 GHz Pentium 4. The speedup between Handel-c single fitness 

evaluation with clock frequency 25Mhz, and the Power Pc 200Mhz for the regression 

problem was 47, in Peter Martin’s [1] implementation. In the same problem the 4-

parallel Handel-c fitness evaluation at 19 MHz was 88 times faster than Power PC at 

200 MHz. For the XOR problem, speedup between Handel-c single fitness evaluation 

with clock frequency 22 MHz and the Power Pc 200 MHz was 38 and 4 parallel 
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Handel-c fitness evaluation at 18 MHz was 72 times faster than Power PC at 200 MHz. 

In the compact genetic algorithm presented by Aporntewan [2], speedup over 200Mhz 

Ultra SParc 2 was 1000. Scott [10], found speedup over software in a range between 12 

and 18 for several fitness functions. In Tommiska [8] implementation, the speedup over 

120 MHz Pentium processor was 212. The same algorithm was also run for HP C110 

workstation (SPECint92 _167) with HPUX operating system and speedup over this 

software is 275. Perkins [13], in his design with 20MHz clock rates finds speedup over 

software almost 1090. In addition, Tachibana [6], compared his proposed multi-

objective genetic algorithm to a software version called NSGA II in a Pentium 2.4Ghz 

and realized that speedup over software is 4320.  Lei [15] found that FPGA 

implementation at 20 MHz was 1000 times faster than software version at 200Mhz. 

Graham [17] assuming maximum clock frequency of 11 MHz found, speedups over 

software from 6.78 to 10.57 for the basic implementation of SPGA. The software 

implementation was on 125 MHz HPPA-RISC Workstation. The 8-processor trivially 

parallel method searches faster than software by factors 54 to 85. Comparing the three 

methods for the best solution in terms of quality, 8-processor trivially parallel version 

finds a solution 4% better than single processor and 4-processor island model is better 

by about 6% for a long execution of 3.5 billion cycles. For a quick solution, 4-processor 

island model is 1.98 times faster than 8-processor trivially parallel method and 3.4 times 

faster from the single implementation. The speedup between EHW (131Mhz for fitness 

evaluation and 300Mhz for other genetic operators) and Xeon Intel 5160 workstation at 

3000Mhz was totally 1,01 for 1000 generations as described by Glette [18]. For the 

fitness evaluation speedup over software was 2.12 because of the FPGA 

implementation but for other GA operators speedup found 0.012. In Conclusion, 

Shackleford [19] for the set covering problem with 1 MHz maximum clock frequency, 

and population size 256, realized that it was 2200 times faster than a workstation of 100 

MHz. For the protein folding problem, the speedup between XCV300 with clock 

frequency 66 MHz and a Pentium II at 366 MHz was 320. In Shackleford’s design it 

was also proposed that with a larger FPGA, with 64K LUTs and 30 parallel fitness 

functions, it can be achieved a speedup over software equals to 9600. 
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2.4. Conclusions 

• In this chapter we compare genetic algorithms which are implemented in 

FPGA and we realize that they generally run more efficiently in hardware than 

software. This is because GA’s can benefited from hardware techniques like 

pipeline and parallelization. 

• As seen in Table 19 parameters such as population size, crossover and mutation 

probabilities vary from algorithm to algorithm, so a comparison between them 

is relative. 

• Each genetic algorithm has been implemented differently regarding the basic 

operations such as selection, crossover, mutation and fitness function and they 

have been targeted into different FPGAs boards. 

• In many of the genetic algorithms described above the compilation and 

configuration times are not always exposed clearly but speedups achieved by 

hardware implementations to software versions are significant.  

 

From Table 19 it is clearly observed that the least complexity genetic algorithm in 

terms of CLBs is Mostafa et al implementation which utilized only 196 CLBs on a 

Xilinx XC4005 FPGA. The most complex implementation is Shackleford genetic 

algorithm which was implemented into an Aptix AXB-MP3 board with 6,048 logic 

elements. From all the implementations described above the faster one is Emam’s et al 

implementation. For populations size equals to 80 and 360 generations the genetic 

algorithm run for 0.025 msec on a Uni DAC PCI Board (DSP and Virtex 

XCV300PQ240). The multi-objective genetic algorithm of Tachibana et al and the 

compact genetic algorithm of Aporntewan et al were run very fast but they consist two 

different categories of genetic algorithms than other simple genetic algorithms 

implementations. The most time-consuming hardware implementation was Graham et 

al genetic algorithm which spent 295,000 ms for 256 members and 120 numbers of 

cities for the Traveling salesman problem run on the SPLASH 2 fabric.  
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The initial implementation of the hardware-based genetic algorithm 

 

 

 

 

3.1. The hardware genetic algorithm 

Scott et al. suggested a hardware-based genetic algorithm using VHDL. The entire 

system consists of two parts. The first part called front end is a program in C language 

running in a UNIX environment on a host computer. The second part, called back-end, 

contains the implementation of the genetic algorithm [10], [23].  

The hardware genetic algorithm consists of seven ports: 

• Memory interface module (MIM) 

• Population sequencer (PS) 

• Random number generator (RNG) 

• Selection module (SM) 

• Crossover and Mutation module (CMM) 
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• Fitness  module (FM) 

• Shared memory (MEM) 

After loading the initial parameters into the shared memory, front-end part signals 

back-end part with a “go” signal. The memory interface detects the “go” signal and 

initializes the population sequencer, the random number generator, the crossover and 

mutation and the fitness module. Each of these modules requests appropriate user – 

defined parameters from the shared memory, and the memory interface module fetches 

them and transmits them. The population sequencer starts the pipeline by requesting 

population members from the memory interface module and passes them to the 

selection module. The selection module receives the members and decides whether a 

member will be selected according to a Roulette wheel selection algorithm. If this 

member is selected, the selection module waits for another member to be selected and 

pairs these members. After mating, selection module sends the pair to crossover and 

mutation module and resets itself. The crossover and mutation module receives the two 

members and decides whether it will apply crossover and mutation based on a random 

number sent from the random number generator. Finally, the new members are sent to 

fitness module where they are evaluated by the appropriate fitness function. After the 

completion of this process, fitness module writes the two members into the shared 

memory via the memory interface module. The steps described above are executed 

until the hardware genetic algorithm is finished. This decision is taken by the fitness 

module which determines the current state of genetic algorithm. As soon as the 

algorithm finishes, the fitness module notifies the memory interface module which 

sends the “done” signal to the front-end part. Then the user reads the final population 

from the shared memory.  
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3.2. The platform 

The genetic algorithm was implemented on a BORG board connected on a PCI bus of 

a host Computer. BORG board contains five FPGA’s: 

• Two xc4003S containing user-specified logic 

• Two xc4002S containing user-specified interconnects between the xc4003s 

• One xc4003 for controlling the interface to the PCI bus 

 

Moreover it contains 8 Kbytes SRAM and an 8 MHz oscillator. Because the board 

did not fit the entire algorithm, additional FPGA’s were inserted on the BORG 

prototyping area. The pseudo random number generator and the crossover and 

mutation module were placed on an XC4003S FPGA. Furthermore, the memory 

interface and the population sequencer were shared one of the three xc4005S FPGAs 

of the prototyping area. The other two XC4005S house the selection module and the 

fitness module. In Figure 22, 23 two schematics of the BORG board and its 

prototyping area are presented. 

 

Figure 22: Schematic of the Xilinx BORG prototyping board 
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Figure 23: Schematic of the FPGA in the BORG board’s prototyping area 

 

3.3. The modules and their operations 

In this section the operations of the modules of the hardware genetic algorithm are 

presented in detail. In Figure 24, we present the block diagram of the initial 

implementation of the genetic algorithm. The modules communicate via a simple 

asynchronous handshaking protocol. When transferring data from the initiating module 

I to the participating module P, I signals P by raising a request signal to “1” and waits 

an acknowledgement. When P agrees to participate in the transfer, it raises an 

acknowledgement signal. When I receive the acknowledgement, it sends to P the data 

to be transferred and lowers its request, signalling P that the information was sent. 

When P receives the data, it no longer needs to interact with I, so P lowers its 

acknowledgement. This signals I that the information was received. Now the transfer is 

complete and I and P are free to continue processing. 

 

3.3.1. The memory interface module 

The MIM provides a transparent interface to the shared memory for the rest system. It 

consists of the control of the overall design because it initializes other modules as soon 
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as it detects the “go” signal from the front-end. The population sequencer, the random 

number generator, the crossover and mutation and the fitness module request 

parameters from memory interface module by raising a request signal and awaiting an  

acknowledge from it. As soon as they receive the acknowledgement, each of them 

sends the address of the parameter it needs to the memory interface module which 

fetches the data from the specified address of the shared memory. The parameter 

received from memory is then passed to the requesting module. 

As mentioned above there are two populations in the shared memory, the current 

population from which the population sequencer reads and the next population where 

the fitness module writes. Memory interface module examines a signal “toggle” driven 

by the fitness module which specifies which population is being read from and which is 

being written to. This value is toggled by fitness module after every generation [20].  

 

3.3.2. The population sequencer 

The PS requests the population size from the memory, by raising a request to the 

memory interface module. The memory interface module accepts this transaction by 

sending an acknowledgement to the population sequencer. Furthermore, population 

sequencer after receiving the acknowledgement it sends the address of the parameter it 

needs from the shared memory to memory interface module and MIM fetches it from 

the shared memory. After reception of the parameter i.e. population size, it repeats the 

process to get the first member from the shared memory. Then it passes it to the 

selection module and waits for the next member from the shared memory [20]. 

 

3.3.3. The random number generator 

The RNG generates a sequence of pseudorandom bit strings based on the theory of 

cellular automata. Cellular automata generate better random bit strings than linear 

feedback shift register (LFSR) [28], [29]. The cellular automata consist of 16 alternating 
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cells which change their states based to rules 90 and 150 [20]. The meaning of these 

rules is given below: 

Rule 90: Si
+ = Si-1 XOR Si+1 

              Rule 150: Si
+ = Si-1 XOR Si XOR Si+1 

In the above equations, Si is the current state of cell i in the linear array and Si
+ is the 

next state for Si. Rule 90 changes Si state according to its neighbours only, but Rule 150 

takes care of its own state as well when updating. In this implementation the sequence 

150 – 150 – 90 – 150 ...90 – 150 that produces more randomness than LFSR because it 

cycles through all the possible bit patterns 216 except all 0’s. Moreover the random 

number generator is a key component of the HGA system as its outputs are used by 

SM and the CMM. RNG feeds the SM with random numbers for scaling down the sum 

of fitnesses of the current population. This scaled sum is used during the selection of 

members from the population. In addition it supplies CMM with random numbers for 

determining whether to perform crossover and mutation, and for choosing the 

crossover and mutation points. 

 

3.3.4. The selection module 

The SM utilizes the roulette wheel technique found on the software-based genetic 

algorithm. The difference is that Scott implementation selects a pair of members A and 

B, simultaneously instead of one member selected by software genetic algorithm. 

Initially, it receives the sum of fitnesses of the current population from FM and then 

two random real numbers are received from the RNG in order to scale down this sum 

of fitnesses [20]. 

Sscale = ra × Ssumoffitnesses 

Sscale = rb × Ssumoffitnesses 
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Furthermore each member of the population is examined for selection and its fitness 

value is stored in a running sum of fitnesses Sra. If Sra > Sscale then the member under 

examination is selected. The same process is performed for member B. When the 

selection module has the random pair of members it signals the CMM module with a 

request and if receives an acknowledgement it forwards the selected members to the 

CMM module. After this process finishes, it resets itself and waits for more input. In 

each generation the SM receives the new sum of fitnesses and repeats the above 

process until the end of the algorithm. 

 

3.3.5. The crossover and mutation module 

When the algorithm starts, the CMM module requests from the MIM the crossover and 

mutation probabilities with the handshaking protocol described above (§ 3.3). These 

probabilities are specified by the user and placed in the 2nd and 3rd position of the 

shared memory. Moreover the CMM receives the selected members from the SM, and 

four random numbers from RNG. It compares the first random number “rand1” with 

the crossover probability “Pc” and if “rand1<Pc” then crossover is performed between 

the selected members resulting into two new members A’ and B’. A second random 

number “rand2” is received indicating the crossover point. If rand1≥Pc then the two 

members A and B are copied to the new members A’ and B’. After the crossover 

operation is finished, the mutation operation is performed. The random number rand3 

is compared with the mutation probability and if rand3<Pm then mutation is performed 

on a single bit of A’ indicated by the random number rand4.The new members A’ and 

B’ are then forwarded to the FM for evaluation by the fitness function [20]. 

 

3.3.6. The fitness module 

The scope of the FM is to evaluate the two members received from the CMM, with 

defined fitness function, and write them to the appropriate locations in the shared 
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memory via the MIM. As soon as the algorithm starts, it sends a request to the MIM to 

fetch three genetic parameters from the memory: 1) population size, 2) sum of fitnesses 

and 3) number of generations. Then it receives a request from the CMM module to get 

the two members for evaluation. The FM incorporates the fitness function F(x) = 2x 

only, which evaluates each member’s fitness value in a single clock cycle. Moreover, the 

FM has the knowledge of the current sum of fitnesses of the population, and sends the 

value to the SM after each generation. If the algorithm runs for the specified number of 

generations, then FM informs the MIM and sends a “done” signal to the front-end to 

inform it that algorithm is finished [20], [23]. 

 

3.3.7. The shared memory 

Shared memory is the medium where the genetic parameters and the initial population 

are stored in. It is not an actual part of the hardware genetic algorithm but is presented 

here for further understanding. Before the algorithm starts, the front-end writes the 

parameters and the initial population to this memory which is shared with the back-end. 

The algorithm starts and the MIM sends the appropriate parameters to the appropriate 

modules. The PS reads the current population and the FM writes the next population 

during a run. Finally, when the genetic algorithm is finished, the final population is 

stored in the shared memory. [23]. 
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3.4. Pipeline and parallelization 

The modules defined above operate concurrently with each other and form a coarse-

grained pipeline with 5 stages (Figure 25). The PS starts the pipeline by requesting 

members from the MIM, passing them to the SM. Selection module decides if it selects 

a pair of member according to roulette wheel method and then passes the pair to 

crossover and mutation module and restarts itself, awaiting new members from 

population sequencer. Crossover and mutation module after processesing the members 

it received, passes them to fitness module for evaluation and waits for a new selected 

pair of members. Finally, fitness module evaluates the two members and writes them to 

the shared memory [23]. 

 

 

 

Figure 25: The stages of the pipeline 

 

If sufficient chip area is available then different types of parallelization can be 

added (Figure 26). Multiple selection modules can be inserted for speeding up the 

selection process. The original code provides the option to use a second selection 

module. However this inserts complexity to the design because the PS should pass 

members to both the SMs and then the CMM must check the two SM to receive 

requests. Moreover to extend the parallelism, selection, crossover and mutation and 

fitness pipeline can be replicated several times in order to form parallel pipelines. 

Finally the highest degree of parallelism can be achieved by inserting several numbers 

of selection, crossover and mutation and fitness modules. Each selection would be 

connected to each crossover and mutation and each crossover and mutation to each 

fitness module.  
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3.5. Scalability of the design 

All the modules above are written in VHDL language within the Mentor Graphics 

Environment [10]. There is also a package file where the number of bits of some basic 

parameters is placed. This allows for easy modifications on the size of some basic 

parameters which would then be applied on the entire design. Some basic parameters 

are: i) the maximum width in bits of the population members (n), ii) the maximum 

width in bits of the fitness value (f), iii) the maximum size of the population (m) and iv) 

the maximum number of generations (g). 

 

3.6. The C code of the host computer 

As mentioned above the application with C that runs on the host computer is 

responsible for producing the input file to the system. User determines the fitness 

function which will be applied on each member of the population. In addition, some 

parameters are also defined by the user such as the member width (n), the fitness value 

width (f), the number of generations (g), the crossover and mutation probabilities, the 

population size (m), the memory word’s width and memory size. The output of this 

program is a text file with 128 lines: 

At the first six lines (0 - 5) of the file, 6 genetic parameters are placed: 

• Population size 

• Random number generator seed 

• Mutation probability 

• Crossover probability 

• Sum of fitnesses of the first population 

• Number of generations 
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In the next 32 lines (6 - 37) the initial population is placed the first population. Then 

lines (38 - 69) represent the generated population and finally lines (70 – 127) are 

unused. 

All parameter values are represented in binary and interpreted as unsigned integers. 

Moreover, each entry in the population consists of n bits for the member followed by f 

bits for its fitness. On the other hand, the back-end is the hardware where the genetic 

algorithm runs on. These parameters and the initial population are loaded into a 

memory which is shared between the front-end and the back-end.  

The program generates the initial population according to the fitness function to 

be used. More specifically the latter affects the width of the members. For example, if 

n=4 and the function to be used is F(x)=2x, then f=5 and thus the width of the 

members will be n+f=9 bits. The initial population is generated randomly with a “rand” 

function used into the C code. However, for a specific problem the initial population 

members can be inserted by the user.  

 

3.7. Results 

The hardware-based genetic algorithm proposed by Scott was compared against the 

software genetic algorithm implemented on a Silicon Graphics 4D/440 with four MIPS 

R3000 CPUs each running at 33 MHz. The first 6 tests were run on the prototype while 

the last 6 tests were run on a VHDL simulator. All I/O times were removed from the 

comparisons. The HGA prototype used an average 6.8 % as many clock cycles as the 

SGA and the execution time grows quadratically with m and linearly with g. 

Furthermore, the tests on the prototype utilized a population size m = 16, member 

width n = 3, two SMs and fitness value width f = 4. The tests on the VHDL simulator 

used m = 32, n = 4, one SM and f = 12. The results are presented in the Table 20. The 

first six tests refer to the BORG board whereas the rest refer to the simulation. 
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Fitness Function 

F(x) 

Number of 

Generations 

SGA Clock 

Cycles 

HGA Clock 

Cycles 

HGA 

Speedup(Cycles) 

x 

x 

x + 5 

x + 5 

2x 

2x 

10 

20 

10 

20 

10 

20 

97,064 

168,034 

99,825 

170,279 

101,019 

170,241 

5,636 

10,622 

5,585 

10,945 

5,390 

10,659 

17.222 

15.819 

17.874 

15.558 

18.742 

15.972 

x2 

x2 

2x3 – 45x2 + 300x 

2x3 – 45x2 + 300x 

x3 – 15x2 + 500 

x3 – 15x2 + 500 

10 

20 

10 

20 

10 

20 

334,210 

574,046 

342,806 

589,863 

333,701 

579,176 

22,892 

45,019 

22,892 

44,503 

21,362 

44,317 

14.599 

12.751 

15.178 

13.254 

15.621 

13.069 

Table 20: Performance of the SGA and the HGA 

 

It is worth noticing that the clock of the prototype was 2 MHz because the glitches or 

noise in the wire wrapped part of the prototype prevented faster clocking.  

 



Chapter 4 – Implementation of a hardware genetic algorithm on a Virtex II Pro FPGA 

 

  

83 

 

 

 

Chapter 4  
 

 

Implementation of a hardware-based genetic algorithm on a Virtex 

II Pro FPGA 

 

 

 

 

4.1. Resources utilization analysis for the implementation on the 

XUP platform 

Before proceeding with the implementation we checked whether the initial 

implementation could be accommodated by the XUP platform. Moreover, we made a 

comparison between the available resources of the BORG and the XUP boards. 

Regarding the BORG board no published information exists regarding the resources 

utilization of the HGA. Therefore, we only present information on the available 

resources of the FPGAs mounted on the BORG board that were used for the HGA. As 

described in the Chapter 3, BORG board and its prototyping area contains eight Xilinx 

FPGAs. Originally the BORG board contains two XC4003S, two Xilinx XC4002S and 

one Xilinx XC4003, whereas on the BORG prototyping area three more XC4005s 
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FPGAs were placed. More information on the resources of the above FPGAs is given 

in Table 21. The total number of CLBs is 1016.  

Device Logic 

Cells 

CLB 

Matrix 

Total 

CLBs 

Number 

of Flips 

Flops 

Max 

Logic 

Gates 

Max 

RAM 

bits 

IOBs Program 

data 

XC4002s 152 8 X 8 64 256 1,600 2,048 64 61,052 

XC4003/XC4003s 238 10 X 10 100 360 3,000 3,200 80 53,936 

XC4005s 466 14 X 14 196 616 5,000 6,272 112 94,960 

Table 21: Resources analysis of BORG board and its prototyping area 

 

 Tables 22 and 23 have the resources analysis of the XC2VP30 FPGA of the XUP 

[21]. It contains 3424 CLBs which is much bigger than the number of CLBs in BORG 

board. Moreover, the CLB unit of the XC2VP30 is more complex and carries more 

logic as compared to the above devices. Therefore, the initial implementation of the 

genetic algorithm can be easily fit into the XC2VP30 FPGA. 

Device Rocket IO 

Transceiver 

Blocks 

PowerPC 

Processor 

blocks 

Logic 

Cells 

Slices Max 

Distributed 

RAM 

18 X 18 

Multiplier 

blocks 

Maximum 

user I/O 

Pads 

DCMs 

XC2VP30 8 2 30,816 13,696 428 Kbits 136 644 8 

Table 22: Resources analysis of the Virtex II Pro FPGA (1) 

 

Max Block 

RAM 

Configuration 

Bits 

CLB 

Array: 

Row X 

Column 

Number 

of Carry 

Chains 

Number 

of SOP 

Chains 

BRAM 

18Kb 

Blocks 

Flip 

Flops 

LUTs Number of 

3-State 

Buffers 

2,448Kbits 11,589,920 80 X 46 92 160 136 27,392 27,392 6,848 

Table 23: Resources analysis of the Virtex II Pro FPGA (2) 
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4.2. The Virtex II Pro FPGA 

The FPGA used was the XC2VP30 FPGA of the Xilinx Virtex II Pro family. It is 

organized as a column based array of logic elements. The basic element is the 

configurable logic block (CLB) which contains look-up tables (LUT) as the basic 

function generators. The XC2VP30 FPGA device has an 80x46 CLB array. Each CLB 

has four slices and two three-state buffers. Each slice has two function generators, f & 

g, two storage elements and arithmetic logic gates. The architecture can be 

characterized as fine-grained due to the small function generators which can be 

programmed in bit-level. Moreover this FPGA family is hybrid due to the several 

specialized circuits such as Block SelectRAM (BRAM) resources, multiplier blocks and 

Digital Clock Manager (DCM) modules [22]. The perimeter of the FPGA is occupied 

by Input/Output blocks (IOB) which are responsible for managing the FPGA pins. All 

logic is connected via programmable routing resources organized in a hierarchical 

Global Routing Matrix (GRM). In addition, two hard core IBM PowerPC 405 

processors are incorporated into the FPGA fabric. 

 

4.3. Modifications for porting the HGA on the Virtex II Pro FPGA 

The initial implementation of the HGA was implemented in VHDL within the Mentor 

Graphics environment [26]. We proceeded with modifications on the code and its 

porting using Xilinx ISE 7.1 environment. In order to perform this, we initially 

removed the mgc_portable library which was supported in the Mentor Graphics 

environment only, and we then replaced the qsim_state and qsim_state_vector data types 

with the identical bit and bit_vector data types. This was also suggested in Scott’s work 

[20]. Moreover there were two types of functions in the VHDL code such as 

to_qsim_state(i,s) and to_integer(r). The first function, i.e. to_qsim_state(i,s), converts an 

integer i to qsim_state_vector of s bits wide. The second function, i.e. to_integer(r), converts 

a qsim_state_vector to an integer. These two functions have been replaced with the 

to_bitvector and to_integer functions respectively, which are supported by Xilinx. 
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 Furthermore, the implemented shared memory is intended for simulation 

purposes only, as it supports read and write functions from/to a text file and is not 

synthesizable. Therefore, the non-synthesizable shared memory was removed and we 

generated a structural dual port memory, using Xilinx Core Generator, with 128 entries 

of 9 bits each. The 4 bits concern the member width, and the following 5 bits concern 

the fitness value. It is worth noticing that the dual port memory generated with the 

Core Generator supports std_logic and std_logic_vector data types, so the bit and bit_vector 

data types were substituted with the std_logic and std_logic_vector data types respectively. 

The shared memory now stands between the PowerPC and the HGA core, and both 

can access it for reading/writing purposes, each from a different port. 

 Firstly, we compiled and simulated the VHDL code using Modelsim 6 SE and we 

verified that the design worked properly. Then we synthesized, and implemented the 

HGA core with the Xilinx ISE 7.1. Finally, we incorporated the PowerPC processor 

and we downloaded the design on the XC2VP30 FPGA using the Xilinx EDK 7.1. 

Table 24 has the resources utilization after place and route. 

Number of Slice Flip Flops 1,557 out of  27,392 5% 

Total Number 4 input LUTs 2,380 out of  27,392 8% 

Number of PowerPC405s 1 out of 2 50% 

Number of Block RAMs 9 out of 136 6% 

Number of MULT18X18s 1 out of 136 1% 

Number of GCLKs 2 out of 16 12% 

Number of DCMs 1 out of 8 12% 

Number of External IOBs 4 out of 556 12% 

Number of LOCed IOBs 4 out of 4 100% 

Number of BUFGMUXs 2 out of 16 12% 

Number of 4 input LUTs 

(Logic) 

2,061 out of 27,392 7% 

Number of SLICEs 1,689 out of 13,696 12% 

Table 24: Resources utilization of the XC2VP30 FPGA for the HGA with F(x) = 2x 
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The BRAM resources are allocated by the main memory of the PowerPC we selected 

during setup of the processor, and the shared memory standing between the PowerPC 

and the HGA core. The maximum clock frequency on which the design operates is 100 

MHz. It should be noticed that the original implementation contains only the fitness 

function F(x)=2x in behavioural code. Thus the resources utilization is kept low in this 

implementation. In the next phase of the work we incorporated more fitness functions.  

 

4.3.1. Fitness functions and their implementation with DSPs 

Due to the limited FPGA resources, Scott implemented the fitness function F(x)=2x 

only on the BORG board. However, he simulated the genetic algorithm with more 

fitness functions which are shown in Table 25. 

Number Fitness Function F(x) 

1 F(x) = x 

2 F(x) = x + 5 

3 F(x) = 2x 

4 F(x) = x2 

5 F(x) = 2x3 – 45x2 + 300x 

6 F(x) = x3 – 15x2 + 500 

Table 25: Fitness functions 

 

In order to support the above fitness functions we added a new module which we call 

fitness evaluation module. It consists of five multipliers and four adders, produced with 

the Core Generator, a multiplexer and a functional controller. The multipliers have 

been implemented in a pipelined manner - the maximum pipeline parameter was enabled 

in the Core Generator - with output latency 1. The adders are non-pipelined. The 

multiplexer selects the appropriate output according to the fitness function that is used. 

Finally, the functional controller controls the RDY signals of the multipliers to inform 

the FM when the fitness value of the evaluated member is ready. 
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 Several modifications have been made to incorporate all the fitness functions. In 

order to support larger fitness values the width of bits of the fitness value was changed 

from 5 to 14. This is illustrated in Table 26. Furthermore, due to the change of the 

fitness value width, modifications have been made to parameters such as the memory 

data width and the sum of fitnesses width. Some changes have been also made on the 

FM of the initial design. More specifically, in the initial implementation the fitness 

function calculated the fitness value of each member in a single clock cycle. In the new 

implementation, due to the pipelinining of the multipliers, the fitness value of each 

member needs more than one clock cycle to be calculated. Moreover, each multiplier 

has a dedicated output, the RDY signal, which indicates when the result is ready. 

Therefore, the evaluation of the fitness values of members is performed in more than 

one clock cycle depending on the fitness function and it finishes after the activation of 

RDY signal. The fitness evaluation module is shown in Figure 27 and is described later 

in more detail. 

 Member 

n 

Fitness Function 

F(x) 

Fitness Value 

f 

Member & Fitness 

Value (n &f) 

Scott 1101 2x 11010 110111010 

Our 

Approach 

1101 2x3 – 45x2 + 300x 00001010110001 110100001010110001 

Table 26: Example of parameters width 

 

 The above design can be slightly changed to support even more fitness functions. 

A generalized fitness function of the form ax3+bx2+cx+d can be used for evaluation, in 

which the coefficients would be valued externally by the user. Although this entails 

minor effort it has not been implemented and it is planned as future work. We should 

also notice that there is a limitation on the maximum size of the polynomial coefficients 

that present implementation allows, as shown in Table 27.  

Polynomial coefficients Maximum coefficients width Maximum decimal value 

a 6 63 
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b 6 63 

c 12 4095 

d 14 16383 

Table 27: Maximum sizes of the polynomial coefficients 

  

 As the operation is applied on a pair of members, two components of the fitness 

evaluation module have been instantiated. Therefore, when the CMM module outputs 

the two new members, i.e. the offsprings, it sends them to the FM and the two fitness 

evaluation modules. More specifically, both are sent to the FM, and in parallel, each of 

them is separately sent to a fitness evaluation module. This is performed in order to 

start the evaluation of the fitness values of the two members in parallel as soon as they 

are ready from the CMM module. In the initial implementation this process is 

performed differently. More specifically, when the new members are ready from the 

CMM module they are passed to the FM where the fitness values are evaluated in a 

single clock cycle without an external fitness evaluation module. In our implementation 

we decided to insert these two fitness evaluation components in order to support more 

complex fitness functions.  

At this point we explain the functionality of the fitness evaluation module 

presented in Figure 27. From the Table 25, assume that the fitness function to be 

optimized is the first one. Then the input of this module will drive its output directly, 

i.e. input equals output. Regarding the second fitness function, the output is taken by 

the F2 given by ADDER 4 of the Figure 27. All the outputs of the above fitness 

functions are connected to a multiplexer, and in this way the user selects the fitness 

function to be optimized. In the present version this is performed by changing a value 

in the PowerPC code. Thus the selector signal of the multiplexer in the HGA core is 

driven by the PowerPC. In the next version of the system it is suggested this value to be 

given externally from an application running on the host computer. 

We should mention that after the incorporation of the fitness evaluation module in 

the HGA core, due to misleading observation of the clock frequency that the synthesis 
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report, we decided to utilize a Digital Clock Manager (DCM) in order to adjust it (§ 

4.4.2). Although the synthesis report produces the clock of the design it gives 

inaccurate results. After the place and route timing report of Xilinx EDK 7.1 tool we 

realized that the clock was 100 MHz. As a consequence, we threw out the DCM. 

 

4.3.2. Multipliers implementation 

As it mentioned above the multipliers were generated from the Core Generator. We 

tested all the possible configurations with Core Generator, in order to realize which 

gives us the maximum frequency. Moreover the Core Generator of Xilinx ISE 7.1 

didn’t give us the opportunity to select the output latency of the multipliers, which can 

be done with the Core Generator of Xilinx ISE 9.1 design tool. The results are 

presented in Table 28. 

i Maximum 

pipeline 

Minimum 

pipeline 

Output 

latency 

Register 

input 

Register 

output 

Maximum 

Frequency of 

overall design 

(MHz) 

1 √ ― 1 ― ― 101 

2 √ ― 2 √ √ 102 

3 √ ― 1 √ ― 102 

4 √ ― 1 ― √ 105 

5 ― √ 0 ― ― 60 

6 ― √ 2 √ √ 94 

7 ― √ 1 √ ― 98 

8 ― √ 1 ― √ 99 

Table 28: Performance of multipliers 

 

It can be observed that multipliers implemented with maximum pipeline run faster than 

multipliers implemented with minimum pipeline. The last column indicates the overall 
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design’s maximum frequency. The maximum frequency was achieved utilizing the 

fourth multiplier of the Table 28 and the overall minimum frequency was achieved 

using the fifth multiplier. So the five multipliers that are placed in each fitness 

evaluation module were produced with maximum pipeline and output latency 1. 
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4.4. The PowerPC and the Software 

Until now, the system description has been focused on the hardware side of the FPGA 

system. The master peripheral of the FPGA is the PowerPC, meaning that is the only 

one that can initiate communicates. The PowerPC receives the data from UART and 

stores them into a table (array) in its BRAM. Furthermore, we give inputs to our system 

by writing appropriate values to the memory mapped registers. For example, if we want 

to start the genetic algorithm in the FPGA we must set the input go signal with the 

value “1”. The PowerPC writes to the register 0, which is connected with the input go, 

the value 1, using the function XIo_Out16. If we want to read a value from an input or 

an output we use the XIo_In16 function. Below the two functions for read and write 

operation are shown.  

XIo_Out16 (XPAR_HGA_0_BASEADDR +0x0, 1)� this is for the write operation 

Short Register0=XIo_In16 (XPAR_HGA_0_BASEADDR + 0x0)� this is for the read 

operation 

After initializing the inputs of the genetic algorithm, the PowerPC sends the data 

from the table (array) to the shared memory and activates the go signal. When the 

algorithm is finished, the done output becomes high.  When this is detected from the 

PowerPC, the latter reads the data in the shared memory and stores them in a table 

(array). Then the data are sent to the host computer via hyper terminal, for the user to 

read the final population. 

 

4.5. The embedded system 

An application in C running on UNIX environment on a host computer generates the 

text file with the genetic parameters and the initial population. The values of this text 

file must be then inserted in the shared memory. In order to send these values from the 

host computer to the shared memory implemented in the XC2VP30 FPGA we used 
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the RS232 port of the XUP. For this reason the windows hyper terminal was used and 

the PowerPC 405 embedded processor was utilized for UART communication.  

 The text file binary representation was converted to hexadecimal, and then to 

ASCII with a program in C [23]. Because the hyper terminal can send 1 byte at a time, 

and the width in the shared memory is 18 bits, the data were sent in the following way: 

we send the first 8 bits and then we send the second 8 bits. The remaining 2 bits are 

sent within a byte and its LSB is filled in with six zeros. An example is shown in the 

Table 29. If the 110100000000011010 bit string is to be sent to the shared memory, it is 

segmented in three bytes and their ASCII values, D0, 06 and 80 are sent. Inside the 

PowerPC there is a code segment that recovers the original bit string, and then sends it 

to the shared memory. 

 

 Row in text file First byte Second byte Third byte 

Binary 

representation  

110100000000011010 11010000 00000110 10000000 

Hexadecimal 

representation 

3401A D0 06 80 

Table 29: Representation of input file 

 

 The FPGA system is illustrated in the Figure 28 and is formed by a number of 

components and their interconnections. The components can be distinguished into two 

categories, buses and peripherals. 

Two different buses are available: 

• Processor Local Bus (PLB). It is the system’s high speed bus and is intended for 

communication between high speed peripherals. 

• On-chip Peripheral Bus. It is the system’s low speed bus and is intended for use 

by peripherals where there is no need for high-speed communications. 
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• PLB to OPB BRIDGE. This component connects the OPB bus with the PLB 

bus. 

The following peripherals have been instantiated: 

• PowerPC405. It is the hard core of an IBM PowerPC processor. It is a PLB 

master and its maximum frequency of operation is 300 MHz. The program 

code is executed in this peripheral. 

• PLB_BRAM block. This is the system main memory. All the program sections 

are located in this memory. 

• PLB_BRAM_if_cntrl. This peripheral is a PLB slave and controls the BRAM. 

• DCM module. This component synthesizes the processor’s 300 MHz 

frequency from the board’s 100 MHz clock. 

• Proc_sys_reset. This component creates the necessary reset signals. 

• opb_uarlite. This is an OPB slave peripheral for handling the serial 

communication with the personal computer. 

• HGA core. This is a custom OPB slave peripheral where the genetic algorithm 

is placed on. The top module of our design is instantiated in the user_logic 

module where the inputs and outputs signals are connected to memory 

mapped registers. Moreover, the user_logic is instantiated in the HGA core 

which is connected to the opb_bus. 
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Figure 28: The FPGA System 

 

4.5.1. System Operation 

The flowchart of the system operation is presented in Figure 29. Firstly, the user selects 

the genetic parameters and the fitness function to be optimized by the genetic 

algorithm. Then, the input file, after its conversion from binary to hexadecimal, is 

transferred via the RS232 of the host computer to the PowerPC. The PowerPC receives 

the input file and stores it into a table in its BRAM. These data will then be inserted in 

the shared memory. Then, the PowerPC activates the go signal in order to trigger the 

genetic algorithm and enters an awaiting state until the done signal is activated. This 

indicates the completion of the algorithm execution. Then, the PowerPC reads memory 

contents and stores them in a table. Finally, the PowerPC transfers the data to the host 

via the RS232 port and enters an awaiting state. In this state if the user wants to send a 

new input file the above process is repeated, otherwise it finishes. 

We should mention that the Virtex II Pro FPGA is in general a loosely coupled 

architecture. This is due to the buses and the registers that intervene for the 

communication between the processor and the peripherals. This results to latencies that 

can not be predicted by the designer. For this reason, a controller has been 
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implemented as part of the HGA core which controls the communication between the 

PowerPC and the peripheral. The controller checks when the address is changed, and 

when this happens it sets high the enable signal of the memory port A for one cycle. To 

achieve this, for each memory we want the PowerPC to have access, we inserted one 

register. This keeps the previous address, in order to compare it with the current one. 

The two addresses are compared to examine whether a new address appears on the 

input of the memory address lines. 

 
 

Figure 29: Flowchart of the system operation 
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4.5.2. Digital Clock Manager (DCM) 

The DCM is a component produced with the Core Generator and is used for frequency 

synthesizing. In our design the DCM takes a clock input of a specified frequency and 

produces two clock outputs. It takes the input of the OPB clock which is 100 MHz, 

and it outputs a clock with 100 MHz frequency and a clock with 90 MHz frequency. 

The 100 MHz clock is connected to the port A and the 90 MHz clock is connected to 

the port B of the dual port shared memory. The 90 MHz clock also drives the HGA 

core to work properly. The read and write operations between the PowerPC and the 

shared memory are performed with a clock of 100 MHz. The read and write operations 

between the HGA core and the shared memory are performed with the 90 MHz clock. 

The design with the DCM was downloaded on Virtex II Pro FPGA and its correct 

functionality was verified. Figure 30 illustrates the DCM. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 30: Digital clock manager 
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4.5.3. Extensions for measurements 

After we have simulated and synthesized the VHDL code, extensions for 

measurements have been made. A dual port memory with 128 entries × 19 bits was 

generated to store the intermediate sum of fitnesses of each population. By observing 

the sum of fitnesses we have a quality criterion for the populations that have been 

generated by the algorithm. This helped us to make our experiments that are discussed 

in next chapter. 

Moreover a new component was included in the overall design to count the clock 

cycles for each run. It is a counter that counts the clock cycles while done signal is set to 

zero, which means that the HGA core executes. I/O timings have been removed 

because we are mainly interested in the execution time of the HGA core. Figure 31 

represents the block diagram of the HGA after our modifications. 
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4.6. Implementation results 

We have inserted two dual port RAM’s; one for the genetic parameters, the initial and 

the final populations, and the second for the sum of fitnesses of each generated 

population. The system’s clock frequency is 100 MHz. We downloaded the final 

implementation on Virtex II Pro to verify its correct operation in hardware. The results 

are shown in Table 30. The minimum period after post place and route synthesis with 

EDK 7.1 was 100 MHz. 

Number of Slice Flip Flops 2,024 out of  27,392 7% 

Total Number 4 input LUTs 3,190 out of  27,392 11% 

Number of PowerPC405s 1 out of 2 50% 

Number of Block RAMs 10 out of 136 7% 

Number of MULT18X18s 11 out of 136 8% 

Number of GCLKs 2 out of 16 12% 

Number of DCMs 1 out of 8 12% 

Number of External IOBs 4 out of 556 12% 

Number of LOCed IOBs 4 out of 4 100% 

Number of BUFGMUXs 2 out of 16 12% 

Number of 4 input LUTs 

(Logic) 

2,783 out of 27,392 10% 

Number of SLICEs 2261 out of 13696 16% 

Table 30: Resources Utilization of HGA with more fitness functions 

 

4.7. Weaknesses of our implementation 

After the analysis of our implementation we present here some weaknesses of our 

design: 

• In the VHDL code we download from the internet it was included a package 

file that supports parameterized and scalable design. In order to download the 

genetic algorithm in the Virtex II Pro FPGA, we took out this file because 
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Xilinx ISE 7.1 tool couldn’t recognize it. In the other hand Xilinx ISE 9.1 

supports package files but we didn’t employ it for stability reasons which are 

provided by the Xilinx ISE 7.1 design tool. In the future, the package can be 

included to support parameterized and scalable design.   

• Another design weakness was that we want to implement the six fitness 

functions which were presented in Scott Master thesis, so the vector sizing of 

the coefficients was chosen for supporting these fitness functions. If user 

wants to implement different fitness functions, he should change the width of 

the inputs and outputs of the multipliers and the adders. In addition, changes 

to the VHDL code should be done to the coefficients of the fitness functions 

which by the way support the 6 fitness functions of Scott Master thesis. 

• In current version the selector signal of the multiplexer that controls the 

output of the fitness evaluation module is driven by the PowerPC. In the next 

version of the system it is suggested this value to be given externally from an 

application running on the host computer. 

• A generalized fitness function of the form ax3+bx2+cx+d is not supported yet. 

In a future version the coefficients could be valued externally by the user. 
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5.1. Experimental results 

In order to make the experiments we inserted a new dual port memory to keep the 

intermediate sum of fitnesses of each generation. Moreover, a counter was 

implemented to count the clock cycles from hardware implementation of the genetic 

algorithm.  

Six populations were produced from the C code of the host computer for each of 

the 6 fitness functions described in chapter 4. The experiments were done for 

population size m = 32, member width n = 4 and fitness value width f = 14. The 

algorithm runs for the 36 initial populations, and we take results that are presented 

below in Figure 32.  
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 As we can see from Figure 32 above the populations are well optimized in a few 

generations. Fitness function F(x) = x3 – 15x2 + 500 was optimized in 12 generations 

while other fitness functions need 20 and 30 generations to be optimized. This 

probably happens because F(x) = x3 – 15x2 + 500 is converging to 0 and 15, which are 

the two optima. Moreover, this convergence was depended on the random number 

generator, the probabilities of crossover and mutation and most importantly the initial 

population. We observe that 35 numbers of generations are enough for all the fitness 

functions to be optimized. Moreover, fitness function F(x) = 2x3 – 45x2 + 300x, was 

optimized after 32 generations because it is the most complex function. Table 31 below 

presents the optimization performance average results, and timing results of the HGA 

runs on the 6 fitness functions. We observe that the evaluation time differs for each 

fitness function. This is due to the variations of the initial populations that are 

generated from the C code running on the host computer for each fitness function. 

F(x) Number of 

Generations 

(g) 

Sum of 

Fitnesses 

(Initial 

Population) 

Sum of 

Fitnesses 

(Final 

Population) 

Increase 

Percentage 

(%) 

Clock 

Cycles 

x 100 201 478 137 218,839 

x+5 100 351 639 82 217,947 

2x 100 437 937 118 218,225 

x2 100 2121 7180 238 217,363 

2x3 – 45 x2 + 300x 100 16536 35,571 96 218,038 

x3 – 15x2 + 500 100 7187 15,972 118 216,610 

Table 31: Optimization performance and timing results 

 

Below we present the figures of each fitness function optimization. In Figure 33, 

we test 6 different populations for fitness function F(x) = x. the algorithm runs for 30 

generations. We can observe that the average threshold is generation g = 22. After this 

point no significant increment sum of fitnesses is performed.  
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Figure 33: Optimization of fitness function F(x) = x 

Figure 34 indicates the optimization of fitness function F(x) = x + 5. Six different 

populations were tested and the average threshold of the number of generations was 

25. 

Figure 34: Optimization of fitness function F(x) = x + 5 
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In Figure 35 fitness function F(x) = 2x was optimized for six populations and the 

results indicate that after 28 generations the sum of fitnesses has the same value for all 

the populations. 

Figure 35: Optimization of fitness function F(x) =2 x 

Continuing our optimization analysis of our experiments the next fitness function 

under examination was F(x) = x2 (Figure 36). The threshold was g = 22 generations.  

Figure 36: Optimization of fitness function F(x) = x2 
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The last two complex fitness functions were examined for the optimization process. 

For the F(x) = 2x3 – 45x2 + 300x (Figure 37) we can conclude that need the most 

number of generations to be optimized (g = 31). In the other hand F(x) = x3 – 15x2 + 

500 (Figure 38) needs only 12 generations to be optimized. 

Figure 37: Optimization of fitness function F(x) = 2x3 – 45x2 + 300x 

 

Figure 38: Optimization of fitness function F(x) = x3 – 15x2 + 500 

 



Chapter 5 – Experimental results and validation 

 

  

109 

As we can observe from the Table 31 above all of the fitness functions needs 

almost the same clock cycles to be optimized for specified number of generations. This 

happens because we implemented them having one entire control unit so the results are 

the expected. It is worth noticing that for the HGA runs only one selection module was 

used. More specific analysis will be done in section 5.2 and 5.3.  

 

5.2. Validation 

We didn’t found any output file of the Scott implementation in order to validate our 

results. Two levels of functional verification were used. First each module was 

individually tested to confirm that it operated correctly under all conceivable 

conditions. Testbenches were used to confirm the correct functionality of each module 

and of the overall design. Modelsim 6 SE was used for the simulations we described 

above. The second level of functional verification involved simulating the HGA on 

different fitness function in order to see how well the functions were optimized. In all 

tests, the population was optimized well. In a small number of generations, average 

fitness increased substantially. 

First of all, the VHDL code of the HGA we found at the internet, included only 

fitness function F(x) = 2x, although Scott supports that more fitness functions were 

implemented in simulation mode. The member’s width was n = 4 bits and the fitness 

value width of bits, was only f = 5 bits. From simulation analysis we found that fitness 

function F(x) = 2x was optimized for 20 generations at the same clock cycles as Scott 

supports in his Master thesis. Moreover the average fitness of the final population was 

increased. These observations lead us to the validation with Scott implementation. The 

design was downloaded in a Virtex II Pro FPGA platform and the results were the 

same as simulation.  

Furthermore, because of the small resources of the HGA in the FPGA we inserted 

more fitness functions to be optimized. In order to support more complex fitness 

functions the fitness value width was increased to f = 14. Moreover a lot of vectors 
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were changed inside the VHDL code due to this change. So from the architecture of 9 

bits we pass to the 18 bits architecture (n + f = 4 + 14 =18). The fitness evaluation 

module implemented with DSP’s was first tested individually to verify correct 

functionality. Then we simulate it with the entire design and check the overall’s system 

functionality. The algorithm was first run for the fitness function F(x) = 2x and was 

compared with the first implementation. We didn’t get the same results (the same 

members at the final population) because of the pipeline of the fitness evaluation 

module. Moreover the RNG seed of the first implementation was 9 bits and becomes 

18 bits. As we previously mentioned RNG is a key component of the system, and its 

output depends on the RNG seed input. Just like a software-based pseudo random 

number generator, the RNG module is deterministic so using the same initial RNG 

seed will yield the same sequence of random numbers. The algorithm was run almost 

for the same clock cycles but the average fitness of the final population was increased in 

the same number of generations. This implementation with the DSP’s was downloaded 

for all the fitness functions and the results were the same as the simulation. Here we 

present Table 32 from Scot’s Master Thesis that indicates the correct functionality:  

 

F(x) Number of 

Generations 

(g) 

Mean Fitness 

(Initial 

Population) 

Mean Fitness 

(Final 

Population) 

Increment 

Percentage 

(%) 

Clock 

Cycles 

x 15 7.3 14 92 32,429 

2x 6 14.62 27.94 91 13,139 

x2 20 74.5 215.2 214 45,019 

2x3 – 45 x2 + 300x 20 572.62 1,049 83 44,503 

x3 – 15x2 + 500 20 248.19 492.25 98 44,317 

Table 32: Optimization results from Scott implementation 
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F(x) Number of 

Generations 

(g) 

Mean Fitness 

(Initial 

Population) 

Mean Fitness 

(Final 

Population) 

Percentage 

(%) 

Clock Cycles 

x 15 6.2 14.43 132 32,002 

2x 6 13.6 25.1 84 12,881 

x2 20 66.3 222.1 234 42,529 

2x3 – 45 x2 + 300x 20 516.8 1,111.6 115 43,210 

x3 – 15x2 + 500 20 224.6 498.9 122 44,399 

Table 33: Optimization results from our implementation 

 

From Tables 32 and 33 above, we can conclude that average fitness increased by almost 

the same coefficient for several fitness functions for the same number of generations. 

Moreover, Scott supports that the actual evaluation time of completion of the 

algorithm grows linearly with the number of generations. This was realized from us 

when we conducting the experiments for several number of generations. So, observing 

Tables 32, 33 we can say that algorithm runs almost at the same clock cycles for several 

fitness functions.  

 

5.3. Considerations for improvement 

The above analysis of the HGA leads us to propose several design improvements: 

• Increase parallelization of the selection modules as indicated in Figure 26. At 

this point we must mention that our implementation supports only one 

selection module (nsel). Scott supports that inserting two parallel selection 

modules can reduce the number of clock cycles significant (at the half). 

Moreover there is a limit (nsel = 3 or 4) where after that, the bottleneck lies on 

the fitness module and no significant speedup achieved. 
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• Parallelize the selection-crossover-fitness pipelines, but this would require more 

complex inter-module communication protocol than the aynchronous 

handshaking protocol used in this design. 

• Make the inter-module communication protocol more efficient. The current 

handshaking protocol requires four clock cycles per data transfer. If these 

delays were reduced the entire HGA would run much faster. 

• Speed up the selection module polling method used by the crossover and 

mutation module. Presently the crossover and mutation module polls only one 

selection module per clock cycle. There would be time to poll several selection 

modules in a single clock cycle. 

• Buffer the outputs of all the modules would reduce the delays associated with 

some modules waiting for service and blocking others that are waiting upstream 

in the pipeline. 
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6.1. Present status 

The present status of this thesis is that we have an embedded system that implements a 

function optimization using a genetic algorithm. A lot of functions can be optimized as 

described in previous chapter. We achieve 50 X speedup than Scott implementation 

only with porting the design from BORG’s board to a Virtex II pro FPGA platform. 

This is because the clock frequency of the BORG’s board was 2 MHz and the Xilinx 

university platform has a 100 MHz clock. Our implementation supports more fitness 

functions that are implemented in hardware than Scott implementation which supports 

only one (F(x) = 2x).   
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6.2. Future work 

The state of the art in FPGA technology will surely advance in the future so improved 

FPGA technologies could be exploited to improve HGA’s capabilities. For example, 

the genetic parameters of this design could be scaled up so the HGA could handle 

larger strings, larger populations, more complex fitness functions and more advanced 

genetic operators. As it analyzed in Chapter 2, the present status of the genetic 

algorithms implemented in FPGAs indicates that the maximum population size is 

100,000 and the maximum number of generations is 1,000,000. The genetic algorithm 

could be extended by implementing other genetic algorithm operators including multi-

point crossover and mutation. Furthermore, HGA could also support alternative 

encoding schemes such as floating point or signed integer coding. 

To increase parallelism multiple selection, crossover and mutation and fitness 

modules could be added in order to speed up the genetic algorithm. Parallelizing the 

selection modules will reduce the clock cycles at the half.  

We also propose the idea of partial reconfiguration. Probably, not all of the fitness 

functions should be placed in the FPGA, so we can change the function which is going 

to be optimized on the fly. User will select onlu the fitness function he wants to 

optimize and the other fitness functions will not exist in the FPGA. This process could 

be done by building several bitstreams for fitness function and store them to System 

Ace Memory. Each time the appropriated bitsream will run for the specified fitness 

function. This will reduce utilization resources and maybe the speed of the algorithm.  

Moreover user could send via PowerPC the coefficients of the polynomial fitness 

function ax3 + bx2 + cx + d he wants to be optimized. Furthermore, the selection of the 

fitness function that is going to be optimized can be added to the input file so the user 

doesn’t have to re-download the design.  
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Appendix A 

In appendix A we present the inputs and the outputs ports of basic modules of our 

design.   

Signals Description 

INPUTS 

go Go ahead signal from PowerPC to start the algorithm. If go=1 the 

algorithm starts 

RST Asynchronous signal from PowerPC to reset the algorithm. If reset=1 

the algorithm doesn’t run 

datain[17:0] Data arrived from memory and they are forwarded to other modules 

toggle Tells which population to access for fitness and population sequencer 

CLK System clock 

reqrng Request from RNG module 

addrrng[2:0] The address received from RNG which tells the MIM where in the 

memory is stored the seed for RNG 

reqxov Request from crossover and mutation module 

addrxov[2:0] The address received from crossover and mutation module which tells 

the MIM where in the memory is stored the address of crossover and 

mutation  probability 

reqseq[1:0] Request from population sequencer module, reqseq(1) indicates that 

population sequencer wants to read a member and reqseq(0) that PS 

wants to read the population size 
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addrseq[4:0] The address received from population sequencer module initially tells 

the MIM where in the memory is stored the address of population size 

and  then  addrseq tells the MIM the address of member it wants to read 

reqfit[1:0] Request from fitness module, reqfit(0) indicates that FM wants to read 

population size, sum of fitness and number of generations and reqfit(1) 

that FM wants to write to MIM a new member 

valfitin[17:0] Receives a new member from fitness module 

fitdone If this signal is high, this indicates the end of the  algorithm and it 

comes from the fitness module 

addrfit[4:0] Firstly MIM receives addresses of sum of fitnesses, number of 

generations and population size and then it receives the address of the 

new member that FM wants to write 

OUTPUTS 

done This signal indicates the end of algorithm and MIM send it to Power 

Pc 

init It initializes the other modules (PS,FM,CMM,RNG). If RST is high 

then init is low and conversely 

address[6:0] This signal sent to MEMORY either for reading or writing the address 

of a member or requesting an HGA run-time parameter 

dataout[17:0] Data of a new member sent to MEMORY which received from FM 

module 

rw Read or write signal sent to MEMORY (0 is for reading operation and 

1 for writing) 

toggleout Shows the final value of toggle sent to Power Pc(0 means that final 

population is located in positions 6-37 in MEMORY and 1 in positions 
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38-69) 

ackrng An acknowledge signal to RNG module 

ackxov An acknowledge signal to Crossover and Mutation module 

ackseq An acknowledge signal to Population Sequencer module 

ackfit An acknowledge signal to Fitness Module 

valout[18:0] MIM passes data to whoever requested them 

Table 34: Memory Interface Module 

 

Signals Description 

INPUTS 

ackxover An acknowledge signal from Crossover and Mutation module and if it 

is 1 then selection module outputs the pair of selected members 

sof[18:0] The sum of fitnesses of the current  population 

rand1[3:0] Gets random number from RNG module to scale down the sum of 

fitness 

rand2[3:0] Gets random number from RNG module to scale down the sum of 

fitness 

reset Fitness module resets the Selection module when the current 

generation has ended and the populations have switched 

CLK System clock 

dup This signal is set to ‘1’ when we have the same input as previous  
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input[17:0] A new member received from Population Sequencer 

OUTPUTS 

aout[3:0] The first member selected and send it to Crossover and Mutation 

module 

bout[3:0] The second member selected and send it to Crossover and Mutation 

module 

reqxover Sends a request to Crossover and Mutation module when the pair of 

members is ready. This signal is set high randomly.  

Table 35: Selection Module 

 

Signals Description 

INPUTS 

init An initiallizing signal send from MIM 

CLK System clock 

ackmem Acknowledge signal from MIM 

param[15:0] Value of RNG seed sent from MIM  

OUTPUTS 

reqmem A request sent to MIM 

domut[3:0] Random bit string sent to Crossover and Mutation module for 

determining whether to perform mutation  

doxover[3:0] Random bit string sent to Crossover and Mutation module for 

determining whether to perform crossover 



Michael Vavouras                                                                                                                             Thesis                                                                                             

 

  

119 

mutpt[1:0] Shows what the mutation point is 

xoverpt[1:0] Shows what the crossover point is 

addr[2:0] Send RNG seed address 

randsel1[3:0] Random bit string send to the Selection Module for scaling down the 

sum of fitness 

randsel2[3:0] Random bit string send to the Selection Module for scaling down the 

sum of fitness 

Table 36: Random Number Generation 

 

Signals Description 

INPUTS 

init An initializing signal send from MIM 

CLK System clock 

domut[3:0] Random bit string received from RNG module for determining 

whether to perform mutation  

doxover[3:0] Random bit string received from RNG module for determining 

whether to perform crossover 

mutpt[1:0] Shows what the mutation point is 

xoverpt[1:0] Shows what the crossover point is 

ain[3:0] The first member received from Selection module 

bin[3:0] The second member received from Selection module 
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reqsel Bus request from Selection module 

ackfit Bus acknowledge from Fitness module 

ackmem Bus acknowledge from MIM 

param[3:0] The crossover and the mutation probabilities received from MIM 

OUTPUTS 

acksel Bus acknowledge to Selection module 

reqfit Bus request to Fitness module 

aout[3:0] First member  to fitness module 

bout[3:0] Second member  to fitness module 

reqmem Bus request to MIM 

addr[3:0] Address of initial parameters(crossover and mutation probabilities) 

Table 37: Crossover and Mutation Module 

 

Signals Description 

INPUTS 

wea This signal is for the write operation in A port of the Memory. It is 

high when we want to write something to Memory and low for reading 

operation  

clka System clock at port A 

clkb System clock at port B 
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dina[17:0]  Data stored into port A of Memory  

dinb[17:0]  Data stored into port B of Memory  

web This signal is for the write operation in B port of the Memory. It is 

high when we want to write something to Memory and low for reading 

operation  

ena If this signal is high then read or write operations performed in port A 

enb If this signal is high then read or write operations performed in port B 

addra[6:0] The address of the data we want to write to  port A of Memory 

addrb[6:0] The address of the data we want to write to port B of Memory 

OUTPUTS 

douta[17:0] Memory outputs data to other modules from port A 

doutb[17:0] Memory outputs data to other modules from port B 

Table 38: Memory Module 

 

Signals Description 

INPUTS 

clock System clock 

rst System reset 

x[3:0] The member sent from fitness module for evaluation  

init_mult_ctrl Input from fitness module which enables first fitness evaluation 

module 
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selfitfunc[2:0] Select one of the six functions to be optimized 

OUTPUTS 

output[13:0] The output of the address that becomes input for Memory module  

resultrdy Informs fitness module that fitness value from first fitness evaluation 

module is ready 

Table 39: Fitness Evaluation Module 

 

Signals Description 

INPUTS 

init An initializing signal send from MIM 

CLK System clock 

value[17:0] This signal has the population size sent from Memory Interface 

Module  

ackmem If this signal is set means that Population sequencer got Memory 

acknowledge 

OUTPUTS 

dup If this signal is high means that the same member as last one was 

passed to selection module 

reqmem[1:0] Request sent to Memory Interface Module. If reqmem (0)=1 it request 

memory access and if reqmem(0)=0, tells Memory Interface Module 

that address sent. If reqmem(1)=1, prepares to write new members to 

memory 

addr[4:0] This is sent to memory interface module for request data from 
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specified address 

output[17:0] The member passed to selection module 

Table 40: Population Sequencer 

 

Signals Description 

INPUTS 

init An initializing signal send from MIM 

CLK System clock 

reqxover Bus request from Crossover and Mutation module  

toggleinit A signal shows in which area of memory is placed the initial population 

(0 means that initial population is located in positions 6-37 in 

MEMORY and 1 in positions 38-69) 

ackmem If this signal is set it indicates that Fitness Module got memory 

acknowledge 

param[18:0] The sum of fitnesses, population size and number of generations of 

current population send from Memory Interface Module 

ain[3:0] The first member received Crossover and Mutation module 

bin[3:0] The second member received from Crossover and Mutation module 

offchipfitresa[13:0] The fitness value of the first member calculated by the Fitness 

Evaluator 

offchipfitresb[13:0] The fitness value of the second member calculated by the Fitness 

Evaluator 
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resultrdy1 It is set to high indicating that the result from first fitness evaluation 

module has evaluated the fitness value from the first member.   

resultrdy2 It is set to high indicating that the result from second fitness evaluation 

module has evaluated the fitness value from the second member.   

OUTPUTS 

done This signal tells the Memory Interface Module to shut down 

ackxover Acknowledge the Crossover and Mutation Module 

reset If this signal is high, resets the Selection Module  

sof[18:0] Sum of fitnesses of the current population sent to Selection Module 

toggle This signal is sent to Memory Interface Module to inform it which is 

the current population 

reqmem [1:0] Request sent to Memory Interface Module. If reqmem (0) =1 it request 

memory access and if reqmem (0)=0, tells Memory Interface Module 

that address sent. If reqmem(1)=1, prepares to write new members to 

memory 

addrmem [4:0] Send address of the population size, the number of generations, sum of 

fitnesses and also the address of the new member to be written in 

Memory  

newmember [17:0] The new member sent to Memory Interface Module to be written in 

Memory  

init_mult_ctrl1 Enables the first fitness evaluation module 

init_mult_ctrl2 Enables the second fitness evaluation module 

writemem Write enable signal for the sum of fitnesses memory 
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memaddr[6:0] Send address to sum of fitnesses memory 

mem_sum_enb Enables sum of fitnesses memory for read and write operation 

Table 41: Fitness Module 

 

Signals Description 

INPUTS 

wea This signal is for the write operation in A port of the Sum of Fitnesses 

Memory. It is high when PowerPC writes something to Sum of 

Fitnesses Memory and low for reading operation  

clka System clock at port A 

clkb System clock at port B 

dina[18:0]  Data stored into port A of Sum of Fitnesses Memory.  

dinb[18:0]  Data stored into port B of Sum of Fitnesses Memory. 

web This signal is for the write operation in B port of the Sum of Fitnesses 

Memory. It is high when we want to write something to Sum of 

Fitnesses Memory and low for reading operation  

ena Only if this signal is high then read or write operations performed in 

port A 

enb Only if this signal is high then read or write operations performed in 

port B 

addra[6:0] The address of the data we want to write to  port A of Sum of 

Fitnesses Memory 

addrb[6:0] The address of the data we want to write to port B of  Sum of 
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Fitnesses Memory 

OUTPUTS 

douta[18:0] Sum of Fitnesses Memory outputs data to other modules from port A 

doutb[18:0] Sum of Fitnesses Memory outputs data to other modules from port B 

Table 42: Sum of Fitnesses Memory 

 

Signals Description 

INPUTS 

I0[13:0] The fitness value of the first fitness function 

I1[13:0] The fitness value of the second fitness function 

I2[13:0] The fitness value of the third fitness function 

I3[13:0] The fitness value of the fourth fitness function 

I4[13:0] The fitness value of the fifth fitness function 

I5[13:0] The fitness value of the sixth fitness function 

S[2:0] The selection for the multiplexer is the fitness function choice  

(selfitfunc) 

OUTPUTS 

O[13:0] Outputs one of the inputs depending on the selection signal 

Table 43: Multiplexer 
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Signals Description 

INPUTS 

clk System clock 

rst System reset 

rdy1 Result ready from first multiplier 

rdy2 Result ready from second multiplier 

rdy3 Result ready from third multiplier 

rdy4 Result ready from fourth multiplier 

rdy5 Result ready from fifth multiplier 

init_mult_ctrl Initialize signal from fitness module to functional controller module  

OUTPUTS 

nd1 New data to first multiplier 

sclr1 Synchronous clear to first multiplier 

sclr2 Synchronous clear to second multiplier 

sclr3 Synchronous clear to third multiplier 

sclr4 Synchronous clear to fourth multiplier 

sclr5 Synchronous clear to fifth multiplier 

resultrdy Output to fitness module to inform that result is ready 

Table 44: Functional Controller 
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We don’t present the second fitness evaluation module because it has the same 

structure. 

Signals Description 

INPUTS 

I[6:0] The address for memory which is sent from the PowerPC 

clk System clock 

load This signal is set to high to enable register  

Q[6:0] The address from the input is outputted after a clock cycle if load is 

high 

OUTPUTS 

Q[6:0] The address from the input is outputted after a clock cycle if load is 

high 

Table 45: Register 

 

The second register is not presented here because has the same structure. 

 

Signals Description 

INPUTS 

x[6:0] The address for  data memory which is sent from the PowerPC 

y[6:0] The address for sum of  fitnesses memory which is sent from the 

PowerPC 
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clk System clock 

done This signal indicated the end of the algorithm when is high  

OUTPUTS 

PowerPC_ena_out This signal is high for one clock cycle, when we have change on the 

address sent from PowerPC to enable port A of the data memory. 

PowerPC_sum_ena This signal is high for one clock cycle, when we have change on the 

address sent from PowerPC to enable port A of the sum of fitnesses 

memory. 

hag_enb_out This signal is high while done signal is set to low, to enable port B of 

the data memory. 

Table 46: Synchronization controller 

 

Appendix B 

In this appendix a detailed block diagram with all the signals of the HGA is presented 

(Figure 39). Due to restricted area some modules and their signals are omitted.  
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