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Abstract

In the recent years establishing interoperability and supporting data integration has be-
come a major research challenge for the web of data. Uniform information access of
heterogeneous sources is of major importance for Semantic Web applications and end
users. We describe a methodology for SPARQL query mediation over federated OWL/
RDF knowledge bases. The query mediation exploits mappings between semantically re-
lated entities of the mediator ontology (global ontology) and the federated site ontologies
(local ontologies). A very rich set of mapping types, based on Description Logic semantics,
is supported. The SPARQL queries which are posed over the global ontology are decom-
posed, rewritten, and then submitted to the federated sources. The rewritten SPARQL
queries are locally evaluated and the results are returned to the mediator. We describe
the formal modeling of executable mappings (i.e. mappings that can be used in SPARQL
query rewriting), as well as the theoretic and implementation aspects of SPARQL query
rewriting. Finally, we describe the implementation of a system supporting the mediation
process.
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Chapter 1

Introduction

Data access from distributed autonomous web resources needs to take into account the
data semantics at the conceptual level. Assuming that the resources are organized and
accessed with the same model and language, a straightforward approach to semantic in-
teroperability is to adhere to a common conceptualization (i.e. a global ontological con-
ceptualization). However, in real-world environments, independent institutions often do
not adhere to common standards. Attempts to find an agreement for a common conceptu-
alization often results in semantically weak minimum consensus schemes (e.g. the Dublin
Core [28]) or models with extensive and complex semantics (e.g. the CIDOC/CRM [12]).
Moreover, it is not often feasible for cooperating institutions to agree on a certain model or
apply an existing standard because they often already have their own proprietary concep-
tualizations. In this environment, query mediation over mapped ontologies has become a
major research challenge since it allows uniform semantic information retrieval and at the
same time permits diversification on individual conceptualizations followed by distributed
federated information sources.

A mediator architecture is a common approach in information integration systems
[42]. Mediated query systems represent a uniform data access solution by providing a
single point for querying access to various data sources. A mediator contains a global
query processor which is used to send sub-queries to local data sources. The local query
results are then combined and returned back to the query processor. Its main benefit
is that the query formulation process becomes independent of the mediated data sources
requiring from end-users to be aware only of their own conceptualization of the knowledge
domain.

In this thesis, we describe a mediator based methodology and system for integrating
information from federated OWL/RDF knowledge bases. The mediator uses mappings
between the OWL [3] ontology of the mediator (global ontology) and the federated site
ontologies (local ontologies). SPARQL [33] queries posed over the mediator, are decom-
posed and rewritten in order to be submitted over the federated sites. The SPARQL
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queries are locally evaluated and the results are returned to the mediator site. In this
thesis we focus on the following research issues:

• determination of the different mapping types, which can be used in SPARQL query
rewriting

• modeling of the mappings between the global ontology and the local ontologies

• rewriting of the SPARQL queries posed over the global ontology in terms of the local
ontologies

Regarding the task of mapping modeling, the focus of this work is on the semantics
and syntax of the ontology executable mappings. For identifying and describing such
mappings, we define a formal grammar for mapping definition.

Based on these mapping types we provide a complete set of graph pattern rewriting
functions that cover all the SPARQL grammar variations and can be used in the process
of query rewriting for local ontologies. These functions are generic and can be used for
SPARQL query rewriting over any overlapping ontology set. We show that the provided
functions are semantics preserving, in the sense that each rewriting step that we perform
(in order to rewrite the initial query) preserves the mapping semantics.

Contribution. The main contributions of this thesis are summarized as follows:

• A model for the expression of mappings between OWL DL ontologies in the context
of SPARQL query rewriting. This mapping model consists of a formal grammar for
the mapping definition and a formal specification of the mappings semantics.

• A generic formal methodology for the SPARQL query rewriting process, based on a
set of mappings between OWL ontologies.

• A system implementation of the proposed methodology.

Outline. The rest of this thesis is organized as follows: An introduction to the standards
and the technologies used for this thesis is presented in Chapter 2. The related work is
discussed in Chapter 3. The mapping model which has been developed in order to express
the mappings between the OWL ontologies is described in Chapter 4. The SPARQL
query rewriting process is described comprehensively in Chapters 5, 6, 7 and 8. The
implementation of the system that supports the query rewriting is discussed in Chapter 9.
Finally, Chapter 10 concludes our work.



Chapter 2

Background

In this chapter we present the standards used in this thesis, as well as the technologies
used for the implementation of our SPARQL query rewriting framework. Section 2.1
presents RDF/S, the standard language for representing information about resources in
the World Wide Web. Section 2.2 presents OWL, the standard language for defining and
instantiating Web ontologies. Section 2.3 presents SPARQL, the standard query language
for RDF. Finally, Section 2.4 presents Jena, an open source Java framework for building
Semantic Web applications.

From this point forward we consider the following namespaces:

• RDF namespace: rdf = http://www.w3.org/1999/02/22-rdf-syntax-ns#

• RDF Schema namespace: rdfs = http://www.w3.org/2000/01/rdf-schema#

• XML Schema namespace: xsd = http://www.w3.org/2001/XMLSchema#

• OWL namespace: owl = http://www.w3.org/2002/07/owl#

• Bookstore namespace (used in examples): ns = http://example.org/Bookstore#

2.1 Resource Description Framework and Schema Lan-

guage (RDF/S)

The Resource Description Framework (RDF) [27] is the standard language for representing
information about resources in the World Wide Web. RDF is based on the idea of iden-
tifying things using Web identifiers (called Internationalized Resource Identifiers, or IRIs
[13]). IRIs are a generalization of URIs and are fully compatible with URIs and URLs.
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The atomic constructs of RDF are statements, which are triples (subject, predicate, ob-
ject) consisting of the resource (the subject) being described, a property (the predicate),
and a property value (the object).

Example 2.1. The assertion of the following RDF triples mean that the resource book1,
under the namespace ns, has a property title under the same namespace, with value
“Database Systems”.

@prefix ns: <http://example.org/Bookstore#> .

ns:book1 ns:title "Database Systems" .

It is worth to mention that in triple format IRI references are designated using the ’<’
and ’>’ delimiters. Moreover, the @prefix keyword associates a prefix label with an IRI.
A prefixed name is a prefix label and a local part, separated by a colon ’:’. A prefixed
name is mapped to an IRI by concatenating the IRI associated with the prefix and the
local part.

RDF can be expressed in a variety of formats including RDF/XML. However, in this
thesis we use the triple form. Data values in RDF are represented by so-called literals.
The value of every literal is generally described by a sequence of characters. The interpre-
tation of such sequences is determined based on a given datatype (XML Schema datatype
mainly). In triple form, the syntax for literals is a string (enclosed in double quotes,
". . . "), with an optional datatype IRI (introduced by ^^).

Example 2.2. The assertion of the following RDF triples mean that the resource book1

under the namespace ns, has a property price under the same namespace, with value 27.

@prefix ns: <http://example.org/Bookstore#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

ns:book1 ns:price "27"^^xsd:integer .

The xsd:integer part of the literal "27"^^xsd:integer is the XML Schema datatype
for integers.

Resources in RDF may be anonymous (i.e. not identified by an IRI). Such resources
are called blank nodes. In triple form, a blank node is indicated by the label form, such as
“ :abc”.

Definition 2.1 (RDF Triple). Let I be the set of IRIs, L be the set of the RDF Literals,
and B be the set of the blank nodes. A triple (s, p, o) ∈ (I ∪B)× I × (I ∪B ∪L) is called
an RDF triple, where s, p, and o are a subject, predicate, and object, respectively.



2.1. RESOURCE DESCRIPTION FRAMEWORK AND SCHEMA (RDF/S) 5

Example 2.3. The assertion of the following RDF triples mean that something has an
author whose value is “Jeffrey D. Ullman”.

@prefix ns: <http://example.org/Bookstore#> .

_:a ns:author "Jeffrey D. Ullman" .

A collection of RDF statements (RDF triples) can be intuitively understood as a di-
rected labeled graph, where resources are nodes and statements are arcs (from the subject
node to the object node) connecting the nodes. It is worth to mention that a relational
data model is easily mapped into this form, with a node corresponding to a table row or
primitive value, and an arc corresponding to a column identifier.

Definition 2.2 (RDF Graph). An RDF graph G is a set of RDF triples.

Example 2.4. The assertion of the following RDF triples means that “Jeffrey D. Ullman”
is an author of a book entitled “Database Systems” whose publisher is “Prentice Hall”.

@prefix ns: <http://example.org/Bookstore#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

ns:book1 rdf:type ns:Publication .

ns:book1 ns:author "Jeffrey D. Ullman" .

ns:book1 ns:title "Database Systems" .

ns:book1 ns:publisher "Prentice Hall" .

Figure 2.1 shows the representation of the above RDF triples as a directed graph.
Moreover, the graph of Figure 2.1 can be represented as a tuple in a relational data
model, as follows:

ns:Publication
id ns:title ns:author ns:publisher

ns:book1 "Database Systems" "Jeffrey D. Ullman" "Prentice Hall"

RDF provides a number of additional capabilities, such as built-in types and properties
for representing groups of resources and simple RDF statements. These types and proper-
ties are described using a set of reserved words (prefixed http://www.w3.org/1999/02/

22-rdf-syntax-ns#) called the RDF vocabulary. However, RDF user communities also
need the ability to define the vocabularies (terms) they intend to use in those statements,
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Figure 2.1: RDF graph representation example.

specifically, to indicate that they are describing specific kinds or classes of resources, and to
use specific properties in describing those resources. Consequently, the RDFS vocabulary
came to build on the limited vocabulary of RDF.

RDFS (RDF Schema) [27], [8] is an extension of RDF designed to describe rela-
tionships between resources and/or resources using a set of reserved words (prefixed
http://www.w3.org/2000/01/rdf-schema#) called the RDFS vocabulary. It describes
constructs for types of objects (classes), relating types to one another (subclasses), prop-
erties that describe objects (properties), and relationships between them (subproperty).
The class system in RDFS includes a simple notion of inheritance, based on set inclusion.
For example, one class is a subclass of another means that instances of the one are also
instances of the other.

A class in RDFS corresponds to the generic concept of a type or category, somewhat
like the notion of a class in object-oriented programming languages such as Java, and is
defined using the construct rdfs:Class. RDF classes can be used to represent almost any
category of resources, such as Web pages, people, document types, databases or abstract
concepts. The resources that belong to a class are called its instances. Classes can be
organized in a hierarchical fashion using the construct rdfs:subClassOf.

A property in RDFS is used to characterize a class/classes and is defined using the
construct rdf:Property. The RDFS also provides a vocabulary used to describe how prop-
erties and classes are intended to be used together in RDF data. This kind of information
is supplied by using the rdfs:domain and rdfs:range constructs. Similarly to classes,
RDFS provides a way to specialize properties by using the construct rdfs:subPropertyOf.
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Moreover, RDFS provides a number of other built-in properties which can be used to
provide documentation and other information about an RDF Schema or about instances.
For example, the construct rdfs:comment can be used to provide a human-readable de-
scription of a resource, while the construct rdfs:label can be used to provide a more
human-readable version of a resource’s name.

Finally, the semantics of RDFS is expressed through the mechanism of inferencing (i.e.
the meaning of any construct in RDFS is given by the inferences that can be inferred from
it).

2.2 Web Ontology Language (OWL)

OWL [3] is the standard language for defining and instantiating Web ontologies. OWL and
RDFS are much of the same thing, but OWL is a stronger language with greater machine
interpretability than RDFS. Moreover, OWL comes with a larger vocabulary and stronger
syntax than RDFS. For example, OWL provides constructs to define property restrictions
using value/cardinality constraints, as well as constructs to define complex classes using
basic set operations (union, intersection and complement). It provides three increasingly
expressive sublanguages designed for use by specific communities of implementers and
users. These sublanguages are characterised by formal semantics and RDF/XML-based
serializations for the Semantic Web.

• OWL Lite supports those users primarily needing a classification hierarchy and sim-
ple constraints. OWL Lite has a lower formal complexity than OWL DL. For exam-
ple, it does not support the definition of complex classes using the union/complement
operations. Moreover, while it supports cardinality constraints, it only permits car-
dinality values of 0 or 1.

• OWL DL supports those users who want the maximum expressiveness while retain-
ing computational completeness (all conclusions are guaranteed to be computable)
and decidability (all computations will finish in finite time). OWL DL includes all
OWL language constructs, but they can be used only under certain restrictions (for
example, while a class may be a subclass of many classes, a class cannot be an
instance of another class). OWL DL is so named due to its correspondence with De-
scription Logics, a field of research that has studied the logics that form the formal
foundation of OWL.

• OWL Full is meant for users who want maximum expressiveness and the syntactic
freedom of RDF with no computational guarantees. For example, in OWL Full a
class can be treated simultaneously as a collection of individuals and as an individual
in its own right. It is unlikely that any reasoning software will be able to support
every feature of OWL Full.
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Each of these sublanguages is an extension of its simpler predecessor, both in what can
be legally expressed and in what can be validly concluded. The following set of relations
hold, while their inverses do not.

• Every valid OWL Lite ontology is a valid OWL DL ontology.

• Every valid OWL DL ontology is a valid OWL Full ontology.

• Every valid OWL Lite conclusion is a valid OWL DL conclusion.

• Every valid OWL DL conclusion is a valid OWL Full conclusion.

Languages in the OWL family are capable of creating classes, properties, defining
instances and its operations. The resources in the OWL vocabulary have IRI references
with the prefix http://www.w3.org/2002/07/owl#.

An individual is an object. It corresponds to a Description Logic individual. OWL
provides mechanisms in order to declare two individuals to be identical or different, by
using the owl:sameAs and owl:differentFrom constructors, respectively.

A class (defined by using the construct owl:Class) is a collection of objects. It cor-
responds to a Description Logic (DL) concept and may contain any number of individ-
uals, instances of the class. An individual may belong to none, one or more classes. A
class may be defined to be subclass of another (using the construct rdfs:subClassOf),
inheriting characteristics from its parent superclass. This corresponds to logical subsump-
tion and DL concept inclusion. All classes are subclasses of owl:Thing (DL top notated
>), the root class. All classes are subclassed by owl:Nothing (DL bottom notated ⊥),
the empty class. Similarly, two classes may be defined to be equivalent (using the con-
struct owl:equivalentClass), indicating that these two classes have precisely the same
instances. This corresponds to logical equivalence and DL concept equality.

Example 2.5. Let Product be an OWL class and let HelloweenAudioCD be an instance
of Product. Similarly, let Book be an OWL class and let DatabaseSystems be an instance
of Book. The RDF/XML syntax used to define these statements is provided below.

<owl:Class rdf:ID="Product"/>

<owl:Class rdf:ID="Book"/>

<Product rdf:ID="HelloweenAudioCD"/>

<Book rdf:ID="DatabaseSystems"/>

Example 2.6. Consider the classes and the instances defined in the previous example.
Moreover, let the class Book be subclass of the class Product. The RDF/XML syntax
used to define this statement is provided below.
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<owl:Class rdf:ID="Product"/>

<owl:Class rdf:ID="Book">

<rdfs:subClassOf rdf:resource="#Product"/>

</owl:Class>

<Product rdf:ID="HelloweenAudioCD"/>

<Book rdf:ID="DatabaseSystems"/>

By defining that the class Book is a subclass of the class Product, we implicintly infer that
every instance of the class Book is also an instance of the class Product. Consequently,
DatabaseSystems which has been defined as an instance of the class Book, is also an
instance of the class Product.

OWL provides additional constructors with which to form classes. These construc-
tors can be used to create so-called class expressions. OWL supports the basic set op-
erations, namely union, intersection and complement. These are named owl:unionOf,
owl:intersectionOf, and owl:complementOf, respectively. Additionally, classes can be
enumerated by defining explicitly the individuals which are members of a class (i.e. class
extension). Class extensions can be stated explicitly by means of the owl:oneOf construc-
tor. Furthermore, it is possible to assert that class extensions must be disjoint (using the
construct owl:disjointWith).

A property is a directed binary relation that specifies class characteristics. It corre-
sponds to a Description Logic role. A property may be defined to be subproperty of
another (using the construct rdfs:subPropertyOf), inheriting characteristics from its
parent superproperty. Similarly, two properties may be defined to be equivalent, using the
construct owl:equivalentProperty. Two types of properties are distinguished:

• Datatype properties are relations between instances of classes (i.e. individuals) and
RDF literals or XML schema datatypes. A datatype property is defined by using
the construct owl:DatatypeProperty.

• Object properties are relations between instances of two classes (i.e. individuals).
An object property is defined by using the construct owl:ObjectProperty.

Properties may possess logical capabilities such as being transitive, symmetric, inverse
and functional. Properties may also have domains and ranges. It is possible to constrain
the range of a property in specific contexts in a variety of ways, by using either cardinality
or value restrictions.

Example 2.7. Consider the classes and the instances defined in the previous example.
Let the class Product have a datatype property price. This infers that the instances of
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the classes Product and Book can be described using the datatype property price, since
Book is a subclass of Product. Furthermore, let the datatype property price range over
the XML Schema datatype xsd:decimal. The RDF/XML syntax used to define these
statements is provided below.

<owl:Class rdf:ID="Product"/>

<owl:Class rdf:ID="Book">

<rdfs:subClassOf rdf:resource="#Product"/>

</owl:Class>

<owl:DatatypeProperty rdf:ID="price">

<rdfs:domain rdf:resource="#Product"/>

<rdfs:range rdf:resource="&xsd;decimal"/>

</owl:DatatypeProperty>

<Product rdf:ID="HelloweenAudioCD">

<price rdf:datatype="&xsd;decimal">15.30</price>

</Product>

<Book rdf:ID="DatabaseSystems">

<price rdf:datatype="&xsd;decimal">57.90</price>

</Book>

Example 2.8. Consider the classes, the properties and the instances defined in the pre-
vious example. Let the class Book have an object property publisher. Moreover, let the
object property publisher range over an OWL class Publisher. Similarly, let an object
property publishes be the inverse of the object property publisher, having as domain
the instances of the class Publisher and as range the instances of the class Book. The
RDF/XML syntax used to define these statements is provided below.

<owl:Class rdf:ID="Product"/>

<owl:Class rdf:ID="Book">

<rdfs:subClassOf rdf:resource="#Product"/>

</owl:Class>

<owl:Class rdf:ID="Publisher"/>

<owl:DatatypeProperty rdf:ID="price">

<rdfs:domain rdf:resource="#Product"/>

<rdfs:range rdf:resource="&xsd;decimal"/>

</owl:DatatypeProperty>
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<owl:ObjectProperty rdf:ID="publisher">

<rdfs:domain rdf:resource="#Book"/>

<rdfs:range rdf:resource="#Publisher"/>

<owl:inverseOf rdf:resource="#publishes"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="publishes">

<rdfs:domain rdf:resource="#Publisher"/>

<rdfs:range rdf:resource="#Book"/>

<owl:inverseOf rdf:resource="#publisher"/>

</owl:ObjectProperty>

<Product rdf:ID="HelloweenAudioCD">

<price rdf:datatype="&xsd;decimal">15.30</price>

</Product>

<Book rdf:ID="DatabaseSystems">

<price rdf:datatype="&xsd;decimal">57.90</price>

</Book>

2.3 SPARQL query language

This section presents SPARQL [33], the standard language for querying RDF data. Sec-
tion 2.3.1 presents the syntax used by SPARQL for RDF terms and triple patterns, while
Section 2.3.2, Section 2.3.3 and Section 2.3.4 present the SPARQL graph patterns, the
query forms and the solution sequence modifiers of SPARQL, respectively. Finally, Sec-
tion 2.3.5 presents the semantics of SPARQL graph pattern expressions based on [32].

2.3.1 SPARQL syntax

This section presents the syntax used by SPARQL for RDF terms and triple patterns.

Syntax for IRIs

IRI references are designated using the ’<’ and ’>’ delimiters. The PREFIX keyword can be
used to associate a prefix label with an IRI. A prefixed name is a prefix label and a local
part, separated by a colon ’:’. A prefixed name is mapped to an IRI by concatenating the
IRI associated with the prefix and the local part. The prefix label or the local part may
be empty.



12 CHAPTER 2. BACKGROUND

The following fragments are some of the different ways to write the same IRI:

1. <http://example.org/Bookstore#DatabaseSystems>

2. PREFIX ns: <http://example.org/Bookstore#>

ns:DatabaseSystems

3. PREFIX : <http://example.org/Bookstore#>

:DatabaseSystems

Syntax for literals

The general syntax for literals is a string (enclosed in either double quotes, ". . . ", or single
quotes, ’. . . ’), with either an optional language tag (introduced by @) or an optional
datatype IRI or prefixed name (introduced by ^^).

As a convenience, integers can be written directly (without quotation marks and an
explicit datatype IRI) and are interpreted as typed literals of the XML Schema datatype
xsd:integer. Furthermore, decimal numbers for which there is ’.’ in the number but no
exponent are interpreted as xsd:decimal and numbers with exponents are interpreted as
xsd:double. Values of type xsd:boolean can also be written as true or false.

Examples of literal syntax in SPARQL include:

1. "chat"

2. ’chat’@fr with language tag "fr"

3. "xyz"^^<http://example.org/ns/userDatatype>

4. 1, which is the same as "1"^^xsd:integer

5. 1.3, which is the same as "1.3"^^xsd:decimal

6. 1.0e6, which is the same as "1.0e6"^^xsd:double

7. true, which is the same as "true"^^xsd:boolean

8. false, which is the same as "false"^^xsd:boolean

Syntax for query variables

Query variables in SPARQL queries have global scope. Consequently, the use of a given
variable name anywhere in a query identifies the same variable. Variables are prefixed by
either “?” or “$”. These two symbols are not considered part of the variable’s name. In
a query, $abc and ?abc identify the same variable.
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Syntax for blank nodes

Blank nodes in SPARQL queries act as non-distinguished variables and not as references
to specific blank nodes in the data being queried. Blank nodes are indicated by the label
form, such as “ :abc”.

Syntax for triple patterns

Let I be the set of IRIs, L be the set of the RDF Literals, and B be the set of the blank
nodes. Assume additionally the existence of an infinite set V of variables disjoint from the
previous sets (I, B, L).

Definition 2.3 (Triple pattern). A triple (s, p, o) ∈ (I∪L∪V )×(I∪V )×(I∪L∪V ) is
called a triple pattern, where s, p, and o are a subject, predicate, and object, respectively.

Triple Patterns are written as a whitespace-separated list of a subject, predicate and
object. Triple patterns are like RDF triples except that each of the subject, predicate and
object may be a variable. Some triple pattern examples are the following:

1. <http://example.org/Bookstore#DatabaseSystems> ns:title ?title

The above triple pattern contains the resource identifier http://example.org/

Bookstore#DatabaseSystems in its subject part, the property title under the pre-
fix ns in its predicate part and the variable title in its object part.

2. ?x foaf:name "Kostas"

The above triple pattern contains the variable x in its subject part, the property
name under the prefix foaf in its predicate part and the literal Kostas in its object
part.

3. ?x ?y "55.30"^^xsd:decimal

The above triple pattern contains the variable x in its subject part, the variable y

in its predicate part and the literal "55.30"^^xsd:decimal in its object part.

4. ?s ?p ?o

The above triple pattern contains the variable s in its subject part, the variable p

in its predicate part and the variable o in its object part.

2.3.2 Graph patterns

SPARQL is based around graph pattern matching. More complex graph patterns can be
formed by combining smaller patterns in various ways.



14 CHAPTER 2. BACKGROUND

Definition 2.4 (Graph pattern). A SPARQL graph pattern expression is defined re-
cursively as follows:

• A triple pattern is a graph pattern.

• If P1 and P2 are graph patterns, then expressions (P1 AND P2), (P1 OPT P2), and
(P1 UNION P2) are graph patterns (group graph pattern, optional graph pattern, and
alternative graph pattern, respectively).

• If P is a graph pattern and R is a SPARQL built-in condition, then the expression
(P FILTER R) is a graph pattern (a filter graph pattern).

We note that a SPARQL built-in condition is constructed using IRIs, RDF literals,
variables and constants, as well as logical connectives (and - &&, or - ‖, not - !), operators
(=, ! =, >, <, ≥, ≤, +, −, ∗, /) and built-in functions (e.g. bound, isIRI, isLiteral,
datatype, lang, str, regex).

In the rest of this subsection we analyze the different types of SPARQL graph pattern
expressions.

Basic graph patterns

Basic graph patterns are sets of triple patterns. SPARQL graph pattern matching is
defined in terms of combining the results from matching basic graph patterns. A sequence
of triple patterns interrupted by a filter comprises a single basic graph pattern. Filters are
constraints expressed by the keyword FILTER, which are used to restrict the graph pattern
solutions to those for which the filter expression evaluates to true.

A filter is consisted of a SPARQL built-in condition, which is constructed using IRIs,
RDF literals, variables and constants, as well as logical connectives (and - &&, or - ‖, not
- !), operators (=, ! =, >, <, ≥, ≤, +, −, ∗, /) and built-in functions (e.g. bound, isIRI,
isLiteral, datatype, lang, str, regex).

Definition 2.5 (Basic graph pattern). A finite sequence of conjunctive triple patterns
(separated with “.”) and possible filters is called basic graph pattern.

Some basic graph pattern examples are the following:

1. ?x ns:title ?title .

?x ns:price "62"^^xsd:decimal .

2. ?x ns:title "Database Systems" .

?x ns:price ?price .

FILTER(?price>50)
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Group graph patterns

The group graph pattern is the most general form of a graph pattern, since it may contain
every other graph pattern type. A group graph pattern is delimited with braces ({}). A
group graph pattern example is the following:

{ ?x ns:title "Database Systems" .

?x ns:author ?author . }

The above group graph pattern is consisted of two triple patterns and is considered to
be equivalent with the following:

{ { ?x ns:title "Database Systems" . }

{ ?x ns:author ?author . } }

A constraint, expressed by the keyword FILTER, is a restriction on the solutions over
the whole group in which the filter appears. The following patterns all have the same
solutions:

1. { ?x ns:title ?title .

?x ns:price ?price .

FILTER (?price<60) }

2. { FILTER (?price<60)

?x ns:title ?title .

?x ns:price ?price . }

3. { ?x ns:title ?title .

FILTER (?price<60)

?x ns:price ?price . }

Optional graph patterns

Basic graph patterns allow applications to make queries where the entire query pattern
must match for there to be a solution. However, it is useful to be able to have queries that
allow information to be added to the solution where the information is available, but do
not reject the solution because some part of the query pattern does not match. Optional
matching provides this facility: if the optional part does not match, it creates no bindings
but does not eliminate the solution.

Optional parts of a graph pattern may be specified syntactically with the OPTIONAL

keyword applied to a graph pattern. A graph pattern example that contains an optional
part is the following:

?x foaf:name ?name .

OPTIONAL{ ?x foaf:mbox ?mbox }
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In an optional match, either the optional graph pattern matches a graph, thereby
defining and adding bindings to one or more solutions, or it leaves a solution unchanged
without adding any additional bindings. The above graph pattern matches the names of
people in the data. If there is a triple with predicate foaf:mbox and the same subject, a
solution will contain the object of that triple as well. The entire optional graph pattern
must match for the optional graph pattern to affect the query solution.

Alternative graph patterns

SPARQL provides a means of combining graph patterns so that one of several alternative
graph patterns may match. If more than one of the alternatives matches, all the possible
pattern solutions are found. Pattern alternatives are syntactically specified with the UNION
keyword. An alternative graph pattern example is the following:

{ { ?book ns1:title ?title } UNION { ?book ns2:title ?title } }

The above graph pattern matches titles and books in the data, whether the property
title is under the namespace ns1 or ns2.

2.3.3 Query forms

SPARQL has four query forms. These query forms use the solutions from pattern matching
to form result sets or RDF graphs. The query forms are:

Select

The SELECT query form returns variables and their bindings directly. The syntax SELECT

∗ is an abbreviation that selects all of the variables in a query.

Example 2.9. Consider the query posed over an RDF dataset: “Return the titles and
the prices of books written by Jeffrey D. Ullman”.

• RDF data:

@prefix ns: <http://example.org/Bookstore#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

_:a ns:title "Database Systems" .

_:a ns:author "Jeffrey D. Ullman" .

_:a ns:price "62"^^xsd:decimal .

_:b ns:title "Foundations of Computer Science" .

_:b ns:author "Jeffrey D. Ullman" .

_:b ns:price "35.40"^^xsd:decimal .
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_:c ns:title "Ontology Matching" .

_:c ns:author "Jérôme Euzenat" .

_:c ns:price "55.30"^^xsd:decimal .

• Query:

@PREFIX ns: <http://example.org/Bookstore#> .

SELECT ?title ?price

WHERE {?x ns:title ?title .

?x ns:price ?price .

?x ns:author ?y .

FILTER (?y = "Jeffrey D. Ullman")}

• Results:

?title ?price
"Database Systems" "62"^^xsd:decimal

"Foundations of Computer Science" "35.40"^^xsd:decimal

Construct

The CONSTRUCT query form returns an RDF graph constructed by substituting variables
in a set of triple templates. If any instantiation produces a triple containing an unbound
variable or an illegal RDF construct, such as a literal in subject or predicate position, then
that triple is not included in the output RDF graph.

Example 2.10. Consider the query posed over an RDF dataset: “Return an RDF graph
based on the foaf vocabulary, while the queried RDF dataset is based on the ns vocabu-
lary”.

• RDF data:

@prefix ns: <http://example.org/Bookstore#> .

_:a ns:title "Database Systems" .

_:a ns:author _:b .

_:b ns:givenName "Jeffrey" .

_:b ns:familyName "D. Ullman" .

_:c ns:title "Ontology Matching" .
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_:c ns:author _:d .

_:d ns:givenName "Jérôme" .

_:d ns:familyName "Euzenat" .

• Query:

@PREFIX ns: <http://example.org/Bookstore#> .

@PREFIX foaf: <http://xmlns.com/foaf/0.1/> .

CONSTRUCT{?x foaf:firstname ?gname .

?x foaf:surname ?fname .}
WHERE {?x ns:givenName ?gname .

?x ns:familyName ?fname .}

• Results:

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:e foaf:firstname "Jeffrey" .

_:e foaf:surname "D. Ullman" .

_:f foaf:firstname "Jérôme" .

_:f foaf:surname "Euzenat" .

Ask

The ASK query form returns no information about the possible query solutions, just
whether or not a solution exists.

Example 2.11. Consider the query posed over an RDF dataset: “Return whether there
are any cheap books (i.e. price lower than 30) or not”.

• RDF data:

@prefix ns: <http://example.org/Bookstore#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

_:a ns:title "Database Systems" .

_:a ns:author "Jeffrey D. Ullman" .

_:a ns:price "62"^^xsd:decimal .

_:b ns:title "Ontology Matching" .

_:b ns:author "Jérôme Euzenat" .

_:b ns:price "55.30"^^xsd:decimal .
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• Query:

@PREFIX ns: <http://example.org/Bookstore#> .

ASK{?x ns:price ?price .

FILTER (?price < 30)}

• Results: no

Describe

The DESCRIBE query form returns a single result RDF graph containing RDF data about
resources. This data is not prescribed by a SPARQL query, where the query client would
need to know the structure of the RDF in the data source, but, instead, is determined
by the SPARQL query processor. The DESCRIBE query form takes each of the resources
identified in a solution, together with any resources directly named by using an IRI,
and assembles a single RDF graph by taking a “description” which can come from any
information available including the target RDF dataset. The syntax DESCRIBE ∗ is an
abbreviation that describes all of the variables in a query.

Example 2.12. Consider the query posed over an RDF dataset: “Describe a resource
with title Database Systems”.

• RDF data:

@prefix ns: <http://example.org/Bookstore#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

_:a ns:title "Database Systems" .

_:a ns:author "Jeffrey D. Ullman" .

_:a ns:price "62"^^xsd:decimal .

_:b ns:title "Ontology Matching" .

_:b ns:author "Jérôme Euzenat" .

_:b ns:price "55.30"^^xsd:decimal .

• Query:

@PREFIX ns: <http://example.org/Bookstore#> .

DESCRIBE ?x

WHERE {?x ns:title ?title .

FILTER (?title = "Database Systems")}
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• Results: (possible answer)

@prefix ns: <http://example.org/Bookstore#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

_:c ns:title "Database Systems" .

_:c ns:author "Jeffrey D. Ullman" .

_:c ns:price "62"^^xsd:decimal .

2.3.4 Solution sequence modifiers

Query patterns generate an unordered collection of solutions. Each solution is a partial
function from variables to RDF terms. These solutions are initially treated as a sequence
(a solution sequence), in no specific order. In case that any sequence modifiers are applied,
a new sequence is created. Finally, this latter sequence is used to generate one of the results
of a SPARQL query form.

The solution sequence modifiers may be applied on the SELECT, CONSTRUCT and DESCRIBE

query forms. In addition, the DISTINCT and REDUCE modifiers may be applied only on the
SELECT query form.

Order by

The ORDER BY clause establishes the order of a solution sequence. Furthermore, it is
possible to use the ASC() and DESC() modifiers in order to specify whether the order
should be ascending or descending. In case that any ASC() or DESC() modifier has been
specified, the order of the solution sequence is ascending.

For example, the following query lists the solution sequence firstly in ascending order,
based on the values of the variable title. Regarding the solutions having the same title
value, they are listed in descending order based on the values of the variable price.

@PREFIX ns: <http://example.org/Bookstore#> .

SELECT ?title ?price

WHERE {?x ns:title ?title .

?x ns:price ?price .}
ORDER BY ?title DESC (?price)

Distinct

The DISTINCT clause eliminates duplicate solutions. For example, consider the following
queries posed over the same RDF dataset.
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• RDF data:

@prefix ns: <http://example.org/Bookstore#> .

_:a ns:title "Database Systems" .

_:a ns:author "Jeffrey D. Ullman" .

_:b ns:title "Foundations of Computer Science" .

_:b ns:author "Jeffrey D. Ullman" .

_:c ns:title "Ontology Matching" .

_:c ns:author "Jérôme Euzenat" .

• Query 1:

@PREFIX ns: <http://example.org/Bookstore#> .

SELECT ?author

WHERE {?x ns:author ?author}

• Query 1 Results:

?author
"Jeffrey D. Ullman"
"Jeffrey D. Ullman"
"Jérôme Euzenat"

• Query 2:

@PREFIX ns: <http://example.org/Bookstore#> .

SELECT DISTINCT ?author

WHERE {?x ns:author ?author}

• Query 2 Results:

?author
"Jeffrey D. Ullman"
"Jérôme Euzenat"
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Reduced

The REDUCED clause permits a specific number of duplicate solutions. This number is
specified by the SPARQL query engine that executes the query and is at least one and
not more than the cardinality of the solution set with no DISTINCT or REDUCED modifier.
For example, consider the following query posed over the data provided below.

• RDF data:

@prefix ns: <http://example.org/Bookstore#> .

_:a ns:title "Database Systems" .

_:a ns:author "Jeffrey D. Ullman" .

_:b ns:title "Foundations of Computer Science" .

_:b ns:author "Jeffrey D. Ullman" .

_:c ns:title "Introduction to Automata and Language Theory" .

_:c ns:author "Jeffrey D. Ullman" .

• Query:

@PREFIX ns: <http://example.org/Bookstore#> .

SELECT REDUCED ?author

WHERE {?x ns:author ?author}

• Results: May have one, two (shown here) or three solutions.

?author
"Jeffrey D. Ullman"
"Jeffrey D. Ullman"

Limit

The LIMIT clause puts an upper bound on the number of solutions returned. If the number
of actual solutions is greater than the limit, then at most the limit number of solutions
will be returned. A LIMIT of zero has no effect.

For example, the following query returns the cheapest books (at most 5 solutions)
written by ”Jeffrey D. Ullman”.

@PREFIX ns: <http://example.org/Bookstore#> .

SELECT ?title ?price
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WHERE {?x ns:title ?title .

?x ns:price ?price .

?x ns:author ?y .

FILTER (?y = "Jeffrey D. Ullman")}
ORDER BY ?price

LIMIT 5

Offset

The OFFSET clause causes the solutions generated to start after the specified number of
solutions. An OFFSET of zero has no effect.

For example, the following query firstly lists the solutions in ascending order based on
the variable price. Then it skips the initial 10 solutions and returns at most the following
5.

@PREFIX ns: <http://example.org/Bookstore#> .

SELECT ?title ?price

WHERE {?x ns:title ?title .

?x ns:price ?price .

?x ns:author ?y .

FILTER (?y = "Jeffrey D. Ullman")}
ORDER BY ?price

OFFSET 10

LIMIT 5

2.3.5 Semantics of SPARQL graph pattern expressions

In this section we provide an overview of the semantics of SPARQL graph pattern ex-
pressions defined in [32], considering a function-based representation of a graph pattern
evaluation over an RDF dataset.

In order not to confuse, the notation and the terminology followed in this section is
differentiated in some cases, compared to the notation and terminology followed in [32].
In Table 2.1 we provide the notation which is used for defining the semantics of SPARQL
graph pattern expressions.

Definition 2.6 (SPARQL graph pattern solution). A graph pattern solution ω : V →
(I∪B∪L) is a partial function that assigns RDF terms of an RDF dataset to variables of a
SPARQL graph pattern. The domain of ω, dom(ω), is the subset of V where ω is defined.
The empty graph pattern solution ω∅ is the graph pattern solution with empty domain. The
SPARQL graph pattern evaluation result is a set Ω of graph pattern solutions ω.
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Table 2.1: The notation which is used for defining the semantics of SPARQL graph pattern
expressions.

Notation Description

V The set of variables.
I The set of IRIs.
B The set of blank nodes.
L The set of RDF Literals.
ω A graph pattern solution ω : V → (I ∪B ∪L).
dom(ω) Domain of a graph pattern solution ω (subset

of V ).
var(t) The variables of a triple pattern t.
ω(t) The triple obtained by replacing the variables

in triple pattern t according to a graph pattern
solution ω (abusing notation).

ω |= R A graph pattern solution ω satisfies a built-in
condition R.

[[·]] Graph pattern evaluation function.
|><| Graph pattern solution-based join.
d|><| Graph pattern solution-based left outer join.
\ Graph pattern solution-based difference.
π{... } Graph pattern solution-based projection.
∪ Graph pattern solution-based union.
∩ Set intersection.
?x, ?y SPARQL variables.
bound SPARQL unary predicate.
AND, OPT, UNION, FILTER SPARQL graph pattern operators.
¬, ∨, ∧ Logical not, or, and.
=, ≤, ≥, <, > Inequality/equality operators.



2.3. SPARQL QUERY LANGUAGE 25

Two graph pattern solutions ω1 and ω2 are compatible when for all x ∈ dom(ω1) ∩
dom(ω2), it is the case that ω1(x) = ω2(x). Furthermore, two graph pattern solutions
with disjoint domains are always compatible, and the empty graph pattern solution ω∅ is
compatible with any other graph pattern solution.

Let Ω1 and Ω2 be sets of graph pattern solutions and J be a set of SPARQL variables.
The join, union, difference, projection and left outer join operations between Ω1 and Ω2

are defined as follows:

Ω1 |><| Ω2 = {ω1 ∪ ω2 | ω1 ∈ Ω1, ω2 ∈ Ω2 are compatible graph pattern solutions},

Ω1 ∪ Ω2 = {ω | ω ∈ Ω1 or ω ∈ Ω2},

Ω1 \ Ω2 = {ω ∈ Ω1 | for all ω′ ∈ Ω2, ω and ω′ are not compatible},

πJ (Ω1) = {ω | ω′ ∈ Ω1, dom(ω) = dom(ω′) ∩ J and ∀x ∈ dom(ω), ω(x) = ω′(x)},

Ω1 d|><| Ω2 = (Ω1 |><| Ω2) ∪ (Ω1 \ Ω2)

The semantics of SPARQL graph pattern expressions is defined as a function [[·]]D
which takes a graph pattern expression and an RDF dataset D and returns a set of graph
pattern solutions (see Definition 2.8). Refer to Definition 2.7 for the semantics of FILTER
expressions, which can be part of a SPARQL graph pattern.

Definition 2.7 (SPARQL FILTER expression evaluation). Given a graph pattern
solution ω and a built-in condition R, we say that ω satisfies R, denoted by ω |= R, if:

1. R is bound(?x) and ?x ∈ dom(ω);

2. R is ?x cp c, ?x ∈ dom(ω) and ω(?x) oprt c, where cp→ = | ≤ | ≥ | < | >;

3. R is ?x cp ?y, ?x ∈ dom(ω), ?y ∈ dom(ω) and ω(?x) cp ω(?y), where cp → = | ≤ |
≥ | < | >;

4. R is (¬R1), R1 is a built-in condition, and it is not the case that ω |= R1;

5. R is (R1 ∨R2), R1 and R2 are built-in conditions, and ω |= R1 or ω |= R2;

6. R is (R1 ∧R2), R1 and R2 are built-in conditions, ω |= R1 and ω |= R2.
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Definition 2.8 (SPARQL graph pattern evaluation). Let D be an RDF dataset over
(I ∪ B ∪ L), t a triple pattern, P , P1, P2 graph patterns and R a built-in condition. The
evaluation of a graph pattern over D, denoted by [[·]]D, is defined recursively as follows:

1. [[t]]D = {ω | dom(ω) = var(t) and ω(t) ∈ D}

2. [[(P1 AND P2)]]D = [[P1]]D |><| [[P2]]D

3. [[(P1 OPT P2)]]D = [[P1]]D d|><| [[P2]]D

4. [[(P1 UNION P2)]]D = [[P1]]D ∪ [[P2]]D

5. [[(P FILTER R)]]D = {ω ∈ [[P ]]D | ω |= R}

For a detailed descripion of SPARQL semantics and for a complete set of illustrative
examples, refer to [32].

2.4 Jena framework

Jena is an open source Java framework for building Semantic Web applications. It provides
a programmatic environment for RDF, RDFS, OWL and SPARQL, as well as a rule-based
inference engine. More specifically, the Jena framework includes: a RDF API, reading and
writing RDF in various formats (RDF/XML, N3 and N-Triples), an OWL API, in-memory
and persistent storage and a SPARQL query engine.
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Related Work

In the Semantic Web literature a number of ontology based mediator architectures have
been proposed, for example [41], [29]. In the following sections we present the most relevant
research to the issues discussed in this thesis.

3.1 Ontology mapping

Ontology mapping is the task of relating the vocabulary of two ontologies by defining a set
of correspondences. The correspondences between different entities of the two ontologies
are typically expressed using some axioms described in a specific mapping language. The
discovery and specification of mappings between two ontologies, is a process which can be
achieved in three ways:

• Manually : defined by an expert who has a very good understanding of the ontologies
to be mapped.

• Automatically : using various matching algorithms and techniques which compute
similarity measures between different ontology terms.

• Semi-automatically : using various matching algorithms and techniques, as well as
user feedback.

Many strategies and tools that produce automatically or semi-automatically mappings
have been proposed and have their performance analyzed ([20], [24], [38], [10], [17], [14],
[31]). Although the automatic or semi-automatic techniques and strategies provide satis-
factory results, it is unlikely that the quality of mappings that they produce will be com-
parable with manually specified mappings. The manual approach for defining mappings
is a painful process, although, it can provide declarative and expressive correspondences
by exploiting the knowledge of an expert for the two mapped ontologies in many different
ways.
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In addition to the mapping discovery, the mapping representation is a very important
issue for an application that implements a mediation scenario. A set of criteria that should
be taken into consideration, in order to decide which language/format should be used for
the mapping representation include the following (based on [20]):

• Web compatibility

• Language independence

• Simplicity

• Expressiveness

• Purpose independence

• Executability

• Mediation task

Although, many languages (OWL [3], C-OWL [7], SWRL [22], the Alignment Format
[16], MAFRA [25], EDOAL [35], [19], OMWG mapping language [36], etc.) have been
proposed for the task of mapping representation, only a few combine the previous criteria.
A comparison of some of these languages and formats for mapping specification is available
in [20].

In this thesis, we do not focus on the discovery of the mappings between two ontologies.
We are only interested in the specification and the representation of the kinds of mappings
between OWL ontologies which can be exploited by a query mediation system in order to
perform SPARQL query rewriting. In our knowledge, only [18], examines the problem of
describing such mapping types but not directly, since it describes which mapping types
cannot be used in the rewriting process. In contrast, we present in this thesis concrete
mappings that can be used for SPARQL query rewriting.

3.2 SPARQL query rewriting

Within the Semantic Web community, the process of SPARQL query rewriting is gaining
attention. It is used to perform various tasks such as query optimization, Description
Logic inference, query decomposition, query translation and data integration.

SPARQL query optimization focuses on rewriting techniques that minimize the evalu-
ation complexity using algebraic query rewriting rules and establishing relational algebra
optimization techniques into the context of SPARQL ([37], [32]), or using other metholo-
gies like selectivity estimation etc. ([5], [39], [21]).

In the field of Description Logic inference, SPARQL query rewriting is basically used for
performing reasoning tasks. Currently, ontology repositories construct inference ontology
models, and match SPARQL queries to the models, in order to derive inference results.
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However, the size of an inference model could be prohibitive for large-scale deployment.
A recent approach that performs SPARQL query rewriting using inference rules and can
be used to overcome the previous problem is [23].

SPARQL query decomposition and SPARQL query translation are fundamental tasks
in information integration systems. Benslimane et. al [4] proposed recently a system that
performs SPARQL query decomposition in order to query distributed heterogeneous infor-
mation sources. After the decomposition, the resulted SPARQL sub-queries are translated
into SQL sub-queries but no algorithm or other details are provided in the paper. In con-
trast, Quilitz et. al [34] proposed SPARQL query decomposition, in order to overcome the
large overhead in network traffic produced by the SPARQL implementations that load all
the RDF graphs mentioned in a query to the local machine.

In the field of SPARQL query translation, two recent approaches [15] and [9] perform
complete SPARQL query translation into SQL queries, preserving the SPARQL semantics
and exploiting 1:1 cardinality mappings between an RDF data model and a relational data
model. Similarly with SPARQL-to-SQL proposed methods, Bikakis et. al [6] present a
framework which provides a formal mapping model for the expression of OWL to XML
Schema mappings and a generic formal methodology for SPARQL-to-XQuery translation.
Their methodology has the ability to exploit 1:N cardinality mappings that do not contain
restrictions and composition operations, in contrast to our approach where such mapping
types are supported.

Up to now, limited studies have been made in the field of query rewriting related to
posing a SPARQL query over different RDF datasets. Akahani et. al [1] proposed a
theoretical perspective of approximate query rewriting for submitting queries to multiple
ontologies. In their approach no specific context (e.g. using SPARQL) is defined and no
specific algorithms for the query rewriting process are provided.

An approach which comes closer to ours, with some of its parts based on a preliminary
description of our work [26], has been presented recently by Correndo et al. [11]. They
present a SPARQL query rewriting methodology for achieving RDF data mediation over
linked data. Correndo et al. use transformations between RDF structures (i.e. graphs)
in order to define the mappings between two ontologies. This choice seems to restrict the
mappings expressivity and also the supported query types. Queries containing IRIs inside
FILTER expressions cannot be handled, while the mapping definition seems to be a painful
procedure. In contrast to our proposal, mappings produced by an ontology matching [20]
system, need post-processing in order to assist the mapping discovery.





Chapter 4

Ontology mapping model

In order for SPARQL queries posed over a global ontology to be rewritten in terms of a local
ontology, mappings between the global and local ontologies should be specified. In this
chapter we present a model for the expression of mappings between OWL DL ontologies in
the context of SPARQL query rewriting. In Section 4.1 we present a motivating example.
In Section 4.2 and Section 4.3 we present the supported mapping types used for the query
rewriting process, as well as their abstract syntax and semantics. Finally, the mapping
representation is discussed in Section 4.4.

4.1 Motivating example

In this section we present a motivating example for elicitating the ontology mapping
requirements of the mediator framework. Since our query rewriting methodology is generic,
from this point forward we will be discussing for mappings between a source and a target
ontology rather than between global and local ontologies. The mapping types presented
in this section have been selected among others because they can be used for the rewriting
of a SPARQL query.

Since we are working in the context of SPARQL queries, some mapping types may not
be useful for the query rewriting process. For example, a mapping containing aggregates
would be meaningless, since aggregates cannot be represented in the current SPARQL.
Such mapping types are described in [18] and many of them could be useful for post-
processing the query results but not during the query rewriting and query answering
process.

In Figure 4.1, we show the structure of two different ontologies. The source ontology
describes a store1 that sells various products including books and cd’s and the target
ontology describes a bookstore2. The rounded corner boxes represent the classes. They

1Store ontology namespace: src = http://www.ontologies.com/SourceOntology.owl#
2Bookstore ontology namespace: trg = http://www.ontologies.com/TargetOntology.owl#
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are followed by their properties (object and datatype). The rectangle boxes at the bottom
of the figure represent individuals. The arrows represent the relationships between these
basic OWL constructs.

Figure 4.1: Semantically Overlapping Ontologies.

In order to map a source ontology to a target ontology, various relationship types like
equivalence (≡) and subsumption (v, w) can be used. For example, in Figure 4.2 we
present an equivalence relationship between ontology constructs and in Figure 4.3 and we
present a subsumption relationship. The source ontology class Book seems to be equivalent
with the target ontology class Textbook, as these two classes seem to describe individuals
of the same type. Similarly, the source ontology class Product seems to subsume the
target ontology class Textbook, as the class Product seems to describe various types of
individuals and not only Textbook individuals.

A source ontology class can be mapped to an expression between target ontology
classes. The expression may involve union (t) and intersection (u) operations between
classes. For example, in Figure 4.4 the class Science is mapped to the union of classes
ComputerScience and Mathematics, since it seems to describe both ComputerScience

and Mathematics individuals. Similarly, in Figure 4.5 the class Popular is mapped to
the intersection of the class BestSeller with the union of classes ComputerScience and
Mathematics. This mapping emerges from the fact that the class Popular seems to de-
scribe ComputerScience and Mathematics individuals which are also of type BestSeller.
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Figure 4.2: A class mapping using an equivalence relationship.

Figure 4.3: A class mapping using a subsumption relationship.

Figure 4.4: A class mapping using a union operation between classes.
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Figure 4.5: A class mapping using union and intersection operations between classes.

In addition, it is possible to restrict a class on some property values in order to form
a correspondence. For example, in Figure 4.6 the class Pocket is mapped to the class
Textbook restricted on its size property values, since the class Pocket seems to describe
Textbook individuals having a specific value for the property size (e.g. less than or equal
to 14). Similarly, in Figure 4.7 the class Autobiography is mapped to the class Biography
restricted to the values of the properties author and topic. This mapping emerges from
the fact that the class Autobiography seems to describe Biography individuals having
the same value for these two properties.

Figure 4.6: A class mapping using a property restriction.

Similarly with classes, an individual from the source ontology can be mapped to an
individual from the target ontology (see Figure 4.8). In this case, only the equivalence
relationship can be taken into consideration since the subsumption relationship is used
mainly with sets.

Accordingly, an object/datatype property from the source ontology can be mapped to
an object/datatype property from the target ontology (see Figure 4.9).
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Figure 4.7: A class mapping using property restrictions.

Figure 4.8: A mapping between two individuals.

Figure 4.9: A mapping between two datatype properties.
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Domain and range restrictions can be useful for mappings between properties in order
to restrict the individuals that participate in these two sets. For example, in Figure 4.10
the object property partOf from the source ontology is mapped to the object property
partOf from the target restricted on its domain values. More specifically, the domain of
the property partOf from the target ontology (i.e. class Textbook) is restricted on its
size property values in order to match with the domain of the property partOf from the
source ontology.

Figure 4.10: An object property mapping using a domain restriction.

In addition, an object property from the source ontology can be mapped to the inverse
of an object property from the target ontology. For example, in Figure 4.11 the object
property publisher is mapped to the inverse of the object property publishes, since the
binary relations described by the property publisher correspond with the inverse binary
relations described by the property publishes. Taking a closer look, we observe that the
domain of the property publisher corresponds with the range of the property publishes,
and similarly the range of the property publisher corresponds with the domain of the
property publishes.

Figure 4.11: An object property mapping using an inverse operation.

Finally, a source ontology property can be mapped to an expression between target on-
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tology properties. The expression may involve union (t), intersection (u) and composition
operations between properties. For example, in Figure 4.12 the datatype property review

is mapped to the union of the datatype properties editorialReview and customerReview,
since the binary relations described by the property review correspond with the binary
relations described by the properties editorialReview and customerReview.

Figure 4.12: A datatype property mapping using a union operation.

Similarly, in Figure 4.13 the datatype property author from the source ontology is
mapped to the composition of the object property author with the datatype property
name from the target ontology. This mapping emerges from the fact that the binary
relations described by the datatype property author from the source ontology correspond
with the binary relations provided by connecting the Textbook individuals to the name

property values of the class People.

Figure 4.13: A datatype property mapping using a composition operation.

4.2 Abstract syntax and semantics

The basic concepts of OWL, whose mappings are useful for the rewriting process, are the
classes c, the object properties op, the datatype properties dp and the individuals i.

In order to define the mapping types which are useful for the rewriting process, we
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use Description Logics (DL). We treat OWL classes as DL concepts, OWL properties as
DL roles and OWL individuals as DL individuals. Following our convension, let C, D be
OWL classes (treated as atomic concepts), R, S be OWL object properties (treated as
atomic roles) and K, L be OWL datatype properties (treated as atomic roles). Similarly,
let a, b, c, vop be OWL individuals and vdp be a data value.

An interpretation I consists of a non-empty set ∆I (the domain of the interpretation)
and an interpretation function, which assigns to every atomic concept A a set AI ⊆ ∆I ,
to every atomic role B a binary relation BI ⊆ ∆I × ∆I and to every individual k an
element kI ∈ ∆I (based on [2]).

In Tables 4.1, 4.2, 4.3, 4.4, 4.5 and 4.6 we present the set of class and property con-
structors which we use for the definition of mappings. In these tables we introduce some
new constructors (preceded with asterisk) which should not be confused with the basic De-
scription Logics constructors defined in [2]. In addition to the concept/role constructors,
a DL knowledge base consists of assertional axioms which are presented in Table 4.7.

Table 4.1: Class constructors used in the definition of mappings.

Class Constructors

Class Intersection

Syntax C uD
Semantics CI ∩DI

Description Creates a class that contains the instances of class C, which are
also instances of class D.

Class Union

Syntax C tD
Semantics CI ∪DI

Description Creates a class that contains the instances of class C, as well as
the instances of class D.

∗Class Restriction - based on the value of an object property

Syntax C.(R cp vop), cp ∈ {6=,=}
Semantics {α ∈ CI | ∃b. (α, b) ∈ RI ∧ b cp vop}

i.e. An individual α that belongs to the interpretation of class C,
belongs also to the interpretation of the constructed class, if and
only if there exists an individual b, such that the binary relation
(α, b) belongs to the interpretation of the object property R and
also b is related to the value vop, using a comparator cp.

Description Creates a class that contains the instances of class C having a
specific value (related to vop using a comparator cp) for the object
property R.
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Table 4.2: Class constructors used in the definition of mappings (continued from Table 4.1).

Class Constructors
∗Class Restriction - based on the value of a datatype property

Syntax C.(K cp vdp), cp ∈ {6=,=,≤,≥, <,>}
Semantics {α ∈ CI | ∃b. (α, b) ∈ KI ∧ b cp vdp}

i.e. An individual α that belongs to the interpretation of class C,
belongs also to the interpretation of the constructed class, if and
only if there exists a data value b, such that the binary relation
(α, b) belongs to the interpretation of the datatype property K
and also b is related to the value vdp, using a comparator cp.

Description Creates a class that contains the instances of class C having a spe-
cific value (related to vdp using a comparator cp) for the datatype
property K.

∗Class Restriction - based on the values of two object properties

Syntax C.(R cp S), cp ∈ {6=, =}
Semantics {α ∈ CI | ∃b, ∃c. (α, b) ∈ RI ∧ (α, c) ∈ SI ∧ b cp c}

i.e. An individual α that belongs to the interpretation of class
C, belongs also to the interpretation of the constructed class, if
and only if there exists an individual b, as well as an individual c,
such that the binary relation (α, b) belongs to the interpretation
of the object property R, the binary relation (α, c) belongs to the
interpretation of the object property S, and also b is related to c,
using a comparator cp.

Description Creates a class that contains the instances of class C having spe-
cific values (related to each other using a comparator cp) for the
object properties R, S.

∗Class Restriction - based on the values of two datatype properties

Syntax C.(K cp L), cp ∈ {6=,=,≤,≥, <,>}
Semantics {α ∈ CI | ∃b, ∃c. (α, b) ∈ KI ∧ (α, c) ∈ LI ∧ b cp c}

i.e. An individual α that belongs to the interpretation of class
C, belongs also to the interpretation of the constructed class, if
and only if there exists a data value b, as well as a data value c,
such that the binary relation (α, b) belongs to the interpretation
of the datatype property K, the binary relation (α, c) belongs to
the interpretation of the datatype property L, and also b is related
to c, using a comparator cp.

Description Creates a class that contains the instances of class C having spe-
cific values (related to each other using a comparator cp) for the
datatype properties K, L.
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Table 4.3: Object property constructors used in the definition of mappings.

Object Property Constructors

Object Property Intersection

Syntax R u S
Semantics RI ∩ SI

Description Creates an object property that contains the binary relations de-
scribed by the object property R, which are also described by the
object property S.

Object Property Union

Syntax R t S
Semantics RI ∪ SI

Description Creates an object property that contains the binary relations de-
scribed by the object property R, as well as the binary relations
described by the object property S.

Object Property Composition

Syntax R ◦ S
Semantics {(α, c) | ∃b. (α, b) ∈ RI ∧ (b, c) ∈ SI}

i.e. A binary relation (α, c) belongs to the interpretation of the
constructed object property, if and only if there exists an indi-
vidual b, such that the binary relation (α, b) belongs to the inter-
pretation of the object property R, and also (b, c) belongs to the
interpretation of the object property S.

Description Creates an object property that contains the binary relations de-
scribed by the path connecting the domain of the object property
R to the range of the object property S.

∗Inverse Object Property

Syntax inv(R)
Semantics {(b, α) | (α, b) ∈ RI}

i.e. A binary relation (b, α) belongs to the interpretation of the
constructed object property, if and only if there exists a binary
relation (α, b), which belongs to the interpretation of the object
property R.

Description Creates an object property that contains the inverse binary rela-
tions of the object property R.
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Table 4.4: Object property constructors used in the definition of mappings (continued
from Table 4.3).

Object Property Constructors
∗Object Property Restriction - based on the domain values

Syntax R.domain(C)
Semantics {(α, b) | (α, b) ∈ RI ∧ α ∈ CI}

i.e. A binary relation (α, b) belongs to the interpretation of the
constructed object property, if and only if the binary relation (α, b)
belongs also to the interpretation of the object property R, and
the individual α belongs to the interpretation of class C.

Description Creates an object property that contains the binary relations de-
scribed by the object property R, whose domain values are re-
stricted to the instances of class C.

∗Object Property Restriction - based on the range values

Syntax R.range(C)
Semantics {(α, b) | (α, b) ∈ RI ∧ b ∈ CI}

i.e. A binary relation (α, b) belongs to the interpretation of the
constructed object property, if and only if the binary relation (α, b)
belongs also to the interpretation of the object property R, and
the individual b belongs to the interpretation of class C.

Description Creates an object property that contains the binary relations de-
scribed by the object property R, whose range values are restricted
to the instances of class C.

Table 4.5: Datatype property constructors used in the definition of mappings.

Datatype Property Constructors

Datatype Property Intersection

Syntax K u L
Semantics KI ∩ LI

Description Creates a datatype property that contains the binary relations
described by the datatype property K, which are also described
by the datatype property L.

Datatype Property Union

Syntax K t L
Semantics KI ∪ LI

Description Creates a datatype property that contains the binary relations de-
scribed by the datatype property K, as well as the binary relations
described by the datatype property L.
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Table 4.6: Datatype property constructors used in the definition of mappings (continued
from Table 4.5).

Datatype Property Constructors

Datatype Property Composition

Syntax R ◦K
Semantics {(α, c) | ∃b. (α, b) ∈ RI ∧ (b, c) ∈ KI}

i.e. A binary relation (α, c) belongs to the interpretation of the
constructed datatype property, if and only if there exists an indi-
vidual b, such that the binary relation (α, b) belongs to the inter-
pretation of the object property R, and also (b, c) belongs to the
interpretation of the datatype property K.

Description Creates a datatype property that contains the binary relations de-
scribed by the path connecting the domain of the object property
R to the range of the datatype property K.

∗Datatype Property Restriction - based on the domain values

Syntax K.domain(C)
Semantics {(α, b) | (α, b) ∈ KI ∧ α ∈ CI}

i.e. A binary relation (α, b) belongs to the interpretation of the
constructed datatype property, if and only if the binary relation
(α, b) belongs also to the interpretation of the datatype property
K, and the individual α belongs to the interpretation of class C.

Description Creates a datatype property that contains the binary relations
described by the datatype property K, whose domain values are
restricted to the instances of class C.

∗Datatype Property Restriction - based on the range values

Syntax K.range(cp vdp), cp ∈ {6=, =,≤,≥, <,>}
Semantics {(α, b) | (α, b) ∈ KI ∧ b cp vdp}

i.e. A binary relation (α, b) belongs to the interpretation of the
constructed datatype property, if and only if the binary relation
(α, b) belongs also to the interpretation of the datatype property
K, and the data value b is related to the value vdp, using a com-
parator cp.

Description Creates a datatype property that contains the binary relations
described by the datatype property K, whose range values are
restricted to be related to the value vdp, using a comparator cp.
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Table 4.7: Terminological and assertional axioms used in the definition of mappings.

Name Syntax Semantics

Class inclusion C v D CI ⊆ DI

C w D CI ⊇ DI

Object property inclusion R v S RI ⊆ SI

R w S RI ⊇ SI

Datatype property inclusion K v L KI ⊆ LI

K w L KI ⊇ LI

Class equality C ≡ D CI = DI

Object property equality R ≡ S RI = SI

Datatype property equality K ≡ L KI = LI

Individual equality a ≡ b aI = bI

Definition 4.1 (Class expression). A class expression is a class or any complex ex-
pression between two or more classes, using union or intersection operations. A class
expression is denoted as CE and is defined recursively in (4.1). Any class expression
can be restricted to the values of one or more object property expressions OPE (Defini-
tion 4.2) or datatype property expressions DPE (Definition 4.3), using the comparators
cp ∈ {6=, =} and cp ∈ {6=,=,≤,≥, <,>}, respectively. Moreover, it is possible for a class
expression to be restricted on a set of individuals having property values (either individuals
vop or data values vdp) with a specific relationship between them, defined either by cp or
cp.

CE := c (class)

| CE u CE (class intersection)

| CE t CE (class union)

| CE.(OPE cp vop) (class restricted on object property value)

| CE.(DPE cp vdp) (class restricted on datatype property value)

| CE.(OPE1 cp OPE2) (class restricted on object property values)

| CE.(DPE1 cp DPE2) (class restricted on datatype property values)

(4.1)

Definition 4.2 (Object property expression). An object property expression is an
object property or any complex expression between two or more object properties, using
composition, union or intersection operations. An object property expression is denoted as
OPE and is defined recursively in (4.2). Inverse property operations are possible to appear
inside an object property expression. Any object property expression can be restricted on
its domain and/or range by using a class expression defining the applied restrictions.
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OPE := op (object property)

| OPE ◦ OPE (object property composition)

| OPE u OPE (object property intersection)

| OPE t OPE (object property union)

| inv(OPE) (inverse object property)

| OPE.domain(CE) (object property restricted on domain values)

| OPE.range(CE) (object property restricted on range values)

(4.2)

Definition 4.3 (Datatype property expression). A datatype property expression is a
datatype property or any complex expression between object and datatype properties using
the composition operation, or between two or more datatype properties, using union or
intersection operations. A datatype property expression is denoted as DPE and is defined
recursively in (4.3). Any datatype property expression can be restricted on its domain
values by using a class expression defining the applied restrictions. In addition, the range
values of a datatype property expression can be restricted on various data values vdp, using
a comparator cp ∈ {6=, =,≤,≥, <, >}.

DPE := dp (datatype property)

| OPE ◦ DPE (datatype property composition)

| DPE u DPE (datatype property intersection)

| DPE t DPE (datatype property union)

| DPE.domain(CE) (datatype property restricted on domain values)

| DPE.range(cp vdp) (datatype property restricted on range values)

(4.3)

4.3 Ontology mapping types

Although, N:M cardinality mappings can be identified between two ontologies, many prob-
lems arise in the exploitation of such mapping types in SPARQL query rewriting. The
main problem is the identification of the source ontology’s mapped expression inside a
SPARQL query, which needs special treatment in order to be overcomed.

In this section we present a rich set of 1:N cardinality mapping types, in order for these
mapping types to be used for the rewriting of a SPARQL query. Since our query rewriting
methodology is generic, we will be discussing for mappings between a source and a target
ontology rather than between global and local ontologies.
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Class mapping. A class from a source ontology s can be mapped to a class expression
from a target ontology t (shown in (4.4)).

cs rel CEt, rel := ≡ | v | w (4.4)

Object property mapping. An object property from a source ontology s can be mapped
to an object property expression from a target ontology t (shown in (4.5)).

ops rel OPEt, rel := ≡ | v | w (4.5)

Datatype property mapping. A datatype property from a source ontology s can be
mapped to a datatype property expression from a target ontology t (shown in (4.6)).

dps rel DPEt, rel := ≡ | v | w (4.6)

We note here that the equivalence between two different properties or between a prop-
erty and a property expression, denotes equivalence between the domains and ranges of
those properties or property expressions. Similarly, the subsumption relationships between
two different properties or between a property and a property expression denote analogous
relationships between the domains and ranges of those properties or property expressions.
The proofs for the above statements are available in the Appendix B.

Individual mapping. An individual from a source ontology s can be mapped to an
individual from a target ontology t (shown in (4.7)).

is ≡ it (4.7)

4.4 Mapping representation

In the previous sections we presented the abstract syntax used for the mapping definition.
Using this abstract syntax we list, in Tables 4.8, 4.9, 4.10 and 4.11, a possible set of
correspondences for the ontologies presented in Figure 4.1.

In order to implement our framework, the need of a serializable language is of major
importance. As mentioned in Section 3.1 many languages have been proposed for the task
of mapping representation (C-OWL [7], SWRL [22], the Alignment Format [16], MAFRA
[25], etc.). However, the language that fulfills the majority of our requirements is EDOAL3

3http://alignapi.gforge.inria.fr/edoal.html
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Table 4.8: Class mapping examples based in Figure 4.1.

Class Mappings

a. src : Book ≡ trg : Textbook
b. src : Product w trg : Textbook
c. src : Publisher ≡ trg : Publisher
d. src : Collection v trg : Series
e. src : Novel v trg : Literature
f. src : Poetry v trg : Literature
g. src : Biography ≡ trg : Biography
h. src : Autobiography ≡ trg : Biography.(trg : author = trg : topic)
i. src : NewPublication ≡ trg : Computing u trg : NewRelease
j. src : Science ≡ trg : ComputerScience t trg : Mathematics
k. src : Popular ≡ (trg : ComputerScience t trg : Mathematics) u

u trg : BestSeller
l. src : Pocket ≡ trg : Textbook.(trg : size ≤ 14)

Table 4.9: Object property mapping examples based in Figure 4.1.

Object Property Mappings

m. src : publisher ≡ inv(trg : publishes)
n. src : partOf ≡ trg : partOf.domain(trg : Textbook.(trg : size ≤ 14))

Table 4.10: Datatype property mapping examples based in Figure 4.1.

Datatype Property Mappings

o. src : name w trg : title
p. src : id w trg : isbn
q. src : price w trg : price
r. src : review ≡ trg : editorialReview t trg : customerReview
s. src : author ≡ trg : author ◦ trg : name

Table 4.11: Individual mapping examples based in Figure 4.1.

Individual Mappings

t. src : CSFoundations ≡ trg : FoundationsOfCS
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(Expressive and Declarative Ontology Alignment Language). Previous versions of this
language have been defined in [19] and [35].

EDOAL combines the Alignment Format [16], which is used to represent the output
of ontology matching algorithms, and the OMWG mapping language [36], which is an
expressive ontology alignment language. It allows the representation of complex N:M
cardinality mappings whose usage is not limited to a specific context (e.g. SPARQL
query rewriting). The expressiveness, the simplicity, the Semantic Web compliance (given
its RDF syntax) and the capability of using any kind of ontology language are the key
features of this language.

However, in this thesis we have adapted a new version of this language, by performing
minor changes in the syntax, in order for the language to match exactly the abstract
syntax presented in the previous sections and also to restrict the language’s expressiveness
for simplicity reasons. The general structure of this version is presented in Section 4.4.1,
while a set of mapping representation examples is presented in Section 4.4.2.

4.4.1 General structure

In this section we present the general structure of the language which is used for the
mapping representation. As mentioned before, the syntax presented in this section is
based on the syntax of EDOAL. The default namespace applying to the constructs in
the following grammar description is oml standing for http://www.music.tuc.gr/oml#,
while the namespace align is equivalent to the Alignment Format namespace which is the
http://knowledgeweb.semanticweb.org/heterogeneity/alignment#.

The structure of the set of mappings between two overlapping ontologies is the same
as that of the Alignment Format:

alignment::= <align:Alignment rdf:about="uri">

<align:onto1> onto </align:onto1>

<align:onto2> onto </align:onto2>

(<align:map> cell </align:map>)*

</align:Alignment>

The Ontology construct contains information about an aligned ontology:

onto::= <align:Ontology rdf:about="uri">

<align:formalism> formalism </align:formalism>

</align:Ontology>

formalism::= <align:Formalism>

<align:uri> uri </align:uri>

<align:name> string </align:name>

</align:Formalism>
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The mappings between the two overlapping ontologies are structured as a set of cells:

cell::= <align:Cell rdf:about="uri">

<align:entity1> entity1 </align:entity1>

<align:entity2> entity2 </align:entity2>

<align:relation> relation </align:relation>

</align:Cell>

The aligned construct from the source ontology can be a class, an object/datatype
property, or an individual. It is worth to mention that since the current version of EDOAL
provides the capability of using any kind of ontology language, it adapts a more generic
vocabulary. More specifically, it refers to OWL object properties as relations, due to the
fact that they relate class instances. Furthermore, it refers to OWL datatype properties
as properties and to OWL individuals as instances. Finally, the term attribute is used to
refer to both relations and properties. In this version, we have not made changes to the
terminology which is used to describe these basic ontology constructs.

entity1::= <Class rdf:about="uri"/>

| <Relation rdf:about="uri"/>

| <Property rdf:about="uri"/>

| instance

The aligned construct from the target ontology can be a class expression, an object/
datatype property expression, or an individual:

entity2::= classexpr | attrexpr |instance

attexpr::= propexpr | relexpr

The list of possible relationships between ontology constructs is the same with the one
presented in the abstract syntax:

relation::= Equivalence | Subsumes | SubsumedBy

A class expression is specified by using the construct Class. It can be either a simple
class identified by its URI or a complex expression between two or more classes, using
union or intersection operations. The union and intersection operations are introduced
by using the constructs or and and, respectively. In all cases, the class expression can be
restricted on one or more object/datatype property values, using the construct restrict.

classexpr::= <Class rdf:about="uri"/>

| <Class> classconst </Class>
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classconst::= <or rdf:parseType="Collection"> classexpr+ </or>

| <and rdf:parseType="Collection"> classexpr+ </and>

| <restrict rdf:parseType="Collection">

classexpr (classcond)+

</restrict>

A class restriction on an object/datatype property value is specified by using the
construct AttributeValueRestriction. The construct onAttribute represents the re-
stricted object/datatype property, while the restricted value is represented either by
the construct instanceOrAttributeValue or by the construct literalValue in accor-
dance with various kinds of comparators (refer to the comparator list). The construct
instanceOrAttributeValue may represent either an individual in order to specify a re-
striction on an object property value, or an object/datatype property expression in order
to specify a restriction on a set of individuals having property values with a specific re-
lationship between them. On the other hand, the construct literalValue represents a
simple RDF literal in order to specify a restriction on a datatype property value.

classcond::= <AttributeValueRestriction>

<onAttribute> attexpr </onAttribute>

<comparator> comparator </comparator>

( <instanceOrAttributeValue>

instanceOrAttributeValue

</instanceOrAttributeValue>

| <literalValue> RDFLiteral </literalValue>)

</AttributeValueRestriction>

comparator::= Equal | NotEqual | Greater | GreaterThanOrEqual

| Less | LessThanOrEqual

instanceOrAttributeValue::= instance | attexpr

An object property expression is specified by using the construct Relation. It can
be either a simple object property identified by its URI or a complex expression between
two or more object properties, using composition, union or intersection operations. The
composition operation is introduced by using the construct compose. Due to the fact
that inverse property operations are also possible to appear inside an object property
expression, the construct inverse is available. In all cases, the object property expression
can be restricted on its domain and/or range values, using the construct restrict.

relexpr::= <Relation rdf:about="uri"/>

| <Relation> relconst </Relation>
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relconst::= <compose rdf:parseType="Collection"> relexpr+ </compose>

| <or rdf:parseType="Collection"> relexpr+ </or>

| <and rdf:parseType="Collection"> relexpr+ </and>

| <inverse> relexpr </inverse>

| <restrict rdf:parseType="Collection">

relexpr (relcond)+

</restrict>

According to the abstract syntax, an object property can be restricted on its do-
main/range values by using a class expression defining the applied restrictions. A do-
main or range restriction on an object property is specified by using the constructs
RelationDomainRestriction and RelationRangeRestriction, respectively. The class
expression which is used to restrict the domain/range values is specified by using the
construct class.

relcond::= <RelationDomainRestriction>

<class> classexpr </class>

</RelationDomainRestriction>

| <RelationRangeRestriction>

<class> classexpr </class>

</RelationRangeRestriction>

A datatype property expression is specified by using the construct Property. It can
be either a simple datatype property identified by its URI or any complex expression
between object and datatype properties using the composition operation, or between two
or more datatype properties, using union or intersection operations. In all cases, the
datatype property expression can be restricted on its domain and/or range values, using
the construct restrict.

propexpr::= <Property rdf:about="uri"/>

| <Property> propconst </Property>

propconst::= <compose rdf:parseType="Collection">

relexpr* propexpr

</compose>

| <or rdf:parseType="Collection"> propexpr+ </or>

| <and rdf:parseType="Collection"> propexpr+ </and>

| <restrict rdf:parseType="Collection">

propexpr (propcond)+

</restrict>

A domain or range restriction on a datatype property is specified by using the con-
structs PropertyDomainRestriction and PropertyValueRestriction, respectively. In



4.4. MAPPING REPRESENTATION 51

a range restriction, the restricted value is represented by the construct literalValue in
accordance with various kinds of comparators (refer to the comparator list). It is worth
to mention that according to the abtract syntax, the range values of a datatype property
expression can be restricted on data values exclusively.

propcond::= <PropertyDomainRestriction>

<class> classexpr </class>

</PropertyDomainRestriction>

| <PropertyValueRestriction>

<comparator> comparator </comparator>

<literalValue> RDFLiteral </literalValue>

</PropertyValueRestriction>

An individual is specified by using the construct Instance and it can be a simple URI:

instance::= <Instance rdf:about="uri"/>

Finally, since previous versions of EDOAL were described as OWL DL ontologies (the
current is not described), in order to provide some control to the terms of the language’s
vocabulary, we have made a new version of the language’s ontology in order to match the
syntax presented in this section. This new ontology version is available in the Appendix C.

4.4.2 Mapping representation examples

In this section we provide the representation for a set of mappings between the ontologies
presented in Figure 4.1, using the syntax that we discussed in the previous subsection.

Example 4.1. The mapping between the class Science from the source ontology and the
union of classes ComputerScience and Mathematics from the target ontology (mapping
j of Table 4.8) can be represented as follows:

<align:Cell rdf:about="MappingRule_j">

<align:entity1>

<oml:Class rdf:about="&src;Science"/>

</align:entity1>

<align:entity2>

<oml:Class>

<oml:or rdf:parseType="Collection">

<oml:Class rdf:about="&trg;ComputerScience"/>

<oml:Class rdf:about="&trg;Mathematics"/>

</oml:or>

</oml:Class>
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</align:entity2>

<align:relation>Equivalence</align:relation>

</align:Cell>

Example 4.2. The mapping between the object property partOf from the source ontol-
ogy and the object property partOf from the target ontology (mapping n of Table 4.9)
which is restricted on its domain values can be represented as follows:

<align:Cell rdf:about="MappingRule_n">

<align:entity1>

<oml:Relation rdf:about="&src;partOf"/>

</align:entity1>

<align:entity2>

<oml:Relation>

<oml:restrict rdf:parseType="Collection">

<oml:Relation rdf:about="&trg;partOf"/>

<oml:RelationDomainRestriction>

<oml:class>

<oml:Class>

<oml:restrict rdf:parseType="Collection">

<oml:Class rdf:about="&trg;Textbook"/>

<oml:AttributeValueRestriction>

<oml:onAttribute>

<oml:Property rdf:about="&trg;size"/>

</oml:onAttribute>

<oml:comparator>LessThanOrEqual</oml:comparator>

<oml:literalValue rdf:datatype="&xsd;int">

14

</oml:literalValue>

</oml:AttributeValueRestriction>

</oml:restrict>

</oml:Class>

</oml:class>

</oml:RelationDomainRestriction>

</oml:restrict>

</oml:Relation>

</align:entity2>

<align:relation>Equivalence</align:relation>

</align:Cell>
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Example 4.3. The mapping between the datatype property author from the source on-
tology and the composition of the object property author with the datatype property
name from the target ontology (mapping s of Table 4.10) can be represented as follows:

<align:Cell rdf:about="MappingRule_s">

<align:entity1>

<oml:Property rdf:about="&src;author"/>

</align:entity1>

<align:entity2>

<oml:Property>

<oml:compose rdf:parseType="Collection">

<oml:Relation rdf:about="&trg;author"/>

<oml:Property rdf:about="&trg;name"/>

</oml:compose>

</oml:Property>

</align:entity2>

<align:relation>Equivalence</align:relation>

</align:Cell>

Example 4.4. The mapping between the individual CSFoundations from the source on-
tology and the individual FoundationsOfCS from the target ontology (mapping t of Ta-
ble 4.11) can be represented as follows:

<align:Cell rdf:about="MappingRule_t">

<align:entity1>

<oml:Instance rdf:about="&src;CSFoundations"/>

</align:entity1>

<align:entity2>

<oml:Instance rdf:about="&trg;FoundationsOfCS"/>

</align:entity2>

<align:relation>Equivalence</align:relation>

</align:Cell>

A more comprehensive example, showing the representation of the complete set of
mappings defined in Tables 4.8, 4.9, 4.10 and 4.11, is available in the Appendix D.





Chapter 5

SPARQL query rewriting

overview

In this chapter we present an overview of the SPARQL query rewriting process. Query
rewriting is done by exploiting a predefined set of mappings which is based on the different
mapping types described in Section 4.3.

The SPARQL query rewriting process lies in the query’s graph pattern rewriting. The
rewritten query is produced by replacing the rewritten graph pattern to the initial query’s
graph pattern. Consequently the rewriting process is independent of the query type (i.e.
SELECT, CONSTRUCT, ASK, DESCRIBE) and the SPARQL solution sequence modifiers (i.e.
ORDER BY, DISTINCT, REDUCED, LIMIT, OFFSET).

Since a graph pattern consists basically of triple patterns, the most important part of
a SPARQL query rewriting is the triple pattern rewriting. Triple patterns may refer to
data (e.g. relationships between instances) or schema (e.g. relationships between classes
and/or properties) information, or to both. In order to present the rewriting procedure
in depth and due to the inability of handling all the different triple pattern types in the
same manner, we distinguish triple patterns into Data Triple Patterns (see Definition 5.1)
and Schema Triple Patterns (see Definition 5.2).

We consider triple patterns of the form (subject, predicate, object) as defined before.
Let L be the set of literals, V the set of variables, I the set of IRIs, IRDF the set containing
the IRIs of the RDF vocabulary (e.g. rdf : type), IRDFS the set containing the IRIs of
the RDF Schema vocabulary (e.g. rdfs : subClassOf) and IOWL the set containing the
IRIs of the OWL vocabulary (e.g. owl : equivalentClass).

Definition 5.1 (Data Triple Pattern). The triple patterns that only apply to data and
not schema info are considered to be Data Triple Patterns. A tuple t ∈ DTP (Data Triple
Pattern set - shown in (5.1)) is a Data Triple Pattern.
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DTP = (I ′ ∪ L ∪ V ) × (I ′ ∪ {rdf : type, owl : sameAs}) × (I ′ ∪ L ∪ V ) (5.1)

I ′ = I − IRDF − IRDFS − IOWL (5.2)

Definition 5.2 (Schema Triple Pattern). The triple patterns that only apply to schema
and not data info are considered to be Schema Triple Patterns. A tuple t ∈ STP (Schema
Triple Pattern set - shown in (5.3)) is a Schema Triple Pattern.

STP =
`

(I ∪ L ∪ V ) × I × (I ∪ L ∪ V )
´

− DTP (5.3)

The factor which is mainly used for the categorization of a triple pattern is the triple
pattern’s predicate part. The only exception occurs when the predicate part of a triple
pattern contains the RDF property rdf : type. In this case, the object part of the triple
pattern should be checked. If the triple pattern’s object part contains an RDF/RDFS/
OWL IRI, then the triple pattern concerns schema info (e.g. (?x, rdf : type, owl : Class)).
Otherwise, if the triple pattern’s object part contains another type of IRI, then the triple
pattern concerns data info (e.g. (?x, rdf : type, src : Product)). In Table 5.1 we present the
categorization of a triple pattern set, into Data/Schema Triple Patterns. Triple patterns
having a variable on their predicate part are not taken into consideration, since they may
apply either to data or schema info.

Table 5.1: Triple pattern categorization example, based on the ontologies presented in
Figure 4.1.

Category Triple Pattern (s, p, o)

Data Triple Patterns (?x, rdf : type, src : Product)
(?x, src : author, ?y)
(?x, src : price, "12"^^xsd : int)

Schema Triple Patterns (?x, rdfs : subClassOf, src : Product)
(src : author, rdfs : domain, ?x)
(src : Pocket, owl : equivalentClass, ?x)

Non-categorized (non-supported) (src : CSFoundations, ?x, "52"^^xsd : int)
(src : Popular, ?x, src : Science)

Since a triple pattern consists of three parts (subject, predicate, object), in order to
rewrite it we have to follow a three-step procedure by exploiting mappings for each triple
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pattern’s part. Firstly, a triple pattern is rewritten using the mapping which has been
specified for its predicate part, resulting to a graph pattern which may contain one or
more triple patterns. Then, the resulted graph pattern is rewritten triple pattern by
triple pattern, using the mappings of the triple patterns’ object parts. Finally, the same
procedure is repeated for the triple patterns’ subject parts. It is worth to mention that
SPARQL variables, blank nodes, literal constants and RDF/RDFS/OWL IRIs which may
appear in the subject, predicate or object of a triple pattern remain the same during the
rewriting procedure. Consequently, the SPARQL variables of the initial query appear also
in the rewritten query.

In Chapter 6, we provide a set of functions that perform Data Triple Pattern rewrit-
ing using predefined mappings for a triple pattern’s subject, predicate and object parts.
Similarly, in Chapter 7 we provide the functions that perform Schema Triple Pattern
rewriting.

In addition to the triple patterns, a graph pattern may contain filters. The SPARQL
variables, literal constants, operators (&&, ‖, !, =, ! =, >, <, >=, <=, +, −, ∗, /) and
built-in functions (e.g. bound, isIRI, isLiteral, datatype, lang, str, regex) which
may appear inside a FILTER expression remain the same during the rewriting process. For
class IRIs and property IRIs which may appear inside a FILTER expression of a SPARQL
query, we use 1:1 cardinality mappings for the expression rewriting.

We note that the rewriting of a triple pattern, is not dependent on mapping rela-
tionships (i.e. equivalence, subsumption). These relationships, affect only the evaluation
results of the rewritten query over the target ontology. A complete algorithm and a set of
examples, that show the graph pattern rewriting process, are presented in Chapter 8.





Chapter 6

Data Triple Pattern rewriting

In this chapter, we provide the functions that perform Data Triple Pattern rewriting.
These functions are actually rewriting steps in the process of Data Triple Pattern rewriting
and are also semantics preserving (see Definition 6.1). They provide the rewritten form
of a Data Triple Pattern using a mapping for its subject, predicate or object part, and
they are based on the mapping type. In Table 6.1, we present the notation used for the
definition of these functions.

Definition 6.1 (Semantics preserving rewriting). Let DSs be the RDF dataset of a
source ontology, and let DSt be the RDF dataset of a target ontology. Similarly, let DSm

be the RDF dataset which is produced by merging [30] the DSs and DSt datasets using a
set of mappings M.

Given a complete set (i.e. a set that contains every possible mapping) of sound (i.e.
valid) mappingsM between DSs and DSt, the rewriting step performed for a triple pattern
t, based on a mapping µ ∈M, is semantics preserving if and only if the evaluation result
of t and the evaluation result of the rewritten graph pattern gp′ over DSm, preserve the
mapping semantics.

In other words, having a set J = var(t) of SPARQL variables, the relationship (≡,
v, w) that holds for the mappings used in the rewriting process, should also hold between
[[t]]DSm and [[gp′]]DSm projected on J . Refer to Section 2.3.5 for the notation, as well as
for the SPARQL graph pattern semantics.

[[t]]DSm rel πJ

`

[[gp′]]DSm

´

, rel := ≡ | v | w (6.1)

J = var(t) ∩ var(gp′) = var(t) (6.2)
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Table 6.1: The notation used for the Data Triple Pattern rewriting functions.

Symbol Notation

xs The subscript s denotes that the entity x (class, object property,
datatype property or individual) belongs to the source ontology.

xt The subscript t denotes that the entity x (class, object property,
datatype property or individual) belongs to the target ontology.

Dx
y (t, µ) The D function takes two arguments: a Data Triple Pattern t and a

mapping µ for the subject, predicate or object part of t. This function
is used to provide the resulted form of t, after being rewritten based
on its subject, predicate or object part, using the mapping µ. The
triple pattern’s part which is used for the rewriting is denoted by the
superscript x ∈ {s, p, o}. The subscript y ∈ {c, op, dp, i, ∗} shows the
type of x (e.g. class, object property, etc.). The asterisk denotes any
type.

In Section 6.1 we describe the Data Triple Pattern rewriting process using a mapping for
the triple pattern’s subject part, while in Sections 6.2 and 6.3 we present the Data Triple
Pattern rewriting process using mappings for the triple pattern’s object and predicate
parts, respectively.

6.1 Rewriting based on triple pattern’s subject part

Generally, when a class or a property appears on the subject part of a triple pattern we
conclude that the triple pattern involves schema info, as there is no way for a non RDF/
RDFS/OWL IRI to appear at the same time in the triple pattern’s predicate part. Thus,
the only case mentioned for the rewriting of a Data Triple Pattern by its subject part
concerns individuals.

Rewriting based on individual mapping. Let is be an individual from the source on-
tology which is mapped to an individual it from the target ontology. Having a Data Triple
Pattern t = (is, predicate, object) with is in its subject part and anything in its predicate
and object parts, we can rewrite it by its subject part, using a predefined mapping µ and
the function (6.3).

Ds
i (t, µ) = (it, predicate, object) if µ : is ≡ it (6.3)

Example 6.1. Consider the query posed over the source ontology of Figure 4.1: “Return
the type of the CSFoundations individual”. The SPARQL syntax of the source query is
shown below:
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@PREFIX src: <http://www.ontologies.com/SourceOntology.owl#>.

@PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

SELECT ?x

WHERE {src:CSFoundations rdf:type ?x.}

In order to rewrite the SPARQL query for posing it over the target ontology of Fig-
ure 4.1, we have to rewrite the triple pattern t = (src : CSFoundations, rdf : type, ?x)
by its subject, predicate and object parts. Taking into consideration a mapping µ of the
triple pattern’s subject part, the result of the triple pattern’s t rewriting by its subject
part is provided by invoking the function (6.3).

t = (src : CSFoundations, rdf : type, ?x)

µ : src : CSFoundations ≡ trg : FoundationsOfCS

Using the parameters defined above, as well as the function (6.3), the triple pattern t

is rewritten as follows:

Ds
i (t, µ) = (trg : FoundationsOfCS, rdf : type, ?x)

In Lemma 6.1 we summarize the functions presented in this section, which are used for
the rewriting of a Data Triple Pattern based on a mapping for the triple pattern’s subject
part.

Lemma 6.1. Let is be an individual from the source ontology. Having a Data Triple
Pattern t and a predefined mapping µ for its subject part, we can rewrite it by its subject,
by invoking the function (6.4). Considering the semantics of the initial triple pattern,
as well as the semantics of the resulted graph pattern, this rewriting step is semantics
preserving.

Ds
∗(t, µ) =

8

>

<

>

:

Ds
i (t, µ) if t = (is, predicate, object)

∅ elsewhere

(6.4)

The proof of Lemma 6.1 is available in the Appendix B. 2

6.2 Rewriting based on triple pattern’s object part

When a property appears on the object part of a triple pattern, we conclude that the
triple pattern deals with schema info, as there is no way for a non RDF/RDFS/OWL IRI
to appear at the same time in the triple pattern’s predicate part. Similarly, in case that
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a class appears on a triple pattern’s object part, the only factor which can be used to
determine the triple pattern’s type (Data or Schema Triple Pattern), is whether the RDF
property rdf : type appears on the predicate part or not. Thus, the only cases mentioned
for the rewriting of a Data Triple Pattern by its object part concern individuals, as well
as classes with the precondition that the RDF property rdf : type appears on the triple
pattern’s predicate part at the same time.

Rewriting based on class mapping. Let cs be a class from the source ontology which
is mapped to a class expression from the target ontology. Having a Data Triple Pattern
t = (subject, rdf : type, cs) with the class cs in its object part, the RDF property rdf : type

in its predicate and anything in its subject part, we can rewrite it by its object part, using
a predefined mapping µ and the function (6.5), which is continued in (6.6).

Do
c (t, µ) =

8
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>

>
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>

>

:

(subject, rdf : type, ct) if µ : cs → ct

Do
c(t1, µ1) UNION Do

c (t2, µ2) if µ : cs → ct1 t ct2,

where t1 = (subject, rdf : type, ct1),

µ1 : ct1 ≡ CEt1,

and t2 = (subject, rdf : type, ct2),

µ2 : ct2 ≡ CEt2

Do
c(t1, µ1) AND Do

c(t2, µ2) if µ : cs → ct1 u ct2,

where t1 = (subject, rdf : type, ct1),

µ1 : ct1 ≡ CEt1,

and t2 = (subject, rdf : type, ct2),

µ2 : ct2 ≡ CEt2

Do
c(t1, µ1) AND Dp

op(t2, µ2) if µ : cs → ct.(opt cp vop),

FILTER(?var cp vop) where cp ∈ {6=, =},
vop = individual,

t1 = (subject, rdf : type, ct),

µ1 : ct ≡ CEt,

and t2 = (subject, opt, ?var),

µ2 : opt ≡ OPEt

*continued in (6.6)

(6.5)
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Do
c (t, µ) =

8
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>

:

*continued from (6.5)

Do
c(t1, µ1) AND Dp

dp(t2, µ2) if µ : cs → ct.(dpt cp vdp),

FILTER(?var cp vdp) where cp ∈ {6=, =,≤,≥, <, >},
vdp = data value,

t1 = (subject, rdf : type, ct),

µ1 : ct ≡ CEt,

and t2 = (subject, dpt, ?var),

µ2 : dpt ≡ DPEt

Do
c(t1, µ1) AND Dp

op(t2, µ2) if µ : cs → ct.(opt1 cp opt2),

AND Dp
op(t3, µ3) where cp ∈ {6=, =},

FILTER(?var1 cp ?var2) t1 = (subject, rdf : type, ct),

µ1 : ct ≡ CEt,

t2 = (subject, opt1, ?var1),

µ2 : opt1 ≡ OPEt1,

and t3 = (subject, opt2, ?var2),

µ3 : opt2 ≡ OPEt2

Do
c(t1, µ1) AND Dp

dp(t2, µ2) if µ : cs → ct.(dpt1 cp dpt2),

AND Dp
dp(t3, µ3) where cp ∈ {6=, =,≤,≥, <, >},

FILTER(?var1 cp ?var2) t1 = (subject, rdf : type, ct),

µ1 : ct ≡ CEt,

t2 = (subject, dpt1, ?var1),

µ2 : dpt1 ≡ DPEt1,

and t3 = (subject, dpt2, ?var2),

µ3 : dpt2 ≡ DPEt2

(6.6)

The functions Dp
op and Dp

dp are used by the function (6.5) in order to provide the graph
pattern that forms a restricted property and are defined in Section 6.3.

Example 6.2. Consider the query posed over the source ontology of Figure 4.1: “Return
the poetry books”. The SPARQL syntax of the source query is shown below:

@PREFIX src: <http://www.ontologies.com/SourceOntology.owl#>.

@PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

SELECT ?x

WHERE {?x rdf:type src:Poetry.}

In order to rewrite the SPARQL query for posing it over the target ontology of Fig-
ure 4.1, we have to rewrite the triple pattern t = (?x, rdf : type, src : Poetry) by its
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subject, predicate and object parts. Taking into consideration a mapping µ of the triple
pattern’s object part, the result of the triple pattern’s t rewriting by its object part is
provided by invoking the function (6.5).

t = (?x, rdf : type, src : Poetry)

µ : src : Poetry v trg : Literature

The mapping µ is of type cs → ct. Thus, using the parameters defined above, as well
as the function (6.5), the triple pattern t is rewritten as follows:

Do
c(t, µ) = (?x, rdf : type, trg : Literature)

Example 6.3. Consider the query posed over the source ontology of Figure 4.1: “Return
the scientific books”. The SPARQL syntax of the source query is shown below:

@PREFIX src: <http://www.ontologies.com/SourceOntology.owl#>.

@PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

SELECT ?x

WHERE {?x rdf:type src:Science.}

In order to rewrite the SPARQL query for posing it over the target ontology of Fig-
ure 4.1, we have to rewrite the triple pattern t = (?x, rdf : type, src : Science) by its
subject, predicate and object parts. Taking into consideration a mapping µ of the triple
pattern’s object part, the result of the triple pattern’s t rewriting by its object part is
provided by invoking the function (6.5).

t = (?x, rdf : type, src : Science)

µ : src : Science ≡ trg : ComputerScience t trg : Mathematics

The mapping µ is of type cs → ct1 t ct2. Following the definition of the function (6.5),
two triple patterns t1 and t2 are created and the complex mapping µ is decomposed into
the mappings µ1 and µ2. The triple patterns t1 and t2 contain the classes ct1 and ct2 on
their object part, respectively. The mapping of the class ct1 is provided by µ1, while the
mapping of the class ct2 is provided by µ2.

t1 = (?x, rdf : type, ct1)

t2 = (?x, rdf : type, ct2)

µ1 : ct1 ≡ trg : ComputerScience

µ2 : ct2 ≡ trg : Mathematics
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Thus,

Do
c(t, µ) = Do

c(t1, µ1) UNION Do
c(t2, µ2)

The mappings µ1 and µ2 are of type cs → ct. Thus, using the parameters defined
above, as well as the function (6.5) for the rewriting of the triple patterns t1 and t2, the
initial triple pattern t is rewritten as follows:

Do
c(t, µ) = Do

c(t1, µ1) UNION Do
c(t2, µ2)

= (?x, rdf : type, trg : ComputerScience) UNION
(?x, rdf : type, trg : Mathematics)

Example 6.4. Consider the query posed over the source ontology of Figure 4.1: “Return
the popular scientific books”. The SPARQL syntax of the source query is shown below:

@PREFIX src: <http://www.ontologies.com/SourceOntology.owl#>.

@PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

SELECT ?x

WHERE {?x rdf:type src:Popular.}

In order to rewrite the SPARQL query for posing it over the target ontology of Fig-
ure 4.1, we have to rewrite the triple pattern t = (?x, rdf : type, src : Popular) by its
subject, predicate and object parts. Taking into consideration a mapping µ of the triple
pattern’s object part, the result of the triple pattern’s t rewriting by its object part is
provided by invoking the function (6.5).

t = (?x, rdf : type, src : Popular)

µ : src : Popular ≡ (trg : ComputerScience t trg : Mathematics) u trg : BestSeller

The mapping µ is of type cs → ct1 u ct2. Following the definition of the function (6.5),
two triple patterns t1 and t2 are created and the complex mapping µ is decomposed into
the mappings µ1 and µ2. The triple patterns t1 and t2 contain the classes ct1 and ct2 on
their object part, respectively. The mapping of the class ct1 is provided by µ1, while the
mapping of the class ct2 is provided by µ2.

t1 = (?x, rdf : type, ct1)

t2 = (?x, rdf : type, ct2)
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µ1 : ct1 ≡ trg : ComputerScience t trg : Mathematics

µ2 : ct2 ≡ trg : BestSeller

Thus,

Do
c(t, µ) = Do

c(t1, µ1) AND Do
c(t2, µ2)

Similarly, the resulted complex mapping µ1 is of type cs → ct3 t ct4. Consequently,
two triple patterns t3 and t4 are created and the complex mapping µ1 is decomposed into
the mappings µ3 and µ4. The triple patterns t3 and t4 contain the classes ct3 and ct4 on
their object part, respectively. The mapping of the class ct3 is provided by µ3, while the
mapping of the class ct4 is provided by µ4.

t3 = (?x, rdf : type, ct3)

t4 = (?x, rdf : type, ct4)

µ3 : ct3 ≡ trg : ComputerScience

µ4 : ct4 ≡ trg : Mathematics

Thus,

Do
c(t, µ) = Do

c(t1, µ1) AND Do
c(t2, µ2)

=
(
Do

c(t3, µ3) UNION Do
c(t4, µ4)

)
AND Do

c(t2, µ2)

The mappings µ2, µ3 and µ4 are of type cs → ct. Thus, using the parameters defined
above, as well as the function (6.5) for the rewriting of the triple patterns t2, t3 and t4,
the initial triple pattern t is rewritten as follows:

Do
c(t, µ) = Do

c(t1, µ1) AND Do
c(t2, µ2)

=
(
Do

c(t3, µ3) UNION Do
c(t4, µ4)

)
AND Do

c(t2, µ2)

=
(
(?x, rdf : type, trg : ComputerScience) UNION

(?x, rdf : type, trg : Mathematics)
)

AND
(?x, rdf : type, trg : BestSeller)
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Rewriting based on individual mapping. Let is be an individual from the source on-
tology which is mapped to an individual it from the target ontology. Having a Data Triple
Pattern t = (subject, predicate, is) with is in its object part and anything in its predicate
and subject parts, we can rewrite it by its object part, using a predefined mapping µ and
the function (6.7).

Do
i (t, µ) = (subject, predicate, it) if µ : is ≡ it (6.7)

Example 6.5. Consider the query posed over the source ontology of Figure 4.1: “Return
the individuals which are specified to be the same with the CSFoundations individual”.
The SPARQL syntax of the source query is shown below:

@PREFIX src: <http://www.ontologies.com/SourceOntology.owl#>.

@PREFIX owl: <http://www.w3.org/2002/07/owl#>.

SELECT ?x

WHERE {?x owl:sameAs src:CSFoundations.}

In order to rewrite the SPARQL query for posing it over the target ontology of Fig-
ure 4.1, we have to rewrite the triple pattern t = (?x, owl : sameAs, src : CSFoundations)
by its subject, predicate and object parts. Taking into consideration a mapping µ of the
triple pattern’s object part, the result of the triple pattern’s t rewriting by its object part
is provided by invoking the function (6.7).

t = (?x, owl : sameAs, src : CSFoundations)

µ : src : CSFoundations ≡ trg : FoundationsOfCS

Using the parameters defined above, as well as the function (6.7), the triple pattern t

is rewritten as follows:

Do
i (t, µ) = (?x, owl : sameAs, trg : FoundationsOfCS)
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In Lemma 6.2 we summarize the functions presented in this section, which are used for
the rewriting of a Data Triple Pattern based on a mapping for the triple pattern’s object
part.

Lemma 6.2. Let is be an individual and cs be a class from the source ontology. Having
a Data Triple Pattern t and a predefined mapping µ for its object part, we can rewrite
it by its object, by invoking the function (6.8). Considering the semantics of the initial
triple pattern, as well as the semantics of the resulted graph pattern, this rewriting step is
semantics preserving.

Do
∗(t, µ) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

Do
i (t, µ) if t = (subject, predicate, is)

Do
c (t, µ) if t = (subject, rdf : type, cs)

∅ elsewhere

(6.8)

The proof of Lemma 6.2 is available in the Appendix B. 2

6.3 Rewriting based on triple pattern’s predicate part

In order to rewrite a Data Triple Pattern by its predicate part only property mappings
can be used, since a class or an individual cannot appear on a triple pattern’s predicate
part.

Rewriting based on object property mapping. Let ops be an object property from
the source ontology which is mapped to an object property expression from the target
ontology. Having a Data Triple Pattern t = (subject, ops, object) with ops in its predicate
part and anything in its subject and object parts, we can rewrite it by its predicate part,
using a predefined mapping µ and the function (6.9).
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Dp
op(t, µ) =

8
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>

:

(subject, opt, object) if µ : ops → opt

Dp
op(t1, µ1) AND Dp

op(t2, µ2) if µ : ops → opt1 ◦ opt2,

where t1 = (subject, opt1, ?var),

µ1 : opt1 ≡ OPEt1,

and t2 = (?var, opt2, object),

µ2 : opt2 ≡ OPEt2

Dp
op(t1, µ1) UNION Dp

op(t2, µ2) if µ : ops → opt1 t opt2,

where t1 = (subject, opt1, object),

µ1 : opt1 ≡ OPEt1,

and t2 = (subject, opt2, object),

µ2 : opt2 ≡ OPEt2

Dp
op(t1, µ1) AND Dp

op(t2, µ2) if µ : ops → opt1 u opt2,

where t1 = (subject, opt1, object),

µ1 : opt1 ≡ OPEt1,

and t2 = (subject, opt2, object),

µ2 : opt2 ≡ OPEt2

Dp
op(t1, µ1) if µ : ops → inv(opt),

where t1 = (object, opt, subject)

and µ1 : opt ≡ OPEt

Dp
op(t1, µ1) AND Do

c(t2, µ2) if µ : ops → opt.domain(ct),

where t1 = (subject, opt, object),

µ1 : opt ≡ OPEt,

and t2 = (subject, rdf : type, ct),

µ2 : ct ≡ CEt

Dp
op(t1, µ1) AND Do

c(t2, µ2) if µ : ops → opt.range(ct),

where t1 = (subject, opt, object),

µ1 : opt ≡ OPEt,

and t2 = (object, rdf : type, ct),

µ2 : ct ≡ CEt

(6.9)

Example 6.6. Consider the query posed over the source ontology of Figure 4.1: “Return
the publisher of the book CSFoundations”. The SPARQL syntax of the source query is
shown below:
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@PREFIX src: <http://www.ontologies.com/SourceOntology.owl#>.

SELECT ?x

WHERE {src:CSFoundations src:publisher ?x.}

In order to rewrite the SPARQL query for posing it over the target ontology of Fig-
ure 4.1, we have to rewrite the triple pattern t = (src : CSFoundations, src : publisher, ?x)
by its subject, predicate and object parts. Taking into consideration a mapping µ of the
triple pattern’s predicate part, the result of the triple pattern’s t rewriting by its predicate
part is provided by invoking the function (6.9).

t = (src : CSFoundations, src : publisher, ?x)

µ : src : publisher ≡ inv(trg : publishes)

The mapping µ is of type ops → inv(opt). Following the definition of the function
(6.9), a triple patterns t1 is created and the complex mapping µ is transformed to the
mapping µ1. The triple pattern t1 contains an object property opt on its predicate part
and its mapping is provided by µ1.

t1 = (?x, opt, src : CSFoundations)

µ1 : opt ≡ trg : publishes

Thus,

Dp
op(t, µ) = Dp

op(t1, µ1)

The mapping µ1 is of type ops → opt. Thus, using the parameters defined above, as
well as the function (6.9) for the rewriting of the triple pattern t1, the initial triple pattern
t is rewritten as follows:

Dp
op(t, µ) = Dp

op(t1, µ1)

= (?x, trg : publishes, src : CSFoundations)

Rewriting based on datatype property mapping. Let dps be a datatype property
from the source ontology which is mapped to a datatype property expression from the
target ontology. Having a Data Triple Pattern t = (subject, dps, object) with dps in its
predicate part and anything in its subject and object parts, we can rewrite it by its
predicate part, using a predefined mapping µ and the function (6.10).
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Dp
dp(t, µ) =

8
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:

(subject, dpt, object) if µ : dps → dpt

Dp
op(t1, µ1) AND Dp

dp(t2, µ2) if µ : dps → opt ◦ dpt,

where t1 = (subject, opt, ?var),

µ1 : opt ≡ OPEt,

and t2 = (?var, dpt, object),

µ2 : dpt ≡ DPEt

Dp
dp(t1, µ1) UNION Dp

dp(t2, µ2) if µ : dps → dpt1 t dpt2,

where t1 = (subject, dpt1, object),

µ1 : dpt1 ≡ DPEt1,

and t2 = (subject, dpt2, object),

µ2 : dpt2 ≡ DPEt2

Dp
dp(t1, µ1) AND Dp

dp(t2, µ2) if µ : dps → dpt1 u dpt2,

where t1 = (subject, dpt1, object),

µ1 : dpt1 ≡ DPEt1,

and t2 = (subject, dpt2, object),

µ2 : dpt2 ≡ DPEt2

Dp
dp(t1, µ1) AND Do

c (t2, µ2) if µ : dps → dpt.domain(ct),

where t1 = (subject, dpt, object),

µ1 : dpt ≡ DPEt,

and t2 = (subject, rdf : type, ct),

µ2 : ct ≡ CEt

Dp
dp(t1, µ1) if µ : dps → dpt.range(cp vdp),

FILTER(object cp vdp) where cp ∈ {6=, =,≤,≥, <, >},
vdp = data value,

and t1 = (subject, dpt, object),

µ1 : dpt ≡ DPEt

(6.10)

Example 6.7. Consider the query posed over the source ontology of Figure 4.1: “Return
the name of the CSFoundations individual which is of type Book”. The SPARQL syntax
of the source query is shown below:

@PREFIX src: <http://www.ontologies.com/SourceOntology.owl#>.

SELECT ?x

WHERE {src:CSFoundations src:name ?x.}
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In order to rewrite the SPARQL query for posing it over the target ontology of Fig-
ure 4.1, we have to rewrite the triple pattern t = (src : CSFoundations, src : name, ?x)
by its subject, predicate and object parts. Taking into consideration a mapping µ of the
triple pattern’s predicate part, the result of the triple pattern’s t rewriting by its predicate
part is provided by invoking the function (6.10).

t = (src : CSFoundations, src : name, ?x)

µ : src : name w trg : title

The mappings µ is of type dps → dpt. Thus, using the parameters defined above, as
well as the function (6.10), the triple pattern t is rewritten as follows:

Dp
dp(t, µ) = (src : CSFoundations, trg : title, ?x)

Example 6.8. Consider the query posed over the source ontology of Figure 4.1: “Return
the available reviews for the book CSFoundations”. The SPARQL syntax of the source
query is shown below:

@PREFIX src: <http://www.ontologies.com/SourceOntology.owl#>.

SELECT ?x

WHERE {src:CSFoundations src:review ?x.}

In order to rewrite the SPARQL query for posing it over the target ontology of Fig-
ure 4.1, we have to rewrite the triple pattern t = (src : CSFoundations, src : review, ?x)
by its subject, predicate and object parts. Taking into consideration a mapping µ of the
triple pattern’s predicate part, the result of the triple pattern’s t rewriting by its predicate
part is provided by invoking the function (6.10).

t = (src : CSFoundations, src : review, ?x)

µ : src : review ≡ trg : editorialReview t trg : customerReview

The mapping µ is of type dps → dpt1 t dpt2. Following the definition of the function
(6.10), two triple patterns t1 and t2 are created and the complex mapping µ is decomposed
into the mappings µ1 and µ2. The triple patterns t1 and t2 contain the datatype properties
dpt1 and dpt2 on their predicate part, respectively. The mapping of the datatype property
dpt1 is provided by µ1, while the mapping of the datatype property dpt2 is provided by
µ2.

t1 = (src : CSFoundations, dpt1, ?x)
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t2 = (src : CSFoundations, dpt2, ?x)

µ1 : dpt1 ≡ trg : editorialReview

µ2 : dpt2 ≡ trg : customerReview

Thus,

Dp
dp(t, µ) = Dp

dp(t1, µ1) UNION Dp
dp(t2, µ2)

The mappings µ1 and µ2 are of type dps → dpt. Thus, using the parameters defined
above, as well as the function (6.10) for the rewriting of the triple patterns t1 and t2, the
initial triple pattern t is rewritten as follows:

Dp
dp(t, µ) = Dp

dp(t1, µ1) UNION Dp
dp(t2, µ2)

= (src : CSFoundations, trg : editorialReview, ?x) UNION
(src : CSFoundations, trg : customerReview, ?x)

In Lemma 6.3 we summarize the functions presented in this section, which are used
for the rewriting of a Data Triple Pattern based on a mapping for the triple pattern’s
predicate part.

Lemma 6.3. Let ops be an object property and dps be a datatype property from the source
ontology. Having a Data Triple Pattern t and a predefined mapping µ for its predicate
part, we can rewrite it by its predicate, by invoking the function (6.11). Considering the
semantics of the initial triple pattern, as well as the semantics of the resulted graph pattern,
this rewriting step is semantics preserving.

Dp
∗(t, µ) =

8

>

>

>

>

>

>
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>

>

>

>

>

>

:

Dp
op(t, µ) if t = (subject, ops, object)

Dp
dp(t, µ) if t = (subject, dps, object)

∅ elsewhere

(6.11)

The proof of Lemma 6.3 is available in the Appendix B. 2

6.4 Combination examples

In this section we provide a set of examples that combine some of the functions presented
in the previous sections in order to rewrite a triple pattern based on a specific triple
pattern’s part (i.e. subject, predicate, object).
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Example 6.9. Consider the query posed over the source ontology of Figure 4.1: “Return
the pocket-sized books”. The SPARQL syntax of the source query is shown below:

@PREFIX src: <http://www.ontologies.com/SourceOntology.owl#>.

@PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

SELECT ?x

WHERE {?x rdf:type src:Pocket.}

In order to rewrite the SPARQL query for posing it over the target ontology of Fig-
ure 4.1, we have to rewrite the triple pattern t = (?x, rdf : type, src : Pocket) by its
subject, predicate and object parts. Taking into consideration a mapping µ of the triple
pattern’s object part, the result of the triple pattern’s t rewriting by its object part is
provided by invoking the function (6.5).

t = (?x, rdf : type, src : Pocket)

µ : src : Pocket ≡ trg : Textbook.(trg : size ≤ 14)

Taking a closer look at the mapping µ, we conclude that the source ontology’s class
Pocket is mapped to the target ontology’s class Textbook, restricted on its size property
values. Consequently, the mapping µ is of type cs → ct.(dpt cp vdp). Following the
definition of the function (6.5), two triple patterns t1 and t2 are created and the complex
mapping µ is decomposed into the mappings µ1 and µ2. The triple pattern t1 contains a
class ct on its object part, while the triple pattern t2 contains a datatype property dpt on
its predicate part. The mapping of the class ct is provided by µ1, while the mapping of
the property dpt is provided by µ2.

t1 = (?x, rdf : type, ct)

t2 = (?x, dpt, ?var)

µ1 : ct ≡ trg : Textbook

µ2 : dpt ≡ trg : size

Thus,

Do
c(t, µ) = Do

c(t1, µ1) AND Dp
dp(t2, µ2) FILTER(?var ≤ 14)

The mapping µ2, as well as the triple pattern t2 are used by the function (6.10), in order
to form the graph pattern representing the size property. Thus, using the parameters
defined above, as well as the function (6.5) for the rewriting of the trile pattern t1, the
initial triple pattern t is rewritten as follows:
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Do
c(t, µ) = Do

c(t1, µ1) AND Dp
dp(t2, µ2) FILTER(?var ≤ 14)

= (?x, rdf : type, trg : Textbook) AND (?x, trg : size, ?var)
FILTER(?var ≤ 14)

Example 6.10. Consider the query posed over the source ontology of Figure 4.1: “Return
the autobiography books”. The SPARQL syntax of the source query is shown below:

@PREFIX src: <http://www.ontologies.com/SourceOntology.owl#>.

@PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

SELECT ?x

WHERE {?x rdf:type src:Autobiography.}

In order to rewrite the SPARQL query for posing it over the target ontology of Fig-
ure 4.1, we have to rewrite the triple pattern t = (?x, rdf : type, src : Autobiography)
by its subject, predicate and object parts. Taking into consideration a mapping µ of the
triple pattern’s object part, the result of the triple pattern’s t rewriting by its object part
is provided by invoking the function (6.5).

t = (?x, rdf : type, src : Autobiography)

µ : src : Autobiography ≡ trg : Biography.(trg : author = trg : topic)

Taking a closer look at the mapping µ, we conclude that the source ontology’s class
Autobiography is mapped to the target ontology’s class Biography, restricted on its
author property values. The mapping µ is of type cs → ct.(dpt1 cp dpt2). Following
the definition of the function (6.5), three triple patterns t1, t2 and t3 are created and the
complex mapping µ is decomposed into the mappings µ1, µ2 and µ3. The triple pattern
t1 contains a class ct on its object part, while the triple patterns t2 and t3 contain the
datatype properties dpt1 and dpt2 on their predicate part, respectively. The mapping of
the class ct is provided by µ1, the mapping of the property dpt1 is provided by µ2 and the
mapping of the property dpt2 is provided by µ3.

t1 = (?x, rdf : type, ct)

t2 = (?x, dpt1, ?var1)

t3 = (?x, dpt2, ?var2)

µ1 : ct ≡ trg : Biography
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µ2 : dpt1 ≡ trg : author

µ2 : dpt2 ≡ trg : topic

Thus,

Do
c(t, µ) = Do

c(t1, µ1) AND Dp
dp(t2, µ2)

AND Dp
dp(t3, µ3) FILTER(?var1 =?var2)

The mapping µ2, as well as the triple pattern t2 are used by the function (6.10), in
order to form the graph pattern representing the property author. Similarly, the mapping
µ3, as well as the triple pattern t3 are used by the same function, in order to form the
graph pattern representing the property topic. Finally, using the parameters defined
above, as well as the function (6.5) for the rewriting of the triple pattern t1, the initial
triple pattern t is rewritten as follows:

Do
c(t, µ) = Do

c(t1, µ1) AND Dp
dp(t2, µ2)

AND Dp
dp(t3, µ3) FILTER(?var1 =?var2)

= (?x, rdf : type, trg : Biography) AND (?x, trg : author, ?var1)
AND (?x, trg : topic, ?var2) FILTER(?var1 =?var2)

Example 6.11. Consider the query posed over the source ontology of Figure 4.1: “Return
the pocket-sized books which are part of a collection”. The SPARQL syntax of the source
query is shown below:

@PREFIX src: <http://www.ontologies.com/SourceOntology.owl#>.

SELECT ?x ?y

WHERE {?x src:partOf ?y.}

In order to rewrite the SPARQL query for posing it over the target ontology of Fig-
ure 4.1, we have to rewrite the triple pattern t = (?x, src : partOf, ?y) by its subject,
predicate and object parts. Taking into consideration a mapping µ of the triple pattern’s
predicate part, the result of the triple pattern’s t rewriting by its predicate part is provided
by invoking the function (6.9).

t = (?x, src : partOf, ?y)

µ : src : partOf ≡ trg : partOf.domain(trg : Textbook.(trg : size ≤ 14))
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Taking a closer look at the mapping µ, we conclude that the source ontology’s property
partOf is mapped to the target ontology’s property partOf, restricted on its domain
values. Consequently, the mapping µ is of type ops → opt.domain(ct1). Following the
definition of the function (6.9), two triple patterns t1 and t2 are created and the complex
mapping µ is decomposed into the mappings µ1 and µ2. The triple pattern t1 contains
an object property opt on its predicate part and its mapping is provided by µ1, while the
triple pattern t2 contains a class ct1 on its object part and its mapping is provided by µ2.

t1 = (?x, opt, ?y)

t2 = (?x, rdf : type, ct1)

µ1 : opt ≡ trg : partOf

µ2 : ct1 ≡ trg : Textbook.(trg : size ≤ 14)

Thus,

Dp
op(t, µ) = Dp

op(t, µ1) AND Do
c(t2, µ2)

The mapping µ2 actually specifies a mapping between the domain of the source on-
tology’s property partOf and the target ontology’s class Textbook, restricted on its size
property values. Following the definition of the function (6.5), two triple patterns t3 and
t4 are created and the complex mapping µ2 is decomposed into the mappings µ3 and µ4.
The triple pattern t3 contains a class ct2 on its object part, while the triple pattern t4

contains a datatype property dpt on its predicate part. The mapping of the class ct2 is
provided by µ3, while the mapping of the property dpt is provided by µ4.

t3 = (?x, rdf : type, ct2)

t4 = (?x, dpt, ?var)

µ3 : ct2 ≡ trg : Textbook

µ4 : dpt ≡ trg : size

Thus,

Dp
op(t, µ) = Dp

op(t1, µ1) AND Do
c(t2, µ2)

= Dp
op(t1, µ1) AND

(
Do

c(t3, µ3) AND Dp
dp(t4, µ4)

FILTER(?var ≤ 14)
)
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The mapping µ4, as well as the triple pattern t4 are used by the function (6.10) in order
to form the graph pattern representing the size property. Thus, using the parameters
defined above, as well as the functions (6.9) and (6.5) for the rewriting of the triple patterns
t1 and t3, the initial triple pattern t is rewritten as follows:

Dp
op(t, µ) = Dp

op(t1, µ1) AND Do
c(t2, µ2)

= Dp
op(t1, µ1) AND

(
Do

c(t3, µ3) AND Dp
dp(t4, µ4)

FILTER(?var ≤ 14)
)

= (?x, trg : partOf, ?y) AND
(
(?x, rdf : type, trg : Textbook) AND

(?x, trg : size, ?var) FILTER(?var ≤ 14)
)

Example 6.12. Consider the query posed over the source ontology of Figure 4.1: “Return
the authors of the book CSFoundations”. The SPARQL syntax of the source query is
shown below:

@PREFIX src: <http://www.ontologies.com/SourceOntology.owl#>.

SELECT ?x

WHERE {src:CSFoundations src:author ?x.}

In order to rewrite the SPARQL query for posing it over the target ontology of Fig-
ure 4.1, we have to rewrite the triple pattern t = (src : CSFoundations, src : author, ?x)
by its subject, predicate and object parts. Taking into consideration a mapping µ of the
triple pattern’s predicate part, the result of the triple pattern’s t rewriting by its predicate
part is provided by invoking the function (6.10).

t = (src : CSFoundations, src : author, ?x)

µ : src : author ≡ trg : author ◦ trg : name

The mapping µ is of type dps → opt ◦ dpt. Following the definition of the function
(6.10), two triple patterns t1 and t2 are created and the complex mapping µ is decomposed
into the mappings µ1 and µ2. The triple patterns t1 and t2 contain an object property
opt and a datatype property dpt on their predicate part, respectively. The mapping of the
object property opt is provided by µ1, while the mapping of the datatype property dpt is
provided by µ2.

t1 = (src : CSFoundations, opt, ?var)
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t2 = (?var, dpt, ?x)

µ1 : opt ≡ trg : author

µ2 : dpt ≡ trg : name

Thus,

Dp
dp(t, µ) = Dp

op(t1, µ1) AND Dp
dp(t2, µ2)

The mapping µ1 is of type ops → opt, while the mapping µ2 is of type dps → dpt.
Thus, using the parameters defined above, as well as the functions (6.9) and (6.10) for the
rewriting of the triple patterns t1 and t2, the initial triple pattern t is rewritten as follows:

Dp
dp(t, µ) = Dp

op(t1, µ1) AND Dp
dp(t2, µ2)

= (src : CSFoundations, trg : author, ?var) AND
(?var, trg : name, ?x)





Chapter 7

Schema Triple Pattern

rewriting

In order to rewrite a triple pattern any mapping type presented in Section 4.3 can be used.
However, in some cases the mapped expressions should be relaxed in order for a mapping
to be used by the Schema Triple pattern rewriting process.

In the Example 7.1, we show that a mapping is used as it is in order to be exploited by
the Data Triple Pattern rewriting process. However, the same mapping should be relaxed
in order to be used for the rewriting of a Schema Triple Pattern.

Example 7.1. In Figure 4.1, let the source ontology’s class Pocket be mapped as equiva-
lent to the class Textbook from the target ontology, restricted on its size property values.
This correspondence can be represented as follows:

µ : src : Pocket ≡ trg : Textbook.(trg : size ≤ 14)

Having a Data Triple Pattern t = (?x, rdf : type, src : Pocket) and the mapping µ,
it is clear that the entire mapping should be used to rewrite the triple pattern t. This
results from the fact that the mapping µ relates a class from the source ontology with an
unnamed class (i.e. set of instances) from the target ontology, and the triple pattern t

concerns data info and specifically a set of instances.
On the contrary, having the mapping µ that we presented before, as well as a Schema

Triple Pattern t′ = (src : Pocket, rdfs : subClassOf, ?x), it is clear that the class re-
striction cannot be used to rewrite it. As mentioned before, the class Pocket is mapped
to an unnamed class. Thus, using the class restriction for the rewriting of t′, makes the
evaluation results prone to whether the target ontology defines the unnamed class, which
is very unlikely, and contains schema info about it as well. Consequently, in order to
rewrite the triple pattern t′ and also to avoid tricky hypotheses, the mapping µ should
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be transformed to a similar one, having the property restriction of the target ontology’s
mapped expression removed (i.e. µ′ : src : Pocket v trg : Textbook). Such a relaxation
step, seems to be reliable for Schema Triple Patterns, in the sense that it is based on some
inferred facts which are more likely to return the desirable query results.

The operations that determine whether a mapping should be relaxed in order to be
used for the rewriting of a Schema Triple Pattern are the following:

• Class expression restrictions.

• Object/datatype property expression restrictions on domain/range values.

• Composition operations between object/datatype property expressions.

• Inverse object property expression operations.

Mapped expressions containing the above operations are relaxed in order to be used
for the rewriting of a Schema Triple Pattern. In this case, a mapped class expression CE

(see Definition 4.1) is transformed to a similar class expression CE′ (defined recursively
in (7.1)), having any class restrictions removed.

CE′ := c (class)

| CE′ u CE′ (class intersection)

| CE′ t CE′ (class union)

(7.1)

A mapped object property expression OPE (see Definition 4.2) is transformed to a
similar object property expression OPE′ (defined recursively in (7.2)), having any do-
main/range restrictions, any composed object property expressions and any inverse object
property expressions removed.

OPE′ := op (object property)

| OPE′ u OPE′ (object property intersection)

| OPE′ t OPE′ (object property union)

(7.2)

Similarly, a mapped datatype property expression DPE (see Definition 4.3) is trans-
formed to a similar datatype property expression DPE′ (defined recursively in (7.3)),
having any domain/range restrictions and any composed property expressions removed.

DPE′ := dp (datatype property)

| DPE′ u DPE′ (datatype property intersection)

| DPE′ t DPE′ (datatype property union)

(7.3)

Mappings containing mapped expressions that need relaxation, are transformed by
substituting the mapped expression with the relaxed one and by modifying the mapping’s
relationship, respectively. The relaxation operations presented above, can also exclude a
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mapping from being used for the rewriting of a Schema Triple Pattern. For example, a
mapping between an object property and a composition of object properties is exluded,
since the relaxation method will remove the composition operation and consequently the
entire mapped expression. It is worth to say that mappings between individuals do no
need any relaxation in order to be used for the rewriting of a Schema Triple Pattern.

Even after preprocessing the defined mappings, a Schema Triple Pattern should be
rewritten differently compared to a Data Triple Pattern. The need for handling differently
these two different triple pattern types lies on the fact that a Data Triple Pattern deals
with data info (e.g. relationships between instances or between instances and data values),
while a Schema Triple Pattern deals with schema info (e.g. hierarchies and relationships
between named classes and/or named properties).

In the Example 7.2, we show that handling the rewriting of a Schema Triple Pattern
in the same manner with a Data Triple Pattern does not preserve the mapping semantics.

Example 7.2. In Figure 4.1, let the source ontology’s class Science be mapped as equiv-
alent to the union of classes ComputerScience and Mathematics from the target ontology.
This correspondence can be represented as follows:

µ : src : Science ≡ trg : ComputerScience t trg : Mathematics

A Data Triple Pattern t = (?x, rdf : type, src : Science), involves the instances of
class Science. Taking into consideration the mapping µ, the rewritten graph pattern of t

should return the instances of the class ComputerScience, as well as the instances of the
class Mathematics, using the UNION graph pattern operator.

On the contrary, a Schema Triple Pattern t′ = (src : Science, rdfs : subClassOf, ?x)
involves the superclasses of the class Science. Using the mapping µ in order to rewrite
t′, someone would expect the rewritten graph pattern to return the superclasses of the
union of classes ComputerScience and Mathematics. However, such a rewritten graph
pattern is very unlikely to match any RDF graph (i.e. no results obtained), due to the
fact that the union of classes ComputerScience and Mathematics is not a named class
in the target ontology, in order to contain schema info about it. In addition, this differs
from returning the superclasses of the class ComputerScience, as well as the superclasses
of the class Mathematics, following the treatment which was used for Data Triple Pattern
rewriting.

One method to make a rewritten graph pattern semantically correspondent to the
initial triple pattern t′ is by using inference. In this case, a graph pattern that matches
the common superclasses of the classes ComputerScience and Mathematics forms the
solution.

In order to rewrite a Schema Triple Pattern using 1:N cardinality mappings, simple
types of inference based on DL axioms are used. The Schema Triple Patterns which can be
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handled using inference are those having on their predicate part one of the OWL/RDF/
RDFS properties appearing on the set SSP (Supported Schema Predicates - see (7.4)).
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(7.4)

Let SSPc (see (7.5)) be the supported OWL/RDF/RDFS property set which can be
applied on classes, and SSPp (see (7.6)) be the supported OWL/RDF/RDFS property set
which can be applied on properties.
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(7.5)

SSPp =
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>

:

rdf : type,

rdfs : subPropertyOf,

owl : equivalentProperty

9

>

=

>

;

(7.6)

The sets presented above are divided further, to the sets SSP ′
c (see (7.7)) and SSP ′

p (see
(7.8)), respectively, for the purpose of common inference treatment.

SSP ′
c = SSPc − {rdfs : subClassOf} (7.7)

SSP ′
p = SSPp − {rdfs : subPropertyOf} (7.8)

Let B, C, D, G be atomic concepts (i.e. classes) and K, L, R, S be atomic roles
(i.e. properties). Table 7.1 and Table 7.2 summarize the class and property axioms which
are used for the rewriting of Schema Triple Patterns, respectively. We note that the
complement operation is denoted by using the superscript c.
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Table 7.1: Class axioms used for the rewriting of Schema Triple Patterns.

Type Axioms

Subsumption if B v C and G ≡ C then B v G
if B v C and B v D and G ≡ C uD then B v G
if B v C or B v D and G ≡ C tD then B v G
if B w C and G ≡ C then B w G
if B w C or B w D and G ≡ C uD then B w G
if B w C and B w D and G ≡ C tD then B w G

Equivalence if B ≡ C and G ≡ C then B ≡ G
if B ≡ C and B ≡ D and G ≡ C uD then B ≡ G
if B ≡ C and B ≡ D and G ≡ C tD then B ≡ G

Complementarity if B ≡ Cc and G ≡ C then B ≡ Gc

if B ≡ Cc and B ≡ Dc and G ≡ C uD then B ≡ Gc

if B ≡ Cc and B ≡ Dc and G ≡ C tD then B ≡ Gc

Disjointness if B u C = ∅ and G ≡ C then B uG = ∅
if B u C = ∅ and B uD = ∅ and G ≡ C uD then B uG = ∅
if B u C = ∅ and B uD = ∅ and G ≡ C tD then B uG = ∅

Table 7.2: Property axioms used for the rewriting of Schema Triple Patterns.

Type Axioms

Subsumption if K v L and S ≡ L then K v S
if K v L and K v R and S ≡ L uR then K v S
if K v L or K v R and S ≡ L tR then K v S
if K w L and S ≡ L then K w S
if K w L or K w R and S ≡ L uR then K w S
if K w L and K w R and S ≡ L tR then K w S

Equivalence if K ≡ L and S ≡ L then K ≡ S
if K ≡ L and K ≡ R and S ≡ L uR then K ≡ S
if K ≡ L and K ≡ R and S ≡ L tR then K ≡ S
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It is worth to say that in case of 1:1 cardinality mappings, every Schema Triple Pattern
having any OWL/RDF/RDFS property on its predicate part can be rewritten. In the
following sections, we provide the functions that perform Schema Triple Pattern rewriting.
They provide the rewritten form of a Schema Triple Pattern using a mapping for its subject,
predicate or object part, and they are based on the mapping type. In Table 7.3, we present
the notation used for the definition of these functions.

Table 7.3: The notation used for the Schema Triple Pattern rewriting functions.

Symbol Notation

xs The subscript s denotes that the entity x (class, object property,
datatype property or individual) belongs to the source ontology.

xt The subscript t denotes that the entity x (class, object property,
datatype property or individual) belongs to the target ontology.

Sx
y (t, µ) The S function takes two arguments: a Schema Triple Pattern t and a

mapping µ for the subject, predicate or object part of t. This function
is used to provide the resulted form of t after being rewritten based
on its subject, predicate or object part, using the mapping µ. The
triple pattern’s part which is used for the rewriting is denoted by the
superscript x ∈ {s, p, o}. The subscript y ∈ {c, op, dp, i, ∗} shows the
type of x (e.g. class, object property, etc.). The asterisk denotes any
type.

In Section 7.1 we describe the Schema Triple Pattern rewriting process using a map-
ping for the triple pattern’s subject part, while in Section 7.2 we present the Schema
Triple Pattern rewriting process using a mapping for the triple pattern’s object part. The
rewriting of a Schema Triple Pattern by its predicate part does not result in modifications
since the triple pattern’s predicate part is an RDF/RDFS/OWL property and does not
affect the rewriting procedure.

7.1 Rewriting based on triple pattern’s subject part

A class or a property may appear in the subject part of a Schema Triple Pattern, as
opposed to the Data Triple Patterns.

Rewriting based on class mapping. Let cs be a class from the source ontology which
is mapped to a class expression from the target ontology. Having a Schema Triple Pattern
t = (cs, predicate, object) with cs in its subject part, an RDF/RDFS/OWL property in
its predicate and anything in its object part, we can rewrite it by its subject part, using
a predefined mapping µ and the function (7.9).
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Ss
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:

(ct, predicate, object) if µ : cs → ct

Ss
c (t1, µ1) UNION Ss

c (t2, µ2) if µ : cs → ct1 u ct2 and

predicate = rdfs : subClassOf ,

where t1 = (ct1, predicate, object),

µ1 : ct1 ≡ CEt1,

and t2 = (ct2, predicate, object),

µ2 : ct2 ≡ CEt2

Ss
c (t1, µ1) AND Ss

c (t2, µ2) if µ : cs → ct1{u | t}ct2 and

predicate ∈ SSP ′
c,

or if µ : cs → ct1 t ct2 and

predicate = rdfs : subClassOf ,

where t1 = (ct1, predicate, object),

µ1 : ct1 ≡ CEt1,

and t2 = (ct2, predicate, object),

µ2 : ct2 ≡ CEt2

(7.9)

Example 7.3. Consider the query posed over the source ontology of Figure 4.1: “Return
the superclasses of the class Science”. The SPARQL syntax of the source query is shown
below:

@PREFIX src: <http://www.ontologies.com/SourceOntology.owl#>.

@PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

SELECT ?x

WHERE {src:Science rdfs:subClassOf ?x.}

In order to rewrite the SPARQL query for posing it over the target ontology of Fig-
ure 4.1, we have to rewrite the triple pattern t = (src : Science, rdfs : subClassOf, ?x)
by its subject, predicate and object parts. Taking into consideration a mapping µ of the
triple pattern’s subject part, the result of the triple pattern’s t rewriting by its subject
part is provided by invoking the function (7.9).

t = (src : Science, rdfs : subClassOf, ?x)

µ : src : Science ≡ trg : ComputerScience t trg : Mathematics

The mapping µ is of type cs → ct1 t ct2. Following the definition of the function (7.9),
two triple patterns t1 and t2 are created and the complex mapping µ is decomposed into
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the mappings µ1 and µ2. The triple patterns t1 and t2 contain the classes ct1 and ct2 on
their subject part, respectively. The mapping of the class ct1 is provided by µ1, while the
mapping of the class ct2 is provided by µ2.

t1 = (ct1, rdfs : subClassOf, ?x)

t2 = (ct2, rdfs : subClassOf, ?x)

µ1 : ct1 ≡ trg : ComputerScience

µ2 : ct2 ≡ trg : Mathematics

Thus,

Ss
c (t, µ) = Ss

c (t1, µ1) AND Ss
c (t2, µ2)

The mappings µ1 and µ2 are of type cs → ct. Thus, using the parameters defined
above, as well as the function (7.9) for the rewriting of the triple patterns t1 and t2, the
initial triple pattern t is rewritten as follows:

Ss
c (t, µ) = Ss

c (t1, µ1) AND Ss
c (t2, µ2)

= (trg : ComputerScience, rdfs : subClassOf, ?x) AND
(trg : Mathematics, rdfs : subClassOf, ?x)

Example 7.4. Consider the query posed over the source ontology of Figure 4.1: “Return
the superclasses of the class NewPublication”. The SPARQL syntax of the source query
is shown below:

@PREFIX src: <http://www.owl-ontologies.com/SourceOntology.owl#>.

@PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

SELECT ?x

WHERE {src:NewPublication rdfs:subClassOf ?x.}

In order to rewrite the SPARQL query for posing it over the target ontology of
Figure 4.1, we have to rewrite the triple pattern t = (src : NewPublication, rdfs :
subClassOf, ?x) by its subject, predicate and object parts. Taking into consideration
a mapping µ of the triple pattern’s subject part, the result of the triple pattern’s t rewrit-
ing by its subject part is provided by invoking the function (7.9).
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t = (src : NewPublication, rdfs : subClassOf, ?x)

µ : src : NewPublication ≡ trg : Computing u trg : NewRelease

The mapping µ is of type cs → ct1 u ct2. Following the definition of the function (7.9),
two triple patterns t1 and t2 are created and the complex mapping µ is decomposed into
the mappings µ1 and µ2. The triple patterns t1 and t2 contain the classes ct1 and ct2 on
their subject part, respectively. The mapping of the class ct1 is provided by µ1, while the
mapping of the class ct2 is provided by µ2.

t1 = (ct1, rdfs : subClassOf, ?x)

t2 = (ct2, rdfs : subClassOf, ?x)

µ1 : ct1 ≡ trg : Computing

µ2 : ct2 ≡ trg : NewRelease

Thus,

So
c (t, µ) = So

c (t1, µ1) UNION So
c (t2, µ2)

The mappings µ1 and µ2 are of type cs → ct. Thus, using the parameters defined
above, as well as the function (7.9) for the rewriting of the triple patterns t1 and t2, the
initial triple pattern t is rewritten as follows:

So
c (t, µ) = So

c (t1, µ1) UNION So
c (t2, µ2)

= (trg : Computing, rdfs : subClassOf, ?x) UNION
(trg : NewRelease, rdfs : subClassOf, ?x)

Example 7.5. Consider the query posed over the source ontology of Figure 4.1: “Return
the classes which are specified to be equivalent to the class Science”. The SPARQL
syntax of the source query is shown below:

@PREFIX src: <http://www.ontologies.com/SourceOntology.owl#>.

@PREFIX owl: <http://www.w3.org/2002/07/owl#>.

SELECT ?x

WHERE {src:Science owl:equivalentClass ?x.}
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In order to rewrite the SPARQL query for posing it over the target ontology of Fig-
ure 4.1, we have to rewrite the triple pattern t = (src : Science, owl : equivalentClass, ?x)
by its subject, predicate and object parts. Taking into consideration a mapping µ of the
triple pattern’s subject part, the result of the triple pattern’s t rewriting by its subject
part is provided by invoking the function (7.9).

t = (src : Science, owl : equivalentClass, ?x)

µ : src : Science ≡ trg : ComputerScience t trg : Mathematics

The mapping µ is of type cs → ct1 t ct2. Following the definition of the function (7.9),
two triple patterns t1 and t2 are created and the complex mapping µ is decomposed into
the mappings µ1 and µ2. The triple patterns t1 and t2 contain the classes ct1 and ct2 on
their subject part, respectively. The mapping of the class ct1 is provided by µ1, while the
mapping of the class ct2 is provided by µ2.

t1 = (ct1, owl : equivalentClass, ?x)

t2 = (ct2, owl : equivalentClass, ?x)

µ1 : ct1 ≡ trg : ComputerScience

µ2 : ct2 ≡ trg : Mathematics

Thus,

Ss
c (t, µ) = Ss

c (t1, µ1) AND Ss
c (t2, µ2)

The mappings µ1 and µ2 are of type cs → ct. Thus, using the parameters defined
above, as well as the function (7.9) for the rewriting of the triple patterns t1 and t2, the
initial triple pattern t is rewritten as follows:

Ss
c (t, µ) = Ss

c (t1, µ1) AND Ss
c (t2, µ2)

= (trg : ComputerScience, owl : equivalentClass, ?x) AND
(trg : Mathematics, owl : equivalentClass, ?x)
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Rewriting based on object property mapping. Let ops be an object property from
the source ontology which is mapped to an object property expression from the target
ontology. Having a Schema Triple Pattern t = (ops, predicate, object) with ops in its
subject part, an RDF/RDFS/OWL property in its predicate and anything in its object
part, we can rewrite it by its subject part, using a predefined mapping µ and the function
(7.10).

Ss
op(t, µ) =
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:

(opt, predicate, object) if µ : ops → opt

Ss
op(t1, µ1) UNION Ss

op(t2, µ2) if µ : ops → opt1 u opt2 and

predicate = rdfs : subPropertyOf ,

where t1 = (opt1, predicate, object),

µ1 : opt1 ≡ OPEt1,

and t2 = (opt2, predicate, object),

µ2 : opt2 ≡ OPEt2

Ss
op(t1, µ1) AND Ss

op(t2, µ2) if µ : ops → opt1{u | t}opt2 and

predicate ∈ SSP ′
p,

or if µ : ops → opt1 t opt2 and

predicate = rdfs : subPropertyOf ,

where t1 = (opt1, predicate, object),

µ1 : opt1 ≡ OPEt1,

and t2 = (opt2, predicate, object),

µ2 : opt2 ≡ OPEt2

(7.10)

Rewriting based on datatype property mapping. Let dps be a datatype property
from the source ontology which is mapped to a datatype property expression from the
target ontology. Having a Schema Triple Pattern t = (dps, predicate, object) with dps in
its subject part, an RDF/RDFS/OWL property in its predicate and anything in its object
part, we can rewrite it by its subject part, using a predefined mapping µ and the function
(7.11).
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Ss
dp(t, µ) =
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:

(dpt, predicate, object) if µ : dps → dpt

Ss
dp(t1, µ1) UNION Ss

dp(t2, µ2) if µ : dps → dpt1 u dpt2 and

predicate = rdfs : subPropertyOf ,

where t1 = (dpt1, predicate, object),

µ1 : dpt1 ≡ DPEt1,

and t2 = (dpt2, predicate, object),

µ2 : dpt2 ≡ DPEt2

Ss
dp(t1, µ1) AND Ss

dp(t2, µ2) if µ : dps → dpt1{u | t}dpt2 and

predicate ∈ SSP ′
p,

or if µ : dps → dpt1 t dpt2 and

predicate = rdfs : subPropertyOf ,

where t1 = (dpt1, predicate, object),

µ1 : dpt1 ≡ DPEt1,

and t2 = (dpt2, predicate, object),

µ2 : dpt2 ≡ DPEt2

(7.11)

The functions (7.10) and (7.11) are used similarly with the function (7.9), which per-
forms triple pattern rewriting by subject part, based on a class mapping.

Rewriting based on individual mapping. Let is be an individual from the source
ontology which is mapped to an individual it from the target ontology. Having a Schema
Triple Pattern t = (is, predicate, object) with is in its subject part, an RDF/RDFS/OWL
property in its predicate and anything in its object part, we can rewrite it by its subject
part, using a predefined mapping µ and the function (7.12).

Ss
i (t, µ) = (it, predicate, object) if µ : is ≡ it (7.12)

In Lemma 7.1 we summarize the functions presented in this section, which are used
for the rewriting of a Schema Triple Pattern based on a mapping for the triple pattern’s
subject part.

Lemma 7.1. Let is be an individual, cs be a class, ops be an object property and dps be
a datatype property from the source ontology. Having a Schema Triple Pattern t and a
predefined mapping µ for its subject part, we can rewrite it by its subject, by invoking the
function (7.13).



7.2. REWRITING BASED ON TRIPLE PATTERN’S OBJECT PART 93

Ss
∗(t, µ) =
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:

Ss
i (t, µ) if t = (is, predicate, object)

Ss
c (t, µ) if t = (cs, predicate, object)

Ss
op(t, µ) if t = (ops, predicate, object)

Ss
dp(t, µ) if t = (dps, predicate, object)

(7.13)

2

7.2 Rewriting based on triple pattern’s object part

Unlike the Data Triple Patterns, a property can appear in the object part of a Schema
Triple Pattern.

Rewriting based on class mapping. Let cs be a class from the source ontology which
is mapped to a class expression from the target ontology. Having a Schema Triple Pattern
t = (subject, predicate, cs) with cs in its object part, an RDF/RDFS/OWL property in
its predicate and anything in its subject part, we can rewrite it by its object part, using
a predefined mapping µ and the function (7.14).

So
c (t, µ) =
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:

(subject, predicate, ct) if µ : cs → ct

So
c (t1, µ1) UNION So

c (t2, µ2) if µ : cs → ct1 t ct2 and

predicate = rdfs : subClassOf ,

where t1 = (subject, predicate, ct1),

µ1 : ct1 ≡ CEt1,

and t2 = (subject, predicate, ct2),

µ2 : ct2 ≡ CEt2

So
c (t1, µ1) AND So

c (t2, µ2) if µ : cs → ct1{u | t}ct2 and

predicate ∈ SSP ′
c,

or if µ : cs → ct1 u ct2 and

predicate = rdfs : subClassOf ,

where t1 = (subject, predicate, ct1),

µ1 : ct1 ≡ CEt1,

and t2 = (subject, predicate, ct2),

µ2 : ct2 ≡ CEt2

(7.14)
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Example 7.6. Consider the query posed over the source ontology of Figure 4.1: “Return
the subclasses of the class Science”. The SPARQL syntax of the source query is shown
below:

@PREFIX src: <http://www.owl-ontologies.com/SourceOntology.owl#>.

@PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

SELECT ?x

WHERE {?x rdfs:subClassOf src:Science.}

In order to rewrite the SPARQL query for posing it over the target ontology of Fig-
ure 4.1, we have to rewrite the triple pattern t = (?x, rdfs : subClassOf, src : Science)
by its subject, predicate and object parts. Taking into consideration a mapping µ of the
triple pattern’s object part, the result of the triple pattern’s t rewriting by its object part
is provided by invoking the function (7.14).

t = (?x, rdfs : subClassOf, src : Science)

µ : src : Science ≡ trg : ComputerScience t trg : Mathematics

The mapping µ is of type cs → ct1tct2. Following the definition of the function (7.14),
two triple patterns t1 and t2 are created and the complex mapping µ is decomposed into
the mappings µ1 and µ2. The triple patterns t1 and t2 contain the classes ct1 and ct2 on
their object part, respectively. The mapping of the class ct1 is provided by µ1, while the
mapping of the class ct2 is provided by µ2.

t1 = (?x, rdfs : subClassOf, ct1)

t2 = (?x, rdfs : subClassOf, ct2)

µ1 : ct1 ≡ trg : ComputerScience

µ2 : ct2 ≡ trg : Mathematics

Thus,

So
c (t, µ) = So

c (t1, µ1) UNION So
c (t2, µ2)

The mappings µ1 and µ2 are of type cs → ct. Thus, using the parameters defined
above, as well as the function (7.14) for the rewriting of the triple patterns t1 and t2, the
initial triple pattern t is rewritten as follows:

So
c (t, µ) = So

c (t1, µ1) UNION So
c (t2, µ2)

= (?x, rdfs : subClassOf, trg : ComputerScience) UNION
(?x, rdfs : subClassOf, trg : Mathematics)
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Example 7.7. Consider the query posed over the source ontology of Figure 4.1: “Return
the subclasses of the class NewPublication”. The SPARQL syntax of the source query is
shown below:

@PREFIX src: <http://www.owl-ontologies.com/SourceOntology.owl#>.

@PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

SELECT ?x

WHERE {?x rdfs:subClassOf src:NewPublication.}

In order to rewrite the SPARQL query for posing it over the target ontology of
Figure 4.1, we have to rewrite the triple pattern t = (?x, rdfs : subClassOf, src :
NewPublication) by its subject, predicate and object parts. Taking into consideration a
mapping µ of the triple pattern’s object part, the result of the triple pattern’s t rewriting
by its object part is provided by invoking the function (7.14).

t = (?x, rdfs : subClassOf, src : NewPublication)

µ : src : NewPublication ≡ trg : Computing u trg : NewRelease

The mapping µ is of type cs → ct1uct2. Following the definition of the function (7.14),
two triple patterns t1 and t2 are created and the complex mapping µ is decomposed into
the mappings µ1 and µ2. The triple patterns t1 and t2 contain the classes ct1 and ct2 on
their object part, respectively. The mapping of the class ct1 is provided by µ1, while the
mapping of the class ct2 is provided by µ2.

t1 = (?x, rdfs : subClassOf, ct1)

t2 = (?x, rdfs : subClassOf, ct2)

µ1 : ct1 ≡ trg : Computing

µ2 : ct2 ≡ trg : NewRelease

Thus,

So
c (t, µ) = So

c (t1, µ1) AND So
c (t2, µ2)

The mappings µ1 and µ2 are of type cs → ct. Thus, using the parameters defined
above, as well as the function (7.14) for the rewriting of the triple patterns t1 and t2, the
initial triple pattern t is rewritten as follows:

So
c (t, µ) = So

c (t1, µ1) AND So
c (t2, µ2)

= (?x, rdfs : subClassOf, trg : Computing) AND
(?x, rdfs : subClassOf, trg : NewRelease)
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Example 7.8. Consider the query posed over the source ontology of Figure 4.1: “Return
the classes which have been specified to be disjoint with the class Science”. The SPARQL
syntax of the source query is shown below:

@PREFIX src: <http://www.owl-ontologies.com/SourceOntology.owl#>.

@PREFIX owl: <http://www.w3.org/2002/07/owl#>.

SELECT ?x

WHERE {?x owl:disjointWith src:Science.}

In order to rewrite the SPARQL query for posing it over the target ontology of Fig-
ure 4.1, we have to rewrite the triple pattern t = (?x, owl : disjointWith, src : Science)
by its subject, predicate and object parts. Taking into consideration a mapping µ of the
triple pattern’s object part, the result of the triple pattern’s t rewriting by its object part
is provided by invoking the function (7.14).

t = (?x, owl : disjointWith, src : Science)

µ : src : Science ≡ trg : ComputerScience t trg : Mathematics

The mapping µ is of type cs → ct1tct2. Following the definition of the function (7.14),
two triple patterns t1 and t2 are created and the complex mapping µ is decomposed into
the mappings µ1 and µ2. The triple patterns t1 and t2 contain the classes ct1 and ct2 on
their object part, respectively. The mapping of the class ct1 is provided by µ1, while the
mapping of the class ct2 is provided by µ2.

t1 = (?x, owl : disjointWith, ct1)

t2 = (?x, owl : disjointWith, ct2)

µ1 : ct1 ≡ trg : ComputerScience

µ2 : ct2 ≡ trg : Mathematics

Thus,

So
c (t, µ) = So

c (t1, µ1) AND So
c (t2, µ2)

The mappings µ1 and µ2 are of type cs → ct. Thus, using the parameters defined
above, as well as the function (7.14) for the rewriting of the triple patterns t1 and t2, the
initial triple pattern t is rewritten as follows:

So
c (t, µ) = So

c (t1, µ1) AND So
c (t2, µ2)

= (?x, owl : disjointWith, trg : ComputerScience) AND
(?x, owl : disjointWith, trg : Mathematics)
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Rewriting based on object property mapping. Let ops be an object property from
the source ontology which is mapped to an object property expression from the target
ontology. Having a Schema Triple Pattern t = (subject, predicate, ops) with ops in its
object part, an RDF/RDFS/OWL property in its predicate and anything in its subject
part, we can rewrite it by its object part, using a predefined mapping µ and the function
(7.15).

So
op(t, µ) =
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:

(subject, predicate, opt) if µ : ops → opt

So
op(t1, µ1) UNION So

op(t2, µ2) if µ : ops → opt1 t opt2 and

predicate = rdfs : subPropertyOf ,

where t1 = (subject, predicate, opt1),

µ1 : opt1 ≡ OPEt1,

and t2 = (subject, predicate, opt2),

µ2 : opt2 ≡ OPEt2

So
op(t1, µ1) AND So

op(t2, µ2) if µ : ops → opt1{u | t}opt2 and

predicate ∈ SSP ′
p,

or if µ : ops → opt1 u opt2 and

predicate = rdfs : subPropertyOf ,

where t1 = (subject, predicate, opt1),

µ1 : opt1 ≡ OPEt1,

and t2 = (subject, predicate, opt2),

µ2 : opt2 ≡ OPEt2

(7.15)

Rewriting based on datatype property mapping. Let dps be a datatype property
from the source ontology which is mapped to a datatype property expression from the
target ontology. Having a Schema Triple Pattern t = (subject, predicate, dps) with dps in
its object part, an RDF/RDFS/OWL property in its predicate and anything in its subject
part, we can rewrite it by its object part, using a predefined mapping µ and the function
(7.16).



98 CHAPTER 7. SCHEMA TRIPLE PATTERN REWRITING

So
dp(t, µ) =

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

(subject, predicate, dpt) if µ : dps → dpt

So
dp(t1, µ1) UNION So

dp(t2, µ2) if µ : dps → dpt1 t dpt2 and

predicate = rdfs : subPropertyOf ,

where t1 = (subject, predicate, dpt1),

µ1 : dpt1 ≡ DPEt1,

and t2 = (subject, predicate, dpt2),

µ2 : dpt2 ≡ DPEt2

So
dp(t1, µ1) AND So

dp(t2, µ2) if µ : dps → dpt1{u | t}dpt2 and

predicate ∈ SSP ′
p,

or if µ : dps → dpt1 u dpt2 and

predicate = rdfs : subPropertyOf ,

where t1 = (subject, predicate, dpt1),

µ1 : dpt1 ≡ DPEt1,

and t2 = (subject, predicate, dpt2),

µ2 : dpt2 ≡ DPEt2

(7.16)

The functions (7.15) and (7.16) are used similarly with the function (7.14), which
performs triple pattern rewriting by object part, based on a class mapping.

Rewriting based on individual mapping. Let is be an individual from the source
ontology which is mapped to an individual it from the target ontology. Having a Schema
Triple Pattern t = (subject, predicate, is) with is in its object part, an RDF/RDFS/OWL
property in its predicate and anything in its subject part, we can rewrite it by its object
part, using a predefined mapping µ and the function (7.17).

So
i (t, µ) = (subject, predicate, it) if µ : is ≡ it (7.17)

In Lemma 7.2 we summarize the functions presented in this section, which are used
for the rewriting of a Schema Triple Pattern based on a mapping for the triple pattern’s
object part.

Lemma 7.2. Let is be an individual, cs be a class, ops be an object property and dps be
a datatype property from the source ontology. Having a Schema Triple Pattern t and a
predefined mapping µ for its object part, we can rewrite it by its object, by invoking the
function (7.18).
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So
∗(t, µ) =
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:

So
i (t, µ) if t = (subject, predicate, is)

So
c (t, µ) if t = (subject, predicate, cs)

So
op(t, µ) if t = (subject, predicate, ops)

So
dp(t, µ) if t = (subject, predicate, dps)

(7.18)

2





Chapter 8

Graph pattern rewriting

In this chapter, we present the algorithms performing graph pattern rewriting, based
on a set of predefined mappings. Algorithm 1 takes as input a SPARQL query’s graph
pattern GPin, as well as a set of mappings M. Moreover, it uses Algorithm 2 in order to
perform triple pattern rewriting by exploiting mappings for a specific triple pattern part
(i.e. subject, predicate, or object), according to a specified parameter.

In the first step, the algorithm rewrites every FILTER expression inside the graph pat-
tern (line 2). The SPARQL variables, literal constants, operators (&&, ‖, !, =, ! =, >,
<, >=, <=, +, −, ∗, /) and built-in functions (e.g. bound, isIRI, isLiteral, datatype,
lang, str, regex) which may appear inside a FILTER expression remain the same dur-
ing the rewriting process. For class IRIs and property IRIs which may appear inside a
FILTER expression of a SPARQL query, we use 1:1 cardinality mappings for the expression
rewriting. This poses a minor limitation, considering that an IRI can appear inside a
FILTER expression only for equality and inequality operations. Thus, the rewriting of a
FILTER expression is performed by substituting any IRIs that refer to a class, property, or
individual, according to the specified mappings.

Then, the algorithm rewrites the graph pattern triple pattern by triple pattern, using
the mappings of the triple patterns’ predicate parts (line 3). Similarly, it rewrites the
resulted graph pattern, using the mappings of the triple patterns’ object parts (line 4)
and then using the mappings of the triple patterns’ subject parts (line 5). Finally, after
removing any unnecessary brackets (line 6) the resulted graph pattern (line 7) is ready
to replace the graph pattern of the initial query which has been posed over the source
ontology, in order for the resulted query to be posed over the target ontology.

Algorithm 2 rewrites the triple patterns of a graph pattern, using mappings for a
specific triple pattern part, as well as the Data and Schema Triple Pattern rewriting
functions presented in Chapter 6 and Chapter 7, respectively. It takes as input a SPARQL
graph pattern GPin, a set of mappingsM, as well as the triple pattern part x which will
be used for the rewriting. The initial graph pattern’s operators (AND, UNION, OPTIONAL,
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Algorithm 1 Graph Pattern Rewriting (GPin: input graph pattern,M: mapping set)
1: let GPout be the rewriting result of GPin

2: GPout ← GPin after replacing any user defined IRIs (class, property, individual) inside
FILTER expressions using the 1:1 cardinality mappings ofM

3: GPout ← Triple Pattern Rewriting (GPout, M, predicate)
4: GPout ← Triple Pattern Rewriting (GPout, M, object)
5: GPout ← Triple Pattern Rewriting (GPout, M, subject)
6: GPout ← GPout after removing any unnecessary brackets
7: return GPout

FILTER) remain the same during the rewriting process, while SPARQL variables, blank
nodes, literal constants and RDF/RDFS/OWL IRIs which may appear in a triple pattern
part do not affect the rewriting procedure. This means that the SPARQL variables of the
initial query appear also in the rewritten query.

Example 8.1. Consider the query posed over the source ontology of Figure 4.1: “Return
the ids of the products named Linux”. The SPARQL syntax of the source query is shown
below:

@PREFIX src: <http://www.ontologies.com/SourceOntology.owl#>.

@PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

SELECT ?id

WHERE {?x rdf:type src:Product.

?x src:id ?id.

?x src:name ?name.

FILTER(?name="Linux")}

In order to rewrite the SPARQL query’s graph pattern GPin, Algorithm 1, as well as
a set of predefined mappings M should be used. Let the available predefined mappings
be the mappings µ1, µ2 and µ3 presented below. The inputs of Algorithm 1 are GPin and
M.

GPin = (?x, rdf : type, src : Product) AND (?x, src : id, ?id) AND
(?x, src : name, ?name) FILTER(?name = “Linux”)

M =


µ1 : src : Product w trg : Textbook,

µ2 : src : id w trg : isbn,

µ3 : src : name w trg : title


GPin contains a FILTER operation which does not affect the rewriting procedure since

the filter’s expression consists of SPARQL variables and literal constants. Consequently,
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Algorithm 2 Triple Pattern Rewriting (GPin: input graph pattern,M: mapping set, x:
triple pattern part)
Require: x ∈ {subject, predicate, object}
1: let x(t) be the x part of a triple pattern t
2: let relax(µ) be the relaxed form of mapping µ
3: let GPout be the rewriting result of GPin

4: for each basic graph pattern BGP in GPin do
5: let GPtemp1 be the rewriting result of BGP
6: for each triple pattern t in BGP do
7: let GPtemp2 be the rewriting result of t
8: if x(t) is a variable, a blank node, a literal constant, or an RDF/RDFS/OWL

property then
9: GPtemp2 ← t

10: else
11: if t ∈ DTP then {in case that t is a Data Triple Pattern}
12: if x = subject then
13: let µs ∈M be the mapping of t’s subject
14: GPtemp2 ← Ds

∗(t, µs)
15: else if x = predicate then
16: let µp ∈M be the mapping of t’s predicate
17: GPtemp2 ← Dp

∗(t, µp)
18: else
19: let µo ∈M be the mapping of t’s object
20: GPtemp2 ← Do

∗(t, µo)
21: end if
22: else {in case that t is a Schema Triple Pattern}
23: if x = subject then
24: let µs ∈M be the mapping of t’s subject
25: µ′

s ← relax(µs)
26: GPtemp2 ← Ss

∗(t, µ
′
s)

27: else
28: if x = object then
29: let µo ∈M be the mapping of t’s object
30: µ′

o ← relax(µo)
31: GPtemp2 ← So

∗(t, µo)
32: end if
33: end if
34: end if
35: end if
36: GPtemp1 ← GPtemp1 after appending GPtemp2

37: end for
38: GPtemp1 ← GPtemp1 after applying any filters according to the BGP form
39: GPtemp1 ← {GPtemp1} after applying any brackets in order to form the graph

pattern precendence according to the GPin form
40: GPout ← GPout after appending GPtemp1

41: GPout ← GPout after appending any operators/filters to the rewritten graph pattern
according to the GPin form

42: end for
43: return GPout
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the algorithm proceeds to the invocation of Algorithm 2 (step 3) in order to rewrite each
triple pattern of GPin, using the mappings of the triple patterns’ predicate parts. The
input of Algorithm 2 is the initial graph pattern GPin, as well as the set of mappingsM.

The graph pattern GPin, is actually a basic graph pattern since it consists of a triple
pattern sequence followed by a FILTER operation. Algorithm 2 rewrites the basic graph
pattern GPin triple pattern by triple pattern, using the mappings of the triple patterns’
predicate parts. The triple pattern t1 = (?x, rdf : type, src : Product) remains the same
after the rewriting process, since its predicate part consists of the RDF property rdf : type.
On the contrary, the rewriting result of the triple pattern t2 = (?x, src : id, ?id), as well
as the rewriting result of the triple pattern t3 = (?x, src : name, ?name) are provided by
invoking the function (6.11).

Dp
∗(t2, µ2) = Dp

dp((?x, src : id, ?id), µ2)

= (?x, trg : isbn, ?id)

Dp
∗(t3, µ3) = Dp

dp((?x, src : name, ?name), µ3)

= (?x, trg : title, ?name)

Consequently, the output of Algorithm 2 is a graph pattern, having its triple patterns
rewritten by their predicate part and is presented below:

GPp = (?x, rdf : type, src : Product) AND (?x, trg : isbn, ?id) AND
(?x, trg : title, ?name) FILTER(?name = “Linux”)

Then, Algorithm 1 uses Algorithm 2 in order to rewrite the triple patterns of GPp by
their object parts (step 4). All the triple patterns except of t1 remain the same, since they
contain a SPARQL variable on their object part. The rewriting result of the triple pattern
t1, is provided by invoking the function (6.8).

Do
∗(t1, µ1) = Do

c((?x, rdf : type, src : Product), µ1)

= (?x, rdf : type, trg : Textbook)

Consequently, the output of second invocation of Algorithm 2 is a graph pattern, having
its triple patterns rewritten by their object part and is presented below:

GPo = (?x, rdf : type, trg : Textbook) AND (?x, trg : isbn, ?id) AND
(?x, trg : title, ?name) FILTER(?name = “Linux”)
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Finally, Algorithm 1 proceeds to step 5 (Algorithm 2 invocation) in order to rewrite
the triple patterns of GPo by their subject parts. However, the resulted graph patern GPs

is the same with GPo, since every triple pattern of GPo contains a SPARQL variable in
its subject part.

GPs = (?x, rdf : type, trg : Textbook) AND (?x, trg : isbn, ?id) AND
(?x, trg : title, ?name) FILTER(?name = “Linux”)

After removing any unnecessary brackets from GPs (step 6), the rewritten SPARQL
query is provided by replacing the initial query’s graph pattern with GPs. Consequently,
the SPARQL query which will be posed over the target ontology of Figure 4.1, is presented
below:

@PREFIX trg: <http://www.ontologies.com/TargetOntology.owl#>.

@PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

SELECT ?id

WHERE {?x rdf:type trg:Textbook.

?x trg:isbn ?id.

?x trg:title ?name.

FILTER(?name="Linux")}

Example 8.2. Consider the query posed over the source ontology of Figure 4.1: “Return
the individuals of every class which is specified to be subclass of the class NewPublication”.
The SPARQL syntax of the source query is shown below:

@PREFIX src: <http://www.ontologies.com/SourceOntology.owl#>.

@PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

@PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

SELECT ?x

WHERE {?x rdf:type ?y.

?y rdfs:subClassOf src:NewPublication.}

In order to rewrite the SPARQL query’s graph pattern GPin, Algorithm 1, as well as
a set of predefined mappings M should be used. Let the available predefined mappings
be the mapping µ presented below. The inputs of Algorithm 1 are GPin andM.

GPin = (?x, rdf : type, ?y) AND (?x, rdfs : subClassOf, src : Science)
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M =
{

µ : src : NewPublication ≡ trg : Computing u trg : NewRelease
}

GPin does not contain any FILTER operations, thus the algorithm proceeds to the
invocation of Algorithm 2 (step 3) in order to rewrite each triple pattern of GPin, using
the mappings of the triple patterns’ predicate parts. The input of Algorithm 2 is the initial
graph pattern GPin, as well as the set of mappingsM.

The graph pattern GPin, is actually a basic graph pattern since it consists of a triple
pattern sequence. Algorithm 2 rewrites the basic graph pattern GPin triple pattern by
triple pattern, using the mappings of the triple patterns’ predicate parts. However, all the
triple patterns remain the same, since they contain an RDF/S property on their predicate
part. Consequently, the output of Algorithm 2 is presented below:

GPp = (?x, rdf : type, ?y) AND (?y, rdfs : subClassOf, src : NewPublication)

Then, Algorithm 1 uses Algorithm 2 in order to rewrite the triple patterns of GPp

by their object parts (step 4). The rewriting result of the triple pattern t2 = (?y, rdfs :
subClassOf, src : NewPublication), is provided by invoking the function (7.18), while
the triple pattern t1 = (?x, rdf : type, ?y) remains the same, since it contains a SPARQL
variable on its object part.

So
∗(t2, µ) = So

c ((?y, rdfs : subClassOf, src : NewPublication), µ)

= (?y, rdfs : subClassOf, trg : Computing) AND
(?y, rdfs : subClassOf, trg : NewRelease)

Consequently, the output of the second invocation of Algorithm 2 is a graph pattern,
having its triple patterns rewritten by their object part and is presented below:

GPo = (?x, rdf : type, ?y) AND
(?y, rdfs : subClassOf, trg : Computing) AND
(?y, rdfs : subClassOf, trg : NewRelease)

Finally, Algorithm 1 proceeds to step 5 (Algorithm 2 invocation) in order to rewrite
the triple patterns of GPo by their subject parts. However, the resulted graph patern GPs

is the same with GPo, since every triple pattern of GPo contains a SPARQL variable in
its subject part.

GPs = (?x, rdf : type, ?y) AND
(?y, rdfs : subClassOf, trg : Computing) AND
(?y, rdfs : subClassOf, trg : NewRelease)
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After removing any unnecessary brackets from GPs (step 6), the rewritten SPARQL
query is provided by replacing the initial query’s graph pattern with GPs. Consequently,
the SPARQL query which will be posed over the target ontology of Figure 4.1, is presented
below:

@PREFIX trg: <http://www.ontologies.com/TargetOntology.owl#>.

@PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

@PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

SELECT ?x

WHERE {?x rdf:type ?y.

?y rdfs:subClassOf trg:Computing.

?y rdfs:subClassOf trg:NewRelease.}

Example 8.3. Consider the query posed over the source ontology of Figure 4.1: “Return
the titles of the pocket-sized scientific books”. The SPARQL syntax of the source query
is shown below:

@PREFIX src: <http://www.ontologies.com/SourceOntology.owl#>.

@PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

SELECT ?name

WHERE {?x src:name ?name.

?x rdf:type src:Science.

?x rdf:type src:Pocket.}

In order to rewrite the SPARQL query’s graph pattern GPin, Algorithm 1, as well as
a set of predefined mappings M should be used. Let the available predefined mappings
be the mappings µ1, µ2 and µ3 presented below. The inputs of Algorithm 1 are GPin and
M.

GPin = (?x, src : name, ?name) AND (?x, rdf : type, src : Science)
AND (?x, rdf : type, src : Pocket)

M =


µ1 : src : name w trg : title,

µ2 : src : Science ≡ trg : ComputerScience t trg : Mathematics,

µ3 : src : Pocket ≡ ∀trg : Textbook.(trg : size ≤ 14)


GPin does not contain any FILTER operations, thus the algorithm proceeds to the

invocation of Algorithm 2 (step 3) in order to rewrite each triple pattern of GPin, using
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the mappings of the triple patterns’ predicate parts. The input of Algorithm 2 is the initial
graph pattern GPin, as well as the set of mappingsM.

The graph pattern GPin, is actually a basic graph pattern since it consists of a triple
pattern sequence. Algorithm 2 rewrites the basic graph pattern GPin triple pattern by
triple pattern, using the mappings of the triple patterns’ predicate parts. The triple
patterns t2 = (?x, rdf : type, src : Science) and t3 = (?x, rdf : type, src : Pocket) remain
the same since their predicate parts consist of the RDF property rdf : type. On the
contrary, the rewriting result of the triple pattern t1 = (?x, src : name, ?name), is provided
by invoking the function (6.11).

Dp
∗(t1, µ1) = Dp

dp((?x, src : name, ?name), µ1)

= (?x, trg : title, ?name)

Consequently, the output of Algorithm 2 is a graph pattern, having its triple patterns
rewritten by their predicate part and is presented below:

GPp = (?x, trg : title, ?name) AND (?x, rdf : type, src : Science)
AND (?x, rdf : type, src : Pocket)

Then, Algorithm 1 uses Algorithm 2 in order to rewrite the triple patterns of GPp by
their object parts (step 4). All the triple patterns except of t2 and t3 remain the same,
since they contain a SPARQL variable on their object part. The rewriting result of the
triple patterns t2 and t3, is provided by invoking the function (6.8).

Do
∗(t2, µ2) = Do

c((?x, rdf : type, src : Science), µ2)

= (?x, rdf : type, trg : ComputerScience)
UNION (?x, rdf : type, trg : Mathematics)

Do
∗(t3, µ3) = Do

c((?x, rdf : type, src : Pocket), µ3)

= (?x, rdf : type, trg : Textbook)
AND (?x, trg : size, ?var) FILTER(?var ≤ 14)

Consequently, the output of the second invocation of Algorithm 2 is a graph pattern,
having its triple patterns rewritten by their object part and is presented below:
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GPo = (?x, trg : title, ?name) AND(
(?x, rdf : type, trg : ComputerScience) UNION

(?x, rdf : type, trg : Mathematics)
)

AND (?x, rdf : type, trg : Textbook)
AND(?x, trg : size, ?var) FILTER(?var ≤ 14)

Finally, Algorithm 1 proceeds to step 5 (Algorithm 2 invocation) in order to rewrite
the triple patterns of GPo by their subject parts. However, the resulted graph patern GPs

is the same with GPo, since every triple pattern of GPo contains a SPARQL variable in
its subject part.

GPs = (?x, trg : title, ?name) AND(
(?x, rdf : type, trg : ComputerScience) UNION

(?x, rdf : type, trg : Mathematics)
)

AND (?x, rdf : type, trg : Textbook)
AND(?x, trg : size, ?var) FILTER(?var ≤ 14)

After removing any unnecessary brackets from GPs (step 6), the rewritten SPARQL
query is provided by replacing the initial query’s graph pattern with GPs. Consequently,
the SPARQL query which will be posed over the target ontology of Figure 4.1, is presented
below:

@PREFIX trg: <http://www.ontologies.com/TargetOntology.owl#>.

@PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

SELECT ?name

WHERE {?x trg:title ?name.

{?x rdf:type trg:ComputerScience}
UNION

{?x rdf:type trg:Mathematics}
?x rdf:type trg:Textbook.

?x trg:size ?var.

FILTER(?var <= 14)}

Example 8.4. Consider the query posed over the source ontology of Figure 4.1: “Return
the titles (at most 10) of the poetry or autobiography books written by Dante”. The
SPARQL syntax of the source query is shown below:

@PREFIX src: <http://www.ontologies.com/SourceOntology.owl#>.

@PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
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SELECT ?name

WHERE {{?x rdf:type src:Poetry}
UNION

{?x rdf:type src:Autobiography}
?x src:author ?author.

?x src:name ?name.

FILTER regex(?author, "Dante")}
LIMIT 10

In order to rewrite the SPARQL query’s graph pattern GPin, Algorithm 1, as well as
a set of predefined mappings M should be used. Let the available predefined mappings
be the mappings µ1, µ2, µ3 and µ4 presented below. The inputs of Algorithm 1 are GPin

andM.

GPin =
(
(?x, rdf : type, src : Poetry) UNION (?x, rdf : type, src : Autobiography)

)
AND (?x, src : author, ?author) AND (?x, src : name, ?name)
FILTER (regex(?author, ”Dante”))

M =


µ1 : src : Poetry v trg : Literature,

µ2 : src : Autobiography ≡ ∀trg : Biography.(trg : author = trg : topic),
µ3 : src : author ≡ trg : author ◦ trg : name,

µ4 : src : name w trg : title


GPin contains a FILTER operation which does not affect the rewriting procedure since

the filter’s expression consists of SPARQL variables, literal constants and built-in func-
tions. Consequently, the algorithm proceeds to the invocation of Algorithm 2 (step 3) in
order to rewrite each triple pattern of GPin, using the mappings of the triple patterns’
predicate parts. The input of Algorithm 2 is the initial graph pattern GPin, as well as the
set of mappings M.

Algorithm 2 rewrites every basic graph pattern of GPin triple pattern by triple pat-
tern, using the mappings of the triple patterns’ predicate parts. The triple patterns
t1 = (?x, rdf : type, src : Poetry) and t2 = (?x, rdf : type, src : Autobiography) re-
main the same after the rewriting process, since their predicate part consists of the
RDF property rdf : type. On the contrary, the rewriting result of the triple pattern
t3 = (?x, src : author, ?author), as well as the rewriting result of the triple pattern
t4 = (?x, src : name, ?name) are provided by invoking the function (6.11).
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Dp
∗(t3, µ3) = Dp

dp((?x, src : author, ?author), µ3)

= (?x, trg : author, ?var) AND
(?var, trg : name, ?author)

Dp
∗(t4, µ4) = Dp

dp((?x, src : name, ?name), µ4)

= (?x, trg : title, ?name)

Consequently, the output of Algorithm 2 is a graph pattern, having its triple patterns
rewritten by their predicate part and is presented below:

GPp =
(
(?x, rdf : type, src : Poetry) UNION (?x, rdf : type, src : Autobiography)

)
AND (?x, trg : author, ?var1) AND (?var1, trg : name, ?author)
AND (?x, trg : title, ?name) FILTER(regex(?author, ”Dante”))

Then, Algorithm 1 uses Algorithm 2 in order to rewrite the triple patterns of GPp by
their object parts (step 4). All the triple patterns except of t1 and t2 remain the same,
since they contain a SPARQL variable on their object part. The rewriting result of the
triple patterns t1 and t2, is provided by invoking the function (6.8).

Do
∗(t1, µ1) = Do

c((?x, rdf : type, src : Poetry), µ1)

= (?x, rdf : type, trg : Literature)

Do
∗(t2, µ2) = Do

c((?x, rdf : type, src : Autobiography), µ2)

= (?x, rdf : type, trg : Biography) AND
(?x, trg : author, ?var2) AND
(?x, trg : topic, ?var3) FILTER(?var2 =?var3)

Consequently, the output of second invocation of Algorithm 2 is a graph pattern, having
its triple patterns rewritten by their object part and is presented below:

GPo =
(
(?x, rdf : type, trg : Literature) UNION

(
(?x, rdf : type, trg : Biography)

AND (?x, trg : author, ?var2) AND (?x, trg : topic, ?var3)

FILTER(?var2 =?var3)
))

AND (?x, trg : author, ?var1)

AND (?var1, trg : name, ?author) AND (?x, trg : title, ?name)
FILTER (regex(?author, ”Dante”))
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Finally, Algorithm 1 proceeds to step 5 (Algorithm 2 invocation) in order to rewrite
the triple patterns of GPo by their subject parts. However, the resulted graph patern GPs

is the same with GPo, since every triple pattern of GPo contains a SPARQL variable in
its subject part.

GPs =
(
(?x, rdf : type, trg : Literature) UNION

(
(?x, rdf : type, trg : Biography)

AND (?x, trg : author, ?var2) AND (?x, trg : topic, ?var3)

FILTER(?var2 =?var3)
))

AND (?x, trg : author, ?var1)

AND (?var1, trg : name, ?author) AND (?x, trg : title, ?name)
FILTER (regex(?author, ”Dante”))

After removing any unnecessary brackets from GPs (step 6), the rewritten SPARQL
query is provided by replacing the initial query’s graph pattern with GPs. Consequently,
the SPARQL query which will be posed over the target ontology of Figure 4.1, is presented
below:

@PREFIX trg: <http://www.ontologies.com/TargetOntology.owl#>.

@PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

SELECT ?name

WHERE {{?x rdf:type trg:Literature}
UNION

{?x rdf:type trg:Biography.

?x trg:author ?var_2.

?x trg:name ?var_3.

FILTER(?var_2 = ?var_3)}
?x trg:author ?var_1.

?var_1 trg:name ?author.

?x trg:title ?name.

FILTER regex(?author, "Dante")}
LIMIT 10



Chapter 9

Implementation

The SPARQL query rewriting methodology presented in this thesis has been implemented
as part of a Semantic Query Mediation Prototype Infrastructure developed in the TUC-
MUSIC Lab. The system has been implemented using Java 2SE as a software platform,
and the Jena Software framework for SPARQL query parsing. The architecture of this
infrastructure is shown in Figure 9.1 where many of the Mediator’s implementation details
are not presented for simplicity reasons.

Figure 9.1: System reference architecture.

For each federated source, a dedicated Query Rewriting component is dynamically
created by a Query Rewriting Factory. Such a component is able to rewrite an input
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SPARQL query based on some predefined mappings. As a representation language for the
mappings between two overlapping ontologies we use the language presented in Section 4.4.

During the system’s start-up each component is initialized with the mappings between
the mediator’s global ontology and the (local) ontology used in the federated source for
which this component is responsible.

At run time, when a SPARQL query is posed to the Mediator, it is processed, de-
composed, and rewritten for each federated source by the corresponding query rewriting
component. Afterwards, the rewritten queries are submitted (routed) to the federated
sites for local evaluation. Finally, the returned results from the local sources (to which
queries have been routed to) are merged, and optionally visualized (taking into account
which part of the initial SPARQL query was answered by each resource) for presentation
to the end users.



Chapter 10

Conclusion

The web of data is heterogeneous, distributed and structured. Querying mechanisms
in this environment have to overcome the problems arising from the heterogeneous and
distributed nature of data, and they have to allow the expression of complex and structured
queries. The ontology mappings and SPARQL query mediation presented in this thesis
aim to satisfy those requirements in the Semantic Web environment.

The mediator uses mappings between the global ontology of the mediator and the local
ontologies of the federated knowledge bases. SPARQL queries of end users and applications
which are posed over the mediator, are decomposed and rewritten in order to be submitted
to the federated sources. The rewritten SPARQL queries are locally evaluated and the
results are returned to the mediator. Two aspects of this system were discussed in this
thesis:

• A formal model for describing executable ontology mappings (i.e. mappings which
can be used in SPARQL query rewriting) that satisfy real-world requirements. We
have presented a mapping model that allows the definition of a rich set of ontology
mappings and we have shown real-world examples of its functionality.

• A complete set of SPARQL query rewriting functions and algorithms that allow
SPARQL queries which are expressed based on the mediator’s global ontology to be
rewritten in terms of the local ontologies. These functions are semantics preserving
(i.e. preserve the mapping semantics).

Our current research focuses on the exploitation of N:M cardinality mappings by the
query rewriting process, evaluating the system performance and exploiting advanced rea-
soning techniques during the query rewriting. Moreover, we aim to develop methodologies
for the optimization of the query mediation process, as well as a graphical tool for mapping
specification and automation of the mapping generation. Finally, this work is going to be
integrated with the XS2OWL [40] and SPARQL2XQuery [6] frameworks (previous works
of the TUC-MUSIC Lab), in order to allow access to heterogeneous web repositories.
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Appendix A

Semantics of property

relationships

A.1 Equivalence/subsumption between properties in

OWL

Lemma A.1. The subsumption between two properties using the RDFS property rdfs :
subPropertyOf implies subsumption between their domains, as well as subsumption be-
tween their ranges.

Proof. Let p1, p2 be object/datatype properties with domains domainp1 , domainp2 and
ranges rangep1 , rangep2 , respectively. The subsumption between these two properties
(p1 v p2) is interpreted in OWL by using the RDF triple (p1, rdfs : subPropertyOf, p2).
Considering that α ∈ domainp1 and b ∈ rangep1 , each RDF triple of the form (α, p1, b)
implies the RDF triple (α, p2, b).

Consequently, for the correspondences between the domains and ranges of the proper-
ties p1 and p2, we reach the following conclusions:

• ∀x, [domainp1(x)⇒ domainp2(x)], thus: domainp1 v domainp2

• ∀y, [rangep1(y)⇒ rangep2(y)], thus: rangep1 v rangep2

Lemma A.2. The equivalence between two properties using the OWL property owl :
equivalentProperty implies equivalence between their domains, as well as equivalence be-
tween their ranges.

Proof. Let p1, p2 be object/datatype properties with domains domainp1 , domainp2 and
ranges rangep1 , rangep2 , respectively. The equivalence between these two properties (p1 ≡
p2) is interpreted in OWL by using the RDF triple (p1, owl : equivalentProperty, p2),
which indirectly implies the following RDF triples:
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1. (p1, rdfs : subPropertyOf, p2)

2. (p2, rdfs : subPropertyOf, p1)

Let α ∈ domainp1 , b ∈ rangep1 , c ∈ domainp2 and d ∈ rangep2 , the RDF triples
above, provide the following implications:

1. Each RDF triple of the form (α, p1, b) implies the RDF triple (α, p2, b).

2. Each RDF triple of the form (c, p2, d) implies the RDF triple (c, p1, d).

Consequently, for the correspondences between the domains and ranges of the proper-
ties p1 and p2, we reach the following conclusions:

• ∀x, [domainp1(x)⇔ domainp2(x)], thus: domainp1 ≡ domainp2

• ∀y, [rangep1(y)⇔ rangep2(y)], thus: rangep1 ≡ rangep2

A.2 Equivalence/subsumption between properties in

our framework

Among the mapping types defined in Section 4.3, there are correspondences between prop-
erties and property expressions. The statements below are directly implied by the seman-
tics presented in Section 4.2.

Lemma A.3. An object property expression is an object property, having its domain and
range dependent on the expression’s type. 2

Lemma A.4. A datatype property expression is a datatype property, having its domain
and range dependent on the expression’s type. 2

Taking into consideration the OWL equivalence and subsumption semantics between
properties (presented in Section A.1), as well as the fact that a property expression is
actually a property having a domain and range, we reach the following conclusions which
are also adapted in our framework:

• The subsumption (v, w) between a property and a property expression implies
subsumption between their domains, as well as subsumption between their ranges.

• The equivalence (≡) between a property and a property expression implies equiva-
lence between their domains, as well as equivalence between their ranges.



Appendix B

Preservation of semantics in

Data Triple Pattern rewriting

In this appendix we provide the proofs of lemmas presented in Chapter 6 for the preser-
vation of semantics in Data Triple Pattern rewriting. Refer to Table B.1 for the notation,
as well as to Section 2.3.5 for the SPARQL graph pattern semantics, since they are used
extensively in this appendix.

In what follows, let DSs and DSt be the RDF datasets of a source and a target ontology,
respectively. Similarly, let DSm be the RDF dataset which is produced by merging [30]
the DSs and DSt datasets using a set of mappings M. Let I be the interpretation that
consists of the non-empty set ∆I , and contains the classes, the object/datatype properties
and the individuals of the RDF dataset DSm. The interpretation I consists also of an
interpretation function which assigns to every atomic concept A a set AI ⊆ ∆I , to every
atomic role B a binary relation BI ⊆ ∆I × ∆I and to every individual k an element
kI ∈ ∆I (based on [2]).

Definition B.1 (Semantics preserving rewriting). Given a complete set (i.e. a set
that contains every possible mapping) of sound (i.e. valid) mappingsM between DSs and
DSt, the rewriting step performed for a triple pattern t, based on a mapping µ ∈ M, is
semantics preserving if and only if the evaluation result of t and the evaluation result of
the rewritten graph pattern gp′ over DSm, preserve the mapping semantics.

In other words, having a set J = var(t) of SPARQL variables, the relationship (≡,
v, w) that holds for the mappings used in the rewriting process, should also hold between
[[t]]DSm and [[gp′]]DSm projected on J .

[[t]]DSm rel πJ

`

[[gp′]]DSm

´

, rel := ≡ | v | w (B.1)
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J = var(t) ∩ var(gp′) = var(t) (B.2)

Table B.1: The notation which is used for the Data triple pattern rewriting proofs.

Notation Description

ω A graph pattern solution ω : V → (I ∪B ∪L).
dom(ω) Domain of a graph pattern solution ω (subset

of V ).
ω(t) The triple obtained by replacing the variables

in triple pattern t according to a graph pattern
solution ω (abusing notation).

ωs(t) The subject part of the triple obtained by re-
placing the variables in triple pattern t accord-
ing to a graph pattern solution ω.

ωp(t) The predicate part of the triple obtained by
replacing the variables in triple pattern t ac-
cording to a graph pattern solution ω.

ωo(t) The object part of the triple obtained by re-
placing the variables in triple pattern t accord-
ing to a graph pattern solution ω.

ω |= R A graph pattern solution ω satisfies a built-in
condition R.

[[·]] Graph pattern evaluation function.
var(GP ) The variables of a graph pattern GP .
|><| Graph pattern solution-based join.
d|><| Graph pattern solution-based left outer join.
\ Graph pattern solution-based difference.
π{... } Graph pattern solution-based projection.
∪ Graph pattern solution-based union.
∩ Set intersection.
AND, OPT, UNION, FILTER SPARQL graph pattern operators.
¬, ∨, ∧ Logical not, or, and.
=, ≤, ≥, <, > Inequality/equality operators.

Proof Overview. The proofs presented in this appendix refer to Data Triple Patterns
and follow a common approach. We consider mappings containing equivalence relationship
(≡) and we do not provide the proofs for the other mapping types since the approach is
very similar for all types.

Let t be the initial triple pattern, gp′ be the rewritten graph pattern and J the set
of SPARQL variables appearing in t. First, we use the mapping semantics in order to
show that every graph pattern solution of t over the RDF dataset DSm is a graph pattern
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solution of gp′ over DSm, for the common graph pattern solution domain J = var(t),
inferring that:

[[t]]DSm v πJ

`

[[gp′]]DSm

´

(B.3)

Then, we show that every graph pattern solution of gp′ over the RDF dataset DSm is
a graph pattern solution of t over DSm, for the common graph pattern solution domain J ,
inferring that:

[[t]]DSm w πJ

`

[[gp′]]DSm

´

(B.4)

From (B.3) and (B.4) we derive that [[t]]DSm ≡ πJ

(
[[gp′]]DSm

)
. Considering that

the mapping used for the rewriting process has the same relationship (equivalence), we
conclude the proof. Similarly, for mapping types containing subsumption relationships
(v, w), we reach either to (B.3) or to (B.4) using the mapping semantics, proving that
the rewriting step is semantics preserving (i.e. preserves the mappings semantics).

B.1 Proof of Lemma 6.1

In this section, we prove that the rewriting step performed for a Data Triple Pattern, based
on a mapping of its subject part, is semantics preserving. According to Lemma 6.1, the
only case that we examine concerns individuals appearing in the triple pattern’s subject
part.

Let is be an individual from the source ontology, t = (is, predicate, object) be a Data
Triple Pattern and J be the set of SPARQL variables appearing in t. The evaluation of
the triple pattern t over the RDF dataset DSm is presented below:

[[t]]DSm = [[(is, predicate, object)]]DSm

We consider the following case:

1. Let it be an individual from the target ontology. Having a mapping µ : is ≡ it

(i.e. iIs ≡ iIt ) the rewritten (based on t’s subject part) graph pattern gp′ and its
evaluation over the RDF dataset DSm are the following:

gp′ = Di
s(t, µ) = (it, predicate, object)

[[gp′]]DSm = [[(it, predicate, object)]]DSm
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We consider two premises:

(a) ∀ω ∈ [[t]]DSm : ∃x,∃y, such that (is, x, y) ∈ DSm, ωp(t) = x and ωo(t) = y.
Moreover, since is ≡ it then (it, x, y) ∈ DSm, inferring that ω ∈ πJ

(
[[gp′]]DSm

)
.

(b) ∀ω ∈ πJ

(
[[gp′]]DSm

)
: ∃x,∃y, such that (it, x, y) ∈ DSm, ωp(gp′) = x and

ωo(gp′) = y. Moreover, since is ≡ it then (is, x, y) ∈ DSm, inferring that
ω ∈ [[t]]DSm .

From the two premises above, we conclude that:

[[t]]DSm ≡ πJ

(
[[gp′]]DSm

)

This concludes the proof that the rewriting step of a Data Triple Pattern, based on a
mapping of its subject part, is semantics preserving.

B.2 Proof of Lemma 6.2

In this section, we prove that the rewriting step performed for a Data Triple Pattern,
based on a mapping of its object part, is semantics preserving. According to Lemma 6.2,
the only cases that we examine concern individuals and classes appearing in the triple
pattern’s object part.

To begin with, we prove that the rewriting step performed for a Data Triple Pattern,
based on an individual mapping of its object part, is semantics preserving. Let is be an
individual from the source ontology, t = (subject, predicate, is) be a Data Triple Pattern
and J be the set of SPARQL variables appearing in t. The evaluation of the triple pattern
t over the RDF dataset DSm is presented below:

[[t]]DSm = [[(subject, predicate, is)]]DSm

We consider the following case:

1. Let it be an individual from the target ontology. Having a mapping µ : is ≡ it

(i.e. iIs = iIt ), the rewritten (based on t’s object part) graph pattern gp′ and its
evaluation over the RDF dataset DSm are the following:

gp′ = Di
o(t, µ) = (subject, predicate, it)

[[gp′]]DSm = [[(subject, predicate, it)]]DSm
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We consider two premises:

(a) ∀ω ∈ [[t]]DSm : ∃x,∃y, such that (x, y, is) ∈ DSm, ωs(t) = x and ωp(t) = y.
Moreover, since is ≡ it then (x, y, it) ∈ DSm, inferring that ω ∈ πJ

(
[[gp′]]DSm

)
.

(b) ∀ω ∈ πJ

(
[[gp′]]DSm

)
: ∃x,∃y, such that (x, y, it) ∈ DSm, ωs(gp′) = x and

ωp(gp′) = y. Moreover, since is ≡ it then (x, y, is) ∈ DSm, inferring that
ω ∈ [[t]]DSm .

From the two premises above, we conclude that:

[[t]]DSm ≡ πJ

(
[[gp′]]DSm

)

This concludes the proof that the rewriting step of a Data Triple Pattern, based on an
individual mapping of its object part, is semantics preserving.

Similarly, we prove that the rewriting step performed for a Data Triple Pattern, based
on a class mapping of its object part, is semantics preserving. Let cs be a class from the
source ontology, t = (subject, rdf : type, cs) be a Data Triple Pattern and J be the set
of SPARQL variables appearing in t. The evaluation of the triple pattern t over the RDF
dataset DSm is presented below:

[[t]]DSm = [[(subject, rdf : type, cs)]]DSm

For the different types of class mappings, we consider the following cases:

1. Let ct be a class from the target ontology. Having a mapping µ : cs ≡ ct (i.e.
cIs = cIt ), the rewritten (based on t’s object part) graph pattern gp′ and its evaluation
over the RDF dataset DSm are the following:

gp′ = Do
c(t, µ) = (subject, rdf : type, ct)

[[gp′]]DSm = [[(subject, rdf : type, ct)]]DSm

We consider two premises:

(a) ∀ω ∈ [[t]]DSm : ∃x, such that (x, rdf : type, cs) ∈ DSm and ωs(t) = x. Thus,
x ∈ cIs and since cIs = cIt then (x, rdf : type, ct) ∈ DSm, inferring that ω ∈
πJ

(
[[gp′]]DSm

)
.
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(b) ∀ω ∈ πJ

(
[[gp′]]DSm

)
: ∃x, such that (x, rdf : type, ct) ∈ DSm and ωs(gp′) = x.

Thus, x ∈ cIt and since cIs = cIt then (x, rdf : type, cs) ∈ DSm, inferring that
ω ∈ [[t]]DSm .

From the two premises above, we conclude that:

[[t]]DSm ≡ πJ

(
[[gp′]]DSm

)

2. Let ct1 and ct2 be classes from the target ontology. Having a mapping µ : cs ≡ ct1tct2

(i.e. cIs = cIt1 ∪ cIt2), the rewritten (based on t’s object part) graph pattern gp′ and
its evaluation over the RDF dataset DSm are the following:

gp′ = Do
c(t, µ) = (subject, rdf : type, ct1) UNION (subject, rdf : type, ct2)

[[gp′]]DSm = [[(subject, rdf : type, ct1) UNION (subject, rdf : type, ct2)]]DSm

= [[(subject, rdf : type, ct1)]]DSm ∪ [[(subject, rdf : type, ct2)]]DSm

= [[t′1]]DSm ∪ [[t′2]]DSm

We consider two premises:

(a) ∀ω ∈ [[t]]DSm : ∃x, such that (x, rdf : type, cs) ∈ DSm and ωs(t) = x. Thus,
x ∈ cIs and since cIs = cIt1 ∪ cIt2 then (x, rdf : type, ct1) ∈ DSm or (x, rdf :
type, ct2) ∈ DSm, inferring that ω ∈ πJ

(
[[gp′]]DSm

)
.

(b) ∀ω ∈ πJ

(
[[gp′]]DSm

)
: ∃x, such that (x, rdf : type, ct1) ∈ DSm or (x, rdf :

type, ct2) ∈ DSm, and ωs(t′1) = x or ωs(t′2) = x. Thus, x ∈ cIt1 ∪ cIt2 and since
cIs = cIt1 ∪ cIt2 then (x, rdf : type, cs) ∈ DSm, inferring that ω ∈ [[t]]DSm .

From the two premises above, we conclude that:

[[t]]DSm ≡ πJ

(
[[gp′]]DSm

)

3. Let ct1 and ct2 be classes from the target ontology. Having a mapping µ : cs ≡ ct1uct2

(i.e. cIs = cIt1 ∩ cIt2), the rewritten (based on t’s object part) graph pattern gp′ and
its evaluation over the RDF dataset DSm are the following:

gp′ = Do
c(t, µ) = (subject, rdf : type, ct1) AND (subject, rdf : type, ct2)
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[[gp′]]DSm = [[(subject, rdf : type, ct1) AND (subject, rdf : type, ct2)]]DSm

= [[(subject, rdf : type, ct1)]]DSm |><| [[(subject, rdf : type, ct2)]]DSm

= [[t′1]]DSm |><| [[t′2]]DSm

We consider two premises:

(a) ∀ω ∈ [[t]]DSm : ∃x, such that (x, rdf : type, cs) ∈ DSm and ωs(t) = x. Thus,
x ∈ cIs and since cIs = cIt1 ∩ cIt2 then (x, rdf : type, ct1) ∈ DSm and (x, rdf :
type, ct2) ∈ DSm, inferring that ω ∈ πJ

(
[[gp′]]DSm

)
.

(b) ∀ω ∈ πJ

(
[[gp′]]DSm

)
: ∃x, such that (x, rdf : type, ct1) ∈ DSm, (x, rdf :

type, ct2) ∈ DSm and ωs(t′1) = ωs(t′2) = x. Thus, x ∈ cIt1 ∩ cIt2 and since
cIs = cIt1 ∩ cIt2 then (x, rdf : type, cs) ∈ DSm, inferring that ω ∈ [[t]]DSm .

From the two premises above, we conclude that:

[[t]]DSm ≡ πJ

(
[[gp′]]DSm

)
4. Let ct be a class, opt be an object property from the target ontology, vop be an

individual and cp ∈ {6=, =}. Having a mapping µ : cs → ct.(opt cp vop) (i.e.
cIs = {α ∈ cIt | ∃b. (α, b) ∈ opIt ∧ b cp vop}), the rewritten (based on t’s object part)
graph pattern gp′ and its evaluation over the RDF dataset DSm are the following:

gp′ = Do
c(t, µ) = (subject, rdf : type, ct) AND (subject, opt, ?var)

FILTER(?var cp vop)

[[gp′]]DSm = [[(subject, rdf : type, ct) AND (subject, opt, ?var)
FILTER(?var cp vop)]]DSm

= {ω ∈
(
[[(subject, rdf : type, ct)]]DSm |><| [[(subject, opt, ?var)]]DSm

)
| ω |=?var cp vop}

= {ω ∈
(
[[t′1]]DSm |><| [[t′2]]DSm

)
| ω |=?var cp vop}

Let L = {α ∈ cIt | ∃b. (α, b) ∈ opIt ∧ b cp vop}. We consider two premises:

(a) ∀ω ∈ [[t]]DSm : ∃x, such that (x, rdf : type, cs) ∈ DSm and ωs(t) = x. Thus,
x ∈ cIs and since cIs = L then (x, rdf : type, ct) ∈ DSm, ∃y such that (x, opt, y) ∈
DSm and y cp vop, inferring that ω ∈ πJ

(
[[gp′]]DSm

)
.
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(b) ∀ω ∈ πJ

(
[[gp′]]DSm

)
: ∃x, such that (x, rdf : type, ct) ∈ DSm, ∃y such that

(x, opt, y) ∈ DSm, y cp vop and ωs(t′1) = ωs(t′2) = x. Thus, x ∈ L and since
cIs = L then (x, rdf : type, cs) ∈ DSm, inferring that ω ∈ [[t]]DSm .

From the two premises above, we conclude that:

[[t]]DSm ≡ πJ

(
[[gp′]]DSm

)

5. Let ct be a class, dpt be a datatype property from the target ontology, vdp be a data
value and cp ∈ {6=, =, >, <, ≥, ≤}. Having a mapping µ : cs → ct.(dpt cp vdp)
(i.e. cIs = {α ∈ cIt | ∃b. (α, b) ∈ dpIt ∧ b cp vdp}), the rewritten (based on t’s
object part) graph pattern gp′ and its evaluation over the RDF dataset DSm are
the following:

gp′ = Do
c(t, µ) = (subject, rdf : type, ct) AND (subject, dpt, ?var)

FILTER(?var cp vdp)

[[gp′]]DSm = [[(subject, rdf : type, ct) AND (subject, dpt, ?var)
FILTER(?var cp vdp)]]DSm

= {ω ∈
(
[[(subject, rdf : type, ct)]]DSm |><| [[(subject, dpt, ?var)]]DSm

)
| ω |=?var cp vdp}

= {ω ∈
(
[[t′1]]DSm |><| [[t′2]]DSm

)
| ω |=?var cp vdp}

Let L = {α ∈ cIt | ∃b. (α, b) ∈ dpIt ∧ b cp vdp}. We consider two premises:

(a) ∀ω ∈ [[t]]DSm : ∃x, such that (x, rdf : type, cs) ∈ DSm and ωs(t) = x. Thus,
x ∈ cIs and since cIs = L then (x, rdf : type, ct) ∈ DSm, ∃y such that (x, dpt, y) ∈
DSm and y cp vdp, inferring that ω ∈ πJ

(
[[gp′]]DSm

)
.

(b) ∀ω ∈ πJ

(
[[gp′]]DSm

)
: ∃x, such that (x, rdf : type, ct) ∈ DSm, ∃y such that

(x, dpt, y) ∈ DSm, y cp vdp and ωs(t′1) = ωs(t′2) = x. Thus, x ∈ L and since
cIs = L then (x, rdf : type, cs) ∈ DSm, inferring that ω ∈ [[t]]DSm .

From the two premises above, we conclude that:

[[t]]DSm ≡ πJ

(
[[gp′]]DSm

)
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6. Let ct be a class, opt1, opt2 be object properties from the target ontology and
cp ∈ {6=, =}. Having a mapping µ : cs → ct.(opt1 cp opt2) (i.e. cIs = {α ∈
cIt | ∃b,∃c. (α, b) ∈ opIt1 ∧ (α, c) ∈ opIt2 ∧ b cp c}), the rewritten (based on t’s ob-
ject part) graph pattern gp′ and its evaluation over the RDF dataset DSm are the
following:

gp′ = Do
c(t, µ) = (subject, rdf : type, ct) AND (subject, opt1, ?var1)

AND (subject, opt2, ?var2) FILTER(?var1 cp ?var2)

[[gp′]]DSm = [[(subject, rdf : type, ct) AND (subject, opt1, ?var1)
AND (subject, opt2, ?var2) FILTER(?var1 cp ?var2)]]DSm

= {ω ∈
(
[[(subject, rdf : type, ct)]]DSm |><| [[(subject, opt1, ?var1)]]DSm

|><| [[(subject, opt2, ?var2)]]DSm

)
| ω |=?var1 cp ?var2}

= {ω ∈
(
[[t′1]]DSm |><| [[t′2]]DSm |><| [[t′3]]DSm

)
| ω |=?var1 cp ?var2}

Let L = {α ∈ cIt | ∃b,∃c. (α, b) ∈ opIt1 ∧ (α, c) ∈ opIt2 ∧ b cp c}. We consider two
premises:

(a) ∀ω ∈ [[t]]DSm : ∃x, such that (x, rdf : type, cs) ∈ DSm and ωs(t) = x.
Thus, x ∈ cIs and since cIs = L then (x, rdf : type, ct) ∈ DSm, ∃y such that
(x, opt1, y) ∈ DSm, ∃z such that (x, opt2, z) ∈ DSm and y cp z, inferring that
ω ∈ πJ

(
[[gp′]]DSm

)
.

(b) ∀ω ∈ πJ

(
[[gp′]]DSm

)
: ∃x, such that (x, rdf : type, ct) ∈ DSm, ∃y such that

(x, opt1, y) ∈ DSm, ∃z such that (x, opt2, z) ∈ DSm, y cp z and ωs(t′1) =
ωs(t′2) = ωs(t′3) = x. Thus, x ∈ L and since cIs = L then (x, rdf : type, cs) ∈
DSm, inferring that ω ∈ [[t]]DSm .

From the two premises above, we conclude that:

[[t]]DSm ≡ πJ

(
[[gp′]]DSm

)

7. Let ct be a class, dpt1, dpt2 be datatype properties from the target ontology and
cp ∈ {6=, =, >, <, ≥, ≤}. Having a mapping µ : cs → ct.(dpt1 cp dpt2) (i.e.
cIs = {α ∈ cIt | ∃b,∃c. (α, b) ∈ dpIt1 ∧ (α, c) ∈ dpIt2 ∧ b cp c}), the rewritten (based on
t’s object part) graph pattern gp′ and its evaluation over the RDF dataset DSm are
the following:
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gp′ = Do
c(t, µ) = (subject, rdf : type, ct) AND (subject, dpt1, ?var1)

AND (subject, dpt2, ?var2) FILTER(?var1 cp ?var2)

[[gp′]]DSm = [[(subject, rdf : type, ct) AND (subject, dpt1, ?var1)
AND (subject, dpt2, ?var2) FILTER(?var1 cp ?var2)]]DSm

= {ω ∈
(
[[(subject, rdf : type, ct)]]DSm |><| [[(subject, dpt1, ?var1)]]DSm

|><| [[(subject, dpt2, ?var2)]]DSm

)
| ω |=?var1 cp ?var2}

= {ω ∈
(
[[t′1]]DSm

|><| [[t′2]]DSm
|><| [[t′3]]DSm

)
| ω |=?var1 cp ?var2}

Let L = {α ∈ cIt | ∃b,∃c. (α, b) ∈ dpIt1 ∧ (α, c) ∈ dpIt2 ∧ b cp c}. We consider two
premises:

(a) ∀ω ∈ [[t]]DSm : ∃x, such that (x, rdf : type, cs) ∈ DSm and ωs(t) = x.
Thus, x ∈ cIs and since cIs = L then (x, rdf : type, ct) ∈ DSm, ∃y such that
(x, dpt1, y) ∈ DSm, ∃z such that (x, dpt2, z) ∈ DSm and y cp z, inferring that
ω ∈ πJ

(
[[gp′]]DSm

)
.

(b) ∀ω ∈ πJ

(
[[gp′]]DSm

)
: ∃x, such that (x, rdf : type, ct) ∈ DSm, ∃y such that

(x, dpt1, y) ∈ DSm, ∃z such that (x, dpt2, z) ∈ DSm, y cp z and ωs(t′1) =
ωs(t′2) = ωs(t′3) = x. Thus, x ∈ L and since cIs = L then (x, rdf : type, cs) ∈
DSm, inferring that ω ∈ [[t]]DSm .

From the two premises above, we conclude that:

[[t]]DSm ≡ πJ

(
[[gp′]]DSm

)

This concludes the proof that the rewriting step of a Data Triple Pattern, based on a
class mapping of its object part, is semantics preserving.

B.3 Proof of Lemma 6.3

In this section, we prove that the rewriting step performed for a Data Triple Pattern, based
on a mapping of its predicate part, is semantics preserving. According to Lemma 6.3, the
only cases that we examine concern object and datatype properties appearing in the triple
pattern’s predicate part.

To begin with, we prove that the rewriting step performed for a Data Triple Pattern,
based on an object property mapping of its predicate part, is semantics preserving. Let
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ops be an object property from the source ontology, t = (subject, ops, object) be a Data
Triple Pattern and J be the set of SPARQL variables appearing in t. The evaluation of
the triple pattern t over the RDF dataset DSm is presented below:

[[t]]DSm = [[(subject, ops, object)]]DSm

For the different types of object property mappings, we consider the following cases:

1. Let opt be an object property from the target ontology. Having a mapping µ : ops ≡
opt (i.e. opIs = opIt ), the rewritten (based on t’s predicate part) graph pattern gp′

and its evaluation over the RDF dataset DSm are the following:

gp′ = Dp
op(t, µ) = (subject, opt, object)

[[gp′]]DSm = [[(subject, opt, object)]]DSm

We consider two premises:

(a) ∀ω ∈ [[t]]DSm : ∃x,∃y, such that (x, ops, y) ∈ DSm, ωs(t) = x and ωo(t) = y.
Thus, (x, y) ∈ opIs and since opIs = opIt then (x, opt, y) ∈ DSm, inferring that
ω ∈ πJ

(
[[gp′]]DSm

)
.

(b) ∀ω ∈ πJ

(
[[gp′]]DSm

)
: ∃x,∃y, such that (x, opt, y) ∈ DSm, ωs(gp′) = x and

ωo(gp′) = y. Thus, (x, y) ∈ opIt and since opIs = opIt then (x, ops, y) ∈ DSm,
inferring that ω ∈ [[t]]DSm .

From the two premises above, we conclude that:

[[t]]DSm ≡ πJ

(
[[gp′]]DSm

)

2. Let opt1 and opt2 be object properties from the target ontology. Having a mapping
µ : ops ≡ opt1 ◦ opt2 (i.e. opIs = {(α, c) | ∃b. (α, b) ∈ opIt1 ∧ (b, c) ∈ opIt2}), the
rewritten (based on t’s predicate part) graph pattern gp′ and its evaluation over the
RDF dataset DSm are the following:

gp′ = Dp
op(t, µ) = (subject, opt1, ?var) AND (?var, opt2, object)
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[[gp′]]DSm = [[(subject, opt1, ?var) AND (?var, opt2, object)]]DSm

= [[(subject, opt1, ?var)]]DSm |><| [[(?var, opt2, object)]]DSm

= [[t′1]]DSm |><| [[t′2]]DSm

Let L = {(α, c) | ∃b. (α, b) ∈ opIt1 ∧ (b, c) ∈ opIt2}. We consider two premises:

(a) ∀ω ∈ [[t]]DSm : ∃x,∃y, such that (x, ops, y) ∈ DSm, ωs(t) = x and ωo(t) = y.
Thus, (x, y) ∈ opIs and since opIs = L then ∃z such that (x, opt1, z) ∈ DSm and
(z, opt2, y) ∈ DSm, inferring that ω ∈ πJ

(
[[gp′]]DSm

)
.

(b) ∀ω ∈ πJ

(
[[gp′]]DSm

)
: ∃x,∃y, ∃z, such that (x, opt1, z) ∈ DSm, (z, opt2, y) ∈

DSm, ωs(t′1) = x, ωo(t′1) = ωs(t′2) = z and ωo(t′2) = y. Thus, (x, y) ∈ L and
since opIs = L then (x, ops, y) ∈ DSm, inferring that ω ∈ [[t]]DSm .

From the two premises above, we conclude that:

[[t]]DSm ≡ πJ

(
[[gp′]]DSm

)
3. Let opt1 and opt2 be object properties from the target ontology. Having a mapping

µ : ops ≡ opt1topt2 (i.e. opIs = opIt1∪opIt2), the rewritten (based on t’s predicate part)
graph pattern gp′ and its evaluation over the RDF dataset DSm are the following:

gp′ = Dp
op(t, µ) = (subject, opt1, object) UNION (subject, opt2, object)

[[gp′]]DSm = [[(subject, opt1, object) UNION (subject, opt2, object)]]DSm

= [[(subject, opt1, object)]]DSm
∪ [[(subject, opt2, object)]]DSm

= [[t′1]]DSm ∪ [[t′2]]DSm

We consider two premises:

(a) ∀ω ∈ [[t]]DSm : ∃x,∃y, such that (x, ops, y) ∈ DSm, ωs(t) = x and ωo(t) = y.
Thus, (x, y) ∈ opIs and since opIs = opIt1 ∪ opIt2 then (x, opt1, y) ∈ DSm or
(x, opt2, y) ∈ DSm, inferring that ω ∈ πJ

(
[[gp′]]DSm

)
.

(b) ∀ω ∈ πJ

(
[[gp′]]DSm

)
: ∃x,∃y, such that (x, opt1, y) ∈ DSm or (x, opt2, y) ∈

DSm, ωs(t′1) = x or ωs(t′2) = x, and ωo(t′1) = y or ωo(t′2) = y. Thus, (x, y) ∈
opIt1 ∪ opIt2 and since opIs = opIt1 ∪ opIt2 then (x, ops, y) ∈ DSm, inferring that
ω ∈ [[t]]DSm .
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From the two premises above, we conclude that:

[[t]]DSm ≡ πJ

(
[[gp′]]DSm

)

4. Let opt1 and opt2 be object properties from the target ontology. Having a mapping
µ : ops ≡ opt1uopt2 (i.e. opIs = opIt1∩opIt2), the rewritten (based on t’s predicate part)
graph pattern gp′ and its evaluation over the RDF dataset DSm are the following:

gp′ = Dp
op(t, µ) = (subject, opt1, object) AND (subject, opt2, object)

[[gp′]]DSm = [[(subject, opt1, object) AND (subject, opt2, object)]]DSm

= [[(subject, opt1, object)]]DSm |><| [[(subject, opt2, object)]]DSm

= [[t′1]]DSm |><| [[t′2]]DSm

We consider two premises:

(a) ∀ω ∈ [[t]]DSm : ∃x,∃y, such that (x, ops, y) ∈ DSm, ωs(t) = x and ωo(t) = y.
Thus, (x, y) ∈ opIs and since opIs = opIt1 ∩ opIt2 then (x, opt1, y) ∈ DSm and
(x, opt2, y) ∈ DSm, inferring that ω ∈ πJ

(
[[gp′]]DSm

)
.

(b) ∀ω ∈ πJ

(
[[gp′]]DSm

)
: ∃x,∃y, such that (x, opt1, y) ∈ DSm, (x, opt2, y) ∈ DSm,

ωs(t′1) = ωs(t′2) = x and ωo(t′1) = ωo(t′2) = y. Thus, (x, y) ∈ opIt1 ∩ opIt2 and
since opIs = opIt1 ∩ opIt2 then (x, ops, y) ∈ DSm, inferring that ω ∈ [[t]]DSm .

From the two premises above, we conclude that:

[[t]]DSm ≡ πJ

(
[[gp′]]DSm

)

5. Let opt be an object property from the target ontology. Having a mapping µ :
ops ≡ inv(opt) (i.e. opIs = {(b, α) | (α, b) ∈ opIt }), the rewritten (based on t’s
predicate part) graph pattern gp′ and its evaluation over the RDF dataset DSm are
the following:

gp′ = IDp
op(t, µ) = (object, opt, subject)

[[gp′]]DSm = [[(object, opt, subject)]]DSm
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Let L = {(b, α) | (α, b) ∈ opIt }. We consider two premises:

(a) ∀ω ∈ [[t]]DSm : ∃x,∃y, such that (x, ops, y) ∈ DSm, ωs(t) = x and ωo(t) = y.
Thus, (x, y) ∈ opIs and since opIs = L then (y, opt, x) ∈ DSm, inferring that
ω ∈ πJ

(
[[gp′]]DSm

)
.

(b) ∀ω ∈ πJ

(
[[gp′]]DSm

)
: ∃x,∃y, such that (x, opt, y) ∈ DSm, ωs(gp′) = x and

ωo(gp′) = y. Thus, (x, y) ∈ L and since opIs = L then (y, ops, x) ∈ DSm,
inferring that ω ∈ [[t]]DSm .

From the two premises above, we conclude that:

[[t]]DSm ≡ πJ

(
[[gp′]]DSm

)

6. Let opt be an object property and ct be a class from the target ontology. Having a
mapping µ : ops ≡ opt.domain(ct) (i.e. opIs = {(α, b) | (α, b) ∈ opIt ∧ α ∈ cIt }), the
rewritten (based on t’s object part) graph pattern gp′ and its evaluation over the
RDF dataset DSm are the following:

gp′ = Dp
op(t, µ) = (subject, opt, object) AND (subject, rdf : type, ct)

[[gp′]]DSm = [[(subject, opt, object) AND (subject, rdf : type, ct)]]DSm

= [[(subject, opt, object)]]DSm |><| [[(subject, rdf : type, ct)]]DSm

= [[t′1]]DSm |><| [[t′2]]DSm

Let L = {(α, b) | (α, b) ∈ opIt ∧ α ∈ cIt }. We consider two premises:

(a) ∀ω ∈ [[t]]DSm : ∃x,∃y, such that (x, ops, y) ∈ DSm, ωs(t) = x and ωo(t) = y.
Thus, (x, y) ∈ opIs and since opIs = L then (x, opt, y) ∈ DSm and (x, rdf :
type, ct) ∈ DSm, inferring that ω ∈ πJ

(
[[gp′]]DSm

)
.

(b) ∀ω ∈ πJ

(
[[gp′]]DSm

)
: ∃x,∃y, such that (x, opt, y) ∈ DSm, (x, rdf : type, ct) ∈

DSm, ωs(t′1) = ωs(t′2) = x and ωo(t′1) = y. Thus, (x, y) ∈ L and since opIs = L
then (x, ops, y) ∈ DSm, inferring that ω ∈ [[t]]DSm .

From the two premises above, we conclude that:

[[t]]DSm ≡ πJ

(
[[gp′]]DSm

)
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7. Let opt be an object property and ct be a class from the target ontology. Having a
mapping µ : ops ≡ opt.range(ct) (i.e. opIs = {(α, b) | (α, b) ∈ opIt ∧ b ∈ cIt }), the
rewritten (based on t’s object part) graph pattern gp′ and its evaluation over the
RDF dataset DSm are the following:

gp′ = Dp
op(t, µ) = (subject, opt, object) AND (object, rdf : type, ct)

[[gp′]]DSm = [[(subject, opt, object) AND (object, rdf : type, ct)]]DSm

= [[(subject, opt, object)]]DSm
|><| [[(object, rdf : type, ct)]]DSm

= [[t′1]]DSm |><| [[t′2]]DSm

Let L = {(α, b) | (α, b) ∈ opIt ∧ b ∈ cIt }. We consider two premises:

(a) ∀ω ∈ [[t]]DSm : ∃x,∃y, such that (x, ops, y) ∈ DSm, ωs(t) = x and ωo(t) = y.
Thus, (x, y) ∈ opIs and since opIs = L then (x, opt, y) ∈ DSm and (y, rdf :
type, ct) ∈ DSm, inferring that ω ∈ πJ

(
[[gp′]]DSm

)
.

(b) ∀ω ∈ πJ

(
[[gp′]]DSm

)
: ∃x,∃y, such that (x, opt, y) ∈ DSm, (y, rdf : type, ct) ∈

DSm, ωs(t′1) = x and ωo(t′1) = ωs(t′2) = y. Thus, (x, y) ∈ L and since opIs = L
then (x, ops, y) ∈ DSm, inferring that ω ∈ [[t]]DSm .

From the two premises above, we conclude that:

[[t]]DSm ≡ πJ

(
[[gp′]]DSm

)

This concludes the proof that the rewriting step of a Data Triple Pattern, based on an
object property mapping of its predicate part, is semantics preserving.

Similarly, we prove that the rewriting step performed for a Data Triple Pattern, based on
a datatype property mapping of its predicate part, is semantics preserving. Let dps be
an object property from the source ontology, t = (subject, dps, object) be a Data Triple
Pattern and J be the set of SPARQL variables appearing in t. The evaluation of the
triple pattern t over the RDF dataset DSm is presented below:

[[t]]DSm = [[(subject, dps, object)]]DSm

For the different types of datatype property mappings, we consider the following cases:
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1. Let dpt be a datatype property from the target ontology. Having a mapping µ :
dps ≡ dpt (i.e. dpIs = dpIt ), the rewritten (based on t’s predicate part) graph pattern
gp′ and its evaluation over the RDF dataset DSm are the following:

gp′ = Dp
dp(t, µ) = (subject, dpt, object)

[[gp′]]DSm = [[(subject, dpt, object)]]DSm

We consider two premises:

(a) ∀ω ∈ [[t]]DSm : ∃x,∃y, such that (x, dps, y) ∈ DSm, ωs(t) = x and ωo(t) = y.
Thus, (x, y) ∈ dpIs and since dpIs = dpIt then (x, dpt, y) ∈ DSm, inferring that
ω ∈ πJ

(
[[gp′]]DSm

)
.

(b) ∀ω ∈ πJ

(
[[gp′]]DSm

)
: ∃x,∃y, such that (x, dpt, y) ∈ DSm, ωs(gp′) = x and

ωo(gp′) = y. Thus, (x, y) ∈ dpIt and since dpIs = dpIt then (x, dps, y) ∈ DSm,
inferring that ω ∈ [[t]]DSm .

From the two premises above, we conclude that:

[[t]]DSm ≡ πJ

(
[[gp′]]DSm

)
2. Let opt be an object property and dpt be a datatype property from the target

ontology. Having a mapping µ : dps ≡ opt ◦ dpt (i.e. dpIs = {(α, c) | ∃b. (α, b) ∈
opIt ∧ (b, c) ∈ dpIt }), the rewritten (based on t’s predicate part) graph pattern gp′

and its evaluation over the RDF dataset DSm are the following:

gp′ = Dp
dp(t, µ) = (subject, opt, ?var) AND (?var, dpt, object)

[[gp′]]DSm = [[(subject, opt, ?var) AND (?var, dpt, object)]]DSm

= [[(subject, opt, ?var)]]DSm |><| [[(?var, dpt, object)]]DSm

= [[t′1]]DSm |><| [[t′2]]DSm

Let L = {(α, c) | ∃b. (α, b) ∈ opIt ∧ (b, c) ∈ dpIt }. We consider two premises:

(a) ∀ω ∈ [[t]]DSm : ∃x,∃y, such that (x, dps, y) ∈ DSm, ωs(t) = x and ωo(t) = y.
Thus, (x, y) ∈ dpIs and since dpIs = L then ∃z such that (x, opt, z) ∈ DSm and
(z, dpt, y) ∈ DSm, inferring that ω ∈ πJ

(
[[gp′]]DSm

)
.
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(b) ∀ω ∈ πJ

(
[[gp′]]DSm

)
: ∃x,∃y, ∃z, such that (x, opt, z) ∈ DSm, (z, dpt, y) ∈

DSm, ωs(t′1) = x, ωo(t′1) = ωs(t′2) = z and ωo(t′2) = y. Thus, (x, y) ∈ L and
since dpIs = L then (x, dps, y) ∈ DSm, inferring that ω ∈ [[t]]DSm .

From the two premises above, we conclude that:

[[t]]DSm ≡ πJ

(
[[gp′]]DSm

)

3. Let dpt1 and dpt2 be datatype properties from the target ontology. Having a map-
ping µ : dps ≡ dpt1 t dpt2 (i.e. dpIs = dpIt1 ∪ dpIt2), the rewritten (based on t’s
predicate part) graph pattern gp′ and its evaluation over the RDF dataset DSm are
the following:

gp′ = Dp
dp(t, µ) = (subject, dpt1, object) UNION (subject, dpt2, object)

[[gp′]]DSm = [[(subject, dpt1, object) UNION (subject, dpt2, object)]]DSm

= [[(subject, dpt1, object)]]DSm ∪ [[(subject, dpt2, object)]]DSm

= [[t′1]]DSm ∪ [[t′2]]DSm

We consider two premises:

(a) ∀ω ∈ [[t]]DSm : ∃x,∃y, such that (x, dps, y) ∈ DSm, ωs(t) = x and ωo(t) = y.
Thus, (x, y) ∈ dpIs and since dpIs = dpIt1 ∪ dpIt2 then (x, dpt1, y) ∈ DSm or
(x, dpt2, y) ∈ DSm, inferring that ω ∈ πJ

(
[[gp′]]DSm

)
.

(b) ∀ω ∈ πJ

(
[[gp′]]DSm

)
: ∃x,∃y, such that (x, dpt1, y) ∈ DSm or (x, dpt2, y) ∈

DSm, ωs(t′1) = x or ωs(t′2) = x, and ωo(t′1) = y or ωo(t′2) = y. Thus, (x, y) ∈
dpIt1 ∪ dpIt2 and since dpIs = dpIt1 ∪ dpIt2 then (x, dps, y) ∈ DSm, inferring that
ω ∈ [[t]]DSm .

From the two premises above, we conclude that:

[[t]]DSm ≡ πJ

(
[[gp′]]DSm

)

4. Let dpt1 and dpt2 be datatype properties from the target ontology. Having a map-
ping µ : dps ≡ dpt1 u dpt2 (i.e. dpIs = dpIt1 ∩ dpIt2), the rewritten (based on t’s
predicate part) graph pattern gp′ and its evaluation over the RDF dataset DSm are
the following:
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gp′ = Dp
dp(t, µ) = (subject, dpt1, object) AND (subject, dpt2, object)

[[gp′]]DSm = [[(subject, dpt1, object) AND (subject, dpt2, object)]]DSm

= [[(subject, dpt1, object)]]DSm |><| [[(subject, dpt2, object)]]DSm

= [[t′1]]DSm |><| [[t′2]]DSm

We consider two premises:

(a) ∀ω ∈ [[t]]DSm : ∃x,∃y, such that (x, dps, y) ∈ DSm, ωs(t) = x and ωo(t) = y.
Thus, (x, y) ∈ dpIs and since dpIs = dpIt1 ∩ dpIt2 then (x, dpt1, y) ∈ DSm and
(x, dpt2, y) ∈ DSm, inferring that ω ∈ πJ

(
[[gp′]]DSm

)
.

(b) ∀ω ∈ πJ

(
[[gp′]]DSm

)
: ∃x,∃y, such that (x, dpt1, y) ∈ DSm, (x, dpt2, y) ∈ DSm,

ωs(t′1) = ωs(t′2) = x and ωo(t′1) = ωo(t′2) = y. Thus, (x, y) ∈ dpIt1 ∩ dpIt2 and
since dpIs = dpIt1 ∩ dpIt2 then (x, dps, y) ∈ DSm, inferring that ω ∈ [[t]]DSm .

From the two premises above, we conclude that:

[[t]]DSm ≡ πJ

(
[[gp′]]DSm

)
5. Let dpt be a datatype property and ct be a class from the target ontology. Having

a mapping µ : dps ≡ dpt.domain(ct) (i.e. dpIs = {(α, b) | (α, b) ∈ dpIt ∧α ∈ cIt }), the
rewritten (based on t’s object part) graph pattern gp′ and its evaluation over the
RDF dataset DSm are the following:

gp′ = Dp
dp(t, µ) = (subject, dpt, object) AND (subject, rdf : type, ct)

[[gp′]]DSm = [[(subject, dpt, object) AND (subject, rdf : type, ct)]]DSm

= [[(subject, dpt, object)]]DSm |><| [[(subject, rdf : type, ct)]]DSm

= [[t′1]]DSm |><| [[t′2]]DSm

Let L = {(α, b) | (α, b) ∈ dpIt ∧ α ∈ cIt }. We consider two premises:

(a) ∀ω ∈ [[t]]DSm : ∃x,∃y, such that (x, dps, y) ∈ DSm, ωs(t) = x and ωo(t) = y.
Thus, (x, y) ∈ dpIs and since dpIs = L then (x, dpt, y) ∈ DSm and (x, rdf :
type, ct) ∈ DSm, inferring that ω ∈ πJ

(
[[gp′]]DSm

)
.
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(b) ∀ω ∈ πJ

(
[[gp′]]DSm

)
: ∃x,∃y, such that (x, dpt, y) ∈ DSm, (x, rdf : type, ct) ∈

DSm, ωs(t′1) = ωs(t′2) = x and ωo(t′1) = y. Thus, (x, y) ∈ L and since dpIs = L
then (x, dps, y) ∈ DSm, inferring that ω ∈ [[t]]DSm .

From the two premises above, we conclude that:

[[t]]DSm ≡ πJ

(
[[gp′]]DSm

)

6. Let dpt be a datatype property from the target ontology, vdp be a data value and
cp ∈ {6=, =, >, <, ≥, ≤}. Having a mapping µ : dps ≡ dpt.range(cp vdp) (i.e.
dpIs = {(α, b) | (α, b) ∈ dpIt ∧ b cp vdp}), the rewritten (based on t’s object part)
graph pattern gp′ and its evaluation over the RDF dataset DSm are the following:

gp′ = Dp
dp(t, µ) = (subject, dpt, object) FILTER(object cp vdp)

[[gp′]]DSm = [[(subject, dpt, object) FILTER(object cp vdp)]]DSm

= {ω ∈ [[(subject, dpt, object)]]DSm | ω |= object cp vdp}

= {ω ∈ [[t′]]DSm | ω |= object cp vdp}

Let L = {(α, b) | (α, b) ∈ dpIt ∧ b cp vdp}. We consider two premises:

(a) ∀ω ∈ [[t]]DSm : ∃x,∃y, such that (x, dps, y) ∈ DSm, ωs(t) = x and ωo(t) = y.
Thus, (x, y) ∈ dpIs and since dpIs = L then (x, dpt, y) ∈ DSm and y cp vdp,
inferring that ω ∈ πJ

(
[[gp′]]DSm

)
.

(b) ∀ω ∈ πJ

(
[[gp′]]DSm

)
: ∃x,∃y, such that (x, dpt, y) ∈ DSm, y cp vdp, ωs(t′) =

x and ωo(t′) = y. Thus, (x, y) ∈ L and since dpIs = L then (x, dps, y) ∈ DSm,
inferring that ω ∈ [[t]]DSm .

From the two premises above, we conclude that:

[[t]]DSm ≡ πJ

(
[[gp′]]DSm

)

This concludes the proof that the rewriting step of a Data Triple Pattern, based on a
datatype property mapping of its predicate part, is semantics preserving.





Appendix C

Mapping representation

ontology

In this appendix, we provide the OWL DL ontology which describes the mapping lan-
guage’s vocabulary and provides some control to the terms and constructs introduced in
Section 4.4.1. As we mentioned in Section 4.4, the mapping representation language that
we adapt in this thesis is a new version of EDOAL. In this version minor changes have
been performed in the EDOAL syntax, in order for the language to match exactly the
abstract syntax presented in Section 4.2 and also to restrict the language expressiveness
for simplicity reasons. EDOAL previous versions have been defined in [19] and [35]. The
expressiveness, the simplicity and the Semantic Web compliance (given its RDF syntax)
are its key features. It is crucial that this language satisfies the requirements that we set
in Section 4.3, by representing clearly the supported mapping types.

<?xml version="1.0"?>

<!DOCTYPE rdf:RDF [

<!ENTITY owl "http://www.w3.org/2002/07/owl#" >

<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >

<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >

<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >

<!ENTITY align "http://knowledgeweb.semanticweb.org/heterogeneity/alignment#" >

]>

<rdf:RDF xmlns="http://www.music.tuc.gr/oml#"

xml:base="http://www.music.tuc.gr/oml#"

xmlns:align="http://knowledgeweb.semanticweb.org/heterogeneity/alignment#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:owl="http://www.w3.org/2002/07/owl#">

<owl:Ontology rdf:about="#"/>
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<owl:Class rdf:ID="Relation">

<rdfs:subClassOf>

<owl:Class rdf:ID="Attribute"/>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:ID="RelationDomainRestriction">

<rdfs:subClassOf>

<owl:Class rdf:ID="Restriction"/>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:cardinality rdf:datatype="&xsd;int">1</owl:cardinality>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="class"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:ID="AttributeValueRestriction">

<rdfs:subClassOf>

<owl:Class>

<owl:unionOf rdf:parseType="Collection">

<owl:Restriction>

<owl:cardinality rdf:datatype="&xsd;int">1</owl:cardinality>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="instanceOrAttributeValue"/>

</owl:onProperty>

</owl:Restriction>

<owl:Restriction>

<owl:onProperty>

<owl:DatatypeProperty rdf:ID="literalValue"/>

</owl:onProperty>

<owl:cardinality rdf:datatype="&xsd;int">1</owl:cardinality>

</owl:Restriction>

</owl:unionOf>

</owl:Class>

</rdfs:subClassOf>

<rdfs:subClassOf rdf:resource="#Restriction"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:DatatypeProperty rdf:ID="comparator"/>

</owl:onProperty>

<owl:cardinality rdf:datatype="&xsd;int">1</owl:cardinality>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:cardinality rdf:datatype="&xsd;int">1</owl:cardinality>

<owl:onProperty>
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<owl:ObjectProperty rdf:ID="onAttribute"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:ID="RelationRangeRestriction">

<rdfs:subClassOf rdf:resource="#Restriction"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:cardinality rdf:datatype="&xsd;int">1</owl:cardinality>

<owl:onProperty>

<owl:ObjectProperty rdf:about="#class"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:about="&align;Ontology">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:about="&align;formalism"/>

</owl:onProperty>

<owl:cardinality rdf:datatype="&xsd;int">1</owl:cardinality>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf rdf:resource="&owl;Thing"/>

</owl:Class>

<owl:Class rdf:ID="PropertyDomainRestriction">

<rdfs:subClassOf rdf:resource="#Restriction"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:about="#class"/>

</owl:onProperty>

<owl:cardinality rdf:datatype="&xsd;int">1</owl:cardinality>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:ID="PropertyValueRestriction">

<rdfs:subClassOf>

<owl:Restriction>

<owl:cardinality rdf:datatype="&xsd;int">1</owl:cardinality>

<owl:onProperty>

<owl:DatatypeProperty rdf:about="#literalValue"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf rdf:resource="#Restriction"/>

<rdfs:subClassOf>

<owl:Restriction>
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<owl:onProperty>

<owl:DatatypeProperty rdf:about="#comparator"/>

</owl:onProperty>

<owl:cardinality rdf:datatype="&xsd;int">1</owl:cardinality>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:about="&align;Alignment">

<rdfs:subClassOf>

<owl:Restriction>

<owl:cardinality rdf:datatype="&xsd;int">1</owl:cardinality>

<owl:onProperty>

<owl:ObjectProperty rdf:about="&align;onto1"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:DatatypeProperty rdf:about="&align;method"/>

</owl:onProperty>

<owl:maxCardinality rdf:datatype="&xsd;int">1</owl:maxCardinality>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:DatatypeProperty rdf:about="&align;type"/>

</owl:onProperty>

<owl:maxCardinality rdf:datatype="&xsd;int">1</owl:maxCardinality>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:DatatypeProperty rdf:about="&align;level"/>

</owl:onProperty>

<owl:maxCardinality rdf:datatype="&xsd;int">1</owl:maxCardinality>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:minCardinality rdf:datatype="&xsd;int">1</owl:minCardinality>

<owl:onProperty>

<owl:ObjectProperty rdf:about="&align;map"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf rdf:resource="&owl;Thing"/>

<rdfs:subClassOf>
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<owl:Restriction>

<owl:maxCardinality rdf:datatype="&xsd;int">1</owl:maxCardinality>

<owl:onProperty>

<owl:DatatypeProperty rdf:about="&align;xml"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:about="&align;onto2"/>

</owl:onProperty>

<owl:cardinality rdf:datatype="&xsd;int">1</owl:cardinality>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:ID="Class">

<rdfs:subClassOf>

<owl:Class rdf:ID="Entity"/>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:about="#Attribute">

<rdfs:subClassOf>

<owl:Class rdf:about="#Entity"/>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:about="&align;Cell">

<rdfs:subClassOf>

<owl:Restriction>

<owl:cardinality rdf:datatype="&xsd;int">1</owl:cardinality>

<owl:onProperty>

<owl:ObjectProperty rdf:about="&align;entity2"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:about="&align;entity1"/>

</owl:onProperty>

<owl:cardinality rdf:datatype="&xsd;int">1</owl:cardinality>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:maxCardinality rdf:datatype="&xsd;int">1</owl:maxCardinality>

<owl:onProperty>

<owl:DatatypeProperty rdf:about="&align;relation"/>

</owl:onProperty>

</owl:Restriction>
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</rdfs:subClassOf>

<rdfs:subClassOf rdf:resource="&owl;Thing"/>

</owl:Class>

<owl:Class rdf:about="&align;Formalism">

<rdfs:subClassOf rdf:resource="&owl;Thing"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:minCardinality rdf:datatype="&xsd;int">1</owl:minCardinality>

<owl:onProperty>

<owl:DatatypeProperty rdf:about="&align;name"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:cardinality rdf:datatype="&xsd;int">1</owl:cardinality>

<owl:onProperty>

<owl:DatatypeProperty rdf:about="&align;uri"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:about="#Entity">

<rdfs:subClassOf rdf:resource="&owl;Thing"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="constructor"/>

</owl:onProperty>

<owl:maxCardinality rdf:datatype="&xsd;int">1</owl:maxCardinality>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:ID="Property">

<rdfs:subClassOf rdf:resource="#Attribute"/>

</owl:Class>

<owl:Class rdf:ID="Instance">

<rdfs:subClassOf rdf:resource="#Entity"/>

</owl:Class>

<owl:ObjectProperty rdf:ID="inverse">

<rdfs:subPropertyOf>

<owl:ObjectProperty rdf:about="#constructor"/>

</rdfs:subPropertyOf>

<rdfs:domain rdf:resource="#Relation"/>

<rdfs:range rdf:resource="#Relation"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="&align;onto2">

<rdfs:subPropertyOf>

<owl:ObjectProperty rdf:about="&align;ontology"/>

</rdfs:subPropertyOf>
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</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="&align;map">

<rdfs:domain rdf:resource="&align;Alignment"/>

<rdfs:range rdf:resource="&align;Cell"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="&align;entity2">

<rdfs:subPropertyOf>

<owl:ObjectProperty rdf:about="&align;entity"/>

</rdfs:subPropertyOf>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="&align;ontology">

<rdfs:range rdf:resource="&align;Ontology"/>

<rdfs:domain rdf:resource="&align;Alignment"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="restrict">

<rdfs:domain>

<owl:Class>

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Class"/>

<owl:Class rdf:about="#Property"/>

<owl:Class rdf:about="#Relation"/>

</owl:unionOf>

</owl:Class>

</rdfs:domain>

<rdfs:subPropertyOf>

<owl:ObjectProperty rdf:about="#constructor"/>

</rdfs:subPropertyOf>

<rdfs:range>

<owl:Class>

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Entity"/>

<owl:Class rdf:about="#Restriction"/>

</owl:unionOf>

</owl:Class>

</rdfs:range>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="&align;formalism">

<rdfs:range rdf:resource="&align;Formalism"/>

<rdfs:domain rdf:resource="&align;Ontology"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#onAttribute">

<rdfs:domain rdf:resource="#AttributeValueRestriction"/>

<rdfs:range rdf:resource="#Attribute"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#instanceOrAttributeValue">

<rdfs:domain rdf:resource="#AttributeValueRestriction"/>

<rdfs:range>

<owl:Class>

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Instance"/>
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<owl:Class rdf:about="#Relation"/>

<owl:Class rdf:about="#Property"/>

</owl:unionOf>

</owl:Class>

</rdfs:range>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#constructor">

<rdfs:domain>

<owl:Class>

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Class"/>

<owl:Class rdf:about="#Property"/>

<owl:Class rdf:about="#Relation"/>

</owl:unionOf>

</owl:Class>

</rdfs:domain>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="and">

<rdfs:range>

<owl:Class>

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Class"/>

<owl:Class rdf:about="#Property"/>

<owl:Class rdf:about="#Relation"/>

</owl:unionOf>

</owl:Class>

</rdfs:range>

<rdfs:domain>

<owl:Class>

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Class"/>

<owl:Class rdf:about="#Property"/>

<owl:Class rdf:about="#Relation"/>

</owl:unionOf>

</owl:Class>

</rdfs:domain>

<rdfs:subPropertyOf rdf:resource="#constructor"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="&align;entity">

<rdfs:domain rdf:resource="&align;Cell"/>

<rdfs:range rdf:resource="#Entity"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="compose">

<rdfs:range>

<owl:Class>

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Property"/>

<owl:Class rdf:about="#Relation"/>

</owl:unionOf>

</owl:Class>
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</rdfs:range>

<rdfs:subPropertyOf rdf:resource="#constructor"/>

<rdfs:domain>

<owl:Class>

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Property"/>

<owl:Class rdf:about="#Relation"/>

</owl:unionOf>

</owl:Class>

</rdfs:domain>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="&align;entity1">

<rdfs:subPropertyOf rdf:resource="&align;entity"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#class">

<rdfs:range rdf:resource="#Class"/>

<rdfs:domain>

<owl:Class>

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#PropertyDomainRestriction"/>

<owl:Class rdf:about="#RelationDomainRestriction"/>

<owl:Class rdf:about="#RelationRangeRestriction"/>

</owl:unionOf>

</owl:Class>

</rdfs:domain>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="&align;onto1">

<rdfs:subPropertyOf rdf:resource="&align;ontology"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="or">

<rdfs:range>

<owl:Class>

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Class"/>

<owl:Class rdf:about="#Property"/>

<owl:Class rdf:about="#Relation"/>

</owl:unionOf>

</owl:Class>

</rdfs:range>

<rdfs:domain>

<owl:Class>

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Class"/>

<owl:Class rdf:about="#Property"/>

<owl:Class rdf:about="#Relation"/>

</owl:unionOf>

</owl:Class>

</rdfs:domain>

<rdfs:subPropertyOf rdf:resource="#constructor"/>

</owl:ObjectProperty>
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<owl:DatatypeProperty rdf:about="&align;name">

<rdfs:domain rdf:resource="&align;Formalism"/>

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="&align;type">

<rdfs:domain rdf:resource="&align;Alignment"/>

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="&align;method">

<rdfs:range rdf:resource="&xsd;string"/>

<rdfs:domain rdf:resource="&align;Alignment"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#literalValue">

<rdfs:domain>

<owl:Class>

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#PropertyValueRestriction"/>

<owl:Class rdf:about="#AttributeValueRestriction"/>

</owl:unionOf>

</owl:Class>

</rdfs:domain>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="&align;level">

<rdfs:domain rdf:resource="&align;Alignment"/>

<rdfs:range rdf:resource="&xsd;int"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="&align;relation">

<rdfs:range>

<owl:DataRange>

<owl:oneOf rdf:parseType="Resource">

<rdf:first rdf:datatype="&xsd;string">Equivalence</rdf:first>

<rdf:rest rdf:parseType="Resource">

<rdf:first rdf:datatype="&xsd;string">Subsumes</rdf:first>

<rdf:rest rdf:parseType="Resource">

<rdf:first rdf:datatype="&xsd;string">SubsumedBy</rdf:first>

<rdf:rest rdf:resource="&rdf;nil"/>

</rdf:rest>

</rdf:rest>

</owl:oneOf>

</owl:DataRange>

</rdfs:range>

<rdfs:domain rdf:resource="&align;Cell"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="&align;xml">

<rdfs:range>

<owl:DataRange>

<owl:oneOf rdf:parseType="Resource">

<rdf:first rdf:datatype="&xsd;string">yes</rdf:first>

<rdf:rest rdf:parseType="Resource">

<rdf:first rdf:datatype="&xsd;string">no</rdf:first>
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<rdf:rest rdf:resource="&rdf;nil"/>

</rdf:rest>

</owl:oneOf>

</owl:DataRange>

</rdfs:range>

<rdfs:domain rdf:resource="&align;Alignment"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="&align;uri">

<rdfs:domain rdf:resource="&align;Formalism"/>

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#comparator">

<rdfs:range>

<owl:DataRange>

<owl:oneOf rdf:parseType="Resource">

<rdf:first rdf:datatype="&xsd;string">Equal</rdf:first>

<rdf:rest rdf:parseType="Resource">

<rdf:first rdf:datatype="&xsd;string">NotEqual</rdf:first>

<rdf:rest rdf:parseType="Resource">

<rdf:rest rdf:parseType="Resource">

<rdf:rest rdf:parseType="Resource">

<rdf:rest rdf:parseType="Resource">

<rdf:first rdf:datatype="&xsd;string">LessThanOrEqual</rdf:first>

<rdf:rest rdf:resource="&rdf;nil"/>

</rdf:rest>

<rdf:first rdf:datatype="&xsd;string">LessThan</rdf:first>

</rdf:rest>

<rdf:first rdf:datatype="&xsd;string">GreaterThanOrEqual</rdf:first>

</rdf:rest>

<rdf:first rdf:datatype="&xsd;string">GreaterThan</rdf:first>

</rdf:rest>

</rdf:rest>

</owl:oneOf>

</owl:DataRange>

</rdfs:range>

<rdfs:domain>

<owl:Class>

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#AttributeValueRestriction"/>

<owl:Class rdf:about="#PropertyValueRestriction"/>

</owl:unionOf>

</owl:Class>

</rdfs:domain>

</owl:DatatypeProperty>

<rdf:Description rdf:about="http://knowledgeweb.semanticweb.org/heterogeneity/alignment">

<rdfs:comment rdf:datatype="&xsd;string">

RDF vocabulary for the Alignment Format

</rdfs:comment>

</rdf:Description>

</rdf:RDF>
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Mapping representation

example

In this appendix, we provide the representation of the mappings defined in Tables 4.8,
4.9, 4.10 and 4.11, for the ontologies presented in Figure 4.1. For the mapping represen-
tation, we use the language discussed in the Section 4.4 and the ontology presented in the
Appendix C.

<?xml version="1.0"?>

<!DOCTYPE rdf:RDF [

<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">

<!ENTITY src "http://www.ontologies.com/SourceOntology.owl#">

<!ENTITY trg "http://www.ontologies.com/TargetOntology.owl#">

]>

<rdf:RDF xmlns="http://www.alignments.com/example.owl#"

xml:base="http://www.alignments.com/example.owl#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

xmlns:src="http://www.ontologies.com/SourceOntology.owl#"

xmlns:trg="http://www.ontologies.com/TargetOntology.owl#"

xmlns:align="http://knowledgeweb.semanticweb.org/heterogeneity/alignment#"

xmlns:oml="http://www.music.tuc.gr/oml#">

<align:Alignment rdf:about="http://www.alignments.com/example.owl#">

<align:onto1>

<align:Ontology rdf:about="&src;">

<align:formalism>

<align:Formalism>

<align:uri>http://www.w3.org/TR/owl-guide/</align:uri>

<align:name>OWL</align:name>

</align:Formalism>
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</align:formalism>

</align:Ontology>

</align:onto1>

<align:onto2>

<align:Ontology rdf:about="&trg;">

<align:formalism>

<align:Formalism>

<align:uri>http://www.w3.org/TR/owl-guide/</align:uri>

<align:name>OWL</align:name>

</align:Formalism>

</align:formalism>

</align:Ontology>

</align:onto2>

<align:map>

<align:Cell rdf:about="MappingRule_a">

<align:entity1>

<oml:Class rdf:about="&src;Book"/>

</align:entity1>

<align:entity2>

<oml:Class rdf:about="&trg;Textbook"/>

</align:entity2>

<align:relation>Equivalence</align:relation>

</align:Cell>

</align:map>

<align:map>

<align:Cell rdf:about="MappingRule_b">

<align:entity1>

<oml:Class rdf:about="&src;Product"/>

</align:entity1>

<align:entity2>

<oml:Class rdf:about="&trg;Textbook"/>

</align:entity2>

<align:relation>Subsumes</align:relation>

</align:Cell>

</align:map>

<align:map>

<align:Cell rdf:about="MappingRule_c">

<align:entity1>

<oml:Class rdf:about="&src;Publisher"/>

</align:entity1>

<align:entity2>

<oml:Class rdf:about="&trg;Publisher"/>

</align:entity2>

<align:relation>Equivalence</align:relation>

</align:Cell>

</align:map>

<align:map>

<align:Cell rdf:about="MappingRule_d">

<align:entity1>

<oml:Class rdf:about="&src;Collection"/>
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</align:entity1>

<align:entity2>

<oml:Class rdf:about="&trg;Series"/>

</align:entity2>

<align:relation>SubsumedBy</align:relation>

</align:Cell>

</align:map>

<align:map>

<align:Cell rdf:about="MappingRule_e">

<align:entity1>

<oml:Class rdf:about="&src;Novel"/>

</align:entity1>

<align:entity2>

<oml:Class rdf:about="&trg;Literature"/>

</align:entity2>

<align:relation>SubsumedBy</align:relation>

</align:Cell>

</align:map>

<align:map>

<align:Cell rdf:about="MappingRule_f">

<align:entity1>

<oml:Class rdf:about="&src;Poetry"/>

</align:entity1>

<align:entity2>

<oml:Class rdf:about="&trg;Literature"/>

</align:entity2>

<align:relation>SubsumedBy</align:relation>

</align:Cell>

</align:map>

<align:map>

<align:Cell rdf:about="MappingRule_g">

<align:entity1>

<oml:Class rdf:about="&src;Biography"/>

</align:entity1>

<align:entity2>

<oml:Class rdf:about="&trg;Biography"/>

</align:entity2>

<align:relation>Equivalence</align:relation>

</align:Cell>

</align:map>

<align:map>

<align:Cell rdf:about="MappingRule_h">

<align:entity1>

<oml:Class rdf:about="&src;Autobiography"/>

</align:entity1>

<align:entity2>

<oml:Class>

<oml:restrict rdf:parseType="Collection">

<oml:Class rdf:about="&trg;Biography"/>

<oml:AttributeValueRestriction>
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<oml:onAttribute>

<oml:Relation rdf:about="&trg;author"/>

</oml:onAttribute>

<oml:comparator>Equal</oml:comparator>

<oml:instanceOrAttributeValue>

<oml:Relation rdf:about="&trg;topic"/>

</oml:instanceOrAttributeValue>

</oml:AttributeValueRestriction>

</oml:restrict>

</oml:Class>

</align:entity2>

<align:relation>Equivalence</align:relation>

</align:Cell>

</align:map>

<align:map>

<align:Cell rdf:about="MappingRule_i">

<align:entity1>

<oml:Class rdf:about="&src;NewPublication"/>

</align:entity1>

<align:entity2>

<oml:Class>

<oml:and rdf:parseType="Collection">

<oml:Class rdf:about="&trg;Computing"/>

<oml:Class rdf:about="&trg;NewRelease"/>

</oml:and>

</oml:Class>

</align:entity2>

<align:relation>Equivalence</align:relation>

</align:Cell>

</align:map>

<align:map>

<align:Cell rdf:about="MappingRule_j">

<align:entity1>

<oml:Class rdf:about="&src;Science"/>

</align:entity1>

<align:entity2>

<oml:Class>

<oml:or rdf:parseType="Collection">

<oml:Class rdf:about="&trg;ComputerScience"/>

<oml:Class rdf:about="&trg;Mathematics"/>

</oml:or>

</oml:Class>

</align:entity2>

<align:relation>Equivalence</align:relation>

</align:Cell>

</align:map>

<align:map>

<align:Cell rdf:about="MappingRule_k">

<align:entity1>

<oml:Class rdf:about="&src;Popular"/>
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</align:entity1>

<align:entity2>

<oml:Class>

<oml:and rdf:parseType="Collection">

<oml:Class>

<oml:or rdf:parseType="Collection">

<oml:Class rdf:about="&trg;ComputerScience"/>

<oml:Class rdf:about="&trg;Mathematics"/>

</oml:or>

</oml:Class>

<oml:Class rdf:about="&trg;BestSeller"/>

</oml:and>

</oml:Class>

</align:entity2>

<align:relation>Equivalence</align:relation>

</align:Cell>

</align:map>

<align:map>

<align:Cell rdf:about="MappingRule_l">

<align:entity1>

<oml:Class rdf:about="&src;Pocket"/>

</align:entity1>

<align:entity2>

<oml:Class>

<oml:restrict rdf:parseType="Collection">

<oml:Class rdf:about="&trg;Textbook"/>

<oml:AttributeValueRestriction>

<oml:onAttribute>

<oml:Property rdf:about="&trg;size"/>

</oml:onAttribute>

<oml:comparator>LessThanOrEqual</oml:comparator>

<oml:literalValue rdf:datatype="&xsd;int">14</oml:literalValue>

</oml:AttributeValueRestriction>

</oml:restrict>

</oml:Class>

</align:entity2>

<align:relation>Equivalence</align:relation>

</align:Cell>

</align:map>

<align:map>

<align:Cell rdf:about="MappingRule_m">

<align:entity1>

<oml:Relation rdf:about="&src;publisher"/>

</align:entity1>

<align:entity2>

<oml:Relation>

<oml:inverse>

<oml:Relation rdf:about="&trg;publishes"/>

</oml:inverse>

</oml:Relation>
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</align:entity2>

<align:relation>Equivalence</align:relation>

</align:Cell>

</align:map>

<align:map>

<align:Cell rdf:about="MappingRule_n">

<align:entity1>

<oml:Relation rdf:about="&src;partOf"/>

</align:entity1>

<align:entity2>

<oml:Relation>

<oml:restrict rdf:parseType="Collection">

<oml:Relation rdf:about="&trg;partOf"/>

<oml:RelationDomainRestriction>

<oml:class>

<oml:Class>

<oml:restrict rdf:parseType="Collection">

<oml:Class rdf:about="&trg;Textbook"/>

<oml:AttributeValueRestriction>

<oml:onAttribute>

<oml:Property rdf:about="&trg;size"/>

</oml:onAttribute>

<oml:comparator>LessThanOrEqual</oml:comparator>

<oml:literalValue rdf:datatype="&xsd;int">14</oml:literalValue>

</oml:AttributeValueRestriction>

</oml:restrict>

</oml:Class>

</oml:class>

</oml:RelationDomainRestriction>

</oml:restrict>

</oml:Relation>

</align:entity2>

<align:relation>Equivalence</align:relation>

</align:Cell>

</align:map>

<align:map>

<align:Cell rdf:about="MappingRule_o">

<align:entity1>

<oml:Property rdf:about="&src;name"/>

</align:entity1>

<align:entity2>

<oml:Property rdf:about="&trg;title"/>

</align:entity2>

<align:relation>Subsumes</align:relation>

</align:Cell>

</align:map>

<align:map>

<align:Cell rdf:about="MappingRule_p">

<align:entity1>

<oml:Property rdf:about="&src;id"/>
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</align:entity1>

<align:entity2>

<oml:Property rdf:about="&trg;isbn"/>

</align:entity2>

<align:relation>Subsumes</align:relation>

</align:Cell>

</align:map>

<align:map>

<align:Cell rdf:about="MappingRule_q">

<align:entity1>

<oml:Property rdf:about="&src;price"/>

</align:entity1>

<align:entity2>

<oml:Property rdf:about="&trg;price"/>

</align:entity2>

<align:relation>Subsumes</align:relation>

</align:Cell>

</align:map>

<align:map>

<align:Cell rdf:about="MappingRule_r">

<align:entity1>

<oml:Property rdf:about="&src;review"/>

</align:entity1>

<align:entity2>

<oml:Property>

<oml:or rdf:parseType="Collection">

<oml:Property rdf:about="&trg;editorialReview"/>

<oml:Property rdf:about="&trg;customerReview"/>

</oml:or>

</oml:Property>

</align:entity2>

<align:relation>Equivalence</align:relation>

</align:Cell>

</align:map>

<align:map>

<align:Cell rdf:about="MappingRule_s">

<align:entity1>

<oml:Property rdf:about="&src;author"/>

</align:entity1>

<align:entity2>

<oml:Property>

<oml:compose rdf:parseType="Collection">

<oml:Relation rdf:about="&trg;author"/>

<oml:Property rdf:about="&trg;name"/>

</oml:compose>

</oml:Property>

</align:entity2>

<align:relation>Equivalence</align:relation>

</align:Cell>

</align:map>
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<align:map>

<align:Cell rdf:about="MappingRule_t">

<align:entity1>

<oml:Instance rdf:about="&src;CSFoundations"/>

</align:entity1>

<align:entity2>

<oml:Instance rdf:about="&trg;FoundationsOfCS"/>

</align:entity2>

<align:relation>Equivalence</align:relation>

</align:Cell>

</align:map>

</align:Alignment>

</rdf:RDF>


