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ABSTRACT

Magnetic resonance imagine (MRI) is a widely used medical imaging modality that provides rich 
information  about  the  human  tissue  anatomy  and  pathology.  Being  a  non-invasive  and  safe 
technique, it offers several advantages over other imaging techniques enabling it to provide images 
with high contrast between the three basic brain tissues, Cerebro-Spinal Fluid (CSF), Gray Matter 
(GM) and White Matter (WM). Also, it provides a plethora of pathophysiological tissue information 
that assists the clinician in diagnosis, therapy design/monitoring and surgery. Manual delineation of 
brain tissues by a human expert is still considered as the reference and most acceptable method, but 
unfortunately it is too time consuming, especially in cases where  large amounts of data need to be 
analyzed. In addition  manual segmentations by the clinicians have been reported to be prone to 
large  intra-  and  inter  observer  variability,  fact  that  stresses  out  the  need  of  objective  and 
reproducible  computer  segmentation  techniques  for  the  brain in  order  to  perform a  number  of 
computational medicine tasks including morphological measurements of brain structures, automatic 
detection of asymmetries and pathologies, and simulation of brain tissue growth.

This thesis proposes an automated brain structures segmentation algorithm based on the adaptive 
mean-shift theory. The MRI image space is used to compute a three-dimensional feature space that 
includes intensity features as well as spatial features, in particular pixel's coordinates. An adaptive 
mean-shift  algorithm  clusters  the  joint  spatial-intensity  feature  space,  thus  extracting  a 
representative  set  of  high-density  points  within  the  feature  space,  otherwise  known as  modes. 
Because of  its nonparametric nature, adaptive mean-shift can deal successfully with nonconvex 
clusters and produce convergence modes that are better candidates for intensity based classification 
than the initial  pixels.  All  pixels  are  then classified to  these modes  according to the Euclidean 
distance from them. Then, an intensity only feature space, is used to merge the remaining modes,  to 
further reduce  the remaining number of clusters. Finally, pixels are assigned to the three desired 
clusters(CSF,  GM  and  WM),  according  to  the  fuzzy  k-means  clustering  algorithm.  The 
effectiveness of this algorithm in the automatic detection of brain abnormalities in brain images is 
also investigated in the following way: Instead of three, four clusters are used and after identifying 
the cluster with the higher mean value, (since most likely it includes the tumor region), the tumor 
area is labelled as the largest connected component of that cluster. The output of the algorithm is not 
only a segmentation map for all the pixels of the dataset but also a membership matrix for each 
cluster which includes the probability of each pixel to belong to this category.  

The proposed method is validated on both simulated and real MRI data. The algorithm was also 
assessed  for  various  different  parameters  values  in  order  to  check  their  effect  in  algorithm's 
performance  and  ensure  that  the  proposed  segmentation  method  is  reproducible  and  reliable. 
Finally, it was compared with a number of well-known brain tissues segmentation algorithms by 
using  a  presegmented  atlas  dataset  as  ground  truth.  The  results  indicate  that  the  mean-shift 
algorithm outperforms these methods.

Key  words:  brain  magnetic  resonance  imaging  (MRI),  segmentation,  Adaptive  mean-shift, 
mahalanobis distance, fuzzy k-means.
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1.  INTRODUCTION 
 
1.1 Motivation and objectives of the study
 
Magnetic  resonance  images  (MRI)  of  the  brain  are  acquired  using  different  protocols,  e.g.  T1 
weighted images, T1 weighted images with contrast enhancement of  the active tumor region, T2 
and Proton Density (Pd) weighted images. In order to be able to make use of the acquired images, 
different  regions  in  the  images  have  to  be  delineated.  The  region  of  interests (ROIs)  usually 
correspond to the different tissue types, which are present in the brain. Clustering brain pixels into 
one of three main brain tissue types (Cerebrospinal fluid, Gray Matter, White Matter) proves to be 
of  paramount  importance  in  anticipation  and  treatment  of  various  diseases,  such  as  multiple 
sclerosis, Alzheimer’s disease or epilepsy. 

A great  variety  of  segmentation  methods  have  been  proposed  for  this  task,  following  either 
supervised  or  unsupervised  approaches.  Supervised  classification  requires  input  from the  user, 
typically a set of pixel class samples.  On the other hand, unsupervised approaches often rely on a 
Gaussian  approximation  of  the  pixel  intensity  distribution  for  each  tissue  type.  Though,  using 
intensity information alone  has proven insufficient for a reliable automated segmentation of the 
brain  tissues.  For this  reason,  different  algorithms  have  been  proposed that  model  neighboring 
pixels  interactions  using  a  Markov-Random  field  (MRF)  statistical  model.  An  alternative  to 
statistical  parametric  approaches  is  the  use  of  unsupervised,  nonparametric  schemes.  One such 
approach is the Mean-shift algorithm , which uses adaptive gradient ascent in order to detect local 
maximum of data density in feature space. 

Manual segmentation by an expert of the actual tumor evolution, is still considered as the reference 
and  most  accurate  method,  but  is  a  time  consuming  task  with  high  inter  and  intra-observer 
variability.  For  this  reason,  the  development  of  reliable  algorithms  that  automatically  or  semi-
automatically detects  tumor pixels, is vital in quantifying tumor, in simulation of treatment effects 
and finally in optimization of therapeutic  strategies.  Challenges in the segmentation of gliomas 
from MRI data are related to the infiltration of cells into the tissue, inducing unsharp borders with 
irregularities and discontinuities, the great variability in their contrast uptake and their appearance 
on standard MRI protocols. The majority of MRI tumor segmentation methods depend on region-
based approach (In region-based approach,the segmentation task of the given image can be seen as 
the partition of the image into homogeneous objects ) while some recent methods also include data 
from edge-based approach (In edge-based approach, the segmentation task of the given image can 
be seen as the detection of object contours within the image. ) . 

Object  of  this  work  is  to  propose  an  automated,region-based  brain  structures  segmentation 
algorithm, based on the mean-shift theory, which will produce high qualitative classification results 
and to propose a technique to detect and classify tumor and edema pixels from T1-enhanced and 
T2-flair modalities.

1.2 Outline of the Dissertation 
 
Chapter 1 gives an introduction to the concept of brain structures segmentation and the objectives 
of the study.  Chapter 2  introduces us a brief background of human brain anatomy.  Chapter 3 
introduces us to brain image processing and brain structures segmentation concepts.  Chapter 4 
demonstrates the basic theoretical parts of the proposed algorithm, such as the mean-shift theory 
and k-means algorithm.  Chapter 5  demonstrates analytically the proposed, mean-shift algorithm. 
Chapter  6  presents  experimental  results,  discusses  the  selection  of  optimal  parameters  and 
performs a comparison with other common algorithms.  Chapter 7 summarizes and concludes the 
thesis, and proposes recommendations for future work. Further related information is detailed in the 
Appendix.
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                                     2. CLINICAL BACKGROUND

2.1 Introduction
 

 In this chapter we are going to analyze the basic tissues of human brain, what we define as brain 
tumor, human brain data visualization and finally why segmentation of the human brain tissues is 
useful in various clinical applications. 

2.2 Human Brain Anatomy
 
2.2.1 Introduction 
 
As mentioned in  [1],  human brain  is  the center  of  the  human nervous system and is  a  highly 
complex organ. Enclosed in the cranium, it has the same general structure as the brains of other 
mammals, but is over three times as large as the brain of a typical mammal with an equivalent body 
size. Most of the expansion comes from the cerebral cortex, a convoluted layer of neural tissue that 
covers the surface of the forebrain. Especially expanded are the frontal lobes, which are associated 
with executive functions such as self-control, planning, reasoning, and abstract thought. The portion 
of the brain devoted to vision is also greatly enlarged in human beings.

Brain evolution, from the earliest shrewlike mammals through primates to hominids, is marked by a 
steady increase in encephalization, or the ratio of brain to body size. The human brain has been 
estimated to contain 50–100 billion neurons, of which about 10 billion are cortical pyramidal cells. 
These cells pass signals to each other via as many as 1000 trillion synaptic connections.

The brain monitors and regulates the body's actions and reactions. It continuously receives sensory 
information,  and  rapidly  analyzes  this  data  and  then  responds,  controlling  bodily  actions  and 
functions.  The  brainstem  controls  breathing,  heart  rate,  and  other  autonomic  processes.  The 
neocortex  is  the  center  of  higher-order  thinking,  learning,  and  memory.  The  cerebellum  is 
responsible for the body's balance, posture, and the coordination of movement.

In spite of the fact that it is protected by the thick bones of the skull, suspended in cerebrospinal 
fluid, and isolated from the bloodstream by the blood-brain barrier, the delicate nature of the human 
brain  makes  it  susceptible  to  many types  of  damage and disease.  The most  common forms  of 
physical damage are closed head injuries such as a blow to the head, a stroke, or poisoning by a 
wide variety of chemicals that can act as neurotoxins. Infection of the brain is rare because of the 
barriers that protect it, but is very serious when it occurs. The human brain is also susceptible to 
degenerative disorders, such as Parkinson's disease, multiple sclerosis, and Alzheimer's disease. A 
number of psychiatric conditions, such as schizophrenia and depression, are widely thought to be 
caused at least partially by brain dysfunctions, although the nature of such brain anomalies is not 
well understood.

2.2.2 Basic brain tissues   
 
The basic brain human tissue types are three: Cerebro-Spinal Fluid (CSF), White Matter (WM) and 
Gray Matter (GM):

→ Cerebrospinal fluid (CSF). As referred in [2], liquor cerebrospinalis, is a clear bodily fluid that 
occupies the subarachnoid space and the ventricular system around and inside the brain and spinal 
cord. In essence, the brain "floats" in it. The CSF occupies the space between the arachnoid mater 
(the middle layer of the brain cover, meninges), and the pia mater (the layer of the meninges closest 
to the brain). It constitutes the content of all intra-cerebral (inside the brain, cerebrum) ventricles, 
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cisterns,  and sulci  (singular  sulcus),  as  well  as the central  canal  of the spinal  cord.It  acts  as a 
"cushion" or buffer for the cortex, providing a basic mechanical and immunological protection to 
the brain inside the skull.

The CSF is produced at a rate of 500 ml/day. Since the brain can contain only 135 to 150 ml, large 
amounts are drained primarily into the blood through arachnoid granulations in the superior sagittal 
sinus. Thus the CSF turns over about 3.7 times a day. This continuous flow into the venous system 
dilutes the concentration of larger, lipoinsoluble molecules penetrating the brain and CSF.

The  CSF  contains  approximately  0.3%  plasma  proteins,  or  approximately  15  to  40  mg/dL, 
depending on sampling site. CSF pressure ranges from 80 to 100 mmH2O (780–980 Pa or 4.4–7.3 
mmHg) in  newborns,  and < 200 mmH20 (1.94 kPa) in  normal  children and adults,  with  most 
variations due to coughing or internal compression of jugular veins in the neck.

CSF serves four primary purposes:

i. Buoyancy: The actual mass of the human brain is about 1400 grams; however the net weight 
of the brain suspended in the CSF is equivalent to a mass of 25 grams.The brain therefore 
exists  in neutral  buoyancy, which allows the brain to maintain its  density without being 
impaired by its own weight, which would cut off blood supply and kill neurons in the lower 
sections without CSF.

ii. Protection: CSF protects the brain tissue from injury when jolted or hit. In certain situations 
such  as  auto  accidents  or  sports  injuries,  the  CSF cannot  protect  the  brain  from forced 
contact with the skull case, causing hemorrhaging, brain damage, and sometimes death.

iii.Chemical stability: CSF flows throughout the inner ventricular system in the brain and is 
absorbed back into the bloodstream, rinsing the metabolic waste from the central nervous 
system  through  the  blood-brain  barrier.  This  allows  for  homeostatic  regulation  of  the 
distribution  of  neuroendocrine  factors,  to  which  slight  changes  can  cause  problems  or 
damage to the nervous system. For example, high glycine concentration disrupts temperature 
and blood pressure control, and high CSF pH causes dizziness and syncope.

iv. Prevention of brain ischemia: The prevention of brain ischemia is made by decreasing the 
amount  of  CSF  in  the  limited  space  inside  the  skull.  This  decreases  total  intracranial 
pressure and facilitates blood perfusion. 

An example of CSF tissue is shown in figure 2.1.

Fig. 2.1 : (a) MRI brain slice  (b) CSF tissues, colored in white.
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→  Gray Matter (GM),  as referred in [3],  is a major component of the central nervous system 
(CNS), consisting of neuronal cell bodies, neuropil (dendrites and both myelinated (myelin is a 
dielectric material that forms a layer, the myelin sheath, usually around only the axon of a neuron. ) 
axons and unmyelinated axons), glial cells (astroglia and oligodendrocytes) and capillaries. Gray 
matter contains neural cell bodies, in contrast to white matter, which does not and mostly contains 
myelinated axon tracts. The color difference arises mainly from the whiteness of myelin. In living 
tissue, gray matter actually has a gray-brown color which comes from capillary blood vessels and 
neuronal cell bodies. 

Gray matter is distributed at the surface of the cerebral hemispheres (cerebral cortex) and of the 
cerebellum (cerebellar cortex), as well as in the depths of the cerebrum (thalamus; hypothalamus; 
subthalamus,  basal  ganglia  -  putamen,  globus  pallidus,  nucleus  accumbens;  septal  nuclei), 
cerebellar (deep cerebellar nuclei - dentate nucleus, globose nucleus, emboliform nucleus, fastigial 
nucleus), brainstem (substantia nigra, red nucleus, olivary nuclei, cranial nerve nuclei) and spinal 
grey matter (anterior horn, lateral horn, posterior horn). 

The function of grey matter is to route sensory or motor stimulus to interneurons of the CNS in 
order to create a response to the stimulus through chemical synapse activity. Grey matter structures 
(cortex, deep nuclei) process information originating in the sensory organs or in other grey matter 
regions. This information is conveyed via specialized nerve cell extensions (long axons), which 
form the bulk of the cerebral,  cerebellar,  and spinal white matter.  An example of GM tissue is 
shown in figure 2.2.

Fig. 2.2 : (a) MRI brain slice (b) GM tissues, colored in white.

→ White Matter (WM) as mentioned in [4] is one of the two components of the central nervous 
system and consists mostly of myelinated axons. White matter tissue of the freshly cut brain appears 
pinkish white to the naked eye because myelin is  composed largely of lipid tissue veined with 
capillaries. Its white color is due to its usual preservation in formaldehyde. A 20 year-old male has 
around 176 km of myelinated axons in his brain.
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White matter is composed of bundles of myelinated nerve cell processes (or axons), which connect 
various grey matter areas (the locations of nerve cell bodies) of the brain to each other, and carry 
nerve impulses between neurons.

In the cerebral hemispheres two types of myelinated axons are identified: short-distance (10 –30 
mm) fibers below the gray matter that follow its contours, and long distance (30–170 mm) fibers 
that are bundled into fasciculi in the deep white matter. There are also shorter intracortical (1–3 
mm) unmyelinated fibers within the grey matter.

The total number of long range fibers within a cerebral hemisphere is 2% of the total number of 
cortico-cortical fibers and is roughly the same number as those that communicate between the two 
hemispheres in Corpus callosum. Using a computer network as an analogy, the gray matter can be 
thought of as the actual computers themselves, whereas the white matter represents the network 
cables connecting the computers together. Myelin, which surrounds the nerve fibers, is found in 
almost all long nerve fibers, and acts as an electrical insulation. This is important because it allows 
the messages to pass quickly from place to place.

The brain in general (and especially a child's brain) can adapt to white-matter damage by finding 
alternative routes that  bypass the damaged white-matter areas, and can therefore maintain good 
connections between the various areas of gray matter.

Unlike gray matter, which peaks in development in a person's twenties, the white matter continues 
to develop, and peaks in middle age (Sowell et al., 2003)

A 2009 paper by Jan Scholz and colleagues [5] used diffusion tensor imaging (DTI) to demonstrate 
changes in white matter volume as a result of learning a new motor task (juggling). The study is 
important as the first paper to correlate motor learning with white matter changes. Previously, many 
researchers had considered this type of learning to be exclusively mediated by dendrites, which are 
not  present  in  white  matter.  The  authors  suggest  that  electrical  activity  in  axons  may regulate 
myelination in axons. Similarly, the cause may be gross changes in the diameter or packing density 
of the axon.

In figure 2.3 is demonstrated an example of WM tissue.

Fig 2.3: (a) MRI brain slice  (b) WM tissues, colored in white.
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2.3 Magnetic resonance imaging (MRI)

2.3.1 Introduction

Magnetic resonance imaging (MRI), or nuclear magnetic resonance imaging (NMRI), as mentioned 
in [6] is primarily a medical imaging technique used in radiology to visualize detailed internal 
structure  and  limited  function  of  the  body.  MRI  provides  much  greater  contrast  between  the 
different soft tissues of the body than Computed Tomography (CT) ([7])  does, making it especially 
useful in neurological (brain), musculoskeletal, cardiovascular, and oncological (cancer) imaging. 
Unlike CT  ([7]),  it  uses  no ionizing radiation,  but  uses  a powerful  magnetic  field  to  align the 
nuclear magnetization of (usually) hydrogen atoms in water in the body.  Radio frequency (RF) 
fields are used to systematically alter the alignment of this magnetization. This causes the hydrogen 
nuclei  to  produce  a  rotating  magnetic  field  detectable  by  the  scanner.  This  signal  can  be 
manipulated by additional magnetic fields to build up enough information to construct an image of 
the body [8] .

Magnetic resonance imaging is a relatively new technology. The first MR image was published in 
1973 and the first cross-sectional image of a living mouse was published in January 1974.The first 
studies performed on humans were published in 1977. By comparison, the first human X-ray image 
was taken in 1895.

Magnetic  resonance  imaging  was  developed  from  knowledge  gained  in  the  study  of  nuclear 
magnetic resonance. In its early years the technique was referred to as nuclear magnetic resonance 
imaging  (NMRI).  However,  because  the  word  nuclear  was  associated  in  the  public  mind  with 
ionizing radiation exposure it is generally now referred to simply as MRI. Scientists still use the 
term NMRI  when  discussing  non-medical  devices  operating  on  the  same  principles.  The  term 
magnetic resonance tomography (MRT) is also sometimes used.  An example of MRI brain slice 
image is shown in figure 2.4.

Fig. 2.4: An MRI brain slice
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2.3.2 How MRI works

A magnetic resonance imaging instrument (MRI scanner), or "nuclear magnetic resonance (NMR) 
imaging"  scanner  as  it  was  originally  known,  uses  powerful  magnets  to  polarise  and  excite 
hydrogen nuclei (single proton) in water molecules in human tissue, producing a detectable signal 
which is spatially encoded, resulting in images of the body. MRI uses three electromagnetic fields: a 
very strong (on the order of units of teslas) static magnetic field to polarize the hydrogen nuclei, 
called the static field; a weaker time-varying (on the order of 1 kHz) field(s) for spatial encoding, 
called the gradient field(s); and a weak radio-frequency (RF) field for manipulation of the hydrogen 
nuclei to produce measurable signals, collected through an RF antenna.

Like CT , MRI traditionally creates a two dimensional image of a thin "slice" of the body and is 
therefore considered a tomographic imaging technique. Modern MRI instruments are capable of 
producing images in the form of 3D blocks, which may be considered a generalisation of the single-
slice, tomographic, concept. Unlike CT, MRI does not involve the use of ionizing radiation and is 
therefore not associated with the same health hazards. For example, because MRI has only been in 
use since the early 1980s, there are no known long-term effects of exposure to strong static fields 
(this is the subject of some debate; see 'Safety' in MRI) and therefore there is no limit to the number 
of scans to which an individual can be subjected, in contrast with X-ray and CT. However, there are 
well-identified health risks associated with tissue heating from exposure to the RF field and the 
presence of implanted devices in the body, such as pace makers. These risks are strictly controlled 
as part of the design of the instrument and the scanning protocol used.

Because CT and MRI are  sensitive to  different  tissue properties,  the appearance of the images 
obtained with the two techniques differ markedly. In CT, X-rays must be blocked by some form of 
dense tissue to create an image, so the image quality when looking at soft tissues will be poor. In 
MRI,  any nucleus with a net nuclear spin can be used, but the proton of the hydrogen atom remains 
the most widely used, especially in the clinical setting, because it is so ubiquitous and returns a 
large  signal.  This  nucleus,  present  in  water  molecules,  allows  the  excellent  soft-tissue  contrast 
achievable with MRI.

2.3.3 Basic MRI scans
 
The basic MRI scans are the following :

T1-weighted MRI
T1-weighted scans use a gradient echo (GRE) sequence [9], with short  echo time (TE) (The echo 
time represents the time in milliseconds between the application of the 90° pulse and the peak of the 
echo signal in spin echo and inversion recovery pulse sequences [10].)  and short  repetition time 
(TR) (The amount of time that exists between successive pulse sequences applied to the same slice 
[11]. ). This is one of the basic types of MR contrast and is a commonly run clinical scan. The T1 
weighting can be increased (improving contrast) with the use of an inversion pulse as in an MP-
RAGE sequence. Due to the short TR this scan can be run very fast allowing the collection of high 
resolution 3D datasets. A T1 reducing gadolinium contrast agent is also commonly used, with a T1 
scan being collected before and after administration of contrast agent to compare the difference. In 
the brain T1-weighted scans provide good gray matter/white matter contrast.  An example of T1-
weighted MRI scan is shown in figure 2.4(a).

T2-weighted MRI
T2-weighted scans use a spin echo (SE) sequence [12], with long TE and long TR. The difference 
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of T1 and T2 modalities according to times TE and TR is shown in figure 2.5. They have long been 
the  clinical  workhorse  as  the  spin  echo sequence  is  less  susceptible  to  inhomogeneities  in  the 
magnetic field. They are particularly well suited to edema as they are sensitive to water content 
(edema is  characterized  by increased  water  content).  An example  of  T2-weighted  MRI scan  is 
shown in figure 2.6(b).   

T2* -weighted MRI
T2* (pronounced "T2 star") weighted scans use a gradient echo (GRE) sequence, with long TE and 
long TR. The gradient echo sequence used does not have the extra refocusing pulse used in spin 
echo so it is subject to additional losses above the normal T2 decay (referred to as T2′), these taken 
together  are  called  T2*.  This  also  makes  it  more  prone  to  susceptibility  losses  at  air/tissue 
boundaries, but can increase contrast for certain types of tissue, such as venous blood. An MRI T2*-
weighted slice is imagined in figure 2.6 (c). 

T2 Flair MRI
T2 Flair  modality  is  similar  to  T2  except  the  signal  from cerebrospinal  fluid  (CSF)  has  been 
suppressed, so we no longer confuse lesions that are T2-bright from CSF which is also T2-bright. 
These are the best sequences for a quick look for pathology. For example, it can be used in brain 
imaging to suppress cerebrospinal fluid (CSF) so as to bring out the periventricular hyperintense 
lesions, such as multiple sclerosis (MS) plaques. By carefully choosing the inversion time TI (the 
time between the inversion and excitation pulses),  the signal  from any particular  tissue can be 
suppressed. In figure 2.6 (d) it is shown an MRI T2 Flair brain slice.

Spin density weighted MRI
Spin density, also called proton density (Pd), weighted scans try to have no contrast from either T2 
or  T1 decay,  the only signal  change coming from differences in  the amount  of available  spins 
(hydrogen nuclei in water). It uses a spin echo or sometimes a gradient echo sequence, with short 
TE and long TR. It should be mentioned that Pd-weighted modality is not used as much any more, 
since FLAIR and other sequences have eliminated the need. Occasionally it can be used in joints 
display. An example of Pd MRI scan is shown in figure 2.6 (e).

Fig. 2.5: Effects of TR, TE, on formation of T1 and T2 modalities [6]. 
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Fig. 2.6: Five basic MRI scans: (a) T1-weighted , (b) T2-weighted , (c) T2*-weighted , (d) T2 Flair 
and (e) Pd-weighted 

 

Furthermore there are several  Specialized MRI scans  such as Diffusion MRI, which its principal 
use is in the imaging of white matter where the location, orientation, and anisotropy of the tracts 
can be measured, but has also plenty other usages such as applications in the characterization of 
skeletal and cardiac muscle, Magnetization Transfer (MT) MRI, which can be used to provide an 
alternative contrast method in addition to T1, T2,  and PD, the extension of MT, the magnetization 
transfer ratio, has been used in neuroradiology to highlight abnormalities in brain structures, Fluid 
attenuated inversion recovery (FLAIR), which is a pulse sequence which use an inversion recovery 
technique that nulls fluids and can be used in brain imaging to suppress cerebrospinal fluid (CSF) 
effects on the image, so as to bring out the periventricular hyperintense lesions, such as multiple 
sclerosis (MS) plaques, etc but only the basic scans are used in this work [6].
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2.3.4 MRI versus CT

A computed tomography (CT) scanner  uses  X-rays,  a  type  of ionizing radiation,  to  acquire  its 
images,  making it  a  good tool  for  examining  tissue composed of  elements  of  a  higher  atomic 
number than the tissue surrounding them, such as bone and calcifications (calcium based) within the 
body (carbon based flesh), or of structures (vessels, bowel). MRI, on the other hand, uses non-
ionizing radio frequency (RF) signals  to acquire its  images and is  best  suited for non-calcified 
tissue, though MR ima ges can also be acquired from bones and teeth  as well as fossils.

CT may be enhanced by use of contrast agents containing elements of a higher atomic number than 
the surrounding flesh such as iodine or barium. Contrast  agents for MRI are those which have 
paramagnetic properties, e.g. gadolinium and manganese.

Both CT and MRI scanners are able to generate multiple two-dimensional cross-sections (slices) of 
tissue  and three-dimensional  reconstructions.  Unlike  CT,  which  uses  only X-ray attenuation  to 
generate image contrast,  MRI has a long list  of  properties that  may be used to generate image 
contrast. By variation of scanning parameters, tissue contrast can be altered and enhanced in various 
ways to detect different features.

MRI can generate cross-sectional images in any plane (including oblique planes). In the past, CT 
was limited to acquiring images in the axial  (or near axial)  plane. The scans used to be called 
Computed Axial Tomography scans (CAT scans). However, the development of multi-detector CT 
scanners  with  near-isotropic  resolution,  allows  the  CT  scanner  to  produce  data  that  can  be 
retrospectively reconstructed in any plane with minimal loss of image quality.

For purposes of tumor detection and identification in the brain, MRI is generally superior. However, 
in the case of solid tumors of the abdomen and chest, CT is often preferred due to less motion 
artifact. Furthermore, CT usually is more widely available, faster, less expensive, and may be less 
likely to require the person to be sedated or anesthetized.

MRI is also best suited for cases when a patient is to undergo the exam several times successively in 
the  short  term,  because,  unlike  CT,  it  does  not  expose  the  patient  to  the  hazards  of  ionizing 
radiation.

2.4 Brain Tumor
 
2.4.1 Brain Tumor Definition    
 
A brain tumor, as referred in [13] is an intracranial solid neoplasm, a tumor (defined as an abnormal 
growth of cells) within the brain or the central spinal canal.

Brain tumors include all tumors inside the cranium or in the central spinal canal. They are created 
by an abnormal and uncontrolled cell division, normally either in the brain itself (neurons, glial 
cells (astrocytes, oligodendrocytes, ependymal cells, myelin-producing Schwann cells), lymphatic 
tissue, blood vessels), in the cranial nerves, in the brain envelopes (meninges), skull, pituitary and 
pineal gland, or spread from cancers primarily located in other organs (metastatic tumors).

Any brain tumor is inherently serious and life-threatening because of its invasive and infiltrative 
character in the limited space of the intracranial cavity. However, brain tumors (even malignant 
ones) do not automatically cause death. Brain tumors or intracranial neoplasms can be cancerous 
(malignant) or non-cancerous (benign); however, the definitions of malignant or benign neoplasms 
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differs from those commonly used in other types of cancerous or non-cancerous neoplasms in the 
body. Its threat level depends on the combination of factors like the type of tumor, its location, its 
size  and  its  state  of  development.  Because  the  brain  is  well  protected  by  the  skull,  the  early 
detection of a brain tumor only occurs when diagnostic tools are directed at the intracranial cavity. 
Usually detection occurs in advanced stages when the presence of the tumor has side effects that 
cause unexplained symptoms.

Primary (true) brain tumors are commonly located in the posterior cranial fossa in children and in 
the anterior two-thirds of the cerebral hemispheres in adults, although they can affect any part of the 
brain.

2.4.2 Taxonomy of brain tumors

→ By location and origin of the neoplasm 
Primary brain tumors
Primary neoplasms of the brain are tumors that originate in the intracranial sphere or the central 
spinal canal, based on the organic tissues that make up the brain and the spinal cord. From the 
brain-lemma we can learn a lot of things about the composition of the brain from different types of 
organic tissues. For the purpose of this work we will discuss only some types.

• The brain itself is composed of neurons and glia (that function primarily as the physical 
support for neurons). The neuron itself is rarely the basis for a tumor, though tumors of the 
glial cells are glioma and often are of the cancerous type. 

• The brain is surrounded by a system of connective tissue membranes called meninges that 
separate the skull from the brain. Tumors of the meninges are meningioma and are often 
benign neoplasms. 

• Below the brain is pituitary and pineal gland which could be the basis for its own -albeit 
rare- kind of benign glandular neoplasms. 

Secondary brain tumors

Secondary tumors  of  the  brain  are  metastatic  tumors  that  invaded the  intracranial  sphere  from 
cancers primarily located in other organs. This means that a (malignant) cancerous neoplasm has 
developed in another organ elsewhere in the body and that cancer cells leak from that primary 
tumor.  The  leaked  cells  enter  the  lymphatic  system  and  blood  vessels,  circulate  through  the 
bloodstream, and are deposited (strand in the small blood vessels in the brain) within normal tissue 
elsewhere in the body, in this case in the brain. There these cells continue growing & dividing and 
become another invasive neoplasm of the primary cancers tissue. Secondary tumors of the brain are 
very common in the terminal phases of patients with an incurable metastased cancer , most common 
types of cancers that bring about secondary tumors of the brain are lung cancer, breast cancer and 
malignant melanoma (skin cancer), kidney cancer and cancer of the colon (in decreasing order of 
frequency).

Unfortunately enough this is the most common cause of neoplasms in the intracranial cavity.

The skull bone structure can also be subject to a neoplasm that by it very nature reduces the volume 
of the intracranial cavity, and can damage the brain.
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→ By behavior of the neoplasm
Brain tumors or intracanial  neoplasms can be cancerous (malignant) or non-cancerous (benign). 
However, the definitions of malignant or benign neoplasms differs from those commonly used in 
other types of cancerous or non-cancerous neoplasms in the body. In ordinary cancers (elsewhere in 
the body) three malignant properties differentiate benign tumors from malignant forms of cancer: 
benign tumors are self-limited and do not invade or metastasize. The malignant characteristics of 
tumors are:

• Uncontrolled mitosis (growth by division beyond the normal limits)
• Anaplasia. Is a term to explain that the cells in the neoplasm have an obvious different form 

(in  size  and shape).  Anaplastic  cells  display marked pleomorphism.  The cell  nuclei  are 
characteristically  extremely  hyperchromatic  (darkly  stained)  and  enlarged;  the  nucleus 
might  have  the  same  size  as  the  cytoplasm of  the  cell  (nuclear-cytoplasmic  ratio  may 
approach 1:1, instead of the normal 1:4 or 1:6 ratio). Giant cells that are considerably larger 
than their neighbors may be formed and possess either one enormous nucleus or several 
nuclei (syncytia). Anaplastic nuclei are variable and bizarre in size and shape. 

• Invasion  or  infiltration:  in  medical  literature  these  terms  are  used  as  synonymous 
equivalents. However for clarity in the articles that follow we will adhere to a convention 
that they mean slightly different things (so readers should be aware that this convention is 
not kept outside these articles): 

• Invasion  or  invasiveness  is  the  spatial  expansion of  the  tumor through the uncontrolled 
mitosis,  in  the  sense  that  the  neoplasm invades  the  space  occupied  by adjacent  tissue, 
thereby pushing the other tissue aside and eventually compressing the tissue. Often these 
tumors are associated with clearly outlined tumors in imaging. 

• Inflitration is the behavior of the tumor either to grow (microscopic) tentacles that push into 
the surrounding tissue (often making the outline of the tumor undefined or diffuse) or to 
have tumor cells "seeded" into the tissue beyond the circumference of the tumorous mass; 
this doesn't mean that an infiltrative tumor doesn't take up space or doesn't compress the 
surrounding tissue as it grows, but an infiltrating neoplasm makes it difficult to say where 
the tumor ends and the healthy tissue starts. 

• Metastasis (spread to other locations in the body via lymph or blood). 

Of the above malignant characteristics, some elements don't  apply to primary neoplasms of the 
brain :

• Primary  brain  tumors  rarely  metastasize  to  other  organs;  some  forms  of  primary  brain 
tumors  can metastasize but  will  not  spread outside the intracranial  cavity or  the central 
spinal canal. Due to the blood-brain barrier cancerous cells of a primary neoplasm cannot 
enter the bloodstream and get carried to another location in the body. (Occasional isolated 
case reports suggest spread of certain brain tumors outside the central nervous system, e.g. 
bone metastasis of glioblastoma multiforme [14].) 

• Primary brain tumors generally are invasive (i.e. they will expand spatially and intrude into 
the space occupied by other brain tissue and compress those brain tissues), however some of 
the more malignant primary brain tumors will infiltrate the surrounding tissue. 

Of numerous grading systems in use for the classification of tumor of the central nervous system, 
the  World  Health  Organization  (WHO)  grading  system  is  commonly  used  for  astrocytoma 
(neoplasms of the brain that originate in a particular kind of glial-cells: the star-shaped brain cells 
called astrocytes. This type of tumor doesn't usually spread outside the brain and spinal cord and it 
doesn't usually affect other organs. Astrocytomas are the most common glioma, and can occur in 
most parts of the brain and occasionally in the spinal cord [15]. ). Established in 1993 in an effort to 
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eliminate  confusion  regarding  diagnoses,  the  WHO  system established  a  four-tiered  histologic 
grading  guideline  for  astrocytomas  that  assigns  a  grade  from  1  to  4,  with  1  being  the  least 
aggressive and 4 being the most aggressive.

2.4.4 Characteristics of tumors
The characteristics of tumor allow pathologists to determine how dangerous a tumor is/was for the 
patient, how it will evolve and it will allow the medical team to determine the therapeutic plan for 
the patient.

Anaplasia: or dedifferentiation; loss of differentiation of cells and of their orientation to one another 
and blood vessels, a characteristic of anaplastic tumor tissue. Anaplastic cells have lost total control 
of their normal functions and many have deteriorated cell structures. Anaplastic cells often have 
abnormally  high  nuclear-to-cytoplasmic  ratios,  and  many  are  multinucleated.  Additionally,  the 
nuclei  of anaplastic cells  are usually unnaturally shaped or oversized nuclei.  Cells  can become 
anaplastic  in  two  ways:  neoplastic  tumor  cells  can  dedifferentiate  to  become  anaplasias  (the 
dedifferentiation causes the cells to lose all of their normal structure/function), or cancer stem cells 
can  increase  in  their  capacity  to  multiply  (i.e.,  uncontrollable  growth  due  to  failure  of 
differentiation).

Atypia:  is  an  indication  of  abnormality  of  a  cell  (which  may  be  indicative  for  malignancy). 
Significance of the abnormality is highly dependent on context.

Neoplasia:  is  the  (uncontrolled  division)  of  cells;  as  such  neoplasia  is  not  problematic  but  its 
consequences are: the uncontrolled division of cells means that the mass of a neoplasm increases in 
size, in a confined space such as the intracranial cavity this quickly becomes problematic because 
the mass invades the space of the brain pushing it aside, leading to compression of the brain tissue 
and  increased  intracranial  pressure  and destruction  of  brain  parenchyma.  Increased  Intracranial 
pressure (ICP) may be attributable to the direct mass effect of the tumor, increased blood volume, or 
increased cerebrospinal fluid (CSF) volume may in turn have secondary symptoms

Necrosis: is the (premature) death of cells, caused by external factors such as infection, toxin or 
trauma. Necrotic cells send the wrong chemical signals which prevents phagocytes from disposing 
of the dead cells, leading to a build up of dead tissue, cell debris an oxins at or near the site of the 
necrotic cells .

Arterial and venous hypoxia or the deprivation of adequate oxygen supply to certain areas of the 
brain, this is due to the fact that the tumor taps into nearby bloodvessels for its supply of blood, the 
neoplasm enters into competition for nutrients with the surrounding braintissue.

More generally a neoplasm may cause release of metabolic end products (e.g., free radicals, altered 
electrolytes, neurotransmitters), release and recruitment of cellular mediators (e.g., cytokines) that 
disrupt normal parenchymal function.

2.4.5 Diagnosis

Although  there  is  no  specific  or  singular  clinical  symptom or  sign  for  any  brain  tumors,  the 
presence  of  a  combination  of  symptoms  and  the  lack  of  corresponding  clinical  indications  of 
infections  might  be  an  indicator  to  step  up  the  diagnostic  investigation  to  the  direction  of  an 
intracranial neoplasm.

The diagnosis will often start with an interrogation of the patient to get a clear view of his medical 
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antecedents, and his current symptoms. Clinical and laboratory investigations will serve to exclude 
infections  as  cause  of  the  symptoms.  Examinations  in  this  stage  may include  ophtamological, 
otolaryngological  and/or Electrophysiological exams, other means such as electroencephalography 
play a role in the diagnosis of brain tumors.

Swelling, or obstructing the passage of cerebrospinal fluid may cause (early) signs of increased 
intracranial  pressure which translates  clinically into headaches,  vomiting,  or  an altered state  of 
consciousness, (and in children) changes to the diameter of the skull and bulging of the fontanelles. 
More complex symptoms such as endocrine dysfunctions should alarm doctors not to exclude brain 
tumors.

A bilateral temporal visual field defect (due to compression of the optic chiasm) or dilatation of the 
pupil,  and  the  occurrence  of  either  slowly  evolving  or  the  sudden  onset  of  focal  neurologic 
symptoms, such as cognitive and behavioral impairment (including impaired judgment, memory 
loss,  lack  of  recognition,  spatial  orientation  disorders),  personality  or  emotional  changes, 
hemiparesis,  hypoesthesia,  aphasia,  ataxia,  visual  field  impairment,  impaired  sense  of  smell, 
impaired hearing, facial paralysis, double vision, but also more severe symptoms might accur too 
such as: tremors, paralysis on one side of the body hemiplegia, but also (epileptic) seizures in a 
patient with a negative history for epilepsy, impairment to swallow should raise red flags.

Imaging plays a central role in the diagnosis of brain tumors. Early imaging methods —invasive 
and sometimes dangerous— such as pneumoencephalography and cerebral angiography, have been 
abandoned in recent times in favor of non-invasive, high-resolution techniques, such as CT -scans 
and especially MRI. Neoplasms will often show as differently coloured masses (also referred to as 
processes) in CT or MRI results.

• Benign brain tumors often show up as hypodense (darker than brain tissue) mass lesions on 
cranial CT-scans. On MRI, they appear either hyperintense (brighter than brain tissue) or 
isointense (same intensity as brain tissue) on T1-weighted scans, or hyperintense on T2-
weighted MRI, although the appearance is variable.An example of T-1 and T-2 brain tumor 
scan is presented in figure 2.7.

• Contrast agent uptake, sometimes in characteristic patterns, can be demonstrated on either 
CT or MRI-scans in most malignant primary and metastatic brain tumors. 

• Perifocal edema , or pressure-areas, or where the brain tissue has been compressed by an 
invasive process also appears hyperintense on T2-weighted MRI, they might indicate the 
presence a diffuse neoplasm (unclear outline).

This is because these tumors disrupt the normal functioning of the blood-brain barrier and lead to an 
increase in its permeability. However it is not possible to diagnose high versus low grame gliomas 
based on enhancement pattern alone.

Another possible diagnostic indicator would be neurofibromatosis which can be in type one or type 
two.

The definitive diagnosis of brain tumor can only be confirmed by histological examination of tumor 
tissue  samples  obtained  either  by  means  of  brain  biopsy  or  open  surgery.  The  histological 
examination is essential for determining the appropriate treatment and the correct prognosis. This 
examination, performed by a pathologist, typically has three stages: interoperative examination of 
fresh tissue, preliminary microscopic examination of prepared tissues, and followup examination of 
prepared tissues after immunohistochemical staining or genetic analysis.
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                                (a)        (b)
Fig. 2.7:  Brain tumor representation (white area) in (a) T1-weighted  MRI scan and (b) T2 Flair-
weighted MRI scan 
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    3.  BASIC IMAGE PROCESSING AND BRAIN STUCTURES 
              SEGMENTATION CONCEPTS   

3.1Histogram

The histogram of a gray scale picture contains useful information about the picture and for this 
reason is considered to be one of the most valuable tools for the processing of digital  images. 
Histogram is a representation of the distribution of colors (or in gray scale images,the percentage of 
black and white color). It is actually a graph in which the horizontal axis represents the intensity 
range (in our case 0 to 4095) and the vertical axis represents the number of photo-elements that 
contains each intensity respectively. An example of  histogram of a gray scale image is shown in 
figure 3.1 . 

Fig. 3.1 :An MRI gray scale image of a brain slice and the histogram of its brain tissue pixels, 
normalized to values between 0 and 4095. 
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Furthermore an image histogram can be used for the optimization of the image, for the modification 
of it's characteristics, the transformation of the image to an image with shorter density range, the 
extraction of the image characteristics and numerous other applications [16] .
  
3.2 Probability Density Function

When  the  maximum value  of  histogram  is  normalized  to  one,  then  the  produced  normalized 
histogram corresponds to the distribution of the density-probability of the gray-scale levels of the 
image (in a gray scale image). In figure 3.2 we can observe the Probability Density Function (PDF) 
of the same image of figure 3.1 : 

Fig. 3.2: The pdf of the image of figure 3.1 

3.3 Density Estimation

In  pattern  recognition,  the  difference  between  parametric  and  non-parametric  segmentation 
techniques, is that in parametric approaches the forms  of the density functions  which are formed 
according to the way that the data are being modeled, are known or at least assumed according to 
some common parametric forms (for example Gaussian pdf). Although,  in most pattern recognition
applications this assumption is suspect. These common parametric forms rarely fit the  densities 
actually encountered in practice. Non-parametric applications do not assume any parametric form 
for  the  pdf,  but  instead  they  estimate  them.  As  mentioned  in  [17],  even  though  rigorous 
demonstrations that the estimates for the unknown pdf converge may require considerable care, the 
basic ideas behind many of the methods of estimating an unknown pdf are very simple. The most 
fundamental techniques rely on the fact that the probability P that a vector x will fall in a region R is 
given by :

                       P=∫
R

px ' dx '                   (3.1)       
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Thus, it can be claimed that P is a smoothed or in other words, an averaged version of the density 
function p(x).  This smoothed value of p can be estimated, by estimating the probability P.  Let us 
suppose that n samples x1 , ... , xn  are drawn independently and identically distributed according to 
the probability law p(x) (basic probability theory is available in Appendix A). The probability that k 
of these n fall in region R is given by the binomial law (Appendix A.6):

            P k=nkPk 1−Pn−k            (3.2)

and the expected value (Appendix A.3) for k is:

                                   E [k ]=nP                      (3.3)

Furthermore, this binomial distribution (Appendix A.6) for k peaks very sharply about the mean, so 
that  it can be expected that the ratio  k/n will be a very good estimate for the probability  P, and 
consequently for the smoothed density function. This estimate is especially accurate when n is very 
large (Fig. 3.3). Assuming that p(x) is continuous and that the region R is so small that p does not 
vary appreciably within it, it can be written:

                    ∫
R

px '  dx ' ≃ p xV           (3.4)

where x is a point within R and V is the volume enclosed by R. Combining Eqs. 3.1, 3.3 & 3.4, we 
get the following obvious estimate for p(x):

                       p x  ≃ k / n
V                         (3.5)

Fig. 3.3: The probability Pk of finding k patterns in a volume where the space averaged probability 
is P as a function of k/n. Each curve is labelled by the total number of patterns n. For large n, such 
binomial distributions peak strongly at k/n = P (here chosen to be 0.7) [17].
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Although, several problems still remain, some practical and some theoretical. Fixing the volume V 
and taking more and more training samples, the ratio k/n will converge as desired, but we have only 
obtained an estimate of the space-averaged value of p(x):

P
V
=
∫
R

p x '  dx '

∫
R

dx '
             (3.6) 

If we want to obtain p(x) rather than just an averaged version of it, we must let V approach zero. 
However, by fixing the number n of samples and by letting V approach zero, the region will finally 
become so small  that it  will  enclose no samples and as a result  our estimate  p x ≠0  will be 
useless.  Or even if  by chance one or  more of the training samples coincide at  x,  the estimate 
diverges to infinity, which is equally useless.

Practically, the number of samples available is always limited. Consequently, the volume V can not 
be allowed to become arbitrarily small. If this kind of estimate is to be used, one will have to accept 
a certain amount of variance in the ratio k/n and a certain amount of averaging of the density p(x).

Theoretically, it  is interesting to ask how these limitations can be circumvented if an unlimited 
number of samples is available. Suppose we use the following procedure: In order to estimate the 
density at x,  we form a sequence of regions R1, R2,... , containing x,  the first region to be used with 
one sample, the second with two, and so on. Let V n  be the volume of Rn , k n be the number of 
samples falling in Rn , and pnx   be the n-th estimate for p(x):

         pnx =
k n/n
V n

                    (3.7)

If pnx   is to converge to p(x), three conditions appear to be required, as discussed in [17]:

• lim
n∞

V n=0

                            
This condition assures us that the space averaged  P /V  will converge to  p(x), provided that the 
regions shrink uniformly and that p(.) is continuous at x. 

• lim
n∞

k n=∞

This second condition makes sense only if p x ≠0  and assures us that the frequency ratio will 
converge to the probability P.

• lim
n∞

k n / n=0

The third condition is clearly necessary if pnx   given by Eq. 3.7 is to converge at all. It also says 
that although a huge number of samples will eventually fall within the small region Rn , they will 
form a negligibly small fraction of the total number of samples.

In pattern recognition, there are two common ways of obtaining sequences of regions that satisfy 
these conditions (Fig. 3.4). The first method is the Parzen-window approach, explained in Section 
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4.1. Here, the basic idea is to shrink an initial region by specifying the volume V n  as some function 
of  n, such as for example   V n=1/n . It then must be shown that the random variables k n  and 
k n /n  behave properly, or more substantially, that pnx   converges to p(x). The second method is 
k-nearest neighbor (k-NN) where k n  is specified as some function of n, such as k n=n . Here the 
volume  V n  is  grown  until  it  encloses  k n  neighbors  of  x.  Although  it  is  difficult  to  make 
meaningful  statements  about  their  finite-sample  behavior,  both  of  these  methods  do  in  fact 
converge.

  
Fig. 3.4: Two methods for estimating the density at a point x (at the center of each square).In (a), it 
is shown the basic idea of the Parzen-window density estimation method, which converges in step 
n=m. In (b), it is shown the k-NN estimation method, which converges in step i=z. Of course, m 
step may be different from z. 

3.4 Brain Tissues Segmentation

3.4.1 Introduction   

Volumetric analysis of different parts of the brain is extremely useful in assessing the progress of 
remission  of  various  diseases,  such  as  Alzheimer's  disease,  epilepsy,  multiple  sclerosis  and 
schizophrenia. The process of partitioning a biomedical brain image, into  three segments, as the 
number of brain tissues, CSF, GM, WM is called brain tissues segmentation. Segmentation of brain 
tissues is a challenging problem due to the complexity of the images, as well as to the absence of 
models  of  the  anatomy  that  fully  capture  the  possible  deformations  in  each  brain.  For  the 
segmentation task, numerous methods have been proposed. In Sections 3.4.2-3.4.4 we demonstrate 
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some basic techniques that were used in the past,  some of them even in nowadays, in order to 
provide a reliable segmentation algorithm.

3.4.2 Segmentation Using Intensity Decision Boundaries 

Observing an MRI brain image, the first thing that we notice is that there are differences in intensity 
values between the three types of tissues. For instance in T1 modality , as shown in figure 3.5a, CSF 
is represented hypointense, GM in medium intensity values and WM hyperintense. If we take the 
histogram of this image without the background (figure 3.5b), we should notice that our previous 
observation was right, as there are three main lobes where all pixels are gathered around, the lobe 
with intensity value 1200, the lobe with intensity value 2400 and the lobe with intensity value 3500. 

Fig. 3.5:  (a) A T1 MRI brain slice (b) The histogram of image (a). This image is normalized to 
values between 0 and 4095.

According to these observations, can we make a classifier that would segment correctly pixels to the 
three desired categories? The answer is no and we explain later in this section why. But suppose that 
we can. Then, using pattern recognition expressions, our feature vector would be the intensity of the 
pixels and consequently our feature space is one-dimensional. Our classifier should make a decision 
how to classify the pixels  to  the three tissue types.  This  decision could be whether  the pixel's 
intensity is lower than some critical value a* then the classifier decides that the pixel is CSF, and 
whether the pixel's intensity exceeds another critical value b* then the classifier decides that the 
pixel is WM. If none of these categories is decided, then the pixel is classified to the GM category. 
The values a* and b* are called decision boundaries. Back to our example, the decision boundaries 
can be selected as 1800 and 3000 as shown in figure 3.6.
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Fig. 3.6: Histogram of the image of figure 3.3 a with decision boundaries a* = 1800 and b* = 3000. 
In this way, our classifier segments each pixel in CSF, if its intensity is lower than 1800, in WM if 
its intensity exceeds the 3000 value and GM if its intensity is between these two values. 

The  decision  boundaries,  have  been  selected  not  in  an  accurate  but  in  a  doubtful  way  and 
misclassification of pixels is unavoidable.  For example a pixel with intensity value 1700 is not 
necessarily CSF. Furthermore, these decision boundaries cannot be generalized in all occasions. 
Take for example the histogram of fig. 3.7 which corresponds to a real MRI T1 image. Obviously, 
taking  decision  boundaries  1700  and  3500  the  classifier  will  lead  to  a  completely  wrong 
segmentation result.  Brain tissue segmentation should be an accurate and reliable task.  In other 
words,  there  is  raised  a  question  of  how much  is  the  overall  single  cost of  the  segmentation 
classifier that we use.   The true task of every segmentation method is to minimize such a cost. This 
is the central task of  decision theory  of which pattern recognition is perhaps the most important 
subfield [18]. Back to our example, undoubtedly the cost of our decision is too high, making this 
segmentation method unreliable to use. The solution of moving the decision boundaries forward or 
backward will not solve the problem of making an accurate, reliable and generalized segmentation 
algorithm. 
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Fig. 3.7: Histogram of brain tissues of a real MRI T1 brain slice, normalized to values 0 to 4095.  

3.4.3 Supervised Techniques

Supervised technique is called every brain tissue segmentation approach that uses some labeled 
sample pixels (or even voxels in some occasions) from each tissue (prototypes), provided by the 
user, in order to train the classifier properly, so to perform the segmentation task. In order to avoid 
re-training the classifier for each new scan, supervised methods have to normalize the intensity 
between  the  MRI  scans,  allowing  the  selection  of  prototypes  and  train  of  the  classifier  on  a 
reference scan, following which pixels (or voxels) of any other scan to be classified using the same 
classifier  without  further  human intervention.  As a  conclusion,  because  of  the fact  that  human 
interaction is required, supervised based algorithms are semi-automatic.

In [19] the following approach is used, based on a three-step procedure:
• A conventional  k-Nearest  Neighbor  (k-NN, [20]) classifier  is  applied to  pre-classify the 

three brain tissue types and Multiple Sclerosis (MS) lesions from a set of prototypes by an 
expert.

• The  classification  of  problematic  patterns  is  resolved  computing  a  fast  distance 
transformation algorithm from the set of prototypes in the Euclidean space defined by the 
MRI dataset. 

• Finally,  a  connected  component  filtering  algorithm is  used  to  remove lesion  voxels  not 
connected to the real lesions.

To sum up, this supervised, nonparametric technique (nonparametric because the k-NN algorithm 
does  not  require  any  knowledge  or  assumptions  about  statistical  parameters  of  the  data)  can 
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segment different structures with the same intensity level range. The other principal feature is the 
high performance achieved due to the fast  algorithms to  compute distance transformations  and 
Voronoi diagrams [21] on which this method is based on. Furthermore, it shows some advantages 
with respect to unsupervised methods, because it is fairly stable for the segmentation of abnormal 
anatomy,  and  because  no  image-atlas  registration  is  needed,  which  is  usually  a  performance 
bottleneck in other methods. On the other hand, the whole execution time is to be increased around 
one more minute in order take into account the user interaction to train the classifier. The algorithm 
shows a high accuracy, depending essentially on the training dataset selected by a medical expert, 
and it performs really well using one intensity channel compared to segmentations carried out with 
more  than  one  channel,  which  is  a  clear  advantage  for  clinical  applications.  It  is  useful  for 
interactive segmentation due to its  high performance and the facility to add or remove training 
prototypes  to  improve  the  results.  The  applications  of  this  method  go  well  beyond  MS  MRI 
segmentation since it can be used to segment almost every type of image modalities. Currently it is 
also  started to be used for MRI segmentation of the knee cartilage.
 
In [22], multi-spectral MR images from various modalities are used, so to increase the feature space 
and benefit from the new information that is available. In the first step, a clustering algorithm such 
as K-means or ISODATA (ISODATA algorithm stands for Iterative Self-Organizing Data Analysis 
Techniques.  This  is  a  more  sophisticated  algorithm which  allows the  number  of  clusters  to  be 
automatically adjusted during the iteration by merging similar clusters and splitting clusters with 
large standard deviations [23].) is used. This tends to result in some over-segmentation of the MR 
image, where  the use multi-spectal MR images such as the PD, T1 and T2 images obtain more 
differentiation of brain tissues. Over-segmentation practically means that at the initial clustering 
step, the data set is deliberately clustered into a greater number of classes than actually exist. This 
reduces both the chance and frequency that different objects are clustered into one class. This step is 
necessary because different objects may be very close in some features and ordinarily tend to be 
under-segmented. Combining clusters that belong together is much simpler than splitting up those 
that do not.Then a supervised classification algorithm such as a back-propagation network [24] is 
used  so to provide the final segmentation results.  As a conclusion, in [22] they claim that their 
proposed algorithm is applied successfully to various MR images  acquired from MR scanners at 
different  times  with  different  slice  thicknesses  and fields  of  view  and  also  that  it  successfully 
segments MR images of the brain containing ambiguous boundaries.

As a conclusion, several supervised methods like the mentioned in this section have been proposed, 
providing decent results but the main weakness of supervised segmentation algorithms is that as 
they require  human interaction  in  order  to  provide  the  initial  sample  values  so  as  to  train  the 
classifier, they are semi-automatic and not fully automatic, making their results not fully objective 
and reproducible. 

3.4.4 Unsupervised Techniques

A common  unsupervised  approach  is  the  Gaussian  Mixture  Models  (GMM)  (A GMM  is  a 
parametric  probability  density  function  represented  as  a  weighted  sum of  Gaussian  component 
densities [25]). MRI noise is known to follow a Rician PDF, which can be reasonably approximated 
by a Gaussian PDF. As a consequence, several segmentation methods are based on a GMM within 
the  intensity  feature  space.  In  [26],  a  Gaussian  Mixture  Model  (GMM) is  fitted  to  the  voxels 
intensity using the expectation-maximization (EM) algorithm [27], according to which every voxel 
is assigned to the tissue class for which it gives the highest probability. The GMM-EM intensity 
based framework has been refined in [28] and [29] to account for partial volume effects and blood 
vessel signals that may alter CSF segmentation. 
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Although, it is widely recognized that using intensity information alone has proven insufficient for 
a reliable segmentation algorithm. Additive noise and multiplicative bias-fields cause local signal 
perturbations which are responsible for cluster overlaps in the intensity feature space, resulting in 
poor  tissue-class  separability.  Furthermore,  intensity  based  segmentation  methods  may  give 
unrealistic results, with tissue-class regions appearing granular, fragmented, or violating anatomical 
results. Incorporating spatial information provides a means for improving the segmentation results. 
By  appending  the  spatial  position  coordinates  in  2d  dimension  [x-y]  as  in  our  implemented 
algorithm or even in 3d dimension [x-y-z], to the intensity features, a higher dimensional feature 
space is obtained where clusters represents both pixel's (in 2d case) or voxel's (in 3d case) intensity 
and spatial position distribution. Clusters in the augmented feature space are more closely related to 
the brain anatomy. This observation may prove problematic for parametric modes such as GMMs 
that implicitly assume cluster convexity, as the brain anatomy cannot be decomposed into a small 
number of convex regions in the joint spatial-intensity feature space. A recently published solution 
includes using a large number of Gaussians per brain tissue, in order to capture the complicated 
spatial layout of the individual tissues [30]. 

One common way to incorporate spatial information is the use of statistical atlas which provides the 
prior probability for each pixel to originate from a particular tissue-class.  In [31],  each tissue's 
intensity is modeled by a Parzen density fitted to voxels selected from an affine-registered atlas. Co-
registration  of  the  input  image and atlas  is  critical  in  this  scenario  [32].  Although,  it  must  be 
emphasized that an appropriate atlas does not always exist for the data at hand. Two such cases are 
brain data with pathologies or brain data obtained from young infants. 

Another common unsupervised technique that is widely used, in combination with statistical atlas in 
some occasions, is to model neighboring pixels (or voxels) interactions using a Markov Random 
Field  (MRF) statistical  spatial  model.  The  MRF is  a  stochastic  process  that  specifies  the  local 
characteristics of an image and is combined with the given data to reconstruct the true image. The 
MRF of prior contextual information is a powerful method for modeling spatial continuity and other 
features and even simple modeling of this type can provide useful information for the segmentation
process and improve segmentation smoothness. The MRF itself is a conditional probability model, 
where the probability of a pixel (or voxel) depends on its neighborhood. It is equivalent to a Gibbs 
joint probability distribution [33] determined by an energy function. This energy function is a more 
convenient and natural mechanism for modeling contextual information than the local conditional 
probabilities of the MRF. The MRF on the other hand is the appropriate method to sample the 
probability distribution. In [34] the distribution of tissue intensities are described by Parzen-window 
statistics [35] and both neighborhood tissue correlations and signal inhomogeneities are modeled by 
a  priori  MRF,  leading  to  an  accurate  and  robust  segmentation  with  respect  to  noise, 
inhomogeneities, and structure thickness. In [36] a combination of Hidden MRF and EM techniques 
are used so to provide a decent segmentation algorithm. On the other hand, the main disadvantage 
of MRF based segmentation algorithms is that they are computationally intensive, requiring critical 
parameter settings. It is possible to use MRF with predefined settings, which is faster but possibly 
less accurate.

An  alternative  to  statistical  parametric  approaches  is  the  use  of  unsupervised  nonparametric 
schemes. One such approach is the mean-shift algorithm [37]. Here, adaptive gradient ascent is 
used to detect local maximum of data density in feature space. Data points are associated with local 
maximum, or modes, thereby defining the clusters. Key characteristics of the mean-shift algorithm 
include the fact that no initial cluster positions are required, as well as the fact that the final number 
of extracted clusters is a result of the algorithm. A detailed description of the mean-shift algorithm 
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is  provided  in  Section  5.  In  recent  years,  mean-shift  technique  has  been  used  for  image 
segmentation, object tracking and medical image analysis applications [38-40]. In [41] a mean-shift 
based, segmentation algorithm for brain tissues is proposed, which is the basis of our mean-shift 
implemented algorithm, providing a simple, full automated, accurate and  reliable segmentation 
method.

A comparison of the proposed unsupervised, nonparametric mean-shift algorithm with an MRF and 
GMM implementation is available in the Experimental Section.

 
3.5 Brain Tumor Modeling 
 
3.5.1 Brain Tumor Modeling Challenges

The rapid advent of MRI scanning protocols gave the opportunity of accurate follow-up of tumor 
growth  through  volumetric  measurements,  as  referred  in  [42].  Accurate  brain  tumor  modeling 
appears to be of uttermost importance for therapeutic management, especially for low-grade glioma. 
During the low-grade phase, patients in most occasions are asymptomatic and the tumor evolution 
can only be monitored by MRI. Unfortunately, such information provided by MRI, is usually not 
fully integrated with the therapeutic strategy and as a result, assessment of tumor evolution is still 
limited to qualitative descriptions including recurrence, progression, regression and stability. Thus, 
bio-mathematical models are expected to help in tumor modeling, simulation of treatment effects 
and eventually in optimization of therapeutic strategies.

It must be emphasized that computational models of gliomas dynamics have been initiated more 
than ten years ago [43,44]. At first, studies were focused on modeling the effect of chemotherapy 
and  surgical  resection  on  the  evolution  of  high-grade  gliomas.  The  mathematical  framework 
introduced at that time may be still in use, but undoubtedly there have been considerable advances 
in  its  numerical  resolution.  In  particular,  digital  brain  templates,  provided  by  MRI,  enable  to 
implement the biophysics equations onto accurate virtual anatomy. This in turn allows to refine the 
model, by introducing for example different cell motility in white and gray matter [45], and inside 
white matter, along and orthogonally to axonal fasciculus [46]. However, published studies have 
never seriously matched observed radiological evolution with virtual in silico dynamics. Such a 
comparison would require three different steps: segmentation of actual growth, registration on a 
virtual  brain  atlas,  and  identification  of  model  parameters  corresponding  to  optimal  matching 
between actual and simulated evolution.

Full  3D  segmentation  on  digital  MRI  images  is  required,  in  order  to  obtain  an  accurate 
determination of the actual tumor evolution. Manual segmentation by an expert is still considered as 
the reference method, but is a time consuming task with high inter and intra-observer variability.

Many automated or semi-automated approaches were recently developed, showing great variability 
in results and performance in terms of reproducibility. Challenges in the segmentation of gliomas, 
from MRI data are related to:
• the infiltration of cells into the tissue, inducing unsharp borders with irregularities and    

discontinuities (a tumor is not necessary a single connected object),
• the great variability in their contrast uptake (depending on their vascularisation) and 
• their appearance on standard MRI protocols. 
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MRI protocols used for brain imaging typically include Proton density (PD),  T1-weighted (e.g. 
SPGR), T1-weighted enhanced (T1E) with contrast agent (usually Gadolinium), and T2-weighted 
(e.g. FLAIR) data. T1 data provides detailed anatomical views of the brain along with high signals 
on haemorrhages. T1E data shows strong signal on all vascularized structures (including tumors and 
haemorrhages),  whereas  usual  FLAIR images  (with  a  slice  thickness  around  5  mm)  show less 
anatomical details, but high signal on tumors, infiltrations and edema.

Given an image, the segmentation task can be seen as the partition of the image into homogeneous 
objects, which correspond to a region-based segmentation approach, or as the detection of object 
contours within the image, corresponding to an edge-based segmentation approach. The majority of 
the MRI-based glioma segmentation methods that have been proposed in the literature are region-
based. More recent methods, based on deformable models, also included edge-based information. In 
the  case  of  MRI  segmentation,  several  factors  introduce  a  large  amount  of  uncertainty  in  the 
segmentation process, including partial volume effects, integration of multi-protocol image data and
observer variability. 

3.5.2 Brain Tumor Segmentation Methods

The  majority  of  brain  tumor  segmentation  methods  were  designed  in  a  statistical  framework, 
providing a classification of the image data into different tissue types, while only few were designed 
with a deterministic approach. Some methods that were used in the past are briefly presented right 
below:

• Deterministic Approaches

In 1996, Gibbs in [47] introduced a morphological edge detection technique combined with simple 
region growing to segment enhancing tumors on T1 MRI data. Based on an initial sample of the 
enhanced tumor signal and the surrounding tissues, provided manually, an initial segmentation was 
performed  combining  pixel  thresholding,  fitting  to  an  edge  map  of  the  image  data  and 
morphological opening and closing, inspired by the work proposed by Kennedy in [48]. The tumor 
area was defined based on pixel values in the range of 4 standard deviations around the mean value, 
constrained by the edge map.

In  2005,  Droske  in [49],  proposed  to  use  a  deformable  model,  implemented  with  a  level  set 
formulation, to partition the MRI data into regions with similar image properties, based on prior 
intensity-based  pixel  likelihoods  for  tumoral  tissues.  The  deformable  model  optimization  was 
performed  on  a  spatially-adaptive  grid,  only  refined  in  inhomogeneous  regions.  Homogeneity 
measures included gray value intervals, defined from a user input, and image gradient values. Some 
manual supervision of the deformable model was required, so that incremental segmented areas 
were  proposed  to  the  user  who  controlled  the  final  segmentation  results.  More  specifically, 
heterogeneous  tumors,  involving  necrosis  for  example,  required  successive  segmentations  by 
addition or removal of intermediate results.

• Statistical Approaches
In 1995, Vaiddynathan in [50], compared two supervised  multispectral classification methods: k 
nearest  neighbour  (k-NN)  and  spectral  Fuzzy  C-Means  (FCM).  For  these  two  classification 
approaches, nine tissue classes were considered (background, CSF, WM, GM, fat, muscle, tumor, 
edema, necrosis). The authors also tested an interactive seedgrowing segmentation approach on T1 
Enhanced (T1E) MRI data. The seed-growing algorithm only segmented tumor tissue based on a 
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sample pixel population manually selected by the user. 
In 1998, Clark in [51] introduced a knowledge-based (KB) automated segmentation method for 
glioblastomas on multispectral data combining T1E, PD and T2 weighted data. A training phase was 
performed  on  17  slices  from  seven  patients,  extracting  tumor  size  and  enhancement  level 
characteristics. Slices were first characterized as normal or abnormal via a FCM classification and 
the analysis of the clustering result through an expert system. Two examples of knowledge used in 
the predecessor system were:

i) in a normal slice, CSF belongs to the cluster center with the highest value in the intracranial 
region

ii) in image space, all normal tissues are roughly symmetrical along the vertical axis.
After a brain mask was computed, initial tumor segmentation, generated from vectorial histogram 
thresholding in  the T1, PD and T2 images,  was post-processed with a  Knowledge Based (KB) 
approach to eliminate non-tumor pixels.

Tumor heuristics used in the KB system were the following: 
i) Gadolinium-enhanced tumor pixels occupy the higher-end of the T1 spectrum.
ii) Gadolinium-enhanced tumor pixels occupy the higher-end of the PD spectrum, though not 

with the degree of separation found in T1 space. 
iii) Gadolinium-enhanced tumor pixels are generally found in the “middle” of the T2 spectrum, 

making segmentation based on T2 values difficult.
iv) Slices  with  greater  enhancement  have  better  separation  between  tumor  and  non-tumor 

pixels, while less enhancement results in more overlap between tissue types.
 
It  is  important  to  note  that  their  notion  of  tumor  pixel  included  edema  and  necrosis.  A final 
processing stage was performed, based on histogram analysis of the tumor pixels and heuristics on 
the  “density”  of  intensity  features  of  non-tumor  tissues.  Indeed,  based  on  the  observation  that 
tumors can show different levels of enhancement and very complex shapes, the final KB approach 
was focused on characterizing non-tumoral tissues.

In 2001, Kaus  in [52] presented a complete validation of an automated segmentation method on 
T1E  data  from  twenty  patients  with  meningiomas  and  low-grade  gliomas.  The  segmentation 
method, called an adaptive templatemoderated classification, and described in [53,  54] was based 
on an iterative process. It alternated between a k-NN classification of voxels into five hierarchical 
tissue types (background, skin-fat-bone, brain, ventricles, tumor) and a nonlinear registration of the 
data with an anatomical atlas (manually segmented MRI data of a single subject) to align the data 
with the template. The k-NN classification used features from data intensity values and anatomical 
priors on the tissue location from the atlas. This method performed extraction of the five tissues in a 
pre-determined hierarchical order. Tissue mean values were learned on the patient’s data via manual 
selection  of  three  or  four  points  for  each  tissue.  To  handle  the  presence  of  the  tumor  in  the 
registration process,  voxels assigned to the tumor class were masked with brain labels  prior  to 
registration with the atlas. This method obviously relied on a strong homogeneity assumption of the 
tumor’s appearance on MRI data, which was reinforced by the use of anisotropic diffusion filtering.

In 2001 Moonis in [55] proposed a segmentation  framework based on fuzzy connectedness (FC) 
which  optimally  clustered  voxels  into  classes  of  high  connectivity  (analogous  to  a  similarity 
measure).  The method was applied to  T1,  T1E and T2 data,  and  initialized with  an MRI data 
standardisation of the gray levels based on non-linear transformation of the histograms [56].

In 2005, Liu in [57], from the same group, used a similar approach based on a volume of interest on 
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coregistered T1 and T2 data, to process only slices containing the tumor. A set of points inside the 
tumor were selected to initialize the statistics used in the FC. The threshold level applied to the FC 
maps to define the final segmentation result was determined empirically on five datasets and then 
fixed once for all. Segmentation was performed separately on the T2, T1E and subtracted (T1-T1E) 
data sets in 3D. Manual corrections of the segmentation results were performed by experts.

In 2001, Fletcher-Heath in [58], proposed a combination of unsupervised classification with FCM 
and knowledge-based (KB) image processing for segmentation of non-enhancing tumors. The FCM 
was run on spectral data (T1, T2, PD). As the authors pointed out, FCM tended to define clusters 
with similar sizes, which required an initial classification in ten classes. A KB system was then 
designed  to  re-cluster  the  segmentation  results  into  seven  classes  based  on  a  training  phase. 
Difficulties principally arose in the separation of CSF and tumor signals.

In 2004, Mazzara in [59], compared the k-NN approach from [50] and the KG-based approach from 
[51] for Growth Tumor Volume (GTV) measurements on eleven patients with high and low-grade 
gliomas. As used in oncology radiation therapy, GTV corresponded to the area enclosing several 
contiguous clusters of enhancing pixels (i.e. including non-enhancing pixels within the area). The 
study showed severe  limitations  of  the  KG-system (which  was  not  trained  with  the  dataset  to 
segment) in handling particular cases such as non-enhancing tumor margins or the presence of non-
enhancing  cystic  necrotic  tissues  at  the  center  of  the  tumor.  On  the  other  hand,  the  k-NN 
segmentation  method,  trained  with  sample  data  from  MRI  slices  to  segment,  lead  to  robust 
segmentation results  on all  patients.  In 2006, Beyer  in [60],  from the same group, presented a 
similar  and  more  recent  comparative  study,  extracting  GTV with  the  same  two  segmentation 
methods and evaluating the results in terms of predictive dose measurement for therapy planning.

In  2004,  Zou  in  [61],  proposed  a  continuous  probabilistic  segmentation  framework,  based  on 
mixture  modeling  for  two  classes:  tumor  and  non-tumor  tissues.  After  initialization  of  the 
segmentation  with  the  semi-automated  method  from  Kaus  in [52],  the  segmentation  process 
involved  estimation  of  the  distribution  parameters  and  probability  values  thresholding.  Three 
metrics were proposed and evaluated to optimize the threshold selection: Receiver operating curve, 
which weights the sensitivity versus the specificity of the segmentation result,  a Dice similarity 
coefficient,  which  is  also  a  function  of  sensitivity  and specificity  and mutual  information  that 
directly compares the segmentation result to a ground truth.

In 2004, Prastawa in [62] proposed a segmentation  framework based on outlier detection on T2 
data. The abnormal tumor region was detected via registration on a normal brain atlas. Statistical 
clustering of the abnormal voxels, followed by a deformable model, were then used to isolate the 
tumor and the edema.

A summary of the above papers and the specificities of the clinical aspects of the evaluation setup 
are provided in Table 3.1 .
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Data LGG Glioma HG Year
Gibs T1E 10 1996

Letteoboer 20 2004
Droske T1E ? 2005

Liu FLAIR,T1,T1E 10 2005
Vaidyanathan T1,PD,T2 4 1995

Fletcher-Heath T1,PD,T2 6 2001
Clark T1,PD,T2 (all with Gd) 7 1998
Kaus SPGR-Enh 14 2001

Moonis FLAIR 19 2001
Mazzara T1E,FLAIR (CT) 3 8 2004

Zou T1E (SPGR) 3 2004
Prastawa T2 1 2004

Table 3.1: Summary of Reviewed Papers and Clinical Setup [42]
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         4.  BASIC THEORETICAL PARTS OF THE PROPOSED 
ALGORITHM

4.1 Parzen Windows

4.1.1 Window Function

In Section 3.3 the basic theory behind estimating an unknown density function was presented. One 
of the most common techniques, is Parzen windows. The Parzen-window approach for unknown 
densities estimation, as detailed discussed in [63], can be introduced by assuming that the region 
Rn  is a d-dimensional hypercube. Letting  hn  be the length of an edge of that hypercube, then its 

volume is given by:

             V n= hn
d                                      (4.1)

Let us define by k n  the number of samples falling in the hypercube. An analytic expression for k n

can be obtained by firstly defining the following window function:

                  φu ={1 , ∣u j∣1/2 , j=1,... , d

0 otherwise       (4.2)

As we can observe, φ(u) defines a unit hypercube centered at the origin. As a result,  φ x−x i/hn  
is equal to unity if x i  falls within the hypercube of volume V n  centered at x, and is zero otherwise. 
The number of samples, k n , in this hypercube is therefore given by:

                kn=∑
i=1

n

φ x− xi

hn                                (4.3)

At this point we must remind that from Eq. 3.7, the  n-th estimate for  p(x) is calculated by the 
equation:

                    pnx =
k n/n
V n

                                 (4.4)       

and when we substitute Eq. 4.3 into Eq. 4.4 we obtain the estimate:

                     pnx =
1
n∑i=1

n 1
V n

φ x−x i

hn                     (4.5)

Eq.  4.5 suggests  a  more general  approach to estimating  unknown  density functions.  Instead of 
limiting ourselves to the hypercube window function  that we defined in Eq. 4.2, suppose that  we 
allow a more general class of window functions. In such a case, Eq.4.5 expresses our estimate for 
p(x) as an average of functions of x and the samples x i . In essence, the window function is being 
used for interpolation (each sample contributes to the estimate in accordance with its distance 
from x). As the estimate pnx   is a density function, it must be guaranteed that this estimate for 
p(x) is nonnegative and integrated to one. This fact can be simply assured by requiring the window 
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function itself to be a density function. In order to be more precise, if we require that:

φ x0    (4.6)
and

∫φ udu = 1                          (4.7)

and by maintaining the relation V n=hn
d , then continually we can observe that pn x   also satisfies 

these conditions. Now, let us examine the effect that the window width hn  has on pnx  . If we 
denote the function δ nx   by: 

   δ nx  =
1
V n

φ  x
hn                           (4.8)

then pnx   can be written as the average:

            pnx  =
1
n ∑i=1

n

δnx− x i                     (4.9)

As a consequence,   hn  affects significantly both the amplitude and the width of  δ nx   , since 
V n=hn

d (Fig.  4.1). If  hn  is very small, then the peak value of  δ nx− x i  is too large and occurs 
near x= x i . In this case p(x) is the superposition of n sharp pulses centered at the samples, ending 
up to  an erratic,  “noisy”  estimate (Fig.  4.2). On the other  hand,  if hn  is  very large,  then  the 
amplitude of  δ n  is  too  small, and  x must be far from  x i  before  δ nx− x i changes much from 
δ n0 . In this case, pnx   is the superposition of n broad, slowly changing functions and is a very 
smooth “out-of-focus” estimate of p(x). The distribution is normalized, for any value of  hn  :

∫δ nx− x idx =∫ 1
V n

φ x− x i

hn dx =∫φ udu = 1         (4.10)

Clearly, we come to the conclusion that the choice of hn  (or V n ) has an important effect on pnx 
. If V n  is too small, the estimate will suffer from too much statistical variability whereas if V n  is 
too large, the estimate will suffer from too little resolution. Having a limited number of samples, the 
best that can be done is to seek some acceptable compromise.  Hypothetically, with an unlimited 
number of samples, it is possible to let  V n  slowly approach zero as n increases and have pnx   
converge to the unknown density p(x). At this point we should remember that as for any fixed x the 
value of pnx  depends on the random samples x1 , ... , xn ,  pnx   is a random variable, with some 
mean  pnx   and variance  σ n

2x   and  we are talking about the convergence of a sequence of 
random variables. Taking this into consideration, the estimate pnx   converges to p(x) if:

      lim
n∞

pnx  = px                                 (4.11)
and

           
      lim

n∞
σ n

2x  = 0                                      (4.12)
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Fig.  4.1: Examples of two-dimensional circularly symmetric normal Parzen windows  φ(x/h) for 
three different values of  h. Note that because the  δ k .  are normalized, different vertical scales 
must be used to show their structure [63].

Fig. 4.2: Three Parzen-window density estimates based on the same set of five samples, using the 
window functions in Fig. 4.1. As before, the vertical axes have been scaled to show the structure of 
each function [63].

In order to prove  convergence,  conditions  must be placed  on the unknown density  p(x), on the 
window function φ(u), and on the window width hn . In general, continuity of p(.) at x is required, 
and  the  conditions  imposed by Eqs.  4.6 & 4.7 are  customarily  invoked.  It  can  be shown that 
convergence  can be assured by the following additional conditions:

      sup
u

φu ∞                            (4.13)
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                            lim
∥u∥∞

φu∏
i=1

d

u i= 0                           (4.14)

           lim
n∞

V n = 0                                   (4.15)

and:

                     lim
n∞

nV n=∞                  (4.16) 

Equations 4.13 & 4.14 manage to keep φ(.) well behaved, while equations 4.15 & 4.16 state that the 
volume V n  must approach zero at a rate slower than 1/n. 

4.1.2 Classifiers based on Parzen Windows 

In classifiers based on Parzen-window estimation, we estimate the densities for each category and 
classify a test point by the label corresponding to the maximum posterior. The decision regions for a 
Parzen-window classifier depend upon the choice of window function. In general, the training error, 
the empirical error on the training points themselves, can be made arbitrarily low by making the 
window width sufficiently small.  However,  the goal of creating a classifier  is to classify novel 
patterns, and alas a low training error does not guarantee a small test error. Although a generic 
Gaussian window shape can be justified by considerations of noise, statistical independence and 
uncertainty,  in the absense of other information about the underlying  distributions there is little 
theoretical justification of one window width over another.

The advantages of classifiers based on Parzen windows resides in their generality. We do not need 
to  make any assumptions  about  the  distributions  ahead of  time.  With  enough samples,  we are 
essentially assured of convergence to an arbitrarily complicated target density. On the other hand, 
the number of samples needed may be very large indeed, much greater than would be required if we 
knew the form of the unknown density. Moreover, the demand for a large number of samples grows 
exponentially with the dimensionality of the feature space. This limitation is known as the “curse of 
dimensionality” and severely restricts the practical application of such nonparametric  procedures, 
including brain tissues segmentation. 

4.2 The Mean-Shift Procedure
 
4.2.1 Constant-Adaptive Mean-Shift

Parzen window density estimation (or kernel density) is considered to be the most popular density 
estimation method. Given n data points, x i , i=1,... , n  in the d-dimensional feature space Rd , the 
multivariate  kernel  density  estimator  with  kernel  K(x) and  a  symmetric  positive  definite  d*d 
bandwidth matrix H, computed in the point x, as detailed discussed in [37] is given by:

                             f x  = 1
n∑i=1

n

K H x−x i                 (4.17)

where: 
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   K H x  =∣H∣
−1 /2 K H−1 /2 x              (4.18)

where K(x) is a d-variate, bounded function with compact support, which satisfies the following: 

 ∫
Rd

K x  dx = 1 lim
∥x∥∞

∥x∥d K  x=0

  ∫
Rd

xK x  dx = 0 ∫
R d

xxT K x  = c K I       (4.19)

where  ck  is  a  constant.  The multivariate  kernel can be generated from a symmetric  univariate 
K 1x  in two different ways:

    K S x  = ak , d K 1 ∥x∥ K P x =∏
i=1

d

K 1x i     (4.20)

where K S x    is obtained from rotating K 1x  in  Rd , i.e. ,  K S x   is radially symmetric. The 

constant a k , d 
−1 =∫

Rd 
K1∥x∥dx   assures that K S x  integrates to one. On the other hand, K P x  is 

obtained from the product of univariate kernels. Either type of multivariate kernel obeys Eq. 4.19, 
but, for our purposes, the radially symmetric kernels satisfies: 

                                K x  = ck ,d k ∥x∥2                     (4.21)

In this case, it suffices to define the function k(x), called the profile of the kernel, only for x >=0. 
The normalization constant ck , d  which makes K(x) integrate to one, is assumed strictly positive.

Using a  fully parameterized  H increases  the complexity of  the estimation and,  in  practice,  the 
bandwidth  matrix  H is  chosen  either  as  diagonal  H=diag [ h1

2 , ... , hd
2 ] ,  or  proportional  to  the 

identity  matrix  H=h2 I .  The  clear  advantage  of  the  latter  case  is  that  only  one  bandwidth 
parameter h  0  must be provided. However , as can be seen from Eq. 4.18, then the validity of an 
Euclidean metric  for the feature space should be confirmed first.  Employing only one constant 
bandwidth parameter, the kernel density estimator (Eq. 4.17 ) becomes the well-known expression:

           f x  = 1
nhd∑

i=1

n

K  x−x i

h                  (4.22)

Intuitively, as referred in [41], a  single  h value may be inappropriate for a locally variable set of 
feature points,  especially in brain structures segmentation. In areas where the density is low, as is 
often the case with high dimensional spaces, a single h value could be too small to reach neighbors 
and the iterative procedure would not start, that is feature points would be associated to themselves 
thus producing cluster over-splitting. The same fixed value could be too large for high density areas, 
leading to an undesirable merging of clusters in regions representing fine detail.

Moreover, in order to avoid under-segmentation, caused by a single value that is locally too large, it 
is necessary to choose a bandwidth value that is small enough to avoid over-smoothing anywhere in 
the dataset.  This  results  in  a strong over-splitting in  the mean-shift  output  and requires  further 
merging in the form of an iterative repetition of transitive  closure on the region adjacency graph 
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followed by a  union-find  algorithm, before  the final  tissue  classification  is  obtained  [64]. In  a 
subsequent conference paper [65], the same group recognized the superiority of the adaptive mean-
shift for the segmentation of data that exhibits multiscale patterns as is the case with MRI of the 
brain [66]. 

The mean-shift implementation which uses an adaptive  h value instead of a constant  h  is called 
adaptive  mean-shift  (AMS)  algorithm  and  is  the  basis  of  the  proposed  algorithm.  In  high 
dimensional feature spaces, adaptive mean-shift clustering has been shown to produce better results 
than the fixed bandwidth algorithm as mentioned in [67]. Several methods have been proposed to 
determine an adaptive window size for the AMS algorithm [68],  [69]. Although, the window size 
can be also simply defined as the distance h i  between x i  and it's k-nearest neighbor:

h i=∥ x i − x i ,k ∥                        (4.23)

The neighbors  of  x i  are  sorted by order of increasing distance to  x i .  Following the ordering 
process,  x i ,k  is the k-th distant neighbor from x i , and  h i  is its distance to  x i . The number of 
neighbors  considered for,  should be chosen large enough to  ensure that  there  is  an increase in 
density  within  the  support  of  most  kernels.  In  this  work,  this  method  for   h i  selection  was 
preferred.

Using an adaptive h value, yields Eq. 4.22:

            f K x  =
1
n ∑i=1

n 1
hi

d k ∥x−x i

h i ∥
2                       (4.24) 

4.2.2 Mean-Shift Kernels

The quality of a kernel density estimator, as mentioned in [37], can be measured by the mean of the 
square error  between the  density and its  estimate,  integrated  over  the  domain  of  definition.  In 
practice, however, only an asymptotic approximation of this measure (denoted as AMISE) can be 
computed. Under the asymptotics, the number of data points n∞ , while the bandwidth h 0  at 
a rate slower than n−1 . For both types of multivariate kernels, the AMISE measure is minimized by 
the Epanechnikov Kernel having the profile: 

                  k E x ={1−x 0 x1

0 x1                      (4.25)

which yields the radially symmetric kernel:

K E x  ={
1
2

cd
−1d21−∥x∥2  ∥x∥1

0 otherwise       (4.26)

where  cd  is  the  volume  of  the  unit  d-dimensional  sphere.  We  can  notice  though,  that  the 
Epanechnikov profile is not differentiable at the boundary. The profile:
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k N x  = exp −1
2

x , x0                                (4.27)

yields the multivariate normal kernel:

         K N x  = 2π −d / 2exp−1
2
∥x∥2                   (4.28)

for both types of composition (Eq. 4.20 ). The normal kernel is often symmetrically truncated to 
have a kernel with finite support. Employing the profile notation, the density estimator (Eq. 4.24) 
can be rewritten as:

         f h , K x  =
ck , d

n ∑i=1

n 1
hi

d k ∥ x−x i

hi ∥
2               (4.29)

Finding the modes of the underlying density f(x) is the first step in the analysis of a feature space. 
The modes are located among the zeros of the gradient ∇ f x =0  and the mean shift procedure is 
an elegant way to locate these zeros without estimating the density.

4.2.3 Density Gradient Estimation

By taking the gradient of the density estimator and by exploiting the linearity of  Eq. 4.29, the 
following density gradient estimator can be obtained:

∇ f h , K  x  ≡ ∇ f h , k  x =
2ck , d

n ∑i=1

n 1
hi

d2  x−x ik ' ∥ x−x i

hi ∥
2   (4.30)

Assuming that the derivative of the kernel profile exists for all x∃[ 0,∞ )  except for a finite set of 
points, we thus define the function:

                     g  x =−k '  x                                        (4.31)

Now, using g(x) for profile, the kernel G(x) is defined as:

             G x = cg , d g ∥x∥2                                (4.32)

where cg ,d  is the corresponding normalization constant. The kernel K(x) was called the shadow of 
G(x) in [70] in a slightly different context. We can observe that the Epanechnikov kernel is the 
shadow of the uniform kernel, while the normal kernel and its shadow have the same expression. 
Introducing g(x) into  Eq. 4.30 yields: 
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∇ f h , k  x =

=
2ck , d

n ∑i=1

n 1
hi

d2  xi−x g∥x− xi

hi ∥
2

=
2ck , d

n [∑i=1

n 1
h i

d2 g∥x− xi

hi ∥
2][∑i=1

n 1
hi

d2 x i g∥x−xi

h i ∥
2

∑
i=1

n 1
hi

d2 g∥x−x i

h i ∥
2
− x]   (4.33)

where ∑
i=1

n

g ∥x−x i/h∥
2  is assumed to be a positive number. This condition is easy to satisfy for 

all the profiles met in practice. Both terms of the product in Eq. 4.33 have special significance. 
From Eq. 4.29, the first term is proportional to the density estimate at x computed with the kernel 
G:

                                f h ,G x =
cg , d

n ∑i=1

n 1
hi

d g∥ x−x i

hi ∥
2            (4.34)

The second term is the mean shift:

                 mh ,G x  =
∑
i=1

n 1
hi

d2 x i g∥x− x i

h ∥
2

∑
i=1

n 1
hi

d2 g∥x−x i

h ∥
2
− x         (4.35)

We can observe that mean-shift is actually the difference between the weighted mean, using the 
kernel G and the adaptive h value for weights, and x, the center of the kernel (window). From Eqs 
4.34 and 4.35, Eq. 4.33 becomes:

                   ∇ f h , K x  = f h ,G x
2ck , d

c g ,d
mh ,G x          (4.36)

yielding:

                              mh ,G x  =
1
2

c
∇ f h , K x
f h ,G x 

                        (4.37)

This expression (Eq. 4.37 ) shows that, at location x, the mean shift vector computed with kernel G, 
is  proportional  to  the  normalized  density  gradient  estimate  obtained  with  kernel  K.  The 
normalization is by the density estimate in x computed with the kernel G. The mean shift vector 
thus always points toward the direction of maximum increase in density. This is a more general 
formulation of the property first remarked by Fukunaga and Hosteler [71,72] and discussed in [70].

Though, it must be mentioned that the relation captured in Eq. 4.37 is intuitive, as the local mean is 
shifted toward the region in which the majority of the points reside. Although, a path which leads to 
a stationary point of the estimated density can be defined, since the mean shift vector is aligned with 
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the local gradient estimate. The modes of the density are such stationary points. As a conclusion, the 
mean-shift procedure, obtained by successive: 

 computation of the mean shift vector mh ,G x 
 translation of the kernel (window) G(x) by  mh ,G x 

is guaranteed to converge at a nearby point. At this point, the estimate (Eq. 4.29) has zero gradient, 
as will be shown in the next section. The presence of the normalization by the density estimate is a 
desirable feature. Finally, it can be claimed that the mean shift procedure is an adaptive gradient 
ascend method, as close to local maximum points, in high-density values, the mean-shift steps are 
small and the analysis more refined. The regions of low-density values are of no interest for the 
feature space analysis and in such regions the mean shift steps are large. 

4.2.4 Convergence's Sufficient Condition

Let us define by  { y j } , j=1,2 , ...  the sequence of successive locations of the kernel  G, where, 
from Eq. 4.35 is calculated in the following way:

     y j1=

∑
i=1

n 1
h i

d2 xi g∥x−x i

hi ∥
2

∑
i=1

n 1
h i

d2 g∥x− xi

hi ∥
2

j=1,2 , ...        (4.38)

and it is actually the weighted mean at  y j  computed with kernel  G and  y1  is the center of the 
initial  position  of  the  kernel.  Respectively,  the  corresponding  sequence  of  density  estimates 
computed with kernel K, { f h , K  j } , j=1,2 , ..  is given by:

                       f h , K  j  = f h , K  y j j=1,2 , ...            (4.39)

The following theorem states that when a kernel K obeys some mild conditions, it suffices for the 
convergence of the sequences { y j } , j=1,2 ,...  and { f h , K  j } , j=1,2 , ...  .

Theorem 4.1 (Capture Theorem)

If the kernel K has a convex and monotonically decreasing profile, the sequences { y j } , j=1,2 ,...
and { f h , K  j } , j=1,2 , ...  converge and { f h , K  j } , j=1,2 , ...  is monotonically increasing.

We can observe that this theorem generalizes the result derived in a different way from Eq.4.31, 
where  G was the uniform kernel and K was the Epanechnikov kernel. A non-negative weight w i  
must  be associated in each data  point  x i ,  in  order to be this  theorem valid.  The proof of this 
theorem is given in the Appendix B.1. 

In [70, Section iv ] the convergence property of the mean shift was also discussed (However, it must 
be emphasized that almost all  the discussion there was concerned about the blurring process in 
which the input, after each mean shift step, is recursively modified). In our case, the convergence of 
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the  mean-shift  procedure  was  attributed  in  [70]  to  the  gradient  ascent  of  nature  of  Eq.  4.37. 
However, moving in the direction of the local gradient, as shown in [73, Section 1.2], guarantees 
convergence  only  for infinitesimal steps.  As a  consequence,  the  step  size  of  a  gradient-based 
algorithm is crucial for the overall performance. If the step size is too small, the rate of convergence 
may be very slow while if the step size is too large, the algorithm will diverge. In order to select 
appropriately the step size, a number of costly procedures have been developed, as discussed in [73, 
p. 24].  Due to the adaptive magnitude of the mean shift vector, the convergence of the mean-shift 
procedure  is  guaranteed,  as  shown  by  theorem  4.1,  eliminating  the  need  for  additional 
procedures  to  chose  the  adequate  step  sizes.  This  is  a  major  advantage  over  the  traditional 
gradient-based methods.

The number of steps to convergence in the mean-shift procedure, for discrete data, depends on the 
employed kernel. When the uniform kernel is applied, convergence is achieved in a finite number of 
steps, since the number of locations generating distinct mean values is also finite. However, when 
the kernel G imposes a weighting on the data points, according to the distance from its center, the 
mean shift procedure is infinitely convergent. Setting a threshold for the magnitude of the mean 
shift vector, is the most practical way to stop the mean-shift iterations.  

4.2.5 Mode Detection
 
Suppose  that  yc  and  f h ,k

c = f h , k  yc   are  the  convergence  points  of  the  sequences 
{ y j } , j=1,2 ,...  and  { f h , K  j } , j=1,2 , ...  respectively.  The  two  implications  of  Capture 
Theorem are the following:

Firstly, taking Eqs 4.35 and 4.38, the j-th mean shift vector is :

       mh ,G  y j = y j1− y j                     (4.40)

After  some  iterations, mh ,G  y j becomes  at  the  limit  mh ,G  y j= yc− yc=0 ,  that  is  to  say  the 
magnitude of the mean shift vector converges to zero. In other words, the gradient of the density 
estimate (Eq.4.29 ) computed at yc  is zero:

                                        ∇ f h , K  yc = 0                   (4.41)

due to Eq. 4.37. Hence, yc  is a stationary point of  f h , K .

Secondly, we remind that the Capture Theorem states that the trajectories of gradient methods are 
attracted by local  maximum if  they are  unique stationary points,  within a small  neighborhood. 
Because  of  the  fact  that  { f h , K  j } , j=1,2 , ...  is  monotonically  increasing,  the  mean  shift 
iterations satisfy the conditions required by the Capture Theorem [Appendix B.1 ]. Hence, once y j  
gets sufficiently close to a mode of f h , K , it converges to it. The set of all locations that converge to 
the same mode defines the basin of attraction of that mode.

To sum up, these two theoretical observations from above suggest a practical algorithm for mode 
detection:
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• Run the mean shift procedure to find the stationary points of f h , K

• Prune these points by retaining only the local maximum within a small neighborhood 

The local maximum points are defined, according to the Capture Theorem, as unique stationary 
points within some small open sphere. This property can be tested by perturbing each stationary 
point  by a  random vector  of  small  norm and letting  the  mean-shift  procedure  converge  again. 
Should the point of convergence be unchanged (up to a tolerance), the point is a local maximum, as 
discussed in [37].

4.2.6 Smooth Trajectory Property
 
When the normal kernel is used, the path of the mean shift procedure toward the mode has the 
following smooth trajectory property:  The angle between two consecutive mean shift vectors is 
always less than 90 degrees.

Using the normal (Gaussian) kernel (Eq. 4.28), the j-th mean shift vector (Eq. 4.38 ) is now given 
by:

   mh , N  y j = y j1− y j =

∑
i=1

n 1
hi

d2 x i exp∥x−x i

h i ∥
2

∑
i=1

n 1
hi

d2 exp∥x−x i

h i ∥
2
− y j         (4.42)

Theorem 4.2 

The cosine of the angle between two consecutive mean shift vectors is strictly positive when a 
normal kernel, as used in our work, is employed:

        
mh , N  y j

T mh , N y j1
∥mh , N  y j∥∥mh , N  y j1∥

 0                    (4.43)

The above theorem holds true for all j=1,2 ,...  according to the proof  given in Appendix B.2. An 
implication of Theorem 4.2 is that the Normal (Gaussian) kernel appears to be the optimal one 
for the mean shift procedure. The smooth trajectory of the mean shift procedure is in contrast with 
the standard steepest ascent method whose convergence rate on surfaces with deep narrow valleys is 
slow due to its zigzagging trajectory. In practice,  the convergence of the mean shift procedure 
based on the normal kernel requires large number of steps, as was discussed at the end of section 
4.2.4  in  contrast  with  the  uniform kernel  which  needs  much  fewer  steps  for  the   mean  shift 
procedure to converge. However, in this work the normal kernel is used, as it will be discussed in 
later section, as it produces better results than the uniform kernel. 
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4.3 Distances calculation

4.3.1 Euclidean distance
 
In mathematics, the Euclidean distance or Euclidean metric is the "ordinary" distance between two 
points that one would measure with a ruler, and is given by the Pythagorean formula, as defined in 
[74]. By using this formula as distance, Euclidean space (or even any inner product space) becomes 
a metric space. 

The Euclidean distance between points p and q is defined as the length of the line segment pq . In 
Cartesian coordinates, if p= p1 , p2 ,... , pn  and  q=q1 , q2 ,... , qn  are two points in Euclidean 
n-space, then the distance from p to q is given by:       

d  p ,q =  p1−q1
2 p2−q2... pn−qn

2= ∑i=1

n

 p i− qi
2            (4.44)                             

The Euclidean norm measures the distance of a point to the origin of Euclidean space: 

     ∥p∥=  p1
2 p2

2...pn
2=  p∗p                                 (4.45)

where  the  last  equation  involves  the  dot  product.  This  is  the  length  of  p,  when regarded as  a 
Euclidean vector from the origin. The distance itself is given by:

      ∥p−q∥=  p−q p−q = ∥p∥2∥q∥2−2pq             (4.46)

4.3.2 Mahalanobis Distance

In statistics,  as referred in [75],  Mahalanobis distance is a distance measure introduced by P. C. 
Mahalanobis in 1936. It is based on correlations between variables by which different patterns can 
be identified and analyzed. It is a useful way of determining similarity of an unknown sample set to 
a known one. It differs from Euclidean distance in that it takes into account the correlations of the 
data set and is scale-invariant, i.e. not dependent on the scale of measurements. 

Formally, the Mahalanobis distance of a multivariate vector  x=x1, x2, x3,... , xn
T  from a group of 

values with mean μ=μ1, μ2, μ3,... , μn
T  and covariance matrix S is defined as:

                                                  
                               DM x = x−μT S−1 x−μ                     (4.47)

Mahalanobis distance (or "generalized squared interpoint distance" for its squared value) can also 
be defined as a dissimilarity measure between two random vectors and of the same distribution with 
the covariance matrix S:

                                                   
                                 d x ,y = x−yT S−1x−y                     (4.48)

If the covariance matrix is the identity matrix, the Mahalanobis distance reduces to the Euclidean 
distance.  If  the covariance matrix  is  diagonal,  then the resulting distance measure is  called the 
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normalized Euclidean distance:
                                                   

        d x ,y = ∑i=1

N xi− yi
2

σ i
2                           (4.49)

where σ i  is the standard deviation of the x i over the sample set.

An intuitive  explanation  of  mahalanobis  distance  can  be  given  if  we consider  the  problem of 
estimating the probability of a test point in N-dimensional Euclidean space to belong to a set, where 
we are given sample points that definitely belong to that set. Our first step would be to find the 
average or center of mass of the sample points. Intuitively, the closer the point in question is to this 
center of mass, the more likely it is to belong to the set.

However, we also need to know if the set is spread out over a large range or a small range, so that 
we  can  decide  whether  a  given  distance  from the  center  is  noteworthy  or  not.  The  simplistic 
approach is to estimate the standard deviation of the distances of the sample points from the center 
of mass. If the distance between the test point and the center of mass is less than one standard 
deviation, then we might conclude that it is highly probable that the test point belongs to the set. 
The further away it is, the more likely that the test point should not be classified as belonging to the 
set.

This intuitive approach can be made quantitative by defining the normalized distance between the 
test point and the set to be x−μ/σ . By plugging this into the normal distribution we can derive 
the probability of the test point belonging to the set.

The drawback of the above approach was that we assumed that the sample points are distributed 
about the center of mass in a spherical manner. Were the distribution to be decidedly non-spherical, 
for instance ellipsoidal, then we would expect the probability of the test point belonging to the set to 
depend  not  only on  the  distance  from the  center  of  mass,  but  also  on  the  direction.  In  those 
directions where the ellipsoid has a short axis the test point must be closer, while in those where the 
axis is long the test point can be further away from the center.

Putting  this  on  a  mathematical  basis,  the  ellipsoid  that  best  represents  the  set's  probability 
distribution can be estimated by building the covariance matrix of the samples. The Mahalanobis 
distance is simply the distance of the test point from the center of mass divided by the width of the 
ellipsoid in the direction of the test point.

4.4 K-means algorithm

4.4.1 Introduction

Suppose that we want to classify n samples in k clusters  (obviously k < n). The K-means algorithm 
depends on minimizing the square sum  of distances between the n samples and the center of each 
cluster, as mentioned in [76]. To be more specific we want:

                             ∑
x∈S j k

 ∣x−z j∣ 
2

                                  (4.50)

where S j k   is a cluster in k iteration, z j  is the center of the cluster and the expression inside the 
| . | is usually the Euclidean distance. As a conclusion, the function that has to be minimized for all 
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the clusters is:

  
J Z =∑

j
∑

x∈S j k
∣x−z j∣

2

                     (4.51)   
            

If we take the gradient of function J  we have: 

θJ Z /θz j= ∑
x∈S j k 

x−z j=0 ,∀ j         (4.52)

As a result, the optimal solution for the centers of clusters is:

      z j=1/ p j∗ ∑
x∈S jk 

x                           (4.53)

where  p j  is the number of members of class  S j k  , that is to say z j  is the mean value of the 
members of each class. 

4.4.2 K-means Steps

The K-means algorithm includes the following steps:

1. We define the number of clusters, K
2. We choose,randomly or by approach,  K elements that they will be the initial centers of the 

K clusters
3. For the rest elements, we calculate their distance from the center of the K clusters, and we 

place  them to  the  appropriate  cluster,  according  to  the  minimum distance  from  the  K 
clusters.

4. We re-calculate the centers of the clusters, by calculating the mean of the members of each 
cluster

5. We re-calculate the distances from the center of the  K clusters, and once again we place 
them to the appropriate cluster.

We repeat steps 4 and 5 until there is no change in the mean values of the clusters, and as a result, 
the algorithm converges.
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4.5 Fuzzy K-means

4.5.1 Introduction

The  basic  difference  between  the  fuzzy  classifiers  and  the  binary  ones,  is  that  in  the  fuzzy 
classifiers, the elements have the possibility/opportunity  to be classified in more than one clusters.

To be more specific, suppose that we have n elements, x1, x2,... , xn  that belong to the set S and we 
are looking for the K clusters S1, S 2..., S k  in a way that for each x i ,i=1,2 , ... , n  to be classified in 
clusters so that S1∪S 2∪...∪S k=S  without the relation S i∪S j=∅ ,∀ i≠ j  to be accepted.

This idea is very practical and extremely useful, if we consider facts of the real world. Suppose that 
we have to classify men according to their height, in the clusters { Short, Medium, High  }.The 
classification of the sample with height for instance 185 cm, it is hard to be classified only in one of 
the categories Medium or High. Differently , it is preferable to characterize this man as “ he belongs 
0.6 in class Medium and 0.4 in class High (we observe that 0.6 + 0.4 = 1)” 

4.5.2 Fuzzy K-means Definition and Steps

The Fuzzy K-means algorithm, as defined in [77], depends on minimizing of the function:

J U ,V =∑
i=1

c

∑
k=1

n

uik
m∣xk−v i∣

2                 (4.54)

where:

1.  x1, x2,... , xn are the number of elements that we want to classify
2. V={v1, v 2,... , vc }  are the center of the clusters 
3. U = [ uik ]  is a c * n matrix where u ik  is the percentage of participation in the i cluster  of 

k from the n elements of the sample.

             Each u ik  element satisfies the following:

•       0≤u ik≤1 , i=1,... , c , k=1,... , n

•       ∑
i=1

c

u ik=1 , k=1,... , n

•        0≤∑
k=1

n

uikn , i=1,... , c

      4.  m>1 is a predefined exponential fuzzifier  factor.

The fuzzy K-means algorithm includes the following steps:
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1.  Supposing that we have  n elements,  X={ x1, x2,... , xn } , we define the number of clusters 
2≤c≤N , the maximum number of iterations  T , the value of  m1  and the value of the 
constant ε0 .

2. We define (randomly or with another way) the initial values of the participation matrix.
3. For all the n elements, we calculate their distance from the center of the c clusters, and we 

place them to the appropriate cluster, according to the minimum distance from the c clusters.
4. For  t=1,2 ,... ,T  we  calculate  the  c centers  of  the  clusters  according  to  the  following 

equation: 

                            v i =
∑
k=1

n

u ik
m xik

∑
k=1

n

uik
m

, i=1,... , c                               (4.55)

                      (mean value of  x ik  with weights u ik
m )

      
5. We calculate the membership matrix:

     
u ik =

[1 /∣xk−vi∣
2]

∑
j=1

c

[1/ ∣x k−v j∣
2]1/m−1

, i=1,... , c and k=1,... , n
    (4.56)   

6. We stop the iterative procedure when the number of iterations reaches the limit that we have 
define or there is no change in the mean values of the clusters or when:

                    
                                         Ai =

pdet S iS i
−1                      (4.57)

             
           In any other case we return to step 3 and we repeat the procedure. 
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    5.  THE PROPOSED MEAN-SHIFT ALGORITHM

5.1 Introduction

The proposed brain structures segmentation algorithm is based on the adaptive mean-shift theory.  It 
is utilized to analyze 2-D MRI data and provides segmentation maps of the three main brain tissue 
types  (Gray matter  (GM), White  matter  (WM), Cerebro-spinal  fluid (CSF))  and a  membership 
matrix for each tissue which contains the possibility for each pixel to be this tissue. One MRI 
modality is available per segmentation task. An example of such data is shown in Fig.  5.1.  The 
initial MRI image needs to be preprocessed. The preprocessing step includes the following steps: 

1. Brain parenchyma extraction using the brain extraction tool (BET) so to segment only the 
brain tissue pixels.

2. Apply of Median Filter 
3. Intensity normalization across based on the darkest  and brightest  percentage points. The 

normalization sets the darkest percent of pixels to zero and rescales the brightest percent to 
4095. The purpose is to obtain similar dynamic ranges for all the three tissues.

4. Background extraction 

Our feature space consists of pixel's intensity and spatial information (pixel coordinates) for an 
overall dimensionality of three. Following the initial data processing, feature-vectors are extracted 
per input pixel. The set of feature-vectors is input to the adaptive mean-shift clustering stage, which 
is explained in Section 5.3. The output of the clustering step is a set of modes which provides a 
compact representation of the data. If the output of the mean-shift clustering stage includes several 
hundreds of modes (>400), a follow-up merging stage is proposed to further prune the initial set of 
modes. The iterative mode-pruning stage is described in Section 5.4. Finally, the categorization of 
the resultant modes into three categories, as defined in the brain segmentation task, is achieved via 
an intensity-based clustering stage, described in Section  5.5, using the fuzzy k-means algorithm. 
The output of the proposed algorithm is a segmentation map of all the pixels of the datasets and a 
membership map,  with possibilities  for each pixel  to  be CSF, GM and WM.  Fig.  5.2  shows a 
summarizing block diagram for the proposed algorithm. Furthermore, the value of this algorithm in 
automatic detection of abnormalities in brain images is also investigated in Section 5.6. 

                      (a)                                                (b)                                                     (c)

Fig. 5.1: Three MRI modalities: (a) T1 , (b) Proton density (Pd) , (c) T2 
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Fig 5.2: Block diagram for the proposed algorithm
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5.2 Preprocessing Step

5.2.1 Brain Extraction    
   
First of all, for all the images of the dataset, we must remove the scalp and scull pixels, in order to 
guarantee that the rest of the procedure will not classify pixels that do not belong to any tissue 
category. There is a great variety of appropriate brain extraction tools (BET) available, although 
neither of which remove completely all the scalp and scull pixels. However, in this work we used 
the BET tool of MRIcron program suite [78], in combination with a manual scalp and scull pixels 
removal.  The only parameter that  we have to choose in  BET is  a “crop edges” threshold,  that 
regulates how many pixels should the program crop. It takes values from 0 to 1. Close to zero 
values means that the program is going to crop few pixels from the MRI image, and as a result 
plenty scull pixels will still remain, leading to misclassification (figure 5.3). On the other hand, 
close to 1 values means that the program is going to crop plenty pixels from the MRI image, and as 
a result pixels that belong to brain tissues will be mistakenly cropped. An instance of that case is 
shown in figure 5.4. As a conclusion much caution is needed with the use of this tool and in every 
occasion, we must check the resulting image. In this work, we observed that the best way to remove 
scalp and scull  pixels  is  to  apply BET one to  two times with threshold value 0.4 to  0.6 max. 
Afterwards, the remaining scalp and scull pixels are removed manually. The basic idea is to apply 
BET carefully with threshold values 0.4 to 0.6, even though it may needs to be applied more than 
one time, so as to guarantee that scalp and scull pixels are completely removed and brain tissue 
pixels have not been cropped. BET procedure is of paramount importance, especially in locating 
cancer  pixels  (tumor  or  edema),  that  appear  hyperintence  (in  T1  and  T2  MRI  modality 
respectively), an intensity value very close to brain scull pixels intensity, and if we don't remove 
them appropriately, we will end up to misclassification of brain cancer pixels. In figure 5.5 we can 
observe a good brain extraction example.

Fig. 5.3: (a) initial MRI image. The circumferential bright pixels are scalp and scull pixels. On top 
of the image we can observe the eyes of the patient. Between the two eyes , is off course the nose 
and  all  these  pixels  should  be  cropped.  (b)  The  same  image  after  we  have  applied  the  brain 
extraction tool with threshold 0.3. We observe that plenty scull  and scalp pixels  have not been 
cropped.
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Fig. 5.4: (a) initial MRI image. The circumferential bright pixels are scalp and scull pixels. (b) The 
same image after we have applied the brain extraction tool with threshold 0.8. We observe that 
plenty brain tissue pixels have been wrongly cropped.

Fig. 5.5: (a) initial MRI image. The circumferential bright pixels are scalp and scull pixels. (b) The 
same image after we have applied the brain extraction tool firstly with threshold 0.4, secondly with 
threshold 0.5 and finally with threshold 0.55. We observe that the majority of  scalp and scull pixels 
have been removed and simultaneously brain tissue pixels have not been cropped.
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5.2.2  Median filter, Intensity Normalization, Background Extraction 
             
After having extracted the scull and scalp pixels, now we apply a median filter in order to remove 
the additive noise. The median filter was preferred instead of Gaussian as it is discussed in the 
Experimental  Results  Section.  The next  step is  the intensity normalization via  linear  histogram 
stretching based on the darkest and brightest percentage points. The normalization sets the darkest 
percent of pixels to zero and rescales the brightest percent to 4095. This step is necessary in order to 
guarantee that all the images of any MRI scan will have the same treatment and also to obtain 
similar dynamic ranges for all the three brain tissues. The last step of the preprocessing step is to 
estimate the background of every image, by  performing a morphological opening operation  [79]. 
After the estimation of the background, we remove it from the images and store  only  the brain 
tissue pixels in a matrix. This is done in order to perform the mean-shift algorithm using only the 
brain tissue pixels (if we were using the background pixels in the mean-shift procedure this would 
lead  to  a  completely  wrong  processing  of  data  in  mean-shift  clustering  step  and  finally 
misclassification of the brain tissue pixels).

5.3 Mean-Shift Clustering Step
 
Our data are modeled in the following way: 

We suppose that each brain tissue pixel of the MRI slice is a unique category. The feature space of 
our  problem  is  both  spatial  (x  and  y  pixel's  coordinates) and  intensity,  for  an  overall 
dimensionality of three. So, we have to estimate the unknown probability density function (PDF) 
for each category, according to its neighborhood of pixels that act as samples. As already mentioned 
in Section 4.1, the most common way to estimate an unknown pdf, is the Parzen Windows method. 
According to Parzen Windows, an unkwown pdf can be estimated by the following equation:

f Kx  =
1
n ∑i=1

n 1
hi

d k ∥x−x i

h i ∥
2                      (5.1)

where d is the dimension of the feature space, in our case 3 as already mentioned, x is the feature 
vector of the pixel-category that we want to estimate its pdf,  n  is the number of neighborhood 
pixels-samples considered for the estimation of the pdf, x i  is the feature vector of a pixel-sample 
that  belongs  to  the  neighborhood  of  x,  h i is  the  windows  radius  that  we  are  taking  into 
consideration  (not  all  pixels  of  the  neighborhood  participate  in  the  estimation  of  the  pdf)  and 
function  k  is  named  Kernel  Profile  and  is  actually  an  equation  where  the  similarity  of  the 
characteristics  between  each  pixel-sample  of  the  neighborhood  and  the  pixel  that  we  want  to 
estimate its pdf is taking into account. Pixels-samples that have similarly characteristics with the 
pixel that we want to estimate its pdf participate more than the pixels-samples that aren’t so relative 
with the current pixel-category. In order to guarantee this discrimination, Kernel profile function 
must be a non-negative , non-increasing and normalized to one function. In this work, the Normal 
(Gaussian) Kernel Profile was preferred instead of the common Epanechnikov Kernel (Eq. 4.26), as 
it  produces  better  results  (comparison  of  these  two  kernels  is  presented  in  the  Experimental 
Section ) transforming Eq. 5.1 into:
 

                   f K x =
1
n∑i=1

n 1
hi

3 exp∥x− xi

hi ∥
2                     (5.2)
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Although, we don't have to estimate the pdf of the pixels. As explained in Section 4.2.3, taking the 
gradient of equation 5.1 leads to the following result:

∇ f h , K x  ≡ ∇ f h , k x =
2ck , d

n ∑i=1

n 1
hi

d2 x−x ik ' ∥ x−x i

hi ∥
2                     (5.3)

By replacing g  x =−k '  x , Eq. 5.3 becomes:

∇ f h , k  x =
2ck ,d

n ∑i=1

n 1
hi

d2  x i−x g∥x−x i

h i ∥
2                                            (5.4)

and finally:

            ∇ f h , k  x =
2ck ,d

n [∑i=1

n 1
hi

d2 g∥x−x i

h i ∥
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n 1
hi

d2 x i g∥x− x i

hi ∥
2

∑
i=1

n 1
hi

d2 g∥ x−x i

hi ∥
2
− x]    (5.5)

From Eq.  5.5 we are  only interested in  the following part,  which is  known as the  mean-shift 
vector:

mh ,G x  =
∑
i=1

n 1
hi

d2 x i g∥x−x i

hi ∥
2

∑
i=1

n 1
hi

d2 g∥ x−x i

h ∥
2
−x                                 (5.6)

Observing Eqs 5.5 and 5.6 we can come to the conclusion that the mean-shift vector is proportional 
to the normalized gradient of the density estimate. Therefore, as proved by Fukunaga and Hosteler 
[66], the mean-shift vector points toward the direction of maximum density increase. Back to 
our case, taking the gradient of Eq. 5.1, leads to the following mean-shift vector:  

             mh ,G x  =
∑
i=1

n 1
hi

d2 x i exp∥ x−x i

hi ∥
2

∑
i=1

n 1
hi

d2 exp∥ x−x i

hi ∥
2
− x                            (5.7)

and by replacing the dimensional of our feature space  d with 3, as our feature space consists of 
pixel's spatial (x and y coordinates) and intensity information, Eq. 5.7 becomes:

  mh ,G x  =
∑
i=1

n 1
hi

5 x i exp∥x−x i

hi ∥
2

∑
i=1

n 1
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5 exp∥x− xi

hi ∥
2
−x                              (5.8)

67



We can observe that the left part of the mean-shift vector is a weighted-mean of the features vector 
of the pixels-samples of the neighborhood, of the pixel-category. 

Starting from point x j  in feature space, we move with the mean-shift vector to a point x  j1 ,that 
lies  in  a  higher  density  region  than x  j  ,  by  repeating  iteratively  for j=1,2 ,... , ,  computed  as 
follows:

                mh ,G x j=x  j1−x  j =

∑
i=1

n 1
hi

5 x i exp∥x−x i

hi ∥
2

∑
i=1

n 1
hi

5 exp∥x− xi

hi ∥
2
−x  j             (5.9)

until the difference x  j1−x  j  is at the limit zero. Then, we will have reached the nearest stationary 
point, which is usually also one of the local maximum, of the pdf of the pixel-category.

We haven't defined yet the value of n parameter, the size of the neighborhood that we are taking into 
consideration for the calculation of the mean-shift vector for each pixel.  Someone may think that 
the  larger  the  neighborhood  is,  the  better  the  results  of  the  mean-shift  clustering  step.  This 
assumption  is  wrong.  It  is  not  the  size  of  the  neighborhood  that  matters,  but  an  appropriate 
neighborhood selection. In this work, a neighborhood size of [12 * 12 ] is utilized. In other words, 
n=144 neighbor pixels (12*12). Explanation of neighborhood queries is given in the Experimental 
Section. Neighborhood queries computed in Eq. 5.9 constitute a real bottleneck for the mean-shift 
algorithm.  This  is  especially true for  large  datasets  in  high dimensional  spaces,  where a  naïve 
computation of all the neighborhood queries at each mean-shift iteration is prohibitive. In order to 
solve  this  difficult  problem,  we  have  saved  in  a  large  matrix  all  the  brain  tissue  pixels,  and 
according to  each pixel's  coordinates,  we are  searching in  a neighbor  around of  it,  to  find the 
appropriate neighborhood.  

As for the selection of h i , a simple method is to define the window size as the distance h i between 
x i  and it's k-nearest neighbor:

                           h i=∥x i−x i ,k∥                                 (5.10)

The neighbors  of  x i  are  sorted by order of increasing distance to  x i .  Following the ordering 
process,  x i ,k  is the  k-th distant neighbor from x i  , and  h i  is its distance to  x i . The number of 
neighbors considered should be chosen large enough to ensure that there is an increase in density. In 
this work we have chosen the value  k=120 . We will show in the experimental section that in 
practice k  can be chosen in a large interval of values without affecting significantly the quality of 
the results.

After locating the local maximum points with the the mean-shift vector for each pixel-category, we 
are  now searching  in  small  neighborhoods  for  the  maximum of  these  local  maximum points, 
defining in  this  way the  modes.  How small  is  a neighborhood that  we are  going to  search,  is 
subjectively. This factor has also major affect in the final results, as it affects the producing modes 
of the mean-shift procedure. Small neighborhood will lead to numerous modes (even > 2000 ) while 
large neighborhood will lead to  few  tens of modes (<100). Both facts lead to misclassification, 
because in the first case the mean-shift's procedure resulting modes are too many and as a result, the 
mean-shift procedure doesn't have significant effect in the procedure of segmentation. In the second 
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case, too few modes lead to merging pixels that may belong in the same brain tissue category. In 
this work, we chose a  neighborhood of [5*5]. In other words, for each pixel we check if its local 
maximum is  the maximum point  in  his  neighborhood of  [5*5]  pixels.  This  choice leads  to  an 
amount from a few, to several hundreds of modes (it depends on the dataset, the amount of brain 
tissue pixels of the image).

The next step after locating the modes, is to categorize all brain tissue pixels of the MRI image to 
these modes. For the classification of the pixels, the Euclidean distance is used (Section 4.3.1), 
according to the three features (spatial and intensity) we have used in order to calculate the mean-
shift vector.

In the end of Mean-Shift clustering step, from thousands of the initial pixels, now we have a few to 
several hundreds of modes.  Pixels that belong to the same mode can't change category during 
the next steps of  the proposed segmentation algorithm. In figure 5.6 it is shown a block diagram of 
the mean-shift clustering step and in figures 5.7 and 5.8 it is demonstrated a variety of Mean-Shift 
results, in order to get the picture of what was achieved.
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Fig. 5.6: Block diagram of the proposed mean-shift clustering procedure.
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Fig. 5.7:  In images (a), (c), (e) it is shown 3 MRI T1 brain slices and in images (b), (d), (f) the 
respective images after the mean-shift clustering step. In each image separately, same colored pixels 
correspond to the same cluster. There is a large compression of the initial data. In picture (b), from 
17629 brain tissue pixels of image (a), after the mean-shift procedure there have been left 274 
modes to still classify. In image (d), from 17348 pixels, after the mean-shift procedure we have 223 
modes left and finally in image (f), from 17005 pixels, now we have 226. All MRI slices in this 
figure are simulated images, downloaded from [80].  
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Fig. 5.8: Images (a), (c), (e) show 3 MRI T1 brain slices and images (b), (d), (f) the respective 
images  after  the  mean-shift  clustering  step.  In  each  image  separately,  same  colored  pixels 
correspond to the same cluster. In picture (b), from 77263 brain tissue pixels of image (a), after the 
mean-shift procedure there have been left 803 modes to still  classify. In image (d), from 62949 
pixels, after the mean-shift procedure we have 570 modes left and finally in image (f), from 74127 
pixels, now we have 609 modes. In this figure, the data compression isn't as large as in fig. 5.7. due 
to the huge number of brain tissue pixels of the MRI images. All MRI slices in this figure are from 
real dataset.
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5.4 Mahalanobis Pruning Modes Step

The number of  remaining modes after the mean-shift procedure is a large compression of the initial 
data  but it is still much larger than the targeted number of classes. Empirically, if the  number of 
remaining modes are more than 400, a  mode pruning step is therefore required. In fact, we have 
used the nonparametric adaptive mean-shift for clustering in the joint spatial-intensity feature space 
as the clusters are inherently nonconvex. For the pruning of the modes, however, we switch to an 
intensity-only feature space. For this purpose, a pruning mechanism is added as follows. A fixed-
radius window is shifted across the intensity feature space (ignoring spatial features), centered on 
each mode. Modes that co-exist within the window are merged. Mahalanobis distance is utilized for 
the distance computation. For the computation of the Mahalanobis distance, a covariance matrix is 
computed  per  mode  from the  intensity  values  of  its  corresponding  pixels.  Therefore,  for  two 
intensity vectors, I m  and I n  , representing the intensity components for two convergence modes m 
and  n  respectively,  m and n are merged if:

          min MahalDist  I m , I n , MahalDist  I n , I mR            (5.11)

where MahalDist  is the Mahalanobis distance between vectors I m  and  I n , and R is the window 
radius.Every time there is a mode pruning, the  covariance matrices (for the merged modes)  are 
updated immediately.  In  practice,  the initial  window size,   is  set  to  1.  The  increment  between 
iterations, is set to 0.5 .

The process is repeated iteratively with an increasing window radius, until the remaining modes are 
less  than  400.  Further  merging  with  the  Mahalanobis  pruning modes  step  is  not  suggested,  as 
discussed in the Experimental Section, because of the fact that it doesn't improve significantly the 
results.  Thus,  if  we  over-merge  the  modes  with  this  procedure,  that  is  to  say  the  number  of 
remaining modes become less than 150, we would increase the possibility of misclassification, as 
we may merge modes that should have stayed separately.  

In figure 5.9 we demonstrate the results from this second step. We can observe that we are getting 
closer to the final segmented result.
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Fig.  5.9:  In  images  (a),  (d),  (g)  it  is  shown the  initial  MRI slices,  in  images  (b),  (e),  (h)  the 
respective  images,  after  the  mean-shift  clustering  step  and  finally  in  images  (c),  (f),  (i)  the 
respective images after the mahalanobis pruning modes step. In image (c), from 803 modes left 
after the mean-shift clustering step, now, after the mahalanobis pruning modes step there have been 
left 337 modes to still classify. In image (f), from 570 modes now we have 373 and finally in image 
(i), from 609 modes now there have been left 400 modes. In each image separately, same colored 
pixels correspond to the same cluster and cannot change during the next, final step. All images in 
this figure are from a real dataset.       
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5.5 Fuzzy C-means Step

The remaining modes are assigned to the desired tissue classes by clustering their intensity values 
using the fuzzy K-means clustering algorithm.  In section 5.6, we propose a way to approach brain 
tumor and edema pixels, with the mean-shift algorithm. In this final step, the following procedure, 
according to the fuzzy k-means theory presented in Section 4.5, is executed: 

i. Definition of the number of clusters  c. In our case, the number of clusters depends on the 
existence of tumor or edema pixels in the image. If it doesn't contain tumor or edema pixels, 
then the appropriate number of clusters is 3, as the number of brain tissues. If it does, then 
we need 4 clusters, three for the tissues and one for the tumor or edema pixels. In section 
5.6, we propose a way to approach brain tumor and edema pixels. The initialization of the 
centers of the fuzzy k-means algorithm, in both cases, is set according to the histogram of 
the MRI image. We remind that the histogram of the image shows the distribution of the 
pixels of the image. So we locate in the histogram c points, with high distribution, from all 
the intensity range, and these values are our initial cluster centers. In figure 5.10 it is shown 
an example of histogram and cluster center initialization. 

ii. Definition of the initial values of the participation matrix. In this work, the participation (or 
membership) matrix is initialized in the following way: All pixels of the remaining modes 
are classified, only in the first iteration, according to the simple k-means algorithm (Section 
4.4). Then we calculate the membership matrix for each mode according to the equation:

         u ik =

1
∣xk−v i∣

2

∑
j=1

c

[ 1
∣xk−v j∣

2 ]
1/ m−1  ,i=1,... , c  and k=1,... , n        (5.12)

where c is the number of clusters, x1, x2,... , xn  are the elements of the mode that we want to 
classify, V = { v1, v2,... , vc }  are the center of the clusters, U = [ uik ]  is a c * n matrix where 
u ik  is the percentage of participation of k pixel in the i cluster and finally m is a predefined 
exponential  fuzzifier  factor,  here  is  set  to  2.  This  factor  though,  doesn't  affect  
significantly the final segmentation results. 

    iii. For all the  n elements of each mode, we calculate their distance from the center of the  c 
clusters, and we place them to the appropriate cluster, according to the minimum distance 
from the c clusters.

iv. We calculate the c centers of the clusters according to the following equation:            

        

v i =
∑
k=1

n

u ik
m xik

∑
k=1

n

uik
m

, i=1,... , c

                               (5.13)                                 
                              (mean value of  x ik  with weights u ik

m ) 

            where c is the number of clusters, x1, x2,... , xn  are the pixels of the image, u ik  is the     
percentage of participation of k pixel in the i cluster and finally m is the fuzzifier factor,   
here is set to 2.

       v.  We calculate the membership matrix for each mode according to Eq. 5.12:
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1
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2 ]
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where c is the number of clusters, x1, x2,... , xn  are the elements of the mode that we want to 
classify, V = { v1, v2,... , vc }  are the center of the clusters, U = [ uik ]  is a c * n matrix where 
u ik  is the percentage of participation of k pixel in the i cluster and finally m is a predefined 
exponential fuzzifier factor, here is set to 2.

       vi. We repeat steps iii – v until there  is no change in the centers of the clusters.

The output of the algorithm is a segmentation map of the three brain tissue types, and a membership 
matrix which represents the percentage of participation (probability) for each pixel to belong in 
each tissue.

In figures 5.11-5.12 the final segmented results of various images are illustrated, after the use of the 
mean-shift, mahalanobis pruning and fuzzy k-means  procedures. 

Fig. 5.10: Histogram of an MRI brain slice and the initial centers of the fuzzy k-means, calculated 
by our algorithm, according to the three main lobes of the histogram. These centers represent a good 
initialization in all the range of intensity.
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Fig. 5.11: In images (a), (d), (g)  it is shown the simulated MRI initial images, in images (b), (e), (h) 
the images after the mean-shift clustering step and in images (c), (f), (i) the final segmented results. 
In images (c), (f) and (I), CSF tissue pixels are appeared in red color, WM in blue and GM in green 
color.
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Fig. 5.12: In images (a), (e), (i), (m) it is shown the initial MRI images, in images (b), (f), (j), (n) 
the  result  after  the  mean-shift  clustering  step,  in  images  (c),  (g),  (k),  (o)  the  images  after  the 
mahalanobis pruning step and finally in images (d), (h), (l), (p) the images after the fuzzy c-means 
step where we can observe the final segmented results in which CSF tissue pixels are appeared in 
red color, WM in blue and GM in green color. All images in this figure are from real datasets.
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5.6 Tumor and Edema Pixels Recognition

The Mean-Shift clustering algorithm, in combination with prior knowledge about the nature of the 
T1 and T2 MR images can be used, not only to classify the various brain tissues, but also to detect 
possible  cancer  cells.  Because  of  the  nature  of  the  enhanced T1-weighted  modality,  the  tumor 
necrotic  area  appears  hypointense,  while  the  solid  area  of  the  tumor  around the  necrotic  area 
appears hyperintense and the edema cannot be distinguished from the GM and the WM, which both 
share medium intensities. Similarly, in T2-flair images, the edema and the solid tumor area appear 
hyperintense, while the necrotic area appears hypointense. An example of these two modalities is 
shown in Fig. 5.13 (a) and (b), where the skull has been removed manually from the two registered 
images. Using that information, we can perform clustering on two corresponding registered T1-
enhanced and T2-flair images, using 4 clusters. After identifying the cluster with the higher mean 
value,  since  it  is  the  most  probable  to  include  the  tumor  region,  we  remove  the  connected 
components having total  area below a certain threshold. The largest connected component will be 
most likely the tumor area, in both MR modalities. If we subtract the tumor area of T1 from the 
tumor area of T2-flair, then we obtain the edema region. An example of this is shown in Fig. 5.13 
(c), where the tumor area obtained from T1 (after morphological closing, in order to include the 
necrotic area, as well) is highlighted with green, superimposed on the original image, while in (d) 
the  edema is also shown with blue, superimposed on the T2-flair image.  In figure 5.14 we can 
observe  various  images  that  contain  tumor  or  edema  pixels  and  the  results  produced  by  the 
proposed procedure.
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Fig.  5.13:  (a)  Enhanced  T1-weighted  image  after  the  skull  has  removed,  (b)  Corresponding 
registered T2-flair image, (c) Solid tumor area obtained from enhanced T1, (d) Solid tumor area and 
edema obtained from T2-flair.
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Fig. 5.14: (a) The initial T2 modality picture. Edema is appeared hyperintense. (b)The segmented 
final image using 4 clusters with the mean-shift  procedure and afterward automated remove of 
irrelevant components. (c)  The initial T1-enhanced modality picture and (d) the same,segmented 
picture.
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                                     6.  EXPERIMENTAL RESULTS

6.1 Introduction

In order to make an evaluation of our proposed algorithm, it was necessary to check the algorithm 
in a dataset in which the golden truth was available. Golden truth is named the method where a 
doctor categorizes by himself all the pixels of the dataset, in the three categories, CSF, GM and 
WM.  At  this  point,  we  demonstrate  some metrics  where  there  are  defined  ways  to  grade  the 
proposed algorithm. All metrics are based on the following definitions:

where:

• True Positive (TP) is the number of pixels that the algorithm correctly segmented them  in 
the right category.

• False Negative (FN) is the number of  the pixels that the algorithm should but unfortunately 
failed to segment in the right category.

• False Positive (FP) is the number of the pixels that the algorithm mistakenly segmented 
them to the same category with the pixels of the TP category.

• True Negative (TN)  is the number of  pixels that correctly the algorithm didn't segment 
them to  the same category with the pixels of the TP category.

With these definitions, a great variety of metrics can be defined, in order to evaluate a segmentation 
algorithm:

• False Positive Rate (α) = FP / (FP + TN), False Negative Rate (β) = FN / (TP + FN)
• Sensitivity (Power)=1-β, Specificity=1-α
• Likelihood-ratio Positive =sensitivity / (1 − specificity)
• Likelihood-ratio Negative = (1 − sensitivity) / specificity
• Jaccard similarity  (JC) coefficient   is a statistic used for comparing the similarity   as is 

defined as JC=TP/(FP+TP+FN) .The bigger this value is, the better for the quality of the 
algorithm, as it means that the amount of TP pixels , is much bigger than the amount of 
pixels that the algorithm  should but failed to segment in the right category or he algorithm 
mistakenly segmented them to the same category with the pixels of the TP category.
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• Dice Similarity  = DS =2TP/(2TP+FP+FN) .Dice Similarity attains the value of one if both 
segmentaions (Golden Truth and the evaluated algorithm) fully agree and zero if there is no 
overlap at all.

• Tanimoto (TN)  is also a metric of similarity related to Jaccard Coeffiient, also known as 
extended Jaccard coefficient and it is defined as:

        TN=(TP+TN)/(TP+2FP+2FN+TN) .As we observe  from the definition of  Tanimoto,  the  
closer  to  one  is  the  value  of  Tanimoto,  the  better  the  evaluated  algorithm.  Tanimoto  
expresses the amount of pixels that both segmentations agree as for the amount of pixels that 
they are in one or the other segmentation, but not in both of them. 

• Segmentation  Accuracy (SA)  has  a  great  similarity  with Tanimoto  and it  is  defined  as: 
SA=(TP+TN)/(TP+TN+FP+FN) .It expresses the amount of pixels that both segmentaions 
(Golden Truth and the evaluated algorithm) agree. Segmentation Accuracy attains the value 
of one if both Golden Truth and the evaluated algorithm fully agree and zero if there is no 
overlap at all.

In  the  various  experiments  that  we perform,  we chose  to  demonstrate  two metrics  in  order  to 
evaluate the various experiments with the proposed algorithm. In the end of the section, we will 
demonstrate the final results using the metrics. The experiments performed are the following:

• The effect of the neighborhood size for each pixel, in calculating the mean-shift vector
• The effect of parameter K ,whose value affects the significance of each pixel, in estimating 

 the  mean-shift vector.
• The effect of which kernel should we use. Normal or Uniform?
• The effect of additive noise effect
• The effect of ignoring random pixels, in order to gain time. 
• The effect of the Mahalanobis Pruning Modes Step usage 
• The effect of K-means and Fuzzy K-means.
• Summary of optimal solutions
• Efficiency of algorithm in other modalities 
• Comparison with other segmentation methods

6.2  The effect of neighborhood size for each pixel

We remind that the Eq. 4.24 :

f K x  =
1
n ∑i=1

n 1
hi

d k ∥x−x i

h i ∥
2                 (6.1)

estimates the Probability Density Function (pdf) for each pixel according to the Parzen Windows 
theory (Section 4.1). In this section, we investigate how the amount of the neighbor pixels, (the 
parameter n of the equation ) affects the percentage of True Positive and Dice Similarity, and though 
the quality of the results of the proposed algorithm. In all the experiments we used a constant value 
for k=120 and Gaussian Kernel. We must emphasize though, that a joint investigation of neighbor 
size and the value of k is discussed in Section [6.4]. Figure 6.1 illustrates the experimental results 
for the Dice Similarity metric,  while in figure 6.2 it  is  shown he experimental  results  for True 
Positive. In Table 6.1 is shown the Dice percentage values for all images for each neighborhood for 
CSF, GM,WM. 
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Fig.  6.1:  (a)  The  Dice  percentage  of  Cerebro  Spinal  Fluid  for  7  MRI  slices  for  6  different 
neighborhoods   (b)  The Dice percentage of Gray Matter for the same slices and neighborhoods (c) 
The Dice percentage of White matter for the same slices and neighborhoods. (d) The overall mean 
values for the 7 MRI slices, for the 6 different neighborhoods that they were investigated. As a 
conclusion  we  can  point  out  that  the  differences  between  the  neighborhoods  are  small,  with 
neighborhoods 12*12 and 14*14 to have an edge on better results. 
                                                                               

     
Neighborhood 5*5 7*7 9*9 12*12 14*14 15*15
Dice CSF % 89,308 89,466 89,485 89,833 89,942 89,273
Dice GM  % 90,583 90,600 90,493 90,884 90,940 90,470
Dice WM % 95,729 95,659 95,561 95,690 95,745 95,780
   Overall  % 91,812 91,808 91,792 92,083 92,117 91,772

Table 6.1:  The Dice percentage (from all seven images presented in figure 6.1)  for each Brain 
Tissue.  Once again we observe that  the differences are small  between the neighborhoods,  with 
neighborhoods 12*12 and 14*14 to have an edge on better results. 
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Fig. 6.2: Here there are presented the True Positive percentages , for the same 7 MRI brain slices as 
in the fig 6.1, for the three brain tissues, CSF, GM, WM. Here, we can exclude the  conclusion, that 
the neighborhoods 12*12 and 14*14 produces the optimal results.

                                                                             
Neighborhood 5*5 7*7 9*9 12*12 14*14 15*15
TP CSF % 93,616 93,749 93,727 93,801 93,955 93,729
TP GM  % 89,277 89,323 89,217 90,323 89,881 88,205
TP WM % 94,908 95,706 94,688 94,379 94,803 95,888
 Overall % 92,600 92,597 92,544 92,834 92,879 92,607
Table 6.2: The True Positives percentage values (from all seven images presented in figure 6.1)  for 
each  Brain  Tissue..  Once  again  we  observe  that  the  differences  are  small  between  the 
neighborhoods, with neighborhoods 12*12 and 14*14 to have an edge on better results. 
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We were expected that the bigger the neighborhood is, the better the results. From figures 6.1-6.2 
and tables 6.1-6.2 we can point out that this fact isn't necessary right, that even small neighborhoods 
can produce equivalent good results with bigger neighborhoods. So it is not a matter of fact the size 
of the neighborhood, but the appropriate neighborhood, in order to produce the optimal results. In 
this work, we have preferred a neighborhood of [12*12] as it produces almost equal results with 
neighborhood  of  [14*14]  but  it  takes  less  run  time  ,  as  the  proposed  algorithm (including  all 
stadiums  Mean-Shift-Mahalanobis-Fuzzy  K-means)  needs  16.5  minutes  to  be  executed  with  a 
neighborhood  of  [12*12]  while  with  a  neighborhood  of  [14*14]  it  needs  26  minutes  (more 
neighborhood queries for each pixel).

6.3  The effect of k parameter

We remind that the Eq.(6.1) :

f Kx  =
1
n ∑i=1

n 1
hi

d k ∥x−x i

h i ∥
2

estimates the pdf for each pixel according to the Parzen Windows theory (Section 4.1).  In this 
equation, h i  is called the kernel bandwidth or window size, and determines the range of influence 
of  the  kernel  located  in  x i and  it's influence  on  the  obtained  results  is  very  significant.Many 
methods  exist  to  determine  an  adaptive  window  size  for  the  Adaptive  Mean-Shift 
algorithm.Asimple method is to define the windowsize as the distance, h i   , between x i  and its k-
nearest neighbor x i ,k :

h i=∥ x i − x i ,k ∥                   (6.2)                

The neighbors of  x i  are sorted by order of increasing distance to  x i . Following the ordering 
process x i ,k ,  is the k-th distant neighbor from x i , and h i  is its distance to x i  . The number of k 
neighbors considered for  h i  should be chosen large enough to ensure that there is an increase in 
density  within  the  support  of  most  kernels.  In  this  section  we  investigate  the  Dice  and  True 
Positives  results,  for  various  values  of  k,  with  an  upper  limit  of  225,  which  corresponds  to  a 
neighborhood of 15*15.That's because when we are searching for a neighborhood for a pixel x i  in 
order to calculate it's k-th distant neighbor from x i  , we save it's neighborhood for the later mean-
shift  vector  queries.  The  upper  neighborhood  size  allowed  is  [15*15]  because  for  larger 
neighborhoods the results aren't better than those presented in the previous 6.2 section , and indeed 
in huge datasets, with a number of pixels even more than 100000, there may be presented memory 
problems, in relevance with the platform this algorithm is executed. In figure 6.3 it is shown the 
Dice percentage for various values of  k, while respectively, in figure 6.4 it is presented the True 
Positive percentages. The Dice and True Positive percentage for all 7 images for each  k value is 
demonstrated in table 6.3 and 6.4 for respectively, and the figures produced by these tables in order 
to  estimate the optimal  k value is  presented in  figures 6.5 and 6.6 for  Dice and True Positive 
respectively. In all the experiments we have used Gaussian kernel, in a neighborhood of [12*12].
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Fig. 6.3:  (a) The Dice percentage of Cerebro Spinal Fluid  for 7 images for 11 different k values 
(b)  The Dice percentage of Gray Matter  for 7 images for 11 different  k values   (c)  The Dice 
percentage of White matter for 7 images for 11 different k values .As a conclusion we can figure out 
that the differences are small between the  k values, but undoubtedly, the value k = 120 seems to 
produces the optimal results.
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k 
values

k=20 k=40 k=60 k=80 k=100 k=120 k=140 k=160 k=180 k=200 k=220

Dice 
CSF % 

89,51 89,4 89,61 89,32 89,6 89,79 89,61 89,5 89,6 89,59 89,6

Dice 
GM % 

90,75 90,67 90,82 90,7 90,84 90,97 90,74 90,76 90,84 90,84 90,84

Dice 
WM % 

95,53 95,55 95,59 95,57 95,55 95,49 95,5 95,56 95,56 95,56 95,56

Overall 91,93 91,87 92,01 91,86 92,00 92,08 91,95 91,94 92,00 92,00 92,00

Table 6.3:  The Dice percentage  (from all seven images presented in figure 6.1) for each Brain 
Tissue. Once again we observe that the differences are small between the various values of k, with 
the value k = 120 to have an edge on better results. 

        

Fig.  6.4:  The  diagram  made  by  table  6.5  showing  the  overall  Dice  percentage  for  each  k 
value,confirming that value k=120 is the optimal selection.
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Fig. 6.5:  Here there are presented the True Positive percentages, for the same 7 images as in the 
fig. 6.3, for the three brain tissues, CSF, GM, WM. As a conclusion,  the value k=60 and k=120 
produces the optimal results.                                          

        

           

90



k 
values

k=20 k=40 k=60 k=80 k=100 k=120 k=140 k=160 k=180 k=200 k=220

TP 
CSF % 

93,858 94,04 94 93,96 93,9 93,8 93,93 93,53 93,68 93,68 93,68

TP 
GM % 

89,52 89,35 89,55 89,54
2

89,793 90,32 89,68 89,58 89,75 89,75 89,748

TP 
WM % 

94,836 94,782 94,92 94,68
9

94,69 94,379 94,68 94,987 94,81 94,81 94,81

Overall 92,74 92,73 92,82 92,73 92,79 92,83 92,76 92,70 92,75 92,75 92,75

Table 6.4:The True Positive percentage  (from all seven images presented in figure 6.5) for each 
Brain Tissue. In this table it is confirmed that the differences are small between the various values 
of k, with the value k = 120 to have an edge on better results. 

Fig. 6.6: The figure for True Positives presenting the results of table 6.4. It shows the overall True 
Positive percentage for the various values of k for all 7 images.

In this section we investigated the influence of k parameter. We already mentioned in Section 5.3 
that the value of  k should be chosen large enough to ensure that there is an increase in density 
within the support of most kernels. The results confirm this point,  giving the optimal value for 
k=120.
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6.4  Joint Effect of neighborhood size and k parameter
    
Having investigated a great variety of different values for both neighborhood size and k parameter, 
we  further  investigate,  according  to  the  experiments  of  Sections  6.2  and  6.1,  the  optimal 
combination for both  neighborhood size and k parameter. We have selected some promising values, 
according to our experiments, for neighborhood size the values [5*5], [9*9], [12*12] and [14*14] 
and for k parameter the values 60,100,120,180,200, in order to find the optimal combination. In the 
next  tables  (6.5  and  6.6)  the  experimental  results  for  Dice  and  True  Positive  percentage  are 
presented.

DICE CSF % K=60 K=100 K=120 k=180 K=200
[5*5] 89,560 89,439 89,282 89,424 89,716
[9*9] 89,486 89,251 89,474 89,174 89,718

[12*12] 89,485 89,603 89,792 89,595 89,595
[14*14] 89,497 89,703 89,843 89,492 89,446

DICE GM % K=60 K=100 K=120 k=180 K=200
[5*5] 90,818 90,543 90,603 90,759 91,018
[9*9] 90,749 90,678 90,533 90,372 90,890

[12*12] 90,820 90,836 90,965 90,843 90,843
[14*14] 90,755 90,820 90,945 90,746 90,579

DICE  WM % K=60 K=100 K=120 k=180 K=200
[5*5] 95,622 95,458 95,552 95,578 95,661
[9*9] 95,590 95,586 95,369 95,497 95,631

[12*12] 95,587 95,553 95,492 95,555 95,555
[14*14] 95,517 95,496 95,562 95,540 95,355

Table 6.5: The Dice Similarity percentage for various neighborhoods in combination with various k 
values for the same images (total results) as in the previous 6.1-6.4 tables for CSF-GM-WM are 
presented. Here it is confirmed that we can choose both the neighborhood size and k value from a 
great variety of values and the influence in the results is not so significant. Some optimal choices 
are neighborhood [5*5] in combination with k=200, [12*12 ] with k=120 and [14*14] with k=120. 

TP CSF % K=60 K=100 K=120 k=180 K=200
[5*5] 93,830 94,548 93,616 93,531 93,100
[9*9] 93,491 93,511 93,727 93,891 93,779

[12*12] 94,001 93,896 93,801 93,680 93,680
[14*14] 93,338 94,162 93,955 93,468 93,502
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TP GM % K=60 K=100 K=120 k=180 K=200
[5*5] 89,585 88,995 89,277 89,556 90,105
[9*9] 89,412 89,700 89,217 88,907 89,733

[12*12] 89,554 89,793 90,323 89,747 89,747
[14*14] 89,647 89,702 89,880 89,641 89,661

TP  WM % K=60 K=100 K=120 k=180 K=200
[5*5] 94,955 94,616 94,908 94,883 95,104
[9*9] 95,121 94,699 94,688 94,829 94,945

[12*12] 94,919 94,694 95,179 94,809 94,809
[14*14] 94,870 94,599 95,103 94,859 94,464

Table 6.6: The True Positive percentage for various neighborhoods in combination with various k 
values for the same images (total results) as in the tables 6.1-6.5. Here we again conclude that we 
can choose both the neighborhood size and k value from a great variety of values and the influence 
in the results is not so significant. Some optimal choices are neighborhood [5*5] in combination 
with k=200, [12*12 ] with k=120 and [14*14] with k=120. 

As a conclusion from this joint investigation of neighborhood size and k  parameter experiment, we 
are now sure that both the neighborhood size and  k parameter value, can be chosen from a great 
variety of values without any significant influence in the results.  Some options seem to be the 
optimal ones, but they are influenced by the kind of modality (T1,T2,Pd) by the total amount of 
brain tissue pixels of the image, and of course by the characteristics of each image. In this work, we 
chose the combination of a neighborhood of [12*12] and k=120 as they produce better results in 
various datasets and the algorithm is executed in an acceptable timeframe of time. (for a dataset of 
117 images (240*240)  it needs about 17 minutes in matlab).

6.5 The effect of Kernel Usage
 
For the rest of the experiments we are going to demonstrate only the Dice percentage of the three 
brain tissues, as it is considered to be the most reliable metric. In this section, we will investigate 
the influence of the Kernel usage, with two Kernels testing, Epanechnikov and Normal. We remind 
that in order to estimate the pdf we use the equation:

f Kx  =
1
n ∑i=1

n 1
hi

d k ∥x−x i

h i ∥
2

with the Epanechnikov Kernel:

K E x  ={
1
2

cd
−1d21−∥x∥2  ∥x∥1

0 otherwise                   (6.3)
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whereas the Gaussian Kernel is:

K N x =2π−d /2 exp −1
2
∥x∥2               (6.4)

where in both cases d stands for the dimensionality, in our case 3 (spatial-intensity).

In Table 6.7 we present the Dice percentage for 7 brain slices for Adaptive-Mean Shift Algorithm 
using the Epanechnikov and Gaussian Kernel.

Epanechnikov Gaussian
Dice CSF % 88,13 89,792
Dice GM % 89,47 90,965
Dice WM % 94,02 95,592
Overall Running Time
 (For 7 images)

71,317 sec 109,67 sec

Table 6.7: The mean Dice percentage for 7 images for the three Brain Tissues using two Kernels, 
Epanechnikov and Gaussian. In this table we must emphasize that the Gaussian Kernel provides 
better results than the Epanechnikov, but it is more time consuming. So there is a trade off between 
an algorithm with less good results but with very good running time and an algorithm with better 
results though more time requiring. 

In  summary,  we tested the mean-shift  algorithm using two kernels:  The Epanechnikov and the 
Gaussian Kernel.  Undoubtedly,  Gaussian Kernel  produces  results  with better  quality,  but  needs 
more time to be executed (about 16.5 minutes in a pc with processor 2.26 Ghz for a dataset of 117 
images of size 240*240 ) whereas Epanechnikov Kernel produces results with less quality (but still 
acceptable segmentation )  but needs less time to  be executed (  about  11 minutes for the same 
dataset).  As will  be further discussed in the Conclusions and  Recommendations Section [7], a 
C/C++  implementation  of  the  proposed  Gaussian-Mean-Shift  algorithm  will  definitely  reduce 
significantly the running time, in half.

6.6 The Effect of Additive Noise 
 
In this section we are going to investigate the effect of additive noise in the overall perfomance of 
the  Gaussian  Adaptive-Mean-Shift  algorithm.  Firstly,  we  will  demonstrate  the  Dice  percentage 
results for additive noise for the proposed algorithm without applying any filter, in order to estimate 
the  concequences  of  additive  noise  in  the  mean-shift  procedure,  then  the  Dice  results  for  the 
proposed algorithm with applying a Gaussian filter and finally the Dice results  for the proposed 
algorithm with applying a Median filter. Tables 6.8-6.9 present these results:
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2 % Additive Noise Without any filter Gaussian filter Median filter
Dice CSF % 84,886 84,946 85,406
Dice GM % 86,911 86,870 87,219
Dice WM % 88,667 88,593 89,187

Table 6.8: Dice percentage for 2% additive noise in the proposed algorithm without implying any 
filter, with Gaussian filter and with median filter.

6 % Additive Noise Without any filter Gaussian filter Median filter
Dice CSF % 83,988 83,958 84,273
Dice GM % 86,245 86,180 86,612
Dice WM % 88,801 88,690 88,903

Table 6.9: Dice percentage for 6% additive noise in the proposed algorithm without implying any 
filter, with Gaussian filter and with median filter.

10 % Additive Noise Without any filter Gaussian filter Median filter
Dice CSF % 83,730 84,034 84,242
Dice GM % 86,208 85,967 86,553
Dice WM % 88,622 88,426 88,750

Table 6.10: Dice percentage for 10% additive noise in the proposed algorithm without implying any 
filter, with Gaussian filter and with median filter.

From tables 6.8,6.9 and 6.10 we come to the conclusion that the mean-shift proposed algorithm is 
robust  at  all  levels  of  noise,  low,  medium and high.  Another  conclusion taken from the tables 
presented  is  that  the  application  of  a  median  filter  improves  the  results.  This  presumption  is 
confirmed even in no noise occasions. In figure 6.7 we present the Dice results for various additive 
noise  levels, with a median filter used in the proposed algorithm.

Fig 6.7: The effect of additive noise in the efficiency of the proposed mean-shift algorithm. We can
observe that the proposed algorithm is adequate for all levels of noise.
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6.7 The effect of Mahalanobis Pruning Modes Step usage  
 
Observing the overall proposed algorithm and each stadium of it, one may wonder why we have to 
prune the modes, produced by the mean-shift procedure, and not use directly the fuzzy k-means step 
in order to produce the final segmented results. For this case, in this section we investigate the 
necessity of the Mahalanobis Pruning Modes step. After having experimented with several images 
from the dataset where the Golden Truth was available, as shown in table 6.11, we came to the 
conclusion that for small to medium size pictures (for example 240*240), and  more specifically, for 
small number of remaining modes (50-400) this step  does not  improve significantly the results. 
Instead, it requires increased running time in order to make all the appropriate comparisons and 
delays the whole procedure of the algorithm. Usually, the algorithm, using the Mahalanobis Pruning 
step, produces almost the same results as using directly the fuzzy k-means algorithm in the case 
where the remaining modes are between 150 and 200. In less cases, it  produces slightly better 
results. On the other hand, when the remaining modes after the mean-shift procedure  are more than 
400, the Mahalanobis Pruning Modes step seem to produce better results (figure 6.8), because using 
the fuzzy k-means stadium directly segments some pixels to wrong brain tissue cluster. However, if 
we over-prune the remaining modes, that is to say prune the remaining modes with the Mahalanobis 
Pruning Modes step until they become less than 150, we end up to misclassification.

Image 1 
Remaining Modes:274

Without 
Mahal.Prun. 
Modes Step 

With 
Mahal.Prun. 
Modes Step 

With 
Mahal.Prun. 
Modes Step 

With Mahal.Prun. 
Modes Step 

Dice CSF % 91,040 91,040 90,890 86,523
Dice GM % 90,121 90,120 89,724 85,512
Dice WM % 93,412 93,412 92,836 89,310
Remaining modes 
after

274 194 138 37

Running time 18,43 sec. 61,796 sec. 78,93 sec. 98,95 sec.
                               (a)

                       
Image 2 
Remaining Modes:263

Without 
Mahal.Prun. 
Step

With Mahal.Prun. 
Modes Step 

With Mahal.Prun. 
Modes Step 

With Mahal.Prun. 
Modes Step 

Dice CSF % 91,815 91,815 91,427 86,923
Dice GM % 90,200 90,200 89,327 85,684
Dice WM % 93,907 93,907 93,273 90,307
Remaining modes 
after

263 200 142 42

Running time 17,9 sec. 41,718 sec. 50,66 sec. 88,72 sec
                   (b)
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All Dataset 
(117 images of size 
240*240)

Without 
Mahal.Prun. 
Step

With Mahal.Prun. 
Modes Step  

With Mahal.Prun. 
Modes Step 

With Mahal.Prun. 
Modes Step 

Dice CSF % 85,455 85,467 84,518 80,204
Dice GM % 87,619 87,631 86,268 82,414
Dice WM % 89,490 89,490 88,658 85,755
Remaining modes 
after

No pruning 
200-400 
remaining 
modes

     <  200        < 150        <50

Running time 16,54 min. 34 min. 40,4 min. 56,42 min.
      (c)

Table 6.11:  In Table 6.11 a and b, we demonstrate the Dice percentage results for two images, 
showing that whenever we use without this Mahalanobis Pruning Modes step or not, the segmented 
results are the same for a number of remaining modes less than 200. With less than 150 modes 
remaining, we over-pruned our modes leading to misclassification. In table 6.11 c in order to be 
sure for our conclusions, we have tested for all the dataset the use of Mahalanobis Pruning Modes 
step. 

Pruning the modes until they become less than 200, may improve the results, but not significantly. 
Comparing the running times of the two different implementations, we definitely should choose the 
no-mahalanobis pruning modes implementation, as it is executed in much less time.(16,54 minutes 
while  in  the  implementation  with  pruning  modes  until  they  become  less  than  200  needs  34 
minutes).  Finally,  we  observe  that  over-pruning  of  the  modes  (<  150)  end  up  to  lower  Dice 
percentages  in  all  tissue  types  and  in  combination  with  the  high  running  times  makes  these 
implementations  not acceptable.   

From table 6.11 we came to the conclusion, that when the remaining modes, after the mean-shift 
procedure, are less than 400, then the mahalanobis pruning stadium produces the same or at least 
not  significantly better  results,  than fuzzy-k-means by itself  only,  and in  combination with  the 
increased running time that  it  requires,  turns to be not acceptable.  But what  happens in bigger 
datasets with remaining modes more than 400? In that case, as we can observe in figure 6.8 , the 
mahalanobis pruning modes step is useful as it gives the opportunity to the fuzzy-k-means step to 
successfully segment  the remaining modes whereas if we solely use the fuzzy- k-means step, we 
increase the possibility of misclassifying the remaining modes.
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Fig. 6.8:  (a) The initial image (b) The segmented image without the mahalanobis pruning modes 
step  and (c)  the  segmented  image with  the  mahalanobis  pruning  modes  step,  with  283 modes 
remaining. In both images the number of the remaining modes after the mean-shift procedure was 
812.In order to make it more clear in pictures (d) and (e) we have marked the central controversial 
segmented area. From the initial image (a) we can observe that the more accurate segmentation 
image is (e)  as in (d) some pixels  from the Gray matter  and White matter  category have been 
mistakenly segmented in the CSF category. 

After tested the segmented results in various images, with the most indicative example being the 
image in  fig  6.8,  we came to  the conclusion that  if  the remaining modes,  after  the mean-shift 
procedure, is more than 400, then to increase the possibilities of a better segmentation result, is to 
use the mahalanobis pruning stadium until the remaining modes reach a number of less than 400, 
and afterwards continue the segmentation with the final step, the fuzzy k-means.

98



6.8 Comparison of K-means - Fuzzy K-means 
 
In this section we are going to compare the use of a simple K-means implementation of the mean-
shift  algorithm  with  the  use  of  fuzzy-K-means,  which  gives  us  the  opportunity  to  provide  a 
possibility map, in which there will be contained the probability for each pixel to belong to each 
brain tissue category. As mentioned earlier the basic difference between the two implementations is 
that in fuzzy k-means , for the calculation of the centers of each cluster, we are taking into account 
the  probability  of  each  pixel  to  belong  to  this  cluster  [Sections  4.4,  4.5].  The  problem  of 
initialization of the membership matrix is solved in the following way: We classify all the pixels of 
the remaining modes according to K-means algorithm for the first and last time. To be more specific 
we classify  all  pixels  to  clusters,  by finding  the  minimum distance  from the  initial  centers  of 
clusters (which they are defined by the histogram of the image) and then we calculate the new 
centers  of  the  clusters  according to  the mean values  of  the members  of each cluster.  Then we 
calculate the initial membership matrix according to the new mean values, calculated with the K-
means procedure with the following equation (Section 4.5, Eq. 4.56  ): 

    
u ik =

[1 /∣xk−vi∣
2]

∑
j=1

c

[1/ ∣x k−v j∣
2]1/m−1

, i=1,... , c and k=1,... , n
   

where c is the number of the clusters and k=1,... , n  the amount of pixels of each remaining mode. 

We prefer to initialize the membership function in this way and not in a random way, in order to 
take advantage of all available information and thus optimize the results. In table 6.12 we  compare 
these two different implementations using the Dice Similarity metric. In both implementations we 
have used Euclidean distance, in order to calculate for each pixel that is the shortest distance from 
the centers of clusters and decide where this pixel should be classified.

Dice % K-means Fuzzy K-means
CSF 84,422% 85,455%
GM 86,220% 87,619%
WM 88,661% 89,490%

Running Time: 16,44 min 16,54 min.

Table 6.12:  Dice percentage for k-means and fuzzy k-means for a dataset  of 117 images,  size 
240*240

From table 6.12 we came to the conclusion that taking into account the possibility of each pixel to 
belong in each brain tissue we improve the results, in comparison with the simple k-means version 
of the algorithm, plus the fuzzy k-means implementation does not require more running time. Using 
the fuzzy k-means algorithm we provide a qualitative segmentation map and a membership matrix 
of possibilities for each brain tissue type.
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6.9 Optimal Parameters Selection 
 
After having investigated the influence of various parameters we question, what parameters values 
are optimal. Of course, there isn't only one optimal solution, as the final segmented results depends 
on the special characteristics of the image, the modality we use. From the experiments presented in 
this section, we set the neighborhood size to be [12*12], the k value 120, to use a median filter in 
order to enhance the procedure not only in noise cases and in general, a mahalanobis pruning modes 
step if the remaining modes after the mean-shift procedure are more than 400. Finally the fuzzy-k-
means algorithm instead of a simple k-means was selected. The dataset used contained 117 brain 
slices of size [240*240] and in tables 6.13 and 6.14 we present the metrics that there were defined 
in the introduction of this section (6.1) using the proposed mean-shift algorithm, which needs about 
16.5 minutes in a 2.26 Ghz processor computer:

Metrics:
True 
Positive %

False 
Positive 
Rate

False 
Negative 
Rate

Sensitivity Specificity Likelihood-
ratio Positive

CSF 91,284 0,0077 0,0872 0,913 0,992 224,694
GM 84,411 0,0070 0,1559 0,844 0,993 172,760
WM 93,231 0,0061 0,0677 0,932 0,994 348,623

Table  6.13:True  Positive,  False  positive  rate,  False  Negative  Rate,  Sensitivity,  Specificity, 
Likelihood-ratio Positive metrics for the whole dataset of 117 images of size 240*240.

Metrics:
Likelihood-
ratio Negative

Jaccard Dice 
Similarity %

Tanimoto Segmentation Accuracy

CSF 0,088 0,0377 85,455% 0,979 0,990
GM 0,157 0,0908 87,619% 0,962 0,981
WM 0,068 0,0817 89,490% 0,982 0,991

Table  6.14: Likelihood-ratio  Negative,  Jaccard,  Dice  Similarity  %,  Tanimoto,  Segmentation 
Accuracy metrics for the whole dataset of 117 images of size 240*240.

6.10 Efficiency of algorithm in other modalities 
 
In  all  previous  experiments  and result  analysis,  we used T1-weighted  images.  It  was  available 
though, for the same  dataset with the golden segmented method available, two different modalities, 
T2 and Pd-weighted. We present in table 6.15 the True Positive and Dice Metrics for the other two 
modalities:
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T1 T2 Pd-weighted
TP CSF % 91,284 69,181 73,137
TP GM % 84,411 58,015 60,713
TP WM % 93,231 53,600 57,720

Dice CSF % 85,455 93,910 77,982
Dice GM % 87,619 63,496 70,334
Dice WM % 89,490 52,134 61,829

Running Time 16,54 min. 16,77 min. 16,758 min.

Table  6.15:  TP and  Dice  percentage  for  T1,  T2,  Pd-weighted  modalities.  We also  include  the 
running times of the proposing algorithm in all these cases.

Consequently, from table 6.15 we point out that the proposed algorithm is better in T1 modality, 
then in T2 and in Pd-weighted. We must emphasize though that the mostly used modalities in brain 
segmentation domain, are T1 and T2. 

6.11 Comparison with other segmentation methods 
 

In this section we are going to compare the proposed adaptive-Mean-Shift algorithm with three 
other  algorithms,  that  represent  different  approaches  in  pattern  recognition  domain:  Classic  K-
means algorithm, Markov Random Fields and Gaussian Mixture Models.

The theory of classic K-means algorithm has been discussed in detail in section 4.4.

6.11.1 Markov Random Field 
 
Markov Random Field (MRF), [81], is a stochastic process, used as a priori model to incorporate 
spatial correlations into a segmentation process. If we define clustering as pixel labeling and use the 
term sites instead of pixels, in order to be consistent with the theory [82], we will denote a set of 

image lattice  sites  {1, , }S n= K ,  that  represent  the  primitive  objects  to  be labeled.  In  the two-

dimensional image lattice S , the pixel values 1{ , , }n=y y yK are a realization of the random variables 

1{ , , }nx x=x K . In general, the number of observation vectors does not need to be of the same size 
as the set of sites, however, in this application, the number of observations is equal to the number of 
sites.

An optimal labeling of the MRF satisfies the  maximum a posteriori  probability criterion (MAP-
MRF), which requires the maximization of the posterior probability P x∣y of the labeling that is 
assumed to follow the Gibbs distribution [33], [82]:
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                         P x∣y=Z−1e−U x∣y /T                        (6.5)

where  Z is  a  normalizing  constant,  ( | )U x y is  the  posterior  energy  and  T is  called  system 
temperature and is assigned to the value of 1 in problems related to image segmentation.

The simplified  Bayes  rule  P  x∣y =P x  p  y∣x   is  used  to  incorporate  the  Gibbs  probability 
density function into the decision function:

     P x  p y∣x=e−U xe−U y∣x=e−U  xU y∣x         (6.6)

Hence (6.5) is now expressed as the sum of the prior and the likelihood energy tern:

                              U x∣y = U xU  y∣x                 (6.7)

The Gibbs distribution model defines the labeling of a site in dependence to the labeling of all the 
other sites of the lattice  S .  However, the MRF model itself is a conditional probability model, 
where the probability of a site label depends on the site labels within its neighborhood.

The  equivalence  of  the  Gibbs  and the  MRF models  has  is  stated  in  the  Hammersley-Clifford 
theorem.  The  incorporation  of  localized  characteristics  into  the  model  reduces  its  complexity. 
Neighboring sites are grouped into  cliques,  whose order (that  indicates the number of included 
sites) is variable, according to the desired complexity. If we define unary cliques, including one site 
{i } and binary ones, including two neighboring sites {i ,i ' } , the energy can be calculated as the 
sum of the local potentials defined on the cliques. If ( )iV x  and '( , )i iV x x  are the potentials of unary 

and binary clique respectively, and  ( | )i iV xy are the likelihood potentials, then the prior energy, 
defined as the sum of all clique potentials, can be written:

              U x =∑
i∃S

V  xi∑
i∃S
∑

i ' ∃N i

V x i , xi '              (6.8)

where iN  is the set of all sites neighboring i , excluding i .

At the same time, the likelihood energy is the sum of all likelihood potentials under the assumption 
that the observations, conditioned by the labels ix , are mutually independent:

                             U  y∣x=∑
i∃S

V  y i∣xi                     (6.9)

The  MAP-MRF solution,  defined  in  (6.5),  is  equivalent  to  the  minimization  of  the  energy,  as 
defined in (6.7):

                          x=arg min
x

U x∣y                      (6.10)

In  order  to  find  the  global  minimum of  that  energy,  in  this  work,  the  deterministic  iterated-
conditional mode algorithm (ICM) [81] was used.
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6.11.2 Gaussian Mixture Models (GMM)

In image clustering problems,  the observed image can be considered as a mixture of Gaussian 
distributions [83], with M >1 components in ℜn  for n ≥1:

                   p x∣θ=∑
m=1

M

am p x∣θ m ,∀ x∃ℜn      (6.11)

where  1 , , Mα αK are  the  mixing  proportions,  mθ  is  the  set  of  parameters  defining  the  mth 

component,  and  1 1{ , , , , , }M Mθ θ α αΘ Ί K K is  the complete set  of parameters needed to  specify the 

mixture. Being probabilities, the mα must satisfy:

                            am0 ,m=1,.. , M ,∑
m=1

M

am=1       (6.12)

For  the  Gaussian  mixtures,  each  component  density  is  a  normal  probability  distribution  with 
parameters θm = μm , Σ m , where μm is the mean of each component and Σ m is the corresponding 
covariance. This way, (6.11) can be rewritten as:

 

                    p x∣θ=∑
m=1

M

am N x∣μm , Σ m           (6.13)

where ( | , )m mN x µ Σ  is a Gaussian distribution.

The most common approach for estimating the parameters for a Gaussian mixture model, given a 
dataset, is to assume that the observed data are only part of the underlying complete data and use 
the  Expectation-Maximization  (EM)  algorithm  for  the  maximum-likelihood  estimation  [84]. 
Especially, for the MRI tissue classification problem, the observed data are the pixel intensities and 
the missing data are the classification of the images.

The usual EM algorithm is an iterative technique that consists of an E-step and an M-step. Suppose 
that ( )tΘ is the estimation of the parameters Θ after the tth iteration. Then, at the ( 1)t + th iteration, 
the E-step calculates the expected complete data log-likelihood function:

               Q Θ ,Θt=∑
k=1

K

∑
m=1

M

log am p xk∣θmP m∣x k ,Θt      (6.14)

where P m∣xk , Θt is a posterior probability and is computed as:

                          
P m∣xk , Θt=

am
 t  p xk∣θ

t

∑
l=1

M

a l
t  p xk∣θ

 t 
                      (6.15)

The M-step calculates the (t+1)th estimation ( 1)t +Θ  by maximizing the log-likelihood function:
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                    am
t1= 1

K∑k=1

K

P m∣x k ,Θ t                                 (6.16)

                    μm
t1 =

∑
k=1

K

xk P m∣xk ,Θ t

∑
k=1

K

P m∣xk ,Θt 
                                 (6.17)

        ∑
m

2t1

.=
∑
k=1

K

P m∣xk ,Θ txk−μm
 t1  xk−μm

t1 T

∑
k=1

K

P m∣xk , Θt 
       (6.18)

The above equations  (6.16-6.18) can be solved numerically by alternating iteratively between E-
step and M-step. The algorithm fills in the missing data during E-step and then finds the parameters 
that maximize the log-likelihood for the complete data in the M-step. After the parameters of the 
GMM have been calculated, clusters are assigned to each observed data by selecting the component 
with the largest posterior probability weighted by the component probability.

6.11.3 Comparison

In tables 6.16, 6.17,6.18, 6.19,6.20,6.21 and 6.22 the presented methods are compared.

Dice % Classic K-means Markov Random 
Fields

Gaussian Mixture 
Models

Adaptive-Mean-
Shift

CSF 79,513 61,525 68,308 85,455
GM 82,938 57,918 73,618 87,619
WM 86,255 71,027 71,918 89,409

Table 6.16: Dice percentage for the four comparing techniques: Classic K-means, Markov Random 
Fields, Gaussian Mixture Models, Adaptive-Mean-Shift.

Sensitivity Classic K-means Markov Random 
Fields

Gaussian Mixture 
Models

Adaptive Mean-
Shift

CSF 87,317 47,348 62,891 91,284
GM 77,709 51,629 82,939 84,411
WM 92,243 95,504 65,235 93,231

Table 6.17: The Sensitivity for the four comparing techniques: Classic K-means, Markov Random 
Fields, Gaussian Mixture Models, Adaptive-Mean-Shift.
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Tanimoto 
Coefficient 

Classic K-means Markov Random 
Fields

Gaussian Mixture 
Models

Adaptive Mean-
Shift

CSF 96,883 95,624 87,324 97,944
GM 94,767 87,895 84,072 96,235
WM 97,102 91,369 86,525 98,170

Table  6.18:  The  Tanimoto  Coefficient  for  the  four  comparing  techniques:  Classic  K-means, 
Markov Random Fields, Gaussian Mixture Models, Adaptive-Mean-Shift.

K-means CSF GM WM
True Positive % 87,317 77,709 92,243
False Positive  Rate 0,0116 0,0087 0,0110
False Negative Rate 0,1268 0,2229 0,0776
Sensitivity 0,8732 0,7771 0,9224
Specificity 0,9884 0,9913 0,9890
Likelihood Ratio 
Positive

0,129 0,226 0,080

Likelihood Ratio 
Negative

75,276 89,322 83,854

Jaccard 0,036 0,083 0,797
Dice Similarity % 79,513 82,938 86,255
Tanimoto Coefficient 0,969 0,948 0,971
Segmentation Accuracy 0,984 0,973 0,985

Table 6.19: All metrics calculated for the K-means implementation.

Mean-Shift CSF GM WM
True Positive % 91,284 84,411 91,284
False Positive  Rate 0,0077 0,0070 0,0610
False Negative Rate 0,0872 0,1559 0,0677
Sensitivity 0,9128 0,8441 0,9323
Specificity  0,9923 0,9930 0,9939
Likelihood Ratio 
Positive

224,69 172,76 348,62

Likelihood Ratio 
Negative

0,088 0,157 0,068

Jaccard 0,038 0,091 0,082
Dice Similarity % 85,455 87,619 89,409
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Tanimoto Coefficient 0,979 0,962 0,982
Segmentation Accuracy 0,990 0,981 0,907

Table 6.20: All metrics calculated for the proposed Mean-Shift algorithm.

MRF CSF GM WM
True Positive % 47,350 51,629 95,504
False Positive  Rate 0,0013 0,0244 0,0474
False Negative Rate 0,5265 0,4837 0,0450
Sensitivity 0,4735 0,5163 0,9550
Specificity 0,999 0,976 0,953
Likelihood Ratio 
Positive

364,23 21,16 20,15

Likelihood Ratio 
Negative

0,528 0,496 0,050

Jaccard 0,018 0,056 0,083
Dice Similarity % 61,525 57,918 71,027
Tanimoto Coefficient 0,956 0,879 0,914
Segmentation Accuracy 0,978 0,935 0,954

Table 6.21: All metrics calculated for the MRF implementation.

GMM CSF GM WM
True Positive % 62,89 82,94 65,24
False Positive  Rate 0,0027 0,0300 0,0706
False Negative Rate 0,2711 0,0706 0,2477
Sensitivity 0,6289 0,8294 0,6523
Specificity 0,8973 0,8700 0,8984
Likelihood Ratio 
Positive

6,120 6,380 6,421

Likelihood Ratio 
Negative

0,272 0,072 0,248

Jaccard 0,025 0,091 0,058
Dice Similarity % 68,308 73,618 71,918
Tanimoto Coefficient 0,873 0,841 0,865
Segmentation Accuracy 0,886 0,869 0,882

Table 6.22: All metrics calculated for the GMM implementation.
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Consequently, from the four techniques that we compared using the same dataset, Adaptive-Mean-
Shift yields the best results, in all metrics (most important of which are Dice Similarity, Sensitivity 
and True Positive), proving that , undoubtedly it is an extremely useful tool in segmentation field, 
with great prospects. The disadvantage of the proposed algorithm, is that it requires more running 
time  that  the  other  techniques  checked,  but  as  it  is  mentioned  in  Section  7  “Conclusions  and 
Recommendations” a complete C or C++ implementation of the proposed algorithm (this algorithm 
has been programmed in matlab only) would certainly reduce the required running time , by more 
than the half.
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                            7. CONCLUSIONS AND RECOMMENDATIONS

The overall goal of this thesis is to propose a reliable brain tissues segmentation algorithm and 
furthermore, by using  prior knowledge about the nature of the T1 and T2 MR images, to detect 
possible  cancer  pixels.  The  main  conclusions  and recommendations  drawn from this  work  are 
summarized next.

7.1 Conclusions 

Basic  brain  anatomy concepts  were  presented.  Human brain,  the  center  of  the  human nervous 
system, consists  of three main brain tissue types:  Cerebro-Spinal Fluid (CSF), bodily fluid that 
provides a basic mechanical and immunological protection to the brain inside the skull, Gray Matter 
(GM),  a major component of the central nervous system (CNS) which function is to route sensory 
or motor stimulus to interneurons of the CNS, and White Matter (WM) which connects various 
GM areas of the brain to each other, and carry nerve impulses between neurons. The function of 
Magnetic resonance imaging (MRI) and basic modalities which are commonly used such as T1, T2 
and Proton Density (Pd) were also discussed. Finally, the major issue of brain tumor was discussed, 
defining his characteristics, his different types and lastly diagnostic methods that are commonly 
used.

Basic common techniques that are used in image processing like the histogram of an image and 
probability  density  function  (pdf)  were  detailed  discussed.  Furthermore,  the  theory  behind 
estimating an unknown pdf was presented. Moreover, the issue of brain tissues segmentation was 
analyzed,  presenting  plenty  techniques  that  have  tried  to  provide  a  reliable  and  reproducible 
algorithm. These techniques can in general be separated according to whether they use training 
samples in order to “train” their classifier or not (following supervised or unsupervised approach 
respectively) and whether the forms of the density functions, which are formed according to the 
way that the data are being modeled, are known or at least assumed according to some common 
parametric forms or not (following parametric or non parametric approach respectively). Finally, 
basic tumor modeling techniques were discussed, presenting various methods that were used in the 
past trying to provide an accurate method to detect tumor pixels.

A common technique, widely used in pattern recognition for estimating an unknown pdf, Parzen 
Windows, was detailed discussed.  Based on Parzen Windows, Mean-Shift  algorithm guarantees 
detection of the local maximum of the unknown pdf, without estimating it. In this way it is earned 
valuable time as in a segmentation algorithm which uses both spatial and intensity information, the 
curse of dimensionality, as it is named the problem of slow data processing in multi-dimensional 
feature  space,  makes  estimating  pdf,  a  time  consuming  task.  Furthermore,  the  adaptive 
implementation  of  mean-shift  algorithm  was  presented.  Continually,  conventional  distances 
calculation approaches were discussed, in particular Euclidean and Mahalanobis distance. Finally, 
there were defined two common clustering techniques, k-means algorithm and the fuzzy version of 
it, fuzzy k-means clustering algorithm. 

In this work we have demonstrated an automated segmentation framework for brain MRI volumes, 
based  on  adaptive  mean-shift  clustering  in  the  joint  spatially  and  intensity  feature  space.  The 
proposed algorithm consists of four steps. Firstly,  preprocessing of the image is required. The brain 
extraction tool (BET) is utilized in order to remove brain scull and scalp pixels and afterwards a 
median filter for noise removal. Then an intensity normalization process sets the darkest percent of 
pixels to zero and rescales the brightest percent to 4095 in order to obtain similar dynamic ranges 
for all the three tissues and finally we recognize and extract the background of the image, so to store 
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only the brain tissues pixels for the rest of the procedure. The next step, is adaptive mean-shift 
procedure. As already mentioned, clustering takes place in the joint spatially and intensity feature 
space,  for  an  overall  dimensionality  of  three.  Taking  the  gradient  of  Parzen  Windows  density 
estimation, we get the mean-shift vector which estimates the local maximum of probability density 
function (pdf) in an elegant way, as it doesn't need to estimate each pixel's pdf. Afterwards, by 
retaining only the maximum of the local maximum points withing small neighborhoods, we define 
the categories, “modes” as they called in which we classify all our pixels. A large compression of 
the data is occurred, as from tens of thousands pixels we lead to some few to several hundreds of 
modes. The next step, if required, that is to say the remaining modes after the mean-shift procedure 
is larger than 400, is Mahalanobis pruning modes step. Two modes are merged, if the mahalanobis 
distance  of  their  intensity  vector  is  smaller  than  a  threshold.  At  each  iteration,  the  threshold 
increases in a small ratio, until the remaining modes become less than 400. Finally, at the next step, 
pixels are classified to the three tissues, with the fuzzy k-means clustering algorithm. The output of 
the algorithm is both a segmentation map for all pixels and a membership matrix which include the 
probability of each pixel to belong on each brain tissue. 

Knowing that  in enhanced T1-weighted modality,  the tumor necrotic  area appears hypointense, 
while the solid area of the tumor around the necrotic area appears hyperintense and the edema 
cannot be distinguished from the GM and the WM, and that in T2-flair images, the edema and the 
solid tumor area appear hyperintense, while the necrotic area appears hypointense,  we propose a 
way to automate tumor and edema pixel detection, using instead of three, for each brain tissue, four 
clusters. After identifying the cluster with the higher mean value, since it is the most probable to 
include the tumor region, we identify the largest connected component which it will be most likely 
the tumor area, in both MR modalities. If we subtract the tumor area of T1 from the tumor area of 
T2-flair, then we can also obtain the edema region.

We have tested the proposed algorithm in both simulated and real datasets investigating the effect of 
various  parameters  in  its  efficiency.  The  number  of  neighbors  considered  in  mean-shift  vector 
calculation  and  k  parameter  value  can  be  chosen  between  various  values,  without  affecting 
significantly the results, making the proposed algorithm  reproducible.  The algorithm also stays 
unaffected by the present of noise, even in high levels. Furthermore we compared and demonstrated 
the advantage of our proposed algorithm, with other common implementations that are used in brain 
segmentation field. For a dataset of 117 240*240 images, the proposed mean-shift algorithm needs 
about 17 minutes in order to be executed in a 2.26 GHz pc with 3 GB ram. 

7.2 Recommendations for future work

A major advantage of the proposed algorithm is the fact that there is room for improvement. The 
bottleneck of this algorithm is computation of neighborhood queries. As mean-shift runs a large 
loop on the whole pixels matrix, where we have stored all brain tissue pixels, trying to calculate 
various neighborhood queries, we believe that a full C/C++ (the current implementation is fully in 
matlab) can reduce more than half the running time.

The current proposed algorithm can be expanded. For instance, we can use instead of pixel's spatial 
information voxel's spatial information, use more than one modality simultaneously, use also edge 
information,  so to expand the feature space and take advantage of more information available, 
producing in this way better segmentation results. 

Moreover, in this work we have proposed a way to deal with the major fact of detecting tumor and 
edema pixels. The initial results are very promising but a detailed validation work on this should be 
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carried out in the future. Additionally, since the brain structures usually appear very symmetric, a 
high  level  of  asymmetry,  around  an  axis  of  symmetry  would  strongly  indicate  some  kind  of 
abnormality (tumor, edema, cysts, etc.). Such information can be incorporated in order to refine the 
tumor detection and segmentation result. 
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9.  APPENDIXES

Appendix A. Probability Theory

A.1 Random Variables

In mathematics a random variable (or stochastic variable), as mentioned in [17], is a variable whose 
value is a function of the outcome of a statistical experiment. Random variables are used in the 
study of probability. They were developed to assist in the analysis of games of chance, stochastic 
events,  and  the  results  of  scientific  experiments  by capturing  only the  mathematical  properties 
necessary to answer probabilistic questions. Further formalizations have firmly grounded the entity 
in the theoretical domains of mathematics by making use of measure theory.

The language and structure of random variables can be grasped at various levels of mathematical 
fluency. Beyond an introductory level, set theory and calculus are fundamental. The  concept of a 
random variable is closely linked to the term "random variate": a random variate is a particular 
outcome of a random variable.

There are two types of random variables: discrete and continuous. A discrete random variable maps 
events  to  values  of  a  countable  set  (e.g.,  the  integers),  with  each  value  in  the  range  having 
probability greater than or equal to zero. A continuous random variable maps events to values of an 
uncountable set (e.g., the real numbers). In a continuous random variable, the probability of any 
specific value is zero, although the probability of an infinite set of values (such as an interval of 
non-zero length) may be positive. However, a random variable can be "mixed", having part of its 
probability spread out over an interval like a typical continuous variable, and part of it concentrated 
on particular values, like a discrete variable. This categorisation into types is directly equivalent to 
the categorisation of probability distributions.

A random variable  has  an  associated  probability  distribution  and  frequently  also  a  probability 
density  function.  Probability  density  functions  are  commonly  used  for  continuous  variables.  A 
random variable has an associated probability distribution and frequently also a probability density 
function. Probability density functions are commonly used for continuous variables. 

In order to completely understand the meaning of random variables allow us to give a characteristic 
example:

For a coin toss, the possible events are heads or tails. The number of heads appearing in one fair 
coin toss can be described using the following random variable:

X = { head

tail                                (A.1) 

and if the coin is equally likely to land on either side then it has a probability mass function given 
by Eq.(A.2) :

  p x x ={
1
2

, if x = head

1
2

, if x = tail                (A.2)
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It is sometimes convenient to model this situation using a random variable which takes numbers as 
its values, rather than the values head and tail. This can be done by using the real random variable Y 
defined as follows :

        Y ={ 1 , if heads
0 , if tails                      (A.3)

A.2 Probability Space

In probability theory, a probability space or a probability triple is a mathematical construct that 
models a real-world process (or "experiment")  consisting of states  that  occur randomly  [18].  A 
probability  space  is  constructed  with  a  specific  kind  of  situation  or  experiment  in  mind.  One 
proposes that each time a situation of that kind arises, the set of possible outcomes is the same and 
the probability levels are also the same.

A probability space consists of three parts:

• A sample space, Ω , which is the set of all possible outcomes. 
• A set of events, where each event is a set containing zero or more outcomes. 
• The assignment of probabilities to the events, that is, a function from events to probability 

levels. 
An outcome is the result of a single execution of the model. Recognizing that individual outcomes 
could  be  of  little  practical  use,  we  formulate  more  complex  events  to  characterize  groups  of 
outcomes. The collection of all such events is a σ-algebra F. Finally, we have to specify each event's 
likelihood  of  happening.  We  do  this  using  the  probability  measure  function,  P.  These  three 
components Ω , F , P  together constitute the probability space. A probability space is characterized 
as a “triple” because it has three components.

Once the probability space is established, it is assumed that “nature” makes its move and selects a 
single outcome,  ω, from the sample space  Ω. Then we say that all events from F containing the 
selected  outcome  ω (recall  that  each  event  is  a  subset  of  Ω)  “have  occurred”.  The  selection 
performed by nature is done in such a way that if we were to repeat the experiment an infinite 
number of times, the relative frequencies of occurrence of each of the events would have coincided 
with the probabilities prescribed by the function P. 

A.3 Expected Value 

In  probability  theory  and  statistics,  the  expected  value  (or  expectation  value,  or  mathematical 
expectation, or mean, or first moment) of a random variable is the integral of the random variable 
with respect to its probability measure, as referred in [19].

For discrete random variables this is equivalent to the probability-weighted sum of the possible 
values. Respectively, for continuous random variables with a density function it is the probability 
density-weighted integral of the possible values.

The term "expected value" can be misleading. It must not be confused with the "most probable 
value". The expected value is in general not a typical value that the random variable can take on. It 
is often helpful to interpret the expected value of a random variable as the long-run average value of 
the variable over many independent repetitions of an experiment.

In general, if  X  is a random variable defined on a probability space {Ω ,Σ ,  P} then the expected 
value of  X, denoted by E(X)  is defined as :
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                                       E  X =∫
Ω

X dP                    (A.4)

When this integral converges absolutely, it is called the expectation of X. The absolute convergence 
is necessary because conditional convergence means that different order of addition gives different 
result, which is against the nature of expected value. Here the Lebesgue integral is employed. Note 
that not all random variables have an expected value, since the integral may not converge absolutely 
(e.g., Cauchy distribution). Two variables with the same probability distribution will have the same 
expected value, if it is defined.

If  X is a discrete random variable with probability mass function  p(x),  then the expected value 
becomes the Eq.(A.5):

               E X =∑
i

x i p xi                   (A.5)

as  in  the  gambling  example  mentioned  above.  If  the  probability  distribution  of  X admits  a 
probability density function f(x), then the expected value can be computed as:

E  X =∫
−∞

∞

x f xdx                 (A.6)

It follows directly from the discrete case definition that if X is a constant random variable, i.e. X = b 
for some fixed real number b, then the expected value of X is also b.

The expected value of an arbitrary function of  X,  g(X),  with  respect  to  the probability density 
function f(x) is given by the inner product of  f and g :

                  E g X =∫
−∞

∞

g x  f  xdx           (A.7)

A.4 Variance 

In probability theory and statistics, the variance [20] is used as one of several  descriptors of a 
distribution. In particular, the variance is one of the moments of a distribution. In that context, it 
forms part of systematic approach to distinguishing between probability distributions. While other 
such approaches have been developed, that based on moments has advantages of mathematical and 
computational simplicity.

The variance is a parameter describing a theoretical probability distribution, while a sample of data 
from such a distribution can be used to construct an estimate of this variance: in the simplest cases 
this estimate can be the sample variance.

If a random variable X has the expected value (mean) μ = E[X] , then the variance of X is given by:

 

               Var  X =E [x−μ2]                     (A.8)

The  variance  of  random  variable  X is  typically  designated  as  Var(X),  σ x
2 ,  or  simply  σ 2  

(pronounced “sigma squared”). If a distribution does not have an expected value, as is the case for 
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the Cauchy distribution [21], it does not have a variance either. 

If the random variable X is continuous with probability density function f(x),

                          Var  X =∫ x−μ2 f x dx           (A.9)  

where:

                      μ=∫ x f x dx                    (A.10)

A.5  Covariance

Covariance  of  two random variables  is  a  measure  that  shows the  co-dependence  of  these  two 
random variables [22]. If the entries in the column vector are:

                                       X=[X 1

⋮
X n
]                    (A.11)

that is to say random variables, each with finite variance, then the covariance matrix Σ is the matrix 
whose (i,j) entry is the covariance:

       Σ ij=cov  X i , X j=E [ X i−μ iX j−μ j]        (A.12)

where:

                μi=E X i                                   (A.13)

is the expected value of the ith entry in the vector X. In other words, we have:

Σ=[
E [ X 1−μ1X 1−μ1] E [ X 1−μ1X 2−μ2] ... E [ X 1−μ1 X n−μn]

E [ X 2−μ2 X 1−μ1] E [ X 2−μ2 X 2−μ2] ... E [X 2−μ2 X n−μn]

⋮ ⋮ ⋱ ⋮

E [ X n−μn X 1−μ1] E [ X n−μn X 2−μ2] ... E [ X n−μnX n−μn]
]         (A.14)

In  order  to  understand  the  meaning  of  this  co-dependence,  if  the  covariance  of  two  random 
variables (for instance X and Y )is positive, practically it means that these variables are “changing” 
in the same way, in relevance with their mean value ( when X takes higher values than his mean 
value E(X), then Y in a respect way will take higher values than his mean value E(Y)  and when  X 
takes lower values than his mean value E(X), then Y in a respect way will take lower values than his 
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mean value E(Y) ). Respectively, when the covariance of two random variables is negative, it means 
that these variables are “changing” in the opposite way, in relevance with their mean value ( when 
X takes higher values than his mean value E(X), then Y in a respect way will take lower values than 
his mean value E(Y)  and when  X takes higher values than his mean value E(X), then Y in a respect 
way will take higher values than his mean value  E(Y) ).  When the co variance of two random 
variables is zero, it means that these variables are irrelevant.

A.6  Binomial distribution

As referred in [85] the binomial distribution is the discrete probability distribution of the number of 
successes in a sequence of  n independent  yes/no experiments, each of which yields success with 
probability p. Such a success/failure experiment is also called a Bernoulli experiment or Bernoulli 
trial.  In  fact,  when  n  =  1,  the  binomial  distribution  is  a  Bernoulli  distribution.  The  binomial 
distribution is the basis for the popular binomial test of statistical significance.

It is frequently used to model number of successes in a sample of size n from a population of size N. 
Since  the  samples  are  not  independent  (this  is  sampling  without  replacement),  the  resulting 
distribution is a hypergeometric distribution, not a binomial one. However, for N much larger than 
n, the binomial distribution is a good approximation, and widely used.

In general, if the random variable K follows the binomial distribution with parameters n and p, we 
write K ~ B ( n , p ) .  The  probability  of  getting  exactly  k successes  in  n trials  is  given  by the 
probability mass function: 

 f k ; n , p = P K = k  = n!
n−k ! k !

pk 1− pn−k     (A.15)

The above equation can be understood as follows: we want k successes  pk  among the n trials and 
n−k failures 1− pn− k .

The expected value of K is:
E [k ] = np                                                        (A.16)

and the variance is:

            Var [K ] = np1−p                                          (A.17)

This fact is easily proven. Suppose first that we have a single Bernoulli trial. There are two possible 
outcomes: 1 and 0, the first occurring with probability p and the second having probability 1−p. The 
expected value in this trial will be equal to μ = 1⋅p  0⋅1−p  = p . The variance in this trial is 
calculated similarly: σ 2= 1− p2⋅ p  0− p2⋅1− p = p1−p .

A.7 Normal distribution 

The normal (or Gaussian) distribution, is a continuous probability distribution that is often used as a 
first approximation to describe real-valued random variables that tend to cluster around a single 
mean value. The graph of the associated probability density function is “bell”-shaped, and is known 
as the Gaussian function or bell curve. For a random variable x with mean value μ and variance σ 2 , 
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the Gaussian distribution is described by the following equation:

           f x  = 1
2πσ2

e
−
x− μ2

2σ 2

                     (A.18)

The distribution with μ = 0 and σ 2= 1  is called the standard normal.  The normal distribution is 
considered the most basic continuous probability distribution due to its role in the central limit 
theorem  according  to  which  the  mean  of  a  sufficiently  large  number  of  independent  random 
variables, each with finite mean and variance, will be approximately normally distributed. For this 
reason,  the  normal  distribution  is  commonly  encountered  in  practice,  and  is  used  throughout 
statistics, natural,social  and biomedical sciences as a simple model for complex phenomena. For 
example,  the  observational  error  in  an  experiment  is  usually  assumed  to  follow  a  normal 
distribution, and the propagation of uncertainty is computed using this assumption. Finally, it can be 
observed that  a  normally-distributed  variable  has  a  symmetric  distribution  around its  mean.  In 
figure A.1 it is shown some examples of normal distribution.

Fig.  A.1:  Four  Normal  (Gaussian)  distributions.  The  blue  with μ=0 , σ2 = 0.2 ,  the  red  with 
μ=0 , σ2 = 1 , the yellow μ=0 , σ2 = 5 and last, green with  μ=−2 , σ2 = 0.5 , We can observe 

that the lower the variance value is, the more the variable values are gathered around the mean 
value [86].
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Appendix B. Proves of Mean-Shift Theorems  

B.1 Proof of Theorem 4.1 

In  this  point  we  should  remind  the  Theorem  4.1  ,  presented  in  Section  4.2.4 Convergence's  
Sufficient Condition

Theorem 4.1  (Capture Theorem):

If the kernel K has a convex and monotonically decreasing profile, the sequences  { y j } j=1,2,...  
and { f h , K  j  } j=1,2,.. . converge and { f h , K  j  } j=1,2,.. . is monotonically increasing.

Proof:

As mentioned in [37], because of the fact that the sequence f h , K  is bounded, since n is finite, it is 
sufficient  to  prove  that  f h , K  is  strictly  monotonic  increasing,  that  is  to  say,  prove  that  if 
y j≠ y j1   then :

         
f h , K  j  f h , K  j1                               

for  j=1,2,... Without loss of generality,  it  can be assumed that  y j=0  and thus, from equations 
(4.34) :

  f h ,G x =
cg , d

n ∑i=1

n 1
hi

d g∥ x−x i

hi ∥
2

and 4.39:

  f h , K  j = f h , K  y j j=1,2 , ...

we have:

f h , K  j  − f h , K  j1 =

=
ck , d

n ∑i=1

n 1
hi

d [k∥ y j1−x i

hi ∥
2− k ∥ xi

hi∥
2]        (B.1)

The convexity of the profile k(x) shows that:

k  x2k x1k ' x1x2−x1                (B.2)

for all x1, x2∃[ 0,∞ )  , x1≠ x2 and since g  x=−k ' x  , equation (B.2) becomes:

                        k  x2−k x1≥g x1x1− x2                 (B.3)

Now using the equations (B.2) and (B.3) we obtain:
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f h , K  j1 − f h , K  j 


ck , d

n ∑i=1

n 1
h i

d2 g∥x i

hi∥
2[∥x i∥

2 −∥y j1−x i∥
2 ]

=
ck , d

n ∑i=1

n 1
h i

d2 g∥x i

hi∥
2[2y j1

T x i −∥y j1∥
2 ]

=
ck , d

n [2y j1
T ∑

i=1

n 1
h i

d2 xi g∥x i

h i∥
2−∥y j1∥

2∑
i=1

n 1
hi

d2 g∥x i

hi∥
2]           (B.4)

and recalling Eq.(4.38)  :

                     y j1=

∑
i=1

n

xi
1

h i
d2 g ∥x− xi

hi ∥
2

∑
i=1

n 1
hi

d2 g∥ x−x i

hi ∥
2

j=1,2 ,...

yields:

        f h , K  j1 − f h , K  j  
ck ,d

n
∥y j1∥

2∑
i=1

n 1
h i

d2 g∥x i

hi∥
2        (B.5)

The profile k(x) being monotonically decreasing for all x≥0  the sum ∑
i=1

n 1
hi

d2 g ∥x i

h i∥
2  is strictly 

positive. Thus as long as y j1≠ y j=0 , the right term of (B.5) is strictly positive, that is to say :
 

                f h , K  j1  f h , K  j                             (B.6)

Consequently, from Eq. B.6 the sequence:

    { f h , K  j } j=1,2 ,...

is  convergent.  To  prove  the  convergence  of  the  sequence  { y j } , j=1,2 , ...  equation  (C.5)  is 
rewritten for an arbitrary kernel location, y j≠0 . After some algebra we have:

f h , K  j1 − f h , K  j  
ck ,d

nhd2∥y j1− y j∥
2∑

i=1

n

g∥ y j− x i

h ∥
2      (B.7)

Now, summing the two terms of (B.7) for indices  j , j1,... , jm−1 , it results that :

f h , K  jm − f h , K  j 


ck ,d

n
∥y jm− y jm−1∥

2∑
i=1

n 1
hi

d2 g∥ y jm−1− xi

hi ∥
2 ...
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
ck ,d

n
∥y j1− y j∥

2∑
i=1

n 1
hi

d2 g∥ y j−x i

hi ∥
2


ck ,d

n [∥y jm− y jm−1∥
2
 ... ∥y j1− y j∥

2]M


ck ,d

n [∥y jm− y j∥
2]M                      (B.8)                                           

where M represents the minimum (always strictly positive) of the sum:
     

              ∑
i=1

n 1
hi

d2 g∥ y j− xi

hi ∥
2          (B.9)

for all { y j } , j=1,2 , ... . Since { f h , K  j } , j=1,2 ,... is convergent,  it is also a Cauchy sequence 
[87].  This  property,  in  conjunction  with  Eq.  B.8  implies  that  { y j } , j=1,2 , ... is  a  Cauchy 
sequence, hence, it is convergent in the Euclidean space.
 

B.2 Proof of Theorem 4.2 
 
In this point we should remind the Theorem 4.2, presented in Section 4.2.6:

Theorem 4.2:

The cosine of the angle between two consecutive mean shift vectors is strictly positive when a 
normal kernel is employed:
     

   
mh , N  y j

T mh , N y j1

∥mh , N  y j∥∥mh , N  y j1∥
 0

Proof: 

As discussed in [37], since convergence has already been achieved, we can assume, without loss of 
generality that  y j=0  and  y j1≠ y j2≠0  (Eq. 4.22). Therefore, the mean shift vector  mh , N 0  
using the normal Kernel is given by:

            mh , N 0 = y j1=

∑
i=1

n 1
hi

d 2 x i exp−∥ xi

hi∥
2

∑
i=1

n 1
hi

d2 exp−∥x i

hi∥
2

            (B.10)

Firstly,  it  will be showed that when the weights given by normal kernel centered at  y j1 ,  and 
adaptive h, the weighted sum of the projections of (  y j1−x i ) onto y j1 is strictly negative , i.e :
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     ∑
i=1

n

∥y j1∥
2 − y j1

T x i  1
hi

d2 exp−∥ y j1−x i

hi ∥
2 0             (B.11)

We can decompose space Rd  into three domains:

D1 ={ x∈ℝd | y j1
T x≤1

2
∥y j1∥

2 }
D1 ={ x∈ℝd | 1

2
∥y j1∥

2 y j1
T x≤∥y j1∥

2 }
D3 = { x∈ℝd |∥y j1∥

2 y j1
T x }                                   (B.12)

From (B.10) we can derive the equality :

∑
xi∈D2

∥y j1∥
2− y j1

T x i  1
hi

d2 exp−∥x i

hi∥
2

= ∑
xi∈D1∪D 3

 y j1
T xi−∥y j1∥

2 1
h i

d2 exp−∥x i

h i∥
2              (B.13)

For x∃D 2 , we have:

            ∥y j1∥
2− y j1

T x≥0                                  (B.14)

which implies:

∥y j1− x i∥
2 =∥y j1∥

2∥x i∥
2−2y j1

T x i≥∥x i∥
2−∥y j1∥

2            (B.15)

from where: 

∑
xi∈D2

∥y j1∥
2− y j1

T xi  1
hi

d2 exp−∥ y j1−x i

hi ∥
2

≤ exp∥ y j1

h i ∥
2∑x i∈D2

∥y j1∥
2 − y j1

T x i  1
hi

d2 exp−∥x i

hi∥
2      (B.16)

By introducing (B.13) in (B.16) we have:

∑
xi∈D2

∥y j1∥
2− y j1

T xi  1
hi

d2 exp−∥ y j1−x i

hi ∥
2

≤ exp∥ y j1

h i ∥
2 ∑x i∈D1∪D3

 y j1
T x i−∥y j1∥

2 1
hi

d2 exp−∥xi

h i∥
2  (B.17)
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By adding to both sides of (B.17) the quantity:

∑
xi∈D1∪D 3

∥y j1∥
2− y j1

T x i  1
hi

d2 exp−∥ y j1− xi

hi ∥
2               (B.18)

It results that :

∑
i=1

n

∥y j1∥
2 − y j1

T x i  1
hi

d2 exp−∥ y j1−x i

hi ∥
2

≤ exp∥ y j1

h i ∥
2 ∑x i∈D1∪D3

∥y j1∥
2− y j1

T x i  1
hi

d2 exp−∥x i

hi∥
2

∗ {exp[− 2
hi

2 ∥y j1∥
2
− y j1

T x i]−1}                                     (B.19)

The right side of (B.19) is negative because the last product term has opposite signs in both the D1

and D3 domains and:

 ∥y j1∥
2− y j1

T x i  0                       (B.20)

Therefore, the left side of (B.19) is also negative, which proves (B.11).

We can use now (B.11) to write:

∥y j1∥
2 y j1

T

∑
i=1

n

xi
1

hi
d2 exp−∥ y j1−x i

hi ∥
2

∑
i=1

n 1
hi

d2 exp−∥y j1−x i

hi ∥
2
= y j1

T y j2    (B.21)

from where:

               
y j1

T  y j2− y j1
∥y j1∥∥y j2− y j1∥

 0                          (B.22)

and by taking into account Eq.(4.42):

               
mh , N  y j

T mh , N y j1

∥mh , N  y j∥∥mh , N  y j1∥
 0                    
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