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Abstract

Object Detection and Recognition is a central and important challenge in the

field of computer vision and autonomous robotics. In robotic systems there is of-

ten a need for detecting and locating certain objects in natural environments in

real time. Although a significant amount of Object Detection and Recognition al-

gorithms have been developed and reported in the bibliography, demonstrating out-

standing and state of the art results, they fail to be applied real time in robotics.

Due to their high computational complexity, they require a significant amount of

processing power, they are time consuming and not power-efficient, things that

make them impractical for real-time robotic systems.

In this thesis we studied the Receptive Field Cooccurrence Histograms Algorithm

(RFCH) for object detection [1] with the aim to improve its performance. After

analyzing the algorithm’s hot-spots we describe in this thesis how we can increase

its performance using the hardware accelerators that we designed. Moreover, we

continued with software/hardware co-design and we prototyped an embedded system

on FPGA for the specific algorithm.
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If we knew what we were doing, it wouldn’t be called research, would it?
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Chapter 1

Introduction

In this chapter we make a brief introduction into Computer Vision and its applications and later

we introduce the Field Programmable Gate Arrays (FPGAs) and discuss how their use becomes

beneficial to computer vision applications.

1.1 Computer vision science

Computer vision (or machine vision) is the science and technology that enables machines to solve

particular tasks by extracting information from an image. Computer Vision is a diverse and

relatively new, although rapidly developing, field of study with strong scientific and industrial

support. As a technological discipline, computer vision seeks to apply its theories and models to

the construction of computer vision systems. Examples of applications of computer vision include

systems for:

� Autonomous robots and driver-less vehicles.

� Visual surveillance, people counting, video content analysis and visual sensor networks.

� Face recognition, image classification and Object detection/recognition.

� Medical image analysis and topographical modeling.

� Artificial visual perception.

Computer Vision is also related to a lot of other fields such as:

� Artificial intelligence

� Image processing and image analysis

� Pattern recognition

� Neural Networks

� Mathematics
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Figure 1.1: Relation between robotic vision and various other fields

1.2 Field Programmable Gate Arrays (FPGAs)

Field Programmable Gate Arrays (FPGAs) are programmable semiconductor devices that are

based around a matrix of configurable logic blocks (CLBs) connected via programmable inter-

connects. As opposed to Application Specific Integrated Circuits (ASICs) where the device is

custom built for the particular design, FPGAs can be programmed to fit the desired application

or functionality requirements - hence ”field-programmable”. The FPGA configuration is gener-

ally specified using a hardware description language (HDL). FPGAs can be used to implement

any logical function that an ASIC could perform. The ability to update the functionality after

shipping, the partial re-configuration of the portion of the design and the low non-recurring engi-

neering costs relative to an ASIC design offer advantages for many applications. The figure below

illustrates Altera’s Stratix II (left) and Xilinx’s Virtex-5 (right) FPGA logic blocks [2].

Figure 1.2: FPGA configurable logic blocks
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The Xilinx Virtex-5 logic element (also called a LUT flipflop pair), consists of a basic 6-LUT,

carry logic, and a single register as shown in figure above.

Modern FPGAs combine the CLB’s with configurable block RAM blocks, DSP blocks and

with one or more microprocessors embedded within the FPGA’s logic fabric, which makes the

FPGAs a complete “system on a programmable chip” suitable for a variety of applications. The

table below summarizes the Xilinx Virtex-6 family features [3].

Table 1.1: Virtex-6 FPGA Feature Summary
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A key feature of FPGAs is the ability to reduce the dynamic power consumption according

to the developer’s needs. A couple of dynamic power reduction techniques are the Clock gating

which is offered in all modern FPGAs and the ability to operate certain IPs (such as block RAMs)

in low-power mode in the design . Some dynamic power reduction techniques which are offered

in Xilinx’s Virtex-6 and Spartan-6 FPGAs [4] are summarized in the figure below.

Table 1.2: Dynamic Power Reduction Techniques in Xilinx Virtex-6 and Spartan-6 FPGAs

12



1.3 Computer Vision on Hardware

As we have discussed in the previous paragraph, computer vision is a very important science not

only because of its useful applications but also because of the plethora of other sciences that

depends on it and vice versa.

In the recent years Computer vision is embracing a new research focus (commonly known as

Robotic Vision) in which the aim is to develop visual skills for robots that would allow them to

interact with a dynamic, realistic environment.

Nowadays a lot of computer vision algorithms exist that can carry out the last, demonstrating

state of the art results.

Some of them use global methods meaning that they calculate the object representation on all

available image data. Global methods include detection via histograms,co-occurrence histograms,

weak classifiers with boosting and others.

In contrast, local feature-based methods only capture the most representative parts of an ob-

ject. In this category the detection is based on the extraction of powerful discriminative features

of the image that describe the desired object.

Despite the different way in which the above algorithms approach the detection problem, it

seems that all of them give promising results. However, the vast majority of them, due to their

high computational complexity, can not be applied in Real-Time computer vision systems such as

autonomous (mobile) robotic systems since they need to process large amount of data in real-time

and since some of them need to operate on low-power.

To overcome these problems new kinds of vision algorithms need to be developed which would

run in real-time and subserve the robot’s goals. However, until that happens many computer vi-

sion algorithms are implemented in hardware as application-specific integrated circuits (ASICs),

while others are implemented on reconfigurable logic hardware such as Field-programmable Gate

Arrays (FPGAs) and Complex Programmable Logic Devices (CPLDs).

By implementing a computer vision algorithm in hardware we can gain a significant speedup

over the software version, because we can exploit the by nature parallelism of the computer

vision task. For example suppose that we want to calculate the histogram of a grey-scale image.

In software running on a general purpose CPU, we would have to scan sequentially the whole

image, in order to produce the histogram and thus several CPU cycles would be required, for the

completion of this task. On the other hand, a possible hardware implementation would be to

split the image in four chunks and pass each chunk into custom processors that work in parallel.

Finally, when the processing of the four chunks would be completed the final image histogram

would be formed from each processor’s result. That way a significant speedup would be achieved.

Moreover, by implementing a specific task in hardware we can achieve extra performance by using

techniques like pipelining and double buffering, which can not be used in the software version of

the task.
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The other important benefit of the hardware implementation, is the designer’s ability to con-

trol the power consumption of the chip, by using dynamic power reduction techniques. It is often

necessary for some tasks to be run in low-power mode, on mobile platforms such as mobile robotic

systems that operate on batteries. A possible solution to this problem would be the implemen-

tation of the later tasks in hardware. Both ASICs and FPGAs can achieve power consumption

reduction.

Zzzz....
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Vision Hardware
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PU
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PU
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Figure 1.4: Power consumption reduction on hardware
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Chapter 2

Object Detection

In this chapter we introduce fundamental concepts about object detection and recognition and

later we continue by presenting the common object detection and recognition algorithms out there.

2.1 Object Detection vs Object Recognition

Recognizing objects is one of the major research topics in the field of computer vision and au-

tonomous robotics. In robotics, there is often a need for a system that can locate certain objects

in the environment - the capability which we denote as “object detection”. Although a significant

amount of work has been reported, the proposed methods still differ significantly regarding these

two research areas.

An object recognition algorithm is typically designed to classify an object to one of a sev-

eral predefined classes assuming that the segmentation of the object has already been performed.

Commonly, the test images show a single object that is centered in the image and occupies most

of the image area. The test image may also have a black background [5], making the task even

simpler.

On the other hand, the task for an object detection algorithm is much harder. Its purpose

is to search for a specific object in an image of a complex scene. Most of the object recognition

algorithms may be used for object detection by using a search window and scanning the image

for the object. Regarding the computational complexity, some methods are more suitable for

searching than others. Two fundamental goals of object detection algorithms are to identify a

known object in a realistic environment and also to determine its location.
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2.2 Object Recognition Algorithms

In terms of object recognition, shape-based approaches and appearance-based approaches are

commonly used in order to describe the object to be detected.

Shape-based methods represent an object by its shape/contour whereas in appearance-based

methods only the appearance is used, which is usually captured by different two-dimensional views

of the object-of-interest.

Some of the algorithms below might be able to perform object detection, but are commonly

classified as Object Recognition.

2.2.1 Appearance-based algorithms

The authors in [6] proposed a compact representation of the object’s appearance, that is for each

object of interest, a large set of images is obtained by automatically varying pose and illumi-

nation. Then this set is compressed to obtain a low-dimensional subspace, called eigenspace, in

which the object is represented as a manifold. Given an unknown input image, the recognition

system projects the image to the eigenspace. The object is then recognized based on the manifold

it lies on.

In [7] the authors describe an appearance-based system that uses four distinct levels of per-

ceptual grouping to represent 3D objects in a form that allows 3D object recognition. Then in

[8] they use an image-trainable, feature-based method based on the previous vision system for

object recognition. Their object recognition system combines information from several views of

the scene, to obtain object-in-scene hypotheses with higher confidences. Then the hypothesis with

the highest confidence is examined, and appropriate action is taken.

The author in [9] proposes an appearance-based Probabilistic approach for solving the object

recognition problem achieving state of art results. Specifically the author proposes to model the

visual appearance of objects and visual categories via probability density functions. The model is

developed on the basis of concepts and results obtained in three different research areas: computer

vision, machine learning and statistical physics of spin glasses. It consists of a fully connected

Markov random field with energy function derived from results of statistical physics of spin glasses.

Markov random fields and spin glass energy functions are combined together via nonlinear kernel

functions.

2.2.2 Shape-based algorithms

In [10] the authors extend the method of Fourier descriptors to produce a set of normalized coef-

ficients which are invariant under any affine transformation (translation, rotation, scaling), which
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they use in order to recognize objects that are described by closed contours. The basic idea is

that a closed curve may be represented by a periodic function of a continuous parameter, or al-

ternatively, by a set of Fourier coefficients of this function.

Also the authors in [11] suggest object recognition based on 2D shape recognition. In their

framework the shape of the object is represented by its contour (possibly open). The unknown

shape is recognized by morphing its contour to known templates stored in a database.

2.3 Object Detection Algorithms

In this category we will describe the algorithms that perform well on the Object detection task.

Based on the applied features these algorithms can be sub-divided into two main classes, namely

local and global methods.

A local feature is a property of an image (object) located on a single point or on a small

region. It is a single piece of information that describes a distinctive property of the object. In

local methods various local features are combined in order to obtain a more complex description

of the image usually referred to as descriptor, that has high discriminative power.

In contrast, global methods try to cover the information content of the whole image, by using

for example histograms of features and other techniques.

2.3.1 Global Methods

Back in 1991, Swain and Ballard [13] demonstrated how RGB color histograms can be used for

object recognition. Specifically they showed that color histograms of multicolored objects provide

a robust, efficient cue for indexing into a large database of models. Moreover, they demonstrated

that color histograms are stable object representations in the presence of occlusion and over

change in view, and that they can differentiate among a large number of objects. Also for solving

the identification problem, they introduced an important and simple technique called Histogram

Intersection, which matches model and image histograms. Additionally, for solving the location

problem they have introduced an algorithm called Histogram Backprojection, which performs this

task efficiently in crowded scenes.

The authors in [14] generalized this idea to histograms of receptive fields, and computed his-

tograms of either first-order Gaussian derivative operators or the gradient magnitude and the

Laplacian operator at three scales. They showed that the appearance of an object is composed

of local structure and this local structure can be described and characterized by a vector of local

features measured by local operators such as Gaussian derivatives or Gabor filters. Based on joint

statistics, the authors developed techniques for the identification of multiple objects at arbitrary

positions and orientations in a cluttered scene. Experiments showed that these techniques can

identify over 100 objects in the presence of major occlusions.
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In 2004 Linde & Lindeberg [15] in their paper presented a set of composed histogram features

of higher dimensionality, which gave significantly better recognition performance compared to the

histogram descriptors of lower dimensionality that were used in the original papers by Swain &

Ballard (1991).

In [16] the author uses multiple low-level attributes such as color, local shape and texture to

develop a histogram-based object recognition system.

The authors in [17] use color cooccurrence histograms (CH) for object detection. The color

CH keeps track of the number of pairs of certain colored pixels that occur at certain separation

distances in image space. The color CH adds geometric information to the normal color histogram,

which abstracts away all geometry. They compute model CHs based on images of known objects

taken from different points of view. These model CHs are then matched to subregions in test

images to find the object. They showed that the algorithm works in spite of confusing background

clutter and moderate amounts of occlusion and object flexing.

2.3.2 Local Methods

In [18] Lowe presents the SIFT features, which is a promising approach for detecting objects in

natural scenes. However, the method relies on the presence of feature points and, for objects with

simple or no texture, this method fails.
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Chapter 3

Related Work

In [19] the authors present a novel approach to use FPGA to accelerate the Haar-classifier

based face detection algorithm. By using a large number of parallel arithmetic units in the FPGA

they achieved real-time performance of face detection having very high detection rate and low

false positives.Their implementation is realized on a HiTech Global PCIe card that contains a

Xilinx XC5VLX110T FPGA chip. The authors performed a profiling on the software-based face

detection application and determined that Haar classifier function costs more than 95% of the

total time and thus they populated only the Haar classifier function step onto the FPGA board

and left the pre-processing and post-processing on the host PC (personal computer). In the

proposed architecture the host microprocessor executes the pre-processing and sends the integral

image and image variances to the FPGA accelerator through PCIe bus. The FPGA proceeds

with the Haar classifier function, and then sends the detected faces coordinates back to host mi-

croprocessor through PCIe. The host microprocessor finishes the face detection algorithm with

the post-processing.Their system showed significant speedup over the software application.

The authors in [20] and [21] are dealing with the problem of edge detection, which is a basic

step in image processing and one of the first step performed by many computer vision algorithms,

in order to identify sharp discontinuities in an image, such as changes in luminosity or in the in-

tensity due to changes in scene structure. The authors in [20] proposed a new self-adapt threshold

Canny edge detector and also presented an FPGA implementation of their algorithm suitable for

mobile robotic systems. Their hardware implementation uses the Altera Cyclone EP1C60240C8

and can perform the algorithm on a grey-scale image 360x280 in 2.5ms clocked at 27MHz. In [21]

the authors present an other implementation of the Canny edge detector that takes advantage of

4-pixel parallel computation, which increases the throughput of the design without increasing the

need for on-chip cache memories. They showed increased throughputs for high resolution images

and a computation time of 3.09ms for a 1.2Mpixel image on a Spartan-6 FPGA clocked at 200MHz.
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In [22] is being described an FPGA implementation based on moment invariants and Kohonen

neural networks for object classification that is able to classify objects in real-time. The au-

thors implemented the classification phase in hardware while leaving the training of the Kohonen

network into software. According to the paper, the the computation of moment invariants has

been implemented in hardware along with a set of sixteen parallel Kohonen neurons for the classi-

fication of an unknown object, demonstrating a possible real-time solution for object classification.

The authors in [23] present an FPGA-Based People Detection System. They use JPEG-

compressed frames from a network camera to capture the images, and then they send the ex-

tracted features to a machine-learning-based detector implemented on a Virtex-II 2V1000 , to

carry out the detection process. The system is demonstrated on an automated video surveillance

application detecting people accurately at a rate of about 2.5 frames per second using a MicroB-

laze processor running at 75 MHz to control the whole sysem behavior and for communicating

with dedicated hardware over FSL links.

Also in [24] the authors describe a real-time computer vision system based on a mini-robot

equipped with a micro-processor, with a CMOS camera and with an FPGA extension module.

The CMOS camera transmits the image into the FPGA where color histograms are calculated

by the custom hardware, and then are transferred to the mini-robot’s micro-processor for further

processing.
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Chapter 4

Receptive Field Cooccurrence

Histogram for Object Detection

In this chapter we summarize the Receptive Field Cooccurrence Histogram (RFCH) algorithm,

which is described in great detail in [1].

4.1 Introduction

A Receptive Field Histogram is a statistical representation of the occurrence of several descriptor

responses within an image. Examples of such image descriptors are color intensity, gradient mag-

nitude and Laplace response. If only color descriptors are taken into account, we have a regular

color histogram.

A Receptive Field Cooccurrence Histogram (RFCH) is able to capture more of the geometric

properties of an object. Instead of just counting the descriptor responses for each pixel, the his-

togram is built from pairs of descriptor responses. The pixel pairs can be constrained based on,

for example, their relative distance. This way, only pixel pairs separated by less than a maximum

distance, dmax are considered. Thus, the histogram represents not only how common a certain

descriptor response is in the image but also how common it is that certain combination of de-

scriptor responses occur close to each other. In other words, a RFCH is a representation of how

often pairs of certain filter responses and colors lie close to each other in the image. This means

that more geometric information is preserved and the recognition task becomes easier.

The figure below presents the concept of the cooccurrence histogram, of a 3bit (8 colors)

greyscale image. In the figure below we search for co-occurrences from left to right with dmax = 1.
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Figure 4.1: Cooccurrence Histogram example

4.2 Algorithm’s details

4.2.1 Image Descriptors

The algorithm is able to work with different types of image descriptors such as Color, Gradient

magnitude, Laplacian, Gabor, ... and also any mixture of them depending on the task. For object

detection a good choice is to use rotationally invariant image descriptors. In particular a mixture

of Color, Gradient magnitude and Laplacian descriptors have been proposed for object detection.

4.2.2 Image Quantization

When using histograms as a basis for recognition, computational problems can easily occur if the

dimensionality of the histogram is too high. Regular multidimensional receptive field histograms

have one dimension for each image descriptor. This makes the histograms huge. For example, a

16-dimensional histogram with 15 quantization levels per dimension contains 1516 ≈ 1019 cells in

total, while most of the cells will be empty in practice. Building a cooccurrence histogram makes

the histogram even bigger, in which case we need about 1038 bin entries.

To avoid this problem the algorithm first clusters the input data, so a dimension reduction

is achieved. Hence, by choosing the number of clusters he histogram size may be controlled.The

cluster centers (N) have a dimensionality equal to the number of image descriptors used. The

algorithm is using the K-Means clustering algorithm [25] for the dimension reduction. After the

quantization each object ends up with its own cluster scheme in addition to the RFCH calculated

on the quantized training image.

When searching for an object in a scene, the image is quantized with the same cluster-centers

as the cluster scheme of the object being searched for. Quantization of the search image also has

a positive effect on object detection performance. Pixels lying too far from any cluster in the

descriptor space are classified as the background and not incorporated in the histogram.
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Figure 4.2: Clustering step in RFCH

In the above image (taken from the original RFCH paper [1]) we see what happens when we

are searching for the Santa cup. The pixels that lie too far away from their nearest cluster are

ignored (set to black in this example).

4.2.3 RFCH building

After the clustering step, the algorithm creates the object’s cooccurrence histograms from the

clustered descriptor space. In the testing phase the image is scanned using a small search window

and the RFCH of the window is calculated. In each scan the RFCH of the window is compared

with the object’s RFCH.

4.2.4 Histogram Matching

The similarity between two normalized RFCHs is computed as the histogram intersection:

µ(h1, h2) =
N2∑
n=1

min(h1[n], h2[n]) (4.1)

where hi[n] denotes the frequency of receptive field combinations in bin n for image i, quantized

into N cluster centers. The higher the value of µ(h1, h2), the better the match between the

histograms.

Another popular histogram similarity measure is the x2 :

µ(h1, h2) =
N2∑
n=1

(h1[n]− h2[n])2

h1[n] + h2[n]
(4.2)

In this case, the lower value of µ(h1, h2), the better the match between the histograms. The

authors in [1] have found out that x2 performs much worse than histogram intersection when used

for object detection while it performs slightly better on object recognition image databases.

As we mentioned above the RFCH of the object is compared to the window RFCH and

the similarity between two RFCHs is computed. The matching vote µ(hobject, hwindow) indicates

23



the likelihood that the window contains the object. Once the entire image has been searched

through, a vote matrix provides a hypothesis of the object’s location. The most probable location

is corresponding to the vote cell with the maximum value.

Figure 4.3: RFCH matching

The figure above shows the corresponding vote matrix for the yellow soda can and reveals the

object’s location.

4.2.5 Free parameters

Number of cluster-centers ( N )

The authors state that too few cluster-centers reduce the detection rate, although 80 clusters are

sufficient for most descriptor combinations. In our experiments we have used 7 descriptors, and

indeed 80 clusters centers are sufficient.

Maximum pixel distance ( dmax )

The parameter dmax determines the amount of cooccurrence information. Using dmax = 0 means

no cooccurrence information. Experiments showed that for dmax > 15 detection rate starts to

decrease. We have experimented with dmax = 1..10 with very good results.

Size of cluster-centers ( α )

Pixels that lie outside all of the cluster centers are classified as background and not taken into

account. According to the authors, the algorithm performs optimally when α = 1.5, however

we have evaluated the algorithm with also α = 2 without noticing any significant detection rate

decrease.

Search window size

This parameter seems to be the drawback of the algorithm. In general this is the main drawback

of all the algorithms that are using the “Sliding Window” method in the testing phase, because
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optimal window size is not known in advance. In addition different image and object sizes might

have different optimal search window.

4.3 The RFCH at a glance

The algorithm works in two phases and performs the following steps in order to detect an object

:

Training Phase

� Extract Features from the Object

� Calculate Feature Clusters

� Quantize Object

� Create object’s RFCH

Detection Phase

� Quantize image with Object’s cluster scheme

� Calculate the RFCH for a small window of the image ( for all windows )

� Match Object and Image RFCH with histogram intersection (for all windows )

� Take the best match

4.4 Conclusion

RFCH is very a robust algorithm which can detect object despite severe occlusions and cluttered

backgrounds. It is also invariant to scale changes, rotation and illumination variations. The al-

gorithm also gives state of the art results with just one training image of each object.

Although the algorithm is designed for robotic applications and is indeed pretty fast, its speed

starts to decrease as the number of objects and images increases and thus becomes time consum-

ing and not applicable for real-time applications.
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Chapter 5

RFCH Profile Analysis

In this chapter we are going to analyze the code of the algorithm and present its most time

consuming parts along with a profile analysis.

5.1 RFCH important functions

The most important functions of the algorithm are listed below:

Features[ ]=GetImageFeatures(Image[ ])

This function takes an image and extracts the desired combination of feature descriptors.

ClusterPoint[ ]=CalculateClusters(Feature[ ])

This is the function that is responsible for the features clustering. It basically performs an iterative

version of the K-Means algorithm. As input it takes the array of features and returns a clustered

version of the input array.

BinnedImage[ ]=ClusterFeatures(Features[ ], CluserPoint[ ])

This function performs Image quantization. It is quantizing an image according to known (eg.

Object’s) clusters centers.

RFCH[ ]=CalculateRFCH(BinnedImage[ ])

This is the function that creates the receptive field cooccurrence histogram.

Match=MatchRFCHs(RFCH1[ ], RFCH2[ ])

This function performs the histogram intersection, and returns the similarity measurement.

FindObjectInImage(Image[ ], Object)

This function scans the input Image with a sliding window, calculating the RFCH of the window

and then compares it with the object’s RFCH. When the whole image is scanned it returns the

best match along with the coordinates of the window that had the best match. (It calls internally

all the above functions exempt CalculateCluster() )
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The figure below shows the basic steps that the algorithm performs in order to detect one

object.

Get Image
Features
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Clusters
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Figure 5.1: RFCH Object Detection steps
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5.2 Profiling

In this section we present the profile analysis of the algorithm. In brief, we found out that the

most time consuming parts of the algorithm are the below functions:

� CalculateClusters()

� ClasterFeatures()

� CalculateRFCH()

In order to improve the algorithm’s performance we decided to implement the above functions

in hardware, and leave the rest in software. For the profiling we have used Intel’s VTune�

Amplifier XE 2011 [27]. The profiling was performed on an Intel SU7300 ULV CPU @ 1.3GHz

in order to capture the scenario in which the algorithm runs on a mobile robotic platform which

would usually be equipped with a ULV processor. For the profile analysis that follows we have

set the algorithm’s free parameters as below:

� Number of features (f) : 7

� Number of Cluster-Centers (N) : 80

� Maximum pixel distance (dmax) : 4

� Size of cluster-centers (α) : 1.5

� Search window size : 20

� Image Size : 640 x 480

During this thesis we have contacted all of our experiments using images from CVAP Object

Detection Image Database [28], which we have first rescale as 640x480.

Concerning the above three functions we have to mention that:

1. Firstly the Calculate Cluster function is performed only on the training phase of the algo-

rithm and it is applied on training images. Training images contain only one big object

inside black background, like figure 5.2. In this algorithm the black color is modeled as null.

The Calculate Cluster function works with training images. We will call images like figure

5.2 just objects.

Figure 5.2: Image containing an object used for training
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2. The Cluster Feature function is executed in training phase and also in testing phase. In

other words if we want to locate one object in one scene this function it will be executed

once for the object and once for the scene.

3. The Calculate RFCH function is also executed in the training phase and also in the testing

phase. In the training phase this function is executed once for the object, and in the testing

this function is executed for many small windows of the scene.

The below tables show the time that algorithm spends in each function. Depending on the

test, each function is executed multiple times.

5.2.1 1 Object - 1 Scene

Function Name CPU Time (s)

Calculate Clusters 22.051

Cluster Features 2.061

Calculate RFCH 1.529

Create Image Gauss 0.300

Create Image Gradient Magnitude 0.090

Create Image Laplace 0.060

Normalize 0.051

Match RFCHs 0.050

Create BW Image 0.010

Table 5.1: Profiling: 1 Object - 1 Scene

5.2.2 3 Object - 1 Scene

Function Name CPU Time (s)

Calculate Clusters 38.938

Cluster Features 5.532

Calculate RFCH 2.486

Create Image Gauss 0.599

Match RFCHs 0.380

Create Image Gradient Magnitude 0.190

Create Image Laplace 0.110

Normalize 0.060

Create BW Image 0.041

Table 5.2: Profiling: 3 Object - 1 Scene
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5.2.3 10 Object - 1 Scene

Function Name CPU Time (s)

Calculate Clusters 119.198

Cluster Features 18.301

Calculate RFCH 7.438

Create Image Gauss 1.607

Match RFCHs 1.297

Create Image Gradient Magnitude 0.550

Create Image Laplace 0.299

Normalize 0.080

Create BW Image 0.071

Table 5.3: Profiling: 10 Object - 1 Scene

5.2.4 10 Object - 10 Scenes

Function Name CPU Time (s)

Cluster Features 169.043

Calculate Clusters 120.109

Calculate RFCH 56.987

Match RFCHs 12.523

Create Image Gauss 2.098

Create Image Gradient Magnitude 0.989

Create Image Laplace 0.601

Normalize 0.260

Create BW Image 0.195

Table 5.4: Profiling: 10 Object - 10 Scenes

As we can see from the above tables, the functions CalculateClusters(), ClusterFeatures() and

CalculateRFCH() are taking up to 97.8% of the algorithms total time. By making the above 3

functions faster, we can significantly improve the performance of the overall algorithm since 97.8%

of the time, the algorithm executes the 3 functions mentioned.
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5.2.5 Expected Speedup

If we suppose that we accelerate the 3 functions that consume the 97.8% of the algorithm and we

leave the other 2.2% as is 1 then we can calculate the expected overall speed up of the algorithm

using Amdahl’s Law as :

Speedupoverall =
Execution T imeold

Execution T imenew

=
1

(1− 0.978) +
f1

x1

+
f2

x2

+
f3

x3

(5.1)

where f1, f2, f3 is the fraction of time that CalculateClusters(), ClusterFeatures() and Calcu-

lateRFCH() are executed and x1, x2, x3 is the speedup of the re-implemented CalculateClusters(),

ClusterFeatures() and CalculateRFCH() respectively.

5.2.6 Software/Hardware Partitioning

Based on the above profile analysis of the algorithm and considering Amdahl’s law we decided to

partition the algorithm as follows:

Software:

1. Feature Extraction (i.e Create Image Gauss, Create BW Image ... etc)

2. Histogram Intersection (i.e MatchRFCHs)

Hardware:

1. Calculate Clusters

2. Cluster Features

3. Calculate RFCH

HARDWARESOFTWARE

Calculate
Clusters

Cluster
Features

Calculate
RFCH

Extract
Features

Match
RFCHs

Figure 5.3: Software/Hardware Partitioning

1We suppose that functions that take the 2.2% will perform the same as seen on the tables on an equivalent
processor or platform.
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5.3 RFCH Hot-Spots

In this section we analyze further the algorithms hot-spots.

5.3.1 CalculateClusters

This function is performing an iterative version of the K-Means algorithm, and it has been identi-

fied as hot-spot. Lets take a look at the code. Below is the pseudo-code of the iterative K-Means

algorithm [26] :

{Initialize cluster centers}
repeat

for i = 1..n do

{classify the sample i according to nearest cluster center}
end for

{recompute cluster centers}
until no change in cluster centers

return cluster centers

The computational complexity of the above algorithm is O(nfNT ) where n is the number of

samples , f is the number of features, N is the number of clusters and T is the number of iterations

until convergence.

The figure below shows the algorithm in a graphical way. In our case the samples to be clus-

tered are equal to the size of the image(n=image size), and each one has f features. The algorithm

stores this information in the feature array which has size=f x ImageSize.

Moreover the number of clusters (N = numBins) have dimensionality equal to the number

of features (f). The algorithm stores this information to the ClusterPoint array with size=(f x

numBins).

Additionally the algorithm stores temporary information into two arrays as the below figure

shows. In the below figure, steps 1 and 2 consist the classification phase and step 3 is the

recalculation of the cluster centers. All the steps are repeated until the algorithm converges.
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Figure 5.4: Calculate Clusters function visualization
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5.3.2 ClusterFeatures

This function is responsible for the quantization of the image according to the precalculated

cluster centers. The function has complexity O(nfN) A graphical representation of the function

follows in the next figure. Bellow the array binnedImage is the quantized image based on the

calculated clusters (ClusterPoint Array). ClusterFeatures is an other hot-spot according to our

profiling analysis.
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Figure 5.5: Cluster Features function visualization
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5.3.3 CalculateRFCH

The calculation of the Receptive Fields Cooccurrence Histograms is one more hot-spot in our

collection. As the name suggests, this function calculates the cooccurrence histogram. The

complexity of this function is approximately O(nd2), where n is the Image Size and d is the

maximum distance (dmax). The figure below show how the CalculateRFCH works for dmax = 1.
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Figure 5.6: Calculate RFCH function visualization
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Chapter 6

Hardware Implementation

This chapter describes the implementation of the previously identified hot-spots in hardware and

more specifically on FPGA. For the implementation we have used the Xilinx Virtex-6 XC6VLX240T-

1FFG1156 FPGA, which resides on a Xilinx ML605 Evaluation Board [29].

6.1 Calculate Clusters HW Implementation

6.1.1 Module Overview

As we said in previous chapters, the CalculateClusters function is responsible for the clustering

of the features array, and it is performing an iterative version of the K-Means algorithm, which

works in 3 phases. Phase 1 and 2 are the calculation step and phase 3 is the cluster centers update

step.

The CalculateClusters Hardware module is a multi-core hardware module in which each core is

performing the clustering on separate image regions (phase 1). Each core is equipped with private

Data Memories (block RAMs), which are needed to achieve parallelism. When the process of the

whole image finishes, each core’s results are combined with each other to form a final result (phase

2). Then the update of cluster centers occurs (phase 3). The mentioned procedure is controlled

by an Finite State Machine (FSM) and is repeated until convergence is reached. The module has

as input the feature array and as output the clusterPoint array.

In brief we process image slices of size 640x32. This images slices contain image features

forming an (feature) array 640x32x7. This means that each pixel has 7 features. The data we

load into the chip is a feature array slice. We split this slice to blocks of 640x2x7 and we process

each block with a separate processing unit working in parallel.

The module was designed not to work on the whole image data, but instead with sliced parts

of the image one after the other. This means that the image is off-chip, and image regions are

loaded into the chip when needed. Our design decision comes from the fact that in order to

achieve more flexibility, keep the block RAM utilization as low as possible and be able to work
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on arbitrary image sizes the image data must remain off-chip.

The Module’s free parameters are:

� Image xsize

� Image ysize

� Number of Cluster Centers (N)

� Number of Features (f)

The input data of the module is the feature array which is an array f x ImageSize (1 byte

width), where f is the number of features. As seen on the following table, in order to use the

algorithm with image size 640x480 and also use 7 features, which is needed for a reasonable de-

tection rate, a total of 2.0 MB block ram is required on the FPGA only for storing the feature

array. If now, we decided to use 10 features we need approximately 1 more megabyte of block

RAM on chip. The switch from 7 features to 10 features on a high definition image costs up to

2.5 MB.

An other thing to mention is that by loading all the feature array on the chip, we are not

only limited by the image size and the number of features that we can use but also we target our

architecture to only high-end FPGA devices.

So in order to support different combinations of image sizes and features and also target our

design to low-end devices,we keep the feature array off chip, and we load slices one after the other

in order to process all the array. This of course has the cost of the extra implementation effort

that is needed and also makes our design I/O intensive.

Image Size (px) Number of Features Storage needed on-chip (MB)

640 x 480 3 0.87

640 x 480 7 2.0

640 x 480 10 2.9

1024 x 768 3 2.25

1024 x 768 7 5.25

1024 x 768 10 7.5

1280 x 720 (HD) 3 2.6

1280 x 720 (HD) 7 6.1

1280 x 720 (HD) 10 8.7

Table 6.1: Storage needed on-chip for different number of features and image sizes
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6.1.2 Feature Array decomposition

For our implementation we have used images with size 640 x 480 and also we have evaluated our

design with 7 features. This means that our feature array has size equal to 640x480x7. In order

to keep the feature array off-chip we follow the procedure below:

1. First we split the feature array into 15 slices with size (640x480x7)/15 = 0.13 MB. This

is the data that goes on-chip, i.e. in order to process the whole feature array we have to

process 15 slices. So by looking at the Table 5.1 we can see that we reduced the on-chip

memory requirement by 93.5%. (The decomposition is performed in software, running on a

soft-core CPU which is attached to our system, see Chapter 8).

2. Secondly we split further the on-chip slice into 16 blocks with size (640x480x7)/240 = 8.75

KB and then we pass each block to a processing core, i.e we utilize 16 processing cores in

order to process one slice. The processing cores are working in parallel, and each one saves

its results to private BRAMs.

The decomposition we described here is only limited by the size of block RAM that we have

available on-chip and we want to utilize. Moreover the number of processing cores depends on

the number of blocks we use. For example if we split the slice to 32 blocks, we can utilize 32

processing cores. In general the more block ram we have available the more processing cores we

can utilize.

The figure below shows the data decomposition.
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Figure 6.1: Data decomposition
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6.1.3 Hardware Architecture

In the figure below we can see the block diagram of the CalculateCluster HW module.
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A

Global
BlockRAM

Global
BlockRAM

Global
BlockRAM
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BlockRAM
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BlockRAM

Private
BlockRAM

Private
BlockRAM

Private
BlockRAM

Interconnect network

Interconnect network

CONTROL
UNIT

Calculate Clusters HW module
TOP LEVEL

1..16 1..16

1..161..16

Figure 6.2: Calculate Clusters top level

In the figure above, Processing Unit A (PUA) is responsible for calculating the cluster centers

and it utilizes 16 cores. Each core is able to process information that equals to a small image

with size 640 x 2 , which means that the feature array of each core is 640 x 2 x 7 (8 bit) (feature

array block). With the current configuration can process 16 feature image blocks (640 x 2 x 7)

simultaneously.

Also in same figure the global block RAM indicates that the block RAM is accessible from

the software, while the private block RAM is not. Each core, stores the intermediate results to

private block RAMs. When the processing is done, PUB is responsible to sum all the intermediate

results produced by the 16 cores. After PUB completion, it signals PUC which is responsible to

update the cluster centers.

The Control Unit, is basically an Finite State Machine (FSM) which controls all the mentioned

processing units and checks if the whole clustering process finishes, and when it does it sets the

done signal to TRUE.

Below we can see a more detailed figure of the module’s architecture.
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Figure 6.3: Calculate Clusters top level in more detail

Each core of the processing unit A performs step 1 and 2 as seen on Figure 5.4. Each core

accesses 4 block RAMs, the two are global and the other two are private. Specifically the I/O of

each core is as follows:

� Read the Feature block RAM (640 x 2 x 7 - 8 bit)

� Read the ClusterPoint block RAM (80 x 7 - 8 bit)

� Read/Write the ClusterSum block RAM (80 x 7 - 25 bit)

� Read/Write the ClusterCount block RAM (80 - 20 bit)

We have implemented the core as an Finite State Machine (FSM), which can be described by

the following figure.
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Figure 6.4: CalculateClusters Core FSM

More specifically the process performs as follows :

� On reset (asynchronous) the FSM starts at state INIT. In this state we check if there are

pixels to process, and if there are we go to state S1 with the current pixel (p) Otherwise all

the image has been processed and we go to the state FINISH where we stay until the reset

signal is asserted.

� In State S1 we check if the specific pixel (p) has non zero features. Basically we scan the

feature array from feature[0][p] to feature[f-1][p] where f is the number of features. If we

find a non zero feature we go to state S2, otherwise we go back to INIT in order to check

the next pixel.

� In State S2 starts the actual clustering procedure. From state S2 to state S4 what we do is

that we try to find the appropriate cluster for feature[*][p]. In S2 we check if we scanned all

cluster centers denoted as numBins in the figure above. If all cluster centers (i) have been

checked then we have found the appropriate cluster for feature[*][p] and we go to State S5,

otherwise we continue with the process and we go to State S3 with the cluster center i. The

appropriate cluster center for feature[*][p] is the cluster center with the minimum distance

from the feature[*][p] where the distance is given by the squared Euclidean distance.

� In State S3 we calculate the squared Euclidean distance between the current feature (p)

and the current cluster center (i). Cluster centers are stored in the ClusterPoint array. So

in this state we calculate the distance between feature[*][p] and clusterPoint[*][i], where ∗
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indicates all features. Specifically we calculate the below formula

distance =
F∑

f=0

(feature[f ][p]− clusterPoint[f ][i])2 (6.1)

where F denotes the number of features. After we calculate the distance we go to State S4.

� In State S4, we find what is the minimum distance calculated so far and we store the index

of the cluster center with the minimum distance (as the following code snippet shows).

i f ( d i s t < minDist ) {
minDist = d i s t anc e ;

tmp = i ;

}

After that we go back to State S2 to continue with the next cluster center i. We repeat the

states S2, S3, S4 for all cluster centers (numBins), which in our case are 80.

� In State S5 we save the information needed in order to be able to update the cluster centers

later. We implemented the following code snippet :

f o r ( f = 0 ; f < numFeatures ; f++)

c lu s t e r sum [ f ] [ tmp ] += f e a t u r e [ f ] [ p ] ;

c l u s t e r c o u n t [ tmp]++;

When we do that, we go to State S6.

� In State S6 we just increment the pixel counter and we go to State INIT.

One important note considering the implementation of the core, is that in the State S3 we had

to implement the following code snippet

f o r ( f = 0 ; f < numFeatures ; f++) {
d i s t += ( f e a t u r e [ f ] [ p]− c l u s t e r P o i n t [ f ] [ i ] ) *

( f e a t u r e [ f ] [ p]− c l u s t e r P o i n t [ f ] [ i ] ) ;

}

which is basically the equation (6.1).

As we can see from the above code we have a multiplication and immediately after that we

have an addition, which actually is an accumulation. In other words this is a multiply-accumulate

(MAC) operation and can be efficiently performed by a Digital Signal Processor (DSP). Our

platform, Virtex-6, has built in DSP slices, namely Xilinx XtremeDSP slice which can be used to

implement DSP functions.
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We have implemented the mentioned MAC instruction using a Xilinx XtremDSP slice as the

figure below shows.

REG

REG

SUB

feature[f][p]

clusterPoint[f][i]

X REG

Accumulator

ADD

1 0

REG

Bypass

.
MAC
out

A

B

C

Xilinx XtremeDSP Slice

Figure 6.5: MAC instruction implementation using DSP slice

The specific implementation that uses the DSP slices is fully pipelined with 3 clock cycles la-

tency. Each core of the Processing Unit A requires a DSP slice to carry out the above operation.

In our case we have implemented 16 cores so we need 16 DSP slices. Of course we are far away

from the 768 available DSP slices offered in XC6VLX240T which we are using.

When the Processing Unit A finishes, we have successfully processed an image slice 640x32.

Then we repeat the exact process for the next image slice, until we process all the image (15 slices).

When all 15 slices have been processed, each cores results must be added together to form the final

result. This is performed by Processing Unit B, which it has as basic element a tree of adders.

This unit takes as input the output of 16 different block RAMs and adds the 16 contents together.

In the next page we can see the PUB basic element. The module is fully pipelined in order to

achieve high clock rate and has a latency of 4. The whole process is finished when we add all

the contents of the block RAMs. We utilize 2 of the below element, which we use one for the

ClusterCount block RAM and the other for the ClusterSum Block RAM.

43



1

.

.

.

+

+

+

+

1
.
.
.
8

2

3

4

13

14

15

16

+

+

+

+

REG

REG

REG

REG

REG

REG

REG

REG

+

+

REG

REG

+ REG

16 Block RAMs Processing Unit B
Basic Element

Figure 6.6: Processing Unit B Tree of adders

After Processing Unit B is done with the processing, sends the enable signal to the Processing

Unit C which is responsible for the update of the clusters. Again here the module is implemented

as an FSM, which can be described by the figure below.

INIT S1

S2

i < numBins

FINISH

Asyn Reset

f > numFeatures

f < numFeatures

f < numFeatures

S3
f > numFeatures

Figure 6.7: Processing Unit C

The process finishes when all cluster centers are updated. The steps performed are as below:

� The INIT state is the start-up state. Here we check if we processed all cluster centers i and

if not we go to state S1 otherwise we go to FINISH.

� In state S1 the only thing we do is that we save to a temporary buffer the values of cluster

center i, which in our case cluster centers are described by a vector 7 x 1, because we use

7 features. This buffer has size 7 bytes and it is implemented as distributed memory. This
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step is necessary to be done in order to see if there is a change in this cluster after we update

it. When we finish, we go to state S2.

� In this state we perform the actual update of the clusters. This step uses a divider generated

with Xilinx CoreGen to perform the following division for all features:

ClusterPoint[f ][i] =
clusterSum[f ][i]

clusterCount[i]
∀ f (6.2)

In the algorithm’s code which is written in C++ clusterPoint is declared as unsigned char

while clusterSum and clusterCount are declared as float. However, despite the fact that

clusterSum an clusterCount are declared as float they actually contain values of the form

“d1d2d3.00”. In the algorithm when this division is performed a cast is made to unsigned

char. In C/C++ this has the effect to take truncated the result of the division. Because

this is the case in the hardware we do not have a precision accuracy problem because we

also truncate the result.

� In State S3 check if there is a change between the new and the old cluster center, and we

store this information. Then we increase the cluster counter i and we go to state INIT in

order to process the next cluster.

The control Unit of CalculateClusters Unit is responsible to coordinate the 3 processing Units

and also check for the convergence of the algorithm. The figure below shows the control unit.
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Figure 6.8: CalculateClusters Control Unit
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� In the state S1 we wait for the external signal load, which indicates that the data has been

transferred into the modules block RAM. When this happens we go to state S2 when we

start the PUA multicore unit.

� In state S2 we wait to finish a block and when we do we go back to state S1 in order to load

the next block. When all 15 blocks are processed we issue the PUA done signal and we go

to state S3.

� In state S3 we start the PUB unit in order to sum the individual results of each processors

as we explained previously.

� In state S4 we start the PUC and after the processing is completed we check if there is a

change in the cluster centers and we go accordingly to the appropriate state.
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6.2 Cluster Features HW Implementation

6.2.1 Module Overview

This module implements the image quantization and it is also a 16-core module. As input this

module takes the feature array and the clusterPoint array. Concerning the data decomposition

used in this module is the same as before. Everything we said about the feature array decompo-

sition and the clusterPoint array in the previous section also applies here.

In brief the operation of this module is as follows:

A slice of the feature array (640 x 32 x 7) is loaded into the chip and more specifically into

the 16 distinct feature block RAMs. Each feature block RAM can hold a block 640 x 2 x 7. Then

the clusterPoint array (7 x 80) is loaded into the 16 distinct clusterPoint block RAMs (7 x 80).

After the load is completed, the processing starts with each core to perform the quantization

on an image block 640 x 2, i.e the first core quantize the image pixels 0 to 1279, the second core

quantize the pixels 1280 to 2559... and so on. Again we process each image block simultaneously

utilizing 16 cores.

Each core also has associated a block RAM for storing the results. This block RAM is the

binnedImage block RAM which is 640 x 2 and each core has one of its own. When all the cores

complete the processing, an image slice has been quantized and the results reside in the 16 binned-

Image block RAMs. After that this result is upload to the DRAM and a new feature array slice is

downloaded from the DRAM into the FPGA, in order to continue with the next slice. The whole

process finishes when we process all the image, that is 15 slices.

The Module’s free parameters are:

� Image xsize

� Image ysize

� Number of Cluster Centers (N)

� Number of Features (f)
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6.2.2 Hardware Architecture

The image below shows the hardware architecture of the module.

Global
BlockRAMs
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Figure 6.9: Cluster Features top level

A more detailed block diagram of the ClusterFeatures HW toplevel follows.
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Figure 6.10: Cluster Features top level in more detail

Each core performs the same MAC operation as the CalculateClusters core, so as before we

used a DSP slice in order to carry out the specific operation. In total we need again 16 DSP slices

for all the module. Each core implements an FSM which is explained in the next page.
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The figure below describes the operation of the ClusterFeatures FSM.
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Figure 6.11: ClusterFeature core

The processing follows the below steps :

� The INIT state checks for completion. In other words check if we processed all the image

pixels p and if not go to state S1 otherwise we go to the FINISH state where we assert the

done signal.

� In state S1 we read the features of pixel p from the feature block RAM and if at least one

feature exists then we go to state S3 else we go to state S2.

� In state S2, we came because we did not find any features for pixel p, so we set the pixel p

of binnedImage to the value -1. This indicates the null entry. Then we increment the pixel

counter and we go back to state INIT

� In state S3 we check if we processed all cluster centers i for pixel p and if we did we go to

state S6, otherwise we go to state S4.

� In state S4 we implement the below code snippet, which is the same as CalculateClusters:

f o r ( f = 0 ; f < numFeatures ; f++) {
d i s t += ( f e a t u r e [ f ] [ p]− c l u s t e r P o i n t [ f ] [ i ] ) *

( f e a t u r e [ f ] [ p]− c l u s t e r P o i n t [ f ] [ i ] ) ;

}

This is where we use the DSP slice, as described in the previous section.
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� In state S5 we keep track of the cluster center i which corresponds to the minimum distance

with the features of pixel p and we set the binnedImage[p]=i. Then we increment the cluster

counter and we go back to state S3.

� In state S6 we check the case in which the minimum distance calculated above is very big

which means that the specific feature of pixel p actually does not belong any cluster i,

despite the fact that we associate it with a cluster center, so we overwrite it with the null

value (binnedImage[p]=-1).

� Finally in state S7 we increment the pixel counter and we go to state INIT.

The control unit of the ClusterFeatures module is quite simple. As the figure below shows the

operation of this unit is to AND the 16 done signals of all processing cores.

Core 1

Core 2

Core 15

Core 16

.

.

.

AND

done sig 1

done sig 2

done sig 15

done sig 16

Control Unit

Figure 6.12: ClusterFeatures Control Unit
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6.3 Calculate RFCH HW Implementation

6.3.1 Module Overview

This module implements in hardware the calculation of the receptive fields cooccurrence his-

togram. This module utilizes 8 processing cores. Each core is responsible to calculate the cooc-

currences of an binnedImage block that is 640x4. This means that the 8 cores together can

calculate the cooccurrences of an binnedImage slice equal to 640x32. The cooccurrenses are cal-

culated with respect to dmax=4, although if we utilize more block RAM we can support dmax over

4. Each processing core maintains a block RAM for the output where the RFCH is stored. This

block RAM is 80x80 - 11 bits. In order to calculate the RFCH of the whole binnedImage 640x480

we have to process 15 binnedImage slices 640x32. When we process all the image slices then the

8 RFCH BRAMs are summed to form the final RFCH for the image and then the result is carried

out.

6.3.2 BinnedImage Array Decomposition

The RFCH is calculated on the Binned Image data. The binnedImage array which hold the

Binned Image data is an array 640 x 480 and as we said previously binnedImage is the quantize

version of the image. In order to calculate the RFCH of binnedImage, for each binnedImage slice

640 x 32 we form a bigger binnedImage slice which is 640 x 64.

This new slice holds an extra 4 lines of the image data for each core, in order to serve the

dmax=4 condition. As shown in the following figure for every binnedImage block (640x2) we need

the following block too and for every 32 lines - slice , we need the following 4 lines.
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Figure 6.13: Binned Image decomposition
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We load the 8 blocks 640 x 8 to the 8 block RAMs of the module, and so each processor can

calculate the RFCH of a binnedImage part 640 x 4 with dmax up to 4. For each binnedImage slice

640 x 32 we need to load also a block (640 x 4) from the next slice as the figure shows in order to

be able to look ahead for cooccurrences in distance=4.

6.3.3 Hardware Architecture

The below figure shows the block diagram of the module.
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Figure 6.14: Calculate RFCH top level

The figure above shows the block diagram of the CalculateRFCH HW module. Each processing

core reads and writes from its own block RAMs. When all the binned image is processed the

control is responsible to start the summation of the results which are stored to the Result RFCH

RRAM as shown above

The operation of the core can be explained as below:

for y = 0 ... 3 do

for x = 0 ... 639 do

{Search for cooccurrences in the neighborhood of (x,y)}
end for

end for

We have implemented each core as an FSM which executes the the above code. Each time we

load a different binnedImage slice to the block RAMs and so we can process all the binned image.
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6.4 Device Utilization

Below we can see the device utilization on Virtex-6 VLX240T. As we can see by leaving the image

off-chip we reduced the block RAM usage. Also there is a lot of space to utilize more processing

units for better performance.

Xilinx Virtex-6 VLX240T-1FFG1156

Module Slice Registers Slice LUT Block RAM DSP Slices

Calculate Clusters 14333/301440 (4%) 16385/150720 (10%) 34/416 (8%) 16/768 (2%)

Cluster Features 4176/301440 (1%) 5858/150720 (3%) 56/416 (13%) 16/768 (2%)

Calculate RFCH 1056/301440 (0%) 2819/150720 (2%) 16/416 (3%) 0/768 (0%)

Total 19565/301440 (6%) 25062/150720 (16%) 106/416 (25%) 32/768 (4%)

Table 6.2: Device Utilization

6.5 Hardware verification

For all the three hardware modules that were implemented we followed the below verification

process in order to check their functionality :

1. Complete Behavioral Simulation: What we did in this step is that, we first downloaded

images from the CODID data-set [28], and then we rescale them to 640 x 480 in order to fit

to our needs. Then we ran the algorithm a specific configuration (i.e Number of features=7,

Number of clusters=80) and we wrote down the results. After that we ran the same test

on our hardware and we verified that the results match.More specifically in order to verify

the functionality of the CalculateCluster module which takes as input one slice (640 x 32)

of the feature array, we first run the algorithm for an object. Then we took the software

calculated feature array and we sliced it into 15 pieces and after that we created 16 blocks

from each piece. We wrote the information of these 16 blocks to COE files and then we

loaded the 16 COE files into the 16 block RAMs of the module using CORGEN. Then the

simulation performed and the results verified. Equivalent procedure was performed for the

rest of the modules.

2. Place and Route: After the behavioral simulation we performed place and route to our

modules, which completed successfully.

3. Post Place and Route Simulation (i.e Timing Simulation): In this step we produced

post place and route simulation models for our modules and we performed simulation but

with a data-set smaller than the one we used in step 1. We verified that results are correct.

4. Testing on the board after the download: In this step we have downloaded the designs

to the board (ML 605) and we verified their correct operation.
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Chapter 7

Hardware Performance Evaluation

In this Chapter we show how the custom hardware performs and we compare it with the software

application.

The hardware performance was tested with the following hardware configuration:

� Number of Calculate Clusters cores : 16

� Number of Cluster Features cores : 16

� Number of Calculate RFCH cores : 8

� Image Size : 640 x 480

� Number of Clusters(N) : 80

� Number of features(f) : 7

� Maximum distance (dmax) : 4

The modules are able to achieve the maximum (synthesis) clock rate of 300 MHz on the Xilinx

Virtex-6 VLX240T -1. The table below shows how many clock cycles are needed in order to

process a common CODID [28] image and object.

Module Clock Cycles

Calculate Clusters (1 object) 5941290

Cluster Features (1 object) 6130470

Cluster Features (1 image) 32448045

Calculate RFCH (1 object) 2584500

Table 7.1: Clock Cycles needed by the Custom Hardware

According to the table 7.1 we converted the above cycles to time using two frequencies at

200MHz and at 300MHz which is the maximum achievable frequency. The times are listed in

the tables below. We also list the times at 200MHz in order to have a better picture of what
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is happening, and also because some low-end devices might not be able to hit the clock rate of

300MHz so this is a good estimate, to know how the hardware performs on a lower frequency too.

Module Time @ 200 MHz (s) Time @ 300 MHz (s)

Calculate Clusters (1 object) 0.0297 0.0198

Cluster Features (1 object) 0.0307 0.0204

Cluster Features (1 image) 0.1622 0.1082

Calculate RFCH (1 object) 0.0129 0.0086

Table 7.2: Time needed by the hardware for two frequencies

The following sections show the achievable speedup over the software. The software times taken

with a ULV CPU @ 1.3GHz.

7.1 Speedup at 200 MHz

As we can see from the table below at 200 MHz, Calculate Clusters is over 10 times faster

compared to the software while Cluster Feature is about 16X and 11X faster for 1 object and 1

image respectively. On the other hand Calculate RFCH1 is almost 4X over the software version

Module Software Time (s) Hardware Time (s) Speedup

Calculate Clusters (1 object) 0.3200 0.0297 10.7

Cluster Features (1 object) 0.5000 0.0307 16.2

Cluster Features (1 image) 1.8100 0.1622 11.1

Calculate RFCH (1 object) 0.0500 0.0129 3.8

Table 7.3: Speedup at 200 MHz

7.2 Speedup at 300 MHz

In the case of 300MHz the speedup gained is much more as we see in the table below.

Module Software Time (s) Hardware Time (s) Speedup

Calculate Clusters (1 object) 0.3200 0.0198 16.2

Cluster Features (1 object) 0.5000 0.0204 24.5

Cluster Features (1 image) 1.8100 0.1082 16.7

Calculate RFCH (1 object) 0.0500 0.0086 5.8

Table 7.4: Speedup at 300 MHz

1This module utilizes 8-cores while all the others are 16-core modules
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7.3 Speedup at 350 MHz

Our hardware can achieve a clock rate of up to 350MHz on the Virtex 6 - Speedgrade - 2, giving

additional speedup over the software as the table below shows.

Module Software Time (s) Hardware Time (s) Speedup

Calculate Clusters (1 object) 0.3200 0.0170 18.8

Cluster Features (1 object) 0.5000 0.0175 28.5

Cluster Features (1 image) 1.8100 0.0927 19.5

Calculate RFCH (1 object) 0.0500 0.0074 6.7

Table 7.5: Speedup at 350 MHz

7.4 Overall Speedup

According to section 5.2.5 and using Amdahl’s equation we calculated the overall speedup. The

results are listed to the following table:

Configuration @ 200 MHz @ 300 MHz @ 350 MHz

1 object - 1 scene 7.2 9.5 10.5

3 objects - 1 scene 8.4 10.3 11.5

10 objects - 1 scene 9.4 13.9 15.9

10 objects - 10 scenes 8.6 13.1 15.1

Table 7.6: Overall Speedup

As we see from the above table the overall speedup is roughly 10X at 200MHz, about 14X

at 300MHz and upto 16X at 350MHz. The slight decrease that we see when we go from 1

scene to 10 scenes is because the time consumed by the Cluster Features and the Calculate

RFCH is growing while the time consumed by the Calculate Cluster stays stable. This is because

Calculate Clusters is only for the training. When we perform the testing, only the two functions

mentioned are executed, and because calculate RFCH has a lower speed up because of the 8-core

implementation we see this decrease.

7.5 Conclusion

From the results we see that by parallelizing the above functions we can achieve a significant

speedup over the sequential software version. More over because the algorithm spends a lot of

its time executing the 3 functions, further speedup can be achieved by utilizing more processing

units, since also the device utilization is very low.
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Chapter 8

Embedded System Design

After the hardware implementation of the algorithm’s hot-spots, we studied the scenario of de-

signing an embedded system on FPGA for the algorithm and we also have prototyped such a

system. In this chapter we describe the embedded system that we have prototyped. The time

that the author writes these lines despite all his efforts up to this time, the system does not meet

the target’s platform requirements, for reasons explained below, and in order to do so additional

attention is required. However, in this first attempt we succeeded a proof of concept.

8.1 System Overview

Our embedded system was prototyped on the Xilinx ML605 Evaluation board [29]. The specific

board utilizes the Xilinx Virtex-6 VLX240T-1FFG1156 [3].

Figure 8.1: Xilinx ML605 Evaluation Board
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The basic components of our system are :

� Xilinx System ACE CompactFlash (CF) controller [30]

� DDR3 SODIMM [33]

� Microblaze Softcore processor [34]

� RFCH Hardware Accelerator

8.2 System Architecture

The below figure shows the block diagram of our embedded system. We analyze each component

in the next page.

RFCH
Controller

SysACE
Controller

Calculate
Clusters

Calculate
RFCH

Cluster
Featrues

BRAM

RFCH HW
ACCELERATOR

Compact Flash
(CF)

DDR3 SODIMM

Microblaze

Processor Local Bus

Cache

Figure 8.2: RFCH embedded system block diagram

8.2.1 Compact Flash

We use the compact flash to store all the training and testing images. This is the standard input

method to the system. The algorithm is using the Portable Pixmap (PPM) format for the image
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encoding, which is defined in the Netpbm open source library [35].

The PPM format comes in two forms, the one is the ASCII PPM (P3 PPM) format and the

other is the binary PPM (P6 PPM). The RFCH algorithm is normally using P6 PPM for the

images, however the Xilinx’s sysace fread() function [31], can only work with ASCII files, that is,

it can not use the “b” flag that the C/C++ fread() implementation supports.

In order to overcome this problem we developed a conversion routine that handles PPM P3

to PPM P6 conversions. We store to the compact flash P3 PPM images, we read them using the

sysace fread() function and then we convert them to P6 using the P3 to P6() conversion routine

and we pass them to the algorithm. All the above have been integrated to the embedded version

of the RFCH algorithm.

8.2.2 DDR3

The system needs definitely the external DDR SDRAM in order to be able to operate. More

specifically, data such as images, features and other require a significant amount of storage and

the only option we have is to use the DDR.

Additionally, the memory requirements increase as the number of training objects increases

along with the image size, the number of features and the number of clusters.

The figure below shows the heap requirement (heap profiling) that is needed by the algorithm

when we train 3 objects (f=7, N=80, Image Size=640x480). As the figure shows we have a heap

peak at 18 MB for only 3 objects.

18 MB

Figure 8.3: Heap requirement for 3 objects
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8.2.3 Microblaze

Microblaze is the coordinator of the whole system. Its main purpose is to execute the part of the

RFCH algorithm that we decided to leave in software and also it controls the system peripherals.

Microblaze executes the embedded version of the RFCH algorithm, in this version the functions

that were implemented in hardware have been replaced by the appropriate hardware drivers.

Microblaze is also responsible for the data decomposition of the feature and binned image array as

discussed on previous chapters. The decomposition is performed by software drivers. Microblaze

is configured as a Standalone platform [32]. The Standalone platform is a single-threaded, simple

operating system (OS) platform that provides the lowest layer of software modules used to access

processor-specific functions.

Figure 8.4: Microblaze Libraries Organization

8.2.4 RFCH Controller

The RFCH controller is the hardware between the Microblaze and the RFCH hardware accelerator,

and it is attached to the PLB. This module is basically a PLB slave single [36], which provides

a bi-directional interface between the RFCH hardware accelerator and the PLB. The later is

possible via software accessible registers. RFCH controller was generated using an EDK PLB

slave template with software accessible registers which are addressable through software.

We write the data that must be loaded on chip to these registers from software, and with a

simple FSM in hardware we transfer the data further into the appropriate component (i.e block

RAM) which is connected to a specific register. After the transfer is completed an acknowledgment

is send to the bus indicating that the transfer is done.
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Figure 8.5: Part of the RFCH Controller responsible for the Bus2IP write

8.3 Software Drivers

The system’s software drivers are developed in C++. We have developed two libraries of drivers,

namely low-level drivers and high-level drivers (See Appendix).

The low-level drivers control the RFCH Controller and provide read/write access to the RFCH

hardware accelerator’s internal components. The high level drivers implement the appropriate

functionality in order to replace the software functions CalculateClusters(), ClusterFeatures()

and CalculateRFCH with the hardware accelerated ones.

8.4 System evaluation - Results

In this section we talk about how the system responses and also the difficulties we faced during

the design. A profile analysis was attempted, following the instructions in [37] but unfortunately

with no success.

8.4.1 Microblaze

As we mentioned earlier Microblaze among other things executes the getFeatures() software func-

tion and also reads images from the compact flash. To perform these operations Microblaze needs

to access the DRAM, because all this data belongs to the heap and the heap resides on the DRAM.

Additionally, the libraries needed for accessing the compact flash as well as the standalone OS

libraries combined with the RFCH code, give the total microblaze code such a size, that it can

not fit in the 64KB local memory (this is the memory accessed by ilmb-dlmb controller), so we

have also put this code into the DRAM. Specifically the executable file (ELF) is 1.1 MB, maybe

this is because we use mixed C and C++.
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In order to increase Microblaze performance (for accessing the DRAM) we enabled the data

and instruction caches (64K each) and also other performance features like the victim cache.

However, by doing this we limited its frequency to 150 MHz. We tried to increase the frequency

further but with no luck.

As of the above, the functions of the algorithm that remained in software does not perform

well on the Microblaze, in this configuration. As we said earlier, unfortunately we were unable to

perform a profile analysis and so we do not have exact numbers to report here, however a rough

approximation is that the software on the microblaze at 150MHz is over 60 times slower from a

personal computer @ 1.3GHz. The other reason that slows things down is the fact that we did not

performed floating point to fixed point arithmetic conversion at this time, and so floating point

operations are performed at low frequency causing extra overhead.

8.4.2 RFCH Controller

In order to train 1 object, we have to transfer approximately 2.0 MB of data from the DRAM

into the FPGA. The transfer is being carried out by blocks that have size of 140 KB. So in order

to perform clustering using the CalculateClusters HW module, for one object we need to transfer

15 such blocks from the DRAM to the modules block RAM.

The component that is responsible for the above process (i.e the data transfer) is the RFCH

controller and the RFCH software driver. At first we tried to implement the controller using the

Fast Simplex Link (FSL) that has 1 cycle latency for each data transfer, but unfortunately due

to a possible bug (also reported by others in Xilinx’s forum) we could not use the FSL on our

platform at that time.

So we implemented the controller as PLB slave [36], but with the cost of several clock cycles for

each transfer, and this becomes an other bottleneck of the system with the current implementa-

tion.Approximately with the current implementation we need about 5 ms at 150MHz to transfer

140KB into the chip. Of course as a PLB slave it is more close to the newer AMBA bus and an

upgrade to support the ARM Cortex processor in the upcoming Virtex 7 it is easier to be done.
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Chapter 9

Improving the performance of the

embedded system

In this chapter we give our opinions and some basic guidelines on how we can solve the perfor-

mance issues of the embedded system.

Regarding the embedded system the bottleneck resides in the Microblaze processor and in the

I/O communication through the PLB bus using the RFCH controller. The table below shows an

estimate on how the system performs compared to an Intel CPU clocked at 1.3GHz.

Embedded System PC

Component Operation Microblaze Intel CPU

Time(s) @ 150 MHz Time(s) @ 1.3GHz

Microblaze Image Gauss 3.70 0.05

Microblaze Image Laplace 0.60 0.01

Microblaze Gradient Magnitude 2.76 0.03

Microblaze Read from 2.37 N/A

Compact Flash1

RFCH Transfer 140K 0.005 N/A

controller to chip via PLB2

Table 9.1: Bottleneck summary

First of all the functions Image Gauss, Image Laplace and Gradient Magnitude are executed

by the getFeatures function and what they do is that they extract the image features. Depending

on the number of features and their combination these functions can be executed multiple times

for an image. In the above table we see the time that these functions take to finish for one object

(640x480 image like figure 5.2) on the Microblaze @ 150 MHz versus an Intel @ 1.3 GHz. The

1Read a color Image 640 x 480 ASCII PPM about 2.0 MB
2Using the current implementation of the RFCH Controller.
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question is what can we do to make the functions faster on the embedded system.

The first thing we can do is increase the frequency. According to Xilinx, the Microblaze V8.10a

configured in performance mode with the caches enabled and with an external memory controller

can achieve a clock rate of 223MHz on Virtex6-31. However from our hands-on experience we

believe that this is still not enough for the specific computer vision application, and if there exist

a better alternative we should better give it a look.

The better alternative is a hardcore processor like the PowerPC and the ARM Cortex. Specif-

ically Xilinx’s Zynq-7000 Extensible Processing Platform[39] will be featuring a Dual ARM

Cortex�-A9 MPCore hardcore processor with the following characteristics:

� Clock rate up to 800 MHz.

� Enhanced with NEON Extension and Single and Double Precision Floating point unit.

� 32kB Instruction and 32kB Data L1 Cache

� Unified 512kB L2 Cache

� Out-of-order speculative issue superscalar execution pipeline.

� Dual Core processing

By executing our application on an ARM Cortex like the one mentioned above we will for

sure achieve a significant improvement in performance over the Microblaze, given that we will

also have a good DDR memory controller. All of our code resides in the DRAM, because it is too

big to fit to the microblaze local memory. When it comes for embedded system applications we

cannot always fit the application into the processors local memory and that’s why a good memory

controller is needed.

The second thing we can do is that we can utilize more that one Microblazes for our ap-

plication. Given the fact that we kept the device utilization at low levels, we can use multiple

Microblazes in order to improve the performance of the system. The algorithm is using a combi-

nation of features that extracts for each image, and this combination is configurable. For example

the feature COLOR LAPLACE executes the functions Image Gauss and then Image Laplace and

the feature GRADIENT MAGNITUDE executes the functions Image Gauss and Gradient Mag-

nitude. The two features mentioned can be executed in parallel. In this case we can benefit from a

multi-microblaze implementation. For example MB1 can execute the GRADIENT MAGNITUDE

feature and MB2 can execute the COLOR LAPLACE feature. In the sequential version in order

to extract these two features we need 10.76 seconds while in the parallel implementation using 2

Microblazes we need only 6.46 seconds which gives as 1.6X speedup.

1We worked with Virtex6-1
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One other thing that we can do in order to increase the performance of the software running

on microbaze is to go ahead and rewrite the software (i.e the functions remained in software) us-

ing the multithreding-multitasking paradigm on multiple microblazes, since we have the available

resources on our device. However the implementation of a multi-microblaze system which will be

consisted of over 10 Microblaze cores capable of executing any multi-threding program requires a

significant engineering effort and plenty of time.

The third thing we can do regarding the software, is that we can perform a floating point to

fixed point arithmetic conversion. By study the specific algorithm we can say that such a conver-

sion will not result in any precision accuracy problems since the algorithm only uses the floating

point representation (float) in order to make use of real numbers (non integers). Regarding ac-

curacy, 2 or 3 decimal places are enough since the algorithm is mostly performing calculations

with pixel values in the range [0 to 255] and additional decimal places are not significant to the

result. The benefit for making such a conversion is the speedup we gain by not using floating

point operations that require much more clock cycles than the integer operations. Additionally

by using configurable softcore processor like Microblaze we can exclude the floating point unit

(FPU) saving at the same time area resources and power consumption.

The table below shows a benchmark conducted by the authors of libfixmath[38], which is a

Cross Platform Fixed Point Maths Library. The benchmark regards the execution of the arctan-

gent function on an ARM Cortex-M0 using the C’s math.h library and the libfixmath library.

Libfixmath Benchmark

Test Code Size (bytes) Clock Cycles

math.h 10768 14340

fix16 atan2 4512 3772

Table 9.2: Fixed Point Arithmetic Benchmark

As we can see from the above table the code needed for this specific case has been reduced

from 10.7KB to 4.5KB and about 10K clock cycles saved. Concluding, in our application we can

benefit for a floating point to fixed point conversion in terms of speed, code size reduction and

power consumption.

The other major bottleneck of the embedded system is the I/O. Because we do not have the

image data on chip for reasons explained earlier, images slices are being transferred from the

DRAM to the BRAM.

In order to improve this operation the one approach is to go back to the FSL which is quite

simple and can deliver the data in 1 cycle instead of the 5-6 cycles that a single beat transfer is

needed on PLB. By doing this we will going to gain a speedup over the current implementation
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but we are probably limiting our design to 32 bit data transfers since FSL is 32 bit wide and also

we do not know if other hardcore processors like the ARM Cortex will support the FSL.

The other thing that we can do is to use the Burst Mode feature of the PLB. Specifically the

PLBv46 Master Burst[40] supports fixed length burst Read/Write data transfers of upto 16 data

beats on the PLB. Additionally the new AMBA bus with the AXI4 interface can be configured

to use 64-bit data bus, which is something very beneficial for our I/O intensive application and

also support burst mode transfers[41]. Additionally the double buffering technique can be used if

we doubled our block RAMs, in order to hide the loading time in the execution time. While the

hardware is working with one slice, the next slice could being transferred into the chip.

Moreover if we utilize over one Microblazes we can load different block RAMs simultaneously

and so we can improve the I/O performance. Of course this will require the different Microblazes

to have their own PLB bus in order to send the data in parallel.

Regarding the reading from the compact flash, as of now the Xilinx’s drivers for the compact

flash I/O do not support reading binary file. The specific driver can only work with ASCII files.

We did not study the internals of the compact flash controller and its drivers and we can not tell

if it is possible and how easy it is to write a driver that reads binary files, however we can gain a

significant speedup if we can read binary files from flash.

Specifically, a binary 640 x 480 color PPM Image containing an object like figure 5.2 is about

900 KB while the ASCII version of the same file is almost 2.0 MB. In our platform we have to read

from the compact flash the ASCII version of the image resulting a slower reading time. In the

case that we will able to read binary files from the compact flash and with a slight modification of

the algorithm, compressed images can be used to reduce further the I/O time on the compact flash.

We believe that with a little more research and considering the above guidelines and possible

solutions, the performance of the embedded system can be improved reaching the target’s platform

specifications.

66



Chapter 10

Conclusions and Future work

10.1 Summary of contributions

In this thesis we described an efficient way to improve the performance of the Receptive Fields

Cooccurrence Histograms Algorithm on FPGA. We have designed hardware accelerators for spe-

cific functions of the algorithm that consume up to 97.8% of its execution time. Our hardware

implementations are based on multi-core architectures that can utilize an arbitrary number of

processing cores, limited by the device resources. We have demonstrated an overall speedup of

upto 15X with the described configuration (16-16-8 cores), but additional performance can be

achieved by increasing the number of each modules cores.

Moreover our hardware is not fixed to a specific image size but instead is designed to support

images sizes up to High Definition (HD), making it suitable for a variety of applications. Addi-

tionally, the number of features and the number of clusters that can be used its also not fixed,

which gives as additional flexibility. We have also presented an embedded system prototype for

the above algorithm which seems very promising and also gives us a hands-on platform for further

experiments.

10.2 Future work

As of this time our system prototype does not meet the desired requirements and in order to do

so, additional research is needed. A few things that could be done are the following:

� Regarding Microblaze, a clock rate increase must be achieved in order to have a performance

in reasonable margins. We recommend a clock rate of at least 400 MHz. An other choice is

to replace Microblaze with a hardcore processor such as PowerPC or ARM Cortex.

� The RFCH Controller could be implemented to use advanced PLB features like Burst Read-

/Write and Bus locking, in order increase the I/O performance, since I/O is critical to the

specific algorithm.
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� For additional speedup regarding the software functions, a floating point arithmetic to fixed

point arithmetic conversion could be made.

� The board could be augmented with a camera, in order to capture images and stores them

into the compact flash.
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Appendix A

Software drivers

In this appendix we list the software drivers that were implemented during the project:

A.1 Low level drivers

The below two functions access the RFCH controller’s (PLB Slave) software

accessible registers:

/* Write to r e g i s t e r regNo */

void vlb MemWr( i n t data , i n t regNo ) ;

/* Read from r e g i s t e r regNo */

Xuint32 vlb MemRd( i n t regNo ) ;

The functions below are used to control the hardware modules:

/* Reset the module cs */

void vlb ChipReset ( i n t cs ) ;

/* Enable the module cs */

void vlb ChipEnable ( i n t cs ) ;

/* Check the s t a t u s b i t o f module cs */

i n t v lb ChipStatus ( i n t mode)

The functions below implement the block RAM I/O and also handle the data

decomposition:
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void vlb FeatureArrayToBram ( unsigned char ** array , i n t s l i c e n o ) ;

void vlb BramToFeatureArray ( unsigned char ** array , i n t s l i c e n o ) ;

void vlb ClusterPointArrayToBram ( unsigned char ** array ) ;

void vlb BramToClusterPointArray ( unsigned char ** array ) ;

void vlb BinnedImageArrayToBram ( i n t *array , i n t s l i c e n o ) ;

void vlb BramToBinnedImageArray ( i n t *array , i n t s l i c e n o ) ;

void vlb CcountArrayToBram ( unsigned long * array ) ;

void vlb BramToCcountArray ( unsigned long * array ) ;

void vlb CsumArrayToBram ( unsigned long ** array ) ;

void vlb BramToCsumArray ( unsigned long ** array ) ;

A.2 High level drivers

The functions below control the hardware modules functionality.

void Ca lcu la teClus te r s hw ( ) ;

void ClusterFeatures hw ( ) ;

void CalculateRFCH hw ( ) ;

A.3 Image manipulation

/* Read an image from the compact f l a s h */

void Load P3 ( const char * f i l ename ) ;

/* Convert ASCII image to Binary */

unsigned char * P3toP6 ppm (SYSACE FILE * f , i n t * xs i z e , i n t * y s i z e ) ;
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