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ABSTRACT

The dramatic increase in cheap broadband wireless and wired network
bandwidth along with the drop in storage pricing has lead to the practical
fulfillment of computing as utility.

Our work investigates resource allocation strategies for different types of
time-varying traffic. A service provider has to assign a request/service from a
cloud consumer to the virtual machine that maximizes the profit. Our study
focuses on multiple requests/services from a number of consumers and a set
of services offered by a particular provider. The revenue of a provider for a
particular time frame is defined as the total of values charged to consumers
for processing their applications (service requests) during that frame.

We first implement two-profit driven scheduling algorithms from the liter-
ature (MaxProfit and MaxUtil) on the well-known and widely used CloudSim
simulation tool. We discuss the minor differences in the algorithms’ imple-
mentation that were dictated by the CloudSim structure. Then, we propose
a new profit-driven algorithm, based on achieving the minimum service delay,
which we compare with MaxProfit and MaxUtil, and we discuss the results
of this comparison.
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List of acronyms

VM virtual machine

CPU central processing unit

MaxUtil maximum utilization

MaxProfit maximum profit

MinDelay minimum delay

aad application-wise allowable delay

alft actual latest finish time

alst actual latest start time

sad service-wise allowable delay

aft actual finish time

asad aggregate service-wise allowable delay

clft current latest finish time
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1 Introduction

The dramatic increase in cheap broadband wireless and wired network band-
width along with the drop in storage pricing has led to the practical fulfill-
ment of the dream of computing as utility.

Cloud computing is a recent advancement wherein IT infrastructure and
applications are provided as services to end-users under a usage-based pay-
ment model. Cloud Computing can be defined as a type of parallel and
distributed system consisting of a collection of inter-connected and virtual-
ized computers that are dynamically provisioned, and presented as one or
more unified computing resources based on service-level agreements estab-
lished through negotiation between the service provider and consumers.

The cloud providers are willing to provide large-scale computing infras-
tructures at a price based primarily on usage patterns. The use of Cloud
computing eliminates the initial high-cost, for application developers, of set-
ting up an environment for the application deployment. Furthermore, there
are large-scale software systems providers, who develop applications such as
social networking sites and e-commerce, which are gaining popularity on the
Internet. These applications can benefit greatly of Cloud infrastructure ser-
vices to minimize costs and improve service quality to end users. There are
three types of Cloud computing [1]:

• Infrastructure as a Service (IaaS)

• Platform as a Service (PaaS)

• Software as a Service (SaaS)

The level on which computing services are offered to consumers varies
according to the abstraction level of the service. At the lowest level, Infras-
tructure as a Service, services are supplied in the form of hardware where
consumers deploy virtual machines, software platforms to support their ap-
plications, and the application itself. Using IaaS, users rent the use of servers
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(as many as needed during the rental period) provided by one or more cloud
providers.

At the next level, Platform as a Service, Cloud consumers do not have
to handle virtual machines. Instead, a software platform for hosting appli-
cations (typically, web applications) is already installed in an infrastructure
and offered to consumers. Then, consumers use the platform to develop their
application. Using PaaS, users rent the use of servers and the system soft-
ware to use in them.

Finally, in Software as a Service, an application is offered to consumers,
who do not have to handle virtual machines and software platforms that
host the application. Using SaaS, users rent the application software and the
databases. The cloud providers manage the infrastructure and platforms on
which the applications run.

Some of the traditional and emerging Cloud-based application services
include social networking, web hosting, content delivery, and real time in-
strumented data processing. Each of these types has different composition,
configuration and deployment requirements. Some of the examples of Cloud
computing infrastructures/platforms are Microsoft Azure [2], Amazon EC2,
Google App Engine, and Aneka [3].

One implication of Cloud platforms is the ability to dynamically adapt
(scale-up or scale-down) the amount of resources provisioned to an applica-
tion in order to attend to variations in demand that are either predictable
and occur due to access to patterns observed, or unexpected and occurring
due to an increase in the popularity of the application service. These appli-
cations often exhibit transient behavior and have different QoS requirements
depending on how time critical they are and on their users’ interaction pat-
terns. Hence, the development of dynamic provisioning techniques to ensure
that these applications achieve QoS under transient conditions is required.

The cloud model is composed of four deployment models: private cloud,
community cloud, public cloud, and hybrid cloud.

- Private cloud: The cloud infrastructure is operated solely for an orga-
nization. It may be managed by the organization or a third party and
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may exist on premise or off premise.

- Community cloud: The cloud infrastructure is shared by several orga-
nizations and supports a specific community that has shared concerns
(e.g., mission, security requirements, policy, and compliance consider-
ations). It may be managed by the organizations or a third party and
may exist on premise or off premise.

- Public cloud: The cloud infrastructure is made available to the general
public or a large industry group and is owned by an organization selling
cloud services.

- Hybrid cloud: The cloud infrastructure is a composition of two or more
clouds (private, community, or public) that remain unique entities but
are bound together by standardized or proprietary technology that en-
ables data and application portability.

A Cloud computing system (owned and operated by an infrastructure
service provider) consists of a set of physical resources (server computers)
in each of which there are one or more processing elements/cores that are
fully interconnected in the sense that a route exists between any two individ-
ual resources. A service provider rents resources from cloud infrastructure
providers and prepares a set of services in the form of virtual machine (VM)
images. The underlying cloud computing infrastructure service is responsi-
ble for dispatching these instances to turn on physical resources. A running
instance is charged by the time it runs at a flat rate per time unit.

Users (Cloud clients) access Cloud computing using networked client de-
vices, such as desktop computers, laptops, tablets and smartphones. Many
cloud applications do not require specific software on the client and instead
use a web browser to interact with the cloud application. With Ajax [4] and
HTML5 these Web user interfaces can achieve a similar or even better look
and feel as native applications. Some cloud applications, however, support
specific client software dedicated to these applications (e.g., virtual desktop
clients and most email clients). A Cloud client sends a service request for an
application, consisting of one or more services, to a provider specifying two
main constraints, time and cost.
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Similar to the work in [5] on profit-driven scheduling for cloud services,
our work focuses on the scheduling of the consumer’s service requests on
service instances made available by service providers after taking cost into
account. More specifically, our work follows the steps of the work presented
in [5], where two scheduling algorithms were presented as an attempt to max-
imize profit while providing a satisfactory level of service quality as specified
by the service consumer. The authors in [5] found that by incorporating the
profit into scheduling decisions, utilization and response rate have a signif-
icant impact on cost. Therefore, profit is strongly influenced by utilization
and response time collectively, not independently.

In this work, we first implement the two profit-driven scheduling algo-
rithms (MaxProfit and MaxUtil) on the well-known and widely used CloudSim
[6] simulation toolkit. Both algorithms were implemented via C/C++ simu-
lation in [5]. We discuss the minor differences in the algorithms’ implemen-
tation that were dictated by the CloudSim structure. Then, we propose a
new profit-driven scheduling algorithm, based on the minimization of service
delay, which we compare with MaxProfit and MaxUtil, and we discuss the
results of this comparison. A service provider has to assign a request-service
from a cloud consumer to the virtual machine that maximizes the profit. Our
study focuses on multiple requests-services from a number of consumers and
a set of services offered by a particular provider. The revenue of a provider
for a particular time frame is defined as the total of values charged to con-
sumers for processing their applications (service requests) during that time
frame.

The thesis is organized as follows: Chapter 2 gives a brief overview of
CloudSim. Chapter 3 presents the three algorithms, as well as their imple-
mentation details. Chapter 4 presents our results and the discussion on them
and Chapter 5 includes our conclusions.
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2 Simulation Tool

CloudSim [6] is an extensible simulation toolkit that enables modeling and
simulation of Cloud computing systems and application provisioning envi-
ronments. CloudSim offers the following novel features:

• Support for modeling and simulation of large scale Cloud computing
environments.

• A self-contained platform for modeling Clouds, service brokers, provi-
sioning, and allocations policies.

• Support for simulation of network connections among the simulated
system elements.

• Facility for simulation of federated Cloud environment that inter-networks
resources from both private and public domains.

• Availability of a virtualization engine that aids in creation and man-
agement of multiple, independent and co-hosted virtualized services on
a data center node.

• A flexibility to switch between space-shared and time-shared allocation
of processing cores to virtual services.

Figure 1 shows the multi-layered design of the CloudSim software frame-
work and its architectural components. The CloudSim simulation layer pro-
vides support for modeling and simulation of virtualized Cloud-based data
center environments including dedicated management interfaces for virtual
machines (VMs), memory, storage, and bandwidth. The fundamental issues
such as provisioning of host VMs, managing application execution, and mon-
itoring dynamic system state are handled by this layer. Cloud providers,
who want to study the efficiency of different policies in allocating its hosts to
VMs, would need to implement their studies at this layer by extending the
core VM provisioning functionality.
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Figure 1: Layered CloudSim architecture.

The top-most layer in the CloudSim stack is the User Code that exposes
basic entities for hosts (number of machines, their specification, etc.), ap-
plications (number of tasks and their requirements), VMs, number of users
and their application types, and broker scheduling policies. By extending the
basic entities given at this layer, a Cloud application developer can perform
the following activities:

(i) Generate a mix of workload request distributions, application configu-
rations

(ii) Model Cloud availability scenarios and perform robust tests based on
the custom configurations

(iii) Implement custom application provisioning techniques for clouds and
their federation.

As a result, by extending the basic functionalities already exposed with
CloudSim, researchers will be able to perform tests based on spesific scenarios
and configurations, thereby allowing the development of best practices in all
the critical aspects related to Cloud Computing. Some of the fundamental
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classes of CloudSim, which are also the building blocks of the simulator are:

BwProvisioner : This is an abstract class that models the policy for pro-
visioning of bandwidth to VMs. The main role of this component is to
undertake the allocation of network bandwidth to a set of competing VMs
that are deployed across the data center. The BwProvisiongSimple allows to
VM to reserve as much bandwidth as required, however this is constrained
by the total available bandwidth of the host.

Cloudlet : This class models the Cloud-based application services (such as
content delivery, social networking, and business workflow). CloudSim or-
chestrated the complexity of an application in terms of its computational re-
quirements. Every application service has a pre-assigned instruction length
and data transfer (both pre and post fetches) overhead that it needs to un-
dertake during its life-cycle. This class can be extended to support modeling
of other performance and composition metrics for applications such as trans-
actions in database-oriented applications.

CloudScheduler : This abstract class is extended by implementation of dif-
ferent policies that determine the share of processing among Cloudlets in a
virtual machine. As described, two types of provisioning policies are offered:
space-shared and time-shared.

Datacenter : This class models the core infrastructure level services (hard-
ware) that are offered by Cloud providers (Amazon, Azure, App Engine).
It encapsulated a set of compute hosts that can either be homogeneous or
heterogeneous with respect to their hardware configurations (memory, cores,
capacity, and storage). Furthermore, every Datacenter component instanti-
ates a generalized application provisioning component that implements a set
of policies for allocating bandwidth, memory, and storage devices to hosts
and VMs.

DatacenterBroker : This class models a broker, which is responsible for me-
diating negotiations between SaaS and Cloud providers that are driven by
QoS requirements. The broker acts on behalf os SaaS providers. It discovers
suitable Cloud service providers by querying the Cloud Information Service
(CIS) and undertakes on-line negotiations for allocation of resources/services
that can meet the application’s QoS needs.
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DatacenterCharacteristics : This class contains configuration information of
data center resources.

Host : This class models a physical resource such as a compute or storage
server. It encapsulates important information such as the amount of mem-
ory and storage, a list and type of processing cores (to represent a multi-core
machine), an allocation of policy for sharing the processing power among
virtual machines, and policies for provisioning memory and bandwidth to
the virtual machines.

RamProvisioner : This is an abstract class that represents the provision-
ing policy for allocating primary memory (RAM) to the VMs. The execu-
tion and deployment of VM on a host is feasible only if the RamProvisioner
component approves that the host has the required amount of free memory.
The RamProvisionerSimple does not enforce any limitation on the amount
of memory a VM may request. However, if the request is beyond available
memory capacity then it is simply rejected.

Vm: This class models a virtual machine, which is managed and hosted
by a Cloud host component. Every VM component has access to a com-
ponent that stores the following characteristics related to a VM: accessible
memory, processor, storage size, and the VM’s internal provisioning policy
that is extended from an abstract component called the CloudletScheduler.

VmmAllocationPolicy : This abstract class represents a provisioning policy
that a VM Monitor utilizes for allocating VMs to Hosts. The chief function-
ality of the VmmAllocationPolicy is to select an available host in the data
center that meets the memory, storage, and availability requirement for a
VM deployment.

VmScheduler : This is an abstract class implemented by a Host component
that models the policies (space-shared, time-shared) required for allocating
processor cores to VMs.
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3 Profit-driven service request scheduling

In this section, we first present the two profit-driven service scheduling algo-
rithms (MaxProfit, MaxUtil) which were proposed in [5]. Then, we present
and discuss our own algorithm, which is based on minimizing service delays
and will be compared against the MaxProfit and MaxUtil algorithms. All
three algorithms attempt to assign services to VMs, aiming to maximize the
profit for providers without violating time constraints associated with con-
sumer applications.

The scheduling model focuses on service requests and a set of VMs of-
fered by a provider. The revenue of a provider for a particular time frame
is defined as the total of values charged to consumers for processing their
applications during that frame. Since a virtual machine runs constantly once
it is created, the provider needs to strike a balance between the number of
virtual machines it provides, and the service request pattern to ensure its
profit is maximized. The effectiveness of this balancing should be reflected
in the average utilization of those virtual machines.

In our work, we assume that the requests arrive as an exponential pro-
cess and that every request can be processed by one VM. Furthermore, each
request for an application consists only of one service. As in [5], a consumer
application is associated with two types of allowable delay in its processing,
i.e., application-wise allowable delay and the service-wise allowable delay. For
a given consumer application, there is a certain additional amount of time
that the service provider can afford when processing the application. This
application-wise allowable delay is possible due to the fact that the provider
will gain some profit as long as the application is processed within the max-
imum acceptable mean processing time TMAX.

In our implementation, the minimum processing time TMIN of an appli-
cation is its processing time based on its length and we define the maximum
acceptable mean processing time as

TMAX = k ∗ TMIN. (1)
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The value of k is discussed in Section 4. Therefore, the application-wise al-
lowable delay aad of an application is

aad = TMAX − TMIN. (2)

For each service, the service-wise allowable delay time is calculated based
on the actual latest start time from all the running services on the same VM
and its finish time. Thus, the actual latest finish time for a service is defined
as

alft = alst+ w (3)

where alst is the start time of the service that was processed last and w
the estimated process time of the service the current time. The service-wise
allowable delay time sad of a service is defined as

sad = alft− aft (4)

where aft of a service is its estimated finish time. Based on the delays previ-
ously defined, we derive one more metric that directly correlates with profit
and attempts to ensure maximum profit gain by focusing on each individual
service. The aggregate service-wise allowable delay asad of a service is de-
fined as:

asad = sad+
aad

TMIN
(sad+ w). (5)

The aggregate service-wise allowable delay of a service, in addition to its es-
timated finish time, indicates the upper bound processing time of the service
without loss.

Furthermore, we assume that the virtual machines are heterogenous and
geographically distributed. For the implementation of this case, we define
one delay metric for each virtual machine, the transmission delay to remote
VM.
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3.1 Maximum Profit algorithm

MaxProfit(Fig. 2) [5] takes into account the profit achievable from the cur-
rent service, and the profit from other services being processed on the same
service instance. Specifically, the service is assigned to a virtual machine
only if the assignment of that service onto the service instance yields some
additional profit.

Each service is associated with a profit decay rate, and therefore the
assignment of a service to a virtual machine on which some other services
are being processed may result in a certain degree of profit loss. As the
changes happen frequently to a dynamic environment, MaxProfit intends to
run quickly to allocate VM instances for a service to optimize profit in a
greedy manner.

MaxProfit maintains a service queue containing a number of services.
When a new application arrives, its entry is the only one to be processed.
MaxProfit checks all the VMs (Steps 4-25) and selects the best VM based on
additional profit incurred by the current service (Step 19).

For each service running on the current VM (Step 7), the profit difference
between the two schedules (one considering and the other one not considering
the current service) is computed, and this is denoted as profit index (pi). In
the case of considering the current service, we assume that this service has
been assigned to the the current virtual machine.

Then, the profit indices for those two schedules are computed using the
current latest finish time of each service (Steps 14-15). The current latest
finish time of a running service may be different from the actual latest finish
time due to the fact that it is computed based on the current schedule, hence
new services may be assigned to the current virtual machine before the cur-
rent service completes its processing.
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Figure 2: MaxProfit Algorithm.
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The current service instance is disregarded if the actual finish time of any
of the running services considering the current service is greater that its cur-
rent latest finish time. The reason is that this implies a profit loss (Step 11).
If there is no possibility of profit loss, then the profit index of the current
service is included (Step 17).

After each iteration of the inner for loop (Steps 7-16), MaxProfit checks if
the current virtual machine delivers the largest profit increase (Step 20) and
keeps track of the best instance (Steps 21-22). If none of the current virtual
machines is selected, in our implementation of the algorithm the service is
rejected, i.e., our implementation does not create new VMs, as MaxProfit
does in Step 27. The final assignment of the current service is carried out in
Step 30 onto the “best” virtual machine.

3.2 Maximum Utilization algorithm

The main focus of MaxUtil (Fig. 3) [5] is on the maximization of service
instance utilization. This approach is an indirect way of reducing costs to
rent resources and decrease the number of instances the service provider cre-
ates/prepares. Specifically, for a given service, MaxUtil selects the instance
with the lowest utilization by taking into account the profit.

As in MaxProfit, the service with the earliest arrival time (Step 3), in
the service queue, is selected for scheduling and the MaxUtil algorithm is
activated. Maxutil checks all the service machines (Steps 4-18) and selects
the “best” based on the maximum utilization incurred by the current service
(Step 13). Each VM is checked if it can accommodate the current service
without incurring loss by calculating the profit (Steps 4-11).

The current virtual machine is disregarded (Step 9) if the actual finish
time of the running service when taking the current service into consideration
is greater than the current latest finish time. After each iteration of the inner
for loop (Steps 5-12), MaxUtil checks if the current virtual machine delivers
the minimum utilization (Step 14) and keeps track of the best instance (Steps
15-16).
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As in MaxProfit, if none of the current VMs is selected (no profitable VM
assignment), the service is not processed further and is rejected. Thus, in
our work the if statement (Steps 19-22) does not create a new VM, as in [5],
for ensuring the assignment of the current service, but instead rejects it.

Figure 3: MaxUtil Algorithm.
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The utilization utilj,k of a VM sj,k is defined as:

utilj,k =
τused

τ cur − τ start
, (6)

where τused, τ cur and τ start are the amount of time used for processing ser-
vices, the current time and the creation time of the VM, respectively.

3.3 Minimum Delay algorithm

The main focus of the algorithm that we propose is on the minimization of
service delay (Fig. 4). As we already described above, the Maxutil algorithm
[5] calculates the utilization based on the percentage of time that a VM is
used. But does not take into account the delays incurred to each service
in the queue. Therefore, for a given service, MinDelay selects the virtual
machine which will lead to the minimum service delay, but also takes into
account profit.

One of the main assumptions in the work presented in [5] is that the VMs
are homogeneous and cost equally to operate. In our work, we also inves-
tigate the case of having heterogeneous virtual machines. More specifically,
we consider the case of geographically distributed VMs, which are associated
with variable transmission delays.

MinDelay is activated when the service with the earliest arrival time (Step
3) is selected for scheduling. MinDelay checks all the VMs (Steps 4-23) and
selects the one that leads to the minimum delay (Step 27). As in MaxUtil,
we calculate the profit in order to conclude if a virtual machine can accom-
modate the current service without profit loss (Step 9).

If the actual latest finish time of the running service when taking into
account the current service is greater than the current latest finish time, the
current VM can not be a candidate for assigning the current service to it and
the algorithm continues by checking the next virtual machine (Step 10).
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Figure 4: MinDelay Algorithm.

We incorporated in our proposed algorithm one more control procedure.
If there is no profit loss, we check if the processing time of the running service
when taking into account the current service is greater than TMAX (Step
14). If this is true, then we suppose that the assignment violates the accept-
able processing time of a service (TMAX ) and we check the next VM (Step
15).

Then, after the end of the inner for loop, MinDelay checks the time that
will be needed for the completion of the service (Step 19). If the current
virtual machine delivers the minimum delay, MinDelay considers the current
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virtual machine as a candidate and keeps track of it (Steps 18-22).

If there is no profitable assignment, the service is rejected (Steps 24-26)
and the algorithm proceeds to the next service in the service queue. In the
case of geographically distributed virtual machines with variable capabilities
(MIPS) the total delay delj,k of a virtual machine sj,k is defined as:

delj,k =

∑L
l=1 length

l
j,k

mipsj, k
+ transmDelayj,k (7)

where L is the total number of running services, lengthlj,k is the length of
the l-th service, mipsj, k is the MIPS capacity and transmDelayj,k is the
transmission delay due to the distance to the remote VM.
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4 Simulation Studies

In our work we investigated the setup of a cloud computing environment
using the CloudSim[6] simulation tool under different types of time-varying
traffic. Several experiments followed our implementation of the three algo-
rithms presented in Section 3.

Our experimental results are plotted, analyzed and discussed using the
following performance metrics:

• Average utilization

• Average response rate

• Average profit

• Average accepted services

• Average rejected services

The average utilization of a VM is defined as:

util =

∑L
j=1 utilj

L
, (8)

where L is the number of VMs.

The response rate of a service si is defined as:

rri =
TMINi

ti
(9)

where t is the actual processing time of the service. Then the average re-
sponse rate for all the requests serviced by the provider is defined as:

rr =

∑N
i=1 rri
N

(10)
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where N is the number of accepted services.

The provider’s profit for serving a service si is defined as:

pi =


pmax, if d = TMIN
pmax − a · d, if TMIN<d≤ TMAX
0, if d > TMAX

(11)

where pmax = 100%. The decay rate a is defined as:

a =
pmax

TMAX − TMIN
(12)

and the delay d is defined as:

d = t− TMIN. (13)

Thus, the average profit for the provider is defined as:

p =

∑N
i=1 pi
N

, (14)

where N is the number of services.

Each simulation point, in our results, is the average of 100 independent
simulations runs. Seven distinctive simulation scenarios were selected and
the three algorithms presented in Section 3 were implemented for each sce-
nario, in order to conduct a performance evaluation of their efficiency.

The selected scenarios used a diverse set of services and settings, such as
different number of services’ length, different number of VMs, various services
characteristics and various VMs characteristics. We start by using a low load
for the VMs, and we steadily increase the load of the system to observe the
performance of each algorithm under a diverse set of loads. This will help us
understand the differences and similarities in their performance, depending
on the load scenario. Moreover, each scenario consists of two parts, as we
executed all the scenarios for two different values for the variable k (Eq. 1).
This variable defines the maximum processing time TMAX (in relation to
TMIN), thus we wanted to evaluate each algorithm for a low and a high
TMAX by defining the variable k to be equal to 2 and 6, respectively, for
each simulation scenario.
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4.1 Scenario 1

Scenario 1 focuses on the performance of each algorithm for a low VM load.
The system parameters used were the following:

• Services = 100

• VMs = 5

• Service length (MI) = 200000

• CPU per VM = 1

• VM capacity = 10000 MIPS

• Arrival rate λ = 1
3.0

service
sec

• Transmission delay = U(2,5), where U is the uniform distribution.

In this scenario all the services have the same length and all the VMs have
the same capacity. Thus, the TMIN for each service is 20sec (length/MIPS).
We set that the arrival rate λ = 3.0, which means that on average every 3sec
a new service arrives in our system. This means that a small delay will occur
during the processing time of each service due to the fact that during TMIN
the number of concurrent service requests will on average be higher than the
number of available VMs (5).

The results obtained from Scenario 1 are summarized in Tables 1-3 which
show the performance of the three algorithms over the performance metrics
used in our study. Figures 5-9 graphically present this performance for each
algorithm individually, and their comparison.
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metric k = 2 k = 6
Avg Util 80% 83%

Avg response rate 91% 56%
Avg profit 82% 60%

Avg accepted 44% 73%
Avg rejected 56% 27%

Table 1: MaxProfit algorithm

metric k = 2 k = 6
Avg Util 49% 66%

Avg response rate 51% 24%
Avg profit 50% 21%

Avg accepted 100% 100%
Avg rejected 0% 0%

Table 2: MaxUtil algorithm

metric k = 2 k = 6
Avg Util 90% 94%

Avg response rate 100% 85%
Avg profit 100% 95%

Avg accepted 25% 62%
Avg rejected 75% 38%

Table 3: MinDelay algorithm
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Regarding the MaxProfit algorithm, by increasing the value of the variable
k, we observed that the average percentage of accepted services increased.
This result can be explained by the fact that the bound on the profit loss
check (Fig. 2 Steps 11-13) is loosed via the increase in TMAX. Thus, the
algorithm accepts more services by assuming that there will not be a profit
loss due to the additional delays experienced by the users.

The average utilization also increases, since more services use the system
and each VM handles a higher number of services than in the case of k = 2.
As a result, the average response rate is decreased since each service has to
wait until a VM is free in order to be processed, and new services have to be
delayed until the current running service on the VM is finished.

Finally, the average profit decreases. This result can be explained by
the fact that even though the number of accepted services is higher in the
case of k = 6, the average response rate decreases. Eq. (12) shows us that
when a service finishes after the maximum processing time, the profit for the
provider is equal to zero.

Figure 5: MaxProfit Algorithm
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Moving on the MaxUtil algorithm, we observe that for both k = 2 and
k = 6 all services are accepted. For k = 6, the average utilization reaches up
to 66%, a 17% increase in comparison to the k = 2 case. Again, this higher
utilization is combined with a dramatic drop in profit and in the average
response rate.

The reason is that MaxUtil suffers from an important drawback: when
all VMs are busy, a newly arriving service will be assigned to the VM that
started last, as it has been utilized for the least amount of time in compari-
son to the other VMs. If the other VMs continue to be busy (e.g., they are
processing long services) all newly arriving services will pile up on the same
VM, thus leading to excessive delays and very low profit.

This is the case with MaxUtil when k increases from 2 to 6. More specifi-
cally, the increase in the value of k increases clft, which in turn leads (through
Step 9 of the algorithm) to fewer cases of possible loss; hence, more VMs re-
ceive services to process and this leads, as shown in Table 2, to the increase
in utilization.

Figure 6: MaxUtil Algorithm
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However, longer services keep certain VMs busy while others pile up on
the VMs that were lately activated. This leads to significant delays, which
affect negatively the average response rate and the average profit of MaxUtil.

The performance of our algorithm, MinDelay, is presented in Table 3 and
Figure 7. When we increase the value of the variable k, we notice again that
the average percentage of accepted services is increased (together with the
average utilization) as the increase in TMAX loosens the services’ require-
ments.

However, due to the fact that our algorithm’s focus is on the minimization
of the services’ delay, the increase in accepted services leads to a minor
decrease in response rate and a very minor decrease in profit. These results
are a strong first indication of the better performance of our algorithm.

Figure 7: MinDelay Algorithm

We continue to a head-to-head comparison of the performances of the
three algorithms. Figures 8 and 9 provide such a graphic comparison for
k = 2 and k = 6 and show that our algorithm, MinDelay, clearly outperforms
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both MaxProfit and MaxUtil over all performance metrics with the exception
of the percentage of accepted services.

Figure 8: Algorithms’ comparison for k = 2

This indicates that, for a given number of VMs, our algorithm provides a
good tradeoff: by accepting less services (which would theoretically lead to
user irritation) it offers a much higher satisfaction (response rate) for services
that are accepted and a much higher profit rate to the provider.

The comparison between MaxUtil and MaxProfit shows that MaxUtil ac-
cepts more services. The reason is that MaxProfit checks if the current VM
delivers the largest profit increase (Fig. 2 Steps 19-23). In order to achieve
this, the average response time of service should be the minimum possible.
By accepting more services, the processing time of a service may be large
and thus, a profit loss is possible.

MaxProfit outperforms MaxUtil over all the performance metrics, except
the percentage of accepted services; this indicates that, among the three al-
gortihms, MaxUtil is the one that accepts as many services as possible, but
this leads to the lowest profit to the provider due to the large delays.
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It should be noted, however, that these delays do not violate, on average,
the quality of service (QoS) requirements of the services: the response rate
remains above 1/k, for both the k = 2 and k = 6 values.

Figure 9: Algorithms’ comparison for k = 6

4.2 Scenario 2

In Scenario 2 we try to understand how some small changes in the parameters
affect the performance metrics. The parameters for the specific scenario are
the following:

• Services = 200

• VMs = 15
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• Service length (MI) = U(200000,300000)

• CPU per VM = 1

• VM capacity = 10000 MIPS

• Arrival rate λ = 1
2.8

service
sec

• Transmission delay = U(2,5), where U is the uniform distribution.

In this scenario, all the VMs have once again the same capacity, but ser-
vices vary in length. The average TMIN for a service is 25sec.

The results for the Scenario 2 are summarized in Tables 4-6 and in Figures
10-14. All three algorithms exhibit the same performance, qualitatively, in
terms of how their performance is influenced by the increase in the value of
k.

metric k = 2 k = 6
Avg Util 69% 87%

Avg response rate 76% 38%
Avg profit 58% 42%

Avg accepted 60% 72%
Avg rejected 41% 28%

Table 4: MaxProfit algorithm

metric k = 2 k = 6
Avg Util 39% 60%

Avg response rate 100% 72%
Avg profit 100% 73%

Avg accepted 100% 100%
Avg rejected 0% 0%

Table 5: MaxUtil algorithm
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metric k = 2 k = 6
Avg Util 88% 77%

Avg response rate 98% 100%
Avg profit 97% 100%

Avg accepted 47% 95%
Avg rejected 53% 5%

Table 6: MinDelay algorithm

However, one significant difference that we came across in this scenario is
that MaxUtil outperforms both of the other algorithms for k = 2 not only in
terms of the average percentage of accepted services (as in Scenario 1) but
also in terms of the response rate and the average profit. Our algorithm,
MinDelay, has a very slightly worse performance in response rate and profit
but achieves a 49% higher utilization; our algorithm also clearly outperforms
the other two algorithms for k = 6.

Figure 10: MaxProfit algorithm
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Figure 11: MaxUtil algorithm

Figure 12: MinDelay algorithm
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Figure 13: Algorithms’ comparison for k = 2

Figure 14: Algorithm’s comparison for k = 6
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The reason that MaxUtil excels (even slighly) for k = 2 is that the load
(which is lower than that of Scenario 1) can be handled well by few VMs.
When more VMs are activated, because of the increase in k (as explained
in our discussion of Scenario 1) the performance of MaxUtil is clearly worse
than that of MinDelay.

4.3 Scenario 3

In this Scenario, more services arrive at the system and their length is larger.
Moreover, the capacity of a VM follows the uniform distribution and it is
between 10000 MIPS and 20000 MIPS. We defined the parameters as follows:

• Services = 500

• VMs = 10

• Service length (MI) = 400000

• CPU per VM = 1

• VM capacity = U(10000, 20000) MIPS

• Arrival rate λ = 1
3.0

service
sec

• Transmission delay = U(2,5), where U is the uniform distribution.

The average TMIN for a service is 27sec. The results for Scenario 3
are summarized in Tables 7-9 and in Fig. 15-19. All three algorithms are
shown to exhibit the same behavior as in Scenarios 1, 2 for k = 2 and k = 6,
and MinDelay is shown to outrperform MaxProfit and MaxUtil over all the
performance metrics except the percentage of accepted services. However we
need to point out that because of the high load studied in this scenario, the
percentage of accepted services by MinDelay is very low.

36



metric k = 2 k = 6
Avg Util 88% 80%

Avg response rate 75% 57%
Avg profit 53% 64%

Avg accepted 28% 76%
Avg rejected 72% 24%

Table 7: MaxProfit algorithm

metric k = 2 k = 6
Avg Util 61% 74%

Avg response rate 64% 54%
Avg profit 61% 55%

Avg accepted 100% 100%
Avg rejected 0% 0%

Table 8: MaxUtil algorithm

metric k = 2 k = 6
Avg Util 88% 78%

Avg response rate 100% 68%
Avg profit 96% 88%

Avg accepted 16% 29%
Avg rejected 84% 71%

Table 9: MinDelay algorithm

37



Figure 15: MaxProfit algorithm

Figure 16: MaxUtil algorithm
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Figure 17: MinDelay algorithm

Figure 18: Algorithm’s comparison fo k = 2
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Figure 19: Algorithm’s comparison for k = 6

The rest of the seven scenarios that were used in our study showed that,
regardless of the changes in the system parameters (including an increase in
the number of CPU per VM) the behavior of the three algorithms remained
the same. To avoid repetition, we present the results for these scenarios in
the Appendix A.
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5 Conclusions

In this thesis, we implemented two algorithms from the literature and pro-
posed one more algorithm for scheduling service requests in a Cloud archi-
tecture with the main objective of maximizing the profit. Our proposed
algorithm, MinDelay, attempts to maximize the profit while guaranteeing
the highest possible level of user satisfaction through delay minimization.

We simulated different scenarios in order to understand the performance
of each algorithm and the similarities or differences that they exhibit. Our
results have shown that our proposed algorithm exhibits better performance
than MaxUtil and MaxProfit based on several performance metrics, with the
tradeoff of accepting a smaller number of services into the system.

Our future work will focus on taking into account energy minimization
in Cloud architectures, by proposing resource allocation algorithms that
will seek a tradeoff between pricing, user QoS requirements and “greener”
scheduling at the Cloud.
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A Appendix

A.1 Scenario 4

– Services = 500

– VMs = 20

– Service length (MI) = 500000

– CPU per VM = 1

– VM capacity = U(20000, 40000) MIPS

– Arrival rate λ = 1
0.8

service
sec

– Transmission delay = U(5,10), where U is the uniform distribu-
tion.

Figure 20: Algorithms’ comparison for k = 2
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Figure 21: Algorithms’ comparison for k = 6

A.2 Scenario 5

– Services = 500

– VMs = 20

– Service length (MI) = 500000

– CPU per VM = 2

– VM capacity = 10000 MIPS

– Arrival rate λ = 1
0.8

service
sec

– Transmission delay = U(5,10), where U is the uniform distribu-
tion.
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Figure 22: Algorithm’s comparison for k = 2

Figure 23: Algorithms’ comparison for k = 6
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A.3 Scenario 6

– Services = 500

– VMs = 15

– Service length (MI) = 600000

– CPU per VM = 2

– VM capacity = 20000 MIPS

– Arrival rate λ = 1
1.2

service
sec

– Transmission delay = U(5,10), where U is the uniform distribu-
tion.

Figure 24: Algorithm’s comparison for k = 2
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Figure 25: Algorithms’ comparison for k = 6

A.4 Scenario 7

– Services = 1000

– VMs = 40

– Service length (MI) = 700000

– CPU per VM = 2

– VM capacity = 20000 MIPS

– Arrival rate λ = 1
1.0

service
sec

– Transmission delay = U(5,10), where U is the uniform distribu-
tion.
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Figure 26: Algorithms’ comparison for k = 2

Figure 27: Algorithms’ comparison for k = 6
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