ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΓΕΝΙΚΟ ΤΜΗΜΑ

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ

ΕΦΑΡΜΟΣΜΕΝΕΣ ΕΠΙΣΤΗΜΕΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ

ΔΙΠΛΩΜΑΤΙΚΗ ΔΙΑΤΡΙΒΗ ΔΙΔΑΚΤΟΡΙΚΟΥ ΔΙΠΛΩΜΑΤΟΣ ΕΙΔΙΚΕΥΣΗΣ ΚΑΤΕΥΘΥΝΣΗ : «ΕΦΑΡΜΟΣΜΕΝΑ ΚΑΙ ΥΠΟΛΟΓΙΣΤΙΚΑ ΜΑΘΗΜΑΤΙΚΑ»

Η ΜΕΘΟΔΟΣ COLLOCATION ΓΙΑ ΠΑΡΑΒΟΛΙΚΕΣ ΜΕΡΙΚΕΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΜΕ ΑΣΥΝΕΧΗ ΣΥΝΤΕΛΕΣΤΗ ΔΙΑΧΥΣΗΣ: ΣΤΗΝ ΚΑΤΕΥΘΥΝΣΗ ΠΡΟΣΟΜΟΙΩΣΗΣ ΚΑΡΚΙΝΙΚΩΝ ΟΓΚΩΝ ΕΓΚΕΦΑΛΟΥ

ΠΑΠΑΔΟΜΑΝΩΛΑΚΗ ΜΑΡΙΑ

Επιβλέπων : Καθηγητής Σαριδάκης Ιωάννης

XANIA , 2012

Η παρούσα έρευνα έχει συγχρηματοδοτηθεί από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο - ΕΚΤ) και από εθνικούς πόρους μέσω του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Biou Μάθηση» του Εθνικού Στρατηγικού Πλαισίου Αναφοράς (ΕΣΠΑ) – Ερευνητικό Χρηματοδοτούμενο Έργο: ΘΑΛΗΣ. Επένδυση στην κοινωνία της γνώσης μέσω του Ευρωπαϊκού Κοινωνικού Ταμείου.

Ευχαριστίες

Τις θερμές και ειλικρινείς ευχαριστίες μου επιθυμώ να εκφράσω στον επιβλέποντα της διδακτορικής διατριβής μου Καθηγητή κ. Ιωάννη Σαριδάκη για την εμπιστοσύνη που μου έδειξε και τον απεριόριστο χρόνο που αφιέρωσε κατά τη διάρκεια εκπόνησης της. Η πολύτιμη καθοδήγηση, οι εύστοχες και ενδιαφέρουσες παρατηρήσεις του, οι ουσιαστικες συμβουλές και παρεμβάσεις συνέβαλαν ουσιαστικά στην εκπόνηση και ολοκλήρωση της παρούσας διατριβής.

Ιδιαίτερες ευχαριστίες οφείλω επίσης στα υπόλοιπα μέλη της τριμελούς συμβουλευτικής επιτροπής Καθηγήτρια χυρία Παπαδοπούλου Ελένη και Αναπληρωτή Καθηγητή κ. Κανδυλάκη Δημήτριο για την άμεση συνεργασία μας, τις χρήσιμες συμβουλές τους και τη συμμετοχή τους στην εκπόνηση αυτής της ερευνητικής μελέτης.

Θα ήθελα επίσης να ευχαριστήσω τους Επίκουρους Καθηγητές κ. Δελή Ανάργυρο, κ. Πετράκη Μίνωα, κ. Μαθιουδάκη Εμμανουήλ και κ. Μανουσάκη Αντώνιο, για την τιμή που μου έκαναν να συμμετάσχουν στην εξεταστική επιτροπή της διδακτορικής μου διατριβής.

Ευχαριστώ επίσης όλα τα μέλη του Εργαστηρίου Εφαρμοσμένων Μαθηματικών και Η/Υ για το φιλικό περιβάλλον και και την άριστη συνεργασία τους. Θερμά ευχαριστώ τον συνάδελφο και φίλο Δρ. Αναστάση Σηφαλάκη για την πολύτιμη βοήθεια του και υποστήριξη του.

Τέλος, θα ήθελα να εκφράσω τις ευχαριστίες μου στους γονείς μου, το σύζυγο μου Ηλία Μαζοκοπάκη και την κόρη μου Καρένια, για την υπομονή, την κατανόηση και τη συνεχή συμπαράσταση που μου πρόσφεραν όλα αυτά τα χρόνια και να τους αφιερώσω την εργασία μου αυτή.

Περίληψη

Η παρούσα διατριβή ερευνά τις ιδιότητες και τη συμπεριφορά της μεθόδου Collocation των πεπερασμένων στοιχείων όταν χρησιμοποιείται για τη διακριτοποίηση και επίλυση προβλημάτων εφαρμογών από τις περιοχές της Μηχανικής και της Ιατρικής. Η Collocation μέθοδος υποστηρίζεται από κυβικά στοιχεία Hermite για την επίτευξη προσεγγίσεων υψηλής ακρίβειας.

Το βασικό μαθηματικό μοντέλο για τη περιγραφή των προβλημάτων Μηχανικής χαρακτηρίζεται από την ύπαρξη περιοδικών συνοριακών συνθηκών (βλ. κίνηση πλανητών, διάδοση κυμάτων, σταθερότητα ελαστικών συστημάτων). Για τα προβλήματα αυτά αναπτύσσεται η κυβική Hermite Collocation και μελετώνται οι συνθήκες που διασφαλίζουν τη βέλτιστη σύγκλιση επαναληπτικών μεθόδων επίλυσης του αντίστοιχου αλγεβρικού συστήματος μέσω της θεωρίας των p-cyclic πινάκων. Παράλληλα φασματικές ποσότητες συνδέονται με τα αρχικά δεδομένα του μοντέλου για τον a-priori καθορισμό βέλτιστων διαμερίσεων του Collocation πίνακα.

Τα γλοιώματα αποτελούν τους σοβαρότερους και πιο συχνούς καρκινικούς όγκους του εγκεφάλου και οι ασθενείς έχουν συνήθως χαμηλό προσδόκοιμο επιβίωσης. Το πιο συχνό πρόβλημα στη διάγνωση και θεραπέια των ασθενών με γλοίωμα είναι η ταχύτατη διήθηση των καρκινικών κυττάρων σε γειτονικό φυσιολογικό ιστό. Μαθηματικά μοντέλα, που στηρίζονται σε πειραματικά δεδομένα από μαγνητικές και αξονικές τομογραφίες δημιουργήθηκαν για να ποσοτικοποιήσουν τις βιολογικές έννοιες και να προσομοιάσουν την εξέλιξη ενός καρκινικού όγκου στον εγκέφαλο. Βασικό χαρακτηριστικό του μαθηματικού μοντέλου για την προσομοίωση της διάχυσης των γλοιωμάτων αποτελεί η ασυνέχεια που εμφανίζει ο συντελεστής διάχυσης στα σημεία διεπαφής ετερογενών περιοχών (λευκή και φαιά ουσία). Για τα προβλήματα αυτά εισάγονται νεα ασυνεχή στοιχεία Hermite τα οποία δεν διαταράσσουν την τάξη σύγκλισης της μεθόδου collocation. Η συνολική διακριτοποίηση συμπληρώνεται με σχήματα Backward Euler και Crank Nicolson.

Για τα προβλήματα αυτά αναπτύσσεται παράλληλα και μια καινοτόμος αναλυτική αριθμητική μέθοδος ολοκλήρωσης η οποία βασίζεται στην μέθοδο μετασχηματισμού Φωκά. Το πλεονέκτημα αυτής της μεθόδου σε σχέση με τις κλασσικές αριθμητικές μεθόδους είναι ότι η λύση του προβλήματος βρίσκεται απευθείας μέσω ολοκληρωμάτων σε οποιαδήποτε σημείο (x, t) χωρίς να απαιτούνται περαιτέρω υπολογισμοί σε ενδιάμεσα χρονικά στάδια.

Περιεχόμενα

1	p-cyclic SOR για προβλήματα συνοριακών τιμών με περιοδικές συνοριακές				
	συν	θήκες	1		
	1.1	Βασικές έννοιες	2		
		1.1.1 Βασικές επαναληπτικές μέθοδοι	2		
		1.1.2 Ορισμός p-cyclic πινάχων	6		
	1.2	Ορισμός προβλήματος	9		
		1.2.1 Ορισμός του Collocation πίναχα	11		
		1.2.2 Ιδιότητες του Collocation πίνακα και του αντίστοιχου Jacobi πίνακα .	16		
		1.2.3 Βέλτιστη χυχλιχή διαμέριση για τη μέθοδο της διαδοχιχής υπερχαλά-			
		ρωσης -SOR για πραγματικό φάσμα	22		
	1.3	Αριθμητικά αποτελέσματα	30		
2	Γλο	ιώματα - Μαθηματικό Μοντέλο Swanson	41		
	2.1	Εγκέφαλος	41		
	2.2	Νεοπλάσματα του Κ.Ν.Σ Γλοιώματα	43		
	2.3	Μαθηματικά μοντέλα -Ιστορική αναδρομή	47		
	2.4	Το μαθηματικό μοντέλο της Swanson	48		
3	Μέ	θοδος Immersed Interface πεπερασμένες διαφορές για το μοντέλο διά-			
	χυσ	ης καρκινικών όγκων στον εγκέφαλο με ασυνεχή σταθερά διάχυσης	53		
	3.1	Το σχεδιάγραμμα (ο σκελετός) της Immersed Interface μεθόδου	53		
	3.2	Η Immersed Interface μέθοδος με Implicit πεπερασμένες διαφορές	54		
	3.3	Η Immersed Interface μέθοδος με Crank-Nicolson Implicit πεπερασμένες			
		διαφορές	63		
	3.4	Αριθμητικά αποτελέσματα	67		
4	Her	mite Collocation μέθοδος για το μαθηματικό μοντέλο διάχυσης καρκι-			
νικών όγκων στον εγκέφαλο με ετερογενή σταθερά διάχυσι		ύν όγκων στον εγκέφαλο με ετερογενή σταθερά διάχυσης	75		
	4.1	$\mathrm{O}(\epsilon)$ προσεγγίσεις στα σημεία διεπαφής \ldots	75		
		4.1.1 Collocation μέθοδος με πολυώνυμα Hermite για τη χωρική διακριτο-			
		ποίηση και Backward Euler σχήμα για τη χρονική διακριτοποίηση	76		

		4.1.2	Collocation μέθοδος με πολυώνυμα Hermite για τη χωρική διακριτο-					
			ποίηση και Crank Nicolson σχήμα για τη χρονική διακριτοποίηση	83				
		4.1.3	Αριθμητικά αποτελέσματα	87				
		4.1.4	Ευστάθεια	89				
		4.1.5	Χωρικό σχετικό σφάλμα	94				
	4.2	Ασυνε	χή Hermite χυβιχά στοιχεία στα σημεία διεπαφής	101				
		4.2.1	Backward Euler σχήμα για τη χρονική διακριτοποίηση	101				
		4.2.2	Crank Nicolson σχήμα για τη χρονική διακριτοποίηση	107				
		4.2.3	Αριθμητικά αποτελέσματα	109				
		4.2.4	Ευστάθεια	111				
		4.2.5	Χωρικό σχετικό σφάλμα	114				
	4.3	$O(\epsilon) \pi$	ροσεγγίσεις και ασυνεχή Hermite κυβικά πολυώνυμα	119				
		4.3.1	Backward Euler σχήμα για τη χρονική διακριτοποίηση	119				
		4.3.2	Crank-Nicolson σχήμα για τη χρονική διακριτοποίηση	122				
		4.3.3	Αριθμητικά αποτελέσματα	125				
		4.3.4	Ευστάθεια	126				
		4.3.5	Σχετικό χωρικό σφάλμα	129				
5	Μέθοδος Φωνά στο μαθηματικό μοντέλο τής διάγυσης χαρχινικού όγχου							
0	$-$ πτου στούς \pm ωλα ο το μαυηματικό μοντελό της σταχοσης χαρχινικού σγχη							
	5.1 Εφαρμογή τής μεθόδου Φωγά στο μαθηματιγό μοντέλο τής Swapson							
	5.2	Επικαι	μπύλια Ολοκλήρωση	142				
5.3 Ολοκληρώματα			ηρώματα	147				
	5.4 Ιδιότητες ολοκληρωμάτων			149				
		5.4.1	Η πολυπλοκότητα της αριθμητικής ολοκλήρωσης	149				
		5.4.2	Συμμετριχότητα	150				
	5.5	Αριθμι	ητικά αποτελέσματα τής μεθόδου Φωκά στο πρόβλημα διάγυσης	153				
		5.5.1	Η συμπεριφορά της λύσης του προβλήματος	153				
		5.5.2	Οι ιδιότητες των ολοχληρωμάτων στη λύση του προβλήματος	153				
		5.5.3	Σύγκριση των μεθόδων Φωκά και της collocation μεθόδου	159				
6	Συμ	ιπεράσι	ματα - Επίλογος	169				

Κεφάλαιο 1

p-cyclic SOR για προβλήματα συνοριακών τιμών με περιοδικές συνοριακές συνθήκες

Στο πρώτο μέρος τής παρούσας εργασίας μελετήσαμε το πρόβλημα συνοριακών τιμών με περιοδικές συνοριακές συνθήκες:

$$u''(x) + F(x)u(x) = g(x) , \quad x \in I_x \equiv [a, b]$$
 (1.1)

$$u(a) - z_1 u(b) = w_1, (1.2)$$

$$u'(a) - z_2 u'(b) = w_2. (1.3)$$

Τα συγκεκριμένα προβλήματα είναι εξαιρετικού ενδιαφέροντος καθώς καλύπτουν ένα μεγάλο φάσμα επιστημονικών εφαρμογών, όπως την κίνηση των πλανητών [22], τη μετάδοση του κύματος [8], τη σταθερότητα των ελαστικών συστημάτων [5] και πολλά κβαντομηχανικά προβλήματα [27].

Η εφαρμογή πεπερασμένων στοιχείων σε αυτό το είδος των προβλημάτων οδηγούν σε μεγάλα και αραιά συστήματα των οποίων ο πίνακας είναι p-cyclic μορφής. Η χρήση των block επαναληπτικών μεθόδων για την επίλυση τέτοιων γραμμικών συστημάτων, καθώς και η ζήτηση ταχέων ρυθμών σύγκλισης, απαιτούν τη βέλτιστη διαμέριση του πίνακα συντελεστών. Στην εργασία αυτή ως μέθοδο διακριτοποίησης χρησιμοποιήσαμε την μέθοδο collocation των πεπερασμένων στοιχείων με συναρτήσεις βάσης τα πολυώνυμα Hermite και για την επίλυση του συστήματος την SOR μέθοδο. Η επίλογή της βέλτιστης διαμέρισης του Collocation πίνακα που προκύπτει, οδηγεί σε βέλτιστους ρυθμούς σύγκλισης της SOR μεθόδου.

1.1 Βασικές έννοιες

Στην ενότητα αυτή θα παρουσιάσουμε μια σειρά από βασικές έννοιες της Γραμμικής Άλγεβρας που θα χρησιμοποιηθούν αργότερα.

1.1.1 Βασικές επαναληπτικές μέθοδοι

Ο βασικός σκοπός της ενότητας αυτής είναι η αριθμητική επίλυση ενός συστήματος

$$Ax = b \tag{1.4}$$

όπου $A \in \mathbb{R}^{n,n}$, $b \in \mathbb{R}^n$ και $det(A) \neq 0$ με det(A) να συμβολίζει την ορίζουσα του πίνακα Α με τις λεγόμενες επαναληπτικές μεθόδους. Το κύριο χαρακτηριστικό των επαναληπτικών μεθόδων είναι ότι ξεκινούν από μια αρχική προσέγγιση $x^{(0)}$ της λύση x (συνήθως τυχαία) και παράγουν με τη βοήθεια ενός επαναληπτικού αλγορίθμου μια ακολουθία διαδοχικών προσεγγίσεων $x^{(m)}$, m = 1, 2, 3..., η οποία υπό ορισμένες προϋποθέσεις συγκλίνει στη λύση του συστήματος x.

Για την παραγωγή επαναληπτικών μεθόδων θεωρούμε μια διάσπαση του πίνακα Α:

$$A = M - N \tag{1.5}$$

με περιορισμούς:

α) Ο πίναχας Μ να είναι αντιστρέψιμος, και

β)Το γραμμικό σύστημα με πίνακα συντελεστών των αγνώστων Μ να λύνεται με πολύ λιγότερες πράξεις από ένα άλλο πίνακα συντελεστών αγνώστων Α.

Με τη χρήση της σχέσης (1.5), η σχέση (1.4) γράφεται:

$$Mx = Nx + b \tag{1.6}$$

ή

$$x = Tx + c \tag{1.7}$$

όπου $T:=M^{-1}N$ και $c:=M^{-1}b.$

Η σχέση (1.7) αμέσως μας εισάγει στον επαναληπτικό κανόνα:

$$x^{(k+1)} = Tx^{(k)} + c, \quad k = 0, 1, 2, \dots$$
 (1.8)

με $x^{(0)} \in \mathbb{R}^n$ τυχαίο διάνυσμα.

Ο πίνακας Τ ονομάζεται επαναληπτικός πίνακας του αλγορίθμου ή της επαναληπτικής μεθόδου.

Ο παραπάνω αλγόριθμος παράγει μια ακολουθία διανυσμάτων $\{x^{(k)}\}_{k=0}^{\infty}$ η οποία κάτω από συγκεκριμένες προϋποθέσεις συγκλίνει στην λύση $x = A^{-1}b$ του γραμμικού συστήματος.

Ορισμός 1.1.1 (Τάξη σύγκλισης)

Έστω οι πίνακες $A, B \in C^{n,n}$. Αν για κάποιο θετικό ακέραιο m και για μια φυσική νόρμα $\|.\|_{\beta}$ είναι $\|A^m\|_{\beta} < 1$ τότε η ποσότητα

$$R(A^m) := -\ln[(\|A^m\|_{\beta})^{\frac{1}{m}}] = \frac{-\ln\|A^m\|_{\beta}}{m},$$
(1.9)

καλείται μέση ταχύτητα σύγκλισης για m επαναλήψεις του πίνακα A. Εάν $R(A^m) < R(B^m)$ τότε ο B είναι επαναληπτικά ταχύτερος του A για m επαναλήψεις.

Για $k \to \infty$ μπορεί να αποδειχθεί [66] ότι η μέση ασυμπτωτική ταχύτητα σύγκλισης για m επαναλήψεις $R(A^m)$ ικανοποιεί την σχέση:

$$R_{\infty}(A) := \lim_{m \to \infty} R(A^m) = -\ln \rho(A).$$
(1.10)

Δηλαδή το πόσο γρήγορα συγκλίνει η (1.8) εξαρτάται μόνο από το $\rho(T)$. Να σημειωθεί ότι όσο μικρότερη είναι η φασματική ακτίνα του επαναληπτικού πίνακα T τόσο ταχύτερα η ακολουθία $\{x^{(k)}\}_{k=0}^{\infty}$ συγκλίνει στη λύση του συστήματος.

Θεώρημα 1.1.1

Αναγκαία και ικανή συνθήκη για τη σύγκλιση της ακολουθίας των παραγόμενων από τον αλγόριθμο (1.8) διανυσμάτων στη λύση $x = A^{-1}b$ του συστήματος Ax = b είναι :

$$\rho(T) < 1 \tag{1.11}$$

όπου $\rho(T)$ είναι η φασματική ακτίνα του πίνακα T με $\rho(T) = max|\lambda_i|, i = 1, ... n$ (όπου λ_i οι ιδιοτιμές του πίνακα T).

Θεώρημα 1.1.2

Μια άλλη ικανή συνθήκη για τη σύγκλιση του αλγορίθμου είναι

$$\|T\| < 1 \tag{1.12}$$

όπου ||.|| είναι μια οποιοδήποτε φυσική νόρμα.

Λόγω της γνωστής σχέσης $\rho(T) \leq \|T\|$ και του παραπάνω θεωρήματος (1.1.1) η απόδειξη είναι προφανής.

Οι κλασσικές επαναληπτικές μέθοδοι σημείου βασίζονται στην ακόλουθη διάσπαση του πίνακα συντελεστών των αγνώστων Α του γραμμικού συστήματος Ax = b:

$$A = D - L - U \tag{1.13}$$

όπου D είναι διαγώνιος πίνακας που περιέχει τα στοιχεία της διαγωνίου του πίνακα A, L ο κάτω τριγωνικός πίνακας του A που περιέχει τα στοιχεία του πίνακα κάτω από τη διαγώνιο και U ο άνω τριγωνικός πίνακας που περιέχει τα στοιχεία του πίνακα πάνω από τη διαγώνιο. Η διάσπαση αυτή ορίζεται μονοσήμαντα.

Για παράδειγμα η διάσπαση του πίναχα Α

$$A = \begin{bmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ a_{2,1} & a_{2,2} & \dots & a_{2,n} \\ \vdots & & & \vdots \\ a_{n,1} & a_{n,2} & \dots & a_{n,n} \end{bmatrix}$$
(1.14)

στον

$$D := \begin{bmatrix} a_{1,1} & & & \\ & a_{2,2} & & \\ & & \ddots & \\ & & & a_{n,n} \end{bmatrix},$$
(1.15)

διαγώνιο πίναχα,

L κάτω τριγωνικό πίνακα

$$L := - \begin{bmatrix} 0 & & & \\ a_{2,1} & 0 & & 0 \\ a_{3,1} & a_{3,2} & & \\ \vdots & \vdots & & \ddots \\ a_{n,1} & a_{n,2} & \dots & a_{n,n-1} & 0 \end{bmatrix},$$
(1.16)

και Uάνω τριγωνικό πίνακα

$$U := - \begin{bmatrix} 0 & a_{1,2} & a_{1,3} & \dots & a_{1,n} \\ 0 & a_{2,3} & \dots & a_{2,n} \\ & 0 & & \vdots \\ 0 & & \ddots & a_{n-1,n} \\ & & & 0 \end{bmatrix}.$$
 (1.17)

Στην περίπτωση των block επαναληπτικών μεθόδων θεωρούμε πάλι την επίλυση του γραμμικού συστήματος Ax = b μόνο που τώρα ορίζουμε τον πίνακα A σε μια $n \times n$ block μορφή. Βασική προϋπόθεση είναι ότι οι διαγώνιοι block (υποπίνακες) πρέπει να είναι τετραγωνικοί πίνακες. Η διάσπαση τού πίνακα A είναι της ίδιας μορφής όπως στην σχέση (1.13) με τη βασική διαφορά ότι ο πίνακας D είναι block διαγώνιος πίνακας $D = diag(A_{1,1}, A_{2,2}, \ldots A_{n,n})$, οι πίνακες L και U ορίζονται αντίστοιχα αυστηρά κάτω τριγωνικοί και αυστηρά άνω τριγωνικοί block πίνακες του A, έτσι ώστε η διάσπαση (1.13) να είναι μονοσήμαντα ορισμένη. Έστω λοιπόν ο πίναχας Α της μορφής:

$$A = \begin{bmatrix} A_{1,1} & A_{1,2} & \dots & A_{1,n} \\ A_{2,1} & A_{2,2} & \dots & A_{2,n} \\ \vdots & & & \vdots \\ A_{n,1} & A_{n,2} & \dots & A_{n,n} \end{bmatrix}$$
(1.18)

οι block πίνα
χες $D,\,L$ και Uτης διάσπαση
ςA=D-L-Uορίζονται ως εξής:

$$D := \begin{bmatrix} A_{1,1} & & & \\ & A_{2,2} & & \\ & & \ddots & \\ & & & A_{n,n} \end{bmatrix},$$
(1.19)

$$L := - \begin{bmatrix} O & O & O & \dots & O & O \\ A_{2,1} & O & O & \dots & O & O \\ \vdots & \ddots & \ddots & & & \vdots \\ \vdots & & \ddots & \ddots & & \vdots \\ \vdots & & \ddots & \ddots & & \vdots \\ A_{n,1} & A_{n,2} & \dots & \dots & A_{n,n-1} & O \end{bmatrix},$$
(1.20)

$$U := - \begin{bmatrix} O & A_{1,2} & \dots & A_{1,n} \\ O & O & O & \dots & O & A_{2,n} \\ \vdots & \ddots & \ddots & & \vdots \\ \vdots & & \ddots & \ddots & & \vdots \\ \vdots & & \ddots & \ddots & & \vdots \\ \vdots & & & \ddots & \ddots & A_{n-1,n} \\ O & O & O & \dots & O & O \end{bmatrix}.$$
 (1.21)

Ο βασικός περιορισμός σ'ολες τις επαναληπτικές μεθόδους είναι ότι ο πίνακας D να είναι αντιστρέψιμος. Είναι φανερό πως το τελευταίο συμβαίνει εάν και μόνο εάν οι block υποπίνακες $A_{i,i}$, i = 1(1)n είναι αντιστρέψιμοι. Το γεγονός ότι ο D πληροί και τη δεύτερη προϋπόθεση είναι φανερό αφού ένα γραμμικό σύστημα με πίνακα συντελεστών αγνώστων D στην πραγματικότητα n συστήματα με πίνακες συντελεστών $A_{i,i}$, i = 1(1)n αντίστοιχα λύνονται οικονομικότερα από ένα πίνακα συντελεστών αγνώστων A.

Οι επαναληπτικοί πίνακες των κλασσικών επαναληπτικών μεθόδων είναι ως ακολούθως:

• Στη μέθοδο Jacobi έχουμε : M = D και N = L + U άρα $T = D^{-1}(L + U)$.

- στη μέθοδο του Gauss-Seidel έχουμε: M = D L και N = U τότε $T = (D L)^{-1}U$
- ενώ στην SOR $M = \frac{1}{\omega}(D \omega L)$ και $N = \frac{1}{\omega}[(1 \omega)D + \omega U]$ οπότε $T = (D \omega L)^{-1}[(1 \omega)D + \omega U]$

Ο επαναληπτικός πίνακας του Jacobi συμβολίζεται με J και ο επαναληπτικός πίνακας της SOR με \mathcal{L}_{ω} . Όταν $\omega = 1$ η SOR ταυτίζεται με τη μέθοδο Gauss-Seidel.

Οι επαναληπτικοί πίνακες γραφονται και ως εξής :

- Στη μέθοδο Jacobi: $J = I D^{-1}A$,
- στη μέθοδο Gauss-Seidel: $T = I (D L)^{-1}A$,
- και στη μέθοδο SOR $\mathcal{L}_{\omega} = I \omega (D \omega L)^{-1} A$

Οι επαναληπτικοί πίνακες των block επαναληπτικών μεθόδων είναι αντίστοιχοι με τους προηγούμενους μόνο που στην περίπτωση αυτή είναι όλοι σε block μορφή.

1.1.2 Ορισμός p-cyclic πινάχων

Ορισμός 1.1.2

Ένας πίνακας $A \in \mathbb{R}^{n \times n}$ ονομάζεται **weakly cyclic of index p** εάν υπάρχει ένας μεταθετικός πίνακας P τέτοιος ώστε ο πίνακας PAP^T να είναι της μορφής:

$$PAP^{T} = \begin{bmatrix} O & O & O & \dots & O & A_{1,p} \\ A_{2,1} & O & O & \dots & O & O \\ O & A_{3,2} & O & \dots & O & O \\ \vdots & & \ddots & \ddots & & \vdots \\ \vdots & & & \ddots & \ddots & & \vdots \\ O & O & O & \dots & A_{p,p-1} & O \end{bmatrix}$$
(1.22)

όπου, Ο είναι μηδενικοί πίνακες και οι διαγώνιοι μηδενικοί πίνακες είναι τετραγωνικοί.

Έστω ένας πίνακας Α της μορφής :

$$A = \begin{bmatrix} A_{1,1} & O & O & \dots & O & A_{1,p} \\ A_{2,1} & A_{2,2} & O & \dots & O & O \\ \vdots & \ddots & \ddots & & & \vdots \\ \vdots & & \ddots & \ddots & & & \vdots \\ \vdots & & & \ddots & \ddots & & \vdots \\ O & O & O & \dots & A_{p,p-1} & A_{p,p} \end{bmatrix}$$
(1.23)

με $A_{i,i}$, $1 \leq i \leq p$ τετραγωνικοί και αντιστρέψιμοι πίνακες τότε ο block Jacobi πίνακας $J_p := D^{-1}(L+U) = I - D^{-1}A$ (όπου D ο διαγώνιος πίνακας του A, L ο κάτω τριγωνικός πίνακας του A και U ο ο άνω τριγωνικός πίνακας του A) που παράγεται από τον παραπάνω πίνακα θα είναι της μορφής

$$J_p := \begin{bmatrix} O & O & O & \dots & O & B_1 \\ B_2 & O & O & \dots & O & O \\ O & B_3 & O & \dots & O & O \\ \vdots & & \ddots & \ddots & & \vdots \\ \vdots & & & \ddots & \ddots & & \vdots \\ O & O & O & \dots & B_p & O \end{bmatrix}$$
(1.24)

με $B_1 := -A_{1,1}^{-1}A_{1,p}$ και $B_j := -A_{j,j}A_{j,j-1}, \ 2 \le j \le p.$

Ορισμός 1.1.3

Eνας πίνακας $A \in \mathbb{R}^{n \times n}$ τής μορφής (1.23) ονομάζεται **p-cyclic** εάν ο block διαγώνιος πίνακας $D = diag(A_{1,1}, A_{2,2}, \ldots, A_{p,p})$ είναι αντιστρέψιμος και ο block Jacobi πίνακας J_p είναι **weakly** cyclic of index p.

Θεώρημα 1.1.3 (Romanovsky) [66]

Eάν ο $A \in \mathbb{R}^{n \times n}$ είναι weakly cyclic of index k (k > 1), τότε ισχύει:

$$\phi(\lambda) = det(\lambda I - A) = \lambda^m \prod_{j=1}^r (\lambda^k - \sigma_j^k)$$
(1.25)

όπου m + rk = n και σ_i είναι μια μη μηδενική ιδιοτιμή του A.

Ορισμός 1.1.4

Evaς p-cyclic πίνακας $A \in \mathbb{R}^{n \times n}$ τής μορφής (1.23) ονομάζεται **consistently ordered** εάν όλες οι ιδιοτιμές του πίνακα

$$J_p(a) = aD^{-1}L + a^{(p-1)}D^{-1}U$$
(1.26)

που παράγεται από τον Jacobi πίνακα $J_p = D^{-1}(L+U)$ είναι ανεξάρτητες του a για $a \neq 0$. Άλλιως οι πίνακες A και B είναι inconsistently ordered.

Ο επαναληπτικός πίνακας της SOR συμβολίζεται με \mathcal{L}_{ω} και δίνεται από τη σχέση:

$$\mathcal{L}_{\omega} = (D - \omega L)^{-1} [(1 - \omega)D + \omega U]$$
(1.27)

όπου ω καλείται η παράμετρος της υπερχαλάρωσης.

Θεώρημα 1.1.4 (Kahan) [66]

Για την σύγκλιση της μεθόδου της SOR αναγκαία συνθήκη είναι:

$$|\omega - 1| < 1, \quad \omega \in C \Longrightarrow \omega \in (0, 2), \omega \in \mathcal{R}$$

$$(1.28)$$

Είναι γνωστό ότι η μέθοδος της SOR συγκλίνει εαν και μόνο εάν $\rho(\mathcal{L}_{\omega}) < 1$ και όσο μικρότερη είναι η φασματική ακτίνα τοσο πιο γρήγορα συγκλίνει. Γι' αυτό στη μέθοδο της SOR είναι σημαντικό όχι μόνο να βρούμε την παράμετρο ω για την οποία συγκλίνει η μέθοδος άλλα επίσης να βρεθεί και η βέλτιστη παράμετρος ω_p που ελαχιστοποιεί την $\rho(\mathcal{L}_{\omega})$. Δηλαδή $\rho(\mathcal{L}_{\omega_p}) \leq \rho(\mathcal{L}_{\omega}) \, \forall \omega \in (0,2)$. Παρόλο που γνωρίζουμε ελάχιστα στοιχεία για τη βέλτιστη παράμετρο ω_p για αυθαίρετους πίνακες, γνωρίζουμε πολλά περισσότερα για τους p - cyclic πίνακες.

Σε αυτή την κατεύθυνση εάν ο πίνακας A είναι ένας consistently ordered p-cyclic πίνακας τότε υπάρχει μια βασική σχέση μεταξύ των ιδιοτιμών του block Jacobi πίνακα με τις ιδιοτιμές του επαναληπτικού πίνακα της SOR.

Θεώρημα 1.1.5 [66]

Έστω πίνακας Α της μορφής (1.18) να είναι consistently ordered p-cyclic με αντιστρέψιμους τους διαγώνιους πίνακες $A_{i,i}$ με $1 \le i \le N$. Εάν $\omega \ne 0$, λ μια μη μηδενική ιδιοτιμή του πίνακα \mathcal{L}_{ω} και μ ικανοποιεί τη σχέση

$$(\lambda + \omega - 1)^p = \lambda^{p-1} \omega^p \mu^p \tag{1.29}$$

τότε μ είναι μια ιδιοτιμή του block Jacobi πίνακα. Ισχύει και το αντίστροφο, δηλαδή αν μ είναι η ιδιοτιμή του πίνακα του Jacobi και λ ικανοποιεί τη παραπάνω σχέση τότε λ είναι η ιδιοτιμή του πίνακα της SOR L_ω [66].

Θεωρώντας περαιτέρω ότι όλες οι ιδιοτιμές του πίνακ
α J^p_p ικανοποιούν τη σχέση:

$$0 \le \mu^p \le \rho(J_p^p) < 1$$
 (1.30)

ο Varga [66] απέδειξε ότι η βέλτιστη παράμετρος ω_p , είναι η μοναδική θετική λύση της εξίσωσης

$$[\rho(J_p)\omega]^p = p^p(p-1)^{1-p}(\omega-1)$$
(1.31)

στο διάστημα $(1, \frac{p}{p-1}).$

Στο βέλτιστο ω_p αντιστοιχεί η φασματι
κή ακτίνα:

$$\rho(\mathcal{L}_{\omega_p}) = (p-1)(\omega_p - 1) \tag{1.32}$$

Στην περίπτωση όπου το p=2η μοναδική ρίζα ω_2 της εξίσωσης (1.31) μπορεί να εκφραστεί αντίστοιχα ως :

$$\omega_2 = \frac{2}{1 + \sqrt{1 - \rho^2(J_2)}} = 1 + \left(\frac{\rho(J_p)}{1 + \sqrt{1 - \rho^2(J_2)}}\right)^2 \tag{1.33}$$

Αντίστοιχα η σχέση που συνδέει τις ιδιοτιμές του block Jacobi πίναχα με τις ιδιοτιμές του επαναληπτικού πίναχα της SOR για 2-cyclic consistently ordered πίναχες δίνεται από το παραχάτω θεώρημα ([71]):

Θεώρημα 1.1.6 [66]

Έστω ότι ο πίνακας A είναι 2-cyclic consistently ordered πίνακας. Εάν $\mu \in \sigma(J)$ και λ ικανοποιεί την σχέση

$$(\lambda + \omega - 1)^2 = \omega^2 \mu^2 \lambda \tag{1.34}$$

τότε $\lambda \in \sigma(\mathcal{L}_{\omega})$. Αντίστροφα , αν $\lambda \in \sigma(\mathcal{L}_{\omega}) \setminus \{0\}$ και μ ικανοποιεί την παραπάνω σχέση τότε $\mu \in \sigma(J)$.

Ανάλογα αποτελέσματα έχουν παραχθεί [17, 43, 69] για την περίπτωση όπου οι ιδιοτιμές του πίνακα J_p^p είναι αρνητικές, δηλαδή:

$$-(\frac{p}{p-2})^p < -\rho(J_p^p) \le \mu^p \le 0$$
(1.35)

1.2 Ορισμός προβλήματος

Τα τελευταία χρόνια έχουν παραχθεί πολύ ενδιαφέροντα αποτελέσματα στην θεωρία της διαμέρισης των p-cyclic πινάκων στις επαναληπτικές μεθόδους. Πρώτοι που μελέτησαν το πρόβλημα τής διαμέρισης ενός 3-cyclic consistently ordered matrix σε 2-cyclic για να πέτυχουν βέλτιστη SOR ήταν ο Markhan, Neumann, Plemmons [37]. Οι παραπάνω απέδειξαν ότι η 2-cyclic SOR μέθοδος συγκλίνει για αρκετά μικρή τιμή της παραμέτρου της SOR, σε αντίθεση με την 3-cyclic μορφή, και ότι η 2-cyclic προσέγγιση είναι ασυμπτωτικά γρηγορότερη. Αργότερα οι Galanis et al. [17] στα παραπάνω αποτελέσματα κάλυψαν και την περίπτωση του μη αρνητικού και μη θετικού φάσματος $σ(J_p^p)$ για οποιαδήποτε p-cyclic διαμέριση. Έπειτα οι Pierce et al.[48] έκαναν μια εντυπωσιακή επέκταση του παραπάνω αποτελέσματος. Ο πινάκας Α της μορφής (1.23) μπορεί να διαμεριστεί με πολλούς και διαφορετικούς τρόπους σε ένα q-cyclic πίνακα με $2 \le q < p$. Για παράδειγμα ένας 4 - cyclic πίνακας :

$$A = \begin{bmatrix} A_{1,1} & O & O & A_{1,4} \\ A_{2,1} & A_{2,2} & O & O \\ O & A_{3,2} & A_{3,3} & O \\ O & O & A_{4,3} & A_{4,4} \end{bmatrix}$$
(1.36)

μπορεί να διαμεριστεί είτε στην μορφή

$$A = \begin{bmatrix} A_{1,1} & O & O & A_{1,4} \\ \hline A_{2,1} & A_{2,2} & O & O \\ O & A_{3,2} & A_{3,3} & O \\ O & O & A_{4,3} & A_{4,4} \end{bmatrix}$$
(1.37)

είτε στην μορφή

$$A = \begin{bmatrix} A_{1,1} & O & O & A_{1,4} \\ \hline A_{2,1} & A_{2,2} & O & O \\ \hline O & A_{3,2} & A_{3,3} & O \\ \hline O & O & A_{4,3} & A_{4,4} \end{bmatrix}$$
(1.38)

όπου η πρώτη περίπτωση αντιστοιχεί σ' ένα 2 - cyclic πίναχα ενώ η δεύτερη οδηγεί σ' ένα 3 - cyclic πίναχα. Οι παραπάνω λοιπόν απέδειξαν ότι η q - cyclic SOR με $2 \le q < p$ η οποία προχύπτει από την διαμέριση απαιτεί τον ίδιο αριθμό πράξεων σε χάθε επαναληπτιχό βήμα όπως χαι στην p - cyclic SOR. Αργότερα οι Eirmann et al. [12] απέδειξαν ότι η διαμέριση σε 2 - cyclic πίναχα δεν οδηγεί πάντα σε χαλύτερους ρυθμούς σύγχλισης αχόμα χαι εαν οι ιδιοτιμές του πίναχα J_p^p είναι πραγματιχές. Χαραχτηριστιχά είναι και τα αποτελέσματα των Galanis et al. [16] οι οποίοι έδειξαν ποια είναι η βέλτιστη διαμέριση ενός block p-cyclic consistently ordered πίναχα που αντιστοιχεί στην βέλτιστη SOR για την γενιχή περίπτωση όπου οι ιδιοτιμές του πίναχα J_p^p είναι πραγματιχές. Οι Hadjidimos et al. [20] αντιμετώπισαν χαι αυτοί το πρόβλημα της βέλτιστης διαμέρισης των p-cyclic πινάχων σε q-cyclic πίναχες ώστε να πετύχουν τον βέλτιστο ρυθμό σύγχλισης της SOR επαναληπτιχής μεθόδου. Αργότερα τα παραπάνω αποτελέσματα εμπλουτίστηχαν από τη θεωρία του Varga [66] για p-cyclic πίναχες χαι τον ρόλο τους στις επαναληπτιχές μεθόδους.

Παρά την ύπαρξη πολλών θεωρητικών μεθόδων για την οικογένεια των p-cyclic πινάκων, οι εφαρμογές σχετικά με την αριθμητική επίλυση Προβλημάτων Συνοριακών Τιμών (ΠΣΤ), για p > 3 είναι πολύ περιορισμένες. Στην παρούσα εργασία, που γενικεύει τα αποτελέσματα της [53], δείχνουμε πόσο φυσικά παράγονται οι p-cyclic πίνακες από τη διακριτοποίηση των (ΠΣΤ) προβλημάτων με περιοδικές συνοριακές συνθήκες χρησιμοποιώντας μεθόδους πεπερασμένων στοιχείων.

Ως πρόβλημα όπως αναφέραμε (1.3) θεωρούμε το (ΠΣΤ):

$$u''(x) + F(x)u(x) = g(x) , \quad x \in I_x \equiv [a, b]$$
 (1.39)

$$u(a) - z_1 u(b) = w_1 \tag{1.40}$$

$$u'(a) - z_2 u'(b) = w_2 \tag{1.41}$$

με F(x) και g(x) πραγματικές συναρτήσεις και a, b, z_1, z_2, w_1, w_2 σταθερές.

Ως μέθοδο διαχριτοποιήσης του παραπάνω προβλήματος χρησιμοποιήσαμε τη μέθοδο των πεπερασμένων στοιχείων Collocation με συναρτήσεις βάσης τα πολυώνυμα Hermite [4, 6, 21] χαι για την επίλυση του αραίου γραμμικού συστήματος την SOR επαναληπτική μέθοδο. Η βέλτιστη διαμέριση του Collocation πίναχα που προχύπτει, οδηγεί σε βέλτιστους ρυθμούς σύγχλισης της SOR μεθόδου.

1.2.1 Ορισμός του Collocation πίναχα

Θεωρούμε μια ομοιόμορφη διαμέριση του διαστήματος [a, b] σε N υποδιαστήματα $I_m = [x_m, x_{m+1}]$ μήχους $h = \frac{b-a}{N}, m = 1, \ldots, N$ και κόμβους $x_m = a + (m-1)h, m = 1, \ldots, N + 1$. Χρησιμοποιώντας πεπερασμένα στοιχεία με συναρτήσεις βάσης τα πολυώνυμα Hermite ψάχνουμε να βρούμε την τιμή της προσεγγιστικής λύσης $u_n(x)$ στη μορφή:

$$u(x) \cong u_n(x) = \sum_{m=1}^{N+1} [a_{2m-1}\phi_{2m-1}(x) + a_{2m}\phi_{2m}(x)], \qquad (1.42)$$

όπου $\phi_{2m-1}(x), \phi_{2m}(x)$ είναι τα Hermite [4, 53, 54] κυβικά πολυώνυμα κεντραρισμένα στον κόμβο x_m .

Γενικά, τα τμηματικά κυβικά πολυώνυμα Hermite ορίζονται ως εξής:

$$\phi(x) = \begin{cases} \phi^+(x) &, x \in [0, 1] \\ \phi^-(x) &, x \in [-1, 0] \\ 0 &, x \notin [-1, 1] \end{cases}$$
(1.43)

όπου

$$\phi^{+}(x) = \begin{cases} (1-x)^{2}(1+2x) &, x \in [0,1] \\ 0 &, x \notin [0,1] \end{cases}$$
(1.44)

$$\phi^{-}(x) = \begin{cases} (1+x)^{2}(1-2x) &, x \in [0,1] \\ 0 &, x \notin [0,1] \end{cases}$$
(1.45)

$$\psi(x) = \begin{cases} \psi^+(x) &, x \in [0,1] \\ \psi^-(x) &, x \in [-1,0] \\ 0 &, x \notin [-1,1] \end{cases}$$
(1.46)

όπου

$$\psi^{+}(x) = \begin{cases} x(1-x)^{2} & , & x \in [0,1] \\ 0 & , & x \notin [0,1] \end{cases}$$
(1.47)

$$\psi^{-}(x) = \begin{cases} x(1+x)^{2} & , \quad x \in [0,1] \\ 0 & , \quad x \notin [0,1] \end{cases}$$
(1.48)

Άρα $\phi(x) = (1-x)^2(1+2x)$ και το $\psi(x) = x(1-x)^2$ για $x \in [0,1]$ Σε κάθε κόμβο x_m αντιστοιχούν δύο συναρτήσεις που ορίζονται ως εξής:

$$\phi_{2m-1}(x) = \begin{cases} \phi(\frac{x_m - x}{h}) &, & x \in I_{m-1} \\ \phi(\frac{x - x_m}{h}) &, & x \in I_m \\ 0 &, & \text{diagoretical} \end{cases}$$
(1.49)

και

$$\psi_{2m}(x) = \begin{cases} -\psi(\frac{x_m - x}{h}) &, & x \in I_{m-1} \\ \psi(\frac{x - x_m}{h}) &, & x \in I_m \\ 0 &, & \text{diagoretixá} \end{cases}$$
(1.50)

όπου οι συναρτήσεις $\phi(x), \psi(x)$ προ
έρχονται από γενίχευση των πολυώνυμων Hermite στο [0, 1].

Ένα άμεσο συμπέρασμα των παραπάνω διευχρινίσεων είναι ότι η τιμή της προσεγγιστιχής λύσης $u_n(x)$ για οποιαδήποτε x στο διάστημα I_m μπορεί να υπολογιστεί προσθέτοντας μεριχούς μόνο όρους, δηλαδή

$$u_n(x) = \sum_{j=2m-1}^{2m+2} a_j \phi_j(x), \qquad x \in I_m.$$
(1.51)

Η παραπάνω σχέση σε συνδυασμό με τις βασικές ιδιότητες των Hermite κυβικών πολυωνύμων:

$$\phi_{2m-1}(x_k) = \delta_{m,k},\tag{1.52}$$

$$\phi_{2m-1}'(x_k) = 0, \tag{1.53}$$

Σχήμα 1.1: Πολυώνυμα Hermite

$$\phi_{2m}(x_k) = 0, \tag{1.54}$$

$$\phi_{2m}'(x_k) = \frac{1}{h} \delta_{m,k}, \tag{1.55}$$

όπου $\delta_{m,k}$ δηλώνει το Δέλτα του Kronecker υποδηλώνει ότι:

$$a_{2m-1} = u_n(x_m), (1.56)$$

$$a_{2m+1} = u_n(x_{m+1}), (1.57)$$

$$a_{2m} = h u'_n(x_m), (1.58)$$

$$a_{2m+2} = u'_n(x_{m+1}). (1.59)$$

Στη διακριτοποίηση η collocation μέθοδος επιτυγχάνεται επιβάλλοντας το υπόλοιπο $R_n(x) \equiv u_n''(x) + F(x)u_n(x) - g(x)$ να μηδενίζεται στα εσωτερικά 2N(2 για κάθε υποδιάστημα) σημεία της διαμέρισης του πεδίου Ω $a < \sigma_2 < \sigma_3 \dots < \sigma_{n-1} < b$ και απαιτώντας η προσεγγιστική λύση u_n να ικανοποιεί τις συνοριακές συνθήκες στα δύο συνοριακά collocation σημεία $\sigma_1 = a$ και $\sigma_n = b$.

 Δ ηλαδή:

$$u_n''(\sigma_k) + F(\sigma_k)u(\sigma_k) = g(\sigma_k) , \quad k = 2, \dots, n-1$$
 (1.60)

 $u_n(\sigma_1) - z_1 u_n(\sigma_n) = w_1$ (1.61)

$$u'_{n}(\sigma_{1}) - z_{2}u'_{n}(\sigma_{n}) = w_{2}$$
(1.62)

Στο προβλήμα των συνοριακών τιμών ως εσωτερικά collocation σημεία διαλέγουμε τα Gauss Points [6] τα οποία είναι οι ρίζες του Legendre πολυωνύμου δευτέρου βαθμού στο διάστημα [-1, 1] και δηλώνονται από τις σχέσεις :

$$\sigma_{2j} = x_j + h\sigma \tag{1.63}$$

$$\sigma_{2j+1} = x_j + h\bar{\sigma} \tag{1.64}$$

με

$$\sigma = \frac{\sqrt{3} - 1}{2\sqrt{3}} \tag{1.65}$$

και

$$\bar{\sigma} = \frac{\sqrt{3+1}}{2\sqrt{3}} \tag{1.66}$$

Μια ισοδύναμη διατύπωση των παραπάνω εξισώσεων είναι το γραμμικό σύστημα των nγραμμικών εξισώσεων με αγνώστους a_j , $j = 1 \dots n$, δηλαδή το σύστημα

$$C\mathbf{\alpha} = \mathbf{b} \tag{1.67}$$

όπου C είναι ο $n \times n$ collocation πίναχας, $\mathbf{a} = [\alpha_1 \ \alpha_2 \dots \alpha_n]^T$ είναι το διάνυσμα των αγνώστων χαι $\mathbf{b} = [\mathbf{b}_1 \ \mathbf{b}_2, \dots, \mathbf{b}_n]^T$ το διάνυσμα του δεξιού μέρους. Γνωρίζοντας ότι σε χάθε υποδιάστημα $I_j, j = 1, \dots, N$ αντιστοιχούν δύο εσωτεριχά collocation σημεία σ_{2j} χαι σ_{2j+1} χαι συνδυάζοντας τα παραπάνω, μπορούμε εύχολα να διαπιστώσουμε ότι η στοιχειώδης εξίσωση για το j-οστο στοιχείο I_j , πολλαπλασιασμένη με h^2 για υπολογιστιχούς σχοπούς θα δίνεται από :

$$C_{j} \begin{bmatrix} \alpha_{2j-1} \\ \alpha_{2j} \\ \alpha_{2j+1} \\ \alpha_{2j+2} \end{bmatrix} = h^{2} \begin{bmatrix} g(\sigma_{2j}) \\ g(\sigma_{2j+1}) \end{bmatrix}$$
(1.68)

όπου, C_j είναι ο στοιχειώδης collocation πίνακας που δηλώνεται ως εξής:

$$C_{j} := h^{2} \begin{bmatrix} \Phi_{2j-1}^{2j} & \Phi_{2j}^{2j} & \Phi_{2j+1}^{2j} & \Phi_{2j+2}^{2j} \\ & & & \\ \Phi_{2j-1}^{2j+1} & \Phi_{2j}^{2j+2} & \Phi_{2j+1}^{2j+1} & \Phi_{2j+2}^{2j+1} \end{bmatrix}$$
(1.69)

 $\mu \varepsilon \ \Phi_j^k := \phi_j''(\sigma_k) + F(\sigma_k)\phi_j(\sigma_k).$

Ενώ οι συνοριακές συνθήκες δίνονται από τη σχέση:

$$\begin{bmatrix} \phi_1(a) & 0\\ 0 & \phi'_2(a) \end{bmatrix} \begin{bmatrix} \alpha_1\\ \alpha_2 \end{bmatrix} - \begin{bmatrix} z_1\phi_{2N+1}(b) & 0\\ 0 & z_2\phi'_{2N+2}(b) \end{bmatrix} \begin{bmatrix} \alpha_{2N+1}\\ \alpha_{2N+2} \end{bmatrix} = \begin{bmatrix} w_1\\ w_2 \end{bmatrix}. \quad (1.70)$$

Χρησιμοποιώντας τις προηγούμενες εξισώσεις και πολλαπλασιάζοντας με h^2 έχουμε ότι:

$$h^{2} \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \end{bmatrix} - h^{2} Z \begin{bmatrix} \alpha_{2N+1} \\ \alpha_{2N+2} \end{bmatrix} = h^{2} \begin{bmatrix} w_{1} \\ hw_{2} \end{bmatrix}$$
(1.71)

όπου $Z = diag(z_1, z_2).$

Διαλέγοντας ως εσωτερικά collocation σημεία τα Gauss-points και χρησιμοποιώντας ως συναρτήσεις βάσης τα πολυώνυμα Hermite καταλήγουμε στο στοιχειώδη Collocation πίνακα:

$$C_j = [A_j \quad B_j], \quad j = 1, \dots, N$$
 (1.72)

όπου

$$A_{j} = \begin{bmatrix} c_{1} + d_{1}h^{2}F(\sigma_{2j}) & c_{2} + d_{2}h^{2}F(\sigma_{2j}) \\ c_{3} + d_{3}h^{2}F(\sigma_{2j+1}) & c_{4} + d_{4}h^{2}F(\sigma_{2j+1}) \end{bmatrix}$$
(1.73)

και

$$B_{j} = \begin{bmatrix} c_{3} + d_{3}h^{2}F(\sigma_{2j}) & -c_{4} - d_{4}h^{2}F(\sigma_{2j}) \\ c_{1} + d_{1}h^{2}F(\sigma_{2j+1}) & -c_{2} - d_{2}h^{2}F(\sigma_{2j+1}) \end{bmatrix}$$
(1.74)

με

$$c_1 = -2\sqrt{3}$$
 $c_2 = -1 - \sqrt{3}$ $c_3 = 2\sqrt{3}$ $c_4 = -1 + \sqrt{3}$

$$d_1 = \frac{9 + 4\sqrt{3}}{18} \quad d_2 = \frac{3 + \sqrt{3}}{36} \quad d_3 = \frac{9 - 4\sqrt{3}}{18} \quad d_4 = \frac{3 - \sqrt{3}}{36}$$

Τα παραπάνω λοιπόν μας οδηγούν στον collocation πίνακ
αC στην block κυκλική μορφή του:

$$C = \begin{bmatrix} h^{2}I & O & O & O & \cdots & O & O & -h^{2}Z \\ A_{1} & B_{1} & O & O & \cdots & O & O & O \\ O & A_{2} & B_{2} & O & \cdots & O & O & O \\ \vdots & \vdots \\ O & O & O & O & \cdots & O & A_{N} & B_{N} \end{bmatrix}$$
(1.75)

όπου Ο δηλώνει τον 2 × 2 μηδενικό πίνακα κα
ι $Z=diag(z_1,z_2)$.

1.2.2 Ιδιότητες του Collocation πίνακα και του αντίστοιχου Jacobi πίνακα

Λήμμα 1

Για τους πίνακες A_j και B_j που δίνονται από τις σχέσεις (1.73) και (1.74) αντίστοιχα, ισχύει ότι:

 $\det(A_j) = \det(B_j), \qquad \gamma \iota a \; \kappa \acute{a} \vartheta \epsilon \qquad j \in [1, N] \tag{1.76}$

Απόδειξη:

Από άμεσους υπολογισμούς καταλήγουμε ότι:

$$det(A_j) = P + Qh^2 F(\sigma_{2j}) + Rh^2 F(\sigma_{2j+1}) + Sh^4 F(\sigma_{2j}) F(\sigma_{2j+1}) det(B_j) = P + Rh^2 F(\sigma_{2j}) + Qh^2 F(\sigma_{2j+1}) + Sh^4 F(\sigma_{2j}) F(\sigma_{2j+1})$$

όπου

$$P := c_1 c_4 - c_2 c_3 = 4\sqrt{3}$$
$$Q := c_4 d_1 - c_3 d_2 = \frac{\sqrt{3}}{9}$$
$$R := c_1 d_4 - c_2 d_3 = \frac{\sqrt{3}}{9}$$
$$S := d_1 d_4 - d_2 d_3 = \frac{\sqrt{3}}{108}$$

Οπότε $det(A_j) = det(B_j).$

Εξάλλου έχει αποδειχθεί στην [54] ότι η εξίσωση (1.76) ισχύει για κάθε τελεστή δεύτερης τάξεως εάν και μόνο εάν τα εσωτερικά collocation σημεία είναι τα Gauss σημεία.

Ως άμεση συνέπεια του παραπάνω λήμματος έχουμε ότι:

Για τους πίναχες $B_j, j = 1, 2 \dots N$, οι οποίοι δηλώνονται στη σχέση (1.74), ισχύει ότι:

$$\det(B_j) \neq 0 \tag{1.77}$$

εάν

$$\phi_F(h^2) := F(\sigma_{2j})F(\sigma_{2j+1})h^4 + 12[F(\sigma_{2j}) + F(\sigma_{2j+1})]h^2 + 432 \neq 0 \quad , \tag{1.78}$$

όπου υπάρχει μια μεγάλη οιχογένεια F(x) που ιχανοποιούν την παραπάνω σχέση (1.78). Για παράδειγμα όταν F(x) = f =σταθερά, η σχέση (1.78) ιχανοποείται αφού η ορίζουσα της δευτεροβάθμιας $\phi_F(h^2)$ είναι $\Delta_F = -8(12f)^2 < 0$.

Αντίστοιχα, όταν η συνάρτηση F(x) είναι φραγμένη μέσα στο διάστημα ([a, b]) δηλαδή :

$$|F(x)| \le M, \quad 0 < M < \infty, \quad x \in [a, b],$$
 (1.79)

αρχεί

 $Mh^2 < 12$

και η σχέση (1.78) ικανοποείται αφού

$$432 > M^{2}h^{4} + 24Mh^{2} \ge |F(\sigma_{2j})F(\sigma_{2j+1})h^{4} + 12[F(\sigma_{2j}) + F(\sigma_{2j+1})]h^{2} |$$

$$(1.80)$$

δηλαδή

$$|\phi_F(h^2)| \ge 432 - |F(\sigma_{2j})F(\sigma_{2j+1})h^4 + 12[F(\sigma_{2j}) + F(\sigma_{2j+1})]h^2| > 0.$$
(1.81)

Η σχέση (1.78) αποτελεί μια σημαντική συνθήκη για καλά ορισμένες επαναληπτικές μεθόδους, και ως εκ τούτου πρέπει να ισχύει ώστε ο collocation πίνακας C να είναι consistently ordered (N + 1) κυκλικός πίνακας.

Για να είναι επίσης το Πρόβλημα Συνοριαχών Τιμών (ΠΣΤ) χαλά ορισμένο, δηλαδή να έχει μοναδιχή λύση έχτος από το ότι ο collocation πίναχας C πρέπει να είναι σε (N + 1) χυχλιχή μορφή θα πρέπει επίσης να είναι αντιστρέψιμος.

Για να εξετάσουμε το παραπάνω ορίζουμε τους 2×2 πίνα
κες :

$$R_j := -B_j^{-1}A_j , \quad j = 1, 2, \dots, N ,$$
 (1.82)

και

$$S_j := R_N \cdots R_j = \prod_{k=j}^N R_k , \ j = 1, 2, \dots, N ,$$
 (1.83)

Οπότε χρησιμοποιώντας την (1.76)

$$\det(R_j) = \det(S_j) = 1 \ , \ j = 1, 2, \dots, N \ . \tag{1.84}$$

Με τις παραπάνω διευχρινίσεις μπορούμε να αποδείξουμε ότι:

Λήμμα 2 Έστω ο collocation πίνακας C που δίνεται από την παράσταση (1.75), ο οποίος είναι ένας block (N+1) κυκλικός πίνακας, ως εκ τούτου ισχύουν οι σχέσεις (1.77) και (1.78). Τότε

$$\det(C) = h^4 \det(Q) \prod_{j=1}^{N} \det(B_j) , \qquad (1.85)$$

όπου

$$Q := I - ZS_1 = I - ZR_N \cdots R_1 \quad . \tag{1.86}$$

Απόδειξη 1.2.1 Έστω οτι ο collocation πίνακας C δίνεται από την σχέση (1.75) δηλώνουμε τον block στοιχειώδη πίνακα μετασχήματισμού Gauss ως εξής:

$$G_k := I + M_k E_k, \quad k = 2, 3, \dots, N+1$$
 (1.87)

όπου $M_k \in \mathbb{R}^{2(N+1),2}$ και $E_k \in \mathbb{R}^{2,2(N+1)}$ πίνακες της μορφής:

$$M_k := \begin{bmatrix} Q_k \\ O \\ \vdots \\ O \end{bmatrix}$$
(1.88)

 $\mu\epsilon$

$$Q_k := h^2 Z S_k B_{k-1}^{-1}, \qquad k = 2, 3, \dots, N+1$$
(1.89)

 S_j και $B_j, \quad j=1,2,\ldots N$ πίνα
κες που δίνονται από τις σχέσεις (1.83) και (1.74) αντίστοιχα και
 $S_{N+1}\equiv I$.

και

$$E_k := \begin{bmatrix} O \cdots O & I & O \cdots O \end{bmatrix}$$
(1.90)

όπου ο μοναδιαίος πίνα
κας Ι βρίσκεται στην kσυνιστώσα. Η ορίζουσ
α $det(G_k)=1$ και

$$G_{2}\dots G_{N+1}C = \begin{bmatrix} h^{4}Q & O & O & O & \cdots & O & O & O \\ A_{1} & B_{1} & O & O & \cdots & O & O & O \\ O & A_{2} & B_{2} & O & \cdots & O & O & O \\ \vdots & \vdots \\ O & O & O & O & \cdots & O & A_{N} & B_{N} \end{bmatrix}$$
(1.91)

$$C = (G_2 \dots G_{N+1})^{-1} \begin{bmatrix} h^4 Q & O & O & O & \cdots & O & O & O \\ A_1 & B_1 & O & O & \cdots & O & O & O \\ O & A_2 & B_2 & O & \cdots & O & O & O \\ \vdots & \vdots \\ O & O & O & O & \cdots & O & A_N & B_N \end{bmatrix}$$
(1.92)

$$det(C) = det((G_2 \dots G_{N+1})^{-1} \begin{bmatrix} h^4 Q & O & O & O & \cdots & O & O & O \\ A_1 & B_1 & O & O & \cdots & O & O & O \\ O & A_2 & B_2 & O & \cdots & O & O & O \\ \vdots & \vdots \\ O & O & O & O & \cdots & O & A_N & B_N \end{bmatrix})$$
(1.93)

$$det(C) = det((G_2 \dots G_{N+1})^{-1})det \begin{bmatrix} h^4 Q & O & O & O & \cdots & O & O & O \\ A_1 & B_1 & O & O & \cdots & O & O & O \\ O & A_2 & B_2 & O & \cdots & O & O & O \\ \vdots & \vdots \\ O & O & O & O & \cdots & O & A_N & B_N \end{bmatrix}$$
(1.94)

$$det(C) = det \begin{bmatrix} h^{4}Q & O & O & O & \cdots & O & O & O \\ A_{1} & B_{1} & O & O & \cdots & O & O & O \\ O & A_{2} & B_{2} & O & \cdots & O & O & O \\ \vdots & \vdots \\ O & O & O & O & \cdots & O & A_{N} & B_{N} \end{bmatrix}$$
(1.95)

οπότε

$$\det(C) = h^4 \det(Q) \prod_{j=1}^N \det(B_j) .$$
 (1.96)

Έστω ο collocation πίνα
жаς $C \ (1.75)$ και η ακόλουθη διασπασή του:

$$C = D_{N+1} - L_{N+1} - U_{N+1}, (1.97)$$

με

$$D_{N+1} = \begin{bmatrix} h^2 I & 0 & 0 & \cdots & 0 & 0 & 0 \\ 0 & B_1 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 0 & B_2 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & B_N \end{bmatrix}, \quad (1.98)$$

$$L_{N+1} = \begin{bmatrix} 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\ -A_1 & 0 & 0 & \cdots & 0 & 0 & 0 \\ 0 & -A_2 & 0 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & -A_N & 0 \end{bmatrix}, \quad (1.99)$$

και

$$U_{N+1} = \begin{bmatrix} O & \cdots & O & h^2 Z \\ O & \cdots & O & O \\ \vdots & & & \vdots \\ O & \cdots & O & O \end{bmatrix} .$$
(1.100)

Η (N+1) χυχλιχή μορφή του πίναχα C υποδηλώνει ότι ο πίναχας D_{N+1} είναι αντιστρέψιμος άρα ο αντίστοιχος block Jacobi πίναχας \mathcal{J}_{N+1} δηλώνεται ως εξής:

$$\mathcal{J}_{N+1} = D_{N+1}^{-1} (L_{N+1} + U_{N+1})$$

$$= \begin{bmatrix} O & O & O & O & \cdots & O & O & Z \\ R_1 & O & O & O & \cdots & O & O & O \\ O & R_2 & O & O & \cdots & O & O & O \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ O & O & O & O & \cdots & O & R_N & O \end{bmatrix}, \qquad (1.101)$$

όπου R_j οι πίναχες της (1.82) είναι weakly cyclic of index N+1 [66] άρα ο \mathcal{J}_{N+1}^{N+1} είναι σε block διαγώνια μορφή :

$$\mathcal{J}_{N+1}^{N+1} = \operatorname{diag}(ZR_N \cdots R_1, R_1 ZR_N \cdots R_2, \dots, R_N \cdots R_1 Z) \quad . \tag{1.102}$$

Και αφού οι block διαγώνιοι υποπίναχες είναι όμοιοι, είναι προφανές ότι το φάσμα $\sigma(\mathcal{J}_{N+1}^{N+1})$ θα είναι το ίδιο με το φάσμα οποιουδήποτε διαγώνιου υποπίναχα. Δηλαδή:

$$\sigma(\mathcal{J}_{N+1}^{N+1}) = \sigma^{(N+1)}(ZR_N \cdots R_1) = \sigma^{(N+1)}(ZS_1) \quad . \tag{1.103}$$

Ανα
χαλώντας τη σχέση (1.84) έχουμε $\det(S_1)\,=\,1,$ δηλαδή

$$\sigma(ZS_1) = \{\lambda^-, \lambda^+\} \tag{1.104}$$

με

$$\lambda^{\pm} = \frac{\tau \pm \sqrt{\tau^2 - 4\zeta}}{2} \quad , \tag{1.105}$$

όπου

$$\tau = \text{trace}(ZS_1) , \ \zeta = \det(Z) = z_1 z_2 .$$
 (1.106)

Γνωρίζουμε ότι :

$$C = D_{N+1} - L_{N+1} - U_{N+1} \tag{1.107}$$

Οπότε

$$L_{N+1} + U_{N+1} = D_{N+1} - C (1.108)$$

ή

$$J_{N+1} = I - (D_{N+1})^{-1}C (1.109)$$

Άρα

$$(D_{N+1})^{-1}C = I - J_{N+1} \tag{1.110}$$

Συνδύαζοντας τις σχέσεις (1.85), (1.86) και (1.103) είναι φανερό λοιπόν ότι:

$$det(C) \neq 0 \quad εαν \, \varkappa αι \, μόνο \, εάν \quad 1 \notin \sigma(\mathcal{J}_{N+1}^{N+1}) \tag{1.111}$$

ή ισοδύναμα

$$det(C) \neq 0 \quad εάν \, \text{ και μόνο } εάν \quad 1 \neq \frac{\tau \pm \sqrt{\tau^2 - 4\zeta}}{2} \tag{1.112}$$

$$det(C) \neq 0$$
 εαν και μόνο εάν $\tau \neq 1 + \zeta$ (1.113)

1.2.3 Βέλτιστη χυχλική διαμέριση για τη μέθοδο της διαδοχικής υπερχαλάρωσης -SOR για πραγματικό φάσμα

Στην ενότητα αυτή θα εξετάσουμε ποια είναι η καλύτερη διαμέριση του collocation πίνακα C σε q-cyclic μορφή με $2 \le q \le p$ ώστε να βρούμε τη βέλτιστη SOR μέθοδο. Όπως ήδη έχουμε αναφέρει θεωρούμε τον collocation πίνακα C να είναι ένας αντιστρέψιμος consistently ordered N + 1 κυκλικός πίνακας για τον οποίον ισχύουν οι σχέσεις (1.77)-(1.78). Έπίσης θεωρούμε ότι το φάσμα του \mathcal{J}_{N+1}^{N+1} είναι πραγματικό δηλαδή:

$$\tau^2 - 4\zeta \ge 0$$
 , (1.114)

όπου τ και ζ είναι δηλωμένα στην (1.106).

Θεωρώντας μια $p \times p$ (p θετικός ακέραιος στο διάστημα [2, N + 1]) block διαμέριση του πίνακα C (1.75), τον πίνακα C μπορούμε να τον γράψουμε :

$$C = D_p - L_p - U_p \quad , \tag{1.115}$$

όπου D_p είναι block διαγώνιος πίναχας χαι οι block υποπίναχες του είναι τετραγωνιχοί χαι αντιστρέψιμοι, L_p αυστηρά χάτω block τριγωνιχός πίναχας χαι U_p αυστηρά πάνω block τριγωνιχός πίναχας. Τότε η αντίστοιχη μέθοδος της διαδοχιχής υπερχαλάρωσης SOR δίνεται από τις σχέσεις:

$$\boldsymbol{x}^{(m+1)} = \mathcal{L}_{\omega,p} \, \boldsymbol{x}^{(m)} + \boldsymbol{c}_{\omega,p} , \ m = 0, 1, \dots,$$
 (1.116 α)

$$\mathcal{L}_{\omega,p} = (D_p - \omega L_p)^{-1} [(1 - \omega) D_p + \omega U_p], \qquad (1.116\beta')$$

$$\boldsymbol{c}_{\omega,p} = \omega \left(D_p - \omega L_p \right)^{-1} h^2 \boldsymbol{b}, \qquad (1.116\gamma')$$

με $\boldsymbol{x}^{(0)}$ αρχική προσέγγιση (συνήθως τυχαία), $\mathcal{L}_{\omega,p}$ ο επαναληπτικός πίνακας της SOR και $\omega \in (0,2)$ καλείται η παράμετρος της υπερχαλάρωσης.

Για τη σύγκλιση της μεθόδου αυτής [66] απαραίτητη και επαρκής συνθήκη είναι $\rho(\mathcal{L}_{\omega,p}) < 1$. Όσο μικρότερη είναι η συνθήκη αυτή της μονάδος, τόσο ποιο γρήγορα συγκλίνει η μέθοδος αυτή. Οπότε το πρόβλημα για τον καθορισμό του βέλτιστου ω, δηλαδή όταν ελαχιστοποείται το $\rho(\mathcal{L}_{\omega,p})$, είναι ουσιώδους σημασίας.

Το πρόβλημα της εύρεσης της βέλτιστης διαμέρισης της επαναληπτικής μεθόδου SOR είναι ισοδύναμο με το πρόβλημα της εύρεσης του δείκτη $q \in [2, N+1]$ τέτοιος ώστε:

$$\varrho(\mathcal{L}_{\omega_q,q}) < \varrho(\mathcal{L}_{\omega_p,p}),$$
για όλα τα $p \neq q$
(1.117)

όπου ω_q και ω_p είναι αντίστοιχα οι βέλτιστες παράμετροι υπερχαλάρωσης των επαναληπτικών πινάκων $\mathcal{L}_{\omega_q,q}$, $\mathcal{L}_{\omega_p,p}$ της SOR.

Αξίζει να σημειωθεί ότι οι Eirmann et al. [12], διευρύνοντας τα αποτελέσματα των Young [71] και Varga [66] για p = 2 και p > 2 κυκλικούς πίνακες αντίστοιχα, καθόρισαν λεπτομερώς την παράμετρο υπερχαλάρωσης ω_p της SOR μεθόδου όταν το φάσμα που αντιστοιχεί στον weakly cyclic of index p block Jacobi πίνακα ικανοποιεί τη σχέση $\sigma(\mathcal{J}_p^p) \subseteq [-\alpha_p^p, \beta_p^p]$ με :

$$0 \le \alpha_p < \frac{p}{p-2} \ (\infty \ \operatorname{yia} \ p = 2), \tag{1.118}$$

$$0 \le \beta_p < 1. \tag{1.119}$$

Πιο συγκεκριμένα απέδειξαν ότι:

Θεώρημα 1.2.1

Έστω ο \mathcal{J}_p weakly cyclic Jacobi πίνακας και ας θεωρήσουμε τις ιδιοτιμές του πίνακα \mathcal{J}_p^p να βρίσκονται στο διάστημα $[-\alpha^p, \beta^p]$ όπου $0 \le \beta < 1$ και $0 \le \alpha < \frac{p}{p-2}$ τότε

• Εάν $\alpha \leq \beta(p-2)/p$ και $\rho(J_p) = \beta$ τότε η βέλτιστη παράμετρος υπερχαλάρωσης ω_p^* της p-cyclic SOR μεθόδου είναι η μοναδική ρίζα της

$$(p-1)^{p-1}\omega^p\beta^p - p^p(\omega-1) = 0$$
(1.120)

η οποία περιέχεται στο ανοιχτό διάστημα (1,1+1/(p-1)). Για τον επαναληπτικό πίνακα της βέλτιστης SOR ισχύει:

$$\rho(\mathcal{L}_{\omega_p^{\star}}) = (p-1)(\omega_p^{\star} - 1) \tag{1.121}$$

• Εάν $\beta \leq \alpha(p-2)/p$ και $\rho(J_p) = \alpha$ τότε η βέλτιστη παράμετρος υπερχαλάρωσης ω_p^* της p-cyclic SOR μεθόδου είναι η μοναδική ρίζα της

$$(p-1)^{p-1}\omega^p \alpha^p - p^p(1-\omega) = 0$$
(1.122)

η οποία περιέχεται στο ανοιχτό διάστημα (1-1/(p-2),1). Για τον επαναληπτικό πίνακα της βέλτιστης SOR ισχύει:

$$\rho(\mathcal{L}_{\omega_p^{\star}}) = (p-1)(1-\omega_p^{\star}) \tag{1.123}$$

και

Θεώρημα 1.2.2

Έστω ο \mathcal{J}_p weakly cyclic Jacobi πίνακας και ας θεωρήσουμε τις ιδιοτιμές του πίνακα \mathcal{J}_p^p να βρίσκονται στο διάστημα $[-\alpha^p, \beta^p]$ και $-\alpha^p, \beta^p \in \sigma \mathcal{J}_p^p$ όπου $0 \leq \beta < 1$ και $0 \leq \alpha < \frac{p}{p-2}$ τότε

• Eάν $\beta(p-2)/p \le \alpha < \beta$ τότε η βέλτιστη παράμετρος υπερχαλάρωσης ω_p^* της p-cyclic SOR μεθόδου είναι η μοναδική ρίζα της

$$\left(\frac{\alpha+\beta}{2}\omega\right)^p - \frac{\alpha+\beta}{\beta-\alpha}(\omega-1) = 0 \tag{1.124}$$

η οποία περιέχεται στο ανοιχτό διάστημα $(1, 1 + (\beta - \alpha)/(\alpha + \beta))$. Για τον επαναληπτικό πίνακα της βέλτιστης SOR ισχύει:

$$\rho(\mathcal{L}_{\omega_p^{\star}}) = \frac{\alpha + \beta}{\beta - \alpha} (\omega_p^{\star} - 1) = \left[\frac{\alpha + \beta}{2} \omega_p^{\star}\right]^p \tag{1.125}$$

• $E \acute{a} \nu \beta (p-2)/p \leq \alpha < \beta$ τότε η βέλτιστη παράμετρος υπερχαλάρωσης ω_p^* της p-cyclic SOR μεθόδου είναι η μοναδική ρίζα της

$$\left(\frac{\alpha+\beta}{2}\omega\right)^p - \frac{\alpha+\beta}{\beta-\alpha}(1-\omega) = 0 \tag{1.126}$$

η οποία περιέχεται στο ανοιχτό διάστημα $(1 - (\alpha - \beta)/(\alpha + \beta), 1)$. Για τον επαναληπτικό πίνακα της βέλτιστης SOR ισχύει:

$$\rho(\mathcal{L}_{\omega_p^{\star}}) = \frac{\alpha + \beta}{\alpha - \beta} (1 - \omega_p^{\star}) = \left[\frac{\alpha + \beta}{2} \omega_p^{\star}\right]^p \tag{1.127}$$

Οι Wild et al. [69] έδειξαν ότι η σύγκλιση της SOR μεθόδου και η βέλτιστη παράμετρος υπερχαλάρωσης μπορούν να καθοριστούν εξετάζοντας αν οι ιδιοτιμές του Jacobi πίνακα βρίσκονται μέσα στο υποσύνολο του μιγαδικού επιπέδου που οριοθετείται από καποια hypocloidal καμπύλη. Με την προσέγγιση αυτή έθεσαν περισσότερους περιορισμούς για το φάσμα του πίνακα $\sigma(\mathcal{J}^p_p)$ και όρισαν απαραίτητες συνθήκες για τη σύγκλιση της μεθόδου SOR.

Οι Pierce, Hadjidimos και Plemmons [48] έδειξαν ότι όταν το φάσμα $\sigma(J_p^p)$ είναι μη αρνητικό και υπό την προϋπόθεση ότι $\rho(J_p) < 1$

$$\rho_2 < \rho_3 < \dots < \rho_{p-1} < \rho_p < 1 \tag{1.128}$$

καθώς όταν το $\sigma(J_p^p)$ είναι μη θετικό και υπό κανένα περιορισμό για το $\rho(J_p)$ έδειξαν ότι υπάρχει μοναδικό $k \in \{2, \ldots, p\}$ τέτοιο ώστε

$$\left(\frac{k+1}{k-1}\right)^{\frac{k+1}{p}} \le \rho(J_p) < \left(\frac{k}{k-2}\right)^{\frac{k}{p}} \quad , \tag{1.129}$$

(με $k/(k-2) = \infty$ για k=2) ώστε

$$\rho_2 < \rho_3 < \ldots < \rho_k < 1 < \varrho(\mathcal{L}_{\omega_q}) \tag{1.130}$$

 $\mu\varepsilon \ q = k + 1(1)p.$

Τέλος όταν το φάσμα του $\sigma(\mathcal{J}_{N+1}^{N+1})$ είναι πραγματικό το πρόβλημα της βέλτιστης διαμέρισης της SOR παρουσιάστηκε από τους Galanis και Hadjidimos [16]. Έτσι το θεώρημα της βέλτιστης διαμέρισης [16] πάνω στα οποία στηρίχθηκε η παρούσα εργασία διατυπώνονται ως εξής: Θεώρημα 1.2.3 Έστω Α ένας p-cyclic consistently ordered πίνακας της μορφής (1.23) με $p \geq 3$, J ο αντίστοιχος block Jacobi πίνακας (1.24) που αντιστοιχεί στο γραμμικό σύστημα Ax = (D - L - U)x = b και $\sigma(J_p^p) \subset [-\alpha^p, \beta^b]$ με $-\alpha^p, \beta^b \in \sigma(J_p^p)$ όπου $0 \leq \beta < 1$ και $0 \leq \alpha < \infty$. Υποθέτουμε ότι ο πίνακας Α διαμερίζεται σε ένα q-cyclic consistently ordered πίνακα με $2 \leq q < p$ και δηλώνουμε ως ω_q και ρ_q την παράμετρο υπερχαλάρωσης και την φασματική ακτίνα του πίνακα της βέλτιστης q-cyclic SOR αντίστοιχα. Τότε ισχύουν τα εξής:

Εάν

$$0 \le \frac{\alpha}{\beta} < \frac{p-2}{p} \tag{1.131}$$

τότε υπάρχει ένας μοναδικός ακέραιος $l \in \{2, 3, \dots, p-1\}$ που ικανοποιεί την σχέση:

$$\left(\frac{l-2}{l}\right)^{\frac{l}{p}} \le \frac{\alpha}{\beta} < \left(\frac{l-1}{l+1}\right)^{\frac{l+1}{p}} \tag{1.132}$$

τέτοιος ώστε

$$\rho_l < \rho_{l-1} < \ldots < \rho_2 < 1 \tag{1.133}$$

ĸaı

$$\rho_{l+1} < \rho_{l+2} < \dots < \rho_p < 1 \tag{1.134}$$

Επιπλέον, για κάθε $\beta \in (0,1)$ αντιστοιχεί μια μοναδική τιμή του α δηλαδή:

$$\alpha_{l,l+1} = \alpha(\beta) \in \left[\left(\frac{l-2}{l}\right)^{\frac{l}{p}}\beta, \left(\frac{l-1}{l+1}\right)^{\frac{l+1}{p}}\right]$$
(1.135)

δοσμένη από την σχέση:

$$\alpha_{l,l+1} = \left(\frac{2\rho^{\frac{1}{l}} - (1+\rho)\beta^{\frac{p}{l}}}{1-\rho}\right)^{\frac{l}{p}}$$
(1.136)

όπου, $\rho \epsilon$ ίναι η μοναδική ρίζα στο διάστημα (0,1) της εξίσωσης:

$$\beta^p (l+\rho)^{l+1} - (l+1)^{l+1} \rho = 0 \tag{1.137}$$

τέτοια ώστε:

$$\rho_l < \rho_{l+1} \qquad \gamma a \qquad \left(\frac{l-2}{l}\right)^{\frac{l}{p}} \beta \le \alpha < \alpha_{l,l+1} \tag{1.138}$$

$$\rho_l = \rho_{l+1} \qquad \gamma_{la} \qquad \alpha = \alpha_{l,l+1} \tag{1.139}$$

$$\rho_l > \rho_{l+1} \qquad \gamma_l a \qquad \alpha_{l,l+1} < \alpha < \left(\frac{l-1}{l+1}\right)^{\frac{l+1}{p}} \beta \tag{1.140}$$

Απο τα παραπάνω λοιπόν συμπεραίνουμε ότι για την πρώτη περίπτωση (1.138) η l-cyclic SOR είναι η βέλτιστη, στην δεύτερη περίπτωση (1.139) είναι είτε η l - cyclic είτε η l+1-cyclic και στην τρίτη περίπτωση (1.140) η l+1-cyclic SOR.

Εάν

$$\frac{p-2}{p} < \frac{\alpha}{\beta} < 1 \tag{1.141}$$

 $\tau \acute{o} \tau \epsilon$

$$\rho_p < \rho_{p-1} < \dots < \rho_3 < \rho_2 < 1 \tag{1.142}$$

Οπότε η αρχική p – cyclic μορφή δίνει τη βέλτιστη SOR μέθοδο.

• $E \acute{a} \nu$

$$\frac{\alpha}{\beta} = 1 \tag{1.143}$$

όπου η περίπτωση $\alpha = \beta = 0$ επίσης συμπεριλαμβάνεται, τότε

$$\rho_p = \rho_{p-1} = \dots = \rho_3 = \rho_2 = \beta^p < 1 \tag{1.144}$$

Άρα οποιαδήποτε q-cyclic $\mu \epsilon q = 2(1)p$ είναι η βέλτιστη SOR μέθοδο.

Εάν

$$1 < \frac{\alpha}{\beta} < \frac{p-2}{p} \tag{1.145}$$

τότε τα αποτελέσματα είναι ακριβώς τα ίδια με την περίπτωση

$$\frac{p-2}{p} < \frac{\alpha}{\beta} < 1 \tag{1.146}$$

Εάν

$$\frac{p-2}{p} < \frac{\alpha}{\beta} \le \infty \tag{1.147}$$

όπου $\frac{\alpha}{\beta} = \infty$ αντιστοιχεί στην περίπτωση όπου $\alpha > 0$, $\beta = 0$ τότε υπάρχει μοναδικός ακέραιος $k \in \{2, ..., p\}$ τέτοιος ώστε:

$$\left(\frac{k+1}{k-1}\right)^{\frac{k+1}{p}} < \rho(J_p) \le \left(\frac{k}{k-2}\right)^{\frac{k}{p}} \tag{1.148}$$

και μοναδικός ακέραιος $l \in \{2, \dots, \min(p-1,k)\}$ ικανοποιώντας την σχέση:

$$\left(\frac{l+1}{l-1}\right)^{\frac{l+1}{p}} < \frac{\alpha}{\beta} \le \left(\frac{l}{l-2}\right)^{\frac{l}{p}} \tag{1.149}$$

τέτοιος ώστε

$$\rho_l < \rho_{l-1} < \ldots < \rho_3 < \rho_2 < 1 \tag{1.150}$$

ĸaı

$$\rho_{l+1} < \rho_{l+2} < \ldots < \rho_{k-1} < \rho_k < 1 \le \rho(\mathcal{L}_{\omega_q})$$
(1.151)

με q = k + 1(1)p και με την ισότητα να ισχύει όταν $ρ_k \le 1$ εάν και μόνο εάν k > 2και ισχύει η ισότητα (1.148). Επιπλέον, για l = k, η l – cyclic SOR δίνει την βέλτιστη SOR. Ενώ για l < k σε κάθε $α \in (0, \frac{l+1}{l-1}^{\frac{l+1}{p}})$ αντιστοιχεί μια μοναδική τιμή του β:

$$\beta_{l,l+1} := \beta(\alpha) \in \left[\left(\frac{l-2}{l}\right)^{\frac{l}{p}} \alpha, \left(\frac{l-1}{l+1}\right)^{\frac{l+1}{p}} \alpha\right]$$
(1.152)

δοσμένη από την σχέση :

$$\beta_{l,l+1} = \left(\frac{2\rho^{\frac{1}{l}} - (1-\rho)\alpha^{\frac{p}{l}}}{1+\rho}\right)^{\frac{l}{p}}$$
(1.153)

όπου ρ είναι η μοναδική ρίζα στο διάστημα (0,1) της εξίσωσης:

$$\alpha^{\rho}(l-\rho)^{l+1} - (l+1)^{l+1}\rho = 0 \tag{1.154}$$

τέτοια ώστε :

$$\rho_l < \rho_{l+1} \qquad \gamma_{la} \qquad \left(\frac{l-2}{l}\right)^{\frac{l}{p}} \alpha \le \beta < \beta_{l,l+1} \tag{1.155}$$

$$\rho_l = \rho_{l+1} \qquad \gamma_{la} \qquad \beta = \beta_{l,l+1} \tag{1.156}$$

$$\rho_l > \rho_{l+1} \qquad \gamma \iota a \qquad \beta_{l,l+1} < \beta < \left(\frac{l-1}{l+1}\right)^{\frac{l+1}{p}} \alpha \tag{1.157}$$

Συνεπώς στην πρώτη περίπτωση (1.155) η l-cyclic SOR είναι η βέλτιστη SOR, στην περίπτωση (1.156) είναι είτε η l-cyclic SOR είτε η l+1-cyclic SOR η βέλτιστη SOR και στην τρίτη (1.157) περίπτωση η l+1-cyclic SOR είναι η βέλτιστη SOR.

Στην εργασία αυτή η εύρεση της βέλτιστης διαμέρισης της του collocation πίνακα εξαρτάται από το φάσμα του $\sigma(\mathcal{J}_{N+1}^{N+1})$, δηλαδή εξαρτάται από τις τιμές των λ^- και λ^+ της σχέσης (1.105) και συνοψίζεται στο παρακάτω θεώρημα :

Θεώρημα 1.2.4 Θεωρώντας τον αντιστρέψιμο consistently ordered (N + 1) collocation πίνακα C και τον weakly cyclic Jacobi πίνακα \mathcal{J}_{N+1} τέτοιο ώστε το φάσμα του πίνακα \mathcal{J}_{N+1}^{N+1} να είναι πραγματικό τότε η βέλτιστη παράμετρος της διαμέρισης $q \in [2, N + 1]$ η οποία χαρακτηρίζει την block SOR μέθοδο θα δίνεται από τον παρακάτω πίνακα:

ΠΙΝΑΚΑΣ ΒΕΛΤΙΣΤΗΣ ΔΙΑΜΕΡΙΣΗΣ				
ΠΕΡΙΠΤΩΣΕΙΣ			ΒΕΛΤΙΣΤΗ	
Ι	II	III	$\Pi \text{APAMETPO}\Sigma \ q$	
$\zeta \ge 0$			q = 2	
	$\tau < 0$	(1.164)	q = N + 1	
		(1.165)	$q=l$ $\acute{\eta}$ $l+1$	
$\zeta < 0$	$\tau = 0$		Οποιοδήποτ ε $q \in [2, N+1]$	
	$\tau > 0$	(1.163)	q = N + 1	
		(1.162)	$q = l \ \acute{\eta} \ l + 1$	

Απόδειξη:

Το φάσμα του πίνακ
α \mathcal{J}_{N+1}^{N+1} είναι πραγματικό δηλαδή ισχύει η συνθήκη :

$$\tau^2 - 4\zeta \ge 0 \tag{1.158}$$

1. $\zeta \geq 0$

 $\mathrm{M} \mathfrak{e} \ \tau \neq 0$

$$0 \le \lambda^{-} \le \lambda^{+} \quad \text{stan} \quad \tau > 0 \tag{1.159}$$

και

$$\lambda^{-} \le \lambda^{+} \le 0 \quad \text{stan} \quad \tau < 0 \tag{1.160}$$

δηλαδή

$$\sigma(\mathcal{J}_{N+1}^{N+1}) = \left\{ \begin{array}{ll} \vartheta ε \mathbf{tik} \boldsymbol{\acute{o}} &, \ \tau > 0 \\ \mathbf{a} \mathbf{\rho} \mathbf{v} \eta \mathbf{tik} \boldsymbol{\acute{o}} &, \ \tau < 0 \end{array} \right.,$$

tóte apó [48] η 2-cyclic repartioned SOR eínai η béltist $\eta.$

2. $\zeta \leq 0$

Ανάλογα

$$\tau^2 - 4\zeta > 0$$
 xai $\lambda^- < 0 < \lambda^+$. (1.161)

 Δ ηλώνουμε:

$$\alpha = \mid \lambda^{-} \mid^{\frac{1}{N+1}}, \beta = \mid \lambda^{+} \mid^{\frac{1}{N+1}}$$

και θέτουμε τις εξής συνθήκες:

$$0 \le \frac{\alpha}{\beta} < \frac{N-1}{N+1},\tag{1.162}$$

$$\frac{N-1}{N+1} \le \frac{\alpha}{\beta} < 1, \tag{1.163}$$

$$1 \le \frac{\alpha}{\beta} < \frac{N+1}{N-1},\tag{1.164}$$

$$\frac{N+1}{N-1} \le \frac{\alpha}{\beta} < \infty. \tag{1.165}$$

Οπότε η ανάλυση μας θα στηριχτεί στις παραπάνω υποπεριπτώσεις.

• $\tau < 0$

$$\frac{\alpha}{\beta} = \frac{|\lambda^{-}|^{\frac{1}{N+1}}}{|\lambda^{+}|^{\frac{1}{N+1}}} = \left|\frac{\frac{\tau - \sqrt{\tau^{2} - 4\zeta}}{2}}{\frac{\tau + \sqrt{\tau^{2} - 4\zeta}}{2}}\right|^{\frac{1}{N+1}} > 1$$
(1.166)

 Δ ηλαδή a > b. Τότε

$$1 < \frac{\alpha}{\beta} \le \frac{p}{p-2} = \frac{N+1}{N-2+1} = \frac{N+1}{N-1}$$

δηλαδή ικανοποείται η συνθήκη (1.164) οπότε από το θεώρημα (1.2.3) των [16] η N + 1-cyclic SOR είναι η βέλτιστη SOR με:

$$\rho_{N+1} < \rho_N < \ldots < \rho_3 < \rho_2 < \rho_1$$

ενώ όταν ικανοποιείται η (1.165) σχέση τότε η βέλτιστη SOR είναι η l-cyclic ή η l+1-cyclic όπου $l \in 2, 3, \ldots, N$ μοναδικός ακέραιος που ικανοποιεί την σχέση:

$$\left(\frac{l+1}{l-1}\right)^{l+1} < \left(\frac{a}{b}\right)^{N+1} < \left(\frac{l}{l-2}\right)^{l}$$

• au = 0

Στην περίπτωση όπου $\tau = 0$, $\lambda^- = \lambda^+$ και $\frac{a}{b} = 1$ (Θεώρημα 1.2.3, [16]) η βέλτιστη SOR είναι η q - cyclic με $q \in [2, N + 1]$ και η οποία συγκλίνει.

• au > 0

$$\frac{\alpha}{\beta} = \frac{\mid \lambda^{-} \mid \frac{1}{N+1}}{\mid \lambda^{+} \mid \frac{1}{N+1}} = \left| \frac{\frac{\tau - \sqrt{\tau^{2} - 4\zeta}}{2}}{\frac{\tau + \sqrt{\tau^{2} - 4\zeta}}{2}} \right|^{\frac{1}{N+1}} < 1$$

χαι από (Θεώρημα 1.2.3, [16]) συμπεραίνουμε ότι όταν ισχύει η συνθήκη $\frac{N-1}{N+1} \leq \frac{\alpha}{\beta} < 1$ τότε $\rho_{N+1} < \rho_N < \ldots < \rho_3 < \rho_2 < \rho_1$ δηλαδή η $N + 1 - cyclic \ SOR$ είναι η βέλτιστη ενώ όταν ισχύει η συνθήκη $0 \leq \frac{\alpha}{\beta} < \frac{N-1}{N+1}$ τότε υπάρχει μοναδικός ακέραιος αριθμός l ικανοποιώντας τη σχέση :

$$\left(\frac{l-2}{l}\right)^l < \left(\frac{a}{b}\right)^{N+1} < \left(\frac{l-1}{l+1}\right)^l$$

όπου η l - cyclic ή l + 1 - cyclic SOR είναι η SOR που συγκλίνει γρηγορότερα.

1.3 Αριθμητικά αποτελέσματα

Στην παρούσα ενότητα θα παραθέσουμε παραδείγματα που αποδεικνύουν την ορθότητα του παραπάνω θεωρήματος.

Αρχικά θεωρούμε τον αριθμό των υποδιαστημάτων μικρό, δηλαδη N=8 οπότε ο collocation πίνακας είναι 9-cyclic και παρατηρούμε τη συμπεριφορά της φασματικής ακτίνας της SOR ως συνάρτηση της παράμετρου της υπερχαλάρωσης ω για να διαπιστώσουμε ποια είναι η βέλτιστη διαμέριση της μεθόδου. • Περίπτωση 1η $au < \mathbf{0}$ και $\zeta > \mathbf{0}$

$F(x) = -5, z_1 = -0.5, z_2 = -0.5$						
$\tau = -4.7317, \zeta = 0.25$						
N=9	$\rho = 0.7122$					
N=8	$\rho = 0.6977$					
N=7	$\rho = 0.6999$					
N=6	$\rho = 0.6818$					
N=5	$\rho = 0.6602$					
N=4	$\rho = 0.6178$					
N=3	$\rho = 0.5399$					
N=2	$\rho = 0.41$					

Σε αυτήν την περίπτωση ορίζουμε ως F(x) = -5 και $z_1 = -0.5, z_2 = -0.5.$

Πίνα
κας 1.1: $\tau < 0$, $\zeta > 0$

Η βέλτιστη SOR είναι η 2 – cyclic SOR (Πίναχας 1.1, Σχήμα 1.2).

• Περίπτωση 2η $\tau > 0$ και $\zeta > 0$ Στην περίπτωση αυτή, η βέλτιστη SOR είναι η 2 – cyclic SOR (Πίνακας 1.2, Σχήμα 1.3).

$F(x) = e^{-x}, z_1 = 2.1, z_2 = 0.3$							
$\tau = 1.7649, \zeta = 0.63$							
N=9	$\rho = 0.5561$						
N=8	$\rho = 0.5560$						
N=7	$\rho {=} 0.5467$						
N=6	$\rho = 0.5382$						
N=5	$\rho = 0.5196$						
N=4	$\rho = 0.5098$						
N=3	$\rho = 0.4995$						
N=2	$\rho = 0.46$						

Πίναχας 1.2: $\tau>0$, $\zeta>0$

• Περίπτωση 3η $\tau < 0$ και $\zeta < 0$, συνθήκη (1.164) Σε αυτήν την περίπτωση ορίζουμε ως $F(x) = 15e^{-x}$ και $z_1 = 3, z_2 = -0.8$.
$$\lambda^{-} = -2.3217$$

$$\lambda^{+} = 1.0337$$

$$a = 1.0981$$

$$b = 1.0037$$

$$\frac{a}{b} = 1.0941$$
(1.167)

Ικανοποιείται λοιπόν η συνθήκη (1.164), αφού $\frac{a}{b} < \frac{N+1}{N-1}$. Άρα η βέλτιστη SOR ειναι η 9 – cyclic (Πίνακας 1.3, Σχήμα 1.4).

$F(x) = 15e^{-x}, z_1 = 3, z_2 = -0.8$		
$\tau = -1.2879, \zeta = -2.4$		
N=9	ho = 0.7789	
N=8	$\rho = 0.78$	
N=7	$\rho = 0.7834$	
N=6	$\rho = 0.7881$	
N=5	$\rho = 0.7904$	
N=4	$\rho = 0.7905$	
N=3	$\rho = 0.7983$	
N=2	$ \rho = 0.8119 $	

Πίνα

 μας 1.3: $\tau < 0$, $\zeta < 0,$ συνθή
μη (1.164)

• Περίπτωση 4η $au < \mathbf{0}$ και $\zeta < \mathbf{0}$, συνθήκη (1.165)

 Σ' αυτήν την περίπτωση για $F(x)=15e^{-x}$ και $z_1=-0.15,\,z_2=5$ ισχύουν:

$$\lambda^{-} = -6.4176$$

$$\lambda^{+} = 0.1169$$

$$a = 1.2294$$

$$b = 0.7878$$

$$\frac{a}{b} = 1.5606$$
(1.168)

Δηλαδή $\frac{N+1}{N-1} < \frac{a}{b}$ οπότε ικανοποιείται η συνθήκη (1.165). Η βέλτιστη SOR ειναι η l - cyclic ή l + 1 - cyclic και στο παράδειγμα αυτό είναι η 3 - cyclic (Πίνακας 1.4, Σχήμα 5.3).

• Περίπτωση 5η $au = \mathbf{0}$ και $\zeta < \mathbf{0}$

Στη συγκεκριμένη περίπτωση παρατηρούμε ότι η τιμή της φασματικής ακτίνας είναι η ίδια για όλες τις διαμερίσεις (Πίνακας 1.5, Σχήμα 1.6).

$F(x) = 15e^{-x}, z_1 = -0.15, z_2 = 5$		
$\tau = -6.3007, \zeta = -0.75$		
N=9	$\rho = 0.6372$	
N=8	$\rho = 0.6279$	
N=7	$\rho {=} 0.5999$	
N=6	$\rho = 0.6368$	
N=5	$\rho {=} 0.5899$	
N=4	$\rho {=} 0.5597$	
N=3	$\rho = 0.5372$	
N=2	$\rho = 0.5820$	

Πίνα
κας 1.4: $\tau < 0$, $\zeta < 0,$ συνθήκη (1.165)

$F(x) = 10, z_1 = 0.03, z_2 = -0.03$		
$\tau = 0, \; \zeta = -0.0009$		
N=9	$\rho = 0.03$	
N=8	$\rho = 0.03$	
N=7	$\rho = 0.03$	
N=6	$\rho = 0.03$	
N=5	$\rho = 0.03$	
N=4	$\rho = 0.03$	
N=3	$\rho = 0.03$	
N=2	$\rho = 0.03$	

Пі́
лакаς 1.5: $\tau=0$, $\zeta<0$

• Περίπτωση 6η $au > \mathbf{0}$ και $\zeta < \mathbf{0}$, συνθήκη (1.163)

 Σ' αυτήν την περίπτωση όπου $\ F(x) = 7 e^x, \ z_1 = -0.2, \ z_2 = -0.7$ έχουμε ότι :

$$\begin{cases}
\lambda^{-} = -0.2551 \\
\lambda^{+} = 0.5488 \\
a = 0.8592 \\
b = 0.9355 \\
\frac{a}{b} = 0.9184
\end{cases}$$
(1.169)

$$\begin{split} \Delta &\eta \lambda a \delta \eta \; \frac{N-1}{N+1} < \frac{a}{b} \; \text{onóte imavopoleítal } \eta \; \text{sundhim} \; (1.163). \ \text{H} \; \beta \acute{e} \lambda \text{tist} \eta \; \lambda \text{olpón} \; \text{SOR einal} \\ \eta \; N + 1 - cyclic(\; \Pi \acute{e} \text{name of } 1.6, \; \Sigma \chi \acute{\eta} \text{ma } 1.7). \end{split}$$

Περίπτωση 7η au > 0 και $\zeta < 0$, συνθήκη (1.162)

$F(x) = 7e^x, z_1 = -0.2, z_2 = -0.7$		
$\tau = 0.2937, \zeta = -0.14$		
N=9	ho = 0.6567	
N=8	$\rho = 0.6760$	
N=7	$\rho = 0.6776$	
N=6	$\rho = 0.6757$	
N=5	$\rho = 0.6776$	
N=4	$\rho = 0.6883$	
N=3	$\rho = 0.7071$	
N=2	$\rho = 0.7305$	

Πίνακας 1.6: $\tau > 0, \, \zeta < 0, \,$ συνθήκη (1.163)

Τέλος για $F(x) = 10sin(-5x), z_1 = -0.5, z_2 = 0.2$:

$$\begin{cases} \lambda^{-} = -0.0815 \\ \lambda^{+} = 1.2273 \\ a = 0.7568 \\ b = 1.023 \\ \frac{a}{b} = 0.7398 \end{cases}$$
(1.170)

Ικανοποιείται η συνθήκη (1.162) αφού $\frac{a}{b} < \frac{N-1}{N+1}$. Η βέλτιστη SOR ειναι η l - cyclic ή l+1-cyclic και στο παράδειγμα αυτό είναι η 3-cyclic (Πίνακας 1.7, Σχήμα 1.8).

$F(x) = 10sin(-5x), z_1 = -0.5, z_2 = 0.2$		
$\tau = 1.1458, \zeta = -0.1$		
N=9	$\rho = 0.4509$	
N=8	$\rho = 0.4165$	
N=7	$\rho = 0.4138$	
N=6	$\rho = 0.3987$	
N=5	$\rho = 0.3941$	
N=4	$\rho = 0.3815$	
N=3	$\rho = 0.3383$	
N=2	$\rho = 0.3607$	

Πίνα
κας 1.7: $\tau>0$, $\zeta<0,$ συνθήκη (1.162)

Σχήμα 1.3: $\tau>0$, $\zeta>0$

Στα παρακάτω σχήματα απεικονίζεται η συμπεριφορά της φασματικής ακτίνας της βέλτιστης SOR σε συνάρτηση με την παράμετρο q. Τα παραδείγματα είναι αντίστοιχα με τα προηγούμενα μόνο που αυξάνουμε τον αριθμό των υποδιαστημάτων σε N = 64.

Σχήμα 1.4: $\tau < 0$, $\zeta < 0,$ συνθήκη (1.164)

Σχήμα 1.5: $\tau < 0$, $\zeta < 0,$ συνθήκη (1.165)

Σχήμα 1.6: $\tau=0$, $\zeta<0$

Σχήμα 1.7: $\tau>0$, $\zeta<0,$ συνθή
κη (1.163)

Σχήμα 1.8: $\tau>0$, $\zeta<0,$ συνθή
κη (1.162)

Σχήμα 1.9: $\tau < 0$, $\zeta > 0$

Σχήμα 1.10: $\tau < 0$, $\zeta < 0,$ συνθήκη ~(1.164)

Σχήμα 1.11: $\tau < 0$, $\zeta < 0,$ συνθήκη ~(1.165)

Σχήμα 1.12: $\tau>0$, $\zeta<0,$ συνθήκη ~(1.163)

Σχήμα 1.13: $\tau>0$, $\zeta<0,$ συνθήκη ~(1.162)

Κεφάλαιο 2

Γλοιώματα - Μαθηματικό Μοντέλο Swanson

Τα γλοιώματα αποτελούν τους πιο συχνούς και επιθετικούς (πάνω απο 50%) νεοπλασματικούς όγκους του εγκεφάλου και οι ασθενείς έχουν συνήθως χαμηλό προσδόκιμο ζωής. Τα τελευταία χρόνια έχουν αναπτυχθει διάφορα μαθηματικά μοντέλα για την καλύτερη κατανόηση της ανάπτυξης ενός γλοιώματος. Στο κεφάλαιο αυτό αρχικά θα ορίσουμε τις βιολογικές έννοιες που απαιτούνται για την καλύτερη κατανόηση του μαθηματικού προβλήματος. Στη συνέχεια θα παρουσιάσουμε μια μικρή ιστορική αναδρομή σχετικά με τα μαθηματικά μοντέλα που έχουν αναπτυχθεί για την εξέλιξη ενός γλοιώματος στο χώρο και το χρόνο. Τέλος, θα ορίσουμε το μοντέλο της Swanson πάνω στο οποίο στηρίχθηκε το δεύτερο μέρος της παρούσας εργασίας.

2.1 Εγκέφαλος

Ο εγκέφαλος είναι το μεγαλύτερο και πολυπλοκότερο τμήμα του Κεντρικού Νευρικού Συστήματος (Κ.Ν.Σ.) και συγκροτείται από νευρικά κύτταρα (νευρώνες) τα οποία δέχονται, επεξεργάζονται και μεταβιβάζουν ερεθίσματα, και από νευρογλοιακά κύτταρα τα οποία συμβάλλουν στη διατήρηση τής ομοιόστασης και παρέχουν στήριξη και προστασία στους νευρώνες τού εγκεφάλου (αστροκύτταρα, ολιγοδενδροκύτταρα επενδυματικά και μικρογλοιακά κύτταρα) [52].

Η αρχιτεκτονική δομή των νευρώνων συνίσταται στο κυτταρικό σώμα (τροφικό κέντρο του νευρώνα) και σε δύο πρόσθετα τμήματα, που ονομάζονται «αποφυάδες ». Ένα από αυτά τα τμήματα είναι οι άξονες ή νευράξονες ή νευρικές ίνες που ρόλο έχουν τη μετάδοση πληροφοριών από τον ένα νευρώνα στους άλλους με τους οποίους συνδέεται. Το άλλο τμήμα είναι οι δενδρίτες που ρόλο έχουν την πρόσληψη των πληροφοριών που μεταδίδονται από τους άξονες άλλων νευρώνων. Τόσο οι άξονες όσο και οι δενδρίτες συμμετέχουν στο σχηματισμό ειδικών σημείων επαφής, που ονομάζονται συνάψεις. Σε γενικές λοιπόν γραμμές, οι δενδρίτες προσλαμβάνουν, το χυτταριχό σώμα ολοχληρώνει χαι οι άξονες μεταβιβάζουν (η διαδιχασία ονομάζεται πόλωση), χαθώς η πληροφορία που επεξεργάζονται υποθετιχά οδεύει προς μία χατεύθυνση μόνο. Οι νευρώνες οργανώνονται σε πολύπλοχες αλυσίδες χαι δίχτυα, που αποτελούν τις οδούς μέσω τών οποίων μεταδίδονται οι πληροφορίες στο νευριχό σύστημα. Τα σώματα των νευρώνων διατάσσονται σε ομάδες, στήλες ή στοιβάδες χαι συνιστούν τη φαιά (γχριζωπού χρώματος) ουσία του Κ.Ν.Σ. Οι νευράξονες ομαδοποιούνται σχηματίζοντας δεμάτια, δηλαδή σύνολα νευραξόνων με χοινή αρχή χαι τέλος χαι χοινή λειτουργία, τα οποία συνιστούν τη λευχή (λευχωπού χρώματος) ουσία του Κ.Ν.Σ [52].

Σχήμα 2.1: Σχηματικό διάγραμμα ενός τυπικού κυττάρου (νεύρωνα)

Σχήμα 2.2: http://www.cerebromente.org.br/n07/fundamentos/neuron/grey.jpg

Ο ανθρώπινος εγκέφαλος βρίσκεται εντός τού εγκεφαλικού κρανίου και περιβάλλεται από τρία αλληλοδιάδοχα μεμβρανώδη περιβλήματα που λέγονται μήνιγγες τού εγκεφάλου (από μέσα προς τα έξω η χοριοειδής, η αραχνοειδής και η σκληρή μήνιγγα) [52].

Ο εγκέφαλος ανατομικά διαιρείται στον τελικό εγκέφαλο με τα εγκεφαλικά ημισφαίρια, το διάμεσο εγκέφαλο με τους δύο θαλάμους και τον υποθάλαμο, το μέσο εγκέφαλο με το τετράδυμο πέταλο και τα δύο εγκεφαλικά σκέλη, τον οπίσθιο εγκέφαλο με τη γέφυρα και την παρεγκεφαλίδα και τον έσχατο εγκέφαλο με τον προμήκη μυελό [52]. Ο μέσος εγκέφαλος, η γέφυρα και ο προμήκης μυελός αποτελούν το εγκεφαλικό στέλεχος [52].

Τα δύο εγχεφαλικά ημισφαίρια αποτελούν το μεγαλύτερο τμήμα του εγχεφάλου και εμφανίζουν στην επιφάνειά τους πολυάριθμες προεξοχές και αυλακώσεις, οι οποίες ονομάζονται

έλικες και αύλακες αντίστοιχα. Οι βαθύτερες αύλακες ονομάζονται σχισμές. Η επιμήκης σχισμή χωρίζει τα ημισφαίρια μεταξύ τους, ενώ άλλες σχισμές χωρίζουν το κάθε ημισφαίριο σε λοβούς, οι οποίοι είναι ο μετωπιαίος, ο βρεγματικός, ο κροταφικός και ο ινιακός. Τα εγκεφαλικά ημισφαίρια αποτελούνται από ένα εξωτερικό στρώμα φαιάς ουσίας, το φλοιό των ημισφαιρίων, ο οποίος συνίσταται κυρίως από σώματα νευρικών κυττάρων, ενώ κάτω από το φλοιό βρίσκονται μάζες λευκής ουσίας, που περιέχουν κυρίως νευράξονες νευρικών κυττάρων [52]. Από φαιά κυρίως ουσία αποτελείται και ο θάλαμος του εγκεφάλου, ο οποίος αποτελείται και ο θάλαμος του εγκεφάλου, ο οποίος αποτελεί σημαντικό κέντρο υποδοχής ερεθισμάτων, τόσο από την περιφέρεια, όσο και από τα ημισφαίρια.

2.2 Νεοπλάσματα του Κ.Ν.Σ. - Γλοιώματα

Τα νεοπλάσματα του Κ.Ν.Σ. διακρίνονται σε πρωτοπαθή και δευτεροπαθή (ή μεταστατικά) νεοπλάσματα [31, 33]. Τα πρωτοπαθή νεοπλάσματα συνιστούν μια ευρεία ομάδα με μεγάλη ποικιλία ως προς την ηλικία και θέση εμφάνισης, τη βιολογική συμπεριφορά, την πρόγνωση και τη θεραπεία. Προέρχονται από κακοήθη εξαλλαγή κυττάρων του νευρικού ιστού, των αγγείων, ή των περιβλημάτων (μηνίγγων) του εγκεφάλου [31]. Με βάση τελευταία δεδομένα του Παγκόσμιου Οργανισμού Υγείας (2007) τα πρωτοπαθή νεοπλάσματα του Κ.Ν.Σ. εμφανίζονται με συχνότητα 18-20 ανά 100.000 πληθυσμού και αποτελούν το 10% του συνόλου των νεοπλασιών [33]. Το 10-20% των νεοπλασμάτων αυτών εμφανίζονται στα παιδιά αποτελώντας τον πρώτο σε συχνότητα συμπαγή όγκο της παιδικής ηλικίας και τον δεύτερο όλων των νεοπλασιών μετά τις λευχαιμίες [33].

Από τους πρωτοπαθείς όγχους τού Κ.Ν.Σ. οι όγχοι νευροεπιθηλιαχής αρχής αποτελούν τούς πλέον συχνότερους σε ποσοστό 50-60%. Μεταξύ αυτών τα γλοιώματα είναι τα συχνότερα [32]. Τα γλοιώματα είναι πρωτοπαθείς ενδοχράνιοι όγχοι που χαλύπτουν σχεδόν το 40-50% των νεοπλασμάτων τού εγχεφάλου [31, 32]. Η μέγιστη συχνότητα εμφάνισης του είναι στην πέμπτη χαι έχτη δεχαετία της ζωής [31, 32]. Προέρχονται συνήθως από μία εχ των τεσσάρων χατηγοριών νευρογλοιαχών χυττάρων του εγχεφάλου: τα αστροχύτταρα (αστροχυττώματα), τα ολιγογοδενδροχύτταρα (ολιγοδενδρογλοιώματα), τα επενδυματιχά χύτταρα (επενδυμώματα), χαι τα αρχέγονα νευρογλοιαχά χύτταρα (γλοιώματα) [31, 32]. Τα αστροχυττώματα είναι τα συνηθέστερα γλοιώματα [32]. Τα γλοιώματα μπορεί να εμφανίζονται στα εγχεφαλιχά ημισφαίρια, στον οπίσθιο χρανιαχό βόθρο, στα οπτιχά νεύρα χαι σπάνια στο νωτιαίο μυελό [31], χαι ανάλογα με τα ιστολογιχά τους χαραχτηριστιχά ταξινομούνται σε 4 χατηγορίες (βαθμούς) [31, 32, 33]:

- Βαθμός Ι : Πιλοκυταρικό (τριχοειδές ή νεανικό) αστροκύττωμα
- Βαθμός ΙΙ : Αστροχύττωμα, επενδύμωμα, ολιγοδενδρογλοίωμα
- Βαθμός ΙΙΙ: Αναπλαστικό αστροκύττωμα (γλοίωμα ή ολιγοδενδρογλοίωμα)
- Βαθμός ΙV : Πολύμορφο γλοιοβλάστωμα

Οι βαθμοί Ι-ΙV αντικατοπτρίζουν και την επιθετικότητα τών όγκων αυτών. Ενώ το πιλοχυταρικό αστροχύττωμα δεν έχει την προδιάθεση να εξελίσσεται επιθετικά και η πλήρης χειρουργική του εξαίρεση συνεπάγεται ίαση, δεν συμβαίνει το ίδιο στους βαθμούς ΙΙ-ΙV. Στα γλοιώματα βαθμού ΙΙ ανήκουν τα χαμηλής κακοήθειας αστροκυττώματα που σε βάθος χρόνου δύνανται να εξελιχθούν στις πιο κακοήθεις μορφές ΙΙΙ και ΙV βαθμού. Ο μέσος όρος επιβίωσης του ασθενούς εξαρτάται από την ηλικία, το μέγεθος και την εντόπιση τού όγκου και κυμαίνεται από 5-15 έτη. Το επενδύμωμα κατατάσσεται και αυτό στα γλοιώματα βαθμού ΙΙ, αναπτύσσεται χυρίως στο χοιλιαχό σύστημα του εγχεφάλου ή χατά μήχος του νωτιαίου σωλήνα και ενίοτε οδηγεί σε μεταστάσεις μέσω του εγκεφαλονωτιαίου υγρού. Η θεραπεία συνίσταται στη ριζική του χειρουργική αφαίρεση και στην ακτινοθεραπεία τού κρανίου και τού νωτιαίου σωλήνα. Το ολιγοδενδρογλοίωμα κατατάσσεται επίσης στα γλοιώματα βαθμού ΙΙ, αναπτύσσεται χυρίως στους μετωπιαίους λοβούς, με ιδιαίτερα αργούς ρυθμούς, σχηματίζοντας κύστεις και ασβεστώσεις (αποτιτανώσεις). Με ριζική χειρουργική αφαίρεση και / ή χωρίς ακτινοθεραπεία παρατηρείται υψηλός μέσος όρος επιβίωσης (10-15 έτη). Το αναπλαστιχό αστροχύττωμα ανήχει στα γλοιώματα βαθμού ΙΙΙ, αναπτύσσεται σαφώς πιο επιθετιχά χαι σε συντομότερο χρονικό διάστημα, με μέσο όρο επιβίωσης τού ασθενούς από 0.5-3 έτη. Τέλος, το πολύμορφο γλοιοβλάστωμα είναι η συχνότερη και κακοηθέστερη μορφή γλοιώματος (βαθμού IV), με ταχύτατη (σε λίγους μήνες) εξέλιξη και το χαμηλότερο μέσο όρο επιβίωσης

μεταξύ των γλοιωμάτων (0.5-1 έτος). Μακροσκοπικά το πολύμορφο γλοιοβλάστωμα είναι όγκος μαλθακός, νεκρωτικός και αιμορραγικός, με τάση να διεισδύει μέσω του μεσολοβίου στο άλλο ημισφαίριο. Συχνότερα εντοπίζεται στη μετωποκροταφική περιοχή. Σημειώνεται ότι ο αναφερόμενος μέσος όρος επιβίωσης προέρχεται από τη στατιστική ανάλυση ασθενών με τις αντίστοιχες διαγνώσεις.

Σχήμα 2.3: Μακροσκοπική εμφάνιση πολύμορφου γλοιοβλαστώματος

Κύριο χαραχτηριστικό των γλοιωμάτων είναι η εξέλιξή τους από νεοπλάσματα χαλής διαφοροποίησης σε περισσότερο χαχοήθεις μορφές, όπως το αναπλαστικό αστροκύττωμα χαι το πολύμορφο γλοιοβλάστωμα, με μια διαδικασία που λαμβάνει χώρα σε διάστημα έως και 10 ετών. Η διεργασία αυτή που είναι γνωστή ως tumor progression είναι χαραχτηριστική για τα αστροκυττώματα και οφείλεται στη συσσώρευση όλο και περισσότερων γενετικών βλαβών, που οδηγούν στην απόκτηση κακοήθων χαρακτηριστικών (αποδιαφοροποίηση, αύξηση κυτταρικού πολλαπλασιασμού διηθητική ικανότητα) [26, 32]. Είναι δυνατόν όμως να έχουμε την ανάπτυξη εξ αρχής (de novo) πολύμορφου γλοιοβλαστώματος χωρίς να αποτελεί εξέλιξη νεοπλάσματος χαμηλότερης βαθμίδας διαφοροποίησης [26, 32]. Έναι επίσης χαραχτηριστικό των αστροκυττωμάτων είναι η ικανότητα τους να διηθούν το γειτονικό φυσιολογικό εγκεφαλικό ιστό, γεγονός με αποτέλεσμα τη διασπορά καρχινικών κυττάρων σε απομακρυσμένες περιοχές από το σημείο δημιουργίας του όγκου [26]. Η διήθηση του φυσιολογικού νευρικού ιστού συμβαίνει διαμέσου συγκεκριμένων ανατομικών δομών και είναι ιδιαίτερα εμφανής στα κακής διαφοροποίησης νεοπλάσματα, χωρίς να απουσιάζει όμως και από τα χαμηλής βαθμίδας [26].

Στις μισές σχεδόν περιπτώσεις, το πρώτο σύμπτωμα ενός γλοιώματος είναι η εμφάνιση μιας εστιαχής ή γενιχευμένης επιληπτιχής χρίσης [31]. Περίπου 60 με 75% αυτών των ασθενών, θα έχουν υποτροπιάζουσες επιληπτιχές χρίσεις χατά την πορεία της νόσου. Κλινιχές εχδηλώσεις αυξημένης ενδοχράνιας πίεσης (όπως επίμονη χεφαλαλγία, έμετοι, οίδημα των οπτιχών θηλών, βραδυχαρδία, διαταραχές επιπέδου συνείδησης, χ.ά.), εμφανίζονται αργά στην εξέλιξη τής νόσου [31]. Στα παιδιά οι όγχοι αυτοί, εντοπίζονται συνήθως στην παρεγχεφαλίδα χαι παρουσιάζονται με ένα συνδυασμό οπτιχών διαταραχών (που τυπιχά δε διορθώνονται με γυαλιά οράσεως), αστάθεια βάδισης, ετερόπλευρη αταξία, χαι σημεία αυξημένης ενδοχράνιας πίεσης. Η μαγνητική τομογραφία (MRI) και σε μερικές περιπτώσεις και η αξονική τομογραφία (CT) είναι απαραίτητες για τον καθορισμό τών χαρακτήρων τού όγκου (μέγεθος, εντόπιση) [31]. Πρόσθετες απεικονιστικές εξετάσεις καθίστανται σε πολλές περιπτώσεις απαραίτητες και εξυπηρετούν συγκεκριμένους σκοπούς, όπως η μαγνητική φασματοσκοπία, η λειτουργική μαγνητική τομογραφία, η τρισδιάστατη μαγνητική τομογραφία (νευροπλοήγηση) και η τομογραφία εκπομπής ποζιτρονίων (PET scan) [19].

Σχήμα 2.4: Προ-(άνω) και μετεγχειρητική(κάτω) μαγνητική τομογραφία τυπικού γλοιοβλαστώματος (αριστερού) βρεγματικού λοβού σε γυναίκα ασθενή 62 ετών. Η δεξιά ημιπάρεση αποκαταστάθηκε μετεγχειρητικά.

Χειρουργική αφαίρεση του όγκου μέσω κρανιοτομίας επιτρέπει σε γενικές γραμμές λειτουργική επιβίωση για μακρύ χρονικό διάστημα [31, 32]. Νεότερες τεχνικές που εφαρμόζονται την τελευταία δεκαετία και επιτρέπουν τη ριζικότερη αφαίρεση των γλοιωμάτων, ακόμα και σε ιδιαίτερα δυσπρόσιτες περιοχές τού εγκεφάλου, με σύγχρονη προστασία σημαντικών λειτουργικών κέντρων του, έχουν βελτιώσει σημαντικά την ποιότητα ζωής, αλλά και το μέσο όρος επιβίωσης τών ασθενών. Οι τεχνικές αυτές είναι η νευροπλοήγηση, η λειτουργική μαγνητική τομογραφία, ο διεγχειρητικός νευροφυσιολογικός έλεγχος και η διεγχειρητική απεικόνιση μέσω υπερήχου ή ειδικών συστημάτων διεγχειρητικής μαγνητικής τομογραφίας. Σε ορισμένες περιπτώσεις ιδιαίτερα δυσμενούς πρόγνωσης, όπως διήθησης περισσότερων του ενός λοβών του εγκεφάλου ή επέκτασης σε περιοχή λειτουργικών κέντρων (λόγου, βασικών γαγγλίων, στελέχους), η «ανοικτή »χειρουργική επέμβαση δεν φαίνεται να προσφέρει ουσιαστικό όφελος, καθώς με αυτήν δεν πραγματοποιείται ριζική αφαίρεση τού όγχου. Σε αυτήν την περίπτωση συνιστάται συνήθως επιβεβαίωση τής διάγνωσης μέσω ιστολογικής εξέτασης, μετά τη λήψη στερεοτακτικής βιοψίας. Σε καμία περίπτωση η μαγνητική φασματοσκοπία δεν αντικαθιστά την ιστολογική επιβεβαίωση.

Σε όλες σχεδόν τις περιπτώσεις γλοιωμάτων βαθμού ΙΙ και σε όλες βαθμού ΙΙΙ-ΙV χορηγείται μετεγχειρητικά συμβατική ακτινοθεραπεία [49]. Σε όγκους βαθμού ΙΙΙ και IV χορηγείται και συμπληρωματική χημειοθεραπεία (Temozolomide) κατά τη διάρκεια της ακτινοθεραπείας, η οποία συνεχίζεται και μετά το πέρας τής ακτινοθεραπείας, βάσει θεραπευτικών πρωτοκόλλων διαρχείας έξι ή δώδεχα μηνών [49]. Η θεραπεία συνδυάζεται μεριχές φορές με στερεοταχτιχή αχτινοχειρουργιχή, ιδιαίτερα σε περιπτώσεις μιχρότερων εστιών ή υποτροπών.

Πολυκεντρικές μελέτες έχουν επιβεβαιώσει ότι η ριζική χειρουργική αφαίρεση τού όγκου σε ποσοστό > 90% και η χορήγηση ακτινο- και χημειοθεραπείας μετεγχειρητικά, βελτιώνουν σημαντικά το προσδόκιμο επιβίωσης και την ποιότητα ζωής των ασθενών. Εντούτοις, κάθε περίπτωση πρέπει να εξατομικεύεται και να αντιμετωπίζεται βάσει των ισχυόντων διεθνών πρωτοκόλλων αντιμετώπισης γλοιωμάτων.

2.3 Μαθηματικά μοντέλα -Ιστορική αναδρομή

Τα γλοιώματα, όπως προαναφέρθηκε, αποτελούν τους σοβαρότερους και συχνότερους πρωτοπαθείς όγκους του εγκεφάλου. Το πιο σημαντικό πρόβλημα στην έγκαιρη διάγνωση και θεραπεία τών ασθενών με γλοίωμα είναι η ταχύτατη διήθηση τού γειτονικού φυσιολογικού ιστού από τα καρκινικά κύτταρα με αποτέλεσμα την αδυναμία εντόπισης τού όγκου στα αρχικά στάδια με τις συνήθεις χρησιμοποιούμενες μεθόδους απεικόνισης (μαγνητική και αξονική τομογραφία).

Τα παραπάνω λοιπόν αποτέλεσαν χίνητρο για τους επιστήμονες ώστε να μελετήσουν χαι να κατανοήσουν την ανάπτυξη των γλοιωμάτων. Τις τελευταίες δεκαετίες έχουν αναπτυχθει μαθηματικά μοντέλα για την προσομοίωση και μελέτη της εξέλιξης ενός καρκινικού όγκου στον εγκέφαλο. Τα πρώτα μοντέλα βασίζονταν είτε στους εκθετικούς είτε σε Verhulst (logistic) είτε σε Gompertz νόμους [39, 50, 51, 63, 68]. Τα επόμενα χρόνια τα μοντέλα αυτά αντικαταστάθηκαν απο τα μοντέλα ανάπτυξης του καρκινικού όγκου στο χώρο και το χρόνο. Στην κατηγορία αυτή ανήκουν τα deterministic μοντέλα τα οποία θεωρούν την ανάπτυξη του καρχίνου ως ένα φαινόμενο διάδοσης χύματος χαι λαμβάνουν υπόψιν τους τη μίτωση χαι θρεπτιχή εξάντληση (nutrient depletion) [2], την ανοσοποιητική αντίδραση [29] ή το ρυθμό μιτωτικής εξαλλαγής (mitotic rate changes) [55]. Τα παραπάνω μοντέλα απέτυχαν τη μοντελοποίηση ανάπτυξης των γλοιωμάτων γιατί δεν έλαβαν υπόψιν τους την χυτταριχή χινητιχότητα. Τώρα τα μοντέλα που χρησιμοποιούμε πιο συχνά είναι τα μοντέλα διάχυσης στα οποία με μερικές διαφορικές εξισώσεις προσομοιώνουμε την αλλαγή της πυκνότητας του κυττάρου του γλοιώματος στο χώρο και το χρόνο. Το πρώτο μοντέλο τής κατηγορίας αυτής αναπτυχθηκε από τον Murray το 1989 [42]. Αργότερα οι Cruywagen et al. [11], Tracqui et al. [64], Woodward et al. [70], Cook et al. [10] και Burgess et al. [9] περιέγραψαν το μοντέλο της ανάπτυξης χαι διάχυσης ενός γλοιώματος βασισμένοι στις αναλύσεις των δειγματων απο τις αξονιχές τομογραφίες των ασθενών με αστροχύτωμα. Το μοντέλο αυτό χαθορίζει την αναπτυξη των καρκινικών κυττάρων βασιζόμενοι σε δύο παραμέτρους: τον πολλαπλασιασμό και τη διάχυση. Σημειώνεται ότι μέχρι το 2000 οι ερευνητές δεν ελάμβαναν υπόψιν τους την ανατομία τού εγχεφάλου. Πρώτη η Swanson [60] εισήγαγε στη μοντελοποίηση της ανάπτυξης των γλοιωμάτων την ετερογένεια που υπάρχει στον ιστό του εγχεφάλου. Στο μοντέλο της υπάρχουν δύο σταθερές διάχυσης, μια για τη φαιά ουσία και μια για τη λευκή ουσία. Πιο συγκεκριμένα

οι συντελεστές αυτές διάχυσης είναι σταθερές και έχει παρατηρηθεί ότι η σταθερά διαχυσης στην λευκή ουσία είναι μεγαλύτερη από αυτήν στη φαιά ουσία.

2.4 Το μαθηματικό μοντέλο της Swanson

Το μαθηματικό μοντέλο της Swanson [59]- [62] που έχει αναπτυχθεί τα τελευταία χρόνια έχει διαπιστωθεί ότι προσομοιάζει τη συμπεριφορά ενός πραγματικού καρκινικού όγκου στην διάρκεια του χρόνου πολύ αποτελεσματικά. Όπως έχουμε ήδη αναφέρει η πιο σημαντική διαφορά του μοντέλου αυτού σε σχέση με προγενέστερα είναι ότι το μοντέλο αυτό λαμβάνει υπόψιν την ανατομία του εγκεφάλου, δηλαδή τη διαφορετική κυτταρική κινητικότητα στη φαιά και λευκή ουσία.

Το μαθηματικό αυτό μοντέλο μπορεί να περιγραφεί ως εξής:

" ρυθμός μεταβολής της πυχνότητας του πληθυσμού των χαρχινιχών χυττάρων = διάχυση (χινητικότητα) χυττάρων στη λευχή χαι φαιά ουσία + πολλαπλασιασμός των χαρχινιχών χυττάρων."

Η μαθηματική εξίσωση του μοντέλου είναι :

$$\frac{\partial \bar{c}}{\partial \bar{t}} = \bar{\nabla} \cdot J + \rho \bar{c} \tag{2.1}$$

όπου $\overline{c}(\overline{x},\overline{t})$ είναι ο αριθμός των χυττάρων στην θέση \overline{x} και τον χρόνο \overline{t} , ρ (time $^{-1}$) παριστάνει το ποσοστό της ανάπτυξης των χυττάρων συμπεριλαμβανομένου και του πολλαπαλασιασμού τους και του θανάτου τους και J παριστάνει τη διάχυση ροής των χυττάρων. Η διάχυση ροής λαμβάνεται να είναι ανάλογη της κλίσης της κυτταρικής πυκνότητας, δηλαδή:

$$J = \bar{D}\bar{\nabla}\bar{c} \tag{2.2}$$

με \overline{D} (distance ² / time) να είναι η σταθερά διάχυσης των κυττάρων στον ιστό του εγκεφάλου. Οπότε η εξίσωση (2.1) χρησιμοποιώντας την (2.2) γίνεται:

$$\frac{\partial \bar{c}}{\partial \bar{t}} = \bar{D} \bar{\nabla}^2 \bar{c} + \rho \bar{c}$$

$$\dot{\eta}$$
(2.3)

$$\frac{\partial \bar{c}}{\partial \bar{t}} = \nabla \cdot \left(\bar{D}(\bar{x}) \nabla \bar{c} \right) + \rho \bar{c} \quad , \tag{2.4}$$

Λαμβάνοντας υπόψιν την ετερογένεια του ιστού του εγχεφάλου, η σταθερά διάχυσης που αντιπροσωπεύει την χινητιχότητα των χαρχινιχών χυττάρων είναι διαφορετιχή στη φαιά χαι λευχή ουσία:

με D_g και D_w να είναι σταθερές και $D_w > D_g$.

Τη σταθερά διάχυσης στη λευχή και φαιά ουσία μπορούμε να την αντιστοιχίσουμε με τη γραμμική ταχύτητα χρησιμοποιώντας την Fisher προσέγγιση [9]. Δηλαδή:

$$D_w = \frac{u_w^2}{4\rho} \tag{2.6}$$

και

$$D_g = \frac{u_g^2}{4\rho} \tag{2.7}$$

όπου u_w και u_g είναι αντίστοιχα οι γραμμικές ταχύτητες της διαγνωσμένης λευκής και φαιάς περιοχής που έχει προσβληθεί από τον καρκίνο. Αυτή η προσέγγιση προκύπτει από την παρατήρηση ότι ο πληθυσμός που διέπεται από την ανάπτυξη και τη διάχυση εξαπλώνεται με ρυθμό $2\sqrt{\rho D}$ για μεγάλο χρονικό διάστημα.

Πειραματικά δεδομένα υψηλού βαθμού κακοήθειας γλοιώματος δίνονται από τον παρακάτω πίνακα [59]:

Παράμετροι	Σύμβολο	Πειραματικές τιμές	Μονάδες
Γραμμική ταχύτητα στη φαιά ουσία	u_g	0.008	$\frac{cm}{day}$
Γραμμική ταχύτητα στη λευκή ουσία	u_w	>0.016	$\frac{cm}{day}$
Σ ταθερά διάχυσης στη φαιά ουσία	D_g	0.0013	$\frac{cm^2}{day}$
Σ ταθερά διάχυσης στη λευχή ουσία	D_w	>0.0042	$\frac{cm^2}{day}$
Ποσοστό ανάπτυξης χαρχινιχών χυττάρων	ρ	0.012	day^{-1}

Όπως προχύπτει η σταθερά διάχυσης στη λευχή ουσία είναι περίπου πενταπλάσια της σταθεράς διάχυσης στην φαιά ουσία $D_w\simeq 5D_a.$

Πειραματικά δεδομένα επίσης για τη στάθερα διάχυσης στη φαιά ουσία γλοιωμάτων διαφόρου βαθμού κακοήθειας εντοπισμένα στον κροταφικό λοβό του εγκεφάλου παρουσιάζονται στον πίνακα 2.1 [59].

Τέλος, θεωρούμε ότι στο σύνορο η ροή είναι μηδέν και ότι η αρχική πηγή των καρκινικών κυττάρων δίνεται από την σχέση:

$$\bar{c}(\bar{x},0) = \bar{f}(\bar{x}) \tag{2.8}$$

Στην παρούσα όμως εργασία ασχοληθήκαμε με το αδιάστατο πρόβλημα σε μια χωρική διάσταση. Οι αδιάστατες λοιπόν μεταβλητές που χρησιμοποιήσαμε [59] είναι :

$$x = \sqrt{\frac{\rho}{D_w}} \bar{x} \quad , \tag{2.9}$$

Βαθμός χαχοήθειας γλοιώματος	Σ ταθερά διάχυσης στην φαια ουσία D_g
Βαθμός Ι	0.00013
Βαθμός ΙΙ	0.0013
Βαθμός ΙΙΙ	0.00013
Βαθμός ΙV	0.0013

Πίνακας 2.1: Ο βαθμός κακοήθειας ενός γλοιώματος και η αντίστοιχη σταθερά διάχυσης στη φαιά ουσία.

Αδιάστατη ποσότητα του χρόνου	Πραγματικός χρόνος
t = 0.01	≈ 20 ώρες
t = 0.1	pprox 8 μέρες
t = 1	pprox 3 μήνες
t = 4	pprox 1 χρόνια
t = 10	pprox 2 χρόνια

Πίνακας 2.2: Η σχέση μεταξύ της αδιάστατης ποσότητας του χρόνου (που χρησιμοποιείται στους υπολογισμούς μας) και του πραγματικού χρόνου.

$$t = \rho \bar{t} , \qquad (2.10)$$

$$c(x,t) = \bar{c} \left(\sqrt{\frac{\rho}{D_w}} \bar{x}, \ \rho \bar{t} \right) \frac{D_w}{\rho N_0}$$
(2.11)

όπου $N_0 = \int \overline{f}(\overline{x}) d\overline{x}$ δηλώνει τον αρχικό αριθμό καρκινικών κυττάρων στον εγκέφαλο (δηλαδή για $\overline{t} = 0$) και

$$f(x) = \bar{f}\left(\sqrt{\frac{\rho}{D_w}}\bar{x}\right) \tag{2.12}$$

Οπότε για παράδει
γμα για τον χρόνο η σχέση μεταξύ της αδιάστατης ποσότητας και του πραγματικού χρόνου γι
α $\rho=0.012~day^{-1}$ δίνεται από τον πίνακα 2.2.

Η εξίσωση λοιπόν του μοντέλου μας διαμορφώνεται ως εξής:

$$\frac{\partial c}{\partial t} = \nabla \cdot (D(x)\nabla c) + c \quad , \tag{2.13}$$

με

$$D(x) = \begin{cases} 1 & , x & \text{anyles oth quid ousid (grey matter)} \\ \gamma = \frac{D_g}{D_w} & , x & \text{anyles oth leuxy ousid (white matter)} \end{cases},$$
(2.14)

$$c(x,0) = f(x).$$
 (2.15)

Το μοντέλο μας στη μια χωρική διάσταση μπορεί να γραφτεί και στη μορφή:

$$\begin{cases} c_t = (Dc_x)_x + c , & x \in [a, b] , t \ge 0 \\ c_x(a, t) = 0 & \text{xal} & c_x(b, t) = 0 \\ c(x, 0) = f(x) \end{cases}$$
(2.16)

Αντικαθιστώντας $c(x,t) = e^t u(x,t)$ έχουμε ότι:

$$\begin{cases} u_t = (Du_x)_x , x \in [a, b], t \ge 0 \\ u_x(a, t) = 0 \quad \text{xon} \quad u_x(b, t) = 0 \\ u(x, 0) = f(x) \end{cases}$$
(2.17)

Για την ανάλυση μας θεωρούμε τη σταθερά διάχυσης D(x) της μορφής :

$$D(x) = \begin{cases} \gamma & , \ a \le x < w_1 \\ 1 & , \ w_1 \le x < w_2 \\ \gamma & , \ w_2 \le x \le b \end{cases}$$
(2.18)

Σχήμα 2.5: Σταθερά Διάχυσης

με $\gamma := \frac{D_g}{D_w} < 1$ να είναι η αδιάστατη σταθερά διάχυσης στη φαιά ουσία και 1 η αδιάστατη σταθερά διάχυσης στη λευκή ουσία.

Η ασυνέχεια της σταθεράς διάχυσης άμεσα συνεπάγεται και ασυνέχεια της u_x έτσι ώστε η Du_x να είναι συνεχής σε κάθε διασύνδεση των περιοχών. Πιο συγκεκριμένα η παραβολική μορφή της διαφορικής εξίσωσης (2.17) επιτάσσει συνέχεια της u και της ροής στα σημεία διασύνδεσης, δηλαδή

$$[u] := u^{+} - u^{-} = 0 , \quad \text{gia} \quad x = w_k , \quad k = 1, 2 , \qquad (2.19)$$

με

$$u^+ := \lim_{x \to w_k^+} u(x)$$
 for $u^- := \lim_{x \to w_k^-} u(x)$,

και

$$[Du_x] := D^+ u_x^+ - D^- u_x^- = 0 , \quad \text{yia} \quad x = w_k , \ k = 1, 2 .$$
(2.20)

Οπότε χρησιμοποιώντας τους παραπάνω περιορισμούς συνέχειας στα σημεία διασύνδεσης, το μοντέλο μπορεί να διαμορφωθεί ως εξής:

$$\begin{cases} u_t = D_\ell \ u_{xx} \ , \ x \in \mathcal{R}_\ell \ , \ \ell = 1, 2, 3 \ , \ t \ge 0 \\\\ u_x(a, t) = 0 \quad \text{xal} \quad u_x(b, t) = 0 \\\\ [u] = 0 \quad \text{xal} \quad [Du_x] = 0 \quad \text{yia} \ x = w_k \ , \ k = 1, 2 \\\\ u(x, 0) = f(x) \end{cases}$$
(2.21)

με \mathcal{R}_ℓ να δηλώνει την κάθε περιοχή

$$\mathcal{R}_1 := [a, w_1) , \ \mathcal{R}_2 := (w_1, w_2) , \ \mathcal{R}_3 := (w_2, b]$$
 (2.22)

Τέλος, η πηγή των καρκινικών κυττάρων αρχικά δίνεται από τη συνάρτηση $f(x)\colon$

$$f(x) = \delta(x - \xi) , \quad \xi \in [a, b] , \quad (2.23)$$

όπου $\delta(x)$ δηλώνει την Dirac συνάρτηση. Δηλαδή:

$$\delta(x - \xi) \equiv \delta_{\eta}(x) := \frac{1}{\eta \sqrt{\pi}} e^{-(x - \xi)^2/\eta^2}$$
(2.24)

Κεφάλαιο 3

Μέθοδος Immersed Interface πεπερασμένες διαφορές για το μοντέλο διάχυσης καρκινικών όγκων στον εγκέφαλο με ασυνεχή σταθερά διάχυσης

Στο κεφάλαιο αυτό θα ασχοληθούμε με την Immersed Interface μέθοδο για την αριθμητική επίλυση του interface προβλήματος της διάχυσης καρκινικών όγκων στον εγκέφαλο όπου η σταθέρα διάχυσης είναι ασυνεχής. Η βασική ιδέα της μεθόδου αυτής είναι ότι χρησιμοποιεί τις εξισώσεις των πεπερασμένων διαφορών στους κανονικούς κόμβους του πλέγματος και τροποποιημένες εξίσωσεις πεπερασμένων διαφορών στους μη κανονικούς κόμβους του πλέγματος και τροποποιημένες εξίσωσεις πεπερασμένων διαφορών στους μη κανονικούς κόμβους του πλέγματος έτσι ώστε να προσεγγιστούν καλά οι διάφορες ασυνέχειες. Αυτοί οι μη κανονικοί κόμβοι βρίσκονται πολύ κοντά στα σημεία διασύνδεσης των περιοχών και είναι πολύ λίγοι ώστε να μην αυξάνουν το υπολογιστικό κόστος πάρα πολύ. Η μέθοδος αυτή εξασφαλίζει ακρίβεια στα σημεία του πλέγματος.

3.1 Το σχεδιάγραμμα (ο σκελετός) της Immersed Interface μεθόδου

Η μεθόδος αυτή αναπτύχθηκε από τους Le Veque και Li [31] για να αντιμετωπίσουν ασυνέχειες στις σταθερές και στις λύσεις που υπάρχουν στις διαφορικές εξισώσεις και περιγράφεται ως ακολούθως:

- Επίλυσε την μερική διαφορική εξίσωση σ΄ ένα καρτεσιανό πλέγμα.
- Χρησιμοποίησε πεπερασμένες διαφορές.

- Βάλε σημεία χοντά στα σημεία διασύνδεσης μέσα στο χαρτεσιανό πλέγμα.
- Εφάρμοσε τις πεπερασμένες διαφορές στα κανονικά σημεία του πλεγματος μακριά από τα σημεία διασύνδεσης.
- Δημιούργησε τις σχέσεις στα σημεία διασύνδεσης.
- Τροποποίησε τις εξισώσεις των πεπερασμένων διαφορών στα μη κανονικά σημεία του πλέγματος, δηλαδή σε αυτά που είναι κοντά στα σημεία διασύνδεσης.
- Λύσε το σύστημα των εξισώσεων για να υπολογίσεις τη προσεγγιστική λύση του προβλήματος.

3.2 Η Immersed Interface μέθοδος με Implicit πεπερασμένες διαφορές

Θεωρούμε το προβλημά μας όπως το ορίσαμε στην (2.17), δηλαδή:

$$\begin{cases} u_t = (Du_x)_x , x \in [a, b], t \ge 0 \\ u_x(a, t) = 0 \quad \text{xal} \quad u_x(b, t) = 0 \\ u(x, 0) = f(x) \end{cases}$$
(3.1)

με τη σταθερά διάχυσης D να δίνεται από την σχέση (2.18). Παράγουμε ένα χαρτεσιανό πλέγμα με

$$x_i = a + ih, \qquad i = 0, 1, \dots, m$$
 (3.2)

και

$$t_n = n\Delta t$$
, $n = 0, 1, \dots$ (3.3)

όπου $h = \frac{b-a}{m}$. Θεωρούμε ότι το σημείο w_1 βρίσκεται ανάμεσα στα σημεία του πλέγματος x_j και x_{j+1} ενώ το σημείο w_2 βρίσκεται ανάμεσα στα σημεία του πλέγματος x_k και x_{k+1} . Τα σημεία x_j , x_{j+1} , x_k , x_{k+1} που βρίσκονται κοντά στα σημεία διασύνδεσης ονομάζονται μη κανονικά σημεία του πλέγματος (irregural grid points). Τα υπόλοιπα σημεία του πλέγματος λέγονται κανονικά σημεία του πλέγματος (regural grid points).

Στα κανονικά σημεία του πλέγματος εφαρμόζουμε πεπερασμένες διαφορές. Οι τιμές της εξαρτημένης μεταβλητής στους κόμβους του πλέγματος ορίζονται από τη σχέση:

$$u(x_i, t_n) = u_i^n$$
 με $i = 0...m$ και $n = 0, \Delta t, 2\Delta t...$ (3.4)

Ο δείκτης n που συμβολίζει τη διακριτοποιήση στο χρόνο γράφεται ως άνω δείκτης και ο δείκτης που συμβολίζει τη διακριτοποίηση του χώρου ως κάτω δείκτης. Με τον τρόπο αυτό ο διαχωρισμός ανάμεσα στους δείκτες που συμβολίζουν τη χωρική και τη χρονική διακριτοποιήση είναι άμεσα αναγνωρίσιμος. Έχοντας ολοκληρώσει με τη διακριτοποίηση του πεδίου ορισμού,

Σχήμα 3.1: Υπολογιστικό πλέγμα

εφαρμόζουμε την διαφορική εξίσωση στους κόμβους (x_i, t_n) :

$$u_t(x_i, t_{n+1}) = D \ u_{xx}(x_i, t_{n+1}) \tag{3.5}$$

όπου

$$D(x) = \begin{cases} \gamma & , i = 0, \dots, j \\ 1 & , i = j + 1, \dots, k \\ \gamma & , i = k + 1, \dots, m \end{cases}$$
(3.6)

Για λόγους ευστάθειας για την πρώτη παράγωγο ως προς το χρόνο χρησιμοποιούμε τις προς τα πίσω διαφορές (backward Euler):

$$\left. \frac{\partial u}{\partial t} \right|_{i}^{n+1} = \frac{u_{i}^{n+1} - u_{i}^{n}}{\Delta t} + O(\Delta t)$$
(3.7)

ενώ για τη δεύτερη παράγωγο ως προς το χώρο χρησιμοποιούμε κεντρικές διαφορές:

$$\left. \frac{\partial^2 u}{\partial x^2} \right|_i^{n+1} = \frac{u_{i+1}^{n+1} - 2u_i^{n+1} + u_{i-1}^{n+1}}{h^2} + O(h^2)$$
(3.8)

Σχήμα 3.2: Υπολογιστικό πλέγμα

όπου οι κόκκινοι κύκλοι εκφράζουν τους κόμβους που περιέχονται στις πεπερασμένες διαφορές για τον χώρο ενώ οι × τους κόμβους που περιέχονται στις πεπερασμένες διαφορές για τον χρόνο.

Αντικαθιστώντας τις σχέσεις (3.7) και (3.8) στη σχέση (3.5) προκύπτει η εξίσωση των πεπερασμένων διαφορών :

$$\frac{u_i^{n+1} - u_i^n}{\Delta t} = D \frac{u_{i+1}^{n+1} - 2u_i^{n+1} + u_{i-1}^{n+1}}{h^2} + O(\Delta t, h^2)$$
(3.9)

Δηλαδή:

$$\tilde{u}_i^{n+1} - \tilde{u}_i^n = D\Delta t \ \frac{\tilde{u}_{i+1}^{n+1} - 2\tilde{u}_i^{n+1} + \tilde{u}_{i-1}^{n+1}}{h^2}$$
(3.10)

όπου \tilde{u} συμβολίζει την προσέγγιση της u τάξεως $O(\Delta t, h^2)$. Θέτω $\delta = D\Delta t$ με D να δίνεται από την σχέση (3.6). Άρα

$$-\delta \tilde{u}_{i+1}^{n+1} + (h^2 + 2\delta)\tilde{u}_i^{n+1} - \delta \tilde{u}_{i-1}^{n+1} = h^2 \tilde{u}_i^n$$
(3.11)

Έτσι στα σημεία του πλέγματος x_i με $i \neq j, j+1, k, k+1$ οι εξισώσεις των πεπερασμένων διαφορών δίνονται από την σχέση:

$$-\delta \tilde{u}_{i+1}^{n+1} + (h^2 + 2\delta)\tilde{u}_i^{n+1} - \delta \tilde{u}_{i-1}^{n+1} = h^2 u_i^n \qquad \mu \varepsilon \qquad i = 1, 2, ..., n$$
(3.12)

Οι εξισώσεις των πεπερασμένων διαφορών στο σύνορο θα είναι :

$$\frac{\partial}{\partial x}\tilde{u}(a,t) = 0 \quad \Rightarrow \quad \frac{\partial\tilde{u}}{\partial x}\Big|_{1}^{0} = 0 \tag{3.13}$$

Χρησιμοποιούμε τις προς τα εμπρός διαφορές οπότε :

$$\frac{-3\tilde{u}_0 + 4\tilde{u}_1 - \tilde{u}_2}{2h} + O(h^2) = 0 \tag{3.14}$$

Δηλαδή:

$$-3\tilde{u}_0 + 4\tilde{u}_1 - \tilde{u}_2 = 0 \tag{3.15}$$

Αντίστοιχα με τις προς τα πίσω διαφορές :

$$\frac{\partial}{\partial x}\tilde{u}(b,t) = 0 \quad \Rightarrow \quad \frac{\partial\tilde{u}}{\partial x}\Big|_{n_1}^0 = 0 \tag{3.16}$$

$$\frac{\tilde{u}_{m-2} - 4\tilde{u}_{m-1} + 3\tilde{u}_m}{2h} + O(h^2) = 0$$
(3.17)

Δηλαδή:

$$\tilde{u}_{m-2} - 4\tilde{u}_{m-1} + 3\tilde{u}_m = 0 \tag{3.18}$$

Για τα μη κανονικά σημεία x_j , x_{j+1} , x_k , x_{k+1} εφαρμόζουμε τροποποιημένες πεπερασμένες διαφορές που καθορίζονται από τη μέθοδο των απροσδιόριστων συντελεστών.

Πιο συγκεκριμένα ακολουθώντας τη δουλειά των [30, 31] για το σημείο x_j θεωρούμε ένα 3 – σημείων σχήμα της μορφής:

$$\frac{u_j^{n+1} - u_j^n}{\Delta t} + O(\Delta t) = D(\gamma_{j,1}^{n+1} \ u_{j-1}^{n+1} + \gamma_{j,2}^{n+1} \ u_j^{n+1} + \gamma_{j,3}^{n+1} \ u_{j+1}^{n+1}) + O(h)$$
(3.19)

έτσι ώστε να εξασφαλίσουμε δευτέρας τάξεως ολική χωρική σύγκλιση. Αφού δύο σημεία του πλέγματος εμπλέκονται είναι αρκετό να έχουμε τοπικό σφάλμα αποκοπής τάξεως O(h) στα σημεία αυτά.

Για να υπολογίσουμε το τοπικό σφάλμα αποκοπής στο σημείο x_j , αναπτύσσουμε σε σειρά Taylor την λύση $u(x_{j-1})$, $u(x_j)$ και $u(x_{j+1})$ στο σημείο διεπαφής w_1 και για τη χρονική στιγμή t = n + 1. Αφού περιμένουμε τους γ συντελεστές να είναι της τάξεως $O(\frac{1}{h^2})$ πρέπει να αναπτύξουμε την σειρά Taylor ταξεως $O(h^3)$ ώστε να πετύχουμε τοπικό σφάλμα αποκοπής τάξεως O(h).

Συμβολίζουμε με

$$u^{-}(w_1) = \lim_{x \to w_1^{-}} u(x), \qquad u^{+}(w_1) = \lim_{x \to w_1^{+}} u(x).$$
 (3.20)

Αναπτύσσοντας την σειρά Taylor για $u(x_{j-1})$ στο σημείο w_1 και για t = n+1 έχουμε:

$$u^{n+1}(x_{j-1}) = (u^{-}(w_1))^{n+1} + (x_{j-1} - w_1)(u_x^{-}(w_1))^{n+1} + \frac{1}{2}(x_{j-1} - w_1)^2(u_{xx}^{-}(w_1))^{n+1} + O(h^3).$$
(3.21)

Αντίστοιχα:

$$u^{n+1}(x_j) = (u^-(w_1))^{n+1} + (x_j - w_1)(u_x^-(w_1))^{n+1} + \frac{1}{2}(x_j - w_1)^2(u_{xx}^-(w_1))^{n+1} + O(h^3)$$
(3.22) xal

$$u^{n+1}(x_{j+1}) = (u^{+}(w_1))^{n+1} + (x_{j+1} - w_1)(u_x^{+}(w_1))^{n+1} + \frac{1}{2}(x_{j+1} - w_1)^2(u_{xx}^{+}(w_1))^{n+1} + O(h^3).$$
(3.23)

Γνωρίζουμε όμως ότι στο σημείο διασύνδεσης w_1 και για t=n+1ισχύουν οι σχέσεις:

$$[u]\Big|_{w_1}^{n+1} = (u^+(w_1))^{n+1} - (u^-(w_1))^{n+1} = 0$$
(3.24)

δηλαδή :

$$(u^{+}(w_{1}))^{n+1} = (u^{-}(w_{1}))^{n+1}$$
(3.25)

και

$$[Du_x]\Big|_{w_1}^{n+1} = D^+ (u_x^+(w_1))^{n+1} - D^- (u_x^-(w_1))^{n+1} = 0$$
(3.26)

δηλαδή :

$$(u_x^+(w_1))^{n+1} = \frac{D^-}{D^+} (u_x^-(w_1))^{n+1}$$
(3.27)

ή

$$(u_x^+(w_1))^{n+1} = \gamma(u_x^-(w_1))^{n+1} \tag{3.28}$$

Καθώς επίσης ότι:

$$u_t^-(w_1) - D^- u_{xx}^-(w_1) = 0 (3.29)$$

$$u_t^+(w_1) - D^+ u_{xx}^+(w_1) = 0 (3.30)$$

хац $u_t^-(w_1) = u_t^+(w_1)$

$$D^{+}(u_{xx}^{+}(w_{1})) - D^{-}(u_{xx}^{-}(w_{1})) = 0$$
(3.31)

δηλαδή για t=n+1θα ισχύει:

$$(u_{xx}^+(w_1))^{n+1} = \frac{D^-}{D^+} (u_{xx}^-(w_1))^{n+1}$$
(3.32)

ή

$$(u_{xx}^+(w_1))^{n+1} = \gamma(u_{xx}^-(w_1))^{n+1}$$
(3.33)

Έτσι αντικαθιστώντας στη σχέση (3.23) τις σχέσεις (3.25), (3.28) και (3.33) προκύπτει ότι:

$$u^{n+1}(x_{j+1}) = (u^{-}(w_1))^{n+1} + (x_{j+1} - w_1) \gamma (u^{-}_x(w_1))^{n+1} + \frac{1}{2} (x_{j+1} - w_1)^2 \gamma (u^{-}_{xx}(w_1))^{n+1} + O(h^3)$$
(3.34)

Οπότε χρησιμοποιώντας τις σχέσεις (3.21),(3.22) και (3.34) έχουμε ότι :

 Σ τα ίδια αποτελέσματα θα καταλήγαμε αν υπολογίζαμε :

$$u_{xx}(x_j) + O(h) = u_{xx}^-(w_1) \tag{3.36}$$

Μπορούμε να εξασφαλίσουμε ότι το τοπικό σφάλμα αποκοπής στο σημείο w_1 και για την χρονική στιγμή t = n + 1:

$$(T_j)^{n+1} = \frac{u_j^{n+1} - u_j^n}{\Delta t} - D(\gamma_{j,1}^{n+1} \ u^{n+1}(x_{j-1}) + \gamma_{j,2}^{n+1} \ u^{n+1}(x_j) + \gamma_{j,3}^{n+1} \ u^{n+1}(x_{j+1})) + O(\Delta t, h)$$
(3.37)

είναι της τάξεως O(h) απαιτώντας οι συντελεστες των $(u^-(w_1))^{n+1}$, $(u^-_x(w_1))^{n+1}$ και $(u^-_{xx}(w_1))^{n+1}$ να μηδενίζονται. Έτσι καταλήγουμε σ'ενα σύστημα τριών εξισώσεων με τρεις αγνώστους:

$$\gamma_{j,1}^{n+1} + \gamma_{j,2}^{n+1} + \gamma_{j,3}^{n+1} = 0$$

$$\gamma_{j,1}^{n+1} (x_{j-1} - w_1) + \gamma_{j,2}^{n+1} (x_j - w_1) + \gamma_{j,3}^{n+1} \gamma (x_{j+1} - w_1) = 0$$

$$\frac{1}{2} \gamma_{j,1}^{n+1} (x_{j-1} - w_1)^2 + \frac{1}{2} \gamma_{j,2}^{n+1} (x_j - w_1)^2 + \frac{1}{2} \gamma_{j,3}^{n+1} \gamma (x_{j+1} - w_1)^2 = \gamma$$
(3.38)

Λύνοντας το παραπάνω σύστημα υπολογίσουμε τις τιμές των $\gamma_{j,1}^{n+1}$, $\gamma_{j,2}^{n+1}$ και $\gamma_{j,3}^{n+1}$ οι οποίες δίνονται από τις σχέσεις:

$$\gamma_{j,1}^{n+1} = [\gamma - (1 - \gamma)(x_j - w_1)/h]/D_j$$
(3.39)

$$\gamma_{j,2}^{n+1} = \left[-2\gamma + (1-\gamma)(x_{j-1} - w_1)/h\right]/D_j \tag{3.40}$$

$$\gamma_{j,3}^{n+1} = 1/D_j \tag{3.41}$$

με $D_j = h^2 + (1 - \gamma)(x_{j-1} - w_1)(x_j - w_1)/2\gamma$

Αντίστοιχα οι τροποποιημένες πεπερασμένες διαφορές στο σημείο x_{j+1} δίνονται από την εξίσωση (3.42):

$$\frac{u_{j+1}^{n+1} - u_{j+1}^n}{\Delta t} + O(\Delta t) = D(\gamma_{j+1,1}^{n+1} \ u_j^{n+1} + \gamma_{j+1,2}^{n+1} \ u_{j+1}^{n+1} + \gamma_{j+1,3}^{n+1} \ u_{j+2}^{n+1}) + O(h)$$
(3.42)

Με ανάλογο τρόπο, μπορούμε να υπολογίσουμε τους συντελεστες $\gamma_{j+1,1}^{n+1}, \gamma_{j+1,2}^{n+1}, \gamma_{j+1,3}^{n+1}$ για το σημείο x_{j+1} λύνοντας το σύστημα:

$$\gamma_{j+1,1}^{n+1} + \gamma_{j+1,2}^{n+1} + \gamma_{j+1,3}^{n+1} = 0$$

$$\gamma \gamma_{j+1,1}^{n+1} (x_j - w_1) + \gamma_{j+1,2}^{n+1} (x_{j+1} - w_1) + \gamma_{j+1,3}^{n+1} (x_{j+2} - w_1) = 0 \qquad (3.43)$$

$$\frac{1}{2} \gamma \gamma_{j+1,1}^{n+1} (x_j - w_1)^2 + \frac{1}{2} \gamma_{j+1,2}^{n+1} (x_{j+1} - w_1)^2 + \frac{1}{2} \gamma_{j+1,3}^{n+1} (x_{j+2} - w_1)^2 = \gamma$$

Οπότε

$$\gamma_{j+1,1}^{n+1} = \gamma/D_{j+1} \tag{3.44}$$

$$\gamma_{j+1,2}^{n+1} = \left[-2 + (1-\gamma)(x_{j+2} - w_1)/h\right]/D_{j+1}$$
(3.45)

$$\gamma_{j+1,3}^{n+1} = [1 - (1 - \gamma)(x_{j+1} - w_1)/h]/D_{j+1}$$
(3.46)

 $\mu \varepsilon \ D_{j+1} = h^2 - (1 - \gamma)(x_{j+2} - w_1)(x_{j+1} - w_1)/2.$

Στη διασύνδεση της δεύτερης με την τρίτη περιοχή με αντίστοιχο τρόπο οι τροποιημένες εξισώσεις των πεπερασμένων διαφορών θα δίνονται από τις παραχάτω σχέσεις [30, 31]:

(α) για i = k η εξίσωση δίνεται από τον τύπο :

$$\frac{u_k^{n+1} - u_k^n}{\Delta t} + O(\Delta t) = D(\gamma_{k,1}^{n+1} \ u_{k-1}^{n+1} + \gamma_{k,2}^{n+1} \ u_k^{n+1} + \gamma_{k,3}^{n+1} \ u_{k+1}^{n+1}) + O(h)$$
(3.47)

όπου

$$\gamma_{k,1}^{n+1} = [1 - (\gamma - 1)(x_k - w_2)/h]/D_k \tag{3.48}$$

$$\gamma_{k,2}^{n+1} = \left[-2 + (\gamma - 1)(x_{k-1} - w_2)/h\right]/D_k \tag{3.49}$$

$$\gamma_{k,3}^{n+1} = \gamma/D_k \tag{3.50}$$

$$\mu \varepsilon \ D_k = h^2 + (\gamma - 1)(x_{k-1} - w_2)(x_k - w_2)/2.$$

(β) για i = k + 1 η εξίσωση είναι :

$$\frac{u_{k+1}^{n+1} - u_{k+1}^n}{\Delta t} + O(\Delta t) = D(\gamma_{k+1,1}^{n+1} \ u_k^{n+1} + \gamma_{k+1,2}^{n+1} \ u_{k+1}^{n+1} + \gamma_{k+1,3}^{n+1} \ u_{k+2}^{n+1}) + O(h) \quad (3.51)$$

όπου

$$\gamma_{k+1,1}^{n+1} = 1/D_{k+1} \tag{3.52}$$

$$\gamma_{k+1,2}^{n+1} = \left[-2\gamma + (\gamma - 1)(x_{k+2} - w_2)/h\right]/D_{k+1}$$
(3.53)

$$\gamma_{k+1,3}^{n+1} = [\gamma - (\gamma - 1)(x_{k+1} - w_2)/h]/D_{k+1}$$
(3.54)

$$\mu \varepsilon \ D_{k+1} = h^2 - (\gamma - 1)(x_{k+2} - w_2)(x_{k+1} - w_2)/2\gamma.$$

Οπότε συγκεντρώνοντας όλες τις παραπάνω εξισώσεις καταλήγουμε στην επίλυση ενός συστήματος της μορφής

$$Au^{(n+1)} = Bu^{(n)} \tag{3.55}$$

όπου
$$a_1 = -\delta_1$$
, $a_2 = h^2 + 2\delta_1$, $a_3 = a_1$,
 $b_1 = -\delta_2$, $b_2 = h^2 + 2\delta_2$, $b_3 = b_1$,
 $c_1 = a_1$, $c_2 = h^2 + 2\delta_1$, $c_3 = a_1$
 j_{11} , j_{12} , j_{13} , j_{21} , j_{22} , j_{23} δίνονται από τις σχέσεις (3.39)-(3.46) αντίστοιχα

και k_{11} , k_{12} , k_{13} , k_{21} , k_{22} , k_{23} δίνονται από τις σχέσεις (3.48)- (3.54) αντίστοιχα.

$$u^{(n)} := \begin{bmatrix} u_1^{(n)} \\ u_2^{(n)} \\ \vdots \\ u_{n+1}^{(n)} \end{bmatrix} .$$
(3.58)

με $u^{(0)}$ να δίνεται από την αρχική συνθήκη δηλαδή από τη δέλτα συνάρτηση (2.24).

3.3 Η Immersed Interface μέθοδος με Crank-Nicolson Implicit πεπερασμένες διαφορές

Στην ενότητα αυτή θα παρουσιάσουμε τον αλγόριθμο της Immersed Interface μεθόδου με Crank-Nicolson Implicit πεπερασμένες διαφορές. Χρησιμοποιούμε το ίδιο χαρτεσιανό πλέγμα όπως και στην προηγούμενη περίπτωση και εφαρμόζουμε το Crank-Nicolson σχήμα για τα κανονικά σημεία του πλέγματος τα οποία είναι απολύτως σταθερά. Προσεγγίζουμε τη διαφορική εξίσωση (3.5) στο σημείο $(j, n + \frac{1}{2})$ που βρίσκεται στο μέσο της απόστασης που ορίζεται από τους χόμβους (j, n) και (j, n + 1).

Άρα για την πρώτη παράγωγο ως προς το χρόνο χρησιμοποιούμε τις κεντρικές διαφορές δευτέρας τάξεως:

$$\left. \frac{\partial u}{\partial t} \right|_{j}^{n+\frac{1}{2}} = \frac{u_{j}^{n+1} - u_{j}^{n}}{\Delta t} + O(\Delta t^{2}) \tag{3.59}$$

Η δεύτερη παράγωγος ως προς το χώρο αρχικά γράφεται στη μορφή:

$$\frac{\partial^2 u}{\partial x^2}\Big|_j^{n+\frac{1}{2}} = \theta \frac{\partial^2 u}{\partial x^2}\Big|_j^{n+1} + (1-\theta) \frac{\partial^2 u}{\partial x^2}\Big|_j^n \tag{3.60}$$

όπου θ ο συντελεστής βαρυτητας με $0 < \theta < 1$. Στη συνέχεια εφαρμόζουμε στις δεύτερες παραγώγους κεντρικές διαφορές δευτέρας τάξεως:

$$\frac{\partial^2 u}{\partial x^2}\Big|_j^k = \frac{u_{j+1}^k - 2u_j^k + u_{j-1}^k}{h^2} + O(h^2)$$
(3.61)

όπου k = n + 1 και k = n αντίστοιχα.

Σχήμα 3.3: Υπολογιστικό πλέγμα

όπου οι κόκκινοι κύκλοι εκφράζουν τους κόμβους που περιέχονται στις πεπερασμένες διαφορές για το χώρο ενώ οι × τους κόμβους που περιέχονται στις πεπερασμένες διαφορές για το χρόνο.

Αντικαθιστώντας τις εκφράσεις (3.59), (3.60), (3.61) στη διαφορική εξίσωση (3.5) προκύπτει η εξίσωση των πεπερασμένων διαφορών:

$$\frac{u_j^{n+1} - u_j^n}{\Delta t} = D \left[\theta \; \frac{u_{j+1}^{n+1} - 2u_j^{n+1} + u_{j-1}^{n+1}}{h^2} + \; (1-\theta) \frac{u_{j+1}^n - 2u_j^n + u_{j-1}^n}{h^2} \right] \tag{3.62}$$

Για λόγους αυξημένης τάξης και ευστάθειας χρησιμοποιούμε το αριθμητικό σχήμα Crank-Nicolson όπου ο συντελεστής βαρύτητας θ παιρνει την τιμή $\frac{1}{2}$ και η εξίσωση πεπερασμένων διαφορών γίνεται:

$$\frac{u_j^{n+1} - u_j^n}{\Delta t} = D \left[\frac{u_{j+1}^{n+1} - 2u_j^{n+1} + u_{j-1}^{n+1}}{2h^2} + \frac{u_{j+1}^n - 2u_j^n + u_{j-1}^n}{2h^2} \right] + O(\Delta t^2, h^2)$$
(3.63)

Θέτω $\delta=\frac{D\Delta t}{2}$ με Dη σταθερά διάχυσης να δίνεται από τη σχέση(3.6)οπότε

$$-\delta \ \tilde{u}_{j+1}^{n+1} + (h^2 + 2\delta)\tilde{u}_j^{n+1} - \delta \ \tilde{u}_{j-1}^{n+1} = \delta_\ell \ \tilde{u}_{j+1}^n + (h^2 - 2\delta)\tilde{u}_j^n + \delta \ \tilde{u}_{j-1}^n \tag{3.64}$$

όπου \tilde{u} συμβολίζει την προσέγγιση u τάξεως $O(\Delta t^2, h^2)$.

Η γενική λοιπόν μορφή των εξισώσεων αυτών στα σημεία του πλέγματος x_i με $i \neq j, j + 1, k, k + 1$ είναι:

$$-\delta \ \tilde{u}_{i+1}^{n+1} + (h^2 + 2\delta)\tilde{u}_i^{n+1} - \delta \ \tilde{u}_{i-1}^{n+1} = \delta \ \tilde{u}_{i+1}^n + (h^2 - 2\delta)\tilde{u}_i^n + \delta \ \tilde{u}_{i-1}^n$$
(3.65)

 $\mu \varepsilon \ i = 1 \dots n.$

Στις συνοριαχές συνθήχες ισχύουν οι εξισώσεις (3.15), (3.18) δηλαδή :

$$-3\tilde{u}_0 + 4\tilde{u}_1 - \tilde{u}_2 = 0 \tag{3.66}$$

και

$$\tilde{u}_{m-2} - 4\tilde{u}_{m-1} + 3\tilde{u}_m = 0 \tag{3.67}$$

Για i = j η τροποποιημένη εξίσωση θα δίνεται από τη σχέση :

$$\frac{u_{j}^{n+1} - u_{j}^{n}}{\Delta t} + O(\Delta t^{2}) = \frac{1}{2} (\gamma_{j,1}^{n} u_{j-1}^{n} + \gamma_{j,2}^{n} u_{j}^{n} + \gamma_{j,3}^{n} u_{j+1}^{n}) + \frac{1}{2} (\gamma_{j,1}^{n+1} u_{j-1}^{n+1} + \gamma_{j,2}^{n+1} u_{j}^{n+1} + \gamma_{j,3}^{n+1} u_{j+1}^{n+1}) + O(h)$$
(3.68)

όπου $\gamma_{j,1}^{n+1}, \gamma_{j,2}^{n+1}, \gamma_{j,3}^{n+1}, \gamma_{j,1}^{n}, \gamma_{j,2}^{n}, \gamma_{j,3}^{n}$ δίνονται από τις σχέσεις (3.39)(3.40)(3.41) με αντίστοιχο τρόπο για t = n και t = n + 1.

Ανάλογα:

• για i = k η εξίσωση γίνεται :

$$\frac{u_k^{n+1} - u_k^n}{\Delta t} + O(\Delta t^2) = \frac{1}{2} (\gamma_{k,1}^n u_{k-1}^n + \gamma_{k,2}^n u_k^n + \gamma_{k,3}^n u_{k+1}^n) + \frac{1}{2} (\gamma_{k,1}^{n+1} u_{k-1}^{n+1} + \gamma_{k,2}^{n+1} u_k^{n+1} + \gamma_{k,3}^{n+1} u_{k+1}^{n+1}) + O(h)$$
(3.69)

όπου $\gamma_{k,1}^{n+1}, \gamma_{k,2}^{n+1}, \gamma_{k,3}^{n}, \gamma_{k,1}^{n}, \gamma_{k,2}^{n}, \gamma_{k,3}^{n}$ με ανάλογο τρόπο από τις σχέσεις (3.48)(3.49)(3.50).

• για i = j + 1 η εξίσωση γίνεται :

$$\frac{u_{j+1}^{n+1} - u_{j+1}^{n}}{\Delta t} + O(\Delta t^{2}) = \frac{1}{2} (\gamma_{j+1,1}^{n} u_{j}^{n} + \gamma_{j+1,2}^{n} u_{j+1}^{n} + \gamma_{j+1,3}^{n} u_{j+2}^{n}) + \frac{1}{2} (\gamma_{j+1,1}^{n+1} u_{j}^{n+1} + \gamma_{j+1,2}^{n+1} u_{j+1}^{n+1} + \gamma_{j+1,3}^{n+1} u_{j+2}^{n+1}) + O(h)$$
(3.70)

με $\gamma_{j+1,1}^{n+1}, \gamma_{j+1,2}^{n+1}, \gamma_{j+1,3}^{n+1}, \gamma_{j+1,1}^{n}, \gamma_{j+1,2}^{n}, \gamma_{j+1,3}^{n}$ να δίνονται από τις (3.44)(3.45)(3.46) αντίστοιχα για t = n και t = n + 1.

• για i = k + 1 η εξίσωση γίνεται :

$$\frac{u_{k+1}^{n+1} - u_{k+1}^{n}}{\Delta t} + O(\Delta t^{2}) = \frac{1}{2} (\gamma_{k+1,1}^{n} u_{k}^{n} + \gamma_{k+1,2}^{n} u_{k+1}^{n} + \gamma_{k+1,3}^{n} u_{k+2}^{n}) + \frac{1}{2} (\gamma_{k+1,1}^{n+1} u_{k}^{n+1} + \gamma_{k+1,2}^{n+1} u_{k+1}^{n+1} + \gamma_{k+1,3}^{n+1} u_{k+2}^{n+1}) + O(h)$$
(3.71)

με $\gamma_{k+1,1}^{n+1}, \gamma_{k+1,2}^{n+1}, \gamma_{k+1,3}^{n+1}, \gamma_{k+1,1}^{n}, \gamma_{k+1,2}^{n}, \gamma_{k+1,3}^{n}$ να δίνονται με ανάλογο τρόπο όπως και στις σχέσεις (3.52)(3.53)(3.54).

Όλες οι παραπάνω εξισώσεις μας οδηγουν στην επίλυση του συστηματος

$$Au^{(n+1)} = Bu^{(n)} (3.72)$$

όπου ο πίνα
χας Α και το διάνυσμα $u^{(n)}$ δίνονται αντίστοιχα από τους τύπους
 (3.56) και (3.58) ενώ ο πίνακας Bορίζεται ως εξής:

όπου $d_1 = \delta_1, \ d_2 = h^2 - 2\delta_1, \ d_3 = a_1,$ $e_1 = \delta_2, \ e_2 = h^2 - 2\delta_2, \ e_3 = b_1,$ $f_1 = d_1, \ f_2 = d_2, \ f_3 = d_1$ $d_{11} = (1/2)j_{11}, \ d_{12} = (1/2)j_{12} + 1, \ d_{13} = (1/2)j_{13},$ $d_{21} = (1/2)j_{21}, \ d_{22} = (1/2)j_{22} + 1, \ d_{23} = (1/2)j_{23},$ $e_{11} = (1/2)k_{11}, \ e_{12} = (1/2)k_{12} + 1, \ e_{13} = (1/2)k_{13},$ $xai \quad e_{21} = (1/2)k_{21}, \ e_{22} = (1/2)k_{22} + 1, \ e_{23} = (1/2)k_{23}.$ $\mu\epsilon \quad j_{11}, \ j_{12}, \ j_{13}, \ j_{21}, \ j_{22}, \ j_{23}$ να δίνονται από τις σχέσεις (3.39)-(3.46) αντίστοιχα $xai \ k_{11}, \ k_{12}, \ k_{13}, \ k_{21}, \ k_{22}, \ k_{23}$ να δίνονται από τις σχέσεις (3.48)- (3.54) αντίστοιχα.

3.4 Αριθμητικά αποτελέσματα

Θεωρούμε τις εξής τρεις περιοχές:

$$\mathcal{R}_1 := [-5, -1], \ \mathcal{R}_2 := [-1, 1], \ \mathcal{R}_3 := [1, 5].$$
 (3.74)

Ως αρχική πηγή καρκινικών κυττάρων θεωρούμε τη δέλτα συνάρτηση που δίνεται από τη σχέση :
$$\delta(x) \equiv \delta_{\eta}(x) := \frac{1}{\eta \sqrt{\pi}} e^{-x^2/\eta^2}$$
(3.75)

και συγκεκριμένα διαλέγουμε ως αρχική συνάρτηση την

$$f(x) = \delta_{0.2}(x+2) \tag{3.76}$$

Στα παρακάτω γραφήματα παρουσιάζουμε την συμπεριφορά της λύσης μέχρι την χρονική στιγμή $t_{max} = 5$ το οποίο σημαίνει στην πραγματικότητα ότι παρατηρούμε την διάχυση ενός καρκινικού όγκου υψηλού βαθμού επιθετικότητας για τη διαρκεία ενός χρόνου και δύο μήνες (2.2).

Η συμπεριφορά της λύσης με την Immersed Interface Implicit μέθοδο δίνεται από τα παρακάτω γραφήματα (3.4) και (3.5):

Σχήμα 3.4: Ανάπτυξη του καρκινικού όγκου με την Immersed Interface Implicit μέθοδο για $\gamma = 0.5$.

Σχήμα 3.5: Ανάπτυξη του καρκινικού όγκου με την Immersed Interface Implicit μέθοδο για $\gamma = 0.2$.

ενώ η συμπεριφορά της λύσης με την Immersed Interface Implicit Crank-Nicolson μέθοδο δίνεται από τα παρακάτω γραφήματα (3.6) και (3.7):

Ορίζουμε την τάξη σύγκλισης ως:

$$ooc = \log_2 \left(\frac{\frac{\|U_h - U_{h/2}\|_{\infty}}{\|U_{h/2}\|_{\infty}}}{\frac{\|U_{h/2} - U_{h/4}\|_{\infty}}{\|U_{h/4}\|_{\infty}}} \right)$$
(3.77)

Για την Immersed Interface Implicit μέθοδο η τάξη σύγκλισης για $\gamma = 0.5$ δίνεται από το Πίνακα 3.1 και το σχετικό σφάλμα παριστάνεται από το γράφημα (3.8), ενώ για την Immersed Interface Implicit Crank-Nicolson μέθοδο η τάξη σύγκλισης δίνεται από τον Πίνακα 3.2 και το σχετικό σφάλμα παριστάνεται από το γράφημα (3.9).

Σχήμα 3.6: Ανάπτυξη του καρκινικού όγκου με την Immersed Interface Implicit Crank-Nicolson μέθοδο για $\gamma = 0.5$.

Σχήμα 3.7: Ανάπτυξη του καρκινικού όγκου με την Immersed Interface Implicit Crank-Nicolson μέθοδο για $\gamma = 0.2$.

	-
h	ooc
10/16	1.2612
10/32	3.7836
10/64	2.1714
10/128	1.9831
10/256	2.0096
10/512	1.9991
10/1024	2.0006

Πίνα
κας 3.1: Η τάξη σύγκλισης για τη Immersed Interface Implicit μέθοδο γι
α $\gamma=0.5$

h	ooc
10/16	1.7063
10/32	3.2302
10/64	2.2040
10/128	1.9864
10/256	2.0098
10/512	1.9991
10/1024	2.0006

Πίνα
κας 3.2: Η τάξη σύγκλισης για τη Immersed Interface Implicit Crank-Nicolson μ
έθοδο για $\gamma=0.5$

Σχήμα 3.8: Σχετικό σφάλμα για την Immersed Interface Implicit Μέθοδο για $\gamma=0.5$

Σχήμα 3.9: Σχετικό σφάλμα για την Immersed Interface Implicit Crank Μέθοδο για $\gamma=0.5$

Αντίστοιχα για $\gamma = 0.2$ η τάξη σύγκλισης για την Immersed Interface Implicit μέθοδο δίνεται από το Πίνακα 3.3 και το σχετικό σφάλμα από το γράφημα (3.10), ενώ για την Immersed Interface Implicit Crank-Nicolson μέθοδο η τάξη σύγκλισης δίνεται από τον Πίνακα 3.4 και το σχετικό σφάλμα από το γράφημα (3.4).

h	ooc
10/16	0.9386
10/32	3.7055
10/64	2.0901
10/128	1.9456
10/256	2.0068
10/512	1.9969
10/1024	2.0004

Πίνα
χας 3.3: Η τάξη σύγκλισης για τη Immersed Interface Implicit μέθοδο γι
α $\gamma=0.2$

Σχήμα 3.10: Σχετικό σφάλμα για την Immersed Interface Implicit Μέθοδο για $\gamma=0.2$

Συμπέρασμα 3.4.1 Παρατηρούμε λοιπόν, από τα αριθμητικά αποτελέσματα που φαίνονται στους πίνακες και τα γραφήματα, ότι το ολικό σχετικό σφάλμα παραμένει $O(h^2)$ [3, 23].

Οι ιδιοτιμές του πίνακα $A^{-1}B$ και στο Immersed implicit και στο Immersed implicit C-rank Nicolson σχήμα όπως φαίνεται από τα παρακάτω σχήματα είναι μικρότερες της μονάδας, οπότε οι interface μέθοδοι είναι unconditionally stable.

h	ooc
10/16	2.1593
10/32	2.8632
10/64	2.1753
10/128	1.9802
10/256	2.0102
10/512	1.9989
10/1024	2.0006

Πίνα
κας 3.4: Η τάξη σύγκλισης για τη Immersed Interface Implicit Crank-Nicolson μ
έθοδο για $\gamma=0.2$

Σχήμα 3.11: Σχετικό σφάλμα για την Immersed Interface Implicit Crank Μέθοδο για $\gamma=0.2$

Σχήμα 3.12: Ιδιοτιμές του πίνακ
α $A^{-1}B$ (Immersed Interface Implicit Μέθοδος γι
α $\gamma=0.5)$

Σχήμα 3.13: Ιδιοτιμές του πίνακ
α $A^{-1}B$ (Immersed Interface Implicit Μέθοδος γι
α $\gamma=0.2)$

Σχήμα 3.14: Ιδιοτιμές του πίνακ
α $A^{-1}B$ (Immersed Interface Implicit Crank-Nicolson Μέθοδος γι
α $\gamma=0.5)$

Σχήμα 3.15: Ιδιοτιμές του πίνακ
α $A^{-1}B$ (Immersed Interface Implicit Crank-Nicolson Μ
έθοδος για $\gamma=0.2)$

Κεφάλαιο 4

Hermite Collocation μέθοδος για το μαθηματικό μοντέλο διάχυσης καρκινικών όγκων στον εγκέφαλο με ετερογενή σταθερά διάχυσης

Στο κεφάλαιο αυτό παρουσιάζουμε υψηλής τάξης αριθμητικές μεθόδους στο μαθηματικό μοντέλο της Swanson για την ανάπτυξη καρκινικών όγκων στον εγκέφαλο, λαμβάνοντας υπόψιν την ετερογένεια του εγκεφαλικού ιστού. Πιο συγκεκριμένα, στη χωρική διακριτοποιήση χρησιμοποιούμε την Hermite Collocation μέθοδο και στη διακριτοποίηση του χρόνου τις Backward Euler και Crank-Nicolson μεθόδους. Για να αντιμετωπίσουμε τις ασυνέχειες στην πρώτη παράγωγο στα εσωτερικά σημεία διασύνδεσης χρησιμοποιούμε τόσο Ο(ε) τάξεως προσεγγίσεις όσο και υψηλής τάξεως ασυνεχή Hermite κυβικά στοιχεία στα σημεία διεπαφής με σκοπό να διατηρήσουμε τη συνολική χωρική τάξη σύγκλισης της μεθόδου. Τέλος, παραθέτουμε αριθμητικά αποτελέσματα που αποδεικνύουν την απόδοση της μεθόδου.

4.1 O(ε) προσεγγίσεις στα σημεία διεπαφής

4.1.1 Collocation μέθοδος με πολυώνυμα Hermite για τη χωρική διακριτοποίηση και Backward Euler σχήμα για τη χρονική διακριτοποίηση

Έχουμε ορίσει το προβλημα (2.21) :

$$\begin{cases} u_t = D_\ell \ u_{xx} \ , \ x \in \mathcal{R}_\ell \ , \ \ell = 1, 2, 3 \ , \ t \ge 0 \\\\ u_x(a, t) = 0 \quad \text{xal} \quad u_x(b, t) = 0 \\\\ [u] = 0 \quad \text{xal} \quad [Du_x] = 0 \quad \text{yia} \ x = w_k \ , \ k = 1, 2 \\\\ u(x, 0) = f(x) \end{cases}$$
(4.1)

με \mathcal{R}_{ℓ} να δηλώνει την κάθε περιοχή δηλαδή:

$$\mathcal{R}_1 := [a, w_1) , \ \mathcal{R}_2 := (w_1, w_2) , \ \mathcal{R}_3 := (w_2, b]$$
 (4.2)

τη σταθερά διάχυσης να είναι της μορφής:

$$D_{\ell} = \begin{cases} \gamma, & \gamma \iota \alpha \ \ell = 1 \\ 1, & \gamma \iota \alpha \ \ell = 2 \\ \gamma, & \gamma \iota \alpha \ \ell = 3 \end{cases}$$
(4.3)

Αν θεωρήσουμε παράμετρο $\epsilon>0$ με $\epsilon\to 0$ τότε από τους παραπάνω περιορισμούς συνέχειας στα σημεία διασύνδεσης συνεπάγονται αντίστοιχα οι σχέσεις:

Συνέχεια:

$$u(w_1 + \epsilon, t) - u(w_1 - \epsilon, t) = 0 \tag{4.4}$$

$$u(w_2 + \epsilon, t) - u(w_2 - \epsilon, t) = 0$$
(4.5)

 Δ ιατήρηση της ροής:

$$u_x(w_1 + \epsilon, t) - \gamma u_x(w_1 - \epsilon, t) = 0 \tag{4.6}$$

$$\gamma u_x(w_2 + \epsilon, t) - u_x(w_2 - \epsilon, t) = 0 .$$
(4.7)

 $\Omega \varsigma$ εκ τούτου μια ισοδύναμη έκφραση του προβλήματος είναι η λύση uνα ικανοποιεί :

$$u_t = D_\ell \ u_{xx} \qquad \ell = 1, 2, 3 \tag{4.8}$$

σε κάθε περιοχή $\mathcal{R}_1(\epsilon), \, \mathcal{R}_2(\epsilon), \, \mathcal{R}_3(\epsilon)$ με

$$\mathcal{R}_1(\epsilon) := [a, w_1 - \epsilon] , \ \mathcal{R}_2(\epsilon) := [w_1 + \epsilon, w_2 - \epsilon] , \ \mathcal{R}_3(\epsilon) := [w_2 + \epsilon, b] .$$

$$(4.9)$$

με τη σταθερά διάχυσης να δίνεται από τη σχέση (4.3), μαζί με τις τέσσερις συνθήχες (4.4)-(4.7) χαι τις συνοριαχές συνθήχες που αναφέρονται στο πρόβλημα (4.1).

Θεωρούμε για κάθε περιοχή ένα ομοιόμορφο πλέγμα $t \times \mathcal{R}_{\ell}(\epsilon)$ που οι πλευρές είναι παράλληλες στους άξονες x και t και το βήμα διακριτοποιήσης είναι h_{ℓ} και Δt στην x και t αντίστοιχα κατεύθυνση.

Συγκεκριμένα:

$$\begin{cases}
h_1 := (w_1 - a - \epsilon)/N_1, \\
h_2 := (w_2 - w_1 - 2\epsilon)/N_2, \\
h_3 := (b - w_2 - \epsilon)/N_3,
\end{cases}$$
(4.10)

όπου N_{ℓ} δηλώνει τον αριθμό των υποδιαστημάτων της κάθε περιοχής $\mathcal{R}_{\ell}(\epsilon)$ αντίστοιχα, καθώς και οι συντεταγμένες των κόμβων $(x_{\ell,m_{\ell}},t_n)$ δίνονται από τις σχέσεις :

$$x_{1,m_1} := a + m_1 h_1 , \quad m_1 = 0, \dots, N_1$$

$$x_{2,m_2} := w_1 + \epsilon + m_2 h_2 , \quad m_2 = 0, \dots, N_2$$

$$x_{3,m_3} := w_2 + \epsilon + m_3 h_3 , \quad m_3 = 0, \dots, N_3$$
(4.11)

και

$$t_n = n\Delta t$$
, $n = 0, 1, \dots$ (4.12)

Για να εφαρμόσουμε στη χρονική διακριτοποίηση την Backward Euler μέθοδο ορίζουμε τη διαφορική εξίσωση (4.8) ως εξής:

$$u_t(x, t_{n+1}) = D_\ell \ u_{xx}(x, t_{n+1}) \quad . \tag{4.13}$$

Κατόπιν εφαρμόζοντας την Backward Euler μέθοδο [40, 57] η παραπάνω εξίσωση γράφεται:

$$\frac{u(x,t_{n+1}) - u(x,t_n)}{\Delta t} + O(\Delta t) = D_\ell \ u_{xx}(x,t_{n+1})$$
(4.14)

 Δ ηλαδή

$$u(x, t_{n+1}) - \Delta t D_{\ell} \ u_{xx}(x, t_{n+1}) = u(x, t_n) \quad .$$
(4.15)

Η Backward Euler μέθοδος είναι τάξεως $O(\Delta t)$ αχριβής στο χρόνο και ανταποκρίνεται καλά στις ασυνέχειες ή απότομες κλήσεις.

Για τη χωρική διακριτοποιήση χρησιμοποιούμε την Hermite Collocation μέθοδο. Καθώς η λύση u της διαφορικής εξίσωσης (4.8) είναι ομαλή σε κάθε υποδιάστημα $\mathcal{R}_{\ell}(\epsilon)$, $\ell = 1, 2, 3$ η προσεγγιστική λύση $U_{\ell}(x, t)$ χρησιμοποιώντας πεπερασμένα στοιχεία με συναρτήσεις βάσης τα πολυώνυμα Hermite θα είναι της μορφής:

$$U_{\ell}(x,t) = \sum_{j_{\ell}=1}^{N_{\ell}+1} \left[\alpha_{\ell,2j_{\ell}-1}(t)\phi_{\ell,2j_{\ell}-1}(x) + \alpha_{\ell,2j_{\ell}}(t)\phi_{\ell,2j_{\ell}}(x) \right]$$
(4.16)

όπου $\phi_{\ell,2j_{\ell}-1}(x)$ και $\phi_{\ell,2j_{\ell}}(x)$ είναι τα Hermite κυβικά πολυώνυμα σε κάθε κόμβο $x_{\ell,j_{\ell}-1}$ που ορίζονται ως εξής:

$$\phi_{\ell,2j_{\ell}-1}(x) = \begin{cases} \phi\left(\frac{x_{\ell,j_{\ell}-1}-x}{h_{\ell}}\right) &, & x \in I_{\ell,j_{\ell}-1} \\ \phi\left(\frac{x-x_{\ell,j_{\ell}-1}}{h_{\ell}}\right) &, & x \in I_{\ell,j_{\ell}} \\ 0 &, & \delta i a \phi o \rho \varepsilon \tau i x \dot{a} \end{cases}$$
(4.17)

και

$$\phi_{\ell,2j_{\ell}}(x) = \begin{cases} -h_{\ell} \psi\left(\frac{x_{\ell,j_{\ell}-1}-x}{h_{\ell}}\right) &, x \in I_{\ell,j_{\ell}-1} \\ h_{\ell} \psi\left(\frac{x-x_{\ell,j_{\ell}-1}}{h_{\ell}}\right) &, x \in I_{\ell,j_{\ell}} \\ 0 &, \delta i a \phi o p \epsilon \tau i \times \dot{a} \end{cases}$$
(4.18)

με $I_{\ell,j_{\ell}} := [x_{\ell,j_{\ell}-1}, x_{\ell,j_{\ell}}]$, $j_{\ell} = 1, \ldots, N_{\ell}$. Οι συναρτήσεις $\phi(s)$ και $\psi(s)$ προέρχονται απο τη γενίκευση των Hermite χυβικών πολυωνύμων στο [0, 1], δηλαδή:

$$\phi(s) = (1-s)^2(1+2s) , \quad \psi(s) = s(1-s)^2 ,$$
 (4.19)

ха
ц $s \in [0, 1]$.

Ένα άμεσο συμπέρασμα των παραπάνω ιδιοτήτων είναι ότι η τιμή της προσεγγιστικής λύσης $U_{\ell}(x,t)$ για οποιαδήποτε x στο διάστημα $I_{\ell,j_{\ell}}$ μπορεί να υπολογιστεί προσθέτοντας μερικούς μόνο όρους, δηλαδή

$$U_{\ell}(x,t) = \sum_{k=2j_{\ell}-1}^{2j_{\ell}+2} \alpha_{\ell,k}(t)\phi_{\ell,k}(x) , \ x \in I_{\ell,j_{\ell}} , \qquad (4.20)$$

με $j_{\ell} = 1, \dots, N_{\ell}$ και $\ell = 1, 2, 3.$

Η παραπάνω σχέση σε συνδυασμό με τις βασικές ιδιότητες των Hermite κυβικών πολυωνύμων

$$\phi_{\ell,2j_{\ell}-1}(x_{\ell,m_{\ell}}) = \delta_{j_{\ell}-1,m_{\ell}} \qquad \phi_{\ell,2j_{\ell}}(x_{\ell,m_{\ell}}) = 0
\phi'_{\ell,2j_{\ell}-1}(x_{\ell,m_{\ell}}) = 0 \qquad \phi'_{\ell,2j_{\ell}}(x_{\ell,m_{\ell}}) = \delta_{j_{\ell}-1,m_{\ell}}$$
(4.21)

υποδηλώνει ότι:

$$\alpha_{\ell,2j_{\ell}-1}(t) = U_{\ell}(x_{\ell,j_{\ell}-1},t) \qquad \alpha_{\ell,2j_{\ell}+1}(t) = U_{\ell}(x_{\ell,j_{\ell}},t)$$

$$\alpha_{\ell,2j_{\ell}}(t) = \frac{\partial}{\partial x} U_{\ell}(x_{\ell,j_{\ell}-1},t) \qquad \alpha_{\ell,2j_{\ell}+2}(t) = \frac{\partial}{\partial x} U_{\ell}(x_{\ell,j_{\ell}},t) \qquad (4.22)$$

Σε κάθε χρονικό επίπεδο $t = t_n$, η Collocation μέθοδος προσδιορίζει τους αγνώστους

$$\alpha_{\ell,j_{\ell}}^{(n)} := \alpha_{\ell,j_{\ell}}(t_n) , \quad j_{\ell} = 1, \dots, 2(N_l + 1) , \ell = 1, 2, 3$$
(4.23)

θέτωντας την προσεγγιστική λύση $U_{\ell}(x,t)$ να ικανοποιεί την εξίσωση (4.15), δηλαδή:

$$U_{\ell}(x, t_{n+1}) - \Delta t D_{\ell} \ \frac{\partial^2}{\partial x^2} U_{\ell}(x, t_{n+1}) = U_{\ell}(x, t_n) \ , \tag{4.24}$$

στα $2N_\ell$, για κάθε $\ell = 1, 2, 3$ εσωτερικά collocation σημεία (δύο για κάθε υποδιάστημα), καθώς επίσης η λύση $U_\ell(x, t)$ να ικανοποιεί τις συνοριακές και αρχικές συνθήκες.

Για να παράξουμε τις εξισώσεις στα εσωτερικά collocation σημεία, παρατηρούμε ότι η αντικατάσταση της εξίσωσης (4.20) στην εξίσωση (4.24) μας δίνει:

$$\sum_{k=2j_{\ell}-1}^{2j_{\ell}+2} \alpha_{\ell,k}^{(n+1)} \left[\phi_{\ell,k}(x) - \Delta t D_{\ell} \phi_{\ell,k}^{''}(x) \right] = \sum_{k=2j_{\ell}-1}^{2j_{\ell}+2} \alpha_{\ell,k}^{(n)} \phi_{\ell,k}(x)$$
(4.25)

για $x \in I_{\ell,j_{\ell}}$ με $j_{\ell} = 1, \ldots, N_{\ell}$ και $\ell = 1, 2, 3$. Διαλέγοντας ως εσωτερικά collocation σημεία για κάθε υποδιάστημα $I_{\ell,j_{\ell}}$ τα Gauss points ([6]) που ορίζονται από τις σχέσεις

$$\sigma_{\ell,2j_{\ell}} = x_{\ell,j_{\ell}-1} + h_{\ell}\sigma , \ \sigma_{\ell,2j_{\ell}+1} = x_{\ell,j_{\ell}-1} + h_{\ell}\bar{\sigma} , \qquad (4.26)$$

με

$$\sigma = \frac{\sqrt{3} - 1}{2\sqrt{3}} , \ \bar{\sigma} = \frac{\sqrt{3} + 1}{2\sqrt{3}} , \qquad (4.27)$$

οι στοιχειώδεις collocation εξισώσεις που αντιστοιχούν στο στοιχείο I_{ℓ,j_ℓ} σε μορφή πίνακα είναι οι εξής:

$$\left(C_{\ell,j_{\ell}}^{(0)} - \frac{\Delta t}{h_{\ell}^{2}} D_{\ell} C_{\ell,j_{\ell}}^{(2)}\right) \begin{bmatrix} \alpha_{\ell,2j_{\ell}-1}^{(n+1)} \\ \alpha_{\ell,2j_{\ell}}^{(n+1)} \\ \alpha_{\ell,2j_{\ell}+1}^{(n+1)} \\ \alpha_{\ell,2j_{\ell}+2}^{(n+1)} \end{bmatrix} = C_{\ell,j_{\ell}}^{(0)} \begin{bmatrix} \alpha_{\ell,2j_{\ell}-1}^{(n)} \\ \alpha_{\ell,2j_{\ell}}^{(n)} \\ \alpha_{\ell,2j_{\ell}+1}^{(n)} \\ \alpha_{\ell,2j_{\ell}+2}^{(n)} \end{bmatrix}$$
(4.28)

με

$$C_{\ell,j\ell}^{(0)} \equiv C_{\ell}^{(0)} := \begin{bmatrix} s_1^{(0)} & h_{\ell} s_2^{(0)} & s_3^{(0)} & -h_{\ell} s_4^{(0)} \\ \\ s_3^{(0)} & h_{\ell} s_4^{(0)} & s_1^{(0)} & -h_{\ell} s_2^{(0)} \end{bmatrix}$$
(4.29)
 $\delta \pi \circ \upsilon \ s_1^{(0)} = \frac{9+4\sqrt{3}}{18} \ , \ s_2^{(0)} = \frac{3+\sqrt{3}}{36} \ , \ s_3^{(0)} = \frac{9-4\sqrt{3}}{18} \$ and $\ s_4^{(0)} = \frac{3-\sqrt{3}}{36}$
 $\times \alpha$

$$C_{\ell,j\ell}^{(2)} \equiv C_{\ell}^{(2)} := \begin{bmatrix} s_1^{(2)} & h_\ell s_2^{(2)} & s_3^{(2)} & -h_\ell s_4^{(2)} \\ & & & \\ s_3^{(2)} & h_\ell s_4^{(2)} & s_1^{(2)} & -h_\ell s_2^{(2)} \end{bmatrix}$$
(4.30)

όπου $s_1^{(2)} = -2\sqrt{3}$, $s_2^{(2)} = -1 - \sqrt{3}$, $s_3^{(2)} = 2\sqrt{3}$ και $s_4^{(2)} = -1 + \sqrt{3}$. με

$$\sigma = \frac{\sqrt{3} - 1}{2\sqrt{3}} , \ \bar{\sigma} = \frac{\sqrt{3} + 1}{2\sqrt{3}} , \qquad (4.31)$$

Για να παράξουμε τις συνοριαχές collocation εξισώσεις αναγχάζουμε την προσεγγιστική λύση $U_{\ell}(x,t)$ να ικανοποιεί όλες τις συνοριαχές συνθήχες για $t = t_{n+1}$.

Κάνοντας χρήση των εξισώσεων (4.21), (4.22) και από τις Neumann συνοριακές τιμές παίρνουμε ότι :

$$\frac{\partial}{\partial x}U_1(a,t) = 0 \quad \Rightarrow \quad \alpha_{1,2}^{(n+1)} = 0 \quad , \tag{4.32}$$

$$\frac{\partial}{\partial x}U_3(b,t) = 0 \quad \Rightarrow \quad \alpha_{3,2N_3+2}^{(n+1)} = 0 \quad , \tag{4.33}$$

καθώς και από τις σχέσεις (4.4)- (4.7) έχουμε ότι:

$$U_{2}(w_{1} + \epsilon, t) - U_{1}(w_{1} - \epsilon, t) = 0$$

$$\downarrow \qquad (4.34)$$

$$\alpha_{2,1}^{(n+1)} = \alpha_{1,2N_{1}+1}^{(n+1)}$$

$$U_{3}(w_{2} + \epsilon, t) - U_{2}(w_{2} - \epsilon, t) = 0$$

$$\downarrow \qquad (4.36)$$

$$\alpha_{3,1}^{(n+1)} = \alpha_{2,2N_{2}+1}^{(n+1)}$$

Τα παραπάνω εχφράζονται και σε μορφή πίνακα:

$$\begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & \gamma & 0 & -1 \end{bmatrix} \begin{bmatrix} \alpha_{1,2N_{1}+1}^{(n+1)} \\ \alpha_{1,2N_{1}+2}^{(n+1)} \\ \alpha_{2,1}^{(n+1)} \\ \alpha_{2,2}^{(n+1)} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
(4.38)

και

$$\begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -\gamma \end{bmatrix} \begin{bmatrix} \alpha_{2,2N_2+1}^{(n+1)} \\ \alpha_{2,2N_2+2}^{(n+1)} \\ \alpha_{3,1}^{(n+1)} \\ \alpha_{3,2}^{(n+1)} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} .$$
(4.39)

Καταλήγουμε λοιπόν στο Collocation σύστημα το οποιο είναι της μορφής:

$$C\mathbf{\alpha}^{(n+1)} = C^{(0)}\mathbf{\alpha}^{(n)}, \quad n = 0, 1, \dots$$
 (4.40)

όπου

$$C = \begin{bmatrix} \tilde{A}_{1} & B_{1} & & & & \\ & A_{1} & B_{1} & & & & \\ & & \ddots & & & & \\ & & A_{1} & B_{1} & & & \\ & & & I_{1} & J_{1} & & & \\ & & & A_{2} & B_{2} & & \\ & & & & \ddots & & \\ & & & & A_{2} & B_{2} & & \\ & & & & & A_{2} & B_{2} & & \\ & & & & & A_{2} & B_{2} & & \\ & & & & & A_{3} & B_{3} & \\ & & & & & & A_{3} & \tilde{B}_{3} \end{bmatrix},$$
(4.41)

και

$$\boldsymbol{\alpha}^{(n)} := \begin{bmatrix} \alpha_{1,1}^{(n)} \\ \alpha_{1,3}^{(n)} \\ \vdots \\ \alpha_{1,2N_1+2}^{(n)} \\ \alpha_{2,1}^{(n)} \\ \vdots \\ \alpha_{2,2N_2+2}^{(n)} \\ \alpha_{3,1}^{(n)} \\ \vdots \\ \alpha_{3,1}^{(n)} \\ \vdots \\ \alpha_{3,2N_3+1}^{(n)} \end{bmatrix} .$$

$$(4.43)$$

Οι 2 × 2 πίνακες A_{ℓ} , B_{ℓ} , A_{ℓ}^0 και B_{ℓ}^0 με $\ell = 1, 2, 3$ ορίζονται χρησιμοποιώντας τους πίνακες (4.29)-(4.30) και συγκεκριμένα ισχύει:

$$C_{\ell} := \left(C_{\ell,j_{\ell}}^{(0)} - \frac{\Delta t}{h_{\ell}^2} D_{\ell} C_{\ell,j_{\ell}}^{(2)} \right) = \begin{bmatrix} A_{\ell} & B_{\ell} \end{bmatrix}$$
(4.44)

και

$$C_{\ell}^{(0)} := C_{\ell,j_{\ell}}^{(0)} = \begin{bmatrix} A_{\ell}^{0} & B_{\ell}^{0} \end{bmatrix} , \qquad (4.45)$$

OI πίναχες $[I_1 \ J_1]$ και $[I_2 \ J_2]$ είναι 2 × 4 πίναχες οι οποίοι δηλώνονται στις σχέσεις (4.38) και (4.39) αντίστοιχα. Οι 2 × 1 πίναχες \tilde{A}_1 και \tilde{A}_1^0 προχύπτουν από τους αντίστοιχους πίναχες A_1 και A_1^0 αν αφαιρέσουμε τη δεύτερη στήλη. Ανάλογα οι πίναχες \tilde{B}_3 και \tilde{B}_3^0 προχύπτουν από τους αντίστοιχους πίναχες B_3 και B_3^0 αν αφαιρέσουμε την πρώτη στήλη. Ο πίναχας Oδηλώνει τον 2 × 2 μηδενιχό πίναχα. Τέλος, το αρχιχό διάνυσμα $\mathbf{a}^{(0)}$ καθορίζεται από την αρχιχή συνθήχη όπου είναι η δέλτα συνάρτηση (2.24).

4.1.2 Collocation μέθοδος με πολυώνυμα Hermite για τη χωρική διακριτοποίηση και Crank Nicolson σχήμα για τη χρονική διακριτοποίηση

Θεωρούμε το ίδιο πρόβλημα με αυτό στην ενότητα (4.1.1). Η διαφορική λοιπόν εξίσωση του προβλήματος δίνεται από τη σχέση (4.8) με D_{ℓ} τη σταθερά διάχυσης που ορίζεται από τη σχέση (4.3). Το πρόβλημα το ορίζουμε στις περιοχές \mathcal{R}_{ℓ} με $\ell = 1, 2, 3$ όπου:

$$\mathcal{R}_1(\epsilon) := [a, w_1 - \epsilon] , \ \mathcal{R}_2(\epsilon) := [w_1 + \epsilon, w_2 - \epsilon] , \ \mathcal{R}_3(\epsilon) := [w_2 + \epsilon, b] .$$

$$(4.46)$$

Στα σημεία διασύνδεσης των περιοχών ισχύουν αντίστοιχα οι σχέσεις (4.4)-(4.7). Οι συνοριαχές συνθήχες ορίζονται στην (4.1) χαι ως αρχιχή συνάρτηση θεωρούμε τη δέλτα συνάρτηση (2.24).

Θεωρούμε λοιπόν ένα ομοιόμορφο πλέγμα $t \times \mathcal{R}_{\ell}(\epsilon)$ που οι πλευρές του είναι παράλληλες στους άξονες x και t και το βήμα διακριτοποιήσης είναι h_{ℓ} (4.10) και Δt (4.12) στην x και t αντίστοιχη κατεύθυνση.

Εφαρμόζουμε για τη χρονική διακριτοποίηση το Crank Nicolson σχήμα στη διαφορική εξίσωση (4.8), οπότε η εξίσωση γίνεται:

$$\frac{u(x,t_{n+1}) - u(x,t_n)}{\Delta t} + O(\Delta t^2) = \frac{D_\ell}{2} (u_{xx}(x,t_{n+1}) + u_{xx}(x,t_n))$$
(4.47)

 Δ ηλαδή

$$u(x, t_{n+1}) - u(x, t_n) = \frac{D_\ell \Delta t}{2} (u_{xx}(x, t_{n+1}) + u_{xx}(x, t_n))$$
(4.48)

$$u(x, t_{n+1}) - \frac{D_{\ell} \Delta t}{2} u_{xx}(x, t_{n+1}) = \frac{D_{\ell} \Delta t}{2} u_{xx}(x, t_n) + u(x, t_n)$$
(4.49)

Η Crank Nicolson [40, 57] μέθοδος παρόλο που δεν είναι πιο δύσκολη στην εφαρμογή της απο την Backward Euler είναι τάξεως $O(\Delta t^2)$ και ανταποκρίνεται και αυτή πολύ καλά στις ασυνέχειες που εμφανίζει το πρόβλημα.

Στη χωρική διακριτοποίηση χρησιμοποιούμε όπως και στην προηγουμενη περίπτωση την Hermite Collocation μέθοδο με συναρτήσεις βάσης τα κυβικά πολυώνυμα Hermite. Έτσι η λύσης της διαφορικής εξίσωσης (4.8) θα προσεγγίζεται από τη σχέση:

$$U_{\ell}(x,t) = \sum_{j_{\ell}=1}^{N_{\ell}+1} \left[\alpha_{\ell,2j_{\ell}-1}(t)\phi_{\ell,2j_{\ell}-1}(x) + \alpha_{\ell,2j_{\ell}}(t)\phi_{\ell,2j_{\ell}}(x) \right]$$
(4.50)

όπου $\phi_{\ell,2j_{\ell}-1}(x)$ και $\phi_{\ell,2j_{\ell}}(x)$ είναι τα Hermite κυβικά πολυώνυμα που ορίζονται από τις σχέσεις (4.17) -(4.19).

Η τιμή της προσεγγιστικής λύσης $U_{\ell}(x,t)$ για οποιοδήποτε x στο διάστημα $I_{\ell,j_{\ell}}$ μπορεί να γραφεί και σαν άθροισμα μερικών μόνο όρων :

$$U_{\ell}(x,t) = \sum_{k=2j_{\ell}-1}^{2j_{\ell}+2} \alpha_{\ell,k}(t)\phi_{\ell,k}(x) , \ x \in I_{\ell,j_{\ell}} , \qquad (4.51)$$

με $j_\ell=1,\ldots,N_\ell$ και $\ell=1,2,3.$

Σε κάθε χρονικό επίπεδο $t = t_n$, η Collocation μέθοδος προσδιορίζει τους αγνώστους

$$\alpha_{\ell,j_{\ell}}^{(n)} := \alpha_{\ell,j_{\ell}}(t_n) , \quad j_{\ell} = 1, \dots, 2(N_l + 1) , \ell = 1, 2, 3$$
(4.52)

θέτωντας την προσεγγιστική λύση $U_{\ell}(x,t)$ να ικανοποιεί την εξίσωση (4.49), δηλαδή:

$$U_{\ell}(x,t_{n+1}) - \frac{D_{\ell} \Delta t}{2} \frac{\partial^2}{\partial x^2} U_{\ell}(x,t_{n+1}) = \frac{D_{\ell} \Delta t}{2} \frac{\partial^2}{\partial x^2} U_{\ell}(x,t_n) + U_{\ell}(x,t_n)$$
(4.53)
$$\acute{\eta}$$

$$U_{\ell}(x,t_{n+1}) - \frac{D_{\ell}\Delta t}{2}\frac{\partial^2}{\partial x^2}U_{\ell}(x,t_{n+1}) = U_{\ell}(x,t_n) + \frac{D_{\ell}\Delta t}{2}\frac{\partial^2}{\partial x^2}U_{\ell}(x,t_n)$$
(4.54)

στα $2N_\ell$, για κάθε $\ell = 1, 2, 3$ εσωτερικά collocation σημεία (δύο για κάθε υποδιάστημα), καθώς επίσης η λύση $U_\ell(x, t)$ να ικανοποιεί τις συνοριακές και αρχικές συνθήκες.

Αντικαθιστούμε την εξίσωση (4.51) στην εξίσωση (4.54) για να παράξουμε τις εξισώσεις στα εσωτερικά collocation σημεία. Έτσι έχουμε:

$$\sum_{k=2j_{\ell}-1}^{2j_{\ell}+2} \alpha_{\ell,k}^{(n+1)} \left[\phi_{\ell,k}(x) - \frac{D_{\ell} \Delta t}{2} \phi_{\ell,k}^{''}(x) \right] = \sum_{k=2j_{\ell}-1}^{2j_{\ell}+2} \alpha_{\ell,k}^{(n)} \left[\phi_{\ell,k}(x) + \frac{D_{\ell} \Delta t}{2} \phi_{\ell,k}^{''}(x) \right]$$
(4.55)

για $x \in I_{\ell, j_{\ell}}$ με $j_{\ell} = 1, ..., N_{\ell}$ και $\ell = 1, 2, 3.$

Διαλέγοντας ως εσωτερικά collocation σημεία τα Gauss σημεία (4.26),(4.27) για κάθε υποδιάστημα $I_{\ell,j_{\ell}}$, οι στοιχειώδης collocation εξίσωσεις που αντιστοιχούν στο στοιχείο $I_{\ell,j_{\ell}}$ παίρνουν την εξής μορφή :

$$\left(C_{\ell,j_{\ell}}^{(0)} - \frac{D_{\ell} \Delta t}{2h_{\ell}^{2}} C_{\ell,j_{\ell}}^{(2)} \right) \begin{bmatrix} \alpha_{\ell,2j_{\ell}-1}^{(n+1)} \\ \alpha_{\ell,2j_{\ell}+1}^{(n+1)} \\ \alpha_{\ell,2j_{\ell}+1}^{(n+1)} \\ \alpha_{\ell,2j_{\ell}+2}^{(n+1)} \end{bmatrix} = \left(C_{\ell,j_{\ell}}^{(0)} + \frac{D_{\ell} \Delta t}{2h_{\ell}^{2}} C_{\ell,j_{\ell}}^{(2)} \right) \begin{bmatrix} \alpha_{\ell,2j_{\ell}-1}^{(n)} \\ \alpha_{\ell,2j_{\ell}}^{(n)} \\ \alpha_{\ell,2j_{\ell}+1}^{(n)} \\ \alpha_{\ell,2j_{\ell}+2}^{(n)} \end{bmatrix}$$
(4.56)

όπου $C_{\ell,j_{\ell}}^{(0)}$ και $C_{\ell,j_{\ell}}^{(2)}$ είναι 2 × 4 πίναχες που ορίζονται από τις σχέσεις (4.29)-(4.30).

Οι εξισώσεις στο σύνορο και στα σημεία διασύνδεσης δίνονται αντίστοιχα από τις σχέσεις (4.32)-(4.37) και εκφράζονται σε μορφή πίνακα από τους πίνακες (4.38) και (4.39).

Καταλήγουμε λοιπόν στην επίλυση του συστήματος:

$$C \boldsymbol{\alpha}^{(n+1)} = C_1 \; \boldsymbol{\alpha}^{(n)} \;, \; n = 0, 1, \dots$$

$$(4.57)$$

όπου

και

$$\mathbf{\alpha}^{(n)} := \begin{bmatrix} \alpha_{1,1}^{(n)} \\ \alpha_{1,3}^{(n)} \\ \vdots \\ \alpha_{1,2N_1+2}^{(n)} \\ \alpha_{2,1}^{(n)} \\ \vdots \\ \alpha_{2,2N_2+2}^{(n)} \\ \alpha_{3,1}^{(n)} \\ \vdots \\ \alpha_{3,2N_3+1}^{(n)} \end{bmatrix} .$$
(4.60)

με

$$C_{\ell} := \left(C_{\ell,j_{\ell}}^{(0)} - \frac{\Delta t}{2h_{\ell}^2} D_{\ell} C_{\ell,j_{\ell}}^{(2)} \right) = \begin{bmatrix} A_{\ell} & B_{\ell} \end{bmatrix}$$
(4.61)

και

$$C_{1\ell} := \left(C_{\ell,j_{\ell}}^{(0)} + \frac{\Delta t}{2h_{\ell}^2} D_{\ell} C_{\ell,j_{\ell}}^{(2)} \right) = \begin{bmatrix} D_{\ell} & E_{\ell} \end{bmatrix} , \qquad (4.62)$$

όπου $A_{\ell}, B_{\ell}, D_{\ell}$ και E_{ℓ} είναι 2 × 2 πίνακες που ορίζονται χρησιμοποιώντας τους πίνακες (4.29)-(4.30).

Οι πίναχες $[I_1 \ J_1]$ χαι $[I_2 \ J_2]$ είναι 2 × 4 πίναχες οι οποίοι δηλώνονται στις σχέσεις (4.38) χαι (4.39) αντίστοιχα. Οι 2 × 1 πίναχες \tilde{A}_1 χαι \tilde{D}_1 προχύπτουν από τους αντίστοιχους πίναχες A_1 χαι D_1 αν αφαιρέσουμε τη δεύτερη στήλη. Αντίστοιχα οι πίναχες \tilde{B}_3 χαι \tilde{E}_3 προχύπτουν από τους αντίστοιχους πίναχες B_3 χαι E_3 αν αφαιρέσουμε την πρώτη στήλη. Ο πίναχας Oδηλώνει τον 2 × 2 μηδενιχό πίναχα. Τέλος το αρχιχό διάνυσμα $\mathbf{a}^{(0)}$ χαθορίζεται από την αρχιχή συνθήχη όπου είναι η δέλτα συνάρτηση (2.24).

4.1.3 Αριθμητικά αποτελέσματα

Θεωρούμε τις εξής τρεις περιοχές:

$$\mathcal{R}_1 := [-5, -1], \ \mathcal{R}_2 := [-1, 1], \ \mathcal{R}_3 := [1, 5].$$
 (4.63)

Ως αρχική πηγή καρκινικών κυττάρων θεωρούμε τη δέλτα συνάρτηση :

$$\delta(x) \equiv \delta_{\eta}(x) := \frac{1}{\eta \sqrt{\pi}} e^{-x^2/\eta^2}$$
(4.64)

και συγκεκριμένα ως αρχική συνάρτηση διαλέγουμε την

$$f(x) = \delta_{0.2}(x+2) \tag{4.65}$$

Στα παρακάτω σχήματα παρουσιάζουμε την διάχυση ενος καρκινικού όγκου υψηλής επιθεικότητας μεχρι την χρονική στιγμή $t_{max} = 4$ η οποία αντιστοιχεί σε πραγματικό χρόνο σε ένα χρόνο (Bλ. Πίνακα 2.2).

Hermite Collocation Μέθοδος -Backward Euler Σχήμα

Η συμπεριφορά της λύσης για $\epsilon = h$ όπου $h = \frac{b-a}{2(N_1+N_2+N_3)}$, $\Delta t = 0.1$ και για $\gamma = 0.5$ και $\gamma = 0.2$ αντίστοιχα δίνεται από τα γραφήματα 4.1 και 4.2:

Η συμπεριφορά της λύσης για $\epsilon = h^4$, $\Delta t = 0.1$ και για $\gamma = 0.5$ και $\gamma = 0.2$ αντίστοιχα δίνεται παρακάτω γραφήματα 4.3 και 4.4:

Σχήμα 4.1: Ανάπτυξη του καρκινικού όγκου (Hermite Collocation- Backward Euler Μέθοδος με $\epsilon = h \ \gamma = 0.5.$)

Σχήμα 4.2: Ανάπτυξη του καρκινικού όγκου (Hermite Collocation- Backward Euler Μέθοδος με $\epsilon = h$ και $\gamma = 0.2$.)

Collocation Μέθοδος -Crank Nicolson -Back Euler (Implicit scheme) Σχήμα

Για να αποφύγουμε τυχόν ταλαντώσεις [44], όπως φαίνεται στο σχήμα (4.5) χρησιμοποιούμε στα δύο πρώτα βήματα το Backward Euler σχήμα για τη χρονική διακριτοποιήση και στη συνέχεια το Crank Nicolson σχήμα.

Η συμπεριφορά της λύσης για $\epsilon=h,\,\Delta t=0.1$ και για $\gamma=0.5$ και $\gamma=0.2$ αντίστοιχα

Σχήμα 4.5: Εμφάνιση ταλαντώσεων στην προσεγγιστική λύση που παριστάνει την ανάπτυξη ενός καρκινικού όγκου

δίνεται από τα γραφήματα (4.6) και (4.7) ενώ η συμπεριφορά της λύσης για $\epsilon = h^4$, $\Delta t = 0.1$ και για $\gamma = 0.5$ και $\gamma = 0.2$ αντίστοιχα δίνεται από τα γραφήματα (4.8) και (4.9).

Σχήμα 4.6: Ανάπτυξη του καρκινικού όγκου (Hermite Collocation- Crank Nicolson Μέθοδος με $\epsilon=h~\gamma=0.5.)$

Σχήμα 4.7: Ανάπτυξη του καρκινικού όγκου (Hermite Collocation- Crank Nicolson Μέθοδος με $\epsilon = h$ και $\gamma = 0.2$.)

4.1.4 Ευστάθεια

Πρώτα απ'ολα θα μελετήσουμε την ευστάθεια του γενικού σχήματος [7]:

Σχήμα 4.9: Ανάπτυξη του καρκινικού όγκου (Hermite Collocation- Crank Nicolson Μέθοδος με $\epsilon = h^4$ και $\gamma = 0.2$.)

$$\left(C^{(0)} - \theta \frac{\Delta t}{h_{\ell}^2} D_{\ell} C^{(2)}\right) a^{(n+1)} = \left(C^{(0)} + (1-\theta) \frac{\Delta t}{h_{\ell}^2} D_{\ell} C^{(2)}\right) a^{(n)}$$
(4.66)

ή

$$a^{(n+1)} = \left(C^{(0)} - \theta \frac{\Delta t}{h_{\ell}^2} D_{\ell} C^{(2)}\right)^{-1} \left(C^{(0)} + (1-\theta) \frac{\Delta t}{h_{\ell}^2} D_{\ell} C^{(2)}\right) a^{(n)}$$
(4.67)

Ορίζω :

$$W = \left(C^{(0)} - \theta \frac{\Delta t}{h_{\ell}^2} D_{\ell} C^{(2)}\right)^{-1} \left(C^{(0)} + (1 - \theta) \frac{\Delta t}{h_{\ell}^2} D_{\ell} C^{(2)}\right)$$
(4.68)

Άρα

$$a^{(n+1)} = Wa^{(n)} \tag{4.69}$$

Για να είναι ευσταθές το παραπάνω σχήμα θα πρέπει όλες οι ιδιοτιμές του πίνακα W να βρίσκονται μέσα στον κύκλο με ακτίνα 1 στο μιγαδικό επίπεδο.

Με απλές πράξεις καταλήγουμε ότι ο πίνακας W μπορεί να γραφεί στην μορφή:

$$W = \left(I - \theta \frac{\Delta t}{h_{\ell}^2} D_{\ell} \ [C^{(0)}]^{-1} C^{(2)}\right)^{-1} \left(I + (1 - \theta) \frac{\Delta t}{h_{\ell}^2} D_{\ell} \ [C^{(0)}]^{-1} C^{(2)}\right)$$
(4.70)

Θέτω $\delta_\ell = D_\ell \Delta t$ και $\rho = \frac{\delta_\ell}{h_\ell^2}$ οπότε:

$$W = \left(I - \theta \rho \ [C^{(0)}]^{-1} C^{(2)}\right)^{-1} \left(I + (1 - \theta) \rho \ [C^{(0)}]^{-1} C^{(2)}\right)$$
(4.71)

Εάν θέσουμε $G = [C^{(0)}]^{-1}C^{(2)}$ τότε:

$$W = (I - \theta \rho G)^{-1} (I + (1 - \theta) \rho G)$$
(4.72)

Γνωρίζουμε όμως από τη Γραμμική Άλγεβρα [7, 25] ότι οι ιδιοτιμές του πίνακα G έχουν σχέση με τις ιδιοτιμές του πίνακα W και συγκεκριμένα εάν λ η ιδιοτιμή του πίνακα G τότε η $\frac{1+(1-\theta)\rho\lambda}{1-\theta\rho\lambda}$ είναι η ιδιοτιμή του πίνακα W.

Σχήμα 4.10: Ιδιοτιμές του πίνακα $G = [C^{(0)}]^{-1}C^{(2)}$ για $\gamma = 0.5$.

Σχήμα 4.11: Ιδιοτιμές του πίναχ
α $G=[C^{(0)}]^{-1}C^{(2)}$ για $\gamma=0.2.$

Από τα γραφήματα (4.10) και (4.11) παρατηρούμε ότι οι ιδιοτιμές του πίνακα G είναι μικρότερες ή ίσες του μηδενός οπότε εάν θέσουμε $\lambda = -\omega^2$ όπου ω είναι ένας πραγματικός αριθμός τότε η συνθήκη που εξασφαλίζει ευστάθεια για το σχήμα (5.1) είναι :

$$\left|\frac{1-\omega^2(1-\theta)\rho}{1+\omega^2\theta\rho}\right| \le 1 \tag{4.73}$$

Μετά από αλγεβριχούς υπολογισμούς η παραπάνω σχέση γίνεται:

$$\omega^2 \rho (1 - 2\theta) \le 2 \tag{4.74}$$

και είναι αληθής για $\frac{1}{2} \le \theta \le 1$. Εαν λοιπόν $\frac{1}{2} \le \theta \le 1$ τότε το σχήμα μας είναι ευσταθές (unconditional stable).

Οπότε το σχήμα που προέκυψε απο την Hermite collocation μέθοδο ως χωρική διακριτοποιήση και το Backward Euler σχήμα ως χρονική διακριτοποιήση και είναι της μορφής :

$$\left(C^{(0)} - \frac{\Delta t}{h_{\ell}^2} D_{\ell} C^{(2)}\right) a^{(n+1)} = C^{(0)} a^{(n)}$$
(4.75)

είναι το γενικό σχήμα (5.1) για $\theta = 1$. Άρα λοιπόν το σχήμα αυτό είναι ευσταθές (unconditional stable).

Εξάλλου παρατηρούμε στα γραφήματα (4.12) και (4.13) ότι οι ιδιοτιμές του πίνακα $C^{-1}C^{(0)}$ για $\Delta t = 0.1$ για $\epsilon = h^4$ και για $\gamma = 0.5$ και $\gamma = 0.2$ αντίστοιχα, είναι μικρότερες ή ίσες της μονάδας γεγονός που επιβεβαιώνει ότι η μέθοδος μας είναι unconditionally stable.

Σχήμα 4.12: Ιδιοτιμές του πίνακα $C^{-1}C^{(0)}$ της μεθόδου Hermite collocation-Backward Euler για $\gamma = 0.5$.

Αντίστοιχα το σχήμα που προέχυψε απο την Hermite collocation μέθοδο ως χωριχή διαχριτοποιήση και Crank Nicolson σχήμα ως χρονική διαχριτοποιήση και είναι της μορφής :

$$\left(C^{(0)} - \frac{\Delta t}{2h_{\ell}^2} D_{\ell} C^{(2)}\right) a^{(n+1)} = \left(C^{(0)} + \frac{\Delta t}{2h_{\ell}^2} D_{\ell} C^{(2)}\right) a^{(n)}$$
(4.76)

Σχήμα 4.13: Ιδιοτιμές του πίναχα $C^{-1}C^{(0)}$ της μεθόδου Hermite collocation-Backward Euler για $\gamma = 0.2$.

είναι το γενικό σχήμα (5.1) για $\theta = \frac{1}{2}$. Άρα λοιπόν και αυτό το σχήμα είναι ευσταθές (unconditional stable).

Στα γραφήματα (4.14) και (4.15) φαίνεται εξάλλου ότι οι ιδιοτιμές του πίνακα $C^{-1}C_1$ για $\Delta t = 0.1$ για $\epsilon = h^4$ και για $\gamma = 0.5$ και $\gamma = 0.2$ αντίστοιχα είναι μικρότερες ή ίσες της μονάδας, πράγμα που σημαίνει ότι η μέθοδος είναι unconditionally stable.

Σχήμα 4.14: Ιδιοτιμές του πίνακ
α $C^{-1}C_1$ της μεθόδου Hermite collocation-Crank Nicolson γι
α $\gamma=0.5$

Σχήμα 4.15: Ιδιοτιμές του πίνακ
α $C^{-1}C_1$ της μεθόδου Hermite collocation-Crank Nicolson για
 $\gamma=0.2$

4.1.5 Χωρικό σχετικό σφάλμα

Ορίζουμε το χωρικό σχετικό σφαλμά για σταθερ
ό $t=t_n$ ως εξής

$$E_{\infty} := \frac{\|U_{h/2} - U_h\|_{\infty}}{\|U_{h/2}\|_{\infty}} \tag{4.77}$$

και την τάξη σύγκλισης ως:

$$ooc = \log_2 \left(\frac{\frac{\|U_h - U_{h/2}\|_{\infty}}{\|U_{h/2}\|_{\infty}}}{\frac{\|U_{h/2} - U_{h/4}\|_{\infty}}{\|U_{h/4}\|_{\infty}}} \right)$$
(4.78)

Παρουσιάζουμε το σχετικό σφάλμα και την τάξη σύγκλισης για διαφορετικές τιμές του ϵ και για $h\simeq h_1\simeq h_2\simeq h_3.$

Hermite Collocation Μέθοδος -Backward Euler Σχήμα

Για χρόνο $t_{max} = 10\Delta t$ με $\Delta t = 0.1$ η συμπεριφορά του σφάλματος παριστάνεται στα γραφήματα (4.16),(4.17) και η τάξη σύγκλισης δίνεται από τους Πίνακες 4.1 και 4.2 ενώ για $t_{max} = 4$ με $\Delta t = 0.1$ η συμπεριφορά του σφάλματος φαίνεται στα γραφήματα (4.18),(4.19) και η η τάξη σύγκλισης παρουσιάζεται στους Πίνακες 4.3 και 4.4.

Σχήμα 4.16: Η συμπεριφορά του χωρικού σχετικού σφάλματος της Hermite collocation-Backward Euler μεθόδου για διαφορετικές τιμές του ϵ και $\gamma = 0.5$

Σχήμα 4.17: Η συμπεριφορά του χωρικού σχετικού σφάλματος της Hemite collocation- Backward Euler μεθόδου για διαφορετικές τιμές του ϵ και $\gamma = 0.2$

Σχήμα 4.18: Η συμπεριφορά του χωρικού σχετικού σφάλματος της Hermite collocation-Backward Euler μεθόδου για διαφορετικές τιμές του ϵ και $\gamma = 0.5$

Σχήμα 4.19: Η συμπεριφορά του χωρικού σχετικού σφάλματος της Hermite collocation-Backward Euler μεθόδου για διαφορετικές τιμές του ϵ και $\gamma = 0.2$

	$\epsilon = O$	P(h)	$\epsilon = O$	(h^2)	$\epsilon = O$	(h^{3})	$\epsilon = O$	(h^4)
h	E_{∞}	ooc	E_{∞}	ooc	E_{∞}	ooc	E_{∞}	ooc
0.625	1.1E-01	1.064	7.6E-02	2.8539	2.86E-02	3.9019	2.13E-02	5.7546
0.3125	5.21E-02	1.0644	1.05E-02	1.9698	1.92E-03	2.9894	3.94E-04	4.1842
0.1563	2.48E-02	1.0616	2.68E-03	2.0127	2.41E-04	3.0103	2.17E-05	4.0026
0.0781	1.19E-02	1.0102	6.64E-04	1.9772	2.99E-05	2.9683	1.35E-06	3.9555
0.0391	5.89E-03	0.9964	1.69E-04	1.9788	3.82E-06	2.9731	8.71E-08	3.9659
0.0195	2.95E-03	1.0031	4.28E-05	1.9963	4.87E-07	2.9958	5.58E-09	3.9936
0.0098	1.47E-03		1.07E-05		6.11E-08		3.5E-010	

Πίνα
κας 4.1: Η τάξη σύγκλισης για τη Hermite collocation-Backward Euler μέθοδο γι
α $\gamma=0.5$ και $t_{max}=10dt$

	$\epsilon = O$	$\mathcal{P}(h)$	$\epsilon = O$	(h^2)	$\epsilon = O$	(h^{3})	$\epsilon = O($	(h^4)
h	E_{∞}	ooc	E_{∞}	ooc	E_{∞}	ooc	E_{∞}	ooc
0.625	1.42E-01	1.5032	8.14E-02	2.7036	3.96E-02	3.9308	3.33E-02	5.3857
0.3125	4.97E-02	0.8948	1.25E-02	1.9661	2.59E-03	3.0834	7.97E-04	4.1739
0.1563	2.67E-02	0.9841	3.2E-03	2.0126	3.06E-04	3.0604	4.41E-05	3.9582
0.0781	1.35E-02	0.9734	7.92E-04	1.9762	3.67 E-05	2.9858	2.48E-06	3.9413
0.0391	6.86E-03	0.9786	2.01E-04	1.9786	4.63E-06	2.9813	1.85E-07	3.9972
0.0195	3.48E-03	0.9940	5.11E-05	1.9963	5.86 E-07	3.0028	1.16E-08	3.9741
0.0098	1.75E-03		1.28E-05		7.31E-08		7.37E-010	

Πίνακας 4.2: Η τάξη σύγκλισης για τη Hermite collocation-Backward Euler μέθοδο για $\gamma=0.2$ και $t_{max}=10dt$

	$\epsilon = C$	P(h)	$\epsilon = O$	(h^2)	$\epsilon = O$	(h^3)	$\epsilon = O($	(h^4)
h	E_{∞}	ooc	E_{∞}	ooc	E_{∞}	ooc	E_{∞}	ooc
0.625	9.39E-02	0.6143	7.07 E-02	2.4386	2.22E-02	3.2548	1.63E-02	5.2999
0.3125	6.12E-02	1.0164	1.3E-02	1.9656	2.32E-03	2.9596	4.15E-04	4.0636
0.1563	3.02E-02	1.0443	3.33E-03	2.0115	2.99E-04	3.0065	2.48E-05	4.0028
0.0781	1.46E-02	1.003	8.27E-04	1.9778	3.71E-05	2.9665	1.55E-06	3.9546
0.0391	7.29E-03	0.9935	2.10E-04	1.9796	4.75E-06	2.9726	9.98E-08	3.9653
0.0195	3.66E-03	1.0013	5.32 E- 05	1.9965	6.05E-07	2.9952	6.39E-09	4.016
0.0098	1.83E-03		1.33E-05		7.59E-08		3.95E-010	

Πίνα
κας 4.3: Η τάξη σύγκλισης για τη Hermite collocation-Backward Euler μέθοδο για
 $\gamma=0.5$ και $t_{max}=4$

	$\epsilon = C$	$\mathcal{P}(h)$	$\epsilon = O$	(h^2)	$\epsilon = O$	(h^{3})	$\epsilon = O($	(h^4)
h	E_{∞}	ooc	E_{∞}	ooc	E_{∞}	ooc	E_{∞}	ooc
0.625	1.11E-01	0.8265	7.73E-02	2.6501	2.24E-02	3.353	1.65 E-02	5.3361
0.3125	6.14E-02	1.0527	1.23E-02	1.9694	2.19E-03	2.9674	4.07 E-04	4.106
0.1563	2.93E-02	1.0638	3.13E-03	2.013	2.8E-04	3.0066	2.37 E-05	3.9823
0.0781	1.4E-02	1.013	7.75E-04	1.9772	3.48E-05	2.9661	1.5E-06	3.9538
0.0391	6.9E-03	0.9983	1.97E-04	1.9788	4.46E-06	2.9721	9.66 E-08	3.9667
0.0195	3.45E-03	1.0042	4.99E-05	1.9963	5.68E-07	2.9954	6.18E-09	4.0214
0.0098	1.72E-03		1.25E-05		7.12E-08		3.80E-010	

Πίνα
χας 4.4: Η τάξη σύγκλισης για τη Hermite collocation-Backward Euler μέθοδο γι
α $\gamma=0.2$ και $t_{max}=4$

Collocation Μέθοδος -Crank Nicolson Σχήμα

Για $t_{max} = 10 dt$ με $\Delta t = 0.1$ η συμπεριφορά του σφάλματος απεικονίζεται στα γραφήματα (4.20),(4.21) και την τάξη σύγκλισης την παραθέτουμε στους Πίνακες 4.5 και 4.6. Τέλος, για $t_{max} = 4$ με $\Delta t = 0.1$ η συμπεριφορά του σφάλματος παρουσιάζεται στα γραφήματα (4.20),(4.21) και η τάξη σύγκλισης στους Πίνακες 4.7 και 4.8.

Σχήμα 4.20: Η συμπεριφορά του χωριχού σχετιχού σφάλματος της Hermite collocation-Crank Nicolson μεθόδου για διαφορετιχές τιμές του ϵ χαι $\gamma = 0.5$

Σχήμα 4.21: Η συμπεριφορά του χωριχού σχετιχού σφάλματος της Hermite collocation-Crank Nicolson μεθόδου για διαφορετιχές τιμές του ϵ χαι $\gamma = 0.2$

Σχήμα 4.22: Η συμπεριφορά του χωρικού σχετικού σφάλματος της Hermite collocation-Crank Nicolson μεθόδου για διαφορετικές τιμές του ϵ και $\gamma = 0.5$

Σχήμα 4.23: Η συμπεριφορά του χωρικού σχετικού σφάλματος της Hermite collocation-Crank Nicolson μεθόδου για διαφορετικές τιμές του ϵ και $\gamma = 0.2$

10⁰

	$\epsilon = C$	$\mathcal{P}(h)$	$\epsilon = O$	(h^2)	$\epsilon = O$	(h^{3})	$\epsilon = O($	(h^4)
h	E_{∞}	ooc	E_{∞}	ooc	E_{∞}	ooc	E_{∞}	ooc
0.625	1.07E-01	0.9463	7.57 E-02	2.7744	2.75E-02	3.7773	2.05 E-02	5.6550
0.3125	5.51 E-02	1.0699	1.1E-02	1.97	2.00E-03	2.9834	4.06 E-04	4.1768
0.1563	2.62E-02	1.0633	2.82E-03	2.013	2.53E-04	3.009	2.25 E-05	4.002
0.0781	1.25E-02	1.0101	6.98E-04	1.9772	3.14E-05	2.9679	1.4E-06	3.9558
0.0391	6.19E-03	0.9967	1.77E-04	1.9788	4.02E-06	2.973	9.03E-08	3.964
0.0195	3.1E-03	1.0032	4.5E-05	1.9963	5.12E-07	2.9957	5.79E-09	3.991
0.0098	1.55E-03		1.13E-05		6.42E-08		3.64E-010	

Πίνα
 πας 4.5: Η τάξη σύγκλισης για τη Hermite collocation-Crank Nicolson μέθοδο για
 $\gamma=0.5$ και $t_{max}=10dt$

	$\epsilon = C$	$\mathcal{P}(h)$	$\epsilon = O$	(h^2)	$\epsilon = O$	(h^{3})	$\epsilon = O($	(h^4)
h	E_{∞}	ooc	E_{∞}	ooc	E_{∞}	ooc	E_{∞}	ooc
0.625	1.37E-01	1.5681	7.96E-02	2.7752	3.71E-02	4.005	3.1E-02	5.49
0.3125	4.59E-02	0.8864	1.16E-02	1.9586	2.31E-03	3.0539	6.89E-04	4.2069
0.1563	2.48E-02	0.9768	2.99E-03	2.0077	2.78E-04	3.025	3.73 E-05	4.0098
0.0781	1.26E-02	0.9697	7.43E-04	1.9762	3.42E-05	2.9844	2.31E-06	3.9361
0.0391	6.42E-03	0.9765	1.89E-04	1.9785	4.32E-06	2.9782	1.51E-07	4.0057
0.0195	3.26E-03	0.9931	4.79E-05	1.9963	5.48E-07	3.00	9.41E-09	3.9686
0.0098	1.64 E-03		1.2E-05		6.85E-08		6.01E-010	

Πίνα
 πας 4.6: Η τάξη σύγκλισης για τη Hermite collocation-Crank Nicolson μέθοδο για
 $\gamma=0.2$ και $t_{max}=10dt$

Συμπέρασμα 4.1.1 Προκύπτει λοιπόν από τα γραφήματα (4.16)-(4.23) και από τους Πίνακες 4.1 - 4.8 ότι το βέλτιστο σφάλμα ως προς το χώρο επιτυγχάνεται για $\epsilon = O(h^4)$. Δηλαδή για $\epsilon = O(h^4)$ η collocation μέθοδος εξασφαλίζει τετάρτης τάξεως σύγλιση ως προς το χώρο.

	$\epsilon = C$	$\mathcal{P}(h)$	$\epsilon = O($	(h^2)	$\epsilon = O$	(h^{3})	$\epsilon = O($	(h^4)
h	E_{∞}	OOC	E_{∞}	ooc	E_{∞}	000	E_{∞}	ooc
0.625	9.51E-02	0.6171	7.06E-02	2.4226	2.21E-02	3.238	1.66E-02	5.3127
0.3125	6.18E-02	1.0193	1.31E-02	1.9637	2.35E-03	2.959	4.18E-04	4.0623
0.1563	3.04E-02	1.0424	3.37E-03	2.013	3.02E-04	3.0076	2.5E-05	4.0043
0.0781	1.48E-02	1.0031	8.35E-04	1.9779	3.75E-05	2.9667	1.56E-06	3.9538
0.0391	7.36E-03	0.9931	2.12E-04	1.9794	4.80E-06	2.9725	1.01E-07	3.9661
0.0195	3.7E-03	1.0015	5.37 E-05	1.9965	6.11E-07	2.9954	6.44E-09	3.9906
0.0098	1.85E-03		1.35E-005		7.66E-08		4.05E-010	

Πίνακας 4.7: Η τάξη σύγκλισης για τη Hermite collocation-Crank Nicolson μέθοδο για $\gamma=0.5$ και $t_{max}=4$

	$\epsilon = O$	$\mathcal{P}(h)$	$\epsilon = O($	(h^2)	$\epsilon = O$	(h^{3})	$\epsilon = O($	(h^4)
h	E_{∞}	ooc	E_{∞}	ooc	E_{∞}	000	E_{∞}	ooc
0.625	1.11E-01	0.8097	7.74E-02	2.6286	2.22E-02	3.3144	1.64 E-02	5.3051
0.3125	6.21E-02	1.0481	1.25E-02	1.9686	2.23E-03	2.9672	4.14E-04	4.102
0.1563	2.97E-02	1.0617	3.18E-03	2.0129	2.85E-04	3.0065	2.41 E-05	3.9843
0.0781	1.42E-02	1.012	7.88E-04	1.9772	3.54E-05	2.9661	1.52 E-06	3.9551
0.0391	7.01E-03	0.9978	2.00 E-04	1.9788	4.53E-06	2.9721	9.83E-08	3.9668
0.0195	3.51E-03	1.0039	5.08 E-05	1.9963	5.77E-07	2.9954	6.28E-09	3.9874
0.0098	1.75E-03		1.27E-005		7.24E-08		3.96E-010	

Πίνα
κας 4.8: Η τάξη σύγκλισης για τη Hermite collocation-Crank Nicolson μέθοδο για
 $\gamma=0.2$ και $t_{max}=4$

4.2 Ασυνεχή Hermite κυβικά στοιχεία στα σημεία διεπαφής

4.2.1 Backward Euler σχήμα για τη χρονική διακριτοποίηση

Θεωρούμε το πρόβλημα (2.21). Δηλαδή :

$$\begin{cases} u_{t} = Du_{xx} , \quad x \in \mathcal{R}_{\ell} , \ \ell = 1, 2, 3 , \ t \ge 0 \\\\ u_{x}(a, t) = 0 \quad \varkappa a: \quad u_{x}(b, t) = 0 \\\\ [u] = 0 \quad \varkappa a: \quad [Du_{x}] = 0 \quad \gamma : \alpha \ x = w_{k} , \ k = 1, 2 \\\\ u(x, 0) = f(x) \end{cases}$$
(4.79)

με \mathcal{R}_{ℓ} να δηλώνει την χάθε περιοχή

 $\mathcal{R}_1 := [a, w_1], \ \mathcal{R}_2 := [w_1, w_2], \ \mathcal{R}_3 := [w_2, b]$ (4.80)

D τη σταθερά διάχυσης που δίνεται από τη σχέση (2.18) και ως αρχική συνάρτηση θεωρούμε τη δέλτα συνάρτηση (2.24).

Για κάθε περιοχή θεωρούμε ένα ομοιόμορφο πλέγμα $t \times \mathcal{R}_{\ell}$ που οι πλευρές είναι παράλληλες στους άξονες x και t και το βήμα διακριτοποιήσης είναι h_{ℓ} με

$$\begin{cases}
h_1 := (w_1 - a)/N_1, \\
h_2 := (w_2 - w_1)/N_2, \\
h_3 := (b - w_2)/N_3,
\end{cases}$$
(4.81)

όπου N_{ℓ} $\ell = 1, 2, 3$ ο αριθμός των υποδιαστημάτων σε κάθε περιοχή \mathcal{R}_{ℓ} και Δt που δίνεται από την σχέση (4.12) στην x και t αντίστοιχη κατεύθυνση. Οι συντεταγμένες των κόμβων για κάθε περιοχή (x_m, t_n) δίνονται από την σχέση:

$$x_m := a + (m-1)h, \qquad m = 1, \dots, N+1$$
(4.82)

 $\mu \varepsilon \ N = N_1 + N_2 + N_3.$

Τέλος, ορίζουμε $h=h_\ell$ οποτεδήποτε το $x_m\in R_\ell$ με $\ell=1,2,3$:

$$h = \begin{cases} h_1, & \forall i \alpha \ x_1 \in R_1 \\ h_2, & \forall i \alpha \ x_2 \in R_2 \\ h_3, & \forall i \alpha \ x_3 \in R_3 \end{cases}$$
(4.83)

Θεωρούμε λοιπόν τη διαφορικη μας εξίσωση στη μορφή (4.8) :

$$u_t(x, t_{n+1}) = D \ u_{xx}(x, t_{n+1}) \quad . \tag{4.84}$$

Κατόπιν εφαρμόζοντας την Backward Euler μέθοδο [40, 57] η παραπάνω εξίσωση γράφεται:

$$\frac{u(x,t_{n+1}) - u(x,t_n)}{\Delta t} + O(\Delta t) = Du_{xx}(x,t_{n+1})$$
(4.85)

Δηλαδή

$$u(x, t_{n+1}) - D\Delta t u_{xx}(x, t_{n+1}) = u(x, t_n) \quad .$$
(4.86)

Για τη χωρική διακριτοποιήση χρησιμοποιούμε την collocation μέθοδο με ασυνεχή Hermite πολυώνυμα. Για ομαλές λύσεις u της διαφορικής εξίσωσης (4.84) η προσεγγιστική λύση U(x,t) χρησιμοποιώντας πεπερασμενα στοιχεία με συναρτήσεις βάσης, τα πολυώνυμα Hermite, θα είναι της μορφής:

$$U(x,t) = \sum_{i=1}^{N+1} \left[\alpha_{2i-1}(t)\phi_{2i-1}(x) + \alpha_{2i}(t)\phi_{2i}(x) \right]$$
(4.87)

όπου $\phi_{2i-1}(x)$ και $\phi_{2i}(x)$ είναι τα Hermite κυβικά πολυώνυμα.

Συγκεκριμένα σε κάθε κόμβο x_i ορίζονται δύο κυβικά πολυώνυμα Hemite ως εξής:

$$\phi_{2i-1}(x) = \begin{cases} \phi\left(\frac{x_i - x}{h}\right) & , & x \in I_{i-1} \\ \phi\left(\frac{x - x_i}{h}\right) & , & x \in I_i \\ 0 & , & \text{diagoretical} \end{cases}$$
(4.88)

και

$$\phi_{2i}(x) = \begin{cases} -h\psi\left(\frac{x_i-x}{h}\right) &, x \in I_{i-1} \\ h\psi\left(\frac{x-x_i}{h}\right) &, x \in I_i \\ 0 &, & \text{diagoretical} \end{cases}$$
(4.89)

με $I_i := [x_i, x_{i+1}]$, i = 1, ..., N. Οι συναρτήσεις $\phi(s)$ και $\psi(s)$ προέρχονται απο γενίκευση των Hermite κυβικών πολυωνύμων στο [0, 1] και ορίζονται από τις σχέσεις (4.19).

Στα σημεία διεπαφής $w_1 \equiv x_{N_1+1}$ και $w_2 \equiv x_{N_1+N_2+1}$, για τη λύση u του μαθηματικού προβλήματος (2.21), αφού υπάρχουν ασυνέχειες είναι προφανές ότι θα πρέπει να εξαναγκάσουμε την προσεγγιστική λύση U(x,t) να ικανοποιεί τις συνθήκες

$$[DU_x] := D^+ U_x^+ - D^- U_x^- = 0 , \quad \text{yia} \quad x = w_k , \ k = 1, 2 .$$
(4.90)

ισοδύναμα:

$$\gamma \phi_{2i}(x_i^-) = \phi_{2i}(x_i^+), \qquad i = N_1 + 1$$
(4.91)

και

$$\phi_{2i}(x_i^-) = \gamma \phi_{2i}(x_i^+), \qquad i = N_1 + N_2 + 1 \tag{4.92}$$

Οπότε στα σημεία αυτά αντί των παραπάνω πολυωνύμων Hermite ορίζουμε τις συναρτήσεις βάσης $\phi_{2i}(x)$ ως εξής:

1η -2η περιοχή :

$$\phi_{2i}(x) = \begin{cases} -\frac{h}{\gamma}\psi\left(\frac{x_i-x}{h}\right) &, x \in I_{i-1} \\ h\psi\left(\frac{x-x_i}{h}\right) &, x \in I_i, \quad i = N_1 + 1 \\ 0 &, \text{ diagoretika} \end{cases}$$
(4.93)

2η - 3η περιοχή :

$$\phi_{2i}(x) = \begin{cases} -h\psi\left(\frac{x_i-x}{h}\right) &, x \in I_{i-1} \\\\ \frac{h}{\gamma}\psi\left(\frac{x-x_i}{h}\right) &, x \in I_i, \quad i = N_1 + N_2 + 1 \\\\ 0 &, \delta i \text{agoretixa} \end{cases}$$
(4.94)

Γραφικά για $\gamma=0.3$ οι παραπάνω συναρτήσεις παριστάνονται ως εξής :

Ένα άμεσο συμπέρασμα των παραπάνω ιδιοτήτων είναι ότι η τιμή της προσεγγιστικής λύσης U(x,t) για οποιαδήποτε x στο διάστημα I_i μπορεί να υπολογιστεί προσθέτοντας μερικούς μόνο όρους, δηλαδή

$$U(x,t) = \sum_{k=2i-1}^{2i+2} \alpha_k(t)\phi_k(x) , \ x \in I_i , \qquad (4.95)$$

με i = 1, ..., N - 1.

Η παραπάνω σχέση σε συνδυασμό με τις βασικές ιδιότητες των Hermite κυβικών πολυωνύμων:

$$\phi_{2i-1}(x_m) = \delta_{i,m} \qquad \phi_{2i}(x_m) = 0
\phi'_{2i-1}(x_m) = 0 \qquad \phi'_{2i}(x_m) = \delta_{i,m}$$
(4.96)

υποδηλώνει ότι:

$$\phi_{2i-1}(x_m) = \delta_{i,m} \qquad \phi_{2i}(x_m) = 0 \phi'_{2i-1}(x_m) = 0 \qquad \phi'_{2i}(x_m) = \delta_{i,m}$$
(4.97)

όπου $\delta_{i,m}$ είναι το Δέλτα του Kronecker, υποδηλώνει ότι :

$$\alpha_{2i-1}(t) = U(x_i, t) \qquad \alpha_{2i+1}(t) = U(x_{i+1}, t)$$

$$\alpha_{2i}(t) = \frac{\partial}{\partial x} U(x_i, t) \qquad \alpha_{2i+2}(t) = \frac{\partial}{\partial x} U(x_{i+1}, t) \qquad (4.98)$$

Σε κάθε χρονικό επίπεδο $t = t_n$, η Collocation μέθοδος προσδιορίζει τους αγνώστους

$$\alpha_i^{(n)} := \alpha_i(t_n) , \quad i = 1, \dots, 2(N+1)$$
(4.99)

θέτωντας την προσεγγιστική λύση U(x,t) να ικανοποιεί την εξίσωση (4.86) δηλαδή:

$$U(x, t_{n+1}) - \Delta t D \frac{\partial^2}{\partial x^2} U(x, t_{n+1}) = U(x, t_n) , \qquad (4.100)$$

στα $2N_{\ell}$, για κάθε $\ell = 1, 2, 3$ εσωτερικά collocation σημεία (δύο για κάθε υποδιάστημα), καθώς επίσης η λύση U(x, t) να ικανοποιεί τις συνοριακές και αρχικές συνθήκες.

Για να παράξουμε τις εξισώσεις στα εσωτερικά collocation σημεία, παρατηρούμε ότι η αντικατάσταση της εξίσωσης (4.95) στην εξίσωση (4.100) μας δίνει:

$$\sum_{k=2i-1}^{2i+2} \alpha_k^{(n+1)} \left[\phi_k(x) - D\Delta t \ \phi_k''(x) \right] = \sum_{k=2i-1}^{2i+2} \alpha_k^{(n)} \phi_k(x) \tag{4.101}$$

για $x \in I_i$ με i = 1, ..., N. Επιλέγοντας ως εσωτερικά collocation σημεία για κάθε υποδιάστημα I_i τα Gauss points που ορίζονται από τις σχέσεις:

$$\sigma_{2i} = x_i + h\sigma , \ \sigma_{2i+1} = x_i + h\bar{\sigma} , \qquad (4.102)$$

$$\sigma = \frac{\sqrt{3} - 1}{2\sqrt{3}} , \ \bar{\sigma} = \frac{\sqrt{3} + 1}{2\sqrt{3}} , \qquad (4.103)$$

οι στοιχειώδεις Collocation εξισώσεις που αντιστοιχούν στο στοιχείο $I_i, \quad i=1\dots N$ παίρνουν τη μορφή :

$$\left(C_{i}^{(0)} - \frac{D\Delta t}{h^{2}} C_{i}^{(2)}\right) \begin{bmatrix} \alpha_{2i-1}^{(n+1)} \\ \alpha_{2i}^{(n+1)} \\ \alpha_{2i+1}^{(n+1)} \\ \alpha_{2i+2}^{(n+1)} \end{bmatrix} = C_{i}^{(0)} \begin{bmatrix} \alpha_{2i-1}^{(n)} \\ \alpha_{2i}^{(n)} \\ \alpha_{2i+1}^{(n)} \\ \alpha_{2i+2}^{(n)} \end{bmatrix}$$
(4.104)

με

$$C_{i}^{(0)} := \begin{bmatrix} s_{1}^{(0)} & \frac{h}{\alpha_{i}} s_{2}^{(0)} & s_{3}^{(0)} & -\frac{h}{\beta_{i}} s_{4}^{(0)} \\ \\ s_{3}^{(0)} & \frac{h}{\alpha_{i}} s_{4}^{(0)} & s_{1}^{(0)} & -\frac{h}{\beta_{i}} s_{2}^{(0)} \end{bmatrix}$$
(4.105)

$$(4.105)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

$$(5.10)$$

όπου $s_1^{(2)} = -2\sqrt{3}$, $s_2^{(2)} = -1 - \sqrt{3}$, $s_3^{(2)} = 2\sqrt{3}$ και $s_4^{(2)} = -1 + \sqrt{3}$.

Οι σταθερές α_i και β_i χρησιμοποιούνται για να ξεχωρίζουμε τους στοιχειώδεις πίνακες για τα στοιχεία I_{N_1} και $I_{N_1+N_2+1}$, αφού ως συναρτήσεις βάσης για τα στοιχεία αυτά χρησιμοποιούνται αντίστοιχα οι εξισώσεις (4.93)-(4.94). Δηλαδή

$$\alpha_{i} = \begin{cases} 1 & , i \neq N_{1} + N_{2} + 1 \\ \\ \gamma & , i = N_{1} + N_{2} + 1 \end{cases}$$
(4.107)

και

$$\beta_i = \begin{cases} 1 & , i \neq N_1 \\ & \\ \gamma & , i = N_1 \end{cases}$$

$$(4.108)$$

Με άλλα λόγια εκτός των στοιχείων I_{N_1} και $I_{N_1+N_2+1}$ οι στοιχειώδεις collocation πίνακες $C_i^{(0)}$ και $C_i^{(2)}$ είναι 2 × 4 πίνακες που ορίζονται από τις σχέσεις (4.29)-(4.30) και στα σημεία διασύνδεσης οι στοιχειώδεις collocation πίνακες γίνονται:

 Σ την διασύνδεση της πρώτης με τη δεύτερη περιοχή :

$$C_{N_{1}}^{(0)} := \begin{bmatrix} s_{1}^{(0)} & h_{1}s_{2}^{(0)} & s_{3}^{(0)} & -h_{1}s_{4}^{(0)}/\gamma \\ \\ s_{3}^{(0)} & h_{1}s_{4}^{(0)} & s_{1}^{(0)} & -h_{1}s_{2}^{(0)}/\gamma \end{bmatrix}$$
(4.109)

και

$$C_{N_1}^{(2)} := \begin{bmatrix} s_1^{(2)} & h_1 s_2^{(2)} & s_3^{(2)} & -h_1 s_4^{(2)} / \gamma \\ \\ s_3^{(2)} & h_1 s_4^{(2)} & s_1^{(2)} & -h_1 s_2^{(2)} / \gamma \end{bmatrix}$$
(4.110)

ενώ στη διασύνδεση της δευτερης με την τρίτη περιοχή είναι της μορφής :

$$C_{N_1+N_2+1}^{(0)} := \begin{bmatrix} s_1^{(0)} & h_3 s_2^{(0)} / \gamma & s_3^{(0)} & -h_3 s_4^{(0)} \\ & & & \\ s_3^{(0)} & h_3 s_4^{(0)} / \gamma & s_1^{(0)} & -h_3 s_2^{(0)} \end{bmatrix}$$
(4.111)

και

$$C_{N_1+N_2+1}^{(2)} := \begin{bmatrix} s_1^{(2)} & h_3 s_2^{(2)} / \gamma & s_3^{(2)} & -h_3 s_4^{(2)} \\ & & & \\ s_3^{(2)} & h_3 s_4^{(2)} / \gamma & s_1^{(2)} & -h_3 s_2^{(2)} \end{bmatrix}$$
(4.112)

Για να παράξουμε τις συνοριαχές collocation εξισώσεις αναγχάζουμε την προσεγγιστική λύση U(x,t) να ιχανοποιεί όλες τις Neumann συνοριαχές συνθήχες για $t = t_{n+1}$ ως εχ τούτου:

$$\frac{\partial}{\partial x}U(a,t) = 0 \quad \Rightarrow \quad \alpha_2^{(n+1)} = 0 \quad , \tag{4.113}$$

$$\frac{\partial}{\partial x}U(b,t) = 0 \quad \Rightarrow \quad \alpha_{2N+2}^{(n+1)} = 0 \quad , \tag{4.114}$$

Καταλήγουμε λοιπόν στο Collocation σύστημα το οποιο είναι της μορφής:

$$C\mathbf{\alpha}^{(n+1)} = C^{(0)}\mathbf{\alpha}^{(n)}, \quad n = 0, 1, \dots$$
 (4.115)

όπου

$$C = \begin{bmatrix} \tilde{A}_1 & B_1 & & & \\ & A_2 & B_2 & & \\ & & \searrow & & \\ & & A_{N-1} & B_{N-1} & \\ & & & & A_N & \tilde{B}_N \end{bmatrix},$$
(4.116)

$$C^{(0)} = \begin{bmatrix} \tilde{A}_1^0 & B_1^0 & & & \\ & A_2^0 & B_2^0 & & \\ & & \searrow & & \\ & & A_{N-1}^0 & B_{N-1}^0 & \\ & & & & A_N^0 & \tilde{B}_N^0 \end{bmatrix},$$
(4.117)

και

$$\mathbf{\alpha}^{(n)} := \begin{bmatrix} \alpha_1^{(n)} \\ \alpha_3^{(n)} \\ \vdots \\ \alpha_{2N+1}^{(n)} \end{bmatrix} .$$
(4.118)

Οι 2×2 πίναχες A_i, B_i, A_i^0 χαι B_i^0 δηλώνονται από τις σχέσεις

$$\left(C_i^{(0)} - \frac{\Delta t}{h^2} D_\ell C_i^{(2)}\right) = \begin{bmatrix} A_i & B_i \end{bmatrix}$$
(4.119)

και

$$C_i^{(0)} := \begin{bmatrix} A_i^0 & B_i^0 \end{bmatrix} , (4.120)$$

όπου $C_i^{(0)}$ και $C_i^{(2)}$ είναι 2 × 4 πίνακες που ορίζονται από τις σχέσεις (4.105)-(4.106).

Οι 2 × 1 πίναχες \tilde{A}_1 και \tilde{A}_1^0 προχύπτουν από τους αντίστοιχους πίναχες A_1 και A_1^0 αν αφαιρέσουμε τη δεύτερη στήλη. Αντίστοιχα οι πίναχες \tilde{B}_N και \tilde{B}_N^0 προχύπτουν από τους αντίστοιχους πίναχες B_N και B_N^0 αν αφαιρέσουμε την πρώτη στήλη. Τέλος το αρχιχό διάνυσμα $\mathbf{\alpha}^{(0)}$ καθορίζεται από την αρχιχή συνθήχη όπου είναι η δέλτα συνάρτηση (2.24).

4.2.2 Crank Nicolson σχήμα για τη χρονική διακριτοποίηση

Θεωρούμε το ίδιο πρόβλημα με αυτό στην ενότητα (4.2.1).

Για κάθε λοιπόν περιοχή θεωρούμε ένα ομοιόμορφο πλέγμα $t \times \mathcal{R}_{\ell}$ που οι πλευρές του είναι παράλληλες στους άξονες x και t και το βήμα διακριτοποιήσης είναι h_{ℓ} (4.81) και Δt (4.12) στην x και Δt αντίστοιχη κατεύθυνση.

Εφαρμόζουμε για τη χρονική διακριτοποίηση το Crank Nicolson σχήμα στη διαφορική εξίσωση (4.84) οπότε η εξίσωση γίνεται:

$$\frac{u(x,t_{n+1}) - u(x,t_n)}{\Delta t} = \frac{D}{2}(u_{xx}(x,t_{n+1}) + u_{xx}(x,t_n))$$
(4.121)

Δηλαδή

$$u(x, t_{n+1}) - u(x, t_n) = \frac{D\Delta t}{2} (u_{xx}(x, t_{n+1}) + u_{xx}(x, t_n))$$
(4.122)

$$u(x, t_{n+1}) - \frac{D\Delta t}{2} u_{xx}(x, t_{n+1}) = \frac{D\Delta t}{2} u_{xx}(x, t_n) + u(x, t_n)$$
(4.123)

Στη χωρική διακριτοποίηση χρησιμοποιούμε όπως και στην προηγουμενη περίπτωση τη collocation μέθοδο με ασυνεχή Hermite στοιχεία. Έτσι για ομαλές λύσεις *u* η προσεγγιστική λύση της διαφορικής εξίσωσης (4.84) θα δίνεται από τη σχέση:

$$U(x,t) = \sum_{i=1}^{N+1} \left[\alpha_{2i-1}(t)\phi_{2i-1}(x) + \alpha_{2i}(t)\phi_{2i}(x) \right]$$
(4.124)

όπου $\phi_{2i-1}(x)$ και $\phi_{2i}(x)$ είναι τα Hermite κυβικά πολυώνυμα που ορίζονται από τις σχέσεις (4.88) -(4.89).

Για να εξαλειφθούν οι ασυνέχειες στα σημεία διασύνδεσης δηλαδή στα στοιχεία I_{N_1} και $I_{N_1+N_2+1}$, οπώς αναφέραμε στην προηγουμένη ενότητα, χρησιμοποιούμε τα χυβικά πολυώνυμα Hemite που ορίζονται από τις σχέσεις (4.93) και (4.94).

Διαλέγοντας ως εσωτερικά collocation σημεία τα Gauss σημεία (4.102) και (4.103) για κάθε υποδιάστημα I_i , οι στοιχειώδης collocation εξισώσεις παράγονται αν επιβάλουμε την προσεγγιστική λύση U(x,t) να ικανοποιεί την εξίσωση (4.123). Έτσι με αναλογή διαδικασία όπως στην ενότητα (4.2.1) για κάθε στοιχείο I_i , i = 1...N οι στοιχειώδης collocation εξισώσεις στη μορφή πίνακα θα δίνονται από την παρακάτω σχέση:

$$\left(C_{i}^{(0)} - \frac{D\Delta t}{2h^{2}}C_{i}^{(2)}\right) \begin{bmatrix} \alpha_{2i-1}^{(n+1)} \\ \alpha_{2i}^{(n+1)} \\ \alpha_{2i+1}^{(n+1)} \\ \alpha_{2i+2}^{(n+1)} \end{bmatrix} = \left(C_{i}^{(0)} + \frac{D\Delta t}{2h^{2}}C_{i}^{(2)}\right) \begin{bmatrix} \alpha_{2i-1}^{(n)} \\ \alpha_{2i}^{(n)} \\ \alpha_{2i+1}^{(n)} \\ \alpha_{2i+2}^{(n)} \end{bmatrix}$$
(4.125)

όπου $C_i^{(0)}$ και $C_i^{(2)}$ είναι 2 × 4 πίνακες που ορίζονται από τους πίνακες (4.105) και (4.106). Οι συνοριακές collocation εξισώσεις δίνονται από τις σχέσεις (4.113) και (4.114).

Συγκεντρώνοντας τις εσωτερικές στοιχειώδεις και συνοριακές collocation εξισώσεις καταλήγουμε στην επίλυση του collocation συστήματος :

$$C \boldsymbol{\alpha}^{(n+1)} = C_1 \; \boldsymbol{\alpha}^{(n)} \;, \; \; n = 0, 1, \dots$$
 (4.126)

όπου

$$C = \begin{bmatrix} \tilde{A}_1 & B_1 & & & \\ & A_2 & B_2 & & \\ & & \searrow & & \\ & & A_{N-1} & B_{N-1} & \\ & & & A_N & \tilde{B}_N \end{bmatrix},$$
(4.127)

$$C_{1} = \begin{bmatrix} \tilde{E}_{1} & F_{1} & & & \\ & E_{2} & F_{2} & & \\ & & \searrow & & \\ & & E_{N-1} & F_{N-1} & \\ & & & E_{N} & \tilde{F}_{N} \end{bmatrix},$$
(4.128)

και

$$\mathbf{\alpha}^{(n)} := \begin{bmatrix} \alpha_1^{(n)} \\ \alpha_3^{(n)} \\ \vdots \\ \alpha_{2N+1}^{(n)} \end{bmatrix} .$$
(4.129)

Οι 2 × 2 πίναχες A_i, B_i, E_i χαι F_i δηλώνονται από τις σχέσεις

$$\left(C_i^{(0)} - \frac{D\Delta t}{h^2}C_i^{(2)}\right) = \begin{bmatrix}A_i & B_i\end{bmatrix}$$
(4.130)

και

$$\left(C_i^{(0)} + \frac{D\Delta t}{h^2}C_i^{(2)}\right) = \begin{bmatrix}E_i & F_i\end{bmatrix}, \qquad (4.131)$$

όπου οι πίνακες $C_i^{(0)}$ και $C_i^{(2)}$ δίνονται από τις σχέσεις (4.105)-(4.106).

Οι 2 × 1 πίναχες \tilde{A}_1 και \tilde{E}_1 προχύπτουν από τους αντίστοιχους πίναχες A_1 και E_1 αν αφαιρέσουμε την δεύτερη στήλη. Αντίστοιχα οι πίναχες \tilde{B}_N και \tilde{F}_N προχύπτουν από τους αντίστοιχους πίναχες B_N και F_N αν αφαιρέσουμε την πρώτη στήλη. Τέλος το αρχικό διάνυσμα $\mathbf{a}^{(0)}$ καθορίζεται από την αρχική συνθήκη όπου είναι η δέλτα συνάρτηση (2.24).

4.2.3 Αριθμητικά αποτελέσματα

Ορίζουμε το ίδιο πρόβλημα όπως στην ενότητα (4.1.3) δηλαδή οι τρεις περιοχές να είναι οι:

$$\mathcal{R}_1 := [-5, -1], \ \mathcal{R}_2 := [-1, 1], \ \mathcal{R}_3 := [1, 5].$$
 (4.132)

ως αρχική πηγή καρκινικών κυττάρων θεωρούμε την δέλτα συνάρτηση :

$$\delta(x) \equiv \delta_{\eta}(x) := \frac{1}{\eta\sqrt{\pi}} e^{-x^2/\eta^2}$$
(4.133)

και συγκεκριμένα ως αρχική συνάρτηση επιλέγουμε την

$$f(x) = \delta_{0.2}(x+2) \tag{4.134}$$

και ως χρονικό βήμα $\Delta t = 0.1.$

Η ανάπτυξη του καρκινικού όγκου στο χρόνο και για μέγιστο χρόνο $t_{max} = 4$ δηλαδή πραγματικού χρόνου περίπου ενός έτους χρησιμοποιώντας τις παραπάνω μεθόδους παρουσιά-ζεται στα γραφήματα (4.24), (4.25), (4.26) και (4.27).

Σχήμα 4.24: Ανάπτυξη του καρκινικού όγκου με την collocation μέθοδο με discontinuous Hermite πολυώνυμα - Backward Euler σχήμα με $\gamma = 0.5$

Σχήμα 4.25: Ανάπτυξη του καρκινικού όγκου με την collocation μέθοδο με discontinuous Hermite πολυώνυμα - Backward Euler σχήμα με $\gamma = 0.2$

Σχήμα 4.26: Ανάπτυξη του καρκινικού όγκου με την collocation μέθοδο με discontinuous Hermite πολυώνυμα - Crank Nicolson σχήμα με $\gamma = 0.5$

Σχήμα 4.27: Ανάπτυξη του καρκινικού όγκου με την collocation μέθοδο με discontinuous Hermite πολυώνυμα - Crank Nicolson σχήμα με $\gamma = 0.2$

4.2.4 Ευστάθεια

Το γενικό σχήμα των δυο παραπάνω μεθόδων για να μελετήσουμε την ευστάθεια των σχημάτων δίνεται από τη σχέση (5.1):

$$\left(C^{(0)} - \theta \frac{D\Delta t}{h^2} C^{(2)}\right) a^{(n+1)} = \left(C^{(0)} + (1-\theta) \frac{D\Delta t}{h^2} C^{(2)}\right) a^{(n)}$$
(4.135)

Για τη μελέτη της ευστάθειας στην συγχεχριμένη περίπτωση όπου χρησιμοποιήσαμε την collocation μέθοδο με ασυνέχη Hermite πολυώνυμα τα συμπεράσματα θα είναι αντίστοιχα με αυτά στην ενότητα (4.1.4). Εξάλλου χαι στην περίπτωση αυτή οι ιδιοτιμές του πίναχα $G = [C^{(0)}]^{-1}C^{(2)}$ είναι μιχρότερες ή ίσες του μηδενός όπως παρατηρούμε από τα παραχάτω σχήματα (4.28) χαι (4.29).

Σχήμα 4.28: Ιδιοτιμές του πίνακα $G = [C^{(0)}]^{-1}C^{(2)}$ για $\gamma = 0.5$

Σχήμα 4.29: Ιδιοτιμές του πίνακα $G = \left[C^{(0)}\right]^{-1} C^{(2)}$ για $\gamma = 0.2$

Οπότε το σχήμα που προέχυψε απο την collocation μέθοδο με discontinuous Hermite πολυώνυμα ως χωρική διαχριτοποίηση και το Backward Euler σχήμα ως χρονική διαχριτοποιήση και είναι της μορφής :

$$\left(C^{(0)} - \frac{D\Delta t}{h^2}C^{(2)}\right)a^{(n+1)} = C^{(0)}a^{(n)}$$
(4.136)

είναι το γενικό σχήμα (4.135) για $\theta = 1$. Άρα λοιπόν όπως έχουμε αποδείξει (4.1.4, [7]) το σχήμα αυτό είναι ευσταθές (unconditional stable).

Εξάλλου παρατηρούμε στα γραφήματα (4.30) και (4.31) ότι οι ιδιοτιμές του πίνακα $C^{-1}C^{(0)}$ για $\gamma = 0.5$ και $\gamma = 0.2$ αντίστοιχα είναι μικρότερες ή ίσες της μονάδας, γεγονός που επιβεβαιώνει ότι η μέθοδος μας είναι unconditional stable.

Σχήμα 4.30: Ιδιοτιμές του πίνακ
α $C^{-1}C^{(0)}$ της μεθόδου discontinuous hermite collocation-Backward Euler γι
α $\gamma=0.5$

Σχήμα 4.31: Ιδιοτιμές του πίνακ
α $C^{-1}C^{(0)}$ της μεθόδου discontinuous hermite collocation-Backward Euler γι
α $\gamma=0.2$

Αντίστοιχα το σχήμα που προέχυψε απο την collocation μέθοδο με discontinuous Hermite πολυώνυμα ως χωριχή διαχριτοποιήση και Crank Nicolson σχήμα ως χρονιχή διαχριτοποιήση και είναι της μορφής :

$$\left(C^{(0)} - \frac{D\Delta t}{2h^2} C^{(2)}\right) a^{(n+1)} = \left(C^{(0)} + \frac{D\Delta t}{2h^2} C^{(2)}\right) a^{(n)}$$
(4.137)

είναι το γενικό σχήμα (4.135) για $\theta = \frac{1}{2}$. Άρα λοιπόν και αυτό το σχήμα αυτό είναι ευσταθές (unconditional stable) (4.1.4, [7]).

Οι ιδιοτιμές εξάλλου του πίνακα $C^{-1}C_1$ για $\gamma = 0.5$ και $\gamma = 0.2$ αντίστοιχα είναι μικρότερες ή ίσες της μονάδας γεγονός που φανερώνει ότι η μέθοδος μας είναι unconditional stable.

Σχήμα 4.32: Ιδιοτιμές του πίνακ
α $C^{-1}C_1$ της μεθόδου discontinuous hermite collocation-Crank Nicolson
για $\gamma=0.5$

Σχήμα 4.33: Ιδιοτιμές του πίνακ
α $C^{-1}C_1$ της μεθόδου discontinuous hermite collocation-Crank Nicolson γι
α $\gamma=0.2$

4.2.5 Χωρικό σχετικό σφάλμα

Θεωρούμε το χωρικό σχετικό σφάλμα να δίνεται από τη σχέση (4.77) δηλαδή :

$$E_{\infty} := \frac{\|U_{h/2} - U_h\|_{\infty}}{\|U_{h/2}\|_{\infty}} \tag{4.138}$$

Παρουσιάζουμε το σχετικό σφάλμα για διαφορετικές τιμές του Δt και το h το επιλέγουμε έτσι ώστε $h\simeq h_1\simeq h_2\simeq h_3.$

Collocation Μέθοδος με discontinuous Hemite πολυώνυμα -Backward Euler Σχήμα

Η συμπεριφορά του σχετιχού σφάλματος παριστάνεται από τα γραφήματα (4.34) χαι (4.35) ενώ η τάξη σύγχλισης της μεθόδου παρουσιάζεται στους Πίναχες (4.9) χαι (4.10).

Σχήμα 4.34: Η συμπεριφορά του χωρικού σχετικού σφάλματος για διαφορετικές τιμές του Δt για την discontinuous hermite collocation-backward euler μέθοδο με $\gamma = 0.5$

Collocation Μέθοδος με discontinuous Hemite πολυώνυμα -Crank Nicolson Σχήμα

Αντίστοιχα η συμπεριφορά του σχετικού σφάλματος για την collocation μέθοδο με discontinuous Hemite πολυώνυμα παριστάνεται από τα γραφήματα (4.36) και (4.37) ενώ η τάξη σύγκλισης της μεθόδου παρουσιάζεται στους Πίνακες (4.11) και (4.12).

Συμπέρασμα 4.2.1 Από τα γραφήματα (4.34) - (4.37) και από τους Πίνακες 4.9-4.11 παρατηρούμε λοιπόν ότι η τάξη σύγκλισης της collocation μεθόδου με ασυνεχή Hermite πολυών υμα

Σχήμα 4.35: Η συμπεριφορά του χωρικού σχετικού σφάλματος για διαφορετικές τιμές του Δt για την discontinuous hermite collocation-backward euler μέθοδο με $\gamma = 0.2$

	$t_{max} = \Delta t$		$t_{max} = 5\Delta t$		$t_{max} = 10\Delta t$		$t_{max} = 25\Delta t$	
h	E_{∞}	ooc	E_{∞}	ooc	E_{∞}	ooc	E_{∞}	ooc
0.625	3.34E-01	2.6201	4.31E-01	4.4867	4.34E-01	4.6469	4.37E-01	4.7230
0.3125	5.16E-02	4.6857	1.89E-02	8.7381	1.70E-02	1.1124	1.63 E-02	1.3888
0.1563	2.00E-03	3.8888	4.42E-05	3.9260	7.63E-06	3.9353	1.07E-06	3.9261
0.0781	1.35E-04	3.9140	2.91E-06	3.9051	4.99E-07	3.9018	7.06 E-08	3.8940
0.0391	8.97E-06	4.1729	1.94E-07	4.0449	3.34E-08	3.9673	4.75E-09	3.9232
0.0195	4.97E-07	4.6101	1.18E-08	4.2228	2.13E-09	4.0962	3.13E-010	4.2855
0.0098	2.04E-08		6.3E-010		1.25E-010		1.61E-011	

Πίνα
κας 4.9: Η τάξη σύγκλισης για τη Discontinuous Hermite collocation-Backward Euler μέθοδο γι
α $\gamma=0.5$

διατηρείται όπως και στην περίπτωση της collocation μεθόδου με συνεχή Hermite πολυώνυμα. Δηλαδή παραμένει τέταρτης τάξεως ως προς το χώρο η σύγλιση της collocation μεθόδου με ασυνεχή Hermite πολυώνυμα.

	$t_{max} =$	= Δt	$t_{max} =$	$t_{max} = 5\Delta t$ $t_{max} = 10\Delta t$ $t_{max} =$		$25\Delta t$		
h	E_{∞}	ooc	E_{∞}	ooc	E_{∞}	ooc	E_{∞}	ooc
0.625	2.96E-01	2.0935	4.25E-01	4.0828	4.31E-01	4.4804	4.34E-01	4.6496
0.3125	6.49E-02	4.3832	2.44E-02	6.9259	1.89E-02	8.8305	1.7E-02	1.1423
0.1563	3.11E-03	3.8857	2.01E-04	3.9054	4.16E-05	3.9290	6.19E-06	3.9305
0.0781	2.1E-04	3.9160	1.34E-05	3.9034	2.73E-06	3.9066	4.06E-07	3.9013
0.0391	1.39E-05	4.1785	8.96E-07	4.0938	1.82E-07	4.0221	2.72E-08	3.9341
0.0195	7.69E-07	4.4948	5.25E-08	4.3513	1.12E-08	4.1759	1.78E-09	4.1716
0.0098	3.41E-08		2.57E-09		6.2E-010		9.86E-011	

Πίνα
κας 4.10: Η τάξη σύγκλισης για τη Discontinuous Hermite collocation-Backward Euler μ
έθοδο για $\gamma=0.2$

Σχήμα 4.36: Η συμπεριφορά του χωρικού σχετικού σφάλματος για διαφορετικές τιμές του Δt για την discontinuous hermite collocation-Crank Nicolson μέθοδο με $\gamma = 0.5$

Σχήμα 4.37: Η συμπεριφορά του χωρικού σχετικού σφάλματος για διαφορετικές τιμές του Δt για την discontinuous hermite collocation-Crank Nicolson μέθοδο με $\gamma = 0.2$

	$t_{max} =$	$2\Delta t$	$t_{max} =$	$= 5\Delta t \qquad t_{max} = 10\Delta t \qquad t_{max} = 25$		$t_{max} = 10\Delta t$		$25\Delta t$
h	E_{∞}	ooc	E_{∞}	ooc	E_{∞}	ooc	E_{∞}	ooc
0.625	4.05E-01	3.6468	4.34E-01	4.5894	4.34E-01	4.662	4.37E-01	4.7253
0.3125	3.14E-02	5.8680	1.77E-02	7.6422	1.69E-02	9.7390	1.63 E-02	12.838
0.1563	5.37E-04	3.9008	8.87E-05	4.0279	$1.97 \text{E}{-}05$	3.8642	2.22E-06	4.5034
0.0781	$3.59\mathrm{E}\text{-}05$	3.9054	5.44 E-06	3.9109	1.36E-06	3.9554	9.79E-08	3.9187
0.0391	2.4E-06	4.1474	3.62E-07	3.8818	8.73E-08	4.2306	6.47 E-09	3.9050
0.0195	1.35E-07	4.5236	2.45E-08	3.9942	4.65E-09	4.379	4.32E-010	4.0144
0.0098	5.88E-09		1.54 E-09		2.24E-010		2.67E-011	

Πίνα
κας 4.11: Η τάξη σύγκλισης για τη Discontinuous Hermite collocation-Crank Nicolson μέθοδο γι
α $\gamma=0.5$

	$t_{max} =$	$2\Delta t$	$t_{max} =$	$t_{max} = 5\Delta t \qquad t_{max} = 10\Delta t \qquad t_{max} = 2$		$t_{max} = 10\Delta t$		$25\Delta t$
h	E_{∞}	ooc	E_{∞}	ooc	E_{∞}	ooc	E_{∞}	ooc
0.625	3.64E-01	2.9113	4.31E-01	4.2704	4.31E-01	4.5183	4.34 E-01	4.6554
0.3125	4.61E-02	5.1520	2.19E-02	7.5693	1.85 E-02	9.39	1.69E-02	11.562
0.1563	1.3E-03	3.9021	1.15E-04	3.9166	2.75 E-05	3.7591	5.6 E-06	3.9603
0.0781	8.67E-05	3.9070	7.62E-06	3.8718	2.03 E-06	3.9195	3.6 E- 07	3.9081
0.0391	5.78E-06	4.1553	5.21E-07	3.9031	1.34 E-07	4.0895	2.4E-08	3.9260
0.0195	3.24E-07	4.5930	3.48E-08	4.085	7.89E-09	4.2087	1.58E-09	4.1845
0.0098	1.34E-08		2.05E-09		4.27E-010		8.67E-011	

Πίνα
χας 4.12: Η τάξη σύγκλισης για τη Discontinuous Hermite collocation-Crank Nicolson μέθοδο γι
α $\gamma=0.2$

4.3 O(ε) προσεγγίσεις και ασυνεχή Hermite κυβικά πολυώνυμα

4.3.1 Backward Euler σχήμα για τη χρονική διακριτοποίηση

Ορίζουμε το πρόβλημα μας όπως στην ενότητα (4.1.1).

Θεωρούμε παράμετρο $\epsilon>0$ με $\epsilon\to 0$ έτσι ώστε η διαφορική εξίσωση του προβλήματος

$$u_t = D \ u_{xx} \tag{4.139}$$

να ικανοποείται σε κάθε περιοχή $\mathcal{R}_1(\epsilon), \, \mathcal{R}_2(\epsilon), \, \mathcal{R}_3(\epsilon)$ με

$$\mathcal{R}_1(\epsilon) := [a, w_1 - \epsilon] , \ \mathcal{R}_2(\epsilon) := [w_1 + \epsilon, w_2 - \epsilon] , \ \mathcal{R}_3(\epsilon) := [w_2 + \epsilon, b]$$
(4.140)

και με τη σταθερά διάχυσης D να δίνεται από τον εξής τύπο :

$$D = \begin{cases} \gamma, & \gamma : \alpha \quad a \leq x < w_1 - \epsilon \\ 1, & \gamma : \alpha \quad w_1 + \epsilon \leq x < w_2 - \epsilon \\ \gamma, & \gamma : \alpha \quad w_2 + \epsilon \leq x \leq b \end{cases}$$
(4.141)

Στα σημεία διασύνδεσης ισχύουν οι περιορισμοί (4.4)- (4.7), ως συνοριαχές συνθήχες θεωρούμε τις $u_x(a,t) = 0$ και $u_x(b,t) = 0$ και ως αρχιχή συνθήχη τη δέλτα συνάρτηση (2.24).

Για κάθε περιοχή θεωρούμε ένα ομοιόμορφο πλέγμα $t \times \mathcal{R}_{\ell}(\epsilon)$ όπου οι πλευρές είναι παράλληλες στους άξονες x και t και το βήμα διακριτοποιήσης είναι h_{ℓ} και Δt στην x και t αντίστοιχα κατεύθυνση.

Συγκεκριμένα:

$$\begin{cases}
h_1 := (w_1 - a - \epsilon)/(N_1 - 1) , \\
h_2 := (w_2 - w_1 - 2\epsilon)/(N_2 - 2) , \\
h_3 := (b - w_2 - \epsilon)/(N_3 - 1) ,
\end{cases}$$
(4.142)

όπου N_ℓ δηλώνει τον αριθμό των υποδιαστημάτων της χάθε περιοχής $\mathcal{R}_\ell(\epsilon)$ αντίστοιχα χαι $N = N_1 + N_2 + N_3$ χαθώς χαι οι συντεταγμένες των χόμβων (x_{m_ℓ}, t_n) δίνονται από τις σχέσεις :

$$\begin{cases} x_{m_1} := a + m_1 h_1 &, m_1 = 0, \dots, N_1 - 1 \\ x_{m_2} := w_1 + \epsilon + m_2 h_2 &, m_2 = 0, \dots, N_2 - 1 \\ x_{m_3} := w_2 + \epsilon + m_3 h_3 &, m_3 = 0, \dots, N_3 - 1 \end{cases}$$
(4.143)

και

$$t_n = n\Delta t$$
, $n = 0, 1, \dots$ (4.144)

Τέλος, ορίζουμε $h = h_\ell$ οποτεδήποτε το $x_m \in R_\ell$ με $\ell = 1, 2, 3$:

$$h = \begin{cases} h_1, & \forall i \alpha \ x_1 \in R_1 \\ h_2, & \forall i \alpha \ x_2 \in R_2 \\ h_3, & \forall i \alpha \ x_3 \in R_3 \end{cases}$$
(4.145)

Θεωρούμε λοιπόν τη διαφορικη μας εξίσωση στην μορφή:

$$u_t(x, t_{n+1}) = D \ u_{xx}(x, t_{n+1})$$
 . (4.146)

Εφαρμόζοντας την Backward Euler μέθοδο η παραπάνω εξίσωση γράφεται :

$$u(x, t_{n+1}) - D\Delta t \ u_{xx}(x, t_{n+1}) = u(x, t_n) \quad .$$
(4.147)

Για τη χωρική διακριτοποιήση χρησιμοποιούμε την Collocation μέθοδο με ασυνεχής Hermite στοιχεία. Καθώς η λύση u της διαφορικής εξίσωσης (4.139) είναι ομαλή σε κάθε υποδιάστημα $\mathcal{R}_{\ell}(\epsilon)$, $\ell = 1, 2, 3$ η προσεγγιστική λύση U(x, t) χρησιμοποιώντας πεπερασμενα στοιχεία με συναρτήσεις βάσης τα πολυώνυμα Hermite, θα είναι της μορφής:

$$U(x,t) = \sum_{i=1}^{N+1} \left[\alpha_{2i-1}(t)\phi_{2i-1}(x) + \alpha_{2i}(t)\phi_{2i}(x) \right]$$
(4.148)

όπου $\phi_{2i-1}(x)$ και $\phi_{2i}(x)$ είναι τα Hermite κυβικά πολυώνυμα και ορίζονται από τις σχέσεις (4.88) και (4.89) για κάθε κόμβο x_i .

Για τη λύση u του παραπάνω μαθηματικού προβλήματος, αφού υπάρχουν ασυνέχειες στα σημεία διασύνδεσης $w_1 \equiv x_{N_1+1}$ και $w_2 \equiv x_{N_1+N_2+1}$ είναι προφανές ότι θα πρέπει να εξαναγκάσουμε την προσεγγιστική λύση U(x,t) να ικανοποιεί την συνθήκη (4.90) δηλαδή:

$$\gamma \phi_{2i}(x_i^-) = \phi_{2i}(x_i^+), \qquad i = N_1,$$
(4.149)

και

$$\phi_{2i}(x_i^-) = \gamma \phi_{2i}(x_i^+), \qquad i = N_1 + N_2 + 1, \tag{4.150}$$

Για να εξαλειφθούν οι ασυνέχειες στα σημεία διασύνδεσης δηλαδή στα στοιχεία I_{N_1+1} , και $I_{N_1+N_2+1}$, όπως αναφέραμε στην προηγουμένη ενότητα, χρησιμοποιούμε τα κυβικά πολυώνυμα Hemite που ορίζονται από τις σχέσεις (4.93) και (4.94).

Για να παράξουμε τις στοιχειώδης collocation εξισώσεις επιβάλλουμε τη προσεγγιστική λύση U(x,t) να ικανοποιεί την εξίσωση (4.147) στα δύο Gauss εσωτερικά collocation σημεία (4.102) και (4.103) για κάθε υποδιάστημα I_i . Οπότε με ανάλογη διαδικασία οπώς και στις ενότητες οι στοιχειώδης collocation εξισώσεις που αντιστοιχούν στο στοιχείο I_i παίρνει τη μορφή πίνακα :

$$\left(C_{i}^{(0)} - \frac{D\Delta t}{h^{2}}C_{i}^{(2)}\right) \begin{bmatrix} \alpha_{2i-1}^{(n+1)} \\ \alpha_{2i}^{(n+1)} \\ \alpha_{2i+1}^{(n+1)} \\ \alpha_{2i+2}^{(n+1)} \end{bmatrix} = C_{i}^{(0)} \begin{bmatrix} \alpha_{2i-1}^{(n)} \\ \alpha_{2i}^{(n)} \\ \alpha_{2i+1}^{(n)} \\ \alpha_{2i+2}^{(n)} \end{bmatrix}$$
(4.151)

με τους πίναχες $C_i^{(0)}$ και $C_i^{(2)}$ να δίνονται από τις σχέσεις (4.105) και (4.106) αντίστοιχα. Έτσι στα σημεία διασύνδεσης οι στοιχειώδεις collocation πίναχες είναι όμως της μορφής:

$$C_{N_1}^{(0)} := \begin{bmatrix} s_1^{(0)} & \epsilon s_2^{(0)} & s_3^{(0)} & -\frac{\epsilon}{\gamma} s_4^{(0)} \\ & & & \\ s_3^{(0)} & \epsilon s_4^{(0)} & s_1^{(0)} & -\frac{\epsilon}{\gamma} s_2^{(0)} \end{bmatrix}$$
(4.152)

$$C_{N_1+1}^{(0)} = C_{N_1+N_2}^{(0)} := \begin{bmatrix} s_1^{(0)} & \epsilon s_2^{(0)} & s_3^{(0)} & -\epsilon s_4^{(0)} \\ & & & \\ s_3^{(0)} & \epsilon s_4^{(0)} & s_1^{(0)} & -\epsilon s_2^{(0)} \end{bmatrix}$$
(4.153)

$$C_{N_1+N_2+1}^{(0)} := \begin{bmatrix} s_1^{(0)} & \frac{\epsilon}{\gamma} s_2^{(0)} & s_3^{(0)} & -\epsilon s_4^{(0)} \\ & & & \\ s_3^{(0)} & \frac{\epsilon}{\gamma} s_4^{(0)} & s_1^{(0)} & -\epsilon s_2^{(0)} \end{bmatrix}$$
(4.154)

$$C_{N_1}^{(2)} := \begin{bmatrix} s_1^{(2)} & \epsilon s_2^{(2)} & s_3^{(2)} & -\frac{\epsilon}{\gamma} s_4^{(2)} \\ & & & \\ s_3^{(2)} & \epsilon s_4^{(2)} & s_1^{(2)} & -\frac{\epsilon}{\gamma} s_2^{(2)} \end{bmatrix}$$
(4.155)

$$C_{N_1+1}^{(2)} = C_{N_1+N_2}^{(2)} := \begin{bmatrix} s_1^{(2)} & \epsilon s_2^{(2)} & s_3^{(2)} & -\epsilon s_4^{(2)} \\ & & & \\ s_3^{(2)} & \epsilon s_4^{(2)} & s_1^{(2)} & -\epsilon s_2^{(2)} \end{bmatrix}$$
(4.156)

$$C_{N_1+N_2+1}^{(2)} := \begin{bmatrix} s_1^{(2)} & \frac{\epsilon}{\gamma} s_2^{(2)} & s_3^{(2)} & -\epsilon s_4^{(2)} \\ & & & \\ s_3^{(2)} & \frac{\epsilon}{\gamma} s_4^{(2)} & s_1^{(2)} & -\epsilon s_2^{(2)} \end{bmatrix}$$
(4.157)

ενώ εκτός των στοιχείων I_{N_1} , I_{N_1+1} , $I_{N_1+N_2}$ και $I_{N_1+N_2+1}$ οι στοιχειώδης collocation πίνακες $C_i^{(0)}$ και $C_i^{(2)}$ είναι 2 × 4 πίνακες που ορίζονται από τις σχέσεις (4.29) και (4.30). Οι συνοριακές collocation εξισώσεις δίνονται από τις σχέσεις (4.113) και (4.114).

Καταλήγουμε λοιπόν στο Collocation σύστημα το οποιο είναι της μορφής:

$$C\mathbf{a}^{(n+1)} = C^{(0)}\mathbf{a}^{(n)}, \quad n = 0, 1, \dots$$
 (4.158)

όπου

$$C = \begin{bmatrix} \tilde{A}_{1} & B_{1} & & & \\ & A_{2} & B_{2} & & \\ & & \ddots & & \\ & & A_{N-1} & B_{N-1} & \\ & & & A_{N} & \tilde{B}_{N} \end{bmatrix},$$
(4.159)
$$C^{(0)} = \begin{bmatrix} \tilde{A}_{1}^{0} & B_{1}^{0} & & & \\ & A_{2}^{0} & B_{2}^{0} & & \\ & & A_{2}^{0} & B_{2}^{0} & & \\ & & A_{N}^{0} & B_{N}^{0} \end{bmatrix},$$
(4.160)

και

$$\mathbf{\alpha}^{(n)} := \begin{bmatrix} \alpha_1^{(n)} \\ \alpha_3^{(n)} \\ \vdots \\ \alpha_{2N+1}^{(n)} \end{bmatrix} .$$
(4.161)

Οι 2 × 2 πίναχες A_i, B_i, A^0_i χαι B^0_i δηλώνονται από τις σχέσεις

$$C := \left(C_i^{(0)} - \frac{\Delta t}{h^2} D C_i^{(2)} \right) = \begin{bmatrix} A_i & B_i \end{bmatrix}$$

$$(4.162)$$

και

$$C^{(0)} := \begin{bmatrix} A_i^0 & B_i^0 \end{bmatrix} , \qquad (4.163)$$

όπου οι πίναχες $C_i^{(0)}$ και $C_i^{(2)}$ δίνονται από τους πίναχες (4.29)-(4.30) και για $i = N_1, N_1 + 1, N_1 + N_2, N_1 + N_2 + 1$ οι πίναχες $C_i^{(0)}$ και $C_i^{(2)}$ δίνονται από τους πίναχες (4.152)-(4.157).

Οι 2 × 1 πίνακες \tilde{A}_1 και \tilde{A}_1^0 προκύπτουν από τους αντίστοιχους πίνακες A_1 και A_1^0 αν αφαιρέσουμε την δεύτερη στήλη. Αντίστοιχα οι πίνακες \tilde{B}_N και \tilde{B}_N^0 προκύπτουν από τους αντίστοιχους πίνακες B_N και B_N^0 αν αφαιρέσουμε την πρώτη στήλη. Τέλος το αρχικό διάνυσμα $\mathbf{a}^{(0)}$ καθορίζεται από την αρχική συνθήκη όπου είναι η δέλτα συνάρτηση (2.24).

4.3.2 Crank-Nicolson σχήμα για τη χρονική διακριτοποίηση

Θεωρούμε το ίδιο πρόβλημα με αυτό στην ενότητα (4.3.1). Ορίζουμε λοιπόν ένα ομοιόμορφο πλέγμα $t \times \mathcal{R}_{\ell}$ που οι πλευρές του είναι παράλληλες στους άξονες x και t και το βήμα διακριτοποιήσης είναι h_{ℓ} (4.142) και Δt (4.12) στην x και Δt αντίστοιχη κατεύθυνση. Εφαρμόζουμε για τη χρονική διακριτοποίηση τη μέθοδο Crank Nicolson στη διαφορική εξίσωση (4.146), οπότε η εξίσωση γίνεται:

$$\frac{u(x,t_{n+1}) - u(x,t_n)}{\Delta t} = \frac{D}{2}(u_{xx}(x,t_{n+1}) + u_{xx}(x,t_n))$$
(4.164)

$$u(x, t_{n+1}) - \frac{D\Delta t}{2} u_{xx}(x, t_{n+1}) = \frac{D\Delta t}{2} u_{xx}(x, t_n) + u(x, t_n)$$
(4.165)

Στη χωρική διακριτοποίηση χρησιμοποιούμε οπώς και στην προηγουμενη περίπτωση τη collocation μέθοδο με ασυνεχή Hermite στοιχεία. Έτσι η προσεγγιστική λύση της διαφορικής εξίσωσης (4.146) θα δίνεται από την σχέση:

$$U(x,t) = \sum_{i=1}^{N+1} \left[\alpha_{2i-1}(t)\phi_{2i-1}(x) + \alpha_{2i}(t)\phi_{2i}(x) \right]$$
(4.166)

όπου $\phi_{2i-1}(x)$ και $\phi_{2i}(x)$ είναι τα Hermite κυβικά πολυώνυμα που ορίζονται από τις σχέσεις (4.88) -(4.89).

Για να εξαλειφθούν οι ασυνέχειες στα σημεία διασύνδεσης δηλαδή στα στοιχεία I_{N_1} και $I_{N_1+N_2+1}$, οπώς αναφέραμε στην προηγουμένη ενότητα, χρησιμοποιούμε τα κυβικά πολυώνυμα Hemite που ορίζονται από τις σχέσεις (4.93) και (4.94).

Η τιμή όμως της προσεγγιστικής λύσης U(x,t) για οποιαδήποτε x στο διάστημα I_i μπορεί να υπολογιστεί προσθέτοντας μερικούς μόνο όρους, δηλαδή

$$U(x,t) = \sum_{k=2i-1}^{2i+2} \alpha_k(t)\phi_k(x) , \ x \in I_i , \qquad (4.167)$$

με i = 1, ..., N - 1.

Σε κάθε χρονικό επίπεδο $t = t_n$, η Collocation μέθοδος προσδιορίζει τους αγνώστους

$$\alpha_i^{(n)} := \alpha_i(t_n) , \quad i = 1, \dots, 2(N+1) ,$$

$$(4.168)$$

θέτωντας την προσεγγιστική λύση U(x,t) να ικανοποιεί την εξίσωση (4.165) έχουμε ότι:

$$U(x,t_{n+1}) - \frac{D\Delta t}{2} \frac{\partial^2}{\partial x^2} U(x,t_{n+1}) = U(x,t_n) + \frac{D\Delta t}{2} \frac{\partial^2}{\partial x^2} U(x,t_n) , \qquad (4.169)$$

στα $2N_\ell$, για κάθε $\ell = 1, 2, 3$ εσωτερικά collocation σημεία, καθώς επίσης η λύση U(x, t) να ικανοποιεί τις συνοριακές και αρχικές συνθήκες.

Αντικαθιστούμε την εξίσωση (4.167) στην εξίσωση (4.169) για να παράξουμε τις εξισώσεις στα εσωτερικά collocation σημεία. Έτσι έχουμε:

$$\sum_{k=2i-1}^{2i+2} \alpha_k^{(n+1)} \left[\phi_k(x) - \frac{\Delta t D_\ell}{2} \phi_k''(x) \right] = \sum_{k=2i-1}^{2i+2} \alpha_k^{(n)} \left[\phi_k(x) + \frac{\Delta t D_\ell}{2} \phi_k''(x) \right]$$
(4.170)

gia $x \in I_i$ me $i = 1, \ldots, N$.

Διαλέγοντας ως εσωτερικά collocation σημεία τα Gauss σημεία (4.102) και (4.103) για κάθε υποδιάστημα I_i ο στοιχειώδης Collocation πίνακας που αντιστοιχεί στο στοιχείο I_i είναι της μορφής:

$$\begin{pmatrix} C_i^{(0)} - \frac{D\Delta t}{2h^2} C_i^{(2)} \end{pmatrix} \begin{bmatrix} \alpha_{2i-1}^{(n+1)} \\ \alpha_{2i}^{(n+1)} \\ \alpha_{2i+1}^{(n+1)} \\ \alpha_{2i+2}^{(n+1)} \end{bmatrix} = \begin{pmatrix} C_i^{(0)} + \frac{D\Delta t}{2h^2} C_i^{(2)} \end{pmatrix} \begin{bmatrix} \alpha_{2i-1}^{(n)} \\ \alpha_{2i}^{(n)} \\ \alpha_{2i+1}^{(n)} \\ \alpha_{2i+2}^{(n)} \end{bmatrix}$$
(4.171)

όπου $C_i^{(0)}$ και $C_i^{(2)}$ είναι 2 × 4 πίνακες που ορίζονται από τους πίνακες (4.105) και (4.106) και στα σημεία διασύνδεσης από τους πίνακες (4.152)-(4.157).

Οι συνοριαχές collocation εξισώσεις δίνονται από τις σχέσεις (4.113) χαι (4.114).

Συγκεντρώνοντας τις εσωτερικές στοιχειώδεις και συνοριακές collocation εξισώσεις καταλήγουμε στην επίλυση του collocation συστήματος :

$$C \mathbf{\alpha}^{(n+1)} = C_1 \mathbf{\alpha}^{(n)} , \quad n = 0, 1, \dots$$
 (4.172)

όπου

$$C = \begin{bmatrix} \tilde{A}_{1} & B_{1} & & & \\ & A_{2} & B_{2} & & \\ & & \searrow & & \\ & & A_{N-1} & B_{N-1} & & \\ & & A_{N} & \tilde{B}_{N} \end{bmatrix}, \qquad (4.173)$$
$$C_{1} = \begin{bmatrix} \tilde{E}_{1} & F_{1} & & & \\ & E_{2} & F_{2} & & \\ & & E_{2} & F_{2} & & \\ & & E_{N-1} & F_{N-1} & \\ & & & E_{N} & \tilde{F}_{N} \end{bmatrix}, \qquad (4.174)$$

και

$$\mathbf{\alpha}^{(n)} := \begin{bmatrix} \alpha_1^{(n)} \\ \alpha_3^{(n)} \\ \vdots \\ \alpha_{2N+1}^{(n)} \end{bmatrix} .$$
(4.175)

Οι 2×2 πίναχες A_i , B_i , A_i^0 και B_i^0 δηλώνονται από τις σχέσεις

$$C := \left(C_i^{(0)} - \frac{\Delta t}{h^2} D_\ell C_i^{(2)} \right) = \begin{bmatrix} A_i & B_i \end{bmatrix}$$

$$(4.176)$$

και

$$C^{(0)} := \left(C_i^{(0)} + \frac{\Delta t}{h^2} D_\ell C_i^{(2)} \right) = \begin{bmatrix} A_i^0 & B_i^0 \end{bmatrix} , \qquad (4.177)$$

όπου οι πίναχες $C_i^{(0)}$ και $C_i^{(2)}$ δίνονται από τις πίναχες (4.29)-(4.30) και για $i = N_1, N_1 + 1, N_1 + N_2, N_1 + N_2 + 1$ οι πίναχες $C_i^{(0)}$ και $C_i^{(2)}$ δίνονται από τις πίναχες (4.152)-(4.157).

Οι 2 × 1 πίνακες \tilde{A}_1 και \tilde{E}_1 προκύπτουν από τους αντίστοιχους πίνακες A_1 και E_1 αν αφαιρέσουμε τη δεύτερη στήλη. Ανάλογα οι πίνακες \tilde{B}_N και \tilde{F}_3^0 προκύπτουν από τους αντίστοιχους πίνακες B_N και F_N αν αφαιρέσουμε την πρώτη στήλη. Τέλος το αρχικό διάνυσμα $\mathbf{a}^{(0)}$ καθορίζεται από την αρχική συνθήκη όπου είναι η δέλτα συνάρτηση (2.24).

4.3.3 Αριθμητικά αποτελέσματα

Ορίζουμε το ίδιο πρόβλημα όπως και στις ενότητες (4.1.3), (4.2.3) δηλαδή οι τρεις περιοχές είναι:

$$\mathcal{R}_1 := [-5, -1], \ \mathcal{R}_2 := [-1, 1], \ \mathcal{R}_3 := [1, 5].$$
 (4.178)

ως αρχική πηγή καρκινικών κυττάρων θεωρούμε τη δέλτα συνάρτηση:

$$f(x) = \delta_{0.2}(x+2) \tag{4.179}$$

χρονικό βήμα $\Delta t=0.1$ και $\epsilon=\left(\frac{b-a}{N_1+N_2+N_3}\right)^2$.

Η ανάπτυξη του καρκινικού όγκου στο χρόνο και μέχρι $t_{max} = 4$ δηλαδή ενός πραγματικού χρόνου παρουσιάζεται στα γραφήματα (4.38), (4.39), (4.40) και (4.41).

Σχήμα 4.38: Ανάπτυξη του καρκινικού όγκου με την eps collocation μέθοδο με discontinuous Hermite πολυώνυμα - Backward Euler σχήμα με $\gamma = 0.5$

 $N_1=64, N_2=16, N_3=64, t_{max}=4, \gamma=0.2$

Σχήμα 4.39: Ανάπτυξη του καρκινικού όγκου με την eps collocation μέθοδο με discontinuous Hermite πολυώνυμα - Backward Euler σγήμα με $\gamma = 0.2$ _{N1=64, N2=16, N3=64, tmax=4, γ=0.2}

Σχήμα 4.40: Ανάπτυξη του καρκινικού όγκου με την eps collocation μέθοδο με discontinuous Hermite πολυώνυμα - Crank Nicolson σχήμα με $\gamma = 0.5$

Σχήμα 4.41: Ανάπτυξη του καρκινικού όγκου με την eps collocation μέθοδο με discontinuous Hermite πολυώνυμα - Crank Nicolson σχήμα με $\gamma = 0.2$

4.3.4 Ευστάθεια

Το γενικό σχήμα των δύο παραπάνω μεθόδων για να μελετήσουμε την ευστάθεια των σχημάτων δίνεται από τη σχέση (4.135).

Алб та бущата (4.42) ка
и (4.43) πаратпройне бті ої ібіотіне́с тоυ πі́νака $G = [C^{(0)}]^{-1}C^{(2)}$
είναι μικρότερες ή ібес тоυ μηδενός οπότε θα ισχύουν ανάλογα συμπεράσματα με αυτά στις
ενότητα 4.1.4.

Το σχήμα που προέχυψε απο την epsilon collocation μέθοδο με discontinuous Hermite

στοίχεια ως χωρική διακριτοποιήση και το Backward Euler σχήμα ως χρονική διακριτοποιήση είναι της μορφής :

 Σ χήμα 4.42: Ιδιοτιμές του πίνακ
α $G=\left[C^{(0)}\right]^{-1}\!C^{(2)}$ για $\gamma=0.5$

Σχήμα 4.43: Ιδιοτιμές του πίναχα $G = [C^{(0)}]^{-1}C^{(2)}$ για $\gamma = 0.2$

Οπότε είναι το γενικό σχήμα (4.135) για $\theta = 1$. Άρα λοιπόν το σχήμα είναι ευσταθές (unconditional stable)(4.1.4, [7]).

Στα σχήματα (4.44) και (4.45) παριστάνονται οι ιδιοτιμές του πίνακα $C^{-1}C^{(0)}$ για $\gamma = 0.5$ και $\gamma = 0.2$ αντίστοιχα οι οποίες είναι μικρότερες ή ίσες της μονάδας γεγονός που επιβεβαιώνουν ότι η μέθοδος είναι unconditional stable.

Σχήμα 4.44: Ιδιοτιμές του πίνακ
α $C^{-1}C^{(0)}$ της μεθόδου eps discontinuous collocation-Backward Euler γι
α $\gamma=0.5$

Σχήμα 4.45: Ιδιοτιμές του πίνακ
α $C^{-1}C^{(0)}$ της μεθόδου eps discontinuous collocation-Backward Euler γι
α $\gamma=0.2$

Αντίστοιχα το σχήμα που προέχυψε απο την collocation μέθοδο με discontinuous Hermite στοίχεια ως χωρική διακριτοποιήση και Crank Nicolson σχήμα ως χρονική διακριτοποιήση είναι της μορφής :

$$\left(C^{(0)} - \frac{D\Delta t}{2h^2}C^{(2)}\right)a^{(n+1)} = \left(C^{(0)} + \frac{D\Delta t}{2h^2}C^{(2)}\right)a^{(n)}$$
(4.181)

Άρα είναι το γενικό σχήμα (4.135) για $\theta = \frac{1}{2}$. Οπότε το σχήμα είναι ευσταθές (unconditional stable) (4.1.4, [7]).

Στα γραφήματα (4.46) και (4.47) οι ιδιοτιμές του πίνακα $C^{-1}C_1$ για $\gamma = 0.5$ και $\gamma = 0.2$ αντίστοιχα είναι μικρότερες ή ίσες της μονάδας οπότε η μέθοδος είναι unconditional stable.

Σχήμα 4.46: Ιδιοτιμές του πίνακ
α $C^{-1}C_1$ της μεθόδου eps discontinuous collocation-Crank Nicolson γι
α $\gamma=0.5$

Σχήμα 4.47: Ιδιοτιμές του πίνακ
α $C^{-1}C_1$ της μεθόδου eps discontinuous collocation-Crank Nicolson γι
α $\gamma=0.2$

4.3.5 Σχετικό χωρικό σφάλμα

Θεωρούμε το χωρικό σχετικό σφάλμα να δίνεται από τη σχέση (4.77). Παρουσιάζουμε τη συμπεριφορά του σχετικού σφάλματος για διαφορετικές τιμές του Δt στα γραφήματα (4.48),

(4.49), (4.50), (4.51). Αντίστοιχα η τάξη συγκλισης αντίστοιχα δίνεται από τους Πίνακες (4.13)-(4.16).

Σχήμα 4.48: Η συμπεριφορά του χωρικού σχετικού σφάλματος για διαφορετικές τιμές του Δt για την eps discontinous collocation-Backward euler μέθοδο με $\gamma = 0.5$.

Σχήμα 4.49: Η συμπεριφορά του χωρικού σχετικού σφάλματος για διαφορετικές τιμές του Δt για την eps discontinous collocation-Backward euler μέθοδο με $\gamma = 0.2$.

Συμπέρασμα 4.3.1 Από τα σχήματα λοιπόν (4.48)- (4.51) παρατηρούμε ότι η τάξη σύγκλισης της epsilon collocation μεθόδου με ασυνεχή πολυώνυμα Hemite διατηρείται και σε αυτήν την περίπτωση τέταρτης τάξεως ως προς το χώρο όπως και η τάξη σύγλιση της collocation μεθόδου με συνεχή Hermite πολυώνυμα.

	$t_{max} = \Delta t$		$t_{max} = 5\Delta t$		$t_{max} = 1$	$10\Delta t$	$t_{max} = 2$	$25\Delta t$
h	E_{∞}	ooc	E_{∞}	ooc	E_{∞}	ooc	E_{∞}	ooc
0.625	1.08E-01	1.1172	1.01E-01	2.4150	7.77E-02	2.4099	7.28E-02	2.3749
0.3125	5.76E-02	4.2954	1.95E-02	7.0909	1.55 E-02	9.1093	1.42E-02	11.814
0.1563	2.93E-03	3.9396	4.45E-05	3.9231	7.74E-06	3.9474	1.08E-06	3.9401
0.0781	1.91E-04	3.9012	2.93E-06	3.9026	5.02 E-07	3.8995	7.03E-08	3.8854
0.0391	1.28E-05	4.1789	1.96E-07	4.0499	3.36E-08	3.9729	4.76E-09	3.9385
0.0195	7.05E-07	4.5371	1.18E-08	4.2307	2.14E-09	4.0163	1.11E-09	4.1457
0.0098	3.03E-08		6.31E-10		1.32E-010		3.56E-011	

Πίνα
κας 4.13: Η τάξη σύγκλισης για τη eps discontinuous Hermite collocation-Backward euler μέθοδο γι
α $\gamma=0.5$

	$t_{max} =$	= Δt	$t_{max} = 5\Delta t$ $t_{max} = 10\Delta t$ $t_{max} =$		$t_{max} = 10\Delta t$		$t_{max} = 2$	$25\Delta t$
h	E_{∞}	ooc	E_{∞}	ooc	E_{∞}	ooc	E_{∞}	ooc
0.625	1.05E-01	0.7119	1.18E-01	1.8898	1.05E-01	2.3866	8.4E-02	2.4349
0.3125	6.96E-02	4.0079	3.08E-02	5.7887	1.97E-02	7.1104	1.53E-02	9.4708
0.1563	4.32E-03	3.9385	5.57E-04	3.9086	1.42E-04	3.9157	2.16E-05	3.9320
0.0781	2.82E-04	3.9034	3.71E-05	3.8947	9.43E-06	3.9004	1.41E-06	3.9077
0.0391	1.88E-05	4.1864	2.5E-06	4.1219	6.32E-07	4.0703	9.41E-08	3.9987
0.0195	1.03E-06	4.4256	5.33E-08	4.3734	1.13E-08	4.1876	5.89E-09	4.1069
0.0098	4.81E-08		2.56E-09		6.19E-10		3.42E-010	

Πίνακας 4.14: Η τάξη σύγκλισης για τη eps discontinuous Hermite collocation-Backward euler μέθοδο για $\gamma=0.2$

	$t_{max} = 2\Delta t$		$t_{max} = 5\Delta t$		$t_{max} = 10\Delta t$		$t_{max} = 25\Delta t$	
h	E_{∞}	ooc	E_{∞}	ooc	E_{∞}	ooc	E_{∞}	ooc
0.625	1.08E-01	1.9057	8.41E-02	2.4240	7.68E-02	2.4063	7.26E-02	2.3734
0.3125	2.80E-02	5.6714	1.54E-02	7.4606	1.43E-02	9.4026	1.38E-02	12.6209
0.1563	5.50 E-04	3.9279	8.76E-05	3.9981	2.11E-05	3.9483	2.19E-06	4.4816
0.0781	3.61E-05	3.8955	5.48E-06	3.9211	1.37E-06	3.9414	9.82E-08	3.9324
0.0391	2.43E-06	4.1488	3.62E-07	3.8867	8.9E-08	4.2337	6.43E-09	3.8968
0.0195	1.37E-07	4.5536	2.45E-08	3.99	4.73E-09	4.4060	4.32E-010	4.2308
0.0098	5.83E-09		1.54E-09		2.23E-010		2.32E-011	

Πίνακας 4.15: Η τάξη σύγκλισης για τη eps discontinuous Hermite collocation-Crank Nicolson μέθοδο για $\gamma=0.5$

Σχήμα 4.50: Η συμπεριφορά του χωρικού σχετικού σφάλματος για διαφορετικές τιμές του Δt για την eps discontinous collocation-Crank Nicolson μέθοδο με $\gamma = 0.5$

Σχήμα 4.51: Η συμπεριφορά του χωρικού σχετικού σφάλματος για διαφορετικές τιμές του Δt για την eps discontinous collocation-Crank Nicolson μέθοδο με $\gamma = 0.2$

	$t_{max} =$	$2\Delta t$	$t_{max} =$	$5\Delta t$	$t_{max} = 1$	$10\Delta t$	$t_{max} = 25\Delta t$	
h	E_{∞}	ooc	E_{∞}	ooc	E_{∞}	ooc	E_{∞}	000
0.625	1.14E-01	1.3643	1.04E-01	2.4307	8.63E-02	2.4403	7.96E-02	2.4309
0.3125	4.24E-02	4.9873	1.89E-02	7.3481	1.57E-002	9.1551	1.46E-02	11.3247
0.1563	1.34E-03	3.9380	1.16E-04	3.9086	2.75 E-05	3.7413	$5.67 \text{E}{-}06$	3.9746
0.0781	8.71E-05	3.8953	7.74E-06	3.9003	$2.05 \text{E}{-}06$	3.9179	3.61 E-07	3.9091
0.0391	5.85E-06	4.1569	5.18E-07	3.8926	1.36E-07	4.0952	2.4E-08	3.9265
0.0195	3.28E-07	4.6249	3.49E-08	4.0919	7.95E-09	4.2191	1.58E-09	4.1349
0.0098	1.33E-08		2.05E-09		4.27E-010		8.99E-011	

Πίνα
κας 4.16: Η τάξη σύγκλισης για τη eps discontinuous Hermite collocation-Crank Nicolson μέθοδο γι
α $\gamma=0.2$

Κεφάλαιο 5

Μέθοδος Φωκά στο μαθηματικό μοντέλο τής διάχυσης καρκινικού όγκου στον εγκέφαλο με ασυνεχή σταθερά διάχυσης

Είναι η πρώτη φορά που εφαρμόζεται η μέθοδος Φωκά σε διαφορικές εξισώσεις παραβολικού τύπου με ασύνεχεια στην παράμετρο τής διάχυσης. Η επέκταση της μεθόδου Φωκά στο προβλήμα μοντέλο που μελετάμε αναπτύχθηκε απο τον Διονύσιο Μαντζαβίνο στο πανεπιστήμιο του Cambridge [35] και παρουσιάζεται στην παραγραφό (5.1), ενώ η συνολική αναλυτική αριθμητική μέθοδος συμπαρουσιάζεται στην εργασία [36]. Με την πρωτοποριακή αυτή ημι-αναλυτική μέθοδο μπορούμε, χρησιμοποιώντας τεχνικές μιγαδικής ανάλυσης, να παραστήσουμε με ολοκληρώματα την λύση μιας μερικής διαφορικής εξίσωσης. Η ολοκληρωτική αυτή μορφή είναι κατάλληλη για περαιτέρω αριθμητικούς υπολογισμούς. Το πλεονέκτημα τής μεθόδου αυτής σε σχέση με τις προηγούμενες μεθόδους είναι ότι η λύση του προβλήματος δίνεται απευθείας σε οποιαδήποτε σήμειο (x, t) χωρίς να χρειάζονται περαιτέρω υπολογισμοί

5.1 Εφαρμογή τής μεθόδου Φωκά στο μαθηματικό μοντέλο τής Swanson

Θεωρούμε το προβλημά μας σε μια πεπερασμένη περιοχή όπως το έχουμε ήδη ορίσει (2.21): Η πρώτη και η τρίτη περιοχή θεωρούμε ότι περιέχει τη φαιά ουσία, ενώ η μεσαία τη λευκή ουσία. Η σταθερά διάχυσης λοιπόν μεταβάλλεται από τη μια περιοχή στην άλλη, ενώ θεωρούμε την αδιάστατη σταθερά διάχυσης στη φαιά ουσία να είναι γ και στη λευκή να είναι 1.

Όπως ήδη αναφέραμε, η ασυνέχεια της σταθεράς διάχυσης άμεσα συνεπάγεται και ασυνέ-

χεια της u_x , και ως εκ τούτου συνέχεια της Du_x σε κάθε διασύνδεση των περιοχών. Εξαιτίας της γραμμικής παραβολικής εξίσωσης (2.17) περιμένουμε συνέχεια της u στα σημεία διασύνδεσης, δηλαδή

$$[u] := u^{+} - u^{-} = 0 , \quad \text{yia} \quad x = w_k , \quad k = 1, 2 , \qquad (5.1)$$

με

$$u^+ := \lim_{x \to w_k^+} u(x)$$
 and $u^- := \lim_{x \to w_k^-} u(x)$,

Ανάλογα η ροή διατηρείται στα σημεία διασύνδεσης :

$$[Du_x] := D^+ u_x^+ - D^- u_x^- = 0 , \quad \gamma \iota \alpha \quad x = w_k , \ k = 1, 2 .$$
(5.2)

Έστω ότι η $u_{\ell}(x,t), \ell = 1, 2, 3$ είναι η λύση του μαθηματικού μοντέλου (2.21) στην $\mathcal{R}_{\ell}, \ell = 1, 2, 3$ περιοχή αντίστοιχα. Τότε οι παραπάνω συνθήκες (5.1)-(5.2) γίνονται:

$$u_1(w_1, t) = u_2(w_1, t) \tag{5.3}$$

$$\gamma u_{1x}(w_1, t) = u_{2x}(w_1, t) \tag{5.4}$$

$$u_2(w_2, t) = u_3(w_2, t) \tag{5.5}$$

$$u_{2x}(w_2, t) = \gamma u_{3x}(w_2, t) \tag{5.6}$$

Ξεκινώντας από την πρώτη περιοχή θεωρούμε ότι η $u_1(x,t)$ ικανοποιεί τη διαφορική εξίσωση του προβλήματος (2.21) οπότε:

$$u_{1t} = \gamma u_{1xx} \tag{5.7}$$

O formal adjoint $u_1^*(x,t)$ ικανοποιεί την εξίσωση :

$$-u_{1t}^* = \gamma u_{1xx}^* \tag{5.8}$$

Πολλαπλασιάζοντας την (5.7) και την (5.8) με \tilde{u}_1 και u_1 αντίστοιχα και αφαιρώντας μετά τις εξισώσεις που προκύπτουν καταλήγουμε στη σχέση:

$$(u_1 u_1^*)_t - \gamma (u_1^* u_{1x} - u_1 u_{1x}^*)_x = 0$$
(5.9)

Η μονοπαραμετρική οικογένεια λύσεων της (5.8) δίνεται από τη σχέση:

$$u_1^*(x,t;k) = e^{-ikx + \gamma k^2 t}, \qquad k \in \mathbb{C}$$
 (5.10)

Η εξισωση (5.9) χρησιμοποιώντας την παραπάνω σχέση γίνεται:

$$\left[e^{-ikx+\gamma k^2 t}u_1\right]_t - \left[e^{-ikx+\gamma k^2 t}\gamma(u_{1x}+i\kappa u_1)\right]_x = 0$$
(5.11)

και καλείται diverge form της διαφορικής εξίσωσης (5.7).

Από το θεώρημα Green δηλαδή ολοκληρώνοντας ως προς το χρόνο και το χώρο και τα δύο μέλη της diverge form της διαφορικής εξίσωσης έχουμε ότι:

$$\int_{a}^{w_{1}} \int_{0}^{t} \left[e^{-ikx+\gamma k^{2}\tau} u_{1}\left(x,\tau\right) \right]_{\tau} d\tau dx - \int_{0}^{t} \int_{a}^{w_{1}} \left[e^{-ikx+\gamma k^{2}\tau} \gamma\left(u_{1x}\left(x,\tau\right)+iku_{1}\left(x,\tau\right)\right) \right]_{x} dx d\tau = 0 \Leftrightarrow$$

$$(5.12)$$

$$\Rightarrow \int_{a}^{w_{1}} e^{-ikx+\gamma k^{2}t} u_{1}(x,t) dx - \int_{a}^{w_{1}} e^{-ikx} u_{1}(x,0) dx - \int_{0}^{t} \gamma e^{-ikw_{1}+\gamma k^{2}\tau} u_{1x}(w_{1},\tau) d\tau - \int_{0}^{t} ik\gamma e^{-ikw_{1}+\gamma k^{2}\tau} u_{1}(w_{1},\tau) d\tau + \int_{0}^{t} \gamma e^{-ika+\gamma k^{2}\tau} u_{1x}(a,\tau) d\tau + \int_{0}^{t} ik\gamma e^{-ika+\gamma k^{2}\tau} u_{1}(a,\tau) d\tau = 0$$

$$(5.13)$$

Η συνάρτηση

$$\hat{f}(k) = \int_{-\infty}^{\infty} e^{-ikx} f(x) \, dx \tag{5.14}$$

ονομάζεται μετασχηματισμός Fourier της f(x). Γνωρίζοντας το μετασχηματισμό Fourier μιας συνάρτησης μπορούμε να υπολογίσουμε ξανά την αρχιχή συνάρτηση μέσω του αντίστροφου μετασχηματισμού Fourier :

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ikx} \hat{f}(r) dr$$
(5.15)

Στην περίπτωση των συναρτήσεων δύο μεταβλητών ο x- μετασχηματισμός Fourier και ο αντίστροφος του ορίζονται ανάλογα:

$$\widehat{f}(k,t) = \int_{-\infty}^{\infty} e^{-ikx} f(x,t) dx \qquad k \in \mathbb{C}, \quad i = 1, 2, 3$$
(5.16)

και

$$f(x,t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-ikx} \widehat{f}(k,t) dx$$
(5.17)

Οι συναρτήσεις \hat{f}_{ℓ} και $\hat{u}_{\ell}(x,t)$ έχουν πεδίο ορισμού τους (ως προς x) όχι όλο το \mathbb{R} αλλά συγκεκριμένα υποδιαστήματα του και επομένως:

$$\hat{f}_{\ell}\left(k\right) = \int_{l_{\ell}}^{r_{\ell}} e^{-ikx} f_{\ell}\left(x\right) dx$$
(5.18)

με l_ℓ και r_ℓ να είναι αντίστοιχα το αριστερό και το δεξί άκρο κάθε περιοχής \mathcal{R}_ℓ και f_ℓ την αρχική συνθήκη u(x,0) στην \mathcal{R}_ℓ περιοχή.

Επίσης για την πρώτη περιοχή έχουμε:

$$\widehat{u}_1(k,t) = \int_a^{w_1} e^{-ikx} u_1(x,t) dx \qquad k \in \mathbb{C}$$
(5.19)

για τη δεύτερη περιοχή

$$\widehat{u}_{2}(k,t) = \int_{w_{1}}^{w_{2}} e^{-ikx} u_{2}(x,t) dx \qquad k \in \mathbb{C}$$
(5.20)

χαι για την τρίτη περιοχή

$$\widehat{u}_{3}(k,t) = \int_{w_{2}}^{b} e^{-ikx} u_{3}(x,t) dx \qquad k \in \mathbb{C}$$
(5.21)

Ορίζω επίσης:

$$\widetilde{u}_{\ell}\left(x,\gamma k^{2}\right) := \int_{0}^{t} e^{\gamma k^{2}\tau} u_{\ell}\left(x,\tau\right) d\tau \qquad \ell = 1,3$$
(5.22)

$$\widetilde{u}_{2}(x,k^{2}) := \int_{0}^{t} e^{k^{2}\tau} u_{2}(x,\tau) d\tau$$
(5.23)

και

$$\widetilde{u}_{\ell x}\left(x,\gamma k^{2}\right) := \int_{0}^{t} e^{\gamma k^{2}\tau} u_{\ell x}\left(x,\tau\right) d\tau \qquad \ell = 1,3$$
(5.24)

$$\widetilde{u}_{2x}(x,k^2) := \int_{0}^{t} e^{k^2 \tau} u_{2x}(x,\tau) \, d\tau$$
(5.25)

Κάνοντας χρήση των παραπάνω ορισμών, η παραπάνω εξίσωση οδηγεί στη ονομαζόμενη Global Relation εξίσωση για την πρώτη περιοχή:

$$e^{\gamma k^{2} t} \widehat{u}_{1}(k,t) = \widehat{f}_{1}(k) + \gamma e^{-ikw_{1}} [\widetilde{u}_{1x}(w_{1},\gamma k^{2}) + ik\widetilde{u}_{1}(w_{1},\gamma k^{2})] -\gamma e^{-ika} [\widetilde{u}_{1x}(a,\gamma k^{2}) + ik\widetilde{u}_{1}(a,\gamma k^{2})], \quad k \in \mathbb{C}$$

$$(5.26)$$

Αντίστοιχα οι global relation εξισώσεις στις άλλες δύο περιοχές θα είναι :

$$e^{k^{2}t}\widehat{u}_{2}(k,t) = \widehat{f}_{2}(k) + e^{-ikw_{2}}[\widetilde{u}_{2x}(w_{2},k^{2}) + ik\widetilde{u}_{2}(w_{2},k^{2})] - e^{-ikw_{1}}[\widetilde{u}_{2x}(w_{1},k^{2}) + ik\widetilde{u}_{2}(w_{1},k^{2})], \quad k \in \mathbb{C}$$
(5.27)

$$e^{\gamma k^{2} t} \widehat{u}_{3}(k,t) = \widehat{f}_{3}(k) + \gamma e^{-ikb} [\widetilde{u}_{3x}(b,\gamma k^{2}) + ik\widetilde{u}_{3}(b,\gamma k^{2})] - \gamma e^{-ikw_{2}} [\widetilde{u}_{3x}(w_{2},\gamma k^{2}) + ik\widetilde{u}_{3}(w_{2},\gamma k^{2})], \quad k \in \mathbb{C}$$

$$(5.28)$$

Συνδυάζοντας τις σχέσεις (5.3)-(5.6) καθώς και τις συνοριακές συνθήκες στις παραπάνω σχέσεις (5.26), (5.27), (5.28) οι global relation εξισώσεις γίνονται:

$$e^{\gamma k^{2} t} \widehat{u}_{1}\left(k,t\right) = \widehat{f}_{1}\left(k\right) + \gamma e^{-ikw_{1}} [\widetilde{u}_{1x}\left(w_{1},\gamma k^{2}\right) + ik\widetilde{u}_{1}\left(w_{1},\gamma k^{2}\right)] - \gamma e^{-ika} ik\widetilde{u}_{1}\left(a,\gamma k^{2}\right)$$
(5.29)

$$e^{k^{2}t}\widehat{u}_{2}(k,t) = \widehat{f}_{2}(k) + e^{-ikw_{2}}[\widetilde{u}_{2x}(w_{2},k^{2}) + ik\widetilde{u}_{2}(w_{2},k^{2})] - e^{-ikw_{1}}[\gamma\widetilde{u}_{1x}(w_{1},k^{2}) + ik\widetilde{u}_{1}(w_{1},k^{2})]$$
(5.30)

$$e^{\gamma k^{2} t} \widehat{u}_{3}(k,t) = \widehat{f}_{3}(k) + \gamma e^{-ikb} ik \widetilde{u}_{3}(b,\gamma k^{2}) - \gamma e^{-ikw_{2}} \left[\frac{1}{\gamma} \widetilde{u}_{2x}(w_{2},\gamma k^{2}) + ik \widetilde{u}_{2}(w_{2},\gamma k^{2})\right]$$

$$(5.31)$$
Εαν θεωρήσω $\lambda^2 = \gamma k^2$ και $c = \gamma^{-\frac{1}{2}}$ στις σχέσεις (5.29) και (5.31) και μετά μετονομά-ζοντας το λ σε k καταλήγουμε τελικά στις παρακάτω σχέσεις:

$$e^{k^{2}t}\widehat{u}_{1}\left(ck,t\right) = \widehat{f}_{1}\left(ck\right) + \gamma e^{-ickw_{1}}\left[\widetilde{u}_{1x}\left(w_{1},k^{2}\right) + ick\widetilde{u}_{1}\left(w_{1},k^{2}\right)\right] - \gamma e^{-ika}ick\widetilde{u}_{1}\left(a,k^{2}\right), \quad k \in \mathbb{C}$$
(5.32)

$$e^{k^{2}t}\widehat{u}_{2}(k,t) = \widehat{f}_{2}(k) + e^{-ikw_{2}}[\widetilde{u}_{2x}(w_{2},k^{2}) + ik\widetilde{u}_{2}(w_{2},k^{2})] - e^{-ikw_{1}}[\gamma\widetilde{u}_{1x}(w_{1},k^{2}) + ik\widetilde{u}_{1}(w_{1},k^{2})], \quad k \in \mathbb{C}$$
(5.33)

$$e^{k^{2}t}\widehat{u}_{3}\left(ck,t\right) = \widehat{f}_{3}\left(ck\right) + \gamma e^{-ikb}ick\widetilde{u}_{3}\left(b,\gamma k^{2}\right) - \gamma e^{-ickw_{2}}\left[\frac{1}{\gamma}\widetilde{u}_{2x}\left(w_{2},\gamma k^{2}\right) + ik\widetilde{u}_{2}\left(w_{2},\gamma k^{2}\right)\right], \quad k \in \mathbb{C}$$
(5.34)

Εφαρμόζοντας τον αντίστροφο μετασχηματισμό Fourier στις εξισώσεις (5.32)-(5.34) καταλήγουμε στην αναπαράσταση των λύσεων $u_1(x,t)$, $u_2(x,t)$, $u_3(x,t)$ μέσω ολοκληρωμάτων:

$$u_{1}(x,t) = \frac{c}{2\pi} \int_{-\infty}^{\infty} e^{ickx} e^{-k^{2}t} \widehat{f}_{1}(ck) dk$$

$$- \frac{1}{2c\pi} \int_{-\infty}^{\infty} e^{ickx - ickw_{1}} e^{-k^{2}t} \left[\widetilde{u}_{1x}(w_{1},k^{2}) + ick\widetilde{u}_{1}(w_{1},k^{2}) \right] dk \qquad (5.35)$$

$$- \frac{1}{2\pi} \int_{-\infty}^{\infty} ike^{ickx - icka} e^{-k^{2}t} \widetilde{u}_{1}(a,k^{2}) dk$$

$$u_{2}(x,t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ikx - k^{2}t} \hat{f}_{2}(k) dk$$

$$- \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ikx - ikw_{2}} e^{-k^{2}t} \left[\tilde{u}_{2x}(w_{2},k^{2}) + ik\tilde{u}_{2}(w_{2},k^{2}) \right] dk \qquad (5.36)$$

$$- \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ikx - ikw_{1}} e^{-k^{2}t} \left[\gamma \tilde{u}_{1x}(w_{1},k^{2}) + ik\tilde{u}_{1}(w_{1},k^{2}) \right] dk$$

$$u_{3}(x,t) = \frac{c}{2\pi} \int_{-\infty}^{\infty} e^{ickx-k^{2}t} \hat{f}_{3}(ck) dk$$

$$-\frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ickx-ickb} e^{-k^{2}t} ik\tilde{u}_{3}(b,k^{2}) dk$$

$$-\frac{1}{2c\pi} \int_{-\infty}^{\infty} e^{ickx-ickw_{2}} e^{-k^{2}t} \left[\frac{1}{\gamma} \tilde{u}_{2x}(w_{2},k^{2}) + ick\tilde{u}_{2}(w_{2},k^{2})\right] dk$$
(5.37)

Παρατηρούμε ότι οι ποσότητες $\tilde{u}_1(a, k^2)$, $\tilde{u}_1(w_1, k^2)$, $\tilde{u}_{1x}(w_1, k^2)$, $\tilde{u}_2(w_2, k^2)$, $\tilde{u}_{2x}(w_2, k^2)$, $\tilde{u}_{3x}(b, k^2)$ που εμφανίζονται στις εξισώσεις (5.32)-(5.34) είναι άγνωστες αντικαθιστούμε λοιπόν στις εξισώσεις αυτές όπου k το -k οπότε γίνονται:

$$e^{k^{2}t}\widehat{u}_{1}\left(-ck,t\right) = \widehat{f}_{1}\left(-ck\right) + \gamma e^{ickw_{1}}\left[\widetilde{u}_{1x}\left(w_{1},k^{2}\right) - ick\widetilde{u}_{1}\left(w_{1},k^{2}\right)\right] + \gamma e^{ika}ick\widetilde{u}_{1}\left(a,k^{2}\right), \quad k \in \mathbb{C}$$

$$(5.38)$$

$$e^{k^{2}t}\widehat{u}_{2}(-k,t) = \widehat{f}_{2}(-k) + e^{ikw_{2}}[\widetilde{u}_{2x}(w_{2},k^{2}) - ik\widetilde{u}_{2}(w_{2},k^{2})] - e^{ikw_{1}}[\gamma\widetilde{u}_{1x}(w_{1},k^{2}) - ik\widetilde{u}_{1}(w_{1},k^{2})], \quad k \in \mathbb{C}$$
(5.39)

$$e^{k^{2}t}\widehat{u}_{3}\left(-ck,t\right) = \widehat{f}_{3}\left(-ck\right) - \gamma e^{ikb}ick\widetilde{u}_{3}\left(b,\gamma k^{2}\right) - \gamma e^{ickw_{2}}\left[\frac{1}{\gamma}\widetilde{u}_{2x}\left(w_{2},\gamma k^{2}\right) - ik\widetilde{u}_{2}\left(w_{2},\gamma k^{2}\right)\right], \quad k \in \mathbb{C}$$

$$(5.40)$$

Οι εξισώσεις λοιπόν (5.32),(5.38),(5.33),(5.39),(5.34),(5.40) δημιουργούν ένα 6 × 6 σύστημα :

$$G\tilde{\boldsymbol{u}} = \boldsymbol{f}$$
 (5.41)

με

$$G = \begin{bmatrix} ick\gamma e^{-icka} & -\gamma icke^{-ickw_1} & -\gamma e^{-ickw_1} \\ -ick\gamma e^{icka} & \gamma icke^{ickw_1} & -\gamma e^{ickw_1} \\ & ike^{-ikw_1} & \gamma e^{-ikw_1} & -ike^{-ikw_2} & -e^{-ikw_2} \\ & -ike^{ikw_1} & e^{ikw_1}\gamma & ike^{ikw_2} & -e^{ikw_2} \\ & & e^{-ickw_2}ick\gamma & e^{-ickw_2} & -ick\gamma e^{-ickb} \\ & & -e^{ickw_2}ick\gamma & e^{ickw_2} & ick\gamma e^{ickb} \end{bmatrix}$$
(5.42)

$$\tilde{\boldsymbol{u}} = \begin{bmatrix} \tilde{u}_{1}(a,k^{2}) \\ \tilde{u}_{1}(w_{1},k^{2}) \\ \tilde{u}_{1x}(w_{1},k^{2}) \\ \tilde{u}_{2}(w_{2},k^{2}) \\ \tilde{u}_{2x}(w_{2},k^{2}) \\ \tilde{u}_{3}(b,k^{2}) \end{bmatrix} , \quad \boldsymbol{f} = \begin{bmatrix} \hat{f}_{1}(ck) \\ \hat{f}_{1}(-ck) \\ \hat{f}_{2}(k) \\ \hat{f}_{2}(-k) \\ \hat{f}_{3}(ck) \\ \hat{f}_{3}(-ck) \end{bmatrix} .$$
(5.43)

Λύνοντας λοιπόν το παραπάνω σύστημα μπορούμε να καθορίσουμε τις ποσότητες αυτές.

Παρατήρηση 5.1.1 Επισημαίνουμε ότι έχουμε παραλείψει από το σύστημα τους όρους $\hat{u}_{\ell}(\pm ck, t)$ καθώς είναι μηδενική η συνεισφορά τον $\frac{\hat{u}_{\ell}(\pm ck, t)}{\det(G)}$ [56].

5.2 Επικαμπύλια Ολοκλήρωση

Οι αναλυτικές συναρτήσεις που περιέχονται στα ολοκληρώματα (5.35)-(5.37) επιτρέπουν να αντικαταστήσουμε τα ολοκληρώματα αυτά με επικαμπύλια ολοκληρώματα στα οποία η προς ολοκλήρωση συνάρτηση φθίνει εκθετικά για μεγάλα k [13, 47]. Με αυτό τον τρόπο επιτυγχάνουμε γρηγορότερη σύγκλιση στο αριθμητικό μας σχήμα.

 Σ την πρώτη περιοχή :

- η ποσότητα $e^{ick(x-w_1)}$ με $x-w_1 < 0$ είναι φραγμένη και αναλυτική για Im(k) < 0
- η ποσότητα $e^{ick(x-a)}$ με x-a>0 είναι φραγμένη και αναλυτική για Im(k)>0
- η ποσότητα e^{-k^2t} για $t\geq 0$ είναι φραγμένη και αναλυτική για $Re(k^2)\geq 0$

 Σ τη δεύτερη περιοχή :

- η ποσότητα $e^{ick(x-w_2)}$ με $x-w_2 < 0$ είναι φραγμένη και αναλυτική για Im(k) < 0
- η ποσότητα $e^{ick(x-w_1)}$ με $x-w_1>0$ είναι φραγμένη και αναλυτική για Im(k)>0
- η ποσότητα e^{-k^2t} για $t\geq 0$ είναι φραγμένη και αναλυτική για $Re(k^2)\geq 0$

Στην τρίτη περιοχή :

-
• η ποσότητα $e^{ick(x-b)}$ με x-b<0είναι φραγμένη και αναλυτική γι
αIm(k)<0
- η ποσότητα $e^{ick(x-w_2)}$ με $x-w_2>0$ είναι φραγμένη και αναλυτική για Im(k)>0
- η ποσότητα e^{-k^2t} για $t \ge 0$ είναι φραγμένη και αναλυτική για $Re(k^2) \ge 0$

 Σ ύμφωνα με τα παραπάνω ορίζουμε το χωρίοD

$$D = \{k \in \mathbb{C} : \operatorname{Re} k^2 < 0\} = \{k \in \mathbb{C} : \arg k \in \{(\frac{\pi}{4}, \frac{3\pi}{4}) \cup (\frac{5\pi}{4}, \frac{7\pi}{4})\}\}$$
(5.44)

καθώς και τα

$$D^{+} = \{k : \arg k \in (\frac{\pi}{4}, \frac{3\pi}{4})\} = D \cap \mathbb{C}^{+}$$
(5.45)

$$D^{-} = \{k : \arg k \in (\frac{5\pi}{4}, \frac{7\pi}{4})\} = D \cap \mathbb{C}^{-}$$
(5.46)

Σχήμα 5.1: Οι περιοχές
 ∂D^+ και ∂D^-

Έτσι για τα ολοκληρώματα που περιέχουν τους όρους $e^{ick(x-w_1)}$, $e^{ick(x-w_2)}$, $e^{ick(x-b)}$ στην πρώτη, δεύτερη και τρίτη περιοχή αντίστοιχα το επικαμπύλιο ολοκλήρωμα ακολουθεί το μονοπάτι ∂D^- , ενώ για τα ολοκληρώματα $e^{ick(x-a)}$, $e^{ick(x-w_1)}$ και $e^{ick(x-w_2)}$ στην πρώτη, δεύτερη και τρίτη περιοχή αντίστοιχα το επικαμπύλιο ολοκλήρωμα ακολουθεί το μονοπάτι ∂D^+ .

Οι σχέσεις (5.35)-(5.37) γίνονται:

$$u_{1}(x,t) = \frac{c}{2\pi} \int_{-\infty}^{\infty} e^{ickx} e^{-k^{2}t} \widehat{f}_{1}(ck) dk$$

+ $\frac{c\gamma}{2\pi} \int_{\partial D-} e^{ickx-ickw_{1}} e^{-k^{2}t} \left[\widetilde{u}_{1x}(w_{1},k^{2}) + ick\widetilde{u}_{1}(w_{1},k^{2}) \right] dk$ (5.47)
- $\frac{c\gamma}{2\pi} \int_{\partial D+} ike^{ickx-icka} e^{-k^{2}t} \widetilde{u}_{1}(a,k^{2}) dk$

$$u_{2}(x,t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ikx-k^{2}t} \hat{f}_{2}(k) dk + \frac{1}{2\pi} \int_{\partial D-}^{\infty} e^{ikx-ikw_{2}} e^{-k^{2}t} \left[\tilde{u}_{2x}(w_{2},k^{2}) + ik\tilde{u}_{2}(w_{2},k^{2}) \right] dk - \frac{1}{2\pi} \int_{\partial D+}^{\infty} e^{ikx-ikw_{1}} e^{-k^{2}t} \left[\gamma \tilde{u}_{1x}(w_{1},k^{2}) + ik\tilde{u}_{1}(w_{1},k^{2}) \right] dk$$
(5.48)

$$u_{3}(x,t) = \frac{c}{2\pi} \int_{-\infty}^{\infty} e^{ickx-k^{2}t} \hat{f}_{3}(ck) dk + \frac{c\gamma}{2\pi} \int_{\partial D-}^{\infty} e^{ickx-ickb} e^{-k^{2}t} ik\tilde{u}_{3}(b,k^{2}) dk - \frac{c}{2\pi} \int_{\partial D+}^{\infty} e^{ickx-ickw_{2}} e^{-k^{2}t} \left[\frac{1}{\gamma} \tilde{u}_{2x}(w_{2},k^{2}) + ick\tilde{u}_{2}(w_{2},k^{2}) \right] dk$$
(5.49)

Για να γίνει πιο κατανοητή η δυνατότητα αλλαγής του δρόμου ολοκλήρωσης από $(-\infty, \infty)$ σε ∂D^+ εξετάζουμε με περισσότερες λεπτομέρειες το τρίτο ολοκλήρωμα της σχέσης (5.35). Θεωρούμε μια περιοχή E_R^+ και τις καμπύλες C_R^+, C_R^- και ∂D_R^+ όπου R είναι ένας μεγάλος θετικός αριθμός όπως φαίνεται στο σχήμα (5.2). Η προς ολοκλήρωση ποσότητα $ike^{ick(x-a)}e^{-k^2t}\widetilde{u}_1(a,k^2)$ είναι αναλυτική στην περιοχή E_R^+ οπότε απο το θεωρημα του Cauchy έχουμε:

Σχήμα 5.2: Τα χωρί
α E_{R}^{+} και D_{R}^{+}

$$\int_{[-R,R]\cup C_{R}^{+}\cup(-\partial D_{R}^{+})\cup C_{R}^{-}} ike^{ick(x-a)}e^{-k^{2}t}\widetilde{u}_{1}\left(a,k^{2}\right)dk = 0$$
(5.50)

$$\int_{-R}^{R} ike^{ick(x-a)}e^{-k^{2}t}\widetilde{u}_{1}\left(a,k^{2}\right)dk = \int_{\partial D_{R}^{+}\cup\left(-C_{R}^{+}\right)\cup\left(-C_{R}^{-}\right)} ike^{ick(x-a)}e^{-k^{2}t}\widetilde{u}_{1}\left(a,k^{2}\right)dk \quad (5.51)$$

$$\lim_{R \to \infty} \int_{-R}^{R} ike^{ick(x-a)}e^{-k^{2}t}\widetilde{u}_{1}\left(a,k^{2}\right)dk = \lim_{R \to \infty} \int_{\partial D_{R}^{+} \cup \left(-C_{R}^{+}\right) \cup \left(-C_{R}^{-}\right)} ike^{ick(x-a)}e^{-k^{2}t}\widetilde{u}_{1}\left(a,k^{2}\right)dk$$

$$(5.52)$$

Σημειώνουμε ότι $\lim_{R\to\infty} \partial D_R^+ = \partial D^+$. Αφού η ποσότητα $ike^{-k^2t}\widetilde{u}_1(a,k^2)$ συγκλίνει ομοιόμορφα στο μηδέν καθώς το $R\to\infty$ από το λήμμα του Jordan [1] τα ολοκλήρωματα στις καμπύλες C_R^+ και C_R^- μηδενίζονται καθώς το $R\to\infty$.

$$\int_{-\infty}^{\infty} ike^{ick(x-a)}e^{-k^2t}\widetilde{u}_1\left(a,k^2\right)dk = \int_{\partial D^+} ike^{ick(x-a)}e^{-k^2t}\widetilde{u}_1\left(a,k^2\right)dk$$
(5.53)

Στο σύστημα (5.41) ο δεύτερος όρος του δεξίου μέλους μπορεί να παραλειφθεί καθώς η συνεισφορά του στην λύση του συστήματος είναι μηδενική. Για παράδειγμα στο τρίτο ολοκλήρωμα της σχέσης (5.35) η συνεισφορά του δεύτερου όρου του ολοκληρώματος θα αποτελείται απο ποσότητες της μορφής:

$$\int_{\partial D^+} ike^{ick(x-a)}e^{-k^2t}e^{k^2t}\widehat{u}_1\left(ck,t\right)dk$$

ή

 $\int_{\partial D^+} ike^{ick(x-a)}\widehat{u}_1\left(ck,t\right)dk$

Η προς ολοκλήρωση ποσότητα στο D^+_R είναι αναλυτική οπότε από το θεώρημα Cauchy:

$$\int_{\partial D_R^+} ike^{ick(x-a)}\widehat{u}_1\left(ck,t\right)dk = -\int_{C_{D_R^+}} ike^{ick(x-a)}\widehat{u}_1\left(ck,t\right)dk$$

Και επειδή η ποσότητα $k\widehat{u}_1(ck,t)$ συγκλίνει ομοιόμορφα στο 0 καθώς το $R\to\infty$ από το λήμμα του Jordan το ολοκλήρωμα στην καμππύλη $C_{D_R^+}$ μηδενίζεται καθώς το $R\to\infty$

$$\lim_{R \to \infty} \int_{\partial D_R^+} ik e^{ick(x-a)} \widehat{u}_1(ck,t) \, dk = 0$$

δηλαδή

Για την μετέπειτα αριθμητική αντιμετώπιση μεταφέρουμε τα μονοπάτια ολοκλήρωσης $\partial D^$ και ∂D^+ σε μια υπερβολή ([13],[47]). Αυτό σημαίνει ότι αντιστοιχούμε τα σημεία $k(\theta)$ του

 $\int_{\partial D^+} ike^{ick(x-a)}\widehat{u}_1(ck,t)\,dk = 0$

μιγαδιχού επιπέδου στα σημεία θ πάνω σε μια πραγματιχή γραμμή χρησιμοποιώντας την αναλυτιχή συνάρτηση :

$$k(\theta) := k_{\theta} = \pm i \sin(\beta - i\theta) \tag{5.54}$$

Σχήμα 5.3: Η υπερβολή για $\beta=\pi/6$

Το + αντιστοιχεί στο ∂D^+ και το – αντιστοιχεί στο ∂D^- . Στην παρούσα εργασία επιλέξαμε το $\beta = \pi/6$ όπως και στην ([47]). Εάν επιλέγαμε το $\beta = \pi/8$ ([13]) δεν θα παρατηρούσαμε ιδιαίτερες μεταβολές στα αποτελέσματα μας.

Οπότε οι σχέσεις (5.47)-(5.49) μπορούν να γραφτούν στην παρακάτω μορφή:

$$u_{1}(x,t) = \frac{c}{2\pi} \int_{-\infty}^{\infty} e^{ickx} e^{-k^{2}t} \widehat{f}_{1}(ck) dk + \frac{c\gamma}{2\pi} \int_{-\infty}^{\infty} e^{ick_{\theta}(x-w_{1})} e^{-k_{\theta}^{2}t} \left[\widetilde{u}_{1x}\left(w_{1},k_{\theta}^{2}\right) + ick_{\theta}\widetilde{u}_{1}\left(w_{1},k_{\theta}^{2}\right) \right] \frac{dk}{d\theta} d\theta$$

$$- \frac{c\gamma}{2\pi} \int_{-\infty}^{\infty} ik_{\theta} e^{ick_{\theta}(x-a)} e^{-k_{\theta}^{2}t} \widetilde{u}_{1}\left(a,k_{\theta}^{2}\right) \frac{dk}{d\theta} d\theta$$
(5.55)

$$u_{2}(x,t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ikx - k^{2}t} \hat{f}_{2}(k) dk + \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ik_{\theta}x - ik_{\theta}w_{2}} e^{-k_{\theta}^{2}t} \left[\tilde{u}_{2x}(w_{2},k_{\theta}^{2}) + ik_{\theta}\tilde{u}_{2}(w_{2},k_{\theta}^{2}) \right] \frac{dk}{d\theta} d\theta$$
(5.56)
$$- \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ik_{\theta}x - ik_{\theta}w_{1}} e^{-k_{\theta}^{2}t} \left[\gamma \tilde{u}_{1x}(w_{1},k_{\theta}^{2}) + ik_{\theta}\tilde{u}_{1}(w_{1},k_{\theta}^{2}) \right] \frac{dk}{d\theta} d\theta$$

$$u_{3}(x,t) = \frac{c}{2\pi} \int_{-\infty}^{\infty} e^{ickx-k^{2}t} \hat{f}_{3}(ck) dk$$

+ $\frac{c\gamma}{2\pi} \int_{-\infty}^{\infty} e^{ick_{\theta}x-ick_{\theta}b} e^{-k_{\theta}^{2}t} ik_{\theta}\tilde{u}_{3}\left(b,k_{\theta}^{2}\right) \frac{dk}{d\theta} d\theta$ (5.57)
- $\frac{c}{2\pi} \int_{-\infty}^{\infty} e^{ick_{\theta}x-ick_{\theta}w_{2}} e^{-k_{\theta}^{2}t} \left[\frac{1}{\gamma}\tilde{u}_{2x}\left(w_{2},k_{\theta}^{2}\right)+ick_{\theta}\tilde{u}_{2}\left(w_{2},k_{\theta}^{2}\right)\right] \frac{dk}{d\theta} d\theta$

$$\mu\varepsilon \ \frac{dk}{d\theta} = \pm \cos(\beta - i\theta).$$

5.3 Ολοκληρώματα

Εξαιτίας τής κατάλληλης επιλογής τών μονοπατιών ολοκλήρωσης η προς ολοκλήρωση συναρτήσεις φθίνουν εκθετικά γρήγορα [13] και έτσι μπορούμε να περικόψουμε τα όρια ολοκλήρωσης σε [-Ra, Ra] για το πρώτο ολοκλήρωμα στις σχέσεις (5.55)-(5.57) και σε [-R, R] για το δεύτερο και τρίτο ολοκλήρωμα στις σχέσεις (5.55)-(5.57) χωρίς σημαντική απώλεια πληροφοριών. Το παραπάνω γεγονός φαίνεται και από τα σχήματα (5.4) και (5.5).

Για την πρώτη λοιπόν περιοχή η λύση $u_1(x,t)$ μπορεί να γραφεί στη μορφή:

$$u_{1}(x,t) = u_{1a}(x,t) + u_{1b}(x,t) + u_{1c}(x,t)$$
(5.58)

Σχήμα 5.4: Το πραγματικό μέρος του ολοκληρώματος u_{1a} , u_{1b} και u_{1c} για $x = -\pi$ και για διαφορετικές τιμές του t. Πράσινο για t = 0.1, μπλε για t = 1 και κόκκινο για t = 10.

Σχήμα 5.5: Το ολοκλήρωμα (απόλυτη τιμή για το πραγματικό μέρος σε λογαριθμική κλίμακα) για u_{1a} , u_{1b} και u_{1c} για $x = -\pi$ και για διαφορετικές τιμές του t. Πράσινο για t = 0.1, μπλε για t = 1 και κόκκινο για t = 10. Σημείωση: Ο άξονας τον y έχει περικοπεί.

με

$$u_{1a}(x,t) = \frac{c}{2\pi} \int_{-Ra}^{Ra} e^{ickx} e^{-k^2 t} \hat{f}_1(ck) \, dk \tag{5.59a'}$$

$$u_{1b}(x,t) = +\frac{c\gamma}{2\pi} \int_{-R}^{R} e^{ick_{\theta}(x-w_{1})} e^{-k_{\theta}^{2}t} \left[\widetilde{u}_{1x}\left(w_{1},k_{\theta}^{2}\right) + ick_{\theta}\widetilde{u}_{1}\left(w_{1},k_{\theta}^{2}\right) \right] \frac{dk}{d\theta} d\theta \qquad (5.59\beta')$$

$$u_{1c}(x,t) = -\frac{c\gamma}{2\pi} \int_{-R}^{R} ik_{\theta} e^{ick_{\theta}(x-a)} e^{-k_{\theta}^{2}t} \widetilde{u}_{1}\left(a,k_{\theta}^{2}\right) \frac{dk}{d\theta} d\theta \qquad (5.59\gamma')$$

Αντίστοιχα μπορούν να γραφτούν και τα ολοκληρώματα των άλλων δύο περιοχών. Για την αριθμητική επίλυση των ολοκληρωμάτων χρησιμοποιήσαμε τον σύνθετο κανόνα του τραπεζίου.

5.4 Ιδιότητες ολοκληρωμάτων

5.4.1 Η πολυπλοκότητα της αριθμητικής ολοκλήρωσης

Έστω ότι θέλουμε να βρούμε την αριθμητική λύση u(x,t) για ένα σημείο στην πρώτη περιοχή. Θα πρέπει λοιπόν να υπολογίσουμε τα τρια ολοκληρώματα της (5.59). Για λόγους απλούστευσης θα χρησιμοποιήσουμε ένα απλό και όχι προσαρμοστικό (adaptive) αριθμητιχό χανόνα ολοχλήρωσης Ν σημείων για όλα τα ολοχληρώματα που θα υπολογίσουμε. Για την εύρεση του ολοκλήρωματος $u_{1a}\left(x,t
ight)$ πρέπει να υπολογίσουμε την προς ολοκλήρωση ποσότητα Ν φορές. Κάθε φορά όμως θα πρέπει να υπολογίζουμε ξεχωριστά την ποσότητα $f_1\left(ck
ight)$ το οποίο είναι ένα ολοκλήρωμα. Έτσι για το $u_{1a}\left(x,t
ight)$ θα πρέπει να υπολογίσω τελικά N+1 ολοκληρώματα. Για τα ολοκληρώματα $u_{1b}(x,t)$ και $u_{1c}(x,t)$ έχουμε άκομα περισσότερους υπολογισμούς να κάνουμε. Και αυτό γιατί περιέχουν και πόσότητες όπως η \widetilde{u}_{1x} την οποία την υπολογίζουμε λύνοντας το σύστημα (5.41). Αλλά για τον υπολογισμό του δεξιού μέλους του συστήματος θα πρέπει να υπολογίσουμε έξι καινούργια ολοκληρώματα τής μορφής $f_1(ck)$. Επομένως για τον υπολογισμό των ολοκληρωμάτων $u_{1b}(x,t)$ και $u_{1c}(x,t)$ θα χρειαστούν 6N+1 υπολογισμοί ολοκληρωμάτων. Αθροίζοντας λοιπόν όλους τους παραπάνω υπολογισμούς, έχουμε συνολικα 13N+3 ολοκληρώματα. Για αυθαίρετη αρχική συνθήκη f(x)ο χρόνος αριθμητικού υπολογισμού των παραπάνω ολοκληρωμάτων είναι σημαντικός. Για να βρούμε λοιπόν τη λύση σε ${
m M}$ διαχριτά σημεία θα χρειαστούμε M(13N+3) υπολογισμούς. ολοκληρωμάτων, τα οποία πρακτικά είναι πάρα πολλά. Για να ξεπεράσουμε λοιπόν αυτήν την κατάσταση πρέπει να παρατηρήσουμε ότι η προς ολοκλήρωση ποσότητα σ'ενα σημείο συνδέεται με το άλλο σημείο. Στην παρούσα εργασία εχμεταλλευτήχαμε την παραπάνω ιδιότητα με το να υπολογίζουμε στην αρχή χάποιες ποσότητες. Για παράδειγμα για να υπολογίσουμε το $u_{1a}(x_1, t_1)$ θα πρέπει να υπολογίσουμε μεταξύ των ολοκληρωμάτων και το ολοκλήρωμα

$$\int_{-\infty}^{\infty} e^{ickx_1} e^{-k^2 t_1} \widehat{f_1}(ck) dk$$
(5.60)

καθώς και για τον υπολογισμό του ολοκληρώματος $u_{1a}\left(x_2,t_2
ight)$ θα πρέπει να υπολογίσουμε το ολοκλήρωμα :

$$\int_{-\infty}^{\infty} e^{ickx_2} e^{-k^2 t_2} \widehat{f_1}(ck) \, dk \tag{5.61}$$

Εάν χρησιμοποιήσουμε λοιπόν ένα κανόνα ολοκλήρωσης με τον ίδιο αριθμό σημείων, όπως

ο σύνθετος κανόνας του τραπεζίου που χρησιμοποιήσαμε στην παρούσα εργασία, τότε υπολογίζουμε και στις δύο περιπτώσεις την ποσότητα $\widehat{f_1}(ck)$ στα ίδια σημεία. Είναι φανερό λοιπόν ότι μπορούμε αρχικά να υπολογίζουμε την πόσότητα $\widehat{f_1}(c[k_1, k_2, \ldots k_3])$ και μετα να τη χρησιμοποιούμε με τη μορφή που τη χρειαζόμαστε.

5.4.2 Συμμετρικότητα

Για να μειώσουμε τους απαιτούμενους υπολογισμούς, θα αποδείξουμε ότι το πραγματικό μέρος των ολοκληρώματων στις σχέσεις (5.55)-(5.57) είναι άρτιο, ενώ το φανταστικό είναι περιττό. Εξάλλου για τα ολοκληρώματα u_{1a} , u_{1b} και u_{1c} η συμμετρικότητα δηλαδή το πραγματικό μέρος αυτών των ολοκληρωμάτων, φαίνεται και στα παραπάνω σχήματα (5.4) και (5.5).

Πρώτα απ'ολα θα εξετάσουμε τη συμμετρικότητα τής προς ολοκλήρωση ποσότητας του ολοκληρώματος u_{1a} . Εξετάζουμε αρχικά το ολοκλήρωμα της μορφής :

$$\hat{f}_{i}(ck) = \int_{a}^{w_{1}} e^{-ickx} f_{1}(x) dx$$
(5.62)

Οπότε

$$\hat{f}_{i}(ck) = \int_{a}^{w_{1}} e^{-ickx} f_{1}(x) dx =$$

$$\int_{a}^{w_{1}} [\cos(ckx)f_{1}(x)dx - i\sin(ckx)]f_{1}(x)dx =$$

$$\int_{a}^{w_{1}} \cos(ckx)f_{1}(x)dx - i\int_{a}^{w_{1}} \sin(ckx)f_{1}(x)dx \qquad (5.63)$$

Η παραπάνω σχέση μπορεί να γραφεί στη μορφή:

$$\hat{f}_i(ck) = A(k) - iB(k)$$
 (5.64)

με

$$A(k) = \cos(ckx)f_1(x) \tag{5.65}$$

και

$$B(k) = \sin(ckx)f_1(x) \tag{5.66}$$

Παρατηρούμε ότι ισχύει :

A(-k) = A(k) xai B(-k) = -B(k) (5.67)

Οπότε η προς ολοκλήρωση ποσότητα (5.59α') με βάση τη σχέση (5.64) θα γίνει:

$$e^{ickx}e^{-k^{2}t}\widehat{f}_{1}(ck) = e^{ickx}e^{-k^{2}t}(A(k) - iB(k)) = e^{-k^{2}t}[cos(ckx) + isin(ckx)](A(k) - iB(k)) = (5.68)$$
$$e^{-k^{2}t}[(A(k)cos(ckx) + B(k)sin(ck)) + i(A(k)sin(ckx) - B(k)cos(ckx))]$$

Άρα το πραγματικό μέρος είναι άρτιο και το φανταστικό μέρος περιττό, και επομένως το ολοκλήρωμα u_{1a} μπορεί να γραφεί στη μορφή:

$$u_{1a}(x,t) = \frac{c}{2\pi} \int_{-Ra}^{Ra} e^{ickx} e^{-k^2 t} \widehat{f_1}(ck) \, dk = \frac{c}{\pi} \int_{0}^{Ra} Re \left[e^{ickx} e^{-k^2 t} \widehat{f_1}(ck) \right] dk \tag{5.69}$$

Για την απόδειξη της συμμετρικότητας των ολοκληρωμάτων u_{1b} και u_{1c} θα χρειαστούμε το παρακάτω λήμμα:

Λήμμα 5.4.1 Εστω $A, B, \in \mathbb{R}^{n,n}$, $u_R, u_I, b_R, b_I, \tilde{u_I}, \in \mathbb{R}^{n,1}$ τότε για τη λύση των δύο γραμμικών συστημάτων:

$$\begin{cases} (A+iB) (u_{R+}iu_{I}) = b_{R} + ib_{I} \\ (A-iB) (\widetilde{u}_{R+}i\widetilde{u}_{I}) = b_{R} - ib_{I} \end{cases}$$
(5.70)

ισχύει ότι :

$$\begin{cases}
\tilde{u_R} = u_R \\
\tilde{u_I} = -u_I
\end{cases}$$
(5.71)

Απόδειξη 5.4.1 Έστω το σύστημα :

$$(A+iB)(u_R+iu_I) = b_R+ib_I \tag{5.72}$$

Το συζυγές του θα είναι:

$$\overline{(A+iB)}\ \overline{(u_R+iu_I)} = \overline{b_R+ib_I}$$
(5.73)

$$(A - iB)(u_R - iu_I) = b_R - ib_I$$
(5.74)

 $H \sigma \chi \epsilon \sigma \eta$ (5.74) βάσει της (5.70) μας δίνει:

$$\begin{cases}
\tilde{u_R} = u_R \\
\tilde{u_I} = -u_I
\end{cases}$$
(5.75)

Τα στοιχεία του πίνακα του συστήματος (5.41) καθώς και τα στοιχεία του δεξιού μέλους μπορούν να συγκεντρωθούν και να κατηγοροποιηθούν στις παρακάτω τρεις κατηγορίες:

•
$$e^{-ick} = e^{-ic(R+iI)} = e^{cI}[cos(cR) - isin(cR)] = e^{cI}cos(cR) - ie^{cI}sin(cR)$$

• $ike^{-icka} = i(R+iI)e^{cIa}[cos(cRa) - isin(cRa)] = -e^{cIa}(Icos(cRa) + Rsin(cRa)) + ie^{cIa}(Rcos(cRa) - iIsin(cRa))$

•
$$\hat{f}_i(ck) = \int_a^{w_1} e^{-ickx} f_1(x) \, dx = \int_a^{w_1} e^{-ic(R+iI)x} f_1(x) \, dx =$$

$$= \int_a^{w_1} e^{cIx} (\cos(cRx) - i\sin(cRx)) f_1(x) \, dx =$$

$$= \int_a^w e^{cIx} \cos(cRx) f_1(x) \, dx - i \int_a^{w_1} e^{cIx} \sin(cRx) f_1(x) \, dx$$

Οπότε όλα τα στοιχεία, τόσο του πίναχα όσο χαι του δεξιού μέλους του συστήματος, έχουν την ιδιότητα το πραγματικό μέρος του να είναι άρτιο χαι το φανταστικό μέρος του να είναι περιττό.

Έτσι εάν $u_+ = u_R + iu_I$ είναι λύση του συστήματος (5.41) για k = R + iI, τότε η λύση του συστήματος (5.41) για k = -R + iI θα είναι $u_- = u_R - iu_I$.

Οι προς ολοκλήρωση συναρτήσεις των ολοκληρωμάτων u_{1b} (5.59β') και u_{1c} (5.59γ') έχουν τη μορφή:

$$e^{ickx}e^{-k^{2}t}\left(u_{1}+icku_{2}\right) \tag{5.76}$$

όπου u_1 και u_2 δίνονται από τη λύση του συστήματος (5.41). Εάν θέσουμε $u_1 = a + ib$, $u_2 = d + if$ και k = R + iI τότε η σχέση (5.76) γίνεται:

$$e^{ickx}e^{-k^{2}t}(u_{1}+icku_{2}) = e^{ic(R+iI)x}e^{-(R+iI)^{2}t}(u_{1}+ic(R+iI)u_{2}) = e^{-cIx-(R^{2}-I^{2})t}e^{i(cRx-2IRt)}(u_{1}-cIu_{2}+icRu_{2}) = e^{-cIx-(R^{2}-I^{2})t}[cos(cRx-2IRt)+isin(cRx-2IRt)](u_{1}-cIu_{2}+icRu_{2}) = e^{-cIx-(R^{2}-I^{2})t}[cos(cRx-2IRt)+isin(cRx-2IRt)][(a+ib)-cI(d+if)+icR(d+if)] = e^{-cIx-(R^{2}-I^{2})t}[cos(cRx-2IRt)+isin(cRx-2IRt)][(a+ib)-cI(d+if)+icR(d+if)] = e^{-cIx-(R^{2}-I^{2})t} \cdot \{[(a-cId-cRf)cos(cRx-2IRt)-(b-cIf+cRd)sin(cRx-2IRt)] + i[(a-cId-cRf)sin(cRx-2IRt)-(b-cIf+cRd)cos(cRx-2IRt)] + i[(a-cId-cRf)sin(cRx-2IRt)-(b-cIf+cRd)cos(cRx-2IRt)]\} + i[(a-cId-cRf)sin(cRx-2IRt)-(b-cIf+cRd)cos(cRx-2IRt)]\}$$

$$(5.77)$$

Είναι φανερό ότι το πραγματικός μέρος τών προς ολοκλήρωση συναρτήσεων (5.59β') και (5.59γ') είναι άρτιο, ενώ το φανταστικό μέρος περιττό οπότε:

$$u_{1b}(x,t) = \frac{c\gamma}{\pi} \int_{0}^{R} e^{ick_{\theta}(x-w_{1})} e^{-k_{\theta}^{2}t} \left[\widetilde{u}_{1x}\left(w_{1},k_{\theta}^{2}\right) + ick_{\theta}\widetilde{u}_{1}\left(w_{1},k_{\theta}^{2}\right) \right] \frac{dk}{d\theta} d\theta \qquad (5.78\alpha')$$

$$u_{1c}(x,t) = -\frac{c\gamma}{\pi} \int_{0}^{R} ik_{\theta} e^{ick_{\theta}(x-a)} e^{-k_{\theta}^{2}t} \widetilde{u}_{1}\left(a,k_{\theta}^{2}\right) \frac{dk}{d\theta} d\theta \qquad (5.78\beta')$$

Επομένως λαμβάνοντας υπόψιν τις παραπάνω συμμετρίες η λύση $u_1(x,t)$ θα δίνεται από την παρακάτω σχέση :

$$u_{1}(x,t) = \frac{c}{\pi} \int_{0}^{Ra} e^{ickx} e^{-k^{2}t} \widehat{f}_{1}(ck) dk$$

+ $\frac{c\gamma}{\pi} \int_{0}^{R} e^{ick_{\theta}(x-w_{1})} e^{-k_{\theta}^{2}t} \left[\widetilde{u}_{1x}\left(w_{1},k_{\theta}^{2}\right) + ick_{\theta}\widetilde{u}_{1}\left(w_{1},k_{\theta}^{2}\right) \right] \frac{dk}{d\theta} d\theta$ (5.79)
- $\frac{c\gamma}{\pi} \int_{0}^{R} ik_{\theta} e^{ick_{\theta}(x-a)} e^{-k_{\theta}^{2}t} \widetilde{u}_{1}\left(a,k_{\theta}^{2}\right) \frac{dk}{d\theta} d\theta$

Ανάλογα συμπεράσματα μπορούν διατυπωθούν και για τις άλλες δύο περιοχές.

5.5 Αριθμητικά αποτελέσματα τής μεθόδου Φωκά στο πρόβλημα διάχυσης

5.5.1 Η συμπεριφορά της λύσης του προβλήματος

Η συμπεριφορά της λύσης για το πρόβλημα (2.21) με τις εξής περιοχές :

$$\mathcal{R}_1 := [-5, -1], \ \mathcal{R}_2 := [-1, 1], \ \mathcal{R}_3 := [1, 5].$$
 (5.80)

και ως αρχική πηγή καρκινικών κυττάρων τη δέλτα συνάρτηση:

$$f(x) = \delta_{0.2}(x+2) \tag{5.81}$$

δίνεται από τα παρακάτω γραφήματα:

5.5.2 Οι ιδιότητες των ολοκληρωμάτων στη λύση του προβλήματος

Για να υπολογίσουμε τη λύση του προβλήματος, όπως προαναφέραμε, θα πρέπει να υπολογίσουμε ένα αριθμό από ολοκληρώματα. Η προσέγγιση των ολοκληρωμάτων είναι αριθμητική, οπότε η ακρίβεια της λύσης u(x,t) εξαρτάται από τις παρακάτω παραμέτρους:

 Σ χήμα 5.6: Η συμπεοιφορά της λύσης με τη μέθοδο το
ύ $\Phi \omega$ χά για $\gamma = 0.5$

 Σ χήμα 5.7: Η συμπεριφορά της λύσης με τη μέθοδο το
ύ $\Phi \omega$ κά για $\gamma = 0.2$

 R: Για να προσεγγίσουμε το δεύτερο και το τρίτο ολοκλήρωμα (5.55) έχουμε περικόψει τα όρια ολοκλήρωσης [-∞,∞] σε [-R, R]. Θεωρούμε το σχετικό σφάλμα (το οποίο εξαρτάται από το R) να είναι:

$$E_{R_i} := \frac{\|U_{R_i} - U_{R_{i+1}}\|_{\infty}}{\|U_{R_{i+1}}\|_{\infty}}$$
(5.82)

Όπως παρατηρούμε στο σχήμα (5.8) το σχετικό σφάλμα φαίνεται να σταθεροποιείται για μικρές τιμές του R ακόμα και μικρότερες του 5. Αυτό οφείλεται στο γεγονός ότι οι ποσότητες προς ολοκλήρωση u_{1b} και u_{1c} φθίνουν εκθετικά πολύ γρήγορα. Στο σχήμα

(5.9) παρατηρούμε ότι η παράμετρος R μιχραίνει όσο αυξάνεται ο χρόνος. Για να είναι εξάλλου ο εχθέτης της ποσότητας e^{-k^2t} όπου είναι το γινόμενο του k^2 με t πραχτιχά μη μηδενιχός θα πρέπει χάθως ο χρόνος αυξάνεται το k να μειώνεται.

 Σ χήμα 5.8: Το σχετικό σφάλμα E_R για διαφορετικές τιμές του t

Σχήμα 5.9: Το R_{opt} ως συνάρτηση του χρόνου t.

 R_a: Για να προσεγγίσουμε το πρώτο ολοκλήρωμα της σχέσης (5.55) έχουμε περικόψει τα όρια ολοκλήρωσης [-∞, ∞] σε [-R_a, R_a]. Το σχετικό σφάλμα (το οποίο εξαρτάται από το R_a) δίνεται από τη σχέση:

$$E_{R_{a_i}} := \frac{\|U_{R_{a_i}} - U_{R_{a_i}}\|_{\infty}}{\|U_{R_{a_i}}\|_{\infty}}$$
(5.83)

Η συμπεριφορά του σχετιχού σφάλματος είναι παρόμοια με αυτή του σχετιχού σφάλματος ως προς R (Σχήματα (5.10),(5.11)). Δηλαδή, όσο ο χρόνος αυξάνεται τόσο μιχραίνει το R_a . Οι τιμές βέβαια της παραμέτρου R_a είναι μεγαλύτερες από τις αντίστοιχες του R το οποίο οφείλεται στο γεγονός ότι η προς ολοκλήρωση ποσότητα του u_{1a} μειώνεται πιο αργά σε σχέση με τις προς ολοκλήρωση ποσότητες u_{1b} χαι u_{1c} (Bλ. Σχημα (5.4),(5.5)).

Σχήμα 5.10: Το σχετικό σφάλμα E_{R_a} για διαφορετικές τιμές του t.

 Ν: συμβολίζουμε τον αριθμό των σημείων ολοκλήρωσης για το σύνθετο κανόνα τού τραπεζίου για να υπολογίσουμε τις προς ολοκλήρωση ποσότητες u_{1b} και u_{1c}. Ορίζουμε το σχετικό σφάλμα (το οποίο εξαρτάται από το N) να είναι:

$$E_{N_i} := \frac{\|U_{N_i} - U_{N_{i+1}}\|_{\infty}}{\|U_{N_{i+1}}\|_{\infty}}$$
(5.84)

Από τα γραφήματα (5.12), (5.13) και (5.14) προκύπτει ότι οι τιμές του σχετικού σφάλματος E_N είναι στενά συνδεδεμένες με την παράμετρο R. Η καλύτερη συμπεριφορά επιτυγχάνεται για βέλτιστη τιμή του R η οποία είναι περίπου R = 3.5 για t = 0.1, R = 2.7 για t = 1 και R = 2.3 για t = 10. Για τις βέλτιστες τιμές του R η σύγκλιση είναι εκθετική. Η εκθετική σύγκλιση παραμένει για τιμές του R πλησιόν και μεγαλύτερες του βέλτιστου R, αλλά δεν διατηρείται για τιμές μικρότερες του βέλτιστου R.

Σχήμα 5.11: Το R_{aopt} ως συνάρτηση του χρόνου t.

Σχήμα 5.12: Το σχετικό σφάλμα E_N για t = 0.1 για διαφορετικές τιμές του R.

 Να: συμβολίζουμε τον αριθμό των σημείων ολοκλήρωσης για τον σύνθετο κανόνα του τραπεζίου για να υπολογίσουμε την προς ολοκλήρωση ποσότητας u_{1a}. Για όλες τις περιπτώσεις θεωρούμε το Na = 256.

Σχήμα 5.13: Το σχετικό σφάλμα E_N για t = 1 για διαφορετικές τιμές του R.

Σχήμα 5.14: Το σχετικό σφάλμα E_N για t = 10 για διαφορετικές τιμές του R.

 Ν_i: συμβολίζουμε τον αριθμό των σημείων ολοκλήρωσης για τον σύνθετο κανόνα του τραπεζίου για να υπολογίσουμε το ολοκληρώματα (5.19)- (5.21). Για όλες τις περιπτώσεις θεωρούμε το 256.

5.5.3 Σύγκριση των μεθόδων Φωκά και της collocation μεθόδου

Στην ενότητα αυτή συγχρίνουμε τη μέθοδο Φωχά με τη collocation μέθοδο με συναρτήσεις βάσης τα ασυνεχή πολυώνυμα Hermite ως χωριχή διαχριτοποιήση και ως χρονιχή διαχριτοποιήση την Implicit και την Crank-Nicolson μέθοδο. Σε όλες τις περιπτώσεις υπολογίζουμε τη λύση του προβλήματος σε 101 σημεία (x_i, t) για συγχεχριμένους χρόνους. Η αχρίβεια της λύσης u_{coll} της collocation μεθόδου εξαρτάται από:

- τον αριθμό των collocation σημείων(N_{col}) σε κάθε περιοχή και
- το χρονικό βήμα Δt

Ορίζουμε τη σχετική απόσταση μεταξύ της λύσης τής μεθόδου Φ ωκά u_{fok} και της λύσης τής collocation μεθόδου u_{coll} να δίνεται από τον τύπο:

$$E := \frac{\|u_{coll} - u_{fok}\|_{\infty}}{\max\{\|u_{coll}\|_{\infty}, \|u_{fok}\|_{\infty}\}}$$
(5.85)

για διαφορετικές τιμές του χρόνου 1

Σύγκριση τής μεθόδου Φωκά με τη collocation μεθόδο με ασυνεχή πολυώνυμα Hermite ως χωρική διακριτοποιήση και Implicit σχήμα ως χρονική διακριτοποιήση.

Παρατηρούμε ότι για μεγάλο αριθμό N_{col} το σχετικό σφάλμα E συγκλίνει γραμμικά καθώς το χρονικό βήμα Δt αυξάνεται(Βλ. Σχήματα (5.15), (5.16), (5.17))

Από τους πίναχες (5.1) και (5.2) καθώς και από τα γραφήματα (5.18), (5.19), (5.20) παρατηρούμε ότι ο χρόνος της collocation μεθόδου είναι πολύ μεγαλύτερος από αυτόν που απαιτείται για τη μέθοδο Φωχά και αυξάνεται με πολύ μεγαλύτερο ρυθμό καθώς το χρονικό βήμα Δt μειώνεται. Ο χρόνος που απαιτείται για τη μέθοδο Φωχά είναι ανεξάρτητος του χρονικού βήματος Δt και υπολογίζει την λύση του προβλήματος απευθείας σε οποιαδήποτε χρονική στιγμή χωρίς υπολογισμούς σε ενδιάμεσα βήματα. Ο χρόνος της collocation μεθόδου εμφανίζεται να είναι μικρότερος από αυτόν που απαιτείται στη μέθοδο Φωχά χωρίς να σε περιπτώσεις όμως που η σχετική απόσταση τους E είναι μεγάλη.

Σύγκριση τής μεθόδου Φωκά με την collocation μεθόδο με ασυνεχείς πολυώνυμα Hermite ως χωρική διακριτοποιήση και Crank Nicolson μέθοδο ως χρονική διακριτοποιήση.

Σε αυτή την περίπτωση για μεγάλο αριθμό N_{col} το σχετικό σφάλμα E συγκλίνει τετραγωνικά καθώς το χρονικό βήμα Δt αυξάνεται(Βλ. Σχήματα (5.21), (5.22), (5.23))

 $^{^{1}}$ Τα u_{coll} και u_{fok} είναι διανύσματα 101 σημείων και επομένως αναφερόμαστε σε νόρμες διανυσμάτων.

Σχήμα 5.15: Το σχετικό σφάλμα μεταξύ u_{fok} και u_{coll} για t = 0.1.

Σχήμα 5.16: Το σχετικό σφάλμα μεταξύ u_{fok} και u_{coll} για t=1.

Λόγω της τετραγωνικής σύγκλισης, οι χρόνοι της collocation μεθόδου με το Crank Nicolson σχήμα είναι πολύ καλύτεροι από τους χρόνους της collocation μεθόδου με το Implicit σχήμα. Το γεγονός αυτό μπορούμε να το παρατηρήσουμε στους πίνακες (5.3) και (5.4) καθώς και στα γραφήματα (5.24), (5.25), (5.26) για Ncol = 256. Είναι εξάλλου φανερό ότι σε σχέση με προηγούμενη περίπτωση στην συγκεκριμένη περίπτωση η collocation μέθοδος

Σχήμα 5.17: Το σχετικό σφάλμα μεταξύ u_{fok} και u_{coll} για t=10.

	t = 0.1		t = 1		t = 10	
dt	RE	t_{coll}	RE	t_{coll}	RE	t_{coll}
1.00E-01	-	-	3.03E-02	< 0.1	1.43E-03	<0.1
1.00E-02	2.17E-02	< 0.1	3.07E-03	< 0.1	1.43E-04	< 0.1
1.00E-03	2.22E-03	< 0.1	3.07E-04	< 0.1	1.43E-05	0.61
1.00E-04	2.22E-04	< 0.1	3.07E-05	0.61	1.43E-06	6.13
1.00E-05	2.19E-05	0.63	3.06E-06	6.11	1.43E-07	60.89
1.00E-06	1.86E-06	7.86	3.02E-07	61.04	1.40E-08	909.10
1.00E-07	2.20E-07	91.09	2.55E-08	807.56	2.11E-09	8973.30

Πίνακας 5.1: Σύγκριση της μεθόδου Φωκά και της collocation -Implicit για $N_{col} = 128$. Ο χρόνος για τη μέθοδο Φωκά είναι 1.4 secs για όλες τις περιπτώσεις. Ο χρόνος της collocation (secs) φαίνεται στον παραπάνω πίνακα.

με το Crank Nicolson σχήμα είναι αρχετά ανταγωνιστική σε σύγκριση με τη μέθοδο Φωκά. Υπάρχουν όμως και πάλι περιπτώσεις ιδιαίτερα σε σχετικά μεγάλους χρόνους όπου η μέθοδος Φωκά υπερτερεί.

	t = 0.1		t = 1		t = 10	
dt	RE	t_{coll}	RE	t_{coll}	RE	t_{coll}
1.00E-01	-	-	3.03E-02	< 0.1	1.43E-03	< 0.1
1.00E-02	2.17E-02	< 0.1	3.07E-03	< 0.1	1.43E-04	0.11
1.00E-03	2.22E-03	< 0.1	3.07E-04	0.12	1.43E-05	1.10
1.00E-04	2.22E-04	0.16	$3.07 \text{E}{-}05$	1.63	1.43E-06	11.03
1.00E-05	2.22E-05	1.41	3.07E-06	16.37	1.43E-07	110.2
1.00E-06	2.20E-06	16.18	3.07E-07	112.23	1.43E-08	1652.60
1.00E-07	1.99E-07	205.08	3.04E-08	1560.5	3.57E-09	15746.0

Πίνακας 5.2: Σύγκριση τής μεθόδου Φωκά και της collocation-Implicit για $N_{col} = 256$. Ο χρόνος για τη μέθοδο Φωκά είναι 1.4 secs για όλες τις περιπτώσεις. Ο χρόνος της collocation (secs) φαίνεται στον παραπάνω πίνακα.

Σχήμα 5.18: Ο χρόνος που απαιτείται στις δυο μεθόδους για t = 0.1.

Σχήμα 5.19: Ο χρόνος που απαιτείται στις δυο μεθόδους για t=1.

Σχήμα 5.20: Ο χρόνος που απαιτείται στις δυο μεθόδους για t=10.

Σχήμα 5.21: Το σχετικό σφάλμα μεταξύ u_{fok} και u_{coll} για t=0.1.

Σχήμα 5.22: Το σχετικό σφάλμα μεταξύ u_{fok} και u_{coll} για t=1.

Σχήμα 5.23: Το σχετικό σφάλμα μεταξύ u_{fok} και u_{coll} για t=10.

	t = 0.1		t = 1		t = 10	
dt	RE	t_{coll}	RE	t_{coll}	RE	t_{coll}
1.00E-01	-	-	4.78E-03	< 0.1	2.47E-05	< 0.1
1.00E-02	3.48E-03	< 0.1	5.12E-05	< 0.1	2.49E-07	< 0.1
1.00E-03	3.69E-05	< 0.1	5.12E-07	< 0.1	2.48E-09	0.83
1.00E-04	1.77E-07	0.1	2.86E-09	0.89	1.57E-11	8.71
1.00E-05	4.00E-07	0.84	_	-	-	-

Πίνακας 5.3: Σύγκριση της μεθόδου Φωκά και της collocation Crank-Nicolson για $N_{col} = 128$. Ο χρόνος για τη μέθοδο Φωκά είναι 1.4 secs για όλες τις περιπτώσεις. Ο χρόνος της collocation (secs) φαίνεται στον παραπάνω πίνακα.

	t = 0.1		t = 1		t = 10	
dt	RE	t_{coll}	RE	t_{coll}	RE	t_{coll}
1.00E-01	-	-	4.78E-03	<0.1	2.47E-05	<0.1
1.00E-02	3.48E-03	< 0.1	5.12 E- 05	< 0.1	2.49E-07	0.16
1.00E-03	3.73E-05	< 0.1	5.17 E-07	0.12	2.49E-09	1.22
1.00E-04	3.53E-07	0.18	4.86E-09	1.55	2.61E-11	16.05
1.00E-05	2.30E-08	1.71	3.25E-10	15.62	-	-

Πίνακας 5.4: Σύγκριση της μεθόδου Φωκά και της collocation Crank-Nicolson για $N_{col} = 256$. Ο χρόνος για τη μέθοδο Φωκά είναι 1.4 secs για όλες τις περιπτώσεις. Ο χρόνος της collocation (secs) φαίνεται στον παραπάνω πίνακα.

Σχήμα 5.24: Ο χρόνος που απαιτείται στις δυο μεθόδους για t=0.1.

Σχήμα 5.25: Ο χρόνος που απαιτείται στις δύο μεθόδους για t=1.

Σχήμα 5.26: Ο χρόνος που απαιτείται στις δύο μεθόδου
ςt=10.

Κεφάλαιο 6

Συμπεράσματα - Επίλογος

Ο βασικός στόχος της παρούσας διατριβής είναι να ερευνήσει τις ιδιότητες και τη συμπεριφορά της Collocation μεθόδου των πεπερασμένων στοιχείων όταν αυτή χρησιμοποιείται για τη διακριτοποίηση και επίλυση προβλημάτων - εφαρμογών από τις περιοχές της Μηχανικής και της Ιατρικής.

Στο χεφάλαιο αυτό, συγχεντρώνονται χαι συνοψίζονται τα σημαντιχότερα στοιχεία που τεχμηριώθηκαν κατά την πραγματοποίηση της:

- Δείξαμε ότι η εφαρμογή της χυβιχής Hermite Collocation μεθόδου σε Προβλήματα Συνοριαχών Τιμών με περιοδιχές συνοριαχές συνθήχες οδηγεί σε μεγάλα και αραιά συστήματα των οποίων ο πίναχας είναι p-cyclic μορφής.
- Διαμορφώσαμε τις συνθήχες που διασφαλίζουν τη βέλτιστη σύγχλιση της επαναληπτιχής μεθόδου της SOR μέσω της βέλτιστης διαμέρισης του p-cyclic Collocation πίναχα.
- Αποδείξαμε ότι η εφαρμογή ασυνεχών στοιχείων Hermite στα σημεία διασύνδεσης των ετερογενών περιοχών (φαιά ουσία-λευχή ουσία) του εγχεφάλου στο μαθηματιχό μοντέλο της διάχυσης γλοιωμάτων δεν διαταράσσει την τάξη σύγχλισης της Collocation μεθόδου.
- Δείξαμε ότι χρησιμοποιώντας τη μέθοδο μετασχηματισμού Φωκά η λύση του παραπάνω μαθηματικού μοντέλου που προσομοιώνει την εξέλιξη του καρκινικού όγκου στο χρόνο βρίσκεται απευθείας σε οποιοδήποτε σημείο (x, t) χωρίς να απαιτούνται περαιτέρω υπολογισμοί σε ενδιάμεσα χρονικά βήματα.

Τέλος, πεδίο μελλοντικής έρευνας μπορούν να αποτελέσουν:

- Η διεύρυνση του αριθμού των ετερογενών περιόχων (φαιά και λευκή ούσία) του εγκεφάλου και η μελέτη της τάξεως σύγκλισης της collocation μεθόδου.
- Η επέκταση του μοντέλου στις δύο χωρικές διαστάσεις.

- Η δημιουργία κατάλληλου πλέγματος διακριτοποίησης που να προσομοιάζει το χωρίο του εγκεφάλου και η εφαρμογή της collocation μεθόδου, και
- Η επέχταση της μεθόδου Φωχά στις παραπάνω περιπτώσεις.

Βιβλιογραφία

- M.J ABLOWITZ AND A.S FOKAS, Introduction and Applications of Complex Variables, Cambridge University Press, second edition (2003)
- [2] J.A ADAM AND S.A MAGGELAKIS, Diffusion regulated growth characteristics of a spherical prevascular carcinoma, Bull. Math. Biol. 52 (1990), p. 549-582
- C.ATTANAYAKE AND D.SENARATNE, Convergence of an Immersed Finite Element method for Semilinear Parabolic Interface Problems, Applied.Math.Sciences. Vol. 5 (2011), p.135-147
- [4] G. BIRKOFF, M.H. SCHULTZ AND R.S. VARGA, Piecewise Hermite in one and two variables with applications to partial differential equations, Numer. Math. 11 (1968), p. 232-256
- [5] V.V. BOLOTIN, The Dynamic Stability of Elastic Systems, Holden-Day Inc., San Franeisco, 1964
- [6] C.DE BOOR AND B. SWARTZ, Collocation at Gaussian points, SIAM Num. Anal. 10 (1973), p. 582-606
- [7] S.H. BRILL AND G.F.PINDER, Analysis of a Block Red-Black Preconditioner applied to the hermite collocation discretization of a model parabolic equation, Numerical Methods for Partial Differential Equations.17 (2001), p. 584-606
- [8] L. BRILLOUIN, Wave Propagation in Periodic Structures, Dover Publications, New York, 1953
- [9] P.K.BURGESS, P.M.KULESA, J.D.MURRAY AND E.C.ALVORD JR. The interaction of growth rates and diffusion coefficients in a three-dimensional mathematical model of gliomas, Journal of Neuropathology and Experimental Neurology ,56(6):p. 704-713, 1997.
- [10] J.COOK, D.E WOODWARD, P TRACQUI AND J.D.MURRAY Resection of gliomas and life expectancy, Journal of Neuro-Oncology, 24:131, 1995.

- [11] G.C.CRUYWAGEN, D.E.WOODWARD, P.TRACQUI, G.T.BARTOO, J.D.MURRAY AND E.C.ALVORD JR. *The modeling of diffusive tumours*, Journal of Biological Systems,(3):p. 937-945, 1995.
- [12] M. EIRMANN, W. NIETHAMMER AND A. RUTTAN, Optimal successive overrelaxation iterative methods for p-cyclic matrices, Numer. Math. 57 (1990) 593-606
- [13] N.FLYER AND A.S.FOKAS A hybrid analytical-numerical method for solving evolution partial differential equations. I. The half-line, Proc.R.Soc.A, 464 (2008), p. 1823-1849.
- [14] A.S.FOKAS A unified transform method for solving linear and certain nonlinear PDEs, Proc.R.Soc.A,453 (1997), p. 1411-1443.
- [15] A.S.FOKAS A new transform method for evolution PDEs, IMA J. Appl. Math., 67(6), p. 559-590, 2002.
- [16] S. GALANIS AND A. HADJIDIMOS, Best cyclic repartitioning for optimal successive overrelaxation convergence, SIAM J Matrix Anal. Appl. 13 (1992) p.102-120
- [17] S. GALANIS, A. HADJIDIMOS AND D. NOUTSOS, On the equivalence of the k-step iterative Euler methods and SOR methods for k-cyclic matrices, Math. Computers Simul. 30 (1988), p.213-230
- [18] S. GALANIS, A. HADJIDIMOS AND D. NOUTSOS, *Optimal p-Cyclic SOR for complex spectra*, Lin. Alg. Appl. 263 (1997), p.233-260
- [19] S. GOLDMAN, B.J PIROTTE, Brain tumors. Methods in Molecular Biology, (2011) 727: π.291-315.
- [20] A. HADJIDIMOS AND R.J. PLEMMONS, Optimal p-cyclic SOR, Numer. Math. 67 (1994), p.475-49
- [21] E.N. HOUSTIS, R.E. LYNCH, T.S. PAPATHEODOROU, AND J.R. RICE, Evaluation of numerical methods for elliptic partial differential equations, J. Comp. Phys. 27 (1978), p.323-350
- [22] G.W. HILL, On the part of the motion of the lunar perigee wich is a function of the mean motions of the sun and moon, Acta Mathematica VIII (1886), p. 1-36
- [23] H.HUANG, Z.LI, Convergence analysis of the immersed interface method, IMA J Numer Anal 19 (4) (1999): p. 583-608.
- [24] W.HUNDSDORFER, J.G.VERWER, Numerical Solution of Time-Dependent-Advection-Diffusion-Reactions Equations, Springer ,2003.

- [25] L.W.JOHNSON, R.D.RIESS AND J.T ARNOLD, Introduction to Linear Algebra, Th.Edition Addison-Wesley Publishing Company, Reading, Massachusetts ,1993.
- [26] ΚΛΗΡΟΝΟΜΟΣ Γ., Μελέτη μοριαχών μηχανισμών της διηθητιχής ικανότητας των πρωτοπαθών όγχων του Κ.Ν.Σ. Διδαχτοριχή Διατριβή, Τμήμα Ιατριχής Πανεπιστημίου Πατρών, Πάτρα 2009.
- [27] R.L.KRONIG AND W.G.PENNEY, Quantum mechanics in crystal lattices, Proc. Royal Soc. London 130 (1931), p. 499-513
- [28] ΛΟΓΟΘΕΤΗΣ Ι. Νευρολογία. Εχδόσεις University Studio Press, Θεσσαλονίχη 2004.
- [29] R.LEFEVER, J HIEMAUX AND P MEYERS, Evolution of tumours attacked by immune cytotoxic cells: The immune response dilemma. In: Goldbetor, A., Ed., Cell to Cell Signaling: From Experiments to Theoretical Models, Academic Press, Boston, (1989), p.315-333
- [30] RANDALL J. LEVEQUE AND ZHILIN LI, The Immersed Interface Method for Elliptic Equations with Discontinuous Coefficients and Singular Sources, SIAM Journal on Numerical Analysis 31 Issue 4, 1994, pp. 1019-1044
- [31] ZHILIN LI, The immersed interface method A numerical approach for partial differential equations with interfaces, PHD Thesis, University of Washington, 1994.
- [32] S.K LIM, S.R LLAGUNO, R.M MCKAY, L.F PARADA, Glioblastoma multiforme: a perspective on recent findings in human cancer and mouse models., BMB Reports (2011); 44: p.158-164.
- [33] D.N LOUIS, H OHGAKI, O.D WIESTLER, W.K CAVENEE, P.C. BURGER, A JOUVET, B.W SCHEITHAUER, P. KLEIHUES, The 2007 WHO classification of tumours of the central nervous system., Acta Neuropathologica (2007); 114: p.97-109
- [34] W. MAGNUS AND S. WINKLER, *Hill's Equation*, Dover Publications, New York, 1979
- [35] D.MANTZAVINOS, Boundary Value Problems for Linear and Integrable Nonlinear Evolution PDEs, Phd thesis, In preparation
- [36] D.MANTZAVINOS, M.G.PAPADOMANOLAKI, Y.G SARIDAKIS AND A.S.SIFALAKIS, A novel transform approach for a brain tumor invasion model with heterogeneous diffusion in 1 + 1 dimensions, In preparation
- [37] T.L.MARKHAM, M.NEUMANN AND R.J. PLEMMONS, Convergence of a directiterative method for large-scale least squares problems, Linear Algebra Appl.,69: p. 155-167,1985

- [38] J.E. MARSDEN, L. SIROVICH, M. GOLUBITSKY AND W. JAGER, Introduction to Partial Differential Equations A Computational Approach Springer Berlin Heidelberg,2005.
- [39] M.MARUSIC, Z.BAJZER, J.P. FREYER AND S.VUK-PAVLOVIC, Analysis of growth of multicellular tumour spheroids by mathematical models, Cell Prolif, 27:73-94,1994
- [40] A. R. MITCHELL, D.F. GRIFFITHS, The Finite Difference Method in Partial Differential Equations, John Willey & Sons, 1980.
- [41] K. W. MORTON, D. F. MAYERS, Numerical Solution of Partial Differential Equations, Cambridge University Press, 1994.
- [42] J.D. MURRAY *Mathematical Biology*, Springer-Verlag, 3rd Edition 2002.
- [43] W.NIETHAMMER, J.DE.PILLIS AND R.S.VARGA, Convergence of block iterative methods applied to sparse least squares problems, Linear Algebra Appl., 58:327-341, 1984
- [44] OLE OSTERBY, Five ways of Reducing the Crank-Nicolson Oscillations, Bit Numerical Methematics., 43:811-822, 2003
- [45] M.G. PAPADOMANOLAKI E.P.PAPADOPOULOU AND Y.G.SARIDAKIS *p*-Cyclic SOR for BVPs with periodic boundary conditions, Applied Numerical Mathematics 60(4), p. 411-419 (2010).
- [46] M.G. PAPADOMANOLAKI AND Y.G.SARIDAKIS Collocation with discontinuous Hermite elements for a tumor invasion model with heterogeneous diffusion in 1+1 dimensions, Numan 1010 Conference in Numerical analysis, 2010.
- [47] T.S. PAPATHEODOROU AND A.N.KANDILI Novel numerical techniques based on Fokas transforms, for the solution of initial boundary value problems, Journal of Computational and Applied Mathematics 227 (2009): p.75-82.
- [48] D.J. PIERCE, A. HADJIDIMOS AND R.J. PLEMMONS, Optimality relationships for p-cyclic SOR, Numer. Math. 56 (1990), p. 635-643
- [49] N.G. RAINOV, V. HEIDECKE, Clinical development of experimental therapies for malignant glioma., Sultan Qaboos University Medical Journal 11 (2011), p. 5-28.
- [50] M.W. RETSKY, D.E SWARTZENDRUBER, R.H WARDWELL AND P.D.BAME, Is gompertzian or exponential kinetics a valid description of individual human cancer growth? Medical Hypotheses, 1990,33, p. 95-106.
- [51] A.RONIOTIS, K.MARIAS, V. SAKKALIS, M. ZERVAKIS, *Diffusive modelling of glioma* evolution: a review J.Biomedical Science and Engineering, 2010,3,p. 501-508.

- [52] ΣΑΒΒΑΣ Α., Επίτομη ανατομική του ανθρώπου και άτλας. Εκδόσεις Αφοί Κυριακίδη, Θεσσαλονίκη 1996.
- [53] Y.G. SARIDAKIS, Optimally repartitioned SOR iterative method for p-cyclic collocation matrices, Proc. HERMIS 94, Athens, Greece, 1994
- [54] Y.G. SARIDAKIS, C.G. SIFNIOTOPOULOS AND D.A. SOTIROPOULOS, Finite element collocation approximation of the characteristic exponent in BVPs with periodic boundary conditions, J. Comp. Applied Math. 70 (1996), p. 1-14
- [55] J.A SHERRAT AND M.A NOWAK, Oncogenes, anti-oncogenes and the immune response to cancer: a mathematical model, Proc R. Soc. Lond. B248, p. 261-271, 1992
- [56] D.A. SMITH, Well-posed two-point initial-boundary value problems with arbitrary boundary conditions, MATH. PROC. CAMB. PHIL. SOC. doi:10.1017/S030500411100082X, 2011
- [57] G.D. SMITH, Numerical solution of partial equations: finite difference methods (third edition), Oxford University Press, 1985.
- [58] D.A. SOTIROPOULOS, Dispersion of elastic waves in periodically inhomogeneous media, Comp. Mech. 13 (1994), p. 276-284
- [59] K.R. SWANSON, Mathematical modeling of the growth and control of tumors, PHD Thesis, University of Washington, 1999.
- [60] K.R. SWANSON, E.C. ALVORD JR AND J.D. MURRAY, A quantitive model for differential motility of gliomas in grey and white matter, Cell Proliferation, 33:317-329, 2000.
- [61] K.R. SWANSON, E.C.ALVORD JR AND J.D.MURRAY, Virtual brain tumours(gliomas) enhance the reality of medical imaging and highlight inadequacies of current therapy, British Journal of Cancer, 86:14-18, 2002.
- [62] K.R. SWANSON, C.BRIDGE, J.D.MURRAY AND E.C.ALVORD JR, Virtual and real brain tumours: using mathematical modeling to quantify glioma growth and invasion, J.Neurol.Sci,216:1-10,2003.
- [63] P. TRACQUI, From passive diffusion to active cellular migration in mathematical models of tumour invasion, Acta Biotheoretica, 43:443-464,1995.
- [64] P.TRACQUI, G.C.CRUYWAGEN, D.E.WOODWARD, T.BARTOO, J.D.MURRAY AND E.C.ALVORD JR., A mathematical model of glioma growth: The effect of chemotherapy on spatio-temporal growth, Cell Proliferation, 28:17-31, 1995.
- [65] L.N. TREFETHEN, J.A.C WEIDEMAN, T.SCHMELZER, *Tablot quadratures and rational approximations*, BIT Numerical Mathematics, 46:653-670, 2006.
- [66] R.S. VARGA, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1962
- [67] J.A.C WEIDEMAN AND L.N. TREFETHEN, Parabolic and hyperbolic contours for computing the Bromwich integral, Math. Comput., Math. Comp., 76:1341-1356, 2007.
- [68] WHELDON, T.E., Mathematical models in experimental and clinical oncology. In: Ingrain, D. and Bloch, R.F. Mathematical Methods in Medicine, John Wiley and Sons, Chichester, p.1-32.
- [69] P. WILD AND W. NIETHAMMER, Over- and Underrelaxation for Linear Systems with Weakly Cyclic Jacobi Matrices of Index p, Lin. Alg. Appl. 91 (1987) p. 29-52
- [70] D.E.WOODWARD, J.COOK, P.TRACQUI,G.C.CRUYWAGEN, J.D.MURRAY AND E.C.ALVORD JR. A mathematical model of glioma growth: the effect of extent of surgical resection, Cell Proliferation, 29:269-288, 1996.
- [71] D.M. YOUNG, Iterative Solution of Large Linear Systems, Academic Press, NY, 1971

Contents lists available at ScienceDirect

Applied Numerical Mathematics

www.elsevier.com/locate/apnum

p-Cyclic SOR for BVPs with periodic boundary conditions

M.G. Papadomanolaki, E.P. Papadopoulou, Y.G. Saridakis*

Applied Mathematics & Computers Laboratory, Department of Sciences, Technical University of Crete, Chania 73100, Greece

ARTICLE INFO

Article history: Received 9 December 2008 Received in revised form 17 July 2009 Accepted 4 August 2009 Available online 3 September 2009

Dedicated to Richard S. Varga on the occasion of his 80th birthday

MSC: 65F10 65N22 65N35

Keywords: SOR *p*-Cyclic matrices Periodic BVPs Collocation

1. Introduction

ABSTRACT

The employment of finite element or finite difference discretization schemes, for the numerical solution of Boundary Value Problems (BVPs) with periodic type Boundary Conditions (BCs), leads to a large and sparse linear system whose coefficient matrix is in normal *p*-cyclic form. The use of block iterative methods, for the solution of such linear systems, and the demand for fast convergence rates, require the optimal repartitioning of the coefficient matrix. In this work, we make use of the finite element Hermite collocation method to discretize the BVP and the SOR iterative method to solve the corresponding sparse linear system. The optimal repartitioning of the collocation coefficient matrix leads to SOR methods with optimal rates of convergence.

© 2009 IMACS. Published by Elsevier B.V. All rights reserved.

Recently, some very interesting results, pertaining the theory of *p*-cyclic matrices in iterative analysis [18], appeared in the literature. Triggered by the works of Niethammer et al. [12] and Markham et al. [10] for the analysis of the 3-cyclic and 2-cyclic block SOR methods, respectively, applied to the solution of large least-squares problems, the works of Pierce et al. [14], Eirmann et al. [5] and Galanis and Hadjidimos [6] confronted the problem of optimally repartitioning the *p*-cyclic coefficient matrix into a *q*-cyclic one ($2 \le q \le p$) in order for the corresponding SOR method to attain optimal rate of convergence. The above results enriched further Varga's theory of *p*-cyclic matrices and their role in iterative analysis [18]. Although a rich set of theoretical tools is available for the *p*-cyclic family of matrices, the applications for p > 3 are almost limited to systems arising in queuing network problems in Markov analysis [8].

The aim of the present work is twofold:

- To enrich applications of the *p*-cyclic matrix theory by showing that *p*-cyclic matrices arise naturally from the discretization of BVPs, with periodic BCs, by the finite element methods, extending further the results in [15–17].
- To obtain optimal rates of convergence for collocation matrices by applying the *p*-cyclic optimal repartitioning results for the SOR method.

* Corresponding author. E-mail addresses: marianna@science.tuc.gr (M.G. Papadomanolaki), elena@science.tuc.gr (E.P. Papadopoulou), yiannis@science.tuc.gr (Y.G. Saridakis).

0168-9274/\$30.00 $\ensuremath{\mathbb{C}}$ 2009 IMACS. Published by Elsevier B.V. All rights reserved. doi:10.1016/j.apnum.2009.08.006

As an extension of our results in [15,16], we consider in Section 2 the discretization of the well-posed normal 2-point BVP

$$u''(x) + F(x)u(x) = g(x), \quad x \in [a, b],$$
(1.1a)

$$u(a) - z_1 u(b) = w_1,$$
 (1.1b)

$$u'(a) - z_2 u'(b) = w_2,$$
 (1.1c)

where F(x) and g(x) are nontrivial real-valued functions and a, b, z_1 , z_2 , w_1 , w_2 are real constants. From the collocation finite element method with Hermite cubic elements (e.g. [1,3]) it follows that the collocation matrix is p-cyclic matrix in normal form. The properties of the collocation matrix and its associated block Jacobi iteration matrix are included in Section 3. In Section 4 we have included the analysis for the optimally repartitioned collocation matrix and the corresponding convergence rate of the SOR iterative method, while Section 5 is devoted to numerical experiments.

Concluding we should mention that the BVP in (1.1) covers a rich number of scientific applications. The well-known case of Hill's type equations (F(x) periodic) [9], for example, describes many physical situations such as the motion of the planets (e.g. [7]), stability of elastic systems (e.g. [2]), wave propagation (e.g. [4]), and many others.

2. Hermite collocation approximation

To fix notation, assume a uniform partition of the interval [a, b] into N subintervals $I_m \equiv [x_m, x_{m+1}]$ of length $h = \frac{b-a}{N}$, m = 1, ..., N and nodes $x_m = a + (m-1)h$, m = 1, ..., N + 1.

Hermite finite element approximations seek an approximate solution $u_n(x)$ in the form

$$u(x) \cong u_n(x) = \sum_{m=1}^{n/2} \left[\alpha_{2m-1} \phi_{2m-1}(x) + \alpha_{2m} \phi_{2m}(x) \right], \quad n = 2(N+1),$$
(2.1)

where $\phi_{2m-1}(x)$ and $\phi_{2m}(x)$ are the well-known *Hermite cubic basis functions* centered at the node x_m (see e.g. [1,15,16]). The determination of the unknowns in (2.1) above by the collocation method is being achieved by forcing the residual $R_n(x) \equiv u_n''(x) + F(x)u_n(x) - g(x)$ to vanish at n - 2 = 2N (two per subinterval) *interior collocation* points $a < \sigma_2 < \sigma_3 < \cdots < \sigma_{n-1} < b$ and by forcing the approximate solution u_n to satisfy the boundary conditions at the two *boundary collocation* points $\sigma_1 = a$ and $\sigma_n = b$, leading to a linear system of *n* algebraic equations in the *n* unknowns α_j , $j = 1, \ldots, n$; that is to say

$$C\boldsymbol{\alpha} = \mathbf{b},\tag{2.2}$$

where *C* is the $n \times n$ collocation coefficient matrix, $\boldsymbol{\alpha} = [\alpha_1 \ \alpha_2 \ \cdots \ \alpha_n]^T$ is the unknown vector and $\boldsymbol{b} = [b_1 \ b_2 \ \cdots \ b_n]^T$ is the right side known vector. By choosing as interior collocation points the Gauss points [3], defined for each subinterval I_j , $j = 1, \dots, N$ by

$$\sigma_{2j} = x_j + h\sigma$$
 and $\sigma_{2j+1} = x_j + h(1 - \sigma)$ where $\sigma = \frac{\sqrt{3} - 1}{2\sqrt{3}}$, (2.3)

and working similarly as in [15,16] it can be verified (cf. [13]) that the elemental equations for the *j*th element I_j , multiplied by h^2 for computational purposes, are given by

$$C_{j} \begin{bmatrix} \alpha_{2j-1} \\ \alpha_{2j} \\ \alpha_{2j+1} \\ \alpha_{2j+2} \end{bmatrix} = h^{2} \begin{bmatrix} g(\sigma_{2j}) \\ g(\sigma_{2j+1}) \end{bmatrix},$$
(2.4)

where C_i , the *j*th elemental collocation matrix, is taking the form

$$C_j = [A_j B_j], \quad j = 1, \dots, N,$$
 (2.5)

with

$$A_{j} = \begin{bmatrix} c_{1} + d_{1}h^{2}F(\sigma_{2j}) & c_{2} + d_{2}h^{2}F(\sigma_{2j}) \\ c_{3} + d_{3}h^{2}F(\sigma_{2j+1}) & c_{4} + d_{4}h^{2}F(\sigma_{2j+1}) \end{bmatrix}$$
(2.6)

and

$$B_{j} = \begin{bmatrix} c_{3} + d_{3}h^{2}F(\sigma_{2j}) & -c_{4} - d_{4}h^{2}F(\sigma_{2j}) \\ c_{1} + d_{1}h^{2}F(\sigma_{2j+1}) & -c_{2} - d_{2}h^{2}F(\sigma_{2j+1}) \end{bmatrix},$$
(2.7)

where

$$c_1 = -2\sqrt{3}, \qquad c_2 = -1 - \sqrt{3}, \qquad c_3 = 2\sqrt{3}, \qquad c_4 = -1 + \sqrt{3}, \\ d_1 = \frac{9 + 4\sqrt{3}}{18}, \qquad d_2 = \frac{3 + \sqrt{3}}{36}, \qquad d_3 = \frac{9 - 4\sqrt{3}}{18}, \qquad d_4 = \frac{3 - \sqrt{3}}{36}.$$

Observing also that the boundary equations may take the form (cf. [13])

$$h^{2} \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \end{bmatrix} - h^{2} Z \begin{bmatrix} \alpha_{2N+1} \\ \alpha_{2N+2} \end{bmatrix} = h^{2} \begin{bmatrix} w_{1} \\ hw_{2} \end{bmatrix}, \quad Z := \operatorname{diag}(z_{1}, z_{2}), \tag{2.8}$$

it is evident that the collocation coefficient matrix C of (2.2) assembles in the block form

$$C = \begin{bmatrix} h^{2}I & 0 & 0 & 0 & \cdots & 0 & 0 & -h^{2}Z \\ A_{1} & B_{1} & 0 & 0 & \cdots & 0 & 0 & 0 \\ 0 & A_{2} & B_{2} & 0 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 0 & A_{N} & B_{N} \end{bmatrix},$$
(2.9)

where 0 denotes the 2×2 null matrix.

3. Properties of the collocation and its associated Jacobi matrices

The use of the Gauss points as interior collocation points implies:

Lemma 3.1. For the matrices A_i and B_i, defined in (2.6) and (2.7) respectively, there holds

$$\det(A_j) = \det(B_j),\tag{3.1}$$

for each j = 1, 2, ..., N.

Proof. By straight forward calculation it can be easily verified that

$$det(A_j) = P + Qh^2 F(\sigma_{2j}) + Rh^2 F(\sigma_{2j+1}) + Sh^4 F(\sigma_{2j}) F(\sigma_{2j+1}),$$

$$det(B_j) = P + Rh^2 F(\sigma_{2j}) + Qh^2 F(\sigma_{2j+1}) + Sh^4 F(\sigma_{2j}) F(\sigma_{2j+1}),$$

where

$$P := c_1 c_4 - c_2 c_3 = 4\sqrt{3}, \qquad Q := c_4 d_1 - c_3 d_2 = \frac{\sqrt{3}}{9},$$
$$R := c_1 d_4 - c_2 d_3 = \frac{\sqrt{3}}{9}, \qquad S := d_1 d_4 - d_2 d_3 = \frac{\sqrt{3}}{108},$$

and the proof follows. $\hfill \Box$

In fact, in [16], we have shown that relation (3.1) holds for any normal second order operator iff the interior collocation points are the Gauss points. The detour, from [16], we followed in proving the above lemma is based on the necessity in establishing conditions for the nonsingularity of the square matrices B_j , j = 1, 2, ..., N, defined in (2.7). Now, as an immediate consequence of the above lemma, we obtain

Corollary 3.1. For the matrices B_j , j = 1, 2, ..., N, defined in (2.7), there holds

$$\det(B_j) \neq 0 \tag{3.2}$$

whenever

$$\phi_F(h^2) := F(\sigma_{2j})F(\sigma_{2j+1})h^4 + 12[F(\sigma_{2j}) + F(\sigma_{2j+1})]h^2 + 432 \neq 0.$$
(3.3)

It is worthwhile mentioning that there are large families of functions F(x) satisfying relation (3.3). For instance, whenever

$$F(x) = f = \text{constant}$$

relation (3.3) is unconditionally satisfied since the discriminant Δ_F of the quadratic $\phi_F(h^2)$ of (3.3) satisfies

$$\Delta_F = -8(12f)^2 < 0.$$

Similarly, whenever F(x) is bounded in the domain of (1.1a), namely

 $|F(x)| \leq M$, $0 < M < \infty$, $x \in [a, b]$,

it suffices

 $Mh^2 < 12$

for (3.3) to hold, since in this case

$$432 > M^{2}h^{4} + 24Mh^{2} \ge |F(\sigma_{2j})F(\sigma_{2j+1})h^{4} + 12[F(\sigma_{2j}) + F(\sigma_{2j+1})]h^{2}|,$$

hence

$$\left|\phi_{F}(h^{2})\right| \geq 432 - \left|F(\sigma_{2j})F(\sigma_{2j+1})h^{4} + 12\left[F(\sigma_{2j}) + F(\sigma_{2j+1})\right]h^{2}\right| > 0.$$

Relation (3.3) constitutes a necessary condition for well-defined block iterative methods, hence assumed to be valid throughout this paper so that the collocation matrix C of (2.9) is a consistently ordered (N + 1)-cyclic matrix in normal form (cf. [18]).

Furthermore, as the BVP in (1.1) is well-posed, hence has a unique solution, it is natural to consider that C, apart from being block (N + 1)-cyclic, is also nonsingular. To investigate the implications of this consideration, let us define the 2×2 matrices

$$R_j := -B_j^{-1}A_j, \quad j = 1, 2, \dots, N,$$
(3.4)

and

$$S_j := R_N \cdots R_j = \prod_{k=j}^N R_k, \quad j = 1, 2, \dots, N,$$
 (3.5)

with, in view also of (3.1),

$$det(R_j) = det(S_j) = 1, \quad j = 1, 2, ..., N.$$
(3.6)

With these definitions and by simply considering appropriate block Gauss transformations one may verify (cf. [13]) that:

Lemma 3.2. Let the collocation matrix C of (2.9) be a block (N + 1)-cyclic matrix, namely relations (3.2) or, equivalently, (3.3) are valid. Then

$$\det(C) = h^4 \det(Q) \prod_{j=1}^N \det(B_j), \tag{3.7}$$

where

$$Q := I - ZS_1 = I - ZR_N \cdots R_1. \tag{3.8}$$

Let us, now, write the collocation matrix C of (2.9) as

0 0 ... 0

0

$$C = D_{N+1} - L_{N+1} - U_{N+1}, (3.9)$$

where

$$D_{N+1} = \text{diag}[h^2 I, B_1, \dots, B_N], \tag{3.10}$$

and

ГО

$$L_{N+1} = \begin{bmatrix} 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\ -A_1 & 0 & 0 & \cdots & 0 & 0 & 0 \\ 0 & -A_2 & 0 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & -A_N & 0 \end{bmatrix},$$

$$U_{N+1} = \begin{bmatrix} 0 & \cdots & 0 & h^2 Z \\ 0 & \cdots & 0 & 0 \\ \vdots & \cdots & \vdots & \vdots \\ 0 & \cdots & 0 & 0 \end{bmatrix}.$$
(3.11)
(3.12)

The (N + 1)-cyclic nature of *C* implies that D_{N+1} is nonsingular, so that the associated block Jacobi iteration matrix \mathcal{J}_{N+1} , defined by

$$\mathcal{J}_{N+1} = D_{N+1}^{-1} (L_{N+1} + U_{N+1}) \\ = \begin{bmatrix} 0 & 0 & 0 & 0 & \cdots & 0 & 0 & Z \\ R_1 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\ 0 & R_2 & 0 & 0 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 0 & R_N & 0 \end{bmatrix},$$
(3.13)

where the matrices R_j are as defined in (3.4), is weakly cyclic of index N + 1 (cf. [18]), hence the matrix \mathcal{J}_{N+1}^{N+1} is block diagonal in the form

$$\mathcal{J}_{N+1}^{N+1} = \operatorname{diag}(ZR_N \cdots R_1, R_1 ZR_N \cdots R_2, \dots, R_N \cdots R_1 Z).$$
(3.14)

And as its block diagonal submatrices are obviously *similar* matrices, it is evident that its spectrum $\sigma(\mathcal{J}_{N+1}^{N+1})$ is the same (within a (N + 1)-multiplicity) with the spectrum of any of its diagonal submatrices. That is to say

$$\sigma(\mathcal{J}_{N+1}^{N+1}) = \sigma^{(N+1)}(ZR_N \cdots R_1) = \sigma^{(N+1)}(ZS_1).$$
(3.15)

Recalling relationship (3.6) we have $det(S_1) = 1$, whence

$$\sigma(ZS_1) = \{\lambda^-, \lambda^+\} \quad \text{with } \lambda^{\pm} = \frac{\tau \pm \sqrt{\tau^2 - 4\zeta}}{2}, \tag{3.16}$$

where

$$\tau = \operatorname{trace}(ZS_1) \quad \text{and} \quad \zeta = \det(Z) = z_1 z_2. \tag{3.17}$$

Combining, now, relations (3.7)-(3.8) and (3.15), or simply by observing the well-known fact that

$$D_{N+1}^{-1}C = I - \mathcal{J}_{N+1}, \tag{3.18}$$

it is apparent that

$$\det(C) \neq 0 \quad \text{iff} \quad 1 \notin \sigma\left(\mathcal{J}_{N+1}^{N+1}\right), \tag{3.19}$$

or, equivalently, by using (3.16) and after some simple algebraic manipulations,

$$\det(C) \neq 0 \quad \text{iff} \quad \tau \neq 1 + \zeta. \tag{3.20}$$

4. Optimally repartitioned SOR for real spectra

Following the discussion in the above section, our analysis for optimal convergence properties of the SOR iterative method takes into consideration that the collocation matrix *C*, defined in (2.9), is a *nonsingular consistently ordered* (N + 1)-*cyclic* matrix, namely relationships (3.2)–(3.3) and (3.19)–(3.20) are valid. Furthermore, our investigation concentrates on the case of a real spectrum of the matrix \mathcal{J}_{N+1}^{N+1} , which is characterized by the condition

$$\tau^2 - 4\zeta \ge 0,\tag{4.1}$$

where τ and ζ are as defined in (3.17), while the case of complex spectra will be treated in a future publication. Assuming a $p \times p$ (p positive integer in [2, N + 1]) block partitioning of the matrix C of (2.9), we may write

$$C = D_n - L_n - U_n, \tag{4.2}$$

where D_p is a block diagonal matrix with square and nonsingular diagonal blocks while L_p and U_p are respectively strictly lower and strictly upper block triangular matrices. Notice that p also denotes the cyclicity index of the collocation matrix C. The associated with (4.1) block SOR iterative method is then described by

$$\mathbf{x}^{(m+1)} = \mathcal{L}_{\omega,p} \mathbf{x}^{(m)} + \mathbf{c}_{\omega,p}, \quad m = 0, 1, \dots,$$
(4.3a)

$$\mathcal{L}_{\omega,p} = (D_p - \omega L_p)^{-1} [(1 - \omega)D_p + \omega U_p], \tag{4.3b}$$

$$\boldsymbol{c}_{\omega,p} = \omega (D_p - \omega L_p)^{-1} h^2 \boldsymbol{b} \tag{4.3c}$$

with $\mathbf{x}^{(0)}$ being arbitrary, $\mathcal{L}_{\omega,p}$ being the SOR *iteration matrix* and $\omega \in (0, 2)$ being the *relaxation* parameter. It is well known e.g. [18] that a measure for the asymptotic rate of convergence of the SOR method is $\varrho(\mathcal{L}_{\omega,p})$, where $\varrho(\cdot)$ denotes the spectral radius, while $\varrho(\mathcal{L}_{\omega,p}) < 1$ constitutes a necessary and sufficient condition of its convergence.

The problem of optimal repartition of the SOR method is equivalent to the problem of determining an index $q \in [2, N+1]$ such that

$$\varrho(\mathcal{L}_{\omega_{q},q}) < \varrho(\mathcal{L}_{\omega_{p},p}), \quad \text{for all } p \neq q, \tag{4.4}$$

where ω_q and ω_p denote respectively the *optimal* relaxation factors of the $\mathcal{L}_{\omega,q}$ and $\mathcal{L}_{\omega,p}$ SOR iteration matrices. At this point we remark that Eirmann et al. [5], extending the classical results of Young [20] and Varga [18] for p = 2 and p > 2 cyclic cases respectively, determined explicitly the optimal relaxation factor ω_p of the SOR method when the spectrum of the associated weakly cyclic of index p block Jacobi matrix satisfies $\sigma(\mathcal{J}_p^p) \subseteq [-\alpha_p^p, \beta_p^p]$ with

$$0 \leqslant \alpha_p < \frac{p}{p-2} \quad (\infty \text{ if } p=2), \tag{4.5a}$$

$$0 \leqslant \beta_p < 1. \tag{4.5b}$$

The later conditions, imposed on the spectrum of the \mathcal{J}_p^p matrix, are based on the work of Wild and Niethammer [19] (for special cases see also [18] and [11]) and comprise necessary convergence conditions for the SOR method; namely, violation of (4.5) implies that SOR diverges for any value of ω . Observe however that condition (4.5a) is not restrictive, as the possibility of repartitioning a *p*-cyclic matrix into a *q*-cyclic one ($2 \leq q \leq p$), combined with the fact that p/(p-2) strictly decreases with respect to *p* and the fact (cf. [14])

$$\sigma\left(\mathcal{J}_{p}^{p}\right)\setminus0=\sigma\left(\mathcal{J}_{q}^{q}\right)\setminus0,\quad p\neq q,\tag{4.6}$$

implies that, as long as (4.5b) is valid, there will always exist a unique index $2 \le \kappa \le p$, satisfying

$$\left(\frac{\kappa+1}{\kappa-1}\right)^{\kappa+1} \leqslant \alpha_{\kappa+1}^{\kappa+1} = \alpha_p^p = \alpha_{\kappa}^{\kappa} < \left(\frac{\kappa}{\kappa-2}\right)^{\kappa},\tag{4.7}$$

such that

$$\begin{cases} \varrho(\mathcal{L}_{\omega_j,j}) < 1, & \text{for all } 2 \leq j \leq \kappa, \\ \varrho(\mathcal{L}_{\omega_i,j}) \ge 1, & \text{for all } \kappa + 1 \leq j \leq p. \end{cases}$$

$$\tag{4.8}$$

In this sense we may say that (4.5b) is a necessary and sufficient condition for convergent optimal SOR schemes. For the collocation case considered here condition (4.5b) is equivalent to

$$\lambda^+ < 1 \quad \Leftrightarrow \quad \tau < \min\{1 + \zeta, 2\},\tag{4.9}$$

where τ and ζ are as defined in (3.17), and assumed to be valid throughout this section.

When the spectrum of the matrix \mathcal{J}_{N+1}^{N+1} is real, the problem of optimal repartitioning of the SOR has been treated successfully in the works of Pierce, Hadjidimos and Plemmons [14], for nonpositive or nonnegative spectra, and Galanis and Hadjidimos [6], for general real spectra. In these works it became apparent that, in view of (4.6), the solution of optimal repartition of the SOR depends on the spectrum of \mathcal{J}_{N+1}^{N+1} , that is it depends on the values λ^- and λ^+ of (3.16).

Omitting the trivial case

$$\varrho(\mathcal{J}_{N+1}) = 0 \quad \Leftrightarrow \quad \lambda^- = \lambda^+ = 0 \quad \Leftrightarrow \quad \tau = \zeta = 0, \tag{4.10}$$

for which (see [14] for example)

$$\varrho(\mathcal{L}_{\omega_n,p}) = 0, \qquad \omega_p = 1 \quad \text{for all indices } p \in [2, N+1],$$

$$(4.11)$$

we adjust the results in [14] and [6] for the collocation case, described in Sections 2 and 3, by means of the following theorem:

Theorem 4.1. Consider the nonsingular consistently ordered (N + 1)-cyclic collocation matrix C of (2.9) and let the necessary and sufficient convergent condition (4.9) be valid. Then the optimal repartitioning index $q \in [2, N + 1]$ of the SOR method is given by:

Optimal repartitioning table.			
Conditions			Optimal index q
I	II	III	
$\zeta \geqslant 0$	$\frac{-}{\tau} < 0$	_ (4.14c) (4.14d)	q = 2 q = N + 1 q = l or l + 1 (4.15)
ζ < 0	au=0 au>0	_ (4.14b) (4.14a)	Any $q \in [2, N + 1]$ q = N + 1 q = l or l + 1 (4.16)

Fig. 1. τ < 0, condition (4.14d) is satisfied, κ = 65, l = 14, 15-cyclic is optimal.

Proof. Recall condition (4.1) and observe that if $\zeta \ge 0$ then $\tau \ne 0$ with

$$0 \leq \lambda^{-} \leq \lambda^{+}$$
 when $\tau > 0$

and

 $\lambda^- \leqslant \lambda^+ \leqslant 0 \quad \text{when } \tau < 0.$

That is to say

$$\sigma\left(\mathcal{J}_{N+1}^{N+1}\right) = \begin{cases} \text{nonnegative}, & \tau > 0, \\ \text{nonpositive}, & \tau < 0, \end{cases}$$

and therefore, from [14], the 2-cyclic repartitioned SOR is optimal and convergent, as (4.9) assumed valid.

Let us now assume $\zeta < 0$. Then

$$\tau^2 - 4\zeta > 0 \quad \text{and} \quad \lambda^- < 0 < \lambda^+. \tag{4.12}$$

Therefore, if we define

$$\alpha := \alpha_{N+1} = |\lambda^{-}|^{\frac{1}{N+1}} \text{ and } \beta := \beta_{N+1} = |\lambda^{+}|^{\frac{1}{N+1}},$$
(4.13)

and the set of conditions

$$0 \leqslant \alpha/\beta < \frac{N-1}{N+1},\tag{4.14a}$$

$$\frac{N-1}{N+1} \leqslant \alpha/\beta < 1, \tag{4.14b}$$

$$1 < \alpha/\beta \leqslant \frac{N+1}{N-1},\tag{4.14c}$$

$$\frac{N+1}{N-1} < \alpha/\beta \leqslant \infty, \tag{4.14d}$$

then, direct application of Theorem 2.1 of [6] implies that:

• In case of $\tau < 0$ there holds $\alpha > \beta$. Therefore, whenever condition (4.14c) holds the (*N*+1)-cyclic SOR is optimal, while whenever condition (4.14d) holds the *l*-cyclic or (*l*+1)-cyclic SOR is optimal, where *l* is the unique integer satisfying

$$\left(\frac{l+1}{l-1}\right)^{l+1} < \left(\frac{\alpha}{\beta}\right)^{N+1} \le \left(\frac{l}{l-2}\right)^{l}.$$
(4.15)

We remark that condition (4.14c), combined with (4.9), implies that (4.5) holds for all $p \in [2, N + 1]$, hence all *p*-cyclic optimal SOR schemes are convergent, whereas condition (4.14d) implies that if $\alpha \ge (N + 1)/(N - 1)$ then only the

Fig. 2. τ < 0, condition (4.14d) is satisfied, κ = 11, l = 5, 5-cyclic is optimal.

Fig. 3. τ > 0, condition (4.14b) is satisfied, κ = 65, 65-cyclic is optimal.

j-cyclic ($j = 2, ..., \kappa$) optimal SOR schemes are convergent, where $\kappa \in [2, N]$ is given by (4.7) (see also [6]), and of course $l \leq \kappa$.

- In case of $\tau = 0$ there holds $\alpha = \beta$. Therefore, any *q*-cyclic SOR is optimal ($q \in [2, N + 1]$) and convergent. Also observe that in this case the condition (4.9) simplifies to $-1 < \zeta \leq 0$.
- In case of $\tau > 0$ there holds $\alpha < \beta$. Therefore, whenever condition (4.13b) holds the (*N* + 1)-cyclic SOR is optimal while whenever condition (4.13a) holds the *l*-cyclic or (*l* + 1)-cyclic SOR is optimal, where *l* is the unique integer satisfying

$$\left(\frac{l-2}{l}\right)^{l} < \left(\frac{\alpha}{\beta}\right)^{N+1} \le \left(\frac{l-1}{l+1}\right)^{l+1}.$$
(4.16)

In this case too, all *p*-cyclic ($p \in [2, N + 1]$) optimal SOR schemes are convergent.

This completes the proof. \Box

Fig. 4. $\tau > 0$, condition (4.14a) is satisfied, $\kappa = 65$, l = 3, 4-cyclic is optimal.

We remark that, as an immediate consequence of Theorem 4.1, for the family of BVPs considered in (1.1) the boundary conditions alone are the decisive factor that determines weather or not the general *p*-cyclic case prevails the 2-cyclic one.

5. Numerical results

In this section, we use several numerical experiments (depicted in Figs. 1–4) to demonstrate the behavior of spectral radius of optimal SOR as a function of the cyclicity index $q \in [2, N + 1]$ in order to further enlighten some characteristic cases covered by Theorem 4.1. In all examples considered, we kept $\zeta < 0$, N = 64 while, for homogeneity purposes, the independent variable *x* of the BVP is considered to be in the interval [0, 1].

References

- [1] G. Birkoff, M.H. Schultz, R.S. Varga, Piecewise Hermite in one and two variables with applications to partial differential equations, Numer. Math. 11 (1968) 232–256.
- [2] V.V. Bolotin, The Dynamic Stability of Elastic Systems, Holden-Day Inc., San Francisco, 1964.
- [3] C. de Boor, B. Swartz, Collocation at Gaussian points, SIAM Numer. Anal. 10 (1973) 582-606.
- [4] L. Brillouin, Wave Propagation in Periodic Structures, Dover Publications, New York, 1953.
- [5] M. Eirmann, W. Niethammer, A. Ruttan, Optimal successive overrelaxation iterative methods for p-cyclic matrices, Numer. Math. 57 (1990) 593-606.
- [6] S. Galanis, A. Hadjidimos, Best cyclic repartitioning for optimal successive overrelaxation convergence, SIAM J. Matrix Anal. Appl. 13 (1992) 102-120.
- [7] G.W. Hill, On the part of the motion of the lunar perigee which is a function of the mean motions of the sun and moon, Acta Math. VIII (1886) 1-36.
- [8] K. Kondovasilis, R.J. Plemmons, W.J. Stewart, Block cyclic SOR for Markov chains with p-cyclic infinitesimal generator, Linear Alg. Appl. 154–156 (1991) 111–124.
- [9] W. Magnus, S. Winkler, Hill's Equation, Dover Publications, New York, 1979.
- [10] T.L. Markham, M. Neumann, R.J. Plemmons, Convergence of a direct-iterative method for large-scale least squares problems, Linear Alg. Appl. 69 (1985) 155–167.
- [11] W. Niethammer, Relaxation bei Matrizen mit der Eigenschaft "A", Z. Angew. Math. Mech. 44 (1944) 425-433.
- [12] W. Niethammer, J. DePillis, R.S. Varga, Convergence of block iterative methods applied to sparse least squares problems, Linear Alg. Appl. 58 (1984) 327–341.
- [13] M.G. Papadomanolaki, PhD thesis, Technical University of Crete, in preparation.
- [14] D.J. Pierce, A. Hadjidimos, R.J. Plemmons, Optimality relationships for p-cyclic SOR, Numer. Math. 56 (1990) 635-643.
- [15] Y.G. Saridakis, Optimally repartitioned SOR iterative method for p-cyclic collocation matrices, in: Proc. HERMIS 94, Athens, Greece, 1994.
- [16] Y.G. Saridakis, C.G. Sifniotopoulos, D.A. Sotiropoulos, Finite element collocation approximation of the characteristic exponent in BVPs with periodic boundary conditions, J. Comp. Appl. Math. 70 (1996) 1–14.
- [17] G.J. Tee, An application of p-cyclic matrices, for solving periodic parabolic problems, Numer. Math. 6 (1964) 142-159.
- [18] R.S. Varga, Matrix Iterative Analysis, Prentice Hall, Englewood Cliffs, NJ, 1962.
- [19] P. Wild, W. Niethammer, Over- and underrelaxation for linear systems with weakly cyclic Jacobi matrices of index p, Linear Alg. Appl. 91 (1987) 29-52.
- [20] D.M. Young, Iterative Solution of Large Linear Systems, Academic Press, New York, 1971.

Hermite-Collocation for one dimensional tumor invasion model with heterogeneous diffusion

M.G.Papadomanolaki¹ and Y.G. Saridakis² Applied Mathematics & Computers Lab Department of Sciences Technical University of Crete Chania 73100, Greece 1. marianna@science.tuc.gr, 2. yiannis@science.tuc.gr

Abstract—Over the past few years, mathematical modeling for studying highly diffusive brain tumors has been well developed. Focusing on gliomas, most common and malignant brain tumors, we consider a known mathematical model for tumor growth and invasion, independent of treatment, that incorporates information about brain tissue heterogeneity by a discontinuous diffusion coefficient. In the direction of producing high order numerical approximation methods, in this work, concentrating on the one dimensional case, we study the implementation and behavior of the Hermite Collocation, as the spatial discretization method, combined with Backward (implicit) Euler (BE) time discretization schemes. Continuity constrains across discontinuity interfaces are used to treat first derivative discontinuities. Numerical experiments are included to demonstrate the performance of the method.

Index Terms—Gliomas,Discontinuous Diffusion Coefficient, Backward Euler, Hermite Collocation

I. INTRODUCTION

Gliomas are difficult to treat brain tumors characterized by their aggressive diffuse invasion of brain normal tissue. Based on analysis of serial Computerized Tomography (CT) scans, the basic mathematical model (cf. [8], [2], [3], [15], [16]) considered a reaction-diffusion equation to study diffuse tumors and effects of surgical resection and chemotherapy. To incorporate the brain tissue heterogeneity (white and grey matter), Swanson [11] (see also [12]-[14]) generalized said model to

$$\frac{\partial \bar{c}}{\partial \bar{t}} = \nabla \cdot \left(\bar{D}(\bar{\mathbf{x}}) \nabla \bar{c} \right) + \rho \bar{c} \quad , \tag{1}$$

where $\bar{c}(\bar{\mathbf{x}}, \bar{t})$ denotes the tumor cell density, ρ denotes the net proliferation rate, and $\bar{D}(\bar{\mathbf{x}})$ is the diffusion coefficient representing the active motility of maligmant cells satisfying

$$\bar{D}(\bar{\mathbf{x}}) = \begin{cases} D_g &, \ \bar{\mathbf{x}} \text{ in Grey Matter} \\ D_w &, \ \bar{\mathbf{x}} \text{ in White Matter} \end{cases}, \qquad (2)$$

with D_g and D_w scalars and $D_w > D_g$. The model formulation is completed by zero flux boundary conditions on the anatomy boundaries and an initial spatial distribution of malignant cells $\bar{c}(\bar{\mathbf{x}}, 0) = \bar{f}(\bar{\mathbf{x}})$. The above model has been extensively studied (e.g. [11]-[14]) and found to be very effective in simulating the behavior of real malignant brain tumors in the time frame for gliomas. The model we are considering in the present work is a dimensionless analog of (1) in one spatial dimension. To be precise, by making use (cf. [11]) of the dimensionless variables:

$$x = \sqrt{\frac{\rho}{D_w}}\bar{x} \quad , \quad t = \rho\bar{t} \quad ,$$
$$c(x,t) = \bar{c}\left(\sqrt{\frac{\rho}{D_w}}\bar{x}, \ \rho\bar{t}\right)\frac{D_w}{\rho N_0} \quad , \quad f(x) = \bar{f}\left(\sqrt{\frac{\rho}{D_w}}\bar{x}\right)$$

with $N_0 = \int \overline{f}(\overline{x}) d\overline{x}$ to denote the initial number of tumor cells in the brain at $\overline{t} = 0$, the model in (1) reduces to

$$\begin{cases} c_t = (Dc_x)_x + c , & x \in [a, b] , t \ge 0 \\ c_x(a, t) = 0 & \text{and} & c_x(b, t) = 0 \\ c(x, 0) = f(x) \end{cases}$$
(3)

or, equivalently, by substituting $c(x,t) = e^t u(x,t)$,

$$\begin{array}{l} \left(\begin{array}{c} u_{t} = \left(Du_{x} \right)_{x} &, \ x \in [a,b] \,, \ t \geq 0 \\ \\ u_{x}(a,t) = 0 \quad \text{and} \quad u_{x}(b,t) = 0 \quad . \end{array} \right)$$

For our analysis we also consider that the diffusion coefficient D(x) takes the form

$$D(x) = \begin{cases} \gamma & , & a \le x < w_1 \\ 1 & , & w_1 \le x < w_2 \\ \gamma & , & w_2 \le x \le b \end{cases}$$
(5)

where $\gamma := \frac{D_g}{D_w} < 1$ is the dimensionless diffusion coefficient in grey matter, 1 is the dimensionless diffusion coefficient in white matter and $\epsilon_w := w_2 - w_1$ is the dimensionless width

of the white matter tract (considered small with respect to the width of the grey matter tract), as well as the initial source of tumor cells f(x) is given by

$$f(x) = \delta(x - \xi) \quad , \quad \xi \in [a, b] \quad , \tag{6}$$

where $\delta(x)$ denotes Dirac's delta.

Primarily, we are aiming at the development and deployment of high order Collocation finite element discretization schemes for studying the solutions of the models described above. In this framework, here, using appropriate continuity boundary conditions at the interfaces $x = w_k$, k = 1, 2, we equivalently restate the model and develop fourth order Hermite-Collocation spatial and first order Backward Euler time discretization schemes for its solution (Section II). The behavior of the numerical method deployed, as well as its stability, are numerically demonstrated in Section III.

Concluding these introductory remarks, we would like to point out that the models discussed in this section may perfectly adapted to describe a great variety of physical problems (heat, electrostatic, porous media/oil reservoirs, etc) involving materials with different diffusion (conduction) parameters. Obviously, the number k of the interfaces can be as large (finite) as the problem demands. The fact we are using k = 2in the model considered here is attributed to simplicity reasons without any loss of the generality.

II. BACKWARD EULER / HERMITE COLLOCATION DISCRETIZATIONS

The discontinuous diffusion coefficient D(x), described in (5), directly implies discontinuity of u_x , hence continuity of Du_x , across each interface. In fact, as the linear parabolic nature of the initial-boundary value problem (4) (or (3)) implies continuity u (or c) across each interface, that is

$$[u] := u^+ - u^- = 0$$
, at $x = w_k$, $k = 1, 2$, (7)

where

$$u^+ := \lim_{x \to w_{\iota}^+} u(x) \text{ and } u^- := \lim_{x \to w_{\iota}^-} u(x)$$

integration of the equation in (4) over the discontinuity interfaces yields

$$[Du_x] := D^+ u_x^+ - D^- u_x^- = 0 , \text{ at } x = w_k , \ k = 1, 2 .$$
 (8)

In view now of the above continuity constrains (7)-(8) an alternative way to state the model (4) can be described by

$$\begin{aligned} u_t &= Du_{xx} , \quad x \in \mathcal{R}_{\ell} , \ \ell = 1, 2, 3 , \ t \ge 0 \\ u_x(a, t) &= 0 \quad \text{and} \quad u_x(b, t) = 0 \\ [u] &= 0 \quad \text{and} \quad [Du_x] = 0 \quad \text{at} \ x = w_k , \ k = 1, 2 \\ u(x, 0) &= f(x) \end{aligned}$$
(9)

where \mathcal{R}_ℓ denote the region

$$\mathcal{R}_1 := [a, w_1) , \ \mathcal{R}_2 := (w_1, w_2) , \ \mathcal{R}_3 := (w_2, b]$$
 (10)

If we now consider a parameter $\epsilon > 0$ and take into account the definition of D(x) in (5), then, within $O(\epsilon)$ and as $\epsilon \to 0$, the constraints (7) and (8) respectively imply that

$$u(w_1 + \epsilon, t) - u(w_1 - \epsilon, t) = 0$$
, (11)

$$u(w_2 + \epsilon, t) - u(w_2 - \epsilon, t) = 0$$
, (12)

and

ı

$$u_x(w_1 + \epsilon, t) - \gamma u_x(w_1 - \epsilon, t) = 0 , \qquad (13)$$

$$\gamma u_x(w_2 + \epsilon, t) - u_x(w_2 - \epsilon, t) = 0$$
. (14)

Hence, an equivalent, within $O(\epsilon)$, expression of the model in (9) is to require u to satisfy the equation

$$u_t = D u_{xx} \tag{15}$$

in each of the intervals $\mathcal{R}_1(\epsilon)$, $\mathcal{R}_2(\epsilon)$ and $\mathcal{R}_3(\epsilon)$, where

$$\mathcal{R}_1(\epsilon) := [a, w_1 - \epsilon] , \ \mathcal{R}_2(\epsilon) := [w_1 + \epsilon, w_2 - \epsilon] ,$$

$$\mathcal{R}_3(\epsilon) := [w_2 + \epsilon, b] ,$$
(16)

together with the four boundary conditions described in (11)-(14) and subject, of course, to the Neumann boundary and initial conditions included in (9).

To derive a numerical approximation of the solution u of (15) in each of the subintervals $\mathcal{R}_{\ell}(\epsilon)$, $\ell = 1, 2, 3$, let us consider for each region $t \times \mathcal{R}_{\ell}(\epsilon)$ a rectilinear grid with sides parallel to the x and t axes and grid spacings h_{ℓ} and τ in the x and t directions respectively. Of course,

$$\begin{cases}
h_1 := (w_1 - a + \epsilon)/N_1, \\
h_2 := (w_2 - w_1 - 2\epsilon)/N_2, \\
h_3 := (b - w_2 - \epsilon)/N_3,
\end{cases}$$
(17)

where N_{ℓ} denotes the number of subintervals of $\mathcal{R}_{\ell}(\epsilon)$, while the grid points $(x_{\ell,m_{\ell}}, t_n)$ are given by

$$x_{1,m_1} := a + m_1 h_1 , \quad m_1 = 0, \dots, N_1$$

$$x_{2,m_2} := w_1 + \epsilon + m_2 h_2 , \quad m_2 = 0, \dots, N_2$$
(18)

$$x_{3,m_2} := w_2 + \epsilon + m_3 h_3 , \quad m_3 = 0, \dots, N_3$$

and

$$t_n = n\tau$$
, $n = 0, 1, \dots$ (19)

To obtain Backward Euler's finite difference time discretization schemes let us consider

$$u_t(x, t_{n+1}) = Du_{xx}(x, t_{n+1})$$
 . (20)

Upon writing

$$\frac{u(x,t_{n+1}) - u(x,t_n)}{\tau} + O(\tau) = Du_{xx}(x,t_{n+1}) \quad , \quad (21)$$

the celebrated Backward (implicit) Euler (BE) scheme (cf e.g. [6], [10]) is expressed as

$$u(x, t_{n+1}) - \tau D u_{xx}(x, t_{n+1}) = u(x, t_n) \quad .$$
 (22)

The BE scheme is $O(\tau)$ accurate in time, with excellent stability properties, and known to respond well to discontinuities or steep gradients. Increased accuracy hybrid Euler schemes will be considered in a future publication.

Let us now briefly describe Hermite Collocation as the spatial discretization of our model. Since the solution u of (15) is *smooth* in each subinterval $\mathcal{R}_{\ell}(\epsilon)$, $\ell = 1, 2, 3$, Hermite approximations seek $O(h_{\ell}^4)$ approximate solutions $U_{\ell}(x, t)$ in the form

$$U_{\ell}(x,t) = \sum_{j_{\ell}=1}^{N_{\ell}+1} \left[\alpha_{\ell,2j_{\ell}-1}(t)\phi_{\ell,2j_{\ell}-1}(x) + \alpha_{\ell,2j_{\ell}}(t)\phi_{\ell,2j_{\ell}}(x) \right]$$
(23)

where the *Hermite cubic basis functions* $\phi_{\ell,2j_{\ell}-1}(x)$ and $\phi_{\ell,2j_{\ell}}(x)$, centered at the node $x_{\ell,j_{\ell}-1}$, are defined by

$$\phi_{\ell,2j_{\ell}-1}(x) = \begin{cases} \phi\left(\frac{x_{\ell,j_{\ell}-1}-x}{h_{\ell}}\right) &, \quad x \in I_{\ell,j_{\ell}-1} \\ \phi\left(\frac{x-x_{\ell,j_{\ell}-1}}{h_{\ell}}\right) &, \quad x \in I_{\ell,j_{\ell}} \\ 0 &, \quad \text{otherwise} \end{cases}$$
(24)

and

$$\phi_{\ell,2j_{\ell}}(x) = \begin{cases} -h_{\ell}\psi\left(\frac{\ell,j_{\ell}-1-x}{h_{\ell}}\right) &, x \in I_{\ell,j_{\ell}-1} \\ h_{\ell}\psi\left(\frac{x-\ell,j_{\ell}-1}{h_{\ell}}\right) &, x \in I_{\ell,j_{\ell}} \\ 0 &, \text{ otherwise} \end{cases}$$
(25)

with $I_{\ell,j_{\ell}} := [x_{\ell,j_{\ell}-1}, x_{\ell,j_{\ell}}]$, $j_{\ell} = 1, \ldots, N_{\ell}$, and the functions $\phi(s)$ and $\psi(s)$ being the generating Hermite cubics over [0, 1]; that is

$$\phi(s) = (1-s)^2(1+2s) , \ \psi(s) = s(1-s)^2 ,$$
 (26)

and $s \in [0, 1]$. As an immediate consequence of the above definitions one may readily verify that the value of the approximate solution $U_{\ell}(x, t)$, at any x in some interval $I_{\ell, j_{\ell}}$, is being determined by adding only a few terms ; that is to say

$$U_{\ell}(x,t) = \sum_{k=2j_{\ell}-1}^{2j_{\ell}+2} \alpha_{\ell,k}(t)\phi_{\ell,k}(x) , \ x \in I_{\ell,j_{\ell}} , \qquad (27)$$

with $j_{\ell} = 1, ..., N_{\ell}$ and $\ell = 1, 2, 3$. The above relationship, combined with the basic properties of the Hermite cubic basis functions

$$\phi_{\ell,2j_{\ell}-1}(x_{\ell,m_{\ell}}) = \delta_{j_{\ell}-1,m_{\ell}} \qquad \phi_{\ell,2j_{\ell}}(x_{\ell,m_{\ell}}) = 0
\phi'_{\ell,2j_{\ell}-1}(x_{\ell,m_{\ell}}) = 0 \qquad \phi'_{\ell,2j_{\ell}}(x_{\ell,m_{\ell}}) = \delta_{j_{\ell}-1,m_{\ell}}
(28)$$

where $\delta_{m,k}$ denotes the Kronecker delta, implies that

$$\alpha_{\ell,2j_{\ell}-1}(t) = U_{\ell}(x_{\ell,j_{\ell}-1},t) \qquad \alpha_{\ell,2j_{\ell}+1}(t) = U_{\ell}(x_{\ell,j_{\ell}},t)$$
$$\alpha_{\ell,2j_{\ell}}(t) = \frac{\partial}{\partial x} U_{\ell}(x_{\ell,j_{\ell}-1},t) \quad \alpha_{\ell,2j_{\ell}+2}(t) = \frac{\partial}{\partial x} U_{\ell}(x_{\ell,j_{\ell}},t)$$
(29)

At each time level $t = t_n$, Collocation determines the unknowns

$$\alpha_{\ell,i_{\ell}}^{(n)} := \alpha_{\ell,i_{\ell}}(t_n) , \quad i_{\ell} = 1, \dots, 2(N_l + 1) , \ell = 1, 2, 3$$

by asking the approximate solution $U_{\ell}(x, t)$ to satisfy equation (22), namely

$$U_{\ell}(x,t_{n+1}) - \tau D \frac{\partial^2}{\partial x^2} U_{\ell}(x,t_{n+1}) = U_{\ell}(x,t_n) , \qquad (30)$$

at $2N_{\ell}$, for each $\ell = 1, 2, 3$, *interior collocation points* (two per subinterval), as well as $U_{\ell}(x, t)$ to satisfy all boundary and initial conditions.

To produce the interior collocation equations, observe that substitution of (27) in equation (30) yields

$$\sum_{k=2j_{\ell}-1}^{2j_{\ell}+2} \alpha_{\ell,k}^{(n+1)} \left[\phi_{\ell,k}(x) - \tau D \phi_{\ell,k}^{''}(x) \right] = \sum_{k=2j_{\ell}-1}^{2j_{\ell}+2} \alpha_{\ell,k}^{(n)} \phi_{\ell,k}(x)$$
(31)

for $x \in I_{\ell,j_{\ell}}$ with $j_{\ell} = 1, \ldots, N_{\ell}$ and $\ell = 1, 2, 3$. By choosing as interior collocation points for each subinterval $I_{\ell,j_{\ell}}$ the Gauss points [1], defined by

$$\sigma_{\ell,2j_{\ell}} = x_{\ell,j_{\ell}-1} + h_{\ell}\sigma \ , \ \sigma_{\ell,2j_{\ell}+1} = x_{\ell,j_{\ell}-1} + h_{\ell}\bar{\sigma} \ , \tag{32}$$

where

$$\sigma = \frac{\sqrt{3} - 1}{2\sqrt{3}} , \ \bar{\sigma} = \frac{\sqrt{3} + 1}{2\sqrt{3}} , \tag{33}$$

the elemental collocation equations that correspond to the element $I_{\ell,j_{\ell}}$ take the matrix form

$$\begin{pmatrix} C_{\ell,j_{\ell}}^{(0)} - \frac{\tau}{h_{\ell}^{2}} D C_{\ell,j_{\ell}}^{(2)} \end{pmatrix} \begin{bmatrix} \alpha_{\ell,2j_{\ell}-1}^{(n+1)} \\ \alpha_{\ell,2j_{\ell}}^{(n+1)} \\ \alpha_{\ell,2j_{\ell}+1}^{(n+1)} \\ \alpha_{\ell,2j_{\ell}+2}^{(n+1)} \end{bmatrix} = C_{\ell,j_{\ell}}^{(0)} \begin{bmatrix} \alpha_{\ell,2j_{\ell}-1}^{(n)} \\ \alpha_{\ell,2j_{\ell}}^{(n)} \\ \alpha_{\ell,2j_{\ell}+1}^{(n)} \\ \alpha_{\ell,2j_{\ell}+2}^{(n)} \end{bmatrix}$$
(34)

where

$$C_{\ell,j_{\ell}}^{(0)} \equiv C_{\ell}^{(0)} := \begin{bmatrix} s_1^{(0)} & h_{\ell} s_2^{(0)} & s_3^{(0)} & -h_{\ell} s_4^{(0)} \\ \\ s_3^{(0)} & h_{\ell} s_4^{(0)} & s_1^{(0)} & -h_{\ell} s_2^{(0)} \end{bmatrix}$$
(35)

with
$$s_1^{(0)} = \frac{9+4\sqrt{3}}{18}$$
, $s_2^{(0)} = \frac{3+\sqrt{3}}{36}$, $s_3^{(0)} = \frac{9-4\sqrt{3}}{18}$ and $s_4^{(0)} = \frac{3-\sqrt{3}}{36}$, while

$$C_{\ell,j_{\ell}}^{(2)} \equiv C_{\ell}^{(2)} := \begin{bmatrix} s_1^{(2)} & h_{\ell} s_2^{(2)} & s_3^{(2)} & -h_{\ell} s_4^{(2)} \\ \\ s_3^{(2)} & h_{\ell} s_4^{(2)} & s_1^{(2)} & -h_{\ell} s_2^{(2)} \end{bmatrix}$$
(36)

with $s_1^{(2)}=-2\sqrt{3}$, $s_2^{(2)}=-1-\sqrt{3}$, $s_3^{(2)}=2\sqrt{3}$ and $s_4^{(2)}=-1+\sqrt{3}$. To produce the boundary collocation equations we force

To produce the boundary collocation equations we force the approximate solution $U_{\ell}(x,t)$ to satisfy all boundary conditions at time level $t = t_{n+1}$. In doing so, and by making · use of relationships (28)-(29), from the Neumann boundary conditions we obtain

$$\frac{\partial}{\partial x}U_{\ell}(a,t) = 0 \quad \Rightarrow \quad \alpha_{1,2}^{(n+1)} = 0 \quad , \tag{37}$$

$$\frac{\partial}{\partial x}U_{\ell}(b,t) = 0 \quad \Rightarrow \quad \alpha_{3,2N_3+2}^{(n+1)} = 0 \quad , \tag{38}$$

while from the boundary conditions (11)-(14) we obtain

which are expressed in matrix form as

$$\begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & \gamma & 0 & -1 \end{bmatrix} \begin{bmatrix} \alpha_{1,2N_1+1}^{(n+1)} \\ \alpha_{1,2N_1+2}^{(n+1)} \\ \alpha_{2,1}^{(n+1)} \\ \alpha_{2,2}^{(n+1)} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
(43)

and

$$\begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -\gamma \end{bmatrix} \begin{bmatrix} \alpha_{2,2N_2+1}^{(n+1)} \\ \alpha_{2,2N_2+2}^{(n+1)} \\ \alpha_{3,1}^{(n+1)} \\ \alpha_{3,2}^{(n+1)} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} .$$
(44)

A careful assembly of all interior elemental and boundary collocation equations, described above, leads to the Collocation system

$$C\mathbf{a}^{(n+1)} = C^{(0)}\mathbf{a}^{(n)}, \quad n = 0, 1, \dots$$
 (45)

where

$$C = \begin{bmatrix} \tilde{A}_1 & B_1 & & & & & \\ & A_1 & B_1 & & & & & \\ & & A_1 & B_1 & & & & & \\ & & & I_1 & J_1 & & & & \\ & & & & A_2 & B_2 & & & \\ & & & & & & A_2 & B_2 & & \\ & & & & & & A_2 & B_2 & & \\ & & & & & & & A_3 & B_3 & \\ & & & & & & & & A_3 & \tilde{B}_3 \\ & & & & & & & & & A_3 & \tilde{B}_3 \end{bmatrix},$$
(46)

The 2×2 matrices A_{ℓ} , B_{ℓ} , A_{ℓ}^0 and B_{ℓ}^0 are defined in an obvious way through (35)-(36) and the relationships

$$C_{\ell} := \left(C_{\ell, j_{\ell}}^{(0)} - \frac{\tau}{h_{\ell}^2} D C_{\ell, j_{\ell}}^{(2)} \right) = \begin{bmatrix} A_{\ell} & B_{\ell} \end{bmatrix}$$
(49)

and

and

$$C_{\ell}^{(0)} := \begin{bmatrix} A_{\ell}^{0} & B_{\ell}^{0} \end{bmatrix} , \qquad (50)$$

while $[I_1 \ J_1]$ and $[I_2 \ J_2]$ denote the 2×4 matrices in (43) and (44) respectively. The 2×1 matrices \tilde{A}_1 and \tilde{A}_1^0 , are obtained from the corresponding matrices A_1 and A_1^0 by omitting their second column. Similarly, \tilde{B}_3 and \tilde{B}_3^0 are obtained from the corresponding matrices B_3 and B_3^0 by omitting their first column. Finally, O denotes the 2×2 null matrix. The initial vector $\mathbf{a}^{(0)}$ is, of course, determined by making use of the initial condition in (9).

Concluding this section we would like to remark that the BE / Hermite Collocation method developed above is first order accurate in time and $O(\epsilon) + O(h^4)$ accurate in space, where $h := \max\{h_1, h_2, h_3\}$. Therefore, the optimal error order in space is obtained whenever $\epsilon = O(h^4)$.

III. NUMERICAL RESULTS

In this section we use numerical experiments to demonstrate the behavior of BE / Hermite Collocation method developed in Section II above. In all scenarios considered Dirac's Delta, used as an initial source of tumor cells, is having the form

$$\delta(x) \equiv \delta_{\eta}(x) := \frac{1}{\eta \sqrt{\pi}} e^{-x^2/\eta^2}$$

Also all scenarios refer to the following model data :

$$\alpha = -5$$
, $w_1 = -0.5$, $w_2 = 0.5$, $b = 5$.

The first and second scenarios consider an initial function f(x), described by

$$f(x) = \delta_{0.2}(x+2)$$

depicted in Fig. 1 which follows. The behavior of its solution

Fig. 1: $f(x) = \delta_{0.2}(x+2)$

is demonstrated through Figs 2 and 3 which correspond to $\gamma = 0.5$ and $\gamma = 0.2$ respectively.

Fig. 2: Tumor growth for $f(x) = \delta_{0.2}(x+2)$ and $\gamma = 0.5$

Fig. 3: Tumor growth for $f(x) = \delta_{0.2}(x+2)$ and $\gamma = 0.2$

The third and forth scenarios consider an initial function f(x), described by

$$f(x) = \delta_{0.4}(x+3)$$

depicted in Fig. 4 which follows. The behavior of its solution

Fig. 4: $f(x) = \delta_{0.4}(x+3)$

is demonstrated through Figs 5 and 6 which correspond to $\gamma = 0.5$ and $\gamma = 0.2$ respectively.

Fig. 5: Tumor growth for $f(x) = \delta_{0.4}(x+3)$ and $\gamma = 0.5$

Fig. 6: Tumor growth for $f(x) = \delta_{0.4}(x+3)$ and $\gamma = 0.2$

Fig. 7 depicts the typical behavior of the spatial relative error $E_{\infty} := \frac{\|U_{h/2} - U_h\|_{\infty}}{\|U_{h/2}\|_{\infty}}$, for fixed $t = t_n$, and different choices of the ϵ parameter. Obviously, the optimal error order in space is obtained whenever $\epsilon = O(h^4)$.

Fig. 7: Typical behavior of the spatial relative error for different choices of ϵ

Finally, Figs. 8 and 9 graphically demonstrate the distribution in the complex plane of the eigenvalues of the matrix $C^{-1}C^{(0)}$ for the last two scenarios and for $\tau >> h$. Apparently, all eigenvalues are modulus less or equal to unity, hence the scheme is unconditionally stable.

Fig. 8: Eigenvalues of $C^{-1}C^{(0)}$ for $f(x) = \delta_{0.4}(x+3)$ and $\gamma = 0.5$

Fig. 9: Eigenvalues of $C^{-1}C^{(0)}$ for $f(x)=\delta_{0.4}(x+3)$ and $\gamma=0.2$

Concluding, we would like to point out that a detailed investigation for the behavior of the approximation method at hand is included in [9] together with the development of Discontinuous Collocation schemes.

REFERENCES

- C. de Boor and B. Swartz Collocation at Gaussian points, SIAM Num. Anal.10: 582-606,1973
- [2] P.K.Burgess, P.M.Kulesa, J.D.Murray, and E.C.Alvord Jr. The interaction of growth rates and diffusion coefficients in a threedimensional mathematical model of gliomas, *Journal of Neu*ropathology and Experimental Neurology ,56(6):704-713, 1997.
- [3] G.C.Cruywagen, D.E.Woodward, P.Tracqui, G.T.Bartoo, J.D.Murray, and E.C.Alvord Jr. The modeling of diffusive tumours, *Journal of Biological Systems*, (3):937-945, 1995.
- W.Hundsdorfer, J.G. Verwer Numerical Solution of Time-Dependent-Advection-Diffusion-Reactions Equations, Springer ,2003.
- [5] J.E. Marsden, L. Sirovich, M. Golubitsky and W. Jager Introduction to Partial Differential Equations A Computational Approach Springer Berlin Heidelberg, 2005.
- [6] A. R. Mitchell, D.F. Griffiths The Finite Difference Method in Partial Differential Equations, John Willey & Sons, 1980.
- [7] K. W. Morton, D. F. Mayers Numerical Solution of Partial Differential Equations, *Cambridge University Press*, 1994.
- [8] J.D. Murray Mathematical Biology, Springer-Verlag, 3rd Edition 2002.
- [9] M.G. Papadomanolaki *PhD Thesis*, Technical University of Crete, (in preparation)
- [10] G.D. Smith Numerical solution of partial equations: finite difference methods (third edition) Oxford University Press, 1985.
- [11] K.R.Swanson Mathematical modeling of the growth and control of tumors, PHD Thesis, University of Washington, 1999.
- [12] K.R.Swanson, E.C.Alvord Jr and J.D.Murray A quantitive model for differential motility of gliomas in grey and white matter, *Cell Proliferation*,33:317-329,2000.
- [13] K.R.Swanson, E.C.Alvord Jr and J.D.Murray Virtual brain tumours(gliomas) enhance the reality of medical imaging and highlight inadequacies of current therapy, *British Journal of Cancer*,86:14-18,2002.
- [14] K.R.Swanson, C.Bridge, J.D.Murray and E.C.Alvord Jr Virtual and real brain tumours: using mathematical modeling to quantify glioma growth and invasion, J.Neurol. Sci, 216:1-10, 2003.
- [15] P.Tracqui,G.C.CruywagenG,D.E.Woodward,T.Bartoo, J.D.Murray and E.C.Alvord Jr. A mathematical model of glioma growth:The effect of chemotherapy on spatio-temporal growth, *Cell Proliferation*,28:17-31,1995.
- [16] D.E.Woodward, J.Cook, P.Tracqui, G.C.Cruywagen, J.D.Murray, and E.C.Alvord Jr. A mathematical model of glioma growth: the effect of extent of surgical resection, *Cell Proliferation*, 29:269-288, 1996.

Collocation with discontinuous Hermite elements for a tumour invasion model with heterogeneous diffusion in 1 + 1 dimensions

M.G.Papadomanolaki¹ and Y.G. Saridakis²

Applied Mathematics & Computers Lab Department of Sciences Technical University of Crete Chania 73100, Greece 1.marianna@science.tuc.gr, 2. yiannis@science.tuc.gr

Abstract. Over the past decade, mathematical modelling for studying highly diffusive brain tumours, such as gliomas, has been well developed. The known mathematical model we consider in this work has been recently developed and successfully tested for the case of gliomas. It is based on the two parameters of proliferation and diffusion and incorporates information about brain tissue heterogeneity (white and grey matter) by a discontinuous diffusion coefficient. Working towards the development of high order numerical approximation schemes, here, concentrating on the one space dimension case, we develop and implement a spatial discretization numerical scheme which is based on the Collocation method with Discontinuous Hermite elements to treat first derivative discontinuities at internal interface points. To evolve in time, the later discontinuous collocation method is combined with the stable Backward Euler (BE) time discretization scheme. Numerical experiments are included to demonstrate the performance of the method.

1 Introduction

Gliomas are among the most malignant forms of primary brain tumours and characterized by their aggressive diffusive behaviour of brain normal tissue. Mainly due to this behaviour, the prognosis for patients with high-grade gliomas is generally very poor. Basic mathematical models that simulate the progress of diffusive brain tumours, such as those in [3],[11], [12] and Burgess ([2]), have been recently upgraded by Swanson ([7],[8]) to incorporate brain tissue heterogeneity in addition to net proliferation and tumour cell motility. This is achieved by introducing a discontinues diffusion coefficient to the basic reaction-diffusion equation, since glioma cells migrate more rapidly in white than in gray matter. In this manner, the differential equation included in the upgraded mathematical model took the form (e.g. [7]):

$$\frac{\partial \bar{c}}{\partial \bar{t}} = \nabla \cdot \left(\bar{D}(\bar{\mathbf{x}}) \nabla \bar{c} \right) + \rho \bar{c} \quad , \tag{1}$$

where $\bar{c}(\bar{\mathbf{x}}, \bar{t})$ denotes the tumour cell density, ρ denotes the net proliferation rate, and $\bar{D}(\bar{\mathbf{x}})$ is the diffusion coefficient representing the active motility of malignant cells satisfying

$$\bar{D}(\bar{\mathbf{x}}) = \begin{cases} D_g \ , \bar{\mathbf{x}} \text{ in Grey Matter} \\ D_w \ , \bar{\mathbf{x}} \text{ in White Matter} \end{cases}$$
(2)

with D_g and D_w scalars and $D_w > D_g$.

The mathematical description of the model completes by considering zero flux boundary conditions on the anatomy boundaries and an initial spatial distribution of malignant cells $\bar{c}(\bar{\mathbf{x}}, 0) = \bar{f}(\bar{\mathbf{x}})$.

The above model has been extensively studied (e.g. [7]-[10]) and found to be very effective in simulating the behavior of real malignant brain tumours in the time frame for gliomas.

To decrease the number of the effective parameters, the model we are considering in the present work is a dimensionless analogue of (1) in one spatial dimension. To be precise, by making use (e.g. [7]) of the dimensionless variables:

$$\begin{split} x &= \sqrt{\frac{\rho}{D_w}} \bar{x} \ , \ t = \rho \bar{t} \ , \ c(x,t) = \bar{c} \left(\sqrt{\frac{\rho}{D_w}} \bar{x}, \ \rho \bar{t} \right) \frac{D_w}{\rho N_0} \\ f(x) &= \bar{f} \left(\sqrt{\frac{\rho}{D_w}} \bar{x} \right) \ \text{and} \ u(x,t) = e^{-t} c(x,t) \end{split}$$

with $N_0 = \int \overline{f}(\overline{x}) d\overline{x}$ to denote the initial number of tumour cells in the brain at $\overline{t} = 0$, the model in (1) reduces to

$$\begin{cases} u_t = (Du_x)_x , & x \in [a, b], t \ge 0 \\ u_x(a, t) = 0 & \text{and} & u_x(b, t) = 0 \\ u(x, 0) = f(x) \end{cases}$$
(3)

For our analysis we also consider that the diffusion coefficient D(x) takes the form

$$D(x) = \begin{cases} \gamma , a \le x < w_1 \\ 1 , w_1 \le x < w_2 \\ \gamma , w_2 \le x \le b \end{cases}$$
(4)

where $\gamma := \frac{D_g}{D_w} < 1$ is the dimensionless diffusion coefficient in grey matter and 1 is the dimensionless diffusion coefficient in white matter. The initial source of tumour cells f(x) is given by

$$f(x) = \delta(x - \xi) \quad , \quad \xi \in [a, b] \quad , \tag{5}$$

where $\delta(x)$ denotes Dirac's delta.

In this work, working towards the development of high order numerical schemes and as a continuation of our work in [5], we develop (Section 2) a Collocation method with appropriate Hermite cubic elements, combined with a Backward Euler (BE) scheme to evolve in time, for the numerical solution of (3) - (4). To treat first derivative discontinuities of the solution u(x,t) in (3), at the internal interface points w_1 and w_2 of (4), we use appropriate discontinuous Hermite cubic nodal basis functions at these interfaces. Numerical experimentation, included in Section 3, reveals a fourth order spatial approximation by the proposed Discontinuous Hermite Collocation (DHC) method.

2 BE - DHC discretizations

ı

Following [5], let us first observe that the discontinuous diffusion coefficient D(x), described in (4), directly implies discontinuity of u_x , hence continuity of Du_x , across each interface. In fact, as the linear parabolic nature of the initialboundary value problem (3) implies continuity of u (or c) across each interface, that is

$$[u] := u^{+} - u^{-} = 0$$
, at $x = w_k$, $k = 1, 2$, (6)

where

$$u^+ := \lim_{x \to w_k^+} u(x) \text{ and } u^- := \lim_{x \to w_k^-} u(x) ,$$

integration of the equation in (3) over the discontinuity interfaces yields

$$[Du_x] := D^+ u_x^+ - D^- u_x^- = 0 , \text{ at } x = w_k , \ k = 1, 2 .$$
 (7)

BE finite difference time discretization schemes for the equation in (3) are readily available by considering uniform time discretization steps in the form

$$t_n = n\tau$$
, $n = 0, 1, \dots$ (8)

where τ is constant, and use (3) to write

$$u_t(x, t_{n+1}) = Du_{xx}(x, t_{n+1}) \quad . \tag{9}$$

Then, upon writing

$$\frac{u(x,t_{n+1}) - u(x,t_n)}{\tau} + O(\tau) = Du_{xx}(x,t_{n+1}) \quad , \tag{10}$$

the celebrated BE scheme (e.g. [4], [6]) is expressed as

$$u(x, t_{n+1}) - \tau D u_{xx}(x, t_{n+1}) = u(x, t_n) \quad . \tag{11}$$

The above BE scheme is $O(\tau)$ accurate in time, with excellent stability properties, and known to respond well to discontinuities or steep gradients. Increased accuracy hybrid Euler schemes will be considered in a future publications.

To describe the DHC as the spatial discretization method of our model, let us first define the spatial regions

$$\mathcal{R}_1 := [a, w_1], \ \mathcal{R}_2 := [w_1, w_2], \ \mathcal{R}_3 := [w_2, b],$$
 (12)

and consider a uniform partition in each one of them of length

$$h_1 := (w_1 - a)/N_1$$
, $h_2 := (w_2 - w_1)/N_2$, $h_3 := (b - w_2)/N_3$, (13)

respectively, where N_{ℓ} denotes the number of subintervals of \mathcal{R}_{ℓ} . Then, at each time level t_n , the grid points (x_m, t_n) are given by

$$x_m := a + mh$$
, $m = 1, \dots, N+1$, (14)

where $N = N_1 + N_2 + N_3$ and $h = h_\ell$ whenever $x_m \in \mathcal{R}_\ell$, $\ell = 1, 2, 3$.

For sufficiently smooth solutions u, Hermite cubic polynomial approximations seek $O(h_{max}^4)$, $h_{max} = max\{h_1, h_2, h_3\}$, approximate solutions U(x, t) in the form

$$U(x,t) = \sum_{j=1}^{N+1} \left[\alpha_{2j-1}(t)\phi_{2j-1}(x) + \alpha_{2j}(t)\phi_{2j}(x) \right]$$
(15)

where the Hermite cubic basis functions $\phi_{2j-1}(x)$ and $\phi_{2j}(x)$, centered at the node x_j , are defined by

$$\phi_{2j-1}(x) = \begin{cases} \phi\left(\frac{x_j-x}{h}\right) &, \quad x \in I_{j-1} \\ \phi\left(\frac{x-x_j}{h}\right) &, \quad x \in I_j \\ 0 &, \quad \text{otherwise} \end{cases}, \quad \phi_{2j}(x) = \begin{cases} -h\psi\left(\frac{x_j-x}{h}\right), \, x \in I_{j-1} \\ h\psi\left(\frac{x-x_j}{h}\right) &, \, x \in I_j \\ 0 &, \quad \text{otherwise} \end{cases}$$

$$(16)$$

with $I_j := [x_j, x_{j+1}]$, and the functions $\phi(s)$ and $\psi(s)$ being the generating Hermite cubics over [0, 1]; that is

$$\phi(s) = (1-s)^2(1+2s) , \ \psi(s) = s(1-s)^2 , \ s \in [0,1].$$
 (17)

For the solution u of our model problem in (3), since there are discontinuities at the interface points $w_1 \equiv x_{N_1+1}$ and $w_2 \equiv x_{N_1+N_2+1}$, it is apparent that we have to force the approximate solution U(x,t) of (15) to satisfy the conditions described in (7); namely,

$$[DU_x] := D^+ U_x^+ - D^- U_x^- = 0 , \text{ at } x = w_k , \ k = 1, 2 , \qquad (18)$$

or, equivalently, after using well known properties of the Hermite cubic functions,

$$\gamma \phi_{2i}(x_i^-) = \phi_{2i}(x_i^+) , \quad i = N_1 + 1 ,$$
(19)

$$\phi_{2i}(x_i^-) = \gamma \ \phi_{2i}(x_i^+) \ , \ i = N_1 + N_2 + 1 \ .$$
 (20)

This can be achieved if, instead of the Hermite cubics in (16), we define the basis functions $\phi_{2i}(x)$ as follows:

$$\phi_{2i}(x) = \begin{cases} -\frac{h}{\gamma}\psi\left(\frac{x_i-x}{h}\right), x \in I_{i-1} \\ h\psi\left(\frac{x-x_i}{h}\right), x \in I_i , \quad i = N_1 + 1 \\ 0 , \text{ otherwise} \end{cases}$$
(21)

 $\quad \text{and} \quad$

$$\phi_{2i}(x) = \begin{cases} -h\psi\left(\frac{x_i-x}{h}\right), x \in I_{i-1} \\ \frac{h}{\gamma}\psi\left(\frac{x-x_i}{h}\right) &, x \in I_i \\ 0 &, \text{ otherwise} \end{cases} , \quad i = N_1 + N_2 + 1 , \qquad (22)$$

shown schematically below for $\gamma = 0.3$. Forcing now the approximate solution

U(x,t) to satisfy equation (11) at the two Gauss interior collocation points (cf. [1])per subinterval and working similarly as in [5], the elemental collocation equations that correspond to the element I_j , j = 1, ..., N take the matrix form

$$\left(C_{j}^{(0)} - \frac{\tau}{h^{2}}DC_{j}^{(2)}\right) \begin{bmatrix} \alpha_{2j-1}^{(n+1)} \\ \alpha_{2j}^{(n+1)} \\ \alpha_{2j+1}^{(n+1)} \\ \alpha_{2j+2}^{(n+1)} \end{bmatrix} = C_{j}^{(0)} \begin{bmatrix} \alpha_{2j-1}^{(n)} \\ \alpha_{2j}^{(n)} \\ \alpha_{2j+1}^{(n)} \\ \alpha_{2j+2}^{(n)} \end{bmatrix}$$
(23)

where τ, h and D are as defined in (8), (14) and (4) respectively, while

$$C_{j}^{(\kappa)} = \begin{bmatrix} s_{1}^{(\kappa)} & \frac{h}{\alpha_{j}} s_{2}^{(\kappa)} & s_{3}^{(\kappa)} - \frac{h}{\beta_{j}} s_{4}^{(\kappa)} \\ s_{3}^{(\kappa)} & \frac{h}{\alpha_{j}} s_{4}^{(\kappa)} & s_{1}^{(\kappa)} - \frac{h}{\beta_{j}} s_{2}^{(\kappa)} \end{bmatrix} , \quad \kappa = 0, 2$$
(24)

with $s_1^{(0)} = \frac{9+4\sqrt{3}}{18}$, $s_2^{(0)} = \frac{3+\sqrt{3}}{36}$, $s_3^{(0)} = \frac{9-4\sqrt{3}}{18}$, $s_4^{(0)} = \frac{3-\sqrt{3}}{36}$, $s_1^{(2)} = -2\sqrt{3}$, $s_2^{(2)} = -1 - \sqrt{3}$, $s_3^{(2)} = 2\sqrt{3}$ and $s_4^{(2)} = -1 + \sqrt{3}$. The constants α_j and β_j are used to distinguish the elemental matrices for the elements I_{N_1} and $I_{N_1+N_2+1}$ since the basis functions in those elements are using equations (20) and (21) respectively. Therefore, for $j \in \{1, \dots, N\}$

$$\alpha_j = \begin{cases} 1, j \neq N_1 + N_2 + 1\\ \gamma, j = N_1 + N_2 + 1 \end{cases}, \quad \beta_j = \begin{cases} 1, j \neq N_1\\ \gamma, j = N_1 \end{cases}.$$
(25)

To produce the boundary collocation equations we force the approximate solution U(x,t) to satisfy the boundary conditions in (3) at $t = t_{n+1}$; therefore

$$\alpha_2^{(n+1)} = 0 , \quad \alpha_{2N+2}^{(n+1)} = 0 .$$
 (26)

As in [5], a careful assembly of all interior elemental and boundary collocation equations, described above, leads to the Collocation system

$$A\mathbf{a}^{(n+1)} = B\mathbf{a}^{(n)}, \quad n = 0, 1, \dots$$
 (27)

where $\mathbf{a}^{(n)} = \left[\alpha_1^{(n)}\alpha_3^{(n)}\cdots\alpha_{2N+1}^{(n)}\right]^T$ and

$$A = \begin{bmatrix} \tilde{A}_{1} & B_{1} & & \\ A_{2} & B_{2} & & \\ & \ddots & & \\ & A_{N-1} & B_{N-1} & \\ & & & A_{N} & \tilde{B}_{N} \end{bmatrix}, \quad B = \begin{bmatrix} \tilde{F}_{1} & G_{1} & & \\ & F_{2} & G_{2} & & \\ & \ddots & & \\ & & F_{N-1} & G_{N-1} & \\ & & & F_{N} & \tilde{G}_{N} \end{bmatrix}.$$
(28)

The 2×2 matrices A_j , B_j , F_j and G_j are defined in an obvious way through (22)-(24) and the relationships

$$[A_j \ B_j] = \left(C_j^{(0)} - \frac{\tau}{h^2} D C_j^{(2)}\right) \text{ and } [F_j \ G_j] = C_j^{(0)} .$$
(29)

The tilde analogues of the above matrices are obtained by omitting their second column.

3 Numerical Results

To demonstrate the behavior of BE-DHC method, developed in Section 2 above, we used the following model data

$$\alpha = -5$$
, $w_1 = -0.5$, $w_2 = 0.5$, $b = 5$, $\gamma = 0.5$ and $f(x) = \frac{1}{\eta \sqrt{\pi}} e^{-(x+2)^2/\eta^2}$,

Sept 15-18, Chania, Crete, Greece

Proceedings of NumAn2010 Conference

with $\eta = 0.3$ to obtain the results depicted in the figures included. Simple inspection of the said figures reveals that brain white matter serves as a high way for tumour growth as well as the DHC spatial discretization method developed here conserves the fourth order of convergence known for continuous problems.

References

- C. de Boor and B. Swartz Collocation at Gaussian points, SIAM Num. Anal., 10:582-606, 1973
- P.K.Burgess, P.M.Kulesa, J.D.Murray, and E.C.Alvord Jr. The interaction of growth rates and diffusion coefficients in a three-dimensional mathematical model of gliomas, *Journal of Neuropathology and Experimental Neurology*, 56(6):704-713, 1997.
- G.C.Cruywagen, D.E.Woodward, P.Tracqui, G.T.Bartoo, J.D.Murray, and E.C.Alvord Jr. The modeling of diffusive tumours, *Journal of Biological Systems*, 3:937-945, 1995.
- 4. A. R. Mitchell, D.F. Griffiths **The Finite Difference Method in Partial Differential Equations**, John Willey & Sons, 1980.
- M.G. Papadomanolaki and Y.G. Saridakis Hermite-Collocation for one dimensional tumour invasion model with heterogeneous diffusion, *HERMIS*-μπ, 11:63-68, 2010.
- 6. G.D. Smith Numerical solution of partial equations: finite difference methods (third edition) Oxford University Press, 1985.
- 7. K.R.Swanson Mathematical modelling of the growth and control of tumours, *PHD Thesis, University of Washington*, 1999.
- K.R.Swanson, E.C.Alvord Jr and J.D.Murray A quantitive model for differential motility of gliomas in grey and white matter, *Cell Proliferation*, 33:317-329, 2000.
- K.R.Swanson, E.C.Alvord Jr and J.D.Murray Virtual brain tumours(gliomas) enhance the reality of medical imaging and highlight inadequacies of current therapy, *British Journal of Cancer*, 86:14-18, 2002.
- K.R.Swanson, C.Bridge, J.D.Murray and E.C.Alvord Jr Virtual and real brain tumours: using mathematical modeling to quantify glioma growth and invasion, J.Neurol.Sci, 216:1-10, 2003.
- P.Tracqui,G.C.CruywagenG,D.E.Woodward,T.Bartoo, J.D.Murray and E.C.Alvord Jr. A mathematical model of glioma growth:The effect of chemotherapy on spatio-temporal growth, *Cell Proliferation*, 28:17-31, 1995.
- D.E.Woodward,J.Cook,P.Tracqui,G.C.Cruywagen,J.D.Murray,and E.C.Alvord Jr. A mathematical model of glioma growth: the effect of extent of surgical resection, *Cell Proliferation*, 29:269-288, 1996.