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ABSTRACT 

 

The Eternity II puzzle is a combinatorial search problem which qualifies as a computational grand 

challenge. As no known closed form solution exists, its solution is based on exhaustive search, 

making it an excellent candidate for FPGA-based architectures, in which complex data structures 

and non-trivial recursion are implemented in hardware. This paper presents such an architecture, 

which was designed and fully implemented on a Virtex5 FPGA (XUP ML505 board). Despite the 

serial nature of the recursion, as parallelism can be applied with the initiation of multiple searches, 

the system shows a measured speedup of 2,6 vs. a high-end multi-core compute server. 
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I. INTRODUCTION 

 

The Eternity II is an edge-matching puzzle which involves placing 256 square puzzle pieces into 

a 16 by 16 grid, constrained by the requirement to match adjacent edges. Each puzzle piece has its 

edges marked with different color combinations, each of which must match with its neighboring 

side on each adjacent piece when the puzzle is complete. It was invented by Christopher Monckton, 

and is marketed and copyrighted by TOMY UK Ltd [1],[2]. A puzzle competition was released on 

28 July 2007 and a $2 million prize is being offered to the first complete solution. As expected, 

none has been found to date. The puzzle comprises of a 16X16 board with a pre-paced initial tile, 

and an additional 255 square tiles. A completed 4x4 puzzle is presented on Figure 1. There are a 

total of 22 different colors, out of which five are exclusive to the corner and border pieces, and 17 

for the inner board pieces. Taking into account the fixed piece in the center and the restrictions set 

on the pieces on the edge, the number of possible configurations are [2]:  

 

1 × 4! × 56! × 195! × 4
195

 = 1.115 × 10
557

   [Formula 1] 

 

 

Figure 1.  A completed 4X4 Eternity-II puzzle 
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Solving the puzzle is computationally hard. More precisely, it has been proven by Yasuhiko 

Takenaga et.al. [3], that deciding if there is a tiling of the Tetravex board is NP-complete and hence 

it has no simple closed form solution. The Tetravex game is the same puzzle game as the Eternity 

II. The extremity of the computation requirements for the Eternity II has attracted the interest of the 

research community. In this project we exploit the parallelism of an existing exhaustive search 

approach, in order to increase its performance. 

We chose an exhaustive search approach for solving the puzzle using FPGAs. The main 

contribution of this work is that we tackle a problem which we know from previous research from 

other groups and ourselves [7-11] that it does not fare well vs. software implementations for a 

single instance of the algorithm. The existence of optimized software for this problem allowed for a 

good challenge on the hardware design process. This work (like our previous one) remains highly 

experimental, with full implementation on a Xilinx FPGA, the XC5V110T, on which the algorithm 

run for months at a time (with checkpointing for robustness). 

The rest of the paper is organized as follows: Chapter II presents related work. Chapter III 

presents applications related to puzzle solving. Chapter IV presents the algorithm. In Chapter V our 

software implementations are analyzed. Chapter VI presents the proposed architecture. Chapter VII 

presents the space vs time tradeoffs of the various architectures and architecture improvements. 

Chapter VIII presents the software running on the host PC in order to establish communication with 

the FPGA. Chapter IX presents implementation results, the architecture’s performance evaluation 

from actual runs and comparisons to software solutions, followed by Conclusions in Chapter X.  
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II. RELATED WORK  

 

A. Eternity II  Software Solvers  

The Eternity II caused the interest of the scientific community by being an NP-complete 

problem therefore multiple algorithms have been published since 2007 when the puzzle was 

introduced.  

Pierre Schaus et. al.[4] presented an algorithm that first initializes the board with constraint 

programming by relaxing the problem and then the solution is improved with a very large 

neighborhood stochastic local search. The neighborhood is very large (i.e. exponential) but can be 

explored in polynomial time by solving an assignment problem. 

Wim Vancroonenburg et. al.[5] introduced a two phase hyper-heuristic search method for 

solving the Eternity II puzzle. A hyper-heuristic manages a set of low level, problem specific, 

heuristics without knowledge of the problem domain, and tries to apply them to the problem in a 

meaningful way. In their approach they use a common hyper-heuristic framework. It consists of an 

iterative framework with two sub-mechanisms: a heuristic selection mechanism which uses some 

strategy to select a low level heuristic for generating a new (partial or complete) solution in the 

current iteration, and an acceptance mechanism to decide on the acceptability of the new solution. 

Wei-Sin Wang et. al.[6] proposed a two-phase approach to solve the Eternity-II puzzles mainly 

based on the tabu search algorithm. The first phase solves the outside region of the puzzle, and then 

based on the result obtained in the first phase the entire puzzle is solved in the second phase. The 

neighborhood functions are based on swap and rotation. Random perturbation and simulated 

annealing are included to escape from the local optima.  

Jorge Munoz et .al.[12], in their work evaluate a genetic algorithm and a multiobjective 

evolutionary algorithm in a constraint satisfaction problem. The problem that was chosen is the 

Eternity II puzzle. The objective is to analyze the results and the convergence of both algorithms in 

a problem that is not purely multiobjective but that can be split into multiple related objectives. For 

the genetic algorithm two different fitness functions were used, the first one as the score of the 

puzzle and the second one as a combination of the multiobjective algorithm objectives. 

Marijn J.H. Heule [13], proposed a way of solving edge-matching problems with satisfiability 

solvers. The usefulness of these solvers does not only depend on their strength and the properties of 

a certain problem, but also on how the problem is translated into SAT. To show the impact of the 
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translation on the performance, encodings of edge-matching problems was studied. There exists no 

straightforward translation into SAT for edge-matching problems such as Eternity II. A compact 

translation of edge-matching problems into CNF was used, which can be extended by using 

redundant clauses representing additional knowledge about the problem. The results show that 

these redundant clauses can guide the search – both for complete and incomplete SAT solvers – 

yielding significant performance gains. 

Also, many unpublished exhaustive search software implementations can be found on the 

internet. 

 

B. Special-Purpose Hardware for Combinatorial Problems  

 

A special purpose hardware addressing the Eternity II problem was implemented by Vladimír 

Kašík [18]. In his work the implementation of a fast computation of the Backtracking Algorithm 

with FPGA logic is presented. The specific problem is encoded into the FPGA structure and solved 

in the hardware. Each partial candidate of the solution is then put / rejected (pushed / popped) in a 

single clock cycle only. This implementation can achieve a performance of about 8MNodes/sec. A 

comparison between his implementation and ours is done in Chapter VIII. 

There also exist a variety of combinatorial problems that have been studied and the 

corresponding special purpose hardware was implemented with the scope of achieving SpeedUps 

vs the equivalent software implementations. 

Marco Platzner [17] in his work states that reconfigurable accelerators can improve process time 

on combinatorial problems with fine-grained parallelism. Such problems contain a huge number of 

logical operations (NOT, AND, and OR) that can evaluate simultaneously, a characteristic that 

varies considerably from problem to problem. Because of this variability, such combinatorial 

problems are approached using instance-specific reconfiguration—hardware tailored to a specific 

algorithm and a specific set of input data. Boolean satisfiability is a common combinatorial 

problem that exhibits fine-grained parallelism that varies considerably based on the situation. Its 

solution is thus an ideal candidate for improvement with instance-specific reconfiguration. In fact, 

simulations of an instance-specific accelerator show potential speedups by a factor of up to 140,000 

in execution time over the solution by a software solver. 
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The Golomb ruler derivation problem was thoroughly studied at the Microprocessor and 

Hardware Laboratory of the Technical University of Crete. The results were three hardware 

implementations of the Shift Algorithm. These architectures were GE1 [14] which is a single 

processor engine with 20 Xilinx XC5000 FPGAs. GE1 was followed by GE2 [15] which is an 

FPGA multiprocessor architecture developed jointly at TUC and Virginia Tech. In GE2, PC-run 

software produced stubs (Golomb Rulers with fewer marks than the actual ruler of the search) and 

many consumer GEs (hardware) calculated each stub, until all the search space is searched. The last 

architecture developed at TUC is GE3 [16], which is a single-chip client-server architecture. The 

new client architecture supports parallel evaluation of multiple hypotheses (up to 16), each 

implemented as a shift operation and one server can support many clients. This architecture 

presented a SpeedUp of about 570, with a very large FPGA in terms of slice resources, vs the 

optimized software.   

Spyridon Ninos et.al. [11], presented a general, data-oriented approach to implement recursion 

on reconfigurable hardware. Recursion is a powerful technique used to solve problems with 

repeating patterns, and is a fundamental structure in software. They demonstrate that recursion can 

be efficiently implemented in a general way on FPGAs. This architecture was used for the 

implementation of two algorithms; the knight’s tour and a binary tree search. 

Valery Sklyarov [7] in his work suggests a novel method for implementing recursive algorithms 

in hardware. The required support for recursion has been provided through a modular and a 

hierarchical specification of a control unit that can be translated to an implementation of the 

respective hardware circuit on the basis of a recursive hierarchical finite state machine and through 

a mechanism that permits the contents of an execution unit to be stored/restored between 

hierarchical calls/returns.  

Valery Sklyarov et.al. [10], at a later publication analyses and compares alternative iterative and 

recursive implementations of N-ary search algorithms in FPGAs. The improvements over their 

previous results have been achieved with the aid of the proposed novel methods for the fast 

implementation of hierarchical algorithms. The methods possess the following distinctive features: 

1) providing sub-algorithms with multiple entry points; 2) fast stack unwinding for exits from 

recursive sub-algorithms; 3) hierarchical returns based on two alternative approaches; 4) rational 

use of embedded memory blocks for the design of a hierarchical finite state machine. 
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III. APPLICATIONS 

As stated in Chapter II, the Eternity II puzzle caused the interest of the scientific community 

about edge matching puzzle problems. The architecture presented here was designed in order to 

measure the capabilities of reconfigurable hardware on such problems. Also this architecture, with 

the appropriate modifications, can be used for solving a variety of problems.  

 

From a Puzzle Type to Another 

This architecture can address any edge matching puzzle with the appropriate adjustments, e.g. 

the initialization of the memories that contain the puzzle pieces, adjustments concerning the puzzle 

size. Also as shown by Erik D. Demaine and Martin L. Demaine in [19], jigsaw puzzles, edge-

matching puzzles and polyomino packing puzzles (introduced by Solomon W. Golomb), are all 

NP-complete and furthermore, any puzzle of one type can be converted into an equivalent puzzle of 

any other type. Jigsaw puzzles have a guiding image and each side of a piece has only one ―mate‖, 

although a few harder variations have blank pieces and/or pieces with ambiguous mates. In an 

edge-matching puzzle (Eternity II), the goal is to arrange a given collection of several identically 

shaped but differently patterned tiles (typically squares) so that the patterns match up along the 

edges of adjacent tiles.  In a harder abstract form of edge-matching puzzles, edges also have a sign 

(+ or −) and adjacent tiles must have opposite sign (like magnetism). Polyomino packing puzzles 

were introduced by Golomb around 1965 [20]. These puzzles were popularized by the Eternity 

puzzle. A polyomino arises from gluing unit squares together edge-to-edge. In general, a 

polyomino arises from edge-to-edge gluing of several copies of a simple shape, such as a square, an 

equilateral triangle, or an equilateral triangle cut in half (as in Eternity). In a polyomino packing 

puzzle, the goal is to pack a given collection of several polyforms into precisely a given shape—the 

target shape—such as a larger rectangle, rhombus, or dodecagon (as in Eternity).  

 They show that, computationally, these three types of puzzles are all effectively the same. A 

puzzle of one type can be converted into an equivalent puzzle of each of the other types, with a 

small blowup in puzzle size. Every solution in one puzzle corresponds to a solution in the other 

puzzle, by a simple, efficient, and invertible conversion. The transition from a puzzle type to 

another is shown on Figure 2.  
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Figure 2.  Transitions between puzzle types 

 

The Eternity II puzzle is an unsigned edge matching puzzle. By taking into account the methods 

described in [19] we can state that our system is able to solve any kind of these puzzles. The steps 

needed for a puzzle to become eligible to be solved by our architecture are: 

 Make the appropriate changes on the puzzle pieces so the puzzle will become an edge 

matching puzzle. 

 Create the piece data structures that need to be loaded on the architecture. 

 Make any adjustments on the architecture if needed. 

 Allow the hardware to solve the problem.   

 Translate the result back to its original form.   

 

 

Speech Descrambling 

This allows our architecture to address a variety of problems that can be translated in any kind 

of the puzzles described above. Such a problem is presented in [21]. Y-X. Zhao et. al. presented the 

application of puzzle solving in speech descrambling. The security problem of speech 

communication has always been a demanding problem in military and business areas. A common 

approach to realizing end-to-end security is the use of a scrambler. Most of the scramblers are 

based on permutation of speech signals in the time domain and/or frequency domain. On the other 

hand, descramblers are used to eavesdrop information from scrambled speech signals.  
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                        (a)                                                               (b) 

 

                       (c)                                                               (d) 

 

Figure 3.  Scrambling a speech signal: (a) the original speech signal in time domain. (b) 

scrambled speech signal in time domain. (c) the original spectrogram. (d) the scrambled 

spectrogram. 

They propose a new approach to implement a descrambler. They treat the descrambling problem 

as a puzzle solving problem. In this considered puzzle problem, each piece is a rectangular-shaped 

gray scaled image puzzle. They propose two different methods to assemble puzzles. The first 

method is based on human heuristics and the second method is based on the Ant Colony System 

(ACS) algorithm. 

The scrambled signal is composed of a number of rectangular-shaped gray scaled pieces as 

shown on Figure 3. These pieces match the attributes of the edge matching puzzle pieces. So this 
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puzzle can be considered as an edge matching puzzle. In order for it to be applicable for our 

architecture the only thing that needs to be done is the coding of each piece’s edges.  

 

VLSI Placement Problems   

Another application that our architecture could address is the placement problems of VLSI 

modules and die-set parts. As stated by Kouki Kimoto et.al. in [22], developing a new algorithm  

for two-dimensional (2D) polyomino packing problems is expected to lead to another new 

algorithm for real applications, such as the placement problems of VLSI modules and die-set parts. 

Floor-plan design in VLSI circuit layout is a typical example of placement problems, where circuit 

modules, usually rectangularly shaped or at most L-shaped, are placed so as to minimize the total 

area occupied by them. Several approaches to solving the placement problem of VLSI modules 

have been presented. In these approaches, the typical procedure involves representing placement 

topology by a graph-theoretic order-pair expression or block-slicing-Polish expression, giving 

fluctuations to the topology by simulated annealing, and then improving the objective for optimal 

placement. They first explored two-dimensional (2D) polyomino packing problems (2DPPPs) of 

polyominoes of any shape topology. It is well known that a 2D-PPP of this type shares common 

features with general placement problems; however, it has, by definition, its own special features 

such that it has at least one solution of placement, that a feasible solution is always optimal, and 

that not many solutions are expected. This problem requires the transition from a polyomino 

packing puzzle to an edge matching. The method for doing so is described in [19].  

 

Image Watermarking 

Muhammad Jamil Anwar et.al. introduce in their paper [23] a new method of adaptive blind 

digital image watermarking in spatial domain. Watermarking is a way to hide secret information in 

a cover image or host medium. In the proposed method both cover and secret images are 

partitioned into equal size blocks. Then host for each secret image block is intelligently selected 

through Genetic Algorithm. At the watermark extraction phase only watermarked image is required 

from which using Jigsaw Puzzle Solver (JPS) the secret image is reconstructed (Figure 4). JPS 

works by combining blocks based on block edge and texture information in it. In JPS an image is 

reconstructed on the basis of image contents instead of image geometry. Initially a scattered image 

piece is taken as a complete image and randomly remaining pieces are taken and are matched with 
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the completed piece to form the actual image. Our architecture could work on the reconstruction 

stage as the Jigsaw Puzzle Solver. Actually the pieces being rectangular and only the edges matter 

for the solving of the puzzle basically makes it an edge matching puzzle. As a result it can be 

solved by our architecture with the only need of the coding of each puzzle piece’s edges.  

 

(a)                             (b)                             (c) 

Figure 4.  (a) Scattered secret image. (b) Secret image partially retrieved after application of JPS. 

(c) Retrieved complete secret image. 

 

Archeology 

Jigsaw puzzle solving, and thus our work, can be used also in archeology. Florian Kleber et. al. 

in [30] states that an automated assembling of shredded/torn documents (2D) or broken pottery 

(3D) will support philologists, archaeologists and forensic experts. They present an overview about 

current puzzle applications in Cultural Heritage. As stated by Benedict J. Brown et. al. in [24], at 

Akrotiri on the volcanic island of Thera (modern-day Santorini, Greece) as at other excavations, 

recent computer graphics research may significantly improve the quality of artifact documentation 

and reduce the human labor involved in matching the ―jigsaw puzzle‖ of fragments (currently 

estimated at 75% of the total human effort at the site), freeing up time for other important tasks 

including conservation and restoration. Also Georgios Papaioannou et.al. in their work ―Virtual 

Archaeologist: Assembling the past‖ [25] stated that the reconstruction of arbitrary objects from 

their fragments can be regarded as a 3D puzzle. They present a complete method, encapsulated in 

Virtual Archaeologist system, for the full reconstruction of archaeological finds from 3D scanned 

fragment (Figure 5). The archeologists create a database by scanning the fragments that are found 

at an excavation site. These fragments can be stored and then translated into edge matching pieces 

by mathematical equations. These pieces have different sizes and structures. Each fragment can be 

coded with more than one piece, which have exclusive ids at their adjacent edges making them 



16 

 

inseparable at the final solution. Then the piece memory data structures of our architecture can be 

initialized by those pieces. A starting piece will be predefined and if the search cannot move any 

further the result will be sent to the output and the search will continue with a different starting 

fragment/piece to produce another partial solution. These partial solutions can correspond to 

different archeological finds. For example by starting from a certain fragment (piece) the result can 

be a part of a pottery and by starting from another the result can be a small statue or marble 

inscription. These results are then checked by archeologists in order to ensure the correctness of the 

matching.  

   

Figure 5.  Reconstruction of archaeological finds from scanned fragments. 

 

Ripped-up Document Reconstruction 

Puzzle solving can be also used for the reassembly of torn documents. Florian Kleber et. al. in 

their work [26] state that reassembling of torn documents is related to the traditional puzzle games. 

The main difference to canonical jigsaw puzzle games is the irregular shape of the fragments and 

the content (mainly text in documents compared to images in jigsaw puzzles). Also Liangjia Zhu et. 

al. in [29] proposed a method for the recovery of ripped-up documents. Ripped-up document 

reconstruction is a problem that often arises in archival study and investigation science. Documents 

may be ripped up by hand or shredded by a machine. In both cases, the automatic or semiautomatic 

reconstruction of the original document would alleviate the manual effort, which is difficult and 

time-consuming. They proposed a method for the ripped-up document reconstruction by first 
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finding candidate matches from document fragments using curve matching and then 

disambiguating these candidates through a relaxation process to reconstruct the original document. 

The same methodology as for the archeology fragments can be used for the reconstruction of 

fragmented documents. Through the same preprocessing the pieces initialize the appropriate 

memories and then the partial results, which will probably be different independent pages or parts 

of pages, can be checked by the investigators and be reconstructed. An example of ripped-up 

document reconstruction is shown on Figure 6. 

 

 

Figure 6.  Ripped-up Document Reconstruction. 

Cutting and Packing Problems 

F. Hoshi et. al. presented in their work [27] that polyomino packing solving can be used in many 

applications involving cutting and packing, which are encountered in many industries. The cutting 

problems and the packing problems are essentially the same both on their objectives and theoretical 

implications. The objectives of the cutting problems are to cut a given set of product parts on given 
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mother materials so as to maximize the usage of the mother materials, that is, to minimize the "trim 

loss". On the other hand the objectives of the latter problems are to place a set of pieces on given 

plates or bins so as to maximize the usage of their space. The wood-, glass- and paper industry are 

mainly concerned with the cutting of regular figures, whereas in the ship building, textile and 

leather industry, irregular, arbitrary shaped items are to be packed. Also, we can see examples of 

the packing problems in such as vehicle loading and pallet loading problems. They proposed a new 

deterministic algorithm for the problem. They devised a game-theoretic solution for two-

dimensional (2D) cases, which were treated as rectilinear jigsaw puzzles, i.e., specialized 2D 

polyomino packing problems such that there is at least one placement solution. The new method is 

developed by extending the polyomino packing algorithms to solve the given problems. Our 

architecture could take the place of the polyomino packing algorithm by making the appropriate 

changes to the problem in order for it to become an edge matching puzzle. Each polyomino piece is 

translated into many edge matching pieces that have the size of the initial unit blocks of the 

polyomino. Each polyomino block’s pieces have their adjacent edges ids being exclusive for each 

edge matching of that polyomino so at the solution of the puzzle these pieces are connected back 

together to form the starting polyomino. The outer edges have common ids in order to allow other 

polyominos to be connected to them. The solution of this puzzle has to be translated back to the 

initial polyominos by decoding the pieces that are exclusively connected together.       

 

Protein- Folding 

Another field of science that puzzle solving can be used is in molecular biology. P. Gorder in 

[28] presents how scientists took one small but intriguing step toward solving the protein- folding 

problem by synthesizing a protein called Top7. How protein molecules form into useful shapes—

and what causes proteins to go wrong is unknown. It’s a puzzle called the protein-folding problem, 

and it’s key to developing treatments for diseases as diverse as Alzheimer’s, Parkinson’s, cataracts, 

cystic fibrosis, and diabetes’ most common form. Building the protein is like creating a jigsaw 

puzzle. There are 20 amino acids commonly found in proteins, and each one can rotate to form 

some 10 different shapes. That means that 200 options exist for each puzzle piece’s shape and 

orientation— and a protein can contain hundreds of pieces. By solving the jigsaw puzzle the 

scientists managed to synthesize the Top7 protein. By providing the pieces, appropriately 

coded/colored as edge matching pieces, to our architecture it can take the place of the protein-
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folding puzzle solver. The solver will start from a certain piece and try to connect as many pieces 

as possible until it returns the result. After that the starting piece will change in order for another 

result to be produced. These output results can be proteins that will have to be confirmed by 

biologists.  

  

DNA self-Assembly 

X. Ma and F. Lombardi in [31] present that DNA self-assembly has been advocated as a bottom 

up manufacturing technology (as applicable in the nano scales) and for algorithmic computation. 

They consider the synthesis of tile sets for DNA self-assembly and analyze it as a combinatorial 

optimization problem. This problem is referred to as PATS (Pattern Assembling Tile-set 

Synthesis). As CMOS is approaching its physical limits, emerging technologies have been 

investigated for building future computing systems. DNA-based self-assembly has emerged as a 

promising technology for manufacturing from ―bottom-up‖ without conventional lithography. 

Using DNA complexes, or so-called tiles as building blocks, programmable self-assembly of 

nanoscale structures has been demonstrated. For manufacturing, DNA self-assembly relies on 

defining a set of tiles to target a specific pattern. The programmability of DNA in the form of tiles 

can be exploited to manufacture circuits based on single-molecule electronic devices, such as 

molecular transistors or quantumdot cellular automata (QCA) cells. The basic principle is to utilize 

the programmability of DNA tiles to self-assemble periodic and aperiodic lattice structures. Then, it 

is possible for other molecular electronic devices to selectively attach to the lattice. An obvious 

advantage of this technique is that a massive parallel assembly is possible, such that millions of 

copies of the desired structure can be built simultaneously. This technique has been advocated as a 

method for ―bottomup‖ nanofabrication. 

The abstract Tile Assembly Model (aTAM) provides the basis for analysis of algorithmic self-

assembly in ideal cases [32]. A tile set consists of a finite set of unique square-shaped tiles that are 

used to self-assemble into a DNA aggregate. Each of the four sides of a tile has a bond type. Each 

bond type has an associated bond strength. Bond types can be null (strength of 0), single (strength 

of 1) or double (strength of 2). Two bonds of the same type can bond together, with a 

corresponding bond strength. It is assumed that the strength between different bond types is always 

0. In aTAM, self-assembly always begins with a seed tile. A tile can be added to the existing 

aggregate when its total bond strength to the aggregate is greater than or equal to 2. The Sierpinski 
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triangle tile set is a widely studied tile set [33]. The Sierpinski tile set is shown in Figure 7 (a). The 

four integers in a tile denote the bond types. The growth of an infinite Sierpinski triangle is shown 

in Figure 7(b), with smaller tiles representing the correct addition of tiles. The correct growth 

direction for this tile set is indicated by the arrows in Figure 7(b). The assembled pattern is shown 

in Figure 7(c). A simulation tool Xgrow [32] has been developed to emulate the DNA self-

assembly. Xgrow is used to verify the tile set generated by the algorithms proposed in this paper. 

This problem can also be addressed by our work. The DNA tiles resemble the edge matching 

puzzle pieces. The only difference is that a tile can be added to the existing aggregate when its total 

bond strength to the aggregate is greater than or equal to 2. Also the way the puzzle is filled is 

different, starts from a corner and expands towards the opposite direction. These changes can be 

implemented on our design in order for it to adapt to the needs of this problem. The bond strength 

that needs to be greater than or equal to 2 can be added as an extra constraint at the search of an 

appropriate tile and the filling order can easily be changed by initializing the appropriate memories 

with the filling sequence.  

 

Figure 7.  The Sierpinski Triangle Pattern. (a) Sierpinski tile set. (b) Growth of tile set. (c) 

Assembled pattern. 
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IV. ALGORITHM SELECTION 

 

The selected algorithm is based on a straightforward exhaustive search with a depth first search 

(DFS) algorithm. The pieces are continuously placed on the board, taking into account all 

neighboring restrictions. If at any moment no piece can be placed without violation of those 

restrictions, the most recently inserted piece is removed, and an alternative piece will be selected 

for that position. 

The Depth-First-Search (DFS) algorithm of choice requires complex data structures (e.g. in 

order to know which tiles are placed and which are available for a large number of tiles which are 

non-uniformly grouped in the puzzle), it has a recursive descend depth of 196 (even after we have 

excluded the borders) vs. 64 of the knight’s tour on a chessboard problem which we had studied 

and reported before [11], and it is control intensive. Therefore it is as ―bad‖ a problem to map on 

FPGA’s as possible. This line of research aims at the long-term development of suitable hardware 

data structures for FPGA’s, to cope with their low clock rate when compared to general-purpose 

processors when they tackle control-intensive serial problems.  

The order, in which the empty positions of the board are filled, is graphically presented in the 

Figure 8 below, and it follows a center-counterclockwise spiral pattern. 

 

35 34 33 32 31 30 

16 15 14 13 12 29 

17 4 3 2 11 28 

18 5 0 1 10 27 

19 6 7 8 9 26 

20 21 22 23 24 25 

Figure 8.  Board Filling Order 

 

The insertion of the pieces begins at the adjustment places of the fixed piece, and gradually 

surrounds the current square until they completely fill the inner square. This strategy was chosen to 

exploit the search space reduction that the fixed piece provides. 
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The architecture implemented to run on hardware concerns only the 196 inner pieces. The 60 

border pieces are solved by software that receives the 196-piece solutions from the FPGA, which is 

a fairly trivial task for a general-purpose computer. This way the complexity for the FPGA is 

lowered by a factor of 4! × 56!. So the Formula 1 becomes for the hardware design:  

 

195! × 4
195

 = 6.55 × 10
480

   [Formula 2] 

 

It is useful to note here that each piece can be placed on the board with any of its four rotations. 

As a result each piece counts as four different pieces when it is checked in order to be placed on the 

board. 

  

A pseudo code for the DFS algorithm is presented below: 

 

 

 

 

 

 

Board.initialize(); // set up fixed piece 

Pieces.initialize(); // a set with all pieces 

Slot.initialize(); // Initial position of the board 

Popid = 0; // Used for exclusion of previously used pieces 

repeat: 

    for all Piece in Pieces 

        if Piece.getUsed() == False and Piece.id() > Popid then 

            for all Orientation of Piece 

                if Board.match(Slot, Piece, Orientation) then 

                   Board.place(Slot, Piece, Orientation); 

                   Piece.setUsed(True); 

                   Popid = 0; 

                   Slot.next(); 

 

        if Board.isEmpty(Slot) then 

           Slot.prev(); 

           Popid = Board.piece(Slot).id(); 

           Board.piece(Slot).setUsed(False); 

           Board.clear(Slot); 

 

        If Board.isFull() then 

           Celebrate(); // solution is found 

 

until Board.isEmpty() == False 
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V. SOFTWARE 

 

After the selection of the algorithm the equivalent software was implemented.  As described 

above the filling of the table follows a center-clockwise spiral pattern. For each slot on the table 

all the available pieces are checked in order to find a piece that has the requested values at its 

edges, which have to be the same as its neighboring already placed pieces. This software is not 

optimized, as it has to search between all the pieces for each slot. The performance it can achieve 

is about 0,6 MNodes/sec on an Intel Xeon at 2,66GHz.  

As a project for a postgraduate course, Architecture of Parallel and Distributed Computers, a 

parallel implementation of this software was created in order to run on the Grid processors. This 

architecture is a producer (server) – consumer (client) system which allows a divide-and-conquer 

approach on the search space. The single producer provides a centralized job distribution service 

and is also responsible for the allotment of the search space between the consumers. On the other 

hand, each of the consumers constitutes a computation unit that will thoroughly search the 

designated chunk of the search space for solutions. The Division of the search space, by the 

producer, is implemented by applying a depth limit on the initial algorithm. Each of the partial 

solutions will be sent to the consumers to complete the search. The communication between the 

processors is done by using MPI. The scalability of the parrallized algorithm was proved to be 

linear as shown on Table I and Figure 9 below. Also we need to note even the single core 

implementation is much slower on the Grid processors than the Intel Xeon at 2,66GHz processor 

and in fact 3 times slower. This is due to the processor architecture and the clock frequency.    
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TABLE I.  PERFORMANCE ON GRID 

 
Performance 

(MNodes/sec) 
Speed up 

Grid 

Single core 
0,19 1 

Grid 

1 Consumers / 1 Producer 
0,19 1,01 

Grid 

4 Consumers / 1 Producer  
0,76 4,02 

Grid 

8 Consumers / 1 Producer  
1,54 8,11 

Grid 

16 Consumers / 1 Producer  
3,10 16,30 

Grid 

32 Consumers / 1 Producer  
6,25 32,85 

Grid 

36 Consumers / 1 Producer 
7,03 36,96 

 

 

Figure 9.  Performance on Grid 
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As the software presented above was not optimized a new version was implemented that can 

achieve a performance of 26MNodes/sec on an Intel Xeon at 2,66GHz. This software was 

developed by Mr. Miltiadis Smerdis at the Microprocessor and Hardware Laboratory of the 

Technical University of Crete. This software followed the hardware implementation and has the 

same algorithmic improvements. The most important improvement is the clustering of the pieces 

with regard to 1 edge and thus has 17 independent lists for single edged search (corner pieces) and 

17X17 lists for the double edged search. So instead of searching between 196 pieces for a corner 

piece it searches between 44-49 and for double edged piece between 0 – 7 pieces. This effect 

provides a performance improvement of over 35.  This improvement also decreases the 

complexity of the problem by a very significant amount. Actually the complexity is calculated as 

follows: 47
27

 for the corner board slots, where 47 is the average number of pieces that has each 

direction value and 27 represents the corner board slots, multiplied by 3
169

 which implies to the 

rest of the board slots (double edge search).So the actual complexity is: 

 

 47
27 

x 3
169

 = 6,02 x10
125

  [Formula 3] 

 

As a result the complexity goes from 6.55 × 10
480 

[Formula 2] to the exponentially less 6,02 

x10
125

. 

 

 This optimized software implementation is analyzed further in Chapter VII. Also this software 

is considered optimal as unpublished implementations on the internet claim a performance of 

about 20MNodes/sec.   

On the next Table we compare the performance of our first software with the optimized 

software. 
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TABLE II.  COMAPARISON OF SOFTWARES  

Architecture Performance SpeedUp 

Smerdis Software on Intel Xeon 

2,66GHz 
26 MNodes/sec 1 

First Software on Intel Xeon 

2,66GHz 
O,6 MNodes/sec 1/43 

Grid 

 Single core 
0,19 MNodes/sec 1/137 

Grid  

36 Consumers / 1 Producer 
7,03 MNodes/sec 1/3,5 

 

As shown on the Table above the same software running on the Intel Xeon processor is about 3 

times faster than on a grid processor. This happens due to the processor capabilities. 

Also the optimized software is 43 time faster than the previous software and thus making it 3,5 

times faster even if the first software runs on 36 grid processors. So, all the comparisons at Chapter 

VII are done with the hardware and the optimized software. 

 

 

 

 

 

 

 

 

 

 

 

 

 



27 

 

VI. AN FPGA-BASED ARCHITECTURE 

 

The FPGA-based architecture was based on two main blocks, one of which maintains the board 

and one which addresses placement of tiles, performs bookkeeping (i.e. keeps track of 

used/available tiles) and incorporates some search-space reduction techniques (e.g. in some cases 

in which a search can lead to no solution). The architecture will be described below. 

 

A. Top Level Architecture 

TABLE PieceMem

OldPiece

Aside

Bside

BoardRot

NewPiece

NewRot

Pop

PieceDirectionValues

OldRot

Found

SorD

 

Figure 10.  Top Level Architecture (EtSolver) 

The Eternity II Solver (EtSolver) architecture has two distinct modules as shown on Figure 10. 

The TABLE module is the implementation of the board. It contains the appropriate memories for 

the board and makes requests at the PieceMem for the next piece that has to be placed on the board, 

by providing the necessary information. PieceMem is the memory that contains all the pieces and 

their side values. It receives a request from the TABLE and it responds with a piece matching the 

request or responds that there is no piece available with the attributes needed and thus the TABLE 

must pop the last placed piece. PieceMem module has also to keep track of the already used and the 

available pieces. The architecture of these two modules is presented thoroughly below. 
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B. TABLE Architecture 

 

TableMem

NeibhoringPiece

ROM
CONTROL

North West South East

NorthRAddr WestRAddr SouthRAddr EastRAddr

Aside/Bside Asignment

NorthVal WestVal SouthVal EastVal BoardRot

Aside Bside

OldPiece OldRot

Newpiece

NewRot

Address
WE

PieceDirectionValues

Pop

Found

SorD

 

 

Figure 11.  TABLE Architecture 

 

The architecture of the TABLE (Figure 11) represents the Eternity II board. Its basic component 

is the TableMem that is the memory where the pieces are stored as they are placed on the board. 

Each slot contains the piece id and the rotation in which it is placed on the board (Table III).  In this 

memory the board is rearranged with regard to the priority it is filled, e.g. the center (preplaced) 

piece is stored in address 0 the next piece (east of the center piece) is stored in address 1 and its 

north neighbor at address 2. Figure 12 shows the filling order of the board slots and on Figure 13 

the rearranged board as it is saved on the TableMem is presented. The TableMem was created this 

way in order to minimize the cost of finding the next slot that needs to be filled. This way we need 

only one address pointer for the calculation of the next board slot that will be accessed. When a 

Push operation is executed only the address pointer needs to be increased by 1 and when a Pop 

operation is executed the pointer is decreased by 1. This memory has a width of 10 bit and a depth 

of 196. 
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TABLE III.  TABLEMEM COMPONENTS  

8 bit 2 bit 

Piece id Rotation 

 

 

35 34 33 32 31 30 

16 15 14 13 12 29 

17 4 3 2 11 28 

18 5 0 1 10 27 

19 6 7 8 9 26 

20 21 22 23 24 25 

Figure 12.  Board Filling Order 

 

8 

7 

6 

5 

4 

3 

2 

1 

0 

Figure 13.  Board slots on TableMem 

 

The implementation of the TableMem in the way described above created a difficulty on how 

the 4 neighbors of each board slot and their direction values would be accessed. A dedicated 

memory was created for this reason. When a new piece is requested the NeighboringPiece ROM is 
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accessed. This ROM contains the address on TableMem of the adjacent pieces for each place on the 

board. It also contains the information for the direction where the place is (BoardRot) and if it is a 

piece with two neighbors or a cornering piece with one (SorD). The format these information are 

stored on NeighboringPiece ROM is shown on Table IV. This ROM was implemented in order to 

minimize the cost of the calculation of the adjacent pieces for each place on the board.  This ROM 

is 35 bits wide and has a depth of 196, as the number of board slots.  

 

TABLE IV.  NEIGHBORINGPIECE ROM COMPONENTS  

8 bit 8 bit 8 bit 8 bit 2 bit 1 bit 

North neighbor  East neighbor South neighbor West neighbor Board Rot SorD 

 

The address outputs from the NeighboringPiece ROM are forwarded to the direction value 

memory which consists of four independent memories. These memories are rearranged the same 

way as the TableMem memory in order to be able to save the direction values of a new piece at the 

same address as the piece itself. North has the north value of each piece as it is placed on the board, 

West the west value, etc. So the piece at the north of the new slot is accessed for its south value, the 

slot at the west for its west value etc. Four independent memories are needed because when a piece 

is pushed the address on these memories is the same as the TableMem address, but when they are 

accessed in order to acquire the information needed for a new piece, a different address for each 

memory is calculated by NeighboringPiece ROM, as four different board slots need to be accessed 

in order to acquire their direction values. In the end we have all the values of the neighboring 

pieces needed in order to ask for a new piece. These memories have a width of 5 bits and a depth of 

196 each. It is also useful to note that these memories are implemented as distributed in order to 

have their output in the same clock cycle as the address. This does not have any effect on the 

critical path as it is bound on the PieceMem module. 

The north, west, south, east values are calculated in the Aside/Bside Assignment module along 

with the BoardRot and SorD information. This module decides among the four neighboring piece 

adjacent values which are needed for the determination of the new piece. This is defined by the 

BoardRot signal, e.g. if the place where the new piece is about to be placed is at the north of the 
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board, the east and south neighboring values are selected. The corner pieces (SorD) need one value 

(Aside) and the rest of the pieces both Aside and Bside. 

The PieceMem answers with the new piece that is applicable for the board slot or with the Pop 

signal if there is no piece available with the requested side values. If a new piece is answered it is 

saved on the TableMem, along with its direction values on the direction values memory, and the 

next piece is requested. If the Pop signal is returned the last placed piece is popped and is sent 

along with the rotation it was placed on the board to the PieceMem in order for a new piece to take 

its place. 
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C. Piece Memory Architecture 

 

SingleROM

DoubleRom

Aside

Aside&Bside

Piece

Rot

>

=

>

CONTROL

OldRot

OldPiece

SPiece

MUX

DPiece

MUX

DRot

SRot

PieceEdgeVal

PieceAddr

PieceDirectionValues

Boardrot

NewRot

NewPiece

Pop

SorD

Rot

Piece

Found

SAddr

DAddr

 

Figure 14.  PieceMem Architecture 

 

The PieceMem (Figure 14) is the module that contains all the 196 pieces and their direction 

values. The Table makes a piece request providing the appropriate information and PieceMem 

answers with the applicable new piece or the Pop signal if there is no available piece with the 

requested properties. All the pieces are contained in the SingleROM and the DoubleROM.  

In SingleROM the pieces are saved with regard to each direction value of the piece. Also the 

rotation in which that value is at the north of the piece is saved. This memory is accessed when a 

corner piece is requested that needs only one side value. So this memory has a depth of 17, as the 

number of all the different color values, and width enough to save 49 pieces and their rotations (490 

bits). Each color value is encountered on 44 to 49 pieces. The 5 bit address represents one of these 

17 values. It outputs all the pieces that have an edge with the Aside value. The components of each 

slot of this memory are shown on Table V. 
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TABLE V.  SINGLEROM AND DOUBLEROM COMPONENTS  

8 bit – 2 bit 8 bit – 2 bit 8 bit – 2 bit 8 bit – 2 bit 

Piece id – Piece rot Piece id – Piece rot Piece id – Piece rot Piece id – Piece rot 

 

In the DoubleROM the pieces are saved with regard to each piece’s two adjacent edges. It 

represents a 17 by 17 array in each slot of which contains all the pieces that have the two values 

presented by the array addresses. These addresses are the Aside and Bside coming from the table. 

Each slot of this array may contain from 0 to 7 pieces with their rotations, making this memory 70 

bit wide. It is implemented with a memory with 10 bit addressing where Aside&Bside are the 

address. The memory slots that don’t represent a piece are idle. The components of each slot of this 

memory follow the same format as SingleROM and are shown on Table V.  

These two memories were implemented in order to search the least amount of pieces possible in 

order to determine if a piece is applicable for the requested place on the table. So in order to search 

for a corner piece a maximum of 49 pieces need to be checked instead of all 196 and if a double 

edge piece is requested only 0-7 pieces need to be checked.    

A register is implemented to mark if a piece is already used or not. The piece that is returned 

from PieceMem is marked as used and a piece is unmarked if it is the piece that was popped 

(oldpiece). 

All the pieces that have the edge values requested are read from the appropriate memory. Each 

piece that has not already been placed on the table is checked. If the request follows a push 

operation the first piece found is returned. If the request follows a pop operation the new piece 

needs either to be equal to the previously placed piece and have a higher rotation value (some edge 

values are met more than once in some pieces) or have a higher id value. This is required in order 

to ensure that the same search space is not searched again. So, backtracking never leads to a re-visit 

of a previously visited node in the search space as following a Pop, the next piece has to have a 

higher id value. 

If a piece is found it is forwarded to the TABLE along with its edge values that are read from the 

PieceEdgeVal module. These values are appropriately rotated in order to be correctly stored at the 

North, West, South and East memories of the TABLE.  The components of this memory are shown 

on Table VI. This memory is implemented with logic cells (distributed memory) in order to be able 

to have these values the same clock cycle as the new piece that will be placed on the board. It 



34 

 

causes a clock frequency drop and is part of the critical path, but the drop is not enough to justify 

the increase of the response of PieceMem by one clock cycle. 

TABLE VI.  PIECEEDGEVAL ROM COMPONENTS  

5 bit 5 bit 5 bit 5 bit 

North value  East value South value West value 

 

This Module presented the most interest concerning which is the best approach for the piece 

searching operation. Three different approaches were followed with regard to the reply time of the 

PieceMem to the Table with a valid piece.  

The first and obvious implementation was the one clock cycle response of the PieceMem. This 

architecture was able to check all the available pieces which had the specific attributes asked by the 

Table in one clock cycle. So this architecture had to include 49 greater than comparators for the 

piece id, 49 equal comparators for the piece id, 49 greater than comparators for the rotation of the 

piece as well as 49 AND gates. Also an arbiter is needed in order to choose the first valid piece 

from the 49 pieces if the table slot concerns a corner piece or the first valid piece from the 7 pieces 

otherwise. This implementation was very slow with regard to the clock frequency, which was less 

than 50MHz, and the resource utilization, as it occupied all the resources of the XC5V110T FPGA. 

It actually needs 115% of the FPGA and the CAD tool manages to lower the resources with the 

side effect of lowering the clock frequency. It utilizes a high amount of slices, more than 5% of the 

FPGA, for routing only operations. This implementation was the first fully working architecture 

that was downloaded and gave the first checkpoints of the search. 

Because the above implementation did not have the expected performance a new approach was 

followed. After concerning that the corner slots, single edged pieces, on the board are far less than 

the double edged pieces (32 out of 196) the new implementation had to check only the double 

edged pieces in one clock cycle. This led to an architecture that had 7 greater than comparators for 

the piece id, 7 equal comparators for the piece id, 7 greater than comparators for the rotation of the 

piece as well as 7 AND gates. Also the Arbiter had to be a lot smaller. The search for a double edge 

piece takes one clock cycle to complete while the search for a single edge piece can take up to 7 

clock cycles. This implementation can reach a clock frequency of 75MHz while utilizing more than 

70% of the FPGA resources. The clock frequency increase provided a better performance although 
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the PieceMem did not always respond in one clock cycle. This implementation was also 

downloaded and tested on actual hardware. 

The last architecture, which is the one presented on Figure 14, has the best performance vs the 

resource utilization and also is the most simplistic. The simplistic characterization implies to the 

checking of 1 piece every clock cycle. The search can take from 1 to 49 clock cycles for a single 

edge piece and 1 to 7 clock cycles for a double edged piece. This architecture allowed the clock 

frequency to pass the 100MHz and thus allowing it to have the same performance as the first 

architecture. Also the resource utilization is 20 times less than the first architecture. This allowed 

the mapping of multiple EtSolver engines on a single FPGA. It is also useful to note that the critical 

resource moved from the slices to the Block RAMs. In order to balance it some memories that were 

implemented as Block RAMs, and in fact the SingleROM, had to be changed into Distributed 

Memories, causing a small drop of the clock frequency (it is still over 100MHz).  
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D. Parallel Architecture 

 

In order to take advantage of the parallelization of the algorithm a parallel architecture was 

implemented (Figure 15). A large amount of independent EtSolver engines can be placed on a 

single FPGA. 

These solvers are independent while searching. The initial configuration of the solvers is done 

by initializing a register for each one of them, which stores 196 pieces and their rotations as they 

are placed on the board. Each solver is initialized in a way that it has to search a different chunk of 

the search space. At the first initialization each initialization register is loaded with a different piece 

at the second board slot (the first slot is preplaced). 47 different pieces can be placed ath the second 

board slot. This way the search space is divided between the available EtSolver engines. The 

TableMem is then loaded by reading that register and the search continues from that point. If one 

engine finishes its chunk of the search space, its initialization register is then loaded with a different 

starting point, and more accurately from the point where the engine with the last chunk, in terms of 

search space, will have finished its search.  

 

RS232

Module

EtSolver1

EtSolverN

EtSolver2

EtSolver3

Piece/Rot

Piece/Rot

Piece/Rot

Piece/Rot

TX
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Figure 15.  Parallel Architecture 
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A Control was needed in order to arrange the output from the RS232 module to the host PC, so 

that only one solver can send data at a time. This is used in order to send a solution (all 196 pieces 

placed) to the host PC and also checkpoints from each engine at regular time stamps. The 

checkpoints are needed in case a of a hardware failure, so that the search can resume from the last 

checkpoint. The checkpoints are saved on the host PC with regard to the engine they came from. In 

order to continue the search from the last checkpoint the initialization register is initialized by the 

checkpoint values. 
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E. Implementation 

 

The Table below presents the resource utilization of a Xilinx Virtex 5 FPGA, the XC5V110T, 

for the three implementations of the PieMem. Also the performance is included in order to 

enlighten the best architecture. 

TABLE VII.  DIFFERENT PIECEMEM ARCHTECTURE COMPARISON 

Architecture Architecture 1 Architecture 2 
Architecture 3 

1 EtSolver engine 22 EtSolver engines 

Slices 17253(99%) 13452 (77%) 885 (5%) 15458 (89%) 

Block Rams 12 (8%) 12 (8%) 7 (4%) 143 (96%) 

Clk Frequency 33Mhz 75Mhz 100MHz 75Mhz 

Performance 4,1 MNodes/sec 5,4 MNodes/sec 4,1 MNodes/sec 67,5 MNodes/sec 

 

 

 

 

Figure 16.  Performance vs Resource Utilization 
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As shown on Table VII and Figure 16 the first architecture has the least performance with regard 

to the resource utilization. The second architecture is a bit better both in terms of performance and 

in resource utilization. The performance increase comes from the clock frequency increase. The 

third architecture is the best performing. One engine has the same performance as the first 

architecture and at the same time utilizes a lot less resources. The resource utilization of a single 

EtSolver is very small (less than 5%). The simplicity of the algorithm, the implementation of the 

addressing of the Table memory and the direction value memories with a lookup table, 

NeighboringPiece ROM, are the main reasons that minimize the recourse utilization. This allowed 

the mapping of multiple EtSolver engines on a single FPGA, and in fact 22 of them on the 

XC5V110T. The clock frequency drop from 1 engine to 22 is due to the full utilization of the 

FPGA resources. The last architecture provided a performance increase of about 13 from the 

previous implementations. 

The results presented here are measured based on actual clock frequencies available on the 

XC5V110T FPGA and not the optimal frequencies that are defined from the CAD tool. If the 

optimal clock frequencies are taken into account we can achieve an increase in performance of 

about 10%.  The estimation of the performance if the optimal clocks were used on our last 

architecture is shown on the next Table. 

 

TABLE VIII.  ESTIMATION OF PERFORMANCE FOR OPTIMAL CLOCK FREQUENCY 

Architecture 1 EtSolver engine 22 EtSolver engines 

Slices 885 (5%) 15458 (89%) 

Block Rams 7 (4%) 143 (96%) 

Clk Frequency 116MHz 83Mhz 

Performance 4,8 MNodes/sec 74,7 MNodes/sec 
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VII. SPACE VS TIME TRADEOFFS 

 

In this Chapter the Space (resource utilization) vs Time (clock cycles for one operation and 

clock frequency) tradeoffs will be addressed for the various implementations and experiments that 

were done until the last and better performing architecture. 

As mentioned on the previous Chapter and more accurately at the Piece Memory architecture 

presentation the first architecture has the least performance with regard to the resource utilization. 

It utilizes all the FPGA resources and has a very low clock frequency due to the long 

combinatorial paths produced by the need of searching between 49 pieces in one clock cycle. The 

second architecture is a bit better both in terms of performance and in resource utilization. The 

decrease of the pieces that need to be searched in one clock cycle from 49 to 7 decreases the 

resource utilization and allows a higher clock frequency, and as there is a small number of corner 

board slots that, also provides a performance increase. The third architecture is the best 

performing. One engine has the same performance as the first architecture and at the same time 

utilizes a lot less resources. In this architecture one piece is checked each clock cycle which 

decreases the resource utilization at 5% of the FPGA and allows a clock frequency of more than 

100MHz where the first architecture has less than 40MHz. 

The software that was developed by Mr. Miltiadis Smerdis is the exact same implementation of 

the algorithm as the hardware. The clustering of the pieces is the same as the hardware, in order to 

minimize the search between the pieces for a certain board slot. The flexibility of software 

implementations allowed the implementation of a faster Pop operation. When a piece is Popped, 

the next piece from the appropriate list, that has a higher id value, is checked so that not all the 

pieces with the needed attributes are checked. This improvement was also implemented on 

hardware but it did not provide equal performance vs resource utilization. The resource utilization 

increased by 20% but the performance increased roughly 5% and thus this improvement was 

dropped. 

While trying to improve the performance of the second Piece Memory architecture a new 

architecture was the result that could perform a Push or Pop operation in 2 clock cycles (2-9 clock 

cycles for corner board slots). This was done by using distributed memories at the Table that can be 

written and read at the same clock cycle. A distributed single port ROM was used for the 

NeighboringPiece ROM and a dual port RAM for the TableMem where one port was used for 
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writing and the second for reading. This allowed the request for the next piece to be done in one 

clock cycle, which on the previous architecture needed three clock cycles when a new piece had to 

be pushed before asking for the next piece. This architecture was tested and while it was working as 

expected on behavioral simulation it could not pass the Place and Route operation of the CAD tool. 

Also the resource utilization on slices increased from 77% to 98% (from Synthesize report) 

basically from the implementation of the memories from Block RAMs to distributed memories. 

Finally the clock frequency had a small drop (from Synthesize report from 75MHz to 65MHz) due 

to the migration of the critical path from the Piece Memory to the Table module. This improvement 

was not tested on the last architecture as the slice utilization would increase drastically and the 

clock frequency would drop decreasing its advantage vs the previous architectures which is the 

small resource utilization and the higher clock frequency.    
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VIII. HOST SOFTWARE 

 

It is beyond the scope of this work, however, we need to mention that checkpointing was 

implemented so that the actual runs would advance despite occasional power supply and glitch 

problems. As expected, I/O is negligible, and hence the serial port does not impair the performance 

in any significant manner. 

On the host PC a Python script is running in order to read from the serial port the checkpoints as 

well as the solution of the puzzle, if it is found. A special control is implemented in hardware in 

order to coordinate which of the 22 engines fitted on the XC5V110T FPGA will sent its 

checkpoint. If two engines want to make a checkpoint at the same time, the first is chosen and the 

other will stall until the first one finishes. The pieces are sent in the form of integers, first the piece 

id followed by the pieces rotation. The python script has to read 196x2 integers as well as some 

control signals. The output of this software is shown on Figure 17.  

 

 

 

 

 

\ 

 

 

 

 

 

 

Figure 17.  Output from Serial Port 

There was also the need of software that takes this output and forms the Table for testing 

reasons. The initialization of some of the memories as well as the designation of the direction 

values of the pieces were done by hand. So in order to test if things were correctly initialized, a 

software, that by taking the output from the FPGA is able to print the whole board, was 

implemented. 

New Checkpoint 
12    Engine id 
180   Pieces Placed 
139   Piece id 
0   Piece Rotation 
182 
1 
0 
0 
151 
2 
242 
3 
230 
3 
255 
0 
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 This software reads the piece and its rotation and by having available the piece’s direction 

values prints each piece and the four values around it with respect to the rotation. The result is a 

view of the puzzle as it is solved by the hardware. If a piece is not placed correctly the adjacent 

pieces direction values wont mach which indicates a problem on hardware design or a memory 

initialization issue. The output of this software is a txt file with the form of Figure 18.  

 

 

 

 

 

 

 

 

 

 

 

Figure 18.  Table Form Output 

 

As noted on Chapter III, dedicated software responsible for the completion of the puzzle, by 

placing the 60 outer pieces, was created. After a study on the outer pieces, by Ms. Katerina 

Papayannaki and Mr. Antonis Papayannakis, the number of the outer pieces that have on their inner 

board edge each direction value was counted. It is mentioned on Chapter I that only 17 of the 22 

different colors are met on the inner pieces and the rest 5 are met only on the border pieces. The 

border pieces have one side grey colored, meaning it is the side that connects to the border. Its 

adjacent edges are colored with one of the five colors that are dedicated for the outer pieces. The 

opposite of the grey side has a color value between the 17 colors that are met in the inner pieces. 

The number of pieces that each of the 17 colors was met was counted and the result is the following 

Table.     

 

 -3-   -5-   -2-   -8-   -15-  

-4- 232-3 -17--17-  181-3 -13--13-  165-1 -12--12-  213-1 -6--6-  241-2 -5- 

 -6-   -5-   -15-   -6-   -9- 

 -6-   -5-   -15-   -6-   -9-  

-7- 94-1 -15--15-  242-3 -9--9-  151-2 -14--14-  256-0 -14--14-  239-0 -11- 

 -5-   -6-   -10-   -5-   -1- 

 -5-   -6-   -10-   -5-   -1-  

-3- 246-1 -2--2-  230-3 -17--17-  139-0 -13--13-  182-1 -3--3-  244-1 -11- 

 -14-   -11-   -13-   -17-   -6- 

 -14-   -11-   -13-   -17-   -6-  

-7- 100-1 -14--14-  255-0 -14--14-  104-3 -16--16-  117-1 -14--14-  251-3 -15- 

 -5-   -2-   -16-   -2-   -15- 

 -5-   -2-   -16-   -2-   -15-  

-1- 247-2 -14--14-  136-2 -11--11-  131-0 -5--5-  254-3 -11--11-  90-2 -2- 

 -1-   -16-   -13-   -2-   -7- 
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TABLE IX.  OUTER PIECES INNER SIDE VALUE COUNT 

Direction Value 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

Num of Pieces 6 4 4 2 3 6 4 1 3 3 3 1 3 2 4 5 2 

 

 

So in order to minimize the run time of the software that is responsible for filling the outer 

pieces, software was created that checks if the inner board solution meets the criteria stated by the 

outer pieces. It takes as input the table form output (Figure 18) and creates a table, similar to Table 

IX, by counting the number of pieces, which are at the edge of the inner board, that have each of 

the different edge values. Then this table is compared with Table IX and if they don’t match it 

means that the inner board solution is not valid. If the solution is marked as non valid the software 

that fills the outer pieces does not run. 

After the filtering of the 196 piece solutions by the previous software only the solutions that 

could create a valid completed board are sent to the outer pieces filling software.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



45 

 

IX. PERFORMANCE EVALUATION 

 

The Table below presents the results from actual runs on hardware on the XC5V110T FPGA vs 

the software implemented by Miltiadis Smerdis. 

 

TABLE X.  HARDWARE VS SOFTWARE  

Architecture Performance SpeedUp 

Smerdis Software on Intel Xeon 

2,66GHz 
26 MNodes/sec 1 

1 EtSolver 

 engine 
4,1 MNodes/sec 1/6,3 

22 EtSolver  

engines 
67,5 MNodes/sec 2,6 

 

 

 

 

Figure 19.  Hardware vs Software 
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We note that we used our own optimized software, which roughly corresponds to the hardware 

architecture, as Internet-distributed codes did not seem to have quite the same performance. To be 

precise, and although no published results exist, from our experimental work we gleaned that the 

best software has roughly 20MNodes/sec on a high-end workstation, whereas our own optimized 

software version visits 26MNodes/sec. As mentioned above this software was developed by Mr. 

Miltiadis Smerdis. The software is the exact same implementation of the algorithm as the hardware. 

The clustering of the pieces is the same as the hardware, in order to minimize the search between 

the pieces for a certain board slot. The flexibility of software implementations allowed the 

implementation of a faster Pop operation but as mentioned on Chapter VI the hardware 

implementation did not provide equal performance vs resource utilization. In the end the hardware 

has to check all the pieces with those attributes in order to choose the next piece for that slot, even 

pieces with lower id values. 

As it is shown on Table X and Figure 19 one EtSolver has significant SpeedDown vs the 

software. This was an expected result as the FPGA implementation has more than 25 times lower 

clock frequency. The FPGA implementation overcomes this disadvantage by increasing the number 

of calculations per clock cycle and by exploiting parallelization. As a result we end up with a 2,6 

SpeedUp with 22 EtSolver engines. 

We also need to compare our work against the work presented by Vladimír Kašík on [18]. For 

this reason the EtSolver had to be mapped on the XUP board with a XC2VP30 FPGA. The Fast BT 

can push/pop a piece in every clock cycle while EtSolver needs multiple cycles for each operation. 

The Fast BT can achieve a performance of 16M(push or pop)/sec which is about 8MNodes/sec, as 

only push operations count as visited nodes. As it is shown on Table XI and Figure 20 one EtSolver 

engine (with a 100MHz clock frequency) has half the performance of the Fast BT (with a 16MHz 

clock frequency) but utilizes a lot less resources which allowed the mapping of 7 EtSolver engines 

(with a 75MHz clock frequency) on the XC2VP30 FPGA. As a result a SpeedUp of 2,7, vs the Fast 

BT, can be achieved on the same hardware device. 

TABLE XI.  ETSOLVER VS FAST BT 

Architecture 
Resource utilization 

Performance SpeedUp 
Slices Block RAMs 

Fast BT 12060(88%) 0(0%) 8 MNodes/sec 1 

1 EtSolver engine 1718(13%) 13(9%) 4,1 MNodes/sec 0,51 

7 EtSolver engines 12026(88%) 91(68%) 21,5 MNodes/sec 2,7 
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Figure 20.  EtSolver vs FastBT 

 

After a 3 months actual calculation time on the hardware the best available solution contained 

187/196 pieces giving a score of 346/364 number of satisfied junctions. 
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X. CONCLUSIONS 

 

The work presented in this paper shows a complete architecture for the Eternity II puzzle, with 

the implementation of a non-trivial DFS algorithm on hardware, and its 22-fold parallelization on a 

single Virtex 5 FPGA. Actual runs on hardware show an overall system performance SpeedUp of 

2.6 vs. the equivalent software running on a high-end workstation. The hardware optimizations led 

to the implementation of the optimized software. These results are very promising because they 

show that exhaustive searches with recursive algorithms and non-trivial data structures can be well-

addressed by FPGAs vs. general-purpose computers.  

It is also useful to note that the design needs a very large amount of time in order to complete 

the search space (about 10
108

 years with 1 FPGA). The only chance to get a solution is if we are 

lucky and we initialize one of the 22 engines with a puzzle that happens to be near the solution, e.g. 

provide the correct first 50 pieces. 
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