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A B S T R A C T

In this work, we present a directly applicable scheme for power con-
sumption shifting, and the effective flattening of the electricity con-
sumption curve corresponding to some future date (e.g., the day
ahead). It is a pro-active scheme, rather than a last-minute peak trim-
ming one; and it can employ the services of either individual or co-
operating consumer agents alike. Agents participating in the scheme,
however, are motivated to form cooperatives, in order to reduce their
electricity bills via lower group prices granted for sizable consump-
tion shifting from high to low demand time intervals. The scheme
takes into account individual costs, and uses a strictly proper scor-
ing rule to reward contributors according to efficiency. Cooperative
members, in particular, can attain variable reduced electricity price
rates, given their different load-shifting capabilities. This allows even
agents with initially forbidding shifting costs to participate in the
scheme, and is achieved by a weakly budget-balanced, truthful re-
ward sharing mechanism. We provide four variants of this approach,
and evaluate them experimentally. One major problem arising in this
domain is assessing the participating agents’ uncertainty, and cor-
rectly predicting their future behavior. Thus, in this work we adopt
two stochastic filtering techniques, the Unscented Kalman Filter and
the Histogram Filter, and use them to effectively monitor the trust-
worthiness of agent statements regarding their final actions. Interest-
ingly, our UKF filter is equipped with a Gaussian Process regression
model. We incorporate these techniques within our demand manage-
ment scheme. Our simulation results confirm that these techniques
provide tangible benefits regarding enhanced consumption reduction
performance, and increased financial gains for the cooperative.

A B S T R A C T ( G R E E K )

Σε αυτήν την εργασία παρουσιάζουμε ένα άμεσα εφαρμόσιμο μηχανισμό

για τη μεταφορά κατανάλωσης ηλεκτρικού ρεύματος στο χρόνο, με σκοπό

την αποτελεσματική εξομάλυνση της καμπύλης ζήτησης για κάποια μελ-

λοντική ημερομηνία (π.χ. για την επόμενη μέρα). Σε αντίθεση με μηχανισ-

μούς που αποσκοπούν στη μείωση της ενεργειακής κατανάλωσης αφού

έχει εμφανιστεί ένα μέγιστο στην σχετική καμπύλη (περιορισμός κατανάλ-

ωσης σε περιόδους αιχμής), ο μηχανισμός μας προωθεί την αποφυγή δημι-

ουργίας τέτοιων μεγίστων -και μπορεί να συμπεριλάβει ανεξάρτητους ή και

συνεταιριζόμενους πράκτορες. Ωστόσο, στους συμμετέχοντες δίδεται κίν-

ητρο για να σχηματίζουν συνεταιρισμούς, έτσι ώστε να μειώσουν τους
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λογαριασμούς του ηλεκτρικού ρεύματος, μέσω της εξασφάλισης χαμη-

λότερων ομαδικών τιμών που δίδονται για μεταφορά ουσιώδους μεγέθους

κατανάλωσης από χρονικά διαστήματα υψηλής ζήτησης σε άλλα χαμη-

λότερης. Η προσέγγισή μας λαμβάνει υπ΄όψιν τα κόστη του κάθε πράκ-

τορα και χρησιμοποιεί έναν «αυστηρά αρμόζοντα κανόνα βαθμολόγησης»

(strictly proper scoring rule) για να ανταμείψει τους συμμετέχοντες σύμ-

φωνα με την αποδοτικότητά τους. Συγκεκριμένα, τα μέλη του συνεταιρισ-

μού μπορούν να εξασφαλίσουν μειωμένες τιμές ηλεκτρικού ρεύματος, οι

οποίες είναι ενδεχομένως διαφορετικές για κάθε μέλος (και εξαρτώνται

από τις συγκεκριμένες δυνατότητες των μελών). Αυτό επιτρέπει σε πράκ-

τορες με αρχικά απαγορευτικά κόστη μεταφοράς κατανάλωσης να συμ-

μετάσχουν, μέσω ενός μηχανισμού διαμοιρασμού των κερδών, ο οποίος

αποτρέπει ψευδείς δηλώσεις να τον επηρεάζουν (truthful) και επιτυγχάνει

ασθενή ισολογισμό του κεφαλαίου (weak budget-balancedness). Προ-

τείνουμε τέσσερις παραλλαγές αυτής της προσέγγισης και τις αξιολο-

γούμε πειραματικά. ΄Ενα μεγάλο πρόβλημα σε αυτόν τον τομέα είναι η

κατανόηση της αβεβαιότητας των συμμετεχόντων και η ακριβής πρόβλεψη

των μελλοντικών ενεργειών τους. Ως εκ τούτου, σε αυτή την εργασία

υιοθετούμε δύο τεχνικές «στοχαστικού φιλτραρίσματος», το φίλτρο Un-
scented Kalman, και το φίλτρο ιστογράμματος και τις χρησιμοποιούμε

για να παρακολουθήσουμε αποτελεσματικά την αξιοπιστία των δηλώσεων

των πρακτόρων σε σχέση με τις τελικές τους πράξεις. Μια περαιτέρω εν-

διαφέρουσα συνεισφορά της εργασίας μας είναι ο εξοπλισμός του UKF
φίλτρου με ένα μοντέλο στοχαστικής παλινδρόμησης, τις Γκαουσσιανές

διαδικασίες (Gaussian Processes). Χρησιμοποιούμε αυτές τις τεχνικές

στον κύριο μηχανισμό μας, ο οποίος προσφέρει υπηρεσίες διαχείρισης της

ζήτησης του ηλεκτρικού ρεύματος. Τα αποτελέσματα των προσομοιώσεων

επιβεβαιώνουν ότι αυτές οι τεχνικές προσδίδουν απτά πλεονεκτήματα όσον

αφορά τον περιορισμό της ζήτησης, αλλά και αυξημένα χρηματικά κέρδη

για τον συνεταιρισμό.
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Part I

S M A RT G R I D A N D D E M A N D S I D E
M A N A G E M E N T

In this part we introduce the reader to the key ideas re-
lated to this work. The first chapter provides motivation
and introduction. The second chapter provides the back-
ground notions that are relevant to our problem, and re-
views concepts and ideas essential to our novel coopera-
tive multiagent electricity demand shifting scheme.





1
I N T R O D U C T I O N

The scientific study of electricity and electric power production has
led to rapid advancements in the industrial production process and
technology. Ending up to be treated as a commodity, electricity is re-
sponsible for the more convenient everyday life that people of today
enjoy, to the degree that it has become a necessity. As a result, the
electricity grid has become a complex “machine” whose operation
must be reliable and effective. A characteristic of electric power that
is problematic, however, is that its storage is quite difficult and expen-
sive, so it must be consumed at the very time that it is generated [30].
Another important issue about contemporary electricity generation is
that it is mainly produced by the burning of fossil fuels; apart from
the fact that their sources are depleting, their use is harmful to the
environment as their extraction is possible to harm surrounding ar-
eas, and their burning also produces gases, which help exacerbate the
so-called “greenhouse effect”. As a remedy to these concerns, recent
trends propose greener approaches that will help future electricity
production become less polluting and more sustainable, introducing
the hope for a cleaner planet [39, 17, 19]. Governmental acts, in partic-
ular, from all around the world, drive producing sides to shutdown
fossil fuel burning facilities and substitute them with new, “cleaner”
ones. The turn to renewable sources for electric power generation
is desirable, as it leads to lower carbon dioxide emissions. Also, such
sources can be constructed in a non-industrial and decentralized man-
ner, allowing the average household to contribute and benefit from its
participation to the electricity production process [1, 36]. Despite the
positive impacts that come with the use of renewable sources, new
difficulties arise regarding electricity production and demand man-
agement. This is because weather dependent sources are by defini-
tion intermittent and potentially unreliable with respect to the size of
their output. Thus, we need to construct more robust infrastructures
to deal with the aforementioned issues effectively.

The plan for the future power grid, also known as the Smart Grid, The Smart Grid

incorporates interconnectivity and communication of both power pro-
ducing and consuming sides, in order to facilitate the management of
generation and consumption of electricity, at times where the use of
renewable electricity sources rises [19]. More specifically, the Smart
Grid aspires to use secure, two-way communication technologies to
exploit valuable information across every stage, from generators and
distribution networks to final consumption. In this way we can achieve
clean production, safety, security, reliability, resilience, efficiency and

3



4 introduction

sustainability in the electricity grid [17]. In short, the impact of the
applications of Smart Grid technologies can lead to:

• Active consumer participation.

• Exploitation of all generation and storage possibilities.

• Development of new electricity products, services and markets.

• Optimization of the Grid operation.

• Anticipation and response to system disturbances.

• Resistance to disasters.

The data recorded by sensors placed at all levels of the SmartDemand Balancing

Grid, can be used to effectively balance supply and demand. Pro-
vided with this information, end users, who are potentially repre-
sented by autonomous agents [54], are able to react to signals, like
supply insufficiency indicators for example, and alter their consump-
tion patterns accordingly. To this end, several load control programs
have been proposed, where electricity consumers are encouraged to
abridge their consuming activities, or shift them to off-peak hours
in order to reduce peak-to-average ratio (PAR) [30, 11]. Apart from
industrial and other large-scale consumers, the participation of res-
idential customers in such schemes is also possible, provided that
smart meters or similar electricity management systems are available
[45, 50]. Such schemes may involve a specialized intermediary com-
pany offering demand-response services which manages consumers
who agree, for a cash reward, to step in and contribute to the “trim-
ming down” of the demand curve in the event of an impending crit-
ical period. Also, there exist demand reduction scheme types that
provide reduced electricity consumption rates to consumers for low-
ering their consumption over a prolonged time period, while others
use dynamic, real-time pricing [2, 4, 6].

As in a Smart Grid environment electricity is generated and con-
sumed in a purely distributed fashion, it is more efficient to group
users in larger entities. Thus, recent work in the multiagent systems
community has put forward the notion of Virtual Power Plants (VPPs).
These correspond to coalitions of electricity producers, consumers, or
even prosumers1, who cooperate in order to meet market demands,
mimic the reliability characteristics of traditional power plants, and
deal efficiently with the issues that accrue [4, 11]. Generally, a multia-
gent systems approach can be considered more natural for these kind
of paradigms, as it can model various individual participant types
with their alternating preferences and uncertainties, and realistically
simulate a distributed Smart Grid scenario [8, 54].

In this work, we propose a simple and directly applicable powerAn Effective Power
Consumption

Shifting Scheme 1 A prosumer is an entity that can both produce and consume energy.



introduction 5

consumption shifting scheme for the Smart Grid. Our scheme moti-
vates self-interested business units, represented by autonomous agents
that potentially form coalitions, to shift power consumption from
peak intervals to others with lower demand, in order to receive lower
electricity price rates for their contribution. In more detail, in our set-
ting the independent system operator (ISO) [23] —for instance, the
national Grid—, gives information for the time intervals that con-
sumption needs to be reduced at, and those that it is best to shift
consumption to. The consumption during these preferred non-peak
intervals is granted a better price. Then, the consumer side weighs
its costs and potential profits, and chooses to participate in a shifting
operation or not. To promote efficiency, we use a strictly proper scoring
rule CRPS, proposed in the mechanism design literature [18], which
incentivizes agents to report their predicted shifting capabilities as
accurately as possible.

Now, to avoid overwhelming computational complexity and its re-
lated costs, it is clearly in the interests of the Grid to interact with
the smallest number of “shifting” business units possible [7]. Thus,
it is conceivable that the Grid would be willing to promise signif-
icantly lower electricity rates for considerable shifting efforts only,
which cannot normally be undertaken by any small consumer alone.
At the same time, individuals might not be capable of sufficient re-
duction due to high shifting costs. As a result, they are motivated to
join forces in a cooperative, and attempt to coordinate their actions in
order to reach the expected reduction levels and make their partici-
pation in the scheme worthwhile. This is similar to group purchasing
in e-marketplaces, where some coalition members can obtain items
that cost more than they are able to pay for alone, but due to group
internal price fluctuations set by corresponding mechanisms, the pur-
chase finally becomes advantageous to all [28, 56]. Inspired by work
in that domain, we devise a reward sharing mechanism which de-
termines variable reduced electricity prices for coalescing agents via
internal money transfers, and incentivizes them to participate in the
consumption shifting scheme.

The proposed scheme aims to shift power consumption to non-
peak intervals and flatten the consumption curve on a day-ahead ba-
sis. Our shifting scheme requires no legislature change and can be
applied directly, including residential, commercial and industrial cus-
tomers. We do not assume or propose the use of oscillating hourly
electricity prices like real-time pricing (RTP) [30] does, but provide
participating consumers with privileges in the form of better elec-
tricity prices, as explained above. Our approach can thus be consid-
ered as a simple and immediately applicable alternative to the use of
real-time pricing. As we detail in Section 2.1, RTP is a highly contro-
versial demand side management mechanism—in terms of perceived
efficiency, but also politically and ethically. In contrast, our scheme
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incentivises truthful and accurate reduction capacity statements by par-
ticipating agents. In this way, it is much less prone to manipulation
than schemes employing simplistic reduced “flat” consumption tar-
iffs. Moreover, the scheme encourages agent cooperation in consumer
cooperatives. We equip such cooperatives with an individually rational,
incentive compatible, and budget-balanced [46] reward-sharing mecha-
nism to be used for awarding members’ reduction efforts. Briefly, the
overall scheme works as follows:

1. The Grid announces peak and non-peak time intervals2 with
high and low consumption prices and asks agents to announce
their willingness to shift some of their production from peak to
non-peak intervals, promising them a better consumption price
for doing so.

2. The agents put forward bids to shift specific amounts from peak
to non-peak intervals, along with their costs for doing so, and
their uncertainty (in the form of a probability distribution) re-
garding their ability to honor their bids. If the agents represent
a cooperative, deliberations internal to the cooperative occur, in
order to determine its bids, as we detail later in this thesis.

3. A clearing process takes place, determining the accepted agent
bids.

4. During the next day3, the agreed consumption shifting activities
take place.

In order for agent cooperatives to be functional, efficient, and prof-Incentivising
Truthful Statements itable, they need to take business decisions regarding which members

to include in service-providing coalitions. These decisions naturally
depend on the abilities (e.g., electricity production or consumption re-
duction capacities) of individual agents. These abilities need to be ei-
ther monitored by some central cooperative-managing agent, or need
to be truthfully and accurately communicated to it. However, it is
clear that in the large and dynamically changing scene of the power
Grid, trust between selfish agents is not implied, and must be guar-
anteed. Mechanism design and related approaches —in this case, the
CRPS rule incorporated in our mechanism— attempt to build trust
among agents via providing them with the incentives to truthfully
and accurately report their intended future actions, along with their
corresponding uncertainty regarding those actions [46, 7, 26, 43]. Un-
fortunately, even if participating agents are perfectly truthful regard-
ing their abilities and corresponding uncertainty, their reports and

2 We must note that time intervals can be of any size. In this thesis, we consider
them to be 48 half hour intervals per day, that is tha standard division in the energy
domain [7].

3 Our mechanism can be employed for any future date of our choice.
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estimates can still be highly inaccurate. This can be due to, for ex-
ample, communication problems, malfunctioning equipment, or prej-
udiced beliefs and private assumptions—e.g., a truthful reporting
agent might be overly pessimistic or optimistic.

As a result, monitoring the performance of individuals and cor-
rectly predicting their future contributing potential is of utmost im-
portance to a cooperative or an organization relying on the services
of selfish, distributed, autonomous agents. To this purpose, one could
try to explicitly estimate agent electricity consumption and produc-
tion amounts, by incorporating prediction models that rely on agent
geographical location and weather forecasts, or the processing of macroe-
conomic data [21, 35]. Although such approaches have promising re-
sults, they cannot immediately predict the actual behavior of a spe-
cific agent, which might be motivated by private knowledge or busi-
ness concerns, neither do they account for errors due to equipment
malfunction. In contrast, we propose the application of generic pre-
diction methods, which are nevertheless able to adapt to a specific
agent’s behavior.

To this end, we use stochastic filtering methods [55] to keep track of Stochastic Filtering
to Monitor
Trustworthiness

the parameters that best describe agent behaviour, and effectively es-
timate actual future agent performance. These techniques are able to
not only fit the dynamics of the processes governing agent perfor-
mance, but can also imbibe the potential errors of electricity metering
or information transmission devices. In particular, we adopt the His-
togram Filter (HF) [49] and the Unscented Kalman filter (UKF) [22] to
predict the future actual actions of agents participating in coopera-
tives offering electricity demand management services.

The UKF method is a non-linear extension of the celebrated Kalman GP-UKF and HF

Filter (KF) recursive state estimation algorithm [49]. The UKF parame-
ters in our work here are, interestingly, obtained via a Gaussian Process
(GP) regression on past observed data. This is in the spirit of recent
approaches that equip UKF with GP prediction models, to achieve
improved estimation performance in other domains [3, 24]. Now, the
UKF technique assumes that final actions are functions of member-
stated uncertainty, and performs accordingly. HF, on the other hand,
ignores agent-stated uncertainty, and takes into account past perfor-
mance observations only.

These two methods are very generic, and have wide areas of appli-
cation. Their employment in the power consumption shifting domain
ensures that member agents can be ranked by the cooperative accord-
ing to their perceived consumption shifting capacities; and thus un-
truthful or inaccurate agent statements regarding their capacity and
corresponding uncertainty will not be able to jeopardize the stability
and effectiveness of the overall mechanism governing the cooperative
business decisions (e.g., which agents to select for consumption shift-
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ing at a given point in time). This is key for the economic viability of
any such cooperative.

Both methods appear to be able to provide reasonable predictions
regarding the actual performance of individual agents, given the agents’
stated intended actions and related uncertainty. As such, the effi-
ciency of these filtering methods is not restricted in the demand man-
agement and peak-trimming domains, but they can arguably be read-
ily employed to monitor the trustworthiness of electricity producers’
statements regarding their intended actions. In a nutshell, our results
indicate that both filtering techniques examined are strong candidates
for monitoring the trustworthiness of selfish agents in the Smart Grid,
with GP-UKF’s behavior appearing to be more solid. We thus believe
they deserve to be further evaluated in this direction, since they can
bring tangible benefits to business entities operating in this domain.

To the best of our knowledge, this is the first work to propose aSummary and
Contributions specific protocol and mechanism for achieving large-scale electricity de-

mand shifting without the use of “intermediary third parties” or real-
time pricing. Also, it is the first work to use stochastic filtering and
regression methods for assessing the performance of autonomous,
economically-minded agents participating in Smart Grid cooperatives
or other such entities. In addition, this is the first time that Gaussian
Processes are combined with UKF in this domain, with very promis-
ing results. Our experimental results provide a testimony to the ben-
efits arising from the formation of agent cooperatives in the Smart
Grid.

In more detail, this is the first work that presents a complete scheme
for electricity consumption shifting. Our scheme is directly applicable
and requires no legislature change whatsoever. Now, in order for the
scheme to effectively flatten demand, we promote collective consumer
actions via agent cooperatives. This kind of approach is more natural
to use for the diverse and dynamic Smart Grid environment. More-
over, our scheme possesses certain desirable properties. First of all, it
performs proactive —ahead of time— demand curve flattening. This
results to more stable reduction actions planning. Second, it is truthful,
by employing a proper scoring rule (CRPS) that ranks agents accord-
ing to their forecasting precision, and fines them accordingly. Third,
it is individually rational, as it proposes a lower group price for shifted
load, that makes it profitable for agents to participate. Moreover, we
developed a weakly budget balanced gain transfer scheme, that allows
agents with initially forbidding shifting costs, not to suffer monetary
losses from participation. Finally, stochastic filtering techniques are
used for the first time to monitor agent final shifting actions uncertainty,
and their application can achieve even more effective electricity de-
mand curve flattening. Such methods are able to adapt to specific
agent behavior and can be used to tackle agent inaccuracies, and, as
result, make the cooperative even more stable and viable. Given all



introduction 9

these, the proposed mechanism can be considered efficient in the face
of the uncertainty, that governs agent statements and final actions in
the scenario of collective electricity consumption shifting.

The rest of this thesis is structured as follows. Chapter 2 presents Chapters
Organizationsome concepts of past related work. In Chapter 3 the consumption

shifting problem is explained. In Chapter 4 we discuss the way con-
sumer cooperatives determine their bids for participating in the shift-
ing process, and the details of the reward sharing mechanism. Chap-
ter 5 shows the two proposed filtering methods to monitor agent un-
certainty. Chapter 6 lists our experimental simulations and results.
Chapter 7 provides conclusions and outlines future work.





2
B A C K G R O U N D A N D R E L AT E D W O R K

In this chapter we provide a background for the problem tackled
on this thesis. We discuss demand side management and peak-trimming
schemes proposed in the literature or used in the real world. Next we
present related work on game theory and mechanism design and in-
troduce the reader to important notions from these fields. One field of
study within game theory is the formation of coalitions, or in the case
of the Smart Grid, Virtual Power Plant. Briefly, VPPs are groupings of
distributed energy resources which can collectively be viewed as one
simple power plant. As we will be explaining, in our work we pro-
pose the formation of VPPs of consumers. Given that our work also
incorporates stochastic filtering techniques to monitor consumer un-
certainties in order to guarantee stability and effectiveness, a review
of contemporary systems using such techniques is also presented.

2.1 peak trimming and demand-side management

Much research has been made regarding demand side management ser-
vices [4, 47]. Such approaches allow the end users alter their consump-
tion patterns in response to demand levels i.e. reduce consumption
at times when generation costs are high [2]. This concept is similar
to peak-trimming [27], where a company might call in and ask to re-
duce consumption during peak periods. On such occasions though,
reducing might not be enough, or reduction services might come in
too late. Thus, a more realistic approach is to proactively determine de-
mand management schemes ahead of time, as in schemes we discuss
in this subsection, and the one we propose in our work.

Kota, Chalkiadakis, Robu, Rogers and Jennings [26], were actu-
ally the first to propose a demand side management scheme involv-
ing electricity consumer cooperatives. Specifically, they proposed the
formation of consumer Cooperatives for Demand Side Management
(CDSMs), with the aim of “selling back” to the electricity market the
amount of load that was not consumed due to proactive reduction
measures. In their scheme, consumers represented by agents form
cooperatives with the purpose to participate in the (wholesale) elec-
tricity markets as if they were producers, essentially selling energy nega-
watts in the form of reduction services. Though inspirational, their
approach requires a legislature change in order to be applied in real
life. This is because, agents in their scheme have to essentially sign
strict contracts with the Grid to participate in the market, and cooper-
ative members risk the danger of being significantly “punished” for

11
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not meeting their obligations through what might appear to a small-
scale, household consumer as a complicated protocol. Thus, real con-
sumers might prove reluctant to join cooperatives and participate in
their scheme. By comparison, the scheme proposed in this thesis is
simpler and easier to apply in practice. In our approach, agents sim-
ply run the danger of being granted less profit for their actions than
originally promised. Importantly, they are also almost in complete
control of that risk, and quite capable of minimizing it, due to the
fact that they are guided a priori (and have agreed) to the time slots
where they can actually shift consumption to.

Several simple reduction schemes that promise reduced flat elec-
tricity rates for lower consumption levels over prolonged periods of
time, such as critical peak pricing programs, and are already in place
in the real world [4]. Unfortunately, most of those schemes can be
easily manipulated in “unethical” ways by individuals. For instance,
they have no means to exclude consumers that simply happened to
be able to not demand electricity over some period; that is, an in-
dividual could go away on holiday for a month, and collect a cash
reward for doing so. Our scheme does not suffer such problems, as
it (a) rewards consumption reduction—and, importantly, promotes
consumption shifting—on essentially an hour-to-hour basis (planned
a day ahead), and (b) rewards these “short-term” services based on
how successfully they were delivered.

Economists have in recent years been advocating the use of “dy-Real-Time Pricing

namic”, real-time pricing (RTP) schemes as a means to avoid market
inefficiencies and the aforementioned shortcomings of existing de-
mand reduction schemes, and trim the unwanted peaks [6]. In the
MIT introduction to the Smart Grid [30], authors define RTP as en-
ergy prices that are set for a specific time period on an advance or
forward basis and which may change according to price changes in
the market. Prices paid for energy consumed during these periods
are typically established and known to consumers a day ahead (“day-
ahead pricing”) or an hour ahead (“hour-ahead pricing”) in advance
of such consumption, allowing them to vary their demand and usage
in response to such prices and manage their energy costs by shifting
usage to a lower cost period, or reducing consumption overall.

However, RTP has been strongly criticized for promoting the com-
plete liberalization of household energy pricing. In addition, due to
increased levels of consumer uncertainty regarding imminent price
fluctuations, it may also require user manual response or the con-
tinuous monitoring of smart meters, leading to difficulties in appli-
cation. Moreover, and perhaps more importantly, recent work shows
that RTP mechanisms do not necessarily lead to peak-to-average ratio
reduction, because large portions of load may be shifted from a typi-
cal peak hour to a typical non-peak hour [32]. In contrast, our scheme
explicitly takes into account the Grid’s perspective on which time in-
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tervals are preferable for shifting consumption to, and imposes the
necessary constraints to avoid—to the extent possible—the event of
new peaks arising. Generally, ahead of time curve flattening is more
desirable than peak trimming, at the last minute.

2.2 game theory and mechanism design

Due to the economic nature of the control and optimization prob-
lems faced by rational entities operating in the Smart Grid, game the-
ory [34] approaches are highly appropriate. Such approaches model
such problems as games and study the strategies that each player
should adopt. Cooperative game theory, and the problem of cooperat-
ing agent coalition formation in particular, are very important in the
domain of the Smart Grid. For example, Vitelingum et al. [52], pro-
pose specific strategies for the adaptive management of distributed
micro-storage energy devices. Contreras et al. [57, 9] provide a Bilat-
eral Shapley Value negotiation scheme for forming coalitions of new
collaborators in the power transmission network. In [58], a multia-
gent system modeling of electricity traders in the new “free” electric-
ity market is presented. Authors propose a game theoretic approach
for forming coalitions for multilateral trades between Smart Grid en-
tities.

In another work, that of [20], a distributed load management scheme
with dynamic pricing strategies is proposed. The problem is treated
as a network congestion game where pure Nash equilibrium solu-
tions can be found in a finite number of steps.

In [31], authors try to minimize peak to average ratio, and energy
costs. They present a convex formulation of the problem and propose
a distributed algorithm that produces solutions calculated as best re-
sponse on other users consumption patterns. We chose not to follow a
pure game theoretic approach, because it requires that every “player”
retains a specific and fixed strategy. This cannot be realistically as-
sumed to hold—let alone guaranteed—in any large, open multiagent
environment.

Another field of game theory is mechanism design, that is also some-
times called as reverse game theory. Here, not only the player strate-
gies are studied, but the structure of the game itself. More specifi-
cally, the rules of the game are set in a way, such that the strategies
that players choose to follow, lead to desired outcomes of the game.
One central goal in mechanism design is incentive compatibility [46].
Namely, mechanisms are designed so that agents are incentivized to
truthfully reveal their private preferences or information. In our case,
the desired outcome is to shift peak load to non peak intervals, with-
out suffering monetary loss. To guarantee this outcome, agents must
truthfully interact with the Grid.
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The work of Kota, Chalkiadakis, Robu, Rogers and Jennings [26]
mentioned earlier, for instance, comes complete with certain incentive
compatibility guarantees. However, unlike what we do in this thesis,
no guidelines whatsoever as to where to shift consumption to are
provided by that model, and deals agreed there involve reduction
promises only.

Another field of game theory is mechanism design, that is also some-
times called reverse game theory. Here, not only the player strategies
are studied, but the structure of the game itself. More specifically,
the rules of the game are set in a way, such that the strategies that
players choose to follow, lead to desired outcomes of the game. In
other words, the objective is to design protocols of strategic agent in-
teractions with certain desirable properties; and these properties are
often ensured by the mechanism making the promise of certain pay-
ments (e.g., in the form of monetary trasnsfers) to the participants.
One central goal in mechanism design is incentive compatibility [46].
Namely, mechanisms are designed so that agents are incentivized
to truthfully reveal their private preferences or information. In our
case, the desired outcome is to shift peak load to non peak intervals,
without suffering monetary loss. To guarantee this outcome, agents
must truthfully interact with the Grid. Another desirable property
for mechanisms is that of budget-balancedness. Budget balancedness
means that the mechanism awards the participants the same amount
of money it collects from them [46]; Weak budget-balancedness, on the
other hand, means that the mechanism might actually be able to make
a profit (as rewards collected by the participants exceed the amount
of payments made to them). In either case, (weak or strong) budget-
balancedness implies that there is no need for external transfers into
the mechanism. As we detail later, the payment mechanism we de-
signed for our consumers cooperatives is weakly budget-balanced (as
cooperative members pay the cooperative a sum that at least matches
the electriciity bill charged to the cooperative for its energy consump-
tion).

Other work in mechanism design includes [51], where authors pro-
pose the management of the trading of electricity between homes and
micro-grids via a market-based mechanism and trading strategies for
the Smart Grid. Robu et al. in [44] provide two versions on a truth-
ful allocation mechanism for a dynamic population’s hybrid electric
vehicle charging.

Recent work in the energy production side has proposed the use
of Continuously Ranked Probability Score (CRPS) scoring rule for eval-
uating power production or consumption predictions of agents par-
ticipating in cooperatives in the Smart Grid [43]. CRPS provides a
scoring function for evaluating the accuracy of a forecast, given its ac-
tual occurrence. When agent-stated forecasts are off the occurrences,
contributors are “fined” proportionally to their CRPS score. In our ap-
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proach, instead of production, CRPS is used for consumption shifting
effort ranking. While this technique provides the agents with strong
incentives to stay truthful (and, indeed, provides theoretical guaran-
tees for statement truthfulness), it does not guarantee agent statement
accuracy. For this reason, we employ stochastic filtering techniques to
monitor agent trustworthiness, as explained later.

2.3 virtual power plants

A concept related to CDSMs is that of Virtual Power Plants [13, 12].
VPPs are amalgamations of electricity producers and consumers act-
ing as “power plants” attempting to counter the effects of peak-time
consumption before it becomes hazardous for the stability of the
Grid [4]. Initially, the concept of VPP was developed to enhance the
visibility and control of distributed energy resources to system op-
erators and other market actors, by providing an appropriate inter-
face between these system components [37]. But since the Smart Grid
mainly consists of distributed resources and a large number of con-
sumers that perform according to their own beliefs and convenience,
large groupings in VPPs make the analysis and interactions easier.
The collective action of VPP members makes it possible for the VPP
to participate in “critical peak pricing programs”, that is members
might be rewarded with better consumption rates for reducing their
energy demand over some period [4].

In [25], authors propose a decentralized system architecture as a
mean of balancing supply and demand in clusters of distributed en-
ergy resources. Intelligent distributed coordination is achieved by or-
ganizing the DER-agents into a logical tree, assigning them roles and
prescribing strategies to use in their interactions.

The work of [29] proposes the use of multiagent coalition formation
strategies and market based techniques for the creation of VPPs. Their
work though, does not provide mechanism design guarantees, such
as individual rationality or incentive compatibility. These concepts
are addressed and guaranteed in our work.

The beneficial nature of cooperative producer VPPs is clearly demon-
strated by Chalkiadakis et al. in [7], where an extended analysis out-
lines the benefits arising from distributed energy resources coalesc-
ing to profitably sell energy to the Smart Grid. That paper is the first
to explore the game theoretic view of Virtual Power Plant formation.
They provide a mechanism that can be considered as an alternative to
feed-in tariffs and promotes reliability of supply. They model the for-
mation of the virtual power plant as a coalitional game and calculate
payments that lie in the set of the core of this game. These cooper-
ative VPPs lead to better utilization of distributed energy resources
as they take into account every agent that represents them. Similarly,
our work employs a better price, awarded for shifting sizable amounts
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of load, that is agents are better off forming large cooperatives and
shifting “less costly” peak load to other non peak intervals.

The Cooperatives for Demand Side Management proposed in [26], is an-
other form of Virtual Power Plants. Similarly to [26], our approach ad-
vocates the creation of cooperative VPPs at the consumer side to pro-
vide demand management services, and proposes a specific method
to incentivize the shifting —instead of only trimming— of the peak
electricity consumption loads to promote the flattening of the global
electricity demand curve ahead of time.

2.4 adaptive systems and stochastic filtering techniques

Stochastic Filtering Theory uses probability tools to estimate unob-
servable stochastic processes [55]. Such methods are employed in this
work to enhance the accuracy and effectiveness of our mechanism.
This is achieved by monitoring past consumer statements and actions,
and based on these, cooperative “central beliefs” about future actions
are generated, that do not depend on agent statements, as those might
be inaccurate. There exist many approaches on adapting systems and
corresponding attempts to tackle system related uncertainty. A de-
tailed review of the types of uncertainty influencing the operation of
an adaptive system, complete with techniques for uncertainty repre-
sentation, can be found in [15]. In our case, we are concerned about
the uncertainty inherent in electricity shifting statements and actions.

One concrete example of a self-adaptive system is provided by the
“RESIST” framework [10]. RESIST is a situated software system that
monitors various information sources and reconfigures itself proac-
tively. In that work, a Hidden Markov Model (HMM) is trained and
solved. Contextual parameters are also used in order to make the sys-
tem adaptive to environmental changes. HMMs could be applied to
our setting. However, we chose not to incorporate them, as we are
not trying to estimate each agent’s exact state (although that could be
done in a higher level analysis), but instead, we wish to predict agent
future performance based on past actions. A self-adaptive system that
is closer to our requirements is the FeatUre-oriented Self-adaptatION
framework [14]. The system operates using interconnected features,
whose importance is constantly monitored and reconfigured accord-
ingly.

Now, stochastic filtering techniques, in particular Kalman filters
and their variants, have been widely used in a variety of domains;
and can of course be incorporated in self-adaptive systems such as
the above. In general, Kalman filters are algorithms that make use
of historically observed series of noisy measurements and generate
more precise estimates about future observations. In particular, they
estimate the internal states of linear dynamic systems. In cases where
the dynamic system is non-linear, extensions of the Kalman filter, like
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the Extended Kalman filter can be used. The Extended Kalman filter
linearizes the non-linear function around the current estimate, using
multivariate Taylor series expansions. In what follows, we mention
only a couple of examples that are most relevant to our work.

In [16], authors use an Extended Kalman Filter whose parameters
are given by a Particle Swarm Optimization algorithm, to compute
the synaptic weights of a neural network. This neural network is then
used to predict wind turbine production; however, EKF is prone to
errors due to inaccurate approximations. The approach in [24], on
the other hand, employs Gaussian Process [42] regression for learning
motion and observation models by some training measurements. Re-
sulting GP parameter values are fed in to an Unscented Kalman Filter,
in order to perform tracking of an autonomous micro-blimp. The ap-
proach successfully tackles precision problems that appear from the
combination of noisy observations and uncertainty in the model. GPs
have also been used recently by [5] to forecast electricity demand,
and the predictions are tested in the electricity market simulation of
PowerTAC. In our proposed scheme, we devise a similar combina-
tion of a GP model with a UKF filter, and employ it as one of our two
proposed filtering techniques.

In our work, we enhance our generic framework for demand shift-
ing, via the adoption of two distinct filtering techniques, for predict-
ing the power consumption shifting efforts of participating agents.
This can be viewed as a type of system adaptation. When an agent
shifts some load, its actions are monitored and a corresponding model
is induced. Then, instead of simply taking individual forecasts into
account, the learned model is used to better predict agent and co-
operative action quality, and improve monetary benefits and general
performance.

2.5 discussion

Admittedly, the penetration of Smart Grid technology to the electric-
ity network has already begun. Provided that the designs and archi-
tectures about to be adopted keep up with the philosophies of “clean
energy” and “sustainability”, the expectation of a “greener” future
can be considered realistic. Of course, in order to make this possi-
ble, one must persuade end-users to actively participate in the effort.
Thus, the mechanisms and infrastructures used must be transparent,
reliable and fair, and also preserve user privacy1.

To this end, in this thesis we explore a cooperative approach uti-
lizing multiagent systems technologies. As we detail in the upcoming
Chapters, we incorporate related work notions, such as cooperatives

1 Actually, there are already disputes between corporations running large renewable
sources power plants and occupants of the exploited areas about the actual side
effects that industrialized plants create [33].
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of electricity consumers and strictly proper scoring rules to make pos-
sible to shift peak load demand to non-peak time intervals taking into
account personal preferences. In addition, the adoption of stochastic
filtering techniques that monitor past agent performance and can esti-
mate actual agent uncertainty regarding demand shifting operations,
further guarantee the stability and the effective performance of the
proposed scheme, assuming that agents uncertainty follows specific
underlying models that are inferred by past observations. We now
proceed to present our approach in detail.



Part II

T H E P R O P O S E D M E C H A N I S M

This part presents the overall proposed mechanism. First,
we provide the pricing and specific consumption shifting
constraints that must hold in order for the problem to be
feasible. Also, the “bidding process” is explained with re-
spect to single business units. Since it is hard for single
units to be effective in their efforts, the formation of coop-
eratives of consumers are proposed in Chapter 4. This is
more realistic, and constitutes a basic feature of our work.
In addition, a gain balancing algorithm that sets variable
effective prices to each member of the cooperative, as well
as different shifting coalition formation methods are pro-
vided. In the final chapter of this part, we discuss the un-
certainties that govern agent statements and actual final
actions further, and propose two stochastic filtering tech-
niques to monitor individual agent performance and pre-
dict such uncertainties. It is the first time that these tech-
niques are applied in this domain.





3
A D E M A N D - S I D E M A N A G E M E N T S C H E M E F O R
E F F E C T I V E E L E C T R I C I T Y C O N S U M P T I O N
S H I F T I N G

Power supply must continuously meet demand that varies between Grid Side

time intervals. To meet this need and in order to provide incentives
for consumption at times where production and power supply are
cheap, the electricity pricing scheme used in many countries consists
of two different pricing rates, one for day-time and one for night-time
consumption. Such prices are often set by individual utility compa-
nies, or, in many cases, by a nationwide independent system opera-
tor (ISO), managing the electricity grid. We hereby term such an au-
thority as “the Grid” for convenience. In our model, we also assume
that there exist exactly two different price levels phigh > plow. These,
however characterize each specific time interval t, based on a demand
threshold τ under which electricity generation costs are lower :

pt =

{
phigh, if Demandt > τ

plow, if Demandt < τ
(1)

The intervals during which pt = phigh are considered to be peak-
intervals, at which consumption needs to be reduced. We note peak
intervals as th ∈ TH and non-peak ones as tl ∈ TL.

Now, given the daily consumption pattern known to the Grid, it
would ideally like consumption to drop under a safety limit that is
placed below τ. Dropping below the safety limit would ensure that
some low cost generated load available in case of high uncertainty or
an emergency, and minimize the risk that high-cost generators would
have to be turned on. That is, the Grid would ideally want to reduce
consumption by Qthmax > qthτ , where:

1. Qthmax is the load normally consumed over the safety limit at th
(that is the maximum load eligible for shifting), and

2. qthτ is the minimum amount of load whose potential removal
can, under the Grid’s estimations, allow for a better electricity
price1 to be offered to contributing reducers.

Intuitively, qthτ is a sizable load quantity that makes it cost-effective
for the Grid to grant a very low electricity rate, in anticipation of
reaching a demand level that is close to the safety limit. We denote

1 The specific nature of the authority maintaining or setting the prices is not relevant
to our mechanism.
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the load reduced by some agent i at a th as rthi , and that shifted to
each tl ∈ TL as qtli .

3.1 constraints

For a safe demand reduction to take place, the following constraints
must hold: First,∑

i

rthi > qthτ (2)

that is, the amount of load reduced must be higher than the minimum
needed at th. Second,∑

tl

qtli 6
∑
th

rthi , ∀i (3)

meaning that every reducer shifts to a subset of non-peak intervals
an aggregate load amount of at most the load reduced (over the th
intervals he participates in). Moreover,∑

i

∑
tl

qtli 6 Qthmax, ∀th ∈ TH (4)

has to hold, meaning that the sum of all reducing agents shifted load
to all non-peak intervals must be at most equal to Qthmax, assuming
that the Grid has no interest in further reducing consumption, once
it has dropped under τ; and finally∑

i

qtli 6 qtlsl , ∀tl ∈ TL (5)

namely, the total shifted load at each tl must not exceed the qtlsl quan-
tity which is actually available under the safety limit, in order to avoid
the creation of a new “peak” at tl. The objective is to keep demand
close to the safety limit in as many intervals as possible.

As an example, consider the situation in Fig. 1, where a peak in-
duced by some load needs to be trimmed (red shaded). Consumers
shift that load as an aggregate consumption to earlier or later inter-
vals (green shaded), where demand is below the safety limit. Note
that to avoid the creation of a new peak during those intervals, the ad-
dition of shifted load must not make demand exceed the safety limit.
The threshold placement denotes the production levels for cheaper
production, thus a lower price is charged for consumption.

3.2 a better , “group” price , for consumption shifting

Our scheme allows sizable load consumption from peak to non-peak
intervals where an even lower, “group” price pgroup < plow is granted,
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phigh

plow

Figure 1: Scheme objective representation. Portions of peak-load, are shifted
to lower demand intervals.

and which is a function of the actual load reduction X in a way that
for larger load portions, the price becomes better. We term this price
as pgroup because such reduction will likely be possible only by groups
of agents. This price is awarded if the actual quantity of the load shifted
from th exceeds some minimum value qthmin, set by the Grid given its
knowledge of qthτ (e.g., it could be qthmin = qthτ ). Summarizing, pgroup

is a function of the actual load reduction X in a way that for larger
load portions, the price becomes better. Thus, pgroup is later noted as
pgroup(X). We will come back to this issue in Chapter 4.

3.3 an efficient consumption shifting scheme

An agent i that wishes to participate in the consumption shifting
scheme, is characterized by:

(a) Its stated reduction capacity r̂ti , namely the amount of load that
it is willing to curtail (e.g., by shifting) at a time interval t,

(b) Its shifting costs cth→tli , that is the cost that occurs if consumption
of a unit of energy is shifted from (a peak interval) th to (a non-
peak) tl.

Given the above, the exact shifting protocol we propose is as follows.
Every day, the Grid announces the forecasted for the day-ahead Bidding Process

peak intervals TH and the most preferable non-peak intervals TL; and
also announces the (quantity-depended) price rates it awards for con-
sumption in the TL intervals. It then waits for shifting proposals by
business units. Each business unit (consisting of a single consumer or
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more), can interact with the Grid and state its overall load reduction
capability during announced TH intervals, and a number of intervals
tl ∈ TL, to which it is willing to shift consumption to. This procedure
is called bidding and, once again it refers to shifting actions pledged
for the day-ahead. Note that for each t ∈ {TH ∪ TL} there can be more
than one bidders. Furthermore, bidders can pledge to shift some load
from one high consumption th interval to several low consumption tl
ones. Moreover, the protocol requires that each bidder reports its con-
fidence (or, degree of uncertainty) regarding its ability to shift r̂ti from
interval t, in the form of a normal distribution describing its expected
relative error regarding its reduction forecast. The latter is required to
promote efficiency, as we explain below. Algorithm 1 summarizes the
bidding process.

Algorithm 1 Bidding Process

Grid generates sets TH and TL
Grid announces pgroup(X) for a reduction of load quantity X in any
t ∈ TH
Business units state:

{sets of th ∈ TH and tl ∈ Tl intervals of interest;
shifting (load reduction) capabilities;
corresponding shifting uncertainty for each th;
and the amount of load they will be moving to each tl}

Grid checks for constraint violations
if Constraints are met then

The Grid announces the acceptance of the bid to the bidder
Business units reduce and shift
Grid awards resulting actions, given their efficiency after the

application of the CRPS rule, and announced pgroup(X)

else
Deny Bid

end if

3.4 continuously ranked probability score

Now, to promote efficiency in load shifting and (in the face of the
global constraints described in our model) avoid Grid interaction
with unreliable participants, the agents need to be motivated to pre-
cisely report their true reduction capabilities. To achieve this, we em-
ploy a strictly proper scoring rule, the continuous ranked probability score
(CRPS) [18], which has also been recently used in [43] to incentivize
renewable energy-dependent electricity producers to accurately state
their estimated output when participating in a cooperative. A scoring
rule S(P̂, x) is a real valued function that assesses the accuracy of prob-
abilistic forecasts, where P̂ is the reported prediction in the form of a
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probability distribution over the occurrence of a future event, and x
the actual occurrence itself. The rule is strictly proper if it incentivises
forecasters to state their true beliefs P only, and it does so by maxi-
mizing expected reward only when P̂ = P. Use of CRPS allows us to
directly evaluate probabilistic forecasts, and the score is given by:

CRPS(N(µ,σ2), x) = σ[
1√
π
−2φ

(
x− µ

σ

)
−
x− µ

σ

(
2Φ

(
x− µ

σ

)
− 1

)
]

(6)

In our setting, N(µ,σ2) is the uncertainty stated over the expected rela-
tive errors2 regarding the reduction capacity, as reported by an agent;
while x is the actually observed error, φ the PDF and Φ the CDF of a
standard Gaussian variable. A CRPS value of zero signifies a precise
forecast, while a positive value shows the distance between predic-
tion and occurrence. For convenience, we normalize CRPS values to
[0, 1], with 0 assigned when we have exact forecast, and 1 assigned
when the forecast gets far from the occurrence. To improve readabil-
ity, we also henceforth note CRPS(N(µ,σ2), x) as CRPS without the
arguments and write CRPSi to denote the CRPS rule applied to agent
i’s performance, while the stated agent uncertainty is considered to
be zero mean, N(0, σ̂2), so from now on will be simply noted as σ̂.
Given this notation, an agent i whose bid to shift some load from th
to tl is accepted, receives a reduced electricity bill Bi given its actual
contribution rthi and its final consumption at tl, q

tl
i as follows:

Bi = (1+ CRPSi)q
tl
i pgroup(r

th
i ) (7)

Note that rthi is the actual amount shifted from th to tl, which deter-
mines the electricity price pgroup for i at tl; while qtli is the quantity
shifted from th to tl and consumed there. Note that it can be qtli < r

th
i

since an agent can shift rthi to multiple tls.

3.5 agent incentives and decision analysis

The participation of each agent in the scheme obviously depends on
his individual costs and potential gains. Suppose that an agent i pon-
ders the possibility of altering his baseload consumption pattern by
shifting some electricity consumption ri from an interval th to tl. This
shifting is associated with a cost cth→tli for the agent. The gain that
an agent would have for shifting ri to tl given tl’s lower price plow,
would be equal to

gain(i|plow) = ri(phigh − plow − cth→tli ) (8)

2 The mean µ and variance σ2 of this distribution can be estimated by each agent
through private knowledge of its consumption requirements and business needs.
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since the agent would be able to consume ri at tl for a lower rate.
However, under normal circumstances this gain is negative for the
agent, that is,

plow + cth→tl > phigh (9)

because if not, then the agent would have already been able to make
that shift (and its baseload pattern would have been different than its
current one).

Now, if the Grid is able to grant an even lower rate pgroup for con-
sumption of ri > qmin at tl s.t.

pgroup + c
th→tl 6 phigh (10)

then the agent will be incentivized to perform the shift, as his per-
ceived gain(i|pgroup) would now be non-negative for him. This is
what is offered by the scheme presented in Section 3.3. Moreover,
the use of the CRPS rule guarantees that agents have an incentive to
make accurate predictions.

3.6 scheme summary

Summarizing, the Grid announces, for the day ahead, the peak inter-
vals th that need consumption reduction by an amount of load X, and
the non-peak intervals tl to which shifting is acceptable. The Grid de-
termines and announces a better price rate pgroup(X) to offer for the
consumption of load X at (any) tl instead of th. This price is awarded
if the quantity of the load shifted from th exceeds some minimum value
qthmin, which is estimated and set by the Grid given its knowledge of
the qthτ introduced earlier. In general, we expect qthmin to be close to
qthτ , as the Grid would not be interested in rewarding very small-scale
reduction. For simplicity, in our model we assume a unique qmin value
used across all time intervals. Consumers then make their bid collec-
tively or alone, and state their reduction capacity r̂thi , corresponding
uncertainty, and the intervals that they are willing to shift to, along
with the shifting costs cth→tli .

We now proceed to explain what happens when such an agent is
actually a member of a reducing agents team.



4
A G E N T C O O P E R AT I V E S F O R E F F E C T I V E P O W E R
C O N S U M P T I O N S H I F T I N G

Chapter 3 presented a shifting protocol which incentivises agents to
shift some of their consumption from peak intervals to other non-
peak ones, and also to be truthful at stating their shifting capabilities.
In the general case, it is very rare even for large industrial consumers
to have reduction capacity larger or equal to qmin. Therefore, the
agents need to organize into cooperatives in order to coordinate their
actions and achieve the better rates promised by the Grid for effec-
tive consumption shifting. At every given time interval th earmarked
for potential consumption reduction, only a subset Cth of cooper-
ative members might be available for shifting services. We assume
that every member agent announces its availability to a cooperative
manager agent, along with its reduction capabilities, its confidence
N(µi, σ̂2i ) on actually reducing that stated amount at th, and the set
of tl intervals that it pledges to move consumption to.

Even so, more often than not, it is impossible for all agents in Cth

to participate in the cooperative effort. This is because their shifting
costs of some of them might be so high that do not allow their inclu-
sion in any profitable cooperative bid. Therefore, only a subset C of
Cth will be selected for participation in the bid. Any such shifting bid
is composed by four parts:

i. th, the high cost interval to reduce consumption from.

ii. r̂C, the amount C pledges to reduce at th.

iii. The set of low cost intervals tl to move consumption to, along
with the set of corresponding quantities that will be moved to
each tl and the shifting costs for those intervals.

iv. An estimate of its N(µC, σ̂2C,th) joint relative error on predicted
r̂C.

The bid is determined so that the collective expected gain from the
shifting operation is non-negative. We provide the details of how this
is ensured below. Assuming that C was selected and reduced by rthC
at a peak interval th, the bill BC charged to the cooperative for con-
suming qtlC at a non-peak interval tl is given by Eq. 7 (substituting C
for i):

BC = (1+CRPSC)q
tl
Cpgroup(r

th
C ) (11)

Now, even if the collective expected gain from the bid is positive, it Gain Transfers

27
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is not certain that all individuals in C have a positive expected gain as
well. Nevertheless, with positive collective expected gain, the possibil-
ity of internal gain transfers is raised, allowing non-negative (expected)
gain for all participants. These transfers have to be performed in such
a way so that the budget-balancedness of any cooperative bid is en-
sured, at least in the weak sense. We now describe exactly how the
cooperative determines its bid at th.

4.1 cooperative bidding process

Since the Grid-awarded group rate depends on quantity reduced, we
(originally) assume that the cooperative attempts to select a subset
C with maximal reduction capacity (we modify this assumption in
subsequent algorithm variants). We now present an algorithm that
achieves this, while ensuring that C and each one of its members
has a non-negative gain, and that budget-balancedness is ensured. In
what follows, we drop time indices where these are clearly implied.

To begin, let:Reservation Price

p̂i = (phigh − c
th→tl
i ) (12)

be agent i’s (implicitly stated) reservation price, that is, the highest
price that i is willing to pay for moving from th to tl (in order to not
suffer a loss). The algorithm then proceeds as follows.

First, for every i, we check whether p̂i 6 0. If that holds for all i,
we stop; the problem is infeasible (as all agents need to be paid with
a rate equal at least p̂i in order to participate). If that is not the case,
then there exist some agents in Cth for which there is a price they can
accept to pay so as to move some of their consumption to tl without
suffering a loss.

In this stage, an estimate regarding actual user final reduction, r̃i,
needs to be calculated. Details about the different estimating tech-
niques of r̃i are provided in Section 5.1. As a general approach, the
algorithm can set:

r̃i = r̂i − σ̂ir̂i (13)

for all agents in Cth , that is, the cooperative makes a conservative esti-
mate of an agent’s expected performance, given its stated uncertainty.
Generally, the α̂ = 1− σ̂ estimate about future reduction in the gen-
eral case is different than the actual α = 1 − σ of the actual final
reduction action. This factor can be considered as a random variable
that follows an unknown distribution, thus modeling the uncertainty
regarding the statements and final actions. We elaborate on two meth-
ods that can help us obtain a more trusted index about α later, in
Chapter 5.

Now, we can define the agent contribution potential, that is the prod-Contribution
Potential uct of agents actual reduction estimate r̃i and reservation price p̂i,
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r̃ip̂i. The algorithm then ranks the agents by r̃ip̂i in decreasing order.
Then, starting from the agent with the highest contribution potential
value, we sum these values up in decreasing order, and add the re-
spective agents in a group C. Intuitively, the algorithm attempts to add
in the coalition members with high “potential” to contribute to reduction—
that is, members with potentially high r̃i to contribute, while being
able to accept a relatively high (though reduced) energy price p̂i. This
process continues until both of the following conditions are met for
the maximum possible group of agents C:∑

i∈C
r̃ip̂i > r̃CpC (4.1.i)

r̃C > qmin (4.1.ii)

where qmin is the minimum quantity admitting a “group price”, and

pC = pgroup(r̃C)

is the price rate offered by the Grid for reduction r̃C, with r̃C =∑
i∈C r̃i.
To provide further intuition, note that the expected gain of every Shifting Gain

agent in some group C given pC is

gain(j|pC) = r̃j(p̂j − pC) (14)

If we were simply given a C for which this gain was positive for ev-
ery member, then each agent would have been able to just pay pC
and enjoy the corresponding gain. However, the reducing set C and
individual effective price of its members have to be dynamically de-
termined by the cooperative, so that individual rationality is ensured.

Now, if all agents in Cth are inserted in C and r̃C is still lower than
qmin, the problem is infeasible and we stop. Likewise, if all agents are
in C and∑

i∈C
r̃ip̂i − r̃CpC < 0 (15)

holds, the problem is again infeasible and we have to stop.
Assume that this has not happened, and both conditions have been

met for maximal C1. This means that there is at least one agent j in C
with positive expected gain, given pC. That is,

gain(j|pC) = r̃j(phigh − cj − pC) = r̃jp̂j − r̃jpC > 0 (16)

1 That is, after a subset C has met r̃C > qmin, we kept adding agents to C until by
adding some k we constructed a C ′ for which

∑
i∈C′ r̃ip̂i− r̃

′
Cp
′
C < 0, in which case

k is removed from C ′.
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if not, then no agent has a positive gain, and thus∑
i∈C

r̃ip̂i − r̃ipC 6 0 (17)

leading to∑
i∈C

r̃ip̂i 6 r̃CpC (18)

contradicting condition (4.1.i) above. Having met the two conditions
for (maximal) C, also means that agents in C are collectively willing to
pay a total amount for moving their ri consumptions to tl, which is
greater than what their group will be asked to pay for, given the offer
pC for r̃C.

Thus we have ended up with the maximal C so that (4.1.i) and (4.1.ii)
hold, and which contains some agents with positive and some with
negative gain given pC, and which we can now use to implement a
gain transfer scheme so that all individual agents in C end up with
non-negative gain themselves.

4.2 setting variable effective prices

At this point the cooperative pre-assigns different effective price ratesEffective Price

p
eff
i to each contributor, producing bills that must sum up at least to
BC, i.e., the bill charged to the shifting team C. This is done with the
understanding that a member’s final effective price will eventually be
weighted according to its individual contribution, given also that C
will receive an actual price rate that will be dependent on its CRPS
score.

Thus, the cooperative initially sets peff
i = pC, ∀i ∈ C, given the price

pC expected, and proceeds to rank in decreasing order agents in C
according to their expected gain, that is:

gain(i|p
eff
i = pC) = r̃i(p̂i − pC) (19)

If all agents already have non-negative gain, then everyone pays pC
and expects to achieve gain(i|pC) without need of balancing. If neg-
ativities exist, then we must rearrange peff

i such that agents with the
highest gain provide some of their surplus to those with negative,
to make their participation individually rational. The first step is to
count the total negative gain existing and assign negative gain agents
a reduced peff

i so that their gain becomes exactly zero. Then, we in-
crease peff

i of the top agent until its gain drops to the point that it is
equal to the gj gain of the j = i+ 1 agent below (as long as gj > 0).
The value of peff

i is calculated by:

p
eff
i =

r̃ip̂i − gj
r̃i

(20)
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with gj being the target gain, i.e. the gain of the agent below.
Then we do the same for the second top agent, until its gain reaches

that of the third. We continue this way until all requested gain is trans-
ferred, or one’s gain reaches zero. If the latter happens, we move to
the top again and repeat. The procedure is described by Algorithm 2.

Algorithm 2 Variable Effective Prices
Input: pgroup(rC), r̃i, ci∀agenti ∈ C
Output: peff

i ∀agenti ∈ C
Compute reservation prices p̂i and gain gi = gaini, ∀i ∈ C
Sort agents by gain in decreasing order
if Negative expected gain agents exist (i.e., the set G− is non empty) then

Count total negative gain L =
∑
gj,∀j ∈ G−

Assign agents ∀j ∈ G−, peff
j = p̂j

donation := 0

while donation < L do
for all Positive gain agents do

if donation < L then
if agenti is the last positive gain agent in sorted gain list then

if donation+ gaini 6 L then
donation = donation+ gaini
p

eff
i = p̂i

else
donation = L

Assign peff
i s.t. only the remaining gain needed is transfered

end if
else

if donation+ (gaini − gaini+1) 6 L then
donation = donation+ (gaini − gaini+1)

Assign peff
i s.t. the amount of i’s gain is equal to that of i+ 1’s

else
donation = L

Assign peff
i s.t. only the remaining gain needed is transfered

end if
end if

else
Assign peff

i = pgroup(rC)

end if
end for

end while
else

Assign peff
i = pgroup(rC),∀i ∈ C

end if
return peff

i ,∀i ∈ C

The peff
i prices thus determined represent internally pre-agreed prices Member Bill

set ahead of the actual shifting operations. The actual bill bi that an
agent i ∈ C will be called to pay, however, is determined after the
actual shifting operations have taken place, and depends on its actual
performance wrt. the performance of other agents also, as follows:

bi =
(1+ CRPSi)p

eff
i qi

(
∑
j∈C\{i}(1+CRPSj)p

eff
j qj) + p

eff
i qi

BC (21)
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Strict propriety is ensured by this rule, as it is an affine transforma-
tion of a member’s CRPSi score; and the sum of the bi bills is always
at least as much as the overall bill BC charged to C, making the mech-
anism weakly budget balanced, and generating some small cooperative
surplus.

4.3 alternative coalition formation techniques

The scheme presented aims to achieve the lowest possible group price,
through the addition of as many agents as possible into the reducing
set of agents in any given th, as long as budget balancedness and
individual rationality are respected. Budget balancedness means that
all the requested utility is provided by the participating agents them-
selves. Individual rationality dictates that every single agent suffers
no loss from participation in the cooperative shifting process. Now,
though this goal is clearly efficient for the Grid (since it apparently
promotes the maximum possible reduction at any th), it is not nec-
essarily efficient for the reducing coalition at th. That is, it does not
necessarily maximize the sum of the members expected gains: since
agents with potentially high costs keep being added until it is possi-
ble for the coalition to sustain them through “gain transfers”, there
might exist different reducer sets with higher overall gain.

The bid determination mechanism proposed in Section 4.1 above
can thus be summarized as Method 1: Rank agents by potential and max-
imize expected capacity. We now proceed to provide a more detailed
example of its use and then present four variants of that approach.
We note that all variants include the “internal” reward transfer phase
described in Section 4.2.

4.3.1 Method 1: Rank by potential, maximize capacity

Consider an agent i characterized by his shifting capabilities at th, r̂thi
and σ̂i, and his reservation price at tl, p̂

tl
i . These include information

for shifting costs.2 Then, a measure of each agents contribution poten-
tial is the product of the estimated reduction capacity and reservation
price: r̃thi · p̂

tl
i We can rank all available agents at th by this measure,

in decreasing order.
A shifting coalition is valid if its overall capacity, noted by r̃C is

between certain limits that the Grid designates for each day or even
interval, that is qthmin 6 r̃C 6 Qthmax. In this method we maximize the
coalition capacity and we add agents in the coalition until Qthmax is
exceeded provided that the problem is feasible.

2 Recall that p̂tli = pth − costth→tli , where pth is the price originally charged by
the utility company at the interval th. Agents with low costs are comfortable by
paying higher prices (still lower than pth ), whereas high cost agents demand very
low reservation prices.
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To give an example, consider 8 agents that are available for con- Example 1

sumption shifting at a specific time interval, with their features as
shown in Table 1.

Table 1: Example 1 participants.

ID r̃i p̂i r̃i · p̂i
a 50 0.03 1.5

b 200 0.04 8

c 30 0.038 1.14

d 55 0.05 2.75

e 6 0.067 0.402

f 75 0.032 2.4

g 60 0.001 0.06

h 4 -1.5 -6

Suppose that in the specific interval, qmin = 380 and Qmax = 480.
We sort agents by their r̃i · p̂i value and we add them into the coalition
until qmin is reached. Then, we continue adding until either Qmax is
exceeded, or until

∑
r̃i · p̂i > r̃C · pgroup(r̃C) does not hold.

Table 2: Example 1 coalition formation.

ID r̃i p̂i r̃i · p̂i
∑
r̃i · p̂i pC r̃C r̃C · pg(r̃C)

b 200 0.04 8 8 inf 200 -

d 55 0.05 2.75 10.75 inf 255 -

f 75 0.032 2.4 13.15 inf 330 -

a 50 0.03 1.5 14.65 0.05625 380 21.375

c 30 0.038 1.14 15.79 0.045795 410 18.77595

e 6 0.067 0.402 16.192 0.043704 416 18.180864

g 60 0.001 0.06 16.252 0.022794 476 10.849944

h 4 -1.5 −6 10.252 0.0214 480 10.272

The process of forming the reducing coalition is summarized in
Table 2. Here we can see that until the qmin amount is reached, a
better price can not be awarded, thus corresponding values are set
to inf. Now, note that although adding agent a makes r̃C = qmin,
the constraint

∑
r̃i · p̂i > r̃C ·pgroup(r̃C) is not satisfied and thus, we

continue adding agents until agent g is included and the constraint is
satisfied. Since we seek to maximize capacity, we try to include agent
h also, in order to achieve r̃C = Qmax. Because agent h probably
has high shifting costs, it requires to be paid by the cooperative, in



34 agent cooperatives for effective power consumption shifting

order to contribute without suffering a loss. On the other hand, the
cooperative is in position to only pay up to the difference

∑
r̃i · p̂i −

r̃C · pgroup(r̃C) and suffer no loss, but this quantity is less than agent
h asks, and thus

∑
r̃i · p̂i < r̃C · pgroup(r̃C); namely the constraint is

violated and so, agent h is excluded from the team.

4.3.2 Method 2: Rank by potential, minimize capacity

This method is the same as the aforementioned one, with the differ-
ence that we stop adding agents in C the moment when the qmin

requirement is met. That is, it forms reducing teams, such that r̃C '
qmin, and thus, the team is rewarded the highest pgroup possible.

4.3.3 Method 3: Rank by potential, maximize capacity, exclude agents with
negative expected gain

This method is the same as Method 1 (4.3.1), but once qmin is met, an
agent in the ranked list is added in the coalition only if its expected
gain is non-negative with respect to pgroup at the moment of its entry.
More specifically, we retain contribution potential ranking and come
up to the maximal coalition, with respect to reduction capacity, as in
Method 1. The difference is that agents are added in the coalition only
if they are granted non negative expected gain. When an agent enters
the coalition, it’s expected gain is checked with respect to the better
price granted to the coalition at that particular moment. If the gain
is negative then the agent is excluded and the search for contributors
continues in the ranked list to the agent below. Here we must note
that it is possible for an agent that could be favored by the final price
pgroup(r̃C) to be excluded from the coalition, because his contribu-
tion potential was checked earlier in the process, when r̃C < Qmax
and for pgroup(r̃C) > pgroup(Qmax) he would have suffered gain
loss and consequently was rejected.

Consider an example where agent i is characterized by r̃i = 500,Example 2

p̂i = 0.04 and r̃i · p̂i = 20 and an agent i+ 1 with r̃i+1 = 50, p̂i+1 =

0.38 and r̃i+1 · p̂i+1 = 19. Suppose that, without loss of generality,
qmin is just reached by adding agent i − 1 in the coalition and we
proceed to check i. The expected gain of i is: gain(i|pgroup(r̃C)) =

r̃i(p̂i − pgroup(qmin)) = 500(0.04 − 0.5625) = −8.125 that is nega-
tive and therefore agent i is excluded from the coalition. If we pro-
ceed to i+ 1, by following the same process we observe that gain(i+
1|pgroup(r̃C)) = 16.1875, positive, thus agent i+ 1 is selected. Later
on, when Qmax is reached, the better price offered is much lower,
pgroup(qmax) = 0.0214. If we check agent i’s expected gain at this
moment we observe that gain(i|pgroup(r̃C)) = 9.3 that is positive.
Furthermore, i ends up being more valuable contributor than i+ 1,
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as r̃i · peffi = 10.7 and r̃i+1 · peffi+1 = 1.07. Thus, this method does not
select agents based on their real contribution impact.

4.3.4 Method 4: Rank by expected gain, maximize capacity

This method ranks prospective contributors by their expected gain
wrt. pgroup offered at the moment they are checked for entering C.
However, whenever an agent enters C, pgroup changes, and so does
the expected gain of every C member. Thus, it has to be recalculated
with every new entry, which increases the complexity. In this method
instead of ranking probable contributors by their r̃i · p̂i we rank them
by their expected gain with respect to the better price offered at the
moment they are checked for entering the coalition.

The issue that rises is that for every new agent entering the coali-
tion, the price offered changes, the expected gain for every agent
changes too and thus it has to be recalculated with every new entry. If
there are n possible contributors and k of them are included to form
the minimal coalition with r̃C = qmin, then the added complexity is∑n−k
i=1 i =

(n−k)(n−k+1)
2 more calculations, order of O((n− k)2).

4.3.5 Method 5: Rank by potential, maximize growth rate of expected gain.

Provided again ranking by r̃i · p̂i, an additional concept is to monitor
the average growth rate of coalescing agents’ gain and stop adding when
it drops under a certain level. This method is not included in our
simulations, for reasons we will be explaining later, in Section 6.2.

4.4 algorithm properties

The reward transfer scheme and the overall cooperative bid determi-
nation algorithm presented above have several desirable properties.
It is worth noting that these properties hold for all team formation
methods presented in 4.3. First, Individual rationality is ascertained for Individual

rationalityall agents in C, as they all have non-negative expected gain from par-
ticipation. In addition, the member final effective prices peff

i are set in
such way so that overall group value is shared among agents (with
some paying more than group price pC and some less), resulting to Budget

BalancednessBC =
∑
i p

Eff
i qi (qi being the members’ actual contribution and pEff

i

the final effective price i has to pay, after applying CRPS and normal-
izing). Considering the total cooperative consumption at non-peak
intervals qC, that will be,

p
Eff
i =

(1+ CRPSi)p
eff
i

(
∑
j∈C\{i}(1+CRPSj)p

eff
j qj) + p

eff
i qi

(1+CRPS)qCpC (22)



36 agent cooperatives for effective power consumption shifting

This means that the (weak) budget-balancedness of the mechanism is
ensured.

Moreover, the transfer scheme presented is truthful. Of course, sinceTruthfulness

the agents operate in a large, open environment, one cannot deter-
mine an incentive compatible mechanism in the Bayes-Nash sense,
since analysing Bayes-Nash equilibria properties is computationally
infeasible in this setting. Indeed, it is next to impossible for a mem-
ber agent to reason on the capabilities or availability of other agents,
of which he is unaware of, and no common prior determining such
properties can be reasonably assumed. Given this uncertainty, how-
ever, the best that an agent can do is to be truthful regarding its shift-
ing costs and capacity (and corresponding confidence in reduction).
If the agent states inflated shifting costs, it runs the danger of not be-
ing selected for C while otherwise it would be. Similarly, if the agent
states shifting costs lower than its real ones, then the agent risks be-
ing among the ones to suffer the highest reduction in expected gain.
This is because the lower these costs are, the higher effective price the
agent will be asked to pay via the transfer scheme described above.
Finally, it is clearly to the interest of the agent to be as accurate as pos-
sible regarding its shifting capacity and corresponding uncertainty,
since otherwise it will suffer a gain loss due to a bad CRPS score.
Thus, the transfer scheme and overall algorithm are incentive com-
patible for members, given the dynamic and open nature of this large
multiagent environment.

Last but not least, the computational cost of the bid determinationLow Computational
Complexity process (including the process of setting effective prices) is quite rea-

sonable. Specifically, it is proportional to the cost of sorting at most
|Cth | agents in every th of interest twice (once when they are ranked
according to r̂ip̂i, and once when they are ranked according to per-
ceived gain). Of course, if the number of members interested in reduc-
ing at some th is in the dozens of thousands, this can become prob-
lematic. However, the cooperative (a) does have time in its disposal to
execute the algorithm, as bids are determined a day in advance, and
(b) it can impose constraints to curtail the number of members consid-
ered, if this is necessitated by the cost. Summarizing, applying a fast
sorting algorithm results to a complexity of O(n logn) for methods 1,
2 and 3. Methods 4 and 5 require the additional computational cost
of the expected gain calculation, that is O((n− k)2).



5
S T O C H A S T I C F I LT E R I N G M E T H O D S T O M O N I T O R
A G E N T B E H AV I O R

As discussed previously in this thesis, it is very important for the
cooperative to be accurate in its predictions. For cooperative actions
to be profitable and effective, the predictions must be highly accu-
rate, that is a challenging task given private agent preferences and
underlying uncertainty. In Chapters 3 and 4 we provided a proto-
col that incentivizes agent accuracy in the face of uncertainty and
private preferences. A complementary approach would be to incor-
porate “reputation-based” models of trust used in MAS settings, see
e.g. [40]. However, trust among multiple agents in such a large and
dynamic setting is not easy to maintain. Moreover, even if all agents
are indeed truthful, exogenous factors, like equipment malfunctions
can still put the stability of the cooperative in danger. For these rea-
sons, it is of utmost importance that agent actions are somehow moni-
tored and beliefs about individual agent performance are maintained.
To this purpose, we will be incorporating into our scheme two stochas-
tic filtering techniques that have already been successfully applied in
other domains.

5.1 monitoring agent trustworthiness

As established in previous Chapters, agent statements greatly affect
cooperative decisions, and, if inaccurate, endanger the scheme’s sta-
bility and effectiveness. Specifically, the cooperative prediction method
presented in Section 4.1, assumes that agent i’s estimated reduction
r̃i will be given as follows, after factorization of Equation (13):

r̃i = (1− σ̂i)r̂i (23)

where r̂i is the stated reduction capacity of agent i and σ̂i its stated
uncertainty. That is, the cooperative (e.g. cooperative manager agent)
bases its decisions as to whom to include in shifting coalitions on
the estimated r̂i quantity, which is entirely based on information pro-
vided by the agent i itself. However, we can do better than that. In-
stead of using (1− σ̂i)r̂i, the cooperative could adopt a trusted index
r∗i,th—one not stated explicitly by i, but which nevertheless reveals
the distribution best describing future agent actions. This index can
then be used as r̃thi to calculate a more accurate contribution potential
for i. We now describe a process by which to acquire this r∗i,th index.

37
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To begin, observe that the actual relative error of agent i’s perfor-
mance is:

e =
r̂thi − rthi
r̂thi

(24)

where rthi is the actual amount of load that will be reduced, and
which can be, in general, assumed to be provided by a transformation
of the stated r̂thi amount:

rthi = αi · r̂thi (25)

with αi corresponding to a random variable following some unknown
probability distribution. Had we known this αi quantity, we would be
able to calculate rthi and use that instead of r̃thi . The αi quantity is not
known, however. Given this, an objective of our work is to build mod-
els for agent performances by approximating the distributions that
αis follow. We can then sample such a distribution to obtain α̃i, an
αi estimate. Next, we can then use this estimate to obtain our trusted
index r∗i,th to replace r̃thi :

r∗i,th = α̃i · r̂thi (26)

As a result, more accurate predictions about individual agent and
cooperative shifting abilities can be obtained.

We can assume that given all underlying uncertainty, an individ-
ual agent’s final behavior most likely corresponds to a complex, non-
linear function of its past behavior. As explained in Section 2.4, one
can use stochastic filtering in order to attempt to approximate such a
function. We chose to test two filtering approaches that are expected
to fit such a function well:

(a) A non-linear Kalman filter approach, the Unscented Kalman Filter
(UKF), combined with Gaussian Processes (GP)

(b) The Histogram Filter (HF), a non-parametric filtering technique.

Both methods require an adequate amount of historical data collected,
in order to form an elementary model that can be sampled. For this
reason, the conservative ranking method can be employed initially,
and get replaced by one of the proposed methods once the required
data is available. We now proceed to describe these methods and their
application to our setting in detail.

5.2 the histogram filter

The first stochastic filtering method we examine is the Histogram
Filter (HF). Histogram filters decompose a continuous state space to
a finite set of areas or bins:

dom(X) = x1 ∪ x2 ∪ ..∪ xK
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These bins are a partition of the initial space

∀j 6= k, xj ∩ xk = ∅

and ⋃
k

xk = dom(X)

The HF uses a histogram to map a probability pk to each of the bins
xk. The value of each pk depends on the frequency of the observations
in the range of bin k.

With this approach, agent forecasts σ̂ are completely ignored and
only past observations of αi are taken into account. Every time an
agent participates in a consumption shifting coalition, its actions are
monitored and stored. A histogram is calculated over the set of avail-
able observations. Then, according to each bin’s height, a colored
roulette wheel is constructed that can be sampled to obtain the most
probable ranges of αi i.e., the more frequent values appear in a bin
the more probable it’s range is selected. The final estimate α̃i is an-
other sample from a uniform distribution normalized to have range
equal to that of the bin obtained.

5.3 the unscented kalman filter

Past work has shown that the classic KF algorithm is limited to sys-
tems with linear transition and observation models; while the Ex-
tended Kalman Filter (EKF) can handle non-linearities, but not in an
optimal manner [49]. The UKF, first introduced in [22], uses the so-
called unscented transform to obtain a better estimate than the EKF
when dealing with highly non-linear models [53]—such as those de-
scribing electricity consumption shifting capabilities.

In order to apply Kalman Filtering we need to define our model
in an appropriate form. Here, forecasts1 of σ̂ are considered to be
depended on past forecasts and linked to actual values of α governing
actual agent behavior as follows:

σ̂τ = Aσ̂τ−1 +wτ (27a)

ατ = H(σ̂τ) + uτ (27b)

that is, the forecast σ̂τ depends on its past value transformed by A,
a state transition matrix, plus noise wτ. The real ατ is the sum of a
function of the forecast H(σ̂τ) and some noise uτ. We need no initial
assumption about the H function as it is approximated by the GP and
can be of any form. A brief presentation of the Unscented Kalman
Filter follows.

Let x ∈ RL be a Gaussian random variable with mean x̄ and co- The Unscented
Transform

1 To ease notation, we henceforth drop the agent index i from σ and α, when this is
implied.
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variance Px that is propagated through a nonlinear function y = g(x).
A matrix X can be constructed that contains 2L+ 1 sigma vectors Xj
and their corresponding weights Wj, via the unscented transform pro-
cedure:

X0 = x̄

Xj = x̄ + (
√
(L+ λ)Px)j, j = 1, ...,L

Xj = x̄ − (
√
(L+ λ)Px)j−L, j = L+ 1, ..., 2L

(28)

W
(m)
0 =

λ

L+ λ

W
(c)
0 =

λ

L+ λ
+ (1− η2 + ξ)

W
(m)
j =W

(c)
j =

1

{2(L+ λ)}
, j = 1, ..., 2L

(29)

with λ = η2(L + κ) − L being the scaling parameter. The η and κ

parameters can be tuned to change the spread of the sigma vectors
around the random variable, ξ incorporates prior knowledge of the
distribution of x, and (

√
(L+ λ)Px)j is the jth row of the matrix square

root. Then, the sigma vectors are propagated via the nonlinear func-
tion:

Yj = g(Xj), j = 0, ..., 2L (30)

Finally, the mean and covariance of y are approximated by a weighted
sample mean and covariance of the posterior sigma vectors:

ȳ ≈
2L∑
j=0

W
(m)
j Yj (31)

Py ≈
2L∑
j=0

W
(c)
j {Yj − ȳ}{Yj − ȳ}T (32)

UKF equations as presented in [53] follow:

x̂0 = E[x0]

P0 = E[(x0 − x̂0)(x0 − x̂0)
T ]

x̂α0 = E[xα]

Pα0 = E[(xα0 − x̂α0 )(x
α
0 − x̂α0 )

T ]

For k ∈ {1, ...,+∞}, calculate sigma points:

Xαk−1 = [x̂αk−1 x̂
α
k−1 ±

√
(L+ λ)Pαk−1]
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Time update:
Xxk|k−1 = F[Xxk−1,Xvk−1]

x̂−k =

2L∑
i=0

W
(m)
i Xxi,k|k−1

P−
k =

2L∑
i=0

W
(c)
i [Xxi,k|k−1 − x̂

−
k ][X

x
i,k|k−1 − x̂

−
k ]
T

Yk|k−1 = H[Xxk|k−1,Xnk−1]

ŷ−k =

2L∑
i=0

W
(m)
i Yi,k|k−1

Measurement update equations:

Pỹkỹk =

2L∑
i=0

W
(c)
i [Yi,k|k−1 − ŷ

−
k ][Yi,k|k−1 − ŷ

−
k ]
T

Pxkyk =

2L∑
i=0

W
(c)
i [Xi,k|k−1 − x̂

−
k ][Yi,k|k−1 − ŷ

−
k ]
T

K = PxkykP−1
ỹkỹk

x̂k = x̂−k +K(yk − ŷ
−
k )

Pk = P−
k −KPỹkỹkK

T

with, xα = [xTvTnT ]T , Xα = [(Xx)T (Xv)T (Xn)T ]T , λ is a composite
scaling parameter, L the dimension of augmented state, Pv the process
noise covariance, Pn the measurement noise covariance and finally,
Wi the weights.

5.4 gaussian processes

For the UKF to be effective, we first need to obtain some information
about the underlying model, that is, the function through which the
forecasts are turned into final actions. For this purpose we incorpo-
rate Gaussian Processes (GP) [38], a powerful tool that can be used for
regression and classification without a parametric model assumption.

In this work we employ Gaussian processes for probabilistic regres-
sion: for a set of training samples, D = {(xj,yj), j = 1, ...,n} (xj inputs
and yj noisy outputs) we need to predict the distribution of the noisy
output at some test locations x∗. We assume the following model:

yj = f(xj) + εj, where εj ∼ N(0,σ2noise)

with σ2noise the variance noise. GP regression is a Bayesian approach
that assumes a priori that function values follow: p(f|x1, x2, ..., xn) =
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N(0,K) where f = [f1, f2, ..., fn]T is the vector of latent function val-
ues, fj = f(xj) and K is the covariance matrix that is computed by a
covariance function Kjk = k(xj, xk).

In order to proceed to the inference, we must combine the joint GP
prior f and f∗ obtained by the test values with the likelihood p(y|f),
via Bayes rule. The result is the joint posterior:

p(f, f∗|y) =
p(f, f∗)p(y|f)

p(y)
(33)

To produce the posterior for our predictions, we marginalize out
the unwanted training set variables:

p(f∗, y) =
∫
p(f, f∗|y)df =

1

p(y)

∫
p(y|f)p(f, f∗)df (34)

where

p(f, f∗) = N(0,

[
Kf,f K∗,f

Kf,∗ K∗,∗

]
), and p(y|f) = N(f,σ2noiseI).

The joint GP prior and the independent likelihood are both Gaussian
with mean and variance as follows:

GPµ(x∗,D) = K∗,f(Kf,f + σ
2
noiseI)

−1y (35a)

GPσ(x∗,D) = K∗,∗ −K∗,f(Kf,f + σ
2
noiseI)

−1Kf,∗ (35b)

GPs also require value assignments to the vector θ = [W σf σnoise]

that contains the hyperparameters, with W holding the distance mea-
sure of each input in its diagonal, σf being the variance of the input
and σnoise the variance of the process noise. We can find the optimal
values for θ by maximizing the log likelihood:

θmax = arg max
θ

{log(p(y|X, θ))} (36)

5.5 combining gp with ukf

The output of the GP can be used in conjunction with the UKF in
order to generate more accurate predictions regarding agents’ αis.
When an agent states an uncertainty forecast σ̂τ−1, it is propagated
through the dynamic model and the expected meanGPµ and variance
GPσ of the corresponding αi are calculated via the GP. These two
values are used to transform Eq.(27a) and (27b) into:Dynamic Problem

Formulation
σ̂τ = Aσ̂τ−1 +wτ (37a)

ατ = GPµ(σ̂τ,D) + uτ (37b)

with noise uτ following N(0,GPσ(σ̂τ,D)). Since in our setting a real-
istic transition model is hard to define given a lack of related real data
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regarding the progression of uncertainty statements over time, state
transition matrix A is set to the identity matrix, and wτ is assumed to
follow N(0, 1). The method we described here, GP-UKF, is then used
over this updated dynamic model to obtain the predictions α̃i.

Here we must note that it is possible to use the GP alone, sampled
at the most recent agent statement. However, such an approach would
then not be able to model time varying uncertainty estimates. In con-
trast, the GP-UKF is able to incorporate even time varying agent un-
certainty estimate statements, should such statements become avail-
able.

5.6 methods evaluation

We provide a detailed evaluation of our methods in Chapter 6. Our
simulations demonstrate that employing any of the two filters tested
leads to improved performance in the consumption shifting domain,
when compared to a “baseline” mechanism that makes no use of
such performance monitoring tools. Specifically, when using these
enhancements, the cooperative achieves a higher overall electricity
consumption reduction; and enjoys financial rewards that are higher
than those generated by the baseline algorithm.

Each filtering method’s exact performance depends on the uncer-
tainty characterizing a particular simulation setting. We observed,
however, that HF’s performance is stable, and the method is able to
forecast the future performance of an agent quite closely. At the same
time, combining UKF with GP regression appears to lead to increased
prediction accuracy, and higher economic gains overall.





Part III

S I M U L AT I O N S

In this part we present the setting and results of the exper-
imental evaluation of our mechanism. First we describe
the dataset we used and its various initializations. Next
we compare the different coalition formation methods that
we have proposed and present the general features of our
mechanism. Finally we adopt the stochastic filtering tech-
niques to monitor single agents and agent classes and
demonstrate the performance boost that such methods
provide.





6
E X P E R I M E N TA L R E S U LT S

In this Chapter, the results from the experimental evaluation are pre-
sented and discussed in detail. In Section 6.1 we present the dataset
that we use to simulate a realistic cooperative shifting scenario. Sec-
tion 6.2 evaluates our overall scheme and compares the performance
of the alternative methods for forming reducing coalitions proposed
in Section 4.3, as well as various results that demonstrate the effective-
ness of our proposed scheme. Finally, the evaluation of the incorpora-
tion of the two stochastic filtering methods is presented in Section 6.3.
The experimental results provided in this Chapter demonstrate the
effectiveness of our demand shifting scheme, as it delivers what it
promised, i.e. providing effective demand-side management services.
Also, it is shown that the reducing cooperatives can obtain monetary
gains by participation in this scheme. Both earnings and effectiveness
are further improved by the incorporation of the stochastic filtering
methods we proposed.

6.1 dataset

In our experiments, we use simulated data coming from real con- Population
Modelingsumption patterns of 36 industrial customers in India1. We were pro-

vided with two 36× 48 arrays, one holding the mean consumption
values for each customer at each time interval and one holding the
standard deviation of the means. For the agents’ consumption pat-
terns generation we repeatedly sample these normal distributions, un-
til the desirable agent population number is met, that is 4968 agents.
In other words, every resulting agent pattern emerged from sampling
the 48 normal distributions for each interval of one of the 36 real con-
sumer profiles.

The τ threshold is fixed to 96.5% of the maximum total demand Parameter
Initializationacross all time intervals. The safety limit is set to 99% of τ, while

qthmin to 1% of the total load at th; and the phigh & plow values are
set to the day-night prices specified by the greek utility company
P.P.C.2. The pgroup rate (in € / KWh) ranges from pmax

group = 0.05625 to
pmin

group = 0.0214, depending on reduction size q:

pgroup(q) =
pmin

group − p
max
group

Qth − qthmin

· (q− qthmin) + p
max
group (38)

1 The exact same consumers as in the experiments of [26]; we thank that paper’s
authors for providing the dataset.

2 http://www.dei.gr
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with q ranging from qthmin to a maximum (th-specific) Qth .
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Figure 2: Average Shifting Costs.

Individual shifting preferences are not provided in the dataset andShifting Capabilities

are generated as follows. A beta distribution3 (a = 1,b = 43.444) is
sampled twice for each agent, giving the means (a higher mean and
a lower mean) of two normal distributions (σ = 0.01) that are next
sampled for each interval, resulting to the actual agent shifting cost.

3 Here, we choose a Beta distribution, as we want the costs to have mean values be-
tween zero and one. Additionally, such distributions are more appropriate for mod-
elling uncertainties, as they can concentrate probability in a desired range. Despite
these facts, other forms can also be used.
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Consider the mean consumption of some agent i during a day, c̄i. If
the potential shifting operation trims consumption from a time inter-
val tabove where the agent’s baseload demand is higher than c̄i to
another interval, tbelow, that baseload demand is lower than c̄i, then
the value sampled from the normal distribution with the higher mean
is assigned to that costt

above→tbelow
i for agent i, while the value sam-

pled from the normal distribution with the lower mean is assigned
to all other transitions, i.e. tabove → tabove, tbelow → tabove and
tbelow → tbelow. The intuition behind this higher cost assignment
is that peaks in demand are mainly costly to shift (but there exist
some agents that can contribute with lower costs or shifting capaci-
ties). Also, because the outcome of the beta distribution is between 0
and 1, we add 0.01151 to all values in order to move cost values to an
acceptable cost range4. In Fig 2(a), agents are sorted by their average
daily shifting costs. Population with average shifting cost below 0.02
is considered low cost, above 0.02 and below 0.04 medium cost, and
above 0.04 high cost.

On an average run, 811.86 agents were high cost; 2809 were medium
cost; while 1347.14 were low cost. The kernel density estimate of the
daily average agent shifting costs is shown in Fig. 2(b).

Reduction capacities are estimated based on the variance of each
agent baseline consumption, as this is a good indicator for its de-
mand elasticity5. Agent uncertainty stated for bidding, is provided
by sampling a beta distribution, with a = 1,b = 5 i.e., the great mass
of the agent population has low to average uncertainty and actual
agent shifting actions are provided by sampling another beta, with
a = 4,b = 2 modeling the realistic case that at best the agents deliver
what they promised, but often fail to do so.

In our experiments, we first assume that all 4968 agents participate
in the cooperative. Note that running one simulation day involving
all agents takes on average only 1.5 sec on a 3.3 GHz PC (with a
further 110 sec for demand curves and shifting costs initialization
period before simulation starts).

A typical picture of what happens in a given day is shown in
Fig. 3. The diamond pointed curve is the resulting shifted demand,
the dashed curve shows the initial demand and the two vertical lines
depict threshold τ and safety limit.

As Fig. 3 shows, intervals 19 to 20, 22 to 25, 27 to 29 and 31 to
37 are peak intervals. Consumption that was reduced is shifted to
other, non-peak intervals. Notice that at interval 27, an effective reduc-
ing coalition could not be formed due to lack of available reducing

4 Costs that are lower than phigh −plow = 0.01151 are not realistic, because such agents
would shift by themselves to lower demand intervals, changing their baseline con-
sumption

5 Elasticity of demand is defined as the degree to which demand for a good or service
varies according to its price.
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Figure 3: Consumption shifting scheme output.

agents. Despite this infeasibility though, the amount of total peak-
load trimmed is very significant.

6.2 method evaluation

We continue with the simulation of 100 days, and compare the four
methods presented in Section 4.3. Results are shown in Table 3.

Method 2 clearly ranks lower than all others both in terms of co-
operative gains and trimming effectiveness. This is because it forms
coalitions of a “minimum” size, capable in expectation to shift just qmin.
Thus, due to uncertainty governing actual agent behavior, profits suf-
fer when agent promises fail to materialize (and qmin is not reached).

In contrast, Methods 1, 3 and 4 all trimmed more than 98% of peak
load, and have similar performance. When adopting Method 3 though,
it is possible for an agent that could be favoured by the final pgroup
price to be excluded from the coalition, if its contribution potential
was checked early-on in the process, when the pgroup price awarded
at that point happened to grant negative expected gain to that agent.
Method 4 results to the highest cooperative gain, and highest con-
sumption reduction, but is the most expensive computationally. More-
over, from the Grid’s point of view, it is probably not worth it to hand
over an additional 37.28€/day, 4.1% of the amount “paid” to Method
1, for a mere 0.35% increase in consumption reduction. Therefore,
Method 1 appears to be the most appropriate for our purposes, as it
is comparable to the rest both in terms of cooperative gains and trim-
ming ability; is cheaper for the Grid to use; and allows even agents
with initially negative expected gains to participate in the scheme. For
those reasons, we chose Method 1 for further evaluation. After having
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examined the general behavior of our methods, we then conducted
experiments to examine the CRPS effect, the average size of the re-
ducing coalitions when pgroup perturbs and the cooperative reduction
performance subject to different agent participation percentages.

We also simulated the fifth method proposed for coalition forma- Method 4.3.5

tion in Section 4.3, and explored its behavior. Provided ranking by
r̃ip̂i, the concept is to monitor the average growth rate of coalescing
agents’ gain and stop adding when it drops under a certain level. Sup-
pose that in a coalition C with gainC, we add another agent i, then
the gain growth obtained by this addition is growth = gainC∪i −

gainC. Trying to monitor growth values for each peak interval we
observe that gain growth is not smooth and thus it is difficult to set a
certain limit, as shown in Fig. 4. For this reason, this method was not
chosen for further evaluation.
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Figure 4: Gain growth for various th.
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Figure 5: Daily loss of gain as CRPS rises.

6.2.1 CRPS Effect

In this set of experiments, every reducing coalition formed at any th
is made to contain 10 agents whose relative error is non-zero. The rel-
ative error was progressively increased, over 11 complete runs of 50
simulation days each; that is, the relative error was constant during
a run lasting for 50 simulation days, and was then increased for later
runs. This naturally leads to a higher (i.e., worse) CRPS score for the
individual agents, and thus a bad CRPS score for their corresponding
reducing coalitions. As shown in Figure 5, as the individual agent’s
CRPS score gets worse, its gain losses increase; and the cooperative
as a whole suffers progressively increasing gain losses as well. Thus,
CRPS clearly incentivizes the agents to accurately state their reduc-
tion capabilities, and deliver what they promised.

6.2.2 Coalition Size vs Pgroup

Next, we examine the average reducing coalition size formed at each
th given different pgroup prices granted for collective consumption
shifting. More specifically, we simultaneously increase the pmax

group and
pmin

group values produced by Eq. 38 up to +0.05 of their initial values,
and observe the average number of agents in reducing coalitions for
each peak interval. Figure 6 shows this concept, where average coali-
tion sizes over 100 simulation days are plotted against group price
range variations. It is obvious that as pgroup increases to get closer to
plow, fewer agents decide to contribute—and, subsequently, less con-
sumption is finally shifted. Thus, in order for shifting to take place,
the Grid must grant a pgroup range that provides enough gain to the
agents, given individual shifting costs.



6.2 method evaluation 55

0 0.01 0.02 0.03 0.04 0.05
0

10

20

30

40

50

Group Price Differentiation

A
v

er
ag

e 
C

o
al

it
io

n
 S

iz
e

Figure 6: Avg. reducing coalition size vs. pgroup increase.

6.2.3 Cooperative Membership

In a final set of experiments, we considered settings with considerably
fewer consumers participating in the cooperative. With 30% of the
agents participating, it is still possible to shift 98.52% of peak load,
while 10% of the population manages to shift 93.82% of peak load.
With 7% of agents participating, 75% of the total peak load is shifted;
while 4% and 3% of all agents shift 51.86% and 12.66% of peak load
respectively. Finally, 2.5% of all agents shift only 0.8% of the peak
load. Thus, membership clearly has to reach a “critical mass” for the
cooperative to be effective.

6.2.4 Further Observations and Insights

Here we provide further insights into benefits gained from coopera-
tive scheme participation, given our simulations. These refer to the
setting where all agents participate in the cooperative. We measured
that an average number of agents participating into each reducing
coalition at some th is 47.7 individuals. The 36.6% of these are low
shifting cost agents, whereas 57.8% are medium and 5.6% high cost.
When the reward transfer scheme is enforced, the actual amount
transferred on average during a gain balancing operation at a given
th is negligible, in the order of 10−5€, and is granted by either low
cost or medium cost consumers.

It is worth noting that the Grid each day grants back to consumers
an average of only 895.56€, from its average daily income of 354064.3€.
Note that we cannot account for the Grid profits emerging due to re-
duced generation costs from the evasion of peak intervals, because
such an analysis would require information that is typically not dis-
seminated by the Grid operators. However, since we observe that in
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an average simulation run an 98.616% of the peak load is “safely”
shifted, we can infer that the Grid stands to gain from the shifting op-
erations. Another positive side-effect is, of course, that power outages
(and resulting costs) become more distant possibilities as the demand
curve flattens out.

6.3 monitoring agents with stochastic filtering tech-
niques

In this section we employ the stochastic filtering techniques of the
Chapter 5 to test their performance. First, we monitor single agents
of specific behavior. Then we test each method at various settings in
order to measure the relative error that accrues for each one. Finally
we apply them on the electricity consumption shifting problem. Note
that, for simplicity, agent forecasts over their expected relative error
are given in the form of a N(0, σ̂), so the stated uncertainty forecasts
from now on will be simply denoted by σ̂.

6.3.1 Monitoring the Performance of a Single Agent

gp-ukf approach For the GP generation we used the MATLAB
OCTAVE GPML (Gaussian Processes for Machine Learning) toolbox
as it is presented in [41]. The set of training points is D = {(σ̂j,αj), j =
1, ..., 1000}, i.e. pairs of forecasted uncertainty and actual actions. We
used expectation propagation as an inference method. The GP is
trained over the past observations; and sampled to get the forecasted
uncertainty values for the next day. Specifically, the GP output is the
mean and variance of the expected αj given the forecasts σ̂j.

For the UKF we used the EKF/UKF Toolbox for Matlab V1.3 de-
veloped by the department of Biomedical Engineering and Computer
Science of Aalto University, tuned to the dynamic problem described
in Section 5.5 by Eq. (37).

Initially, we use a setting with a non-linear function of a knownNon-linear function
with noise form in order to test the performance of our approach. Here, σ̂ is

tuned to follow a N(0.5, 0.15) distribution. The nonlinear function that
processes the samples and outputs αi values is f = 0.5 sin2(2πσ̂)+ 0.3,
with added noise following N(0, 0.1). Results are shown in Figure 7(a).
Diamonds represent certain “test points” generated by f plus noise,
to help illustrate the spread of the nonlinearly transformed input. As
shown, trained means (blue crosses) and variances (gray shaded area)
of the GP, successfully adapt to the nonlinear function f. UKF predic-
tions are marked as squares, and are in fact very close to the GP
trained means.

Next, we let σ̂ and αi follow B(1, 5) and B(4, 2) respectively, as inSamples from Beta
distributions the experimental setting explained in Section 6.1. Results are shown

in Figure 7(b). In this case, there is no function of a specific known
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Figure 7: The Gaussian Process and UKF prediction points for a single
agent.

form for the Gaussian Process to approximate, as the points are both
random variables following different distributions. Despite that, the
GP has converged to some relationship between input and output val-
ues. We can infer that this estimated complex function is meaningful,
by the fact that most “test points” fall within the shaded area repre-
senting the GP output variance; the “test points” plotted in this case
are random σ̂i,αi values, sampled by the B(1, 5) and B(4, 2) respec-
tively. Thus, the GP-UKF method is apparently able to produce mean-
ingful predictions, even when the relationships between variables are
governed by some highly complex function. Note that because B(1, 5)
gives very low to zero probability for σ̂ values between 0.7 and 1, the
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number of corresponding training points is very low, so uncertainty
in that region is very high.
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Figure 8: Histogram and corresponding roulette wheel (8 bins, 1000 obser-
vations).

hf approach In contrast to UKF, the HF approach does not re-
quire σ̂i forecasts to work. We test this technique in a setting with
αi following B(4, 2). For the histogram generation, MATLAB built-in
function hist was used. Once again, we use 1000 training points. These
are now simply αi values, sampled from the aforementioned beta dis-
tribution. Next, a roulette wheel is constructed in order to perform
stochastic universal sampling. According to the height of each bin of
the histogram, a proportionate space on the roulette wheel is colored.
The roulette wheel is spinned thereafter —i.e., a random sample is
generated that maps to a specific bin, or range. The final prediction of
the HF comes up by sampling a uniform distribution, normalized to
the range that occurred from the roulette wheel spin.

The resulting histogram and the corresponding roulette wheel are
shown in Fig. 8. One can clearly see the relevance between the proba-
bility density function (black curve) and the generated histogram; the
histogram successfully converges on the true generating distribution.
The accuracy of the approximation, however, depends on the number
of training values and the number of bins.

6.3.2 Monitoring Agent Classes

In another set of experiments we tune our parameters to follow differ-
ent distribution pairs. Three new agent classes are defined, the accu-
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Class Conservative HF GP-UKF

µ σ µ σ µ σ

AP 0.023 0.017 0.022 0.017 0.015 0.012

UP 0.430 0.998 0.390 1.190 0.299 0.867

IP 0.157 0.117 0.021 0.016 0.014 0.012

B-N 1.626 3.836 0.554 0.328 0.272 0.392

B-B 0.904 1.921 0.547 0.277 0.281 0.394

Table 4: Means and variances of the absolute relative error for each class
when using each method.

rate predictor, the uncertain predictor and the inaccurate predictor, apart
from two additional test cases, as we explain below.

More specifically, accurate predictor’s (AP) uncertainty forecasts
and final actions both follow a normal distribution with low variance,
N(0.5, 0.01), simulating consumers that act almost as they predicted to
act. The inaccurate predictors (IP) on the other hand, seek to act 50%
off of what they predicted, with their predictions following N(0.5, 0.1).
The uncertain predictor (UP), might or might not follow stated fore-
casts, so αi and σ̂i both follow the same normal distribution with a
slightly raised variance, i.e. N(0.5, 0.15). Two additional scenarios are
also tested, one with αi following B(4, 2) and σ̂i ∼ N(0.5, 0.15) (B-N)
and the other, that described in Section 6.1 (B-B), using two beta dis-
tributions αi ∼ B(4, 2) and σ̂i ∼ B(1, 5). The first one makes more
pessimistic estimates than the other; and both end up delivering the
rthi reduction value that they promised, but sometimes fail to do so.
Our goal is to find the best method to obtain estimates of α̃i.

The first method, the Conservative, estimates final shifting capacity
based on Eq. (13). The second, HF, utilizes a Histogram Filter con-
structed by past αi observations6 and does not take into account σ̂
statements. The shifting capacity estimate is calculated via Eq. (26),
where α̃i is the prediction given by the HF. Finally, GP-UKF also
keeps track of past observations, but takes into account σ̂ statements.
Shifting capacity estimates are calculated also by Eq. (26), but with α̃i
now corresponding to UKF predictions.

In order to test the aforementioned methods on the scenarios pre-
sented above, we first sample the distributions generating the σ̂is and
the αis 1000 times in order to generate training points for the HF and
GP-UKF methods. Next we sample the distributions again for 1000

times and measure the mean absolute relative error between the oc-
curred αi and predicted α̃i from the proposed methods. Results are

6 In fact, αi is calculated by r
th
i

r̂
th
i

, where r̂thi is the stated reduction capacity at th, and

rthi is the observed actual reduction by i there.
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Method Setting Expected Actual Expected Final

Gain Gain Reduction Reduction

Conserv.
B-B 2185.60 982.66 34375.497 25593.202

UP 2358.64 1417.14 37480.805 30889.185

HF
B-B 2172.33 1458.31 34436.174 29327.052

UP 2378.51 1436.78 37711.798 31171.310

GP-UKF
B-B 2184.96 1932.94 34556.859 33862.32

UP 2391.65 2041.50 37809.045 36610.243

Table 5: Average (out of 10 days) results of electricity consumption shifting
cooperative.

shown in Table 4. Judging from the mean absolute relative errors for
each agent class, GP-UKF clearly outperforms both HF and the con-
servative method in both mean and variance. As results show, when
dealing with accurate predictors, all three methods have similar perfor-
mance. When the predictors are uncertain, however, absolute relative
error rises, but GP-UKF maintains its better performance. When mon-
itoring inaccurate predictors, the HF and GP-UKF methods capture
the systematic inaccuracies of agents and perform very well, while
the conservative does not. In the remaining two cases, one can ob-
serve that the conservative method performs far worse than the two
proposed methods. This happens because the conservative method
makes highly pessimistic estimates for agent final actions in these
settings.

Therefore, our methods can successfully exploit historical data to
learn and keep track of the actual agent performance, a feature that
the conservative method does not possess. In addition, the GP-UKF
can identify possible relations between agent forecasts and final ac-
tions, managing to predict the latter more precisely than the HF, by
incorporating agent uncertainty forecasts σ̂i in the prediction process.

6.3.3 Cooperative Shifting Simulation

In the final experimental setting, we apply our proposed monitoring
methods to the real world scenario, considering cooperative consump-
tion shifting efforts over a 10-day period.

User forecasts and final actions are set to follow two of the cases
discussed in the previous subsection: B-B, which is the case actually
presented in Section 6.1; and UP, which models a realistic scenario.7

7 AP and IP are less likely in practice, and so is B-N: if an agent originally unsure of
its performance (that is, one sampling σ̂ from N(0.5, 0.15)) observes that its actual
(1 − α) error is small (as α originates from B(4, 2)), then it would most probably
have corrected its uncertainty predictions already, to avoid penalties.
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Thus, we run a 10-day simulation for each one of these two cases. For
each day in each simulation, we apply the scheme three times, each
using a different method (Conservative, HF or GP-UKF) for obtaining
agent final action estimates —with the same initialization data per day,
in order to be able to make a reasonable comparison. At the beginning
of each 10 day simulation HF and GP-UKF are fed with 100 “past
observed” pairs of forecasts and final actions, in order to infer an
elementary model that will be used for their predictions. Numerical
results are presented in Table 5. Expected and actual gain represent
euros per day, while expected and final reduction quantities come in
kWh per day.

Expected gain and expected reduction take close values at each
setting for all methods. This is because, in all occasions, the under-
lying coalition formation mechanism employed by the cooperative
keeps adding agents to reducing teams until the maximum reduction
quantity requested at a given th is reached. However, each prediction
method has its own estimates regarding each agents actual perfor-
mance. Therefore, the performance of the three prediction methods
varies. Clearly, GP-UKF achieves reduction that is closer to the ex-
pected (when compared against the other methods). One can observe
that for the HF approach, the deviation between expected and final
load reduced is at the same levels regardless of the distributions that
generate final actions. This is due to approximation errors, induced
by the number of bins of the histogram and uniform distribution sam-
pling. Also, agent forecasts are not taken into account, so potentially
important information is ignored. In terms of accuracy, we can thus
safely conclude that the GP-UKF has the best performance. Intuitively,
GP-UKF can effectively learn and adapt to the underlying model that
relates agent forecasts and final actions, thus enabling the cooperative
to choose reducing coalitions that often deliver what they promised.
Moreover, we can see that the GP-UKF performs significantly better
wrt. economic benefits, generating as it does more actual gain in eu-
ros than any other method. Overall, GP-UKF appears to be a strong
prediction tool for consumption management cooperatives.

6.4 discussion

To conclude this Chapter, our proposed mechanism appears to be
highly effective at the proactive flattening of the electricity demand
curve. Forming reducing coalitions by using Method 1 leads to signif-
icant monetary gains for the cooperative, incorporating even agents
with negative expected gain, and is cheaper for the Grid to use. The
CRPS score incentivizes agents to meet their stated commitments in
their actual final shifting actions. Also, granting an appropriate pgroup

price helps agents overcome their shifting costs by participating in
large reducing coalitions. Moreover, with the use of stochastic filter-
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ing methods, the performance and prediction accuracy are signifi-
cantly improved and thus, increased financial gain for the cooper-
ative are generated. Our filtering techniques are generic and can be
integrated within different types of systems (e.g., they can be used for
monitoring the accuracy of electricity production statements). This is
the first time these methods are applied in this domain; and the po-
tential value of this work to any real-world enterprise operating in the
Smart Grid can be very high. Finally, as we will see in Appendix A,
we have recently obtained more datasets, on which we plan to further
experiment and test our proposed scheme.



Part IV

C O N C L U S I O N S A N D F U T U R E W O R K

In this part, we review the contributions of our work, and
discuss the positive side effects of the adoption of our pro-
posed mechanism in real world Smart Grids. Finally, we
provide the reader with insights regarding our future re-
search efforts.





7
C O N C L U S I O N S A N D F U T U R E W O R K

In this work, we proposed an entirely novel and directly applicable
scheme for electricity consumption shifting, which promotes agent
efficiency in the face of uncertainty. The scheme uses a strictly proper
scoring rule, CRPS, to incentivize participants to accurately state their
reduction capabilities and actually deliver their promised contribu-
tion; and promotes the formation of consumer cooperatives that can
collectively significantly contribute to the trimming of the demand
curve. This is achieved via the granting of a better group electricity
price for large shifting operations. To incentivize agent participation,
we put forward an incentive compatible and (weak) budget-balanced
gain transfer scheme that awards variable group price rates to mem-
bers, thus allowing agents with initially prohibitive shifting costs to
participate in shifting operations. All our methods were tested and
evaluated via appropriate simulations. We also applied two different
methods for monitoring and predicting agent actions in the power
consumption shifting scheme, a Histogram Filter and a Unscented
Kalman Filter that uses Gaussian Processes to recognize possible un-
derlying relationships between agent forecasts and final actions. Con-
cluding, we believe that we have demonstrated that there are indeed
good reasons to use the proposed demand management scheme, as
its use can lead to the effective flattening of the electricity demand
curve.

Future work includes running extensive simulations on larger scale
environments. Ideally, we would like to test our model in an environ-
ment that includes hundreds of thousands of actual consumers (as
opposed to using simulated data generated from only a few dozens
of real consumers). This would also enable us to study the behavior
of various types of agents, classified according to particular indus-
try type; and allow us to devise coalitional policies specifying the
best possible mixture of members to include in shifting operations.
In particular, a sizable real world consumption dataset from a mu-
nicipality of Crete has already been preprocessed and is presented
in Appendix A, along with a plan for future experiments concern-
ing this dataset. We also intend to devise methods for distributed,
combined performance monitoring, so that predictions are effectively
cross-validated. Moreover, we will try to model the problem of trust
in this domain. The sequential selection of participants for reduc-
ing coalitions in particular, could require solving a belief-state MDP,
much in the spirit of what is done in [48].
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66 conclusions and future work

Last but not least, the study of prosumer cooperatives (i.e., coop-
eratives whose members can simultaneously consume and produce
electricity) is definitely an interesting and challenging research di-
rection. Allowing the members to have dual roles (i.e., consumers
and producers) adds a significant level of complication that will most
probably have to be dealt with separately. Prosumer agents have the
choice to strategize about short term decisions (such as choosing not
to reduce consumption, via, for instance, shifting their energy produc-
tion activities now) in anticipation of achieving greater benefits, e.g.
by producing and storing energy to sell to the Grid with an expected
higher profit on a later date.



Part V

A P P E N D I X

This part shows the results from a preprocessing of annual
real power consumption data coming from the municipal-
ity of Kissamos, in western Crete.





A
A P P E N D I X : A N A LY S I S O F A R E A L D ATA S E T
P R O V I D E D B Y T H E P U B L I C P O W E R C O R P O R AT I O N
O F G R E E C E

The spreadsheet containing consumption data of the municipality of
Kissamos during the year 2012, came to our possession on March
31, 2013. We are grateful to the Department of Informatics of the
greek P.P.C. utility company. One can find there the total consumption
for specific time periods, of 8.487 consumers of various types. More
specifically, data for the fields shown in Table 6 are provided:

Voltage level

ID of connection

Street name

Street number

City

Municipality

Type of usage category

Invoice code

Invoice type

Date of measurement

No. of days measurements correspond to

KWH consumed

Reactive power demand

Apparent power demand

True power demand

Impedance phase angle

Table 6: Fields covered in the Kissamos dataset.

By processing the above, we should end up with consumption pat-
terns of various types of consumers depicting as much as possible the
real situation of Kissamos.

a.1 redundant fields

Some of the fields included in the spreadsheet can be considered re-
dundant for our initial approach. These are Street name, Street number,
City, Municipality and Date of measurement.
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ID of connection

Type of usage category

Invoice code

Invoice type

Number of days

KWH consumed

Table 7: The reduced set of fields of interest.

Table 8: Number of consumers of each type.

Type Count Count without zero users

Residential 6263 5889

Commercial 1497 1381

Agricultural 298 271

Municipal 302 295

Public 75 68

Industrial 39 38

Public Law Entity 13 12

Total 8487 7954

While Reactive and Apparent power demand might give us some in-
formation about the types of the consumers, that would be beyond
the scope of the current project, as we cope most with actual power
consumption, thus the only field needed is KWH consumed. The afore-
mentioned exclusions reduce the fields to the set shown in Table 7.

a.2 types of consumers

The next issue is categorizing consumers into specific and discrete
types. To achieve this, we must take a look at the 40 different value
combinations of Usage category, Invoice code and Invoice type, as
shown in Fig 9. However, we choose to categorize them according to
the first column of Fig 9, the usage category. The numbers of each type
are shown in Table 8.

a.3 mean consumption calculation

From each consumer, multiple measurements are provided during
the year. Based on this, we can derive the distributions that describe
daily consumption patterns and proceed further with the analysis.
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Figure 9: Categories of Kissamos consumers.



72 appendix : real dataset analysis

Table 9: Mean, minimum and maximum consumption for each type.

Type Mean KWH Min Max

(zero\no zero users) (without zero users)

Residential 6.8588\7.2944 0.00107 83.69257

Commercial 23.1370\25.0804 0.00271 1022.49635

Agricultural 101.3737\111.4737 0.01219 1985.01832

Municipal 13.4569\13.7762 0.03003 84.49058

Public 69.2345\76.3616 0.00269 1937.73004

Industrial 104.5073\107.2575 0.20202 1830.61383

Public Law Entity 13.7733\14.9211 1.66666 64.45923

Note that measurements regarding reactive power are not taken into
consideration for simplicity.

For each couple of KWH and Days values, we come up with a mean
of each month (or four months) and afterwards with the mean of the
year, according to the procedure shown in Algorithm 3.

Algorithm 3 Computation of µi and σ2i
Input: ~KWH, ~No.ofDays (Multiple values for each consumer)
Output: ~µ,~σ2 (One value for each consumer)

for ∀i (each consumer) do
for ∀j (each measurement of the consumer) do

KWH
No.ofDays → tempj

end for
µi =

∑
∀j tempj

|j|

for ∀j (each measurement of the consumer) do
( KWH
No.ofDays)

2 → temp2j
end for
σ2i =

∑
∀j temp2j

|j| − µ2i
end for

The results for every usage category are shown in Fig. 10. The mean
consumption for each category is shown in Table 9, and the mean
variance is shown in Table 10.

To provide a better visualization, we transform our data x to log(x),
after removing consumers with zero consumption from our dataset since
such consumers cannot contribute to the scheme, neither affect con-
sumption patterns. Results are shown in Figure 10. Histograms of
means and variances for each class is summarized in Figures, 11 and
13. Another non-parametric way of obtaining a probability density
function of observed data is the Kernel density estimate. Kernel density
estimates are closely related to histograms, and can be smooth and
continuous, based on the kernel we use. The kernel density estimates
of means and variances for each class using a normal kernel function,
is shown in Figures 12 and 14.
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Table 10: Mean, minimum and maximum variance σ2 of consumption for
each type.

Type Mean σ2 Min Max

(zero\no zero users) (without zero users)

Residential 9.6054\10.3687 0 2200.371

Commercial 2560.2\2811.9 0 1769926.260

Agricultural 36689\40493 0 1759549.917

Municipal 19.9674\ 21.3080 0 1573.370

Public 9058.1\9990.6 0.000014452538 324108.367

Industrial 8227.2\8443.7 0.000332684800802729 138245.986

Public Law Entity 80.6619\87.3837 0.00444097754475337 865.332
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Figure 10: Means and variances of consumers based on their usage category.
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Figure 11: Histograms of means for each usage category.
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Figure 12: Kernel density estimates of logarithm of means for each usage
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Figure 13: Histograms of variances for each usage category.
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a.4 plan for future experiments

Taking into consideration the aforementioned real world agent classes,
we can assume scenarios of consumption shifting operations where:

• every category participates

• residential, commercial and industrial consumers participate,
while public companies do not

• only residential

• every other category apart from residential

Also, the modeling of prosumers is quite easy, simply by assigning
negative values at the field of KWH consumed. Unfortunately, such
profiles are not provided in this dataset.
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