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Abstract

This PhD thesis considers the problem Mlti-lead Surface Mount Devices
(SMD) Printed Circuit Boards (PCB) Post-Placement Quality Inspection in the
context of pattern recognition tasks. A Bayesiawveh framework is proposed to
visually inspect the placement quality of SMD, indiagely after they have been
placed in wet solder paste on a PCB. Our approaploi¢és the fact that individual
leads encode the same information regarding relggositioning of the rigid body of
the component on the pad area. Positioning measmtsron each lead can be viewed
as individual (inaccurate) measurements of the sajuantity regarding the
component displacement and rotation. Three measfregiality placement from
individual lead images are of general interest, elgraverlap, insulation distance and
slump gap. More specifically, the quantificationpafsitioning measures is viewed as
a classification problem, where the lead displacene inferred from characteristic
features associated with image analysis for optingpection. The features for
classification are extracted from each segmented ienage and encode optical
characteristics (i.eoptical features), by means of simple area measures that sustain
the most desirable image attributes. Instead ofeainating in one and every (poorly
imaged) lead, we fuse complementary informatiormfrall leads into a Bayesian
estimation framework. The proposed estimation agpgraperates in two levels. The
first level considers a crude computation of quaattidisplacement of each lead. This
is done through classification. The second levelrajes in a Bayesian framework and
aims to accurately model the estimation of compbrdisplacement based on
guantized lead displacements. The developed melibgylcs tested with success on
real industrial PCB images and has better perfoomaiman previous related methods
reported in the literature of the PCB inspecfietd.

Motivated by the need for reducing time requirersersnd overcoming
inaccuracies due to “microscopic” pixel-based cdesation of individual lead images
(such as segmentation process), we also studyisnRhD thesis “macroscopic”
techniques that do not consider pixel processirigrdther define in an abstract way
the characteristic features of individual lead iemgMore specifically, we consider

one approach that only analyzes the edge structungatterns in the image (i.e.

Xi



topological features) and a second approach that processes only tiecpon profile

of patterns at a single relevant orientation fr@jection features). Both approaches
use features that encode “reduced content” ofdld iImages. In this way we attempt
to efficiently balance the amount of relevant infation exploited and the
computational load of the algorithm. Both method@ds are tested on real industrial
PCB images. The quality of inspection slightly diet@tes while the computational
time is significantly reduced, when compared tossieal visual inspection
techniques.

Finally, we also present in this PhD thesis a wardé multiple classifiers fusion
strategies based on statistical and soft computietihods to improve the performance
of the classification task on individual leads. dir knowledge this is the first time
higher level (classifier) fusion is applied to f@blem of quality inspection of SMD.
Both fusion schemes, usinglentical and distinct pattern representations are
considered. In the former case, we use only optfeatures for classification
purposes. The latter scheme uses topological aneagbion features. We elaborate on
two schemes for distinct pattern representatiomghé former scheme we use only
reduced dimensionality features (i.e., topologara projection features), whereas the
latter enriches the topological and projection desg with optical ones, in order to
improve the classification rates and robustnesssacall lead-displacement classes.
Comparing the classification results of the proposembined classifiers, we can
derive that all combiners have better performahes tany primary classifier alone.
Overall, classifier fusion can contribute to thesual quality inspection of SMD

domain by improving accuracy and speed.
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CHAPTER 1 INTRODUCTION

Chapter 1

| ntroduction

1.1 Industrial Machine Vision I nspection Systems

Vision has long faschinated researches from dis@pl such as psychology,
neural science, computer science, and enginedviaghine vision can be described
as an automatic deduction of structures or prageidif the three-dimensional world
from either single or multiple two-dimensional inesgof the world and recognition of
objects with the help of these properties [1]. Timages can be monochromatic or
colored and can be captured from a single or nlaltgameras. The structural
properties we seek to deduce may not be only geanpebperties, but also material
properties. Geometric properties include the shapes, and location of objects,
whereas material properties include lightness dkrasss of surfaces, their colors, and
their structures. The purpose of a machine visistesn is to infer the state of the
physical world from noisy or ambiguous images o tlworld. Machine vision is
difficult to realize because image formation is anyrto-one mapping. A variety of
objects with different geometric and material pmies can lead to identical images.
Again, the obtained images may be noisy or disiorddachine vision systems are
complex and often are implemented with several rfesduA modular approach
makes it easier to control and monitor the perfarceaof a system. Various stages or
modules of a vision system can be implemented usioigventional statistical
methods, neural networks, fuzzy logic techniques, genetic algorithms. Often the
number of stages in a vision system and their cenriiyl depend on the application
for which the system is being designed. Applicati@f machine vision systems
include automation on the assemply ljmemote sensing, robotics, human computer
communication, aids for the visually impaired, éflachine vision plays an important
role of a large number of industrial processes|f2fecent years, considerable efforts
have been directed towards the developmerubdmated visual inspection systems



CHAPTER 1 INTRODUCTION

[2], [3]. This is particularly true with speculaurace inspection, because it is
laborious for a human to perform.

Machine vision systems for industry first receiv&gtious attention in the mid-
1970s. Throughout the early 1980s, the subject ldpgd slowly, with a steady
contribution being made by the academic researafmmamity, but with only limited
industrial interest being shown. It seemed in thd-1980s that there would be a
major boost to progress, with serious interest dpaimown in vision systems by the
major American automobile manufacturers. Then carperiod of disillusionment in
the USA, with a large number of small vision comparfailing to survive. In the late
1980s and early 1990s, interest grew again, dgeliato significant progress being
made in making fast, dedicated image processindgwaae. For many applications, it
is possible now to provide sufficiently fast prosieg speed on a standard computing
platform. Throughout the last 30 years, academiakers have demonstrated
feasibility in a very wide range of products, reganating all of the major branches of
manufacturing industry.

Currently the main application areas for industnasion systems occur in
automated inspection and measurement and, to &rlesdent, robot vision.
Automated visual inspection and measurement deviesg, in the past, tended to
develop in advance of robot vision systems [3].fdat, quality control related
applications, such as inspection, gauging, andgration, currently account for well
over half of the industrial machine vision markehis has been achieved, in many
cases, by retrofitting inspection systems onto texgsproduction lines. There is a
large capital investment involved in developingoanpletely new robotic work cell.
Moreover, the extra uncertainty and risks involvedntegrating two relatively new
and complex technologies makes the developmenblodtrvision system seem a
daunting task for many companies and developmest lagged behind that of
inspection devices. The technical difficulties itweml in controlling flexible visually-
guided robots have also limited the developmentti@mother hand, automated visual
inspection systems now appear in every major im@lisector, including such areas
as consumer goods, electronics, automobile, aeresgaod, mining, agriculture,

pharmaceuticals, etc.



CHAPTER 1 INTRODUCTION

1.2 Ingpection of Solder Jointson Printed Circuit Boards

In recent years the electronic and computer ingustis grown rapidly. Due to
commercial competition, the products have becagtedr, smaller, and more precise.
Integrated circuit (IC) is the crucial componenttliese products. Quality inspection
plays a very important role in the IC industry fmomoting high quality and high
throughput. A popular and demanding real-time aagilon is the automated visual
inspection and classification of solder joints amted Circuit Boards (PCBs). Solder
joint inspection [4], which has been a criticalussfor quality control in the PCB
assembly process, is a typical specular surfageeat®n task in machine vision.
Imaging of a solder joint surface is a difficulska since a solder joint forms a tiny,
specular, curved and smooth surface. Reflectiorthefpecular solder joint surface
may appear, disappear or change their shapes Bbrepén with small changes in
viewing direction. Furthermore, a distant pointiilination cannot produce smooth
shading on the specular surface, because lighflected in a single direction.

Ever sincesurface-mounting technology devices (SMDs) for printed circuit
board assemply processes has been developedicaleptoducts continuouasly tend
toward the miniaturization of components, with denpacking its boards [5], [6].
With the increasing necessity for PCB product kelity, there has been a
considerable demand for the development of an aatiomisual inspection system.

A typical inspection system for the solder jointsRCB consists of a camera with
appropriate illumination placed on top of the PGiiveyor system. Processing PCB
images consists of two major stages: First, a paegsing is performed in order to
remove noise and make the tracking of solder jaimghe image of the PCB easy.
Then, the solder joints are classified accordinghi® types of defects. The usual
classification is concerned with the quantity af 8older paste placed on a joint. Four
classes are defined, namely good, excess soldeffizsient and no solder. Simulation
results on geometric models of joints have shovat dfficient classification can be
achieved only by an optimal feature selectionhst the classes do not overlap.

For the purpose of this thesis the problensaltler joint inspectioms viewed as a

pattern recognition problem.
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1.3 The Pattern Recognition Problem

The termpattern recognition [7], [8], [9] encompasses a wide range of techesqu
for analyzing and interpreting complex data. Tha af pattern recognition is to find
patterns in data which can be used to discrimibateseen subgroups of the data and
to identify important distinguishing factors. Maogmputer-based pattern recognition
applications are directed at finding ways of autbngaprocesses that humans do
naturally, such as understanding language, orgrééng visual scenes. However
pattern recognition techniques also provide a meéegtracting relevant information
from complex data that humans find difficult toarret. In this case, the emphasis is
on helping the human analysts rather than repla¢ivegm. Pattern recognition
techniques are used in a variety of informatiamcpssing problems of great practical
significance, from speech recognition and the diaaton of handwritten
characters, to machine vision inspection systerdsvadical diagnosis.

The problem of pattern recognition can be seenfadassifying a group of objects
on the basis of certain subjective similarity me@asuThose objects classified into the
same pattern class usually have some common properties. The claasidic
requirements are subjective, since different dassion occurs under different
properties of the features.

The design of an automatic pattern recognitionesysgienerally involves several
major problem areas. The first one is concernetl thié representation of input data
which can be measured from the objects to be repegn This is thesensing
problem. Each measured quantity describes a characteoftite sample pattern or
object. The measurements for each sample patterrbeaarranged in the form a
measurement vector or pattern vector. The pattern vectors contain all the measured
information available about the patterns. Whenntleasurements yield information in
the form of real numbers, it is often useful tmthof a pattern vector as a point in an
N-dimensional Euclidean space. The set of pattemienging to the same class
corresponds to an ensemble of points scatteredinwifome region of the
measurement space or pattern space.

The second problem in pattern recognition conctrasxtraction of characteristic
features or attributes from the received input datal the reduction of the
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dimensionality of pattern vectors. This is oftefereed to as thereprocessing and
feature extraction problem [10], [11], and results in a set of samples, kncam
feature vectors, by mapping the measurement space intbeature space. The
extraction of features has been recognized as aortant problem in the design of
pattern recognition systems. If a complete set ie€raninatory features for each
pattern class can be determined from the measuetd, dhe recognition and
classification of patterns will present little ddiilty. Automatic recognition may be
reduced to a simple matching process. However,astpattern recognition problems
which arise in practice, the determination of a ptate set of discriminatory features
is extremely difficult, if not impossible.

The third problem in pattern recognition systemiglegnvolves the determination
of an optimum decision procedure, which is neededthie identification and
classification process, namely the constructioma plattern classifier. The concept of
pattern classification [9] may be expressed in terms of the partitiorthef feature
space (a mapping from feature spacedéoision space). The work of a pattern
classifier is to assign each possible vector ontpwmi the feature space to a proper
pattern class. In other words, pattern classification is the @cassigning a class label
to an object. The assignment is always based osunaaents that are obtained from
that object.

Parameter estimation [9], [12], [13] is the process of attributing argmetric
description to an object based on measurementsatbatbtained from that object.
Parameter estimation and pattern classificationsarelar processes because they
both aim to describe an object using measuremeoisever, in parameter estimation
the description is in terms of a real-valued scalavector, whereas in classification
the discription is in terms of just one class dgelédrom a finite number of classes.

The discipline of pattern recognition has seen mooOIS progress since its
beginnings more than four decades ago. Over thes,y®arious approaches have
emergend, based atatistical decision theory [9], structural matching and parsing,
soft computing (i.e. neural networksfuzzy logi¢ and evolutionary computingand
genetic algorithmy [14], [15], artificial intelligence, and other©bviously, these
approaches are characterized by a high degreeveifsdy. In order to combine their
strenghts and avoid their weaknesssdrid pattern recognition systems [15], [16]
have been proposed, combining several techniquesairsingle pattern recognition

system. Hybrid methods have been known about fongtime, but they have gained
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new interest only recently. Examples of hybrid @attrecognition systems aneuro-
fuzzy and fuzzy-neural classifierd17], [18], evolutionary computing for neural
network architecture and parameters optimizatiogyral networks for structural
pattern recognition, combining neural networks dndden Markov models for
statistical pattern recognition [16jcombined (or simultaneous) classification-

estimation systems [12], [19], multiple classifier systems [20], [21] and others.

1.4 Image Processing and Analysis, Approximate Processing and
Reduced Dimensionality

Visual inspection techniques require extensive enggocessing and image
analysis for improving the image quality and dergvicharacteristic featureenage
processing [22], [23] involves changing the nature of an image in ordeeither
improve the pictorial information for human integpation, or render it more suitable
for autonomus machine perception. Image processingsually performed within
rectangles, circles or along lines and arcs. Impgessecing operations include
geometric and radiometric correction, enhancemeestoration, filtering (e.g.,
smoothing, sharpeninggegmentation (e.g., thresholding, edge detection, Hough
transform), morphological operations, etc. Suchrafens can be used to improve
image quality (e.g., remove noise, improve confrastd to enhance or separate
certain image features (e.g., regions, edges) ftmmbackground [22], [24]. Image
processing operations transform an input imagentiiheer image having the desired
characteristics.

One of the most difficult and important problemsautomating machine vision is
to understand what kind of information is requiradd how is translated into
measurements deaturesextracted from images. A descriptive set of urelated
features can drastically boost the classificatioocess ratelmage analysis [22] —
[28] transforms images to measurements. In padicuhage analysis is related to the
extraction and measurement of certain image fest(eqy., lines, and corners) and
transforms these image features to numbers, vectbr@racter strings etc. The
ultimate goal of image analysis is geared towandseixtraction of features that can be
used by classifiers to classify objects.

The limitation of computer-based tools related tonputer time and working

space poses a high priority on the objective choica limited number of essential
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characteristics (state-space or feature-space tiedudut also on the exclusion of
redundant observations (sample-space or data-spduaetion). Thus, the concept of
approximate processing [29] has been considered in real-time applicationsere
there is a necessity for approximating a givenrdlgm with another that has reduced
computational cost.

A wide-spread approach related to approximate gsicg deals witHeature-
gpace reduction [9], [30] and attempts to preserve the most imgdrinformation
conveyed by features extracted from the input datale simplifying the required
computations by reducing the dimensionality of tfeature space. Principal
components analysis (PCA) [9], [31], [32] is a wedtablished feature-space
reduction technique employed in different formsluding Factor Analysis [31],
Karhunen-Loeve Transform (KLT) [7], [9], [11], [32&nd Hotelling Transform [31],
[32], depending on the application.

Another approach to information reduction, refertedasdata-space reduction
[30], exploits the fact that the underlying dimensionaldf the data (intrinsic
dimensionality) may be small, even though the ingmensionality is quite large
expressing high correlation among input data. |gasused linear-mapping
approaches in the form of PCA and orthogonal sulespaojections are designed to
decorrelate the data and maximize the informaticontent in a reduced
dimensionality space.

15 Statistical and Soft Computing Approaches for Pattern
Recognition

Statistical pattern recognition is a relatively orat discipline and a number of
commercial recognition systems have been desigasddoon this approach. In the
statistical approach [9], [33] — [35], a set of features is extractednfi the input
pattern, and the classification is carried out astiponing the feature space. The most
general and most natural framework to formulateutsmhs to pattern recognition
problems is a statistical one, which recognizespitudabilistic natureof both the
information we seek to process and the form in twhie express results. In the
statistical approach, we are not concerned withtdrehe classifieactually makes a

wrong decision, but we are concerned withghabability of a wrong decision.
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Soft computing (SC), which has emerged in the last decade adfiaremt tool,
consists of several computing paradigms, includiragy logic, neural networks, and
genetic algorithms. Its aim is to exploit the talece for imprecision, uncertainty,
approximate reasoning, and partial truth in oradenc¢hieve tractability, robustness,
low cost solution and close resemblance with huntike decision-making.
Traditionally, pattern recognition problems haveemesolved by using classical
statistical methods and models, which lack, in seases, the accuracy and efficiency
needed in real-world applications. Traditional noekh include the use of statistical
models and simple information systems. We insteadsider more general modeling
methods, which include fuzzy logic and neural nekso We also use genetic
algorithms for the optimization of the fuzzy systeand neural networks. Combining
SC methodologies, we can build a powerful hybriglliigent system that will solve
efficiently and accurately a specific pattern reutign problem.

Fuzzy logic [36] — [38], [41] is an area of soft computing ttleamables a computer
system to reason with uncertainty. A fuzzy infeeersystem consists of a set of if-
then rules defined over fuzzy sets. Fuzzy setsrgémne the concept of a traditional
set (i.e., crisp set) by allowing the membershigree to be any value between 0 and
1. This corresponds, in the real world, to manyatibns where it is difficult to decide
in an unambiguous manner if something belongs ortm@ specific class. In other
words the fuzzy set concept provides us with amitive method of representing one
form of uncertainty by eliminating the sharp bourydthat divides members of the
class from nonmembers. However, in some decisiokingasituations measurements
of length, area, and weight, classes are defingd sharp boundaries. Since the
evidence for measurement error is unavoidable instmmoeasurements, some
uncertainty usually prevails. To represent thisdkiof uncertainty, known as
ambiguity, we assign a value in the unit interv@[l] to each possible crisp set to
which the element in question might belong. Thisuearepresents the degree of
evidence or belief or certainty of the elements’embership in the set. Such a
representation of uncertainty is known dsizzy measure [39] — [41].

Neural networks [8], [10], [17], [18], [38], [41] — [43] are compational models
with learning (or adaptive) characteristics thatdelothe human brain. Generally
speaking, biological natural neural networks cdnsik neurons and connections
between them, and this is modeled by a graph withes and arcs to form the

computational neural network. This graph along vatltomputational algorithm to
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specify the learning capabilities of the systenwlsat makes the neural network a
powerful methodology to simulate intelligent or exipbehavior.

Genetic algorithms and evolutionary methods [44] — [48] are optimization
methodologies based on principles of nature. Batthodologies can also be viewed
as searching algorithms because they explore aespsiag heuristics inspired by
nature. Genetic algorithms are based on ideasafigan and the biological process
that occur at the DNA level. Basically, a genetigoathm uses a population of
individuals, which are modified by using geneticemgiors in such a way as to
eventually obtain the fittest individual. Any opieation problem has to be
represented by using chromosomes, which are aieddiEpresentation of the real
values of the variables in the problem. Both genatgorithms and evolutionary
methods can be used to optimize a general objeftthvaion. As genetic algorithms
are based on the ideas of natural evolution, weusanthis methodology to evolve a

neural network or a fuzzy system for a particufgpleation.

1.6 Combination of multiple classifiers

The use ofmultiple classifiers [20] — [21], [48] — [50] has gained momentum in
the recent years and researchers have continuaugled of the benefits of using
multiple classifiers to solve complex pattern dfésation problems. The idea
appeared under many nameecision combinatignmultiple experts mixture of
experts classifier ensemblespinion poo] classifier fusionand more.

The combination of multiple classifiers has bedensively studied with the aim
of overcoming the limitations of primary classiBerClassifiers differing in feature
representation, architecture, learning algorithmr ¢aining data exhibit
complementary classification behavior and the fusid their decisions can yield
higher performance than the best individual classiiThe performance of a multiple
classifier system relies on both the complemengasrof the participating classifiers
and the combination method.

Multiple classifier systems can be classified irvaiety of ways. The basic
categorization of multiple classifier systems hasrbby the method the classifiers are

arranged. The two basic categories in this regegdteeserial suiteand theparallel
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suite The parallel expert architecture consists oftabbelassifiers that are consulted
in parallel. The decisions of the various experésambined in parallel by the fusion
module. The experts, in this case, are capablend¢pendent and simultaneous
operation. On the other hand, the serial suiteistsef a set of classifiers arranged in
series, or in tandem. This architecture is welteslito deal with situations where the
different experts have a ternary decision schemecieme in which they can be
undecided on the input pattern they are present#la. W the current expert is
undecided, information is passed to the next expdhe sequence.

Multiple classifiers can also be categorized bagedthe method of mapping
between the input and output of the fusion moduilds mapping may bénear or
non-linear. Linear combination is the simplest approach, mclv a weighting factor
is assigned to the output of each expert being aoedb Weighted average, fuzzy
integrals are among the linear combination methadsle the majority voting is a
non-linear method.

Combining methods can also be divided into twoedéht classes depending on
the pattern representatiomethodology. The primary classifiers can all use $ame
representation, and hence the classifiers themesalvould be different. Idistinct
pattern representations approach [49], [51] the individual classifiers udiferent
representasions of the same inputs. This can beodie use of different sensors or
different features extracted from the same data set

Another categorization of classifier combining nueth are if they encourage
specialization in certain areas of the feature spae classifier selection On the
other hand, ensemble of classifiers have primaagstliers that do not encourage
such specialization and classifiers themselves nmaste different classification
powers (i.eclassifier fusiof In other words, in an ensemble each base dkssdn
be used alone to provide a solution to the inpttepa While a modular approach
would need the coordination of all the classifigrpresent a complete solution.

Overall, the combination methods can be catego@oedrding to the level of the
individual classifiers outputsabstract levelclass label)rank level(rank order), and
measurement levétlass scores). The abstract level classifierpuiubnly the class
label, whereas the rank level classifiers outpwd tlank for each class. The
measurement level classifiers assign each classasurement value to indicate the

possibility that the input pattern pertains to theess.
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1.7 Objective and approaches

The objective of this PhD thesis is to develop aepa of approaches to build
hybrid intelligent systems fomulti-lead surface mounted devices (SMDs) post-
placement quality inspection using classical statistical and soft computingtquat
recognition methodologies.

In the first approach a Bayesian novel frameworlpieposed to inspect the
placement quality of Surface Mount technology Desi¢SMDs), immediately after
they have been placed in wet solder paste on &Br@ircuit Board (PCB) [19], [30].
The developed approach involves the indirect measent of each individual lead
displacement with respect to its ideal positiomtedized on its pad region. This
displacement is inferred from area measuremegaan(etric or optical features) on
the raw image data of the lead region through ssdiaation process. To increase the
accuracy in the computation of the lead displacéme®r introduce acombined
classification / estimation process [19], [30] in which the individual lead
displacement classifications are viewed as measmem(or observations) of the
same physical quantity i.e., the displacement efehtire component as a rigid body.
Certain geometric relations connecting lead shiftsomponent displacement are also
derived. Employing these relations we can inferea mefined measurement of the
shift of each individual lead, a quantity crucial the calculation of the quality
measures.

Motivated by the capabilities of approximate preteg and the need for
reducing time requirements and overcoming inaceesague to “microscopic” pixel-
based consideration of images (such as segmenfatoess), we study in the second
approach “macroscopic” techniques that do not cmmgpixel processing but rather
define in an abstract way the characteristic festwf individual lead images. More
specifically, we adopt two different forms déta-space reduction [28] directly on
the initial image space, affecting: 1) the intendévels or dynamic range, by
transforming the gray-scale image into a binaryeenigage (referred to agduced
dynamic-range processing) [28], extractingtopological features, and 2) the number
of independent variables, by utilizing only speciinage projections of the image
data (referred to agduced input-dimension processing) [28]. The classification task

11
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of individual leads is executed via two differenassifiers, which based on the
abovementioned reduced-dimensionality features. firbe classifier is a Hamming
neural network classifier based on reduced dynaarige processing. The second
classifier is a Bayesian distance classifier bageshput — dimension processing.

The goal of the third approach is to test and campaultiple classifier fusion
methods for improving the classification of theiindual leads in component quality
inspection [48]. Instead of using single statidtioa neural classifiers as in first
approach, we implement multi-modular classificatsystems that combine decisions
from statistical and neural modules. Combining plogver of the primary classifiers
through multimodular architectures we improve tlessification results and enhance
the robustness of the overall classification systéve propose four representative
schemes for soft fusion of multiple classifiers dghson identical pattern
representations.

The scope of the last approach is to fuse decigrons primary classifiers, which
operate on distinct pattern representations [48f Totivation for exploring the
combination issue is to improve performance ofgfamtion task of individual leads
based on reduced dimensionality distinct pattenpresentations [28], [48]. We
elaborate on two schemes for distinct pattern ssmations. In the former scheme
we use only reduced dimensionality features fiopological and projection features),
whereas the latter enriches the topological angegtion features with optical ones,
in order to improve the classification rates anouginess across all lead-displacement

classes.

1.8 Contribution
This PhD thesis considers the problemMaflti-lead Surface Mount Devices (SMD)
Printed Circuit Boards (PCB) Post-Placement Qualitgpectionin the context of
pattern recognition tasks. More specifically, thegent work introduces:
» Novel issues in relation to image processing aralyars techniques for the
individual lead images of components.
» A Bayesian novel framework for component displaeetrestimation from
individual lead displacements.
» New concepts for data-space reducfamindividual lead images:

¢ Reduced Dynamic-Range Processing based on taopaldgatures,

12
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e Reduced Input-Dimension Processbaged onprojection features
» The concept of Multiple Karhunen Loéve Transformmatior feature-space
reduction.
» The application of ensemble classifiers for impngythe classification of the
individual lead displacements using two differergrgrios:
e Identical pattern representations

e Distinct pattern representations

1.9 Publications
Parts of the work presented in this thesis hava lbéready submitted for publication
or published in international scientific journal:da conference proceedings as

follows:

Journals

e M. Zervakis, S.K. Goumas, and G. A. Rovithakis,BAyesian Framework for
Multi-lead SMD Post-Placement Quality InspectiolfBEE Transactions on
Systems, Man and Cybernetizart B: Cybernetics, vol. 34, no. 1, pp. 440-
453, February 2004.

e S. K. Goumas, I. N. Dimou, M. EZervakis, “Combination of Multiple
Classifiers for Post Placement Quality Inspectioh @omponents: A
Comparative Study”Information Fusion Accepted for publication in the
March 1, 2008.

Conferences

e S. K. Goumas, G. A. Rovithakis and M. E. ZervaKih, Bayesian Image
Analysis Framework for Post Placement Quality lasjpa of Components”,
Proceedings of 2002 IEEE International Conferencelmage Processing -
ICIP 2002 pp. 1I-549-552, September 22-25, 2002, Rochedery York,
USA.

e S. K. Goumas, M.E. Zervakis, and G. A. RovithakifReduced

Dimensionality Space for Post Placement Qualitypdasion of Components

based on Neural Networks”, ifProc. ESSAN’ 2004, 12 European
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Symposium on Artificial Neural Networkgp. 275-280, April 28-30, 2004,

Bruges, Belgium.

1.10 Thesisoverview

The overview of the thesis is as follows. In thextn€hapter the fundamentals
concepts ofindustrial machine vision inspection syste(iiglVIS) are given. The
structure, design issues, components and applnsatd these systems are presented
in enough detail to give necessary background Her garticular problem of SMD
PCB Post Placement Quality Inspection. The ainhefd Chapter is the formulation
of the SMD PCB Post Placement Quality Inspectiabfam. After a short review of
surface mount process and automatic visual ingpectf PCBs, the problem
formulation and requirements of industrial manuiaet for SMD post placement
quality inspection are presented. Finally, theestat the art in SMD defects is
referred. In Chapter 4, the algorithmic conceptspaftern recognition and image
analysis are described. In the first part of thiapter, the general pattern recognition
problem is formulated. Then, a diverse of patteroognition approaches, such as
classical statistical and soft computing ones alamth parameter estimation
algorithms are presented and explained in enoughl de give necessary theoretical
background for the particular problems that wiledeto be addressed. The second
part of 4" Chapter concentrates on the image analysis tesbsjcsuch as adaptive
thresholding algorithms that were used for pixeddsh feature extraction from
individual lead images of the components. In Cladr a Bayesian novel framework
is proposed to inspect the placement quality of SMibhmediately after they have
been placed in wet solder paste on a PCB. We peoposhe & chapter two neural
networks based approaches to extract the chasitefeatures (reduced-
dimensionality features) from individual lead imag&he goal of the”?Chapter is to
test and compare multiple classifier fusion methagjserating on identical pattern
representations, for improving the classificatidrihe individual leads in component
quality inspection. The scope of th& &hapter is to fuse decisions from primary
classifiers, which operate on distinct pattern espntations, for improving the
performance of classification task of individuahdis of the components. Finally we

conclude in Chapter 9 with some discussion on oiuré research.
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Chapter 2

Fundamental Concepts of Industrial Machine Vision
| ngpection Systems

2.1 Fundamentalsof Machine Vision Systems

Machine (or compute) vision is computer imaging where the application does
not involve a human being in the vision loop. Irhest words, the images are
examined and acted upon by a computer. Althouglplpeare involved in the
developed of the system, the final application negua computer to use the visual
information directly [58].

A machine vision systenMVS) is the technological integration of a camanal
a computer. In a MVS, the camera does the taskaya and the computer acts as
the brain by processing the information perceivedhle camera. Signals generated by
the camera are stored in the computer as a digitage. Image processing and
analysis algorithms are used to extract a set atufes, called gattern from the
image to represent an object. On the basis of Hieernpn, the object can then be
classified into one of the several pre-definedsgasusing a classification algorithm,
called apattern classifier

A machine vision system is concerned basicaiti the deduction of surfaces
and properties of three-dimensional objects fromirtltwo-dimensional images. It
involves edge detection, segmentation, and extigétatures using texture, shading,
stereo, motion, and recognition [1], [3]. A machinesion system, like other
engineering systems, has two components — hardavatesoftware — and consists of
stages such as image acquisition, preprocessiamréeextraction, storing objects by
association, accessing a knowledge base, and riédoogiihe software component of
the vision system deals with algorithms and thelémentation of these stages. A
variety of tools, such as conventional statistroathods, neural networks, fuzzy logic
techniques, genetic algorithms, or hybrid techrsg(seich as fuzzy-neural or neuro-
fuzzy), can be used in implementing various stayjes machine vision system. The
hardware component of a machine vision systensdeiih imaging devices such as

digitizers, scanners, cameras, and display deva®syell as film recorders, storage
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devices, and a computer. To process images onitaldigmputer requires that the
images first be digitized. Digital images are oftdrtained with digital cameras.

Humans can easily recognize objects and understamaplex scenes with
multiple objects, noise, clutter, occlusion, andnoaflage. Humans are able to
recognize as many as 10,000 distinct objects [68u varying viewing conditions,
while a state-of-the-art machine vision system zgognize relatively few objects.
One approach to implementing a machine vision sysgeto emulate théhuman
vision systen1], [59]. However, the problem with this approashthat the human
vision system is very complex and is not well ustissd. The human vision system
beyond the human eye is disjointed and speculafiherefore, at this time it is
impossible to emulate the human vision system éxabbwever, the study of
biological systems provides us with clues for depglg machine vision systems.
Research suggests that the advantages of biologis&in over current machine
vision are from feedback, flexible control, and thieds of feature detectors. In [59]
an example general purpose machine vision systeiimdiaome of these biological
characteristics is described. The purpose of yysgem is to find and identity spatial
features of luminance in the field of view. Theidasmethod is to model the human
vision system. The functions of the modules appnate those of the human brain.
For convenience, implementation in a test bed asssxture of Neural Networks
and standard processing algorithms. The systengneces gray-level images in the
field of view, with arbitrary translations and rotms. It does not emulate certain
biological characteristics. Not emulated are binacdty, size invariance, motion
perception, color sensitivity, and discernment afual boundaries. Indeed, many
applications can omit these properties.

Machine vision is concerned with both low-level ahajh-level processing
issues, such as cognitive issues. Stages in aatydi¢S are shown in block diagram
in figure 2.1. The first three stagesmage acquisition preprocessingandfeature
extraction — implement early processing tmw-level processingwhereas the last
stage —recognition that includes a knowledge base and associativageo- deal
with cognitive processing drigh — level processing_ow-level processing deals with

the retina, while high — level processing deal$lite cognitive use of knowledge.
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Input

Output

Image

—»{ Acquisition

—-»>

Pre-
Processing

>

Feature
Extraction

>

Recognition

—>

Figure 2.1 Processing stages in a typical machine visiotesys

The traditional machine vision approach rests upoee basic tenets [61]

1. The goal of a MVS is to create a detailed madhel full representation of

the visual world.

2. The MVS is hierarchical, with each stage beirgsponsible for

performing a specific task until finally only unigueatures are left than

can be acted upon by the later stages of processing

3. There is a dependency of the higher levels sfiali processing on the

lower levels, but in general the reverse is na.tru

MVS may be applied to a variety of areas havingsaerable significant

commercial importance and academic interest such as

Industrial applications (robot vision, automatesinal inspection)

Aerial/satellite image analysis

Agriculture

Document processing

Forensic science, including fingerprint recognition

Health screening

Medicine

Military applications (target identification, migsiguidance, vehicle location)

Publiching

Research, particularly in physics, biology, astrogpmaterials engineering,

etc.

Security and surveillance

Road traffic control
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For the purposes of this PhD thesis we will restoigr discussion to industrial
applications of MVS and in particularly sutomated inspection of solder joints on

surface mount printed circuit boards.

2.2 Industrial Machine Vision |nspection Systems

Over the past 30 years, machine vision has takestah role in controlled
industrial applicationslndustrial machine visionis the use of computer processing
of images that arise from manufacturing proces$&$][ As such, industrial machine
vision is a sub-field of the larger discipline adneputer vision, which tackles the
problem of computerized image interpretation. Indalk machine vision systems
(IMVS) operate in constrained and controlled enwnents: a fact that can be
exploited by algorithms used by the system. Howdlrerdemands on these systems
are high in terms of performance and cost. To rtieete demands, industrial machine
vision systems have successfully integrated variosi®n modules, such as optics,
image acquisition and image analysis.

Industrial machine vision can be divided into tweas: automated assemply by
robots, i.e.robot vision and automated visual inspection (AVI) [53], [60] or
industrial machine vision inspection Robot vision is typically concerned with
sensing, interpreting, and reasoning about a ttmeensional scene so as to make
decisions about it. Applications include driving antonomously guided vehicle, a
welding robot or clearing submarins. Applicationgls as gauging and determining
the presence or absence of parts are generallgdeA¥I. The difficulty of trying to
measure a feature accurately is offset by thetplii have more control over the
environment in such areas as lighting, and parufing. Advances in computer
technology, sensing devices, image processingpattdrn recognition have resulted
in better and cheaper industrial visual inspecegaipment. So, AVI systems has
become more widely used in many fields such ascaleli electronics component
manufacturing, quality textile production, metal oguct finishing, glass
manufacturing, machine parts, printing products d @mnanite quality inspection,
integrated circuits manufacturing and many otligks

The automated visual inspection process involveseiting the same type of

object repeatedly to detect anomalies [54], [53]e Process starts wiimaging the
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object to be inspected by a sensor (or sensors) Wwhich visual data are collected
and sent to the processor for analysis. Featungesenting the object are then
extracted and matched to a predefingdlel. Thisfeature-to-modematching process
(or model-basell is the most common technique fdetecting defectd54]. It is
realized by finding features in the given objedttmatch the model’s definition of
defects, or by verifying all extraced features Ire tgiven object to be normal,
expected features as those defined by the modelk. thke detection, decisions are
made to classify the object intadefect type.

There are two main areas of application for AVI:aaseans of ensuring quality
control by rejecting defective products; and as e@ams of gathering statistical
information to provide feedback to the manufactgrprocess. The former case is
often referred to as a feedforward solution, aredldtter case is often referred to as a
feedback solution [53].

The advantages of AVI stem from the replacemenfasibour with capital, the
automation of the manufacturing process, enhanaogsistency of production,
removing the need to work in hazardous environmemitsle producing quantitative
measurements and facilitating the integration wattmer aspects of automated
manufacturing.

There are, however, several disadvantages to atitorwésual inspection.
Commercial systems are quite expensive. For mgsicapions, off-the-shelf systems
do not exist and special packages must be desmneddified, further increasing the
total cost. Special fixturings may be needed fadlog and unloading objects and
special lighting must be used. More skilled tecltamcand engineering staff may be
needed to operate and maintain the systems; iti@graill probably require more
sophisticated software and will increase the coripleof current systems. Despite
this, the applications of automated visual inspecire legion [56] and there is a
definite trend toward the deployment of AVI systeassa special-purpose real time
machine vision systems with control of their owwiesnment.

An AVI system usually requires real-time operatitin enable the inspection
process to keep up with the manufacturing procEsis. is the most challenging task
when devoloping an AVI system in which productsj¢ots) are transported at high
speed. One the most critical timing measurementthescycle time between the
presentations of successive images requiring asdh8]. The image processing and

analysis must take less than the image acquisiiole time in order to cope with the
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requirement of the ral-time operation. Thereforns itital to develogomputationally
efficient vision algorithms(such asdaptivemultilevel thresholding [57].

For real-time AVI, there are three important adaeget that are used to drive the
inspection system design [53]:

e The products under inspection might well be simghan those found in
natural scenes, and it may be possible to use catipally efficient
algorithms to inspect them.

e The system will probably know what it is looking ftnence it is possible
to create a stored model of the object under irispecModel-based
inspectionintroduces the possibility of greater efficieneydaobustness.

e The system developer will usually have completermbmover the lighting

environment, and some inventive lighting schemesbeaemployed.

2.3 Structure, Requirements and Design of Industrial Machine
Vision I nspection Systems

Industrial machine vision inspection systems (IM)/#8e replacing the process of
manual inspection of products in different indwesdrilnspection may include defect
detection, dimensional measurement, orientatioreatieh, grading, sorting and
counting.

Main Processor or
Computer with
Image Processing
Software

Network Interfacsi

Image Processing
(=== \—]Hardware

S

Manufacturing Proces ;
Control Systems
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Figure 2.2 A typical industrial machine vision inspection syst
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Figure 2.2 illustrates the structure of a typicalustrial vision system [2]. First, a
computer is employed for processing the acquiredges. This is achieved by
applying special purpose image processing analgs@ classification software.
Images are usually acquired by one or more camglased at the scene under
inspection. The positions of the cameras are ustiakkd. In most cases, industrial
automation systems are designed to inspect onlyviknabjects at fixed positions.
The scene is appropriately illuminated and arrangestder to facilitate the reception
of the image features necessary for processingcksdification. These features are
also known in advance. When the process is highige-tonstrained or
computationally intensive and exceeds the procgssapabilities of the main
processor, application specific hardware (e.g., HS5ICs, or FPGAS) is employed
to alleviate the problem of processing speed. Hsallts of this processing can be
used to:

e Control a manufacturing process (e.g., for guidirgpot arms placing

components on printed circuits, painting surfadeg.e

e Propagated to other external devices (e.g., thr@aughtwork or other type of

interface like FireWire) for further processingge classification).

e Characterize defects of faulty items and take astidor reporting and
correcting these faults and replacing or removiedective parts from the

production line.

The requirements for the design and developmena &fuccessful industrial
machine vision system vary depending on the agpmlitalomain and are related to
the tasks to be accomplished, environment, speedret example, in machine vision
inspection applications, the system must be abldifferentiate between acceptable
and unacceptable variations or defects in prodweltsle in other applications, the
system must enable users to solve guidance anthadigt tasks or, measurement and
assembly verification tasks.

There exists no industrial vision system capablénaridling all tasks in every
application field. Only once the requirements gbaticular application domain are
specified, then appropriate decisions for the desand development of the
application can be taken. The first problem to salv automating a machine vision
task is to understand what kind of information in@chine vision system is to retrieve
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and how this is translated into measurements dures extracted from images. For
example, it is important to specify in advance whddfective’” means in terms of

measurements and rules and implement these taskdtware or hardware. Then, a
decision has to be made on the kind of measurentis acquired (e.g., position or

intensity measurements) and on the exact locationlitaining the measurements.

For the system to be reliable, it must reduescédpe rates’ (i.e., non-accepted
cases reported as accepted) afatisé alarms” (i.e., accepted cases reported as non-
accepted) as much as possible. It is a respongibdf the processing and
classification units to maintain system reliabilitypput the effectiveness of
classification depends also on the quality of tbgu&red images. An industrial vision
system must also be robust. Thus, it should adagplf iautomatically and achieve
consistently high performance despite irregulasitia illumination, marking or
background conditions and, accommodate uncertaintie angles, positions etc.
Robust performance is difficult to achieve. Higleagnition and classification rates
are obtained only under certain conditions of ghgiating and low noise. Finally, an
industrial vision system must be fast and costieffit.

As we have emphasized above, the important até#bat an industrial machine
vision inspection system are flexibility, efficignen performance, speed and cost,
reliability and robustness. In order to design steay that maintains these attributes it
is important to clearly define its required outpatsl the available inputs. Typically,
an industrial inspection system computes infornmafrom raw images according to

the following sequence of steps [2], [54] :

1. Image acquisition: The first step in using a machine vision systentois
acquire a digital image. This can be achieved theeiusing a digital camera
or a sensor and a digitizer. A well-designed imggsystem would reduce
noise, prevent blur, stop object motion, optimizatcast between parts of
interest and the background, resolve the desiréectdsize, and emphasize
those features which are relevant to the inspeciibe primary objectives are
to acquire a quality representation of the objeuder inspection and, more
importantly, to greatly reduce the complexity obsequent image processing.
Image acquisition involves the design of illumioatiand optics, and the
choice of sensors and their placement [54].
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2.

Image processing: Once images have been acquired, they are filteved
remove background noise or unwanted reflectionsnfrime illumination
system. Image restoration may also be applied fwawe image quality by
correcting geometric distortions introduced by dleguisition system (e.g., the
camera).

Feature extraction:A set of known features, characteristic for thpl@ation
domain, is computed, probably with some considenator non-overlapping
or uncorrelated features, [62] so that better dilaaton can be achieved.
Examples of such features include size, positi@mtaur measurement via
edge detection and linking, as well as and textoeasurements on regions.
Such features can be computed and analyzed bgtstaitior other computing
techniques (e.g. neural networks or fuzzy systermiBe set of computed
features forms the description of the input image.

Decision-making: Combining the feature variables into a smallercfatew
feature variables reduces the number of featurdsle\the number of initial
features may be large, the underlying dimensionalit the data, or the
intrinsic dimensionality, may be quite small. Thstfstep in decision making
attempts to reduce the dimensionality of the featspace to the intrinsic
dimensionality of the problem. The reduced feagekis processed further as
to reach a decision. This decision, as well as types of features and
measurements (the image descriptions) compute@ndspon the application.
For example, in the case of visual inspection dumnoduction the system
decides if the produced parts meet some qualitydstals by matching a
computed description with some known model of thage (region or object)
to be recognized. The decision (e.g., model matghimay involve processing

with thresholds, statistical or soft classification

At the last level of decision-making and model rhatg (i.e. model-based)

mentioned above, there are two types of imagedregr object) models that can be

used namely, declarative and procedural [2], [22¢clarative modelsconsist of

constraints on the properties of pixels, objectsegions and on their relationships.

Procedural modelsare implicitly defined in terms of processes thetognize the

images. Both types of models can be fuzzy or prtibib, involving probabilistic
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constraints and probabilistic control of syntactites respectively. A special category

of models is based on neural networks.

Model-basedapproaches often require that descriptions (&egtures) of the
image at different levels of specificity or deta@ matched with one of possible many
models of different classes of images. This task bacome very difficult and
computationally intensive if the models are compdexd a large number of models
must be considered. In a top-down approach to modéthing, a model might guide
the generation of appropriate image descriptiorteerathan first generating the
description and then attempting to match it wittmadel. Another alternative would
be to combine top-down and bottom-up processes.abloge control strategies are
simplified when one is dealing with two-dimensiomalages taken under controlled
conditions of good lighting and low noise, as itugially the case in industrial vision
applications. Image descriptions and class modelsasier to construct in this case
and complex model matching can be avoided. Modsédapproaches to industrial
visual inspection tasks [64] have been applied iraety of application fields and

many of them are reviewed in the following sections

2.4 Applications of Industrial Machine Vision I nspection Systems

Interesting surveys specializing in a single aian field include among others
Ref. [65] for automatic PCB inspection, Ref. [66} fwood quality inspection, and
Ref. [67] for automatic fruit harvesting. Othergortant general reviews that cover
all the fields of visual inspection have been pahdid in Ref. [68], whereas model-
based approaches to visual inspection are consdiderd54] and [69] and more
recently in [55], [70] and [71]. In Ref. [55], aadsification of automated visual
inspection applications is presented based onype of images to be processed.
Binary, gray-scale, color, and range image systamasconsidered, each one showing
certain characteristics in the context of the palér application field being used. In
Ref. [70] and [71] on the other hand, machine visgstems are classified according
to the qualitative characteristics of the objeatcesses under inspection. Three
classes are presented, namely dimensional verificatsurface detection, and
inspection of completeness.
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Two independent ways of classifying industrial ersiapplications are proposed
in [2]. First, industrial vision applications aré¢assified according to the inspected
features of the industrial product of process imurfaategories, namely: (a)
Dimensional quality, (b) Structural quality, (c) Surface quality and (d)Operational
quality. Industrial vision applications are also classifien terms of flexibility
according to the so-calledDégrees of Freedom®” (DoFs) that form inspection
independent features. This classification enabtes dvaluation of tools intended

towards similar industrial vision applications.

2.5 Componentsof an Industrial Machine Vision Inspection System

Developing a machine vision system that is usefuhdustry in practice requires
a multidischiplinary approach, encompassing aspextsall of the following
technologies:

e Spatial sampling

e lllumination (or lighting)

e Imaging Optics (or Camera)

e Image sensors

e Analog signal processing

e Digital information processing

e Digital systems architecture

e Software

e Interfacing vision systems to other machines

e Networking

e Interfacing visual systems to humans

e Existing industrial work and Quality Assurance pice

System development involves integration of softwanel hardware tools into a
complete application. Today’s industrial machinsiam systems are offering far
easier integration of various components origirgatirom various software and
hardware vendors. Even conventional programmingremments such as C, C++,

MATLAB, etc., allow for software components to baleedded into a single system.
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2.5.1 Imaging Opticsand Illumination Techniques

As for many natural visual systems the processnaige formation in industrial
machine vision inspection begins with the lightsrayhich enter the camera through
an angular apperture, and hit a screen amage plane, the camera photosensitive
device which registers light intensities. Noticattmost of these rays are the result of
the reflections of the rays emitted by the lightirees and hitting object surfaces.
There are a variety of physical parameters plagimgsential role in image formation
such as [74]:

1. Optical parameters of the lens characterize stesor's optics. They
include:
e lens type,
o focal length,
o field of view,
e angular apertures,
2. Photometric parameters appear in models ofigine €¢nergy reaching the
sensor after being reflected from the objects endtene. Yhey include:
e type, intensity, and direction of illumination,
o reflectance properties of the inspected surfaces,
o effects of the sensor’s structure on the amoufigbf reaching the
photoreceptors.
3. Geometric parameters determine the image posiowhich a 3-D point
is projected. They include:
e type of projections,
e position and orientation of camera in space,
e perspective distortions introduced by the imagiracpss.

All the above plays an essential role in any intgngnaging device, be it a
photographic camera, camcorder, or computer-basesters. However, further
parameters are needed to characterize digital isnagd their acquisition systems
such as:

e the physical properties of the photosensive matirithe viewing camera,
¢ the discrete nature of the photoreceptors,

e the quantization of the intensity scale.
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An optical systemcan be regard as a device that aims at produtiegsame
image obtained by a traditional camerpishole aperture, but by means of a much
larger apperture, under a wide range illuminationditions and exposure times (the
exposure time being controlled by shutter). Modern optical systems are quite
sophisticated, composed of lenses, apertures, thed @ements, explicity designed to
make all rays coming from the same 3-D point cogeewnto a single image point
[74].

To acquire a good image, proper illumination is asib necessity. Improper
illumination can cause glare or non-uniform ligkariation over the field of view.
This can lead to distortion of object featureshia image. Determination of an ideal
illumination source is not easy and depends omé#tere of the visual inspection task.

In order to setup an appropriaiéumination system we have to consider the
radiometric properties of the illumination sourcesich as spectral characteristics,
intensity distribution, radiant efficiency and lumous efficacy. For practical
applications we also have to carefully choose e&=dt properties, temporal
characteristics, and package dimensions of thecesy25].

Single illumination sources alone are not the omby to illuminate a scene.
There is a wealth of possibilities to arrange wasicsources geometrically, and
eventually combine them with optical component$oton an illumination setup that
is suitable for different industrial machine visiapplications. In many cases, features
of interest can be made visible by a certain geooatarrangement or spectral
characteristics of the illumination, rather than thying to use expensive machine
vision algorithms to solve the same task. There standard illumination techniques
such agdirectional (or specula), bidirectional, rear, vertical, diffused telecentrig
light and dark field illumination [25], [72]. Sommeventive lighting schemes (the so-
called structured lighting approaches) can be used to derive obgatufes without
requiring any computation[53]. For instance, thejgation of light stripes or grids
onto the object can be used to generate 3-D infiiomaabout the object under
inspection. A structured lighting approach to ingeCB solder joints has been used
in [73].

Pulsed illumination can be used for a variety of purposes, such asasmg the
performance of the illumination system, reducingridphg effects, and measuring time
constants and distances. Instead of pulsing tlmiilation signal, it can be modulated

with a certain frequencyniodulated illumination) [25]. Some illumination sources
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(e.g., special lasers) can only be fired for a shiore with a certain repetition rate.
Others, such as Light-emmiting diodes (LEDs), haveauch higher light output if
operated in pulsed mode [25]. LEDs are increasimgipular in the infrared and
visual illumination setups for inspection. LEDsuithination has many advantages
including stability, graceful deterioration, lontelcycle, and ease of control [72].

A detailed overview of imaging optics and illumiiwet techniques can be found
in [25].

252 Image Sensors

The most commonly used image sensors deal witlblgisand infrared light.
These can further be classified in@icon cameras andolid-state arrays [75].
Vidicon cameras are based on the principle of ptastductivity. An image focussed
on the tube surface produces a pattern of varywmgdactivity that matches the
distribution of brightness in the optical image. Aaependent, finely focussed on
electron beam scans the rear surface of the phudoctive target and, by charge
neutralization, this beam creates a potential diffee that produces a signal on a
collector proportional to the input brightness eait A digital image is obtained by
guantizing this signal, as well as the correspoggiosition of the scanning beam.

Solid-state arrays [12], [25] are composed of disilicon imaging elements,
called photosites, that have voltage output propaat to the intensity of the incident
light. Line-scan andarea-scan sensors are two types of solid-state sensors [12],
A line-scan sensor consists of a row of photos#ed produces a 2-D image by
relative motion between the scene and the dete&toarea-scan sensor is composed
of a matrix of photosites and is therefore capalbleapturing the image in the same

manner as a vidicon tube.

Solid-state technology has allowed the eliminatéthermionic technology from
the capturing of images, which was inappropriatesiach applications due to slow
frame rates, increased device volume, increaseseri@6] etc. The introduction of
solid-state technology in image capturing has tedame breakthroughs in industrial
vision, since they offer a number of advantagesopgosed to the predecessor
technology. Some of these advantages are smalleredsizes, robustness against EM
noise, higher resolutions, asynchronous triggefaagpturing the image the time it is

needed), stop-motion techniques (capturing fastingowbjects) [76], on-chip signal
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processing [77] — [79], robustness against chaofeghting conditions [80], [81]
etc. The most important technologies used in irtiegk imaging sensors are the
Charge-Coupled Device (CCD), Charge-Injection Device (CID) and Complementary
MOS (CMOS) [82]. Although CCD is a mature technologgttis commonly used in
industrial vision applications, the potential otthlternative technologies (CID and
CMOS) is very high, considering their on-chip iftiggnt and autonomous post-
processing. High complexity algorithms can be enpénted for real time vision
inspection and new sensors (e.g., CMOS sensoms)irggf high dynamic range allow
for more reliable, flexible and faster image acijais than traditional CCD sensors,

even under poor lighting conditions.

Several criteria are used to evaluate image sen@rsnost important being the
following: [82], [83] a) Responsivity, which is a measure of signal level per unit of
optical energy. CMOS sensors are slightly bettant@CD in this category, due to the
fact that gain elements are easier to place on thgy. b)Dynamic Range defined as
the ratio of a pixel’'s saturation level to its sagjthreshold. CCD sensors are better
because they have less on-chip circuitry, whicluced the noise and increases the
sensitivity of the sensor. dYniformity, indicating the consistency of response for
different pixels under identical illumination cotidns. Circuitry variations affect the
uniformity of pixels on an image sens@MOS sensorsare more sensitive to these
variations because of the more additional circustinysensor. Newer CMOS devices
have added feedback to the amplifiers to compertbate variations, but this only
works well under illuminated conditions. CCD hastéeuniformity because the lack
of any amplification in the sensor itself. 8eed of operation, with CMOS sensors
operating faster because most of the circuitry s bward. Thus, the signals
communicate less distance and don’t have to bedpipeother chips on the printed
circuit board. CCD imagers still operate adequatabt for most applications, but
anticipated demanding applications will consider @8 sensors instead. e)
Reliability, in which respect CMOS sensors are superior to £k#zause of the high
level of integration contained on the chip. Mordegration means less external
connections that are susceptible to corrosion aheéroproblems associated with
solder joints in harsh environments. Overall, CQ@Efsr superior image performance
and flexibility at the expense of system size. CMi@@gers offer more integration,

lower power dissipation, and smaller system sizthetexpense of image quality and
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flexibility. For next-generation applications, CM@Solves in order to get around the
low—quality problem. Improvements are incorporatad the use of microlenses,
which are small lenses manufactured directly abthee pixel to focus the light

towards the active portion, and the minimizatiortha# space circuitry in the CMOS
pixel.

The images can also be taken outside the visildetspn. For example, infrared
cameras are used for thermal imaging, ultra-vidilghtt has been used for crack
detection, and X-rays are being used for defectadtien in food grains [75] and
solder joints [91].

In cases where the camera is not capable of anguine images in digital form,
an image acquisition boardrgme grabbe) is required to digitize the analogue
signals received from the camera and store themmasiage in computer memory
[74]. In Figure 2.3 below the essential componesfta digital image acquisition

system are illustrated.

CMOS sensor

\ optics

Frame grabber Host computer

Video
signal

cameri

Figure 2.3 Essential components of a digital image acqoisisiystem.

2.5.3 Software Tools

The selection of the appropriate software toolsofiscrucial importance for

development of an industrial vision inspection egst There have been significant
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advances in the software area especially in userfates and algorithms [2], [72].
The graphical user interface (GUI) has benefitedmfrobject-oriented design
methodologies, web interfaces and integrated dpwedmt environments that allow
rapid prototyping. Most of these environments suppoth, visual programming in
combination with flexible GUI interfaces and traolital programming. Both
programming practices can be combined to facilizgaelication development. Visual
programming can be employed to accelerate appitatiprototyping whereas the
final application can be implemented and optimizesing standard programming

methods and languages.

Image-processing software has become user frieadly powerful utilizing
software libraries implementing some of the mospytar image processing and
analysis algorithms. An image processing envirorimterbe suitable for industrial
inspection, must (at least) contain algorithms éoige and line detection, image
enhancement, illumination correction, geometry ¢fanms, Region of Interest (ROI)
selection, object recognition, feature selectiod alassification. Ref [2] provides a
review of some of the most popular image processing analysis software tools

offering the desired functionality.

A wide range of computational intelligence appraschike neural networks,
fuzzy logic, neuro-fuzzy, and genetic algorithm8][J41] have been applied to the
features generated from the image analysis algositfor pattern classification. In [2]
a review of some of the most popular computatiomalligence software packages is

provided.

Overall a wide array of the abovementioned algorgéhcan be prototyped and
tested rapidly using the graphical programming kdéovailable in software packages
such as MATLAB and Mathematica.

254 HardwareTools

Software implementations are often insufficient toeet the real time
requirements of many industrial vision applicationhe ever-increasing
computational demands of such applications callHardware tools implementing
image processing algorithms. Application Specifidegrated Circuits (ASICs),
Digital Signal Processors (DSPs), Field Programmabate Arrays (FPGAs) and
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general-purpose processors are considered as lgoskédrnatives in dealing with the
problem of processing speed. The choice among th&nto be made taking into
account issues such as, size of chip, power dissipand performance. However,
issues such as flexibility of usage, programmingirenment are now becoming of

great importance for the application developers [2]

There are several ways to perform hardware imageepsing. The first one is to
build a circuit dedicated to the application useng ASIC. As algorithms become
more complex, the future of ASIC design will use ren@nd more Intellectual
Property (IP) blocks available on the market eiteen hardware black box units (i.e.,
layout cells) or software packages (in a hardwasedption language such as VHDL
or Verilog) [2]. The use of DSP boards for the fagecution of image processing
algorithms has been extensively used in industigbn applications with hard real-
time constraints. Some popular DSP architecturestta TriMedia Mediaprocessor
by Philips Semiconductors [84], IM-PCI by Imagingechnology, MaxPCl by
Datacube, Texas Instruments (Tl) TMS320Cxx Fantilg, Genesis Vision processor
by Matrox based on the TI's TMS320C80 DSP andhenRCI platform, the Mpact
media processor by Chromatic Research Inc. [85]FREGAS are now competitive to
ASICs both, in terms of capacity (i.e., number qtiigalent gates contained in one
chip) and performance. This allows to quickly havprototype of the circuit that has
to be designed and able to operate in real comditibhe main advantage compared
to ASICs is that FPGAs can be reprogrammed. ComplR&As allow to design
reconfigurable systems that can efficiently implemeeal-time image processing

algorithms. FPGA-based PCI boards are an attraatteenative to DSP systems [2].

Overall, there exist also platforms that are capalblimplementing fuzzy, neural,
or hybrid systems. Most of them are based on geparpose micro-controllers,
which are fast enough to execute assembly progtaatsdescribe fuzzy or neural
systems. On the other hand, there are dedicateggsors, such as the SGS-Thomson

WARP family of fuzzy controllers, for the acceleoat of fuzzy-oriented applications

2.
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2.6 Information Support to Industrial Machine Vision Inspection
Systemsusing CAD/CAM Data

To support more advanced, ainttelligent, applications of machine vision
inspection, it is necessary to achieve a leveht#gration between inspection systems
and other manufacturing facilities and process robrfunctions, such as design,
fabrication, assemply, quality control, productimanagement, planning and control.
Ultimate objectives of systems integration aredbie a higher level of information
sharing and supporting amongst those systems. ignsénse, inspection systems
should therefore be treated as an integral elenoént this broader integrated
manufacturing environment so as to assume a pregeandle of important on-line
generators of product quality information. So, adamental issue is the providing
information to the inspection system so as to suppspection operations. Such
information may be deriveccomputer aided design(CAD), computer aided
manufacturing (CAM) or any other relevant manufacturing systemszesses [89].

In essence,”inspection” is the process of compaudegected featureswith
expected featureof a product. Detected features are features arttafrom a
product under inspection. (i.e., through image &iton, processing and feature
extraction), whereas expected features are pragpedifications with tolerance. The
ultimate utilization of the supporting informatios to establish a local model of the
products to be inspected. This model will contgedfications of all the expected
features (e.g., in the form aispection specificationsor generic rule$ to which an
acceptable product should confirm. However, it seeibt be a complete
representation of the product, but rather contanly specifications used for the
purpose of inspection. In other words, it is a lasaw of a complete product model,
being taken from the perspective of inspection.

Among the potential information sources, CAD is afighe most important for
such purposes. Th€AD data generated during design can be considered as
representing the original product specificatioms] are thus defect-free in nature. Use
of such data to establish inspection criteria W&l much “safer” and more reliable
than the conventional “known good product” approadthere CAD data are not

available for such purpos€AM data (e.g., often Gerber files for NC Drills or
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placement machines) can be an important alternatreen which necessary
information can be extracted to establish inspactoviteria, or used for other
reference purposes (e.g., nominal locations of amapts, etc.). With the availability
of this off-line generated information the time ue@ed to set up the inspection system
will be reduced dramatically. Requirement for mdnoa-line teaching processes
(which are often time consuming and error-pronel) s minimal, if not totally
eliminated.

For situations where a broad-ranging system integras not in place, an ad hoc
approach can be adopted to establish the informéitie and to provide CAD/CAM
based information support to inspection systemdyaasbeen proposed in [89]. This
approach entails the following logical steps, ngmel

1. Analyze the target inspection application anckntdy information
requirements of the visual inspection system.
2. Based on the information requirements identjfiedétermine (a) the
content of the information to be extracted from CGEBM database, and
3. Design and code the necessary software programfutfil the
requirements.
Implementations of the above software program miéferdfrom each other,
depending on the end-systems involved, hardwardopia operating system and
programming language used. However, a generiditmad model can be defined as
guideline for developing such software informatiimks [89]. As illustrated in Figure

2.4 the model consists of three functional layeis, :

1. Parsing and interpreting the incoming data fl@AD/CAM database
2. Extracting the necessary information items, and
3. Representing the extracted information in a firmleemed suitable for the

inspection system in question.
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Figure2.4 Key issues in providing CAD/CAM information tagport industrial visual
inspection
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Chapter 3

The Problem of Sourface-Mount Devices Printed
Circuit Boards Post Placement Quality Inspection

3.1 Introduction to Electronics Manufacturing

Electronics manufacturing is the process of destagyelopment, fabrication,
assemply, and testing of electronic parts, tootghnologies, components, and
systems. In electronics manufacturing, several majages are involved in the
manufacturing of an electronic product. Componabtitation results in a packaged
part which performs an electrical or electronic dion. These parts are then
assembled onto a printed circuit board (PCB), R@8s are, in turn, assembled into a
system. The typical manufacturer performs somenbugll, stages of the production
process.

In electronics manufacturing, the majority of comeots fall into two main
categories: through-hole components (THC) andace-mount device$SMD) [6],
[56]. THC are components that have wire leads whmalst be inserted through
predrilled hole on a PCB. The wire leads are tHemed, trimmed, and soldered. The
leads of these components serve the dual purpge®wafling circuit connectivity, by
being soldered to the circuit paths, and acting ascure mounting structure to hold
the component in place.

Surface-mount components (SMC) or surface-mounticdsv (SMD) are
components that are mounted directly to the surtEcthe PCB, so that it is not
necessary to have holes drilled through the sulesttamount the components [6],
[56]. Almost any type of THC will have a counterp&MD. The SMDs only differ
from their THC counterparts by their packaging. \"das the leads do not have to
pass trrough the PCB, the leads can be much sntbHertheir THC counterparts.
Surface — mount technologySMT) requires pickup, centering, and placement of
components. The circuit density and fine lead giscbf SMT necessitate automated
assembly with integrated industrial machine visgystems. SMDs are packaged in
tape and reel, tube, and waffle pack. Dedicatedeph@nt machines are then used to

place the components on the PCB.
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In general, electronic systems are made up of aklagfers or levels of packaging
which must be interconnected. Each level of paci@dias distinctive types of
interconnection devices associated with it. Thadnay of interconnection varies
from gate-to-gate interconnections on silicon ch{f8 chips) to cables used to
interconnected subsystems. At the chip-level, vaedeposited thin-film metal is
used to interconnect individual devices. Chip inpuitput is accomplished using a
variety of techniques such as wire bonding. In meégears, electronics packaging
manufacturing has developed low peripheral leadstkgges, such as SOP (Small
Outline Package), SOJ (Small Outline J-leaded Rpke&OIC (Small Outline IC),
QFP (Quad Flat Package), COF (Chip-on-Film) aABBall Grid Array) [86] —
[88].

At the PCB level, printed conductor paths conndwot device leads of
components to PCBs and to the electrical edge obowse for off the board
interconnection. For higher levels of integratietgectronics systems utilize cables for
signal propagation between subsystems. The useal@és necessitates the use of
connectors to provide mechanical and electricablge.

3.2 The Surface Mount Process and Automatic Visual Inspection of
Printed Circuit Boards

Central to this PhD thesis is the research in magts manufacturing in the area
of quality with the development of novel patterrcagnition algorithms for the
inspection of Surface Mount devices PCBs, whiclong of the most important
challenges faced by the electronics industry todagce the emergence of Surface
Mount Technology the electronics products are nmom@pact and complex and the
added complexity has become more difficult for &lmuc assemply processes to
attain the required quality on the end product®]10

Human inspection is inefficient, time consuming,danostly process that
increases the overall production costs without ¢pell@0% reliable, and with the
application of SMT, it is not feasible to use treked eye anymore to perform certain
visual inspection tasks where very close tolerararesrequired. Thus, the use of
Automated Visual Inspection (AVI), has become aessiy in the electronics
industry [61], [65].
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The problem of Visual Inspection of Surface Mount2evices on a PCB has
been studied using different algorithms to get rimfation from 2D and 3D images.
2D images are rapidly acquired with respect to 8Bsp but depth information is not
directly available from the resulting image andytlrequired additional expensive
computational analysis. The computing cost requioe@D images has been reduced
significantly by transforming them into a one-dirsEmal signal keeping enough
information to determine the main characteristiésinterest of the object under
inspection, based on vector classification.

Surface mount devices are designed to be placebdeohoard automatically and
not hand soldered. There are three main stepsiagbemply of SMD PCBscreen
printing, device onsertion (or “onplacement”) andolder reflow [56], [60]. The first
stage deposits solder paste onto the conductor gadke PCB. This is done by
stencilling on the solder in a paste form. The sdcstage requires the placement of
the devices onto the solder paste deposits. lthihe stage the solder must be melted
or “reflowed” to make a mechanical and electriaahd.

Proper applications of industrial visual inspectgystems can result an increased
product inspection throughput, improved inspectiehiability and more consistent
inspection results. More importantly the earlier tilke manufacturing cycle an
automatic inspection system is used, the betteP@i quality will be and the less the
product scraps will result. As the structure of P@Bduct is becoming increasingly
complicated, a single missed defect in any of tireeii layers of a board would cost
the entire board to be scraped. The philosophyerefore to detect defects as early as
possible so as to avoid adding additional valuetetective boards or layers.

As illustrated in Figure 3.1, numerous opportusitiexist for applications of
industrial visual inspection systems in variouggetaof PCB manufacturing (from
bare board fabrication to PCB assemply). Howevéesd¢ seemingly diverse
applications can be classified into four major gatees, these beingane inspection,
solder paste inspectigncomponent placement inspectipnand solder joint

inspection[89].
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Figure 3.1 Applications of industrial visual inspection

3.2.1 Panel Inspection

The termpanel refers to a representation of a PCB artwork infthen of artwork
films, production master films, individual layems.q., signal layers the ground layer,
etc.), or bare boards. Panel inspection thus refethe inspection of these various
artwork films, master films, inner layers, bare fsa and so on. Basically panel
inspection is concerned with the inspection of dezd that are essentially of a two-
dimensional nature. The requirements are to verdgk width, via hole size and
shape, soldering pad shape, and size. In additias, also required to verify the

spacing clearances between track and pad, padaahaptrack and track.
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Conventionally used techniques for panel inspectian be classified as falling
into one of the following categories, namely, (fjage comparison based techniques,

(i1) rule checking based techniques, (iii) combirzggbroaches.

3.2.2 Solder Paste I nspection

Entering the cycle of PCB assmbly, the first opgerat(for SMT) is screen
printing of solder paste onto the bare board. Sgddste application has a direct and
often decisive effect on the final quality of th@der joints (and thus the functionality
and reliability of the PCBs) Thus the inspectionsofder paste is a must for PCBs
involving SMT. The requirements are to check, ptimrcomponent placement and
soldering, the volume and the three-dimensionatfidigion of the of the solder paste
applied by the screen printing process.This isfface to make sure that the right
amount of solder paste has been supplied at tine pigce and in good alignment
with solder pads.

Depending on the requirements of inspection, twsidbalasses of inspection
techniques can be differentiated, namely, two-dsmmral (2D) based and three-
dimensional (3D) based methods. If only alignmertt area need to be verified, then
2D techniques will be enough. However, if volumel/an spatial distribution of the
solder paste need to be checked, then some 3Dctmapéechniques will be required.
In addition, special illumination and filtering tatques may also be required to
facilitate the acquisition of an image with a higbntrast between the metal solder

paste and any other background materials (e.gsubstrate).

3.2.3 Component Placement I nspection

Where there is less confidence in the placemenipewnt or where complex
components are used, it is often necessary to mperfoomponent placement
inspection both pre-soldering and post solderingpidally, this application is
concerned with (i) checking the presence/absenammwiponents, (ii) verifying that
the right component (i.e., its type and value)legced on the right place and with the
right orientation.

Pre-soldering inspection helps isolate misplacethpmments before they are
physically fixed on the board (i.e., by solder jsihand thus helps minimize post

soldering rework/repair. On the other hand, po&lesing placement inspection
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performs a final inspection, in-circuit test andhdtional test, to verify the presence
of certain components as required. This has antiaddi advantage of limiting the
range of possible variables affecting the eledtrigactionality and thus assists test
equipment in making decisions regarding the boastrtg.

3.2.4 Solder JointsInspection

Automating visual inspection of solder joints i®lpably the most difficult and
demanding, yet important inspection task to tacHlee objectives are to isolate
soldering defects such as insufficient/excess splgeor wetting, missing lead,
bridging/opens, solder balls and so on. Due tcsttame and the high reflective nature
of the metal joints inspected, proprietary builinhination systems are almost always
a prerequisite to obtaining any useable imagesldes joints. For instance the use of
structured light [90], tiered illumination [91], and sufficiently-diffused illumination
[4] have been reported.

The introduction and increasing application of aogf mount technology
contributed further to the difficulties of soldaints inspection. Not only the number
of solder joints to be inspected has increased ahliaally, but also image acqisition
of solder joints becomes more difficult. In someesthe solder joints may not even
be visible at all as a result of using some spesugface mount packages such as
plastic leadless chip carriers (PLCCs) and leadtesamic chip carriers (LCCCs). In
these cases, a special X-ray lighting and X-rapitige image acqisition subsystem

will be required to obtain images of solder joititat are underneath components [92].

3.3 Problem Formulation and Requirements of Industrial
Manufacturer for SMD Post Placement Quality I nspection

The goal of this PhD thesis is the development @¥eh intelligent pattern
recognition algorithms to inspect the placemeratlity of a selected group of SMD'’s
immediate after they have been placed in wet sqgddste on a printed circuit board
(PCB).

SMD post placement quality inspection requiresghtdynamic range because a
distinction should be made between a shiny foot@id a shiny SMD lead. It also
requires fast image intake and fast data procedsisgstain the required throughput

of the Advanced Component Mounter (ACM). A CMOS gimg sensor with its high
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dynamic range and area readout together with arusinage processor complies
with these requirements.

The SMD post placement quality inspection is domecamply with the zero-
defects policy of today’s electronics manufacturindustry. The current achieved
yields are already very high, so an inspectionesyshas to be very accurate and
robust otherwise it will cause a lower yield thaitheut the system. Post placement
inspection has the advantage that the inspectiten idaavailable immediately after
placement so no more time and components are spead already faulty PCB. The
later a defect is caught, the more expensive ib izpair, and so catching a defect
early in the process is inherently cheaper. Canmga defect after re-flow produces a
more brittle joint and increases risk of field ta&, which is very expensive to repair.
Therefore, detecting a defect before re-flow wal’e money and increase reliability.
Another advantage of post placement inspectiorha it can be used to predict
possible future board failure. Electrical and fumcal tests do not always yield this
information.

The following two components are inspected here test case:

o an SO Component, and
. a QFP component with pitch of 0.4mm.

Examples of the two components are shown in FigBuzand 3.3 correspondingly.

L B B B B B B B B B B B R

Figure 3.2. The SO28 Component
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Figure3.3 The QFP 120 Component

The CMOS camera, including illumination, will be omded on a placement arm
of an ACM. The placement head, which is usually med to the arm, will be
detached for this. The CMOS camera will be moumiext to the placement head in

its final industrial version.

Some assumptions are made to simplify this problenich are valid for the majority

of the cases:

e The components comply with the specifications (taeychecked before
placement)

e The solder paste distribution complies with thectfmtions, this is best checked
with a 3D-camera or 3D-scanner before the compasremet placed

e The component’s footprint and artwork comply to sipecifications

e The PCB is green, this is true for 99% of all cases

¢ Re-flow soldering is used

e The metal surface finish is

e Bare copper with OSP (a.o. Enthone OMI, Entek)

e HASL (Hot Air Solder Levelled)

e Electron-less Ni / Immersion Au
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The resolution of the camera will be 1024024 with a field of view of 2& 20
mm. This results in a resolution of aboutA0x 20um per pixel. The images are
taken with the same focal length of the lens. Meeepthe solder paste is assumed to
be located on the pad area.

The pad has precise shape and dimensions andatisolo relative to the image is
assumed known within the tolerance of the placemeathine (50m). The required
measurement accuracy isp20. The sizes of the components and the pad areas ar
specified in the following.

For the SO 28:
Overall size of the component: L=17.7-18.1mm, W.8100.65mm

Pitch of component: 1.27mm
Width of each lead: 0.36-0.49mm

Dimensions of the land pattern (pad):
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Figure3.4 Size and pad area of SO28 Component

For the OFP 120:

Overall size of the component: L=W=15,8-16.2mm

Pitch of component: 0.4mm

Width of each lead: 0.13 - 0.23mm
Length of each lead: 1.12 — 1.18 mm
Dimensions of the land pattern (pad):
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Figure3.5 Size and pad area of QFP 120 Component

3.4 Simulation Platform Specifications for SMD Post Placement
I nspection of Components

The simulation in our application has been basednages that have been taken

by industrial manufacturer right from the test-bkds the purpose of this simulation
to design and test novel algorithms that can bdéulse SMD component visual
inspection. For this reason, three major source®radr in the SMD placement
process will be examined, i.eopen circuits smearing of solder pasteand
component miss-alignmenelative to the placement head co-ordinates.

The following properties of a placed SMD define h@cement quality:

e SMD presence (existence of lead).

e SMD positioning (rotation anglae) relative to the position of the Solder Land

(See Figure 3.6)
e SMD positioning with respect to solder pads: 3ecid (See Figure 3.7)
e Insulation distance: This is the distance betwdenl¢éad and its neighbouring
solder pad. When this distance becomes too smalhoat circuit can occur
more easily during soldering. An empirical size ominimum distance is 0.1
mm.
¢ Overlap (adhesion width): This is the width of thad that is on the solder pad.
Generally minimal 50% of the lead width should daprwith the belonging
solder pad. Preferably 75% should overlap.
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e Slump gap: This is the distance between a leadtameighbouring solder paste
deposit. When this distance becomes too smallpg shcuit can occur during

re-flow soldering. Empirical sizes for a slump gagpy from 0.1 to 0.2 mm.

Figure 3.6. The rotation of the SMD, relative to the solderda

Currently these are the only properties of the gi@nt process that are not
checked because it is not possible to make reliatdasurements with “common”
CCD cameras because of their limited dynamic raige. difficulty here is that a
distinction should be made between a shiny coppetpfint and a shiny SMD lead.
The dynamic range of CCD cameras is insufficientHics.

Solder paste volume has been identified as thdesimgst predictor of finished
board quality. The paste volume is best checkedrbgfilacement because then the
view is not blocked by the component. Some compndike BGA’s, don’'t even
allow inspection after component placement becthes@aste isn't visible anymore at

that time.
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Max 1/2 of LW
KR >= 0.1 mn

Min 1/4 of LW\ T Pac Leac
N

LW KS >= 0.1 mn Solder paste

Figure 3.7. The placement quality criteria, LW = Lead width,
KS = Insulation distance, KR = Slump gap

3.4.1 Smearing of Solder Paste

This error can be caused by the placement forceshwdan cause the components
to slide over the PCB while they are placed. Smegadf the solder paste can be a
local phenomenon, which is very difficult to deteét 3D-camera is much more
suitable to detect this. Some experiments have lmme by industrial manufacturer
to find out if it is possible to robustly detect saning of the solder paste next to the

leads. Figure 3.8 illustrates this.
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Figure3.8 A corner of a quad flat pack

The image in Figure 3.8 only shows a small contb&$tveen the board and the
solder paste. Two white rectangles are indicatethénleft side of the image. The
upper rectangle indicates an area that only contsafder paste. The other rectangle
only contains circuit board. The average grey lavehe paste area is 103, in the PCB
area it is 67. The contrast between the soldeepasi PCB is even smaller next to
the leads because the leads block some light tbaldwall onto the solder paste. The
standard deviation of the paste area is about thress as high as the deviation in the
PCB area. This makes accurate segmentation ofdllderspaste areas between the
leads very difficult if not impossible.

The solder paste in Figure 3.9 has an offset tddfie This is very difficult to

detect even for the human eye. Another exampliedss in Figure 3.10.
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Figure 3.9. Part of Figure 3.8 enlarged (one paste area imedtby hand)

Figure 3.10. Another part of figure 3.8 enlarged

3.4.2 Component Position Relativeto Placement-Head Coor dinates

The CAD data plus the position data of the placamesad give enough
information to place a ruler at a suitable colurow/rover the leads. The actual
position of the component, relative to these ruberd, consequently, the placement-
head coordinates is not given immediately.
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The QFP Component

Figure 3.11 shows a model of a QFP with the coratees of the leads with the PCB.
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Figure3.11 A model of a QFP (left) and the contact areahefleads with the PCB

The size of the contact area’s doesn’t only depmnthe placement, but also on
the length of the leads and how the leads are bEmel.housing cannot be used to
measure the component position because the hoissimgnufactured to inaccurate
for this.

The basis for the position measurement of a QHBrimed by measuring each
lead close to package. A ruler can be put oveleatls on each side. This part of the
lead is very suited because the lead shows a lugtrast to its surroundings at that
place. A QFP and an edge map of the QFP are showigure 3.12 with a row and

column indicated that could be used to place a.rule

50



CHAPTER 3 THE PROBLEM OF SOURFACE MOUNT DEXES PCB POST PLACEMENT QUALITY INSPECTION

ARRNRAAC ~BO AN PARR
A080ARAGRAGRARGAAREGAAREARE

UUUUUUUBUUUUUUDGDDUUUDBUDOD%

FRRRRRRRRRRRInRRIIIIIEIIN]Y

/!
v

AR A AAANA A

g

00000666600000000000000000000
CE00803PH00EE00LEERRIEELEE

Figure 3.12. A QFP and its edge map

The part of the lead closest to the housing islasas a very regular pattern in
the edge map. The rulers over the columns/rowstdenéal the component position
immediately. The results from this measurement lsarused to place rules in the
direction of the component leads to measure thegahcomponent position. This can
be very tricky because of the different circumsenaround the lead ends. The

Figure 3.13 shows a side view of a QFP lead.

h:-:“

Figure 3.13. A side view of a QFP lead

The points indicated in Figure 3.13 are the potht# should be found by the
rulers, which are placed in the direction of thadle These points are clearly visible
in the edge map in Figure 3.12.

The part of the lead closest to the housing istémtabout 1 mm above the
substrate surface. The imaging optics should pdinarp images at this height as
well as on PCB level. Telecentric lenses can bel Use this. A very accurate

localisation measurement can be done by averadlifmuad lead positions.
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The SO Component

About the same approach as with the QFP can befas@dSO, but of course a SO
only has leads on 2 sides. A model of a SO ana@dhéact areas of the leads with the

PCB are shown in Figure 3.14.
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Figure3.14. A model of a SO (left) and the contact areas efiéfads with the PCB

Figure 3.15. A SO28

Figure 3.15 shows that a bright reflection of te&d is visible at the lead endpoint
and close to the housing. These positions canurgdfby thresholding, this is done in
Figure 3.16.
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Figure 3.16. The image from figure 3.15 thresholded

Figure 3.16 directly yields the lead positions, twas to take care not to mistake

the uncovered solder pads for the leads.

3.5. Previous Related Research

Current trends in the electronics industry are towaminiaturization of
components, denser packing of boards and highlgnaated assembly lines. The
technology of Surface Mounted Devices (SMDs) ledadsthis direction, thus
explaining the substantial increase in the use tsef various versions. The
aforementioned advantages though, make the quisgyection of SMDs more
critical and demanding [4]. Various SMD defects éadneen reported in the literature
[5], including component misplacement and absec@eponent with wrong polarity,
solder joint defects and component shifting. Muthhe current research efforts are
concentrated on detecting solder joint defects. Types of solder joint defects
include surplus solder, insufficient solder andsotder. Component shifting has also
been reported as a special defect in SMD techndRsjy

Commercially available automatic solder joint gtyalinspection systems are
based on laser infrared signatures [94], digitaliagraphy [95], laser Doppler
vibrometry [96], or laser acoustic microscopy [9These methods however, are

destructive, slow and very expensive, so altereathachine vision systems have
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become quite popular. Several visual inspectiotegys for solder joints have been
reported [4], [98], [99], [100], [101], with diffent illumination and processing
techniques. Conventional visual sources and seraersiot sensitive to dim light
diffused by the surface of the solder, saturateclduifor direct light emitted by
specular reflection, and often create varying ligghttonditions. Thus, processing and
analysis are restricted to specific tasks, sucthagjuality of soldered joints in terms
of the distribution of solder paste [102], inspestof IC wafer contamination [103],
post-sawing inspection [104], and segmentation &B# [105], [106]. Most
approaches involving visual sensors attempt toess® the quality of the images
acquired through appropriate lighting conditions,order to make their processing
and analysis more efficient. Controlled light sasrausing LED arrays [5], [99],
circular color lamps [107], [108], laser sourceshvparabolic mirrors or range finders
[100], [109], [110], have been used to acquire andlyze the 3D structure of SMDs
on the board. Such approaches are also directedrdosoldered joint inspection

through pattern classification schemes.
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Chapter 4

Algorithmic Concepts

The theoretical background of this study based umam different disciplines, i.e.
pattern recognition and image analysis. In the fiest of this chapter, the algorithmic
concepts of pattern recognition are described vasetiee second part concentrates on
the image analysis techniques.

4.1 Pattern Recognition Approaches.

The problem opattern recognition[7 — 13] can be seen as of classifying a group
of objects on the basis of certain subjective sty measures. Those objects
classified into the sampattern classusually have some common properties. The
classification requirements are subjective, sinferént classification occurs under
different properties (features) of the objects.

Given any particular pattern recognition probleime first task is to choose a
discretization method in order to obtainn@easurement vectofor each sample
pattern. A major difficulty often arises when usihgse discretization methods, since
the dimension of theneasurement spads usually very large. It is therefore common

practice to try to reduce this dimension by mapgirgmeasurement spadée, into a
pattern spaceor feature space 2, , where dim(X) << dim(Z), while retaining as

many properties ofeaturesof the original samples as possible. For this neatus
part of the pattern recognition problem is caliedture extraction(or preprocessing)
and results in a set of samples from the featuseesp

The concept opattern classificationmay be expressed in terms of the partition of
the feature space, thus forming a mapping fromféature space to theéecision
space Suppose thatl features are to be measured from each input patech set of

N features can be considered as a vegter(X,X,,....x, ) €R" called a feature

vector or a point in theN-dimensional feature spaCs . The problem of

classification is to assign each possible vectgrannt in the feature space to a proper
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pattern class. This can be interpreted as a pertdf the feature space into mutually
exclusive regions (i.e.decision regions where each region corresponds to a
particular pattern class.A classifier partitions feature space into class-labelled
decision regions. In order to use decision regifumsa possible and unique class
assignment, these regions must coRel and be disjointed (non-overlapping). The
border of each decision region is decision boundary Figure 4.1 depicts the

recognition/classification process.

X
Sense, Measurg Extract R .
& Preprocess Features ecognize
Sample Measurement Feature Class
Object Data Vector Identifier

Figure 4.1 The recognition/classification process

Suppose that a given pattern recognition probles M different pattern classes
denoted byw, 1<i <M In several problems we can obtain a number of &amp
patterns of known classification, sa}’, where:

X ewm, 1<i<M, 1K j<S
i.e. we haveS samples pattern class,. Note that each sample vectgl! is an
element of the pattern spaf' - we assume that feature selection has already bee

carried out. Thusx'’  hasN components, denoted by’', 1<k < N. We have

used superscripts to denote pattern samples sootagonconflict with vector
components.

A pattern recognition system is, then, a systenchvitakes a new sampie of

unknown classification and assigns it to some pattdass @ (1<i<M) on the
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basis of somelecisionor classification rule The decision rule is often obtained by

partitioning pattern space into disjoint regionsresponding to the classes (Figure

4.1). The hyperplanes separating the patternedagee callediecision boundaries

with dimension il -1).

The selection of the decision boundaries can beenmac variety of ways. The
simplest method is to use all the labeled samptasl&neously and find the ‘best’
partition of the pattern space which places thepsasnas far from the decision
boundaries as possible. This type of decision bapndelection leads to the
minimum-distance pattern classification techniqué], [9], [11]. One drawback with
this kind of method is that once the decision beauies$ are placed according to some
finite set of samples they are fixed throughout lifegime of the pattern recognition
system.

There exist two distinct phases in the patternsdiaation process itraining
phaseandtesting phase In the training phase, the labeled samples agsepited to
the system sequentially and the decision ruleteyed by a ‘teacher’ which corrects
any errors in the classification of the current plmon the basis of the previous
decision rule. Once the system has been traingdeblabeled samples, it can then be
used in the testing phase to classify new samgleslnown classification. In order
to test the system it is usual to set aside sontieeoflata whose class is known during
the development of the system and then to use tdsng setto evaluate the
performance of thelassification rules There are a number of methods for evaluating
the classification rules, depending on how the $estis chosen. If we have a large
number of samples it is a common tactic to divigen into two groups and use one
for training and the other fotesting If, however there are only a few samples of
known class it may be necessary to use what is kresvthdeave one oumethod
for assessing the success of the classificatiasrurthis method entails using all the
cases except one as tinaining set and then using the excluded case addhtng
set repeating this process until the whole set has bested.

A system which is trained on the basis of labedadhples is said to undergo

supervised training
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In problems where one actually wishes to determaimdassification scheme for a
variety of data vectors (rather than assign newpsssnto an existing classification)
there are no labeled samples, since the classewtepecifiech priori. In this case
we can useinlabeled samples to determine a ‘natural’ classificatiorcloistering for
the problem. A typical example of a classificatiproblem is animal taxonomy in
which one wishes to classify unknown species orbtses of comparative anatomical
or genetic features. The basic method in the d¢leaBon problem is called
clusteringor cluster analysiq9], [11] and seeks to find subsets of the sammlaked
natural groupingsor clusters whose elements are mutually ‘close’ but far yawa
from members of other clusters. The training qfastern classifier with unlabelled
samples is expressedwassupervised training

Parameter estimatio9], [11], [12], [13] is the process of attribugjra parametric
description to an object based on measurementsatbatbtained from that object.
Parameter estimation and pattern classificationsarelar processes because they
both aim to describe an object using measuremeoisever, in parameter estimation
the description is in terms of a real-valued scalavector, whereas in classification
the description is in terms of just one class setéfrom a finite number of classes.

Pattern recognition is a very large subject whichws together methods from
various related disciplines. There exist differapproaches to pattern recognition,
such asstatistical structural,neural network fuzzy logic and genetic algorithms
approaches. In this Ph.D. thesis we examine a wadge of PR approaches each

focusing on particular characteristics and revegatiifferent relationships of the data.

4.1.1 Statistical Pattern Recognition

In this section we discuss the statistical apprdagbattern recognition [7 — 9], [11 —
13], [35]. This approach is based on the statissitaly of measurements made on the
data to be classified. The problem of assigningaduire vector to a particular class is
tackled by estimating density functions in tRelimensional space, and dividing the
space into regions of categories or classes. Bynse&stochastic considerations, a
classification rule is optimal in the sense thatrasults in the lowest average

probability of committing classification errors. iStstatistically optimal classification

58



CHAPTER 4 ALGORITHMICONCEPTS

rule is a generally accepted standard against witheh performance of other
classification algorithms is often compared.

As in most fields of measuring and interpreting bl events, statistical
considerations become important in pattern recmgnibecause of the randomness
under which pattern classes are typically generaket instance, consider the
problem of classifying (SMD post placement qualityspection) component
displacements on the pad regions into five clasgepixels shift -3 pixels shift O
pixels shift (i.e. without shift, or normal caseB pixels shiftand+6 pixels shift The
sample patterns for these five classes would bairdd by gathering numerous PCB
with component displacements which have been ldates pixels shiftor -3 pixels
shift or O pixels shift or +3 pixels shiftor +6 pixels shift Clearly, these samples
would form a statistical distribution since, for aemple, there would be great
variability or randomness among the component daghents labeled as normal.
This randomness would be due to the varied techmpeablems during SMD

component placement.

4.1.1.1 Bayesian Classification

The decision-making process in pattern recognititay be treated as a statistical
game played by the classifier of the pattern rettmgnsystem against nature. This
process is analogous to a two-person zero-sum @athenature acting as a playAr
and the pattern classifier acting as plageA zero-sum game is a game in which one
player's gain is equal in magnitude to the otheyel’s loss. Among the strategies
used are the Bayes strategy, the minimax strasegy,the Neyman-Pearson strategy
[7], [9], [11]. The job of the classifier is to finan optimal decision which minimizes
the average risk or cost.

In the framework of PR problems, we may imaghat nature is playek and
that the classifier is playds. We call the strategies @f the states of nature, which

will be denoted bw. The states of nature correspond to pattern dastee

strategies of the classifier are decisions conogrrthe states of nature. In the
following discussion it will be assumed that thenier of decisions is equal to the

number of possible classes.
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Each time that the game is played, nature selestsategy® according to the
probabilityP(a)l), which is called the priori (or prior) probability of clasg:. This

is simply the probability of occurrence of class The outcome of nature’s move is a

sample patterit. In other words, we do not know which class natas chosen. All
the information that we have is a sampleThe job of the classifier is to determine,
on the basis of this information, which classcame from. The classifier's move,
therefore, consists of some decision which indathat class it “thinks” nature has
selected.

Suppose that in a game between nature and theifielgs®ature selects

classw, i =1,...M , and produces a pattexnThe probability thak comes frona, is
written as P(@ [x) and is called the posteriori (or posterio) probability. If the
classifier decides that came fromew; when it actually came from, it incurs a loss
equal td; . Since patterx may belong to any of thiél classes under consideration,

the expected loss incurred in assigning observatimnclassw, is given by
M
g (x):;ij(@ ) 1.
which is often referred to as tkhenditional average rislor lossin decision theory.
The classifier haM possible categories to choose from for each pagsen by
nature. If it computes the quantitigéx),r,(x),...,r,, &), for eachx, and assigns

each pattern to the class with the smallest caitiloss, it is clear that the total
expected loss with respect to all decisions wioabe minimized. The classifier
which minimizes the total expected loss is calle@ Bayes classifier From a
statistical point of view, the Bayes classifier negents the optimum measure of
performance.

Using Bayes’s formula,

p(x|@)P (@)
Plo, |x)= 4.2
(@ X) o) (4.2)
we may express Eq. (4.1) in the form:
1 M
100 =00 ZLiPXI@)P@) (4.3)
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where theclass-conditional probability density function p(X|@ ) is called the
likelihood of class@ with respect tok, and theprobability density function(pdf)

p(x) is called thevidenceand for which we have

p(x)= 3. p(x10P(w) (4.4)

i=1
Since 1p(x) is a common factor in the evaluationrf(fX),j =12,...,M, it may be

dropped from Eg. (4.3). The expression for theaye loss then reduces to
M
r(x) =Y L p(x|@)P@) (4.5)
i=1

In the general multiclass case, a pattexnis assigned to classw,

ifr(x)<r (x) forj=1,..M;j=i; in other words,x is assigned to classy

M M
2 LiPx|@)P@) < 2 Ly |0 P@,). | =12.M =i (4.6)
=1 g=1

In most pattern recognition problems, the lossi® Zor correct decisions, and it is
the same for all erroneous decisions. Under thesdittons, the loss function may be
expressed as

L. =1-¢ 4.7)

where 0;=1 wheni = j and ;=0 wheni=. This equation indicates a normalized
loss of unity for incorrect classifications and lgs for correct classification of a
pattern. Substituting Eq. (4.7) into Eq. (4.5) ¢l
M
n(x) =2 1-8)px|@)P@)=pK)-pklo; P @) (4.8)
i=1
TheBayes classifieassigns a particular pattexrio classw, if
p(X|@)P(@)> px|o; Pw;), j=12,.M ;j=i (4.9)
It is noted that théBayes decision ruleof Eq. (4.9) is the implementation of the
decision(or discriminant) functions [7-9], [11]:
d(x)=px|e)Pl@), 1=12,..M (4.10)

where a pattern is assigned to classg if for that patternd, (x)>d, (x) for allj =i.
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An expression that is equivalent to Eq. (4.10) Haoes note require explicit
knowledge of p(x|@ ) or P@ ) is obtained upon substitution of Eq. (4.2) into. Eq
(4.10). Performing this substitution yields

d(x) =P(@ [x)p(x), 1=12,.M (4.11)
However, sincep(x) does not depend anit may be dropped, yielding the decision
functions:

d(X)=P(a |x), 1=12,..M (4.12)

Equations (4.10) and (4.12) provide two alternatiet equivalent, approaches to
the same problem. Since estimation of tha priori probabilities

P(w), 1=1,2,..M , normally presents no difficulties, the basic eliéince between

these two formulations lies in the use pfX | @ ) versusP(@, | X).

4.1.1.2 Bayesian Classification for Normal Distibution of Patterns

When the data (patterns) is assumed to have a hatisiibution, i.e., the
probability density functionsp(X|@ ) aremultivariate normal (Gaussianmode)

[7-9], [11], [33] the Bayes classifier derived imet preceding section results in some
interesting and familiar decision functions. Be@uw$ its analytical tractability, the
multivariate normal density function has receivednsiderable attention.
Furthermore, it represents an appropriate model f@amny important practical
applications.

Using a Gaussian model, the class-boundaries eathéracterized by thmean
vector (or class reference vectprand thecovariance matrix having the form of
hyper-ellipsoids or hyper-spheres positioned appeitgly in the feature space . The
above concepts can be developed in a mathematraétvork as follows :

Suppose thal mean vectorg,,p,,...n,, are given withp, associated with the
pattern classe . Let us consideM pattern classes governed by the multivariate

normal density functions

p(x | @) 1

- - L k-pn VX &k—n)|,i=12,.. .
G oI w2 G
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where each density is completely specified bynitsan vectorp, and covariance

matrix X, which are defined as

w=E{¥ Zﬁixij (4.14)
and
= B m0-m) Y =D - -w) (@19

where E;{} denotes the expectation operator over the pattefrdass w;, N;
denotes the number of patterns in clags and x; represents thigh pattern in theth

class.

In Eq. (4.13),N is the dimensionality (length) of the pattern westand |>:i|

indicates the determinant of matkix

Based on the Equation (4.13) the calculation oBtagesian classification rule
pX|@)P(®)> pKX|o; )Pl@;), |=12,,.M ;j=i

can be greatly simplified by taking the logarithfrboth sides, yielding an expression
of the form

InP(@)P(X| @)= INP(@) - 2=~ In}% |- 6 - ) Z*6-w) (@.16)

From this, we can define tteguared-Bayesian “distanceby dropping the constant

expression ofn 2z and grouping the other terms together as follows:

1
B (x)=5h()-Q @17
where the pattern-independent terms are
1
Q =InP(w) _§|n|z‘| (4.18)

and thesquared-Mahalanobis distancg.e., the squared statistical distance from the
mean ) is given by

h(x)=(x—p) Z7(x—p) (4.19)
Note that the true likelihood can be reconstrudiedn the Bayesian distanceas

follows:
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L

P(w)p(X|w)= (272_),\,/2

exq-D, &) (4.20)

whereD, (x) is Euclidean distancébetween two points given by:

D, (x) = (x—p)" (x—p;)
The decision rule can then be rewritten as folloassignx to the class with the
smallest Bayesian distance, i.e.,
B(X)<B;(X), j=12,..M; j=i (4.21)

41.1.3 Parameter Estimation

In Subsections 4.1.1.1 and 4.1.1.2 we saw how wé&ladesign an optimal classifier

if we knew the prior probabilities®( ) and class-conditional densitipfx |@,).

Unfortunately, in pattern recognition applicatioms rarely, if ever, have this kind of
complete knowledge about the probabilities striectifrthe problem. In a typical case
we merely have some vague, general knowledge aheusituation, together with a
number ofdesign samplesr training data— particular representatives of the patterns
we want to classify. The problem then, is to fidng way to use this information to
design or train the classifier.

One approach to this problem is to use the santplesstimate the unknown
probabilities and probability densities, and thee the resulting estimates as if they
were the true values. In typical supervised pattelassification problems, the
estimation of the prior probabilities presents nerias difficulties. However,
estimation of the class-conditional densities igeganother matter. The number of
available samples always seems too small, anduseqooblems arise when the
dimensionality of the feature vectrers large. If we know the number of parameters
in advance and our general knowledge about thelggropermits us to parameterize

the conditional densities, then the severity ofséhegroblems can be reduced
significantly. Suppose, for example, that we casomably assume that(x |, ) is a
normal density with meap, and covariance matrk,, although we do not know the
exact values of these quantities. This knowledggbkifies the problem from one of

estimating an unknown functiop(x|a)|)to one of estimating the parametggsand

X
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The problem of parameter estimation is a classinal in statistics, and it can be
approached in several ways [9], [11-13], [33-34].this thesis we shall use two
common and reasonable procedures, nammeximum likelihood (ML) estimation

andmaximum a posteriori probabilit{MAP) estimation [9], [11].

Maximum-Likelihood Parameter Estimation

Maximum-likelihood estimation methods have a numifesittractive attributes. First
they nearly always have good convergence propedaseshe number of training
samples increases. Furthermore, maximum-likeliregignation often can be simpler
than alternative methods, such as Bayesian techsif§l.

Let us consider aM class problem with feature vectors distributingading to

p(x|@m),i=12,.M . We assume thap(x | ) has a known parametric form, and
is therefore determined uniquely by the value paisameter vecto®,. For example,
we might havep(x | )~ N(p;,X;), where 0, consists of the components pf and
X,. To show the dependence qf(x|w ) on 8, explicity, we write p(x|w )as
p(x | ;0;). Our goal is to estimate the unknown paramefiers=1,2,...M using a

set of known feature vectors in each class. If weéhér assume that data from one
class do not affect the parameter estimation of dtieers, we can formulate the
problem independent of classes and simplify ouatnan. At the end, one has to solve
one such problem for each class independently.

Let X.,X,,....X, be random samples drawn from probability densitgction
(pdf) p(x|0). We form the joint pdp(X |8), where X ={x,,...x,} is the set of the
samples. Assuming statistical independence betweedifferent samples we have

(X 10)= P(X, X, ... %, )= T P(x, ) 922

The above is a function dd and it is known as the likelihood function éfwith
respect toX. The maximum likelihood (ML) method estimat@so that the likelihood

function takes its maximum value, i.e.
0,, =arg rrgaxl_[ p(x, P) (4.23)
k=1

A necessary condition thﬁ;,,L must satisfy in order to be a maximum is
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aH::l p(Xk lﬂ) =0 (4 24)
o0 '

For analytical purposes, it is usually easier torkwwith the logarithm of the

likelihood than with the likelihood itself. Becauskee logarithm is monotonically
increasing, theﬁML that maximizes the log-likelihood also maximizhse tikelihood.

We define thdog-likelihood function as
=In] ] p(x,10)=>_Inp(x, |0) (4.25)
k=1 k=1

and Eq. (4.24) is equivalent to

n dln p xk 6) & ap(x, 10)
=0 4.26
Z; 2{ X, |9) 00 (4.26)

Applications of maximume-likelihood parameter estiioa in specific cases are
given inAppendix A.

Maximum Aposteriori Probability Estimation

For the derivation of the ML estimator we consider@ as an unknown
parameter. In this subsection we will considersitai random vector, and we will

estimate its value on the condition that sampigs«,,...,X,have occurred. Let
X ={Xy,....X, | . Our starting point isp(6 | X). From our familiar Bayes theorem we

have

p(0] X)=W (4.27)

The maximum aposteriori probability (MAP) estimal(AqvqAP is defined at the point
where p(8|X) becomes maximum, i.e.,

0,0 : %p(mx) 0 or —[p p(X Pp)]= (4.28)

4.1.2 The Neural Networks Pattern Recognition Apmach

This approach useartificial Neural Networks (ANNs or simply NNs) for
classifying data [8-10], [32], [43], [112]. ANNsweal (encode) unknown nonlinear
relations of the data through training.
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Artificial neural networksoriginated from idea to model mathematically human
intellectual abilities by biologically plausible gneering designs. Meant to be
massivelly parallel computational schemes resemhdineal brain, NNs evolved to
become a valuable classification tool with a sigaifit influence on pattern
recognition theory and practice. Neural networksvate a reasonable and powerful
alternative to conventional classifiers. Potenbehefits of neural networks extend
beyond the high computation rates provided by eagsarallelism. Neural networks
are natural classifiers with significant and dddeacharacteristics such as resistance
to noise, tolerance to distorted images/patterbditfato generalize) and superior
ability to recognize partially occluded or degrad@ages. Neural networks are often
used as base classifiers in multiple classifiessesys [20-21].

Literature on NNs is excessive and continuouslywgng. Many publications
such as textbooks and monographs [10], [32], [34]-43], [113-116], paper
collections [112], [117-120] and so on, discuss Natsvarious theoretical and
algorithmic depths. In addition, a unified view otural and statistical pattern
recognition approaches is referred in [10], [34].§-117].

Consider an N-dimensional pattern recognition problem withl-classes

w,,0,,...,0, . A neural network obtains a feature vectsr= (X, X,,...,X, ) €R"
at its input, and produces values for Madiscriminant functiongd, (x),...,d,, (x) at

its output. Typically NNs are trained to minimizieet squared error on a labeled

training setZ ={z,,....z,} , z; eR", andl(z;) e Q = {@,,,,...0, }

E= 525 a(2)- 1ol (z))] ®

where | (a)l,l (zj)) is an indicator function taking value 1 if the é&bof z; is o and

0 otherwise. It has been shown that the set ofridigtant functions obtained by
minimizing Eq. (4.29) approach the posterior prolitéds for the classes for data size
n— oo [122-123]; that is,
lim d (x)=P(a |x), xeR" 30)
This result was brought to light in connection wiNNs, but in fact, it holds for

any classifier that can approximate an arbritasgiiininant function with a specified

precision.
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Various NN training protocols and algorithms hawet developed, and these
have been the key to the success of NN classiflarghis Ph.D. thesis, we are
especially interested in multilayer perceptrégarning vector quantization(LVQ)
and Hopfield autoassociative memory neural networksr classification purposes
[10], [32], [41-43], [113], [115-116], [124-125]nlthe next three subsections we
describe these types of neural nets. In additipwéohave used th@gh order neural
networks (HONNSs) [132-136] for feature extraction purpo$28], [137-138]. The
theoretical framework of HONNSs is introduced in @tea 6.

4.1.2.1 Multilayer Perceptron Feed-forward Neural Network

One type of ANN system is based on a unit callepeeceptron[42], [126]
illustrated in Figure 4.2. A perceptron takes at@eof real-valued inputs, calculates a
linear combination of these inputs, then outpuisifithe result is greater than some

threshold and -1 otherwise. More precisely, givguis x,...,x, , the output

Lif Wy + WX + WX, + .o Wy Xy > C

¢(xl,...,xN):{ (4.31)

-1 otherwise
where eachw is a real-valued constant, or weight, that deteesithe contribution of
input x to the perceptron output. Notice the quan(itwvo) Is a threshold that the

weighted combination of inputsyx +...+ WX, must surpass in order for the

perceptron to output a 1.

By connecting perceptrons we can design an NN tstreicalled themultilayer
perceptron(MLP). This is a feedforward structure becausedbput of the input
layer and all intermediate layers is submited dwolythe higher layer. The generic
model of a feedforward MLP classifier is shown igufe 4.3. Here “layer” means a
layer of perceptrons. There are three distinct aype layers: the input layer, the
hidden layer(s) and the output layer. The connestibetween the neurons (i.e.
perceptrons) of adjacent layers relay the outmrads from one layer to the next. The

input layer receives the input information (i.e. ethfeature vector
X =(X,%,,...%, ) €R") and distributes the information to the next pesieg

layer (the first hidden layer). The number of tleurons in the input layer equals to
the dimension of the feature vector. The hidden antpbut layers process the
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incoming signals by amplifying or attenuating otilnting the signals through

weighting factors.

Figure 4.2 A perceptron

Except for the input layer neurons, the networkuinp each neuron is the sum of the
weighted outputs of the neurons in the previousrlayhe number of neurons in the

output layer is determined by the number of classeder investigation (i.e.M

outputs z,...,z, or M discriminant functionsd,(x),...,dy (x) for N-dimensional

pattern recognition problem witkl-classesw,,®,,...,®,, ). The number of hidden

layers and the number of neurons in each hiddear Bgpend on specific application.
The most critical part of an ANN-based model idreon the network. The most

widely studied and used training algorithm is tbecalledbackpropagationearning
algorithm [41-43], [113, [115-116], which is robuahd reliable. The problem of
neural network training is to devise a method adaimg the representative weights
that minimize the error. It is essentially an opzation problem. The behaviour of
feedforward network and learning through least sgubased updating, e.g.,
backpropagation rules can be followed more easilyesponding to changes of
parameters, e.g., number of hidden layers, numibeodes in a hidden layer, change
in the type of activation function, learning ragdc. However, the updating of the
weights has been done in this thesislUgyvenberg — Marquardt algorithm17],
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[125]. Levenberg — Marquardt algorithm performs mbetter with some knowledge

of the process so that quick convergence is oldainth a very small error.

Figure 4.3 A generic model of an MLP classifier

The structure of the network has been given in feigd.4. In this figure,

vy, 1=1,..N,j=1,..P and w,, j=1,...P k= 1,..M denote the weights for the
successive layers. The basic purpose of trainingtaork is to optimizey; andw,,

corresponding to a particular set of input — outjpaining pattern. The responses at

the hidden nodey,, j =1,2,...P are calculated by evaluating the contributionsnfro

all the input nodes through a nonlinear mappingtiom
N
y, =f {Z XV, + 0,} (4.32)
i=1

where the functionf (e) given by

2

f=— = 1 (4.33)
1+ expEN)

0, is the bias at thgth hidden layer node and(x;,X,,....x, ) €R" is the input

vector (feature vector). Similarly, , k =1,...M is calculated using
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P
z =f [ijwjk + rk} (4.34)
j=1

wherez, is the bias at thkth output layer node.

A mixture of Gauss-Newton method and gradient elestechnique [17], [41- 43],
[125] has been used for training the network (ioe.optimization of the weights,
v, andw,, ).

The Levenberg — Marquardt weight update rule is

AW = (JTJ + ul )71\] Te 38)

whereJ is the Jacobian matrix of derivatives of each retcoeach weighty is a
scalar,| is the identity matrix and is an error vector. If the scalaris very large, the
above expression approximates gradient descente whiit is small the above
becomes Gauss — Newton method. The Gauss — Newgtmodhis faster and more
accurate near an error minimum. After each suctes#p, i.e., if the error continues
to decreasey is decreased by one-step and vice-versa. Tracongnues until the

error goal is met and the minimum error gradiemiues.

Vll Wll
X Y1
V21 W21
W
W12
\
X
? V22
Wp,
° °
° °
° °
WlM
V2 P W2 M
XN ) yP
VNP WPM

Figure 4.4. Weight vectors in the MLP feed-forward network
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4.1.2.2 Learning Vector Quantization

Self-organizing map (SOM) is an unsupervised nenesvork model developed
by Kohonen [124-125]. Unsupervised training is af¢he two types of training in
Neural Networks theory. In this kind of traininggte is no training and testing phase,
but all samples are used for training.

The SOM can be used as a pattern classifier. Hawé#we classification accuracy
of the SOM can be significantly increased by using supervised learning vector
guantization (LVQ) algorithm [113], [125].

The architecture of a LVQ neural network is showrFigure 4.5. Each neuron in
the first layer (competitive layer)S!, of the LVQ network learns a weight vector

W, = (W, W. W, ) (often referred to asr@ferenceor codebookvector), which

omreee

allows the network to classify a region of the inppace. During the training phase,
the distance between each input vector and thehiveigctor of each neuron is

calculated. The norm of each distalﬂxe WmH is computed and the output of the first

layer of the LVQ is a vector with 1 correspondiogttie neuron whose weight vector
is closest to the input vector, and 0’s everywledse.

Thus the LVQ network behaves exactly like the cotitipe network [113], [125].
However, there is a difference in interpretatioacduse in the competitive network
the neuron with nonzero output (winning neuron)igates which class the input
vector belongs to. For the LVQ network, the winnimguron indicates a subclass,
rather than a class. There may be several differentons (subclasses) that make up
each class.

The second layeg’®, of the LVQ network is used to combine subclasa&s a
single class. This is done with thé&?matrix . The columns of W? represent
subclasses , and the rows represent clag¥éshas a single 1 in each column , with
the other neurons set to zero. The row in whichltleecurs indicates which class the

appropriate subclass belongs to.

(Wi, =1 = subclassm is a part of class

During training, the process of combining subclasseform a class allows the
LVQ network to create the decision boundaries ef Bayes classifier. It is assumed

that a set of training patterns with known classifions is provided, along with an
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initial distribution of reference vectors (each which represents a known

classification).
The learning in the LVQ network combines compegitigarning with supervision.
As with all supervised learning algorithms, it rege a set of examples

{xl,tl},{xz,tz},...,{xn In} ,wherex ,t,are input and target values respectively and

i =1,...,n. Each target vector must contain only zeros exfmpa single 1. The row

in which the 1 appears indicates the class to wtiehnput vector belongs.

nm 1
Input Layer First Layer [S]
(Competitive layer)

2
Second LayeLS ]

Figure 4.5. The architecture of LVQ neural network.

The LVQ learning rule proceeds as follows [125}sEithe weight matrixV *and
the learning ratex are initialized randomly. At each iteration, amuim vectorx is
presented to the network and the distance frono each weight vector is computed.
The neurons of first layer compete, neuron J swiite competition, and thd th
element of the output of the first layeris set to 1 at thd th entry. Thena'is
multiplied by W? matrix to get the final outpua®, which also has only one nonzero

elemeni, indicating thatx is being assigned to clakss
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The Kohonen rule is used to update the weight veatp of the winning neuron

in two ways. First, ifx is classified correctly (& =t, = 1), then the weight vector

W, is moved toward .
w ' (new) = w,*(old) + a[x - w ,*(old)] (4.36)
Second, ifx was classified incorrectly (4=1=t, = 0), then it is known that

the wrong competitive neuron won the competitiong therefore the weight vector is
moved away fromx .
w ,*(new) = w,*(old) — ao[x — w,*(old)] (4.37)
The result is that each competitive neuron movesitd vectors that fall into the
class for which it forms a subclass and away frectors that fall into other classes.
Afterwards, learning ratex is reduced and is checked the stopping criterion,
which may be to make more iterations than a fixachioer, or if the learning rate

reaching a sufficiently small value.

4.1.2.3 Hopfield Networks and Neural Associative Maories

The publication of Hopfield’s seminal papers [12728] started the modern era in
neural networks. His proposed networks are knowh@sfield networks Hopfield
networks have found many useful applications, aafye$n associative memory and
optimization problems.

One of the most useful and most investigated aocéaapplications of neural
networks addresses implementations of associatigenaries (AMs) [41], [113],
[127-128]. The function of an AM is to recall a cpleie set of previously stored
information, called a “memory”, when the AM is imiized with a subset of the
memory, called a “key”. More specifically, the AN designed to store a set of
vectors, say, in such a way that a stimulus, sayx+dx, evokes the output for
sufficiently smalldx. If dx is considered to constitute either noise or pbetions,
then the AM is performing the functions of noiseKession or error correction,
respectively.

Hopfield has presented continuous time and dis¢ieie systems that are capable
of implementing AMs [127 — 128]. In addition, seakiother investigators have
addressed thanalysis of various types of continuous time and discreteetneural
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networks [130]. Effective and genersynthesis procedures for such systems have
been presented [129 — 130].

Discrete Hopfield Networks

The Hopfield network is a single-layer feedbackwwek; its detailed network
configuration is shown in Figure 4.6.

When operated in discrete-time fashion, it isezhlh discrete Hopfield network
and its structures as a single-layer feedback r&twan also be termegkcurrent
When a single-layer recurrent network performs queatial updating process, an
input pattern is first applied to the network, aheé network’s output is initialized
accordingly. Then, the initializing pattern is remed and the initialized output
becomes the new, updated input through the feedbaickections. The first update
input forces the first update output; this in tweots as the second updated input
through the feedback links and produces the secmgute output. The transition
process continues until no new, updated responsegraduced and the network has
reached its equilibrium.

. %

yn y2 yl

Figure 4.6. Structure of the Hopfield Network
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Consider the Hopfield network shown in Figure. £&ch node has an external

input x; and a threshold?, , wherej=1,2,...n. It is important to point out that there
is no self-feedback in a Hopfield network. Tjkie node output is connected to each of
the other node’s inputs through a multiplicativeghe w; for i=12,...,n,i # | ; that
is, w, =0 for i=1,2,...n. The evolving rule (oupdate rulg for each node in a
discrete Hopfield network is

y Y =sgnd w,y9 +6), i=1,2,..n (4.38)

=

where sgn(.) is the signum function and the swpgtsk denotes the index of

recursive update.

Associative memories

An associative memory [41], [113], [129-131] caroret as set of patterns as
memories. When the associative memory is presenmit&da key pattern, it responds
by producing whichever one of the stored patterstmltmsely resembles or relates to
the key pattern. Hence, the recall is through aason of the key pattern with the
information memorized. Such memories are also dalk®ntent-addressable
memoriesin contrast to the traditionalddress-addressable memorigH] in digital
computers in which a stored pattern (in bytes)eisalied by its address. The basic
concept of using Hopfield networks as associativemaries is to interpret the
system’s evolution as a movement of an input pattaost resembling the input
pattern.

Two types of associative memories can be distifguis They are
autoassociative memorgndheterassociative memorl], [113] Suppose we have
p pairs of vectors {*,y'),(x%,y?),...(x",y? )with X' e R" andy' €eR™. In the
autoassociative memory, it is assumed that=y' and that the network implements
a mappingbd of R" to R" such that®(x') =x' If some arbitrary pattem is closer
to x' thanto any othek’, j=12,...,p,j =i then®(x) =x' ;that is the network will
produce the stored pattend when the key patter® is presented as input. In the

heteroassociative memory, the network implememsapping ® of R" to R™such
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that ®(x')=y' ,and if some arbitrary pattem is closer to x' than to any other
x',j=12...,p,j #i, then ®(x)=y'. In the above, “closer” means with respect to
some proper distance measure, for example, thadead distance or the Hamming

distance (HD). Th&uclidean distanced between two vectors =(x,, X, ,...,X,)" and

X' = (X, X,,....X, ) is defined asd =[(x, — X)* +...+ (X, — x;])z]%,and theHamming
distanceis defined as the number of mismatched componginkssand x’ vectors
[41], [113]. More specifically,

il&—&'l if x,% €{0,3
HD(x,x)={ '* (4.39)

%ilx =x| if %% e{-13
i=1

For example, if x= (1101)" and x =(0,1,0,0J, then HD(x,x)=2 .
Similarly, if x=@-1-1-1)" and x'=(,1-1-1),then  HOx,x)=1.
In a special case where the vectatsi = 1,2,...,p, form an orthonormal set, the

associative memory can be defined as
D(X) = Wx = (' (XD +y* (X)) +...+yPx")'x (4.40)

whereW can be considered a weight matrix, callext@ss-correlationmatrix, of the
network. It is easily seen that® x'(=Wx'=y' since the set ok vectors is
orthonormal. The associative network with the weiglatrix defined as in Eq. (4.40)
is called dinear associator

The linear associators astatic or nonrecurrent memory networks since they
implement a feedforward operation of mapping withaufeedback, or recursive
update, operation. We shall next introducedyr@amic or recurrent memory networks
that exhibit dynamic evolution in the sense tha&ythonverge to a equilibrium state
according to the recursive formujg“? = ®(x®,y® | wherek is the time step and

® is a nonlinear mapping in the form of thresholdiRgcurrent memory networks,
because they threshold the output and recycle utpbto input, are able to suppress

the output noise at the memory output to producengnoved association.
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Recurrent Autoassociative Memory - Hopfield Memory

In this paragraph we introdudéopfield autoassociative memorfor Hopfield
memoryfor short), that is, Hopfield networks utilized @stoassociative memories. A
Hopfield memory is able to recover an original stbrvector when presented with a
probe vector close to it. Here, we focus on disci¢tpfield networks and consider
continuous Hopfield networks as the former's handwamplementation with
continuous transient responses. In Hopfield memisrihe dataetrieval rule that is
applied asynchronously and stochastically. The neimg problem is how to store
data in memory. Assume bipolar binary vectors tiesd to be stored are* for k
=1, 2,...,p. Thestorage algorithnfor finding the weight matrix is

W = zp“xk(xk)T —pl, (4.41)

or

P
W= XX, i w = C (4.42)
where x* = (x5, x5,...,.xX)" andl is an appropriate identity matrix. k' are unipolar

binary vectors, that isx {01}, then the storage rule is

W, =§p:(2>gk—1)(2><jk— D, i#jw=_C (4.43)

k=1

The weight assignment rule in Eq. (4.41) is babidhle Hebbian learning rule
[41], [113] with zero initial weights. Hence, tmsle is called daebbian-type learning
rule or anouter-product learning rule[41], [113], [131]. Additional autoassociations
can be added to the existing memory at any timsupgrimposing new, incremental
weight matrices. Autoassociations can also be rewohdoy respective weight matrix
subtraction. Moreover, the storage rule in Eq. {%#i4 invariant with respect to the
sequence of storing patterns and also is invanartter the binary complement

operation.
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4.1.3 The Fuzzy Pattern Recognition Approach

Fuzzy logic [36-41] provides a mathematical framdwto capture uncertainties
associated with human cognitive systems, suchiakinly and reasoning. Simply, it
simulates human thinking which operates more lil@lysymbols than exact values.
In fact, our daily thoughts and communication au# 6f these symbols or fuzzy
expressions.

Pattern Recognition is, by its very nature, an aw)science. To deal with the
ambiguity, it is helpful to introduce some “fuzzg# into the formulation of the
problem. For example, the boundary between clustetdd be fuzzy rather than
crisp; that is, a data point could belong to tworare clusters with different degrees
of membership. In this way, the formulation is €o$o the real-world problem and
therefore better performance may be expected. i$tilge first reason for using fuzzy
models for pattern recognition. The second reasdhat the optimization of a fuzzy
PR formulation may be easier to solve computatlgndhis is due to the fact that a
non-fuzzy model often results in an exhaustive dearithin a huge space (because
some key variables can only take two values 0 gnavliereas in a fuzzy model all
the variables are continuous, so that derivatias lne computed to find the right
direction for the search.

A fuzzy settan be considered as an extension of a classecap(’) set: crisp sets
permit only full membership or no membership; fuseys permit partial membership
with a certain degree. Indeed, a fuzzy set,Aay a domainX is characterized by a

membership functiony, that takes values in the real interval [0,1]. BloenainU is
called universal setor (universe of discourse For eachxe X, u,(X) gives the

degree of membershipf x to the seh, i.e., a real number in the range [0,1], where 1
denotes full membership and 0 denotes no membei3BHip7].

The fuzzy set concept provides us with an intuitimethod of representing one
form of uncertainty,vagueness, by eliminating the sharp boundary that divides
members of the class from non-members. In fuzzy, sewvvalue is assigned to each
elementx of the universal seX. signifying its degree of membership in a pariacul
set with unsharp (fuzzy) boundaries. This is usefidituations where is not possible
to draw crisp boundaries in deciding if a persotalland in observing the shape of a
growing animal cell in biology. However, in somec#on-making situations such as

judging if a defendant is guilty or not guilty, ami most measurements in physical
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sciences such as measurements of length, areayeigtt, classes are defined with
sharp boundaries. In the trial example, it is obsgithat the group of guilty persons
and the group of innocent persons are crisp satkeSthe evidence for trial
judgement is rarely perfect and measurement esramavoidable in most physical
sciences, some uncertainty usually prevails. Taessmt this kind of uncertainty,
known as ambiguity, we assign a value in the umérval [0, 1] to each possible crisp
set to which the element in question might beldrigs value represents thegree of
evidenceor belief or certainty of the element's membersimpthe set. Such a
representation of uncertainty is known dazzy measurg¢39-41].

In general, a fuzzy measure is defined by a (seijtion
g: 2> [0] (4.44)
which assigns to each crisp subset of a universisoburseX a number in the unit
interval [0, 1], where2® is the power set ofX. When this number is assigned to a

crisp subsetAe 2*, g(A) represents the degree of evidence or our belegf ah

given elementx e X (which has not been previously located in any csispset 0iX)
belongs to the crisp subsktNotice that the domain of the functigns the power set
2% of crisp subsets oK and not the power s&* of fuzzy subsets of.

Several different measures such laslief measures plausibility measures
necessity measuresndpossibility measuresare referred in literature [39-41]. They
are all functions applied to crisp subsets, instfaglements, of a universal set.

Based on the properties of fuzzy meastuezy integral] such as Sugeno and
Choquet fuzzy integals [39-41], is an aggregabperator on multi-attribute fuzzy
information. Fuzzy integral can be viewed as a yuexpectation when compared
with statistical expectation, and as a non-lineéegral in comparison with Lebesque
integral.

It is well known that a combination of many diffateclassifiers can improve
classification accuracy. A variety of schemes haeen proposed for combining
multiple classifiers [20-21]. The ability of fuzagtegrals to combine the results of
multiple classifiers has been mentioned in liter@{20-21]. In practice, outputs from
multiple classifiers are ususally highly correlat@therefore, it is desirable to assign
weights not only to individual classifiers but alsm groups of classifiers. This
expresses the correlations between different ¢iessi Aggregation based on fuzzy

integrals possess this valuable property. In setierses, outputs of base classifiers
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are fused into a final decision by a fuzzy integséth respect to a fuzzy measure.
However, to utilize this property, we need to camstt fuzzy measures that express
the actual interaction among classifiers with resge classification performance.

The fuzzy measures represent the weights on eatlp gif classifiers. Most often a

separate fuzzy measure is defined for each deartiss.

In this thesis we focus on fuzzy measures and fumeggrals for multiple
classifier fusion. A complete mathematical backgon fuzzy measures and fuzzy
integrals is introduced in Chapter 7. In addition @ combining multiple classifiers
method based upddugeno fuzzy measur@ndChoquet fuzzy integrafor improving
the classification of the individual leads in compat quality inspection is tested and

compared with other classifier fusion methods.

4.1.4 The Genetic Algorithms Pattern Recognition Aproach

Based on the Darwinian survival of the fitteggnetic algorithms(GA) (or
evolutionary computing) are global search and optimization techniquelerently
parallel, they operate on a set of candidate swistithat formulate @opulation,
whose size is maintained constant. Each solutiasuslly coded as a binary (or real)
string called a&hromosome The chromosomes of the initial population aredcanly
generated. Each iteration of the GA callegeaerationinvolves three stages:

e The current population is first evaluated and rankegth the aid of ditness

function (fitness measuring criterion).

e Chromosomes that possess the highest fithess valgegprobabilistically

selected to construct the “parents” pool.

e From the selected “parents”, the GA reproducesldobmn” performing the

genetic operations @rossovermndmutation.
The GA terminates when an acceptable solution usdp or when a predetermined
number of generations is reached.

The GA is not considered a mathematically guidegorthm. The optima
obtained are evolved from generation to generatdhout stringent mathematical
formulation such as the traditional gradient-typ@atimizing procedure. In fact, GA

is much different in that context. It is merely ®chastic, discrete event and a
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nonlinear process. The obtained optima are an endupt containing the best
elements of previous generations where the ategtbaf a stronger individual tend to
be carried forward into the following generation.

The basic principles of GA were first proposed byllahd [139]. Thereafter, a
series of literature [44-47], [140-141] became kde. The use of GA for pattern
recognition has been widely studied. They can beegdized and grouped into two
categories: feature extraction and classificatidn].[ Application of GA to various
pattern recognition problems is described in [4®j)e such application for designing
a classifier is to exploit the searching capabilityGA for placement of a number of
lines for approximating the decision boundarie2[143].

Combining GAs and NNs can be generally divided two broad categories in
supportive and collaborative integration [17], [4lf supportive integration, GAs can
assist NNs in
e transforming the feature space used by a neuralasgifier
e selecting the learning rule or the parametersabatrol learning the NN
In collaborative integration, GA can be used tdrote NN on the weight parameters
and/or topology [15], [41], [44], [46].

In this Ph.D. thesis we propose the use of a GAesltbd into the feature
extraction process [138]. So, we equip the HONNc$tire with a GA to force the
resulting classes in the feature space to be a&sadp as possible, thus providing, an
integrated design solution.

A genetic algorithm (GA) can be defined as folld44]:

Definition (Genetic Algorithm) A Genetic AlgorithmGA=(B,,M Q. ® O t) is a

7-tuple with:
e B,={A,...A,} € P(B) a population from the set of all possible popolasi

P(B), A is of real or binary coding

M the size of th&opulation

Q:P(B) > R" theFitness fuction

I': P(B) —» P(B) theCrossover function

@ : P(B) —» P(B) theMutation function

®: P(B) —> P(B) the Sdection Strategy, and

t:R* —{0,1 aTermination Function
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The main idea of evolutionary computing is thatyihg a population of good
and bad solutions for a problem, try to producees mpopulation by mixing the
properties of the solutions you have. Then, some sautions could collect more
desired properties. In that way better solutiongehzeen achieved. By mimicking the
principles of natural genetics, and using a nunatbeolutions instead of a single one,
GAs are able to search the total universe of disswand find nearly optimal
solutions (the possibility of finding does not degeon initial conditions). The
structure of a genetic algorithm in its standananfes illustrated in Figure 4.7 [144-
145].

Genetic Algorithm
begin (1)
t:=1
InitializePopul ation(t)
Evaluate fitned8opulation(t)
While (t < Generationsjlo
begin (2)
Apply Selection oRopulation(t) for the
construction batedf Population(t + 1)
Crossover on construction base(t)uitdlPopulation(t + 1)
Apply Mutation oiPopulation(t + 1)

Evaluate fitness d?opulation(t + 1)

t:=t+1
end (2)
end (1)

Figure 4.7 The Structure of Standard Genetic Algorithm

The first step in a genetic algorithm applicatieria decide the way that solutions
will be represented. In order to solve the problem:

Maximize f(x) underx,, <x<Xx (4.45)

min — max
x values are typically coded in a string structdiee strings can be in a binary or real
form. In the first case binary coded values of pfetkd length are used to represent

solutions. The length is determined according ® dbsired accuracy. In the second
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case, quantization is avoided and parameters camesbmated in any level of
accuracy. These strings which represent encodedicaw of the problem are called
chromosomes. Each solution consists of a number of parametbsets whose value
should be estimated during genetic process. Thassameter subsets are callgehes
Typically, a chromosome is constructed of a numbgrgenes. The length of
chromosomes can be constant or variable. A numbgolotions (chromosomes) are
used in each step to construct a population. Popataof different evolution steps
are calledgenerations A fitness value is assigned in each chromosomsayohow
good is that particular solution for the problernin€ss value is usually computed as a
function of the respective objectives and constsaifin the most usual case global
objective (fitness) functions containing both olies and constraints are
constructed. To evolve solutions, genetic operat@ms applied on the current
population to produce a new one. That process atesllgenetic reproduction. The

most known genetic operators aedection/reproductionmutation andcrossover

Fitness Population(t) Population(t + 1)

Value
Selectign Croisover utdjon
Y

245 s sy
347 g

212

123

80 B

Crossover Mutation
Point Point

Figure 4.8 Sequential Application of Genetic Operators
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In the selection process, a number of solutions within current pagmn are
selected to be the basis for the reproduction einw population. That basis is often
referred as anating pool Selection strategy aims to solutions with highfesest
values, because they reasonably capture more dgsioperties. To construct a new
population from that basis, the next two operatmes used. Roulette wheel parent
selection [141] andlinear selection [146] are the most frequently used selection
procedures.

Crossoveris a way of creating new solutions, by randomly imgxproperties
between previous solutions. Different types of soca®r operators have been
proposed in the literature [44-47], [140-141]. etstandard form of single point
crossover, two chromosomes are randomly selecbea fine mating pool (production
basis), and some portion of the strings are exdavhrmptween chromosomes. The
operation is performed on two selected chromosoamelsgives as output two new

ones. The probability to perform crossover operatice. crossover probabilityp,

[46-47], is chosen in a way so that recombinatibpatential strings (highly fitted

chromosomes) increases without any disruption. dnep, lies in-between 0.6 to

1.0 [47].
Binary Coding Real Coding
Crossover Crossover
1100110101110 12459 | 3a1id] 005
0000001101101 1001 | 101.12B 0.1
1 i
L_» 0000000101110 1001 | 101.123] 0.5
1100111101101 12.459 341.12 0.1
Mutation Mutation
— 1111111111111 10.01 341.12 0.05
—» 1111111011111 10.01 341.12 0.18 4_—|
.18=0.05 +r
r: random numbe

Figure 4.9 The difference between real and binary coding énapplication of
Crossover and Migtabperators
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Mutation is performed upon a selected chromosome, by ralydomanging the
values of encoded parameters. In the case of bawatiyng, mutation changes a 1 to 0
and vice versa, depending on a small probabilitigjlevin the real coding case,
random noise is added to encoded values. The meadutation is to keep diversity
in the population. Since mutation occurs occaslgnél is clear that themutation

probability p,, [46-47] will be very low. Typically, the value Bebetween 0.001 to
0.01 [46].

Even if different forms of selection, mutation acrdssover have been proposed
in the literature, their standard form is illuse@tin Figure 4.8. The difference in the
application of crossover and mutation operatorsthie case of binary and real

encoding are presented in Figure 4.9.

4.1.5 The Feature Extraction and Feature Reduction Problm

So far we have been concerned with various teclesidor pattern classification.
Before a pattern recognizer can be properly dedighewever, it is necessary to
consider thdeature extractionandfeature reductionproblems [7], [10], [11], [32], .

Any object or pattern which can be recognized dadsified, possesses a number
of discriminatory properties or features. The fissép in any recognition process,
performed either by a machine or by a human bemdp consider the problem of
what discriminatory features to select and howxiaet these features. It is evident
that the number of features needed to succesgialtiprm a given recognition task
depends on the discriminatory qualities of the endgatures. However, the problem
of feature selection is usually complicated byfte that the most important features
are not necessarily easily measurable, or, in maases, their measurement is
inhibited by economic considerations.

Usually the termfeature extractionis used to describe the whole process of
extracting suitable measurements from the ‘raw’adafeature extraction for
classification is a process by which the originatadis successively refined and
reduced until the optimum number of features isel for classification. The main
scope of this process is to find salient featureshe data, that is to find the best
features or combinations of features to represamdl ossibly explain) differences
between different classes of data. For featureaetitm, the original data, may be
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used or they may be processed or transformed ire soay, for example to remove
artifacts or noise or to make them more amenabléhéo extraction of relevant
features.

Feature reductionis used to reduce the number of features, by cantpithe
feature variables into a smaller set of new feataBables. While the number of
initial features may be very large, the underlyiigensionality of the data, that is the
intrinsic dimensionality may be quite small.

The main reasons for feature reduction are asvistio

e to facilitate visualisation of the data, and toowallthe analyst to discern class
structure and groupings within the data, and

e to reduce the number of variables for classificatieither in order to reduce the
ratio of variables to samples, or to reduce the mdational complexity of
estimating the density functions.

In this Ph.D. thesis we use a variety of technigoesxtract relevant features from
individual lead images for the particular problerh MD PCB Post Placement
Quality Inspection. Most spesifically, in Subsentid.2.6.4 we present a feature
extraction process based upmxiernal image featuregor boundary-based featurgs
Another feature extraction technique based on Idigter Neural Networks receiving
as input a normalized projection function of thetee individual lead image is
introduced in Chapter 6. In addition to, tReincipal Component Analysig(or
Karhunen Loéve Tranformationas is also known in signal and image processing),
[7], [11], [32] is then used for feature reductiand decorellation of the feature

vectors.

4.1.5.1 The Karhunen Loéve Transformation for Featte Reduction

One of the simplest and commonly used statisticathods for reduction of
dimensionality is principal component analysis (BQ%], [31], [32]. PCA operates
by transforming the original variables into a nest sf uncorellated variables called
principal components (PC’s). These new variables larear combinations of the
originals derived in decreasing order of importancEor example, the first PC
accounts for as much as possible variation of tiggnal data. If the original variables
are highly correlated the first few PC’s will acabdor most of the variation and the

remaining PC’s can be discarded with little lossnéérmation. Ideally the first few
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components will be intuitively meaningful, will helus understand the data better,
and will be useful in subsequent analyses wherecare operate with a smaller
number of variables.

The Karhunen Loéve Transformation (KLT) [7], [OL1], [32] which relates to
PCA, is a linear dimensionality reduction procedufeT is a useful method for
reducing the dimensionality for both data displanyd alassification, and forms a
widely used method of dimensionality reduction.

Let X the matrix of the feature vectors of the traingsg (input matrix) and the
dimension of feature vectors (i.e., the dimensibrieature space). In practice the
algorithm of KLT proceeds as follows:

e Step 1.Compute the correlation matriX of X (In this thesis we compute the

correlation coefficient matrix, which gives us better results in classification).

e Step 2. Obtain the eigenvalues and corresponding eigengectd R.

Normalize the eigenvectors.

e Step 3.Form the transformation matri® from the K (K < N) eigenvectors

corresponding to the largest eigenvalueR of

e Step 4.Compute the final matri¥ by the equatiory =®"X .

Thus the new feature space iK-@limensional feature space.

In this PhD thesis, the KLT is used to de-corretatd reduce the dimensionality of
feature vectors, disjoint class spaces in the meduted) feature space and aid the
classifiers in performing accurate discriminatiomo different forms of the KLT are
studied in this thesis. In the first only one Klarisformation matrix (1 KLT) is
created for the entire data set, whereas in thenseone KLT matrix is created for
each classnfultiple KLT approach) [148], [149].

4.1.5.2 The Proposed Multiple KLT Approach

We have proposed in [149] the applicationnadiltiple KLT approach as a general
analytic tool. In multiple KLT approach, each indival class is represented by its
most significant directions. For each vector inssla, only its projection on to the
most significant directions of clagsis preserved for classification. For each class,
this approach preserves only the directions that bbaracterize the shape of its

boundary and discards the rest. Thus, it encompatass specific characteristics and
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uses them to better isolate and discriminate ctafgeavoiding class mixing in
irrelevant directions. The fundamental goal of tymproach is to create and localize
many subspaces in the feature space, so that ¢ is best characterized by its
own subspace reflecting the most characteristitovelirections and locations for this
specific class. The directions and locations ofuieavectors defining these reduced
dimensionality subspaces are class-specific, dvemgh the individual KLTs operate
on the same initial feature space. Thus, a spe€lfit projects feature vectors from
its own class within its own subspace, whereasrids vectors from “wrong” classes
far away from this subspace.

During the review of our paper in Ref. [149], adependent work was published
in Ref. [148] that studies the theoretical backgwf the multiple KLT approach.
The experimental results presented in [149] anCivapter 6 of this thesis fully
support and verify the theoretical and experimeméslults of Ref. [148], which
establish the multiple KLT approach as a generalyais methodology.

To emphasize the difference between the classsmaip{e) KLT (i.e., 1 KLT)
approach and multiple KLT approach we visualizeFigures 4.10 and 4.11 the
testing phase of classification process using aimim-distance classifier along with
1 KLT matrix and 3 KLT matrices respectively for three-class classification

problem.

Classt#:

Classt.

Classt. X : testing vector

@ : KLT matrix
x®" : projected vector

rl, r2, r3: mean vectors of class#1, clas:
class#3 respectively (centers of classes)
di, d2, d3: distances froml, r2, r3 respectively.

Figure 4.10 Testing phase of classification using a minindistance classifier and
1 KLT matrix
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The classification approach for the minimum-dis&anlassifier along with 1 KLT
matrix presented graphically in Figure 4.10 canléscribed as follows:

(M-1) samples (class#1, class#2 and class#3) out efdlused as feature vectors
to create dM —1)x K feature matrix. Feature matrix dimensionalityaduced from
K toL to yield aK xL KLT matrix. The feature matrix is multiplied byeh KLT
matrix resulting in M —1)x L feature matrix. This final matrix is used to traine
above minimum-distance classifier. Notice that eg@chjected feature vector is
labeled, so that class statistics can be easilypoted. TheM™ sample (feature
vector) is multiplied by 1 KLT matrix resulting ia 1xL vector, which is then
utilized as atesting vector(jack-knifing processor leave one out technique9],
[17]) in the classifier. The above procedure ipesed M times until all feature
vectors are utilized as testing vectors in thesilies. Each time the computation of

the 1 KLT matrix and training is performed for tteenaining M-1) vectors.

Class#1 Class#2 Class#3

X testing vector

D, ®,,d,: KLT matrices for class#1, class#2, class#3aetpely

xd)lT ,xd)z ,X(I)g: class-projected testing vectors for clé$, class#2, class#3 respective
rl, r2,r3: mean vectors of class#l, class#2, class#3 resphct{centers of classes)

di,d2,d3: distances froml, r2, r3 respectively.

Figure 4.11 Testing phase of classification using a minindistance classifier
and 3 KLT matrices
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The classification approach for the minimum-dis&anlassifier along with 3 KLT
matrices presented graphically in Figure 4.11 lsa®lkows:

(M-1) samples (class#1, class#2 and class#3) oML, efhereM is a multiple of
3, are used as feature vectors to create 3 difféeature matrices (one feature matrix

for each class). The dimension of the feature m&brn the class from which a feature

vector has been drawn out FMTJX K, whereas the dimension of the two others

matrices is[%Jx K. The feature dimensionality is reduced frétnto L to yield

three KxL KLT class-matrices (one KLT matrix for each clasSach feature
matrix is multiplied by corresponding KL@lass-matrixresulting in the finatlass-
feature matrix Thus, we take three final class-feature matridémse matrices are
used to train the above minimum-distance classifiae M™ sample (feature vector)
is multiplied by 3 KLT class-matrices resultingthreelx L vectors, which are then
utilized asclass-projected testing vector§ack-knifing processor leave one out
technique [9], [17]) in the classifier. The above procedisgepeated times until
all feature vectors are utilized as testing veciotbe classifier.

4.2 Image Analysis Techniques

Image analysisinvolves manipulating the image data to determéractly the
information necessary to help solve a machine migiwoblem. This analysis is
typically part of a larger process, is iterative nature, and allows us to answer
application - specific questions such as: Do walrgray-scale or color information?
Do we need to transform the image data into thguigacy domain? Do we need to
segment the image to find object information? Wdrat the important features in the
images?

Image analysis is primarily a data reduction precésiages contain enormous
amounts of data, typically on the order of hundreti&ilobytes or even megabytes.
Often much of this information is not necessarystdve a specific machine vision
problem, so a primary part of the image analysik ia to determine exactly what
information is necessary.

Image analysis is central to machine vision pro@ssis often uniquely associated

with machine vision. This high-level information ynanclude shape parameters to
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control a robotic manipulator or color and textteatures to help in the diagnosis of a

tumor.

The image analysis process, illustrated in Figude dcan be broken down into

three primary stages: 1) Preprocessing, 2) Datai®et and 3) Feature Analysis

[58]. Preprocessing is used to remove noise (heiamted information that can result

from the image acquisition process) and eliminatel@vant, visually unnecessary

information. In the second stagigta reduction we can perfornsegmentatioron the

image in the spatial domain or convert it into fie@uency (or spectral) domain via a

mathematical transform. After either of these psses we may choose to filter the

image. This filtering process further reduces tlagadand allows us to extract the

features that we may require for analysis.

In the third stage, feature analysis, the featerdsacted by the data reduction

process are examined and evaluated for their usdanapplication. One of the

important aspects of feature analysis is to deteenexactly which features are

important. So after the analysis we have a feeddaok that provides for an

application-specific review. This approach ofteadg to an iterative process that is

not complete until satisfactory results are actdeve
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Figure 4.12 The stages of the image analysis process
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4.2.1 Preprocessing Algorithms

The preprocessing algorithms, techniques, and tpsrare used to perform
initial processing that makes the primary data cédo and analysis task easier. They
include operations related to extractirggions of interest{ROIs), performing basic
algebraic operations on images, gray-level or apajuantization (reducing the
number of bits per pixel), enhancing specific iméggures and reducing data in both
resolution and brightness. Preprocessing is a stgere the requirements are
typically obvious and simple, such as the removahrtifacts from images, or the
elimination of image information that is not readrfor the application. For example,
in one application we needed to eliminate bordeossnfthe images that had been
digitized from film (the film frames); in anothereahad to mask out rulers that were
present in skin tumor slides.

A central problem in machine vision and automatisual inspection, in
particular, is obtaining robust descriptions of #pecific areas within the image, the
so called ROIs. In complex pattern recognition maplons such as SMD post
placement inspection that we tackle in this disdenm, it is important to get an
accurate and precise representation of the RGasdoTthis, we need initial operations
that modify the spatial coordinates of the image] these are categorized as image
geometry operations. The image geometry operatiocisde crop, zoom, enlarge,
shring, trandate, androtate [58]. Theimage cropprocess is the process of selecting a
small portion of the image, a subimage, andting it away from the rest of the
image. After we have cropped a subimage from tlgina image, we can zoom in
on it by enlarging it. This zoom process can beedonnumerous ways, but typically
a zero- or first-order hold is used. A zero-ordetdhis performed by repeating
previous pixel values, thus creating a blocky efféo extend the image size with a

first-order hold, we do linear interpolation betwesljacent pixels.

4.2.2 Image Segmentation

Image segmentation is important in many machinewigpplications. The goal
of image segmentatiots to find regions that represent objects or mgfahparts of
objects. Division of the image into regions corasing to objects of interest is

necessary before any processing can be done aelahigher than that of the pixel.
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Image segmentation methods look for objects thtiteeihave some measure of
homogeneity within themselves or have some meagurentrast with the objects on
their border. Most image segmentation algorithnes rapdifications, extensions, or
combinations of these two basic concepts. The hemsity and contrast measures
can include features such as gray-level, color, terture. After we have performed
some preliminary segmentation, we may incorporag@dr-level object properties,
such as perimeter and shape, into the segmentaticess.

Different problems have been associated with imsggmentation The major
problems are a result of noise in the image andizhgjon of a continuous image.
Noise is typically caused by the camera, the lertbeslighting, or the signal path and
can be reduced by the use of the preprocessingoaeefireviously discussed. Spatial
digitization can cause problems regarding conniégtdf objects. These problems can
be resolved with careful connectivity definitionadaheuristics applicable to the
specific domain.

Many techniques have been proposed in the litexafior segmenting images.
Some of them include histogram partitioningtlmresholding region growing, border
following, edge detection, spatial and measurenspate clustering methods [22 —
27]. Selection of a segmentation technique depbigidy on the nature of the image

under consideration, i.e., whether the image isyh@ray-level or is a color image.

4.2.3 Thresholding algorithms

The most widely used method for segmentation isttiiesholding technique
[150], [151]. Thresholding is performed using thistdgram, h(z), of the image,

wherez represents the gray-level, i.e., a plot of numdfepixels versus number of
gray-levels. In the thresholding method, the hisiog of the given image is
partitioned into a specified number of non-overiaggclusters. Each cluster specifies
a range of gray-levels falling in a segment angixiéls whose gray-levels fall in that
cluster are grouped together to form a segmerthdrcase ofwo-level thresholding
[150], [151] only one threshold has to be decidroth that the objects are separated
from the background. But, multiple objects (or ROl&ving different gray-level
intensities necessitate finding multiple thresholf@sulti-level thresholding or
multithresholding technique [150], [151]). Now the problem reducegientiying the

thresholds that in turn segment the image intoipialsegments.
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Segmentation by multithresholding started many seago from simple
beginnings, and in recent years has been refirtedaiset of mature procedures based
on statistical decision theory and soft computitgpoathms [152-163] . In-depth
survey and evaluation of various thresholding méshare referenced in [164-167].
The outstanding problem is how to devise an autienpabcedure for determining the
optimal thresholds (i.e.automatic thresholding. Automatic thresholding is an
important technique in image segmentation and machision applications. The
basic idea of automatic thresholding is to autocadlyi select optimal gray-level
threshold values for separating objects of inte(estROIs) in an image from the
background based on their gray-level distributi®his thresholding technique has
been widely used in the industrial machine visimpection systems [55].

Automatic thresholding techniques can be roughlyegarized into global
thresholding and local thresholding. Global thrédimgy selects a threshold value
from the histogram of the entire image. Local thading uses localized gray-level
information to choose multiple threshold values;hess optimized for a small region
in the image. Global thresholding is simpler andierato implement but its result
relies on good (uniform) illumination. Local thredting methods can deal with non-
uniform illumination but they are complicated antbws For industrial visual
inspection applications, where non uniform illuntioa is usually not an issue due to
controlled lighting conditions, global thresholdilsgcommonly used for its simplicity
and speed [157].

Among the global thresholding techniques, the Sat@d. [164] study concluded
that theOtsu method[152] was one of the better threshold selectiorthods for
general real world images with respect to unifoymaind shape measures. This
method selects threshold values that maximize #tevden-class variances of the

histogram.

4.2.4 Region ldentification

Image segmentation produces either a binary or léilevel image output. The
step following after segmentation is the identifica of the image regions [22],
[151]. Often, a region consists of a number of emed components. In order to
extract features from the individual components ihecessary to identify and label

the various connected components of each regioconkected component labeling
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algorithm assigns a unique integer number to eawinected component and the
largest integer label usually gives the numbekegfans in the image [22].

Labeling algorithms can be divided into two large classakidcal neighborhood
algorithms and (b) divide-and-conquer algorithms1f]1 The algorithms belonging to
the first class perform iterative local operations. simple divide-and-conquer
algorithm can work along similar to the split anénge algorithm. Input to a labeling
algorithm is usually either a binary or a multileueage, where background may be
represented by zero values, and objects (or RGQis)om-zero values. A multilevel
image is often used to represent the labeling relsatkground being represented by

zero values, and regions represented by their ramiabels.

4.2.5 Image Feature Extraction

The feature extraction aspect of image analysis seeks to identify inHeren
characteristics, or features of objects found withn image [22-27], [58], . These
characteristics are used to describe the objedattobutes of the object, prior to the
subsequent task of classification. Feature extractiperates on two-dimensional
image arrays but produces a list of descriptions feature vector. Features are used
as inputs to the algorithms for classifying theeabg into different classes. Object
recognition can be done by analysing the morpho{sbgpe and size), colour, texture
(spatial distribution of colour), or a combinatiohthese features of the images.

Two main categories of image features, namely,reateand internal features
have been distinguished in [168xternal image features(or boundary-based
featureg describe the boundary information. Once the dbjace separated from the
background by segmentation, their boundary cootdmaan be used to extract
external features, such as perimeter, curvatugnasire, bending energy, Fourier
descriptors, 2-D transform coefficient featuresy.(e-ourier, Haar, Hadamard, or
Wavelet transform), image codes (e.g. run codanat@des), etc [22 — 27 ]. External
image features enjoy a certain popularity becailmy tproduce compact shape
representations.

The features extracted from the properties of pixetide the object boundary are
called internal image features(or region-based featurgs Spatial moments (e.g.
center of gravity eccentricity, etc),area compactness, aspect ratio, major and minor

axes lengthselongation (or bounding box are® projections skeletons colour and
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textural features are some of the most importamémal image features [79]151].
Internal image features have been used extensimeiypdustrial machine vision
applications [75], [151]. A detailed overview ofage feature extraction algorithms is
given in Appendix B

4.2.6 Image Processing and Analysis Techniques fbead Regions of the
Components

From the aforementioned analysis in Subsectionsl 3aad 3.4.2 of Chapter 3
becomes clear that the problems associated witlSkhe inspection are complicated
and become difficult due to the poor quality of iheages obtained. The dynamic
range of conventional CCD cameras is limited, sat tthe images are usually
overexposed. The reflection on shiny parts (leadl solder paste) is heavy, further
worsening the quality of the images. In this researthe high dynamic range
achieved by the CMOS camera developed can reshilgimquality images. Thus, the
camera itself alleviates the quality problem, allayvthe image analysis task to focus
on the efficient extraction of relevant features dmtomated characterisation of the
placement quality. Such image analysis approaches been tested in the simulation
platform and are presented in the following. Thawation platform has been based
on images provided by industrial manufacturer. Tgitwut this consideration, a
fundamental assumption is made regarding the higltity of the images provided by
industrial manufacturer, that the different regioms the board after component
placement can be discriminated on the images.

Each image covers one component in its entire exigvertheless, there is no
need to process the entire image to obtain the uneagnts required. The region of
interest is restricted to rectangular windows thaver the lead regions of the
component dlobal ROIs). Initially, one window for each side is requirétivo
windows for the SO component and four windows foe QFP component, one
covering each side of the component). Then, treeneed for appropriate definition of
sub-windows local ROIs) for each lead region of the component (28 suldwaivs for
the SO component and 120 ones for the QFP comporiiter the sub-windows
definition, an algorithm is required for segmeraatof each lead region into four well
isolated intensity segments: lead, pad, solderepaistl dark background. Following

the segmentation of lead regions, the next stép derive objects related to lead, pad
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and solder paste. A connected components labelgagithm for identification of

closedregions is needed. Then feature extraction teclesiquust be developed to
encode the characteristics of these regions. Tleeabentioned image processing
and analysis techniques along with the classibepattern classification of each lead
consitute the modules of a machine vision system pgost placement quality

inspection. Such a system is depicted in Figurd.4.1

Input

Component

Image
Cutting ROls Cutting lead Segmentation

—P> of —> Images > of lead images

Component

Output

Classification Feature Labeling of
<+ € Extraction e lead images —

Figure 4.13 Machine vision system for post placement qualigpigction

4.2.6.1 Isolation of Individual Lead Images

We describe below a simple procedure for isolation cutting process) of
individual lead images from the QFP component imddee cutting process for the
SO component becomes in a similar manner.

Taking into account the dimensions and the cemksown coordinates from the
placement machine) of the component, we captureldbation of four global
rectangular windows-images (global ROIs) to be a@equby the camera. Then in
eachglobal ROl we define a local windowldcal ROI) for each lead location to
extract the individual lead-images. The whole pssces illustrated in Figures 4.14
and 4.15.
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Figure 4.14 Definition of global ROIs, one for each side loé ttomponent

Figure 4.15 Isolation of individual lead images
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Acquiring the global ROIs

Before we extract individual lead images, we must ficquire the global ROIs from
each side of the initial image of the componeng Sgure 4.14). Acquiring the global
ROls is simple task because we are based on twerlrbf each image therefore we
need two things:
1. The center of the component (see Figure 4.149.CEnter can easily be found
setting horizontal and vertical rulers (we assuimat it is given from the
placement machine).

2. The dimensions of the component according Se&id (see Figure 3.5).

Knowing these things we are able to calculate #eessary starting poings B, C, D
which are shown in Figure 4.14. These points agesthrting points for raster global
ROI acquisition. Therefore, the calculation of @blROIl starting points for the
component has as follows:

X, = X— (body _size/2)—length _of _lead — x _tolerance

4.46
Y, =Y—(body_size/2)—y _tolerance ( )

B Xg = X+ (body _size/2)+length _of _lead + x _tolerance— ROl _columns (4.47)
"y, = y—(body_size/2)—y _tolerance :

X% =X~ (body_size/2)- x _tolerance

; 4.48
Y. = Y+ (body_size/2)+length _of _lead +y _tolerance— ROl _columns ( )

D: X, = X—(body_size/ 2)— x _tolerance

: 4.49
Y, =y —(body_size/2)—length _of _|lead —y _tolerance ( )

Since there is a likelihood the component to beptaced and comes out of the
pad the program applies a tolerance in the locatiothe starting points using two
parameters which are defined astolerance, y tolerance for x and y axis
respectively. At points B and C the program sultérabe quantityROI_columns
because the scanning of the image is from lefigiot and top down. Traversing the
array that contains the pixels of the initial imayel on the basis of these points we
can return an array of the global ROI's pixels. Thexdow's dimensions are

ROI_columns andROI_rows.
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All global ROIs have the orientation of left ROI ander for processing them in
the same way. To appear in this form right ROl wgdes a reflection, bottom ROI
undergoes a 90clockwise rotation and top ROI undergoes & 8lockwise rotation
followed by a reflection. The acquired global R@tm the component are showed in
Figure 4.14.

Cutting global ROl into individual lead images (lat ROIs)

The isolation procedure proceeds to the extracifamaller images (local ROIs)
from the acquired global ROI having only one leagion at a time. Since pitch varies
it is not effective to find the first lead regiomcathen to cut the others in constant
pace. So we developed an adaptive algorithm faatiog the lead region. This is
accomplished by doing a projection at y-axisr{zontal projectior) in the array that
contains the global ROI based upon the idea theat fegion can be discriminated
from the dark background because of their interisitgl.

The projection of an image onto a line can be oethiby partitioning the line
into bins and finding the number of 1 pixels thia an lines perpendicular to each bin
and then dividing by the number of the bins [227} Projection is a useful technique
that manages to retain much information about thage. Horizontal and vertical

projections can be easily obtained by finding thenher of 1 pixels for each bin in

the vertical and horizontal directions, respectivdlhe horizontal projection H [l]
along the rows and theertical projectionv[j] along the columns of an image

I[i,j],i=1,..n.,j= 1,..m are given by:
H[i]= 1[i. ] (4.50)

V[i]=2 i ] (4.51)

The result of the horizontal projection of the gibROI is shown in the Figure
4.16.

The underlining assumption is that an area of e@desponds with high values
in the projection and an area of the PCB (dark gamknd) corresponds with low
values in the projection. So between two local munins in the projection there is the
area that corresponds to an individual lead imdgeal ROI). We applied the

following algorithm:
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1. Perform a horizontal projection in a constantmbar of rows. This
constant number is quite enough to reach theléast region. We expect a
graph like in Figure 4.16 below.

2. Get the first point where the plot begins t@risrom the graph below we
realize that the first rising of the plot is thegb®ing of first lead.

3. Extract an individual lead image from that paiith height equal to pitch
and length enough to encompass the whole lead meditso perform
projection from that point up to the point, whiahcempass the next lead
region.

4. According to the graph in Figure 4.16 we areeexgd to meet two local
maximums, one is the lead we have already foundlandther is the next
lead that we are going to locate.

5. Between the two successively maximums perfosaring in order to get
the local minimum. Go to step 3.

6. Repeat the steps from 3 to 5 until you acquireads (totally 30)

After the execution of aforementioned algorithm aegjuire the individual lead

images as have been illustrated in Figure 4.15.
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Figure 4.16 Horizontal projection of the global ROI
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4.2.6.2 Threshold Selection Algorithms for Lead Irages
Based on the assumption that lead regions cansoerdinated by their intensity

level, the histogram analysis (in each ROI) can used for initial region

segmentation. Four regions are of interest in tieofram, characterizing in
decreasing intensity levels a) the pad and refiaategions, b) the lead regions, c) the
solder paste, and d) the dark background. In thi® Pthesisseveral methods have
been tested for threshold selection on the histogra

e In first method a three-level thresholding algantim two stages have been used
for segmentation of ROIs. In this method we finth&sholds on histogram of
each side of component (global thresholds) and themnmefine these thresholds
finding new thresholds on histogram of each leagiore (local thresholds)
searching into small spaces of global thresholds.

e Then a variety of three-level and four level thiiddimg algorithms based upon
Otsu’s Thresholding method [152], Kittler and I@worth’s Minimum Error
Thresholding Method [153] and Huang and Wang's FuZaresholding
Algorithm [160] have been tested. These methodsdnice problems in relation
to quality of information into segmented regions

e Finally, thefour-level Otsu’s algorithmgiven the best segmentation results. So,
this algorithm has been adopted for segmentatideanf regions.

We review the Otsu method for selecting optimal gedhreshold [152], [169] in

Appendix C.

The Multilevel Thresholding Problem

An image can be represented by a 2D gray-levehsite function | (x, y). The

value z of | (x, y) is the gray-level (or theixel intensity valug, ranging from O to

L -1, whereL is the number of distinct gray-levels.
The multilevel threshold selection can be considiere the problem of finding a

setT,, k=1,2,...K - I of threshold values, in order that the originayglevel image
I (x,y) would be transformed to a new one with olljevels (i.eK classes) [159],
[169]. More specifically, if T,, k=1,2,...K - 1 are the threshold values with

T, <T,<...<T,_,, then the output image can be defined as
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m, it 1(xy)<T,

1 (%y) = ml if T,<l(xy)<T, (4.52)

me ., if 1(xy)>T,
where m, represents the mean histogram values in the rafigd,,,] with
T,=0, T,=L-1

We assume that there dfeclassesC,,C,,...C,, in the image. We make use of

the following parameters estimated from the histogdata to characterize the pixel
value distribution in class T,, k=1,2,..K.

Class a priori probabilities:

R((Tl""’TK—l): kz_: h(Z) (4.53)

where h(z) is the normalized histogram function which représeéhe percentage of

pixels having gray-levet over the total number of pixels of the image.

Note that there an€-1 independent class a priori probabilities since

K
S R(MT, T )=1 (4.54)
k=1
Class means:
1 T, -1
T,.T. )= zh(z (4.55)
Me(T-oTes) P(TuT, T ) Z (2)
Total mean:
L-1 K
m=> zh(z)=> R(T,... T )M (Tp, - T e) (4.56)
z=0 k=1
Total variance:
L-1
o’ = (z—m)zh(z) (4.57)
z=0

We can determine the optimal thresholds €tsu’s multilevel thresholding

algorithm using the following criterion function:

‘]OT (Tl""’TK-l):i Z h(Z (Ok1')(T1""’TK—1) (4-58)

where the cost function is
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2
-m (T, T
c(okT)(z,Tl,...,TKl):[Z m‘(;z 1)) (4.59)

Segmentation results of individual lead images

Based on abovementioned Otsu’'s multilevel threshgldalgorithm we
implemented the four-level Otsu’s algorithm, whigiven the best segmentation
results for lead images. An example of input leadde and its segmented version is
illustrated in Figure 4.17. The histogram along withesholds of input lead image
4.17 (a) are presented in Figure 4.18. The four R@s background (L1), solder
paste (L2), pad (L3), and lead (L4), have been ethdnd illustrated in Figure 4.20 in
Subsection 4.2.6.3 below.

(b)

Figure 4.17 Segmentation of lead image based on the Otsutsléwel algorithm.
(a) Original lead image (b) Segmented lead image
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Figure 4.18 Histogram along with thresholds (red arrows) mginal lead image.

105



CHAPTER 4 ALGORITHMICONCEPTS

Although a high dynamic-range camera has been usethis research, the
illumination effects are obvious degrading the segtation result, as can been
regarded in Figure 4.19. The usual problems agsatiwith illumination effects
include the following: identification of multiplerbken regions [broken pad in Fig.
4.19 (b), broken lead in Fig. 4.19 (d)]; lead ardl pegions may appear with similar
intensities [Fig. 4.19 (a) ]; light diffusion effiscat the borders of regions masking the
solder paste [Figs 4.19 (a), (¢)]; intense reftawdi on solder paste and pad regions
[Figs 4.19 (a), (b),(c)] ; disappearing regions thuetensity similarity [Fig. 4.19 (e)];
union of regions [ Fig. 4.19 (c) |.

(€)

Figure 4.19 Segmentation problems in individual lead imadesr @tsu’s four-level
thresholding algorithm

4.2.6.3 Component Labeling of Lead Images

The outcome of the Otsu’s four-level thresholditgpethm is a four level image
that corresponds to the regions (ROIs) of backgto(irl), solder paste (L2), pad
(L3), and lead (L4). These regions are illustrateBigure 4.20.
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Figure 4.20 Regions (ROI's) after Otsu’s four-level thregtiob.

A component labeling algorithm that relies on derteriteria, such as intensity,
shape, location, and size, is consequently apphiestder to define (label) the four
regions of interest (ROIs) and improve the segntemaesults. A variety of image
analysis techniques such A&i and Toussaint’'s connecting component labeling
algorithm [26], region growing and merging [23], [26], [151je fitting [27],
Graham'’s convex hull algorithm{170] along with heuristics methods have been used
for the design and implementation of the aforemaed labeling algorithm. The

main steps of this algorithm have as follows:

e Connected component labeling for complete segmentand marking of
included objects into initial segmented regionsngsAki and Toussaint’s
algorithm.

¢ Removing all small regions from background regismg heuristics methods.

e Correction of border using Graham’s convex hulbattpm.

e Definition of lead region using criteria of intetysiposition, area (bounding
box area) of each lead label along with line fgtiand region growing and
merging algorithms to isolate the lead area.

e Definition of pad region using criteria of intengitposition and area
(bounding box area) of each pad label.
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The application of our component labeling algoritnesults in a labeled image
where the four ROIs are well-defined and segmearigtroblems have been corrected

in a satisfactory grade. Such a labeled imagéuistibted in Figure 4.21.

Figure 4.21 The lead image after component labeling.

4.2.6.4 Feature Extraction from Lead Images

After a component labeled image has been takerttendegions of interest have
been well-defined, a feature extraction processedaon region-based features, is
applied on labeled image to extract relevant festdior classification. Our procedure
proceeds as follows.

For each lead we define two lead sub-regions pteden Figure 4.22, based on
the bounding rectangle. One region concerns the atere the lead is located and
the other spans the area in front of the lead aulsvaf the component. The area from
the lead to the backside of the component is disdegl, since it contains misleading
(non-useful) information. The features of each sedpen are appropriately
normalized to the length of the corresponding negiomn order to make them
independent of the axial (u-direction) shift of tead within the area of its pad.

Fromlead sub-region-1we extract the following 7 features:

e Areaofpad/L (feature - 1)
e Area of solder paste AL (feature - 2)
e Center-of-gravity distance on v axis between all

non-background region and lead (feature - 3)

e Center-of-gravity distance on v axis between sopdete and lead  (feature - 4)
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¢ Center-of-gravity distance on v axis between sobdete and pad (feature - 5)

e Pad mean width on v axis (featude -
e Pad total length on u axis { L (feature - 7)
Lo Ly
>’<
| -
I

—p U

Lead sub-region2 Lead sub-regionl

Figure 4.22 The lead sub-regions used in the feature extragtiooess.

Fromlead sub-region-2we extract the following 5 features:
e Areaofpad/Lk (feature - 8)
e Area of solder paste LL (feature - 9)
e Center-of-gravity distance on v axis between afi-background
region and lead (feature -10)
e Center-of-gravity distance on v axis between sopdete and pad (feature -11)
e Elongation of pad (loat-12)

The above 12 features constitute a feature veotopdttern classification of each
individual lead. This set of features encodes capticharacteristics (i.eoptical
featureg, by means of simple area measures that sustaimtist desirable image
attributes. For more detailed information regarditige calculation of the
aforementioned features, the interested readeefeyred to [23], [24], [26] and

Appendix B.
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Chapter 5

A Bayesian Framework for Multi-lead SMD
Post-Placement Quality | nspection

5.1 Introduction

The SMD post placement quality inspection beconssemial as to comply with the
zero defects policy of today's electronics manufeng industry. Post placement
inspection has the advantage that the inspectitan ate available immediately after
placement, so no extra time and components arelspean already faulty PCB. The
later a defect is detected, the more expensive tib irepair. Thus, early detection is
inherently cheaper. Moreover, correcting a deféter ae-flow produces a more brittle
joint and increases the risk of field failure.

In Subsection 3.5 we have presented the stateecdrthof SMD post placement
guality inspection systems. In this chapter, wevigt® a novel framework to visually
inspect the placement quality of SMDs immediatdtgrathey have been placed in
wet solder paste on a PCBhis work has been published in [19] and [30]. Since
we exploit only visual information, the parts insfgel must be visible. Thus, our
approach applies to “peripheral-type” SMD compogesith leads extending beyond
the body of the component. Moreover, we only usgk light sources and fuse
inaccurate information from many leads into a sa&stic framework for accurate
displacement estimation. In this respect, our agghois applicable to multi-lead
components. Despite these limitations, there esaseral types of SMDs that can be
efficiently inspected by the proposed approachluging different versions of SOP
(Small Outline Package), SOJ (Small Outline J-lddélackage), SOIC (Small Outline
IC), and QFP (Quad Flat Package). In addition, approach can be extended to
different imaging technologies for inspecting oti&vID packaging technologies,
such as Chip-on-Film (COF) and Ball Grid Array (BiG#rough X-ray and scanning
acoustic microscopy, respectively [86-88].

In order to overcome the effects of poor qualitgrying illumination images
and/or inaccurate measurements, we introduce @fticmodeling and stochastic
estimation processes. Our approach exploits thettiat individual leads encode the
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same information regarding relative positioningha# rigid body of the component on
the pad area. Positioning measurements on eachchrade viewed as individual
(inaccurate) measurements of the same quantity rdiega the component
displacement and rotation. Instead of concentratingne and every (poorly imaged)
lead, we fuse complementary information from a#ide into a Bayesian estimation
framework.

The proposed analysis provides the necessary bagkgrfor computing three
measures of quality placement namely, overlap,latisumn distance and slump gap,
from individual lead images. These measures rdlatdistances of the regions of
several types of material between the lead corsidand its previous or subsequent
lead regions. Using simple geometric relations,cén be shown that these
measurements are only affected by the displacefnent shift and rotation) of the
component, relative to its pad region. It is wontlentioning that such a problem
statement includes as a special case the visudgrspglint inspection systems already
reported [4], [98-100]. Thus, one major objectivietlois chapter is to derive an
accurate estimation scheme for computing lead atgphent based on observations.
The proposed estimation approach operates in tweldeThe first level considers a
crude computation of quantized displacement of daed. This is done through
classification. The second level operates in a Bayeframework and aims to
accurately model the estimation of component despteent based on quantized lead
displacements. A second objective is to provide réfiad framework for the
consideration of components and their differentdlesdes. This is achieved by
establishing the necessary geometric relations thap all sides to a reference
position and translate the effects of componenpldcement and rotation to that

reference position.

5.1.1 Rationale of Proposed Approach

We can separate the consideration of important mneasinto two categories,
namely microscopic and macroscopic. In the micrpgcaonsideration we are
interested in measures related to individual leadsereas in the macroscopic
consideration we study measures associated witarttie component as a rigid body

(i.e., component displacement-shift and rotati@rne may argue that lead shifts can
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be measured directly from the captured images,invitbolated windows of each
individual lead. Nevertheless, these measuremestb@und to inaccuracies due to
segmentation and labeling errors for the regionspad, solder paste and lead.
Alternatively, the lead shift can be inferred frone overall component displacement
knowing the exact location of the lead on the congpd. In this approach, the
inaccurate lead measurements can be consideredfa®rd measurements of the
component displacement and can be used to estitege total component
displacement through a Bayesian estimation apprddehce, there is a need to relate
lead shifts to component displacement in a thor@egmetric background, which we
also provide. The displacement measurement of imhgdV leads is modeled as a
classification problem where the actual displacensemferred from a feature vector
computed on this particular lead. This classifmafprocess inherits several sources of
inaccuracy, involving measurement errors on thd le@age, non-separability of the
feature space, classification and quantization rerrofhe Bayesian estimator
developed attempts to diminish these sources of.edubsequently, we may employ
the geometric relations to infer a new refined meament of the shift of each
individual lead. Finally, we can estimate the lequhlity measures through the
relations that associate quality measures to lddfiss The overall process is

summarized in Figure 5.1.

Image Meaurements

Intake Pre-processing Feature on lead image —
*————Pb + - Classification
Extraction

Segmentation

R_e—gv_aluatlon of Estimation Bayesian Computation
individual lead - L
. . . of Component < Estimation < of individual
shifts via geometric . -
b Displacement Process lead shifts
relations
E——
Computatlon of
quality measures
>

Figure5.1 Post placement quality inspection algorithm iocll diagram form.

5.1.2 Experimental Procedure

The inspection method proposed in this chapteestetl on an experimental set-

up simulating the operation of placement machidemotorized xyz-stage equipped

112



CHAPTER 5 A BAYESIAN FRAMEWORK FOR MULTIEEAD SMD POST-PLACEMENT QUALITY INSPECTION

with illumination and a camera with appropriateioptis used for collecting images
from boards with peripheral type SMDs. The boarfixisd to the base plate, which is
localized at the appropriate position underneaghcdimera via the motorized control
system. The actual location of the component isvddrfrom the image itself during
the processing stage. The illumination system mpmased of three layers of ring-
shaped LEDs with different illumination angles as pgrovide a wide angle of
incidence (from 20 to 90 degrees) and simulate tbleuded-sky” type of
illumination. The spectral distribution of the LEDsthe area of red and near infrared
results in good contrast for the all cases tesugth (green PCB). The 10-bit CMOS
camera from Vector International is used for imaggturing. The optics of the
camera provide a telecentric view with a field aéw 20x20mm for viewing the
entire component on the PCB. The density of the @GWensor is 1024x1024 pixels,
deriving an image resolution of 2028 per pixel. To capture the entire area of
interest around each lead, the size of the leadiesmas set to 36x56 pixels. Notice
that the extraction of lead images can be eas#yocnized to any conventional SMD
component.We successfully tested rectangular QRRpooents with 120 leads
uniformly distributed along the four sides and SOmponents with 24 leads
distributed along the two vertical sides. The rssydresented are for the more
demanding case of the QFP120, which has side lengtte range of [15.8-16.2] mm,
according to its specifications. The pitch of tleenponent is 0.4mm and the width of
each lead is [0.13-0.23] mm. Thus, in the processefjes the component pitch
corresponds to 20 pixels whereas the lead-widthwvaayfrom 6 to 12 pixels.

In order to de-couple the training from testing aafr classification-estimation
scheme, we collected two sets of images. The trgiis based purely oMonte-
Carlo simulated imagegienerated from images of the PCB with solder phste
without the components placed on them and imagéseofomponent itself. Five sets
of PCB and component images are acquired with reffeillumination levels and
camera offset. Individual lead and pad segmentexdracted from these images. All
samples in each group of segments (pad and leadph@@rmixed in a Monte-Carlo
framework and used to provide samples of individeatls placed on pads at several
levels of displacement.

The testing stage considers actual images of coemsralready placed on their
pad locations from PCBs obtained from an automplécement machine. For the

purpose of testing we used ten different boardsh ezontaining two QFP120
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components, with different settings from the plaeatnmachine. More specifically,
the arrangements of components on the ten boaedasafollowing. One board with
perfect match; three boards with horizontal displewst of + 20, +60 and + 1Q0m;
three boards with both horizontal and vertical Bispments at (+40, - 6@)m, (+ 20,
-20) um and (-120, +60um; three boards for testing the effects of rotatain

multiples of 0.2 degrees.

5.2 Geometric Relations Between Lead & Component Displacement

In this section we establish how a rigid body congyt rotation or displacement
relates to lead shifts, which is necessary forctileulation of the displacement quality
criteria defined above. For the purpose of anglysesuse the model of a QFP (Quad
Flat Pack) component, which is shown in Figure S@nple leads extracted from the

sides of the component are presented in Figure)s.2(

5.2.1 Reorganization of Component Sides

The camera reads four ROIs (Regions Of Interestg for each side of the
component. Since we are not interested in the dpaation of individual lead but
rather on its displacement relative to its ideaipon (i.e., pad), there is no need to
define a coordinate system for each ROIl. We can define a single coordinate
system (u,v) for all leads, independent of the 'ddcation at the side of the
component, and relate displacement on (u,v) tdatigment on the (x,y) system. The
(x,y) is a cartesian coordinate system establisttethe center of gravity of the
component, as shown in Figure 5.2. From now on,refer to this system as the
component coordinate system. The (u,v) coordingtem is defined and oriented in
the (x,y) space for all leads on each side of thmponent. Different sides impose
different orientations on the lead coordinate syséad they define different relations
between the (x,y) and (u,v) systems.

To preserve consistency in the study of all sidethe component, we present
each side on the same coordinates, placing theoitie component's body always at
the same orientation. Thus, the component coomebnxty) may be different from the
lead coordinates (u,v). As becomes apparent frayurés 5.2 and 5.3, we make the

following transformation on the leads of each safie¢he component: the left ROI is
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kept unchanged; the right ROI sustains a mirrdecéibn of the horizontal axis (x-
axis), over its vertical axis (i.e., the y-axig)etbottom ROI is rotated clockwise (CW)
by 90°; finally, the top side ROI is first rotated CW B0 succeeded by a mirror
reflection of the x-axis over the y-axis. The comeot sides as transformed to lead

coordinates are presented in Figure 5.2(b).

5.2.2 Effects of Component Displacements
Owing to the aforementioned transformation, a fedin (©x, dy) of the
component, results in a corresponding translatiothe lead coordinates (u, v) that is

summarized in the Table 5.1 and is graphically ctepliin Figure 5.3.

Table 5.1 Translations measured on the lead coordinate systersed by a corresponding
translation §x, 8y) of the component.

axis Left ROI Right ROI Bottom ROI Top ROI
ou OX -0X oy -0y
ov oy oy -0X -0X
Top ROI

rm
-
-
-
-
=
m
o=
rm
-
-
s
-
e
-
=
-
-
=
b—
-
vm

L eft ROI
vV
i S L’U

Left Right Bottom Top

Bottom RO RO ROl RO RO
(@

(b)
(©)

Figure 5.2 ROI selection and transformatiof@) location of ROIs at the left, right, bottom
and top sides of the compone(i) spatial transformation/relocation of RO(s) sample lead
images from the different sides.
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We now consider the effects of component rotatieh.a leadL, (see Figure 5.4)

at the right side of the component, located onxtlagis of the component coordinate
system, at distance R from its center. A clockwi@8V/) component rotation by
degrees, is equivalent to a Counter Clockwise (C@Wwation by the same angle of its
coordinate system. It is readily derived that sadtation will impose a translation
(dx,dy) of the lead, expressed in theyj component coordinate system as:

dx= Rcosp—- R
dy= Rsing

(5.2)
Consider now a leadl, (see Figure 5.4) at the right side of the compgraisplaced

by a distance h from the x-axis of the componerdrdinate system. In order to
express the effects of rotation @ similar to that ofL, we introduce a new

coordinate systemx(,y,) which is formulated by vertically translatingeth{x,y)
system such as the, -axis is passing by the center bf. In this way the coordinates
of the centerQ, of the (x,,Y,) system with respect to the (x,y) system is (0, h

Introducing this new system, the original rotateopnundO can be decomposed in two
parts; one that reflects the change of coordingséess and the effects of rotation
over O to the new centeD, and a second one that considers the effects dianta
over the new center, with respect to the new coeatdi system itself. Thus, a CW

component rotation byp degrees causes a displacement of leadhat is
decomposed into two parts; one related to displace¢wf the coordinate cent€;, at

a new positionQ, (due to its own rotation around the cen@rof the component
coordinate system) and a second related to thiéawtaf the lead aroun®, .

The second part of the transform causes a tramslafi L, as in Eqn (5.1), whereas
the former one causes a translatiorLpfby:

dx, = —hsing

(5.2)
dy, = hcosp— h

Overall, in the component coordinate systeny) the total displacement imposed on

L, (on the right side of the component) due to CW ponent rotation by degrees

is given by:
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dx(r) =(Rcosp— R)— hsinp (5.3)
dy(r) = Rsing + hcosp— h '

For |(p| <1, as in the specifications of commercial placermathines,cosp =1 and

sing = ¢, yielding:

dx(n) = ~hy
dy(r) = Re

(5.4)

Figure5.3 Component translation and rotation effects measonettie lead coordinate
system.
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Figure 5.4 Analysis of component rotation on the shifts meadwn the lead coordinate
system

Performing similar analysis for the left, up andwtiosides of the component, we
obtain:
dx(l)=- dx(u) =- dx(d) =
(h=-hp  XU=-R . XI=R 5
dy(l)=-Rp dy(u) = wp dy(d) = wp
where w is the distance of the center of a leactiwis placed on the up or down sides
of the component from the y-axis of the componerdrdinate system. To arrive at
the effects of rotation on the lead coordinateesys{u,v), we further introduce the
relations of Table 5.1, resulting in the relatiagable 5.2.
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Table 5.2 Translations measured on the lead coordinate syséeised by pure component

rotation by degrees.

axis Left side Right side Down side Up side
du -hp 170) W -WQ
ov -Ro Ro -Ro Ro

Notice that h and w are signed lead distances fhaorigin of the (x,y) system, for
the left/right and up/down sides respectively.

Overall, if a component translation By, dy is experienced in addition to a pure
component rotation by degrees, the total lead displacements are sunedaiiz
Table 5.3

Table 5.3 Translations measured on the lead coordinate systhen both component
translation bydx, oy and rotation by degrees are present.

axis Left side Right side Down side Up side
du X —hop -0X +ho 3y +wp -0y -We
ov oy -Ro oy +Ro - X -Ro -0X +Ro

5.2.3 Estimating Component Displacements from the L eads

The directional relations of Table 5.3 can be sgexdd to the k-th lead of each

side, depending on the appropriate h or w locaiotne lead. For the k-th leag of

the right side, as example, we use the convendign ) = —5x + h, @, &v(r, )= dy + Re

to denote the corresponding directional shiftss lbbvious, therefore, that provided
an accurate estimation of the component displacearahrotation, the effects can be
accurately reflected to the individual leads. Tleegerse argument holds also true:
provided the lead shiftsiy, ov), we can infer the component parameteéss 4y, ¢).
Notice that the lead shifév is independent of the exact location of the leadt®
corresponding side. Moreover,

oull,)+aulr, )=0
5v((l : ))+ 5v((r: )): 25y (5-:6)

Similarly,
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su(d, )+ su(u, )=0

ov(d, )+ ov(u, ) = —25% S
The rotation anglep can also be derived from similar combinations e&d
displacements. These interrelations between ledcdcamponent displacements form
the essence of our approach in accurately estij#ti@ component parameters, i.e.
we can focus on lead measurements and then refleasurements to component
displacement parameters. Nevertheless, since weptaticat the measurements on
each individual lead are erroneous, we combine unreagents from many leads in a
Bayesian framework, for inferring an accurate olemstimate of component
parameters. As indicated by Eqgns (5.6) and (5.8, need only measure lead
displacementsév on their cross-axial direction. Thus, we emphasikzat our
measurement scheme is only limited to lead dispi@cddv.

Let d_,dg,d,,d, denote the displacements on the cross-axial d@adtion §

axis) of the left, right, down and up side, respety. These measures may represent
the displacement of an individual lead, or the cm@th displacement of the entire
side (average of individual lead displacements @liis side), since we consider the
component as a rigid body. In fact, each of thesplatements may represent an
accurate estimate of the side’s displacement basednaccurate displacement
measurements of several individual leads on theessiaie of the component, (as
described in Section 5.3). From those estimates,care arrive at the estimated
horizontal and vertical component shifts, oy respectively, as well as the estimated

rotation anglep, exploiting of the relations (5.8):

5X:_(dD +dU)
2

_ . (d +dg)
Y=+—

_ (d.-¢y)180 _(dx-0y)180 _ (d, -6X)180 _ (d, —x)180 (5.8)
v R V4 R V4 R V4 R V4

_dr-d +dy -dp 180¢°

- 4R 7
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5.3 Lead Displacement Estimation

The computation of lead displacements on each agidbe chip proceeds in three
steps. The first step implements a feature extagbirocess based on a segmented
lead image. In the second step, an appropriatedigded classifier takes as input the

extracted feature vector for each lead and produmesestimated quantized

displacementy, classified ad, (i.e. with labell, ), where the indek refers to the k-th

lead of a component's side. The quantization sk@pbe fixed to any size, as long as
the training of the classifiers is performed withstresolution. In our approach we
consider pixel size and multiples of it. The thatgp operates on all quantized lead
shifts computed from each side and implements dlitikod estimation process in
order to estimate a total shift on that specifaesiFrom this estimation process, we
can easily proceed to the evaluation of quality sness and the computation of the

component's displacement in (x,y) and rotatiomgighe relations in Eqn (5.8).

5.3.1 FeatureExtraction and Classification
After a SMD component image has been acquired lamdegions of interest

have been defined, a four-level Otsu algorithm, cvhhas been presented in
Subesection 4.2.6.2 of Chapter 4, is applied oh &42l, to segment the lead images
that are included in the examined ROI image. Thizamue of the segmentation
algorithm is a four level image that correspondghi® regions of lead, pad, solder
paste and background. As indicated by Figure 5.2(@ segmentation of lead and
other regions might be quite difficult depending the illumination incident to that
lead area. In our approach the lead is only rougbfymented, as has been illustrated
in Figure 4.22 of Chapter 4, and is simply enclobgdts bounding rectangle. The
labeling algorithm that has been given in Subsadli®.6.3 is consequently applied
in order to define (label) the four areas of insérerhe introduced in Subsection
4.2.6.4 feature extraction process results in [amt features (i.eptical features.

The abovementioned 12 optical features constituteature vector for pattern
classification of each lead. Any classifier canutiézed to perform this task. In this
work, we use a Bayes classifier and a LVQ neurtloek classifier, reinforced with
a Karhunen-Loeve (K-L) transformation as to redtiee dimensionality of the input

feature space.
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5.3.2 Quantization and Classification Errors

Inevitably, a classification process that produdsplacements quantized to the
pixel size introduces two types of error, namely guantization and the classification
error. Since we measure lead displacements viaaete classification process, the

resulting measurements are quantized and admitdisdyete values, . Nevertheless,

the actual displacements we attempt to estimatereakvalued. Hence, an error
occurs in the classification of the individual I&adisplacement, which is referred to
as the quantization error.

In addition, the classifier as a system yields assification decision that is not

100% accurate. This error is called the classificaerror. Let the outcome of the

classifier I, be associated with the true clags, i.e., the classifier yields a
classificationl, whereas the true class of the leadiigmust be correctly classified as
li). A measurement vector (i.e., lead features) ftara classw, may be assigned any
allowable levell with the probabilityp (I, / ;) , which models the probability of

classifying a true class, at levell . These probabilities can be estimated through

extensive testing of the classifier.

Both these errors associated with our classifioappoocess can be considered
within a Bayesian estimation process, which aims afiproximate the actual
component displacement from the inaccurate classifins of several individual
leads. In this framework, we view the classifieddqtized) displacement of each lead

as an individual measurement of the same processthe displacement of the

component as a rigid body. Thus, fréfindividual quantized measurements from
one side of the component, wigitobability of misclassificatiorP (I, /»,) , we

proceed to the estimation of the real-valued daptezents of the entire component
side. Recall at this point that the lead displac#nneeasured is along the cross-axial
direction of the lead, i.e., axisin Figure 5.3. Taking under consideration thetreta

of the lead and component coordinate systems,dbrbes obvious that the above

estimation process concerns only #lyedisplacement for the left and right sides and
the ox displacement for the up and down sides of the comapt. This effect has been

also embedded in the relations of Eqn (5.8).
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5.4 Component Displacement Estimation

5.4.1 Definitions

In this section we use the symbalandy to denote random variables for continuous
and discrete (or quantized) displacement measuismesspectively. The essential
displacements that we need to accurately estinmatéha lead displacements on their
cross-axial direction, i.el, dg, db, anddy from Subsection 5.2.3. Let be the actual
(true) value representing any one of these displaogs, which can also be
considered as an overall component displacemehisaside due to either horizontal
or vertical shift, or rotation. The component, asrigid body, transfers this
displacement to individual leads. The displacemevd#smeasure in Section 5.3 on
individual leads can be considered as inaccuratasarements ofs. The task
considered in this section is to derive an estiomaprocess for inferring component
displacements from the individual measurements eafd | displacements. Before
proceeding, we make the following definitions:
e s:is the real-valued (continuous) component disgiaent in one direction.
e Xxdenotes the continuous random variable for thelatigment of leads on the
appropriate sides.
e X, is the continuous lead displacementketh lead of one side of the componenet
(i.e., the k-th measurement of ).

e @ :is thei-th class (with label,) of discrete lead displacement.
Since we measure lead displacements via a disclassification process, the
resulting measurements are quantized and taked@sdyete valuey, .
e y isthe discrete random variable of for the leapkdicements.
e v, is the discrete lead displacement ofkka lead classified ak from classifier.
For a specific displacemeng, the measuremenx may assume a Gaussian
distribution arounds, with mean s and variancec’ =o”. This models the
distribution P(x/ 9. The distribution of the quantized measuremeR(y/ 9 is a
discrete one that can be obtained fr&fx/ 9 .

Let the quantization levels be defined lasr e[—M yeri0y.. M ] (r being an

integer) and the limits of quantization fér be a, and b,. We consider uniform
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. . . 1 _T — T
quantization withb, —a =T so thata, =I A and b =1 +/2. Thus, the

probability of quantized measurent given s, P(y/9 is determined by the

probabilities P(l, / s) of the quantization levels as:

b I +T /2
1 2 2
P(l./s)=| P(X 9 dx= g9zt g (5.9
aJ: V2ro |,J;/2

In case that the meaa coincides with the central level of quantizatibn (i.e.,
s=1,), the distributionP(y/ 9 is a binomial one. In case that falls within the
quantization region of any levd|, then the distributionP(y/ § approximates a
binomial one around, . Throughout our estimation process we do not censidch a
binomial approximation for the entire variablg, but rather consider local
approximations ofP(l, /s) in (5.9) around, .

Since we do not measure directly the lead displeceny(y, ), but we only
obtain it indirectly through a classification prgsgwe need to consider the effects of
the classification error. Let the outcome of thasslfier y, at the k-th trial be
associated with the class,, re[—M,...,M] (level I,) as organized by the
specific classifier. A measuremelt, (its feature vector), may be classified to class
o, (level 1.) and consequently be assigned the vdlyewith a certain probability
P(Y/w,), which models the probability of classifying into any class, even though
the actual shift belongs to class . This models the classification error, or the
probability of classifying a measuremewt to classw, instead ofw,. We consider

this error independent of the actual displacenentdepending only on the classifier
itself. Thus, we estimate these probabilities thiloegtensive testing of the classifier.
One last variable that we need to model is theahalisplacements of the

component, which relates to the placement errénh@PCB machine. LeP(s) be its
distribution. From nominal measuremerds can be modeled as a Gaussian with

means, and variances?.

5.4.2 Derivation of the Estimation Process

We are now ready to proceed with the estimatiothefcomponent displacement.
Two approaches may be considered. The maximum ld@iihand the maximum
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aposteriori. Given a classified measurement set
y={¥, Y- %} r€[-M,...,0,...M], the maximum likelihood approach proceeds

as.

K
maxP (y /s)= ma] [ P(y /s), or
s S ka1

max logP( y /s) = maxi logR( y /9. or

K
7
> —log{P(y,/9}=0 (5.10)
10S
Observing that the classificatiog, (with label |,) may result from any actual

classw, and assuming that the classification error onlyetels on the classifier and

is independent of the actual displacement, we pbtai
F’(WS)=Z RY.ol$
=ZP(W%S) Ryl 9
=ZP(Y&/@)P(60./ 9

i+T/2

_ZP(yL/a))\/_G [ e dy (5.11)

i —T/2

=ZP(>¢/@)JP(x/ 9 dx
' 3

b
= Zaik".[ P(x/ 9 dx
i 3
wherea" = P(Y{ /@), the probability of misclassification.

b ] that describes

It is proved in Appendix D1 that there exists aaervaluex, € [a

the integral in the form:

2

h (9’ _(%-9)
je 20 dx=(b-a)e (5.12)
L

and can be approximated by:

=1 (5.13)
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with |, indicating the central point of this interval. et that this approximation
holds at the shoulders of the distributions, bubverestimates the actual integral
around the center oP(w /s), i.e. for the class that correctly estimates tbeal

displacemens. In this case, the contribution to the overBI(y,i/s) is amplified.

Alternatively, far from the correct displacementspthe contribution t@(y,;/ s) is

attenuated. In this form, the approximation in 8.k validated since it emphasizes
the contribution of classifications close to therreot displacement o, while

reducing the effect of far two erroneous classiimes. Using (5.13) into (5.12) and
introducing P(y,/s) into the middle form of (5.10), the maximum likediod

criterion is written as:

_('i*s)2
max Z|0{T2q“e 20" J (5.14)
Sk i

or
msax{z Iog{z a“' f (S)H (5.15)

_('i*s)2
where f (s)=Te 2 , and0<) a“ f(s)<1, 0< f;(s) <1 as probabilities. Since

2 3
by Taylor expansion we haveg(l+ x) = x—x?+%¢..., for —1<x<1, we can

approximate logf ¥ x—1 for 0< x<1, so that:

Iog(Za\“ f (s)jzz g f(9-1 (5.16)

and
Yarlog f(9=X & (f(9-D)=3 A" f(3-> & (5.17)

From Equations (5.16), (5.17) we obtain the appnation
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'09(Zak" f (s)jsz &' log( I(S))—[l—z é"j (5.18)
Introducing the latter approximation into (5.15)dam®xpressing f. (s )in its

exponential form, we get:

m?x{‘gza\k'r (liz_i)z —;(1—Zak"ﬂ (5.19)

o i

or
min{zz:ﬁ‘"(li —s)z} (5.20)
S LT
Taking the derivative oves we obtain ZZai"’r(li —s)=0. Thus, the maximum
ki

likelihood estimator is derived as:

Iy
- ;Zakr

where § is the estimate oé. Notice that ifa*" = P(y, /@) =5(i-r), with 5(i —r)

Dy,

a o -function, thens = kK

u»

(5.21)

Remark 1 The value of measuremernt may result from correct classification of
feature vectors in classes , or from misclassification of neighboring class@sr

approach reflects the fact that the classis correctly assigned the quantized value

with probability P(l. /@) = P(y;/a)l): g, but can also be assigned neighboring

values with probabilityP(l, /&) = P(y /& ) = 4.

Remark 2 Notice that the derivation of is straightforward. The probabilities that
formulate " are a priori calculated during the constructiorthef classifier and can
be stored in a matrix A. The levelsare also predetermined. The estimatoreads
for the k-th lead the classification outpuk, § and isolates the corresponding row of
the A matrix, which is consequently multiplied withe vectorL =[I,l,....1 ,, ],

(where 2M is the number of classes), thus obtaining the natoeof §. This process

if further elucidated in next section.
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Remark 3 It can be proved (the proof can be found in Amue D2), thatE{é} =,

thus resulting in an almost unbiased estimatolh wﬁ{é} =%az.

5.4.3 Implementation of Component Displacement Estimation

The classification process takes as input the featector extracted from each lead
and produces an estimated quantized displaceyhemith labell, , where the indek
refers to theé-th lead of a component’s side. During the trairphgse, the classifier
produces a matri®(y, / w) = P(l /@) for the probabilities of misclassification.

Figure 5.5(a) illustrates the training process.

» O
| | | | |
| [ [ [ [
l1 ol
> (%Stim?te((jj &
uantize 1
12 Lead Displacementl : P (Hox)
Features —» > -
(kth lead) true class i
v classified as any ab,
—» ; at levels |
(@)
Fm———————————— » Ir
i I I I I I
; M o) =3 31
VT a(lr)—zl P(l’/ml)ll
i P (/o) >
i B(l) =Zi P(k/ i)
v >
li
(b)

Figure 5.5 The classification procedure during the trainingagdt (a) computation of
classification-error probabilitiegb) computation of quantities required by the estim#bo

each classification levd] .
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This process encodes the classification error Her dpecific type of classifier used.
The quantization error is considered in the Bayesstimation process during the
testing of each component. In this phase, the saassifier classifies the feature

vector of each lead ds. All leads from the component sides are uniforoigssified

according to the geometrical dependencies of Sed&id. The classification results
from all leads of the appropriate sides are usethenBayesian estimator to produce
the estimate of the component displacem&nfhe contribution of each lead to the
numerator and denominator of this estimator casitmgly extracted from a look-up-

table that is constructed during the training phatdhe classifier, since it only

depends on the classification error. More spedijichy the end of training phase, the
classifier can compute the quantities:

all) =2 P(il/@ )i =2 P Ia)
BU)=2P(Yilm)=Y Pl /@)

and store them in the look-up-table for each di@ssion level |, as illustrated in

(5.22)

Figure 5.5(b). Finally, the component displacengmistimated as:
Y all,)
S=&
2. 80,)
k

The entire classification/estimation process in dperating stage (testing) is

5.23)

demonstrated in Figure 5.6.

o(l) =Zi P(L/ i) |;

B(l) =% P(L/ o)

—p .
Feature Estimated, i
Vector for ) A
e " Xa(yxa) 73
—L,..., Kk Kk

.

Figure 5.6 The classification/estimation procedure duringjeration (testing phase).
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Finally, having the accurate displacement meastoesll sides, it is straight
forward to apply the relations in Egn (5.8) as @ik the component displacement

and rotation parameters.

5.4.4 MonteCarlo Simulation for generating the PCB images

In this Ph.D. thesis we use tiMonte Carlo simulationprocess [171-174], in
order to generate lead samples with appropriate am intensity distributions for
trainining the classifiers. Since several actosges from the test bed are hard to be
obtained we synthesize images with different ti@insh of lead in reference to pad
raising different types of faults. Our purposeassimulate the entire component i.e.
each side of the component, consequently the flmlragROIs (Left, Right, Bottom,
Top ROI). There are two major reasons affectingousake this decision. First the
generation of the entire imag®24x 102« pixels is time consuming because the pre-
processing requires image enhancement techniquds sanond all the useful
information is inside these four ROIs.

The data available are one set of 4 actual imaggsonly pad and smeared
solder paste and another set of 5 actual imagesanly the component QFP 120 in
front of a dark background (as in Figures 5.7(a) &rv(b), respectively). Thus, the
process of simulation of new images with contrglltranslations will be based on the
their constituents ones which are individual pathwbplder paste and individual lead.
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(b)

Figure 5.7 Pad and QFP component imag@3;only pad and smeared solder page,
only the component QFP 120.
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One could claim that the simulation of the ROIsaccomplished performing a
superposition of figure 5.7(b) over figure 5.7(8)t, this cannot be applied directly
due to the varying dimensions (length and heighdt) iatensity levels of the lead area
and so we cannot easily and accurately the tramslaf the chip over the pad area.
Also the training of the classifiers is based omages like Figure 5.2 (c) (i.e., cutted
individual lead image after the placement of QF® t@mponent on its own pad
area). So, better results are obtained if the gpaséron is performed using individual
pad-images and lead-images like the ones in FiguBfa) and 5.8(b), respectively).

(b)

Figure5.8 Individual pad and lead-imagéds) individual pad-imagéb) individual
lead-image

It is apparent that the leads inside a global R&lehvarying dimensions and
intensity levels. Also the pads have varying intignevels due to the different
distribution of the smeared solder paste. In otdesimulate a ROI correctly and
approximate a real case we must preserve thesevahbeas. Therefore for every
lead-image we find length, height and mean intgresit for every pad-image we find
mean intensity (providing from the specificationkatt pads have constant
dimensions), considering them as characterisicaufating a ROl we must draw 30
pad-images and 30 lead-images with random charistater This procedure is
accomplished using the Monte Carlo simulation pgsec&he displacement is constant
for the entire component but the relative displaeethof each lead over its own pad is
a function of the considered side (either left ight or bottom or top side). The
general procedure we follow is given below [52]:

e Firstly, we extract lead/pad regions from actuabg®s and then we
compute the above-mentioned characteristics.

e Secondly, we classify each pad/lead accordingdachiaracteristics and
then we derive statistics from the data. In additve develop @atabase
comprising all the extracted images.
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e Thirdly, we use Monte Carlo simulation to sele@ds/pads according to

the specified distributions and create componensRO

5.4.4.1 Modeling and I mplementation of Monte Carlo Simulation

Simulation means driving a model of a system wititable inputs and observing the
corresponding outputs. Simulation models can béndisished betweerstatic or
dynamic deterministicor stochasti¢discreteor continuoug230]. A static simulation
model is a representation of a system at a paatidihe. Monte Carlo simulation
models are typically of this type.

We define Monte Carlo simulation to be a schemeleyny random numbers,
that is U(0,1) (uniform distributed) random variedMhich is used for solving certain
stochastic or deterministic problems where the q@gsf time plays no substance
role.

Monte Carlo simulation is widely used for solvingriain problems in statistics
which are not analytically tractable. For examjiidyas been applied to estimate the
integral [172 — 173]

I :qu(x)dx (5.24)

whereg( x)is a real valued function which is not analyticaliyegrable. To see how

this static problem can be approached by MontecGarnhulation lety be the random
variable p-a)g(X) whereX is a continuous random variable uniformly disttéxlion

the interval , b]. Then it can be shown that the expected valu¢isfgiven by

E(Y)=E(b-3 d X]
=(b-a) E[ o( X)]

=(b-a)| g( %) f (% d (5.25)

g(x)dx
b—a

QY —T D —T

=(b-a) =1

wheref, (x)=1/(b—a) is the probability density function of & (a,b)random

variable. Thus the problem evaluating the integra$ Ibeen reduced to one of a
estimating the expected val&€Y). In particular we shall estimakY) by the sample

mean
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Y(n)="2—=(b-g=Lt—— (5.26)
because it is unbiased estimator BfY) where X, X,,..., X, are independent

identically distributed(lID) U (a, b)random variables.

Model analysis with Monte Carlo simulation is siamito ‘what if scenarios in
that it generates a number of possible scenariogieMer, it goes one step further by
effectively accounting for every possible valuettbach random variable could take
and weights each possible scenario by the probalofiits occurrence. In order to
model each uncertain variable within a model we tndetermine its probability
distribution. Monte Carlo technique involves thadam sampling of each probability
distribution within the model to produce thousandf scenarios (also called
iterations). Each probability distribution is samgblin a manner that reproduces the
distribution’s shape [173]. The distribution of thalues calculated for the model
outcome reflects the probability of the values thlaiuld occur. Monte Carlo

simulation offers many advantages as:

e The distribution of the model's random variablesesinot have to be
approximated in any way.
e Correlations and other inter- dependencies candzehed.

e Greater levels of precision can be achieved by lginmcreasing the
number of iterations.

In our situation the procedure followed in order perform Monte Carlo

simulation is [52]:

e Select distribution for lead (length, height, meatensity) using the
histogram procedure
e Select distribution for pad (mean intensity) udiing histogram procedure

e Perform Maximum Likelihood Estimators procedurdital the optimum
parameters for each distribution

e Use Chi-square goodness-of-fit test to attestafahosen distribution fits
the data adequately

e Random number generator U(0,1)

¢ Random variable generation by sampling each digtah.

133



CHAPTER 5 A BAYESIAN FRAMEWORK FOR MULTIEEAD SMD POST-PLACEMENT QUALITY INSPECTION

5.5 Results

In our experiments, we use the Bayes and the L\&Qsdiers both with and without a
K-L transform for feature reduction. The Bayes sifisr and LVQ neural network
classifier are well-established and quite succéssfinniques in pattern classification.
The theoretical background of these classifiersidees introduced in Chapter 4. the
LVQ neural network architecture was defined by fib&ture vector size training set
size and output class mapping. In particular far wéth 12 geometric features the
LVQ input layer consisted of 12 neurons. In accaoodato LVQ theory the hidden
competitive layer contained neurons, equal to tmalver of training set cases. In the
output layer for 5 classes (2 pixel shift precigi@noutput neurons were needed.
Accordingly discrimination of 7 classes requirecutput neurons. The model was
trained for 1000 epochs with a learning parametérGo.

For designing and training the classifiers we emple Monte Carlo simulation
process, in order to generate lead samples witlropppte size and intensity
distributions. Notice that the size of leads oraatual component is not constant, the
size of solder paste varies from board to board,the illumination conditions do not
remain fixed in a realistic production environmene reference for the distributions
used in Monte Carlo simulations is obtained frore eat of 4 actual images with only
pad and smeared solder paste and another setnoddes with only the component
QFP 120 in front of a dark background (as in Figs&’(a) and 5.7(b), respectively).
We use the aforementioned images for the creatfoMante Carlo samples and
training, whereas we have available 20 new (pastgrhent) component images (as
in Figure 5.2 (a)), obtained from the actual plaeetrenvironment, that are used only
for testing; never for training. The Monte Carloopess simulates variable size and
illumination conditions and implements componespthcements on the pad regions,
which are employed in training. In fact, we use tlsses of component
displacements i.e., {-6, -5,..., 5, 6} pixels. Eaclspacement involves three
neighboring cases for testing (e.g., class —4 iresdisplacements {-4.2, -4, -3.8}).
Both directional displacements have been consideagdely horizontal and vertical.
Notice that a component shift in tlkedirection engages leads on down and up sides
(on their corresponding cross-axiatlirection), whereas a component displacement in
the y-direction affects leads on left and right sidelsug, for testing the 13 classes of

lead shifts, each class contains 3x2=6 directicaaks and 30 leads per side for two
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sides, making 360 lead samples per lead-shift classstated in the previously, 12
features per lead formulate the feature vectorftirats the input to each classifier.
The classifiers are trained for 5 and 7s#as The first case involves classes {-6,-
3,0,+3,+6} whereas the second case considers rpiron classes {-6,-4,-
2,0,+2,+4,+6}. Thus, for training we use 120 leanples per class resulting in
totally 600 lead samples for the 5-class trainieigasd the 840 lead samples for the 7-
class training set correspondingly. These two cagedy the ability of the classifiers
to discriminate classes in the feature space swphiay 3 and 2 pixels apart,
respectively. We do not consider training on allcla&sses, since all these classes are
not separable in the 12 dimensional feature spafieedl. In our approach we reduce
our expectation on the quantization error, sin@e dlassification is followed by the
Bayesian estimation scheme designed to accounarfdrtake care of such errors.

Table 5.6 shows the Bayes probabilities (%) (ttee,probability of a correct class
to be classified ag,). The probabilities are computed vigjeck-knifing process

which approximates the true probabilities of clfasation [9], [171]. This process

sweeps along all sample vectors and every timaetstone sample out of the training
data. It trains the classifier with all other vest@nd classifies the extracted vector
that has not been seen by the classifier. Finalggmputes the percentage of correct
and incorrect classifications for all data avakabh order to derive the classification
probabilities of the classifier. Bayes-1 incorpesma K-L transform, while Bayes-2

operates on the entire feature space without wamsitions. Each row presents the

probabilities of classification for the correspamglitrue classw to any other class
o, . Table 5.7, gives the same information for the L¥@ssifier. In general, we

notice that the probability of correct classificatiis particularly high in the case of 5
classes, indicating an improved ability of the sifisrs to discriminate per 3 pixels
shift rather than 2 pixels shift. Moreover, the o$&-L deteriorates the performance
of classifiers in the specific problem. In all casthe probabilities of misclassification
are distributed around the correct class. For elamgass +3 in the Bayes-2
classifier is misclassified as class 0 or classbt,not as a class with negative shift.
The sources of misclassification are further cogr@d in later parts of this section.

In order to test the generalization ability of @@mbined classification-estimation
process, we proceed with testing the classifieralbavailable classes. Thus, we first

train the classifiers with the corresponding clasgar 5 or 7-class quantization. Then,
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we classify all samples in every one of the 13s#asand use our estimation process
to derive a single displacement for all leads ioheglass. Table 5.8 gives the entire
class displacement estimation using Bayes classifivith and without K-L
transform, for 5 and 7 class training. The corresiongy results for the LVQ
classifiers are presented in Table 5.9. Notice timatclassifiers are trained on 5 or 7
out of 13 classes and are used to classify allld$ses, interpolating in-between via
our estimation approach. The Bayes classifier withGL derives the best estimates,
in terms of their proximity to the actual values.omdover, the effects of larger
guantization error in 5-class training as compat@dhat of 7-class training are
diminished, due to the corresponding larger prdhegs of correct classification.
From these tests we conclude that the Bayes aksgifithout K-L) on 5-class
guantization give the best overall estimation ressand it will be employed for
further testing of our approach. At this end, wei¢ate a small bias of the estimator,
which is partially due to the non-uniform distritart of the classification
probabilities.

In the sequel we test our approach on a set oe20aomponent images from the
actual placement environment. Ten actual boards different shifts and rotations
are given, with two images from each case. Eaclvioshaal case is controlled by the
placement machine and conveys the limited accurh@facement. Notice that these
images are used only for testing; the classifiergelnever seen these images before.
The results are given in Table 5.10. The first poluindicates the number of the
image, whereas the second column gives its digplace information from the
placement machine. For each image, the first rosggmts the displacement results
from our classification approach. In order to tdstse results with some accurate
measure, we zoom on each image and manually methsudisplacement of leads on
each side of the component. These manual measurearengiven in the second row
associated with each image. Based on the relatb@sbsection 5.2.3, we compute
the average horizontal and vertical displacementhef component, as well as its
rotation. Furthermore, in order to provide an adddl rule for comparing the results
with respect to component rotation, we also meathedotal lead shift for one side
(from end-to-end leads) along the axia) direction of leads. This is the measuke T
in Figure 5.3, which adds up to twice the crossaxidisplacement of each lead due
to rotation. This additional measure is presentethe last column, along with some

manual measurements in parenthesis. In this caaside, the positive rotation angle
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is measured in the counter clock-wise (CCW) digett@nd the positive side-to-side
displacement along the u-axis of the leads in e#bh is defined on the basis of the
positive CCW rotation. For the computation of timgla, the width of the component
form its center (variable R in Eqn (5.8)) is mahyealeasured for all sides.

From table 5.10 it become immediately clear that dbcuracy of the placement
machine is quite limited and our proposed estinmasicheme can effectively improve
this accuracy. Consider, for instance, the cas®bf2, which involves considerable
displacement on both the horizontal and the vdrticgaction, while the controls of
the placement machine indicate no shift at all. iy, in the case of t07_1, the
placement machine indicates no rotation, while lmethclassification scheme and the
manual measurements indicate rotation larger tha®.0Comparing now the results
of the proposed classification scheme and the nianeasurements, we can generally
observe that the classification results are withi6 pixels from the manual
measurements (see Table 5.13). It is interestingptwsider the case of t08 1, with
respect to the total (end-to-end) axial lead dgl@ent in the last column. The
classification approach gives a more accurate agtirthan the result through manual
measurements of the cross-axial lead displacemergagh side. This observation
indicates that (as expected) the manual measursnmmtindividual leads cannot
provide consistent accuracy, especially when thepoment engages rotation in
addition to translation.

Table 5.6 Bayes Probabilities (%)

a) Bayes-1 classifier for 5 classes

-6 pixels -3 pixels 0 pixels +3 pixels +6 pi xels
shi ft shi ft shi ft shi ft shi ft
97. 47 1.96 0. 00 0. 00 0. 56
3. 67 92. 93 2.54 0. 00 0. 84
0. 00 2.82 93. 78 2.25 1.12
0. 00 0. 00 5.14 87.42 7.42
0. 29 1.16 0. 29 1.45 97. 09

b) Bayes-2 classifier for 5 classes

-6 pixels -3 pixels 0 pixels +3 pi xel s +6 pi xels
shi ft shi ft shi ft shi ft shi ft
97.75 2.24 0. 00 0. 00 0. 00
2.25 94. 35 3.10 0. 00 0. 28
0. 00 2.82 94. 35 1.69 1.12
0. 00 0. 00 2.57 93. 14 4.28
0. 58 0. 00 0. 00 0. 87 98. 25
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c) Bayes-1 classifier for 7 classes

-6 pixels | -4 pixels | -2 pixels | O pixels | +2 pixels | +4 pixels | +6 pi xels
shi ft shi ft shi ft shi ft shi ft shi ft shi ft
92.71 6. 44 0. 84 0. 00 0. 00 0. 00 0. 00
16. 76 73.01 9. 37 0. 00 0. 00 0. 00 0. 85
0. 00 7.51 80. 05 10. 98 0. 00 0. 00 1.44
0. 00 0. 00 9. 03 80. 22 9. 32 0. 00 1.41
0. 57 0. 00 0. 00 12. 39 73.77 10. 95 2.30
0. 00 0. 00 0. 28 0. 28 4.89 73.77 20. 74
0. 58 0. 00 1.45 0. 00 0. 00 4. 06 94.18

d) Bayes-2 classifier for 7 classes

-6 pixels | -4 pixels | -2 pixels | O pixels | +2 pixels | +4 pixels | +6 pi xels
shi ft shi ft shi ft shi ft shi ft shi ft shi ft
92. 99 6. 44 0. 56 0. 00 0. 00 0. 00 0. 00
10. 51 81. 82 7.38 0. 00 0. 00 0. 00 0. 28
0. 00 10. 69 75.72 13. 29 0. 00 0. 00 0. 28
0. 00 0. 00 5. 08 85. 87 7.90 0. 28 0. 84
0. 00 0. 00 0. 00 11.52 77.80 8. 64 2.01
0. 00 0. 00 0. 28 0. 00 3.17 85. 87 10. 66
0. 29 0. 00 0. 58 0. 00 0. 29 7.26 91. 86

Table5.7 LVQ Probabilities (%)

a) LVQ 1 classifier for 5 classes

-6 pixels -3 pixels 0 pixels +3 pixels +6 pi xels
shi ft shi ft shi ft shi ft shi ft
94. 67 4.76 0. 00 0. 00 0. 56
2.25 94. 06 3.10 0. 00 0. 56
0. 00 13. 55 75.70 9. 88 0. 84
0. 00 0. 00 1.42 95.71 2.85
0. 57 0. 00 1.15 3.18 95. 07

b) LVQ 2 classifier for 5 classes

-6 pixels -3 pixels 0 pixels +3 pi xel s +6 pi xels
shi ft shi ft shi ft shi ft shi ft
93. 27 6. 16 0. 00 0. 56 0. 00
5. 64 90. 67 3.10 0. 00 0. 56
0. 00 7.90 78. 24 12.99 0. 84
0. 00 0. 00 0.57 95. 42 4.00
0. 57 0. 00 1.15 3. 47 94.78

c) LVQ 1 classifier for 7 classes

-6 pixels | -4 pixels | -2 pixels | O pixels | +2 pixels | +4 pixels | +6 pi xel s
shi ft shi ft shi ft shi ft shi ft shi ft shi ft
78. 43 21.00 0. 00 0. 00 0. 00 0. 00 0. 56
9.09 73. 86 16. 19 0. 00 0. 00 0. 00 0. 85
0. 00 15. 31 74. 85 6. 64 1.73 0. 57 0. 86
0. 00 3.38 25. 42 53. 10 17. 23 0. 00 0. 84
0. 57 0. 00 0. 00 8. 35 81. 55 8. 64 0. 86
0. 00 0. 00 0. 28 0. 00 10. 95 77.52 11. 23
0. 57 0. 00 0. 57 0. 57 00. 28 12.75 85. 21
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d) LVQ 2 classifier for 7 classes

-6 pixels | -4 pixels | -2 pixels | O pixels | +2 pixels | +4 pixels | +6 pi xel s
shi ft shi ft shift shift shi ft shi ft shift
83. 47 15. 96 0. 00 0. 00 0.56 0. 00 0. 00
13. 35 76. 42 9. 37 0. 00 0. 00 0.28 0.56
0. 00 10. 11 78. 90 8. 38 1.44 0. 86 0.28
0. 00 0. 00 20. 33 57. 06 21.75 0. 00 0. 84
0. 57 0. 00 0. 00 3.74 80. 40 14. 40 0. 86
0. 00 0. 00 0. 00 0.28 10. 95 74. 35 14. 40
0.57 0. 00 0. 00 0. 86 00. 57 16. 81 81. 15

Two cases where the estimation approach fails éoyme results very close to the

manual measurements are the t02_1 (top side) afd®h 1 (left side). The first case

fails due to insufficient training data in the ddigation process, whereas the second

case fails due to measurement errors in the corpuataf the feature vector. At this

end, notice that our classification approach hanlteined to produce displacements

of up to +6 or —6 pixels. In case we encounterld@ments larger than these limits,

our approach of course fails to produce reliabpldicement estimates. Such are the

cases of t09 2,110 1, and t10_2. Even in suclsc#saugh, the rotation is estimated

more accurately by our approach than by the mameasurements on sides, as it is

indicated by the end-to-end axial lead-shift in ldet column.

Table5.8 Displacement Estimation of Entire Class (~360 saspker class) with Bayes

Classifiers
Bayes B1 5Classeswith K-L B2 5Classes B1 7Classeswith K-L B2_7Classes
Class0 0. 152 0. 025 0.108 0.071
Class-1 -0.717 -0.972 -0.861 -0.742
Class +1 0. 628 0.518 0. 821 0. 667
Class-2 -2.167 -2.415 -1.721 -1.850
Class +2 1.880 1.980 1.881 1.859
Class-3 -2.825 -2.889 -2.635 -3.098
Class +3 3.010 3.015 2.875 3.331
Class-4 - 3. 628 -3. 757 -3.970 -3.936
Class+4 4,241 3.935 4. 069 4,053
Class-5 -5.036 -5.213 -4.990 -4.976
Class+5 5.284 5.401 4.828 4. 750
Class-6 -5.765 -5.838 -5.495 -5.641
Class+6 5.430 5.731 5.169 5.434
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Table 5.9 Displacement Estimation of Entire Class (~360 sasipkr class) with LVQ Classifiers.

LVQ L1 5Classeswith K-L L2_5Classes L1_7Classeswith K-L L2_7Classes
ClassO -0. 062 0. 219 -0. 289 0. 068
Class-1 -1.707 -1.536 -1.376 -1. 141
Class+1 1.271 1.426 1.131 1.290
Class-2 -2.432 -2.568 -1.904 -1.752
Class +2 2.448 2.491 1.893 1. 956
Class-3 -2.710 -2.981 -2.759 -2.782
Class +3 2.862 2. 800 2.841 2.817
Class-4 -3.393 -3. 530 - 3. 646 -3.929
Class +4 3.361 3. 230 3.870 3.914
Class-5 -4.626 -4.753 -4.371 -4.675
Class+5 4.770 4. 452 4.576 4.642
Class-6 -5.634 -5.524 -5.181 -5.309
Class +6 5. 542 5. 566 5. 150 5.137

Finally, in order to assess our results for disptaent estimation of entire class
presented in Tables 5.8 and 5.9 we calculateatteolute valueof the difference
between the actual class and its estimated valeeABS(Class — Estimation)per
class for Bayes and LVQ classifiers. Then we compiite average valueof
ABS(Class — Estimatioryalues for all 13 classes. These assessment Sesudt
presented in Tables 5.11 and 5.12 for the BayesL&f@@ classifiers, respectively.
The Bayes classifier achieves its best performdacethe 5-class formulation,
whereas LVQ attains its minimum error for the 7ssleboth without the use of K-L.

In the sequel,in order to assess our results presented in Tahl@ & actual
component images with prior known shifts and rotati we first analyze the images
manually, as to compute displacements that cansee as “golden-truth” values.
From the first examination of the available imag#sbecomes evident that the
placement machine attributes for displacement atation are far from accurate. For
this reason we resort to the tedious process ofualameasurements, which is far
more accurate. Subsequently, we compute dbhsolute differencebetween the
estimated and the manual measurements (ABS(Estimation — Manual
Measurement), as well as thebsolutedifferencebetween the placement machine
and the manual measurements (iABS(Placement Machine Measurement —
Manual Measurement) for all boards and all global ROIs. Then we cdesi
statistical measures on each difference set inrotdeaccess the accuracy of
estimation. The abovementioned assessment res@tprasented in Tables 5.13
and5.14 for our estimated and placement machinesunements, respectively. In

order to compare the above two distributions wetheguantile — quantile plot(q-q
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plot) [171]. Typically, a g-q plot (sometimes callanempirical quantile plo} is used
to determine whether two random samples are gestebgtthe same distribution. The
g-q plot was originally proposed by Wilk and Gnaesidlan [171] to visually
compare two distributions by graphing the quantieene versus the quantiles of the
other. Assume that we have two data sets consisfingivariate measurements. We

denote the order statistics for the first databset, x,,...,x, and the order statistics
for the second set by,, y,,..., ¥, , withm< r. In our case, the sizes of the data sets

are equal, sm=n. In this case we plot as points the sample quentf one data set
(i.e. ABS(Estimation — Manual Measuremengjues) versus the other data set (i.e.
ABS(Placement Machine Measurement — Manual Meamn@nvalues). The
obtained g-q plot is illustrated in Figure 5.8. Tipg plot follows approximately a
straight line (except some outliers), indicatingttthe data sets come from the same
distribution (i.e. Gaussian distribution). Furtmere, the regression line is with slope
close to 0.3, at least for machine attributes ssnahan 4 pixels, indicating that the
estimated results are at the order of three tima® raccurate than those of the actual
placement machine.

Overall, in terms of time requirements of our agmlm the processing,
segmentation and feature extraction (12 featusdsyst about 0.75sec for processing
the entire QFP120 component, or 6.3msec per ing@aidead, on a Pentium Il
processor at 366MHz. The combined classificatidmedion step for testing the
entire QFP120 component takes 0.098sec and 0.0Wtsat using the Bayes and the
LVQ classifiers, respectively. The classificatioh @ single feature vector in the
testing phase takes 0.81lmsec for the Bayes classifthereas it only requires
0.09msec for the LVQ classifier. The training ph&se5 classes and 1760 feature
vectors takes 24.2msec for the Bayes classifierrzegréases to 1.65 sec for the LVQ

classifier, which requires iterative training.
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Table5.10. Test results on actual component images with aigamwn shifts and rotations

Golden board; no
shifts

20 micron right shift in
Y direction

60 micron right shift in
Y-direction

100 micron right shift
in Y-direction

40 micron right shift in
X-direction &

60 micron left shift in
Y-direction'

20 micron right shift in
X-direction &

20 micron left shift in
Y-direction’

120 micron left shift in
X-direction &

60 micron right shift in
Y-direction'

0.2 rotation angle (3
pixels shift)

& 50 micron paste
shift

0.2 rotation angle ( 3
pixels shift)

0.6 rotation angle (9
pixels shift)

-0.226

0.1
3.273

-3.035
-2

2.124
2.5

-5.158
-45

-1.570
05

-4.987
-5.5

-2.628
15

1.255
1.1

5.786

-0.317
0.5

5.149

-3.225

-0.285
-0.5

-2.729

2.974
3.5
0.685
1.5

5.421
10

3.07

-2.93
-2.5

3.287
35

-3.133

-2.5
2.124

-5.863

-1.264
-0.5

-5.36
-6

-2.93
-1.5

0.366
0.5

5.693

-2.347
-1.5

3.298

-5.336

-0.419
0.1

-5.766

0.681

-5.182

-5.5
-0.618
-0.5

-5.46

-9.5
-2.93
-2.5

3.067
2.5

0.734
15

2.252

2.766
2.5

1.645
15

-0.113
01

1.757
2.5

1.445
15

0.175
0.1

-0.016
0.5

-0.307
-0.5

-0.216

5.786

5.786

0.175
0.5
-0.518
-0.5

3.287

5.786
7.5

5.786

5.786

0.173

0.5
3.176

0.188
15

2.974
2.5

-1.181

2.019

-0.026
0.5

1.646
15

-0.12
0.1

-2.131
-1.5

-0.317
-0.5

-0.224

2.761
2.5

5.786
6.5

-2.93

-2.93
-2.5

-2.93
-2

-4.296
-3.5

-5.561

-5.5
-2.93
-2.5

-1.578
-1.2

3.28
3.25

-3.084
-2.25

2.124
2.25

-5.5105
-4.75

-1.417
-0.5

-5.1735
-5.75

-2.779
-1.5

0.8105

0.8

-0.352
-0.2

-4.2475
-2.75
1.8275
2.25
-2.2485
-2

2.4015
4.75

-1.195

-3.25
1.3315
2.75

1.62
15

1.955
2.25

1.22

1.75
2.87

0.232
0.75

0.953
0.45

0.8655
15

1.5455
15

0.0275
0.1

-1.0735
-0.5

-0.312
-0.5

-0.22

4.2735
4.25

5.786
6.25

-1.3775
-1.25

-1.724
-1.5

0.1785

0.745

0.1125

0.75
1.428
2.75

-0.184
-0.151

0.081
0.065

-0.071
-0.032

0.006
-0.016

-0.116
-0.066

0.080
0.036

-0.071

-0.082
-0.003

-0.039

-0.019

-0.073
-0.132

-0.067

-0.066

-0.061
-0.033

-0.169

-0.214

-0.004
0.036

-0.202
-0.263
-0.155
-0.148
-0.398
-0.428

-0.531
-0.709

-0.655

-0.824
-0.568
-0.692

-2.799
2.3 (-2)

1.228
1 (+1.5)

-1.081
-0.5

0.104
-0.25

-1.765
-1(-1)

1.219
0.55 (+1)

-1.078

-1.25
-0.050

-1.104
-2

-1.020
-1

-0.929
-0.5

-2.568
-3.25 (-3)

-0.067
0.55 (0.1)

-3.071
-4 (-3)
-2.352
-2.25 (-2)
-6.042
-6.5 (-5.5)

-8.060
-10.75 (-8)

-9.938

-12.5 (-9)
-8.619
-10.5 (-8)
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Table5.11 ABS(Class — Estimationfpr Bayes Classifiers

Class0 0. 152 0. 025 0.108 0.071
Class-1 0. 283 0. 028 0. 139 0. 258
Class +1 0.372 0.482 0.179 0. 333
Class-2 0.167 0.415 0. 279 0. 150
Class +2 0.120 0. 020 0.119 0. 141
Class-3 0.175 0.111 0. 365 0.098
Class+3 0.010 0. 015 0.125 0.331
Class-4 0.372 0.243 0. 030 0. 064
Class +4 0.241 0. 065 0. 069 0. 053
Class-5 0. 036 0.213 0.010 0.024
Class +5 0.284 0.401 0.172 0. 250
Class-6 0. 235 0.162 0. 505 0. 359
Class +6 0.570 0. 269 0. 831 0.570

Averagevalue 0. 232 0.188 0. 225 0. 207

of ABS(Class-

Estimation) for

13 Classes

Table5.12 ABS(Class — Estimatiorfpr LVQ Classifiers

Class 0 0. 062 0.219 0. 289 0. 068
Class-1 0.707 0. 536 0. 376 0. 141
Class+1 0.271 0. 426 0.131 0. 290
Class-2 0.432 0. 568 0. 096 0. 248
Class +2 0.448 0. 491 0. 107 0. 044
Class-3 0.290 0.019 0.241 0.218
Class+3 0.138 0. 200 0. 159 0.183
Class-4 0. 607 0. 470 0. 354 0.071
Class+4 0. 639 0.770 0.130 0. 086
Class-5 0. 374 0. 247 0. 629 0. 325
Class+5 0. 230 0.548 0. 424 0. 358
Class-6 0. 366 0.476 0. 819 0.691
Class +6 0. 458 0.434 0. 850 0. 863

Average value 0. 386 0. 415 0. 327 0. 275

of ABS(Class-

Estimation) for

13 Classes
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Table5.13 ABS (Estimation-Manual Measurement)

t01_1 Golden board,;
no 0.326 0.43 0.567 0.327
shifts
t01_2
0.273 0.213 0.766 0.176
t02_1
1.035 0.633 0.252 1.312
t02_2
0.376 0.124 0.266 0.474
t03_1 60 micron right
shift in Y- 0.658 0.863 0.145 1.181
direction
t03_2
1.07 0.764 0.013 1.019
t04_1 100 micron
right shift in Y- 0.513 0.64 0.743 0.526
direction
t04_2
1.128 1.43 0.055 0.146
t05_1 40 micron right
shift in X- 0.155 0.134 0.075 0.22
direction &
t05_2
1.214 0.693 0.516 0.631
106_1 20 micron right
shift in X- 0.817 0.847 0.193 0.183
direction &
20 micron left
shift in Y-
direction’
t06_2
0.149 0.702 0.216 0.224
t07_1 120 micron left
shift in X- 0.225 0.664 0.214 0.261
direction &
60 micron right
shiftin Y-
direction’
t07_2
0.215 0.519 0.214 0.714
t08_1 0.2 rotation
angle (3 pixels 2.229 0.766 0.325 0.07
shift)
t08_2
0.526 0.319 0.018 0.43
109 1 0.2 rotation
angle ( 3 pixels 0.815 0.318 0.713 0.93
shift)
t09_2
4.579 0.118 1.714 0.796
110 1 0.6 rotation
angle ( 9 pixels 0.07 4.04 1.214 0.061
shift)
t10_2
2.407 0.43 2.214 0.43
VARIANCE 0.595031
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Table5.14 ABS (Placement Machine Measurement — Manual Measem®

t01_1 Golden board,; 0.1 25 2.5
no
shifts
t01 2 3 35 15 3
t02_1 20 micron right 1 15 2 15
shiftin Y
direction
t02_2
35 3 25 25
t03_1 60 micron right 15 2 15 0
shift in Y-
direction
t03_2 25 25 0.1 1
t04_1 100 micron 0.5 1 25 0.5
right shift in Y-
direction
t04 2 35 35 15 15
t05_1 40 micron right 1.9 2.5 2.1 2.1
shift in X-
direction &
t05_2 4 4 25 0.5
t06_1 20 micron right 0.5 25 0.5 0.5
shift in X-
direction &
20 micron left
shift in Y-
direction’
t06_2 4 3 1 1
t07_1 120 micron left 0 3 0 3.5
shift in X-
direction &
60 micron right
shift in Y-
direction’
t07_2 25 2.9 0 0.5
t08_1 0.2 rotation 3.5 2 2.5 0
angle ( 3 pixels
shift)
t08_2 0.5 4 35 0.5
109 1 0.2 rotation 15 2.5 1 1
angle ( 3 pixels
shift)
t09_2 7 25 4.5 0.5
110 1 0.6 rotation 6 0.5 2 3.5
angle ( 9 pixels
shift)
t10_2 1 6.5 1 6.5
VARIANCE 2.472960
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Chapter 6

Data-Space Reduction using topological and projection
featuresfor Component Quality I nspection

6.1 Introduction to Data-Space Reduction

In this chapter we consider two approaches to overcoameputational complexity of
classical machine vision quality inspection of SMiysa PCB presented in Chapter 5. The
first employs associative memories to implementrédduced information content in image
intensity levels. The idea is to compare the edgetsre of a lead image with that of stored
fundamental patterns. The second scheme comprégseésita space by considering only an
image projection function of the data. A non-linéker based on high order neural networks
is used to encode the characteristics of each giirofe function. Both methodologies are
tested on real industrial PCB images. The qualfitygpection slightly deteriorates while the
computational time is significantly reduced, whesmpared to classical visual inspection
techniques.Thisresearch has been published in [28].

One of the most difficult and important problemsauatomating machine vision is to
understand what kind of information is required &woav is translated into measurements or
features extracted from images. A descriptive set of urelated features can drastically
boost the classification success rate. Some of miest ordinary inspected features
(dimensional, structural, etc.) are reported in. [8lch features can be processed and
analyzed via statistical or emerging soft-computieghniques (e.g. neural networks, fuzzy
systems, wavelets, or genetic algorithms) [61]).

Classical visual inspection techniques require resit® image processing and analysis
for improving the image quality and deriving chdesistic features. The limitation of
computer-based tools related to computer time amking space poses a high priority on
the objective choice of a limited number of essdritharacteristics (state-space or feature-
space reduction) but also on the exclusion of rddohobservations (sample-space or data-
space reduction). Thus, the concept approximate processing [29], [175] has been
considered in real-time applications, where thera inecessity for approximating a given

algorithm with another that has reduced computationst. In any problem-solving domain,
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an approximation to a given algorithm may be definas an algorithm that is
computationally more efficient and requires reduceshputational cost, but produces lower-
quality results according to some standards ofracgu certainty, and/or completeness.

A wide-spread approach related to approximate jggicg deals withfeature-space
reduction and attempts to preserve the most important irdtion conveyed by features
extracted from the input data, while simplifyingethrequired computations by reducing the
dimensionality of the feature space. Feature-spadection results in the representation of
high-dimensional patterns in a low-dimensional galoe based on transformations that
optimize specific criteria in that subspace. THaature-space reduction removes redundant
information and allows for more efficient class#imn. Principal components analysis
(PCA) [9], [31], [32] is a well-established feattspace reduction technique employed in
different forms including Factor Analysis [31], Kamen-Loeve Transform (KLT[], [9],
[11], [32] , and Hotelling Transform [31], [32], dending on the application.

Another approach to information reduction, refertedasdata-space reduction, exploits
the fact that the underlying dimensionality of thata (intrinsic dimensionality) may be
small, even though the input dimensionality is gugrge expressing high correlation among
input data. Unsupervised linear-mapping approachete form of PCA and orthogonal
subspace projections are designed to decorrelateddita and maximize the information
content in a reduced dimensionality space [176].rddweer, supervised projection
approaches, such as discriminant analysis and Bawyéschniques take advantage of class
distributions and are more appropriate for clasaifon purposes, as they can accentuate
features of particular interest by maximizing a aagon criterion or a Bayesian error
criterion, respectively [177].

Motivated by the capabilities of approximate preieg and the need for reducing time
requirements and overcoming inaccuracies duentorbscopic” pixel-level consideration of
images, we study in this papemdcroscopic” approaches that do not consider pixel
processing but rather define in an abstract wayctiteacteristic features of images. More
specifically, we consider one approach that onglymes the sketch of patterns in the image
and a second approach that processes only thectioojeof patterns at a single relevant
orientation. In this way we attempt to efficienbglance the amount of relevant information
exploited and the computational load of the alyonit Formally set, we adopt two different
forms of data-space reduction directly on the ahitmage space, affecting: 1) the intensity
levels or dynamic range, by transforming the greslesimage into a binary edge image and

2) the number of independent variables, by utiizamly specific projections of the data.
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the former approach referred toraduced dynamic-range processing we preserve only the
most descriptive information of the image in thenfoof edges, whereas in the latter
approach referred to asduced input-dimension processing we preserve the entire content
of info but compress it in only a single dimenstbnough projection. In general, the use of
edge images takes advantage of the intuitive walyltthmans operate for recognizing spatial
scenes. The characteristics that distinguish imagelighly similar low-level properties
(pixel distribution) are the shape and topologybjects they contain. Thus, several related
methods have been developed for image query anevatusingskeletons, caricatures and
sketches (i.e. topological features of an image) [178 - 180]. Furthermore, the conampt
image projection has been used as an effectiveadéibr extracting image features (i.e.
projection features) in facial image recognition [181] and characesagnition [182].

We employ this framework for analyzing SMD imagesd aestimating lead
displacements. A novel Bayesian framework for saichlysis has been proposed in Chapter
5 based on the fact that positioning measurenmnesach lead can be viewed as individual
(inaccurate) measurements of the same quantitydiegathe component displacements. We
can view the estimation process operating in twelte The first level considers a crude
computation of quantized displacement of each ladugh classification in a limited
number of quantized displacements. The second tpeiates in a Bayesian framework and
aims to accurately model the estimation of compbdeplacement based on quantized lead
displacements. In this chapter we focus on quashtidassification of lead displacements
based on reduced dynamic-range and/or input-dimmenprocessing of individual lead
images. The motivation behind our work is to avend/or overcome problems introduced by
segmentation process and reduce the computationgblexity of classical machine vision
approaches for quality inspection. Compared withtuee space reduction that extracts
features at pixel level of abstraction and theruced the feature space, the proposed data-
space reduction approach for approximate procedssigeduces the data space according
to some particular abstract characteristic (eittigmamic range or dimension) and then
defines features at a higher level of abstractiorthis form, we expect to design algorithms
that effectively reduce the complexity of procegsby defining features of lower intrinsic
dimensionality, while overcoming inaccuracies irage acquisition expressed at pixel-level
resolution. Following the process of quantized sifasation, we can further proceed with the
Bayesian estimation approach developed in Chapter &ccurately estimate component
displacements based on the measurements from maimdual leads, i.e. the quantized lead

displacements.
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6.2 Experimental Set up

The experimental set up for this research is timesas the presented in Subsection 5.1.2.
Our approach aims to estimate each lead displadeowen its ideal position centered at the
pad/paste region. For the purposes of estimatitiger quality measures, only the
displacement along the side of the component isngis$ [19], [30]. Thus, our problem is
restated as estimating lead displacement at thectain perpendicular to the lead axis.
Essentially, we consider quantized displacemeirnhasibns organized at multiples of a pixel
displacements. The displacement classes we coraidexgain {-6, -3, 0, +3, +6} and {-6, -
4,-2,0, +2, +4, +6}, in pixel displacements ottez lead over its central position.

Visual inspection techniques usually proceed irpstas outlined in Figure 4.13 of
Chapter 4. The features are extracted from seguhéedel images. An example of input lead
image and its segmented version is illustratedgurie 6.1.

(@ (b)

Figure 6.1 Segmentation of lead image based on the 4-level &¢orithm.
(a) Original lead imageg(b) segmented lead image.

Although a high dynamic-range camera is used, themination effects are obvious

degrading the segmentation result. The usual pmublassociated with illumination effects

have been described in detail in Subsection 4.2 2 proposed reduced dimensionality
approach overcomes such problems by establishimgaoscopic consideration of features
at a higher level of abstraction. More specificalhe image presented for reduced dynamic-
range processing preserves only an abstract skédtthe image edges, whereas the data
given for reduced input-dimension processing reprissa projection of the input image and

reflects the abstract structure of interest omglsidirection, as illustrated in Figure 6.2 (c).
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Figure 6.2 Typical images used in data-space reduction aoes.
(a) original image(b) reduced dynamic-range imade) reduced input-dimension data

6.3 Reduced Dynamic-Range Processing

In our first approach related to data-space reolucwe utilize the edge structure
extracted from the input lead image for classifaratpurposes. In most cases, the derived
edge structure is partially deformed or destroyBaus, the major task is to relate edge
patterns so that we can recall a class assignmemath test pattern that may be presented
for classification. We exploit the concept of asatee memories (AMs) [41], [113], [127-
131] as stored patterns representing the desic@éses, and thdamming distance [41],
[113] for quantifying the distance between the inpattern and each one of the stored
memories. The theoretical background of associatigmories has been given in Subsection
4.1.2.3. For classification of input patterns we tlfeeHamming neural network [41], which
is a maximum likelihood classifier used to deterenthe proximity of an input vector to
several exemplar vectors or prototype patternsinpnt pattern that partially resembles the
stimulus of an association invokes th&sociated response pattern by means of the ghortes
Hamming distance. Thus, an associative memoryretiieve a stored pattern given a
reasonable subset of the information content ot thattern. Moreover, an associative
memory is error correcting in the sense that it eaerride inconsistent information in the
cues presented to it. The input pattern to the oidws a binary edge pattern (as in Figure
6.2(b)) obtained from the grayscale input lead iendgs in Figure 6.2 (a)) through
segmentation and edge detection. The stored AMenpatireflect the edge structure of the
“typical” edge image representing each class ofl ldesplacements. Thus, the reduced

dimensionality, binary edge image is fed to the Hang network to determine pattern
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similarities and implement the desirable classifiehe classifier is trained for 5 and 7
classes, corresponding to integer lead displacesrfemin —6 to +6 pixels per 3 and 2 pixel
displacements, respectively. The derivation of binreary edge image, the construction of
appropriate fundamental memories and the Hammangsifler are presented in the following

sections. The overall classification system is gmésd in Figure 6.3.

6.3.1 Preprocessing: Derivation of Binary Images

The 8-bit lead image reflects different areas ¢énest, including the background, exposed
pad, solder paste and lead regions. Our study t@irastimate the lead displacement over the
pad/paste region. The binary image used in classifin reflects the edges of the lead versus
the outside pad/paste edges. In order to presdrgesimplicity of our approach, we
implement a two level segmentation process follovisydedge detection to derive the
desirable binary image.

The segmentation process aims to separate theteadrom the other region of interest.

This process involves the following steps.

e By applying a small threshold, the dark backgroareh is easily removed.

e The application of a second, large threshold dersaveral bright regions corresponding
to the lead and/or the exposed pad areas. Duetlauthe extent of the lead area and the
intense reflection on its surface, the largest egnsented bright regions represents a
portion of the lead area. By using a region growgahnique to expand the extent of this
(largest) region followed by a line fitting procetss define its enclosing rectangle, the
lead region is effectively segmented and sepafabed the remaining pad/paste regions.

e A Laplacian edge detector followed by simple thodgdimg is used to define the edges of
the segmented image and derive the binary edgeeimggesenting the pattern to be
tested through the Hamming neural network.

An example of resulting binary images from the aoentioned procedure is illustrated in

Figure 6.2 (b).
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Input Binary Class
Image Image Assignment
Hamming
~{ Preprocessing » Neural N
Network
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Associative Pattern
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Figure 6.3 Associative memory classification system

Since we exploit the concept of associative memdng, input pattern must have a
structure similar to its closest one of fundamentamories. In order to enforce such pattern
similarity, we fix the location of the lead in bothe test image and the fundamental
memories, so that large pattern differences indbmparison of two images can only be
attributed to different shifts of the outside boands over the fixed lead location. Thus, the
pre-processing stage also shifts the centre ofitgraf/the lead region of each image (test or

fundamental) to the same reference position, theecef the image.

6.3.2 Fundamental Memory Construction

An important issue of associative memories is tleindion of its fundamental
memories. Each fundamental memory comprises the specifezadteristics discriminating
its class. Moreover, the fundamental memories usddad displacement must assess the
standard characteristics of the problem, such & saage size, uniform lead position, etc.
To satisfy these requirements, we first selectntleenory for one displacement (0 pixels) and
then construct the memories associated the otlessed by shifting the outside edge
structure with respect to the fixed structure of thad. The basic fundamental memory at
shift O is selected from a number of test imagéieatng exactly this specific case through
statistical analysis of the mean pattern in thessl
To ensure high performance of the Hamming netwavike, consider the distance of

fundamental memories themselves, by means of therelabon -coefficient
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ro=yxy./ /Zx_ZZy? between two random patterrsy. The larger the distance
Xy S0 e B

(smaller the cross-correlation) of a class-pattieom its closest neighbors, the better the

expected discrimination ability of the classifi@io preserve a consistent correlation form

between each fundamental memory and its neighbgraiterns, we further process them

with the morphological transformatiadilation using a rhomboid-structuring element with

radius 1 pixel. The resulting memories are depiateBigure 6.4, whereas their correlation

table is given in Table 6.1. Observe in Table G4t (as expected) the cross-correlation as a

function of class dissimilarity decreases and gyiskabilizes to a constant level.

0

Figure 6.4 Fundamental memories after dilation

Table 6.1 Correlation coefficients between fundamental meawosfter dilation.

-1 -2 -3 -4 -5 -6

+1 +2 +3 +4 +5 +6

-6 =5 -4 -3 -2 -1 0 1 2 3 4 5 6
-6 | 1.000 | Q875 | Q750 | 0.625| 0.609| 0.591 0.56P 0.552 | 0.510| 0.502| 0.496 0.490 0.492
-5 | 0.875| 1000 | Q875 | 0.750 | 0.623] 0.603 0.58B 0.565 | 0.520| 0.512| 0.502 0.496 0.490
-4 | 0.750 | Q875 | 1000 | 0.875| 0.748| 0.619 0.59f 0.579 | 0.534| 0.522| 0.512 0.502 0.496
-3 | 0.625| Q750 | Q875 | 1.000 | 0.873] 0.744 0.611 0593 | 0.548 | 0.536| 0.522 0.512 0.5(02
-2 | 0.609 | 0623 | Q748 | 0.873| 1.000{ 0.871 0.73B 0.605 | 0.560| 0.548| 0.534 0.520 0.530
-1 | 0.591 | Q605 | Q619 | 0.744| 0.871] 1.00Q 0.86f 0.734 | 0.605| 0.593] 0.579 0.56p 0.592
0 | 0569 | 0.583| 0.597 0.611 0.738 0.847 1.0p0 0.867 0.y38 110/60.597| 0.583 0.56%
1 | 0552 | 0.565| 0.579| 0.593 0.605 0.734 0.867 1.000 0.871 440{70.619| 0.605 0.591
2 | 0510 | 0.520| 0.534| 0.548 0.56p 0.605 0.788 0.871 1.p00 730/80.748| 0.623 0.60%
3 | 0502] 0512 0522 0.536 0.548 0.593 0.611 0.y44 730/{81.000| 0.875 0.750 0.6
4 |1 0496| 0502 0.512 0522 0.534 0.5(9 0.897 0.519 480{70.875| 1.000 0.87% 0.750
5 10490| 0.496] 0502 0.512 0.520 0.565 0.583 0.p05230/60.750| 0.875 1.000 0.87
6 | 0.492| 0.490] 0.49 0.502 0.510 0.5p2 0.569 0.p91 090|60.625| 0.750 0.87% 1.000
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Thus, the correlation of class 0 with classes {46bis almost the same. This preserved
correlation among stored memories degrades thénciish ability between classes as
discussed in the examples.

Based now on the design of the fundamental memasiesieed to train the network so that
it recovers the closest stored pattern in respaaseach test-input. An example of the
desirable operation of the associative memoryénctise of a test image with +3 pixels lead-

shift is illustrated in Figure 6.5.

o=

(@ (b)

Figure 6.5 Associative memory operatiofa) testing imagéb) output response

6.3.3 Classification using the Hamming networ k

The comparison between the input (edge) patterntlamdtored memories requires the
use of a distance measure, for example the Eudidesance or the Hamming distance, for
guantizing the output to the fundamental memoreggasenting the desirable classes. To
implement this quantization via the Hamming siniifameasure, a Hamming network is
employed. Its operation aims to select one of tioeed patterns (or classes) that is at a

minimum Hamming distance (HD) from the binary inpugictor. The Hamming network

consists of two layers. The first layer calculates (N-HD) between the input vectqr™™

and the stored',p?,....,p0" N-dimensional fundamental memories in a feed-forwaads.
The strongest response of neurons in this layedisative of the minimum HD between the
input and the fundamental memories. In our impleaién the input in Hamming neural
network is a binary image 366=2016 pixels. Thus, the input vector of Hammireyinal
network has dimension 2016, i.e., the first lay@Hamming neural network is constituent of
2016 neurons. The second layer of the Hamming or&tws a winner-take-all network
(MAXNET), implemented as a recurrent network. ThAXNET's ¢ parameter was set to
€=0.0385. The MAXNET suppresses all of its inputuesl except the one at the maximum

node of the first layer.
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Given a set of binary prototype (exemplar) vegidrs j =1,...M , the operation of the

Hamming network withN input nodes (number of components of any inputorg@ndM

output nodes (number of prototype vectors) is surz@d as follows.

1. For storing thévl prototype vectors, compute the weights:
i
P =1N=1.Mm)

and the bias terms:

N .
b=—,(j=1..M
5 o (] )

J

2. For each unknowN-dimensional input vectot, dosteps 3 — 4.
3. compute the netinpy, to each unity; of second layer (MAXNET):
N

y;(0)=b,+> wx(0), =1..M)

i=1

4. MAXNET iterates to find the best-match exemplartgat based upon the
equation:

y,(t)=f (yj (t-1)-&>y, (t—l)J
{

j#i

wheref is the activation function f(x) = and ¢ is a small parameter

O<ex< 1 . In our application we setzl(—lj =0.038E.
M 2\ M

6.4 Reduced Input-Dimension Processing

In this approach we exploit the structure of thelenage profile (projection) along one,
the most descriptive direction vertical to the leads, for extracting meaningful features
related to displacement measurements. The imporantponent of this classification
scheme is its feature extraction unit. We proposeomplete feature extraction and
classification approach that consists of threerdisimodules. The first module receives the
lead projection function at its input and utilizesonlinear filter based on a high-order neural
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network (HONN) for feature extraction. Feature ealencode the five lead displacements
(i.,e., 0, -3, -6, +3,+6 pixels). The second modmplements feature reduction and de-
correlation of the feature space by using the Kiaehuloeve transform (KLT). The third
module comprised by the Bayes classifier servea afassifier that assigns each feature
vector to one of the predetermined classes. Thigmaclassification system is illustrated in

Figure 6.6, for 5-classes assignment, and is fudiseussed in the next sections.

Lead image
projection Feature Feature
Extraction Reduction Pattern
_’ ------------------------ Classfier ) _
HONN O pixels
Features KLT
C arets D

-6 pixels

]

Figure 6.6 Pattern classification for lead image projections

6.4.1 High Order Neural Networks (HONNS)

HONNSs are fully interconnected single layer netvgpréontaining high order connections of

sigmoid functions in their neurons [132-136]. If wlefine asx,y its input and output

respectively, withxe R" ang e R™the input-output representation of a HONN is gibgn
y=W'S(x) (6.1)

where W is agxm matrix of adjustable synaptic weights an&(x) is a g-dimensional

vector with elementS§ (x), i =1,2,.. g of the form

$(0=TT[s()]"" ©6:2)

jel;
where |;, i =1,2,.. gare collections of] not-ordered subsets of {1,2,n},and d,(i)are

non-negative integers. In Egn (6.§ij) is a monotone increasing, smooth, function, which

is usually represented by sigmoids of the form:
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(%)= Joa 2 (6.3

for all j=1,2,...n. In (6.3) the parameterg,| represent the bound and maximum slope of
sigmoid curvature whilé , c are the vertical and horizontal functional shifespectively.
For the HONN model described above, it can be $&88-136], that there exist integers

g, d; (l) and optimal weight valuesV such that for any smooth but unknown function
f(x) and e >0, |f (x)—WTS(x)| <&, Vxe M where M c R"is a compact region. In other

words, for sufficient high order terms, there exagtimal weight valuesV such that the
HONN structureWTS(x), can approximatef (x)to any degree of accuracy, in a compact

domain.

Remark 1: Observe that HONNs posses a linear-in-the-weigtdpgrsty. Depending on the
form of its regressor terms (6.1) may represenibuarwell-known neural network structures
[137].

6.4.2 HONN Based Feature Extraction

The HONN based feature extraction module receigesput a normalized projection
function of the tested lead image and updateseights by stable Lyapunov learning laws as
to approximate that input function. Prior to emgrthe input function is linearly transformed
in the range [0,1], as to avoid the appearanceesfathilizing mechanisms caused by purely
numeric issues, (i.e., large variations on the mnggojections data). Moreover, for
uniformity reasons, the rising point of this fumeti is shifted to the origin. Three
displacement examples reflecting + 3 pixels, -Efgxand 0 pixels lead shift are presented in
Figure 6.7. Notice that the unimodal form of thejpction function for a centered lead tends
to a bimodal structure for increasing lead dispiaeets. This bimodal structure can make the
distinction of the direction of displacement quatidficult, since the lobes of the projection
function attributed to lead and pad regions caninoistinguishable. Such problems are
further discussed along the presentation of results

In the following we study the construction of theafure extraction system and we

rigorously analyze its performance. Lete R, be the data point on the projection axis,
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yeR, be the projection value of lead imag® (denotes the set of positive real numbers),
andf represent the actual but unknown projection fumctiObviously the projection profile

is modeled as a functiog = f (x). Moreover, lety =W'S(x) be a HONN approximation

of the actual projection functiorf (x) Due to the one-dimensional structure of the bl

the HONN is designed for scalar input/output pdimgked at a higher dimension with a

weight vectoWV . Define the projection approximation error as

e=f(X)-W'S(x)=y-§ (6.4)

1 1
0.9 - o.l T
| o
TN .
oo\
05 \ 05 /
0.4 / \ 0.4 / \
0. 03 /
| \ oo/ \
01 / \ 01
% 01 o0z 03 04 05 05 07 o8 o5 1 0 01 02 03 04 05 06 07 08 08 1
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Figure6.7. Original lead images and projection functions ®r«3 pixels, b) -3 pixels, and
(c) O pixels lead shift

Observe thate is directly measured even thoug’r(.) is unknown. It has been shown in
[137] that the nonlinear adaptive filter

z=-az+y-W'S(x), >0, zeR (6.5)
equipped with the update law

W =—yW +2S(X) , y >0 (6.6)
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guarantees the uniform ultimate boundedness ofoutfput ze R with respect to the

arbitrarily small set

2

2 2y|\W
Z= ZGR:|Z|§i+1 (fj +— 1
20 2\\a a

as well as the boundedness of the optimal HONN hm;i\g}/ Vx> 0. In the aforementioned

A

(6.7)

relationse,y are design constants agd> 0 is an unknown but small bound on the HONN

reconstruction error.

After convergence of the HONN, the feature vedtas formulated by the vector of
trained WeightsW augmented with the approximation ereoin our approach, we form the

feature vectofF) as

Wl
- W,
F :{W} -| : (6.8)
e N
WN
- e ~
W
where W = :2 is the optimal HONN weights vector (of specificnénsionN=12) ande
Wy

is the approximation error. This selection allowsto encode all HONN variables that
characterize the projection function. An obvioustfee is the approximation erra
Furthermore, since the HONN possesses a linedresweights property, the existence of a

unique optimal vector W different for each different projection functioa guaranteed.

Thus, the weights vectol/ also serves the purpose of a relevant feature.

6.4.3 Parameters Selection of the HONN Feature Extractor using a Genetic
Algorithm
A serious drawback in designing of the HONN basedture extraction module is the
requirement for manually selecting an optimal destouctural parameters of the non-linear
filter. More precisely, the structural parameterthe HONN feature extractor include:
e the HONN order
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e the sigmoid function parametersl, A, ¢
e the parametes > 0 that appears in the nonlinear adaptive filtes)6and

e the parameter > 0 that appears in the weights update law (6.6).

Selecting all the above parameters through a & error procedure is very time
consuming and requires vast engineering experieMmreover, the final result (i.e.,
classifier's success rate), may be far from optif®hlviously, an automated design process
aiming at optimizing the classifier's decision, Ivserve as a significant addition to the
already proposed feature extraction system.

In order to facilitate the design of the HONN f@atextractor and automate the process
of parameter selection, we introduce the use dadreetic algorithm (GA) embedded into the
feature extraction module, as has been proposg3B]. This approach aims to overcome
the problems introduced by the nonlinearity in g@ameters property, which implies an
infinite set of different parameter combinationattiead to the same feature space topology.

The proposed design procedure is illustrated inf€id.8.

Lead Image

Projection /

HONN Feature : —
¢ > Filter ——»  vector [» @ Classifie [—»

- Feature
Genetic Space

A|gOI’Ithm Top0|ogy

Figure 6.8 The HONN-based feature extraction module parametdestion process.

To enable the feature extraction module parametiectson process, the switch S that
appears in Figure 6.8 is set to position 1. Aftex parameters have been determined, the
switch is set to position 2, to proceed to classifonstruction.

From the above discussion it becomes apparentthigalGA plays a key role in the
parameter selection process. In Subsection 4.@eharal introduction to genetic allgorithms
has been given. In what follows we will describemore detail the basic ingredients of the

used GA in parameters selection of the HONN-b#&satlire extraction process.
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In Figure 6.9 we visualize the employed GA in blat&gram form. Notice the circular
topology of the algorithm. Each cycle is called engration. First, the number of
chromosomes is specified. This number remains aaohsfor all future generations
throughout the termination of the genetic procddse chromosomes are real-valued and
represent the sigmoid function parameiera, |, c as well as the gaing, y that appear in
Eqgns (6.5) and (6.6) respectively. Each paramatdrad chromosome forms a gene. All genes
in a chromosome are initialized randomly from valtigat belong in pre-specified intervals.
In this way an initial population is establishedcE chromosome corresponds to a specific
HONN structure with unspecified weight values. Thesights are determined in the HONN
training phase that utilizes (6.6).

In the sequel, all chromosomes are evaluated théhaid of a properly selected fithess
function. We aim at highly separable classes infélature space. Two classe$ are called
highly separable if the following properties hold:

e PB. The intra-distance between any two featuresalass, is minimum.

e P,. The inter-distance between any two classeslj is maximum.

e P,. The overlap of clagsand clas$ is minimum.

The intra-distance measures the compactness odss.cHence, the areg each class
occupies serves as a logical measure. Notice lieateiquirement of having minimum intra-
distance becomes significant as the number of etaggows, which further leads to
improving the generalization of the procedure. Teasure the inter-distance, we first
determine the centers, c; of the classes, j respectively, and then calculate the inter-
distance as the Euclidean distarﬂc,e— ci||. Satisfaction ofF, P, and P, is equivalent of
having low variance, minimum overlapping classelpse centers are distant in the feature

space.
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Figure6.9 The proposed genetic algorithm in block diagfarm.

Let v; denote the overlap of claswith class. Minimizing the fitness function:

p

ﬂ +V, (6.9)

1

F=>) >
) e -el

wherep, k are some positive constants, obviously leadsdaitmultaneous satisfaction of the

separability conditiondS, - B,, thus yielding highly separable classes infédature space.

Prior to calculating (6.9), the border of each lgisould be determined.

After evaluation, each chromosome is ordered aaogitd its fithess value. A percentage
(e.q., the top 35%) are selected to serve as théidate parents, thus forming the mating
pool, while the rest are disregarded.

Since the chromosomes are real-valued, real-vatvessover and mutation operations
are applied. First, @rossover probability p, e [0,1] is selected. Consequently, for each
gene, a real number, € [0,1] is randomly selected. If, > p, the parents exchange the
values of their correspondinggenes. Similar to the crossovemnatation probability p,, €
[0,1] is first defined. Consequently, a real numhee [0,1] is randomly selected. If, < p,,
then the mutation operation is applied to a rangiaalected gene of the chromosome.\Let
be the value of the selected gene. A random petiorb is added ow according to the

formula:
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V=v+Av=v+0.5v (6.10)
wherer e [-0.5, 0.5] is also randomly selected. In this wie real-valued mutation

operation is performed.

According to the elitism operation, the best fitahosome (i.e., the one with the highest
fitness value) is copied to the next generationndée the search is directed towards the
currently best solution. Elitism is the last stdpaor search. In the sequel, a new population
is established and a new generation begins. Theriddgn terminates whenever a
chromosome is found to possess a fitness valuerltvee an a priori defined threshold or
whenever a pre-specified number of generation$bas reached. The algorithm termination
conditions are checked in the specifications vaatfon phase, which is depicted in Figure
6.9.

Overall, we select all sructural parameters exe#pNN order using the GA (guidelines
for the selection of HONN order are presented i87]1). The learning parameters of the
HONN are determined through (6.6). The operatipaaametersp,, p,, , p andk, as well as
the stopping criteria (fithess threshold and maxmmumber of generations), are defined by
the user through a trial and error procedure. In case we have selected, =0.6,
p,=0.3, p = 0.5 andk = 0.2. The GA terminates if the maximum number 600
generations is reached.

6.4.4 Feature Reduction and Classification

In this research, the KLT is used to de-correlai@ educe the dimensionality of feature
vectors, disjoint class spaces in the new (redutsamture space and aid the classifiers in
performing accurate discrimination. The KL trangfiation projects thé&N\ HONN-weight
features to th&k most important directions. In essence, the KL dfamm projects feature
vectors on the directions that best preserve g@egserties. Two different forms of the KLT
are studied. In the first only one KL transformatimatrix (1 KLT) is created for the entire
data set, whereas in the second one KLT matrixeiated for each class (each displacement).
Thus, the first approach computes the most sigmticirections of the entire problem space
and preserves directions where the data set exgsrdhe largest diversion. In the second
approach [148], [149] each individual class is esented by its most significant directions.

For each vector in cladgs only its projection on to the most significanteditions of class
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is preserved for classification. For each class,dpproach preserves only the directions that
best characterize the shape of its boundary amérdis the rest. Thus, it encompasses class
specific characteristics and uses them to bett#atss and discriminate classes by avoiding
class mixing in irrelevant directions. The theareti background of the multiple KLT
approach is given in [148], whereas its applicais a general analytic tool is established in
[149] and is presented in Subsection 4.1.5.2.

Pattern classification may be modelled using a Bayeapproach, assuming a Gaussian
distribution of the training set in each classolr application, a Bayesian-distance classifier
is used to implement the classifier. Notice that thassifier operates on the feature vectors
extracted by the preceding HONN network and thgtailable classification scheme may

be utilized as a candidate classifier.

6.5 Reaults

In this section we present and compare classifinatesults obtained by the two proposed
approaches. Notice that the classification resalitained from either of the proposed
approaches are only quantized measurements ofdispthcements. We should emphasize
that the process of Bayesian estimation presentéhapter 5 can be effectively applied as
to derive accurate displacement estimates for iieeecomponent from these displacement
measurements, which are viewed as individual olsens from many cites of the

component (its individual leads).

6.5.1 Classification Results using reduced dynamic-range processing

The reduced dynamic-range approach developed itio8e8.3 is now tested on Monte
Carlo simulated images from four-sided QFP comptmeh total of 120 lead samples per
class of the lead displacement is obtained resgyitiriotally 1560 samples for the 13 classes.
We consider the Hamming network trained and tefted? and 5 classes. The first case
involves pixel displacements {-6,-4,-2,0,+2,+4,+8@}hereas the second case considers
classes {-6, -3, 0, +3, +6}. These two cases sthdyability of the classifier to discriminate
classes in the feature space separated by 2 angel® @mpart, respectively. We do not
consider all 13 classes {-6,..., -1, 0, +1,..., +6}l@ad displacement per 1 pixel , since all
these classes are hardly separable in the 13 diomah$eature space defined. Our approach
is tested on 120 lead samples per type of the thsyglacement resulting in totally 840

samples for the 7-class testing set and the 600plsamfor the 5-class testing set
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correspondingly. The testing process follows a jaaiting scheme [9], where all but one-
sample feature vectors are used for training aadast one is used for testing. This process
is repeated for all samples, leaving one out imewegcle. The overall classification rates
from this jack-knifing process approximate the true classification prditigsi of the
classifier tested.

Using the jack-knife process we obtain the classifon probabilities (%) for the 7-class
and 5-class feature sets as depicted on Tablemn.B.3, respectively. Notice that all feature
vectors are pre-labeled, so that classificatiotissites are easily computed for the classifier
under consideration. Each row depicts the actaaiscbf the labeled feature vectors, whereas
each column indicates the class assigned by tissifita. Thus, each diagonal cell of table
indicates the classification success rate for ttreesponding class, whereas the rest of the
cells in the row illustrate the misclassificatiates.

Table 6.2 Classification probabilities (%) of the Hamming+disce classifier for 7 classes

-6 pixels|-4 pixels|-2 pixels| O pixels | 2 pixels | 4 pixels | 6 pixels
shift shift shift shift shift shift shift
85. 00 14.17 0.83 0. 00 0. 00 0. 00 0. 00
0. 00 84. 17 15. 83 0. 00 0. 00 0. 00 0. 00
0. 00 1.67 77.50 20. 00 0. 00 0. 00 0. 83
0. 00 0. 00 0. 00 92. 50 0. 83 6. 67 0. 00
0. 00 0. 00 0. 00 5. 00 82. 50 12. 50 0. 00
0. 00 0. 00 0. 00 0.83 8.33 82.50 8.33
0. 00 0. 00 0. 00 1.67 3.33 7.50 88. 33

Table 6.3 Classification probabilities (%) of the Hamming+disce classifier for 5 classes

-6 pixels|-3 pixels| O pixels | 3 pixels | 6 pixels
shift shift shift shift shift
86. 67 10. 00 3.33 0. 00 0. 00
0. 00 79. 17 20. 00 0. 00 0. 83
0. 00 0. 83 95. 00 4.17 0. 00
0.83 0. 00 5.00 92. 50 1.67
0. 00 0. 00 1.67 5. 00 93. 33

These classification results illustrate the abildly the Hamming classifier to separate
displacement classes. As expected, the resulthdéds-classes assignment are more accurate
than the 7-classes case, where the larger leathdespent differences between two
successive classes are also reflected in the éagator differences. Nevertheless, due to the
preserved correlation between AMs of neighboringssts, the discrimination ability is
limited even in the 5-classes assignment. For magtaa portion of test leads from class {-6}

is diffused to classes {-3} and {0}. Moreover, thercentage of correct classification differs
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significantly among classes. The latter problem lmamlleviated with more extensive testing,

but the former is an inherent limitation attributeddimensionality reduction.

6.5.2 Classification results using reduced input-dimension processing

Similar to Subsection 6.5.1, we consider the Bayedistance classifier trained and tested
for 7 and 5 classes. Again, a total of 840 and 8@ ple-leads are used for testing the
classifier on seven and five classes, respectividyapproximate the unknown projection

function the following HONN structure is used:

3 . 8 , 12
y=WTS(X)=> ws () +w,s; (X)+ D wsi™(x)+> wsi?(x) (6.11)
i=1 i=5 i=9
with
0.9571 0.3838 -
s(x) = 14 @ 35703k 0076) " 0.2245, $,(X) = 1+ @ 0-35%k- 1.488) 0.2607
0.9625 1.2906 -
$(x) = 14 @ 2244386 07927 0.5625, s (X) = 14 @ L4686 0.3287) 0.357z .

The HONN weights are updated according to:
W =—-0.000534y + zsl(x) =12,
W, = —-0.000756, + 55 (X)
W =-0.00082%y +zs\ ™ j= 5,6,7,
W =-0.00040% zs{® i= 9,10,11,..
The parametetr that appears in (6.7) is fixed to=8.091:.
The aforementioned in Subsection 6.4.3 geneticrigfgo is used to estimate off-line the
optimal structural parameters of the non-lineaerfiexcept HONN order.
For the displacement classification task, the Bayeslassifier is implemented that
computes the distance from an unknown feature vectto thesample mean vector m, of
each class and assigns the pattern to the classnohum distance. Thus is assigned to

classw, if D, <D, forall j=i. The a priori class probabilities are set to Itd a/5 for

the seven and five-class assignments, respectiValy.KL transform is used to decorrelate
the feature vectors by taking the projections efNhdimensionaHONN features to theiK

most important directions. In this study, the aradidimension of N=13 is only reduced to
K=11, signifying that the feature extraction praxeateveloped yields almost uncorrelated

features.
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The classification process is repeated for 840 &0@ cycles for the 7 and 5 classes,
respectively, by leaving one test sample per cgaleof training. The approach using 1-KLT
matrix utilises the 83€l3-feature matrix to derive a singlexid transform-matrix for the
entire training set. The testing vector is projddie the reduced feature space by this KLT
matrix and classified according to the minimum alisie scheme. In each cycle the jack-
knifing process computes the corresponding KLT iatirains the classifier with 839
vectors and tests it with the feature vector lettaf training. Alternatively, the classification
approach using multiple KLT matrices derives a larigansform matrix for each class based
on the corresponding training set. Overall, witbath cycle it derives 7 and 5 different KLT
matrices for the seven and five class assignmesgpectively. These matrices are then used
to train the Bayesian classifier and derive thetfand second order stochastic parameters
(mean vector and covariance matrix) of each cl@sbsequently the testing vector (within
each cycle) is projected to all individual KLT ma#s so that its distance measure from each
particular class can be computed. The testing vestolassified to the class of the shortest
distance. In the seven-class problem, for exantpéetesting vector is multiplied by 7 KLT

class-matrices resulting in severll vectorsx;, i =1,...,7, which are then used akass-

projected testing vectors (one specifically for each class) in the classifighe initial feature
vector is assigned to the classbased on the minimum class-specific distance, ifi.e.
D(x,,m;)<D(x;,m;) Vj=1..7 j=i.

The probabilities of classification resulting frothe jack-knife process are illustrated in
Tables 6.4 to 6.7. More specifically, Tables 6.4 &5 present the probabilities of the
Bayesian-distance classifier for the 7-class casegul and 7 KLT matrices, respectively.

The corresponding probabilities for the 5-classecase presented in Tables 6.6 and 6.7,
respectively.

Table 6.4 Classification probabilities (%) of the Bayesiaasdifier on 7 classes (1 KLT matrix)

-6 pixels|-4 pixels|-2 pixels| O pixels | 2 pixels | 4 pixels | 6 pixels
shift shift shift shift shift shift shift
85. 83 12.14 2.03 0. 00 0. 00 0. 00 0. 00
11. 25 67. 83 16. 13 3.07 1.23 0. 00 0. 49
0. 26 8.72 80. 17 10. 21 0. 64 0. 00 0. 00
0. 00 11. 31 0. 89 65. 64 18. 92 3.08 0.16
1.12 0. 00 0. 00 16. 04 73. 17 4. 60 5.07
0. 00 0. 00 0. 00 3.03 4.26 90. 83 1.88
1.54 0. 00 0.78 2.01 1.78 1.49 92. 4
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Table6.5 Classification probabilities (%) of the Bayesiaagdifier on 7 classes (7 KLT matrices)

-6 pixels|-4 pixels|-2 pixels| O pixels | 2 pixels | 4 pixels | 6 pixels
shift shift shift shift shift shift shift
76.70 12. 64 5.91 2.54 0. 00 1.01 1.20
12. 47 80. 83 4. 43 1.05 0. 00 1.22 0. 00
0. 00 5. 29 86. 07 8.43 0.21 0. 00 0. 00
8. 55 1.24 3.61 68. 64 16. 13 0. 00 1.83
0. 27 0. 00 0. 00 12. 24 83. 30 3.96 0. 23
0. 00 0. 00 0. 00 6. 02 0. 37 90. 00 3.61
2.01 0. 00 0. 00 1.08 0. 00 3.81 93.10

Table 6.6 Classification probabilities (%) of the Bayesiaagdifier on 5 classes (1 KLT matrix)

-6 pixels|-3 pixels| O pixels | 3 pixels | 6 pixels
shift shift shift shift shift

88. 30 7. 67 4. 03 0. 00 0. 00

3. 05 91. 60 5. 35 0. 00 0. 00

8. 65 0. 00 82. 40 6. 41 2. 54

0. 00 0. 00 3.42 90. 50 6. 08

0. 00 0.73 4. 82 3. 07 91. 38

Table 6.7 Classification probabilities (%) of the Bayesidassifier on 5 classes (5 KLT matrices)

-6 pixels|-3 pixels| O pixels | 3 pixels | 6 pixels
shift shift shift shift shift
92. 50 3.69 2.81 0. 62 0. 38
0. 86 93. 33 5.81 0. 00 0. 00
4. 27 2.98 86. 70 6. 05 0. 00
0. 00 0. 00 4. 67 93. 33 2.00
2.37 0. 00 0. 00 0. 00 97.63

From the above classification results we conclindé the multiple KL approach is able to
discriminate classes better that the single KL qutpn. Moreover, as expected the
classification results for the 5-classes assignnagatmore accurate than these for the 7-
classes problem. The limitations due to informati@duction are again clear and are
attributed to similarities of the projection furars. In this case, the direction of
displacement can be difficult. Notice for instant®e classification of samples with
displacement +6 in Table 6.5, which distributes gias even to the class of —6-pixels

displacement. The effects are more evident in tHaésplacement class, whose samples are

classified to almost the entire range of values.

169




CHAPTER 6 DATA-SPACE REDUCTIOBSING TOPOLOGICAL AND PROJECTION FEATURES FOR COMRENT

6.5.3 Comparison of results

Comparing the results of the two proposed appreablased on approximate processing
we can easily derive that none of them has an twarperior performance over the other.
The information loss and the associated effects déiferent in the two approaches. In
general, the reduced dynamic-range processing I¢igipal features) is more effective in
discriminating O-displacement features, whereas rédduced input-dimension processing
(projection features) is more efficient in classify lead features reflecting actual
displacements. Notice that the complementary in&tion processed by the two algorithms
can be efficiently merged within an informationitus scheme, as the proposed in Chapter 8
and [48], to drastically improve the classificatiggrobabilities for all classes under
consideration. In order to further compare the Itesaf conventional and approximate
processing, we copy here the classification prdib@si obtained in Chapter 5 for lead
features extracted from the original grey-scalegesa(Table 6.8). It is evident that the
results of any of the approximate processing ambres are slightly inferior to the results
obtained from full-information images.

Table 6.8 BayesiarClassification Probabilities (%) of lead featuretracted at pixel level
[from table 5.6.b of Chapter 5]

-6 pixels -3 pixels 0 pixels +3 pi xel s +6 pi xels
shift shift shift shift shift
97. 75 2.24 0. 00 0. 00 0. 00
2.25 94. 35 3.10 0. 00 0. 28
0. 00 2.82 94. 35 1.69 1.12
0. 00 0. 00 2.57 93. 14 4.28
0. 58 0. 00 0. 00 0. 87 98. 25

With respect to time requirements, our featureagtion and classification approaches
achieve the following performance using a fastlli@ere 2 Duo workstation. Thpixel-
based approach (optical features), used in Chapter 5, takes about 0.34 sec fargsging an
entire QFP chip of 120 leads. Theduced dynamic-range approach (topological features)
requires 0.15 sec, less than half of the computatime of the conventional approach.
Finally, thereduced input-dimension processing (projection features) requires about 0.22
sec for the entire QFP-120 component. Owing topitodlem formulation, special attention
has been given to the operation of the HONN-basatuife extraction module, where a slow

convergence of weights might decelerate the emtfigerithm. Since the concatenation of
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leads over their pads is similar for the entire poment, the corresponding projection
functions to be approximated are all of the samenf(for a single component). Thus, the
weights of each lead can be initialized at the eoged weights of the previously considered
lead, highly boosting the performance of the HON#Ywork by avoiding local minima and
drastically accelerating its convergence. So, li#ta-space reduction algorithms achieve
significant saving in computational time over tloaeentional pixel-based approach.

In comparison with existing industrial systems fBCB inspection, the proposed
approaches can achieve better throughputs, evemhhid considers each lead separately.
The results of our survey of industrial systemsardined on Table 6.9. The performance
data for commercial products have been obtainedutfir the vendors’ online available
product datasheets. In our case, the speed ofitAlgsrwas mapped to throughput (¢sec)
by simulating performance on a 120-lead QFP compiookeroughly 3.33.3cm surface at a
sampling resolution of 2(m/pixel. The speed of each algorithm was estimaf#a respect
to the chip’s total lead area. The reported tingderrto processing alone, without including
the board placement/ adjustment times required H®/ rnechanical operation of the

production line.

Table 6.9 Inspection speed comparison

System speed resolution

(cm?/sec) (um/pixel)
optical feature 324 20
reduced dyn range 72.6 20
reduced imput dim 49.1 20
Agilent Medalist SJ50 3 38.7 16
Orbotech Symbion P36 22-60 20
Viscom S3088 20-40 15

Overall, we may conclude that high abstractionuiest used in approximate processing
are generally less descriptive than pixel-basedufea for classification purposes. With
respect, however to computational complexity, thmoreximate processing can yield

appreciable reduction at the cost of slightly irderesults.
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Chapter 7

Combination of Multiple Classifiers for Post
Placement Quality Inspection of Components: A
Comparative Study

7.1 Introduction

One of the most exciting advances in pattern reiiognover the last decade is
represented by multiple classifier fusion. It addes a serious drawback of the
classical approach to designing a pattern recagnslystem and focuses on finding
the best classifier by fusing complementary disgratory information that primary
classifiers may encapsulate is not tapped. Mul@gxeert fusion aims to make use of
many different designs to improve the classifiaaj@rformance.

The combination of multiple classifiers has bedensively studied with the aim
of overcoming the limitations of primary classief20], [21], [186], [187].
Classifiers differing in feature representation¢hétecture, learning algorithm, or
training data exhibit complementary classificatioehavior and the fusion of their
decisions can yield higher performance than thet loedividual classifier. The
performance of a multiple classifier system reli@sboth the complementariness of
the participating classifiers and the combinatiogtiod. Hence, the research efforts
in this field have focused on either the generatibnomplementary classifiers or the
combination of a given set of classifiers.

A starting point for grouping ensemble classifieethods can be sought in the
ways of building the ensemble. The diagram in Fegnn illustrates four approaches
aiming at building ensembles of diverse classifi2iy.

Our work presented in this chapter is mainly foduse Approach A and contain
details on different ways of combining the classifdecisions. The base classifiers

C....,.C, (Approach B), can be any of the models discusseadhiapter 4 along with

classifiers not discussed in this Ph.D. thesis. Wiamsemble paradigms employ the

same classification model, for example, a deciiea and a neural network, but there
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is not evidence that this strategy is better theingudifferent models [21]. The design
of the base classifiers for the ensemble is palgcified within thebagging and
boosting models [21] while designing the combiner is noumed with a specific
base classifier. At feature level (Approach C)etiéint feature subsets”,x?,... x*)

(i.e., distinct pattern representations) can bed use the primary classifiers. This
topic is included in the work presented in Cha@efFinally, the data sets can be
modified so that each classifier in the ensembldragned on its own data set
(Approach D). This approach has proved to be exherauccessful owing to the
bagging and boosting methods [21].

A. Combination level

Combiner Design different
combiners.
/'/ \ B. Classifier level:

Cl CK Use different
base classifiers.

(2
& X
X (K)
X
C. Feature level:

Use different
X feature subsets.
D. Data level:
Data set Use different

data subsets.

Figure 7.1 Approaches to building classifier ensembles

There are generally two types of combinati@hassifier selectionand classifier
fusion [21], [188]. The presumption in classifier seleatis that each classifier is “an
expert” in some local area of the feature spacasslfier fusion assumes that all
classifiers are trained over the entire featurecspend are, thereby, considered as
competitive rather than complementary. On the otlaed, based on a given classifier

set, the combination methods can be categorizedr@diog to the level of the
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individual classifiers outputstbstract leve(class labdl), rank level( rank order), and
measurement levelclass scores) [186]. The abstract level classifiers output ottig
class label, whereas the rank level classifierpwuthe rank for each class. The
measurement level classifiers assign each classasurement value to indicate the
possibility that the input pattern pertains to thass. In principle, the class scores
rovide richer information than the class label @hd rank order and should give
higher combination performance.

An important issue in combining multiple clasgifieis the use of different
feature sets or different training sets, randonelected [187]. In addition, from the
point of view of theinput pattern representationthere are basically two classifier
combination scenarios [187]. In the first scenaab,the classifiers use the same
represantation of the input patteidefntical pattern representation In the second
scenario, each classifier uses its own representaif the input patternd{stinct
pattern representation[187], [189]. In this case, the measurementsaektd from
the pattern are unique to each classifier, i.eh @adividual classifier uses a different
set of features.

A variety of schemes have been proposed for comgimultiple classifiers. The
most often used classifiers fusion approaches dlecthe majority voting [186], [190],
[191]; various rank-ordered rules, such as the sula (averaging), product-rule,
max-rule, min-rule, median rule [20], [187]; the igl#ed combination (weighted
averaging) [21], [192]; the Borda count [193], []9the Bayesian approach (naive
Bayes combination) [186], [194-195]; the Demps&rafer (D-S) theory of evidence
[186], [196], [198-200]; the behavior—knowledgase method (BKS) [201-202]; the
fuzzy integral [15], [169], [192], [209]; fuzzy teutates [203]; decision templates
[204]; the probabilistic schemes [20], [187], [189ombination through order
statistics [205], [206]; combination by a neuratwork [169], [207]. Overall a
comparative table of various classifier combinatistnategies based on a few
properties can be found in [208].

The objective of the presented work in this chajgt¢o test and compare multiple
classifier fusion methods for improving the classifion of the individual leads in
component quality inspectionThis work has been accepted for publication in
[48]. Instead of using single statistical or neurassifeers as in the previous Chapters
5 and 6we implement multi-modular classification systerhattcombine decisions

from statistical and neural modules. Combininggberer of the individual classifiers
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through multimodular architectures we improve tlessification results and enhance
the robustness of the overall classification systévie propose four representative
schemes for soft fusion of multiple classifiers.eTiirst approach uses the majority
voting principle for fusion of multiple experts. @hsecond scheme performs
combination by using the naive Bayes method. Inthivel approach, the outputs of
multiple classifiers are combined using Dempste&Shafer theory of evidence. The
last scheme involves the calculation of fuzzy inaésgy All fusion methods, using
identical pattern representations are consideré. fE€atures for classification are
obtained directly from the lead images as has lpgesented in Subsection 4.2.6.4
(we useoptical featuresas identical pattern representations). Followimggrocess of
guantized classification of individual leads, we ¢arther proceed with the Bayesian
estimation approach developed in Chapter 5 to accurately agtintomponent
displacements based on the measurements from nmalyidual leads, i.e. the

guantized lead displacements.

7.2 Experimental Set up and Feature Extraction Rycess

In this research we use the experimental procepiegented in Subsection 5.1.2
of Chapter 5. So, for the purpose of presenting results, QFP (Quad Flat Pack)
SMD components with 120 leads (30 leads per side)employed. The feature
extraction process from lead images is identicall@wveloped in Subsection 4.2.6.4.
As in Chapters 5 and 6, we consider again quahttieplacement estimations
organized at multiples of a pixel displacement. Tplacement classes considered
are {-6, -3, 0, +3, +6} and {-6, -4, -2, 0, +2, +46}, in pixel displacements over the
lead’s central position.

7.3 Multiple classifier combination methods

7.3.1 Formulation of the combined classifier problm

In this research, we assume that a small set iofettaclassifiers is available and

we are interested in combining their outputs ainahthe highest possible accuracy.

Let C={C,,C,....,C¢} be a set of classifiers afd={w,,@,,...,®, | be a set of

class labels. Each classifier gets as input a ffeatectox e R". The classifier output
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is anM- dimensional vectdz (x) =[(‘,,’1(x),...,chM x)]", wherec ;(x) is the degree
of “support” given by classifierC,, i =1,... ,K to the hypothesis that comes from
classw;, j =1,...,M . Without loss of generality we can restrict; (x) within the
intervaI[O, ]] and call them *“soft labels”, with 0 meaning “nopport” and 1
implying “full support”, i =1,...K, j=1,..M [202]. Most oftenc ;(x) is an estimate

of the posterior probabilit?(@ | x). The process of combining classifiers attempts to

combine theK classifier outputsC,(x),...,C, (X) as to obtain a soft label for ,

denoted C(x)=[ 4 (X).....4s (x)] . where 4 (x)denotes the overall degree of

support forw; given by the ensemble classifier.

If a crisp class label ofx is needed, we can use the maximum membership rule

which assigns to classaw; iff,

C

1,S

(x)2c (x) Vj=1...,M forindividual crisp labels and (7.1)

ts(X) = 4 (x), VI =1...,M for the final crisp label (7.2)
The  minimum-error  classifier is  recovered from  Eqn(7.2)

wheny (x) = P(@ |x). In the following we introduce the four combinatimethods

already mentioned in Section 7.1.

7.3.2 Majority Voting

Majority voting is a popular and easy to implememéthod [21], [184-186],
[191]. The primary classifiers “vote” with theirads labels and the class label with

most votes is assigned to. Let C (x) =[c ,(X),...¢ v (¥)]" € [O, ]]M be the output
of classifier C, for input x. To assign a class vote to classiier we harden the

classification decision by theaximum membership formula

choose clasa, < C.,k(x)=max{q j(x)} (7.3)
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By this rule, we can formulate the hardened clasgibn decision of eacll. as

the binary vectorC" ( h stands for “hardened”) containing 1 at positiorand 0

elsewhere, i.e.,

0, otherwist

A1 S e 74

The majority vote aggregatioR, , is given by

Fo = C(X)=[ci(X)-60 (X)]'1 €, (x) € {0,1} (7.5)
and
c (X) _ 1, if ;Cﬁi (X) - mjaxécﬁj (X) (7.6)
0, otherwise

The result is a binary vector with element 1 cqoegling to the most supported
class, and 0 elsewhere. In an equivalent formulative class label is assigned if the
majority of K classifiers, i.e., at leas/2] + 1 classifiers, vote for that class. More
than one element in Eqn (7.6) with value 1 meatis.aro find a single class label

forx, ties are settled randomly.

7.3.3 Naive Bayes Combination

Whereas the voting method only considers the resuleach classifier, the
approach of Bayesian formalism [21], [195] conssdire error of each classifier. The
“naive Bayes” scheme assumes that the classifrersnatually independent given a
class label (conditional independence).

Consider the crisp class labels obtained from ttodaKsifiers and let,...,L, be
the class labels assignedso by classifier<, (x),...,C, (x), respectively. Thus, for

any input xeR" to be classified, theK classifier outputs define a vector

L =[L,....L ] € Q . Denote byP(L;) the probability that classifie€; labelsx
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in clasd; € Q. The conditional independence allows for the folly

representation
K
P(L|o)=P(L.....¢ lo)=T]P(L lo) (7.7)
i=1

Then, the posterior probability needed to lakels given by

(7.8)

— i=1 ( k_
) , k= 1. M

Since the denominator does not dependsprand can be ignored, the support for

classw, by the set of classifiers can be computed as

K
e (x)oc P(o ) TP(L 1) (7.9)
i=1

The practical implementation of the naive Bayesofuon a data set S with
cardinalityN is explained below. Assuminiyl classes labeled 1 througyh the error

for thei™ classifier, i =1,...,K , can be represented by a two-dimensiausifusion

matrix as follows:

cMi=| ¢ .10

For each classifi®®, an M xM confusion matrix CM' is calculated by
applying C to the training data s& The kL) th entry of this matrix,a,i(’L is the
number of elements of the data set whose true tdass wasw, and were assigned

to classw, by C . By N, we denote the total number of elementsSdhat truly

belong to class @, . Taking aL,lﬂ. / Nk as an estimate of the probabiftyL; | @, ),
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and N, /N as an estimate of the prior probability of class @, Eqn (7.9) is

equivalently written as:

1 K
#h(X) o le_lH"&,g (7.11)

i=1

7.3.4 Multi-Classifier Combination based on Fuzzyrtegral

Fuzzy integralhas been reported to give excellent results dasaifier combiner
[15],[21]. The philosophy of the fuzzy integral cbmer is to measure the “strength”
not only for each classifier alone but also for thié subsets of classifiers. Every
subset of classifiers has a measure of strengtretpaesses how good this group of

experts is for the given inpux. The ensemble support for class y].(x), is

obtained from the support values of individual sifisrs

(o (x) i=1...,K ,j=1,.. M, but also taking into account the competencedhef t

groups of the various subsets of experts. The measfustrength of the subsets is

expressed throughfazzy measur¢l5], [39-41] denoted by. Thus, to gety; (x) we

“fuse” the support valuesq’j(x), i=1...,K ,j=1,.. Mand g via fuzzy integral
[192], [209].

7.3.4.1 Mathematical Background on fuzzy measuresd fuzzy integrals

Stemming from the concept of fuzzy sets [41], theoty of fuzzy measures and

fuzzy integrals was first introduced by Sugeno [13P2], [209]. In fuzzy sets, a

value,uA(x) is assigned to each elememndf the universal seX signifying its degree

of membership to a particular satwith non-sharp (fuzzy) boundaries. A fuzzy
measure is used to express an evaluation of a potie is heavily subject to human
perception. In mathematical terms, a fuzzy meassrea set function with
monotonicity (often, but not always being addityit Thus, a fuzzy measure assigns
a value in the unit interval [0,1] to each crispbset A of the universal seK
signifiying the degree of evidence or belief thataaticular element belongs to this
crisp subset. Consider, for instance, a group opleeX. For fuzzy sets, the age of a

personx € X is known, so that we consider x to be “Old” with a membegrgirade
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,uA(x) , WhereA is a fuzzy set of “Old” people. For fuzzy mesumas the other hand,

the age of the person X is unknown but there is an indication (possiblyldiyking

at that person) that (s)he belongs to the crisgetu consisting of people with age

50 years old, with a measure gI(A). Thus, in fuzzy sets a value is assigned to each

element of the universal set signifying its degoéenembership to a particular set
with an unsharp boundary, while in fuzzy measurealae is assigned to crisp subset
of the universal set signifying the degree of emwe or belief that a particular
element belongs in the subset. In this form, fuzetg are used to addresgueness
associated with the difficulty of making sharp eeg@se distinctions of objects in the
world, whereas fuzzy measures are used to sohieeguity associated with making a
choice between two or more alternatives.

Based on the notion of a fuzzy measure, a fuzzggnal is a function with
monotonicity which is used for aggregating inforimatfrom multiple sources with

respect to a fuzzy measure.

Sugeno fuzzy measure

Let X be the universe of discourse a@d be the power set X (i.e all crisp

subsets A in X) Then a set function: 2* — [0,], which assigns a number in the

unit interval [0, 1] to each crisp subset Xf is defined as a fuzzy measure if it

satisfies the following three axioms:
e Axiom 1 (Boundary conditions)g(<) =0, g(X)=1.
e Axiom 2 (Monotonicity): For every pair of crisp sets
ABe?2", ifAc B, theng(A)<g(B).
e Axiom 3 (Continuity): For every sequenc(eb} e2*|i eZ*)of measurable

subsets ofX , if either Ac A,c---orADA,o-- (i.e. , the sequence is

monotonic), thenlim g(A) = g(lim Aj, whereZ" is the set of all positive

i—w
integers.

For a crisp subséte 2*, g(A) represents the degree of evidence, or our belief,

that a given elememnt € X (which has not been previously located in any csispset
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of X ) belongs to the crisp subsktin general, the fuzzy measure of the union of two
disjoint subsets cannot be directly computed fromftizzy measures of the subsets.
For this purpose, Sugeno [41], [209] introduceddbecalled, X -fuzzy measure. The

motivation for defining this measure is that thedfication of a fuzzy measurg

requires the knowledge af( A)for all subsets A in X. In order to reduce the ditgn
of primary data, an extra axiom can be added t@#si 1-3 of fuzzy measures, which

allows the calculation ofg(A) from{g({x}) | x e A} . The A -fuzzy measure allows

the computation of the fuzzy measure of the unibtwo disjoint subsets directly
from the fuzzy measures of the subsets. Sugenwmgeopthe decomposalilefuzzy
measure, satisfying the following additional Axidnknown as thet -rule:
g(AUB)=g(A)+9(B)+19(A)g(B),

ABc X andAnB=9, withi >-1

e Axiom 4:

When 4 =0, the 1 - fuzzy measure becomes a probability measure [20%]eneral,

the value of 4 can be determined from the properties of théuzzy measure.

Let X ={x,X,,....% | be a finite set (a set of committee members incase). If
the fuzzy density of the A-fuzzy measure is defined as a function
g :% e X —[0,1 suchthag =g({x}) i= 1. K, then thei-fuzzy measure ok

can be obtained in a closed form as [209] :

K K-1

K
9(X)=26+4> > 9,9, +-+ 490, g (7.12)

i-1 i =Li,=i;+1

If 1+0, (7.12) can be rewritten as

g(x):ﬂﬁ(u /lgi)—l} (7.13)

i=1
If g(X) =1, the constan#t can be determined by solving the folowing equation
K
A+1=]](1+29) (7.14)
i=1

It has been prooved [209] that for a fixed set afzzly densities
g's,i=1..K, &g < , there exists a unique root df>-1andi= ( of Egn

(7.14). Also from Eqgn (7.14) it can be seen thahé values of g, are known, them

can be readily computed. A possible interpretatbra fuzzy density,g,, can be
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given by the grade of importance, or the degreeeti&f in the single attribute; , for
the overall evaluation of the system.

Wheng is the 1 -fuzzy measure, the valuesgffA ), A < X, andA ={x ,..X},
can be computed recursively as follows:

9(A)=9({x})=9,. (7.15)

d(A)=0+9(A.)+199(A,), for2<i<K (7.16)

Choquet integral

Let g be a fuzzy measure ot Thediscrete Choquet integraCqy(.) of a function

f : X > R" with respect tg is defined as:

Col 100 FOx) J= 2L (%)= 1 (%1) Ja(A). (7.17)
where indices have been permuted so that

0<f(x)<...<f(x )<L, A={X... %/} and(x)= L

There are numerus interpretations of the meaninfuzdy integrals. A fuzzy
integral can be understood as a fuzzy expectat®f)®][ the maximal grade of
aggrement between two opposite tendencies [209]ther maximal grade of
aggreement between the objective evidence andxgecetion [209]. In this work, a
fuzzy integral is considered as a maximum degreleebéf (for a class or an object)
obtained from the fusion of several objective emmhs, where the respective

importance of multiple attributes is subject toZzymeasures.

7.3.4.2 Multi-classifier Fusion by Choquet fuzzy itegral

We adopt Sugeno’'s A-fuzzy measure and assign the initial fuzzy
densitieg, ,i=1,.. K, as the degrees of importance of classifiefis=1...,K,
based on their performance on the testing dataekoh tested feature vectqrlet

C,»--,Cc; be the support from classifier€,,...,C, for classy,, respectively,

obtained from the confusion matric€/', i =1,... K of classifiersC , i=1,.. K.
For every classw,, the overall degree of support is computed aovall We first

assign the initial fuzzy densitieg ,i =1.... K:
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g=c.,i=1.K (718

(NN

The value of 4 needed for the calculation and integration of filezy measure

o(.) is obtained as the unique real root greater tHaonf-Eq. (7.14). Once,,...,0,

are set andl is found, the computation of the fuzzy integral ¢tassifier fusion for

classw; proceeds with the following algorithm:

a. For a givem, sort the support values ; (x),c,, (X).....¢c;(x), for class
w;, to obtain C[l,j(X),qz,j(X),..-,QK,,-(X), with G ; (X) being the highest

degree of support, ang, ; (X) the lowest one.
b. Arrange the fuzzy densities correspondingly, ig¢....,g, and set
9(1) =g,
c. For k classifier combinationsk =2 toK, calculate recursively thel -

fuzzy measures:
g(k)=9, +9(k-1)+4g,g(k-1)
d. Calculate the overall degree of support forlas by the Choquet fuzzy

integral:

y(x)=c ;(x)+ Z[qk,l,i (x)-c, (x)}g(k -1)

K
k=2

The above algorithm is repeated for all classesj =1,...,M . The final output

class for the combined classifier is selected asahe with the highest integrated

value, i.e. as in Eqn (7.2).

The support fore,, ,uj(x), can be thought of as a compromise between the

competence (represented by the fuzzy meapuaad the evidence (repesented by the

support valuesc, ;(x),c,,(X).....¢c;(x)). Notice that the fuzzy measure vector

[g(l),...,g(K)]T might be different for each class and is specdicthe current vector

X.
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7.3.5 Multiclassifier combination based on Dempster Shafer theory of
evidence

The Dempster — Shafer theory of evidence [41], {186], [196-197] also known
as the theory of belief functions, is a generalatof the Bayesian theory for
subjective probability. This theory is more flexablthan Bayesian when our
knowledge is incomplete and we have to deal witltewainty and ignorance.
Whereas the Bayesian theory requires the assignmiergrobabilities for each
guestion of interest, belief functions allow us assign degrees of belief for one
guestion based on probabilities for a related dquesThese degrees of belief may or
may not have the mathematical properties of pradibaisi how much they differ from
probabilities will depend on how closely the twcegtions are related.

7.3.5.1 Mathematical Background on Dempster — Shaféheory of evidence

In this section we introduce the basic concepth®@Dempster — Shafer (D-S) theory
of evidencdq41], [186], [196],

Let ®be a set of mutually excaustive and exlusive atorimypotheses,

©={0,....6,}, referred to as theframe of discernment A subset

iy iq

A= {61 veenrs O } c O represents a hypothesis denoting the disjunoﬂpw...u@iq :

Each elemen®d — ® corresponds to a one-element suldgt, called a singleton.

Let 2° denote the power set @, i.e., the set of all possible subsets®f so that

each subseAc © <2°.

The D-S theory uses a numeric value in the intef@all] inclusive to indicate
belief in a hypothesis (subsef§c ® based on the occurrence of an evideaCEhis
value, conventionally denoted Bgl(A), indicates the degree to which the evidemce
supports the hypothes& The value of BeK) is calculated from another function
called basic probability assignmenfopa), which represents the individual impact of
each evidence on the subsets@f A bpa, denotedn(.), is a generalization of a
probability density function. It assigns values[@ 1] to each and every element of
2° (i.e., each subset @ , instead of each element &fas in probability theory) such
that the numeric values sum up to 1.

A functionm s called a basic probability assignment if:

184



CHAPTER 7 COMBINATION OF MULTIPLEIASSIFIERS FOR POST PLACEMENT QUALITY INSPECTION

m:2° —»[0,4,m()= 0, and)_ m(A)= (7.19)

Aco
The quantity m(A)e[0,1],Ae 2, is called A's basic probability and is
interpreted as the degree of evidence in supposbofe element 0® belonging to
the setA, but the evidence does not extend to any particudéset ofA. Whereas
probability theory assigns a measure of probabtlityatomic hypotheseg , m(A)
represents theelief of a (no necessarily atomic) hypothesidnstead of probability
m(A) is a measure of support we are willing to asstgga tomposite hypothesfsat

the expense of supp0|rm(6’i ) of atomic hypothese§ . If for the frame of discernment

© we setm(@ )= Ofor all § andm(A)=0 for all A= ¢ , the formulation resembles
M

that of probability theory withd m(¢)=1andm(6) may be regarded as a
i=1

probability of & .

Every setAe 2°for whichm(A) > 0 is called docal elementof m. When ® is
finite, m can be fully characterized by a list of its foedbementsA with the
corresponding valuesn(A). It is interesting to point out that basic protigb
assignments are not fuzzy measures and are charadtéy the following particular
features:

e m(A) is the portion of the total belief commited exadb A, which cannot be

further subdivided among the subset®\aind does not include the portions of
the total belief commited to subsetsfof

e The singletong @}, i=l,...,M are only parts of sets i2°. Thus, it is possible
M
that Zm(é’i)< 1. Moreover, sinced and -6 (i.e. ®-6 ) are only two
i=1
elements of 2°, it is possible thatm(8)+m(—6 )< 1. This feature of
singletons defies the basic axioms of Bayesian &ism and, in other words,
the bpa supplies an incomplete probabilistic model.

e WhenA is the only focal element ig@° , we havem(®) = 1-m(A). In general,
m(®) absorbs the unassigned portions of the totagébafter commitment of
belief to various proper subsets@f
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Since a subséi represents the disjunction of all the element4,ithe truth
of B < A implies truth ofA, i.e., all the evidence committed to exactly onlbset

of A will also supporfA. Hence, delief functionBel(A) is defined by:

Bel: 2° »[0,]
Bel(A)= Y. m(B) VA

BcA

(7.20)

The belief function is a special type of fuzzy measthat satisfies Axioms 1 — 3
of Subsection 7.3.4.1 and the axionmsabadditivity[41]. We may consider the belief

function as a generalization of the probability dion. When A=6 is a singleton
(atomic hypothesis), therBel(A)=Bel(4)=m(6). Furthermore, whemA = 6,
Bel(@)=1.

If m andm, are basic probability assignments @, their combination or

orthogonal sumfor a nonempty seAc 2°, is defined as:

m(A)=m ®&m,(A)= s-lBZC‘iAml(B)- m,(C), whereB Cc © (7.21)
and S= > m(B)-my(C), m(&)=0 (7.22)

BNC#J
Obviously, the combination rule may be generalized combine multiple
evidences. Since there is one-to-one correspodeteeerBel andm, the orthogonal

sum of belief functions is defined in the same &gy Bel (.)=Bel, ®Bdl, (.).

Special kinds oBBel-functions are appropriate for representing evidertese
functions are calledsimple and separable support functionsBel(.) is a simple
support function if there exists air — © called the focus ofBel(.), such that
Bel(®)=1 and

s, fFcAandA=0
BeI(A)z{ = (7.23)

0, otherwise

wheres is calledBel’s degree of support
A separable support function is either a simplepsuipfunction or an orthogonal
sum of simple support functions. Separable supportions are very useful for

combining evidences from several source®elf.) is a simple support function with

focusF #©, then m(F)=s, m(®)=1-s, andm (.= (elsewhere. LeF be a focus

for two simple support functions with degrees opsurt s ands,, respectively. If
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Bel =Bel, ® Bel, thenm(F)=1-(1-5)(1-5s,) ,m(®)=(1-5s)( +s,), andmis 0

elsewhere.

7.3.5.2 Evidence Combination Method

In the context of measurement-level classifier coaon, a method for evidence
combination is presented in [196] and is also asbpiere.

Let x be an input vector andk be the number of different classifiers,

C(x),i=1... K. Itis also assumed that each classifier prodacesutput vector

y; eR",y,=C/(x), whereM is the number of classes. Suppose that for each
classifier C and each candidate claps a computed value, (yi)represents some

measurement of evidence for the propositiop Belongs to clasg. In terms of the
Dempster — Shafer theory, these values could bebic@uh according to the theory

and the class with the highest evidence is choBeus, the important values (yi)
need be defined and computed.

Let {t;} be a subset of the training data correspondingdiass;. Let r, ; be the
mean vector for a sdiC (t j} for each classifielC, and each clags representing a
reference vector for that clagsThe support functiomﬁ(ri’ j,yi) for classj and each

classifier C; is denoted by ;= ¢(ri1j,yi), where ¢ can be obtained by using the

Euclidean distance between andy

1+ ri,j —Yi )
C|,j:¢(ri,jnyi): ( ” ”) (7.24)

>(+lryvif)
k=1

The value of this function is between 1 and O with maximum when the output

vector coincides with a reference vector. Now tingcfion ¢ can be transformed into
evidencee, (y, ).
Consider a frame of discernme@t={4,,...,6, } , where#, is the hypothesis that

“y, belongs to clasp For every classifieiC, and clasg , ¢ ; can represent evidence
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for hypothesisg; (pro 6,), and all remainingG K#j, can represent evidence
contra ¢, (pro —6;). We can useg ; as a degree of support for a simple support

function with focusg, . This yields the basic probability assignment

m(6,)=c,; and m(©)=1-g (7.25)

1] 1]

In a similar manner,C ,, K# | are degrees of support for simple support
functions with a common focus @, . The combination of this simple support function

with focus —6;, is a separable support function with the degreeswpport

1-T(2-c,). The corresponding basic probability assignment is

k]

m.;(=6,)=1-T](1-c,) (7.26)

k#]

and

m;(©)=1-m(=6,)=]](1-c,) (7.27)

k#j

Combining our knowledge about, we obtain the evidence, (yi):mj ®m_; (0))

for classj and classifiel :

¢ [1(1-c.)

d (7.28)

Finally, evidences for all classifiers may be conaloi according to the
Dempster’s ruleof combination(also called therthogonal sun) to obtain a measure

of confidence for each clag$or the feature vector :
e (x)=¢(y,)®e(y,)®...0¢e(y«) (7.29)

g (yi), after an appropriate normalization, can be cared as Bayesian evidence

function with nonzero basic probability assignmentdy on atomic hypotheses.

K
Hence, equivalent to Eq. (7.29) we can Wr'et‘e(x)zsl_[ej (yi), whereS is a
i=1
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normalizing constant. Now we assign claksto the feature vectorx  if

& (x) = maxie, (x}

7.4  Experimental results

7.4.4 Classification Results obtained from Primary Clasdiers based on
Identical Pattern Representations

The Bayes classifier, MLP neural network classitrd LVQ neural network
classifier are well-established and quite succéssfahniques in pattern recognition.
They are employed for the primary classificatiosktaf individual leads in our
component displacement estimation. The theorebaakground of these classifiers
has been introduced in Chapter 4.

In this research we present two types of resuhtg. first one deals with simulated
data operating in an external leave-one-out vabdascheme. The results presented
show the average accuracies attained for each desplacement through this
recursive cross validation scheme. The second dfpesults refers to testing on the
real data. The training of primary classifiers isrfprmed on the entire set of
simulated data, whereas testing is performed ordh®pletely independent set of real
images. For the generation of simulated data wetliséMonte Carlo simulation
process [171-174], in order to generate lead sampigh appropriate size and
intensity distributions for trainining the classifs, as has been mentioned in
Subsection 5.4.4.

For testing with real images, a set of 20 real comemt images are kindly
provided from the actual placement environment bilifs, The Netherlands. Ten
actual boards with different shifts are providedhwwo images from each case. Each
individual case is controlled by the placement nraehand conveys the limited
accuracy of placement. The sides of each comparentocated and the individual
lead areas are extracted. These images are usetkedting of our developed
algorithms; the training stage of classifiers isgf@ened with the simulated data.

In order to facilitate a soft-level combinationad@ssifier outcomes, the responses
of MLP and LVQ neural networks are normalized bypéoying thesoftmaxmethod

[9], [21] and are used as estimates of the postprababilities of the classes.
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The primary classifiers are trained for 5 and %&®#s. The first case involves
classes {-6,-3, 0,+3,+6} whereas the second casgsiders training on classes {-6,-4,-
2,0,+2,+4,+6}. These two cases study the abilitytred classifiers to discriminate
classes in the feature space separated by 3 ax@I& ppart, respectively. We do not
consider training on all 13 classes, since alléehgdasses are not separable in the 12
dimensional feature space defined. To overcome pheblem of statistical
significance of the results caused by the ratheallsolata set (for a quite high
dimensional feature space) we apply a jack-knifrafidation process. This process
sweeps along all sample vectors and every timaetstone sample out of the training
data. It trains the classifier with all other vest@nd classifies the extracted vector
that has not been seen by the classifier.

Regarding the design of the primary classifiersge ttWVQ neural network
architecture was defined by the feature vector, sragning set size and output class
mapping. In particular for use with 12 geometript{cal) features the LVQ input
layer consisted of 12 neurons. In accordance to tN€pry the hidden competitive
layer contained neurons, equal to the number ofitig set cases. In the output layer
for 5 classes (2 pixel shift precision) 5 outpuurm®s were needed. Accordingly
discrimination of 7 classes required 7 output nesrd he model was trained for 1000
epochs with a learning parameter a=0.09. The MuRatl@etwork was designed with
50 hidden layer neurons and 5 or 7 neurons depegrairthe required output classes.
The input layer was as above defined by the dinoeadity of the feature vector. As
stated before, 12 features per lead formulatedhtufe vector that forms the input to
each classifier.

The classification rates of primary classifiers ®iclasses of simulated lead-images
are shown in Table 7.1. Table 7.2 presents thesifilzetion rates of individual
classifiers on 7 classes. From the classificatesults of primary classifiers, we can
initially conclude that the Bayes classifier prasdbetter results than the MLP and
LVQ classifiers on the 5-classes case. However,petimg performances of Bayes
and MLP classifiers are observed on the 7-classse.cFurthermore, as can be
observed in Tables 7.1, 7.2, the discriminationveen different classes becomes
easier as we move to larger displacement intervidfis; distinction of 3-pixel
difference in Table 7.1 is more efficient than tb&2-pixel difference in Table 7.2.
Overall, we observe a large variance of each dlassi performance along the

classes of interest.
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Table 7.1 Classification rates of Primary classifiers ocl&sses using Monte Carlo
simulated images

Input -6 pixels -3 pixels 0 pixels  + 3pixels  +6 pixels
Simulated shift shift shift shift shift
o Bayes 97.75 94. 35 94. 35 93. 14 98. 25
;G__J MLP 95. 32 93. 87 92.28 95. 83 97. 63
o LVQ 93. 27 90. 67 78. 24 95.42 94.78
©
o

Table 7.2 Classification rates of Primary classifiers ocl&sses using Monte Carlo
simulated images

Input -6 pixels -4 pixels -2 pixels 0 pixels +2 pixels +4 pixels +6 pixels

Simulated shift shift shift shift shift shift shift
_ Bayes 93. 00 81.82 75.72 85.87 77.80 85.87 91.86
:—: MLP 91.18 80.46 80.36 79.74 82.41 86.83 88.27
§ LVQ 83. 47 76.42 78.90 57.06 80.40 74.35 81.16
3

In the sequel we test the primary classifiers enstt of 20 real component images
from the actual placement environment. The tesseigconsists of 120 lead-images
obtained from the components of the correspondiagsc The classification rates of
primary classifiers on 5 classes for the real lmaages are shown in Table 7.3,
whereas Table 7.4 presents the classification rafemdividual classifiers on 7
classes. As we observe by comparing the resultefdrand simulated data, there is a
small decrease (ranging from 0.30 to 1.30 in déffierclasses) in classification rates
for the real data, which are used as an indepertdshtet. Nevertheless, the results
on real data are only slightly inferior to thosenfr cross validation, indicating the

robustness of developed techniques in realisticabios
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Table 7.3 Classification rates of Primary classifiers on &ssles using real images

Input -6 pixels -3 pixels 0 pixels + 3pixels +6 pixels
Simulated shift shift shift shift shift
o Bayes 96. 43 93.61 93. 17 92. 08 97. 33
;G__J MLP 94. 56 93. 19 91. 84 94. 42 96. 37
o LVQ 92.73 91.24  79.66  94.77  94.19
@
0

Table 7.4 Classification rates of Primary classifiers on &ssles using real images

Input -6 pixels -4 pixels -2 pixels 0 pixels +2 pixels +4 pixels +6 pixels

Simulated shift shift shift shift shift shift shift
_ Bayes 91. 87 80.26 74.66 85.26 77.32 85.42 91.03
:—: MLP 90. 33 79.74 79.23 78.44 81.92 86.05 87.49
§ LVQ 83.16 77.28 79.57 56.59 79.63 73.94 80.71
3

7.4.5 Results of Combined Classifiers using Idenat Pattern
Representations
The methods of Section 7.3 are used here to conthenthree primary classifiers
(Bayes, MLP, LVQ), using different methodologied bperating on the same feature
sets (optical). For such a three-classifier contimnacase, the combining scheme
based on majority voting (MV) assigns classificatitm one class if two or three
classifiers produce this same class. Otherwiseinijngt pattern is rejected. To apply

the naive Bayes (NB) combination method, the caomua probabilities
P(Lle),i=123k=1.. ,50k= 1. , are obtained from the resulting

confusion matrices of individual classifiers on th@ning set. In a same manner, to
fuse the results using the Choquet fuzzy integt#l) , the initial fuzzy densities

0.i=12,3 are computed from the resulting confusion madricé individual
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classifiers on the training set. The above threelspation methods are performed in
the context of abstract-level combination. The DstepShafer (D-S) fusion is
performed in the context of measurement-level diasscombination. Thus, the
training of the D-S combiner is performed based tba presented method in
Subsection 7.3.5.2.

The classification results obtained from the abfiwg combinerausing identical
(optical) features based on simulated lead-imagespresented in tables 7.5 and 7.6 on 5
and 7 classes, respectively. As we observe fronsethables, all combination
classifiers achieve better performance than anivichaal classifier used for fusion.
Examining deeper their performance, we concludé¢ tha naive Bayes and the
Dempster — Shafer combiners achieve better ov@etformance than the other
schemes, with the naive Bayes reaching the besborpemce of all combining
classifiers employed. The largest improvement agueby the combined classifiers
over the best individual classifier performancealso depicted in Tables 7.5 and 7.6
for the naive Bayes scheme. In fact, maximum imgmoent (3.98 %) is achieved by
this fusion approach for the class of —3 pixeldtsbm the 5 class formulation. The
advantage of naive Bayes combiner over the otheisrf schemes, along with the
advantage of primary Bayes classifier over the rstivedividual classifiers, cannot be
generalized. The ranking of classification schermbserved in this application is
partially attributed to the stochastic propertiels tbe data set, supporting the
assumption that the distribution of our experimerdata follows the normal

(Gaussian) distribution.

Table 7.5 Classification rates of Combining Classifiers5 classes using identical
(optical) features based on $atmd images

Input -6 pixels -3 pixels 0 pixels + 3pixels +6 pixels

Simulated shift shift shift shift shift

MV 98. 25 95.13 94.78 96. 41 98. 43
© NB 99.20  98.33  97.21 _ 98.84  99.87
'E (>1.45) (>8.98) (>2.86) (>3.01) (>1.62)
s CFlI 98. 34 95. 89 95. 44 96. 90 98. 79
- D-S 98. 67 97.71 96. 63 97. 56 99. 36
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Table 7.6 Classification rates of Combining Classifiers7 classes using identical
(optical) features based on sated images

Input -6 pixels - 4 pixels -2 pixels 0O pixels +2 pixels +4 pixels +6 pixels

Simulated shift shift shift shift shift shift shift

MV 94.12 82.53 81. 05 86. 38 83. 44 87. 85 92. 48
o| NB 96. 82 85. 49 83.87 88.79 85. 21 90. 35 95.53
-E (>3.82) (>3.67) (>3.51) (>2.92) (>2.80) (=>3.52) (=3.67)
g CFI 95. 27 83.76 82. 64 87.30 84. 37 88. 54 93. 86
© D-S 95.79 84. 88 83. 26 88. 14 84. 69 89. 87 94. 64

In the sequel we derive the classification resuksng the four combination
schemes based on the classifiers Bayes, MLP and éiQloying real images, given
in Tables 7.3 and 7.4. These results are presemtédbles 7.7 and 7.8 on 5 and 7
classes, respectively. By comparing these resulis Wables 7.5 and 7.6, we can
detect a small decrease (ranging from 0.30 to 1ir8Odifferent classes) in
classification rates from the case of testing sated data, which can be attributed to
small differences in the formation of the trainiagd the testing data. Nevertheless,
by comparing them with the results of individuabsdifiers on real image data
(Tables 7.3 and 7.4), we observe a consistentaseref the success rate achieved by
any fusion methodology.

Table 7.7 Classification rates of Combined Classifiers ariasses using identical (optical)
features based on real images.

Input -6 pixels -3 pixels 0 pixels + 3pixels +6 pixels
Simulated shift shift shift shift shift
MV 97.16 94. 42 93. 56 95.73 98. 04
; NB 97.70 96. 97 95. 56 97.61 98. 61
= (>1.27) (>8.36) (>2.39) (>2.84) (>1.28)
o]
e CFlI 96. 95 94. 88 95. 00 96. 49 98. 40
o
@)
D-S 97. 26 95.76 94. 63 96. 15 98. 27
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Table 7.8 Classification rates of Combined Classifiersfariasses using identical (optical)
features based on real images

Input -6 pixels - 4 pixels -2 pixels 0O pixels +2 pixels +4 pixels +6 pixels
Simulated shift shift shift shift shift shift shift
MV 92. 65 80. 69 79.94 85. 90 82.73 86. 89 91.61
_|INB 95. 33 83. 50 82.76 87.84 84. 29 89. 33 94. 44
g (>3. 46) (>3.24) (>3.19) (>2.58) (>2.37) (>3.28) (>3.41)
e CFl 93. 69 81. 80 81.43 86. 45 83. 67 87.53 92. 68
S
o
Ol D-s 94. 23 82.98 80. 94 87.30 83. 77 88. 48 93.61

7.4.6 Comparison between primary and combining muiple classifiers

The classifier ensemble’s high accuracies can b@&jwaattributed to the diversity of
the three primary classifiers. It is the authogsn@on that an additional improvement
can be achieved in the 7-class case by enrichiagotimary classifier’s pool. This
would require a very careful choice of additionklssifiers that would contribute to
the ensemble’s diversity, if possible. The 5-clesse is less likely to benefit since the
obtained accuracies are already nearly maximizedh S refinement might also
render 1-pixel resolution shift estimation (13 sks) manageable. In any case, one
has to keep in mind that model complexity should aatweigh possible minimal
gains and that results have to be extended to ddtiasets.

The incresead computational complexity of fusionanreal time inspection
system was also a factor considered. The overhreadniultiple classification process
of this type is additive. This problem is addressethree ways towards minimizing
this overhead. Firstly the number of classes ig t@p minimum required for quality
inspection by quantizing the output displaceme8exondly, the features used were
chosen so that no intensive image processing olydcansformations are involved in
their computation. Thirdly, a minimal primary cldss pool is used whist
maintaining a decent misclassification rate.

It should also be noted that the classificationbfgm under consideration
presents a special nature with both negative argltiy® aspects. The primary
classifiers’s soft outputs are mostly concentrasedund the distinct class labels,
which can create mapping difficulties for certaiombined classifiers. From a
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different point of view, classifiers in this ap@iton area can benefit from certain
symmetries and prior knowledge inherent to the lgrob Limiting the displacements

to one axis (for the corresponding component sie@jices the degrees of freedom in
problem specification and classifier design. Aduhtlly, the shape and size areas is
roughly known or can be easily inferred for any ndataset and thus geometry

metrics can be used reliably.
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Chapter 8

Combining Multiple Classifiers using Reduced
Dimensionality Distinct Pattern Representations for
Post Placement Quality Inspection of Components

8.1 Introduction

As we have mentioned in the previous chapter, floepoint of view of thenput
pattern representation, there are basically two classifier combinatioprapches [187].

In the first approach, all the classifiers use same represantation of the input pattern
(identical pattern representation). In the second approach, each classifier usesnits
representation of the input pattedis{inct pattern representation) [187], [210-216] . In
this case, the measurements extracted from therpatte unique to each classifier, i.e.
each individual classifier uses a different sefeaitures. In Chapter 7, we have tested
and compared multiple classifier fusion methodsirigproving the classification of the
individual leads in component quality inspectionaséd on identical pattern
representations (optical features). The objectivaeuo research presented in this chapter
is to fuse decisions from primary classifiers, whioperate on distinct pattern
representationd.hisresear ch has been accepted for publication in [48].

The methods used the combine the various levdia®éd classifier output generally
fall into two categories namelyfixed rules and trained rules (i.e. nontrainable
combiners andtrainable combiners) [21], [188], [214]. Fixed rules are static in tha
their form and parameters do not change as a rekthe output produced by the base
classifiers. As such, they are simple, have lowetend memory requirements and are
well suited to groups of classifiers that exhibimiéar performances and make
uncorellated errors. Fixed rules include the DeempstShafer theory of evidence [186],
[196], [198-200], the sum-rule (averaging), produde, max-rule, min-rule, median
rule [187], the majority vote rule [186], etc. On thénet hand, trained rules adapt their
parameters to the outputs of the base classifiedsas such are more suitable for
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combining classifiers that have varying levels eifprmance and make correlated
errors. These rules generally have high memoryamdputational needs and impose
strict requirements on the quality and size of titaning sets. Trained rules include
various trainable combiners (callemheta-classifiers or meta-learners), including
statistical combiners [21], [194-195] neural netkef207], fuzzy integral combiners
[15], [169], [192], [209] and typically, the weigit combination (weighted average)
[21], [192].

In this work we elaborate on two schemes for distpattern representations. In the
former scheme we use only reduced dimensionaliitufes (i.e.,topological and
projection features), whereas the latter enriches the topological @ogection features
with optical ones, in order to improve the classifion rates and robustness across all
lead-displacement classds. the abovementioned former scheme for distindtepa
representations we use the quantized classificatforead displacements based on
reduced dynamic-range and input-dimension procgssifi lead images. The
classification task of individual leads is executea two different primary classifiers.
The first classifier is a Hamming neural networ&sdlifier based on reduced dynamic-
range processing (topological features). The seabaskifier is a Bayesian distance
classifier based on input-dimension processing jéptmon features). Both
aforementioned classifiers have been developedested in Chapter 6. Finally, in the
latter scheme for distinct patterns we enrich thel pf primary classifiers with a Bayes
classifier operating ooptical features. This classifier has been developed and tested in
Chapter 5. Thus, the goal of this research is $e filecisions from the aforementioned
three classifiers that are based on distinct patepresentations.

The motivation for exploring the combination issago improve performance of
classification task of individual leads based ostidct pattern representations. Kittler
[20], [187] provides a theoretical basis of manisgrg classifier combination schemes
for fusing the decisions of multiple experts, eaafploying a different, distinct pattern
representation. In this research, we adopt andoexghis theoretical framework, in
order to design and test non-trainable classifision schemes. The fixed combination
rules are motivated in this work from the compledifferent nature of the feature sets
used by our primary classifiers, justifying the wamption of complementary and

uncorrelated classification results.
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8.2 Experimental Framework and Reduced Dimensionality Feature
Extraction Processes

In this research we use the experimental framewoekented in Subsection 5.1.2. So,
for the purpose of presenting our results, QFP (tlat Pack) SMD components with
120 leads (30 leads per side) are employed. Timeniiag distance classifier uses the
reduced dynamic-range processing introduced ini@e@&.3 whereas the Bayesian
distance classifier uses the HONN based featumactidn process (i.e. reduced input-
dimension processing) presented in Section 6.4llgirthe Bayes classifier operating
on optical features has been presented in Sect@nAS in Chapters 5, 6 and 7 we
consider again quantized displacement estimatiwganized at multiples of a pixel

displacement. The displacement classes consideeedéa -3, 0, +3, +6} and {-6, -4, -

2,0, +2, +4, +6}, in pixel displacements over ksa&d’s central position.

8.3 Combining Multiple Classifiers based on Distinct Pattern
Representations

In this section, the problem of combining differetdssifiers using distinct pattern
representations is addressed for the classificgBbift-estimation) of individual lead

images.

8.3.1 Non-trainable Combination Schemes for Identical Pattern
Representations

The term “nontrainable” implies that the combinexsino extra parameters that
need to be trained, i.e. the ensemble is readyoparation as soon as the primary

classifiers are trained [21]. Simple non-trainatenbiners calculate the overall support

for classw,, u; (x), using only the supports ;(x),c,;(X),...c ;(x) from classifiers
C.C,,...C, respectively, by

1;(X) = F[ 6 (%), (X) G (X) ] (8.1)
whereF is acombination function. The class label of is found as the index of the

maximum g, (x) The combination functiof can be chosen in many different ways.

Some popular choices are:
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e Simple mean (average) , (F = average):
(%)= 2.6, (%) 82)

e  Minimum/maximum/median ( F = minimum/maximum/median). For instance,

in the maximum case:

#;(x) = max{c, (x)} (8.3)
e Product (F = product):
# (=116 (x) 8.4)

8.3.2 Combination Rulesfor Distinct Pattern Representations

The case of distinct pattern representation poseasdditional burden to the design of
the combiners, since the sources of informatioat(fiees) are quite inhomogeneous.
Nevertheless, based on a Bayesian framework fatimgl the available information,
similar simple rules can be derived for the comtiamaof the corresponding classifiers.
Assume thakK classifiers are available, each representing ithengpattern by a distinct
feature vector. We considErconditionally independent feature subsets (dis{pattern

representations). Each subgenerates a part of the feature vector (distinct feature
(i _[y® @ 07 n - -
vector), X', so thatx _[x X7 X ] , Xe R". Notice that there is an one-to-one

correspondence between each feature vectef! and its underlying
classifielC, i=1... K. From the assumed independence, the class-camlitio
probability density function (pdf) for class, is a product of the class-conditional pdfs

on each feature subset

p(x|@;)=

—

1]
-

p(x" |, (8.5)

The class conditional probabilities are given by:
P(a)j |x(i)) p(x(i))
P(a’i)

whereas the posterior probability using the entifermation onx is

p(x" @)= (8.6)
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Plo; ) p(x]|o, Plo,; ) & :
P(o; Ix)= ( ?O'E)(() ) . F)((X))Hp(x()|a)j) (8.7)

Substituting Eq. (8.6) into Eq. (8.7) we obtain:
K
(i)
K [Tr(")
P(w |x)=P" (0 Plw |xV) 2—" (8.8)
(011%)=P* (o) TTP(o; ") 225
The last fraction does not depend on any clasd,labethat it can be ignored when

calculating the overall supporpj(x) for class ;. Taking the classifier output

qj(x(i)) as the estimate oP(a)j |x(i)) and estimating the prior probabilities for the

classes from the data, the support égris calculated as theroduct combination rule

[21]:
P(e, 1X) o P (0 )ﬁp(mj x0) 8.9)

so that we can assign

K

u(x) 0 )H

_O

J( ) (8.10)

Kittler et al. [187] take the above formula furthterderive the sum combination rule.

Suppose that classifier§, i =1,...K, only slightly improve on the accuracy of the
classification decision. In other words, the pdsteprobabilities differ only by a small

fraction A, ,j=1,..M ,i=1..K from the prior probabllltlesP( ) j=1..M,

where|A“| < 1. Thus:

P(”i |X(i)) = P(”J)(“Ai,i) (8.11)
Substituting in EqQ. (8.9), we obtain

P(e, 1X) < P, )ﬁ(mj,i) (8.12)
Expanding the product and ignoring all terms afesrhigher than two with respect to

A ., we obtain [21]:

jai?

P(@; |x) o P(a;)(1- K)+iP(a)j x") (8.13)

i=1
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Taking the classifier output, (x(i)) as the estimate dP(a)j |x(i)) and estimating the

prior probabilities for the classes from the déte, overall suppory;, (x) for classo;

is calculated as th®im combination rule:
~ K )
#,(x)=P(o,)2-K)+ Y, (x") (8.14)
i=1

For equal prior probabilities Eq. (8.9) reduams t
P(a, |x)oc1£[cl,j(x“)) (8.15)
i=1
Furthermore, ignoring the constant term, the sumlgoation rule (8.14) can be viewed
as the average a posteriori probability for eaels<bver all the classifier outputs [187],
so that we may assign:

:%il:qyj(x(i)) (8.16)

The aforementioned combination rules (8.10) anti4(8constitute the fundamental
schemes for combining classifiers, each represgrthe given pattern by a distinct
feature vector. Some additional nontrainable fustrategies can be developed from

these rules by considering the inequalities:

LR

(8.17)

_O
/—\
v
IR e
._‘
/—’\—\

O
—_

X
—
=

S~
—_——

[Te (<)< minfe, (<) < & 2o (x

i=1 B i=1

The relationship (8.17) suggests that the prodmct sum combination rules can be
approximated by their upper or lower bounds, as@pyated above.
Starting from (8.14) and approximating the sum g maximum of the support

values c,,j(x(i)), the overall supporl;ul.(x) for class @, is calculated as thenax

combination rule

#;(X) = ﬁ(a,j JA-K)+K ri?x{qyj (x(i))} (8.18)

which under the assumption of equal prior probaégdireduces to

#;(X) = rriléx{c,]j (x(i))} (8.19)
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Starting from (8.10) and bounding the product @bgort valuesc,,j(x(i)) from

above, the overall suppot, (x) for classw; reduces to thein combination rule

1 K :
w; (x)=P" K)(a)]. )rrl1=|ln{cIJ (x( ))} (8.20)
which under the assumption of equal prior probaégdireduces to

#;(x)= rlr;jlln{clj (X(i))} (8.21)

8.4 Experimental Results

8.4.1 Classfication Results obtained from Primary Classifiers based on
Distinct Pattern Representations

In this section the Hamming neural network classifbperating on topological
features and Bayesian classifier operating on ptioje features are employed for the
primary classification task of individual leads iour component displacement
estimation.

In this research, as in Chapter 7, we present ypestof results. The first one deals
with Monte Carlo simulated data operating in aneml leave-one-out validation
scheme. The results presented show the averageaeiesu attained for each lead
displacement through this recursive cross valigasicheme. The second type of results
refers to testing on the real data. The trainingrohary classifiers is performed on the
entire set of simulated data, whereas testingrf®peed on the completely independent
set of real images.

Thereduced dynamic-range approach developed Section 6.3 of Chapter 6 is tested
on simulated images from four-sided QFP componéntstal of 120 lead samples per
class of the lead displacement are obtained, neguh totally 1560 samples for the 13
classes. We consider thtamming neural network classifier trained and tested for 5
and 7 classes. The first case involves pixel degpteents {-6,-4,-2,0,+2,+4,+6} whereas
the second case considers classes {-6, -3, 0, 8]3,Artotal of 600 and 840 sample-

leads are used for training and testing the classibn five and seven classes,
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respectively. These two cases study the abilithefclassifier to discriminate classes in
the feature space separated by 3 and 2 pixels apspectively.

The reduced input-dimension processing approach developed in Section 6.4 of
Chapter 6 is also tested on simulated images frdf® QomponentsThe Bayesian
distance classifier is trained and tested for 5 and 7 classes. Ag®edototal of 600 and
840 sample-leads are used for testing the classdre five and seven classes,
respectively.

In order to facilitate a soft-level combination déssifier outcomes, the responses
of Hamming neural network are normalized by empigythesoftmax method [9], [21]
and are used as estimates of the posterior pratiegf the classes.

The classification rates of primary classifiers rap@g on the reduced
dimensionality features on 5 and 7 classes aretifited in Tables 8.1 and 8.2,
respectively. The classification results of the &aylassifier operating on the optical
features are also presented in these tables. EoH#mming-distance classifier as
expected, the results for the 5-classes assignarentore accurate than the 7-classes
case, where the larger lead-displacement diffeseheeveen two successive classes are
reflected more clearly in the feature-vector ddfeces. Nevertheless, due to the
preserved correlation between AMs of neighboriragsts, the discrimination ability is
limited even in the 5-classes assignment. Moreovlke percentage of correct
classification differs significantly among classé&be latter problem can be alleviated
with more extensive testing, but the former is aherent limitation attributed to
dimensionality reduction. From the classificatiogsults of the Bayesian classifier
operating on projection features we again concthdethe classification results for the
5-classes assignment are more accurate than tbesthef 7-classes problem. The
limitations due to information reduction are agel@ar and are attributed to similarities
of the projection functions. In this case, the dimn of displacement poses an
additional difficulty in its correct identificatioand classification.

Comparing the results of the two proposed primdagsifiers based on reduced
dimensionality processing, we can easily derivet th@ene of them has an overall
superior performance over the other. The infornmaloss and the associated effects are
different in the two approaches. In general, thduced dynamic-range processing is
more effective in discriminating O-displacementtieas, whereas the reduced input-
dimension processing is more efficient in classdyilead features reflecting actual

displacements. The major benefit of reduced dinoeradity processing (with either of

204



CHAPTER 8 COMBINING MULTIPLE CLASSIFIERUSING REDUCED DIMENSIONALITY DISTINCT PATTERN

the proposed versions) is the significant reductbrthe algorithmic computational

complexity, by avoiding processing the entire infation content of the grayscale
image. In order to preserve this benefit and gs@tain high success rates in
classification, we consider decision fusion apphescas to improve the performance of

the overall quality inspection system.

Table 8.1 Classification rates of Primary classifiers ondsses using Monte Carlo simulated

images
features Classifier | -6 pixels | -3 pixels | O pixels | + 3pixels | +6 pixels
type type shift shift shift shift shift
topological| Hamming | 86. 67 79. 17 95. 00 92.50 93. 33
2 projection | Bayes 92.50 | 93.33 | 86.70 | 93.33 | 97.63
0
(79}
‘_‘5 optical Bayes 97.75 94.35 94. 35 93.14 [ 98.25
@)

Table 8.2 Classification rates of Primary classifiers ocl&sses using Monte Carlo simulated

images
features Classifier -6 pixels | - 4 pixels | - 2 pixels 0 pixels +2 pixels | +4 pixels | +6 pixels
type type shift shift shift shift shift shift shift
topological Hamming 85. 00 84.17 | 77.50 92.50 82.50 | 82.50 | 88. 33
o
«— | projection Bayes 76. 70 80.83 | 86.07 68. 64 83.30 | 90.00 | 93.10
‘»
7))
©
6 optical Bayes 93. 00 81.82 | 75.72 85. 87 77.80 | 85.87 91. 86

In the sequel we test the primary classifiers angét of 20 real component images
from the actual placement environment. The testiegconsists of 120 lead-images
obtained from the components of the correspondiagsc The classification rates of
primary classifiers on 5 classes for the real lisag@ges are shown in Table 8.3, whereas
Table 8.4 presents the classification rates ofviddal classifiers on 7 classes. As we
observe by comparing the results for real and sited| data, there is a small decrease

(ranging from 0.30 to 1.30 in different classesxlassification rates for the real data,
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which are used as an independent test set. Nelesgshéehe results on real data are only

slightly inferior to those from cross validatiomdicating the robustness of developed

techniques in realistic operation.

Table 8.3 Classification rates of Primary classifiers orldsses using real images

features Classifier | -6 pixels | -3 pixels | O pixels | + 3pixels | +6 pixels
type type shift shift shift shift shift
topological| Hamming | 85. 83 78. 56 94.13 92. 06 92.79
2 projection | Bayes 91.46 | 93.76 | 87.24 | 92.95 | 97.18
0
(79}
‘_‘5 optical Bayes 96. 43 93.61 93.17 92.08 97.33
@)

Table 8.4 Classification rates of Primary classifiers otlasses using real images

Representations

features Classifier -6 pixels | - 4 pixels | - 2 pixels 0 pixels +2 pixels | +4 pixels | +6 pixels
type type shift shift shift shift shift shift shift
topological Hamming 84. 25 83.79 | 76.63 91. 16 81.59 | 81.37 | 87.75

o

«— | projection Bayes 75. 68 79.96 | 84.75 67. 60 82.45 | 89.26 | 92.53

‘»

7))

©

6 optical Bayes 91. 87 80.26 | 74. 66 85. 26 77.32 | 85.42 | 91.03

8.4.2 Results of Combined Classifiers using Distinct Pattern

In this section, the combination rules derived mb&:ction 8.3.2 are used to

combine the two primary classifiers (Hamming clsssiand Bayesian classifier), using

distinct pattern representations for individualdeeclassification. The quite diverse
nature of information handled by each approachifigstthe assumption of class
conditional independence (at least approximatedy)tiie distinct representations used

by the individual classifiers. Four different comdiion rules are tested under the
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assumption of equal priors and their results ampared. Each combiner uses the
outcomes of primary classifiers as estimates obstguior class probability, in a soft-
level combination manner.

The classification results obtained from the abdwer combination rules are
presented in Tables 8.5 and 8.6 for 5 and 7 clasesgectively. As we observe from
these tables, the sum combination rule achievasri@trformance than any individual
classifier alone with the exception of the class-@f pixels shift on the 5 class
formulation and class of 0 pixels shift on the &ssl formulation. The max combination
rule follows closely in performance, whereas theswoesults are achieved when using
the product and min combination rules. The resaits in close agreement with the
findings of [187], based on a theoretical errors#inty analysis, where the sum
combination rule is found to be much more resiltengéstimation errors of the posterior

probabilities P(a)j |x(i))than the product combination rule. In particuldre product

combiner is oversensitive to classification estesatlose to zero. Presence of such
estimates from one classifier has the effect 0b wat that particular class, regardless

the outcome of other classifiers.

We should further emphasize that fusion may notrave the classification results
for each and every lead displacement comparecetothvidual classifiers, but it rather
improves the overall classification ability for déad-shifts examined. Even though
fusion increases the classification accuracy fadlshifts where individual classifiers
generally lag in performance, there are a few cadee one or the other individual
classifier (based on topological or projection @eas) by chance achieves extremely
high accuracy. The results of primary classifidrevg a large variance of performance
across the lead displacements, as in Tables 8.8.2nor 8.3 and 8.4 for simulated and
real data, respectively. From these results, wenatarclaim that one individual
classifier, either Hamming based on topologicaBayes based on projection features,
surpasses the other in performance. Each one sattmimum performance by chance
at some specific lead displacement. We cannot gépersuch results of individual
classifiers due to the limited number of availatiga. Notice that this large variation is
reduced by the fusion approaches. Thus, fusionguslistinct, reduced-content

representations not only boost the overall classifon performance, but also makes the
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overall classification performance more consisteatross all lead-displacements

examined.

Table8.5 Classification rates of Combined Classifierdbarlasses using distinct
features (topological & projectiorgded on simulated images

Input - 6 pixels | -3 pixels 0 pixels + 3pixels +6 pixels
Simulated shift shift shift shift shift
Product | 83.08 78. 25 84. 23 88.76 89. 68
=
2 Sum 94. 64 90. 68 95. 67 97. 42 99. 73
8 o
Z 3 Max |90.78 [87.14 [91.62 [93.46 |[96.09
L
S
8 Min 84. 33 79. 04 85. 59 89. 94 90. 81

Table8.6 Classification rates of Combined Classifiers/arlasses using distinct

features (topological & projectiorgded on simulated images

Input -6 pixels | - 4 pixels | - 2 pixels | 0 pixels | +2 pixels | +4 pixels | +6 pixels
Simulated | shift shift shift shift shift shift shift
Product 71. 24 75.81 | 74.41 | 70.93 |76.13 |78.95 |83.76
; Sum 85. 08 86.63 |86.12 |85.91 |[87.38 |90.53 |94.97
T o
.E E M ax 81.59 83.43 | 82.36 |81.22 [83.87 |87.11 |91.55
E Min 72.09 76.88 | 75.23 |71.64 |77.39 |79.83 |85.03

Considering the classification of real data, theuls of these four combination
rules are presented in Tables 8.7 and 8.8 for @r@d5/ class formulations, respectively.
We recall that the individual classifiers used iastflevel are the Hamming neural
network operating on topological features and theyel classifier operating on
projection features extracted from the set of iealges considered. As can be observed
in Tables 8.7 and 8.8, the sum combiner again aekieverall better results, but there
is a small decrease (ranging from 0.30 to 1.30fferént classes) in classification rates
in comparison with Tables 8.5 and 8.6 for the sated data.
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Table 8.7 Classification rates of Combined Classifierscariasses using distinct features
(topological & projection) froreal images

Input -6 pixels -3 pixels O pixels + 3pixels +6 pixels

Simulated shift shift shift shift shift
o Product 81. 89 77.34 85. 00 87.93 89. 44
E
o

Sum 93. 33 91. 38 94. 61 92. 77 94. 55

=
o
= Max 89. 28 87.94 90. 47 94. 38 95. 35
c
=
S Min 83. 09 78. 38 85. 79 88.94 90. 55
o
@)

Table 8.8 Classification rates of Combined Classifiers7atlasses using distinct features
(topological & projectionfrom real images

Input -6 pixels -4 pixels -2 pixels 0O pixels +2 pixels +4 pixels +6 pixels
Simulated shift shift shift shift shift shift shift
- Product 69.97 75.14 73.06 69.54 75.54 77.45 82.94
E
& Sum 84.68 85.98 85.12 84.75 86.08 89.63 93.95
3
-‘% Max 80.41 82.77 81.31 86.10 81.67 86.01 91.24
c
=
g Min 70.85 76.00 73.98 70.04 77.03 77.86 84.93
@)

In general, the classification scores achieved guseduced dimensionality
features are inferior to those obtained usingifafige information (optical features) as
has been mentioned in Chapter 6. Furthermore, dmebimation of topological and
projection features in a distinct representatiosidn scheme also lags in performance
to the combination of classifiers trained with optifeatures alone in Subsection 7.4.2.
This is expected since all feature sets are oldainem the same primary source
(original lead images), so that the informationtoagd by topological and projection
features does not add much to the information a@jremnveyed by optical features.
Furthermore, the primary data in reduced contegmrieseentation (1-bit edge images and

1-D projections) are inter-related, rendering tbeesponding features (topological and
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projection) not quite independent. At this stagedeenot perform any feature selection
process, since we are focusing on the nature wigoyi data (edges and projections) and
the information conveyed in these forms, rathernththe nature of features.
Nevertheless, it is worth mentioning that reducedethsionality features using just a
portion of information available can still attaiocaptable results, especially through the
employment of fusion. Reduced dimensionality fesgurhave the benefit of
summarizing the required information for adequéiiét sletection in a compact format
that can significantly reduce processing time.sltthe author’s opinion that such
features should be used when balance is requiredebe speed and effectiveness. In
addition, the particular reduced dimensionalitytdieas possess conceptual attributes
that can instigate further speed-up and improvenmrenbmponent inspection systems.
More specifically, the topological features (edgesfy be used for appropriate
modeling of the component placement process andbeadirectly obtained from a
number of commercial cameras, eliminating the nafepreprocessing. The projection
features on the other hand may eventually enaldeusie of faster and cheaper line
sensors instead of area cameras for componentinspe

Elaborating on the use of distinct feature repriedeams and its potential in
increasing accuracy and robustness for all clas$dsad displacements, we further
consider a combination of optical, topological gndjection features. We define the
resulting distinct features set (i.aptical & topological & projection features) as
distinct features-2. This set of features captures information formnynalifferent
aspects of the problem and contains features thahare likely to be independent than
the set used before employing only topological @ndjection features. The quite
diverse nature of information handled by each agghqustifies the assumption of class
conditional independence (at least approximatedy)tiie distinct representations used
by the individual classifiers. Motivated by goodu#s of the sum combination rule we
also use it as a fusion rule on the Bayes classmi¢h optical features, Hamming
classifier with topological features and Bayes sifeey with projection features. The
classification rates based upon Monte Carlo siredland real images are presented in
Tables 8.9 and 8.10 on 5 and 7 classes, respsgctivéé observe that the sum
combination rule achieves better performance tmgnradividual classifier alone based
on distinct features-2, with the exception of thass of O pixels shift on the 7 class
formulation. It improves the results of the firstél Bayes classifier and derives quite

uniform results across all classes. Comparingdhssnct feature combination with the
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one in Subsection 7.4.2 of Chapter 7 using idehipiedtern representation, we can
claim that the former achieves comparable and aéxd7-class formulation) even
better performance than the latter. This resulthimr supports the potential of the
distinct representation scheme, requiring howeverthér investigation on the

appropriate selection of distinct features, whichut of the scope of this research.

Table 8.9 Classification rates of Sum Combination Rule aasses using distinct features-2
(optical & topological & projection) on simulateddreal images

Sum - 6 pixels shil | -3 pixels shif | 0 pixels shift | + 3pixels shif | +6 pixels shif
Combination
Rule
Simulated 98. 37 97. 14 96. 27 97. 45 99.73
Images
Real 97. 49 95. 53 95. 04 95.52 98. 92
Images

Table 8.10 Classification rates of Sum Combination Rule artaéses using distinct features-2
(optical & topological & projeon) on simulated and real images

Sum -6 pixels | -4 pixels | -2 pixels 0 pixels +2 pixels | +4 pixels | +6 pixels
Combination | shift shift shift shift shift shift shift
Rule
Simulated 93. 65 88. 25 86. 92 92.70 87.53 91. 46 95.19
Images
Real 92. 45 86. 66 85. 44 92. 28 86. 18 90. 27 94.12
Images

With respect to time requirements, as we have meati in Chapter 6, the tested
approaches achieve the following performance usindgast Intel Core 2 Duo
workstation. The optical feature approach takesiabd34 sec for processing an entire
QFP chip of 120 leads. The reduced dynamic-rangeoaph requires 0.15 sec, less
than half of the computation time of the convergioapproach. Finally, the reduced
input-dimension processing requires about 0.2Z@ethe entire QFP-120 component.

High abstraction features are generally less dasazi than pixel-based features for
classification purposes. With respect however tomatational complexity, the distinct
features in cooperation with a fusion scheme caldyappreciable reduction at the cost
without compromising the effectiveness of inspettio
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8.4.3 Comparison between the two Fusion Schemes Presented in Chapters
7and 8

In Chapters 7 and 8, we tested several combinatiethods for soft fusion of the
outputs of multiple classifiers. The aim is to iroype the performance of primary
classifiers used for individual lead-image classifion in post-placement quality
inspection of components. Two different schemeslasgsifier fusion are considered.
The first one refers to identical feature represons, where the primary classifiers
operate on the same feature set. The second scheses distinct feature
representations, where each of the primary classifoperates on a different set of
features. Comparing the classification resultshef proposed combined classifiers, we
can derive that all combiners have better prforraghat any individual classifier alone.
In addition to, it is verified that both the naiBayes and the Dempster — Shafer
combiners on identical feature representationseaehbetter overall performance, with
the naive Bayes reaching the best performance weprent over the primary
classifiers. The combiners based on distinct featapresentations present lower
overall performance and higher variability of the&sults. This is expected due to
reduced content of information exploited. Despitatt their performance is still better
than that of most primary classifiers, showing adgotential for accelarating the
inspection process when speed can be balancedstg#activeness.

According to market studies [231], the PCB inspectiield is in need of reliable
systems in order to sustain growth as componertitienget higher. Use of exhaustive
solder paste inspection helps reduce the contabutiom the print process to solder
joint defects, in-turn saving money by reducing tlost of scrap with minimal cost to
rework (i.e. wash boards) and with no penalty itdasojoint reliability [232]. Some
companies claim this number to be as high as 80%eadf overall defect Pareto chart
[233]. Furthermore, the total misclassification tcmsan automated optical inspection
system is the product of the production volumet-pes-defective PCB and accuracy.
Taking into account the ranges of the first twoiaales it is evident that even a minor,
yet consistent, improvement in classification aacyris translated to amplified profits.

Overall, classifier fusion can contribute to theual solder-joint inspection domain
by improving accuracy and speed. One of the camdtiunder which fusion is
favorable is the high diversity in features andrany classifier outputs. Evaluation of a

number of diversity metrics indicated that usingtidict representations (different
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feature sets) of leads, in most cases leads tdwtien in the correlation between the
outputs of individual classifiers. This is attribdtto the reduced correlation in the input
vectors of distinct information content. Since tissa desirable feature in fusion, a
further research is required to establish the &ffe€ combining truly different input

representations besides exploiting different aiteb of the same primary source of
information (as with the use of the same opticadges to obtain the different features
sets). Fusion at different levels (measurementstufes, and outputs) can then be

evaluated overall.
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Chapter 9

Conclusions and Future Resear ch

In this Ph.D. thesis, we have developed a variétyhybrid intelligent multi-
classifier approaches for machine vision systemgetad towardsnulti-lead surface
mounted devices (SMDs) post-placement quality inspection using classical statistical
and soft computing pattern recognition technigdé& purpose of this final chapter is
to sum up the achievements of the work describedhis thesis, to discuss its
limitations and to address the directions of oturi@ research.

A novel framework to inspect the post placementityjuaf SMDs based on 2D
images of the SMD under investigation, has beepgsed in Chapter 5. The problem
of estimating the quality measures has been redtaddat of computing the lead
shifts along their trans-axial direction. The slufteach lead is estimated from area
characteristics (geometric measurements), on tiregmonding lead image, through a
classification approach. The classifier is fed witlle measurements of area
characteristics of each lead and produces a dtzsiin of the lead shift to several
classes. Subsequently, individual-lead classificatresults are used within our
Bayesian estimation setup, to estimate the totalpoment displacement and rotation
with respect to its ideal position, (i.e., the cahposition of its pad area). Having
these estimates, we can easily derive the threltygoeeasures of interest for either
the entire component or its individual leads. Nettbat the composite component
displacement is computed in this way under supsshtion scales. Thus, even if the
classifier outputs discrete classes, the compatieptacement is computed with real
accuracy. The developed algorithm has been testhdswccess on real PCB images,
in order to assess its potential.

In Chapter 6, we have considered two approachesdmcome the computational
complexity of classical machine vision quality iespon of SMDs on a PCB. The
first employs associative memories to implementrdduced information content in
image intensity levels. The idea is to compareetthge structure of a lead image with
that of stored fundamental patterns. The secondnselfcompresses the data space by

considering only a directional projection functioithe data. A non-linear filter based
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on high order neural networks is used to encodelilaeacteristics of each projection
function. Both methodologies are tested on realstiibl PCB images. The quality of
inspection slightly deteriorates while the compotal time is significantly reduced,
when compared to classical (full information) visugpection techniques.

In Chapter 7, we have tested four combination nmithior soft fusion of the
outputs of multiple classifiers designed on theida$ optical features. The aim is to
improve the performance of primary classifiers uded individual lead-image
classification in post-placement quality inspectainrcomponents. A Bayes classifier
and two well-known neural network classifiers, itee MLP and LVQ classifiers,
have been employed as baseline classifiers inatbik for the discrimination of lead
shifts in the examined images. In the sequel, ub®h of classifiers is achieved based
on four approaches. The first combination approacles the majority voting
principle. The second scheme performs fusion bgpgu8iayes naive combiner. The
third combination scheme involves the computatiérfuazy integrals. In the last
scheme, the outputs of multiple classifiers are mwoed using Dempster — Shafer
theory of evidence. Comparing the classificatiosutes of the proposed combined
classifiers, we can conclude that each and evanpater achives better performance
than any individual classifier alone. In additidnris verified that both the naive Bayes
and the Dempster — Shafer combiners achieve betemall performance, with the
naive Bayes reaching the best performance improveaie.98 %.

Finally, in Chapter 8, a machine vision system nsestigated for quality
inspection of SMDs on a PCB based on the fusiotwof individual classifiers that
have been developed in Chapter 6, each represehgngiven pattern by a distinct
feature vector. We have further investigated orheotetical framework to derive
nontrainable combination rules based on distindtepa representations. From our
experimental results it has been shown that meltighssifiers based on distinct
pattern representations can be used to improverdbestness of post placement
guality inspection systems.

A future research can be addressed towards freeteins:

= Rough Set Theory instead ofproposed methods in this thesis can be used for
feature extraction and reduction of dimensionafityposes [217-218]. The
ability to handle imprecise and incosistent infotiora has become one of the
most important requirements for a feature extracggstem. Many theories,

techniques and algorithms have been developedabvdé the analysis of
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imprecise or inconsistent information. The mostcestul ones are based on
fuzzy set theory and the Dempster-Shafer theoryewdflence. Rough Set
Theory, which was introduced by Pawlak [219], iseav mathematical tool
that can be employed to handle uncertainty and eraggs. It focuses on the
discovery of patterns in inconsistent data and loanused as the basis to
perform formal reasoning under uncertainty, machiearning and rule
discovery.

* |ndependent Component Analysis (ICA) [220-221] can be also employed
for feature extraction and dimensionality reductiparposes [222] in our
future work. The ICA is a well-established statiatisignal / data processing
technique that aims at decomposing a set of muléteasignals into a base of
statistically independent data (or vectors/streamigh the minimal loss of
information content. ICA generalizes the technigfiePrincipal Component
Analysis (PCA) and, like PCA has proven a usefal for finding structure in
data [220]. The main two appreciated uses of ICGAthe lineablind source
separation and thedata representation and visualization [223].

= Fuzzy L attice Neurocomputing (FLN) classifiers[224 -225]can be used for
classification purposes instead of the utilizednany classifiers in this thesis.
Several FLN classifiers have been presented inliteeature. The most
popular among them is the FLNMAP classifier [224-225], which forms a

synergy of two o-FLN modules, namelys-FLN, and o-FLN, module

interconnected via the MAP fiel&®. More specifically, thes-FLNMAP is a
lattice domain extension of the fuzzy-ARTMAP neuratwork [226]. In
addition, the oc-FLNMAP is a promising candidate for majority-vagin
classification [227]. The idea is to train an enbimofc-FLNMAP modules,
namelyvoters, using a different permutation of the trainingadger module;
finally a testing datum is classified to the catggihat receives the majority
vote in the ensemble. Hence, Mating o-FLNMAP classifier emerges [228],
which may be regarded as a panel of experts edkcitiimg its own set of rules
from the training data.

» Classifier combination based on confidence transformation. The
conversion of classifier outputs to crisp classelatr rank order simplifies
combination but loses useful information, detetiogh the combination
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performance. In essence, the classifier outputaldhbe transformed to
uniform measures that have similar scales. Prdigrabe transformed
measures represent the degree of confidence ofidecilike the class
posterior probability or likelihood [229]. In theomwtext of classifier
combination, the transformation of classifier ouspmto confidence measures
has been addressed in [214], [229]. A confideraesfiormation method is the
combination of a scaling function and a confidebhgee [214]. The scaling
function shifts and re-scales the classifier outpud moderate range such that
the outputs of different classifiers are comparafilee re-scaled output is
transformed to confidence measure using an aativdtinction corresponding
to one confidence type (e.g. log-likelihood (linedikelihood (exponential),
sigmoid, or evidence) [214].

= An additional line of research that is being coasd is the use oSupport
Vector Machines (SVM) as an alternative method of classifier fasid
specific SVM kernel which operates on the combidledsifiers’ feature space
has been designed for this purpose, but is stillpmmary stages of

development.
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Appendix A

Specific Cases of Maximum-Likelihood Parameter
Estimation

A.1 The Gaussian Case: Unknown p

To see how maximum-likelihood methods apply to gmecases, suppose that the

samples are drawn from a multivariate normal pdprdawith mean p and
covariance matrixx . For simplicity, consider first the case whereyotile mean is

unknown [9], [11]. Under this condition, we congi@desample poink, and find

1 1 o Yyl .
p(ka)—mexp[——z«k nyE" & -n)

Forn available sample,x,,....X, we have

n n 13 -
L(w)=In] ] p(x Iw)==2n[ (22)"[Z |- 23 (x—m) 27 (x - n) (A1)
k=1 2 2ia
Taking the gradient with respect jowe obtain
_i_
Oty
) i n
SR o, =32 (% - n) (A2)
: k=1
oL
| Oy |

We see from Eqn (4.26) of Chapter 4 and Egn (Aha} the maximume-likelihood

estimate fom must satisfy

D E (X — Py )=0 (A.3)

k=1

Multiplying by ¥ and rearranging, we obtain

A 18
Bme :_Zxk (A.4)
Nk=1
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That is, the ML estimate of the unknown populatioean, for the Gaussian densities,

is just the arithmetic average of the training sksp thesample mean.

A.2 The Gaussian Case: Unknown pand

In the more general (and more typical) multivariatemal case, neither the mean

nor the the covariance matri is known. Thus, these unknown parameters

constitute the components of the parameter ve@toConsider first the univariate

case withd, = 2 and 8, = o . Here the log-likelihood of a single point is

1 1
L(6)=Inp(x[8)=~=1n 2”92—5(&—91)2 (A.5)
2
and its derivative is
1
_(Xk - 91)
oL(8) oinp(x8) | ¢ (A6)
o9 o9 1, (x-0)
20, 207
Applying Eq. (4.35) to the full log-likelihood leado the conditions
n 1 ~
> (% -6)=0 (A7)
k=1 U5

and

—iTl-f-i*:O (A8)

where él and 92 are the maximum-likelihood estimates f@r and 6,, respectively.
By substitutingﬁzél and&zzé2 and doing a little rearranging, we obtain the

following maximum-likelihood estimates fqr ando?:

L1
A==2"% (A.9)
N\
and
1 "
Gzz—Z(Xk—,u)z (A.10)
N\
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While the analysis of the multivariate case is @abr very similar, considerably
more manipulations are involved. Just as we woudlipt, however, the result is that

the maximum-likelihood estimates farand X are given by

SR
==X, (A.11)
| J)
and
A1 . .
T= EZ(XK —R)(x —R) (A.12)
k=1

Thus, once again we find that the maximum-likelithomstimate for the mean

vector is the sample mean. The maximum likelihostineate for the covariance

matrix is the arithmetic average of thenatrices(x, —p)(x, — ﬁ)T . Because the true

covariance matrix is the expected value of the imétx, —u)(x, —ﬁ)T , this is also a

very satisfying result.
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Appendix B

Image Feature Extraction Algorithms

B.1 Boundary-based features

Boundary-based features describe the boundarynwafiton. Once the objects are
separated from the background by segmentation; bmeindary coordinates can be
used to extract external features, such as penimetevature, signature, bending
energy, Fourier descriptors, 2-D transform coeéfiti features (e.g. Fourier, Haar,
Hadamard, or Wavelet transform), image codes (argcode, chain codes), etc [22 —
27].

e Perimeter
The pixel distance around the circumference ofdhgect. To accurately compute

this, where a boundary pixel contacts its neightsstically or horizontally, the pixel
distance is 1 unit. Where a pixel contacts a nagliagonally, the pixel distance is

the square root of 2, or 1.414 units. The resudt measure of object boundary length.

e Curvature
The curvature scalar descriptor (also calkedindary straightness) finds the ratio

between the total number of boundary pixels (lengtid the number of boundary
pixels where the boundary direction changes sicpuifily. The smaller the number of
direction changes the straighter the boundary. &auation algorithm is based on
the detection of angles between line segmentsiposdb boundary pixels from the
evaluated boundary pixel in both directions. Thglameed not be represented
numerically; rather, relative position of line segms can be used as a property. The
parameterb determines sensitivity to local changes of the naawy direction.
Curvature computed from the chain code can be fourj@d2-27], and the tangential

border representation is also suitable for cureatmmputation.
e Signature
The signature of a object (or region) may be olei@ias a sequence of normal contour

distances The normal contour distance is calcultde@ach boundary element as a
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function of the path length. For each border pdintthe shortest distance to an
opposite border poirB is sought in a direction perpendicular to the bortdngent at

point A. For example thgolar radii signature of an object shows the relationship
between the distance from its centroid to pointh@lits boundary as a function of
angle. This is an orientation-invariant feature ahhallows an object to be compared
with a standard prototype by cyclically shiftingeteignature of one with respect to
the other in steps while checking for the best m§22-23]. For a circular object the
graphical signature would simply be a horizontaé lwith the ordinate corresponding

to the radius of the circle.

e Bending energy
The bending energy (BE) of a border (curve) mayubderstood as the energy

necessary to bend a rod to the desired shape aanoeccomputed as a sum of squares

of the border curvaturgk) over the border length.

1 L
BE==)c?*(k)
LS

Bending energy can easily be computed from Foutescriptors using Parseval's
theorem [22]. To represent the border, Freemarasnctode or its smoothed version

may be used.

e Chord distribution
A line joining any two points of the region boung& a chord, and the distribution of
lengths and angles of all chords on a contour neayded for shape description. Let

b(x,y) =1 represent the contour points, ab@x,y) = répresent all other points.

The chord distribution can be computed as
h(Ax,Ay) = > > b(i, j)b(i + Ax, j + Ay)dxdy
i

B.2 Region-based features

We can use boundary information to describe a reggod shape can be described
from the region itself [22-27]. A large group ofagte description techniques is

represented by heuristic approaches, which yieteé@able results in description of
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simple shapes. Region area, rectangularity, elangatlirection, compactness, etc.,
are examples of these methods. Unfortunately, tteaynot be used for region
reconstruction and do not work for more complexpgisa Other procedures based on
region decomposition into smaller and simpler sediens must be applied to
describe more complicated regions, then sub-regotars be described separately
using heuristic approaches. Objects are represdmted planar graph with nodes
representing sub-regions resulting from region dgmusition, and region shape is
then described by the graph properties [22-27]r8faege two general approaches to
acquiring a graph of sub-regions: The first oneegon thinning leading to thregion
skeleton, which can be described by a graph. The secondrogtarts with theegion
decomposition into sub-regions, which are then represented kgesowhile arcs
represent neighborhood relations of sub-regions eoommon to stipulate that sub-

regions be convex.

B.2.1 Simple scalar region descriptors

A number of simple heuristic shape descriptorstexisch relate to statistical feature
description. These methods are basic and are wsede§cription of sub-regions in

complex regions, and may then be used to definghgnade classification [22-27].

e Area
The simplest and most natural property of a reggats area. The area is computed as

the total number of pixels inside, and includirtgg bbject boundary. The result is a
measure of object size. The area measure usualy ot include object hole areas.
Assuming that labeling has identified regions, #hgorithm of calculated area in
guadtrees may be used. If the region is represented by dhé-¢lockwise) Freeman
chain codethe algorithm of region area calculation from Freeman 4-connectivity

chain code representation provides the region.

e Compactness
Compactness is a ratio based on the area and perimeasures of an object. The

result is a measure of object roundness or comessgtrgiven as a value between 0

and 1. The greater the ratio, the rounder the abdjfehe ratio is equal to 1, the object
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is a perfect cycle. As the ratio decreases frorth&,object departs from a circular

form. Compactness is given by

Compactn%s:w
(Perimeter )?
e Euler's number
Euler's number 4 (sometimes called genus or the Euler-Poincaré ctarstic)
describes a simple, topologically invariant propetft the object. It is based &) the
number of contiguous parts of an object, &hdhe number of holes in the object (an
object can consist of more than one region, otteenthe number of contiguous parts
is equal to one. Then

9=S-N

Special procedures to compute Euler's number cdoure in [22].

e Projections
Horizontal and vertical region projections (i) andp,(j arg defined as

pM=21G0D X

Region description by projections is usually coteddo binary image processing.
Projections can serve as a basis for definitionradated region descriptors; for
example, the width (height) of a region with nod®ls defined as the maximum

value of the horizontal (vertical) projection obmary image of the region.

e Major Axis (or Principal Axis)
The Major axis is thgx, y)endpoints of the longest line that can be drawnouitin

the object. The major axis endpoirfts, y,) and (x,, Y, ) are found by computing the

pixel distance between every combination of bopieels in the object boundary and

finding the pair with the maximum length.

e Major Axis Length
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The Major Axis Length is the pixel distance lengitween the major axis endpoints.

The result is a measure of object length.

Major AxisLength=1/(x, —x, 2 +(y, - v, )’
where (x,,y,) and (x,, Y, ) are the major axis endpoints.

e Major Axis Angle
The Major Axis Angle is the angle between the magis and thex-axis of the
image. The angle can range from 0° to 360°. Thaltrés a measure of object

orientation.

Major Axis Angle= tan‘l(MJ
(XZ - X1)

e Minor Axis

The Minor Axis is the(x, y)endpoints of the longest line that can be drawauihin
the object while maintaining perpendicularity wilie major axis. The minor axis
endpoints(x,, y;) and (x,, y,) are found by computing the pixel distance betwtaen

two border pixel endpoints.

e Minor Axis Width
The Minor Axis Width is the pixel distance length beemethe minor axis endpoints.

The result is a measure of object width.

Minor AxisWidth=+/(x, - x, > +(y, - , )’

where (x,,y;) and (x,, y,) are the minor axis endpoints.

e Aspect Ratio (or Eccentricity)
The Aspect Ratio is the ratio of the width of thaan axis to the length of the major
axis. This ratio is computed as the minor axis kvdistance divided by the major axis
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length distance. The result is a measure of oljectgation, given as a value between
0 and 1. If the ratio is equal to 1, the objeaioisghly square or circularly shaped. As

the ratio decreases from 1, the object becomes elongated.

Minor AxisWidth

ect Ratio=
Asp Major Axis Length

e Elongation (Bounding Box Area)

Elongation is a ratio between the length and walftlthe region-bounding rectangle
(bounding box area). This is the rectangle of minimum area that bautite shape,
which is located by turning in discrete steps uatihinimum is located. This criterion
cannot succeed in curved regions, for which thduat@n of elongation must be
based on maximum region thickness. Elongation eaeualuated as a ratio of the
region area and the square of its thickness. Themun region thickness (holes
must be filled if present) can be determined asnilmaber of erosion steps [22] that
be applied before the region totally disappearshdf number of erosion stepsds

elongation is then

Elongation = Area

(2d)’
e Rectangularity

Let F, be the ratio of region area and the area of a bogne@ctangle, the rectangle

having the directionk. The rectangle direction is turned in discretepsteand

rectangularity measured as a maximum of this rgfio

Rectangularity = rrklaX(Fk)

The direction need only be turned through one cutdrRectangularity assumes
values from the interval (0,1], with 1 representiagperfectly rectangular region.
Sometimes, it may be more natural to draw a boundirangle; a method for

similarity evaluation between two triangles calsptericity [22-23].

e Direction
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Direction is a property, which makes sense in edbed) regions only. If the region is
elongated,direction is the direction of the longer side of a minimuraubding

rectangle. If the shape moments are known, thetthred can be computed as

0= ltanl[—zﬂ 1 j
2 Hoo = Hoz

It should be noted that elongation and rectangylaie independent of linear
transformations, translation, rotation, and scaliBgection is independent on all
linear transformations, which do not include ratatiMutual direction of two rotating

objects is rotation invariant.

B.2.2 Moments

Region moment representations interpret a nornthligay-level image function as a
probability density of a 2D random variable [22-28roperties of this random
variable can be described using statistical charastics —moments. Assuming that
non-zero pixel values represent regions, momemspeaused for binary or gray-level
region description. A moment of ordegpHg) is depended on scaling, translation,

rotation, and even on gray-level transformations gimen by
My :Z Ziquf(i’j)
I J

wherei, j are the pixel coordinates.

Translation invariance can be achieved if we usecéntral moments,

Hog =2 2(1=%)(I=y.)" 1. 1)

where x., y. are the coordinates of the region’s center ofigrdeentroid), which can

be obtained using the following relationships:
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y = Mo
Mo
yc _&
Mo

In the binary casem,, represents the region area.

B.2.3 Convex hull

A region R is convex if and only if for any two pointg;, X, € R, the whole line
segmentx; x, defined by its end pointg,, x, is inside the regioR. The convex hull
of a region is the smallest convex regidrthat satisfies the conditioRc H . The
convex hull has some special properties in digitaia, which do not exist in the
continuous case. For instance, concave parts gaaa@nd disappear in digital data
due to rotation, and therefore the convex hullasmtation invariant in digital space.
The convex hull can be used to describe regionespapperties and can be used to
build a tree structure of region concavity.

The region convex hull construction algorithm [170] can define a discrete convex
hull. This algorithm has complexit@(nz). Thesimple polygon convex hull detection

algorithm [170] describes a more efficient approach
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OTSU'S THRESHOLDING METD

Appendix C

Otsu’s Thresholding Method

In this Appendix, we review the Otsu method foresthg optimal image

threshold [152], [169]. For simplicity, we considarsingle thresholding problem

here. This corresponds to the most frequent reaant in image thresholding, to

separate an image into two classes, foregroundackijround. Generalization of the

formulation to multilevel thresholding problemsdscussed in Subsection 4.2.6.2 of

Chapter 4.

An image can be represented by a 2D gray-levehsite function | (x, y). The

value z of | (x, y) is the gray-level (or the@ixel intensity value), ranging from O to

L -1, whereL is the number of distinct gray-levels.

In the case of single thresholding, the pixels wfimage are divided into two

classesC, ={0,1,..T} and C,={T+1, T+ 2,..,L— }, whereT is thethreshold

value. C, and C, are normally corresponding to the foreground (ctsjef interest)

and the background.

We make use of the following notations:

R =Pr{C,} = a priori probability of clas€,

P, = Pr{C,} = a priori probability of clas€,

p,(z)=Pr{z|C,} = probability density function of gray-level z if,
p,(z)=Pr{z|C,} = probability density function of gray-level z i€,
h(z) is the normalized histogram function which repngse the

percentage of pixels having gray-levelover the total number of pixels
of the image.
the probability density function of all pixel grdgvels in the image,

corresponding to the normalized pixel intensity tdgsam, is

p(2) = Rp.(2)+ P,p,(2).

Otsu has developed a thresholding method basedsorninginant analysis which

maximizes some measures of class separability [I529]. One of the measures is
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~R(MP(T)[my(T)-my(T)]"
Tor (1) =0 o2 (1) P (T)o2 (T) €1
where

R(T)=PriC = 2h(2) ©2

P(T)=PrC)= 3 h(2)=1-R (C.3)

m(T)= X zPrizIc) -5 X (2 ()

m,(T) = ZPr{zIC == _LTllzh(z) (€5)
af(T)zg[z—ml(T)TPr{z I :%l;o[z—ml(T)]zh(z) (C.6)

= Y [e-m(MPrzic)=— ¥ [2-m(MTh(z) (€

z=T+1 2 z=T+1

In the above equations;, and C, are dependent af and contain pixels with gray
values in [0,T] and[T +1,L—1] respectively.

To maximize thecriterion function in Eq. (C.1), the means of the two classes
should be as well separated as possible and theneas in both classes should be as

small as possible. This is similar to thesher criterion for pattern classification [9].

The optimal threshold valug,, can be determined by searching for the value in
the rangg0,L — 1] so thatJ; (T) is the maximum. That is,

T, = arg_max Jo, (T) (C.8)

0<T<L-1

Otsu has pointed out that the criterion functiby is equivalent to the following

alternative criterion function [152]

2

(o2
o) BTty P ©9

where ol = Lj[z— m(T)]2 h(z) (C.10)
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'_

-1

where m= ) zh(z) = Bm,(T )+ P,m,(T) (C.11)

N
I
o

In this Ph.D. thesis, for Otsu’s method, we make okthe following criterion

function

(1) B D)= PAT)E(T) c12

This is simply the inverse ofl,; (T) Now the optimal threshold is the gray — level

at which the criterion functiod,; (T) is minimum, similar to the other two criterion

functions (C.1) and (C.9). That is,
Tor =arg_min Jo; (T) (C.13)

0<T<L-1
In order to generalize to multilevel thresholdinglgems (i.e. four-level Othu’s
algorithm), the aforementioned Otsu’s method cafob@ulated using the following
generalized equation:

h(z)e(zT =ih T+ S h(z),(zT) (C.14)

=0 =0

L-1

N

where c(zT)can be considered as the cost to pixels with geagllz when the
threshold is set at valu€. The cost function is split into two partsﬂ(z,T) and
cz(z,T), which provide different weights for pixels in twtasses.

Based on the definitions d&(T),P,(T),o,(T).0,(T) in Egs (C.2) to (C.7) and

the definition of o in Egs (C.10) to (C.11), we can rewrite the madificriterion

function as

Iy ()=, §t o l22m ] (C.15)

Thus, the cost functions are

@ (2,T)= % it z<T C.16)
and
@ (z,T) M it z>T (C.17)
O
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Appendix D

Proofs for Bayesian Displacement Estimator

D1. Approximation of conditional integral

From the central value theorem we conclude thatHercontinuous variable in the

interval [a,b ], there exists a certain valug [, ,b ] that describes the integral in

the form:
B (x-9) (%-9)?
J'e 2 dx=(b —a)e * (D.1

g

Our task is to find, or approximate, this valkg Eqn (D.1), is re-written:

| (9" _(0-9)° h | (69" _(x9)
I e > —e ¥ |dx= I e ¥ —e ¥ | dx (D.2)

g X

In this form, the left hand side represents the akeat Figure D.1, while the right
hand side describes the area B. Assuming lineafitthe exponent function in the

interval [a,x,] and[x,,h ], the area A is equal to that éf in Figure D.1. The same

holds for the areas BB'. Thus (D.2) can be re-written as:

) @-s9° (9’ h | _(x9° _(b-9°
j e 2" —e ¥ |dx= j e ¥ —e ¥ |dx (D.3)
g

X
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0.8+

06+

0.4

0.2+

ai x0 bi

B _(xsf
Figure D.1 Approximation ofJ'e 20* dx .
3

where now the left hand side represents the &‘eand the right hand side the area

B’. Hence,
b (x-9)° (a-9)° _(b-9®
je 208 dx=(x,—a)e 2 +(b —x)e >4

C

Approximating the integral of the left hand sidehthe trapezoid rule we obtain:

b -2 (h-9°  (a-s’ (a-s (b’
— e 28 te 2 |=(x—a)e ¥ +(bh-x)e ¥

or

(a-9)’ (b9’
(Xo—al—’_bl)e 252 :(Xo_al—’_blje 252 (DS)

Lo, (D.6)

since the quantized measurement assumes the ocgitralof its interval.
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D2. Statistics & Bounds of the Displacement Estimator
D2.1 Statisticsof Quantized Classification y

Considering the case that" =P(y, /@, )5(i—r), with 5(i-r) a 5-function we

. . A 1S : .
obtain the estlmators=?2y|§. The mean and variance of the estimator are
k=1

therefore directly related with those of the quaedi variabley. Let us consider the
guantization process and its effect on the Gaushsnbution ofx. For the mean of

for specific (fixed)s we have

VI 2,
>, je’(x’s) 27" dx

1
E{y} - 2ro
N (D.7)

where e{—l,l}.
2 2

Let now |, indicate the level of quantization that includes means into its interval.

We can interprete the mean in terms of its level as

E{Y}= ! i (1 +nT)Tf2 g loso-mfzet L g5 (D.8)
\/Zo-n:_Nl ’ -T/2 T .

Using the central value theorem to approximate itftegral in (D.8), we obtain
similar to Egn (D.1):

T X T 202
E{Y) = | 4+ nT)g sz .
1Y} %an;m(‘) ) )

at 6 =0. Instead, we can preserve the form of (D.8) taat be interpreted as the

mean value over a random variakfe uniformly distributed. The mean value pf

depends on the exact position ef within the interval [IO—%, I0+12] For the

ensemble of the problem it is reasonable to asghatehe actual displacemegawill
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be located anywhere in this interval with equal batality. Notice that this

assumption does not model a distributionsoiin its entire range of definition, as in a

map consideration. It rather models the erfors in the interval[—%,%} as to

derive an approximation of the mean of the quadtestimatoty irrespective of the

position of <. Figure D.2 clarifies the aforementioned statement
Considerl, —s= ¢, thus absorbing the uniformly distributed randoaniable
into the displacement between the meaphdnd the midpointl{) of the quantization

interval that includes this mean. In this form:

T & —(5+nT)? 1262

=N,

T _(5+nT)?/ 20 }
- 2ﬁan§1§{(s+5+ nT)e
T N T oty 1 (D.10)
= S+5+nT)e ™™ ' Zds
V2ﬂo-”=le—'IJ'/2( )e T

+00
I(s+ z)e’zz’zazdz: s

1
- N2rmo 2,

with z= 6+ nT in the entire range of definition of the Gausiastwution.

0.5+
0.6+
0.4+

02—+

A

s lo I ar Ir br

Figure D.2 The quantization process and its effect on thes&au distribution.
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Similarly, for the variance of we have

ol - B o e e

N2rmo «m b
T M 2T/2 e , , 1
_ Z (Ir —S) J' e (I,-s+6) 120 = dx
V2R = Ti2 T (D.11)
~ T i E{(5+ nT)zef(EJrnT)Z/ZO'Z}
N2ro N, ¢
1 7 2 -7 1262 2
= z°e dz=o
«/27[0";
D2.2 Statistics of the Estimator S
The maximum likelihood estimator is given in thenfo:
2.2 el
— k| o =P(yL/a).)=P(|r/0).) (D.12)

The form of this estimator is related more to thrmization leveld, (classes), than

to the observationsy, themselves. In other words, it is a function of ttlasses

depending on the outcome of each observation. Tdreteo compute the statistics of
this estimator we focusn the distribution of classes within the obseosadi rather

than on the statistics of the observations themselVhis consideration shares a lot of
similarities with the Monte Carlo approximation afarameter's distribution. Hence,

for large number of observatioKswe obtain:

§ = K 1 = I=—M 1=—ht (D.13)
;EZ o ;ﬂp(a)r);ﬂP(lr/a)l)

To simplify the computation, we assume that thessifacation errorP(Ir/a)i)is

similarly distributed for all classes, or levels| and the error for each class is
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symmetrically  distributed around its own level. Inother words,
P(I, / @)= P(r —i)or P(l., / @) = P(l,/ @,). Under these conditions
M M M M
S Po) 3 Pl 1) =( S, 1a)][ S Pt0,) - 3P 10,)-
r=—M i=—M i=—M r=—M r=—
At the boarders, wherfg or |r| are large, we assum(e, ) — 0, in order to avoid

symmetry problems. Consequently,

M

= Y Plo) L P(, fo)

u»

r=—M i=—M
M N
= > Pl )[Pl lo ), +Z(Ir_n+lr+n)P(ln/a)o)} (D.14)
r=—M n=1
=P(ly/ @ )z 2l 1l 1207 +ZN: P(l, /@ i 2l T (s 120°
° ° r=—M ' \/ZO— n=1 0 r=—M ' \/ZO'

and

E{§} = S{P(Iola)o) +2> P(l, /a)o)} =s> P(l,/w,)=s (D.15)

n=1

thus revealing an unbiased estimator. To be moeeig®, as in Section D2.1, the

maximum likelihood estimatos for fixed s is almost unbiased; its small bias is a

function of |s—|0|. For |, — suniformly distributed in[—%,%}, the estimators is

unbiased.
Consider now the variance of the estimator for dargimber of observations. In
general:

(-9 - 13 P00 S0 990 101)| 019

=—M i=—M

or
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| S Rt 10,)0, ~9P(@)+ 3 P(a)r)ZN:(Irn+|r+n—28)P(|n/600)}
2 M o T 2 (D.17)
_ P(lo/C‘)O)r;M(I ~s)P( )+2§ P(l, /a)o)r;MU ~s)P( )}

E{( } {iﬂ ~s)P ﬂ (D)18

This is the same as the variance of the estimatenve" =P(l./@)=5(r -i),

which is equal to%gz. In that case it is easily verified tha]tzéz Y, With
k

1 u ?
JSZEG and(y-s) :(z P(w —sj with

r=—

<

E{(9-5) = E{( 3 P(o)(, —s)jz} - %0'2 (D.19)

From (D.18) and (D.19) we concludg{(g_ 5)2} = %02, indicating a standard error

1 - that is reducing with the number of observatiomssidered.
K
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