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Abstract 
 
 

This PhD thesis considers the problem of Multi-lead Surface Mount Devices 

(SMD) Printed Circuit Boards (PCB) Post-Placement Quality Inspection in the 

context of pattern recognition tasks.  A Bayesian novel framework is proposed to 

visually inspect the placement quality of SMD, immediately after they have been 

placed in wet solder paste on a PCB. Our approach exploits the fact that individual 

leads encode the same information regarding relative positioning of the rigid body of 

the component on the pad area. Positioning measurements on each lead can be viewed 

as individual (inaccurate) measurements of the same quantity regarding the 

component displacement and rotation. Three measures of quality placement from 

individual lead images are of general interest, namely overlap, insulation distance and 

slump gap. More specifically, the quantification of positioning measures is viewed as 

a classification problem, where the lead displacement is inferred from characteristic 

features associated with image analysis for optical inspection. The features for 

classification are extracted from each segmented lead image and encode optical 

characteristics (i.e. optical features), by means of simple area measures that sustain 

the most desirable image attributes. Instead of concentrating in one and every (poorly 

imaged) lead, we fuse complementary information from all leads into a Bayesian 

estimation framework. The proposed estimation approach operates in two levels. The 

first level considers a crude computation of quantized displacement of each lead. This 

is done through classification. The second level operates in a Bayesian framework and 

aims to accurately model the estimation of component displacement based on 

quantized lead displacements. The developed methodology is tested with success on 

real industrial PCB images and has better performance than previous related methods 

reported in the literature of  the PCB  inspection field. 

Motivated by the need for reducing time requirements and overcoming 

inaccuracies due to “microscopic” pixel-based consideration of individual lead images 

(such as segmentation process), we also study in this PhD thesis “macroscopic” 

techniques that do not consider pixel processing but rather define in an abstract way 

the characteristic features of individual lead images. More specifically, we consider 

one approach that only analyzes the edge structure of patterns in the image (i.e. 



 

 xii

topological features) and a second approach that processes only the projection profile  

of patterns at a single relevant orientation (i.e. projection features). Both approaches 

use features that encode “reduced content” of the lead images. In this way we attempt 

to efficiently balance the amount of relevant information exploited and the 

computational load of the algorithm. Both methodologies are tested on real industrial 

PCB images. The quality of inspection slightly deteriorates while the computational 

time is significantly reduced, when compared to classical visual inspection 

techniques.   

Finally, we also present in this PhD thesis a variety of multiple classifiers fusion 

strategies based on statistical and soft computing methods to improve the performance 

of the classification task on individual leads. To our knowledge this is the first time 

higher level (classifier) fusion is applied to the problem of quality inspection of SMD. 

Both fusion schemes, using identical and distinct pattern representations are 

considered. In the former case, we use only optical features for classification 

purposes. The latter scheme uses topological and projection  features. We elaborate on 

two schemes for distinct pattern representations. In the former scheme we use only 

reduced dimensionality features (i.e., topological and projection features), whereas the 

latter enriches the topological and projection features with optical ones, in order to 

improve the classification rates and robustness across all lead-displacement classes. 

Comparing the classification results of the proposed combined classifiers, we can 

derive that all combiners have better performance than any primary classifier alone. 

Overall, classifier fusion can contribute to the visual quality inspection of SMD 

domain by improving accuracy and speed. 
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Chapter 1 

 

Introduction 

 

1.1    Industrial Machine Vision Inspection Systems 

 

Vision has long faschinated researches from disciplines such as psychology, 

neural science, computer science, and engineering. Machine  vision  can be described 

as an automatic deduction of structures or properties of the three-dimensional world 

from either single or multiple two-dimensional images of the world and recognition of 

objects with the help of these properties [1]. The images can be monochromatic or 

colored and can be captured from a single or multiple cameras. The structural 

properties we seek to deduce may not be only geometric properties, but also material 

properties. Geometric properties include the shape, size, and location of objects, 

whereas material properties include lightness or darkness of surfaces, their colors, and 

their structures. The purpose of a machine vision system is to infer the state of the 

physical world from noisy or ambiguous images of the world. Machine vision is 

difficult to realize because image formation is a many-to-one mapping. A variety of 

objects with different geometric and material properties can lead to identical images. 

Again, the obtained images may be noisy or distorted. Machine vision systems are 

complex and often are implemented with several modules. A modular approach 

makes it easier to control and monitor the performance of a system. Various stages or 

modules of a vision system can be implemented using conventional statistical 

methods, neural networks, fuzzy logic techniques, and genetic algorithms. Often the 

number of stages in a vision system and their complexity depend on the application 

for which the system is being designed. Applications of machine vision systems 

include automation on the assemply line, remote sensing, robotics, human computer 

communication, aids for the visually impaired, etc. Machine vision plays an important 

role of a large number of industrial processes [2]. In recent years, considerable efforts 

have been directed towards the development of automated visual inspection systems 
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[2], [3]. This is particularly true with specular surface inspection, because it is 

laborious for a human to perform. 

Machine vision systems for industry first received serious attention in the mid-

1970s. Throughout the early 1980s, the subject developed slowly, with a steady 

contribution being made by the academic research community, but with only limited 

industrial interest being shown. It seemed in the mid-1980s that there would be a 

major boost to progress, with serious interest being shown in vision systems by the 

major American automobile manufacturers. Then came a period of disillusionment in 

the USA, with a large number of small vision companies failing to survive. In the late 

1980s and early 1990s, interest grew again, due largely to significant progress being 

made in making fast, dedicated image processing hardware. For many applications, it 

is possible now to provide sufficiently fast processing speed on a standard computing 

platform. Throughout the last 30 years, academic workers have demonstrated 

feasibility in a very wide range of products, representing all of the major branches of 

manufacturing industry.  

Currently the main application areas for industrial vision systems occur in 

automated inspection and measurement and, to a lesser extent, robot vision. 

Automated visual inspection and measurement devices have, in the past, tended to 

develop in advance of robot vision systems [3]. In fact, quality control related 

applications, such as inspection, gauging, and recognition, currently account for well 

over half of the industrial machine vision market. This has been achieved, in many 

cases, by retrofitting inspection systems onto existing production lines. There is a 

large capital investment involved in developing a completely new robotic work cell. 

Moreover, the extra uncertainty and risks involved in integrating two relatively new 

and complex technologies makes the development of robot vision system seem a 

daunting task for many companies and development has lagged behind that of 

inspection devices. The technical difficulties involved in controlling flexible visually-

guided robots have also limited the development. On the other hand, automated visual 

inspection systems now appear in every major industrial sector, including such areas 

as consumer goods, electronics, automobile, aerospace, food, mining, agriculture, 

pharmaceuticals, etc.  
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1.2   Inspection of Solder Joints on Printed Circuit Boards  

 

In recent years the electronic and computer industry has grown rapidly. Due to 

commercial competition, the products have became lighter, smaller, and more precise. 

Integrated circuit (IC) is the crucial component in these products. Quality inspection 

plays a very important role in the IC industry for promoting high quality and high 

throughput. A popular and demanding real-time application is the automated visual 

inspection and classification of solder joints on Printed Circuit Boards (PCBs). Solder 

joint inspection [4], which has been a critical issue for quality control in the PCB 

assembly process, is a typical specular surface inspection task in machine vision. 

Imaging of a solder joint surface is a difficult task, since a solder joint forms a tiny, 

specular, curved and smooth surface. Reflections of the specular solder joint surface 

may appear, disappear or change their shapes abruptly, even with small changes in 

viewing direction. Furthermore, a distant point illumination cannot produce smooth 

shading on the specular surface, because light is reflected in a single direction.  

 Ever since surface-mounting technology devices (SMDs) for printed circuit 

board assemply processes has been developed, electrical products continuouasly tend 

toward the miniaturization of components, with denser packing its boards [5], [6]. 

With the increasing necessity for PCB product reliability, there has been a 

considerable demand for the development of an automatic visual inspection system.  

A typical inspection system for the solder joints on PCB consists of a camera with 

appropriate illumination placed on top of the PCB conveyor system. Processing PCB 

images consists of two major stages: First, a pre-pocessing is performed in order to 

remove noise and make the tracking of solder joints on the image of the PCB easy. 

Then, the solder joints are classified according to the types of defects. The usual 

classification is concerned with the quantity of the solder paste placed on a joint. Four 

classes are defined, namely good, excess solder, insufficient and no solder. Simulation 

results on geometric models of joints have shown that efficient classification can be 

achieved only by an optimal feature selection, so that the classes do not overlap. 

For the purpose of this thesis the problem of solder joint inspection is viewed as a  

pattern recognition problem. 
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1.3   The Pattern Recognition Problem 

 

The term pattern recognition [7], [8], [9] encompasses a wide range of techniques 

for analyzing and interpreting complex data. The aim of pattern recognition is to find 

patterns in data which can be used to discriminate between subgroups of the data and 

to identify important distinguishing factors. Many computer-based pattern recognition 

applications are directed at finding ways of automating processes that humans do 

naturally, such as understanding language, or interpreting visual scenes. However 

pattern recognition techniques also provide a means of extracting relevant information 

from complex data that humans find difficult to interpret. In this case, the emphasis is 

on helping the human analysts rather than replacing them. Pattern recognition 

techniques are used in a variety of  information processing problems of great practical 

significance, from speech recognition and the classification of  handwritten 

characters, to machine vision inspection systems and medical diagnosis.  

The problem of pattern recognition can be seen as  of classifying a group of objects 

on the basis of certain subjective similarity measures. Those objects classified into the 

same pattern class usually have some common properties. The classification 

requirements are subjective, since different classification occurs under different 

properties of the features. 

The design of an automatic pattern recognition system generally involves several 

major problem areas. The first one is concerned with the representation of input data 

which can be measured from the objects to be recognized. This is the sensing 

problem. Each measured quantity describes a characteristic of the sample pattern or 

object. The measurements for each sample pattern can be arranged in the form a 

measurement vector or pattern vector. The pattern vectors contain all the measured 

information available about the patterns. When the measurements yield information in 

the form of real numbers, it is often useful to think of a pattern vector as a point in an 

N-dimensional Euclidean space. The set of patterns belonging to the same class 

corresponds to an ensemble of points scattered within some region of the 

measurement space or pattern space.  

The second problem in pattern recognition concerns the extraction of characteristic 

features or attributes from the received input data and the reduction of the 
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dimensionality of pattern vectors. This is often referred to as the preprocessing and 

feature extraction problem [10], [11], and results in a set of samples, known as 

feature vectors, by mapping the measurement space into a feature space. The 

extraction of features has been recognized as an important problem in the design of  

pattern recognition systems. If a complete set of discriminatory features for each 

pattern class can be determined from the measured data, the recognition and 

classification of patterns will present little difficulty. Automatic recognition may be 

reduced to a simple matching process. However, in most pattern recognition problems 

which arise in practice, the determination of a complete set of discriminatory features 

is extremely difficult, if not impossible.  

The third problem in pattern recognition system design involves the determination 

of an optimum decision procedure, which is needed in the identification and 

classification process, namely the construction of a pattern classifier. The concept of 

pattern classification [9] may be expressed in terms of the partition of the feature 

space (a mapping from feature space to decision space). The work of a pattern 

classifier is to assign each possible vector or point in the feature space to a proper 

pattern class. In other words, pattern classification is the act of assigning a class label 

to an object. The assignment is always based on measurements that are obtained from 

that object.  

Parameter estimation [9], [12], [13] is the process of attributing a parametric 

description to an object based on measurements that are obtained from that object. 

Parameter estimation and pattern classification are similar processes because they 

both aim to describe an object using measurements. However, in parameter estimation 

the description is in terms of a real-valued scalar or vector, whereas in classification 

the discription is in terms of just one class selected from a finite number of classes.  

The discipline of pattern recognition has seen enormous progress since its 

beginnings more than four decades ago. Over the years, various approaches have 

emergend, based on statistical decision theory [9], structural matching and parsing, 

soft computing (i.e. neural networks, fuzzy logic, and evolutionary computing and 

genetic algorithms) [14], [15], artificial intelligence, and others. Obviously, these 

approaches are characterized by a high degree of diversity. In order to combine their 

strenghts and avoid their weaknesses, hybrid pattern recognition systems [15], [16] 

have been proposed, combining several techniques into a single pattern recognition 

system. Hybrid methods have been known about for a long time, but they have gained 
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new interest only recently. Examples of hybrid pattern recognition systems are neuro-

fuzzy and fuzzy-neural classifiers [17], [18], evolutionary computing for neural 

network architecture and parameters optimization, neural networks for structural 

pattern recognition, combining neural networks and hidden Markov models for 

statistical pattern recognition [16], combined (or simultaneous) classification-

estimation systems [12], [19],  multiple classifier systems [20], [21] and others. 

 

1.4   Image Processing and Analysis, Approximate Processing and 
Reduced Dimensionality 

 

Visual inspection techniques require extensive image processing and image 

analysis for improving the image quality and deriving characteristic features. Image 

processing [22], [23] involves changing the nature of an image in order to either 

improve the pictorial information for human interpretation, or render it more suitable 

for autonomus machine perception. Image processing is usually performed within 

rectangles, circles or along lines and arcs. Image prossecing operations include 

geometric and radiometric correction, enhancement, restoration, filtering (e.g., 

smoothing, sharpening), segmentation (e.g., thresholding, edge detection, Hough 

transform), morphological operations, etc. Such operations can be used to improve 

image quality (e.g., remove noise, improve contrast) and to enhance or separate 

certain image features (e.g., regions, edges) from the background [22], [24]. Image 

processing operations transform an input image to another image having the desired 

characteristics. 

One of the most difficult and important problems in automating machine vision is 

to understand what kind of information is required and how is translated into 

measurements or features extracted from images. A descriptive set of uncorrelated 

features can drastically boost the classification success rate. Image analysis [22] – 

[28] transforms images to measurements. In particular, image analysis is related to the 

extraction and measurement of certain image features (e.g., lines, and corners) and 

transforms these image features to numbers, vectors, character strings etc. The 

ultimate goal of image analysis is geared towards the extraction of features that can be 

used by classifiers to classify objects. 

The limitation of computer-based tools related to computer time and working 

space poses a high priority on the objective choice of a limited number of essential 
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characteristics (state-space or feature-space reduction) but also on the exclusion of 

redundant observations (sample-space or data-space reduction). Thus, the concept of 

approximate processing [29] has been considered in real-time applications, where 

there is a necessity for approximating a given algorithm with another that has reduced 

computational cost.  

A wide-spread approach related to approximate processing deals with feature-

space reduction [9], [30] and attempts to preserve the most important information 

conveyed by features extracted from the input data, while simplifying the required 

computations by reducing the dimensionality of the feature space. Principal 

components analysis (PCA) [9], [31], [32] is a well-established feature-space 

reduction technique employed in different forms including Factor Analysis [31], 

Karhunen-Loeve Transform (KLT) [7], [9], [11], [32], and Hotelling Transform [31], 

[32], depending on the application.  

Another approach to information reduction, referred to as data-space reduction 

[30], exploits the fact that the underlying dimensionality of the data (intrinsic 

dimensionality) may be small, even though the input dimensionality is quite large 

expressing high correlation among input data.  Unsupervised linear-mapping 

approaches in the form of PCA and orthogonal subspace projections are designed to 

decorrelate the data and maximize the information content in a reduced 

dimensionality space. 

 

 

1.5   Statistical and Soft Computing Approaches for Pattern 
Recognition 

 

Statistical pattern recognition is a relatively mature discipline and a number of 

commercial recognition systems have been designed based on this approach. In the 

statistical approach [9], [33] – [35], a set of features is extracted from the input 

pattern, and the classification is carried out by partitioning the feature space. The most 

general and most natural framework to formulate solutions to pattern recognition 

problems is a statistical one, which recognizes the probabilistic nature of  both the 

information we seek to process and the form in which we express results. In the 

statistical approach, we are not concerned with whether the classifier actually makes a 

wrong decision, but we are concerned with the probability of a wrong decision.  
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Soft computing (SC), which has emerged in the last decade as an efficient tool, 

consists of several computing paradigms, including fuzzy logic, neural networks, and 

genetic algorithms. Its aim is to exploit the tolerance for imprecision, uncertainty, 

approximate reasoning, and partial truth in order to achieve tractability, robustness, 

low cost solution and close resemblance with human like decision-making. 

Traditionally, pattern recognition problems have been solved by using classical 

statistical methods and models, which lack, in some cases, the accuracy and efficiency 

needed in real-world applications. Traditional methods include the use of statistical 

models and simple information systems. We instead, consider more general modeling 

methods, which include fuzzy logic and neural networks. We also use genetic 

algorithms for the optimization of the fuzzy systems and neural networks. Combining 

SC methodologies, we can build a powerful hybrid intelligent system that will solve 

efficiently and accurately a specific pattern recognition problem.  

Fuzzy logic [36] – [38], [41] is an area of soft computing that enables a computer 

system to reason with uncertainty. A fuzzy inference system consists of a set of if-

then rules defined over fuzzy sets. Fuzzy sets generalize the concept of a traditional 

set (i.e., crisp set) by allowing the membership degree to be any value between 0 and 

1. This corresponds, in the real world, to many situations where it is difficult to decide 

in an unambiguous manner if something belongs or not to a specific class. In other 

words the fuzzy set concept provides us with an intuitive method of representing one 

form of uncertainty by eliminating the sharp boundary that divides members of the 

class from nonmembers. However, in some decision-making situations measurements 

of length, area, and weight, classes are defined with sharp boundaries.  Since the 

evidence for measurement error is unavoidable in most measurements, some 

uncertainty usually prevails. To represent this kind of uncertainty, known as 

ambiguity, we assign a value in the unit interval [0,1] to each possible crisp set to 

which the element in question might belong. This value represents the degree of 

evidence or belief or certainty of the elements’s membership in the set. Such a 

representation of uncertainty is known as a fuzzy measure [39] – [41]. 

Neural networks [8], [10], [17], [18], [38], [41] – [43] are computational models 

with learning (or adaptive) characteristics that model the human brain. Generally 

speaking, biological natural neural networks consist of neurons and connections 

between them, and this is modeled by a graph with nodes and arcs to form the 

computational neural network. This graph along with a computational algorithm to 
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specify the learning capabilities of the system is what makes the neural network a 

powerful methodology to simulate intelligent or expert behavior. 

Genetic algorithms and evolutionary methods [44] – [48] are optimization 

methodologies based on principles of nature. Both methodologies can also be viewed 

as searching algorithms because they explore a space using heuristics inspired by 

nature. Genetic algorithms are based on ideas of evolution and the biological process 

that occur at the DNA level. Basically, a genetic algorithm uses a population of 

individuals, which are modified by using genetic operators in such a way as to 

eventually obtain the fittest individual. Any optimization problem has to be 

represented by using chromosomes, which are a cidified representation of the real 

values of the variables in the problem. Both genetic algorithms and evolutionary 

methods can be used to optimize a general objective function.  As genetic algorithms 

are based on the ideas of natural evolution, we can use this methodology to evolve a 

neural network or a fuzzy system for a particular application. 

 

 

1.6    Combination of multiple classifiers 

 

The use of multiple classifiers [20] – [21], [48] – [50] has gained momentum in 

the recent years and researchers have continuously argued of the benefits of using 

multiple classifiers to solve complex pattern classification problems. The idea 

appeared under many names: decision combination, multiple experts, mixture of 

experts, classifier ensembles, opinion pool, classifier fusion, and more.  

The combination of multiple classifiers has been intensively studied with the aim 

of overcoming the limitations of primary classifiers. Classifiers differing in feature 

representation, architecture, learning algorithm, or training data exhibit 

complementary classification behavior and the fusion of their decisions can yield 

higher performance than the best individual classifier. The performance of a multiple 

classifier system relies on both the complementariness of the participating classifiers 

and the combination method. 

Multiple classifier systems can be classified in a variety of ways. The basic 

categorization of multiple classifier systems has been by the method the classifiers are 

arranged. The two basic categories in this regard are the serial suite and the parallel 
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suite. The parallel expert architecture consists of a set of classifiers that are consulted 

in parallel. The decisions of the various experts are combined in parallel by the fusion 

module. The experts, in this case, are capable of independent and simultaneous 

operation. On the other hand, the serial suite consists of a set of classifiers arranged in 

series, or in tandem. This architecture is well suited to deal with situations where the 

different experts have a ternary decision scheme. A scheme in which they can be 

undecided on the input pattern they are presented with. If the current expert is 

undecided, information is passed to the next expert in the sequence.  

Multiple classifiers can also be categorized based on the method of mapping 

between the input and output of the fusion module. This mapping may be linear or 

non-linear. Linear combination is the simplest approach, in which a weighting factor 

is assigned to the output of each expert being combined. Weighted average, fuzzy 

integrals are among the linear combination methods, while the majority voting is a 

non-linear method.  

Combining methods can also be divided into two different classes depending on 

the pattern representation methodology. The primary classifiers can all use the same 

representation, and hence the classifiers themeselves should be different. In distinct 

pattern representations approach [49], [51] the individual classifiers use different 

representasions of the same inputs. This can be due to the use of different sensors or 

different features extracted from the same data set.  

Another categorization of classifier combining methods are if they encourage 

specialization in certain areas of the feature space (i.e classifier selection). On the 

other hand, ensemble of classifiers have primary classifiers that do not encourage 

such specialization and classifiers themselves must have different classification 

powers (i.e. classifier fusion). In other words, in an ensemble each base classifier can 

be used alone to provide a solution to the input pattern. While a modular approach 

would need the coordination of all the classifiers to present a complete solution.  

Overall, the combination methods can be categorized according to the level of the 

individual classifiers outputs: abstract level (class label), rank level (rank order), and 

measurement level (class scores). The abstract level classifiers output only the class 

label, whereas the rank level classifiers output the rank for each class. The 

measurement level classifiers assign each class a measurement value to indicate the 

possibility that the input pattern pertains to the class. 
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1.7   Objective and approaches 

 

The objective of this PhD thesis is to develop a variety of approaches to build 

hybrid intelligent systems for multi-lead surface mounted devices (SMDs) post-

placement quality inspection using classical statistical and soft computing pattern 

recognition methodologies.  

In the first approach a Bayesian novel framework is proposed to inspect the 

placement quality of Surface Mount technology Devices (SMDs), immediately after 

they have been placed in wet solder paste on a Printed Circuit Board (PCB) [19], [30]. 

The developed approach involves the indirect measurement of each individual lead 

displacement with respect to its ideal position, centralized on its pad region. This 

displacement is inferred from area measurements (geometric or optical features) on 

the raw image data of the lead region through a classification process. To increase the 

accuracy in the computation of the lead displacement, we introduce a combined 

classification / estimation process [19], [30] in which the individual lead 

displacement classifications are viewed as measurements (or observations) of the 

same physical quantity i.e., the displacement of the entire component as a rigid body. 

Certain geometric relations connecting lead shifts to component displacement are also 

derived. Employing these relations we can infer a new refined measurement of the 

shift of each individual lead, a quantity crucial to the calculation of the quality 

measures. 

Motivated by the capabilities of approximate processing and the need for 

reducing time requirements and overcoming inaccuracies due to “microscopic” pixel-

based consideration of images (such as segmentation process), we study in the second 

approach “macroscopic” techniques that do not consider pixel processing but rather 

define in an abstract way the characteristic features of individual lead images. More 

specifically, we adopt two different forms of data-space reduction [28] directly on 

the initial image space, affecting: 1) the intensity levels or dynamic range, by 

transforming the gray-scale image into a binary edge image (referred to as reduced 

dynamic-range processing) [28], extracting topological features, and 2) the number 

of independent variables, by utilizing only specific image projections of the image 

data (referred to as reduced input-dimension processing) [28]. The classification task 
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of individual leads is executed via two different classifiers, which based on the 

abovementioned reduced-dimensionality features. The first classifier is a Hamming 

neural network classifier based on reduced dynamic-range processing. The second 

classifier is a Bayesian distance classifier based on input – dimension processing. 

The goal of the third approach is to test and compare multiple classifier fusion 

methods for improving the classification of the individual leads in component quality 

inspection [48]. Instead of using single statistical or neural classifiers as in first 

approach, we implement multi-modular classification systems that combine decisions 

from statistical and neural modules. Combining the power of the primary classifiers 

through multimodular architectures we improve the classification results and enhance 

the robustness of the overall classification system. We propose four representative 

schemes for soft fusion of multiple classifiers based on identical pattern 

representations. 

The scope of the last approach is to fuse decisions from primary classifiers, which 

operate on distinct pattern representations [48]. The motivation for exploring the 

combination issue is to improve performance of classification task of individual leads 

based on reduced dimensionality distinct pattern representations [28], [48]. We 

elaborate on two schemes for distinct pattern representations. In the former scheme 

we use only reduced dimensionality features (i.e., topological and projection features), 

whereas the latter enriches the topological and projection features with optical ones, 

in order to improve the classification rates and robustness across all lead-displacement 

classes.  

 

1.8   Contribution 

This PhD thesis considers the problem of Multi-lead Surface Mount Devices (SMD) 

Printed Circuit Boards (PCB) Post-Placement Quality Inspection in the context of 

pattern recognition tasks. More specifically, the present work introduces: 

� Novel issues in relation to image processing and analysis techniques for the 

individual lead images of components.  

� A Bayesian novel framework  for component displacement estimation from 

individual lead displacements. 

�  New concepts for data-space reduction for individual lead images:  

• Reduced Dynamic-Range Processing  based on  topological features, 
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• Reduced  Input-Dimension Processing based on  projection features 

� The concept of Multiple Karhunen Loéve Transformation for feature-space 

reduction. 

� The application of ensemble classifiers for improving the classification of the 

individual lead displacements using two different scenarios: 

• Identical pattern representations 

• Distinct pattern representations 

 

1.9   Publications 

Parts of the work presented in this thesis have been already submitted for publication 

or published in international scientific journals and conference proceedings as 

follows: 

 

       Journals 

• M. Zervakis, S.K. Goumas, and G. A. Rovithakis, “A Bayesian Framework for 

Multi-lead SMD Post-Placement Quality Inspection”, IEEE Transactions on 

Systems, Man and Cybernetics -Part B: Cybernetics, vol. 34, no. 1, pp. 440-

453, February 2004. 

• S. K. Goumas, I. N. Dimou, M. E. Ζervakis, “Combination of Multiple 

Classifiers for Post Placement Quality Inspection of Components: A 

Comparative Study”, Information Fusion, Accepted for publication in the 

March 1, 2008. 

 

     Conferences 

• S. K. Goumas, G. A. Rovithakis and M. E. Zervakis, “A Bayesian Image 

Analysis Framework for Post Placement Quality Inspection of Components”, 

Proceedings of 2002 IEEE International Conference on Image Processing - 

ICIP 2002, pp. II-549-552, September 22-25, 2002, Rochester, New York, 

USA. 

• S. K. Goumas, M.E. Zervakis, and G. A. Rovithakis, “Reduced 

Dimensionality Space for Post Placement Quality Inspection of Components 

based on Neural Networks”, in Proc. ESSAN’ 2004, 12th European 
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Symposium on Artificial Neural Networks, pp. 275-280, April 28-30, 2004, 

Bruges, Belgium. 

 

1.10 Thesis overview 

The overview of the thesis is as follows. In the next Chapter the fundamentals 

concepts of industrial machine vision inspection systems (IMVIS) are given. The 

structure, design issues, components and applications of these systems are presented 

in enough detail to give necessary background for the particular problem of SMD 

PCB Post Placement Quality Inspection. The aim of the 3rd Chapter is the formulation 

of the SMD PCB Post Placement Quality Inspection problem. After a short review of 

surface mount process and automatic visual inspection of PCBs, the problem 

formulation and requirements of industrial manufacturer for SMD post placement 

quality inspection are presented. Finally, the state of the art in SMD defects is 

referred. In Chapter 4, the algorithmic concepts of pattern recognition and image 

analysis are described. In the first part of this chapter, the general pattern recognition 

problem is formulated. Then, a diverse of pattern recognition approaches, such as 

classical statistical and soft computing ones along with parameter estimation 

algorithms are presented and explained in enough detail to give necessary theoretical 

background for the particular problems that will need to be addressed. The second 

part of 4th Chapter concentrates on the image analysis techniques, such as adaptive 

thresholding algorithms that were used for pixel-based feature extraction from 

individual lead images of the components. In Chaptrer 5, a Bayesian novel framework 

is proposed to inspect the placement quality of SMDs, immediately after they have 

been placed in wet solder paste on a PCB. We propose  in the 6th  chapter two neural 

networks based  approaches to extract the characteristic features (reduced-

dimensionality features) from individual lead images. The goal of the 7th Chapter is to 

test and compare multiple classifier fusion methods, operating on identical pattern 

representations, for improving the classification of the individual leads in component 

quality inspection. The scope of the 8th Chapter is to fuse decisions from primary 

classifiers, which operate on distinct pattern representations, for improving the 

performance of classification task of individual leads of the components. Finally we 

conclude in Chapter 9 with some discussion on our future research. 
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Chapter 2 

 
Fundamental Concepts of Industrial Machine Vision 
Inspection Systems 
 
 
2.1   Fundamentals of Machine Vision Systems 
 

Machine (or computer) vision is computer imaging where the application does 

not involve a human being in the vision loop. In other words, the images are 

examined and acted upon by a computer. Although people are involved in the 

developed of the system, the final application requires a computer to use the visual 

information directly [58].  

A machine vision system (MVS) is the technological integration of a camera and 

a computer. In a MVS, the camera does the task of an eye and the computer acts as 

the brain by processing the information perceived by the camera. Signals generated by 

the camera are stored in the computer as a digital image. Image processing and 

analysis algorithms are used to extract a set of features, called a pattern, from the 

image to represent an object. On the basis of the pattern, the object can then be 

classified into one of the several pre-defined classes using a classification algorithm, 

called a pattern classifier. 

 A machine  vision system  is concerned basically with the deduction of surfaces 

and properties of three-dimensional objects from their two-dimensional images. It 

involves edge detection, segmentation, and extracting features using texture, shading, 

stereo, motion, and recognition [1], [3]. A machine vision system, like other 

engineering systems, has two components – hardware and software – and consists of 

stages such as image acquisition, preprocessing, feature extraction, storing objects by 

association, accessing a knowledge base, and recognition. The software component of 

the vision system deals with algorithms and the implementation of these stages. A 

variety of tools, such as conventional statistical methods, neural networks, fuzzy logic 

techniques, genetic algorithms, or hybrid techniques (such as fuzzy-neural or neuro-

fuzzy), can be used in implementing various stages of a machine vision system. The 

hardware component of a machine  vision system deals with imaging devices such as 

digitizers, scanners, cameras, and display devices, as well as film recorders, storage 



CHAPTER 2                         FUNDAMENTAL CONCEPTS OF INDUSTRIAL MACHINE VISION INSPECTION SYSTEMS 
                                                                    

 16 

devices, and a computer. To process images on a digital computer requires that the 

images first be digitized. Digital images are often obtained with digital cameras.  

Humans can easily recognize objects and understand complex scenes with 

multiple objects, noise, clutter, occlusion, and camouflage. Humans are able to 

recognize as many as 10,000 distinct objects [63] under varying viewing conditions, 

while a state-of-the-art machine vision system can recognize relatively few objects. 

One approach to implementing a machine vision system is to emulate the human 

vision system [1], [59]. However, the problem with this approach is that the human 

vision system is very complex and is not well understood. The human vision system 

beyond the human eye is disjointed and speculative. Therefore, at this time it is 

impossible to emulate the human vision system exactly; however, the study of 

biological systems provides us with clues for developing machine vision systems. 

Research suggests that the advantages of biological vision over current machine 

vision are from feedback, flexible control, and the kinds of feature detectors. In [59] 

an example general purpose machine vision system having some of these biological 

characteristics is described. The purpose of this system is to find and identity spatial 

features of luminance in the field of view. The design method is to model the human 

vision system. The functions of the modules approximate those of the human brain. 

For convenience, implementation in a test bed uses a mixture of  Neural Networks 

and standard processing algorithms. The system recognizes gray-level  images in the 

field of view, with arbitrary translations and rotations. It does not emulate certain 

biological characteristics. Not emulated are binocularity, size invariance, motion 

perception, color sensitivity, and discernment of visual boundaries. Indeed, many 

applications can omit these properties. 

Machine vision is concerned with both low-level and high-level processing 

issues, such as cognitive issues. Stages in a typical MVS are shown in block diagram 

in figure 2.1. The first three stages – image acquisition, preprocessing, and feature 

extraction – implement early processing or low-level processing, whereas the last 

stage – recognition that includes a knowledge base and associative storage – deal 

with cognitive processing or high – level processing. Low-level processing deals with  

the retina, while high – level processing deals with the cognitive use of  knowledge.  
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Figure 2.1  Processing stages in a typical machine vision system 

 

The traditional machine vision approach rests upon three basic tenets [61] 

1. The goal of a MVS is to create a detailed model and full representation of 

the visual world. 

2. The MVS is hierarchical, with each stage being responsible for 

performing a specific task until finally only unique features are left than 

can be acted upon by the later stages of processing. 

3. There is a dependency of the higher levels of visual processing on the 

lower levels, but in general the reverse is not true. 

 

MVS may be applied to a variety of areas having considerable significant 

commercial importance and academic interest such as: 

• Industrial applications (robot vision, automated visual inspection) 

• Aerial/satellite image analysis 

• Agriculture  

• Document processing 

• Forensic science, including fingerprint recognition 

• Health screening 

• Medicine 

• Military applications (target identification, missile guidance, vehicle location) 

• Publiching  

• Research, particularly in physics, biology, astronomy, materials engineering, 

etc. 

• Security and surveillance 

• Road traffic control 
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For the purposes of this PhD thesis we will restrict our discussion to industrial 

applications of MVS and in particularly to automated inspection of solder joints on 

surface mount printed circuit boards. 

 

2.2    Industrial Machine Vision  Inspection Systems 

 

Over the past 30 years, machine vision has taken a vital role in controlled 

industrial applications. Industrial machine vision is the use of computer processing 

of images that arise from manufacturing processes [111]. As such, industrial machine 

vision is a sub-field of the larger discipline of computer vision, which tackles the 

problem of computerized image interpretation. Industrial machine vision systems 

(IMVS) operate in constrained and controlled environments: a fact that can be 

exploited by algorithms used by the system. However the demands on these systems 

are high in terms of performance and cost. To meet these demands, industrial machine 

vision systems have successfully integrated various vision modules, such as optics, 

image acquisition and image analysis. 

Industrial machine vision can be divided into two areas: automated assemply by 

robots, i.e. robot vision, and automated visual inspection  (AVI) [53], [60] or 

industrial machine vision inspection. Robot vision is typically concerned with 

sensing, interpreting, and reasoning about a three dimensional scene so as to make 

decisions about it. Applications include driving an autonomously guided vehicle, a 

welding robot or clearing submarins. Applications such as gauging and determining 

the presence or absence of parts are generally termed AVI. The difficulty of trying to 

measure a feature accurately is offset by the ability to have more control over the 

environment in such areas as lighting, and part fixturing. Advances in computer 

technology, sensing devices, image processing, and pattern recognition have resulted 

in better and cheaper industrial visual inspection equipment. So,  AVI systems has 

become more widely used in many fields such as delicate electronics component 

manufacturing, quality textile production, metal product finishing, glass 

manufacturing, machine parts, printing products  and granite quality inspection, 

integrated circuits manufacturing  and many others [2].  

The automated visual inspection process involves observing the same type of 

object repeatedly to detect anomalies [54], [55]. The process starts with imaging the 
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object to be inspected by a sensor (or sensors) from which visual data are collected 

and sent to the processor for analysis. Features representing the object are then 

extracted and matched to a predefined model. This feature-to-model matching process 

(or model-based) is the most common technique for detecting defects [54]. It is 

realized by finding features in the given object that match the model’s definition of 

defects, or by verifying all extraced features in the given object to be normal, 

expected features as those defined by the model. Afer the detection, decisions are 

made to classify the object into a defect type.  

There are two main areas of application for AVI: as a means of ensuring quality 

control by rejecting defective products; and as a means of gathering statistical 

information to provide feedback to the manufacturing process. The former case is 

often referred to as a feedforward solution, and the latter case is often referred to as a 

feedback solution [53]. 

The advantages of AVI stem from the replacement of lasbour with capital, the 

automation of the manufacturing process, enhancing consistency of production, 

removing the need to work in hazardous environments, while producing quantitative 

measurements and facilitating the integration with other aspects of automated 

manufacturing.  

There are, however, several disadvantages to automatic visual inspection. 

Commercial systems are quite expensive. For most applications, off-the-shelf systems 

do not exist and special packages must be designed or modified, further increasing the 

total cost. Special fixturings may be needed for loading and unloading objects and 

special lighting must be used. More skilled technician and engineering staff may be 

needed to operate and maintain the systems; integration will probably require more 

sophisticated software and will increase the complexity of current systems. Despite 

this, the applications of automated visual inspection are legion [56] and there is a 

definite trend toward the deployment of AVI systems as a special-purpose real time 

machine vision systems with control of their own environment.  

An AVI system usually requires real-time operation to enable the inspection 

process to keep up with the manufacturing process. This is the most challenging task 

when devoloping an AVI system in which products (objects) are transported at high 

speed. One the most critical timing measurements is the cycle time between the 

presentations of successive images requiring analysis [53]. The image processing and 

analysis must take less than the image acquisition cycle time in order to cope with the 
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requirement of the ral-time operation. Therefore it is vital to develop computationally 

efficient vision algorithms (such as adaptive multilevel thresholding) [57].  

For real-time AVI, there are three important advantages that are used to drive the 

inspection system design [53]: 

• The products under inspection might well be simpler than those found in 

natural scenes, and it may be possible to use computationally efficient 

algorithms to inspect them. 

• The system will probably know what it is looking for, hence it is possible 

to create a stored model of the object under inspection. Model-based 

inspection introduces the possibility of greater efficiency and robustness. 

• The system developer will usually have complete control over the lighting 

environment, and some inventive lighting schemes can be employed.  

 

2.3   Structure, Requirements and Design of Industrial Machine 
Vision Inspection Systems 

 

Industrial machine vision inspection systems (IMVIS) are replacing the process of 

manual inspection of products in different industries. Inspection may include defect 

detection, dimensional measurement, orientation detection, grading, sorting and 

counting.  
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Figure 2.2  A typical industrial machine vision inspection system. 
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Figure 2.2 illustrates the structure of a typical industrial vision system [2]. First, a 

computer is employed for processing the acquired images. This is achieved by 

applying special purpose image processing analysis and classification software. 

Images are usually acquired by one or more cameras placed at the scene under 

inspection. The positions of the cameras are usually fixed. In most cases, industrial 

automation systems are designed to inspect only known objects at fixed positions.  

The scene is appropriately illuminated and arranged in order to facilitate the reception 

of the image features necessary for processing and classification. These features are 

also known in advance. When the process is highly time-constrained or 

computationally intensive and exceeds the processing capabilities of the main 

processor, application specific hardware (e.g., DSPs, ASICs, or FPGAs) is employed 

to alleviate the problem of processing speed. The results of this processing can be 

used to:  

• Control a manufacturing process (e.g., for guiding robot arms placing 

components on printed circuits, painting surfaces etc.). 

• Propagated to other external devices (e.g., through a network or other type of 

interface like FireWire) for further processing (e.g., classification). 

• Characterize defects of faulty items and take actions for reporting and 

correcting these faults and replacing or removing defective parts from the 

production line. 

 

The requirements for the design and development of a successful industrial 

machine vision system vary depending on the application domain and are related to 

the tasks to be accomplished, environment, speed etc. For example, in machine vision 

inspection applications, the system must be able to differentiate between acceptable 

and unacceptable variations or defects in products, while in other applications, the 

system must enable users to solve guidance and alignment tasks or, measurement and 

assembly verification tasks. 

There exists no industrial vision system capable of handling all tasks in every 

application field. Only once the requirements of a particular application domain are 

specified, then appropriate decisions for the design and development of the 

application can be taken. The first problem to solve in automating a machine vision 

task is to understand what kind of information the machine vision system is to retrieve 
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and how this is translated into measurements or features extracted from images. For 

example, it is important to specify in advance what “defective” means in terms of 

measurements and rules and implement these tasks in software or hardware. Then, a 

decision has to be made on the kind of measurements to be acquired (e.g., position or 

intensity measurements) and on the exact location for obtaining the measurements.  

For the system to be reliable, it must reduce “escape rates” (i.e., non-accepted 

cases reported as accepted) and “false alarms” (i.e., accepted cases reported as non-

accepted) as much as possible. It is a responsibility of the processing and 

classification units to maintain system reliability, but the effectiveness of 

classification depends also on the quality of the acquired images. An industrial vision 

system must also be robust. Thus, it should adapt itself automatically and achieve 

consistently high performance despite irregularities in illumination, marking or 

background conditions and, accommodate uncertainties in angles, positions etc. 

Robust performance is difficult to achieve. High recognition and classification rates 

are obtained only under certain conditions of good lighting and low noise. Finally, an 

industrial vision system must be fast and cost efficient.   

As we have emphasized above, the important attributes of an industrial machine 

vision inspection system are flexibility, efficiency in performance, speed and cost, 

reliability and robustness. In order to design a system that maintains these attributes it 

is important to clearly define its required outputs and the available inputs. Typically, 

an industrial inspection system computes information from raw images according to 

the following sequence of steps [2], [54] :   

1. Image acquisition: The first step in using a machine vision system is to 

acquire a digital image. This can be achieved by either using a digital camera 

or a sensor and a digitizer. A well-designed imaging system would reduce 

noise, prevent blur, stop object motion, optimize contrast between parts of 

interest and the background, resolve the desired defect size, and emphasize 

those features which are relevant to the inspection. The primary objectives are 

to acquire a quality representation of the object under inspection and, more 

importantly, to greatly reduce the complexity of subsequent image processing. 

Image acquisition involves the design of illumination and optics, and the 

choice of sensors and their placement [54]. 
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2. Image processing:  Once images have been acquired, they are filtered to 

remove background noise or unwanted reflections from the illumination 

system. Image restoration may also be applied to improve image quality by 

correcting geometric distortions introduced by the acquisition system (e.g., the 

camera).  

3. Feature extraction: A set of known features, characteristic for the application 

domain, is computed, probably with some consideration for non-overlapping 

or uncorrelated features, [62] so that better classification can be achieved. 

Examples of such features include size, position, contour measurement via 

edge detection and linking, as well as and texture measurements on regions. 

Such features can be computed and analyzed by statistical or other computing 

techniques (e.g. neural networks or fuzzy systems). The set of computed 

features forms the description of the input image.  

4. Decision-making: Combining the feature variables into a smaller set of new 

feature variables reduces the number of features. While the number of initial 

features may be large, the underlying dimensionality of the data, or the 

intrinsic dimensionality, may be quite small. The first step in decision making 

attempts to reduce the dimensionality of the feature space to the intrinsic 

dimensionality of the problem. The reduced feature set is processed further as 

to reach a decision. This decision, as well as the types of features and 

measurements (the image descriptions) computed, depends on the application. 

For example, in the case of visual inspection during production the system 

decides if the produced parts meet some quality standards by matching a 

computed description with some known model of the image (region or object) 

to be recognized. The decision (e.g., model matching) may involve processing 

with thresholds, statistical or soft classification. 

At the last level of decision-making and model matching (i.e. model-based) 

mentioned above, there are two types of image (region or object) models that can be 

used namely, declarative and procedural [2], [55]. Declarative models consist of 

constraints on the properties of pixels, objects or regions and on their relationships. 

Procedural models are implicitly defined in terms of processes that recognize the 

images. Both types of models can be fuzzy or probabilistic, involving probabilistic 



CHAPTER 2                         FUNDAMENTAL CONCEPTS OF INDUSTRIAL MACHINE VISION INSPECTION SYSTEMS 
                                                                    

 24 

constraints and probabilistic control of syntactic rules respectively. A special category 

of models is based on neural networks.  

Model-based approaches often require that descriptions (e.g., features) of the 

image at different levels of specificity or detail be matched with one of possible many 

models of different classes of images. This task can become very difficult and 

computationally intensive if the models are complex and a large number of models 

must be considered. In a top-down approach to model matching, a model might guide 

the generation of appropriate image descriptions rather than first generating the 

description and then attempting to match it with a model. Another alternative would 

be to combine top-down and bottom-up processes. The above control strategies are 

simplified when one is dealing with two-dimensional images taken under controlled 

conditions of good lighting and low noise, as it is usually the case in industrial vision 

applications. Image descriptions and class models are easier to construct in this case 

and complex model matching can be avoided. Model-based approaches to industrial 

visual inspection tasks [64] have been applied in a variety of application fields and 

many of them are reviewed in the following sections. 

 

2.4   Applications of Industrial Machine Vision Inspection Systems 

Interesting surveys specializing in a single application field include among others 

Ref. [65] for automatic PCB inspection, Ref. [66] for wood quality inspection, and 

Ref. [67]  for automatic fruit harvesting. Other important general reviews that cover 

all the fields of visual inspection have been published in Ref. [68], whereas model-

based approaches to visual inspection are considered in [54] and [69] and more 

recently in [55], [70] and [71]. In Ref. [55], a classification of automated visual 

inspection applications is presented based on the type of images to be processed. 

Binary, gray-scale, color, and range image systems are considered, each one showing 

certain characteristics in the context of the particular application field being used. In 

Ref. [70] and [71] on the other hand, machine vision systems are classified according 

to the qualitative characteristics of the objects or processes under inspection. Three 

classes are presented, namely dimensional verification, surface detection, and 

inspection of completeness.  
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Two independent ways of classifying industrial vision applications are proposed 

in [2]. First, industrial vision applications are classified according to the inspected 

features of the industrial product of process in four categories, namely: (a) 

Dimensional quality, (b) Structural quality, (c) Surface quality and (d) Operational 

quality. Industrial vision applications are also classified in terms of flexibility 

according to the so-called “Degrees of Freedom” (DoFs) that form inspection 

independent features. This classification enables the evaluation of tools intended 

towards similar industrial vision applications. 

 

 

2.5   Components of  an Industrial Machine Vision Inspection System 

Developing a machine vision system that is useful to industry in practice requires 

a multidischiplinary approach, encompassing aspects of all of the following 

technologies: 

• Spatial sampling 

• Illumination (or lighting) 

• Imaging Optics (or Camera) 

• Image sensors 

• Analog signal processing 

• Digital information processing 

• Digital systems architecture 

• Software 

• Interfacing vision systems to other machines 

• Networking 

• Interfacing visual systems to humans 

• Existing industrial work and Quality Assurance practice 

 

System development involves integration of software and hardware tools into a 

complete application. Today’s industrial machine vision systems are offering far 

easier integration of various components originating from various software and 

hardware vendors. Even conventional programming environments such as C, C++, 

MATLAB, etc., allow for software components to be embedded into a single system. 
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2.5.1   Imaging Optics and Illumination Techniques 

As for many natural visual systems the process of image formation in  industrial 

machine vision inspection begins with the light rays which enter the camera through 

an angular apperture, and hit a screen or image plane, the camera photosensitive 

device which registers light intensities. Notice that most of these rays are the result of 

the reflections of the rays emitted by the light sources and hitting object surfaces. 

There are a variety of physical parameters playing a essential role in image formation 

such as [74]: 

1. Optical parameters of the lens characterize the sensor’s optics. They 

include: 

• lens type, 

• focal length, 

• field of view, 

• angular apertures, 

2. Photometric parameters appear in models of the light energy reaching the 

sensor after being reflected from the objects in the scene. Yhey include: 

• type, intensity, and direction of illumination, 

• reflectance properties of the inspected surfaces, 

• effects of the sensor’s structure on the amount of light reaching the 

photoreceptors. 

3. Geometric parameters determine the image position on which a 3-D point 

is projected. They include: 

• type of projections,  

• position and orientation of camera in space, 

• perspective distortions introduced by the imaging process. 

All the above plays an essential role in any intensity imaging device, be it a 

photographic camera, camcorder, or computer-based system. However, further 

parameters are needed to characterize digital images and their acquisition systems 

such as: 

• the physical properties of the photosensive matrix of the viewing camera, 

• the discrete nature of the photoreceptors, 

• the quantization of the intensity scale. 



CHAPTER 2                         FUNDAMENTAL CONCEPTS OF INDUSTRIAL MACHINE VISION INSPECTION SYSTEMS 
                                                                    

 27 

An optical system can be regard as a device that aims at producing the same 

image obtained by a traditional camera’s pinhole aperture, but by means of a much 

larger apperture, under a wide range illumination conditions  and exposure times (the 

exposure time being controlled by a shutter). Modern optical systems are quite 

sophisticated, composed of lenses, apertures, and other elements, explicity designed to 

make all rays coming from the same 3-D point converge onto a single image point 

[74].  

To acquire a good image, proper illumination is a basic necessity. Improper 

illumination can cause glare or non-uniform light variation over the field of view. 

This can lead to distortion of object features in the image.  Determination of an ideal 

illumination source is not easy and depends on the nature of the visual inspection task.  

In order to setup an appropriate illumination system we have to consider the 

radiometric properties of the illumination sources, such as spectral characteristics, 

intensity distribution, radiant efficiency  and luminous efficacy. For practical 

applications we also have to carefully choose electrical properties, temporal 

characteristics, and package dimensions of the sources [25]. 

Single illumination sources alone are not the only way to illuminate a scene. 

There is a wealth of possibilities to arrange various sources geometrically, and 

eventually combine them with optical components to form an illumination setup that 

is suitable for different industrial machine vision applications. In many cases, features 

of interest can be made visible by a certain geometrical arrangement or spectral 

characteristics of the illumination, rather than by trying to use expensive machine 

vision algorithms to solve the same task. There are  standard illumination techniques 

such as directional (or specular), bidirectional, rear, vertical, diffused, telecentric, 

light and dark field illumination [25], [72].  Some inventive lighting schemes (the so-

called structured lighting approaches) can be used to derive object features without 

requiring any computation[53]. For instance, the projection of light stripes or grids 

onto the object can be used to generate 3-D information about the object under 

inspection. A structured lighting approach to inspect PCB solder joints has been used 

in [73]. 

 Pulsed illumination can be used for a variety of purposes, such as increasing the 

performance of the illumination system, reducing blurring effects, and measuring time 

constants and distances. Instead of pulsing the illumination signal, it can be modulated 

with a certain frequency (modulated illumination) [25]. Some illumination sources 
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(e.g., special lasers) can only be fired for a short time with a certain repetition rate. 

Others, such as Light-emmiting diodes (LEDs), have a much higher light output if 

operated in pulsed mode [25]. LEDs are increasingly popular in the infrared and 

visual illumination setups for inspection. LEDs illumination has many advantages 

including stability, graceful deterioration, long life cycle, and ease of control [72].  

A detailed overview of imaging optics and illumination techniques can be found 

in [25]. 

 

2.5.2 Image Sensors 

The most commonly used image sensors deal with visible and infrared light. 

These can further be classified into vidicon cameras and solid-state arrays [75]. 

Vidicon cameras are based on the principle of photoconductivity. An image focussed 

on the tube surface produces a pattern of varying conductivity that matches the 

distribution of brightness in the optical image. An independent, finely focussed on 

electron beam scans the rear surface of the photoconductive target and, by charge 

neutralization, this beam creates a potential difference that produces a signal on a 

collector proportional to the input brightness pattern. A digital image is obtained by 

quantizing this signal, as well as the corresponding position of the scanning beam. 

Solid-state arrays [12], [25] are composed of discrete silicon imaging elements, 

called photosites, that have voltage output proportional to the intensity of the incident 

light. Line-scan and area-scan sensors are two types of solid-state sensors [12], [75]. 

A line-scan sensor consists of a row of photosites and produces a 2-D image by 

relative motion between the scene and the detector. An area-scan sensor is composed 

of  a matrix of photosites and is therefore capable of capturing the image in the same 

manner as a vidicon tube. 

Solid-state technology has allowed the elimination of thermionic technology from 

the capturing of images, which was inappropriate for such applications due to slow 

frame rates, increased device volume, increased noise [76] etc. The introduction of 

solid-state technology in image capturing has led to some breakthroughs in industrial 

vision, since they offer a number of advantages as opposed to the predecessor 

technology. Some of these advantages are smaller device sizes, robustness against EM 

noise, higher resolutions, asynchronous triggering (capturing the image the time it is 

needed), stop-motion techniques (capturing fast-moving objects) [76], on-chip signal 
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processing [77] – [79], robustness against changes of lighting conditions [80], [81] 

etc. The most important technologies used in integrated imaging sensors are the 

Charge-Coupled Device (CCD), Charge-Injection Device (CID) and Complementary 

MOS (CMOS) [82]. Although CCD is a mature technology that is commonly used in 

industrial vision applications, the potential of the alternative technologies (CID and 

CMOS) is very high, considering their on-chip intelligent and autonomous post-

processing. High complexity algorithms can  be implemented for real time vision 

inspection and new sensors (e.g., CMOS sensors) offering high dynamic range allow 

for more reliable, flexible and faster image acquisition than traditional CCD sensors, 

even under poor lighting conditions. 

Several criteria are used to evaluate image sensors, the most important being the 

following: [82], [83] a) Responsivity, which is a measure of signal level per unit of 

optical energy. CMOS sensors are slightly better than CCD in this category, due to the 

fact that gain elements are easier to place on their chip. b) Dynamic Range defined as 

the ratio of a pixel’s saturation level to its signal threshold. CCD sensors are better 

because they have less on-chip circuitry, which reduces the noise and increases the 

sensitivity of the sensor. c) Uniformity, indicating the consistency of response for 

different pixels under identical illumination conditions. Circuitry variations affect the 

uniformity of pixels on an image sensor. CMOS sensors are more sensitive to these 

variations because of the more additional circuitry on sensor. Newer CMOS devices 

have added feedback to the amplifiers to compensate these variations, but this only 

works well under illuminated conditions. CCD has better uniformity because the lack 

of any amplification in the sensor itself. d) Speed of operation, with CMOS sensors 

operating faster because most of the circuitry is on board. Thus, the signals 

communicate less distance and don’t have to be piped to other chips on the printed 

circuit board. CCD imagers still operate adequately fast for most applications, but 

anticipated demanding applications will consider CMOS sensors instead. e) 

Reliability, in which respect CMOS sensors are superior to CCDs because of the high 

level of integration contained on the chip. More integration means less external 

connections that are susceptible to corrosion and other problems associated with 

solder joints in harsh environments. Overall, CCDs offer superior image performance 

and flexibility at the expense of system size. CMOS imagers offer more integration, 

lower power dissipation, and smaller system size at the expense of image quality and 
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flexibility. For next-generation applications, CMOS evolves in order to get around the 

low–quality problem. Improvements are incorporated by the use of microlenses, 

which are small lenses manufactured directly above the pixel to focus the light 

towards the active portion, and the minimization of the space circuitry in the CMOS 

pixel. 

The images can also be taken outside the visible spectrum. For example, infrared 

cameras are used for thermal imaging, ultra-violet light has been used for crack 

detection, and X-rays are being used for defect detection in food grains [75] and 

solder joints [91]. 

In cases where the camera is not capable of acquiring the images in digital form, 

an image acquisition board (frame grabber) is required to digitize the analogue 

signals received from the camera and store them as an image in computer memory 

[74]. In Figure 2.3 below the essential components of a digital image acquisition 

system are illustrated. 

 

 

 

 

 

 

 

 

 

 

Figure 2.3  Essential components of a digital image acquisition system. 

 

2.5.3 Software Tools 

The selection of the appropriate software tools is of crucial importance for 

development of an industrial vision inspection system. There have been significant 
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advances in the software area especially in user-interfaces and algorithms [2], [72]. 

The graphical user interface (GUI) has benefited from object-oriented design 

methodologies, web interfaces and integrated development environments that allow 

rapid prototyping. Most of these environments support both, visual programming in 

combination with flexible GUI interfaces and traditional programming. Both 

programming practices can be combined to facilitate application development. Visual 

programming can be employed to accelerate application’s prototyping whereas the 

final application can be implemented and optimized using standard programming 

methods and languages. 

Image-processing software has become user friendly and powerful utilizing 

software libraries implementing some of the most popular image processing and 

analysis algorithms. An image processing environment to be suitable for industrial 

inspection, must (at least) contain algorithms for edge and line detection, image 

enhancement, illumination correction, geometry transforms, Region of Interest (ROI) 

selection, object recognition, feature selection and classification. Ref [2] provides a 

review of some of the most popular image processing and analysis software tools 

offering the desired functionality.  

A wide range of computational intelligence approaches like neural networks, 

fuzzy logic, neuro-fuzzy, and genetic algorithms [38], [41] have been applied to the 

features generated from the image analysis algorithms for pattern classification. In [2]  

a review of some of the most popular computational intelligence software packages is 

provided. 

Overall a wide array of the abovementioned algorithms can be prototyped and 

tested rapidly using the graphical programming blocks available in  software packages 

such as MATLAB and Mathematica. 

 

2.5.4 Hardware Tools 

Software implementations are often insufficient to meet the real time 

requirements of many industrial vision applications. The ever-increasing 

computational demands of such applications call for hardware tools implementing 

image processing algorithms. Application Specific Integrated Circuits (ASICs), 

Digital Signal Processors (DSPs), Field Programmable Gate Arrays (FPGAs) and 
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general-purpose processors are considered as possible alternatives in dealing with the 

problem of processing speed. The choice among them has to be made taking into 

account issues such as, size of chip, power dissipation and performance. However, 

issues such as flexibility of usage, programming environment are now becoming of 

great importance for the application developers [2]. 

There are several ways to perform hardware image processing. The first one is to 

build a circuit dedicated to the application using an ASIC. As algorithms become 

more complex, the future of ASIC design will use more and more Intellectual 

Property (IP) blocks available on the market either as a hardware black box units (i.e., 

layout cells) or software packages (in a hardware description language such as VHDL 

or Verilog) [2]. The use of DSP boards for the fast execution of image processing 

algorithms has been extensively used in industrial vision applications with hard real-

time constraints. Some popular DSP architectures are the TriMedia Mediaprocessor 

by Philips Semiconductors [84], IM-PCI by Imaging Technology, MaxPCI by 

Datacube, Texas Instruments (TI) TMS320Cxx Family, the Genesis Vision processor 

by Matrox based on the TI’s  TMS320C80 DSP and on the PCI platform, the Mpact 

media processor by Chromatic Research Inc. [85] etc. FPGAs are now competitive to 

ASICs both, in terms of capacity (i.e., number of equivalent gates contained in one 

chip) and performance. This allows to quickly having prototype of the circuit that has 

to be designed and able to operate in real conditions. The main advantage compared 

to ASICs is that FPGAs can be reprogrammed. Complex FPGAs allow to design 

reconfigurable systems that can efficiently implement real-time image processing 

algorithms. FPGA-based PCI boards are an attractive alternative to DSP systems [2]. 

Overall, there exist also platforms that are capable of implementing fuzzy, neural, 

or hybrid systems. Most of them are based on general-purpose micro-controllers, 

which are fast enough to execute assembly programs that describe fuzzy or neural 

systems. On the other hand, there are dedicated processors, such as the SGS-Thomson 

WARP family of fuzzy controllers, for the acceleration of fuzzy-oriented applications 

[2]. 
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2.6 Information Support to Industrial Machine Vision Inspection 
Systems using CAD/CAM Data 

 

To support more advanced, and intelligent, applications of  machine vision 

inspection, it is necessary to achieve a level of integration between inspection systems 

and other manufacturing facilities and process control functions, such as design, 

fabrication, assemply, quality control, production management, planning and control. 

Ultimate objectives of systems integration are to achive a higher level of information 

sharing and supporting amongst those systems. In this sense, inspection systems 

should therefore be treated as an integral element of  this broader integrated 

manufacturing environment so as to assume a pro-active role of important on-line 

generators of product quality information. So, a fundamental issue is the providing 

information to the inspection system so as to support inspection operations. Such 

information may be derived computer aided design (CAD), computer aided 

manufacturing (CAM) or any other relevant manufacturing systems/processes [89].  

In essence,”inspection” is the process of comparing detected features with 

expected features of a product. Detected features are features extracted from a 

product under inspection. (i.e., through image acquisition, processing and feature 

extraction), whereas expected features are product specifications with tolerance. The 

ultimate utilization of the supporting information is to establish a local model of the 

products to be inspected. This model will contain specifications of  all the expected 

features (e.g., in the form of inspection specifications, or generic rules) to which an 

acceptable product should confirm. However, it needs not be a complete 

representation of the product, but rather contains only specifications used for the 

purpose of inspection. In other words, it is a local view of  a complete product model, 

being taken from the perspective of inspection.  

Among the potential information sources, CAD is one of the most important for 

such purposes. The CAD data generated during design can be considered as 

representing the original product specifications, and are thus defect-free in nature. Use 

of such data to establish inspection criteria will be much “safer” and more reliable 

than the conventional “known good product” approach. Where CAD data are not 

available for such purpose, CAM data (e.g., often Gerber files for NC Drills or 
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placement machines) can be an important alternative from which necessary 

information can be extracted to establish inspection criteria, or used for other 

reference purposes (e.g., nominal locations of components, etc.). With the availability 

of this off-line generated information the time required to set up the inspection system 

will be reduced dramatically. Requirement for manual on-line teaching processes 

(which are often time consuming and error-prone) will be minimal, if not totally 

eliminated.  

For situations where a broad-ranging system integration is not in place, an ad hoc 

approach can be adopted to establish the information link and to provide CAD/CAM 

based information support to inspection systems, as has been proposed in [89]. This 

approach entails the following logical steps, namely: 

1. Analyze the target inspection application and identify information 

requirements of the visual inspection system. 

2. Based on the information requirements identified, determine (a) the 

content of the information to be extracted from CAD/CAM database, and  

3. Design and code the necessary software program to fulfil the 

requirements. 

Implementations of the above software program may differ from each other, 

depending on the end-systems involved, hardware platform, operating system and 

programming language used. However, a  generic functional model can be defined as 

guideline for developing such software information links [89]. As illustrated in Figure 

2.4 the model consists of three functional layers, viz. : 

 

1. Parsing and interpreting the incoming data from CAD/CAM database 

2. Extracting the necessary information items, and  

3. Representing the extracted information in a format deemed suitable for the 

inspection system in question. 
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Figure 2.4   Key issues in providing CAD/CAM information to support industrial visual 
inspection 
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Chapter 3 

 
The Problem of Sourface-Mount Devices Printed 
Circuit Boards Post Placement Quality Inspection 
 
 
3.1 Introduction to Electronics Manufacturing 

 
Electronics manufacturing is the process of design, development, fabrication, 

assemply, and testing of electronic parts, tools, technologies, components, and 

systems. In electronics manufacturing, several major stages are involved in the 

manufacturing of an electronic product. Component fabrication results in a packaged 

part which performs an electrical or electronic function. These parts are then 

assembled onto a printed circuit board (PCB),  and PCBs are, in turn, assembled into a 

system. The typical manufacturer performs some, but not all, stages of the production 

process. 

In electronics manufacturing, the majority of components fall into two main 

categories: through-hole components (THC) and surface-mount devices (SMD) [6], 

[56]. THC are components that have wire leads which must be inserted through 

predrilled hole on a PCB. The wire leads are then clinced, trimmed, and soldered. The 

leads of these components serve the dual purpose of providing circuit connectivity, by 

being soldered to the circuit paths, and acting as a secure mounting structure to hold 

the component in place. 

Surface-mount components (SMC) or surface-mount devices (SMD) are 

components that are mounted directly to the surface of the PCB, so that it is not 

necessary to have holes drilled through the substrate to mount the components [6], 

[56]. Almost any type of THC will have a counterpart SMD. The SMDs only differ 

from their THC counterparts by their packaging. Whereas the leads do not have to 

pass trrough the PCB, the leads can be much smaller than their THC counterparts. 

Surface – mount technology (SMT) requires pickup, centering, and placement of 

components. The circuit density and fine lead pitches of SMT necessitate automated 

assembly with integrated industrial machine vision systems. SMDs are packaged in 

tape and reel, tube, and waffle pack. Dedicated placement machines are then used to 

place the components on the PCB.  
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In general, electronic systems are made up of several layers or levels of packaging 

which must be interconnected. Each level of packaging has distinctive types of 

interconnection devices associated with it. The hierarchy of interconnection varies 

from gate-to-gate interconnections on silicon chips (IC chips) to cables used to 

interconnected subsystems. At the chip-level, vacuum-deposited thin-film metal is 

used to interconnect individual devices. Chip input/output is accomplished using a 

variety of techniques such as wire bonding. In recent years, electronics packaging 

manufacturing has developed low peripheral leaded packages, such as SOP (Small 

Outline Package), SOJ (Small Outline J-leaded Package), SOIC (Small Outline IC), 

QFP (Quad Flat Package), COF  (Chip-on-Film)  and BGA (Ball Grid Array)  [86] – 

[88].  

 At the PCB level, printed conductor paths connect the device leads of 

components to PCBs and to the electrical edge connectors for off the board 

interconnection. For higher levels of integration, electronics systems utilize cables for 

signal propagation between subsystems. The use of cables necessitates the use of 

connectors to provide mechanical and electrical linkage.  

 

3.2 The Surface Mount Process and Automatic Visual Inspection of 
Printed Circuit Boards 

 
Central to this PhD thesis is the research in electronics manufacturing in the area 

of quality with the development of novel pattern recognition algorithms for the 

inspection of  Surface Mount devices PCBs, which is one of the most important 

challenges faced by the electronics industry today. Since the emergence of Surface 

Mount Technology the electronics products are more compact and complex and the 

added complexity has become more difficult for electronic assemply processes to 

attain the required quality on the end products [109]. 

Human inspection is inefficient, time consuming, and costly process that 

increases the overall production costs without being 100% reliable, and with the 

application of SMT, it is not feasible to use the naked eye anymore to perform certain 

visual inspection tasks where very close tolerances are required. Thus, the use of 

Automated Visual Inspection (AVI), has become a necessity in the electronics 

industry [61], [65]. 
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The problem of Visual Inspection of Surface Mounted Devices on a PCB has 

been studied using different algorithms to get information from 2D and 3D images. 

2D images are rapidly acquired with respect to 3D ones, but depth information is not 

directly available from the resulting image and they required additional expensive 

computational analysis. The computing cost required for 2D images has been reduced 

significantly by transforming them into a one-dimensional signal keeping enough 

information to determine the main characteristics of interest of the object under 

inspection, based on vector classification. 

Surface mount devices are designed to be placed on the board automatically and 

not hand soldered. There are three main steps in the assemply of SMD PCBs: screen 

printing, device onsertion (or “onplacement”) and solder reflow [56], [60].  The first 

stage deposits solder paste onto the conductor pads on the PCB. This is done by 

stencilling on the solder in a paste form. The second stage requires the placement of 

the devices onto the solder paste deposits. In the third stage the solder must be melted 

or “reflowed” to make a mechanical and electrical bond. 

Proper applications of industrial visual inspection systems can result an increased 

product inspection throughput, improved inspection reliability and more consistent 

inspection results. More importantly the earlier in the manufacturing cycle an 

automatic inspection system is used, the better the PCB quality will be and the less the 

product scraps will result. As the structure of PCB product is becoming increasingly 

complicated, a single missed defect in any of the inner layers of a board would cost 

the entire board to be scraped. The philosophy is therefore to detect defects as early as 

possible so as to avoid adding additional values to defective boards or layers.  

As illustrated in Figure 3.1, numerous opportunities exist for applications of 

industrial visual inspection systems in various stages of PCB manufacturing (from 

bare board fabrication to PCB assemply). However, these seemingly diverse 

applications can be classified into four major categories, these being panel inspection, 

solder paste inspection, component placement inspection, and solder joint 

inspection [89].  
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Figure 3.1  Applications of industrial visual inspection 

 

 

3.2.1 Panel Inspection 

The term panel refers to a representation of a PCB artwork in the form of artwork 

films, production master films, individual layers (e.g., signal layers the ground layer, 

etc.), or bare boards. Panel inspection thus refers to the inspection of these various 

artwork films, master films, inner layers, bare boards, and so on. Basically panel 

inspection is concerned with the inspection of features that are essentially of a two-

dimensional nature. The requirements are to verify track width, via hole size and 

shape, soldering pad shape, and size. In addition, it is also required to verify the 

spacing clearances between track and pad, pad and pad, or track and track. 
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Conventionally used techniques for panel inspection can be classified as falling 

into one of the following categories, namely, (i) image comparison based techniques, 

(ii) rule checking based techniques, (iii) combined approaches. 

 

3.2.2 Solder Paste Inspection 

Entering the cycle of PCB assmbly, the first operation (for SMT) is screen 

printing of solder paste onto the bare board. Solder paste application has a direct and 

often decisive effect on the final quality of the solder joints (and thus the functionality 

and reliability of the PCBs) Thus the inspection of solder paste is a must for PCBs 

involving SMT. The requirements are to check, prior to component placement and 

soldering, the volume and the three-dimensional distribution of the of the solder paste 

applied by the screen printing process.This is in effect to make sure that the right 

amount of solder paste has been supplied at the right place and in good alignment 

with solder pads.  

Depending on the requirements of inspection, two basic classes of inspection 

techniques can be differentiated, namely, two-dimensional (2D) based and three-

dimensional (3D) based methods. If only alignment and area need to be verified, then 

2D techniques will be enough. However, if volume and/or spatial distribution of the 

solder paste need to be checked, then some 3D inspection techniques will be required. 

In addition, special illumination and filtering techniques may also be required to 

facilitate the acquisition of an image with a high contrast between the metal solder 

paste and any other background materials (e.g., the substrate). 

 

3.2.3 Component Placement Inspection 

Where there is less confidence in the placement equipment or where complex 

components are used, it is often necessary to perform component placement 

inspection both pre-soldering and post soldering. Typically, this application is 

concerned with (i) checking the presence/absence of components, (ii) verifying that 

the right component (i.e., its type and value) is placed on the right place and with the 

right orientation.  

Pre-soldering inspection helps isolate misplaced components before they are 

physically fixed on the board (i.e., by solder joints) and thus helps minimize post 

soldering rework/repair. On the other hand, post-soldering placement inspection 
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performs a final inspection, in-circuit test and functional test, to  verify the presence 

of certain components as required. This has an additional advantage of limiting the 

range of possible variables affecting the electrical functionality and thus assists test 

equipment in making decisions regarding the board testing.  

 

3.2.4 Solder Joints Inspection 

Automating visual inspection of solder joints is probably the most difficult and 

demanding, yet important inspection task to tackle. The objectives are to isolate 

soldering defects such as insufficient/excess solder, poor wetting, missing lead, 

bridging/opens, solder balls and so on. Due to the shape and the high reflective nature 

of the metal joints inspected, proprietary built illumination systems are almost always 

a prerequisite to obtaining any useable images of solder joints. For instance the use of 

structured light [90], tiered illumination [91], and sufficiently-diffused illumination 

[4] have been reported.  

The introduction and increasing application of surface mount technology 

contributed further to the difficulties of solder joints inspection. Not only the number 

of solder joints to be inspected has increased dramatically, but also image acqisition 

of solder joints becomes more difficult. In some cases the solder joints may not even 

be visible at all as a result of using some special surface mount packages such as 

plastic leadless chip carriers (PLCCs) and leadless ceramic chip carriers (LCCCs). In 

these cases, a special X-ray lighting and X-ray sensitive image acqisition subsystem 

will be required to obtain images of solder joints that are underneath components [92]. 

 

3.3 Problem Formulation and Requirements of Industrial 
Manufacturer for SMD Post Placement Quality Inspection 

 

The goal of this PhD thesis is the development of novel intelligent pattern 

recognition  algorithms to  inspect the placement quality of a selected group of SMD’s 

immediate after they have been placed in wet solder paste on a printed circuit board 

(PCB).  

SMD post placement quality inspection requires a high dynamic range because a 

distinction should be made between a shiny footprint and a shiny SMD lead. It also 

requires fast image intake and fast data processing to sustain the required throughput 

of the Advanced Component Mounter (ACM). A CMOS imaging sensor with its high 
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dynamic range and area readout together with a custom image processor complies 

with these requirements. 

The SMD post placement quality inspection is done to comply with the zero-

defects policy of today’s electronics manufacturing industry. The current achieved 

yields are already very high, so an inspection system has to be very accurate and 

robust otherwise it will cause a lower yield than without the system. Post placement 

inspection has the advantage that the inspection data is available immediately after 

placement so no more time and components are spend on an already faulty PCB. The 

later a defect is caught, the more expensive it is to repair, and so catching a defect 

early in the process is inherently cheaper. Correcting a defect after re-flow produces a 

more brittle joint and increases risk of field failure, which is very expensive to repair. 

Therefore, detecting a defect before re-flow will save money and increase reliability. 

Another advantage of post placement inspection is that it can be used to predict 

possible future board failure. Electrical and functional tests do not always yield this 

information. 

The following two components are inspected here as a test case: 

• an SO Component, and 

• a QFP component with pitch of 0.4mm. 

Examples of the two components are shown in Figures 3.2 and 3.3 correspondingly.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                             Figure 3.2.  The SO28 Component 
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                                   Figure 3.3   The  QFP 120 Component 

 

The CMOS camera, including illumination, will be mounted on a placement arm 

of an ACM. The placement head, which is usually mounted to the arm, will be 

detached for this. The CMOS camera will be mounted next to the placement head in 

its final industrial version.  

 
Some assumptions are made to simplify this problem, which are valid for the majority 

of the cases: 

• The components comply with the specifications (they are checked before 

placement) 

• The solder paste distribution complies with the specifications, this is best checked 

with a 3D-camera or 3D-scanner before the components are placed 

• The component’s footprint and artwork comply to the specifications 

• The PCB is green, this is true for 99% of all cases 

• Re-flow soldering is used 

• The metal surface finish is 

• Bare copper with OSP (a.o. Enthone OMI, Entek) 

• HASL (Hot Air Solder Levelled) 

• Electron-less Ni / Immersion Au  
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The resolution of the camera will be 1024 × 1024 with a field of view of 20 × 20 

mm. This results in a resolution of about 20µm × 20µm per pixel. The images are 

taken with the same focal length of the lens. Moreover, the solder paste is assumed to 

be located on the pad area. 

The pad has precise shape and dimensions and its location relative to the image is 

assumed known within the tolerance of the placement machine (50µm). The required 

measurement accuracy is 20µm. The sizes of the components and the pad areas are 

specified in the following. 

For the SO 28:  

Overall size of the component: L=17.7-18.1mm,  W=10.0-10.65mm 

Pitch of component: 1.27mm 

Width of each lead: 0.36-0.49mm 

Dimensions of the land pattern (pad): 
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7

2.0
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Figure 3.4    Size and pad area of SO28 Component 

 

For the QFP 120:  

Overall size of the component: L=W=15,8-16.2mm 

Pitch of component: 0.4mm 

Width of each lead: 0.13 - 0.23mm 

Length of each lead: 1.12 – 1.18 mm 

Dimensions of the land pattern (pad): 
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Figure 3.5   Size and pad area of QFP 120 Component 

 

 

3.4 Simulation Platform Specifications for  SMD Post Placement 
Inspection of Components 

 

The simulation in our application has been based on images that have been taken 

by industrial manufacturer right from the test-bed. It is the purpose of this simulation 

to design and test novel algorithms that can be useful in SMD component visual 

inspection. For this reason, three major sources of error in the SMD placement 

process will be examined, i.e. open circuits, smearing of solder paste, and 

component miss-alignment relative to the placement head co-ordinates.  

The following properties of a placed SMD define the placement quality: 

• SMD presence (existence of lead). 

• SMD positioning (rotation angle ∆φ) relative to the position of the Solder Land 

(See Figure 3.6) 

• SMD positioning with respect to solder pads: 3 criteria (See Figure 3.7) 

• Insulation distance: This is the distance between the lead and its neighbouring 

solder pad. When this distance becomes too small, a short circuit can occur 

more easily during soldering. An empirical size for a minimum distance is 0.1 

mm. 

• Overlap (adhesion width): This is the width of the lead that is on the solder pad. 

Generally minimal 50% of the lead width should overlap with the belonging 

solder pad. Preferably 75% should overlap. 
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• Slump gap: This is the distance between a lead and its neighbouring solder paste 

deposit. When this distance becomes too small, a short circuit can occur during 

re-flow soldering. Empirical sizes for a slump gap vary from 0.1 to 0.2 mm. 

 

 

                              

                                                                                           ∆φ

QFP

 

 

Figure 3.6. The rotation of the SMD, relative to the solder land. 

 

 

Currently these are the only properties of the placement process that are not 

checked because it is not possible to make reliable measurements with “common” 

CCD cameras because of their limited dynamic range. The difficulty here is that a 

distinction should be made between a shiny copper footprint and a shiny SMD lead. 

The dynamic range of CCD cameras is insufficient for this. 

Solder paste volume has been identified as the single best predictor of finished 

board quality. The paste volume is best checked before placement because then the 

view is not blocked by the component. Some components, like BGA’s, don’t even 

allow inspection after component placement because the paste isn’t visible anymore at 

that time. 
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Lead Pad 

Solder paste 

KR >= 0.1 mm 

KS >= 0.1 mm LW 

Max 1/2 of  LW 

Min 1/4 of  LW 

 

        

Figure 3.7.  The placement quality criteria, LW = Lead width, 
KS = Insulation distance, KR = Slump gap 

 

 

 

3.4.1 Smearing of Solder Paste 

This error can be caused by the placement force, which can cause the components 

to slide over the PCB while they are placed. Smearing of the solder paste can be a 

local phenomenon, which is very difficult to detect. A 3D-camera is much more 

suitable to detect this. Some experiments have been  done by industrial manufacturer 

to find out if it is possible to robustly detect smearing of the solder paste next to the 

leads. Figure 3.8 illustrates this. 
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                                       Figure 3.8    A corner of a quad flat pack 

 

The image in Figure 3.8 only shows a small contrast between the board and the 

solder paste. Two white rectangles are indicated in the left side of the image. The 

upper rectangle indicates an area that only contains solder paste. The other rectangle 

only contains circuit board. The average grey level in the paste area is 103, in the PCB 

area it is 67. The contrast between the solder paste and PCB is even smaller next to 

the leads because the leads block some light that would fall onto the solder paste. The 

standard deviation of the paste area is about three times as high as the deviation in the 

PCB area. This makes accurate segmentation of the solder paste areas between the 

leads very difficult if not impossible. 

The solder paste in Figure 3.9 has an offset to the left. This is very difficult to 

detect even for the human eye. Another example is shown in Figure 3.10. 
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Figure 3.9. Part of Figure 3.8 enlarged (one paste area is outlined by hand) 

 

 

          

Figure 3.10. Another part of figure 3.8 enlarged 

 

3.4.2 Component Position Relative to Placement-Head Coordinates 

The CAD data plus the position data of the placement head give enough 

information to place a ruler at a suitable column/row over the leads. The actual 

position of the component, relative to these rulers and, consequently, the placement-

head coordinates is not given immediately. 
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The QFP Component 

 
Figure 3.11 shows a model of a QFP with the contact areas of the leads with the PCB. 
 

QFP

 
 
 

Figure 3.11  A model of a QFP (left) and the contact areas of the leads with the PCB 
 
 
 

The size of the contact area’s doesn’t only depend on the placement, but also on 

the length of the leads and how the leads are bend. The housing cannot be used to 

measure the component position because the housing is manufactured to inaccurate 

for this. 

The basis for the position measurement of a QFP is formed by measuring each 

lead close to package. A ruler can be put over all leads on each side. This part of the 

lead is very suited because the lead shows a high contrast to its surroundings at that 

place. A QFP and an edge map of the QFP are shown in Figure 3.12 with a row and 

column indicated that could be used to place a ruler.  
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Figure 3.12. A QFP and its edge map 
 
 

The part of the lead closest to the housing is visible as a very regular pattern in 

the edge map. The rulers over the columns/rows don’t reveal the component position 

immediately. The results from this measurement can be used to place rules in the 

direction of the component leads to measure the actual component position. This can 

be very tricky because of the different circumstances around the lead ends. The  

Figure 3.13 shows a side view of a QFP lead. 

 
 

 
 

Figure 3.13. A side view of a QFP lead 
 

 

The points indicated in Figure 3.13 are the points that should be found by the 

rulers, which are placed in the direction of the leads. These points are clearly visible 

in the edge map in Figure 3.12. 

The part of the lead closest to the housing is located about 1 mm above the 

substrate surface. The imaging optics should produce sharp images at this height as 

well as on PCB level. Telecentric lenses can be used for this. A very accurate 

localisation measurement can be done by averaging all found lead positions. 
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The SO Component 

 

About the same approach as with the QFP can be used for a SO, but of course a SO 

only has leads on 2 sides. A model of a SO and the contact areas of the leads with the 

PCB are shown in Figure 3.14. 

 
 
 

SO

 
 

Figure 3.14.  A model of a SO (left) and the contact areas of the leads with the PCB 
 

 

 

                        

                                             Figure 3.15. A SO28 

 

Figure 3.15 shows that a bright reflection of the lead is visible at the lead endpoint 

and close to the housing. These positions can be found by thresholding, this is done in 

Figure 3.16. 
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Figure 3.16. The image from figure 3.15 thresholded 
 
 

Figure 3.16 directly yields the lead positions, one has to take care not to mistake 

the uncovered solder pads for the leads. 

 

 

3.5. Previous Related Research 

 

Current trends in the electronics industry are towards miniaturization of 

components, denser packing of boards and highly automated assembly lines. The 

technology of Surface Mounted Devices (SMDs) leads to this direction, thus 

explaining the substantial increase in the use of its various versions. The 

aforementioned advantages though, make the quality inspection of SMDs more 

critical and demanding [4]. Various SMD defects have been reported in the literature 

[5], including component misplacement and absence, component with wrong polarity, 

solder joint defects and component shifting. Much of the current research efforts are 

concentrated on detecting solder joint defects. The types of solder joint defects 

include surplus solder, insufficient solder and no solder. Component shifting has also 

been reported as a special defect in SMD technology [93].  

Commercially available automatic solder joint quality inspection systems are 

based on laser infrared signatures [94], digital radiography [95], laser Doppler 

vibrometry [96], or laser acoustic microscopy [97]. These methods however, are 

destructive, slow and very expensive, so alternative machine vision systems have 
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become quite popular. Several visual inspection systems for solder joints have been 

reported [4], [98], [99], [100], [101], with different illumination and processing 

techniques. Conventional visual sources and sensors are not sensitive to dim light 

diffused by the surface of the solder, saturate quickly for direct light emitted by 

specular reflection, and often create varying lighting conditions. Thus, processing and 

analysis are restricted to specific tasks, such as the quality of soldered joints in terms 

of the distribution of solder paste [102], inspection of IC wafer contamination [103], 

post-sawing inspection [104], and segmentation of PCBs [105], [106]. Most 

approaches involving visual sensors attempt to increase the quality of the images 

acquired through appropriate lighting conditions, in order to make their processing 

and analysis more efficient. Controlled light sources using LED arrays [5], [99], 

circular color lamps [107], [108], laser sources with parabolic mirrors or range finders 

[100], [109], [110], have been used to acquire and analyze the 3D structure of SMDs 

on the board. Such approaches are also directed toward soldered joint inspection 

through pattern classification schemes. 
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Chapter 4 

 

Algorithmic Concepts 
 

The theoretical background of this study based upon two different disciplines, i.e. 

pattern recognition and image analysis. In the first part of this chapter, the algorithmic 

concepts of pattern recognition are described whereas the second part  concentrates on 

the image analysis techniques. 

 

4.1   Pattern Recognition Approaches. 
 

The problem of pattern recognition [7 – 13] can be seen as of classifying a group 

of objects on the basis of certain subjective similarity measures. Those objects 

classified into the same pattern class usually have some common properties. The 

classification requirements are subjective, since different classification occurs under 

different properties (features) of the objects. 

Given any particular pattern recognition problem, the first task is to choose a 

discretization method in order to obtain a measurement vector for each sample 

pattern. A major difficulty often arises when using these discretization methods, since  

the dimension of the measurement space is usually very large. It is therefore common 

practice to try to reduce this dimension by mapping the measurement space ΩZ  into a 

pattern space or feature space Ω X , where dim(X) << dim(Z), while retaining as 

many properties or features of the original samples as possible. For this reason, this 

part of the pattern recognition problem is called feature extraction (or preprocessing) 

and results in a set of samples from the feature space.                   

The concept of pattern classification may be expressed in terms of the partition of 

the feature space, thus forming a mapping from the feature space to the decision 

space. Suppose that N features are to be measured from each input pattern. Each set of 

N features can be considered as a vector 1 2( , ,..., )  T N
Nx x x= ∈x R  called a feature 

vector or a point in the N-dimensional feature spaceΩ X . The problem of 

classification is to assign each possible vector or point in the feature space to a proper 
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pattern class. This can be interpreted as a partition of the feature space into mutually 

exclusive regions (i.e., decision regions) where each region corresponds to a 

particular pattern class. A classifier partitions feature space into class-labelled 

decision regions. In order to use decision regions for a possible and unique class 

assignment, these regions must cover N
R  and be disjointed (non-overlapping). The 

border of each decision region is a decision boundary. Figure 4.1 depicts the 

recognition/classification process. 
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Figure 4.1   The recognition/classification process 

 
 
Suppose that a given pattern recognition  problem has M different pattern classes 

denoted by ,  1i i Mω ≤ ≤  In several problems we can obtain a number of sample 

patterns  of known classification, say x i j, ,  where:  

                              , ,  1 ,  1i j
i ii M j Sω∈ ≤ ≤ ≤ ≤x    

i.e. we have iS  samples pattern class ωi .  Note that each sample vector x i j,  is an 

element of  the pattern space NR  - we assume that feature selection has already been 

carried out. Thus, x i j,    has N components, denoted by  , ,  1 .i j
kx k N≤ ≤  We have 

used superscripts to denote pattern samples so as not to conflict with vector 

components.  

A pattern recognition system is, then, a system which takes a new sample x* of 

unknown classification and assigns it to some pattern class  (1 )i i Mω ≤ ≤  on the 
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basis of some decision or classification rule. The decision rule is often obtained by 

partitioning pattern space into disjoint regions corresponding to the classes ωi  (Figure 

4.1). The hyperplanes  separating the pattern classes are called decision boundaries 

with dimension (N -1).  

                   
 

 
The selection of the decision boundaries can be made in a variety of ways. The 

simplest method is to use all the labeled samples simultaneously and find the ‘best’ 

partition of the pattern space which places the samples as far from the decision 

boundaries as possible. This type of decision boundary selection leads to the 

minimum-distance pattern classification technique [7], [9], [11]. One drawback with 

this kind of method is that once the decision boundaries are placed according to some 

finite set of samples they are fixed throughout the lifetime of the pattern recognition 

system. 

There exist two distinct phases in the pattern classification process - training 

phase and testing phase. In the training phase, the labeled samples are presented to 

the system sequentially and the decision rule is altered by a ‘teacher’ which corrects 

any errors in the classification of the current sample on the basis of the previous 

decision rule. Once the system has been trained by the labeled samples, it can then be 

used in the testing phase to classify new samples of unknown classification. In order 

to test the system it is usual to set aside some of the data whose class is known during 

the development of the system and then to use this testing set to evaluate the 

performance of the classification rules. There are a number of methods for evaluating 

the classification rules, depending on how the test set is chosen. If we have a large 

number of samples it is a common tactic to divide them into two groups and use one 

for training and the other for testing. If, however there are only a few samples of 

known class it may be necessary to use what is known as the leave one out method 

for assessing the success of the classification rules. This method entails using all the 

cases except one as the training set, and then using the excluded case as the testing 

set, repeating this process until the whole set has been tested. 

 A system which is trained on the basis of labeled samples is said to undergo 

supervised training.  
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In problems where one actually wishes to determine a classification scheme for a 

variety of data vectors (rather than assign new samples to an existing classification) 

there are no labeled samples, since the classes are not specified a priori. In this case 

we can use unlabeled samples to determine a ‘natural’ classification or clustering for 

the problem. A typical example of a classification problem is animal taxonomy in 

which one wishes to classify unknown species on the basis of comparative anatomical 

or genetic features. The basic method in the classification problem is called  

clustering or cluster analysis [9], [11] and seeks to find subsets of the samples, called  

natural groupings or clusters,  whose elements are mutually  ‘close’ but far away 

from members of other clusters.  The training of a pattern classifier with unlabelled 

samples is expressed as unsupervised training.  

Parameter estimation [9], [11], [12], [13] is the process of attributing a parametric 

description to an object based on measurements that are obtained from that object. 

Parameter estimation and pattern classification are similar processes because they 

both aim to describe an object using measurements. However, in parameter estimation 

the description is in terms of a real-valued scalar or vector, whereas in classification 

the description is in terms of just one class selected from a finite number of classes. 

Pattern recognition is a very large subject which draws together methods from 

various related disciplines. There exist different approaches to pattern recognition, 

such as statistical, structural, neural network, fuzzy logic and genetic algorithms 

approaches. In this Ph.D. thesis we examine a wide range of PR approaches each 

focusing on particular characteristics and revealing different relationships of the data. 

 
                                        
                                          
4.1.1 Statistical Pattern Recognition 
 
In this section we discuss the statistical approach to pattern recognition [7 – 9], [11 – 

13], [35]. This approach is based on the statistical study of measurements made on the 

data to be classified. The problem of assigning a feature vector to a particular class is 

tackled by estimating density functions in the N-dimensional space, and dividing the 

space into regions of categories or classes. By means of stochastic considerations, a 

classification rule is optimal in the sense that it results in the lowest average 

probability of committing classification errors. This statistically optimal classification 
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rule is a generally accepted standard against which the performance of other 

classification algorithms is often compared. 

As in most fields of measuring and interpreting physical events, statistical 

considerations become important in pattern recognition because of the randomness 

under which pattern classes are typically generated. For instance, consider the 

problem of classifying (SMD post placement quality inspection) component 

displacements  on the pad regions into five classes: -6 pixels shift, -3 pixels shift, 0 

pixels shift  (i.e. without shift, or normal case) +3 pixels shift and +6 pixels shift. The 

sample patterns for these five classes would be obtained by gathering numerous PCB 

with component displacements which have been labeled as -6 pixels shift or -3 pixels 

shift or 0 pixels shift, or +3 pixels shift or +6 pixels shift. Clearly, these samples 

would form a statistical distribution since, for example, there would be great 

variability or randomness among the component displacements labeled as normal. 

This randomness would be due to the varied technical problems during SMD 

component placement.  

 
 
4.1.1.1   Bayesian Classification 
 
The decision-making process in pattern recognition may be treated as a statistical 

game played by the classifier of the pattern recognition system against nature. This 

process is analogous to a two-person zero-sum game with nature acting as a player A 

and the pattern classifier acting as player B. A zero-sum game is a game in which one 

player’s gain is equal in magnitude to the other player’s loss. Among the strategies 

used are the Bayes strategy, the minimax strategy, and the Neyman-Pearson strategy 

[7], [9], [11]. The job of the classifier is to find an optimal decision which minimizes 

the average risk or cost. 

       In the framework of PR problems, we may imagine that nature is player A and 

that the classifier is player B. We call the strategies of A the states of nature, which 

will be denoted by iω . The states of nature correspond to pattern classes. The 

strategies of the classifier are decisions concerning the states of nature. In the 

following discussion it will be assumed that the number of decisions is equal to the 

number of possible classes. 
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Each time that the game is played, nature selects a strategy iω  according to the 

probability ( )iP ω , which is called the a priori  (or prior) probability of class iω . This 

is simply the probability of occurrence of classiω  . The outcome of nature’s move is a 

sample pattern x. In other words, we do not know which class nature has chosen. All 

the information that we have is a sample x. The job of the classifier is to determine, 

on the basis of this information, which class x came from. The classifier’s move, 

therefore, consists of some decision which indicates what class it “thinks” nature has 

selected. 

Suppose that in a game between nature and the classifier, nature selects 

class ,  1,...,i i Mω = , and produces a pattern x. The probability that x comes from iω   is 

written as ( | )iP ω x  and is called the a posteriori (or posterior) probability. If the 

classifier decides that x came from jω  when it actually came fromiω , it incurs a loss 

equal to ijL . Since pattern x may belong to any of the M classes under consideration, 

the expected loss incurred in assigning observation x to class iω  is given by 

                                       ( ) ( )
1

|
M

j ij i
i

r L P ω
=

= ∑x x                                                 (4.1)                

which is often referred to as the conditional average risk or loss in decision theory. 

The classifier has M possible categories to choose from for each pattern given by 

nature. If it computes the quantitiesr r rM1 2( ), ( ),..., ( )x x x , for each x, and assigns 

each pattern to the class with the smallest conditional loss, it is clear that the total 

expected loss with respect to all decisions will also be minimized. The classifier 

which minimizes the total expected loss is called the Bayes classifier. From a 

statistical point of view, the Bayes classifier represents the optimum measure of 

performance. 

Using Bayes’s formula, 

                                 
( )( | )

( | )
( )
i i

i

p P
P

p

ω ω
ω =

x
x

x
                                     (4.2)                 

we may express Eq. (4.1)  in the form: 

 

                                            
1

1
( ) ( | ) ( )

( )

M

j ij i i
i

r L p P
p

ω ω
=

= ∑x x
x

                           (4.3)            
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where the class-conditional probability density function ( | )ip ωx  is called the 

likelihood  of class iω  with respect to x, and the probability density function (pdf) 

( )p x   is called  the evidence, and for which we have 

                                            ( ) ( ) ( )
1

|
M

i i
i

p p Pω ω
=

= ∑x x                                              (4.4)  

Since 1/p(x) is a common factor in the evaluation ofr j Mj ( ), , ,...,x = 1 2 , it may be 

dropped from  Eq. (4.3). The expression for the average loss then reduces to  

                                           
1

( ) ( | ) ( )
M

j ij i i
i

r L p Pω ω
=

= ∑x x                                       (4.5)                    

In the general multiclass case, a pattern x is assigned to class iω   

if ( ) ( )  for 1,..., ;  i jr r j M j i< = ≠x x ; in other words, x is assigned to class iω       

1 1

( | ) ( ) ( | ) ( ),    =1,2,..., ;  
M M

ki k k qj q q
k q

L p P L p P j M j iω ω ω ω
= =

< ≠∑ ∑x x                  (4.6)            

In most pattern recognition problems, the loss is zero for correct decisions, and it is 

the same for all erroneous decisions. Under these conditions, the loss function may be 

expressed as  

                                        Lij ij= −1 δ                                                            (4.7)                      

 

where   δij =1  when i j=  and  δij =0  when i≠j.  This equation indicates a normalized 

loss of unity for incorrect classifications and no loss for correct classification of a 

pattern. Substituting Eq. (4.7) into Eq. (4.5) yields 

           
1

( ) (1 ) ( | ) ( ) ( ) ( | ) ( )
M

j ij i i j j
i

r p P p p Pδ ω ω ω ω
=

= − = −∑x x x x                        (4.8)            

The Bayes classifier assigns a particular pattern x to class ωi   if        

                ( | ) ( ) ( | ) ( ),       =1,2,..., ;   i i j jp P p P j M j iω ω ω ω> ≠x x                     (4.9)       

It is noted that the Bayes decision rule of Eq. (4.9) is the implementation of the 

decision (or discriminant) functions [7-9], [11]: 

                                  ( ) ( | ) ( ),       =1,2,...,i i id p P i Mω ω=x x                              (4.10)                

where a pattern x is assigned to class iω  if for that pattern  ( ) ( )  for all i jd d j i> ≠x x . 
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An expression that is equivalent to Eq. (4.10) but does note require explicit 

knowledge of i( | ) or P( )ip ω ωx  is obtained upon substitution of Eq. (4.2) into Eq. 

(4.10). Performing this substitution yields  

                       ( ) ( | ) ( ),      =1,2,...,i id P p i Mω=x x x                               (4.11)               

However, since p(x) does not depend on i it may be dropped, yielding the decision 

functions: 

                                   ( ) ( | ),      1,2,...,i id P i Mω= =x x                                    (4.12)                              

Equations (4.10) and (4.12) provide two alternative, yet equivalent, approaches to 

the same problem. Since estimation of the a priori probabilities 

( ),   =1,2,...,iP i Mω , normally presents no difficulties, the basic difference between 

these two formulations lies in the use of ( | )ip ωx versus ( | )iP ω x . 

 
 
4.1.1.2    Bayesian Classification for Normal Distribution of Patterns 
 

When the data (patterns) is assumed to have a normal distribution, i.e., the 

probability density functions ( | )   ip ωx are multivariate normal (Gaussian model) 

[7-9], [11], [33] the Bayes classifier derived in the preceding section results in some 

interesting and familiar decision functions. Because of its analytical tractability, the 

multivariate normal density function has received considerable attention. 

Furthermore, it represents an appropriate model for many important practical 

applications. 

 Using a Gaussian model, the class-boundaries can be characterized by the mean 

vector (or class reference vector) and the covariance matrix, having the form of 

hyper-ellipsoids or hyper-spheres positioned appropriately in the feature space . The 

above concepts can be developed in a mathematical framework as follows : 

Suppose that M mean vectors 1 2, ,..., Mµ µ µ  are given with iµ  associated with the 

pattern class iω . Let us consider M pattern classes governed by the multivariate 

normal density functions 

11
1 2 22

1
( | ) exp ( ) ( ) ,  =1,2,...,

(2 )
T

i i i iN
i

p i Mω
π

− = − − − x x µ Σ x µ
Σ

            (4.13)  
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where each density is completely specified by its mean vector iµ  and covariance 

matrix  iΣ , which are defined as  

                                     
1

1
{ }

iN

i i ij
ji

E
N =

= = ∑µ x x                                                     (4.14) 

and 

   
1

1
{( )( ) } ( )( )

iN
T T

i i i i ij i ij i
ji

E
N =

= − − = − −∑Σ x µ x µ x µ x µ                                 (4.15) 

where Ei {}⋅  denotes the expectation operator over the patterns of class ωi ,  N i  

denotes the number of patterns in class ωi , and x ij represents the jth pattern in the ith 

class. 

In Eq. (4.13), N is the dimensionality (length) of the pattern vectors and  iΣ  

indicates the determinant of matrixiΣ . 

Based on the Equation (4.13) the calculation of the Bayesian classification rule  

                   ( | ) ( ) ( | ) ( ),       =1,2,..., ;   i i j jp P p P j M j iω ω ω ω> ≠x x  

can be greatly simplified by taking the logarithm of both sides, yielding an expression 

of the form 

11 1
ln ( ) ( | ) ln ( ) ln 2 ln ( ) ( )

2 2 2
T

i i i i i i i

N
P p Pω ω ω π −= − − − − −x Σ x µ Σ x µ    (4.16) 

From this, we can define the squared-Bayesian “distance” by dropping the constant 

expression of ln2π  and grouping the other terms together as follows: 

                                               B h Qi i i( ) ( )x x= −
1

2
                                              (4.17) 

where the pattern-independent terms are  

                                               
1

ln ( ) ln
2i i iQ P ω= − Σ                                         (4.18) 

and the squared-Mahalanobis distance (i.e., the squared statistical distance from the 

mean ) is given by  

                                               1( ) ( ) ( )T
i i i ih −= − −x x µ Σ x µ                                 (4.19) 

Note that the true likelihood can be reconstructed from the Bayesian distance as 

follows: 
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                           [ ]2

1
( ) ( | ) exp ( )

(2 )i i iN
P p Dω ω

π
= −x x                                   (4.20) 

whereDi ( )x  is  Euclidean distance between two points given by: 

                                           ( ) ( ) ( )T
i i iD = − −x x µ x µ  

The decision rule can then be rewritten as follows: assign x  to the class with the 

smallest Bayesian distance, i.e.,  

                           B B j M j ii j( ) ( ) , ,...x x< = ≠ ,   ;    1 2                                       (4.21) 

 
 
4.1.1.3     Parameter Estimation 
 
In Subsections 4.1.1.1 and 4.1.1.2 we saw how we could design an optimal classifier 

if we knew the prior probabilities ( )iP ω  and class-conditional densities( )| ip ωx . 

Unfortunately, in pattern recognition applications we rarely, if ever, have this kind of 

complete knowledge about the probabilities structure of the problem. In a typical case 

we merely have some vague, general knowledge about the situation, together with a 

number of design samples or training data – particular representatives of the patterns 

we want to classify. The problem then, is to find some way to use this information to 

design or train the classifier. 

One approach to this problem is to use the samples to estimate the unknown 

probabilities and probability densities, and then use the resulting estimates as if they 

were the true values. In typical supervised pattern classification problems, the 

estimation of the prior probabilities presents no serious difficulties. However, 

estimation of the class-conditional densities is quite another matter. The number of 

available samples always seems too small, and serious problems arise when the 

dimensionality of the feature vectror x is large. If we know the number of parameters 

in advance and our general knowledge about the problem permits us to parameterize 

the conditional densities, then the severity of these problems can be reduced 

significantly. Suppose, for example, that we can reasonably assume that ( )| ip ωx is a 

normal density with mean iµ  and covariance matrixiΣ , although we do not know the 

exact values of these quantities. This knowledge simplifies the problem from one of 

estimating an unknown function ( )| ip ωx to one of estimating the parameters iµ  and 

iΣ .  
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The problem of parameter estimation is a classical one in statistics, and it can be 

approached in several ways [9], [11-13], [33-34]. In this thesis we shall use two 

common and reasonable procedures, namely, maximum likelihood (ML) estimation 

and maximum a posteriori probability (MAP) estimation [9], [11].  

 

Maximum-Likelihood Parameter Estimation 

Maximum-likelihood estimation methods have a number of attractive attributes. First 

they nearly always have good convergence properties as the number of training 

samples increases. Furthermore, maximum-likelihood estimation often can be simpler 

than alternative methods, such as Bayesian techniques [9].  

Let us consider an M class problem with feature vectors distributing according to 

( )| ,  1,2,...,ip i Mω =x . We assume that ( )| ip ωx has a known parametric form, and 

is therefore determined uniquely by the value of a parameter vector iθ . For example, 

we might have ( ) ( )| ,i i ip Nωx µ Σ∼ , where  iθ  consists of the components of iµ  and 

iΣ . To show the dependence of ( )| ip ωx  on iθ  explicity, we write ( )| ip ωx as 

( )| ;i ip ωx θ . Our goal is to estimate the unknown parameters ,  1,2,...,i i M=θ using a 

set of known feature vectors in each class. If we further assume that data from one 

class do not affect the parameter estimation of the others, we can formulate the 

problem independent of classes and simplify our notation. At the end, one has to solve 

one such problem for each class independently. 

Let 1 2, ,..., nx x x  be random samples drawn from probability density function 

(pdf) ( )|p x θ . We form the joint pdf ( )|p X θ , where { }1,..., nX = x x is the set of the 

samples. Assuming statistical independence between the different samples we have 

     ( ) ( ) ( )1 2
1

| , ,..., | |
n

n k
k

p X p p
=

≡ = ∏θ x x x θ x θ                                               (4.22) 

The above is a function of θ and it is known as the likelihood function of θwith 

respect to X. The maximum likelihood (ML) method estimates θ so that the likelihood 

function takes its maximum value, i.e.  

                             ( )
1

ˆ arg max |
n

ML k
k

p
=

= ∏
θ

θ x θ                                                         (4.23) 

A necessary condition that ˆ
MLθ  must satisfy in order to be a maximum is  
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( )

1
|

0

n

kk
p

=
∂

=
∂

∏ x θ

θ
                                                              (4.24) 

For analytical purposes, it is usually easier to work with the logarithm of the 

likelihood than with the likelihood itself. Because the logarithm is monotonically 

increasing, the ̂MLθ  that maximizes the log-likelihood also maximizes the likelihood. 

We define the log-likelihood function as 

                        ( ) ( ) ( )
11

ln | ln |
n n

k k
kk

L p p
==

≡ = ∑∏θ x θ x θ                                           (4.25) 

and Eq. (4.24) is equivalent to 

             
( ) ( )

( )
( )

1 1

ln | |1
0

|

n n
k k

k k k

L p p

p= =

∂ ∂ ∂
= = =

∂ ∂ ∂∑ ∑
θ x θ x θ

θ θ x θ θ
                           (4.26)                         

Applications of maximum-likelihood parameter estimation in specific cases are 

given in Appendix A. 

        

Maximum Aposteriori Probability Estimation 

For the derivation of the ML estimator we considered θ  as an unknown 

parameter. In this subsection we will consider it is a random vector, and we will 

estimate its value on the condition that samples 1 2, ,..., nx x x have occurred. Let 

{ }1,..., nX = x x . Our starting point is ( )|p Xθ . From our familiar Bayes theorem we 

have 

                           ( ) ( ) ( )
( )

|
|

p p X
p X

p X
=

θ θ
θ                                                      (4.27) 

The maximum aposteriori probability (MAP) estimator ˆ
MAPθ  is defined at the point 

where  ( )|p Xθ  becomes maximum, i.e.,  

             ( ) ( ) ( ):  | 0  or  | 0MAP p X p p X
∂ ∂

= =  ∂ ∂
θ θ θ θ

θ θ
                                 (4.28)              

 

 4.1.2   The Neural Networks Pattern Recognition Approach 

This approach uses Artificial Neural Networks (ANNs or simply NNs) for 

classifying data [8-10], [32], [43], [112]. ANNs reveal (encode) unknown nonlinear 

relations of the data through training. 
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Artificial neural networks originated from idea to model mathematically human 

intellectual abilities by biologically plausible engineering designs. Meant to be 

massivelly parallel computational schemes resembling a real brain, NNs evolved to 

become a valuable classification tool with a significant influence on pattern 

recognition theory and practice. Neural networks provide a reasonable and powerful 

alternative to conventional classifiers. Potential benefits of neural networks extend 

beyond the high computation rates provided by massive parallelism. Neural networks 

are natural classifiers with significant and desirable characteristics such as resistance 

to noise, tolerance to distorted images/patterns (ability to generalize) and superior 

ability to recognize partially occluded or degraded images. Neural networks are often 

used as base classifiers in multiple classifiers systems [20-21].  

Literature on NNs is excessive and continuously growing. Many publications 

such as textbooks and monographs [10], [32], [34], [41-43], [113-116], paper 

collections [112], [117-120] and so on, discuss NNs at various theoretical and 

algorithmic depths. In addition, a unified view of neural and statistical pattern 

recognition approaches is referred in [10], [34], [116-117]. 

Consider an N-dimensional pattern recognition problem with M-classes 

ω ω ω1 2, ,..., M . A neural network obtains a feature vector  1 2( , ,..., )  T N
Nx x x= ∈x R  

at its input, and produces values for the M discriminant functions ( ) ( )1 ,..., Md dx x  at 

its output. Typically NNs are trained to minimize the squared error on a labeled 

training set { }1,..., ,  N
n j= ∈Z z z z R , and ( ) { }1 2, ,...,j Ml ω ω ω∈Ω =z  

               ( ) ( )( )
2

1 1

1
,

2

n M

i j i j
j i

E d I lω
= =

 = − ∑∑ z z                                                 (4.29) 

where ( )( ),i jI lω z  is an indicator function taking value 1 if the label of jz  is iω  and 

0 otherwise. It has been shown that the set of discriminant functions obtained by 

minimizing Eq. (4.29) approach the posterior probabilities for the classes for data size 

n → ∞  [122-123]; that is,  

                      ( ) ( )lim  | ,           i i
n

d P ω
→∞

= ∈ Nx x x R                                                 (4.30) 

This result was brought to light in connection with NNs, but in fact, it holds for 

any classifier that can approximate an arbritary discriminant function with a specified 

precision.  
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Various NN training protocols and algorithms have been developed, and these 

have been the key to the success of NN classifiers. In this Ph.D. thesis, we are 

especially interested in multilayer perceptron, learning vector quantization (LVQ) 

and Hopfield autoassociative memory neural networks for classification purposes 

[10], [32], [41-43], [113], [115-116], [124-125]. In the next three subsections we 

describe these types of neural nets. In addition to, we have used the high order neural 

networks (HONNs) [132-136] for feature extraction purposes [28], [137-138]. The 

theoretical framework of HONNs is introduced in Chapter 6. 

 

4.1.2.1 Multilayer Perceptron Feed-forward Neural Network 

One type of ANN system is based on a unit called a perceptron [42], [126] 

illustrated in Figure 4.2. A perceptron takes a vector of real-valued inputs, calculates a 

linear combination of these inputs, then outputs a 1 if the result is greater than some 

threshold and –1 otherwise. More precisely, given inputs 1,..., Nx x  , the output      

           ( ) 0 1 1 2 2
1

  1  ... 0
,...,

1 otherwise
N N

N

if w w x w x w x
x xφ

+ + + + >
= 

−
                         (4.31) 

where each iw is a real-valued constant, or weight, that determines the contribution of 

input ix to the perceptron output. Notice the quantity ( )0w−  is a threshold that the 

weighted combination of inputs 1 1 ... N Nw x w x+ +  must surpass in order for the 

perceptron to output a  1. 

By connecting perceptrons we can design an NN structure called the multilayer 

perceptron (MLP). This is a feedforward structure  because the output of the input 

layer and all intermediate layers is submited only to the higher layer. The generic 

model of a feedforward MLP classifier is shown in Figure 4.3. Here “layer” means a 

layer of perceptrons. There are three distinct types of layers: the input layer, the 

hidden layer(s) and the output layer. The connections between the neurons (i.e. 

perceptrons) of adjacent layers relay the output signals from one layer to the next. The 

input layer receives the input information (i.e. the feature vector 

1 2( , ,..., )  T N
Nx x x= ∈x R ) and distributes the information to the next processing 

layer (the first hidden layer). The number of the neurons in the input layer equals to 

the dimension of the feature vector. The hidden and output layers process the 
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incoming signals by amplifying or attenuating or inhibiting the signals through 

weighting factors. 

 

Figure 4.2  A perceptron 

 

Except for the input layer neurons, the network input to each neuron is the sum of the 

weighted outputs of the neurons in the previous layer. The number of neurons in the 

output layer is determined by the number of classes under investigation (i.e.  M 

outputs 1,..., Mz z  or M discriminant functions ( ) ( )1 ,..., Md dx x  for N-dimensional 

pattern recognition problem with M-classes ω ω ω1 2, ,..., M ). The number of hidden 

layers and the number of neurons in each hidden layer depend on specific application.  

The most critical part of an ANN-based model is to train the network. The most 

widely studied and used training algorithm is the so-called backpropagation learning 

algorithm [41-43], [113, [115-116], which is robust and reliable. The problem of 

neural network training is to devise a method of updating the representative weights 

that minimize the error. It is essentially an optimization problem. The behaviour of 

feedforward network and learning through least square based updating, e.g., 

backpropagation rules can be followed more easily corresponding to changes of 

parameters, e.g., number of hidden layers, number of nodes in a hidden layer, change 

in the type of activation function, learning rate, etc. However, the updating of the 

weights has been done in this thesis by Levenberg – Marquardt algorithm [17], 
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[125]. Levenberg – Marquardt algorithm performs much better with some knowledge 

of the process so that quick convergence is obtained with a very small error. 

 

Figure 4.3  A generic model of an MLP classifier 

 

The structure of the network has been given in Figure 4.4. In this figure, 

,  1,..., ,  1,...,ijv i N j P= =  and ,  1,..., ,  1,...,jkw j P k M= = denote the weights for the 

successive layers. The basic purpose of training a network is to optimize  and ij jkv w  

corresponding to a particular set of input – output training pattern. The responses at 

the hidden nodes ,  1,2,...,jy j P=  are calculated by evaluating the contributions from 

all the input nodes through a nonlinear mapping function 

                                   
1

N

j i ij j
i

y f x v θ
=

 
= + 

 
∑                                                      (4.32) 

where the function ( )f •  given by  

                                         
2

1
1 exp( 2 )

f
N

= −
+ −

                                                    (4.33) 

jθ  is the bias at the jth hidden layer node and  1 2( , ,..., )  T N
Nx x x ∈R  is the input 

vector (feature vector). Similarly, ,  1,...,kz k M=  is calculated using 

1z
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1

P

k j jk k
j

z f b w τ
=

 
= + 

 
∑                                                     (4.34) 

where kτ  is the bias at the kth output layer node. 

A mixture of Gauss-Newton method  and gradient descent technique [17], [41- 43], 

[125]  has been used for training the network (i.e. for optimization of the weights, 

 and ij jkv w ). 

The Levenberg – Marquardt weight update rule is  

                                     ( ) 1T Tw eµ
−

∆ = +J J I J                                                 (4.35) 

where J is the Jacobian matrix of derivatives of each error to each weight, µ  is a 

scalar, I  is the identity matrix and e is an error vector. If the scalar µ is very large, the 

above expression approximates gradient descent, while if it is small the above 

becomes Gauss – Newton method. The Gauss – Newton method is faster and more 

accurate near an error minimum. After each succesful step, i.e., if the error continues 

to decrease, µ  is decreased by one-step and vice-versa. Training continues until the 

error goal is met and the minimum error gradient occurs.  

Figure 4.4.  Weight vectors in the MLP feed-forward network 
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4.1.2.2 Learning Vector Quantization 

 

Self-organizing map (SOM) is an unsupervised neural network model developed 

by Kohonen [124-125]. Unsupervised training is one of the two types of training in 

Neural Networks theory. In this kind of training, there is no training and testing phase, 

but all samples are used for training. 

The SOM can be used as a pattern classifier. However, the classification accuracy 

of the SOM can be significantly increased by using the supervised learning vector 

quantization (LVQ) algorithm [113], [125].  

The architecture of a LVQ neural network is shown in Figure 4.5. Each neuron in 

the first layer (competitive layer) ,S1, of the LVQ network learns a weight vector 

wm m m nmw w w= ( , ,..., )1 2  (often referred to as a reference or codebook vector), which 

allows the network to classify a region of the input space. During the training phase, 

the distance between each input vector and the weight vector of each neuron is 

calculated. The norm of each distance x w− m  is computed and the output of the first 

layer of the LVQ is a vector with 1 corresponding to the neuron whose weight vector 

is closest to the input vector, and 0’s everywhere else. 

Thus the LVQ network behaves exactly like the competitive network [113], [125]. 

However, there is a difference in interpretation, because in the competitive network 

the neuron with nonzero output (winning neuron) indicates which class the input 

vector belongs to. For the LVQ network, the winning neuron indicates a subclass, 

rather than a class. There may be several different neurons (subclasses) that make up 

each class. 

The second layer,S 2 , of the LVQ network is used to combine subclasses into a 

single class. This is done with the W 2 matrix . The columns of  W 2   represent 

subclasses , and the rows represent classes. W 2  has a single 1 in each column , with 

the other neurons set to zero. The row in which the 1 occurs indicates which class the 

appropriate subclass belongs to.  

                                   ( )wkm
2 1= ⇒ subclass m  is a part of class  

During training, the process of combining subclasses to form a class allows the 

LVQ network to create the decision boundaries of the Bayes classifier. It is assumed 

that a set of training patterns with known classifications is provided, along with an 
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initial distribution of reference vectors (each of which represents a known 

classification).  

The learning in the LVQ network combines competitive learning with supervision. 

As with all supervised learning algorithms, it requires a set of examples 

{ } { } { }x t x t x tn n1 1 2 2, , , ,..., , , where x ti i, are input and target values respectively and 

i n= 1,..., . Each target vector must contain only zeros except for a single 1. The row 

in which the 1 appears indicates the class to which the input vector belongs. 

1

2
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[ ]S 2

First Layer  
[ ]S 1
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w11
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y2

yk

Input  Layer
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        .
        .

     .
     .
     .

     .
     .
     .
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 m

                     

Figure 4.5.   The architecture of  LVQ neural network. 

 

The LVQ learning rule proceeds as follows [125]. First, the weight matrix W 1and 

the learning rate α  are initialized randomly. At each iteration, an input vector x  is 

presented to the network and the distance from x  to each weight vector is computed. 

The  neurons of first  layer compete, neuron J  wins the competition, and the  J th 

element of the output of the first layer a1 is set to 1 at the J th entry. Then a1 is 

multiplied by W 2  matrix to get the final output a2 , which also has only one nonzero 

element k, indicating that x  is being assigned to class k. 
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The Kohonen rule is used to update the weight vector w J  of the winning neuron 

in two ways. First, if x  is classified correctly ( ak kt2 1= = ), then the weight vector 

w J  is moved toward x .  

                                w w x wJ J Jnew old old1 1 1( ) ( ) [ ( )]= + −α                     (4.36)        

Second, if x  was classified incorrectly ( ak kt2 1 0= ≠ = ), then it is known that 

the wrong competitive neuron won the competition, and therefore the weight vector is 

moved away from  x . 

                                w w x wJ J Jnew old old1 1 1( ) ( ) [ ( )]= − −α                      (4.37) 

The result is that each competitive neuron moves toward vectors that fall into the 

class for which it forms a subclass and away from vectors that fall into other classes. 

Afterwards, learning rate α  is reduced and is checked the stopping criterion, 

which may be to make more iterations than a fixed number, or if the learning rate 

reaching a sufficiently small value. 

 

4.1.2.3 Hopfield Networks and Neural Associative Memories 

The publication of Hopfield’s seminal papers [127 – 128] started the modern era in 

neural networks. His proposed networks are known as Hopfield networks. Hopfield 

networks have found many useful applications, espesially in associative memory and 

optimization problems.  

One of the most useful and most investigated areas of applications of neural 

networks addresses implementations of associative memories (AMs) [41], [113], 

[127-128]. The function of an AM is to recall a complete set of previously stored 

information, called a “memory”, when the AM is initialized with a subset of the 

memory, called a “key”. More specifically, the AM is designed to store a set of 

vectors, say x, in such a way that a stimulus, say y=x+dx, evokes the output x for 

sufficiently small dx. If dx is considered to constitute either noise or perturbations, 

then the AM is performing the functions of noise suppression or error correction, 

respectively.  

Hopfield has presented continuous time and discrete time systems that are capable 

of implementing AMs [127 – 128]. In addition, several other investigators have 

addressed the analysis of various types of continuous time and discrete time neural 



CHAPTER 4                                                                                                                                    ALGORITHMIC CONCEPTS 

 75 

networks [130]. Effective and general synthesis procedures for such systems have 

been presented [129 – 130].  

 

Discrete Hopfield Networks 

The Hopfield network is a single-layer feedback network;  its detailed network 

configuration is shown in Figure 4.6. 

 When operated in discrete-time fashion, it is called a discrete Hopfield network 

and its structures as a single-layer feedback network can also be termed recurrent. 

When a single-layer recurrent network performs a sequential updating process, an 

input pattern is first applied to the network, and the network’s output is initialized 

accordingly. Then, the initializing pattern is removed and the initialized output 

becomes the new, updated input through the feedback connections. The first update 

input forces the first update output; this in turn acts as the second updated input 

through the feedback links and produces the second update output. The transition 

process continues until no new, updated responses are produced and the network has 

reached its equilibrium. 

 

 

 

Figure  4.6.  Structure of the Hopfield Network 
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Consider the Hopfield network shown in Figure. 4.6. Each node has an external 

input jx   and a threshold  jθ , where j=1,2,…,n. It is important to point out that there 

is no self-feedback in a Hopfield network. The jth node output is connected to each of 

the other node’s inputs through a multiplicative weight ijw   for  jini ≠= ,,...,2,1 ; that 

is, 0=iiw  for i=1,2,…,n. The evolving rule (or update rule) for each node in a 

discrete Hopfield   network is 

                    ),sgn( )(

1

)1(
i

k
j

n

ij
j

ij
k

i ywy θ+= ∑
≠
=

+      i=1,2,…,n                                         (4.38) 

where  sgn(.) is the signum function and the superscript k denotes the index of 

recursive update.  

 

 

Associative memories 
 

An associative memory [41], [113], [129-131] can store as set of patterns as 

memories. When the associative memory is presented with a key pattern, it responds 

by producing whichever one of the stored patters most closely resembles or relates to 

the key pattern. Hence, the recall is through association of the key pattern with the 

information memorized. Such memories are also called content-addressable 

memories in contrast to the traditional address-addressable memories [41] in digital 

computers in which a stored pattern (in bytes) is recalled by its address. The basic 

concept of using Hopfield networks as associative memories is to interpret the 

system’s evolution as a movement of an input pattern most resembling the input 

pattern. 

Two types of associative memories can be distinguished. They are 

autoassociative memory and heterassociative memory [41], [113]. Suppose we have 

p pairs of  vectors {( )},(),...,,(),, 2211 pp yxyxyx  with i n∈x R and i m∈y R . In the 

autoassociative  memory, it is assumed that  ii yx =  and that the network implements 

a mapping Φ of n
R   to n

R  such that  .)( ii xx =Φ  If some arbitrary pattern x is closer 

to  ix  than to any other ,,,...,2,1, ijpjj ≠=x then ;)( ixx =Φ  that is the network will 

produce the stored pattern ix when the key pattern x is presented as input. In the 

heteroassociative memory, the network implements a mapping Φ of n
R  to m

R such 
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that ,)( ii yx =Φ and if some arbitrary pattern x is closer to ix  than to any other 

,,,...,2,1, ijpjj ≠=x  then iyx =Φ )( . In the above, “closer” means with respect to 

some proper distance measure, for example, the Euclidean distance or the Hamming 

distance (HD). The Euclidean distance d  between two vectors x = T
nxxx ),...,,( 21 and 

' ' '
1 2( , ,..., )Tnx x x′ =x  is defined as 2

12'2'
11 ])(...)[( nn xxxxd −++−= ,and the Hamming 

distance is defined as the number of mismatched components of x and x′  vectors 

[41], [113]. More specifically,   

                         
{ }

{ }

' '

1

' '

1

  if  , 0,1

( , )
1

   if  , 1,1   
2

n

i i i i
i

n

i i i i
i

x x x x

HD

x x x x

=

=


− ∈′ = 

 − ∈ −


∑

∑
x x                               (4.39) 

 

For example,  if  T)1,0,1,1(=x   and  (0,1,0,0)T′ =x , then HD( , ) 2′ =x x  . 

Similarly, if      T)1,1,1,1( −−−=x    and     (1,1, 1, 1)T′ = − −x ,then       HD( , ) 1′ =x x . 

In a special case where the vectors pii ,...,2,1, =x , form an orthonormal set, the 

associative memory can be defined as  

 

                      1 1 2 2( ) ( ( ) ( ) ... ( )T T p p TΦ = = + + +x Wx y x y x y x x                      (4.40)     

 

where W can be considered a weight matrix, called a cross-correlation matrix, of the 

network. It is easily seen that  ( )i i iΦ = =x Wx y  since the set of x vectors is 

orthonormal. The associative network with the weight matrix defined as in Eq. (4.40) 

is called a linear associator. 

The linear associators are static or nonrecurrent memory networks since they 

implement a feedforward operation of mapping without a feedback, or recursive 

update, operation. We shall next introduce the dynamic or recurrent memory networks 

that exhibit dynamic evolution in the sense that they converge to a equilibrium state 

according to the recursive formula ),( )()()1( kkk yxy Φ=+ , where k  is the time step and 

Φ is a nonlinear mapping in the form of thresholding. Recurrent memory networks, 

because they threshold the output and recycle the output to input, are able to suppress 

the output noise at the memory output to produce an improved association. 
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Recurrent Autoassociative Memory - Hopfield Memory 
 

In this paragraph we introduce Hopfield autoassociative memory (or Hopfield 

memory for short), that is, Hopfield networks utilized as autoassociative memories. A 

Hopfield memory is able to recover an original stored vector when presented with a 

probe vector close to it. Here, we focus on discrete Hopfield networks and consider 

continuous Hopfield networks as the former’s hardware implementation with 

continuous transient responses. In Hopfield memory, is the data retrieval rule that is 

applied asynchronously and stochastically. The remaining problem is how to store 

data in memory. Assume bipolar binary vectors that need to be stored are  kx  for k 

=1, 2,…, p. The storage algorithm for finding the weight matrix is   

 

                                  IxxW pTk
p

k

k −= ∑
=

)(
1

,                                                   (4.41) 

or 

 

                                
1

,     ;   0
p

k k
ij i j ii

k

w x x i j w
=

= ≠ =∑                                           (4.42) 

where  Tk
n

kkk xxx ),...,,( 21=x  and I is an appropriate identity matrix. If  ix  are unipolar 

binary vectors, that is, },1,0{∈k
ix then the storage rule is  

 

                         
1

(2 1)(2 1),   ; 0
p

k k
ij i j ii

k

w x x i j w
=

= − − ≠ =∑                                 (4.43) 

 

The weight assignment rule in Eq. (4.41) is basically the Hebbian learning rule 

[41], [113] with zero initial weights. Hence, this rule is called a Hebbian-type learning 

rule or an outer-product learning rule [41], [113], [131]. Additional autoassociations 

can be added to the existing memory at any time by superimposing new, incremental 

weight matrices. Autoassociations can also be removed by respective weight matrix 

subtraction. Moreover, the storage rule in Eq. (4.41) is invariant with respect to the 

sequence of storing patterns and also is invariant under the binary complement 

operation.      
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4.1.3 The Fuzzy  Pattern Recognition Approach 
 
Fuzzy logic [36-41] provides a mathematical framework to capture uncertainties 

associated with human cognitive systems, such as thinking and reasoning. Simply, it 

simulates human thinking which operates more likely on symbols than exact values. 

In fact, our daily thoughts and communication are full of these symbols or fuzzy 

expressions.  

Pattern Recognition is, by its very nature, an inexact science. To deal with the 

ambiguity, it is helpful to introduce some “fuzziness” into the formulation of the 

problem. For example, the boundary between clusters could be fuzzy rather than 

crisp; that is, a data point could belong to two or more clusters with different degrees 

of membership. In this way, the formulation is closer to the real-world problem and 

therefore better performance may be expected. This is the first reason for using fuzzy 

models for pattern recognition. The second reason is that the optimization of a fuzzy 

PR formulation may be easier to solve computationally. This is due to the fact that a 

non-fuzzy model often results in an exhaustive search within a huge space (because 

some key variables can only take two values 0 and 1), whereas in a fuzzy model all 

the variables are continuous, so that derivatives can be computed to find the right 

direction for the search. 

A fuzzy set can be considered as an extension of a classical (“crisp”) set: crisp sets 

permit only full membership or no membership; fuzzy sets permit partial membership 

with a certain degree. Indeed, a fuzzy set, say A, in a domain X is characterized by a 

membership function µA  that takes values in the real interval [0,1]. The domain U is 

called universal set or (universe of discourse).  For each x X∈ , µA x( )  gives the 

degree of membership of x  to the set A, i.e., a real number in the range [0,1], where 1 

denotes full membership and 0 denotes no membership [36-37]. 

The fuzzy set concept provides us with an intuitive method of representing one 

form of uncertainty, vagueness, by eliminating the sharp boundary that divides 

members of the class from non-members. In fuzzy sets, a value is assigned to each 

element x of the universal set X. signifying its degree of membership in a particular 

set with unsharp (fuzzy) boundaries. This is useful in situations where is not possible 

to draw crisp boundaries in deciding if a person is tall and in observing the shape of a 

growing animal cell in biology. However, in some decision-making situations such as 

judging if a defendant is guilty or not guilty, and in most measurements in physical 
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sciences such as measurements of length, area, and weight, classes are defined with 

sharp boundaries. In the trial example, it is obvious that the group of guilty persons 

and the group of innocent persons are crisp sets. Since the evidence for trial 

judgement is rarely perfect and measurement error is unavoidable in most physical 

sciences, some uncertainty usually prevails. To represent this kind of uncertainty, 

known as ambiguity, we assign a value in the unit interval [0, 1] to each possible crisp 

set to which the element in question might belong. This value represents the degree of 

evidence or belief or certainty of the element’s membership in the set. Such a 

representation of uncertainty is known as a fuzzy measure [39-41].   

In general, a fuzzy measure is defined by a (set) function  

                                           [ ]:  2  0,1Xg →                                                       (4.44) 

which assigns to each crisp subset of a universe of discourse X a number in the unit 

interval [0, 1], where 2X  is the power set of  X. When this number is assigned to a 

crisp subset 2XA∈ , ( )g A  represents the degree of evidence or our belief that a 

given element x X∈ (which has not been previously located in any crisp subset of X) 

belongs to the crisp subset A. Notice that the domain of the function g is the power set 

2X of crisp subsets of X and not the power set 2X  of fuzzy subsets of X. 

Several different measures such as belief measures, plausibility measures, 

necessity measures, and possibility measures are referred in literature [39-41].  They 

are all functions applied to crisp subsets, instead of elements, of a universal set. 

Based on the properties of fuzzy measure, fuzzy integral, such as Sugeno and 

Choquet fuzzy integals [39-41],  is an aggregation operator on multi-attribute fuzzy 

information. Fuzzy integral can be viewed as a fuzzy expectation when compared 

with statistical expectation, and as a non-linear integral in comparison with Lebesque 

integral.  

It is well known that a combination of many different classifiers can improve 

classification accuracy. A variety of schemes have been proposed for combining 

multiple classifiers [20-21]. The ability of fuzzy integrals to combine the results of 

multiple classifiers has been mentioned in literature [20-21]. In practice, outputs from 

multiple classifiers are ususally highly correlated. Therefore, it is desirable to assign 

weights not only to individual classifiers but also to groups of classifiers. This 

expresses the correlations between different classifiers. Aggregation based on fuzzy 

integrals possess this valuable property. In such schemes, outputs of base classifiers 
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are fused into a final decision by a fuzzy integral with respect to a fuzzy measure. 

However, to utilize this property, we need to construct fuzzy measures that express 

the actual interaction among classifiers with respect to classification performance. 

The fuzzy measures represent the weights on each group of classifiers. Most often a 

separate fuzzy measure is defined for each decision class.  

In this thesis we focus on fuzzy measures and fuzzy integrals for multiple 

classifier fusion. A complete mathematical background on fuzzy measures and fuzzy 

integrals is introduced in Chapter 7. In addition to, a combining multiple classifiers 

method based upon Sugeno fuzzy measure and Choquet fuzzy integral for improving 

the classification of the individual leads in component quality inspection is tested and 

compared with other classifier fusion methods. 

 

 

4.1.4 The Genetic Algorithms Pattern Recognition Approach 

 

Based on the Darwinian survival of the fittest, genetic algorithms (GA) (or 

evolutionary computing) are global search and optimization techniques. Inherently 

parallel, they operate on a set of candidate solutions that formulate a population, 

whose size is maintained constant. Each solution is usually coded as a binary (or real) 

string called a chromosome. The chromosomes of the initial population are randomly 

generated. Each iteration of the GA called a generation involves three stages: 

• The current population is first evaluated and ranked with the aid of a fitness 

function (fitness measuring criterion). 

• Chromosomes that possess the highest fitness values are probabilistically 

selected to construct the “parents” pool. 

• From the selected “parents”, the GA reproduces “children” performing the 

genetic operations of crossover and mutation. 

The GA terminates when an acceptable solution is found, or when a predetermined 

number of generations is reached. 

The GA is not considered a mathematically guided algorithm. The optima 

obtained are evolved from generation to generation without stringent mathematical 

formulation such as the traditional gradient-type of optimizing procedure. In fact, GA 

is much different in that context. It is merely a stochastic, discrete event and a 
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nonlinear process. The obtained optima are an end product containing the best 

elements of previous generations where the attributes of a stronger individual tend to 

be carried forward into the following generation.  

The basic principles of GA were first proposed by Holland [139]. Thereafter, a 

series of literature [44-47], [140-141] became available. The use of GA for pattern 

recognition has been widely studied. They can be generalized and grouped into two 

categories: feature extraction and classification [47]. Application of GA to various 

pattern recognition problems is described in [46]. One such application for designing 

a classifier is to exploit the searching capability of GA for placement of a number of 

lines for approximating the decision boundaries [142-143].  

Combining GAs and NNs  can be generally divided into two broad categories in 

supportive and collaborative integration [17], [47]. In supportive integration, GAs can 

assist NNs in 

• transforming the feature space used by a neural net classifier 

• selecting the learning rule or the parameters that control learning the NN 

In collaborative integration, GA can be used to optimize NN on the weight parameters 

and/or topology [15], [41], [44], [46]. 

In this Ph.D. thesis we propose the use of a GA embedded into the feature 

extraction process [138]. So, we equip the HONN structure with a GA to force the 

resulting classes in the feature space to be as seperable as possible, thus providing, an 

integrated design solution. 

A genetic algorithm (GA) can be defined as follows [144]: 

Definition  (Genetic Algorithm)  A Genetic Algorithm ( )0, , , , , ,GA B M t= Ω Γ Φ Θ  is a 

7-tuple with: 

• { } ( )0 1,...,  MB A A P B= ∈  a population from the set of all possible populations  

P(B), iA  is of real or binary coding 

• M the size of the Population 

• : ( )P B +Ω → R  the Fitness fuction 

• : ( ) ( )P B P BΓ →  the Crossover function 

• )()(: BPBP →Φ  the Mutation function 

• )()(: BPBP →Θ  the Selection Strategy, and 

• { }: 0,1t + →R  a Termination Function 
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The main idea of evolutionary computing is that, having a population of good 

and bad solutions for a problem, try to produce a new population by mixing the 

properties of the solutions you have. Then, some new solutions could collect more 

desired properties. In that way better solutions have been achieved. By mimicking the 

principles of natural genetics, and using a number of solutions instead of a single one, 

GAs are able to search the total universe of discourse and find nearly optimal 

solutions (the possibility of finding does not depend on initial conditions). The 

structure of a genetic algorithm in its standard form is illustrated in Figure 4.7 [144-

145]. 

  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
                  Figure 4.7  The Structure of Standard Genetic Algorithm 

 
 

The first step in a genetic algorithm application is to decide the way that solutions 

will be represented. In order to solve the problem:  

                       Maximize  ( ) min max under f ≤ ≤x x x x                                      (4.45) 

x values are typically coded in a string structure. The strings can be in a binary or real 

form. In the first case binary coded values of predefined length are used to represent 

solutions. The length is determined according to the desired accuracy. In the second 

   Genetic Algorithm 

    begin (1) 

        t : = 1 

        Initialize Population(t) 

        Evaluate fitness Population(t) 

        While (t < Generations) do 

         begin (2) 

             Apply Selection on Population(t) for the 

                  construction base(t) of  Population(t + 1) 

             Crossover on construction base(t) to build Population(t + 1) 

             Apply Mutation on Population(t + 1) 

             Evaluate fitness of  Population(t + 1) 

              t : = t + 1 

          end (2) 

     end (1)   
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case, quantization is avoided and parameters can be estimated in any level of 

accuracy. These strings which represent encoded solutions of the problem are called 

chromosomes. Each solution consists of a number of parameter subsets whose value 

should be estimated during genetic process. Those parameter subsets are called genes. 

Typically, a chromosome is constructed of a number of genes. The length of 

chromosomes can be constant or variable. A number of solutions (chromosomes) are 

used in each step to construct a population. Populations of different evolution steps 

are called generations. A fitness value is assigned in each chromosome to say how 

good is that particular solution for the problem. Fitness value is usually computed as a 

function of the respective objectives and constraints. In the most usual case global 

objective (fitness) functions containing both objectives and constraints are 

constructed. To evolve solutions, genetic operators are applied on the current 

population to produce a new one. That process simulates genetic reproduction.  The 

most known genetic operators are selection/reproduction, mutation and crossover.  

 

 

Fitness            Population(t)                            Population(t + 1) 
 Value   
                   Selection                      Crossover          Mutation 
 
500                         
 
245 
 
347 
 
212 
 
123 
 
80   
 
 
 
 
 
 
 
        Crossover      Mutation 
        Point       Point  
 

Figure 4.8  Sequential Application of Genetic Operators 
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In the selection process, a number of solutions within current population are 

selected to be the basis for the reproduction of the new population. That basis is often 

referred as a mating pool. Selection strategy aims to solutions with highest fittest 

values, because they reasonably capture more desired properties. To construct a new 

population from that basis, the next two operators are used.  Roulette wheel parent 

selection [141] and linear selection [146] are the most frequently used selection 

procedures.  

Crossover is a way of creating new solutions, by randomly mixing properties 

between previous solutions. Different types of crossover operators have been 

proposed in the literature [44-47], [140-141]. In the standard form of single point 

crossover, two chromosomes are randomly selected from the mating pool (production 

basis), and some portion of the strings are exchanged between chromosomes. The 

operation is performed on two selected chromosomes and gives as output two new 

ones. The probability to perform crossover operation, i.e. crossover probability cp  

[46-47], is chosen in a way so that recombination of potential strings (highly fitted 

chromosomes) increases without any disruption. Generaly, cp  lies in-between 0.6 to 

1.0 [47]. 

 

Binary Coding Real Coding 
Crossover 

 
1100110101110 
0000001101101 

 
0000000101110 
1100111101101 

Crossover 
 

12.459 341.12 0.05 

10.01 101.123 0.1 

 
10.01 101.123 0.05 

12.459 341.12 0.1  

Mutation 
 

1111111111111 
 

1111111011111 

Mutation 
 

10.01 341.12 0.05 

 
10.01 341.12 0.18 

 
                                                  0.18=0.05 + r 

r: random number 
 

Figure 4.9    The difference between real and binary coding in the application of 
                                Crossover and Mutation operators 
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Mutation is performed upon a selected chromosome, by randomly changing the 

values of encoded parameters. In the case of binary coding, mutation changes a 1 to 0 

and vice versa, depending on a small probability, while in the real coding case, 

random noise is added to encoded values. The need for mutation is to keep diversity 

in the population. Since mutation occurs occasionally, it is clear that the mutation 

probability mp  [46-47] will be very low. Typically, the value lies between 0.001 to 

0.01 [46]. 

Even if different forms of selection, mutation and crossover have been proposed 

in the literature, their standard form is illustrated in Figure 4.8. The difference in the 

application of crossover and mutation operators in the case of binary and real 

encoding are presented in Figure 4.9.  

 

4.1.5 The Feature Extraction and Feature Reduction Problem 

 

So far we have been concerned with various techniques for pattern classification. 

Before a pattern recognizer can be properly designed, however, it is necessary to 

consider the feature extraction and feature reduction problems [7], [10], [11], [32], .  

Any object or pattern which can be recognized and classified, possesses a number 

of discriminatory properties or features. The first step in any recognition process, 

performed either by a machine or by a human being, is to consider the problem of 

what discriminatory features to select and how to extract these features. It is evident 

that the number of features needed to successfully perform a given recognition task 

depends on the discriminatory qualities of the chosen features. However, the problem 

of feature selection is usually complicated by the fact that the most important features 

are not necessarily easily measurable, or, in many cases, their measurement is 

inhibited by economic considerations.  

Usually the term feature extraction is used to describe the whole process of 

extracting suitable measurements from the ‘raw’ data. Feature extraction for 

classification is a process by which the original data is successively refined and 

reduced until the optimum number of features is selected for classification. The main 

scope of this process is to find salient features in the data, that is to find the best 

features or combinations of features to represent (and possibly explain) differences 

between different classes of data. For feature extraction, the original data, may be 
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used or they may be processed or transformed in some way, for example to remove 

artifacts or noise or to make them more amenable to the extraction of relevant 

features.  

Feature reduction is used to reduce the number of features, by combining the 

feature variables into a smaller set of new feature variables. While the number of 

initial features may be very large, the underlying dimensionality of the data, that is the 

intrinsic dimensionality may be quite small.  

The main reasons for feature reduction are as follows: 

• to facilitate visualisation of the data, and to allow the analyst to discern class 

structure and groupings within the data, and  

• to reduce the number of variables for classification, either in order to reduce the 

ratio of variables to samples, or to reduce the computational complexity of 

estimating the density functions. 

In this Ph.D. thesis we use a variety of techniques to extract relevant features from 

individual lead images for the particular problem of SMD PCB Post Placement 

Quality Inspection. Most spesifically, in Subsection 4.2.6.4 we present a feature 

extraction process based upon external image features (or boundary-based features). 

Another feature extraction technique based on High Order Neural Networks receiving 

as input a normalized projection function of the tested individual lead image is 

introduced in Chapter 6.  In addition to, the Principal Component Analysis (or 

Karhunen Loéve Tranformation as is also known in signal and image processing), 

[7], [11], [32] is then used for feature reduction and decorellation of the feature 

vectors.  

 

4.1.5.1 The Karhunen Loéve Transformation for Feature Reduction 

One of the simplest and commonly used statistical methods for reduction of 

dimensionality is principal component analysis (PCA) [9], [31], [32]. PCA operates 

by transforming the original variables into a new set of uncorellated variables called 

principal components (PC’s). These new variables are linear combinations of the 

originals derived in decreasing order of importance.  For example, the first PC 

accounts for as much as possible variation of the original data. If the original variables 

are highly correlated the first few PC’s will account for most of the variation and the 

remaining PC’s can be discarded with little loss of information. Ideally the first few 
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components will be intuitively meaningful, will help us understand the data better, 

and will be useful in subsequent analyses where we can operate with a smaller 

number of variables.  

The Karhunen Loéve Transformation (KLT) [7], [9], [11], [32] which relates to 

PCA, is a linear dimensionality reduction procedure. KLT is a useful method for 

reducing the dimensionality for both data display and classification, and forms a 

widely used method of dimensionality reduction.  

Let X the matrix of the feature vectors of the training set (input matrix) and N the 

dimension of feature vectors (i.e., the dimension of feature space).  In practice the 

algorithm of KLT proceeds as follows:  

• Step 1. Compute the correlation matrix R of X (In this thesis we compute the 

correlation coefficient matrix ,  which gives us better results in classification). 

• Step 2. Obtain the eigenvalues and corresponding eigenvectors of R. 

Normalize the eigenvectors.  

• Step 3. Form the transformation matrix ΦΦΦΦ from the K ( K N≤ ) eigenvectors 

corresponding to the largest eigenvalues of R.  

• Step 4. Compute the final matrix Y by the equation T=Y Φ X .  

Thus the new feature space is a K-dimensional feature space. 

In this PhD thesis, the KLT is used to de-correlate and reduce the dimensionality of 

feature vectors, disjoint class spaces in the new (reduced) feature space and aid the 

classifiers in performing accurate discrimination. Two different forms of the KLT are 

studied in this thesis. In the first only one KL transformation matrix (1 KLT) is 

created for the entire data set, whereas in the second one KLT matrix is created for 

each class (multiple KLT approach) [148], [149].  

 

4.1.5.2  The Proposed Multiple KLT Approach 

 

We have proposed in [149] the application of multiple KLT approach as a general 

analytic tool. In multiple KLT approach, each individual class is represented by its 

most significant directions. For each vector in class i , only its projection on to the 

most significant directions of class i  is preserved for classification. For each class, 

this approach preserves only the directions that best characterize the shape of its 

boundary and discards the rest. Thus, it encompasses class specific characteristics and 
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uses them to better isolate and discriminate classes by avoiding class mixing in 

irrelevant directions. The fundamental goal of this approach is to create and localize 

many subspaces in the feature space, so that each class is best characterized by its 

own subspace reflecting the most characteristic vector directions and locations for this 

specific class. The directions and locations of feature vectors defining these reduced 

dimensionality subspaces are class-specific, even though the individual KLTs operate 

on the same initial feature space. Thus, a specific KLT projects feature vectors from 

its own class within its own subspace, whereas it forces vectors from “wrong” classes 

far away from this subspace.  

During the review of our paper in Ref. [149], an independent work was published 

in Ref. [148] that studies the theoretical background of the multiple KLT approach. 

The experimental results presented in [149] and in Chapter 6 of this thesis fully 

support and verify the theoretical and experimental results of Ref. [148], which 

establish the multiple KLT approach as a general analysis methodology. 

To emphasize the difference between the classical (simple) KLT (i.e., 1 KLT) 

approach and multiple KLT approach we visualize in Figures 4.10 and 4.11 the 

testing phase of classification process using a minimum-distance classifier along with 

1 KLT matrix and 3 KLT matrices respectively for a three-class classification 

problem. 
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Figure 4.10   Testing phase of classification using a minimum-distance classifier and 

                      1 KLT matrix 
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The classification approach for the minimum-distance classifier along with 1 KLT 

matrix presented graphically in Figure 4.10 can be described as follows: 

(M-1) samples (class#1, class#2 and class#3) out of M, are used as feature vectors 

to create a ( 1)M K− ×  feature matrix. Feature matrix dimensionality is reduced from 

K to L to yield a K L×  KLT matrix. The feature matrix is multiplied by the 1 KLT 

matrix resulting in a ( 1)M L− ×  feature matrix. This final matrix is used to train the 

above minimum-distance classifier. Notice that each projected feature vector is 

labeled, so that class statistics can be easily computed.  The Mth sample (feature 

vector) is multiplied by 1 KLT matrix resulting in a 1 L×  vector, which is then 

utilized as a testing vector (jack-knifing process or leave one out technique, [9], 

[17]) in the  classifier. The above procedure is repeated M times until all feature 

vectors are utilized as testing vectors in the classifier. Each time the computation of 

the 1 KLT matrix and training is performed for the remaining (M-1) vectors. 
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Figure 4.11   Testing phase of classification using a minimum-distance classifier 
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The classification approach for the minimum-distance classifier along with 3 KLT 

matrices presented graphically in Figure 4.11 has as follows: 

(M-1) samples (class#1, class#2 and class#3) out of M, where M is a multiple of 

3, are used as feature vectors to create  3 different feature matrices (one feature matrix 

for each class). The dimension of the feature matrix for the class from which a feature 

vector has been drawn out is 
1

3

M
K

− 
×  

, whereas the dimension of the two others 

matrices is 
3

M
K

 
×  

. The feature dimensionality is reduced from K to L to yield 

three K L×   KLT class-matrices (one KLT matrix for each class). Each feature 

matrix is multiplied by corresponding KLT class-matrix resulting in the final class-

feature matrix. Thus, we take three final class-feature matrices. These matrices are 

used to train the above minimum-distance classifier. The Mth sample (feature vector) 

is multiplied by 3 KLT  class-matrices resulting in three 1 L×  vectors, which are then 

utilized as class-projected testing vectors (jack-knifing process or leave one out 

technique, [9], [17]) in the classifier. The above procedure is repeated M times until 

all feature vectors are utilized as testing vectors in the classifier. 

 

4.2 Image Analysis Techniques 
 

Image analysis involves manipulating the image data to determine exactly the 

information necessary to help solve a machine vision problem. This analysis is 

typically part of a larger process, is iterative in nature, and allows us to answer 

application - specific questions such as: Do we need gray-scale or color information? 

Do we need to transform the image data into the frequency domain? Do we need to 

segment the image to find object information? What are the important features in the 

images? 

Image analysis is primarily a data reduction process. Images contain enormous 

amounts of data, typically on the order of hundreds of kilobytes or even megabytes. 

Often much of this information is not necessary to solve a specific machine vision 

problem, so a primary part of the image analysis task is to determine exactly what 

information is necessary.  

Image analysis is central to machine vision process and is often uniquely associated 

with machine vision. This high-level information may include shape parameters to 
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control a robotic manipulator or color and texture features to help in the diagnosis of a 

tumor.  

The image analysis process, illustrated in Figure 4.12, can be broken down into 

three primary stages: 1) Preprocessing, 2) Data Reduction and 3) Feature Analysis 

[58]. Preprocessing is used to remove noise (i.e. unwanted information that can result 

from the image acquisition process) and eliminate irrelevant, visually unnecessary 

information. In the second stage, data reduction, we can perform segmentation on the 

image in the spatial domain or convert it into the frequency (or spectral) domain via a 

mathematical transform. After either of these processes we may choose to filter the 

image. This filtering process further reduces the data and allows us to extract the 

features that we may require for analysis.  

In the third stage, feature analysis, the features extracted by the data reduction 

process are examined and evaluated for their use in the application. One of the 

important aspects of feature analysis is to determine exactly which features are 

important. So after the analysis we have a feedback loop that provides for an 

application-specific review. This approach often leads to an iterative process that is 

not complete until satisfactory results are achieved. 

 

Figure 4.12  The stages of the image analysis process  
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4.2.1 Preprocessing Algorithms  

 

The preprocessing algorithms, techniques, and operators are used to perform 

initial processing that makes the primary data reduction and analysis task easier. They 

include operations related to extracting regions of interest (ROIs), performing basic 

algebraic operations on images, gray-level or spatial quantization (reducing the 

number of bits per pixel), enhancing specific image features and reducing data in both 

resolution and brightness. Preprocessing is a stage where the requirements are 

typically obvious and simple, such as the removal of artifacts from images, or the 

elimination of image information that is not required for the application. For example, 

in one application we needed to eliminate borders from the images that had been 

digitized from film (the film frames); in another we had to mask out rulers that were 

present in skin tumor slides.  

A central problem in machine vision and automatic visual inspection, in 

particular, is obtaining robust descriptions of the specific areas within the image, the 

so called ROIs. In complex pattern recognition applications such as SMD post 

placement inspection that we tackle in this dissertation, it is important to get an 

accurate and precise representation of the ROIs.  To do this, we need initial operations 

that modify the spatial coordinates of the image, and these are categorized as image 

geometry operations. The image geometry operations include crop, zoom, enlarge, 

shring, translate, and rotate [58]. The image crop process is the process of selecting a 

small portion of the image, a subimage, and cutting it away from the rest of the 

image. After we have cropped a subimage from the original image, we can zoom in 

on it by enlarging it. This zoom process can be done in numerous ways, but typically 

a zero- or first-order hold is used. A zero-order hold is performed by repeating 

previous pixel values, thus creating a blocky effect. To extend the image size with a 

first-order hold, we do linear interpolation between adjacent pixels.  

 

4.2.2 Image Segmentation  

Image segmentation is important in many machine vision applications. The goal 

of image segmentation is to find regions that represent objects or meanigful parts of 

objects. Division of the image into regions corresponding to objects of interest is 

necessary before any processing can be done at a level higher than that of the pixel. 
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Image segmentation methods look for objects that either have some measure of 

homogeneity within themselves or have some measure of contrast with the objects on 

their border. Most image segmentation algorithms are modifications, extensions, or 

combinations of these two basic concepts. The homogeneity and contrast measures 

can include features such as gray-level, color, and texture. After we have performed 

some preliminary segmentation, we may incorporate higher-level object properties, 

such as perimeter and shape, into the segmentation process.  

Different problems have been associated with image segmentation The major 

problems are a result of noise in the image and digitization of a continuous image. 

Noise is typically caused by the camera, the lenses, the lighting, or the signal path and 

can be reduced by the use of the preprocessing methods previously discussed. Spatial 

digitization can cause problems regarding connectivity of objects. These problems can 

be resolved with careful connectivity definitions and heuristics applicable to the 

specific domain. 

Many techniques have been proposed in the literature for segmenting images. 

Some of them include histogram partitioning or thresholding, region growing, border 

following, edge detection, spatial and measurement space clustering methods [22 – 

27]. Selection of a segmentation technique depends highly on the nature of the image 

under consideration, i.e., whether the image is noisy, gray-level or is a color image.  

 

4.2.3 Thresholding algorithms 

The most widely used method for segmentation is the thresholding technique 

[150], [151]. Thresholding is performed using the histogram, ( )h z , of the image, 

where z represents the gray-level, i.e., a plot of number of pixels versus number of 

gray-levels. In the thresholding method, the histogram of the given image is 

partitioned into a specified number of non-overlapping clusters. Each cluster specifies 

a range of gray-levels falling in a segment and all pixels whose gray-levels fall in that 

cluster are grouped together to form a segment. In the case of two-level thresholding 

[150], [151] only one threshold has to be decided, such that the objects are separated 

from the background. But, multiple objects (or ROIs) having different gray-level 

intensities necessitate finding multiple thresholds (multi-level thresholding or 

multithresholding technique [150], [151]). Now the problem reduces to identiying the 

thresholds that in turn segment the image into multiple segments.  
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Segmentation by multithresholding started many years ago from simple 

beginnings, and in recent years has been refined into a set of mature procedures based 

on statistical decision theory and soft computing algorithms [152–163] . In-depth 

survey and evaluation of various thresholding methods are referenced in [164–167]. 

The outstanding problem is how to devise an automatic procedure for determining the 

optimal thresholds (i.e., automatic thresholding). Automatic thresholding is an 

important technique in image segmentation and machine vision applications. The 

basic idea of automatic thresholding is to automatically select optimal gray-level 

threshold values for separating objects of interest (or ROIs)  in an image from the 

background based on their gray-level distribution. This thresholding technique  has 

been widely used in the industrial machine vision inspection systems [55].  

Automatic thresholding techniques can be roughly categorized into global 

thresholding and local thresholding. Global thresholding selects a threshold value 

from the histogram of the entire image. Local thresholding uses localized gray-level 

information to choose multiple threshold values; each is optimized for a small region 

in the image. Global thresholding is simpler and easier to implement but its result 

relies on good (uniform) illumination. Local thresholding methods can deal with non-

uniform illumination but they are complicated and slow. For industrial visual 

inspection applications, where non uniform illumination is usually not an issue due to 

controlled lighting conditions, global thresholding is commonly used for its simplicity 

and speed [157]. 

Among the global thresholding techniques, the Sahoo et al. [164] study concluded 

that the Otsu method [152] was one of the better threshold selection methods for 

general real world images with respect to uniformity and shape measures. This 

method selects threshold values that maximize the between-class variances of the 

histogram.  

 

4.2.4 Region Identification 

Image segmentation produces either a binary or a multilevel image output.  The 

step following after segmentation is the identification of the image regions [22], 

[151]. Often, a region consists of a number of connected components. In order to 

extract features from the individual components it is necessary to identify and label 

the various connected components of each region. A connected component labeling 
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algorithm assigns a unique integer number to each connected component and the 

largest integer label usually gives the number of regions in the image [22].  

Labeling algorithms can be divided into two large classes: (a) local neighborhood 

algorithms and (b) divide-and-conquer algorithms [151]. The algorithms belonging to 

the first class perform iterative local operations. A simple divide-and-conquer 

algorithm can work along similar to the split and merge algorithm. Input to a labeling 

algorithm is usually either a binary or a multilevel image, where background may be 

represented by zero values, and objects (or ROIs) by non-zero values. A multilevel 

image is often used to represent the labeling result, background being represented by 

zero values, and regions represented by their non-zero labels.  

 

4.2.5 Image Feature Extraction 

The feature extraction aspect of image analysis seeks to identify inherent 

characteristics, or features of objects found within an image [22-27], [58], . These 

characteristics are used to describe the object, or attributes of the object, prior to the 

subsequent task of classification. Feature extraction operates on two-dimensional 

image arrays but produces a list of descriptions, or a feature vector. Features are used 

as inputs to the algorithms for classifying the objects into different classes. Object 

recognition can be done by analysing the morphology (shape and size), colour, texture 

(spatial distribution of colour), or a combination of these features of the images.  

Two main categories of image features, namely, external and internal features 

have been distinguished in [168]. External image features (or boundary-based 

features) describe the boundary information. Once the objects are separated from the 

background by segmentation, their boundary coordinates can be used to extract 

external features, such as perimeter, curvature, signature, bending energy, Fourier 

descriptors, 2-D transform coefficient features (e.g. Fourier, Haar, Hadamard, or 

Wavelet transform), image codes (e.g. run code, chain codes), etc [22 – 27 ]. External 

image features enjoy a certain popularity because they produce compact shape 

representations.  

The features extracted from the properties of pixels inside the object boundary are 

called internal image features (or region-based features). Spatial moments (e.g. 

center of gravity, eccentricity, etc),  area, compactness, aspect ratio, major and minor 

axes lengths, elongation (or bounding box area), projections, skeletons, colour and 
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textural features are some of the most important intrenal image features [75], [151]. 

Internal image features have been used extensively in industrial machine vision 

applications [75], [151]. A detailed overview of image feature extraction algorithms is 

given in Appendix B.  

 

4.2.6 Image Processing and Analysis Techniques for Lead Regions of the 
Components 

 

From the aforementioned analysis in Subsections 3.4.1 and 3.4.2 of Chapter 3 

becomes clear that the problems associated with the SMD inspection are complicated 

and become difficult due to the poor quality of the images obtained. The dynamic 

range of conventional CCD cameras is limited, so that the images are usually 

overexposed. The reflection on shiny parts (lead and solder paste) is heavy, further 

worsening the quality of the images. In this research, the high dynamic range 

achieved by the CMOS camera developed can result in high-quality images. Thus, the 

camera itself alleviates the quality problem, allowing the image analysis task to focus 

on the efficient extraction of relevant features for automated characterisation of the 

placement quality. Such image analysis approaches have been tested in the simulation 

platform and are presented in the following. The simulation platform has been based 

on images provided by industrial manufacturer. Throughout this consideration, a 

fundamental assumption is made regarding the high quality of the images provided by 

industrial manufacturer, that the different regions on the board after component 

placement can be discriminated on the images. 

Each image covers one component in its entire extent. Nevertheless, there is no 

need to process the entire image to obtain the measurements required. The region of 

interest is restricted to rectangular windows that cover the lead regions of the 

component (global ROIs). Initially, one window for each side is required (two 

windows for the SO component and four windows for the QFP component, one 

covering each side of the component). Then, there is need for appropriate definition of 

sub-windows (local ROIs) for each lead region of the component (28 sub-windows for 

the SO component and 120 ones for the QFP component). After the sub-windows 

definition, an algorithm is required for segmentation of each lead region into four well 

isolated intensity segments: lead, pad, solder paste and dark background. Following 

the segmentation of lead regions, the next step is to derive objects related to lead, pad 



CHAPTER 4                                                                                                                                    ALGORITHMIC CONCEPTS 

 98 

and solder paste. A connected components labeling algorithm for identification  of  

closed regions is needed. Then feature extraction techniques must be developed to 

encode the characteristics of these regions. The abovementioned image processing 

and analysis techniques along with the classifier for pattern classification of each lead 

consitute the modules of a machine vision system for post placement quality 

inspection. Such a system is depicted in Figure 4.13. 
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Figure 4.13   Machine vision system for post placement quality inspection 

 

 

4.2.6.1  Isolation of Individual Lead Images 

 

We describe below a simple procedure for isolation (or cutting process) of 

individual lead images from the QFP component image. The cutting process for the 

SO component becomes in a similar manner. 

Taking into account the dimensions and the center (known coordinates from the 

placement machine) of the component, we capture the location of four global 

rectangular windows-images (global ROIs) to be acquired by the camera. Then in 

each global ROI we define a local window (local ROI) for each lead location to 

extract the individual lead-images. The whole process is illustrated in Figures 4.14 

and 4.15.  
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Figure 4.14  Definition of global ROIs, one for each side of the component 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.15  Isolation of individual lead images 
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Acquiring the global ROIs 

Before we extract individual lead images, we must first acquire the global ROIs from 

each side of the initial image of the component (see Figure 4.14). Acquiring the global 

ROIs is simple task because we are based on the artwork of each image therefore we 

need two things: 

1. The center of the component (see Figure 4.14). The center can easily be found 

setting horizontal and vertical rulers (we assume that it is given from the 

placement machine). 

2. The dimensions of the component according Section 3.3 (see Figure 3.5). 

 

Knowing these things we are able to calculate the necessary starting points A, B, C, D 

which are shown in Figure 4.14. These points are the starting points for raster global 

ROI acquisition. Therefore, the calculation of global ROI starting points for the 

component has as follows: 

A:   
( _ /2) _ _ _

( _ /2) _
A

A

x x body size length of lead x tolerance

y y body size y tolerance

= − − −

= − −
                           (4.46)      

 

B: 
( _ / 2) _ _ _ _

( _ / 2) _
B

B

x x body size length of lead x tolerance ROI columns

y y body size y tolerance

= + + + −

= − −
 (4.47)   

 

C:
( _ / 2) _

( _ / 2) _ _ _ _
C

C

x x body size x tolerance

y y body size length of lead y tolerance ROI columns

= − −

= + + + −
 (4.48) 

 

D: 
( _ / 2) _

( _ / 2) _ _ _
D

D

x x body size x tolerance

y y body size length of lead y tolerance

= − −

= − − −
                            (4.49) 

 

Since there is a likelihood the component to be misplaced and comes out of the 

pad the program applies a tolerance in the location of the starting points using two 

parameters which are defined as x_tolerance, y_tolerance for x and y axis 

respectively. At points B and C the program subtracts the quantity ROI_columns 

because the scanning of the image is from left to right and top down. Traversing the 

array that contains the pixels of the initial image and on the basis of these points we 

can return an array of the global ROI’s pixels. The window’s dimensions are 

ROI_columns and ROI_rows.  
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All global ROIs have the orientation of left ROI in order for processing them in 

the same way. To appear in this form right ROI undergoes a reflection, bottom ROI 

undergoes a 90° clockwise rotation and top ROI undergoes a 90° clockwise rotation 

followed by a reflection. The acquired global ROIs from the component are showed in 

Figure 4.14. 

 

Cutting global ROI into individual lead images (local ROIs) 

The isolation procedure proceeds to the extraction of smaller images (local ROIs) 

from the acquired global ROI having only one lead region at a time. Since pitch varies 

it is not effective to find the first lead region and then to cut the others in constant 

pace. So we developed an adaptive algorithm for locating the lead region. This is 

accomplished by doing a projection at y-axis (horizontal projection) in the array that 

contains the global ROI based upon the idea that lead region can be discriminated 

from the dark background because of their intensity level.  

The projection of an image onto a line can be obtained by partitioning the line 

into bins and finding the number of 1 pixels that are on lines perpendicular to each bin 

and then dividing by the number of the bins [22 – 27]. Projection is a useful technique 

that manages to retain much information about the image. Horizontal and vertical 

projections can be easily obtained by finding the number of 1 pixels for each bin in 

the vertical and horizontal directions, respectively. The horizontal projection [ ]H i  

along the rows and the vertical projection [ ]V j  along the columns of an image 

[ ], ,  1,..., ,  1,...,I i j i n j m= =  are given by: 

                                                    [ ] [ ]
1

,
m

j

H i I i j
=

= ∑                                          (4.50) 

                                                     [ ] [ ]
1

,
n

i

V j I i j
=

= ∑                                         (4.51) 

The result of the horizontal projection of the global ROI is shown in the Figure 

4.16. 

The underlining assumption is that an area of lead corresponds with high values 

in the projection and an area of the PCB (dark background) corresponds with low 

values in the projection. So between two local minimums in the projection there is the 

area that corresponds to an individual lead image (local ROI). We applied the 

following algorithm: 
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1. Perform a horizontal projection in a constant number of rows. This 

constant number is quite enough to reach the first lead region. We expect a 

graph like in Figure 4.16 below. 

2. Get the first point where the plot begins to rise. From the graph below we 

realize that the first rising of the plot is the beginning of first lead. 

3. Extract an individual lead image from that point with height equal to pitch 

and length enough to encompass the whole lead region. Also perform 

projection from that point up to the point, which encompass the next lead 

region. 

4. According to the graph in Figure 4.16 we are expected to meet two local 

maximums, one is the lead we have already found and the other is the next 

lead that we are going to locate. 

5. Between the two successively maximums perform a sorting in order to get 

the local minimum. Go to step 3. 

6. Repeat the steps from 3 to 5 until you acquire all leads (totally 30) 

After the execution of aforementioned algorithm we acquire the individual lead 

images as have been illustrated in Figure 4.15.  

 

                         

Figure 4.16  Horizontal projection of the global ROI 
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4.2.6.2  Threshold Selection Algorithms for Lead Images 

Based on the assumption that lead regions can be discriminated by their intensity 

level, the histogram analysis (in each ROI) can be used for initial region 

segmentation. Four regions are of interest in the histogram, characterizing in 

decreasing intensity levels a) the pad and reflection regions, b) the lead regions, c) the 

solder paste, and d) the dark background. In this Ph.D. thesis several methods have 

been tested for threshold selection on the histogram.  

• In first method a three-level thresholding algorithm in two stages have been used 

for segmentation of ROIs.  In this method we find 2 thresholds  on histogram of 

each side of component (global thresholds) and then we refine these thresholds 

finding new thresholds on histogram of each lead region (local thresholds) 

searching into small spaces of global thresholds.  

• Then a variety of three-level and four level thresholding algorithms based upon  

Otsu’s Thresholding method [152], Kittler and Illingworth’s Minimum Error 

Thresholding Method [153] and Huang and Wang’s Fuzzy Thresholding 

Algorithm [160] have been tested. These methods introduce problems in relation 

to quality of information into segmented regions 

• Finally, the four-level Otsu’s algorithm given the best segmentation results. So, 

this algorithm has been adopted for segmentation of lead regions. 

We review the Otsu method for selecting optimal image threshold [152], [169] in 

Appendix C. 

 

The  Multilevel Thresholding Problem 

An image can be represented by a 2D gray-level intensity function ( ),I x y . The 

value z of ( ),I x y is the gray-level (or the pixel intensity value), ranging from 0 to 

1L − , where L is the number of distinct gray-levels.  

The multilevel threshold selection can be considered as the problem of finding a 

set ,  1,2,..., 1kT k K= −  of threshold values, in order that the original gray-level image 

( ),I x y  would be transformed to a new one with only K levels (i.e. K classes) [159], 

[169]. More specifically, if ,  1,2,..., 1kT k K= −  are the threshold values with 

1 2 1... KT T T −< < < , then the output image can be defined as  
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where km  represents the mean histogram values in the range 1( , ]k kT T +  with 

0 0,    1KT T L= = − . 

We assume that there are K classes, 1 2, ,..., KC C C , in the image. We make use of 

the following parameters estimated from the histogram data to characterize the pixel 

value distribution in class k, ,  1,2,...,kT k K= .  

Class a priori probabilities: 

                                           ( ) ( )
1

1

1 1,...,
k

k

T

k K
z T

P T T h z
−

−

−
=

= ∑                                          (4.53) 

where ( )h z  is the normalized histogram function which represents the percentage of 

pixels having gray-level z  over the total number of pixels of the image. 

Note that there are K-1 independent class a priori probabilities since 

                                      ( )1 2 1
1

, ,..., 1
K

k K
k

P T T T −
=

=∑                                                     (4.54) 

Class means: 

                               ( )
( )

( )
1

1

1 1
1 2 1

1
,...,

, ,...,

k

k

T

k K
z Tk K

m T T zh z
P T T T

−

−

−
=−

= ∑                          (4.55) 

Total mean:    

                                ( ) ( ) ( )
1

1 1 1 1
0 1

,..., ,...,
L K

k K k K
z k

m zh z P T T m T T
−

− −
= =

= =∑ ∑                      (4.56) 

Total variance: 

                                ( ) ( )
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−

=
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We can determine the optimal thresholds for Otsu’s multilevel thresholding 

algorithm using the following criterion function: 

                     ( ) ( ) ( ) ( )
1

1

1 1 1 1
1

,..., ,...,
k

k
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k

OT K OT K
k z T

J T T h z c T T
−

−

− −
= =

= ∑ ∑                             (4.58) 

where the cost function is 
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Segmentation results of individual  lead images 

Based on abovementioned Otsu’s multilevel thresholding algorithm we 

implemented the four-level Otsu’s algorithm, which given the best segmentation 

results for lead images. An example of input lead image and its segmented version is 

illustrated in Figure 4.17. The histogram along with thresholds of input lead image 

4.17 (a) are presented in Figure 4.18. The four ROIs, viz: background (L1), solder 

paste (L2), pad (L3), and lead (L4), have been marked and illustrated in Figure 4.20 in 

Subsection 4.2.6.3 below. 

                     (a)                                                                 (b) 

Figure 4.17  Segmentation of lead image based on the Otsu’s four-level algorithm. 
                                    (a) Original lead image    (b) Segmented lead image 

Figure 4.18   Histogram along with thresholds (red arrows) of original lead image. 
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Although a high dynamic-range camera has been used in this research, the 

illumination effects are obvious degrading the segmentation result, as can been 

regarded in Figure 4.19. The usual problems associated with illumination effects 

include the following: identification of multiple broken regions [broken pad in Fig. 

4.19 (b), broken lead in Fig. 4.19 (d)]; lead and pad regions may appear with similar 

intensities [Fig. 4.19 (a) ]; light diffusion effects at the borders of regions masking the 

solder paste [Figs 4.19 (a), (c)]; intense reflections on solder paste and pad regions 

[Figs 4.19 (a), (b),(c)] ; disappearing regions due to intensity similarity [Fig. 4.19 (e)]; 

union of regions [ Fig. 4.19 (c) ].  

 

   (a)                       (b)                                     (c)                                           (d) 

 

 

                        (e)                                             

 
 

Figure 4.19  Segmentation problems in individual lead images after Otsu’s four-level 
                             thresholding algorithm 
 

 

4.2.6.3   Component Labeling of Lead Images 

The outcome of the Otsu’s four-level thresholding algorithm is a four level image 

that corresponds to the regions (ROIs) of background (L1), solder paste (L2), pad 

(L3), and lead (L4). These regions are illustrated in Figure 4.20.  
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Figure 4.20  Regions  (ROI’s) after Otsu’s four-level thresholding. 

 

A component labeling algorithm that relies on certain criteria, such as intensity, 

shape, location, and size, is consequently applied in order to define (label) the four 

regions of interest (ROIs) and improve the segmentation results. A variety of  image 

analysis techniques such as Aki and Toussaint’s connecting component labeling 

algorithm [26], region growing and merging [23], [26], [151] line fitting [27], 

Graham’s convex hull algorithm [170] along with heuristics methods have been used 

for the design and implementation of  the aforementioned labeling algorithm. The 

main steps of this algorithm have as follows: 

 

• Connected component labeling for complete segmentation and marking of 

included objects into initial segmented regions using Aki and Toussaint’s 

algorithm. 

• Removing all small regions from background region using heuristics methods.  

• Correction of border using Graham’s convex hull algorithm. 

• Definition of lead region using criteria of intensity, position, area (bounding 

box area) of each lead label along with line fitting and region growing and 

merging algorithms to isolate the lead area. 

• Definition of pad region using criteria of intensity, position and area 

(bounding box area) of each pad label. 

 

 

 

L3 

L2 

L4 

L1 
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The application of our component labeling algorithm results in a labeled image 

where the four ROIs are well-defined and segmentation problems have been corrected 

in a satisfactory grade. Such a labeled image is illustrated in Figure 4.21. 

 

Figure 4.21  The lead image after component labeling. 

 

4.2.6.4   Feature Extraction from Lead Images 

After a component labeled image has been taken and the regions of interest have 

been well-defined, a feature extraction process, based on region-based features, is 

applied on labeled image to extract relevant features for classification. Our procedure 

proceeds as follows. 

For each lead we define two lead sub-regions presented in Figure 4.22, based on 

the bounding rectangle. One region concerns the area where the lead is located and 

the other spans the area in front of the lead outwards of the component. The area from 

the lead to the backside of the component is disregarded, since it contains misleading 

(non-useful) information. The features of each sub-region are appropriately 

normalized to the length of the corresponding region, in order to make them 

independent of the axial (u-direction) shift of the lead within the area of its pad. 

From lead sub-region-1 we extract the following 7 features: 

• Area of pad / L1                         (feature - 1) 

• Area of solder paste / L1                          (feature - 2)  

• Center-of-gravity distance on v axis between all                

       non-background region and lead                            (feature - 3) 

• Center-of-gravity distance on v axis between solder paste and lead      (feature - 4) 
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• Center-of-gravity distance on v axis between solder paste and pad       (feature - 5) 

• Pad mean width on v axis                (feature - 6) 

• Pad total length on u axis / L1                (feature - 7) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.22   The lead sub-regions used in the feature extraction process. 

 

    From lead sub-region-2 we extract the following 5 features: 

• Area of pad / L2                      (feature - 8) 

• Area of solder paste / L2                                      (feature - 9) 

• Center-of-gravity distance on v axis between all non-background  

       region and lead                                                   (feature -10) 

• Center-of-gravity distance on v axis between solder paste and pad       (feature -11) 

• Elongation of pad                             (feature -12) 

 

The above 12 features constitute a feature vector for pattern classification of each 

individual lead. This set of  features encodes optical characteristics (i.e. optical 

features), by means of simple area measures that sustain the most desirable image 

attributes. For more detailed information regarding the calculation of the 

aforementioned features, the interested reader is referred to [23], [24], [26] and 

Appendix B.  

 

Lead sub-region-2 Lead sub-region-1 

v 

u 

L2 L1 



CHAPTER 5           A BAYESIAN FRAMEWORK FOR MULTI-LEAD SMD POST-PLACEMENT QUALITY INSPECTION 

 110 

Chapter 5 

 
A Bayesian Framework for Multi-lead SMD 
Post-Placement Quality Inspection 
 
 
5.1  Introduction  
 
The SMD post placement quality inspection becomes essential as to comply with the 

zero defects policy of today’s electronics manufacturing industry. Post placement 

inspection has the advantage that the inspection data are available immediately after 

placement, so no extra time and components are spend on an already faulty PCB. The 

later a defect is detected, the more expensive it is to repair. Thus, early detection is 

inherently cheaper. Moreover, correcting a defect after re-flow produces a more brittle 

joint and increases the risk of field failure.  

In Subsection 3.5 we have presented the state of the art of  SMD post placement 

quality inspection systems. In this chapter, we provide a novel framework to visually 

inspect the placement quality of SMDs immediately after they have been placed in 

wet solder paste on a PCB. This work has been published in [19] and [30]. Since 

we exploit only visual information, the parts inspected must be visible. Thus, our 

approach applies to “peripheral-type” SMD components with leads extending beyond 

the body of the  component. Moreover, we only use simple light sources and fuse 

inaccurate information from many leads into a stochastic framework for accurate 

displacement estimation. In this respect, our approach is applicable to multi-lead 

components. Despite these limitations, there exist several types of SMDs that can be 

efficiently inspected by the proposed approach, including different versions of SOP 

(Small Outline Package), SOJ (Small Outline J-leaded Package), SOIC (Small Outline 

IC), and QFP (Quad Flat Package). In addition, our approach can be extended to 

different imaging technologies for inspecting other SMD packaging technologies, 

such as Chip-on-Film (COF) and Ball Grid Array (BGA) through X-ray and scanning 

acoustic microscopy, respectively [86-88]. 

In order to overcome the effects of poor quality, varying illumination images 

and/or inaccurate measurements, we introduce efficient modeling and stochastic 

estimation processes. Our approach exploits the fact that individual leads encode the 
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same information regarding relative positioning of the rigid body of the component on 

the pad area. Positioning measurements on each lead can be viewed as individual 

(inaccurate) measurements of the same quantity regarding the component 

displacement and rotation. Instead of concentrating in one and every (poorly imaged) 

lead, we fuse complementary information from all leads into a Bayesian estimation 

framework.  

The proposed analysis provides the necessary background for computing three 

measures of quality placement namely, overlap, insulation distance and slump gap, 

from individual lead images. These measures relate to distances of the regions of 

several types of material between the lead considered and its previous or subsequent 

lead regions. Using simple geometric relations, it can be shown that these 

measurements are only affected by the displacement (i.e., shift and rotation) of the 

component, relative to its pad region. It is worth mentioning that such a problem 

statement includes as a special case the visual solder joint inspection systems already 

reported [4], [98-100]. Thus, one major objective of this chapter is to derive an 

accurate estimation scheme for computing lead displacement based on observations. 

The proposed estimation approach operates in two levels. The first level considers a 

crude computation of quantized displacement of each lead. This is done through 

classification. The second level operates in a Bayesian framework and aims to 

accurately model the estimation of component displacement based on quantized lead 

displacements. A second objective is to provide a unified framework for the 

consideration of components and their different lead sides. This is achieved by 

establishing the necessary geometric relations that map all sides to a reference 

position and translate the effects of component displacement and rotation to that 

reference position.   

 

 

5.1.1 Rationale of Proposed Approach 
 

We can separate the consideration of important measures into two categories, 

namely microscopic and macroscopic. In the microscopic consideration we are 

interested in measures related to individual leads, whereas in the macroscopic 

consideration we study measures associated with the entire component as a rigid body 

(i.e., component displacement-shift and rotation). One may argue that lead shifts can 
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be measured directly from the captured images, within isolated windows of each 

individual lead. Nevertheless, these measurements are bound to inaccuracies due to 

segmentation and labeling errors for the regions of pad, solder paste and lead. 

Alternatively, the lead shift can be inferred from the overall component displacement 

knowing the exact location of the lead on the component. In this approach, the 

inaccurate lead measurements can be considered as different measurements of the 

component displacement and can be used to estimate the total component 

displacement through a Bayesian estimation approach. Hence, there is a need to relate 

lead shifts to component displacement in a thorough geometric background, which we 

also provide. The displacement measurement of individual leads is modeled as a 

classification problem where the actual displacement is inferred from a feature vector 

computed on this particular lead. This classification process inherits several sources of 

inaccuracy, involving measurement errors on the lead image, non-separability of the 

feature space, classification and quantization errors. The Bayesian estimator 

developed attempts to diminish these sources of error. Subsequently, we may employ 

the geometric relations to infer a new refined measurement of the shift of each 

individual lead. Finally, we can estimate the lead quality measures through the 

relations that associate quality measures to lead shifts. The overall process is 

summarized in Figure 5.1. 

Pre-processing
+

Segmentation

Feature
Extraction

Classification

Meaurements
on lead image

Image
Intake

Computation
of individual
lead shifts

Bayesian
Estimation
Process

Estimation
of Component
Displacement

Re-evaluation of
individual lead

shifts via geometric
relations

Computation of
quality measures

  

Figure 5.1  Post placement quality inspection algorithm in block diagram form. 

 

 

5.1.2    Experimental Procedure 

 
The inspection method proposed in this chapter is tested on an experimental set-

up simulating the operation of placement machines. A motorized xyz-stage equipped 
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with illumination and a camera with appropriate optics is used for collecting images 

from boards with peripheral type SMDs. The board is fixed to the base plate, which is 

localized at the appropriate position underneath the camera via the motorized control 

system. The actual location of the component is derived from the image itself during 

the processing stage. The illumination system is composed of three layers of ring-

shaped LEDs with different illumination angles as to provide a wide angle of 

incidence (from 20 to 90 degrees) and simulate the “clouded-sky” type of 

illumination. The spectral distribution of the LEDs in the area of red and near infrared 

results in good contrast for the all cases tested (with green PCB). The 10-bit CMOS 

camera from Vector International is used for image capturing. The optics of the 

camera provide a telecentric view with a field of view 20x20mm for viewing the 

entire component on the PCB. The density of the CMOS sensor is 1024x1024 pixels, 

deriving an image resolution of 20x20µm per pixel. To capture the entire area of 

interest around each lead, the size of the lead images is set to 36x56 pixels. Notice 

that the extraction of lead images can be easily customized to any conventional SMD 

component.We successfully tested rectangular QFP components with 120 leads 

uniformly distributed along the four sides and SO components with 24 leads 

distributed along the two vertical sides. The results presented are for the more 

demanding case of the QFP120, which has side length in the range of [15.8-16.2] mm, 

according to its specifications. The pitch of the component is 0.4mm and the width of 

each lead is [0.13-0.23] mm. Thus, in the processed images the component pitch 

corresponds to 20 pixels whereas the lead-width may vary from 6 to 12 pixels. 

In order to de-couple the training from testing of our classification-estimation 

scheme, we collected two sets of images. The training is based purely on Monte-

Carlo simulated images generated from images of the PCB with solder paste but 

without the components placed on them and images of the component itself. Five sets 

of PCB and component images are acquired with different illumination levels and 

camera offset. Individual lead and pad segments are extracted from these images. All 

samples in each group of segments (pad and lead) are intermixed in a Monte-Carlo 

framework and used to provide samples of individual leads placed on pads at several 

levels of displacement.  

The testing stage considers actual images of components already placed on their 

pad locations from PCBs obtained from an automatic placement machine. For the 

purpose of testing we used ten different boards, each containing two QFP120 
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components, with different settings from the placement machine. More specifically, 

the arrangements of components on the ten boards are as following. One board with 

perfect match; three boards with horizontal displacment of + 20, +60 and + 100 µm; 

three boards with both horizontal and vertical displacements at (+40, - 60) µm, (+ 20, 

-20) µm and (-120, +60) µm; three boards for testing the effects of rotation at 

multiples of 0.2 degrees. 

 

 

5.2   Geometric Relations Between Lead & Component Displacement 
 

In this section we establish how a rigid body component rotation or displacement 

relates to lead shifts, which is necessary for the calculation of the displacement quality 

criteria defined above. For the purpose of analysis, we use the model of a QFP (Quad 

Flat Pack) component, which is shown in Figure 5.2. Sample leads extracted from the 

sides of the component are presented in Figure 5.2(c). 

 

5.2.1 Reorganization of Component Sides 

The camera reads four ROIs (Regions Of Interest), one for each side of the 

component. Since we are not interested in the exact location of individual lead but 

rather on its displacement relative to its ideal position (i.e., pad), there is no need to 

define a coordinate system for each ROI. We can only define a single coordinate 

system (u,v) for all leads, independent of the lead’s location at the side of the 

component, and relate displacement on (u,v) to displacement on the (x,y) system. The 

(x,y) is a cartesian coordinate system established at the center of gravity of the 

component, as shown in Figure 5.2. From now on, we refer to this system as the 

component coordinate system. The (u,v) coordinate system is defined and oriented in 

the (x,y) space for all leads on each side of the component. Different sides impose 

different orientations on the lead coordinate system and they define different relations 

between the (x,y) and (u,v) systems. 

To preserve consistency in the study of all sides of the component, we present 

each side on the same coordinates, placing the side of the component's body always at 

the same orientation. Thus, the component coordinates (x,y) may be different from the 

lead coordinates (u,v). As becomes apparent from Figures 5.2 and 5.3, we make the 

following transformation on the leads of each side of the component: the left ROI is 
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kept unchanged; the right ROI sustains a mirror reflection of the horizontal axis (x-

axis), over its vertical axis (i.e., the y-axis); the bottom ROI is rotated clockwise (CW) 

by 90� ; finally, the top side ROI is first rotated CW by 90�  succeeded by a mirror 

reflection of the x-axis over the y-axis. The component sides as transformed to lead 

coordinates are presented in Figure 5.2(b). 

 

5.2.2 Effects of Component Displacements 

Owing to the aforementioned transformation, a translation (δx, δy) of the 

component, results in a corresponding translation on the lead coordinates (u, v) that is 

summarized in the Table 5.1 and is graphically depicted in Figure 5.3. 

 

Table 5.1 Translations measured on the lead coordinate system caused by a corresponding 
translation (δx, δy) of the component. 
 

axis Left ROI Right ROI Bottom ROI Top ROI 

δu δx -δx δy -δy 

δv δy δy -δx -δx 

 

 

 

 

 

 

 

 

 

 

(a) (b) 

 

 

 

                                                                    (c) 

Figure 5.2  ROI selection and transformation; (a) location of ROIs at the left, right, bottom 
and top sides of the component, (b) spatial transformation/relocation of ROIs, (c) sample lead 
images from the different sides. 
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We now consider the effects of component rotation. Let a lead 0L  (see Figure 5.4) 

at the right side of the component, located on the x-axis of the component coordinate 

system, at distance R from its center. A clockwise (CW) component rotation by φ 

degrees, is equivalent to a Counter Clockwise (CCW) rotation by the same angle of its 

coordinate system. It is readily derived that such a rotation will impose a translation 

(dx,dy) of the lead, expressed in the (x,y) component coordinate system as: 

 

                                                     
dx R R

dy R

= −

=

cos

sin

ϕ
ϕ

                                                          (5.1) 

 

Consider now a lead Lh  (see Figure 5.4) at the right side of the component, displaced 

by a distance h from the x-axis of the component coordinate system. In order to 

express the effects of rotation on Lh similar to that of Lo  we introduce a new 

coordinate system (x yh h, ) which is formulated by vertically translating the (x,y) 

system such as the xh -axis is passing by the center of Lh . In this way the coordinates 

of the center Oh  of the (x yh h, ) system with respect to the (x,y) system is (0, h). 

Introducing this new system, the original rotation around O can be decomposed in two 

parts; one that reflects the change of coordinate systems and the effects of rotation 

over O to the new center Oh  and a second one that considers the effects of rotation 

over the new center, with respect to the new coordinate system itself. Thus, a CW 

component rotation by φ degrees causes a displacement of  leadLh  that is 

decomposed into two parts; one related to displacement of the coordinate center Oh  at 

a new position Oh
' (due to its own rotation around the center O of the component 

coordinate system) and a second related to the rotation of the lead around Oh
' .  

The second part of the transform causes a translation of Lh  as in Eqn (5.1), whereas 

the former one causes a translation of Lh  by: 

                                                              
sin

cos
h

h

dx h

dy h h

ϕ

ϕ

= −

= −
                                             (5.2) 

Overall, in the component coordinate system (x,y) the total displacement imposed on 

Lh  (on the right side of the component) due to CW component rotation by φ degrees 

is given by: 
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ϕ ϕ

= − −
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                                         (5.3) 

For ϕ < 1� , as in the specifications of commercial placement machines, cosϕ ≅ 1 and 

sinϕ ϕ≅ , yielding: 
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dy r R

ϕ
ϕ

= −
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Figure 5.3  Component translation and rotation effects measured on the lead coordinate 
                         system. 
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Figure 5.4  Analysis of component rotation on the shifts measured on the lead coordinate         
                     system. 
 

 

Performing similar analysis for the left, up and down sides of the component, we 

obtain: 
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dx l h

dy l R

ϕ
ϕ

= −

= −
   ,          

( )

( )

dx u R

dy u w

ϕ
ϕ

= −

=
      and        

( )

( )

dx d R

dy d w

ϕ
ϕ

=

=
                (5.5) 

 

where w is the distance of the center of a lead which is placed on the up or down sides 

of the component from the y-axis of the component coordinate system. To arrive at 

the effects of rotation on the lead coordinate system (u,v), we further introduce the 

relations of Table 5.1, resulting in the relations of Table 5.2. 
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Table 5.2  Translations measured on the lead coordinate system caused by pure component 
rotation by φ degrees.  
 

axis Left side Right side Down side Up side 

δu -hφ hφ wφ -wφ 

δv -Rφ Rφ -Rφ Rφ 

 

Notice that h and w are signed lead distances from the origin of the (x,y) system, for 

the left/right and up/down sides respectively. 

Overall, if a component translation by δx, δy is experienced in addition to a pure 

component rotation by φ degrees, the total lead displacements are summarized in 

Table 5.3 

 

Table 5.3 Translations measured on the lead coordinate system when both component 
translation by δx, δy and rotation by φ degrees are present. 
 

axis Left side Right side Down side Up side 

δu δx –hφ -δx +hφ δy +wφ -δy -wφ 

δv δy -Rφ δy +Rφ - δx -Rφ -δx +Rφ 

 

 

5.2.3 Estimating Component Displacements from the Leads 

 

The directional relations of Table 5.3 can be specialized to the k-th lead of each 

side, depending on the appropriate h or w location of the lead. For the k-th lead kr  of 

the right side, as example, we use the convention ( ) ( ) ϕδδϕδδ Ryrvhxru kkk +=+−= ,  

to denote the corresponding directional shifts. It is obvious, therefore, that provided 

an accurate estimation of the component displacement and rotation, the effects can be 

accurately reflected to the individual leads. The reverse argument holds also true: 

provided the lead shifts (δu, δv), we can infer the component parameters (δx, δy, φ). 

Notice that the lead shift vδ  is independent of the exact location of the lead on its 

corresponding side. Moreover,  

                                                   
( ) ( )
( ) ( ) yrvlv

rulu

kk

kk

δδδ

δδ

2

0

=+

=+
                                                       (5.6) 

Similarly, 
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( ) ( )
( ) ( ) xuvdv

uudu

kk

kk

δδδ

δδ

2

0

−=+

=+
                                                  (5.7) 

The rotation angle φ can also be derived from similar combinations of lead 

displacements. These interrelations between lead and component displacements form 

the essence of our approach in accurately estimating the component parameters, i.e. 

we can focus on lead measurements and then reflect measurements to component 

displacement parameters. Nevertheless, since we accept that the measurements on 

each individual lead are erroneous, we combine measurements from many leads in a 

Bayesian framework, for inferring an accurate overall estimate of component 

parameters. As indicated by Eqns (5.6) and (5.7), we need only measure lead 

displacements δv on their cross-axial direction. Thus, we emphasize that our 

measurement scheme is only limited to lead displacement δv. 

Let UDRL dddd ,,,  denote the displacements on the cross-axial lead direction (v 

axis) of the left, right, down and up side, respectively. These measures may represent 

the displacement of an individual lead, or the combined displacement of the entire 

side (average of individual lead displacements along this side), since we consider the 

component as a rigid body. In fact, each of these displacements may represent an 

accurate estimate of the side’s displacement based on inaccurate displacement 

measurements of several individual leads on the same side of the component, (as 

described in Section 5.3). From those estimates, we can arrive at the estimated 

horizontal and vertical component shifts δx, δy respectively, as well as the estimated 

rotation angle φ, exploiting of the relations (5.8): 
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5.3    Lead Displacement Estimation 

 

The computation of lead displacements on each side of the chip proceeds in three 

steps. The first step implements a feature extraction process based on a segmented 

lead image. In the second step, an appropriately designed classifier takes as input the 

extracted feature vector for each lead and produces an estimated quantized 

displacement r
ky  classified as rl (i.e. with label rl ), where the index k refers to the k-th 

lead of a component's side. The quantization step can be fixed to any size, as long as 

the training of the classifiers is performed with this resolution. In our approach we 

consider pixel size and multiples of it. The third step operates on all quantized lead 

shifts computed from each side and implements a likelihood estimation process in 

order to estimate a total shift on that specific side. From this estimation process, we 

can easily proceed to the evaluation of quality measures and the computation of the 

component's displacement in (x,y) and rotation, using the relations in Eqn (5.8).   

 

5.3.1 Feature Extraction and Classification 

After a SMD component image has been acquired and the regions of interest 

have been defined, a four-level Otsu algorithm, which has been presented in 

Subesection 4.2.6.2 of Chapter 4, is applied on each ROI, to segment the lead images 

that are included in the examined ROI image. The outcome of the segmentation 

algorithm is a four level image that corresponds to the regions of lead, pad, solder 

paste and background. As indicated by Figure 5.2(c), the segmentation of lead and 

other regions might be quite difficult depending on the illumination incident to that 

lead area. In our approach the lead is only roughly segmented, as has been illustrated 

in Figure 4.22 of Chapter 4, and is simply enclosed by its bounding rectangle. The 

labeling algorithm that has been given in Subsection 4.2.6.3 is consequently applied 

in order to define (label) the four areas of interest. The introduced in Subsection 

4.2.6.4 feature extraction process results in 12 relevant features (i.e. optical features).  

The abovementioned 12 optical features constitute a feature vector for pattern 

classification of each lead. Any classifier can be utilized to perform this task. In this 

work, we use a Bayes classifier and a LVQ neural network classifier, reinforced with 

a Karhunen-Loeve (K-L) transformation as to reduce the dimensionality of the input 

feature space.  
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5.3.2 Quantization and Classification Errors 

Inevitably, a classification process that produces displacements quantized to the 

pixel size introduces two types of error, namely the quantization and the classification 

error. Since we measure lead displacements via a discrete classification process, the 

resulting measurements are quantized and admit only discrete values rl . Nevertheless, 

the actual displacements we attempt to estimate are real-valued. Hence, an error 

occurs in the classification of the individual lead’s displacement, which is referred to 

as the quantization error.  

In addition, the classifier as a system yields a classification decision that is not 

100% accurate. This error is called the classification error. Let the outcome of the 

classifier rl  be associated with the true class iω , i.e., the classifier yields a 

classification rl  whereas the true class of the lead is ωi (must be correctly classified as 

l i). A measurement vector (i.e., lead features) from true class iω may be assigned any 

allowable level rl  with the probability ( )/r iP l ω , which models the probability of 

classifying a true class iω  at level rl . These probabilities can be estimated through 

extensive testing of the classifier. 

Both these errors associated with our classification process can be considered 

within a Bayesian estimation process, which aims to approximate the actual 

component displacement from the inaccurate classifications of several individual 

leads. In this framework, we view the classified (quantized) displacement of each lead 

as an individual measurement of the same process, i.e. the displacement of the 

component as a rigid body. Thus, from K individual quantized measurements r
ky  from 

one side of the component, with probability of misclassification ( )/r iP l ω , we 

proceed to the estimation of the real-valued displacements of the entire component 

side. Recall at this point that the lead displacement measured is along the cross-axial 

direction of the lead, i.e., axis v in Figure 5.3. Taking under consideration the relation 

of the lead and component coordinate systems, it becomes obvious that the above 

estimation process concerns only the δy displacement for the left and right sides and 

the δx displacement for the up and down sides of the component. This effect has been 

also embedded in the relations of Eqn (5.8).  
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5.4   Component Displacement Estimation 
 
 
5.4.1 Definitions 
 
In this section we use the symbols x and y to denote random variables for continuous 

and discrete (or quantized) displacement measurements, respectively. The essential 

displacements that we need to accurately estimate are the lead displacements on their 

cross-axial direction, i.e. dL, dR, dD, and dU from Subsection 5.2.3. Let s be the actual 

(true) value representing any one of these displacements, which can also be 

considered as an overall component displacement at this side due to either horizontal 

or vertical shift, or rotation. The component, as a rigid body, transfers this 

displacement to individual leads. The displacements we measure in Section 5.3 on 

individual leads can be considered as inaccurate measurements of s. The task 

considered in this section is to derive an estimation process for inferring component 

displacements from the individual measurements of lead displacements. Before 

proceeding, we make the following definitions: 

• s: is the real-valued (continuous) component displacement in one direction. 

• xdenotes the continuous random variable for the displacement of leads on the 

appropriate sides.  

• kx  is the continuous lead displacement of  k-th lead of one side of the componenet 

(i.e., the  k-th measurement of s ). 

• iω : is the i-th class (with label il ) of discrete lead displacement. 

Since we measure lead displacements via a discrete classification process, the 

resulting measurements are quantized and take only discrete values rky . 

•  y  is the discrete random variable of for the lead displacements.  

• r
ky  is the discrete lead displacement of the k-th lead classified as rl  from classifier. 

For a specific displacement s, the measurement x  may assume a Gaussian  

distribution around s, with mean s and variance 2 2
xσ σ= . This models the 

distribution P x s( / ) . The distribution of the quantized measurements P y s( / )  is a 

discrete one that can be obtained from P x s( / ) . 

Let the quantization levels be defined as [ ]l r M Mr , , , , ,∈ − … …0 , (r being an 

integer) and the limits of quantization for l r  be ar  and br . We consider uniform 
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quantization with b a Tr r− =  so that a l T
r r= − 2  and 2r r

Tb l= + . Thus, the 

probability of quantized measurent y  given s,  P y s( / )  is determined by the 

probabilities P l sr( / )  of the quantization levels l r  as:  

                    
2 2

/ 2
( ) / 2

/ 2

1
( / ) ( / )

2

r r

r r

b l T
x s

r

a l T

P l s P x s dx e dxσ

πσ

+
− −

−

= =∫ ∫                              (5.9) 

 
In case that the mean s coincides with the central level of quantization l0 , (i.e., 

s l= 0 ), the distribution P y s( / )  is a binomial one. In case that s falls within the 

quantization region of any level l r , then the distribution P y s( / )  approximates a 

binomial one around l r . Throughout our estimation process we do not consider such a 

binomial approximation for the entire variable y , but rather consider local 

approximations of P l sr( / )  in (5.9) around l r . 

Since we do not measure directly the lead displacement )( kyy , but we only 

obtain it indirectly through a classification process, we need to consider the effects of 

the classification error. Let the outcome of the classifier ky  at the k-th trial be 

associated with the class [ ]ω r r M M, , ,∈ − …  (level rl ) as organized by the 

specific classifier. A measurement Y , (its feature vector), may be classified to class 

ω r (level rl ) and consequently be assigned the value rl , with a certain probability 

P Y r( / )ω , which models the probability of classifying Y  into any class, even though 

the actual shift belongs to class iω . This models the classification error, or the 

probability of classifying a measurement ky  to class rω  instead of iω . We consider 

this error independent of the actual displacement s, depending only on the classifier 

itself. Thus, we estimate these probabilities through extensive testing of the classifier. 

One last variable that we need to model is the actual displacement s of the 

component, which relates to the placement error of the PCB machine. Let P s( )  be its 

distribution. From nominal measurements s, can be modeled as a Gaussian with 

mean s0  and variance σ 0
2 .   

 
5.4.2 Derivation of the Estimation Process  
 

We are now ready to proceed with the estimation of the component displacement. 

Two approaches may be considered. The maximum likelihood and the maximum 
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aposteriori. Given a classified measurement set 

{ } [ ]1 2, , , ,  ,...,0,...,r r r
Ky y y y r M M= ∈ −… , the maximum likelihood approach proceeds 

as: 

                                                
1

max ( / ) max ( / )
K

r
k

s s
k

P y s P y s
=

= ∏  ,  or 

 

                                             ( ) ( )
s

1

max log / max log /
K

r
k

s
k

P y s P y s
=

= ∑ ,  or 

                                                   { }
1

log ( / ) 0
K

r
k

k

P y s
s

∂
∂=

=∑                                        (5.10) 

 

Observing that the classification rky  (with label rl ) may result from any actual 

class ω i  and assuming that the classification error only depends on the classifier and 

is independent of the actual displacement, we obtain: 

                               
( )2 2

/ 2
/ 2

/ 2

,

( / ) ( , / )

( / , ) ( / )

( / ) ( / )

1
( / )

2

( / ) ( / )

( / )

i

i

i

i

i

i

r r
k k i

i

r
k i i

i

r
k i i

i

l T
x sr

k i
i l T

b
r
k i

i a

b
k r
i

i a

P y s P y s

P y s P s

P y P s

P y e dx

P y P x s dx

P x s dx

σ

ω

ω ω

ω ω

ω
πσ

ω

α

+
− −

−

=

=

=

=

=

=

∑

∑

∑

∑ ∫

∑ ∫

∑ ∫

                  (5.11) 

where , ( / )k r r
i k iP yα ω= ,  the probability of misclassification. 

It is proved in Appendix D1 that there exists a certain value [ ]ii bx ,0 α∈  that describes 

the integral in the form: 

                                                   
( )

( )
( )

e dx b a e
x s

i i

x s

a

b

i

i −
−

−
−

= −∫
2

2
0

2

22 2σ σ                                     (5.12) 

and can be approximated by: 
 

                                                   i
ii l

ba
x =

+
=

20                                                        (5.13) 
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with il  indicating the central point of this interval. Notice that this approximation 

holds at the shoulders of the distributions, but it overestimates the actual integral 

around the center of ( )/iP sω , i.e. for the class that correctly estimates the actual 

displacement s. In this case, the contribution to the overall ( )/r
kP y s  is amplified. 

Alternatively, far from the correct displacement of s, the contribution to ( )/r
kP y s  is 

attenuated. In this form, the approximation in (5.13) is validated since it emphasizes 

the contribution of classifications close to the correct displacement of s, while 

reducing the effect of far two erroneous classifications. Using (5.13) into (5.12) and 

introducing ( )/r
kP y s  into the middle form of (5.10), the maximum likelihood 

criterion is written as: 

                                           
( )2

2, 2max log
il s

k r
i

s
k i

T a e σ

−
−

  
  
  

  
∑ ∑                                          (5.14) 

or 
 

                                             ,max log ( )k r
i i

s
k i

a f s
  
  

  
∑ ∑                                               (5.15) 

 
 

where 
( )

2

2

2)( σ

sl

i

i

Tesf
−

−
= , and ,0 ( ) 1k r

i i
i

a f s< ≤∑ , 0 1< ≤f si ( )  as probabilities. Since 

by Taylor expansion we have log( ) ,1
2 3

2 3

+ = − +x x
x x

∓… for − ≤ ≤1 1x ,  we can 

approximate log( )x x≅ − 1 for 0 1< ≤x , so that: 

 

                                        , ,log ( ) ( ) 1k r k r
i i i i

i i

a f s a f s
 

≅ − 
 
∑ ∑                                      (5.16) 

 
and 
 
 
                  ( ), , , ,log ( ) ( ) 1 ( )k r k r k r k r

i i i i i i i
i i i i

a f s a f s a f s a≅ − = −∑ ∑ ∑ ∑                   (5.17) 

 
 
From Equations (5.16), (5.17) we obtain the approximation  
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                   ( ), , ,log ( ) log ( ) 1k r k r k r
i i i i i

i i i

a f s a f s a
   

≅ − −   
   
∑ ∑ ∑                          (5.18) 

Introducing the latter approximation into (5.15) and expressing )(sf i  in its 

exponential form, we get: 

                        
( )2

, ,
2

max 1
2
ik r k r

i i
s

k i k i

l s
a a

σ

 −  
− − −  
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or 

                                       ( )2,min k r
i i

s
k i

a l s
 

− 
 
∑∑                                                       (5.20) 

Taking the derivative over s we obtain ( ), 0k r
i i

k i

a l s− =∑∑ . Thus, the maximum 

likelihood estimator is derived as: 
 

                                                     

,

,
ˆ

k r
i i

k i
k r
i

k i

a l
s

a
=

∑∑
∑∑

                                                        (5.21)   

where ɵs is the estimate of s. Notice that if ( ), ( / )k r r
i k ia P y i rω δ= = − , with ( )i rδ −  

a δ -function, then ˆ

r
k

k

y
s

K
=

∑
. 

 

Remark 1 The value of measurement rky  may result from correct classification of 

feature vectors in classes iω , or from misclassification of neighboring classes. Our 

approach reflects the fact that the class ω i  is correctly assigned the quantized value l i  

with probability ( ) ,( / ) /i k i
i i k i iP l P y aω ω= = , but can also be assigned neighboring 

values with probability ( ) ,( / ) /r k r
r i k i iP l P y aω ω= = . 

 

Remark 2 Notice that the derivation of ɵs is straightforward. The probabilities that 

formulate ,k r
iα are a priori calculated during the construction of the classifier and can 

be stored in a matrix A. The levels l i  are also predetermined. The estimator ɵs reads 

for the k-th lead the classification output (rl ) and isolates the corresponding row of 

the A matrix, which is consequently multiplied with the vector [ ]1 2 2, , , Ml l l=L … , 

(where M2 is the number of classes), thus obtaining the numerator of ɵs. This process 

if further elucidated in next section. 
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Remark 3   It can be proved (the proof can be found in Appendix D2), that { }ˆE s s= , 

thus resulting in an almost unbiased estimator, with { }2 21
ŝ

K
σ σ= . 

 

5.4.3 Implementation of Component Displacement Estimation 

The classification process takes as input the feature vector extracted from each lead 

and produces an estimated quantized displacementr
ky  with label rl , where the index k 

refers to the k-th lead of a component’s side. During the training phase, the classifier 

produces a matrix ( / ) ( / )r
k i r iP y P lω ω= for the probabilities of misclassification. 

Figure 5.5(a) illustrates the training process. 

 

 

 

 

 

 

 

 

                                                             (a) 

 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 
 
Figure 5.5 The classification procedure during the training phase; (a) computation of 
classification-error probabilities, (b) computation of quantities required by the estimator for 
each classification level rl . 
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This process encodes the classification error for the specific type of classifier used. 

The quantization error is considered in the Bayesian estimation process during the 

testing of each component. In this phase, the same classifier classifies the feature 

vector of each lead as rl . All leads from the component sides are uniformly classified 

according to the geometrical dependencies of Section 5.2. The classification results 

from all leads of the appropriate sides are used in the Bayesian estimator to produce 

the estimate of the component displacement ŝ. The contribution of each lead to the 

numerator and denominator of this estimator can be simply extracted from a look-up-

table that is constructed during the training phase of the classifier, since it only 

depends on the classification error. More specifically, by the end of training phase, the 

classifier can compute the quantities: 

                                   
( )

( )

( ) / ( / )

( ) / ( / )

r
r k i i r i i

i i

r
r k i r i

i i

l P y l P l l

l P y P l

α ω ω

β ω ω

= =

= =

∑ ∑

∑ ∑
                                 (5.22) 

and store them in the look-up-table for each classification level rl  as illustrated in 

Figure 5.5(b). Finally, the component displacement is estimated as: 
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ˆ
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r
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l
s
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=

∑
∑

                                                  (5.23) 

The entire classification/estimation process in its operating stage (testing) is 

demonstrated in Figure 5.6. 

 
Figure 5.6   The classification/estimation procedure during its operation (testing phase).  

 

ŝ
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Finally, having the accurate displacement measures for all sides, it is straight 

forward to apply the relations in Eqn (5.8) as to derive the component displacement 

and rotation parameters. 

 
 
5.4.4 Monte Carlo Simulation for generating the PCB images 
 

In this Ph.D. thesis we use the Monte Carlo simulation process [171-174], in 

order to generate lead samples with appropriate size and intensity distributions for 

trainining the classifiers.  Since several actual images from the test bed are hard to be 

obtained we synthesize images with different translation of lead in reference to pad 

raising different types of faults. Our purpose is to simulate the entire component i.e. 

each side of the component, consequently the four global ROIs (Left, Right, Bottom, 

Top ROI). There are two major reasons affecting us to make this decision. First the 

generation of the entire image 1024 1024×  pixels is time consuming because the pre-

processing requires image enhancement techniques and second all the useful 

information is inside these four ROIs. 

The data available are one set of  4 actual images with only pad and smeared 

solder paste and another set of  5 actual images with only the component QFP 120 in 

front of a dark background (as in Figures 5.7(a) and 5.7(b), respectively). Thus, the 

process of simulation of new images with controlling translations will be based on the 

their constituents ones which are individual pad with solder paste and individual lead. 

 

 

 

 

 

 

 

 

 

(a)   (b) 

Figure 5.7  Pad and QFP component images; (a) only pad and smeared solder paste, (b) 
only the component QFP 120. 
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One could claim that the simulation of the ROIs is accomplished performing a 

superposition of figure 5.7(b) over figure 5.7(a). But, this cannot be applied directly 

due to the varying dimensions (length and height) and intensity levels of the lead area 

and so we cannot easily and accurately the translation of the chip over the pad area. 

Also the training of the classifiers is based on images like Figure 5.2 (c) (i.e., cutted 

individual lead image after the placement of QFP 120 component on its own pad 

area). So, better results are obtained if the superposition is performed using individual 

pad-images and lead-images like the ones in Figures 5.8(a) and 5.8(b), respectively). 

 

                                                   

                         (a)                                                                        (b) 

Figure 5.8   Individual pad and lead-images; (a) individual pad-image (b) individual 
 lead-image 
 

It is apparent that the leads inside a global ROI have varying dimensions and 

intensity levels. Also the pads have varying intensity levels due to the different 

distribution of the smeared solder paste. In order to simulate a ROI correctly and 

approximate a real case we must preserve these observations. Therefore for every 

lead-image we find length, height and mean intensity and for every pad-image we find 

mean intensity (providing from the specifications that pads have constant 

dimensions), considering them as characterisics. Simulating a ROI we must draw 30 

pad-images and 30 lead-images with random characteristics. This procedure is 

accomplished using the Monte Carlo simulation process. The displacement is constant 

for the entire component but the relative displacement of each lead over its own pad is 

a function of the considered side (either left or right or bottom or top side). The 

general procedure we follow is given below [52]: 

• Firstly, we extract lead/pad regions from actual images and then we 

compute the above-mentioned characteristics. 

• Secondly, we classify each pad/lead according to its characteristics and 

then we derive statistics from the data. In addition we develop a database 

comprising all the extracted images. 
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• Thirdly, we use Monte Carlo simulation to select leads/pads according to 

the specified distributions and create component ROIs. 

 

5.4.4.1 Modeling and Implementation of Monte Carlo Simulation 

Simulation means driving a model of a system with suitable inputs and observing the 

corresponding outputs. Simulation models can be distinguished between static or 

dynamic, deterministic or stochastic, discrete or continuous [230]. A static simulation 

model is a representation of a system at a particular time. Monte Carlo simulation 

models are typically of this type.  

We define Monte Carlo simulation to be a scheme employing random numbers, 

that is U(0,1) (uniform distributed) random variables which is used for solving certain 

stochastic or deterministic problems where the passage of time plays no substance 

role.  

Monte Carlo simulation is widely used for solving certain problems in statistics 

which are not analytically tractable. For example, it has been applied to estimate the 

integral [172 – 173]  

                                                 ( )
b

a

I g x dx= ∫                                                     (5.24) 

where ( )g x is a real valued function which is not analytically integrable. To see how 

this static problem can be approached by Monte Carlo simulation let Y be the random 

variable (b-a)g(X) where X is a continuous random variable uniformly distributed on 

the interval [a, b]. Then it can be shown that the expected value of Y is given by  
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                                    (5.25) 

where ( ) ( )1/xf x b a= −  is the probability density function of a ( ),U a b random 

variable. Thus the problem evaluating the integral has been reduced to one of a 

estimating the expected value E(Y). In particular we shall estimate E(Y) by the sample 

mean 
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because it is unbiased estimator of E(Y) where 1 2, , , nX X X…  are independent 

identically distributed (IID) ( ),U a b random variables.  

Model analysis with Monte Carlo simulation is similar to ‘what if’ scenarios in 

that it generates a number of possible scenarios. However, it goes one step further by 

effectively accounting for every possible value that each random variable could take 

and weights each possible scenario by the probability of its occurrence. In order to 

model each uncertain variable within a model we must determine its probability 

distribution. Monte Carlo technique involves the random sampling of each probability 

distribution within the model to produce thousands of scenarios (also called 

iterations). Each probability distribution is sampled in a manner that reproduces the 

distribution’s shape [173]. The distribution of the values calculated for the model 

outcome reflects the probability of the values that could occur. Monte Carlo 

simulation offers many advantages as:  

 

• The distribution of the model’s random variables does not have to be 
approximated in any way. 

• Correlations and other inter- dependencies can be modelled.  

• Greater levels of precision can be achieved by simply increasing the 
number of iterations.  

 

In our situation the procedure followed in order to perform Monte Carlo 

simulation is [52]:  

 

• Select distribution for lead (length, height, mean intensity) using the 
histogram procedure 

• Select distribution for pad (mean intensity) using the histogram procedure 

• Perform Maximum Likelihood Estimators procedure to find the optimum 
parameters for each distribution 

• Use Chi-square goodness-of-fit test to attest if the chosen distribution fits 
the data adequately 

•  Random number generator U(0,1) 

• Random variable generation by sampling each distribution. 
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5.5 Results 
 

In our experiments, we use the Bayes and the LVQ classifiers both with and without a 

K-L transform for feature reduction. The Bayes classifier and LVQ neural network 

classifier are well-established and quite successful techniques in pattern classification. 

The theoretical background of these classifiers has been introduced in Chapter 4. the 

LVQ neural network architecture was defined by the feature vector size training set 

size and output class mapping. In particular for use with 12 geometric features the 

LVQ input layer consisted of 12 neurons. In accordance to LVQ theory the hidden 

competitive layer contained neurons, equal to the number of training set cases. In the 

output layer for 5 classes (2 pixel shift precision) 5 output neurons were needed. 

Accordingly discrimination of 7 classes required 7 output neurons. The model was 

trained for 1000 epochs with a learning parameter a=0.09.  

For designing and training the classifiers we employ the Monte Carlo simulation 

process, in order to generate lead samples with appropriate size and intensity 

distributions. Notice that the size of leads on an actual component is not constant, the 

size of solder paste varies from board to board, and the illumination conditions do not 

remain fixed in a realistic production environment. The reference for the distributions 

used in Monte Carlo simulations is obtained from one set of 4 actual images with only 

pad and smeared solder paste and another set of 5 images with only the component 

QFP 120 in front of a dark background (as in Figures 5.7(a) and 5.7(b), respectively). 

We use the aforementioned images for the creation of Monte Carlo samples and 

training, whereas we have available 20 new (post-placement) component images (as 

in Figure 5.2 (a)), obtained from the actual placement environment, that are used only 

for testing; never for training. The Monte Carlo process simulates variable size and 

illumination conditions and implements component displacements on the pad regions, 

which are employed in training. In fact, we use 13 classes of component 

displacements i.e., {-6, -5,…, 5, 6} pixels. Each displacement involves three 

neighboring cases for testing (e.g., class –4 involves displacements {-4.2, -4, -3.8}). 

Both directional displacements have been considered namely horizontal and vertical. 

Notice that a component shift in the x-direction engages leads on down and up sides 

(on their corresponding cross-axial v direction), whereas a component displacement in 

the y-direction affects leads on left and right sides. Thus, for testing the 13 classes of 

lead shifts, each class contains 3x2=6 directional cases and 30 leads per side for two 
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sides, making 360 lead samples per lead-shift class. As stated in the previously, 12 

features per lead formulate the feature vector that forms the input to each classifier. 

       The classifiers are trained for 5 and 7 classes. The first case involves classes {-6,-

3,0,+3,+6} whereas the second case considers training on classes {-6,-4,-

2,0,+2,+4,+6}. Thus, for training we use 120 lead samples per class resulting in 

totally 600 lead samples for the 5-class training set and the 840 lead samples for the 7-

class training set correspondingly. These two cases study the ability of the classifiers 

to discriminate classes in the feature space separated by 3 and 2 pixels apart, 

respectively. We do not consider training on all 13 classes, since all these classes are 

not separable in the 12 dimensional feature space defined. In our approach we reduce 

our expectation on the quantization error, since the classification is followed by the 

Bayesian estimation scheme designed to account for and take care of such errors. 

Table 5.6 shows the Bayes probabilities (%)  (i.e., the probability of a correct class iω  

to be classified as rl ). The probabilities are computed via a jack-knifing process, 

which approximates the true probabilities of classification [9], [171]. This process 

sweeps along all sample vectors and every time extracts one sample out of the training 

data. It trains the classifier with all other vectors and classifies the extracted vector 

that has not been seen by the classifier. Finally, it computes the percentage of correct 

and incorrect classifications for all data available, in order to derive the classification 

probabilities of the classifier. Bayes-1 incorporates a K-L transform, while Bayes-2 

operates on the entire feature space without transformations. Each row presents the 

probabilities of classification for the corresponding true class iω  to any other class 

rω . Table 5.7, gives the same information for the LVQ classifier. In general, we 

notice that the probability of correct classification is particularly high in the case of 5 

classes, indicating an improved ability of the classifiers to discriminate per 3 pixels 

shift rather than 2 pixels shift. Moreover, the use of K-L deteriorates the performance 

of classifiers in the specific problem. In all cases, the probabilities of misclassification 

are distributed around the correct class. For example, class +3 in the Bayes-2 

classifier is misclassified as class 0 or class +6, but not as a class with negative shift. 

The sources of misclassification are further considered in later parts of this section. 

In order to test the generalization ability of our combined classification-estimation 

process, we proceed with testing the classifiers on all available classes. Thus, we first 

train the classifiers with the corresponding classes, for 5 or 7-class quantization. Then, 
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we classify all samples in every one of the 13 classes and use our estimation process 

to derive a single displacement for all leads in each class. Table 5.8 gives the entire 

class displacement estimation using Bayes classifiers, with and without K-L 

transform, for 5 and 7 class training. The corresponding results for the LVQ 

classifiers are presented in Table 5.9. Notice that the classifiers are trained on 5 or 7 

out of 13 classes and are used to classify all 13 classes, interpolating in-between via 

our estimation approach. The Bayes classifier without K-L derives the best estimates, 

in terms of their proximity to the actual values. Moreover, the effects of larger 

quantization error in 5-class training as compared to that of 7-class training are 

diminished, due to the corresponding larger probabilities of correct classification. 

From these tests we conclude that the Bayes classifier (without K-L) on 5-class 

quantization give the best overall estimation results and it will be employed for 

further testing of our approach. At this end, we indicate a small bias of the estimator, 

which is partially due to the non-uniform distribution of the classification 

probabilities. 

In the sequel we test our approach on a set of 20 new component images from the 

actual placement environment. Ten actual boards with different shifts and rotations 

are given, with two images from each case. Each individual case is controlled by the 

placement machine and conveys the limited accuracy of placement. Notice that these 

images are used only for testing; the classifiers have never seen these images before. 

The results are given in Table 5.10. The first column indicates the number of the 

image, whereas the second column gives its displacement information from the 

placement machine. For each image, the first row presents the displacement results 

from our classification approach. In order to test these results with some accurate 

measure, we zoom on each image and manually measure the displacement of leads on 

each side of the component. These manual measurements are given in the second row 

associated with each image. Based on the relations of Subsection 5.2.3, we compute 

the average horizontal and vertical displacement of the component, as well as its 

rotation. Furthermore, in order to provide an additional rule for comparing the results 

with respect to component rotation, we also measure the total lead shift for one side 

(from end-to-end leads) along the axial (u) direction of leads. This is the measure Tv 

in Figure 5.3, which adds up to twice the cross-axial v-displacement of each lead due 

to rotation. This additional measure is presented in the last column, along with some 

manual measurements in parenthesis. In this consideration, the positive rotation angle 
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is measured in the counter clock-wise (CCW) direction and the positive side-to-side 

displacement along the u-axis of the leads in each side is defined on the basis of the 

positive CCW rotation. For the computation of the angle, the width of the component 

form its center (variable R in Eqn (5.8)) is manually measured for all sides. 

From table 5.10 it become immediately clear that the accuracy of the placement 

machine is quite limited and our proposed estimation scheme can effectively improve 

this accuracy. Consider, for instance, the case of t01_2, which involves considerable 

displacement on both the horizontal and the vertical direction, while the controls of 

the placement machine indicate no shift at all. Similarly, in the case of t07_1, the 

placement machine indicates no rotation, while both our classification scheme and the 

manual measurements indicate rotation larger than 0.15o. Comparing now the results 

of the proposed classification scheme and the manual measurements, we can generally 

observe that the classification results are within 0.6 pixels from the manual 

measurements (see Table 5.13). It is interesting to consider the case of t08_1, with 

respect to the total (end-to-end) axial lead displacement in the last column. The 

classification approach gives a more accurate estimate than the result through manual 

measurements of the cross-axial lead displacement on each side. This observation 

indicates that (as expected) the manual measurements on individual leads cannot 

provide consistent accuracy, especially when the component engages rotation in 

addition to translation.  

 
 

Table 5.6  Bayes Probabilities (%) 
 

a) Bayes-1 classifier for 5 classes 
-6 pixels 

shift 
-3 pixels 

shift 
0 pixels 
shift 

+3 pixels 
shift 

+6 pixels 
shift 

97.47 1.96 0.00 0.00 0.56 
3.67 92.93 2.54 0.00 0.84 
0.00 2.82 93.78 2.25 1.12 
0.00 0.00 5.14 87.42 7.42 
0.29 1.16 0.29 1.45 97.09 

 
b) Bayes-2 classifier for 5 classes 

-6 pixels 
shift 

-3 pixels 
shift 

0 pixels 
shift 

+3 pixels 
shift 

+6 pixels 
shift 

97.75 2.24 0.00 0.00 0.00 
2.25 94.35 3.10 0.00 0.28 
0.00 2.82 94.35 1.69 1.12 
0.00 0.00 2.57 93.14 4.28 
0.58 0.00 0.00 0.87 98.25 
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c) Bayes-1 classifier for 7 classes 
-6 pixels 

shift 
-4 pixels 

shift 
-2 pixels 

shift 
0 pixels 
shift 

+2 pixels 
shift 

+4 pixels 
shift 

+6 pixels 
shift 

92.71 6.44 0.84 0.00 0.00 0.00 0.00 
16.76 73.01 9.37 0.00 0.00 0.00 0.85 
0.00 7.51 80.05 10.98 0.00 0.00 1.44 
0.00 0.00 9.03 80.22 9.32 0.00 1.41 
0.57 0.00 0.00 12.39 73.77 10.95 2.30 
0.00 0.00 0.28 0.28 4.89 73.77 20.74 
0.58 0.00 1.45 0.00 0.00 4.06 94.18 

 
d) Bayes-2 classifier for 7 classes 
-6 pixels 

shift 
-4 pixels 

shift 
-2 pixels 

shift 
0 pixels 
shift 

+2 pixels 
shift 

+4 pixels 
shift 

+6 pixels 
shift 

92.99 6.44 0.56 0.00 0.00 0.00 0.00 
10.51 81.82 7.38 0.00 0.00 0.00 0.28 
0.00 10.69 75.72 13.29 0.00 0.00 0.28 
0.00 0.00 5.08 85.87 7.90 0.28 0.84 
0.00 0.00 0.00 11.52 77.80 8.64 2.01 
0.00 0.00 0.28 0.00 3.17 85.87 10.66 
0.29 0.00 0.58 0.00 0.29 7.26 91.86 

 

 

 

Table 5.7  LVQ  Probabilities (%) 

a) LVQ-1 classifier for 5 classes 
-6 pixels 

shift 
-3 pixels 

shift 
0 pixels 
shift 

+3 pixels 
shift 

+6 pixels 
shift 

94.67 4.76 0.00 0.00 0.56 
2.25 94.06 3.10 0.00 0.56 
0.00 13.55 75.70 9.88 0.84 
0.00 0.00 1.42 95.71 2.85 
0.57 0.00 1.15 3.18 95.07 

 
b) LVQ-2 classifier for 5 classes 

-6 pixels 
shift 

-3 pixels 
shift 

0 pixels 
shift 

+3 pixels 
shift 

+6 pixels 
shift 

93.27 6.16 0.00 0.56 0.00 
5.64 90.67 3.10 0.00 0.56 
0.00 7.90 78.24 12.99 0.84 
0.00 0.00 0.57 95.42 4.00 
0.57 0.00 1.15 3.47 94.78 

 
c) LVQ-1 classifier for 7 classes 
-6 pixels 

shift 
-4 pixels 

shift 
-2 pixels 

shift 
0 pixels 
shift 

+2 pixels 
shift 

+4 pixels 
shift 

+6 pixels 
shift 

78.43 21.00 0.00 0.00 0.00 0.00 0.56 
9.09 73.86 16.19 0.00 0.00 0.00 0.85 

0.00 15.31 74.85 6.64 1.73 0.57 0.86 
0.00 3.38 25.42 53.10 17.23 0.00 0.84 
0.57 0.00 0.00 8.35 81.55 8.64 0.86 
0.00 0.00 0.28 0.00 10.95 77.52 11.23 
0.57 0.00 0.57 0.57 00.28 12.75 85.21 
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d) LVQ-2 classifier for 7 classes 
-6 pixels 

shift 
-4 pixels 

shift 
-2 pixels 

shift 
0 pixels 
shift 

+2 pixels 
shift 

+4 pixels 
shift 

+6 pixels 
shift 

83.47 15.96 0.00 0.00 0.56 0.00 0.00 
13.35 76.42 9.37 0.00 0.00 0.28 0.56 
0.00 10.11 78.90 8.38 1.44 0.86 0.28 
0.00 0.00 20.33 57.06 21.75 0.00 0.84 
0.57 0.00 0.00 3.74 80.40 14.40 0.86 
0.00 0.00 0.00 0.28 10.95 74.35 14.40 
0.57 0.00 0.00 0.86 00.57 16.81 81.15 

 

 

Two cases where the estimation approach fails to produce results very close to the 

manual measurements are the t02_1 (top side) and the t09_1 (left side). The first case 

fails due to insufficient training data in the classification process, whereas the second 

case fails due to measurement errors in the computation of the feature vector. At this 

end, notice that our classification approach has been trained to produce displacements 

of up to +6 or –6 pixels. In case we encounter displacements larger than these limits, 

our approach of course fails to produce reliable displacement estimates. Such are the 

cases of t09_2, t10_1, and t10_2. Even in such cases, though, the rotation is estimated 

more accurately by our approach than by the manual measurements on sides, as it is 

indicated by the end-to-end axial lead-shift in the last column. 

 

 

Table 5.8   Displacement Estimation of Entire Class (~360 samples per class) with Bayes  
                           Classifiers 

Bayes B1_5Classes with K-L B2_5Classes B1_7Classes with K-L B2_7Classes 

Class 0 0.152 0.025 0.108 0.071 

Class -1 -0.717 -0.972 -0.861 -0.742 

Class +1 0.628 0.518 0.821 0.667 

Class -2 -2.167 -2.415 -1.721 -1.850 

Class +2 1.880 1.980 1.881 1.859 

Class -3 -2.825 -2.889 -2.635 -3.098 

Class +3 3.010 3.015 2.875 3.331 

Class -4 -3.628 -3.757 -3.970 -3.936 

Class +4 4.241 3.935 4.069 4.053 

Class -5 -5.036 -5.213 -4.990 -4.976 

Class +5 5.284 5.401 4.828 4.750 

Class -6 -5.765 -5.838 -5.495 -5.641 

Class +6 5.430 5.731 5.169 5.434 
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Table 5.9 Displacement Estimation of Entire Class (~360 samples per class) with LVQ Classifiers. 
LVQ L1_5Classes with K-L L2_5Classes L1_7Classes with K-L L2_7Classes 

Class 0 -0.062 0.219 -0.289 0.068 

Class -1 -1.707 -1.536 -1.376 -1.141 

Class +1 1.271 1.426 1.131 1.290 

Class -2 -2.432 -2.568 -1.904 -1.752 

Class +2 2.448 2.491 1.893 1.956 

Class -3 -2.710 -2.981 -2.759 -2.782 

Class +3 2.862 2.800 2.841 2.817 

Class -4 -3.393 -3.530 -3.646 -3.929 

Class +4 3.361 3.230 3.870 3.914 

Class -5 -4.626 -4.753 -4.371 -4.675 

Class +5 4.770 4.452 4.576 4.642 

Class -6 -5.634 -5.524 -5.181 -5.309 

Class +6 5.542 5.566 5.150 5.137 

 
Finally, in order to assess our results for displacement estimation of entire class 

presented in Tables 5.8 and 5.9 we calculate the absolute value of the difference 

between the actual class and its estimated value (i.e. ABS(Class – Estimation)) per 

class for Bayes and LVQ classifiers. Then we compute the average value of 

ABS(Class – Estimation) values for all 13 classes. These assessment results are 

presented in Tables 5.11 and 5.12 for the Bayes and LVQ classifiers, respectively. 

The Bayes classifier achieves its best performance for the 5-class formulation, 

whereas LVQ attains its minimum error for the 7-class, both without the use of K-L. 

In the sequel, in order to assess our results presented in Table 5.10 on actual 

component images with prior known shifts and rotations we first analyze the images 

manually, as to compute displacements that can be used as “golden-truth” values. 

From the first examination of the available images, it becomes evident that the 

placement machine attributes for displacement and rotation are far from accurate. For 

this reason we resort to the tedious process of manual measurements, which is far 

more accurate. Subsequently, we compute the absolute difference between the 

estimated and the manual measurements (i.e. ABS(Estimation – Manual 

Measurement)), as well as the absolute difference between the placement machine 

and the manual measurements (i.e. ABS(Placement Machine Measurement – 

Manual Measurement)) for all boards and all global ROIs. Then we consider 

statistical measures on each difference set in order to access the accuracy of 

estimation. The abovementioned assessment results are presented in Tables 5.13 

and5.14 for our estimated and placement machine measurements, respectively.  In 

order to compare the above two distributions we use the quantile – quantile plot (q-q 



CHAPTER 5           A BAYESIAN FRAMEWORK FOR MULTI-LEAD SMD POST-PLACEMENT QUALITY INSPECTION 

 141 

plot) [171]. Typically, a q-q plot (sometimes called an empirical quantile plot) is used 

to determine whether two random samples are generated by the same distribution. The 

q-q plot was originally proposed by Wilk and Gnanadesikan [171] to visually 

compare two distributions by graphing the quantiles of one versus the quantiles of the 

other. Assume that we have two data sets consisting of univariate measurements. We 

denote the order statistics for the first data set by 1 2, ,..., nx x x  and the order statistics 

for the second set by 1 2, ,...,  , with my y y m n≤ . In our case, the sizes of the data sets 

are equal, so m=n. In this case we plot as points the sample quantiles of one data set 

(i.e. ABS(Estimation – Manual Measurement) values) versus the other data set (i.e. 

ABS(Placement Machine Measurement – Manual Measurement) values). The 

obtained q-q plot is illustrated in Figure 5.8. The q-q plot follows approximately a 

straight line (except some outliers), indicating that the data sets come from the same 

distribution (i.e. Gaussian distribution).  Furthermore, the regression line is with slope 

close to 0.3, at least for machine attributes smaller than 4 pixels, indicating that the 

estimated results are at the order of three times more accurate than those of the actual 

placement machine.  

Overall, in terms of time requirements of our approach, the processing, 

segmentation and feature extraction (12 features) takes about 0.75sec for processing 

the entire QFP120 component, or 6.3msec per individual lead, on a Pentium II 

processor at 366MHz. The combined classification/estimation step for testing the 

entire QFP120 component takes 0.098sec and 0.011sec when using the Bayes and the 

LVQ classifiers, respectively. The classification of a single feature vector in the 

testing phase takes 0.81msec for the Bayes classifier, whereas it only requires 

0.09msec for the LVQ classifier. The training phase for 5 classes and 1760 feature 

vectors takes 24.2msec for the Bayes classifier and increases to 1.65 sec for the LVQ 

classifier, which requires iterative training. 
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Table 5.10.  Test results on actual component images with a priori known shifts and rotations 
      

Board no Board Mount 
Description 

Left 
Side 

Right 
Side 

Bottom 
Side 

Top 
Side 

Horiz. 
Shift 

Vert. 
Shift 

  Rotation CCW 
in Degrees 

Pixel Displacement 
in entire Side 
due to Rotation 

t01_1 Golden board; no 
shifts 

-0.226 -2.93 3.067 0.173 -1.578 1.62  -0.184 -2.799  

  0.1 -2.5 2.5 0.5 -1.2 1.5  -0.151 -2.3 (-2) 
t01_2  3.273 3.287 0.734 3.176 3.28 1.955  0.081 1.228  

  3 3.5 1.5 3 3.25 2.25  0.065 1 (+1.5) 
            

t02_1 20 micron right shift in 
Y direction 

-3.035 -3.133 2.252 0.188 -3.084 1.22  -0.071 -1.081  

  -2 -2.5 2 1.5 -2.25 1.75  -0.032 -0.5  
t02_2  2.124 2.124 2.766 2.974 2.124 2.87  0.006 0.104  

  2.5 2 2.5 2.5 2.25 2.5  -0.016 -0.25  
            

t03_1 60 micron right shift in 
Y-direction 

-5.158 -5.863 1.645 -1.181 -5.5105 0.232  -0.116 -1.765  

  -4.5 -5 1.5 0 -4.75 0.75  -0.066 -1 (-1) 
t03_2  -1.570 -1.264 -0.113 2.019 -1.417 0.953  0.080 1.219  

  -0.5 -0.5 -0.1 1 -0.5 0.45  0.036 0.55 (+1) 
            

t04_1 100 micron right shift 
in Y-direction 

-4.987 -5.36 1.757 -0.026 -5.1735 0.8655  -0.071 -1.078  

  -5.5 -6 2.5 0.5 -5.75 1.5  -0.082 -1.25  
t04_2  -2.628 -2.93 1.445 1.646 -2.779 1.5455  -0.003 -0.050  

  -1.5 -1.5 1.5 1.5 -1.5 1.5  0 0  
            

t05_1 40 micron right shift in 
X-direction & 

1.255 0.366 0.175 -0.12 0.8105 0.0275  -0.039 -0.592  

 60 micron left shift in 
Y-direction' 

1.1 0.5 0.1 0.1 0.8 0.1  -0.019 -0.3  

t05_2  5.786 5.693 -0.016 -2.131 5.7395 -1.0735  -0.073 -1.104  
  7 5 0.5 -1.5 6 -0.5  -0.132 -2  
            

t06_1 20 micron right shift in 
X-direction & 

-0.317 -2.347 -0.307 -0.317 -1.332 -0.312  -0.067 -1.020  

 20 micron left shift in 
Y-direction' 

0.5 -1.5 -0.5 -0.5 -0.5 -0.5  -0.066 -1  

t06_2  5.149 3.298 -0.216 -0.224 4.2235 -0.22  -0.061 -0.929  
  5 4 0 0 4.5 0  -0.033 -0.5  
            

t07_1 120 micron left shift in 
X-direction & 

-3.225 -5.336 5.786 2.761 -4.2805 4.2735  -0.169 -2.568  

 60 micron right shift in 
Y-direction' 

-3 -6 6 2.5 -4.5 4.25  -0.214 -3.25 (-3) 

t07_2  -0.285 -0.419 5.786 5.786 -0.352 5.786  -0.004 -0.067  
  -0.5 0.1 6 6.5 -0.2 6.25  0.036 0.55 (0.1) 
            

t08_1 0.2 rotation angle  ( 3 
pixels shift)  

-2.729 -5.766 0.175 -2.93 -4.2475 -1.3775  -0.202 -3.071  

 &  50 micron paste 
shift 

-0.5 -5 0.5 -3 -2.75 -1.25  -0.263 -4 (-3) 

t08_2  2.974 0.681 -0.518 -2.93 1.8275 -1.724  -0.155 -2.352  
  3.5 1 -0.5 -2.5 2.25 -1.5  -0.148 -2.25 (-2) 
            

t09_1 0.2 rotation angle ( 3 
pixels shift) 

0.685 -5.182 3.287 -2.93 -2.2485 0.1785  -0.398 -6.042  

  1.5 -5.5 4 -2 -2 1  -0.428 -6.5 (-5.5) 
t09_2  5.421 -0.618 5.786 -4.296 2.4015 0.745  -0.531 -8.060  

  10 -0.5 7.5 -3.5 4.75 2  -0.709 -10.75 (-8) 
            

t10_1 0.6 rotation angle ( 9 
pixels shift) 

3.07 -5.46 5.786 -5.561 -1.195 0.1125  -0.655 -9.938  

  3 -9.5 7 -5.5 -3.25 0.75  -0.824 -12.5 (-9) 
t10_2  5.593 -2.93 5.786 -2.93 1.3315 1.428  -0.568 -8.619  

  8 -2.5 8 -2.5 2.75 2.75  -0.692 -10.5 (-8) 
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     Table 5.11   ABS(Class – Estimation ) for Bayes Classifiers  

 

 

 

 

   Table 5.12   ABS(Class – Estimation) for LVQ Classifiers  
 

LVQ L1_5Classes with K-L L2_5Classes L1_7 Classes with K-L L2_7Classes 

Class 0 0.062 0.219 0.289 0.068 

Class -1 0.707 0.536 0.376 0.141 

Class +1 0.271 0.426 0.131 0.290 

Class -2 0.432 0.568 0.096 0.248 

Class +2 0.448 0.491 0.107 0.044 

Class -3 0.290 0.019 0.241 0.218 

Class +3 0.138 0.200 0.159 0.183 

Class -4 0.607 0.470 0.354 0.071 

Class +4 0.639 0.770 0.130 0.086 

Class -5 0.374 0.247 0.629 0.325 

Class +5 0.230 0.548 0.424 0.358 

Class -6 0.366 0.476 0.819 0.691 

Class +6 0.458 0.434 0.850 0.863 

Average value 
of ABS(Class-

Estimation) for 
13 Classes         

0.386 0.415 0.327 0.275 

 
 
 
 
 
 
 

Bayes B1_5Classes with K-L B2_5Classes B1_7 Classes with K-L B2_7Classes 

Class 0 0.152 0.025 0.108 0.071 

Class -1 0.283 0.028 0.139 0.258 

Class +1 0.372 0.482 0.179 0.333 

Class -2 0.167 0.415 0.279 0.150 

Class +2 0.120 0.020 0.119 0.141 

Class -3 0.175 0.111 0.365 0.098 

Class +3 0.010 0.015 0.125 0.331 

Class -4 0.372 0.243 0.030 0.064 

Class +4 0.241 0.065 0.069 0.053 

Class -5 0.036 0.213 0.010 0.024 

Class +5 0.284 0.401 0.172 0.250 

Class -6 0.235 0.162 0.505 0.359 

Class +6 0.570 0.269 0.831 0.570 

Average value 
of  ABS(Class-
Estimation) for 

13 Classes         

0.232 0.188 0.225 0.207 
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Table 5.13   ABS (Estimation-Manual Measurement) 
Board no Board Mount 

Description 
Left Side Right Side Bottom Side Top Side 

t01_1 Golden board; 
no  
shifts 

 
0.326 

 

 
0.43 

 

 
0.567 

 

 
0.327 

 
t01_2   

0.273 
 

 
0.213 

 

 
0.766 

 

 
0.176 

 
t02_1   

1.035 
 

 
0.633 

 

 
0.252 

 

 
1.312 

 
t02_2   

0.376 
 

 
0.124 

 

 
0.266 

 

 
0.474 

 
t03_1 60 micron right 

shift in Y-
direction 

 
0.658 

 

 
0.863 

 

 
0.145 

 

 
1.181 

 
t03_2   

1.07 
 

 
0.764 

 

 
0.013 

 

 
1.019 

 
t04_1 100 micron 

right shift in Y-
direction 

 
0.513 

 

 
0.64 

 

 
0.743 

 

 
0.526 

 
t04_2   

1.128 
 

 
1.43 

 

 
0.055 

 

 
0.146 

 
t05_1 40 micron right 

shift in X-
direction & 

 
0.155 

 

 
0.134 

 
0.075 

 

 
0.22 

 
t05_2   

1.214 
 

 
0.693 

 

 
0.516 

 

 
0.631 

 
t06_1 20 micron right 

shift in X-
direction & 
20 micron left 
shift in Y-
direction' 

 
0.817 

 

 
0.847 

 

 
0.193 

 

 
0.183 

 

t06_2   
0.149 

 

 
0.702 

 

 
0.216 

 

 
0.224 

 
t07_1 120 micron left 

shift in X-
direction & 
60 micron right 
shift in Y-
direction' 

 
0.225 

 

 
0.664 

 

 
0.214 

 

 
0.261 

 

t07_2   
0.215 

 

 
0.519 

 

 
0.214 

 

 
0.714 

 
t08_1 0.2 rotation 

angle  ( 3 pixels 
shift)  

 
2.229 

 

 
0.766 

 

 
0.325 

 

 
0.07 

 
t08_2   

0.526 
 

 
0.319 

 

 
0.018 

 

 
0.43 

 
t09_1 0.2 rotation 

angle ( 3 pixels 
shift) 

 
0.815 

 

 
0.318 

 

 
0.713 

 

 
0.93 

 
t09_2   

4.579 
 

 
0.118 

 

 
1.714 

 

 
0.796 

 
t10_1 0.6 rotation 

angle ( 9 pixels 
shift) 

 
0.07 

 

 
4.04 

 

 
1.214 

 

 
0.061 

 
t10_2   

2.407 
 

 
0.43 

 

 
2.214 

 

 
0.43 

 
VARIANCE 0.595031     
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Table 5.14  ABS (Placement Machine Measurement – Manual Measurement) 
Board no Board Mount 

Description 
Left Side Right Side Bottom Side Top Side 

t01_1 Golden board; 
no  
shifts 

0.1 2.5 2.5 0.5 

t01_2  3 3.5 1.5 3 
t02_1 20 micron right 

shift in Y 
direction 

1 1.5 2 1.5 

t02_2   
3.5 

 
3 

 
2.5 

 
2.5 

t03_1 60 micron right 
shift in Y-
direction 

1.5 2 1.5 0 

t03_2  2.5 2.5 0.1 1 
t04_1 100 micron 

right shift in Y-
direction 

0.5 1 2.5 0.5 

t04_2  3.5 3.5 1.5 1.5 
t05_1 40 micron right 

shift in X-
direction & 

1.9 2.5 2.1 2.1 

t05_2  4 4 2.5 0.5 
t06_1 20 micron right 

shift in X-
direction & 
20 micron left 
shift in Y-
direction' 

0.5 2.5 0.5 0.5 

t06_2  4 3 1 1 
t07_1 120 micron left 

shift in X-
direction & 
60 micron right 
shift in Y-
direction' 

0 3 0 3.5 

t07_2  2.5 2.9 0 0.5 
t08_1 0.2 rotation 

angle  ( 3 pixels 
shift)  

3.5 2 2.5 0 

t08_2  0.5 4 3.5 0.5 
t09_1 0.2 rotation 

angle ( 3 pixels 
shift) 

1.5 2.5 1 1 

t09_2  7 2.5 4.5 0.5 
t10_1 0.6 rotation 

angle ( 9 pixels 
shift) 

            6 0.5 2 3.5 

t10_2  1 6.5 1 6.5 
VARIANCE 2.472960     
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Figure 5.8    q-q plot of ABS(Estimation – Manual Measurement) versus 
                              ABS(Placement Machine Measurement – Manual Measurement) 
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Chapter 6 
 
Data-Space Reduction using topological and projection 
features for Component Quality Inspection 

 
 

 
6.1 Introduction to Data-Space Reduction 
 
In this chapter we consider two approaches to overcome computational complexity of 

classical machine vision quality inspection of SMDs on a PCB presented in Chapter 5. The 

first employs associative memories to implement the reduced information content in image 

intensity levels. The idea is to compare the edge structure of a lead image with that of stored 

fundamental patterns. The second scheme compresses the data space by considering only an 

image projection function of the data. A non-linear filter based on high order neural networks 

is used to encode the characteristics of each projection function. Both methodologies are 

tested on real industrial PCB images. The quality of inspection slightly deteriorates while the 

computational time is significantly reduced, when compared to classical visual inspection 

techniques.  This research has been published in [28].  

One of the most difficult and important problems in automating machine vision is to 

understand what kind of information is required and how is translated into measurements or 

features extracted from images. A descriptive set of uncorrelated features can drastically 

boost the classification success rate. Some of the most ordinary inspected features 

(dimensional, structural, etc.) are reported in [2]. Such features can be processed and 

analyzed via statistical or emerging soft-computing techniques (e.g. neural networks, fuzzy 

systems, wavelets, or genetic algorithms) [61]).  

Classical visual inspection techniques require extensive image processing and analysis 

for improving the image quality and deriving characteristic features. The limitation of 

computer-based tools related to computer time and working space poses a high priority on 

the objective choice of a limited number of essential characteristics (state-space or feature-

space reduction) but also on the exclusion of redundant observations (sample-space or data-

space reduction). Thus, the concept of approximate processing [29], [175] has been 

considered in real-time applications, where there is a necessity for approximating a given 

algorithm with another that has reduced computational cost. In any problem-solving domain, 
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an approximation to a given algorithm may be defined as an algorithm that is 

computationally more efficient and requires reduced computational cost, but produces lower-

quality results according to some standards of accuracy, certainty, and/or completeness.  

A wide-spread approach related to approximate processing deals with feature-space 

reduction and attempts to preserve the most important information conveyed by features 

extracted from the input data, while simplifying the required computations by reducing the 

dimensionality of the feature space. Feature-space reduction results in the representation of 

high-dimensional patterns in a low-dimensional subspace based on transformations that 

optimize specific criteria in that subspace. Thus, feature-space reduction removes redundant 

information and allows for more efficient classification. Principal components analysis 

(PCA) [9], [31], [32] is a well-established feature-space reduction technique employed in 

different forms including Factor Analysis [31], Karhunen-Loeve Transform (KLT) [7], [9], 

[11], [32] , and Hotelling Transform [31], [32], depending on the application.  

     Another approach to information reduction, referred to as data-space reduction, exploits 

the fact that the underlying dimensionality of the data (intrinsic dimensionality) may be 

small, even though the input dimensionality is quite large expressing high correlation among 

input data.  Unsupervised linear-mapping approaches in the form of PCA and orthogonal 

subspace projections are designed to decorrelate the data and maximize the information 

content in a reduced dimensionality space [176]. Moreover, supervised projection 

approaches, such as discriminant analysis and Bayesian techniques take advantage of class 

distributions and are more appropriate for classification purposes, as they can accentuate 

features of particular interest by maximizing a separation criterion or a Bayesian error 

criterion, respectively [177].   

Motivated by the capabilities of approximate processing and the need for reducing time 

requirements and overcoming inaccuracies due to “microscopic” pixel-level consideration of 

images, we study in this paper “macroscopic” approaches that do not consider pixel 

processing but rather define in an abstract way the characteristic features of images. More 

specifically, we consider one approach that only analyzes the sketch of patterns in the image 

and a second approach that processes only the projection of patterns at a single relevant 

orientation. In this way we attempt to efficiently balance the amount of relevant information 

exploited and the computational load of the algorithm. Formally set, we adopt two different 

forms of data-space reduction directly on the initial image space, affecting: 1) the intensity 

levels or dynamic range, by transforming the gray-scale image into a binary edge image  and 

2) the number of independent variables, by utilizing only specific projections of the data. In 
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the former approach referred to as reduced dynamic-range processing we preserve only the 

most descriptive information of the image in the form of edges, whereas in the latter 

approach referred to as reduced input-dimension processing we preserve the entire content 

of info but compress it in only a single dimension through projection. In general, the use of 

edge images takes advantage of the intuitive way that humans operate for recognizing spatial 

scenes. The characteristics that distinguish images of highly similar low-level properties 

(pixel distribution) are the shape and topology of objects they contain. Thus, several related 

methods have been developed for image query and retrieval using skeletons, caricatures and 

sketches (i.e. topological features of an image) [178 - 180]. Furthermore, the concept of 

image projection has been used as an effective method for extracting image features (i.e. 

projection features) in facial image recognition [181] and character recognition  [182].  

We employ this framework for analyzing SMD images and estimating lead 

displacements. A novel Bayesian framework for such analysis has been proposed in Chapter 

5  based on the fact that positioning measurements on each lead can be viewed as individual 

(inaccurate) measurements of the same quantity regarding the component displacements. We 

can view the estimation process operating in two levels. The first level considers a crude 

computation of quantized displacement of each lead through classification in a limited 

number of quantized displacements. The second level operates in a Bayesian framework and 

aims to accurately model the estimation of component displacement based on quantized lead 

displacements. In this chapter we focus on quantized classification of lead displacements 

based on reduced dynamic-range and/or input-dimension processing of individual lead 

images. The motivation behind our work is to avoid and/or overcome problems introduced by 

segmentation process and reduce the computational complexity of classical machine vision 

approaches for quality inspection. Compared with feature space reduction that extracts 

features at pixel level of abstraction and then reduces the feature space, the proposed data-

space reduction approach for approximate processing first reduces the data space according 

to some particular abstract characteristic (either dynamic range or dimension) and then 

defines features at a higher level of abstraction. In this form, we expect to design algorithms 

that effectively reduce the complexity of processing by defining features of lower intrinsic 

dimensionality, while overcoming inaccuracies in image acquisition expressed at pixel-level 

resolution. Following the process of quantized classification, we can further proceed with the 

Bayesian estimation approach developed in Chapter 5 to accurately estimate component 

displacements based on the measurements from many individual leads, i.e. the quantized lead 

displacements. 
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6.2 Experimental Set up 

 
The experimental set up for this research is the same as the presented in Subsection 5.1.2. 

Our approach aims to estimate each lead displacement over its ideal position centered at the 

pad/paste region. For the purposes of estimating other quality measures, only the 

displacement along the side of the component is essential [19], [30]. Thus, our problem is 

restated as estimating lead displacement at the direction perpendicular to the lead axis. 

Essentially, we consider quantized displacement estimations organized at multiples of a pixel 

displacements. The displacement classes we consider are again {-6, -3, 0, +3, +6} and {-6, -

4, -2, 0, +2, +4, +6}, in pixel displacements over the lead over its central position.  

Visual inspection techniques usually proceed in steps as outlined in Figure 4.13 of 

Chapter 4. The features are extracted from segmented lead images. An example of input lead 

image and its segmented version is illustrated in Figure 6.1. 

 

             

                                      (a)                                                                       (b) 
                                                                                                                                                       
Figure 6.1  Segmentation of lead image based on the 4-level Otsu algorithm. 

(a) Original lead image  (b) segmented lead image. 
 
 

 
Although a high dynamic-range camera is used, the illumination effects are obvious 

degrading the segmentation result. The usual problems associated with illumination effects 

have been described in detail in Subsection 4.2.6.2. The proposed reduced dimensionality 

approach overcomes such problems by establishing a macroscopic consideration of features 

at a higher level of abstraction. More specifically, the image presented for reduced dynamic-

range processing preserves only an abstract sketch of the image edges, whereas the data 

given for reduced input-dimension processing represents a projection of the input image and 

reflects the abstract structure of interest on a single direction, as illustrated in Figure 6.2 (c). 
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Figure 6.2  Typical images used in data-space reduction approaches. 
(a) original image, (b) reduced dynamic-range image; (c) reduced input-dimension data 

 

 

6.3 Reduced Dynamic-Range Processing 

 

  In our first approach related to data-space reduction, we utilize the edge structure 

extracted from the input lead image for classification purposes. In most cases, the derived 

edge structure is partially deformed or destroyed. Thus, the major task is to relate edge 

patterns so that we can recall a class assignment for each test pattern that may be presented 

for classification. We exploit the concept of associative memories (AMs) [41], [113], [127-

131] as stored patterns representing the desirable classes, and the Hamming distance [41], 

[113] for quantifying the distance between the input pattern and each one of the stored 

memories. The theoretical background of associative memories has been given in Subsection 

4.1.2.3. For classification of input patterns we use the Hamming neural network [41], which 

is a maximum likelihood classifier used to determine the proximity of an input vector to 

several exemplar vectors or prototype patterns. An input pattern that partially resembles the 

stimulus of an association invokes the associated response pattern by means of the shortest 

Hamming distance.  Thus, an associative memory can retrieve a stored pattern given a 

reasonable subset of the information content of that pattern. Moreover, an associative 

memory is error correcting in the sense that it can override inconsistent information in the 

cues presented to it. The input pattern to the network is a binary edge pattern (as in Figure 

6.2(b)) obtained from the grayscale input lead image (as in Figure 6.2 (a)) through 

segmentation and edge detection. The stored AM patterns reflect the edge structure of the 

“typical” edge image representing each class of lead displacements. Thus, the reduced 

dimensionality, binary edge image is fed to the Hamming network to determine pattern 
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similarities and implement the desirable classifier. The classifier is trained for 5 and 7 

classes, corresponding to integer lead displacements from –6 to +6 pixels per 3 and 2 pixel 

displacements, respectively. The derivation of the binary edge image, the construction of 

appropriate fundamental memories and the Hamming classifier are presented in the following 

sections. The overall classification system is presented in Figure 6.3. 

 

 

6.3.1 Preprocessing: Derivation of Binary Images 

 

The 8-bit lead image reflects different areas of interest, including the background, exposed 

pad, solder paste and lead regions. Our study aims to estimate the lead displacement over the 

pad/paste region. The binary image used in classification reflects the edges of the lead versus 

the outside pad/paste edges. In order to preserve the simplicity of our approach, we 

implement a two level segmentation process followed by edge detection to derive the 

desirable binary image.  

The segmentation process aims to separate the lead area from the other region of interest. 

This process involves the following steps.  

• By applying a small threshold, the dark background area is easily removed. 

• The application of a second, large threshold derives several bright regions corresponding 

to the lead and/or the exposed pad areas. Due to the large extent of the lead area and the 

intense reflection on its surface, the largest of segmented bright regions represents a 

portion of the lead area. By using a region growing technique to expand the extent of this 

(largest) region followed by a line fitting process to define its enclosing rectangle, the 

lead region is effectively segmented and separated from the remaining pad/paste regions.  

• A Laplacian edge detector followed by simple thresholding is used to define the edges of 

the segmented image and derive the binary edge image representing the pattern to be 

tested through the Hamming neural network. 

An example of resulting binary images from the abovementioned procedure is illustrated in 

Figure 6.2 (b). 
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Figure 6.3   Associative memory classification system 

 

Since we exploit the concept of associative memory, the input pattern must have a 

structure similar to its closest one of fundamental memories. In order to enforce such pattern 

similarity, we fix the location of the lead in both the test image and the fundamental 

memories, so that large pattern differences in the comparison of two images can only be 

attributed to different shifts of the outside boundaries over the fixed lead location. Thus, the 

pre-processing stage also shifts the centre of gravity of the lead region of each image (test or 

fundamental) to the same reference position, the center of the image.        

                                 .  

6.3.2 Fundamental Memory Construction 

An important issue of associative memories is the definition of its fundamental 

memories. Each fundamental memory comprises the specific characteristics discriminating 

its class. Moreover, the fundamental memories used in lead displacement must assess the 

standard characteristics of the problem, such as same image size, uniform lead position, etc. 

To satisfy these requirements, we first select the memory for one displacement (0 pixels) and 

then construct the memories associated the other classes by shifting the outside edge 

structure with respect to the fixed structure of the lead. The basic fundamental memory at 

shift 0 is selected from a number of test images reflecting exactly this specific case through 

statistical analysis of the mean pattern in this class. 

To ensure high performance of the Hamming network, we consider the distance of 

fundamental memories themselves, by means of the correlation coefficient 



CHAPTER 6                     DATA-SPACE REDUCTION USING TOPOLOGICAL AND PROJECTION FEATURES FOR COMPONENT  

 

154 
 
 
 

2 2
/

i i i

r x y x y
xy i i i i

= ∑ ∑ ∑  between two random patterns x, y.  The larger the distance 

(smaller the cross-correlation) of a class-pattern from its closest neighbors, the better the 

expected discrimination ability of the classifier. To preserve a consistent correlation form 

between each fundamental memory and its neighboring patterns, we further process them 

with the morphological transformation dilation using a rhomboid-structuring element with 

radius 1 pixel. The resulting memories are depicted in Figure 6.4, whereas their correlation 

table is given in Table 6.1. Observe in Table 6.1 that (as expected) the cross-correlation as a 

function of class dissimilarity decreases and quickly stabilizes to a constant level. 

 

-1  -2  -3  -4  -5                       -6 

            
 
0 

 

+1  +2  +3  +4  +5               +6 

           
 
                                  Figure 6.4   Fundamental memories after dilation. 

 

 

          Table 6.1  Correlation coefficients between fundamental memories after dilation. 

 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 

-6 1.000 0.875 0.750 0.625 0.609 0.591 0.569 0.552 0.510 0.502 0.496 0.490 0.492 

-5 0.875 1.000 0.875 0.750 0.623 0.605 0.583 0.565 0.520 0.512 0.502 0.496 0.490 

-4 0.750 0.875 1.000 0.875 0.748 0.619 0.597 0.579 0.534 0.522 0.512 0.502 0.496 

-3 0.625 0.750 0.875 1.000 0.873 0.744 0.611 0.593 0.548 0.536 0.522 0.512 0.502 

-2 0.609 0.623 0.748 0.873 1.000 0.871 0.738 0.605 0.560 0.548 0.534 0.520 0.510 

-1 0.591 0.605 0.619 0.744 0.871 1.000 0.867 0.734 0.605 0.593 0.579 0.565 0.552 

0 0.569 0.583 0.597 0.611 0.738 0.867 1.000 0.867 0.738 0.611 0.597 0.583 0.569 

1 0.552 0.565 0.579 0.593 0.605 0.734 0.867 1.000 0.871 0.744 0.619 0.605 0.591 

2 0.510 0.520 0.534 0.548 0.560 0.605 0.738 0.871 1.000 0.873 0.748 0.623 0.609 
3 0.502 0.512 0.522 0.536 0.548 0.593 0.611 0.744 0.873 1.000 0.875 0.750 0.625 
4 0.496 0.502 0.512 0.522 0.534 0.579 0.597 0.619 0.748 0.875 1.000 0.875 0.750 
5 0.490 0.496 0.502 0.512 0.520 0.565 0.583 0.605 0.623 0.750 0.875 1.000 0.875 
6 0.492 0.490 0.496 0.502 0.510 0.552 0.569 0.591 0.609 0.625 0.750 0.875 1.000 
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Thus, the correlation of class 0 with classes {4, 5, 6} is almost the same. This preserved 

correlation among stored memories degrades the distinction ability between classes as 

discussed in the examples. 

Based now on the design of the fundamental memories, we need to train the network so that 

it recovers the closest stored pattern in response to each test-input. An example of the 

desirable operation of the associative memory in the case of a test image with +3 pixels lead-

shift is illustrated in Figure 6.5. 

 

                                                           

                                         (a)                                                                  (b) 

Figure 6.5  Associative memory operation. (a) testing image (b) output response 

 

 

6.3.3 Classification using the Hamming network 

 

The comparison between the input (edge) pattern and the stored memories requires the 

use of a distance measure, for example the Euclidean distance or the Hamming distance, for 

quantizing the output to the fundamental memories representing the desirable classes. To 

implement this quantization via the Hamming similarity measure, a Hamming network is 

employed. Its operation aims to select one of the stored patterns (or classes) that is at a 

minimum Hamming distance (HD) from the binary input vector. The Hamming network 

consists of two layers. The first layer calculates the (N-HD) between the input vector probep  

and the stored 1 2, ,..., Mp p p  N-dimensional fundamental memories in a feed-forward pass. 

The strongest response of neurons in this layer is indicative of the minimum HD between the 

input and the fundamental memories. In our implementation the input in Hamming neural 

network is a binary image 36×56=2016 pixels. Thus, the input vector of Hamming neural 

network has dimension 2016, i.e., the first layer of Hamming neural network is constituent of 

2016 neurons.  The second layer of the Hamming network is a winner-take-all network 

(MAXNET), implemented as a recurrent network. The MAXNET’s ε parameter was set to 

ε=0.0385. The MAXNET suppresses all of its input values except the one at the maximum 

node of the first layer.  
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Given a set of binary prototype (exemplar) vectorsjp ,  1,...,j M= , the operation of the 

Hamming network with N input nodes (number of components of any input vector) and M 

output nodes (number of prototype vectors) is summarized as follows. 

 

1.   For storing the M prototype vectors, compute the weights: 

        ( ),  1,..., ;  1,...,
2

j
i

ij

p
w i N j M= = =   

and the bias terms:    

         ( ) , 1,...,
2j

N
b j M= =  

2.   For each unknown N-dimensional input vector x, do steps 3 – 4. 

     3.   compute the net input jy  to each unit jY  of second layer (MAXNET): 

                ( ) ( )
1

0 0 ,  ( 1,..., ).
N

j j ij i
i

y b w x j M
=

= + =∑   

 

4. MAXNET iterates to find the best-match exemplar pattern based upon the 

equation: 

                               ( ) ( ) ( )1 1j j j
j i

y t f y t y tε
≠

 
= − − − 

 
∑  

   where f  is the activation function : ( )
,  0

0,  0

x x
f x

x

>
= 

≤
 and  ε   is a small parameter  

1
0

M
ε< <  . In our application we set 

1 1
0.0385

2 M
ε  = = 

 
.  

 

 

6.4   Reduced Input-Dimension Processing 

 

      In this approach we exploit the structure of the lead image profile (projection) along one, 

the most descriptive direction vertical to the lead axis, for extracting meaningful features 

related to displacement measurements. The important component of this classification 

scheme is its feature extraction unit. We propose a complete feature extraction and 

classification approach that consists of three distinct modules. The first module receives the 

lead projection function at its input and utilizes a nonlinear filter based on a high-order neural 
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network (HONN) for feature extraction. Feature values encode the five lead displacements 

(i.e., 0, -3, -6, +3,+6 pixels). The second module implements feature reduction and de-

correlation of the feature space by using the Karhunen-Lοeve transform (KLT). The third 

module comprised by the Bayes classifier serves as a classifier that assigns each feature 

vector to one of the predetermined classes. This pattern classification system is illustrated in 

Figure 6.6, for 5-classes assignment, and is further discussed in the next sections. 

 
  Feature 
Extraction 
------------ 
   HONN 
   Features 
 

  
   Pattern 
  Classifier 
 
     

Lead image  
projection  

   +6 pixels 

+3 pixels 

    0 pixels 

  -6 pixels 

  Feature 
Reduction 
------------ 
    
    KLT 

 -3 pixels 
 

Figure 6.6  Pattern classification for lead image projections 

 

 

6.4.1 High Order Neural Networks (HONNs) 

 

HONNs are fully interconnected single layer networks, containing high order connections of 

sigmoid functions in their neurons [132-136]. If we define as ,x y  its input and output 

respectively, with  and n mx y∈ ∈R R the input-output representation of a HONN is given by: 

                                                      ( )Ty x= W S                                               (6.1) 

where   is a q m×W  matrix of adjustable synaptic weights and ( )xS is a q-dimensional 

vector with elements ( ),  1,2, ,iS x i q= …  of the form 

                                                    ( ) ( )
( )j

i

d i

i j
j I

S x s x
∈

 =  ∏                                 (6.2) 

where ,  1,2, ,iI i q= … are  collections of q not-ordered subsets of  {1,2,…,n} and ( )jd i are 

non-negative integers. In Eqn (6.2) ( )js x  is a monotone increasing, smooth, function, which 

is usually represented by sigmoids of the form:   
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                                          ( ) ( )1 j
j l x c

s x
e

µ
λ

− −
= +

+
                                         (6.3) 

for all j=1,2,…,n. In (6.3) the parameters ,lµ  represent the bound and maximum slope of 

sigmoid curvature whileλ , c are the vertical and horizontal functional shifts, respectively. 

For the HONN model described above, it can be seen [132-136], that there exist integers 

( ),  jq d i  and optimal weight values ̂W such that for any smooth but unknown function 

( )f x  and ( )ˆ0,  ( ) ,  Tf x x x Mε ε≥ − ≤ ∀ ∈W S where nM ⊂ R is a compact region. In other 

words, for sufficient high order terms, there exist optimal weight values ̂W  such that the 

HONN structure ( )ˆ T xW S , can approximate ( )f x to any degree of accuracy, in a compact 

domain. 

 

Remark 1:  Observe that HONNs posses a linear-in-the-weights property. Depending on the 

form of its regressor terms (6.1) may represent various well-known neural network structures 

[137]. 

 

 

6.4.2 HONN Based Feature Extraction   

 
The HONN based feature extraction module receives as input a normalized projection 

function of the tested lead image and updates its weights by stable Lyapunov learning laws as 

to approximate that input function. Prior to entering the input function is linearly transformed 

in the range [0,1], as to avoid the appearance of destabilizing mechanisms caused by purely 

numeric issues, (i.e., large variations on the image projections data). Moreover, for 

uniformity reasons, the rising point of this function is shifted to the origin. Three 

displacement examples reflecting + 3 pixels, -3 pixels, and 0 pixels lead shift are presented in 

Figure 6.7. Notice that the unimodal form of the projection function for a centered lead tends 

to a bimodal structure for increasing lead displacements. This bimodal structure can make the 

distinction of the direction of displacement quite difficult, since the lobes of the projection 

function attributed to lead and pad regions can be indistinguishable. Such problems are 

further discussed along the presentation of results. 

In the following we study the construction of the feature extraction system and we 

rigorously analyze its performance. Let x +∈R be the data point on the projection axis, 
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y +∈R be the projection value of lead image (+R denotes the set of positive real numbers), 

and f represent the actual but unknown projection function. Obviously the projection profile 

is modeled as a function ( )y f x= . Moreover, let ( )ˆ Ty x= W S  be a HONN approximation 

of the actual projection function ( )f x . Due to the one-dimensional structure of the problem, 

the HONN is designed for scalar input/output pairs linked at a higher dimension with a 

weight vectorW .  Define the projection approximation error as 

                                       ( ) ( ) ˆTe f x x y y= − = −W S                                                     (6.4)                    
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                                            (a)                                                                               (b) 
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                                                                                 (c) 
 

Figure 6.7. Original lead images and projection functions for (a) +3 pixels, (b) -3 pixels, and  
(c)  0 pixels lead shift 

 
 

Observe that e is directly measured even though ( ).f  is unknown. It has been shown in 

[137] that the nonlinear adaptive filter 

                                             ( ),  0,  zTz az y x α= − + − > ∈W Sɺ R                              (6.5) 

equipped with the update law 

                                                  ( )  ,   >0z xγ γ= − +W W Sɺ                                         (6.6) 
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guarantees the uniform ultimate boundedness of its output z ∈R  with respect to the 

arbitrarily small set 

                                   

2
2 ˆ21

:
2 2

Z z R z
a

γε ε
α α

 
  = ∈ ≤ + +  

  
 

W
            (6.7) 

as well as the boundedness of the optimal HONN weights ˆ   0x∀ ≥W . In the aforementioned 

relations ,α γ  are design constants and 0ε ≥  is an unknown but small bound on the HONN 

reconstruction error.  

  After convergence of the HONN, the feature vector F is formulated by the vector of 

trained weights ̂W  augmented with the approximation error e. In our approach, we form the 

feature vector ( )F  as 

                                                        

1

2

ˆ

ˆ
ˆ

ˆ N

w

w

e
w

e

 
 
  
 = = 
  
 
  

W
F ⋮                                     (6.8) 

where 

1

2

ˆ

ˆˆ

ˆ N

w

w

w

 
 
 =
 
 
  

W
⋮

 is  the optimal HONN weights vector (of specific dimension N=12) and e 

is the approximation error. This selection allows F to encode all HONN variables that 

characterize the projection function. An obvious feature is the approximation error e. 

Furthermore, since the HONN possesses a linear-in-the-weights property, the existence of a 

unique optimal vector  ̂W  different for each different projection function is guaranteed. 

Thus, the weights vector ̂W  also serves the purpose of a relevant feature.  

 
 
 
6.4.3 Parameters Selection of the HONN Feature Extractor using a Genetic 

Algorithm 
 
A serious drawback in designing of the HONN based feature extraction module is the 

requirement for manually selecting an optimal set of structural parameters of the non-linear 

filter. More precisely, the structural parameters of the HONN feature extractor include: 

• the HONN order 
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• the sigmoid function parameters µ, l, λ, c 

• the parameter a > 0 that appears in the nonlinear adaptive filter (6.5), and  

• the parameter γ > 0 that appears in the weights update law (6.6). 

Selecting all the above parameters through a trial and error procedure is very time 

consuming and requires vast engineering experience. Moreover, the final result (i.e., 

classifier's success rate), may be far from optimal. Obviously, an automated design process 

aiming at optimizing the classifier's decision, will serve as a significant addition to the 

already proposed feature extraction system. 

In order to facilitate the design of the HONN  feature extractor and automate the process 

of parameter selection, we introduce the use of a genetic algorithm (GA) embedded into the 

feature extraction module, as has been proposed in [138]. This approach aims to overcome 

the problems introduced by the nonlinearity in the parameters property, which implies an 

infinite set of different parameter combinations that lead to the same feature space topology. 

The proposed design procedure is illustrated in Figure 6.8. 

 

 

Figure 6.8  The HONN-based feature extraction module parameters selection process. 

 

To enable the feature extraction module parameter selection process, the switch S that 

appears in Figure 6.8 is set to position 1. After the parameters have been determined, the 

switch is set to position 2, to proceed to classifier construction. 

From the above discussion it becomes apparent that the GA plays a key role in the 

parameter selection process. In Subsection 4.1.4 a general introduction to genetic allgorithms 

has been given. In what follows we will describe in more detail the basic ingredients of the 

used  GA in parameters selection of the HONN-based feature extraction process.   

  Genetic 
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In Figure 6.9 we visualize the employed GA in block diagram form. Notice the circular 

topology of the algorithm. Each cycle is called a generation. First, the number of 

chromosomes is specified. This number remains constant for all future generations 

throughout the termination of the genetic process. The chromosomes are real-valued and 

represent the sigmoid function parameters µ, λ, l, c as well as the gains α, γ that appear in 

Eqns (6.5) and (6.6) respectively. Each parameter in the chromosome forms a gene. All genes 

in a chromosome are initialized randomly from values that belong in pre-specified intervals. 

In this way an initial population is established. Each chromosome corresponds to a specific 

HONN structure with unspecified weight values. These weights are determined in the HONN 

training phase that utilizes (6.6).  

 In the sequel, all chromosomes are evaluated with the aid of a properly selected fitness 

function. We aim at highly separable classes in the feature space. Two classes i , j  are called 

highly separable if the following properties hold: 

• 1P .  The intra-distance between any two features in a class, is minimum.  

• 2P .  The inter-distance between any two classes i and j is maximum.  

• 3P .  The overlap of class i and class j is minimum. 

 

The intra-distance measures the compactness of a class. Hence, the area iE   each class 

occupies serves as a logical measure. Notice that the requirement of having minimum intra-

distance becomes significant as the number of classes grows, which further leads to 

improving the generalization of the procedure. To measure the inter-distance, we first 

determine the centers ,  i jc c  of the classes i, j respectively, and then calculate the inter-

distance as the Euclidean distance i jc c− . Satisfaction of 1P , 2P  and 3P   is equivalent of 

having low variance, minimum overlapping classes, whose centers are distant in the feature 

space. 
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Figure 6.9   The proposed genetic algorithm in block diagram form. 
 
 
Let ijv  denote the overlap of class i with class j. Minimizing the fitness function: 

                                      
,  

p

i j
ijk

i j i j
i j

E E
F v

c c≠

  +  = +  −   

∑                                      (6.9) 

where p, k are some positive constants, obviously leads to the simultaneous satisfaction of the 

separability conditions 1P  - 3P ,    thus yielding highly separable classes in the feature space. 

Prior to calculating (6.9), the border of each class should be determined. 

After evaluation, each chromosome is ordered according to its fitness value. A percentage 

(e.g., the top 35%) are selected to serve as the candidate parents, thus forming the mating 

pool, while the rest are disregarded. 

Since the chromosomes are real-valued, real-valued crossover and mutation operations 

are applied. First, a crossover probability cp ∈ [0,1] is selected. Consequently, for each 

gene, a real number cr ∈ [0,1] is randomly selected. If c cr p>  the parents exchange the 

values of their corresponding i-genes. Similar to the crossover, a mutation probability mp ∈ 

[0,1] is first defined. Consequently, a real number mr ∈ [0,1] is randomly selected. If m mr p<  

then the mutation operation is applied to a randomly selected gene of the chromosome. Let v 

be the value of the selected gene. A random perturbation is added on v according to the 

formula: 

   HONN 
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                                                  0.5v v v v rv′ = + ∆ = +                                       (6.10) 

where r ∈ [-0.5, 0.5] is also randomly selected. In this way the real-valued mutation 

operation is performed. 

According to the elitism operation, the best fit chromosome (i.e., the one with the highest 

fitness value) is copied to the next generation. Hence, the search is directed towards the 

currently best solution. Elitism is the last step of our search. In the sequel, a new population 

is established and a new generation begins. The algorithm terminates whenever a 

chromosome is found to possess a fitness value lower than an a priori defined threshold or 

whenever a pre-specified number of generations has been reached. The algorithm termination 

conditions are checked in the specifications verification phase, which is depicted in Figure 

6.9. 

Overall, we select all sructural parameters except HONN order using the GA (guidelines 

for the selection of HONN order are presented in [137] ). The learning parameters of the 

HONN are determined through (6.6). The operational parameters cp , mp  , p and k, as well as 

the stopping criteria (fitness threshold and maximum number of generations), are defined by 

the user through a trial and error procedure. In our case we have selected 0.6cp = ,  

0.3mp = , p = 0.5 and k = 0.2. The GA terminates if the maximum number of 1500 

generations is reached. 
 
 
 
 
6.4.4 Feature Reduction and Classification 
 

   In this research, the KLT is used to de-correlate and reduce the dimensionality of feature 

vectors, disjoint class spaces in the new (reduced) feature space and aid the classifiers in 

performing accurate discrimination. The KL transformation projects the N HONN-weight 

features to the K most important directions. In essence, the KL transform projects feature 

vectors on the directions that best preserve class properties. Two different forms of the KLT 

are studied. In the first only one KL transformation matrix (1 KLT) is created for the entire 

data set, whereas in the second one KLT matrix is created for each class (each displacement). 

Thus, the first approach computes the most significant directions of the entire problem space 

and preserves directions where the data set expresses the largest diversion. In the second 

approach [148], [149] each individual class is represented by its most significant directions. 

For each vector in class i , only its projection on to the most significant directions of class i  
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is preserved for classification. For each class, this approach preserves only the directions that 

best characterize the shape of its boundary and discards the rest. Thus, it encompasses class 

specific characteristics and uses them to better isolate and discriminate classes by avoiding 

class mixing in irrelevant directions. The theoretical background of the multiple KLT 

approach is given in  [148], whereas its application as a general analytic tool is established in 

[149] and is presented in Subsection 4.1.5.2.  

Pattern classification may be modelled using a Bayesian approach, assuming a Gaussian 

distribution of the training set in each class. In our application, a Bayesian-distance classifier 

is used to implement the classifier. Notice that the classifier operates on the feature vectors 

extracted by the preceding HONN network and that any available classification scheme may 

be utilized as a candidate classifier.  

 

6.5   Results 

In this section we present and compare classification results obtained by the two proposed 

approaches. Notice that the classification results obtained from either of the proposed 

approaches are only quantized measurements of lead displacements. We should emphasize 

that the process of Bayesian estimation presented in Chapter 5 can be effectively applied as 

to derive accurate displacement estimates for the entire component from these displacement 

measurements, which are viewed as individual observations from many cites of the 

component (its individual leads). 

 

6.5.1 Classification Results using reduced dynamic-range processing 

 
The reduced dynamic-range approach developed in Section 6.3 is now tested on Monte 

Carlo simulated images from four-sided QFP components. A total of 120 lead samples per 

class of the lead displacement is obtained resulting in totally 1560 samples for the 13 classes. 

We consider the Hamming network trained and tested for 7 and 5 classes. The first case 

involves pixel displacements {-6,-4,-2,0,+2,+4,+6} whereas the second case considers 

classes {-6, -3, 0, +3, +6}. These two cases study the ability of the classifier to discriminate 

classes in the feature space separated by 2 and 3 pixels apart, respectively. We do not 

consider all 13 classes {–6,…, -1, 0, +1,…, +6} or lead displacement per 1 pixel , since all 

these classes are hardly separable in the 13 dimensional feature space defined. Our approach 

is tested on 120 lead samples per type of the lead displacement resulting in totally 840 

samples for the 7-class testing set and the 600 samples for the 5-class testing set 
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correspondingly. The testing process follows a jack-knifing scheme [9], where all but one-

sample feature vectors are used for training and the last one is used for testing. This process 

is repeated for all samples, leaving one out in every cycle. The overall classification rates 

from this jack-knifing process approximate the true classification probabilities of the 

classifier tested. 

Using the jack-knife process we obtain the classification probabilities (%) for the 7-class 

and 5-class feature sets as depicted on Tables 6.2 and 6.3, respectively. Notice that all feature 

vectors are pre-labeled, so that classification statistics are easily computed for the classifier 

under consideration. Each row depicts the actual class of the labeled feature vectors, whereas 

each column indicates the class assigned by the classifier. Thus, each diagonal cell of table 

indicates the classification success rate for the corresponding class, whereas the rest of the 

cells in the row illustrate the misclassification rates. 

 

Table 6.2  Classification probabilities (%) of the Hamming-distance classifier for 7 classes 

-6 pixels 
shift 

-4 pixels 
shift 

-2 pixels 
shift 

0 pixels 
shift 

2 pixels 
shift 

4 pixels 
shift 

6 pixels 
shift 

85.00 14.17 0.83 0.00 0.00 0.00 0.00 

0.00 84.17 15.83 0.00 0.00 0.00 0.00 

0.00 1.67 77.50 20.00 0.00 0.00 0.83 

0.00 0.00 0.00 92.50 0.83 6.67 0.00 

0.00 0.00 0.00 5.00 82.50 12.50 0.00 

0.00 0.00 0.00 0.83 8.33 82.50 8.33 

0.00 0.00 0.00 1.67 3.33 7.50 88.33 

 

Table 6.3  Classification probabilities (%) of the Hamming-distance classifier for 5 classes 

-6 pixels 
shift 

-3 pixels 
shift 

0 pixels 
shift 

3 pixels 
shift 

6 pixels 
shift 

86.67 10.00 3.33 0.00 0.00 

0.00 79.17 20.00 0.00 0.83 

0.00 0.83 95.00 4.17 0.00 

0.83 0.00 5.00 92.50 1.67 

0.00 0.00 1.67 5.00 93.33 

 

These classification results illustrate the ability of the Hamming classifier to separate 

displacement classes. As expected, the results for the 5-classes assignment are more accurate 

than the 7-classes case, where the larger lead-displacement differences between two 

successive classes are also reflected in the feature-vector differences. Nevertheless, due to the 

preserved correlation between AMs of neighboring classes, the discrimination ability is 

limited even in the 5-classes assignment. For instance, a portion of test leads from class {-6} 

is diffused to classes {-3} and {0}. Moreover, the percentage of correct classification differs 
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significantly among classes. The latter problem can be alleviated with more extensive testing, 

but the former is an inherent limitation attributed to dimensionality reduction.   

 

6.5.2 Classification results using reduced input-dimension processing 

Similar to Subsection 6.5.1, we consider the Bayesian distance classifier trained and tested 

for 7 and 5 classes. Again, a total of 840 and 600 sample-leads are used for testing the 

classifier on seven and five classes, respectively. To approximate the unknown projection 

function the following HONN structure is used: 

          ( ) ( ) ( )
3 8 12

4 ( 4) ( 8)
1 4 2 3 4

1 5 9

( ) ( )T i i i
i i i

i i i

y x w s x w s x w s x w s x− −

= = =

= = + + +∑ ∑ ∑W S                   (6.11) 

with  

1 35.703( 0.076)

0.9571
( ) 0.2245

1 x
s x

e− −
= +

+
,        2 0.3598( 1.488)

0.3838
( ) 0.2607

1 x
s x

e− −
= −

+
 

3 22.4438( 0.7927)

0.9625
( ) 0.5625

1 x
s x

e− −
= +

+
,      4 51.468( 0.3287)

1.2906
( ) 0.3572

1 x
s x

e− −
= −

+
  . 

 

The HONN weights are updated according to: 

                       ( )10.000534  , 1,2,3i
i iw w zs x i= − + =ɺ  

                       ( )4
4 4 20.000756w w zs x= − +ɺ  

                       ( 4)
30.000825   , 5,6,7,8i

i iw w zs i−= − + =ɺ  

                       ( 8)
40.000407  ,  , 9,10,11,12i

i iw w zs i−= − =ɺ  .              

The parameter α  that appears in (6.7) is fixed to 8.0913α = .  

The aforementioned in Subsection 6.4.3 genetic algorithm is used to estimate off-line the 

optimal structural parameters of the non-linear filter except HONN order.  

For the displacement classification task, the Bayesian classifier is implemented that 

computes the distance from an unknown feature vector x  to the sample mean vector m i  of 

each class and assigns the pattern to the class of minimum distance. Thus, x  is assigned to 

class ωi  if D Di j< , for all j i≠ . The a priori class probabilities are set to 1/7 and 1/5 for 

the seven and five-class assignments, respectively. The KL transform is used to decorrelate 

the feature vectors by taking the projections of the N-dimensional HONN features to their K 

most important directions. In this study, the original dimension of N=13 is only reduced to 

K=11, signifying that the feature extraction process developed yields almost uncorrelated 

features.  
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The classification process is repeated for 840 and 600 cycles for the 7 and 5 classes, 

respectively, by leaving one test sample per cycle out of training. The approach using 1-KLT 

matrix utilises the 839×13-feature matrix to derive a single 13×11 transform-matrix for the 

entire training set. The testing vector is projected to the reduced feature space by this KLT 

matrix and classified according to the minimum distance scheme. In each cycle the jack-

knifing process computes the corresponding KLT matrix, trains the classifier with 839 

vectors and tests it with the feature vector left out of training. Alternatively, the classification 

approach using multiple KLT matrices derives a single transform matrix for each class based 

on the corresponding training set. Overall, within each cycle it derives 7 and 5 different KLT 

matrices for the seven and five class assignment, respectively. These matrices are then used 

to train the Bayesian classifier and derive the first and second order stochastic parameters 

(mean vector and covariance matrix) of each class. Subsequently the testing vector (within 

each cycle) is projected to all individual KLT matrices so that its distance measure from each 

particular class can be computed. The testing vector is classified to the class of the shortest 

distance. In the seven-class problem, for example, the testing vector is multiplied by 7 KLT 

class-matrices resulting in seven 1×11 vectors ,  1,...,7i i =x , which are then used as class-

projected testing vectors  (one specifically for each class) in the classifier. The initial feature 

vector is assigned to the class i  based on the minimum class-specific distance, i.e. if 

( ) ( ), ,    1,...,7 ,i i j jD D j j i< ∀ = ≠x m x m .  

The probabilities of classification resulting from the jack-knife process are illustrated in 

Tables 6.4 to 6.7. More specifically, Tables 6.4 and 6.5 present the probabilities of the 

Bayesian-distance classifier for the 7-class case using 1 and 7 KLT matrices, respectively. 

The corresponding probabilities for the 5-class case are presented in Tables 6.6 and 6.7, 

respectively. 

 

 

   Table 6.4  Classification probabilities (%) of the Bayesian classifier on 7 classes (1 KLT matrix) 

-6 pixels 
shift 

-4 pixels 
shift 

-2 pixels 
shift 

0 pixels 
shift 

2 pixels 
shift 

4 pixels 
shift 

6 pixels 
shift 

85.83 12.14 2.03 0.00 0.00 0.00 0.00 

11.25 67.83 16.13 3.07 1.23 0.00 0.49 

0.26 8.72 80.17 10.21 0.64 0.00 0.00 

0.00 11.31 0.89 65.64 18.92 3.08 0.16 

1.12 0.00 0.00 16.04 73.17 4.60 5.07 

0.00 0.00 0.00 3.03 4.26 90.83 1.88 

1.54 0.00 0.78 2.01 1.78 1.49 92.4 
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Table 6.5   Classification probabilities (%) of the Bayesian classifier on 7 classes (7 KLT matrices) 

-6 pixels 
shift 

-4 pixels 
shift  

-2 pixels 
shift 

0 pixels 
shift 

2 pixels 
shift 

4 pixels 
shift 

6 pixels 
shift 

76.70 12.64 5.91 2.54 0.00 1.01 1.20 

12.47 80.83 4.43 1.05 0.00 1.22 0.00 

0.00 5.29 86.07 8.43 0.21 0.00 0.00 

8.55 1.24 3.61 68.64 16.13 0.00 1.83 

0.27 0.00 0.00 12.24 83.30 3.96 0.23 

0.00 0.00 0.00 6.02 0.37 90.00 3.61 

2.01 0.00 0.00 1.08 0.00 3.81 93.10 

 

 

Table 6.6  Classification probabilities (%) of the Bayesian classifier on 5 classes (1 KLT matrix) 

-6 pixels 
shift 

-3 pixels 
shift 

0 pixels 
shift 

3 pixels 
shift 

6 pixels 
shift 

88.30 7.67 4.03 0.00 0.00 

3.05 91.60 5.35 0.00 0.00 

8.65 0.00 82.40 6.41 2.54 

0.00 0.00 3.42 90.50 6.08 

0.00 0.73 4.82 3.07 91.38 

 

 

Table 6.7 Classification  probabilities (%) of the Bayesian classifier on 5 classes (5 KLT matrices) 
 
-6 pixels 

shift 
-3 pixels 

shift 
0 pixels 
shift 

3 pixels 
shift 

6 pixels 
shift 

92.50 3.69 2.81 0.62 0.38 

0.86 93.33 5.81 0.00 0.00 

4.27 2.98 86.70 6.05 0.00 

0.00 0.00 4.67 93.33 2.00 

2.37 0.00 0.00 0.00 97.63 

 

From the above classification results we conclude that the multiple KL approach is able to 

discriminate classes better that the single KL projection. Moreover, as expected the 

classification results for the 5-classes assignment are more accurate than these for the 7-

classes problem. The limitations due to information reduction are again clear and are 

attributed to similarities of the projection functions. In this case, the direction of 

displacement can be difficult. Notice for instance the classification of samples with 

displacement +6 in Table 6.5, which distributes samples even to the class of –6-pixels 

displacement. The effects are more evident in the 0-displacement class, whose samples are 

classified to almost the entire range of values. 

 



CHAPTER 6                     DATA-SPACE REDUCTION USING TOPOLOGICAL AND PROJECTION FEATURES FOR COMPONENT  

 

170 
 
 
 

6.5.3 Comparison of results 
 

Comparing the results of the two proposed approaches based on approximate processing 

we can easily derive that none of them has an overall superior performance over the other. 

The information loss and the associated effects are different in the two approaches. In 

general, the reduced dynamic-range processing (topological features) is more effective in 

discriminating 0-displacement features, whereas the reduced input-dimension processing 

(projection features) is more efficient in classifying lead features reflecting actual 

displacements. Notice that the complementary information processed by the two algorithms 

can be efficiently merged within an information fusion scheme, as the  proposed in Chapter 8 

and [48], to drastically improve the classification probabilities for all classes under 

consideration. In order to further compare the results of conventional and approximate 

processing, we copy here the classification probabilities obtained in Chapter 5 for lead 

features extracted from the original grey-scale images (Table 6.8). It is evident that the 

results of any of the approximate processing approaches are slightly inferior to the results 

obtained from full-information images.  

 
 
Table 6.8  Bayesian Classification Probabilities (%) of lead features extracted at pixel level  
                  [from table 5.6.b of Chapter 5] 

 
-6 pixels 

shift 
-3 pixels 

shift 
0 pixels 
shift 

+3 pixels 
shift 

+6 pixels 
shift 

97.75 2.24 0.00 0.00 0.00 
2.25 94.35 3.10 0.00 0.28 
0.00 2.82 94.35 1.69 1.12 
0.00 0.00 2.57 93.14 4.28 
0.58 0.00 0.00 0.87 98.25 

 
 

With respect to time requirements, our feature extraction and classification approaches 

achieve the following performance using a fast Intel Core 2 Duo workstation. The pixel-

based approach (optical features), used in Chapter 5,  takes about 0.34 sec for processing an 

entire QFP chip of 120 leads. The reduced dynamic-range approach (topological features) 

requires 0.15 sec, less than half of the computation time of the conventional approach. 

Finally, the reduced input-dimension processing (projection features) requires about 0.22 

sec for the entire QFP-120 component. Owing to the problem formulation, special attention 

has been given to the operation of the HONN-based feature extraction module, where a slow 

convergence of weights might decelerate the entire algorithm. Since the concatenation of 
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leads over their pads is similar for the entire component, the corresponding projection 

functions to be approximated are all of the same form (for a single component). Thus, the 

weights of each lead can be initialized at the converged weights of the previously considered 

lead, highly boosting the performance of the HONN network by avoiding local minima and 

drastically accelerating its convergence. So, both data-space reduction algorithms achieve 

significant saving in computational time over the conventional pixel-based approach. 

In comparison with existing industrial systems for PCB inspection, the proposed 

approaches can achieve better throughputs, even though it considers each lead separately. 

The results of our survey of industrial systems are outlined on Table 6.9. The performance 

data for commercial products have been obtained through the vendors’ online available 

product datasheets. In our case, the speed of algorithms was mapped to throughput (cm2/sec) 

by simulating performance on a 120-lead QFP component of roughly 3.3×3.3cm surface at a 

sampling resolution of 20 µm/pixel. The speed of each algorithm was estimated with respect 

to the chip’s total lead area. The reported times refer to processing alone, without including 

the board placement/ adjustment times required by the mechanical operation of the 

production line. 

 

                                        Table 6.9  Inspection speed comparison 

System speed 

(cm2/sec) 

resolution 

(µm/pixel) 

optical feature 32.4 20 

reduced dyn range 72.6 20 

reduced imput dim 49.1 20 

Agilent Medalist SJ50 3 38.7 16 

Orbotech Symbion P36 22-60 20 

Viscom S3088 20-40 15 

 

 

 

Overall, we may conclude that high abstraction features used in approximate processing 

are generally less descriptive than pixel-based features for classification purposes. With 

respect, however to computational complexity, the approximate processing can yield 

appreciable reduction at the cost of slightly inferior results. 
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Chapter 7 

 
Combination of Multiple Classifiers for Post 
Placement Quality Inspection of Components: A 
Comparative Study 

 

 

7.1     Introduction 

One of the most exciting advances in pattern recognition over the last decade is 

represented by multiple classifier fusion. It addresses a serious drawback of the 

classical approach to designing a pattern recognition system and focuses on finding 

the best classifier by fusing complementary discriminatory information that primary 

classifiers may encapsulate is not tapped. Multiple expert fusion aims to make use of 

many different designs to improve the classification performance. 

The combination of multiple classifiers has been intensively studied with the aim 

of overcoming the limitations of primary classifiers [20], [21], [186], [187]. 

Classifiers differing in feature representation, architecture, learning algorithm, or 

training data exhibit complementary classification behavior and the fusion of their 

decisions can yield higher performance than the best individual classifier. The 

performance of a multiple classifier system relies on both the complementariness of 

the participating classifiers and the combination method. Hence, the research efforts 

in this field have focused on either the generation of complementary classifiers or the 

combination of a given set of classifiers. 

A starting point for grouping ensemble classifier methods can be sought in the 

ways of building the ensemble. The diagram in Figure 7.1 illustrates four approaches 

aiming at building ensembles of diverse classifiers [21]. 

Our work presented in this chapter is mainly focused on Approach A and contain 

details on different ways of combining the classifier decisions. The base classifiers 

1, , KC C…  (Approach B), can be any of the models discussed in Chapter 4 along with 

classifiers not discussed in this Ph.D. thesis. Many ensemble paradigms employ the 

same classification model, for example, a decision tree and a neural network, but there 
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is not evidence that this strategy is better than using different models [21]. The design 

of the base classifiers for the ensemble is partly specified within the bagging and 

boosting models [21] while designing the combiner is not coupled with a specific 

base classifier. At feature level (Approach C) different feature subsets ( ) ( ) ( )1 2, ,..., Kx x x  

(i.e., distinct pattern representations) can be used for the primary classifiers. This 

topic is included in the work presented in Chapter 8. Finally, the data sets can be 

modified so that each classifier in the ensemble is trained on its own data set 

(Approach D). This approach has proved to be extremely successful owing to the 

bagging and boosting methods [21]. 

 

Figure  7.1  Approaches to building classifier ensembles 

 

There are generally two types of combination: classifier selection and classifier 

fusion [21], [188]. The presumption in classifier selection is that each classifier is “an 

expert” in some local area of the feature space. Classifier fusion assumes that all 

classifiers are trained over the entire feature space and are, thereby, considered as 

competitive rather than complementary. On the other hand, based on a given classifier 

set, the combination methods can be categorized according to the level of the 

Combiner 

Data set 

x 

1C  2C  

)1(x  

)2(x
)(Kx

KC
…

A. Combination level: 
     Design different 
     combiners.  

B. Classifier level:  
     Use different 
     base classifiers.  

D. Data level: 
     Use different 
     data subsets.  

C. Feature level: 
     Use different 
     feature subsets. 
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individual classifiers outputs: abstract level (class label), rank level ( rank order), and 

measurement level (class scores) [186]. The abstract level classifiers output only the 

class label, whereas the rank level classifiers output the rank for each class. The 

measurement level classifiers assign each class a measurement value to indicate the 

possibility that the input pattern pertains to the class. In principle, the class scores 

rovide richer information than the class label and the rank order and should give 

higher combination performance.  

 An important issue in combining multiple classifiers is the use of different 

feature sets or different training sets, randomly selected [187]. In addition, from the 

point of view of the input pattern representation, there are basically two classifier 

combination scenarios [187]. In the first scenario, all the classifiers use the same 

represantation of the input pattern (identical pattern representation). In the second 

scenario, each classifier uses its own representation of the input pattern (distinct 

pattern representation) [187], [189].  In this case, the measurements extracted from 

the pattern are unique to each classifier, i.e, each individual classifier uses a different 

set of features. 

A variety of schemes have been proposed for combining multiple classifiers. The 

most often used classifiers fusion approaches include the majority voting [186], [190], 

[191]; various rank-ordered rules, such as the sum rule (averaging), product-rule, 

max-rule, min-rule, median rule [20], [187]; the weighted combination (weighted 

averaging) [21], [192]; the Borda count [193], [195]; the Bayesian approach (naïve 

Bayes combination) [186], [194-195];  the Dempster–Shafer (D-S) theory of evidence 

[186], [196], [198-200];  the behavior–knowledge space method (BKS) [201-202]; the 

fuzzy integral [15], [169], [192], [209]; fuzzy templates [203]; decision templates 

[204]; the probabilistic schemes [20], [187], [189]; combination through order 

statistics [205], [206];  combination by a neural network [169], [207]. Overall a  

comparative table of various classifier combination strategies based on a few 

properties can be found in [208]. 

The objective of the presented work in this chapter is to test and compare multiple 

classifier fusion methods for improving the classification of the individual leads in 

component quality inspection.  This work has been accepted for publication in 

[48]. Instead of using single statistical or neural classifiers as in the previous Chapters 

5 and 6 we implement multi-modular classification systems that combine decisions 

from statistical and neural modules. Combining the power of the individual classifiers 
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through multimodular architectures we improve the classification results and enhance 

the robustness of the overall classification system. We propose four representative 

schemes for soft fusion of multiple classifiers. The first approach uses the majority 

voting principle for fusion of multiple experts. The second scheme performs 

combination by using the naïve Bayes method. In the third approach, the outputs of 

multiple classifiers are combined using Dempster – Shafer theory of evidence. The 

last scheme involves the calculation of fuzzy integrals. All fusion methods, using 

identical pattern representations are considered. The features for classification are 

obtained directly from the lead images as has been presented in Subsection 4.2.6.4 

(we use optical features as identical pattern representations). Following the process of 

quantized classification of individual leads, we can further proceed with the Bayesian 

estimation approach developed in Chapter 5 to accurately estimate component 

displacements based on the measurements from many individual leads, i.e. the 

quantized lead displacements.  

 

7.2  Experimental  Set up and Feature Extraction Process 
 

In this research we use the experimental procedure presented in Subsection 5.1.2 

of Chapter 5. So, for the purpose of presenting our results, QFP (Quad Flat Pack) 

SMD components with 120 leads (30 leads per side) are employed. The feature 

extraction process from lead images is identical to developed in Subsection 4.2.6.4. 

As in Chapters 5 and 6, we consider  again quantized displacement estimations 

organized at multiples of a pixel displacement. The displacement classes considered 

are {-6, -3, 0, +3, +6} and {-6, -4, -2, 0, +2, +4, +6}, in pixel displacements over the 

lead’s central position.  

 

7.3    Multiple classifier combination methods 

7.3.1 Formulation of the combined classifier problem 

In this research, we assume that a small set of trained classifiers is available and 

we are interested in combining their outputs aiming at the highest possible accuracy. 

Let  { }1 2, , , KC C C C= …  be a set of classifiers and { }1 2, , , Mω ω ωΩ = … be a set of 

class labels. Each classifier gets as input a feature vector n∈x R . The classifier output 
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is an M- dimensional vector ( ),1 ,( ) [ , , ( )]T
i i i MC c c=x x x… , where , ( )i jc x   is the degree 

of “support” given by classifier  ,  1, ,iC i K= …  to the hypothesis that x    comes from 

class ,  1, ,j j Mω = … . Without loss of generality we can restrict , ( )i jc x within the 

interval[ ]0, 1  and call them “soft labels”, with 0 meaning “no support” and 1 

implying “full support”, 1, ,  1,i K j M= =… …  [202]. Most often , ( )i jc x is an estimate 

of the posterior probability( | )iP ω x . The process of combining classifiers attempts to 

combine the K classifier outputs ( ) ( )1 , , KC Cx x…  as to obtain a soft label for x  , 

denoted  ( ) ( ) ( )1 , ,
T

MC µ µ=   x x x… , where ( )jµ x denotes the overall degree of 

support for jω  given by the ensemble classifier. 

If a crisp class label of  x   is needed, we can use the maximum membership rule, 

which assigns x  to class sω  iff,  

 

( ) ( ), ,   1, ,i s i jc c j M≥ ∀ =x x …   for individual crisp labels and                  (7.1) 

( ) ( ) ,  1, ,s l l Mµ µ≥ ∀ =x x …  for the final crisp label                                (7.2) 

The minimum-error classifier is recovered from Eqn (7.2) 

when ( ) ( )|i iPµ ω=x x . In the following we introduce the four combination methods 

already mentioned in Section 7.1. 

 

7.3.2 Majority Voting 

Majority voting is a popular and easy to implement method [21], [184-186], 

[191]. The primary classifiers “vote” with their class labels and the class label with 

most votes is assigned to x . Let ( ),1 ,( ) [ , ( )]T
i i i MC c c=x x x… [ ] 0, 1

M
∈  be the output 

of classifier iC  for input x . To assign a class vote to classifieriC , we harden the 

classification decision by the maximum membership formula 

                         ( ) ( ){ }k ,choose class   max ,i k
j

C i jcω ⇔ =x x                             (7.3) 
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By this rule, we can formulate the hardened classification decision of each iC  as 

the binary vector h
iC  ( h stands for “hardened”) containing 1 at position k and 0 

elsewhere, i.e.,  

                                 ( ),

 1,    if  

 0,   otherwise
h
i j

j k
c

=
= 


x                                                   (7.4) 

The majority vote aggregation majF  is given by 

           ( ) ( ) ( ) ( )maj 1 , , ,     {0,1}
T

M jF C c c c≡ = ∈  x x x x…                               (7.5) 

and  

  

                 ( )
( ) ( ), ,

=1 1

1,  if  max

0,  otherwise

x x
x

K K
h h
i j i j

ji ij

c c
c =


=

= 



∑ ∑
                                             (7.6) 

 

The result is a binary vector with element 1 corresponding to the most supported 

class, and 0 elsewhere. In an equivalent formulation, the class label is assigned if the 

majority of K classifiers, i.e., at least K/2 + 1 classifiers, vote for that class. More 

than one element in Eqn (7.6) with value 1 means a tie. To find a single class label 

for x , ties are settled randomly. 

 

 

7.3.3   Naïve Bayes Combination 

Whereas the voting method only considers the result of each classifier, the 

approach of Bayesian formalism [21], [195] considers the error of each classifier. The 

“naïve Bayes” scheme assumes that the classifiers are mutually independent given a 

class label (conditional independence).  

Consider the crisp class labels obtained from the K classifiers and let 1, , KL L…  be 

the class labels assigned to x   by classifiers ( ) ( )1 , , KC Cx x… , respectively. Thus, for 

any input  n∈x R  to be classified, the K classifier outputs define a vector 

1[ , , ]  K
KL L= ∈ ΩL …  . Denote by ( )jP L  the probability that classifier jC  labels x   
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in class   jL ∈ Ω . The conditional independence allows for the following 

representation 

     ( ) ( ) ( )1
1

| , , | |
K

k K k i k
i

P P L L P Lω ω ω
=

= = ∏L …                                           (7.7) 

Then, the posterior probability needed to label x   is given by 

 

      

( ) ( ) ( )
( )

( ) ( )

( )
1

|
|

|
              = ,      1, ,

k k
k

K

k i k
i

P P
P

P

P P L
k M

P

ω ω
ω

ω ω
=

= =

=
∏

L
L

L

L
…

                                              (7.8) 

Since the denominator does not depend on kω  and can be ignored, the support for 

class kω  by the set of classifiers can be computed as 

 

          ( ) ( ) ( )
1

 |
K

k k i k
i

P P Lµ ω ω
=

∝ ∏x                                                                        (7.9) 

The practical implementation of the naïve Bayes fusion on a data set  S with 

cardinality N is explained below. Assuming  M classes labeled 1 through M, the error 

for the ith classifier, 1, ,i K= … , can be represented by a two-dimensional confusion 

matrix as follows:  

                            
1,1 1,

,1 ,

i i
M

i

i i
M M M

a a

CM

a a

 
 

=  
 
 

…

⋮ ⋱ ⋮

⋯

                                                          (7.10) 

 

For each classifieriC , an M M×  confusion matrix iCM  is calculated by 

applying  iC  to the training data set S. The (k,L) th entry of this matrix, ,
i
k La  is the 

number of elements of the data set whose true class label was kω  and were assigned  

to class Lω  by iC . By LN  we denote the total number of elements of S that truly 

belong to class   Lω . Taking   , /
i

i
k L ka N   as an estimate of the probability( )|i kP L ω , 
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and /kN N  as an estimate of the prior probability of class    kω , Eqn (7.9) is 

equivalently written as: 

                        ( ) ,1
1

1
 

i

K
i

k k LK
ik

a
N

µ
−

=

∝ ∏x                                                       (7.11)              

 

7.3.4 Multi-Classifier Combination based on Fuzzy Integral 

Fuzzy integral has been reported to give excellent results as a classifier combiner 

[15],[21]. The philosophy of the fuzzy integral combiner is to measure the “strength” 

not only for each classifier alone but also for all the subsets of classifiers. Every 

subset of classifiers has a measure of strength that expresses how good this group of 

experts is for the given input x . The ensemble support for classjω , ( )jµ x , is 

obtained from the support values of individual classifiers 

( ), , 1, ,  , 1, ,i jc i K j M= =x … … , but also taking into account the competences of the 

groups of the various subsets of experts. The measure of strength of the subsets is 

expressed through a fuzzy measure [15], [39-41] denoted by g. Thus, to get ( )jµ x  we 

“fuse” the support values ( ), , 1, ,  , 1, ,i jc i K j M= =x … … and g via fuzzy integral 

[192], [209].  

 

7.3.4.1 Mathematical Background on fuzzy measures and fuzzy integrals 

Stemming from the concept of fuzzy sets [41], the theory of fuzzy measures and 

fuzzy integrals was first introduced by Sugeno [15], [192], [209]. In fuzzy sets, a 

value ( )A xµ  is assigned to each element x of the universal set X signifying its degree 

of membership to a particular set A with non-sharp (fuzzy) boundaries.  A fuzzy 

measure is used to express an evaluation of a concept that is heavily subject to human 

perception. In mathematical terms, a fuzzy measure is a set function with 

monotonicity (often, but not always being additivity).  Thus, a fuzzy measure assigns 

a value in the unit interval [0,1] to each crisp subset A of the universal set X 

signifiying the degree of evidence or belief that a particular element x belongs to this 

crisp subset. Consider, for instance, a group of people X. For fuzzy sets, the age of a 

person x ∈ X is known, so that we consider x to be “Old” with a membership grade 
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( )A xµ  , where A is a fuzzy set of “Old” people. For fuzzy mesures, on the other hand, 

the age of the person x ∈ X is unknown but there is an indication (possibly by looking 

at that person) that (s)he belongs to the crisp subset A consisting of people with age 

50 years old, with a measure of ( )xg A . Thus, in fuzzy sets a value is assigned to each 

element of the universal set signifying its degree of membership to a particular set 

with an unsharp boundary, while in fuzzy measures a value is assigned to crisp subset 

of the universal set signifying the degree of evidence or belief that a particular 

element belongs in the subset. In this form, fuzzy sets are used to address vagueness 

associated with the difficulty of making sharp or precise distinctions of objects in the 

world, whereas fuzzy measures are used to solve ambiguity associated with making a 

choice between two or more alternatives.  

Based on the notion of a fuzzy measure, a fuzzy integral is a function with 

monotonicity which is used for aggregating information from multiple sources with 

respect to a fuzzy measure. 

 

Sugeno fuzzy measure   

Let X be the universe of discourse and 2X  be the power set of X  (i.e all crisp 

subsets A in X) . Then a set function [ ]:  2  0,1Xg → , which assigns a number in the 

unit interval [0, 1] to each crisp subset of X, is defined as a fuzzy measure if it 

satisfies the following three axioms:  

• Axiom 1 (Boundary conditions): ( ) ( )0,  1g g X∅ = = . 

• Axiom 2 (Monotonicity): For every pair of crisp sets  

( ) ( ), 2 ,  if ,  then XA B A B g A g B∈ ⊆ ≤ . 

• Axiom 3 (Continuity): For every sequence ( )2 |X
iA i +∈ ∈Z of measurable 

subsets of X , if either 1 2 1 2 or A A A A⊆ ⊆ ⊇ ⊇⋯ ⋯ (i.e. , the sequence is 

monotonic), then ( )lim limi i
i i

g A g A
→∞ →∞

 =  
 

, where +
Z   is the set of all positive 

integers. 

For a crisp subset 2XA∈ , ( )g A  represents the degree of evidence, or our belief, 

that a given element x X∈ (which has not been previously located in any crisp subset 
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of X ) belongs to the crisp subset A. In general, the fuzzy measure of the union of two 

disjoint subsets cannot be directly computed from the fuzzy measures of the subsets. 

For this purpose, Sugeno [41], [209] introduced the so called, λ -fuzzy measure. The 

motivation for defining this measure is that the specification of a fuzzy measure g 

requires the knowledge of ( )g A for all subsets A in X. In order to reduce the quantity 

of primary data, an extra axiom can be added to Axioms 1-3 of fuzzy measures, which 

allows the calculation of ( )g A  from { }( ){ }|g x x A∈ . The λ -fuzzy measure allows 

the computation of the fuzzy measure of the union of two disjoint subsets directly 

from the fuzzy measures of the subsets. Sugeno proposed the decomposableλ -fuzzy 

measure, satisfying the following additional Axiom 4 known as the λ -rule: 

• Axiom 4:       
( ) ( ) ( ) ( ) ( ) ,

,  and ,  with >-1

g A B g A g B g A g B

A B X A B

λ

λ

∪ = + +

⊂ ∩ = ∅
              

When 0λ = , the λ - fuzzy measure becomes a probability measure [209]. In general, 

the value of  λ  can be determined from the properties of the λ -fuzzy measure. 

Let { }1 2, , , KX x x x= … be a finite set (a set of committee members in our case). If 

the fuzzy density of the λ -fuzzy measure is defined as a function 

[ ] { }( ): 0,1  such that ,  1, ,i i i ig x X g g x i K∈ → = = … , then the λ -fuzzy measure of X  

can be obtained in a closed form as [209] : 

           ( )
1 2

1 2 1

1
1

1 2
1 1 1

...
K K K

K
i i i K

i i i i

g X g g g g g gλ λ
−

−

= = = +

= + + +∑ ∑ ∑ ⋯                            (7.12) 

If  0λ ≠ , (7.12) can be rewritten as  

           ( ) ( )
1

1
1 1

K

i
i

g X gλ
λ =

 
= + − 

 
∏                                                                 (7.13) 

If  ( ) 1g X = , the constant λ  can be determined by solving the folowing equation: 

                        ( )
1

1 1
K

i
i

gλ λ
=

+ = +∏                                                                  (7.14) 

It has been prooved [209] that for a fixed set of fuzzy densities 

' s,  1,..., ,  0 1i ig i K g= < < ,  there exists a unique root of 1 and 0λ λ> − ≠  of Eqn 

(7.14). Also from Eqn (7.14) it can be seen that if the values of  ig are known, then λ  

can be readily computed. A possible interpretation of a fuzzy density, ig , can be 
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given by the grade of importance, or the degree of belief in the single attribute ix , for 

the overall evaluation of the system.  

When g is the λ -fuzzy measure, the values of( )ig A , { },  and ,...,i i i KA X A x x⊂ = , 

can be computed recursively as follows: 

                            ( ) { }( )1 1 1 ,g A g x g= =                                                              (7.15) 

      ( ) ( ) ( )1 1 ,  for 2i i i i ig A g g A g g A i Kλ− −= + + ≤ ≤                                       (7.16) 

Choquet integral 

Let g be a fuzzy measure on X. The discrete Choquet integral Cg(.) of a function 

:f X +→ R  with respect to g is defined as: 

                 ( ) ( ) ( ) ( ) ( )1 1
1

, ,
K

g K i i i
i

C f x f x f x f x g A−
=

= −      ∑… ,                   (7.17) 

where indices i  have been permuted so that 

( ) ( ) { } ( )1 00 1 ,  , ,  and 0K i i Kf x f x A x x f x≤ ≤ ≤ ≤ = =… … . 

There are numerus interpretations of the meaning of fuzzy integrals. A fuzzy 

integral can be understood as a fuzzy expectation [209], the maximal grade of 

aggrement between two opposite tendencies [209], or the maximal grade of 

aggreement between the objective evidence and the expectation [209]. In this work, a 

fuzzy integral is considered as a maximum degree of belief (for a class or an object) 

obtained from the fusion of several objective evidences, where the respective 

importance of multiple attributes is subject to fuzzy measures.  

 

7.3.4.2 Multi-classifier Fusion by Choquet fuzzy integral 

We adopt Sugeno’s λ -fuzzy measure and assign the initial fuzzy 

densities  , 1, ,ig i K= … , as the degrees of importance of classifiers, 1, ,iC i K= … , 

based on their performance on the testing data. For each tested feature vector x, let 

1, ,, ,j K jc c…  be the support from classifiers 1, , KC C…  for class jω , respectively, 

obtained from the confusion matrices ,  1, ,iCM i K= …  of classifiers iC  ,  1, ,i K= … . 

For every class jω , the overall degree of support is computed as follows. We first 

assign the initial fuzzy densities  , 1, ,ig i K= … : 



CHAPTER 7                 COMBINATION OF MULTIPLE CLASSIFIERS FOR POST PLACEMENT QUALITY INSPECTION 

 183 
 

                                          , ,  1, ,i i jg c i K= = …                                               (7.18) 

The value of λ  needed for the calculation and integration of the fuzzy measure 

g(.) is obtained as the unique real root greater than –1 of Eq. (7.14). Once 1, , Kg g…  

are set and λ  is found, the computation of the fuzzy integral for classifier fusion for 

class jω  proceeds with the following algorithm: 

a. For a givenx , sort the support values ( ) ( ) ( )1, 2, ,, , ,j j K jc c cx x x… , for class 

jω ,  to obtain ( ) ( ) ( )
1 2, , ,, , ,

Ki j i j i jc c cx x x… , with ( )
1 ,i jc x  being the highest 

degree of support, and ( ),Ki jc x  the lowest one. 

b. Arrange the fuzzy densities correspondingly, i.e., 
1
, ,

Ki ig g…  and set   

                                             ( )
1

1 ig g=  

c. For k classifier combinations, 2 to k K= , calculate recursively the λ - 

fuzzy measures:    . 

                      ( ) ( ) ( )1 1
k ki ig k g g k g g kλ= + − + −  

d. Calculate the overall degree of support for class jω  by the Choquet fuzzy 

integral:           

             ( ) ( ) ( ) ( ) ( )
1 1, , ,

2

1
k k

K

j i j i j i j
k

c c c g kµ
−

=

 = + − − ∑x x x x  

 

The above algorithm is repeated for all classes , 1, ,j j Mω = … . The final output 

class for the combined classifier is selected as the one with the highest integrated 

value, i.e. as in Eqn (7.2).  

The support for ( ),  j jω µ x , can be thought of as a compromise between the 

competence (represented by the fuzzy measure g) and the evidence (repesented by the 

support values ( ) ( ) ( )1, 2, ,, , ,j j K jc c cx x x… ). Notice that the fuzzy measure vector 

( )[ 1 , , ( )]Tg g K… might be different for each class and is specific for the current vector 

x. 
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7.3.5 Multiclassifier combination based on Dempster – Shafer theory of 
evidence 

 

The Dempster – Shafer theory of evidence [41], [185-186], [196-197] also known 

as the theory of belief functions, is a generalization of the Bayesian theory for 

subjective probability. This theory is more flexible than Bayesian when our 

knowledge is incomplete and we have to deal with uncertainty and ignorance. 

Whereas the Bayesian theory requires the assignment of probabilities for each 

question of interest, belief functions allow us to assign degrees of belief for one 

question based on probabilities for a related question. These degrees of belief may or 

may not have the mathematical properties of probabilities; how much they differ from 

probabilities will depend on how closely the two questions are related.  

 

7.3.5.1 Mathematical Background on Dempster – Shafer theory of evidence 

In this section we introduce the basic concepts of the Dempster – Shafer (D-S) theory 

of evidence [41], [186], [196],   

Let Θ be a set of mutually excaustive and exlusive atomic hypotheses, 

{ }1, , Mθ θΘ = … , referred to as the frame of discernment. A subset 

{ }1
, ,

qi iA θ θ= ⊂ Θ…  represents a hypothesis denoting the disjunction 
1 qi iθ θ∪ ∪… . 

Each element iθ ⊂ Θ  corresponds to a one-element subset { }iθ , called a singleton. 

Let 2Θ  denote the power set of Θ , i.e., the set of all possible subsets of Θ , so that 

each subset A ⊂ Θ  ∈ 2Θ .  

The D-S theory uses a numeric value in the interval [0, 1] inclusive to indicate 

belief in a hypothesis (subset) A ⊂ Θ based on the occurrence of an evidence e. This 

value, conventionally denoted by Bel(A), indicates the degree to which the evidence e 

supports the hypothesis A. The value of Bel(A) is calculated from another function 

called basic probability assignment (bpa), which represents the individual impact of 

each evidence on the subsets of Θ . A bpa, denoted m(.), is a generalization of a 

probability density function. It assigns values in [0, 1] to each and every element of 

2Θ  (i.e., each subset of Θ , instead of each element of Θ as in probability theory) such 

that the numeric values sum up to 1.  

A function m is called a basic probability assignment if:  
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               [ ] ( ) ( ): 2 0,1 ,  0,  and 1
A

m m m AΘ

⊆Θ

→ ∅ = =∑                                   (7.19) 

The quantity ( ) [ ]0,1 ,  2m A A Θ∈ ∈ , is called A’s basic probability and is 

interpreted as the degree of evidence in support of some element of Θ belonging to 

the set A, but the evidence does not extend to any particular subset of A. Whereas 

probability theory assigns a measure of probability to atomic hypotheses iθ , m(A) 

represents the belief  of a (no necessarily atomic) hypothesis A. Instead of probability, 

m(A) is a measure of support we are willing to assign to a composite hypothesis A at 

the expense of support ( )im θ of atomic hypotheses iθ . If for the frame of discernment 

Θ  we set ( ) 0im θ ≠ for all iθ and m(A)=0 for all iA θ≠  , the formulation resembles 

that of probability theory with ( ) ( )
1

1 and 
M

i i
i

m mθ θ
=

=∑  may be regarded as a 

probability of iθ . 

Every set 2A Θ∈ for which m(A) > 0 is called a focal element of m. When Θ  is 

finite, m can be fully characterized by a list of its focal elements A with the 

corresponding values m(A). It is interesting to point out that basic probability 

assignments are not fuzzy measures and are characterized by the following particular 

features:  

• m(A) is the portion of the total belief commited exactly to A, which cannot be 

further subdivided among the subsets of A and does not include the portions of 

the total belief commited to subsets of A. 

• The singletons { },  1,...,i i Mθ = are only parts of sets in 2Θ . Thus, it is possible 

that ( )
1

M

i
i

m θ
=
∑ < 1. Moreover, since iθ  and ( . . )i ii eθ θ¬ Θ −  are only two 

elements of 2Θ , it is possible that ( ) ( )i im mθ θ+ ¬ < 1. This feature of 

singletons defies the basic axioms of Bayesian formalism and, in other words, 

the bpa supplies an incomplete probabilistic model.  

• When A is the only focal element in 2Θ  , we have m(Θ) = 1-m(A). In general, 

m(Θ) absorbs the unassigned portions of the total belief after commitment of 

belief to various proper subsets of Θ. 
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   Since a subset A represents the disjunction of all the elements in A, the truth 

of B A⊆  implies truth of A, i.e., all the evidence committed to exactly one subset 

of A will also support A. Hence, a belief  function Bel(A) is defined by: 

 

                               
[ ]

( ) ( )
:  2 0,1

  
B A

Bel

Bel A m B A

Θ

⊆

→

= ∀ ⊆ Θ∑                                            (7.20) 

The belief function is a special type of fuzzy measure that satisfies Axioms 1 – 3 

of Subsection 7.3.4.1 and the axiom of subadditivity [41]. We may consider the belief 

function as a generalization of the probability function. When iA θ=  is a singleton 

(atomic hypothesis), then ( )( ) ( )i iBel A Bel mθ θ= = . Furthermore, when A = Θ, 

Bel(Θ)=1.  

If 1 2 and m m  are basic probability assignments on Θ , their combination or 

orthogonal sum for a nonempty set 2A Θ⊆ , is defined as:  

      ( ) ( ) ( ) ( )1
1 2 1 2 ,  where ,

B C A

m A m m A S m B m C B C−

∩ =

= ⊕ = ⋅ ⊆ Θ∑              (7.21) 

and                     ( ) ( ) ( )1 2 ,   0
B C

S m B m C m
∩ ≠∅

= ⋅ ∅ =∑                                          (7.22) 

Obviously, the combination rule may be generalized to combine multiple 

evidences. Since there is one-to-one correspodence between Bel and m, the orthogonal 

sum of belief functions is defined in the same way as:  1 2(.) (.)Bel Bel Bel= ⊕ .  

Special kinds of Bel-functions are appropriate for representing evidence. These 

functions are called simple and separable support functions. Bel(.) is a simple 

support function if there exists an F ⊆ Θ called the focus of Bel(.), such that 

Bel(Θ)=1 and  

                     ( )
,    if   and   

0,    otherwise

s F A A
Bel A

⊆ ≠ Θ
= 


                                        (7.23) 

where s is called Bel’s degree of support. 

A separable support function is either a simple support function or an orthogonal 

sum of simple support functions. Separable support funcions are very useful for 

combining evidences from several sources. If Bel(.) is a simple support function with 

focus F ≠ Θ ,  then  ( ) ( ),  1 ,  and (.) 0m F s m s m= Θ = − = elsewhere. Let F be a focus 

for two simple support functions with degrees of support 1 2 and s s , respectively. If 
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1 2Bel Bel Bel= ⊕  then ( ) ( )( ) ( ) ( )( )1 2 1 21 1 1 ,  1 1m F s s m s s= − − − Θ = − − , and m is 0 

elsewhere. 

 

7.3.5.2  Evidence Combination Method 

In the context of measurement-level classifier combination, a method for evidence 

combination is presented in [196] and is also adopted here.  

Let x be an input vector and K be the number of different classifiers, 

( ),  1, ,iC i K=x … . It is also assumed that each classifier produces an output vector 

( ),  M
i i iC∈ =y y xR , where M is the number of classes. Suppose that for each 

classifier iC and each candidate class j , a computed value ( )j ie y represents some 

measurement of evidence for the proposition  “iy belongs to class j”. In terms of the 

Dempster – Shafer theory, these values could be combined according to the theory 

and the class with the highest evidence is chosen. Thus, the important values ( )j ie y  

need be defined and computed. 

Let { }jt be a subset of the training data corresponding to a class j. Let ,i jr  be the 

mean vector for a set ( ){ }i jC t for each classifier iC  and each class j, representing a 

reference vector for that class j. The support function ( ), ,i j iφ r y  for class j and each 

classifier iC  is denoted by ,i jc = ( ), ,i j iφ r y , where φ  can be obtained by using the 

Euclidean distance between ,  and i j ir y : 

                   ( )
( )

( )

12

,

, , 12

,
1

1
,

1

i j i

i j i j i M

i k i
k

c φ

−

−

=

+ −
= =

+ −∑

r y
r y

r y
                                        (7.24) 

The value of this function is between 1 and 0 with the maximum when the output 

vector coincides with a reference vector. Now the function φ  can be transformed into 

evidence ( )j ie y .  

Consider a frame of discernment { }1, , Mθ θΘ = … , where jθ  is the hypothesis that 

“ iy belongs to class j” For every classifier iC  and class j , ,i jc  can represent evidence 
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for hypothesis jθ  (pro jθ ), and all remaining , ,   i kc k j≠ , can represent  evidence  

contra jθ  (pro  jθ¬ ). We can use  ,i jc  as a degree of support for a simple support 

function with focus jθ . This yields the basic probability assignment 

                                 ( ) ,j j i jm cθ =    and   ( ) ,1j i jm cΘ = −                                     (7.25) 

In a similar manner, , ,   i kc k j≠  are degrees of support for simple support 

functions with a common focus jθ¬ . The combination of this simple support function 

with focus jθ¬  is a separable support function with the degree of support 

( ),1 1 i k
k j

c
≠

− −∏ . The corresponding basic probability assignment is  

                                      ( ) ( ) ,1 1j j i k
k j

m cθ¬
≠

¬ = − −∏                                          (7.26) 

and  

                                      ( ) ( ) ( )  ,1 1j j j i k
k j

m m cθ¬ ¬
≠

Θ = − ¬ = −∏                             (7.27) 

Combining our knowledge about jθ  we obtain the evidence ( )  ( )yj i j j je m m θ¬= ⊕  

for class  j  and classifier i : 

                                        ( )
( )

( )

, ,

, ,

1

1 1 1

i j i k
k j

j i

i j i k
k j

c c

e

c c

≠

≠

−

=
 

− − − 
 

∏

∏
y                                    (7.28) 

 

Finally, evidences for all classifiers may be combined according to the 

Dempster’s rule of combination (also called the orthogonal sum) to obtain a measure 

of confidence for each class j for the feature vector x : 

                                 ( ) ( ) ( ) ( )1 2x y y yj j j j Ke e e e= ⊕ ⊕ ⊕…                            (7.29) 

( )j ie y , after an appropriate normalization, can be considered as Bayesian evidence 

function with nonzero basic probability assignments only on atomic hypotheses. 

Hence, equivalent to Eq. (7.29) we can write ( ) ( )
1

K

j j i
i

e S e
=

= ∏x y , where S  is a 
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normalizing constant. Now we assign class k to the feature vector x  if  

( ) ( )
1

max{ }
M

k j
j

e e
=

=x x . 

 

7.4    Experimental results 

7.4.4 Classification Results obtained from Primary Classifiers based on 
Identical Pattern Representations 

 
The Bayes classifier, MLP neural network classifier and LVQ neural network 

classifier are well-established and quite successful  techniques in pattern recognition. 

They are employed for the primary classification task of individual leads in our 

component displacement estimation. The theoretical background of these classifiers 

has been introduced in Chapter 4.  

In this research we present two types of results. The first one deals with simulated 

data operating in an external leave-one-out validation scheme. The results presented 

show the average accuracies attained for each lead displacement through this 

recursive cross validation scheme. The second type of results refers to testing on the 

real data. The training of primary classifiers is performed on the entire set of 

simulated data, whereas testing is performed on the completely independent set of real 

images. For the generation of simulated data we use the Monte Carlo simulation 

process [171-174], in order to generate lead samples with appropriate size and 

intensity distributions for trainining the classifiers, as has been mentioned in 

Subsection 5.4.4.  

For testing with real images, a set of 20 real component images are kindly 

provided from the actual placement environment of Philips, The Netherlands. Ten 

actual boards with different shifts are provided, with two images from each case. Each 

individual case is controlled by the placement machine and conveys the limited 

accuracy of placement. The sides of each component are located and the individual 

lead areas are extracted. These images are used for testing of our developed 

algorithms; the training stage of classifiers is performed with the simulated data. 

In order to facilitate a soft-level combination of classifier outcomes, the responses 

of MLP and LVQ neural networks are normalized by employing the softmax method 

[9], [21] and are used as estimates of the posterior probabilities of the classes. 
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The primary classifiers are trained for 5 and 7 classes. The first case involves 

classes {-6,-3, 0,+3,+6} whereas the second case considers training on classes {-6,-4,-

2,0,+2,+4,+6}. These two cases study the ability of the classifiers to discriminate 

classes in the feature space separated by 3 and 2 pixels apart, respectively. We do not 

consider training on all 13 classes, since all these classes are not separable in the 12 

dimensional feature space defined. To overcome the problem of statistical 

significance of the results caused by the rather small data set (for a quite high 

dimensional feature space) we apply a jack-knifing validation process. This process 

sweeps along all sample vectors and every time extracts one sample out of the training 

data. It trains the classifier with all other vectors and classifies the extracted vector 

that has not been seen by the classifier.  

Regarding the design of the primary classifiers, the LVQ neural network 

architecture was defined by the feature vector size, training set size and output class 

mapping. In particular for use with 12 geometric (optical) features the LVQ input 

layer consisted of 12 neurons. In accordance to LVQ theory the hidden competitive 

layer contained neurons, equal to the number of training set cases. In the output layer 

for 5 classes (2 pixel shift precision) 5 output neurons were needed. Accordingly 

discrimination of 7 classes required 7 output neurons. The model was trained for 1000 

epochs with a learning parameter a=0.09. The MLP neural network was designed with 

50 hidden layer neurons and 5 or 7 neurons depending on the required output classes. 

The input layer was as above defined by the dimensionality of the feature vector. As 

stated before, 12 features per lead formulate the feature vector that forms the input to 

each classifier. 

The classification rates of primary classifiers on 5 classes of simulated lead-images 

are shown in Table 7.1. Table 7.2 presents the classification rates of individual 

classifiers on 7 classes. From the classification results of primary classifiers, we can 

initially conclude that the Bayes classifier provides better results than the MLP and 

LVQ classifiers on the 5-classes case. However, competing performances of Bayes 

and MLP classifiers are observed on the 7-classes case. Furthermore, as can be 

observed in Tables 7.1, 7.2, the discrimination between different classes becomes 

easier as we move to larger displacement intervals; the distinction of 3-pixel 

difference in Table 7.1 is more efficient than that of 2-pixel difference in Table 7.2. 

Overall, we observe a large variance of each classifier’s performance along the 

classes of interest. 
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Table 7.1  Classification rates  of Primary classifiers on 5 classes using Monte Carlo  
                    simulated images 

 
 

 

 

 

 

 

 

Table 7.2  Classification rates  of Primary classifiers on 7 classes using Monte Carlo  
                  simulated images 
 
 Input 

Simulated 

- 6  pixels 

shift 

- 4 pixels 

shift 

- 2 pixels 

shift 

0 pixels 

shift 

+2 pixels 

shift 

+4 pixels 

shift 

+6 pixels 

shift 

Bayes 93.00 81.82 75.72 85.87 77.80 85.87 91.86 

MLP  91.18 80.46 80.36 79.74 82.41 86.83 88.27 

C
 l 

a 
s 

s 
i f 

i e
 r

 

LVQ 83.47 76.42 78.90 57.06 80.40 74.35 81.16 

 

In the sequel we test the primary classifiers on the set of 20 real component images 

from the actual placement environment. The testing set consists of 120 lead-images 

obtained from the components of the corresponding class. The classification rates of 

primary classifiers on 5 classes for the real lead-images are shown in Table 7.3, 

whereas Table 7.4 presents the classification rates of individual classifiers on 7 

classes. As we observe by comparing the results for real and simulated data, there is a 

small decrease (ranging from 0.30 to 1.30 in different classes) in classification rates 

for the real data, which are used as an independent test set. Nevertheless, the results 

on real data are only slightly inferior to those from cross validation, indicating the 

robustness of developed techniques in realistic operation 

 

 Input 

Simulated 

- 6  pixels 

shift 

-3  pixels 

shift 

0  pixels 

shift 

+ 3pixels 

shift 

+6 pixels 

shift 

Bayes 97.75 94.35 94.35 93.14 98.25 

MLP  95.32 93.87 92.28 95.83 97.63 

C
 l 

a 
s 

s 
 i 

f  
i e

 r
 

LVQ 93.27 90.67 78.24 95.42 94.78 
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Table 7.3  Classification rates of Primary classifiers on 5 classes using real images 

 

 

 

 

 

 

 

 

Table 7.4  Classification rates of Primary classifiers on 7 classes using real images 

 Input 

Simulated 

- 6  pixels 

shift 

- 4 pixels 

shift 

- 2 pixels 

shift 

0 pixels 

shift 

+2 pixels 

shift 

+4 pixels 

shift 

+6 pixels 

shift 

Bayes 91.87  80.26  74.66 85.26  77.32 85.42  91.03 

MLP  90.33 79.74 79.23  78.44  81.92  86.05  87.49 

C
 l 

a 
s 

s 
i f 

i e
 r

 

LVQ 83.16 77.28 79.57 56.59 79.63 73.94 80.71 

 

 

7.4.5 Results of Combined Classifiers using Identical Pattern  
Representations 

 
The methods of Section 7.3 are used here to combine the three primary classifiers 

(Bayes, MLP, LVQ), using different methodologies but operating on the same feature 

sets (optical). For such a three-classifier combination case, the combining scheme 

based on majority voting (MV) assigns classification to one class if two or three 

classifiers produce this same class. Otherwise, the input pattern is rejected. To apply 

the naïve Bayes (NB) combination method, the conditional probabilities 

( )| ,  1,2,3 , 1, ,5 or 1, ,7i kP L i k kω = = =… … , are obtained from the resulting 

confusion matrices of individual classifiers on the training set. In a same manner, to 

fuse the results using the Choquet fuzzy integral (CFI) , the initial fuzzy densities 

, 1,2,3ig i = , are computed from the resulting confusion matrices of individual 

 Input 

Simulated 

- 6  pixels 

shift 

-3  pixels 

shift 

0  pixels 

shift 

+ 3pixels 

shift 

+6 pixels 

shift 

Bayes 96.43  93.61  93.17 92.08  97.33  

MLP  94.56  93.19  91.84 94.42 96.37 

C
 l 

a 
s 

s 
 i 

f  
i e

 r
 

LVQ 92.73  91.24 79.66  94.77  94.19  
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classifiers on the training set. The above three combination methods are performed in 

the context of abstract-level combination. The Dempster-Shafer (D-S) fusion is 

performed in the context of measurement-level classifier combination. Thus, the 

training of the D-S combiner is performed based on the presented method in 

Subsection 7.3.5.2.  

The classification results obtained from the above four combiners using identical 

(optical) features based on simulated lead-images are presented in tables 7.5 and 7.6 on  5 

and 7 classes, respectively. As we observe from these tables, all combination 

classifiers achieve better performance than any individual classifier used for fusion. 

Examining deeper their performance, we conclude that the naïve Bayes and the 

Dempster – Shafer combiners achieve better overall performance than the other 

schemes, with the naïve Bayes reaching the best performance of all combining 

classifiers employed. The largest improvement achieved by the combined classifiers 

over the best individual classifier performance is also depicted in Tables 7.5 and 7.6 

for the naïve Bayes scheme. In fact, maximum improvement (3.98 %) is achieved by 

this fusion approach for the class of –3 pixels shift on the 5 class formulation. The 

advantage of naïve Bayes combiner over the others fusion schemes, along with the 

advantage of primary Bayes classifier over the others individual classifiers, cannot be 

generalized. The ranking of classification schemes observed in this application is 

partially attributed to the stochastic properties of the data set, supporting the 

assumption that the distribution of our experimental data follows the normal 

(Gaussian) distribution. 

 

Table 7.5   Classification rates  of  Combining Classifiers on 5 classes using identical   
                   (optical) features based on simulated images 

 

 

 

 

 

 

 

   Input 

Simulated 

- 6  pixels 

shift 

-3  pixels 

shift 

0  pixels 

shift 

+ 3pixels 

shift 

+6 pixels 

shift 

MV 98.25 95.13 94.78 96.41 98.43 

NB 99.20 

(>1.45) 

98.33 

(>3.98) 

97.21 

(>2.86) 

98.84 

(>3.01) 

99.87 

(>1.62) 

CFI 98.34 95.89 95.44 96.90 98.79 

C
 o

 m
 b

 i 
n 

e 
r 

D-S 98.67 97.71 96.63 97.56 99.36 
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Table 7.6   Classification rates  of  Combining Classifiers on 7 classes using identical   
                  (optical) features based on simulated images 
 Input 

Simulated 

- 6  pixels 

shift 

- 4 pixels 

shift 

- 2 pixels 

shift 

0 pixels 

shift 

+2 pixels 

shift 

+4 pixels 

shift 

+6 pixels 

shift 

MV 94.12 82.53 81.05 86.38 83.44 87.85 92.48 

NB 96.82 

(>3.82) 

85.49 

(>3.67) 

83.87 

(>3.51) 

88.79 

(>2.92) 

85.21 

(>2.80) 

90.35 

(>3.52) 

95.53 

(>3.67) 

CFI 95.27 83.76 82.64 87.30 84.37 88.54 93.86 

   
   

C
 o

 m
 b

 i 
n 

e 
r 

D-S 95.79 84.88 83.26 88.14 84.69 89.87 94.64 

 

In the sequel we derive the classification results using the four combination 

schemes based on the classifiers Bayes, MLP and LVQ employing real images, given 

in Tables 7.3 and 7.4. These results are presented in Tables 7.7 and 7.8 on 5 and 7 

classes, respectively. By comparing these results with Tables 7.5 and 7.6, we can 

detect a small decrease (ranging from 0.30 to 1.30 in different classes) in 

classification rates from the case of testing simulated data, which can be attributed to 

small differences in the formation of the training and the testing data. Nevertheless, 

by comparing them with the results of individual classifiers on real image data 

(Tables 7.3 and 7.4), we observe a consistent increase of the success rate achieved by 

any fusion methodology. 

 

Table 7.7  Classification rates of Combined Classifiers on 5 classes using identical (optical)  
                  features based on real images. 

 

 

 

 

 

 

 

 

 
 

   Input 

Simulated 

- 6  pixels 

shift 

-3  pixels 

shift 

0  pixels 

shift 

+ 3pixels 

shift 

+6 pixels 

shift 

MV 97.16 94.42 

 

93.56 

 

95.73 

 

98.04 

 

NB 97.70 

(>1.27) 

96.97 

(>3.36) 

95.56 

(>2.39) 

97.61  

(>2.84) 

98.61 

(>1.28) 

CFI 96.95 

 

94.88 

 

95.00 

 

96.49 

 

98.40 

 

C
 o

 m
 b

 i 
n 

e 
r 

D-S 97.26 

 

95.76 

 

94.63 

 

96.15 

 

98.27 
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Table 7.8   Classification rates of Combined Classifiers on 7 classes using identical (optical)         
                   features  based on real images 
 Input 

Simulated 

- 6  pixels 

shift 

- 4 pixels 

shift 

- 2 pixels 

shift 

0 pixels 

shift 

+2 pixels 

shift 

+4 pixels 

shift 

+6 pixels 

shift 

MV 92.65 

 

80.69 

 

79.94 

 

85.90 

 

82.73 

 

86.89 

 

91.61 

 

NB 95.33 

(>3.46) 

83.50 

(>3.24) 

82.76 

(>3.19) 

87.84 

(>2.58) 

84.29 

(>2.37) 

89.33 

(>3.28) 

94.44 

(>3.41) 

CFI 93.69 

 

81.80 

 

81.43 

 

86.45 

 

83.67 

 

87.53 

 

92.68 

 

   
   

C
 o

 m
 b

 i 
n 

e 
r 

D-S 94.23 

 

82.98 

 

80.94 

 

87.30 

 

83.77 

 

88.48 

 

93.61 

 

 

7.4.6 Comparison between primary and combining multiple classifiers 

The classifier ensemble’s high accuracies can be partially attributed to the diversity of 

the three primary classifiers. It is the author’s opinion that an additional improvement 

can be achieved in the 7-class case by enriching the primary classifier’s pool. This 

would require a very careful choice of additional classifiers that would contribute to 

the ensemble’s diversity, if possible. The 5-class case is less likely to benefit since the 

obtained accuracies are already nearly maximized. Such a refinement might also 

render 1-pixel resolution shift estimation (13 classes) manageable. In any case, one 

has to keep in mind that model complexity should not outweigh possible minimal 

gains and that results have to be extended to other datasets. 

The incresead computational complexity of fusion in a real time inspection 

system was also a factor considered. The overhead in a multiple classification process 

of this type is additive. This problem is addressed in three ways towards minimizing 

this overhead. Firstly the number of classes is kept to a minimum required for quality 

inspection by quantizing the output displacements. Secondly, the features used were 

chosen so that no intensive image processing or costly transformations are involved in 

their computation. Thirdly, a minimal primary classifier pool is used whist 

maintaining a decent misclassification rate. 

It should also be noted that the classification problem under consideration 

presents a special nature with both negative and positive aspects. The primary 

classifiers’s soft outputs are mostly concentrated around the distinct class labels, 

which can create mapping difficulties for certain combined classifiers. From a 
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different point of view, classifiers in this application area can benefit from certain 

symmetries and prior knowledge inherent to the problem. Limiting the displacements 

to one axis (for the corresponding component side) reduces the degrees of freedom in 

problem specification and classifier design. Additionally, the shape and size areas is 

roughly known or can be easily inferred for any new dataset and thus geometry 

metrics can be used reliably. 
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Chapter  8 

 
Combining Multiple Classifiers using Reduced 
Dimensionality Distinct Pattern Representations for 
Post Placement Quality Inspection of Components  

 
 
 
 
8.1   Introduction 
 
 

As we have mentioned in the previous chapter, from the point of view of the input 

pattern representation, there are basically two classifier combination approaches [187]. 

In the first approach, all the classifiers use the same represantation of the input pattern 

(identical pattern representation). In the second approach, each classifier uses its own 

representation of the input pattern (distinct pattern representation) [187], [210-216] . In 

this case, the measurements extracted from the pattern are unique to each classifier, i.e. 

each individual classifier uses a different set of features. In Chapter 7, we have tested 

and compared multiple classifier fusion methods for improving the classification of the 

individual leads in component quality inspection, based on identical pattern 

representations (optical features). The objective of our research presented in this chapter  

is to fuse decisions from primary classifiers, which operate on distinct pattern 

representations. This research has been accepted for publication in [48]. 

The methods used the combine the various levels of base classifier output generally 

fall into two categories namely, fixed rules and trained rules (i.e. nontrainable 

combiners and trainable combiners) [21], [188], [214]. Fixed rules are static in that 

their form and parameters do not change as a result of the output produced by the base 

classifiers. As such, they are simple, have low time and memory requirements and are 

well suited to groups of classifiers that exhibit similar performances and make 

uncorellated errors. Fixed rules include the Dempster – Shafer theory of evidence [186], 

[196], [198-200], the sum-rule (averaging), product-rule, max-rule, min-rule, median 

rule [187], the majority vote rule [186], etc. On the other hand, trained rules adapt their 

parameters to the outputs of the base classifiers and as such are more suitable for 
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combining classifiers that have varying levels of performance and make correlated 

errors. These rules generally have high memory and computational needs and impose 

strict requirements on the quality and size of the training sets. Trained rules include 

various trainable combiners (called meta-classifiers or meta-learners), including 

statistical combiners [21], [194-195] neural networks [207], fuzzy integral combiners 

[15], [169], [192], [209] and typically, the weighted combination (weighted average) 

[21], [192].  

In this work we elaborate on two schemes for distinct pattern representations. In the 

former scheme we use only reduced dimensionality features (i.e., topological and 

projection features), whereas the latter enriches the topological and projection features 

with optical ones, in order to improve the classification rates and robustness across all 

lead-displacement classes. In the abovementioned former scheme for distinct pattern 

representations we use the quantized classification of lead displacements based on 

reduced dynamic-range and input-dimension processing of lead images. The 

classification task of individual leads is executed via two different primary classifiers. 

The first classifier is a Hamming neural network classifier based on reduced dynamic-

range processing (topological features). The second classifier is a Bayesian distance 

classifier based on input-dimension processing (projection features). Both 

aforementioned classifiers have been developed and tested in Chapter 6. Finally,  in the 

latter scheme for distinct patterns we enrich the pool of primary classifiers with a Bayes 

classifier operating on optical features. This classifier has been developed and tested in 

Chapter 5. Thus, the goal of this research is to fuse decisions from the aforementioned 

three classifiers that are based on distinct pattern representations. 

The motivation for exploring the combination issue is to improve performance of 

classification task of individual leads based on distinct pattern representations. Kittler 

[20], [187] provides a theoretical basis of many existing classifier combination schemes 

for fusing the decisions of multiple experts, each employing a different, distinct pattern 

representation. In this research, we adopt and explore this theoretical framework, in 

order to design and test non-trainable classifier fusion schemes. The fixed combination 

rules are motivated in this work from the completely different nature of the feature sets 

used by our primary classifiers, justifying the assumption of complementary and 

uncorrelated classification results.  
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8.2   Experimental Framework and Reduced Dimensionality Feature  
Extraction Processes 

 

In this research we use the experimental framework presented in Subsection 5.1.2. So, 

for the purpose of presenting our results, QFP (Quad Flat Pack) SMD components with 

120 leads (30 leads per side) are employed.  The Hamming distance classifier uses the 

reduced dynamic-range processing introduced in Section 6.3 whereas the Bayesian 

distance classifier uses the HONN based feature extraction process (i.e. reduced input-

dimension processing) presented in Section 6.4. Finally, the Bayes classifier operating 

on optical features has been presented in Section 5.5. As in Chapters 5, 6 and 7 we 

consider  again quantized displacement estimations organized at multiples of a pixel 

displacement. The displacement classes considered are {-6, -3, 0, +3, +6} and {-6, -4, -

2, 0, +2, +4, +6}, in pixel displacements over the lead’s central position.  

                                           

8.3   Combining Multiple Classifiers based on Distinct Pattern 
Representations 

 
In this section, the problem of combining different classifiers using distinct pattern 

representations is addressed for the classification (shift-estimation) of individual lead 

images.  

 

 

8.3.1 Non-trainable Combination Schemes for Identical Pattern 
Representations 

 

The term “nontrainable” implies that the combiner has no extra parameters that 

need to be trained, i.e. the ensemble is ready for operation as soon as the primary 

classifiers are trained [21]. Simple non-trainable combiners calculate the overall support 

for class jω , ( )jµ x , using only the supports ( ) ( ) ( )1, 2, ,, ,...,j j K jc c cx x x  from classifiers  

1 2, ,..., KC C C ,  respectively, by  

                                 ( ) ( ) ( ) ( )1, 2, ,, ,...,j j j K jF c c cµ  =  x x x x ,                            (8.1) 

where F is a combination function. The class label of x is found as the index of the 

maximum ( )jµ x . The combination function F can be chosen in many different ways. 

Some popular choices are:  



CHAPTER 8             COMBINING MULTIPLE CLASSIFIERS USING REDUCED DIMENSIONALITY DISTINCT PATTERN 

 200 
 

• Simple mean (average) , (F = average): 

                                              ( ) ( ),
1

1 K

j i j
i

c
K

µ
=

= ∑x x                                             (8.2) 

• Minimum/maximum/median ( F = minimum/maximum/median). For instance, 

in the maximum case: 

                                              ( ) ( ){ },
1

max
K

j i j
i

cµ
=

=x x                                            (8.3) 

• Product (F  = product): 

                                             ( ) ( ),
1

K

j i j
i

cµ
=

= ∏x x                                                   (8.4) 

 

8.3.2 Combination Rules for Distinct Pattern Representations 

 

The case of distinct pattern representation poses an additional burden to the design of 

the combiners, since the sources of information (features) are quite inhomogeneous. 

Nevertheless, based on a Bayesian framework for relating the available information, 

similar simple rules can be derived for the combination of the corresponding classifiers. 

Assume that K classifiers are available, each representing the given pattern by a distinct 

feature vector. We consider K conditionally independent feature subsets (distinct pattern 

representations). Each subset generates a part of the feature vector (i.e., distinct feature 

vector), ( )ix , so that ( ) ( ) ( )1 2, ,...,
T

K =  x x x x , n∈x R . Notice that there is an one-to-one 

correspondence between each feature vector ( )ix  and its underlying 

classifier ,  1, ,iC i K= … . From the assumed independence, the class-conditional 

probability density function (pdf) for class jω  is a product of the class-conditional pdfs 

on each feature subset 

                                          ( ) ( )( )
1

| |
K

i
j j

i

p pω ω
=

= ∏x x                                          (8.5)    

The class conditional probabilities are given by: 

                                           ( )( )
( )( ) ( )( )
( )

|
|

i i
ji

j

j

P p
p

P

ω
ω

ω
=

x x
x                                      (8.6)    

whereas the posterior probability using the entire information on x is 
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           ( ) ( ) ( )
( )

( )
( )

( )( )
1

|
|      = |

K
j j j i

j j
i

P p P
P p

p p

ω ω ω
ω ω

=

= ∏
x

x x
x x

                                (8.7)   

Substituting Eq. (8.6) into Eq. (8.7)  we obtain: 

                ( ) ( ) ( ) ( )( )
( )( )

( )
1 1

1

| |
x

x x
x

K
i

K
K i i

j j j
i

p
P P P

p
ω ω ω− =

=

=
∏

∏                                     (8.8)    

The last fraction does not depend on any class label, so that it can be ignored when 

calculating the overall support ( )jµ x  for class jω . Taking the classifier output 

( )( ),
i

i jc x  as the estimate of ( )( )| i
jP ω x  and estimating the prior probabilities for the 

classes from the data, the support for jω  is calculated as the product combination rule 

[21]: 

                                           ( ) ( ) ( ) ( )( )1

1

| |
K

K i
j j j

i

P P Pω ω ω−

=

∝ ∏x x                                 (8.9) 

so that we can assign 

                                ( ) ( ) ( ) ( )( )1
,

1

ˆ           = 
K

K i
j j i j

i

P cµ ω−

=
∏x x                                      (8.10) 

 

Kittler et al. [187] take the above formula further to derive the sum combination rule. 

Suppose that classifiers ,  1,...,iC i K= , only slightly improve on the accuracy of the 

classification decision. In other words, the posterior probabilities differ only by a small 

fraction ,  , 1,..., ,  1,...,j i j M i K∆ = =  from the prior probabilities ( ),  1,...,jP j Mω = , 

where , 1j i∆ ≪ . Thus:  

                                             ( )( ) ( )( ),| 1i
j j j iP Pω ω= + ∆x                                          (8.11) 

Substituting in Eq. (8.9), we obtain  

                                         ( ) ( ) ( ),
1

| 1
K

j j j i
i

P Pω ω
=

∝ + ∆∏x                                        (8.12) 

 Expanding the product and ignoring all terms of order higher than two with respect to  

,j i∆ , we obtain [21]:   

                                    ( ) ( )( ) ( )( )
1

| 1 |
K

i
j j j

i

P P K Pω ω ω
=

∝ − + ∑x x                           (8.13) 
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Taking the classifier output ( )( ),
i

i jc x  as the estimate of ( )( )| i
jP ω x  and estimating the 

prior probabilities for the classes from the data, the overall support ( )jµ x  for class jω  

is calculated as the sum combination rule: 

                                      ( ) ( ) ( )( ),
1

ˆ (1 )
K

i
j j i j

i

P K cµ ω
=

= − + ∑x x                                   (8.14) 

For equal prior probabilities Eq. (8.9)   reduces to: 

                                               ( ) ( )( ),
1

|x x
K

i
j i j

i

P cω
=

∝ ∏                                              (8.15)  

Furthermore, ignoring the constant term, the sum combination rule (8.14) can be viewed 

as the average a posteriori probability for each class over all the classifier outputs [187],  

so that we may assign: 

                                                  ( ) ( )( ),
1

1 K
i

j i j
i

c
K

µ
=

= ∑x x                                                      (8.16) 

The aforementioned combination rules (8.10) and (8.14) constitute the fundamental 

schemes for combining classifiers, each representing the given pattern by a distinct 

feature vector. Some additional nontrainable fusion strategies can be developed from 

these rules by considering the inequalities: 

 

   ( )( ) ( )( ){ } ( )( ) ( )( ){ }, , , ,1 1
11

1
min max

K KK K
i i i i

i j i j i j i j
i i

ii

c c c c
K= =

==

≤ ≤ ≤∑∏ x x x x                      (8.17) 

 

The relationship (8.17)  suggests that the product and sum combination rules can be 

approximated by their upper or lower bounds, as appropriated above. 

Starting from (8.14) and approximating the sum by the maximum of the support 

values ( )( ),
i

i jc x , the overall support ( )jµ x  for class jω  is calculated as the max 

combination rule  

                              ( ) ( ) ( )( ){ },
1

ˆ (1 ) max
K

i
j j i j

i
P K K cµ ω

=
= − +x x                                (8.18)   

which under the assumption of equal prior probabilities reduces to   

                                    ( ) ( )( ){ },
1

max
K

i
j i j

i
cµ

=
=x x                                                         (8.19) 
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Starting from (8.10)  and bounding the product of support values ( )( ),
i

i jc x  from 

above, the overall support ( )jµ x  for class jω  reduces to the min combination rule 

                             ( ) ( ) ( ) ( )( ){ }1
,1

min
K

K i
j j i j

i
P cµ ω−

=
=x x
⌢

                                        (8.20) 

which under the assumption of equal prior probabilities reduces to    

                             ( ) ( )( ){ },1
min

K
i

j i j
i

cµ
=

=x x                                                           (8.21) 

 
 

 

 

8.4    Experimental Results 

 

8.4.1 Classification Results obtained from Primary Classifiers based on 
Distinct Pattern Representations 

 

 In this section the Hamming neural network classifier operating on topological 

features and Bayesian classifier operating on projection features are employed for the 

primary classification task of individual leads in our component displacement 

estimation. 

In this research, as in Chapter 7, we present two types of results. The first one deals 

with Monte Carlo simulated data operating in an external leave-one-out validation 

scheme. The results presented show the average accuracies attained for each lead 

displacement through this recursive cross validation scheme. The second type of results 

refers to testing on the real data. The training of primary classifiers is performed on the 

entire set of simulated data, whereas testing is performed on the completely independent 

set of real images.  

The reduced dynamic-range approach developed Section 6.3 of  Chapter 6 is tested 

on simulated images from four-sided QFP components. A total of 120 lead samples per 

class of the lead displacement are obtained, resulting in totally 1560 samples for the 13 

classes. We consider the Hamming neural network classifier trained and tested for 5 

and 7 classes. The first case involves pixel displacements {-6,-4,-2,0,+2,+4,+6} whereas 

the second case considers classes {-6, -3, 0, +3, +6}. A total of 600 and 840 sample-

leads are used for training and testing the classifier on five and seven classes, 
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respectively. These two cases study the ability of the classifier to discriminate classes in 

the feature space separated by 3 and 2 pixels apart, respectively.  

The reduced input-dimension processing approach developed in Section 6.4 of 

Chapter 6 is also tested on simulated images from QFP components. The Bayesian 

distance classifier is trained and tested for 5 and 7 classes. As before, a total of 600 and 

840 sample-leads are used for testing the classifier on five and seven classes, 

respectively.  

In order to facilitate a soft-level combination of classifier outcomes, the responses 

of Hamming neural network are normalized by employing the softmax method [9], [21] 

and are used as estimates of the posterior probabilities of the classes. 

         The classification rates of primary classifiers operating on the reduced 

dimensionality features on 5 and 7 classes are illustrated in Tables 8.1 and 8.2, 

respectively. The classification results of the Bayes classifier operating on the optical 

features are also presented in these tables. For the Hamming-distance classifier as 

expected, the results for the 5-classes assignment are more accurate than the 7-classes 

case, where the larger lead-displacement differences between two successive classes are 

reflected more clearly in the feature-vector differences. Nevertheless, due to the 

preserved correlation between AMs of neighboring classes, the discrimination ability is 

limited even in the 5-classes assignment. Moreover, the percentage of correct 

classification differs significantly among classes. The latter problem can be alleviated 

with more extensive testing, but the former is an inherent limitation attributed to 

dimensionality reduction. From the classification results of the Bayesian classifier 

operating on projection features we again conclude that the classification results for the 

5-classes assignment are more accurate than these for the 7-classes problem. The 

limitations due to information reduction are again clear and are attributed to similarities 

of the projection functions. In this case, the direction of displacement poses an 

additional difficulty in its correct identification and classification.  

Comparing the results of the two proposed primary classifiers based on reduced 

dimensionality processing, we can easily derive that none of them has an overall 

superior performance over the other. The information loss and the associated effects are 

different in the two approaches. In general, the reduced dynamic-range processing is 

more effective in discriminating 0-displacement features, whereas the reduced input-

dimension processing is more efficient in classifying lead features reflecting actual 

displacements. The major benefit of reduced dimensionality processing (with either of 
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the proposed versions) is the significant reduction of the algorithmic computational 

complexity, by avoiding processing the entire information content of the grayscale 

image. In order to preserve this benefit and still retain high success rates in 

classification, we consider decision fusion approaches as to improve the performance of 

the overall quality inspection system.  

 

Table 8.1  Classification rates of Primary classifiers on 5 classes using Monte Carlo simulated  
                    images 
 features 

type 

Classifier 

type 

- 6  pixels 

shift 

-3  pixels 

shift 

0  pixels 

shift 

+ 3pixels 

shift 

+6 pixels 

shift 

topological Hamming 86.67 79.17 95.00 92.50 93.33 

projection Bayes 92.50 93.33 86.70 93.33 97.63 

C
 l 

a 
s 

s 
i f

 i 
e 

r 

optical Bayes 97.75 94.35 94.35 93.14 98.25 

 

 

 Table 8.2  Classification rates  of Primary classifiers on 7 classes using Monte Carlo simulated  
                    images 

 features  

type 

Classifier 

type 

- 6  pixels 

shift 

- 4 pixels 

shift 

- 2 pixels 

shift 

0 pixels 

shift 

+2 pixels 

shift 

+4 pixels 

shift 

+6 pixels 

shift 

topological Hamming 85.00 84.17 77.50 92.50 82.50 82.50 88.33 

projection Bayes 76.70 

 

80.83 

 

86.07 

 

68.64 

 

83.30 

 

90.00 

 

93.10 

 

C
 l 

a 
s 

s 
i f

 i 
e 

r 

optical Bayes 93.00 81.82 75.72 85.87 77.80 85.87 91.86 

 

In the sequel we test the primary classifiers on the set of 20 real component images 

from the actual placement environment. The testing set consists of 120 lead-images 

obtained from the components of the corresponding class. The classification rates of 

primary classifiers on 5 classes for the real lead-images are shown in Table 8.3, whereas 

Table 8.4 presents the classification rates of individual classifiers on 7 classes. As we 

observe by comparing the results for real and simulated data, there is a small decrease 

(ranging from 0.30 to 1.30 in different classes) in classification rates for the real data, 
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which are used as an independent test set. Nevertheless, the results on real data are only 

slightly inferior to those from cross validation, indicating the robustness of developed 

techniques in realistic operation. 

 

Table 8.3  Classification rates of Primary classifiers on 5 classes using real images 
 features 

type 

Classifier 

type 

- 6  pixels 

shift 

-3  pixels 

shift 

0  pixels 

shift 

+ 3pixels 

shift 

+6 pixels 

shift 

topological Hamming 85.83 78.56 94.13 92.06 92.79 

projection Bayes 91.46 93.76 87.24 92.95 97.18 

C
 l 

a 
s 

s 
i f

 i 
e 

r 

optical Bayes 96.43 93.61 93.17 92.08 97.33 

 

 

Table 8.4  Classification rates  of Primary classifiers on 7 classes using  real images 
 features  

type 

Classifier 

type 

- 6  pixels 

shift 

- 4 pixels 

shift 

- 2 pixels 

shift 

0 pixels 

shift 

+2 pixels 

shift 

+4 pixels 

shift 

+6 pixels 

shift 

topological Hamming 84.25 83.79 76.63 91.16 81.59 81.37 87.75 

projection Bayes 75.68 

 

79.96 

 

84.75 

 

67.60 

 

82.45 

 

89.26 

 

92.53 

 

C
 l 

a 
s 

s 
i f

 i 
e 

r 

optical Bayes 91.87 80.26 74.66 85.26 77.32 85.42 91.03 

 
                     
 

8.4.2 Results of  Combined Classifiers using Distinct Pattern 
Representations 

 

In this section, the combination rules derived in Subsection 8.3.2 are used to 

combine the two primary classifiers (Hamming classifier and Bayesian classifier), using 

distinct pattern representations for individual leads classification. The quite diverse 

nature of information handled by each approach justifies the assumption of class 

conditional independence (at least approximately) for the distinct representations used 

by the individual classifiers. Four different combination rules are tested under the 



CHAPTER 8             COMBINING MULTIPLE CLASSIFIERS USING REDUCED DIMENSIONALITY DISTINCT PATTERN 

 207 
 

assumption of equal priors and their results are compared. Each combiner uses the 

outcomes of primary classifiers as estimates of a posterior class probability, in a soft-

level combination manner.  

The classification results obtained from the above four combination rules are 

presented in Tables 8.5 and 8.6 for 5 and 7 classes, respectively. As we observe from 

these tables, the sum combination rule achieves better performance than any individual 

classifier alone with the exception of the class of –3 pixels shift on the 5 class 

formulation and class of 0 pixels shift on the 7 class formulation. The max combination 

rule follows closely in performance, whereas the worst results are achieved when using 

the product and min combination rules. The results are in close agreement with the 

findings of [187], based on a theoretical error sensitivity analysis, where the sum 

combination rule is found to be much more resilient to estimation errors of the posterior 

probabilities ( )( )| i
jP ω x than the product combination rule. In particular, the product 

combiner is oversensitive to classification estimates close to zero. Presence of such 

estimates from one classifier has the effect of veto on that particular class, regardless 

the outcome of other classifiers.  

We should further emphasize that fusion may not improve the classification results 

for each and every lead displacement compared to the individual classifiers, but it rather 

improves the overall classification ability for all lead-shifts examined. Even though 

fusion increases the classification accuracy for lead shifts where individual classifiers 

generally lag in performance, there are a few cases where one or the other individual 

classifier (based on topological or projection features) by chance achieves extremely 

high accuracy. The results of primary classifiers show a large variance of performance 

across the lead displacements, as in Tables 8.1 and 8.2 or 8.3 and 8.4 for simulated and 

real data, respectively. From these results, we cannot claim that one individual 

classifier, either Hamming based on topological or Bayes based on projection features, 

surpasses the other in performance. Each one attains maximum performance by chance 

at some specific lead displacement. We cannot generalize such results of individual 

classifiers due to the limited number of available data. Notice that this large variation is 

reduced by the fusion approaches. Thus, fusion using distinct, reduced-content 

representations not only boost the overall classification performance, but also makes the 
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overall classification performance more consistent across all lead-displacements 

examined. 

Table 8.5   Classification rates of  Combined Classifiers on 5 classes using distinct 
              features (topological & projection) based on simulated images 

 

 

 

 

 

 

 

 

 
 
 

Table 8.6   Classification rates of  Combined Classifiers on 7 classes using distinct 
              features (topological & projection) based on simulated images 

 

 Input 

Simulated 

-6 pixels 

shift 

- 4 pixels 

shift 

- 2 pixels 

shift 

0 pixels 

shift 

+2 pixels 

shift 

+4 pixels 

shift 

+6 pixels 

shift 

Product 71.24 75.81 74.41 70.93 76.13 78.95 83.76 

Sum 85.08 86.63 86.12 85.91 87.38 90.53 94.97 

Max 81.59 83.43 82.36 81.22 83.87 87.11 91.55 

C
 o

 m
 b

 i 
n 

at
  i

 o
 n

   
   

 

R
 u

 l 
e 

Min 72.09 76.88 75.23 71.64 77.39 79.83 85.03 

 

Considering the classification of real data, the results of these four combination 

rules are presented in Tables 8.7 and 8.8 for the 5 and 7 class formulations, respectively. 

We recall that the individual classifiers used at first level are the Hamming neural 

network operating on topological features and the Bayes classifier operating on 

projection features extracted from the set of real images considered. As can be observed 

in Tables 8.7 and 8.8, the sum combiner again achieves overall better results, but there 

is a small decrease (ranging from 0.30 to 1.30 in different classes) in classification rates 

in comparison with Tables 8.5 and 8.6 for the simulated data.  

 

 

   Input 

Simulated 

- 6  pixels 

shift 

-3  pixels 

shift 

0  pixels 

shift 

+ 3pixels 

shift 

+6 pixels 

shift 

Product 83.08 78.25 84.23 88.76 89.68 

Sum 94.64 90.68 95.67 97.42 99.73 

Max 90.78 87.14 91.62 93.46 96.09 

C
 o

 m
 b

 i 
n 

at
 i 

o 
n 

   
   

  

R
 u

 l 
e 

  

Min 84.33 79.04 85.59 89.94 90.81 
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Table 8.7   Classification rates of Combined Classifiers on 5 classes using distinct features  
                  (topological &  projection) from real images 

 
   Input 

Simulated 

- 6  pixels 

shift 

-3  pixels 

shift 

0  pixels 

shift 

+ 3pixels 

shift 

+6 pixels 

shift 

Product 

 

81.89 

 

77.34 

 

85.00 

 

87.93 

 

89.44 

 

Sum 

 

93.33 91.38 94.61 92.77 94.55 

Max 

 

89.28 

 

87.94 

 

90.47 

 

94.38 

 

95.35 

 

C
 o

 m
 b

 i 
n 

at
 i 

o 
n 

   
   

R
 u

 l 
e 

  

Min 

 

83.09 

 

78.38 

 

85.79 

 

88.94 

 

90.55 

 

 

Table 8.8   Classification rates of Combined Classifiers on 7 classes using distinct features 
(topological & projection) from real images 

 Input 

Simulated 

-6 pixels 

shift 

- 4 pixels 

shift 

- 2 pixels 

shift 

0 pixels 

shift 

+2 pixels 

shift 

+4 pixels 

shift 

+6 pixels 

shift 

Product 

 

69.97 

 

75.14 

 

73.06 

 

69.54 

 

75.54 

 

77.45 

 

82.94 

 

Sum 84.68 85.98 85.12 84.75 86.08 89.63 93.95 

Max 

 

80.41 

 

82.77 

 

81.31 

 

86.10 

 

81.67 

 

86.01 

 

91.24 

 

C
 o

 m
 b

 i 
n 

at
  i

 o
 n

   
   

 R
 u

 l 
e 

Min 

 

70.85 

 

76.00 

 

73.98 

 

70.04 

 

77.03 

 

77.86 

 

84.93 

 

 

In general, the classification scores achieved using reduced dimensionality 

features are inferior to those obtained using full image information (optical features) as 

has been mentioned in Chapter 6. Furthermore, the combination of topological and 

projection features in a distinct representation fusion scheme also lags in performance 

to the combination of classifiers trained with optical features alone in Subsection 7.4.2. 

This is expected since all feature sets are obtained from the same primary source 

(original lead images), so that the information captured by topological and projection 

features does not add much to the information already conveyed by optical features. 

Furthermore, the primary data in reduced content representation (1-bit edge images and 

1-D projections) are inter-related, rendering the corresponding features (topological and 
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projection) not quite independent. At this stage we do not perform any feature selection 

process, since we are focusing on the nature of primary data (edges and projections) and 

the information conveyed in these forms, rather than the nature of features.  

Nevertheless, it is worth mentioning that reduced dimensionality features using just a 

portion of information available can still attain acceptable results, especially through the 

employment of fusion. Reduced dimensionality features have the benefit of 

summarizing the required information for adequate shift detection in a compact format 

that can significantly reduce processing time. It is the author’s opinion that such 

features should be used when balance is required between speed and effectiveness. In 

addition, the particular reduced dimensionality features possess conceptual attributes 

that can instigate further speed-up and improvement in component inspection systems. 

More specifically, the topological features (edges) may be used for appropriate 

modeling of the component placement process and can be directly obtained from a 

number of commercial cameras, eliminating the need of preprocessing. The projection 

features on the other hand may eventually enable the use of faster and cheaper line 

sensors instead of area cameras for component inspection. 

Elaborating on the use of distinct feature representations and its potential in 

increasing accuracy and robustness for all classes of lead displacements, we further 

consider a combination of optical, topological and projection features. We define the 

resulting distinct features set (i.e., optical & topological & projection features) as 

distinct features-2. This set of features captures information form many different 

aspects of the problem and contains features that are more likely to be independent than 

the set used before employing only topological and projection features. The quite 

diverse nature of information handled by each approach justifies the assumption of class 

conditional independence (at least approximately) for the distinct representations used 

by the individual classifiers. Motivated by good results of the sum combination rule we 

also use it as a fusion rule on the Bayes classifier with optical features, Hamming 

classifier with topological features and Bayes classifier with projection features. The 

classification rates based upon Monte Carlo simulated and real images are presented in 

Tables 8.9 and 8.10 on 5 and 7 classes, respectively. We observe that the sum 

combination rule achieves better performance than any individual classifier alone based 

on distinct features-2, with the exception of the class of 0 pixels shift on the 7 class 

formulation. It improves the results of the first level Bayes classifier and derives quite 

uniform results across all classes. Comparing this distinct feature combination with the 
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one in Subsection 7.4.2 of Chapter 7 using identical pattern representation, we can 

claim that the former achieves comparable and at cases (7-class formulation) even 

better performance than the latter. This result further supports the potential of the 

distinct representation scheme, requiring however further investigation on the 

appropriate selection of distinct features, which is out of the scope of this research. 

 

Table 8.9  Classification rates of Sum Combination Rule on 5 classes using distinct features-2  
                  (optical & topological & projection) on simulated and real images 

Sum 
Combination 
Rule 

- 6  pixels shift -3  pixels shift 0  pixels shift + 3pixels shift +6 pixels shift 

Simulated 
Images 

98.37 97.14 96.27 97.45 99.73 

Real 
Images 

97.49 95.53 95.04 95.52 98.92 

 
 
 
 
Table 8.10  Classification rates of Sum Combination Rule on 7 classes using distinct features-2  
                    (optical & topological & projection) on simulated and real images 

Sum 
Combination 
Rule 

-6 pixels 

shift 

- 4 pixels 

shift 

- 2 pixels 

shift 

0 pixels 

shift 

+2 pixels 

shift 

+4 pixels 

shift 

+6 pixels 

shift 

Simulated 
Images 

93.65 88.25 86.92 92.70 87.53 91.46 95.19 

Real  
Images 

92.45 86.66 85.44 92.28 86.18 90.27 94.12 

 

With respect to time requirements, as we have mentioned in Chapter 6,  the tested 

approaches achieve the following performance using a fast Intel Core 2 Duo 

workstation. The optical feature approach takes about 0.34 sec for processing an entire 

QFP chip of 120 leads. The reduced dynamic-range approach requires 0.15 sec, less 

than half of the computation time of the conventional approach. Finally, the reduced 

input-dimension processing requires about 0.22 sec for the entire QFP-120 component.  

High abstraction features are generally less descriptive than pixel-based features for 

classification purposes. With respect however to computational complexity, the distinct 

features in cooperation with a fusion scheme can yield appreciable reduction at the cost 

without compromising the effectiveness of inspection. 

 

 



CHAPTER 8             COMBINING MULTIPLE CLASSIFIERS USING REDUCED DIMENSIONALITY DISTINCT PATTERN 

 212 
 

8.4.3 Comparison between the two Fusion Schemes Presented in Chapters 
7 and  8    

 
In Chapters 7 and 8, we tested several combination methods for soft fusion of the 

outputs of multiple classifiers. The aim is to improve the performance of primary 

classifiers used for individual lead-image classification in post-placement quality 

inspection of components. Two different schemes of classifier fusion are considered. 

The first one refers to identical feature representations, where the primary classifiers 

operate on the same feature set. The second scheme uses distinct feature 

representations, where each of the primary classifiers operates on a different set of 

features. Comparing the classification results of the proposed combined classifiers, we 

can derive that all combiners have better prformance that any individual classifier alone. 

In addition to, it is verified that both the naïve Bayes and the Dempster – Shafer 

combiners on identical feature representations achieve better overall performance, with 

the naïve Bayes reaching the best performance improvement over the primary 

classifiers. The combiners based on distinct feature representations present lower 

overall performance and higher variability of their results. This is expected due to 

reduced content of information exploited. Despite that, their performance is still better 

than that of most primary classifiers, showing a good potential for accelarating the 

inspection process when speed can be balanced against effectiveness.  

According to market studies [231], the PCB inspection field is in need of reliable 

systems in order to sustain growth as component densities get higher. Use of exhaustive 

solder paste inspection helps reduce the contribution from the print process to solder 

joint defects, in-turn saving money by reducing the cost of scrap with minimal cost to 

rework (i.e. wash boards) and with no penalty in solder joint reliability [232]. Some 

companies claim this number to be as high as 80% of their overall defect Pareto chart 

[233]. Furthermore, the total misclassification cost in an automated optical inspection 

system is the product of the production volume, cost-per-defective PCB and accuracy. 

Taking into account the ranges of the first two variables it is evident that even a minor, 

yet consistent, improvement in classification accuracy is translated to amplified profits.  

Overall, classifier fusion can contribute to the visual solder-joint inspection domain 

by improving accuracy and speed. One of the conditions under which fusion is 

favorable is the high diversity in features and primary classifier outputs. Evaluation of a 

number of diversity metrics indicated that using distinct representations (different 
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feature sets) of leads, in most cases leads to a reduction in the correlation between the 

outputs of individual classifiers. This is attributed to the reduced correlation in the input 

vectors of distinct information content. Since this is a desirable feature in fusion, a 

further research is required to establish the effects of combining truly different input 

representations besides exploiting different attributes of the same primary source of 

information (as with the use of the same optical images to obtain the different features 

sets). Fusion at different levels (measurements, features, and outputs) can then be 

evaluated overall.  
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Chapter 9 

 
Conclusions and Future Research 
 
 

In this Ph.D. thesis, we have developed a variety of hybrid intelligent multi-

classifier approaches for machine vision systems targeted towards multi-lead surface 

mounted devices (SMDs) post-placement quality inspection using classical statistical 

and soft computing pattern recognition techniques. The purpose of this final chapter is 

to sum up the achievements of the work described in this thesis, to discuss its 

limitations and to address the directions of our future research. 

A novel framework to inspect the post placement quality of SMDs based on 2D 

images of the SMD under investigation, has been proposed in Chapter 5. The problem 

of estimating the quality measures has been reduced to that of computing the lead 

shifts along their trans-axial direction. The shift of each lead is estimated from area 

characteristics (geometric measurements), on the corresponding lead image, through a 

classification approach. The classifier is fed with the measurements of area 

characteristics of each lead and produces a classification of the lead shift to several 

classes. Subsequently, individual-lead classification results are used within our 

Bayesian estimation setup, to estimate the total component displacement and rotation 

with respect to its ideal position, (i.e., the central position of its pad area). Having 

these estimates, we can easily derive the three quality measures of interest for either 

the entire component or its individual leads. Notice that the composite component 

displacement is computed in this way under super-resolution scales. Thus, even if the 

classifier outputs discrete classes, the component displacement is computed with real 

accuracy. The developed algorithm has been tested with success on real PCB images, 

in order to assess its potential.     

In Chapter 6, we have considered two approaches to overcome the computational 

complexity of classical machine vision quality inspection of SMDs on a PCB. The 

first employs associative memories to implement the reduced information content in 

image intensity levels. The idea is to compare the edge structure of a lead image with 

that of stored fundamental patterns. The second scheme compresses the data space by 

considering only a directional projection function of the data. A non-linear filter based 
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on high order neural networks is used to encode the characteristics of each projection 

function. Both methodologies are tested on real industrial PCB images. The quality of 

inspection slightly deteriorates while the computational time is significantly reduced, 

when compared to classical (full information) visual inspection techniques.   

In Chapter 7, we have tested four combination methods for soft fusion of the 

outputs of multiple classifiers designed on the basis of optical features. The aim is to 

improve the performance of primary classifiers used for individual lead-image 

classification in post-placement quality inspection of components. A Bayes classifier 

and two well-known neural network classifiers, i.e. the MLP and LVQ classifiers, 

have been employed as baseline classifiers in this work for the discrimination of lead 

shifts in the examined images. In the sequel, the fusion of classifiers is achieved based 

on four approaches. The first combination approach uses the majority voting 

principle. The second scheme performs fusion by using Bayes naïve combiner. The 

third combination scheme involves the computation of fuzzy integrals. In the last 

scheme, the outputs of multiple classifiers are combined using Dempster – Shafer 

theory of evidence. Comparing the classification results of the proposed combined 

classifiers, we can conclude that each and every combiner achives better performance 

than any individual classifier alone. In addition, it is verified that both the naïve Bayes 

and the Dempster – Shafer combiners achieve better overall performance, with the 

naïve Bayes reaching the best performance improvement of 3.98 %. 

Finally, in Chapter 8, a machine vision system is investigated for quality 

inspection of SMDs on a PCB based on the fusion of two individual classifiers that 

have been developed in Chapter 6, each representing the given pattern by a distinct 

feature vector. We have further investigated on a theoretical framework to derive 

nontrainable combination rules based on distinct pattern representations. From our 

experimental results it has been shown that multiple classifiers based on distinct 

pattern representations can be used to improve the robustness of post placement 

quality inspection systems. 

A future research can be addressed  towards five directions: 

� Rough Set Theory instead of proposed methods in this thesis can be used for 

feature extraction and reduction of dimensionality purposes [217-218]. The 

ability to handle imprecise and incosistent information has become one of the 

most important requirements for a feature extraction system. Many theories, 

techniques and algorithms have been developed to deal with the analysis of 
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imprecise or inconsistent information. The most succesful ones are based on 

fuzzy set theory and the Dempster-Shafer theory of evidence. Rough Set 

Theory, which was introduced by Pawlak [219], is a new mathematical tool 

that can be employed to handle uncertainty and vagueness. It focuses on the 

discovery of patterns in inconsistent data and can be used as the basis to 

perform formal reasoning under uncertainty, machine learning and rule 

discovery. 

� Independent Component Analysis (ICA) [220-221] can be also employed 

for feature extraction and dimensionality reduction purposes [222] in our 

future work. The ICA is a well-established statistical signal / data processing 

technique that aims at decomposing a set of multivariate signals into a base of 

statistically independent data (or vectors/streams) with the minimal loss of 

information content. ICA generalizes the technique of Principal Component 

Analysis (PCA) and, like PCA has proven a useful tool for finding structure in 

data [220]. The main two appreciated uses of ICA are the linear blind source 

separation and the data representation and visualization [223].  

� Fuzzy Lattice Neurocomputing (FLN) classifiers [224 -225] can be used for 

classification purposes instead of the utilized primary classifiers in this thesis. 

Several FLN classifiers have been presented in the literature. The most 

popular among them is the σ-FLNMAP classifier [224-225], which forms a 

synergy of two σ-FLN modules, namely aσ-FLN  and bσ-FLN module 

interconnected via the MAP field abF . More specifically, the σ-FLNMAP is a 

lattice domain extension of the fuzzy-ARTMAP neural network [226]. In 

addition, the σ-FLNMAP is a promising candidate for majority-voting 

classification [227]. The idea is to train an ensemble of σ-FLNMAP modules, 

namely voters, using a different permutation of the training data per module; 

finally a testing datum is classified to the category that receives the majority 

vote in the ensemble. Hence, the Voting σ-FLNMAP classifier emerges [228], 

which may be regarded as a panel of experts each inducing its own set of rules 

from the training data.  

� Classifier combination based on confidence transformation. The 

conversion of classifier outputs to crisp class label or rank order simplifies 

combination but loses useful information, deteriorating the combination 
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performance. In essence, the classifier outputs should be transformed to 

uniform measures that have similar scales. Preferably, the transformed 

measures represent the degree of confidence of decision, like the class 

posterior probability or likelihood [229]. In the context of classifier 

combination, the transformation of classifier outputs into confidence measures 

has been addressed in [214], [229]. A confidence transformation method is the 

combination of a scaling function and a confidence type [214]. The scaling 

function shifts and re-scales the classifier output to a moderate range such that 

the outputs of different classifiers are comparable. The re-scaled output is 

transformed to confidence measure using an activation function corresponding 

to one confidence type (e.g. log-likelihood (linear), likelihood (exponential), 

sigmoid, or evidence) [214]. 

� An additional line of research that is being considered is the use of  Support 

Vector Machines (SVM) as an alternative method of classifier fusion. A 

specific SVM kernel which operates on the combined classifiers’ feature space 

has been designed for this purpose, but is still in primary stages of 

development. 
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Appendix A 

 
Specific Cases of Maximum-Likelihood Parameter 
Estimation 
 
 

A.1  The Gaussian Case: Unknown µµµµ 

To see how maximum-likelihood methods apply to specific cases, suppose that the 

samples are drawn from a multivariate normal population with mean µ  and 

covariance matrix Σ . For simplicity, consider first the case where only the mean is 

unknown [9], [11]. Under this condition, we consider a sample point kx  and find 

11
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Taking the gradient with respect to µ  we obtain 
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We see from Eqn (4.26) of Chapter 4 and Eqn (A.2) that the maximum-likelihood 

estimate for µ  must satisfy 

                    ( )1
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Multiplying by Σ and rearranging, we obtain  
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That is, the ML estimate of the unknown population mean, for the Gaussian densities, 

is just the arithmetic average of the training samples – the sample mean. 

 

 
A.2  The Gaussian Case: Unknown µµµµ and ΣΣΣΣ 
 
In the more general (and more typical) multivariate normal case, neither the mean µ  

nor the the covariance matrix Σ  is known. Thus, these unknown parameters 

constitute the components of the parameter vector θ . Consider first the univariate 

case with 1θ µ=  and 2
2θ σ= . Here the log-likelihood of a single point is 

             ( ) ( ) ( )2

2 1
2

1 1
ln | ln 2

2 2k kL p x xπθ θ
θ

≡ = − − −θ θ                       (A.5) 

and its derivative is  
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Applying Eq. (4.35) to the full log-likelihood leads to the conditions 
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where 1̂θ  and 2̂θ  are the maximum-likelihood estimates for 1θ  and 2θ , respectively. 

By substituting 2
1 2
ˆ ˆˆ ˆ and µ θ σ θ= =  and doing a little rearranging,  we obtain the 

following maximum-likelihood estimates for 2 and µ σ : 
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While the analysis of the multivariate case is basically very similar, considerably 

more manipulations are involved. Just as we would predict, however, the result is that 

the maximum-likelihood estimates for µ  and Σ  are given by  

                                       
1

1
ˆ

n

k
kn =

= ∑µ x                                                                      (A.11) 

 
 
and  

                          ( )( )
1

1ˆ ˆ ˆ
n

T

k k
kn =

Σ = − −∑ x µ x µ                                                           (A.12)  

Thus, once again we find that the maximum-likelihood estimate for the mean 

vector is the sample mean. The maximum likelihood estimate for the covariance 

matrix is the arithmetic average of the n matrices ( )( )ˆ ˆ T

k k− −x µ x µ . Because the true 

covariance matrix is the expected value of the matrix ( )( )ˆ ˆ T

k k− −x µ x µ , this is also a 

very satisfying result. 
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Appendix B 
 
 
Image Feature Extraction Algorithms 
 
 
B.1  Boundary-based features 
 
Boundary-based features describe the boundary information. Once the objects are 

separated from the background by segmentation, their boundary coordinates can be 

used to extract external features, such as perimeter, curvature, signature, bending 

energy, Fourier descriptors, 2-D transform coefficient features (e.g. Fourier, Haar, 

Hadamard, or Wavelet transform), image codes (e.g. run code, chain codes), etc [22 – 

27]. 

 

• Perimeter 
The pixel distance around the circumference of the object. To accurately compute 

this, where a boundary pixel contacts its neighbor vertically or horizontally, the pixel 

distance is 1 unit. Where a pixel contacts a neighbor diagonally, the pixel distance is 

the square root of  2, or 1.414 units. The result is a measure of object boundary length. 

 
• Curvature  
The curvature scalar descriptor (also called boundary straightness) finds the ratio 

between the total number of boundary pixels (length) and the number of boundary 

pixels where the boundary direction changes significantly. The smaller the number of 

direction changes the straighter the boundary. The evaluation algorithm is based on 

the detection of angles between line segments positioned b boundary pixels from the 

evaluated boundary pixel in both directions. The angle need not be represented 

numerically; rather, relative position of line segments can be used as a property. The 

parameter b determines sensitivity to local changes of the boundary direction. 

Curvature computed from the chain code can be found in [22-27], and the tangential 

border representation is also suitable for curvature computation. 

 

• Signature  

The signature of a object (or region) may be obtained as a sequence of normal contour 

distances The normal contour distance is calculated for each boundary element as a 
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function of the path length. For each border point A, the shortest distance to an 

opposite border point B is sought in a direction perpendicular to the border tangent at 

point A. For example the polar radii signature of an object shows the relationship 

between the distance from its centroid to points along its boundary as a function of 

angle. This is an orientation-invariant feature which allows an object to be compared 

with a standard prototype by cyclically shifting the signature of one with respect to 

the other in steps while checking for the best match [22-23].  For a circular object the 

graphical signature would simply be a horizontal line with the ordinate corresponding 

to the radius of the circle. 

 
• Bending energy 
The bending energy (BE) of a border (curve) may be understood as the energy 

necessary to bend a rod to the desired shape, and can be computed as a sum of squares 

of the border curvature c(k) over the border length L. 

 

                                                     ( )∑
=

=
L

k

kc
L 1

21
BE   

Bending energy can easily be computed from Fourier descriptors using Parseval’s 

theorem [22]. To represent the border, Freeman’s chain code or its smoothed version 

may be used. 

 

• Chord distribution  

A line joining any two points of the region boundary is a chord, and the distribution of 

lengths and angles of all chords on a contour may be used for shape description. Let 

1),( =yxb  represent the contour points, and 0),( =yxb  represent all other points. 

The chord distribution can be computed as 

 

                                 ∑∑ ∆+∆+=∆∆
ji

dxdyyjxibjibyxh ),(),(),(  

 
B.2   Region-based features 
 
We can use boundary information to describe a region, and shape can be described 

from the region itself [22-27]. A large group of shape description techniques is 

represented by heuristic approaches, which yield acceptable results in description of 
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simple shapes. Region area, rectangularity, elongation, direction, compactness, etc., 

are examples of these methods. Unfortunately, they cannot be used for region 

reconstruction and do not work for more complex shapes. Other procedures based on 

region decomposition into smaller and simpler sub-regions must be applied to 

describe more complicated regions, then sub-regions can be described separately 

using heuristic approaches. Objects are represented by a planar graph with nodes 

representing sub-regions resulting from region decomposition, and region shape is 

then described by the graph properties [22-27]. There are two general approaches to 

acquiring a graph of sub-regions: The first one is region thinning leading to the region 

skeleton, which can be described by a graph. The second option starts with the region 

decomposition into sub-regions, which are then represented by nodes, while arcs 

represent neighborhood relations of sub-regions. It is common to stipulate that sub-

regions be convex. 

 
 
B.2.1  Simple scalar region descriptors 
 
A number of simple heuristic shape descriptors exist which relate to statistical feature 

description. These methods are basic and are used for description of sub-regions in 

complex regions, and may then be used to define graph node classification [22-27]. 

 
 
• Area   
The simplest and most natural property of a region is its area. The area is computed as 

the total number of pixels inside, and including, the object boundary. The result is a 

measure of object size. The area measure usually does not include object hole areas. 

Assuming that labeling has identified regions, the algorithm of calculated area in 

quadtrees may be used. If the region is represented by the (anti-clockwise) Freeman 

chain code, the algorithm of region area calculation from Freeman 4-connectivity 

chain code representation provides the region.  

 
 
• Compactness 
Compactness is a ratio based on the area and perimeter measures of an object. The 

result is a measure of object roundness or compactness, given as a value between 0 

and 1. The greater the ratio, the rounder the object. If the ratio is equal to 1, the object 
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is a perfect cycle. As the ratio decreases from 1, the object departs from a circular 

form. Compactness is given by  

 

                                         
( )2

4

Perimeter

Area
sCompactnes

×
=

π
 

      

• Euler’s number 

Euler’s number ϑ (sometimes called genus or the Euler-Poincaré characteristic) 

describes a simple, topologically invariant property of the object. It is based on S, the 

number of contiguous parts of an object, and N, the number of holes in the object (an 

object can consist of more than one region, otherwise the number of contiguous parts 

is equal to one. Then  

                                                         NS −=ϑ     

Special procedures to compute Euler’s number can be found in [22]. 

 
 
• Projections 
Horizontal and vertical region projections )( and  )( jpip vh are defined as 

 

                      ( ) ( , )             ( ) ( , )h v
j i

p i f i j p j f i j= =∑ ∑             

Region description by projections is usually connected to binary image processing. 

Projections can serve as a basis for definition of related region descriptors; for 

example, the width (height) of a region with no holes is defined as the maximum 

value of the horizontal (vertical) projection of a binary image of the region.  

 
 
• Major Axis (or Principal Axis) 
The Major axis is the ),( yx endpoints of the longest line that can be drawn through 

the object. The major axis endpoints ( ) ( )2211 ,  and  , yxyx  are found by computing the 

pixel distance between every combination of border pixels in the object boundary and 

finding the pair with the maximum length. 

 

• Major Axis Length  
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The Major Axis Length is the pixel distance length between the major axis endpoints. 

The result is a measure of object length.  

 

                      ( ) ( )2
12

2
12    yyxxLengthAxisMajor −+−=  

 

where  ( ) ( )2211 ,  and  , yxyx  are the major axis endpoints. 

 

• Major Axis Angle 

The Major Axis Angle is the angle between the major axis and the x-axis of the 

image. The angle can range from 0º to 360º. The result is a measure of object 

orientation.  

 

                   
( )
( ) 









−

−
= −

12

121 tan   
xx

yy
AngleAxisMajor  

 

• Minor Axis  

The Minor Axis is the ),( yx endpoints of the longest line that can be drawn through 

the object while maintaining perpendicularity with the major axis. The minor axis 

endpoints ( ) ( )2211 ,  and  , yxyx  are found by computing the pixel distance between the 

two border pixel endpoints. 

 

 

• Minor Axis Width  

The Minor Axis Width is the pixel distance length between the minor axis endpoints. 

The result is a measure of object width. 

 

                  ( ) ( )2
12

2
12    yyxxWidthAxisMinor −+−=  

where  ( ) ( )2211 ,  and  , yxyx  are the minor axis endpoints. 

 

 

• Aspect Ratio (or Eccentricity) 

The Aspect Ratio is the ratio of the width of the minor axis to the length of the major 

axis. This ratio is computed as the minor axis width distance divided by the major axis 
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length distance. The result is a measure of object elongation, given as a value between 

0 and 1. If the ratio is equal to 1, the object is roughly square or circularly shaped. As 

the ratio decreases from 1, the object becomes more elongated.  

 

                           
LengthAxisMajor

WidthAxisMinor
RatioAspect

  

  
   =  

 

 

• Elongation (Bounding Box Area) 

Elongation is a ratio between the length and width of the region-bounding rectangle 

(bounding box area). This is the rectangle of minimum area that bounds the shape, 

which is located by turning in discrete steps until a minimum is located. This criterion 

cannot succeed in curved regions, for which the evaluation of elongation must be 

based on maximum region thickness. Elongation can be evaluated as a ratio of the 

region area and the square of its thickness. The maximum region thickness (holes 

must be filled if present) can be determined as the number of erosion steps [22] that 

be applied before the region totally disappears. If the number of erosion steps is d, 

elongation is then  

                                                   
( )22

  
d

Area
Elongation =  

• Rectangularity 

Let kF be the ratio of region area and the area of a bounding rectangle, the rectangle 

having the direction k. The rectangle direction is turned in discrete steps, and 

rectangularity measured as a maximum of this ratio kF : 

 

                                      ( )k
k

Fxmagularityc =tanRe  

The direction need only be turned through one quadrant. Rectangularity assumes 

values from the interval (0,1], with 1 representing a perfectly rectangular region. 

Sometimes, it may be more natural to draw a bounding triangle; a method for 

similarity evaluation between two triangles called sphericity [22-23]. 

 

• Direction 
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Direction is a property, which makes sense in elongated regions only. If the region is 

elongated, direction is the direction of the longer side of a minimum bounding 

rectangle. If the shape moments are known, the direction θ  can be computed as 

 

                                               








−
= −

0220

111 2
tan

2

1

µµ
µ

θ  

 

It should be noted that elongation and rectangularity are independent of linear 

transformations, translation, rotation, and scaling. Direction is independent on all 

linear transformations, which do not include rotation. Mutual direction of two rotating 

objects is rotation invariant. 

 

 

B.2.2  Moments 

 

Region moment representations interpret a normalized gray-level image function as a 

probability density of a 2D random variable [22-23]. Properties of this random 

variable can be described using statistical characteristics – moments. Assuming that 

non-zero pixel values represent regions, moments can be used for binary or gray-level 

region description. A moment of order (p+q) is depended on scaling, translation, 

rotation, and even on gray-level transformations and given by 

 

                                                 ∑∑=
j

qp

i
pq jifjim ),(  

 

where ji, are the pixel coordinates.  

Translation invariance can be achieved if we use the central moments, 

 

                                      ( ) ( )∑∑ −−=
j

q
c

p
c

i
pq jifyjxi ),(µ  

where cc yx , are the coordinates of the region’s center of gravity (centroid), which can 

be obtained using the following relationships: 
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In the binary case, 00m  represents the region area. 

 

 

B.2.3  Convex hull 

 

A region R is convex if and only if for any two points Rxx ∈21, , the whole line 

segment 21xx  defined by its end points 21, xx  is inside the region R. The convex hull 

of a region is the smallest convex region H that satisfies the condition HR ⊆ . The 

convex hull has some special properties in digital data, which do not exist in the 

continuous case. For instance, concave parts can appear and disappear in digital data 

due to rotation, and therefore the convex hull is not rotation invariant in digital space. 

The convex hull can be used to describe region shape properties and can be used to 

build a tree structure of region concavity.  

The region convex hull construction algorithm [170]  can define a discrete convex 

hull. This algorithm has complexity ( )2nΟ . The simple polygon convex hull detection 

algorithm [170] describes a more efficient approach.  
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Appendix C 

 
Otsu’s Thresholding Method 
 

In this Appendix, we review the Otsu method for selecting optimal image 

threshold [152], [169]. For simplicity, we consider a single thresholding problem 

here. This corresponds to the most frequent requirement in image thresholding, to 

separate an image into two classes, foreground and background. Generalization of the 

formulation to multilevel thresholding problems is discussed in Subsection 4.2.6.2 of 

Chapter 4. 

An image can be represented by a 2D gray-level intensity function ( ),I x y . The 

value z of ( ),I x y is the gray-level (or the pixel intensity value), ranging from 0 to 

1L − , where L is the number of distinct gray-levels.  

In the case of single thresholding, the pixels of an image are divided into two 

classes { }1 0,1,...,C T=  and { }2 1,  2,...,  1C T T L= + + − , where T  is the threshold 

value. 1C  and 2C  are normally corresponding to the foreground (objects of interest) 

and the background.  

We make use of the following notations: 

• { }1 1PrP C= =  a priori probability of class 1C  

• { }2 2PrP C= =  a priori probability of class 2C  

• ( ) { }1 1Pr |p z z C= =  probability density function of gray-level  z  in  1C  

• ( ) { }2 2Pr |p z z C= =  probability density function of gray-level  z  in  2C  

• ( )h z  is the normalized histogram function which represents the 

percentage of pixels having gray-level z  over the total number of pixels 

of the image. 

• the probability density function of all pixel gray levels in the image, 

corresponding to the normalized pixel intensity histogram, is            

( ) ( ) ( )1 1 2 2p z P p z P p z= + . 

Otsu has developed a thresholding method based on discriminant analysis which 

maximizes some measures of class separability [152], [169]. One of the measures is  
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                       ( )
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where  

                             ( ) { } ( )1 1
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z
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                       ( ) { } ( )1 1
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                       ( ) { } ( )
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    ( ) ( ) { } ( ) ( )
1 1
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1
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T z m T z C z m T h z
P

σ
− −
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In the above equations, 1C  and 2C  are dependent of T  and contain pixels with gray 

values in  [ ]0,T  and [ ]1, 1T L+ −   respectively. 

To maximize the criterion function in Eq. (C.1), the means of the two classes 

should be as well separated as possible and the variances in both classes should be as 

small as possible. This is similar to the Fisher criterion for pattern classification  [9]. 

The optimal threshold value *OTT  can be determined by searching for the value in 

the range [ ]0, 1L −  so that ( )OTJ T  is the maximum. That is,  

                                             ( )
1

*

0 1
arg maxOT OT

T L
T J T

≤ ≤ −
=                                  (C.8) 

Otsu has pointed out that the criterion function 
1OTJ  is equivalent to the following 

alternative criterion function [152] 

                             ( )
( ) ( )2

2

2 2
1 1 2 2( )OTJ T

P T T P T

σ
σ σ

=
+

                                 (C.9) 

where                                    ( )
1

22

0

( )
L

z

z m T h zσ
−

=

= −  ∑                                     (C.10) 
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where                                    ( ) ( )
1

1 1 2 2
0

( )
L

z

m zh z Pm T P m T
−

=

= = +∑                         (C.11) 

In this Ph.D. thesis, for Otsu’s method, we make use of the following criterion 

function 

                         ( ) ( ) ( ) ( ) ( )2 2
1 1 2 2

2OT

P T T P T T
J T

σ σ
σ
+

=                                  (C.12) 

This is simply the inverse of  ( )
2OTJ T . Now the optimal threshold is the gray – level 

at which the criterion function ( )OTJ T  is minimum, similar to the other two criterion 

functions (C.1) and (C.9). That is,  

                                            ( )*

0 1
arg minOT OT

T L
T J T

≤ ≤ −
=                                              (C.13) 

In order to generalize to multilevel thresholding problems (i.e. four-level Othu’s 

algorithm), the aforementioned Otsu’s method can be formulated using the following 

generalized equation: 

                  ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1

1 2
0 0 1

, , ,
L T L

z z z T

J T h z c z T h z c z T h z c z T
− −

= = = +

= = +∑ ∑ ∑              (C.14) 

where ( ),c z T can be considered as the cost to pixels with gray level z when the 

threshold is set at value T. The cost function is split into two parts, ( )1 ,c z T  and 

( )2 ,c z T , which provide different weights for pixels in two classes. 

Based on the definitions of ( ) ( ) ( ) ( )1 2 1 2, , ,P T P T T Tσ σ  in Eqs (C.2) to (C.7) and 

the definition of  σ  in Eqs (C.10) to (C.11), we can rewrite the modified criterion 

function as 

( ) ( )
( )

( )
( )

2 2
1

1 2

2 2
0 1

T L
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z z T

z m T z m T
J T h z h z

σ σ

−

= = +

− −      = +∑ ∑                              (C.15) 

Thus, the cost functions are 
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and  
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Appendix  D 
 
 

Proofs  for Bayesian Displacement Estimator 
 
 
 
D1. Approximation of conditional integral 
 
From the central value theorem we conclude that for the continuous variable x  in the 

interval [ ],, ii ba  there exists a certain value [ ]ii bx ,0 α∈  that describes the integral in 

the form: 

  
( )

( )
( )

e dx b a e
x s

i i

x s

a

b

i

i −
−

−
−

= −∫
2

2
0

2

22 2σ σ                                                                                (D.1)                            

   

Our task is to find, or approximate, this value x0 . Eqn (D.1), is re-written: 
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0 00
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   − = −
      

∫ ∫                                            (D.2) 

   

In this form, the left hand side represents the area A at Figure D.1, while the right 

hand side describes the area B. Assuming linearity of the exponent function in the 

interval [ ]a xi , 0  and [ ]x bi0 , , the area A is equal to that of A′  in Figure D.1. The same 

holds for the areas B, B′ . Thus (D.2) can be re-written as: 
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∫ ∫                                                    (D.3)  
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Figure D.1 Approximation of 
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where now the left hand side represents the area A′  and the right hand side the area 

B′ . Hence, 
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Approximating the integral of the left hand side with the trapezoid rule we obtain: 
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Thus, approximately: 

                                 i
ii l

ba
x =

+
=

20                                                                      (D.6)                                                                              

   

since the quantized measurement assumes the central value of its interval. 
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D2.  Statistics & Bounds of the Displacement Estimator 

 

D2.1  Statistics of Quantized Classification y 

 

Considering the case that ( ) ( ), /k r r
i k iP y i rα ω δ= − , with ( )i rδ −  a δ -function we 

obtain the estimator 
1

1
ˆ

K
r
k

k

s y
K =

= ∑ . The mean and variance of the estimator are 

therefore directly related with those of the quantized variable y. Let us consider the 

quantization process and its effect on the Gaussian distribution of x. For the mean of y 

for specific (fixed) s  we have 
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where δ ∈ −





T T

2 2
, . 

Let now 0l  indicate the level of quantization that includes the mean s  into its interval. 

We can interprete the mean in terms of its level as  

        { } ( ) ( )
2 2 2

0

1

/ 2
/ 2

0

/ 2

1

2

TN
l s nT

n N T

T
E Y l nT e d

T
δ σ δ

πσ
− − + −

=− −

= +∑ ∫                                   (D.8) 

   

Using the central value theorem to approximate the integral in (D.8), we obtain 

similar to Eqn (D.1):  

            { } ( ) ( )
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/ 2
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N
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at δ = 0 . Instead, we can preserve the form of (D.8) that can be interpreted as the 

mean value over a random variable δ , uniformly distributed. The mean value of y 

depends on the exact position of s  within the interval 0 0,
2 2

T T
l l
 

− +  
. For the 

ensemble of the problem it is reasonable to assume that the actual displacement s will 
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be located anywhere in this interval with equal probability. Notice that this 

assumption does not model a distribution of s  in its entire range of definition, as in a 

map consideration. It rather models the error 0l s−  in the interval 




−
2

,
2

TT
 as to 

derive an approximation of the mean of the quantized estimator y irrespective of the 

position of  s . Figure D.2 clarifies the aforementioned statements. 

Consider 0l s δ− = , thus absorbing the uniformly distributed random variable 

into the displacement between the mean (s ) and the midpoint (0l ) of the quantization 

interval that includes this mean. In this form: 
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with z nT= +δ in the entire range of definition of the Gausian distribution.  
 

         

Figure D.2 The quantization process and its effect on the Gaussian distribution. 
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Similarly, for the variance of y we have: 
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D2.2 Statistics of the Estimator ŝ  
 
The maximum likelihood estimator is given in the form : 
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The form of this estimator is related more to the quantization levels rl (classes), than 

to the observations r
ky  themselves. In other words, it is a function of the classes 

depending on the outcome of each observation. Therefore, to compute the statistics of 

this estimator we focus on the distribution of classes within the observations, rather 

than on the statistics of the observations themselves. This consideration shares a lot of 

similarities with the Monte Carlo approximation of a parameter's distribution. Hence, 

for large number of observations K we obtain: 
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To simplify the computation, we assume that the classification error ( )/r iP l ω is 

similarly distributed for all classes rω  or levels rl and the error for each class is 
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symmetrically distributed around its own level. In other words, 

( ) ( )P l P r ir i/ω = − or ( ) ( )P l P li n i n± =/ /ω ω0 . Under these conditions  
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and  
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thus revealing an unbiased estimator. To be more precise, as in Section D2.1, the 

maximum likelihood estimator ̂s  for fixed s  is almost unbiased; its small bias is a 

function of 0s l− . For 0l s− uniformly distributed in 




−
2

,
2

TT
, the estimator ̂s  is 

unbiased. 

Consider now the variance of the estimator for large number of observations. In 

general: 
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or  
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Thus, 
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This is the same as the variance of the estimator when ( ) ( ), /k r
i r iP l r iα ω δ= = − , 
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From (D.18) and (D.19) we conclude ( ){ }E s sɵ − =
2 21

Κ
σ , indicating a standard error 

1 2

Κ
σ  that is reducing with the number of observations considered. 
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