Risk Analysis of Ground Water Contamination Detection Networks, Using Stochastic Modeling and Decision Theory

PhD Thesis submitted by

Konstantinos Papapetridis

Advisor:

Assoc.Prof. Dr Evan Paleologos

In Partial Fulfillment of the Requirements for the degree of Philosophy Diploma

Technical University of Crete School of Environmental Engineering Chania, Crete 20 August 2013

©[PhD Thesis Konstantinos Papapetridis All Rights Reserved

to Argyro and to Aella

Acknowledgements

I wish to thank my advisor, Associate Professor Dr Evan Paleologos, for giving me the opportunity to start a PhD in the field of Hydrology. I appreciate his faith in me, as he has never failed to provide me with the moral, professional and financial support necessary during this PhD. Although very busy, he has always found time to discuss the research results and offer his valuable advice.

I would also like to thank Professor Dr George Karatzas and Professor Dr Nikolaos Nikolaidis, members of my PhD Committee, for their guidance and their useful comments throughout my research.

Moreover, I am grateful to Professor Dr Aristotelis Mantoglou for providing me with the 2-D Spectral Turning Bands source code used in the computational model of my research.

I would like to extend my gratitude to the Technical University of Crete, as it supported me with a research grant.

Furthermore, I would like to thank Ms Georgia Poniridou, secretary of the Environmental Engineering Department of the Technical University of Crete, for all the procedural help she provided during my research, making my life a little bit easier.

I would also like to thank my family for always encouraging and supporting me, especially my wife, Argyro Arampatzoglou, for all the editing work and her valuable linguistic corrections in the text.

TABLE OF CONTENTS

Acknowledgements v						
Table of Contents						
Table of Figures 10						
Table o	Table of Tables 14					
SUMMARY						
ПЕРІЛ	ПЕРІЛНѰН					
CHAP	TER	1:_Introduction				
1.1	Gro	undwater Pollution				
1.2	Gro	undwater Protection				
1.3	Lan	dfills and Leachate				
1.4	Pro	blem Definition				
1.5	Res	earch Objectives				
1.6	The	sis Outline				
CHAP	TER	2:_Two-dimensions model structure				
2.1	Intr	oduction 45				
2.2	Sto	chastic Approach				
2.3	Sim	ulating Random Fields: Turning Bands 47				
2.3	3.1	TBM Theoretical Background 49				
2.3	3.2	Establishment of the One-dimensional Linear Process				
2.3	3.3	Number and Distribution of Turning Bands				
2.3	3.4	Spectral Discretization and Random Fields Generation				
2.4	Flo	w Equation				
2.5	Vel	ocity Field 56				
2.6	Con	servation Hypothesis and Diffusion – Dispersion Equation				

2.7	Ran	dom Walk Tracking Particle	58
2.8	Prot	elem Uncertainties and Model Structure	64
2.9	Sim	ulation Model	65
2.9	9.1	Model Structure	65
СНАР	TER	3:Instantaneous groundwater pollution detection probability	in
		heterogeneous aquifers	
3.1	Intro	oduction	71
3.2	Mod	lel Description	73
3.3	Nun	ber of Simulations and Tracking Particles	77
3.4	Resi	Ilts and Discussion	82
3.4	4.1	Effect of Number and Distance of Wells on Detection Probability	82
3.4	4.2	Effect of Field's Heterogeneity and Dispersion	84
3.4	4.3	Effect of Sampling Frequency	84
3.5	Rem	edial Action Response Delay	87
3.6	Con	clusions	91
СНАР	TER	4: Sampling frequency of groundwater monitoring system a	ınd
		remediation delay at contaminated sites	
4.1	Intro	oduction	94
4.2	Mod	lel Description	96
4.3	Sam	pling Frequency of Groundwater Monitoring	98
4.4	Rem	ediation Delay 1	08
4.5	Con	clusions 1	11
СНАР	TER	5: Parameters on stochastic simulation of contaminant detect	ion
		probability	
5.1	Intro	oduction 1	13
5.2	Moc	lel description and simulation results 1	14
5.	2.1	Control Area Size 1	15
5.	2.2	Multiple Point Sources	17
5.2	2.3	Quantity of Pollution	21

5.3	Conclusions 124
СНАР	TER 6: Modeling of aquifer pollution detection probability triggered by precipitation
6.1	Introduction
6.2	Model Description
6.3	Simulation Results
6.	3.1 Number of Wells
6.	3.2 Field Heterogeneity
6.	3.3 Dispersion136
6.	3.4 Sampling Frequency
6.	3.5 Time of detection and contaminated area
6.	3.6 Remediation delay
6.4	Conclusions 149
СНАР	TER 7: Conclusions
7.1	Instantaneous groundwater pollution detection probability in heterogeneous
aquifers	
7.2	Sampling frequency of groundwater monitoring system and remediation delay
at contamin	nated sites 154
7.3	Parameters on stochastic simulation of contaminant detection probability 155
7.4	Aquifer pollution detection probability triggered by precipitation 155
Appen	dix A
2-D So	urce Code
A-1	Instantaneous Pollution
A-2	Precipitation Event Pollution Source Code
A-3	Flow Numerical Solution
A-4	Flow Numerical Solution and STUBA Subroutine
Appen	dix B
Tables	of Simulation Results
B .1	Instantaneous Pollution

B.2	Precipitation Trigered Pollution	263
Referen	ces	277

Table of Figures

Figure 1.1: Main landfill characteristics and leachate escape into saturated zone
Figure 2.1: Turning Bands Mechanism (Mantoglou and Wilson, 1982)
Figure 2.2: A 2-D hydraulic conductivity field generated by STUBA, where $\mu_{K} = 2.3$, $\sigma_{\ln K}^{2} = 2.0$ and
$\lambda = 20m$
Figure 2.3: 3-D Field Discretization
Figure 2.4: Operating principle of Monte Carlo method
<i>Figure 2.5:</i> Instantaneous case pollution Monte Carlo simulation process diagram
<i>Figure 2.6:</i> Precipitation triggered pollution case Monte Carlo simulation process diagram
Figure 3.1 : Section of simulated flow field with a rectangular landfill $W \times L$, a 2000 particles plume, and a magnified well-detection area
Figure 3.2: Detection probability P _d versus number of Monte Carlo simulations for 3 cases of well arrangement, heterogeneity, and dispersion
Figure 3.3: Comparison between numerical and theoretical P _d versus log ₁₀ of number of tracking particles N, N=500, 1,000, 2,000, 4,000, 8,000, 16,000, 32,000, 64,000, 128,000, 256,000, and 512,000
Figure 3.4: Optimum detection distance for 3, 6, and 12 wells. Top: Heterogeneous (σ^2_{InK} =2.00, a_T =0.20m) flow field. Bottom: homogeneous flow field with a_T =0.001m
Figure 3.5: Dependence of the probability of detection on sampling frequency (5a: homogeneous,
a_{T} =0.01m, and 5b: heterogeneous aquifer, σ^{2}_{InK} =1.0, a_{T} =0.20m)
Figure 3.6: Effect of remedial action response: Corrected detection probability P_d^{cor} for six monitoring wells, sampling once a day, in a homogeneous field (a: a_T =0.01m, and b: a_T =0.10m), as a function of remedial action delay
Figure 3.7: Corrected detection probability P_d^{cor} for a heterogeneous field $\sigma_{lnk}^2=1.5$, $\alpha_T=0.05m$ for twelve monitoring wells as a function of remedial action delay and sampling frequency91
Figure 4.1: Half section of simulated flow field illustrating the rectangular CPSA, an 8000 particles plume evolved for 10 years, and a magnified well-detection area (wells are deliberately placed further away for illustration purposes)

Figure 4.2: Percent detection change between daily and annual sampling for different well arrangements and types of soil 101
Figure 4.3: 12 monitoring wells: $P_d / P_{d(D)}$ versus $\log_{10}(\alpha T)$ for homogeneous soils $\sigma lnK2 = 0.0103$
Figure 4.4: $P_d / P_{d(D)}$ versus $\sigma ln K2$: (a) $\alpha T = 0.20m$, and (b) $\alpha T = 0.50m$ for 12 monitoring wells
Figure 4.5: $< T_{obs} > / < T_{ar} >$ versus sampling frequency for an 8-well monitoring arrangement in different
hydrogeological environments106
Figure 4.6: <a<sub>obs>/<a<sub>ar> versus sampling frequency for an 8-well monitoring arrangement in different hydrogeological environments</a<sub></a<sub>
Figure 4.7: $AtAt + dt$ versus $log(\alpha T)$ for 6 monitoring wells and different Remedial Action Delay Times
(RADTi): (a) homogeneous, and (b) heterogeneous soils with $\sigma Y2 = 1.0$
Figure 4.8: $AtAt + dt$ versus heterogeneity $\sigma Y2$ for fixed dispersion $\alpha T = 0.02 m$ for different
Remedial Action Delay Times (RADTi) and 3 monitoring wells
Figure 5.1: Detection Probability P_d change in relation to control area relative size, in a homogeneous
low (a) and high (b) dispersion field, and in a heterogeneous low (c) and high (d) dispersion field
Figure 5.2: Detection probability P_d change shown as monitoring wells density in relation to control
area width is kept constant and equal to 0.05117
Figure 5.3: Change in detection probability P_d for a single source (dashed lines) and dual source (solid
lines) pollution, as the number of wells is increased, for homogeneous $\left(\sigma_{_{\ln K}}^2=0 ight)$ and
heterogeneous $(\sigma_{\ln K}^2 = 1, \sigma_{\ln K}^2 = 2)$ cases, considering four dispersion cases, $a_T = 0.01$ m (a)
, $a_{\rm T}=0.01{\rm m}$ (b), $a_{\rm T}=0.01{\rm m}$ (c) and $a_{\rm T}=0.01{\rm m}$ (d)
Figure 5.4: Detection probability P_d relative percentage difference between a dual and a single
pollution source case in two different transverse dispersion coefficient cases
Figure 5.5: Change of detection probability P_d for a single source (dashed lines) and dual source (solid
lines) pollution, as sampling frequency changes from daily (ED), monthly (1M), bimonthly (2M), quarterly (3M), every four months (4M), biannually (6M) and annually (12M) 121

- Figure 6.7: Percentage change of P_d as sampling frequency changes for a 4-well monitoring installation among daily (D), monthly (1 M), bimonthly (2 M), quarterly (3 M), every 4 months (4 M), biannual (6 M) and annual (A) sampling. The first column of the graphs reflects the results of an instantaneous case of pollution and the second column reflects a

precipitation event related pollution, while horizontally heterogeneity changes, as is reflected through the variance of the InK......140

Table 3.1: Corrected detection probability P_d^{cor} for two aquifers with $\sigma_{lnK}^2 = 0.0$ and $\sigma_{lnK}^2 = 1.0$, and two
different sampling frequencies, once a day and biannually
Table 4.1: Detection Probability P_d (%)
Table 4.2: Detection Probability P_d (%)100
Table B.1: Detection probability in case of $\sigma_{\ln K}^2 = 0.0$ and $\sigma_{\ln K}^2 = 0.5$, for different sampling
frequencies
Table B.2: Detection probability in case of $\sigma_{\ln K}^2 = 1.0$ and $\sigma_{\ln K}^2 = 1.5$, for different sampling
Jiequencies
Table B.3: Detection probability in case of $\sigma_{\ln K}^2 = 2.0$, for different sampling frequencies
Table B.4: Detection probability, average detection time, contaminated area in case of detection
failure and relative contaminated area to control area L for various RADTi in case of
$\sigma^2_{\ln K}$ = 0.0 assuming daily (ED) and monthly (1M) sampling frequencies
Table B.5: Detection probability, average detection time, contaminated area in case of detection
failure and relative contaminated area to control area L for various RADTi in case of
$\sigma^2_{\ln K}$ = 0.0 assuming bimonthly (2M) and quarterly (3M) sampling frequencies
Table B.6: Detection probability, average detection time, contaminated area in case of detection
failure and relative contaminated area to control area L for various RADTi in case of
$\sigma^2_{\ln\kappa}$ = 0.0 assuming every 4 months (4M) and biannually (6M) sampling frequencies245
Table B.7: Detection probability, average detection time, contaminated area in case of detection
failure and relative contaminated area to control area L for various RADTi $$ in case of
$\sigma^2_{\ln K} = 0.0$ assuming annually (12M) sampling frequency
Table B.8: Detection probability, average detection time, contaminated area in case of detection
failure and relative contaminated area to control area for various RARDTi in case of
$\sigma^2_{\ln K}$ = 0.5 assuming daily (ED) and monthly (1M) sampling frequencies
Table B.9: Detection probability, average detection time, contaminated area in case of detection
failure and relative contaminated area to control area for various RADTi in case of

- **Table B.10:** Detection probability, average detection time, contaminated area in case of detection failure and relative contaminated area to control area L for various RADTi in case of $\sigma_{\ln K}^2 = 0.5$ assuming every 4 months (4M) and biannually (6M) sampling frequencies 249

- **Table B.14:** Detection probability, average detection time, contaminated area in case of detectionfailure and relative contaminated area to control area L for various RADTi in case of $\sigma_{\ln K}^2 = 1.0$ assuming every 4 months (4M) and biannually (6M) sampling frequencies...253

- **Table B.18:** Detection probability, average detection time, contaminated area in case of detection failure and relative contaminated area to control area L for various RADTi in case of $\sigma_{lnK}^2 = 1.5$ assuming every 4 months (4M) and biannually (6M) sampling frequencies...257

- **Table B.22:** Detection probability, average detection time, contaminated area in case of detectionfailure and relative contaminated area to control area L for various RADTi in case of $\sigma_{\ln K}^2 = 2.0$ assuming every 4 months (4M) and biannually (6M) sampling frequencies ...261

- **Table B.28:** Precipitation triggered pollution detection probability, average detection time, contaminated area in case of detection failure and relative contaminated area to control area for various RADTi in case of $\sigma_{\ln K}^2 = 0.0$ assuming annually sampling frequency.....267
- Table
 B.29: Precipitation triggered pollution detection probability, average detection time,

 contaminated area in case of detection failure and relative contaminated area to control

- **Table B.32:** Precipitation triggered pollution detection probability, average detection time,contaminated area in case of detection failure and relative contaminated area to controlarea for various RADTi in case of $\sigma_{\ln K}^2 = 1.0$ assuming annually sampling frequency 271

- **Table B.36:** Precipitation triggered pollution detection probability, average detection time,
contaminated area in case of detection failure and relative contaminated area to control
area for various RADTi in case of $\sigma_{\ln K}^2 = 2.0$ assuming annually sampling frequency.....275

SUMMARY

Groundwater is an important freshwater natural resource. People used to believe that natural filtering resulting from water working its way through the subsurface was enough to provide sufficient protection from contamination to allow untreated water to be delivered for domestic or agricultural uses. Then dramatic incidents in the 70s (e.g. Love Canal case) made everybody realize that groundwater had been contaminated from hundreds of thousands of leaking underground storage tanks, industrial waste pits, home septic systems, municipal and industrial landfills, accidental chemical spills, careless use of solvents, illegal dumping, as well as widespread use of agricultural chemicals. Groundwater contamination became the environmental issue of the 80s.

Once contaminated, groundwater is difficult to restore. Restoration of groundwater contaminated by releases of anthropogenic chemicals to a condition allowing for unrestricted use and unlimited exposure remains a significant technical and institutional challenge. Moreover, one dominant attribute on subsurface remediation efforts has been lengthy delays between discovery of the problem and its solution. Some reasons for these extended timeframes are ineffective subsurface investigations, difficulties in characterizing the nature and extent of the problem in highly heterogeneous subsurface environments, remedial technologies, and a variety of administrative, policy and political factors.

It is evident that, in order to control groundwater contamination by means of immediate alert and minimize remediation cost, an alarm system is required to constantly monitor subsoil water quality. A reliable and efficient monitoring system design is of great importance to the overall design of a facility that may pose a groundwater pollution threat. In the case of monitoring groundwater contamination pollution detection for sanitary landfills, EU regulations commonly require one background (upstream) well and two downgradient wells. The position, number (more than the minimum requirement) and depth of the monitoring wells are proposed by the facility's operator and/or by local authorities. In most cases, a quarterly sampling is undertaken.

Subsurface water pollution due to landfill leaks has become an important issue during the last three decades. While sanitary landfills constitute the most widely used management approach for the disposal of solid waste because of their simplicity and cost effectiveness, historical records indicate that landfills exhibit a high failure rate in terms of groundwater contamination. Subsurface heterogeneity and lack of information about the exact location and duration of a leak render it extremely difficult to predict and detect subsurface water pollution before it has already spread and become evident. Monitoring aquifer contamination via wells is influenced by many uncertain factors, where the heterogeneity of the geologic environment, the quantity and nature of the contaminants, the number and location of the monitoring wells, and the frequency of sampling are factors affecting successful detection. However, there is no recognition of uncertainty factors in regulations.

Successful detection of an underground pollutant transported into an aquifer is directly dependent on the possibility of calculating the movement and dispersion of the pollutant in an environment, about which very few things are actually known. This lack of information is caused by the difficulties of experimentally measuring, at any of its points, the various hydraulic properties of a geological field (hydraulic conductivity, hydraulic head, porosity etc.) so as to predict, or even approximate, the way a plume can propagate into the aquifer. Additional uncertainty factors of the problem are lack of information about the point from which pollution originates in a landfill waste, the duration of the leak and the extent of the plume, typically dependent on the nature of the polluting substance. Thus, it is impossible to know with certainty how the pollutant concentrations in the subsoil change, which means that we cannot directly predict the likelihood of successful detection of groundwater pollution into heterogeneous aquifers from a specific arrangement of monitoring wells.

In the present thesis a stochastic two-dimensional numerical model was developed and utilized to address the problem of evaluating the effectiveness of contaminant detection in heterogeneous aquifers by linear arrangements of monitoring wells. Although it can be said that the two-dimensional approach is not the most realistic description of the actual situation, it actually simplifies the computational problem, losing only the vertical information about the movement and the detection of plumes. Moreover, when the horizontal dimensions of an aquifer are much greater than its thickness, which is our case, then the results of two dimensions provide a good approximation of reality. In numerical experiments based on the Monte Carlo framework, geological heterogeneity was simulated by the Spectral Turning Bands method and groundwater pollution transportation and dispersion was simulated by the Random Walk Tracking Particle method. Simulations were conducted to determine the detection probabilities and areas of groundwater contamination assuming different levels of geologic heterogeneity as well as pollutant dispersion, and to evaluate the effectiveness of various monitoring wells sampling frequencies. Two different cases were examined, as far as duration of pollution is concerned, assuming instantaneous and precipitation triggered pollution, where pollution diffuses into the aquifer proportionally to rain height during the monitoring period of time.

This work introduces a new perspective for the correction of risk analysis. Contemporary risk analysis considers the cost of alternative remediation procedures by assuming that the contamination area to be remediated coincides with the area calculated at the time of detection. However, there is always a considerable lag between the time that a plume is detected and the time when remediation commences. This time lag constitutes a random variable that depends on available resources and technologies, as well as efficiency of administrative decision-making. A new risk analysis framework is proposed that corrects estimated costs due to remediation delays.

Initially, the objective of this work was to numerically estimate in two dimensions the probability of groundwater pollution detection, originating instantly from a point source inside the physical boundaries of a landfill cell, achieved by a linear arrangement of varying number monitoring wells. The monitoring installation was considered in different cases to be located in various distances from the landfill facility and perpendicular to the flow field. Sensitivity analysis was performed to define what is the minimum number of Monte Carlo realizations where stochastically calculated detection probability is stabilized. Results were compared with theoretical values that were analytically calculated in the case of a homogeneous field. Having determined a high resolution simulation scheme, the distances of monitoring wells from the landfill cell trailing edge were examined in order to define, for every hydro-geological case simulated, the maximum detection probability a monitoring setting may achieve.

Probabilities of detection and contaminated groundwater areas were calculated for different arrangements of monitoring wells. It was shown that detection decreased as heterogeneity increased. Monitoring with 20 wells provided high detection, while 3 wells resulted in four out of five contamination cases remaining undetected. For fixed heterogeneity, for each well arrangement, detection probability increased up to a certain value, with increasing transverse dispersion coefficient, and then it decreased. The impact of sampling frequency of wells on groundwater contamination detection was studied. The frequency of sampling was a critical factor in heterogeneous aquifers. It appeared that a minimum sampling should take place twice a year, with the monthly sampling being the optimum choice, considering the effort involved and the improvement in detection. In heterogeneous aquifers a large number of monitoring wells sampled regularly. Finally,

remediation action delay time was introduced as an expression that accounted for the delay between detection and remedial action, in order to provide a correction to decision analysis that evaluated the economic worth of well monitoring. This expression illustrated the fact that delays longer than 3 years were equivalent to reducing the economic performance of 12 wells to that of a lower number of wells, meaning that higher failure costs should be considered than those assumed in current risk analysis.

Afterwards, high-resolution numerical Monte Carlo realizations were utilized to study the impact of sampling frequency on detection probability at contaminated sites located in heterogeneous subsurface environments, in conjunction with different hydro-geological parameters. For all types of soils detection probability was seen to decrease as sampling became less frequent. Irrespective of the density of a monitoring network at highly dispersive subsurface environments, a very rigorous sampling schedule had to be maintained in order to retain the detection performance of the network. Highly heterogeneous soils through the presence of low permeability zones appeared to impede the spread of the contaminants and, hence, restrict the effects of dispersion. Analysis of the time lag, between the time that contaminants first appeared at monitoring locations and the time they were actually observed, as well as of the increase of the plume area that resulted from this time lag, led to the conclusion that monthly sampling was required for a wide range of hydro-geological environments. Moreover, sampling frequency impact on remedial action delay was studied. It was demonstrated that in highly dispersive environments the remediation response must be of the order of a few months if one does not wish the contaminated areas and remediation costs to grow significantly.

Then, it was numerically studied how the number of point pollution sources, the size of the controlled area (landfill) and the quantity of an instantaneous aquifer injection pollution event affected detection probability by a linear monitoring well arrangement. For this purpose a two-dimensional high resolution Monte Carlo stochastic model was utilized. In each examined parameter it was considered that the rest of the factors affecting detection probability estimation remained constant. Simulations were performed in the context of uncertainty factors deriving from the environment itself, where the pollution was propagating, and the lack of information about certain parameters, concerning the initial conditions of the leak.

It was numerically verified in the cases examined that as the size of the control area became larger, while the number of wells remained constant, detection probability decreased. Consequently, if the width of a control area was increased, so should the number of monitoring wells, so that the same well density would be maintained. In all simulated cases, the general observation was that when two similar groundwater pollution sources were present, then contamination detection was easier as the average detection probability increased between 35% - 55%. The same trend in detection probability increase relative to single source cases was observed, regardless of the sampling frequency.

The simulation results indicated that when the initial concentration of pollution was below 1,000 mgr/lt, its detection was very hard, regardless of the aquifer's hydro-geological parameters. The efficiency of monitoring wells in low to medium dispersion aquifers reached a maximum, which was independent of the initial mass of pollution intruding the aquifer. The turning point of the concentration of the initial pollution was C = 8,000mgr/lt, which was the value where detection probability reached a plateau. It was also observed that only in high dispersion environments increase of pollution resulted in higher detection probability. In every case lower concentrations were harder to be detected, dictating that in order for monitoring setting to be sensitive at least simulation level, even in small amounts of pollution, a minimum of 12 wells must be used.

Finally, considering a different way groundwater pollution in the context of triggering it according to local precipitation events, it was assumed that there was a point pollution source inside a controlled area of specific dimensions (landfill, industrial installation, military base), which injected a quantity of pollutant inside the aquifer, each time rain occurred. The quantity of the pollutant that diffused into groundwater was considered linearly proportional to the recorded daily average precipitation height. Data from a thirty-year time series of daily average rainfall from Macedonia airport was used and linearly coupled with the pollutant mass diffused directly into the aquifer, assuming that no recharge occurred. The twodimensional area was downstream monitored by a linear arrangement of wells network, consisting of different numbers of drilling wells in each studied case. The ability of the monitoring installation was evaluated through the probability of successful pollution detection. The effects on successful pollution detection of the aquifer's hydro-geological parameters, as they were reflected in the field's hydraulic conductivity variance and dispersion coefficients, have been studied too. Moreover, the influences of the aquifer sampling frequency and of the remedial actions delay time were examined into detection probability that a monitoring wells arrangement can achieve. Results were directly compared to those of instantaneous pollution simulated cases, considering the rest of the computational parameters common.

It was shown that detection probability of a monitoring arrangement increased faster, as the number of wells increased, in precipitation related pollution than in instantaneous cases. In all simulations the main hydro-geological parameter affecting detection probability, average detection time and average contaminated area, was the dispersion of the field. In the case of precipitation triggered heterogeneous aquifer pollution, sampling frequency practically did not seem to affect detection probability of the monitoring network. In any simulated case, remedial action delay time was essential in estimating the risk concerning the detection ability of a groundwater monitoring installation, as it was a hidden parameter that might give a very big offset in risk calculation.

ΠΕΡΙΛΗΨΗ

Τα υπόγεια νερά αποτελούν σημαντική φυσική πηγή πόσιμου νερού. Οι άνθρωποι παλιά πίστευαν ότι το φυσικό φιλτράρισμα του νερού ως αποτέλεσμα της υπόγειας ροής του ήταν αρκετό για να παρέχει ικανή προστασία από μολύνσεις, έτσι ώστε χωρίς καμία επεξεργασία το νερό να μπορεί να διατεθεί για οικιακή και αγροτική χρήση. Τότε, δραματικά γεγονότα τη δεκαετία του 1970 (π.χ. η περίπτωση του Love Canal) έκαναν τους πάντες να συνειδητοποιήσουν ότι τα υπόγεια νερά είχαν μολυνθεί από εκατοντάδες χιλιάδες υπόγειες δεξαμενές αποθήκευσης που είχαν διαρροές, δεξαμενές βιομηχανικών αποβλήτων, οικιακά σηπτικά συστήματα, αστικούς και βιομηχανικούς χώρους ταφής απορριμμάτων, τυχαίες χημικές διαρροές, απρόσεκτη χρήση διαλυτών, παράνομη απόρριψη αποβλήτων, καθώς επίσης και από εκτεταμένη χρήση γεωργικών χημικών. Η μόλυνση των υπογείων υδάτων έγινε το σημαντικότερο περιβαλλοντικό ζήτημα της δεκαετίας του 1980.

Από τη στιγμή που θα μολυνθούν τα υπόγεια ύδατα, είναι δύσκολο να αποκατασταθούν. Η αποκατάσταση των υπογείων υδάτων που έχουν μολυνθεί από διάθεση ανθρωπογενών χημικών, σε τέτοιο βαθμό ώστε να επιτρέπεται η απεριόριστη χρήση αυτών των υδάτων και η έκθεση σ' αυτά, παραμένει σημαντική τεχνική και θεσμική πρόκληση. Επιπλέον, ένα κυρίαρχο χαρακτηριστικό των προσπαθειών υπόγειας αποκατάστασης υδάτων αποτελούν οι χρονοβόρες καθυστερήσεις από τη στιγμή της ανακάλυψης του προβλήματος ως την επίλυσή του. Ορισμένες αιτίες γι' αυτά τα εκτεταμένα χρονοδιαγράμματα περιλαμβάνουν τις αναποτελεσματικές υπόγειες έρευνες, τις δυσκολίες χαρακτηρισμού της φύσης και του μεγέθους του προβλήματος σε πολύ ετερογενή υπόγεια περιβάλλοντα, τις τεχνολογίες αποκατάστασης και μία πλειάδα διοικητικών, στρατηγικών και πολιτικών παραγόντων.

Είναι εμφανές ότι, για να ελεγχθεί η μόλυνση των υπογείων υδάτων μέσω ενός συστήματος άμεσης ειδοποίησης και να ελαχιστοποιηθεί το κόστος αποκατάστασης, απαιτείται ένα σύστημα συναγερμού που θα παρακολουθεί σε σταθερή βάση την ποιότητα των υπογείων υδάτων. Ο σχεδιασμός ενός αξιόπιστου και αποτελεσματικού συστήματος παρακολούθησης είναι εξαιρετικά σημαντικός για τον συνολικό σχεδιασμό μιας

εγκατάστασης που ίσως δημιουργήσει απειλή μόλυνσης σε υπόγεια ύδατα. Στην περίπτωση παρακολούθησης της ανίχνευσης μόλυνσης υπογείων υδάτων για χώρους υγειονομικής ταφής απορριμμάτων, οι κανονισμοί της Ε.Ε. συνήθως απαιτούν ένα πηγάδι υποβάθρου (ανάντη) και δύο πηγάδια κατάντη. Η θέση, ο αριθμός (πέραν της ελάχιστης απαίτησης) και το βάθος των πηγαδιών ελέγχου καθορίζονται από τον διαχειριστή της εγκατάστασης και/ή από τις τοπικές αρχές. Στις περισσότερες περιπτώσεις, διενεργείται τριμηνιαία δειγματοληψία.

Η υπόγεια ρύπανση υδάτων λόγω διαρροών σε χώρους ταφής απορριμμάτων αποτελεί ένα σημαντικό θέμα τις τρεις τελευταίες δεκαετίες. Ενώ οι χώροι υγειονομικής ταφής απορριμμάτων αποτελούν την πιο διαδεδομένη προσέγγιση διαχείρισης της τελικής διάθεσης στερεών αποβλήτων εξαιτίας της απλότητας στην κατασκευή και του χαμηλού κόστους λειτουργίας, τα ιστορικά δεδομένα μας δείχνουν ότι οι χώροι αυτοί παρουσιάζουν υψηλό βαθμό αστοχίας όσον αφορά στη μόλυνση υπογείων υδάτων. Η ετερογένεια του υπεδάφους και η έλλειψη πληροφορίας σχετικά με την ακριβή θέση και διάρκεια μιας διαρροής καθιστούν εξαιρετικά δύσκολη την πρόβλεψη και ανίχνευση υπόγειας μόλυνσης του νερού πριν αυτή εξαπλωθεί και γίνει εμφανής. Η παρακολούθηση της μόλυνσης του υδροφόρου ορίζοντα μέσω πηγαδιών ελέγχου επηρεάζεται από πολλούς παράγοντες αβεβαιότητας, όπως την ετερογένεια του γεωλογικού περιβάλλοντος, την ποσότητα και τη φύση των μολυσματικών ουσιών, τον αριθμό και τη θέση των παραγόντων αβεβαιότητας σε θεσμικό επίπεδο.

Η επιτυχής ανίχνευση μιας μόλυνσης των υπογείων νερών που μεταφέρεται στον υδροφόρο ορίζοντα εξαρτάται άμεσα από την πιθανότητα υπολογισμού της κίνησης και της διασποράς του μολυσματικού παράγοντα στο περιβάλλον, κάτι για το οποίο ουσιαστικά πολύ λίγα πράγματα γνωρίζουμε. Αυτή η έλλειψη πληροφοριών προκαλείται από τις δυσκολίες πειραματικών μετρήσεων, σε οποιοδήποτε από τα σημεία του, των διαφόρων υδραυλικών ιδιοτήτων ενός γεωλογικού πεδίου (υδραυλική αγωγιμότητα, υδραυλικό μέτωπο, διαπερατότητα κτλ) για να προβλέψουμε, ή έστω να προσεγγίσουμε, τον τρόπο με τον οποίο ένα πλούμιο μπορεί να διαδοθεί στον υδροφόρο ορίζοντα. Επιπρόσθετοι παράγοντες αβεβαιότητας του προβλήματος είναι η έλλειψη πληροφοριών σχετικά με το σημείο από το οποίο ξεκινά η μόλυνση σε έναν χώρο ταφής απορημμάτων, η διάρκεια της διαρροής και η έκταση του πλουμίου, τα οποία συνήθως εξαρτώνται από τη φύση του ρυπαντή. Κατά συνέπεια, είναι αδύνατο να ξέρουμε με βεβαιότητα πώς μεταβάλλονται οι συγκεντρώσεις του ρυπαντή στο υπέδαφος, κάτι που σημαίνει ότι δεν μπορούμε άμεσα να προβλέψουμε την πιθανότητα επιτυχούς ανίχνευσης μόλυνσης υπογείων υδάτων μέσα σε ετερογενείς υδροφόρους ορίζοντες από μία συγκεκτριμένη διάταξη πηγαδιών ελέγχου.

Στην παρούσα διατριβή αναπτύχθηκε και χρησιμοποιήθηκε ένα στοχαστικό δισδιάστατο αριθμητικό μοντέλο για να αντιμετωπιστεί το πρόβλημα αξιολόγησης της αποτελεσματικότητας της ανίχνευσης υπόγειας ρύπανσης σε ετερογενείς υδροφόρους ορίζοντες μέσω γραμμικών διατάξεων πηγαδιών παρακολούθησης. Παρόλο που μπορεί να υποστηριχθεί ότι η δισδιάστατη προσέγγιση δεν είναι και η πιο ρεαλιστική περιγραφή της πραγματικής κατάστασης, στην ουσία απλοποιεί το υπολογιστικό πρόβλημα γιατί χάνει μόνο την κάθετη πληροφορία σχετικά με την κίνηση και την ανίχνευση των πλουμίων. Επιπλέον, όταν οι οριζόντιες διαστάσεις ενός υδροφόρου ορίζοντα υπερβαίνουν κατά πολύ το πάχος του, όπως στην περίπτωσή μας, τότε τα αποτελέσματα στις δύο διαστάσεις παρέχουν μία καλή προσέγγιση της πραγματικότητας. Στα αριθμητικά πειράματα που βασίζονται στην τεχνική Monte Carlo, η γεωλογική ετερογένεια προσομοιώθηκε με τη μέθοδο Spectral Turning Bands και η υπόγεια μεταφορά και διασπορά της ρύπανσης με τη μέθοδο Random Walk Tracking Particle. Οι προσομοιώσεις διεξήχθησαν για να προσδιοριστούν οι πιθανότητες ανίχνευσης και οι περιοχές μόλυνσης υπογείων υδάτων, προϋποθέτοντας διαφορετικά επίπεδα γεωλογικής ετερογένειας και διασποράς ρυπαντή, και να εκτιμηθεί η αποτελεσματικότητα διαφόρων συχνοτήτων δειγματοληψίας πηγαδιών παρακολούθησης. Δύο διαφορετικές περιπτώσεις εξετάστηκαν, όσον αφορά στη διάρκεια της ρύπανσης, υποθέτοντας στιγμιαία ρύπανση και ρύπανση λόγω βροχόπτωσης, όπου η ρύπανση διαχέεται στον υδροφόρο ορίζοντα κατ' αναλογία με το ύψος βροχόπτωσης την περίοδο παρακολούθησης.

Η παρούσα εργασία αναπτύσσει μία νέα οπτική για τη διόρθωση της ανάλυσης ρίσκου. Η σύγχρονη ανάλυση ρίσκου εξετάζει το κόστος εναλλακτικών διαδικασιών αποκατάστασης προϋποθέτοντας ότι η μολυσμένη περιοχή προς αποκατάσταση συμπίπτει με την περιοχή που υπολογίστηκε τη χρονική περίοδο της ανίχνευσης. Εν τούτοις, υπάρχει πάντοτε μια σημαντική καθυστέρηση μεταξύ της περιόδου που ένα πλούμιο ανιχνευθεί και της περιόδου που θα αρχίσει η αποκατάστασή του. Αυτή η χρονική καθυστέρηση αποτελεί τυχαία μεταβλητή που εξαρτάται από τους διαθέσιμους πόρους και τεχνολογίες, καθώς επίσης και από την αποτελεσματικότητα της διοικητικής λήψης αποφάσεων. Προτείνεται ένα νέο πλαίσιο ανάλυσης ρίσκου που διορθώνει το εκτιμώμενο κόστος λόγω καθυστερήσεων αποκατάστασης.

Αρχικά, ο στόχος της παρούσας εργασίας ήταν ο αριθμητικός υπολογισμός σε δύο διαστάσεις της πιθανότητας ανίχνευσης ρύπανσης υπογείων υδάτων, η οποία ξεκινά στιγμιαία από μία σημειακή πηγή εντός των φυσικών ορίων ενός χώρου απόθεσης απορριμμάτων και επιτυγχάνεται από μία γραμμική διάταξη πηγαδιών παρακολούθησης που αποτελείται κάθε φορά από διαφορετικούς αριθμούς πηγαδιών. Θεωρήθηκε ότι η εγκατάσταση παρακολούθησης, σε διαφορετικές περιπτώσεις, βρίσκεται σε διαφορετικές αποστάσεις από την εγκατάσταση του χώρου απόθεσης απορριμμάτων και κάθετα στο πεδίο ροής. Πραγματοποιήθηκε έλεγχος ευαισθησίας του μοντέλου για να προσδιοριστεί ο ελάχιστος αριθμός επαναλήψεων Monte Carlo όπου η στοχαστικά υπολογιζόμενη πιθανότητα ανίχνευσης σταθεροποιείται. Έγινε σύγκριση των αριθμητικών αποτελεσμάτων με τις θεωρητικές τιμές οι οποίες υπολογίζονται αναλυτικά στην περίπτωση ενός ομογενούς πεδίου. Έχοντας προσδιορίσει ένα υψηλής διακριτότητας σχήμα προσομοιώσεων, οι αποστάσεις των πηγαδιών παρακολούθησης από το χείλος εκφυγής του χώρου απόθεσης απορριμμάτων εξετάστηκαν με σκοπό να προσδιοριστεί, για κάθε υδρο-γεωλογική περίπτωση που προσομοιώθηκε, η μέγιστη πιθανότητα ανίχνευσης που μπορεί να επιτευχθεί από μία διάταξη παρακολούθησης.

Οι πιθανότητες ανίχνευσης και οι μολυσμένες περιοχές των υπογείων υδάτων υπολογίστηκαν για διαφορετικές διατάξεις πηγαδιών παρακολούθησης. Φάνηκε ότι η ανίχνευση μειωνόταν όσο η ετερογένεια αυξανόταν. Η παρακολούθηση με 20 πηγάδια παρείχε υψηλή ανιχνευσιμότητα, ενώ η ανίχνευση με 3 πηγάδια είχε ως αποτέλεσμα τη μη ανίχνευση τεσσάρων στις πέντε περιπτώσεις μόλυνσης. Θεωρώντας σταθερή την ετερογένεια του πεδίου, για κάθε διάταξη πηγαδιών, η πιθανότητα ανίχνευσης αυξήθηκε μέχρι μία συγκεκριμένη τιμή, καθώς αυξανόταν ο συντελεστής εγκάρσιας διασποράς, και μετά μειώθηκε. Μελετήθηκε η επίδραση της συχνότητας δειγματοληψίας των πηγαδιών στην ανίχνευση ρύπανσης υπογείων υδάτων. Η συχνότητα δειγματοληψίας ήταν κρίσιμος παράγοντας σε ετερογενείς υδροφορείς. Φάνηκε ότι η ελάχιστη δειγματοληψία θα έπρεπε να γίνεται δύο φορές ανά έτος, ενώ η μηνιαία δειγματοληψία φάνηκε ως η βέλτιστη λύση λαμβάνοντας υπ' όψη την απαιτούμενη διαδικασία και τη βελτίωση ανίχνευσης. Σε ετερογενείς υδροφόρους ορίζοντες, μεγάλος αριθμός πηγαδιών παρακολούθησης από τα οποία δεν γινόταν συχνή δειγματοληψία δεν απέδωσαν καλύτερα σε όρους ανίχνευσης απ' ότι μικρότερος αριθμός πηγαδιών από τα οποία γινόταν τακτική δειγματοληψία. Τέλος, ο χρόνος καθυστέρησης της ενέργειας αποκατάστασης εισήχθη ως έκφραση που αντιπροσώπευε την καθυστέρηση μεταξύ της ανίχνευσης και της ενέργειας αποκατάστασης, προκειμένου να εισάγει μία διόρθωση στην ανάλυση απόφασης η οποία αξιολογούσε οικονομικά τα πηγάδια παρακολούθησης. Αυτή η έκφραση κατέδειξε το γεγονός ότι καθυστερήσεις πέραν των 3 ετών ισοδυναμούσαν με μείωση της οικονομικής απόδοσης 12 πηγαδιών στα επίπεδα διατάξεων με μικρότερο αριθμό πηγαδιών, δηλαδή θα έπρεπε να ληφθεί υπ' όψη μεγαλύτερο κόστος αστοχίας από αυτό που συνήθως θεωρείται στην ανάλυση ρίσκου.

Στη συνέχεια, χρησιμοποιήθηκαν υψηλής διακριτότητας αριθμητικές επαναλήψεις Monte Carlo για να μελετηθεί η επίδραση της συχνότητας δειγματοληψίας στην πιθανότητα ανίχνευσης, σε μολυσμένες περιοχές που εντοπίζονταν σε ετερογενή υπόγεια περιβάλλοντα, σε συνδυασμό με διαφορετικές υδρο-γεωλογικές παραμέτρους. Για όλους τους τύπους των εδαφών παρατηρήθηκε ότι η πιθανότητα ανίχνευσης μειωνόταν όσο η δειγματοληψία γινόταν λιγότερο συχνά. Ανεξάρτητα από την πυκνότητα του δικτύου παρακολούθησης σε υπόγεια περιβάλλοντα υψηλής διασποράς, έπρεπε να τηρηθεί ένα πολύ αυστηρό πρόγραμμα δειγματοληψίας έτσι ώστε να διατηρηθεί η απόδοση ανίχνευσης του δικτύου. Εδάφη υψηλής ετερογένειας, εξαιτίας της παρουσίας ζωνών χαμηλής διαπερατότητας, φάνηκε ότι εμπόδιζαν την εξάπλωση των ρυπαντών και, κατά συνέπεια, περιόριζαν την επίδραση της διασποράς. Η ανάλυση της καθυστέρησης μεταξύ του χρόνου πρώτης εμφάνισης των ρυπαντών στα σημεία παρακολούθησης και του χρόνου που πραγματικά παρατηρήθηκαν, καθώς επίσης και η αύξηση στην περιοχή του πλουμίου που προέκυψε από αυτή τη χρονική καθυστέρηση, οδήγησαν στο συμπέρασμα ότι απαιτούνταν μηνιαία δειγματοληψία για ένα μεγάλο εύρος υδρο-γεωλογικών παραμέτρων. Επιπλέον, μελετήθηκε η επίδραση της συχνότητας δειγματοληψίας στην καθυστέρηση ενέργειας αποκατάστασης. Φάνηκε ότι σε περιβάλλοντα υψηλής διασποράς η αντίδραση αποκατάστασης πρέπει να είναι της τάξης μερικών μηνών αν κάποιος δεν επιθυμεί σημαντική αύξηση των μολυσμένων περιοχών και του κόστους αποκατάστασης.

Έπειτα, μελετήθηκε αριθμητικά ο τρόπος με τον οποίον ο αριθμός των σημειακών πηγών ρύπανσης, το μέγεθος της περιοχής ελέγχου (χώρος απόθεσης αποβλήτων) και η ποσότητα μιας στιγμιαίας έγχυσης ρύπανσης στον υδροφόρο ορίζοντα επηρεάζουν την πιθανότητα ανίχνευσης μόλυνσης από μία γραμμική διάταξη πηγαδιών παρακολούθησης. Γι' αυτόν τον σκοπό χρησιμοποιήθηκε ένα δισδιάστατο, υψηλής διακριτότητας, στοχαστικό μοντέλο Monte Carlo. Σε κάθε εξεταζόμενη παράμετρο θεωρήθηκε ότι οι υπόλοιποι παράγοντες που επηρεάζουν τον υπολογισμό της πιθανότητας ανίχνευσης παρέμεναν σταθεροί. Οι προσομοιώσεις πραγματοποιήθηκαν στα πλαίσια παραγόντων αβεβαιότητας που προκύπτουν από το ίδιο το περιβάλλον, όπου η ρύπανση μεταφέρεται, και από την έλλειψη πληροφοριών συγκεκριμένων παραμέτρων, που αφορούν στις αρχικές συνθήκες της διαρροής.

Επιβεβαιώθηκε αριθμητικά στις περιπτώσεις που εξετάστηκαν ότι καθώς αυξανόταν το μέγεθος της περιοχής ελέγχου, ενώ ο αριθμός των πηγαδιών παρέμενε σταθερός, μειωνόταν η πιθανότητα ανίχνευσης. Συνεπώς, αν αυξανόταν το πλάτος μιας περιοχής ελέγχου, το ίδιο θα έπρεπε να συμβεί και με τον αριθμό των πηγαδιών παρακολούθησης, έτσι ώστε να διατηρούνταν η πυκνότητά τους. Σε όλες τις περιπτώσεις που προσομοιώθηκαν, η γενική παρατήρηση ήταν ότι όταν υπήρχαν δύο παρόμοιες πηγές υπόγειας ρύπανσης τότε η ανίχνευση της μόλυνσης ήταν ευκολότερη, καθώς η μέση αύξηση της πιθανότητας ανίχνευσης ήταν μεταξύ 35% - 55%. Παρατηρήθηκε η ίδια αυξητική τάση στην πιθανότητα

ανίχνευσης σε σχέση με τις περιπτώσεις μίας πηγής ρύπανσης, ανεξάρτητα από τη συχνότητα δειγματοληψίας.

Τα αποτελέσματα των προσομοιώσεων δείχνουν ότι όταν η αρχική συγκέντρωση της ρύπανσης ήταν κάτω από 1.000 mgr/lt, η ανίχνευσή της ήταν πολύ δύσκολη, ανεξάρτητα από τις υδρο-γεωλογικές παραμέτρους του υδροφορέα. Η αποτελεσματικότητα των πηγαδιών παρακολούθησης σε υδροφορείς με χαμηλή ως μέτρια διασπορά έφτασαν σε μία μέγιστη τιμή, ανεξάρτητη από την αρχική μάζα της ρύπανσης που διείσδυσε στον υδροφόρο ορίζοντα. Το σημείο καμπής της συγκέντρωσης της αρχικής ρύπανσης ήταν C = 8,000mgr / lt, η οποία ήταν η τιμή στην οποία η πιθανότητα ανίχνευσης έφτασε σε σημείο πλατώ. Παρατηρήθηκε επίσης ότι μόνο σε περιβάλλοντα υψηλής διασποράς η αύξηση της μόλυνσης είχε ως αποτέλεσμα υψηλότερη πιθανότητα ανίχνευσης. Σε κάθε περίπτωση, ήταν δύσκολο να ανιχνευθούν χαμηλέ τιμές συγκέντρωσης, υποδεικνύοντας ότι προκειμένου μία διάταξη παρακολούθησης να είναι ευαίσθητη, τουλάχιστο κατά την προσομοίωσή της, ακόμη και για μικρές ποσότητες ρύπανσης, απαιτείται η χρήση ενός ελάχιστου αριθμού 12 πηγαδιών.

Τέλος, μελετώντας έναν διαφορετικό τρόπο ρύπανσης υπόγειων υδάτων στα πλαίσια της πρόκλησής της σύμφωνα την τοπική βροχόπτωση, υποθέσαμε ότι υπήρχε μία σημειακή πηγή ρύπανσης μέσα σε ελεγχόμενη περιοχή συγκεκριμένων διαστάσεων (χώροι απόθεσης αποβλήτων, βιομηχανικές εγκαταστάσεις, στρατιωτικές βάσεις) η οποία διοχέτευε μια ποσότητα ρύπανσης εντός του υδροφόρου ορίζοντα σε κάθε βροχόπτωση. Η ποσότητα του ρυπαντή που διαχεόταν στα υπόγεια ύδατα θεωρήθηκε γραμμικά ανάλογη ως προς την ημερήσια καταγραφή του μέσου ύψους βροχόπτωσης. Χρησιμοποιήθηκαν δεδομένα από μία χρονοσειρά 30 ετών μέσης ημερήσιας βροχόπτωσης στο αεροδρόμιο «Μακεδονία» και συσχετίστηκαν γραμμικά με τη μάζα του ρυπαντή που διαχεόταν απευθείας στον υδροφόρο ορίζοντα, υποθέτοντας ότι δεν είχαμε επαναφόρτισή του. Η δισδιάστατη περιοχή επιτηρούνταν κατάντη από γραμμική διάταξη δικτύου πηγαδιών, το οποίο αποτελούνταν από διαφορετικό αριθμό γεωτρήσεων-πηγαδιών σε κάθε περίπτωση που μελετήθηκε. Μελετήθηκαν επίσης οι επιδράσεις των υδρο-γεωλογικών παραμέτρων του υδροφορέα στην επιτυχή ανίχνευση της ρύπανσης, όπως εκφράστηκαν στη διακύμανση υδραυλικής αγωγιμότητας του πεδίου και στους συντελεστές διασποράς. Επιπλέον, εξετάστηκαν οι επιδράσεις της συχνότητας δειγματοληψίας του υδροφόρου ορίζοντα και του χρόνου καθυστέρησης ενεργειών αποκατάστασης στην πιθανότητα ανίχνευσης που μπορεί να πετύχει μια διάταξη πηγαδιών παρακολούθησης. Τα αποτελέσματα συγκρίθηκαν άμεσα με αυτά των προσομοιωμένων περιπτώσεων στιγμιαίας ρύπανσης, θεωρώντας ότι οι υπόλοιπες υπολογιστικές παράμετροι ήταν κοινές.

Φάνηκε ότι η πιθανότητα ανίχνευσης μίας διάταξης παρακολούθησης αυξανόταν γρηγορότερα, όταν αυξανόταν κι ο αριθμός των πηγαδιών, σε ρύπανση σχετιζόμενη με

βροχόπτωση απ' ότι στις περιπτώσεις στιγμιαίας ρύπανσης. Σε όλες τις προσομοιώσεις η κύρια υδρο-γεωλογική παράμετρος που επηρέαζε την πιθανότητα ανίχνευσης, τον μέσο χρόνο ανίχνευσης και τη μέση μολυσμένη περιοχή ήταν η διασπορά του πεδίου. Στην περίπτωση πρόκλησης από βροχόπτωση ρύπανσης ετερογενούς υδροφορέα, η συχνότητα δειγματοληψίας πρακτικά δεν φάνηκε να επηρεάζει την πιθανότητα ανίχνευσης ενός δικτύου παρακολούθησης. Σε κάθε περίπτωση που προσομοιώθηκε, η καθυστέρηση των ενεργειών αποκατάστασης ήταν ουσιώδης για τον υπολογισμό του ρίσκου που αφορούσε στην ικανότητα ανίχνευσης μίας εγκατάστασης παρακολούθησης υπογείων υδάτων, καθώς αποτελούσε κρυφή παράμετρο που θα μπορούσε να προκαλέσει μεγάλη απόκλιση στον υπολογισμό του ρίσκου.

CHAPTER 1

Introduction

1.1 Groundwater Pollution

Safe drinking water is essential to human and other life form survival. Actually, it is the special physical and chemical properties of water which render it a significant factor for the existence of life on Earth; at least in the form we know it. Yet, not all of this water is suitable for humans to use. In fact, only 2.5% of the Earth's water is freshwater. Less than 0.3% of all freshwater is found in rivers, lakes and the atmosphere, whereas an even smaller amount (0.003%) is contained within biological bodies and manufactured products (Gleick, 1993). This natural resource is becoming scarcer in certain places, and its availability is a major social and economic concern. Water, however, is not a finite resource, but rather recirculates during the Earth's water cycle, where it moves continually through evaporation and transpiration (evapo-transpiration), condensation, precipitation and surface runoff, usually reaching the sea. Some runoff infiltrates the ground and goes into aquifers. This groundwater later flows back to the surface from springs and ends up recharging rivers or flowing directly into the sea. Groundwater storage is important since clean freshwater is essential to the survival of humans and other land-based life.

Groundwater, which is thought of as liquid water flowing through shallow aquifers, is a natural resource which constitutes the largest reservoir of freshwater in the world, accounting for over 97% of all freshwaters available on earth (EU/Groundwater-Directive, 2008). Technically, groundwater can also include soil moisture, permafrost, immobile water in very low permeability bedrock and deep geothermal or oil formation water. Until recently, focus on groundwater has mainly concerned its use as drinking water (e.g. about 75% of European Union (EU) residents depend on groundwater for their water supply), and groundwater has

also been recognized as an important resource for industry (e.g. cooling waters) and agriculture (irrigation). It has, however, become increasingly obvious that groundwater should not only be viewed as a water supply reservoir, but should also be protected because of its environmental value (EU/Groundwater-Directive, 2008).

Most concern over groundwater contamination has focused on pollution associated with human activities. Human groundwater contamination can either be directly related to waste disposal (private sewage disposal systems, land disposal of solid waste, municipal wastewater, wastewater impoundments, land spreading of sludge, brine disposal from the petroleum industry, mine waste, deep-well disposal of liquid waste, animal feedlot waste, radioactive waste) or not (accidents, military operations, certain agricultural activities, mining, highway de-icing, acid rain, improper well construction and maintenance, road salt) (LENNTECH, 2013). Since groundwater moves slowly through the subsurface, the impact of anthropogenic activities may last for a long time. This means that pollution which occurred some decades ago — originating from agriculture, industry or other human activities — may still be threatening groundwater quality today and, in some cases, will continue to do so for several generations to come.

Large quantities of organic compounds are manufactured and used by industries, agriculture and municipalities. Recent reports show that pollution from domestic, agricultural and industrial sources is still a major concern, despite the progress in some fields, either directly through discharges (effluents) or indirectly through the spread of nitrogen fertilizers and pesticides, as well as leaching from old contaminated industrial or waste disposal sites (e.g. landfills, mines, heavy manufacturing industry etc.). While point sources have caused most of the pollution identified to date, there is evidence that diffuse sources are having an increasing impact on groundwater. For example, nitrate concentrations currently exceed the nitrate guideline values in approximately one third of groundwater bodies in Europe (EU/Groundwater-Directive, 2008).

These man-made organic compounds are of most concern. In many locations groundwater has been contaminated by chemicals for many decades, though this form of pollution was not recognized as a serious environmental problem until the 1980s. According to *Lenntech* website, contamination sources may be:

Natural: groundwater contains some impurities, even if it is unaffected by human activities.

The types and concentrations of natural impurities depend on the nature of the geological material through which groundwater moves and the quality of the recharge water. Groundwater moving through sedimentary rocks and soils may pick up a wide range of compounds such as magnesium, calcium and chlorides. Some aquifers have

a high natural concentration of dissolved constituents such as arsenic, boron, selenium and chromium. The effects of these natural sources of contamination of groundwater quality depend on the type of contaminant and its concentrations.

- <u>Agricultural</u>: Pesticides, fertilizers, herbicides and animal waste are agricultural sources of groundwater contamination. Their manifestations are varied and numerous: spillage of fertilizers and pesticides during handling, runoff from the loading and washing of pesticide sprayers or other application equipment, use of chemicals uphill from or within a few hundred feet of a well, storage of agricultural chemicals near conduits to groundwater, such as open and abandoned wells, sink holes, or surface depressions where ponded water is likely to accumulate. Contamination may also occur when chemicals are stored in uncovered areas, unprotected from wind and rain, or are stored in locations where groundwater flows from the direction of the chemical storage to the well.
- Industrial: Manufacturing and service industries have high demands for cooling water, processing water and water for cleaning purposes. Groundwater pollution occurs when used water is returned to the hydrological cycle. Modern economic activity requires transportation and storage of material used in manufacturing, processing, and construction. Along the way, some of this material can be lost through spillage, leakage or improper handling. The disposal of waste associated with the above activities contributes to yet another source of groundwater contamination. Some businesses, usually without access to sewer systems, rely on shallow underground disposal. They use cesspools or dry holes, or send the wastewater into septic tanks. Any of these forms of disposal can lead to contamination of underground sources of drinking water. Dry holes and cesspools introduce waste directly into the ground, whereas septic systems cannot treat industrial waste. Wastewater disposal practices of certain types of businesses, such as automobile service stations, dry cleaners, electrical component or machine manufacturers, photo processors and metal fabricators, are of particular concern because the waste they generate is likely to contain toxic chemicals. Other industrial sources of contamination include cleaning off holding tanks, spraying equipment on the open ground, waste disposal in septic systems or dry wells and storage of hazardous materials in uncovered areas or in areas that do not have pads with drains or catchment basins. Moreover, underground and above ground storage tanks holding petroleum products, acids, solvents and chemicals can develop leaks from corrosion, defects, improper installation or mechanical failure of the pipes and fittings. Furthermore, mining of fuel and non-fuel minerals can create many opportunities for groundwater contamination. The problems

stem from the mining process itself, the disposal of waste and the processing of the ores and the waste they create.

- <u>Military</u>: operations and maintenance of military systems, such as fighter aircrafts, ships and vehicles, are activities similar to industrial ones, producing a great amount of pollutants. Even if national regulations are applied to all of these military activities concerning waste handling, there are cases on the battlefield during military operations where environmental issues are not the first priority. In addition, usage of weapons that cause infrastructure damage may create uncontrolled groundwater pollution, as storage facilities or industrial resources destruction can release chemicals into the ground, which will infiltrate the aquifer or may be transported away from the theatre of operations, affecting people and polluting communities not invoked in the confrontation.
- Residential: Residential wastewater systems can be a source of many categories of contaminants, including bacteria, viruses, nitrates from human waste, as well as organic compounds. Injection wells used for domestic wastewater disposal (septic systems, cesspools, drainage wells for storm water runoff, groundwater recharge wells) are of particular concern to groundwater quality if located close to drinking water wells. Improper storage or disposal of household chemicals such as paints, synthetic detergents, solvents, oils, medicines, disinfectants, pool chemicals, pesticides, batteries, gasoline and diesel fuel can also lead to groundwater contamination. When these chemicals are stored in garages or basements with floor drains, spills and flooding may introduce them as contaminants into the groundwater. When thrown in the household trash, these products will eventually be carried into groundwater because community landfills are not equipped to handle hazardous materials. Similarly, waste dumped or buried in the ground can contaminate the soil and leach into groundwater.

Once contaminated, groundwater is difficult to restore. A study by the United States of America National Research Council (U.S.N.R.C., 2012) indicated that there are at least 126,000 groundwater sites that may have contaminated soil or groundwater, requiring some form of remediation. Almost 10 percent of these sites are considered "complex," meaning restoration is unlikely to be achieved in the next 50 to 100 years due to technological limitations. The same report adds that the estimated cost of complete cleanup at these sites ranges from \$110 billion to \$127 billion, but the figures for both the number of sites and the costs are likely underestimations.

One dominant attribute of subsurface remediation efforts has been the lengthy delays between discovery of the problem and its solution (U.S.N.R.C., 2012). The reasons for these extended timeframes are now well-known: ineffective subsurface investigations, difficulties in characterizing the nature and extent of the problem in highly heterogeneous subsurface environments, remedial technologies incapable of achieving restoration in many geological settings, continued improvements in analytical detection limits leading to discovery of additional chemicals of concern, evolution of more stringent drinking water standards, and the realization that other exposure pathways, such as vapor intrusion, pose unacceptable health risks. A variety of administrative and policy factors also result in extensive delays, including, but not limited to, high regulatory personnel turnover, the difficulty in determining costeffective remedies to meet cleanup goals and allocation of responsibility at multiparty sites.

1.2 Groundwater Protection

Groundwater protection describes the management processes by which groundwater quality and resources are protected against pollution and over-exploitation. This can mainly be achieved by three interwoven factors: environmental legislation, ethics and education. Each of these plays its part in influencing national-level environmental decisions and personal-level environmental values and behaviors. For environmental and, consequently, groundwater protection to become a reality, it is important for societies to develop each of these areas that, together, will inform and drive environmental decisions (Solomon, 2010). In the present study, only the component of environmental legislation will be of immediate concern and will be used as a reference system, as this factor sets liability limits on the way various human activities are controlled.

A policy establishment on groundwater protection expresses a political willingness towards that direction and the way this policy will be applied is by setting regulations. In the case of EU, laws designed to protect groundwater against pollution and deterioration are part of a larger regulatory framework that can be traced back to the 1990s. The concept of groundwater protection as tackled by different pieces of legislation is now fully integrated into the basic measures of the EU Water Framework Directive.

There are specific basic regulatory measures of direct relevance to groundwater protection. One in particular, the Landfill Directive, is of immediate concern in the present study, as its limits have been applied to compare with simulation results. The Landfill Directive seeks to prevent or reduce the negative effects of landfill waste on the environment, including groundwater. It establishes provisions for issuing permits based on a range of conditions, including impact assessment studies. For each site, groundwater, geological, and

hydrogeological conditions in the area must be identified. The sites must be designed so as to prevent groundwater from entering landfill waste, so as to collect and treat contaminated water and leachate, as well as prevent the pollution of soils, groundwater or surface water by using the appropriate technical precautions, such as geological barriers and bottom liners. The Landfill Directive also sets a minimum requirement on groundwater quality monitoring. It establishes criteria for waste testing and acceptance, taking into consideration the protection of the surrounding environment, including groundwater.

Regarding municipal landfills, an initial sampling must be carried out in at least three locations before the filling operations, in order to establish reference values for future sampling. Having started the operation of the facility, a groundwater pollution detection monitoring program must be established, which must consist of at least one up-gradient background well and two down-gradient wells (EU, 1999/31/EC). The purpose of detection monitoring is early detection of a release to groundwater based on comparison of downgradient well data to background data for a limited number of water quality parameters. The number of monitoring wells can be increased on the basis of a specific hydro-geological survey and the need of the operator to control the risk and the liabilities in case of groundwater pollution. Regulation compliance of monitoring samples for an expanded suite of hazardous constituents requires establishment of concentration limits (compliance or cleanup standards), should any of these constituents be detected. Down-gradient well data is compared to concentration limits for each well on a periodic basis. The purpose of compliance monitoring is to determine if the release to groundwater is significant enough to warrant corrective action. Corrective action typically requires leachate leak source location identification and control, as well as groundwater remedial measures. The issues of a monitoring system design for detection, along with a sampling policy and timely remedial action compliance, are addressed in this thesis.

1.3 Landfills and Leachate

Increasingly affluent lifestyles and the continuing industrial and commercial growth in many countries around the world in the past decade have been accompanied by rapid increases in both municipal and industrial solid waste production. The sanitary landfill method for the ultimate disposal of solid waste material continues to be widely accepted and used due to its economic advantages (Renou et al., 2008). A municipal solid waste landfill system is an engineered deposit of waste onto or into the ground in such a way that pollution to the environment is prevented (ISWA, 1992). Alternatively a sanitary landfill, as defined in Article 2 of the European Directive 1999/31/EC, is any area onto or into the ground used for
at least a year for the disposal of solid waste. The critical components of a sanitary landfill are a natural element, the hydro-geological setting, and four engineered ones: the bottom liner, the cover, the leachate collection system and the monitoring system for the detection of a potential contamination leak (Paleologos, 2008). The bottom liner and the leachate collection system are complementary elements. The bottom liner constitutes the barrier to the environment for liquid and gas leaks from a landfill, and the leachate collection system, which is placed immediately below the waste, collects the leachate before it reaches the bottom liner. If collection of the leachate were to fail, the hydraulic load would make the liquid waste penetrate the bottom liner and be released in the environment (Figure 1.1). The basic operation of the cover is to prevent the infiltration of water into a landfill and the monitoring system checks the total operation of a landfill and its impact on the environment.

The main objective of landfilling is to provide a place for the final storage of waste in a way that does not impair human health and the surrounding environment. This objective can be reached by isolating the waste disposed of from the environment, so that emissions from the disposal site can be collected and treated prior to their release to the environment (Munawar & Fellner, 2013). Globally, more than 70% of municipal waste generated is disposed of in landfills (Zacarias-Farah & Geyer-Allely, 2003).

The main landfill emissions are biogas, airborne particulates and leachate. Biogas is produced during the biodegradation of the organic matter inside the waste bulk, while airborne particulates are generated during waste mechanical compression. Leachate is defined as the aqueous effluent generated as a consequence of rainwater percolation through waste, in conjunction with the biochemical processes in waste cells and the inherent water content of the waste (Renou et al., 2008). During landfill operation, leachates are produced mainly due to infiltration of rainwater through the refuse tips (Tatsi & Zouboulis, 2002). Leachate may contain large amounts of organic matter (biodegradable, but also refractory to biodegradation), where humic-type constituents consist an important group, as well as ammonia-nitrogen, heavy metals and chlorinated organic or inorganic salts. The composition of landfill leachates varies greatly depending on the age of the facility (Lema et al., 1988).

While landfills in many countries are currently designed and manufactured to minimize releases through the use of leachate barrier systems, capping of the site, leachate removal for treatment and barrier failure or degradation over time make groundwater pollution possible, while low rates of leachate removal in comparison to inflow to leachate treatment plants, for instance due to a rainfall, can result in seepage to both surface and groundwater (Slack et al., 2007). Despite all counter measures aiming at eliminating the chance of barrier leakage, the risk of leachate groundwater contamination cannot be completely eliminated or even, in some cases, controlled. The impact of landfill leachates on underlying aquifers has prompted a great

number of studies (Apgar & Langmuir, 1971; Miller & Mishra, 1989b, 1989a; Kjeldsen, 1993; Kaczmarek et al., 1997; Gau & Chow, 1998; Riediker, 2000; De Cortázar et al., 2002; Tatsi & Zouboulis, 2002; Slack et al., 2007; Renou et al., 2008). It is estimated by the U.S. Environmental Protection Agency that all landfills, irrespectively of the type of bottom liner, may present contamination leaks with time, and at least 40% of the operating landfills in the United States exhibit "some type of leak" (ITRC, 2003).

Figure 1.1: Main landfill characteristics and leachate escape into saturated zone

1.4 Problem Definition

Leachate production and management is now recognized as one of the greatest problems associated with the environmentally sound operation of sanitary landfills, because this liquid waste can cause considerable pollution problems by contacting the surrounding soil, ground or surface waters, and therefore it is considered a major pollution hazard unless precautionary measures are implemented (Baccini et al., 1987). The leachate problem is made worse by the fact that many landfill sites are operating without an appropriate impermeable bottom liner or an effective collection and subsequent treatment system (Lema et al., 1988), meaning that after the facility closes it is highly probable for pollution to escape into groundwater. Moreover, in abandoned landfills there is rarely any leachate collection and removal system available. Thus, leachate gravitationally drains through the waste mass and eventually develops a hydraulic head on the base of the facility (or liner, if one is present). Either leakage is accelerated due to this increased head or the head continues to build in the waste mass, creating groundwater pollution threat (Koerner & Soong, 2000).

In order for aquifer leachate contamination to be discovered, regulations impose the use of a groundwater monitoring system. The objective of a monitoring network is to gather information to be used for such purposes as characterization of ambient conditions, detection of the existence or location of undesirable conditions, and verification of compliance with regulations (Loaiciga et al., 1992). Therefore, the design of a reliable and efficient groundwater monitoring system is of great importance for groundwater protection policy, as it helps to determine the likelihood and severity of contamination problems. In addition, an early warning would minimize the landfill operator's liabilities.

However, because of the numerous and significant uncertainties involved, often it is difficult to ensure that a specific monitoring system will perform as initially expected. Uncertainty stems from the fact that we do not know exactly when and where the pollution will originate and how it is going to evolve into underground environment for which very few things are known. It is not possible to know beforehand when a containment installation or a protective barrier will fail, allowing pollutants to intrude into groundwater, as long-term durability of synthetic lining systems is in doubt (Allen, 2001; Zhao et al., 2007). Consequently, the best thing to do is set an "alarm" mechanism in case of failure and aquifer contamination.

Even though identifying leaks in landfill liners is an essential part of waste management and there are leak detection tools, such as electro-chemical sensing (Rumer & Mitchell, 1995; Laine et al., 1997), that can be installed to identify them soon after they occur, legislation does not oblige facility operators to install such a tool. Because leak detection tools are costly to install initially, landfill operators detect contaminant plumes caused by leaks in the landfill liner by collecting groundwater samples and analyzing them. One limitation of this method is that it does not prevent groundwater from becoming contaminated. Another limitation is the expense of comprehensive monitoring for all groundwater which comes in contact with a landfill.

Because the majority of landfills are lined with geo-membranes, most leaks are point sources, not widespread (Giroud & Bonaparte, 1989; Rumer & Mitchell, 1995). This is mainly due to the fact that usually leaks are developed at the bottom of the protective barriers, underneath great quantities of waste, where there is no access to perform a direct inspection.

Either due to a functional failure (material or leachate removal failure) or due to an accidental event (liner tear or puncture) the footprint of the contamination source is usually very small. If there is no monitoring well in the path of a plume, it is possible for the front of the plume to pass by the line of wells at the point of compliance without being detected. This could also happen in case sampling intervals of monitoring wells allow contamination to pass over undetected. 99/31/ EU Directive states that the sampling frequency must be based on possibility for remedial actions between two samplings if a trigger level is reached. In general, groundwater should be monitored quarterly, biannually or annually, depending on the type of waste, size and design of the landfill, along with aquifer material. In most cases a quarterly monitoring is required. However, annual monitoring can be undertaken for small landfills located in remote places far away from any groundwater use source. Installing enough monitoring wells to be sure of intercepting a narrow plume in any position can be prohibitively expensive (Godfrey et al., 1987). In addition, a very rigorous sampling policy in order to detect small plume pollution briefly injected into groundwater may increase a landfill's operating cost too much. Consequently, it is rather impossible to predict the exact location of the failure and the source of pollution. Potentially, every point inside a landfill's vicinity may be a contamination source.

As soon as pollution enters the saturated zone, it is very difficult to determine the exact path of its propagation. Spreading of solutes in transport through geological formations (aquifers, petroleum reservoirs) is governed by the large-scale spatial variability of permeability (Dagan, 1994). Geological formations that act as flow conduits are often characterized by highly variable three-dimensional structures consisting of layers, lenses and, perhaps, fractures in various materials, ranging from sand and gravel to clay or rods. Corresponding to these material fluctuations is a similar variability in the characteristic hydraulic parameters used for the description of both flow and transport in porous media scale balance equations (Tompson et al., 1987a). Because of the seemingly erratic spatial variation of hydraulic conductivity K and the scarcity of field data, it is very difficult, if not impossible, to deterministically define the path of plume contamination. Field uncertainty is an important factor in hydrological applications (unlike controlled laboratory experiments), where there is usually large uncertainty in characterizing even the statistical structure of K (Fiori et al., 2006).

Finally, another factor of uncertainty stems from the fact that there is no exact time provision in pollution control and in environmental restoration after contamination has been discovered. Even if regulations prompt landfill operators to apply an emergency plan so as for pollution to be controlled, additional remediation actions must be taken in order for environmental damage to be restored and further pollution danger to be eliminated. In real life, though, immediate remediation actions are not the case. Even the EU 99/31 Directive on landfill operation states that when a monitoring well sample analysis indicates evidence of groundwater pollution, another sample must be taken and, if pollution is verified again, then measures are to be taken. However, as time passes plume contamination areal coverage gets bigger. Time between groundwater pollution detection and the line of action that someone is willing to follow as soon as it is successfully discovered defines the worthiness of the detection information. Thus, holistic consideration of leachate groundwater contamination detection entails uncertainty as to restoration time.

A reliable groundwater detection monitoring system entails various challenges due to the nature of the problem. The performance of a landfill's monitoring wells for leachate polluted groundwater has prompted a great number of studies (Morisawa & Inoue, 1991; Hudak & Loaiciga, 1992; Loaiciga et al., 1992; Meyer et al., 1994; Hudak, 2001; Kim & Lee, 2007) mainly focusing on the optimization of pollution detection probability in relation to the number and location of the wells. Additional research has been done in order to determine how hydro-geological or monitoring installation parameters affect successful groundwater pollution (Hudak, 1998; Warrick et al., 1998; Hudak, 2005; Yenigül et al., 2005; Yenigül et al., 2011), as well as studies have been done to develop methods to reduce the costs associated with long term monitoring of sites groundwater contamination (Reed et al., 2000; Wu et al., 2005).

However, landfills are not the only groundwater pollution sources. For many industrial activities, such as those taking place at oil refineries and chemical plants, it is almost impossible to prevent pollution. If shallow groundwater is present, it is likely that the industrial site will become polluted somewhere in the future or has been polluted at some point in the past. It is of vital importance to human health and the public acceptance of these activities that groundwater pollution is detected before it crosses the terrain boundary of the refinery or plant (Bierkens, 2006). This way it can be hydrologically contained or cleaned up. Hence, many refineries and plants have a monitoring network at the boundary of their sites to detect plumes of polluted groundwater.

Much of the literature on optimizing monitoring networks for groundwater quality is concerned with mapping contaminant plumes from landfills (Loaiciga, 1989; Loaiciga et al., 1992; McLaughlin et al., 1993; Yenigul et al., 2006). In case of larger sites with industrial activities, the plumes themselves are usually not of interest. Interest is focused on detecting the plumes before they leave the site at some distance from the boundary (Bierkens, 2006). Although the present study started mainly by examining municipal waste sanitary landfill cases, results were expanded in every facility where groundwater monitoring is legally implemented or simply advised, in order for aquifer pollution to be detected and liabilities to be avoided.

1.5 Research Objectives

The purpose of this research is to numerically investigate groundwater contamination detection probability achieved by a linear monitoring arrangement of wells and to provide a novel framework that modifies traditional risk analyses by supplying a corrected detection probability that accounts for delays in remedial actions. A stochastic 2-D model has been developed that performs high resolution Monte Carlo simulation, which accounts for uncertainties stemming from:

- i. Geological heterogeneity, as reflected to hydraulic conductivity K
- ii. Dispersion of pollution, as described by longitudinal and transverse dispersion coefficients a_L , a_T
- iii. Size of a landfill or a controlled area where groundwater pollution may occur
- iv. Location of contamination source
- v. Number of contamination sources
- vi. Quantity of pollution that infiltrates groundwater
- vii. Duration of leak
- viii. Sampling frequency
- ix. Delays in remediation actions

The numerical experiment results of the present thesis are used to acquire an insight on the way field heterogeneity, pollution source location, duration and quantity in relation to sampling frequency as well as remediation delay affect the efficiency of an established monitoring network of groundwater pollution and its operating policy. Even if numerical simulations are not equivalent to field experiments, results are adequate to provide a quick and affordable first estimation on what to expect from such a running monitoring system or from one under consideration.

First estimation is defined as the preliminary calculation of detection probability that a specific monitoring installation may provide, without performing any field measures but only using an expert's views and observations on assigning values at mean hydraulic conductivity, at heterogeneity, as this is reflected into hydraulic conductivity variations, and at dispersion coefficient. By applying all these parameters at the present work model, in conjunction with sampling policy and an estimation of possible pollution control or remediation delay, the

outcome probabilities can help an engineer perform risk analysis in terms of cost for a specific monitoring installation easily and decide what would be the best tradeoff choice among the number of monitoring wells, an adopted sampling policy and a possible pollution detection failure. Moreover, additional costs originating from remediation delay, depending on available resources and technologies, as well as efficiency of administration decision-making, are also introduced as decision parameters.

1.6 Thesis Outline

This thesis comprises seven chapters, which describe the objectives and results obtained in this study. *Chapter 2* provides an outline of the basic simulation schemes that are used and describes the numerical techniques of the computational model that simulates transportation and dispersion of contaminant plumes originating from a groundwater pollution controlled area leakage, such as a landfill. The numerical methods of the solution of governing flow and contaminant transport equations are described in this chapter. A brief introduction is made on subsurface heterogeneity simulation using the Spectral Turning Bands method, as well as pollution advection and dispersion simulation using Random Walking Particles method. At the end of Chapter 2 the model's structure is analyzed and a brief description of the source code is referenced.

In *Chapter 3*, a high resolution Monte Carlo stochastic model is developed to simulate contaminant transport from an instantaneous source into heterogeneous two-dimensional aquifers. The effect of a representative number of particles on the plume's description is studied and compared with its theoretical detection probability in case of a homogeneous aquifer. Probabilities of detection P_d and contaminated groundwater areas are calculated for different arrangements of monitoring wells. An expression is proposed that accounts for the delay between detection and remedial action in order to provide a correction to decision analyses that evaluate the economic worth of well monitoring. *Chapter 3* has been adapted from *Papapetridis K., Paleologos EK.,* (2012), "Sampling Frequency of Groundwater Monitoring and Remediation Delay at Contaminated Sites", Water Resources Management 26(9), pp.2673-2688, doi: 10.1007/s11269-012-0039-8.

Chapter 4 examines the monitoring wells frequency of sampling at contaminated sites located in two-dimensional heterogeneous subsurface environments. Aquifer heterogeneity and the pollution dispersion effect on detection probability, in conjunction with the sampling policy adopted, are examined. The impact of delays in remedial response is also investigated in terms of the growth that such delays incur on contaminated areas and remediation costs. High-resolution numerical Monte Carlo realizations are utilized to simulate contaminant

movement in heterogeneous two-dimensional aquifers and to calculate the probabilities of detection Pd attained by various monitoring well arrangements. *Chapter 4* has been adapted from *Papapetridis K., Paleologos EK.,* (2011), "Contaminant detection probability in heterogeneous aquifers and corrected risk analysis for remedial response delay", Water Resources Research 47(10), doi:10.1029/2011WR010652.

Chapter 5 studies how the number of point sources, the size of the controlled area (landfill) and the quantity of an instantaneous aquifer injection pollution event affect detection of an instantaneous pollution into a two-dimensional aquifer by a monitoring network of wells. A two-dimensional stochastic model is utilized to perform numerical experiments. In each examined parameter it is considered that the rest of the factors affecting detection probability estimation remain constant. Simulations are performed in the context of uncertainty factors deriving from the environment itself, where the pollution is propagating, and the lack of information about certain parameters concerning the initial conditions of the leak.

In *Chapter 6* a two-dimensional stochastic model is developed in order to study, in terms of detection probability, the efficiency of linear groundwater pollution monitoring well networks, as pollution originates from a random point source inside a controlled area and is triggered by precipitation events. A thirty-year time series of daily average rain data has been used and linearly coupled with the pollutant mass diffused directly into the aquifer. The effects on successful pollution detection of the aquifer's hydro-geological parameters, as reflected in the field's hydraulic conductivity variance and dispersion coefficients, have been studied. In addition, the influence of the aquifer's sampling frequency and remedial action delay time is examined, referring to the detection probability that a monitoring well arrangement can succeed from the moment a successful detection has been recorded. Results are directly compared with these of instantaneous pollution simulated cases, as they have been studied in previous Chapters, considering the rest of the computational parameters common.

Chapter 7 concludes the thesis with a summary of the main results and some recommendations for practical application and future research are proposed.

Thesis concludes with two Appendixes. In *Appendix A* the FORTRAN source code is listed for both cases of pollution duration that have been studied. In addition, STUBA listing is provided along with flow equations arithmetic solution subroutine. Finally, in *Appendix B* all the simulation numerical results are presented.

CHAPTER 2

Two-dimensions model structure

2.1 Introduction

Geological field observations at various scales have shown that both physical and chemical properties exhibit high spatial variability or, otherwise, heterogeneity. This is due to the fact that many of the characteristics of geological formations - such as cracks and voids containing the horizontal and vertical stratification, or the type and age of the rocks exhibit also great variability in space. Experimentally, for example, it has been found that the hydraulic conductivity of a geological field can vary between several orders of magnitude, with a discontinuous manner, thereby making its description in a deterministic way almost impossible (Gelhar et al., 1992).

Contaminant transport depends on the nature of the contaminant and the hydrogeological parameters that form an aquifer's flow field. In a steady flow, flow stream lines remain constant over time, while otherwise in transient cases they change, making the study of the problem much more difficult both on a physical level, in understanding the evolution of the same phenomenon, and for the computational requirements in order to achieve a numerical description of the flow. The aim, however, of this work is not the general study of heterogeneous aquifer transport phenomena, but the study of groundwater pollution detection probability by a monitoring wells network under conditions of uncertainty regarding environmental and operating parameters. For this reason, in order to simplify our problem, a steady flow will be considered.

Although in the present study two-dimensional (2-D) fields are utilized to simulate a plume's evolution and its detection, during the following paragraphs the case of threedimensional (3-D) geological field equations are developed, in order for the presentation of the equations in space to be considered complete. Although it can be said that the twodimensional approach is not the most realistic description of the actual situation, it simplifies the computational problem, losing only the vertical information about the movement and the detection of plumes. Moreover, when the horizontal dimensions of an aquifer are much greater than its thickness, which is our case, then the results of two dimensions provide a good approximation of reality (Dagan, 1986; Dagan et al., 2009). On the other hand, running simulations in 2-D saves computational time. The reduction of the 3-D equations to 2-D is simply done by ignoring the factors of the third component.

2.2 Stochastic Approach

Natural heterogeneity of aquifer materials provides the direct motivation to approach many groundwater problems in a probabilistic framework. As a consequence of the variable processes involved in the genesis of permeable earth materials, it seems that such complex heterogeneity will be omnipresent. The fundamental problem is how to deal with this heterogeneous reality as we attempt to develop quantitative descriptions of flow in large-scale aquifer systems. More specifically, engineers would like to know how to find appropriate average parameters which can be applied to large-scale flow models and, at the same time, how to be able to evaluate the influence of modeled heterogeneity on the quality of predictions from such models.

One approach to deal with the complex heterogeneity of natural aquifer materials would be to construct a detailed deterministic model which represents the actual heterogeneity of the aquifer. However, for realistic field problems, this degree of spatial resolution would require enormous computational resources and, more importantly, would be impractical in terms of the amount of data required to specify the actual complex threedimensional heterogeneity. Furthermore, this level of detail in the output would be excessive in relation to predictive requirements for many applications.

Alternatively, the heterogeneity can be represented in terms of random hydraulic parameters characterized by a limited number of statistical parameters. These random parameters will then appear as coefficients in partial differential equations which express our classical laboratory-based physical understanding of the flow processes. Consequently, the resulting predictions are represented through probability distributions or, more realistically, in terms of statistical moments (Gelhar, 1986).

In a stochastic approach we attempt to gain useful information about the behavior of naturally heterogeneous systems by treating them as if the hydraulic parameters were random. More specifically, to represent the spatial structure, parameters such as hydraulic conductivity K can be viewed as random processes or spatial random fields. The spatial persistence of the random field of the hydraulic conductivity natural logarithm can be characterized in terms of the second moment, that is, the covariance between two different locations.

Carefully designed natural gradient field-scale tracer experiments have been conducted to study the movement of contaminants in heterogeneous aquifers with a high sampling resolution in space and time, from which stochastic theories have been partially validated at the Borden (Freyberg, 1986; Mackay et al., 1986; Woodbury & Sudicky, 1991; Farrell et al., 1994) and Cape Cod (LeBlanc et al., 1991; Hess et al., 1992) aquifers. These two aquifers are relatively homogeneous ($\sigma_{\ln K}^2 \approx 0.2$) and the successful application of stochastic theories at these sites does not establish their validity in more heterogeneous aquifers (Fernàndez-Garcia et al., 2005). The MADE (Boggs et al., 1992) field-scale tracer test was conducted in a substantially more heterogeneous aquifer ($\sigma_{\ln K}^2 \approx 2.7$) but a spatial trend in hydraulic conductivity and nonuniform flows prevented the macrodispersivity from approaching a constant value (Adams & Gelhar, 1992). Thus the basic predictions of stochastic theories (effective conductivity and dispersion) could not be directly verified at the MADE site (Fernàndez-Garcia et al., 2005).

The ergodic hypothesis which underlies the treatment of aquifer flows in a probabilistic sense is a fundamental admission. In simple terms, the ergodic hypothesis presumes that the behavior of a spatially averaged property of an aquifer is represented probabilistically by the ensemble average over a large number of realizations of aquifers having the same underlying statistical properties. For the spatial averaging process to be meaningful, the heterogeneities must be relatively small in terms of their spatial scale, as compared with the overall scale of observation. If there is this disparity in the scales, it should be possible to view larger-scale variations as deterministic trends around which there are more localized variations which can be viewed as stationary. The requirement for the result to be applicable is that the mean hydraulic gradient does not change significantly over a distance corresponding to the correlation scale of the head process (Gelhar, 1986).

2.3 Simulating Random Fields: Turning Bands

The Turning Bands method is a simulation technique which was developed to create stationary, correlated, multi-dimensional Gaussian fields from a normal distribution with mean zero (0) and a specific covariance function. This method was first developed and applied by *Journel* (1974) and developed for the general case of the 2-D field by *Mantoglou*

and Wilson (1982) as Spectral Turning Bands method (STUBA), because of the use of a spectral method for line generation.

Figure 2.1: Turning Bands Mechanism (Mantoglou and Wilson, 1982)

The Turning Bands method is based on the theory of multivariate stochastic processes. The basic idea of the method is converted into a multi-dimensional simulation of a sum of equivalent dimensional simulations. The operation of the algorithm is, in short, to create 2-D and 3-D fields by successively promoting and combining the values derived from the simulations of random numbers with a certain autocorrelation function along lines which are launched by a random point in space outside the scope. This technique has the effect of creating output random fields, which can simulate a hydraulic capacity of the studied, as is hydraulic conductivity. Although the random field was generated by specifying geostatistical parameters, estimates of these parameters from single realizations of the generated field are variable (Shafer & Varljen, 1990; Rehfeldt et al., 1992).

STUBA is an iterative method of two main steps. First, it creates a reflective process (random numbers) along a line given covariance function and mean value zero (0). Then, it creates an orthogonal projection of this line on each point of the simulated field matching, at this point, the value of the linear stochastic process. We consider a large number of lines which, however, have a common starting point, leading to the above procedure being repeated

several times (Figure 2.1). Visually this can be represented as areas that revolve around their common center. The final result for each point, which is the random number of stochastic processes implemented, is the weighted average of these projections.

Today there are two main ways for the production of one-dimensional stochastic processes along the lines. The first concerns the approximation of spatial areas (Space Domain) and can handle functions only with specific covariance. The second approach relates to the spectral region (Spectral Domain) and can handle a larger number of 2-D processes.

2.3.1 TBM Theoretical Background

We consider $Z_i(u) = 1, 2, ..., N$ a set of N independent implementations of a onedimensional second order stationary stochastic process along a line, with autocorrelation function $\rho_l(u_0)$, where u_0 is the spatial hysteresis on the line. The values we get from the relationship are:

$$Z_{s}(x, y, z) = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} Z_{i}(u)$$
(2.1)

This is essentially the simulation of the random field, which is indicated by the index *s* (simulated). The field generated by this equation has a mean value equal to zero (0). The relationship between the autocorrelation function of the linear process $\rho_l(u_0)$ and that of the three dimensional random field $\rho(u_0)$ is given by *Mantoglou and Wilson* (1982), and *Mantoglou* (1987):

$$\rho_l(u_0) = \frac{d}{du_0} \left[u_0 \rho(u_0) \right]$$
(2.2)

while for a two-dimensional random field the relationship becomes:

$$\int_{0}^{s} \frac{\rho_{l} du_{0}}{\sqrt{\left(s^{2} - u_{0}^{2}\right)}} = \frac{\pi}{2} \rho(s)$$
(2.3)

where *s* is spatial hysteresis. From Eq.(2.3) it is not easy to extract $\rho_l(u_0)$ directly as a function of $\rho(s)$. For this reason, a spectral method has been created by *Mantoglou and Wilson* (1982) which extracts the autocorrelation function of the process along the lines of various autocorrelation functions of a two-dimensional field.

To create 2-D random fields it is required to solve the integral Eq. (2.3), which cannot readily be expressed as $\rho_l = f(\rho(s))$. To overcome this difficulty, an expression is created

that connects the spectral density function of the one-dimension process with the function of radial spectral density of the two-dimensional process used. This expression in Fourier space is given by:

$$S_{l}(\omega) = \frac{\sigma_{Z}^{2}}{2} S(\omega)$$
(2.4)

and connects $S_i(\omega)$ with the product of $S(\omega)$ over half of the variation of the twodimensional process. The steps followed in the implementation of SSTUBA are outlined below.

2.3.2 Establishment of the One-dimensional Linear Process

There are two main techniques for the creation of the process lines. The first is the Fourier transformation (Fast Fourier Transformation), which can be used to give us the complex process, X(u) = Z(u) + iY(u), which is given by *Tompson et al.* (1989) as:

$$X(u) = \int_{all\omega} e^{i\omega u} dW(\omega) \approx \sum_{all\omega} e^{i\omega_j u} dW(\omega_j)$$
(2.5)

where x is the sum of sinusoidal functions of complex sequences with different wavelengths, where each increases by a random complex of average size equal to zero (0). The second technique is called Normal Integration by Fourier (Standard Fourier Integration). According to this method, the real part of the complex process X(u) is given by:

$$\operatorname{Re} X(u) = Z(u) = \int_{all\omega} \left| dW(\omega) \right| \cos(\omega u + \phi_{\omega})$$
(2.6)

and can be directly used to create distinct approaches using positive frequencies:

$$Z_{i}(u) = \sum_{j=1}^{M} \left| dW(\omega_{j}) \right| \cos(\omega_{j}u + \phi_{j})$$
(2.7)

where ϕ_j are independent random angles with uniform distribution between 0 and 2π , M is the number of harmonics used in the simulation, $\omega_j = (j - 0.5)\Delta\omega$, j = 1, 2, ..., M, $\Delta\omega$ is the discretized frequency which is given by ω_{max}/M , and ω_{max} is the maximum frequency used in all calculations. $|dW(\omega_j)|$ is calculated deterministically from the spectrum range as

$$\left| dW(\omega_j) \right| = \left[4S_l(\omega_j) \Delta \omega \right]^{1/2}$$
(2.8)

where $S_l(\omega_j)$ is the spectral density function of the actual process Z(u) on the lines.

 $S_i(\omega_j)$ is considered negligible outside the region $[-\omega_{\max}, +\omega_{\max}]$. Substituting (2.8) in (2.7) we obtain the generator function of the one-dimensional process on each line *i* as (Shinozuka & Jan, 1972):

$$Z_{i}(u) = 2\sum_{j=1}^{M} \left[S_{l}(\omega_{j}) \Delta \omega \right]^{1/2} \cos(\omega_{j}' u + \phi_{j})$$
(2.9)

where $\omega'_j = \omega_j + \delta \omega$. Frequency $\delta \omega$ is a small frequency range, uniformly distributed between $-\Delta \omega'/2$ and $\Delta \omega'/2$, where $\Delta \omega' = \Delta \omega/20$, which is added in order for periodic phenomena to be avoided.

The approach of this methodology results in a discrete frequency $\Delta \omega$ as the maximum cutoff frequency is $\omega_{\text{max}} = M\Delta\omega$. This method requires more computational time than the FFT, but is much more flexible in the choice of parameter values $M, \Delta\omega, \Delta u, \omega_{\text{max}}$ and u_{max} (Tompson et al., 1989).

2.3.3 Number and Distribution of Turning Bands

The theory of STUBA is based on the approach that we have an infinite number of rotating lines. Let us assume that the lines have random orientations, as resulting from a uniform distribution of a unit circle or sphere of a unit for the case of 2-D or 3-D fields, respectively. It has been shown (Mantoglou & Wilson, 1982) that if the lines are selected on the unit circle or on the unit sphere, with equal angles between them and with predetermined directions, then the autocorrelation function of the random field we try to simulate converges faster towards the theoretical form. Usually, a number of lines between eight (8) to sixteen (16) is a good choice for an isotropic autocorrelated function. In case an anisotropic situation is dealt with, it is necessary to select a larger number of lines.

2.3.4 Spectral Discretization and Random Fields Generation

The implementation process $Z_i(u_n)$ on line *i* at the point *n* is done by integrating a series of discretized random components coming from the whole spectral range. Discretization factor of frequency $\Delta \omega$ must be small enough to achieve an adequate degree of precision, while the number of harmonics *M* must be large enough to be counted as contributions of spectral edges at $\omega_{\text{max}} = M\Delta\omega$. Mantoglou and Wilson (1982) have calculated that the values can vary between 50 and 100, while ω_{max} in each case was 40 times larger than the correlation length.

Figure 2.2: A 2-D hydraulic conductivity field generated by STUBA, where $\mu_K = 2.3$, $\sigma_{\ln K}^2 = 2.0$ and $\lambda = 20m$.

The length of the discretization Δu used on the lines should be chosen smaller than the respective lengths Δx , Δy of the simulated field. This is a more general rule that should be applied to avoid arithmetical errors during calculations (Mantoglou & Wilson, 1982). Additionally, the minimum length of the lines is defined by their orientation and the size of the field that we wish to simulate.

Generation of random fields $Z_s(x, y, z)$ will ultimately derive from the entire selection of a finite number of lines L and their specified orientation, from the discretization of the single dimensional process $Z_i(u)$ by assigning a random value on each discrete point n of each line, from the following orthogonal projection of these values on points x of the simulated field and, finally, by dividing the sum of the projections at each point by the factor $L^{1/2}$ to obtain the final value (Elfeki, 1996) (

Figure **2.2**).

2.4 Flow Equation

The equations which describe the flow of a permanent incompressible fluid through a porous material are the continuity equation of the mass:

$$\nabla \cdot q(\mathbf{x}) = 0 \tag{2.10}$$

and Darcy Law:

$$q(\mathbf{x}) = -K(\mathbf{x})\nabla h \tag{2.11}$$

where $x \in \mathbb{R}^3$, where h[L] is hydraulic front, $K(\mathbf{x})[L/T]$ is hydraulic conductivity and B[L] is the aquifer's depth. Combining the above equations we get,

$$\nabla \cdot \left(K\left(\mathbf{x}\right) \nabla h \right) = 0 \tag{2.12}$$

which in \mathbb{R}^3 is written,

$$\frac{\partial}{\partial x}\left(K\left(\mathbf{x}\right)\frac{\partial h}{\partial x}\right) + \frac{\partial}{\partial y}\left(K\left(\mathbf{x}\right)\frac{\partial h}{\partial y}\right) + \frac{\partial}{\partial z}\left(K\left(\mathbf{x}\right)\frac{\partial h}{\partial z}\right) = 0$$
(2.13)

The above partial differential equation describes the permanent groundwater flow in 3-D within the saturated zone of an isotropic, heterogeneous, porous material with a constant depth aquifer (Bear & Buchlin, 1987). The resolution, in conjunction with the boundary conditions specified for the particular model, gives values of the hydraulic front as distinct change in space within the heterogeneous saturated control volume.

We assume a 3-D dimensional elementary parallelepiped volume of dimensions L_x , L_y and L_z which it simulates a heterogeneous, saturated aquifer (Figure 2.3). The reference axes of the system are oriented so that the to coincide with the flow direction. The flow field is described by uniformly hydraulic head difference in perpendicular planes to x - axis, which are applied at the boundaries 0 and L_x of the volume control. This results in the coincidence of the hydraulic gradient direction with that of the average flow. The boundary condition of zero flow is applied to the two remaining directions, i.e. $\partial h/\partial y = 0$ and $\partial h/\partial z = 0$.

At the volume control that has been defined the flow equation is solved numerically, considering the hydraulic conductivity as a second order random function. The method used in this work is that of finite differences calculated at seven (7) adjacent points (Desbarats, 1992; Sarris, 1999), defined in the center of the elementary cubes of the lattice in which the parallelepiped is discretized. If, for example, the point (i, j, k) is considered, then that function value on it is calculated according to points (i+1, j, k), (i-1, j, k), (i, j+1, k), (i, j-1, k), (i, j, k+1) and (i, j, k-1). The central scheme of the hydraulic head calculation was used in order the same volume to correspond to the hydraulic conductivity parameters, so

as each of them to acquire the same weight into arithmetic calculation of the differential flow equation.

The flow equation discretization into the centers of the elementary volumes, which are also called nodes of the grid, with dimensions D_x , D_y and D_z is made by approaching the second and first derivatives with the differences of the hydraulic heads. By analyzing each term of the equation flow separately, it is for the direction of the x-axis,

$$K\frac{\partial h}{\partial x} \approx K\left(i+\frac{1}{2},j,k\right) \left[\frac{h(i+1,j,k)-h(i,j,k)}{\Delta x}\right]$$
(2.14)

where K(i+1/2, j, k) is the value of hydraulic conductivity in the mid-space between nodes (i, j, k) and (i+1, j, k), which is approximated with the harmonic mean of the two adjacent nodes in X direction and is given by,

$$K\left(i+\frac{1}{2}, j, k\right) = \frac{2K(i+1, j, k)K(i, j, k)}{K(i, j, k) + K(i+1, j, k)}$$
(2.15)

Similarly, we have for directions Y and Z,

$$K \frac{\partial h}{\partial y} \approx K \left(i, j + \frac{1}{2}, k \right) \left[\frac{h(i, j+1, k) - h(i, j, k)}{\Delta y} \right]$$
 (2.16)

$$K\frac{\partial h}{\partial z} \approx K\left(i, j, k + \frac{1}{2}\right) \left[\frac{h(i, j, k + 1) - h(i, j, k)}{\Delta z}\right]$$
(2.17)

where
$$K\left(i, j+\frac{1}{2}, k\right) = 2K\left(i, j+1, k\right)K(i, j, k)/K\left(i, j, k\right) + K\left(i, j+1, k\right)$$
 and

$$K\left(i, j, k + \frac{1}{2}\right) = 2K\left(i, j, k + 1\right)K(i, j, k) / K\left(i, j, k\right) + K\left(i, j, k + 1\right).$$

The above equation is discretized to

$$\frac{K\left(i+\frac{1}{2},j,k\right)\left[\frac{h(i+1,j,k)-h(i,j,k)}{\Delta x}\right]-K\left(i-\frac{1}{2},j,k\right)\left[\frac{h(i,j,k)-h(i-1,j,k)}{\Delta x}\right]}{\Delta x} + \frac{K\left(i,j+\frac{1}{2},k\right)\left[\frac{h(i,j+1,k)-h(i,j,k)}{\Delta y}\right]-K\left(i,j-\frac{1}{2},k\right)\left[\frac{h(i,j,k)-h(i,j-1,k)}{\Delta y}\right]}{\Delta y} + \frac{K\left(i,j,k+\frac{1}{2}\right)\left[\frac{h(i,j,k+1)-h(i,j,k)}{\Delta z}\right]-K\left(i,j,k-\frac{1}{2}\right)\left[\frac{h(i,j,k)-h(i,j,k-1)}{\Delta z}\right]}{\Delta z} = 0$$
(2.18)

Figure 2.3: 3-D Field Discretization

We are forming and calculating, using the known values of hydraulic conductivity on each node, the terms below,

$$A(i, j, k) = K\left(i + \frac{1}{2}, j, k\right) / \Delta x^2$$
(2.19)

$$B(i, j, k) = K\left(i, j + \frac{1}{2}, k\right) / \Delta y^2$$
(2.20)

$$C(i, j, k) = K\left(i, j, k + \frac{1}{2}\right) / \Delta z^2$$
(2.21)

$$D(i, j, k) = K\left(i - \frac{1}{2}, j, k\right) / \Delta x^2$$
(2.22)

$$E(i, j, k) = K\left(i, j - \frac{1}{2}, k\right) / \Delta y^2$$
(2.23)

$$F(i, j, k) = K\left(i, j, k - \frac{1}{2}\right) / \Delta z^2$$
(2.24)

$$G(i, j, k) = A(i, j, k) + B(i, j, k) + C(i, j, k) + D(i, j, k) + E(i, j, k) + F(i, j, k)$$
(2.25)

Consequently, the three-dimensional approximation using the finite differences scheme of the flow equation is written as

$$G(i, j, k)h(i, j, k) = A(i, j, k)h\left(i + \frac{1}{2}, j, k\right) + B(i, j, k)h\left(i, j + \frac{1}{2}, k\right) + C(i, j, k)h\left(i, j, k + \frac{1}{2}\right) + D(i, j, k)h\left(i - \frac{1}{2}, j, k\right) + E(i, j, k)h\left(i, j - \frac{1}{2}, k\right) + F(i, j, k)h\left(i, j, k - \frac{1}{2}\right)$$

$$(2.26)$$

To solve the above equation we consider Dirichlet boundary conditions on X-axis, where we assume known values of hydraulic front at X=0 and $X=L_x$. On Y-axis and Z-axis we consider Neumann boundary conditions, assuming no flow at the boundaries of Y=0, $Y=L_y$, Z=0 and $Z=L_z$. Algebraic equations along with their boundary conditions are computationally solved, using the iterative scheme of Line Successive Over Relaxation Method (LSORM) (Young, 1954), whose source code was developed by *Desbarats* (1992) and adopted directly by the work of *Sarris* (1999). According to this arithmetic method, hydraulic head values on grid nodes are continuously updated until the difference between the last two successive values becomes less than a predefined limit, which in this case was set equal to 10^{-5} . The final results of this computational process are hydraulic heads on every node h(i, j, 1) of the simulated area's grid.

2.5 Velocity Field

Using Darcy's law velocity field components were calculated on each grid node. Velocities were calculated according to

$$\mathbf{u} = \frac{K_{xx}}{\varepsilon} \frac{\partial h(x, y, z)}{\partial x} \hat{u} + \frac{K_{yy}}{\varepsilon} \frac{\partial h(x, y, z)}{\partial y} \hat{v} + \frac{K_{zz}}{\varepsilon} \frac{\partial h(x, y, z)}{\partial z} \hat{k}$$
(2.27)

where ε is the field's effective porosity. Due to isotropy, it is $K = K_{xx} = K_{yy} = K_{zz}$ and every component is calculated as

$$u_{x} = \frac{K}{\varepsilon} \frac{\partial h(x, y, z)}{\partial x}, \ u_{y} = \frac{K}{\varepsilon} \frac{\partial h(x, y, z)}{\partial y} \text{ and } u_{z} = \frac{K}{\varepsilon} \frac{\partial h(x, y, z)}{\partial z}$$
(2.28)

The partial derivative on each node i, j, k is given by the three-point approximation where

$$\frac{\partial h(x, y, z)}{\partial x} = \frac{h(x_{i+1}, y, z) - h(x_{i-1}, y, z)}{2\Delta x}$$
(2.29)

$$\frac{\partial h(x, y, z)}{\partial y} = \frac{h\left(x, y_{j+1}, z\right) - h(x, y_{j-1}, z)}{2\Delta y}$$
(2.30)

$$\frac{\partial h(x, y, z)}{\partial z} = \frac{h(x, y, z_{k+1}) - h(x, y, z_{k-1})}{2\Delta z}$$
(2.31)

where -1 and +1 indexes indicate hydraulic head on nodes before and after the node whose velocity components we want to calculate. At boundaries of the simulated area, where $(x = 0, x = L_x)$ and $(y = 0, y = L_y)$, the difference between two adjacent nodes was used.

2.6 Conservation Hypothesis and Diffusion – Dispersion Equation

A basic assumption in this work is that pollution is caused by a single substance, which is chemically inert in the environment. In addition, no sorption occurs. This means that groundwater plume transportation and dispersion depend only on the speed of the flow field and the heterogeneity of the subsoil. Although this assumption is not realistic, it allows us to study the phenomenon of pollution transportation and monitoring system performance, only as a function of the heterogeneity of the subsoil. In fact, various pollutants during groundwater transportation are suffering biological processes (biodegradation) as well as chemical changes which, as a rule, slow down the flow of plumes without necessarily reducing their toxic effects (Rowe, 1995; Fatta et al., 1999; Renou et al., 2008). In the case of 3-D steady flow, the transport-diffusion can be written (Bear, 1988)

$$\frac{\partial C}{\partial t} + v_x \frac{\partial C}{\partial x} + v_y \frac{\partial C}{\partial y} + v_z \frac{\partial C}{\partial z} - \frac{\partial}{\partial x} \left[D_{xx} \frac{\partial C}{\partial x} + D_{xy} \frac{\partial C}{\partial y} + D_{xz} \frac{\partial C}{\partial z} \right] - \frac{\partial}{\partial y} \left[D_{yx} \frac{\partial C}{\partial x} + D_{yy} \frac{\partial C}{\partial y} + D_{yz} \frac{\partial C}{\partial z} \right] - \frac{\partial}{\partial z} \left[D_{zx} \frac{\partial C}{\partial x} + D_{zy} \frac{\partial C}{\partial y} + D_{zz} \frac{\partial C}{\partial z} \right] = 0$$
(2.32)

where *C* is pollution concentration at time *t* at position (x, y, z), and v_x, v_y, v_z are the measures of flow velocity components at directions x, y, z respectively. Factors D_{ij} , where i, j = 1, 2, 3, are components of the hydro – dispersion tensor and are given by (Bear, 1988; Feyen et al., 1998)

$$D_{i,j} = (a_T |v| + D_m) \delta_{ij} + (a_L - a_T) \frac{v_i v_j}{|v|}$$
(2.33)

where δ_{ij} is Kronecker's operator, $a_L[L]$ is the longitudal dispersion coefficient, $a_T[L]$ is the transverse dispersion coefficient, D_m the molecular diffusion coefficient and

 $|v| = \sqrt{v_x^2 + v_y^2 + v_z^2}$ is the measure of groundwater flow velocity. Concentration *C* boundary conditions of the 2-D simulation is $\partial C/\partial y(x,0,t) = 0$, $\partial C/\partial y(x,L_y,t) = 0$ for every $t \ge 0$ and C(x,y,0) = 0 when $0 \le x \le L_x, 0 \le y \le L_y$.

2.7 Random Walk Tracking Particle

The Random Walk Tracking Particle (RWTP) method treats the transport of a solute mass via a large number of particles. It moves each particle through the porous medium using the velocity field obtained from the solution of the flow equation to simulate advection and adds a random displacement to simulate dispersion. This approach avoids solving the transport equation directly and therefore is virtually free of numerical dispersion and artificial oscillations (Salamon et al., 2006b).

RWTP is a method from Statistical Physics which has been used in the analysis of dispersion and diffusion processes in porous media. It was observed that particles accumulate in low permeability zones, resulting in unrealistic concentrations (Kinzelbach, 1987). This is due to the fact that a slight dissimilarity between the random walk equation, better known as the Fokker-Planck equation, and the advection-dispersion equation exists. In mildly heterogeneous systems, where groundwater flow velocity changes only slightly, this difference is negligible. However, in aquifers with a high variability in groundwater flow velocity, i.e. very heterogeneous hydraulic conductivity fields or areas with strong sink/source conditions, this difference gains importance, and a correction term to retrieve the advection-dispersion equation has to be included.

Mathematical formulation of RWTP begins with the transport equation of a conservative solute in an aquifer, which at the representative elemental volume scale is given by the following equation

$$\frac{\partial c}{\partial t} + \nabla \cdot \left(\mathbf{u}c\right) = \nabla \cdot \left(\mathbf{D}\nabla c\right)$$
(2.34)

where D is the dispersion coefficient tensor, usually denoted as

$$\mathbf{D} = \left(a_T \left|\mathbf{u}\right| + D_m\right) \mathbf{I} + \left(a_L - a_T\right) \frac{\mathbf{u} \mathbf{u}^T}{\left|\mathbf{u}\right|}$$
(2.35)

c is the dissolved concentration, *t* is the time, a_L and a_T are the longitudinal and transverse dispersivity respectively, D_m is the molecular diffusion coefficient, *u* is the velocity vector obtained from the solution of the steady-state flow equation, and |u| is the magnitude of the

velocity vector. Here, porosity is assumed constant and velocity fluctuations are mainly attributed to a spatially varying hydraulic conductivity. This represents a second-order partial differential equation, which can be solved using an Eulerian approach by standard finite difference or finite element methods.

RWTP simulates solute transport by partitioning the solute mass into a large number of representative particles. The evolution of a particle in time is driven by a drift term that relates to the advective movement and a superposed Brownian motion responsible for dispersion. The displacement of a particle is written in its traditional form, given by the Itô -Taylor integration scheme (Gardiner, 1990)

$$\mathbf{X}_{p}(t+\Delta t) = \mathbf{X}_{p}(t) + \mathbf{A}(\mathbf{X}_{p},t)\Delta t + \mathbf{B}(\mathbf{X}_{p},t) \cdot \boldsymbol{\xi}(t)\sqrt{\Delta t}$$
(2.36)

where Δt is the time step, $\mathbf{X}_{p}(t)$ is the position of a particle at time t, **A** is a drift vector, the displacement matrix **B** is a tensor defining the strength of dispersion and $\xi(t)$ is a vector of independent, normally distributed random variables with zero mean and unit variance.

It has been demonstrated by Itô (1951) that the particle density distribution $f(\mathbf{X}_p, t)$, defined as the probability of finding a particle within a given interval $[\mathbf{X}_p, \mathbf{X}_p + d\mathbf{X}_p]$ at a given time t and obtained from Eq.(2.36) fulfills, in the limit of large particle numbers and an infinitesimally small step size, the Fokker-Planck equation, which describes the motion of the particle density distribution f, and is given by

$$\frac{\partial f}{\partial t} + \nabla \cdot \left(\mathbf{u}f\right) = \nabla \nabla : \left(\mathbf{D}f\right)$$
(2.37)

where the colon refers to the outer product for multiplying two tensors and thus

$$\nabla \nabla : \left(\mathbf{D}f\right) \equiv \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial^2 D_{ij}}{\partial x_i \partial x_j} f$$
(2.38)

where n denotes the dimensions number.

Both the advection-dispersion and the Fokker-Planck equation are similar to each other as both are composed of an advection-drift term and a dispersion-diffusion term. In order, though, for an analogy to be established between them, Eq. (2.34) has to be modified as (Kinzelbach, 1987):

$$\frac{\partial c}{\partial t} + \nabla \cdot (\mathbf{u}c) + \nabla \cdot (c\nabla \cdot \mathbf{D}) = \nabla \nabla : (\mathbf{D}c)$$
(2.39)

Using a modified velocity term where

$$\mathbf{u}^* = \mathbf{u} + \nabla \cdot \mathbf{D} \tag{2.40}$$

it can be shown that the solute transport equation for heterogeneous porous media can be transformed into an equivalent of the Fokker-Planck equation (Itô's interpretation)

$$\frac{\partial c}{\partial t} + \nabla \cdot \left(\mathbf{u}^* c \right) = \nabla \nabla : \left(\mathbf{D} c \right)$$
(2.41)

Substituting the drift vector \mathbf{A} in Eq.(2.36), the RWTP final scheme is obtained,

$$\mathbf{X}_{p}(t+\Delta t) = \mathbf{X}_{p}(t) + \left(\mathbf{u}\left(\mathbf{X}_{p},t\right) + \nabla \cdot \mathbf{D}\left(\mathbf{X}_{p},t\right)\right) \Delta t + \mathbf{B}\left(\mathbf{X}_{p},t\right) \cdot \boldsymbol{\xi}(t) \sqrt{\Delta t}$$
(2.42)

where the displacement matrix \mathbf{B} is related to the dispersion tensor according to the relationship

$$2\mathbf{D} = \mathbf{B} \cdot \mathbf{B}^T \tag{2.43}$$

It must be noted that **D** is defined in terms of u and not of u^* . For isotropic porous media the three-dimensional form of the displacement matrix **B**, ignoring the molecular diffusion coefficient, can be expressed as (Tompson et al., 1987a)

$$\mathbf{B} = \begin{pmatrix} \frac{u_x}{|u|} \sqrt{2a_L|u|} & -\frac{u_x u_z}{|u|\sqrt{u_x^2 + u_y^2}} \sqrt{2a_T|u|} & -\frac{u_y}{\sqrt{u_x^2 + u_y^2}} \sqrt{2a_T|u|} \\ \frac{u_y}{|u|} \sqrt{2a_L|u|} & -\frac{u_y u_z}{|u|\sqrt{u_x^2 + u_y^2}} \sqrt{2a_T|u|} & \frac{u_x}{\sqrt{u_x^2 + u_y^2}} \sqrt{2a_T|u|} \\ \frac{u_z}{|u|} \sqrt{2a_L|u|} & \frac{\sqrt{u_x^2 + u_y^2}}{|u|} \sqrt{2a_T|u|} & 0 \end{pmatrix}$$
(2.44)

or in two dimensions

$$\mathbf{B} = \begin{pmatrix} \frac{u_x}{|u|} \sqrt{2a_L |u|} & -\frac{u_y}{\sqrt{u_x^2 + u_y^2}} \sqrt{2a_T |u|} \\ \frac{u_y}{|u|} \sqrt{2a_L |u|} & \frac{u_x}{\sqrt{u_x^2 + u_y^2}} \sqrt{2a_T |u|} \end{pmatrix}$$
(2.45)

The components $\partial D_{ij} / \partial X_j$ can be evaluated using the general expression for D_{ij} (Uffink, 1990),

$$D_{i,j} = a_T |v| \delta_{ij} + (a_L - a_T) \frac{v_i v_j}{|v|}$$
(2.46)

which in matrix form in three dimensions is

$$D = \begin{pmatrix} a_T |u| + (a_L - a_T) \frac{u_x^2}{|u|} & (a_L - a_T) \frac{u_x u_y}{|u|} & (a_L - a_T) \frac{u_x u_z}{|u|} \\ (a_L - a_T) \frac{u_y u_x}{|u|} & a_T |u| + (a_L - a_T) \frac{u_y^2}{|u|} & (a_L - a_T) \frac{u_y u_z}{|u|} \\ (a_L - a_T) \frac{u_z u_x}{|u|} & (a_L - a_T) \frac{u_z u_y}{|u|} & a_T |u| + (a_L - a_T) \frac{u_z^2}{|u|} \end{pmatrix}$$
(2.47)

and its gradient is

$$\nabla \cdot \mathbf{D} \left(\mathbf{X}_{p}, t \right) = \begin{pmatrix} \frac{\partial D_{xx}}{\partial x} & \frac{\partial D_{xy}}{\partial x} & \frac{\partial D_{xz}}{\partial x} \\ \frac{\partial D_{yx}}{\partial y} & \frac{\partial D_{yy}}{\partial y} & \frac{\partial D_{yz}}{\partial y} \\ \frac{\partial D_{zx}}{\partial z} & \frac{\partial D_{zy}}{\partial z} & \frac{\partial D_{zz}}{\partial z} \end{pmatrix}$$
(2.48)

where every single component is written

$$\frac{\partial D_{xx}}{\partial x} = \frac{\left(a_{L}u_{x}^{3} + 2a_{L}u_{x}u_{y}^{2} + 2a_{L}u_{x}u_{z}^{2} - a_{T}u_{x}u_{y}^{2} - a_{T}u_{x}u_{z}^{2}\right)}{|u|^{3}}\frac{\partial u_{x}}{\partial x} + \frac{\left(2a_{T}u_{x}^{2}u_{y} + a_{T}u_{y}^{3} + a_{T}u_{y}u_{z}^{2} - a_{L}u_{x}^{2}u_{y}\right)}{|u|^{3}}\frac{\partial u_{y}}{\partial x} + \frac{\left(2a_{T}u_{x}^{2}u_{z} + a_{T}u_{y}^{2}u_{z} + a_{T}u_{z}^{3} - a_{L}u_{x}^{2}u_{z}\right)}{|u|^{3}}\frac{\partial u_{z}}{\partial x}$$

$$(2.49)$$

$$\frac{\partial D_{xy}}{\partial x} = \frac{(a_L - a_T)(1 - u_x^2)u_y}{|u|^3} \frac{\partial u_x}{\partial x} + \frac{(a_L - a_T)(1 - u_y^2)u_x}{|u|^3} \frac{\partial u_y}{\partial x} - \frac{(a_L - a_T)u_xu_yu_z}{|u|^3} \frac{\partial u_z}{\partial x}$$
(2.50)

$$\frac{\partial D_{xz}}{\partial x} = \frac{\left(a_{L} - a_{T}\right)\left(1 - u_{x}^{2}\right)u_{z}}{\left|u\right|^{3}}\frac{\partial u_{x}}{\partial x} - \frac{\left(a_{L} - a_{T}\right)u_{x}u_{y}u_{z}}{\left|u\right|^{3}}\frac{\partial u_{y}}{\partial x} + \frac{\left(a_{L} - a_{T}\right)\left(1 - u_{z}^{2}\right)u_{x}}{\left|u\right|^{3}}\frac{\partial u_{z}}{\partial x}$$
(2.51)

$$\frac{\partial D_{yx}}{\partial y} = \frac{(a_L - a_T)(1 - u_x^2)u_y}{|u|^3} \frac{\partial u_x}{\partial y} + \frac{(a_L - a_T)(1 - u_y^2)u_x}{|u|^3} \frac{\partial u_y}{\partial y} - \frac{(a_L - a_T)u_xu_yu_z}{|u|^3} \frac{\partial u_z}{\partial y}$$
(2.52)

$$\frac{\partial D_{yy}}{\partial y} = \frac{\left(a_{T}u_{x}^{3} + 2a_{T}u_{x}u_{y}^{2} + a_{T}u_{x}u_{z}^{2} - a_{L}u_{x}u_{y}^{2}\right)}{|u|^{3}}\frac{\partial u_{x}}{\partial y} + \frac{\left(2a_{L}u_{x}^{2}u_{y} + a_{L}u_{y}^{3} + 2a_{L}u_{y}u_{z}^{2} - a_{T}u_{x}^{2}u_{y} - a_{T}u_{y}u_{z}^{2}\right)}{|u|^{3}}\frac{\partial u_{y}}{\partial y} + \frac{\left(a_{T}u_{x}^{2}u_{z} + 2a_{T}u_{y}^{2}u_{z} + a_{T}u_{z}^{3} - a_{L}u_{y}^{2}u_{z}\right)}{|u|^{3}}\frac{\partial u_{z}}{\partial y}$$

$$(2.53)$$

$$\frac{\partial D_{yz}}{\partial y} = -\frac{\left(a_{L} - a_{T}\right)u_{x}u_{y}u_{z}}{\left|u\right|^{3}}\frac{\partial u_{x}}{\partial y} + \frac{\left(a_{L} - a_{T}\right)\left(1 - u_{y}^{2}\right)u_{z}}{\left|u\right|^{3}}\frac{\partial u_{y}}{\partial y} + \frac{\left(a_{L} - a_{T}\right)\left(1 - u_{z}^{2}\right)u_{y}}{\left|u\right|^{3}}\frac{\partial u_{z}}{\partial y}$$

$$(2.54)$$

$$\frac{\partial D_{zx}}{\partial z} = \frac{\left(a_{L} - a_{T}\right)\left(1 - u_{x}^{2}\right)u_{z}}{\left|u\right|^{3}}\frac{\partial u_{x}}{\partial z} - \frac{\left(a_{L} - a_{T}\right)u_{x}u_{y}u_{z}}{\left|u\right|^{3}}\frac{\partial u_{y}}{\partial z} + \frac{\left(a_{L} - a_{T}\right)\left(1 - u_{z}^{2}\right)u_{x}}{\left|u\right|^{3}}\frac{\partial u_{z}}{\partial z}$$

$$(2.55)$$

$$\frac{\partial D_{zy}}{\partial z} = -\frac{(a_L - a_T)u_x u_y u_z}{|u|^3} \frac{\partial u_x}{\partial z} + \frac{(a_L - a_T)(1 - u_y^2)u_z}{|u|^3} \frac{\partial u_y}{\partial z} + \frac{(a_L - a_T)(1 - u_z^2)u_y}{|u|^3} \frac{\partial u_z}{\partial z}$$
(2.56)

$$\frac{\partial D_{zz}}{\partial z} = \frac{\left(a_{T}u_{x}^{3} + a_{T}u_{x}u_{y} + 2a_{T}u_{x}u_{z}^{2} - a_{L}u_{x}u_{z}^{2}\right)}{|u|^{3}}\frac{\partial u_{x}}{\partial z} + \frac{\left(a_{T}u_{x}^{2}u_{y} + a_{T}u_{y}^{3} + 2a_{T}u_{y}u_{z}^{2} - a_{L}u_{y}u_{z}^{2}\right)}{|u|^{3}}\frac{\partial u_{y}}{\partial z} + \frac{\left(2a_{L}u_{x}^{2}u_{z} + 2a_{L}u_{y}^{2}u_{z} + a_{L}u_{z}^{3} - a_{T}u_{y}^{2}u_{z} - a_{T}u_{x}^{2}u_{z}\right)}{|u|^{3}}\frac{\partial u_{z}}{\partial z}$$

$$(2.57)$$

Accordingly in two dimensions it is

$$D = \begin{pmatrix} a_T |u| + (a_L - a_T) \frac{u_x^2}{|u|} & (a_L - a_T) \frac{u_x u_y}{|u|} \\ (a_L - a_T) \frac{u_y u_x}{|u|} & a_T |u| + (a_L - a_T) \frac{u_y^2}{|u|} \end{pmatrix}$$
(2.58)

and its gradient is

$$\nabla \cdot \mathbf{D} \left(\mathbf{X}_{p}, t \right) = \begin{pmatrix} \frac{\partial D_{xx}}{\partial x} & \frac{\partial D_{xy}}{\partial x} \\ \frac{\partial D_{yx}}{\partial y} & \frac{\partial D_{yy}}{\partial y} \end{pmatrix}$$
(2.59)

where,

$$\frac{\partial D_{xx}}{\partial x} = \frac{\left(a_L u_x^3 + 2a_L u_x u_y^2 - a_T u_x u_y^2\right)}{\left|u\right|^3} \frac{\partial u_x}{\partial x} + \frac{\left(2a_T u_x^2 u_y + a_T u_y^3 - a_L u_x^2 u_y\right)}{\left|u\right|^3} \frac{\partial u_y}{\partial x}$$
(2.60)

$$\frac{\partial D_{xy}}{\partial x} = \frac{\left(a_L - a_T\right)\left(1 - u_x^2\right)u_y}{\left|u\right|^3}\frac{\partial u_x}{\partial x} + \frac{\left(a_L - a_T\right)\left(1 - u_y^2\right)u_x}{\left|u\right|^3}\frac{\partial u_y}{\partial x}$$
(2.61)

$$\frac{\partial D_{yx}}{\partial y} = \frac{\left(a_L - a_T\right)\left(1 - u_x^2\right)u_y}{\left|u\right|^3}\frac{\partial u_x}{\partial y} + \frac{\left(a_L - a_T\right)\left(1 - u_y^2\right)u_x}{\left|u\right|^3}\frac{\partial u_y}{\partial y}$$
(2.62)

$$\frac{\partial D_{yy}}{\partial y} = \frac{\left(a_T u_x^3 + 2a_T u_x u_y^2 - a_L u_x u_y^2\right)}{\left|u\right|^3} \frac{\partial u_x}{\partial y} + \frac{\left(2a_L u_x^2 u_y + a_L u_y^3 - a_T u_x^2 u_y\right)}{\left|u\right|^3} \frac{\partial u_y}{\partial y}$$
(2.63)

An extensive review of the method can be found in the work of *Tompson et al.* (1989), *Salamon et al.* (2006b), and *Delay et al.*(2005).

Numerical implementation of the random walk equations is relatively simple with one exception. When solving the flow equation using numerical methods, the resulting hydraulic heads and the associated velocity field are usually given as discrete point information. Yet,

simulation of solute transport by the random walk methodology requires continuous information of the velocity field. Therefore, a map of velocities from this discrete information has to be generated. This velocity map should fulfill the local fluid mass balance at any location and the local solute mass conservation at any grid-cell interface. In practice, this means that there is a need for a velocity interpolation scheme. The velocity interpolation approach addresses the problem of discontinuities in the dispersion tensor.

During the present study the bilinear interpolation scheme was used. In this approach the velocities are first linearly interpolated in one direction and then in the orthogonal direction using their neighboring grid-cells, so that velocities are obtained for each corner of the cell. The velocity at any point can then be calculated as a weighed average of these four velocities as is shown in Eq.(2.64) and Eq.(2.65). Approaching the cell interface of cells (i, j) and (i, j+1) from either side, it results in a smooth transition of the velocity u_x and thus in an equal dispersive solute mass flux from either side,

$$u_{x} = (\Delta x - F_{x})(\Delta_{y} - F_{y})u_{x,(i-1/2,j-1/2)} + F_{x}(\Delta_{y} - F_{y})u_{x,(i+1/2,j-1/2)} + (\Delta x - F_{x})F_{y}u_{x,(i+1/2,j-1/2)} + F_{x}F_{y}u_{x,(i+1/2,j+1/2)}$$
(2.64)

$$u_{y} = (\Delta x - F_{x})(\Delta_{y} - F_{y})u_{y,(i-1/2, j-1/2)} + F_{x}(\Delta_{y} - F_{y})u_{y,(i+1/2, j-1/2)} + (\Delta x - F_{x})F_{y}u_{y,(i+1/2, j-1/2)} + F_{x}F_{y}u_{y,(i+1/2, j+1/2)}$$

$$(2.65)$$

2.8 Problem Uncertainties and Model Structure

The problem involves essentially five different factors of uncertainty: the natural variability of the geological field, the dispersion of pollution, the initiation point of pollution, the size of the source and the duration of the leak. Each of these factors will be addressed during simulations, either within a stochastic framework or a deterministic one, setting a baseline which will remain constant during each different study.

Hydraulic conductivity is one of the major uncertainties of the model (Gelhar, 1986; Gómez-Hernández & Gorelick, 1989; Gelhar et al., 1992; Harvey & Gorelick, 1995)(Yenigul, 2005). Available experimental evidence from studies in different geological areas has shown that hydraulic conductivity can be simulated by a stochastic process (Freeze, 1975; Gutjahr et al., 1978), which means that this parameter can be simulated by a random variable which, however, follows a specific probability distribution. Consequently, neighboring hydraulic conductivity values are statistically correlated. It has been seen in former surveys (Freeze, 1975; Gelhar, 1986; Sudicky, 1986) that hydraulic conductivity is better simulated as a function of logarithmic normal distribution (log-normal). Although there are several ways to create random geological fields, such as the Sequential Gaussian simulation (Dimitrakopoulos & Luo, 2004) and geo-statistical technics such as kriging (Hoeksema & Kitanidis, 1985), the Spectral Turning Bands Method (STUBA), which is very fast computationally, was used to simulate the two-dimensional geological field.

Upon the time the pollutant enters the aquifer's flow field, it starts to move along the streamlines. In addition to this movement, there is another velocity component which comes from the diffusion and the dispersion of the pollutant inside the medium. There are a number of possible numerical approaches for solving the transport problem and simulating this kind of movement. In this study the Particle Tracking method based upon 'Random Walk' approach (Tompson et al., 1987a; Uffink, 1990; Yenigül et al., 2005; Salamon et al., 2006b; Salamon et al., 2006a; Yenigül et al., 2011) has been utilized. This choice is based on the algorithm's ease of implementation, its mass conservative nature and its computational effort economy, since it is independent from the control area we want to simulate. Sensitivity analysis to the number of the tracking particles used was conducted in order to better describe the contaminated plume transportation.

It is assumed that the start of a leak comes from a single point in the area of control and that all the quantity of leachate enters instantly into the aquifer's field of flow. This assumption holds true either for the instantaneous or for the precipitation triggered pollution case. It is also assumed that the only possibility of detection of underground contamination is through the wells of the monitoring system installation.

During each simulation a different, equally-probable point of the control area is selected, within its natural boundaries, as a starting point of pollution. In this way, the uncertainty of the starting point of pollution is simulated, as every point within a controlled area has the same potential, as any other point, to be the one where the pollution starts. It is considered that at the beginning of the simulation or, in the case precipitation triggered pollution, at the beginning of every simulated day the total concentration of the pollutant is injected into the flow field of the aquifer's saturated zone and thereafter starts to move and disperse.

2.9 Simulation Model

2.9.1 Model Structure

The basic assumption of the Monte Carlo simulation framework is that the hydraulic conductivity of a geological field can be simulated by random numbers, which have specific statistical moments (Freeze 1975). According to this method, a random number generator

function produces, via a particular process, hypothetical values of hydraulic conductivity of each point of the geological field that is to be simulated and which is required to be used in further calculations. These values are derived from a function with a given probability density, resulting in a certain distribution with a known mean and other statistical moments. By doing so, a geological field is created which simulates the real field about which hydraulic conductivity and its change are known in detail. The variogram of the field that is constructed, which captures the correlation of a point of the field with its neighbors according to the distance between them, is close to that of the real field. With this mechanism it is possible to "know" the heterogeneity of the hydro-geological environment. This process is repeated several times and each time it creates a different but equally probable geological field simulation. In each of these realizations the classical differential equations describing the respective problem can be solved to compute, for example, the flow field of a pollutant in the subsoil. From the total realization of the equally probable flux fields the statistical measures of the parameters of interest can be calculated, such as the hydraulic front, the speed of pollutants or the size and geometry of the created plumes. An illustrative way of how the Monte Carlo method works is depicted in Figure 2.4.

Figure 2.4: Operating principle of Monte Carlo method

This approach has the major advantage that it is relatively simple and easily applicable even to complex problems of three-dimensional hydro-geological environments. The only requirement is computing power. Of course, the rationale on which the operation of Monte Carlo stochastic modeling is established is that of ergodicity, which is axiomatically accepted. This enables us to assume that true values of the parameters of the geological field are approximated, as they are statistically calculated using numerous fantastic realizations of the random fields.

According to this framework, a number of outputs of hydraulic conductivity fields is derived and the plume's detection from the specific arrangement of wells is evaluated separately in each of these realizations. The steps that the model follows are:

Step 1: A 2-D random hydraulic conductivity field is created using the STUBA. The field is

1000 m L_x long and 400 m L_y wide. Heterogeneity is expressed through the variance of hydraulic conductivity $\sigma_{\ln K}^2$, which varies between 0.0 (homogeneous field) and 2.0 (highly heterogeneous field), depending on the cases studied. Hydraulic conductivity logarithmic mean is constant and equal to 2.3 in all cases. Moreover, the correlation length λ of the field is considered to be equal to 20 m for both directions x and y (isotropic medium).

Figure 2.5: Instantaneous case pollution Monte Carlo simulation process diagram

Step 2: The hydraulic head field is calculated, numerically solving the partial differential equation describing the steady state flow of groundwater in two dimensions within the saturated zone of an isotropic, heterogeneous, porous medium with a fixed depth of aquifer Eq.(2.13) (Bear, 1988). The boundary conditions set for the model are constant

hydraulic pressure equal to 0.001 m between nodes perpendicular to the direction of flow and no-flow conditions at the lower and upper boundaries of the control area. The region was discretized setting $\Delta x = \Delta y = 2m$. Eq.(2.13) is numerically solved on each grid's node according to the method of seven point finite differences, using an algorithm that has been developed by *Desbarats* (1992). The calculation of velocity field on each node of the control area takes place using Darcy's law.

- **Step 3:** A point is randomly selected inside the boundaries of the control area, which may be considered as a landfill cell, where the pollution is thought to have started. The landfill facility is assumed to be located between 50m and 100m in x axis direction and 140m and 260m in y axis direction.
- **Step 4:** At instantaneous cases, the total mass of the pollutant injected into the aquifer is 1000gr, and the initial concentration of the contaminant is calculated equal to 4000 mgr/lt, assuming effective porosity equal to 0.25. Threshold C_{TH} concentration that is detectable from monitoring wells is set to 0.35% (or 28 particles per cell) of the initial concentration. At the precipitation triggered pollution case, it was considered that if during a simulation time step a rainfall took place, then a certain quantity of pollution, proportional to the total rain height, would have been injected into the aquifer and diffused into the flow very rapidly, without disturbing groundwater flow. Threshold detection limit was also set at $C_{Th} = 14$ mgr/lt, which indicates the presence of chemicals into groundwater in such a degree that remediation actions should take place.
- Step 5: Evolution of the contaminant plume is obtained by employing the Random Walk Particle algorithm, where several individual random movements of particles form a dispersing particle cloud characterizing the contaminant's mass distribution. Eq. (2.42) in two dimensions provides the displacement of each particle in every time step Δt . In all simulations at this survey the values of longitude and transverse dispersion coefficients, α_L, α_T , are interrelated through the $\alpha_T = a_L/10$. Different cases of dispersion have been studied, where α_T varies between 0.001m for low dispersion subsoil and 0.50m for high dispersion cases.
- **Step 6:** The contaminant's concentration has been monitored at each well, whether it is equal to or greater than the threshold concentration of detection. Because the solution of advection-dispersion transport equation by the Random Walk method provides discrete displacement of particles and not the concentration values themselves, a new grid similar to the one used for the solution of groundwater flow equations is

superimposed onto the control area, so as for particle density in each grid to be converted into concentrations. The average concentration in a grid cell (i, j), with dimensions Δx and Δy in x - axis and y - axis directions respectively, is given by:

$$C_{ij}(t) = \frac{M_0 n_{ij}(t)}{Nnb\Delta x \Delta y}$$
(2.66)

where $C_{ij}(t)$ is the volume average concentration in grid cell (i, j) at time t, M_0 is the total initial mass of the particles, $n_{ij}(t)$ is the number of particles in grid cell(i, j), N is the total number of particles, n is effective porosity and b is the depth of the aquifer, considered equal to one. If contamination in any of the wells' configuration is

Figure 2.6: Precipitation triggered pollution case Monte Carlo simulation process diagram

detected at any time step during monitoring time, which is set to 30 years, a successful detection is logged as a unit value (1). If the total running time is less than the monitoring period and the examined case concerns the instantaneous pollution case, the process goes to STEP 5 (Figure 2.5). If it is the precipitation triggered pollution case examined and the total running time is less than the monitoring period, the process goes before STEP 4, where pollution is added if there is rainfall recorded

(Figure 2.6). If the total running time is equal to the monitoring period (30 years=10,950 days) and the number of total realizations is less than 3,000, the process goes to STEP 1 and restarts. Before that, if there is a successful detection, then its time is recorded and the total contaminated area is calculated. At the end of the 3,000 simulations, the average time of detection and the average contaminated area are calculated if daily (ED) sampling is assumed. Moreover, the average contaminated area is also calculated assuming different sampling frequencies, namely monthly (1 M), bimonthly (2 M), quarterly (3 M), every 4 months, biannual (6 M) and annual (A). The polluted area is additionally calculated every 3 months, every 6 months, once a year, every 2 years and every 3 years after successful detection, in order for remedial action delay time to be evaluated. If, on the other hand, there hasn't been any contamination detection, then at the end of the monitoring time a zero value (0) is logged and the process begins once more from Step 1. The average contaminated area is calculated in case of failure. The detection probability of the specific arrangement of monitoring wells is calculated by the ratio of simulations in which we have successfully detected the pollution to the total number of simulations, which is:

3.7

$$P_d = \frac{1}{N_{MC}} \sum_{i=1}^{N_{MC}} I_d^{(i)}$$
(2.67)

CHAPTER 3

Instantaneous groundwater pollution detection probability in heterogeneous aquifers

3.1 Introduction

Successful detection of aquifer contamination via monitoring wells is a complicated problem with many factors, such as the heterogeneity of the geologic environment, the quantity and nature of the contaminants, the number and location of the monitoring wells, and the frequency of sampling, all contributing to the uncertainty of early detection. Detection of contaminants, of course, is of value if remedial actions follow as soon as possible, so that the volume of contaminated groundwater to be treated is minimized. The current article addresses these issues by investigating the case of instantaneous leakage from a landfill facility into a heterogeneous aquifer.

There are several factors that influence the likelihood of early detection of an aquifer's contamination by a landfill leak. Dispersion of the contaminants in heterogeneous geologic formations determines the spread and evolution of a plume. The stochastic Monte Carlo framework has been used to address the problem of optimizing the number and location of monitoring wells in heterogeneous aquifers (Hudak & Loaiciga, 1992; McLaughlin et al., 1993; Meyer et al., 1994; Storck et al., 1997; Bierkens, 2006; Salamon et al., 2006a) in order to determine the maximum detection probability or minimum contaminated area.

A second source of uncertainty arises from lack of knowledge about the leak itself. The location of the source, the quantities and chemical composition of the contaminants, and the time when a leak originated are questions with significant uncertainties involved. Simulation
studies (Meyer et al., 1994; Storck et al., 1997; Yenigül et al., 2005; Bierkens, 2006; Yenigul et al., 2006; Yenigül et al., 2011) usually assume conservative contaminants, with continuous or instantaneous leakages, and with the source's location randomly selected within a landfill's area.

The frequency of a sampling program that is implemented at a monitoring well system is another component that defines the likelihood or not of detecting contaminant concentrations above regulatory threshold values. The EU Directive 1999/31/EU on "the landfill of waste" states that sampling for monitoring purposes should be conducted "...*At a frequency to be determined by the competent authority and in any event at least once a year*..." The dependence of the probability of detection on the sampling frequency can be explained if one considers the sub-region of the plume characterized by concentrations, which are above the threshold regulatory limits. This sub-region changes, continually, in space and time, as a result of its advective and dispersive movement, and hence infrequent sampling may result in obtaining samples at wells that are used as regulatory check points when this critical part of the plume has already travelled elsewhere. Our article investigates the dependence of contaminant detection probabilities on aquifer heterogeneity and dispersion, as well as of the interaction between sampling frequency and monitoring well-arrangement.

Yet contaminant detection is of value if followed by quick remedial response. Indeed, most risk cost-analysis studies (Freeze et al., 1990; Bierkens, 2006; Yenigul et al., 2006), when analyzing the economic performance of different monitoring well systems assume that remedial actions are instantaneous, i.e., remediation activities commence exactly when detection is attained. According to this risk framework the contaminated groundwater volume at detection time is estimated; multiplied by the remediation cost per unit volume, and then this total remediation cost enters a decision analysis.

A different probabilistic risk analysis framework in subsurface contamination is proposed *by* (*Tartakovsky*, 2007), and (Bolster et al., 2009) where the probability of aquifer contamination is based on a rare event approximation and it depends on the probabilities of the system's constitutive parts (natural attenuation and remediation) failing.

Practically, there is always a time lag between contaminant detection and remedial action response. The EU directive 1999/31/EU on *"the landfill of waste,"* for example, states that landfill operators should notify competent authorities first of any significant adverse environmental effects revealed by the monitoring procedures, and then follow the authorities' decision on the nature and timing of the corrective measures. Considering the time needed for administrative decisions and for arrangements with local contractors in order to initiate remedial procedures introduces a time lag between detection and remediation time. During

this time lag a plume continues to move into an aquifer contaminating larger groundwater volumes.

The effect of this time lag, named as remedial action response delay by us, on the outcome of decision analyses is investigated in this study. Our article provides a novel framework to modify traditional risk analyses by supplying corrected detection probabilities that account for delays in remedial actions. In our approach the weights that detection probabilities provide onto remediation costs in traditional decision analyses are downgraded the further away a remedial response has moved from the time of detection. Correspondingly, the weights applied on failure costs are increased, effectively penalizing delayed remedial actions.

3.2 Model Description

Our study involved the stochastic simulation of groundwater flow and contaminant transport in heterogeneous aquifers of horizontal dimensions much greater than their thickness (Meyer et al., 1994; Yenigül et al., 2005; Yenigül et al., 2011). The wells were assumed to fully penetrate the aquifer resulting in vertically-averaged concentration measurements.

The physical problem at hand involves five sources of uncertainty: The heterogeneity of the two-dimensional geologic field, the dispersion of the contaminant, and the initiation point, size, and duration of a leak. The contaminant was assumed to be conservative, and fully water soluble.

The heterogeneity of the geologic environment was addressed through the hydraulic conductivity, which was simulated as a log-normal, stationary, second order, isotropic stochastic process (Gelhar, 1986; Sudicky, 1986; Elfeki, 1996) using the Spectral Turning Bands Method (STUBA) (Mantoglou & Wilson, 1982; Brooker, 1985; Mantoglou, 1987; Tompson et al., 1987a). The second source of uncertainty arises from the way a pollutant is transported into the subsurface heterogeneous environment. Upon entering an aquifer's flow field, a pollutant starts not only to move along the streamlines, but in addition to diffuse and disperse into the geologic medium. The particle tracking method based on the 'random walk' approach (Ahlstrom et al., 1977; Prickett et al., 1981; Kinzelbach, 1987; Tompson et al., 1987b; Tompson & Gelhar, 1990b; Uffink, 1990; Zimmermann et al., 2001; Hassan & Mohamed, 2003; Delay et al., 2005b; Salamon et al., 2006b; Salamon et al., 2006a) was adopted to simulate a plume's advective and dispersive movement. Our choice of algorithm was based on its ease of implementation, its mass conservative nature, its numerical dispersion-free characteristic and its computational economy.

The contaminant was assumed to be conservative and water soluble. While, some contaminants are conservative (e.g. chloride), (Fatta et al., 1999), the majority are prone to biological and chemical transformations that tend to alter the transport rate and lead to concentration reduction (Renou et al., 2008). Although a plume's evolution is determined by the contaminants' chemical characteristics and the site-specific physical, chemical, and biological conditions - for example, the existence of low permeability zones that may lead to fingering and the creation of diffusion-dominated 'hot spots' (*National Academies*, 1994), or the development of geochemical conditions that may activate natural source contaminant production (for example, chromium from ophiolites) (Izbicki et al., 2008), etc. - the assumption of a conservative contaminant is useful in order isolate the impact on the detection probability of sampling frequency and remedial action delay in heterogeneous subsurface environments.

Other sources of uncertainty relate to the location and areal extent of a leak, together with the quantity and duration of contaminant release. In this study it is assumed that any point in the landfill can be a potential source of leakage, taking place once, and resulting in an instantaneous ejection of contaminants into an aquifer.

Initial leakage from a landfill is usually due to holes and tears in geo-membranes because of poor waste deposition or membrane ageing, and resulting in embrittlement, stress cracking, and chemical erosion near welded seams (Lee & Jones-Lee, 1994; Allen, 2001). Most of these failures are distinct and usually of very small dimensions leading to one or multiple point sources of contamination. Thus, (Collucci et al., 1999) have reported that two holes, each 5cm×3cm, and a crack of 63cm×31cm were the source of leachate leakage from a municipal solid waste landfill in northern Italy, whereas (Laine et al., 1997) reported, through an electrical leak imaging method (ELIM), leakage from two 80mm-long cuts at an active landfill. In addition, at several waste disposal facilities with natural clay bottom barriers, leakages may be caused by deposition of fluid containers over cracks or failure zones of small areal extent. Consequently, we have assumed that the size of the leakage source is a single point inside the landfill area, representing a worst case scenario in terms of detection because the plume to be formed will be very narrow and difficult to detect (Meyer et al., 1994; Allen, 2001; Hudak, 2005).

The case of an instantaneous leak refers physically to a sudden discharge of leachate into the aquifer as a result of high hydraulic head, which might have built up on the liner due to continuous or localized leachate presence (Koerner & Soong, 2000), in conjunction with the development of a crack or tear at a weak area of the bottom liner. A high hydraulic head may develop due to clogging of the leachate collection and drainage pipeline system (Koerner & Koerner, 1995), or due to large precipitation fluctuations, which in turn may cause

excessive water percolation through the wastes (Collucci et al., 1999; Fatta et al., 1999; Tatsi & Zouboulis, 2002). Numerically, instantaneous ejections can be considered leaks whose duration is less than the modeling time step Δt that is used in the transport of contaminants, set here equal to one day.

The contribution of the unsaturated zone in the contaminant's movement and dispersion was neglected. In the unsaturated zone, flows are gravity driven and thus are primarily vertical, with the saturated-zone transport presenting perhaps the greatest opportunity for a contaminant to travel large distances (Academies, 1994). Cases where ignoring the influence of the unsaturated zone may be a valid approximation include those when the water table is relatively close to the bottom of the facility and contaminants move vertically towards the aquifer (Meyer et al., 1994; Çelik et al., 2009); when there is a highly permeable vadose zone or non-stratified deposits between a point source and the aquifer (Hudak, 2005), or when there is fingered flow, which significantly increases the vertical pore water velocity leading to rapid discharge of contaminant into the saturated zone (Selker et al., 1996).

Seven linear configurations of monitoring installations were examined consisting of 1, 2, 3, 4, 6, 12 and 20 wells, equally spaced from each other. Wells that were located at the ends of each arrangement were placed half the distance from the landfill's top and bottom edges so that the efficiency of the monitoring system would be maximized (Yenigül et al., 2005). The distance, d, of the monitoring installations from the landfill's trailing edge was normalized with respect to the landfill's width, L.

The procedure for the Monte Carlo simulations was as follows:

2-D random hydraulic conductivity fields were created by STUBA (Mantoglou & Wilson, 1982) for a flow field 1,000m long and 400m wide. The variance of the log hydraulic conductivity varied from 0.0 (homogeneous aquifer) to 2.0 (strongly heterogeneous aquifer), while the mean of the log hydraulic conductivity was taken to be equal to 2.3. The correlation length, λ , was considered constant and equal to 20 m for both directions X and Y (isotropic medium).

Numerical calculations of steady state two-dimensional groundwater flow were based on a finite difference 7-point scheme (Sarris & Paleologos, 2004), with the velocity on each grid node calculated by Darcy's law. Continuous velocity values inside the domain were calculated using a bilinear interpolation scheme (Salamon et al., 2006b).

A rectangular landfill facility was located between x-coordinates of 10m and 60m, and y-coordinates of 140m and 260m (Figure 3.1). A point was selected randomly inside the

landfill as the starting point of pollution. The total pollutant mass was equal to 1,000gr, simulated by 2,000 or 8,000 discrete particles (depending on the case investigated). The initial concentration of the point source, $C_0 = M_0 / (nV_0)$, was 4,000mgr/lt, where M_0 the initial mass, n = 0.25 the effective porosity, and $V_0 = 1 \text{ m}^3$. The threshold concentration C_{TH} , which was detectable from the monitoring wells, was set at 0.35% of the initial concentration. This corresponds to a level of critical contamination from nitrate, cyclohexanon, or diethyleneglycol, which would require remedial procedures (Yenigül et al., 2005).

Figure 3.1 : Section of simulated flow field with a rectangular landfill $W \times L$, a 2000 particles plume, and a magnified well-detection area

Evolution of the plume was simulated via the random walk particle tracking algorithm. A brief overview of particle displacement equations can be found in the work of (Salamon et al., 2006b) and in the more extensive work of (Tompson et al., 1987a). For each geologic field reproduced by STUBA different transverse dispersion coefficients, a_T , were examined, varying between 0.001*m* and 0.5*m*. The longitudinal dispersion coefficient, a_L , was calculated by the relation $a_L = 10a_T$ (Spitz & Moreno, 1996; Cirpka & Kitanidis, 2001).

For each dispersion case different linear arrangements of monitoring wells were examined, each time step utilizing various frequency sampling policies: on-line (every day), once every two, three, four, six and twelve months. If the contaminant's concentration at any monitoring well of a specific well arrangement was found equal to, or greater than the threshold concentration, then detection was considered to have been achieved. Because the random walk particle method provides discrete particle displacements and not the concentration values themselves, the particle density found in each computational cell was converted to a concentration value with the use of a mesh similar to the one used for the solution of groundwater flow equation. The average concentration in a grid cell (i, j) with dimensions $\Delta x = \Delta y = 2$ m in the x- and y-directions, respectively, is given by

$$C_{ij}(t) = \frac{M_0 n_{ij}(t)}{N n b \Delta x \Delta y}$$
(3.1)

Here $C_{ij}(t)$ is the volume averaged concentration in a grid cell (i, j) at time t, M_0 is the total initial mass of the contaminants, $n_{ij}(t)$ is the number of particles found inside a cell (i, j), N is the total number of particles, n is the porosity, and b is the depth of the aquifer taken equal to unit. If a value of concentration was found, in any one of the wells of a specific arrangement, to equal or exceed the threshold value C_{TH} at any time step, during the 30-year monitoring period, then, successful detection was considered to have been attained and was given in any simulation i the value $I_{det}^{(i)} = 1$, otherwise it took the value of 0.

The detection probability of a specific arrangement of monitoring wells was calculated as the ratio of simulations where successful detection was attained over the total number of simulations, N_{MC} , and was expressed as

$$\mathbf{P}_{\rm d} = \frac{1}{N_{MC}} \sum_{i=1}^{N_{MC}} I_{det}^{(i)}$$
(3.2)

If contamination was detected, then the total polluted area was calculated at the moment of detection. This calculation was repeated again 3, 6, 12, 24 and 36 months after the initial detection, in order to record the evolution of the plume. In case where no successful detection was accomplished the total contaminated area was calculated at the end of the 30-year monitoring period.

3.3 Number of Simulations and Tracking Particles

One of the computational shortcomings of Monte Carlo stochastic simulations is that the accuracy of the results depends on the number of realizations utilized. Although many stochastic numerical studies have shown (Storck et al., 1997; Sarris & Paleologos, 2004; Yenigül et al., 2005) that, in many cases, approximately 500 simulations may be sufficient for results to converge to a constant value, the calculations to estimate detection probabilities of monitoring systems have practical use as entries in decision-making analyses. There, the detection probability is multiplied by remediation costs, and hence an error in the value of P_d , from the constant value that is attained at a higher number of simulations, may affect the outcome of a decision.

Figure 3.2 plots the dependence of the detection probability on the number of Monte Carlo simulations for three different cases of well arrangements, levels of heterogeneity, and dispersion of the plume. This figure indicates that convergence of P_d is attained at about 3,000 simulations, with the average difference from the value of P_d returned from 500 simulations being approximately 4%. In all subsequent calculations of our study the number of 3,000 realizations was used for all cases of hydro-geologic investigation. Alternatively, one could consider that the flow and transport calculations could be performed with a smaller number of simulations and at the decision level a sensitivity analysis could be conducted on the effect on the results by small perturbations of the value of the detection probability.

Our study investigated numerically the effect of the number of particles, used to simulate a plume of total mass M, on the detection probability. The particle tracking method assigns the solute mass of the contaminants to a group of N particles having identical, unchanging amounts of mass, and free to move independently in time. A particle in each time step is displaced in two ways: the first motion involves movement along a streamline, while the second is a random displacement, whose direction and magnitude are chosen so that the overall distribution of the cloud of particles reproduces the desired concentration. Because of the need to use a large number of particles in order to obtain consistent and reliable results of contaminant concentration there exists a strong dependence of the calculated values of P_d on the total number of particles used in the simulations. On the other hand, the computational effort, per time step, is proportional to the number of particles used, making the optimization of N necessary.

Contaminant concentration by the method of particle tracking is calculated by measuring the number of particles found in each grid cell of area A_d (Figure 3.1) and applying Equation (3.1). Consequently, contrary to the space-and-time continuous concentrations that are provided by analytical methods, the particle tracking method provides discrete values of concentrations $C(A_d t)$ - in the form of step functions - to adjacent grid cells. The discrepancy between the concentration distribution obtained via the random walk tracking particle and the analytical solution, averaged over cell area A_d , can be quantified

through the total square error of the concentration over the flow domain Ω_s (Figure 3.1), given by (Ahlstrom et al., 1977; Kinzelbach, 1987; Tompson et al., 1987a)

$$\varepsilon^2 = \frac{\left(M/n\right)^2}{NA_d} \tag{3.3}$$

This result is a global measure of the error in concentration over Ω_s and shows that a factor of two reduction in the global error can be accomplished either by a four-fold increase in the number of particles N or an equivalent increase in the sampling region Ω_d from which concentrations are estimated (Tompson et al., 1987a). Since in our case Ω_d was set equal to A_d (Figure 3.1), which was derived from the finite difference mess, improvement in ε^2 is conditioned on an increase in the number of tracking particles. (Kinzelbach, 1987) has reported that in his numerical experiments an increase in the number of particle N did not lead to an improvement in ε^2 as described by Eq. (3.3).

Figure 3.2: Detection probability P_d versus number of Monte Carlo simulations for 3 cases of well arrangement, heterogeneity, and dispersion

Yenigül et al. (2011) defined the theoretical detection probability $P_{d(TH)}$ for a single well, in a homogeneous medium and for an instantaneous release, as the ratio of the maximum width 2l of the plume at time t to the width of a landfill L. These authors found that,

$$P_{d(TH)} = \frac{2l}{L}, \text{ when } y_W - l > y_C - \frac{L}{2} \text{ or } y_W + l < y_C + \frac{L}{2}, \tag{3.4}$$

where y_c is the y-coordinate of the landfill's center line, and y_w is the y-coordinate of the well. When the well is close to the upper or lower boundary of the landfill $P_{d(TH)}$ is given by

$$P_{d(TH)} = \frac{l + L/2 - y_W + y_C}{L}, \quad if \quad y_W + l > y_C + \frac{L}{2}, \quad (3.5)$$

or

$$P_{d(TH)} = \frac{l + L/2 - y_C + y_W}{L}, \quad if \quad y_W - l < y_C - \frac{L}{2}$$
(3.6)

respectively.

Based on the above equations the total $P_{d(TH)}$ for the case of multiple, equally spaced, wells, arranged linearly was formulated by us as the sum of the detection probability of each individual well. When the maximum width of the plume extended over more than half the distance d between the wells the total width of the landfill was covered, yielding $P_{d(TH)} = 1$. In every other case $(2l < d) P_{d(TH)}$ was calculated to be

$$P_{d(TH)} = n \frac{2l}{L} \tag{3.7}$$

Figure 3.3 depicts the theoretical $P_{d(TH)}$ and the numerical P_d for five different wells arrangements (1, 3, 6, 12 and 20 wells) against the $\log_{10} N$, where the number of tracking particles N took the values of 500, 1000, 2000, 4000, 8000, 16000, 32000, 64000, 128000, 256000, and 512000. The results were obtained for a homogeneous field with $a_T = 0.10a_L$; the monitoring set was located at a distance d = 0.125L = 15 m (where maximum detection was attained), and the maximum plume's half width was calculated to be l = 3.085 m (Yenigül et al., 2011). The threshold number of particles inside a well, in order to attain detection, was adjusted so that the detection concentration limit remained constant at $0.35\% \cdot C_0$. Figure 3.3 indicates that as the number of particles increases, the numerical detection probability P_d converges to the theoretical value $P_{d(TH)}$, with P_d becoming almost equal to the theoretical value when 64,000 or more particles are used. When only one well is considered then even 8,000 particles appear to be sufficient for P_d to converge to $P_{d(TH)}$. *Yenigul et al.* (2011) performed a sensitivity analysis of the approximation provided by particles ranging from 500 to 8,000 to the analytical plume's concentrations in a homogeneous and heterogeneous field. This author concluded that 2,000 particles provide a satisfactory tradeoff between accuracy and computational cost for the calculation of concentration in these flow fields. For the detection probability, however, she concluded that this number of particles resulted in values greater than the analytical ones.

Figure 3.3: Comparison between numerical and theoretical *P*_d versus *log*₁₀ of number of tracking particles *N*, *N*=500, 1,000, 2,000, 4,000, 8,000, 16,000, 32,000, 64,000, 128,000, 256,000, and 512,000

It is apparent from Figure 3.3 that, independently from the number of monitoring wells, the detection probability decreases as the number of particles increases. This occurs because an increase in the number of tracking particles would make the concentration variations between sequential cells smoother, since a larger number of smaller particles are distributed into various cells. As a result the contamination plume is described better, reducing some erroneous detection cases, which occur when the concentration at a monitoring numerical cell is found to be marginally above or below the detection threshold limit. This may explain the discrepancy between analytical and numerical results for the detection probability, which was observed by *Yenigul et al.* (2006) by using 2,000 particles for calculations.

3.4 Results and Discussion

3.4.1 Effect of Number and Distance of Wells on Detection Probability

The number of wells that are used in a monitoring arrangement has a great influence on the likelihood of detecting or not potential contamination events from a landfill facility. Table 1 presents the results of our simulations for different levels of heterogeneity, values of transverse dispersion coefficients $a_T = 0.001$, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5m or different number of monitoring wells, NOW=1, 2, 3, 4, 6, 12, and 20, and for two cases, the first utilizing 500 hydrogeological realizations and 2,000 tracking particles, and the second utilizing 3,000 realizations and 8,000 tracking particles. The detection probabilities shown in this table refer to the optimum distance d from the contamination source, normalized by the width L of the landfill. The normalized optimum distance is designated as NDFS, and it refers to that distance from the landfill where the maximum detection probability was observed for each arrangement of wells.

Our numerical experiments showed that, in most cases, different monitoring wells, under the same conditions of heterogeneity and dispersion, perform better at slightly different distances. For example, Figure 3.4(b), 6 wells attain the maximum P_d at a normalized distance of 0.03, while 3 and 12 wells attain the maximum P_d at NDFS=0.015. On the other hand Figure 3.4(a) indicates that all 3, 6, and 12 wells attain their maximum P_d at the same distance. Because of the computational effort it was chosen that the values of P_d , shown in Table 4.1, would be calculated (in each α_T case) at the same NDFS for all arrangement of wells, with NDFS selected as the distance where the performance of the majority of the well arrangements was maximized.

The first observation from Table 4.1 refers to the variability of the values of P_d obtained by the numerical scheme utilizing 500 realizations and 2,000 particles, and that which uses 3,000 realizations and 8,000 particles. This is to be expected since Figure 2 indicates that at 500 Monte Carlo realizations P_d is well within the zone where significant fluctuations around its asymptotic value still occur, and in particular that depending on σ_Y^2 and α_T the value of P_d obtained by 500 realizations, for the case of 3 wells, may underestimate the asymptotic value obtained by 3,000 realizations, while for 6 and 12 wells the opposite result may hold true. This variability in P_d from the two numerical schemes becomes more pronounced when the number of wells exceeds 3, in agreement with the results of Figure 3.3, which indicate that the choice of the number of tracking particles influences P_d more when the number of wells increases.

(a)

(b)

Figure 3.4: Optimum detection distance for 3, 6, and 12 wells. Top: Heterogeneous $(\sigma_{lnK}^2=2.00, a_T=0.20m)$ flow field. Bottom: homogeneous flow field with $a_T=0.001m$.

It is evident from the results at Table 4.1 that in all cases of hydrogeological heterogeneity and dispersion the more wells utilized for detection purposes the greater the detection probability. It is notable that the use of 20 monitoring wells provides extremely high detection probabilities, which in some cases, at least at the numerical level, may reach full detection. In terms of the minimum requirement of the 3 monitoring wells stipulated in the 1999/31/EU directive "on the landfill of waste" we found that, in agreement with (Yenigül et

al., 2005), the detection probability from this well arrangement remained very low, not exceeding 19%. The implication of this result is that approximately four out of five cases of leakage from a landfill will remain undetected if such a well arrangement is to be used.

3.4.2 Effect of Field's Heterogeneity and Dispersion

For a given geologic field the dispersion coefficient determines the form that a contaminant's plume takes (Meyer et al., 1994; Yenigül et al., 2005). The longitudinal dispersion causes elongation of the plume in the direction of groundwater flow, while the transverse dispersion causes it to widen. This means that the farther a plume travels, the more it spreads and dilutes into the aquifer.

The dispersion of pollutants as they travel into an aquifer results in two opposing situations with regards to monitoring. As the plume evolves the contaminated area increases, making it more likely for a plume to be detected by a monitoring system. On the other hand though, as the plume evolves the concentration drops, making it more difficult to obtain high concentration samples, and hence to detect at a distance from the source. For a fixed heterogeneity level Table 4.1 shows that for each specific arrangement of wells the maximum detection probability increases with increasing dispersion coefficient up to a certain value of α_T and then P_d decreases. For the homogenous case this saddle point occurs at about the value of $\alpha_T = 0.1m$ to 0.2m, while the effect of increasing heterogeneity appears to be the appearance of the saddle point at lower α_T values.

The heterogeneity of the subsurface environment also influences the detection probability of a particular installation of monitoring wells. Analysis of the results in Table 4.1 shows that in general the efficiency of contaminant detection from a specific well arrangement decreases as the variance of $Y = \ln K$ increases. This conclusion holds consistently for the system of 6, 12, and 20 wells, but it appears to be more tentative for the lower number of wells. This may be attributed to the fact that arrangements of 1, 2, 3, and 4 wells return relative small detection probabilities and hence numerical errors from the limited number of realizations and tracking particles have the potential to make this trend less apparent. Indeed, the greater the heterogeneity the closer the monitoring wells must be to the contaminant source in order for detection to occur.

3.4.3 Effect of Sampling Frequency

According to the EU directive 1999/31/EU on "the landfill of waste" sampling for monitoring purposes should be conducted "...At a frequency to be determined by the competent authority, and in any event at least once a year..." Annex III of the same directive

specifies that for the protection of groundwater, monitoring of its chemical composition should follow a site-specific sampling frequency, which would be based on the velocity of groundwater flow, in order to allow for the "...*possibility for remedial actions between two samplings if a trigger level is reached*..."

Yenigul et al. (2006) examined the way that sampling frequency affects the detection probability of a contaminant plume, which emanates from a continuous leak of constant flow rate. These authors concluded that in the continuous leak case the detection probability of all the monitoring systems they considered remained insensitive to the sampling frequency, in contrast to the contaminated area, which increased as the sampling frequency decreased.

In the present study the dependence of the detection probability on the sampling frequency was investigated for the case where the contaminant's mass got released instantaneously into an aquifer. Figure 3.5 shows the results of our numerical experiments (3,000 realizations and 8,000 tracking particles) for two cases: the first is a homogeneous aquifer with $a_T = 0.01$ m, and the second is a heterogeneous one with $\sigma_Y^2 = 1.0$ and $a_T = 0.20 m$. For both cases the sampling frequencies considered were: once a day, once a month, once every two months, once quarterly, once every four months, bi-annually, and once a year.

Figure 3.5(a) indicates that for the case of instantaneous release, if monitoring of a homogeneous and of low dispersion aquifer is performed with up to three wells, no higher detection of the contamination is obtained by sampling done more frequently than once a year. If 4, 6, or 12 monitoring wells are used then conducting bi-annual sampling increases the probability of detection by about 8% and sampling once a month improves P_d by 15% relative to the detection obtained if sampling is done annually. The case of 20 monitoring wells indicates that full detection can be accomplished with this arrangement if bi-annual sampling takes place.

The effect of sampling frequency on the detection probability is more pronounced when the aquifer is heterogeneous and dispersion is increased (Figure 3.5(b)). When 3 wells are used it is worth to proceed to bi-annual sampling, which will provide a 40% improvement on the detection probability, or else proceed directly to daily sampling that will improve detection by over 90%, relative to the P_d determined by annual sampling. For the cases of 4 and 6 monitoring wells bi-annual sampling improves P_d by 43%, and once a month increases P_d about 70%, again relative to the P_d determined by annual sampling. Finally, 12 and 20 monitoring wells show a substantial improvement in the P_d which approaches 40% simply by sampling twice instead of once a year, and much higher improvements if a more frequent sampling schedule is performed.

(b)

Figure 3.5: Dependence of the probability of detection on sampling frequency (5a: homogeneous, $a_T=0.01m$, and 5b: heterogeneous aquifer, $\sigma^2_{lnK}=1.0$, $a_T=0.20m$)

As a general rule it appears that under all conditions at least bi-annual sampling should occur at a monitoring system. If one wants a higher detection probability then sampling at a frequency of once a month appears to be the optimum choice for most well arrangements, considering both the effort involved if one were to proceed with a much more intense sampling and the improvements on detection attained at this level. It is interesting to note that in heterogeneous aquifers a large number of monitoring wells (such as the case of 12 wells considered here) if sampled infrequently (for example, once a year) does not perform much better in terms of detection than arrangements having a lower number of wells, but which are sampled more regularly.

3.5 Remedial Action Response Delay

Decision analyses that evaluate the economic worth of different arrangements of monitoring wells are performed by defining a risk term R, which is associated with the probability of detection P_d (and the probability of failure to detect, $P_f = 1 - P_d$), and the associated cost of remediating the detected volume of contaminated groundwater, C_d (correspondingly, of the remediation cost C_f of a much larger contaminated volume, due to a plume's failure to be detected by a monitoring system, and becoming apparent only by reaching, for example, the drinking wells of a community). This risk term R is defined for every monitoring system, whose economic worth is investigated, as (Bedford & Cooke, 2003; Yenigul et al., 2006):

$$R = P_d C_d + P_f C_f \tag{3.8}$$

The remediation costs in both cases can be obtained by multiplying the contaminated volume, which is evaluated during the stochastic groundwater flow and contaminant transport numerical analysis, by the remediation cost per unit contaminated water volume. The decision analysis then proceeds by determining that particular well arrangement that optimizes the risk factor R, i.e., determining this monitoring system that maximizes the detection probability while minimizing the contaminated area, or equivalently minimizing the remediation cost.

Implicit in the decision analysis framework described above is the assumption that remediation takes place immediately after detection occurs, in other words that the contaminated groundwater volume (contaminated area, equivalently, in our case of twodimensional investigation), which is remediated, is the same with the volume observed and calculated at the time of detection. In reality, there is always a delay in the response, from the time when the exceedance of a threshold value of a chemical is observed until the time when remediation measures commence. This remedial action delay has as a result the increase of the contaminated volume, as the plume continues to evolve in time, and an increase of the remediation cost compared to that which would be calculated if the contaminated volume at detection were to be used.

One way to address this issue is to use the ratio of A_t/A_{t+dt} , where A_t is the contaminated area in the two-dimensional case (correspondingly, contaminated volume in 3-D) at time t of detection, and A_{t+dt} is the contaminated area at time t + dt when remediation might take place, to correct for this remedial action delay. Of course the time interval dt between detection and remediation is not known a priori, and a sensitivity analysis can be performed, as is done here, to determine the influence of dt on the risk factor R. Multiplying this ratio by P_d results in a reduced detection probability P_d^{cor} , i.e., an increased delay in the response to remediate can be considered, in terms of economic outcome, as equivalent to a monitoring arrangement with a decreased efficiency to detect. While P_d contains information about the degree of our knowledge of the event detection, P_d^{cor} can be considered as a measure of the degree P_d is utilized. For example, if 20 monitoring wells were used and full detection were to take place, $P_d = 1.0$, then Equation (3.8) would calculate R considering the second (failure) term equal to zero, irrespectively of the fact that in some cases remediation might take place only when the plume has reached a critical stage, for example threatening community drinking wells. Therefore, P_d^{cor} is a way to measure the economic impact of different remedial action delays as a divergence, from the maximum economic outcome (which takes place at detection) occurs for a specific monitoring installation.

This approach provides also a corrected probability of failure P_d^{cor} , which will increase as the time to respond increases resulting in an increase of the weighted cost of failure that enters into expression (3.8) of the risk factor R. In essence the above procedure downgrades the importance of the first term in R, which provides the weighted remediation cost due to detection, and upgrades the significance of the second term, which provides the weighted cost due to failure to detect, in order to account in the calculation of R for a delay in the remedial response after detection. This procedure is summarized in the following equation yielding a corrected risk R^{cor} that accounts for the remedial action response delay,

$$R^{cor} = P_d^{cor} C_d + P_f^{cor} C_f$$
(3.9)

where

$$P_d^{cor} = P_d \left(\frac{A_t}{A_{t+dt}}\right), \text{ and } P_f^{cor} = 1 - P_d^{cor}$$
(3.10)

In our model it is assumed that the pollutant is conservative, and that a particle found within a grid cell at particular time step, classifies the cell as contaminated, even if the concentration is below the regulatory limit.

Figure 3.6: Effect of remedial action response: Corrected detection probability P_d^{cor} for six monitoring wells, sampling once a day, in a homogeneous field (a: $a_T=0.01m$, and b: $a_T=0.10m$), as a function of remedial action delay

Table 4.2 provides the results for P_d^{cor} for 3, 6, 12 and 20 monitoring wells, in two cases of aquifer heterogeneity ($\sigma_Y^2 = 0.0$ and $\sigma_Y^2 = 1.0$), and for two sampling frequencies, every day and once every six months. The ratio A_t/A_{t+dt} was evaluated numerically through Monte Carlo simulations, with A_{t+dt} calculate at time lags of 3, 6, 12, 24, and 36 months beyond the detection time. Figure 3.6a shows that for six monitoring wells in a homogeneous field of low transverse dispersion, and hence of contaminant transport taking place at a slow rate, the use of expression (3.8) for the risk factor *R* provides a good approximation to an optimum decision. A delay in the deliberations on planning, cost, and technology application will not affect critically the contaminated groundwater volume and hence the remediation cost. On the other hand, if contamination takes place in a homogeneous environment, but of high dispersion, then (Figure 3.6b) indicates that the contaminated groundwater area will increase fast with time, and so any remediation delays of the order of 3 years and above beyond the time of detection, would be almost equivalent to a monitoring system providing detection with half its number of wells.

Figure 3.7 summarizes the results for the effect of remedial action delay in a heterogeneous field of $\sigma_Y^2 = 1.5$ and $a_T = 0.05m$, for twelve monitoring wells as a function of the sampling frequency as well. When sampling is performed every day a remediation delay of 36 months is equivalent to reducing the detection probability from 59% to 22%, or increasing the failure probability from 41% to 78%. This means that the larger of the two costs, the failure cost, which enters into expression (3.8) increases by 90% as a result of the delay. If sampling is performed every 6 months then P_d is reduced from 42% to 19%.

		RARTi J	P _{det} ^{Cor} (S	amplin	ig Every	7 Day)	RART	i P _{det} ^{Cor} (Sampli	ng Bi-a	nnually		RA	RTi P _d	et Cor (S:	ampling	Every	Day)	RARTi	P _{det} ^{Cor} (Sampli	ng Bi-an	nually)
ION	V NDFS	0 M 3 N	4 6 M	12 M	24 M	36 M	0 M 3	1 M 6 M	1 12 N	1 24 N	1 36 N	1 NDF	O M	3 M	6 M	12 M	24 M	36 M	0 M 3 I	M 6 M	12 N	[24 M	36 M
a _T =0.001 m 3	2.250	19.0 18.	8 18.6	18.3	17.6	16.9	17.7 1	7.6 17.4	t 17.1	16.4	15.8	1.250	14.2	13.8	13.4	12.7	11.4	10.4	12.2 11	9 11.6	11.0	9.9	9.1
9	2.250	34.0 33.	6 33.3	32.6	31.4	30.3	30.8 3	0.5 30.2	29.6	28.5	27.5	1.250	29.9	29.1	28.3	26.8	24.2	22.0	26.3 25	.6 24.9	23.7	21.4	19.4
12	2.250	71.1 70.	3 69.6	68.3	65.7	63.3	65.2 6	4.5 63.9	9 62.6	60.2	58.2	1.250	51.1	49.7	48.3	45.8	41.3	37.6	46.4 45	.2 44.0) 41.8	37.8	34.3
20	2.250	99.4 98.	4 97.4	95.4	91.8	88.5	98.9 9	9.7.6) 95.1	91.4	. 88.2	1.250	68.6	66.6	64.8	61.3	55.3	50.3	62.9 61	.1 59.7	1 56.5	51.0	46.4
$a_T=0.02 m$ 3	1.500	18.6 18.	3 18.1	17.5	16.6	15.8	16.4 1	6.2 16.() 15.5	14.7	, 14.(0.500	16.8	15.9	15.1	13.7	11.5	9.6	14.4 13	.7 13.1	11.9	10.1	8.7
9	1.500	33.4 32.	9 32.4	31.5	29.9	28.4	28.8 2	8.3 27.9	27.2	25.8	24.5	0.500	30.2	28.6	27.1	24.6	20.7	17.9	26.5 25	.2 24.0	21.9	18.5	16.0
12	1.500	69.8 68.	8 67.8	62.9	62.4	59.3	60.5 5	9.6 58.8	\$ 57.1	54.2	51.6	0.500	56.4	53.4	50.6	45.8	38.4	33.0	51.3 48	.7 46.3	3 42.1	35.6	30.7
20	1.500	99.3 97.	8 96.4	93.7	88.7	84.3	96.7 9	5.2 93.9	91.3	86.£	82.5	0.500	78.0	73.6	69.69	62.8	52.5	45.1	72.7 68	.8 65.4	1 59.2	49.9	43.1
$a_T=0.05 m 3$	0.500	18.6 17.	9 17.3	16.1	14.3	12.9	15.9 1	5.4 14.8	\$ 13.9	12.3	11.1	0.125	16.6	14.9	13.5	11.3	8.6	6.9	15.0 13	.6 12.5	5 10.6	8.2	6.7
9	0.500	33.3 32.	1 30.9	28.9	25.6	23.1	28.2 2	7.2 26.3	3 24.6	21.5	3.01	0.125	30.5	27.3	24.8	20.8	15.7	12.6	27.2 24	.6 22.6	5 19.2	14.8	12.0
12	0.500	69.6 67.	0 64.7	60.3	53.5	48.1	59.5 5	7.4 55.4	t 51.8	46.1	41.6	0.125	60.1	53.8	48.8	40.9	30.9	24.8	54.4 49	.4 45.1	38.3	29.5	23.8
20	0.500	99.3 95.	6 92.2	86.0	76.2	68.6	93.9 9	0.5 87.4	1 81.8	12.7	65.7	0.125	85.4	75.9	68.3	56.8	42.5	34.0	80.0 72	.2 65.7	1 55.4	42.4	34.1
$a_T=0.10 \text{ m}$ 3	0.125	18.6 16.	9 15.5	13.4	10.6	8.9	15.6 1	4.4 13.5	3 11.5	9.2	7.8	0.063	16.4	14.2	12.6	10.2	7.4	5.8	13.7 12	.1 10.9	0.6 (6.6	5.2
9	0.125	33.1 30.	2 27.8	24.0	19.1	16.0	27.4 2	5.1 23.2	20.2	16.2	13.7	0.063	30.3	26.3	23.2	18.8	13.7	10.7	25.3 22	.2 19.5) 16.3	12.1	9.6
12	0.125	69.2 63.	0 57.9	49.8	39.5	33.1	58.3 5	3.5 49.4	t 42.9	34.4	. 29.(0.063	61.9	53.5	47.2	38.0	27.6	21.6	51.0 44	.9 40.0	32.9	24.3	19.2
20	0.125	98.9 90	0 82.7	71.2	56.5	47.3	92.0 8	:4.4 78.() 67.8	54.4	45.5	0.063	86.5	74.4	65.3	52.3	37.7	29.4	76.0 66	.7 59.4	48.5	35.7	28.1
$a_T=0.20 m$ 3	0.030	14.5 11.	9 10.2	8.0	5.8	4.6	10.4 8	8.6 7.4	5.8	4.2	3.3	0.030	12.1	9.5	7.9	5.9	4.0	3.0	8.6 6.	9 5.9	4.4	3.0	2.3
9	0.030	26.6 22.	2 19.2	15.2	11.0	8.8	19.2 1	6.0 13.9	11.0	8.0	6.4	0.030	23.2	18.3	15.3	11.4	7.8	5.9	16.3 13	.3 11.3	3 8.6	6.0	4.5
12	0.030	55.4 45.	7 39.3	30.9	22.3	17.7	40.3 3	3.5 28.9) 22.8	16.5	13.1	0.030	46.9	37.0	30.8	23.2	15.7	11.9	34.1 28	.0 23.8	3 18.2	12.6	9.6
20	0.030	82.4 68.	3 58.8	46.3	33.5	26.7	64.2 5	3.6 46.5	36.6	26.5	21.2	0.030	66.6	52.4	43.6	32.7	22.2	16.8	50.3 41	.0 34.7	1 26.5	18.2	13.9
$a_T=0.50 m$ 3	0.015	8.2 4.8	3 3.5	2.3	1.5	1.1	5.3	3.8 3.0	2.2	1.5	1.1	0.015	7.2	3.9	2.8	1.8	1.1	0.8	4.3 3.	1 2.4	1.7	1.1	0.8
9	0.015	13.1 7.6	5 5.6	3.7	2.4	1.8	8.9	5.5 5.2	3.7	2.5	1.9	0.015	13.8	7.6	5.4	3.5	2.2	1.6	7.5 5.	5 4.4	3.1	2.0	1.5
12	0.015	29.2 17.	0 12.4	8.3	5.3	4.0	19.5 1	4.1 11.5	3 8.1	5.5	4.2	0.015	26.4	14.5	10.4	6.8	4.1	3.0	15.4 11	.2 8.9	6.3	4.1	3.0
20	0.015	42.2 24.	0 17.4	11.5	7.3	5.5	30.7 2	2.3 17.7	7 12.8	8.6	6.7	0.015	37.4	19.7	14.0	9.0	5.5	4.0	23.8 17	.3 13.7	7.6	6.3	4.7
مع(m) tr																							

Response Time (RARTi) of 0 (instantly), 3, 4, 6, 12, 24, and 36 months (M $\,$

Table 3.1: Corrected detection probability P_d^{cor} for two aquifers with $\sigma^2_{lnK} = 0.0$ and $\sigma^2_{lnK} = 1.0$, and two different sampling frequencies, once a day and biannually

Figure 3.7: Corrected detection probability P_d^{cor} for a heterogeneous field $\sigma_{lnK}^2=1.5$, $\alpha_T=0.05m$ for twelve monitoring wells as a function of remedial action delay and sampling frequency

3.6 Conclusions

A Monte Carlo stochastic model was developed to simulate contaminant transport into heterogeneous, two-dimensional aquifers. Pollution originated from a random, instantaneous point source within a landfill facility. Different arrangements and distances of monitoring wells from a landfill were considered, and the corresponding detection probabilities P_d and contaminated groundwater areas, at different time periods, were calculated. The following major conclusions can be drawn from the current study.

1. Convergence of the probability of detection P_d to a constant value was attained at about 3,000 Monte Carlo simulations, with the average difference, from all cases, from the value of P_d returned by 500 simulations being approximately 4%. The number of tracking particles used to simulate contaminant transport had a strong influence on the values of P_d calculated through numerical experiments. For arrangements of 12 and 20 wells convergence of the P_d to a stable value was attained at very high particle numbers. Cases of 1, 2, 3, 4, and 6 wells require at least 8,000 tracking particles in order to define a stable probability of detection.

- 2. Our results showed that in all cases of hydrogeological heterogeneity and dispersion the more wells utilized for detection purposes the greater the P_d . The use of 20 monitoring wells provides extremely high detection probabilities, which in some cases, at least at the numerical level, reach full detection. In terms of the minimum requirement of the 3 monitoring wells stipulated in the 1999/31/EU directive "on the landfill of waste" it was found, in agreement with (Yenigül et al., 2005), that the detection probability from this well arrangement remained very low, not exceeding 19%. The implication of this result is that approximately four out of five cases of leakage from a landfill will remain undetected if only 3 monitoring wells are used.
- 3. For a fixed heterogeneity level, for each specific arrangement of wells, the maximum detection probability increases with increasing dispersion coefficient up to a certain value of α_T and then P_d decreases. For the homogenous case this saddle point occurs at about the value of $a_T = 0.1$ to 0.2m, while the effect of increasing heterogeneity appears to be the appearance of the saddle point at lower α_T values. For transverse dispersion greater than 0.2m maximum detection is attained very close to the trailing edge of landfill. As a general rule the efficiency of contaminant detection from a specific well arrangement decreases as the variance of Y increases.
- 4. The frequency of sampling is critical in heterogeneous aquifers of high dispersion. Bi-annual sampling improves the detection probability, for almost all well arrangements, by about 40%, whereas once a month sampling improves P_d by about 70%, relative to the detection determined by annual sampling. As a general rule it appears that under all conditions at least bi-annual sampling should occur at a monitoring system. If one wants a higher detection probability then sampling at a frequency of once a month appears to be the optimum choice for most well arrangements, considering both the effort involved, if one were to proceed with a much more intense sampling, and the improvements on detection attained at this level. It is interesting to note that in heterogeneous aquifers a large number of monitoring wells if sampled infrequently does not perform much better in terms of detection than arrangements having a lower number of wells, but which are sampled more regularly.
- 5. Finally, decision-making analyses that evaluate the economic worth of different arrangements of wells calculate remediation costs based on contaminated

groundwater volumes that are estimated at the time of detection. In practice there is always a remedial action response delay, and contaminated volumes and hence remedial costs surpass those calculated at detection time. To correct for this situation we propose here an expression for a corrected risk factor R^{cor} that accounts for remedial action response delay,

$$R^{cor} = P_d^{cor} C_d + P_f^{cor} C_f$$
(3.11)

$$P_d^{cor} = P_d \left(\frac{A_t}{A_{t+dt}}\right), \text{ and } P_f^{cor} = 1 - P_d^{cor}$$
(3.12)

 A_t corresponds to the contaminated area (volume) at detection time t, and A_{t+dt} is the contaminated area (volume) at a later time due to delays in remediation procedures. Our approach can be viewed as a way to downgrade the importance of early detection, if not followed by quick remedial response, in risk analysis calculations.

Our expression allows us to estimate for a heterogeneous field, where twelve monitoring wells are operating and sampled every day, that a remediation delay of 36 months is equivalent to reducing the detection probability from 59% to 22%, or increasing the failure probability from 41% to 78%, almost doubling the failure cost entering risk calculations. If sampling is performed every 6 months then P_d is reduced from 42% to 19%, i.e., a delay of 36 months is equivalent to reducing the performance of 12 wells to that of only 3 wells.

CHAPTER 4

Sampling frequency of groundwater monitoring system and remediation delay at contaminated sites

4.1 Introduction

Geologic disposal of municipal wastes has been the dominant waste disposal practice and still remains the most profitable option in terms of exploitation and capital costs (Renou et al., 2008). On the other hand, disposal sites, whether old abandoned dumping grounds or sanitary landfills, have been responsible for soil and groundwater contamination as the aqueous effluent generated from rainwater, percolating through the wastes, or from biochemical processes, has leaked into the subsurface environment (Collucci et al., 1999; Koerner & Soong, 2000; Tsanis, 2006). Hence, early detection of aquifer contamination from a pollution source and quick remedial response is critical for plume minimization, reduction of remedial and legal costs, and decrease of the environmental and health impacts.

The duration of a leak may vary from a sudden to a continuous discharge of steady or variable rate. Sudden discharges into an aquifer can occur as high hydraulic head may develop as a result of continuous or localized leachate presence on the soil surface, or the bottom liner of unlined or lined landfills, respectively (Koerner & Soong, 2000); precipitation fluctuations leading to excessive percolation through the wastes (Fatta et al., 1999; Tatsi & Zouboulis, 2002), or, in the case of a landfill, clogging of the leachate collection and drainage pipeline system (Koerner & Koerner, 1995).

Even in lined landfills leakages can occur due to tears and holes in the geo-membranes caused by poor waste disposal practices and/or failure near welded membrane seams (Lee &

Jones-Lee, 1994; Allen, 2001). Synthetic materials used as bottom liners are prone to failure due to ageing, embrittlement, stress cracking, chemical corrosion, from extended leachate exposure, and elevated temperatures, from exothermic processes taking place in a landfill (Allen, 2001). Most locations of failure are of small dimension in relation to a landfill's cell area, constituting point sources of contamination (Collucci et al., 1999). Similar failure concerns refer to landfills with clay bottom barriers, where fracturing, due to differential waste deposition, chemical degradation, or ageing, can lead to contaminant leaks into the subsurface environment.

In practice it is very difficult to distinguish between instantaneous and continuous releases of contaminants. Instantaneous contaminant releases are more difficult to detect because they translate to narrow plumes and hence the characteristics of the geologic environment, the density of the monitoring well network, and the frequency of sampling become determining factors on whether detection can be achieved. Furthermore, instantaneous contamination releases may be followed by continuous leaks as landfill failure zones become more generalized. Continuous leaks are more probable to detect as the area with contaminant concentrations greater that the threshold detection limits increases, but in that case the effect of the initial instantaneous release becomes difficult to differentiate.

Detection of aquifer contamination is performed with the use of monitoring wells that are sampled according to a frequency schedule. Effective monitoring, and hence early remediation action, constitutes a complicated problem with many uncertainties involved, arising from the heterogeneity of the geologic medium, the aquifer's depth and the hydraulic gradient, the quantity and nature of the contaminants, all affecting the number, location, and frequency of sampling of a monitoring network.

Yenigül et al., (2005) conducted numerical experiments of the influence of aquifer heterogeneity and dispersion, and well density on the probability of plume detection, P_d , resulting from landfill contaminant releases. These authors concluded that the number of wells and aquifer dispersion are the dominant factors affecting detection probability. (Papapetridis & Paleologos, 2011a) demonstrated that the frequency of sampling is critical in heterogeneous aquifers, with bi-annual or monthly sampling improving P_d by 40 %, and 70 %, respectively, relative to that by annual sampling. They recommended that sampling should take place twice a year, at a minimum, with once- in-a-month appearing the optimum choice, considering the effort involved and the improvements in detection. These authors also introduced the notion of remedial action delay and provided a correction to decision analyses to account for the cost of delays in remedial actions.

The present study utilizes the stochastic Monte Carlo framework to investigate contaminant transport in heterogeneous aquifers (Hudak & Loaiciga, 1992; Meyer et al., 1994; Storck et al., 1997; Yenigül et al., 2005; Bierkens, 2006; Yenigul et al., 2006; Papapetridis & Paleologos, 2011a, 2011b; Yenigül et al., 2011) in order to evaluate the effect of sampling frequency on the detection probability of a linear monitoring arrangement of wells. Although our study considers for illustration purposes that an instantaneous contaminant release has emanated from a random point within a landfill's area, our analysis is also relevant for other cases as well, such as when contamination can be considered to have emanated from a small area of waste deposition, and from an unknown point of contamination within that area (Højberg et al., 2007). The change in P_d for various sampling schedules, degree of heterogeneity and dispersion is quantified, together with the average time needed for detection depending on the sampling performed. In addition, the concept of the remedial action delay is further expounded for specific well arrangements and sampling schedules in geologic environments of differing heterogeneity and dispersion. Our study aims to define the critical factors that determine an optimal groundwater monitoring sampling strategy and to quantify how the contaminated area, and hence the cost of remediation is affected by delays in remedial actions.

4.2 Model Description

Our study employed the Monte Carlo numerical framework to simulate groundwater flow and contaminant transport in 2-D heterogeneous aquifers with the use of the Spectral Turning Bands Method (STUBA) (Tompson et al., 1987a; Ababou et al., 1989; McLaughlin et al., 1993; Elfeki, 1996; Paleologos & Sarris, 2011). The range of the log hydraulic conductivity variance varied from 0.0 (homogeneous aquifer) to 2.0 (strongly heterogeneous aquifer), and the mean of the log hydraulic conductivity was set equal to 2.3. The correlation length, λ , was considered constant and equal to 20m for both x- and y- directions. Contaminant transport into the subsurface heterogeneous environment was simulated using the particle tracking method based on the 'random walk' approach (Ahlstrom et al., 1977; Prickett et al., 1981; Tompson & Gelhar, 1990a; Uffink, 1990; Zimmermann et al., 2001; Hassan & Mohamed, 2003; Delay et al., 2005b; Yenigül et al., 2005; Salamon et al., 2006b; Yenigül et al., 2011). For each case of heterogeneous field 3,000 Monte Carlo realizations and 8,000 particles were utilized to calculate the groundwater velocity and the contaminant's movement into the subsurface environment. Transverse dispersion coefficients, α_{T} , were set equal to $\alpha_{T} = 0.01$, 0.02, 0.05, 0.10, 0.20, 0.50m, corresponding to values observed in field experiments (Gelhar, 1986), and the longitudinal dispersion coefficient, α_L , was calculated by the relation $a_L = 0.10a_T$.

Steady state groundwater flow in an isotropic, heterogeneous porous medium, with a fixed depth of aquifer was considered with a constant hydraulic gradient of 0.001m, between the nodes lying perpendicular to the direction of flow, and no-flow conditions at the lower and upper boundaries of the flow domain. Although hydraulic gradient variations or other hydrogeological considerations, such as the existence of fast pathways or of "hot" spots, where contaminants may be sorbed and slowly released at a later time have been seen to occur, our analysis did not extend on these aspects that are difficult to address, without detailed field investigations (Mahar & Datta, 2000). The simulated region was 1,000 m long and 400 m wide (Figure 4.1), and it was discretized in cells of area $dx \cdot dy = 2 \cdot 2 \text{ m}^2$, creating a 500×200 grid. A rectangular area simulating a contaminant potential source area (CPSA), for example a section of a landfill, or the area of a waste storage facility, was situated between x- coordinates 10m and 60m, and y-coordinates of 140m and 260m (Figure 4.1). At a random

Figure 4.1: Half section of simulated flow field illustrating the rectangular CPSA, an 8000 particles plume evolved for 10 years, and a magnified well-detection area (wells are deliberately placed further away for illustration purposes)

point within these boundaries a contamination event was initiated that polluted the aquifer. The total contaminant mass was equal to 1,000 gr, and was assumed conservative and fully water soluble. The initial concentration of the point source, $C_0 = M_0 / (nV_0)$, was 4,000mgr/lt, where M_0 the initial mass, n = 0.25 the effective porosity, and the volume $V_0 = 1 \text{ m}^3$. The threshold concentration C_{TH} , detectable by the monitoring wells was set at 0.35 % of the initial concentration, corresponding to $C_{TH} = 14$ mgr/lt or 112 particles in a single cell. The uncertainty regarding the potential location within a cell of a landfill, where a leak might have developed, stems from the lack of information on potential failure locations at a landfill's bottom liner. In case pollution from a different facility is assumed, such as from an industrial plant or a military facility, uncertainty about the contamination's point source may stem from our inability to detect leaks from waste carrying pipelines, or underground storage areas of liquid waste, or even accidental spills during operations. In either case, it was assumed that any point within the rectangular CPSA is an equal-probable source of leakage, taking place once as a single failure event at zero time (when the simulation begun) and resulting in an instantaneous ejection of contaminants into the aquifer. Monitoring wells were assumed to fully penetrate the aquifer resulting in vertically-averaged concentration measurements. Six linear configurations were examined consisting of 1, 3, 6, 8, 12 and 20 wells, equally spaced from each other. Wells that were located at the ends of each arrangement were placed half the distance from the cell's top and bottom edges so that the efficiency of the monitoring system would be maximized (Yenigül et al., 2005). Monitoring of the aquifer and plume evolution was simulated for a 30-year period.

4.3 Sampling Frequency of Groundwater Monitoring

Table 4.1 and Table 4.2 present the results for the detection probability P_d (%) achieved for different number of wells (NOW), where NOW=1, 3, 6, 8, 12, 20, for various levels of heterogeneity, $\sigma_{\ln K}^2 = 0.0, 0.5, 1.0, 2.0$ and values of transverse dispersion coefficients, $a_T =$ 0.01, 0.02, 0.05, 0.10, 0.20, 0.50m. The values for the detection probability are given at NDFS, which was the distance from the trailing edge of the CPSA where P_d was maximized, normalized by the width ($L_o = 120$ m) of the facility. (Papapetridis & Paleologos, 2011a) have shown that, in most cases, different monitoring wells, under the same conditions of heterogeneity and dispersion, performed better, in terms of P_d , at slightly different distances. However, because of the computational effort it was chosen that the values of P_d , shown in Table 4.1 and Table 4.2, would be calculated (in each a_T case) at the same NDFS for all

NOW				$\sigma^{2}_{lnK} =$	0.0							$\sigma^{2}_{lnK}=$	0.5			
NOW	NDFS	D	1M	2M	3M	4 M	6M	A	NDFS	D	1M	2M	3M	4 M	6M	A
				a _T	=0.01	m						a _T	=0.01	m		
1	2.25	6.0	5.7	5.6	5.5	5.4	5.4	4.9	1.50	5.4	5.2	5.2	5.2	5.1	5.0	4.5
3	2.25	18.9	18.2	17.8	17.5	17.1	16.9	15.9	1.50	15.1	14.5	14.3	14.1	13.9	13.6	11.8
6	2.25	35.4	34.3	33.6	33.4	32.7	32.3	29.8	1.50	30.7	29.5	29.0	28.6	28.2	27.5	24.1
8	2.25	47.2	45.5	44.8	44.2	43.3	42.8	39.9	1.50	41.5	39.7	38.9	38.3	37.9	37.1	32.7
12	2.25	70.5	68.5	67.4	66.7	65.8	64.8	59.5	1.50	57.0	55.5	54.5	53.5	53.1	51.8	46.7
20	2.25	99.6	99.5	99.4	99.4	99.3	99.3	95.1	1.50	77.2	75.9	75.0	74.2	73.5	72.7	66.8
				a _T	=0.02	m						a _T	=0.02	m		
1	1.50	5.8	5.6	5.5	5.4	5.3	5.2	4.5	0.50	5.9	5.9	5.9	5.7	5.7	5.6	4.5
3	1.50	18.2	17.5	17.0	16.7	16.3	15.9	14.0	0.50	16.9	16.6	16.4	15.9	16.0	15.5	12.8
6	1.50	34.6	32.9	31.8	31.2	31.0	30.2	27.4	0.50	33.2	32.4	32.0	31.7	31.2	30.8	25.8
8	1.50	46.3	43.9	43.0	42.1	41.5	40.2	36.5	0.50	43.6	42.0	41.5	40.9	40.7	39.5	33.8
12	1.50	69.0	65.6	64.5	63.2	62.4	60.3	55.0	0.50	61.9	60.0	59.2	58.7	58.0	57.0	48.6
20	1.50	99.4	99.3	99.0	98.7	98.5	97.1	89.4	0.50	84.4	83.0	82.2	81.9	81.6	80.8	71.8
				a _T	=0.05	m						a _T	=0.05	m		
1	0.50	5.8	5.5	5.2	5.3	5.1	4.9	4.4	0.50	5.6	5.0	4.7	4.5	4.2	4.0	3.0
3	0.50	18.2	17.3	16.7	16.3	16.3	15.6	13.9	0.50	14.9	13.6	12.9	12.6	12.0	11.5	8.9
6	0.50	34.1	31.9	31.0	30.6	30.2	29.0	25.3	0.50	29.9	27.0	25.5	24.7	24.0	22.8	17.0
8	0.50	45.8	43.2	42.2	41.3	40.5	39.4	34.7	0.50	39.1	35.1	33.7	33.0	31.5	29.7	23.4
12	0.50	69.0	65.1	63.0	61.9	60.7	59.0	52.3	0.50	55.7	50.2	48.0	46.2	44.4	41.8	33.2
20	0.50	99.4	98.9	98.1	97.4	96.5	94.9	84.7	0.50	78.2	73.4	70.9	69.2	67.4	64.5	51.7
				a _T	=0.10	m						a _T	=0.10	m		
1	0.125	5.7	5.3	5.1	4.9	5.0	4.7	4.4	0.125	6.4	5.9	5.6	5.3	5.2	4.8	4.0
3	0.125	18.1	16.9	16.4	15.9	16.0	15.3	13.9	0.125	16.2	14.9	14.4	13.9	13.5	12.9	10.3
6	0.125	33.9	31.8	30.9	30.0	29.5	28.6	25.1	0.125	30.3	28.0	27.1	26.0	25.7	24.3	19.9
8	0.125	45.8	42.6	41.4	40.7	39.9	38.8	34.1	0.125	42.2	38.4	37.1	35.9	36.0	33.8	27.6
12	0.125	67.9	63.7	62.0	60.5	59.8	57.5	51.1	0.125	62.2	56.4	54.6	52.3	51.8	48.7	39.8
20	0.125	99.1	97.3	96.0	95.1	93.9	92.3	83.6	0.125	87.0	81.9	79.9	77.9	76.5	73.2	60.7
				a _T	=0.20	m						a _T	=0.20	m		
1	0.030	4.7	4.1	3.8	3.6	3.6	3.3	2.7	0.030	4.8	4.2	4.1	4.0	3.9	3.7	2.7
3	0.030	14.3	12.3	11.6	10.9	11.0	10.1	8.1	0.030	12.9	11.2	10.9	10.6	10.4	9.8	7.2
6	0.030	26.1	22.5	21.2	20.5	19.5	19.2	14.6	0.030	24.1	20.2	19.2	18.6	17.9	16.7	11.7
8	0.030	36.1	30.7	29.1	27.9	27.5	26.1	20.0	0.030	32.5	28.5	27.1	25.9	25.4	23.2	16.2
12	0.030	53.9	46.0	44.3	42.1	42.0	39.1	30.2	0.030	48.3	42.3	40.5	39.2	37.9	35.9	25.3
20	0.030	80.8	70.9	68.2	65.9	64.8	62.1	47.7	0.030	69.6	61.7	59.7	58.0	56.6	53.3	37.4
_	0.01=	a <i>t</i>		a _T	=0.50	m	1 7	0.1	0.017	2.0	0.5	a _T	=0.50	m	1.0	0.0
1	0.015	2.4	2.2	1.9	1.9	1.9 5 5	1.7	0.1	0.015	3.0	2.6	2.4	2.2	2.1	1.8	0.9
3	0.015	7.3	6.2	5.8	5.6	5.5	5.0	0.4	0.015	7.8	6.9	6.6	6.2	5.9	4.9	1.8
6	0.015	13.7	11.5	11.1	10.7	10.5	9.8	0.8	0.015	13.5	10.9	10.5	10.0	9.3	7.8	2.8
8	0.015	18.2	15.1	14.4	13.7	13.5	12.5	1.3	0.015	18.0	15.1	14.4	13.7	13.0	10.6	3.4
12	0.015	27.6	23.9	22.5	22.2	21.3	19.8	2.4	0.015	27.5	22.6	21.3	20.5	19.5	16.1	5.6
20	0.015	40.5	36.7	35.0	34.2	33.4	31.0	3.1	0.015	38.2	34.0	32.8	31.7	30.0	25.4	8.7

Table 4.1: Detection Probability P_d (%)

NOW: No of Wells, NDFS: Normalized Distance from Source, D: Daily, 1M: Every Month, 2M: Once every two months, 3M: Once every three months, 4M: Once every four months, 6M: Bi-Annually, A: Annually

Table 4.2:	Detection	Probability	$P_{d}(\%)$
------------	-----------	-------------	-------------

NOW				σ^{2}_{lnK} =	1.0							$\sigma^{2}_{lnK} =$	2.0			
NOW	NDFS	D	1M	2M	3M	4 M	6M	A	NDFS	D	1M	2M	3 M	4 M	6M	A
				a _T	=0.01 r	n						a _T	=0.01 n	n		
1	1.25	5.7	5.3	5.2	5.2	5.1	5.0	4.0	0.50	5.3	5.1	5.1	5.1	4.8	4.7	3.3
3	1.25	14.7	14.0	13.6	13.4	13.2	12.8	10.4	0.50	14.2	13.9	13.8	13.6	13.1	12.4	9.7
6	1.25	27.4	26.3	25.6	25.0	24.5	23.8	19.9	0.50	23.8	23.2	22.7	22.5	22.1	20.9	16.9
8	1.25	35.7	34.4	33.6	32.9	32.6	31.3	25.6	0.50	32.3	31.6	31.1	30.7	30.0	28.4	22.8
12	1.25	50.4	48.4	47.8	46.7	46.2	45.2	37.5	0.50	46.8	45.8	45.2	44.4	43.6	40.9	33.6
20	1.25	68.8	66.7	65.7	64.7	64.3	62.4	53.6	0.50	64.7	63.4	62.7	62.1	61.1	58.2	47.5
				a _T	=0.02 r	n						a _T	=0.02 n	n		
1	0.50	6.3	5.9	5.7	5.7	5.6	5.3	4.5	0.25	5.0	4.9	4.8	4.7	4.7	4.6	3.8
3	0.50	17.0	16.2	15.9	15.7	15.5	14.8	12.0	0.25	13.5	13.0	12.9	12.7	12.4	12.0	9.7
6	0.50	28.5	27.5	26.9	26.6	26.0	25.0	20.7	0.25	28.0	27.1	26.7	26.0	25.7	24.4	19.8
8	0.50	42.1	40.8	39.9	39.3	38.6	37.0	29.9	0.25	36.7	35.3	34.5	34.3	33.3	31.6	25.4
12	0.50	57.5	55.6	54.7	53.9	53.5	52.2	44.1	0.25	50.6	49.1	48.1	47.6	46.2	44.0	35.5
20	0.50	77.0	75.5	74.6	74.2	73.5	72.0	61.9	0.25	71.7	70.2	69.0	68.6	67.0	64.6	54.4
				a _T	=0.05 r	n						a _T	=0.05 n	n		
1	0.125	5.7	5.6	5.5	5.4	5.1	5.0	3.7	0.125	5.1	4.9	4.7	4.6	4.4	4.1	3.0
3	0.125	17.0	16.5	16.2	16.0	15.4	14.8	11.9	0.125	14.0	13.4	13.0	12.6	12.4	11.5	9.0
6	0.125	33.3	31.9	31.2	30.8	30.2	29.2	23.7	0.125	29.8	28.3	27.8	27.0	26.5	24.7	20.3
8	0.125	43.5	42.1	41.5	40.9	40.3	39.0	32.7	0.125	40.4	38.3	37.5	37.1	36.1	34.3	27.0
12	0.125	61.8	59.7	59.1	58.3	57.5	55.8	47.1	0.125	56.4	54.2	53.1	52.2	51.2	48.2	39.1
20	0.125	86.3	84.7	84.2	83.1	82.9	80.6	68.7	0.125	76.9	74.8	73.9	73.1	71.7	68.9	56.9
				a _T	=0.10 r	n						a _T	=0.10 n	n		
1	0.0625	5.4	5.1	5.1	4.8	4.8	4.6	3.7	0.0625	4.9	4.6	4.4	4.1	4.1	3.9	3.1
3	0.0625	17.1	15.9	15.8	15.2	14.9	14.1	10.9	0.0625	14.7	13.7	13.0	12.4	12.2	11.5	8.4
6	0.0625	31.6	29.4	28.5	27.6	27.1	25.5	19.7	0.0625	28.9	26.6	25.7	25.0	24.0	22.7	17.2
8	0.0625	43.2	40.0	38.6	37.8	36.8	34.8	27.6	0.0625	37.5	34.7	33.2	32.4	31.2	29.2	22.7
12	0.0625	60.8	56.5	54.8	53.7	52.5	49.5	38.8	0.0625	54.5	50.4	48.9	47.1	45.6	42.7	32.5
20	0.0625	86.2	82.7	81.0	79.5	78.5	74.9	59.3	0.0625	74.7	71.1	69.4	67.8	65.9	61.9	47.9
1	0.020	4.0	2.4	$a_{\rm T}$	=0.20 r	n 20	27	17	0.015	20	25	$a_{\rm T}$	=0.20 n	n 20	27	1.0
1	0.030	4.0	3.4	3.2	3.0	3.0	2.7	1./	0.015	3.8	3.5	3.4 10.0	3.2	3.0	2.7	1.9
3	0.030	12.8	11.2	10.0	10.5	10.0	9.2	5.9	0.015	12.2	10.4	10.0	9.4	8.9	14.2	5.1
0	0.030	22.0	19.2 26.6	10.0 25.2	17.0	10.7	13.0	10.0	0.015	22.0	19.0	17.0	10.0	13.8	14.5	9.7 12.6
0 12	0.030	51.1 44.7	20.0	23.5	24.5	23.2	21.5	21.0	0.015	44.0	24.0	25.4	24.2	21.2	20.4	12.0
12	0.030	44. <i>1</i>	57.0	55.6	52.6	54.5	18.0	21.0	0.015	44.0	55.6	52.0	50.0	33.0 19.6	29.4 12.4	20.0
20	0.030	04.0	57.8	55.0	_0 50 v	52.7	40.0	32.0	0.015	02.5	55.0	55.0	-0 50 m	40.0	43.4	29.9
1	0.015	22	2.0	a _T 19	-0.30 I	1 5	12	04	0.015	21	18	ат 17	_0.30 II 1 5	14	1.0	07
3	0.015	2.2 7 7	2.0 6.7	64	5.8	1.5 5 A	1.2 4 1	1.6	0.015	<u>۔</u> .1	54	1.7 4 9	1.5 4 A	4.0	3.1	1.8
5	0.015	127	10.9	10.4	97	93	7.2	2.7	0.015	12.0	10.0	2 8 9	 8 0	73	5.6	3.4
8	0.015	18.1	15.6	14.4	13.4	12.2	9.5	2.7 4.0	0.015	16.6	13.9	12.5	11.8	10.6	84	4.6
12	0.015	25.3	21.6	20.5	19.0	17.8	14.0	57	0.015	25.4	22.1	20.5	19.2	17.5	13.5	6.0
20	0.015	36.9	32.9	31.5	29.8	28.0	22.3	9.2	0.015	34.7	30.6	28.9	26.8	24.6	19.3	9.9

NOW: No of Wells, NDFS: Normalized Distance from Source, D: Daily, 1M: Every Month, 2M: Once every two months, 3M: Once every three months, 4M: Once every four months, 6M: Bi-Annually, A: Annually

arrangement of wells, with NDFS selected as the distance where the performance of the majority of the wells was maximized. (Mahar & Datta, 2000) have concluded that, with the exception of low transverse dispersive subsurface environments, observation wells should be located downstream, in close proximity to contamination sources. All numerical experiments were based on 3,000 Monte Carlo flow simulations and 8,000 tracking particles. Sampling frequencies that were considered were as follows: daily (D), once every month (1 M), once every 2 months (2 M), once every 3 months (3 M), once every 4 months (4 M), bi-annually (6 M), and annually (A).

Figure 4.2: Percent detection change between daily and annual sampling for different well arrangements and types of soil

Several conclusions can be drawn from these tables. Monitoring networks with up to 6 wells have, at best, a 35% chance to detect subsurface contamination, which quickly deteriorates even further if sampling becomes less frequent than once-a-day and the geologic environment departs from ideal homogeneous conditions. The addition of two more wells, i.e., a network of 8 wells with sampling only twice per year performs practically at least as well, for all types of soils considered here, with 6 wells, where samples are collected and analyzed every day. It appears therefore that networks of 6 wells do not accomplish the goal of successful monitoring, considering both their low probability of detection and the fact that an intense, daily, sampling effort, and corresponding expenditure, is required in order to maintain such low performance. Furthermore, for all types of soils and dispersions analyzed, networks of 8 wells, even if sampled daily, have a maximum detection probability that does

not exceed 50%. This means that under the best conditions, at least at the numerical level, one out of two contamination events would remain undetected, if monitored by 8 wells. If a higher confidence is needed in the performance of a monitoring network to detect contaminant plumes then 20 wells are required in order to at least, with a monthly sampling, in the majority of situations ($a_T \le 0.20 \text{ m}$) have a probability of detection that is greater than the probability of failure to detect.

Figure 4.2 plots the percent change of P_d between daily and annual sampling for all combinations of monitoring wells and different types of soils. When the subsurface environment is homogeneous and of low dispersion ($\alpha_{\tau}=0.01$ m) arrangements that consist of up to 12 wells have a deterioration of about 20% in their respective P_d , whereas 20 wells have a decrease in detection of about 5%. A potential explanation of this result, in conjunction with the values in Table 1 that show almost full detection for 20 wells, is that in homogeneous media of low dispersion a large number of wells, such as 20 wells, provide such a dense coverage of the area downstream a landfill that a plume cannot remain undetected and even a single observation is sufficient to verify a contamination event. In contrast homogeneous soils of high dispersion ($a_T = 0.5$ m) indicate an almost doubling of the detection capability if sampling is performed daily compared to that of annually. This result indicates that, irrespective of the density of the monitoring network, because contaminants disperse strongly concentrations at the monitoring points can quickly drop below the threshold detection limits, and hence the detection capability of a monitoring network in such an environment can become extremely low, unless a rigorous sampling schedule is followed. A similar situation holds for heterogeneous soils of high dispersion, with the heterogeneity appearing to ameliorate slightly the dispersion effects, but not sufficiently, in practical terms in order to alter our conclusion about the criticality of the sampling schedule. Finally, heterogeneous soils of low dispersion appear to increase the discrepancy between the sampling schedules with most notable the influence on 20-well arrangements. In this type of soils full detection is no longer possible with 20 wells and only the combination of a dense network and frequent sampling can retain a credibly high level of detection (Table 4.1 and Table 4.2).

The effect of dispersion on the detection probability attained through various sampling frequencies is illustrated in Figure 4.3. This figure utilizes 12 wells and plots the ratio of $P_d/P_{d(D)}$ as a function of the $\log_{10}(a_T)$ for homogeneous soils ($\sigma_{\ln k}^2 = 0.0$). Here P_d corresponds to the detection probability of a sampling schedule, and $P_{d(D)}$ to that of daily sampling. For a homogeneous field as transverse dispersion increases the ratio of $P_d/P_{d(D)}$ decreases. For all sampling schedules (with the exception of annual sampling) it appears that

for a_T in the range of 0.01m to 0.10m the departure of detection achieved by any sampling frequency to that by daily sampling, $P_{d(D)}$, appears to remain approximately constant and smaller than 10%. At $a_T = 0.20$ m an additional 10% decline in detection is observed relative to that at $a_T = 0.10$ m, and subsequently the ratio $P_d/P_{d(D)}$ remained constant, until $a_T =$ 0.50m. If annual sampling is considered then the ratio $P_d/P_{d(D)}$ continuously declines, and when $a_T > 0.10$ m the rate of decline becomes very sharp. This figure in conjunction with Table 4.1 indicate that in homogeneous soils and for dispersions up to $a_T \le 0.20$ m monthly sampling at 12 wells retains a probability of detection that is greater than 60%, which in practical terms does not differ significantly from that attained by daily sampling. For greater dispersion coefficients this particular well arrangement returns a probability of detection that is equal to or lower to the probability of failure to detect, deteriorating very rapidly the moment sampling departs from a daily schedule. For 12 wells in heterogeneous soils a similar analysis did not provide any additional insight to the pattern of behavior observed in Figure 4.3 and Figure 4.4.

Figure 4.3: 12 monitoring wells: $P_d / P_{d(D)}$ versus $\log_{10}(\alpha_T)$ for homogeneous soils $(\sigma_{lnK}^2 = 0.0)$

Field heterogeneity did not appear to affect contaminant detection probability as strongly as transverse dispersion did. Figure 4a indicates that when the transverse dispersion coefficient was equal to or less than 0.20m and for sampling performed at least three times a year the ratio $P_d/P_{d(D)}$ remained approximately constant (with minor fluctuations, which are on the average less than 2%) as the variance of $\ln K \ln K$, $\sigma_{\ln K}^2$, increased. If sampling became more sparse then a decrease of $P_d/P_{d(D)}$ on the average of 5%, and 20% for the biannual and annual schedules, respectively, relative to daily sampling was observed.

When the transverse dispersion coefficient a_T equaled 0.50m it appeared that in certain situations an increase in the heterogeneity ameliorated the effects of large transverse dispersion. This can been seen in Figure 4.4(b) for all types of sampling, up to bi-annual, where initially, the detection probability declined by approximately 6%, relative to that by daily sampling, as the field became mildly heterogeneous ($\sigma_{\ln K}^2 = 0.5$), and then increased by the same amount when $\sigma_{\ln K}^2 = 1.0$ to remain constant and equal to the detection achieved by daily sampling, for higher heterogeneities. For bi-annual sampling the initial decrease in $P_d/P_{d(D)}$ was 18% at $\sigma_{\ln K}^2 = 0.5$ and continued to decrease by an additional 10% as heterogeneity increased. In contrast when sampling took place only once a year the ratio $P_d/P_{d(D)}$ improved with increased field heterogeneity. This improvement was of the order of 120% from $\sigma_{\ln K}^2 = 0.0$ to $\sigma_{\ln K}^2 = 0.5$, and by another 20% as $\sigma_{\ln K}^2$ reached the value of 2.0.

An explanation for this behavior may be that while high transverse dispersion leads to greater dilution and lower concentrations at set monitoring points after a time interval, which would not be possible to detect if sampling is not frequent, high heterogeneity through the presence of low permeability regions may impede the lateral spread of contaminants, thus counteracting the effects of transverse dispersion. Irrespective of the above, at this level of dispersion the use of 12 wells achieved a maximum detection of 27% (Table 4.1), if sampled daily and any other sampling schedule corresponded to a monitoring of plume migration of an even lower efficiency. The frequency of sampling is of interest in order to minimize the time lag between the time that concentrations above a threshold limit first appear at the locations of a monitoring network and the time that these concentrations are actually observed through sampling. The effort of course is to identify the extent of the contaminated area as soon as contaminants become observable and to initiate remediation efforts as soon as possible.

In order to investigate these aspects in each Monte Carlo realization, for each $\sigma_{\ln K}^2$ and a_T hydrogeological case analyzed, the time of contaminant release from the landfill facility was set to zero. The time step of our numerical calculations was 1 day and the number of days (T_{ar}) required for concentrations above a threshold limit to arrive at an, at least, one well of

an 8-well arrangement was recorded for each realization. Then, if one were to utilize, for example, a monthly monitoring schedule the concentrations at the well monitoring locations would be checked 30-days after the initial contaminant release to observe whether they exceeded or not the threshold limit. If no exceedance of the limit was detected then the next checking period at the wells would be 30-days later and so on. The number of days (T_{obs}) for observation of contamination to be achieved at the monitoring points, based on a specific sampling schedule, would be recorded. The ratio of average observation time, $\langle T_{obs} \rangle$, to average arrival time of contaminants at the monitoring points, $\langle T_{ar} \rangle$, over 3,000 simulations for each $\sigma_{\ln K}^2$ and a_T case is plotted on the y-axis of Figure 4.5. Of course a daily sampling with our numerical time step set equal to 1 day would return a ratio equal to unity for all hydrogeological cases.

Figure 4.4: $P_d / P_{d(D)}$ versus σ_{lnK}^2 : (a) $\alpha_T = 0.20m$, and (b) $\alpha_T = 0.50m$ for 12 monitoring wells

Figure 4.5 shows that when dispersion is low $(a_T = 0.05\text{m})$ the average observation time does not differ from the average arrival time if groundwater is sampled no later than every 4 months. The frequency of sampling starts to affect the ratio $\langle T_{obs} \rangle / \langle T_{ar} \rangle$ only when the variance of $\ln K$ becomes greater than one and sampling is performed bi-annually or annually. When $a_T = 0.05\text{m}$ and $\sigma_{\ln K}^2 = 2.0$ then annual sampling returned a $\langle T_{obs} \rangle$ that is 20% higher than $\langle T_{ar} \rangle$.

Figure 4.5: <T_{obs}>/<T_{ar}> versus sampling frequency for an 8-well monitoring arrangement in different hydrogeological environments

The average observation time starts to diverge from the average arrival time when dispersion is high ($a_r = 0.50$ m) and sampling is performed less frequent than every 3 months. Then there is a 25% difference between the times of observation and first arrival of the contaminants at the monitoring locations, which increases to 240% in the case of annual sampling. Therefore, it appears that if one wishes, under the specific conditions of the hydraulic gradient considered in this study, to detect contaminants as soon as they reach monitoring check-points collection of samples every 2 months appears to be a safe sampling strategy for a wide range of hydrogeological environments. When the hydraulic gradient is one order of magnitude smaller than the one considered here it was calculated through numerical experiments that the average P_d differs by about 15% from that of our base hydraulic gradient case, leading to approximately the same sampling strategy. On the other hand, when the hydraulic gradient is one order of magnitude gradient the overage hydraulic gradient is one order of magnitude gradient that of our base hydraulic gradient is one order of magnitude gradient that other hydraulic gradient is one order of magnitude gradient that other hydraulic gradient is one order of magnitude gra

gradient case the average P_d from all monitoring cases differs by about 60% from the results presented here, and the sampling strategy to be developed would differ from that of the base case discussed here.

The discrepancy between average observation and arrival times translates into differences between the average area of the plume that exists when the first above-the-threshold concentrations have reached the monitoring points, $\langle A_{ar} \rangle$, and the extent of that area when observation of the subsurface contamination is made, $\langle A_{obs} \rangle$. The extent to which a contaminated area has grown as a result of infrequent observation has of course consequences in the volume of groundwater needed to be treated, and correspondingly, in the cost of remediation.

Figure 4.6 shows that when groundwater samples are obtained at least once a month, then no change in the contaminated area occurs as a result of the monthly delay in sampling compared to that by a daily schedule, irrespective of hydrogeological conditions. When dispersion is low ($a_T = 0.05$ m) it appears that the movement of contaminants in the subsurface environment is so slow that the contaminated area does not increase by more than 10% from the area that an optimum daily sampling would discern. In this case even sparse information on the state of groundwater, even of the order of once a year, would not lead to significantly more costly remediation efforts.

For high dispersion ($a_r = 0.50$ m) an initial observation from Figure 4.6 is that with the exception of monthly sampling all other less frequent sampling schedules result in significant delays in detecting contaminant concentrations at the monitoring points, which allow the plume area to enlarge and hence result in more costly remediation efforts. The less frequent the sampling the more the plume has time to enlarge, with for example, in the case of sampling that is performed every 4 months, the plume to have grown, in some subsurface environments, by at least 50% relative to its size at the time of the plume's first arrival at the monitoring wells. The second observation is that when dispersion is high, stronger heterogeneities (the existence of high and low permeability zones) appear to mitigate a plume's evolution and not allowing it to spread as much as in environments of low heterogeneity.

Thus, Figure 4.6 shows that for all sampling schedules in high dispersion environments strong heterogeneities $\sigma_{\ln K}^2 \ge 1.0$ result in smaller $\langle A_{obs} \rangle / \langle A_{ar} \rangle$ ratios than those that correspond to $\sigma_{\ln K}^2 \le 0.5$. The fact that infrequent sampling in strongly heterogeneous environments provides plume areas that do not diverge as strongly, from the plume areas existing at the time of monitoring-point arrival, as in mild or homogeneous environments
seems to support the notion that the existence of high and low permeability zones appear to impede a plume's spread and the effects of high dispersion.

Figure 4.6: $\langle A_{obs} \rangle / \langle A_{ar} \rangle$ versus sampling frequency for an 8-well monitoring arrangement in different hydrogeological environments

4.4 Remediation Delay

Decision analyses of remediation actions define a risk term R, which associates the cost of remediation of a contaminated volume of groundwater, C_d , and the cost C_f of a much larger volume, due to failure of the monitoring system to detect with the probability of detection P_d , and the probability of failure $P_f = 1 - P_d$. Thus, R measures the performance of various monitoring systems via the impact that different levels of detection have on remediation costs (Freeze et al., 1990; Yenigul et al., 2006):

$$R = P_d C_d + P_f C_f \tag{4.1}$$

This description assumes that remediation takes place immediately after detection, i.e., that the groundwater volume to be remediated coincides with the contaminated volume at detection time. (Papapetridis & Paleologos, 2011a) provided a correction for the delay in response, which results in an increase of the contaminated volume, as the plume continues to evolve, and correspondingly to an increase of the remediation cost compared to that if the contaminated volume at detection were to be used. *Papapetridis and Paleologos* (2011a)

(Papapetridis & Paleologos, 2011a) defined a corrected risk R^{cor} that accounts for the remedial action response delay as follows:

$$R^{cor} = P_d^{cor} C_d + P_f^{cor} C_f$$
(4.2)

where

$$P_d^{cor} = P_d \left(\frac{A_t}{A_{t+dt}}\right) \tag{4.3}$$

and

$$P_f^{cor} = 1 - P_d^{cor} \tag{4.4}$$

The corrected detection probability P_d^{cor} is a measure of the economic impact of a remedial action delay, when the contaminated area has extended to A_{t+dt} , as a divergence from the maximum economic outcome that would take place at detection time, when the contaminated area is A_t . This procedure results in increasing the failure probability and weighted cost of failure in the calculation of the risk factor as the time interval dt increases. Sensitivity analyses can then illustrate to decision-makers the influence of remedial delays on the cost of remediation.

Figure 4. demonstrates the influence of dispersion on the first term, the weighted cost due to detection, and correspondingly, the increase of the much larger failure term in Equation (4.1), through the ratio A_r/A_{t+dt} , in homogeneous and heterogeneous soils for different Remedial Action Delay Times (RADTi). In homogeneous soils (Figure 4.a) delays of even 6 months at $a_T = 0.10$ m result in a 20% downgrading of the first term of equation (4.1), and at $a_T = 0.50$ m this reduction reaches about 60%. At 2 or 3-year time delays for $a_T = 0.10$ m an almost 45% reduction of the weight of the first term in the calculation of the risk has occurred, which for highly dispersive environments of $a_T = 0.50$ m this reaches almost 80%. The difference between homogeneous and heterogeneous soils (Figure 4.b) is that in heterogeneous soils the impact of consecutive delays on the ratio A_r/A_{t+dt} tends to be greater than that in homogeneous soils of similar dispersion. It appears that in highly dispersive environments not only sampling must be very frequent, in order not to allow the contaminated area to grow as a result of lack of observation, but in addition the remediation response must be of the order of a few months if one does not wish the remediation costs to grow significantly.

(a)

(b)

Figure 4.7: A_t/A_{t+dt} versus $\log(\alpha_T)$ for 6 monitoring wells and different Remedial Action Delay Times (RADTi): (a) homogeneous, and (b) heterogeneous soils with $\sigma_Y^2 = 1.0$

The heterogeneity of the subsurface environment influences the ratio A_t/A_{t+dt} but not to the same extent as dispersion. Figure 4.8 illustrates that in low dispersion environments ($a_T = 0.02$ m) delays of up to 6 months would decrease the ratio A_t/A_{t+dt} by less than 20% in highly heterogeneous soils, an equivalent result to that obtained previously for $a_T = 0.10$ m and homogeneous soils. A five-fold increase in the dispersion coefficient produces an

Figure 4.8: A_t/A_{t+dt} versus heterogeneity σ_Y^2 for fixed dispersion $\alpha_T = 0.02 m$ for different Remedial Action Delay Times (RADTi) and 3 monitoring wells

equivalent spread in the contamination to that by several orders of magnitude increase in the heterogeneity of a field. At 2 or 3-year time delays again for $(a_T = 0.02\text{m} \text{ an almost } 45\%$ reduction of the weight of the first term in the calculation of the risk has occurred at $\sigma_{\ln K}^2 = 2.0$, an equivalent result to that of homogeneous soils with a five times higher dispersion. Results in high dispersion environments $(a_T = 0.20\text{m})$ exhibited a similar pattern to that of Figure 4. with the main difference being that the impact of consecutive delays on the ratio A_t/A_{t+dt} tended to be greater at the same $\sigma_{\ln K}^2$ than that presented in this figure. Both Figure 4. and Figure 4.8 calculate the areas A_t considering immediate detection, i.e., of sampling that is performed daily.

4.5 Conclusions

This work investigates the impact of sampling frequency on the probability to detect groundwater contamination in various subsurface environments, as well as the effects that sampling schedules and remediation delays have on the growth of contaminated subsurface areas and remediation costs. High-resolution numerical Monte Carlo realizations were utilized to simulate contaminant movement in heterogeneous, two-dimensional aquifers and to calculate the probabilities of detection P_d , and contaminated areas by various monitoring well arrangements. Networks of 8 wells, even if sampled daily, had a maximum detection probability that under the best conditions allowed one out of two contamination events to remain undetected. If a higher confidence in the performance of a monitoring network was needed then 20 wells sampled monthly returned a probability of detection greater than the probability of failure even in highly dispersive environments. In homogeneous media of low dispersion a large number of wells provide such density of coverage of the area downstream a landfill that a plume cannot remain undetected even with few observations. In contrast in homogeneous soils of high dispersion, irrespective of the density of monitoring network, because contaminants disperse strongly and concentrations at the monitoring points drop below the threshold limits quickly a rigorous sampling schedule must be followed in order to retain a network's performance. A similar situation holds for heterogeneous soils of high dispersion, with the existence of low permeability zones appearing to ameliorate the dispersion effects, but not sufficiently in order to alter our conclusion about the criticality of the sampling schedule. The frequency of sampling is also of interest in order to minimize the time lag between the time that concentrations above a threshold limit first appear at monitoring locations and the time that these concentrations get to be observed through sampling. The objective of course is to delineate the extent of the contaminated area and to initiate remediation efforts as soon as possible. Analysis of the lag between the time that contaminants appeared at monitoring sites and the time they got to be observed led to the conclusion that, in terms of time delay, sampling every 2 months constitutes a safe strategy for a wide range of hydrogeological environments. In the case of aquifers that exhibit fast pathways of contaminant transport, through the existence of high permeability zones, farther investigation is required. However, in terms of growth of contaminated area with the exception of monthly sampling all other less frequent schedules resulted in significant enlargement of plume areas, thus leading to more costly remediation.

Traditional decision analyses assume that remediation takes place immediately after detection that is that the groundwater volume to be remediated coincides with the contaminated volume at detection time. Based on a correction presented by (Papapetridis & Paleologos, 2011a) for remedial response delays, which result in an increase of the contaminated volume as the plume continues to evolve, the current study demonstrates that in highly dispersive environments the remediation response must be of the order of a few months if one does not wish the contaminated areas and remediation costs to grow significantly.

CHAPTER 5

Parameters on stochastic simulation of contaminant detection probability

5.1 Introduction

Groundwater contamination plume detection is an important aspect of environmental protection, during landfill operation and after closure time. Groundwater monitoring network design and operation has become a subject of major concern mainly in the last three decades (Nunes et al., 2007). Successful detection of an underground pollutant transported into an aquifer is directly dependent on the information of a possible protective barrier failure and the possibility of calculating the movement and dispersion of the pollutant in an environment about which very few things are actually known. This lack of information is caused by the fact that there are difficulties of experimentally measuring, at any point in the geological field, its various hydraulic properties (hydraulic conductivity, hydraulic head, porosity etc.) so as to predict, or even approximate, the way a plume can propagate into the aquifer. Additional uncertainty factors of the problem are lack of information about the geometry and the number of sources from which pollution originates in a landfill waste, the quantity of pollution intruding into the aquifer as well as the duration of the leak.

In order to simulate hydro-geological as well as epistemic uncertainties, the latter arising through lack of knowledge of the landfill and monitoring installation system parameters, a stochastic model in a Monte Carlo context has been utilized. *Yenigul et al.* (2006) performed simulations studying in two dimensions the effect of a field's heterogeneity and dispersion on detection probability of groundwater pollution by a linear arrangement of a landfill's downgradient monitoring wells, originating from a random, single point source inside the vicinity of the installation. The effect of the number of wells, their distance from the landfill and the size of the source were studied too. *Papapetridis and Paleologos* (2011a) performed high resolution Monte Carlo numerical experiments studying more hydrogeological cases, in addition to the effect of monitoring wells sampling frequency.

In the present study we examine how the number of point sources, the size of the controlled area (landfill) and the quantity of an instantaneous aquifer injection pollution event affect groundwater pollution detection probability of a monitoring installation. For this purpose a two-dimensional stochastic model is utilized to perform numerical experiments. The monitoring installation was considered in different cases to be located in various distances from the landfill facility and perpendicular to the flow field. This work extends that of *Papapetridis and Paleologos* (2011a), thoroughly investigating additional uncertainty aspects of detecting instantaneous aquifer pollution. In each examined parameter it is considered that the rest of the factors affecting detection probability estimation remain constant. Simulations are performed in the context of uncertainty factors deriving from the environment itself, where the pollution is propagating, and from the lack of information about certain parameters, concerning the initial conditions of the leak.

5.2 Model description and simulation results

A 2-D steady groundwater flow in a heterogeneous, isotropic and confined aquifer was considered in this study. Our study employed the Monte Carlo numerical framework to simulate groundwater flow and contaminant transport in 2-D heterogeneous aquifers with the use of the Spectral Turning Bands Method (STUBA) (Mantoglou & Wilson, 1982) to stochastically simulate hydro-geological heterogeneity and the Random Walk Tracking Particles algorithm (Tompson et al., 1987a; Salamon et al., 2006b) to simulate the advection and dispersion of the pollution into the aquifer.

Hydro-geological heterogeneity was expressed through the natural logarithm of hydraulic conductivity variance $\sigma_{\ln K}^2$, which varied among 0.0 (homogeneous aquifer), 1.0 (medium heterogeneity) and 2.0 (strongly heterogeneous aquifer). The mean of the log hydraulic conductivity was set equal to 2.3. The correlation length, λ , was considered constant and equal to 20 m for both directions x and y. Transverse dispersion coefficients, α_T , were set equal to $\alpha_T = 0.01$, 0.05, 0.10, 0.50 m, corresponding to values observed in field experiments, and the longitudinal dispersion coefficient, α_L , was calculated by the relation $\alpha_L = 10\alpha_T$. Contaminant transport into the subsurface heterogeneous environment was simulated using the Particle Tracking method based on the 'Random Walk' approach.

The simulated region was 1000m long and 400m wide, discretized by $\Delta x = \Delta y = 2 \times 2m^2$ cells, creating a 500×200 grid. 3,000 Monte Carlo realizations were performed in order to calculate groundwater pollution detection probability by a linear arrangement of monitoring wells. Six linear configurations were examined, consisting of 1, 3,

4, 6, 8, 12 and 20 wells, equally spaced from one another. Wells that were located at the ends of each arrangement were placed half the distance from the cell's top and bottom edges, so that the efficiency of the monitoring system would be maximized. Monitoring of the aquifer and plume evolution was simulated for a 30-year period.

The simulation parameters of the control area where simulation originated, the quantity of pollution that entered the aquifer instantaneously at t = 0 and the number of sources were customized accordingly, so that their effect on monitoring efficiency could be examined. More details on the simulation model development are referred at *Papapetridis and Paleologos* (2012a).

5.2.1 Control Area Size

A rectangular control area of $120 \times 50m^2$ – a landfill cell or other installation capable of causing groundwater pollution – was used as reference area *L*, situated between xcoordinates of 10 m and 60 m, and y-coordinates of 140 m and 260 m. This specific size was chosen in order to concur with the dimensions of the area used at the study of *Papapetridis and Paleologos* (2012a). Control area cases that were numerically studied were equal to 0.3L, 2L/3, L, 4L/3, 5L/3 and 2L. It was assumed that any point within a cell of the control area was an equally-probable source of leakage, taking place once as a single failure event at zero time (when the simulation began) and resulting in an instantaneous ejection of contaminants into the aquifer. The total contaminant mass was equal to 1,000 gr, and was assumed conservative and fully water soluble. The initial concentration of the point source, $C_0 = M_0/(nV_0)$ was 4,000 mgr/lt, where M_0 the initial pollution mass, n = 0.25 the effective porosity, and $V_0 = 1.0m^3$ the volume. The threshold concentration, corresponding to $C_{TH} = 14mgr / lt$.

Simulation results showed that when the size of the control area became larger than L, then detection probability P_d diminished. On the other hand, when the size became smaller than L, detection probability P_d increased or, if it had already achieved maximum value, it remained the same. At Figure 5.1 it is observed that in case of a homogeneous, low dispersion field (Figure 5.1.a) P_d drops fast as the control area is increased. Between reference sizes L and 2L there is a 60% reduction in P_d when 20 monitoring wells are used, while in the case of a dispersive homogeneous field (Figure 5.1b) the same reduction is only 43%. At monitoring installations with a smaller number of wells this reduction is even bigger, as in case of 3 wells, for example, where P_d reduction is 84%. When the control area becomes less

that the reference area, then in the first case (Figure 5.1.a) we observe that P_d remains the same, as it has reached maximum, while at the dispersive case (Figure 5.1b) P_d continues to increase as the monitored area goes from *L* to 0.3*L*.

When a heterogeneous field is considered, the same change in P_d occurs. The difference in P_d between the control area reference size L and 2L is 58%, in case of 20 monitoring wells in a low dispersion field (Figure 5.1c), and 54% when a higher dispersion field is simulated (Figure 5.1d). If an installation is made up of 3 wells, P_d percentage reduction is 85% and 84% respectively.

Figure 5.1: Detection Probability P_d change in relation to control area relative size, in a homogeneous low (a) and high (b) dispersion field, and in a heterogeneous low (c) and high (d) dispersion field.

At the heterogeneous case it is observed, though, that when the control area becomes smaller than the reference size L, then P_d increases. In a heterogeneous, low dispersion field a dropdown in P_d (Figure 5.1c) occurs when the control area becomes smaller than 2L/3and at least 12 wells are used, and this fact results from the way monitoring wells are located by the model itself on the grid nodes. During simulation the trailing edge of the control area is divided by the number of wells to be used. The integer part of the outcome is used as the space between two successive wells. In addition, the integer part of half the previous outcome is used as the starting point for No1 well. In cases where 12 and 20 wells are used, the starting point of the placement of the wells is at the beginning of the control area's trailing edge, leading to a portion of the trailing edge at the top end, equal to the distance between two wells, being unattended. This is why in these cases detection probability seems falsely to be reducing. When dispersion becomes higher, then the effect of monitoring wells placement faints, due to the fact that in higher dispersion aquifers pollution originating from an unattended portion of the control area can still be detected as it covers a larger area while it is transported. In conclusion, it can be said that as the control area's size becomes larger, detection probability P_d decreases. It has been numerically verified that the fewer the monitoring wells, the less the detection probability. When the control area becomes smaller, P_d increases until it reaches a maximum point.

Examining the case where monitoring wells density remains constant as the control area changes, then it has been observed (Figure 5.2) that detection probability changes very little. In Figure 5.2, as control area width increases from 0.3L (40 m) to 2L (240 m), the number of wells increases from 2 to 12, providing this way a constant density of wells equal to 0.005. Besides the case of low dispersion homogeneous field, where a P_d dropdown of 50% is observed between sizes 4L/3 and 2L, in the rest of the cases detection probability P_d changes less than 15%, meaning that monitoring installation efficiency practically remains the same. Consequently, if the width of a control area where possible groundwater pollution may originate is to be increased, so should the number of monitoring wells, maintaining at least the same density as for the initial size.

Figure 5.2: Detection probability P_d change shown as monitoring wells density in relation to control area width is kept constant and equal to 0.05.

5.2.2 Multiple Point Sources

Uncertainty regarding the potential location of a leak within a cell of a landfill stems from the lack of information on potential failure locations at a landfill's bottom liner. In all stochastic modeling so far, single pollution source has been the common case. It is not impossible, though, to have more than one pollution source at the same region, caused by the same or different reasons. At least in one case (Collucci et al., 1999), two different tears at a landfill's protective liner have been documented, providing this way two groundwater pollution sources charging the aquifer at the same time.

Figure 5.3: Change in detection probability P_d for a single source (dashed lines) and dual source (solid lines) pollution, as the number of wells is increased, for homogeneous $(\sigma_{\ln K}^2 = 0)$ and heterogeneous $(\sigma_{\ln K}^2 = 1, \sigma_{\ln K}^2 = 2)$ cases, considering four dispersion cases, $a_T = 0.01$ m (a), $a_T = 0.01$ m (b), $a_T = 0.01$ m (c) and $a_T = 0.01$ m (d).

In the present study it was assumed that two point pollution sources act at the same time. Both of them inject the same quantity of pollution into the aquifer at, providing an initial concentration at the point of injection. Both plumes are transported independently, without any other interaction between them. Both sources are inside the control area vicinity (equal to reference size) and in each computational realization different sources are independently selected with equal probability. The objective is to study how dual pollution sources affect detection probability achieved by a groundwater linear monitoring arrangement If pollution plumes originate from adjacent sources, they may be transported very closely, crossing each other, providing this way greater pollutant concentration at grid cells. On the other hand, it is possible for them to move to completely different regions, increasing the detection probability as there is more areal coverage. Simulation results showed that groundwater detection probability is increased when two sources are the case (Figure 5.3). In all cases of heterogeneity and transverse dispersion coefficient, it is observed (Figure 5.3a,b,c,d – Figure 5.4) that, as the number of monitoring wells is increased, the difference between P_d tends to decrease. More specifically, when dispersion is among $a_T = 0.01 - 0.10m$, the average relative percentage difference between dual and single sources is 37%, while in the case of higher dispersion, where $a_T = 0.50m$, the same difference in P_d , something that results from the fact that 100% detection had already been achieved in the single source case.

Figure 5.4: Detection probability P_d relative percentage difference between a dual and a single pollution source case in two different transverse dispersion coefficient cases.

In all simulated cases, the general observation (Figure 5.3) is that when two equivalent groundwater pollution sources are present their detection is easier, as the average P_d increase is among 35% – 55%, but for the cases where detection was already 100% successful due to the presence of a dense monitoring network (20 wells). It is obvious that if there were more than two instantaneous sources, injecting the same initial pollution concentration, as in the

cases at hand, would make the P_d difference even greater, as it seems that plume superposition results in an average detection probability increase of 45%. This means that in any single pollution case where P_d is at least 50%, an average increase of 90% would be expected if at least three pollution sources were present, setting monitoring wells detection capabilities to a maximum of 100%.

Different sampling frequencies were studied in the case of two pollution sources. It was assumed that sampling was performed at the same time at every monitoring well. Time intervals were assumed to be daily (ED), monthly (1M), bimonthly (2M), quarterly (3M), every four months (4M), biannually (6M) and annually (12M). Studying P_d change in relation to sampling frequency in the case of two sources, the same trend is observed (Figure 5.5a,b,c) in every numerically studied case of field heterogeneity and pollutant dispersion coefficient. The same P_d increase relative to single source cases is observed, independently of the sampling frequency. Consequently, aquifer sampling more often does not alter monitoring efficiency in terms of the presence of more pollution sources.

(a)

~ 121 ~

Figure 5.5: Change of detection probability P_d for a single source (dashed lines) and dual source (solid lines) pollution, as sampling frequency changes from daily (ED), monthly (1M), bimonthly (2M), quarterly (3M), every four months (4M), biannually (6M) and annually (12M)

5.2.3 Quantity of Pollution

The sensitivity of groundwater pollution detection probability P_d to pollutant quantity, instantaneously injected into a 2-D aquifer through a randomly selected single point source, was examined during numerical experiments. A rectangular reference control area L was, in all simulations, the region where pollution could originate. Three heterogeneity cases were studied, as reflected in $\sigma_{\ln K}^2$ of hydraulic conductivity K, where $\sigma_{\ln K}^2 = 0.0$ was the homogeneous one, $\sigma_{\ln K}^2 = 1.0$ was the medium heterogeneous one and $\sigma_{\ln K}^2 = 2.0$ was the strong heterogeneous one. Four different pollution dispersion cases were examined, corresponding to $a_T = 0.01m$, 0.05m, 0.10m and 0.50m.

Eight different initial pollution quantities were numerically studied, among 125gr, 250gr, 500gr, 1,000gr, 1,500gr, 2,000gr, 2,500gr, and 3,000gr, providing an initial pollution concentration C_0 of 500mgr/lt, 1,000 mgr/lt, 2,000mgr/lt, 4,000mgr/lt, 6,000mgr/lt, 8,000mgr/lt, 10,000mgr/lt, and 12,000mgr/lt respectively. Detection threshold concentration was set equal to $C_{TH} = 14mgr / lt$ in all cases. Each different initial pollution quantity was simulated in all hydro-geological cases, as previously described.

Simulation results indicated that when the initial concentration of pollution is below 1,000mgr/lt then its detection is very hard, as P_d is below 20% even for a 20-well setting, in every hydro-geological configuration (Figure 5.6:, Figure 5.7, Figure 5.8:). As the initial concentration of pollution is increased, so does detection probability. In the case of a homogenous field, when initial concentration is bigger than 4000mgr/lt, there is little change in P_d achieved by every monitoring configuration when dispersion is less than $a_T = 0.50m$

(Figure 5.6:a,b,c). In the case dispersion is as large as $a_T = 0.50m$, it is observed (Figure 5.6:) that as C is increased so does P_d . For example, when C = 6,000mgr/lt, detection probability of a 12-well installation is $P_d = 42.4\%$, while when C = 12,000mgr/lt probability is $P_d = 81.8\%$ respectively, which is almost twice as big as the pollution concentration.

Figure 5.6: Change of detection probability P_d of different monitoring wells installations, as the initial concentration of a single source instantaneous pollution increases at a homogeneous $\sigma_{\ln \kappa}^2 = 0.0$ aquifer

Another interesting observation is the fact that in high dispersion value (Figure 5.6:) P_d differences between different monitoring wells settings tend to decrease as the initial concentration of pollution increases. This effect is observed in all heterogeneity cases when transverse dispersion coefficient is as high as $a_T = 0.50m$ (Figure 5.6:, Figure 5.7d, Figure 5.8:). In all other lower dispersion cases it is observed that, as soon as initial concentration overcomes C = 4,000mgr/lt, then P_d changes very little (less than 5%), regardless of the number of wells, which means that further pollution injection into groundwater does not make its detection easier. This is very interesting, as it indicates that actually in low to medium dispersion aquifers monitoring wells efficiency reaches a maximum, which is independent of

the initial mass of pollution intruding into groundwater (Figure 5.6: Figure 5.7a,b,c, Figure 5.8:). Only in high dispersion environment increase of pollution reflects to higher detection probability. The turning point for the concentration of initial pollution is C = 8,000 mgr / lt, which is the value where P_d starts to stabilize. Lower concentrations were harder to detect, dictating that in order for a monitoring setting to be sensitive, at least at simulation level, even in small amounts of pollution a large number of wells must be used.

(c)

(d)

Figure 5.7: Change of detection probability P_d for different monitoring wells installations, as the initial concentration of a single source instantaneous pollution increases at a heterogeneous $\sigma_{\ln \kappa}^2 = 1.0$ aquifer

Simulations indicated that dispersion is the main hydro-geological parameter that affects plume detection in relation to the initial concentration of pollution. When dispersion increases as high as $a_T = 0.50m$, P_d increases almost linearly to initial concentration, because pollution disperses faster in a larger area and, in conjunction with the fact that a larger pollutant mass reserves greater detectable areal coverage, plume is detected more easily. On the contrary, in lower dispersion fields smaller plumes are produced and, even if a larger pollution mass is injected into groundwater, it leads to polluted regions of greater concentration and not in greater areal coverage, which is the main geometric attribute for a

Figure 5.8: Change of detection probability P_d for different monitoring wells installations, as the initial concentration of a single source instantaneous pollution increases at a heterogeneous $\sigma_{\ln K}^2 = 2.0$ aquifer

5.3 Conclusions

In the present work a Monte Carlo approach of a stochastic model was used, simulating hydro-geological and epistemic uncertainties in groundwater pollution transport and detection by monitoring wells in order to study how the number of point sources, the size of the controlled area (e.g. a landfill facility) and the quantity of an instantaneous injected pollution affect plume detection. In each examined parameter it was considered that the rest of the factors affecting P_d estimation remain constant. Simulations were performed in the context of uncertainty factors deriving from the environment itself, reflected onto hydraulic conductivity K parameter and the lack of information about the initial conditions of a leak.

It was numerically verified in the cases examined in this work that as the size of the control area became larger and the number of wells remained constant, detection probability P_d decreased. In addition, the fewer the monitoring wells, the smaller the detection

probability. However, when the control area became smaller, then P_d increased, until it reached the maximum value of 100% detection. Consequently, if the width of a control area was to be increased, so should the number of monitoring wells, maintaining at least the same density as that of the initial case.

In all simulated cases, the general observation is that when two equivalent groundwater pollution sources are present, then their detection is easier as the average P_d increase is among 35% - 55%, except for the cases where detection was already 100% successful due to the presence of a dense monitoring network (20 wells). The same trend in P_d increase relative to a single source case is observed, regardless of the sampling frequency. More frequent aquifer sampling does not alter monitoring efficiency in terms of the presence of more pollution sources.

Simulation results indicated that when the initial pollution concentration was below 1,000 mgr/lt, its detection was very hard, regardless of the aquifer's hydro-geological parameters. The efficiency of low to medium dispersion aquifers monitoring wells reaches a maximum, which is independent of the initial mass of pollution intruding into the aquifer. The turning point of the initial pollution concentration was C = 8,000mgr/lt, which was the value where P_d reached a plateau. It has been observed, too, that only in high dispersion environment, where $a_T = 0.50m$, increase of pollution reflects higher detection probability. In every case, lower concentrations were harder to detect, dictating that in order for a monitoring setting to be sensitive, at least at simulation level, even in small amounts of pollution at least 12 wells must be used.

CHAPTER 6

Modeling of aquifer pollution detection probability triggered by precipitation

6.1 Introduction

Groundwater pollution is mainly caused by the presence of chemical compounds in concentrations for which, according to National and International regulations, water is considered harmful and unusable not only for human and animal consumption but even for irrigating purposes. Most of these substances, produced during various human activities, should be treated and disposed appropriately as soon as they are considered wastes by the end user, so as not to pose a threat on the environment and to public health.

There are some occasions, though, where these chemicals intrude into the aquifer accidentally, by reckless handling or even due to the lack of any administration provision. Cracks on underground petroleum tanks, chemical transportation accidents and uncontrolled waste disposal are some possible pollution sources. The current legislation system states that the polluter, whether proven to have polluted on purpose or by accident, pays not only for the damage caused to other properties but for the restoration of the environmental damage too. However, in the case of water pollution there is an accountable loss on its value, as *Paleologos* (2008) showed, through water's quality degradation after restoration, because Water Regulations state that initially potable water must be restored to that condition where it can be used at least for irrigation.

Aquifer pollution can be the result of an undiscovered condition, where infrastructure damage or failure may lead to uncontrolled liquid wastes disposal, first into the vadose zone and finally into the groundwater flow. Landfills may be an example of the situation described,

as leachate concentrate at the lower level of the installation are pumped out using perforated tubing systems. There are cases, however, where leachate penetrate protective liner and clay barriers, usually through small cracks and holes (Laine et al., 1997; Collucci et al., 1999; Tatsi & Zouboulis, 2002; El-Zein, 2008), causing groundwater pollution. It is speculated that in the United States alone a 40% of active sanitary landfills suffer from leachate leakage problems (Paleologos, 2008). This is the main reason for installing downstream aquifer pollution monitoring wells, so that a case of leachate leak into groundwater can be detected and appropriate countermeasures can be taken.

Groundwater quality monitoring wells are also used at industrial sites (Bierkens, 2006), as it is possible for certain quantities of dangerous chemical compounds to escape and contaminate the aquifer due to waste handling or storage failure. The main objective is to detect pollution originating from the facility, at some distance from it, so that it can be cleaned up or controlled before contaminated groundwater reaches areas outside the site. In this case a bigger number of wells can be utilized, according to the magnitude of the facility and the danger that its waste may pose to public health.

Moreover, illegally dumped municipal or industrial wastes are another uncontrolled source of groundwater pollution. Waste may initially contain various dangerous chemical compounds, which may pose serious threats to local communities and ecosystems if they escape into the environment and especially into groundwater. Long term air exposure of organic matter contained into waste, as well as biological decay processes may cause toxic substances production (Fatta et al., 1999). These dangerous substances dissolve into, mix with or chemically react with precipitation water during raining periods, producing solutes which flow and finally infiltrate groundwater, where pollution is uncontrollably transported by the flow.

Waste dumps can be considered as point pollution sources triggered each time by precipitation to deliver pollutants into the aquifer. Although it is natural to assume that the chemical footprint of pollutants will not possibly be the same as time passes (Kulikowska & Klimiuk, 2008; Renou et al., 2008), that organic matter decomposes or other chemical processes take place, that concentrations will not remain constant as rainfall varies and that the quantity of the pollutant is not the same, precipitation is a mean that may cause or amplify the effects of a point pollution source. Pollutants mass transfer takes place by dissolving them into precipitation water, thus increasing their mobility, leading in protective barrier overflow or rapid infiltration into groundwater. Leachate flow rate from sanitary landfill sites varies both from site to site and seasonally at each site. In relatively warm climates the increase in leachate production after precipitation is quite rapid (Shinozuka & Jan, 1972). At least in one case it has been documented that, during a raining incident, groundwater's pollutant

concentrations (COD, Cl, NH_{40}) originating from a small liner crack in the landfill increased temporarily and repeatedly according to the local precipitation event (Collucci et al., 1999) (Figure 6.1). As a first approximation, the quantity of leachate produced may be regarded as proportional to the volume of water percolating through waste (Shinozuka & Jan, 1972).

Figure 6.1: Plot of Groundwater Monitoring Data Indicating High COD and Cl Levels after a landfill leak case repair has taken place (vertical line), where the spikes are due to rain episodes on the area (Collucci et al., 1999).

In the real world however, there are many different ways for a pollution to happen. It may be spotted in a very small region or it may cover a large area. It may take place in a short period of time, as it usually happens during an accident, or it may be continuous if there is a permanent undiscovered leak, for example in a hydrocarbon pipeline transfer system. Moreover, it may be triggered by some other random event, such as rapture in a high pressure fuel transfer pipeline system or a precipitation event which augments solute infiltration into an aquifer. This means that not only does the event of pollution affect the way groundwater is contaminated, but also spatial and time characteristics contribute to the evolution and consequences of this event.

Considering a different way of a groundwater pollution incident in the context of triggering it according to local precipitation events, in the present study we have assumed that there is a point pollution source inside a controlled area of specific dimensions which injects a quantity of pollutant inside the aquifer, each time rain occurs. It can be assumed that this is a municipal waste sanitary landfill cell where a local liner failure has occurred or an area where uncontrolled industrial waste dumping has taken place and a local leak has commenced, causing pollutant exposure, flow and concentration at the lowest point of the area. Furthermore, it has now been recognized that the dominant mechanism of contaminant migration may be diffusion through the protective liner and not advection (Tompson et al.,

1989; Allen, 2001; El-Zein, 2008). The pollutant has been assumed to dissolve into rainwater percolating through wastes, concentrating at the bottom of the facility, where the developed hydraulic head causes pollutant intrusion into groundwater. The quantity of the pollutant that infiltrates is considered linearly analogous to the recorded daily average precipitation height, for a specific location. While there are computational models to simulate or to forecast precipitation intensity as well as time events (Moustris et al., 2011), a 30-year time series rain data from Macedonia Airport in Thessaloniki was used in order to save computational time. The area, which in our study was simulated in two dimensions (2-D), is downstream controlled by a linearly arranged monitoring network, consisting of a different number of drilling wells arrangements in each study case. The ability of the monitoring installation is evaluated through the probability of successful pollution detection, and its performance is evaluated in different hydro-geological environments.

The pulsing ejection of different quantities of pollution into groundwater during every time step, represents a different concept of time dependence between the time of ejection and the quantity that is ejected, as it is different from the instantaneous or the continuous cases with a steady inflow rate. While in the case of instantaneous ejection of pollution a certain number of particles enters the aquifer at the beginning of the simulation (Yenigül et al., 2005; Papapetridis & Paleologos, 2011a) or in the case of continuous pollution a certain number of particles is ejected during each time step (Yenigul et al., 2006), in the case of pulsing pollution a relation between a natural phenomenon that augments pollution transportation and pollution quantity is established.

6.2 Model Description

Heterogeneous aquifer structural properties, such as size, position and amount of clay lenses, sand and gravel layers, as well as the resulting distribution of hydraulic conductivity, porosity and hydro-geochemical parameters significantly control groundwater flow and spread of solutes (Dagan, 1989; Ptak et al., 2004). In order to study the effects of pollution transport and dispersion into a heterogeneous subsurface environment in relation to its detection probability P_d by a monitoring wells network, the Monte Carlo numerical framework was used. Uncertainty due to contaminant subsurface heterogeneity is reflected by the spatial variability of hydraulic conductivity. Hence, hydraulic conductivity is treated as a random space function. The natural logarithm of the isotropic hydraulic conductivity [Y=ln(K)] is modeled as a stationary Gaussian field with a geometric mean value of 2.30m/day. Variance ranged among 0.0 (homogeneous aquifer), 1.0 (medium heterogeneous aquifer) and 2.0 (strongly heterogeneous aquifer) and the isotropic covariance of *Y* is chosen to be of exponential form with correlation length $\lambda = 20m$.

In each different hydro-geological case that was examined, the Monte Carlo scheme consisted of 2,000 simulations. Heterogeneous aquifers in the model were simulated using the 2-D Spectral Turning Bands method (STUBA) (Mantoglou & Wilson, 1982; Ababou et al., 1989; Tompson & Gelhar, 1990a; McLaughlin et al., 1993; Emery, 2008; Paleologos & Sarris, 2011). The aquifer is assumed to be confined, with a given hydraulic head at its left and right boundaries, resulting in a macroscopically constant hydraulic gradient of 0.001m. Source location uncertainty was envisaged considering equally probable different points of pollution origin during each different simulation which belongs inside the control area.

Contaminant advection and dispersion were simulated using the Random Walk Tracking Particle approach, as described by *Tompson et al.* (1987b) and comprehensively reviewed by *Salomon et al.* (2006b). This choice is based on the algorithm's ease of implementation, its mass conservative nature and its computational effort economy, since it is independent of the control area we want to simulate. In each of the 2,000 Monte Carlo heterogeneous field realizations, pollution was simulated by a certain number of equal mass particles, which were ejected into the aquifer. In our study we considered that the number of particles entering the streamline flow of groundwater was related linearly with the total daily precipitation height at the simulation region. Precipitation events triggered pollution infiltration, resulting in a pulsing ejection, each time with different quantities, of pollution. In fact, precipitation increased pollution mobility, either by dissolving pollutants into the water or by simply mixing them with it and, in some cases, where chemical processes occurred, caused the increase of the pollutant quantity. Either way, this ended up with larger quantities of pollution that were transported along with rainwater through the vadose zone into the aquifer.

In this study we assumed that pollution enters directly into groundwater flow, neglecting transportation effects into the unsaturated zone. Even if the thickness of the vadose zone significantly affects the leakage of an installation's protective barrier, resulting in a substantial overestimation up to a factor of about 3.5 (Çelik et al., 2009), this holds true if the aquifer is very near at the source of pollution or if a fingering effect favors a specific direct path of pollution propagation into groundwater flow (Selker et al., 1996). In addition, the coupling of precipitation and pollution events focuses only on the pollution quantity infiltrated into the flow, considering mainly a mass diffusion transfer mechanism (Tsanis, 2006), and not on the recharge of the aquifer with polluted water due to precipitation. As a result, a steady state flow of groundwater without a free surface recharge is assumed. Even if aquifer recharge is not taken in mind, meaning that flow equation still satisfies Laplace

equation (Harr, 1962; Bear & Buchlin, 1987), this computational simplification isolates and excels the effects on pollution dispersion and detection of a pulsing pollution source, which is related with an actual phenomenon.

It was considered that if during a simulation time step, equal to dt = 1 day, a precipitation event took place, then a certain quantity of pollution, proportional to the total rain height, would have infiltrated the aquifer and diffused into the flow, without disturbing groundwater flow. A proportionality factor between the total daily precipitation height and pollution mass infiltration was set in, so as to provide a detectable concentration of pollution at the point (cell) and time of ejection. Considering that the lowest recorded precipitation height data was 1mm, it was assumed that this quantity would provide detectable pollution. Threshold detection limit was set at $C_{Th} = 14$ mgr/lt, which indicates the presence of chemicals into groundwater in such a degree that remediation actions should take place. This level of pollution is typical for chemicals such as nitrate, cyclohexanon and diethyneglycol (Yenigül et al., 2005). The threshold detection limit of pollution concentration in a 2×2 m cell (the depth is considered to be equal to 1m for unit consistency) is produced by 28 particles, which provide enough resolution to describe the plume's transportation and detection by monitoring wells (Yenigül et al., 2005; Papapetridis & Paleologos, 2010). Given that concentration in a cell equals C = M/(nV), where n = 0.25 is the effective porosity constant during all simulations, the pollution mass representing the detectable limit equals 14,000mgr or 500mgr per particle.

A thirty-year time series of daily average precipitation data from Macedonia airport in Thessaloniki was used. A total precipitation height for this period of time was recorded equal to 13,291.06mm. Considering that a 1mm precipitation height ejected pollution into the aquifer is represented by 28 particles, the total number of particles utilized to simulate the pollutant's advection and dispersion into the subsurface environment, at the end of the 30-year simulation, was 372,150. During each simulation time step, total precipitation height for that day was taken into account and linearly transformed into a number of pollutant particles. Then, this number of particles was added, through the same point source, to the total number of particles that were already transported into the aquifer. As a result of this kind of pollution inflow, a continuous plume of pollution was formed. If its concentration was larger than the threshold limit at the time of sampling at the grid cells where monitoring wells were located, then a successful detection was recorded. In every simulated case studied, detection time was recorded and the total contaminated area was calculated. In order for a 2×2 m cell to be considered polluted, concentration must be at least equal to C_{Th} , meaning that at least 28 particles must exist inside the grid's cell at the moment of sampling. At the end of the 2,000

simulations the average time of detection and the average contaminated area are calculated if daily (ED) sampling is assumed. Moreover, the average contaminated area is also calculated assuming different sampling frequencies, namely monthly (1 M), bimonthly (2 M), quarterly (3 M), every 4 months, biannual (6 M) and annual (A). The polluted area was additionally calculated 3 months, 6 months, 1 year, 2 years and 3 years after successful detection in order to evaluate the remedial action delay time (RADTi) as this was introduced by *Papapetridis and Paleologos* (2011a).

A computational model developed by *Papapetridis and Paleologos* (2011b) was used in order to perform the Monte Carlo simulations. The model was initially developed in order to simulate an instantaneous case of heterogeneous aquifer pollution. The practical meaning of instantaneous pollution is that the event itself takes place in a very short period of time in relation to the 1-day time step which the simulation uses. Consequently, a pressurized tank or a pipe system that is suddenly relieved due to some localized structural failure, an industrial accident or a landfill leak may potentially produce such kind of pollution. In order for the model to facilitate multiple pollution injections into the aquifer originating from the same point, during the 30-year monitoring period, certain modifications were made. Even if in the scenario of pulsing pollution the computational time needed was significantly increased, a contemporary workstation was able to provide results in a reasonable time span.

Five different cases of transverse dispersion coefficients, α_T , were investigated. These values varied among $\alpha_T = 0.001$, 0.01, 0.05, 0.10, and 0.50m, corresponding to values observed in field experiments (Gelhar, 1986) which describe soils of low, medium and high dispersion. In each simulation, dispersion was considered to remain constant and the longitudinal dispersion coefficient, α_L , was calculated by the relation $a_L = 0.10a_T$ (Spitz & Moreno, 1996).

The simulated region was 1,000 m long, 400 m wide and, assuming a discretization of the area in cells of $dx \cdot dy = 2 \times 2 \text{ m}^2$, a 500×200 grid was created. A rectangular area simulating a contaminant potential source area (CPSA), for example a section of a landfill, or the area of a waste storage facility, was situated between x – coordinates 10m and 60m, and y – coordinates of 140m and 260m. At a random point within these boundaries a contamination event was initiated, which polluted the aquifer every time a precipitation event occurred.

The contaminant mass was assumed conservative and fully water soluble. The uncertainty, regarding the potential location within a cell of a landfill where a leak might have developed, stems from the lack of information on potential failure locations at a landfill's bottom liner. In case pollution from a different facility is assumed, such as from an industrial

plant or a military facility, uncertainty about the contamination's point source may stem from our inability to detect leaks from waste carrying pipelines, underground storage areas of liquid waste, or even accidental spills during operations. In either case, it was assumed that any point within the rectangular CPSA there was an equally probable source of leakage, taking place once as a single failure event at zero time (when the simulation began) and resulting in an instantaneous ejection of contaminants into the aquifer. Monitoring wells were assumed to fully penetrate the aquifer, resulting in vertically-averaged concentration measurements. Eight linear configurations were examined, consisting of 1, 2, 3, 4, 6, 8, 12 and 20 wells, equally spaced from one another. Wells that were located at the ends of each arrangement were placed half the distance from the cell's top and bottom edges so that the efficiency of the monitoring system would be maximized (*Yenigül et al.*, 2005). Monitoring of the aquifer and plume evolution was simulated for a 30-year period.

6.3 Simulation Results

6.3.1 Number of Wells

Considering the number of wells of the monitoring and detection arrangement of the installation, simulation results showed that even one of the smallest monitoring networks, that of 4 wells, in case of a homogeneous medium dispersive field, is capable of providing a 100% successful detection of pollution (Figure 6.2a). Even in a highly heterogeneity field where $\sigma_{\log K}^2 = 2.0$ with as low dispersion as $a_T = 0.01m$, 4 wells will detect groundwater pollution half the time (Figure 6.2b). Comparing simulation results in relation to detection probability P_d between instantaneous pollution of the aquifer with a small quantity of pollution (1 kgr of a conservative pollutant, providing a 4,000mgr/lt initial concentration) and precipitation initiative pollution, for the latter it is clearly seen that P_d rapidly increases as the number of monitoring wells is increased, reaching a maximum of 100% detection when more than 3 wells are utilized, while for the former P_d presents an almost linear increment, succeeding maximum detection only with a dense monitoring arrangement. In case of a strongly heterogeneous field, P_d is always significantly less than the precipitation initiative case. In the precipitation initiative pollution case even a 3-well installation, which according to EU legislation is the minimum requirement for groundwater monitoring of an operational landfill, can detect aquifer pollution in more than 50%, depending on the field's hydrogeological properties.

6.3.2 Field Heterogeneity

Subsurface heterogeneity, which in this study is reflected by the spatial variability of the hydraulic conductivity, has been examined for three different cases. When a small number of wells is used, as shown in Figure 6.3 where 3 wells are considered, at very low dispersion fields, P_d decreases by 23% when heterogeneity increases from 0.0 to 2.0. At low dispersion environment a 27% decrease is observed between homogeneous and strongly heterogeneous cases. At higher dispersion value, P_d remains practically constant as heterogeneity increases.

Figure 6.3: Groundwater pollution detection probability P_d of a 3-well arrangement in relation to the field's heterogeneity as this is reflected through variance of the natural logarithm of hydraulic conductivity $(\sigma_{\ln K}^2)$. Dashed lines are the precipitation triggered pollution (Precip.) and solid lines are for instantaneous cases (Instant.).

Examining an arrangement consisting of 12 wells (Figure 6.4), it is seen more patently that, as dispersion is increased, the effect of heterogeneity increase on P_d is languished. More specifically, at a very low dispersion field, where the transverse dispersion coefficient equals $a_T = 0.001m$, there is a significant 33.5% dropdown at the P_d between the homogeneous and the strong heterogeneous cases, while at $a_T = 0.01m$ the dropdown is 15%. At greater dispersion values, it is observed at the simulation results that there is no difference in detection probability, as it is 100% for every heterogeneous case that has been studied.

If an instantaneous pollution case is considered (Figure 6.4), then it is noted that P_d is decreased as heterogeneity is increased. At transverse dispersion coefficient $a_T = 0.001m$ a 29% decrease is observed, while at $a_T = 0.01m$ and at $a_T = 0.1m$ the decrease is 31% and 19% decrease respectively. Similarly, as the dispersion is increased, the effect of field heterogeneity on detection is lessened. This pattern holds true in both simulation scenarios, either instantaneous or precipitation caused pollution is computationally examined.

Figure 6.4: Groundwater pollution detection probability P_d of a 12-well arrangement in relation to the field's heterogeneity as this is reflected through variance of the natural logarithm of hydraulic conductivity $(\sigma_{\ln K}^2)$. Dashed lines are the precipitation triggered pollution (Precip.) and solid lines are for instantaneous cases (Instant.).

Hydraulic conductivity variation highly affects pollution plume propagation into the aquifer, as several tracer field experiments have shown (Freyberg, 1986; LeBlanc et al., 1991; Boggs et al., 1992). A solute plume in a given realization can be pictured as diffusing slowly, owing to local scale dispersion, and winding like a meandering stream because of large-scale regional heterogeneity (Dagan, 1984) (Figure 6.5). This solute behavior sometimes tends to separate a plume's formation into more than one branches, resulting in regions of smaller

pollutant concentration and flow paths that bypass the monitoring arrangements. While in the case of instantaneous pollution fast deformation of pollution plume due to hydraulic conductivity variations may lead to areas of lower concentration than that of the detection threshold limit, which will result into a no detection situation, in the case of precipitation initiated pollution, because the pollutant keeps being added into the flow, it is more logical to assume that detectable preferential flow paths are formed through highly hydraulic conductivity paths, allowing for a significant portion of plume to escape detection (Figure 6.5).

However, as dispersion is increased, pollution dilutes faster and in a greater area (Figure 6.5). Considering the fact that a variable amount of pollutant mass is added throughout time, greater areal coverage is possible where concentration is above a detectable limit. This means that dilution of the plume below the detection limit, due to deformation along the propagation path, is not observed. The effect of plume deformation along with higher dispersion alleviates the influence of heterogeneity on P_d . The fact that the average P_d decrease is 16% in case of 12 wells, when at the same configuration for the instantaneous case the average decrease is 26%, indicates that preferential flow is possibly the main mechanism responsible for P_d decrease as the field gets more heterogeneous and dilution of the plume is hindered by pollutant injection

6.3.3 Dispersion

For a given structure of the simulated geological field, subsurface heterogeneity and dispersion are the main factors that directly determine the form that the developed contaminant plume will have. In the case of an instantaneous pollution event the longitudinal dispersion causes the elongation of pollution in the direction of movement of groundwater flow and is proportional to the total underground travel time of the pollutant and its speed in the subsoil. On the other hand, the transverse dispersion causes the widening of the plume and also depends on the total time running and the flow rate. This means that the farther a plume travels, the more it spreads and dilutes into the ground, rendering it non-detectable (Papapetridis & Paleologos, 2010). This behavior is reflected by the fact that as dispersion is increased (in this study all comparisons refer to different transverse dispersion coefficients) among $a_T = 0.05 - 0.10m$, as demonstrated in Figure 6.6, depending on heterogeneity and assuming all other parameters remain the same, detection probability of groundwater pollution P_d initially increases to a maximum, because of the plume dispersion leading to a larger area coverage where pollutant concentration is bigger than the threshold limit, resulting in more detectable cases. However, as dispersion continues to increase, it is observed that P_d

Figure 6.5 : Pollution dispersion and deformation as it is transported during a 30-year time span into aquifers, where on the vertical axis heterogeneity increases and on the horizontal axis transverse dispersion coefficient increases.

decreases again, reaching as low as 40% of the maximum value achieved (Figure 6.6). This happens because pollution dissolves so fast into groundwater that the concentration drops

rapidly below the detectable limit, causing the plume's detection escape. This behavior is the same for every well configuration.

On the other hand, examining the results of precipitation related pollution, we notice that detection probability P_d tends to increase as the field's dispersion is increased. In case of a 3-well installation (Figure 6.6) the average difference between $a_T = 0.001m$ and $a_T = 0.50m$ is 78%, in all three cases of heterogeneity studied. It is noteworthy that even this configuration, which constitutes the least demand of monitoring for a sanitary landfill, may succeed detection in every case when dispersion is equal to or higher than $a_T = 0.50m$, while in the case of medium heterogeneity a successful detection of over 50% can be achieved in as low a dispersion as $a_T = 0.01m$. Of course, these results refer to the specific computational model and all of its initial assumptions made during the Monte Carlo simulations. Nevertheless, a behavior of the monitoring system is indicated, even if different assumptions may lead to different numbers.

It can also be seen that there is a small difference in P_d as field heterogeneity is increased. In homogeneous and low heterogeneity cases P_d at $a_T = 0.001m$ is 24%, while in the case of $\sigma_{\ln K}^2 = 2.0$ the $P_d = 18.6\%$. P_d increases almost linearly and when dispersion gets larger than $a_T = 0.10m$ heterogeneity does not seem to affect the effectiveness of the monitoring network.

Figure 6.6: P_d change of a 3-well arrangement, in relation with transverse dispersion coefficient α_T increase, in three different heterogeneity cases, as well as comparison between precipitation related pollution cases (dashed lines) and instantaneous pollution cases (solid lines)

This behavior is mainly the result of the way heterogeneity and dispersion of the field affect the geometry of the plume and the areal coverage as plume is transported in groundwater. As it was explained in the previous paragraph, the plume's deformation due to heterogeneity causes a P_d decrease as $\sigma_{\ln K}^2$ is increased. This happens until a specific point of dispersion, as further dispersion increase results in no heterogeneity effect on the detection outcome (Figure 6.5). Contrary to instantaneous pollution, the fact that pollutant mass is constantly added to the aquifer, driven by precipitation through a mass diffusion mechanism, provides enough pollutant to larger portions of the plume's area, resulting in possible detection. This means that when pollution is added, thus preventing the plume's dissolution into the aquifer below a detectable limit, dispersion is the main factor that affects its detectability.

6.3.4 Sampling Frequency

Sampling frequency is an important factor that may significantly affect the effectiveness of a monitoring installation. For example, according to European Council Directive 1999/31/EC of 26 April 1999 on the landfill of waste it is stated that "The frequency of (groundwater) sampling could be adapted on the basis of the morphology of the landfill waste. This has to be specified in the permit." In addition, a landfill operator is obligat to report all monitoring results to the competent authorities once a year. This obligation poses a maximum boundary on sampling frequency. Moreover, it is also stated that "the frequency must be based on possibility for remedial actions between two samplings if a trigger is reached". This dictates a minimum sampling strategy on groundwater sampling frequency, assuming that there is adequate knowledge of the hydro-geological environment, of the chemical footprint for all possible pollutants and, of course, of the fact that remedial actions should commence the moment the trigger event has occurred, which could be the detection of groundwater pollution by a monitoring well. In most of the cases, groundwater sampling frequency is determined by partial knowledge of the velocity of groundwater flow and the cost of the applied sampling policy.

Detection probability dependence on sampling frequency was investigated by *Papapetridis and Paleologos* (2011a, 2011b) in the case of an instantaneous pollution originating from a landfil. In that study it was assumed that the starting point of a leak comes from a single point in the control area and that all of the leachate's quantity enters instantly into the aquifer's field of flow. This type of failure is very difficult to detect, since the trace of the source is very small, as opposed to massive, multiple or continues leaks, where the trace is often large enough to be directly detected (Papapetridis & Paleologos, 2010). Seven different sampling frequencies were applied, which assumed sampling from every monitoring well of

the installation at the same time daily (D), monthly (1 M), bimonthly (2 M), quarterly (3 M), every four months (4 M), biannually (6 M) and annually (A).

Figure 6.7: Percentage change of P_d as sampling frequency changes for a 4-well monitoring installation among daily (D), monthly (1 M), bimonthly (2 M), quarterly (3 M), every 4 months (4 M), biannual (6 M) and annual (A) sampling. The first column of the graphs reflects the results of an instantaneous case of pollution and the second column reflects a precipitation event related pollution, while horizontally heterogeneity changes, as is reflected through the variance of the *lnK*.

Simulation results by *Papapetridis and Paleologos* (2011b) showed that in case of instantaneous release, the effect of sampling frequency on detection probability is more pronounced when dispersion of pollution into the aquifer is increased. In the case of a 4-well installation (first column in Figure 6.7) it can be observed that when a homogeneous field is considered the decrease of detection probability P_d is almost 100%, which means that the monitoring installation is actually cancelled, as it is entirely ineffective. As heterogeneity is increased, from $\sigma_{\ln K}^2 = 0.0$ to $\sigma_{\ln K}^2 = 2.0$, the average improvement of P_d regarding a 4-well network, between biannual (6 M) and daily (D) sampling, excluding the case of high

dispersion $(a_T = 0.50m)$, is 17% while the same gain of P_d between annual (A) and sampling daily (D) is 46%. If we consider the improvement between biannual (6 M) or annual (A) and monthly (1 M) sampling, then the P_d gain is 12% and 40% respectively.

It can be seen by simulation results that there is a significant difference when sampling once a year and once every 6 months. This difference becomes even bigger if a high dispersion geological environment is considered. As a general rule, it appears that under all conditions at least biannual sampling should occur at a monitoring system (Papapetridis & Paleologos, 2011b), which complies with EU Directive in case of a waste sanitary landfill. If one wants higher detection probability, then monthly sampling appears to be the optimum choice for most well arrangements, considering both the effort involved if one were to proceed with a much more intense sampling and the improvements on detection attained at this level. It is noteworthy that in heterogeneous aquifers a large number of monitoring wells (a setting larger than 8 wells) does not perform much better in terms of detection if sampled infrequently (for example, once a year) than arrangements having a lower number of wells but are sampled more regularly.

Detection probability P_d in relation to sampling frequency in case of a pulsing pollution triggered by a precipitation event presents a totally different behavior, as it is depicted in the second column of Figure 6.7, where P_d changes in relation to applicable sampling frequency. The striking observation is that pollution dispersion amplifies the effectiveness of the monitoring wells arrangement. Even in the case of 4 wells it can be seen that despite the field's heterogeneity a 100% detection is achieved at every sampling frequency applied, when transverse dispersion is as high as $a_T = 0.50m$. Even in lower dispersion fields it can be seen that there is practically no gain in detection if groundwater is sampled more frequently than once every three months, as the average gain in P_d is less than 3%. When sampling is performed biannually then the average improvement in relation to monthly sampling, regardless of the geological heterogeneity, is 5% and if we consider annual sampling then the improvement to monthly sampling is 8%. It can also be noted that as dispersion increases the importance of sampling frequency is diminished, which is the opposite in the case of an instantaneous ejection of pollution into the aquifer.

The fact that pollution infiltrates the aquifer due to precipitation triggered events and that groundwater is recharged with pollutant mass result in retaining a plume's pollutant concentration above a detectable limit in a larger area. In heterogeneous fields, as field experiments have shown (Boggs et al., 1992), pollution is transported in paths where hydraulic conductivity is higher in relation to the adjacent areas. As dispersion causes greater

areal coverage by the plume, which in addition maintains detectable concentration values, detection is easier even if sampling is scarcer, as the paths of the plume remain basically the same, depending on hydraulic conductivity values.

It can be stated that in order for the operator of a controlled facility to succeed sufficient levels of possible groundwater pollution detection, they must focus on the problems that may come up from an instantaneous ejection rather than from a precipitation related one. It could safely be assumed that in the case of a continuous leak of pollutant into the aquifer the same results concerning sampling frequency policy would apply.

6.3.5 Time of detection and contaminated area

The average time needed until pollution is actually discovered from the monitoring was studied and compared to cases of instantaneous pollution. Assuming that $\langle T_{obs} \rangle$ is the average number of days over 2,000 Monte Carlo simulations, in order for observation of contamination to be achieved at the monitoring points, based on a specific sampling schedule, and $\langle T_{ar} \rangle$ being the average time for the pollution to arrive at the detection network , then in Figure 6.8 the ratio of $\langle T_{obs} \rangle / \langle T_{ar} \rangle$ is plotted on the y-axis in relation to sampling frequency. Six different diagrams depict how time ratio changes for each three studied heterogeneities $\sigma_{\ln K}^2$ and two cases of transverse dispersion a_T , where the solid line describes the precipitation coupled pollution (PCP) events and the dashed line the instantaneous one (IP). A daily sampling with a 1-day numerical time step gives a ratio equal to one for all hydro-geological cases.

Diagrams depict, once more, that dispersion is the main contributing factor which influences the average detection time of groundwater pollution. The same behavior is observed in both cases of pollution origination, precipitation event started or instantaneous. In the case of a low dispersion environment, where $a_T = 0.01m$ or less (Figure 6.8, first column), $\langle T_{obs} \rangle / \langle T_{ar} \rangle$ ratio does not practically change when a homogeneous field is considered, while in the case of a heterogeneity field there is an average 10% increase in detection time ratio between daily and annual sampling, independently from the magnitude of heterogeneity, when pollution is coupled with precipitation, while in the case of instantaneous pollution the same difference is 8%. Practically, it can be said that there is no difference between instantaneous and pulsing pollution when the transverse dispersion coefficient is as low as $a_T = 0.05m$ or lower.

In cases of higher values of dispersion where $a_T = 0.1m$ or more (Figure 6.8, second column), $\langle T_{obs} \rangle / \langle T_{ar} \rangle$ ratio actually increases as heterogeneity is increased. Pollution

dispersion functions as a background field attribute, which augments the influence of geological heterogeneity on the average time needed in order for pollution to be detected. It can be seen that in the case of PCP, when hydraulic conductivity variation is $\sigma_{\ln K}^2 = 1.0$, then the $< T_{obs} > / < T_{ar} >$ ratio changes 15.5% between the monthly and bi-annual sampling and 22% between the monthly and annual sampling frequency, while for $\sigma_{\ln K}^2 = 2.0$ the differences are 11% and 27% respectively. The same trend is observed in the cases of IP, but the time ratio difference in the case of $\sigma_{ln\kappa}^2 = 1.0$ is 7% between the monthly and bi-annual sampling and 13% between the monthly and annual sampling frequency. In the case of $\sigma_{\ln K}^2 = 2.0$ the difference is 5% and 18% respectively. Either way, heterogeneity increase in a high dispersion geological environment causes delayed pollution detection by the same monitoring wells network. As heterogeneity increases, differences in the average detection time between different sampling frequencies tend to decrease when sampling is performed at least twice a year or more. However, when sampling is performed once a year and heterogeneity increases, then the average needed detection time is increased, dictating that pollution is transported and dispersed for more time into the aquifer in order for detection to be accomplished.

It is also observed that when $\sigma_{\ln K}^2 = 2.0$, the average change of the time ratio $\langle T_{obs} \rangle / \langle T_{ar} \rangle$ between bimonthly and every 4 months sampling frequency is less than 4%, while in the case of IP there is no practical difference even when the aquifer is sampled once every 4 months. In the corresponding diagram (Figure 6.8, $\sigma_{\ln K}^2 = 2.0$, $a_T = 0.05m$) $\langle T_{obs} \rangle / \langle T_{ar} \rangle$ drops below one, meaning that groundwater detection is accomplished 1% faster when sampling is performed fewer times a year than daily. This is artificial due to numerical approximations during computational procedure.

However, it is a fact that, as far as the presented simulation results are concerned, under the same hydro-geological parameters and adopting the same sampling frequency, IP event of groundwater pollution seems to be detected faster than the PCP. Moreover, it is noted that as heterogeneity increases the influence of different sampling intervals on detection time ratio $\langle T_{obs} \rangle / \langle T_{ar} \rangle$ is more pronounced between precipitation events coupled pollution and instantaneous cases, as the average difference between them for the same sampling frequency is 8% in case of $\sigma_{\ln \kappa}^2 = 1.0$ and 12% in case of $\sigma_{\ln \kappa}^2 = 2.0$. Aquifer pulsing pollution is detected later because more time is needed until the necessary pollutant mass accumulates into the aquifer, so that the plume's concentration exceeds concentration detection threshold limit. As heterogeneity is increased and plume is distorted and separated into smaller regions
(Figure 6.5), more mass diffusion is required to reach a detectable limit, meaning more precipitation events and, consequently, delayed pollution detection.

 $\underline{\alpha_{T}}=0.001m$

 $\alpha_{\rm T}=0.10{\rm m}$

Figure 6.8: Change of ratio between average time of pollution arrival on monitoring installation $(\langle T_{ar} \rangle)$ and time of actual pollution observation $(\langle T_{obs} \rangle)$ in relation to sampling frequency for a 3-well monitoring arrangement.

An immediate result of late detection is the fact that the polluted area is growing larger. Pollution dispersion is again the main mechanism that multiples the polluted area as this is increased. Figure 6.9 depicts the ratio of average polluted area $\langle A_{pol} \rangle$ when groundwater pollution is actually detected by an 8-well monitoring network, to the control area L in relation to the logarithm of transverse dispersion coefficient. The striking feature of the diagram (Figure 6.9) is that for dispersion values above $a_T = 0.10m$ the relative polluted area is almost 3 times bigger than when dispersion coefficient is $a_T = 0.10m$. This means that there is an upper limit beyond which the contaminated area increases very fast, making a possible remediation decision really expensive. It is noteworthy that this behavior is practically independent of the field's heterogeneity.

Figure 6.9: Change of ratio of the average polluted area $\langle A_{pol.} \rangle$ to the area L of the contaminant potential source area in relation to the logarithm of transverse dispersion coefficient a_{T} for three different cases of field heterogeneity.

Comparing average detection in relation to sampling frequency, we verified for the cases simulated that if sampling is performed at least twice a year in a low dispersion environment then average detection time is not practically affected. If again we assume that $\langle A_{ar} \rangle$ is the average polluted area as soon as the plume actually arrives at and is detected by the monitoring wells arrangement, it is noticed that at a low dispersion field the average polluted area ratio changes less than 20% if groundwater is sampled at least 3 times a year, despite heterogeneity. In a homogeneous field the average change in area ratio is 7% if the aquifer is sampled at least twice a year, while in heterogeneous cases the difference in ratio is 19% if $\sigma_{lnK}^2 = 1.0$ and 29% if $\sigma_{lnK}^2 = 2.0$ respectively. In case sampling policy dictates annual sampling, then in highly heterogeneous aquifers the average polluted area is increased by 75%. Consequently, it is noticed that even if there is a 10% increase at detection time at low dispersion fields, when sampled annually the polluted area is dramatically increased, creating this way an expensive remediation background.

Examining greater dispersion value where $a_T = 0.50m$, it can be seen that the effect of sampling frequency is more pronounced on $\langle A_{obs} \rangle / \langle A_{ar} \rangle$ ratio. There is an almost linear increase of the polluted area as sampling is performed more scarcely, until the biannual frequency is reached, where the contaminated area is two times larger than the one at the time of the plume's actual arrival at the monitoring installation. At the point where sampling is performed once a year, the contaminated area becomes 2.7 times larger than the $\langle A_{ar} \rangle$, considering the heterogeneous cases, and 3.5 at the homogeneous case. In heterogeneous cases the effect of groundwater sampling frequency is less than in the homogeneous one, something which is due to the fact that aquifer heterogeneity causes plume deformations leading to creation of multiple pollution branches that may be transported in different

directions from the main bulk of contamination and, in conjunction with high dispersion of multiple ejected pollutant, may provide larger detectable areas, easier to find even if sampling is performed annually.

Figure 6.10: Change of ratio between the average polluted area $\langle A_{obs} \rangle$ at the plume's actual detection by an 8-well monitoring arrangement and the average polluted area $\langle A_{obs} \rangle$ when the plume is actually observed upon its arrival at the monitoring installation in relation to sampling frequency.

6.3.6 Remediation delay

Papapetridis and Paleologos (2011a) defined a corrected risk R^{cor} that accounts for the remedial action delay time (RADTi) as follows:

$$R^{cor} = P_d^{cor}C_d + P_f^{cor}C_f$$
(6.1)

where

$$P_d^{cor} = P_d \left(\frac{A_t}{A_{t+dt}}\right) \tag{6.2}$$

and

$$P_f^{cor} = 1 - P_d^{cor} \tag{6.3}$$

The corrected detection probability P_d^{cor} has been proposed as a measure of the economic impact of a remedial action delay, when the contaminated area has extended to A_{t+dt} , dictating a divergence from the maximum economic outcome that would take place at detection time, when the contaminated area is A_t . This procedure results in increasing the

failure probability and weighed cost of failure in the calculation of the risk factor as the time interval *dt* increases. Sensitivity analysis can then illustrate to decision-makers the influence of delays on the cost of remediation, as risk analysis can be sub-optimal when it has high costs, low probability of success, or inconclusive results (Lund, 2008). An extensive study in case of instantaneous aquifer pollution can be found in the work of *Papapetridis and Paleologos* (2012).

In order to study the effect of RADTi when PCP event takes place, the change of A_t/A_{t+dt} ratio, achieved by 6 monitoring wells, in relation to aquifer dispersion is demonstrated in Figure 6.11 (a)-(c), for each of the three heterogeneous cases that have been computationally studied. A common feature in all three diagrams is the fact that the more remediation actions are delayed, the more the contaminated area increases, causing the degradation of the initial probability's P_d value, according to Equation (6.2). In Figure 6.11(a) data referring to 24 and 36 months RADTi was not able to be calculated because the time of detection was already long enough. Therefore, adding more time to monitor the evolution of the plume overran the total 30-year simulation time.

In the only case heterogeneity does not practically affect P_d is when the aquifer is homogeneous and the dispersion of the pollution is as low as $a_T = 0.001m$. As heterogeneity increases, even at this low level of dispersion, the A_t/A_{t+dt} ratio decreases. In the case of a 6well configuration at $\sigma_{lnR}^2 = 2.0$ and RADTi equal to 12 months, the polluted area ratio is 0.86, altering the initial detection probability P_d from 49% to 42.5% and for RADTi equal to 36 months to 32%. When dispersion is increased beyond $a_T = 0.01m$, the effect of RADTi is more pronounced, degrading probability P_d to 10% of its initial value, irrespectively of the aquifer's heterogeneity.

In the case of landfill originating groundwater pollution 99/31/ EU Directive states that the sampling frequency must be based on possibility for remedial actions between two samplings if a trigger level is reached. This may be interpreted in RADTi occurring in less than the sampling frequency, which should be at least once a year for a landfill installation, according to the same Directive. But, if this is the case, then assuming an aquifer where transverse dispersion coefficient is at least $a_T = 0.10m$ and is sampled annually, the corrective detection probability will be 70% of its initial value of 96%, providing a P_d^{cor} equal to 67%. This is the detection probability that 3 monitoring wells may achieve if sampled annually, which is increased only by 10% when 2 wells are sampled daily.

(a)

(b)

(c)

Figure 6.11: A_t/A_{t+dt} versus $\log(\alpha_T)$ for 6 monitoring wells and different Remedial Action Delay Times (RADTi): (a) homogeneous, (b) heterogeneous soils with $\sigma_Y^2 = 1.0$ and (c) heterogeneous soils with $\sigma_Y^2 = 2.0$

Instantaneous pollution cases that have been simulated in the authors' previous works (Papapetridis & Paleologos, 2011a, 2011b, 2012), presented a similar to precipitation triggered pollution behavior. In former studies, though, it was considered that an area specified inside a grid cell was contaminated even if there was the smallest amount of pollution inside it, and not necessarily a detectable pollutant concentration above the threshold limit. This was assumed to demonstrate the immediate effect of RADTi, otherwise due to pollution dilution into the aquifer there would be a false increase of detection probability, originating by the fact that the contaminated area above the threshold limit would actually be diminished. However, the above hypothesis can stand true if the chemical footprint of the pollutant is of such nature that the overall quality degradation of groundwater renders it unusable for desired uses, such as potable water, even in small concentrations. So, even if there is a similarity in RADTi between instantaneous and precipitation related pollution cases, it is a fact that the absolute polluted area in the latter case is larger, rendering it more expensive in terms of remediation.

6.4 Conclusions

In this study groundwater pollution triggered by local precipitation events was investigated in relation to its detection probability by various linear arrangements of monitoring wells, and how this probability is affected by the number of wells, hydrogeological parameters, sampling frequency and remediation action delay time. Moreover, comparisons where made with instantaneous cases of groundwater pollution, assuming the same hydro-geological conditions.

It was shown in this set of simulations that detection probability of a monitoring arrangement increases faster in precipitation event related pollution than in instantaneous cases, as the number of wells increases. In fact, a small number of monitoring wells, even less than 6, may achieve a 100% detection, in case of a homogeneous and of a medium dispersion aquifer. Moreover, a 3-well installation can detect groundwater pollution more than 50% of the time, depending on the field's hydro-geological properties.

Dispersion and heterogeneity are the hydro-geological parameters that directly affect the efficiency of the monitoring network. Preferential flow due to heterogeneity deformation and scattering of the plume is rather the main mechanism responsible for P_d decrease as the field gets more heterogeneous, and dilution of plume is hindered by pollutant mass pulsing injection. In any heterogeneity case dispersion amplifies the effectiveness of the monitoring wells. In fact, detection probability augmentation is so strong that even 3 wells computationally succeed 100% detection in a very high dispersion aquifer, where $a_T = 0.50m$. On the contrary, at instantaneous pollution cases dispersion initially increases P_d , but after a maximum has been reached detection probability diminishes due to fast dilution of pollution.

In the case of precipitation event triggered heterogeneous aquifer pollution, sampling frequency practically does not seem to affect detection probability of the monitoring network. Even if sampling is performed annually the improvement of P_d in relation to monthly sampling is 8%, while the effort made is 12 times bigger. On the other side, if instantaneous pollution is assumed it appears that under all conditions at least biannual sampling is the optimum choice for most well arrangements. In order for sufficient levels of monitoring groundwater pollution to be achieved, one must focus on the problems arising from an instantaneous ejection rather than a precipitation related one.

The average detection time of groundwater pollution in the case of precipitation triggered events does not practically change as sampling frequency increases up to biannual sampling and the simulated aquifer presents as low a transverse dispersion as $a_T = 0.001m$. However, as dispersion increases to $a_T = 0.10m$ and, at the same, a heterogeneous aquifer of hydraulic conductivity variation $\sigma_{\ln K}^2 = 1.0$ is assumed, simulations showed that the ratio $\langle T_{obs} \rangle / \langle T_{ar} \rangle$ increases up to 22% between monthly and annual sampling. Either way, heterogeneity increase in a high dispersion geological environment causes delayed pollution detection by the same monitoring wells network. Results showed that as heterogeneity increases, differences in average detection time between different sampling frequencies tend to decrease when sampling is performed at least twice a year or more. Time ratio $\langle T_{obs} \rangle / \langle T_{ar} \rangle$ concerning detection of instantaneous pollution cases changes in relation to sampling frequency, similarly to precipitation triggered cases. However, when dispersion and heterogeneity are increased their effects are less acute when it comes to detection time.

Average polluted area ratio $\langle A_{obs} \rangle / \langle A_{ar} \rangle$ in a low dispersion environment changes less than 20% if groundwater is sampled at least 3 times a year, despite heterogeneity. However, if annual sampling is adapted, then in highly heterogeneous aquifers the average polluted area is increased by 75%. This means that even if there is a 10% increase at detection time at low dispersion fields, the polluted area is dramatically increased when sampled annually. When dispersion is $a_T = 0.50m$, it is seen that the effect of sampling frequency is more pronounced on $\langle A_{obs} \rangle / \langle A_{ar} \rangle$ ratio. The polluted area is almost linearly increased as sampling is performed more scarcely until the biannual frequency is reached, when the contaminated area is twice as large as the one at the time of the plume's actual arrival at the monitoring installation. When annual sampling is assumed, the contaminated area becomes 2.7 times larger than the $\langle A_{ar} \rangle$ in the heterogeneous cases and 3.5 in the homogeneous case.

In all simulations the main hydro-geological parameter was the field's dispersion, affecting detection probability, average detection time and the contaminated area, all in relation to sampling frequency. In conjunction with the fact that pollutant mass is constantly added when precipitation occurs, even in different quantities and in random time, depending on rain events, dispersion causes greater detectable areal coverage. Consequently, when it increases it creates a favorable background in terms of pollution detection and renders the effectiveness of monitoring wells arrangements tolerable in scarce sampling frequency, when it is performed at least twice a year.

On the other hand, when RADTi is increased, dispersion results on the detection probability corrective factor in Equation (2) are more pronounced. In a high dispersion aquifer P_d^{cor} rapidly deteriorates even if RADTi is 6 months or less. Heterogeneity seems to affect RADTi when dispersion is equal or less than $a_T = 0.01m$, causing less than 7% decrease at the initial detection probability in case of a 12-month delay and assuming a homogeneous aquifer. Similarly, when the hydraulic conductivity variance is $\sigma_{\ln K}^2 = 1.0$, the respective decrease is 13% and when $\sigma_{\ln K}^2 = 2.0$ the decrease is 23%.

In any case RADTi is essential in estimating the risk concerning the ability of a groundwater monitoring installation to detect pollution, as it is a hidden parameter that may give a very big offset in risk calculations. Even if, according to current legislation, remedial actions should take place as soon as a trigger event occurs, this is not always the case, as locating and controlling a groundwater source is usually a set of many actions, performed by different collaborating groups of people (installation operator, local contractors). This kind of collaborations, among people of different interests and disciplines, in conjunction with funding problems, may lead in longer RADTi and, consequently, in bigger and more complicated environmental issues.

CHAPTER 7

Conclusions

The objective of this research was to numerically investigate groundwater contamination detection probability achieved by a linear monitoring arrangement of wells and to provide a novel framework that modifies traditional risk analysis by supplying a corrected detection probability that accounts for delays in remedial actions. A stochastic two-dimensional model was developed that performed high resolution Monte Carlo simulations, coupling a finite difference flow model and a Random Walk Particle Tracking algorithm that simulated contamination plume advection and dispersion. Uncertainty stemming from the subsoil field itself was simulated with the Spectral Turning Bands method.

Pollution source was assumed to be a randomly selected point inside the controlled area boundaries where the pollution is considered to have started. Two major cases concerning duration of the pollution were examined. The instantaneous case, whose duration of pollution is less than the modeling time step Δt which was set equal to one day, and the precipitation triggered pollution, where it was assumed that each time rain occurred a quantity of pollution, proportional to the daily average precipitation height, injected into the aquifer. Conclusions are summarized at the next paragraphs.

7.1 Instantaneous groundwater pollution detection probability in heterogeneous aquifers

Pollution originated instantaneously from a random point source within a landfill facility. Different arrangements and distances of monitoring wells from a landfill were

considered, and the corresponding detection probabilities P_d and contaminated groundwater areas, at different time periods, were calculated.

It was observed that convergence of the probability of detection P_d to a constant value was attained, for all monitoring configurations, at about 3,000 Monte Carlo simulations. The number of tracking particles used to simulate contaminant transport had a strong influence on the values of P_d calculated through numerical experiments. For all monitoring arrangements convergence of the P_d to a stable value was attained at 8,000 tracking particles.

In all cases of hydro-geological heterogeneity and dispersion, the more wells utilized for detection purposes the greater the P_d . For a fixed heterogeneity level, for each specific arrangement of wells, the maximum detection probability increases, along with dispersion coefficient up to a certain value of α_T , and then decreases. For transverse dispersion greater than 0.2*m*, maximum detection is attained very close to the trailing edge of the landfill. As a general rule, the efficiency of contaminant detection from a specific well arrangement decreases as the variance of $\ln K$ increases.

The frequency of sampling is critical in heterogeneous aquifers of high dispersion. In generally, it appears that under all conditions at least biannual sampling should occur at a monitoring system. If one wants a higher detection probability, then sampling at a monthly frequency appears to be the optimum choice for most well arrangements, considering both the effort involved, if one were to proceed with a much more intense sampling, and the improvements on detection attained at this level. It is interesting to note that in heterogeneous aquifers if a large number of monitoring wells is sampled infrequently, they do not perform much better in terms of detection than arrangements having a lower number of wells but which are sampled more regularly.

Decision-making analysis that evaluates the economic worth of different arrangements of wells calculates remediation costs based on contaminated groundwater volumes that are estimated at the time of detection. In practice there is always a remedial action response delay and hence remedial costs surpass those calculated at detection time. To correct this situation an expression is proposed for a corrected risk factor R^{cor} that accounts for remedial action response delay,

$$R^{cor} = P_d^{cor} C_d + P_f^{cor} C_f$$
(6.4)

$$P_d^{cor} = P_d \left(\frac{A_t}{A_{t+dt}}\right), and P_f^{cor} = 1 - P_d^{cor}$$
(6.5)

 A_t corresponds to the contaminated area (volume) at detection time t, and A_{t+dt} is the contaminated area (volume) at a later time, due to delays in remediation procedures. Our approach can be viewed as a way to downgrade the importance of early detection, if not followed by quick remedial response, in risk analysis calculations. This expression estimates, for example, in a heterogeneous field where twelve monitoring wells operate and are sampled every day, that a remediation delay of 36 months almost doubles the failure cost which enters risk calculations.

7.2 Sampling frequency of groundwater monitoring system and remediation delay at contaminated sites

Using high-resolution numerical Monte Carlo two-dimensional simulations, the impact of sampling frequency on the probability of detecting groundwater contamination in various subsurface environments was investigated, as well as the effects that sampling schedules and remediation delays have on the growth of contaminated subsurface areas and remediation costs. In homogeneous media of low dispersion, a large number of wells provide such density of coverage of the area downstream a landfill that a plume cannot remain undetected, even with few observations. On the other hand, in homogeneous soils of high dispersion, irrespective of the density of the monitoring network, because contaminants disperse strongly and concentrations at the monitoring points drop below the threshold limits quickly, a rigorous sampling schedule must be followed in order to retain a network's performance.

A similar situation holds for heterogeneous soils of high dispersion, with the existence of low permeability zones appearing to ameliorate the dispersion effects, but not sufficiently enough in order to alter the conclusion about the criticality of the sampling schedule. The frequency of sampling is also of interest in order to minimize the time lag between the time that concentrations above a threshold limit first appear at monitoring locations and the time that these concentrations are observed through sampling. The objective, of course, is to delineate the extent of the contaminated area and to initiate remediation efforts as soon as possible. Analysis of the lag between the time that contaminants appeared at monitoring sites and the time they were observed led to the conclusion that, in terms of time delay, bimonthly sampling constitutes a safe strategy for a wide range of hydro-geological environments. In the case of aquifers that exhibit fast pathways of contaminant transport, through the existence of high permeability zones, further investigation is required. However, in terms of the growth of the contaminated are, with the exception of monthly sampling, all other less frequent schedules resulted in significant enlargement of plume areas, thus leading to more costly remediation. Moreover, it was demonstrated that remedial response delays in highly dispersive environments must be of the order of a few months if one does not wish the contaminated areas and remediation costs to grow significantly.

7.3 Parameters on stochastic simulation of contaminant detection probability

It was studied how the number of point sources, the size of the controlled area (e.g. a landfill facility) and the quantity of an instantaneous injected pollution affect plume detection of a monitoring well setting. In each examined parameter it was considered that the rest of the factors affecting estimation remain constant. Simulations were performed in the context of uncertainty factors deriving from the environment itself, reflected on the parameter of hydraulic conductivity and the lack of information about the initial conditions of a leak.

It was numerically verified, in the cases examined, that as the size of the control area becomes larger and the number of wells remains constant, then detection probability decreases. If the width of a control area is to be increased, so must the number of monitoring wells, maintaining at least the same density as in the initial size.

In all simulated cases, the general observation is that when two equivalent groundwater pollution sources are present their detection is easier. More often aquifer sampling does not alter monitoring efficiency in terms of the presence of more pollution sources.

Simulation results indicated that when the initial concentration of pollution is very low (below 1,000 mgr/lt) then its detection is very hard, regardless of the aquifer's hydrogeological parameters. The monitoring wells efficiency of low to medium dispersion aquifers reaches a maximum, which is independent of the initial mass of pollution intruding the aquifer. The turning point of initial pollution concentration is C = 8,000mgr/lt, which is the value where P_d reaches a plateau. In every case, lower concentrations were harder to detect, dictating that in order for a monitoring setting to be sensitive, at least at simulation level, even for small amounts of pollution at least 12 wells must be used.

7.4 Modeling of aquifer pollution detection probability triggered by precipitation

Groundwater pollution triggered by local precipitation events was investigated in relation to its detection probability by various linear arrangements of monitoring wells. Also,

the way this probability is affected by the number of wells, hydro-geological parameters, sampling frequency and remediation action delay time was examined. Moreover, comparisons where made with instantaneous cases of groundwater pollution, assuming the same hydro-geological conditions.

It was shown that detection probability of a monitoring arrangement increases faster in precipitation event related pollution than in instantaneous cases, as the number of wells increases. In fact, a small number of monitoring wells, even less than 6, may achieve a 100% detection, in the case of a homogeneous medium dispersion aquifer. Moreover, a 3-well installation can detect groundwater pollution more than 50% of the time, depending on the field's hydro-geological properties.

Dispersion and heterogeneity are the hydro-geological parameters that directly affect the efficiency of the monitoring network. Preferential flow due to heterogeneity deformation and scattering of the plume is possibly the main mechanism responsible for P_d decrease, as the field gets more heterogeneous and dilution of plume is hindered by pollutant mass pulsing injection. In any heterogeneity case, dispersion amplifies the effectiveness of the monitoring wells. On the contrary, at instantaneous pollution cases, dispersion initially increases P_d but, after a maximum has been reached, detection probability diminishes due to fast dilution of pollution.

In the case of precipitation event triggered heterogeneous aquifer pollution, sampling frequency practically does not seem to affect detection probability of the monitoring network. On the other hand, if instantaneous pollution is assumed, it appears that under all conditions at least biannual sampling should occur and, moreover, if one wants higher detection probability, monthly sampling is the optimum choice for most well arrangements. In order for sufficient levels of monitoring groundwater pollution to be achieved, one must focus on the problems arising from an instantaneous ejection rather than a precipitation related one.

The average detection time of groundwater pollution in the case of precipitation triggered events does not practically change as sampling frequency increases up to biannual sampling and the simulated aquifer presents very low transverse dispersion $(a_T = 0.001m)$. Heterogeneity increase in a high dispersion geological environment causes delayed pollution detection from the same monitoring wells network. Time ratio $\langle T_{obs} \rangle / \langle T_{ar} \rangle$ concerning detection of instantaneous pollution cases changes in relation to sampling frequency similar to those of precipitation triggered cases. However, when dispersion and heterogeneity are increased, their effects are less acute when it comes to detection time.

The average polluted area ratio $\langle A_{obs} \rangle / \langle A_{ar} \rangle$ increases as field dispersion increases. When dispersion is very high ($a_T = 0.50m$) the polluted area is almost linearly increased, as sampling is performed more scarcely until the biannual frequency is reached.

In all simulations the main hydro-geological parameter was the field's dispersion, affecting detection probability, average detection time and the contaminated area, all in relation to sampling frequency. In conjunction with the fact that pollutant mass is constantly added when precipitation occurs, even in different quantities and in random time, depending on rain events, dispersion causes greater detectable areal coverage. Consequently, when it increases it creates a favorable background in terms of pollution detection and renders the effectiveness of monitoring wells arrangements tolerable in scarce sampling frequency, when it is performed at least twice a year.

When RADTi is increased, dispersion results are more pronounced for the detection probability corrective factor. In a high dispersion aquifer P_d^{cor} rapidly deteriorates even if RADTi is 6 months or less. As heterogeneity increases, it seems that RADTi affects less P_d assuming the same pollution dispersion. In any case, RADTi is essential to estimate the risk concerning the ability of a groundwater monitoring installation to detect pollution, as it is a hidden parameter that may give a very big offset in risk calculations.

APPENDIX A

2-D Source Code

Source code for all cases that have been numerically simulated is provided. In Section 1 source code for the instantaneous case of pollution is provided. In Section 2 code modeling pollution related to precipitation events is provided. Because of the fact that subroutines that solve steady flow equations numerically and Spectral Turning Bands that produce random fields are common between them, they are referred at Section 3 and 4 respectively. It must be noted that Turning Bands algorithm in 2-D is different from that in 3-D. In order TUBA subroutine to run it needs a complementary file named "tuba211d.inc", which must be located in the folder where compilation is to take place. The listing for this file is:

In order a a 2-D model simulation top take place, source coede of Section 1 or 2 along with code of Section 3 and 4 must be combined and compiled together. All source code is programmed in FORTRAN 77 and has been compiled using the freeware editor and compiler FORCE 2.0. All runs performed in a workstation equipped with two quad core Xeon microprocessors and 12 GB of RAM memory.

A-1 Instantaneous Pollution

1 **PROGRAM** TBRW

C	
C	TRRW CODE HAS BEEN DEVELOPED BY PAPAPETRIDIS KONSTANTINOS
~	
C	TUBA HAS BEEN DEVELOPED BY DR A.MANTOGLOU
С	FLOW HAS BEEN DEVELOPED BY DR A.J.DESBARATS
С	
<i>a</i>	
C=-	
С	MONTE CARLO STOCHASTIC SCHEME SIMULATING 2-D POLLUTION FLOW
С	INTO A HETEROGENEOUS AOUIFERS. HETEROGENEOUS AOUIFERS IN THE
C	MODEL WERE STMULTED USING THE 2-D SPECTRAL TURNING BANDS
c a	MERICA (ARUSA)
C	METHOD(STUBA) (ABABOU ET AL., 1989; MANTOGLOU AND WILSON, 1982;
С	MCLAUGHLIN ET AL., 1993; PALEOLOGOS AND SARRIS, 2011; TOMPSON
С	AND GELHAR, 1990B). THE AOUTFER IS ASSUMED TO BE CONFINED.
C	NITHIN CTUREN INVERSIGNATION AND INCOME AND DECIME DOMINANTES
C	WIIN GIVEN HIDRAOLIC HEAD AI LEFI AND KIGHI BOONDAKIES,
C	RESULTING IN A MACROSCOPICALLY CONSTANT HYDRAULIC GRADIENT OF
С	0.001. SOURCE LOCATION UNCERTAINTY WAS ENVISAGED CONSIDERING
С	Equally probable different point of pollution origin during
~	
C	each different simulation, which belongs inside the Control Area
С	
C	LOGNORMAL MEDIA
Ċ	CORRELATED CONDUCTIVITY FIFID
C	
C	Z-D TURNING BANDS METHOD (TUBA)
С	DOUBLE PRECISION USED
C	HYBRID INTERPOLATION VELOCITY SCHEME
C	
C	
С	PARAMETER IDENTIFICATION:
С	IMEM= 1024000 MAX PARTICLES
С	KW=8 MONITORING WELLS ARRANGEMENT (1 2 3 4 6 8 12 20)
ĉ	$\mu_{0,1}$ = construction induced introduction (1,20,00,00,12,20)
C	NDA-/ DAMPLING FREQUENCIED (1,30,60,90,120,180,360 DAYS)
С	MDS=7 DISPERSION CASES (0.001,0.01,0.02,0.05,0.10,0.20,0.50 M)
С	
C	ONE INDUT FILE IS REQUIRED. TUBA211 INC
c	WILL AND THE TO RECORD, TODALT.INC
C	IHIS FILE IS PROVIDED BY TUBA DEVELOPER
С	
C	
С	
C	THE FOLL PRESERVED AND A RANGE
	IMPLICIT DOUBLE PRECISION (A-H, U-Z)
С	
С	KW:No OF WELLS, KSA:SAMPLING INTERVALS, MDS:TRANSVERSE DISPERSION
	PARAMETER (IMEM=1024000)
	PARAMETER (NW=0, NSA=/, MUS=/)
	DOUBLE PRECISION P(IMEM), VELX(IMEM), VELY(IMEM), VELZ(IMEM), RK(IMEM)
	DOUBLE PRECISION TATOD (MDS, 0:KSA-1, KW), ATOD (0:KSA-1, KW).
	(TDCM (MDS)
	<pre>DOUBLE PRECISION NCAR(0:KSA-1,KW),CAR1(0:KSA-1,KW),</pre>
	<pre>& CAR3(0:KSA-1,KW),CAR6(0:KSA-1,KW),CAR12(0:KSA-1,KW),</pre>
	(2 + 2) = (2 +
	a CARLE (U. NOA TINW) (CARDU (U. NOA TINW) (INCAR (HDS) U. ROATINW)
	& TCAR1(MDS,U:KSA-1,KW),TCAR3(MDS,U:KSA-1,KW),TCAR6(MDS,U:KSA-1,
	<pre>& KW),TCAR12(MDS,0:KSA-1,KW),TCAR24(MDS,0:KSA-1,KW),</pre>
	& TCAR36 (MDS.0.KSA-1.KW)
	INIEGER IS, TEND, TPRD, SNSIM, TVC, TDET (MDS, U:KSA-I, KW), FDET (MDS,
	& 0:KSA-1,KW),NOW(KW),ISA(0:KSA-1),ORPOSO,PX,PY,PZ,LFC(100000)
	LOGICAL DET(0:KSA-1,KW),MONITOR
	σ
~	CHARACIER SDAID_K"0,DAID_K"0,I_K"10
С	
	COMMON / PARAM/ P0, P1, EP, DX, DY, DZ, NX, NY, NZ, NSEED
	COMMON /SOLVE/ OMEGA.TOL. TOLL.MITER SNSIM
	COMMON /NEIOCTEV/ NEIV NEIV
	COMMON /VELOCITY/ VELX,VELY,VELZ
	COMMON /VELOCITY/ VELX,VELY,VELZ COMMON /PARTICLE/ PM,TVC,NPAR

60 COMMON /LANDFILL/ LFXI,LFXE,LFYI,LFYE,LFAR,LFC COMMON /MONITORING/ SIGMA, MONITOR, NOW, ISA 61 62 COMMON /TIME/ TS, TEND, TPRD, NSIM 63 COMMON /WAREA/ NCAR, CAR1, CAR3, CAR6, CAR12, CAR24, CAR36 64 C65 C-----66 C-GRID SPACING FOR TURNING BAND SIMULATIONS IN X 67 DIFFERENT FROM ABOVE SO AS TO CREATE ANISOTROPY. NOTE C-THAT TURNING BAND ROUTINE CAN ONLY SIMULATE ISOTROPIC 68 C-69 C-FIELDS AND THAT, TO GENERATE ANISOTROPIC FIELDS, YOU HAVE 70 C-TO TRANSFORM THE GRID SPACING.... 71 C-----_____ 72 С 73 C-----HETEREOGENITY OF THE FIELD -----74 C75 SIGMA=1.00D0 C 76 77 C-----PARAMETER INITIALIZATION------78 С 79 NSIM=3000 **!NUMBER OF SIMULATIONS** 80 С !TIME MONITOR ENDS (30 YEARS) 81 TEND=10950 PERIOD OF TIME THAT LEAK OCCURS 82 TPRD=1 TS=1 !TIME STEP (DAYS) 83 84 С 85 LNDFX=1000 !LENGHT OF SIMULATION AREA (METERS) 86 LNDFY=400 !WIDTH OF SIMULATION AREA (METERS) !DEPTH OF SIMULATION AREA (METERS) 87 LNDFZ=1 88 DX=2 !DX STEP ON X AXIS (METERS) 89 DY=2 !DY STEP ON Y AXIS (METERS) 90 !DZ STEP ON X AXIS (METERS) DZ=1NODES IN A DIRECTION (DIMENSIONLESS) 91 NX=INT(LNDFX/DX) !NODES IN Y-DIRECTION (DIMENSIONLESS) 92 NY=INT(LNDFY/DY) !NODES IN Z-DIRECTION (DIMENSIONLESS) 93 NZ=INT(LNDFZ/DZ) 94 С 95 !TB BLOCK DIMENSION DL=0.D0 96 DC=0.D0 !TB BLOCK DIMENSION 97 DN=0.D0 !TB BLOCK DIMENSION 98 С 99 A=20.D0 **!CORELLATION COEFFICIENT (METERS)** 100 A = (-1.D0) * ABS(A)101 HEADG=0.001D0102 P0=0.D0 *!STARTING HYDRAULIC HEAD* P1=NX*DX*HEADG !ENDING HYDRAULIC HEAD 103 104 EP=0.25D0 *!EFFECTIVE POROSITY* 105 ALPHA=2.3D0 !MEAN lnK 106 С 107 NPAR=8000 !TOTAL PARTICLES TO BE EJECTED 108 PM=1 !PARTICLE'S MASS !THRESHOLD VOLUMETRIC CONCENTRATION 109 TVC=112 110 С 111 MONITOR=.**TRUE**. PARAMETER THAT CONTROLS IF WE MONITOR OR NOT 112 С 113 RANDOM NUMBER SEEDS С 114 !seed number for RNG` DSEED=2147811051.D0 115 NSEED=1236547896 !15.8 116 С 117 С 118 С BETA FOR NOW ON IS THE STANDARD DEVIATION NOT THE VARIANCE 119 BETA=SQRT (SIGMA) 120 С TOL=0.00001D0 121 122 TOL1=0.00005D0 123 MITER=2000 124 SNSIM=0 ! NUMBER OF SIMULATIONS WITH FLOW FIELD 125 SOLUTION 126 NNNN=NX*NY*NZ 127 NXNY=NX*NY

128 DSEED=DSEED*NXNY*NY*BETA*DX/(NSIM*NSIM) 129 SSXEN=0.D0 130 RKPOIN21=0.D0 131 RKPOIN22=0.D0 132 RKPOINT1=0.D0 133 RKPOINT2=0.D0 134 SSX2EN=0.D0 135 С 136 **DO** 22 K=1,MDS 137 DO 22 J=0,KSA-1 138 **DO** 22 I=1,KW 139 TDET(K, J, I) = 0140 FDET(K, J, I) = 0141 TATOD(K, J, I) = 0.D0142 22 CONTINUE 143 С 144 FLOW EQUATIONS RELAXATION FACTOR C145 С - DEPEDENCE HAS BEEN OBSERVED. BEST RESULTS ARE ACCOMPLISHED 146 С WHEN RELAXATION FACTOR IS THE HIGHER POSSIBLE (INITIAL WAS 1.85) 147 OMEGA0=1.85D0 148 С 149 IF (nnnn.GE.180000) OMEGA0=1.88D0 150 IF (nnnn.GE.240000) OMEGA0=1.91D0 151 IF (nnnn.GE.390000) OMEGA0=1.92D0 152 IF (nnnn.GE.490000) OMEGA0=1.95D0 153 IF (nnnn.GE.700000) OMEGA0=1.97D0 154 IF (nnnn.GE.850000) OMEGA0=1.98D0 155 IF (nnnn. GE. 850000) TOL=0.0001D0 156 IF (nnnn. GE. 850000) TOL1=0.0005D0 157 С 158 С 159 С PRINTING ON SCREEN THE STARTING TIME CALL DATE_AND_TIME (SDATE_R,ST R) 160 161 С 162 3-D TB INPUT DATA (BLOCK DIMENSIONS) C163 IF(DL.EQ.0.0)DL=DX 164 **IF**(DC.**EQ.**0.0) DC=DY 165 IF(DN.EQ.0.0)DN=DZ 166 С 167 С 168 C -----PRINTING INITIAL INFORMATION------169 C 170 **PRINT***, 'THIS IS THE TOTAL PLUME TRANSPORT SIMULATION!' PRINT*, 'NUMBER OF REALIZATIONS :',NSIM 171 **PRINT** 715, NX, NY, NZ 172 173 **PRINT** 716, DX, DY, DZ **PRINT** 717, DL, DC, DN 174 175 С 715 **FORMAT**(' GRID SIZE : ',I3,'X',I3,'X',I3) 176 716 FORMAT(' BLOCK DIMENSIONS 177 : ',F5.2,' X',F5.2,' X',F5.2) 717 FORMAT (' TB BLOCK DIMENSIONS : ', F5.2, ' X', F5.2, ' X', F5.2) 178 179 С 180 PRINT*, 'CORRELATION RANGE (LENGTH UNITS) : ',A 181 $PRINT^{\star}$, ' & VARIANCE : ', BETA*BETA PRINT* 182 ****** STARTING SIMULATIONS ******' 183 PRINT*, ' 184 **PRINT*** 185 С 186 С 187 C-----ESTABLISHING MONITOR SYSTEM AND SAMPLING POLICY------LANDFILL'S GEOMETRY 188 С 189 **CALL** LANDF 190 С 191 С NUMBER OF WELLS 192 DO IW=1,KW 193 IF(IW.LE.4)NOW(IW)=IW 194 *IF*(IW.*EQ*.5)NOW(IW)=6 195 *IF*(IW.*EQ*.6)NOW(IW)=8

	$\mathbf{IF}(\mathbf{1W},\mathbf{EQ},7) \text{ NOW } (\mathbf{1W}) - 12$
	IF (IW. EQ. 8)NOW(IW)=20
	ENDDO
С	
С	SAMPLING INTERVALS
	DO JS=0,KSA-1
	<pre>IF(JS.GE.1.AND.JS.LE.4) ISA(JS)=JS*30</pre>
	IF (JS. EQ. 0) ISA(JS)=1
	<i>IF</i> (JS. <i>EQ</i> .5) ISA(JS)=180
	IF (JS. EQ. 6) ISA(JS)=365
	ENDDO
С	
2	DISPERSIVITY FACTOR
	DO MTDC=1,MDS
	<i>IF</i> (MTDC. <i>EQ</i> .1) TDCM(MTDC)=0.001D0
	<i>IF</i> (MTDC. <i>EQ</i> .2) TDCM(MTDC)=0.01D0
	<i>IF</i> (MTDC. <i>EQ</i> .3) TDCM(MTDC)=0.02D0
	<i>IF</i> (MTDC. <i>EQ</i> .4) TDCM(MTDC)=0.05D0
	IF(MTDC.EQ.5) TDCM(MTDC)=0.10D0
	IF(MTDC, EO.6) TDCM(MTDC)=0.20D0
	IF(MTDC, EQ, 7) TDCM $(MTDC) = 0.50D0$
	ENDDO
?	
2	INITIALISING AVERAGE CONTAMINATED CELL AREA
0	DO 28 MTDC=1.MDS
	DO 28 JS=0.KSA-1
	00 28 TW=1 KW
	$m_{1} = 20 \text{ Im} (m_{1} = 0 \text{ m}) = 0 \text{ m}$
	TCAP(MTDC, US, W) = 0.00
	TCART(MIDC, US, IW) = 0.D0
	TCARS(MIDC, US, IW) = 0.D0
	TCAR6(MTDC, JS, IW) = 0.D0
	TCARIZ (MTDC, JS, IW) =0.D0
	TCAR24 (MTDC, JS, TW) = 0.D0
2	
~ ~	8 CONTINUE
C	
с с	CREATING REDORT FILES
C	
~	OPEN(9, FILE-ERROR.IAT, STATUS- REPLACE)
C ~	UPEN (11,FILE= KESULIS:IXI',SIAIUS= KEPLACE')
C ~	OPEN(14, FILE='K_EXAMPLE.TXT', STATUS='UNKNOWN')
С	OPEN(22,FILE='VELOCITIES_EXAMPLE.TXT',STATUS='UNKNOWN')
C	
	OPEN(23,FILE='HEADS_EXAMPLE.TXT',STATUS='UNKNOWN')
	OPEN(23,FILE='HEADS_EXAMPLE.TXT',STATUS='UNKNOWN') OPEN(48,FILE='PROBALITIES.TXT',STATUS='UNKNOWN')
	OPEN(23,FILE='HEADS_EXAMPLE.TXT',STATUS='UNKNOWN') OPEN(48,FILE='PROBALITIES.TXT',STATUS='UNKNOWN') OPEN(39,FILE='SOURCE.TXT',STATUS='UNKNOWN')
	OPEN(23,FILE='HEADS_EXAMPLE.TXT',STATUS='UNKNOWN') OPEN(48,FILE='PROBALITIES.TXT',STATUS='UNKNOWN') OPEN(39,FILE='SOURCE.TXT',STATUS='UNKNOWN') OPEN(50,FILE='RWREPORT.TXT',STATUS='UNKNOWN')
С	OPEN(23,FILE='HEADS_EXAMPLE.TXT',STATUS='UNKNOWN') OPEN(48,FILE='PROBALITIES.TXT',STATUS='UNKNOWN') OPEN(39,FILE='SOURCE.TXT',STATUS='UNKNOWN') OPEN(50,FILE='RWREPORT.TXT',STATUS='UNKNOWN')
С	OPEN(23,FILE='HEADS_EXAMPLE.TXT',STATUS='UNKNOWN') OPEN(48,FILE='PROBALITIES.TXT',STATUS='UNKNOWN') OPEN(39,FILE='SOURCE.TXT',STATUS='UNKNOWN') OPEN(50,FILE='RWREPORT.TXT',STATUS='UNKNOWN') SNSIMOLD=0 ! PARAMETER THAT CONTROLS PROBABILITIES FILE OUTPO
c c	OPEN(23,FILE='HEADS_EXAMPLE.TXT',STATUS='UNKNOWN') OPEN(48,FILE='PROBALITIES.TXT',STATUS='UNKNOWN') OPEN(39,FILE='SOURCE.TXT',STATUS='UNKNOWN') OPEN(50,FILE='RWREPORT.TXT',STATUS='UNKNOWN') SNSIMOLD=0 ! PARAMETER THAT CONTROLS PROBABILITIES FILE OUTPO
c c c	OPEN(23,FILE='HEADS_EXAMPLE.TXT',STATUS='UNKNOWN') OPEN(48,FILE='PROBALITIES.TXT',STATUS='UNKNOWN') OPEN(39,FILE='SOURCE.TXT',STATUS='UNKNOWN') OPEN(50,FILE='RWREPORT.TXT',STATUS='UNKNOWN') SNSIMOLD=0 ! PARAMETER THAT CONTROLS PROBABILITIES FILE OUTPR
C C C C***	OPEN(23,FILE='HEADS_EXAMPLE.TXT',STATUS='UNKNOWN') OPEN(48,FILE='PROBALITIES.TXT',STATUS='UNKNOWN') OPEN(39,FILE='SOURCE.TXT',STATUS='UNKNOWN') OPEN(50,FILE='RWREPORT.TXT',STATUS='UNKNOWN') SNSIMOLD=0 ! PARAMETER THAT CONTROLS PROBABILITIES FILE OUTPO
C C C*** C	OPEN(23,FILE='HEADS_EXAMPLE.TXT',STATUS='UNKNOWN') OPEN(48,FILE='PROBALITIES.TXT',STATUS='UNKNOWN') OPEN(39,FILE='SOURCE.TXT',STATUS='UNKNOWN') OPEN(50,FILE='RWREPORT.TXT',STATUS='UNKNOWN') SNSIMOLD=0 ! PARAMETER THAT CONTROLS PROBABILITIES FILE OUTPO
C C C*** C C	OPEN(23,FILE='HEADS_EXAMPLE.TXT',STATUS='UNKNOWN') OPEN(48,FILE='PROBALITIES.TXT',STATUS='UNKNOWN') OPEN(39,FILE='SOURCE.TXT',STATUS='UNKNOWN') OPEN(50,FILE='RWREPORT.TXT',STATUS='UNKNOWN') SNSIMOLD=0 ! PARAMETER THAT CONTROLS PROBABILITIES FILE OUTPO
C C C*** C C	OPEN(23,FILE='HEADS_EXAMPLE.TXT',STATUS='UNKNOWN') OPEN(48,FILE='PROBALITIES.TXT',STATUS='UNKNOWN') OPEN(39,FILE='SOURCE.TXT',STATUS='UNKNOWN') OPEN(50,FILE='RWREPORT.TXT',STATUS='UNKNOWN') SNSIMOLD=0 ! PARAMETER THAT CONTROLS PROBABILITIES FILE OUTPO ************************************
C C C * * * C C	OPEN (23, FILE= 'HEADS_EXAMPLE.TXT', STATUS= 'UNKNOWN') OPEN (48, FILE= 'PROBALITIES.TXT', STATUS= 'UNKNOWN') OPEN (39, FILE= 'SOURCE.TXT', STATUS= 'UNKNOWN') OPEN (50, FILE= 'RWREPORT.TXT', STATUS= 'UNKNOWN') SNSIMOLD=0 ! PARAMETER THAT CONTROLS PROBABILITIES FILE OUTPO ************************************
C C C*** C C C	OPEN (23, FILE= 'HEADS_EXAMPLE.TXT', STATUS= 'UNKNOWN') OPEN (48, FILE= 'PROBALITIES.TXT', STATUS= 'UNKNOWN') OPEN (39, FILE= 'SOURCE.TXT', STATUS= 'UNKNOWN') OPEN (50, FILE= 'RWREPORT.TXT', STATUS= 'UNKNOWN') SNSIMOLD=0 ! PARAMETER THAT CONTROLS PROBABILITIES FILE OUTPO ************************************
C C C*** C C	OPEN(23,FILE='HEADS_EXAMPLE.TXT',STATUS='UNKNOWN') OPEN(48,FILE='PROBALITIES.TXT',STATUS='UNKNOWN') OPEN(39,FILE='SOURCE.TXT',STATUS='UNKNOWN') OPEN(50,FILE='RWREPORT.TXT',STATUS='UNKNOWN') SNSIMOLD=0 ! PARAMETER THAT CONTROLS PROBABILITIES FILE OUTPO '************************************
с с с*** с с	OPEN(23,FILE='HEADS_EXAMPLE.TXT',STATUS='UNKNOWN') OPEN(48,FILE='PROBALITIES.TXT',STATUS='UNKNOWN') OPEN(39,FILE='SOURCE.TXT',STATUS='UNKNOWN') OPEN(50,FILE='RWREPORT.TXT',STATUS='UNKNOWN') SNSIMOLD=0 ! PARAMETER THAT CONTROLS PROBABILITIES FILE OUTPOUND ************************************
C C C C C C C C C	OPEN (23, FILE='HEADS_EXAMPLE.TXT', STATUS='UNKNOWN') OPEN (48, FILE='PROBALITIES.TXT', STATUS='UNKNOWN') OPEN (39, FILE='SOURCE.TXT', STATUS='UNKNOWN') OPEN (50, FILE='RWREPORT.TXT', STATUS='UNKNOWN') SNSIMOLD=0 ! PARAMETER THAT CONTROLS PROBABILITIES FILE OUTPU ************************************
C C C C C C C C	OPEN (23, FILE='HEADS_EXAMPLE.TXT', STATUS='UNKNOWN') OPEN (48, FILE='PROBALITIES.TXT', STATUS='UNKNOWN') OPEN (39, FILE='SOURCE.TXT', STATUS='UNKNOWN') OPEN (50, FILE='RWREPORT.TXT', STATUS='UNKNOWN') SNSIMOLD=0 ! PARAMETER THAT CONTROLS PROBABILITIES FILE OUTPO ************************************
с с с*** с с с с	OPEN (23, FILE='HEADS_EXAMPLE.TXT', STATUS='UNKNOWN') OPEN (48, FILE='PROBALITIES.TXT', STATUS='UNKNOWN') OPEN (39, FILE='SOURCE.TXT', STATUS='UNKNOWN') OPEN (50, FILE='RWREPORT.TXT', STATUS='UNKNOWN') SNSIMOLD=0 ! PARAMETER THAT CONTROLS PROBABILITIES FILE OUTPO ************************************
C C C*** C C C C C	OPEN (23, FILE='HEADS_EXAMPLE.TXT', STATUS='UNKNOWN') OPEN (48, FILE='PROBALITIES.TXT', STATUS='UNKNOWN') OPEN (39, FILE='SOURCE.TXT', STATUS='UNKNOWN') OPEN (50, FILE='RWREPORT.TXT', STATUS='UNKNOWN') SNSIMOLD=0 ! PARAMETER THAT CONTROLS PROBABILITIES FILE OUTPO LOOP ON THE NUMBER OF SIMULATIONS
с с с с с с с	<pre>OPEN(23,FILE='HEADS_EXAMPLE.TXT',STATUS='UNKNOWN') OPEN(48,FILE='PROBALITIES.TXT',STATUS='UNKNOWN') OPEN(39,FILE='SOURCE.TXT',STATUS='UNKNOWN') OPEN(50,FILE='RWREPORT.TXT',STATUS='UNKNOWN') SNSIMOLD=0</pre>
C C C C C C C C C	<pre>OPEN(23, FILE='HEADS_EXAMPLE.TXT', STATUS='UNKNOWN') OPEN(48, FILE='PROBALITIES.TXT', STATUS='UNKNOWN') OPEN(39, FILE='SOURCE.TXT', STATUS='UNKNOWN') OPEN(50, FILE='RWREPORT.TXT', STATUS='UNKNOWN') SNSIMOLD=0 ! PARAMETER THAT CONTROLS PROBABILITIES FILE OUTPOLOOP ON THE NUMBER OF SIMULATIONS</pre>
C C C C C C C C C	<pre>OPEN(23,FILE='HEADS_EXAMPLE.TXT',STATUS='UNKNOWN') OPEN(48,FILE='PROBALITIES.TXT',STATUS='UNKNOWN') OPEN(39,FILE='SOURCE.TXT',STATUS='UNKNOWN') OPEN(50,FILE='RWREPORT.TXT',STATUS='UNKNOWN') SNSIMOLD=0</pre>
C C C C C C C C C C C C C C C C C C C	<pre>OPEN(23,FILE='HEADS_EXAMPLE.TXT',STATUS='UNKNOWN') OPEN(48,FILE='PROBALITIES.TXT',STATUS='UNKNOWN') OPEN(39,FILE='SOURCE.TXT',STATUS='UNKNOWN') OPEN(50,FILE='RWREPORT.TXT',STATUS='UNKNOWN') SNSIMOLD=0 ! PARAMETER THAT CONTROLS PROBABILITIES FILE OUTPO</pre>
C C C C C C C C C C C C C C C C C C C	<pre>OPEN(23,FILE='PRADS_EXAMPLE.TXT',STATUS='UNKNOWN') OPEN(48,FILE='PROBALITIES.TXT',STATUS='UNKNOWN') OPEN(39,FILE='SOURCE.TXT',STATUS='UNKNOWN') OPEN(50,FILE='RWREPORT.TXT',STATUS='UNKNOWN') SNSIMOLD=0 ! PARAMETER THAT CONTROLS PROBABILITIES FILE OUTPULOOP ON THE NUMBER OF SIMULATIONS</pre>
C C C C C C C C C C C C C C 718 719	<pre>OPEN(23,FILE='HEADS_EXAMPLE.TXT',STATUS='UNKNOWN') OPEN(48,FILE='PROBALITIES.TXT',STATUS='UNKNOWN') OPEN(39,FILE='SOURCE.TXT',STATUS='UNKNOWN') OPEN(50,FILE='RWREPORT.TXT',STATUS='UNKNOWN') SNSIMOLD=0</pre>

264 С 265 ----SIMULATE STANDARD NORMAL DEVIATES BY TURNING BANDS------C-266 С 267 С 268 PRINT* 269 PRINT*, ' STARTING TURNING BANDS ALGORITHM ... 270 **CALL** TUBA (NX, NY, DX, DY, ALPHA, BETA, -A, RK) 271 С 272 С 273 C-----CALCULATING MEAN ENSAMBLE MEAN AND VARIANCE-----274 С 275 SUM=0.D0 276 SSX=0.D0 277 SSX2=0.D0 278 RKPOINT1=RKPOINT1+BETA*RK(432) 279 RKPOINT2=RKPOINT2+BETA*RK(845) 280 RKPOIN21=RKPOIN21+BETA*BETA*RK(432)*RK(432) 281 RKPOIN22=RKPOIN22+BETA*BETA*RK(845)*RK(845) 282 **DO** 12 K=1,NZ 283 **DO** 12 J=1,NY 284 **DO** 12 I=1,NX 285 IP=(K-1)*NXNY+(J-1)*NX+I286 TEMP=ALPHA+BETA*RK(IP) С 287 TEMP=RK(IP) 288 SSX=SSX+TEMP 289 SSX2=SSX2+TEMP*TEMP 290 TEMP=EXP(TEMP) 291 RK(IP)=TEMP 292 SUM=SUM+TEMP 293 P(IP)=P0+(P1-P0)*(I-0.5D0)/NX 294 12 CONTINUE 295 C296 SSX=SSX/NNNN 297 SSXEN=SSXEN+SSX 298 SSX2EN=SSX2EN+(SSX2/NNNN) 299 SSX2=SSX2/NNNN-SSX*SSX 300 С 301 С 302 C-----SOLVE FLOW EQUATION------303 С 304 PRINT*, ' STARTING TO SOLVE THE FLOW PROBLEM ... 305 C 306 OMEGA=OMEGA0 307 ! KEEPING OLD VALUE OF SOLVED CASES CHECKSNSIM=SNSIM 308 С 309 **CALL** FLOW3D(RK, P, ICON, DMAX) 310 С 311 С 312 С !!! PROCEED ONLY IF THERE IS A SOLUTION OF THE FLOW PROBLEM !!! 313 IF (SNSIM.GT. CHECKSNSIM) THEN ! CHECKING 314 С 315 C-----CALCULATING THE VELOCITY FIELD FOR EACH REALISATION-----316 С 317 PRINT*,' STARTING TO CALCULATE THE VELOCITY FIELD ... 318 С 319 **CALL** VEL(RK, P, VELX, VELY, VELZ) 320 PRINT*, ' Velocity Field Calculated!' 321 PRINT* 322 С 323 С 324 C-----OUTPUT VALUES FOR VELOCITIES,K AND H FOR VISUALIZATION PURPOSES--325 С IF (SNSIM.EQ.NSIM) THEN 326 С 327 С DO 221 K=1,NZ 328 С DO 221 J=1,NY DO 221 I=1,NX 329 С 330 С IP=(K-1)*NXNY+(J-1)*NX+I331 С WRITE (14,667) I, J, K, RK(IP)

С	WRITE(22,668)I,J,K,VELX(IP),VELY(IP),VELZ(IP)
С	WRITE(23,667)I,J,K,P(IP)
C 22	21 CONTINUE
С	ENDIF
С	
C 667	' FORMAT(3(14,1X),F10.4)
C 668	FORMAT(3(14,1x),3(F9.6,1x))
С	
С	
C	CREATING AND MONITOR POLLUTION
	IF (MONITOR. EQV TRUE.) THEN
	PRINT *, CREATING AND MONITOR POLLUTION
	ELSE
	PRINT *,' CREATING POLLUTION '
	ENDIF
С	
	CALL RANDORIGIN (XO, YO, ORPOSO) ! DERMINING POLLUTION ORIGIN
	PX=INT(XO)
	PY=INT (YO)
	PZ=1
	IF(YO-PY, GE, 0, 5) PY=PY+1 /COUNTS ON CENTRAL Y
	$\mathbf{TF}(XO-PX, \mathbf{GF}, 0, 5)$ PX=PX+1 / COUNTS ON CENTRAL X
	PRINT*
	PRINT 900, PX, PZ
C	
C	DO 115 MUDC=1 MDS I LOOD OVER DIRPERSION FACTOR
	CATE DANDAMATY (IS THE VO VO OPPOSO DET ATOD)
~	CALL RANDOMWALK (13, 1DC, A0, 10, OKEOSO, DET, ATOD)
	DO 125 TO-0 WCA 1
	DO ISU IW-I, KW : MOLII-WELL LOOP
	IF (JE1 (35,1W) . EQV IROL.) ITEN
	TDET (MTDC, JS, IW) = TDET (MTDC, JS, IW) +1
	ELSEIF (DET (JS, IW) . EQV. FALSE.) THEN
	FDET (MTDC, JS, IW) = FDET (MTDC, JS, IW) +1
-	ENDLF
С	
С	CALCULATING CONTAMINATED AREA
	TNCAR (MTDC, JS, IW) = TNCAR (MTDC, JS, IW) + NCAR (JS, IW)
	TCAR1 (MTDC, JS, IW)=TCAR1 (MTDC, JS, IW)+CAR1 (JS, IW)
	TCAR3 (MTDC, JS, IW)=TCAR3 (MTDC, JS, IW)+CAR3 (JS, IW)
	TCAR6(MTDC, JS, IW) =TCAR6(MTDC, JS, IW) +CAR6(JS, IW)
	TCAR12(MTDC, JS, IW) = TCAR12(MTDC, JS, IW) + CAR12(JS, IW)
	TCAR24 (MTDC, JS, IW) = TCAR24 (MTDC, JS, IW) + CAR24 (JS, IW)
	TCAR36(MTDC, JS, IW) = TCAR36(MTDC, JS, IW) + CAR36(JS, IW)
С	
С	CALCULATING AVERAGE TIME OF DETECTION
	TATOD (MTDC, JS, IW) = TATOD (MTDC, JS, IW) + ATOD (JS, IW)
С	
C	
~	TE (IW EO 7 AND MTDC EO 5 AND IS EO 0 AND (SNSIM EO 1 OR SNSIM
	LE (IN . HZ, / . MAD. MIDO. HZ, J. MAD. 03. HZ, V. MAD. (SNSIM. HZ. I. OK. SNSIM & NF (NGIMOLD)) THEN
	ע אוווווווווווווווווווווווווווווווווווו
	MALLE(40,) SNSIM, NOW(IW), I. TUET(MIDC, JS, IW)/SNSIM
	SNSIMOLD=SNSIM
	PKINT^, 'H1', NOW(IW)
~	ENDLE
C	
130	CONTINUE ! CLOSING MULTI-WELL LOOP
С	
125	CONTINUE ! CLOSING SAMPLING LOOP
	WRITE(50,*)'***********************************
	WRITE(50,*)'***********************************
	<pre>WRITE(50,*)'***********************************</pre>
	WRITE(50,*)
С	
	IF (JS.EQ.KSA.AND.IW.EQ.KW) GOTO 115
	PRINT*, ''

С		
11 C	5 CONTINUE	! DISPERSION LOOP
C	ENDIF	! CHECKING IF
С		
	PRINT *, '***********************************	***************************************
	PRINT*, '***********************************	***************
	& * * * * * * * * * '	
	PRINT*	
	PRINT^ ENDDO	CLOSING SIMULATION LOOP
С		
C***	********	***************
 	CALCULATE THE ENSEMBLE STA	ATISTICS AND WRITE THE RESULTS
2		
	ALLREP=1.D0*IS	5
	RKPOIN21=RKPOIN21/ALLRE	- P-RKPOINT1*RKPOINT1
	RKPOINT2=RKPOINT2/ALLRE	
	RKPOIN22=RKPOIN22/ALLREI	P-RKPOINT2*RKPOINT2
	SSALN-SSALN/ALLKEP SSX2EN=SSX2EN/ALLREP-SS3	XEN*SSXEN
2		
2	CONTAMINATED AREA RELATIVE	E TO LANDFILL'S AREA FOR EACH PERIOD
	DO 510 MTDC=1, MDS DO 510 JS=0, KSA-1	
	DO 510 IW=1,KW	
	IF(FDET(MTDC, JS, IW). NE.	0) TNCAR (MTDC, JS, IW) = (TNCAR (MTDC, JS, IW) /
	& FDET (MTDC, JS, IW)) / LFAF TF (TDET (MTDC, JS, IW) NE	() <i>THEN</i>
	TCAR1 (MTDC, JS, IW) = (TCAR)	AR1 (MTDC, JS, IW) / TDET (MTDC, JS, IW)) / LFAR
	TCAR3 (MTDC, JS, IW) = (TCA	AR3 (MTDC, JS, IW) / TDET (MTDC, JS, IW)) / LFAR
	TCAR6 (MTDC, JS, IW) = (TCAR12 (MTDC, JW) =	AR6 (MTDC, JS, IW) / TDET (MTDC, JS, IW)) / LFAR CAR12 (MTDC, JS, IW) / TDET (MTDC, JS, IW)) / LFAR
	TCAR24 (MTDC, JS, IW) = (TC	CAR24 (MTDC, JS, IW) / TDET (MTDC, JS, IW)) / LFAR
~	TCAR36(MTDC, JS, IW) = (TC)	CAR36(MTDC, JS, IW) / TDET(MTDC, JS, IW)) / LFAR
C C	AVERAGE TIME OF DETECT	ION
	TATOD (MTDC, JS, IW) = TATOI	(MTDC, JS, IW) / TDET (MTDC, JS, IW)
С		
51	CONTINUE	
C	· · · · · · · · · · · · · · · · · · ·	
C	WRITTING OUTPUT	
	OPEN(16, FILE='FINAL_REPORT. OPEN(17, FILE='Pd_EXCEL.TXT'	TXT', STATUS='UNKNOWN') STATUS='UNKNOWN')
	OPEN(18, FILE='TOTAL_EXCEL.)	<pre>TXT', STATUS='UNKNOWN')</pre>
C		
	PRINT* MRTTF(* *) 'TOTAL FIFLD SIMI	ILATIONS. ' NSIM
	WRITE(*,*) 'NUMBER THAT FLO	DW FIELD WAS SIMULATED: ',SNSIM
C		
~	CALL DATE_AND_TIME (DATE_R,	T_R)
C	WRITE(16,*)'THIS IS THE FIN	JAL REPORT: '
	WRITE(16,*)	
	WRITE(16,*)'TOTAL FIELD SIN	MULATIONS: ', NSIM
	WRITE(16,*) 'NUMBER THAT FI WRITE(16.*)	LOW FIELD WAS SIMULATED: ', SNSIM
	WRITE(16,*)'START TIME : ',	ST_R(1:2),':',ST R(3:4),':',ST R(5:6),
	+ ' AT ',SDATE_R(5:6),'/',	SDATE_R(7:8), '/', SDATE_R(3:4)
	WRITE (16, *) 'END TIME : ', T	$R(1:2), ':', T_R(3:4), ':', T_R(5:6),$
	<pre>T AT , DATE_R(3:6), '/', I WRITE(16,811)NX, NY, NZ</pre>	$\text{DALE}_K(1:0), 1, \text{DATE}_K(3:4)$
	WRITE(16,812)DX,DY,DZ	

468		WRITE(16,813)DL,DC,DN
469 470	C	WR11'E(10,^)
471	C	PRINT*
472		PRINT*
473		<pre>WRITE(16,*)'START TIME : ',ST R(1:2),':',ST R(3:4),':',ST R(5:6),</pre>
474		+ ' AT ', SDATE_R(5:6), '/', SDATE_R(7:8), '/', SDATE_R(3:4)
475		PRINT *, 'END TIME : ', T_R(1:2), ':', T_R(3:4), ':', T_R(5:6),
476		+ ' AT ', DATE_R(5:6), '/', DATE_R(7:8), '/', DATE_R(3:4)
477		PRINT 811, NX, NY, NZ
478		PRINT 812, DX, DY, DZ
480	C	FRIMI 015, DL, DC, DM
481	811	FORMAT(' GRID SIZE : ',I3,'X',I3,'X',I3)
482	812	FORMAT (' BLOCK DIMENSIONS : ', F5.2, 'X', F5.2, 'X', F5.2)
483	813	FORMAT(' TB BLOCK DIMENSIONS : ',F5.2,'X',F5.2,'X',F5.2)
484	900	FORMAT('STARTING POINT OF POLLUTION: ', 'PX=', I3, 2X, 'PY=', I3,
485	_	& 2X, 'PZ=',I3)
486	С	
487		WRILE(10,") WRITE(16 *)'THE ENG MEAN IS' SOVEN ' AND THE ENG VAR IS' SOVEN
489		WRITE(16,*)'THE ENS.MEAN IN TWO POINTS IS : ', REPOINT1, REPOINT2
490		WRITE(16,*)' AND THE ENS. VARIANCE IS : ', RKPOIN21, RKPOIN22
491		WRITE(16,*)
492		WRITE(16,*)'CORRELATION SCALE = ', A, ' WITH ', SNSIM, ' SIMULATIONS'
493		WRITE(16,*)'INITIAL HEAD: ', HEADG
494		WRITE(16,*)'NO OF PARTICLES:',NPAR
496		WRITE(16,*)'VARIANCE : '.BETA*BETA
497		WRITE(16,*)
498	С	
499	С	DETECTION REPORT FILE
500		WRITE $(16, *)$
502		WRITE(16,*) 'TOTAL MONITOR TIME='. TEND
503		WRITE(16,*)
504		DO MTDC=1,MDS
505		WRITE(16,*)'DISPERSION FACTOR:',TDCM(MTDC)
506 507		DO 512 JS=U, KSA-1
508		WRITE(16.*)'SAMPLING TIME INTERVALS (DAYS): '.ISA(JS)
509		WRITE (16, *) ' '
510		DO 512 IW=1,KW
511		WRITE(16,*)'NUMBER OF MONITOR WELLS : ',NOW(IW)
512		WRITE(16,*)'NORMALIZED DISTANCE AMONG WELLS: ',1./NOW(IW)
515		WRITE(16,*)'DETECTED POLLUTION=',TDET(MIDC,JS,IW) WRITE(16 *)'NOT DETECTED POLLUTION=' FDET(MIDC,JS,IW)
515		WRITE(16,*) 'PROBABILITY OF DETECTION=',100.*TDET(MTDC,JS,IW) /
516		& SNSIM,'%'
517		WRITE(16,*)'PROBABILITY OF FAILURE=',100.*FDET(MTDC,JS,IW)/
518		& SNSIM, '%'
519 520		WK12E(16, *) $\mu \sigma \tau \pi r$ (16, *) AUTEDACE TIME OF CONTANTNATION DETECTION-1
520		* TATOD (MTDC IS IW)
522		WRITE(16,*)
523		WRITE(16,*)'AVERAGE POLLUTED VOLUME ON FAILURE=',
524		& TNCAR (MTDC, JS, IW)
525 526		WRITE(16,*)'AVERAGE POLLUTED VOLUME ON DETECTION=',
520 527		WRITE(16.*) 'AVERAGE POLITITED VOLUME 3 MONTHS LATER='
528		& TCAR3 (MTDC, JS, IW)
529		WRITE(16,*)'AVERAGE POLLUTED VOLUME 6 MONTHS LATER=',
530		& TCAR6 (MTDC, JS, IW)
531		WRITE(16,*)'AVERAGE POLLUTED VOLUME 12 MONTHS LATER=',
532 533		WRITE(16.*) 'AVERAGE POLITED VOLUME 24 MONTHS LATER='
534		& TCAR24 (MTDC, JS, IW)
535		WRITE(16,*)'AVERAGE POLLUTED VOLUME 36 MONTHS LATER=',

536 TCAR36 (MTDC, JS, IW) & 537 **WRITE**(16, *) 538 512 CONTINUE 539 540 541 ENDDO 542 С 543 С REPORTING DATA FOR EXCEL USE 544 DO K=1,MDS 545 DO I=1,KW 546 WRITE(17,540)(100.0*TDET(K,J,I)/SNSIM,J=0,KSA-1) 547 WRITE(18,560)(100.0*TDET(K,J,I)/SNSIM, INT(TATOD(K,J,I)), 548 TNCAR(K, J, I), TCAR1(K, J, I), TCAR3(K, J, I), TCAR6(K, J, I), 8 549 TCAR12(K, J, I), TCAR24(K, J, I), TCAR36(K, J, I), J=0, KSA-1) ŵ 550 ENDDO 551 ENDDO 552 С 553 540 **FORMAT**(7(F5.1,1X)) 554 560 **FORMAT**(7(F5.1,1X,I4,1X,7(F6.4,1X))) 555 С 556 С 557 PRINT*, 'THE ENS.MEAN IS:', SSXEN, ' AND THE ENS.VAR IS:', SSX2EN 558 **PRINT***, 'THE ENS.MEAN IN TWO POINTS IS : ', RKPOINT1, RKPOINT2 559 PRINT*, ' AND THE ENS. VARIANCE IS : ', RKPOIN21, RKPOIN22 560 PRINT* 561 PRINT*, 'CORRELATION SCALE = ', A, ' WITH ', SNSIM, ' SIMULATIONS' 562 **PRINT***, 'INITIAL HEAD: ', HEADG 563 PRINT*, 'No OF PARTICLES:', NPAR 564 **PRINT***, 'VARIANCE : ', SIGMA 565 PRINT* 566 PRINT* 567 **PRINT***, 'DONE ' 568 С 569 STOP 570 END !END OF MAIN PROGRAM 571 С 572 С 573 С 574 C-****SUBROUTINES****SUBROUTINES*****SUBROUTINES******* 575 С 576 С 577 578 579 580 С 581 The random walk particle tracking (RWPT) method treats the transport С 582 С of a solute mass via a large number of particles. It moves each 583 С particle through the porous medium using the velocity field obtained 584 С from the solution of the flow equation to simulate advection and 585 С adds a random displacement to simulate dispersion 586 С 587 С 588 SUBROUTINE RANDOMWALK (IS, TDC, RPX, RPY, ORPOS, DET, TOD) 589 С 590 **IMPLICIT DOUBLE PRECISION** (A-H, O-Z) 591 **PARAMETER** (IMEM=1024000) 592 **PARAMETER** (KW=8, KSA=7) 593 С 594 DOUBLE PRECISION X(IMEM), Y(IMEM), Z(IMEM), XPR(IMEM), YPR(IMEM), 595 & ZPR(IMEM), LDC, NDFS, TOD(0:KSA-1, KW) 596 DOUBLE PRECISION NCAR(0:KSA-1,KW), CAR1(0:KSA-1,KW), 597 & CAR3(0:KSA-1,KW),CAR6(0:KSA-1,KW),CAR12(0:KSA-1,KW), 598 & CAR24(0:KSA-1,KW),CAR36(0:KSA-1,KW) **DIMENSION** C(IMEM), PRPOS(IMEM), LFC(100000) 599 600 DIMENSION RLOCLAND (IMEM), CC (20), NW (20), MWX (20), MWY (20) 601 INTEGER C, POS, PX, PY, PZ, PAR, PRPOS, ORPOS, PART, CC, TVC 602 INTEGER TEND, TPRD, TS, TTL, PRSMTTL (0:KSA-1, KW), NOW (KW), ISA (0:KSA-1) 603 LOGICAL MW(0:KSA-1,KW,20),MONITOR,DET(0:KSA-1,KW)

604 С 605 COMMON / PARAM/ P0, P1, EP, DX, DY, DZ, NX, NY, NZ, NSEED 606 COMMON / PARTICLE/ PM, TVC, NPAR COMMON / POLLUTION/ C, OOB 607 COMMON /LANDFILL/ LFXI,LFXE,LFYI,LFYE,LFAR,LFC 608 609 **COMMON** /MONITORING/ SIGMA, MONITOR, NOW, ISA COMMON /TIME/ TS, TEND, TPRD, NSIM 610 611 COMMON /WAREA/ NCAR, CAR1, CAR3, CAR6, CAR12, CAR24, CAR36 612 С 613 С OPEN(30,FILE='C ANALYTICALLY.TXT',STATUS='UNKNOWN') 614 С 615 C-----INITIALIZATION OF MATRICES AND PARAMETERS------616 NXNY=NX*NY ! LEVEL NODES ! PARTICLES OUT OF BOUNDARIES 617 OOB=0 618 TOTALPART=0 ! TOTAL PARTICLE COUNTER 619 LDC=10*TDC !LONGITUDAL DISPERSSION 620 С COORDINATES OF POLLUTION ORIGIN 621 С 622 PX=INT (RPX) 623 PY=INT (RPY) 624 PZ=1 625 **IF**(RPY-PY.**GE**.0.5) PY=PY+1 !COUNTS ON CENTRAL Y 626 **IF**(RPX-PX.**GE**.0.5) PX=PX+1 !COUNTS ON CENTRAL X 627 С DO JS=0,KSA-1 628 629 DO IW=1,KW 630 DO K=1, NOW(IW) 631 ! MONITOR WELL INITIAL DETECTION VALUE MW(JS, IW, K) = . FALSE.632 ENDDO 633 ENDDO 634 ENDDO 635 С DO JS=0,KSA-1 636 637 DO IW=1,KW 638 DET(JS, IW) = . FALSE. ! DETECTION PARAMETER (IF PLUME IS 639 DETECTED THEN TRUE) 640 TOD(JS, IW) = 0.D0! AVERAGE TIME OF DETECTION 641 PRSMTTL(JS,IW)=0 ! INITIAL TIME OF SAMPLING 642 C643 С INITIALISING CONTAMINATED CELL AREA 644 NCAR(JS,IW) = 0.D0645 CAR1(JS, IW) = 0.D0646 CAR3(JS, IW) = 0.D0647 CAR6(JS, IW) = 0.D0CAR12(JS, IW)=0.D0 648 649 CAR24 (JS, IW) = 0.D0650 CAR36(JS,IW) = 0.D0651 ENDDO 652 ENDDO 653 С 654 DO I=1, IMEM 655 X(I)=0.D0 656 Y(I)=0.D0 657 Z(I)=0.D0 658 XPR(I)=0.D0 659 YPR(I) = 0.D0660 ZPR(I)=0.D0661 C(I) = 0ENDDO 662 663 С 664 CALL WNDFS (SIGMA, TDC, NDFS) 665 С 666 С DIMENSION RESTORATION FACTORS 667 DISTLENGT=DX 668 DISTTIME=TS 669 С DISTVEL=DX/TS 670 С 671 С REMOVING DIMENSIONS

672		LDC=LDC/DX
673		TDC=TDC/DY
674		DX=DX/DX
675		DY = DY / DY
676		
677		
678		
670		
680	C	15-15/15
601	C	
081	C	
682	C	**************************************
683	С	
684	С	TIME PROGRESSION
685	С	
686		DO 20 TTL=1,TEND,TS
687	С	
688	С	NUMBER OF PARTICLES TO BE RELEASED EACH TIME
689	С	INSTANT LEAK (TPRD=1) – CONTINUOUS LEAK (TPRD>1)
690		IF(TTL.LE.TPRD) THEN
691		PART=NPAR+NPAR*(TTL-1)
692		TOTALPART=PART
693		C (ORPOS) =C (ORPOS) +NPAR
694		DO PAR=PART-NPAR+1, PART
695		PRPOS (PAR) = ORPOS
696		X (PAR) = RPX
697		Y (PAR) = RPY
698		Z(PAR) = PZ
699		XPR(PAR) = X(PAR)
700		VPR(PAR) = V(PAR)
701		ZPR(PAR) = Z(PAR)
702		
702		
703	C	
704	C	DADTICIELS DDOCDESSION ALCORTUM
705	C	PARTICLE 5 PROGRESSION ALGORITHY
700	C	
707	~	DO 10 PAREI, PART
708	C	
709	C	CHECKING IF PARTICLE WAS INSIDE BOUNDARIES, THEN
/10	C	EXECUTE THE NEXT POSITION ALGORITHM
/11		IF (XPR (PAR) . GE. 1. AND. XPR (PAR) . LE. NX-1. AND. YPR (PAR) . LE. NY-1. AND.
712		& YPR(PAR). GE. 1. AND. ZPR(PAR). GT. 0. AND. ZPR(PAR). LE. NZ) THEN
713	С	
714	С	DETERMINING 3 RANDOM NUMBERS
715		R1=RVNORMAL (NSEED)
716		R2=RVNORMAL (NSEED)
717	С	R3=RVNORMAL (NSEED)
718	С	
719	С	CALCULATING PARTICLE'S VELOCITY
720		CALL VCL(X(PAR),Y(PAR),Z(PAR),VLX,VLY,VLZ)
721		CALL VCB(X(PAR),Y(PAR),Z(PAR),VBX,VBY,VBZ)
722	С	
723		VB=SQRT(VBX**2+VBY**2+VBZ**2)
724	С	
725	С	CALCULATING VELOCITY DERIVATIVES (BETWEEN CELL BOUNDARIES)
726		XIP=INT(X(PAR))
727		YIP=INT(Y(PAR))
728		CALL VCL(X(PAR),YIP,Z(PAR),VLXD,VLYD,VLZ)
729		CALL VCL (X (PAR), YIF+1, Z (PAR), VLXU, VLYU, VLZ)
730		CALL VCL (XIP, Y (PAR), Z (PAR), VLXL, VLYL, VLZ)
731		CALL VCL (XIP+1, Y (PAR), Z (PAR), VLXR, VLYR, VLZ)
732	C	
733	C	UXUVX = (VLXL - VLXR) / DX
734		$\frac{1}{1} \frac{1}{1} \frac{1}$
735		$\frac{1}{1} \frac{1}{1} \frac{1}$
736		$\frac{1}{10} \frac{1}{10} \frac$
730	\sim	OVOAT-(ATTT ATTV) NY
739	C 7	CALCULATINC ENVERD_DIANCY FOUNTION ADDITIONAL TEDM
730	C	CALCULATING FURNER-FLANCE EQUATION ADDITIONAL TERM
137		

740	\overline{a}	
740	C	
741		UXUDYX=(DLT/VB**3)*((VBY**3)*UXUVX+(VBX**3)*UXUVY)
742	С	
743		UYUDYY=(2.D0*TDC*VBX*VB**2-TDC*VBX**3-LDC*VBX*VBY**2)*
744		£ IIVIIVX/VB**3+(2_D0*LDC*VBY*VB**2-TDC*VBY*VB**2-
745		
745	~	
/46	C	
747	С	Y COMPONENT FOKKER-PLANK STAGNATION TERM
748		FPTY=UXUDYX+UYUDYY
749	С	
750	C	
750	C	
/31		UXUDXX=(2.DU^LDC^VBX^VB^^Z-LDC^VBX^^3-TDC^VBX^VB1^2)
752		& UXUVX/VB**3+(2.DU*TDC*VBY*VB**2-LDC*VBY*VBX**2-
753		& TDC*VBY**3)*UXUVY/VB**3
754	С	
755		UYUDXY=(DLT/VB**3) * ((VBY**3) *UYUVX+(VBX**3) *UYUVY)
756	C	
757	C	V COMPONENT FORMED DIANK CHACHATION TEDM
757	C	A COMPONENT FORKER-PLANK STAGNATION TERM
/58		FPTX=UXUDXX+UYUDXY
759	С	
760	С	DETERMINING THE NEW POSITION
761		FLDC=R1*SORT(2.D0*LDC*VB*TS)
762		$FTDC = P2 \times SOPT (2 - D0 \times TDC \times TZ \times TC)$
762	\overline{a}	LIDE NE DENT(2.50 IDE VD ID)
705	C	
764		X(PAR)=XPR(PAR)+VLX*TS+(VBX/VB)*FLDC-(VBY/VB)*FTDC+FPTX*TS
765		Y(PAR)=YPR(PAR)+VLY*TS+(VBY/VB)*FLDC+(VBX/VB)*FTDC+FPTY*TS
766	С	
767	С	CHECKING IF BOYNDARIES HAVE BEEN REACHED
768	C	CHECKING Y FND BOUNDARY
760	C	$TE(Y(D) \to T = 1 \text{ OD } Y(D) \to C \text{ mark}$
709		$\mathbf{IF} (A (FAR), \mathbf{III}, \mathbf{I}, \mathbf{V}, A (FAR), \mathbf{GI}, \mathbf{NA}^{-1}) \mathbf{IEEN}$
//0		C(PRPOS(PAR)) = C(PRPOS(PAR)) - 1
771		XPR(PAR) = X(PAR)
772		00B=00B+1
773		GOTO 10
774		ENDIF
775	C	CHECKING Y END BOUNDARY
115	0	
776		τε (ν(dad) σπ NV_1 σρ ν(dad) τπ 1) πυεΝ
776		IF (Y (PAR) . GT. NY-1. OR. Y (PAR) . LT. 1) THEN
776 777		<pre>IF(Y(PAR).GT.NY-1.OR.Y(PAR).LT.1)THEN C(PRPOS(PAR))=C(PRPOS(PAR))-1</pre>
776 777 778		<pre>IF(Y(PAR).GT.NY-1.OR.Y(PAR).LT.1)THEN C(PRPOS(PAR))=C(PRPOS(PAR))-1 YPR(PAR)=Y(PAR)</pre>
776 777 778 779		<pre>IF(Y(PAR).GT.NY-1.OR.Y(PAR).LT.1)THEN C(PRPOS(PAR))=C(PRPOS(PAR))-1 YPR(PAR)=Y(PAR) OOB=OOB+1</pre>
776 777 778 779 780		<pre>IF(Y(PAR).GT.NY-1.OR.Y(PAR).LT.1)THEN C(PRPOS(PAR))=C(PRPOS(PAR))-1 YPR(PAR)=Y(PAR) OOB=OOB+1 GOTO 10</pre>
776 777 778 779 780 781		<pre>IF(Y(PAR).GT.NY-1.OR.Y(PAR).LT.1)THEN C(PRPOS(PAR))=C(PRPOS(PAR))-1 YPR(PAR)=Y(PAR) OOB=OOB+1 GOTO 10 ENDIF</pre>
776 777 778 779 780 781 782	C	<pre>IF(Y(PAR).GT.NY-1.OR.Y(PAR).LT.1)THEN C(PRPOS(PAR))=C(PRPOS(PAR))-1 YPR(PAR)=Y(PAR) OOB=OOB+1 GOTO 10 ENDIF CHECKING_Z_DOWN_END_ROUNDARY</pre>
776 777 778 779 780 781 782 782	С	<pre>IF(Y(PAR).GT.NY-1.OR.Y(PAR).LT.1)THEN C(PRPOS(PAR))=C(PRPOS(PAR))-1 YPR(PAR)=Y(PAR) OOB=OOB+1 GOTO 10 ENDIF CHECKING Z DOWN END BOUNDARY IF(F(PAR))_JER_0)EURNY</pre>
776 777 778 779 780 781 782 783	С	<pre>IF(Y(PAR).GT.NY-1.OR.Y(PAR).LT.1)THEN C(PRPOS(PAR))=C(PRPOS(PAR))-1 YPR(PAR)=Y(PAR) OOB=OOB+1 GOTO 10 ENDIF CHECKING Z DOWN END BOUNDARY IF(Z(PAR).LT.0)THEN</pre>
776 777 778 779 780 781 782 783 783 784	С	<pre>IF(Y(PAR).GT.NY-1.OR.Y(PAR).LT.1)THEN C(PRPOS(PAR))=C(PRPOS(PAR))-1 YPR(PAR)=Y(PAR) OOB=OOB+1 GOTO 10 ENDIF CHECKING Z DOWN END BOUNDARY IF(Z(PAR).LT.0)THEN C(PRPOS(PAR))=C(PRPOS(PAR))-1</pre>
776 777 778 779 780 781 782 783 784 785	С	<pre>IF(Y(PAR).GT.NY-1.OR.Y(PAR).LT.1)THEN C(PRPOS(PAR))=C(PRPOS(PAR))-1 YPR(PAR)=Y(PAR) OOB=OOB+1 GOTO 10 ENDIF CHECKING Z DOWN END BOUNDARY IF(Z(PAR).LT.0)THEN C(PRPOS(PAR))=C(PRPOS(PAR))-1 ZPR(PAR)=Z(PAR)</pre>
776 777 778 779 780 781 782 783 784 785 786	С	<pre>IF(Y(PAR).GT.NY-1.OR.Y(PAR).LT.1)THEN C(PRPOS(PAR))=C(PRPOS(PAR))-1 YPR(PAR)=Y(PAR) OOB=OOB+1 GOTO 10 ENDIF CHECKING Z DOWN END BOUNDARY IF(Z(PAR).LT.0)THEN C(PRPOS(PAR))=C(PRPOS(PAR))-1 ZPR(PAR)=Z(PAR) OOB=OOB+1</pre>
776 777 778 779 780 781 782 783 784 785 786 787	С	<pre>IF(Y(PAR).GT.NY-1.OR.Y(PAR).LT.1)THEN C(PRPOS(PAR))=C(PRPOS(PAR))-1 YPR(PAR)=Y(PAR) OOB=OOB+1 GOTO 10 ENDIF CHECKING Z DOWN END BOUNDARY IF(Z(PAR).LT.0)THEN C(PRPOS(PAR))=C(PRPOS(PAR))-1 ZPR(PAR)=Z(PAR) OOB=OOB+1 GOTO 10</pre>
776 777 778 779 780 781 782 783 784 785 786 787 788	С	<pre>IF (Y (PAR) .GT.NY-1.OR.Y (PAR) .LT.1) THEN C (PRPOS (PAR)) =C (PRPOS (PAR)) -1 YPR (PAR) =Y (PAR) OOB=OOB+1 GOTO 10 ENDIF CHECKING Z DOWN END BOUNDARY IF (Z (PAR) .LT.0) THEN C (PRPOS (PAR)) =C (PRPOS (PAR)) -1 ZPR (PAR) =Z (PAR) OOB=OOB+1 GOTO 10 ENDIF</pre>
776 777 778 779 780 781 782 783 784 785 786 787 786 787 788 789	С	<pre>IF(Y(PAR).GT.NY-1.OR.Y(PAR).LT.1)THEN C(PRPOS(PAR))=C(PRPOS(PAR))-1 YPR(PAR)=Y(PAR) OOB=OOB+1 GOTO 10 ENDIF CHECKING Z DOWN END BOUNDARY IF(Z(PAR).LT.0)THEN C(PRPOS(PAR))=C(PRPOS(PAR))-1 ZPR(PAR)=Z(PAR) OOB=OOB+1 GOTO 10 ENDIF CHECKING Z TOP END BOUNDARY IE FOULD NZ ASSIST</pre>
776 777 778 779 780 781 782 783 784 785 786 787 788 789 789	C C	<pre>IF (Y (PAR) .GT.NY-1.OR.Y (PAR) .LT.1) THEN C (PRPOS (PAR)) =C (PRPOS (PAR)) -1 YPR (PAR) =Y (PAR) OOB=OOB+1 GOTO 10 ENDIF CHECKING Z DOWN END BOUNDARY IF (Z (PAR) .LT.0) THEN C (PRPOS (PAR)) =C (PRPOS (PAR)) -1 ZPR (PAR) =Z (PAR) OOB=OOB+1 GOTO 10 ENDIF CHECKING Z TOP END BOUNDARY.IF EQUAL NZ ASSIGN PREVIOUS VALUE CHECKING Z TOP END BOUNDARY.IF EQUAL NZ ASSIGN PREVIOUS VALUE CHECKING Z TOP END BOUNDARY.IF EQUAL NZ ASSIGN PREVIOUS VALUE CHECKING Z TOP END BOUNDARY.IF EQUAL NZ ASSIGN PREVIOUS VALUE</pre>
776 777 778 779 780 781 782 783 784 785 786 787 788 788 789 790	C C C	<pre>IF(Y(PAR).GT.NY-1.OR.Y(PAR).LT.1)THEN C(PRPOS(PAR))=C(PRPOS(PAR))-1 YPR(PAR)=Y(PAR) OOB=OOB+1 GOTO 10 ENDIF CHECKING Z DOWN END BOUNDARY IF(Z(PAR).LT.0)THEN C(PRPOS(PAR))=C(PRPOS(PAR))-1 ZPR(PAR)=Z(PAR) OOB=OOB+1 GOTO 10 ENDIF CHECKING Z TOP END BOUNDARY.IF EQUAL NZ ASSIGN PREVIOUS VALUE PLUME IS FORCED INSIDE THE VOLUME. THIS POLICY MAY BE ALTERED DOBEDDENT CONTINUES OF THE VOLUME. THIS POLICY MAY BE ALTERED CONTINUES OF THE VOLUME. THIS POLICY MAY BE ALTERED CONTINUES OF THE VOLUME. THIS POLICY MAY BE ALTERED</pre>
776 777 778 779 780 781 782 783 784 785 786 787 788 787 788 789 790 791	C C C	<pre>IF(Y(PAR).GT.NY-1.OR.Y(PAR).LT.1)THEN C(PRPOS(PAR))=C(PRPOS(PAR))-1 YPR(PAR)=Y(PAR) OOB=OOB+1 GOTO 10 ENDIF CHECKING Z DOWN END BOUNDARY IF(Z(PAR).LT.0)THEN C(PRPOS(PAR))=C(PRPOS(PAR))-1 ZPR(PAR)=Z(PAR) OOB=OOB+1 GOTO 10 ENDIF CHECKING Z TOP END BOUNDARY.IF EQUAL NZ ASSIGN PREVIOUS VALUE PLUME IS FORCED INSIDE THE VOLUME. THIS POLICY MAY BE ALTERED IF(Z(PAR).GT.NZ) Z(PAR)=NZ</pre>
776 777 778 779 780 781 782 783 784 785 786 787 788 786 787 788 789 790 791 792	C C C C C	<pre>IF(Y(PAR).GT.NY-1.OR.Y(PAR).LT.1)THEN C(PRPOS(PAR))=C(PRPOS(PAR))-1 YPR(PAR)=Y(PAR) OOB=OOB+1 GOTO 10 ENDIF CHECKING Z DOWN END BOUNDARY IF(Z(PAR).LT.0)THEN C(PRPOS(PAR))=C(PRPOS(PAR))-1 ZPR(PAR)=Z(PAR) OOB=OOB+1 GOTO 10 ENDIF CHECKING Z TOP END BOUNDARY.IF EQUAL NZ ASSIGN PREVIOUS VALUE PLUME IS FORCED INSIDE THE VOLUME. THIS POLICY MAY BE ALTERED IF(Z(PAR).GT.NZ) Z(PAR)=NZ</pre>
776 777 778 779 780 781 782 783 784 785 786 787 788 786 787 788 789 790 791 792 793	С С С С С С С С	<pre>IF(Y(PAR).GT.NY-1.OR.Y(PAR).LT.1)THEN C(PRPOS(PAR))=C(PRPOS(PAR))-1 YPR(PAR)=Y(PAR) OOB=OOB+1 GOTO 10 ENDIF CHECKING Z DOWN END BOUNDARY IF(Z(PAR).LT.0)THEN C(PRPOS(PAR))=C(PRPOS(PAR))-1 ZPR(PAR)=Z(PAR) OOB=OOB+1 GOTO 10 ENDIF CHECKING Z TOP END BOUNDARY.IF EQUAL NZ ASSIGN PREVIOUS VALUE PLUME IS FORCED INSIDE THE VOLUME. THIS POLICY MAY BE ALTERED IF(Z(PAR).GT.NZ) Z(PAR)=NZ KEEPING POSITIONS</pre>
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794	с сс сс сс	<pre>IF (Y (PAR) .GT.NY-1.OR.Y (PAR) .LT.1) THEN C (PRPOS (PAR)) =C (PRPOS (PAR)) -1 YPR (PAR) =Y (PAR) OOB=OOB+1 GOTO 10 ENDIF CHECKING Z DOWN END BOUNDARY IF (Z (PAR) .LT.0) THEN C (PRPOS (PAR)) =C (PRPOS (PAR)) -1 ZPR (PAR) =Z (PAR) OOB=OOB+1 GOTO 10 ENDIF CHECKING Z TOP END BOUNDARY.IF EQUAL NZ ASSIGN PREVIOUS VALUE PLUME IS FORCED INSIDE THE VOLUME. THIS POLICY MAY BE ALTERED IF (Z (PAR).GT.NZ) Z (PAR) =NZ KEEPING POSITIONS XPR (PAR) =X (PAR)</pre>
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795	с сс сс сс	<pre>IF(Y(PAR).GT.NY-1.OR.Y(PAR).LT.1)THEN C(PRPOS(PAR))=C(PRPOS(PAR))-1 YPR(PAR)=Y(PAR) OOB=OOB+1 GOTO 10 ENDIF CHECKING Z DOWN END BOUNDARY IF(Z(PAR).LT.0)THEN C(PRPOS(PAR))=C(PRPOS(PAR))-1 ZPR(PAR)=Z(PAR) OOB=OOB+1 GOTO 10 ENDIF CHECKING Z TOP END BOUNDARY.IF EQUAL NZ ASSIGN PREVIOUS VALUE PLUME IS FORCED INSIDE THE VOLUME. THIS POLICY MAY BE ALTERED IF(Z(PAR).GT.NZ) Z(PAR)=NZ KEEPING POSITIONS XPR(PAR)=X(PAR) YPR(PAR)=Y(PAR)</pre>
776 777 778 779 780 781 782 783 784 785 786 787 788 786 787 788 789 790 791 792 793 794 795 706	с сс сс	<pre>IF (Y (PAR) .GT.NY-1.OR.Y (PAR) .LT.1) THEN C (PRPOS (PAR)) =C (PRPOS (PAR)) -1 YPR (PAR) =Y (PAR) OOB=OOB+1 GOTO 10 ENDIF CHECKING Z DOWN END BOUNDARY IF (Z (PAR) .LT.0) THEN C (PRPOS (PAR)) =C (PRPOS (PAR)) -1 ZPR (PAR) =Z (PAR) OOB=OOB+1 GOTO 10 ENDIF CHECKING Z TOP END BOUNDARY.IF EQUAL NZ ASSIGN PREVIOUS VALUE PLUME IS FORCED INSIDE THE VOLUME. THIS POLICY MAY BE ALTERED IF (Z (PAR) .GT.NZ) Z (PAR) =NZ KEEPING POSITIONS XPR (PAR) =X (PAR) YPR (PAR) =Y (PAR) ZDD (PAR) =Y (PAR) ZDD (PAR) =Y (PAR)</pre>
776 777 778 779 780 781 782 783 784 785 786 787 788 788 789 790 791 792 793 794 795 796	с с с с с	<pre>IF(Y(PAR).GT.NY-1.OR.Y(PAR).LT.1)THEN C(PRPOS(PAR))=C(PRPOS(PAR))-1 YPR(PAR)=Y(PAR) OOB=OOB+1 GOTO 10 ENDIF CHECKING Z DOWN END BOUNDARY IF(Z(PAR).LT.0)THEN C(PRPOS(PAR))=C(PRPOS(PAR))-1 ZPR(PAR)=Z(PAR) OOB=OOB+1 GOTO 10 ENDIF CHECKING Z TOP END BOUNDARY.IF EQUAL NZ ASSIGN PREVIOUS VALUE PLUME IS FORCED INSIDE THE VOLUME. THIS POLICY MAY BE ALTERED IF(Z(PAR).GT.NZ) Z(PAR)=NZ KEEPING POSITIONS XPR(PAR)=X(PAR) YPR(PAR)=Y(PAR) ZPR(PAR)=Z(PAR)</pre>
776 777 778 779 780 781 782 783 784 785 786 787 788 787 788 789 790 791 792 793 794 795 796 797	с сс сс с	<pre>IF(Y(PAR).GT.NY-1.OR.Y(PAR).LT.1)THEN C(PRPOS(PAR))=C(PRPOS(PAR))-1 YPR(PAR)=Y(PAR) OOB=OOB+1 GOTO 10 ENDIF CHECKING Z DOWN END BOUNDARY IF(Z(PAR).LT.0)THEN C(PRPOS(PAR))=C(PRPOS(PAR))-1 ZPR(PAR)=Z(PAR) OOB=OOB+1 GOTO 10 ENDIF CHECKING Z TOP END BOUNDARY.IF EQUAL NZ ASSIGN PREVIOUS VALUE PLUME IS FORCED INSIDE THE VOLUME. THIS POLICY MAY BE ALTERED IF(Z(PAR).GT.NZ) Z(PAR)=NZ KEEPING POSITIONS XPR(PAR)=X(PAR) YPR(PAR)=Z(PAR)</pre>
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798		<pre>IF (Y (PAR) .GT.NY-1.OR.Y (PAR) .LT.1) THEN C (PRPOS (PAR)) =C (PRPOS (PAR)) -1 YPR (PAR) =Y (PAR) OOB=OOB+1 GOTO 10 ENDIF CHECKING Z DOWN END BOUNDARY IF (Z (PAR) .LT.0) THEN C (PRPOS (PAR)) =C (PRPOS (PAR)) -1 ZPR (PAR) =Z (PAR) OOB=OOB+1 GOTO 10 ENDIF CHECKING Z TOP END BOUNDARY.IF EQUAL NZ ASSIGN PREVIOUS VALUE PLUME IS FORCED INSIDE THE VOLUME. THIS POLICY MAY BE ALTERED IF (Z (PAR) .GT.NZ) Z (PAR) =NZ KEEPING POSITIONS XPR (PAR) =X (PAR) YPR (PAR) =Z (PAR) ZPR (PAR) =Z (PAR) ZPR (PAR) =Z (PAR)</pre>
776 777 778 779 780 781 782 783 784 785 786 787 788 786 787 788 789 790 791 792 793 794 795 796 797 798 799		<pre>IF(Y(PAR).GT.NY-1.OR.Y(PAR).LT.1)THEN C(PRPOS(PAR))=C(PRPOS(PAR))-1 YPR(PAR)=Y(PAR) OOB=OOB+1 GOTO 10 ENDIF CHECKING Z DOWN END BOUNDARY IF(Z(PAR).LT.0)THEN C(PRPOS(PAR))=C(PRPOS(PAR))-1 ZPR(PAR)=Z(PAR) OOB=OOB+1 GOTO 10 ENDIF CHECKING Z TOP END BOUNDARY.IF EQUAL NZ ASSIGN PREVIOUS VALUE PLUME IS FORCED INSIDE THE VOLUME. THIS POLICY MAY BE ALTERED IF(Z(PAR).GT.NZ) Z(PAR)=NZ KEEPING POSITIONS XPR(PAR)=X(PAR) YPR(PAR)=Z(PAR) ZPR(PAR)=Z(PAR) ZPR(PAR)=Z(PAR) ZPR(PAR)=Z(PAR) </pre>
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800		<pre>IF (Y (PAR) .GT.NY-1.OR.Y (PAR) .LT.1) THEN C (PRPOS (PAR)) =C (PRPOS (PAR)) -1 YPR (PAR) =Y (PAR) OOB=OOB+1 GOTO 10 ENDIF CHECKING Z DOWN END BOUNDARY IF (Z (PAR) .LT.0) THEN C (PRPOS (PAR)) =C (PRPOS (PAR)) -1 ZPR (PAR) =Z (PAR) OOB=OOB+1 GOTO 10 ENDIF CHECKING Z TOP END BOUNDARY.IF EQUAL NZ ASSIGN PREVIOUS VALUE PLUME IS FORCED INSIDE THE VOLUME. THIS POLICY MAY BE ALTERED IF (Z (PAR).GT.NZ) Z (PAR) =NZ KEEPING POSITIONS XPR (PAR) =X (PAR) YPR (PAR) =Z (PAR) ZPR (PAR) =Z (PAR) ZPR (PAR) =Z (PAR) WELLS ARE LOCATED ON GRID'S NODES</pre>
776 777 778 779 780 781 782 783 784 785 786 787 788 787 788 789 790 791 792 793 794 795 796 797 798 800 801		<pre>IF (Y (PAR) .GT.NY-1.OR.Y (PAR) .LT.1) THEN</pre>
776 777 778 779 780 781 782 783 784 785 786 787 788 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801	C C C C C C C C C C C C C C C C C C C	<pre>IF(Y(PAR).GT.NY-1.OR.Y(PAR).LT.1)THEN C(PRPOS(PAR))=C(PRPOS(PAR))-1 YPR(PAR)=Y(PAR) OOB=OOB+1 GOTO 10 ENDIF CHECKING Z DOWN END BOUNDARY IF(Z(PAR).LT.0)THEN C(PRPOS(PAR))=C(PRPOS(PAR))-1 ZPR(PAR)=Z(PAR) OOB=OOB+1 GOTO 10 ENDIF CHECKING Z TOP END BOUNDARY.IF EQUAL NZ ASSIGN PREVIOUS VALUE PLUME IS FORCED INSIDE THE VOLUME. THIS POLICY MAY BE ALTERED IF(Z(PAR).GT.NZ) Z(PAR)=NZ KEEPING POSITIONS XPR(PAR)=Y(PAR) ZPR(PAR)=Z(PAR) CALCULATING CONCENTRATIONS</pre>
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802	C C C C C C C C C C C C C C C C C C	<pre>IF(Y(PAR).GT.NY-1.OR.Y(PAR).LT.1)THEN C(PRPOS(PAR))=C(PRPOS(PAR))-1 YPR(PAR)=Y(PAR) OOB=OOB+1 GOTO 10 ENDIF CHECKING Z DOWN END BOUNDARY IF(Z(PAR).LT.0)THEN C(PRPOS(PAR))=C(PRPOS(PAR))-1 ZPR(PAR)=Z(PAR) OOB=OOB+1 GOTO 10 ENDIF CHECKING Z TOP END BOUNDARY.IF EQUAL NZ ASSIGN PREVIOUS VALUE PLUME IS FORCED INSIDE THE VOLUME. THIS POLICY MAY BE ALTERED IF(Z(PAR).GT.NZ) Z(PAR)=NZ KEEPING POSITIONS XPR(PAR)=X(PAR) YPR(PAR)=Z(PAR) ZPR(PAR)=Z(PAR) CHECKING CONCENTRATIONS</pre>
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803	с сс сс сссс с	<pre>IF(Y(PAR).GT.NY-1.OR.Y(PAR).LT.1)THEN C(PRPOS(PAR))=C(PRPOS(PAR))-1 YPR(PAR)=Y(PAR) OOB=OB+1 GOTO 10 ENDIF CHECKING Z DOWN END BOUNDARY IF(Z(PAR).LT.0)THEN C(PRPOS(PAR))=C(PRPOS(PAR))-1 ZPR(PAR)=Z(PAR) OOB=OOB+1 GOTO 10 ENDIF CHECKING Z TOP END BOUNDARY.IF EQUAL NZ ASSIGN PREVIOUS VALUE PLUME IS FORCED INSIDE THE VOLUME. THIS POLICY MAY BE ALTERED IF(Z(PAR).GT.NZ) Z(PAR)=NZ KEEPING POSITIONS XPR(PAR)=X(PAR) YPR(PAR)=Z(PAR) ZPR(PAR)=Z(PAR)</pre>
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804	0 00 00 0000 0	<pre>IF(Y(PAR).GT.NY-1.OR.Y(PAR).LT.1)THEN C(PRPOS(PAR))=C(PRPOS(PAR))-1 YPR(PAR)=Y(PAR) OOB=OB+1 GOTO 10 ENDIF CHECKING Z DOWN END BOUNDARY IF(Z(PAR).LT.0)THEN C(PRPOS(PAR))=C(PRPOS(PAR))-1 ZPR(PAR)=Z(PAR) OOB=OOB+1 GOTO 10 ENDIF CHECKING Z TOP END BOUNDARY.IF EQUAL NZ ASSIGN PREVIOUS VALUE PLUME IS FORCED INSIDE THE VOLUME. THIS POLICY MAY BE ALTERED IF(Z(PAR).GT.NZ) Z(PAR)=NZ KEEPING POSITIONS XPR(PAR)=X(PAR) YPR(PAR)=Z(PAR) ZPR(PAR)=Z(PAR) CHELS ARE LOCATED ON GRID'S NODES MCLX=INT(X(PAR)) MCLY=INT(Y(PAR)) DIFX=X(PAR)-MCLX</pre>
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805	C C C C C C C C C C C C C C C C C C C	<pre>IF(Y(PAR).GT.NY-1.OR.Y(PAR).LT.1)THEN C(PRPOS(PAR))=C(PRPOS(PAR))-1 YPR(PAR)=Y(PAR) OOB=OOB+1 GOTO 10 ENDIF CHECKING Z DOWN END BOUNDARY IF(Z(PAR).LT.0)THEN C(PRPOS(PAR))=C(PRPOS(PAR))-1 ZPR(PAR)=Z(PAR) OOB=OOB+1 GOTO 10 ENDIF CHECKING Z TOP END BOUNDARY.IF EQUAL NZ ASSIGN PREVIOUS VALUE PLUME IS FORCED INSIDE THE VOLUME. THIS POLICY MAY BE ALTERED IF(Z(PAR).GT.NZ) Z(PAR)=NZ KEEPING POSITIONS XPR(PAR)=Z(PAR) ZPR(PAR)=Z(PAR) ZPR(PAR)=Z(PAR) ZPR(PAR)=Z(PAR) CHELS ARE LOCATED ON GRID'S NODES MCLX=INT(X(PAR)) MCLY=INT(Y(PAR)) DIFY=Y(PAR)-MCLX DIFY=Y(PAR)-MCLX</pre>
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 800 801 802 803 804 805 806		<pre>IF(Y(PAR).GT.NY-1.OR.Y(PAR).LT.1)THEN C(PRPOS(PAR))=C(PRPOS(PAR))-1 YPR(PAR)=Y(PAR) OOB=OOB+1 GOTO 10 ENDIF CHECKING Z DOWN END BOUNDARY IF(2(PAR).LT.0)THEN C(PRPOS(PAR))=C(PRPOS(PAR))-1 ZPR(PAR)=Z(PAR) OOB=OOB+1 GOTO 10 ENDIF CHECKING Z TOP END BOUNDARY.IF EQUAL NZ ASSIGN PREVIOUS VALUE PLUME IS FORCED INSIDE THE VOLUME. THIS POLICY MAY BE ALTERED IF(2(PAR).GT.NZ) Z(PAR)=NZ KEEPING POSITIONS XPR(PAR)=X(PAR) YPR(PAR)=Y(PAR) ZPR(PAR)=Z(PAR) ZPR(PAR)=Z(PAR) =CALCULATING CONCENTRATIONS</pre>
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 800 801 802 803 804 805 806 807	C C C C C C C C C C C C C C C C C C C	<pre>IF(Y(PAR).GT.NY-1.OR.Y(PAR).LT.1)THEN C(PRPOS(PAR))=C(PRPOS(PAR))-1 YPR(PAR)=Y(PAR) OOB=OOB+1 GOTO 10 ENDIF CHECKING Z DOWN END BOUNDARY IF(Z(PAR).LT.0)THEN C(PRPOS(PAR))=C(PRPOS(PAR))-1 ZPR(PAR)=Z(PAR) OOB=OOB+1 GOTO 10 ENDIF CHECKING Z TOP END BOUNDARY.IF EQUAL NZ ASSIGN PREVIOUS VALUE PLUME IS FORCED INSIDE THE VOLUME. THIS POLICY MAY BE ALTERED IF(Z(PAR).GT.NZ) Z(PAR)=NZ KEEPING POSITIONS XPR(PAR)=Y(PAR) ZPR(PAR)=Z(PAR) ZPR(PAR)=Z(PAR) MCLX=INT(X(PAR)) MCLY=INT(Y(PAR)) DIFX=X(PAR)-MCLX DIFY=Y(PAR)-MCLX DIFY=Y(PAR)-MCLX DIFY=Y(PAR)-MCLX</pre>

808 IF(DIFY.GE.0.5) MCLY=MCLY+1 809 С 810 POS=(MCLY-1) *NX+MCLX 811 С 812 C(POS) = C(POS) + 1813 C(PRPOS(PAR)) = C(PRPOS(PAR)) - 1814 PRPOS (PAR) = POS 815 С 816 С 817 ENDIF ! INSIDE BOUNDARIES IF 818 С 819 С 820 10 CONTINUE 821 С 822 -----MONITOR-----С IF (MONITOR. EQV. . TRUE.) THEN 823 824 С ESTABLISHING A SAMPLING POLICY (INVSM=INTERVAL OF SAMPLING) 825 **DO** 90 JS=0,KSA-1 826 С 827 MONITOR WELLS С 828 **DO** 95 IW=1,KW 829 IF (INT (TTL-PRSMTTL (JS, IW)). EQ. ISA (JS)) THEN 830 ! KEEPING TIME OF PREVIOUS STEP PRSMTTL(JS,IW)=TTL 831 DO KK=1, NOW(IW) 832 BW=(LFYE-LFYI)/NOW(IW) 833 IBW=INT(BW/2) 834 MWX(KK)=INT(LFXE+(LFYE-LFYI)*NDFS) *!X DIMENSION OF MONITOR* 835 WELL 836 MWY(KK) = INT(LFYI+(IBW+(KK-1)*BW))**!Y DIMENSION OF MONITOR** 837 WELL 838 ENDDO 839 С 840 MONITORING WELLS 1 - NOW(IW) (NUMBER OF WELLS) С 841 **DO** 70 K=1, NOW(IW) 842 CC(K) = 0843 С DEPTH OF WELLS (NZ=1 EQV 2-D) 844 **DO** 80 IZ=1,NZ 845 NW (K) = (IZ-1) * NXNY + (MWY(K) - 1) * NX + MWX(K)846 CC(K)=CC(K)+C(NW(K)) 847 IF (CC (K) * PM. GE. TVC) THEN 848 IF (DET (JS, IW) . EQV. . FALSE.) THEN 849 MW(JS,IW,K)=.**TRUE**. 850 DET(JS, IW) = . TRUE. 851 TOD(JS,IW)=TTL 852 ENDIF 853 ENDIF 854 CONTINUE 80 855 С 856 70 ! CLOSING MONITOR LOOP CONTINUE 857 ENDIF ! SAMPLING POLICY IF 858 С 859 IF(DET(JS,IW).EQV..TRUE.)THEN 860 IF(TTL.EQ.TOD(JS,IW)) CALL POLVOL(CAR1(JS,IW)) 861 IF(TTL.EQ.TOD(JS,IW)+90) CALL POLVOL(CAR3(JS,IW)) 862 IF(TTL.EQ.TOD(JS,IW)+180) CALL POLVOL(CAR6(JS,IW)) IF(TTL.EQ.TOD(JS,IW)+365) CALL POLVOL(CAR12(JS,IW)) 863 864 IF(TTL.EQ.TOD(JS,IW)+730) CALL POLVOL(CAR24(JS,IW)) 865 IF(TTL.EQ.TOD(JS,IW)+1095) CALL POLVOL(CAR36(JS,IW)) 866 ENDIF 867 С 868 С 869 CONTINUE ! CLOSING WELL LOOP 95 870 90 CONTINUE ! CLOSING SAMPLING LOOP 871 С 872 ENDIF ! MONITOR IF 873 С 874 20 CONTINUE 875 С

```
876
      С
877
            DO JS=0,KSA-1
878
               DO IW=1,KW
879
                IF(DET(JS,IW).EQV..FALSE.) CALL POLVOL(NCAR(JS,IW))
880
               ENDDO
881
            ENDDO
882
      С
883
      C -----EXPORTING CONCENTRATIONS ON A SELECTED REALISATION ------
884
      C
             IF (IS.EQ.NSIM) THEN
885
            OPEN(32, FILE='CONCENTRATION.TXT', STATUS='UNKNOWN')
886
            QWVAL=20
887
            LVAL=10
888
            DO 40 K=1,NZ
889
             DO 40 J=1,NY
890
                 DO 40 I=1,NX
891
                   IP=(K-1) *NXNY+(J-1) *NX+I
892
                   RLOCLAND(IP)=C(IP)
893
      С
             VISUALIZATION OF LANDFILL'S LOCATION ON THE FIELD LATTICE AND
894
      С
             ITS MONITOR WELLS
895
                    DO KK=1, NOW(IW)
896
                       IF(I.EQ.MWX(KK).AND.J.EQ.MWY(KK)) RLOCLAND(IP)=QWVAL
897
                    ENDDO
898
      С
899
                     IF(K.EQ.NZ.AND.J.GE.LFYI.AND.J.LE.LFYE.AND.
900
           $
                     I. GE.LFXI. AND. I. LT. LFXE) RLOCLAND (IP) =LVAL
901
      С
902
              WRITE(32,*)I, J, K, RLOCLAND(IP)
903
      С
904
         40 CONTINUE
905
      С
906
            CLOSE(32)
907
      С
908
      C -----CHECKING HOW MANY PARTICLES WERE COUNTED AND IF WE HAD C<0 -----
909
            NP=0
910
            E0=0
911
            DO 45 K=1,NZ
912
              DO 45 J=1,NY
913
                DO 45 I=1,NX
914
                  IP=(K-1) *NXNY+(J-1) *NX+I
915
                  IF(C(IP).LT.0) THEN
916
                    E0=E0+1
917
                    PRINT 145, C(IP), I, J
918
                    WRITE(50,145)C(IP),I,J
919
                  ENDIF
920
                  NP=NP+C(IP)
921
         45 CONTINUE
922
        145 FORMAT('ATTENTION:NEGATIVE VALUE OF CONCENTRATION C', I5,
923
           &', AT POSITION X=', I4, ' AND Y=', I4)
924
      С
925
      С
            RESTORING DIMENSIONS
926
             LDC=LDC*DISTLENGT
927
              TDC=TDC*DISTLENGT
928
              DX=DX*DISTLENGT
929
              DY=DY*DISTLENGT
930
              DZ=DZ
931
              TEND=TEND*DISTTIME
932
              TPRD=TPRD*DISTTIME
933
              TS=TS*DISTTIME
934
      С
935
      С
936
             REPORTING VALUES
      С
937
             WRITE(50,*) IS, '/', NSIM
938
            WRITE (50, 800) NX, NY, NZ
939
            WRITE (50, 900) PX, PY, PZ
940
            WRITE(50,*)
941
            WRITE(50,*)'TIME STEP: ',TS
942
            WRITE(50,*)'TOTAL PARTICLES INJECTED: ', TOTALPART
943
            WRITE(50,*)'PARTICLES TRACKED: ',NP
```

	WRITE(50,*)'PARTICLES MISSED: ',00B
	MDTTP(50, *) 'motival TDACKED & MISSED ' NDLOOP
	WILLE (50, 1) TOTAL TRACKED & MISSED- ,NETOOD
	WRITE(50,*)
С	
	DO JS=0.KSA-1
	WRL1'E (50, *) '**********************************
	DO IW=1,KW
\sim	WRITE (50 *) LOCATION OF WELLS · '
~	
	& ('WELL:',K,' (',MWX(K),',',MWY(K),')',' - ',K=1,NOW(IW))
	WRITE(50,*)'SAMPLING INTERVAL (DAYS):',ISA(JS)
	IF(DET(JS,IW), EOV., TRUE.) THEN
	<i>IF</i> (MW(JS,IW,K). <i>EQVTRUE.</i>) <i>THEN</i>
	WRITE(50,*)NOW(IW),'-WELLS, MONITORING WELL:',K,
	& 'HAS DETECTED POLLUTION'
	WRITE(30, *) DETECTION TIME - , TOD(33, TW), * OF *, TEND
	ENDIF
	ENDDO
	ELSEIF (DET (JS, IW), EOV. FALSE.) THEN
	$\mathbf{DTTM} = \{\mathbf{y}_{1}, \mathbf{y}_{2}, \mathbf{y}_{3}, \mathbf{y}_{4}, y$
	WRITE(50, ^) NO DETECTION SUCCEEDED BY ,NOW(IW),
	& ' MONITORING WELLS '
	ENDIF
~	
-	
	WKLIE(50,^)
	WRITE(50,*)'POLLUTED VOLUME ON FAILURE=',NCAR(JS,IW)/LFAR
	WRITE(50,*)'POLLUTED VOLUME ON DETECTION='.CAR1(JS.IW)/I.FAR
	IDTITE (50 *) LOTTIME VOTIME A MANUEL AMERICA (51 *) / DATI
	WKLIE(30, ^) FOLLOTED VOLUME 3 MONTHS LATER=', CAR3(JS, IW)/LFAR
	WRITE(50,*)'POLLUTED VOLUME 6 MONTHS LATER=',CAR6(JS,IW)/LFAR
	WRITE (50,*)'POLLUTED VOLUME 12 MONTHS LATER=',CAR12(JS.TW)/LFAR
	WDTTP (50 *) POLITITED VALUE 24 MONTHS IMPED -1 CAD24/15 TW/ (TRAD
	MALLE(30, *) FOLLOTED VOLOME 24 MONTHS LATER- , CAR24(35,1W)/LEFAK
	WRITE(50,*)'POLLUTED VOLUME 36 MONTHS LATER=',CAR36(JS,IW)/LFAR
	WRITE(50,*)''
	WRITE(50,*)
	FUDDO
	ENDDO
2	
,	PRINTING ON SCREEN
	<pre>PRINT*, 'TDC: ', TDC</pre>
	PRINT*, 'TOT INJ:', TOTALPART.' / TRACKED:'.NP.' / MISSED:'.OOB.
	() TOT TEACKED (MISSED-1 NDLOOD
	« / IOI IRACALD « MISSLD- , NETOUB
	PRINT*
7	
~	
·	
80	U FORMAT ('X=',I4,2X,'Y=',I4,2X,'Z=',I4)
90	0 FORMAT ('STARTING POINT OF POLLUTION: ','PX=',I3,2X,'PY=',I3.
	& 2X, 'PZ=', T3)
~	u 2A, 12- 115)
	RETURN
	FIND
~	
2	
2	
?	
. –	
	NORMAL RANDOM NUMBER FUNCTION GENERATOR
2	
~	
-	
	FUNCTION RVNORMAL (SEED)
	IMPLICIT DOUBLE PRECISION (A-H,O-Z)
	DATA S.T / 0.4498710.386595 /
	DATA A, B / U.1960U, U.234/2 /
	INTEGER SEED
7	
- 1 ^	
ΤÜ	U U=KANDM(SEED)
	V=RANDM(SEED)
	V=1.7156D0*(V-0.5D0)
	V=U_C
	A-U-5
	Y = ABS(V) - T
	$O - Y + Y + Y + (\lambda + Y - P + Y)$

С	<pre>IF(V**2.GT4*LOG(U)*U**2) GOTO 100 IF(Q.GT.0.27846) GOTO 100 IF(Q.LT.0.27597) RVNORMAL=V/U RETURN END</pre>
С	
C	
C	RANDOM NUMBER FUNCTION (0-1 EQUAL PROBABLE)
C	
	FUNCTION RANDM(IDUM)
	INTEGER IDUM, IM1, IM2, IMM1, IA1, IQ1, IQ2, IR1, NTAB, NDIV
	DOUBLE PRECISION RANDM, AM, EPS, RNMX
	PARAMETER (IM1=2147483563, IM2=2147483399, AM=1.D0/IM1, IMM1=IM1-1,
	* IAI=40014, IA2=40692, IQI=53668, IQ2=52774, IRI=12211,
	* NTAB=32, NDIV=1+IMMI/NTAB, EPS=1.2E-/, RNMX=1.DU-EPS)
	CAME IN IN THIM?
	DATA IDUM2/123456789/ IV/NTAR*0/ IV/0/
	<i>IF</i> (IDUM. <i>LE</i> .0) <i>THEN</i>
	IDUM=MAX(-IDUM,1)
	IDUM2=IDUM
	DO 11 J=NTAB+8,1,-1
	K=IDUM/IQ1
	IDUM=IA1*(IDUM-K*IQ1)-K*IR1
	<pre>IF (IDUM.LT.0) IDUM=IDUM+IM1</pre>
	IF (J.LE.NTAB) IV(J)=IDUM
11	CONTINUE
	ν—ιημιτα1 * (IDUM-K*IO1) -K*Iδ1 V—IMTIAT (IDUM-K+IO1) -K*Iδ1
	TF (TDUM T.T ()) TDUM = TDUM + TM1
	K = TDUM2 / TO2
	IDUM2=IA2*(IDUM2-K*IO2)
	<i>IF</i> (IDUM2. <i>LT.</i> 0) IDUM2=IDUM+IM2
	J=1+IY/NDIV
	IY=IV(J)-IDUM2
	IV(J)=IDUM
	IF (IY.LT.1) IY=IY+IMM1
	RANDM=MIN (AM*IY, RNMX)
	RETURN
_	END
С	
C	
C C***	****
C^^*	
C***	**************************************
C	
J	SUBROUTINE LANDF
	IMPLICIT DOUBLE PRECISION (A-H, O-Z)
	COMMON / PARAM/ P0, P1, EP, DX, DY, DZ, NX, NY, NZ, NSEED
	COMMON /LANDFILL/ LFXI,LFXE,LFYI,LFYE,LFAR,LFC
	INTEGER LFC(100000)
С	
	NN=NX*NY
С	
	DO I=1, NN
	LFC(I)=0
~	ENDDO
C	
C	> RECTAGULAR LANDFILL <
L	LANDFILL (COORDINATIONS IN METERS/D TO GET DIMENSIONLESS NUMBERS)
	LEANDFILL'S X INITIAL BOUNDARY LIMIT LEXE=INT(60/DX) /LANDFILL'S X FNDING ROUNDARY LIMIT

	LFYI=INT(140/DY) !LANDFILL'S Y INITIAL BOUNDARY LIMIT
	LFYE=INT(260/DY) !LANDFILL'S Y ENDING BOUNDARY LIMIT
	LFAR=(LFXE-LFXI-1)*(LFYE-LFYI-1) !LF'S DIMENSIONLESS AREA (No OF
CELL	S)
С	
	DO J=1, NY
	DO I=1, NX
	IP=(J-1) *NX+I
	IF (J.GE.LFYI.AND.J.LE.LFYE.AND.I.GE.LFXI.AND.I.LT.LFXE) THEN
	LFC(IP)=1
	ENDIF
	ENDDO
	ENDDO
С	
	RETURN
~	END
~	
~	
~ * * *	* * * * * * * * * * * * * * * * * * * *
) Adult 1	SUBROUTINE RANDORIGIN: CREATING RANDOM ORIGIN POINT OF POLLUTION
·*** ~	****
;	AURRAUM DAMAATATM (DOV DOV ADDAA)
	SUBROUTINE RANDORIGIN (RPX, RPY, ORPOS)
	IMPLICIT DOUBLE PRECISION (A-H, O-Z)
	COMMON / PARAM/ PU, P1, EP, DX, DY, DZ, NX, NY, NZ, NSEED
	COMMON /LANDFILL/ LFXI,LFXE,LFYI,LFYE,LFAR,LFC
~	INTEGER ORPOS, LFC (100000)
;	
	XL=ABS(LFXE-LFXI)
	YL=ABS(LFYE-LFYI)
	RPX=XL*RANDM (NSEED) +LFXI
	RPI=IL*RANDM (NSEED) +LFII
	PX=INT (RPX)
	PY=INT(RPY)
	PZ=1
	IF (RPY-PY.GE.U.5) PY=PY+1 !COUNTS ON CENTRAL Y
_	LE (RPX-PX.GE.U.5) PX=PX+1 !COUNTS ON CENTRAL X
2	
~	ORPOS=(PY-1)*NX+PX ! INITIAL CUBIC ELEMENT POSITION OF PARTICLE
;	
~	WKITE (39, *) PX, PY
2	
	KETUKN TND
~	END
2	
2	
?***	***************************************
2	SUBROUTINE WNDFS: WELLS' DISTANCE FROM SOURCE (NORMALIZED)
<u>]***</u>	***************************************
C	
	SUBROUTINE WNDFS (SIGMA, AT, DFS)
	IMPLICIT DOUBLE PRECISION (A-H, O-Z)
2	
	IF(SIGMA.EQ.0.D0) THEN
	<i>IF</i> (AT. <i>EQ</i> .0.001D0)DFS=3.0D0
	IF (AT. EQ .0.01D0)DFS=2.25D0
	IF (AT. EQ. 0.02D0)DFS=1.50D0
	IF (AT. EQ. 0.05D0)DFS=0.50D0
	IF (AT. EQ. 0.1D0)DFS=0.125D0
	<pre>IF(AT.EQ.0.2D0)DFS=0.030D0</pre>
	<i>IF</i> (AT. <i>EQ</i> .0.5D0)DFS=0.015D0
	ENDIF
С	
	IF (SIGMA. EQ. 0.25D0) THEN
	<i>IF</i> (AT. <i>EQ</i> .0.001D0)DFS=1.75D0
	<i>IF</i> (AT. <i>EQ</i> .0.01D0)DFS=1.50D0

11/18		
1140		IF (A1. EQ. 0.0250) DF3-1.0000
1149		<i>IF</i> (AT. <i>EQ</i> .0.05D0)DFS=0.50D0
1150		<i>IF</i> (AT. <i>EQ</i> .0.1D0)DFS=0.125D0
1151		<i>IF</i> (AT. <i>EQ</i> .0.2D0)DFS=0.30D0
1152		TF(AT EO (0.5D0)DFS=0.015D0
1152		
1155		ENDIF
1154	С	
1155		<i>IF</i> (SIGMA. <i>EQ</i> .0.50D0) <i>THEN</i>
1156		<i>IF</i> (AT. <i>EQ</i> .0.001D0)DFS=1.75D0
1157		TF(AT, FO, 0, 0, 1, 0, 0) $FS=1, 50, 0$
1159		
1150		IF (A1. EQ. 0.02D0) DF3-0.30D0
1159		IF (AT. EQ .0.05D0)DFS=0.50D0
1160		<i>IF</i> (AT. <i>EQ</i> .0.1D0)DFS=0.125D0
1161		<i>IF</i> (AT. <i>EQ</i> .0.2D0)DFS=0.030D0
1162		IF (AT. EO .0.5D0)DFS=0.015D0
1163		
1160	0	
1104	C	
1165		IF (SIGMA.EQ.0.75D0) THEN
1166		<i>IF</i> (AT. <i>EQ</i> .0.001D0)DFS=1.75D0
1167		<i>IF</i> (AT. <i>EQ</i> .0.01D0)DFS=1.25D0
1168		IF(AT, EQ, 0, 02D0) DES=0.50D0
1160		
1109		IF (A1. E2. 0.05D0) DF3 - 0.25D0
1170		IF (AT. EQ .0.1D0)DFS=0.125D0
1171		<i>IF</i> (AT. <i>EQ</i> .0.2D0)DFS=0.030D0
1172		<i>IF</i> (AT. <i>EQ</i> .0.5D0)DFS=0.015D0
1173		ENDIF
1174	C	
1175	C	TE (STOMA EO 1 DO) THEN
1176		
11/0		IF (AT. $EQ.0.001D0$) DFS=1.75D0
1177		<i>IF</i> (AT. <i>EQ</i> .0.01D0)DFS=1.25D0
1178		<i>IF</i> (AT. <i>EQ</i> .0.02D0)DFS=0.50D0
1179		<i>IF</i> (AT. <i>EQ</i> .0.05D0)DFS=0.125D0
1180		TF(AT E O 0 1 D 0) DES=0 0625D 0
1100		
1101		IF (AT. EQ . 0. 2D0) DFS=0.030D0
1182		<i>IF</i> (AT. <i>EQ</i> .0.5D0)DFS=0.015D0
1183		ENDIF
1184	С	
1185		IF(SIGMA.EO.1.5D0) THEN
1186		TF(AT EO 0 001) DFS=1 25D0
1100		
110/		
1188		IF (AT. EQ .0.02D0)DFS=0.50D0
1189		<i>IF</i> (AT. <i>EQ</i> .0.05D0)DFS=0.125D0
1190		<i>IF</i> (AT. <i>EQ</i> .0.1D0)DFS=0.0625D0
1191		IF(AT, EO, 0.2D0) DFS=0.015D0
1192		TF(AT, FO, 0, 5D0) DES=0, 015D0
1102		
1193		ENDLF
1194	С	
1195		IF (SIGMA.EQ.2.0D0) THEN
1196		<i>IF</i> (AT. <i>EQ</i> .0.001D0)DFS=0.75D0
1197		TF(AT FO 0 01D0) DFS=0 50D0
1109		
1198		IF (AT. EQ . 0. 02D0) DFS=0.23D0
1199		IF (AT. EQ .0.05D0)DFS=0.125D0
1200		IF (AT. EQ .0.1D0)DFS=0.0625D0
1201		<i>IF</i> (AT. <i>EQ</i> .0.2D0)DFS=0.015D0
1202		IF (AT, EO , 0, 5D0)DFS=0,015D0
1203		ENDTE
1203	a	
1204	C	
1205		RETURN
1206		END
1207	С	
1208	C	
1200		
1209	C	
1210	C****	· * * * * * * * * * * * * * * * * * * *
1211	С	SUBROUTINE POLVOL: ESTIMATING THE POLLUTED VOLUME
1212	C****	********************
1213	-	SUBROUTINE POLVOL (VOL)
1213		
1214	2	IMPLICIT DOUBLE PRECISION (A-H, U-Z)
1213	C	

1216		PARAMETER (IMEM=1024000)
1217		COMMON / PARAM/ P0, P1, EP, DX, DY, DZ, NX, NY, NZ, NSEED
1218		COMMON / POLLUTION/ C,00B
1219		INTEGER C(IMEM)
1220	С	
1221		NXNY=NX*NY
1222		VOL=0
1223		DO 50 K=1.NZ
1224		DO 50 JEL NY
1225		PO = 50 $r=1$ NX
1225		D = (K-1) + NYNY + (T-1) + NY + T
1220		$\mathbf{T} (\mathbf{C} (\mathbf{T} \mathbf{P}) \ \mathbf{C} \mathbf{T} \ \mathbf{O} \ \mathbf{V} \mathbf{O} \mathbf{I} = \mathbf{V} \mathbf{O} \mathbf{I} + 1$
1227	50	
1220	с С	000000
122)	C	VOL-VOLLOOD DADTICLES OUT OF POUNDADIES INCLUDED (1 CELL/DAD)
1230	C	VOL-VOLTOOD : FRATCHES OUT OF BOOMDARIES INCHODED (I CELL/FAR)
1231	C	
1232		
1233	C	END
1234	C	
1235	C Carlo ale ale ale	
1230	C****	
1237	C	CALCULATING THE VELOCITY FIELD
1238	C****	***************************************
1239	С	
1240		SUBROUTINE VEL(RK,P,VELX,VELY,VELZ)
1241	С	
1242	С	VELOCITIES ARE CALCULATED IN A SHIFTED GRID, EQUAL TO 1/2 IN RELATION
1243	С	TO THE INITIAL GRID WHERE K AND H ARE CALCULATED. THIS MEANS THAT
1244	С	VX(I+1/2,J,K), VY(I,J+1/2,K), VZ(I,J,K+1/2). CALCULATIONS OF VELOCITY
1245	С	ONTO OTHER POINTS OF SIMULATION AREA MUST ACCOUNT FOR THIS SHIFT.
1246	С	VELOCITIES ON INITIAL GRID NODES ARE LINEARLY INTERPOLATED,
1247	С	BETWEEN I+1,I AND J+1,J.
1248		IMPLICIT DOUBLE PRECISION (A-H, O-Z)
1249		PARAMETER (IMEM=1024000)
1250		DOUBLE PRECISION P(IMEM), RK(IMEM), VELX(IMEM), VELY(IMEM), VELZ(IMEM)
1200		
1251		DOUBLE PRECISION VELXI (IMEM), VELYI (IMEM), VELZI (IMEM)
1251 1252		DOUBLE PRECISION VELXI (IMEM), VELYI (IMEM), VELZI (IMEM) INTEGER TS, TEND, TPRD
1251 1252 1253		DOUBLE PRECISION VELXI (IMEM), VELXI (IMEM), VELXI (IMEM) INTEGER TS, TEND, TPRD COMMON /PARAM/ P0, P1, EP, DX, DY, DZ, NX, NY, NZ, NSEED
1250 1251 1252 1253 1254		DOUBLE PRECISION VELXI (IMEM), VELYI (IMEM), VELXI (IMEM), VELXI (IMEM) INTEGER TS, TEND, TPRD COMMON /PARAM/ P0, P1, EP, DX, DY, DZ, NX, NY, NZ, NSEED COMMON /TIME/ TS, TEND, TPRD, NSIM
1251 1252 1253 1254 1255	С	DOUBLE PRECISION VELXI (IMEM), VELYI (IMEM), VELXI (IMEM), VELZI (IMEM) INTEGER TS, TEND, TPRD COMMON /PARAM/ P0, P1, EP, DX, DY, DZ, NX, NY, NZ, NSEED COMMON /TIME/ TS, TEND, TPRD, NSIM
1251 1252 1253 1254 1255 1256	C C	DOUBLE PRECISION VELXI (IMEM), VELYI (IMEM), VELZI (IMEM) INTEGER TS, TEND, TPRD COMMON /PARAM/ P0, P1, EP, DX, DY, DZ, NX, NY, NZ, NSEED COMMON /TIME/ TS, TEND, TPRD, NSIM INITIALIZATION OF MATRICES AND PARAMETERS
1251 1252 1253 1254 1255 1256 1257	C C	DOUBLE PRECISION VELXI (IMEM), VELYI (IMEM), VELZI (IMEM) INTEGER TS, TEND, TPRD COMMON /PARAM/ P0, P1, EP, DX, DY, DZ, NX, NY, NZ, NSEED COMMON /TIME/ TS, TEND, TPRD, NSIM INITIALIZATION OF MATRICES AND PARAMETERS DO I=1, IMEM
1251 1252 1253 1254 1255 1256 1257 1258	C C	DOUBLE PRECISION VELXI (IMEM), VELYI (IMEM), VELZI (IMEM), VELZI (IMEM) INTEGER TS, TEND, TPRD COMMON /PARAM/ P0, P1, EP, DX, DY, DZ, NX, NY, NZ, NSEED COMMON /TIME/ TS, TEND, TPRD, NSIM INITIALIZATION OF MATRICES AND PARAMETERS DO I=1, IMEM VELXI (I)=0, D0
1251 1252 1253 1254 1255 1256 1257 1258 1259	C C	DOUBLE PRECISION VELXI (IMEM), VELYI (IMEM), VELZI (IMEM), VELZI (IMEM) INTEGER TS, TEND, TPRD COMMON /PARAM/ P0, P1, EP, DX, DY, DZ, NX, NY, NZ, NSEED COMMON /TIME/ TS, TEND, TPRD, NSIM INITIALIZATION OF MATRICES AND PARAMETERS DO I=1, IMEM VELXI (I) =0.D0 VELYI (I) =0.D0
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260	C C	DOUBLE PRECISION VELXI (IMEM), VELYI (IMEM), VELXI (IMEM), VELXI (IMEM) INTEGER TS, TEND, TPRD COMMON /PARAM/ P0, P1, EP, DX, DY, DZ, NX, NY, NZ, NSEED COMMON /TIME/ TS, TEND, TPRD, NSIM INITIALIZATION OF MATRICES AND PARAMETERS DO I=1, IMEM VELXI (I) =0.D0 VELYI (I) =0.D0 VELXI (I) =0.D0
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261	C C	DOUBLE PRECISION VELXI (IMEM), VELYI (IMEM), VELZI (IMEM), VELZI (IMEM) INTEGER TS, TEND, TPRD COMMON /PARAM/ P0, P1, EP, DX, DY, DZ, NX, NY, NZ, NSEED COMMON /TIME/ TS, TEND, TPRD, NSIM INITIALIZATION OF MATRICES AND PARAMETERS DO I=1, IMEM VELXI (I) =0.D0 VELYI (I) =0.D0 VELZI (I) =0.D0 VELXI (I) =0.D0
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262	C C	DOUBLE PRECISION VELXI (IMEM), VELYI (IMEM), VELXI (IMEM), VELXI (IMEM) INTEGER TS, TEND, TPRD COMMON /PARAM/ P0, P1, EP, DX, DY, DZ, NX, NY, NZ, NSEED COMMON /TIME/ TS, TEND, TPRD, NSIM INITIALIZATION OF MATRICES AND PARAMETERS DO I=1, IMEM VELXI (I) =0.D0 VELYI (I) =0.D0 VELXI (I) =0.D0 VELXI (I) =0.D0 VELXI (I) =0.D0 VELYI (I) =0.D0
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263	C C	DOUBLE PRECISION VELXI (IMEM), VELYI (IMEM), VELZI (IMEM), VELZI (IMEM) INTEGER TS, TEND, TPRD COMMON /PARAM/ P0, P1, EP, DX, DY, DZ, NX, NY, NZ, NSEED COMMON /TIME/ TS, TEND, TPRD, NSIM INITIALIZATION OF MATRICES AND PARAMETERS DO I=1, IMEM VELXI (I) =0.D0 VELYI (I) =0.D0 VELZI (I) =0.D0 VELXI (I) =0.D0 VELXI (I) =0.D0 VELXI (I) =0.D0 VELXI (I) =0.D0 VELXI (I) =0.D0 VELXI (I) =0.D0
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264	C C	DOUBLE PRECISION VELXI (IMEM), VELYI (IMEM), VELZI (IMEM) INTEGER TS, TEND, TPRD COMMON /PARAM/ P0, P1, EP, DX, DY, DZ, NX, NY, NZ, NSEED COMMON /TIME/ TS, TEND, TPRD, NSIM INITIALIZATION OF MATRICES AND PARAMETERS DO I=1, IMEM VELXI (I) =0.D0 VELYI (I) =0.D0 VELXI (I) =0.D0 VELX (I) =0.D0 VELX (I) =0.D0 VELY (I) =0.D0 VELZ (I) =0.D0 ENDDO
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265	С	DOUBLE PRECISION VELXI (IMEM), VELYI (IMEM), VELZI (IMEM) INTEGER TS, TEND, TPRD COMMON /PARAM/ P0, P1, EP, DX, DY, DZ, NX, NY, NZ, NSEED COMMON /TIME/ TS, TEND, TPRD, NSIM INITIALIZATION OF MATRICES AND PARAMETERS DO I=1, IMEM VELXI (I)=0.D0 VELYI (I)=0.D0 VELZI (I)=0.D0 VELX (I)=0.D0 VELZ (I)=0.D0 VELZ (I)=0.D0 ENDDO
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266	СС	DOUBLE PRECISION VELXI (IMEM), VELYI (IMEM), VELZI (IMEM) INTEGER TS, TEND, TPRD COMMON /PARAM/ P0, P1, EP, DX, DY, DZ, NX, NY, NZ, NSEED COMMON /TIME/ TS, TEND, TPRD, NSIM INITIALIZATION OF MATRICES AND PARAMETERS DO I=1, IMEM VELXI (I)=0.D0 VELYI (I)=0.D0 VELZI (I)=0.D0 VELX (I)=0.D0 VELZ (I)=0.D0 VELZ (I)=0.D0 NXNY=NX*NY
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267	ССС	DOUBLE PRECISION VELXI (IMEM), VELYI (IMEM), VELZI (IMEM) INTEGER TS, TEND, TPRD COMMON /PARAM/ P0, P1, EP, DX, DY, DZ, NX, NY, NZ, NSEED COMMON /TIME/ TS, TEND, TPRD, NSIM INITIALIZATION OF MATRICES AND PARAMETERS DO I=1, IMEM VELXI (I)=0.D0 VELYI (I)=0.D0 VELZI (I)=0.D0 VELX (I)=0.D0 VELZ (I)=0.D0 ENDDO NXNY=NX*NY
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268	с с с	DOUBLE PRECISION VELXI (IMEM), VELYI (IMEM), VELZI (IMEM) INTEGER TS, TEND, TPRD COMMON /PARAM/ P0, P1, EP, DX, DY, DZ, NX, NY, NZ, NSEED COMMON /TIME/ TS, TEND, TPRD, NSIM INITIALIZATION OF MATRICES AND PARAMETERS DO I=1, IMEM VELXI (I)=0.D0 VELYI (I)=0.D0 VELZI (I)=0.D0 VELX (I)=0.D0 VELY (I)=0.D0 VELZ (I)=0.D0 NXNY=NX*NY CALCULATING
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269	С С С С С С	DOUBLE PRECISION VELXI (IMEM), VELYI (IMEM), VELZI (IMEM) INTEGER TS, TEND, TPRD COMMON /PARAM/ P0, P1, EP, DX, DY, DZ, NX, NY, NZ, NSEED COMMON /TIME/ TS, TEND, TPRD, NSIM INITIALIZATION OF MATRICES AND PARAMETERS DO I=1, IMEM VELXI (I)=0.D0 VELYI (I)=0.D0 VELZI (I)=0.D0 VELX (I)=0.D0 VELY (I)=0.D0 VELZ (I)=0.D0 ENDDO NXNY=NX*NY CALCULATING DO 810 K=1 NZ
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270	С С С С С С	DOUBLE PRECISION VELXI (IMEM), VELYI (IMEM), VELZI (IMEM) INTEGER TS, TEND, TPRD COMMON /PARAM/ P0, P1, EP, DX, DY, DZ, NX, NY, NZ, NSEED COMMON /TIME/ TS, TEND, TPRD, NSIM INITIALIZATION OF MATRICES AND PARAMETERS DO I=1, IMEM VELXI (I)=0.D0 VELYI (I)=0.D0 VELZI (I)=0.D0 VELX (I)=0.D0 VELZ (I)=0.D0 VELZ (I)=0.D0 ENDDO NXNY=NX*NY CALCULATING DO 810 K=1, NZ DO 810 K=1, NZ
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270	С С С С С С	DOUBLE PRECISION VELXI (IMEM), VELYI (IMEM), VELZI (IMEM) INTEGER TS, TEND, TPRD COMMON /PARAM/ P0, P1, EP, DX, DY, DZ, NX, NY, NZ, NSEED COMMON /TIME/ TS, TEND, TPRD, NSIM INITIALIZATION OF MATRICES AND PARAMETERS DO I=1, IMEM VELXI (I)=0.D0 VELXI (I)=0.D0 VELXI (I)=0.D0 VELX (I)=0.D0 VELX (I)=0.D0 VELZ (I)=0.D0 ENDDO NXNY=NX*NY CALCULATING DO 810 K=1, NZ DO 810 J=1, NY
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1266 1267 1268 1269 1270 1271	с с с с	DOUBLE PRECISION VELXI (IMEM), VELXI (IMEM), VELXI (IMEM), VELXI (IMEM) INTEGER TS, TEND, TPRD COMMON /PARAM/ P0, P1, EP, DX, DY, DZ, NX, NY, NZ, NSEED COMMON /TIME/ TS, TEND, TPRD, NSIM INITIALIZATION OF MATRICES AND PARAMETERS DO I=1, IMEM VELXI (I)=0.D0 VELXI (I)=0.D0 VELXI (I)=0.D0 VELX (I)=0.D0 VELX (I)=0.D0 VELX (I)=0.D0 VELX (I)=0.D0 NXNY=NX*NY CALCULATING DO 810 K=1, NZ DO 810 J=1, NX DD 810 J=1, NX
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272	с с с с	DOUBLE PRECISION VELXI (IMEM), VELXI (IMEM), VELXI (IMEM), VELXI (IMEM) INTEGER TS, TEND, TPRD COMMON /PARAM/ P0, P1, EP, DX, DY, DZ, NX, NY, NZ, NSEED COMMON /TIME/ TS, TEND, TPRD, NSIM INITIALIZATION OF MATRICES AND PARAMETERS DO I=1, IMEM VELXI (I)=0.D0 VELYI (I)=0.D0 VELX (I)=0.D0 VELX (I)=0.D0 VELX (I)=0.D0 VELZ (I)=0.D0 ENDDO NXNY=NX*NY CALCULATING DO 810 K=1, NZ DO 810 J=1, NX IP=(K-1)*NXNY+(J-1)*NX+I
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273		DOUBLE PRECISION VELXI (IMEM), VELYI (IMEM), VELXI (IMEM), VELXI (IMEM) INTEGER TS, TEND, TPRD COMMON /PARAM/ P0, P1, EP, DX, DY, DZ, NX, NY, NZ, NSEED COMMON /TIME/ TS, TEND, TPRD, NSIM INITIALIZATION OF MATRICES AND PARAMETERS DO I=1, IMEM VELXI (I)=0.D0 VELXI (I)=0.D0 VELXI (I)=0.D0 VELX (I)=0.D0 VELX (I)=0.D0 VELX (I)=0.D0 VELZ (I)=0.D0 ENDDO NXNY=NX*NY CALCULATING DO 810 K=1,NZ DO 810 I=1,NX IP=(K-1)*NXNY+(J-1)*NX+I VELOCIEV, ON Y, ANIC, (I+1/2)
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274	С с с с с с с с с с с с	DOUBLE PRECISION VELXI (IMEM), VELYI (IMEM), VELZI (IMEM) INTEGER TS, TEND, TPRD COMMON /PARAM/ P0, P1, EP, DX, DY, DZ, NX, NY, NZ, NSEED COMMON /TIME/ TS, TEND, TPRD, NSIM INITIALIZATION OF MATRICES AND PARAMETERS DO I=1, IMEM VELXI (I) =0.D0 VELXI (I) =0.D0 VELXI (I) =0.D0 VELX (I) =0.D0 VELX (I) =0.D0 VELX (I) =0.D0 VELZ (I) =0.D0 ENDDO NXNY=NX*NY CALCULATING DO 810 K=1,NZ DO 810 J=1,NY DO 810 I=1,NX IP=(K-1)*NXNY+(J-1)*NX+I VELOCITY ON X AXIS (I+1/2)
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275	с с с с с с	DOUBLE PRECISION VELXI (IMEM), VELYI (IMEM), VELZI (IMEM) INTEGER TS, TEND, TPRD COMMON /PARAM/ P0, P1, EP, DX, DY, DZ, NX, NY, NZ, NSEED COMMON /TIME/ TS, TEND, TPRD, NSIM INITIALIZATION OF MATRICES AND PARAMETERS DO 1=1, IMEM VELXI (I)=0.D0 VELYI (I)=0.D0 VELY (I)=0.D0 VELY (I)=0.D0 VELY (I)=0.D0 VELY (I)=0.D0 VELY (I)=0.D0 ENDDO NXNY=NX*NY CALCULATING DO 810 K=1, NZ DO 810 I=1, NX IP=(K-1)*NXNY+ (J-1)*NX+I VELOCITY ON X AXIS (I+1/2) IF(I.GE.1.AND.I.E.NX-1) THEN ! CALCULATING grad (H)
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276	с с с с с с	DOUBLE PRECISION VELXI (IMEM), VELYI (IMEM), VELZI (IMEM) INTEGER TS, TEND, TPRD COMMON /PARAM/ P0, P1, EP, DX, DY, DZ, NX, NY, NZ, NSEED COMMON /TIME/ TS, TEND, TPRD, NSIM INITIALIZATION OF MATRICES AND PARAMETERS DO I=1, IMEM VELXI (I)=0.D0 VELXI (I)=0.D0 VELX (I)=0.D0 VELX (I)=0.D0 VELZ (I)=0.D0 VELZ (I)=0.D0 NXNY=NX*NY CALCULATING DO 810 K=1, NZ DO 810 J=1, NX IP=(K-1)*NXNY+(J-1)*NX+I VELOCITY ON X AXIS (I+1/2) IF(I.GE.1.AND.I.LE.NX-1)THEN ! CALCULATING grad(H) GRADHX=(P(IP+1)-P(IP))/DX
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277	с с с с с с	DOUBLE PRECISION VELXI (IMEM), VELYI (IMEM), VELZI (IMEM) INTEGER TS, TEND, TPRD COMMON /PARAM/ P0, P1, EP, DX, DY, DZ, NX, NY, NZ, NSEED COMMON /TIME/ TS, TEND, TPRD, NSIM INITIALIZATION OF MATRICES AND PARAMETERS DO I=1, IMEM VELXI (I)=0.D0 VELYI (I)=0.D0 VELX (I)=0.D0 VELX (I)=0.D0 VELY (I)=0.D0 VELZ (I)=0.D0 VELZ (I)=0.D0 NXNY=NX*NY CALCULATING DO 810 K=1, NZ DO 810 J=1, NX IP=(K-1)*NXNY+(J-1)*NX+I VELOCITY ON X AXIS (I+1/2) IF(I.GE.1.AND.I.LE.NX-1)THEN ! CALCULATING grad(H) GRADHX=(P(IP+1)-P(IP))/DX RKPX=2.D0*RK(IP+1)*RK(IP)/(RK(IP+1)+RK(IP))
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278	с с с с с с	DOUBLE PRECISION VELXI (IMEM), VELYI (IMEM), VELZI (IMEM) INTEGER TS, TEND, TPRD COMMON /PARAM/ P0, P1, EP, DX, DY, DZ, NX, NY, NZ, NSEED COMMON /TIME/ TS, TEND, TPRD, NSIM INITIALIZATION OF MATRICES AND PARAMETERS DO I=1, IMEM VELXI (I)=0.D0 VELYI (I)=0.D0 VELY (I)=0.D0 VELZ (I)=0.D0 VELZ (I)=0.D0 ENDDO NXNY=NX*NY CALCULATING DO 810 K=1, NX IP=(K-1)*NXNY+(J-1)*NX+I VELOCITY ON X AXIS (I+1/2) IF(I.GE.1.AND.I.LE.NX-1)THEN ! CALCULATING grad(H) GRADHX=(P(IP+1)=P(IP))/DX RKPX=2.D0*RK(IP+1)*RK(IP)/(RK(IP+1)+RK(IP)) VELXI (IP)=RKPX*GRADHX/EP ! CALCULATING VELOCITY
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279	с с с с с с	DOUBLE PRECISION VELXI (IMEM), VELYI (IMEM), VELZI (IMEM) INTEGER TS, TEND, TPRD COMMON /PARAM/ P0, P1, EP, DX, DY, DZ, NX, NY, NZ, NSEED COMMON /TIME/ TS, TEND, TPRD, NSIM INITIALIZATION OF MATRICES AND PARAMETERS DO I=1, IMEM VELXI (I)=0.D0 VELXI (I)=0.D0 VELX (I)=0.D0 VELY (I)=0.D0 VELY (I)=0.D0 VELZ (I)=0.D0 ENDDO NXNY=NX*NY CALCULATING DO 810 K=1,NZ IP=(K-1)*NXNY+(J-1)*NX+I VELOCITY ON X AXIS (I+1/2) IF(I.GE.1.AND.I.LE.NX-1)THEN ! CALCULATING grad(H) GRADHX=(P(IP+1)-P(IP))/DX RKPX=2.D0*RK(IP+1)*RK(IP)/(RK(IP+1)+RK(IP)) VELXI (IP)=RKPX*GRADHX/EP ! CALCULATING VELOCITY ENDIF
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280	с с с с с с с с с с	DUBLE PRECISION VELXI (IMEM), VELYI (IMEM), VELZI (IMEM) INTEGER TS, TEND, TPRD COMMON /PARAM/ P0, P1, EP, DX, DY, DZ, NX, NY, NZ, NSEED COMMON /TIME/ TS, TEND, TPRD, NSIM INITIALIZATION OF MATRICES AND PARAMETERS DO I=1, IMEM VELXI (I)=0.D0 VELZI (I)=0.D0 VELZI (I)=0.D0 VELY (I)=0.D0 VELY (I)=0.D0 VELY (I)=0.D0 ENDDO NXNY=NX*NY CALCULATING DO 810 K=1, NZ DO 810 J=1, NX IP=(K-1)*NXNY+(J-1)*NX+I VELOCITY ON X AXIS (I+1/2) IF(I.GE.1.AND.I.LE.NX-1)THEN ! CALCULATING grad(H) GRADHX=(P(IP+1)-P(IP))/DX RKPX=2.D0*RK(IP+1)*RK(IP)/(RK(IP+1)+RK(IP)) VELXI (IP)=RKPX*GRADHX/EP ! CALCULATING VELOCITY ENDIF
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281	с с с с с с с с с	DOUBLE PRECISION VELXI (IMEM), VELYI (IMEM), VELZI (IMEM) INTEGER TS, TEND, TPRD COMMON /PARAM/ P0, P1, EP, DX, DY, DZ, NX, NY, NZ, NSEED COMMON /TIME/ TS, TEND, TPRD, NSIM INITIALIZATION OF MATRICES AND PARAMETERS DO I=1, IMEM VELXI (I)=0.D0 VELY (I)=0.D0 VELY (I)=0.D0 VELZ (I)=0.D0 VELZ (I)=0.D0 VELZ (I)=0.D0 ENDDO NXNY=NX*NY CALCULATING DO 810 K=1, NZ IP=(K-1)*NXNY+(J-1)*NX+I VELOCITY ON X AXIS (I+1/2) IF(I.GE.1.AND.I.LE.NX-1)THEN ! CALCULATING grad(H) GRADHX=(P(IP+1)=P(IP))/DX RKPX=2.D0*RK(IP+1)*RK(IP)/(RK(IP+1)+RK(IP)) VELXI (IP)=RKPX*GRADHX/EP ! CALCULATING VELOCITY ENDIF IF(I.EQ.NX) VELXI (IP)=VELXI ((K-1)*NXNY+(J-1)*NX+NX-1)
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282		DOUBLE PRECISION VELXI (IMEM), VELYI (IMEM), VELZI (IMEM), VELZI (IMEM) INTEGER TS, TEND, TPRD COMMON /PARAM/ P0, P1, EP, DX, DY, DZ, NX, NY, NZ, NSEED COMMON /TIME/ TS, TEND, TPRD, NSIM INITIALIZATION OF MATRICES AND PARAMETERS DO I=1, IMEM VELXI (I)=0. D0 VELY (I)=0. D0 VELY (I)=0. D0 VELY (I)=0. D0 VELZ (I)=0. D0 VELZ (I)=0. D0 VELZ (I)=0. D0 ENDDO NXNY=NX*NY CALCULATING DO 810 K=1, NZ DO 810 J=1, NX IP= (K-1)*NXNY+ (J-1)*NX+I VELOCITY ON X AXIS (I+1/2) IF(I.GE.1.AND.I.LE.NX-1)THEN ! CALCULATING grad (H) GRADHX= (P(IP+1)-P(IP))/DX RKPX=2. D0*RK(IP+1)*RK(IP)/(RK(IP+1)+RK(IP)) VELXI (IP)=RKPX*GRADHX/EP ! CALCULATING VELOCITY ENDIF IF(I.EQ.NX) VELXI (IP)=VELXI ((K-1)*NXNY+ (J-1)*NX+NX-1)

```
1284
             IF (J.GE.1.AND.J.LE.NY-1) THEN
                                                            ! CALCULATING grad(H)
1285
                GRADHY=(P(IP+NX)-P(IP))/DY
1286
               RKPY=2.D0*RK(IP+NX)*RK(IP)/(RK(IP+NX)+RK(IP))
1287
                VELYI(IP) = RKPY*GRADHY/EP
                                                             ! CALCULATING VELOCITY
1288
             ENDIF
1289
       С
1290
             IF(J.EQ.NY) VELYI(IP)=VELYI((K-1)*NXNY+(J-1-1)*NX+I)
1291
       С
1292
       С
             VELOCITY ON Z AXIS (K+1/2)
1293
             IF (K.GT.1.AND.K.LT.NZ) THEN
                                                             ! CALCULATING grad(H)
1294
               GRADHZ=(P(IP+NXNY)-P(IP))/DZ
1295
               RKPZ=2.D0*RK(IP+NXNY)*RK(IP)/(RK(IP+NXNY)+RK(IP))
1296
               VELZI(IP) = RKPZ*GRADHZ/EP
                                                             ! CALCULATING VELOCITY
1297
             ENDIF
1298
       С
1299
             IF(K.EQ.NZ) VELZI(IP)=VELZ((K-1-1)*NXNY+(J-1)*NX+I)
1300
       С
1301
         810 CONTINUE
       С
1302
1303
       С
             LINEARLY INTERPOLATING VELOCITIES ON (I, J)
1304
       С
              VELOCITY ON X AXIS [(I+1/2)+(I-1/2)]/2
1305
             DO 820 K=1,NZ
1306
              DO 820 J=1,NY
1307
                 DO 820 I=2,NX-1
1308
                   IP=(K-1) *NXNY+(J-1) *NX+I
1309
                   IB=(K-1) *NXNY+(J-1) *NX+I-1
1310
                   VELX(IP) = (VELXI(IP) + VELXI(IB)) / 2.DO
1311
         820 CONTINUE
       С
1312
1313
       С
              VELOCITY ON Y AXIS [(J+1/2)+(J-1/2)]/2
1314
             DO 830 K=1,NZ
1315
              DO 830 J=2,NY-1
1316
                DO 830 I=1,NX
1317
                   IP = (K-1) * NXNY + (J-1) * NX + I
1318
                   IB=(K-1) *NXNY+(J-1-1) *NX+I
1319
                   VELY(IP) = (VELYI(IP) + VELYI(IB)) / 2.DO
1320
         830 CONTINUE
1321
       С
1322
       С
              VELOCITY ON (NX, J) SIDE
1323
             DO J=1,NY
1324
                IP=(J-1)*NX+1
1325
                 IE=(J-1)*NX+NX
1326
                 VELX(IP) = VELXI(IP)
1327
                VELX(IE)=VELXI(IE)
1328
             ENDDO
1329
       С
1330
      С
             VELOCITY ON (I,NY) SIDE
1331
             DO I=1,NX
1332
                 IE=(NY-1) *NX+I
1333
                VELY(I)=VELYI(I)
1334
                VELX(IE)=VELXI(IE)
1335
             ENDDO
1336
       С
1337
       С
1338
             REMOVING DIMENSIONS (VELOCITY IN DX/TS M/DAY UNITS)
       С
1339
             DO 850 K=1,NZ
1340
              DO 850 J=1,NY
1341
                 DO 850 I=1,NX
1342
                    IP=(K-1)*NXNY+(J-1)*NX+I
1343
                    VELX(IP)=VELX(IP)/(DX/TS)
1344
                    VELY(IP)=VELY(IP)/(DY/TS)
1345
                    VELZ(IP)=VELZ(IP)/(DZ/TS)
1346
         850 CONTINUE
1347
       С
1348
       С
1349
             RETURN
1350
             END
```

1351

С

C^^.	* * * * * * * * * * * * * * * * * * * *	
C		
C	3D HYBRID VELOCITY INTERPOLATION SCEME SUBROUTINES	
C**:	***************************************	
С		
?		
	SUBROUTINE VCL (XPR YPR ZPR VLX VLY VLZ)	
~	Sobrooline (CH(KIR, HR, ZHR, VHR, VHR, VHR)	
C**:	***************************************	
С	LINEAR VELOCITY INTERPOLATION	
С		
	TMPLICTT DOUBLE PRECISION (A-H O-Z)	
	$\mathbf{D} \mathbf{D} \mathbf{D} \mathbf{M} \mathbf{F} \mathbf{M} \mathbf{E} \mathbf{D} \mathbf{D} \mathbf{D} \mathbf{M} \mathbf{E} \mathbf{M} \mathbf{E} \mathbf{D} \mathbf{D} \mathbf{D} \mathbf{M} \mathbf{E} \mathbf{M} \mathbf{E} \mathbf{D} \mathbf{D} \mathbf{D} \mathbf{D} \mathbf{M} \mathbf{E} \mathbf{M} \mathbf{E} \mathbf{D} \mathbf{D} \mathbf{D} \mathbf{D} \mathbf{D} \mathbf{M} \mathbf{E} \mathbf{M} \mathbf{E} \mathbf{D} \mathbf{D} \mathbf{D} \mathbf{D} \mathbf{D} \mathbf{M} \mathbf{E} \mathbf{M} \mathbf{E} \mathbf{D} \mathbf{D} \mathbf{D} \mathbf{D} \mathbf{D} \mathbf{D} \mathbf{D} D$	
~	PARAMETER (IMEM-1024000)	
C		
	double precision velx(imem),vely(imem),velz(imem)	
2		
	COMMON /VELOCITY/ VELX,VELY,VELZ	
	COMMON /PARAM/ PO.P1.EP.DX.DY.DZ.NX.NY.NZ.NSEED	
~	/ IIMANI/ I O/II/DI/DI/DI/MA/NI/NA/NODDD	
~		
2		
	NXNY=NX*NY	
	VLX=0.D0	
	VI.Y=0 D0	
	T=TNT, (XEK)	
	J=INT (YPR)	
	K=INT(ZPR)	
C		
-	FX=XPR-INT(XPR)	
	EV = VDD = TNIT (VDD)	
	FI-IPK-INT (IPK)	
7		
2	X-AXIS	
	IF(INT(XPR).GE.1.AND.INT(XPR).LE.NX-1)THEN	
	VI.X = (DX - FX) * VFI.X ((K-1) * NXNY + (J-1) * NX + T) +	
	$EV_{VEX} (DX IX) (UIX) (II I) (DX II) (UIX) (II I) (UIX) (III) (UIX) (IIIX) (IIX) (IIIX) (IIX) (IIIX) (IIX) (IIX) (IIX) (IIX) (IIX) (IIX) (I$	
	$\alpha \qquad \qquad$	
	ENDIF	
С		
	<pre>IF(INT(XPR).EQ.NX)VLX=VELX((K-1)*NXNY+(J-1)*NX+NX)</pre>	
С		
C		
c	VAVIC	
C		
	lf (int (ypr). GE. 1. AND. Int (ypr). LE. Ny-1) THEN	
	VLY=(DY-FY) *VELY((K-1) *NXNY+(J-1) *NX+I)+	
	& FY*VELY((K-1)*NXNY+(J-1+1)*NX+I)	
	ENDIF	
~		
-		
	IR (INT (YPR) .EQ.NY)VLY=VELY((K-1)*NXNY+(NY-1)*NX+I)	
	RETURN	
	END	
2		
~		
	<i>、</i> ~~~ <i>~~*</i> ***************************	
С		
	SUBROUTINE VCB (XPR, YPR, ZPR, VBX, VBY, VBZ)	
?		
~ ~**`	* * * * * * * * * * * * * * * * * * * *	
~ ^ `		
2	BILINEAR VELOCITY INTERPOLATION	
2		
2		
	IMPLICIT DOUBLE PRECISION (A-H.O-Z)	
	DADAMETED (IMEM-102/000)	
~	FARMELER (IMEM-IU24000)	
2		
	<pre>DOUBLE PRECISION VELX(IMEM), VELY(IMEM), VELZ(IMEM)</pre>	
С		
-	COMMON /VELOCITY/ VELV.VELV VELV	
	((((((((((((((((((((((((((((((((((((
	COMMON / PARAM/ PO, PI, EP, DX, DY, DZ, NX, NY, NZ, NSEED	
1420	С	
------	---	---
1421		NXNY=NX*NY
1422		VBX=0.D0
1423		VBY=0.D0
1424		VBZ=0.D0
1425		I=INT (XPR)
1426		J=INT (YPR)
1427		K=INT (ZPR)
1428	С	
1429		FX=XPR-INT (XPR)
1430		FY=YPR-INT (YPR)
1431	С	
1432	С	X-AXIS
1433		IF (INT (XPR) . GE. 1. AND. INT (XPR) . LE. NX-1. AND. INT (YPR) . LE. NY-1) THEN
1434		BVX1=(DX-FX)*(DY-FY)*VELX((K-1)*NXNY+(J-1)*NX+I)
1435		BVX2=FX*(DY-FY)*VELX((K-1)*NXNY+(J-1)*NX+I+1)
1436		BVX3=(DX-FX)*FY*VELX((K-1)*NXNY+(J-1+1)*NX+I)
1437		BVX4=FX*FY*VELX((K-1)*NXNY+(J-1+1)*NX+I+1)
1438		VBX=BVX1+BVX2+BVX3+BVX4
1439		ENDIF
1440	С	
1441		<pre>IF(INT(XPR).EQ.NX)VBX=VELX((K-1)*NXNY+(J-1)*NX+NX)</pre>
1442	С	
1443	С	Y-AXIS
1444		IF (INT (YPR) . GE. 1. AND. INT (YPR) . LE. NY-1. AND. INT (XPR) . LE. NX-1) THEN
1445		BVY1=(DX-FX)*(DY-FY)*VELY((K-1)*NXNY+(J-1)*NX+I)
1446		BVY2=FX*(DY-FY)*VELY((K-1)*NXNY+(J-1)*NX+I+1)
1447		BVY3=(DX-FX)*FY*VELY((K-1)*NXNY+(J-1+1)*NX+I)
1448		BVY4=FX*FY*VELY((K-1)*NXNY+(J-1+1)*NX+I+1)
1449		VBY=BVY1+BVY2+BVY3+BVY4
1450		ENDIF
1451	С	
1452		<pre>IF(INT(YPR).EQ.NY)VBY=VELX((K-1)*NXNY+(NY-1)*NX+I)</pre>
1453		RETURN
1454		END

A-2 Precipitation Event Pollution Source Code

1 PROGRAM TBRW 2 С 3 CLast change: 28 FEB 2012 4 С CASES RAIN DATA INPUT 5 С LANDFILL RECTAGULAR 6 С ONE INPUT FILE IS REQUIRED: TUBA211.INC 7 С 8 *C*-----9 С FLOW MODELLING 10 CLOGNORMAL MEDIA 11 С CORRELATED CONDUCTIVITY FIELD 12 С 2-D TURNING BANDS METHOD (TUBA) DOUBLE PRECISION USED 13 С HYBRID INTERPOLATION VELOCITY SCHEME 14 С С 15 С 16 PARAMETER IDENTIFICATION: 17 С IMEM= 1024000 MAX PARTICLES С KW=8 MONITORING WELLS ARRANGEMENT (1,2,3,4,6,8,12,20) 18 С 19 KSA=7 SAMPLING FREQUENCIES (1,30,60,90,120,180,360 DAYS) С 20 MDS=7 DISPERSION CASES (0.001,0.01,0.02,0.05,0.10,0.20,0.50 M) 21 С 22 C-23 С 24 **IMPLICIT DOUBLE PRECISION** (A-H, O-Z) 25 С 26 С MUST CHANGE IN FLOW3D, VELOCITY, RANDOMWALK, INTERVEL SUBROUTINES TOO 27 **PARAMETER** (IMEM=1024000) 28 **PARAMETER** (KW=8, KSA=7, MDS=5) 29 CKW:NO OF WELLS, KSA: SAMPLING INTERVALS, MDS: TRANSVERSE DISPERSION 30 С 31 С DIMENSION RVARIO(300), GAM(300) 32 DOUBLE PRECISION P(IMEM), VELX(IMEM), VELY(IMEM), VELZ(IMEM), RK(IMEM) 33 **DOUBLE PRECISION** TATOD (MDS, 0:KSA-1, KW), ATOD (0:KSA-1, KW), 34 & TDCM (MDS) 35 **DOUBLE PRECISION** NCAR (0:KSA-1, KW), CAR1 (0:KSA-1, KW), 36 & CAR3(0:KSA-1,KW),CAR6(0:KSA-1,KW),CAR12(0:KSA-1,KW), 37 & CAR24(0:KSA-1,KW),CAR36(0:KSA-1,KW),TNCAR(MDS,0:KSA-1,KW), & TCAR1 (MDS, 0:KSA-1, KW), TCAR3 (MDS, 0:KSA-1, KW), TCAR6 (MDS, 0:KSA-1, 38 39 & KW), TCAR12 (MDS, 0:KSA-1, KW), TCAR24 (MDS, 0:KSA-1, KW), 40 & TCAR36 (MDS, 0:KSA-1, KW), RAIN(10950) 41 INTEGER TS, TEND, TPRD, SNSIM, TVC, TDET (MDS, 0:KSA-1, KW), FDET (MDS, 42 & 0:KSA-1,KW),NOW(KW),ISA(0:KSA-1),ORPOSO,PX,PY,PZ,LFC(100000), 43 & NPAR(10950) 44 LOGICAL DET(0:KSA-1,KW),MONITOR 45 CHARACTER SDATE_R*8, DATE_R*8, T_R*10, ST_R*10 46 С 47 COMMON / PARAM/ P0, P1, EP, DX, DY, DZ, NX, NY, NZ, NSEED 48 COMMON /SOLVE/ OMEGA, TOL, TOL1, MITER, SNSIM 49 COMMON /VELOCITY/ VELX, VELY, VELZ COMMON / PARTICLE / PM, TVC, NPAR 50 COMMON /LANDFILL/ LFXI,LFXE,LFYI,LFYE,LFAR,LFC 51 52 COMMON /MONITORING/ SIGMA, MONITOR, NOW, ISA 53 COMMON /TIME/ TS, TEND, TPRD, NSIM 54 COMMON /WAREA/ NCAR, CAR1, CAR3, CAR6, CAR12, CAR24, CAR36 55 С *C*-----56 57 GRID SPACING FOR TURNING BAND SIMULATIONS IN X C-58 C-DIFFERENT FROM ABOVE SO AS TO CREATE ANISOTROPY. NOTE 59 C-THAT TURNING BAND ROUTINE CAN ONLY SIMULATE ISOTROPIC 60 C-FIELDS AND THAT, TO GENERATE ANISOTROPIC FIELDS, YOU HAVE 61 C-TO TRANSFORM THE GRID SPACING.... 62 C-___ 63 CC----HETEREOGENITY OF THE FIELD -----64 65 С

66		SIGMA=1.00D0	
67	С		
68	C	PARAMETER INITIALIZA	ΓΙΟΝ
69 70	С	NOT	
70	~	NSIM=50	INUMBER OF SIMULATIONS
/1	C	TRAD 10050	LETNE MONTEOD ENDS (20 VEADS)
12		TEND=10950	ITIME MONITOR ENDS (30 YEARS)
73		TPRD=10950	PERIOD OF TIME THAT LEAK OCCURS
74	0	15=1	!TIME STEP (DAIS)
75	C	INDEX-1000	LIENCUT OF STMULATION ADEA (METEDS)
70		INDEX-1000	INTERGIN OF SIMULATION AREA (METERS)
78		LNDF7=1	IDEDTH OF SIMULATION AREA (METERS)
79		DX=2	IDX STEP ON X AXIS (METERS)
80		DY=2	DY STEP ON Y AXIS (METERS)
81		DZ=1	!DZ STEP ON X AXIS (METERS)
82		NX=INT(LNDFX/DX)	!NODES IN X-DIRECTION (DIMENSIONLESS)
83		NY=INT (LNDFY/DY)	!NODES IN Y-DIRECTION (DIMENSIONLESS)
84		NZ=INT (LNDFZ/DZ)	NODES IN Z-DIRECTION (DIMENSIONLESS)
85	С		
86		DL=0.D0	!TB BLOCK DIMENSION
87		DC=0.D0	!TB BLOCK DIMENSION
88		DN=0.D0	!TB BLOCK DIMENSION
89	С		
90		A=20.D0	<i>CORELLATION COEFFICIENT (METERS)</i>
91		A=(-1.D0)*ABS(A)	
92		HEADG=0.001D0	
93		P0=0.D0	<i>STARTING HYDRAULIC HEAD</i>
94		P1=NX*DX*HEADG	!ENDING HYDRAULIC HEAD
95		EP=0.25D0	!EFFECTIVE POROSITY
96	_	ALPHA=2.3D0	!MEAN lnK
9/	C		
98	C	CONTAMINATION PARTICLI	LES CALCULATION
99 100		PM=28	PARIICLE'S MASS
100			PIRESHOLD VOLOMETRIC CONCENTRATION
101	C	NIEANI-0	
102	C	READING RAIN HEIGHT (nm) DATA
103	C	OPEN(20.FILE='BAIN30	TXT', STATUS='OLD')
105		DO I=1. TPRD	
106		READ (20,*) RAIN(I)	
107		NPAR(I)=INT(RAIN(I)	*PM)
108		NTPART=NTPART+NPAR ([)
109	С	PRINT*, I, NPAR(I), N	IPART
110		ENDDO	
111		CLOSE (20)	
112	С		
113	С		
114		MONITOR=. TRUE .	PARAMETER THAT CONTROLS IF WE MONITOR OR NOT
115	С		
116	С	RANDOM NUMBER SEEDS	
117		DSEED=2147811051.D0	!seed number for RNG`
118	~	NSEED=1236541350	!15.8
119	C		
120	C		
121 122	L-	DETA FOR NOW ON IS THI	I SIANDARD DEVIATION NOT THE VARIANCE
122	C	BETA=SQRT(SIGMA)	
123 124	L	TOI = 0 00001 D0	
125		$TOI_0.0000100$	
125		MTTER=2000	
120		SNSTM=0	I NUMBER OF STMULATIONS WITTH FLOW FIFTD
128	SOLUT	TON	. MONDER OF STRUCKLONS WITH FLOW FIELD
129	20101	NNNN=NX*NY*NZ	
130		NXNY=NX*NY	
131		DSEED=DSEED*NXNY*NY*B	ETA*DX/(NSIM*NSIM)
132		SSXEN=0.D0	
133		RKPOIN21=0.D0	

```
134
            RKPOIN22=0.D0
135
            RKPOINT1=0.D0
136
            RKPOINT2=0.D0
137
            SSX2EN=0.D0
138
     С
139
            DO 22 K=1,MDS
               DO 22 J=0,KSA-1
140
141
                 DO 22 I=1,KW
142
                   TDET(K,J,I)=0
143
                   FDET(K, J, I) = 0
144
                   TATOD(K, J, I) = 0.D0
145
         22 CONTINUE
146
     С
147
     С
            FLOW EQUATIONS RELAXATION FACTOR
148
     С
            - DEPEDENCE HAS BEEN OBSERVED. BEST RESULTS (?) ARE ACCOMPLISHED
149
     С
            WHEN RELAXATION FACTOR IS THE HIGHER POSSIBLE (INITIAL WAS 1.85)
150
            OMEGA0=1.85D0
151
      С
152
            IF (nnnn.GE.180000) OMEGA0=1.88D0
153
            IF (nnnn. GE. 240000) OMEGA0=1.91D0
154
            IF (nnnn.GE.390000) OMEGA0=1.92D0
155
            IF (nnnn.GE. 490000) OMEGA0=1.95D0
156
            IF (nnnn.GE.700000) OMEGA0=1.97D0
157
            IF (nnnn.GE.850000) OMEGA0=1.98D0
            IF(nnnn.GE.850000)TOL=0.0001D0
158
159
            IF (nnnn. GE. 850000) TOL1=0.0005D0
160
      С
161
      С
            PRINTING ON SCREEN THE STARTING TIME
162
      С
163
            CALL DATE AND TIME (SDATE R, ST R)
164
     С
            3-D TB INPUT DATA (BLOCK DIMENSIONS)
165
     С
166
            IF(DL.EQ.0.0)DL=DX
167
            IF(DC.EQ.0.0) DC=DY
168
            IF(DN.EQ.0.0)DN=DZ
169
     С
170
     С
171
      C -----PRINTING INITIAL INFORMATION------
172
      С
173
            PRINT*, 'THIS IS THE TOTAL PLUME TRANSPORT SIMULATION!'
174
            PRINT*, 'NUMBER OF REALIZATIONS :',NSIM
175
            PRINT 715, NX, NY, NZ
176
            PRINT 716, DX, DY, DZ
            PRINT 717, DL, DC, DN
177
178
      С
179
       715 FORMAT(' GRID SIZE : ', I3, 'X', I3, 'X', I3)
      716 FORMAT(' BLOCK DIMENSIONS : ',F5.2,' X',F5.2,' X',F5.2)
717 FORMAT(' TB BLOCK DIMENSIONS : ',F5.2,' X',F5.2,' X',F5.2)
180
181
182
      С
183
            PRINT*, 'CORRELATION RANGE (LENGTH UNITS) : ',A
            PRINT*,'
                                             & VARIANCE : ', BETA*BETA
184
185
            PRINT*
186
            PRINT*, '
                            ****** STARTING SIMULATIONS ******'
187
            PRINT*
188
     С
189
     С
190
      C-----ESTABLISHING MONITOR SYSTEM AND SAMPLING POLICY-----
     С
191
            LANDFILL'S GEOMETRY
192
            CALL LANDF
193
      С
194
      С
            NUMBER OF WELLS
195
            DO IW=1,KW
196
              IF(IW.LE.4)NOW(IW)=IW
197
              IF(IW.EQ.5)NOW(IW)=6
198
              IF(IW.EQ.6)NOW(IW)=8
199
              IF(IW.EQ.7)NOW(IW)=12
200
              IF(IW.EQ.8)NOW(IW)=20
201
            ENDDO
```

202	С		
203	C	SAMPLING INTERVALS	
204	Ŭ	\mathbf{DO} $\mathbf{TS}=0$ $\mathbf{KSA}-1$	
204		TE(TS CE 1 AND TS TE A)	гал (та) — та*30
205		IF(15, EO, 0) $ISA(15) = 1$	ISA (05) - 05 50
200		IF (03.EQ.0) ISA(03)-1	
207		IF(JS.EQ.5) ISA(JS)=180	
208		<i>IF</i> (JS <i>.EQ.</i> 6) ISA(JS)=365	
209		ENDDO	
210	С		
211	С	DISPERSIVITY FACTOR	
212		DO MTDC=1,MDS	
213		IF(MTDC.EQ.1) TDCM(MTDC)	=0.001D0
214		IF(MTDC.EQ.2) TDCM(MTDC)	=0.01D0
215	С	IF (MTDC.EO.3) TDCM (MTDC)=0.02D0
216		IF (MTDC.EQ.3) TDCM (MTDC)	=0.05D0
217		IF (MTDC.EO.4) TDCM (MTDC)	=0.10D0
218	С	TF(MTDC EO 6) TDCM(MTDC	0 = 0 2000
219	Ũ	TF(MTDC FO 5) TDCM(MTDC)	=0 5000
220			0.0020
220	C		
221	C	THEFT TOTHS ALTERACE CONTA	WINNER OFIL AREA
222	C	INITIALISING AVERAGE CONTA	MINATED CELL AREA
223		DO 28 MTDC=1, MDS	
224		<i>DO</i> 28 JS=0, KSA-1	
225		DO 28 IW=1, KW	
226		TNCAR(MTDC, JS, IW) = 0.D0	
227		TCAR1 (MTDC, JS, IW) =0.D0	
228		TCAR3(MTDC, JS, IW) =0.D0	
229		TCAR6(MTDC, JS, IW) =0.D0	
230		TCAR12(MTDC, JS, IW) = 0.D)
231		TCAR24 (MTDC, JS, IW) =0.D)
232		TCAR36(MTDC, JS, IW) =0.D)
233	2	8 CONTINUE	
234	С		
235	С		
236	C	CREATING REPORT FILES	
237		OPEN (9, FILE='ERROR.TXT', ST.	ATUS='REPLACE')
238	С	OPEN(11.FTLE='RESULTS TXT	'.STATUS='REPLACE')
239	C	OPEN(14 FTLE='K EXAMPLE T	XT' STATUS='UNKNOWN')
240	C		
240		OPEN(22 FILE= VELOCITIES	EXAMPLE TXT' STATUS='UNKNOWN')
	C	OPEN (22, FILE='VELOCITIES	EXAMPLE.TXT',STATUS='UNKNOWN') LE TXT' STATUS='UNKNOWN')
241	C	OPEN (22, FILE= 'VELOCITIES OPEN (23, FILE= 'HEADS_EXAMP OPEN (48 FILE= 'PROBALTTIES	EXAMPLE.TXT',STATUS='UNKNOWN') LE.TXT',STATUS='UNKNOWN') FYT',STATUS='UNKNOWN')
241 242 243	C	OPEN (22, FILE='VELOCITIES OPEN (23, FILE='HEADS_EXAMP OPEN (48, FILE='PROBALITIES.' OPEN (20, FILE='SOURCE_TYT'	EXAMPLE.TXT',STATUS='UNKNOWN') LE.TXT',STATUS='UNKNOWN') FXT',STATUS='UNKNOWN')
241 242 243 244	C	OPEN(22, FILE='VELOCITIES OPEN(23, FILE='HEADS EXAMP OPEN(48, FILE='PROBALITIES.' OPEN(39, FILE='SOURCE.TXT', OPEN(50, FILE='DEMEEDORT.TXT',	EXAMPLE.TXT',STATUS='UNKNOWN') LE.TXT',STATUS='UNKNOWN') FXT',STATUS='UNKNOWN') STATUS='UNKNOWN')
241 242 243 244 245	C	OPEN(22, FILE='VELOCITIES OPEN(23, FILE='HEADS EXAMP OPEN(48, FILE='PROBALITIES.' OPEN(39, FILE='SOURCE.TXT', OPEN(50, FILE='RWREPORT.TXT	EXAMPLE.TXT',STATUS='UNKNOWN') LE.TXT',STATUS='UNKNOWN') EXT',STATUS='UNKNOWN') STATUS='UNKNOWN') ',STATUS='UNKNOWN')
241 242 243 244 245 246	C C	OPEN(22, FILE='VELOCITIES OPEN(23, FILE='HEADS EXAMP OPEN(48, FILE='PROBALITIES.' OPEN(39, FILE='SOURCE.TXT', OPEN(50, FILE='RWREPORT.TXT	EXAMPLE.TXT', STATUS='UNKNOWN') LE.TXT', STATUS='UNKNOWN') FXT', STATUS='UNKNOWN') STATUS='UNKNOWN') ', STATUS='UNKNOWN')
241 242 243 244 245 246	c c	OPEN(22, FILE='VELOCITIES OPEN(23, FILE='HEADS_EXAMP OPEN(48, FILE='PROBALITIES.' OPEN(39, FILE='SOURCE.TXT', OPEN(50, FILE='RWREPORT.TXT SNSIMOLD=0 ! PARAMETER	EXAMPLE.TXT',STATUS='UNKNOWN') LE.TXT',STATUS='UNKNOWN') FXT',STATUS='UNKNOWN') STATUS='UNKNOWN') ',STATUS='UNKNOWN') THAT CONTROLS PROBABILITIES FILE OUTPUT
241 242 243 244 245 246 247	c c	OPEN(22, FILE='VELOCITIES OPEN(23, FILE='HEADS_EXAMP OPEN(48, FILE='PROBALITIES.' OPEN(39, FILE='SOURCE.TXT', OPEN(50, FILE='RWREPORT.TXT SNSIMOLD=0 ! PARAMETER	EXAMPLE.TXT',STATUS='UNKNOWN') LE.TXT',STATUS='UNKNOWN') FXT',STATUS='UNKNOWN') STATUS='UNKNOWN') ',STATUS='UNKNOWN') THAT CONTROLS PROBABILITIES FILE OUTPUT
241 242 243 244 245 246 247 248	с с с	OPEN(22, FILE='VELOCITIES OPEN(23, FILE='HEADS_EXAMP OPEN(48, FILE='PROBALITIES.' OPEN(39, FILE='SOURCE.TXT', OPEN(50, FILE='RWREPORT.TXT SNSIMOLD=0 ! PARAMETER	EXAMPLE.TXT',STATUS='UNKNOWN') LE.TXT',STATUS='UNKNOWN') FXT',STATUS='UNKNOWN') STATUS='UNKNOWN') ',STATUS='UNKNOWN') THAT CONTROLS PROBABILITIES FILE OUTPUT
241 242 243 244 245 246 247 248 249	C C C C C ***	OPEN(22,FILE='VELOCITIES OPEN(23,FILE='HEADS_EXAMP OPEN(48,FILE='PROBALITIES.' OPEN(39,FILE='SOURCE.TXT', OPEN(50,FILE='RWREPORT.TXT SNSIMOLD=0 ! PARAMETER	EXAMPLE.TXT',STATUS='UNKNOWN') LE.TXT',STATUS='UNKNOWN') FXT',STATUS='UNKNOWN') STATUS='UNKNOWN') ',STATUS='UNKNOWN') THAT CONTROLS PROBABILITIES FILE OUTPUT
241 242 243 244 245 246 247 248 249 250	C C C C C C **** C	OPEN(22,FILE='VELOCITIES OPEN(23,FILE='HEADS_EXAMP OPEN(48,FILE='PROBALITIES.' OPEN(39,FILE='SOURCE.TXT', OPEN(50,FILE='RWREPORT.TXT SNSIMOLD=0 ! PARAMETER ************************************	EXAMPLE.TXT',STATUS='UNKNOWN') LE.TXT',STATUS='UNKNOWN') FXT',STATUS='UNKNOWN') STATUS='UNKNOWN') ',STATUS='UNKNOWN') THAT CONTROLS PROBABILITIES FILE OUTPUT
241 242 243 244 245 246 247 248 249 250 251	C C C C C **** C C	OPEN(22, FILE='VELOCITIES OPEN(23, FILE='HEADS_EXAMP OPEN(48, FILE='PROBALITIES.' OPEN(39, FILE='SOURCE.TXT', OPEN(50, FILE='RWREPORT.TXT SNSIMOLD=0 ! PARAMETER ************************************	EXAMPLE.TXT',STATUS='UNKNOWN') LE.TXT',STATUS='UNKNOWN') FXT',STATUS='UNKNOWN') STATUS='UNKNOWN') ',STATUS='UNKNOWN') THAT CONTROLS PROBABILITIES FILE OUTPUT
241 242 243 244 245 246 247 248 249 250 251 252	C C C C C C *** C C	OPEN(22, FILE='VELOCITIES OPEN(23, FILE='HEADS_EXAMP OPEN(48, FILE='PROBALITIES.' OPEN(39, FILE='SOURCE.TXT', OPEN(50, FILE='RWREPORT.TXT SNSIMOLD=0 ! PARAMETER ************************************	EXAMPLE.TXT',STATUS='UNKNOWN') LE.TXT',STATUS='UNKNOWN') FXT',STATUS='UNKNOWN') STATUS='UNKNOWN') ',STATUS='UNKNOWN') THAT CONTROLS PROBABILITIES FILE OUTPUT
241 242 243 244 245 246 247 248 249 250 251 252 253	C C C C C C C **** C C	OPEN(22, FILE='VELOCITIES OPEN(23, FILE='HEADS_EXAMP OPEN(48, FILE='PROBALITIES.' OPEN(39, FILE='SOURCE.TXT', OPEN(50, FILE='RWREPORT.TXT SNSIMOLD=0 ! PARAMETER ************************************	EXAMPLE.TXT', STATUS='UNKNOWN') LE.TXT', STATUS='UNKNOWN') TXT', STATUS='UNKNOWN') STATUS='UNKNOWN') ', STATUS='UNKNOWN') THAT CONTROLS PROBABILITIES FILE OUTPUT ************************************
241 242 243 244 245 246 247 248 249 250 251 252 253 254	C C C C C C C C **** C C	OPEN(22, FILE='VELOCITIES OPEN(23, FILE='HEADS_EXAMP OPEN(48, FILE='PROBALITIES. OPEN(39, FILE='SOURCE.TXT', OPEN(50, FILE='RWREPORT.TXT SNSIMOLD=0 ! PARAMETER ************************************	EXAMPLE.TXT', STATUS='UNKNOWN') LE.TXT', STATUS='UNKNOWN') TXT', STATUS='UNKNOWN') STATUS='UNKNOWN') ', STATUS='UNKNOWN') THAT CONTROLS PROBABILITIES FILE OUTPUT ************************************
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255	C C C C C C C C C C C C C C C C C C C	<pre>OPEN(22,FILE='VELOCITIES_ OPEN(23,FILE='HEADS_EXAMP OPEN(48,FILE='PROBALITIES. OPEN(39,FILE='SOURCE.TXT', OPEN(50,FILE='RWREPORT.TXT SNSIMOLD=0 ! PARAMETER ***********************************</pre>	EXAMPLE.TXT', STATUS='UNKNOWN') LE.TXT', STATUS='UNKNOWN') TXT', STATUS='UNKNOWN') STATUS='UNKNOWN') ', STATUS='UNKNOWN') THAT CONTROLS PROBABILITIES FILE OUTPUT ************************************
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256	C C C C C C C C C C C C C C C C C C C	<pre>OPEN(22,FILE='VELOCITIES_ OPEN(23,FILE='HEADS_EXAMP OPEN(48,FILE='PROBALITIES. OPEN(39,FILE='SOURCE.TXT', OPEN(50,FILE='RWREPORT.TXT SNSIMOLD=0 ! PARAMETER ***********************************</pre>	EXAMPLE.TXT', STATUS='UNKNOWN') LE.TXT', STATUS='UNKNOWN') TXT', STATUS='UNKNOWN') STATUS='UNKNOWN') ', STATUS='UNKNOWN') THAT CONTROLS PROBABILITIES FILE OUTPUT ************************************
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 255 256 257	C C C C C C C C C C C C C C C C C C C	OPEN(22, FILE='VELOCITIES OPEN(23, FILE='HEADS_EXAMP OPEN(48, FILE='PROBALITIES. OPEN(39, FILE='SOURCE.TXT', OPEN(50, FILE='RWREPORT.TXT SNSIMOLD=0 ! PARAMETER ************************************	EXAMPLE.TXT', STATUS='UNKNOWN') LE.TXT', STATUS='UNKNOWN') TXT', STATUS='UNKNOWN') STATUS='UNKNOWN') ', STATUS='UNKNOWN') THAT CONTROLS PROBABILITIES FILE OUTPUT ************************************
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258	C C C C C C C C C C C C C C C C C C C	OPEN(22, FILE='VELOCITIES OPEN(23, FILE='HEADS_EXAMP OPEN(48, FILE='PROBALITIES. OPEN(39, FILE='SOURCE.TXT', OPEN(50, FILE='RWREPORT.TXT SNSIMOLD=0 ! PARAMETER ************************************	EXAMPLE.TXT', STATUS='UNKNOWN') LE.TXT', STATUS='UNKNOWN') TXT', STATUS='UNKNOWN') STATUS='UNKNOWN') ', STATUS='UNKNOWN') THAT CONTROLS PROBABILITIES FILE OUTPUT ************************************
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259	C C C C C C C C C C C C C C C C C C C	<pre>OPEN(22,FILE='VELOCITIES_ OPEN(23,FILE='HEADS_EXAMP OPEN(48,FILE='PROBALITIES.' OPEN(39,FILE='SOURCE.TXT', OPEN(50,FILE='RWREPORT.TXT SNSIMOLD=0 ! PARAMETER ***********************************</pre>	EXAMPLE.TXT', STATUS='UNKNOWN') LE.TXT', STATUS='UNKNOWN') TXT', STATUS='UNKNOWN') STATUS='UNKNOWN') ', STATUS='UNKNOWN') THAT CONTROLS PROBABILITIES FILE OUTPUT ************************************
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260	C C C C C C C C C C C C C C C C C C C	<pre>OPEN(22,FILE='VELOCITIES_ OPEN(23,FILE='HEADS_EXAMP OPEN(48,FILE='PROBALITIES.' OPEN(39,FILE='SOURCE.TXT', OPEN(50,FILE='RWREPORT.TXT SNSIMOLD=0 ! PARAMETER ***********************************</pre>	EXAMPLE.TXT', STATUS='UNKNOWN') LE.TXT', STATUS='UNKNOWN') TXT', STATUS='UNKNOWN') STATUS='UNKNOWN') ', STATUS='UNKNOWN') THAT CONTROLS PROBABILITIES FILE OUTPUT ************************************
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261	C C C C C C C C C C C C C C C C C C C	<pre>OPEN(22,FILE='VELOCITIES_ OPEN(23,FILE='HEADS_EXAMP OPEN(48,FILE='PROBALITIES.' OPEN(39,FILE='SOURCE.TXT', OPEN(50,FILE='RWREPORT.TXT SNSIMOLD=0 ! PARAMETER ***********************************</pre>	EXAMPLE.TXT', STATUS='UNKNOWN') LE.TXT', STATUS='UNKNOWN') TXT', STATUS='UNKNOWN') STATUS='UNKNOWN') ', STATUS='UNKNOWN') THAT CONTROLS PROBABILITIES FILE OUTPUT ************************************
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262	C C C C C C C C C C C C C C C C C C C	<pre>OPEN(22,FILE='VELOCITIES_ OPEN(23,FILE='HEADS_EXAMP OPEN(48,FILE='PROBALITIES.' OPEN(39,FILE='SOURCE.TXT', OPEN(50,FILE='RWREPORT.TXT SNSIMOLD=0 ! PARAMETER ***********************************</pre>	<pre>EXAMPLE.TXT',STATUS='UNKNOWN') LE.TXT',STATUS='UNKNOWN') TXT',STATUS='UNKNOWN') STATUS='UNKNOWN') ',STATUS='UNKNOWN') THAT CONTROLS PROBABILITIES FILE OUTPUT ''''''''''''''''''''''''''''''''''</pre>
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263	C C C C C C C C C C C C C C C C C C C	<pre>OPEN(22,FILE='VELOCITIES_ OPEN(23,FILE='HEADS_EXAMP OPEN(48,FILE='PROBALITIES.' OPEN(39,FILE='SOURCE.TXT', OPEN(50,FILE='RWREPORT.TXT SNSIMOLD=0 ! PARAMETER ***********************************</pre>	<pre>EXAMPLE.TXT',STATUS='UNKNOWN') LE.TXT',STATUS='UNKNOWN') TXT',STATUS='UNKNOWN') STATUS='UNKNOWN') ',STATUS='UNKNOWN') THAT CONTROLS PROBABILITIES FILE OUTPUT ''''''''''''''''''''''''''''''''''</pre>
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263	C C C C C C C C C C C C C C C C C C C	<pre>OPEN(22,FILE='VELOCITIES_ OPEN(23,FILE='HEADS_EXAMP OPEN(48,FILE='PROBALITIES.' OPEN(39,FILE='SOURCE.TXT', OPEN(50,FILE='RWREPORT.TXT SNSIMOLD=0 ! PARAMETER ***********************************</pre>	<pre>EXAMPLE.TXT',STATUS='UNKNOWN') LE.TXT',STATUS='UNKNOWN') TXT',STATUS='UNKNOWN') STATUS='UNKNOWN') ',STATUS='UNKNOWN') THAT CONTROLS PROBABILITIES FILE OUTPUT '************************************</pre>
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264	C C C C C C C C C C C C C C C C C C C	<pre>OPEN(22,FILE='VELOCITIES_ OPEN(23,FILE='HEADS_EXAMP OPEN(48,FILE='PROBALITIES.' OPEN(39,FILE='SOURCE.TXT', OPEN(50,FILE='RWREPORT.TXT SNSIMOLD=0 ! PARAMETER ***********************************</pre>	<pre>EXAMPLE.TXT',STATUS='UNKNOWN') LE.TXT',STATUS='UNKNOWN') TXT',STATUS='UNKNOWN') STATUS='UNKNOWN') ',STATUS='UNKNOWN') ',STATUS='UNKNOWN') ',THAT CONTROLS PROBABILITIES FILE OUTPUT ''''''''''''''''''''''''''''''''''</pre>
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265	C C C C C C C C C C C C C C C C C C C	<pre>OPEN(22,FILE='VELOCITIES_ OPEN(23,FILE='HEADS_EXAMP OPEN(48,FILE='PROBALITIES.' OPEN(39,FILE='SOURCE.TXT', OPEN(50,FILE='RWREPORT.TXT SNSIMOLD=0 ! PARAMETER ***********************************</pre>	<pre>EXAMPLE.TXT',STATUS='UNKNOWN') LE.TXT',STATUS='UNKNOWN') TXT',STATUS='UNKNOWN') STATUS='UNKNOWN') ',STATUS='UNKNOWN') THAT CONTROLS PROBABILITIES FILE OUTPUT '************************************</pre>
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266	C C C C C C C C C C C C C C C C C C C	<pre>OPEN(22,FILE='VELOCITIES_ OPEN(23,FILE='HEADS_EXAMP OPEN(48,FILE='PROBALITIES.' OPEN(39,FILE='SOURCE.TXT', OPEN(50,FILE='RWREPORT.TXT SNSIMOLD=0 ! PARAMETER ***********************************</pre>	<pre>EXAMPLE.TXT',STATUS='UNKNOWN') LE.TXT',STATUS='UNKNOWN') TXT',STATUS='UNKNOWN') STATUS='UNKNOWN') ',STATUS='UNKNOWN') THAT CONTROLS PROBABILITIES FILE OUTPUT '************************************</pre>
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267	C C C C C C C C C C C C C C C C C C C	<pre>OPEN(22,FILE='VELOCITIES_ OPEN(23,FILE='HEADS_EXAMP OPEN(48,FILE='PROBALITIES.' OPEN(39,FILE='SOURCE.TXT', OPEN(50,FILE='RWREPORT.TXT SNSIMOLD=0 ! PARAMETER ***********************************</pre>	<pre>EXAMPLE.TXT',STATUS='UNKNOWN') LE.TXT',STATUS='UNKNOWN') TXT',STATUS='UNKNOWN') STATUS='UNKNOWN') ',STATUS='UNKNOWN') THAT CONTROLS PROBABILITIES FILE OUTPUT '************************************</pre>
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268	C C C C C C C C C C C C C C C C C C C	<pre>OPEN(22,FILE='VELOCITIES_ OPEN(23,FILE='HEADS_EXAMP OPEN(48,FILE='PROBALITIES.' OPEN(39,FILE='SOURCE.TXT', OPEN(50,FILE='RWREPORT.TXT SNSIMOLD=0 ! PARAMETER ***********************************</pre>	EXAMPLE.TXT', STATUS='UNKNOWN') LE.TXT', STATUS='UNKNOWN') TXT', STATUS='UNKNOWN') STATUS='UNKNOWN') ', STATUS='UNKNOWN') THAT CONTROLS PROBABILITIES FILE OUTPUT ************************************

```
С
270
271
            PRINT*
272
            PRINT*,'
                      STARTING TURNING BANDS ALGORITHM ... '
273
            CALL TUBA (NX, NY, DX, DY, ALPHA, BETA, -A, RK)
274
     С
275
     С
276
     C-----CALCULATING MEAN ENSAMBLE MEAN AND VARIANCE-----
277
     С
278
            SUM=0.D0
279
            SSX=0.D0
280
            SSX2=0.D0
281
           RKPOINT1=RKPOINT1+BETA*RK(432)
282
           RKPOINT2=RKPOINT2+BETA*RK(845)
283
           RKPOIN21=RKPOIN21+BETA*BETA*RK(432)*RK(432)
284
            RKPOIN22=RKPOIN22+BETA*BETA*RK(845)*RK(845)
285
            DO 12 K=1,NZ
              DO 12 J=1,NY
286
287
                DO 12 I=1,NX
288
                 IP=(K-1) *NXNY+(J-1) *NX+I
289
                  TEMP=ALPHA+BETA*RK(IP)
     С
290
                  TEMP=RK(IP)
291
                  SSX=SSX+TEMP
292
                  SSX2=SSX2+TEMP*TEMP
293
                  TEMP=EXP(TEMP)
294
                  RK(IP)=TEMP
295
                  SUM=SUM+TEMP
296
                  P(IP)=P0+(P1-P0)*(I-0.5D0)/NX
297
       12 CONTINUE
298
     С
299
            SSX=SSX/NNNN
300
            SSXEN=SSXEN+SSX
301
            SSX2EN=SSX2EN+(SSX2/NNNN)
302
            SSX2=SSX2/NNNN-SSX*SSX
303
     С
304
     C
305
     C-----SOLVE FLOW EQUATION------
306
     С
307
            PRINT*, ' STARTING TO SOLVE THE FLOW PROBLEM ... '
308
     С
309
           OMEGA=OMEGA0
310
           CHECKSNSIM=SNSIM
                                          ! KEEPING OLD VALUE OF SOLVED CASES
311
     С
312
            CALL FLOW3D(RK, P, ICON, DMAX)
313
     С
314
     С
315
            !!! PROCEED ONLY IF THERE IS A SOLUTION OF THE FLOW PROBLEM !!!
     С
            IF (SNSIM. GT. CHECKSNSIM) THEN
316
                                          ! CHECKING
317
     С
318
     C-----CALCULATING THE VELOCITY FIELD FOR EACH REALISATION------
319
     С
320
            PRINT*, ' STARTING TO CALCULATE THE VELOCITY FIELD .... '
321
     С
322
            CALL VEL(RK, P, VELX, VELY, VELZ)
323
            PRINT*, ' Velocity Field Calculated!'
           PRINT*
324
325
     С
326
     С
327
     C----OUTPUT VALUES FOR VELOCITIES,K AND H FOR VISUALIZATION PURPOSES--
328
     С
            IF (SNSIM.EQ.NSIM) THEN
329
     С
330
     С
            DO 221 K=1,NZ
331
              DO 221 J=1,NY
     С
332
     С
                 DO 221 I=1,NX
333
     С
                   IP=(K-1) *NXNY+(J-1) *NX+I
334
     С
                   WRITE (14,667) I, J, K, RK(IP)
335
     С
                   WRITE (22,668) I, J, K, VELX (IP), VELY (IP), VELZ (IP)
336
                  WRITE (23,667) I, J, K, P(IP)
     С
337
     C 221 CONTINUE
```

338	С		ENDIF			
339	C	667	FORMATICZITA	$1 \times 1 = 10 \Lambda$		
340	C	668	FORMAT(3(14),	1X, $f = 10.4$, 1X, $3(F9, 6, 1X)$		
342	C	000	10101111 (0 (1 1)	IM) , 5 (1 5 . 6 , 1M) /		
343	С					
344	C-		CREATING AND	MONITOR POLLUTI	ON	-
345			IF(MONITOR.E	QVTRUE.) THEN		
346			PRINT*, '	CREATING AND MO	NITOR POLLUTION '	
347			ELSE			
348			PRINT*,'	CREATING POLLUT	'ION '	
349	~		ENDIF			
350	C		CALL DANDORT	TN VO VO OPDORO	N I DERMINING DALLITION ARTCIN	
352			PX=INT(XO)	JIN (AO, 10, ONE 050) : DEMAINING FOLLOTION ORIGIN	
353			PY=INT (YO)			
354			PZ=1			
355			IF(YO-PY.G	E. 0.5) PY=PY+1	!COUNTS ON CENTRAL Y	
356			IF(XO-PX.G	E. 0.5)PX=PX+1	!COUNTS ON CENTRAL X	
357			PRINT*			
358			print 900, PX	, PY, PZ		
359	С					
360			DO 115 MTDC=1	, MDS	! LOOP OVER DIRPERSION FACTOR	
361			TDC=TDCM (MTD	C)		
362			WRITE(50,*)'	PDC=', TDC		
303	C		CALL RANDOMW	ALK(IS, TDC, XO, YO	, ORPOSO, DET, ATOD)	
365	C		חס 125 TS=0	KSD-1		
366			DO 120 00 - 0,	1.KW	I MULTT-WELL LOOP	
367			IF(DET(JS	, IW) . EOV TRUE.)	THEN	
368			TDET (MT	DC, JS, IW) =TDET (M	ITDC, JS, IW) +1	
369			ELSEIF (DE	T(JS,IW).EQVFA	LSE.) THEN	
370			FDET (MT	DC,JS,IW)=FDET(M	ITDC,JS,IW)+1	
371			ENDIF			
372	С					
373	С		CALCULATING	CONTAMINATED ARE		
3/4			TNCAR (MTDC, J	S, IW) = TNCAR (MTDC	(JS, IW) + NCAR (JS, IW)	
3/3			TCARI (MTDC, J	S, IW = TCARI (MTDC	(JS, IW) + CARI(JS, IW)	
370			TCARS (MIDC, J	S, IW) -ICARS (MIDC S IW) -TCARS (MTDC	(JS, IW) + CARS(JS, IW)	
378			TCAR12 (MTDC.	(MT) = TCAR12	$P(C_{1}, IS_{1}, IW) + CAR(12) (JS_{1}, IW)$	
379			TCAR24 (MTDC,	JS,IW)=TCAR24(MT	'DC, JS, IW) +CAR24 (JS, IW)	
380			TCAR36 (MTDC,	JS, IW) =TCAR36 (MT	CC, JS, IW) +CAR36 (JS, IW)	
381	С		· · ·	, , , , , , , , , , , , , , , , , , ,		
382	С		CALCULATING	AVERAGE TIME OF	DETECTION	
383			TATOD (MTDC, J	S,IW)=TATOD(MTDC	C,JS,IW)+ATOD(JS,IW)	
384	С					
385	С					
380 207			LF(LW.EQ./.AN	D. MTDC. EQ. 5. AND .	JS. EQ.U.AND. (SNSIM. EQ. 1.OR.SNSIM	
387 388		6	x ,NE,SNSIMOLD)) THEN NGTM NOM (TM) 1 +		
380			SNGTMOT D-SNGT	M (IW), INOM (IW), I. ^ '	TTTT (MTTC, 03, TW) / SN9TM	
390			PRINT* . 'HT'	NOW (TW)		
391			ENDIF			
392	С					
393		130	CONTINUE		! CLOSING MULTI-WELL LOOP	
394	С					
395		125	CONTINUE		! CLOSING SAMPLING LOOP	
396			WRITE(50,*)'	* * * * * * * * * * * * * * * * *	***************************************	**'
397			WRITE(50,*)'	* * * * * * * * * * * * * * * * * * * *	***************************************	**!
398 200			WRLTE(50,*)'	^ ^ ^ ^ ~ ~ ~ ~ ~ ~ ~ ~ * * * * * * * * * *	^ ^ ^ ^ <i>^ ^ ^ *</i> *	**'
377 100	\sim		WKLIE(30,*)			
401	C		TF (,TS FO KSA	AND TH EO KWI CO)TO 115	
402			PRINT*.'	GU		,
403	С		····· ,			
404	-	115	CONTINUE		! DISPERSION LOOP	
405	С					

	ENDIF	! CHECKING IF
С		
	<i>PRINT</i> *,'***********	* * * * * * * * * * * * * * * * * * * *
	& * * * * * * * * * '	
	<i>PRINT</i> *,'***********	***************************************
	& * * * * * * * * * '	
	PRINT*	
	PRINT*	
	ENDDO	! CLOSING SIMULATION LOOP
С		
C**;	********	***************************************
С		
C		
2	CALCULATE THE ENSEM	IBLE STATISTICS AND WRITE THE RESULTS
C-		
	ALLREP=1.D0*IS	/
	RKPOINT1=RKPOINT1	/ALLREP
	RKPOIN21=RKPOIN21	/ALLREP-RKPOINT1*RKPOINT1
	RKPOINT2=RKPOINT2	/ALLREP
	RKPOIN22=RKPOIN22	/ALLKEP-RKPOINTZ*RKPOINTZ
	SSXEN=SSXEN/ALLRE	
	SSXZEN=SSXZEN/ALI	KEP-SSXEN*SSXEN
:	00N#1NTN1755 1555	
,	CUNTAMINATED AREA F	ELATIVE TO LANDFILL'S AREA FOR EACH PERIOD
	DO 510 MTDC=1, MDS	
	DO SIU US=U, KSA-I	
	TE (FREM (MURC 10	
	LE (FDEI (MIDC, JS,	IW). NL.0) INCAR (MIDC, JS , IW) – (INCAR (MIDC, JS , IW)/
	« FDEI(MIDC, JS, IW	TW) NE () THEN
	TE (IDEI (MIDC, US,	IW). IVE . () ITEN
	TCARI (MIDC, US, I	W = (ICARI (MIDC, US, IW) / IDEI (MIDC, US, IW)) / LFAR
	TCARS (MIDC, US, I	W) = (ICARS (MIDC, US, IW) / IDEI (MIDC, US, IW)) / LFAR W) = (TCARS (MTDC, IS, IW) / TDEI (MTDC, IS, IW)) / LFAR
	TCARD (MIDC, 03, 1	TW = (TCARO (MIDC, US, TW) / TDET (MIDC, US, TW)) / TEAR
	TCAR24 (MTDC IS	TW = (TCAR24 (MTDC, TS, TW) / TDET (MTDC, TS, TW)) / (TEAR
	TCAR36 (MTDC , IS,	$IW = (TCAR36 (MTDC_{1}IS_{1}IW) / TDET (MTDC_{1}IS_{1}IW)) / IFAR$
?	(, ,	
2	AVERAGE TIME OF	DETECTION
	TATOD (MTDC, JS, IW) = TATOD (MTDC, JS, IW) / TDET (MTDC, JS, IW)
2		
	ENDIF	
51	10 CONTINUE	
C		
C	WRITTING OUTPUT	
	OPEN (16, FILE='FINAL_	REPORT.TXT', STATUS='UNKNOWN')
	OPEN (17, FILE='Pd_EXC	EL.TXT', STATUS='UNKNOWN')
	OPEN (18, FILE='TOTAL_	EXCEL.TXT', STATUS='UNKNOWN')
2		
	PRINT*	
	WRITE(*,*)'TOTAL FIE	LD SIMULATIONS: ',NSIM
	WRITE(*,*) 'NUMBER I	HAT FLOW FIELD WAS SIMULATED: ', SNSIM
2		
	CALL DATE_AND_TIME (DATE_R,T_R)
2		
	WRITE(16,*)'THIS IS	THE FINAL REPORT:'
	WRITE (16,*)	
	WRITE(16,*)'TOTAL FI	ELD SIMULATIONS: ',NSIM
	WRITE(16,*) 'NUMBER	THAT FLOW FIELD WAS SIMULATED: ', SNSIM
	WRITE (16,*)	
	WRITE(16,*)'START TI	ME : ',ST_R(1:2),':',ST_R(3:4),':',ST_R(5:6),
	+ ' AT ',SDATE_R(5:	6),'/',SDATE_R(7:8),'/',SDATE_R(3:4)
	WRITE(16,*)'END TIME	: ',T_R(1:2),':',T_R(3:4),':',T_R(5:6),
	+ ' AT ',DATE_R(5:6), '/', DATE_R(7:8), '/', DATE_R(3:4)
	WRITE(16,811)NX,NY,N	ίΖ
	WRITE(16,812)DX,DY,D	Z
	WRITE(16,813)DL,DC,D	N
	WRITE (16,*)	
С		

474		PRINT*
475		PRINT*
476		WRITE(16,*)'START TIME : ',ST_R(1:2),':',ST_R(3:4),':',ST_R(5:6),
477		+ ' AT ',SDATE_R(5:6),'/',SDATE_R(7:8),'/',SDATE_R(3:4)
478		PRINT *, 'END TIME : ',T_R(1:2),':',T_R(3:4),':',T_R(5:6),
479		+ ' AT ',DATE_R(5:6),'/',DATE_R(7:8),'/',DATE_R(3:4)
480		PRINT 811, NX, NY, NZ
481		PRINT 812, DX, DY, DZ
482		PRINT 813, DL, DC, DN
483	С	
484	811	FORMAT (' GRID SIZE : ', I3, 'X', I3, 'X', I3)
485	812	FORMAT(' BLOCK DIMENSIONS : ',F5.2,'X',F5.2,'X',F5.2)
486	813	FORMAT(' TB BLOCK DIMENSIONS : ',F5.2, 'X',F5.2, 'X',F5.2)
487	900	FORMAT ('STARTING POINT OF POLLUTION: ', 'PX=', 13, 2X, 'PY=', 13,
488		& 2X, 'PZ=', I3)
489	С	
490	U	WRITE (16.*)
491		WRTTE(16,*)'THE ENS MEAN IS''SSXEN,' AND THE ENS VAR IS''SSX2EN
492		WRITE(16, *) THE ENGINEER IN TWO POINTS IS · ' REPOINT1 REPOINT?
493		WRITE(16, *) ' AND THE ENS VARIANCE IS ' ' REPOINT REPOINT?
101		MDTMF(16 *)
405		MDIME(16, *) CODDELATION COLE - 1 & 1 WITH 1 CNSTM 1 STMULATIONS
406		MDIDE(16,) UNITAL WEAD - WEAD
407		WDING(16 +) ING OF DADATCIES. I NOMALDADA
497		WRITE(10,") NO OF FARITCLES. , TOTALFART
490		WAILD(10, *) IVC. , IVC, FARILLES
499 500		WRITE(16, ^) 'VARIANCE : ', BETA^BETA
500	9	WKITE(10, ^)
501	C	
502	C	DETECTION REPORT FILE
503		$WRITE(16, ^)$
504		WRITE(16,*)'NO OF SIMULATION=', SNSIM
505		WRITE(16,*) 'TOTAL MONITOR TIME=', TEND
506		WRITE(16,*)
507		DO MTDC=1, MDS
508		WRITE(16,*)'DISPERSION FACTOR:',TDCM(MTDC)
509		DO 512 JS=0,KSA-1
510		WRITE (16,*) '***********************************
511		WRITE(16,*)'SAMPLING TIME INTERVALS (DAYS): ', ISA(JS)
512		WRITE(16,*)''
513		DO 512 IW=1,KW
514		WRITE(16,*)'NUMBER OF MONITOR WELLS : ', NOW(IW)
515		WRITE(16,*)'NORMALIZED DISTANCE AMONG WELLS: ',1./NOW(IW)
516		WRITE(16,*)'DETECTED POLLUTION=',TDET(MTDC,JS,IW)
517		WRITE(16,*)'NOT DETECTED POLLUTION=',FDET(MTDC,JS,IW)
518		WRITE(16,*)'PROBABILITY OF DETECTION=',100.*TDET(MTDC,JS,IW)/
519		& SNSIM,'%'
520		WRITE(16,*)'PROBABILITY OF FAILURE=',100.*FDET(MTDC,JS,IW)/
521		& SNSIM,'%'
522		WRITE(16,*)
523		WRITE(16,*)'AVERAGE TIME OF CONTAMINATION DETECTION=',
524		& TATOD (MTDC, JS, IW)
525		WRITE(16,*)
526		<pre>WRITE(16,*)'AVERAGE POLLUTED VOLUME ON FAILURE=',</pre>
527		& TNCAR (MTDC, JS, IW)
528		<pre>WRITE(16,*)'AVERAGE POLLUTED VOLUME ON DETECTION=',</pre>
529		& TCAR1 (MTDC, JS, IW)
530		<pre>WRITE(16,*)'AVERAGE POLLUTED VOLUME 3 MONTHS LATER=',</pre>
531		& TCAR3 (MTDC, JS, IW)
532		<pre>WRITE(16,*)'AVERAGE POLLUTED VOLUME 6 MONTHS LATER=',</pre>
533		& TCAR6 (MTDC, JS, IW)
534		WRITE(16,*)'AVERAGE POLLUTED VOLUME 12 MONTHS LATER=',
535		& TCAR12(MTDC, JS, IW)
536		WRITE(16,*)'AVERAGE POLLUTED VOLUME 24 MONTHS LATER=',
537		& TCAR24(MTDC, JS, IW)
538		WRITE(16,*)'AVERAGE POLLUTED VOLUME 36 MONTHS LATER=',
539		& TCAR36(MTDC, JS, IW)
540		WRITE (16,*)

542 543 544 545 C546 С REPORTING DATA FOR EXCEL USE 547 DO K=1,MDS 548 DO I=1,KW 549 WRITE(17,540)(100.0*TDET(K,J,I)/SNSIM,J=0,KSA-1) 550 WRITE(18,560)(100.0*TDET(K,J,I)/SNSIM, INT(TATOD(K,J,I)), 551 TNCAR(K, J, I), TCAR1(K, J, I), TCAR3(K, J, I), TCAR6(K, J, I), & 552 & TCAR12(K, J, I), TCAR24(K, J, I), TCAR36(K, J, I), J=0, KSA-1) 553 ENDDO 554 ENDDO 555 С 556 540 **FORMAT**(7(F5.1,1X)) 557 560 **FORMAT**(7(F5.1,1X,I4,1X,7(F6.4,1X))) 558 С 559 С 560 PRINT*, 'THE ENS.MEAN IS:', SSXEN, ' AND THE ENS.VAR IS:', SSX2EN 561 PRINT*, 'THE ENS.MEAN IN TWO POINTS IS : ', RKPOINT1, RKPOINT2 562 **PRINT***, ' AND THE ENS. VARIANCE IS : ', RKPOIN21, RKPOIN22 563 PRINT* 564 PRINT*, 'CORRELATION SCALE = ',A,' WITH ',SNSIM,' SIMULATIONS' 565 PRINT*, 'INITIAL HEAD: ', HEADG PRINT*, 'NO OF PARTICLES:', NTPART 566 567 **PRINT***, 'VARIANCE : ', SIGMA 568 PRINT* 569 PRINT* 570 **PRINT***, 'DONE ' 571 C572 С PAUSE 573 STOP 574 END IEND OF MAIN PROGRAM 575 С 576 С С 577 578 С 579 C-****SUBROUTINES****SUBROUTINES*****SUBROUTINES******* 580 C 581 С 582 583 584 585 С 586 SUBROUTINE RANDOMWALK (IS, TDC, RPX, RPY, ORPOS, DET, TOD) 587 С 588 **IMPLICIT DOUBLE PRECISION** (A-H, O-Z) 589 PARAMETER (IMEM=1024000) 590 **PARAMETER** (KW=8, KSA=7) 591 С 592 **DOUBLE PRECISION** X(IMEM), Y(IMEM), Z(IMEM), XPR(IMEM), YPR(IMEM), 593 & ZPR(IMEM), LDC, NDFS, TOD(0:KSA-1, KW) 594 DOUBLE PRECISION NCAR(0:KSA-1,KW), CAR1(0:KSA-1,KW), 595 & CAR3(0:KSA-1,KW),CAR6(0:KSA-1,KW),CAR12(0:KSA-1,KW), 596 & CAR24(0:KSA-1,KW),CAR36(0:KSA-1,KW) 597 DIMENSION C(IMEM), PRPOS(IMEM), LFC(100000) 598 **DIMENSION** RLOCLAND (IMEM), CC (20), NW (20), MWX (20), MWY (20) 599 INTEGER C, POS, PX, PY, PZ, PAR, PRPOS, ORPOS, PART, CC, TVC, NPAR (10950) 600 INTEGER TEND, TPRD, TS, TTL, PRSMTTL (0:KSA-1, KW), NOW (KW), ISA (0:KSA-1) 601 LOGICAL MW(0:KSA-1,KW,20),MONITOR,DET(0:KSA-1,KW) 602 С COMMON / PARAM/ P0, P1, EP, DX, DY, DZ, NX, NY, NZ, NSEED 603 604 COMMON / PARTICLE / PM, TVC, NPAR COMMON / POLLUTION/ C, OOB 605 606 COMMON /LANDFILL/ LFXI, LFXE, LFYI, LFYE, LFAR, LFC 607 COMMON /MONITORING/ SIGMA, MONITOR, NOW, ISA 608 COMMON /TIME/ TS, TEND, TPRD, NSIM 609 COMMON /WAREA/ NCAR, CAR1, CAR3, CAR6, CAR12, CAR24, CAR36

C	
C	OPEN(30,FILE='C_ANALYTICALLY.TXT',STATUS='UNKNOWN')
C	TNTTTALTZATION OF MATRICES AND PARAMETERS
C	NXNY=NX*NY / LEVEL NODES
	OOB=0 ! PARTICLES OUT OF BOUNDARIES
	TOTALPART=0 ! TOTAL PARTICLE COUNTER
	LDC=10*TDC !LONGITUDAL DISPERSSION
	PART=0 !INITIAL PARTICLE COUNTER
С	
C	COORDINATES OF POLLUTION ORIGIN
	PX=INT (RPX)
	PY=INT (RPY)
	PZ=1
	IF (RPY-PY.GE.0.5) PY=PY+1 !COUNTS ON CENTRAL Y
	IF (RPX-PX.GE.0.5) PX=PX+1 !COUNTS ON CENTRAL X
С	
	DO JS=0,KSA-1
	DO IW=1,KW
	DO K=1, NOW(IW)
	MW(JS,IW,K)=.FALSE. ! MONITOR WELL INITIAL DETECTION VALUE
	ENDDO
	ENDDO
	ENDDO
С	
	DO JS=0,KSA-1
	DO IW=1,KW
	DET(JS,IW)=.FALSE. ! DETECTION PARAMETER (IF PLUME IS
DETE	CTED THEN TRUE)
	TOD(JS,IW)=0.D0 ! AVERAGE TIME OF DETECTION
	<pre>PRSMTTL(JS,IW)=0 ! INITIAL TIME OF SAMPLING</pre>
С	
С	INITIALISING CONTAMINATED CELL AREA
	NCAR(JS, IW) = 0.D0
	CAR1(JS,IW)=0.D0
	CAR3(JS, IW) = 0.D0
	CAR6(JS, IW) = 0.D0
	CAR12(JS,IW)=0.D0
	CAR24(JS,IW)=0.D0
	CAR36(JS,IW)=0.D0
	ENDDO
	ENDDO
С	
	DO I=1,IMEM
	X(I)=0.D0
	Y(I)=0.D0
	Z(I)=0.D0
	XPR(I)=0.D0
	YPR(I)=0.D0
	ZPR(I)=0.D0
	C(I)=0
	ENDDO
С	
	CALL WNDFS(SIGMA, TDC, NDFS)
С	
С	DIMENSION RESTORATION FACTORS
-	DISTLENGT=DX
	DISTTIME=TS
С	DISTVEL=DX/TS
C	
C	REMOVING DIMENSIONS
	$I_DC=I_DC/DX$
	ען /עם–אַע אַת /אַמ–אַת
	וע / וע-וע פת/ פת-פת
	IPRD-TPRD/TS

<pre>10 1</pre>	678		TS=TS/TS
640 C 641 C 642 C 643 C 644 C 645 D 646 C 647 C 648 C 649 INTELL, TEND, TS 649 C 641 C 642 INSTANT LEAN (TERD-1) 644 C 645 C 646 C 647 C 648 C 649 D 640 D 641 DO 642 DO 644 DO 645 C (CRROS) = CORDOS) + PRAR(TEL) 646 DO 647 YER (PAR) = PRY 7 YER (PAR) = YERY 7 YER (PAR) = YERY 7 YER (PAR) = YERR 7 D D PAR=1/ERT 7 D D PAR=1/ERT 7 D D PAR=1/ERT 7 C C <tr< th=""><th>679</th><th>С</th><th>10 10, 10</th></tr<>	679	С	10 10, 10
<pre>681 C ***********************************</pre>	680	С	
682 C 683 C 684 C 685 DO 20 TIT-1, TEND, TS 686 C 687 C 688 C 689 LINTANT LEAK (TFRD=1) - CONTINUOUS LEAK (TFRD>1) 689 FRITT-LEAK (TFRD=1) - CONTINUOUS LEAK (TFRD>1) 690 PART=RAT+NPAR (TTL), PART 691 C (CORCOS) +NDAR (TTL) 692 C (CORCOS) +NDAR (TTL) 693 C (CORCOS) +NDAR (TTL) 694 Y (PAR) = RPX 695 C (PAR) = Z 696 X (PAR) = RPX 697 Y (PAR) = RPY 698 Z (PAR) = Z 709 C O D O PAR=1, PART 701 ZER (PAR) = Z (PAR) 702 ENDIF 704 C 705 C 706 C 707 DO 10 PAR=1, FART 708 C 709 C HOCKING IF PARTICLE WAS INSIDE BOUNDARIES, THEN 711 IF (PAR), GE.1.AND, DER (PAR). LER, NAD, YER (PAR), LER, NY=1. AND. 718 RENDER <tr< th=""><th>681</th><th>С</th><th>**************************************</th></tr<>	681	С	**************************************
$ \begin{array}{cccc} \hline c & c & c & c & c & c & c & c & c & c$	682	С	
684 C 685 DO 20 TTL-1, TEND, TS 686 C 687 C 688 C 689 INSTANT LEAK (TPRD-1) - CONTINUOUS LEAK (TPRD>1) 689 IP(TTL, LE, TPRD THEN) 690 PART-FART+NPAR (TTL) 691 C DATA-FART+NPAR (TTL) 692 TOTALFART-PART 693 C (ORPOS) - CORPOS) + PARTTL) 694 DO PAR-PART-NPAR (TTL) + 1, PART 695 PROSO (PAR) - PARTO 696 X (FAR) = RY 697 Y (FAR) = RY 698 2 (FAR) = RY 709 Y PR (PAR) = Z (PAR) 710 DO 10 PAR=1, PART 711 ENDIF 712 ENDIF 713 C 714 C 717 DO 10 PAR=1, PART 718 C 719 C CHECKING IF PARTICLE MAS INSIDE BOUNDARIES, THEN 711 IF (YRF (PAR). CE. 1. AND. XFF (FRR). CE. 0. AND. ZFR (PAR). LE.N2) THEN 713 C	683	С	TIME PROGRESSION
685 $DO 20$ TTI-1, TEND, TS686CNUMBER OF PARTICLES TO BE RELEASED EACH TIME687CNUMBER OF PARTICLES TO BE RELEASED EACH TIME688CINSTANT LEAK (TTRAT) - CONTINUOUS LEAK (TFRD>1)689FRINT, TTL, NERR (TTL), PART690PART-PART-NPART (TTL), PART691CFRINT, TTL, NERR (TTL), PART692TOTALFART-PART693C (ORROG) = C (ORROG) +NPAR (TTL)694DO PARE-PART-NPART (TTL) +1, PART695FREOS (PAR) = ORPOS696X (PAR) = REY697Y (PAR) = REY698Z (PAR) = REY699X PR (PAR) = X (PAR)700Y PR (PAR) = X (PAR)701Z PR (PAR) = Z (PAR)702ENDIF704C705C706C707DO 10 FAR=1, PART708C709C709C709C710C ENEXCUTE THE NEXT POSITION ALGORITHM711IF (YAR (PAR), GE, 1. AND, YER (PAR), ZE, INX-1, AND, YER (PAR), LE, NZ) THEN713C714C715R1=RWNORMAL (NSEED)716R2=RVNORMAL (NSEED)717C ALCULATING VELOCITY DERIVATIVES (BETWEEN CELL BOUNDARIES)718C CALCULATING VELOCITY DERIVATIVES (BETWEEN CELL BOUNDARIES)719C CALCULATING VELOCITY DERIVATIVES (BETWEEN CELL BOUNDARIES)711C CALCULATING VELOCITY DERIVATIVES (BETWEEN CELL BOUNDARIES)712C CALCULATING VELOCITY DERIVATIVES	684	С	
<pre>686 C 687 C 688 C 688 C 689 C 689 C 689 C 689 C 689 C 690 PARTICLES TO BE RELEASED EACH TIME 689 C 690 PART-PART+NEAR(TTL) 691 C 691 C 691 C 691 C 692 TOTALEART=PART+NEAR(TTL) 693 C 693 C 694 C 695 C 695 C 695 C 696 X 697 Y 697 Y 698 C 696 X 697 Y 698 C 697 Y 698 C 698 C 699 X 698 C 798 C 700 X 798 (PAR)=PX 700 X 798 (PAR)=Y 701 Z 708 C 700 D 70 D 70 D 70 PAR=12 (PAR) 707 D 70 D 70 D 70 PAR=12 (PAR) 708 C 709 C 700 C 700 C 700 C 717 C 718 C 719 C 719 C 720 C 720 C 720 C 721 C 721 C 721 C 721 C 721 C 721 C 722 C 723 V 729 C 721 C 721 C 721 C 721 C 722 C 723 V 729 C 720 C</pre>	685	~	DO 20 TTL=1, TEND, TS
000CNUMBER OF PARTICLES IDE RELEASED EACH (IPRD>1)001INSTANT LEAK (IPRD=1) - CONTINUOUS LEAK (IPRD>1)002IR(ITL.LE.TERD) THEN003PART-PART+PART (ITL)004O PART-PART+PART (ITL), PART005C(ORPOS)-C(ORPOS)+NPART (ITL)005PEROS(PAR)-CREDS006X(IPAR)-ERX007Y(IPAR)-ERY007Y(IPAR)-ERY008X(IPAR)-ERY009YER (PAR)-Z (PAR)0010YER (PAR)-Z (PAR)0011ZER (PAR)-Z (PAR)0011YER (PAR)-Z (PAR)0011YER (PAR)-Z (PAR)0011YER (PAR)-Z (PAR)0011PARTICLE'S PROGRESSION ALGORITHM0011PARTICLE'S PROGRESSION ALGORITHM0011PARTICLE WAS INSIDE BOUNDARIES, THEN0111C0111CHECKING IF PARTICLE WAS INSIDE BOUNDARIES, THEN0111C0111PARTICLE WAS INSIDE BOUNDARIES, THEN0111C0111CHECKING IF PARTICLE WAS INSIDE BOUNDARIES, THEN0111C0111C0111C0111FIF (XER (PAR).GE. 1. AND. XER (PAR). LE. ND. YER (PAR). LE. ND. THEN0111C0111C0111C0111C0111CALL VCL (X (PAR), Y (PAR), Z (PAR), VLX, VLX, VLX, VLX, VLX, VLX, VLX, VLX	686	C	NUMPER OF NARTOTEC TO DE DELEACER FACIL TIME
$ \begin{array}{c} C & DETERMITING TERMS \\ \hline CONTINUED DEAK (TERMS TERMS \\ \hline PART=PART+NPAR(TTL) \\ \hline PART=NT(TTL) \\ \hline PART=NT(TTL) \\ \hline PART=PART+NPAR(TTL) \\ \hline PART=NT(TTL) \\ \hline PART=PART+NPAR(TTL) \\ \hline PART=NT(TTL) \\ \hline PART=NT(TTL)$	688	C	NOMBER OF PARTICLES TO BE RELEASED EACH TIME TNSTANT IFAR (TODO-1) - CONTINUOUS IFAR (TODON1)
$ \begin{array}{c} \hline \\ \textbf{PART=RAT+MPER(TTL)} \\ \textbf{PART=RAT+MPER(TTL)} \\ \textbf{PART=RAT+PRAT} \\ \textbf{PART} \\ \textbf{PART} \\ \textbf{TOTALPART=RAT} \\ \textbf{PART} \\ \textbf{TOTALPART=RAT} \\ \textbf{PART} \\ \textbf{TOTALPART=RAT} \\ TOTALP$	689	C	IF(TTL.LE.TPRD) THEN
601 C PRINT*, TI, NPÅR (TI,), PART 602 TOTALPART=PART 603 C (ORPOS) = C (ORPOS) + NPAR (TIL) 604 DO PAR=PART-NPAR (TIL) + 1, PART 605 PRROS (PAR) = ORPOS 606 X (PAR) = RPX 607 Y (PAR) = RPX 608 Z (PAR) = PZ 609 X (PAR) = PZ 609 X (PR (PAR) = X (PAR) 700 YFR (PAR) = X (PAR) 701 Z FR (PAR) = Z (PAR) 702 ENDDO 703 ENDIF 704 C 705 CPARTICLE'S PROGRESSION ALGORITHM 707 DO 10 PAR=1, PART 708 C 709 C CHECKING IF PARTICLE WAS INSIDE BOUNDARIES, THEN 700 C CHECKING IF PARTICLE WAS INSIDE BOUNDARIES, THEN 701 IS (YR (PAR), GS. 1. AND. XPR (PAR). LE. NX-1. AND. YPR (PAR) . LE. NY-1. AND. 713 C C EXECUTE THE NEXT POSITION ALGORITHM 714 C DETERMINING 3 RANDOM NUMBERS 715 R 1=RVNORMAL (NSEED) 716 R 2=RVNORMAL (NSEED) 717 CAL VCL (X (PAR), Y (PAR), 2 (PAR), VLX, VLX, VLZ) 720 CALL VCL (X (PAR), Y (PAR), 2 (PAR), VLX, VLX, VLZ) 721 CALL VCL (X (PAR), Y (PAR), 2 (PAR), VLX, VLY, VLZ) 722 C 723 VB=SQRT (VBX**2+VBX*2+VBZ**2) 724 C 725 C GALCULATING PARTICLE'S VELOCITY 727 CALL VCL (X (PAR), Y (PAR), 2 (PAR), VLX, VLY, VLZ) 728 CALL VCL (X (PAR), Y (PAR), 2 (PAR), VLX, VLY, VLZ) 729 CALL VCL (X (PAR), Y (PAR), 2 (PAR), VLX, VLY, VLZ) 730 CALL VCL (X (PAR), Y (PAR), 2 (PAR), VLX, VLY, VLZ) 731 CALL VCL (X (PAR), Y (PAR), 2 (PAR), VLX, VLY, VLZ) 732 C MB=SQRT (VBX**2+VBY*2+VBZ**2) 733 C CALL VCL (X (PAR), Y (PAR), 2 (PAR), VLXD, VLZ) 734 CALL VCL (X (PAR), Y (PAR), 2 (PAR), VLXD, VLZ) 735 C MINUTY (VLXD) / DX 736 UXUVY= (VLLV-VLXR) / DX 737 C CALL VCL (X (PAR), Y (PAR), 2 (PAR), VLXD, VLXD, VLZ) 738 C CALL VCL (X (PAR), Y (PAR), 2 (PAR), VLXD, VLXD, VLZ) 739 CALL VCL (X (PAR), Y (PAR), 2 (PAR), VLXD, VLXD, VLZ) 731 CALL VCL (X (PAR), Y (PAR), 2 (PAR), VLXD, VLXD, VLZ) 733 C UXUVY= (VLUV-VLYD) / DX 734 UYUVY= (VLUV-VLYD) / DX 735 UYUVY= (VLUV-VLYD) / DX 735 UYUVY= (VLUV-VLYD) / DX 736 UXUVY= (VLUV-VLYD) / DX 737 C CALL VCL (X (PAR), Y (PAR), 2 (PAR), VLXD, VLYD, VLZ) 738 C CALL UXUNY = (VLYD-VLYD) / DX 737 C CALL VCL (VLYD) / DX 738 C CALL VCL (VLYD + Y 3) + ((VDY-Y 3) +	690		PART=PART+NPAR(TTL)
602 TOTALPART-PART 603 C(ORPOS) = C(ORPOS) + NPAR (TTL) 604 DO PAR=PART-NPAR (TTL) + 1, PART 605 PRROS (EAR) = ORPOS 606 X (PAR) = RPX 607 Y (PAR) = RPX 608 Z (PAR) = RPX 609 XPR (PAR) = X (PAR) 601 ZPR (PAR) = Z (PAR) 702 ENDIF 703 ENDIF 704 C 705 CPARTICLE'S PROGRESSION ALGORITHM	691	С	PRINT*, TTL, NPAR(TTL), PART
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	692		TOTALPART=PART
604DO PAR=PART-NEAR (TTL)+1, PART605PRPOS (PAR)=ORPOS606X (PAR)=RPX607Y (PAR)=RPX608Z (PAR)=PZ609XPR (PAR)=X (PAR)700YPR (PAR)=X (PAR)701ZPR (PAR)=Z (PAR)702 SNDDO 703 SNDIF 704C705C706C707DO 10 PAR=1, PART708C709C709C709C701IF (XPR (PAR), CE. 1, AND, XPR (PAR), LE. NX-1, AND, YPR (PAR), LE. NX-1, AND, IF (PAR), GE. 1, AND, XPR (PAR), LE. NX-1, AND, YPR (PAR), LE. NX-1, AND, IF (PAR), GE. 1, AND, XPR (PAR), LE. NX-1, AND, YPR (PAR), LE. NX-1, AND, IF (PAR), GE. 1, AND, XPR (PAR), CG. 0, AND, ZPR (PAR), LE. NZ-1, AND, IF (PAR), GE. 1, AND, XPR (PAR), CG. 0, AND, ZPR (PAR), LE. NZ-1, AND, IF (PAR), GE. 1, AND, XPR (PAR), CG. 0, AND, ZPR (PAR), LE. NZ-1, AND, IF (PAR), GE. 1, AND, XPR (PAR), CG. 0, AND, ZPR (PAR), LE. NZ-1, AND, IF (PAR), GE. 1, AND, XPR (PAR), CG. 0, AND, ZPR (PAR), LE. NZ-1, AND, IF (PAR), GE. 1, AND, XPR (PAR), CG. 0, AND, ZPR (PAR), LE. NZ-1, AND, IF (PAR), GE. 1, AND, XPR (PAR), CG. 0, AND, ZPR (PAR), JE. NZ-1, AND, IF (NYR (PAR), GE. 1, AND, XPR (PAR), JE. NZ-1, AND, JE. NZ-	693		C(ORPOS) =C(ORPOS) +NPAR(TTL)
	694		DO PAR=PART-NPAR(TTL)+1, PART
	695		PRPOS (PAR) =ORPOS
	696		X (PAR) = RPX
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	697		Y (PAR) = RPY
$ \begin{array}{cccc} & & & & & & & & & & & & & & & & & $	698 600		Z(PAR) = PZ
$ \begin{array}{cccc} & (ARA) = 1 (PAR) \\ C (PAR) = 2 (PAR) \\ C (PA$	099 700		APR(PAR) = X(PAR)
Interface Interface 02 ENDOC 03 ENDIF 04 C 05 C 06 C 07 DO 10 PAR=1, PART 08 C 09 C 01 DO 10 PAR=1, PART 02 C 03 EXECUTE THE NEXT POSITION ALGORITHM 11 IF(XPR (PAR).GE.1.AND.XPR (PAR).LE.NX-1.AND.YPR (PAR).LE.NY-1.AND. 12 S YPR (PAR).GE.1.AND.XPR (PAR).LE.NX-1.AND.YPR (PAR).LE.NY-1.AND. 13 C 14 C 15 R1=RVNORMAL (NSEED) 16 R.2=RVNORMAL (NSEED) 17 C 18 C 19 C 11 CALL VCL (X (PAR), Y (PAR), Z (PAR), VLX, VLY, VLZ) 11 C 17 C 18 C 19 C 20 CALL VCL (X (PAR), Y (PAR), Z (PAR), VLX, VLY, VLZ) 11 C 21 C <tr< th=""><th>700</th><th></th><th>IPR(PAR) = I(PAR) ZPR(PAR) = Z(PAR)</th></tr<>	700		IPR(PAR) = I(PAR) ZPR(PAR) = Z(PAR)
703 ENDIF 704 C 705 C 706 C 707 DO 10 PAR=1, PART 708 C 709 C 701 DO 10 PAR=1, PART 702 C 703 C 704 C 705 C 706 C 707 DO 10 PAR=1, PART 708 C 709 C 714 C 714 FX 715 R1=RVNORMAL (NSEED) 716 C 717 C 718 C 719 C 711 C 712 CALL VCL (X (PAR), Y (PAR), Z (PAR), VLX, VLY, VLZ) 711 C 712 C 713 C 714 C 715 R1=RVNORMAL (NSEED) 716 R2=RVNORMAL (NSEED) 717 CALL VCL (X (PAR), Y (PAR), Z (PAR), VLX, VLY, VLZ) 712 C	702		ENDDO
704 C 705 C 706 DO 10 PAR=1, PART 707 DO 10 PAR=1, PART 708 C 709 C 710 DO 10 PAR=1, PART 708 C 709 C 710 DO 10 PAR=1, PART 711 EXECUTE THE NEXT POSITION ALGORITHM 712 & YPR(PAR), GE.1. AND, YPR(PAR). L. NN-1. AND, YPR(PAR). LE.NY-1. AND. 713 C 714 C 715 R1=RVNORMAL (NSEED) 716 R2=RVNORMAL (NSEED) 717 C 718 C 719 C 710 CALL VCL (X (PAR), Y (PAR), Z (PAR), VLX, VLY, VLZ) 721 CALL VCL (X (PAR), Y (PAR), Z (PAR), VLX, VLY, VLZ) 722 C 723 VB=SQRT (VBX*+2+VBY*+2+VBZ*+2) 724 C 725 C 726 CALL VCL (X (PAR), Y IP, Z (PAR), VLXD, VLYD, VLZ) 727 CALL VCL (X (PAR), Y IP, Z (PAR), VLXD, VLYD, VLZ) 728 CALL VCL (X (PAR), Y IP, Z (PAR), VLXD, VLYD, VLZ)	703		ENDIF
705 C PARTICLE'S PROGRESSION ALGORITHM	704	С	
706 C 707 DO 10 PAR=1, PART 708 C 709 C CHECKING IF PARTICLE WAS INSIDE BOUNDARIES, THEN 710 C EXECUTE THE NEXT POSITION ALGORITHM 711 IF (XPR (PAR). GE.1. AND. XPR (PAR). LE.NX-1. AND. YPR (PAR). LE.NY-1. AND. 712 & YPR (PAR). GE.1. AND. XPR (PAR). GT. 0. AND. ZPR (PAR). LE.NY-1. AND. 713 C DETERMINING 3 RANDOM NUMBERS 714 C DETERMINING 3 RANDOM NUMBERS 715 R1=RVNORMAL (NSEED) R2=RVNORMAL (NSEED) 716 R2=RVNORMAL (NSEED) R1 717 C R3=RVNORMAL (NSEED) 718 C CALL VCL (X (PAR), Y (PAR), Z (PAR), VLX, VLY, VLZ) 720 CALL VCL (X (PAR), Y (PAR), Z (PAR), VDX, VDY, VDZ) 721 C CALL VCL (X (PAR), Y (PAR), Z (PAR), VLX, VLY, VLZ) 723 VB=SQRT (VBX**2+VBY**2+VBZ**2) C 724 C CALL VCL (X (PAR), YIP, Z (PAR), VLXD, VLYD, VLZ) 725 C CALL VCL (X (PAR), YIP, Z (PAR), VLXD, VLYD, VLZ) 726 XIP=INT (Y (PAR)) C 727 YIP=INT (Y (PAR)) CALL VCL (X (PAR), YIP, Z (PAR), VLXD,	705	С	PARTICLE'S PROGRESSION ALGORITHM
707 DO 10 PAR=1, PART 708 C C CHECKING IF PARTICLE WAS INSIDE BOUNDARIES, THEN 709 C CHECKING IF PARTICLE WAS INSIDE BOUNDARIES, THEN 710 C EXECUTE THE NEXT POSITION ALGORITHM 711 IF(XPR(PAR).GE.1.AND.XPR(PAR).LE.NX-1.AND,YPR(PAR).LE.NY-1.AND. 712 a YPR(PAR).GE.1.AND.XPR(PAR).LE.NX-1.AND.ZPR(PAR).LE.NY-1.AND. 711 IF(XPR(PAR).GE.1.AND.XPR(PAR).LE.NY-1.AND.ZPR(PAR).LE.NY-1.AND. 713 C 714 C DETERMINING 3 RANDOM NUMBERS 715 R1=RVNORMAL (NSEED) 716 R2=RVNORMAL (NSEED) 717 C CALL VCL (X (PAR), Y (PAR), Z (PAR), VLX, VLY, VLZ) 718 C 719 C CALL VCL (X (PAR), Y (PAR), Z (PAR), VLX, VLY, VLZ) 711 CALL VCL (X (PAR), Y (PAR), Z (PAR), VLXD, VUZ, VUZ) 712 VB=SQRT (VEX*2+VBY*2+VBZ**2) 714 C CALL VCL (X (PAR), YIP, Z (PAR), VLXD, VLYD, VLZ) 716 CALL VCL (X (PAR), YIP, Z (PAR), VLXD, VLYD, VLZ) 717 VIP=INT (Y (PAR) C (PAR), VLXD, VLYD, VLZ) 718 C CALL VCL (X (PAR), YIP, Z (PAR)	706	С	
708 C 709 C CHECKING IF PARTICLE WAS INSIDE BOUNDARIES, THEN 710 C EXECUTE THE NEXT POSITION ALGORITHM 711 IF(XFR (PAR).GE.1.AND.XFR (PAR).LE.NX-1.AND.YFR (PAR).LE.NY-1.AND. 713 C 714 C DETERMINING 3 RANDOM NUMBERS 715 R1=RVNORMAL (NSEED) 716 R2=RVNORMAL (NSEED) 717 C R3=RVNORMAL (NSEED) 718 C 719 C CALCULATING PARTICLE'S VELOCITY 720 CALL VCL (X (PAR), Y (PAR), Z (PAR), VLX, VLY, VLZ) 721 CALL VCL (X (PAR), Y (PAR), Z (PAR), VLX, VLY, VLZ) 722 C VB=SQRT (VBX**2+VBY*2+VBZ**2) 723 VB=SQRT (VBX**2+VBY*2+VBZ**2) 724 C C 725 C CALL VCL (X (PAR), YIP, Z (PAR), VLXD, VLYD, VLZ) 726 XIP=INT (X (PAR)) 727 YIP=INT (Y (RPAR)) 728 CALL VCL (X (PAR), YIP, Z (PAR), VLXD, VLXD, VLZ) 730 CALL VCL (X (PAR), YIP, Z (PAR), VLXD, VLXD, VLZ) 731 CALL VCL (X (PAR), Z (PAR), VLXD, VLXD, VLZ) 732 C	707		DO 10 PAR=1, PART
109CCHECKING IF PARTICLE WAS INSIDE BOUNDARIES, THEN110 $EXECUTE THE NEXT POSITION ALCORITHM111IF(XPR (PAR).GE.1.AND.XPR (PAR).LE.NX-1.AND.YPR (PAR).LE.NY-1.AND.121\& YPR (PAR).GE.1.AND.ZPR (PAR).GT.0.AND.ZPR (PAR).LE.NY-1.AND.121\& YPR (PAR).GE.1.AND.ZPR (PAR).GT.0.AND.YPR (PAR).LE.NY-1.AND.122\& YPR (PAR).GE.1.AND.ZPR (PAR).GT.0.AND.ZPR (PAR).LE.NY-1.AND.13C14C15R1=RVNORMAL (NSEED)16R2=RVNORMAL (NSEED)17C18C19CCALLUCLATING PARTICLE'S VELOCITY20CALL VCL (X (PAR), Y (PAR), Z (PAR), VLX, VLY, VLZ)21CALL VCL (X (PAR), Y (PAR), Z (PAR), VLX, VLY, VLZ)22C23VB=SQRT (VEX**2+VBY**2+VBZ**2)24C25C26XIP=INT (X (PAR))27YIP=INT (Y (PAR))28CALL VCL (X (PAR), YIP+1, Z (PAR), VLXD, VLYD, VLZ)29CALL VCL (X (PAR), YIP+1, Z (PAR), VLXD, VLYD, VLZ)21CALL VCL (X (PAR), YIP+1, Z (PAR), VLXU, VLYU, VLZ)22C23UXUVX=(VLXUP, VLXP) /DX24C25C26UXUVX=(VLXUP, VLXP, VLXD, VLXD, VLYD, VLZ)27YIP=INT (Y (PAR), Z (PAR), VLXU, VLYU, VLZ)28C29CALL VCL (X (PAR), YIP+1, Z (PAR), VLXU, VLYU, VLZ)20CALL VCL (X (PAR), YIP+1, Z (PAR), VLXU, VLYU, VLZ)21C22C23$	708	С	
$ \begin{array}{rcl} The NEAR POSITION ALGORITHM \\ \hline \begin{tabular}{lllllllllllllllllllllllllllllllllll$	709	C	CHECKING IF PARTICLE WAS INSIDE BOUNDARIES, THEN
11 IP (ART(TRK)) . GE. 1. AND. APR (FAR) . LE. NA D. APR (FAR) . LE. NA D. APR (FAR) . LE. NZ D. THEN 11 C VPR (PAR) . GE. 1. AND. ZPR (PAR) . GT. 0. AND. ZPR (PAR) . LE. NZ D. THEN 114 C DETERMINING 3 RANDOM NUMBERS 115 R1=RVNORMAL (NSEED) 116 R2=RVNORMAL (NSEED) 117 C 118 C 119 C 111 C 112 CALL VCL (X (PAR) , Y (PAR) , Z (PAR) , VLX, VLY, VLZ) 119 C 110 CALL VCL (X (PAR) , Y (PAR) , Z (PAR) , VLX, VLY, VLZ) 111 CALL VCL (X (PAR) , Y (PAR) , Z (PAR) , VLX, VLY, VLZ) 112 CALL VCL (X (PAR) , Y (PAR) , Z (PAR) , VLXD, VLY, VLZ) 111 CALL VCL (X (PAR) , Y (PAR) , Z (PAR) , VLXD, VLYD, VLZ) 112 CALL VCL (X (PAR) , Y IP, Z (PAR) , VLXD, VLYD, VLZ) 111 CALL VCL (X (PAR) , Y IP, Z (PAR) , VLXD, VLYD, VLZ) 112 CALL VCL (X (PAR) , Y IP, Z (PAR) , VLXD, VLYD, VLZ) 113 CALL VCL (X (PAR) , Y IP+1 , Z (PAR) , VLXD, VLYD, VLZ) 114 CALL VCL (X (PAR) , Y IP+1 , Z (PAR) , VLXL, VLYD, VLZ) 115 CALL VCL (X (PAR) , Z (PAR) , VLXL, VLYD, VLZ) 116 CA	710	C	EXECUTE THE NEXT POSITION ALGORITHM TF(VDD(DAD) CF 1 AND VDD(DAD) TF NY_1 AND VDD(DAD) TF NY_1 AND
713 C 714 C DETERMINING 3 RANDOM NUMBERS 715 R1=RVNORMAL (NSEED) 716 R2=RVNORMAL (NSEED) 717 C R3=RVNORMAL (NSEED) 718 C 719 C CALCULATING PARTICLE'S VELOCITY 720 CALL VCL (X (PAR), Y (PAR), Z (PAR), VLX, VLY, VLZ) 721 CALL VCB (X (PAR), Y (PAR), Z (PAR), VBX, VBY, VBZ) 722 C 723 VB=SQRT (VBX**2+VBY**2+VBZ**2) 724 C 725 C 726 CALL VCL (X (PAR), YIP, Z (PAR), VLXD, VLYD, VLZ) 727 YIP=INT (Y (PAR)) 728 CALL VCL (X (PAR), YIP, Z (PAR), VLXD, VLYD, VLZ) 730 CALL VCL (X (PAR), YIP, Z (PAR), VLXD, VLYD, VLZ) 731 CALL VCL (X (PAR), YIP, Z (PAR), VLXD, VLYD, VLZ) 732 CALL VCL (X (PAR), YIP, Z (PAR), VLXD, VLYD, VLZ) 731 CALL VCL (X (PAR), YIP, Z (PAR), VLXD, VLYD, VLZ) 732 C 733 UXUVX= (VLXU-VLXD) /DX 734 UYUVY=(VLYU-VLYD) /DY 735 UYUVY= (VLYU-VLYD) /DY 736 UXUDY= (ULT/VB**3)	712		$\mathcal{L} = \mathcal{L} = $
714CDETERMINING 3 RANDOM NUMBERS715R1=RVNORMAL (NSEED)716R2=RVNORMAL (NSEED)717C718C719C720CALL VCL (X (PAR), Y (PAR), Z (PAR), VLX, VLY, VLZ)721CALL VCB (X (PAR), Y (PAR), Z (PAR), VBX, VBY, VBZ)722C723VB=SQRT (VEX**2+VBY*2+VBZ**2)724C725C726CALL VCL (X (PAR), Y)727YIP=INT (X (PAR))728CALL VCL (X (PAR), YIP, Z (PAR), VLXD, VLYD, VLZ)729CALL VCL (X (PAR), YIP+1, Z (PAR), VLXD, VLYU, VLZ)730CALL VCL (X (PAR), YIP+1, Z (PAR), VLXU, VLYU, VLZ)731CALL VCL (X (PAR), YIP+1, Z (PAR), VLXU, VLYU, VLZ)732C733UXUVX= (VLXL-VLXR) /DX734UYUVY= (VLYU-VLYD) /DY735UYUVX= (VLXL-VLXR) /DX736UXUVY= (VLYU-VLYD) /DY737C738C739DLT=LDC-TDC740C741UXUDYX= (DLT/VE*3) * ((VEY*3) * UXUVX+ (VEX*3) * UXUVY)742C743UYUDYY=(2D0*TDC*VEX*VE*2-TDC*VEX*3-LDC*VEX*VEY*2) *744 \mathcal{E} 744 \mathcal{E} 745 \mathcal{E} 745 $\mathcal{LDC*VEX*3}$	713	С	
715R1=RVNORMAL (NSEED)716R2=RVNORMAL (NSEED)717C718C719C719C720CALL VCL (X (PAR) , Y (PAR) , Z (PAR) , VLX, VLY, VLZ)721CALL VCB (X (PAR) , Y (PAR) , Z (PAR) , VBX, VBY, VBZ)722C723VB=SQRT (VEX**2+VBY*2+VBZ**2)724C725C726XIP=INT (X (PAR))727YIP=INT (X (PAR) , YIP, Z (PAR) , VLXD, VLYD, VLZ)728CALL VCL (X (PAR) , YIP+1, Z (PAR) , VLXD, VLYU, VLZ)729CALL VCL (X (PAR) , YIP+1, Z (PAR) , VLXU, VLYU, VLZ)730CALL VCL (X (PAR) , YIP+1, Z (PAR) , VLXR, VLYR, VLZ)731CALL VCL (X (PAR) , YIP+1, Z (PAR) , VLXR, VLYR, VLZ)732C733UXUVX= (VLXL-VLXR) /DX734UYUVY= (VLYU-VLYD) /DY735UYUVX= (VLXL-VLXR) /DX736UXUVY= (VLYU-VLYR) /DX737C738C741UXUDYX= (DLT/VE**3) * ((VEY**3) *UXUVX+ (VEX**3) *UXUVY)742C743UYUUYY= (2.D0*TDC*VBX*VE**2-TDC*VBX*V3-LDC*VEX*VEY*2) *744 $\&$ UYUVX/VB**3+ (2.D0*LDC*VEX*V3-LDC*VBY*VB**2-745 $\&$ UPUVX/VB**3	714	С	DETERMINING 3 RANDOM NUMBERS
716R2=RVNORMAL (NSEED)717CR3=RVNORMAL (NSEED)718C719C720CALCULATING PARTICLE'S VELOCITY721CALL VCL (X (PAR), Y (PAR), Z (PAR), VLX, VLY, VLZ)722C723VB=SQRT (VBX**2+VBY*2+VBZ**2)724C725C726XIP=INT (X (PAR))727YIP=INT (Y (PAR))728CALL VCL (X (PAR), YIP, Z (PAR), VLXD, VLYD, VLZ)730CALL VCL (X (PAR), YIP+1, Z (PAR), VLXD, VLYD, VLZ)731CALL VCL (X (PAR), YIP+1, Z (PAR), VLXU, VLYI, VLZ)732C733UXUVX= (VLXL-VLXR) /DX734UYUVY= (VLYU-VLYD) /DY735UYUVX= (VLXL-VLXR) /DX736UXUVY= (VLYU-VLYR) /DX737C738C741UXUDYX= (DLT/VB**3) * ((VBY**3) * UXUVX+ (VBX**3) * UXUVY)742C743UYUDYY= (2.D0*TDC*VBX*VB*2-TDC*VBX**3-LDC*VBX*VBY**2) *744& $\&$ UYUVX/VB**3+ (2.D0*LDC*VBY*VB**2-TDC*VBY*VB**2-TDC*VBY*VB**2-745 $\&$ LDC*VBY*3) * UYUVY/VB**3	715		R1=RVNORMAL (NSEED)
717C $R3=RVNORMAL (NSEED)$ 718C719CCALCULATING PARTICLE'S VELOCITY720CALL VCL (X (PAR), Y (PAR), Z (PAR), VLX, VLY, VLZ)721CALL VCB (X (PAR), Y (PAR), Z (PAR), VBX, VBY, VBZ)722C723VB=SQRT (VBX**2+VBY*2+VBZ**2)724C725CCALCULATING VELOCITY DERIVATIVES (BETWEEN CELL BOUNDARIES)726XIP=INT (X (PAR))727YIP=INT (Y (PAR), YIP, Z (PAR), VLXD, VLYD, VLZ)728CALL VCL (X (PAR), YIP, Z (PAR), VLXD, VLYD, VLZ)730CALL VCL (X (PAR), YIP+1, Z (PAR), VLXR, VLYR, VLZ)731CALL VCL (XIP+1, Y (PAR), Z (PAR), VLXR, VLYR, VLZ)732C733UXUVX= (VLXL-VLXR) /DX734UYUVY= (VLYU-VLYD) /DY735UYUVX= (VLXU-VLXD) /DY736UXUVY= (VLYL-VLYR) /DX737C738C741UXUDYX= (DLT/VB**3) * ((VBY**3) * UXUVX+ (VBX**3) * UXUVY)742C743UYUDYY= (2.D0*TDC*VBX*VB*2-TDC*VBX**3-LDC*VBX*VBY**2) *744& $\&$ UYUUY/VB**3 + (2.D0*LDC*VBY*VB*2-TDC*VBY*VBX*2-745&	716		R2=RVNORMAL (NSEED)
718 C 719 C 720 CALL VCL (X (PAR), Y (PAR), Z (PAR), VLX, VLY, VLZ) 721 CALL VCB (X (PAR), Y (PAR), Z (PAR), VBX, VBY, VBZ) 722 C 723 VB=SQRT (VBX**2+VBY*2+VBZ**2) 724 C 725 C 726 XIP=INT (V (BAR)) 727 YIP=INT (X (PAR)) 728 CALL VCL (X (PAR), YIP, Z (PAR), VLXD, VLYD, VLZ) 729 CALL VCL (X (PAR), YIP, Z (PAR), VLXD, VLYD, VLZ) 730 CALL VCL (X (PAR), YIP+1, Z (PAR), VLXL, VLYD, VLZ) 731 CALL VCL (X (PAR), YIP+1, Z (PAR), VLXL, VLYL, VLZ) 732 C 733 CALL VCL (X (PAR), YIP+1, Z (PAR), VLXL, VLYL, VLZ) 734 UXUVX= (VLXU-VLXR) /DX 735 UXUVX= (VLXU-VLXR) /DX 736 UXUVY= (VLYU-VLYD) /DY 737 C 738 C 740 C 741 UXUDYX= (DLT/VB**3)* ((VBY**3)*UXUVX+ (VBX**3)*UXUVY) 742 C 743 UYUUY/Y= (2.D0*TDC*VBX*VB**2-TDC*VBX**3-LDC*VBX*VB**2-TDC*VBX*VB**2-TDC*VBX*VB**2-TDC*VBX*VB**2-TDC*VBX*VB**2-TDC*VBX*VB**2-TDC*VBX*VB**2-TDC*VBX*VB**2-TD	717	С	R3=RVNORMAL (NSEED)
$ \begin{array}{rcl} 119 & C & CALCULATING PARTICLE'S VELOCITY \\ 120 & CALL VCL (X (PAR), Y (PAR), Z (PAR), VLX, VLY, VLZ) \\ 121 & CALL VCB (X (PAR), Y (PAR), Z (PAR), VBX, VBY, VBZ) \\ 122 & C \\ 123 & VB=SQRT (VBX*2+VBY*2+VBZ**2) \\ 124 & C \\ 125 & C & CALCULATING VELOCITY DERIVATIVES (BETWEEN CELL BOUNDARIES) \\ 126 & XIP=INT (X (PAR)) \\ 127 & YIP=INT (Y (PAR)) \\ 128 & CALL VCL (X (PAR), YIP, Z (PAR), VLXD, VLYD, VLZ) \\ 129 & CALL VCL (X (PAR), YIP, Z (PAR), VLXD, VLYD, VLZ) \\ 120 & CALL VCL (X (PAR), YIP+1, Z (PAR), VLXL, VLYL, VLZ) \\ 121 & CLL VCL (X (IP, Y (PAR), Z (PAR), VLXL, VLYL, VLZ) \\ 122 & C \\ 123 & C & UXUVX= (VLXL-VLXR) /DX \\ 124 & UYUVY= (VLYU-VLYD) /DY \\ 125 & UXUVX= (VLXU-VLXD) /DY \\ 125 & UXUVY= (VLYU-VLYD) /DY \\ 126 & UXUVY= (VLYL-VLYR) /DX \\ 127 & C & C \\ 128 & C & CALCULATING FOKKER-PLANCK EQUATION ADDITIONAL TERM \\ 129 & DLT=LDC-TDC \\ 140 & C & UYUDYY= (2.D0*TDC*VBX*VB*2-TDC*VBX*VBY*2) * \\ 144 & UYUVX/VB*3+(2.D0*LDC*VBY*VB*3-LDC*VBX*VBY*2) \\ 144 & UYUVX/VB*3+(2.D0*LDC*VBY*VB*2-TDC*VBY*VBY*2) \\ 144 & VUVX/VB*3+(2.D0*LDC*VBY*VB*3) \\ 144 & UYUVX/VB*3+(2.D0*LDC*VBY*VB*2-TDC*VBY*VBY*2) \\ 144 & VUVX/VB*3+(2.D0*LDC*VBY*VB*3) \\ 144 & UYUVX/VB*3+(2.D0*LDC*VBY*VB*3) \\ 144 & UYUVX/VB*3+(2.D0*LDC*VBY*VB*2-TDC*VBY*VBY*2) \\ 144 & UYUVX/VB*3+(2.D0*LDC*VBY*VB*3) \\ 144 & UYUVX/VB*3+(2.D0*LDC*VBY*VB*2-TDC*VBY*VBY*2- \\ 145 & LDC*VBY*3) & UYUVY/VB*3 \\ 144 & UYUVX/VB*3+(2.D0*LDC*VBY*VB*3) \\ 144 & UYUVX/VB*3+(2.D0*LDC*VBY*VB*3 \\ 144 & UYUVX/VB*3 \\$	718	С	
720 CALL VCL(X(PAR), Y(PAR), Z(PAR), VLX, VLY, VLZ) 721 CALL VCB(X(PAR), Y(PAR), Z(PAR), VBX, VBY, VBZ) 722 C 723 VB=SQRT(VBX*2+VBY*2+VBZ*2) 724 C 725 C 726 XIP=INT(X(PAR)) 727 YIP=INT(X(PAR)) 728 CALL VCL(X(PAR), YIP, Z(PAR), VLXD, VLYD, VLZ) 729 CALL VCL(X(PAR), YIP+1, Z(PAR), VLXD, VLYU, VLZ) 730 CALL VCL(XIP,Y(PAR), Z(PAR), VLXL, VLYL, VLZ) 731 CALL VCL(XIP,Y(PAR), Z(PAR), VLXR, VLYR, VLZ) 732 C 733 UXUVX=(VLXL-VLXR)/DX 734 UYUVY=(VLYU-VLYD)/DY 735 UYUVX=(VLXU-VLXD)/DX 736 UXUVY=(VLYU-VLYR)/DX 737 C 738 C 741 UXUDY=(DLT/VB**3)*((VEY**3)*UXUVX+(VBX**3)*UXUVY) 742 C 743 UYUDY=(2.D0*TDC*VBX*VB*2-TDC*VBX**3-LDC*VBX*VBY*2)* 744 & 745 &	719	С	CALCULATING PARTICLE'S VELOCITY
721 CALL VCB(A(FAR), I(FAR), 2(FAR), VBA, VB1, VB2) 722 C 723 VB=SQRT(VBX**2+VBY**2+VBZ**2) 724 C 725 C 726 XIP=INT(X(PAR)) 727 YIP=INT(Y(PAR)) 728 CALL VCL(X(PAR), YIP, Z(PAR), VLXD, VLYD, VLZ) 729 CALL VCL(X(PAR), YIP, Z(PAR), VLXU, VLYU, VLZ) 730 CALL VCL(XIP,Y(PAR), Z(PAR), VLXL, VLYL, VLZ) 731 CALL VCL(XIP+1, Y(PAR), Z(PAR), VLXR, VLYR, VLZ) 732 C 733 UXUVX=(VLXL-VLXR)/DX 734 UYUVY=(VLYU-VLYD)/DY 735 UYUVX=(VLXU-VLXD)/DY 736 UXUVY=(VLYU-VLYR)/DX 737 C 738 C 741 UXUDYX=(DLT/VB**3)*((VBY**3)*UXUVX+(VBX**3)*UXUVY) 742 C 743 UYUDYY=(2.D0*TDC*VBX*VB**2-TDC*VBX**3-LDC*VBX*VBY**2)* 744 & 4 UYUUX/VB**3+(2.D0*LDC*VBY*VB**2-T	720		CALL VCL(X(PAR), Y(PAR), Z(PAR), VLX, VLY, VLZ)
723 VB=SQRT (VBX**2+VBY**2+VBZ**2) 724 C 725 C 726 XIP=INT (X (PAR)) 727 YIP=INT (Y (PAR)) 728 CALL VCL (X (PAR), YIP, Z (PAR), VLXD, VLYD, VLZ) 729 CALL VCL (X (PAR), YIP+1, Z (PAR), VLXD, VLYD, VLZ) 730 CALL VCL (XIP, Y (PAR), Z (PAR), VLXL, VLYL, VLZ) 731 CALL VCL (XIP+1, Y (PAR), Z (PAR), VLXR, VLYR, VLZ) 732 C 733 UXUVX= (VLXL-VLXR) /DX 734 UYUVY= (VLXU-VLYD) /DY 735 UYUVX= (VLXU-VLYD) /DY 736 UXUVY= (VLYU-VLYR) /DX 737 C 738 C 741 UXUDYX= (DLT/VB**3) * ((VBY**3) *UXUVX+ (VBX**3) *UXUVY) 742 C 743 UYUDYY= (2.00*TDC*VBX*VB**2-TDC*VBX**3-LDC*VBX*VBY**2) * 744 & 6 UYUVX/VB**3+(2.D0*LDC*VBY*VB**2-TDC*VBY*VBX**2-	721	C	CALL VCD(A(PAR), 1(PAR), 2(PAR), VDA, VD1, VD2)
724 C 725 C 726 XIP=INT (X (PAR)) 727 YIP=INT (Y (PAR)) 728 CALL VCL (X (PAR), YIP, Z (PAR), VLXD, VLYD, VLZ) 729 CALL VCL (X (PAR), YIP+1, Z (PAR), VLXU, VLYU, VLZ) 730 CALL VCL (X (PAR), YIP+1, Z (PAR), VLXU, VLYU, VLZ) 731 CALL VCL (XIP,Y (PAR), Z (PAR), VLXR, VLYR, VLZ) 732 C 733 UXUVX= (VLXL-VLXR) /DX 734 UYUVY= (VLYU-VLYD) /DY 735 UYUVY= (VLYL-VLYR) /DX 736 UXUVY= (VLYL-VLYR) /DX 737 C 738 C 741 UXUDYX= (DLT/VB**3) * ((VBY**3) *UXUVX+ (VBX**3) *UXUVY) 742 C 743 UYUDYY= (2.D0*TDC*VBX*VB**2-TDC*VBX**3-LDC*VBX*VBY*2) * 744 & 745 &	723	C	VB=SORT(VBX**2+VBY**2+VBZ**2)
725 C CALCULATING VELOCITY DERIVATIVES (BETWEEN CELL BOUNDARIES) 726 XIP=INT(X(PAR)) 727 YIP=INT(Y(PAR)) 728 CALL VCL(X(PAR), YIP, Z(PAR), VLXD, VLYD, VLZ) 729 CALL VCL(X(PAR), YIP, Z(PAR), VLXD, VLYD, VLZ) 730 CALL VCL(X(IPAR), YIP+1, Z(PAR), VLXU, VLYU, VLZ) 731 CALL VCL(XIP, Y(PAR), Z(PAR), VLXR, VLYR, VLZ) 732 C 733 UXUVX=(VLXL-VLXR)/DX 734 UYUVY=(VLYU-VLYD)/DY 735 UYUVX=(VLXU-VLXD)/DY 736 UXUVY=(VLYU-VLYR)/DX 737 C 738 C 741 UXUDYX=(DLT/VB**3)*((VBY**3)*UXUVX+(VBX**3)*UXUVY) 742 C 743 UYUDYY=(2.D0*TDC*VBX*VB*2-TDC*VBX**3-LDC*VBX*VB**2)* 744 & 6 UYUVX/VB**3+(2.D0*LDC*VBY*VB**2-TDC*VBY*VB**2- 744 & 6 UYUVX/VB**3	724	С	$\mathcal{L} = \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L}$
726 XIP=INT (X (PAR)) 727 YIP=INT (Y (PAR)) 728 CALL VCL (X (PAR), YIP, Z (PAR), VLXD, VLYD, VLZ) 729 CALL VCL (X (PAR), YIP+1, Z (PAR), VLXU, VLYU, VLZ) 730 CALL VCL (XIP, Y (PAR), Z (PAR), VLXL, VLYL, VLZ) 731 CALL VCL (XIP+1, Y (PAR), Z (PAR), VLXR, VLYR, VLZ) 732 C 733 UXUVX= (VLXL-VLXR) /DX 734 UYUVY= (VLYU-VLYD) /DY 735 UYUVX= (VLXU-VLXD) /DY 736 UXUVY= (VLYU-VLYR) /DX 737 C 738 C 741 UXUDYX= (DLT/VE*3) * ((VBY*3) *UXUVX+ (VBX**3) *UXUVY) 742 C 743 UYUDYY= (2.D0*TDC*VBX*VB**2-TDC*VBX**3-LDC*VBX*VBY*2) * 744 & UYUVX/VB**3+ (2.D0*LDC*VBY*VB**2-TDC*VBY*VBX**2- 745 & LDC*VBY**3) *UYUVY/VB**3	725	С	CALCULATING VELOCITY DERIVATIVES (BETWEEN CELL BOUNDARIES)
727 YIP=INT (Y (PAR)) 728 CALL VCL (X (PAR), YIP, Z (PAR), VLXD, VLYD, VLZ) 729 CALL VCL (X (PAR), YIP+1, Z (PAR), VLXU, VLYU, VLZ) 730 CALL VCL (XIP, Y (PAR), Z (PAR), VLXL, VLYL, VLZ) 731 CALL VCL (XIP+1, Y (PAR), Z (PAR), VLXR, VLYR, VLZ) 732 C 733 UXUVX= (VLXL-VLXR) / DX 734 UYUVY= (VLYU-VLYD) / DY 735 UYUVX= (VLXL-VLXR) / DX 736 UXUVY= (VLYL-VLYR) / DX 737 C 738 C 739 DLT=LDC-TDC 740 C 741 UXUDYX= (DLT/VB**3) * ((VBY**3) * UXUVX+ (VBX**3) * UXUVY) 742 C 743 UYUVY=(2.D0*TDC*VBX*VB*2-TDC*VBX*VB*2)* 744 & UYUVX/VB**3+ (2.D0*LDC*VBY*VB**2-TDC*VBY*VB**2- 745 & LDC*VBY**3) * UYUVY/VB**3	726		XIP=INT(X(PAR))
728 CALL VCL (X (PAR), YIP, Z (PAR), VLXD, VLXD, VLZ) 729 CALL VCL (X (PAR), YIP+1, Z (PAR), VLXU, VLYU, VLZ) 730 CALL VCL (XIP, Y (PAR), Z (PAR), VLXL, VLYL, VLZ) 731 CALL VCL (XIP+1, Y (PAR), Z (PAR), VLXR, VLYR, VLZ) 732 C 733 UXUVX= (VLXL-VLXR) /DX 734 UYUVY= (VLYU-VLYD) /DY 735 UYUVX= (VLXU-VLXD) /DY 736 UXUVY= (VLYL-VLYR) /DX 737 C 738 C 739 DLT=LDC-TDC 740 C 741 UXUDY= (DLT/VB**3) * ((VBY**3) *UXUVX+ (VBX**3) *UXUVY) 742 C 743 UYUDY= (2.D0*TDC*VBX*VB*2-TDC*VBX**3-LDC*VBX*VB**2) * 744 & UYUVX/VB**3+ (2.D0*LDC*VBY*VB**2-TDC*VBY*VB**2- 745 & LDC*VBY**3) *UYUVY/VB**3	727		YIP=INT(Y(PAR))
729 CALL VCL (X (PAR), YIP+1, Z (PAR), VLXU, VLXU, VLYU, VLZ) 730 CALL VCL (XIP, Y (PAR), Z (PAR), VLXL, VLYL, VLZ) 731 CALL VCL (XIP+1, Y (PAR), Z (PAR), VLXR, VLYR, VLZ) 732 C 733 UXUVX= (VLXL-VLXR) /DX 734 UYUVY= (VLYU-VLYD) /DY 735 UYUVX= (VLXU-VLXD) /DY 736 UXUVY= (VLYL-VLYR) /DX 737 C 738 C 739 DLT=LDC-TDC 740 C 741 UXUDYX= (DLT/VB**3) * ((VBY**3) *UXUVX+ (VBX**3) *UXUVY) 742 C 743 UYUDYY= (2.D0*TDC*VBX*VB**2-TDC*VBX**3-LDC*VBX*VBY**2) * 744 & UYUVX/VB**3+ (2.D0*LDC*VBY*VB**2-TDC*VBY*VBX**2- 745 & LDC*VBY**3) *UYUVY/VB**3	728		CALL VCL(X(PAR),YIP,Z(PAR),VLXD,VLYD,VLZ)
730 CALL VCL (XIP, Y (PAR), Z (PAR), VLXL, VLYL, VLZ) 731 CALL VCL (XIP+1, Y (PAR), Z (PAR), VLXR, VLYR, VLZ) 732 C 733 UXUVX= (VLXL-VLXR) / DX 734 UYUVY= (VLYU-VLYD) / DY 735 UYUVX= (VLXU-VLXD) / DY 736 UXUVY= (VLYL-VLYR) / DX 737 C 738 C 740 C 741 UXUDYX= (DLT/VB**3) * ((VBY**3) * UXUVX+ (VBX**3) * UXUVY) 742 C 743 UYUDYY= (2.D0*TDC*VBX*VB**2-TDC*VBX**3-LDC*VBX*VBY**2) * 744 & UYUVX/VB**3+ (2.D0*LDC*VBY*VB**2-TDC*VBY*VBX**2- 745 & LDC*VBY**3) * UYUVY/VB**3	729		CALL VCL(X(PAR), YIP+1, Z(PAR), VLXU, VLYU, VLZ)
731 CALL VCL(XIP+1,Y(PAR),Z(PAR),VLXR,VLIR,VLZ) 732 C 733 UXUVX=(VLXL-VLXR)/DX 734 UYUVY=(VLYU-VLYD)/DY 735 UYUVX=(VLXU-VLXD)/DY 736 UXUVY=(VLYL-VLYR)/DX 737 C 738 C 739 DLT=LDC-TDC 740 C 741 UXUDYX=(DLT/VB**3)*((VBY**3)*UXUVX+(VBX**3)*UXUVY) 742 C 743 UYUDYY=(2.D0*TDC*VBX*VB**2-TDC*VBX**3-LDC*VBX*VBY**2)* 744 & & UYUVX/VB**3+(2.D0*LDC*VBY*VB**2-TDC*VBY*VBX**2- 745 &	/30		CALL VCL (XIP, Y (PAR), Z (PAR), VLXL, VLYL, VLZ)
732 C 733 UXUVX= (VLXL-VLXR) / DX 734 UYUVY= (VLYU-VLYD) / DY 735 UYUVX= (VLXU-VLXD) / DY 736 UXUVY= (VLYL-VLYR) / DX 737 C 738 C 739 DLT=LDC-TDC 740 C 741 UXUDYX= (DLT/VB**3) * ((VBY**3) * UXUVX+ (VBX**3) * UXUVY) 742 C 743 UYUDYY= (2.D0*TDC*VBX*VB**2-TDC*VBX**3-LDC*VBX*VBY**2) * 744 & UYUVX/VB**3+ (2.D0*LDC*VBY*VB**2-TDC*VBY*VBX**2- 745 & LDC*VBY**3) * UYUVY/VB**3	731	C	CALL VCL(AIP+1, I(PAR), Z(PAR), VLAR, VLIR, VLZ)
734 UYUVY= (VLYU-VLYD) / DY 735 UYUVX= (VLYU-VLYD) / DY 736 UXUVY= (VLYL-VLYR) / DX 737 C 738 C 739 DLT=LDC-TDC 741 UXUDYX= (DLT/VB**3) * ((VBY**3) * UXUVX+ (VBX**3) * UXUVY) 742 C 743 UYUDY= (2.D0*TDC*VBX*VB**2-TDC*VBX**3-LDC*VBX*VBY**2) * 744 & UYUVX/VB**3+ (2.D0*LDC*VBY*VB**2-TDC*VBY*VBX**2- 745 & LDC*VBY**3) * UYUVY/VB**3	733	C	IIXIIVX = (VI.XI VI.XR) / DX
735 UYUVX= (VLXU-VLXD) / DY 736 UXUVY= (VLYL-VLYR) / DX 737 C 738 C 739 DLT=LDC-TDC 740 C 741 UXUDYX= (DLT/VB**3) * ((VBY**3) * UXUVX+ (VBX**3) * UXUVY) 742 C 743 UYUDYY= (2.D0*TDC*VBX*VB**2-TDC*VBX**3-LDC*VBX*VBY**2) * 744 & 4 UYUVX/VB**3+ (2.D0*LDC*VBY*VB**2-TDC*VBY*VBX**2- 745 &	734		UYUVY = (VLYU - VLYD) / DY
736 UXUVY= (VLYL-VLYR) / DX 737 C 738 C 739 DLT=LDC-TDC 740 C 741 UXUDYX= (DLT/VB**3) * ((VBY**3) * UXUVX+ (VBX**3) * UXUVY) 742 C 743 UYUDYY= (2.D0*TDC*VBX*VB**2-TDC*VBX**3-LDC*VBX*VBY**2) * 744 & UYUVX/VB**3+ (2.D0*LDC*VBY*VB**2-TDC*VBY*VBX**2- 745 & LDC*VBY**3) * UYUVY/VB**3	735		UYUVX=(VLXU-VLXD)/DY
737 C 738 C CALCULATING FOKKER-PLANCK EQUATION ADDITIONAL TERM 739 DLT=LDC-TDC 740 C 741 UXUDYX= (DLT/VB**3)*((VBY**3)*UXUVX+(VBX**3)*UXUVY) 742 C 743 UYUDYY= (2.D0*TDC*VBX*VB**2-TDC*VBX**3-LDC*VBX*VBY**2)* 744 & UYUVX/VB**3+(2.D0*LDC*VBY*VB**2-TDC*VBY*VBX**2- 745 & LDC*VBY**3)*UYUVY/VB**3	736		UXUVY=(VLYL-VLYR)/DX
738 C CALCULATING FOKKER-PLANCK EQUATION ADDITIONAL TERM 739 DLT=LDC-TDC 740 C 741 UXUDYX= (DLT/VB**3)*((VBY**3)*UXUVX+(VBX**3)*UXUVY) 742 C 743 UYUDYY= (2.D0*TDC*VBX*VB**2-TDC*VBX**3-LDC*VBX*VBY**2)* 744 & UYUVX/VB**3+(2.D0*LDC*VBY*VB**2-TDC*VBY*VBX**2- 745 & LDC*VBY**3)*UYUVY/VB**3	737	С	
739 DLT=LDC-TDC 740 C 741 UXUDYX=(DLT/VB**3)*((VBY**3)*UXUVX+(VBX**3)*UXUVY) 742 C 743 UYUDYY=(2.D0*TDC*VBX*VB**2-TDC*VBX**3-LDC*VBX*VBY**2)* 744 & UYUVX/VB**3+(2.D0*LDC*VBY*VB**2-TDC*VBY*VBX**2- 745 & LDC*VBY**3)*UYUVY/VB**3	738	С	CALCULATING FOKKER-PLANCK EQUATION ADDITIONAL TERM
740 C 741 UXUDYX= (DLT/VB**3)*((VBY**3)*UXUVX+(VBX**3)*UXUVY) 742 C 743 UYUDYY= (2.D0*TDC*VBX*VB**2-TDC*VBX**3-LDC*VBX*VBY**2)* 744 & UYUVX/VB**3+(2.D0*LDC*VBY*VB**2-TDC*VBY*VBX**2- 745 & LDC*VBY**3)*UYUVY/VB**3	739		DLT=LDC-TDC
741 UXUDYX=(DLT/VB**3)*((VBY**3)*UXUVX+(VBX**3)*UXUVY) 742 C 743 UYUDYY=(2.D0*TDC*VBX*VB**2-TDC*VBX**3-LDC*VBX*VBY**2)* 744 & UYUVX/VB**3+(2.D0*LDC*VBY*VB**2-TDC*VBY*VBX**2- 745 & LDC*VBY**3)*UYUVY/VB**3	/40	С	
742 C 743 UYUDYY= (2.D0*TDC*VBX*VB**2-TDC*VBX**3-LDC*VBX*VBY**2) * 744 & UYUVX/VB**3+ (2.D0*LDC*VBY*VB**2-TDC*VBY*VBX**2- 745 & LDC*VBY**3) *UYUVY/VB**3	741 742	~	UXUDYX=(DLT/VB**3)*((VBY**3)*UXUVX+(VBX**3)*UXUVY)
744 & UYUVX/VB**3+ (2.D0*LDC*VBY*VB**2-TDC*VBY*VBX**2- 745 & LDC*VBY**3) *UYUVY/VB**3	742 743	C	
745 & LDC*VBY**3)*UYUVY/VB**3	744		UYUVX/VB**3+(2.D0*LDC*VBY*VB**2-ΦDC*VBY*VBX**2-
	745		& LDC*VBY**3) *UYUVY/VB**3

746	С		
747	С	Y COMPONENT FOKKER-PLANK STAGNATION TERM	
748		FPTY=UXUDYX+UYUDYY	
749	С		
750	С		
751		UXUDXX=(2.D0*LDC*VBX*VB**2-LDC*VBX**3-TDC*VBX*VB	Y**2)*
752		& UXUVX/VB**3+(2.D0*TDC*VBY*VB**2-LDC*VBY*	VBX**2-
753		& TDC*VBY**3) *UXUVY/VB**3	
754	С		
755	0	UYUDXY=(DLT/VB**3)*((VBY**3)*UYUVX+(VBX**3)*UYUV	Y)
756	С		- /
757	C	X COMPONENT FOKKER-PLANK STAGNATION TERM	
758		FPTX=UXUDXX+UYUDXY	
759	С		
760	С	DETERMINING THE NEW POSITION	
761		FLDC=R1*SORT(2, D0*LDC*VB*TS)	
762		FTDC=R2*SORT(2,D0*TDC*VB*TS)	
763	С		
764	0	X (PAR) = XPR (PAR) + VI.X*TS+ (VBX/VB) * FI.DC- (VBY/VB) * FTD	C+FPTX*TS
765		Y(PAR) = YPR(PAR) + VLY + TS + (VBY/VB) + FLDC + (VBX/VB) + FTD	C+FPTY*TS
766	С	1 (1110) 111 (1110) (121 10) (121, 12) 1220 (1211, 12)	0.1111 10
767	C	CHECKING IF BOYNDARIES HAVE BEEN REACHED	
768	C	CHECKING X END BOUNDARY	
769	0	IF (X (PAR), LT, 1, OR, X (PAR), GT, NX-1) THEN	
770		C(PRPOS(PAR)) = C(PRPOS(PAR)) - 1	
771		XPR(PAR) = X(PAR)	
772		OOB=OOB+1	
773		GOTO 10	
774		ENDIF	
775	С	CHECKING Y END BOUNDARY	
776	0	TF(Y(PAR) GT NY-1 OR Y(PAR) LT 1) THEN	
777		C(PRPOS(PAR)) = C(PRPOS(PAR)) - 1	
778		YPR(PAR) = Y(PAR)	
779		OOB=OOB+1	
780		GOTO 10	
781		ENDIF	
782	С	CHECKING Z DOWN END BOUNDARY	
783	-	IF(Z(PAR).LT.0) THEN	
784		C(PRPOS(PAR)) = C(PRPOS(PAR)) - 1	
785		ZPR (PAR) = Z (PAR)	
786		OOB=OOB+1	
787		GOTO 10	
788		ENDIF	
789	С	CHECKING Z TOP END BOUNDARY.IF EQUAL NZ ASSIGN PREV	<i>IOUS VALUE</i>
790	С	PLUME IS FORCED INSIDE THE VOLUME. THIS POLICY MAY	BE ALTERED
791		IF(Z(PAR) . GT. NZ) Z(PAR) = NZ	
792	С		
793	С	KEEPING POSITIONS	
794		XPR (PAR) =X (PAR)	
795		YPR (PAR) = Y (PAR)	
796		ZPR(PAR) = Z(PAR)	
797	С		
798	С	CALCULATING CONCENTRATIONS	
799	С		
800	С	WELLS ARE LOCATED ON GRID'S NODES	
801		MCLX=INT(X(PAR))	
802		MCLY=INT(Y(PAR))	
803	С		
804		DIFX=X(PAR)-MCLX	
805		DIFY=Y(PAR)-MCLY	
806	С		
807		<pre>IF(DIFX.GE.0.5) MCLX=MCLX+1</pre>	
808		<pre>IF(DIFY.GE.0.5) MCLY=MCLY+1</pre>	
809	С		
810		POS=(MCLY-1) *NX+MCLX	
811	С		
812		C(POS) = C(POS) + 1	
813		C(PRPOS(PAR)) = C(PRPOS(PAR)) - 1	

C	
ENDIF ! INS C	SIDE BOUNDARIES IF
C 10 CONTINUE	
C	
CMONITOR	
C ESTABLISHING A	SAMPLING POLICY (INVSM=INTERVAL OF SAMPLING)
DO 90 JS=0,KSA-	-1
C MONITOR WEI	LS
DO 95 IW=1,KW	1
IF(INT(TTL-	PRSMTTL(JS,IW)). EQ.ISA(JS)) THEN
DO KK=1.	NOW (IW)
BW=(I	FYE-LFYI)/NOW(IW)
IBW=I	NT (BW/2)
MWX (K	K)=INT(LFXE+(LFYE-LFYI)*NDFS) !X DIMENSION OF MONI
MWY (K	<pre>KK) = INT(LFYI+(IBW+(KK-1)*BW))</pre>
WELL	
ENDDO	
C MONITORING	WELLS 1 - NOW(IW) (NUMBER OF WELLS)
DO 70 K=	1, NOW (IW)
C DEPTH C	=0)F WELLS (NZ=1 EOV 2-D)
DO 80	IZ=1,NZ
NŴ	I(K) = (IZ-1) * NXNY + (MWY(K) - 1) * NX + MWX(K)
IF	C(K) = CC(K) + C(NW(K)) C(CC(K) * PM. GE . TVC) THEN
	IF (DET (JS, IW) . EQV FALSE.) THEN
	MW(JS, IW, K) = . TRUE .
	TOD (JS, IW) = . TROE. TOD (JS, IW) = TTL
	ENDIF
80 CONT	IDIF
C C C C C C C C C C C C C C C C C C C	14012
70 CONTINUE	CLOSING MONITOR LOOP
<i>ENDIF</i>	! SAMPLING POLICY IF
JF(DET(JS,I	W) . EQV TRUE .) THEN
IF(TTL.EQ	2. TOD(JS, IW)) CALL POLVOL(CAR1(JS, IW))
<i>IF</i> (TTL <i>.EQ</i> <i>TF</i> (TTL <i>.EQ</i>	<pre>p.TOD(JS,IW)+90) CALL POLVOL(CAR3(JS,IW)) D.TOD(JS,IW)+180) CALL POLVOL(CAR6(JS,IW))</pre>
IF(TTL.EQ	2. TOD(JS, IW)+365) CALL POLVOL(CAR12(JS, IW))
IF(TTL.EQ	2. TOD(JS,IW)+730) CALL POLVOL(CAR24(JS,IW))
IF(TTL.EQ ENDIF	<pre>D.TOD(JS,IW)+1095) CALL POLVOL(CAR36(JS,IW))</pre>
С	
С	
95 CONTINUE 90 CONTINUE	! CLOSING WELL LOOP ! CLOSING SAMPLING LOOP
C	
ENDIF	! MONITOR IF
С 20 СОМТТИПЕ	
C CONTINUE	
С	
DO JS=0,KSA-1	
IF(DET(JS,IW). EQVFALSE.) CALL POLVOL(NCAR(JS,IW))
ENDDO	
ENDDO	

887	C	
002	C	EVENERATING CONCENTRATIONS ON A SELECTED DESIGNATION
003	C	EXPORTING CONCENTRATIONS ON A SELECTED REALISATION
884	C	IF (IS. EQ.NSIM) THEN
885		OPEN (32,FILE='CONCENTRATION.TXT',STATUS='UNKNOWN')
886		QWVAL=20
887		LVAL=10
888		DO 40 K=1, NZ
889		DO 40 J-1.NY
890		$\mathbf{p}\mathbf{q}$ 40 I=1 NX
801		TD - (r-1) + NVNV + (T-1) + NV + T
802		$\mathbf{F} = \{\mathbf{N} = \mathbf{I} \} = \{\mathbf{N} \in \mathbf{I} \}$
092	~	RLOCLAND(IP) = C(IP)
893	С	VISUALIZATION OF LANDFILL'S LOCATION ON THE FIELD LATTICE AND
894	С	ITS MONITOR WELLS
895		DO KK=1,NOW(IW)
896		IF(I.EQ.MWX(KK).AND.J.EQ.MWY(KK)) RLOCLAND(IP)=QWVAL
897		ENDDO
898	С	
899		IF(K.EO.NZ.AND.J.GE.LFYI.AND.J.LE.LFYE.AND.
900		S I GE LEXI AND I LT LEXE) RLOCLAND (IP)=LVAL
901	C	
002	C	
202	C	$\mathbf{uvttr}(25^{1}, 1) 1^{0} 1^{1} \mathbf{V}^{1} \mathbf{V}^{1}$
903	C .	
904	4	0 CONTINUE
905	С	
906		CLOSE (32)
907	С	
908	C	CHECKING HOW MANY PARTICLES WERE COUNTED AND IF WE HAD C<0
909		NP=0
910		$E_{\Omega} = 0$
911		DO 45 K=1 N7
012		
012		
915		
914		1P = (K-1) * NXNY + (J-1) * NX+1
915		IF(C(IP).LT.0) THEN
916		E0=E0+1
917		PRINT 145,C(IP),I,J
918		WRITE(50,145)C(IP),I,J
919		ENDIF
920		NP=NP+C(IP)
921	4	5 CONTINUE
922	1.4	5 FORMAT (LATTENTION NECATIVE VALUE OF CONCENTRATION CL 15
023	11	C A T DOCTATION V-1 14 AND V-1 14)
024	0	α , AT FOSTITION A-, 14, AND 1-, 14,
924	C	
925	C	KESTOKING DIMENSIONS
926		LDC=LDC*DISTLENGT
927		TDC=TDC*DISTLENGT
928		DX=DX*DISTLENGT
929		DY=DY*DISTLENGT
930		DZ=DZ
931		TEND=TEND*DISTTIME
932		TPRD=TPRD*DISTTIME
933		TS=TS*DTSTTTME
03/	C	TO TO DIDITING
934 025	C	
933		
936	C	KEFUKTING VALUES
937		WR1TE(50,*) 1S,'/',NS1M
938		WRITE(50,800)NX,NY,NZ
939		WRITE (50,900) PX, PY, PZ
940		WRITE (50,*)
941		WRITE(50,*)'TIME STEP: ',TS
942		WRITE(50,*)'TOTAL PARTICLES INJECTED: '.TOTALPART
943		WRITE(50, *) 'PARTICLES TRACKED: '.NP
944		WRTTE(50 *) 'PARTICLES MISSED. ' OOR
045		MDTMP (50 *\!MOTAL TDACKED & MICCED NDLOOD
943		WUTTE(20 *)
946		WK1TE(30, ^)
947	С	
948		DO JS=0, KSA-1
949		WRITE(50,*)'***********************************

```
950
             DO TW=1.KW
951
             WRITE (50, *) 'LOCATION OF WELLS : ',
     С
             & ('WELL:',K,' (',MWX(K),',',MWY(K),')',' - ',K=1,NOW(IW))
952
     С
953
                WRITE(50,*)'SAMPLING INTERVAL (DAYS):', ISA(JS)
954
                IF (DET (JS, IW) . EQV. . TRUE.) THEN
955
                DO K=1, NOW(IW)
956
                  IF (MW (JS, IW, K) . EQV. . TRUE.) THEN
957
                    WRITE(50,*)NOW(IW),'-WELLS, MONITORING WELL:',K,
958
                     ' HAS DETECTED POLLUTION'
           æ
959
                    WRITE(50, *) 'DETECTION TIME= ', TOD(JS, IW), ' OF ', TEND
960
                 ENDIF
961
                ENDDO
962
                ELSEIF(DET(JS,IW).EQV..FALSE.) THEN
963
                WRITE(50,*)'NO DETECTION SUCCEEDED BY ',NOW(IW),
964
                    ' MONITORING WELLS '
           8
               ENDIF
965
966
      С
967
               WRITE(50, *)
968
               WRITE(50, *) 'POLLUTED VOLUME ON FAILURE=', NCAR(JS, IW)/LFAR
969
               WRITE (50, *) 'POLLUTED VOLUME ON DETECTION=', CAR1 (JS, IW) /LFAR
970
               WRITE (50, *) 'POLLUTED VOLUME 3 MONTHS LATER=', CAR3 (JS, IW) /LFAR
               WRITE(50,*)'POLLUTED VOLUME 6 MONTHS LATER=', CAR6(JS, IW)/LFAR
971
972
               WRITE(50,*)'POLLUTED VOLUME 12 MONTHS LATER=', CAR12(JS, IW)/LFAR
973
               WRITE(50,*)'POLLUTED VOLUME 24 MONTHS LATER=', CAR24(JS, IW)/LFAR
974
               WRITE(50,*)'POLLUTED VOLUME 36 MONTHS LATER=',CAR36(JS,IW)/LFAR
975
               WRITE (50, *) '------'
976
               WRITE(50, *)
977
             ENDDO
978
            ENDDO
979
     С
980
     С
             PRINTING ON SCREEN
981
            PRINT*
982
            PRINT*, 'TDC: ', TDC
            PRINT*, 'TOT INJ:', TOTALPART,' / TRACKED:', NP,' / MISSED:', OOB,
983
984
           & ' / TOT TRACKED & MISSED=', NP+OOB
985
            PRINT*
986
      С
987
      С
988
        800 FORMAT('X=', I4, 2X, 'Y=', I4, 2X, 'Z=', I4)
989
        900 FORMAT ('STARTING POINT OF POLLUTION: ', 'PX=', I3, 2X, 'PY=', I3,
990
           & 2X, 'PZ=', I3)
991
      C
992
            RETURN
993
            END
994
      С
995
      C
996
      C - -
                         _____
                                                   _____
997
      С
            NORMAL RANDOM NUMBER FUNCTION GENERATOR
998
      C-
         _____
999
      С
1000
              FUNCTION RVNORMAL (SEED)
1001
               IMPLICIT DOUBLE PRECISION (A-H, O-Z)
1002
              DATA S,T / 0.449871,-0.386595 /
               DATA A, B / 0.19600, 0.25472 /
1003
1004
              INTEGER SEED
1005
      С
1006
        100 U=RANDM(SEED)
1007
              V=RANDM(SEED)
1008
              V=1.7156D0*(V-0.5D0)
1009
              X=U-S
1010
              Y = ABS(V) - T
1011
              Q=X*X+Y*(A*Y-B*X)
1012
      C
1013
              IF(V**2.GT.-4*LOG(U)*U**2) GOTO 100
1014
              IF(Q.GT.0.27846) GOTO 100
1015
              IF(Q.LT.0.27597) RVNORMAL=V/U
              RETURN
1016
1017
              END
```

C C	
C	RANDOM NUMBER FUNCTION (0-1 EQUAL PROBABLE)
C	
C	FUNCTION RANDM (IDUM)
	TNTEGER THIM IM1 IM2 IMM1 IA1 IO1 IO2 IR1 NTAR NHIV
	DOUBLE DECISION BANDM AM EDS RNMY
	DOUBLE FRECISION RANDA, AM, EFS, RNMA DADAMETED (IM1-2147492562 IM2-2147492200 AM-1 D0/IM1 IMM1-IM1-
	* TA1-40014 TA2-40602 TO1-52668 TO2-52774 TD1-12211
	TAI-40014, IAZ-40092, IQI-0000, IQZ-02/74, IAI-12211,
	NIAD-52, NDIV-ITIMMI/NIAD, EPS-I.2E-/, RNMA-I.DU-EPS)
	INTEGER IDUMZ, U, K, IV (NIAD), II
	DAMA IN(11,100M2) DAMA IN($\frac{1}{2}$) (122456780/ IV($\frac{1}{2}$) (12256780/ IV($\frac{1}{2})$) (12256780/ IV($\frac{1}{2})$ (12256780/ IV($\frac{1}$
	TE (IDUM IE 0) TUEN
	IF (IDUM.LE.U) INEN
	IDUM=MAX(-IDUM,I)
	DO 11 J=NTAB+8,1,-1
	K=IDUM/IQI
	IDUM=IA1*(IDUM-K*IQ1)-K*IR1
	IF (IDUM.LT.O) IDUM=IDUM+IM1
	IF (J. LE . NTAB) IV (J) = IDUM
11	
	K=IDUM/IQ1
	IDUM=IA1*(IDUM-K*IQ1)-K*IR1
	IF (IDUM.LT.0) IDUM=IDUM+IM1
	K=IDUM2/IQ2
	IDUM2=IA2*(IDUM2-K*IQ2)
	IF (IDUM2.LT.0) IDUM2=IDUM+IM2
	J=1+IY/NDIV
	IY=IV(J)-IDUM2
	IV(J)=IDUM
	IF (IY.LT.1) IY=IY+IMM1
	RANDM=MIN (AM*IY, RNMX)
	RETURN
	END
С	
С	
С	
C***;	***************************************
С	SUBROUTINE LANDFL: LANDFILL'S SHAPE AND BOUNDARIES
C***;	***************************************
С	
	SUBROUTINE LANDF
	IMPLICIT DOUBLE PRECISION (A-H, O-Z)
	COMMON / PARAM/ PU, PI, EP, DX, DY, DZ, NX, NY, NZ, NSEED
	COMMON /LANDFILL/ LFX1,LFXE,LFYI,LFYE,LFAR,LFC
	INTEGER LFC(100000)
С	
	NN=NX*NY
С	
	DO I=1,NN
	LFC(I)=0
	ENDDO
С	
С	> RECTAGULAR LANDFILL <
С	LANDFILL (COORDINATIONS IN METERS/D TO GET DIMENSIONLESS NUMBE
	LFXI=INT(10/DX) !LANDFILL'S X INITIAL BOUNDARY LIN
	LFXE=INT(60/DX) !LANDFILL'S X ENDING BOUNDARY LIMIT
	LFYI=INT(140/DY) !LANDFILL'S Y INITIAL BOUNDARY LIMI
	LFYE=INT(260/DY) !LANDFILL'S Y ENDING BOUNDARY LIMIT
	LFAR=(LFXE-LFXI-1)*(LFYE-LFYI-1) !LF'S DIMENSIONLESS AREA (No
CELLS	5)
С	

1086		DO I=1,NX
1087		IP=(J-1)*NX+I
1088		IF (J. GE. LFYI. AND. J. LE. LFYE. AND. I. GE. LFXI. AND. I. LT. LFXE) THEN
1089		LFC(IP) = 1
1090		ENDIF
1091		FNDDO
1002		
1092	~	ENDO
1093	C	
1094		RETURN
1095		END
1096	С	
1097	С	
1098	C****	* * * * * * * * * * * * * * * * * * * *
1099	С	SUBROUTINE RANDORIGIN: CREATING RANDOM ORIGIN POINT OF POLLUTION
1100	C****	***************************************
1101	C	
1102	C	CIEDDOLITITE DANDADICIN (DRY DRY ADDAS)
1102		
1105		IMPLICIT DOUBLE PRECISION (A-H, U-Z)
1104		COMMON /PARAM/ PU,PI,EP,DX,DY,DZ,NX,NY,NZ,NSEED
1105		COMMON /LANDFILL/ LFXI,LFXE,LFYI,LFYE,LFAR,LFC
1106		<pre>INTEGER ORPOS,LFC(100000)</pre>
1107	С	
1108		XL=ABS(LFXE-LFXI)
1109		YL=ABS(LFYE-LFYI)
1110		RPX=XL*RANDM (NSEED) +LFXI
1111		RPY=YL*RANDM (NSEED) +LFYI
1112		PX=TNT(RPX)
1112		
1113		
1114		
1115		IF (RPY-PY.GE: 0.5) PY=PY+1 !COUNTS ON CENTRAL Y
1116		IF(RPX-PX.GE.0.5)PX=PX+1 !COUNTS ON CENTRAL X
1117	С	
1118		ORPOS=(PY-1)*NX+PX ! INITIAL CUBIC ELEMENT POSITION OF PARTICLES
1119	С	
1120		WRITE(39,*)PX,PY
1121	С	
1122		RETURN
1123		END
1124	C	
1124	C	
1125	0	
1120	C	
1127	~	
1128	С	SUBROUTINE WNDFS: WELLS' DISTANCE FROM SOURCE (NORMALIZED)
1129	C****	***************************************
1130	С	
1131		SUBROUTINE WNDFS (SIGMA, AT, DFS)
1132		IMPLICIT DOUBLE PRECISION (A-H, O-Z)
1133	С	
1134		IF(SIGMA.EQ.0.D0) THEN
1135		<i>IF</i> (AT. <i>EO</i> .0.001D0)DFS=3.0D0
1136		IF(AT, EO, 0, 01D0) DFS=2.25D0
1137		\mathbf{F} (\mathbf{F} \mathbf{F} \mathbf{O} 0 0.2D0) DES=1.50D0
1137		$\mathbf{F}(\mathbf{M},\mathbf{F},\mathbf{O}) = \mathbf{O} = \mathbf{O} = \mathbf{O} = \mathbf{O} = \mathbf{O} = \mathbf{O}$
1130		IF(AT, EQ. 0.1500) DIS-0.13500
11.39		IF (A1. Ly .0.1D0) DF =0.123D0
1140		IF (AT. EQ .0.2D0)DFS=0.030D0
1141		<i>IF</i> (AT. <i>EQ</i> .0.5D0)DFS=0.015D0
1142		ENDIF
1143	С	
1144		IF (SIGMA. EQ. 0.25D0) THEN
1145		IF (AT. EQ .0.001D0)DFS=1.75D0
1146		<i>IF</i> (AT. <i>EQ</i> .0.01D0)DFS=1.50D0
1147		<i>IF</i> (AT. <i>EQ</i> .0.02D0)DFS=1.00D0
1148		<i>IF</i> (AT. <i>EQ</i> .0.05D0)DFS=0.50D0
1149		IF(AT, EO, 0.1D0) DFS=0.125D0
1150		TF(AT, EO, 0.2D0) DES=0.30D0
1151		TF(AT FO = 0.500)
1152		TE (AI. EX.0.300) DE3-0.01300
1152	~	LINDIE
1155	C	

1154	
1134	IF (SIGMA.EQ. 0. SODO) THEN
1155	IF(AT, EO, 0.001D0) DFS=1.75D0
1150	
1130	<i>IF</i> (AT. <i>EQ</i> .0.01D0)) <i>DFS</i> =1.50D0
1157	TF (AT EO 0 02D0)DES=0 50D0
1150	
1158	<i>LE</i> (AT. <i>EQ</i> . 0.05D0) DFS=0.50D0
1159	TF (AT EO 0 1D0)DES=0 125D0
11.59	
1160	<i>IF</i> (AT. <i>EQ</i> .0.2D0)DFS=0.030D0
1161	TE(ATERO 0.5D0)DES=0.015D0
1101	IF (AI. EQ. 0.3D0) DFS-0.013D0
1162	ENDIF
11.00	
1163	C
1164	TF (STGMA EO 0 75D0) THEN
1167	
1165	<i>IF</i> (AT. <i>EQ</i> .0.001D0)DFS=1.75D0
1166	TF(AT FO = 0.01 D D D FS = 1.25 D D
1100	IF (A1. D2 .0.01D0)DI3-1.23D0
1167	<i>IF</i> (AT. <i>EQ</i> .0.02D0)DFS=0.50D0
1169	
1108	IF (A1. EQ. 0.05D0) DF3-0.25D0
1169	<i>IF</i> (AT. <i>EO</i> .0.1D0)DFS=0.125D0
1170	
11/0	<i>IF</i> (A'I'. <i>EQ</i> .0.2D0)DFS=0.030D0
1171	TF(ATFO) = 0.5D()DFS=0.015D()
11/1	IF (A1. D2 .0.000) D IS=0.01000
1172	ENDIF
1172	
11/5	C
1174	IF (SIGMA.EO.1.D0) THEN
1177	
11/5	<i>LE</i> (AT . <i>EQ</i> . 0.001D0) DFS=1./5D0
1176	TF(AT EQ 0 01D0)DFS=1 25D0
1177	IF (AT. EQ .0.02D0)DFS=0.50D0
1179	TE(AT) = EC = 0 (EDO) DEC = 0 (12ED)
11/0	TE (MI.EX.O.ODDO) DE 2-0.IZDDO
1179	IF(AT, EO, 0, 1D0) DFS=0.0625D0
1100	
1180	<i>IF</i> (A'I'. <i>EQ</i> .0.2D0)DFS=0.030D0
1181	TE(ATE EO = 0.5DA)DES = 0.015DA
1101	IF (A1. E2 .0.3D0)DF3-0.013D0
1182	ENDIF
1102	
1165	
1184	TF(SIGMA FO 1 5D0) THEN
1104	
1185	<i>IF</i> (AT. <i>EQ</i> .0.001D0)DFS=1.25D0
1186	TE(ATE EC = 0.01D0)DES = 1.00D0
1160	IF (A1. EQ .0.01D0)DFS-1.00D0
1187	<i>IF</i> (AT, <i>EO</i> , 0, 02D0) DFS=0, 50D0
1100	
1188	<i>IE</i> (AT. <i>EQ</i> .0.05D0)DFS=0.125D0
1189	TF(AT EO 0 1D0)DES=0 0625D0
1107	IF (A1. D2 .0.1D0)/DF3=0.0023D0
1190	<i>IF</i> (AT. <i>EQ</i> .0.2D0)DFS=0.015D0
1101	
1191	IF (AT. EQ. 0.5D0) DFS=0.015D0
1192	ENDIF
1102	
1193	C
110/	TE/SICMA EO 2 ODO) THEN
11/4	IF (SIGHA.Eg.2.000) INEM
1195	<i>IF</i> (AT. <i>EO</i> .0.001D0)DFS=0.75D0
1104	
1190	TE (AT.EQ.0.0110) DRS=0.3000
1197	IF (AT, EO , 0, 02D0) DFS=0, 25D0
1100	
1198	<i>IF</i> (AT. <i>EQ</i> .0.05D0)DFS=0.125D0
1100	$TE(\Delta T E = 0.1 DO) DES = 0.0625 DO$
1177	TE (AI.EQ.U.TUU) DES-U.U023DU
1200	<i>IF</i> (AT. <i>EO</i> .0.2D0)DFS=0.015D0
1201	
1201	<i>LE</i> (A'I'. <i>EQ</i> .0.5D0)DFS=0.015D0
1202	FNDTF
1202	
1203	С
1204	
1204	
1205	END
1005	
1206	C
1207	C
1207	
1208	С
1200	WAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
1209	
1210	C SUBROUTINE POLVOL: ESTIMATING THE POLLUTED VOLUME
1011	
1211	C*************************************
1212	SUBBOUTTNE POLVOL (VOL)
1414	
1213	IMPLICIT DOUBLE PRECISION (A-H,O-Z)
1014	
1214	C
1215	PARAMETER (IMEM=1024000)
1215	EARWHELLER (IPHER 1023000)
1216	COMMON / PARAM/ P0, P1, EP, DX, DY, DZ, NX, NY, NZ, NSEED
1217	
1217	COMMON / POLLUTION/ C, OOB
1218	INTEGER C(IMEM)
1010	
1219	C
1220	NXNY=NX*NY
1220	
1221	VOL=0

1222 **DO** 50 K=1,NZ 1223 DO 50 J=1,NY 1224 **DO** 50 I=1,NX 1225 IP=(K-1)*NXNY+(J-1)*NX+I1226 IF(C(IP).GT.28)VOL=VOL+1 1227 50 **CONTINUE** 1228 С 1229 VOL=VOL+OOB PARTICLES OUT OF BOUNDARIES INCLUDED (1 CELL/PAR) 1230 С 1231 RETURN 1232 END 1233 С 1234 С 1235 С 1236 C^* 1237 С CALCULATING THE VELOCITY FIELD 1238 C^* 1239 С 1240 **SUBROUTINE** VEL(RK, P, VELX, VELY, VELZ) 1241 С 1242 С VELOCITIES ARE CALCULATED IN A SHIFTED GRID, EQUAL TO 1/2 IN RELATION 1243 С TO THE INITIAL GRID WHERE K AND H ARE CALCULATED. THIS MEANS THAT 1244 С VX(I+1/2,J,K), VY(I,J+1/2,K), VZ(I,J,K+1/2). CALCULATIONS OF VELOCITY 1245 ONTO OTHER POINTS OF SIMULATION AREA MUST ACCOUNT FOR THIS SHIFT. С 1246 С VELOCITIES ON INITIAL GRID NODES ARE LINEARLY INTERPOLATED, 1247 С BETWEEN I+1, I AND J+1, J. 1248 С 1249 **IMPLICIT DOUBLE PRECISION** (A-H, O-Z) 1250 **PARAMETER** (IMEM=1024000) 1251 С 1252 DOUBLE PRECISION P(IMEM), RK(IMEM), VELX(IMEM), VELY(IMEM), VELZ(IMEM) 1253 DOUBLE PRECISION VELXI (IMEM), VELYI (IMEM), VELZI (IMEM) 1254 INTEGER TS, TEND, TPRD 1255 С 1256 COMMON / PARAM/ P0, P1, EP, DX, DY, DZ, NX, NY, NZ, NSEED 1257 COMMON /TIME/ TS, TEND, TPRD, NSIM 1258 С 1259 INITIALIZATION OF MATRICES AND PARAMETERS С 1260 DO I=1, IMEM 1261 VELXI(I)=0.D0 1262 VELYI(I)=0.D0 1263 VELZI(I)=0.D0 1264 VELX(I) = 0.D01265 VELY(I) = 0.001266 VELZ(I) = 0.D01267 ENDDO 1268 С 1269 NXNY=NX*NY 1270 С 1271 С CALCULATING 1272 **DO** 810 K=1,NZ 1273 **DO** 810 J=1,NY 1274 **DO** 810 I=1,NX 1275 IP=(K-1) *NXNY+(J-1) *NX+I 1276 С 1277 VELOCITY ON X AXIS (I+1/2) С 1278 IF(I.GE.1.AND.I.LE.NX-1) THEN ! CALCULATING grad(H) 1279 GRADHX = (P(IP+1) - P(IP)) / DX1280 RKPX=2.D0*RK(IP+1)*RK(IP)/(RK(IP+1)+RK(IP)) 1281 VELXI (IP) = RKPX*GRADHX/EP ! CALCULATING VELOCITY 1282 ENDIF 1283 С 1284 IF(I.EQ.NX) VELXI(IP)=VELXI((K-1)*NXNY+(J-1)*NX+NX-1) 1285 С 1286 VELOCITY ON Y AXIS (J+1/2) С 1287 IF (J.GE.1.AND.J.LE.NY-1) THEN ! CALCULATING grad(H) 1288 GRADHY=(P(IP+NX)-P(IP))/DY 1289 RKPY=2.D0*RK(IP+NX)*RK(IP)/(RK(IP+NX)+RK(IP))

1290 ! CALCULATING VELOCITY VELYT (TP) = RKPY*GRADHY/EP 1291 ENDIF 1292 С 1293 **IF**(J.**EQ**.NY) VELYI(IP)=VELYI((K-1)*NXNY+(J-1-1)*NX+I) 1294 С 1295 С VELOCITY ON Z AXIS (K+1/2) 1296 IF (K.GT.1.AND.K.LT.NZ) THEN ! CALCULATING grad(H) 1297 GRADHZ=(P(IP+NXNY)-P(IP))/DZ 1298 RKPZ=2.D0*RK(IP+NXNY)*RK(IP)/(RK(IP+NXNY)+RK(IP)) 1299 VELZI(IP)=RKPZ*GRADHZ/EP ! CALCULATING VELOCITY 1300 ENDIF 1301 С 1302 *IF*(K.*EQ*.NZ) VELZI(IP)=VELZ((K-1-1)*NXNY+(J-1)*NX+I) 1303 С 1304 810 CONTINUE 1305 С 1306 С LINEARLY INTERPOLATING VELOCITIES ON (I, J) 1307 С VELOCITY ON X AXIS [(I+1/2)+(I-1/2)]/2 1308 **DO** 820 K=1,NZ 1309 **DO** 820 J=1,NY 1310 **DO** 820 I=2,NX-1 1311 IP=(K-1)*NXNY+(J-1)*NX+I1312 IB=(K-1) *NXNY+(J-1) *NX+I-1 1313 VELX(IP) = (VELXI(IP) + VELXI(IB)) / 2.DO 1314 820 CONTINUE 1315 C1316 VELOCITY ON Y AXIS [(J+1/2)+(J-1/2)]/2 С 1317 **DO** 830 K=1,NZ DO 830 J=2,NY-1 1318 1319 **DO** 830 I=1,NX 1320 IP=(K-1) *NXNY+(J-1) *NX+I 1321 IB=(K-1) *NXNY+(J-1-1) *NX+I 1322 VELY(IP) = (VELYI(IP) + VELYI(IB)) /2.DO 1323 830 *CONTINUE* 1324 С 1325 С VELOCITY ON (NX, J) SIDE 1326 DO J=1,NY 1327 IP=(J-1)*NX+1 1328 IE=(J-1)*NX+NX1329 VELX(IP)=VELXI(IP) 1330 VELX(IE)=VELXI(IE) 1331 ENDDO 1332 С 1333 VELOCITY ON (I,NY) SIDE С 1334 DO I=1,NX 1335 IE=(NY-1)*NX+I1336 VELY(I)=VELYI(I) 1337 VELX(IE)=VELXI(IE) 1338 ENDDO 1339 С 1340 С 1341 REMOVING DIMENSIONS (VELOCITY IN DX/TS M/DAY UNITS) С 1342 **DO** 850 K=1,NZ 1343 **DO** 850 J=1,NY 1344 **DO** 850 I=1,NX 1345 IP=(K-1)*NXNY+(J-1)*NX+I1346 VELX(IP)=VELX(IP)/(DX/TS) 1347 VELY(IP)=VELY(IP)/(DY/TS) 1348 VELZ(IP)=VELZ(IP)/(DZ/TS) 1349 850 CONTINUE 1350 С 1351 С RETTIRN 1352 1353 END 1354 С 1355 С 1356 С 1357 С

1358 1359 C3D HYBRID VELOCITY INTERPOLATION SCEME SUBROUTINES 1360 1361 С 1362 C1363 SUBROUTINE VCL (XPR, YPR, ZPR, VLX, VLY, VLZ) 1364 С 1365 LINEAR VELOCITY INTERPOLATION 1366 С 1367 С 1368 IMPLICIT DOUBLE PRECISION (A-H, O-Z) 1369 **PARAMETER** (IMEM=1024000) 1370 С DOUBLE PRECISION VELX(IMEM), VELY(IMEM), VELZ(IMEM) 1371 1372 С COMMON /VELOCITY/ VELX, VELY, VELZ 1373 1374 COMMON / PARAM/ P0, P1, EP, DX, DY, DZ, NX, NY, NZ, NSEED 1375 С 1376 С 1377 NXNY=NX*NY 1378 VLX=0.D0 1379 VLY=0.D0 1380 VLZ=0.D0 1381 I=INT (XPR) 1382 J=INT (YPR) 1383 K=INT (ZPR) 1384 С 1385 FX=XPR-INT (XPR) 1386 FY=YPR-INT (YPR) 1387 С 1388 ----- X-AXIS -----C_____ 1389 IF (INT (XPR) . GE. 1. AND. INT (XPR) . LE. NX-1) THEN 1390 VLX=(DX-FX) *VELX((K-1) *NXNY+(J-1) *NX+I)+ 1391 FX*VELX((K-1)*NXNY+(J-1)*NX+I+1) æ 1392 ENDIF 1393 С 1394 IF (INT (XPR) . EQ.NX) VLX=VELX ((K-1) *NXNY+(J-1) *NX+NX) 1395 С 1396 С 1397 С ----- Y-AXIS ------_____ 1398 IF (INT (YPR) . GE. 1. AND. INT (YPR) . LE. NY-1) THEN 1399 VLY=(DY-FY) *VELY((K-1) *NXNY+(J-1) *NX+I) +1400 FY*VELY((K-1)*NXNY+(J-1+1)*NX+I) 8 1401 ENDTE 1402 С 1403 IF(INT(YPR).EQ.NY)VLY=VELY((K-1)*NXNY+(NY-1)*NX+I) 1404 С 1405 С 1406 RETURN 1407 END 1408 С 1409 С 1410 С 1411 1412 C1413 SUBROUTINE VCB (XPR, YPR, ZPR, VBX, VBY, VBZ) 1414 С 1415 1416 С BILINEAR VELOCITY INTERPOLATION 1417 С 1418 C1419 **IMPLICIT DOUBLE PRECISION** (A-H, O-Z) 1420 **PARAMETER** (IMEM=1024000) 1421 С 1422 DOUBLE PRECISION VELX (IMEM), VELY (IMEM), VELZ (IMEM) 1423 С 1424 COMMON /VELOCITY/ VELX, VELY, VELZ 1425 COMMON / PARAM/ P0, P1, EP, DX, DY, DZ, NX, NY, NZ, NSEED

1426 С 1427 С 1428 NXNY=NX*NY 1429 VBX=0.D0 1430 VBY=0.D0 1431 VBZ=0.D0 1432 I=INT (XPR) 1433 J=INT (YPR) 1434 K=INT(ZPR) 1435 С 1436 FX=XPR-INT (XPR) 1437 FY=YPR-INT (YPR) 1438 С 1439 С 1440 С ----- X-AXIS -----1441 IF (INT (XPR) . GE. 1. AND. INT (XPR) . LE.NX-1. AND. INT (YPR) . LE.NY-1) THEN 1442 BVX1=(DX-FX) * (DY-FY) *VELX((K-1) *NXNY+(J-1) *NX+I) BVX2=FX* (DY-FY) *VELX ((K-1) *NXNY+(J-1) *NX+I+1) 1443 1444 BVX3=(DX-FX) *FY*VELX((K-1) *NXNY+(J-1+1) *NX+I) 1445 BVX4=FX*FY*VELX((K-1)*NXNY+(J-1+1)*NX+I+1) 1446 VBX=BVX1+BVX2+BVX3+BVX4 1447 ENDIF 1448 С 1449 IF(INT(XPR).EQ.NX)VBX=VELX((K-1)*NXNY+(J-1)*NX+NX) 1450 С ----- Y-AXIS -----1451 С 1452 IF (INT (YPR) . GE. 1. AND. INT (YPR) . LE.NY-1. AND. INT (XPR) . LE.NX-1) THEN 1453 BVY1=(DX-FX) * (DY-FY) *VELY((K-1) *NXNY+(J-1) *NX+I) 1454 BVY2=FX* (DY-FY) *VELY ((K-1) *NXNY+ (J-1) *NX+I+1) 1455 BVY3=(DX-FX) *FY*VELY((K-1) *NXNY+(J-1+1) *NX+I) 1456 BVY4=FX*FY*VELY((K-1)*NXNY+(J-1+1)*NX+I+1) 1457 VBY=BVY1+BVY2+BVY3+BVY4 1458 ENDIF 1459 С 1460 IF (INT (YPR) . EQ.NY) VBY=VELX ((K-1) *NXNY+ (NY-1) *NX+I) С 1461 1462 С RETURN 1463 1464 END 1465

A-3 Flow Numerical Solution

(T.Sarris, personal communication, developed by A.J. Desbarats)

```
1
2
   С
        SOLVING THE FLOW PROBLEM
3
   4
   С
5
        SUBROUTINE FLOW3D (RK, P, ICON, DMAX)
6
   C
        IMPLICIT DOUBLE PRECISION (A-H, O-Z)
7
8
        PARAMETER (IMEM=1024000)
9
        DOUBLE PRECISION P(IMEM), B(IMEM), F(IMEM), S(IMEM), A(IMEM), D(IMEM),
10
                    RK(IMEM)
       æ
11
   C
        COMMON / PARAM/ P0, P1, EP, DX, DY, DZ, NX, NY, NZ, NSEED
12
13
   С
   C----
14
                                         _____
   С
        SET CONSTANTS AND INITIALIZE VECTORS
15
   C----
16
17
        NNNN=NX*NY*NZ
18
        NXNY=NX*NY
        TX=2.D0*DZ*(DY/DX)
19
20
        TY=2.D0*DZ*(DX/DY)
        TZ=2.D0*DX*(DY/DZ)
21
22
        DO 5 I=1, NNNN
23
        A(I)=0.D0
24
        B(I)=0.D0
25
        F(I)=0.D0
26
        S(I)=0.D0
27
        D(I) = 0.00
28
   5
        CONTINUE
29
   С
30
   C-
     ____ _____
31
   С
        SET UP DIAGONAL VECTORS FOR K+1 AND K-1
32
   C---- ------
33
        IF(NZ.EQ.1)GO TO 14
34
        NZ1=NZ-1
        DO 10 IK=1,NZ1
35
36
        DO 10 IJ=1,NY
37
        DO 10 II=1,NX
38
        IP=(IK-1) *NXNY+(IJ-1) *NX+II
39
        S(IP)=-1.D0*TZ*RK(IP)*RK(IP+NXNY)/(RK(IP)+RK(IP+NXNY))
40
   10 CONTINUE
41
   С
42
   С----
43
   C
        SET UP DIAGONAL VECTORS FOR J+1 AND J-1
   C----
44
        _____
45
   14 IF(NY.EQ.1) GO TO 19
46
        NY1=NY-1
47
        DO 15 IK=1,NZ
48
        DO 15 IJ=1,NY1
49
        DO 15 II=1,NX
50
        IP=(IK-1) *NXNY+(IJ-1) *NX+II
51
        F(IP) =-1.D0*TY*RK(IP) *RK(IP+NX) / (RK(IP) +RK(IP+NX))
52
   15 CONTINUE
53
   С
54
   C-----
55
   С
        SET UP DIAGONAL VECTORS FOR I+1 AND I-1
   C----
56
57
   19 NX1=NX-1
58
        DO 20 IK=1,NZ
59
        DO 20 IJ=1,NY
60
        DO 20 II=1,NX1
```

	IP=(IK-1)*NXNY+(IJ-1)*NX+II
	B(IP)=-1.D0*TX*RK(IP) *RK(IP+1)/(RK(IP)+RK(IP+1))
20	CONTINUE
С	
C	
C	SET UP MAIN DIAGONAL AND RHS VECTOR
C	DO 25 TK=1 N7
	00^{25} I.I=1 NY
	TP = (TK - 1) * NXNY + (TT - 1) * NX + 1
	TROUND=TX * RK (TP)
	PBOIIND=P0
	A(TP) = TBOUND
	D(IP)=TBOUND*PBOUND
	DO 26 II=1,NX
	IP=(IK-1)*NXNY+(IJ-1)*NX+II
	ZIP=0.D0
	GIP=0.D0
	CIP=0.D0
	IF(IP.GT.NXNY)ZIP=S(IP-NXNY)
	IF(IP.GT.NX)GIP=F(IP-NX)
	<i>IF</i> (IP. <i>GT</i> .1)CIP=B(IP-1)
0.0	A(IP) = A(IP) - S(IP) - ZIP - F(IP) - GIP - CIP - B(IP)
26	
	TBOUND=TX*RK(1P)
	A(IF) - A(IF) + TBOUND
25	CONTINUE
20	
2	SOLVE HEPTADIAGONAL LINEAR SYSTEM OF EQUATIONS
С	USING A LINE SUCCESSIVE OVER RELAXATION (LSOR) METHOD.
2	
	CALL LSOR(A, B, F, S, D, P, ICON, DMAX)
2	
	RETURN
~	END
2	
~	
- ~****	************
C	SUBROUTTNE LSOR (A.B.F.S.D.P.TCON.DMAX)
C****	**************************************
C	
	IMPLICIT DOUBLE PRECISION (A-H,O-Z)
	DOUBLE PRECISION AZL(500), BZL(500), CZL(500), DZL(500), UZL(500),
	& UM(500), A(1), B(1), F(1), S(1), D(1), P(1)
	INTEGER SNSIM
С	
	COMMON /SOLVE/ OMEGA, TOL, TOL1, MITER, SNSIM
	COMMON / PARAM/ P0, P1, EP, DX, DY, DZ, NX, NY, NZ, NSEED
7	
	NXNY=NX*NY
	IDEBUG=1
	IOCODE=9
	ICON=0
	NITER=0
	MFLAG=MITER-50
	DMAX=1.D0
	RH01=0.D0
~	THETA=0.D0
C	
C	
C	ITERATE ON SOLUTION
C	
11	CONTINUE
с	
-	

120		
129		IW-I.DO-OMEGA
130		DMAX0=DMAX
131		THETA0=THETA
132		IOCODE=9
133		IF (NITER.GE.MITER) THEN
134		WRITE(IOCODE, 3000) NITER, TOL, DMAX
135		PRINT 3000, NITER, TOL, DMAX
136		DRTN7 * '***********************************
137		· · · · · · · · · · · · · · · · · · ·
129		
120		
139		
140		RETURN
141		ENDIF
142	С	
143		NITER=NITER+1
144		DMAX=0.D0
145	С	
146		DO 20 K=1,NZ
147		DO 20 J=1,NY
148	С	
149	C	
150	C	SOLVE TRIDIAGONAL SYSTEM FOR BLOCK (.T.K.)
150	C	
152	U	
152		$D \rightarrow 13$ $1-1$, NA
155		$IP - (R - I) \wedge RANIT (J - I) \wedge RATI$
154		OM(1) = P(1P)
155		AZL(I) = A(IP)
156		DZL(I)=D(IP)
157		BZL(I)=B(IP)
158		CIP=0.D0
159		IF(IP.GT.1)CIP=B(IP-1)
160		CZL(I)=CIP
161		<i>IF</i> (NY. <i>EQ</i> .1) <i>GO TO</i> 14
162		JM=J-1
163		JP=J+1
164		IF (J. EO. 1) JM=1
165		IF (J. EO. NY) JP=NY
166		T PM = (K-1) * NYNY + (TM-1) * NY + T
167		TDD = (V-1) * MVNU + (D-1) * MV + T
169		CID-O DO
100		
109		IF(1P, GT, NA) GIP=F(1P-NA)
170		DZL(1) = DZL(1) - GIP * P(IPM) - F(IP) * P(IPP)
171	14	IF (NZ. EQ .1) GO TO 15
172		KM=K-1
173		KP=K+1
174		<i>IF</i> (K <i>.EQ.</i> 1)KM=1
175		IF(K.EQ.NZ)KP=NZ
176		IPM=(KM-1) *NXNY+(J-1) *NX+I
177		IPP=(KP-1)*NXNY+(J-1)*NX+I
178		ZIP=0.D0
179		IF(IP, GT, NXNY)ZIP=S(IP-NXNY)
180		$DZI_{T}(T) = DZI_{T}(T) - ZIP * P(TPM) - S(TP) * P(TPP)$
181	15	
182	C	
182	C	
103	C	CALL TRIDINGONAL CYCTEM COLVED
104	C	CALL IRIDIAGONAL SISTEM SOLVER
100	L	CALL DIAMAC /ADI DOI COI DOI 1101 NON
100	~	CALL THOMAS (AZL, BZL, CZL, DZL, UZL, NX)
187	C	
188	C	
189	С	UPDATE SOLUTION
190	C	
191		DO 16 I=1,NX
192		GSLSOR=UZL(I)
193		IPX=(K-1) *NXNY+(J-1) *NX+I
194		P(IPX)=TW*UM(I)+OMEGA*GSLSOR
195		ARG=P(IPX)-UM(I)
196		DM=ABS (ARG)

	IF(DM.GT.DMAX)DMAX=DM
16	CONTINUE
C 20	CONTINUE
C	
C	
C C	UPDATE ACCELERATION PARAMETER OMEGA
	IF (TOL1. EQ .0.D0) GO TO 25
	THETA=DMAX/DMAX0
	DELTA=THETA-THETAO
	ARG=ABS (ARG)
	<i>IF</i> (ARG. <i>GT</i> .TOL1) <i>GO TO</i> 25
	OM=OMEGA-1.D0
	RHO1 = (THETA+OM) * (THETA+OM) / (THETA*OMEGA*OMEGA)
	ARG=1 D0-RH01
	OMEGA=2.D0/(1.D0+SQRT(ARG))
	IF(NITER.GE.MFLAG)OMEGA=0.5D0
2	
; ~	TEST FOR CONVERGENCE
25	IF (DMAX.GT.TOL) GO TO 11
	IF(IDEBUG.NE.1) GO TO 300 HDTTTE(IOCODE 4000)NITTED OMECA DMAY THETA PHO1
	PRINT*, ' Flow Field Solved!!!'
	PRINT*
300	CONTINUE
~	ICON=1
~	COUNTER : NUMBER OF FLOW FIELD SOLUTION
	SNSIM=SNSIM+1
2	
4000	FORMAT (T5, 'CONVERGENCE (LSOR) REACHED AFTER ', 14,
	+ TERATIONS', $5x$, 'OMEGA = ', $F0.3$ / +T5, 'DMAX = ', $F10.6.5x$, 'THETA = ', $F10.6.5x$, 'RHO1 = ', $F10.6$ /)
3000	FORMAT (T15, 'Convergence (LSOR) was NOT reached IN', 15,
	+' ITERATIONS'/T15,'TOL= ',F10.7,10X,'DMAX = ',F15.7)
2	
	RETURN END
2	
2	
****	***************************************
~++++	SUBROUTINE THOMAS (A, B, C, D, X, N)
	IMPLICIT DOUBLE PRECISION (A-H, O-Z)
	DOUBLE PRECISION A(1), B(1), C(1), D(1), X(1), Q(500), G(500)
2	
	$W_{\perp} = A(\perp)$ $G(\perp) = D(\perp) / W_{\perp}$
	DO 10 I=2, N
	Q(I-1)=B(I-1)/WI
	WI=A(I)-C(I)*Q(I-1)
1.0	G(I) = (D(I) - C(I) * G(I-1)) / WI
τU	CONTINUE
	DO 20 I=2, N
	J=N-I+1
	X(J) = G(J) - Q(J) * X(J+1)
20	CONTINUE
	RETURN
	RETURN END

A-4 Flow Numerical Solution and STUBA Subroutine

(A.Mantoglou, personal communication)

```
1
2
    C-
         TURNING BANDS FIELD GENERATOR
    3
4
    С
         SUBROUTINE TUBA (NXDIM, NYDIM, DXX, DYY, FKM, FKV, CRL, TUBARK)
5
6
    C-----
                                                         _____
7
    С
8
    С
         Main program module for TUBA, Version 2.11d
9
    С
10
    C-----
11
    С
12
    С
        INCLUDE FILE FOR TUBA VERSION 2.11d
13
    С
14
    С
         COMMON /TBAPAR/ ICOVF, IPAA, LINES, FMAX, NHAR, NMAX, UN, FX, FY,
15
    С
        1 XO, YO, TBMX, KS, IP, NX, NY, XMAX, YMAX, DX, DY, NXY, AM, AN, AV, CLX, CLY,
16
    С
17
    С
    С
        1 IDFP, IURN, DS, UD, KD, NR, CK, FM, FA, A1, A3, A5, KT, DT, SG, B0, B1, B2,
18
19
    С
    С
20
        1 NF, IPF, SAJ, IULP, MSK, IMSEX
21
    С
22
    C-
                                _____
23
    С
24
    С
         LOGICAL UNIT IDENTIFIERS
25
    С
26
         IN = standard input - terminal (generally, this will be unit 5)
    С
27
    С
    С
         IT = standard output - terminal (generally, this will be unit 6)
28
29
    С
30
    С
         IL = listing file unit
    С
31
32
    С
         IO = output data unit
33
    C
34
    C
         L1 = used for reading (x,y) points, mask file data, then for storing
35
    С
36
    С
         the (x,y) generation points in direct access file for gridded fields
37
    С
38
    С
         L2 = used for areal average processes - stores line process data for
39
    С
40
    С
         each line in direct access file (to reduce memory requirements)
41
    С
             _____
42
    C-
                                                           _____
43
    С
44
         PARAMETER (IN=5, IT=6, IL=77, IO=20, L1=21, L2=22, LGTH=1000000)
45
         COMPLEX
                   C(LGTH/2)
46
         DOUBLE PRECISION TUBARK (1000000), DXX, DYY, FKM, FKV, CRL
47
                    A(LGTH), TBKK(1000000)
         REAL
          INTEGER XDIM,YDIM
48
   С
49
         EQUIVALENCE (A, C)
         INCLUDE 'tuba211d.inc'
50
51
         COMMON /KFIELD/ TBKK
52
         COMMON /PGPARS/ PCL, IPG
53
         COMMON /ADRSES/LXY, LPP, LPA, LZ1, LZZ, LZM, LSS, LCC, LFF, LTT, LDZ,
54
                       LS1, LS2, LC1, LC2
        1
55
56
         XMAX=DXX*NXDIM
57
         YMAX=DYY*NYDIM
58
         NX=NXDIM
```

```
59
            NY=NYDTM
 60
            AM=FKM
 61
            AN=0.0
 62
            AV=FKV*FKV
 63
            CLX=CRL
64
            CLY=CRL
65
 66
            KS=2
67
            TP=2
 68
            LINES=160
69
      С
70
            READ INPUT AND OUTPUT PARAMETERS
     С
71
            CALL RDINPT(IN, IT, IL, L1, A(1), A(1), MODEL, NLINE, NSIM)
 72
      С
 73
      С
             CALCULATE INTERNAL PARAMETERS
 74
             CALL INTPAR(A(1))
75
      С
            CREATE THE <NAME>.INP CARD FILE
 76
      С
 77
            CALL LSTINP(IL)
 78
      С
 79
      С
             CALCULATE "ADDRESSES" OF ARRAY POINTERS
 80
             CALL ADDRES(IT, IL, LGTH)
81
      С
 82
             CALCULATE (X,Y) POINT PROJECTIONS ONTO THE TBM LINES
      С
83
             CALL CALXYP(IT, L1, A(LXY), A(LZM), A(LSS), A(LCC), A(LPP))
 84
      С
 85
      С
             CALCULATION OF LINE PROCESS ARRAY DATA
86
            CALL CALINP(IT, L2, A(LPA), A(LSS), A(LCC), A(LS1), A(LC1), A(LFF))
      С
 87
 88
      С
            BEGIN SIMULATING THE RANDOM FIELD (S)
 89
            DO 20 ISIM=1,NSIM
 90
      С
               WRITE(IT,*)
91
               IF(NSIM.GT.1) CALL PROGSS(' SIMULATION NUMBER ....',
 92
                              IT, ISIM, NSIM, 5)
            1
93
               PCLSAV = PCL
94
               IPGSAV = IPG
 95
               CALL RESEED (ISIM, NUSEED)
96
               DO 10 L=1,NLINE
97
                 IF(MODEL.LE.3) CALL SPCTRL(L,L2,A(LPA),A(LZ1),C(LDZ/2+1),
98
            1
                                               A(LS1), A(LC1), A(LS2), A(LC2))
99
                 IF(MODEL.EQ.4) CALL MOVAVG(A(LTT), A(LZ1), A(LFF))
100
                 IF(MODEL.EQ.5) CALL WNRLVY(A(LZ1))
101
                 CALL PROJCT(L, IT, L1, A(LXY), A(LPP), A(LSS), A(LCC), A(LZZ),
102
            1
                                       A(LZM), A(LZ1))
      10
103
               CONTINUE
104
               CALL OUTPUT(IT, IL, IO, ISIM, NSIM, A(LXY), A(LZZ), A(LZM), NUSEED)
               PCL = PCLSAV
105
106
      20
             CONTINUE
107
      С
108
      С
              OPEN (34, FILE='TBKK.TXT', STATUS='UNKNOWN')
109
             DO 30 J=1,NY
110
               DO 30 I=1,NX
111
                IP=(J-1)*NX+I
112
                TUBARK (IP) = TBKK (IP)
113
             CONTINUE
       30
114
      С
115
              CLOSE(77)
116
      С
117
             RETURN
118
             END
119
      С
120
      С
121
            BLOCK DATA
122
      C-
123
      С
124
             INITIALIZE DATA FOR VARIABLES IN LABELED COMMON STATEMENTS
125
      С
126
            INCLUDE 'tuba211d.inc'
```

127	С		
128	Comt	COMMON	/SEEDS/ needed by URNITMB
129		COMMON	/SEEDS/ ML,MM,MK,L,M,K
130	С		
131	Comt	COMMON	/ADRSES/ needed by ADDRES, MAIN
132		COMMON	/ADRSES/LXY,LPP,LPA,LZ1,LZZ,LZM,LSS,LCC,LFF,LTT,LDZ,
133		1	LS1,LS2,LC1,LC2
134	C	~~~~~	
135	Comt	COMMON	/IRSGRD/ needed by DEFPAR, FLDPAR
127	C	COMMON	/IRSGRD/ GAMIN,GIMIN
137	Comt	ו גידיגרו	M K and MI MM MK needed by UPNITMP
139	COME		, м, к ана нд, нл, нк неецец бу бимтны м. к /089347405. 301467177. 240420681/
140		DATA N	ML.MM.MK /65539. 33554433. 36243609/
141	С		
142	Comt	DATA 1	LS1,LS2 needed by ADRSES
143		DATA I	LS1,LS2,LC1,LC2 /1,1,1,1/, MSK /0/
144	С		
145	Comt	DATA I	FM,FA,AM needed by INTPAR
146		DATA I	FM,FA,AM,AN,AV,CLX,CLY /1.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0/
147	С		
148	Comt	DATA (GXMIN, GYMIN needed by FLDPAR
149	a	DATA (SXMIN, GYMIN /1.E+15,1.E+15/
150	C	FND	
151	C		
152	C		
155	C	SUBROUTI	NE ADDRES(TT.TL.LGTH)
155	C		
156	_		
157	С	CALCULATE	E ADDRESSES OF ARRAY POINTERS
158	С		
159	С	LXY,LPP,1	LPA, ETC. ARE THE "ADDRESSES" OF THE XY,PP,PA ARRAYS IN
160	C	THE ONE I	
	0	INE ONE L	SIMENSIONAL ARRAI A. IF SIMULAIING AI ARBIIRARI (X,I)
161	C	LOCATIONS	5 (KS=1), THESE COORDINATES (NXY OF THEM) ARE STORED
161 162	C C	LOCATIONS	SIMENSIONAL ARRAY A. IF SIMULATING AT ARBITRARY (X, F) 5 (KS=1), THESE COORDINATES (NXY OF THEM) ARE STORED EGINNING OF ARRAY A. IF A MASK FILE IS USED, IT IS ALSO
161 162 163		LOCATIONS AT THE BE (MUTUALLS	SIMENSIONAL ARRAY A. IF SIMULATING AT ARBITRARY (X,F) 5 (KS=1), THESE COORDINATES (NXY OF THEM) ARE STORED EGINNING OF ARRAY A. IF A MASK FILE IS USED, IT IS ALSO Y EXCLUSIVE OPTIONS) STORED AT THE BEGINNING OF ARRAY A.
161 162 163 164 165	с с с с	INE ONE I LOCATIONS AT THE BE (MUTUALLS	SIMENSIONAL ARRAY A. IF SIMULATING AT ARBITRARY (X,F) S (KS=1), THESE COORDINATES (NXY OF THEM) ARE STORED EGINNING OF ARRAY A. IF A MASK FILE IS USED, IT IS ALSO Y EXCLUSIVE OPTIONS) STORED AT THE BEGINNING OF ARRAY A.
161 162 163 164 165 166	с с с с	INE ONE I LOCATIONS AT THE BE (MUTUALLY INCLUDE ' CHARACTEE	SIMULATING AT ARBITART A. IF SIMULATING AT ARBITRART (X,T) S (KS=1), THESE COORDINATES (NXY OF THEM) ARE STORED EGINNING OF ARRAY A. IF A MASK FILE IS USED, IT IS ALSO Y EXCLUSIVE OPTIONS) STORED AT THE BEGINNING OF ARRAY A. Ptuba211d.inc' B BITES*10
161 162 163 164 165 166 167	с с с с	INE ONE I LOCATIONS AT THE BE (MUTUALLS INCLUDE ' CHARACTER COMMON / Z	<pre>CIMENSIONAL ARRALA. IF SIMULATING AL ARBITRARI (X,I) S (KS=1), THESE COORDINATES (NXY OF THEM) ARE STORED EGINNING OF ARRAY A. IF A MASK FILE IS USED, IT IS ALSO Y EXCLUSIVE OPTIONS) STORED AT THE BEGINNING OF ARRAY A. 'tuba211d.inc' R BITES*10 ADRSES/LXY,LPP,LPA,LZ1,LZZ,LZM,LSS,LCC,LFF,LTT,LDZ,</pre>
161 162 163 164 165 166 167 168	с с с с	INE ONE I LOCATIONS AT THE BE (MUTUALLS INCLUDE ' CHARACTEE COMMON /F 1	<pre>SIMPLIATIONAL ARRAY A. IF SIMULATING AT ARBITRARY (X,T) S (KS=1), THESE COORDINATES (NXY OF THEM) ARE STORED EGINNING OF ARRAY A. IF A MASK FILE IS USED, IT IS ALSO Y EXCLUSIVE OPTIONS) STORED AT THE BEGINNING OF ARRAY A. 'tuba211d.inc' R BITES*10 ADRSES/LXY,LPP,LPA,LZ1,LZZ,LZM,LSS,LCC,LFF,LTT,LDZ, LS1,LS2,LC1,LC2</pre>
161 162 163 164 165 166 167 168 169	C C C C C C	INE ONE I LOCATIONS AT THE BE (MUTUALLS INCLUDE ' CHARACTEE COMMON /F 1 SEE BLOCH	<pre>SIMPLIATIONAL ARRAY A. IF SIMULATING AT ARBITRARY (X,T) S (KS=1), THESE COORDINATES (NXY OF THEM) ARE STORED EGINNING OF ARRAY A. IF A MASK FILE IS USED, IT IS ALSO Y EXCLUSIVE OPTIONS) STORED AT THE BEGINNING OF ARRAY A. 'tuba211d.inc' R BITES*10 ADRSES/LXY,LPP,LPA,LZ1,LZZ,LZM,LSS,LCC,LFF,LTT,LDZ, LS1,LS2,LC1,LC2 X DATA MODULE</pre>
161 162 163 164 165 166 167 168 169 170	C C C C C C C C C C C C C C C C C C C	INCLUDE ' CHARACTER COMMON / A SEE BLOCK DATA I	<pre>SIMENSIONAL ARRAY A. IF SIMULATING AT ARBITRARY (X,T) S (KS=1), THESE COORDINATES (NXY OF THEM) ARE STORED EGINNING OF ARRAY A. IF A MASK FILE IS USED, IT IS ALSO Y EXCLUSIVE OPTIONS) STORED AT THE BEGINNING OF ARRAY A. Ptuba211d.inc' R BITES*10 ADRSES/LXY,LPP,LPA,LZ1,LZZ,LZM,LSS,LCC,LFF,LTT,LDZ, LS1,LS2,LC1,LC2 X DATA MODULE LS1,LS2,LC1,LC2 /1,1,1,1/</pre>
161 162 163 164 165 166 167 168 169 170 171	C C C C C C C C C C C C C C C C C C C	INE ONE I LOCATIONS AT THE BE (MUTUALLS INCLUDE ' CHARACTER COMMON / F 1 SEE BLOCK DATA I	<pre>SIMENSIONAL ARRAI A. IF SIMULATING AT ARBITRART (X,T) S (KS=1), THESE COORDINATES (NXY OF THEM) ARE STORED EGINNING OF ARRAY A. IF A MASK FILE IS USED, IT IS ALSO Y EXCLUSIVE OPTIONS) STORED AT THE BEGINNING OF ARRAY A. Ptuba211d.inc' R BITES*10 ADRSES/LXY,LPP,LPA,LZ1,LZ2,LZM,LSS,LCC,LFF,LTT,LDZ, LS1,LS2,LC1,LC2 K DATA MODULE LS1,LS2,LC1,LC2 /1,1,1,1/</pre>
161 162 163 164 165 166 167 168 169 170 171 172	C C C C C C C C C C C C C C C C C C C	INE ONE I LOCATIONS AT THE BE (MUTUALLS INCLUDE ' CHARACTER COMMON /F 1 SEE BLOCH DATA 1 IGS = 0	<pre>SIMENSIONAL ARRAI A. IF SIMULATING AT ARBITRART (X,T) S (KS=1), THESE COORDINATES (NXY OF THEM) ARE STORED EGINNING OF ARRAY A. IF A MASK FILE IS USED, IT IS ALSO Y EXCLUSIVE OPTIONS) STORED AT THE BEGINNING OF ARRAY A. Ptuba211d.inc' R BITES*10 ADRSES/LXY,LPP,LPA,LZ1,LZZ,LZM,LSS,LCC,LFF,LTT,LDZ, LS1,LS2,LC1,LC2 X DATA MODULE LS1,LS2,LC1,LC2 /1,1,1,1/ </pre>
161 162 163 164 165 166 167 168 169 170 171 172 173	C C C C C C C C C C C C C C C C C C C	INE ONE I LOCATIONS AT THE BE (MUTUALLY INCLUDE ' CHARACTER COMMON / F 1 SEE BLOCH DATA I IGS = 0 KSS = MIN IF(KS CM	<pre>SIMENSIONAL ARRAI A. IF SIMULATING AT ARBITRART (A,T) S (KS=1), THESE COORDINATES (NXY OF THEM) ARE STORED EGINNING OF ARRAY A. IF A MASK FILE IS USED, IT IS ALSO Y EXCLUSIVE OPTIONS) STORED AT THE BEGINNING OF ARRAY A. Ptuba211d.inc' R BITES*10 ADRSES/LXY,LPP,LPA,LZ1,LZZ,LZM,LSS,LCC,LFF,LTT,LDZ, LS1,LS2,LC1,LC2 X DATA MODULE LS1,LS2,LC1,LC2 /1,1,1,1/ N(2,KS) 1) NYY = NYTNY</pre>
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175	C C C C C C C C C C C C C C C C C C C	INE ONE I LOCATIONS AT THE BE (MUTUALLY INCLUDE ' CHARACTEE COMMON / F 1 SEE BLOCH DATA I IGS = 0 KSS = MIN IF(KS.GT. IF(KS.GT)	<pre>SIMENSIONAL ARRAI A. IF SIMULATING AT ARBITRART (A,T) S (KS=1), THESE COORDINATES (NXY OF THEM) ARE STORED EGINNING OF ARRAY A. IF A MASK FILE IS USED, IT IS ALSO Y EXCLUSIVE OPTIONS) STORED AT THE BEGINNING OF ARRAY A. 'tuba211d.inc' R BITES*10 ADRSES/LXY,LPP,LPA,L21,L22,L2M,LSS,LCC,LFF,LTT,LDZ, LS1,LS2,LC1,LC2 Y DATA MODULE LS1,LS2,LC1,LC2 /1,1,1,1/ N(2,KS) .1) NXY = NX*NY 3) IGS = NX+NY</pre>
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176	C C C C Comt C C C	INE ONE I LOCATIONS AT THE BE (MUTUALLY INCLUDE ' CHARACTEE COMMON / F 1 SEE BLOCH DATA I IGS = 0 KSS = MIN IF(KS.GT. IF(KS.EQ. LYY = 1	<pre>SIMENSIONAL ARRAI A. IF SIMULATING AT ARBITRART (A,T) S (KS=1), THESE COORDINATES (NXY OF THEM) ARE STORED EGINNING OF ARRAY A. IF A MASK FILE IS USED, IT IS ALSO Y EXCLUSIVE OPTIONS) STORED AT THE BEGINNING OF ARRAY A. 'tuba211d.inc' R BITES*10 ADRSES/LXY,LPP,LPA,LZ1,LZZ,LZM,LSS,LCC,LFF,LTT,LDZ, LS1,LS2,LC1,LC2 Y DATA MODULE LS1,LS2,LC1,LC2 /1,1,1,1/ N(2,KS) .1) NXY = NX*NY .3) IGS = NX+NY</pre>
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177	C C C C Comt Comt C	INE ONE I LOCATIONS AT THE BE (MUTUALLY INCLUDE ' CHARACTER COMMON /F 1 SEE BLOCH DATA I IGS = 0 KSS = MIN IF(KS.GT. IF(KS.EQ. LXY = 1 LZM = 1 4	<pre>SIMENSIONAL ARRAY A. IF SIMULATING AT ARBITRARY (X,T) S (KS=1), THESE COORDINATES (NXY OF THEM) ARE STORED EGINNING OF ARRAY A. IF A MASK FILE IS USED, IT IS ALSO Y EXCLUSIVE OPTIONS) STORED AT THE BEGINNING OF ARRAY A. "tuba211d.inc' R BITES*10 ADRSES/LXY,LPP,LPA,LZ1,LZZ,LZM,LSS,LCC,LFF,LTT,LDZ, LS1,LS2,LC1,LC2 X DATA MODULE LS1,LS2,LC1,LC2 /1,1,1,1/ N(2,KS) .1) NXY = NX*NY .3) IGS = NX+NY + IGS</pre>
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178	C C C C Comt C C	INE ONE I LOCATIONS AT THE BE (MUTUALLY INCLUDE ' CHARACTER COMMON /F 1 SEE BLOCH DATA I IGS = 0 KSS = MIN IF(KS.GT. IF(KS.EQ. LXY = 1 LZM = 1 4 LPP = (2-	<pre>SIMENSIONAL ARRAY A. IF SIMULATING AT ARBITRARY (X,T) S (KS=1), THESE COORDINATES (NXY OF THEM) ARE STORED EGINNING OF ARRAY A. IF A MASK FILE IS USED, IT IS ALSO Y EXCLUSIVE OPTIONS) STORED AT THE BEGINNING OF ARRAY A. 'tuba211d.inc' R BITES*10 ADRSES/LXY,LPP,LPA,LZ1,LZ2,LZM,LSS,LCC,LFF,LTT,LDZ, LS1,LS2,LC1,LC2 Y DATA MODULE LS1,LS2,LC1,LC2 /1,1,1,1/ N(2,KS) .1) NXY = NX*NY .3) IGS = NX+NY + IGS -KSS)*(2*NXY) + 1 + MIN(MSK.1)*NXY + IGS</pre>
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179	C C C C C C C C C C C C C C C C C C C	INE ONE I LOCATIONS AT THE BE (MUTUALLY INCLUDE ' CHARACTEE COMMON / F 1 SEE BLOCH DATA I IGS = 0 KSS = MIN IF(KS.GT. IF(KS.GT. LXY = 1 LZM = 1 4 LPP = (2- LPA = LPE	<pre>SIMENSIONAL ARRAY A. IF SIMULATING AT ARBITRART (A,T) S (KS=1), THESE COORDINATES (NXY OF THEM) ARE STORED EGINNING OF ARRAY A. IF A MASK FILE IS USED, IT IS ALSO Y EXCLUSIVE OPTIONS) STORED AT THE BEGINNING OF ARRAY A. 'tuba211d.inc' R BITES*10 ADRSES/LXY,LPP,LPA,LZ1,LZZ,LZM,LSS,LCC,LFF,LTT,LDZ, LS1,LS2,LC1,LC2 X DATA MODULE LS1,LS2,LC1,LC2 /1,1,1,1/ N(2,KS) .1) NXY = NX*NY .3) IGS = NX+NY + IGS -KSS)*(2*NXY) + 1 + MIN(MSK,1)*NXY + IGS 2 + 2*(KSS-1)*NX</pre>
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180	C C C C C C C C C C C C C C C C C C C	INE ONE I LOCATIONS AT THE BE (MUTUALLY INCLUDE ' CHARACTEE COMMON /F 1 SEE BLOCH DATA I IGS = 0 KSS = MIN IF(KS.GT. IF(KS.EQ. LXY = 1 LZM = 1 + LPP = (2- LPA = LPF LZ1 = LPF	<pre>SIMENSIONAL ARRAY A. IF SIMULATING AT ARBITRART (A,T) S (KS=1), THESE COORDINATES (NXY OF THEM) ARE STORED EGINNING OF ARRAY A. IF A MASK FILE IS USED, IT IS ALSO Y EXCLUSIVE OPTIONS) STORED AT THE BEGINNING OF ARRAY A. Tuba211d.inc' R BITES*10 ADRSES/LXY,LPP,LPA,LZ1,LZZ,LZM,LSS,LCC,LFF,LTT,LDZ, LS1,LS2,LC1,LC2 X DATA MODULE LS1,LS2,LC1,LC2 /1,1,1,1/ N(2,KS) .1) NXY = NX*NY .3) IGS = NX+NY + IGS -KSS)*(2*NXY) + 1 + MIN(MSK,1)*NXY + IGS P + 2*(KSS-1)*NX A + NHAR</pre>
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181	C C C C C C C C C C C C C C C C C C C	INE ONE I LOCATIONS AT THE BE (MUTUALLY INCLUDE ' CHARACTEE COMMON /F 1 SEE BLOCH DATA I IGS = 0 KSS = MIN IF(KS.GT. IF(KS.EQ. LXY = 1 LZM = 1 + LPP = (2- LPA = LPF LZ1 = LPF LZ2 = LZ1	<pre>DIMENSIONAL ARRAY A. IF SIMULATING AT ARBITRART (A,T) S (KS=1), THESE COORDINATES (NXY OF THEM) ARE STORED EGINNING OF ARRAY A. IF A MASK FILE IS USED, IT IS ALSO Y EXCLUSIVE OPTIONS) STORED AT THE BEGINNING OF ARRAY A. Tuba211d.inc' R BITES*10 ADRSES/LXY,LPP,LPA,LZ1,LZZ,LZM,LSS,LCC,LFF,LTT,LDZ, LS1,LS2,LC1,LC2 X DATA MODULE LS1,LS2,LC1,LC2 /1,1,1,1/ N(2,KS) .1) NXY = NX*NY .3) IGS = NX+NY + IGS *KSS)*(2*NXY) + 1 + MIN(MSK,1)*NXY + IGS P + 2*(KSS-1)*NX A + NHAR L + MAX(NMAX,NHAR)</pre>
$\begin{array}{c} 161\\ 162\\ 163\\ 164\\ 165\\ 166\\ 167\\ 168\\ 169\\ 170\\ 171\\ 172\\ 173\\ 174\\ 175\\ 176\\ 177\\ 178\\ 179\\ 180\\ 181\\ 182\\ \end{array}$	C C C C C C C C C C C C C C C C C C C	INE ONE I LOCATIONS AT THE BE (MUTUALLY INCLUDE ' CHARACTER COMMON / F 1 SEE BLOCH DATA I IGS = 0 KSS = MIN IF(KS.GT. IF(KS.GT. IF(KS.GT. LXY = 1 LZM = 1 + LPP = (2- LPA = LPF LZI = LPF LZI = LPF LZZ = LZI LSS = LZZ	<pre>SINCLAINS ARAM A. IF SINULATING AT ARBITRART (X,T) S (KS=1), THESE COORDINATES (NXY OF THEM) ARE STORED EGINNING OF ARRAY A. IF A MASK FILE IS USED, IT IS ALSO Y EXCLUSIVE OPTIONS) STORED AT THE BEGINNING OF ARRAY A. 'tuba211d.inc' R BITES*10 ADRSES/LXY, LPP, LPA, LZ1, LZZ, LZM, LSS, LCC, LFF, LTT, LDZ, LS1, LS2, LC1, LC2 X DATA MODULE ES1, LS2, LC1, LC2 /1,1,1,1/ N(2,KS) 1) NXY = NX*NY 3) IGS = NX+NY + IGS P + 2*(KSS-1)*NX A + NHAR 1 + MAX(NMAX, NHAR) 2 + NXY</pre>
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183	C C C C C C C C C C C C C C C C C C C	INE ONE I LOCATIONS AT THE BE (MUTUALLY INCLUDE ' CHARACTEN COMMON /F 1 SEE BLOCH DATA I IGS = 0 KSS = MIN IF(KS.GT. IF(KS.GT. IF(KS.EQ. LXY = 1 LZM = 1 + LPP = (2- LPA = LPE LZ1 = LPF LZ2 = LZ1 LSS = LZ2 LCC = LSS	<pre>SINCLAING AL ARALA. IF SINCLAING ALARDIRARI (X,I) S (KS=1), THESE COORDINATES (NXY OF THEM) ARE STORED EGINNING OF ARRAY A. IF A MASK FILE IS USED, IT IS ALSO Y EXCLUSIVE OPTIONS) STORED AT THE BEGINNING OF ARRAY A. 'tuba211d.inc' R BITES*10 ADRSES/LXY, LPP, LPA, LZ1, LZZ, LZM, LSS, LCC, LFF, LTT, LDZ, LS1, LS2, LC1, LC2 X DATA MODULE LS1, LS2, LC1, LC2 /1,1,1,1/ N(2,KS) 1) NXY = NX*NY 3) IGS = NX+NY + IGS -KSS)*(2*NXY) + 1 + MIN(MSK,1)*NXY + IGS P + 2*(KSS-1)*NX A + NHAR 1 + MAX(NMAX, NHAR) 2 + NXY 5 + LINES</pre>
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184	C C C C C C C C C C C C C C C C C C C	INE ONE I LOCATIONS AT THE BE (MUTUALLY INCLUDE ' CHARACTEN CHARACTEN CHARACTEN CHARACTEN DATA I IGS = 0 KSS = BLOCH DATA I IGS = 0 KSS = MIN IF (KS.GT. IF (KS.GT. I	<pre>SIMENSIONAL ARRAY A. IF SIMULATING AT ARBITRART (X,T) S (KS=1), THESE COORDINATES (NXY OF THEM) ARE STORED EGINNING OF ARRAY A. IF A MASK FILE IS USED, IT IS ALSO Y EXCLUSIVE OPTIONS) STORED AT THE BEGINNING OF ARRAY A. Ptuba211d.inc' R BITES*10 ADRSES/LXY,LPP,LPA,L21,LZ2,LZM,LSS,LCC,LFF,LTT,LDZ, LS1,LS2,LC1,LC2 X DATA MODULE ES1,LS2,LC1,LC2 /1,1,1,1/ N(2,KS) 1) NXY = NX*NY 3) IGS = NX+NY + IGS EKSS)*(2*NXY) + 1 + MIN(MSK,1)*NXY + IGS P + 2*(KSS-1)*NX A + NHAR 1 + MAX(NMAX,NHAR) 2 + NXY 3 + LINES 2 + LINES 2 + LINES </pre>
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185	C C C C C C C C C C C C C C C C C C C	INE ONE I LOCATIONS AT THE BE (MUTUALLY INCLUDE ' CHARACTEN COMMON / F 1 SEE BLOCH DATA I IGS = 0 KSS = MIN IF (KS.GT. IF (KS.GT. IF (KS.GT. IF (KS.GT. LXY = 1 LZM = 1 4 LPP = (2- LPA = LPF LZI = LPF LZI = LPF LZZ = LZI LSS = LZZ LCC = LSS LFF = LCC	<pre>SIMENSIONAL ARRALA. IF SIMULATING AT ARBITRART (X,T) S (KS=1), THESE COORDINATES (NXY OF THEM) ARE STORED EGINNING OF ARRAY A. IF A MASK FILE IS USED, IT IS ALSO Y EXCLUSIVE OPTIONS) STORED AT THE BEGINNING OF ARRAY A. Ptuba211d.inc' R BITES*10 ADRSES/LXY,LPP,LPA,L21,LZ2,LZM,LSS,LCC,LFF,LTT,LDZ, LS1,LS2,LC1,LC2 X DATA MODULE LS1,LS2,LC1,LC2 /1,1,1,1/ N(2,KS) 1) NXY = NX*NY 3) IGS = NX+NY + IGS KSS)*(2*NXY) + 1 + MIN(MSK,1)*NXY + IGS P + 2*(KSS-1)*NX A + NHAR 1 + MAX(NMAX,NHAR) 2 + NXY 3 + LINES 2 + LINES 2 + LINES 2 + LINES 3 + LINES 3</pre>
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186	C C C C C C C C C C C C C C C C C C C	INE ONE I LOCATIONS AT THE BE (MUTUALLY INCLUDE ' CHARACTEN COMMON / F 1 SEE BLOCH DATA I IGS = 0 KSS = MIN IF (KS.GT. IF (KS.GT. IF (KS.GT. IF (KS.GT. LXY = 1 LZM = 1 4 LZM = 1 4 LZM = 1 4 LZM = 1 4 LZM = 1 2 LZZ = LZ1 LSS = LZ2 LCC = LSS LFF = LCC LTT = LFF LDZ = LTT	<pre>SINENSIONAL ARRAL A. IF SINULATING AT ARBITRART (A,T) S (KS=1), THESE COORDINATES (NXY OF THEM) ARE STORED EGINNING OF ARRAY A. IF A MASK FILE IS USED, IT IS ALSO Y EXCLUSIVE OPTIONS) STORED AT THE BEGINNING OF ARRAY A. 'tuba211d.inc' R BITES*10 ADRSES/LXY,LPP,LPA,LZ1,LZZ,LZM,LSS,LCC,LFF,LTT,LDZ, LS1,LS2,LC1,LC2 Y DATA MODULE LS1,LS2,LC1,LC2 /1,1,1,1/ N(2,KS) 1) NXY = NX*NY 3) IGS = NX+NY + IGS KSS)*(2*NXY) + 1 + MIN(MSK,1)*NXY + IGS P + 2*(KSS-1)*NX A + NHAR 1 + MAX(NMAX,NHAR) Y + NXY S + LINES C + NR </pre>
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187	C C C C C C C C C C C C C C C C C C C	INE ONE I LOCATIONS AT THE BE (MUTUALLY INCLUDE ' CHARACTEN COMMON / F 1 SEE BLOCH DATA I IGS = 0 KSS = MIN IF (KS.GT. IF	<pre>SIMENSIONAL ARRALA. IF SIMULATING AL ARBITRAT (X,F) S (KS=1), THESE COORDINATES (NXY OF THEM) ARE STORED EGINNING OF ARRAY A. IF A MASK FILE IS USED, IT IS ALSO Y EXCLUSIVE OPTIONS) STORED AT THE BEGINNING OF ARRAY A. 'tuba211d.inc' BITES*10 ADRSES/LXY,LPP,LPA,L21,L22,L2M,LSS,LCC,LFF,LTT,LDZ, LS1,LS2,LC1,LC2 Y DATA MODULE SI,LS2,LC1,LC2 /1,1,1,1/ N(2,KS) 1) NXY = NX*NY 3) IGS = NX+NY + IGS KSS)*(2*NXY) + 1 + MIN(MSK,1)*NXY + IGS P + 2*(KSS-1)*NX A + NHAR 4 + MAX(NMAX,NHAR) Y + MXY S + LINES C + LINES F + KD F + NR A + 2*NHAR</pre>
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188	C C C C C C C C C C C C C C C C C C C	INE ONE I LOCATIONS AT THE BE (MUTUALLY INCLUDE ' CHARACTEE COMMON / F 1 SEE BLOCH DATA I IGS = 0 KSS = MIN IF(KS.GT. IF(KS.GT. IF(KS.GT. IF(KS.GT. IF(KS.GT. IF(KS.GT. IF(KS.GT. IF(KS.GT. IF(KS.GT. IF(KS.GT. IF) LZZ = LZI LZZ = LZI LSS = LZZ LCC = LSS LFF = LCC LTT = LFF LDZ = LTI LRQ = LDZ THESE APP	<pre>SIMENSIONAL ARRAI A. IF SIMULATING AT ARBITRAT (A, F) S (KS=1), THESE COORDINATES (NXY OF THEM) ARE STORED EGINNING OF ARRAY A. IF A MASK FILE IS USED, IT IS ALSO Y EXCLUSIVE OPTIONS) STORED AT THE BEGINNING OF ARRAY A. 'tuba211d.inc' B BITES*10 ADRSES/LXY, LPP, LPA, LZ1, LZ2, LZM, LSS, LCC, LFF, LTT, LDZ, LS1, LS2, LC1, LC2 X DATA MODULE LS1, LS2, LC1, LC2 /1,1,1,1/ N(2,KS) 1) NXY = NX*NY 3) IGS = NX+NY + IGS -KSS)*(2*NXY) + 1 + MIN(MSK,1)*NXY + IGS P + 2*(KSS-1)*NX A + MHAR 1 + MAX(NMAX, NHAR) 2 + LINES 2 + LINES 5 + KD 5 + NR 4 + 2*NHAR BAYS ARE FOR SHINOZUKA AND JAN METHOD</pre>
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190	C C C C C C C C	INE ONE I LOCATIONS AT THE BE (MUTUALLY INCLUDE ' CHARACTER COMMON / F I SEE BLOCH DATA I IGS = 0 KSS = MIN IF(KS.GT. IF(KS.GT	<pre>SIMENSIONAL ARRAI A. IF SIMULATING AT ARBITRAK (A,T) S (KS=1), THESE COORDINATES (NXY OF THEM) ARE STORED EGINNING OF ARRAY A. IF A MASK FILE IS USED, IT IS ALSO Y EXCLUSIVE OPTIONS) STORED AT THE BEGINNING OF ARRAY A. Tubba211d.inc' BITES*10 ADRSES/LXY, LPP, LPA, L21, L2Z, L2M, LSS, LCC, LFF, LTT, LDZ, LS1, LS2, LC1, LC2 Y DATA MODULE LS1, LS2, LC1, LC2 /1,1,1,1/ N(2,KS) 1) NXY = NX*NY .3) IGS = NX+NY + IGS -KSS)*(2*NXY) + 1 + MIN(MSK,1)*NXY + IGS 2 + 2*(KSS-1)*NX A + NHAR 1 + MAX(NMAX, NHAR) 2 + NXY 3 + LINES 2 + LINES 5 + LNES 5 + KD 7 + NR 2 + 2*NHAR RAYS ARE FOR SHINOZUKA AND JAN METHOD LE.3 , AND, ISAJ, EO.1) THEN</pre>
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191	C C C C C C C C	INE ONE I LOCATIONS AT THE BE (MUTUALLY INCLUDE ' CHARACTER COMMON /F I SEE BLOCH DATA I IGS = 0 KSS = MIN IF(KS.GT.	<pre>SIMENSIONAL ARRAI A. IF SIMULATING AT ARDITAR(1,1) S (KS=1), THESE COORDINATES (NXY OF THEM) ARE STORED EGINNING OF ARRAY A. IF A MASK FILE IS USED, IT IS ALSO Y EXCLUSIVE OPTIONS) STORED AT THE BEGINNING OF ARRAY A. Tuba211d.inc' BITES*10 ADRSES/LXY,LPP,LPA,L21,L2Z,LZM,LSS,LCC,LFF,LTT,LDZ, LS1,LS2,LC1,LC2 Y DATA MODULE LS1,LS2,LC1,LC2 /1,1,1,1/ N(2,KS) 1) NXY = NX*NY 3) IGS = NX+NY + IGS KSS)*(2*NXY) + 1 + MIN(MSK,1)*NXY + IGS P + 2*(KSS-1)*NX A + NHAR 1 + MAX(NMAX,NHAR) 2 + NXY 3 + LINES 2 + LINES 2 + LINES 5 + KD 7 + NR RAYS ARE FOR SHINOZUKA AND JAN METHOD .LE.3 .AND. ISAJ.EQ.1) THEN .TT + NR</pre>
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192	C C C C C C C C	INE ONE I LOCATIONS AT THE BE (MUTUALLY INCLUDE ' CHARACTER COMMON /F I SEE BLOCH DATA I IGS = 0 KSS = MIN IF(KS.GT.	<pre>SIMENSIONAL ARRAITA. IF SIMULATING AT ARBITRART (A,T) S (KS=1), THESE COORDINATES (NXY OF THEM) ARE STORED BGINNING OF ARRAY A. IF A MASK FILE IS USED, IT IS ALSO Y EXCLUSIVE OPTIONS) STORED AT THE BEGINNING OF ARRAY A. 'tuba211d.inc' BITES*10 ADRSES/LXY, LPP, LPA, LZ1, LZ2, LZM, LSS, LCC, LFF, LTT, LD2, LS1, LS2, LC1, LC2 X DATA MODULE LS1, LS2, LC1, LC2 /1,1,1,1/ N(2, KS) 1) NXY = NX*NY 3) IGS = NX+NY + IGS -KSS)*(2*NXY) + 1 + MIN(MSK,1)*NXY + IGS 2 + 2*(KSS-1)*NX A + NHAR 1 + MAX(NMAX, NHAR) 2 + NNX 3 + LINES 2 + LINES 2 + LINES 5 + KD 7 + NR 4 + 2*NHAR RAYS ARE FOR SHINOZUKA AND JAN METHOD .LE.3 .AND. ISAJ.EQ.1) THEN LTT + NR S1 + NHAR</pre>
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193	C C C C C C C C	INE ONE I LOCATIONS AT THE BE (MUTUALLY INCLUDE ' CHARACTER COMMON / F I SEE BLOCH DATA I IGS = 0 KSS = MIN IF(KS.GT. IF(KS.GT	<pre>SIMENSIONAL ARRAITA. IF SIMULATING AT ARBITRART (X,T) S (KS=1), THESE COORDINATES (NXY OF THEM) ARE STORED BGINNING OF ARRAY A. IF A MASK FILE IS USED, IT IS ALSO Y EXCLUSIVE OPTIONS) STORED AT THE BEGINNING OF ARRAY A. 'tuba211d.inc' BITES*10 NDRSES/LXY, LPP, LPA, LZ1, LZ2, LZM, LSS, LCC, LFF, LTT, LDZ, LS1, LS2, LC1, LC2 X DATA MODULE LS1, LS2, LC1, LC2 /1,1,1,1/ N(2, KS) 1) NXY = NX*NY 3) IGS = NX+NY + IGS -KSS)*(2*NXY) + 1 + MIN(MSK,1)*NXY + IGS P + 2*(KSS-1)*NX A + NHAR 1 + MAX(NMAX, NHAR) 2 + NXY 3 + LINES 2 + LINES 2 + LINES 5 + KD 7 + NR 4 + 2*NHAR RAYS ARE FOR SHINOZUKA AND JAN METHOD LLE.3 .AND. ISAJ.EQ.1) THEN CTT + NR LS1 + NHAR LC1 + NHAR</pre>

195 LRQ = LC2 + NHAR196 END IF 197 C198 С DIRECT ACCESS FILES USE AN ADDITIONAL 8 BYTES PER RECORD 199 С BXY = BYTES FOR (X,Y) DATA; BAA = BYTES FOR AREAL AVERAGE DATA BXY = (4 * (2 * NXY) + 8 * NY)200 201 BAA = (4*NHAR*LINES + 8*LINES) * (IPAA-1)202 FDS = (BXY + BAA) * 1.E-06203 BITES = ' Megabytes' 204 IF(FDS.LT.1) THEN 205 BITES = ' Kilobytes' 206 FDS = 1000 * FDS 207 END IF 208 WRITE (IT, 10) LGTH, LRQ, LGTH-LRQ, FDS, BITES С 209 WRITE(IL,10) LGTH, LRQ, LGTH-LRQ, FDS, BITES 210 FORMAT(/' Number Of Elements Allocated In A Array =', I9, 10 211 1 /' Total Storage Required For Computations =', I9, 1 /' No Of Elements In Excess of Regirements =', I9, /' Free', 212 ' Disk Space Needed For Computations =',F9.3,A,/) 213 1 214 C215 IF(LRQ.LT.0 .AND. IDFP.EQ.2) WRITE(IT,15) FORMAT(' ***** err, integer overflow - you may be specifying', 216 15 1 /' the Turning Band line parameters improperly.', 217 218 /' Recheck Turning Band parameter input values') 2 219 С 220 С The following should NEVER occur 221 **IF**(LRQ.**LT**.0 .**AND**. IDFP.**EQ**.1) **WRITE**(IT, 16) FORMAT(' ***** err, integer overflow - contact code author', 222 16 223 1 /' send email message to: dazimme@somnet.sandia.gov') 224 С 225 IF(LRQ.GT.LGTH) WRITE(IT,20) 226 20 FORMAT(' ***** err, Insufficient Storage (Dimension of A Array)', 227 / ' 1 Increase Parameter LGTH in main program') 228 С 229 IF(LRQ.GT.LGTH) STOP 230 С 231 RETURN 232 END 233 С 234 С 235 **SUBROUTINE** CALINP(IT, L2, PA, SS, CC, S1, C1, FF) 236 C---_____ 237 238 С CALCULATION OF ARRAY DATA NEEDED FOR LINE PROCESS GENERATION 239 С 240 REAL PA(*), SS(*), CC(*), S1(*), C1(*), FF(*) INCLUDE 'tuba211d.inc' 241 242 COMMON /PGPARS/ PCL, IPG 243 CHARACTER LPMA*47, LPSM*43, LPTB*43, LPSP*47 244 LPMA /' Calculating Line Process Data ... (MA Process)'/ DATA LPSM /' Calculating Line Process Data ... Harmonic'/ 245 DATA LPTB /' Calculating Line Process Data ... Line No'/ 246 DATA 247 DATA LPSP /' Calculating Line Process Data ... (Spectral)'/ 248 249 NO ARRAY DATA NEEDED FOR NON-STATIONARY GENERALIZED COVARIANCE MODELS С 250 GC MODEL LINE PROCESS PARAMETERS CALCULATED IN SUBROUTINE INTPAR С 251 IF(ICOVF.EQ.5) RETURN 252 Comt WRITE(IT,*)'Calculating Line Process Data ... (GC Models)' 253 254 MOVING AVERAGE GENERATION OF THE LINE PROCESS С 255 IF(IULP.EQ.2) THEN 256 С USER-DEFINED MOVING AVERAGE ALGORITHM GOES HERE 257 CTHE FF ARRAY CONTAINS THE MOVING AVERAGE WEIGHTS 258 С SEE SECTIONS 2.4 AND 5.4 OF THE USER'S MANUAL 259 WRITE(IT, *) ' Calculating Line Process Data ... (MA Process)' Comt IF(IPF.GE.2) WRITE(IT, '(A)') LPMA 260 261 CK = 1.0RETURN 262

263		END IF
264		
265	С	MOVING AVERAGE GENERATION OF THE LINE PROCESS (TELIS COVARIANCE)
266		IF(ICOVF.EQ.4) THEN
267	Comt	WRITE(IT,*)' Calculating Line Process Data (MA Process)'
268		IF(IPF.GE.2) WRITE(IT, '(A)') LPMA
269		DO 10 K=1, KD
270		XT = DS*FLOAT(K-1)
271		FF(K) = (1XT) * EXP(-XT)
272	10	CONTINUE
273		$CX = IEXP(-2.^{DS})$
274		CK = SQRT(12.*CX*CX/(CX-DS*EXP(-2.*DS)))
275		REIORN END TE
270		
278	C	SPECTRAL GENERATION OF THE LINE PROCESS (SALLAND FET METHODS)
279	C	AX = FX/CLX
280		AY = FY/CLY
281		DOM = FMAX/FLOAT (NHAR)
282		DLM = 0.1*DOM
283	С	IF(IPF.EO.1) WRITE(IT,'(A)') LPSP
284		IF(IPAA.EQ.2) GO TO 33
285		
286	С	line generation for POINT processes
287		DO 20 M=1, NHAR
288	Comt	CALL PROGSS(' Calculating Line Process Data Harmonic',
289		<pre>IF(IPF.GE.2) CALL PROGSS(LPSM, IT, M, NHAR, 20)</pre>
290		OM = (FLOAT(M) - 0.5) * DOM
291		SPEC = SPDF (OM, ICOVF) *DOM
292	С	This if block pertains only to the Shinozuka and Jan method
293		IF(ISAJ.EQ.1) THEN
294		OMM = OM + URN55() * DLM
295		C1(M) = COS(OMM*UN)
296		SI(M) = SIN(OMM*UN)
297		SPEC = 2.0^SQRT(SPEC)
290		END IF DA(M) = CDEC
299	20	PA(M) - SPEC
301	20	RETURN
302		
303	C	line generation for AREAL AVERAGE processes
304	33	LREC = 4 *NHAR
305		OPEN (UNIT=L2,STATUS='SCRATCH',ACCESS='DIRECT',RECL=LREC,
306		1 FORM='UNFORMATTED')
307		DO 40 L=1,LINES
308		<pre>IF(IPF.GE.2) CALL PROGSS(LPTB, IT, L, LINES, 10)</pre>
309	С	IF(IPF.EQ.2) CALL PROGSS(LPTB,IT,L,LINES,10)
310	comt	IF(IPF.EQ.3) CALL PROGSS(' Turning Band Line', IT, L, LINES, 10)
311	comt	PCLSAV = PCL
312	comt	IPGSAV = IPG
313		DO 30 M=1, NHAR
314	Comt	CALL PROGSS(' Calculating Line Process Data Harmonic',
315	COMT	IF (IPF*IPGSAV. EQ.3) CALL PROGSS(LPSM, IT, M, NHAR, 20)
217		$OM = (FLOAT(M) - 0.5) \wedge DOM$
317	C	This if block portains only to the Shinesyka and Ian method
310	C	THIS II DIOCK PERCAINS ONLY TO THE SHIHOZUKA AND JAN METHOD TE(ISAJ EO 1) THEN
320		OMM = OM + IIPN55() * DIM
321		C1 (M) = COS (OMM*UN)
322		S1(M) = SIN(OMM*UN)
323		SPEC = 2.0*SORT (SPEC)
324		END IF
325		AC = CC(L)
326		AS = SS(L)
327		<pre>IF(ICOVF.EQ.0) AASD = WTUSR(OM, AC, AS, AX, AY)*SPEC</pre>
328		<pre>IF(ICOVF.EQ.1) AASD = WTEXP(OM, AC, AS, AX, AY)*SPEC</pre>
329		<pre>IF(ISAJ .EQ.1) AASD = 2.*SQRT(AASD)</pre>
330		PA(M) = AASD

331	30	CONTINUE					
332	aomt	WRITE(UNIT=L2, REC=L) (PA(M), M=1, NHAR)					
334	40	CONTINUE					
335							
336		RETURN					
338							
339							
340 341		SUBROUTTINE CALVYC (K GS X Y)					
342	C						
343 344	 C						
345	C	CALCOLATE (X, y) COORDINATES FOR GRIDDED OUTFOI					
346		REAL GS(*)					
347 348		INCLUDE 'tuba211d.inc'					
349	С	KS = 1 OUTPUT AT SPECIFIED (X,Y) LOCATIONS					
350	С	KS = 2 OUTPUT ONTO A BLOCK OR POINT CENTERED REGULARLY SPACED GRID					
351	C C	KS = 3 OUTPUT ONTO A BLOCK OR POINT CENTERED IRREGULARLY SPACED GRID IP = 1 POINT CENTERED GRID IP = 2 BLOCK CENTERED GRID					
353	C						
354	С	DECODE I AND J INDICES FROM SINGLE INDEX REFERENCE					
333 356		J = K/NX + I IF(MOD(K, NX), EO(0) J = J - 1					
357		I = K - (J-1) * NX					
358		V = 1.0/FLOAT(IP)					
359 360		IF(KS, EQ, 2) X = (1-V) * DX $IF(KS, EQ, 2) Y = (1-V) * DY$					
361		IF (KS. EQ .3) THEN					
362		X = 0					
363 364		Y = 0 DO 10 TT=1 T-1					
365	10	X = X + GS(II)					
366		X = X + (1-V) *GS(I)					
367	20	DO 20 $JJ=1, J-1$					
369	20	Y = Y + (1-V) *GS (NX+J)					
370		END IF					
371		סרייידוסא					
373		END					
374							
375							
377		SUBROUTINE CALXYP(IT, IU, GS, ZM, SS, CC, PP)					
378	C						
379 380	 C	CALCULATE (X Y) POINT PROIFCTIONS ONTO THE TOM I THES					
381	C	CALCULATE (A,I) FOINT FRODECITONS ONTO THE IDM LINES					
382		PARAMETER (PI=3.1415926)					
383		REAL CC(*), SS(*), GS(*), ZM(*), PP(2,*)					
385		CHARACTER PPCS*43					
386		DATA PPCS /' Calculating Projection Points Point No'/					
387 389	C	CALCULATE STARS AND COSTNES OF TOM ITHE ANCIES					
389	L	DTHA = PI/FLOAT(LINES)					
390		TNOT = URN55() * 2.0*PI					
391		DO 10 L=1, LINES					
392 393		THETA = FLOAT (L) $^{\text{DTHA}}$ + TNOT CC (L) = COS (THETA)					
394		SS(L) = SIN(THETA)					
395	10	CONTINUE					
396 397	C	NORMALIZED PROJECTON POINTS FOR KS=1 OBTAINED IN SUBROUTINE PROJET					
398	0	IF (KS.EQ.1) THEN					

399		WRITE(IT,*)'Projection Points Not Calculated -> Read as Inp	ut'
400		WRITE (IT, *) 'Projection Points = (x, y) Field Generation Point	ts'
401		IF(IULP.EQ.2 .OR. ICOVF.GE.4) WRITE(IT,*) DETTION	
402		END TF	
404			
405	С	CALCULATE AND STORE THE NORMALIZED (X,Y) PROJECTION POINTS FO	R GRIDS
406		LREC = $2*(4*NX)$	
407		OPEN (UNIT=IU, STATUS='SCRATCH', ACCESS='DIRECT', RECL=LREC,	
408	~	1 FORM='UNFORMATTED')	
409	C	IF(IPF.EQ.I) WRITE(IT,*)'Calculating Projection Points'	
411		DO = 30 J=1.NX	
412		K = (I-1) * NX + J	
413	Comt	CALL PROGSS(' Calculating Projection Points Point No'	1
414		<pre>IF(IPF.EQ.2) CALL PROGSS(PPCS, IT, K, NXY, 20)</pre>	
415		IF(IPF.EQ.3) CALL PROGSS(PPCS, IT, K, NXY, 5)	
416		IF(MSK.GT.U .AND. ZM(K).EQ.U) GO TO 30	
417		PP(1, J) = X	
419		PP(2, J) = Y	
420	30	CONTINUE	
421		WRITE(UNIT=IU, REC=I) ((PP(K, J), K=1, 2), J=1, NX)	
422	40	CONTINUE	
423	С	WRITE(IT,*)	
424			
425		END	
427		2.0	
428			
429			
430		SUBROUTINE COMENT(ID, CMT, NC)	
431	C		
432 433	 C	DETTION COMMENT FOD THE CNAMES IND FILE	
434	C	RETORN COMMENT FOR THE SWAME . THE FILE	
435	С	TUBA CREATES A CARD FILE "ON THE FLY" (ie. WHILE IT IS BEING	, RUN
436	С	INTERACTIVELY). THE CARD FILE PROVIDES A RECORD OF WHAT OPTI	ONS AND
437	С	PARAMETERS WERE USED AND LISTS THE SAMPLE STATISTICS OF EACH	OUTPUT
438	С	FIELD. THE CARD FILE CAN ALSO BE USED FOR BATCH PROCESSING.	
439			
440		INTEGER NCHRS(37)	
442		DATA COMTS(1) /'1=(x,y) Locations, 2=Even Grid, 3=Uneven	• /
443		DATA COMTS(2) /'Input Filename for (x,y) Locations	'/
444		DATA COMTS(3) /'1=Point Centered, 2=Block Centered	'/
445		DATA COMTS(4) /'Maximum X and Y Field Dimensions	'/
446		DATA COMTS(5) /'Number of Nodes-X and Nodes-Y	'/
447		DATA COMIS(0) / I-NOTIMAL, $2 = \exp(X)$, $3 = 10^{(X)}$ DATA COMTS(7) / IO=Hser 1=Exp 2=Gause 3=Real 4=Telia 5-00	''''
449		DATA COMTS(8) /'1=Point Process, 2=Areal Average Process	•/
450		DATA COMTS(9) /'X and Y Dimensions of Averaging Area	'/
451		DATA COMTS(10) /'Desired Mean, Nugget and Sill	'/
452		DATA COMTS(11) /'X and Y Direction Correlation Lengths	'/
453		DATA COMTS(12) /'Generalized Covariance Model Coefficients	
454 455		DATA COMTS(13) / Line Process by: 1=Spectral, 2=Moving Avg	·/
456		DATA COMTS(15) /'Number of Turning Band Lines	• /
457		DATA COMTS(16) /'TBM Line Discretization Distance	•/
458		DATA COMTS(17) /'Nbr of Harmonics for Discretizing Spectrum	ı ' /
459		DATA COMTS(18) /'Max Frequency for Truncation of Spectrum	'/
460		DATA COMTS(19) /'Discretization Distance for MA Process	'/
461		DATA COMTS(20) /'Discretization Distance for Weiner Process	. /
462 463		DATA COMTS(21) /'FIELD ORIGIN Relative to TBM Origin	• /
464		DATA COMTS(22) / Uleout Data FileHalle DATA COMTS(23) //1=Output Only 7. 2=Output X V and 7	•/
465		DATA COMTS(24) /'1=Unformatted, 2=Formatted Output	'/
466		DATA COMTS(25) /'Output Format for Writing Data to Disk	'/

467 COMTS(26) /'1=Single Write Statement, 2=Line at a Time'/ DATA 468 COMTS(27) /'1=First Row to Last, 2=Last Row to First DATA COMTS(28) /'1=Marsaglia URNG, 2=Machine Indep URNG ۰/ 469 DATA COMTS(29) /'Seed(s) for Random Number Generator 470 DATA 1/ COMTS(30) /'Number of Realizations to be Simulated 471 DATA 472 COMTS(31) / 'Maximum Turning Band Line Length ۰/ DATA 473 COMTS(32) /'Mask Filename ۰/ DATA COMTS(33) /'Input Filename for grid-block widths '/ 474 DATA 475 COMTS(34) /'1=Single file output, 2=Multiple files ۰/ DATA 476 DATA COMTS(35) /'1=Minimal, 2=Med, 3=Frequent screen output'/ COMTS(36) /'0=do not scale, 1=match T-stats exactly '/ 477 DATA COMTS(37) /'Mean, Nugget, Sill for Gen Cov Model ۰/ 478 DATA 479 480 DATA / 40, 34, 35, 32, 29, 29, 40, 40, 36, 29, 37, NCHRS 41, 41, 42, 28, 32, 42, 40, 38, 42, 35, 20, 36, 33, 38, 42, 40, 38, 35, 38, 32, 13, 36, 38, 42, 39, 36/ 481 1 482 1 483 1 484 485 CMT = COMTS(ID) 486 NC = NCHRS(ID) 487 488 RETURN 489 END 490 491 492 493 SUBROUTINE COVPAR(IN, IT, IL, MODEL) 494 C----_____ _____ 495 С 496 QUERY FOR COVARIANCE PARAMETERS OF THE RANDOM FIELD 497 **INCLUDE** 'tuba211d.inc' 498 499 500 CWRTTE(TT, 10)501 C 10 FORMAT (//' ++++++++++ COVARIANCE PARAMETERS +++++++++/) 502 503 WRITE(IT, *) 'Select Type Of Covariance Model:' С 504 С WRITE(IT,*)'(0) - User Specified' WRITE(IT, *)'(1) - Exponential Model' 505 С 506 С WRITE(IT,*)'(2) - Gaussian Covariance' 507 С WRITE(IT, *)'(3) - Bessel Type Covariance' 508 WRITE(IT,*)'(4) - Telis Covariance Function' С 509 С WRITE(IT,*)'(5) - Generalized Covariance Model' 510 С WRITE(IT,*) CALL RDINTG(IN, IT, IL, ICOVF, 1, 7) 511 С 512 ICOVF=2 513 MODEL = ICOVF 514 515 IPAA = 1516 С AREAL AVERAGE PROCESS DATA FOR USER DEFINED OR EXPONENTIAL MODELS 517 IF(ICOVF.LE.1) THEN 518 WRITE(IT, *)'(1) - Point Process' 519 WRITE(IT, *)'(2) - Areal Average Process' 520 WRITE(IT,*) 521 CALL RDINTG(IN, IT, IL, IPAA, 1, 8) 522 IF(IPAA.EQ.2) THEN 523 WRITE(IT, *) 'Enter X And Y Dimensions Of Averaging Rectangle' 524 WRITE(IT,*) 525 **CALL** RDREAL (IN, IT, IL, FX, 2, 9) 526 END IF 527 END IF 528 529 IF(ICOVF.EQ.5) THEN 530 WRITE(IT,*)'Enter Gen. Covariance Parameters A1,A3,A5' 531 WRITE(IT,*)' K(r) = A1*r + A3*r**3 + A5*r**5' WRITE(IT,*)'(A1,A5.GE.0, A3.GE.-(10/3)*SQRT(A1*A5)) ' 532 533 WRITE(IT, *) 534 CALL RDREAL (IN, IT, IL, A1, 3, 12)

```
535
             RETURN
536
           END IF
537
538
             WRITE (IT, *) 'Enter Mean And Variance Parameters: If You Will Have'
     С
539
     С
             WRITE (IT, *) 'The Field(s) Exponentiated, Enter The Desired Mean &'
540
             WRITE(IT, *) 'Variance BEFORE Exponentiation (Variance=Nugget+Sill) '
     С
541
     С
             WRITE (IT, *)
542
    С
             WRITE (IT, *) 'Enter The Mean, Nugget And Sill For Covariance Model'
543
    С
            WRITE(IT,*)
544
     С
            CALL RDREAL (IN, IT, IL, AM, 3, 10)
545
            IF(AN.LT.0 .OR. AV.LT.0) THEN
             STOP '***** ERR, nugget and sill must be > or = 0'
546
547
            END IF
548
549
             WRITE(IT,*)'Enter The X and Y Direction Correlation Lengths'
     С
550
     С
             WRITE(IT, *)' ( Make These Equal For Isotropic Fields )'
551
     С
            WRITE(IT,*)
552
     С
            CALL RDREAL (IN, IT, IL, CLX, 2, 11)
553
554
            RETURN
555
            END
556
     С
557
     С
558
            SUBROUTINE DEFPAR(NLINE, XY)
559
     C-----
560
     ___
561
     С
            CALCULATE DEFAULT TURNING BAND PARAMETERS
562
563
           PARAMETER (PI=3.141592654D0)
564
            REAL
                       DLK(4),XY(*)
565
            INTEGER
                       NHR(4)
            INCLUDE 'tuba211d.inc'
566
            COMMON /IRSGRD/ GXMIN,GYMIN
567
568
569
           DATA
                       NHR /2048, 1024, 4096, 0 /
                       DLK /0.05, 0.10, 0.025, 0./
570
           DATA
571
572
           CALCULATE DEFAULT TBM ORIGIN AND MAXIMUM TBM LINE LENGTH
     С
573
            CALL ORGMAX(XY)
574
575
     С
          SET DEFAULT NUMBER OF TBM LINES (BOTH NEEDED BECAUSE OF COMMON)
     C THERE IS NO LONGER A "DEFAULT" NUMBER OF TEM LINES ...
Comt LINES = 16
Comt NLINE = 16
576
577
578
579
580
            SPECTRAL AND MOVING AVERAGE METHOD LINE PARAMETERS
     С
581
            IF(ICOVF.LE.4) THEN
582
              ISAJ = 0
             NHAR = NHR (ICOVF)
583
584
             UN = 0.0625
585
             DS = 0.05 * AMIN1 (CLX, CLY)
586
            END IF
587
588
            BLOCK OR CELL SPACING FOR GRIDDED OUTPUT
     С
            IF(KS.EQ.2) THEN
589
590
             K = 2 - IP
591
             DX = XMAX / MAX(NX-K, 1)
592
             DY = YMAX / MAX(NY-K, 1)
593
            ELSE IF (KS.EQ.3) THEN
594
             DX = GXMIN
             DY = GYMIN
595
596
            END IF
597
598
     С
            GENERALIZED COVARIANCE MODEL DEFAULT LINE DISCRETIZATION DISTANCE
599
            DX, DY SET IN ORGMAX FOR THE CASE OF KS=1
     С
600
            IF(ICOVF.EQ.5) THEN
601
             UN = AMIN1(DX, DY)
602
             DT = 0.2 \times UN
```
```
603
           END IF
604
605
     С
           UN = NORMALIZED LINE DISCRETIZATION DISTANCE = 2*PI/FMAX (FFT METHOD)
606
           FOR STATIONARY MODELS, UN IS SET EQUAL TO 0.0625 (16 PTS/CORR LGTH)
     С
607
     С
           IF (UN.GT.DX .OR. UN.GT.DY) THEN UN IS DECREASED APPROPRIATELY.
     С
608
           ALSO MAKE SURE MA PROCESS PARAMETER DS IS SMALL ENOUGH.
609
           IF(KS.GT.1 .AND. ICOVF.LE.4) THEN
610
             CM = AMAX1(CLX,CLY)
611
             DC = AMIN1 (CLX/16., CLY/16.)
612
             DN = AMIN1(.99*DX/CLX,.99*DY/CLY,DC/CM)
613
             UN = AMIN1 (UN, DN)
             DS = AMIN1 (DS, UN*AMIN1 (CLX, CLY) /10)
614
615
           END IF
616
617
           IF THE SPECTRAL METHOD IS USED .AND. UN IS DECREASED, THEN THE
     С
618
     С
           FREQUENCY SPACING DELK MAY BE GREATER THAN THE ALLOWABLE MAXIMUM
           (SEE DLK IN DATA STATEMENT). WHEN THIS HAPPENS, NHAR IS INCREASED
619
     С
620
     С
          (BY A FACTOR OF 2 FOR THE FFT) TO OBTAIN A SMALLER DELK.
621
622
           FMAX = 2.*PI/UN
623
           IF(UN.LT.0.0625 .AND. ICOVF.LE.3) THEN
    16
624
             IF (FMAX/FLOAT (NHAR).GT.DLK (ICOVF)) THEN
625
              NHAR = 2 \times NHAR
626
               GO TO 16
             END IF
627
628
           END IF
629
630
           RETURN
631
           END
632
633
634
635
           SUBROUTINE FFT (F, NPT, IFB)
                                     _____
636
     С-----
637
     ___
638
     С
           ONE DIMENSIONAL FAST FOURIER TRANSFORM ROUTINE (FORWARD AND INVERSE)
639
     С
640
     C
           THIS ROUTINE, MODIFIED BY D. A. (TONY) ZIMMERMAN AT NEW MEXICO TECH
641
     С
           AND VERIFIED WITH IMSL ROUTINES, WAS TAKEN FROM PAGE 108 OF:
642
     С
643
     C
                    RAFAEL .C GONZALEZ AND PAUL WINTZ, 1987.
644
     С
                          `DIGITAL IMAGE PROCESSING''
645
     С
                       ADDISON-WESLEY PUBLISHING COMPANY
646
     С
               = COMPLEX SEQUENCE TO BE TRANSFORMED (INPUT)
647
     С
          F
648
          F = COMPLEX TRANSFORMED ARRAY ON OUTPUT
     С
649
     C
          NPT = NUMBER POINTS IN F TO BE TRANSFORMED
          IFB = -1 FOR FORWARD TRANSFORM ( EXP(-i*2PIux/NPT) )
IFB = +1 FOR INVERSE TRANSFORM ( EXP(+i*2PIux/NPT) )
650
     С
651
     С
652
     C-----
653
     ___
     С
654
           NOTE: THE INPUT SEQUENCE MUST BE OF LENGTH EQUAL TO 2**N FOR SOME N
655
     C-----
656
     _ _
657
           PARAMETER (PI=3.141592654D0)
658
           COMPLEX
                      F(*),U,W,T
659
660
           IF(IFB.GT.0) THEN
661
            DO 10 K=1,NPT
662
     10
            F(K) = CONJG(F(K))
           END IF
663
664
665
           LN = ALOG(FLOAT(NPT)) / ALOG(2.0)
666
           N = 2 * * LN
           NV2 = N/2
667
           NM1 = N-1
668
669
670
          J = 1
```

```
671
           DO 3 I=1,NM1
672
              IF(I.GE.J) GO TO 1
673
              T = F(J)
674
              F(J) = F(I)
675
              F(I) = T
             K = NV2
676
    1
677
             IF(K.GE.J) GO TO 3
     2
678
              J = J-K
679
              K = K/2
680
              GO TO 2
681
     3
              J = J+K
682
683
           DO 5 L=1,LN
684
             LE = 2 * * L
              LE1 = LE/2
685
686
              U = CMPLX(1.0, 0.0)
687
              A = PI/LE1
              W = CMPLX(COS(A), -SIN(A))
688
689
              DO 5 J=1,LE1
690
               DO 4 I=J, N, LE
691
                  IP = I + LE1
                  T = F(IP)*U
692
693
                  F(IP) = F(I) - T
694
                 F(I) = F(I) + T
    4
695
    5
                U = U * W
696
697
            IF(IFB.GT.0) THEN
698
             DO 20 K=1,NPT
699
    20
             F(K) = CONJG(F(K))
700
            END IF
701
702
            RETURN
703
            END
704
705
706
707
            SUBROUTINE FFTGEN(L, L2, PA, Z1, DZ)
708
      C-----
709
     ___
710
      С
            GENERATION OF THE LINE PROCESS VIA FAST FOURIER TRANSFORM
711

        REAL
        PA(*),Z1(*)

        COMPLEX
        DZ(*),i

712
713
            INCLUDE 'tuba211d.inc'
714
715
716
            THE IMAGINARY PART YIELDS AN INDEPENDENT REALIZATION
    C
717
            IF(MOD(L,2).EQ.0) GO TO 30
718
719
            i = (0., 1.)
            IF(IPAA.EQ.2) READ(UNIT=L2, REC=L) (PA(M), M=1, NHAR)
720
721
722
            DO 10 M=1, NHAR
723
             DELF = PA(M)
724
              SQDF = SQRT(6.*DELF)
725
              A = SQDF * URN55()
726
             B = SQDF * URN55()
727
              DZ(M) = A - i*B
    10
           CONTINUE
728
729
730
            CALL FFT (DZ, NHAR, -1)
731
732
           DO 20 M=1, NHAR
     20
733
           Z1(M) = 2.0 * REAL(DZ(M))
734
735
            RETURN
736
737
     30
           DO 40 M=1,NHAR
738
    40
           Z1(M) = 2.0 * AIMAG(DZ(M))
```

	END
C	SUBROUTINE FILPAR(IN,IT,IL)
С	QUERY FOR OUTPUT FILE PARAMETERS
	CHARACTER FMT*35, FNAM*35
	INCLUDE 'tuba211d.inc'
	COMMON /OTPTS1/ FMT, FNAM
	COMMON /OTPTS2/ IFO,IMO,IRO,ILN
C	WRTTE(TT 5)
C 5	FORMAT(//' +++++++++++ OUTPUT FILE PARAMETERS +++++++++++/)
	(,,, ,
С	WRITE(IT,*)'Enter A Filename For The Output File(s)'
С	WRITE(IT,*)
С	CALL RDCHAR(IN, IT, IL, FNAM, 22)
	FINAM- IUDA.IAI
	IF(KS.EQ.1) THEN
	WRITE(IT,*)'(1) - Output Only The Field Values, Z'
	WRITE(IT,*)'(2) - Output The (X,Y) Locations And Z'
	WRITE(IT,*)
	CALL RDINTG(IN, IT, IL, IOF, 1, 23)
	END IF
С	WRITE(IT,*)'(1) - Unformatted Output'
C	WRITE(IT,*)'(2) - Formatted Output'
С	WRITE(IT,*)
С	CALL RDINTG(IN,IT,IL,IFM,1,24)
	IFM=1
	TF(TEM EO 2) THEN
	<i>IF</i> (KS. <i>EQ</i> .1) <i>WRITE</i> (IT,10) '"(2F12.2,1PE12.5)"'
	<i>IF</i> (KS. <i>GT</i> .1) <i>WRITE</i> (IT,10) '"(10F12.5)"'
10	FORMAT(' Enter Output Format, e.g., ',A)
	<pre>WRITE(IT,*)' (include the parentheses)'</pre>
	WRITE(IT,*)
	CALL RDCHAR(IN, IT, IL, FMT, 25)
	IF(KS.GT.1) THEN
С	WRITE(IT,*)'(1) - Write Out Matrix With One WRITE Statement'
С	WRITE(IT,*)'(2) - Write Out Matrix One Line (Row) At A Time'
C C	WRITE(IT,*)'(2) - Write Out Matrix One Line (Row) At A Time' WRITE(IT,*)
C C C	WRITE(IT,*)'(2) - Write Out Matrix One Line (Row) At A Time' WRITE(IT,*) CALL RDINTG(IN,IT,IL,IMO,1,26) IMO-2
C C C	<pre>WRITE(IT,*)'(2) - Write Out Matrix One Line (Row) At A Time' WRITE(IT,*) CALL RDINTG(IN,IT,IL,IMO,1,26) IMO=2 IMO = 2 - IMO</pre>
C C C	<pre>WRITE(IT,*)'(2) - Write Out Matrix One Line (Row) At A Time' WRITE(IT,*) CALL RDINTG(IN,IT,IL,IMO,1,26) IMO=2 IMO = 2 - IMO IRO = 1</pre>
C C C	<pre>WRITE(IT,*)'(2) - Write Out Matrix One Line (Row) At A Time' WRITE(IT,*) CALL RDINTG(IN,IT,IL,IMO,1,26) IMO=2 IMO = 2 - IMO IRO = 1 IF(IMO.EQ.0 .AND. IFM.EQ.2) THEN</pre>
С С С	<pre>WRITE(IT,*)'(2) - Write Out Matrix One Line (Row) At A Time' WRITE(IT,*) CALL RDINTG(IN,IT,IL,IMO,1,26) IMO=2 IMO = 2 - IMO IRO = 1 IF(IMO.EQ.0 .AND. IFM.EQ.2) THEN WRITE(IT,*)' Output the Rows of the Matrix via'</pre>
С С С	<pre>WRITE(IT,*)'(2) - Write Out Matrix One Line (Row) At A Time' WRITE(IT,*) CALL RDINTG(IN,IT,IL,IMO,1,26) IMO=2 IMO = 2 - IMO IRO = 1 IF(IMO.EQ.0 .AND. IFM.EQ.2) THEN WRITE(IT,*)' Output the Rows of the Matrix via' WRITE(IT,*)' Output the Rows of the Matrix via' WRITE(IT,*)'(1) - First Row> Last Row'</pre>
с с с	<pre>WRITE(IT,*)'(2) - Write Out Matrix One Line (Row) At A Time' WRITE(IT,*) CALL RDINTG(IN,IT,IL,IMO,1,26) IMO=2 IMO = 2 - IMO IRO = 1 IF(IMO.EQ.0 .AND. IFM.EQ.2) THEN WRITE(IT,*)' Output the Rows of the Matrix via' WRITE(IT,*)'(1) - First Row> Last Row' WRITE(IT,*)'(2) - Last Row> First Row' WRITE(IT,*)</pre>
С С С	<pre>WRITE(IT,*)'(2) - Write Out Matrix One Line (Row) At A Time' WRITE(IT,*) CALL RDINTG(IN,IT,IL,IMO,1,26) IMO=2 IMO = 2 - IMO IRO = 1 IF(IMO.EQ.0 .AND. IFM.EQ.2) THEN WRITE(IT,*)' Output the Rows of the Matrix via' WRITE(IT,*)' Output the Rows of the Matrix via' WRITE(IT,*)'(1) - First Row> Last Row' WRITE(IT,*)'(2) - Last Row> First Row' WRITE(IT,*) CALL RDINTG(IN,IT,IL,IRO,1,27)</pre>
с с с	<pre>WRITE(IT,*)'(2) - Write Out Matrix One Line (Row) At A Time' WRITE(IT,*) CALL RDINTG(IN,IT,IL,IMO,1,26) IMO=2 IMO = 2 - IMO IRO = 1 IF(IMO.EQ.0 .AND. IFM.EQ.2) THEN WRITE(IT,*)' Output the Rows of the Matrix via' WRITE(IT,*)' Output the Rows of the Matrix via' WRITE(IT,*)'(1) - First Row> Last Row' WRITE(IT,*)'(2) - Last Row> First Row' WRITE(IT,*) CALL RDINTG(IN,IT,IL,IRO,1,27) END IF</pre>
с с с	<pre>WRITE(IT,*)'(2) - Write Out Matrix One Line (Row) At A Time' WRITE(IT,*) CALL RDINTG(IN,IT,IL,IMO,1,26) IMO=2 IMO = 2 - IMO IRO = 1 IF(IMO.EQ.0 .AND. IFM.EQ.2) THEN WRITE(IT,*)' Output the Rows of the Matrix via' WRITE(IT,*)' Output the Rows of the Matrix via' WRITE(IT,*)'(1) - First Row> Last Row' WRITE(IT,*)'(2) - Last Row> First Row' WRITE(IT,*) CALL RDINTG(IN,IT,IL,IRO,1,27) END IF END IF</pre>
с с с	<pre>WRITE(IT,*)'(2) - Write Out Matrix One Line (Row) At A Time' WRITE(IT,*) CALL RDINTG(IN,IT,IL,IMO,1,26) IMO=2 IMO = 2 - IMO IRO = 1 IF(IMO.EQ.0 .AND. IFM.EQ.2) THEN WRITE(IT,*)' Output the Rows of the Matrix via' WRITE(IT,*)' Output the Rows of the Matrix via' WRITE(IT,*)'(1) - First Row> Last Row' WRITE(IT,*)'(2) - Last Row> First Row' WRITE(IT,*) CALL RDINTG(IN,IT,IL,IRO,1,27) END IF END IF</pre>
ССС	<pre>WRITE(IT,*)'(2) - Write Out Matrix One Line (Row) At A Time' WRITE(IT,*) CALL RDINTG(IN,IT,IL,IMO,1,26) IMO=2 IMO = 2 - IMO IRO = 1 IF(IMO.EQ.0 AND. IFM.EQ.2) THEN WRITE(IT,*)' Output the Rows of the Matrix via' WRITE(IT,*)' Output the Rows of the Matrix via' WRITE(IT,*)'(1) - First Row> Last Row' WRITE(IT,*)'(2) - Last Row> First Row' WRITE(IT,*) CALL RDINTG(IN,IT,IL,IRO,1,27) END IF IOF AND IFO ARE PARAMETERS CONTROLLING OUTPUT FORMAT</pre>
ССС	<pre>WRITE(IT,*)'(2) - Write Out Matrix One Line (Row) At A Time' WRITE(IT,*) CALL RDINTG(IN,IT,IL,IMO,1,26) IMO=2 IMO = 2 - IMO IRO = 1 IF(IMO.EQ.0 .AND. IFM.EQ.2) THEN WRITE(IT,*)' Output the Rows of the Matrix via' WRITE(IT,*)' (1) - First Row> Last Row' WRITE(IT,*)'(2) - Last Row> First Row' WRITE(IT,*) CALL RDINTG(IN,IT,IL,IRO,1,27) END IF IOF AND IFO ARE PARAMETERS CONTROLLING OUTPUT FORMAT KSS = MIN(KS,2) IOF = MIN(KS,2)</pre>
ССС	<pre>WRITE(IT,*)'(2) - Write Out Matrix One Line (Row) At A Time' WRITE(IT,*) CALL RDINTG(IN,IT,IL,IMO,1,26) IMO=2 IMO = 2 - IMO IRO = 1 IF(IMO.EQ.0 AND. IFM.EQ.2) THEN WRITE(IT,*)' Output the Rows of the Matrix via' WRITE(IT,*)'(1) - First Row> Last Row' WRITE(IT,*)'(2) - Last Row> First Row' WRITE(IT,*) CALL RDINTG(IN,IT,IL,IRO,1,27) END IF IOF AND IFO ARE PARAMETERS CONTROLLING OUTPUT FORMAT KSS = MIN(KS,2) IOF = MAX(IOF*(2-KSS),1) IEO = IOF*(2-KSS),1) IEO = IOF*(2-KSS),1)</pre>

807		RETURN
808		END
809		
810		
811		
812		
813		SUBROUTINE FLDPAR(IN, IT, IL, IU, XY, GS, ZM)
814	C	
815		
817	C	QUERI FOR OUIPUI FIELD PARAMEIERS
818		CHARACTER FMT*35.FNAM*35. DATAF*35. MASKF*35
819		REAL XY (2, *), GS (*), ZM (*)
820		INCLUDE 'tuba211d.inc'
821		COMMON /IRSGRD/ GXMIN,GYMIN
822		COMMON /OTPTS1/ FMT, FNAM
823		COMMON /OTPTS2/ IFO,IMO,IRO,ILN
824	_	
825	С	WRITE(IT,5)
820	05	FORMAT(/// +++++++++++ OUTPUT FIELD PARAMETERS +++++++++++/)
027 828	C	WRITE $(TT *) ! (1) = Simulate Only At Specified (x, y) Locations!$
829	C	WRITE(IT. *) (1) Simulate Only At Specified (X, y) Locations WRITE(IT. *) '(2) - Simulate Onto A Regularly Spaced Grid!
830	C	WRITE(IT, *) (2) - Simulate Onto An Unevenly Spaced Grid'
831	С	WRITE(IT,*)
832	С	CALL RDINTG(IN, IT, IL, KS, 1, 1)
833		
834		
835		<i>IF</i> (KS. <i>EQ</i> .1) <i>THEN</i>
836		WRITE (IT,*)'Enter The Filename For Reading (X,Y) Locations'
83/		WRITE(11,*)
030 830		CALL RUCHAR(IN,IT,IL,DATAF,Z)
840		$\mathbf{U} = 0$
841	10	I = I + 1
842		READ (IU, *, END =11) XY(1, I), XY(2, I)
843		GO TO 10
844	11	NXY = I-1
845		WRITE(IT,20) NXY
846	20	FORMAT (' >>>>> ',I8,' Data Pairs Read'/)
847		CLOSE (UNIT=IU)
848 840		END IF
850		TE(KS CT 1) THEN
851	C	WRITE(IT *)'(1) - Point Centered Grid'
852	C	WRITE(IT,*)'(2) - Block Centered Grid'
853	С	WRITE(IT,*)
854	С	CALL RDINTG(IN, IT, IL, IP, 1, 3)
855		
856		
857	С	WRITE(IT,*)'Enter The Maximum X And Y Field Dimensions'
858	С	WRITE(IT,*)
859	С	CALL RDREAL(IN,IT,IL,XMAX,2,4)
860	a	NTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
862	C	WRITE(IT,^) Enter The Number OI Nodes In The X And Y Directions'
863	C	CALL RDINTG(IN IT IL NX 2 5)
864	0	01111 1121110 (111/11/11/12/0)
865		IF(KS.EQ.3) THEN
866		WRITE(IT,*) 'Enter The Filename For Reading Grid-Block Widths'
867		WRITE(IT,*)
868		CALL RDCHAR(IN, IT, IL, DATAF, 33)
869		OPEN (UNIT=IU, FILE=DATAF, STATUS='OLD')
870		READ (IU, *) (GS(I), I=1, NX-2+IP)
871		READ(IU, *) (GS(NX+I), I=1, NY-2+IP)
812		CLOSE(UNIT=1U)
015 871	30	DU = 1, NX TE(CS(T), TT CYMIN) CYMIN - CS(T)
0/4	JU	\mathbf{TE} (GD(1). \mathbf{TI} . GARITIN) GARITIN - GD(1)

```
875
                DO 32 I=1,NY
876
      32
                IF(GS(NX+I).LT.GYMIN) GYMIN = GS(NX+I)
877
              END IF
878
879
               WRITE(IT, *) 'Enter mask filename or type NONE or <cr>'
      С
880
      С
               WRITE(IT,*)
881
     С
               CALL RDCHAR(IN, IT, IL, MASKF, 32)
882
      С
               IF (MASKF.EQ. ' ') MASKF = 'none'
883
              MASKF = 'none'
884
              NONE = INDEX(MASKF, 'NONE') + INDEX(MASKF, 'none')
885
              IF(NONE.EQ.0) THEN
886
                OPEN(UNIT=IU, FILE=MASKF, STATUS='OLD')
887
                READ(IU, *) (ZM(I), I=1, NX*NY)
888
                CLOSE (UNIT=IU)
889
                DO 40 I=1, NX*NY
890
      40
                IF(ZM(I).NE.0) MSK = MSK + 1
891
              END IF
892
            END IF
893
894
      С
             WRITE(IT,*)'(1) - Generate a Field f(x) Whose pdf is Gaussian'
895
     С
             WRITE(IT, *)'(2) - Generate a Lognormal Field K(x) = exp(f(x))'
             WRITE(IT, *)'(3) - Generate a Lognormal Field K(x) = 10**(f(x))'
896
      С
897
             WRITE(IT,*)
     С
898
             CALL RDINTG(IN, IT, IL, ILN, 1, 6)
      С
899
             ILN=1
900
            RETURN
901
            END
902
903
904
905
            SUBROUTINE FSCALE(XY, ZZ, ZM, ILN, BAR, VAR, SSQ, PTS)
906
      C----
           _____
907
      ___
           DO FINAL SCALING, ADD IN THE MEAN, NUGGET & CALCULATE MEAN AND
908
      С
909
      VARIANCE
910
911
            REAL
                    ZZ(*), ZM(*), XY(2,*)
            INCLUDE 'tuba211d.inc'
912
913
914
            SUM = 0.0
915
            SSQ = 0.0
916
            HNUG = SQRT (3.0 \times AN)
917
            SDEV = SQRT (AV)
918
            SQLN = SQRT (FLOAT (LINES))
919
            DO 10 K=1, NXY
920
              IF(MSK.EQ.O .OR. (MSK.GT.O .AND. ZM(K).NE.O)) THEN
921
                ZZ(K) = SDEV*ZZ(K)/SQLN
                ZZ(K) = ZZ(K) + AM
922
923
                IF(AN.GT.0) ZZ(K) = ZZ(K) + URNAB(-HNUG, +HNUG)
924
                SUM = SUM + ZZ(K)
925
                SSQ = SSQ + ZZ(K) * ZZ(K)
926
              END IF
927
     10
            CONTINUE
928
            PTS = FLOAT(MSK)
929
            IF(PTS.EQ.0) PTS = FLOAT(NXY)
930
            BAR = SUM / PTS
931
            VAR =(SSQ-PTS*BAR*BAR) / (PTS-1.)
932
933
      С
            FROM THIS POINT ON WE CAN SIMPLY CHECK IF ZZ(K).NE.0 (.NE.EXACT ZERO)
934
            RATHER THAN CHECKING THE MSK FLAG AND ZM ARRAY (IF MASK OPTION USED)
      С
935
936
            USE THE FORMULA ON PAGE 10 OF THE MANUAL (THE FORMULA THAT'S LABELED
      С
937
     С
           "DO NOT USE") TO SCALE THE FIELD TO MATCH THE DESIRED MEAN & VARIANCE.
938
     С
            READ SECTION 2.1.2 OF MANUAL BEFORE INVOKING THIS OPTION.
939
            BAR LEFT IN FORMULAS BELOW FOR CLARITY. AN=NUGGET, AV=SILL
      С
940
            IF(IMSEX.EQ.1) THEN
941
              DO 30 I=1,NXY
942
      30
              IF(ZZ(I).NE.0) ZZ(I) = ZZ(I) - BAR
```

```
943
              BAR = 0.
944
              SFAC = SQRT (AN+AV) / SQRT (VAR-BAR*BAR)
945
              DO 40 I=1,NXY
946
      40
              IF(ZZ(I).NE.0) ZZ(I) = SFAC * (ZZ(I)-BAR) + AM
947
              BAR = AM
              VAR = AN + AV
948
949
            END IF
950
     comt if you don't believe BAR=AM, VAR=AN+AV, uncomment the following lines
951
      comt SUM = 0.
952
      comt
            SSQ = 0.
      comt DO 50 K=1, NXY
953
              IF(ZZ(K).NE.0) THEN
954
      comt.
955
      comt
                SUM = SUM + ZZ(K)
956
                SSQ = SSQ + ZZ(K) * ZZ(K)
      comt
957
      comt
              END IF
958
      50
            CONTINUE
959
      comt BAR = SUM / PTS
960
      comt VAR = (SSQ-PTS*BAR*BAR) / (PTS-1.)
961
962
      comt EXPONENTIATE THE FIELD IF REQUESTED ...
963
            IF(ILN.EQ.2) THEN
964
              DO 60 K=1, NXY
965
      60
              IF(ZZ(K).NE.0) ZZ(K) = EXP(ZZ(K))
966
            ELSE IF(ILN.EQ.3) THEN
967
              DO 70 K=1,NXY
968
      70
              IF(ZZ(K).NE.0) ZZ(K) = 10.**ZZ(K)
969
            END IF
970
971
            RETURN
972
            END
973
974
975
976
977
            SUBROUTINE INTPAR(XY)
978
      C-----
979
      ___
980
      С
            CALCULATE INTERNAL PARAMETERS
981
982
            PARAMETER (PI=3.141592654)
983
            REAL
                        XY(*)
984
            INCLUDE 'tuba211d.inc'
      Comt SEE BLOCK DATA MODULE
Comt DATA FM,FA,AM,AV,C
985
                    FM, FA, AM, AV, CLX, CLY /1.0, 0.0, 0.0, 1.0, 1.0, 1.0/
986
987
988
            NORMALIZE DISTANCE FROM TBM ORIGIN TO OUTPUT FIELD ORIGIN
      C
989
            XO = XO / CLX
990
            YO = YO / CLY
991
992
      C
            DX AND DY DEPEND ON WHETHER GRID IS POINT OR BLOCK CENTERED
993
            IF(KS.EQ.2) THEN
994
              K = 2 - IP
995
              DX = XMAX / MAX(NX-K,1)
996
              DY = YMAX / MAX(NY-K, 1)
997
            END IF
998
999
            NORMALIZE LINE DISCRETIZATION DISTANCE (UN) FOR STATIONARY MODELS
      С
1000
            IF(IDFP.NE.1 .AND. ICOVF.LE.4) UN = UN / AMAX1(CLX,CLY)
1001
1002
            NORMALIZE MAX DISCRETIZATION DISTANCE ALONG ANY TBM LINE, THEN
      С
            ESTIMATE NMAX = THE NUMBER OF POINTS ALONG THE LONGEST TBM LINE
1003
      С
1004
            IF(ICOVF.LE.4) THEN
1005
              TBMX = TBMX / AMIN1(CLX,CLY)
1006
              NMAX = TBMX / UN + 1
1007
            END IF
1008
1009
            FOR FFT GENERATION ALGORITHM, LINE PROCESS LENGTH = UN*NHAR/2.
      С
1010
      С
            IF THAT IS LESS THAN TBMX, NHAR MUST BE INCREASED.
```

```
1011
           IF(ICOVF.LE.3 .AND. ISAJ.EQ.0) THEN
1012
     16
              IF (UN*NHAR/2.0 .LT. TBMX) THEN
1013
                NHAR = 2 \times NHAR
1014
                GO TO 16
1015
              END IF
1016
            END IF
1017
1018
     С
            CALCULATE PARAMETERS NEEDED FOR THE MOVING AVERAGE PROCESS
1019
            IF(ICOVF.EQ.4 .OR. IULP.EQ.2) THEN
1020
              DS = DS/AMIN1(CLX,CLY)
1021
              UD = UN/DS
1022
      С
             FOR USER DEFINED MA PROCESS, CLN MUST BE REPLACED WITH A NUMBER
1023
      С
             REPRESENTING THE NBR CORR LGTHS THE MA WEIGHTING FCN IS NON-ZERO
1024
             IF(ICOVF.EQ.0) KD = CLN/DS + 1
      Comt
1025
              IF(ICOVF.EQ.4) KD = 5.0/DS + 1
1026
              NR = NMAX*UD + KD
1027
              IF(DS.GT.UN) FM = UD
1028
              IF(DS.GT.UN) FA = 0.5
1029
            END IF
1030
1031
    С
            GENERALIZED COVARIANCE PARAMETERS
            IF(ICOVF.EQ.5) THEN
1032
1033
             NMAX = TBMX/UN + 1
1034
             KT = AMAX1(UN/DT,1.)
1035
             DT = UN / FLOAT(KT)
1036
              SG = SQRT(24.*DT)
1037
              B0 = SQRT(A1*PI/2.)
             B2 = SQRT(A5*PI*15./16.)
1038
             B1 = A3*PI* 3./4.
1039
1040
             B1 = SQRT(B1*B1 + 2.*B0*B2)
1041
            END IF
1042
1043
           RETURN
1044
            END
1045
1046
1047
1048
1049
            SUBROUTINE LSTINP(IL)
1050
      C---
                                  _____
1051
      ___
1052
      С
           LIST INPUT VALUES & INTERNAL PARAMETERS USED IN LINE PROCESS
1053
      GENERATION
1054
      С
1055
      С
            AS INPUT IS READ, IT IS WRITTEN (AND ANNOTATED) ON UNIT IL. NOW
1056
      REWIND
            IL, REREAD THOSE LINES AND STORE THEM IN THE "INTERNAL FILE" BUF.
1057
      C
1058
      THEN
1059
      С
            OPEN IL WITH THE DATA FILENAME AND EXTENSION ".INP" & DUMP BUF INTO
1060
      TT.
1061
      C-----
1062
      ___

        INTEGER
        NC (32)

        CHARACTER
        FMT*35, FNAM*35, LSTF*35, REC*80, BUF (32) *80

1063
1064
            INCLUDE 'tuba211d.inc'
1065
1066
            COMMON /OTPTS1/ FMT, FNAM
1067
            COMMON /OTPTS2/ IFO, IMO, IRO, ILN
1068
1069
      С
            READ THE ANNOTATED INPUT PARAMETERS FROM SCRATCH FILE (UNIT IL)
1070
            AND WRITE THEM TO THE INTERNAL FILE "BUF"
      С
1071
            REWIND IL
1072
            DO 10 K=1,32
1073
             READ(IL, 5, END=11) REC
1074
     5
              FORMAT(A)
1075
              WRITE(BUF(K),5) REC
1076
             NC(K) = NCHR(REC)
1077
     10
          CONTINUE
1078
    11 NREC = K-1
```

1079		
1080	С	OPEN THE <name>.INP LISTING FILE; REUSE LOGICAL UNIT IL AND</name>
1081	С	WRITE THE ANNOTATED INPUT PARAMETERS TO THIS LIST FILE
1082		CLOSE(UNIT=IL,STATUS='DELETE')
1083		IDOT = INDEX(FNAM, '.')
1084		IF(IDOT.EQ.0) IDOT = NCHR(FNAM) + 1
1085		LSTF = FNAM(1:IDOT-1) // '.inp'
1080		OPEN(UNIT=IL,FILE=LSTF,STATUS='UNKNOWN',FORM='FORMATTED')
1087	15	DO 15 K-1, NREC DDTTTE(11.5) RIE(K) (1.NC(K))
1088	10	$\mathbf{KIIE}(\mathbf{III}, 5) \mathrm{Bor}(\mathbf{R})(\mathbf{I}, \mathrm{NC}(\mathbf{R}))$
1090	С	LIST OTHER INTERNAL PARAMETERS
1091		TBMAXX = TBMX * AMIN1(CLX,CLY)
1092		UNLAST = UN * AMAX1 (CLX, CLY)
1093		WRITE(IL,20) XO*CLX,YO*CLY,LINES,TBMAXX,UNLAST
1094	20	<pre>FORMAT(/' FIELD ORIGIN relative to the TBM origin =',2G13.6,</pre>
1095		1 /' The Number of Turning Band Lines Equals =', I9,
1096		1 /' The Maximum Turning Band Line Length =',G13.6,
1097		1 /' Turning Band Line Discretization Length =',G13.4)
1098		TE(TCOVE LE 3 AND THILP NE 2 AND TSAT FO () MMAY = NHAR
1100		IF(ICOVF.EO.4 .OR. IULP.EO.2) WRITE(IL.30) DS*AMIN1(CLX.CLY)
1101	30	FORMAT(' Discretization Distance for MA Process =',G13.4)
1102		IF(ICOVF.GE.4 .OR. IULP.EQ.2) WRITE(IL, 32) NMAX
1103	32	FORMAT(' Number of Output Points Along each Line =', I9)
1104		
1105		IF(ICOVF.EQ.5 .AND. (A3.NE.0 .OR. A5.NE.0)) WRITE(IL,35) DT
1106	35	FORMAT (' Discretization Distance for WL Process =',G13.4)
1107		TO TOOLE TO 2 AND THE TO 1 COTTOC (TE 40) DWAY NHAD DWAY (NHAD
1108	10	IF (ICOVF. LE.3 . AND. IULP. LE.1) WRITE (IL,40) FMAX, NHAR, FMAX/ NHAR FORMAT (1) The Maximum Frequency for the Spectrum -1 C13 6
1110	40	1 / Number of Harmonics for the Spectrum = 19
1111		1 /' Frequency Spacing in Spectral Domain =',G13.5)
1112		r , frequency spacing in spectral bomain (ors.s)
1113		<pre>IF(KS.EQ.1) WRITE(IL,*)</pre>
1114		IF(KS.EQ.2) THEN
1115		WRITE(IL,45) DX,DY
1116	45	FORMAT (' The Spatial Discretizations, DELX, DELY =',2G13.4)
1117		SMPLS = (XMAX/CLX)/2.0*(YMAX/CLY)/2.0
1110	50	FORMAT(! No Points/correlation Longth in V V Dir -! EQ 1
1120	50	1 3X E9 1/' Approximate No. of Independent Samples =' E9 1)
1120		END IF
1122		
1123		RETURN
1124		END
1125		
1126		
1127		
1128		
1129	C	SUDRUUIINE MUVAVG(11, 41, FF)
1130		
1132	С	MOVING AVERAGE SIMULATION OF THE LINE PROCESS (FOR TELIS COVARIANCE)
1133		
1134		REAL TT(*), Z1(*), FF(*)
1135		INCLUDE 'tuba211d.inc'
1136	~	
1137	С	FM, FA, NR, UD AND KD ARE ALL CALCULATED IN SUBROUTINE INTPAR.
1138	C	CK IS FOR MOVING AVERAGE PROCESS ASSOCIATED WITH TELIS COV FCN.
1139		GES
1141	2 1 V L'L L'L'L'L'L'L'L'L'L'L'L'L'L'L'L'L'L	
1142		DO 10 K=1,NR
1143	10	TT(K) = URN55()
1144		
1145		DO 30 N=1,NMAX
1146		Z1(N) = 0.0

```
1147
              IOFF = (N-1) * UD + 0.5
1148
              DO 20 K=1,KD
1149
                IADR = IOFF + FLOAT(K) * FM + FA
1150
                Z1(N) = Z1(N) + FF(K) * TT(IADR)
1151
      20
               CONTINUE
1152
              Z1(N) = CK*Z1(N)
1153
     30
            CONTINUE
1154
1155
            RETURN
1156
            END
1157
1158
1159
1160
1161
            FUNCTION NCHR (BUF)
1162
      C-
             _____
      ___
1163
1164
      С
            DETERMINE THE NUMBER OF CHARACTERS IN THE CHARACTER ARRAY BUF
1165
1166
            CHARACTER BUF* (*)
1167
1168
            LGTH = LEN(BUF)
            DO 10 K=LGTH, 1, -1
1169
1170
     10
            IF (BUF (K:K) . NE. ' ') GO TO 20
1171
     20
          NCHR = K
1172
1173
            RETURN
1174
            END
1175
1176
1177
1178
1179
            SUBROUTINE OPNFIL (IT, IL, IO, LREC, ISIM, NSIM, BAR, VAR, SSQ, PTS,
1180
           1
                    MODEL, ISEED)
1181
      C-----
                 _____
                                              _____
1182
      ___
1183
      С
            OPEN DATA OUTPUT FILE AND LIST THE RANDOM FIELD STATISTICS
1184
1185
            CHARACTER FMT*35, FNAM*35
1186
            CHARACTER FNAME*25, EXT*5, IFM*5, FRM*11
1187
            INCLUDE 'tuba211d.inc'
1188
            COMMON /OTPTS1/ FMT, FNAM
                     /OTPTS2/ IFO,IMO,IRO,ILN
1189
            COMMON
1190
                       SMBAR, SMSSQ, SMPTS /0.0,0.0,0.0/
            DATA
1191
1192
            NC = NCHR (FNAM)
1193
            FNAME(1:NC) = FNAM(1:NC)
1194
            FNAME (NC+1:25) = ' '
1195
1196
      С
            APPEND SIMULATION NUMBER TO FILENAME IF MULTIPLE FILES REQUESTED
1197
            IF(NF.GT.1) THEN
1198
              IDOT = INDEX(FNAM, '.')
1199
              IF(IDOT.EQ.0) IDOT = NC + 1
1200
              NDIG = ALOG10 ( FLOAT (NSIM) ) + 1
1201
              WRITE(IFM, 10) NDIG
1202
      10
              FORMAT(2H(I, I1, 1H))
1203
              WRITE(EXT, IFM) ISIM
1204
              DO 15 I=1,NDIG-1
1205
              IF(EXT(I:I).EQ.'') EXT(I:I) = '0'
      15
              FNAME = FNAM(1:IDOT-1) // '.' // EXT(1:NDIG)
1206
              NC = IDOT + NDIG
1207
1208
            END IF
1209
1210
            IF (NF.GT.1 .OR. ISIM.EQ.1) THEN
1211
              CLOSE (UNIT=IO)
              IF(MOD(IFO,2).EQ.0) FRM = 'UNFORMATTED'
1212
1213
              IF(MOD(IFO,2).NE.0) FRM = 'FORMATTED'
1214 Comt
             RECL cannot be used for unformatted files with Lahey Fortran
```

```
1215
               OPEN (UNIT=IO, FILE=FNAME, STATUS='UNKNOWN', FORM=FRM, RECL=LREC)
      Comt
1216
               OPEN(UNIT=IO, FILE=FNAME, STATUS='UNKNOWN', FORM=FRM)
1217
             END IF
1218
1219
             LIST NEW RANDOM SEED FOR MULTIPLE SIMULATION RUN
      C
1220
             IF(NSIM.GT.1) WRITE(IL,18) ISIM, FNAME(1:NC), ISEED
1221
            FORMAT(/24X, ' Simulation Nmbr =', 19,
      18
                  /24X, ' Output Filename =',1X,A,
1222
           1
                    /24X, ' New Random Seed =', I12)
1223
           1
1224
1225
      С
             LIST THE STATISTICS FOR THE SAMPLE DATA TO LIST FILE AND TERMINAL
1226
             WRITE(IL,20) BAR,VAR
            FORMAT( 24X, ' The Sample Mean =', G13.5,
1227
      20
            1 /24X, ' Sample Variance =', G13.5)
1228
1229
             IF(IPF.NE.1) WRITE(IT,*)
1230
             IF(IPF.NE.1 .AND. NSIM.GT.1) WRITE(IT,28) ISIM
            FORMAT(' Simulation Nmbr =', I8)
1231
      28
1232
            WRITE(IT, 30) BAR, VAR
            FORMAT ( '
1233
      30
                         The Sample Mean =',G13.5,
1234
           1 /'
                           Sample Variance =',G13.5/)
1235
1236
             SMBAR = SMBAR + BAR
1237
             SMSSQ = SMSSQ + SSQ
1238
             SMPTS = SMPTS + PTS
1239
            LIST ENSEMBLE STATISTICS IF THIS IS THE LAST REALIZATION
1240
      С
1241
             IF(NSIM.GT.1 .AND. ISIM.EQ.NSIM) THEN
1242
               ENBAR = SMBAR/FLOAT (NSIM)
               ENVAR = (SMSSQ-SMPTS*ENBAR*ENBAR) / (SMPTS-1.)
1243
1244
               WRITE(IL,40) ENBAR, ENVAR
1245
      40
               \textit{FORMAT}(/22\texttt{X},\texttt{'} The ensemble statistics \ldots\texttt{'} ,
1246
           1
                      /22X, ' The Ensemble Mean =', G13.5,
                      /22X, ' Ensemble Variance =',G13.5)
1247
            1
               WRITE(IT, 50) ENBAR, ENVAR
1248
1249
     50
               FORMAT(//' THE ENSEMBLE STATISTICS ...',
                     / '
1250
                            The Ensemble Mean = ',G13.5,
           1
                       /'
1251
            1
                                Ensemble Variance = ',G13.5)
1252
             END IF
1253
1254
             RETURN
1255
             END
1256
1257
1258
1259
1260
             SUBROUTINE ORGMAX(XY)
1261
      C-----
1262
      ___
      С
1263
            CALCULATE DEFAULT TBM ORIGIN AND MAXIMUM DISTANCE ALONG ANY TBM LINE
1264
1265
             REAL
                   XY(2,*)
             INCLUDE 'tuba211d.inc'
1266
1267
1268
             FOR OUTPUT AT ARBITRARY LOCATIONS (KS=1):
      С
             SET DEFAULT TBM ORIGIN EQUAL TO THE MINIMUM (X,Y) COORDINATE
1269
      С
1270
             IF(KS.EQ.1) THEN
1271
              X14 = -1.E - 15
1272
               X23 = +1.E+15
               Y12 = -1.E - 15
1273
1274
               Y34 = +1.E+15
               DO 10 I=1, NXY
1275
1276
                X14 = AMAX1(XY(1, I), X14)
1277
                 X23 = AMIN1(XY(1, I), X23)
1278
                 Y12 = AMAX1(XY(2, I), Y12)
1279
                 Y34 = AMIN1(XY(2, 1), Y34)
1280
     10
              CONTINUE
1281
              XO = X23
1282
              YO = Y34
```

```
1283
              DXX = X14 - XO
              DYY = Y12 - YO
1284
1285
              TBMX = SQRT(DXX*DXX + DYY*DYY)
1286
      С
1287
      ___
      С
1288
              THE REMAINDER OF THIS IF-BLOCK PERTAINS ONLY TO THE CASE OF GENER-
1289
      С
              ATING AT ARBITRARY LOCATIONS (KS=1) USING GENERALIZED COVARIANCE.
1290
      C
              The following is used to calculate DX and DY and ASSUMES a uniform
1291
              distribution of the "finite element" grid points (i.e., the (x,y)
      С
1292
      С
              arbitrary locations for generating the field). DX and DY are only
1293
      С
              needed for this case (KS=1) in subroutine DEFPAR where the DEFAULT
              TBM line discretization length (UN) is calculated. The calculated
1294
      С
1295
      С
              value of UN is only APPROXIMATED and should be checked for adequacy
1296
      С
              (e.g., UN should be .LE. the minimum spacing between any two field
1297
      С
              generation points). ASSUMPTIONS: (1) NY/NX=DYY/DXX, (2) NX*NY = NXY
1298
      С
                                   _____
1299
      ___
1300
              NX = SQRT ( FLOAT (NXY) * DXX/DYY )
1301
              NY = NXY/NX
1302
              DX = 0.2 * DXX / FLOAT (NX)
1303
              DY = 0.2*DYY/FLOAT(NY)
1304
            END IF
1305
1306
           FOR GRIDDED OUTPUT (KS=2,3):
     С
1307 C
            SET DEFAULT TBM ORIGIN AND FIND THE MAXIMUM DISTANCE FROM
    С
1308
            THE TBM ORIGIN TO THE FAR CORNER OF THE GRID
1309
            IF(KS.GT.1) THEN
              XO = 0.0
1310
              YO = 0.0
1311
1312
              TBMX = SQRT (XMAX*XMAX + YMAX*YMAX)
1313
            END IF
1314
1315
            RETURN
1316
            END
1317
1318
1319
1320
1321
            SUBROUTINE OUTPUT(IT, IL, IO, ISIM, NSIM, XY, ZZ, ZM, NEWS)
1322
      C----
1323
      ___
1324
      C
            FINISH FIELD GENERATION, THEN WRITE FIELD TO OUTPUT FILE
1325
1326
            CHARACTER FMT*35, FNAM*35
1327
                        ZZ(*), ZM(*), XY(2,*),TBKK(100000)
            REAL
1328
            INCLUDE 'tuba211d.inc'
            COMMON /OTPTS1/ FMT, FNAM
1329
1330
            COMMON /OTPTS2/ IFO, IMO, IRO, ILN
            COMMON /KFIELD/ TBKK
1331
1332
1333
    С
            DO THE FINAL SCALING, ADD IN THE MEAN, AND CALCULATE STATISTICS
1334
            CALL FSCALE (XY, ZZ, ZM, ILN, BAR, VAR, SSQ, PTS)
1335
1336
            OPEN OUTPUT FILE AND LIST RANDOM FIELD SAMPLE STATISTICS
      С
            LREC = BYTE LENGTH OF UNFORMATTED RECORDS
1337
      С
1338
            LREC = 256
1339
            IF (MOD (IFO, 2). EQ.0) THEN
1340
              LREC = 4 \times NX
1341
               IF(IMO.EQ.1) LREC = 4*NXY
1342
            END IF
1343
            CALL OPNFIL (IT, IL, IO, LREC, ISIM, NSIM, BAR, VAR, SSQ, PTS, ICOVF, NEWS)
1344
1345
      С
            IFO, IMO AND IRO ARE INTERNAL PARAMETERS CONTROLLING OUTPUT FORMAT;
1346
      С
            THESE ARE CALCULATED IN SUBROUTINE FILPAR.
1347
            IFO EVEN, ODD -> UNFORMATTED, FORMATTED RESPECTIVELY
      С
            IMO = 0 -> WRITE MATRIX OUT LINE BY LINE
1348
      С
1349
            IMO = 1 -> WRITE MATRIX OUT WITH ONE WRITE STATEMENT
      С
1350
```

```
1351
      С
             OPEN(35,FILE='K TUBA.TXT',STATUS='UNKNOWN')
1352
1353
             IF(IMO.EQ.1 .OR. KS.EQ.1) THEN
1354
               IF(IFO.EQ.1) WRITE(IO,FMT) (ZZ(K),K=1,NXY)
               IF(IFO.EQ.2) WRITE(IO) (ZZ(K),K=1,NXY)
IF(IFO.EQ.3) WRITE(IO,FMT) (XY(1,K),XY(2,K),ZZ(K),K=1,NXY)
1355
1356
1357
               IF(IFO.EQ.4) WRITE(IO)
                                         (XY(1,K),XY(2,K),ZZ(K),K=1,NXY)
1358
             ELSE
1359
               JST = (IRO-1) * NY + (2-IRO)
1360
               JND = (2 - IRO) * NY + (IRO - 1)
1361
               JNC = 3 - 2*IRO
1362
               DO 20 J=JST, JND, JNC
1363
                  DO 20 I=1,NX
1364
                    IP=(J-1)*NX+I
                     TBKK(IP)=ZZ(IP)
1365
1366
      С
                      WRITE(35,*) I,J,1,TBKK(IP)
1367
      С
                     PRINT*, I, J, ZZ (IP)
1368
      20
               CONTINUE
1369
             END IF
1370
1371
             RETURN
1372
             END
1373
1374
1375
             SUBROUTINE PROGSS (MSG, LU, K, KMAX, INC)
1376
            _____
1377
       C-
                                                     1378
      С
             REPORT COMPUTATION PROGRESS
1379
1380
             CHARACTER MSG*(*)
1381
             COMMON /PGPARS/ PCL, IPG
1382
1383
             IF(K.EQ.1) THEN
1384
              PCL = 100./FLOAT(KMAX)
1385
               WRITE(LU,10) MSG,K, INT(PCL)
1386
               IPG = 1
1387
               RETURN
1388
             END IF
1389
1390
             PCT = 100 * FLOAT(K) / FLOAT(KMAX)
1391
             IPC = INT(PCT)
1392
             DIF = PCT - PCL
1393
1394
             IPR = 0
1395
             IF(INC.EQ.0) THEN
1396
               IPR = 1
1397
             ELSE IF (KMAX.LE.99) THEN
1398
               IF(DIF.GT.INC) IPR = 1
1399
             ELSE
               IF(MOD(IPC,INC).EQ.0 .AND. DIF.GE.2) IPR = 1
1400
1401
             END IF
1402
             IF(K.EQ.KMAX) IPR = 1
1403
1404
             IPG = 0
1405
             IF(IPR.EQ.1) THEN
1406
              IPG = 1
1407
               PCT = AMIN1(PCT, 99.9)
1408
               PCL = PCT
1409
               IF(PCT.EQ.99.9) PCL = 0.0
1410
               WRITE(LU,10) MSG,K, INT(PCT)
1411
               FORMAT(A, I8, ' ... ( ', I2, ' % ) ')
      10
1412
             END IF
1413
1414
             RETURN
1415
             END
1416
1417
1418
```

```
1419
            SUBROUTINE PROJCT(L, IT, IU, XY, PP, SS, CC, ZZ, ZM, Z1)
1420
      C----
                                                                      _____
1421
      ___
1422
      С
            ADD PROJECTIONS FROM THE LTH TBM LINE ONTO OUTPUT FIELD
1423
1424
                     XY(2,*), PP(2,*), SS(*), CC(*), ZZ(*), ZM(*), Z1(*)
            REAL
1425
            INTEGER INC(3)
            INCLUDE 'tuba211d.inc'
1426
1427
            COMMON /PGPARS/ PCL, IPG
1428
            CHARACTER PLPD*43, TBLIN*22
1429
            DATA
                      INC /20,5,0/
                       TBLIN /' Turning Band Line .... '/
1430
            DATA
                     PLPD /' Projecting Line Process Data ... Point No'/
1431
            DATA
1432
            ZERO OUT THE OUTPUT FIELD IF ON TURNING BAND LINE NO 1
1433
      C
1434
            IF(L.EQ.1) THEN
1435
              DO 10 K=1,NXY
1436
     10
              ZZ(K) = 0.0
            END IF
1437
1438
1439
      С
            FOR OUTPUT AT ARBITRARY (X,Y) LOCATIONS ...
1440
            IF(KS.EQ.1) THEN
1441
              CALL PROGSS (TBLIN, IT, L, LINES, INC (IPF))
1442
              PCLSAV = PCL
1443
              IPGSAV = IPG
1444
              DO 20 K=1,NXY
1445
                CALL PROGSS (' Projecting Line Process Data ... Point No',
      Comt
1446
                IF(IPF*IPGSAV.GE.2) CALL PROGSS(PLPD, IT, K, NXY, INC(IPF-1))
1447
                CALL PROJSB(XY, K, L, K, CC, SS, ZZ, Z1)
1448
      20
               CONTINUE
1449
              PCL = PCLSAV
1450
              GO TO 50
1451
            END IF
1452
1453
            FOR OUTPUT ONTO REGULAR OR IRREGULARLY-SPACED GRIDS ...
      С
1454
     С
             CALL PROGSS (TBLIN, IT, L, LINES, INC (IPF))
1455
            PCLSAV = PCL
1456
            IPGSAV = IPG
1457
            DO 40 I=1,NY
1458
              READ(UNIT=IU, REC=I) ((PP(K, J), K=1, 2), J=1, NX)
1459
              DO 30 J=1,NX
1460
                K = (I-1) * NX + J
1461
                 CALL PROGSS (' Projecting Line Process Data ... Point No',
      Comt
                 IF(IPF*IPGSAV.GE.2) CALL PROGSS(PLPD, IT, K, NXY, INC(IPF-1))
1462
1463
                IF (MSK.GT.0 .AND. ZM(K).EQ.0) GO TO 30
1464
                 CALL PROJSB(PP, J, L, K, CC, SS, ZZ, Z1)
1465
      30
              CONTINUE
1466
      40
            CONTINUE
1467
            PCL = PCLSAV
1468
1469
     50
           IF(IPF*IPGSAV.GT.1) WRITE(IT,*)
1470
            RETURN
1471
            END
1472
1473
1474
1475
            SUBROUTINE PROJSB(A2, J, L, K, CC, SS, ZZ, Z1)
1476
      C-----
1477
1478
      С
            DO THE PROJECTION FOR BOTH GRIDDED AND NON-GRIDDED FIELDS
1479
1480
                  A2(2,*), CC(*), SS(*), ZZ(*), Z1(*)
            REAL
            INCLUDE 'tuba211d.inc'
1481
1482
1483
            XP = A2(1, J) / CLX + XO
1484
            YP = A2(2, J)/CLY + YO
1485
            XD = ABS(XP*CC(L) + YP*SS(L))
1486
            N1 = INT(XD/UN) + 1
```

	ZZ(K) = ZZ(K) + Z1(N1) RETURN END
	SUBROUTINE RDINPT(IN, IT, IL, IU, XY, ZM, MODEL, NLINE, NSIM)
C	
 С	CONTROL MODULE FOR READING INPUT PARAMETERS
	REAL XY(*),ZM(*) INCLUDE 'tuba211d.inc'
С	WRITE(IT,10)
10	FORMAT (//' ++++++++ Program "TUBA (version 2.11d)" ++++++++,
	1 //' A Code For Simulating 2D Random Fields',
	1 /' Via The Turning Bands Method'/)
С	OPEN TEMPORARY FILE (LATER DELETED) OPEN(UNIT=IL,STATUS='SCRATCH')
С	<i>QUERY FOR OUTPUT FIELD PARAMETERS</i> CALL FLDPAR(IN,IT,IL,IU,XY,XY,ZM)
C	OTTERV FOR COTARTANCE RARAMETERS
L	CALL COVPAR(IN, IT, IL, MODEL)
С	QUERY FOR TURNING BANDS PARAMETERS
	CALL TBMPAR(IN, IT, IL, NLINE, XY)
С	MODEL REFERS TO THE LINE PROCESS GENERATION METHOD
С	WHEREAS ICOVF REFERS THE THE COVARIANCE MODEL TYPE
С	NEXT LINE IS NEEDED IN THE MAIN MODULE (FOR A USER-DEFINED MA PROCES IF(IULP.EQ.2) MODEL = 4
С	QUERY FOR OUTPUT FILE PARAMETERS CALL FILPAR(IN,IT,IL)
С	<i>QUERY FOR SIMULATION PARAMETERS</i> CALL SIMPAR(IN,IT,IL,NSIM)
	RETURN END
	SUBROUTINE RDINTG(IN, IT, IL, IV, NV, ID)
C	
С	READ AND REFLECT INTEGER INPUT DATA
	CHARACTER CMT*42, BUF*(*)
	INTEGER IV(*)
	REAL RV(*)
	READ $(IN, *)$ $(IV(I), I=1, NV)$
	WRITE(IT, *) '>>>>> ', (IV(I), I=1, NV)
	WRITE(IT,*)' '
	CALL COMENT(ID, CMT, NC)
	<i>IF</i> (NV. <i>EQ</i> .1) <i>WRITE</i> (IL,11) IV(1), CMT(1:NC)
	IF(NV.EQ.2) WRITE(IL,12) IV(1),IV(2), CMT(1:NC)
11 12	FORMAT(2X, II2,T36,A) FORMAT(2X,2II2,T36,A)
	RETURN

```
1555
            ENTRY RDREAL(IN, IT, IL, RV, NV, ID)
1556
      C----
             _____
1557
      С
            READ AND REFLECT REAL INPUT DATA
1558
1559
             READ (IN, *) (RV(I), I=1, NV)
1560
             WRITE(IT, *) '>>>> ', (RV(I), I=1, NV)
             WRITE(IT,*)'''
1561
1562
1563
             CALL COMENT (ID, CMT, NC)
             IF(NV.EQ.1) WRITE(IL,21) RV(1), CMT(1:NC)
IF(NV.EQ.2) WRITE(IL,22) RV(1),RV(2), CMT(1:NC)
1564
1565
             IF(NV.EQ.3) WRITE(IL,23) RV(1), RV(2), RV(3), CMT(1:NC)
1566
1567
      21
            FORMAT(2X, G13.5, T36, A)
1568
      22
            FORMAT (2X, 2G13.5, T36, A)
      23
1569
            FORMAT(1PE11.3, 2E11.3, T36, A)
1570
1571
            RETURN
1572
1573
            ENTRY RDCHAR (IN, IT, IL, BUF, ID)
1574
      C-----
1575
      С
           READ AND REFLECT CHARACTER VARIABLES
1576
1577
            READ(IN, 30) BUF
1578
      30
            FORMAT (A)
1579
            NB = NCHR (BUF)
1580
             IF(NB.EQ.0) BUF = ' '
1581
             IF(NB.EQ.0) NB = 1
1582
             WRITE(IT, *) '>>>> ', BUF(1:NB)
             WRITE(IT,*)' '
1583
1584
1585
             CALL COMENT (ID, CMT, NC)
1586
             WRITE(IL, 35) BUF(1:NB), CMT(1:NC)
      35
1587
             FORMAT(A, T36, A)
1588
1589
             RETURN
1590
             END
1591
1592
1593
1594
            SUBROUTINE SIMPAR(IN, IT, IL, NSIM)
1595
      С-----
                                                    _____
1596
       ___
1597
      С
            READ SIMULATION PARAMETERS
1598
1599
             SAVE
                       ISEED, JSEED
1600
             CHARACTER BUF*32
             INCLUDE 'tuba211d.inc'
1601
1602
1603
      С
             WRITE(IT,10)
      C 10
              FORMAT (// ' +++++++++++ SIMULATION PARAMETERS +++++++++++/)
1604
1605
1606
      С
              WRITE(IT, *)'(1) - Marsaglia and Bray Random Number Generator'
1607
      С
              WRITE(IT,*)'(2) - Machine Independent Random Number Generator'
1608
      С
              WRITE(IT,*)
1609
      С
              CALL RDINTG(IN, IT, IL, IURN, 1, 28)
1610
             IURN=1
1611
1612
      С
             WRITE(IT, *) 'Enter Integer Seed(s) To Initialize The Generator'
1613
             IF(IURN.EQ.2) WRITE(IT,20)
1614
      20
             FORMAT('( Seed For This Generator Must Be 8 Digits Long )')
1615
             WRITE(IT,*)
1616
      Comt CALL RDINTG (IN, IT, IL, ISEED, 1, 29)
1617
      С
             CALL RDCHAR(IN, IT, IL, BUF, 29)
1618
      С
             READ (BUF, *, END=21) ISEED, JSEED
1619
              GO TO 30
      C
1620
            ISEED=1
1621
      21
            JSEED = ISEED
1622
      30
          IF(IURN.EQ.1) DUMY = UNITMB(ISEED)
```

```
1623
            IF(IURN.EQ.2) DUMY = UNITSS(IT, ISEED)
1624
1625
      С
             WRITE (IT, *) 'Enter The Number Of Realizations To Be Simulated'
1626
      С
             WRITE(IT,*)
1627
      С
             CALL RDINTG(IN, IT, IL, NSIM, 1, 30)
1628
             NSIM=1
1629
1630
            IF(NSIM.GT.1) THEN
1631
              WRITE(IT, *)'(1) - All Realizations Written To One File'
1632
              WRITE(IT,*)'(2) - A Separate File For Each Realization'
              WRITE(IT,*)'
                                (e.g., file.1, file.2 ... file.99)'
1633
              WRITE(IT,*)
1634
1635
              CALL RDINTG(IN, IT, IL, NF, 1, 34)
1636
            END IF
1637
             WRITE(IT,*)'(0) - Do NOT Artifically Scale The Realizations'
1638
      С
             WRITE(IT,*)'(1) - Scale Data To Match Mean and Variance Exactly'
1639
      С
             WRITE(IT,*)'
                               Please Read Section 2.1.2 Of The Manual'
1640
    С
             WRITE(IT,*)'
1641 C
                                        Before Choosing This Option'
1642
    С
             WRITE(IT,*)
1643
     С
             CALL RDINTG(IN, IT, IL, IMSEX, 1, 36)
1644
             IMSEX=0
1645
1646
            IF(IMSEX.EQ.1 .AND. ICOVF.EQ.5) THEN
1647
              WRITE(*,*)'GC Model: Enter Desired Mean, Nugget and Sill'
1648
              WRITE(IT, *)
1649
              CALL RDREAL (IN, IT, IL, AM, 3, 37)
1650
            END IF
1651
1652
      С
             WRITE(IT, *)'Specify The Level Of Status Reporting To The Screen'
1653
             WRITE(IT,*)'(1) - Minimal (e.g., For Many Realizations)'
      С
1654
      С
             WRITE(IT,*)'(2) - More Frequent (e.g., For Many TBM Lines)'
             WRITE(IT,*)'(3) - Very Frequent (e.g., For Very Large Fields)'
1655
      С
1656
      С
             WRITE(IT,*)
1657
             CALL RDINTG(IN, IT, IL, IPF, 1, 35)
      С
1658
             IPF=1
1659
1660
            RETURN
1661
1662
            ENTRY RESEED (ISIM, NUSEED)
1663
    С-----
1664
           RESEED THE RANDOM NUMBER GENERATOR
      C
1665
            IF(ISIM.EQ.1) THEN
1666
1667
             NUSEED = ISEED
1668
              IF(JSEED.EQ.ISEED) RETURN
              IF(IURN.EQ.1) DUMY = UNITMB(JSEED)
1669
1670
              IF(IURN.EQ.2) DUMY = UNITSS(IT, JSEED)
1671
              RETURN
1672
            END IF
1673
1674
            NUSEED = 1.E+08*(URN55()+0.5)
1675
            IF(IURN.EQ.1) DUMY = UNITMB(NUSEED)
1676
            IF(IURN.EQ.2) THEN
1677
              IF(ALOG10(FLOAT(NUSEED)) .LT. 7) THEN
     36
1678
               NUSEED = 10 \times NUSEED
1679
                GO TO 36
1680
              END IF
1681
              DUMY = UNITSS (IT, NUSEED)
1682
            END IF
1683
1684
            RETURN
1685
            END
1686
1687
1688
1689
            SUBROUTINE SPCTRL(L, L2, PA, Z1, DZ, S1, C1, S2, C2)
1690
      C-----
                                                         _____
```

```
1691
      ___
1692
             SPECTRAL SIMULATION OF THE LINE PROCESSES
      С
1693
1694
             PARAMETER (TUPI=6.2831853)
1695
             COMPLEX
                         DZ(*)
1696
                         PA(*),Z1(*),S1(*),C1(*),S2(*),C2(*)
             REAL
1697
             INCLUDE 'tuba211d.inc'
1698
1699
             GENERATE LINE PROCESS USING THE FFT METHOD
      С
1700
             IF(ISAJ.EQ.0) CALL FFTGEN(L, L2, PA, Z1, DZ)
1701
             IF(ISAJ.EQ.0) RETURN
1702
1703
             GENERATE LINE PROCESS USING THE METHOD OF SHINOZUKA AND JAN
      С
1704
             DO 10 M=1, NHAR
1705
               THETA = URN55() * TUPI
1706
               C2(M) = COS(THETA)
1707
               S2(M) = SIN(THETA)
1708
      10
             CONTINUE
1709
             IF(IPAA.EQ.2) READ(UNIT=L2, REC=L) (PA(M), M=1, NHAR)
1710
1711
      С
             PA(M) = 2.0 * SORT (SPECTRL DENSITY * DELTA OMEGA)
             C2SAV ETC IS FOR TRIG IDENTITIES - THE COS(OMEGA'*ZETA+PHI) TERM IS
1712
      С
1713
             CALCULATED BY CONSIDERING ZETA = N*DELTA-ZETA AND TRIG IDENTITIES
      С
1714
             DO 30 N=1,NMAX
1715
               Z1(N) = 0.0
1716
               DO 20 M=1, NHAR
1717
                 Z1(N) = Z1(N) + PA(M) * C2(M)
                 C2SAV = C2(M)
1718
                 S2SAV = S2(M)
1719
1720
                 C2(M) = C2SAV*C1(M) - S2SAV*S1(M)
1721
                 S2(M) = S2SAV*C1(M) + C2SAV*S1(M)
1722
      20
               CONTINUE
1723
      30
             CONTINUE
1724
1725
             RETURN
1726
             END
1727
1728
1729
1730
             FUNCTION SPDF (FRQ, ICOVF)
1731
      C----
             _____
                                                 _____
1732
       ___
1733
      С
             CALCULATE NORMALIZED 1D SPECTRAL DENSITY FUNCTION FOR POINT PROCESSES
1734
      С
             HAVING 2D COVARIANCE FUNCTIONS OF: USER-SPECIFIED (ICOVF=0),
1735
      С
             EXPONENTIAL (ICOVF=1), GAUSSIAN (ICOVF=2), BESSEL (ICOVF=3)
1736
1737
                    SOME, THING /0.,1./
             DATA
1738
1739
             IF(ICOVF.EQ.0) THEN
1740
      С
               USER DEFINED SPECTRUM GOES HERE
1741
               SPDF = SOME + THING
1742
               RETURN
1743
             END IF
1744
1745
      С
             EXPLANATION OF ANCIENT FORTRAN: (COMPUTED GO TO)
             IF(ICOVF.EQ. 1,2,3) THEN GO TO (10,20,30)
1746
      С
1747
1748
             GO TO (10,20,30) ICOVF
1749
1750
      10
             DENOM = (1.+FRQ*FRQ)**1.5
1751
             SPDF = 0.5*FRQ/DENOM
1752
             RETURN
1753
1754
      20
             XARG = 0.25 * FRQ * FRQ
1755
             SPDF = 0.25 * FRQ * EXP(-XARG)
1756
             RETURN
1757
1758
      30
            DENOM = (1.+FRQ*FRQ) * *2.0
```

1759 1760 1761 1762 1763		SPDF = 1.0*FRQ/DENOM RETURN END
1764 1765		SUBROUTINE TBMPAR(IN, IT, IL, NLINE, XY)
1766	C	
1767 1768 1769	 C	QUERY FOR TURNING BANDS LINE PARAMETERS
1770 1771 1772		PARAMETER (PI=3.1415926) REAL XY(*) INCLUDE 'tuba211d.inc'
1774	С	WRITE(IT,10)
1775 1776	C 10	FORMAT(//' ++++++++++ TURNING BANDS PARAMETERS ++++++++++/)
1777 1778	C C	WRITE(IT,*)'Enter The Number Of Turning Band Lines' WRITE(IT,*)' (Use At Least 16)'
1779	С	WRITE(IT,*)
1780 1781	С	CALL RDINTG(IN,IT,IL,LINES,1,15) NLINE = LINES
1782		
1783		IF(1COVF.EQ.0) THEN
1785		WRITE(IT, ^)'(I) - Line Process By A Spectral Method' WRITE(IT *)!(2) - Line Process By A Moving Average Method!
1786		WRITE(II,) (2) If the flocess by a moving average method WRITE(IT, *)
1787		CALL RDINTG(IN, IT, IL, IULP, 1, 13)
1788		ELSE
1789	С	WRITE(IT,*)'For The Remaining Turning Band Parameters:'
1790	С	WRITE(IT,*)'(1) - Use Default Turning Band Parameters'
1791	С	WRITE(IT,*)'(2) - Enter The TBM Parameters Manually'
1792	С	WRITE(IT,*)
1793 1794	С	CALL RDINTG(IN,IT,IL,IDFP,1,14) IDFP=1
1795 1796		IF(IDFP.EQ.1) CALL DEFPAR(NLINE,XY)
1797		END IF
1798		
1799		WRITE(IT,*)'Enter The TBM Line Discretization Distance'
1800		WRITE(IT,*)' (e.g., Smaller Than The Grid Spacing)'
1801		IF(ICOVF.NE.5) THEN
1802 1803		<pre>WRITE(IT,*)'(e.g., 1/16th the Correlation Length)' END IF</pre>
1804		WRITE(IT,*)
1805		CALL RDREAL(IN, IT, IL, UN, 1, 16)
1806		
1807		IF(ICOVF.LE.3 .AND. IULP.NE.2) THEN
1808		WRITE(IT,*)'Enter NBR Of Harmonics For Discretizing Spectrum'
1809		WKLTE(1T, *)
1811	C	CALINIG(IN,II,IL,NRAK,I,I) CAI METUAD BY DEFAILT FET METUAD IF NUAD-2**N FOD COMF N
1812	C	TSAL = 1
1813		HMCS = NHAR
1814	16	IF (HMCS/2 . GT. 1) THEN
1815		HMCS = HMCS/2
1816		GO TO 16
1817		END IF
1818		IF(HMCS.EQ.2) THEN
1819		<pre>FMAX = 2.*PI/(UN/AMAX1(CLX,CLY))</pre>
1820		1SAJ = U
1021 1822		LIND IF TF(ISAT FO 1) TUPN
1822		IF(LOAU.EV.I) INER WRITE(IT *) 'Enter May Frequency For Truncation Of Sportrum'
1824		WRITE(IT, *)
1825		CALL RDREAL (IN, IT, IL, FMAX, 1, 18)
1826		END IF

```
1827
            END IF
1828
1829
             IF(ICOVF.EQ.4 .OR. IULP.EQ.2) THEN
               WRITE(IT, *) 'Enter Discretization Distance for the MA Process'
1830
               WRITE(IT,*)' (Suggest 1/20th Of The Correlation Length)'
1831
1832
               WRITE(IT,*)'(and No Larger Than 1/10th TBM Line Disc. Dist.)'
               WRITE(IT,*)
1833
1834
               CALL RDREAL (IN, IT, IL, DS, 1, 19)
1835
             END IF
1836
1837
             DT = UN
1838
            IF(ICOVF.EQ.5 .AND. (A3.NE.0 .OR. A5.NE.0) ) THEN
1839
               WRITE(IT, *) 'Enter Discretization Distance for Weiner Process'
1840
               WRITE(IT,*)'(Suggest 1/5th Of The TBM Discretized Distance)'
1841
               WRITE(IT, *)
1842
             CALL RDREAL (IN, IT, IL, DT, 1, 20)
1843
            END IF
1844
1845
             WRITE(IT, *) 'Enter (Xo, Yo) Field Origin Relative To TBM Origin'
1846
             WRITE(IT,*)
1847
             CALL RDREAL (IN, IT, IL, XO, 2, 21)
1848
1849
            WRITE(IT, *) 'Enter the Maximum Turning Band Line Length'
1850
             WRITE(IT,*)
1851
             CALL RDREAL (IN, IT, IL, TBMX, 1, 31)
1852
1853
            RETURN
1854
            END
1855
1856
1857
1858
            FUNCTION UNITMB (ISEED)
1859
      C-----
1860
      ___
1861
      С
            URN01 generates UNIFORM RANDOM NUMBERS on the interval [0,1] using the
1862
      С
            algorithm of Marsaglia and Bray presented in (pages 567 & 597) of:
1863
      С
1864
      С
                  "The Handbook of Random Number Generation and Testing
1865
      С
                             with TESTRAND computer code"
1866
      С
                           E. J. Dudewicz and T. G. Rally
1867
      С
                          American Sciences Press, Inc. 1981.
1868
      С
1869
      С
             This generator was "recommended for practical use" (page 134) by the
1870
      С
             above authors. This generator passed the very sensitive and
1871
      exhaustive
1872
      С
           tests described in the above reference.
1873
      C------
                                                      _____
1874
       ___
           NOTE !!! Compile with "integer overflow check" turned OFF
1875
      С
1876
      C------
1877
       ___
           This version of Marsaglia's code was arranged by D. A. Zimmerman
      С
1878
1879
      C
           at New Mexico Tech, Geoscience Dept., Hydrology Program, August, 1987.
1880
      C-----
                                 _____
1881
      ___
1882
      С
           DUMY = URNIT(ISEED)
                                                  ! Initialize Random Number
1883
      Generator
1884
      C DO 10 I=1,N
                                                  ! Generate N Uniformly Distributed
1885
      C 10 X(I) = URN01()
                                                  ! Random Numbers On Interval [0,1]
1886
      C----
1887
      ___
1888
                        N1(64), N2(64), N(128), MS(6)
             INTEGER
            EQUIVALENCE (N(1), N1), (N(65), N2), (MS(1), ML)
1889
            COMMON /SEEDS/ ML, MM, MK, L, M, K
1890

        C***
        SEE
        BLOCK
        DATA
        MODULE

        C***
        DATA
        L, M, K
        /089347405, 301467177, 240420681/

        C***
        DATA
        L, M, K
        /089347405, 3054433, 36243609/

1891
1892
1893
1894
```

		111/	000451555,	010011100,	200211001	1909332121,
	1	465185814,	280672924,	294923811,	969688974,	798989604,
	1	379880543,	130022074,	1958997525,	1074191695,	680854387,
	1	751282651,	1208899767,	695831691 ,	1667008051,	1682546364,
	1	1984522335,	287570376,	1137852001,	1597983496,	2015817872,
	1	1479672206,	1468443024,	1657203843,	326324124,	680973716,
	1	1451006002,	1251441372,	241092947,	1815086916,	1807193097,
	1	770906592,	725422944,	1822111098,	470585328,	939566271,
	1	1084841038,	1988336409,	229735215 ,	1763201387,	2072973152,
	1	1143606610,	548108569,	544252510,	1980873641,	1195919839,
	1	2089487851,	1406149582,	1839198022,	2106705200,	189238196,
	1	1170370207,	1304402631,	1936129483,	810953177,	706509560,
	1	476957499,	1307077413,	824336639,	1487297852,	1591453718/
		- /				
	DATA	N2/	1348888685,	155452792,	265840413,	1440038626,
	1	//0186/99,	1152058296,	1/26999383,	1389/32859,	1838014251,
	1	1/51063044,	102451305,	212848938,	1046489181,	9/6388856,
	1	1/9/11/421,	4619/1124,	25933/424,	492056652,	1152625277,
	1	108//1102/,	344810019,	14///16555,	809152324,	1766452264,
	1	100/402934,	1002640005	1054000071	328/44821,	1619649061
	1	339/50038,	16965048985,	1724500102	2006722704	1010040U01,
	⊥ 1	1002017000	1100000429,	± / 343UU183,	9U0/33/94,	014U90431,
	⊥ 1	109291/209,	110UJJ4545,	J//UZ4//b,	1705640154	040U/J029, 1277602600
	⊥ 1	9/30U/U28,	0030040/5, 220566004	130233/2//, 760012055	1/UJ040134,	1003620,
	⊥ 1	104JIJI/90, 212072550	102/677015	1572027640	J/1/1/90/,	210994012,
	⊥ 1	212012009,	1024011013, A7Q31010	1766553073	1580330001	182920702/
	T	2002903934,	4/03404U,	T100000923,	100032201,	1029201021
	T = 1	MOD (ISEED 6)	+ 1			
	<u>т</u> — 1 MS (т) = ISEED	· _			
	RETU	RN				
С	ENTR	Y URN01()				
С С С	ENTR ENTR URN0	Y URN01() Y URNMB() 1 RETURNS U	 NIFORMLY DIS	 TRIBUTED RAN	 Dom Numbers	 ON [01.]
С С С	ENTR ENTR URNO L = 1	Y URNO1() Y URNMB() 1 RETURNS U. ML * L MM * M	NIFORMLY DIS	TRIBUTED RAN.	DOM NUMBERS	ON [0.,1.]
С С С	ENTR ENTR URNO L = 1 M = 1 K = 1	Y URNO1() Y URNMB() 1 RETURNS U. ML * L MM * M MK * K	NIFORMLY DIS	TRIBUTED RAN.	DOM NUMBERS	ON [0.,1.]
C C C	ENTR ENTR URNO L = 1 M = 1 K = 1	Y URNO1() Y URNMB() 1 RETURNS U. ML * L MM * M MK * K 1 0 + TARS(1	NIFORMLY DIS	TRIBUTED RAN.	DOM NUMBERS	ON [0.,1.]
С С С	ENTR ENTR URNO L = 1 M = 1 K = 1 J = URNO URNM	Y URNO1() Y URNMB() 1 RETURNS U. ML * L MM * M MK * K 1.0 + IABS(L 1 = 0.5 + FL B = FL	NIFORMLY DIS) / 16777216 OAT(N(J)+L+ OAT(N(J)+L+	TRIBUTED RAN. M) * 0.2328 M) * 0.2328	<i>DOM NUMBERS</i> 3064E-09 3064E-09	ON [0.,1.]
С С С	ENTR ENTR URNO L = 1 M = 1 K = 1 J = URNO URNM N(J)	Y URNO1() Y URNMB() 1 RETURNS U. ML * L MM * M MK * K 1.0 + IABS(L 1 = 0.5 + FL B = FL = K	NIFORMLY DIS) / 16777216 OAT(N(J)+L+ OAT(N(J)+L+	TRIBUTED RAN. M) * 0.2328 M) * 0.2328	<i>DOM NUMBERS</i> 3064E-09 3064E-09	ON [0.,1.]
С С С	ENTR ENTR URNO L = 1 M = 1 K = 1 J = URNO URNM N(J)	Y URNO1() Y URNMB() 1 RETURNS U. ML * L MM * M MK * K 1.0 + IABS(L 1 = 0.5 + FL B = FL = K	NIFORMLY DIS) / 16777216 OAT(N(J)+L+ OAT(N(J)+L+	TRIBUTED RAN. M) * 0.2328 M) * 0.2328	<i>DOM NUMBERS</i> 3064E-09 3064E-09	ON [0.,1.]
с с с	ENTR ENTR URNO L = 1 M = 1 K = 1 J = URNO URNM N(J) RETU END	Y URNO1() Y URNMB() 1 RETURNS U. ML * L MM * M MK * K 1.0 + IABS(L 1 = 0.5 + FL B = FL = K	NIFORMLY DIS) / 16777216 OAT(N(J)+L+ OAT(N(J)+L+	<i>TRIBUTED RAN.</i> <i>M) * 0.2328</i> M) * 0.2328	<i>DOM NUMBERS</i> 3064E-09 3064E-09	ON [0.,1.]
С С С	ENTR ENTR URNO L = 1 M = 1 K = 1 J = URNO URNM N (J) RETU END	Y URNO1() Y URNMB() 1 RETURNS U. ML * L MM * M MK * K 1.0 + IABS(L 1 = 0.5 + FL B = FL = K RN	NIFORMLY DIS) / 16777216 OAT(N(J)+L+ OAT(N(J)+L+	TRIBUTED RAN. M) * 0.2328 M) * 0.2328	<i>DOM NUMBERS</i> 3064E-09 3064E-09	ON [0.,1.]
с с с	ENTR ENTR URNO L = 1 M = 1 K = 1 J = URNO URNM N (J) RETU END	Y URN01() Y URNMB() 1 RETURNS U. ML * L MM * M MK * K 1.0 + IABS(L 1 = 0.5 + FL B = FL = K RN	NIFORMLY DIS) / 16777216 OAT(N(J)+L+ OAT(N(J)+L+	TRIBUTED RAN. M) * 0.2328 M) * 0.2328	<i>DOM NUMBERS</i> 3064E-09 3064E-09	ON [0.,1.]
с с с	ENTR ENTR URNO L = 1 M = 1 K = 1 J = URNO URNM N (J) RETU END	Y URNO1() Y URNMB() 1 RETURNS U. ML * L MM * M MK * K 1.0 + IABS(L 1 = 0.5 + FL B = FL = K RN	NIFORMLY DIS) / 16777216 OAT(N(J)+L+ DAT(N(J)+L+	TRIBUTED RAN. M) * 0.2328 M) * 0.2328	<i>DOM NUMBERS</i> 3064E-09 3064E-09	ON [0.,1.]
с с с	ENTR ENTR URNO L = 1 M = 1 K = 1 J = URNO URNM N (J) RETUC END	Y URNO1() Y URNMB() 1 RETURNS U. ML * L MM * M MK * K 1.0 + IABS(L 1 = 0.5 + FL B = FL = K RN TION UNITSS(1	NIFORMLY DIS) / 16777216 OAT(N(J)+L+ DAT(N(J)+L+	TRIBUTED RAN. M) * 0.2328 M) * 0.2328	<i>DOM NUMBERS</i> 3064E-09 3064E-09	ON [0.,1.]
C C C C	ENTR ENTR URNO L = 1 M = 1 K = 1 J = URNO URNM N (J) RETUC END	Y URNO1() Y URNMB() 1 RETURNS U. ML * L MM * M MK * K 1.0 + IABS(L 1 = 0.5 + FL B = FL = K RN TION UNITSS()	NIFORMLY DIS) / 16777216 OAT(N(J)+L+ DAT(N(J)+L+	TRIBUTED RAN. M) * 0.2328 M) * 0.2328	<i>DOM NUMBERS</i> 3064E-09 3064E-09	ON [0.,1.]
C C C C	ENTR ENTR URNO L = 1 M = 1 K = 1 J = URNO URNM N (J) RETU END	Y URNO1() Y URNMB() 1 RETURNS U ML * L MM * M MK * K 1.0 + IABS(L 1 = 0.5 + FL B = FL = K RN TION UNITSS()	NIFORMLY DIS) / 16777216 OAT(N(J)+L+ OAT(N(J)+L+	TRIBUTED RAN. M) * 0.2328 M) * 0.2328	<i>DOM NUMBERS</i> 3064E-09 3064E-09	ON [0.,1.]
с с с	ENTR ENTR URNO L = 1 M = 1 K = 1 J = URNO URNM N (J) RETU END	Y URN01() Y URNMB() 1 RETURNS U ML * L MM * M MK * K 1.0 + IABS(L 1 = 0.5 + FL B = FL = K RN TION UNITSS(1 	NIFORMLY DIS) / 16777216 OAT(N(J)+L+ OAT(N(J)+L+ LU,ISEED) 	TRIBUTED RAN. M) * 0.2328 M) * 0.2328 OM NUMBERS 0.	DOM NUMBERS 3064E-09 3064E-09 n the interv	ON [0.,1.]
с с с с	ENTR ENTR URNO L = 1 M = 1 K = 1 J = URNO URNM N (J) RETU END	Y URN01() Y URNMB() 1 RETURNS U ML * L MM * M MK * K 1.0 + IABS(L 1 = 0.5 + FL B = FL = K RN TION UNITSS(1 1 generates	NIFORMLY DIS) / 16777216 OAT(N(J)+L+ OAT(N(J)+L+ LU,ISEED) 	TRIBUTED RAN. M) * 0.2328 M) * 0.2328 OM NUMBERS 0.	DOM NUMBERS 3064E-09 3064E-09 n the interv	ON [0.,1.] al [0,1]
с с с с	ENTR ENTR URNO L = 1 M = 1 K = 1 J = URNO URNM N (J) RETU END	Y URN01() Y URNMB() 1 RETURNS U. ML * L MM * M MK * K 1.0 + IABS(L 1 = 0.5 + FL B = FL = K RN TION UNITSS(1 1 generates rence: C. G.	NIFORMLY DIS) / 16777216 OAT(N(J)+L+ DAT(N(J)+L+ UNIFORM RAND Swain and M	TRIBUTED RAN. M) * 0.2328 M) * 0.2328 OM NUMBERS 0.	DOM NUMBERS 3064E-09 3064E-09 n the interv 1980. "A U	ON [0.,1.] al [0,1] niform
с с с с с	ENTR ENTR URNO L = 1 M = 1 K = 1 J = URNO URNM N (J) RETU END	Y URN01() Y URNMB() 1 RETURNS U ML * L MM * M MK * K 1.0 + IABS(L 1 = 0.5 + FL B = FL = K RN TION UNITSS(1 generates rence: C. G. Randon	NIFORMLY DIS NIFORMLY DIS (16777216 OAT(N(J)+L+ OAT(N(J)+L+ UNIFORM RAND Swain and M M Number G	TRIBUTED RAN M) * 0.2328 M) * 0.2328 M) * 0.2328 OM NUMBERS o . S. Swain enerator Tha	DOM NUMBERS 3064E-09 3064E-09 n the interv 1980. "A U t Is Reprod	ON [0.,1.] Al [0,1] niform ucible,
с с с с с	ENTR ENTR URNO L = 1 M = 1 K = 1 J = URNO URNM N (J) RETU END	Y URN01() Y URNMB() 1 RETURNS U. ML * L MM * M MK * K 1.0 + IABS(L 1 = 0.5 + FL B = FL = K RN TION UNITSS() 1 generates rence: C. G. Randon HARDW	NIFORMLY DIS) / 16777216 OAT(N(J)+L+ DAT(N(J)+L+ DAT(N(J)+L+ UNIFORM RAND Swain and M m Number G ARE-INDEPEND	TRIBUTED RAN M) * 0.2328 M) * 0.2328 M) * 0.2328 OM NUMBERS of . S. Swain enerator Tha ENT, And Fas	DOM NUMBERS 3064E-09 3064E-09 3064E-09 n the interv 1980. "A U t Is Reprod t" J. Chem.	ON [0.,1.] Al [0,1] niform ucible, Inf.
с сс с с с	ENTR ENTR URNO L = 1 M = 1 K = 1 J = URNO URNM N (J) RETUC END	Y URN01() Y URNMB() 1 RETURNS U. ML * L MM * M MK * K 1.0 + IABS(L 1 = 0.5 + FL B = FL = K RN TION UNITSS() 1 generates rence: C. G. Randon HARDW. Compu	NIFORMLY DIS) / 16777216 OAT(N(J)+L+ DAT(N(J)+L+ DAT(N(J)+L+ UNIFORM RAND Swain and M m Number G ARE-INDEPEND t. Sci. Vol	TRIBUTED RAN M) * 0.2328 M) * 0.2328 M) * 0.2328 OM NUMBERS o . S. Swain enerator Tha ENT, And Fas 20. pp 56-	DOM NUMBERS 3064E-09 3064E-09 3064E-09 n the interv 1980. "A U t Is Reprod t" J. Chem. 58.	ON [0.,1.] al [0,1] niform ucible, Inf.
с с с с с с	ENTR ENTR URNO L = 1 M = 1 K = 1 J = URNO URNM N (J) RETUC END FUNC	Y URN01() Y URNMB() 1 RETURNS U. ML * L MM * M MK * K 1.0 + IABS(L 1 = 0.5 + FL B = FL = K RN TION UNITSS() 1 generates rence: C. G. Randon HARDW. Compu	NIFORMLY DIS) / 16777216 OAT(N(J)+L+ DAT(N(J)+L+ DAT(N(J)+L+ UNIFORM RAND Swain and M m Number G ARE-INDEPEND t. Sci. Vol	TRIBUTED RAN M) * 0.2328 M) * 0.2328 M) * 0.2328 OM NUMBERS o . S. Swain enerator Tha ENT, And Fas 20. pp 56-	DOM NUMBERS 3064E-09 3064E-09 n the interv 1980. "A U t Is Reprod t" J. Chem. 58.	ON [0.,1.] al [0,1] niform ucible, Inf.
с сс ссссссс с	ENTR ENTR URNO L = 1 M = 1 K = 1 J = URNO URNM N (J) RETUC END FUNC	Y URN01() Y URNMB() 1 RETURNS U. ML * L MM * M MK * K 1.0 + IABS(L 1 = 0.5 + FL B = FL = K RN TION UNITSS() 1 generates rence: C. G. Randon HARDW. Compu rding to E.	NIFORMLY DIS) / 16777216 OAT(N(J)+L+ DAT(N(J)+L+ DAT(N(J)+L+ UNIFORM RAND Swain and M m Number G ARE-INDEPEND t. Sci. Vol J. Dudewicz,	TRIBUTED RAN M) * 0.2328 M) * 0.2328 M) * 0.2328 OM NUMBERS o . S. Swain enerator Tha ENT, And Fas 20. pp 56- Dept. Stati	DOM NUMBERS 3064E-09 3064E-09 an the interv 1980. "A U t Is Reprod t" J. Chem. 58. stics, Ohio	ON [0.,1.] al [0,1] niform ucible, Inf. State University
с сс с с с	ENTR ENTR URNO L = 1 M = 1 K = 1 J = URNO URNM N (J) RETUC END FUNC URNO Refe	Y URN01() Y URNMB() 1 RETURNS U. ML * L MM * M MK * K 1.0 + IABS(L 1 = 0.5 + FL B = FL = K RN TION UNITSS() 1 generates rence: C. G. Randon HARDW. Compu rding to E. Modern and E.	NIFORMLY DIS) / 16777216 OAT(N(J)+L+ DAT(N(J)+L+ DAT(N(J)+L+ UNIFORM RAND Swain and M m Number G ARE-INDEPEND t. Sci. Vol J. Dudewicz, asy Generati	TRIBUTED RAN M) * 0.2328 M) * 0.2328 M) * 0.2328 OM NUMBERS of S. Swain enerator Tha ENT, And Fas 20. pp 56- Dept. Stati on of Random	DOM NUMBERS 3064E-09 3064E-09 n the interv 1980. "A U t Is Reprod t" J. Chem. 58. stics, Ohio Numbers / T	ON [0.,1.] ON [0.,1.] al [0,1] niform ucible, Inf. State University esting of Random
с сс с с с	ENTR ENTR URNO L = 1 M = 1 K = 1 J = URNO URNM N (J) RETUC END FUNC URNO Refe Accco in ". Numb	Y URN01() Y URNMB() 1 RETURNS U. ML * L MM * M MK * K 1.0 + IABS(L 1 = 0.5 + FL B = FL = K RN TION UNITSS() 1 generates rence: C. G. Randon HARDW. Compu rding to E. Modern and E. er Generator	NIFORMLY DIS) / 16777216 OAT(N(J)+L+ DAT(N(J)+L+ DAT(N(J)+L+ UNIFORM RAND Swain and M m Number G ARE-INDEPEND t. Sci. Vol J. Dudewicz, asy Generati s with TESTR	TRIBUTED RAN M) * 0.2328 M) * 0.2328 M) * 0.2328 OM NUMBERS o . S. Swain enerator Tha ENT, And Fas 20. pp 56- Dept. Stati on of Random AND", 10th I	DOM NUMBERS 3064E-09 3064E-09 3064E-09 n the interv 1980. "A U t Is Reprod t" J. Chem. 58. stics, Ohio Numbers / T MACS World C	ON [0.,1.] ON [0.,1.] al [0,1] niform ucible, Inf. State University esting of Random ongress On Syste
с сс с с с	ENTR ENTR URNO L = 1 M = 1 K = 1 J = URNO URNM N (J) RETUC END FUNC URNO Refe Accco in ". Numb Simu	Y URN01() Y URNMB() 1 RETURNS U. ML * L MM * M MK * K 1.0 + IABS(L 1 = 0.5 + FL B = FL = K RN TION UNITSS() 1 generates rence: C. G. Randon HARDW. Compu rding to E. Modern and E. er Generator lation and S	NIFORMLY DIS) / 16777216 OAT(N(J)+L+ DAT(N(J)+L+ DAT(N(J)+L+ UNIFORM RAND Swain and M m Number G ARE-INDEPEND t. Sci. Vol J. Dudewicz, asy Generati s with TESTR cientific Co	TRIBUTED RAN M) * 0.2328 M) * 0.2328 M) * 0.2328 OM NUMBERS of S. Swain enerator Tha ENT, And Fas 20. pp 56- Dept. Stati on of Random AND", 10th I mputation, A	DOM NUMBERS 3064E-09 3064E-09 3064E-09 n the interv 1980. "A U t Is Reprod t" J. Chem. 58. stics, Ohio Numbers / T MACS World C ugust 8-13,	ON [0.,1.] ON [0.,1.] al [0,1] niform ucible, Inf. State University esting of Random ongress On Syste 1982, Montreal,
с сс с с с	ENTR ENTR URNO L = 1 M = 1 K = 1 J = URNO URNM N (J) RETUC END FUNC URNO Refe Accco in ". Numb Simu Cana	Y URNO1() Y URNMB() 1 RETURNS U. ML * L MM * M MK * K 1.0 + IABS(L 1 = 0.5 + FL B = FL = K RN TION UNITSS(1 generates rence: C. G. Randon HARDW. Compu rding to E. Modern and E. er Generator lation and S da, Proceedi.	NIFORMLY DIS NIFORMLY DIS () / 16777216 OAT(N(J)+L+ DAT(N(J)+L+ DAT(N(J)+L+ UNIFORM RAND Swain and M m Number G ARE-INDEPEND t. Sci. Vol J. Dudewicz, asy Generati s with TESTR cientific Co ngs, Volume	TRIBUTED RAN M) * 0.2328 M) * 0.2328 M) * 0.2328 OM NUMBERS of S. Swain enerator Tha ENT, And Fas 20. pp 56- Dept. Stati on of Random AND", 10th I mputation, A 2, page 133,	DOM NUMBERS 3064E-09 3064E-09 3064E-09 n the interv 1980. "A U t Is Reprod t" J. Chem. 58. stics, Ohio Numbers / T MACS World C ugust 8-13, this genera	ON [0.,1.] ON [0.,1.] al [0,1] niform ucible, Inf. State University esting of Random ongress On Syste 1982, Montreal, tor failed the
с сс с с с	ENTR ENTR URNO L = 1 M = 1 K = 1 J = URNO URNM N (J) RETUC END FUNC URNO Refe Accco in ". Numb Simu Cana sens	Y URNO1() Y URNMB() 1 RETURNS U. ML * L MM * M MK * K 1.0 + IABS(L 1 = 0.5 + FL B = FL = K RN TION UNITSS() 1 generates rence: C. G. Randon HARDW. Compu rding to E. Modern and E. er Generator lation and S da, Proceedi. itive Chi-sq	NIFORMLY DIS NIFORMLY DIS () / 16777216 OAT(N(J)+L+ DAT(N(J)+L+ DAT(N(J)+L+ UNIFORM RAND Swain and M m Number G ARE-INDEPEND t. Sci. Vol J. Dudewicz, asy Generati s with TESTR cientific Co ngs, Volume uare on Chi-	TRIBUTED RAN M) * 0.2328 M) * 0.2328 M) * 0.2328 OM NUMBERS O . S. Swain enerator Tha ENT, And Fas 20. pp 56- Dept. Stati on of Random AND", 10th I mputation, A 2, page 133, square test j	DOM NUMBERS 3064E-09 3064E-09 3064E-09 n the interv 1980. "A U t Is Reprod t" J. Chem. 58. stics, Ohio Numbers / T MACS World C ugust 8-13, this genera performed by	ON [0.,1.] ON [0.,1.] al [0,1] niform ucible, Inf. State University esting of Random ongress On Syste 1982, Montreal, tor failed the the TESTRAND

1963 _ _ This version of Swain & Swain's code was arranged by D. A. Zimmerman 1964 С 1965 С at New Mexico Tech, Geoscience Dept., Hydrology Program, June, 1986. 1966 C--------1967 ___ С 1968 DUMY = URNIT(12345678)! INITIALIZE URNG: ISEED=12345678 1969 С DO 10 K=1,N ! GENERATE N UNIFORMLY DISTRIBUTED 1970 $C \ 10 \ X(K) = URN01()$! RANDOM NUMBERS ON INTERVAL [0,1] C-----1971 1972 1973 **PARAMETER** (K1=35260417, K2=72619094, K3=86952743) 1974 **INTEGER** M(0:3) 1975 M /0,K1,K2,K3 / DATA 1976 1977 SEED = FLOAT (ISEED) 1978 IPWR = ALOG10 (SEED) 1979 1980 IF(IPWR.NE.7) THEN WRITE(LU,*)' ***** URN GENERATOR SEED MUST BE 8 DIGITS LONG' 1981 1982 WRITE(LU, *) ' PROGRAM EXECUTION HALTED' 1983 STOP 1984 END IF 1985 1986 M(1) = K11987 M(2) = K21988 M(3) = K31989 1990 I = MOD(ISEED, 3) + 11991 M(I) = ISEED1992 1993 RETURN 1994 С 1995 ENTRY URNO1() 1996 ENTRY URNSS() 1997 C-----1998 С URN01 RETURNS UNIFORMLY DISTRIBUTED RANDOM NUMBERS ON [0.,1.] 1999 2000 M(0) = M(1) + M(2) + M(3)2001 2002 IF(M(2) . LT. 5000000) M(0) = M(0) + 13572003 $IF(M(0) \ .GE. \ 10000000) \ M(0) = M(0) - \ 100000000$ 2004 IF(M(0)) . GE. 10000000) M(0) = M(0) - 1000000002005 2006 M(1) = M(2)2007 M(2) = M(3)2008 M(3) = M(0)2009 URN01 = 1.0E-08 * M(0)URNSS = 1.0E-08 * M(0) - 0.5 2010 С 2011 2012 2013 RETURN 2014 END 2015 2016 2017 2018 2019 FUNCTION URNAB(A,B) 2020 C-----2021 С URNAB returns uniformly distributed random numbers on [A,B] 2022 comt URNAB = A + (B-A) * URN01() 2023 URNAB = A + (B-A) * (URN55() + 0.5)2024 2025 2026 RETURN 2027 END 2028 2029 2030

2031 2032 FUNCTION URN55() 2033 *C*-----2034 ___ 2035 С RETURN UNIFORMLY DISTRIBUTED RANDOM NUMBER ON INTERVAL [-.5,+.5] 2036 2037 INCLUDE 'tuba211d.inc' 2038 IURN = 1 MARSAGLIA AND BRAY RANDOM NUMBER GENERATOR (RECOMMENDED) 2039 С 2040 С IURN = 2 SWAIN AND SWAIN MACHINE INDEPENDENT RANDOM NUMBER GENERATOR 2041 2042 **IF**(IURN.**EQ.**1) URN55 = URNMB() 2043 IF(IURN.EQ.2) URN55 = URNSS() 2044 2045 RETURN 2046 END 2047 2048 2049 2050 2051 SUBROUTINE WNRLVY(Z1) 2052 C-----2053 ___ 2054 С NON STATIONARY CASE: WIENER-LEVY SIMULATION OF LINE PROCESS 2055 2056 REAL Z1(*) INCLUDE 'tuba211d.inc' 2057 2058 Z1(1) = 0.02059 2060 W1 = 0.02061 AI1 = 0.02062 BI1 = 0.02063 TT = 0.0**DO** 20 N=2, NMAX 2064 2065 **DO** 10 K=1,KT 2066 TT = TT+DT2067 W2 = W1 + SG * URN55()2068 AI1 = AI1 + 0.5*(W2+W1)*DTBI1 = BI1 + 0.5* (W1* (TT-DT) +TT*W2)*DT 2069 W1 = W2 2070 10 2071 CONTINUE 2072 Z1(N) = B0*W1 + (B1+B2*TT)*AI1 - B2*BI1 2073 20 CONTINUE 2074 2075 RETURN 2076 END 2077 2078 2079 2080 2081 FUNCTION WTEXP (OM, ACL, ASL, AL1, AL2) 2082 С-----2083 ---2084 С CALCULATE SPECTRAL DENSITY WEIGHTS FOR EXPONENTIAL AREAL AVERAGE 2085 PROCESS 2086 2087 AS = SIN(AL1*OM*ACL/2.)2088 BS = SIN(AL2*OM*ASL/2.)2089 2090 IF(ACL.NE.0. .AND. ASL.NE.0.) THEN AL12 = AL1*AL1*AL2*AL2 2091 2092 OMOM = OM*OM*OM*OM2093 A1B1 = ACL*ACL*ASL*ASL ASBS = AS*AS*BS*BS 2094 2095 ALOA = AL12*OMOM*A1B1 WTEXP = ASBS*(16./ALOA) 2096 2097 END IF 2098

2099		<pre>IF(ACL.EQ.0.) WTEXP = BS*BS*(4./(AL2*AL2*ASL*ASL*OM*OM))</pre>
2100		<pre>IF(ASL.EQ.0.) WTEXP = AS*AS*(4./(AL1*AL1*ACL*ACL*OM*OM))</pre>
2101		
2102		RETURN
2103		END
2104		
2105		
2106		
2107		
2108		FUNCTION WTUSR(OM, ACL, ASL, AL1, AL2)
2109	C	
2110		
2111	С	RETURN SPECTRAL DENSITY WEIGHTS FOR USER-DEFINED AREAL AVERAGE PROCESS
2112		
2113		DATA SOME, THING /0.,1./
2114		
2115	С	SEE CHAPTERS 2 AND 5 OF THE DOCUMENTATION
2116		WTUSR = SOME + THING
2117		
2118		RETURN
2119		

APPENDIX B

Tables of Simulation Results

In this Appendix all simulation results are presented. There are two subsections. At the first numerical results of detection probability of an instantaneous groundwater pollution originating from a point source are presented. At the second subsection results of detection probability of a precipitation triggered pollution originating from a point source are presented. Results presented concern different field heterogeneities $(\sigma_{\ln K}^2)$, transeverse dispersion oefficients (a_T) , sampling frequencies and remedial action delay times. Abbreviations reffered into Tables are reading as:

nws:	normalized wells space													
ndfs:	normalized distance from source													
ndfs(max):	normalized distance from source where detection probability is maximum													
$P_d(ED)$:	Detection probability if sampling is performed Every Day													
$P_d(1M)$:	Detection probability if sampling is performed Monthly													
$P_d(2M)$:	Detection probability if sampling is performed Bimonthly													
$P_d(3M)$:	Detection probability if sampling is performed Quarterly													
$P_d(4M)$:	Detection probability if sampling is performed Every 4Months													
$P_d(6M)$:	Detection probability if sampling is performed Biannually													
$P_d(12M)$:	Detection probability if sampling is performed Annually													
RADTi:	Remedial Action Delay Times													
NAV:	Not Applicable Value (a computational problem during simulation returned a non valid number)													

B.1 Instantaneous Pollution

		σ^{2}_{lnK}				0.0	00							0.5	0			
(m)	SV	o WeLls	ds(max)	(ED)	(1M)	(2M)	(3M)	(4M)	(EM)	(12M)	ds(max)	(ED)	(1M)	(ZM)	(3M)	(4M)	(6M)	(12M)
5	2	ž	3 00		<u> </u>	Pa do	a	P	<u> </u>	<u>a</u>	1 7F	Pa de la companya de	<u> </u>			<u> </u>	Pa 4 D	<u> </u>
	0.50	2	3.00	4.2 8.5	4.2 8.2	4.2 8.2	4.2 8.0	4.1 7 9	3.9 7.6	3.0 6.1	1.75	4.5 8.1	4.5 8.1	4.4 8.0	4.5 7.8	4.3 7.8	4.2 7.4	3.1 5.6
	0.33	3	3.00	13.3	13.2	13.1	13.1	12.8	12.4	10.1	1.75	11.5	11.4	11.3	11.3	11.0	10.6	7.8
0.001	0.25	4	3.00	16.9	16.8	16.5	16.4	16.1	16.0	12.4	1.75	14.5	14.2	14.1	14.0	13.8	13.2	9.2
0.001	0.17	6	3.00	25.3	24.8	24.6	24.3	24.0	23.3	18.3	1.75	21.0	20.7	20.6	20.3	20.2	19.3	14.1
	0.12	8	3.00	33.0	32.6	32.3	32.2	31.8	31.5	24.4	1.75	28.1	27.7	27.5	27.2	26.6	25.7	18.2
	0.08	12	3.00	49.1	48.8	48.4	48.0	47.4	46.6	36.3	1.75	42.0	41.5	41.1	40.8	40.3	38.3	28.1
	1.00	1	2 25	6.0	5.7	5.6	5 5	5.4	5.4	4 9	1.75	5.4	5.2	5.2	5.2	5 1	5.0	44.4
	0.50	2	2.25	12.0	11.6	11.3	11.3	10.8	10.8	10.2	1.50	10.9	10.6	10.5	10.3	10.2	10.0	8.9
	0.33	3	2.25	18.9	18.2	17.8	17.5	17.1	16.9	15.9	1.50	15.1	14.5	14.3	14.1	13.9	13.6	11.8
0.010	0.25	4	2.25	23.9	23.3	23.0	22.8	22.5	22.1	20.4	1.50	20.7	20.2	19.9	19.6	19.3	18.9	16.6
	0.17	6	2.25	35.4	34.3	33.6	33.4	32.7	32.3	29.8	1.50	30.7	29.5	29.0	28.6	28.2	27.5	24.1
	0.12	8	2.25	47.2	45.5	44.8	44.2	43.3	42.8	39.9	1.50	41.5	39.7	38.9	38.3	37.9	37.1	32.7
	0.08	20	2.25	70.5 99.6	08.5 99 5	67.4 99.4	99.7 99.7	65.8 99.3	64.8 99.3	59.5 95.1	1.50	57.0	55.5 75.9	54.5 75.0	53.5 74.2	53.1 73.5	51.8	46.7
	1.00	1	1.50	5.8	5.6	5.5	5.4	5.3	5.2	4.5	0.50	5.9	5.9	5.9	5.7	5.7	5.6	4.5
	0.50	2	1.50	11.7	11.1	10.7	10.4	10.3	10.0	8.8	0.50	11.6	11.2	11.1	11.0	10.9	10.8	8.8
	0.33	3	1.50	18.2	17.5	17.0	16.7	16.3	15.9	14.0	0.50	16.9	16.6	16.4	15.9	16.0	15.5	12.8
0.02	0.25	4	1.50	23.5	22.2	21.9	21.5	21.2	20.8	19.2	0.50	22.1	21.2	20.9	20.7	20.4	20.1	17.0
	0.17	6	1.50	34.6	32.9	31.8	31.2	31.0	30.2	27.4	0.50	33.2	32.4	32.0	31.7	31.2	30.8	25.8
	0.12	8	1.50	46.3	43.9	43.0	42.1	41.5	40.2	36.5	0.50	43.6	42.0	41.5	40.9	40.7	39.5	33.8
	0.08	20	1.50	99.0	99.3	99.0	98.7	98.5	97.1	33.0 89.4	0.50	84.4	83.0	39.2 82.2	56.7 81 9	58.0 81.6	37.0 80.8	46.0 71.8
	1.00	1	0.50	5.8	5.5	5.2	5.3	5.1	4.9	4.4	0.50	5.6	5.0	4.7	4.5	4.2	4.0	3.0
	0.50	2	0.50	11.6	10.8	10.4	10.4	10.2	9.7	8.2	0.50	10.8	9.6	9.2	8.8	8.6	8.2	5.9
	0.33	3	0.50	18.2	17.3	16.7	16.3	16.3	15.6	13.9	0.50	14.9	13.6	12.9	12.6	12.0	11.5	8.9
0.05	0.25	4	0.50	23.5	22.3	21.3	21.2	20.8	20.0	17.6	0.50	19.8	17.8	17.1	16.4	15.8	14.7	11.5
	0.17	6	0.50	34.1	31.9	31.0	30.6	30.2	29.0	25.3	0.50	29.9	27.0	25.5	24.7	24.0	22.8	17.0
	0.12	8	0.50	45.8	43.2	42.2	41.3	40.5	39.4	34.7	0.50	39.1	35.1	33.7	33.0	31.5	29.7	23.4
	0.08	20	0.50	99.0 99.4	98.9	98.1	97.4	96.5	94 9	52.3 84 7	0.50	55.7 78.2	50.2 73.4	48.0 70.9	40.2 69.2	44.4 67.4	41.8 64 5	53.2 51.7
	1.00	1	0.125	5.7	5.3	5.1	4.9	5.0	4.7	4.4	0.125	6.4	5.9	5.6	5.3	5.2	4.8	4.0
	0.50	2	0.125	11.3	10.4	10.1	9.8	9.7	9.5	8.2	0.125	10.3	9.2	9.0	8.5	8.7	8.1	6.7
	0.33	3	0.125	18.1	16.9	16.4	15.9	16.0	15.3	13.9	0.125	16.2	14.9	14.4	13.9	13.5	12.9	10.3
0.10	0.25	4	0.125	23.2	21.7	21.1	20.8	20.4	19.8	17.2	0.125	20.0	18.0	17.2	16.5	16.4	15.3	12.7
	0.17	6	0.125	33.9 4E 0	31.8	30.9	30.0	29.5	28.6	25.1	0.125	30.3	28.0	27.1	26.0	25.7	24.3	19.9
	0.12	0 12	0.125	43.8 67.9	42.0 63.7	62.0	40.7 60.5	59.9 59.8	57.5	54.1	0.125	42.2 62.2	56.4	54.6	52.3	51.8	33.0 48.7	27.0
	0.05	20	0.125	99.1	97.3	96.0	95.1	93.9	92.3	83.6	0.125	87.0	81.9	79.9	77.9	76.5	73.2	60.7
	1.00	1	0.030	4.7	4.1	3.8	3.6	3.6	3.3	2.7	0.030	4.8	4.2	4.1	4.0	3.9	3.7	2.7
	0.50	2	0.030	8.4	7.4	7.0	6.7	6.5	6.3	4.8	0.030	7.9	6.8	6.4	6.1	5.9	5.4	3.9
	0.33	3	0.030	14.3	12.3	11.6	10.9	11.0	10.1	8.1	0.030	12.9	11.2	10.9	10.6	10.4	9.8	7.2
0.20	0.25	4	0.030	18.0	15.2	14.4	13.7	13.6 10.5	12.5	9.4	0.030	15.3	13.5	12.9	12.3	12.0	11.5	8.0
	0.17	8	0.030	26.1	22.5	21.2	20.5	19.5 27.5	19.2 26.1	20.0	0.030	24.1	20.2	19.2 27.1	18.6 25.9	17.9 25.4	16.7	16.2
	0.08	12	0.030	53.9	46.0	44.3	42.1	42.0	39.1	30.2	0.030	48.3	42.3	40.5	39.2	37.9	35.9	25.3
	0.05	20	0.030	80.8	70.9	68.2	65.9	64.8	62.1	47.7	0.030	69.6	61.7	59.7	58.0	56.6	53.3	37.4
	1.00	1	0.015	2.4	2.2	1.9	1.9	1.9	1.7	0.1	0.015	3.0	2.6	2.4	2.2	2.1	1.8	0.9
	0.50	2	0.015	4.9	4.1	3.9	3.7	3.7	3.4	0.3	0.015	4.5	3.7	3.4	3.3	3.2	2.5	1.0
	0.33	3	0.015	7.3	6.2	5.8	5.6	5.5	5.0	0.4	0.015	7.8	6.9	6.6	6.2	5.9	4.9	1.8
0.50	0.25	4	0.015	8.6	/.2	6.8	6.7	6.5	6.0 0.9	0.8	0.015	7.8 12 F	6.6 10.0	6.1 10 5	6.0	5.7	4.9	1.5
	0.17	8	0.015	13.7 18.2	11.5 15 1	14.1	10.7 13.7	12.5	9.8 12 5	0.8 1 3	0.015	13.5 18.0	10.9 15 1	10.5 14.4	10.0 13 7	9.3 13 0	7.8 10.6	2.8 3.4
	0.08	12	0.015	27.6	23.9	22.5	22.2	21.3	19.8	2.4	0.015	27.5	22.6	21.3	20.5	19.5	16.1	5.6
	0.05	20	0.015	40.5	36.7	35.0	34.2	33.4	31.0	3.1	0.015	38.2	34.0	32.8	31.7	30.0	25.4	8.7

Table B.1: Detection probability in case of $\sigma_{\ln K}^2 = 0.0$ and $\sigma_{\ln K}^2 = 0.5$, for different sampling frequencies

Table B.2: Detection probability in case of $\sigma_{\ln K}^2 = 1.0$ and $\sigma_{\ln K}^2 = 1.5$, for different sampling frequencies

		σ^{2}_{lnl}	ĸ				1.00								1.50			
ατ(m)	swu	No Wells	nfds(max)	Pa (ED)	P _d (1M)	P _d (2M)	P _d (3M)	P _d (4M)	Pa (6M)	P _d (12M)	nfds(max)	Pa (ED)	P _d (1M)	P _d (2M)	P _d (3M)	P _d (4M)	P _d (6M)	P _d (12M)
	1.00	1	1.75	3.8	3.8	3.8	3.7	3.7	3.6	2.7	1.25	3.9	3.8	3.8	3.8	3.7	3.3	2.5
	0.50	2	1.75	7.1	7.0	6.9	6.8	6.8	6.5	5.0	1.25	7.2	7.2	7.1	7.0	6.7	6.4	4.8
	0.33	3	1.75	9.8	9.7	9.6 12 E	9.5	9.4	9.1 12.4	6.9 0 E	1.25	9.4	9.3	9.2	9.1	8.8	8.0 11 E	6.1 0 0
0.001	0.25	6	1.75	20.6	20.3	20.1	19.8	19.6	12.4	14.2	1.25	20.9	20.7	20.4	19.9	19.5	11.5	13.7
	0.12	8	1.75	26.5	26.1	25.9	25.5	25.4	24.1	17.6	1.25	25.7	25.3	24.8	24.4	23.5	21.9	16.2
	0.08	12	1.75	39.9	39.3	38.8	38.5	37.6	36.2	27.8	1.25	35.6	35.2	34.9	34.3	33.8	31.0	23.0
-	0.05	20	1.75	57.2	56.4	55.9	55.2	54.8	52.5	41.5	1.25	54.9	54.4	54.0	52.8	52.3	48.1	36.0
	1.00	1	1.25	5.7	5.3	5.2	5.2	5.1	5.0	4.0	1.00	5.0	4.7	4.7	4.6	4.6	4.3	3.4
	0.50	2	1.25	9.5	9.1	8.8	8.7	8.5	8.2	6.9	1.00	9.0	8.6	8.3	8.2	7.9	7.8	6.1
	0.33	3 4	1.25	14.7	14.0	13.0	15.4	15.2	12.8	10.4	1.00	15.5	12.9	12.7	12.4	12.2	11.4 14.6	9.1
0.010	0.17	6	1.25	27.4	26.3	25.6	25.0	24.5	23.8	19.9	1.00	24.2	23.0	22.4	21.9	21.4	20.7	16.1
	0.12	8	1.25	35.7	34.4	33.6	32.9	32.6	31.3	25.6	1.00	33.2	31.8	30.9	30.7	30.0	28.7	22.4
	0.08	12	1.25	50.4	48.4	47.8	46.7	46.2	45.2	37.5	1.00	45.8	44.4	43.4	43.0	42.3	40.1	32.5
	0.05	20	1.25	68.8	66.7	65.7	64.7	64.3	62.4	53.6	1.00	61.6	59.9	59.0	58.8	57.7	56.2	46.7
	1.00	1	0.50	6.3	5.9	5.7	5.7	5.6	5.3	4.5	0.50	5.7	5.4	5.4	5.3	5.2	4.6	3.9
	0.50	2	0.50	10.1	9.7	9.0 15.9	9.5 15 7	9.3 15.5	8.9 1/1 8	7.3 12.0	0.50	9.7 1/1 8	9.3 14.0	9.2 13.6	9.0 13.5	8.9 13.0	8.3 12.2	0.8 10.0
	0.25	4	0.50	20.5	19.7	19.3	19.7	18.9	14.6	15.4	0.50	14.0	18.2	17.8	17.4	17.2	16.2	10.0
0.02	0.17	6	0.50	28.5	27.5	26.9	26.6	26.0	25.0	20.7	0.50	28.1	26.9	26.6	26.3	25.8	24.5	20.0
	0.12	8	0.50	42.1	40.8	39.9	39.3	38.6	37.0	29.9	0.50	36.7	35.3	34.3	33.8	33.2	31.6	25.2
	0.08	12	0.50	57.5	55.6	54.7	53.9	53.5	52.2	44.1	0.50	50.0	48.4	47.5	46.8	46.2	43.6	35.5
	0.05	20	0.50	77.0	75.5	74.6	74.2	73.5	72.0	61.9	0.50	69.1	67.1	66.2	65.5	64.8	62.7	52.8
	1.00	1	0.13	5./	5.6	5.5	5.4	5.1	5.0	3./	0.13	5.5	5.2	5.1	4.9	4.8	4.6	3.8
	0.33	3	0.13	17.0	16.5	16.2	16.0	10.7	10.4	0.4 11 9	0.13	14.9	10.7	14.2	13.9	13.8	9.7 13.2	0.1 11.2
0.05	0.25	4	0.13	22.0	21.3	21.0	20.7	20.4	19.6	16.9	0.13	19.3	18.4	17.9	17.6	17.4	16.5	13.6
0.05	0.17	6	0.13	33.3	31.9	31.2	30.8	30.2	29.2	23.7	0.13	31.8	30.4	29.5	29.6	28.3	27.4	22.8
	0.12	8	0.13	43.5	42.1	41.5	40.9	40.3	39.0	32.7	0.13	40.1	38.6	37.8	37.4	36.9	35.1	29.2
	0.08	12	0.13	61.8	59.7	59.1	58.3	57.5	55.8	47.1	0.13	57.6	55.4	54.4	53.7	52.7	50.5	41.7
. <u> </u>	0.05	20	0.13	86.3	84.7 E 1	84.2 E 1	83.1	82.9	80.6	68.7	0.13	81.6 6 1	79.6	78.3	78.0	76.8	74.0	63.3
	0.50	2	0.003	5.4 11.1	10.2	99	4.8 9.7	4.0 9.5	4.0 9.0	5.7 7.3	0.003	10.3	9.5	9.4 9.1	5.5 8.8	85	4.0 8.1	5.0 6.3
	0.33	3	0.063	17.1	15.9	15.8	15.2	14.9	14.1	10.9	0.063	15.8	14.3	13.9	13.6	13.2	12.4	9.9
0 10	0.25	4	0.063	21.6	20.4	19.9	19.6	19.0	18.1	14.3	0.063	19.9	18.6	18.1	17.5	17.1	16.0	11.9
0.10	0.17	6	0.063	31.6	29.4	28.5	27.6	27.1	25.5	19.7	0.063	29.7	27.1	26.3	25.2	24.6	23.0	18.1
	0.12	8	0.063	43.2	40.0	38.6	37.8	36.8	34.8	27.6	0.063	40.0	36.5	35.3	34.0	33.4	31.5	25.0
	0.08	12	0.063	60.8 86.2	56.5 82.7	54.8 81.0	53.7	52.5 78.5	49.5 74 Q	38.8	0.063	57.6 80.8	54.2 76.0	52.4 75 5	51.0 72.8	49.8 72.4	46.2	35.5
	1.00	1	0.003	4.0	3.4	3.2	3.0	3.0	2.7	1.7	0.003	4.1	3.4	3.1	2.9	2.8	2.5	1.5
	0.50	2	0.030	7.7	6.5	6.2	6.1	5.6	5.2	3.5	0.015	8.4	7.3	7.0	6.8	6.4	5.8	4.0
	0.33	3	0.030	12.8	11.2	10.6	10.3	10.0	9.2	5.9	0.015	12.1	10.6	9.8	9.4	8.8	8.2	5.3
0.20	0.25	4	0.030	16.6	14.5	13.9	13.2	13.1	11.8	8.2	0.015	15.2	13.3	12.7	12.1	11.5	10.4	7.2
	0.17	6	0.030	22.0	19.2	18.0	17.8	16.7	15.6	10.0	0.015	23.3	20.1	19.2	18.1	17.1	15.6	10.5
	0.12	8 12	0.030	31.1	26.6	25.3	24.5	23.2	21.3	14.7	0.015	31.3	27.7	25.9	25.4	23.7	21.6	14.4 21 E
	0.08	20	0.030	44.7 64.6	57.8	55.6	53.6	54.5 52.7	48.0	32.8	0.015	40.2 65.3	40.4 58.8	56.8	54.8	52.0	47.6	32.9
	1.00	1	0.015	2.2	2.0	1.9	1.6	1.5	1.2	0.4	0.015	1.9	1.4	1.4	1.3	1.2	0.9	0.4
	0.50	2	0.015	4.2	3.6	3.4	3.2	3.0	2.4	0.7	0.015	4.4	3.7	3.4	3.2	2.9	2.1	1.2
	0.33	3	0.015	7.7	6.7	6.4	5.8	5.4	4.1	1.6	0.015	6.4	5.4	5.1	4.7	4.4	3.3	1.7
0.50	0.25	4	0.015	9.0	7.5	7.0	6.5	6.1	4.8	2.1	0.015	8.2	7.1	6.8	6.3	5.6	4.6	2.4
	0.17	6	0.015	12.7	10.9	10.4	9.7	9.3	7.2	2.7	0.015	12.5	10.6	9.9	9.1	8.4	6.2	3.3
	0.12	8 12	0.015	18.1 25.3	15.6 71.6	14.4 20 5	13.4 19.0	12.2	9.5 1/1 0	4.0 5 7	0.015	10.5 2/1 Q	14.3 21 0	13.2 19 9	12.2 18.0	11.U 16.3	გ. 13 ს	4.2 6.4
	0.05	20	0.015	36.9	32.9	31.5	29.8	28.0	22.3	9.2	0.015	34.6	30.8	29.6	27.4	24.9	20.4	9.9

		σ^{2}_{lnl}	к							
		sl.	(xe							-
Ê		Wel	e(mi	ED)	1M)	ZM)	3M)	4M)	6M)	12N
u)to	SMU	Ñ	nfd) P4) P4) Pd) Pd	Pa	Pa) Pd
	1.00	1	0.75	3.4	3.4	3.3	3.3	3.1	2.8	1.7
	0.50	2	0.75	6.8	6.7	6.7	6.4	6.0	5.6	3.9
	0.33	3	0.75	9.2	9.1	8.8	8.5	8.2	7.2	5.1
0.001	0.25	4	0.75	11.9	11.8	11.5	11.0	10.6	9.7	6.7
	0.17	6	0.75	19.3	18.9	18.6	18.1	17.3	15.6	11.1
	0.12	8	0.75	24.3	23.9	23.4	22.6	21.6	19.6	14.3
	0.08	12	0.75	34.2	33.6	32.8	31.8	30.4	27.6	19.5
	0.05	20	0.75	53.1	52.3	51.6	49.9	47.6	43.4	30.6
	1.00	1	0.50	5.3	5.1	5.1	5.1	4.8	4.7	3.3
	0.50	2	0.50	8.0	7.9	7.8	7.7	7.6	7.1	5.8
	0.33	3	0.50	14.2	13.9	13.8	13.6	13.1	12.4	9.7
0.010	0.25	4	0.50	16.8	16.5	16.2	16.0	15.8	14.9	12.0
	0.17	6	0.50	23.8	23.2	22.7	22.5	22.1	20.9	16.9
	0.12	8	0.50	32.3	31.6	31.1	30.7	30.0	28.4	22.8
	0.08	20	0.50	40.8	45.8	45.2	44.4 62.1	43.0	40.9	33.0
	1 00	1	0.30	5.0	19	4.8	4.7	4.7	1.6	3.8
	0.50	2	0.25	10.4	10.0	9.7	95	9.4	4.0 8 9	7.1
	0.33	3	0.25	13.5	13.0	12.9	12.7	12.4	12.0	97
	0.25	4	0.25	17.7	17.2	16.7	16.7	16.2	15.4	12.3
0.02	0.17	6	0.25	28.0	27.1	26.7	26.0	25.7	24.4	19.8
	0.12	8	0.25	36.7	35.3	34.5	34.3	33.3	31.6	25.4
	0.08	12	0.25	50.6	49.1	48.1	47.6	46.2	44.0	35.5
	0.05	20	0.25	71.7	70.2	69.0	68.6	67.0	64.6	54.4
	1.00	1	0.13	5.1	4.9	4.7	4.6	4.4	4.1	3.0
	0.50	2	0.13	10.6	9.9	9.6	9.4	9.1	8.4	7.0
	0.33	3	0.13	14.0	13.4	13.0	12.6	12.4	11.5	9.0
0.05	0.25	4	0.13	19.9	19.2	18.9	18.7	18.1	17.6	13.9
0.05	0.17	6	0.13	29.8	28.3	27.8	27.0	26.5	24.7	20.3
	0.12	8	0.13	40.4	38.3	37.5	37.1	36.1	34.3	27.0
	0.08	12	0.13	56.4	54.2	53.1	52.2	51.2	48.2	39.1
	0.05	20	0.13	76.9	74.8	73.9	73.1	71.7	68.9	56.9
	1.00	1	0.063	4.9	4.6	4.4	4.1	4.1	3.9	3.1
	0.50	2	0.063	10.3	9.6	9.3	9.0	8.6	8.1	6.4
	0.33	3	0.063	14.7	13.7	13.0	12.4	12.2	11.5	8.4
0.10	0.25	4	0.063	19.2	17.9	17.3	16.6	15.8	14.6	10.5
	0.17	6	0.063	28.9	26.6	25.7	25.0	24.0	22.7	17.2
	0.12	8	0.063	37.5	34.7	33.2	32.4	31.2	29.2	22.7
	0.08	12	0.063	54.5	50.4	48.9	47.1	45.6	42.7	32.5
	1.00	20	0.003	2.9	2.5	2.4	2.2	2.0	2.7	47.9
	0.50	2	0.015	7.8	6.8	6.3	6.0	5.6	5.2	3.8
	0.33	3	0.015	12.2	10.4	10.0	9.0	89	79	5.0
	0.25	4	0.015	15.5	13.2	12.4	11.8	11.0	9.6	6.0
0.20	0.17	6	0.015	22.0	19.0	17.8	16.6	15.8	14.3	9.7
	0.12	8	0.015	29.2	24.8	23.4	22.2	21.2	18.6	12.6
	0.08	12	0.015	44.0	38.2	36.2	34.8	33.0	29.4	18.6
	0.05	20	0.015	62.3	55.6	53.0	50.9	48.6	43.4	29.9
-	1.00	1	0.015	2.1	1.8	1.7	1.5	1.4	1.0	0.7
	0.50	2	0.015	4.6	3.8	3.2	2.9	2.7	2.2	1.4
	0.33	3	0.015	6.8	5.4	4.9	4.4	4.0	3.1	1.8
0 50	0.25	4	0.015	8.9	7.8	7.3	6.5	6.0	4.3	1.7
0.50	0.17	6	0.015	12.0	10.0	8.9	8.0	7.3	5.6	3.4
	0.12	8	0.015	16.6	13.9	12.5	11.8	10.6	8.4	4.6
	0.08	12	0.015	25.4	22.1	20.5	19.2	17.5	13.5	6.0
	0.05	20	0.015	34.7	30.6	28.9	26.8	24.6	19.3	9.9

Table B.3 Detection probability in case of $\sigma_{\ln K}^2 = 2.0$, for different sampling frequencies

Table B.4: Detection probability, average detection time, contaminated area in case of detection failure and relative contaminated area to
control area L for various RADTi in case of $\sigma_{\ln K}^2 = 0.0$ assuming daily (ED) and monthly (1M) sampling frequencies

	σ^{2}_{lnK}										0.00									
α ₁ (m)	wou	nfds(max)	P _d (ED)	<t(der.)> (DAYS)</t(der.)>	area on failure	(AREA ON DET.)/L	(3M. RADTi)/L	(6M. RADTi)/L	(12M. RADTi)/L	(24M. RADTi/L)	(36M. RADTi)/L	P _d (1M)	<t(der.)> (DAYS)</t(der.)>	area on failure	(AREA ON DET.)/L	(3M. RADTi)/L	(6M. RADTi)/L	(12M. RADTi)/L	(24M. RADTi/L)	(36M. RADTi)/L
	1	3.00	4.2	9495	0.03	0.02	0.02	0.03	0.03	0.03	0.02	4.2	9513	0.03	0.02	0.02	0.03	0.03	0.03	0.02
	2	3.00	8.5	9529	0.03	0.03	0.03	0.03	0.03	0.03	0.02	8.2	9542	0.03	0.03	0.03	0.03	0.03	0.03	0.02
	3	3.00	13.3	9524	0.03	0.02	0.03	0.03	0.03	0.03	0.02	13.2	9540	0.03	0.03	0.03	0.03	0.03	0.03	0.02
0.001	4	3.00	25.3	9502	0.03	0.03	0.03	0.05	0.05	0.03	0.02	24.8	9578	0.05	0.03	0.05	0.03	0.03	0.03	0.02
	8	3.00	33.0	9520	0.03	0.03	0.03	0.03	0.03	0.03	0.02	32.6	9534	0.03	0.03	0.03	0.03	0.03	0.03	0.02
	12	3.00	49.1	9524	0.03	0.03	0.03	0.03	0.03	0.03	0.02	48.8	9538	0.03	0.03	0.03	0.03	0.03	0.03	0.02
	20	3.00	82.7	9524	0.03	0.03	0.03	0.03	0.03	0.03	0.02	81.8	9539	0.03	0.03	0.03	0.03	0.03	0.03	0.02
	1	2.25	6.0	7173	0.18	0.13	0.13	0.13	0.13	0.14	0.14	5.7	7187	0.18	0.13	0.13	0.13	0.13	0.14	0.14
	2	2.25	12.0	7196	0.18	0.13	0.13	0.13	0.13	0.14	0.14	11.6	7214	0.18	0.13	0.13	0.13	0.13	0.14	0.14
	4	2.25	23.9	7222	0.18	0.13	0.13	0.13	0.13	0.14	0.14	23.3	7238	0.18	0.13	0.13	0.13	0.13	0.14	0.14
0.01	6	2.25	35.4	7201	0.18	0.13	0.13	0.13	0.13	0.14	0.14	34.3	7218	0.18	0.13	0.13	0.13	0.13	0.14	0.14
	8	2.25	47.2	7196	0.18	0.13	0.13	0.13	0.13	0.14	0.14	45.5	7211	0.18	0.13	0.13	0.13	0.13	0.14	0.14
	12	2.25	70.5	7193	0.18	0.13	0.13	0.13	0.13	0.14	0.14	68.5	7209	0.18	0.13	0.13	0.13	0.13	0.14	0.14
· <u> </u>	20	2.25	99.6	7176	0.18	0.13	0.13	0.13	0.13	0.14	0.14	99.5	7195	0.18	0.13	0.13	0.13	0.13	0.14	0.14
	1	1.50	5.8 11 7	4929	0.31	0.16	0.17	0.17	0.17	0.18	0.19	5.6 11 1	4940 1959	0.31	0.16	0.17	0.17	0.17	0.18	0.19
	3	1.50	18.2	4942	0.31	0.10	0.17	0.17	0.17	0.18	0.19	17.5	4962	0.31	0.10	0.17	0.17	0.17	0.18	0.19
0.02	4	1.50	23.5	4969	0.31	0.16	0.17	0.17	0.17	0.18	0.19	22.2	4988	0.31	0.16	0.17	0.17	0.17	0.18	0.19
0.02	6	1.50	34.6	4948	0.31	0.16	0.17	0.17	0.17	0.18	0.19	32.9	4965	0.31	0.16	0.17	0.17	0.17	0.18	0.19
	8	1.50	46.3	4941	0.31	0.16	0.17	0.17	0.17	0.18	0.19	43.9	4961	0.31	0.16	0.17	0.17	0.17	0.18	0.19
	12	1.50	69.0	4939	0.31	0.16	0.17	0.17	0.17	0.18	0.19	65.6	4955	0.31	0.16	0.17	0.17	0.17	0.18	0.19
	20	0.50	5.8	1898	0.63	0.16	0.17	0.17	0.17	0.18	0.19	5.5	1909	0.63	0.16	0.17	0.17	0.17	0.18	0.19
	2	0.50	11.6	1919	0.63	0.16	0.17	0.17	0.18	0.21	0.23	10.8	1937	0.63	0.16	0.17	0.17	0.18	0.21	0.23
	3	0.50	18.2	1929	0.63	0.16	0.17	0.17	0.18	0.21	0.23	17.3	1943	0.63	0.16	0.17	0.17	0.19	0.21	0.23
0.05	4	0.50	23.5	1959	0.63	0.16	0.17	0.17	0.19	0.21	0.23	22.3	1975	0.63	0.16	0.17	0.18	0.19	0.21	0.23
0.05	6	0.50	34.1	1929	0.63	0.16	0.17	0.17	0.18	0.21	0.23	31.9	1943	0.63	0.16	0.17	0.17	0.19	0.21	0.23
	8 12	0.50	45.8	1924	0.63	0.16	0.17	0.17	0.18	0.21	0.23	43.2	1941	0.63	0.16	0.17	0.17	0.19	0.21	0.23
	20	0.50	99.0 99.4	1923	0.63	0.16	0.17	0.17	0.18	0.21	0.23	98.9	1941	0.63	0.16	0.17	0.17	0.19	0.21	0.23
	1	0.125	5.7	739	1.06	0.13	0.14	0.15	0.18	0.22	0.27	5.3	760	1.06	0.13	0.14	0.16	0.18	0.23	0.27
	2	0.125	11.3	778	1.06	0.13	0.15	0.16	0.18	0.23	0.27	10.4	786	1.06	0.13	0.15	0.16	0.18	0.23	0.27
	3	0.125	18.1	772	1.06	0.13	0.14	0.16	0.18	0.23	0.27	16.9	781	1.06	0.13	0.15	0.16	0.18	0.23	0.27
0.10	4	0.125	23.2	803	1.06	0.14	0.15	0.16	0.19	0.23	0.28	21.7	813	1.06	0.14	0.15	0.16	0.19	0.23	0.28
	6 8	0.125	33.9 45.8	784 776	1.06	0.13	0.15	0.16	0.18	0.23	0.27	31.8 42.6	793 787	1.06	0.13	0.15	0.16	0.18	0.23	0.28
	12	0.125	67.9	772	1.06	0.13	0.14	0.16	0.18	0.23	0.27	63.7	784	1.00	0.13	0.15	0.16	0.18	0.23	0.27
	20	0.125	99.1	772	1.06	0.13	0.14	0.16	0.18	0.23	0.27	97.3	788	1.06	0.13	0.15	0.16	0.18	0.23	0.27
	1	0.030	4.7	374	1.70	0.13	0.15	0.18	0.22	0.31	0.39	4.1	356	1.70	0.12	0.15	0.17	0.22	0.31	0.39
	2	0.030	8.4	356	1.70	0.12	0.15	0.17	0.22	0.31	0.39	7.4	331	1.70	0.11	0.14	0.17	0.21	0.30	0.38
	3	0.030	14.3	378 111	1.70	0.13	0.15	0.18	0.23	0.31	0.39	12.3	353	1.70	0.12	0.15	0.17	0.22	0.31	0.39
0.20	4	0.030	26.1	386	1.70	0.14	0.15	0.19	0.23	0.32	0.40	22.5	355	1.70	0.13	0.15	0.18	0.25	0.31	0.39
	8	0.030	36.1	394	1.70	0.13	0.16	0.18	0.23	0.32	0.39	30.7	362	1.70	0.12	0.15	0.17	0.22	0.31	0.39
	12	0.030	53.9	385	1.70	0.13	0.15	0.18	0.23	0.31	0.39	46.0	352	1.70	0.12	0.15	0.17	0.22	0.31	0.39
<u> </u>	20	0.030	80.8	394	1.71	0.13	0.16	0.18	0.23	0.32	0.39	70.9	355	1.71	0.12	0.15	0.17	0.22	0.31	0.39
	1	0.015	2.4	93	2.94	0.08	0.15	0.21	0.32	0.51	0.68	2.2	104	2.94	0.09	0.16	0.22	0.33	0.52	0.68
	2	0.015	4.9 7 2	96 104	2.94 2 01	0.08	0.15	0.21	0.32	0.51	0.68	4.1 6 2	94 102	2.94 2 01	0.09	0.15	0.21	0.32	0.51	0.68
	4	0.015	7.5 8.6	107	2.94	0.09	0.16	0.22	0.33	0.51	0.68	7.2	104	2.94	0.09	0.16	0.22	0.33	0.51	0.68
0.50	6	0.015	13.7	97	2.95	0.09	0.15	0.21	0.32	0.51	0.68	11.5	94	2.95	0.09	0.15	0.21	0.32	0.51	0.68
	8	0.015	18.2	107	2.96	0.09	0.16	0.22	0.33	0.52	0.68	15.1	99	2.95	0.09	0.16	0.22	0.32	0.51	0.68
	12	0.015	27.6	98	2.97	0.09	0.15	0.21	0.32	0.51	0.68	23.9	100	2.96	0.09	0.16	0.22	0.33	0.51	0.68
	20	0.015	40.5	94	2.99	0.08	0.15	0.21	0.32	0.51	0.67	36.7	98	2.98	0.09	0.16	0.21	0.32	0.51	0.68

Table B.5: Detection probability, average detection time, contaminated area in case of detection failure and relative contaminated area to control area *L* for various RADTi in case of $\sigma_{\ln K}^2 = 0.0$ assuming bimonthly (2M) and quarterly (3M) sampling frequencies

	σ^{2}_{lnK}										0.00									
α ₁ (m)	wou	nfds(max)	P _d (2M)	<t(det.)> (DAYS)</t(det.)>	AREA ON FAILURE	(AREA ON DET.)/L	(3M. RADTi)/L	(6M. RADTi)/L	(12M. RADTi)/L	(24M. RADTi/L)	(36M. RADTi)/L	P _d (3M)	<t(det.)> (DAYS)</t(det.)>	AREA ON FAILURE	(AREA ON DET.)/L	(3M. RADTi)/L	(6M. RADTi)/L	(12M. RADTi)/L	(24M. RADTi/L)	(36M. RADTi)/L
	1	3.00	4.2	9528	0.03	0.02	0.02	0.03	0.03	0.03	0.02	4.2	9544	0.03	0.02	0.02	0.03	0.03	0.03	0.02
	2	3.00	8.2	9558	0.03	0.03	0.03	0.03	0.03	0.03	0.02	8.0	9572	0.03	0.03	0.03	0.03	0.03	0.03	0.02
	3	3.00	13.1	9555	0.03	0.03	0.03	0.03	0.03	0.03	0.02	13.1	9573	0.03	0.03	0.03	0.03	0.03	0.03	0.02
0.001	4	3.00	16.5	9596	0.03	0.03	0.03	0.03	0.03	0.03	0.02	16.4	9610	0.03	0.03	0.03	0.03	0.03	0.03	0.02
	8	3.00	24.0	9554 95 <u>4</u> 9	0.05	0.05	0.05	0.05	0.05	0.05	0.02	24.5	9571	0.05	0.05	0.05	0.05	0.05	0.05	0.02
	12	3.00	48.4	9553	0.03	0.03	0.03	0.03	0.03	0.03	0.02	48.0	9568	0.03	0.03	0.03	0.03	0.03	0.03	0.02
	20	3.00	81.0	9554	0.03	0.03	0.03	0.03	0.03	0.03	0.02	80.4	9568	0.03	0.03	0.03	0.03	0.03	0.03	0.02
	1	2.25	5.6	7200	0.18	0.13	0.13	0.13	0.13	0.14	0.14	5.5	7204	0.18	0.13	0.13	0.13	0.13	0.14	0.14
	2	2.25	11.3	7227	0.18	0.13	0.13	0.13	0.13	0.14	0.14	11.3	7243	0.18	0.13	0.13	0.13	0.13	0.14	0.14
	3	2.25	17.8	7225	0.18	0.13	0.13	0.13	0.13	0.14	0.14	17.5	7240	0.18	0.13	0.13	0.13	0.13	0.14	0.14
0.01	4	2.25	23.0	7252	0.18	0.13	0.13	0.13	0.13	0.14	0.14	22.8	7268	0.18	0.13	0.13	0.13	0.13	0.14	0.14
	8	2.25	44.8	7231	0.18	0.13	0.13	0.13	0.13	0.14	0.14	44.2	7240	0.18	0.13	0.13	0.13	0.13	0.14	0.14
	12	2.25	67.4	7221	0.18	0.13	0.13	0.13	0.13	0.14	0.14	66.7	7234	0.18	0.13	0.13	0.13	0.13	0.14	0.14
	20	2.25	99.4	7210	0.18	0.13	0.13	0.13	0.13	0.14	0.14	99.4	7225	0.18	0.13	0.13	0.13	0.13	0.14	0.14
	1	1.50	5.5	4953	0.31	0.16	0.17	0.17	0.17	0.18	0.19	5.4	4975	0.31	0.16	0.17	0.17	0.17	0.18	0.19
	2	1.50	10.7	4974	0.31	0.16	0.17	0.17	0.17	0.18	0.19	10.4	4983	0.31	0.17	0.17	0.17	0.17	0.18	0.19
	3	1.50	17.0	4973	0.31	0.16	0.17	0.17	0.17	0.18	0.19	16.7	4989	0.31	0.16	0.17	0.17	0.17	0.18	0.19
0.02	4	1.50	21.9	2000 2977	0.31	0.17	0.17	0.17	0.17	0.18	0.19	21.5	2010 1987	0.31	0.17	0.17	0.17	0.18	0.18	0.19
	8	1.50	43.0	4974	0.31	0.10	0.17	0.17	0.17	0.18	0.19	42.1	4983	0.31	0.17	0.17	0.17	0.17	0.18	0.19
	12	1.50	64.5	4968	0.31	0.16	0.17	0.17	0.17	0.18	0.19	63.2	4979	0.31	0.16	0.17	0.17	0.17	0.18	0.19
	20	1.50	99.0	4970	0.31	0.16	0.17	0.17	0.17	0.18	0.19	98.7	4985	0.31	0.16	0.17	0.17	0.17	0.18	0.19
	1	0.50	5.2	1919	0.63	0.16	0.17	0.17	0.18	0.21	0.23	5.3	1929	0.63	0.16	0.17	0.17	0.18	0.21	0.23
	2	0.50	10.4	1948	0.63	0.16	0.17	0.17	0.19	0.21	0.23	10.4	1959	0.63	0.16	0.17	0.17	0.19	0.21	0.23
	3	0.50	16./	1957	0.63	0.16	0.17	0.17	0.19	0.21	0.23	16.3	1957	0.63	0.16	0.17	0.17	0.19	0.21	0.23
0.05	- - 6	0.50	31.0	1979	0.63	0.10	0.17	0.18	0.19	0.21	0.23	30.6	1969	0.63	0.17	0.17	0.18	0.19	0.21	0.24
	8	0.50	42.2	1954	0.63	0.16	0.17	0.17	0.19	0.21	0.23	41.3	1965	0.63	0.16	0.17	0.17	0.19	0.21	0.23
	12	0.50	63.0	1949	0.63	0.16	0.17	0.17	0.19	0.21	0.23	61.9	1963	0.63	0.16	0.17	0.17	0.19	0.21	0.23
	20	0.50	98.1	1959	0.64	0.16	0.17	0.17	0.19	0.21	0.23	97.4	1971	0.64	0.16	0.17	0.17	0.19	0.21	0.23
	1	0.125	5.1	771	1.06	0.13	0.14	0.16	0.18	0.23	0.27	4.9	768	1.06	0.13	0.14	0.16	0.18	0.23	0.27
	2	0.125	10.1	792	1.06	0.13	0.15	0.16	0.18	0.23	0.27	9.8	798	1.06	0.14	0.15	0.16	0.19	0.23	0.28
	3 4	0.125	21.1	822	1.00	0.13	0.15	0.10	0.18	0.23	0.27	20.8	831	1.00	0.13	0.15	0.10	0.18	0.23	0.28
0.10	6	0.125	30.9	801	1.06	0.14	0.15	0.16	0.19	0.23	0.28	30.0	810	1.06	0.14	0.15	0.16	0.19	0.23	0.28
	8	0.125	41.4	797	1.06	0.14	0.15	0.16	0.19	0.23	0.28	40.7	803	1.06	0.14	0.15	0.16	0.19	0.23	0.28
	12	0.125	62.0	793	1.06	0.13	0.15	0.16	0.18	0.23	0.28	60.5	802	1.06	0.14	0.15	0.16	0.19	0.23	0.28
. <u></u>	20	0.125	96.0	797	1.06	0.14	0.15	0.16	0.19	0.23	0.28	95.1	808	1.06	0.14	0.15	0.16	0.19	0.23	0.28
	1	0.030	3.8	352	1.70	0.12	0.15	0.17	0.22	0.31	0.39	3.6 6.7	360	1.70	0.12	0.15	0.17	0.22	0.31	0.39
	2	0.030	11.6	320	1.70	0.11	0.14	0.10	0.21	0.50	0.56	10.7	320 348	1.70	0.11	0.14	0.17	0.21	0.50	0.56
	4	0.030	14.4	375	1.70	0.13	0.15	0.18	0.22	0.31	0.39	13.7	373	1.70	0.13	0.15	0.18	0.22	0.31	0.39
0.20	6	0.030	21.2	348	1.70	0.12	0.14	0.17	0.22	0.31	0.39	20.5	355	1.70	0.12	0.15	0.17	0.22	0.31	0.39
	8	0.030	29.1	360	1.70	0.12	0.15	0.17	0.22	0.31	0.39	27.9	359	1.70	0.12	0.15	0.17	0.22	0.31	0.39
	12	0.030	44.3	355	1.70	0.12	0.15	0.17	0.22	0.31	0.39	42.1	353	1.70	0.12	0.15	0.17	0.22	0.31	0.39
<u> </u>	20	0.030	68.2	354	1.71	0.12	0.15	0.17	0.22	0.31	0.39	65.9	357	1.70	0.12	0.15	0.17	0.22	0.31	0.39
	1 2	0.015	з 0 1.9	107 110	2.94 2 01	0.10	0.16	0.22	0.33	0.52	0.68	1.9 2 7	124 124	2.94 2 01	0.11	0.17	0.23	0.34	0.52	0.69
	3	0.015	5.8 5.8	111	2.94 2.94	0.10	0.16	0.22	0.33	0.52	0.68	5.7 5.6	124 124	2.94 2.94	0.11	0.17	0.23	0.34	0.52	0.69
0.50	4	0.015	6.8	109	2.94	0.10	0.16	0.22	0.33	0.52	0.68	6.7	129	2.94	0.11	0.18	0.23	0.34	0.53	0.69
0.50	6	0.015	11.1	110	2.95	0.10	0.16	0.22	0.33	0.52	0.68	10.7	124	2.95	0.11	0.17	0.23	0.34	0.52	0.69
	8	0.015	14.4	111	2.95	0.10	0.16	0.22	0.33	0.52	0.68	13.7	124	2.95	0.11	0.17	0.23	0.34	0.52	0.69
	12	0.015	22.5	109	2.96	0.10	0.16	0.22	0.33	0.52	0.68	22.2	127	2.96	0.11	0.18	0.23	0.34	0.53	0.69
	20	0.015	35.0	109	2.98	0.10	0.16	0.22	0.33	0.52	0.68	34.2	126	2.98	0.11	0.17	0.23	0.34	0.53	0.69

Table B.6: Detection probability, average detection time, contaminated area in case of detection failure and relative contaminated area to control area *L* for various RADTi in case of $\sigma_{\ln K}^2 = 0.0$ assuming every 4 months (4M) and biannually (6M) sampling frequencies

	σ² _{InK}										0.00									
יד(m)	MO	fds(max)	d (4M)	T _(DET.) > (DAYS)	REA ON FAILURE	AREA ON DET.)/L	3M. RADTi)/L	6M. RADTi)/L	12M. RADTi)/L	24M. RADTi/L)	36M. RADTi)/L	d (6M)	T _(DET.) > (DAYS)	REA ON FAILURE	AREA ON DET.)/L	3M. RADTi)/L	6M. RADTi)/L	12M. RADTi)/L	24M. RADTi/L)	36M. RADTi)/L
8	<u> </u>	3 00	<u> </u>	<u>v</u> 9562	0.03	0.02	0.03	0.03	0.03	0.03	0.02	<u> </u>	<u>v</u> 9573	0.03	0.02	0.03	0.03	0.03	0.02	0.02
	2	3.00	7.9	9578	0.03	0.02	0.03	0.03	0.03	0.03	0.02	7.6	9595	0.03	0.02	0.03	0.03	0.03	0.02	0.02
	3	3.00	12.8	9588	0.03	0.03	0.03	0.03	0.03	0.03	0.02	12.4	9615	0.03	0.03	0.03	0.03	0.03	0.02	0.02
0.004	4	3.00	16.1	9628	0.03	0.03	0.03	0.03	0.03	0.03	0.02	16.0	9654	0.03	0.03	0.03	0.03	0.03	0.03	0.02
0.001	6	3.00	24.0	9579	0.03	0.03	0.03	0.03	0.03	0.03	0.02	23.3	9604	0.03	0.03	0.03	0.03	0.03	0.03	0.02
	8	3.00	31.8	9576	0.03	0.03	0.03	0.03	0.03	0.03	0.02	31.5	9602	0.03	0.03	0.03	0.03	0.03	0.03	0.02
	12	3.00	47.4	9582	0.03	0.03	0.03	0.03	0.03	0.03	0.02	46.6	9610	0.03	0.03	0.03	0.03	0.03	0.03	0.02
	20	3.00	79.6	9582	0.03	0.03	0.03	0.03	0.03	0.03	0.02	77.8	9609	0.03	0.03	0.03	0.03	0.03	0.03	0.02
	1	2.25	5.4	7222	0.18	0.13	0.13	0.13	0.13	0.14	0.14	5.4	7240	0.18	0.13	0.13	0.13	0.13	0.14	0.14
	2	2.25	10.8	7247	0.18	0.13	0.13	0.13	0.13	0.14	0.14	10.8	7277	0.18	0.13	0.13	0.13	0.13	0.14	0.14
	3	2.25	17.1	7251	0.18	0.13	0.13	0.13	0.13	0.14	0.14	16.9	7277	0.18	0.13	0.13	0.13	0.13	0.14	0.14
0.01	4	2.25	22.5	7279	0.18	0.13	0.13	0.13	0.13	0.14	0.14	22.1	/306	0.18	0.13	0.13	0.13	0.13	0.14	0.14
	0 8	2.25	52.7 13 3	7255	0.10	0.13	0.13	0.15	0.13	0.14	0.14	52.5 17.8	7204	0.10	0.13	0.13	0.13	0.13	0.14	0.14
	12	2.25	43.3 65.8	7245	0.18	0.13	0.13	0.13	0.13	0.14	0.14	42.0 64.8	7274	0.18	0.13	0.13	0.13	0.13	0.14	0.14
	20	2.25	99.3	7240	0.18	0.13	0.13	0.13	0.13	0.14	0.14	99.3	7271	0.18	0.13	0.13	0.13	0.13	0.14	0.14
	1	1.50	5.3	4974	0.31	0.16	0.17	0.17	0.17	0.18	0.19	5.2	5008	0.31	0.17	0.17	0.17	0.18	0.18	0.19
	2	1.50	10.3	4996	0.31	0.17	0.17	0.17	0.17	0.18	0.19	10.0	5025	0.31	0.17	0.17	0.17	0.18	0.19	0.19
	3	1.50	16.3	4998	0.31	0.17	0.17	0.17	0.18	0.18	0.19	15.9	5026	0.31	0.17	0.17	0.17	0.18	0.19	0.19
0.02	4	1.50	21.2	5024	0.31	0.17	0.17	0.17	0.18	0.18	0.19	20.8	5049	0.31	0.17	0.17	0.17	0.18	0.19	0.20
0.02	6	1.50	31.0	5002	0.31	0.17	0.17	0.17	0.18	0.18	0.19	30.2	5029	0.31	0.17	0.17	0.17	0.18	0.19	0.19
	8	1.50	41.5	4998	0.31	0.17	0.17	0.17	0.17	0.18	0.19	40.2	5023	0.31	0.17	0.17	0.17	0.18	0.19	0.19
	12	1.50	62.4	4992	0.31	0.17	0.17	0.17	0.17	0.18	0.19	60.3	5016	0.31	0.17	0.17	0.17	0.18	0.18	0.19
	20	1.50	98.5 5 1	1027	0.31	0.17	0.17	0.17	0.17	0.18	0.19	97.1	1071	0.31	0.17	0.17	0.17	0.18	0.19	0.19
	2	0.50	10.2	1974	0.03	0.10	0.17	0.17	0.18	0.21	0.23	97	1991	0.03	0.10	0.17	0.17	0.19	0.21	0.23
	3	0.50	16.3	1978	0.63	0.16	0.17	0.18	0.19	0.21	0.23	15.6	1997	0.63	0.16	0.17	0.18	0.19	0.21	0.23
	4	0.50	20.8	2004	0.63	0.17	0.17	0.18	0.19	0.21	0.24	20.0	2033	0.63	0.17	0.17	0.18	0.19	0.21	0.24
0.05	6	0.50	30.2	1981	0.63	0.16	0.17	0.18	0.19	0.21	0.23	29.0	2002	0.63	0.16	0.17	0.18	0.19	0.21	0.24
	8	0.50	40.5	1975	0.63	0.16	0.17	0.18	0.19	0.21	0.23	39.4	1998	0.63	0.16	0.17	0.18	0.19	0.21	0.23
	12	0.50	60.7	1971	0.63	0.16	0.17	0.17	0.19	0.21	0.23	59.0	1998	0.63	0.16	0.17	0.18	0.19	0.21	0.23
	20	0.50	96.5	1981	0.63	0.16	0.17	0.18	0.19	0.21	0.23	94.9	2004	0.63	0.17	0.17	0.18	0.19	0.21	0.24
	1	0.125	5.0	790	1.06	0.13	0.15	0.16	0.18	0.23	0.27	4.7	799	1.06	0.14	0.15	0.16	0.19	0.23	0.28
	2	0.125	9.7	815 912	1.06	0.14	0.15	0.16	0.19	0.23	0.28	9.5 15 2	828	1.06	0.14	0.15	0.16	0.19	0.24	0.28
	4	0.125	20.4	836	1.00	0.14	0.15	0.10	0.19	0.23	0.28	19.5	862	1.00	0.14	0.15	0.17	0.19	0.24	0.28
0.10	6	0.125	29.5	818	1.06	0.14	0.15	0.16	0.19	0.23	0.28	28.6	840	1.06	0.14	0.15	0.17	0.19	0.24	0.28
	8	0.125	39.9	815	1.06	0.14	0.15	0.16	0.19	0.23	0.28	38.8	834	1.06	0.14	0.15	0.17	0.19	0.24	0.28
	12	0.125	59.8	808	1.06	0.14	0.15	0.16	0.19	0.23	0.28	57.5	832	1.06	0.14	0.15	0.17	0.19	0.24	0.28
	20	0.125	93.9	816	1.06	0.14	0.15	0.16	0.19	0.23	0.28	92.3	837	1.06	0.14	0.15	0.17	0.19	0.24	0.28
	1	0.030	3.6	361	1.70	0.12	0.15	0.17	0.22	0.31	0.39	3.3	378	1.70	0.13	0.15	0.18	0.23	0.31	0.39
	2	0.030	6.5	334	1.70	0.12	0.14	0.17	0.21	0.30	0.38	6.3	368	1.70	0.13	0.15	0.18	0.22	0.31	0.39
	3	0.030	11.0	366	1.70	0.12	0.15	0.18	0.22	0.31	0.39	10.1	3//	1.70	0.13	0.15	0.18	0.23	0.31	0.39
0.20	4	0.030	13.6	383	1.70	0.13	0.15	0.18	0.23	0.31	0.39	12.5	390	1.70	0.13	0.16	0.18	0.23	0.32	0.39
	8	0.030	27.5	345	1.70	0.12	0.15	0.17	0.22	0.31	0.35	26.1	385	1.70	0.13	0.10	0.18	0.23	0.31	0.35
	12	0.030	42.0	370	1.70	0.13	0.15	0.18	0.22	0.31	0.39	39.1	376	1.70	0.13	0.15	0.18	0.23	0.31	0.39
	20	0.030	64.8	366	1.70	0.12	0.15	0.17	0.22	0.31	0.39	62.1	383	1.70	0.13	0.16	0.18	0.23	0.31	0.39
	1	0.015	1.9	141	2.94	0.12	0.19	0.24	0.35	0.53	0.69	1.7	180	2.94	0.15	0.21	0.27	0.37	0.55	0.71
	2	0.015	3.7	145	2.94	0.13	0.19	0.24	0.35	0.53	0.70	3.4	188	2.94	0.16	0.22	0.27	0.37	0.56	0.72
	3	0.015	5.5	143	2.94	0.13	0.19	0.24	0.35	0.53	0.70	5.0	182	2.94	0.15	0.21	0.27	0.37	0.55	0.71
0.50	4	0.015	6.5	142	2.94	0.12	0.19	0.24	0.35	0.53	0.70	6.0	185	2.94	0.15	0.21	0.27	0.37	0.55	0.71
	6	0.015	10.5	146	2.95	0.13	0.19	0.24	0.35	0.54	0.70	9.8	186	2.95	0.16	0.21	0.27	0.37	0.55	0.72
	8	0.015	13.5	145	2.95	0.13	0.19	0.24	0.35	0.53	0.70	12.5	186	2.95	0.16	0.21	0.27	0.37	0.55	0.71
	12	0.015	21.3	142	2.96	0.12	0.19	0.24	0.35	0.53	0.70	19.8	185	2.96	0.16	0.21	0.27	0.37	0.55	0.71
	20	0.015	53.4	145	2.98	0.13	0.19	U.24	0.35	0.53	U./U	31.0	184	2.97	0.15	0.21	0.27	0.37	0.55	U./1

	σ^{2}_{lnK}					0.0	0				
(m)	M	ds(max)	(12M)	(рет.)> (DAYS)	REA ON FAILURE	REA ON DET.)/L	M. RADTi)/L	M. RADTi)/L	2M. RADTi)/L	4M. RADTi/L)	6M. RADTi)/L
Ğ	DC 1		P	<u> </u>	AF	<u>A</u>	(3)	(61	<u>E</u>	5	<u>.</u>
	1	3.00	3.0	9636	0.03	0.03	0.03	0.03	0.03	0.03	0.02
	2	3.00	6.1 10.1	9640	0.03	0.03	0.03	0.03	0.03	0.03	0.02
	4	3.00	12.4	9708	0.03	0.03	0.03	0.03	0.03	0.03	0.02
0.001	6	3.00	18.3	9649	0.03	0.03	0.03	0.03	0.03	0.03	0.02
	8	3.00	24.4	9643	0.03	0.03	0.03	0.03	0.03	0.03	0.02
	12	3.00	36.3	9668	0.03	0.03	0.03	0.03	0.03	0.03	0.02
	20	3.00	61.0	9654	0.03	0.03	0.03	0.03	0.03	0.03	0.02
	1	2.25	4.9	7344	0.18	0.13	0.13	0.13	0.13	0.14	0.14
	2	2.25	15.9	7367	0.18	0.15	0.15	0.15	0.15	0.14	0.14
	4	2.25	20.4	7392	0.18	0.13	0.13	0.13	0.13	0.14	0.14
0.01	6	2.25	29.8	7367	0.18	0.13	0.13	0.13	0.13	0.14	0.14
	8	2.25	39.9	7366	0.18	0.13	0.13	0.13	0.13	0.14	0.14
	12	2.25	59.5	7354	0.18	0.13	0.13	0.13	0.13	0.14	0.14
	20	2.25	95.1	7360	0.18	0.13	0.13	0.13	0.13	0.14	0.14
	2	1.50	4.5 8.8	5055	0.31	0.17	0.17	0.17	0.18	0.19	0.20
	3	1.50	14.0	5080	0.31	0.17	0.17	0.17	0.18	0.19	0.20
0.02	4	1.50	19.2	5136	0.31	0.17	0.17	0.17	0.18	0.19	0.20
0.02	6	1.50	27.4	5098	0.31	0.17	0.17	0.17	0.18	0.19	0.20
	8	1.50	36.5	5085	0.31	0.17	0.17	0.17	0.18	0.19	0.20
	12	1.50	55.0	5095	0.31	0.17	0.17	0.17	0.18	0.19	0.20
·	20	1.50	89.4	2028	0.31	0.17	0.17	0.17	0.18	0.19	0.20
	2	0.50	4.4 8.2	2028	0.63	0.17	0.17	0.18	0.19	0.21	0.24
	3	0.50	13.9	2047	0.63	0.17	0.17	0.18	0.19	0.22	0.24
0.05	4	0.50	17.6	2079	0.63	0.17	0.18	0.18	0.19	0.22	0.24
0.05	6	0.50	25.3	2047	0.63	0.17	0.17	0.18	0.19	0.22	0.24
	8	0.50	34.7	2048	0.63	0.17	0.17	0.18	0.19	0.22	0.24
	12	0.50	52.3	2042	0.63	0.17	0.17	0.18	0.19	0.21	0.24
	1	0.125	4.4	863	1.06	0.17	0.17	0.18	0.19	0.22	0.24
	2	0.125	8.2	862	1.06	0.14	0.16	0.17	0.19	0.24	0.28
	3	0.125	13.9	886	1.06	0.15	0.16	0.17	0.20	0.24	0.29
0.10	4	0.125	17.2	904	1.06	0.15	0.16	0.18	0.20	0.24	0.29
	6	0.125	25.1	878	1.06	0.15	0.16	0.17	0.20	0.24	0.28
	。 12	0.125	54.1 51.1	875 881	1.06	0.15	0.16	0.17	0.20	0.24	0.28
	20	0.125	83.6	886	1.06	0.15	0.16	0.17	0.20	0.24	0.29
	1	0.030	2.7	492	1.70	0.16	0.19	0.21	0.25	0.34	0.42
	2	0.030	4.8	456	1.70	0.15	0.18	0.20	0.25	0.33	0.41
	3	0.030	8.1	493	1.70	0.16	0.19	0.21	0.25	0.34	0.42
0.20	4	0.030	9.4 11 6	478 ⊿70	1.70 1.70	0.16	0.18	0.21	0.25 0.25	0.33	0.41 0.41
	8	0.030	20.0	475	1.70	0.10	0.18	0.21	0.25	0.34	0.41
	12	0.030	30.2	478	1.70	0.16	0.18	0.21	0.25	0.34	0.41
	20	0.030	47.7	485	1.70	0.16	0.18	0.21	0.25	0.34	0.41
	1	0.015	0.1	365	2.94	0.27	0.32	0.37	0.46	0.64	0.79
	2	0.015	0.3	365	2.94	0.27	0.32	0.37	0.46	0.63	0.79
	5 4	0.015	0.4 0.8	305 365	2.94 2 01	0.27	0.32	0.37	0.47 0.46	0.64 0.63	0.79
0.50	6	0.015	0.8	365	2.94	0.27	0.32	0.37	0.46	0.63	0.79
	8	0.015	1.3	365	2.94	0.27	0.32	0.37	0.46	0.64	0.79
	12	0.015	2.4	365	2.94	0.27	0.32	0.37	0.46	0.63	0.79
	20	0.015	3.1	365	2.94	0.27	0.32	0.37	0.46	0.63	0.79

Table B.7: Detection probability, average detection time, contaminated area in case of detection failure and relative contaminated areato control area L for various RADTi in case of $\sigma_{\ln K}^2 = 0.0$ assuming annually (12M) sampling frequency

Table B.8: Detection probability, average detection time, contaminated area in case of detection failure and relative contaminated area to control area for various RARDTi in case of $\sigma_{\ln K}^2 = 0.5$ assuming daily (ED) and monthly (1M) sampling frequencies

	σ^{2}_{InK}										0.50									
ατ(m)	wou	nfds(max)	P _d (ED)	<t(рет.)> (DAYS)</t(рет.)>	AREA ON FAILURE	(AREA ON DET.)/L	(3M. RADTi)/L	(6M. RADTi)/L	(12M. RADTi)/L	(24M. RADTi/L)	(36M. RADTi)/L	P _d (1M)	<t(рет.)> (DAYS)</t(рет.)>	AREA ON FAILURE	(AREA ON DET.)/L	(3M. RADTi)/L	(6M. RADTi)/L	(12M. RADTi)/L	(24M. RADTi/L)	(36M. RADTi)/L
	1	1.75	4.5	5722	0.06	0.03	0.03	0.03	0.03	0.03	0.03	4.5	5747	0.06	0.03	0.03	0.03	0.03	0.03	0.03
	2	1.75	8.1	5678	0.06	0.03	0.03	0.03	0.03	0.03	0.03	8.1	5693	0.06	0.03	0.03	0.03	0.03	0.03	0.03
	3	1.75	11.5	5674	0.06	0.03	0.03	0.03	0.03	0.03	0.03	11.4	5684	0.06	0.03	0.03	0.03	0.03	0.03	0.03
0.001	4	1.75	14.5	5650	0.06	0.03	0.03	0.03	0.03	0.03	0.03	14.2	5669	0.06	0.03	0.03	0.03	0.03	0.03	0.03
	6	1.75	21.0	5617	0.06	0.03	0.03	0.03	0.03	0.03	0.03	20.7	5629	0.06	0.03	0.03	0.03	0.03	0.03	0.03
	8	1.75	28.1	5649	0.06	0.03	0.03	0.03	0.03	0.03	0.03	27.7 41 F	5661	0.06	0.03	0.03	0.03	0.03	0.03	0.03
	20	1.75	42.0 64.2	5652	0.00	0.03	0.03	0.03	0.05	0.05	0.03	41.5 63.7	5666	0.06	0.05	0.05	0.05	0.05	0.05	0.05
	1	1.50	5.4	4830	0.34	0.13	0.13	0.14	0.14	0.15	0.16	5.2	4838	0.34	0.13	0.13	0.13	0.14	0.15	0.16
	2	1.50	10.9	4990	0.34	0.13	0.14	0.14	0.14	0.15	0.17	10.6	5019	0.34	0.13	0.14	0.14	0.14	0.15	0.17
	3	1.50	15.1	4788	0.34	0.13	0.13	0.14	0.14	0.15	0.16	14.5	4803	0.34	0.13	0.13	0.14	0.14	0.15	0.16
0.01	4	1.50	20.7	4802	0.34	0.13	0.13	0.14	0.14	0.15	0.16	20.2	4822	0.34	0.13	0.13	0.14	0.14	0.15	0.16
0.01	6	1.50	30.7	4937	0.34	0.13	0.14	0.14	0.14	0.15	0.17	29.5	4950	0.34	0.13	0.14	0.14	0.14	0.15	0.17
	8	1.50	41.5	4870	0.34	0.13	0.13	0.14	0.14	0.15	0.16	39.7	4879	0.34	0.13	0.13	0.14	0.14	0.15	0.16
	12	1.50	57.0	4843	0.34	0.13	0.13	0.14	0.14	0.15	0.16	55.5	4853	0.34	0.13	0.13	0.14	0.14	0.15	0.16
	20	1.50	5.0	4869	0.35	0.13	0.13	0.14	0.14	0.15	0.15	5.9	4885	0.35	0.13	0.13	0.14	0.14	0.15	0.15
	2	0.50	11 6	1956	0.57	0.09	0.10	0.10	0.11	0.13	0.13	11 2	1930	0.57	0.09	0.10	0.10	0.11	0.13	0.13
	3	0.50	16.9	2011	0.57	0.09	0.10	0.10	0.11	0.13	0.14	16.6	2021	0.57	0.09	0.10	0.10	0.11	0.13	0.14
	4	0.50	22.1	2022	0.57	0.09	0.10	0.10	0.11	0.13	0.14	21.2	2043	0.57	0.09	0.10	0.10	0.11	0.13	0.14
0.02	6	0.50	33.2	1979	0.57	0.09	0.10	0.10	0.11	0.13	0.14	32.4	1993	0.57	0.09	0.10	0.10	0.11	0.13	0.14
	8	0.50	43.6	2021	0.57	0.09	0.10	0.10	0.11	0.13	0.14	42.0	2037	0.57	0.09	0.10	0.10	0.11	0.13	0.14
	12	0.50	61.9	2030	0.57	0.09	0.10	0.10	0.11	0.13	0.14	60.0	2050	0.57	0.09	0.10	0.10	0.11	0.13	0.14
	20	0.50	84.4	2017	0.58	0.09	0.09	0.10	0.11	0.13	0.14	83.0	2030	0.58	0.09	0.10	0.10	0.11	0.13	0.14
	1	0.50	5.6	1890	1.08	0.19	0.20	0.21	0.23	0.26	0.30	5.0	1879	1.08	0.19	0.20	0.21	0.23	0.26	0.30
	2	0.50	10.8	1891	1.08	0.18	0.19	0.20	0.22	0.25	0.29	9.6 12.6	1910	1.08	0.18	0.19	0.20	0.22	0.25	0.29
	2 2	0.50	19.8	1934	1.09	0.18	0.19	0.20	0.22	0.25	0.29	17.8	1921	1.08	0.19	0.19	0.20	0.22	0.20	0.29
0.05	6	0.50	29.9	1904	1.03	0.18	0.19	0.20	0.22	0.25	0.29	27.0	1910	1.03	0.18	0.19	0.20	0.22	0.25	0.29
	8	0.50	39.1	1934	1.08	0.18	0.19	0.20	0.22	0.26	0.29	35.1	1935	1.08	0.18	0.19	0.20	0.22	0.26	0.29
	12	0.50	55.7	1953	1.09	0.19	0.19	0.20	0.22	0.26	0.29	50.2	1965	1.09	0.18	0.19	0.20	0.22	0.26	0.29
	20	0.50	78.2	1964	1.09	0.18	0.19	0.20	0.22	0.26	0.29	73.4	1971	1.09	0.18	0.19	0.20	0.22	0.26	0.29
	1	0.125	6.4	870	1.68	0.14	0.16	0.17	0.20	0.26	0.32	5.9	881	1.68	0.14	0.16	0.17	0.21	0.27	0.32
	2	0.125	10.3	883	1.68	0.15	0.16	0.18	0.21	0.27	0.33	9.2	870	1.68	0.15	0.16	0.18	0.21	0.27	0.33
	3 1	0.125	20.0	829 020	1.68	0.14	0.16	0.17	0.20	0.26	0.32	14.9	844 916	1.68	0.14	0.16	0.17	0.20	0.26	0.32
0.10	4	0.125	20.0	020 878	1.00	0.14	0.10	0.10	0.21	0.27	0.55	18.0 28.0	831	1.00	0.14	0.10	0.17	0.21	0.20	0.32
	8	0.125	42.2	814	1.68	0.14	0.16	0.17	0.20	0.27	0.33	38.4	806	1.68	0.14	0.16	0.17	0.20	0.26	0.32
	12	0.125	62.2	819	1.67	0.14	0.16	0.17	0.21	0.27	0.33	56.4	813	1.68	0.14	0.16	0.17	0.20	0.26	0.32
	20	0.125	87.0	828	1.72	0.14	0.16	0.17	0.20	0.26	0.32	81.9	821	1.71	0.14	0.16	0.17	0.20	0.26	0.32
	1	0.030	4.8	375	2.45	0.12	0.15	0.18	0.23	0.33	0.43	4.2	373	2.45	0.12	0.15	0.17	0.23	0.33	0.42
	2	0.030	7.9	375	2.45	0.12	0.15	0.18	0.24	0.35	0.45	6.8	338	2.45	0.12	0.15	0.18	0.23	0.34	0.44
	3	0.030	12.9	356	2.46	0.12	0.15	0.18	0.23	0.33	0.43	11.2	339	2.46	0.11	0.14	0.17	0.22	0.33	0.42
0.20	4	0.030	15.3	372	2.45	0.13	0.16	0.19	0.24	0.35	0.45	13.5	355	2.45	0.12	0.15	0.18	0.24	0.34	0.44
	8	0.030	32.5	369	2.45	0.12	0.10	0.18	0.24	0.33	0.45	20.2	358	2.45	0.11	0.15	0.17	0.23	0.34	0.44
	12	0.030	48.3	369	2.46	0.12	0.15	0.18	0.24	0.34	0.44	42.3	349	2.46	0.12	0.15	0.18	0.23	0.34	0.44
	20	0.030	69.6	378	2.47	0.12	0.15	0.18	0.24	0.35	0.45	61.7	349	2.47	0.12	0.15	0.18	0.23	0.34	0.44
	1	0.015	3.0	113	3.63	0.10	0.17	0.24	0.36	0.57	0.76	2.6	111	3.63	0.10	0.17	0.24	0.36	0.57	0.76
	2	0.015	4.5	119	3.63	0.09	0.17	0.23	0.35	0.56	0.76	3.7	113	3.63	0.09	0.16	0.22	0.34	0.56	0.75
	3	0.015	7.8	101	3.64	0.08	0.16	0.22	0.34	0.56	0.75	6.9	107	3.63	0.09	0.16	0.23	0.35	0.55	0.74
0.50	4	0.015	7.8	120	3.63	0.10	0.17	0.24	0.36	0.57	0.76	6.6	120	3.63	0.10	0.17	0.24	0.35	0.56	0.76
	6	0.015	13.5	110	3.64	0.09	0.17	0.23	0.35	0.57	0.77	10.9	104	3.64	0.09	0.16	0.23	0.35	0.56	0.76
	8 17	0.015	18.0 72 E	121	3.64 2.65	0.09	0.17	0.23	0.36	0.5/	0.77	15.1	111	3.64 2.55	0.09	0.17	0.23	0.35	0.5/	0.76
	20	0.015	38.2	104	3.67	0.09	0.16	0.23	0.35	0.57	0.77	34.0	105	3.66	0.09	0.16	0.23	0.35	0.57	0.77

Table B.9: Detection probability, average detection time, contaminated area in case of detection failure and relative contaminated area tocontrol area for various RADTi in case of $\sigma_{\ln K}^2 = 0.5$ assuming bimonthly (2M) and quarterly (3M) sampling frequencies

	σ^{2}_{lnK}										0.50									
ατ(m)	мои	nfds(max)	P _d (2M)	<t(det.)> (DAYS)</t(det.)>	AREA ON FAILURE	(AREA ON DET.)/L	(3M. RADTi)/L	(6M. RADTi)/L	(12M. RADTi)/L	(24M. RADTi/L)	(36M. RADTi)/L	P _d (3M)	<t(det.)> (DAYS)</t(det.)>	AREA ON FAILURE	(AREA ON DET.)/L	(3M. RADTi)/L	(6M. RADTi)/L	(12M. RADTi)/L	(24M. RADTi/L)	(36M. RADTi)/L
	1	1.75	4.4	5749	0.06	0.03	0.03	0.03	0.03	0.03	0.03	4.5	5776	0.06	0.03	0.03	0.03	0.03	0.03	0.03
	2	1.75	8.0	5692	0.06	0.03	0.03	0.03	0.03	0.03	0.03	7.8	5751	0.06	0.03	0.03	0.03	0.03	0.03	0.03
	3	1.75	11.3	5703	0.06	0.03	0.03	0.03	0.03	0.03	0.03	11.3	5720	0.06	0.03	0.03	0.03	0.03	0.03	0.03
0.001	6	1.75	20.6	5639	0.00	0.03	0.03	0.03	0.03	0.03	0.03	20.3	5678	0.00	0.03	0.03	0.03	0.03	0.03	0.03
	8	1.75	27.5	5678	0.06	0.03	0.03	0.03	0.03	0.03	0.03	27.2	5705	0.06	0.03	0.03	0.03	0.03	0.03	0.03
	12	1.75	41.1	5699	0.06	0.03	0.03	0.03	0.03	0.03	0.03	40.8	5723	0.06	0.03	0.03	0.03	0.03	0.03	0.03
	20	1.75	63.2	5677	0.06	0.03	0.03	0.03	0.03	0.03	0.03	62.7	5700	0.06	0.03	0.03	0.03	0.03	0.03	0.03
	1	1.50	5.2	4863	0.34	0.13	0.13	0.14	0.14	0.15	0.16	5.2	4868	0.34	0.13	0.13	0.14	0.14	0.15	0.16
	2	1.50	10.5	5029 4815	0.34	0.13	0.14	0.14	0.14	0.16	0.17	10.3	5041 4821	0.34	0.13	0.14	0.14	0.14	0.16	0.17
	4	1.50	19.9	4812	0.34	0.13	0.13	0.14	0.14	0.15	0.16	19.6	4814	0.34	0.13	0.13	0.14	0.14	0.15	0.16
0.01	6	1.50	29.0	4966	0.34	0.13	0.14	0.14	0.14	0.16	0.17	28.6	4967	0.34	0.13	0.14	0.14	0.14	0.15	0.17
	8	1.50	38.9	4878	0.34	0.13	0.13	0.14	0.14	0.15	0.16	38.3	4897	0.34	0.13	0.13	0.14	0.14	0.15	0.16
	12	1.50	54.5	4863	0.34	0.13	0.13	0.14	0.14	0.15	0.16	53.5	4857	0.34	0.13	0.13	0.14	0.14	0.15	0.16
	20	1.50	75.0	4890	0.35	0.13	0.13	0.14	0.14	0.15	0.16	74.2	4907	0.35	0.13	0.13	0.14	0.14	0.15	0.16
	2	0.50	5.9 11 1	1967	0.57	0.09	0.10	0.10	0.11	0.13	0.15	5.7 11 0	2001	0.57	0.09	0.10	0.10	0.11	0.13	0.15
	3	0.50	16.4	2036	0.57	0.09	0.10	0.10	0.11	0.13	0.15	15.9	2001	0.57	0.09	0.10	0.10	0.11	0.13	0.15
0.02	4	0.50	20.9	2051	0.57	0.09	0.10	0.10	0.11	0.13	0.15	20.7	2078	0.57	0.09	0.10	0.10	0.11	0.13	0.15
0.02	6	0.50	32.0	2002	0.57	0.09	0.10	0.10	0.11	0.13	0.15	31.7	2019	0.57	0.09	0.10	0.10	0.11	0.13	0.15
	8	0.50	41.5	2051	0.57	0.09	0.10	0.10	0.11	0.13	0.15	40.9	2063	0.57	0.09	0.10	0.10	0.11	0.13	0.15
	12	0.50	59.2	2065	0.57	0.09	0.10	0.10	0.11	0.13	0.15	58.7	2078	0.57	0.09	0.10	0.10	0.11	0.13	0.15
·	1	0.50	4.7	1879	1.08	0.09	0.20	0.10	0.23	0.15	0.30	4.5	1871	1.08	0.09	0.20	0.10	0.22	0.15	0.14
	2	0.50	9.2	1919	1.08	0.18	0.19	0.20	0.22	0.25	0.29	8.8	1935	1.08	0.18	0.19	0.20	0.22	0.26	0.29
	3	0.50	12.9	1936	1.08	0.19	0.19	0.20	0.22	0.25	0.29	12.6	1935	1.08	0.19	0.19	0.20	0.22	0.26	0.29
0.05	4	0.50	17.1	1955	1.09	0.18	0.19	0.20	0.22	0.25	0.29	16.4	1976	1.09	0.18	0.19	0.20	0.22	0.25	0.29
	6	0.50	25.5	1919	1.08	0.18	0.19	0.20	0.22	0.25	0.29	24.7	1930	1.08	0.18	0.19	0.20	0.22	0.26	0.29
	8 12	0.50	33.7 48.0	1939	1.08	0.18	0.19	0.20	0.22	0.26	0.29	33.0 46.2	1946	1.08	0.19	0.19	0.20	0.22	0.26	0.29
	20	0.50	70.9	1978	1.09	0.19	0.19	0.20	0.22	0.26	0.29	69.2	1988	1.09	0.19	0.19	0.20	0.22	0.26	0.29
·	1	0.125	5.6	877	1.68	0.14	0.16	0.18	0.21	0.27	0.32	5.3	893	1.68	0.15	0.16	0.18	0.21	0.27	0.32
	2	0.125	9.0	888	1.68	0.15	0.16	0.18	0.21	0.27	0.33	8.5	877	1.68	0.15	0.16	0.18	0.21	0.27	0.33
	3	0.125	14.4	845	1.68	0.14	0.16	0.17	0.20	0.26	0.32	13.9	849	1.68	0.14	0.16	0.17	0.20	0.26	0.32
0.10	4	0.125	27.1	832	1.68	0.14	0.16	0.17	0.21	0.20	0.32	26.0	818	1.68	0.14	0.16	0.17	0.20	0.26	0.32
	8	0.125	37.1	813	1.68	0.14	0.16	0.17	0.20	0.26	0.32	35.9	817	1.69	0.14	0.16	0.17	0.20	0.26	0.32
	12	0.125	54.6	818	1.68	0.14	0.16	0.17	0.20	0.26	0.32	52.3	813	1.68	0.14	0.16	0.17	0.20	0.26	0.32
	20	0.125	79.9	829	1.71	0.14	0.16	0.17	0.20	0.26	0.32	77.9	824	1.71	0.14	0.16	0.17	0.20	0.26	0.32
	1	0.030	4.1	382	2.45	0.12	0.15	0.18	0.23	0.33	0.43	4.0	394	2.45	0.13	0.15	0.18	0.23	0.34	0.43
	2	0.030	6.4 10 Q	339	2.45	0.12	0.15	0.17	0.23	0.34	0.44	6.1 10 6	346	2.45	0.12	0.15	0.18	0.24	0.34	0.45
	4	0.030	12.9	366	2.45	0.11	0.14	0.17	0.23	0.33	0.42	12.3	380	2.40	0.12	0.15	0.17	0.23	0.33	0.44
0.20	6	0.030	19.2	335	2.45	0.12	0.15	0.18	0.23	0.34	0.44	18.6	340	2.45	0.12	0.15	0.18	0.23	0.34	0.44
	8	0.030	27.1	360	2.46	0.12	0.15	0.18	0.23	0.34	0.44	25.9	369	2.46	0.12	0.15	0.18	0.24	0.34	0.44
	12	0.030	40.5	355	2.46	0.12	0.15	0.18	0.23	0.34	0.44	39.2	368	2.46	0.12	0.15	0.18	0.24	0.34	0.44
	20	0.030	59.7	354	2.47	0.12	0.15	0.18	0.23	0.34	0.44	58.0	358	2.47	0.12	0.15	0.18	0.23	0.34	0.44
	2	0.015	2.4 3.4	125 131	5.03 3.63	0.11	0.18	0.24	0.30	0.57	0.75	2.2 3 3	132 136	5.03 3.63	0.12	0.19	0.25	0.30	0.57	0.76
	3	0.015	6.6	120	3.63	0.10	0.17	0.24	0.35	0.56	0.75	6.2	135	3.63	0.12	0.18	0.25	0.36	0.56	0.75
0 50	4	0.015	6.1	126	3.63	0.11	0.18	0.24	0.36	0.56	0.76	6.0	148	3.63	0.13	0.19	0.25	0.37	0.57	0.76
0.50	6	0.015	10.5	121	3.64	0.10	0.17	0.24	0.36	0.57	0.76	10.0	135	3.64	0.11	0.18	0.24	0.36	0.57	0.76
	8	0.015	14.4	122	3.64	0.11	0.18	0.24	0.36	0.58	0.77	13.7	138	3.64	0.12	0.19	0.25	0.37	0.58	0.77
	12 20	0.015	21.3 32 g	122 119	3.65	0.11	0.17	0.24	0.36	0.57	0.76	20.5	140 137	3.65	0.12	0.19	0.25	0.37	0.58	0.77
		0.010	52.0	110	5.00	0.10	0.10	0.24	5.50	0.00	0.77	51.7	1.57	5.00	0.12	5.15	0.20	0.57	0.00	0.70

Table B.10: Detection probability, average detection time, contaminated area in case of detection failure and relative contaminated area to control area *L* for various RADTi in case of $\sigma_{\ln K}^2 = 0.5$ assuming every 4 months (4M) and biannually (6M) sampling frequencies

	σ^{2}_{lnK}										0.50									
α _τ (m)	wou	nfds(max)	P _d (4M)	<t(det.)> (DAYS)</t(det.)>	area on failure	(AREA ON DET.)/L	(3M. RADTi)/L	(6M. RADTi)/L	(12M. RADTi)/L	(24M. RADTi/L)	(36M. RADTi)/L	P _d (6M)	<t(per.)> (DAYS)</t(per.)>	AREA ON FAILURE	(AREA ON DET.)/L	(3M. RADTi)/L	(6M. RADTi)/L	(12M. RADTi)/L	(24M. RADTi/L)	(36M. RADTi)/L
	1	1.75	4.3	5774	0.06	0.03	0.03	0.03	0.03	0.03	0.03	4.2	5784	0.06	0.03	0.03	0.03	0.03	0.03	0.03
	2	1.75	7.8	5736	0.06	0.03	0.03	0.03	0.03	0.03	0.03	7.4	5833	0.06	0.03	0.03	0.03	0.03	0.03	0.03
	3	1.75	11.0	5750	0.06	0.03	0.03	0.03	0.03	0.03	0.03	10.6	5771	0.06	0.03	0.03	0.03	0.03	0.03	0.03
0.001	4	1.75	13.8	5713	0.06	0.03	0.03	0.03	0.03	0.03	0.03	10.2	5750	0.06	0.03	0.03	0.03	0.03	0.03	0.03
	8	1.75	26.6	5725	0.00	0.03	0.03	0.03	0.03	0.03	0.03	25.7	5798	0.00	0.03	0.03	0.03	0.03	0.03	0.03
	12	1.75	40.3	5740	0.06	0.03	0.03	0.03	0.03	0.03	0.03	38.3	5819	0.06	0.03	0.03	0.03	0.03	0.03	0.03
	20	1.75	62.0	5717	0.06	0.03	0.03	0.03	0.03	0.03	0.03	59.8	5776	0.06	0.03	0.03	0.03	0.03	0.03	0.03
	1	1.50	5.1	4887	0.34	0.13	0.13	0.14	0.14	0.15	0.16	5.0	4882	0.34	0.13	0.13	0.14	0.14	0.15	0.16
	2	1.50	10.2	5057	0.34	0.13	0.14	0.14	0.15	0.16	0.17	10.0	5095	0.34	0.14	0.14	0.14	0.15	0.16	0.17
	3	1.50	13.9	4859	0.34	0.13	0.13	0.14	0.14	0.15	0.16	13.6	4858	0.34	0.13	0.13	0.14	0.14	0.15	0.16
0.01	6	1.50	28.2	4992	0.34	0.13	0.13	0.14	0.14	0.15	0.10	27.5	5001	0.34	0.13	0.13	0.14	0.14	0.15	0.10
	8	1.50	37.9	4921	0.34	0.13	0.14	0.14	0.14	0.15	0.16	37.1	4949	0.34	0.13	0.14	0.14	0.14	0.15	0.17
	12	1.50	53.1	4884	0.34	0.13	0.13	0.14	0.14	0.15	0.16	51.8	4903	0.34	0.13	0.13	0.14	0.14	0.15	0.16
	20	1.50	73.5	4924	0.35	0.13	0.13	0.14	0.14	0.15	0.17	72.7	4948	0.35	0.13	0.14	0.14	0.14	0.15	0.17
	1	0.50	5.7	2009	0.57	0.10	0.10	0.10	0.11	0.13	0.15	5.6	2016	0.57	0.10	0.10	0.10	0.11	0.13	0.15
	2	0.50	16.0	2009	0.57	0.09	0.10	0.10	0.11	0.13	0.15	10.8	2033	0.57	0.09	0.10	0.10	0.11	0.13	0.15
	4	0.50	20.4	2090	0.57	0.09	0.10	0.10	0.11	0.13	0.15	20.1	2114	0.57	0.10	0.10	0.10	0.11	0.13	0.15
0.02	6	0.50	31.2	2034	0.57	0.09	0.10	0.10	0.11	0.13	0.15	30.8	2062	0.57	0.09	0.10	0.10	0.11	0.13	0.15
	8	0.50	40.7	2070	0.57	0.09	0.10	0.10	0.11	0.13	0.15	39.5	2104	0.57	0.09	0.10	0.10	0.11	0.13	0.15
	12	0.50	58.0	2093	0.57	0.09	0.10	0.10	0.11	0.13	0.15	57.0	2123	0.57	0.10	0.10	0.10	0.11	0.13	0.15
	20	0.50	81.6	1005	0.58	0.09	0.10	0.10	0.11	0.13	0.15	80.8	2092	0.58	0.09	0.10	0.10	0.11	0.13	0.15
	2	0.50	4.2 8.6	1917	1.08	0.19	0.20	0.21	0.22	0.20	0.29	4.0 8.2	19692	1.08	0.19	0.20	0.21	0.22	0.20	0.29
	3	0.50	12.0	1959	1.09	0.19	0.19	0.20	0.22	0.25	0.29	11.5	1963	1.09	0.19	0.20	0.20	0.22	0.26	0.29
0.05	4	0.50	15.8	1970	1.09	0.18	0.19	0.20	0.22	0.25	0.29	14.7	2009	1.09	0.18	0.19	0.20	0.22	0.25	0.29
0.05	6	0.50	24.0	1934	1.08	0.18	0.19	0.20	0.22	0.25	0.29	22.8	1973	1.08	0.19	0.19	0.20	0.22	0.26	0.29
	8	0.50	31.5	1940	1.08	0.19	0.19	0.20	0.22	0.26	0.29	29.7	1985	1.08	0.19	0.20	0.20	0.22	0.26	0.29
	20	0.50	44.4 67.4	1981	1.09	0.19	0.19	0.20	0.22	0.26	0.29	41.8 64 5	2017	1.09	0.19	0.19	0.20	0.22	0.25	0.29
	1	0.125	5.2	901	1.68	0.15	0.16	0.18	0.21	0.26	0.32	4.8	903	1.68	0.15	0.16	0.18	0.21	0.27	0.32
	2	0.125	8.7	912	1.68	0.15	0.17	0.18	0.21	0.27	0.33	8.1	910	1.68	0.15	0.17	0.18	0.21	0.27	0.33
	3	0.125	13.5	866	1.68	0.14	0.16	0.17	0.20	0.26	0.32	12.9	873	1.69	0.14	0.16	0.18	0.21	0.26	0.32
0.10	4	0.125	16.4	837	1.68	0.15	0.16	0.18	0.21	0.27	0.32	15.3	835	1.68	0.14	0.16	0.18	0.21	0.26	0.32
	0 8	0.125	25.7	837	1.08	0.15	0.16	0.18	0.21	0.27	0.33	24.3 33.8	878 878	1.69	0.15	0.16	0.18	0.21	0.27	0.33
	12	0.125	51.8	834	1.68	0.14	0.16	0.17	0.21	0.27	0.32	48.7	842	1.68	0.13	0.16	0.18	0.21	0.27	0.32
	20	0.125	76.5	838	1.71	0.14	0.16	0.17	0.21	0.27	0.32	73.2	847	1.71	0.14	0.16	0.18	0.21	0.27	0.32
	1	0.030	3.9	403	2.45	0.13	0.15	0.18	0.23	0.33	0.43	3.7	445	2.45	0.14	0.16	0.19	0.24	0.34	0.43
	2	0.030	5.9	355	2.45	0.12	0.15	0.18	0.23	0.34	0.44	5.4	376	2.45	0.13	0.15	0.18	0.24	0.34	0.44
	3	0.030	10.4	366	2.46	0.12	0.15	0.18	0.23	0.33	0.43	9.8 11 5	403 //10	2.46	0.13	0.16	0.18	0.23	0.33	0.43
0.20	6	0.030	17.9	351	2.45	0.13	0.10	0.13	0.24	0.34	0.44	16.7	379	2.45	0.14	0.17	0.13	0.23	0.33	0.43
	8	0.030	25.4	376	2.46	0.12	0.15	0.18	0.24	0.34	0.44	23.2	407	2.46	0.13	0.16	0.19	0.24	0.34	0.44
	12	0.030	37.9	371	2.46	0.12	0.15	0.18	0.24	0.34	0.44	35.9	406	2.47	0.13	0.16	0.19	0.24	0.34	0.44
	20	0.030	56.6	362	2.47	0.12	0.15	0.18	0.24	0.34	0.44	53.3	394	2.48	0.13	0.16	0.19	0.24	0.34	0.44
	1	0.015	2.1	156	3.63	0.13	0.19	0.25	0.37	0.56	0.75	1.8	196	3.63	0.15	0.21	0.27	0.37	0.57	0.75
	2	0.015	3.2 59	151	3.63 3.63	0.13	0.19	0.25	0.37	0.58	0.75	2.5 4 9	201	5.63 3.63	0.15	0.20	0.26	0.36	0.57	0.75
	4	0.015	5.7	159	3.63	0.14	0.20	0.26	0.38	0.58	0.77	4.9	196	3.63	0.16	0.22	0.28	0.39	0.59	0.78
0.50	6	0.015	9.3	157	3.64	0.13	0.19	0.25	0.37	0.57	0.76	7.8	204	3.64	0.15	0.21	0.26	0.37	0.57	0.75
	8	0.015	13.0	158	3.64	0.14	0.20	0.26	0.38	0.59	0.78	10.6	203	3.64	0.16	0.22	0.27	0.38	0.58	0.77
	12	0.015	19.5	158	3.65	0.13	0.20	0.26	0.38	0.58	0.78	16.1	200	3.65	0.16	0.22	0.27	0.38	0.58	0.77
	20	0.015	30.0	155	3.66	0.13	0.20	0.26	U.38	0.58	U./8	25.4	202	3.66	0.16	0.22	0.27	0.38	0.58	U./7

	σ^{2}_{lnK}					0.5	0				
α _τ (m)	wou	nfds(max)	P _d (12M)	<t(days)< th=""><th>area on failure</th><th>(AREA ON DET.)/L</th><th>(3M. RADTi)/L</th><th>(6M. RADTi)/L</th><th>(12M. RADTi)/L</th><th>(24M. RADTi/L)</th><th>(36M. RADTi)/L</th></t(days)<>	area on failure	(AREA ON DET.)/L	(3M. RADTi)/L	(6M. RADTi)/L	(12M. RADTi)/L	(24M. RADTi/L)	(36M. RADTi)/L
	1	1.75	3.1	6150	0.06	0.03	0.03	0.03	0.03	0.03	0.04
	2	1.75	5.6 7 9	6046	0.06	0.03	0.03	0.03	0.03	0.03	0.03
	4	1.75	9.2	6107	0.06	0.03	0.03	0.03	0.03	0.03	0.03
0.001	6	1.75	14.1	5975	0.06	0.03	0.03	0.03	0.03	0.03	0.03
	8	1.75	18.2	6130	0.06	0.03	0.03	0.03	0.03	0.03	0.03
	12	1.75	28.1	6133	0.06	0.03	0.03	0.03	0.03	0.03	0.04
· <u> </u>	20	1.75	44.4	6089	0.06	0.03	0.03	0.03	0.03	0.03	0.03
	1	1.50	4.5	4988	0.34	0.13	0.13	0.14	0.14	0.15	0.16
	3	1.50	11.8	5027	0.34	0.14	0.14	0.14	0.13	0.10	0.17
	4	1.50	16.6	5000	0.34	0.13	0.14	0.14	0.14	0.16	0.17
0.01	6	1.50	24.1	5217	0.34	0.14	0.14	0.14	0.15	0.16	0.17
	8	1.50	32.7	5111	0.35	0.14	0.14	0.14	0.15	0.16	0.17
	12	1.50	46.7	5051	0.35	0.13	0.14	0.14	0.15	0.16	0.17
<u> </u>	20	1.50	66.8	5082	0.35	0.13	0.14	0.14	0.15	0.16	0.17
	2	0.50	4.5 8.8	2202	0.57	0.10	0.10	0.11	0.12	0.14	0.15
	3	0.50	12.8	2214	0.57	0.10	0.10	0.11	0.11	0.13	0.15
0.02	4	0.50	17.0	2273	0.57	0.10	0.10	0.11	0.12	0.13	0.15
0.02	6	0.50	25.8	2216	0.57	0.10	0.10	0.11	0.12	0.13	0.15
	8	0.50	33.8	2240	0.57	0.10	0.10	0.11	0.12	0.13	0.15
	12	0.50	48.6	2271	0.58	0.10	0.10	0.11	0.12	0.13	0.15
·	20	0.50	71.8	2046	1.09	0.10	0.10	0.11	0.11	0.13	0.15
	2	0.50	5.9	2040	1.09	0.19	0.20	0.21	0.23	0.20	0.29
	3	0.50	8.9	2078	1.09	0.19	0.20	0.21	0.22	0.26	0.29
0.05	4	0.50	11.5	2118	1.09	0.19	0.20	0.20	0.22	0.25	0.29
0.05	6	0.50	17.0	2082	1.09	0.19	0.20	0.20	0.22	0.26	0.29
	8	0.50	23.4	2112	1.09	0.19	0.20	0.21	0.22	0.26	0.29
	20	0.50	33.Z	2137	1.10	0.19	0.20	0.21	0.22	0.26	0.29
·	1	0.125	4.0	917	1.68	0.15	0.16	0.18	0.21	0.26	0.32
	2	0.125	6.7	943	1.68	0.15	0.17	0.18	0.21	0.27	0.33
	3	0.125	10.3	917	1.69	0.15	0.16	0.18	0.21	0.26	0.32
0.10	4	0.125	12.7	910	1.68	0.15	0.16	0.18	0.21	0.27	0.32
	6 8	0.125	19.9	913 013	1.69	0.15	0.17	0.18	0.21	0.27	0.33
	12	0.125	39.8	913	1.69	0.15	0.16	0.18	0.21	0.27	0.32
	20	0.125	60.7	916	1.73	0.15	0.16	0.18	0.21	0.27	0.32
	1	0.030	2.7	547	2.45	0.15	0.17	0.20	0.24	0.34	0.43
	2	0.030	3.9	488	2.45	0.15	0.17	0.20	0.25	0.35	0.45
	3	0.030	7.2 × 0	507	2.46	0.15	0.17	0.20	0.24	0.34	0.43
0.20	4 6	0.030	8.0 11.7	502 496	2.40	0.10	0.18	0.21	0.20	0.35	0.45
	8	0.030	16.2	511	2.47	0.15	0.18	0.20	0.25	0.35	0.44
	12	0.030	25.3	501	2.47	0.15	0.18	0.20	0.25	0.35	0.44
	20	0.030	37.4	501	2.49	0.15	0.18	0.20	0.25	0.35	0.44
	1	0.015	0.9	365	3.63	0.21	0.26	0.31	0.40	0.58	0.76
	2 2	0.015	1.U 1 R	389 379	5.03 3.63	0.20	0.24	0.28	0.37 0.32	0.54	0.71
e = -	4	0.015	1.5	365	3.63	0.20	0.24	0.28	0.36	0.52	0.68
0.50	6	0.015	2.8	378	3.63	0.20	0.24	0.28	0.37	0.54	0.71
	8	0.015	3.4	372	3.63	0.20	0.24	0.29	0.37	0.54	0.71
	12	0.015	5.6	371	3.64	0.20	0.24	0.28	0.36	0.53	0.69
	20	0.015	8.7	371	3.64	0.20	0.24	0.29	0.37	0.54	0.71

Table B.11: Detection probability, average detection time, contaminated area in case of detection failure and relative contaminated areato control area L for various RADTi in case of $\sigma_{\ln K}^2 = 0.5$ assuming annually sampling frequency

 σ^{2}_{InK} 1.00 AREA ON FAILURE AREA ON DET.)/L **AREA ON FAILURE** AREA ON DET.)/I 36M. RADTi)/L <T(DET.)> (DAYS) 24M. RADTi/L) 12M. RADTi)/I 24M. RADTi/L 36M. RADTi)/I <T(DET.)> (DAYS) 12M. RADTi)/| 3M. RADTi)/I 6M. RADTi)/I 3M. RADTi)/ 6M. RADTi)/I nfds(max) P_d (1M) (ED) α_τ(m) Nov -Pa 1.75 0.12 0.04 3.8 0.12 0.04 0.04 0.04 0.05 3.8 5605 0.04 0.04 0.05 0.05 1 5629 0.04 0.05 0.04 2 1.75 7.1 5373 0.12 0.04 0.04 0.04 0.04 0.05 0.05 7.0 5388 0.12 0.04 0.04 0.04 0.05 0.05 0.05 3 1.75 9.8 5606 0.12 0.04 0.04 0.04 0.04 0.05 0.05 9.7 5597 0.12 0.04 0.04 0.04 0.04 0.05 0.05 4 1.75 14.0 5509 0.12 0.04 0.04 0.04 0.04 0.04 0.05 13.8 5510 0.12 0.04 0.04 0.04 0.04 0.04 0.05 0.001 20.3 6 1.75 20.6 5397 0.12 0.04 0.04 0.04 0.04 0.04 0.05 5415 0.12 0.04 0.04 0.04 0.04 0.05 0.05 8 1.75 26.5 5439 0.12 0.04 0.04 0.04 0.04 0.04 0.05 26.1 0.04 0.04 0.04 0.04 0.04 0.05 5446 0.12 12 1.75 39.9 5455 0.12 0.04 0.04 0.04 0.04 0.04 0.05 39.3 5471 0.12 0.04 0.04 0.04 0.04 0.04 0.05 20 0.04 56.4 0.04 0.05 1.75 57.2 5407 0.11 0.04 0.04 0.04 0.04 0.05 5423 0.11 0.04 0.04 0.04 0.04 1.25 5.7 3950 3916 0.55 0.14 1 0.55 0.14 0.14 0.15 0.15 0.17 0.19 5.3 0.14 0.14 0.15 0.17 0.19 2 1.25 9.5 3961 0.55 0.14 0.14 0.15 0.15 0.17 0.19 9.1 3962 0.55 0.14 0.14 0.15 0.15 0.17 0.19 3 1.25 14.7 4008 0.55 0.14 0.14 0.15 0.16 0.17 0.19 14.0 4005 0.56 0.14 0.14 0.15 0.16 0.17 0.19 1.25 4 18.1 4005 0.55 0.14 0.14 0.15 0.15 0.17 0.19 17.5 4014 0.55 0.14 0.14 0.14 0.15 0.17 0.18 0.01 6 1.25 27.4 4020 0.55 0.14 0.14 0.15 0.15 0.17 0.19 26.3 4015 0.55 0.14 0.14 0.15 0.15 0.17 0.19 8 1.25 3983 0.14 0.14 0.15 0.19 34.4 3995 0.55 0.14 0.14 0.14 0.15 35.7 0.55 0.14 0.17 0.17 0.19 12 50.4 0.15 48.4 0.55 0.15 0.17 0.19 1.25 3980 0.54 0.14 0.14 0.14 0.17 0.19 4000 0.14 0.14 0.14 20 1.25 68.8 0.14 0.15 0.19 66.7 0.55 0.14 0.14 0.15 0.17 0.19 4028 0.55 0.14 0.14 0.17 4022 0.14 1 0.50 6.3 1940 0.88 0.10 0.11 0.12 0.13 0.15 0.18 5.9 1957 0.88 0.10 0.11 0.12 0.13 0.15 0.18 2 0.50 10.1 2100 0.88 0.10 0.11 0.11 0.13 0.15 0.17 9.7 2110 0.88 0.10 0.11 0.12 0.13 0.15 0.17 3 0.50 17.0 0.88 0.11 0.13 0.15 0.17 16.2 1949 0.88 0.10 0.11 0.11 0.13 0.15 0.17 1938 0.10 0.11 4 0.50 20.5 2046 0.88 0.11 0.11 0.12 0.13 0.15 0.18 19.7 2066 0.88 0.11 0.11 0.12 0.13 0.15 0.18 0.02 6 28.5 2055 0.88 0.10 0.11 0.12 0.13 0.15 0.18 27.5 2071 0.88 0.10 0.11 0.12 0.13 0.15 0.18 0.50 8 0.50 42.1 2082 0.87 0.11 0.11 0.12 0.13 0.15 0.18 40.8 2088 0.87 0.11 0.11 0.12 0.13 0.15 0.18 0.18 55.6 0.88 0.13 0.15 12 0.50 57.5 2073 0.87 0.10 0.11 0.12 0.13 0.15 2086 0.10 0.11 0.12 0.18 20 0.50 77.0 2046 0.86 0.10 0.11 0.11 0.13 0.15 0.18 75.5 2056 0.86 0.10 0.11 0.11 0.13 0.15 0.18 1 0.13 5.7 874 1.54 0.10 0.11 0.12 0.15 0.19 0.24 5.6 887 1.54 0.10 0.11 0.12 0.15 0.20 0.25 2 11.6 1033 0.09 0.10 0.11 0.13 0.18 0.22 11.2 1037 1.55 0.09 0.10 0.14 0.18 0.22 0.13 1.55 0.11 3 17.0 906 0.09 0.10 0.11 0.14 0.18 0.23 16.5 925 1.55 0.09 0.11 0.12 0.14 0.19 0.23 0.13 1.54 4 0.13 22.0 968 1.55 0.09 0.10 0.11 0.13 0.18 0.22 21.3 985 1.55 0.09 0.10 0.11 0.13 0.18 0.22 0.05 6 0.13 33.3 985 1.56 0.09 0.10 0.11 0.14 0.18 0.22 31.9 999 1.56 0.09 0.10 0.12 0.14 0.18 0.22 8 43.5 963 985 0.23 0.13 1.55 0.09 0.10 0.11 0.14 0.18 0.22 42.1 1.56 0.09 0.10 0.12 0.14 0.18 12 0.13 61.8 965 1.56 0.09 0.10 0.11 0.13 0.18 0.22 59.7 983 1.57 0.09 0.10 0.11 0.14 0.18 0.22 .10 20 0.13 86.3 931 1.54 0.09 0 0.11 0.13 0.18 0.22 84.7 942 1.54 0.09 0.10 0.11 0.13 0.18 0.22 5.4 2.23 5.1 2.24 0.16 0.063 668 0.12 0.14 0.20 0.28 0.36 697 0.12 0.14 0.20 0.28 0.36 1 0.16 0.26 2 0.063 2.24 0.12 0.19 0.34 10.2 779 0.12 0.19 0.34 11.1 804 0.14 0.16 0.26 2.24 0.14 0.16 3 0.063 17.1 0.34 0.19 654 2.24 0.12 0.13 0.15 0.19 0.27 15.9 663 2.24 0.11 0.13 0.15 0.26 0.34 4 0.063 21.6 686 2.25 0.11 0.13 0.15 0.19 0.26 0.33 20.4 681 2.24 0.12 0.13 0.15 0.19 0.26 0.33 0.10 6 0.063 31.6 740 2.25 0.12 0.14 0.16 0.19 0.34 29.4 733 2.24 0.12 0.14 0.16 0.19 0.27 0.34 0.27 8 0.063 43.2 705 2.25 0.12 0.14 0.16 0.19 0.26 0.34 40.0 703 2.24 0.12 0.14 0.15 0.19 0.26 0.34 12 0.063 60.8 689 2.25 0.12 0.14 0.15 0.19 0.26 0.34 56.5 686 2.24 0.12 0.14 0.15 0.19 0.26 0.34 20 0.063 86.2 691 2.24 0.11 0.13 0.15 0.19 0.26 0.34 82.7 695 2.24 0.12 0.13 0.15 0.19 0.27 0.34 1 0.030 4.0 435 3.03 0.13 0.17 0.20 0.26 0.39 0.51 3.4 403 3.03 0.13 0.16 0.19 0.26 0.38 0.51 2 0.030 7.7 407 3.03 0.13 0.16 0.20 0.26 0.50 6.5 398 3.03 0.12 0.15 0.19 0.25 0.37 0.38 0.48 12.8 373 11.2 355 0.37 3 0.030 3.03 0.12 0.16 0.19 0.25 0.38 0.50 3.03 0.12 0.15 0.18 0.25 0.49 4 0.030 16.6 401 3.03 0.12 0.16 0.19 0.25 0.49 14.5 383 3.03 0.12 0.15 0.18 0.25 0.36 0.48 0.37 0.20 6 0.030 22.0 395 3.03 0.12 0.16 0.19 0.25 0.38 0.50 19.2 390 3.03 0.12 0.15 0.18 0.25 0.37 0.49 8 0.030 31.1 382 3.03 0.12 0.16 0.19 0.26 0.38 0.50 26.6 359 3.03 0.12 0.15 0.18 0.25 0.37 0.49 12 0.030 44.7 398 3.03 0.12 0.16 0.19 0.25 0.38 0.50 38.6 380 3.04 0.12 0.15 0.18 0.24 0.36 0.48 390 3.02 0.19 0.25 0.50 57.8 3.02 0.12 0.18 0.49 20 0.030 64.6 0.12 0.16 0.38 362 0.15 0.25 0.37 1 0.015 2.2 124 4.02 0.10 0.18 0.25 0.38 0.63 0.86 2.0 131 4.02 0.11 0.19 0.26 0.40 0.65 0.88 2 0.015 4.2 112 4.03 0.09 0.17 0.24 0.38 0.62 0.84 3.6 112 4.03 0.09 0.17 0.25 0.38 0.62 0.85 3 0.015 7.7 117 4.03 0.10 0.18 0.26 0.39 0.64 0.87 6.7 118 4.03 0.10 0.19 0.26 0.40 0.64 0.87 4 0.015 9.0 127 4.02 0.10 0.18 0.25 0.38 0.63 0.86 7.5 127 4.02 0.10 0.18 0.24 0.38 0.62 0.85 0.50 0.62 6 0.015 12.7 131 4.03 0.09 0.17 0.25 0.38 0.62 0.84 10.9 124 4.03 0.09 0.17 0.25 0.38 0.84 8 18.1 0.18 0.25 15.6 0.10 0.39 0.015 125 4.03 0.10 0.38 0.63 0.85 121 4.03 0.18 0.25 0.63 0.86 12 25.3 0.17 0.25 0.38 21.6 0.09 0.38 0.015 119 4.03 0.09 0.62 0.85 117 4.03 0.17 0.24 0.62 0.84 0.09 0.17 0.24 119 0.09 0.17 20 0.015 36.9 114 4.04 0.38 0.62 0.85 32.9 4.04 0.25 0.38 0.62 0.84

Table B.12: Detection probability, average detection time, contaminated area in case of detection failure and relative contaminated area to control area for various RADTi in case of $\sigma_{\ln K}^2 = 1.0$ assuming daily (ED) and monthly (1M) sampling frequencies
	σ^{2}_{lnK}										1.00									
α _τ (m)	мои	nfds(max)	P _d (2M)	<t(det.)> (DAYS)</t(det.)>	AREA ON FAILURE	(AREA ON DET.)/L	(3M. RADTi)/L	(6M. RADTi)/L	(12M. RADTi)/L	(24M. RADTi/L)	(36M. RADTi)/L	P _d (3M)	<t(det.)> (DAYS)</t(det.)>	AREA ON FAILURE	(AREA ON DET.)/L	(3M. RADTi)/L	(6M. RADTi)/L	(12M. RADTi)/L	(24M. RADTi/L)	(36M. RADTi)/L
·	1	1.75	3.8	5620	0.12	0.04	0.04	0.04	0.04	0.05	0.05	3.7	5645	0.12	0.04	0.04	0.04	0.04	0.05	0.05
	2	1.75	6.9	5395	0.12	0.04	0.04	0.04	0.05	0.05	0.05	6.8	5446	0.12	0.04	0.04	0.04	0.05	0.05	0.05
	3	1.75	9.6 13.5	5617	0.12	0.04	0.04	0.04	0.04	0.05	0.05	9.5 13.4	5643 5518	0.12	0.04	0.04	0.04	0.04	0.05	0.05
0.001	6	1.75	20.1	5435	0.12	0.04	0.04	0.04	0.04	0.04	0.05	19.8	5456	0.12	0.04	0.04	0.04	0.04	0.04	0.05
	8	1.75	25.9	5458	0.12	0.04	0.04	0.04	0.04	0.05	0.05	25.5	5456	0.12	0.04	0.04	0.04	0.04	0.05	0.05
	12	1.75	38.8	5486	0.12	0.04	0.04	0.04	0.04	0.04	0.05	38.5	5500	0.12	0.04	0.04	0.04	0.04	0.04	0.05
	20	1.75	55.9	5434	0.11	0.04	0.04	0.04	0.04	0.04	0.05	55.2	5451	0.12	0.04	0.04	0.04	0.04	0.04	0.05
	2	1.25	5.2 8.8	3872 4008	0.55	0.14	0.14	0.14	0.15	0.17	0.19	5.2 8.7	3893	0.55	0.14	0.14	0.15	0.15	0.17	0.19
	3	1.25	13.6	3982	0.56	0.14	0.14	0.15	0.16	0.17	0.19	13.4	4003	0.56	0.14	0.14	0.15	0.10	0.17	0.19
0.01	4	1.25	17.1	4025	0.55	0.14	0.14	0.14	0.15	0.17	0.18	16.7	4022	0.55	0.14	0.14	0.14	0.15	0.17	0.18
0.01	6	1.25	25.6	4041	0.55	0.14	0.14	0.15	0.15	0.17	0.19	25.0	4042	0.55	0.14	0.14	0.15	0.15	0.17	0.19
	8	1.25	33.6	4004	0.55	0.14	0.14	0.14	0.15	0.17	0.19	32.9	4022	0.55	0.14	0.14	0.14	0.15	0.17	0.19
	20	1.25	47.8 65.7	4019	0.55	0.14	0.14	0.14	0.15	0.17	0.19	46.7 64.7	4028	0.55	0.14	0.14	0.14	0.15	0.17	0.19
·	1	0.50	5.7	1926	0.88	0.10	0.11	0.12	0.13	0.15	0.18	5.7	1971	0.88	0.10	0.11	0.12	0.13	0.16	0.18
	2	0.50	9.6	2141	0.88	0.10	0.11	0.12	0.13	0.15	0.17	9.5	2167	0.88	0.11	0.11	0.12	0.13	0.15	0.18
	3	0.50	15.9	1943	0.88	0.10	0.11	0.11	0.13	0.15	0.17	15.7	1974	0.88	0.10	0.11	0.12	0.13	0.15	0.18
0.02	4	0.50	19.3 26.9	2078	0.88	0.11	0.11	0.12	0.13	0.16	0.18	19.2 26.6	2098	0.88	0.11	0.11	0.12	0.13	0.16	0.18
	8	0.50	39.9	2101	0.88	0.11	0.11	0.12	0.13	0.15	0.18	39.3	2120	0.88	0.11	0.11	0.12	0.13	0.15	0.18
	12	0.50	54.7	2097	0.88	0.11	0.11	0.12	0.13	0.15	0.18	53.9	2115	0.88	0.11	0.11	0.12	0.13	0.15	0.18
	20	0.50	74.6	2064	0.87	0.10	0.11	0.11	0.13	0.15	0.18	74.2	2077	0.87	0.10	0.11	0.12	0.13	0.15	0.18
	1	0.13	5.5	894	1.54	0.10	0.11	0.12	0.15	0.20	0.25	5.4	904 1052	1.54	0.10	0.11	0.13	0.15	0.20	0.25
	2	0.13	16.2	926	1.55	0.10	0.11	0.12	0.14	0.18	0.22	16.0	959	1.55	0.10	0.11	0.12	0.14	0.18	0.22
0.05	4	0.13	21.0	999	1.55	0.09	0.10	0.11	0.13	0.18	0.22	20.7	1017	1.56	0.09	0.10	0.11	0.14	0.18	0.22
0.05	6	0.13	31.2	1013	1.56	0.09	0.11	0.12	0.14	0.18	0.22	30.8	1022	1.56	0.10	0.11	0.12	0.14	0.18	0.23
	8	0.13	41.5	999	1.56	0.10	0.11	0.12	0.14	0.18	0.23	40.9	1015	1.56	0.10	0.11	0.12	0.14	0.18	0.23
	12 20	0.13	59.1 84.2	998 957	1.57	0.09	0.10	0.11	0.14	0.18	0.23	58.3 83.1	1014 972	1.57	0.10	0.11	0.12	0.14	0.18	0.23
	1	0.063	5.1	715	2.24	0.13	0.14	0.16	0.20	0.28	0.36	4.8	717	2.24	0.13	0.14	0.16	0.20	0.28	0.36
	2	0.063	9.9	787	2.24	0.12	0.14	0.16	0.19	0.26	0.34	9.7	785	2.24	0.12	0.14	0.16	0.19	0.27	0.34
	3	0.063	15.8	678	2.24	0.12	0.14	0.15	0.19	0.27	0.34	15.2	683	2.24	0.12	0.14	0.15	0.19	0.26	0.34
0.10	4	0.063	19.9 28 5	687 731	2.24	0.12	0.14	0.15	0.19	0.26	0.34	19.6 27.6	710	2.24	0.12	0.14	0.15	0.19	0.26	0.33
	8	0.063	38.6	709	2.24	0.12	0.14	0.10	0.19	0.27	0.34	37.8	725	2.25	0.12	0.14	0.10	0.19	0.27	0.34
	12	0.063	54.8	696	2.24	0.12	0.14	0.16	0.19	0.26	0.34	53.7	714	2.25	0.12	0.14	0.16	0.19	0.27	0.34
	20	0.063	81.0	703	2.25	0.12	0.14	0.15	0.19	0.27	0.34	79.5	712	2.25	0.12	0.14	0.16	0.19	0.27	0.34
	1	0.030	3.2	399	3.03	0.13	0.16	0.19	0.26	0.38	0.51	3.0 6.1	392	3.03	0.13	0.16	0.19	0.26	0.38	0.50
	3	0.030	10.6	359	3.03	0.12	0.10	0.19	0.25	0.37	0.48	10.3	361	3.03	0.13	0.10	0.19	0.25	0.37	0.48
0.20	4	0.030	13.9	392	3.03	0.12	0.15	0.18	0.25	0.36	0.48	13.2	401	3.03	0.12	0.16	0.19	0.25	0.36	0.48
0.20	6	0.030	18.0	385	3.03	0.12	0.15	0.18	0.25	0.37	0.49	17.8	394	3.03	0.12	0.16	0.19	0.25	0.37	0.49
	8	0.030	25.3	362	3.03	0.12	0.15	0.18	0.25	0.37	0.49	24.5	373	3.03	0.12	0.16	0.19	0.25	0.37	0.49
	12 20	0.030	37.0 55.6	388	3.04	0.12	0.15	0.18	0.25	0.37	0.48	35.8 53.6	397	3.04	0.12	0.15	0.19	0.25	0.37	0.49
·	1	0.015	1.9	152	4.02	0.12	0.10	0.18	0.25	0.65	0.88	1.6	170	4.02	0.12	0.15	0.15	0.23	0.65	0.88
	2	0.015	3.4	127	4.03	0.11	0.18	0.25	0.39	0.62	0.85	3.2	134	4.03	0.12	0.19	0.26	0.39	0.63	0.86
	3	0.015	6.4	131	4.03	0.12	0.20	0.27	0.41	0.65	0.88	5.8	153	4.03	0.13	0.21	0.28	0.41	0.65	0.87
0.50	4	0.015	7.0	136	4.02	0.11	0.18	0.25	0.38	0.62	0.85	6.5	162	4.03	0.12	0.19	0.25	0.38	0.62	0.84
	8	0.015	10.4 14.4	133 132	4.03 4.03	0.11	0.18	0.25	0.38	0.62	0.84	9.7 13.4	152 150	4.03 4.03	0.12	0.19	0.26	0.39	0.62	0.85
	12	0.015	20.5	126	4.03	0.11	0.18	0.25	0.38	0.62	0.85	19.0	143	4.03	0.12	0.19	0.26	0.39	0.62	0.85
	20	0.015	31.5	132	4.04	0.11	0.19	0.26	0.39	0.63	0.85	29.8	151	4.04	0.12	0.20	0.26	0.39	0.63	0.85

Table B.13: Detection probability, average detection time, contaminated area in case of detection failure and relative contaminated area to
control area for various RADTi in case of $\sigma_{\ln K}^2 = 1.0$ assuming bimonthly (2M) and quarterly (3M) sampling frequencies

Table B.14: Detection probability, average detection time, contaminated area in case of detection failure and relative contaminated area to control area *L* for various RADTi in case of $\sigma_{\ln K}^2 = 1.0$ assuming every 4 months (4M) and biannually (6M) sampling frequencies

	σ^2_{InK}										1.00									
α _τ (m)	wou	nfds(max)	P _d (4M)	<t(days)< th=""><th>AREA ON FAILURE</th><th>(AREA ON DET.)/L</th><th>(3M. RADTi)/L</th><th>(6M. RADTi)/L</th><th>(12M. RADTi)/L</th><th>(24M. RADTi/L)</th><th>(36M. RADTi)/L</th><th>P_d (6M)</th><th><t(days)< th=""><th>AREA ON FAILURE</th><th>(AREA ON DET.)/L</th><th>(3M. RADTi)/L</th><th>(6M. RADTi)/L</th><th>(12M. RADTi)/L</th><th>(24M. RADTi/L)</th><th>(36M. RADTi)/L</th></t(days)<></th></t(days)<>	AREA ON FAILURE	(AREA ON DET.)/L	(3M. RADTi)/L	(6M. RADTi)/L	(12M. RADTi)/L	(24M. RADTi/L)	(36M. RADTi)/L	P _d (6M)	<t(days)< th=""><th>AREA ON FAILURE</th><th>(AREA ON DET.)/L</th><th>(3M. RADTi)/L</th><th>(6M. RADTi)/L</th><th>(12M. RADTi)/L</th><th>(24M. RADTi/L)</th><th>(36M. RADTi)/L</th></t(days)<>	AREA ON FAILURE	(AREA ON DET.)/L	(3M. RADTi)/L	(6M. RADTi)/L	(12M. RADTi)/L	(24M. RADTi/L)	(36M. RADTi)/L
	1	1.75	3.7	5682	0.12	0.04	0.04	0.04	0.04	0.05	0.05	3.6	5643	0.12	0.04	0.04	0.04	0.04	0.05	0.05
	2	1.75	6.8	5413	0.12	0.04	0.04	0.04	0.05	0.05	0.05	6.5	5535	0.12	0.04	0.04	0.04	0.05	0.05	0.05
	3	1.75	9.4	5660	0.12	0.04	0.04	0.04	0.04	0.05	0.05	9.1 12.4	5709	0.12	0.04	0.04	0.04	0.04	0.05	0.05
0.001	4	1.75	19.6	5354 5480	0.12	0.04	0.04	0.04	0.04	0.04	0.05	12.4	5579	0.12	0.04	0.04	0.04	0.04	0.04	0.05
	8	1.75	25.4	5484	0.12	0.04	0.04	0.04	0.04	0.05	0.05	24.1	5581	0.12	0.04	0.04	0.04	0.04	0.05	0.05
	12	1.75	37.6	5539	0.12	0.04	0.04	0.04	0.04	0.04	0.05	36.2	5607	0.12	0.04	0.04	0.04	0.04	0.04	0.05
	20	1.75	54.8	5471	0.11	0.04	0.04	0.04	0.04	0.04	0.05	52.5	5542	0.12	0.04	0.04	0.04	0.04	0.05	0.05
	1	1.25	5.1	3878	0.55	0.14	0.14	0.14	0.15	0.17	0.19	5.0	3926	0.55	0.14	0.14	0.15	0.15	0.17	0.19
	2	1.25	8.5	4046	0.55	0.14	0.14	0.15	0.16	0.17	0.19	8.2	4058	0.55	0.14	0.14	0.15	0.16	0.17	0.19
	3	1.25	13.2	4005	0.56	0.14	0.14	0.15	0.16	0.17	0.19	12.8	4038	0.56	0.14	0.14	0.15	0.16	0.17	0.19
0.01	4	1.25	16.5 24 5	4043	0.55	0.14	0.14	0.14	0.15	0.17	0.18	16.U	4054	0.55	0.14	0.14	0.15	0.15	0.17	0.19
	8	1.25	32.6	4029	0.55	0.14	0.14	0.13	0.15	0.17	0.19	31.3	4074	0.55	0.14	0.14	0.15	0.15	0.17	0.19
	12	1.25	46.2	4041	0.55	0.14	0.14	0.14	0.15	0.17	0.19	45.2	4075	0.55	0.14	0.14	0.14	0.15	0.17	0.19
	20	1.25	64.3	4064	0.55	0.14	0.14	0.14	0.15	0.17	0.19	62.4	4085	0.55	0.14	0.14	0.15	0.15	0.17	0.19
	1	0.50	5.6	1955	0.88	0.10	0.11	0.12	0.13	0.15	0.18	5.3	2002	0.88	0.11	0.11	0.12	0.13	0.16	0.18
	2	0.50	9.3	2200	0.88	0.11	0.11	0.12	0.13	0.15	0.18	8.9	2242	0.88	0.11	0.11	0.12	0.13	0.15	0.18
	3 1	0.50	19.5	2115	0.88	0.10	0.11	0.12	0.13	0.15	0.18	14.8	2024	0.88	0.11	0.11	0.12	0.13	0.15	0.18
0.02	- -	0.50	26.0	2113	0.88	0.11	0.11	0.12	0.13	0.10	0.18	25.0	2155	0.88	0.11	0.12	0.12	0.13	0.16	0.18
	8	0.50	38.6	2141	0.88	0.11	0.11	0.12	0.13	0.16	0.18	37.0	2188	0.88	0.11	0.11	0.12	0.13	0.16	0.18
	12	0.50	53.5	2134	0.88	0.11	0.11	0.12	0.13	0.16	0.18	52.2	2172	0.88	0.11	0.11	0.12	0.13	0.16	0.18
	20	0.50	73.5	2092	0.87	0.10	0.11	0.12	0.13	0.15	0.18	72.0	2135	0.89	0.11	0.11	0.12	0.13	0.15	0.18
	1	0.13	5.1	927	1.54	0.10	0.11	0.13	0.15	0.20	0.25	5.0	950	1.54	0.11	0.12	0.13	0.15	0.20	0.25
	2	0.13	10.7	1083	1.55	0.10	0.11	0.12	0.14	0.18	0.23	10.4	1112	1.55	0.10	0.11	0.12	0.14	0.19	0.23
	4	0.13	20.4	1028	1.55	0.10	0.11	0.12	0.14	0.19	0.23	19.6	1005	1.55	0.10	0.11	0.12	0.13	0.19	0.24
0.05	6	0.13	30.2	1044	1.56	0.10	0.11	0.12	0.14	0.18	0.23	29.2	1083	1.56	0.10	0.11	0.12	0.14	0.19	0.23
	8	0.13	40.3	1027	1.56	0.10	0.11	0.12	0.14	0.18	0.23	39.0	1070	1.57	0.10	0.11	0.12	0.14	0.19	0.23
	12	0.13	57.5	1031	1.57	0.10	0.11	0.12	0.14	0.18	0.23	55.8	1071	1.58	0.10	0.11	0.12	0.14	0.19	0.23
	20	0.13	82.9	985	1.56	0.09	0.10	0.12	0.14	0.18	0.23	80.6	1026	1.61	0.10	0.11	0.12	0.14	0.19	0.23
	1	0.063	4.8	725 904	2.24	0.13	0.14	0.16	0.20	0.28	0.36	4.6	/65 977	2.24	0.13	0.15	0.17	0.21	0.28	0.36
	3	0.003	9.5 14.9	687	2.24	0.13	0.13	0.10	0.20	0.27	0.34	9.0 14.1	729	2.24	0.13	0.13	0.10	0.20	0.27	0.34
	4	0.063	19.0	702	2.24	0.12	0.14	0.15	0.19	0.26	0.34	18.1	741	2.24	0.12	0.14	0.16	0.19	0.26	0.34
0.10	6	0.063	27.1	755	2.24	0.13	0.14	0.16	0.20	0.27	0.34	25.5	776	2.25	0.13	0.15	0.16	0.20	0.27	0.34
	8	0.063	36.8	735	2.25	0.12	0.14	0.16	0.19	0.27	0.34	34.8	767	2.26	0.13	0.14	0.16	0.20	0.27	0.34
	12	0.063	52.5	717	2.25	0.12	0.14	0.16	0.19	0.27	0.34	49.5	756	2.26	0.13	0.14	0.16	0.20	0.27	0.34
·	20	0.063	78.5	396	3.03	0.12	0.14	0.16	0.20	0.27	0.34	27	754 418	3.03	0.13	0.14	0.16	0.20	0.27	0.34
	2	0.030	5.6	393	3.03	0.12	0.16	0.19	0.25	0.36	0.48	5.2	456	3.03	0.13	0.16	0.19	0.25	0.36	0.47
	3	0.030	10.0	368	3.03	0.13	0.16	0.19	0.26	0.38	0.50	9.2	401	3.03	0.13	0.17	0.20	0.26	0.38	0.49
0 20	4	0.030	13.1	421	3.03	0.13	0.16	0.19	0.25	0.37	0.49	11.8	435	3.03	0.13	0.16	0.19	0.25	0.37	0.48
0.20	6	0.030	16.7	400	3.03	0.12	0.16	0.19	0.25	0.37	0.49	15.6	428	3.03	0.13	0.16	0.19	0.25	0.37	0.48
	8	0.030	23.2	387	3.04	0.12	0.16	0.19	0.25	0.37	0.49	21.3	419	3.04	0.13	0.16	0.19	0.25	0.37	0.49
	12	0.030	34.3 52.7	406 201	3.05	0.13	0.16	0.19	0.25	0.37	0.48	31.7	433	3.05	0.13	0.16	0.19	0.25	0.37	0.48
	1	0.015	1.5	189	4.03	0.13	0.21	0.27	0.40	0.63	0.84	1.2	260	4.03	0.13	0.24	0.30	0.23	0.63	0.84
	2	0.015	3.0	170	4.03	0.14	0.21	0.27	0.40	0.63	0.84	2.4	215	4.03	0.16	0.23	0.29	0.41	0.63	0.85
	3	0.015	5.4	171	4.03	0.15	0.22	0.28	0.41	0.64	0.86	4.1	226	4.03	0.17	0.23	0.28	0.40	0.62	0.83
0.50	4	0.015	6.1	176	4.03	0.14	0.20	0.27	0.39	0.62	0.84	4.8	231	4.03	0.15	0.20	0.26	0.37	0.59	0.80
	6	0.015	9.3	166	4.03	0.14	0.21	0.27	0.39	0.62	0.83	7.2	230	4.03	0.16	0.22	0.28	0.39	0.60	0.81
	8 12	0.015	12.2 17 º	1/1 167	4.03 4.04	0.14	0.21	0.27	0.40	0.63 0.63	0.85 0.84	9.5 14 0	219	4.03 4.04	0.16	0.21	0.27	0.38 0.20	0.60	0.81 0 80
	20	0.015	28.0	171	4.04	0.14	0.21	0.27	0.39	0.62	0.84	22.3	229	4.05	0.16	0.22	0.27	0.39	0.60	0.81

	σ^2_{lnK}					1.0	0				
α ₁ (m)	мои	nfds(max)	P _d (12M)	<t(рет.)> (DAYS)</t(рет.)>	AREA ON FAILURE	(AREA ON DET.)/L	(3M. RADTi)/L	(6M. RADTi)/L	(12M. RADTi)/L	(24M. RADTi/L)	(36M. RADTi)/L
	1	1.75	2.7	6049	0.12	0.04	0.04	0.04	0.04	0.05	0.05
	2	1.75	5.0	5808	0.12	0.04	0.04	0.05	0.05	0.05	0.05
	3 4	1.75	0.9 9 5	5992	0.12	0.04	0.04	0.04	0.05	0.05	0.05
0.001	6	1.75	14.2	5914	0.12	0.04	0.04	0.04	0.05	0.05	0.05
	8	1.75	17.6	5935	0.12	0.04	0.04	0.04	0.05	0.05	0.05
	12	1.75	27.8	5964	0.12	0.04	0.04	0.04	0.04	0.05	0.05
. <u> </u>	20	1.75	41.5	5907	0.12	0.04	0.04	0.04	0.04	0.05	0.05
	1	1.25	4.0	4257	0.56	0.14	0.14	0.14	0.15	0.17	0.18
	2	1.25	0.9 10 4	4378	0.55	0.15	0.15	0.15	0.16	0.18	0.20
	4	1.25	13.1	4334	0.56	0.14	0.14	0.13	0.15	0.17	0.19
0.01	6	1.25	19.9	4377	0.56	0.14	0.15	0.15	0.16	0.17	0.19
	8	1.25	25.6	4350	0.56	0.14	0.14	0.15	0.16	0.17	0.19
	12	1.25	37.5	4343	0.57	0.14	0.14	0.15	0.15	0.17	0.19
	20	1.25	53.6	4313	0.57	0.14	0.14	0.15	0.16	0.17	0.19
	1	0.50	4.5	2138	0.88	0.11	0.11	0.12	0.13	0.15	0.18
	3	0.50	12.0	2458	0.85	0.11	0.12	0.12	0.13	0.15	0.18
	4	0.50	15.4	2335	0.89	0.11	0.12	0.13	0.14	0.16	0.19
0.02	6	0.50	20.7	2399	0.89	0.11	0.12	0.12	0.13	0.16	0.18
	8	0.50	29.9	2379	0.90	0.11	0.12	0.12	0.13	0.16	0.18
	12	0.50	44.1	2363	0.90	0.11	0.12	0.12	0.14	0.16	0.19
	20	0.50	61.9	2308	0.93	0.11	0.12	0.12	0.13	0.16	0.18
	1	0.13	3.7 8.4	1023	1.54	0.11	0.12	0.13	0.15	0.20	0.25
	3	0.13	11.9	1110	1.55	0.11	0.12	0.13	0.15	0.19	0.23
0.05	4	0.13	16.9	1186	1.56	0.10	0.11	0.12	0.14	0.19	0.23
0.05	6	0.13	23.7	1214	1.57	0.11	0.12	0.13	0.15	0.19	0.23
	8	0.13	32.7	1195	1.58	0.11	0.12	0.13	0.15	0.19	0.23
	12	0.13	47.1	1205	1.61	0.11	0.12	0.13	0.15	0.19	0.23
	20	0.13	<u>68.7</u> 27	1159	1.65	0.10	0.11	0.12	0.15	0.19	0.23
	2	0.063	7.3	977	2.24	0.14	0.10	0.17	0.21	0.28	0.34
	3	0.063	10.9	858	2.25	0.13	0.15	0.16	0.20	0.27	0.33
0 10	4	0.063	14.3	883	2.25	0.13	0.15	0.17	0.20	0.27	0.33
0.10	6	0.063	19.7	932	2.26	0.14	0.15	0.17	0.20	0.27	0.34
	8	0.063	27.6	904	2.27	0.14	0.15	0.17	0.20	0.27	0.34
	20	0.063	38.8 50.3	897 895	2.29	0.14	0.15	0.17	0.20	0.27	0.34
	1	0.030	1.7	558	3.03	0.14	0.13	0.20	0.26	0.36	0.46
	2	0.030	3.5	543	3.03	0.15	0.18	0.21	0.26	0.37	0.47
	3	0.030	5.9	519	3.04	0.15	0.18	0.20	0.25	0.36	0.46
0.20	4	0.030	8.2	592	3.04	0.15	0.18	0.20	0.25	0.36	0.47
	6	0.030	10.0	592	3.04	0.15	0.18	0.20	0.25	0.36	0.46
	8 12	0.030	14.7 21.0	550	3.05	0.15	0.18	0.20	0.26	0.36	0.47
	20	0.030	32.8	578	3.00	0.15	0.18	0.20	0.25	0.36	0.40
	1	0.015	0.4	365	4.03	0.19	0.22	0.26	0.35	0.51	0.68
	2	0.015	0.7	417	4.03	0.20	0.24	0.27	0.35	0.52	0.69
	3	0.015	1.6	387	4.03	0.20	0.25	0.29	0.38	0.57	0.75
0.50	4	0.015	2.1	410	4.03	0.18	0.22	0.26	0.34	0.51	0.69
	b Q	0.015	2./ 1 0	409 ⊿ว⊽	4.03 4 02	0.19	0.23	0.27	0.35	0.52	0.69
	12	0.015	0 5.7	401	4.04	0.20	0.24	0.20	0.36	0.54	0.72
	20	0.015	9.2	402	4.04	0.19	0.24	0.28	0.37	0.54	0.72

Table B.15: Detection probability, average detection time, contaminated area in case of detection failure and relative contaminated areato control area L for various RADTi in case of $\sigma_{\ln K}^2 = 1.0$ assuming annually sampling frequency

Table B.16: Detection probability, average detection time, contaminated area in case of detection failure and relative contaminated areato control area for various RADTi in case of $\sigma_{\ln K}^2 = 1.5$ assuming daily (ED) and monthly (1M) sampling frequencies

	σ^{2}_{lnK}										1.50									
α _τ (m)	wou	nfds(max)	P _d (ED)	<t(det.)> (DAYS)</t(det.)>	AREA ON FAILURE	(AREA ON DET.)/L	(3M. RADTi)/L	(6M. RADTi)/L	(12M. RADTi)/L	(24M. RADTi/L)	(36M. RADTi)/L	P _d (1M)	<t(det.)> (DAYS)</t(det.)>	AREA ON FAILURE	(AREA ON DET.)/L	(3M. RADTi)/L	(6M. RADTi)/L	(12M. RADTi)/L	(24M. RADTi/L)	(36M. RADTi)/L
	1	1.25	3.9	3790	0.21	0.03	0.03	0.03	0.04	0.04	0.05	3.8	3826	0.21	0.03	0.03	0.03	0.04	0.04	0.05
	2	1.25	7.2	4296	0.20	0.04	0.04	0.04	0.04	0.04	0.05	7.2	4319	0.20	0.04	0.04	0.04	0.04	0.04	0.05
	3	1.25	9.4	3999	0.21	0.03	0.03	0.04	0.04	0.04	0.05	9.3	4028	0.21	0.03	0.03	0.04	0.04	0.04	0.05
0.001	4	1.25	13.3 20.0	3962	0.21	0.03	0.04	0.04	0.04	0.04	0.05	13.2	3980	0.21	0.03	0.04	0.04	0.04	0.04	0.05
	0 8	1.25	20.9	4104	0.20	0.03	0.03	0.04	0.04	0.04	0.05	20.7	4100 /180	0.20	0.03	0.04	0.04	0.04	0.04	0.05
	12	1.25	35.6	4093	0.21	0.03	0.03	0.04	0.04	0.04	0.05	35.2	4109	0.21	0.03	0.03	0.04	0.04	0.04	0.05
	20	1.25	54.9	4095	0.22	0.03	0.03	0.03	0.04	0.04	0.05	54.4	4116	0.22	0.03	0.03	0.03	0.04	0.04	0.05
	1	1.00	5.0	3389	0.80	0.13	0.13	0.14	0.15	0.17	0.19	4.7	3373	0.80	0.13	0.13	0.14	0.15	0.17	0.19
	2	1.00	9.0	3282	0.79	0.13	0.13	0.14	0.15	0.17	0.20	8.6	3293	0.79	0.13	0.13	0.14	0.15	0.17	0.19
	3	1.00	13.5	3355	0.80	0.13	0.13	0.14	0.15	0.17	0.19	12.9	3356	0.80	0.13	0.13	0.14	0.15	0.17	0.19
0.01	4	1.00	16.9	3359	0.80	0.13	0.13	0.14	0.15	0.17	0.19	16.3	3349	0.80	0.13	0.13	0.14	0.15	0.17	0.19
	6 0	1.00	24.2	3261	0.78	0.13	0.13	0.14	0.15	0.17	0.20	23.0	3241	0.78	0.13	0.13	0.14	0.15	0.17	0.19
	0 12	1.00	55.2 45.8	3200	0.79	0.15	0.13	0.14	0.15	0.17	0.19	51.0 ЛЛ Л	3209	0.79	0.12	0.13	0.13	0.14	0.17	0.19
	20	1.00	61.6	3308	0.79	0.12	0.13	0.13	0.15	0.17	0.19	59.9	3301	0.79	0.12	0.13	0.13	0.13	0.17	0.19
	1	0.50	5.7	1974	1.20	0.11	0.12	0.13	0.14	0.18	0.21	5.4	1997	1.20	0.11	0.12	0.13	0.14	0.18	0.21
	2	0.50	9.7	2045	1.20	0.11	0.12	0.13	0.14	0.17	0.21	9.3	2062	1.20	0.11	0.12	0.13	0.14	0.17	0.20
	3	0.50	14.8	2089	1.20	0.12	0.12	0.13	0.15	0.18	0.21	14.0	2095	1.20	0.12	0.12	0.13	0.15	0.18	0.21
0.02	4	0.50	18.9	1982	1.20	0.11	0.12	0.13	0.14	0.17	0.21	18.2	1991	1.19	0.11	0.12	0.13	0.14	0.17	0.21
	6	0.50	28.1	2046	1.18	0.11	0.12	0.13	0.14	0.18	0.21	26.9	2057	1.19	0.11	0.12	0.13	0.14	0.17	0.21
	8 12	0.50	36.7	2003	1.20	0.11	0.12	0.13	0.14	0.17	0.21	35.3 19 1	2014	1.20	0.11	0.12	0.13	0.14	0.17	0.21
	20	0.50	69.1	2040	1.20	0.11	0.12	0.13	0.14	0.17	0.20	67.1	2055	1.20	0.11	0.12	0.13	0.14	0.17	0.20
	1	0.13	5.5	927	1.96	0.09	0.11	0.12	0.15	0.20	0.26	5.2	938	1.96	0.09	0.11	0.12	0.14	0.20	0.25
	2	0.13	11.3	1023	1.96	0.10	0.11	0.12	0.15	0.20	0.26	10.7	1046	1.96	0.10	0.11	0.13	0.15	0.21	0.26
	3	0.13	14.9	1029	1.96	0.10	0.11	0.12	0.15	0.20	0.25	14.5	1052	1.96	0.10	0.11	0.12	0.15	0.20	0.25
0.05	4	0.13	19.3	1057	1.97	0.10	0.11	0.12	0.15	0.20	0.26	18.4	1051	1.97	0.10	0.11	0.12	0.15	0.20	0.26
	6	0.13	31.8	1093	1.97	0.10	0.11	0.12	0.15	0.20	0.26	30.4	1115	1.96	0.10	0.11	0.13	0.15	0.20	0.26
	8 12	0.13	40.1 57.6	1018	1.97	0.10	0.11	0.12	0.15	0.20	0.25	38.0 55.4	1039	1.97	0.10	0.11	0.12	0.15	0.20	0.25
	20	0.13	81.6	1050	1.98	0.10	0.11	0.12	0.13	0.20	0.20	79.6	1054	1.98	0.10	0.11	0.12	0.15	0.20	0.20
	1	0.063	6.1	763	2.68	0.12	0.15	0.17	0.21	0.30	0.39	5.6	760	2.68	0.12	0.14	0.17	0.21	0.30	0.39
	2	0.063	10.3	726	2.68	0.12	0.14	0.16	0.20	0.28	0.36	9.5	735	2.68	0.12	0.14	0.16	0.20	0.28	0.36
	3	0.063	15.8	735	2.68	0.12	0.14	0.16	0.20	0.28	0.37	14.3	724	2.68	0.12	0.14	0.16	0.20	0.28	0.37
0.10	4	0.063	19.9	766	2.69	0.12	0.14	0.16	0.20	0.29	0.37	18.6	795	2.69	0.12	0.14	0.16	0.20	0.29	0.37
	6	0.063	29.7	737	2.67	0.12	0.14	0.16	0.20	0.29	0.37	27.1	748	2.68	0.12	0.14	0.16	0.20	0.29	0.37
	8 12	0.063	40.0 57.6	754	2.70	0.12	0.14	0.16	0.20	0.29	0.37	50.5	758	2.70	0.12	0.14	0.16	0.20	0.28	0.37
	20	0.063	80.8	736	2.65	0.12	0.14	0.10	0.20	0.29	0.37	76.9	738	2.67	0.12	0.14	0.10	0.20	0.29	0.37
	1	0.015	4.1	435	3.41	0.14	0.18	0.22	0.29	0.43	0.57	3.4	411	3.41	0.13	0.17	0.21	0.28	0.42	0.55
	2	0.015	8.4	399	3.41	0.12	0.16	0.20	0.27	0.40	0.53	7.3	398	3.41	0.12	0.15	0.19	0.26	0.39	0.53
	3	0.015	12.1	401	3.41	0.12	0.16	0.20	0.27	0.40	0.54	10.6	388	3.41	0.12	0.15	0.19	0.26	0.39	0.53
0.20	4	0.015	15.2	433	3.42	0.12	0.16	0.19	0.26	0.40	0.53	13.3	410	3.42	0.11	0.15	0.18	0.25	0.39	0.53
	6	0.015	23.3	411	3.41	0.12	0.16	0.19	0.26	0.40	0.54	20.1	408	3.42	0.11	0.15	0.19	0.26	0.39	0.53
	8 17	0.015	31.3	400	3.42	0.12	0.16	0.19	0.26	0.40	0.53	27.7	387	3.42	0.12	0.15	0.19	0.26	0.39	0.52
	20	0.015	40.2 65 3	413 410	১.43 २⊿२	0.12	0.10	0.19	0.20	0.40	0.53	40.4 58 8	202 222	১. 44 २.∆२	0.11	0.15	0.18	0.25	0.39	0.52
	1	0.015	1.9	195	4.25	0.12	0.21	0.29	0.42	0.67	0.90	1.4	158	4.25	0.11	0.19	0.26	0.39	0.63	0.86
	2	0.015	4.4	137	4.25	0.10	0.19	0.26	0.40	0.65	0.90	3.7	132	4.25	0.10	0.19	0.26	0.40	0.65	0.90
	3	0.015	6.4	135	4.25	0.10	0.18	0.25	0.39	0.63	0.86	5.4	125	4.25	0.09	0.17	0.24	0.38	0.62	0.85
0.50	4	0.015	8.2	145	4.25	0.08	0.17	0.25	0.39	0.64	0.88	7.1	150	4.26	0.09	0.17	0.24	0.38	0.63	0.87
-	6	0.015	12.5	135	4.25	0.10	0.18	0.26	0.40	0.65	0.89	10.6	145	4.26	0.10	0.18	0.26	0.40	0.64	0.88
	8	0.015	16.5	139	4.26	0.10	0.18	0.25	0.39	0.63	0.87	14.3	148	4.26	0.10	0.18	0.25	0.39	0.62	0.85
	20	0.015	24.9 34 6	135 135	4.27 4.27	0.10	0.18	0.25	0.40	0.64	0.88	21.0 30.8	148 145	4.20 4.27	0.10	0.18	0.25	0.39	0.64	0.87

Table B.17: Detection probability, average detection time, contaminated area in case of detection failure and relative contaminated area to
control area for various RADTi in case of $\sigma_{\ln K}^2 = 1.5$ assuming bimonthly (2M) and quarterly (3M) sampling frequencies

	σ^{2}_{lnK}										1.50									
աղ(m)	мои	nfds(max)	P _d (2M)	<t(det.)> (DAYS)</t(det.)>	area on failure	(AREA ON DET.)/L	(3M. RADTi)/L	(6M. RADTi)/L	(12M. RADTi)/L	(24M. RADTi/L)	(36M. RADTi)/L	P _d (3M)	<t(det.)> (DAYS)</t(det.)>	area on failure	(AREA ON DET.)/L	(3M. RADTi)/L	(6M. RADTi)/L	(12M. RADTi)/L	(24M. RADTi/L)	(36M. RADTi)/L
	1	1.25	3.8	3851	0.21	0.03	0.03	0.03	0.04	0.04	0.05	3.8	3864	0.21	0.03	0.03	0.03	0.04	0.04	0.05
	2	1.25	7.1	4356	0.21	0.04	0.04	0.04	0.04	0.04	0.05	7.0	4416	0.21	0.04	0.04	0.04	0.04	0.05	0.05
	3 4	1.25	9.2 13.1	4048	0.21	0.03	0.03	0.04	0.04	0.04	0.05	9.1 12.7	4044	0.21	0.03	0.03	0.04	0.04	0.04	0.05
0.001	6	1.25	20.4	4218	0.21	0.03	0.04	0.04	0.04	0.04	0.05	19.9	4270	0.21	0.03	0.04	0.04	0.04	0.04	0.05
	8	1.25	24.8	4222	0.21	0.03	0.03	0.04	0.04	0.04	0.05	24.4	4256	0.21	0.03	0.03	0.04	0.04	0.04	0.05
	12	1.25	34.9	4136	0.21	0.03	0.03	0.04	0.04	0.04	0.05	34.3	4165	0.21	0.03	0.04	0.04	0.04	0.04	0.05
·	20	1.25	54.0	4137	0.22	0.03	0.03	0.04	0.04	0.04	0.05	52.8	4179	0.23	0.03	0.03	0.04	0.04	0.04	0.05
	2	1.00	4.7 8.3	3326	0.80	0.13	0.13	0.14	0.15	0.17	0.19	4.0 8.2	3369	0.80	0.13	0.13	0.14	0.15	0.17	0.19
	3	1.00	12.7	3355	0.80	0.13	0.13	0.14	0.15	0.17	0.19	12.4	3409	0.80	0.13	0.13	0.14	0.15	0.17	0.19
0.01	4	1.00	15.8	3366	0.80	0.13	0.13	0.14	0.14	0.17	0.19	15.7	3376	0.79	0.13	0.13	0.14	0.15	0.17	0.19
0.01	6	1.00	22.4	3265	0.79	0.13	0.13	0.14	0.15	0.17	0.19	21.9	3285	0.79	0.13	0.13	0.14	0.15	0.17	0.19
	8	1.00	30.9	3290	0.79	0.12	0.13	0.13	0.14	0.17	0.19	30.7	3306	0.79	0.13	0.13	0.14	0.15	0.17	0.19
	20	1.00	43.4 59.0	3315	0.79	0.12	0.13	0.13	0.15	0.17	0.19	45.0 58.8	3326	0.79	0.15	0.13	0.14	0.15	0.17	0.19
·	1	0.50	5.4	2016	1.20	0.12	0.12	0.13	0.15	0.18	0.21	5.3	2003	1.20	0.12	0.12	0.13	0.15	0.18	0.21
	2	0.50	9.2	2072	1.20	0.11	0.12	0.13	0.14	0.17	0.21	9.0	2098	1.20	0.11	0.12	0.13	0.14	0.17	0.21
	3	0.50	13.6	2097	1.20	0.12	0.13	0.13	0.15	0.18	0.21	13.5	2110	1.20	0.12	0.13	0.13	0.15	0.18	0.21
0.02	4	0.50	17.8	2023	1.20	0.11	0.12	0.13	0.14	0.17	0.21	17.4	2038	1.20	0.11	0.12	0.13	0.14	0.17	0.21
	8	0.50	34.3	2071	1.19	0.11	0.12	0.13	0.14	0.18	0.21	33.8	2098	1.19	0.11	0.12	0.13	0.15	0.18	0.21
	12	0.50	47.5	2067	1.20	0.11	0.12	0.13	0.14	0.17	0.21	46.8	2086	1.20	0.11	0.12	0.13	0.14	0.17	0.21
	20	0.50	66.2	2073	1.17	0.11	0.12	0.13	0.14	0.17	0.21	65.5	2084	1.18	0.11	0.12	0.13	0.14	0.17	0.21
	1	0.13	5.1	946	1.96	0.09	0.11	0.12	0.15	0.20	0.26	4.9	982	1.96	0.10	0.11	0.12	0.15	0.20	0.25
	2	0.13	10.4	1059	1.96	0.10	0.12	0.13	0.16	0.21	0.27	10.4	1059	1.96	0.10	0.12	0.13	0.16	0.21	0.27
	4	0.13	14.2	1050	1.90	0.10	0.11	0.12	0.15	0.20	0.25	17.6	1092	1.97	0.10	0.11	0.12	0.15	0.20	0.25
0.05	6	0.13	29.5	1135	1.96	0.10	0.11	0.13	0.15	0.20	0.26	29.6	1145	1.96	0.10	0.12	0.13	0.16	0.21	0.26
	8	0.13	37.8	1047	1.97	0.10	0.11	0.12	0.15	0.20	0.26	37.4	1071	1.97	0.10	0.11	0.13	0.15	0.20	0.26
	12	0.13	54.4	1040	1.96	0.10	0.11	0.12	0.15	0.20	0.26	53.7	1064	1.96	0.10	0.11	0.13	0.15	0.20	0.26
	20	0.13	78.3 5.4	779	2.68	0.10	0.11	0.12	0.15	0.20	0.26	<u>78.0</u> 5.3	774	2.68	0.10	0.11	0.12	0.15	0.20	0.26
	2	0.063	9.1	735	2.68	0.12	0.14	0.16	0.20	0.28	0.36	8.8	773	2.68	0.12	0.14	0.16	0.20	0.27	0.36
	3	0.063	13.9	734	2.68	0.12	0.14	0.16	0.20	0.28	0.37	13.6	739	2.68	0.12	0.14	0.16	0.20	0.29	0.37
0.10	4	0.063	18.1	797	2.69	0.12	0.14	0.17	0.21	0.29	0.37	17.5	809	2.69	0.12	0.14	0.16	0.20	0.29	0.37
	6 8	0.063	26.3	761 760	2.68	0.12	0.14	0.16	0.20	0.29	0.37	25.2	761	2.68	0.12	0.14	0.16	0.20	0.28	0.37
	12	0.063	52.4	770	2.71	0.12	0.14	0.16	0.20	0.29	0.37	51.0	782	2.72	0.12	0.14	0.16	0.20	0.20	0.37
	20	0.063	75.5	743	2.68	0.12	0.14	0.16	0.20	0.29	0.38	73.8	756	2.70	0.12	0.14	0.16	0.20	0.29	0.37
	1	0.015	3.1	403	3.41	0.13	0.17	0.20	0.27	0.41	0.55	2.9	414	3.41	0.13	0.17	0.21	0.28	0.41	0.55
	2	0.015	7.0	413	3.41	0.12	0.16	0.19	0.26	0.39	0.52	6.8	405	3.41	0.12	0.16	0.19	0.26	0.39	0.53
	4	0.015	9.8 12.7	407	3.41	0.12	0.15	0.19	0.20	0.39	0.52	9.4 12.1	412	3.41	0.12	0.10	0.19	0.26	0.39	0.52
0.20	6	0.015	19.2	424	3.42	0.12	0.15	0.19	0.26	0.39	0.52	18.1	422	3.42	0.12	0.15	0.19	0.26	0.39	0.52
	8	0.015	25.9	392	3.42	0.12	0.15	0.19	0.25	0.38	0.52	25.4	411	3.42	0.12	0.16	0.19	0.26	0.39	0.52
	12	0.015	38.4	400	3.44	0.12	0.15	0.18	0.25	0.38	0.52	37.3	415	3.44	0.12	0.16	0.19	0.26	0.39	0.52
	20	0.015	56.8 1.4	397 180	3.44	0.11	0.15	0.18	0.25	0.39	0.52	54.8	203	3.45	0.12	0.15	0.19	0.25	0.39	0.52
	2	0.015	3.4	137	4.25	0.12	0.20	0.27	0.40	0.66	0.90	3.2	153	4.25	0.13	0.20	0.20	0.41	0.65	0.89
	3	0.015	5.1	142	4.25	0.11	0.18	0.25	0.38	0.61	0.84	4.7	160	4.25	0.12	0.19	0.25	0.38	0.60	0.83
0.50	4	0.015	6.8	173	4.26	0.11	0.18	0.25	0.39	0.63	0.86	6.3	194	4.26	0.12	0.19	0.26	0.38	0.62	0.85
	6	0.015	9.9	160	4.26	0.12	0.19	0.26	0.40	0.64	0.88	9.1	161	4.26	0.13	0.20	0.27	0.40	0.64	0.87
	8 12	0.015	13.2 19.9	161 166	4.26 4 27	0.12	0.19	0.26	0.39	0.62	0.85 0.87	12.2 18.0	175 189	4.26 4 27	0.12	0.20	0.26	0.39 0.39	0.62	0.84 0.86
	20	0.015	29.6	160	4.27	0.11	0.19	0.26	0.40	0.64	0.88	27.4	174	4.28	0.12	0.20	0.26	0.39	0.63	0.87

Table B.18: Detection probability, average detection time, contaminated area in case of detection failure and relative contaminated area to control area *L* for various RADTi in case of $\sigma_{\ln K}^2 = 1.5$ assuming every 4 months (4M) and biannually (6M) sampling frequencies

	σ^{2}_{lnK}										1.50									
α _τ (m)	wou	nfds(max)	P _d (4M)	<t(per.)> (DAYS)</t(per.)>	area on failure	(AREA ON DET.)/L	(3M. RADTi)/L	(6M. RADTi)/L	(12M. RADTi)/L	(24M. RADTi/L)	(36M. RADTi)/L	P _d (6M)	<t(per.)> (DAYS)</t(per.)>	area on failure	(AREA ON DET.)/L	(3M. RADTi)/L	(6M. RADTi)/L	(12M. RADTi)/L	(24M. RADTi/L)	(36M. RADTi)/L
	1	1.25	3.7	3926	0.21	0.03	0.03	0.04	0.04	0.04	0.05	3.3	4062	0.21	0.03	0.04	0.04	0.04	0.04	0.05
	2	1.25	6.7	4484	0.21	0.04	0.04	0.04	0.04	0.05	0.05	6.4	4522	0.21	0.04	0.04	0.04	0.04	0.05	0.05
	3	1.25	8.8	4101	0.21	0.03	0.03	0.04	0.04	0.04	0.05	8.0	4226	0.21	0.03	0.04	0.04	0.04	0.04	0.05
0.001	4	1.25	12.7 10 E	4094	0.21	0.04	0.04	0.04	0.04	0.04	0.05	11.5	4274	0.21	0.04	0.04	0.04	0.04	0.05	0.05
	8	1.25	23.5	4320	0.21	0.04	0.04	0.04	0.04	0.04	0.05	21.9	4419	0.21	0.04	0.04	0.04	0.04	0.04	0.05
	12	1.25	33.8	4214	0.21	0.03	0.04	0.04	0.04	0.04	0.05	31.0	4370	0.22	0.04	0.04	0.04	0.04	0.04	0.05
	20	1.25	52.3	4217	0.23	0.03	0.03	0.04	0.04	0.04	0.05	48.1	4351	0.23	0.03	0.04	0.04	0.04	0.04	0.05
	1	1.00	4.6	3411	0.80	0.13	0.13	0.14	0.15	0.17	0.19	4.3	3558	0.80	0.13	0.13	0.14	0.15	0.17	0.19
	2	1.00	7.9	3397	0.79	0.13	0.13	0.14	0.15	0.17	0.19	7.8	3433	0.79	0.13	0.14	0.14	0.15	0.17	0.20
	3	1.00	12.2	3425	0.80	0.13	0.13	0.14	0.15	0.17	0.19	11.4	3497	0.80	0.13	0.13	0.14	0.15	0.17	0.19
0.01	4 6	1.00	21.4	3319	0.80	0.13	0.13	0.14	0.15	0.17	0.19	20.7	3345	0.80	0.13	0.13	0.14	0.15	0.17	0.19
	8	1.00	30.0	3348	0.80	0.13	0.13	0.14	0.15	0.17	0.19	28.7	3374	0.80	0.13	0.13	0.14	0.15	0.17	0.19
	12	1.00	42.3	3392	0.79	0.13	0.13	0.14	0.15	0.17	0.19	40.1	3437	0.80	0.13	0.13	0.14	0.15	0.17	0.19
	20	1.00	57.7	3345	0.79	0.12	0.13	0.13	0.15	0.17	0.19	56.2	3402	0.80	0.13	0.13	0.14	0.15	0.17	0.19
	1	0.50	5.2	2023	1.20	0.12	0.12	0.13	0.15	0.18	0.22	4.6	2160	1.20	0.12	0.12	0.13	0.15	0.18	0.21
	2	0.50	8.9	2133	1.20	0.11	0.12	0.13	0.15	0.18	0.21	8.3	2202	1.20	0.12	0.12	0.13	0.15	0.18	0.21
	2 2	0.50	17.2	2125	1.20	0.12	0.15	0.13	0.15	0.18	0.21	16.2	2197	1.20	0.12	0.15	0.15	0.15	0.18	0.21
0.02	6	0.50	25.8	2109	1.19	0.12	0.12	0.13	0.15	0.18	0.21	24.5	2195	1.20	0.12	0.12	0.13	0.15	0.18	0.21
	8	0.50	33.2	2066	1.21	0.11	0.12	0.13	0.14	0.17	0.21	31.6	2120	1.21	0.12	0.12	0.13	0.15	0.18	0.21
	12	0.50	46.2	2109	1.21	0.11	0.12	0.13	0.14	0.17	0.21	43.6	2177	1.22	0.12	0.12	0.13	0.15	0.18	0.21
	20	0.50	64.8	2100	1.18	0.11	0.12	0.13	0.14	0.18	0.21	62.7	2157	1.21	0.11	0.12	0.13	0.15	0.18	0.21
	1	0.13	4.8	990	1.96	0.10	0.11	0.12	0.15	0.20	0.25	4.6	1056	1.96	0.10	0.11	0.12	0.15	0.20	0.25
	2	0.13	13.8	104	1.96	0.11	0.12	0.13	0.16	0.21	0.27	9.7	1128	1.96	0.11	0.12	0.13	0.16	0.21	0.27
	4	0.13	17.4	1097	1.97	0.10	0.12	0.12	0.15	0.20	0.26	16.5	1134	1.97	0.10	0.12	0.13	0.15	0.20	0.26
0.05	6	0.13	28.3	1178	1.97	0.11	0.12	0.13	0.16	0.21	0.26	27.4	1223	1.97	0.11	0.12	0.13	0.16	0.21	0.26
	8	0.13	36.9	1084	1.97	0.10	0.11	0.13	0.15	0.20	0.26	35.1	1118	1.98	0.10	0.12	0.13	0.15	0.21	0.26
	12	0.13	52.7	1085	1.97	0.10	0.11	0.13	0.15	0.20	0.26	50.5	1124	1.98	0.11	0.12	0.13	0.15	0.21	0.26
	20	0.13	76.8	200	2.02	0.10	0.11	0.12	0.15	0.20	0.26	/4.0	952	2.03	0.10	0.11	0.13	0.15	0.20	0.26
	2	0.063	5.1 8.5	809 777	2.68	0.13	0.13	0.17	0.21	0.28	0.39	4.0 8.1	830	2.68	0.13	0.15	0.17	0.21	0.28	0.39
	3	0.063	13.2	761	2.68	0.12	0.14	0.16	0.20	0.28	0.37	12.4	811	2.68	0.13	0.15	0.16	0.20	0.29	0.37
0 10	4	0.063	17.1	838	2.69	0.13	0.15	0.17	0.21	0.29	0.37	16.0	870	2.70	0.13	0.15	0.17	0.21	0.28	0.37
0.10	6	0.063	24.6	797	2.68	0.13	0.14	0.16	0.20	0.29	0.37	23.0	842	2.69	0.13	0.15	0.16	0.20	0.28	0.37
	8	0.063	33.4	784	2.70	0.13	0.14	0.16	0.20	0.29	0.37	31.5	813	2.71	0.13	0.15	0.17	0.20	0.28	0.37
	20	0.063	49.8 72.4	804 773	2.72	0.13	0.15	0.17	0.21	0.29	0.37	46.2 68 7	839 808	2.74	0.13	0.15	0.17	0.20	0.28	0.37
	1	0.015	2.8	422	3.41	0.14	0.17	0.21	0.21	0.41	0.55	2.5	423	3.41	0.14	0.17	0.21	0.21	0.41	0.55
	2	0.015	6.4	419	3.41	0.13	0.16	0.19	0.26	0.39	0.52	5.8	468	3.42	0.13	0.16	0.19	0.26	0.38	0.51
	3	0.015	8.8	433	3.42	0.12	0.16	0.19	0.25	0.38	0.51	8.2	465	3.42	0.13	0.17	0.20	0.26	0.39	0.52
0.20	4	0.015	11.5	442	3.43	0.12	0.16	0.19	0.25	0.39	0.52	10.4	480	3.43	0.13	0.17	0.20	0.26	0.39	0.52
	6 0	0.015	17.1	451	3.42	0.12	0.16	0.19	0.25	0.38	0.52	15.6 21.6	493	3.43	0.13	0.16	0.19	0.26	0.38	0.51
	12	0.015	35.0	430	3.45	0.13	0.16	0.19	0.20	0.38	0.51	31.7	405	3.45	0.13	0.17	0.20	0.20	0.38	0.51
	20	0.015	52.1	430	3.46	0.12	0.16	0.19	0.26	0.39	0.52	47.6	475	3.47	0.13	0.16	0.19	0.26	0.38	0.51
	1	0.015	1.2	216	4.25	0.15	0.21	0.28	0.40	0.62	0.85	0.9	282	4.25	0.17	0.23	0.28	0.39	0.62	0.84
	2	0.015	2.9	182	4.25	0.14	0.21	0.28	0.40	0.64	0.88	2.1	217	4.25	0.15	0.21	0.26	0.37	0.58	0.80
	3	0.015	4.4	185	4.25	0.13	0.20	0.26	0.38	0.60	0.82	3.3	243	4.25	0.15	0.20	0.25	0.36	0.56	0.76
0.50	4 6	0.015	5.6 o_∕	229	4.26	0.13	0.19	0.25	0.37	0.60	0.82	4.6 6 2	290	4.26 1 26	U.15	0.20	0.26	0.36	0.57	U./8 0.77
	8	0.015	0.4 11 0	209 193	4.20 4.26	0.14	0.21	0.27	0.39	0.61	0.87	0.2 8.6	241 259	4.20	0.15	0.20	0.20	0.30	0.57	0.77
	12	0.015	16.3	207	4.27	0.14	0.20	0.26	0.39	0.62	0.84	13.0	270	4.27	0.15	0.21	0.26	0.37	0.59	0.80
	20	0.015	24.9	205	4.28	0.14	0.20	0.27	0.39	0.63	0.85	20.4	255	4.28	0.15	0.21	0.27	0.38	0.60	0.81

 σ^{2}_{lnK} 1.50 **AREA ON FAILURE** AREA ON DET.)/I 24M. RADTI/L) (36M. RADTi)/L <T(DET.)> (DAYS) 12M. RADTi)/I RADTi)/I 6M. RADTi)/| P_d (12M) nfds(max) α_T(m) ЗN. Nou 1 1.25 4365 0.21 0.04 0.04 0.04 0.04 0.05 0.05 2.5 2 0.05 1.25 4.8 5115 0.21 0.04 0.04 0.04 0.05 0.05 3 1.25 6.1 4566 0.21 0.04 0.04 0.04 0.04 0.05 0.05 4 1.25 8.2 4677 0.21 0.04 0.04 0.04 0.05 0.05 0.05 0.001 6 1.25 4879 0.04 0.04 0.04 0.04 0.05 0.05 13.7 0.21 8 16.2 4945 0.04 0.04 0.04 0.04 0.05 0.05 1.25 0.21 12 1.25 23.0 4770 0.22 0.04 0.04 0.04 0.04 0.05 0.05 20 1.25 36.0 4742 0.22 0.04 0.04 0.04 0.04 0.05 0.05 1.00 3.4 1 3896 0.80 0.13 0.14 0.14 0.15 0.18 0.20 2 1.00 6.1 3702 0.79 0.14 0.14 0.14 0.16 0.18 0.20 3 1.00 9.1 3902 0.80 0.14 0.14 0.14 0.15 0.17 0.20 4 0.80 0.14 0.17 1.00 11.6 3817 0.13 0.14 0.15 0.19 0.01 6 1.00 16.1 3662 0.80 0.13 0.14 0.14 0.15 0.18 0.20 8 0.13 0.14 0.14 0.17 1.00 22.4 3776 0.81 0.15 0.19 12 1.00 32.5 3769 0.82 0.13 0.13 0.14 0.15 0.17 0.19 20 1.00 3693 0.14 0.14 0.15 0.17 0.19 46.7 0.84 0.13 1 0.50 3.9 2397 1.20 0.12 0.13 0.13 0.15 0.18 0.21 2 0.50 6.8 2403 1.21 0.12 0.13 0.13 0.15 0.18 0.21 0.14 0.15 0.18 0.21 3 0.50 10.0 2411 1.20 0.12 0.13 4 0.18 0.50 12.7 2383 1.21 0.12 0.13 0.14 0.15 0.21 0.02 6 0.50 20.0 2385 1.21 0.12 0.13 0.14 0.15 0.18 0.21 8 0.50 25.2 2352 1.23 0.12 0.13 0.14 0.15 0.18 0.21 12 0.50 35.5 2414 1.24 0.12 0.13 0.14 0.15 0.18 0.21 0.13 0.15 20 0.50 52.8 2357 1.25 0.12 0.13 0.18 0.21 0.13 0.10 0.11 0.12 1 3.8 1197 1.96 0.15 0.20 0.25 2 0.13 8.1 1284 1.97 0.12 0.13 0.14 0.16 0.21 0.27 3 0.13 11.2 1285 1.97 0.11 0.12 0.13 0.15 0.20 0.25 4 0.13 13.6 1327 1.98 0.11 0.12 0.14 0.16 0.21 0.26 0.05 6 0.13 22.8 1386 1.99 0.12 0.13 0.14 0.16 0.21 0.26 8 0.16 0.13 29.2 1286 2.00 0.11 0.12 0.13 0.21 0.26 12 0.13 0.12 0.13 0.21 0.26 41.7 1297 2.02 0.11 0.16 20 0.13 63.3 1317 2.12 0.11 0.12 0.13 0.16 0.21 0.26 1 0.063 3.8 1020 2.68 0.15 0.16 0.18 0.22 0.30 0.38 2 0.063 6.3 973 0.17 0.28 0.35 2.69 0.14 0.15 0.21 3 0.063 9.9 970 2.68 0.14 0.16 0.17 0.21 0.29 0.37 4 0.063 11.9 1040 2.70 0.14 0.15 0.17 0.21 0.28 0.35 0.10 6 0.063 18.11003 2.70 0.14 0.15 0.17 0.21 0.28 0.36 8 0.21 0.28 0.36 0.063 25.0 972 2.72 0.14 0.16 0.17 12 0.063 35.5 996 2.76 0.14 0.16 0.17 0.21 0.28 0.36 20 0.063 53.2 959 2.81 0.14 0.15 0.17 0.21 0.28 0.36 0.21 1 0.015 1.5 650 3.42 0.16 0.19 0.26 0.37 0.47 2 0.015 4.0 619 3.42 0.15 0.17 0.20 0.25 0.36 0.48 3 0.015 5.3 647 3.43 0.15 0.17 0.20 0.25 0.35 0.46 4 0.015 7.2 0.20 0.25 648 3.43 0.15 0.17 0.36 0.48 0.20 6 0.015 10.5 670 0.15 0.17 0.20 0.25 0.36 0.47 3.43 8 0.015 14.4 616 3.44 0.15 0.18 0.20 0.25 0.36 0.48 12 0.015 21.5 657 3.47 0.15 0.18 0.20 0.26 0.36 0.48 20 0.015 32.9 3.50 0.18 0.20 0.26 0.49 641 0.15 0.37 1 0.015 0.4 486 4.25 0.17 0.25 0.33 0.49 0.67 0.21 0.015 2 1.2 375 4.25 0.19 0.23 0.28 0.37 0.56 0.75 3 0.015 1.7 416 4.25 0.17 0.21 0.25 0.33 0.49 0.67 4 0.015 2.4 496 4.26 0.18 0.22 0.26 0.34 0.51 0.69 0.50 6 0.015 3.3 409 4.26 0.18 0.22 0.26 0.35 0.52 0.69 8 0.015 4.2 414 4.26 0.18 0.22 0.26 0.34 0.51 0.69 12 0.015 6.4 468 0.27 0.35 4.27 0.19 0.23 0.52 0.69 20 0.015 9.9 432 4.28 0.18 0.22 0.26 0.35 0.52 0.70

Table B.19: Detection probability, average detection time, contaminated area in case of detection failure and relative contaminated area to control area *L* for various RADTi in case of $\sigma_{\ln K}^2 = 1.5$ assuming annually sampling frequency

 σ^{2}_{InK} 2.00 AREA ON FAILURE AREA ON DET.)/L **AREA ON FAILURE** AREA ON DET.)/I 36M. RADTi)/L (DAYS) (DAYS) 24M. RADTi/L) 12M. RADTi)/I 24M. RADTi/L 36M. RADTi)/I <T(DET.)> (DAYS) 12M. RADTi)/ 6M. RADTi)/I **3M. RADTi)/I** 6M. RADTi)/I 3M. RADTi)/ nfds(max) P_d (1M) (ED) α_τ(m) Nou P_a 0.04 0.37 0.03 0.04 0.75 3.4 3075 0.37 0.03 0.03 0.03 3089 0.03 0.03 0.03 0.04 1 0.02 0.04 3.4 2 0.36 0.75 6.8 2996 0.02 0.02 0.02 0.03 0.03 0.04 6.7 2999 0.36 0.02 0.02 0.03 0.03 0.03 0.04 3 0.75 9.2 3015 0.36 0.02 0.02 0.03 0.03 0.03 0.04 9.1 3040 0.36 0.02 0.02 0.03 0.03 0.03 0.04 4 0.75 11.9 3002 0.37 0.03 0.03 0.03 0.03 0.04 0.04 11.8 3016 0.37 0.03 0.03 0.03 0.03 0.04 0.04 0.001 6 0.75 19.3 3114 0.37 0.02 0.03 0.03 0.03 0.03 0.04 18.9 3144 0.37 0.03 0.03 0.03 0.03 0.03 0.04 8 0.75 24.3 3020 0.38 0.03 0.03 0.03 0.03 0.04 23.9 3052 0.38 0.02 0.03 0.03 0.03 0.03 0.04 0.02 12 0.75 34.2 3028 0.35 0.02 0.03 0.03 0.03 0.03 0.04 33.6 3059 0.36 0.02 0.03 0.03 0.03 0.04 0.04 20 52.3 0.75 53.1 3008 0.35 0.02 0.03 0.03 0.03 0.03 0.04 3019 0.35 0.02 0.03 0.03 0.03 0.03 0.04 0.50 0.13 1 5.3 2322 1.07 0.08 0.09 0.09 0.10 0.13 0.15 5.1 2327 1.07 0.08 0.09 0.09 0.10 0.15 2 0.50 8.0 2188 1.07 0.08 0.08 0.09 0.10 0.12 0.15 7.9 2211 1.07 0.08 0.08 0.09 0.10 0.12 0.15 3 0.50 14.2 2294 1.07 0.08 0.08 0.09 0.10 0.12 0.15 13.9 2309 1.07 0.08 0.08 0.09 0.10 0.12 0.15 4 0.50 16.8 2382 1.07 0.08 0.08 0.09 0.10 0.12 0.15 16.5 2396 1.07 0.08 0.08 0.09 0.10 0.12 0.15 0.01 1.07 6 0.50 23.8 2317 0.08 0.08 0.09 0.10 0.12 0.15 23.2 2331 1.07 0.08 0.08 0.09 0.10 0.12 0.15 8 0.50 0.08 0.08 0.09 0.10 0.15 31.6 2296 1.08 0.08 0.08 0.09 32.3 2265 1.07 0.12 0.10 0.12 0.15 12 45.8 2331 0.12 0.15 0.50 46.8 2308 1.05 0.08 0.08 0.09 0.10 0.12 0.15 1.05 0.08 0.08 0.09 0.10 20 0.50 64.7 0.08 0.09 0.10 63.4 0.07 0.09 0.12 0.14 2297 1.04 0.12 0.14 2303 1.03 0.08 0.10 0.07 1 0.25 5.0 1642 1.52 0.08 0.08 0.09 0.11 0.14 0.17 4.9 1666 1.52 0.08 0.08 0.09 0.11 0.14 0.17 2 0.25 10.4 1514 1.51 0.08 0.09 0.10 0.11 0.15 0.19 10.0 1544 1.52 0.08 0.09 0.10 0.11 0.15 0.19 3 0.25 13.5 1609 0.08 0.14 0.17 13.0 0.08 0.11 0.14 0.17 1.52 0.08 0.09 0.11 1621 1.52 0.08 0.09 4 0.25 17.7 1585 1.53 0.08 0.09 0.09 0.11 0.14 0.18 17.2 1619 1.53 0.08 0.09 0.10 0.11 0.15 0.18 0.02 6 0.25 28.0 1.53 0.08 0.09 0.10 0.15 0.18 27.1 1607 1.53 0.08 0.09 0.10 0.11 0.15 0.18 1585 0.11 8 0.25 36.7 1593 1.53 0.08 0.09 0.09 0.11 0.14 0.18 35.3 1607 1.53 0.08 0.09 0.09 0.11 0.14 0.18 50.6 0.08 0.09 0.15 12 0.25 1566 1.51 0.08 0.09 0.11 0.14 0.18 49.1 1585 1.52 0.08 0.09 0.11 0.18 20 0.25 71.7 1550 1.49 0.07 0.08 0.09 0.11 0.14 0.18 70.2 1562 1.49 0.07 0.08 0.09 0.11 0.14 0.18 1 0.13 5.1 1084 2.32 0.11 0.12 0.14 0.17 0.23 0.29 4.9 1076 2.32 0.11 0.13 0.14 0.17 0.23 0.29 2 10.6 1139 2.31 0.12 0.14 0.17 0.23 0.30 9.9 1155 2.31 0.11 0.12 0.16 0.23 0.29 0.13 0.11 0.13 3 14.0 1034 2.32 0.12 0.13 0.16 0.22 0.28 13.4 1045 2.32 0.10 0.12 0.13 0.16 0.22 0.29 0.13 0.10 4 0.13 19.9 1133 2.32 0.10 0.12 0.13 0.16 0.22 0.28 19.2 1138 2.32 0.10 0.12 0.13 0.16 0.22 0.28 0.05 28.3 6 0.13 29.8 1168 2.32 0.11 0.12 0.14 0.17 0.23 0.29 1171 2.32 0.11 0.12 0.13 0.16 0.22 0.29 8 40.4 0.29 38.3 0.22 0.29 0.13 1065 2.30 0.10 0.12 0.13 0.16 0.22 1087 2.31 0.10 0.12 0.13 0.16 12 0.13 56.4 1066 2.29 0.10 0.11 0.13 0.16 0.22 0.28 54.2 1076 2.30 0.10 0.12 0.13 0.16 0.22 0.28 20 0.13 76.9 1079 2. .22 0.10 0 .11 0.13 0.16 0.22 0.28 74.8 1096 2 .25 0.10 0.11 0.13 0.16 0.22 0.28 4.6 0.16 0.063 4.9 818 3.02 0.12 0.14 0.16 0.21 0.30 0.39 861 3.02 0.12 0.14 0.20 0.29 0.39 1 0.22 2 0.063 0.16 0.18 0.23 0.42 9.6 762 3.02 0.13 0.15 0.17 0.32 10.3 801 3.02 0.13 0.32 0.42 3 0.063 14.7 793 799 3.02 0.12 0.15 0.17 0.22 0.31 0.41 13.7 3.02 0.12 0.14 0.17 0.21 0.31 0.41 4 0.063 19.2 751 3.01 0.12 0.15 0.17 0.22 0.32 0.42 17.9 773 3.01 0.12 0.15 0.17 0.22 0.31 0.42 0.10 6 0.063 28.9 781 3.03 0.13 0.15 0.17 0.22 0.42 26.6 758 3.02 0.12 0.15 0.17 0.22 0.31 0.41 0.32 8 0.063 37.5 791 3.02 0.12 0.15 0.17 0.22 0.31 0.42 34.7 802 3.02 0.13 0.15 0.17 0.22 0.31 0.42 12 0.063 54.5 763 3.00 0.12 0.14 0.17 0.21 0.31 0.41 50.4 767 3.01 0.12 0.14 0.17 0.21 0.31 0.41 74.7 20 0.063 737 2.96 0.12 0.14 0.16 0.21 0.31 0.41 71.1 743 2.98 0.12 0.14 0.16 0.21 0.31 0.41 1 0.015 3.8 505 3.69 0.12 0.16 0.19 0.26 0.40 0.54 3.5 499 3.69 0.12 0.15 0.19 0.26 0.39 0.53 2 0.015 7.8 438 0.12 0.16 0.20 0.27 0.55 6.8 420 3.69 0.12 0.16 0.19 0.26 0.40 3.69 0.41 0.53 12.2 3.68 0.57 3 0.015 457 3.68 0.12 0.16 0.20 0.28 0.43 0.59 10.4 459 0.12 0.16 0.20 0.27 0.42 4 0.015 15.5 414 3.67 0.12 0.16 0.20 0.28 0.60 13.2 399 3.68 0.11 0.15 0.19 0.27 0.42 0.58 0.44 0.20 6 0.015 22.0 419 3.68 0.12 0.16 0.20 0.28 0.42 0.58 19.0 408 3.69 0.12 0.16 0.20 0.27 0.42 0.56 8 0.015 29.2 432 3.68 0.12 0.16 0.20 0.28 0.43 0.58 24.8 418 3.68 0.11 0.15 0.19 0.26 0.41 0.56 44.0 391 12 3.65 0.12 0.16 0.19 0.27 0.42 0.57 38.2 385 3.67 0.11 0.15 0.19 0.26 0.41 0.56 0.015 402 3.63 0.27 0.58 55.6 3.66 0.15 0.19 0.56 20 0.015 62.3 0.11 0.16 0.19 0.42 388 0.11 0.26 0.41 1 0.015 2.1 140 4.37 0.10 0.19 0.27 0.42 0.68 0.95 1.8 135 4.37 0.10 0.18 0.26 0.40 0.66 0.92 2 0.015 4.6 188 4.38 0.12 0.20 0.26 0.40 0.63 0.86 3.8 182 4.38 0.11 0.19 0.26 0.39 0.64 0.86 3 0.015 6.8 158 4.37 0.11 0.20 0.28 0.43 0.70 0.96 5.4 163 4.38 0.11 0.19 0.27 0.41 0.67 0.92 4 0.015 8.9 134 4.38 0.10 0.19 0.28 0.43 0.71 0.98 7.8 152 4.38 0.11 0.20 0.28 0.43 0.70 0.97 0.50 6 0.015 12.0 160 4.38 0.10 0.19 0.27 0.41 0.67 0.91 10.0 167 4.38 0.11 0.19 0.26 0.40 0.66 0.90 8 0.19 0.92 0.015 16.6 143 4.38 0.10 0.27 0.41 0.68 0.94 13.9 137 4.38 0.10 0.18 0.26 0.40 0.67 12 4.38 0.18 0.26 0.93 22.1 157 0.10 0.19 0.015 25.4 147 0.09 0.41 0.68 4.38 0.26 0.41 0.67 0.92 0.09 0.94 30.6 0.10 0.18 20 0.015 34.7 129 4.38 0.18 0.26 0.41 0.68 136 4.39 0.26 0.40 0.67 0.92

TableB.20: Detection probability, average detection time, contaminated area in case of detection failure and relative contaminated area to control area for various RADTi in case of $\sigma_{\ln K}^2 = 2.0$ assuming daily (ED) and monthly (1M) sampling frequencies

Table B.21: Detection probability, average detection time, contaminated area in case of detection failure and relative contaminated area tocontrol area for various RADTi in case of $\sigma_{\ln K}^2 = 2.0$ assuming bimonthly (2M) and quarterly (3M) sampling frequencies

	σ^{2}_{lnK}										2.00									
α ₁ (m)	мои	nfds(max)	P _d (2M)	<t(days)< th=""><th>AREA ON FAILURE</th><th>(AREA ON DET.)/L</th><th>(3M. RADTi)/L</th><th>(6M. RADTi)/L</th><th>(12M. RADTi)/L</th><th>(24M. RADTi/L)</th><th>(36M. RADTi)/L</th><th>P_d (3M)</th><th><t(days)< th=""><th>AREA ON FAILURE</th><th>(AREA ON DET.)/L</th><th>(3M. RADTi)/L</th><th>(6M. RADTi)/L</th><th>(12M. RADTi)/L</th><th>(24M. RADTi/L)</th><th>(36M. RADTi)/L</th></t(days)<></th></t(days)<>	AREA ON FAILURE	(AREA ON DET.)/L	(3M. RADTi)/L	(6M. RADTi)/L	(12M. RADTi)/L	(24M. RADTi/L)	(36M. RADTi)/L	P _d (3M)	<t(days)< th=""><th>AREA ON FAILURE</th><th>(AREA ON DET.)/L</th><th>(3M. RADTi)/L</th><th>(6M. RADTi)/L</th><th>(12M. RADTi)/L</th><th>(24M. RADTi/L)</th><th>(36M. RADTi)/L</th></t(days)<>	AREA ON FAILURE	(AREA ON DET.)/L	(3M. RADTi)/L	(6M. RADTi)/L	(12M. RADTi)/L	(24M. RADTi/L)	(36M. RADTi)/L
	1	0.75	3.3	3114	0.37	0.03	0.03	0.03	0.03	0.04	0.04	3.3	3103	0.37	0.03	0.03	0.03	0.03	0.04	0.04
	2	0.75	6.7	3035	0.36	0.02	0.02	0.03	0.03	0.03	0.04	6.4	3130	0.36	0.02	0.02	0.03	0.03	0.03	0.04
	3	0.75	8.8	3081	0.36	0.02	0.02	0.03	0.03	0.03	0.04	8.5	3162	0.36	0.02	0.02	0.03	0.03	0.03	0.04
0.001	4	0.75	11.5	3068	0.37	0.03	0.03	0.03	0.03	0.04	0.04	11.0	3119	0.37	0.03	0.03	0.03	0.03	0.04	0.04
	0	0.75	18.0	3192	0.37	0.03	0.03	0.03	0.03	0.03	0.04	18.1	3244	0.37	0.03	0.03	0.03	0.03	0.03	0.04
	12	0.75	32.4	3090	0.38	0.02	0.03	0.03	0.03	0.03	0.04	31.8	3151	0.38	0.02	0.03	0.03	0.03	0.03	0.04
	20	0.75	51.6	3053	0.35	0.02	0.03	0.03	0.03	0.03	0.04	49.9	3110	0.36	0.02	0.03	0.03	0.03	0.03	0.04
	1	0.50	5.1	2340	1.07	0.08	0.09	0.09	0.10	0.13	0.15	5.1	2368	1.07	0.08	0.09	0.09	0.10	0.13	0.15
	2	0.50	7.8	2245	1.08	0.08	0.08	0.09	0.10	0.12	0.15	7.7	2280	1.08	0.08	0.08	0.09	0.10	0.12	0.15
	3	0.50	13.8	2323	1.07	0.08	0.08	0.09	0.10	0.12	0.15	13.6	2345	1.07	0.08	0.09	0.09	0.10	0.13	0.15
0.01	4	0.50	16.2	2422	1.07	0.08	0.08	0.09	0.10	0.12	0.15	16.0	2453	1.07	0.08	0.08	0.09	0.10	0.12	0.15
	6	0.50	22.7	2359	1.08	0.08	0.08	0.09	0.10	0.12	0.15	22.5	2387	1.08	0.08	0.09	0.09	0.10	0.12	0.15
	8	0.50	31.1	2311	1.08	0.08	0.08	0.09	0.10	0.12	0.15	30.7	2337	1.08	0.08	0.08	0.09	0.10	0.12	0.15
	20	0.50	45.Z	2340	1.06	0.08	0.08	0.09	0.10	0.12	0.15	44.4 62.1	2307	1.07	0.08	0.08	0.09	0.10	0.12	0.15
	1	0.25	4.8	1694	1.52	0.08	0.09	0.09	0.11	0.12	0.17	4.7	1732	1.52	0.08	0.09	0.09	0.11	0.14	0.17
	2	0.25	9.7	1573	1.52	0.08	0.09	0.10	0.11	0.15	0.19	9.5	1579	1.52	0.08	0.09	0.10	0.11	0.15	0.19
	3	0.25	12.9	1645	1.52	0.08	0.09	0.09	0.11	0.14	0.17	12.7	1669	1.52	0.08	0.09	0.09	0.11	0.14	0.17
0.02	4	0.25	16.7	1604	1.53	0.08	0.09	0.10	0.11	0.14	0.18	16.7	1665	1.53	0.08	0.09	0.10	0.11	0.15	0.18
0.02	6	0.25	26.7	1630	1.54	0.08	0.09	0.10	0.11	0.15	0.18	26.0	1642	1.54	0.08	0.09	0.10	0.11	0.15	0.18
	8	0.25	34.5	1634	1.54	0.08	0.09	0.09	0.11	0.14	0.18	34.3	1642	1.54	0.08	0.09	0.10	0.11	0.15	0.18
	12	0.25	48.1	1592	1.53	0.08	0.09	0.09	0.11	0.15	0.18	47.6	1629	1.54	0.08	0.09	0.10	0.11	0.15	0.18
	1	0.23	47	1108	2 32	0.08	0.08	0.09	0.11	0.14	0.18	4.6	1114	2 32	0.08	0.08	0.09	0.11	0.14	0.18
	2	0.13	9.6	1163	2.31	0.11	0.12	0.14	0.17	0.23	0.29	9.4	1165	2.31	0.11	0.12	0.14	0.17	0.23	0.29
	3	0.13	13.0	1069	2.32	0.11	0.12	0.13	0.16	0.22	0.29	12.6	1081	2.32	0.11	0.12	0.14	0.17	0.23	0.29
0.05	4	0.13	18.9	1148	2.32	0.11	0.12	0.13	0.16	0.22	0.28	18.7	1171	2.32	0.11	0.12	0.13	0.16	0.22	0.28
0.05	6	0.13	27.8	1187	2.33	0.11	0.12	0.14	0.16	0.22	0.29	27.0	1200	2.33	0.11	0.12	0.14	0.16	0.22	0.29
	8	0.13	37.5	1103	2.32	0.11	0.12	0.13	0.16	0.22	0.29	37.1	1115	2.32	0.11	0.12	0.13	0.16	0.22	0.29
	12	0.13	53.1 72.0	1093	2.31	0.10	0.12	0.13	0.16	0.22	0.28	52.2	1105	2.31	0.10	0.12	0.13	0.16	0.22	0.28
	1	0.063	4.4	875	3.02	0.10	0.11	0.15	0.10	0.22	0.29	4.1	924	3.02	0.10	0.12	0.15	0.10	0.22	0.37
	2	0.063	9.3	773	3.02	0.13	0.15	0.17	0.22	0.32	0.41	9.0	790	3.02	0.13	0.15	0.17	0.22	0.31	0.41
	3	0.063	13.0	803	3.02	0.12	0.14	0.17	0.21	0.31	0.41	12.4	822	3.02	0.12	0.15	0.17	0.21	0.30	0.40
0 10	4	0.063	17.3	788	3.01	0.13	0.15	0.17	0.22	0.32	0.42	16.6	795	3.01	0.13	0.15	0.17	0.22	0.32	0.42
0.10	6	0.063	25.7	767	3.03	0.12	0.15	0.17	0.22	0.32	0.41	25.0	785	3.03	0.13	0.15	0.17	0.22	0.31	0.41
	8	0.063	33.2	811	3.03	0.13	0.15	0.17	0.22	0.31	0.41	32.4	817	3.03	0.13	0.15	0.17	0.22	0.31	0.41
	12	0.063	48.9	779	3.01	0.12	0.15	0.17	0.21	0.31	0.41	47.1	791	3.02	0.12	0.15	0.17	0.21	0.31	0.41
	1	0.003	3.4	525	3.60	0.12	0.14	0.10	0.21	0.31	0.41	3.2	542	3.69	0.12	0.14	0.17	0.21	0.31	0.41
	2	0.015	6.3	417	3.69	0.12	0.15	0.19	0.26	0.39	0.52	6.0	439	3.69	0.12	0.16	0.19	0.25	0.38	0.51
	3	0.015	10.0	480	3.68	0.12	0.16	0.20	0.27	0.42	0.57	9.4	496	3.68	0.13	0.16	0.20	0.27	0.42	0.57
0.20	4	0.015	12.4	405	3.68	0.12	0.16	0.19	0.27	0.42	0.58	11.8	418	3.68	0.12	0.16	0.19	0.27	0.42	0.57
0.20	6	0.015	17.8	411	3.69	0.12	0.16	0.20	0.27	0.41	0.56	16.6	427	3.69	0.13	0.16	0.20	0.27	0.41	0.55
	8	0.015	23.4	423	3.69	0.12	0.15	0.19	0.26	0.41	0.56	22.2	439	3.69	0.12	0.15	0.19	0.26	0.41	0.55
	12	0.015	36.2	400	3.67	0.11	0.15	0.19	0.26	0.41	0.56	34.8	407	3.68	0.12	0.15	0.19	0.26	0.41	0.55
	20	0.015	53.0	393	3.68 4 27	0.11	0.15	0.19	0.26	0.41	0.50	50.9	407	3.69 4 27	0.12	0.15	0.19	0.26	0.41	0.56
	2	0.015	3.2	189	4.38	0.12	0.19	0.25	0.38	0.60	0.82	2.9	219	4.38	0.13	0.20	0.25	0.36	0.58	0.79
	3	0.015	4.9	171	4.37	0.12	0.20	0.27	0.41	0.67	0.92	4.4	199	4.38	0.13	0.20	0.27	0.39	0.64	0.88
0.50	4	0.015	7.3	176	4.38	0.13	0.21	0.28	0.43	0.70	0.96	6.5	180	4.38	0.14	0.21	0.29	0.43	0.69	0.95
0.50	6	0.015	8.9	177	4.38	0.11	0.19	0.26	0.40	0.65	0.89	8.0	207	4.38	0.12	0.19	0.26	0.39	0.63	0.86
	8	0.015	12.5	150	4.38	0.11	0.19	0.26	0.40	0.66	0.91	11.8	171	4.38	0.12	0.20	0.27	0.40	0.66	0.90
	12	0.015	20.5	171	4.38	0.11	0.20	0.27	0.41	0.67	0.92	19.2	191	4.38	0.13	0.20	0.27	0.41	0.66	0.91
	20	0.015	28.9	151	4.39	0.11	0.19	0.27	0.41	0.67	0.92	26.8	168	4.39	0.13	0.20	0.27	0.41	0.66	0.91

Table B.22: Detection probability, average detection time, contaminated area in case of detection failure and relative contaminated area to control area *L* for various RADTi in case of $\sigma_{\ln K}^2 = 2.0$ assuming every 4 months (4M) and biannually (6M) sampling frequencies

	σ^{2}_{InK}										2.00									
α _τ (m)	wou	nfds(max)	P _d (4M)	<t(det.)> (DAYS)</t(det.)>	AREA ON FAILURE	(AREA ON DET.)/L	(3M. RADTi)/L	(6M. RADTi)/L	(12M. RADTi)/L	(24M. RADTi/L)	(36M. RADTi)/L	P _d (6M)	<t(det.)> (DAYS)</t(det.)>	AREA ON FAILURE	(AREA ON DET.)/L	(3M. RADTi)/L	(6M. RADTi)/L	(12M. RADTi)/L	(24M. RADTi/L)	(36M. RADTi)/L
	1	0.75	3.1	3254	0.37	0.03	0.03	0.03	0.03	0.04	0.04	2.8	3381	0.37	0.03	0.03	0.03	0.03	0.04	0.04
	2	0.75	6.0	3240	0.37	0.02	0.03	0.03	0.03	0.03	0.04	5.6	3326	0.37	0.02	0.03	0.03	0.03	0.03	0.04
	3 4	0.75	8.2 10.6	3247	0.30	0.02	0.03	0.03	0.03	0.03	0.04	7.2 9.7	3420	0.30	0.03	0.03	0.03	0.03	0.03	0.04
0.001	6	0.75	17.3	3357	0.37	0.03	0.03	0.03	0.03	0.04	0.04	15.6	3503	0.38	0.03	0.03	0.03	0.03	0.04	0.04
	8	0.75	21.6	3252	0.39	0.03	0.03	0.03	0.03	0.04	0.04	19.6	3380	0.39	0.03	0.03	0.03	0.03	0.04	0.04
	12	0.75	30.4	3244	0.37	0.03	0.03	0.03	0.03	0.04	0.04	27.6	3404	0.37	0.03	0.03	0.03	0.03	0.04	0.04
	20	0.75	47.6	3201	0.37	0.03	0.03	0.03	0.03	0.04	0.04	43.4	3348	0.39	0.03	0.03	0.03	0.03	0.04	0.04
	2	0.50	7.6	2304	1.07	0.08	0.09	0.09	0.11	0.13	0.15	7.1	2362	1.07	0.08	0.09	0.09	0.10	0.13	0.15
	3	0.50	13.1	2398	1.07	0.08	0.09	0.09	0.10	0.13	0.15	12.4	2477	1.07	0.08	0.09	0.09	0.10	0.13	0.15
0.01	4	0.50	15.8	2496	1.08	0.08	0.09	0.09	0.10	0.12	0.15	14.9	2585	1.08	0.08	0.09	0.09	0.10	0.12	0.15
	6	0.50	22.1	2418	1.08	0.08	0.09	0.09	0.10	0.12	0.15	20.9	2496	1.09	0.08	0.09	0.09	0.10	0.12	0.15
	8 12	0.50	30.0 43.6	2365	1.08	0.08	0.08	0.09	0.10	0.12	0.15	28.4 40.9	2451	1.09	0.08	0.09	0.09	0.10	0.12	0.15
	20	0.50	61.1	2365	1.07	0.08	0.08	0.09	0.10	0.12	0.15	58.2	2437	1.09	0.08	0.08	0.09	0.10	0.12	0.15
	1	0.25	4.7	1743	1.52	0.08	0.09	0.10	0.11	0.14	0.17	4.6	1784	1.52	0.08	0.09	0.10	0.11	0.14	0.17
	2	0.25	9.4	1638	1.52	0.08	0.09	0.10	0.12	0.15	0.19	8.9	1671	1.52	0.09	0.09	0.10	0.12	0.15	0.19
	3	0.25	12.4	1/04	1.52	0.08	0.09	0.10	0.11	0.14	0.17	12.0 15 /	1758	1.52	0.08	0.09	0.10	0.11	0.14	0.17
0.02	6	0.25	25.7	1688	1.55	0.08	0.09	0.10	0.11	0.15	0.18	24.4	1732	1.55	0.09	0.09	0.10	0.12	0.15	0.18
	8	0.25	33.3	1685	1.54	0.08	0.09	0.10	0.11	0.15	0.18	31.6	1746	1.55	0.08	0.09	0.10	0.11	0.15	0.18
	12	0.25	46.2	1649	1.54	0.08	0.09	0.10	0.11	0.15	0.18	44.0	1726	1.56	0.08	0.09	0.10	0.12	0.15	0.19
	20	0.25	67.0	1632	1.55	0.08	0.09	0.09	0.11	0.14	0.18	64.6	1696	1.57	0.08	0.09	0.10	0.11	0.15	0.18
	1	0.13	4.4 0.1	1114	2.32	0.12	0.13	0.14	0.17	0.23	0.29	4.1 8.4	1183	2.32	0.12	0.13	0.14	0.17	0.23	0.29
	3	0.13	12.4	1096	2.32	0.11	0.12	0.14	0.10	0.22	0.28	11.5	1165	2.32	0.11	0.12	0.14	0.17	0.22	0.28
0.05	4	0.13	18.1	1189	2.32	0.11	0.12	0.13	0.16	0.22	0.28	17.6	1245	2.33	0.11	0.12	0.14	0.16	0.22	0.29
0.05	6	0.13	26.5	1237	2.34	0.11	0.12	0.14	0.16	0.22	0.29	24.7	1301	2.34	0.11	0.13	0.14	0.17	0.22	0.29
	8	0.13	36.1	1138	2.33	0.11	0.12	0.13	0.16	0.22	0.29	34.3	1195	2.33	0.11	0.12	0.14	0.16	0.22	0.29
	20	0.13	51.Z	1128	2.32	0.11	0.12	0.13	0.16	0.22	0.29	48.2 68.9	11/8	2.35	0.11	0.12	0.13	0.16	0.22	0.28
	1	0.063	4.1	934	3.02	0.12	0.14	0.16	0.20	0.29	0.38	3.9	981	3.02	0.13	0.14	0.16	0.20	0.29	0.37
	2	0.063	8.6	819	3.03	0.13	0.15	0.17	0.22	0.31	0.40	8.1	837	3.03	0.13	0.15	0.17	0.22	0.31	0.40
	3	0.063	12.2	840	3.02	0.13	0.15	0.17	0.21	0.31	0.40	11.5	882	3.02	0.13	0.15	0.17	0.21	0.30	0.40
0.10	4	0.063	15.8 24 0	827 811	3.02	0.13	0.15	0.17	0.22	0.32	0.42	14.6 22.7	883 831	3.02	0.13	0.16	0.18	0.22	0.32	0.42
	8	0.063	31.2	832	3.03	0.13	0.15	0.17	0.22	0.31	0.41	29.2	872	3.05	0.13	0.15	0.17	0.22	0.31	0.41
	12	0.063	45.6	817	3.03	0.13	0.15	0.17	0.21	0.31	0.41	42.7	860	3.05	0.13	0.15	0.17	0.22	0.31	0.41
. <u> </u>	20	0.063	65.9	774	3.03	0.12	0.14	0.17	0.21	0.31	0.41	61.9	820	3.08	0.13	0.15	0.17	0.21	0.31	0.40
	1	0.015	3.0 5.6	572 460	3.69	0.13	0.17	0.20	0.26	0.39	0.52	2./	632 506	3.69	0.13	0.16	0.19	0.25	0.37	0.50
	3	0.015	8.9	519	3.69	0.13	0.10	0.20	0.23	0.41	0.55	7.9	586	3.69	0.13	0.10	0.20	0.25	0.39	0.50
0.20	4	0.015	11.0	423	3.68	0.12	0.16	0.20	0.27	0.42	0.57	9.6	491	3.69	0.13	0.16	0.20	0.26	0.41	0.56
0.20	6	0.015	15.8	450	3.70	0.13	0.16	0.20	0.27	0.40	0.54	14.3	492	3.70	0.14	0.17	0.20	0.27	0.40	0.54
	8	0.015	21.2	459	3.70	0.12	0.16	0.19	0.26	0.40	0.55	18.6	513	3.70	0.13	0.16	0.19	0.26	0.39	0.53
	20	0.015	53.0 48.6	424 425	3.70	0.12	0.16	0.19	0.26	0.41	0.55	29.4 43.4	479 485	3.73	0.13	0.16	0.19	0.26	0.40	0.54
	1	0.015	1.4	196	4.37	0.14	0.20	0.27	0.39	0.65	0.89	1.0	261	4.38	0.14	0.19	0.24	0.34	0.56	0.77
	2	0.015	2.7	219	4.38	0.13	0.19	0.25	0.36	0.57	0.78	2.2	271	4.38	0.15	0.20	0.25	0.35	0.55	0.75
	3	0.015	4.0	208	4.38	0.13	0.20	0.26	0.39	0.63	0.87	3.1	286	4.38	0.15	0.20	0.25	0.35	0.56	0.77
0.50	4	0.015	ь.U 7 2	208 224	4.38 4.38	0.15	0.22	0.29	0.43 0.29	0.69	0.95	4.3 5.6	275	4.38 ⊿ 20	0.17	0.23	0.28	0.40	0.64 0.59	0.88 0 80
	8	0.015	,.s 10.6	188	4.38	0.13	0.20	0.20	0.30	0.65	0.84	8.4	240	4.39	0.15	0.21	0.20	0.37	0.60	0.83
	12	0.015	17.5	215	4.39	0.14	0.21	0.28	0.41	0.65	0.89	13.5	277	4.40	0.16	0.22	0.27	0.39	0.61	0.84
	20	0.015	24.6	193	4.40	0.14	0.21	0.27	0.40	0.65	0.88	19.3	250	4.41	0.15	0.21	0.27	0.38	0.61	0.83

	σ^{2}_{lnK}					2.0	0				
α _τ (m)	мои	nfds(max)	P _d (12M)	<t(рет.)> (DAYS)</t(рет.)>	AREA ON FAILURE	(AREA ON DET.)/L	(3M. RADTi)/L	(6M. RADTi)/L	(12M. RADTi)/L	(24M. RADTi/L)	(36M. RADTi)/L
	1	0.75	1.7	4085	0.37	0.03	0.03	0.03	0.04	0.04	0.05
	2	0.75	3.9	3826	0.37	0.03	0.03	0.03	0.03	0.04	0.04
	3 1	0.75	5.1 6.7	3930	0.37	0.03	0.03	0.03	0.03	0.04	0.04
0.001	6	0.75	11.1	4009	0.37	0.03	0.03	0.03	0.04	0.04	0.03
	8	0.75	14.3	3842	0.39	0.03	0.03	0.03	0.03	0.04	0.05
	12	0.75	19.5	3851	0.37	0.03	0.03	0.03	0.03	0.04	0.05
	20	0.75	30.6	3811	0.40	0.03	0.03	0.03	0.03	0.04	0.04
	1	0.50	3.3	2872	1.07	0.09	0.09	0.10	0.11	0.13	0.15
	2	0.50	5.8	2649	1.08	0.08	0.09	0.09	0.10	0.13	0.15
	3	0.50	9.7	2792	1.08	0.09	0.09	0.10	0.11	0.13	0.16
0.01	4	0.50	16.0	2952	1.09	0.09	0.09	0.10	0.11	0.13	0.15
	8	0.50	22.8	2763	1.10	0.08	0.09	0.09	0.11	0.13	0.15
	12	0.50	33.6	2833	1.12	0.09	0.09	0.10	0.11	0.13	0.15
	20	0.50	47.5	2750	1.16	0.08	0.09	0.09	0.11	0.13	0.15
	1	0.25	3.8	1994	1.52	0.09	0.09	0.10	0.11	0.14	0.17
	2	0.25	7.1	1913	1.53	0.09	0.10	0.11	0.12	0.16	0.19
	3	0.25	9.7	2007	1.53	0.09	0.09	0.10	0.11	0.14	0.17
0.02	4	0.25	12.3	1973	1.54	0.09	0.10	0.11	0.12	0.15	0.18
	6	0.25	19.8	1975	1.56	0.09	0.10	0.10	0.12	0.15	0.18
	0 12	0.25	25.4	1995	1.57	0.09	0.10	0.10	0.12	0.15	0.19
	20	0.25	54.4	1979	1.55	0.09	0.10	0.10	0.12	0.15	0.19
	1	0.13	3.0	1391	2.32	0.12	0.14	0.15	0.17	0.22	0.28
	2	0.13	7.0	1472	2.33	0.12	0.13	0.14	0.17	0.23	0.28
	3	0.13	9.0	1325	2.33	0.12	0.13	0.14	0.17	0.22	0.28
0.05	4	0.13	13.9	1421	2.34	0.12	0.13	0.14	0.17	0.22	0.29
	6	0.13	20.3	1514	2.36	0.12	0.13	0.14	0.17	0.22	0.28
	8	0.13	27.0	1389	2.36	0.12	0.13	0.14	0.17	0.22	0.28
	20	0.13	56 9	1303	2.40	0.12	0.13	0.14	0.17	0.22	0.28
	1	0.063	3.1	1126	3.02	0.11	0.15	0.14	0.20	0.22	0.26
	2	0.063	6.4	1007	3.03	0.14	0.16	0.18	0.22	0.29	0.38
	3	0.063	8.4	1105	3.03	0.14	0.16	0.17	0.21	0.29	0.37
0 10	4	0.063	10.5	1070	3.03	0.14	0.16	0.18	0.22	0.31	0.40
0.10	6	0.063	17.2	1026	3.06	0.14	0.16	0.18	0.22	0.30	0.39
	8	0.063	22.7	1068	3.07	0.14	0.16	0.18	0.22	0.30	0.39
	12	0.063	32.5	1032	3.09	0.14	0.16	0.18	0.22	0.30	0.39
	20	0.063	47.9 1 Q	703	3.10	0.14	0.16	0.18	0.22	0.30	0.39
	2	0.015	3.8	614	3.70	0.14	0.10	0.10	0.23	0.35	0.46
	3	0.015	5.1	737	3.70	0.14	0.17	0.19	0.25	0.36	0.48
0.20	4	0.015	6.0	677	3.69	0.15	0.18	0.21	0.26	0.39	0.53
0.20	6	0.015	9.7	670	3.71	0.15	0.18	0.20	0.26	0.37	0.49
	8	0.015	12.6	718	3.72	0.15	0.18	0.20	0.26	0.37	0.50
	12	0.015	18.6	661	3.73	0.15	0.18	0.20	0.26	0.37	0.50
	20	0.015	29.9	656	3.76	0.15	0.18	0.20	0.26	0.38	0.51
	1 2	0.015	0.7 1 /	454 ∆15	4.38 4.38	0.19	0.23	0.27	0.30	0.55 0 / 0	0.74
	3	0.015	1.8	461	4.38	0.18	0.27	0.26	0.35	0.53	0.72
	4	0.015	1.7	512	4.38	0.18	0.21	0.25	0.33	0.51	0.70
0.50	6	0.015	3.4	487	4.39	0.18	0.22	0.26	0.35	0.52	0.70
	8	0.015	4.6	423	4.39	0.18	0.22	0.26	0.34	0.52	0.70
	12	0.015	6.0	451	4.40	0.18	0.22	0.26	0.34	0.52	0.70
	20	0.015	99	427	4 4 1	0 18	0.22	0.26	0 35	0 53	0 72

Table B.23: Detection probability, average detection time, contaminated area in case of detection failure and relative contaminated areato control area L for various RADTi in case of $\sigma_{\ln K}^2 = 2.0$ assuming annually sampling frequency

B.2 Precipitation Trigered Pollution

Table B.24: Detection probability in case of $\sigma_{\ln K}^2 = 0.0$, $\sigma_{\ln K}^2 = 1.0$ and $\sigma_{\ln K}^2 = 2.0$, for different transverse coefficients and sampling frequencies

| NZT | 6.1 | 15.1

 | 17.0 | 21.7 | 35.9 | 40.8 | 57.3 | 74.0 | 14.4
 | 26.0 | 39.0

 | 45.3 | 59.9 | 70.5 | 82.0 | 86.9 | 18.9
 | 38.9 | 55.1 | 65.1 | 83.0 | 87.7
 | 95.0 | 96.1 | 25.3 | 52.8 | 69.5 | 81.6 | 93.3 | 93.9 | 98.0 | 98.6 | 79.6 | 99.1 | 99.8 | 100.0 | 100.0 | 100.0 | 100.0
 | 100.0 |
|------------------|---
--
--
--
--
--|--|---|---|---|---|---|---

--
--
--
---|---|--|---|---|---
--|---|--|---|---
--|---|---|---|---|-------------------------------------|--------|---|--|--|--|--|---|--|--
--|---|---|---|
| W 9 | 6.2 | 15.2

 | 17.0 | 22.1 | 36.2 | 41.0 | 57.7 | 74.5 | 14.9
 | 26.6 | 40.0

 | 46.7 | 61.5 | 71.8 | 82.7 | 87.3 | 19.4
 | 40.8 | 56.5 | 67.9 | 84.1 | 88.7
 | 95.3 | 96.6 | 26.0 | 54.0 | 72.0 | 83.0 | 94.3 | 94.0 | 98.2 | 99.0 | 82.6 | 99.3 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
 | 100.0 |
| M4 | 6.3 | 15.5

 | 17.4 | 22.7 | 36.9 | 41.5 | 58.4 | 74.7 | 14.9
 | 27.3 | 40.6

 | 47.0 | 62.2 | 72.3 | 83.0 | 87.4 | 19.7
 | 41.2 | 57.3 | 68.7 | 85.3 | 88.9
 | 95.4 | 96.7 | 27.3 | 54.9 | 73.6 | 83.8 | 95.0 | 94.2 | 98.5 | 98.9 | 85.3 | 9.66 | 99.9 | 100.0 | 100.0 | 100.0 | 100.0
 | 100.0 |
| ME | 6.3 | 15.7

 | 17.3 | 22.6 | 37.0 | 41.6 | 58.3 | 74.9 | 15.3
 | 27.4 | 41.3

 | 48.0 | 62.9 | 72.6 | 83.1 | 87.6 | 20.3
 | 42.2 | 57.9 | 69.0 | 85.9 | 89.6
 | 95.4 | 96.8 | 27.3 | 55.4 | 73.8 | 85.3 | 95.3 | 94.5 | 98.4 | 99.1 | 86.0 | 9.66 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
 | 100.0 |
| мz | 6.5 | 16.0

 | 17.8 | 22.9 | 37.7 | 42.3 | 59.2 | 75.4 | 15.5
 | 27.9 | 41.6

 | 48.4 | 63.4 | 73.1 | 83.4 | 87.6 | 20.5
 | 42.7 | 58.8 | 70.2 | 86.3 | 89.7
 | 95.7 | 97.0 | 28.0 | 56.6 | 74.9 | 85.4 | 95.6 | 94.6 | 98.5 | 99.1 | 87.9 | 9.66 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
 | 100.0 |
| Μτ | 6.6 | 16.1

 | 18.0 | 23.3 | 37.9 | 42.9 | 60.0 | 75.8 | 15.8
 | 28.3 | 42.5

 | 49.3 | 64.1 | 73.8 | 83.9 | 87.7 | 21.1
 | 43.7 | 59.7 | 70.8 | 87.2 | 90.3
 | 95.8 | 97.0 | 28.5 | 57.9 | 76.2 | 86.7 | 95.9 | 94.9 | 98.6 | 99.2 | 89.7 | 99.8 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
 | 100.0 |
| Ð | 6.9 | 16.5

 | 18.6 | 23.8 | 39.0 | 44.7 | 61.5 | 76.9 | 16.2
 | 29.1 | 43.5

 | 50.6 | 65.3 | 74.8 | 84.9 | 87.9 | 21.8
 | 45.1 | 61.3 | 72.4 | 88.5 | 90.7
 | 95.9 | 97.3 | 29.9 | 60.4 | 78.5 | 88.0 | 96.7 | 95.0 | 98.9 | 99.3 | 92.5 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
 | 100.0 |
| (xeu)spju | 0.75 | 0.75

 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.50
 | 0.50 | 0.50

 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.125
 | 0.125 | 0.125 | 0.125 | 0.125 | 0.125
 | 0.125 | 0.125 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.015 | 0.015 | 0.015 | 0.015 | 0.015 | 0.015 | 0.015
 | 0.015 |
| NZT | 7.7 | 16.3

 | 22.0 | 28.3 | 42.0 | 51.4 | 67.2 | 80.6 | 20.1
 | 36.6 | 50.3

 | 62.3 | 76.7 | 80.0 | 89.1 | 91.6 | 18.3
 | 37.6 | 51.3 | 63.8 | 85.4 | 90.4
 | 96.8 | 97.6 | 24.2 0 | 49.2 (| 67.9 (| 80.1 0 | 96.0 0 | 94.8 (| 98.9 | 99.4 (| 75.4 | 99.1 | 6.66 | 0.001 | 0.001 | 100.0 | 0.001
 | 0.001 |
| M9 | 7.7 | 16.7

 | 22.7 | 28.8 | 43.0 | 52.5 | 57.9 | 81.2 | 20.8
 | 38.3 | 51.6

 | 53.1 | 17.7 | 80.7 | 89.7 | 91.8 | 19.1
 | 38.9 | 53.8 | 56.4 | 86.7 | 91.0
 | 96.8 | 97.5 | 25.6 | 50.9 | 70.3 | 82.7 | 96.4 | 95.3 | 99.1 | 99.5 | 78.8 | 9.6 | 6.96 | 0.00.0 | 0.00.0 | 0.00.0 | 0.00.0
 | 0.00.0 |
| M4 | 7.9 | 16.8

 | 23.3 | 29.4 | 13.8 | 53.1 | 58.4 | 31.7 | 21.3
 | 39.0 | 52.6

 | 54.1 | 78.4 | 80.9 | 39.9 | 92.0 | 19.6
 | 39.6 | 54.8 | 57.6 | 38.0 | 91.3
 | 97.0 | 7.7 | 26.1 | 52.6 | 71.5 | 33.8 | 97.0 | 95.4 | 99.1 | 9.6 | 31.4 | 9.6 | 6.96 | 0.00.0 | 0.00.0 | 0.00.0 | 0.00.
 | 0.00.0 |
| ME | 7.8 | 17.1

 | 23.2 | 29.7 | 14.1 | 53.8 | 58.6 (| 31.8 8 | 21.3
 | 39.2 | 53.1

 | 54.3 (| 78.8 | 31.3 8 | 90.06 | 92.0 | 19.6
 | 39.9 | 55.1 | 57.8 (| 38.0 | 91.4
 | 97.0 | 37.7 | 26.6 | 53.1 | 72.1 | 34.3 8 | 97.0 | 95.5 | 99.2 | 99.5 | 32.3 8 | 99.7 | 0.00.0 | 0.00.0 | 00.00 | 00.00 | 00.00
 | 00.0 |
| wz | 7.9 | 17.2

 | 23.6 | 29.9 | 44.4 | 54.1 | 69.3 (| 82.0 | 21.8
 | 39.9 | 54.2

 | 64.9 | 79.4 | 81.5 | 90.1 | 92.2 | 20.1
 | 40.3 | 55.9 | 69.3 (| 88.5 | 91.6
 | 97.0 | 97.7 | 27.0 | 53.4 | 73.2 | 85.9 | 97.5 | 95.7 | 99.2 | 9.66 | 84.6 | 99.7 | 0.00.1 | 0.00.1 | 0.00.1 | 0.00.1 | 0.00.0
 | 00.00 |
| MT | 8.0 | 17.8

 | 24.0 | 30.4 | 45.4 | 54.8 | 59.7 | 32.3 | 22.0
 | 40.5 | 54.6

 | 55.7 | 30.0 | 32.0 | 90.4 | 92.4 | 20.6
 | 41.0 | 56.8 | 70.2 | 39.3 | 91.9
 | 97.1 | 97.7 | 27.4 | 54.4 | 74.3 | 36.8 | 97.8 | 95.8 | 99.2 | 99.7 | 36.9 | 8.96 | 0.00.0 | 0.00.0 | 0.00.0 | 0.00.0 | 0.00.0
 | 0.00.0 |
| ED | 8.2 | 18.2

 | 24.5 | 31.4 | 16.5 | 56.2 | 71.3 (| 32.7 8 | 22.2
 | 11.1 4 | 55.8

 | 56.8 | 30.6 | 32.5 8 | 90.7 | 92.5 | 21.1
 | 12.0 | 58.6 | 71.7 | 91.1 8 | 92.3
 | 97.1 | 97.9 | 28.5 | 56.2 | 26.9 | 38.6 | 98.0 | 96.2 | 99.5 | 99.7 | 91.1 8 | 6'66 | 0.00.0 | 0.00.0 | 0.00.0 | 00.00 | 00.00
 | 00.0 |
| (xew)spju | .75 | .75

 | .75 | .75 | .75 | .75 | .75 | .75 | .25
 | .25 | .25

 | .25 | .25 | .25 | .25 | .25 | 125
 | 125 | 125 | 125 | 125 | 125
 | 125 | 125 | 0625 | 0625 | 0625 | 0625 | 0625 | 0625 | 0625 | 0625 | 015 | 015 | 015 1 | 015 1 | 015 1 | 015 1 | 015 1
 | 015 1 |
| INIZT | .6 | 4.6

 | 2.4 | 8.2 | 4.0 | 7.8 1 | 4.0 | 0.0 | 3.1
 | 5.3 | 3.4

 | 2.1 | 9.7 | 5.2 | 0.0 | 0.0 | 2.7 0
 | 5.2 0 | 7.2 0 | 9.7 0 | 0.0 | 8.4 0
 | 0.0 | 0.0 | 3.3 0. | 7.0 0. | 9.0 0. | 9.4 0. | 9.9 0. | 8.7 0. | 0.0 0.0 | 0.0 0.0 | 7.2 0 | 0 6.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0
 | 0.0 |
| INIQ | 8.9 | 1.7 1.

 | 2.7 2 | 9.3 2 | 4.8 | 3.3 5 | 5.0 & | 0.0 10 | 3.5 1
 | 5.5 3. | 5.0 5

 | 1.2 T. | 6.6 | 5.6 9 | 0.0 10 | 0.0 10 | 3.8 2
 | 5.6 4 | 0.0 6 | 2.0 8 | 0.0 10 | 3.6 9.
 | 0.0 10 | 0.0 10 | 4.7 2 | 3.3 4 | 2.4 6 | 1.4 8 | 0.0 | 9.0 | 0.0 10 | 0.0 10 | 9.8 | .6 0.6 | 0.0 10 | 0.0 10 | 0.0 10 | 0.0 10 | 0.0 10
 | 0.0 10 |
| MB | 9 6. | 5.6 1/

 | 3.3 22 | 9.8 29 | 5.3 44 | 0.0 58 | 7.5 8(| 0.0 10 | 9.1 18
 | 3.0 36 | 5.6 55

 | 5.8 7/ | 0.0 | 5.8 96 | 0.0 10 | 0.0 10 | 1.5 23
 | 7.0 46 | L.6 7(| 3.0 92 | 0.0 10 | 3.8 98
 | 0.0 10 | 0.0 10 | 5.0 24 | 9.6 48 | 1.2 T. | 2.2 9. | 0.0 10 | 9.2 99 | 0.0 10 | 0.0 10 | L.5 59 | 9.5 99 | 0.0 10 | 0.0 10 | 0.0 10 | 0.0 10 | 0.0 10
 | 0.0 10 |
| ME | .1 6 | 5.7 19

 | 3.6 23 | 0.6 29 | 5.8 46 | 0.6 6(| 9.2 87 | 0.0 10 | 9.2 19
 | 3.1 38 | 7.1 56

 | 5.8 75 | 0.0 10 | 6.9 | 0.0 10 | 0.0 10 | 1.3 2/
 | 7.9 47 | L.9 7. | 3.8 93 | 0.0 10 | 3.7 98
 | 0.0 10 | 0.0 10 | 5.2 25 | 9.6 49 | 1.8 72 | 3.0 92 | 0.0 10 | 9.3 9.9 | 0.0 10 | 0.0 10 | 3.1 61 | 9.5 99 | 0.0 10 | 0.0 10 | 0.0 10 | 0.0 10 | 0.0 10
 | 0.0 10 |
| 1417 | .3 7 | 6.9 19

 | 1.0 23 | 0.7 30 | 7.6 46 | L.4 60 | 0.4 89 | 0.0 10 | 9.7 19
 | 35 35 | 3.6 57

 | 7.8 76 | 0.0 10 | 7.1 96 | 0.0 10 | 0.0 10 | 5.1 2/
 | 3.6 47 | 8.7 73 | 1.8 93 | 0.0 10 | 36 0.6
 | 0.0 10 | 0.0 10 | 6.8 25 | .9 49 | 6.9 7/ | 3.7 93 | 0.0 10 | 9.3 9.9 | 0.0 10 | 0.0 10 | 1.9 6.1 | 9.7 99 | 0.0 10 | 0.0 10 | 0.0 10 | 0.0 10 | 0.0 10
 | 0.0 10 |
| ME | .4 7 | 5.1 19

 | 1.1 2/ | 1.2 3(| 3.5 47 | 2.0 61 | 1.8 9(| 0.0 10 | 9.8 19
 | 9.5 38 | 9.2 58

 | 9.1 77 | 0.0 10 | 7.3 97 | 0.0 10 | 0.0 10 | 5.5 25
 | 9.4 48 | 1.8 73 | <u>5</u> .6 9/ | 0.0 10 | 9.1 99
 | 0.0 10 | 0.0 10 | 5.3 25 | 2.0 50 | 7.3 75 | 1.6 93 | 0.0 10 | 9.4 99 | 0.0 10 | 0.0 10 | 7.4 6/ | 0.0 | 0.0 10 | 0.0 10 | 0.0 10 | 0.0 10 | 0.0 10
 | 0.0 10 |
| MI
MI | .5 7 | 5.3 16

 | 1.3 24 | 5 31 | 3.8 48 | 2.3 62 | .5 91 | 0.0 10 | 9.9 19
 | 0.0 35 | 9.9 55

 | 9.5 79 | 0.0 10 | .4 97 | 0.0 10 | 0.0 10 | 6.1 25
 | 0.3 49 | 5.4 7/ | 5.7 95 | 0.0 10 | 9.3 9.9
 | 0.0 10 | 0.0 10 | 7.2 26 | 3.6 52 | 9.5 7. | 92 | 0.0 10 | 9.5 99 | 0.0 10 | 0.0 10 | 2.4 67 | 0.0 10 | 0.0 10 | 0.0 10 | 0.0 10 | 0.0 10 | 0.0 10
 | 0.0 10 |
| ED
urgs(urgv) | 00 7 | 00 16

 | 00 24 | 00 31 | 00 48 | 00 62 | 00 92 | 00 10 | 25 19
 | 25 4C | 25 55

 | 25 79 | 25 10 | 25 97 | 25 10 | 25 10 | 50 26
 | 50 50 | 50 76 | 50 96 | 50 10 | 50 95
 | 50 10 | 50 10 | 25 27 | 25 53 | 25 79 | 25 96 | 10 | 25 99 | 25 10 | 25 10 | 115 72 | 15 10 | 15 10 | 15 10 | 015 10 | 015 10 | 015 10
 | 15 10 |
| sliew on | 1 3. | 2 3.

 | 3. | 4 3. | 6 3. | 8 3. | 12 3. | 20 3. | 1 2.
 | 2. | 3 2.

 | 4 2. | 6 2. | 8 2. | 12 2. | 20 2. | 1 0.
 | 2 | з. | 4 0. | 6 0. | 8
 | 12 0. | 20 0. | 1 0.1 | 2 0.1 | 3 0.1 | 4 0.1 | 6 0.1 | 8 0.1 | 12 0.1 | 20 0.1 | 1 0.0 | 2 0.0 | 3 0.0 | 4 0.0 | 6 0.0 | 8 0.0 | 12 0.0
 | 20 0.0 |
| smu | 1.00 | 0.50

 | 0.33 | 0.25 | 0.17 | 0.12 | 0.08 | 0.05 | 1.00
 | 0.50 | 0.33

 | 0.25 | 0.17 | 0.12 | 0.08 | 0.05 | 1.00
 | 0.50 | 0.33 | 0.25 | 0.17 | 0.12
 | 0.08 | 0.05 | 1.00 | 0.50 | 0.33 | 0.25 | 0.17 | 0.12 | 0.08 | 0.05 | 1.00 | 0.50 | 0.33 | 0.25 | 0.17 | 0.12 | 0.08
 | 0.05 |
| գւ(ш) | | -

 | - | 500 | - | - | - | - |
 | - | -

 | 010 | - | - | - | - |
 | - | - | 20.0 | 3 | -
 | - | - | •• | - | - | 0.10 | - | - | - | - | | - | - | 0 20 | 2 | - | -
 | _ |
| | TSW eW eW TW sW sW uqq(uesy) uqq(uesy) eW TSW sW uqq(uesy) aW eW sW aW eW sW aW aW aW aW eW sW aW eW aW aW | α(m) τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ <th>ED Table Set Table</th> <th>E S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S</th> <th>E a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a</th> <th>B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B</th> <th>E S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S</th> <th>Find the find the fin</th> <th>E S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S</th> <th>F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F</th> <th>F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F <p< th=""><th>F is a set of the set of the</th><th>F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F</th><th>100 1 2 3 3 3 3 5 3 5 3 5 5 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5</th><th>The set of the set of th</th><th>The section of the sectin of the section of the section of the section of the section o</th><th>Find the set of the set</th><th>The section of the sectin of the section of the section of the section of the section o</th><th>Find the set of the set</th><th>Image: Section for the sectin for the section for the</th><th>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</th><th>Image: Image: Image:</th><th>0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</th><th>0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</th><th>6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5</th><th>6 5 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 9 1 3 1 3 1 3 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</th><th>A 2 a 2 a 2 a 2 a 2 a 2 a 2 a 2 a 2</th><th></th><th>A contract c</th><th>(4) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1</th><th>(a) (a) (a) (b) (b) (b) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c</th><th>(4) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1</th><th>(a) (a) (b) (a) (b) (b) (b) (b) (b) (b) (b) (b) (b) (b</th><th>Image: bit is a section of the section of t</th><th>(4) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1</th><th>(a) (a) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c</th><th>(4) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1</th><th>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th><th>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</th><th>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</th></p<></th> | ED Table Set Table | E S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S | E a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a | B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B | E S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S | Find the fin | E S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S | F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F | F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F <p< th=""><th>F is a set of the set of the</th><th>F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F</th><th>100 1 2 3 3 3 3 5 3 5 3 5 5 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5</th><th>The set of the set of th</th><th>The section of the sectin of the section of the section of the section of the section o</th><th>Find the set of the set</th><th>The section of the sectin of the section of the section of the section of the section o</th><th>Find the set of the set</th><th>Image: Section for the sectin for the section for the</th><th>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</th><th>Image: Image: Image:</th><th>0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</th><th>0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</th><th>6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5</th><th>6 5 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 9 1 3 1 3 1 3 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</th><th>A 2 a 2 a 2 a 2 a 2 a 2 a 2 a 2 a 2</th><th></th><th>A contract c</th><th>(4) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1</th><th>(a) (a) (a) (b) (b) (b) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c</th><th>(4) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1</th><th>(a) (a) (b) (a) (b) (b) (b) (b) (b) (b) (b) (b) (b) (b</th><th>Image: bit is a section of the section of t</th><th>(4) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1</th><th>(a) (a) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c</th><th>(4) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1</th><th>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th><th>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</th><th>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</th></p<> | F is a set of the | F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F | 100 1 2 3 3 3 3 5 3 5 3 5 5 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | The set of th | The section of the sectin of the section of the section of the section of the section o | Find the set of the set | The section of the sectin of the section of the section of the section of the section o | Find the set of the set | Image: Section for the sectin for the section for the | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Image: Image: | 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 6 5 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 9 1 3 1 3 1 3 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | A 2 a 2 a 2 a 2 a 2 a 2 a 2 a 2 a 2 | | A contract c | (4) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1 | (a) (a) (a) (b) (b) (b) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c | (4) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1 | (a) (a) (b) (a) (b) (b) (b) (b) (b) (b) (b) (b) (b) (b | Image: bit is a section of the section of t | (4) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1 | (a) (a) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c | (4) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |

Table B.25: Precipitation triggered pollution detection probability, average detection time, contaminated area in case of detection failure and relative contaminated area to control area for various RADTi in case of $\sigma_{\ln K}^2 = 0.0$ assuming daily (ED) and monthly (1M) sampling frequencies

	σ^{2}_{lnK}										0.00									
գղ(m)	wou	nfds(max)	P _d (ED)	<t(det.)> (DAYS)</t(det.)>	AREA ON FAILURE	(AREA ON DET.)/L	(3M. RADTi)/L	(6M. RADTi)/L	(12M. RADTi)/L	(24M. RADTi/L)	(36M. RADTi)/L	P _d (1M)	<t(det.)> (DAYS)</t(det.)>	AREA ON FAILURE	(AREA ON DET.)/L	(3M. RADTi)/L	(6M. RADTi)/L	(12M. RADTi)/L	(24M. RADTi/L)	(36M. RADTi)/L
	1	3.00	7.5	9405	0.36	0.29	0.30	0.29	0.30	0.29	0.21	7.4	9402	0.36	0.29	0.30	0.30	0.30	0.29	0.19
	2	3.00	16.3	9586	0.36	0.30	0.30	0.31	0.31	0.31	0.23	16.1	9598	0.36	0.30	0.30	0.31	0.31	0.31	0.23
	3	3.00	24.3	9556	0.36	0.30	0.30	0.30	0.31	0.31	0.25	24.1	9569	0.36	0.30	0.30	0.31	0.31	0.31	0.25
0.001	4	3.00	31.5 10 0	9555	0.30	0.30	0.30	0.31	0.31	0.31	0.24	31.Z	9509	0.30	0.30	0.31	0.31	0.31	0.31	0.24
	0	3.00	40.0	9567	0.30	0.30	0.50	0.31	0.31	0.31	0.24	40.5 62.0	9001	0.30	0.30	0.50	0.31	0.31	0.31	0.25
	12	3.00	92.5	9579	0.33 ΝΔV	0.30	0.31	0.31	0.31	0.31	0.25	02.0 91.8	9570	0.33 ΝΔV	0.30	0.31	0.31	0.31	0.31	0.24
	20	3.00	100.0	9457	NAV	0.30	0.31	0.31	0.31	0.31	0.24	100.0	9472	NAV	0.30	0.31	0.31	0.31	0.31	0.24
	1	2.25	19.9	7254	0.80	0.46	0.46	0.47	0.49	0.52	0.54	19.8	7296	0.80	0.46	0.47	0.47	0.49	0.52	0.54
	2	2.25	40.0	7242	0.80	0.46	0.47	0.47	0.49	0.51	0.54	39.5	7265	0.80	0.46	0.47	0.47	0.49	0.51	0.54
	3	2.25	59.9	7251	0.80	0.46	0.47	0.47	0.48	0.51	0.54	59.2	7268	0.80	0.46	0.47	0.47	0.49	0.52	0.54
0.01	4	2.25	79.5	7215	0.80	0.46	0.46	0.47	0.48	0.51	0.54	79.1	7238	0.80	0.46	0.46	0.47	0.48	0.51	0.54
0.01	6	2.25	100.0	7007	NAV	0.44	0.44	0.45	0.47	0.50	0.53	100.0	7032	NAV	0.44	0.45	0.45	0.47	0.50	0.53
	8	2.25	97.4	6935	NAV	0.43	0.44	0.45	0.46	0.49	0.52	97.3	6955	NAV	0.43	0.44	0.45	0.46	0.49	0.53
	12	2.25	100.0	6854	NAV	0.42	0.43	0.44	0.46	0.49	0.52	100.0	6874	NAV	0.43	0.43	0.44	0.46	0.49	0.52
	20	2.25	100.0	6823	NAV	0.42	0.43	0.44	0.45	0.48	0.52	100.0	6842	NAV	0.42	0.43	0.44	0.45	0.49	0.52
	1	0.50	26.1	2397	1.52	0.22	0.22	0.23	0.25	0.29	0.32	25.5	2430	1.52	0.22	0.23	0.24	0.25	0.29	0.32
	2	0.50	50.3	2183	1.52	0.19	0.20	0.20	0.22	0.26	0.31	49.4	2252	1.52	0.19	0.20	0.21	0.23	0.27	0.31
	3	0.50	76.4	2285	1.52	0.20	0.21	0.22	0.24	0.28	0.31	74.8	2329	1.52	0.21	0.22	0.22	0.24	0.28	0.32
0.05	4	0.50	96.7	2086		0.17	0.18	0.19	0.21	0.25	0.29	95.6	1705		0.18	0.19	0.20	0.22	0.25	0.29
	0	0.50	100.0	1640		0.12	0.13	0.14	0.10	0.20	0.24	100.0	1602		0.13	0.14	0.15	0.10	0.20	0.25
	0 12	0.50	99.5 100.0	1553	NAV	0.12	0.13	0.14	0.10	0.20	0.24	100.0	158/	NAV	0.15	0.14	0.14	0.10	0.20	0.24
	20	0.50	100.0	1526	NAV	0.11	0.12	0.13	0.15	0.15	0.23	100.0	1556	NAV	0.12	0.12	0.13	0.15	0.19	0.23
	1	0.13	27.2	1383	1.97	0.16	0.17	0.18	0.19	0.23	0.29	26.3	1412	1.97	0.16	0.17	0.18	0.20	0.24	0.29
	2	0.13	53.6	1377	1.97	0.16	0.17	0.17	0.20	0.24	0.29	52.0	1375	1.97	0.16	0.16	0.17	0.19	0.23	0.28
	3	0.13	79.5	1289	1.97	0.14	0.15	0.16	0.18	0.22	0.27	77.3	1340	1.97	0.15	0.16	0.17	0.19	0.23	0.28
0 10	4	0.13	96.0	1064	1.97	0.11	0.12	0.13	0.15	0.19	0.24	94.6	1138	1.97	0.12	0.13	0.14	0.16	0.20	0.25
0.10	6	0.13	100.0	657	NAV	0.05	0.06	0.07	0.09	0.13	0.18	100.0	702	NAV	0.06	0.07	0.08	0.10	0.14	0.19
	8	0.13	99.5	634	NAV	0.05	0.06	0.07	0.09	0.13	0.18	99.4	676	NAV	0.06	0.07	0.08	0.10	0.14	0.18
	12	0.13	100.0	535	NAV	0.04	0.05	0.06	0.08	0.12	0.16	100.0	566	NAV	0.05	0.05	0.06	0.08	0.12	0.17
. <u> </u>	20	0.13	100.0	510	NAV	0.04	0.05	0.06	0.08	0.12	0.16	100.0	540	NAV	0.04	0.05	0.06	0.08	0.12	0.16
	1	0.015	72.4	1843	NAV	1.13	1.17	1.23	1.36	1.60	1.85	67.4	1856	6.78	1.21	1.26	1.33	1.46	1.68	1.95
	2	0.015	100.0	743	NAV	0.39	0.45	0.51	0.63	0.88	1.14	100.0	908	NAV	0.48	0.54	0.60	0.73	0.98	1.23
	3	0.015	100.0	390		0.17	0.22	0.28	0.41	0.66	0.91	100.0	463		0.21	0.27	0.34	0.46	0.71	0.96
0.50	4	0.015	100.0	2/0 202		0.11	0.10	0.22	0.35	0.00	0.00	100.0	554 2//		0.12	0.21	0.27	0.40	0.04	0.09
	8	0.015	100.0	186	NAV	0.07	0.11	0.17	0.30	0.54	0.81	100.0	294	NAV	0.09	0.14	0.21	0.34	0.50	0.84
	12	0.015	100.0	156	NAV	0.05	0.09	0.14	0.28	0.52	0.79	100.0	189	NAV	0.07	0.12	0.18	0.31	0.55	0.82
	20	0.015	100.0	144	NAV	0.05	0.08	0.13	0.26	0.51	0.78	100.0	174	NAV	0.06	0.10	0.16	0.30	0.54	0.80
	-•	0.010	100.0			0.00	0.00	5.15	5.20	0.01	5.75	200.0	-/ 1		0.00	0.10	0.10	5.55	0.0 1	0.00

Table B.26: Precipitation triggered pollution detection probability, average detection time, contaminated area in case of detection failure and relative contaminated area to control area for various RADTi in case of $\sigma_{\ln K}^2 = 0.0$ assuming bimonthly (2M) and quarterly (3M) sampling frequencies

	σ^{2}_{lnK}										0.00									
գւ(m)	wou	nfds(max)	P _d (2M)	<t(det.)> (DAYS)</t(det.)>	area on failure	(AREA ON DET.)/L	(3M. RADTi)/L	(6M. RADTi)/L	(12M. RADTi)/L	(24M. RADTi/L)	(36M. RADTi)/L	P _d (3M)	<t(det.)> (DAYS)</t(det.)>	area on failure	(AREA ON DET.)/L	(3M. RADTi)/L	(6M. RADTi)/L	(12M. RADTi)/L	(24M. RADTi/L)	(36M. RADTi)/L
	1	3.00	7.3	9408	0.36	0.29	0.30	0.29	0.30	0.29	0.20	7.1	9399	0.36	0.29	0.30	0.30	0.31	0.30	0.20
	2	3.00	15.9	9610	0.36	0.30	0.31	0.31	0.32	0.31	0.23	15.7	9632	0.36	0.30	0.30	0.31	0.31	0.31	0.22
	3	3.00	24.0	9583	0.36	0.30	0.30	0.30	0.31	0.31	0.25	23.6	9586	0.36	0.30	0.31	0.31	0.31	0.31	0.25
0.001	4	3.00	30.7	9577	0.36	0.30	0.31	0.31	0.31	0.31	0.24	30.6	9602	0.36	0.30	0.31	0.31	0.31	0.31	0.23
	6	3.00	47.6	9612	0.36	0.30	0.31	0.31	0.31	0.31	0.23	46.8	9627	0.36	0.30	0.31	0.31	0.31	0.31	0.23
	8	3.00	61.4	9588	0.35	0.30	0.31	0.31	0.31	0.32	0.25	60.6	9604	0.35	0.30	0.31	0.31	0.31	0.31	0.24
	12	3.00	90.4	9603	NAV	0.30	0.31	0.31	0.31	0.31	0.24	89.2	9620	NAV	0.30	0.31	0.31	0.31	0.31	0.23
	20	3.00	100.0	9488	NAV 0.80	0.30	0.30	0.30	0.31	0.33	0.27	100.0	9503	NAV	0.30	0.30	0.31	0.31	0.33	0.26
	2	2.25	28.0	7340	0.80	0.47	0.47	0.40	0.49	0.52	0.54	19.2 29.1	721/	0.80	0.47	0.47	0.40	0.49	0.52	0.55
	2	2.25	58.6	7293	0.80	0.40	0.47	0.48	0.49	0.51	0.54	57.1	7200	0.80	0.40	0.47	0.48	0.49	0.52	0.54
	4	2.25	77.8	7250	0.80	0.40	0.47	0.47	0.49	0.52	0.54	76.8	7288	0.80	0.46	0.47	0.48	0.49	0.52	0.55
0.01	6	2.25	100.0	7062	NAV	0.44	0.45	0.46	0.47	0.50	0.54	100.0	7101	NAV	0.45	0.45	0.46	0.48	0.51	0.54
	8	2.25	97.1	6978	NAV	0.43	0.44	0.45	0.47	0.50	0.53	96.9	7001	NAV	0.44	0.44	0.45	0.47	0.50	0.53
	12	2.25	100.0	6898	NAV	0.43	0.44	0.44	0.46	0.49	0.52	100.0	6922	NAV	0.43	0.44	0.45	0.46	0.49	0.52
	20	2.25	100.0	6866	NAV	0.43	0.43	0.44	0.46	0.49	0.52	100.0	6889	NAV	0.43	0.43	0.44	0.46	0.49	0.52
	1	0.50	25.1	2449	1.52	0.22	0.23	0.24	0.26	0.30	0.34	24.3	2355	1.52	0.21	0.22	0.22	0.24	0.28	0.32
	2	0.50	48.6	2314	1.52	0.20	0.21	0.22	0.24	0.28	0.32	47.9	2336	1.52	0.21	0.21	0.22	0.24	0.28	0.32
	3	0.50	73.7	2373	1.52	0.21	0.22	0.23	0.25	0.29	0.32	71.9	2343	1.52	0.21	0.21	0.22	0.24	0.28	0.32
0.05	4	0.50	94.8	2211	1.52	0.19	0.20	0.21	0.23	0.27	0.31	93.8	2225	NAV	0.19	0.20	0.21	0.23	0.27	0.31
0.05	6	0.50	100.0	1741	NAV	0.13	0.14	0.15	0.17	0.21	0.25	100.0	1764	NAV	0.13	0.14	0.15	0.17	0.21	0.25
	8	0.50	99.0	1720	NAV	0.13	0.14	0.15	0.17	0.21	0.25	98.7	1736	NAV	0.13	0.14	0.15	0.17	0.21	0.25
	12	0.50	100.0	1610	NAV	0.12	0.13	0.14	0.15	0.19	0.23	100.0	1632	NAV	0.12	0.13	0.14	0.16	0.20	0.24
	20	0.50	100.0	1581	NAV	0.12	0.12	0.13	0.15	0.19	0.23	100.0	1601	NAV	0.12	0.13	0.14	0.15	0.19	0.23
	1	0.13	25.8	1483	1.97	0.17	0.18	0.19	0.21	0.25	0.29	25.2	1534	1.97	0.18	0.19	0.20	0.21	0.25	0.30
	2	0.13	50.9	1421	1.97	0.16	0.17	0.18	0.20	0.24	0.29	49.6	1424	1.97	0.16	0.17	0.18	0.20	0.24	0.29
	3	0.13	75.9	1398	1.97	0.16	0.17	0.18	0.20	0.24	0.29	74.8	1441	1.97	0.16	0.17	0.18	0.20	0.24	0.29
0.10	4	0.13	93.7	118/	1.97	0.13	0.14	0.14	0.10	0.21	0.26	93.0	1235	1.97	0.13	0.14	0.15	0.17	0.22	0.26
	0 0	0.13	100.0	757		0.06	0.07	0.08	0.10	0.14	0.19	100.0	704		0.00	0.07	0.08	0.10	0.15	0.19
	12	0.13	100.0	587	NΔV	0.00	0.07	0.08	0.10	0.14	0.15	100.0	607	NΔV	0.07	0.07	0.08	0.10	0.14	0.19
	20	0.13	100.0	561	NAV	0.04	0.05	0.06	0.08	0.12	0.17	100.0	578	NAV	0.05	0.05	0.06	0.08	0.12	0.17
·	1	0.015	64.9	1878	6.71	1.31	1.36	1.40	1.50	1.72	1.99	63.1	1871	6.77	1.26	1.33	1.40	1.53	1.78	2.04
	2	0.015	99.7	985	NAV	0.54	0.59	0.66	0.78	1.03	1.29	99.5	1059	NAV	0.58	0.64	0.70	0.83	1.08	1.33
	3	0.015	100.0	508	NAV	0.25	0.31	0.37	0.50	0.74	0.99	100.0	540	NAV	0.27	0.33	0.39	0.52	0.76	1.01
	4	0.015	100.0	366	NAV	0.17	0.23	0.29	0.42	0.67	0.92	100.0	391	NAV	0.19	0.25	0.31	0.44	0.69	0.93
0.50	6	0.015	100.0	269	NAV	0.11	0.17	0.23	0.36	0.60	0.86	100.0	288	NAV	0.12	0.18	0.25	0.37	0.62	0.88
	8	0.015	100.0	250	NAV	0.11	0.16	0.22	0.35	0.60	0.85	100.0	267	NAV	0.12	0.18	0.24	0.37	0.61	0.87
	12	0.015	100.0	210	NAV	0.08	0.13	0.19	0.33	0.56	0.83	100.0	228	NAV	0.09	0.15	0.21	0.34	0.58	0.84
	20	0.015	100.0	195	NAV	0.07	0.12	0.18	0.31	0.55	0.82	100.0	214	NAV	0.08	0.13	0.19	0.33	0.56	0.83

Table B.27: Precipitation triggered pollution detection probability, average detection time, contaminated area in case of detection failure and relative contaminated area to control area for various RADTi in case of $\sigma_{\ln K}^2 = 0.0$ assuming every 4 months (4M) and biannually (6M) sampling frequencies

	σ² _{InK}										0.00									-
α ւ լ(m)	wou	nfds(max)	P _d (4M)	<t(days)< th=""><th>AREA ON FAILURE</th><th>(AREA ON DET.)/L</th><th>(3M. RADTi)/L</th><th>(6M. RADTi)/L</th><th>(12M. RADTi)/L</th><th>(24M. RADTi/L)</th><th>(36M. RADTi)/L</th><th>P_d (6M)</th><th><t(days)< th=""><th>area on failure</th><th>(AREA ON DET.)/L</th><th>(3M. RADTi)/L</th><th>(6M. RADTi)/L</th><th>(12M. RADTi)/L</th><th>(24M. RADTi/L)</th><th>(36M. RADTi)/L</th></t(days)<></th></t(days)<>	AREA ON FAILURE	(AREA ON DET.)/L	(3M. RADTi)/L	(6M. RADTi)/L	(12M. RADTi)/L	(24M. RADTi/L)	(36M. RADTi)/L	P _d (6M)	<t(days)< th=""><th>area on failure</th><th>(AREA ON DET.)/L</th><th>(3M. RADTi)/L</th><th>(6M. RADTi)/L</th><th>(12M. RADTi)/L</th><th>(24M. RADTi/L)</th><th>(36M. RADTi)/L</th></t(days)<>	area on failure	(AREA ON DET.)/L	(3M. RADTi)/L	(6M. RADTi)/L	(12M. RADTi)/L	(24M. RADTi/L)	(36M. RADTi)/L
	1	3.00	6.9	9390	0.36	0.29	0.30	0.30	0.31	0.31	0.21	6.8	9415	0.36	0.29	0.30	0.30	0.30	0.29	0.18
	2	3.00	15.6	9650	0.36	0.31	0.31	0.31	0.31	0.31	0.23	14.7	9645	0.36	0.30	0.31	0.31	0.32	0.31	0.20
	3	3.00	23.3	9608	0.36	0.30	0.30	0.31	0.31	0.31	0.25	22.7	9614	0.36	0.30	0.31	0.31	0.31	0.31	0.23
0.001	4	3.00	29.8 46.2	9601	0.36	0.30	0.31	0.31	0.32	0.31	0.24	29.3 11 8	9627	0.30	0.30	0.31	0.31	0.31	0.30	0.22
	8	3.00	40.5 60.0	9045	0.30	0.30	0.31	0.31	0.31	0.31	0.25	44.0 58.3	9000	0.30	0.31	0.31	0.31	0.31	0.30	0.21
	12	3.00	87.5	9628	0.35	0.30	0.31	0.31	0.32	0.32	0.25	36.0	9649	0.30	0.31	0.31	0.31	0.31	0.30	0.22
	20	3.00	100.0	9520	NAV	0.30	0.30	0.31	0.31	0.33	0.27	100.0	9549	NAV	0.30	0.30	0.31	0.31	0.32	0.24
	1	2.25	19.1	7379	0.80	0.47	0.47	0.48	0.50	0.52	0.55	18.5	7369	0.80	0.47	0.48	0.48	0.50	0.53	0.55
	2	2.25	38.0	7350	0.80	0.47	0.47	0.48	0.49	0.51	0.54	36.5	7344	0.80	0.47	0.47	0.48	0.49	0.52	0.54
	3	2.25	56.6	7332	0.80	0.47	0.47	0.48	0.49	0.52	0.54	55.0	7347	0.80	0.47	0.47	0.48	0.49	0.52	0.54
0.01	4	2.25	75.8	7299	0.80	0.46	0.47	0.47	0.49	0.51	0.54	74.2	7322	0.80	0.46	0.47	0.48	0.49	0.52	0.54
	6	2.25	100.0	7125	NAV	0.45	0.45	0.46	0.48	0.51	0.54	99.9	7178	NAV	0.45	0.46	0.47	0.48	0.51	0.55
	8	2.25	96.8	7022	NAV	0.44	0.45	0.45	0.47	0.50	0.53	96.6	7054	NAV	0.44	0.45	0.46	0.47	0.50	0.53
	12	2.25	100.0	6944	NAV	0.43	0.44	0.45	0.46	0.49	0.53	100.0	6976	NAV	0.43	0.44	0.45	0.47	0.50	0.53
	20	2.25	100.0	6907	NAV	0.43	0.44	0.44	0.46	0.49	0.52	100.0	6940	NAV	0.43	0.44	0.45	0.46	0.49	0.53
	1	0.50	24.5	2481	1.52	0.22	0.23	0.24	0.26	0.30	0.34	23.8	2457	1.52	0.22	0.23	0.24	0.26	0.30	0.33
	2	0.50	47.0	2327	1.52	0.20	0.21	0.22	0.24	0.28	0.32	46.6	2403	1.52	0.21	0.22	0.23	0.25	0.29	0.33
	 ∕	0.50	71.6	2402	1.52	0.21	0.22	0.23	0.25	0.29	0.33	70.0	2410	1.52	0.21	0.22	0.23	0.25	0.29	0.33
0.05	4 6	0.50	100.0	1701	NAV	0.20	0.20	0.21	0.25	0.27	0.51	92.0 100.0	1870	NAV	0.20	0.21	0.22	0.24	0.20	0.52
	8	0.50	98.8	1755	NAV	0.14	0.15	0.15	0.17	0.21	0.20	98.6	1791	NAV	0.14	0.15	0.10	0.10	0.22	0.20
	12	0.50	100.0	1651	NAV	0.12	0.13	0.14	0.16	0.20	0.24	100.0	1687	NAV	0.13	0.13	0.14	0.16	0.20	0.24
	20	0.50	100.0	1619	NAV	0.12	0.13	0.14	0.16	0.19	0.24	100.0	1652	NAV	0.12	0.13	0.14	0.16	0.20	0.24
	1	0.13	25.0	1560	1.97	0.18	0.19	0.20	0.22	0.26	0.30	24.7	1624	1.97	0.19	0.20	0.21	0.22	0.26	0.31
	2	0.13	49.6	1509	1.97	0.18	0.18	0.19	0.21	0.25	0.30	48.3	1512	1.97	0.17	0.18	0.19	0.21	0.25	0.29
	3	0.13	74.2	1481	1.97	0.17	0.18	0.19	0.21	0.26	0.30	72.4	1502	1.97	0.17	0.18	0.19	0.21	0.25	0.30
0.10	4	0.13	92.2	1244	1.97	0.13	0.14	0.15	0.17	0.22	0.27	91.4	1288	1.97	0.14	0.15	0.16	0.18	0.22	0.27
	6	0.13	100.0	791	NAV	0.07	0.08	0.09	0.11	0.15	0.20	100.0	834	NAV	0.07	0.08	0.09	0.11	0.16	0.20
	8	0.13	99.2	747	NAV	0.07	0.07	0.08	0.10	0.15	0.19	99.0	779	NAV	0.07	0.08	0.09	0.11	0.15	0.20
	12	0.13	100.0	622	NAV	0.05	0.06	0.07	0.09	0.13	0.17	100.0	654	NAV	0.05	0.06	0.07	0.09	0.13	0.18
	20	0.13	100.0	1020		1.26	1.06	1.20	1 51	1.76	2.01	100.0	1962	NAV	1.20	1.05	1.42	1 57	1 01	2.08
	1	0.015	01.5	1030		1.20	1.31	1.38	1.51	1.70	2.01	59.8 00.0	1200		1.30	1.37	1.43	1.57	1.81	2.08
	2	0.015	100.0	567	NΔV	0.02	0.08	0.74	0.87	0.79	1.37	100.0	613	NΔV	0.07	0.75	0.75	0.52	0.81	1.45
	4	0.015	100.0	411	NAV	0.21	0.27	0.33	0.46	0.71	0.95	100.0	450	NAV	0.23	0.29	0.35	0.47	0.73	0.96
0.50	6	0.015	100.0	308	NAV	0.14	0.20	0.26	0.39	0.63	0.89	100.0	337	NAV	0.16	0.22	0.28	0.41	0.66	0.90
	8	0.015	100.0	287	NAV	0.14	0.19	0.25	0.38	0.63	0.88	100.0	320	NAV	0.15	0.21	0.27	0.40	0.65	0.90
	12	0.015	100.0	246	NAV	0.10	0.16	0.22	0.35	0.59	0.86	100.0	284	NAV	0.13	0.19	0.25	0.38	0.62	0.88
	20	0.015	100.0	232	NAV	0.09	0.15	0.21	0.34	0.58	0.84	100.0	272	NAV	0.12	0.17	0.23	0.36	0.61	0.86

Table B.28: Precipitation triggered pollution detection probability, average detection time, contaminated area in case of detection failureand relative contaminated area to control area for various RADTi in case of $\sigma_{\ln K}^2 = 0.0$ assuming annually samplingfrequency

	σ² _{InK}					0.0	0				
գե(m)	мои	nfds(max)	P _d (12M)	<t(days) <(days)<="" th=""><th>AREA ON FAILURE</th><th>(AREA ON DET.)/L</th><th>(3M. RADTi)/L</th><th>(6M. RADTi)/L</th><th>(12M. RADTi)/L</th><th>(24M. RADTi/L)</th><th>(36M. RADTi)/L</th></t(days)>	AREA ON FAILURE	(AREA ON DET.)/L	(3M. RADTi)/L	(6M. RADTi)/L	(12M. RADTi)/L	(24M. RADTi/L)	(36M. RADTi)/L
	1	3.00	6.6	9488	0.36	0.30	0.30	0.30	0.31	0.32	0.23
	2	3.00	14.6	9735	0.36	0.31	0.31	0.31	0.32	0.32	0.24
	3	3.00	22.4	9719	0.36	0.31	0.31	0.31	0.32	0.32	0.27
0.001	4	3.00	28.2	9716	0.36	0.31	0.31	0.31	0.32	0.32	0.26
0.001	6	3.00	44.0	9759	0.36	0.31	0.31	0.31	0.32	0.32	0.25
	8	3.00	57.8	9741	0.36	0.31	0.31	0.31	0.32	0.32	0.25
	12	3.00	84.0	9750	0.35	0.31	0.31	0.31	0.32	0.32	0.25
	20	3.00	100.0	9652	NAV	0.30	0.31	0.31	0.32	0.33	0.28
	1	2.25	18.1	7477	0.80	0.48	0.48	0.49	0.50	0.53	0.55
	2	2.25	35.3	7453	0.80	0.48	0.47	0.48	0.50	0.53	0.55
	3	2.25	53.4	7435	0.80	0.47	0.48	0.48	0.50	0.53	0.55
0.01	4	2.25	72.1	7422	0.60	0.47	0.40	0.40	0.50	0.55	0.50
	8	2.25	99.7	7152	NAV	0.40	0.47	0.46	0.49	0.55	0.50
	12	2.25	100.2	7074	NAV	0.45	0.40	0.46	0.40	0.51	0.54
	20	2.25	100.0	7042	NAV	0.44	0.45	0.46	0.47	0.51	0.54
	1	0.50	22.7	2582	1.52	0.23	0.24	0.25	0.27	0.31	0.34
	2	0.50	45.2	2513	1.52	0.23	0.23	0.24	0.26	0.30	0.34
	3	0.50	67.2	2494	1.52	0.22	0.23	0.24	0.26	0.30	0.34
	4	0.50	89.7	2426	1.51	0.21	0.22	0.23	0.25	0.29	0.33
0.05	6	0.50	100.0	1931	NAV	0.15	0.16	0.17	0.19	0.23	0.27
	8	0.50	98.4	1887	NAV	0.15	0.16	0.17	0.18	0.22	0.27
	12	0.50	100.0	1778	NAV	0.13	0.14	0.15	0.17	0.21	0.25
	20	0.50	100.0	1742	NAV	0.13	0.14	0.15	0.17	0.21	0.25
	1	0.13	23.3	1574	1.97	0.18	0.19	0.20	0.22	0.27	0.31
	2	0.13	47.0	1656	1.97	0.20	0.20	0.21	0.24	0.28	0.33
	3	0.13	69.0	1584	1.97	0.18	0.19	0.20	0.22	0.27	0.31
0.10	4	0.13	89.4	1446	1.97	0.16	0.17	0.18	0.20	0.25	0.30
	6	0.13	99.9	945	NAV	0.09	0.09	0.11	0.13	0.17	0.22
	8	0.13	98.7	8/8	NAV	0.08	0.09	0.10	0.12	0.16	0.21
	12	0.13	100.0	741	NAV	0.06	0.07	0.08	0.10	0.14	0.19
	20	0.13	100.0	715	NAV	1.00	1.50	1.08	0.10	0.14	0.19
	1	0.015	57.2	2003	6.79 NAV	1.50	1.50	1.57	1.70	1.93	2.18
	2	0.015	100.0	730	NAV	0.85	0.89	0.95	0.64	1.55	1.50
	4	0.015	100.0	561	NAV	0.31	0.37	0.43	0.55	0.80	1.03
0.50	6	0.015	100.0	445	NAV	0.25	0.30	0.36	0.48	0.75	0.96
	8	0.015	100.0	435	NAV	0.24	0.29	0.35	0.47	0.73	0.96
	12	0.015	100.0	406	NAV	0.21	0.26	0.32	0.44	0.70	0.93
	20	0.015	100.0	395	NAV	0.18	0.23	0.29	0.42	0.68	0.92

Table B.29: Precipitation triggered pollution detection probability, average detection time, contaminated area in case of detection failure and relative contaminated area to control area for various RADTi in case of $\sigma_{\ln K}^2 = 1.0$ assuming daily (ED) and monthly (1M) sampling frequencies

	σ^{2}_{lnK}										1.00									
α _τ (m)	wou	nfds(max)	P _d (ED)	<t(det.)> (DAYS)</t(det.)>	area on failure	(AREA ON DET.)/L	(3M. RADTi)/L	(6M. RADTi)/L	(12M. RADTi)/L	(24M. RADTi/L)	(36M. RADTi)/L	P _d (1M)	<t(det.)> (DAYS)</t(det.)>	area on failure	(AREA ON DET.)/L	(3M. RADTi)/L	(6M. RADTi)/L	(12M. RADTi)/L	(24M. RADTi/L)	(36M. RADTi)/L
	1	1.75	8.4	5827	0.61	0.22	0.23	0.23	0.24	0.25	0.26	8.2	5824	0.61	0.22	0.23	0.23	0.24	0.25	0.26
	2	1.75	18.2	5770	0.59	0.23	0.23	0.24	0.24	0.26	0.27	17.8	5805	0.59	0.23	0.23	0.24	0.24	0.26	0.27
	3	1.75	24.9	5686	0.61	0.22	0.23	0.23	0.24	0.25	0.27	24.4	5699	0.61	0.22	0.23	0.23	0.24	0.26	0.27
0.001	4	1.75	31.4	5688	0.57	0.22	0.22	0.23	0.24	0.25	0.27	30.4	5685	0.57	0.22	0.22	0.23	0.23	0.26	0.27
	6	1.75	46.4	5614	0.59	0.21	0.22	0.22	0.23	0.25	0.27	45.2	5614	0.59	0.21	0.22	0.22	0.23	0.25	0.27
	8	1.75	56.7	5557	0.65	0.20	0.21	0.21	0.22	0.24	0.26	55.3	5585	0.65	0.21	0.21	0.22	0.22	0.24	0.26
	12	1.75	71.8	5496	0.54	0.20	0.20	0.20	0.21	0.23	0.26	70.3	5496	0.59	0.20	0.20	0.20	0.21	0.23	0.25
	20	1.75	83.0	5340	NAV	0.18	0.19	0.19	0.20	0.22	0.24	82.7	5384	NAV	0.19	0.19	0.20	0.20	0.22	0.24
	1	1.25	ZZ.Z	4430	1.32	0.32	0.33	0.34	0.30	0.39	0.43	21.9 40 F	4505	1.32	0.33	0.34	0.35	0.37	0.40	0.44
	2	1.25	41.1 EE 0	4257	1.20	0.51	0.52	0.33	0.55	0.39	0.45	40.5	4200	1.20	0.51	0.52	0.33	0.55	0.39	0.45
	з 4	1.25	55.8 67.3	4211	1.29	0.30	0.31	0.32	0.34	0.36	0.42	54.7 66.2	4203	1.29	0.31	0.32	0.33	0.33	0.38	0.43
0.01	6	1.25	80.7	3955	1.25	0.20	0.25	0.30	0.32	0.30	0.40	80.2	3996	1.22	0.25	0.30	0.31	0.33	0.37	0.38
	8	1.25	82.8	3848	1.29	0.24	0.24	0.25	0.27	0.31	0.35	82.3	3892	1.29	0.24	0.25	0.26	0.28	0.32	0.36
	12	1.25	90.9	3751	1.30	0.22	0.23	0.24	0.26	0.30	0.34	90.6	3793	1.29	0.23	0.24	0.25	0.27	0.31	0.35
	20	1.25	92.6	3676	1.26	0.22	0.23	0.23	0.25	0.29	0.33	92.5	3714	NAV	0.22	0.23	0.24	0.26	0.29	0.34
	1	0.13	21.3	1420	2.20	0.14	0.15	0.16	0.18	0.23	0.28	20.8	1514	2.20	0.16	0.17	0.18	0.20	0.25	0.30
	2	0.13	42.0	1401	2.21	0.13	0.13	0.14	0.16	0.20	0.25	41.0	1501	2.21	0.15	0.16	0.17	0.18	0.22	0.27
	3	0.13	58.4	1412	2.22	0.13	0.14	0.15	0.17	0.21	0.26	56.7	1510	2.24	0.14	0.15	0.16	0.18	0.23	0.28
0.05	4	0.13	71.6	1355	2.24	0.13	0.14	0.15	0.16	0.21	0.26	70.0	1389	2.26	0.13	0.14	0.15	0.17	0.21	0.27
0.05	6	0.13	91.0	1108	2.22	0.08	0.09	0.10	0.12	0.17	0.21	89.2	1143	2.23	0.09	0.10	0.11	0.13	0.17	0.22
	8	0.13	92.3	898	NAV	0.06	0.06	0.07	0.09	0.13	0.18	91.9	947	2.21	0.06	0.07	0.08	0.10	0.14	0.19
	12	0.13	97.1	771	NAV	0.04	0.05	0.06	0.08	0.12	0.16	97.1	807	NAV	0.05	0.05	0.06	0.08	0.12	0.17
<u> </u>	20	0.13	97.9	741	NAV	0.04	0.05	0.06	0.07	0.11	0.16	97.7	768	NAV	0.04	0.05	0.06	0.08	0.12	0.16
	1	0.06	28.5	1343	2.60	0.18	0.19	0.20	0.23	0.29	0.35	27.4	1459	2.60	0.20	0.21	0.23	0.26	0.31	0.38
	2	0.06	56.3	1320	2.61	0.17	0.18	0.19	0.22	0.27	0.33	54.4	1328	2.61	0.17	0.18	0.19	0.22	0.27	0.33
	3	0.06	70.5	1205	2.60	0.15	0.10	0.17	0.20	0.25	0.31	74.1	1259	2.01	0.15	0.15	0.18	0.20	0.20	0.32
0.10	4 6	0.00	00.4 08 0	720		0.12	0.15	0.13	0.17	0.25	0.20	00.0 07.9	786	2.71	0.14	0.15	0.10	0.19	0.25	0.50
	8	0.00	96.0	612	NΔV	0.00	0.07	0.08	0.10	0.10	0.22	97.8	651	2.22	0.07	0.08	0.05	0.12	0.17	0.23
	12	0.06	99.6	521	NAV	0.04	0.05	0.06	0.08	0.13	0.18	99.3	556	NAV	0.04	0.05	0.06	0.08	0.13	0.19
	20	0.06	99.8	477	NAV	0.03	0.04	0.05	0.07	0.12	0.18	99.7	511	NAV	0.04	0.05	0.06	0.08	0.13	0.18
·	1	0.015	90.9	1872	NAV	1.10	1.15	1.20	1.30	1.53	1.77	86.9	2006	NAV	1.19	1.25	1.30	1.43	1.65	1.89
	2	0.015	99.9	662	NAV	0.29	0.34	0.40	0.52	0.77	1.02	99.8	777	NAV	0.36	0.41	0.47	0.60	0.84	1.10
	3	0.015	100.0	424	NAV	0.17	0.21	0.27	0.39	0.64	0.89	100.0	498	NAV	0.22	0.27	0.32	0.45	0.69	0.95
0 50	4	0.015	100.0	322	NAV	0.12	0.16	0.20	0.33	0.58	0.83	100.0	383	NAV	0.15	0.20	0.25	0.38	0.62	0.88
0.50	6	0.015	100.0	241	NAV	0.08	0.11	0.16	0.28	0.52	0.78	100.0	289	NAV	0.10	0.14	0.19	0.32	0.56	0.82
	8	0.015	100.0	230	NAV	0.08	0.11	0.16	0.27	0.52	0.78	100.0	275	NAV	0.10	0.14	0.19	0.31	0.56	0.82
	12	0.015	100.0	188	NAV	0.06	0.09	0.13	0.25	0.49	0.75	100.0	226	NAV	0.08	0.12	0.16	0.28	0.53	0.79
	20	0.015	100.0	174	NAV	0.05	0.08	0.12	0.24	0.48	0.74	100.0	208	NAV	0.07	0.11	0.15	0.27	0.51	0.77

Table B.30: Precipitation triggered pollution detection probability, average detection time, contaminated area in case of detection failure and relative contaminated area to control area for various RADTi in case of $\sigma_{\ln \kappa}^2 = 1.0$ assuming bimonthly (2M) and quarterly (3M) sampling frequencies

Image: Second state		σ^{2}_{lnK}										1.00									
 1 1.75 8.1 578 0.61 0.22 0.22 0.23 0.24 0.26 0.27 17.2 580 0.61 0.22 0.22 0.23 0.24 0.25 0.26 0.27 17.5 580 0.59 0.23 0.24 0.24 0.25 0.26 0.27 0.27 0.28 550 0.59 0.23 0.24 0.24 0.25 0.26 0.27 0.27 0.28 550 0.59 0.23 0.24 0.24 0.25 0.26 0.27 0.27 0.28 570 0.51 0.22 0.23 0.24 0.26 0.27 0.28 0.27 0.29 0.23 0.24 0.26 0.28 0.27 0.23 0.24 0.26 0.28 0.27 0.23 0.24 0.26 0.28 0.27 0.23 0.24 0.26 0.28 0.27 0.23 0.24 0.26 0.28 0.27 0.23 0.24 0.26 0.28 0.27 0.23 0.24 0.26 0.28 0.27 0.23 0.24 0.26 0.28 0.27 0.29 0.23 0.24 0.26 0.28 0.27 0.29 0.23 0.24 0.26 0.28 0.27 0.29 0.23 0.24 0.26 0.28 0.27 0.29 0.21 0.22 0.22 0.23 0.24 0.26 0.28 0.27 0.29 0.22 0.23 0.24 0.26 0.28 0.27 0.29 0.21 0.22 0.24 0.26 0.28 0.27 0.29 0.21 0.22 0.24 0.26 0.27 0.29 0.21 0.22 0.24 0.26 0.27 0.29 0.21 0.22 0.24 0.26 0.27 0.29 0.17 5 82.4 5411 NAV 0.19 0.19 0.20 0.21 0.23 0.24 0.26 54.3 554 0.59 0.20 0.20 0.21 0.22 0.24 0.26 0.27 0.28 0.27 0.28 0.29 0.17 5 82.4 5411 NAV 0.19 0.19 0.20 0.21 0.23 0.24 0.26 0.27 0.28 0.29 0.1 0.25 0.27 0.28 0.30 0.34 0.36 0.40 0.43 1.25 0.34 0.35 0.36 0.40 0.44 1.25 0.35 0.461 0.12 0.29 0.30 0.31 0.33 0.37 0.42 0.45 1.3 4571 1.26 0.33 0.33 0.34 0.36 0.40 0.44 1.25 0.53 4161 1.22 0.29 0.30 0.31 0.33 0.34 0.36 0.49 0.38 1.29 0.31 0.32 0.34 0.36 0.40 0.44 1.25 0.53 4161 1.22 0.29 0.30 0.31 0.33 0.34 0.36 0.40 0.43 1.25 0.25 0.26 0.27 0.29 0.31 0.35 0.39 0.44 0.26 1.25 0.38 0.41 0.45 0.39 0.44 0.35 0.40 0.43 0.35 0.30 0.34 0.36 0.39 0.44 0.35 0.28 0.29 0.31 0.35 0.39 0.44 0.26 0.27 0.29 0.31 0.35 0.39 0.44 0.26 0.27 0.29 0.30 0.31 0.33 0.34 0.36 0.40 0.44 0.25 0.26 0.27 0.29 0.30 0.31 0.33 0.34 0.36 0.40 0.43 1.20 0.24 0.25 0.27 0.29 0.31 0.35 0.39 0.44 0.26 0.27 0.29 0.31 0.35 0.39 0.44 0.26 0.20 0.27 0.28 0.29 0.31 0.35 0.39 0.44 0.26 0.27 0.20 0.24 0.25 0.27 0.20 0.30 0.34 0.35 0.28 0.20 0.27 0.29 0.30 0.34 0.35 0.36 0.39 0.44 0.45 0.30 0.44 0.35 0.26 0.27 0.20 0.20 0.20 0.20 0.20 0.20 0.20	գդ(m)	wou	nfds(max)	P _d (2M)	<t(det.)> (DAYS)</t(det.)>	AREA ON FAILURE	(AREA ON DET.)/L	(3M. RADTi)/L	(6M. RADTi)/L	(12M. RADTi)/L	(24M. RADTi/L)	(36M. RADTi)/L	P _d (3M)	<t(det.)> (DAYS)</t(det.)>	AREA ON FAILURE	(AREA ON DET.)/L	(3M. RADTi)/L	(6M. RADTi)/L	(12M. RADTi)/L	(24M. RADTi/L)	(36M. RADTi)/L
2 1.75 7.2 5781 0.59 0.23 0.24 0.26 0.27 7.2 5850 0.59 0.23 0.24 0.26 0.27 23.5 5704 0.61 0.22 0.23 0.24 0.26 0.27 23.5 5704 0.61 0.22 0.23 0.24 0.26 0.28 0.27 734 0.565 0.57 0.22 0.23 0.25 0.27 0.23 0.25 0.27 0.23 0.25 0.27 0.25 0.27 0.23 0.25 0.27 0.23 0.25 0.27 0.23 0.24 0.26 0.24 0.26 0.24 0.26 0.24 0.26 0.21 0.22 0.23 0.24 0.26 6.91 554 0.59 0.20 0.21 0.22 0.23 0.24 0.26 0.21 0.22 0.23 0.23 0.24 0.26 0.21 0.20 0.21 0.22 0.23 0.24 0.26 0.23 0.24 0.26<		1	1.75	8.1	5788	0.61	0.22	0.22	0.22	0.23	0.25	0.26	8.0	5800	0.61	0.22	0.22	0.23	0.24	0.25	0.26
3 1.75 23.8 5690 0.61 0.22 0.23 0.24 0.26 0.27 25.3 5740 0.61 0.22 0.23 0.24 0.26 0.28 0.23 0.23 0.24 0.26 0.28 6 1.75 44.2 5631 0.59 0.21 0.22 0.23 0.24 0.26 0.27 43.9 5685 0.59 0.21 0.22 0.23 0.24 0.26 6.33 551 0.59 0.20 0.21 0.22 0.23 0.24 0.26 54.3 551 0.59 0.20 0.21 0.23 0.25 82.1 543 0.30 0.34 0.36 0.37 0.41 0.45 21.3 457 1.32 0.30 0.34 0.36 0.37 0.41 0.45 21.3 4501 1.32 0.33 0.34 0.36 0.39 0.44 0.35 0.39 0.44 0.35 0.39 0.44 0.35 0.39 0.44		2	1.75	17.2	5781	0.59	0.23	0.23	0.24	0.24	0.26	0.27	17.2	5850	0.59	0.23	0.24	0.24	0.25	0.26	0.27
0.001 4 1.75 29.9 5725 0.57 0.27 0.23 0.24 0.26 0.28 0.27 0.22 0.23 0.24 0.26 0.28 0.27 0.23 0.23 0.23 0.25 0.27 0.23 0.25 0.27 0.23 0.25 0.27 0.23 0.25 0.21 0.22 0.23 0.25 0.27 0.23 0.25 0.21 0.22 0.23 0.25 0.21 0.22 0.24 0.26 0.21 0.22 0.24 0.26 0.21 0.22 0.24 0.26 0.21 0.23 0.23 0.23 0.23 0.24 0.26 0.21 0.22 0.24 0.24 0.26 0.21 0.22 0.22 0.23 0.23 0.24 0.25 0.27 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.24 0.25 0.27 0.23 0.23 0.24 0.25 0.27 0.23 0.33 0.33 0		3	1.75	23.8	5690	0.61	0.22	0.23	0.23	0.24	0.26	0.27	23.5	5704	0.61	0.22	0.23	0.23	0.24	0.26	0.27
6 1.75 44.2 5631 0.59 0.21 0.22 0.23 0.24 0.26 0.35 0.57 43 5685 0.59 0.20 0.21 0.22 0.23 0.24 0.26 63.3 5651 0.55 0.20 0.20 0.21 0.22 0.23 0.24 0.26 69.1 5554 0.59 0.20 0.21 0.22 0.24 0.26 69.1 5554 0.59 0.20 0.21 0.22 0.24 0.26 69.1 5554 0.59 0.20 0.21 0.22 0.24 0.25 0.27 0.23 0.23 0.23 0.34 0.35 0.36 0.37 0.41 0.45 21.3 4351 1.26 0.33 0.34 0.36 0.34 0.31 1.35 0.34 0.36 0.34 0.35 0.33 0.33 0.31 0.33 0.37 0.42 6.37 0.41 1.25 0.33 0.34 0.36 0.39 0.31 0.33	0.001	4	1.75	29.9	5725	0.57	0.22	0.22	0.23	0.24	0.26	0.28	29.7	5746	0.57	0.22	0.23	0.23	0.24	0.26	0.28
8 1.75 54.6 5630 0.59 0.21 0.21 0.22 0.24 0.26 63.1 5551 0.56 0.21 0.21 0.24 0.26 63.1 5551 0.59 0.20 0.22 0.24 0.26 63.1 5551 0.59 0.20 0.21 0.22 0.24 0.26 63.1 5551 0.59 0.20 0.21 0.23 0.25 82.1 5432 NAV 0.19 0.19 0.20 0.21 0.23 0.25 82.1 5432 NAV 0.19 0.19 0.20 0.21 0.23 0.24 0.25 0.25 0.26 0.23 0.41 0.45 0.43 0.43 0.31 0.31 0.32 0.31 0.33 0.37 0.42 0.47 0.21 1.23 0.34 0.38 0.43 51.2 0.23 0.34 0.38 0.35 1.25 0.27 0.31 0.35 0.31 0.32 0.34 0.33 0.32 0.34		6	1.75	44.2	5631	0.59	0.21	0.22	0.22	0.23	0.25	0.27	43.9	5685	0.59	0.22	0.22	0.23	0.23	0.25	0.27
12 1.75 63.8 5331 0.39 0.20 0.21 0.22 0.24 0.20 0.20 0.20 0.21 0.23 0.25 82.1 5334 0.39 0.20 0.20 0.22 0.23 0.23 0.25 82.1 5334 0.34 0.35 0.36 0.37 0.41 0.45 21.3 4332 0.34 0.36 0.33 0.34 0.36 0.37 0.41 0.45 21.3 4351 1.26 0.33 0.34 0.36 0.37 0.41 0.45 21.3 4351 1.26 0.33 0.33 0.34 0.36 0.43 0.32 0.34 0.36 0.43 0.32 0.34 0.33 0.37 0.42 1.25 0.32 0.44 0.36 0.33 0.33 0.37 0.42 0.32 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0		8	1.75	54.6	5630	0.65	0.21	0.21	0.22	0.23	0.24	0.26	54.3	5651	0.65	0.21	0.22	0.22	0.23	0.25	0.27
20 1.73 62.4 94.11 NAV 0.19 0.19 0.19 0.10 0		12	1.75	69.8	5531	0.59	0.20	0.20	0.21	0.22	0.24	0.26	69.1 82.1	5554	0.59	0.20	0.20	0.21	0.22	0.24	0.26
1.12 1.1		1	1.75	21.7	4558	1 32	0.19	0.19	0.20	0.21	0.23	0.25	21.3	4577	1 32	0.19	0.19	0.20	0.21	0.25	0.25
3 1.25 54.2 4321 1.29 0.32 0.33 0.34 0.36 0.39 0.43 53.1 4308 1.29 0.31 0.32 0.33 0.34 0.38 0.44 6 1.25 65.3 4161 1.22 0.29 0.30 0.31 0.33 0.37 0.42 64.7 4212 1.23 0.30 0.31 0.32 0.34 0.38 0.42 6 1.25 79.5 4042 1.31 0.27 0.28 0.30 0.34 0.38 78.9 4055 1.25 0.27 0.28 0.30 0.34 92.1 1.25 0.23 0.24 0.25 0.27 0.28 0.30 0.34 92.1 3770 NAV 0.22 0.23 0.31 0.35 0.35 0.36 0.34 92.1 3770 NAV 0.22 0.23 0.24 0.30 1.24 0.25 0.27 0.31 0.35 0.35 0.36 0.34 92.1 3770 NAV 0.22 0.23 0.24 0.29 349 1.52		2	1.25	40.0	4331	1.28	0.32	0.33	0.34	0.36	0.40	0.43	39.2	4351	1.26	0.33	0.33	0.34	0.36	0.40	0.44
0.01 4 1.25 65.3 4161 1.22 0.30 0.31 0.33 0.37 0.42 64.7 4212 1.23 0.30 0.31 0.32 0.34 0.38 0.42 6 1.25 79.5 4042 1.31 0.27 0.28 0.30 0.34 0.38 78.9 4055 1.25 0.27 0.28 0.39 0.37 0.35 0.39 12 1.25 81.8 3925 1.28 0.23 0.24 0.25 0.27 0.31 0.35 0.30 0.34 0.35 90.2 3850 1.28 0.23 0.24 0.26 0.30 0.34 0.35 0.27 0.31 0.35 0.30 0.34 0.35 0.32 0.24 0.26 0.30 0.34 0.35 0.27 0.31 0.35 0.30 0.35 0.21 0.27 0.31 0.35 0.32 0.21 0.37 0.44 0.5 0.30 0.31 0.35		3	1.25	54.2	4321	1.29	0.32	0.33	0.34	0.36	0.39	0.43	53.1	4308	1.29	0.31	0.32	0.33	0.35	0.39	0.44
0.01 6 1.25 79.5 4042 1.31 0.27 0.28 0.30 0.34 0.38 78.9 4055 1.25 0.27 0.28 0.29 0.31 0.35 0.39 8 1.25 81.8 3925 1.28 0.25 0.25 0.26 0.28 0.32 0.36 81.6 3963 1.29 0.25 0.27 0.31 0.35 20 1.25 92.3 3747 NAV 0.22 0.23 0.24 0.26 0.30 0.34 92.1 3770 NAV 0.22 0.23 0.24 0.26 0.30 0.34 92.1 3770 NAV 0.22 0.23 0.24 0.30 0.34 92.1 3770 NAV 0.22 0.24 0.30 1.99 1522 2.21 0.16 0.17 0.19 0.24 0.29 39.9 1592 2.21 0.16 0.17 0.19 0.24 0.29 34.9 1.573 2.23		4	1.25	65.3	4161	1.22	0.29	0.30	0.31	0.33	0.37	0.42	64.7	4212	1.23	0.30	0.31	0.32	0.34	0.38	0.42
8 1.25 81.8 3925 1.28 0.25 0.26 0.28 0.32 0.36 81.6 3963 1.29 0.26 0.27 0.29 0.33 0.37 12 1.25 90.3 3826 1.28 0.23 0.24 0.25 0.27 0.31 0.35 90.2 3850 1.28 0.23 0.24 0.25 0.27 0.31 0.35 90.2 3850 1.28 0.23 0.24 0.26 0.30 0.34 92.1 3770 NAV 0.22 0.23 0.34 0.33 20 1.33 40.3 1592 2.21 0.16 0.17 0.19 0.24 0.29 59.9 1573 2.23 0.16 0.17 0.20 0.24 0.29 3.91 1502 2.21 0.16 0.17 0.19 0.24 0.29 59.9 1502 2.21 0.16 0.17 0.19 0.24 0.29 59.9 1502 2.21 0.16	0.01	6	1.25	79.5	4042	1.31	0.27	0.27	0.28	0.30	0.34	0.38	78.9	4055	1.25	0.27	0.28	0.29	0.31	0.35	0.39
12 1.25 90.3 3826 1.28 0.23 0.24 0.25 0.27 0.31 0.35 90.2 3850 1.28 0.23 0.24 0.25 0.31 0.35 20 1.25 92.3 3747 NAV 0.22 0.23 0.24 0.26 0.30 0.34 92.1 3770 NAV 0.22 0.23 0.24 0.30 2 0.13 40.3 1592 2.21 0.16 0.17 0.18 0.20 0.24 0.29 39.9 1592 2.21 0.16 0.17 0.18 0.20 0.24 0.29 39.9 1592 2.21 0.16 0.17 0.19 0.24 0.29 39.9 1592 2.21 0.16 0.17 0.19 0.24 0.29 39.9 1592 2.21 0.16 0.17 0.19 0.24 0.29 34.9 1503 2.21 0.10 0.11 0.11 0.11 0.11 0.11 0.11		8	1.25	81.8	3925	1.28	0.25	0.25	0.26	0.28	0.32	0.36	81.6	3963	1.29	0.25	0.26	0.27	0.29	0.33	0.37
20 1.25 92.3 3747 NAV 0.22 0.23 0.24 0.26 0.30 0.34 92.1 3770 NAV 0.22 0.23 0.24 0.30 0.34 1 0.13 20.3 1503 2.21 0.15 0.16 0.17 0.19 0.24 0.29 39.9 1522 2.21 0.16 0.17 0.19 0.24 0.29 39.9 1552 2.21 0.16 0.17 0.19 0.24 0.29 39.9 1573 2.23 0.16 0.16 0.17 0.19 0.24 0.29 4 0.13 69.1 1467 2.26 0.14 0.15 0.16 0.18 0.23 87.9 1202 2.22 0.10 0.11 0.18 0.23 87.9 1202 2.20 0.10 0.11 0.18 0.23 87.9 1202 2.20 0.10 0.11 0.14 0.19 0.21 0.20 0.21 0.22 0.21		12	1.25	90.3	3826	1.28	0.23	0.24	0.25	0.27	0.31	0.35	90.2	3850	1.28	0.23	0.24	0.25	0.27	0.31	0.35
 1 0.13 20.3 1503 2.21 0.15 0.16 0.17 0.19 0.24 0.30 19.9 1522 2.21 0.15 0.16 0.17 0.19 0.24 0.30 2 0.13 40.3 1592 2.21 0.16 0.17 0.18 0.20 0.24 0.29 39.9 1592 2.21 0.16 0.17 0.17 0.19 0.23 0.28 3 0.13 55.8 1562 2.24 0.15 0.16 0.17 0.19 0.24 0.29 54.9 1573 2.23 0.16 0.16 0.17 0.20 0.24 0.29 4 0.13 69.1 1467 2.26 0.14 0.15 0.16 0.18 0.23 0.28 67.6 1432 2.26 0.13 0.14 0.15 0.17 0.12 0.22 0.27 6 0.13 88.4 1186 2.21 0.10 0.11 0.11 0.13 0.18 0.23 87.9 1202 2.22 0.10 0.10 0.11 0.14 0.18 0.23 8 0.13 91.6 978 2.21 0.06 0.07 0.08 0.10 0.14 0.19 91.4 1003 2.25 0.07 0.08 0.08 0.10 0.15 0.20 12 0.13 97.0 834 NAV 0.05 0.06 0.06 0.08 0.12 0.17 97.7 810 NAV 0.05 0.06 0.06 0.08 0.12 0.17 20 0.13 97.7 793 NAV 0.05 0.05 0.06 0.08 0.12 0.17 97.7 810 NAV 0.05 0.06 0.06 0.08 0.12 0.17 1 0.06 27.0 1505 2.60 0.21 0.22 0.24 0.22 0.24 0.26 0.31 0.38 26.5 1531 2.60 0.21 0.22 0.24 0.29 0.35 3 0.06 73.0 1317 2.61 0.16 0.18 0.19 0.21 0.26 0.32 71.8 1344 2.62 0.17 0.18 0.19 0.22 0.24 0.29 0.35 3 0.06 73.0 1317 2.61 0.16 0.18 0.19 0.21 0.26 0.32 71.8 1344 2.62 0.17 0.18 0.19 0.22 0.27 0.33 4 0.06 85.7 1261 2.70 0.16 0.17 0.18 0.21 0.27 0.32 84.3 1276 2.70 0.16 0.17 0.18 0.21 0.25 0.31 6 0.06 97.4 824 2.29 0.08 0.09 0.10 0.12 0.18 0.24 97.0 844 NAV 0.08 0.09 0.10 0.12 0.18 0.24 8 0.06 95.8 698 2.48 0.06 0.07 0.08 0.10 0.15 0.21 95.6 718 NAV 0.06 0.07 0.08 0.11 0.16 0.21 12 0.06 99.3 581 NAV 0.04 0.05 0.06 0.08 0.13 0.19 99.3 597 NAV 0.05 0.05 0.06 0.08 0.13 0.19 1 0.015 84.6 2087 NAV 1.25 1.31 1.36 1.49 1.73 1.97 82.4 2056 NAV 1.25 1.31 1.37 1.50 1.76 1.99 2 0.015 99.7 829 NAV 0.04 0.05 0.06 0.08 0.13 0.19 99.3 597 NAV 0.04 0.05 0.06 0.08 0.13 0.19 1 0.015 84.6 2087 NAV 1.25 1.31 1.36 1.49 1.73 1.97 82.4 2056 NAV 1.25 1.31 1.37 1.50 1.76 1.99 2 0.015 99.7 829 NAV 0.04 0.05 0.06 0.08 0.13 0.19 99.3 597		20	1.25	92.3	3747	NAV	0.22	0.23	0.24	0.26	0.30	0.34	92.1	3770	NAV	0.22	0.23	0.24	0.26	0.30	0.34
 2 0.13 40.3 1592 2.21 0.16 0.17 0.18 0.20 0.24 0.29 39.9 1592 2.21 0.16 0.17 0.17 0.19 0.23 0.28 3 0.13 55.8 1562 2.24 0.15 0.16 0.17 0.19 0.24 0.29 54.9 1573 2.23 0.16 0.16 0.17 0.20 0.24 0.29 4 0.13 69.1 1467 2.26 0.14 0.15 0.16 0.18 0.23 0.28 67.6 1432 2.26 0.13 0.14 0.15 0.17 0.22 0.27 6 0.13 88.4 1186 2.21 0.10 0.11 0.11 0.13 0.18 0.23 87.9 1202 2.22 0.10 0.10 0.11 0.14 0.18 0.23 8 0.13 91.6 97.8 2.21 0.06 0.07 0.08 0.10 0.14 0.19 91.4 1003 2.25 0.07 0.08 0.08 0.10 0.15 0.20 12 0.13 97.7 793 NAV 0.05 0.06 0.06 0.08 0.12 0.17 97.0 853 NAV 0.05 0.06 0.06 0.08 0.12 0.17 20 0.13 97.7 793 NAV 0.05 0.05 0.06 0.08 0.12 0.17 97.7 810 NAV 0.05 0.06 0.08 0.12 0.17 1 0.06 27.0 1505 2.60 0.21 0.22 0.24 0.26 0.31 0.38 26.5 1531 2.60 0.21 0.22 0.24 0.27 0.33 3 0.06 73.0 1317 2.61 0.16 0.18 0.19 0.21 0.22 0.28 0.34 53.0 1436 2.61 0.19 0.20 0.22 0.24 0.27 0.33 3 0.06 73.0 1317 2.61 0.16 0.18 0.19 0.21 0.27 0.32 84.3 1276 2.70 0.16 0.17 0.18 0.19 0.22 0.27 0.33 3 0.06 85.7 1261 2.70 0.16 0.17 0.18 0.21 0.27 0.32 84.3 1276 2.70 0.16 0.17 0.18 0.21 0.22 0.31 6 0.06 97.4 824 2.29 0.08 0.09 0.10 0.12 0.18 0.24 97.0 844 NAV 0.08 0.09 0.10 0.12 0.18 0.24 6 0.06 97.4 824 2.29 0.08 0.09 0.10 0.12 0.18 0.24 97.0 84.4 NAV 0.06 0.07 0.08 0.11 0.12 0.18 0.24 8 0.06 95.8 698 2.48 0.06 0.07 0.08 0.10 0.15 0.21 95.6 71.8 NAV 0.05 0.05 0.06 0.08 0.13 0.19 1 0.015 84.6 2087 NAV 1.25 1.31 1.36 1.49 1.73 1.97 82.4 2056 NAV 1.25 1.31 1.37 1.50 1.76 1.99 2 0.015 99.7 839 NAV 0.40 0.46 0.52 0.64 0.89 1.14 99.7 894 NAV 0.43 0.49 0.55 0.66 0.89 31.18 		1	0.13	20.3	1503	2.21	0.15	0.16	0.17	0.19	0.24	0.30	19.9	1522	2.21	0.15	0.16	0.17	0.19	0.24	0.30
 3 0.13 55.8 1562 2.24 0.15 0.16 0.17 0.19 0.24 0.29 54.9 1573 2.23 0.16 0.16 0.17 0.20 0.24 0.29 0.24 0.29 4 0.13 69.1 1467 2.26 0.14 0.15 0.16 0.18 0.23 0.28 67.6 1432 2.26 0.13 0.14 0.15 0.17 0.22 0.27 6 0.13 88.4 1186 2.21 0.10 0.11 0.11 0.13 0.18 0.23 87.9 1202 2.22 0.10 0.10 0.11 0.14 0.18 0.23 8 0.13 91.6 978 2.21 0.06 0.07 0.08 0.10 0.14 0.19 91.4 1003 2.25 0.07 0.08 0.08 0.10 0.15 0.20 12 0.13 97.0 834 NAV 0.05 0.06 0.06 0.08 0.12 0.17 97.0 853 NAV 0.05 0.06 0.06 0.08 0.12 0.17 20 0.13 97.7 793 NAV 0.05 0.05 0.06 0.08 0.12 0.17 97.7 810 NAV 0.05 0.06 0.06 0.08 0.12 0.17 1 0.06 27.0 1505 2.60 0.21 0.22 0.24 0.26 0.31 0.38 26.5 1531 2.60 0.21 0.22 0.24 0.27 0.32 0.38 2 0.06 53.4 1369 2.61 0.18 0.19 0.20 0.22 0.28 0.34 53.0 1436 2.61 0.19 0.20 0.22 0.24 0.27 0.32 0.38 3 0.06 73.0 1317 2.61 0.16 0.17 0.18 0.19 0.21 0.27 0.32 84.3 1276 2.70 0.16 0.17 0.18 0.19 0.22 0.27 0.33 3 0.06 97.4 824 2.29 0.08 0.09 0.10 0.12 0.18 0.24 97.0 844 NAV 0.08 0.09 0.10 0.12 0.18 0.24 8 0.06 95.8 698 2.48 0.06 0.07 0.08 0.10 0.15 0.21 95.6 718 NAV 0.05 0.05 0.05 0.06 0.08 0.13 0.19 1 0.015 84.6 2087 NAV 0.04 0.05 0.06 0.08 0.13 0.19 99.3 597 NAV 0.05 0.05 0.06 0.08 0.13 0.19 1 0.015 84.6 2087 NAV 1.25 1.31 1.36 1.49 1.73 1.97 82.4 2056 NAV 1.25 1.31 1.37 1.50 1.76 1.99 2 0.015 99.7 839 NAV 0.40 0.45 0.52 0.64 0.89 1.14 99.7 894 NAV 0.43 0.49 0.55 0.68 0.93 1.18 		2	0.13	40.3	1592	2.21	0.16	0.17	0.18	0.20	0.24	0.29	39.9	1592	2.21	0.16	0.17	0.17	0.19	0.23	0.28
0.05 4 0.13 69.1 1467 2.26 0.14 0.15 0.16 0.18 0.23 0.28 67.6 1432 2.26 0.13 0.14 0.15 0.17 0.22 0.27 6 0.13 88.4 1186 2.21 0.10 0.11 0.11 0.13 0.18 0.23 87.9 1202 2.22 0.10 0.11 0.14 0.18 0.23 8 0.13 91.6 978 2.21 0.06 0.07 0.08 0.12 0.17 97.0 853 NAV 0.05 0.06 0.06 0.08 0.12 0.17 97.7 810 NAV 0.05 0.06 0.06 0.08 0.12 0.17 97.7 810 NAV 0.05 0.06 0.08 0.12 0.17 97.7 810 NAV 0.05 0.08 0.12 0.17 97.7 810 NAV 0.05 0.08 0.12 0.17 10 <th></th> <th>3</th> <th>0.13</th> <th>55.8</th> <th>1562</th> <th>2.24</th> <th>0.15</th> <th>0.16</th> <th>0.17</th> <th>0.19</th> <th>0.24</th> <th>0.29</th> <th>54.9</th> <th>1573</th> <th>2.23</th> <th>0.16</th> <th>0.16</th> <th>0.17</th> <th>0.20</th> <th>0.24</th> <th>0.29</th>		3	0.13	55.8	1562	2.24	0.15	0.16	0.17	0.19	0.24	0.29	54.9	1573	2.23	0.16	0.16	0.17	0.20	0.24	0.29
6 0.13 88.4 1186 2.21 0.10 0.11 0.11 0.13 0.18 0.23 87.9 1202 2.22 0.10 0.11 0.11 0.13 0.13 0.10 0.11 0.	0.05	4	0.13	69.1	1467	2.26	0.14	0.15	0.16	0.18	0.23	0.28	67.6	1432	2.26	0.13	0.14	0.15	0.17	0.22	0.27
 8 0.13 91.6 978 2.21 0.06 0.07 0.08 0.10 0.14 0.19 91.4 1003 2.25 0.07 0.08 0.08 0.10 0.15 0.20 12 0.13 97.0 834 NAV 0.05 0.06 0.06 0.08 0.12 0.17 97.0 853 NAV 0.05 0.06 0.07 0.08 0.13 0.17 20 0.13 97.7 793 NAV 0.05 0.05 0.06 0.08 0.12 0.17 97.7 810 NAV 0.05 0.06 0.06 0.08 0.12 0.17 1 0.06 27.0 1505 2.60 0.21 0.22 0.24 0.26 0.31 0.38 26.5 1531 2.60 0.21 0.22 0.24 0.27 0.32 0.38 2 0.06 53.4 1369 2.61 0.18 0.19 0.20 0.22 0.28 0.34 53.0 1436 2.61 0.19 0.20 0.22 0.24 0.29 0.35 3 0.06 73.0 1317 2.61 0.16 0.18 0.19 0.21 0.26 0.32 71.8 1344 2.62 0.17 0.18 0.19 0.22 0.27 0.33 4 0.06 85.7 1261 2.70 0.16 0.17 0.18 0.21 0.27 0.32 84.3 1276 2.70 0.16 0.17 0.18 0.21 0.25 0.31 6 0.06 97.4 824 2.29 0.08 0.09 0.10 0.12 0.18 0.24 97.0 844 NAV 0.08 0.09 0.10 0.12 0.18 0.24 8 0.06 95.8 698 2.48 0.06 0.07 0.08 0.10 0.15 0.21 95.6 718 NAV 0.06 0.07 0.08 0.11 0.16 0.21 12 0.06 99.3 581 NAV 0.04 0.05 0.06 0.08 0.13 0.19 99.3 597 NAV 0.05 0.05 0.06 0.09 0.14 0.20 20 0.06 99.7 529 NAV 0.04 0.05 0.06 0.08 0.13 0.18 99.6 545 NAV 0.04 0.05 0.06 0.08 0.13 0.19 1 0.015 84.6 2087 NAV 1.25 1.31 1.36 1.49 1.73 1.97 82.4 2056 NAV 1.25 1.31 1.37 1.50 1.76 1.99 2 0.015 99.7 839 NAV 0.40 0.46 0.52 0.64 0.89 1.14 99.7 894 NAV 0.43 0.49 0.55 0.68 0.93 1.18 		6	0.13	88.4	1186	2.21	0.10	0.11	0.11	0.13	0.18	0.23	87.9	1202	2.22	0.10	0.10	0.11	0.14	0.18	0.23
12 0.13 97.0 834 NAV 0.05 0.06 0.06 0.12 0.17 97.0 853 NAV 0.05 0.06 0.13 0.17 20 0.13 97.7 793 NAV 0.05 0.06 0.08 0.12 0.17 97.7 810 NAV 0.05 0.06 0.08 0.12 0.17 97.7 810 NAV 0.05 0.06 0.08 0.12 0.17 97.7 810 NAV 0.05 0.06 0.08 0.12 0.17 1 0.06 27.0 1505 2.60 0.21 0.22 0.24 0.26 0.31 0.38 26.5 1531 2.60 0.21 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.23 0.33 0.10 0.16 0.17 0.18<		8	0.13	91.6	978	2.21	0.06	0.07	0.08	0.10	0.14	0.19	91.4	1003	2.25	0.07	0.08	0.08	0.10	0.15	0.20
1 0.13 97.7 793 NAV 0.03 0.13 0.11 97.7 810 NAV 0.03 0.06 0.12 0.11 1 0.06 27.0 1505 2.60 0.21 0.22 0.24 0.26 0.31 0.38 26.5 1531 2.60 0.21 0.22 0.38 2 0.06 53.4 1369 2.61 0.18 0.19 0.20 0.22 0.28 0.34 53.0 1436 2.61 0.19 0.20 0.22 0.28 0.34 53.0 1436 2.61 0.19 0.20 0.22 0.28 0.34 53.0 1436 2.61 0.19 0.20 0.22 0.27 0.33 3 0.06 73.0 1317 2.61 0.16 0.17 0.18 0.21 0.27 0.32 84.3 1276 2.70 0.16 0.17 0.18 0.24 0.24 0.31 0.16 0.17 0.18 0.		20	0.13	97.0	834 702		0.05	0.06	0.06	0.08	0.12	0.17	97.0	853 910		0.05	0.06	0.07	0.08	0.13	0.17
0.10 1 0.00 27.0 1505 2.00 0.21 0.22 0.24 0.20 0.31 0.30 20.3 1531 2.00 0.21 0.22 0.24 0.29 0.35 3 0.06 53.4 1369 2.61 0.18 0.19 0.20 0.22 0.28 0.34 53.0 1436 2.61 0.19 0.20 0.22 0.24 0.29 0.35 3 0.06 73.0 1317 2.61 0.16 0.18 0.19 0.21 0.26 0.32 71.8 1344 2.62 0.17 0.18 0.19 0.22 0.27 0.33 4 0.06 85.7 1261 2.70 0.16 0.17 0.18 0.21 0.27 0.32 84.3 1276 2.70 0.16 0.17 0.18 0.21 0.25 0.31 6 0.06 97.4 824 2.29 0.08 0.09 0.10 0.12 0.18 0.24 97.0 844 NAV 0.08 0.09 0.10 0.12 0.18 0.24 8 0.06 95.8 698 2.48 0.06 0.07 0.08 0.10 0.15 0.21 95.6 718 NAV 0.06 0.07 0.08 0.11 0.16 0.21 1 0.06 99.3 581 NAV 0.04 0.05 0.06 0.08 0.13 0.19 99.3 597 NAV 0.05 0.05 0.06 0.09 0.14 0.20 20 0.06 99.7 529 NAV 0.04 0.05 0.06 0.08 0.13 0.18 99.6 545 NAV 0.04 0.05 0.06 0.08 0.13 0.19 1 0.015 84.6 2087 NAV 1.25 1.31 1.36 1.49 1.73 1.97 82.4 2056 NAV 1.25 1.31 1.37 1.50 1.76 1.99 2 0.015 99.7 839 NAV 0.40 0.46 0.52 0.64 0.89 1.14 99.7 894 NAV 0.43 0.49 0.55 0.68 0.93 1.18		1	0.13	27.0	1505	2.60	0.05	0.03	0.00	0.08	0.12	0.17	26.5	1531	2.60	0.05	0.00	0.00	0.08	0.12	0.17
3 0.06 73.0 1317 2.61 0.16 0.18 0.19 0.21 0.26 0.32 71.8 1344 2.62 0.17 0.18 0.19 0.22 0.27 0.33 4 0.06 85.7 1261 2.70 0.16 0.17 0.18 0.21 0.27 0.32 84.3 1276 2.70 0.16 0.17 0.18 0.21 0.26 0.32 71.8 1344 2.62 0.17 0.18 0.21 0.25 0.31 6 0.06 97.4 824 2.29 0.08 0.09 0.10 0.12 0.18 0.24 97.0 844 NAV 0.08 0.09 0.10 0.12 0.18 0.24 97.0 844 NAV 0.08 0.09 0.10 0.12 0.18 0.24 97.0 844 NAV 0.08 0.09 0.10 0.12 0.18 0.24 97.0 844 NAV 0.08 0.11 0.16 0.11 0.16 0.11 0.16 0.21 0.22 0.27 0.33		2	0.06	53.4	1369	2.61	0.18	0.19	0.20	0.20	0.28	0.34	53.0	1436	2.61	0.19	0.20	0.24	0.24	0.29	0.35
0.10 4 0.06 85.7 1261 2.70 0.16 0.17 0.18 0.21 0.27 0.32 84.3 1276 2.70 0.16 0.17 0.18 0.21 0.25 0.31 6 0.06 97.4 824 2.29 0.08 0.09 0.10 0.12 0.18 0.24 97.0 844 NAV 0.08 0.09 0.10 0.12 0.18 0.24 97.0 844 NAV 0.08 0.09 0.10 0.12 0.18 0.24 97.0 844 NAV 0.08 0.09 0.10 0.12 0.18 0.24 97.0 844 NAV 0.08 0.09 0.10 0.12 0.15 0.21 95.6 718 NAV 0.06 0.01 0.10 0.12 0.10 0.15 0.21 95.6 718 NAV 0.05 0.06 0.01 0.10 0.10 0.10 0.10 0.11 0.10 0.11 0.10 <td< th=""><th></th><th>3</th><th>0.06</th><th>73.0</th><th>1317</th><th>2.61</th><th>0.16</th><th>0.18</th><th>0.19</th><th>0.21</th><th>0.26</th><th>0.32</th><th>71.8</th><th>1344</th><th>2.62</th><th>0.17</th><th>0.18</th><th>0.19</th><th>0.22</th><th>0.27</th><th>0.33</th></td<>		3	0.06	73.0	1317	2.61	0.16	0.18	0.19	0.21	0.26	0.32	71.8	1344	2.62	0.17	0.18	0.19	0.22	0.27	0.33
6 0.06 97.4 824 2.29 0.08 0.09 0.11 0.12 0.18 0.24 97.0 844 NAV 0.08 0.09 0.10 0.12 0.18 0.24 97.0 844 NAV 0.08 0.09 0.10 0.12 0.18 0.24 8 0.06 95.8 698 2.48 0.06 0.07 0.08 0.10 0.15 0.21 95.6 718 NAV 0.06 0.07 0.08 0.11 0.16 0.21 10 0.06 99.3 581 NAV 0.04 0.05 0.06 0.08 0.13 0.19 99.3 597 NAV 0.05 0.06 0.09 0.14 0.20 20 0.06 99.7 529 NAV 0.04 0.05 0.06 0.13 0.18 99.6 545 NAV 0.05 0.06 0.08 0.13 0.18 99.6 545 NAV 0.05 0.06		4	0.06	85.7	1261	2.70	0.16	0.17	0.18	0.21	0.27	0.32	84.3	1276	2.70	0.16	0.17	0.18	0.21	0.25	0.31
8 0.06 95.8 698 2.48 0.06 0.07 0.08 0.10 0.15 0.21 95.6 718 NAV 0.06 0.07 0.08 0.11 0.16 0.21 12 0.06 99.3 581 NAV 0.04 0.05 0.06 0.08 0.13 0.19 99.3 597 NAV 0.05 0.06 0.09 0.14 0.20 20 0.06 99.7 529 NAV 0.04 0.05 0.06 0.08 0.13 0.18 99.6 545 NAV 0.05 0.06 0.08 0.19 1 0.015 84.6 2087 NAV 1.25 1.31 1.36 1.49 1.73	0.10	6	0.06	97.4	824	2.29	0.08	0.09	0.10	0.12	0.18	0.24	97.0	844	NAV	0.08	0.09	0.10	0.12	0.18	0.24
12 0.06 99.3 581 NAV 0.04 0.05 0.06 0.08 0.13 0.19 99.3 597 NAV 0.05 0.06 0.09 0.14 0.20 20 0.06 99.7 529 NAV 0.04 0.05 0.06 0.08 0.13 0.18 99.6 545 NAV 0.04 0.05 0.13 0.19 1 0.015 84.6 2087 NAV 1.25 1.31 1.36 1.49 1.73 1.97 82.4 2056 NAV 1.25 1.31 1.36 1.49 1.73 1.97 82.4 2056 NAV 1.25 1.31 1.76 1.99 2 0.015 99.7 839 NAV 0.40 0.52 0.64 0.89 1.14 99.7 894 NAV 0.43 0.49 0.55 0.68 0.93 1.18 2 0.015 99.7 839 NAV 0.40 0.52		8	0.06	95.8	698	2.48	0.06	0.07	0.08	0.10	0.15	0.21	95.6	718	NAV	0.06	0.07	0.08	0.11	0.16	0.21
20 0.06 99.7 529 NAV 0.04 0.05 0.06 0.08 0.13 0.18 99.6 545 NAV 0.04 0.08 0.13 0.19 1 0.015 84.6 2087 NAV 1.25 1.31 1.36 1.49 1.73 1.97 82.4 2056 NAV 1.25 1.31 1.76 1.99 2 0.015 99.7 839 NAV 0.46 0.52 0.64 0.89 1.14 99.7 894 NAV 0.43 0.49 0.55 0.68 0.93 1.18 2 0.015 99.7 839 NAV 0.46 0.52 0.64 0.89 1.14 99.7 894 NAV 0.43 0.49 0.55 0.68 0.93 1.18		12	0.06	99.3	581	NAV	0.04	0.05	0.06	0.08	0.13	0.19	99.3	597	NAV	0.05	0.05	0.06	0.09	0.14	0.20
1 0.015 84.6 2087 NAV 1.25 1.31 1.36 1.49 1.73 1.97 82.4 2056 NAV 1.25 1.31 1.36 1.99 2 0.015 99.7 839 NAV 0.46 0.52 0.64 0.89 1.14 99.7 894 NAV 0.43 0.49 0.55 0.68 0.93 1.18 2 0.015 100.0 544 0.20 0.22 0.40 0.20 572 0.00 0.43 0.49 0.55 0.68 0.93 1.18		20	0.06	99.7	529	NAV	0.04	0.05	0.06	0.08	0.13	0.18	99.6	545	NAV	0.04	0.05	0.06	0.08	0.13	0.19
2 0.015 99.7 839 NAV 0.40 0.46 0.52 0.64 0.89 1.14 99.7 894 NAV 0.43 0.49 0.55 0.68 0.93 1.18		1	0.015	84.6	2087	NAV	1.25	1.31	1.36	1.49	1.73	1.97	82.4	2056	NAV	1.25	1.31	1.37	1.50	1.76	1.99
\mathbf{n} one too the new one one of the too too too too too too too too too to		2	0.015	99.7	839	NAV	0.40	0.46	0.52	0.64	0.89	1.14	99.7	894	NAV	0.43	0.49	0.55	0.68	0.93	1.18
3 0.015 100.0 541 NAV 0.24 0.29 0.35 0.48 0.72 0.98 100.0 573 NAV 0.27 0.32 0.38 0.50 0.75 1.00		3	0.015	100.0	541	NAV	0.24	0.29	0.35	0.48	0.72	0.98	100.0	573	NAV	0.27	0.32	0.38	0.50	0.75	1.00
0.50 4 U.U.I.5 10U.U 417 NAV U.17 U.22 U.27 U.4U U.65 U.9U 10U.U 445 NAV U.19 U.24 U.30 U.42 U.67 U.93	0.50	4	0.015	100.0	41/	NAV	0.17	0.22	0.27	0.40	0.65	0.90	100.0	445	NAV	0.19	0.24	0.30	0.42	0.67	0.93
0 U.U.J U.U.U JIO NAV U.IZ U.IV U.ZI U.34 U.58 U.84 IUU.U 338 NAV U.I3 U.I8 U.Z3 U.36 U.DU U.86 9 0.015 100.0 202 NAV 0.12 0.16 0.21 0.22 0.59 0.84 100.0 222 NAV 0.12 0.17 0.22 0.25 0.50 0.95		o o	0.015	100.0	303 210		0.12	0.16	0.21	0.34	0.58	0.84	100.0	338 277		0.13	0.17	0.23	0.30	0.60	0.80
0 0.015 100.0 502 IVAV 0.12 0.10 0.21 0.55 0.50 1.004 100.0 522 IVAV 0.15 0.17 0.23 0.55 0.59 0.85 12 0.015 100.0 249 NAV 0.09 0.13 0.18 0.30 0.55 0.81 100.0 562 NAV 0.15 0.17 0.23 0.55 0.59 0.85		0 17	0.015	100.0	50∠ 2∕10	NAV	0.12	0.10	0.21	0.33	0.56	0.64	100.0	269 269	NAV	0.13	0.17	0.23	0.33	0.59	0.00
20 0.015 100.0 230 NAV 0.08 0.12 0.16 0.29 0.53 0.79 100.0 248 NAV 0.09 0.13 0.18 0.30 0.54 0.80		20	0.015	100.0	230	NAV	0.08	0.12	0.16	0.29	0.53	0.79	100.0	248	NAV	0.09	0.13	0.18	0.30	0.54	0.80

Table B.31: Precipitation triggered pollution detection probability, average detection time, contaminated area in case of detection failureand relative contaminated area to control area for various RADTi in case of $\sigma_{\ln K}^2 = 1.0$ assuming every 4 months (4M) andbiannually (6M) sampling frequencies

	σ^{2}_{lnK}										1.00									
գղ(m)	wou	nfds(max)	P _d (4M)	<t(days)< th=""><th>area on failure</th><th>(AREA ON DET.)/L</th><th>(3M. RADTi)/L</th><th>(6M. RADTi)/L</th><th>(12M. RADTi)/L</th><th>(24M. RADTi/L)</th><th>(36M. RADTi)/L</th><th>P_d (6M)</th><th><t(days)< th=""><th>area on failure</th><th>(AREA ON DET.)/L</th><th>(3M. RADTi)/L</th><th>(6M. RADTi)/L</th><th>(12M. RADTi)/L</th><th>(24M. RADTi/L)</th><th>(36M. RADTi)/L</th></t(days)<></th></t(days)<>	area on failure	(AREA ON DET.)/L	(3M. RADTi)/L	(6M. RADTi)/L	(12M. RADTi)/L	(24M. RADTi/L)	(36M. RADTi)/L	P _d (6M)	<t(days)< th=""><th>area on failure</th><th>(AREA ON DET.)/L</th><th>(3M. RADTi)/L</th><th>(6M. RADTi)/L</th><th>(12M. RADTi)/L</th><th>(24M. RADTi/L)</th><th>(36M. RADTi)/L</th></t(days)<>	area on failure	(AREA ON DET.)/L	(3M. RADTi)/L	(6M. RADTi)/L	(12M. RADTi)/L	(24M. RADTi/L)	(36M. RADTi)/L
0.001	1 2 3 4 6 8	1.75 1.75 1.75 1.75 1.75 1.75 1.75	8.0 16.8 23.5 29.4 43.6 53.6	5845 5805 5726 5762 5702 5667	0.61 0.59 0.61 0.57 0.59 0.65	0.22 0.23 0.22 0.22 0.22 0.21	0.23 0.24 0.23 0.23 0.22 0.22	0.23 0.24 0.23 0.23 0.23 0.22	0.24 0.25 0.24 0.24 0.24 0.23	0.25 0.27 0.26 0.26 0.26 0.25	0.27 0.28 0.28 0.28 0.27 0.27	7.8 16.7 22.9 28.8 42.8 53.0	5808 5883 5749 5794 5719 5691	0.61 0.59 0.61 0.57 0.59 0.65	0.22 0.24 0.23 0.23 0.22 0.21	0.23 0.24 0.23 0.23 0.23 0.22	0.23 0.24 0.23 0.23 0.23 0.22	0.24 0.25 0.24 0.24 0.24 0.23	0.25 0.27 0.26 0.27 0.26 0.25	0.27 0.28 0.28 0.28 0.28 0.28 0.27
0.01	12 20 1 2 3 4 6 8 12 20	1.73 1.75 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.2	82.0 21.3 39.0 52.6 64.5 78.5 81.2 90.1	5446 4591 4369 4325 4247 4106 3975 3882 2802	NAV 1.32 1.28 1.29 1.23 1.31 1.28 1.28	0.20 0.19 0.34 0.32 0.32 0.30 0.27 0.25 0.24	0.20 0.20 0.35 0.33 0.33 0.31 0.28 0.26 0.25	0.21 0.20 0.36 0.34 0.34 0.32 0.29 0.27 0.26 0.25	0.22 0.21 0.38 0.36 0.36 0.34 0.31 0.29 0.28 0.27	0.24 0.23 0.42 0.39 0.40 0.38 0.35 0.33 0.32	0.20 0.25 0.45 0.44 0.44 0.43 0.39 0.37 0.36	81.6 20.8 38.4 51.6 63.6 77.8 81.1 89.9	5472 4580 4421 4355 4280 4134 4036 3914 2825	NAV 1.32 1.28 1.29 1.23 1.31 1.28 1.27	0.21 0.19 0.34 0.33 0.32 0.31 0.28 0.26 0.24	0.21 0.20 0.35 0.34 0.33 0.32 0.29 0.27 0.25	0.21 0.20 0.36 0.35 0.34 0.33 0.30 0.28 0.26	0.22 0.21 0.38 0.37 0.36 0.35 0.32 0.30 0.28 0.27	0.24 0.23 0.42 0.41 0.40 0.39 0.36 0.34 0.32	0.26 0.25 0.46 0.44 0.45 0.43 0.40 0.38 0.36 0.35
0.05	1 2 3 4 6 8 12 20	0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13	92.1 19.9 39.6 54.6 67.4 88.0 91.3 97.0 97.7	1608 1609 1614 1479 1265 1031 878 829	2.21 2.21 2.23 2.26 2.20 2.21 NAV NAV	0.23 0.17 0.16 0.14 0.11 0.07 0.05 0.05	0.24 0.18 0.17 0.17 0.15 0.12 0.08 0.06 0.06	0.19 0.18 0.18 0.16 0.13 0.09 0.07 0.07	0.27 0.21 0.20 0.18 0.15 0.11 0.09 0.08	0.30 0.26 0.25 0.23 0.19 0.15 0.13 0.13	0.33 0.31 0.30 0.28 0.24 0.20 0.18 0.17	19.4 38.9 53.6 66.2 86.6 90.9 96.8 97.5	1535 1669 1644 1546 1277 1077 907 850	2.20 2.21 2.23 2.25 2.23 2.24 NAV NAV	0.23 0.15 0.17 0.16 0.15 0.11 0.08 0.05 0.05	0.24 0.16 0.18 0.17 0.16 0.12 0.09 0.06 0.06	0.23 0.17 0.19 0.18 0.17 0.12 0.10 0.07 0.07	0.27 0.19 0.21 0.20 0.19 0.15 0.12 0.09 0.08	0.31 0.24 0.26 0.25 0.24 0.19 0.16 0.13 0.13	0.33 0.30 0.30 0.28 0.24 0.21 0.18 0.17
0.10	1 2 3 4 6 8 12 20	0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06	26.1 52.6 71.3 83.8 97.0 95.4 99.2 99.7	1546 1504 1372 1283 894 733 616 565	2.60 2.61 2.62 2.68 2.51 2.54 NAV NAV	0.22 0.20 0.17 0.16 0.09 0.06 0.05 0.04	0.24 0.21 0.19 0.17 0.10 0.07 0.06 0.05	0.25 0.23 0.20 0.18 0.11 0.08 0.07 0.06	0.27 0.25 0.22 0.20 0.13 0.11 0.09 0.08	0.33 0.30 0.27 0.26 0.19 0.16 0.14 0.13	0.39 0.36 0.34 0.32 0.25 0.22 0.20 0.19	25.6 50.8 70.0 82.6 96.4 95.3 99.2 99.6	1552 1420 1390 1345 930 756 655 600	2.60 2.62 2.61 2.68 2.51 2.54 NAV NAV	0.22 0.18 0.17 0.17 0.09 0.07 0.05 0.05	0.23 0.19 0.19 0.18 0.10 0.08 0.06 0.05	0.24 0.20 0.20 0.19 0.11 0.09 0.07 0.06	0.27 0.23 0.23 0.22 0.14 0.11 0.10 0.09	0.33 0.29 0.28 0.27 0.19 0.16 0.15 0.14	0.39 0.35 0.35 0.33 0.25 0.22 0.21 0.20
0.50	1 2 3 4 6 8 12 20	0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015	81.4 99.5 99.9 100.0 100.0 100.0 100.0 100.0	2147 941 597 467 357 343 286 268	NAV NAV NAV NAV NAV NAV NAV	1.33 0.46 0.28 0.20 0.14 0.14 0.11 0.10	1.39 0.52 0.33 0.25 0.19 0.18 0.15 0.14	1.45 0.58 0.39 0.31 0.24 0.24 0.21 0.19	1.58 0.71 0.52 0.43 0.37 0.36 0.33 0.31	1.82 0.95 0.77 0.68 0.61 0.61 0.57 0.56	2.06 1.21 1.02 0.94 0.87 0.87 0.83 0.82	78.8 99.6 99.9 100.0 100.0 100.0 100.0 100.0	2138 1018 647 511 393 381 326 307	NAV NAV NAV NAV NAV NAV NAV	1.35 0.51 0.31 0.23 0.16 0.16 0.13 0.11	1.42 0.57 0.36 0.28 0.21 0.21 0.21 0.18 0.16	1.47 0.63 0.42 0.34 0.27 0.26 0.23 0.21	1.60 0.75 0.55 0.47 0.39 0.39 0.36 0.34	1.83 1.00 0.80 0.72 0.64 0.63 0.60 0.58	2.05 1.26 1.05 0.97 0.90 0.89 0.86 0.84

Table B.32: Precipitation triggered pollution detection probability, average detection time, contaminated area in case of detection failureand relative contaminated area to control area for various RADTi in case of $\sigma_{\ln K}^2 = 1.0$ assuming annually samplingfrequency

	σ^{2}_{lnK}					1.0	0				
գե(m)	мои	nfds(max)	P _d (12M)	<t(days) <(days)<="" th=""><th>AREA ON FAILURE</th><th>(AREA ON DET.)/L</th><th>(3M. RADTi)/L</th><th>(6M. RADTi)/L</th><th>(12M. RADTi)/L</th><th>(24M. RADTi/L)</th><th>(36M. RADTi)/L</th></t(days)>	AREA ON FAILURE	(AREA ON DET.)/L	(3M. RADTi)/L	(6M. RADTi)/L	(12M. RADTi)/L	(24M. RADTi/L)	(36M. RADTi)/L
	1	1.75	7.8	5968	0.61	0.23	0.23	0.24	0.25	0.26	0.28
	2	1.75	16.3	6003	0.59	0.24	0.24	0.25	0.26	0.27	0.28
	3	1.75	22.2	5823	0.61	0.23	0.23	0.24	0.25	0.26	0.28
0.001	4	1.75	28.3	5927	0.57	0.23	0.24	0.24	0.25	0.27	0.29
	6	1.75	41.8	5840	0.59	0.23	0.23	0.23	0.25	0.26	0.28
	8	1.75	51.9	5806	0.64	0.22	0.22	0.23	0.24	0.26	0.28
	12	1.75	67.6	5748	0.58	0.21	0.21	0.22	0.23	0.25	0.27
·	20	1.75	81.0	4720	1.22	0.20	0.20	0.21	0.22	0.24	0.26
	1 2	1.25	20.1	4720	1.32	0.35	0.30	0.37	0.39	0.43	0.47
	2	1.25	50.0	4451	1.29	0.55	0.34	0.55	0.37	0.41	0.45
	4	1.25	62 6	4400	1.29	0.34	0.34	0.33	0.37	0.40	0.45
0.01	6	1.25	76.9	4256	1.35	0.29	0.30	0.31	0.33	0.37	0.42
	8	1.25	80.4	4130	1.29	0.27	0.27	0.28	0.30	0.34	0.39
	12	1.25	89.3	4022	1.28	0.25	0.26	0.27	0.29	0.33	0.38
	20	1.25	91.7	3934	1.32	0.24	0.25	0.26	0.28	0.32	0.36
	1	0.13	18.5	1616	2.21	0.16	0.17	0.18	0.21	0.26	0.31
	2	0.13	37.6	1710	2.21	0.17	0.18	0.19	0.21	0.26	0.31
	3	0.13	51.1	1695	2.23	0.17	0.17	0.19	0.21	0.26	0.31
0.05	4	0.13	63.5	1628	2.25	0.16	0.17	0.18	0.20	0.24	0.29
0.05	6	0.13	85.5	1412	2.22	0.12	0.13	0.14	0.16	0.21	0.26
	8	0.13	90.3	1193	2.24	0.09	0.10	0.11	0.13	0.18	0.23
	12	0.13	96.8	1008	NAV	0.07	0.07	0.08	0.10	0.15	0.19
	20	0.13	97.6	951	NAV	0.06	0.07	0.08	0.10	0.14	0.19
	1	0.06	24.3	1718	2.60	0.26	0.26	0.27	0.30	0.36	0.43
	2	0.06	49.2	1550	2.62	0.20	0.20	0.21	0.24	0.30	0.36
	5	0.06	70.0	1207	2.00	0.22	0.25	0.24	0.27	0.52	0.39
0.10	-	0.00	95.9	1064	2.00	0.17	0.10	0.13	0.22	0.28	0.34
	8	0.00	94.7	846	2.45	0.11	0.12	0.13	0.10	0.22	0.20
	12	0.06	99.0	747	NAV	0.06	0.07	0.08	0.11	0.16	0.22
	20	0.06	99.4	701	NAV	0.06	0.07	0.08	0.10	0.15	0.21
	1	0.015	75.3	2321	NAV	1.46	1.50	1.57	1.70	1.94	2.19
	2	0.015	99.0	1203	NAV	0.62	0.67	0.74	0.86	1.11	1.36
	3	0.015	99.9	775	NAV	0.39	0.45	0.51	0.64	0.89	1.13
0.50	4	0.015	100.0	625	NAV	0.29	0.35	0.41	0.54	0.79	1.03
0.50	6	0.015	100.0	502	NAV	0.21	0.27	0.33	0.46	0.71	0.95
	8	0.015	100.0	501	NAV	0.21	0.27	0.33	0.46	0.70	0.95
	12	0.015	100.0	453	NAV	0.18	0.23	0.29	0.42	0.67	0.92
	20	0.015	100.0	433	NAV	0.16	0.21	0.28	0.41	0.65	0.90

Table B.33: Precipitation triggered pollution detection probability, average detection time, contaminated area in case of detection failure and relative contaminated area to control area for various RADTi in case of $\sigma_{\ln K}^2 = 2.0$ assuming daily (ED) and monthly (1M) sampling frequencies

	σ^{2}_{lnK}										2.00									
գե(m)	Mon	nfds(max)	P _d (ED)	<t(days)< th=""><th>AREA ON FAILURE</th><th>(AREA ON DET.)/L</th><th>(3M. RADTi)/L</th><th>(6M. RADTi)/L</th><th>(12M. RADTi)/L</th><th>(24M. RADTi/L)</th><th>(36M. RADTi)/L</th><th>P_d (1M)</th><th><t(days)< th=""><th>AREA ON FAILURE</th><th>(AREA ON DET.)/L</th><th>(3M. RADTi)/L</th><th>(6M. RADTi)/L</th><th>(12M. RADTi)/L</th><th>(24M. RADTi/L)</th><th>(36M. RADTi)/L</th></t(days)<></th></t(days)<>	AREA ON FAILURE	(AREA ON DET.)/L	(3M. RADTi)/L	(6M. RADTi)/L	(12M. RADTi)/L	(24M. RADTi/L)	(36M. RADTi)/L	P _d (1M)	<t(days)< th=""><th>AREA ON FAILURE</th><th>(AREA ON DET.)/L</th><th>(3M. RADTi)/L</th><th>(6M. RADTi)/L</th><th>(12M. RADTi)/L</th><th>(24M. RADTi/L)</th><th>(36M. RADTi)/L</th></t(days)<>	AREA ON FAILURE	(AREA ON DET.)/L	(3M. RADTi)/L	(6M. RADTi)/L	(12M. RADTi)/L	(24M. RADTi/L)	(36M. RADTi)/L
	1	0.75	6.6	3315	1.50	0.12	0.12	0.13	0.14	0.16	0.17	6.6	3225	1.49	0.11	0.12	0.12	0.13	0.15	0.18
	2	0.75	16.5	3220	1.47	0.11	0.11	0.12	0.13	0.15	0.17	16.1	3229	1.46	0.11	0.11	0.12	0.13	0.15	0.17
	3	0.75	18.6	3293	1.53	0.13	0.14	0.15	0.17	0.22	0.26	18.0	3279	1.55	0.11	0.12	0.12	0.13	0.15	0.17
0.001	4	0.75	23.8	3113	1.35	0.11	0.11	0.12	0.13	0.15	0.17	23.3	3100	1.35	0.11	0.11	0.12	0.13	0.15	0.17
	6	0.75	39.0	3185	1.56	0.10	0.11	0.11	0.12	0.14	0.16	37.9	3162	1.55	0.10	0.11	0.11	0.12	0.14	0.16
	8	0.75	44.7	3197	1.54	0.11	0.12	0.13	0.14	0.17	0.21	42.9	3175	1.55	0.10	0.11	0.11	0.12	0.14	0.16
	12	0.75	61.5	3025	1.56	0.09	0.09	0.10	0.11	0.13	0.15	60.0	3065	1.55	0.09	0.10	0.10	0.11	0.13	0.16
	20	0.75	76.9	2956	1.61	0.08	0.09	0.09	0.10	0.12	0.15	75.8	2981	1.62	0.08	0.09	0.09	0.10	0.12	0.14
	1	0.50	16.2	2820	2.31	0.18	0.19	0.20	0.22	0.26	0.31	15.8	2952	2.31	0.20	0.21	0.22	0.23	0.28	0.32
	2	0.50	29.1	2460	2.36	0.16	0.17	0.18	0.20	0.25	0.29	28.3	2493	2.35	0.17	0.17	0.18	0.20	0.25	0.29
	3	0.50	43.5	2598	2.29	0.16	0.17	0.18	0.20	0.24	0.29	42.5	2701	2.27	0.19	0.20	0.21	0.23	0.27	0.32
0.01	4	0.50	50.6	2475	2.12	0.15	0.16	0.17	0.19	0.22	0.27	49.3	2570	2.11	0.17	0.17	0.18	0.20	0.24	0.28
0.01	6	0.50	65.3	2327	2.64	0.13	0.14	0.14	0.16	0.20	0.24	54.1	2386	2.60	0.13	0.14	0.15	0.17	0.21	0.25
	8	0.50	74.8	2240	2.11	0.11	0.11	0.12	0.14	0.18	0.22	/3.8	2324	2.13	0.12	0.13	0.14	0.15	0.20	0.24
	12	0.50	84.9	2136	2.30	0.10	0.10	0.11	0.13	0.17	0.21	83.9	21/2	2.31	0.10	0.11	0.12	0.13	0.17	0.21
·	20	0.50	87.9	1652	2.20	0.08	0.09	0.10	0.11	0.15	0.19	87.7	1750	2.20	0.09	0.09	0.10	0.12	0.15	0.19
	1 2	0.13	21.0 4E 1	1052	3.05	0.10	0.17	0.10	0.21	0.20	0.35	42.1	1/59	3.05	0.17	0.10	0.20	0.22	0.20	0.52
	2	0.13	45.1	1514	3.05	0.10	0.17	0.18	0.20	0.25	0.31	43.7	1055	3.00	0.18	0.19	0.20	0.22	0.28	0.34
	3	0.13	01.3 72.4	1461	3.02	0.14	0.15	0.16	0.19	0.24	0.30	59.7 70.9	1503	3.02	0.10	0.17	0.18	0.21	0.25	0.30
0.05	4	0.13	72.4 00 F	1442	3.00	0.15	0.14	0.10	0.10	0.24	0.50	70.8 07.2	1201	2.99	0.10	0.19	0.17	0.20	0.25	0.51
	0	0.13	00.5	1052	5.52 2.72	0.09	0.10	0.11	0.15	0.10	0.24	0/.2	11201	5.20 2.70	0.10	0.11	0.12	0.14	0.19	0.25
	0 12	0.13	90.7	1022	5.75 2.02	0.06	0.07	0.08	0.10	0.15	0.21	90.5 0E 9	076	5.70 2.04	0.06	0.09	0.09	0.12	0.17	0.22
	20	0.13	95.9	955	0.00	0.05	0.00	0.07	0.09	0.14	0.19	95.8	970 010	0.00	0.00	0.00	0.07	0.09	0.14	0.20
	1	0.15	29.9	1672	3.26	0.05	0.05	0.00	0.00	0.15	0.10	28.5	1706	3 25	0.05	0.00	0.00	0.05	0.15	0.15
	2	0.00	20.0 60.4	1484	3.46	0.24	0.25	0.27	0.30	0.30	0.45	20.5 57 9	1499	3.25	0.20	0.20	0.20	0.52	0.37	0.45
	3	0.06	78.5	1316	3.44	0.16	0.18	0.19	0.22	0.28	0.35	76.2	1407	3.42	0.19	0.20	0.21	0.24	0.30	0.38
	4	0.06	88.0	1104	3.50	0.12	0.13	0.14	0.17	0.23	0.30	86.7	1236	3.51	0.15	0.16	0.17	0.20	0.26	0.33
0.10	6	0.06	96.7	853	NAV	0.07	0.08	0.10	0.12	0.18	0.25	95.9	920	NAV	0.08	0.09	0.11	0.13	0.19	0.26
	8	0.06	95.0	696	NAV	0.05	0.06	0.07	0.10	0.15	0.22	94.9	762	NAV	0.06	0.07	0.08	0.11	0.17	0.24
	12	0.06	98.9	620	NAV	0.05	0.05	0.06	0.09	0.14	0.21	98.6	654	NAV	0.05	0.06	0.07	0.09	0.15	0.21
	20	0.06	99.3	565	NAV	0.04	0.05	0.06	0.08	0.13	0.19	99.2	607	NAV	0.04	0.05	0.06	0.08	0.14	0.20
	1	0.015	92.5	1750	NAV	0.99	1.05	1.11	1.24	1.49	1.75	89.7	1986	NAV	1.16	1.19	1.26	1.40	1.66	1.93
	2	0.015	100.0	704	NAV	0.31	0.36	0.42	0.55	0.80	1.06	99.8	804	NAV	0.37	0.43	0.48	0.62	0.87	1.13
	3	0.015	100.0	469	NAV	0.17	0.21	0.26	0.39	0.65	0.91	100.0	552	NAV	0.22	0.26	0.32	0.46	0.71	0.97
0.50	4	0.015	100.0	361	NAV	0.12	0.15	0.20	0.33	0.58	0.84	100.0	423	NAV	0.15	0.19	0.24	0.38	0.63	0.89
0.50	6	0.015	100.0	286	NAV	0.09	0.12	0.16	0.28	0.54	0.80	100.0	339	NAV	0.11	0.15	0.19	0.33	0.58	0.84
	8	0.015	100.0	273	NAV	0.08	0.12	0.16	0.28	0.53	0.79	100.0	322	NAV	0.11	0.14	0.19	0.32	0.57	0.83
	12	0.015	100.0	221	NAV	0.06	0.09	0.13	0.24	0.50	0.76	100.0	263	NAV	0.08	0.11	0.16	0.28	0.54	0.80
	20	0.015	100.0	203	NAV	0.06	0.09	0.12	0.23	0.49	0.75	100.0	243	NAV	0.07	0.11	0.15	0.27	0.52	0.78
																	0.20		0.0 -	

Table B.34: Precipitation triggered pollution detection probability, average detection time, contaminated area in case of detection failure and relative contaminated area to control area for various RADTi in case of $\sigma_{\ln \kappa}^2 = 2.0$ assuming bimonthly (2M) and quarterly (3M) sampling frequencies

	σ^{2}_{InK}										2.00									
-(m)	80	fds(max)	d (2M)	Г(рет.)> (DAYS)	REA ON FAILURE	REA ON DET.)/L	:M. RADTi)/L	iM. RADTi)/L	.2M. RADTi)/L	:4M. RADTi/L)	6M. RADTi)/L	d (3M)	Г(рет.)> (DAYS)	REA ON FAILURE	REA ON DET.)/L	:M. RADTi)/L	iM. RADTi)/L	.2M. RADTi)/L	:4M. RADTi/L)	6M. RADTi)/L
<u>8</u>	Č 1	<u> </u>	<u> </u>	<u>'v</u>	A	<u>S</u>	<u> </u>	9	<u> </u>	<u> </u>	<u> </u>		<u>'v</u>	A	<u> </u>	<u> </u>	9	<u> </u>	0.15	<u> </u>
	2	0.75	0.5	2221	1.50	0.12	0.12	0.13	0.14	0.10	0.10	0.5	2276	1.49	0.11	0.11	0.12	0.15	0.15	0.17
	2	0.75	17.8	3313	1.40	0.12	0.12	0.12	0.14	0.10	0.10	173	3208	1.40	0.12	0.12	0.13	0.14	0.10	0.10
	4	0.75	22.9	3121	1.34	0.11	0.12	0.12	0.13	0.15	0.18	22.6	3105	1.34	0.11	0.11	0.12	0.13	0.15	0.17
0.001	6	0.75	37.7	3219	1.57	0.10	0.11	0.11	0.12	0.14	0.17	37.0	3232	1.54	0.11	0.11	0.12	0.13	0.15	0.17
	8	0.75	42.3	3178	1.55	0.10	0.11	0.11	0.12	0.14	0.16	41.6	3168	1.53	0.10	0.11	0.11	0.12	0.14	0.16
	12	0.75	59.2	3086	1.54	0.00	0.10	0.10	0.11	0.13	0.16	58.3	3078	1.53	0.09	0.10	0.10	0.11	0.13	0.15
	20	0.75	75.4	3011	1.58	0.00	0.09	0.09	0.10	0.12	0.15	74.9	3008	1.56	0.09	0.09	0.09	0.10	0.12	0.15
	1	0.50	15.5	2997	2.31	0.20	0.21	0.22	0.23	0.28	0.32	15.3	3019	2.31	0.20	0.21	0.22	0.24	0.28	0.33
	2	0.50	27.9	2578	2.35	0.18	0.19	0.20	0.22	0.27	0.31	27.4	2610	2.35	0.19	0.20	0.21	0.23	0.27	0.31
	3	0.50	41.6	2717	2.27	0.19	0.20	0.21	0.23	0.27	0.32	41.3	2713	2.29	0.17	0.18	0.19	0.21	0.25	0.30
0.01	4	0.50	48.4	2591	2.14	0.00	0.18	0.19	0.21	0.24	0.28	48.0	2608	2.10	0.17	0.18	0.19	0.21	0.25	0.30
	6	0.50	63.4	2462	2.59	0.00	0.16	0.17	0.18	0.22	0.26	62.9	2488	2.57	0.15	0.16	0.17	0.19	0.22	0.26
	8	0.50	73.1	2342	2.22	0.00	0.13	0.14	0.16	0.20	0.24	72.6	2379	2.30	0.13	0.13	0.14	0.16	0.20	0.24
	12	0.50	83.4	2197	2.42	0.00	0.11	0.12	0.14	0.17	0.21	83.1	2224	2.28	0.11	0.11	0.12	0.14	0.18	0.22
·	20	0.50	87.6	2124	2.32	0.00	0.10	0.10	0.12	0.16	0.20	87.6	2145	2.25	0.09	0.10	0.10	0.12	0.16	0.20
	1	0.13	20.5	1/4/	3.03	0.16	0.18	0.19	0.20	0.26	0.32	20.3	1793	3.04	0.17	0.18	0.19	0.21	0.26	0.33
	2	0.15	42.7 58.8	1606	3.00 2.01	0.16	0.19	0.20	0.25	0.20	0.54	42.2 57.0	1604	3.00	0.21	0.22	0.25	0.20	0.29	0.55
	<u>з</u>	0.13	56.6 70.2	1608	2 97	0.10	0.10	0.19	0.21	0.25	0.33	57.9 69.0	1617	3.02	0.10	0.17	0.10	0.20	0.25	0.33
0.05	-	0.13	86.3	1307	3 24	0.20	0.22	0.20	0.21	0.27	0.55	85 9	1357	3.04	0.10	0.10	0.13	0.21	0.27	0.55
	8	0.13	89.7	1173	3.64	0.00	0.09	0.10	0.12	0.17	0.22	89.6	1219	3.62	0.09	0.10	0.11	0.13	0.18	0.24
	12	0.13	95.7	1007	2.99	0.00	0.07	0.08	0.10	0.15	0.20	95.4	1012	3.15	0.06	0.07	0.07	0.10	0.15	0.20
	20	0.13	97.0	938	0.00	0.00	0.06	0.07	0.09	0.14	0.19	96.8	957	0.00	0.05	0.06	0.07	0.09	0.14	0.19
	1	0.06	28.0	1781	3.25	0.26	0.28	0.29	0.32	0.38	0.47	27.3	1760	3.26	0.24	0.25	0.27	0.30	0.36	0.42
	2	0.06	56.6	1534	3.44	0.20	0.21	0.22	0.25	0.32	0.38	55.4	1533	3.45	0.20	0.21	0.22	0.26	0.32	0.38
	3	0.06	74.9	1454	3.38	0.20	0.21	0.22	0.25	0.31	0.39	73.8	1465	3.43	0.19	0.21	0.22	0.25	0.31	0.38
0.10	4	0.06	85.4	1267	3.52	0.00	0.16	0.17	0.20	0.27	0.33	85.3	1335	3.47	0.16	0.17	0.19	0.22	0.28	0.35
0.20	6	0.06	95.6	981	NAV	0.00	0.11	0.12	0.14	0.20	0.27	95.3	1014	NAV	0.10	0.11	0.12	0.15	0.21	0.28
	8	0.06	94.6	791	NAV	0.00	0.07	0.08	0.11	0.17	0.24	94.5	825	NAV	0.07	0.08	0.09	0.12	0.18	0.25
	12	0.06	98.5	681	NAV	0.00	0.06	0.07	0.09	0.15	0.22	98.4	697	NAV	0.05	0.06	0.07	0.09	0.15	0.22
	20	0.06	99.1	622	NAV	0.00	0.05	0.06	1.52	0.14	0.21	99.1	650	NAV	0.05	0.06	0.07	0.09	0.15	0.21
	1	0.015	87.9	2078		1.27	1.34	1.40	1.52	1.79	2.03	86.U	2099		1.23	1.29	1.30	1.49	1.75	2.02
	2	0.015	100.0	50/		0.00	0.40	0.34	0.07	0.95	1.19	100.0	939 627		0.40	0.52	0.38	0.72	0.97	1.25
	<u>ح</u>	0.015	100.0	458	NΔV	0.24	0.29	0.33	0.49	0.74	0.92	100.0	490	NΔV	0.20	0.32	0.38	0.31	0.77	0.95
0.50	6	0.015	100.0	369	NAV	0.12	0.16	0.21	0.35	0.60	0.87	100.0	393	NAV	0.14	0.18	0.23	0.37	0.62	0.89
	8	0.015	100.0	348	NAV	0.12	0.16	0.21	0.34	0.59	0.85	100.0	376	NAV	0.13	0.18	0.23	0.36	0.61	0.88
	12	0.015	100.0	289	NAV	0.09	0.13	0.17	0.30	0.56	0.82	100.0	309	NAV	0.10	0.14	0.19	0.32	0.57	0.84
	20	0.015	100.0	266	NAV	0.08	0.12	0.16	0.29	0.54	0.81	100.0	288	NAV	0.09	0.13	0.18	0.30	0.56	0.82

Table B.35: Precipitation triggered pollution detection probability, average detection time, contaminated area in case of detection failureand relative contaminated area to control area for various RADTi in case of $\sigma_{\ln \kappa}^2 = 2.0$ assuming every 4 months (4M) andbiannually (6M) sampling frequencies

	σ^{2}_{InK}										2.00									
α ₁ (m)	wou	nfds(max)	P _d (4M)	<t(оет.)> (DAYS)</t(оет.)>	AREA ON FAILURE	(AREA ON DET.)/L	(3M. RADTi)/L	(6M. RADTi)/L	(12M. RADTi)/L	(24M. RADTi/L)	(36M. RADTi)/L	P _d (6M)	<t(det.)> (DAYS)</t(det.)>	AREA ON FAILURE	(AREA ON DET.)/L	(3M. RADTi)/L	(6M. RADTi)/L	(12M. RADTi)/L	(24M. RADTi/L)	(36M. RADTi)/L
	1	0.75	6.3	3334	1.49	0.12	0.12	0.13	0.14	0.16	0.18	6.2	3325	1.49	0.12	0.12	0.13	0.14	0.16	0.18
	2	0.75	15.5	3337	1.48	0.12	0.12	0.13	0.14	0.16	0.18	15.2	3430	1.48	0.12	0.12	0.13	0.14	0.16	0.18
	3	0.75	17.4	3389	1.55	0.12	0.13	0.13	0.14	0.16	0.18	17.0	3413	1.54	0.12	0.13	0.13	0.14	0.16	0.18
0.001	4	0.75	22.7	3171	1.34	0.11	0.12	0.12	0.13	0.16	0.18	22.1	3178	1.36	0.11	0.12	0.12	0.13	0.16	0.18
	6	0.75	36.9	3229	1.56	0.11	0.11	0.12	0.13	0.15	0.17	36.2	3307	1.56	0.11	0.12	0.12	0.13	0.15	0.17
	8	0.75	41.5	3227	1.54	0.10	0.11	0.11	0.12	0.14	0.17	41.0	3217	1.53	0.10	0.11	0.11	0.12	0.14	0.17
	12	0.75	58.4	3139	1.53	0.10	0.10	0.11	0.12	0.14	0.16	57.7	3157	1.54	0.10	0.10	0.11	0.12	0.14	0.16
	20	0.75	14.7	3036	1.55	0.09	0.09	0.10	0.11	0.13	0.15	14.5	3072	2.21	0.10	0.11	0.11	0.11	0.13	0.15
	2	0.50	14.9 27.2	2992	2.50	0.19	0.20	0.21	0.25	0.27	0.32	14.9 26.6	2708	2.51	0.21	0.22	0.25	0.25	0.20	0.33
	2	0.50	27.3 40.6	2045	2.33	0.19	0.20	0.21	0.23	0.27	0.31	20.0	2708	2.34	0.20	0.21	0.22	0.24	0.20	0.32
	4	0.50	47.0	2629	2.20	0.10	0.15	0.20	0.22	0.20	0.30	46.7	2675	2.20	0.18	0.19	0.20	0.22	0.20	0.30
0.01	6	0.50	62.2	2515	2.56	0.15	0.16	0.17	0.19	0.23	0.27	61.5	2552	2.56	0.16	0.17	0.18	0.20	0.24	0.28
	8	0.50	72.3	2424	2.20	0.13	0.14	0.15	0.17	0.21	0.25	71.8	2457	2.35	0.13	0.14	0.15	0.17	0.21	0.25
	12	0.50	83.0	2266	2.40	0.11	0.12	0.13	0.14	0.18	0.22	82.7	2296	2.39	0.11	0.12	0.13	0.15	0.19	0.23
	20	0.50	87.4	2155	2.29	0.09	0.10	0.11	0.12	0.16	0.20	87.3	2186	2.30	0.09	0.10	0.11	0.13	0.16	0.21
	1	0.13	19.7	1768	3.03	0.17	0.18	0.19	0.22	0.28	0.34	19.4	1868	3.03	0.18	0.19	0.21	0.23	0.28	0.34
	2	0.13	41.2	1715	3.07	0.18	0.19	0.20	0.23	0.27	0.33	40.8	1779	3.07	0.21	0.22	0.23	0.25	0.29	0.35
	3	0.13	57.3	1662	3.00	0.18	0.19	0.20	0.23	0.27	0.34	56.5	1705	3.01	0.18	0.19	0.20	0.22	0.27	0.33
0.05	4	0.13	68.7	1657	3.07	0.17	0.18	0.19	0.22	0.27	0.33	67.9	1734	3.02	0.20	0.22	0.23	0.24	0.29	0.36
0.05	6	0.13	85.3	1373	3.27	0.11	0.12	0.13	0.15	0.20	0.26	84.1	1390	3.28	0.11	0.12	0.14	0.16	0.20	0.26
	8	0.13	88.9	1213	3.57	0.08	0.09	0.10	0.13	0.18	0.24	88.7	1282	3.55	0.10	0.11	0.12	0.14	0.19	0.25
	12	0.13	95.4	1045	3.09	0.06	0.07	0.08	0.10	0.15	0.21	95.3	1073	3.14	0.06	0.07	0.08	0.11	0.16	0.21
	20	0.13	96.7	981	0.00	0.06	0.06	0.07	0.09	0.14	0.20	96.6	1007	0.00	0.06	0.07	0.08	0.10	0.15	0.20
	1	0.06	27.3	1875	3.25	0.29	0.30	0.31	0.35	0.41	0.49	26.0	1832	3.26	0.25	0.26	0.27	0.30	0.36	0.43
	2	0.06	54.9	1554	3.47	0.20	0.21	0.22	0.26	0.32	0.39	54.0	1584	3.45	0.20	0.22	0.23	0.26	0.32	0.38
	3	0.06	/3.0	1520	3.39	0.21	0.23	0.24	0.27	0.33	0.41	72.0	1202	3.39	0.22	0.23	0.24	0.27	0.33	0.40
0.10	4 6	0.00	05.0 95.0	10/17	5.50 NAV	0.10	0.17	0.10	0.21	0.27	0.54	03.U	1088	5.44 NAV	0.17	0.10	0.20	0.25	0.29	0.37
	8	0.00	94.2	827	NAV	0.10	0.12	0.13	0.10	0.22	0.23	94.0	869	NAV	0.11	0.12	0.14	0.10	0.22	0.25
	12	0.06	98.5	719	NAV	0.05	0.06	0.07	0.10	0.16	0.27	98.2	748	NAV	0.05	0.06	0.08	0.10	0.16	0.23
	20	0.06	98.9	659	NAV	0.05	0.06	0.07	0.09	0.15	0.21	99.0	701	NAV	0.05	0.06	0.07	0.10	0.16	0.22
	1	0.015	85.3	2200	NAV	1.31	1.38	1.44	1.59	1.86	2.08	82.6	2200	NAV	1.33	1.40	1.46	1.60	1.86	2.13
	2	0.015	99.6	988	NAV	0.49	0.54	0.61	0.74	1.00	1.26	99.3	1052	NAV	0.52	0.58	0.65	0.78	1.03	1.29
	3	0.015	99.9	654	NAV	0.28	0.34	0.40	0.54	0.79	1.05	100.0	710	NAV	0.32	0.37	0.43	0.57	0.82	1.09
0 50	4	0.015	100.0	513	NAV	0.20	0.25	0.31	0.44	0.70	0.96	100.0	558	NAV	0.22	0.28	0.34	0.47	0.73	0.99
0.50	6	0.015	100.0	413	NAV	0.15	0.19	0.25	0.38	0.63	0.90	100.0	453	NAV	0.17	0.22	0.28	0.41	0.66	0.93
	8	0.015	100.0	396	NAV	0.14	0.19	0.24	0.37	0.63	0.89	100.0	438	NAV	0.16	0.21	0.27	0.40	0.65	0.92
	12	0.015	100.0	332	NAV	0.11	0.15	0.20	0.34	0.59	0.85	100.0	372	NAV	0.13	0.18	0.23	0.37	0.62	0.88
	20	0.015	100.0	307	NAV	0.10	0.14	0.18	0.32	0.57	0.83	100.0	347	NAV	0.12	0.16	0.21	0.35	0.59	0.86

Table B.36: Precipitation triggered pollution detection probability, average detection time, contaminated area in case of detection failureand relative contaminated area to control area for various RADTi in case of $\sigma_{\ln K}^2 = 2.0$ assuming annually samplingfrequency

	σ^{2}_{lnK}					2.0	0				
գ ւ (m)	wou	nfds(max)	P _d (12M)	<t(det.)> (DAYS)</t(det.)>	area on failure	(AREA ON DET.)/L	(3M. RADTi)/L	(6M. RADTi)/L	(12M. RADTi)/L	(24M. RADTi/L)	(36M. RADTi)/L
	1	0.75	6.1	3409	1.49	0.12	0.12	0.13	0.14	0.16	0.19
	2	0.75	15.1	3607	1.46	0.17	0.18	0.19	0.22	0.27	0.19
	3	0.75	17.0	3438	1.54	0.12	0.13	0.13	0.14	0.17	0.19
0.001	4	0.75	21.7	3387	1.34	0.13	0.13	0.14	0.15	0.17	0.20
	6	0.75	35.9	3515	1.53	0.14	0.15	0.16	0.18	0.22	0.18
	8	0.75	40.8	3403	1.53	0.12	0.12	0.12	0.14	0.16	0.18
	12	0.75	57.3	3303	1.50	0.11	0.11	0.12	0.13	0.15	0.17
	20	0.75	74.0	3207	1.64	0.10	0.10	0.11	0.12	0.14	0.16
	1	0.50	14.4	3203	2.30	0.25	0.26	0.27	0.30	0.36	0.43
	2	0.50	26.0	2800	2.35	0.21	0.21	0.22	0.24	0.28	0.33
	5	0.50	59.0 45.2	2940	2.27	0.21	0.22	0.25	0.20	0.50	0.30
0.01	-	0.50	4J.J 50 0	2689	2.17	0.10	0.19	0.20	0.22	0.20	0.31
	8	0.50	70.5	2602	2.33	0.10	0.15	0.20	0.22	0.20	0.31
	12	0.50	82.0	2404	2 36	0.12	0.13	0.14	0.16	0.20	0.24
	20	0.50	86.9	2294	2.29	0.10	0.11	0.12	0.14	0.18	0.22
	1	0.13	18.9	1984	3.02	0.22	0.23	0.24	0.27	0.33	0.40
	2	0.13	38.9	1779	3.04	0.19	0.20	0.21	0.24	0.30	0.36
	3	0.13	55.1	1863	3.01	0.20	0.22	0.23	0.26	0.30	0.37
0.05	4	0.13	65.1	1740	3.06	0.17	0.18	0.19	0.22	0.28	0.34
0.05	6	0.13	83.0	1497	3.23	0.13	0.14	0.15	0.18	0.23	0.29
	8	0.13	87.7	1396	3.60	0.11	0.12	0.13	0.15	0.21	0.27
	12	0.13	95.0	1171	3.31	0.07	0.08	0.09	0.12	0.17	0.23
	20	0.13	96.1	1090	0.00	0.07	0.07	0.09	0.11	0.16	0.21
	1	0.06	25.3	1975	3.26	0.28	0.29	0.30	0.34	0.40	0.47
	2	0.06	52.8	1771	3.40	0.25	0.25	0.27	0.30	0.37	0.43
	3	0.06	69.5	1607	3.34	0.24	0.22	0.24	0.27	0.34	0.41
0.10	4	0.06	81.6	1536	3.59	0.20	0.20	0.22	0.25	0.32	0.39
	6	0.06	93.3	1218	NAV	0.13	0.14	0.16	0.19	0.25	0.32
	8 12	0.06	93.9	989		0.09	0.10	0.11	0.14	0.20	0.27
	20	0.06	98.0	004 707		0.07	0.08	0.09	0.12	0.10	0.25
	1	0.00	79.6	2301	NAV	1 59	1.5/	1.61	1 76	1 95	2 21
	2	0.015	99.0	1224	NAV	0.65	0.71	0.78	0.91	1.55	1 42
	3	0.015	99.8	837	NAV	0.40	0.46	0.53	0.66	0.92	1.18
	4	0.015	100.0	679	NAV	0.30	0.36	0.43	0.56	0.81	1.07
0.50	6	0.015	100.0	570	NAV	0.22	0.28	0.35	0.49	0.73	0.99
	8	0.015	100.0	567	NAV	0.23	0.29	0.36	0.49	0.74	1.00
	12	0.015	100.0	501	NAV	0.19	0.24	0.31	0.45	0.69	0.95
	20	0.015	100.0	481	NAV	0.17	0.22	0.29	0.43	0.67	0.94

(This page was left intentionally blank)

- Ababou, R., McLaughlin, D., Gelhar, L., & Tompson, A. B. (1989). Numerical simulation of three-dimensional saturated flow in randomly heterogeneous porous media. *Transport* in Porous Media, 4(6), 549-565. doi: 10.1007/bf00223627
- Academies, N. (1994). *Alternatives for Groundwater Cleanup*. Washington D.C.: Nathional Academies Press.
- Adams, E. E., & Gelhar, L. W. (1992). Field study of dispersion in a heterogeneous aquifer:
 2. Spatial moments analysis. *Water Resources Research*, 28(12), 3293-3307. doi: 10.1029/92wr01757
- Ahlstrom, S. W., Foote, H. P., Arnett, R. C., Cole, C. R., & Serne, R. J. (1977). Multicomponent mass transport model: theory and numerical implementation (discrete-parcel-random-walk version) (pp. Medium: ED; Size: Pages: 128).
- Allen, A. (2001). Containment landfills: the myth of sustainability. *Engineering Geology*, 60(1–4), 3-19. doi: <u>http://dx.doi.org/10.1016/S0013-7952(00)00084-3</u>
- Apgar, M. A., & Langmuir, D. (1971). Ground-Water Pollution Potential of a Landfill Above the Water Tablea. *Ground Water*, 9(6), 76-96. doi: 10.1111/j.1745-6584.1971.tb03582.x
- Baccini, P., Henseler, G., Figi, R., & Belevi, H. (1987). Water and element balances of municipal solid waste landfills. *Waste Management & Research*, 5(4), 483-499. doi: <u>http://dx.doi.org/</u>
- Bear, J. (1988). Dynamics of fluids in porous media: Dover.
- Bear, J., & Buchlin, J.-M. (1987). *Modeling and applications of transport phenomena in porous media*. Netherlands: Kluwer Academic Publishers.
- Bedford, D., & Cooke, R. (2003). *Probabilistic Risk Analysis: Foundations and Methods*. New York: Cambridge University Press.
- Bierkens, M. F. P. (2006). Designing a monitoring network for detecting groundwater pollution with stochastic simulation and a cost model. *Stochastic Environmental Research and Risk Assessment*, 20(5), 335-351. doi: 10.1007/s00477-005-0025-2
- Boggs, J. M., Young, S. C., Beard, L. M., Gelhar, L. W., Rehfeldt, K. R., & Adams, E. E. (1992). Field study of dispersion in a heterogeneous aquifer: 1. Overview and site description. *Water Resources Research*, 28(12), 3281-3291. doi: 10.1029/92wr01756
- Bolster, D., Barahona, M., Dentz, M., Fernandez-Garcia, D., Sanchez-Vila, X., Trinchero, P., . . . Tartakovsky, D. M. (2009). Probabilistic risk analysis of groundwater remediation strategies. *Water Resources Research*, *45*(6), W06413. doi: 10.1029/2008wr007551

- Brooker, P. (1985). Two-dimensional simulation by turning bands. *Journal of the International Association for Mathematical Geology*, 17(1), 81-90. doi: 10.1007/bf01030369
- Çelik, B., Rowe, R. K., & Ünlü, K. (2009). Effect of vadose zone on the steady-state leakage rates from landfill barrier systems. *Waste Management*, 29(1), 103-109. doi: <u>http://dx.doi.org/10.1016/j.wasman.2008.02.012</u>
- Cirpka, O. A., & Kitanidis, P. K. (2001). Theoretical basis for the measurement of local transverse dispersion in isotropic porous media. *Water Resources Research*, *37*(2), 243-252. doi: 10.1029/2000wr900314
- Collucci, P., Darilek, G. T., Laine, D. L., & Binley, A. (1999). *Locating landfill leaks covered with waste*. Paper presented at the Seventh International Waste Management and Landfill Symposium, Sardinia
- Dagan, G. (1984). Solute transport in heterogeneous porous formations. *Journal of Fluid Mechanics*, 145, 27.
- Dagan, G. (1986). Statistical theory of groundwater flow and transport: Pore to laboratory, laboratory to formation, and formation to regional scale. *Water Resources Research*, 22(9S), 120S-134S. doi: 10.1029/WR022i09Sp0120S
- Dagan, G. (1989). Flow and transport in porous formations.
- Dagan, G. (1994). The significance of heterogeneity of evolving scales to transport in porous formations. *Water Resources Research*, *30*(12), 3327-3336. doi: 10.1029/94wr01798
- Dagan, G., Lessoff, S. C., & Fiori, A. (2009). Is transmissivity a meaningful property of natural formations? Conceptual issues and model development. *Water Resources Research*, 45(3), W03425. doi: 10.1029/2008wr007410
- De Cortázar, A. L. G., LantaróN, J. H., Fernández, O. M., Monzón, I. T., & Lamia, M. F. (2002). Modelling for environmental assessment of municipal solid waste landfills (Part 1: Hydrology). Waste Management & Research, 20(2), 198-210. doi: 10.1177/0734242x0202000211
- Delay, F., Ackerer, P., & Danquigny, C. (2005a). Simulating Solute Transport in Porous or Fractured Formations Using Random Walk Particle Tracking. *Vadose Zone J.*, 4(2), 360-379. doi: 10.2136/vzj2004.0125
- Delay, F., Ackerer, P., & Danquigny, C. (2005b). Simulating Solute Transport in Porous or Fractured Formations Using Random Walk Particle Tracking: A Review Vadose Zone Journal, 4(2). doi: 10.2136/vzj2004.0125
- Desbarats, A. J. (1992). Spatial averaging of hydraulic conductivity in three-dimensional heterogeneous porous media. *Mathematical Geology*, 24(3), 249-267. doi: 10.1007/bf00893749
- Dimitrakopoulos, R., & Luo, X. (2004). Generalized Sequential Gaussian Simulation on Group Size v and Screen-Effect Approximations for Large Field Simulations.

Mathematical Geology, 36(5), 567-591. doi: 10.1023/B:MATG.0000037737.11615.df

- El-Zein, A. (2008). A general approach to the modelling of contaminant transport through composite landfill liners with intact or leaking geomembranes. *International Journal for Numerical and Analytical Methods in Geomechanics*, 32(3), 265-287. doi: 10.1002/nag.626
- Elfeki, A. M. M. (1996). Stochastic characterization of geological heterogeneity and its impact on groundwater contaminant transpor. PhD PhD, Delft University, Balkema Publisher, Rotterdam.
- Emery, X. (2008). A turning bands program for conditional co-simulation of cross-correlated Gaussian random fields. *Computers & Geosciences*, *34*(12), 1850-1862. doi: <u>http://dx.doi.org/10.1016/j.cageo.2007.10.007</u>

European Council Directive 99/31/EC on the Landfill of Waste (1999/31/EC).

Groundwater Protection in Europe - The New Groundwater Directive (2008).

- Farrell, D. A., Woodbury, A. D., & Sudicky, E. A. (1994). The 1978 Borden tracer experiment: Analysis of the spatial moments. *Water Resources Research*, 30(11), 3213-3223. doi: 10.1029/94wr00622
- Fatta, D., Papadopoulos, A., & Loizidou, M. (1999). A study on the landfill leachate and its impact on the groundwater quality of the greater area. *Environmental Geochemistry* and Health, 21(2), 175-190. doi: 10.1023/a:1006613530137
- Fernàndez-Garcia, D., Rajaram, H., & Illangasekare, T. H. (2005). Assessment of the predictive capabilities of stochastic theories in a three-dimensional laboratory test aquifer: Effective hydraulic conductivity and temporal moments of breakthrough curves. *Water Resources Research*, *41*(4), W04002. doi: 10.1029/2004wr003523
- Feyen, J., Jacques, D., Timmerman, A., & Vanderborght, J. (1998). Modelling Water Flow and Solute Transport in Heterogeneous Soils: A Review of Recent Approaches. *Journal of Agricultural Engineering Research*, 70(3), 231-256. doi: <u>http://dx.doi.org/10.1006/jaer.1998.0272</u>
- Fiori, A., Janković, I., & Dagan, G. (2006). Modeling flow and transport in highly heterogeneous three-dimensional aquifers: Ergodicity, Gaussianity, and anomalous behavior—2. Approximate semianalytical solution. *Water Resources Research*, 42(6), W06D13. doi: 10.1029/2005wr004752
- Freeze, R. A. (1975). A stochastic-conceptual analysis of one-dimensional groundwater flow in nonuniform homogeneous media. *Water Resources Research*, 11(5), 725-741. doi: 10.1029/WR011i005p00725
- Freeze, R. A., Massmann, J., Smith, L., Sperling, T., & James, B. (1990). Hydrogeological Decision Analysis: 1. A Framework. *Ground Water*, 28(5), 738-766. doi: 10.1111/j.1745-6584.1990.tb01989.x

- Freyberg, D. L. (1986). A natural gradient experiment on solute transport in a sand aquifer: 2. Spatial moments and the advection and dispersion of nonreactive tracers. Water Resources Research, 22(13), 2031-2046. doi: 10.1029/WR022i013p02031
- Gardiner, C. W. (1990). Handbook of Stochastic Methods for Physics, Chemistry, and the Natural Sciences. New York: Springer Verlag.
- Gau, S.-H., & Chow, J.-D. (1998). Landfill leachate characteristics and modeling of municipal solid wastes combined with incinerated residuals. *Journal of Hazardous Materials*, 58(1–3), 249-259. doi: <u>http://dx.doi.org/10.1016/S0304-3894(97)00136-2</u>
- Gelhar, L. W. (1986). Stochastic subsurface hydrology from theory to applications. *Water Resources Research*, 22(9S), 135S-145S. doi: 10.1029/WR022i09Sp0135S
- Gelhar, L. W., Welty, C., & Rehfeldt, K. R. (1992). A critical review of data on field-scale dispersion in aquifers. *Water Resources Research*, 28(7), 1955-1974. doi: 10.1029/92wr00607
- Giroud, J. P., & Bonaparte, R. (1989). Leakage through liners constructed with geomembranes—part I. Geomembrane liners. *Geotextiles and Geomembranes*, 8(1), 27-67. doi: <u>http://dx.doi.org/10.1016/0266-1144(89)90009-5</u>
- Gleick, P. H. (1993). Water in Crisis. New York, USA: Oxford University Press.
- Godfrey, K. A., Kurtovich, M., & Daniel, D. (1987). Monitoring for Hazardous Waste Leaks. *Civil Engineering*, 57(2), 4.
- Gómez-Hernández, J. J., & Gorelick, S. M. (1989). Effective groundwater model parameter values: Influence of spatial variability of hydraulic conductivity, leakance, and recharge. *Water Resources Research*, 25(3), 405-419. doi: 10.1029/WR025i003p00405
- Gutjahr, A. L., Gelhar, L. W., Bakr, A. A., & MacMillan, J. R. (1978). Stochastic analysis of spatial variability in subsurface flows: 2. Evaluation and application. *Water Resources Research*, 14(5), 953-959. doi: 10.1029/WR014i005p00953
- Harr, M. E. (1962). Groundwater and Seepage. New York: McGraw-Hill Book Company.
- Harvey, C. F., & Gorelick, S. M. (1995). Mapping Hydraulic Conductivity: Sequential Conditioning with Measurements of Solute Arrival Time, Hydraulic Head, and Local Conductivity. *Water Resources Research*, 31(7), 1615-1626. doi: 10.1029/95wr00547
- Hassan, A. E., & Mohamed, M. M. (2003). On using particle tracking methods to simulate transport in single-continuum and dual continua porous media. *Journal of Hydrology*, 275(3–4), 242-260. doi: <u>http://dx.doi.org/10.1016/S0022-1694(03)00046-5</u>
- Hess, K. M., Wolf, S. H., & Celia, M. A. (1992). Large-scale natural gradient tracer test in sand and gravel, Cape Cod, Massachusetts: 3. Hydraulic conductivity variability and calculated macrodispersivities. *Water Resources Research*, 28(8), 2011-2027. doi: 10.1029/92wr00668

- Hoeksema, R. J., & Kitanidis, P. K. (1985). Comparison of Gaussian Conditional Mean and Kriging Estimation in the Geostatistical Solution of the Inverse Problem. *Water Resources Research*, 21(6), 825-836. doi: 10.1029/WR021i006p00825
- Højberg, A., Refsgaard, J., Geer, F., Jørgensen, L., & Zsuffa, I. (2007). Use of Models to Support the Monitoring Requirements in the Water Framework Directive. Water Resources Management, 21(10), 1649-1672. doi: 10.1007/s11269-006-9119-y
- Hudak, P. F. (1998). Configuring Detection Wells Near Landfills. *Ground Water Monitoring & Remediation*, 18(2), 93-96. doi: 10.1111/j.1745-6592.1998.tb00619.x
- Hudak, P. F. (2001). Effective contaminant detection networks in uncertain groundwater flow fields. Waste Management, 21(4), 309-312. doi: <u>http://dx.doi.org/10.1016/S0956-053X(00)00079-9</u>
- Hudak, P. F. (2005). Sensitivity of groundwater monitoring networks to contaminant source width for various seepage velocities. *Water Resources Research*, 41(8), W08501. doi: 10.1029/2005wr003968
- Hudak, P. F., & Loaiciga, H. A. (1992). A location modeling approach for groundwater monitoring network augmentation. *Water Resources Research*, 28(3), 643-649. doi: 10.1029/91wr02851
- ISWA. (1992). 1000 Terms in Solid Waste Management. Copenhagen: International Solid Waste Association.
- ITRC. (2003). Technical and Regulatory Guidance for Design, Installation, and Monitoring of Alternative Landfill Covers: Interstate Technology Regulatory Council.
- Izbicki, J. A., Ball, J. W., Bullen, T. D., & Sutley, S. J. (2008). Chromium, chromium isotopes and selected trace elements, western Mojave Desert, USA. *Applied Geochemistry*, 23(5), 1325-1352. doi: http://dx.doi.org/10.1016/j.apgeochem.2007.11.015
- Journel, A. G. (1974). Geostatistics for Conditional Simulation of Ore Bodies. *Economic Geology*, 69(5), 673-687. doi: 10.2113/gsecongeo.69.5.673
- Kaczmarek, M., Hueckel, T., Chawla, V., & Imperiali, P. (1997). Transport Through a Clay Barrier with the Contaminant Concentration Dependent Permeability. *Transport in Porous Media*, 29(2), 159-178. doi: 10.1023/a:1006565417159
- Kim, K.-H., & Lee, K.-K. (2007). Optimization of groundwater-monitoring networks for identification of the distribution of a contaminant plume. *Stochastic Environmental Research and Risk Assessment*, 21(6), 785-794. doi: 10.1007/s00477-006-0094-x
- Kinzelbach, W. (1987). Simulation of pollutant transport in groundwater with the random walk method. Paper presented at the Groundwater Monitoring and Management, Dresden Symposium.
- Kjeldsen, P. (1993). Groundwater pollution source characterization of an old landfill. *Journal* of Hydrology, 142(1–4), 349-371. doi: <u>http://dx.doi.org/10.1016/0022-1694(93)90018-5</u>

- Koerner, G. R., & Koerner, G. R. (1995). Leachate Clogging Assessment of Geotextile and Soil Landfill Filters. Cincinnati OH 45268: National Risk Management Research Laboratory.
- Koerner, R. M., & Soong, T. Y. (2000). Leachate in landfills: the stability issues. *Geotextiles* and *Geomembranes*, 18(5), 293-309. doi: <u>http://dx.doi.org/10.1016/S0266-1144(99)00034-5</u>
- Kulikowska, D., & Klimiuk, E. (2008). The effect of landfill age on municipal leachate composition. *Bioresource Technology*, 99(13), 5981-5985. doi: <u>http://dx.doi.org/10.1016/j.biortech.2007.10.015</u>
- Laine, D. L., Binley, A. M., & Darilek, G. T. (1997). Locating geomembrane liner leaks under waste in a landfill. *Geosynthetics*, 5.
- LeBlanc, D. R., Garabedian, S. P., Hess, K. M., Gelhar, L. W., Quadri, R. D., Stollenwerk, K. G., & Wood, W. W. (1991). Large-scale natural gradient tracer test in sand and gravel, Cape Cod, Massachusetts: 1. Experimental design and observed tracer movement. *Water Resources Research*, 27(5), 895-910. doi: 10.1029/91wr00241
- Lee, G. F., & Jones-Lee, A. (1994). A Groundwater Protection Strategy for Lined Landfills. *Environmental Science & Technology*, 28(13), 584A-585A. doi: 10.1021/es00062a718
- Lema, J. M., Mendez, R., & Blazquez, R. (1988). Characteristics of landfill leachates and alternatives for their treatment: A review. *Water, Air, and Soil Pollution, 40*(3-4), 223-250. doi: 10.1007/bf00163730
- LENNTECH. (2013). Sources of groundwater pollution, from www.lenntech.com
- Loaiciga, H., Charbeneau, R., Everett, L., Fogg, G., Hobbs, B., & Rouhani, S. (1992). Review of Ground - Water Quality Monitoring Network Design. *Journal of Hydraulic Engineering*, 118(1), 11-37. doi: doi:10.1061/(ASCE)0733-9429(1992)118:1(11)
- Loaiciga, H. A. (1989). An optimization approach for groundwater quality monitoring network design. *Water Resources Research*, 25(8), 1771-1782. doi: 10.1029/WR025i008p01771
- Lund, J. R. (2008). A risk analysis of risk analysis. *Contemporary water research and education*(140), 53-60.
- Mackay, D. M., Freyberg, D. L., Roberts, P. V., & Cherry, J. A. (1986). A natural gradient experiment on solute transport in a sand aquifer: 1. Approach and overview of plume movement. *Water Resources Research*, 22(13), 2017-2029. doi: 10.1029/WR022i013p02017
- Mahar, P., & Datta, B. (2000). Identification of Pollution Sources in Transient Groundwater Systems. Water Resources Management, 14(3), 209-227. doi: 10.1023/a:1026527901213

- Mantoglou, A. (1987). Digital simulation of multivariate two- and three-dimensional stochastic processes with a spectral turning bands method. *Mathematical Geology*, 19(2), 129-149. doi: 10.1007/bf00898192
- Mantoglou, A., & Wilson, J. L. (1982). The Turning Bands Method for simulation of random fields using line generation by a spectral method. *Water Resources Research*, 18(5), 1379-1394. doi: 10.1029/WR018i005p01379
- McLaughlin, D., Reid, L. B., Li, S.-G., & Hyman, J. (1993). A Stochastic Method for Characterizing Ground-Water Contamination. *Ground Water*, 31(2), 237-249. doi: 10.1111/j.1745-6584.1993.tb01816.x
- Meyer, P. D., Valocchi, A. J., & Eheart, J. W. (1994). Monitoring network design to provide initial detection of groundwater contamination. *Water Resources Research*, 30(9), 2647-2659. doi: 10.1029/94wr00872
- Miller, C. J., & Mishra, M. (1989a). MODELING OF LEAKAGE THROUGH CRACKED CLAY LINERS - II: A NEW PERSPECTIVE1. JAWRA Journal of the American Water Resources Association, 25(3), 557-563. doi: 10.1111/j.1752-1688.1989.tb03092.x
- Miller, C. J., & Mishra, M. (1989b). MODELING OF LEAKAGE THROUGH CRACKED CLAY LINERS -I: STATE OF THE ART1. JAWRA Journal of the American Water Resources Association, 25(3), 551-556. doi: 10.1111/j.1752-1688.1989.tb03091.x
- Morisawa, S., & Inoue, Y. (1991). Optimum allocation of monitoring wells around a solidwaste landfill site using precursor indicators and fuzzy utility functions. *Journal of Contaminant Hydrology*, 7(4), 337-370. doi: <u>http://dx.doi.org/10.1016/0169-7722(91)90002-I</u>
- Moustris, K., Larissi, I., Nastos, P., & Paliatsos, A. (2011). Precipitation Forecast Using Artificial Neural Networks in Specific Regions of Greece. Water Resources Management, 25(8), 1979-1993. doi: 10.1007/s11269-011-9790-5
- Munawar, E., & Fellner, J. (2013). Guidelines for Design and Operation of Municipal Solid Waste Landfills in Tripical Climates. In ISWA (Ed.).
- Nunes, L. M., Cunha, M. d. C., Ribeiro, L., & Azevedo, J. (2007). A new method for groundwater plume detection under uncertainty. In J. P. L. Ferreira & J. M. P. Vieira (Eds.), *Water in Celtic countries: quantity, quality and climate variability* (pp. 191-198). Wallingford, UK.
- Paleologos, E., & Sarris, T. (2011). Stochastic analysis of flux and head moments in a heterogeneous aquifer system. *Stochastic Environmental Research and Risk Assessment*, 25(6), 747-759. doi: 10.1007/s00477-011-0459-7
- Paleologos, E. K. (2008). The lost value of groundwater and its influence on environmental decision making. *Risk Anal, 28*(4), 939-950. doi: 10.1111/j.1539-6924.2008.01073.x
- Papapetridis, K., & Paleologos, E. K. (2010). Stochastic Modeling of Subsurface Pollution in 2-D Heterogeneous Aquifers and Detection Probability for Linear Configuration of

Monitoring Wells. Paper presented at the Hazardous and Industrial Waste Management, Crete, Greece.

- Papapetridis, K., & Paleologos, E. K. (2011a). Contaminant detection probability in heterogeneous aquifers and corrected risk analysis for remedial response delay. *Water Resources Research*, 47(10). doi: 10.1029/2011wr010652
- Papapetridis, K., & Paleologos, E. K. (2011b). Stochastic Modeling of Plume Evolution and Monitoring into Heterogeneous Aquifers. In N. Lambrakis, G. Stournaras & K. Katsanou (Eds.), Advances in the Research of Aquatic Environment (pp. 349-356): Springer Berlin Heidelberg.
- Papapetridis, K., & Paleologos, E. K. (2012). Sampling Frequency of Groundwater Monitoring and Remediation Delay at Contaminated Sites. Water Resources Management, 26(9), 2673-2688. doi: 10.1007/s11269-012-0039-8
- Prickett, T. A., Naymik, T. G., & Lonnquist, C. G. (1981). A Random Walk Solute Transport Model for Selected Groundwater Quality Evaluations: State of Illinois, Department of Energy and Natural Resources.
- Ptak, T., Piepenbrink, M., & Martac, E. (2004). Tracer tests for the investigation of heterogeneous porous media and stochastic modelling of flow and transport—a review of some recent developments. *Journal of Hydrology*, 294(1–3), 122-163. doi: <u>http://dx.doi.org/10.1016/j.jhydrol.2004.01.020</u>
- Reed, P., Minsker, B., & Valocchi, A. J. (2000). Cost-effective long-term groundwater monitoring design using a genetic algorithm and global mass interpolation. . *Water Resour. Res.*, 12(36), 10.
- Rehfeldt, K. R., Boggs, J. M., & Gelhar, L. W. (1992). Field study of dispersion in a heterogeneous aquifer: 3. Geostatistical analysis of hydraulic conductivity. *Water Resources Research*, 28(12), 3309-3324. doi: 10.1029/92wr01758
- Renou, S., Givaudan, J. G., Poulain, S., Dirassouyan, F., & Moulin, P. (2008). Landfill leachate treatment: Review and opportunity. *Journal of Hazardous Materials*, 150(3), 468-493. doi: <u>http://dx.doi.org/10.1016/j.jhazmat.2007.09.077</u>
- Riediker, S. S., MJF; Giger, W; . (2000). Benzene- and naphthalenesulfonates in leachates and plumes of landfills. *WATER RESEARCH*

34(7), 10.

- Rowe, R. K. (1995). Leachate Characteristics for MSW Landfills (D. o. C. Engineering, Trans.). London, Canada: Geotechnical Research Centre, Uviversity of Western Ontario.
- Rumer, R. R., & Mitchell, J. K. (1995). Assessment of barrier containment technologies: A comprehensive treatment for environmental remedial application *International Containment Technology Workshop*: National Technical Information Service.

- Salamon, P., Fernàndez-Garcia, D., & Gómez-Hernández, J. J. (2006a). Modeling mass transfer processes using random walk particle tracking. *Water Resources Research*, 42(11), W11417. doi: 10.1029/2006wr004927
- Salamon, P., Fernàndez-Garcia, D., & Gómez-Hernández, J. J. (2006b). A review and numerical assessment of the random walk particle tracking method. *Journal of Contaminant Hydrology*, 87(3–4), 277-305. doi: http://dx.doi.org/10.1016/j.jconhyd.2006.05.005
- Sarris, T. S. (1999). Effective Hydraulic Properties of Heterogeneous Bounded Aquifers *MSc Thesis*. South Carolina USA: University of South Carolina.
- Sarris, T. S., & Paleologos, E. K. (2004). Numerical investigation of the anisotropic hydraulic conductivity behavior in heterogeneous porous media. *Stochastic Environmental Research and Risk Assessment, 18*(3), 188-197. doi: 10.1007/s00477-003-0171-3
- Selker, J. S., Steenhuis, T. S., & Parlange, J.-Y. (1996). An engineering approach to fingered vadose pollutant transport. *Geoderma*, 70(2–4), 197-206. doi: <u>http://dx.doi.org/10.1016/0016-7061(95)00085-2</u>
- Shafer, J. M., & Varljen, M. D. (1990). Approximation of confidence limits on sample semivariograms from single realizations of spatially correlated random fields. *Water Resources Research*, 26(8), 1787-1802. doi: 10.1029/WR026i008p01787
- Shinozuka, M., & Jan, C. M. (1972). Digital simulation of random processes and its applications. *Journal of Sound and Vibration*, 25(1), 111-128. doi: http://dx.doi.org/10.1016/0022-460X(72)90600-1
- Slack, R. J., Gronow, J. R., Hall, D. H., & Voulvoulis, N. (2007). Household hazardous waste disposal to landfill: Using LandSim to model leachate migration. *Environmental Pollution*, 146(2), 501-509. doi: <u>http://dx.doi.org/10.1016/j.envpol.2006.07.011</u>
- Solomon, U. (2010). A detailed look at the three disciplines, environmental ethics, law and education to determine which plays the most critical role in environmental enhancement and protection. *Environment, Development and Sustainability, 12*(6), 1069-1080. doi: 10.1007/s10668-010-9242-z
- Spitz, K., & Moreno, J. (1996). A Practical Guide to Groundwater and Solute Transport Modeling (1st ed.). New York: Wiley-Interscience Publication.
- Storck, P., Eheart, J. W., & Valocchi, A. J. (1997). A method for the optimal location of monitoring wells for detection of groundwater contamination in three-dimensional heterogenous aquifers. *Water Resources Research*, 33(9), 2081-2088. doi: 10.1029/97wr01704
- Sudicky, E. A. (1986). A natural gradient experiment on solute transport in a sand aquifer: Spatial variability of hydraulic conductivity and its role in the dispersion process. *Water Resources Research*, 22(13), 2069-2082. doi: 10.1029/WR022i013p02069
- Tartakovsky, D. M. (2007). Probabilistic risk analysis in subsurface hydrology. *Geophysical Research Letters*, 34(5), L05404. doi: 10.1029/2007gl029245

- Tatsi, A. A., & Zouboulis, A. I. (2002). A field investigation of the quantity and quality of leachate from a municipal solid waste landfill in a Mediterranean climate (Thessaloniki, Greece). Advances in Environmental Research, 6(3), 207-219. doi: http://dx.doi.org/10.1016/S1093-0191(01)00052-1
- Tompson, A. F. B., Ababou, R., & Gelhar, L. W. (1989). Implementation of the threedimensional turning bands random field generator. *Water Resources Research*, 25(10), 2227-2243. doi: 10.1029/WR025i010p02227
- Tompson, A. F. B., & Gelhar, L. W. (1990a). Numerical simulation of solute transport in three-dimensional, randomly heterogeneous porous media. *Water Resour. Res.*, 26(10), 2541-2562. doi: 10.1029/WR026i010p02541
- Tompson, A. F. B., & Gelhar, L. W. (1990b). Numerical simulation of solute transport in three-dimensional, randomly heterogeneous porous media. *Water Resources Research*, 26(10), 2541-2562. doi: 10.1029/WR026i010p02541
- Tompson, A. F. B., Vomvoris, G., & Gelhar, L. G. (1987a). Numerical Simulation of Solute Transport in Randomly Heterogeneous Porous Media: Motivation, Model Development, and Application Lawrence Livermore National Laboratory. Livermore, California: Law.
- Tompson, A. F. B., Vomvoris, G., & Gelhar, L. W. (1987b). Numerical Simulation of Solute Transport in Randomly Heterogeneous Porous Media: Motivation, Model Development, and Application: Lawrence Livermore National Laboratory, Livermore, California.
- Tsanis, I. K. (2006). Modeling Leachate Contamination and Remediation of Groundwater at a Landfill Site. *Water Resources Management*, 20(1), 109-132. doi: 10.1007/s11269-006-4634-4
- U.S.N.R.C. (2012). Alternatives for Managing the Nation's Complex Contaminated Groundwater Sites. In C. o. F. O. f. M. i. t. N. s. S. R. Effort (Ed.). Washington, D.C.: THE NATIONAL ACADEMIES PRESS.
- Uffink, G. J. (1990). Analysis of dispersion by the random walk method. PhD, Delft University of Technology, The Netherlands.
- Warrick, A. W., Younga, M. H., & Wierenga, P. J. (1998). Probabilistic Analysis of Monitoring Systems for Detecting Subsurface Contaminant Plumes. *Ground Water*, 36(6), 894-900. doi: 10.1111/j.1745-6584.1998.tb02096.x
- Woodbury, A. D., & Sudicky, E. A. (1991). The geostatistical characteristics of the borden aquifer. *Water Resources Research*, 27(4), 533-546. doi: 10.1029/90wr02545
- Wu, J., Zheng, C., & Chien, C. C. (2005). Cost-effective sampling network design for contaminant plume monitoring under general hydrogeological conditions. *Journal of Contaminant Hydrology*, 77(1–2), 41-65. doi: http://dx.doi.org/10.1016/j.jconhyd.2004.11.006
- Yenigül, N. B., Elfeki, A. M. M., Gehrels, J. C., van den Akker, C., Hensbergen, A. T., & Dekking, F. M. (2005). Reliability assessment of groundwater monitoring networks at

landfill sites. *Journal of Hydrology*, 308(1–4), 1-17. doi: <u>http://dx.doi.org/10.1016/j.jhydrol.2004.10.017</u>

- Yenigül, N. B., Hensbergen, A., Elfeki, A. M., & Dekking, F. M. (2011). Detection of contaminant plumes released from landfills: numerical versus analytical solutions. *Environmental Earth Sciences*, 64(8), 2127-2140. doi: 10.1007/s12665-011-1039-3
- Yenigul, N. B., Elfeki, A. M. M., Van Den Akker, C., & Dekking, F. M. (2006). A decision analysis approach for optimal groundwater monitoring system design under uncertainty. [Journal Article]. *Hydrology and Earth System Sciences Discussions Discussions*, 3(1), 27-68.
- Young, D. (1954). Iterative methods for solving partial difference equations of elliptic type. *Transactions of the American Mathematical Society*(76), 20.
- Zacarias-Farah, A., & Geyer-Allely, E. (2003). Household consumption patterns in OECD countries: trends and figures. *Journal of Cleaner Production*(11), 9.
- Zhao, X.-c., Zhang, Y.-d., Yang, P., & Nai, C.-x. (2007). High voltage DC leakage detection for double-lined hazardous waste landfill based on finite element method. *Journal of Shanghai University (English Edition)*, 11(6), 585-590. doi: 10.1007/s11741-007-0612-1
- Zimmermann, S., Koumoutsakos, P., & Kinzelbach, W. (2001). Simulation of Pollutant Transport Using a Particle Method. *Journal of Computational Physics*, 173(1), 322-347. doi: <u>http://dx.doi.org/10.1006/jcph.2001.6879</u>