
ROBUST SPEECH SYNTHESIS

By

Christos C. Vosnidis

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

AT

TECHNICAL UNIVERSITY OF CRETE

CHANIA, GREECE

JUNE 2004

c© Copyright by Christos C. Vosnidis, 2004

TECHNICAL UNIVERSITY OF CRETE

DEPARTMENT OF

ELECTRONICS AND COMPUTER ENGINEERING

The undersigned hereby certify that they have read and

recommend to the Faculty of Graduate Studies for acceptance a thesis

entitled “Robust Speech Synthesis” by Christos C. Vosnidis

in partial fulfillment of the requirements for the degree of

Master of Science.

Dated: June 2004

Supervisor:
Prof. Vassilis Digalakis

Readers:
Prof. Michael Paterakis

Assoc. Prof. Alexandros Potamianos

ii

TECHNICAL UNIVERSITY OF CRETE

Date: June 2004

Author: Christos C. Vosnidis

Title: Robust Speech Synthesis

Department: Electronics and Computer Engineering

Degree: M.Sc. Convocation: June Year: 2004

Permission is herewith granted to Technical University of Crete to
circulate and to have copied for non-commercial purposes, at its discretion,
the above title upon the request of individuals or institutions.

Signature of Author

THE AUTHOR RESERVES OTHER PUBLICATION RIGHTS, AND
NEITHER THE THESIS NOR EXTENSIVE EXTRACTS FROM IT MAY BE
PRINTED OR OTHERWISE REPRODUCED WITHOUT THE AUTHOR’S
WRITTEN PERMISSION.

THE AUTHOR ATTESTS THAT PERMISSION HAS BEEN
OBTAINED FOR THE USE OF ANY COPYRIGHTED MATERIAL
APPEARING IN THIS THESIS (OTHER THAN BRIEF EXCERPTS
REQUIRING ONLY PROPER ACKNOWLEDGEMENT IN SCHOLARLY
WRITING) AND THAT ALL SUCH USE IS CLEARLY ACKNOWLEDGED.

iii

To Maria and Miles.

iv

Table of Contents

Table of Contents v

List of Figures vii

Abstract viii

Acknowledgements ix

Introduction 1

0.1 Background . 1

0.2 Scope of this Work . 3

0.3 Outline . 4

1 Background in Text-to-Speech 5

1.1 Introduction . 5

1.2 The NLP Component . 7

1.3 The DSP Component . 8

1.3.1 Rule-Based Synthesizers 10

1.3.2 Concatenative Synthesizers 11

2 Robust Unit Selection 18

2.1 Introduction . 19

2.2 Background . 20

2.2.1 Unit Inventory Design . 24

2.2.2 Unit Inventory Metadata 28

2.2.3 Target Features . 28

2.3 Unit Selection . 29

2.3.1 Cost Functions . 31

2.3.2 Features . 32

2.3.3 Unit Selection Model . 33

v

3 Defining Join Costs using Linear Segment-Based Models 38

3.1 Introduction . 38

3.2 Motivation . 39

3.3 Linear Stochastic Systems . 40

3.4 Application to Speech Synthesis 42

3.4.1 The LSDM as a Speech Synthesizer 43

3.4.2 Applying the Model . 45

3.4.3 Training the Model . 48

4 Research Plan 50

4.1 Areas of Research . 51

4.1.1 Speech Units and the Unit Database 51

4.1.2 Speech Corpus Design . 52

4.1.3 Costs and Cost Functions 55

4.1.4 Objective Evaluation for Cost Function Training 57

4.1.5 Computational Optimization 59

Bibliography 60

vi

List of Figures

1.1 Functional Diagram of a TTS system 7

1.2 The components of the Natural Language Processing subsystem . 9

1.3 A general concatenation-based synthesizer 12

2.1 Information Flow through a Speech Synthesis System 21

2.2 Components of the Waveform Synthesis Module of a Unit Selection

Synthesizer . 23

2.3 Distortion Types in Unit Selection 30

2.4 Unit Selection Costs . 31

2.5 Viterbi Search for Unit Selection 35

3.1 Calculating an Acoustic Error using the LSDM 44

3.2 Negative log likelihood estimate for a good join 47

3.3 Negative log likelihood estimate for a good join 48

vii

Abstract

Research in Speech Synthesis has gone a long way since the time of MITalk during

the mid-80s. Nowadays, synthesizers can generate speech in such quality that can

hardly be distinguished from human. At least, most of the time...

The inconsistencies that characterize the quality of synthetic speech produced

by current synthesizers is the subject of this work. We start by presenting the

state–of–the art in Text–to–Speech synthesis, and we proceed to identify a series

of issues specific to unit–selection based synthesis techniques that are responsible

for this behavior. Aiming to produce a methodology that will enhance the ro-

bustness of these techniques, we propose several modifications and enhancements

both to the unit selection process and the design of the speech segment database.

Finally, in an effort to transfer knowledge from the field of Speech Recognition

to Speech Synthesis, we propose the use of Linear Segmental Dynamic Models as

a novel method for defining join cost functions.

viii

Acknowledgements

I would like to thank Vassilis Digalakis, my supervisor, for his many suggestions

and constant support during this research. His valuable experience in the field

of Speech Recognition has been an inspiration to me. I am also thankful to

Alexandros Potamianos for his guidance through the chaos and confusion of some

aspects of my work.

I would also like to thank my colleagues at Rhetorical Systems Ltd. The

experience that I’ve accumulated while working with them has been priceless;

not to mention the good times that I’ve had with the people in Edinburgh while

working on the Greek version of their TTS engine.

Of course, I am grateful to my parents for their patience and love. Without

them this work would never have come into existence (literally).

Finally, I wish to thank the following: Dimitris Giakoumis, Vassilis Stoidis

and Dimitris Keramidas (for their friendship); Maria (for changing my life from

worse to bad and then back to worse again); Fanouris, Yiannis, Giorgos, Stavros,

Dimitris, (for the mostly good times we had together during the past few months);

Miles Davis and the U2 (and they know why); and my sister (because she asked

me to).

Chania, Crete Chris Vosnidis

June 7, 2004

ix

Introduction

0.1 Background

Text-to-speech synthesis, i.e. the automatic production of speech from text, has

seen tremendous progress during the past ten years. This can nevertheless be

attributed to the fact that Text–To–Speech Synthesis (TTS), along with Auto-

matic Speech Recognition, provide a pair of technologies that can lead us to the

next stage in Human - Computer interaction. Ever since Stanley Kubrick filmed

2001: A Space Odyssey, where HAL 2000, a speech-enabled supercomputer with

a slightly demented AI personality, would listen to others and communicate its

thoughts using speech, the fulfillment of the dream where a computer would prop-

erly understand human speech and respond with a high-quality, human-like voice

has become the equivalent of the Holy Grail for researchers in the fields of AI

and Speech Technologies.

Scientists in both fields have since tried to approach the problem quite aggres-

sively, but unfortunately, at least until the mid-80s, with little success. Specif-

ically, in the case of Speech Synthesis, the results that were achieved until that

time were far even from being characterized as poor. Constraints imposed by

the inadequacy of microprocessor speeds, volatile and non-volatile memory and

storage sizes, could not allow research in the field to deliver the promised natural-

sounding speech output. This outcome should also be blamed on the approach

1

2

that was adopted by scientists working on Speech Synthesis; namely on the fact

that they tried synthesizing speech by modeling their systems and algorithms af-

ter the human physiological speech generation mechanism. However, our under-

standing of the human speech generation system dynamics was, and still remains,

quite limited. Thus, the systems that were developed in pursuit of this approach

were quite deficient in terms of quality of the generated speech.

The breakthrough in the field of Speech Synthesis came with the realization

of the fact that since we could not successfully imitate human speech, we could

try copying it. That is, instead of trying to generate speech through the mod-

ification of elementary signals by functions that try to simulate the physiology

of our speech production system, we would easily get the same effect by using

pre-recorded, real-life samples of those sounds that we wish to generate. Thus,

synthesizing a word or a sentence gets reduced to the comparatively simple task

of selecting the proper sequence of sound samples and concatenating them into

a single waveform.

This is of course an overly simplified description of the speech synthesis pro-

cess, but it still represents the basic idea responsible for the remarkable progress

witnessed in Speech Synthesis during the past few years. Nowadays, speech syn-

thesizers have reached a quality that has proved sufficient to allow their use in

applications such as call centers and on-line information systems, that were until

recently dominated by human speakers. This does not mean, however, that re-

search in the field is over. The quality of the synthesized speech might be good,

but it still has a long way to go until it gets on par with human speech.

3

0.2 Scope of this Work

This work tries to assist in achieving the goal of creating natural synthetic speech.

We are proposing a series of improvements in the architecture of a Text-to-Speech

Synthesis system that utilizes the technique of Variable Unit Selection, and the

methods that are used in identifying the proper sequence of speech samples that

will be concatenated to produce the desired utterance. Our system will be able to

operate on the input text, perform a series of text normalization and automatic

phonetization tasks, extract the required series of phonemes that need to be

used and specify the supra-segmental characteristics of the utterance that we

wish to synthesize. Using these template specifications, the system will select

the appropriate units from the unit database, concatenate them and perform the

necessary signal processing to ensure smooth transitions within units.

In addition to the proposed modifications to the synthesizer’s architecture,

we are also suggesting an improved methodology on the design and realization

of the Speech Unit Database, which contains the set of speech units that are

available to the system at synthesis time, and which are concatenated in order

to synthesize the desired utterance.

Furthermore, we are describing a series of optimizations that need to be imple-

mented by the unit selection subsystem in order to achieve the goal of synthesizing

natural speech in a consistent manner. Among others, we are proposing several

improvements on subjects such as the definition of unit costs and the training of

cost functions. We also suggest the introduction of an additional cost function

that will aid in minimizing audible spectral discontinuities and the specification

of objective metrics for performing off-line evaluations of the synthesized speech.

4

0.3 Outline

The rest of the proposal is organized as follows:

Chapter 1 serves as an overview of the speech synthesis process, first intro-

ducing the reader to the basic ideas behind speech synthesis, and then focusing in

further detail on techniques used in Unit Selection synthesis. In doing so, we will

identify the challenges that have to be dealt with when working on Unit Selection

synthesis, namely text-normalization, prosodic contour generation, unit database

construction and optimization and unit selection.

This overview of the field will allow us to demonstrate our approach to the

problem at hand. This is done in Chapter 2, which describes the challenges that

will be encountered in order to achieve the goal of Robust Speech Synthesis.

In Chapter 3, we present the reader with our proposal regarding a novel

method for defining and computing join costs. Borrowing techniques widely used

in Automatic Speech Recognition, we will be define join costs based on a dynamic

segmental model of speech, trained on real-life speech data extracted from the

voice talent that was used for recording the synthesizer’s speech database. The

learned underlying representation of the speech signal will allow us to evaluate

prospective joins in a more consistent and user-oriented way, constraining the

number of audible spectral discontinuities that will be present in the synthesized

signal.

Finally, in Chapter 4 we are providing an overview of the design decisions

that we have made, and an outline of the work that needs to be done in order to

implement the proposed synthesizer.

Chapter 1

Background in Text-to-Speech

1.1 Introduction

It is tempting to think of the problem of converting written text into speech as

“speech recognition in reverse”. Current speech recognition systems are generally

deemed successful if they can convert speech input into the sequence of words

that was uttered by the speaker, so one might imagine that a TTS synthesizer

would start with the words in the text, convert each word into speech (being

careful to pronounce each word correctly) and concatenate that result together.

However, when one considers what literate native speakers of a language must

do when they read a text aloud, it quickly becomes clear that things are much

more complicated than this simplistic approach suggests. Pronouncing words

correctly is only part of the problem faced by human readers: in order to sound

natural and to sound as if they understand what they are reading, they must

also appropriately emphasize (accent) some words, and de-emphasize others; they

must “chunk” the sentence into meaningful (intonational) phrases; they must pick

an appropriate F0 (fundamental frequency) contour; they must control certain as-

pects of their voice quality; they must know that a word should be pronounced

5

6

longer if it appears in some positions in the sentence, than if it appears in oth-

ers, since segmental durations are affected by various factors, including phrasal

positions.

What makes reading such a difficult task for a machine, is that all writing sys-

tems systematically fail to specify many kinds of information that are important

in speech. While the written form of a sentence (usually) specifies completely

the words that are present, it only specifies partly the intonational phrases –

typically with some form of punctuation. The written form will usually not in-

dicate which words to accent or de-accent, and hardly ever gives information on

segmental duration, voice quality or intonation. One might think that a question

mark ‘?’ indicates that a sentence should be pronounced with a rising intonation:

generally though a question mark merely indicates that a sentence is a question,

leaving it up to the reader to judge whether this question should be rendered

with a rising intonation. The orthographies of some languages – e.g. Chinese,

Japanese, and Thai – fail to give information on where word boundaries are, so

that even this needs to be figured out by the reader.

The task of a TTS system is thus a complex one, which involves mimicking

what human readers do. But a machine is hobbled by the fact that it generally

“knows” the grammatical facts of the language only imperfectly, and generally

can be said to “understand” nothing of what it is reading. TTS algorithms

thus have to do the best they can by making use, whenever possible, of purely

grammatical information to decide on such things as accentuation, phrasing, and

intonation, and by coming up with a reasonable “middle ground” analysis for

aspects of the output that are more dependent on actual understanding.

It is natural to divide the TTS problem into two broad sub-problems. The

first of these is the conversion of text – an imperfect representation of language,

7

����������	
��
�
�������	

����������	
�������
���������	�������
�������	����������

��
�������
	��
�������	

�����������	������
���������

�����������

����������������	��������

�������

�������

����������

Figure 1.1: Functional Diagram of a TTS system

as we have seen – into some form of linguistic representation that includes infor-

mation on the phonemes (sounds) to be produced, their duration, the locations

and durations of any pauses and the F0 contour to be used. The second – the

actual synthesis of speech – takes this information and converts it into a speech

waveform.

Figure 1.1 introduces the functional diagram of a very general TTS synthe-

sizer. It comprises a Natural Language Processing module (NLP), capable of

producing a phonetic transcription of the text read, together with the desired

intonation and rhythm (often termed as prosody), and a Digital Signal Process-

ing module (DSP), which transforms the symbolic information it receives into

speech.

1.2 The NLP Component

The Natural Language Processing block of a synthesizer, is used to perform text

and linguistic analysis on the input text, and can be broken down to the following

8

parts:

Text Preprocessing Module Includes end-of-sentence detection, “text nor-

malization” (expansion of numerals and abbreviations), and limited gram-

matical analysis, such as grammatical part-of-speech assignment.

Word Pronunciation Module Includes the pronunciation of names and the

disambiguation of homographs.

Accent Assignment Module Assigns levels of prominence to various words in

the sentence.

Intonational Phrasing Module Controls the breaking of (usually long) stretches

of text into one or more intonational units.

Segmental Durations Module Determines, on the basis of linguistic informa-

tion computed thus far, of appropriate durations for phonemes in the input.

F0 Contour computation Module

Figure 1.2 shows the relation between the components of the synthesizer’s

NLP subsystem. We will not provide any further details on the workings of the

NLP subsystem, as it is beyond the scope of this work.

1.3 The DSP Component

Once the text has been transformed into phonemes, and their associated durations

and a fundamental frequency contour have been computed, the system is ready

to compute the speech parameters for synthesis.

Intuitively, the operations involved in the DSP module are the computer

analogue of dynamically controlling the articulatory muscles and the vibratory

9

��������	
��
����

���������

���
����

���
����

�����
����

������

������

�������������
����

�����������	�
����������	

���������������������	

����

��������
����	

���	�
��
�������	

Figure 1.2: The components of the Natural Language Processing subsystem

frequency of the vocal chords so that the output signal matches the input re-

quirements. The DSP module should obviously take articulatory constraints into

account, since it has been known for a long time that phonetic transitions are

more important than stable states for the understanding of speech. This, in turn,

can be basically achieved in two ways:

• Explicitly, in the form of a series of rules which formally describe the influ-

ence of phonemes on one another;

• Implicitly, by storing examples of phonetic transitions and co-articulations

into a speech segment database, and using them just as they are, as ultimate

acoustic units (i.e. in place of phonemes).

Two main classes of TTS systems have emerged from this alternative, which

quickly turned into synthesis philosophies given the divergences they present in

their means and objectives: synthesis-by-rule and synthesis-by-concatenation.

10

1.3.1 Rule-Based Synthesizers

Rule-based synthesizers are mostly in favor with phoneticians and phonologists,

as they constitute a cognitive, generative approach of the phonation mechanism.

Rule-based approaches are space-efficient, since they eliminate the need to store

speech segments, and they also make it easier in principle to implement new

speaker characteristics for different voices, as well as different phone inventories

for new dialects and languages. These systems are also restrictive regarding the

choice of the parametric representation of speech, since such schemes rely both on

our understanding of the relation between the parameters and the acoustic signals

they represent, and on our ability to compute the dynamics of the parameters

as they move from one sound to another. Thus far only articulation parameters

and formants have been used in rule-based systems.

Most such systems describe speech as the dynamic evolution of up to 60

parameters, mostly related to formant and anti-formant frequencies and band-

widths together with glottal waveforms. Clearly, the large number of (coupled)

parameters complicates the analysis stage and tends to produce analysis errors.

Moreover, formant frequencies and bandwidths are inherently difficult to estimate

from speech data. The need for intensive trials and errors, in order to cope with

analysis errors, makes them time-consuming systems to develop – several years

are commonplace. Yet, the synthesis quality achieved up to now reveals typical

buzzyness problems, which originate from the rules themselves: introducing a

high degree of naturalness is theoretically possible, but the rules to do so are still

to be discovered.

Rule-based synthesizers remain, however, a potentially powerful approach to

speech synthesis. They allow, for instance, to study speaker-dependent voice

features so that switching from one synthetic voice into another can be achieved

11

with the help of specialized rules in the rule database. Under the same reasoning,

synthesis-by-rule seems to be a natural way of handling the articulatory aspects

of changes in speaking styles, as opposed to their prosodic counterpart, which can

be accounted for by concatenation-based synthesizers as well. No wonder then

that it has been widely integrated into TTS systems (MITalk [1], DECtalk [25]

and the JSRU synthesizer [26] for English).

1.3.2 Concatenative Synthesizers

As opposed to rule-based ones, concatenative synthesizers possess a very limited

knowledge of the data they handle: most of it is embedded in the segments to

be chained up. This clearly appears in Figure 1.3, where all the operations that

could indifferently be used in the context of a music synthesizer (i.e. without any

explicit reference to the inner nature of the sounds to be processed) have been

grouped into a sound processing block, as opposed to the upper speech processing

block whose design requires at least some understanding of phonetics.

Database Preparation

A series of preliminary stages have to be fulfilled before the synthesizer can pro-

duce its first utterance. At first, segments are chosen so as to minimize future

concatenation problems. A combination of diphones, i.e. units that begin in the

middle of the stable state of a phone and end in the middle of the following one,

half-syllables, and triphones – which differ from diphones in that they include

a complete central phone – are often chosen as speech units, since they involve

most of the transitions and co-articulations while requiring an affordable amount

of memory. When a complete list of segments has emerged, a corresponding list

of words is carefully completed, in such a way that each segment appears at least

12

������
����	

���������
���������

���������
���������

������
�����
�

��	���������

������
������

������
���������

������
��
�

����������

������
�

���������

������
��������

���
������������

��������������������

�������������
�

���������	��

��

��������	��

�� ������

��	����

��	
	��

Figure 1.3: A general concatenation-based synthesizer. The upper left hatched
block corresponds to the development of the synthesizer (i.e. it is processed once
for all). Other blocks correspond to run-time operations.

13

once, although twice is better, for redundancy reasons. Unfavorable positions,

like inside stressed syllables or in strongly reduced, (i.e. over-co-articulated) con-

texts, are excluded. A corpus is then digitally recorded and stored, and the

elected segments are spotted, either manually with the help of signal visualiza-

tion tools, or automatically, using segmentation methods borrowed from speech

recognition, the decisions of which are checked and corrected interactively. A seg-

ment database finally centralizes the results, in the form of the segment names,

waveforms, durations, and internal sub-splittings. In the case of diphones, for

example, the position of the border between phones should be stored, to be able

to modify the duration of one half-phone without affecting the length of the other

one.

Segments are then often given a parametric form, in the form of a temporal

sequence of vectors of parameters collected at the output of a speech analyzer and

stored in a parametric segment database. Using a speech model has the following

advantages:

• Well chosen speech models allow data size reduction, an advantage which

is hardly negligible in the context of concatenation-based synthesis given

the amount of data to be stored. Consequently, a parametric speech coder

often follows the analyzer.

• A number of models explicitly separate the contributions of the source and

the vocal tract, an operation that remains helpful for the pre-synthesis

operations: prosody matching and segment concatenation.

Indeed, the actual task of the synthesizer is to produce, in real-time, an ade-

quate sequence of concatenated segments, extracted from its parametric segment

14

database. The prosodic characteristics of these segments, like intonation and du-

ration, have been adjusted from the originally stored values, to the ones imposed

by the language processing module. Consequently, the prosody matching and

segment concatenation modules are considerably alleviated when input segments

are presented in a form that allows easy modification of their pitch, duration,

and spectral envelope, as is hardly the case with crude waveform samples.

Since segments to be chained up have generally been extracted from different

words, that is in different phonetic contexts, they often present amplitude and

timbre mismatches. Even in the case of stationary vocalic sounds, for instance,

a rough sequencing of parameters typically leads to audible discontinuities. We

can typically cope with this problem during the constitution of the synthesis

segments database, using an equalization algorithm in which related endings of

segments are imposed similar amplitude spectra, the difference being distributed

on their neighborhood. In practice, however, this operation, is restricted to am-

plitude parameters: the equalization stage smoothly modifies the energy levels at

the beginning and at the end of segments, eliminating amplitude mismatches by

setting the energy of all the phones of a given phoneme to their average value. In

contrast, timbre conflicts are better tackled at run-time, by smoothing individual

couples of segments on demand rather than equalizing them at a preprocess-

ing stage. This way, some of the phonetic variability naturally introduced by

co-articulation is still maintained. In practice, amplitude equalization can be

performed either before or after speech analysis, i.e. on crude samples or on

speech parameters.

Once the parametric segment database has been completed, synthesis itself

can begin.

15

Speech Synthesis

A sequence of segments is first deduced from the phonemic input of the synthe-

sizer, in a block termed as segment list generation in Figure 1.3, which interfaces

the NLP and DSP modules. Once prosodic events have been correctly assigned to

individual segments, the prosody matching module queries the synthesis segment

database for the actual parameters, of the elementary sounds to be used, and

adapts them one by one to the required prosody. The segment concatenation

block is then in charge of dynamically matching segments to one another, by

smoothing discontinuities. Here again, an adequate modeling of speech is ben-

eficial, provided that simple interpolation schemes performed on its parameters

approximately correspond to smooth acoustical transitions between sounds. The

resulting stream of parameters is finally presented at the input of a synthesis

block, the exact counterpart of the analysis one. Its task is to produce speech.

Segmental Quality

The efficiency of concatenative synthesizers to produce high quality speech is

mainly subordinated to:

1. The type of segments chosen.

2. The model of speech signal, to which the analysis and synthesis algorithms

refer.

Segments should obviously exhibit some basic properties:

• They should account for as many co-articulatory effects as possible.

• Given the restricted smoothing capabilities of the concatenation block, they

should be easily connectable.

16

• Their number and length should be kept as small as possible.

On the other hand, longer units decrease the density of concatenation points,

therefore providing better speech quality. Similarly, an obvious way of accounting

for articulatory phenomena is to provide many variants for each phoneme. This

is clearly in contradiction with the limited memory constraint, thus calling for

some trade-off between quality and memory requirements.

Diphones are often chosen. The inventory size is reasonable (about 1200 for

French, including lots of phoneme sequences that are only encountered at word

boundaries, equivalent to 3 minutes of speech, i.e. approximately 5 Mbytes of

16 bits samples at 16 kHz) and they do incorporate most phonetic transitions.

They imply, however, a high density of concatenation points (one per phoneme),

which reinforces the importance of an efficient concatenation algorithm. Besides,

they can only partially account for the many co-articulatory effects of a spoken

language, since these often affect a whole phone rather than just its right or

left halves independently. Such effects are especially prominent when somewhat

transient phones, such as liquids and semi-vowels, are to be connected to each

other. Hence, people have used some larger units as well, such as triphones.

The models used in the context of concatenative synthesis can be roughly clas-

sified into two groups, depending on their relationship with the actual phonation

process.

• Production Models, and

• Phonological Models

Production models provide mathematical substitutes for the part respectively

played by vocal chords, nasal and vocal tracts, and by the lips radiation. Their

most representative members are Linear Prediction Coding (LPC) synthesizers

17

[34], and the formant synthesizers we mentioned in the Section about Rule-based

synthesizers.

On the contrary, phenomenological models intentionally discard any reference

to the human production mechanism. Among these pure digital signal processing

tools, spectral and time-domain approaches are increasingly encountered in TTS

systems. Two leading such models exist: the hybrid Harmonic/Stochastic (H/S)

model of [35] and the Time-Domain Pitch-Synchronous-OverLap-Add (TD-PSOLA)

of Charprentier and Moulines [16]. The latter is a time-domain algorithm: it

virtually uses no explicit speech model. It exhibits very interesting practical

features: the best currently available high speech quality combined with a very

low computational cost – 7 operations per sample on the average. The hybrid

Harmonic/stochastic model is intrinsically more powerful than the TD-PSOLA

one, but it is also about ten times more computationally intensive. PSOLA syn-

thesizers are now widely used in the speech synthesis community. The recently

developed MBROLA algorithm [23, 24] even provides a time-domain algorithm

which exhibits the very efficient smoothing capabilities of the H/S model (for the

spectral envelope mismatches that cannot be avoided at concatenation points) as

well as its very high data compression ratios (up to 10 with almost no additional

computational cost) while keeping the computational complexity of PSOLA.

Chapter 2

Robust Unit Selection

Much of the complexity and indirectness of the relationship between the acoustic

patterns of speech and the linguistic structures that they represent is caused by

context-sensitivity.

Speech does not consist simply of a string of articulations linked by

simple movement between them. Instead, the articulation of indi-

vidual segments is almost always influenced by the articulation of

neighboring segments, often to the point of considerable overlapping

of articulatory activities. As a consequence, the notional or ”ideal”

way of articulating a particular sound is subject to modifications in

running speech.

Context-sensitive variation has complex and interacting causes which

are not yet completely understood. Two basic types can be distin-

guished: (1) the effects of the biomechanical performance of the vocal

tract, and (2) the effects of the nature and organization of the neu-

romuscular control mechanisms which activate articulator movement.

Both types may reflect the level of articulator performance that is suf-

ficient to produce adequate phonetic distinctiveness in the language

18

19

in question.

The vocal tract, including the articulators within it, forms a biome-

chanical system which is subject to the laws governing all mechanical

systems. The mass and size of the articulators constrain their move-

ment in relation to the muscle systems that actuate them. Articu-

lators have mass and are subject to inertia: they resist being set in

motion.[17]

2.1 Introduction

Current unit–selection synthesizers are sufficiently effective in synthesizing high

quality speech, most of the time [6]. However, quality is subject to notable

fluctuations, ranging from speech which is almost indistinguishably human, to

robot-like and jittery synthesized utterances that can immediately betray the

fact that the speaker is a machine rather than a human.

This behavior can be attributed to several factors, the most prominent of

which is the system’s failure to select a series of acoustically appropriate units

with the prosodic characteristics required by the utterance that needs to be syn-

thesized. Unit–selection synthesizers might be producing much more natural

sounding examples, but in the process of moving from diphone to unit–selection

synthesis, we have given up a certain amount of control over what is synthesized.

The quality of the synthesized speech is highly dependent on the quality of the

speech database; the type of units stored in it, the texts that were used for record-

ing the database, the genres, domains and the speaking styles covered during the

recordings, all affect the quality of the produced speech. At the same time, little

if any prosodic and spectral modification is done to the selected units, and this

20

reduces the flexibility of unit–selection synthesizers to reach natural sounding

speech.

In this chapter we are investigating the reasons that result to the aforemen-

tioned variations in speech quality observed in all contemporary unit-selection

based synthesizers. We will focus our investigation mostly on the impact of the

speech synthesis component, and ignore the text/prosodic analysis components

that come before it. We will analyze each of the subsystems that make it up, and

discuss the possible modifications that might be performed on each of them in

order to improve the robustness of the unit selection process. Our goal is to mod-

ify the current framework for speech synthesis, in order to achieve consistently

high quality in the synthesized speech.

2.2 Background

The speech synthesis process, as implemented by most unit selection synthesizers,

consists of the following three main tasks:

• Text processing, which includes sentence parsing, text normalization, phras-

ing and pronunciation generation.

• Linguistic processing, during which the system applies prosodic models to

predict intonation, accents and segmental timing.

• Waveform synthesis, which produces speech from the specifications that are

imposed by the previous two stages.

Ng [36], in a survey of data-driven approaches used in speech synthesis, iden-

tifies the following components in concatenative synthesizers which implement

the task of Waveform Synthesis :

21

��������	�

��

����

������	

��	��

�����
��	����	�

��

�����	

��������

���������������
�

����
�

Figure 2.1: Information Flow through a Speech Synthesis System

Speech Corpus The speech corpus serves as the source of synthesis units and

generally consists of speech recorded from a single speaker. It is made up

of the speech waveforms and the corresponding orthographic transcriptions

of these utterances.

Speech Segmentation and Labeling The speech corpus is segmented into

speech units and each of them is labeled, both phonetically as well as

prosodically.

Unit Inventory Design The goal of this component is to come up with a set of

speech segments that covers all the phonetic variations in the language and

at the same time accounts for as many coarticulatory effects as possible,

has minimal discontinuities at the concatenation points and is as small as

possible. The design of the unit inventory is the most important factor in a

concatenative synthesis system, since it impacts almost any other processing

22

component. The content of the unit inventory determines the type and

size of the speech corpora needed, how the synthesis units are selected and

concatenated, and what type of signal processing can and needs to be done.

Speech Coding and Storage The unit inventory is indexed and stored so that

it can be accessed during synthesis. The system might either store the raw

waveforms of perform some speech analysis on the segments, and store the

resulting analysis parameters.

Unit Selection The goal of the unit selection process is the choice of the best

units in terms of phonetic identity to match the sound to be produced,

phonetic context to capture the coarticulation effects, and prosodic charac-

teristics to match the prosody as closely as possible.

Unit Concatenation After selecting the best sequence of speech segments from

the unit inventory, these segments have to be concatenated into a contiguous

stream. The transition from one segment to the next has to be as smooth

as possible, by minimizing the discontinuity at the boundaries. This can be

achieved through signal modification, but it is preferred that such modifica-

tions are kept to a minimum, by selecting units in a manner that minimizes

boundary discontinuities.

Prosodic Signal Processing In addition to the correct sequence of phonemes,

the prosody needs to be appropriate. Many systems perform some type

of signal processing to modify the duration, fundamental frequency and

energy. However, such signal processing can degrade the naturalness of

speech, and it can be kept to a minimum by providing a prosodically rich

23

Speech
Corpus

Segmented
Speech Corpus

Stored
Unit Inventory

Unit
Inventory

Speech
Coding

Segmentation
and Labeling

Inventory
Design

Training

Synthesis

Unit
Selection

Unit
Concatenation

Signal
Processing

Linguistic
Parameters

Speech

Figure 2.2: Components of the Waveform Synthesis Module of a Unit Selection
Synthesizer

unit inventory, thus enabling well-matched units to be selected during syn-

thesis.

As illustrated in Figure 2.2, there are two major subsystems that implement

this process: one for training and one for synthesis.

In training, an inventory of synthesis units is created from a corpus of speech

data. This is a preparation stage, taking place only once during the development

of a new voice for the speech synthesizer.

At synthesis time, the combined output of the first two stages (text and

linguistic processing) of the speech synthesis process is passed on to the Synthesis

subsystem. The input to this subsystem is a series of feature vectors, specifying

the predicted characteristics of the target units that should be used in order to

24

synthesize the requested utterance. These features typically include information

such as phoneme label, duration, power and F0 [7]. The task of the Unit Selection

component is to use this set of specifications in order to select an optimal sequence

of units. These units are passed to the Unit Concatenation and Prosodic Signal

Processing components in order to reconstitute a sequence of speech-describing

symbols, aiming at synthesizing natural-sounding, artifact-free speech [46].

2.2.1 Unit Inventory Design

The Unit Selection subsystem has direct access to the synthesizer’s unit inven-

tory. This is the inventory of all unit instances that can be used by the Synthesis

subsystem in synthesizing the requested utterance. A unit instance is a seg-

ment extracted from the collection of speech data, also referred to as the speech

database, that contains the recorded speech of a single speaker (usually referred

to as a voice talent) who was instructed to read a carefully selected assortment

of texts. These texts are chosen with two goals in mind [18]:

• To contain sufficient examples of phoneme-phoneme pairs (also known as

diphone coverage)

• To contain a wide variety of prosodic styles and contexts, achieved by in-

cluding material from newspaper text and interactive prompt-style utter-

ances

Unit Inventory Size

The size of the unit inventory is also a design decision. A relatively small unit

inventory, which contains few or even a single unit instance per unit class, is much

easier to manage, and does not impose any excessive computational requirements

25

upon the system. However, almost all contemporary speech synthesizers are using

relatively large unit inventories, equivalent to ten to twenty hours of speech. The

primary motivation for the use of such large unit inventories is that with a large

number of unit instances available per unit class which account for a variation of

prosodic and spectral characteristics, it is possible to synthesize more natural–

sounding speech than can be produced with a small set of controlled units [27].

In this way, it is no longer necessary to synthesize using only the most typical

unit instance for all prosodic contexts. Instead, we can select from several unit

instances and we can better match the requested prosodic specifications for the

synthesized utterance [15].

Unit Instance Size

The size of these unit instances varies among different implementations of speech

synthesizers. The actual type of the unit is a design decision in itself. In all cases,

a unit must encode linguistic, intonational, and sometimes paralinguistic infor-

mation. However, units are typically at the phone level (phones, half-phones, di-

phones) and recent implementations are moving towards variable-sized segments

that can scale up to whole words [45].

The decision on the size of the unit instances for a given language is affected by

the designer’s decisions regarding the other characteristics of the unit inventory

database. In making this decision, the designer is presented with the following

challenges [39]:

• Units should cover all legal phone sequences for that language, including

inter-word combinations.

• All the necessary phonemic and allophonic variations should be inflected in

26

the inventory structure.

• The concatenation of two or more inventory units should not produce au-

dible discontinuities in the resulting synthetic speech.

• The inventory should have a manageable size.

Coverage is probably the most important aspect of this decision. In an analysis

presented by Sproat in [39], the author discusses the advantages and disadvan-

tages of introduced by the use of several types of units. Large–size units tend

to produce better speech, but they also require huge unit inventories. Thus, al-

though triphones might produce better quality synthetic speech, a triphone based

synthesizer is almost impossible to construct. For instance, for a language like

American English, assuming a 43-phone alphabet, we can have 79,507 possible

triphones. However, some 9,000 such combinations are impossible according to

the language’s phonotactics, leaving us with almost 70,000 such triphones. How-

ever, each of them can occur in thousands of contexts, some of which might have

strong coarticulatory effects. Even if we ignore the technical difficulties imposed

by the requirements for tightly controlled speaking and recording conditions, a

highly trained professional speaker could not produce more than 1, 000 − 2, 000

successfully rendered and recorded units, making it really difficult to record the

extensive material needed for the construction of the unit inventory.

The same problems are also present in inventories utilizing smaller–sized units,

albeit they might be less severe. In the case of diphones, there are fewer com-

binations to be covered, but the problem of cross–unit coarticulation might be

more becomes more important, thus demanding a more carefully–designed set of

texts that will be used for the recordings. Phone–sized units also present the

same problems with diphones.

27

The most prominent problem related with unit inventories comprising of

phones or diphones is the audible spectral mismatch which might occur after

joining two units during concatenation. As mentioned above, it is possible to use

certain signal processing techniques in order to remove such artifacts; however,

such processing will affect the speech signal in its totality, resulting in significant

quality degradation. The only remedy to this problem is the inclusion of multi-

ple units recorded in various contexts, in order to account for the coarticulatory

phenomena and the different prosodic characteristics that might be required for

the synthesis of the given utterance.

In any case, it seems that there is no single unit size that will serve as the

panacea of the problems related to the design and implementation of the unit

inventory. However, there is evidence that a unit inventory based on diphone

or half-phone sized units, which is enriched with frequent, longer units, in order

to include their intra-segment coarticulatory effects, can prove to be the best

combination of quality and manageability.

Speech Coding and Storage

Originally, unit instances were stored in speech databases in some parametric

format, encoded with techniques such as linear prediction coefficients [34], si-

nusoidal modeling and harmonic-noise modeling [40]. However, reduced storage

costs have made the use of non–parametric models economically feasible. The

move towards non-parametric speech representations has had positive impact on

quality, allowing for the production of more clear and natural–sounding speech.

28

2.2.2 Unit Inventory Metadata

Independently of whether a parametric or non-parametric scheme is used in stor-

ing units in the speech database, each unit instance is associated with a predefined

set of metadata. Typical features, as discussed in [7], are the following:

• linguistic feature, such as phoneme label, duration, power and F0

• acoustic features, such as spectral tilt

• context-related features, such as the phoneme labels of neighboring units,

position in phrase, direction of pitch/power change, etc.

Features can be continuous or discrete. They are stored along with the unit

segment in the speech database in a hierarchical or flat format. Feature values

are usually stored in a normalized form, so that objective comparisons between

features can be made easily. Comparisons between features of the same type

can be performed by using distance measures. These measures can be implicitly

defined for continuous features using the actual difference between two features’

values, but in the case of discrete features, distances have to be explicitly defined.

In both cases, distances are normalized and take values in the range between 0

(good) and 1 (bad).

2.2.3 Target Features

As mentioned above, the first two stages of synthesis (text and linguistic process-

ing) transform the input text into a target specification, expressed in terms of

a subset of the features presented above. Any features which are available only

from acoustic measures are excluded from this subset.

29

This target specification defines the string of phonemes that are required in

order to synthesize the desired utterance, and the prosodic features (such as pitch,

duration and power) that the selected units should have, explicitly specifying the

intended utterance’s segmental and prosodic characteristics.

2.3 Unit Selection

Speech synthesis algorithms attempt to generate the acoustic features of speech

using as input only the linguistic features produced by the text/prosodic analysis

components of the synthesizer. Unit–selection synthesizers achieve this by pre-

dicting the appropriateness of a particular unit instance extracted from the unit

inventory, using only these linguistic targets.

A formal definition of the unit selection process is given by Macon et al. in

[33]:

Given a sequence of linguistic target features lt1, l
t
2, . . . , l

t
n, find the

sequence of candidate segments with linguistic features lc1, l
c
2, . . . , l

c
n

that will minimize an acoustic feature distance between the target

specifications and the candidate segments:

d(t1, t2, . . . , tn, u1, u2, . . . , un)

The linguistic target features lt are the product of the text/prosodic analysis

components of the synthesizer, and form the input to the unit selection subsystem.

In contrast, the acoustic target features at are not known at synthesis time;

these must be predicted automatically. However, not all possible combinations

of linguistic feature contexts will be available in the unit inventory. Thus, some

of the linguistic targets lt will not have been seen previously in the database, and

the algorithm will have to generalize and find outputs for these cases.

30

ti-1 ti ti+1

ui-1
ui ui+1

Targets

Units

Continuity
Distortion

Unit
Distortion

Figure 2.3: Distortion Types in Unit Selection

Hunt and Black [27] use the following two distortion measures that can be

used in order to express the problems related with unit selection:

• Unit Distortion Du(ui, ti) This is the distance between a selected unit and

a target segment, i.e. the difference between the selected unit’s linguistic

feature vector and the target segment’s vector, multiplied by an appropriate

weights vector.

• Continuity Distortion Dc(ui, ui−1) This is the distance between a se-

lected unit and its immediately adjoining previous selected unit, i.e. the

difference between the selected unit’s acoustic feature vector and the acous-

tic feature vector of the previous unit, multiplied by an appropriate weights

vector.

Figure 2.3 graphically shows how these two distortion types are defined among

a series of target and candidate units. Qualitatively, unit distortion measures the

suitability of a particular unit instance with regard to the target specifications.

Continuity distortion measures the suitability of a particular unit instance with

regard to the previously selected one. The function d(·, ·) presented above, can

31

ti-1 ti ti+1

ui-1
ui ui+1

Cc

Ct

Figure 2.4: Unit Selection Costs

take into consideration both the unit distortion between a target and its associ-

ated candidate unit, and the continuity distortion between successive candidate

units.

2.3.1 Cost Functions

Unit selection in most contemporary speech synthesis systems is based on the

use of two cost functions that utilize the information quantified by the unit and

continuity distortion measures. Figure 2.4 shows the relation between the two

cost functions.

For the target unit (phone specification) ti and the database (acoustic) unit

ui, which is a candidate to be used as a segment for realizing this part of the

required utterance, we define the following two costs:

• Target Cost - Ct(ui, ti)

The target cost is an estimate of the mismatch between a recorded unit

and the requested target specification. We use this cost in order to choose

“appropriate” units that are a good fit to the requested specification. Such

units will not require any significant signal processing, and preferably they

32

can be used without any signal processing at all.

• Concatenation (or Join) Cost - Cc(ui−1, ui)

The concatenation cost is an estimate of the quality of the join between the

two consecutive units ui−1 and ui. It provides a measure for the acoustic

mismatch, and we can use it to achieve smooth segmental joins between

units. This cost is independent of the target specifications for the segment

in review, and is only dependent upon the acoustic features of the selected

unit and the previous unit.

2.3.2 Features

Both target and concatenation costs are actually defined as the weighted sums of

sub-costs related with the effects of unit and continuity distortion, respectively.

Each of these sub–costs is dependent upon one of the features used by the unit–

selection model. Black and Campbell in [7] and Hunt and Black in [27] identify

the following features:

• Unit Distortion Related Features

phonetic context, log power, mean F0

• Continuity Distortion Related Features

phonetic context, prosodic context (duration, power and F0 together), and

acoustic join cost

In the case of target costs, sub–costs are defined as the distances (or differ-

ences) between the elements of the target and candidate feature vectors. Typical

implementations use between 20 and 30 such features, with an appropriate set of

weights that affect the impact of each of these sub–costs on the final target cost.

33

So, for a case of p target features, the target cost, given the weights wt
j and the

target sub-costs Ct
j(ti, ui), is calculated as follows:

Ct(ti, ui) =

p∑
j=1

wt
jC

t
j(ti, ui) (2.3.1)

Concatenation sub–costs are typically fewer in number than target sub-costs.

They can usually be determined from the unit characterizations of ui−1 and ui,

that is the previously selected acoustic unit and the current one. However, these

sub-costs can also be derived from signal processing of the units. For the case of

q concatenation/join features, the concatenation/join cost, given the weights wc
j

and the concatenation sub-costs Cc
j (ui−1, ui), will be:

Cc(ui−1, ui) =

q∑
j=1

wc
jC

c
j (ui−1, ui) (2.3.2)

2.3.3 Unit Selection Model

Given the two cost functions presented above, the task of unit selection can

be reduced to the parallel minimization of both target and concatenation costs,

aiming at the production of an utterance which is made up of units that are

as similar to the desired output as possible and which will present a minimum

pair-wise perceptible acoustic mismatch when concatenated.

Thus, the total cost for a sequence of n units that can be used in order to

form the requested utterance, will be the sum of these two costs, accumulated

across all units in the sequence:

C(tn1 , u
n
1) =

n∑
i=1

Ct(ti, ui) +
n∑

i=2

Cc(ui−1, ui) + Cc(S, u1) + Ct(un, S) (2.3.3)

where S denotes silence (meaning either the beginning or the end of a phrase),

un
1 = (u1, u2, . . . , un), tn1 = (t1, t2, . . . , tn) and Cc(S, u1) and Ct(un, S) define the

34

start and end conditions defined by the concatenation of the first and last units

to silence.

The weights used with the two different sub-costs (wc
j and wt

j) determine

the relative importance of the different features in the calculation of each of

these sub–costs. These weights are determined automatically, by using the data

present in the speech database. There are two approaches to this automatic

training: Hunt and Black in [27] suggested both limited weight–space search

and regression training as methods that can be used in identifying a good set

of weights for the cost functions. Both strategies use targets extracted from

natural utterances held out from the segment database, and aim at determining

the values of the weights that will minimize the difference between the original

waveform, and the one produced by the synthesizer. The comparison between the

natural and the synthesized segments is performed by using the mean cepstral

distance. Evaluation tests performed using the automatically estimated weights

have shown that they result to systems that produce consistently better results

than that produced by hand-tuned weights.

More formally, we can use the cost function expression in Equation (2.3.3),

and define the unit–selection procedure as the task of determining the set of units

so that the total cost is minimized:

un
1 = arg min

u1,...,un

C(tn1 , u
n
1) (2.3.4)

The selection of the set of units that minimize the overall cost is done by

performing a Viterbi search over the network of all possible candidate units.

Figure 2.5 shows the Viterbi search over a sample search network created for the

utterance ”two”. A dynamic programming method, such as Viterbi search with

additional beam–width constraints, is preferable to any exhaustive search method

35

� �� �� ��� ��� �

��

��

��

��

��

��

���

���

���

���

��

��������	�
���
�����

���������������

Figure 2.5: Viterbi search for the Utterance “two”, with best path highlighted

due to the computational load it would impose on the unit–selection process.

The process for creating the search network and for performing the search is

described by Black and Campbell in [7]. Starting with the set of target specifi-

cations, then, for each target segment the algorithm takes the following steps:

• Finds all the units in the database with low phonetic distance from the

targets

• Finds the unit distortion

This analysis was first formalized by Black and Campbel in [7], and was

further refined by Hunt and Black in [27]. It was first put to use in ATR’s CHATR

synthesizer [9]. Since then, it has been used in the implementations of most state–

of–the–art TTS systems (for instance, Edinburgh University’s Festival system [5]

and AT&T’s NexGen TTS system [2]). However, as noticed in [3] in practice the

36

sub-cost computations are less elegant, employing heuristics at several points, as

for example by treating stops in a special manner, or by predisposing mid-phone

concatenations.

Optimization

Unit selection is the most demanding stage of the synthesis process in terms

of processing power, memory and time. It imposes serious demands upon the

synthesizer, especially if synthesis is to be performed in real-time, or even a

fraction of real-time, as expected from most commercial synthesizers. Therefore,

some kind of optimization in the unit–selection process is necessary.

The speeding up of the process of runtime unit selection can be achieved

through the following strategies:

• By limiting the number of candidate synthesis units that can are considered

in the unit selection process, the number of calculations required can be

reduced.

• By pre-computing part of the needed calculations, the runtime complexity

can be reduced.

Both approaches aim at lowering the runtime computational demands, while at

the same time maintaining speech synthesis quality.

The most common optimization is the pruning of the unit database [21]. This

technique employs a form of off-line pre-selection algorithm in order to determine

the subset of development data which can be shipped with the runtime synthesis

system and will introduce the minimum degradation in synthesis quality.

Another method that allows performance gains at run-time is the pruning

of the search space during unit selection. This is done in multiple stages. As

37

suggested by Black and Taylor in [10], only units belonging to the same cluster,

i.e. units with phonetic contexts similar to the target, are considered for a given

target. Next, these units are pruned using the target cost and finally the concate-

nation cost. Bulyko [13] suggested the use of an additional cost, namely slicing

cost, which allows the selection of units with the aim of minimizing potential

discontinuity that a given unit may incur when a splice is made at its boundary,

irrespective of the adjoining unit. Pruning the search space based on this cost

prior to the computation of the concatenation costs, further reduces the number

of candidate units that need to be considered in the end.

Finally, computation caching can provide significant performance gains through

the reduction in the computational load at synthesis time. By pre-computing and

caching concatenation costs between the most frequently used pairs of units, as

implemented by Beutnagel et al. [3], the reported complexity reduction in unit

selection was of a factor of four, without any significant decrease in synthesis

quality. This method was further improved in [19], where the unit space is vector

quantized and a complete distance table between groups of units with closely

related contexts is pre-computed and stored. The reported complexity reduction

in this case was even higher, close to a factor of ten, and again without negative

effects in the quality of the synthesized signal.

Chapter 3

Defining Join Costs using Linear
Segment-Based Models

During the last decade there has been a fundamental paradigm shift in the ap-

proach used in designing and implementing Text–to–Speech systems. In fact,

both experimental and commercial TTS platforms are now mostly based on

data-driven techniques, and most of the development effort is now placed into

implementing optimizations in engineering aspects of the unit–selection process,

rather than the development of linguistic rules and the understanding of the

speech generation.

This paradigm shift has led to the adoption of a large number of ideas and

techniques borrowed from automatic speech recognition and their application

in TTS. In this chapter we will show how yet another ASR technique, namely

a Linear Segment-Based Acoustic Model, can be used in order to improve the

unit-selection process.

3.1 Introduction

As we already mentioned in previous chapters, unit–selection synthesizers pro-

duce speech by selecting the optimal series of speech units from the unit database.

38

39

The database contains multiple instances of each unit class, and the decision re-

garding the segments that will be concatenated in order to produce the synthetic

speech is based on a combination of two costs: target cost (how closely candi-

date units in the inventory match the required targets) and join cost (how well

neighboring units can be concatenated). The optimal sequence is then deter-

mined after performing a Viterbi search on the network of all candidate units,

identifying the path with the lowest cost.

However, the issue of defining these costs in such a way that will lead to

perceptually optimal signal quality is still open. Join costs in particular, although

based solely on measurable properties of the candidate units, such as amplitude,

F0 and spectral parameters, need to be defined in such a way that will lead

to the selection of units that will minimize audible spectral discontinuities at

their concatenation points. The high correlation between those features and the

perception of the quality of the synthesized audio requires further research into

the design of the unit cost function.

3.2 Motivation

In studies performed by Klabbers and Veldhuis [29, 30], Wouters and Macon

[44], Stylianou and Syrdal [41] and Donovan [22], there was an effort to identify

distance measures and criteria that can help in predicting audible discontinuities

in an objective manner. However, most of these studies were focused on the

reduction of such audible spectral discontinuities in isolated words generated by

a concatenative synthesizer. Our aim is to define a distance measure that will be

used in determining join costs and reduce audible spectral discontinuities on the

utterance level.

40

In doing this, we will borrow a tool used in Speech Recognition, namely an

acoustic model of speech. Speech can be viewed as a discrete message source

with a hierarchical structure: phonemes are joined to form syllables, then words,

phrases and finally continuous discourse. In modern speech recognition systems,

stochastic models are postulated for certain units of speech, such as words or

phonemes. The basic acoustic models are then combined to form models for

larger units, with the aid of dictionaries, and/or probabilistic grammars.

We will use an implementation of such an acoustic models, namely a linear

dynamic model for the definition of a distance measure that will be used for

defining the join cost function. The acoustic model will be used to predict the

parameters of the most likely observation.

Furthermore, we will use a segment-based model describing speech, as op-

posed to traditional, Hidden Markov Model (HMM) based approaches. Since such

models use segments, defined as variable-duration parts of the speech waveform,

usually corresponding to language units, they are able to represent higher-order

phenomena and utilize features extracted from a longer time-scale processing of

the signal than the typical 10-20 msec analysis window used in HMM acoustic

models.

3.3 Linear Stochastic Systems

A linear dynamical system is described by:

xk+1 = Fxk + wk (3.3.1)

yk = Hxk + vk (3.3.2)

41

where the hidden state xk is a (n × 1) vector with initial value at k = 0, the

observation yk is (m×1), and wk, vk are uncorrelated, zero-mean Gaussian vectors

with covariances

E{wkw
T
l } = Qδkl (3.3.3)

E{vkv
T
l } = Rδkl (3.3.4)

where δkl is the Kronecker delta and T denotes the transpose of a matrix. We

further assume that the initial state x0 is Gaussian, with known mean and co-

variance µ0, Σ0.

Maximum likelihood estimates of the unknown parameters θ in F , H, Q, R

can be obtained by minimizing the negative log likelihood, or equivalently the

quantity

J(Y, θ) = −L(Y, θ) =
N∑

k=0

{log |Σek
|+ eT

k (θ)Σ−1
ek

(θ)ek(θ)}+ const (3.3.5)

where ek(θ), Σek
(θ) is the prediction error and its covariance, and can be obtained

from the Kalman filter equations [28]

x̂k|k = x̂k|k−1 + Kkek (3.3.6)

x̂k+1|k = Fx̂k|k (3.3.7)

ek = yk −Hx̂k|k−1 (3.3.8)

where we have suppressed the parameterization on θ, and

Kk = Σk|k−1H
T Σ−1

ek
(3.3.9)

42

Σek
= HΣk|k−1H

T + R (3.3.10)

Σk|k = Σk|k−1 −KkΣek
KT

k (3.3.11)

Σk+1|k = FΣk|kF
T + Q (3.3.12)

3.4 Application to Speech Synthesis

In this section we shall see how the theory of linear stochastic systems can be

applied to improve the unit selection module of speech synthesizers.

Basically we are describing an acoustic phonetic model which will be used

to provide better control in determining the optimal series of acoustic segments

that need to be concatenated in order to synthesize the requested utterance. In

essence, the proposed method will operate on the series of vector-valued tar-

get characteristics associated with each requested phonetic segment, predict a

smoothed trajectory of those characteristics over the sequence of targets by mak-

ing smooth, continuous motion in a hidden state-space, and project those esti-

mates onto the observation space. In this way, the model can be used both for

inferring the most likely observation trajectories, and computing the probability

of the actual, noisy observations.

Our work is based on the concept of Hidden Dynamic Models [12], an approach

to acoustic-phonetic modeling, developed by the “Dynamic Segmental Models of

Speech Coarticulation” workgroup during the 1998 NSF Workshop at JHU [11],

that was inspired by the work on linear dynamic models of speech [20].

43

3.4.1 The LSDM as a Speech Synthesizer

The Linear Segmental Dynamic Model (LSDM) describes the way in which an

acoustic pattern is produced from a sequence of phones with given durations.

An LSDM can be trained from real-word data, in order to learn the underlying

state space, which is specific to the speech features of the voice talent used to

record the speech database, creating a customized model of the system’s complex

behavior in the observation space.

An LSDM consists of two separate components which accommodate separate

sources of speech variabilities in the relationship between phone sequences and

spectra.

The first component is a smooth dynamic one, linear but nonstationary. The

nonstationarity is described by a sequence of segments, each corresponding to a

phonological unit, i.e. phone. For each phone class, there is a single target vector

which defines a point in the hidden dynamic space. For each phone segment

in the sequence, the respective target applies for the duration of that particular

segment, resulting in the target sequence tj, as is shown in Figure 3.1. This is

typically multidimensional, but a single dimension is shown here for clarity.

This target sequence is smoothed to produce a trajectory in hidden dynamic

space, xj. The filter used for this smoothing is a second order symmetrical

(forward-backward) low-pass filter, whose single time-constant parameter, pj, is

also determined by the phone class. In the general multidimensional case, there

is a different time-constant for each dimension of the hidden dynamic space.

The hidden dynamic trajectory can be mapped to the surface acoustic form,

yj, by a non-linear mapping function, here an extended Kalman filter (EKF).

The EKF is an application of the standard Kalman filter (for linear systems)

on non-linear systems with additive white noise [43]. It will be used in order

44

������
��	�
�

�	���

������
��	�
�

���������	��
��

������
�����

�	

�����
�

�
����	

��������	���

��

����

��

	�

�

Figure 3.1: Calculating an Acoustic Error using the Linear Segmental Dynamic
Model.

45

to compute the parameters of posterior probability distributions for the speech

signal. A multi-layer perceptron (MLP) could also be used to perform this non-

linear mapping function.

This mapping defines the hidden dynamic space, and a single EKF is used for

all phones. This mapping can be considered analogous to the mapping between

vocal tract shapes and speech sounds, although it will be learned only from the

acoustic data, and will not be restricted to any predetermined from. The criterion

is to model the structure of the acoustic speech pattern.

The two components combined form a nonstationary, non-linear dynamic sys-

tem whose structure and properties are well understood in terms of the general

process of human speech production.

As Richards and Bridle in [38] suggest, non-linearity is required for the model

to work properly. This approach is superior to that utilizing linear mapping.

According to [38], using a linear mapping scheme will be equivalent to using the

simple transitions predicted by the dynamic system, but operating directly on

the acoustic domain. As a result, the linear system will be unable to produce

convincing formant transitions, like those expected from the non-linear system.

3.4.2 Applying the Model

The predictions of the LSDM can be used in order to compute the naturalness of

the join between two phones. In this section, we are presenting a series of ideas

on how this can be achieved.

Assuming that we are using phone specific models, with one set of parameters

H, F, C, D, v, w and x0 per phone, the LSDM can be used in order to track the

observation trajectories.

There are two positions within a phone where a concatenation can occur: in

46

the middle (which usually produces better results in the case of concatenation

between vowels) and at the boundaries of a phone. We are proposing a series

of metrics for evaluating the quality of the join. These metrics can serve as join

sub-costs and will be used for defining the final cost function.

Mid-phone Concatenation

At the start of the phone, the model will follow these trajectories closely, since

the speech is natural and closely resembles the data on which the model has been

trained. As the model approaches the position of the join, where discontinuities

will exist at a certain level, the model will treat these discontinuities as noise and

predict a smooth path through the join. Finally, as we will be reaching the end

of the phone segment, the model will follow the trajectories closely again, as this

is natural speech.

The difference between the predicted and the actual trajectories at the point of

concatenation, i.e. the error between the smooth path and the actual observation,

can serve as the join cost.

The measure used for the computation of the join cost can be extracted from

the log likelihood of the observation sequence Y , given the parameters of the

model:

log p(Y |m) =
N∑

k=0

{log |Σek
|+ eT

k (θ)Σ−1
ek

(θ)ek(theta)}+ const (3.4.1)

where ek and Σek
are the prediction error and its covariance for the model m,

and they can be obtained from the standard Kalman filter recursions [20].

Suppose that a certain phone is synthesized by concatenating two half-phones,

thus resulting to a concatenation point in the middle of the synthesized phone.

In the case of a good join, the negative log likelihood estimate for this phone will

47

����

�������	�

�������������

Figure 3.2: Negative log likelihood estimate for a good join

be almost constant, for the duration of the phone, just like in Figure 3.2.

However, in the case of a bad join, as the observed trajectories around the

concatenation point will deviate from those predicted by the model, there will be

an accumulation of error, as is graphically depicted in Figure 3.3.

Based on these, we can define a series of join cost measures. Some ideas

include the following:

• An average of the negative log likelihood estimates over a number of frames

centered on the join

• The relative increase (over an estimated baseline) in the negative log like-

lihood estimates, averaged over a number of frames centered on the frame

with the highest estimate

A series of experiments which will involve the computation of these measures

over various numbers of frames will help us determine the measure (or combina-

tion of measures) that will be used for determining the join cost.

48

����

�������	�

�������������

Figure 3.3: Negative log likelihood estimate for a good join

Phone-boundary Concatenation

Given the spectral differences between different types of phones, we can expect

a considerable change in the Linear Spectral Frequency (LSF) trajectories across

phone boundaries. However, coarticulatory effects tend to smooth the transition

from one segment to the next. So, even if the LSF trajectories at the middle of

the two phones are considerably different, a smooth transition from one phone

segment to the next will be equivalent to a smooth change of the slope of these

trajectories at the concatenation point.

The difference in the derivative of the trajectory from one segment to the next

can also serve as a metric for determining the join cost.

3.4.3 Training the Model

In order to train the model we will use a series of automatically segmented and

labeled acoustic data.

The LSDM will be used to synthesize an acoustic pattern yi from a sequence

of phone symbols and timings. These provide the target specifications for the

49

utterance that needs to be synthesized. During the training phase, the following

parameters of the model should be determined:

• Target Values (a vector in hidden parameter space for each phone class)

• Time-Constants (also a vector in hidden parameter space for each phone

class)

• Non-Linear Mapping Parameters (MLP weights and/or EKF parameters)

The model parameters will be learned through the use of the Expectation-

Maximization (EM) algorithm, which will produce maximum likelihood estimates

for these parameters. During the E-step, statistics will be accumulated over the

available training examples, using the previous set of model parameters. Then in

the M-step, these statistics are used to update the model parameters [20].

Chapter 4

Research Plan

In the previous sections we discussed the open issues related to the Unit Selection

subsystem of concatenative speech synthesizers. In this discussion we have at-

tempted to present to the user the critical issues to be addressed for this method.

These issues can be summarized as follows:

• the type and size of units to be stored in the speech database

• the design and recording of a speech corpus

• the cost functions that can be used in determining the optimal series of

speech segments to be used in synthesizing an utterance

• the objective distance measure for evaluating qualitative differences be-

tween natural and synthesized utterances during the training of the cost

function weights

• the optimizations in computational complexity for the unit selection com-

ponent that can be incorporated into a speech synthesizer

50

51

4.1 Areas of Research

We present here the areas that will be investigated in the remainder of the re-

search. The presentation is organized corresponding to the items in the list above.

4.1.1 Speech Units and the Unit Database

Although most contemporary concatenative synthesizers are using diphones or

phones as their basic speech units, a wide variety of alternatives has been pro-

posed in related bibliography. It seems though that the most promising alterna-

tive is the use of half phones, as proposed and implemented by the AT&T team

in their Next-Gen TTS System [2].

Phones represent the actual units that make up speech. In the first successful

unit–selection synthesizers, such as CHATR [4], phone-sized segments were used

as synthesis units [27]. However, phone–sized segments fail to encapsulate the

coarticulation effects that are present in speech, as these occur mostly at the

boundaries between phones, thus requiring a large number of phone–sized units

to provide sufficient coverage of those phenomena, on both boundaries.

On the other hand, a diphone is an artificial phonetic unit, which captures

the transition information between two phones. A diphone segment contains the

waveform starting in the middle of the first phone and ending in the middle of the

second one. The reasons behind the popularity of diphone-based unit selection

synthesizers are many. Firstly, diphones have the ability to preserve some of the

coarticulation effects which are present at phoneme boundaries. Because of that,

they minimize concatenation discontinuities, allowing for better quality speech.

Finally, they are relatively few in number; for instance, with 40 or so phonemes

in English, there can only be 1600 diphones, although, in practice, quite a few of

52

them never occur due to the language’s phonotactic constraints.

In an analysis of the advantages and disadvantages of the use of phone- and

diphone-sized segments in unit selection synthesis, presented by Bulyko in [13],

the author comes to the conclusion that neither of them is sufficient to provide

consistently high quality synthesized speech. The problem lies in the fact that in

some instances phone-boundary concatenation might be preferable to mid-phone

concatenation, and vice versa. For instance, Sproat in [39] presents evidence that

stops and fricatives have minimal coarticulation effects, and therefore are less

likely to have perceived discontinuities at joins at the phone boundaries. Vowels,

on the other hand, are found to have smoother concatenations in the middle

of the phone. Furthermore, different vowels have different degrees of perceived

discontinuity when spliced in the middle of the phone [30].

The evidence presented here motivate the following design decisions:

• Half-phones should be the acoustic units stored in the system’s speech

database, as they comprise the advantages associated with the use of phone-

and diphone-sized speech segments for this function.

• We should use an efficient method for deciding in every particular instance

whether a phone boundary of mid-phone concatenation is more desirable.

4.1.2 Speech Corpus Design

The speech corpus is the source of synthesis units that form the unit inventory.

The corpus is constructed through the realization of a specially designed set

of texts by a specially trained speaker, often referred to as the voice talent.

Automatic segmentation methods, as those suggested by Ljolje and Riley [32]

and van Santen and Sproat [42] are then utilized in order to create the unit

53

inventory.

The construction of the speech corpus is thus made up of two tasks: i) the

design of the texts that will be recorded, and ii) the recording of the speech data.

The design of the text corpus upon which the speech database is based is prob-

ably one of the most important tasks for the preparation of a speech synthesizer.

During the text corpus design, the following goals should be met [8]:

• Provide full coverage for the required inventory units

• Provide sufficient coverage for domain-related contexts

• Include units in as many prosodic and coarticulatory environments as pos-

sible

• Keep the size of the unit inventory at a manageable level

Even if we might be using half–phones for synthesis, it will be impossible

to get high quality synthetic speech if we made our design decisions for the

text corpus (diphone coverage, coarticulatory contexts, etc.) with half–phones in

mind. For the purposes of text–corpus design we should regard half–phones as

nothing more than diphones that can also be split in half. Thus, in the case of

phonetic coverage, we should be thinking in terms of diphones.

Several methods can be used for the selection of sentences that provide cov-

erage for the requested diphones. Most of them are implemented using a greedy

algorithm, or variations of it, using frequency–related weights. However, corpus

selection is a complex problem, in which the full coverage of the unit space is

indeed the most important, yet not the sole factor in deciding which of the can-

didate sentences to keep and which to discard. Thus, sentence selection should

54

be treated as an optimization problem, in which all of the aforementioned goals

should be pursued simultaneously.

The advantage of unit–selection synthesizers is that little or no signal pro-

cessing is needed in order to synthesize natural-sounding speech. This is at-

tributed to the fact that the unit inventory is made up of units extracted from

real speech, thus encapsulating the prosodic characteristics of the utterances they

were extracted from. In order to achieve natural-sounding results under most cir-

cumstances, we should include sentences extracted from a wide spectrum of text

types, or genres. In addition to that, and in order to ensure proper coverage for

the genre, even on the word and phrase level, we should also try to include the

words which are characteristic to the vocabulary of each genre.

Regarding the recording of the data, there are also a few facts that need to be

taken into account. Firstly, speech is highly variable, and even a highly–trained

professional cannot produce speech with characteristics that do not alter with

time. Practically, recording sessions should last at most two to three hours, after

which the voice talent should be allowed to rest, and a new session be scheduled for

the day after. Secondly, even during these three-hour long sessions, the number

of successfully rendered and recorded utterances is limited, thus requiring a long

series of sessions in order to record the whole corpus.

We can see that the design and recording of the speech corpus is a strug-

gle between the extensive coverage, both phonetic and linguistic, of a language,

and the constraints imposed by the size of the speech corpus. Our suggestions

regarding this procedure are the following:

• Base our text corpus on real-life material. The material should cover as

many genres as possible, allowing support both for genre-specific vocabu-

lary, as well as for various prosodic styles

55

• Include all units in as many contexts as possible. Use context classes (phone

classes) in order to provide coverage for as many contexts, without expand-

ing the corpus to unmanageable sizes.

• Use an algorithm for selecting sentences from the candidate corpus based on

the maximization of a series of criteria (phonetic coverage, genre coverage,

vocabulary coverage) rather than a single one.

• Compile a text corpus of no more than 100k words. Even at this size, it

will require ten days of 3-hour long studio sessions to record.

• Keep recording sessions short and allow the voice talent time to warm up,

until his or her voice sounds similar to that of the previous session.

4.1.3 Costs and Cost Functions

Our decision to use half-phone sized synthesis units in our system introduces the

requirement for a finer control over the decision on whether to perform phone

boundary of mid-phone level concatenations in any particular instance.

Most concurrent systems use only two costs in determining the best sequence

of segments that should be concatenated in order to synthesize the requested

utterance, namely target and concatenation costs. Of them, only the concatena-

tion cost can penalize the selection of a particular sequence of segments that will

result in audible spectral discontinuities.

AT&T’s NextGen TTS system [2], which also uses half-phones as its synthesis

units, allows the scaling of concatenation costs at phone boundaries, relative to

that at the mid-phone boundary. This feature has the effect of tuning the system’s

behavior, gradually shifting it between phone and mid-phone concatenation.

56

However, as mentioned above, there are certain instances where phone-boundary

concatenation is preferable to mid-phone. The method used in AT&T’s system,

does not provide such a level of control over the unit selection process.

Bulyko in [13] suggested the introduction of an additional cost function that

can be used as a measure of the potential discontinuity that a given unit my

incur, if a splice is made at its boundary. This is called the slicing cost, it is

defined for both left and right boundaries of a given unit boundaries and can be

used in controlling the behavior of unit selection, separately from concatenation

costs. Splicing costs are supposed to be inversely related to the spectral change

at the boundaries, with [13] and [14] providing possible implementations for this

measure.

In addition to the aforementioned work, Klabbers and Veldhuis in [29] and [30]

also worked on a measure for assessing potential discontinuities for diphone-based

synthesis. A series of experiments with a series of potential measure functions

resulted in the adoption of the Kullback-Leibler distance [31] between two power

normalized spectral envelopes as a metric for the severity of audible discontinu-

ities that might occur from the joining of two diphones.

In a work by Richards et. al, first described in [11] and formalized in [38],

Hidden Dynamic Models can be used in order to model coarticulation in speech.

Although originally developed as an enhancement for the acoustic models used

in speech recognizers, it could be applied to speech synthesis. We could use the

HDM model in order to predict the spectral characteristics of the other side of

the boundary, using the phonetic context and the spectrum on one side. If the

prediction is accurate then this would mean that the two segments are good can-

didates for concatenation, whereas in the case of splicing costs, high predictability

would be evident of strong coarticulatory effects, thus making this boundary a

57

poor choice for making a splice. Donovan in [22] suggests modeling such costs

as the probability of the prediction residual using a simple predictor such as

X̂t+1 = Xt + µq, where q represents the context. We will investigate whether a

more general linear predictor of the form X̂t+1 = BqZt(q) + µq might be more

useful, so that Xt as well as elements from other time vectors, can be included in

Zt(q), thus being able to consider a longer context in our decision.

Finally, we will also implement the ideas and methods presented in Chapter

3 with regard to the definition of join costs, based on the LSDM model.

Therefore, in order to achieve better control over the unit selection process,

minimizing spectral discontinuities, we suggest the following:

• The adoption of a new cost function, namely splicing cost that, in addition

to the join cost function, will offer us better control over both the selection

of synthesis units, and the type of splicings (i.e. phone-boundary or mid-

phone splicings)

• The evaluation of a series of metrics for measuring potential audible spectral

discontinuities resulting from the join of two segments; these will include the

Kullback-Leibler distance, Mahalanobis distance between successive vectors

of spectral features, and an HDM-based prediction model, as described

above.

• The implementation of the measures suggested in the LSDM approach to

join costs, as presented in Chapter 3

4.1.4 Objective Evaluation for Cost Function Training

Each of the cost functions that we referred to in Chapter 2, combines a series of

sub-costs in order to determine the overall cost for any given candidate unit. Each

58

of these sub-costs, representing the various feature distances in both target and

concatenation costs, participates in the cost function multiplied by a weighting

factor, namely the respective sub-cost weight. As Black and Campbel acknowledge

in [7], the quality of the result of unit selection depends heavily on the weights

for the various sub-costs.

The initial approach to the tuning of these weights was manual. However,

automatic training methods consistently resulted to better sounding speech [7]

[27]. The method used for training the weights of the cost functions is still an

open issue. The most common method is to use the system in order to synthesize

utterances that were already recorded by the voice talent, yet they were kept

out of the speech corpus. Then, through an iterative process, the weights are

modified so that the synthesized utterances will match the pre-recorded ones.

This process requires an objective measure of the distance between the synthe-

sized utterance and the pre-recorded one. Subjective listening tests with humans

are prone to errors and quite impractical in this case, due to the large number of

utterances that need to be evaluated. Initial approaches used the mean Euclidean

cepstral distance [37] between time–aligned vectors from the selected segments

and the target units, which are completely known, since we are trying to mimic

natural speech utterances from the speaker of the source database.

However, as Ng points out in [36], comparisons of human perceptual measures

and the cepstral distance measure show that people are more sensitive to conti-

nuity distortions, while cepstral distance measure gives more importance to unit

distortions.

Clearly, a better distance measure, that is more indicative of perceived speech

quality is needed. It is possible that a combination of measures, with the addition

of a metric for spectral discontinuities will lead to better results. However, the

59

actual choice of this metric and the methodology that will be used for the training

remains to be investigated at a later stage of this research.

4.1.5 Computational Optimization

A successful speech synthesizer needs to be able to produce high quality speech in

as little time and by requiring as little computational resources as possible. With

unit selection being the most computationally demanding stage of the synthesis

process, it is obvious that any optimization applied to this stage will have an

immediate effect on the system’s performance.

In Chapter 2 we referred to a series of techniques used in order to optimize

the unit selection process. Unit pre-selection, cost caching and pruning can all

be used in order to cut down on the resources needed by the speech synthesizer.

However, it is obvious that the major improvement will come from the reduction

of the number of candidate units that need to be examined for the synthesis of

any given utterance.

A first optimization comes if we consider only the units with phonetic contexts

similar to the target segments. With unit inventories containing tens of thousands

of each unit class, even this step can considerably narrow the search space. Using

these units we can start the unit selection process, but we can proceed in stages,

pruning the search space initially using target and finally concatenation costs.

The introduction of the proposed splicing cost, will add yet another pruning stage

between target-cost and concatenation-cost pruning, minimizing the final number

of units that will need to be considered for selection. The pre-computation of

the costs between the most frequent combinations of units and the creation of

caches holding this information will further reduce the requirements for complex

computations at synthesis-time.

Bibliography

[1] J. Allen, S. Hunnicutt, and D. Klatt, The MITalk System, Cambridge Uni-

versity Press, Cambridge, 1987.

[2] M. Beutnagel, A. Conkie, J. Schroeter, Y. Stylianou, and A. Syrdal, The

AT&T Next-Gen TTS system, Joint Meeting of ASA, EAA, and DAGA

(Berlin, Germany), March 1999.

[3] M. Beutnagel, M. Mohri, and M. Riley, Rapid Unit Selection from a Large

Speech Corpus for Concatenative Speech Synthesis, Eurospeech ’99 (Bu-

dapest, Hungary), 1999.

[4] A. Black, Chatr version 0.8: A generic Speech Synthesizer, System documen-

tation, ATR Interpreting Telecomunications Laboratories, Kyoto, Japan,

March 1996.

[5] A. Black, P. Taylor, and R. Caley, The Festival speech synthesis system, Tech-

nical report hcrc/tr-83, Human Computer Communication Research Centre,

Edinburgh University, 1997.

[6] A. W. Black, Perfect Synthesis for All of the People All of the Time, IEEE

TTS Workshop 2002, 2002.

[7] A. W. Black and N. Campbell, Optimizing Selection of Units from Speech

Databases for Concatenative Synthesis, Eurospeech ’95 (Madrid, Spain),

vol. 1, 1995, pp. 581–584.

60

61

[8] A. W. Black and K. A. Lenzo, Optimal Data Selection for Unit Selection Syn-

thesis, Proceedings 4th ESCA Workshop on Speech Synthesis (Edinburgh,

Scotland), 2001.

[9] A. W. Black and P. Taylor, CHATR: a generic speech synthesis system,

COLING94 (Kyoto, Japan), vol. 2, 1994, pp. 983–986.

[10] , Automatically clustering similar units for unit selection in speech

synthesis, Proceedings Eurospeech ’97 (Rhodes, Greece), 1997, pp. 601–604.

[11] J.S. Bridle, L. Deng, J. Picone, H. B. Richards, J. Ma, T. Kamm, M. Schus-

ter, S. Pike, and R. Regan, An Investigation of Segmental Hidden Dynamic

Models of Speech Coarticulation for Automatic Speech Recognition, Technical

report of a projects at the jhu workshop on language engineering for students

and professionals, Center for Language and Speech Processing, The Johns

Hopkins University, Phoenix, AZ, 1998.

[12] J.S. Bridle and H. B. Richards, Dynamic Segmental Models of Speech Coar-

ticulation, JHU Workshop on Language Engineering for Students and Pro-

fessionals (Phoenix, AZ), 1999.

[13] I. Bulyko and M. Ostendorf, Unit Selection for speech synthesis using

Splicing Costs with Weighted Finite State Transducers, Proceedings of Eu-

rospeech’01, 2001.

[14] I. Bulyko, M. Ostendorf, and J. Bilmes, Robust splicing costs and efficient

search with bmm models for concatenative speech synthesis, Proceedings of

ICASSP’02, vol. 1, 2002, pp. 461–464.

[15] N. Campbell and A. W. Black, Progress in Speech Synthesis, ch. Prosody and

the Selection of Source Units for Concatenative Speech Synthesis, Springer

Verlag, New York, 1995.

62

[16] F. Charpentier and E. Moulines, Pitch-synchronous waveform processing

techniques for text-to-speech synthesis using diphones, Proc. Eurospeech ’89

(Paris, France), vol. 2, September 1989, pp. 13–19.

[17] J. Clark and C. Yallop, An Introduction to Phonetics and Phonology, Black-

well, Oxford and Cambridge, 1990.

[18] A. Conkie, A Robust Unit Selection System for Speech Synthesis, 137th meet-

ing of ASA/Forum Acusticum (Berlin, Germany), March 1999.

[19] A. Conkie, M. C. Beutnagel, A. K. Syrdal, and P. E. Brown, Preselection opf

Candidate Units in a Unit Selection-Based Text-To-Speech Synthesis System,

Proceedings ICSLP’00 (Beijing, China), vol. 3, October 2000, pp. 314–317.

[20] V. Digalakis, J. Rohlicek, and M. Ostendorf, Ml estimation of a stochastic

linear system with the em algorithm and its applications to speech recognition,

IEEE Transactions on Speech and Audio Processing 1 (1993), no. 4, 431–442.

[21] R. Donovan, Segment preselection in decision-tree based speech synthesis sys-

tems, Proceedings of ICASSP, vol. 2, 2000, pp. 937–940.

[22] , A New Distance Measure for Costing Spectral Discontinuities in

Concatenative Speech Synthesisers, Proceedings 4th ESCA Workshop in

Speech Synthesis (Atholl Palace Hotel, Scotland), 2001.

[23] T. Dutoit and H. Leich, MBR-PSOLA: Text-to-Speech synthesis based on

an MBE re-synthesis of the segments database, Speech Communication 13

(1993), no. 3-4, 435–440.

[24] , The MBROLA Project: Towards a Set of High-Quality Speech Syn-

thesizers Free of Use for NonCommercial Purpose, ICSLP ’96 (Philadelphia,

PA), vol. 3, October 1996, pp. 1993–1996.

[25] W.I. Hallahan, Dectalk Software: Text-to-Speech Technology and Implemen-

tation, DIGITAL Technical Journal 7 (1996), no. 4, 39–51.

63

[26] J.N. Holmes, R.D. Wright, J.W. Yates, and M.W. Judd, Extension to the

JSRU Synthesis by Rule System, 9th Internaltional Congress of Acoustics

(Madrid, Spain), 1977.

[27] A. J. Hunt and A. W. Black, Unit Selection in a Concatenative Speech Syn-

thesis System Using a Large Speech Database, ICASSP ’96 (Atlanta, GA),

vol. 1, May 1996, pp. 373–376.

[28] R. E. Kalman, A New Approach to Linear Filtering and Prediction Problems,

Trans. ASME, Series D, J. Basic Eng. 82 (1960), 35–45.

[29] E. Klabbers and R. Veldhuis, On the Reduction of Concatenation Arti-

facts in Diphone Synthesis, Proceedings ICSLP’98 (Sydney, Australia), 1998,

pp. 1983–1986.

[30] , Reducing audible spectral discontinuities, IEEE Transactions on

Speech and Audio Processing 9 (2001), no. 1, 39–51.

[31] S. Kullback and R. Leibler, On Information and Sufficiency, Annals of Math-

ematical Statistics 22 (1951), 79–86.

[32] A. Ljolje and M. Riley, Automatic Segmentation of Speech for TTS, Pro-

ceedings 3rd ESCA (Berlin, Germany), vol. 2, 1993, pp. 1445–1448.

[33] M. W. Macon, A. E. Cronk, and J. Wouters, Generalization and Discrimina-

tion in Tree-Structured Unit Selection, Proceedings 3rd Synthesis Workshop,

November 1998.

[34] J. D. Markel and A. Gray, Linear Prediction of Speech, Springer Verlag,

Berlin, Germany, 1976.

[35] J. S. Marques and A. J. Abrantes, Hybrid Harmonic Coding of Speech at low

Bitrates, Speech Communication 14 (1994), no. 3, 231–247.

64

[36] K. Ng, Survey of Data-Driven Approached to Speech Synthesis, Area survey,

Spoken Language Systems Group, Massachusetts Institute of Technology,

Cambridge, MA, 1998.

[37] L. Rabiner and B. Juang, Fundamentals of Speech Recognition, Prentice Hall,

1993.

[38] H. B. Richards and J.S. Bridle, The HDM: A Segmental Hidden Dynamic

Model of Coarticulation, ICASSP (Phoenix, AZ), May 1999.

[39] R. Sproat, Multilingual Text-to-Speech Synthesis: The Bell Labs Approach,

Kluwer Academic Publishers, Dordrecht, The Netherlands, 1997.

[40] Y. Stylianou, Harmonic plus Noise Models for Speech, combined with Sta-

tistical Methods, for Speech and Speaker Modification, Ph.D. thesis, Ecole

Nationale Superieure des Telecommunications, Paris, France, January 1996.

[41] Y. Stylianou and A. K. Syrdal, Perceptual and Objective Detection of Dis-

continuities in Concatenative Speech Synthesis, ICASSP 2001, 2001.

[42] J. van Santen and R. Sproat, High-accuracy Automatic Segmentation, Pro-

ceedings of EuroSpeech99 (Budapest, Hungary), 1999.

[43] G. Welch and G. Bishop, An introduction to the Kalman Filter, Technical

report, Computer Science Department, University of North Carolina, Chapel

Hill, NC, April 2004.

[44] J. Wouters and M. Macon, A Perceptual Evaluation of Distance Measures for

Concatenative Speech Synthesis, ICSLP 98 (Sydney, Australia), November

1998, pp. 2747–2750.

[45] J. R. W. Yi and J. R. Glass, Natural Sounding Speech Synthesis using

Variable-Length Units, ICSLP 98 (Sydney, Australia), November 1998.

65

[46] R. W. Yi, Corpus-Based Unit Selection for Ntural Sounding Speech Synthe-

sis, Ph.D. thesis, Electrical Engineering and Computer Science Department,

Massachusetts Institute of Technology, Cambridge, MA, 2003.

	Table of Contents
	List of Figures
	Abstract
	Acknowledgements
	Introduction
	Background
	Scope of this Work
	Outline

	Background in Text-to-Speech
	Introduction
	The NLP Component
	The DSP Component
	Rule-Based Synthesizers
	Concatenative Synthesizers

	Robust Unit Selection
	Introduction
	Background
	Unit Inventory Design
	Unit Inventory Metadata
	Target Features

	Unit Selection
	Cost Functions
	Features
	Unit Selection Model

	Defining Join Costs using Linear Segment-Based Models
	Introduction
	Motivation
	Linear Stochastic Systems
	Application to Speech Synthesis
	The LSDM as a Speech Synthesizer
	Applying the Model
	Training the Model

	Research Plan
	Areas of Research
	Speech Units and the Unit Database
	Speech Corpus Design
	Costs and Cost Functions
	Objective Evaluation for Cost Function Training
	Computational Optimization

	Bibliography

