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ABSTRACT

High speed and always-on network access is becoming commonplace around the world,

creating a demand for increased network security. Network Intrusion Detection Systems

(NIDS) attempt to detect and prevent attacks from the network using pattern-matching

rules in a way similar to anti-virus software. They check both packet header and payload

in order to detect content-based security threats. Payload scan requires efficient pattern

matching techniques, since each incoming packet must be compared against the hundreds

of known attacks. NIDS must operate at line (wire) speed so that they do not become

a bottleneck to the system’s performance. Network Intrusion Detection Systems perform

a much more efficient analysis compared to traditional firewalls, and running in general

purpose processors can serve up to a few hundred Mbps throughput.

Several ASIC commercial products have been developed, and FPGA-based archi-

tectures have been introduced, aiming at better performance as compared to software-based

systems. Although they can support high throughput, updating system ruleset and adding

new features is a difficult task for ASIC platforms. They usually trade performance for

flexibility, using large memories and integrated processors. On the other hand, reconfig-

urable devices (FPGAs) offer the required flexibility for such systems. The use of FPGA

platforms, allows easy ruleset update, adding new features, and even changing the entire

system’s architecture. Keeping the interface unchanged and not exceeding device’s capac-

ity, are the main challenges.

This thesis presents solutions for FPGA-based string matching, achieving high

throughput and reasonable area cost. The first presented architecture uses discrete com-

parators, exploits parallelism and fine-grain pipeline, allowing string matching systems

to support 8 to 11 Gbps throughput. However, this approach is costly in terms of area,

and cannot store the entire NIDS set of patterns in a single device. The next architecture

presented (DCAM) improves on the discrete comparator solution, requiring one fifth of the

initial area, while fully maintaining the performance. DCAM shares logic using centralized

character comparators (decoders), maintains performance using fine-grain pipeline, paral-

lelism, and also partitioning design into small high-speed processing engines. It also uses

xii



an advanced data distribution network to feed incoming data to pattern-matching engines

and gather out the partial matches. Finally, is shown that DCAM architecture can store

the entire set of NIDS patterns in a medium-capacity FPGA, achieving the best published

throughput, and having comparable area cost with the best published one.
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CHAPTER 1

INTRODUCTION

The proliferation of Internet and networking applications, coupled with the wide-

spread availability of system hacks and viruses have increased the need for network secu-

rity. Firewalls have been used extensively to prevent access to systems from all but a few,

well defined access points (ports), but they cannot eliminate all security threats, nor can

they detect attacks when they happen. Stateful inspection firewalls are able to understand

details of the protocol that are inspecting by tracking the state of a connection. They actu-

ally establish and monitor connections for when it is terminated. However, current network

security needs, require a much more efficient analysis and understanding of the applica-

tion data [19]. Content-based security threats and problems occur more frequently, in an

every day basis. Virus and worm inflections, SPAMs (unsolicited e-mails), email spoofing,

and dangerous or undesirable data, get more and more annoying and cause innumerable

problems. Therefore, next generation firewalls should provide Deep Packet Inspection ca-

pabilities, in order to provide protection from these attacks. Such systems check packet

header, rely on pattern matching techniques to analyze packet payload, and make decisions

on the significance of the packet body, based on the content of the payload.

1.1 Motivation

Network Intrusion Detection Systems (NIDS) perform deep packet inspection. They scan

packet’s payload looking for patterns that would indicate security threats. Matching every

incoming byte, though, against thousands of pattern characters at wire rates is a compli-

cated task. Measurements on SNORT show that 31% of total processing is due to string

matching; the percentage goes up to 80% in the case of Web-intensive traffic [20]. So, string

matching can be considered as one of the most computationally intensive parts of a NIDS

and in this thesis we focus on payload matching. Many different algorithms or combination
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of algorithms have been introduced and implemented in general purpose processors (GPP)

for fast string matching[16, 20, 42, 35, 3, 2], using mostly SNORT opensource NIDS rule-

set [38, 41]. However, intrusion detection systems running in GPP can only serve up to a

few hundred Mbps throughput. Therefore, seeking for hardware-based solutions is possibly

the only way to increase performance for speeds higher than a few hundred Mbps.

Until now several ASIC commercial products have been developed [31, 30, 27,

28, 29, 32]. These systems can support high throughput, but constitute a relatively ex-

pensive solution. On the other hand, FPGA-based systems provide higher flexibility and

comparable to ASICs performance. FPGA-based platforms can exploit the fact that the

NIDS rules change relatively infrequently, and use reconfiguration to reduce implementa-

tion cost. In addition, they can exploit parallelism in order to achieve satisfactory process-

ing throughput. Several architectures have been proposed for FPGA-based NIDS, using

regular expressions (NFAs/DFAs) [40, 34, 36, 22, 14, 15], CAM [23], discrete compara-

tors [13, 12, 7, 6, 5, 43, 44], and approximate filtering techniques [4, 18]. Generally, the

performance results of FPGA systems are promising, showing that FPGAs can be used to

support the increasing needs for network security. FPGAs are flexible, reconfigurable, pro-

vide hardware speed, and therefore, are suitable for implementing such systems. On the

other hand, there are several issues that should be faced. Large designs are complex and

therefore hard to operate at high frequency. Additionally, matching a large number of pat-

terns has high area cost, so sharing logic is critical, since it could save a significant amount

of resources, and make designs smaller and faster.

1.2 Scope of this thesis

Since string matching is the most computationally intensive part of an NIDS, our proposed

architectures exploit the benefits of FPGAs to design efficient string matching systems.

The proposed architectures can support between 3 to 10 Gbps throughput, storing an entire

NIDS set of patterns in a single device. In this thesis we suggest solutions to maintain

high performance and minimize area cost, show also how pattern matching designs can
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be updated and partially or entirely changed, and advocate that bruteforce solutions can

offer high performance, while require low area. Techniques such as fine-grain pipelin-

ing, parallelism, partitioning, and pre-decoding are described, analyzing how they affect

performance and resource consumption.

This thesis provides two CAM-like architectures for efficient and high-speed string

matching. It also evaluates our solutions in terms of performance and cost, discusses its

advantages and drawbacks, compares it with related architectures, and presents possible

improvements and alternative solutions. Developing VHDL representation of large designs

that store hundreds of patterns is a time-consuming procedure. Therefore, it is important

to automatically generate the VHDL code of a design that stores a particular set of pat-

terns. This work describes an automatic implementation methodology for the proposed

architecture, in order to generate the desired design fast.

1.3 Dissertation Outline

The rest of the thesis is organized as follows: the next chapter presents o brief description

of NIDS , offers some statistics about the patterns contained in a NIDS, and present some

performance results of software-based NIDS. Chapter 3 describes hardware-based NIDSs,

previous FPGA-based pattern matching architectures, and commercial products. In chap-

ters 4 and 5), our initial Discrete Comparator approach and our final DCAM architecture

are introduced respectively, presenting also implementation results in terms of area cost

and performance. In chapters 6 we attempt a fair comparison between our architectures

and related work, and in chapter 7 we present the conclusions of this work and discuss

future extensions. Finally, Appendix A shows our implementation methodology and other

implementation details.
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CHAPTER 2

SOFTWARE-BASED PACKET INSPECTION

This chapter includes a brief description of intrusion detection systems and their rule syn-

tax. Further, there is an analysis of the NIDS patterns used, trying to extract useful infor-

mation about which pattern matching approach would be more appropriate, and efficient.

Finally, the last section describes intrusion detection systems running in general purpose

processors, using efficient string matching algorithms.

2.1 Intrusion Detection Systems

Network Intrusion Detection Systems (NIDS) attempt to detect attacks by monitoring in-

coming traffic for suspicious contents. They collect data from network, monitor activity

across network, analyze packets, and report any intrusive behavior in an automated fash-

ion. Intrusion detection systems use advanced pattern matching techniques (i.e. Boyer and

Moore [10], Aho and Corasick [1], Fisk and Varghese [20]) on network packets to iden-

tify known attacks. They use simple rules (or search patterns) to identify possible security

threats, much like virus detection software, and report offending packets to the administra-

tors for further actions. NIDSs should be updated frequently, since new signatures may be

added or others may change on a weekly basis.

NIDS rules usually refer to the header as well as to the payload of a packet. Header

rules check for equality (or range) in numerical fields and are straightforward to implement.

More computationally-intensive is the text search of the packet payload against hundreds

of patterns that must be performed at wire-speed [17, 16].

SNORT is an open-source NIDS that has been extensively used and studied in the

literature [41, 38, 17]. Based on a rule database, SNORT monitors network traffic and

detects intrusion events. Many researchers developed string matching algorithms, com-

bination of algorithms and techniques such as pre-filtering in order to improve SNORT’s
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performance[16, 20, 42, 35, 3, 2]. Section 2.3 describes these algorithms and techniques,

and also evaluates their performance, which is lower compared to hardware intrusion de-

tection systems.

Each SNORT rule can contain header and content fields. The header part checks the

protocol, and source and destination IP address and port. The content part scans packets

payload for one or more patterns. The matching pattern may be in ASCII, HEX or mixed

format. HEx parts are between vertical bar symbols ”|”. An example of a SNORT rule is:

alert tcp any any - >192.168.1.0/32 111(content: "idc |3a3b |";
msg: "mountd access";)

The above rule looks for a TCP packet, with any source IP and port, destination

IP = 192.168.1.0, and port=111. To match this rule, packet payload must contain pattern

”idc|3a3b|”, which is ASCII characters ”i”, ”d”, and ”c” and also bytes ”3a”, and ”3b” in

HEX format.

Intrusion detection systems are able to perform protocol analysis and stateful in-

spection. They also detect content-based security threats, while traditional firewalls cannot.

Their major bottleneck is pattern matching [17], which limits NIDS performance.

2.2 Search Patterns Statistics

To understand the nature of the NIDS application, we analyzed the set of patterns used, cal-

culating character occurrence, and pattern distribution according to their length. The set of

patterns stored in our designs was extracted from SNORT v1.9 ruleset database (released in

January 2003). There are two sets of rules, the default rules (stable ruleset) and the default

plus some optional rules (current ruleset). We chose to implement the ”current” ruleset,

which consists of 1,466 patterns, over 18,000 characters, while recent SNORT ”current”

rulesets contain about 1,650 unique patterns and about 21,000 characters. A PERL script

was used to extract the patterns from the rule files, and convert them to HEX format. In
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Figure 2.1. Character occurrence of SNORT v1.9 patterns. Most frequent characters are
the alphabet characters, the numbers, and some punctuation marks.

order to analyze the SNORT patterns that we intent to implement and get a feeling of their

characteristics, we analyzed their length, and tried to find the most frequently used charac-

ters.

Figure 2.1 shows the character frequency of all the patterns we intent to imple-

ment. The most frequently used characters are mostly English alphabet characters (A-Z,a-

z, ASCII: 65-122), numbers (ASCII: 48-57), and some punctuation marks. This plot ex-

ploits the nature of this distribution. An attempt of character’s sharing between the SNORT

patterns could possibly lead to a significant area saving. Further, figure 2.2 plots the per-

centage of the theN most frequent characters. The 16 most frequent characters account for

the 61% of the total characters, while the 32 most frequent characters are the 80%. The set

of NIDS patterns contains 218 distinct characters out of 256 possible characters.
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Figure 2.2. Cumulative character distribution versus to the total number of matching char-
acters.

The pattern length is between 1 to 107 characters, while the average size of each

pattern is 12.3 characters. Most patterns contain less than 20 characters, while 80% of the

patterns are 1 to 17 characters long, and almost all of them (99.5%) have less than 40 bytes

length. Half of the matched characters are included in patterns less than 15 bytes long, and

patterns with less than 50 bytes contain almost all of the matching characters (99%).

One of our first ideas for FPGA-based string match, was to recode or encode the

incoming data (i.e Huffman encoding [26]). This idea would possibly be interesting if the

most frequently used characters could be encoded in 4 bits or less. That is because of the

FPGAs’ structure, the smallest logic element of devices can implement logic functions that

have 4 bits input in a 4-input LUT. Otherwise, two or more logic cells are needed. So, in

order to use fewer logic cells for the matching, the encoded bits must be less than 5.The

16 most frequently used characters (can be encoded in 4 bits), account for 61% of the total

number of characters. However, Huffman encoding would possibly not offer considerable

potential, since even if for these most frequent characters a designer could half the cost of

matching, the overhead for matching the rest of the characters would be about equal to the
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Figure 2.3. Pattern length analysis. The average pattern length is 12.3 characters. About
80% of the patterns are 1 to 17 characters long, while almost all of them contain between
1 and 40 characters.

gained logic. On the other hand, recoding could possible minimize area cost, since 61% of

the characters can be recoded in order to have an identical half byte. The only drawback of

recoding is the overhead of the recoding module, which is significant (more than 500 logic

cells for every recoded byte).

2.3 Software NIDS Solutions

Several string matching algorithms have been recently proposed in NIDS specially for

SNORT’s opensource NIDS.

First versions of SNORT used bruteforce pattern matching, which was very slow,

making clear that using a more efficient string matching algorithm, would improve perfor-
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mance. The first implementations that improved SNORT used the Boyer-Moore algorithm

[10], and later a”2-dimentional linked list with recursive node walking”. This implemen-

tation improved SNORT performance 200-500% [41]. The Boyer-Moore algorithm is one

of the most well-known algorithms that uses two heuristics to reduce the number of com-

parisons. It first aligns the pattern and the incoming data (text), the comparison begins from

the right-most character, and in case of mis-match the text is properly shifted.

However, the Boyer-Moore algorithm compares each pattern independently against

the incoming data, and hence substrings repeated in more than one patterns are compared

multiple times. Coit et al.[16] implemented a”Boyer-Moore Approach to Exact Set Match-

ing” , described by Gusfield [24]. They called it ACBM algorithm, since all the patterns

are stored in an Aho-Corassick-like tree [1]. Using this tree Coit et al. reduced the many

unnecessary comparisons, and improved SNORT performance 1.02-3.32 times. Similarly

to Coit et al., Fisk et al. [20] introduced Set-wise Boyer Moore-Hospool algorithm, which

is an adaptation of Boyer-Moore, and is shown to be faster for matching less than 100

patterns.

Another implementation of SNORT is presented in [42], and uses Wu-Mander

multi-pattern matching algorithm [45]. The MWM algorithm performs a hash on 2-character

prefix of he input data, in order to index into a group of patterns. This SNORT implemen-

tation is much faster than previous ones.

Finally, Markatos et al. proposedE2xB algorithm, which provides quick nega-

tives when the search pattern does not exist in the incoming data[35, 3, 2]. Compared to

Fisk et al.,E2xB is faster, while for large incoming packets and less than 1k-2k rules it

outperforms MWM [3].

All the above software-based approaches can support a few hundred Mbps at most.

That’s 2-10 times slower compared to older FPGA-based string matching systems, and 10-

30 times slower compared to recent FPGA-based string matching architectures (including

our research, chapters 4, 5, and 6).
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CHAPTER 3

HARDWARE-BASED PACKET INSPECTION

Software-based Intrusion Detection Systems can only support modest throughput. On the

other hand, hardware can easily adapt in NIDS application needs, achieving better perfor-

mance with reasonable cost. In this chapter, we investigate various hardware-based solu-

tions for string matching. Several companies such as Cisco, NetScreen and PMC-Sierra

produce firewalls, or else called ASIC security programmable co-processors. Additionally,

much work has been done in FPGA-based string matching for NIDS, since FPGAs give

the advantage of reconfiguration. All these ASIC and FPGA-based approaches offer much

better performance as compared to software solutions.

3.1 Hardware-based String Matching & Packet Inspec-

tion

Given the processing bandwidth limitations of General purpose processors (GPP), which

can serve only a few hundred Mbps throughput, H/W-based NIDS (ASIC or FPGA) is an

attractive alternative solution. Many ASIC intrusion detection systems have been com-

mercially developed [31, 30, 27, 28, 29, 32]. Such systems usually store their rules using

large memory blocks, and examine incoming packets in integrated processing engines.

Generally, ASICs programmable security co-processors are expensive, complicated, and

although they can support higher throughput compared to GPP, they do not achieve impres-

sive performance. The memory blocks that store the NIDS rules are re-loaded, whenever

an updated ruleset is available. The most common technique for pattern matching in ASIC

intrusion detection systems is the use of regular expressions[31, 30, 32]. Updating the rule-

set is not a trivial procedure, since the system must be able to support a variation of rules,

with sometimes complex syntax, and special features. On the other hand, FPGAs are more

suitable, because they are reconfigurable, they provide H/W speed and exploit parallelism.
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An FPGA-based system can be entirely changed with only the reconfiguration overhead,

by just keeping the interface constant. This characteristic of reconfigurable devices allows

updating or changing the ruleset, adding new features, even changing systems architec-

ture, without any hardware cost. There are two approaches about the rule-set update of

an FPGA-based NIDS. A convenient solution is to reconfigure the entire device in order

to change existing rules or add new ones. However, this is a time-consuming procedure,

specially considering that it may take place in week basis, since it requires a few hours to

generate the new bitstream and a few minutes to drop the entire system during reconfigu-

ration. On the other hand, if an initial Placed & Routed design already exists, and only a

small part of it has changed, then incremental MAP and P&R is much more effective and

quick. Incremental flow uses guide files of the initial design, and hence needs less time to

complete. Another solution is to partially reconfigure the device. This approach is faster,

can instantly swap the new submodule, and in case of new device families, it is possible

not to lose the incoming and outgoing data of the submodule[46]. In the following sections

several architectures of FPGA-based string matching systems, and some ASIC commercial

products are presented.

3.2 FPGA-based String Matching

One of the first attempts in string matching using FPGAs, presented in 1993 by Pryor, This-

tle and Shirazi [37]. Their algorithm, implemented on Splash-2 platform, and succeeded

to perform a dictionary search, without case sensitivity patterns, that consisted of English

alphabet characters (26 characters). Pryor et al. managed to achieve great performance

and perform a low overhead AND-reduction of the match indicators using hashing. Since

1993, many others have worked on implementing FPGA-based string match systems.In the

rest of this chapter we describe several previous published architectures of hardware-based

string matching systems for network intrusion detection systems. Most researchers de-

signed there pattern matching architectures based on regular expressions (NFAs and DFAs)

[40, 22, 36, 14]. This is a low cost solution, but does not achieve very high performance.
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It is also difficult to process more than one character per cycle, and usually the operat-

ing frequency is limited by the amount of combinational logic for state transitions. Other

researchers preferred to follow a more straightforward approach, using CAMs or discrete

comparators to search payload against the patterns contained in NIDS ruleset [23, 13, 11].

In this case the area cost is higher, but performance is significantly better, because it is

easier to pipeline logic and process multiple bytes per cycle. A widely used technique to

increase sharing and reduce designs cost is the use of pre-decoding, which was applied to

both regular expression and CAM-like appraches[15, 12, 6, 5]. Pre-decoding has recently

introduced and used by several research groups. It is based on the idea that incoming

data are pre-decoded in centralized decoders, so that each unique character is matched

only once. A more efficient and very low cost approach was presented by Dharmapurikar

et al. who implemented Bloom Filters to perform string matching [18]. Knuth-Morris-

Pratt string matching algorithm was also used by Sidhu and Prasanna[39] and Baker and

Prasanna [7]. Finally,the last section of this chapter talks about commercial products that

have been developed for deep packet inspection.

3.2.1 NonDeterministic/Deterministic Finite Automata

The most common approach is the regular expressions matching, implemented using Finite

Automata (NFAs or DFAs)[40, 22, 36, 14]. Regular expressions produce designs with low

cost, but at a modest throughput. The basic idea of is to generate regular expressions for

every pattern or group of patterns, and implement them with N/DFA.

A regular expression is a pattern that describes one or more strings. It consists of

characters, which are considered as regular expressions, andmetacharacters(|,*,(,),) that

have special use. Regular expression syntax includes the following rules:

• ab, a followed by b.

• a|b, a or b.

• a*, zero, one, or more a.
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• ε is the empty string.

There are also other meta-characters that lead to more complex syntaxes, and more efficient

regular expressions.

Non-deterministic Finite Automata (NFAs) are direct graphs, their nodes are states,

and their edges are labeled with a character orε [21]. There is aninitial and one or more

final states. On the other hand, Deterministic Finite Automata (DFAs) are similar to NFAs,

but they do not includeε characters. Additionally, only one state can be active in DFAs,

while NFAs can have more than one active states. Generally, NFAs are simpler and easier to

design by just listing all stored patterns. On the other hand, DFAs are easier to implement,

because there are no choices to be considered, since there are noε characters and there

is only one state active. Theoretically, DFA can be exponentially larger than NFA, but in

practice often DFAs have, as compared to NFAs, a similar number of states (O(n) states,

wheren is the number of expression characters) [36]. Figure 3.1 shows the hardware NFA

representation of the following regular expression:f((ab)|(c(∗.1)e))∗.

enable

f

c e

a b

output

Figure 3.1. Hardware NFA implementation of the following regular expression, which
contains wild cards:f((ab)|(c(∗.1)e))∗.

The use of parallelism (processing multiple bytes or characters per cycle) is in gen-

eral difficult in finite-automata implementations that are built with the implicit assumption

that the input is checked one byte at a time. One proposed solution to this problem is

the usage of packet-level parallelism where multiple pattern matching subsystems operat-

ing in parallel can process more than one packets[36]. Finally, finite automata are usually
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restricted in their operating frequency by the amount of combinational logic for state tran-

sitions. In many cases the equations are complex, resulting in multilevel implementations

even with FPGA 4-to-1 LUTs.

In 1982, Floyd and Ullman were the first who implemented NFAs in hardware,

using PLA (Programmable logic array) [25]. In 2001, Sidhu and Prassanna [40] introduced

regular expressions and Nondeterministic Finite Automata (NFAs) for finding matches to

a given regular expression. They focused in minimizing the space -O(n2)- required to

perform the matching, and their automata matched one text character per clock cycle. For

a single regular expression, the constructed NFAs and FPGA circuit was able to process

each text character in 17.42-10.70ns (57.5-93.5 MHz) using a Virtex XCV100 FPGA.

One year later, Franklin, Carver and Hutchings [22] expanding on Sidhu et al. work,

used regular expressions, with more complex syntax and meta-characters such as ”?” and

”.”, to describe patterns extracted from Snort database. Using a sequence of 8-bit character

matchers they compose the NFA circuit. Each 8-bit comparator fits in a single slice (two

logic cells). Every LUT matches half of the pattern character. The previous output is stored

in a flip-flop and rerouted back into the slice through the carry chain resources, it is AND-

ed with the match signal of the LS half-byte and the result is finally AND-ed with the MS

half-byte result to produce the slice output. Franklin et al. were the first that mentioned

the performance bottleneck that occurs in such systems due to large fan-out. The main

drawback is the routing delay of the comparators outputs that input to every single slice

used in character matching. Their solution was to arrange flip-flops in a fan-out tree. They

managed to include up to 16,000 characters1 requiring 2.5-3.4 logic cells per matching

character. The operating frequency of the synthesized modules was about 30-100 MHz on

a Virtex XCV1000 and 50-127 MHz on a Virtex XCV2000E, and in the order of 63.5 MHz

and 86 MHz respectively on XCV1000 and XCV2000E for a few tens of rules.

In 2003, Moscola, Lockwood et al. used the Field Programmable Port Extender

(FPX) platform, to perform string matching for an Internet firewall [36]. They used regu-

1non-Meta characters, size of regular expression
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lar expressions (DFAs) to store the patterns. Each regular expressions is parsed and sent

through JLex [8] to get a representation of the DFA required to match the expression. Fi-

nally, JLEx representation is converted to VHDL. Their processing engine processes one

byte during every cycle. Incoming packet data is stored in two identical buffers. The first

buffer is used to feed the parallel DFA matchers with 8-bit packet data. The second buffer

stores the incoming packets until the content scanners indicate whether to output or drop

a packet. This implementation can operate at 37 MHz on a Virtex XCV2000E and serve

296 Mbps (8bits ∗ 37MHz = 296Mbps). Moscola et al. finally described a technique

to increase processing bandwidth. Incoming packets arrive in 32-bit words, and are dis-

patched to one of the four content scanners. However, using packet parallelism where

multiple copies of the match module scan concurrently different packets, may not offer the

guaranteed processing bandwidth, due to the variable size of the IP packets. This solution

quadruples design’s throughput (1.184 Gbps).

Lockwood also implemented a sample application on FPX constructing a small

FSM[34]. Lockwood’s FSM could match 4 incoming packet characters in a single clock

cycle. Because of its large input width, this approach is practically unsuitable to implement

for many patterns and even more for complicated DFAs. Their circuit operates at 119 MHz

on a Virtex V1000E-7 device and has 3.8 Gbps throughput.

In the same year, Clark and Schimmel [14] developed a pattern matching coproces-

sor that supports the entire SNORT rule-set using NFAs. In order to reduce design area they

used centralized decoders instead of character comparators for the NFA state transitions.

Their design processes one character per cycle, can match over 1,500 patterns (17,537 char-

acters), and requires about 1.1 logic cells per matched character. Its operating frequency is

100 MHz having total throughput 0.8 Gbps in a Virtex-1000 device. In FCCM 2004, Clark

and Schimmel expanded on their earlier work implementing designs that process multiple

incoming bytes per cycle. Their detailed results proved that NFAs and pre-decoding can

produce low cost designs with higher performance, compared to DFAs and simple brute-

force approaches.
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3.2.2 Knuth-Morris-Pratt Algorithm

One of the must well known algorithms for string matching is Knuth-Morris-Pratt algo-

rithm [33]. While there are other algorithms that have better performance in average case,

KMP algorithm provides better worst case delay.

KMP algorithm, first, constructs a prefix function for the matching pattern. This

function actually describes a graph, which can be implemented with an FSM. Figure 3.2

shows the prefix function constructed by KMP algorithm, for pattern ”abacad”. There is

a starting state, and six more states, one for every character. In case of a mismatch next

state is state ”0”, however, when the previous matched character is ”a”, then the next state

is state ”1”.

0 1 432 5 6
a

!a

dacab

!d!a!c!a!b

Figure 3.2. The graph described by the KMP prefix function for pattern ”abacad”

KMP algorith was first used for FPGA-based string matching by Sidhu, Mei and

Prasanna, in 1999 [39]. They created a pre-configured FSM template for any matching

pattern, which was customized at run time for the desired pattern. When using the KMP

algorithm, it’s not always simple to process one incoming character every clock cycle. In

case of a mismatch KMP-FSM must perform two comparisons in one cycle. For example,

in case of Figure 3.2, if present state=”3”, the next incoming character is compared with

”c”, and there is a mismatch, then the next state=”1”, and the incoming character must be

compared with ”b”. In 2004, Baker and Prasanna designed a string matching unit for NIDS,

using a modified version of KMP algorithm[7]. Baker and Prasanna used two comparators

and a buffer to guarantee that their system would match one incoming character every cycle.
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3.2.3 CAMs & Discrete Comparators

Another more straightforward approach for FPGA-based string matching is the use of reg-

ular CAM or discrete comparators[23, 13, 12, 6, 5, 11]. Current FPGAs give designers the

opportunity to use integrated block RAMs for constructing regular CAM. This is a simple

procedure, that achieves modest performance, in most cases better than simple N/DFAs

architectures. Other researchers preferred to use discrete comparators, which leads to de-

signs that operate at higher frequency. Discrete comparators architecture uses one or more

comparators for every matching pattern (Figure 3.3). Generally, this approach uses FPGA

logic cells to store each pattern. Every LUT can store a half-byte of a pattern, and the

flip-flops that already exist in logic cells can be used to create a pipeline, without any over-

head. Both regular CAM and discrete comparators achieve high performance, however,

they have increased area cost. To reduce this cost, researchers deployed several techniques

that increase sharing. A detailed description of CAM-based or discrete comparator solu-

tions follows next.

8

A

B

C

D
Match

“ABCD”

8

8

8

Figure 3.3. Brute-force implementation of comparator that matches pattern ”ABCD”.

In FPL’02, Gokhale, et al. [23] used CAM to implement Snort rules NIDS on a Vir-

tex XCV1000E. They performed both header and payload matching on CAMs, however,

increasing CAM’s depth over 32 entries, resulted in unacceptable operating frequency, be-
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cause of routing limitations. Their hardware runs at 68MHz with 32-bit data every clock

cycle, giving a throughput of 2.2 Gbps, and reported a 25-fold improvement on the speed

of Snort v1.8 on a 733MHz PIII and an almost 9-fold improvement on a 1 GHz PowerPC

G4.

Closer to our work described in chapter 4 is the work by Cho, Navab and Mangione-

Smith [13], also presented in FPL’02. They designed a deep packet filtering firewall on

a FPGA and automatically translated each pattern-matching component into structural

VHDL. They presented a block diagram of a complete FPGA-based NIDS, and imple-

mented the content pattern matching unit for more than a hundred signatures. The content

match micro-architecture used 4 parallel comparators for every pattern so that the system

advances 4 bytes of input packet every clock cycle. In Cho’s et al. architecture, incoming

packet data is partially matched sequential 4-byte comparators, and finally the results of the

four parallel comparators are OR-ed. The design implemented in an Altera EP20K device

runs at 90MHz, achieving 2.88 Gbps throughput. They require about 10 logic cells per

search pattern character. However, they do not include the fan-out logic that we have (see

chapter 4), and do not encode the matching rule. Instead they just OR all the match signals

to indicate that some rule matched.

In FCCM’04, Cho and Mangione-Smith improved their earlier architecture and also

introduced ROM-based filtering in [12]. They shared sub-string comparators reducing the

area cost. They used centralized decoders for character matching and combined the partial

matches using priority encoder. The introduced architecture needs about 6 times less area

as compared to the initial one, while maintaining performance. The ROM-based solution

uses a comparator to match the initial part of the incoming data and uses the matched

prefix as an address into a ROM in order to read the rest of the pattern. After that, the

suffix of the pattern is matched against the incoming payload. However, this technique has

limitations, first because ROM can only store patterns with different prefixes and second

due to the extra memory resources needed to store the length of every suffix. Despite these

limitations, using the ROM-based solution, Cho and Mangione-Smith managed to store

one third of the rules and further reduce the area cost of their design.
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Another CAM-based solution using pre-decoding was introduced by Baker and

Prasanna in the same conference (FCCM’04)[6]. They tried to achieve high performance

even for large rule-set designs using partitioning. They performed complex pattern prepro-

cessing in order to group together patterns with similarities and minimize area cost. So,

Baker and Prasanna introduced a graph-based representation of the problem and used a

mincut solution to group patterns. Baker’s et al. system decodes incoming data, properly

delays decoded data and finally ANDs them to produce a ”match” signal for every stored

pattern. This micro-architecture is very similar to ours presented also in FCCM’04 (see

chapter 5). In this work they also presented a ”Pre-filtering” architecture that processes

multiple incoming bytes (4 bytes), while using a one-byte datapath, and hence has low

area cost. However, this approach allows false-positives, and this is what this architecture

trades for reducing the area cost. A few months later, Baker and Prasanna presented a tree-

based hardware reuse strategy[5]. This approach, partially matches pattern’s substrings,

and finally ANDs the partial results. Tree-based solution, allows sharing entire substring

matchers, and slightly reduces even more the design area.

3.2.4 Approximate Filtering

Another solution that reduces matching cost is the use of approximate filtering techniques

such as Bloom filters and generally hash functions. Such algorithms succeed to reduce the

number of matching bits, however, due to the nature of these techniques, false positives may

occur and hence exact string matching is required. Sometimes researchers use additional

submodules to perform exact matching, and usually these modules support much lower

throughput as compared to approximate filtering engines. Sometimes hackers use methods

to overload NIDS with packets that match NIDS rules. In these cases, systems that use

approximate filtering techniques and also perform exact matching either cannot support the

needed throughput or just drop more packets than they should. Another drawback is that

for every pattern length a different processing engine is needed.

Lockwood’s research group from Washington University of St. Louis introduced
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the use of Bloom filters for FPGA-based sting matching in packet inspection systems [18,

4]. A Bloom filter (BF) computes a number of hash functions on it producing ak-bit vector,

which is much smaller compared to the input data. Lockwood et al. implemented a Bloom

filter module using five parallel different BFs to decrease the probability of false positives

(P = (1/2)10). Every BF supports patterns of the same length, therefore many parallel BFs

are needed. In order to increase processing bandwidth, a very common technique [13, 43]

was implemented, multiple engines are used in parallel each monitoring a window of bytes

with different offset.

Although every Bloom filter can store 1419 signatures, all signatures must be of the

same length. This constitutes a major drawback since it increases the need of internal block

RAMs. Their design implemented 9 BFs that match 2-26 byte patterns, it operates at 63

MHz, corresponding to a throughput of 502 Mbps without parallelism and over 2 Gbps if

4 parallel engines were used.

3.3 ASICs - Commercial Products

There are several commercial platforms that perform payload matching to prevent data-

driven attacks. Safenet, Netscreen, PMC-Siera, Broadcom, TippingPoint and Cisco are

some of the firewall vendors who created co-processors that offer deep packet inspection

[31, 30, 27, 28, 29, 32]. These products can support between a few hundred Mbps to 2.5

Gbps throughput. However, their increased cost offsets their efficiency. A small description

about these proprietary systems follows, since only few details are available.

SafeNet’s SafeXcel-4850 [31] is a content inspection co-processor that can support

320 Mbps throughput and stores up to 1500 rules. SafeXcel 4850-PCI can be used as a

plug-in card in a host or server enviroment. It contains four internal processing engines.

Each engine has an external interface to a ZBT SRAM memory bank. These memory banks

store the compiled regular expression rules that are used for matching against input data

packets. Through the PCI interface, the host downloads the compiled rules to the SafeXcel-
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4850, sends data packets and reads back match results. A Regular Expression compiler

reads a list of user-defined regular expression rules and target memory map locations for

the SafeXcel-4850, and generates a binary output file, which then gets downloaded to the

SafeXcel-4850 and external memory. Once the compiled rules are downloaded, packets

can be sent and match results can be read to and from the SafeXcel-4850.

NetScreen developed the Intrusion Detection and Prevention (IDP) system, which

supports payload analysis [29]. NetScreen-IDP can store a few hundreds of contents and

serve between 20 Mbps to 1 Gbps throughput. PMC-Siera ClassiPi is a network classifica-

tion processor that performs packet classification and analysis up to OC48 (2.5 Gbps) rates

[30]. It provides forward and reverse content searches, single or multiple match identifica-

tion, and prioritized match selection on multiple matches. The Fast filter processor (FFP)

of Broadcom’s StrataSwitch II offers a limited analysis of the application data [27]. Broad-

com’s FFP processing engine examines up to the 80th byte of an incoming packet in order

to support intrusion detection applications. Cisco PIX 500 Series firewalls (535, 525, 506E,

501) offer limited protection from data-driven attacks, and they provide 10 to 1700 Mbps

of firewall throughput [28]. ”Fixup” commands of Cisco’s PIX provide some deep packet

inspection capabilities [19]. Finally, TippingPoint’s intrusion prevention system that uses

regular expressions for payload matching [32]. TippingPoint’s UnityOne series is capable

to serve 50Mbps to 2 Gbps throughput.
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CHAPTER 4

DISCRETE COMPARATORS

The first architecture, presented in this thesis, uses discrete comparators for pattern match-

ing [43]. The entire design is fully pipelined, exploits parallelism to increase processing

bandwidth, and uses a fast fan-out tree to distribute the incoming data to each compara-

tor. Detailed performance and area results are presented, showing that discrete comparator

approach achieves high throughput, but has significant area cost.

4.1 Discrete Comparators Architecture

The architecture of an FPGA-based NIDS system includes blocks that match header fields

rules, and blocks that perform text match against the entire packet payload. Of the two,

the computationally expensive module is the text match. In this work we assume that it it

relatively straightforward to implement the first module(s) at high speed since they involve

a comparison of a few numerical fields only, and focus in making the pattern match module

as fast as possible.

If the text match operates at one (input) character per cycle, the total throughput is

limited by the operating frequency. To alleviate this bottleneck, other researchers suggested

using packet parallelism where multiple copies of the match module scan concurrently

different packets [36]. However, due to the variable size of the IP packets, this approach

may not offer the guaranteed processing bandwidth. Instead, we use discrete comparators

to implement a CAM-like functionality. Since each of these comparators is independent,

we can use multiple instances to search for a pattern in a wider datapath. A similar approach

has been used in [13].

The results of the system are (i) an indication that there was indeed a match, and

(ii) the number of the rule that did match. Our architecture uses fine grain pipeline for all

sub-modules: fan-out of packet data to comparators, the comparators themselves, and for
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Figure 4.1. FPGA NIDS system: Packets arrive and are fan-out to the matching engines.N
parallel comparators processN characters per cycle (four in this case), and the matching
results are encoded to determine the action for this packet. The shaded header matching
logic, involves numerical field matching.

the encoder of the matching rule. Furthermore to achieve higher processing throughput, we

utilize N parallel comparators per search rule, so as to processN packet bytes at the same

time. In the rest of this section we expand on our design in each of these sub-modules.

The overall architecture is depicted in Figure 4.1. In the rest of the chapter we concentrate

on the text match portion of the architecture, and omit the shaded part that performs the

header numerical field matching. We believe that previous work in the literature has fully

covered the efficient implementation of such functions [36, 13]. Our implemented design,

presented in [43], includes a fan-out tree that distributes the incoming packet data, parallel

content matchers, and an encoder that encodes the comparators’ results. Next we describe

the details of the three main sub-systems: the comparators, the encoder and the fan-out

tree.

4.1.1 Pipelined Comparator

Our pipelined comparator is based on the observation that the minimum amount of logic in

each pipeline stage can fit in a 4-input LUT and its corresponding register. This decision
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was made based on the structure of Xilinx CLBs, but the structure of recent Altera devices

is very similar so our design should be applicable to Altera devices as well. In the resulting

pipeline, the clock period is the sum of wire delay (routing) plus the delay of a single logic

cell (one 4-input LUT + 1 flip-flop). The area overhead cost of this pipeline is zero since

each logic cell used for combinational logic also includes a flip-flop. The only drawback

of this deep pipeline is a longer total delay (in clock cycles) of the result. However, since

the correct operation of NIDS systems does not depend heavily on the actual latency of

the results, this is not a critical restriction for our system architecture. In section 4.2 we

evaluate the latency of our pipelines to show that indeed they are within reasonable limits.
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Figure 4.2. (a) Pipelined comparator, which matches pattern ”ABC”. (b) Pipelined com-
parator, which matches pattern ”ABC” starting at four different offsets (+0..+3).

Figure 4.2(a) shows a pipelined comparator that matches the pattern ”ABC”. In the

first stage the comparator matches the 6 half bytes of the incoming packet data, using six

4-input LUTs. In the following two stages the partial matches are AND-ed to produce the

overall match signal. Figure 4.2(b) depicts the connection of four comparators that match

the same pattern shifted by zero, one, two and three characters (indicated by the numerical

suffix in the comparator label). ComparatorcomparatorABC+0checks bytes 0 to 2,com-

parator ABC+1checks bytes 1 to 3 and so on. Notice that the choice of four comparators

is only indicative; in general we can useN comparators, allowing the processing ofN

bytes per cycle.
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4.1.2 Pipelined Encoder

After the individual matches have been determined, the matching rule has to be encoded

and reported to the rest of the system (most likely software). We use a hierarchical pipelined

encoder. In every stage, the combinational logic is described by at most 4-input, 1-output

logic functions, which is permitted in our architecture.

The described encoder assumes that at most one match will occur in order to operate

correctly (i.e. it is not a priority encoder). While in general multiple matches can occur

in a single cycle, in practice we can determine by examining the search strings whether

this situation can occur in practice. If all the search patterns have distinct suffixes, then

we are ensured that we will not have multiple matches in a single cycle. However, this

guarantee becomes more difficult as we increase the number of concurrent comparators. A

pipelined version of a priority encoder, which will be able to correctly handle any search

string combination, is part of this thesis future work (section 7.2).

4.1.3 Packet data Fan-out

The fan-out delay is major slow-down factor that designers must take into account. While

it involves no logic, signals must traverse long distances and potentially suffer significant

latencies. To address this bottleneck we created a register tree to ”feed” the comparators

with the incoming data. The leaves of this tree are the shift registers that feed the com-

parators, while the intermediate nodes of the tree serve as buffers and pipeline registers at

the same time. To determine the best fan-out factor for the tree, we experimented with the

Xilinx tools, and we determined that for best results, the optimal fan-out factor changes

from level to level. In our design we used small fan-out for the first tree levels and increase

the fan-out in the later levels of the tree up to 15 in the last tree level. Intuitively, that is

because the first levels of the tree feed large blocks and the distance between the fed nodes

is much larger than in last levels. We also experimented and found that the optimal fan-out

from the shift-registers is 16 (15 wires to feed comparators and 1 to the next register of
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shift register).

4.1.4 VHDL Generator

Deriving a VHDL representation of a string matching module starting from a Snort rule

is very tedious; to handle tens or hundreds of rules is not only tedious but extremely error

prone. Since the architecture of our system is very regular, we developed a C program

that automatically generates the desired VHDL representation directly from Snort pattern

matching expressions, and we used a simple PERL script to extract all the patterns from a

Snort rule file.

4.2 Evaluation Results

The quality of an FPGA-based intrusion detection system can be measured mainly using

performance and area metrics. We measure performance in terms of operating frequency

(to indicate the efficiency of our fine grain pipelining) and total throughput that can be

serviced, and area in terms of total area needed, as well as area cost per search pattern

character.

We used four sets of rules to evaluate our proposed architecture. The first two are ar-

tificial sets that cannot be optimized (i.e. at every position all search characters are distinct),

and contain 10 rules matching 10 characters each (Synth10), and 16 rules of 16 characters

each (Synth16). We also used the ”web-attacks.rules” from the Snort distribution, a set of

47 rules to show performance and cost for a medium size rule set, and we used the entire

set of web rules (a total of 210 rules) to test the scalability of our approach for larger rule

sets. The average search pattern length for these sets was 10.4 and 11.7 characters for the

Web-attack and all the Web rules respectively.

We synthesized each of these rule sets using the Xilinx tools (ISE 4.2i) for several

devices (the -N suffix indicates speed grade): Virtex 1000-6, VirtexE 1000-8, Virtex2 1000-
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5, VirtexE 2600-8 and Virtex2 6000-5. The structure of these devices is similar and the area

cost of our design is expected (and turns out) to be almost identical for all devices, with the

main difference being the performance.

Rule Set Synth10 Synth16 Web attacks Web-all

# Patterns (rules) 10 16 47 210

Av. Pattern Size 10 16 10.4 11.7

(characters)

Virtex MHz 193 193 171

1000 Wire delay 56.7% 45.2% 61.9%

-6 Gbps 6.176 6.176 5.472

VirtexE MHz 272 254 245

1000 Wire delay 54.6% 57.5% 49.8%

-8 Gbps 8.707 8.144 7.840

Virtex2 MHz 396 383 344

1000 Wire delay 37.4% 54.1% 58.7%

-5 Gbps 12.672 12.256 11.008

VirtexE MHz 204

2600 Wire delay 70.2%

-8 Gbps 6.528

Virtex2 MHz 252

6000 Wire delay 69.7%

-5 Gbps 8.064

Table 4.1. Discrete Comparator Performance Results: operating frequency, processing
throughput, and percentage of wiring delay in the critical path.

4.2.1 Performance

Table 4.1 summarizes our performance results. It lists the number of rules, and the average

size of the search patterns for our rule sets. It also lists the frequency we achieved using

the Xilinx tools (ISE 4.2i), the percentage of wiring delay in the total delay of the critical
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path and the achieved throughput (in Gbps) that the design with four parallel comparators

is able to achieve. For brevity we only list results for four parallel comparators, i.e. for

processing 32 bits of data per cycle. The reported operating frequency gives a lower bound

on the performance using a single (or fewer) comparators.

For our smaller synthetic rule set (labeled Synth10) we are able to achieve through-

put in excess of 6 Gbps for the simplest devices and over 12 Gbps for the advanced devices.

For the actual Web attack rule set (labeled 47x10.4), we are able to sustain over 5 Gbps for

the simplest Virtex 1000 device (at 171 MHz), and about 11 Gbps for a Virtex2 device (at

344 MHz). The performance with a VirtexE device is almost 8 Gbps at 245 MHz. Since the

architecture allows a single logic cell at each pipeline stage, and the percentage of the wire

delay in the critical path is around 50%, it is unlikely that these results can be improved

significantly. However, the results for larger rule sets are more conservative. The complete

set of web rules (labeled 210x11.7) operates at 204MHz with a throughput of 6.5 Gbps on

a VirtexE, and at 252MHz having 8 Gbps throughput on a Virtex2 device. Since the entire

design is larger, the wiring latency contribution to the critical path has increased to 70% of

the cycle time. The total throughput is still substantial, and can be improved by using more

parallel comparators, or possibly by splitting the design in sub-modules that can be placed

and routed in smaller area, minimizing the wire distances and hence latency.

4.2.2 Area Cost and Latency

Table 4.2 lists the total area and the area required per search pattern character (in logic

cells) of rules, the corresponding device utilization, as well as the dimensions of the rule

set (number of rules and average size of the search patterns). In terms of implementation

cost of our proposed architecture, we see that each of the search pattern characters costs

between 15 and 20 logic cells depending on the rule set. However, this cost includes four

parallel comparators, so the actual cost of each search pattern character is roughly 4-5 logic

cells multiplied byN for N times larger throughput.

2LC stands for Logic Cell, i.e. of a Slice).
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Synth10 Synth16 Web attacks Web-all

# Patterns 10 16 47 210

Av. Pattern Size 10 16 10.4 11.7

Virtex 1000-6 1,728 LC2 3,896 LC 8,132 LC

7% 15% 33%

VirtexE 1000-8 1,728 LC 3,896 LC 7,982 LC

7% 15% 33%

Virtex2 1000-5 1,728 LC 3,896 LC 8,132 LC

16% 38% 80%

VirtexE 2600-8 47,686 LC

95%

Virtex2 6000-5 47,686 LC

71%

Average 17.28 15.21 16.9 19.40

(LC per character)

Table 4.2. Discrete Comparator Area Cost Analysis

We compute the latency of our design taking into account the three components of

our pipeline: fan-out, match, encode. Since the branching factor is not fixed in the fan-out

tree, we cannot offer a closed form for the number of stages. Table 4.2.2 summarizes the

pipeline depths for the designs we have implemented:3 + 5 + 4 = 12 for the Synth10 and

Synth16 rule set,3 + 6 + 5 = 14 for the Web Attacks rule set, and5 + 6 + 7 = 18 for the

Web-all rule set. For 1,000 patterns and pattern lengths of 128 characters, we estimate the

total delay of the system to be between 20 and 25 clock cycles.

We also evaluated resource sharing to reduce the implementation cost. We sorted

the 47 web attack rules, and we allowed two adjacent patterns to share comparatori if

their ith characters were the same, and found that the number of logic cells required to

implement the system was reduced by about 30%. This is a very promising approach that

reduces the implementation cost and allows more rules to be packed in a given device.



30

Rule set Synth10/ Web Web-all Future

Synth16 attacks

#Patterns (rules) 10/16 47 210 1,000

Av. Pattern Size (char) 10/16 10.4 11.7

Max Pattern Size (char) 10/16 40 62 128

Pipeline Fan-out 3 3 5 5-10

Depth Comparators 5 6 6 6

# Clock Encoder 4 5 7 9

Cycles Total 12 14 18 20-25

Table 4.3. Discrete Comparator Pipeline Depth

4.3 Summary

Thw discrete comparator architecture is able to achieve high performance, but at a signifi-

cant area cost. This approach requires about 4-5 logic cells to match a single character, and

therefore can store only a few hundreds patterns in a single FPGA. Currently, the compelete

SNORT ruleset includes about 1,600 patterns, so this architecture should be improved in

order to reduce design area. In the next chapter an improved architecture is described that

allows character sharing, requires fewer resources, while maintaining high performance.
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CHAPTER 5

DECODED CAMS

The discrete comparator architecture, presented in the previous chapter, has high area cost.

This chapter presents a better architecture, with much lower area cost and similar perfor-

mance. Techniques such as partitioning, pre-decoding, and wide data distribution buses,

are proposed in order to improve this architecture. Finally, performance and area results

are presented, and this architecture is compared with discrete comparator approach.

5.1 Decoded CAM Architecture

The overall organization of a pattern matching system is simple: a single input supplies the

input stream of characters, and the output is an indication that a match did occur, plus the

identifier of the matching rule. The details of this system (e.g. the encoder of matching

signals, etc) are straightforward, we concentrate on the actual pattern matching block.

In chapter 4, we assumed the simple organization depicted in Figure 5.1(a). The

input stream is inserted in a shift register, and the individual entries are fanned out to

the pattern comparators. Therefore, in order to search for strings “AB” and “AC”, we

have two comparators fed from the first two position of the shift register. Figure 5.1(a)

reflects the FPGA implementation where each 8-bit comparator is broken down to two 4-bit

comparators, each of which fits in one LUT. This implementation is simple and regular, and

with proper use of pipelining it can achieve very high operating frequencies. Its drawback

is the high area cost. To remedy this cost, in our previous work we had suggestedsharing

the character comparators for strings with “similarities”. This is shown in Figure 5.1(b)

where the result of a single comparator for character A is shared between the two search

strings “AB” and “AC”. Our preliminary results at the time indicated an area improvement

of at least 30%.
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Figure 5.1. Basic CAM Comparator structure and optimization. Part (a) depicts the
straightforward implementation where a shift register holds the lastN characters of the
input stream. Each character is compared against the desired value (in two nibbles to fit
in FPGA LUTs) and all the partial matches are combined with an AND gate to produce
the final match result. Part (b) depicts an optimization where the match “A” signals are
shared across the two search strings “AB” and “AC” to save area.

The Pre-Decoded CAM architecture (DCAM), presented in [44], builds on this idea

extending it further by the following observation: instead of keeping a window of input

characters in the shift register each of which is compared against search patterns, we can

first test for equality of the input for the desired characters, and then delay the partial

matching signals. These two approaches are compared in Figure 5.2. Part (a) corresponds

to our earlier design with the LUT details abstracted away in the equality boxes. Part (b)

shows how we can first test for equality of the three distinct characters of interest and then

delay the matching of character A to obtain the complete match for strings “AB” and “AC”.

This approach achieves not only the sharing of the equality logic for character A, but also

transforms the 8-bit wide shift register used in part (a) into possibly multiple single bit shift

registers for the equality result(s). Hence, if we can exploit this advantage, the potential for

area savings is significant.
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Figure 5.2. Comparator Optimization: starting from the shared comparator implementation
of part (a) we can move the comparatorsbeforethe shift register, and delay the matching
signals properly to achieve the correct result. Note that the shift register is 8-bit wide in
part (a), and 1-bit wide part (b).

One of the possible shortfalls of the DCAM architecture is that the number one

single bit shift registers is proportional to the length of search patterns. Figure 5.3 illustrates

this point: to match a string of length four characters, we (i) need to test equality for these

four characters (in the dashed “decoder” block), and to delay the matching of the first

character by three cycles, the matching of the second character by two cycles, and so on,

for the width of the search pattern. In total, the number of storage elements required in this

approach isL ∗ (L− 1)/2 for a string of length L. For many and long search patterns, this

number can exceed the number of bits in the character shift register used in the original

CAM design. To our advantage though is the fact that these shift registers are true FIFOs

with one input and one output, in contrast with the shift registers in the simple design in

which each entry in the shift register is fan-out to comparators.

To tackle this possible obstacle, we use two techniques. First, we reduce the number

of shift registers by sharing their outputs whenever the same character is used in the same

position in multiple search patterns. This technique is similar to the comparator sharing

depicted in figure 5.1(b). Second, we use the SRL16 optimized implementation of shift

register (described in more detail in the following subsection) that is available in recent

Xilinx devices that uses a single logic cell for a shift register of any width up to 16. Together
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Figure 5.3. Details of Pre-decoded CAM matching: four comparators provide the equality
signals for characters A, B, C, and D. To match the string “ABCD” we have to remember
the matching of character A 3 cycles earlier, the matching of B two cycles earlier, etc,
until the final character is matched in the current cycle. This is achieved with the shift
registers of width 3, 2, ... at the proper match lines.

these two optimizations lead to significant area savings as we will show in the evaluation

section. In the following subsections we describe the techniques we used to achieve an

efficient implementation of the DCAM architecture.

5.1.1 Xilinx SRL16 shift register

The Xilinx SRL16 cell is a shift register with a programmable width up to 16 bits. It uses

the 16×1 storage space that implements the Lookup Table, and as a result it is implemented

with a single Logic Cell. The four inputs that usually are the LUT’s inputs are used to

determine the width of the shift register. While the SRL16 provides synchronous output, for

timing reasons it is beneficial to add an additional flip-flop to its output. This configuration

provides a better timing solution and simplifies the design [47]. In addition it allows a

single logic cell to implement a shift register with width of up to 17 bits. Figure 5.4 shows

the detailed block diagram of a logic cell configured as a SRL16 shift register.

In our design, we use one SRL16 cell at the output of each equality test (i.e. for

each distinct character) and for each location (offset) where this character appears in a
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Figure 5.4. Xilinx Logic Cell SRL16 structure. Fully synchronous Shift Register.

search pattern. However, we share the output of the SRL16 cells for search pattern charac-

ters that appear in the same position in multiple search strings. To avoid fan-out problems

we replicate SRL16 cells so that the fanout does not exceed 16. This is based on an ex-

perimental evaluation we performed on Xilinx devices that showed that when the fanout

exceeds 16 the operating frequency drops significantly.

5.1.2 Techniques to Increase Performance

In order to achieve better performance we used techniques to improve the operating speed,

as well as the throughput of our DCAM implementation. To achieve high operating fre-

quency, we use extensive fine grain pipeline in a manner similar to our earlier work. In

fact, each of our pipeline stages consists of a single processing LUT and a pipeline register

in its output. In this way the operating frequency is limited by the latency of a single logic

cell and the interconnection wires. To keep interconnection wires short, we addressed the

long data distribution wires that usually have large fan-out by providing a pipelined fan-out

tree. More details on these two techniques can be found in [43].

As alluded earlier, to increase the processing throughput of a DCAM we can use

parallelism. Similar to our previous work we can widen the distribution paths by a factor

of P providingP copies of comparators(decoders) and the corresponding matching gates.

Figure 5.5 illustrates this point forP = 2. The single string ABC is searched for starting
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Figure 5.5. Decoded CAM processing 2 characters per cycle: Two sets of comparators
provide matching information for the two character positions. Their results have to be
properly delayed to ensure matching of the string ABC starting at an offset of either 0 or
1 within the 16-bit input word.

at offset 0 or 1 within the 2-byte wide input stream, and the two partial results are OR-

ed to provide the final match signal. This technique can be used for any value ofP , not

restricted to powers of two. Note also that the decoders provide the equality signalsonly

for the distinct characters in theN search patterns. Therefore we can reduce the required

area (and the fanout of the input lines) if the patterns are “similar”. In the next subsection

we exploit this behavior to further reduce the area cost of DCAMs.

5.1.3 Search Pattern Partitioning

In the DCAM implementation we use partitioning to achieve better performance and area

density. In terms of performance, a limiting factor to the scaling of an implementation

to a large number of search patterns is the fanout and the length of the interconnections.

For example, if we consider a set of search patterns with 10,000 uniformly distributed

characters, we have an average fanout of 40 for each of the decoders outputs. Furthermore,

the distance between all the decoders outputs and the equality checking AND gates will be

significant.

If we partition the entire set of search patterns in smaller groups, we can implement
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the entire fanout-decode-match logic for each of these groups in a much smaller area, re-

ducing the average length of the wires. This reduction in the wire length though comes at

the cost of multiple decoders. With grouping, we need to decode a character for each of

the group in which they appear, increasing the area cost. On the other hand, the smaller

groups may require smaller decoders, if the number of distinct characters in the group is

small. Hence, if we group together search patterns with more similarities we can reclaim

some of the multi-decoder overhead.

In the partitioned design, each of the partitions will have a structure similar to the

one depicted in Figure 5.6. The multiple groups will be fed data through a fanout tree, and

all the individual matching results will be combined to produce the final matching output.

Each of the partitions will be relatively small, and hence can operate at a high

frequency. However, for large designs, the fanout of the input stream must traverse long

distances. In our designs we have found that these long wires limit the frequency for
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the entire design. To tackle this bottleneck we used multiple clocks: one slow clock to

distribute the data across long distances over wide busses, and a fast clock for the smaller

and faster partitioned matching function. The idea is shown in Figure 5.7.

Experimenting with various partition sizes and slow-to-fast clock speed ratios we

found that reasonable sizes for groups is between 64 and 256 search patterns, while a slow

clock of twice the period is slow enough for our designs.

5.1.4 Pattern Partitioning Algorithm

To identify which search patterns should be included in a group we have to determine the

relative cost of the various different possible groupings. The goal of the partitioning algo-

rithm is (i) to minimize the total number of distinct characters that need to be decoded for

each group, and (ii) to maximize the number of characters that appear in the same position

in multiple copies of search patterns of the group (in order to share the shift registers). For
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this work we have implemented a simple, greedy algorithm that partitions iteratively the

set of search strings according to the following steps:

1. First we create an array with one entry for each search pattern. Each array entry

contains the set of distinct characters in the search string.

2. Starting with a number of empty partitions or groups, we first perform a step of initial

assignment of search patterns to obtain a “seed” pattern in each group of the different

groups.

3. Then we use an iterative method: for each group we select an unassigned search

pattern so that the cost of adding it to the group is the least among the unassigned

patterns. The cost is computed by finding the set difference between the set of char-

acters used already by the group and the set of characters in the search pattern under

consideration. We iterate among all groups and all search patterns until all the pat-

terns have been assigned to a group.

Our algorithm implements a simple heuristic and does not guarantee an optimal

partitioning of the search patterns. However, we have compared it with a straightforward

approach of just sorting the search patterns, and we found that using the group identified

by our algorithm the area cost was about 5% smaller and 5% faster than the one using

partitioning based on sorted search patterns. Our algorithm is more efficient in minimizing

the number of shift registers requiring 9% fewer shift registers as compared to the sorting

the search patterns. For the entire SNORT rule set and using 24 groups, our algorithm

produced groups that contain an average of 54 distinct search characters each. Therefore

each of the decoders is significantly smaller that a full 8-to-256 decoder.

5.2 Evaluation

We evaluate the efficiency of our DCAM architecture and implementation using two main

metrics: performance in terms of operating frequency and processing throughput, and area
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cost in terms of required FPGA logic cells and slices. We implemented the DCAM ar-

chitecture on Xilinx Virtex2 and Spartan3 devices at -6 and -5 speed grade respectively,

and varied the exact device model i order to keep the device utilization above 70%. We

generated the VHDL description for the implementation automatically from the SNORT

rule set according to the results of our partitioning algorithm. To evaluate the impact of

partitioning on our proposed architecture, we considered three different group sizes: 64,

128, and 256 rules per group. Experimentally we have found that groups smaller than 64

or larger than 256 rules are inefficient and that the range 64-256 is sufficient to explore

grouping efficiency. We used the official SNORT rule set [38] which consists of a total of

about 1,500 rules and a corresponding 18,000 characters. Finally, we also considered the

use of parallelism to increase throughput and we implemented a DCAM the process 4 bytes

per cycle (P = 4).

5.2.1 DCAM Performance and Area Evaluation

Our first step is to evaluate the basic performance and cost of DCAMs. Figure 5.8 and

5.9 plots, for Virtex2 and Spartan3 devices, the performance both in terms of operating

frequency, as well as in processing throughput (Gbps) for the three group sizes (64, 128,

256 rules per group) and for rule sets with sizes between 4,000 and 18,000 total characters.

We can see that all the different designs achieve operating frequencies between 335 and

385MHz for Virtex2 and between 250 to 263 on Spatran3. This corresponds to a processing

bandwidth between 2.6 and 3 Gbps and 2 to 2.1 respectively. From our results we can draw

two general trends for group size. The first is that smaller group sizes are more insensitive

to the total design size (the plot for group size of 64 rules is almost flat). The second is that

when the group size approaches 256 the performance deteriorates, indicating that optimal

group sizes will be in the 64-128 range.

We measured area cost and plot the number of logic cells needed for each search

pattern character in Figure 5.10. Unlike performance, the effect of group size on the area

cost is more pronounced. As expected, larger group sizes result in smaller area cost due to
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.
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the smaller replication of comparators in the different groups. Similar to performance, the

area cost sensitivity to total rule set size increases with group size. In all, the area cost for

the entire SNORT rule set is about 1.28, 1.1 and 0.97 logic cells per search pattern character

for group sizes of 64, 128 and 256 rules respectively. This cost includes all overhead of

fan-out of the input data, as well as of the output encoder and the slow-to-fast and fast-to-

slow converters, and is comparable to (or even better than) area costs of designs based on

finite automata. While smaller group sizes offer the best performance, it appears that if we

also take into account the area cost, our medium group size (128) becomes more attractive.

In Figure 5.11 shows the area cost of the same designs, implemented in Spartan3 devices.

The number of occupied logic cell is different compared to designs implemented in Virtex2.

This is because the number of logic cells is calculated based on the occupied slices, and

Xilinx ISE P&R tool has different placement parameters for Virtex2 and Spartan3 devices.

Therefore, the reported occupied slices is slightly higher for Spartan3. However the number

of used logic cells and flip-flops is the same.

DCAM Area Cost (P=1)

Virtex2

0.7

0.9

1.1

1.3

1.5

0 5k 10k 15k 20k

Number of matching characters

L
o

g
ic

 C
e

ll
s
 p

e
r

c
h

a
ra

c
te

r

Group 64 Group 128 Group 256

Figure 5.10. DCAM Area cost in terms of operating frequency and throughput for the
group sizes of 64, 128, and 256 rules, for Virtex2 devices.
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5.2.2 Designs with parallelism

As we described earlier, we can utilize parallelism to increase the processing throughput

of a DCAM. In this subsection we evaluate the performance and cost of a DCAM of four

parallel matching structures, i.e. a DCAM that processes 4 input bytes per cycle. We used

a group set of 64 rules based on the results of Figure 5.8, and the observation that since

each group include four comparators, it would be roughly equivalent in size to a group of

size 256 of the single-byte processing equivalent design. Figure 5.12 plots the performance

in terms of operating frequency and corresponding processing throughput (Gbps) for rule

set sizes ranging from 4,000 to 18,000 search pattern characters. As expected the perfor-

mance drops as the total design size increases, and the operating frequency is lower than

for DCAMs processing a single character per cycle. For medium sized designs, a DCAM

can operate at around 330MHz, while for our largest rule set (the entire SNORT rule set)

the DCAM operates at 300MHz. These frequencies correspond to processing throughput

of 10.5 and 9.7 Gbps respectively. For Spartan3 devices the operating frequency is 154
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Figure 5.12. DCAM Performance (operating frequency and throughput) for 4-byte per
cycle processing (P = 4) and group size of 64 rules.

to 215 and the throughput between 4.9 and 6.85 Gbps. The reason for the sharp drop in

performance for the two largest rule set designs in Spartan3 is that while the designs can fit

in the FPGA device, the area utilization is 98% and 99%, resulting in poorer placement of

interconnection wires.

The area cost per search pattern character is shown in Figure 5.13 (solid lines). De-

pending on the design size, the number of required logic cells per search pattern character

is between 3.6 and 3.9 for Virtex2 and 3.7-5.1 for Sprtan3. Since each search pattern char-

acter is searched for in four different locations (within the 4-byte input word), the actual

area cost of matching one character at one location is less that one for the entire SNORT

rule set, smaller than for our earlier reported cost.

The area cost report of the Xilinx tools report area cost (device utilization) in terms

of occupied slices. However, one slice contains 2 logic cells, and is reported to be occupied

even if one of the two is in use. Hence it is possible that the exact cost will actually be

smaller if the unused logic cells in slices can be used for other logic. Our DCAM design

always uses a flip-flop after each LUT, and it uses flip-flops without corresponding logic

for signal fan-out. Hence, it is possible to measure the exact DCAM cost by counting flip-
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Figure 5.13. DCAM Area cost for 4-byte per cycle processing (P = 4) and group size of 64
rules. The dashed line is computed counting flip-flop instead of slice utilization.

flops, and fortunately the P&R tools report the flip-flop utilization. We used this number

to compute the area cost in terms of flip-flops, and plotted the results in Figure 5.13 with a

dashed line. Using this metric and for the entire SNORT rule set, the cost per search pattern

character is around 3.2 flip-flops per character, compared to the 3.6 logic cells per character

reported by the P&R tools.

5.3 Comparison of DCAM and Discrete Comparator CAM

To get a better feeling for the improvement of the DCAM architecture compared to our

earlier discrete comparator CAM design, we implemented the rule sets we used in our

previous article in the DCAM architecture. These rule sets were smaller for two reasons:

first the area cost was higher, and fewer rules could fit in a given device. Second, our earlier

work focused mainly on high performance, and gave optimal results for a few hundred of

rules. In our earlier work we reported performance and area cost for processing 4 bytes per

cycle (i.e. P = 4). Hence to obtain results that would be directly comparable, we used

the same parallelism setting and implemented a 4-byte per cycle DCAM. We also refrain
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Figure 5.14. Performance comparison between the Discrete Comparator CAM and the
DCAM architectures.

from using partitioning in the DCAM both to remain closer to the previous design but also

because the number of rules is small.

Figure 5.14 plots the operating frequency for our earlier architecture (tagged CAM)

and our proposed DCAM architecture for a number of patterns ranging from 50 to 210

rules. The results show that while for the smallest rule set both implementations operate at

340 MHz, when the rule set size increases, the scalability of the DCAM approach is better,

and for 210 rules achieves about 12% better frequency.

Figure 5.15 plots the cost of the designs again in terms of logic cells per search

pattern character. In is clear that the DCAM architecture results in drastically smaller

designs: for the largest rule set, the DCAM area cost is about 4 logic cells per character,

while the cost of our earlier design is almost 20 logic cells per character. All in all, and for

these rule sets, the DCAM architecture offers 12% better performance at an area cost of

about one fifth as compared to our discrete comparator CAM design.
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CHAPTER 6

COMPARISON

In this chapter we attempt a fair comparison with previously reported research.

While we have done our best to report these results with the most objective way, we cau-

tion the reader that this task is difficult since each system has its own assumptions and

parameters, occasionally in ways that are hard to quantify. In sections§4.2 and§5.2, we

presented performance and area cost results, to evaluate the efficiency of the proposed

architectures. We measure performance in terms of operating frequency, and throughput

(throughput = frequency × input bits). The cost is measured in terms of logic cells

needed to match a single character. Logic cells are the fundamental element of both Al-

tera’s and Xilinx’s devices3, and therefore, it is the most proper measure for evaluating the

area cost of a design. Additionally, it is important to find a metric, which combines both

performance (throughput) and area cost (logic Cells per character), in order to rank designs

taking into account both performance and cost. In the following section, we describe a per-

formance efficiency metric (PEM), similar to other researchers [7, 6, 15], which is used to

evaluate designs efficiency. After introducing PEM, a comparison between our approaches

and related work is presented. During the comparison, we use PEM, performance, and cost

results, and also analyze the characteristics of each approach. Until 2003, all research in

this area was on systems that had either high performance but were costly or systems that

had very low cost at the expense of low performance. Since then, researchers started paying

attention to the system level efficiency. Techniques such as pre-decoding, partitioning, and

character or substring sharing to minimize area cost, and fine-grain pipeline, parallelism,

and efficient data distribution network are used to improve system efficiency. According

to this research timeline, we compare first the discrete comparator architecture with older

related work (published until 2003), and then show comparison charts and present a more

detailed comparison between DCAM and recent related work.

3A logic cell consists of a 4-input LUT and a flip-flop (plus carry chain logic etc.)
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6.1 Performance Efficiency Metric

In order to evaluate our proposed architectures, and compare them with the related re-

search taking into account both performance and area cost, we introduce the Performance

Efficiency Metric or PEM , which is described by the next equation:

PEM =
Performance

Area Cost
=

Throughput
Logic Cells
Character

(6.1)

Performance is measured in terms of throughput (Gbps) supported by a design, and

area cost in terms of occupied logic cells needed for a design that stores a certain number

of matching characters. PEM evaluates the throughput achieved by a design for a given

search pattern set, and combines it with the logic cell occupancy. Therefore, it rewards

architectures that strike a balance between throughput and area cost. High throughput or

low area cost alone is not enough for a system to achieve high PEM.

This metric has also been used by Baker and Prasanna [7, 6] and Clark and Schim-

mel [15], pointing out the need of a metric, which evaluated designs efficiency, including

both throughput and area cost parameters. While these metrics have some differences, they

are based on the same idea.

6.2 Comparison Methodology

Comparing Discrete Comparator and DCAM architectures with related work, requires a

detailed architectural comparison, analyzing the specifications of each approach, the char-

acteristics of the implemented rules, and the device family used in each case. Using the

”PEM”, introduced in the previous section, makes this comparison easier, since it com-

bines both throughput and area cost in a single metric. However, PER is not enough to

evaluate designs. The matching patterns stored in each design, effect performance. For

example, for large ruleset designs that include many distinct characters is harder to share
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common characters, and therefore is difficult to achieve high performance and low area

cost. Additionally, designs that perform exact pattern matching require more resources

than other designs that allow false positives. Another factor that effects design efficiency

is partitioning. As mentioned in section 5.1.3, partitioning designs in smaller groups in-

creases performance, but also increases area cost. Therefore, designs that are partitioned in

many groups have higher area cost as compared to designs without partitioning or designs

with fewer partitions. In the next subsection, a comparison between discrete comparator

architecture and previous related work is presented. Finally, a more detailed comparison of

DCAM architecture and recent related work follows in sections 6.3 and 6.4.

6.3 Discrete Comparators compared to Previous Work

In this subsection we compare our first discrete comparators architecture with related work

published in the same period or before discrete comparators approach. Table 6.3 summa-

rizes the characteristics of every design (input width, device used, number of characters

stored), the performance results(operating frequency, throughput), cost results(occupied

logic cells, logic cells per character), and also the PEM metric of every design.

The discrete comparator architecture, using fine-grain pipeline and parallelism,

could achieve roughly twice the operating frequency and throughput on the same or equiv-

alent devices compared to the other architectures. Our 210-rule implementation achieved

at least double throughput compared to the fastest (until then) implementation. However

the area cost was 4-5 logic cells per search pattern character (multiplied byN for designs

that processN characters per cycle), when other designs needed between 1.1 and 2.5 logic

cells per matching character [22, 14]. PEM of discrete comparators is higher than every

other design, except Clark’s et al. architecture [14]. That’s because decoded NFA’s have

very low area cost, due to the centralized decoders, which allow excellent character shar-

ing. Discrete comparators have 70% better operating frequency than decoded NFA’s. On

the other hand, Clark’s design has more than double PEM compared to Discrete compara-

tors, which is the highest PEM until then, due to its low area cost (1
4
× compared to our
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Description Input Device Freq. Throu- Logic Logic #Chara- PEM.

Bits/ MHz ghput Cells4 Cells cters

c.c. (Gbps) /char

Sourdis- Virtex-1000 171 5.472 8,132 16.64 0.33

Pnevmatikatos[43] VirtexE-1000 245 7.840 7,982 16.33 488 0.48

Discrete 32 Virtex2-1000 344 11.008 8,132 16.64 0.66

Comparators VirtexE-2600 204 6.524 47,686 19.4 2,457 0.34

Virtex2-6000 252 8.064 47,686 19.4 0.42

Gokhale et al.[23]Dis.Comp 32 VirtexE-1000 68 2.176 9,722 15.2 640 0.14

Cho et al.[13] Dis. Comp 32 Altera EP20K 90 2.880 17,000 10.55 1,611 0.27

Baker e al.KMP[7] 8 Virtex2Pro-4 221 1.800 102 3.19 32 0.56

Baker et al.KMP[7]10 285 2.400 130 4.06 0.59

Sidhu et al.[40]NFAs 8 Virtex-100 57.5 0.460 1,920 66 295 0.01

Franklin et al. [22] Virtex-1000 31 0.248 20,618 2.57 8,0036 0.10

NFAs 8 VirtexE-2000 50 0.400 20,618 2.57 0.16

VirtexE-2000 49.5 0.396 40,232 2.52 16,0286 0.16

Clark et al.[14] Dec. NFAs 8 Virtex-1000 100 0.800 19,660 1.1 17,5379 0.73

Moscola et al.[36]DFAs 32 VirtexE-2000 37 1.184 8,1347 19.47 4208 0.06

Table 6.1. Detailed comparison of discrete comparator and previous FPGA-based string
matching architectures.

implementation). Generally, simple NFA/DFA architectures have modest performance and

low area cost, while CAM-based approaches have higher performance and higher area cost.

4Two Logic Cellsform oneSliceand 2 or 4 Slices form oneCLB in Virtex-VirtexE and Virtex2-

Virtex2 Pro devices respectively.
5One regular Expression of the form (a| b)*a(a| b)k for k = 28. Because of the * operator the regular

expression can match more than 29 characters.
6Sizes refer to Non-meta characters and are roughly equivalent to 1600, and 800 patterns of 10 char-

acters each.
7These results do not include the cost/area of infrastructure and protocol wrappers.
821 regular expressions,with 20 characters on average, (420 character).
9over 1,500 patterns that contain 17,537 characters.

10pipelined version of KMP implementation.
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6.4 DCAM Compared to Recent Related work

DCAM architecture, using fine-grain pipelining and parallelism, just like our first approach,

and also partitioning and centralized decoders, achieves to maintain high-speed and signif-

icantly reduces area cost (see section 5.3). In this section we compare DCAM with recent

related work. We evaluate and compare DCAM with two kinds of architecture, the first one

performs exact matching [6, 5, 12, 15] and the second one allows false positives and hence

has lower area cost [6, 18]. All researchers that designed architectures for exact matching,

followed a common solution in order to increase character sharing and reduce cost, the

use of centralized character decoders or ”pre-decoding”. On the other hand, designers that

their architectures do not output only true positives, chose to use approximate filtering or

pre-filtering or exclusion-based string matching. Practically, this means that small high-

speed modules are used to provide quick negatives when the search pattern does not exist

in the incoming data. Incoming packets that are not excluded, may indeed match NIDS

rules or may constitute false positive. We will first provide a detailed comparison with ex-

act matching architectures explaining any architectural and performance differences. After

that, we offer a comparison between DCAM and approximate filtering architectures. We

should take into account, though, that architectures , which allow false positives, require

lower area cost.

A very similar architecture compared to DCAM was presented by Baker and Prasanna.

The most important difference of their ”Unary” approach is that they chose to give more

effort in pre-processing patterns before implementation, in order to group together patterns

with similarities. Another difference is that they did not use SRL16 shift registers to delay

the decoded data, and preferred to use regular registers instead. This decision has higher

area cost, since, in general, more registers than SRL16 are needed to shift the decoded data

(Figure 6.1). They implemented about the same number of characters in a single device

(about 19,000 characters), but they report that their set of patterns has about 100 distinct

characters, which is reduced to 75 distinct characters, because they perform case insen-

sitive matching. On the other hand, our designs store about 1,500 patterns (over 18,000
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Figure 6.1. Baker and DCAM approaches for shifting decoded data. Baker uses 1-bit
registers to shift decoded data, while DCAM uses SRL16 shift registers. Each SLR16
Xilinx cell fits in a single logic cell, and has programmable width up to 16. In this case,
baker’s approach needs 16 logic cells, while DCAM needs only 3 logic cells. Generally,
decoded data do not need to be shifted in every offset. So, in average case DCAM
requires fewer resources for shifting.

characters), having more than 200 distinct characters, and we distinguish characters of dif-

ferent case (upper/lower case). Therefore, it is clear that sharing characters is harder for

the set of patterns we used. In addition, Baker and Prasanna use partitioning, much like we

use in DCAM arhitecture. However, Unary architecture has smaller area overhead for data

distribution. DCAM approach uses slow wide buses do distribute incoming data, which

are converted to narrow and high speed busses to match the processing speed. This de-

cision allows our system to operate in higher operating frequency, but increases its area

cost. These differences justify why DCAM designs support higher throughput, and have

(equally) higher area cost. A more detailed comparison follows in the next paragraphs,

trying to compare designs with similar characteristics i.e. datapath width, partition size,

and total number of matching characters. Figure 6.2 shows the throughput, area cost and
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PEM comparison between DCAM and Baker approaches.

We first compare DCAM with Baker’s ”Unary” designs that process one incoming

byte every cycle, store about the same number of characters (18k-19k), and have similar

partition size (128 and 256 patterns per partition). In these designs DCAMs have about 2

times higher area cost. That’s in part because Baker et al. implemented case insensitive pat-

terns, have fewer distinct characters with the same number of patterns, and hence have bet-

ter character sharing; also they avoid a significant area overhead by using a more efficient

partitioning algorithm (mincut), and not implementing an incoming data distribution net-

work.However, DCAM’s throughput is 2 times higher, regardless of the slower device fam-

ily we use (DCAM is implemented in Virtex2, while Baker et al. used Virtex2Pro). That’s

because, in order to maintain performance, during DCAM implementation, we decided to

replicate SRL16 cells, so that the fan-out does not exceed 16. Additionally, DCAM’s data

distribution network does not limit performance. For these cases, both DCAM’s and Unary

designs have about equal performance efficiency metric. Baker et al. also implemented

designs with larger partitions (333, 512 and 1024 patterns per partition), while we imple-

mented a DCAM design that is not partitioned. These designs achieve similar efficiency,

performance, and area cost. For designs with 4 bytes datapath, DCAM supports more than

twice throughput, while has more than twice the area cost, having again similar efficiency.

Baker’s 8-byte datapath design stores about 400 patterns (less than 30% of DCAM ruleset),

and has only 4 partitions. The efficiency of this design is higher than DCAM’s, however

the supported throughput still falls short.

Baker’s tree-based approach [5], supports similar throughput, and slightly better

area cost, compared to their earlier Unary architecture. Tree-based implementations have

slightly lower area cost compared to DCAM because they allow substring sharing, while

DCAM can share only character comparators. DCAM achieves higher throughput, and has

better or similar PEM (except one tree-based implementation) vs. tree-based architecture.

Figure 6.3 summarizes the PEM, throughput and cost comparison between DCAM

and decoded NFAs [15]. DCAM achieves about 15%-50% better throughput as compared
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to Clark’s et al. decoded NFAs. DCAM’s better operating frequencies and throughput are

generally due to the partitioning and the use of fine-grain pipeline. DCAM has also lower

area cost, for one byte datapath designs, while in designs that process 4 bytes every cycle,

DCAM has slightly higher area cost. In this case, DCAM design has been partitioned in

24 partitions (maybe more than it should), while Clark’s et al. design does not have any

partitioning. Therefore, the partitioning overhead increases our area cost. However, DCAM

has better PEM in all cases.

Cho’s et al. RDL architecture is an alternative discrete comparator approach, which

also uses pre-decoding [12]. RDL has wider pipeline stages compared to DCAM. Cho

et al. counted logic cells instead of slices to measure area cost (Xilinx reports occupied

slices, one slice contains two logic cells, but sometimes only one of the two logic cells is

used). Therefore, we compare DCAMs and Cho’s area cost considering logic cell’s count.

Figure 6.4 shows the performance and cost comparison of DCAM, RDL, and ROM-based

architectures. For designs with equal datapath width, Cho’s RDL design supports about

one half of the DCAM throughput and has about 2 times lower area cost. Cho et al. do

not use partitioning, therefore, their design has better sharing and avoids the partitioning

overhead. The RDL architecture is able to share entire substrings in order to reduce cost.

On the contrary, DCAM can share only character comparators and therefore requires more

area. On the other hand, compared to DCAM’s designs that process one byte every cycle,

RDL has similar or worse performance metric, since it has about double throughput, but

also 2-3 times higher area cost. Cho’s ROM-based approach can serve double throughput

compared to DCAM’s designs (single byte datapath) and has similar or double (vs. DCAM

without partitioning) area cost. So, ROM-based solution has better and in one case similar

efficiency. However, ROM-based approach cannot be used to store the entire SNORT rule-

set due to architecture limitations (see section 3.2.3).

A comparison between DCAM and approximate filtering architectures is presented

next. Approximate filtering architectures do not offer exact matching trading accuracy for

area. Two approximate filtering solutions have been introduced until now, Bloom filters

architecture, implemented by Lockwood’s research group from Washington University of
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St. Louis [18, 4], and Baker’s ”Pre-filtering” architecture [6].

DCAM, compared to Baker’s ”Pre-filtering” architecture, has again about 50% bet-

ter throughput (using slower device), however, its area cost is about 6 times higher. In

this case Baker’s design stores only 200 patterns, while DCAMs store almost 1,500 (24

partitions). Therefore, the partitioning overhead increases DCAM’s area cost dramatically.

Since it is not guaranteed that the start of the matched string will be word-aligned, we repli-

cated matching logicP times (P = degree of parallelism). However, Baker et al. replicate

only the decoder logic and just OR the decoded characters. Hence, the rest of their datapath

is exactly the same as in their one-byte Unary implementation. This means that the only

overhead in Baker’s 4-byte ”pre-filtering” architecture is the replication of decoder -which

is relatively negligible. The probability of positive match for ”pre-filtering” approach is

very small (considering that the incoming bytes are completely random), however, com-

pared to the probability of a true positive, the probability of false positives is significant.

Therefore, it’s expectable for DCAM designs to have at least 4 times higher area cost com-

pared to Baker’s designs that process 4-bytes every cycle.

String matching using Bloom Filters [9] (BFs) is another approximate filtering ap-

proach introduced by Lockwood et al. [18]. Bloom filters can store a very large number

of patterns (a single BF can store over 1400 patterns), however each BF can match only

patterns of the same length, and indicates that some pattern has matched without specifying

which one. Therefore, the use of Bloom filters is a very interesting approach, but there are

significant drawbacks to face. Lockwood’s et al. implementation can store over 35,000

patterns, and supports 0.5 Gbps throughout. On the other hand, due to device limitations it

is difficult, if not impossible to store patterns of every length in a single device. Compared

to DCAM, Bloom filters can store about twenty times more characters, with about 7-10

times less are cost without taking into account the internal block RAMs, however DCAM

achieves about 3-4 times better throughput (consideringthe device families used- Virtex2

is about 50% better compared to VirtexE).
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Description Grou- Input Device Freq. Throu- Logic Logic #Chara- PEM.

ping Bits/ MHz ghput Cells4 Cells cters

c.c. (Gbps) /char

Sourdis- 64 32 Virtex2-6000 303 9.708 64,268 3.56 2.73

Pnevmatikatos[44] Spartan3-5000 154 4.913 66,556 3.69 1.33

64 385 3.080 23,228 1.28 2.41

128 8 Virtex2-3000 372 2.975 19,854 1.1 18,036 2.70

256 335 2.678 17,538 0.97 2.76

Pre-decoded - 8 Virtex2-1500 282 2.254 10,016 0.55 4.05

CAMs 64 261 2.086 26,620 1.47 1.42

128 8 Spartan3-1500 263 2.107 23,100 1.28 1.65

256 250 2.000 19,902 1.1 1.82

- 8 Spartan3-1000 213 1.703 10,170 0.56 3.04

64 32 Spartan3-5000 186 5.941 65,466 4.38 14,917 1.36

Clark et al. [15] - 8 253 2.024 29,281 1.7 1.19

NFAs - 32 Virtex2-8000 219 7.004 54,890 3.1 17,537 2.26

Decoders - 64 114 7.310 93,180 5.3 1.38

Cho et al.[12] RDL w/Reuse - 32 Spartan3-2000 100 3.200 26,607 1.413 19,021 2.2913

Cho et al.[12] ROM-based - 100 3.200 6,136 0.913 6,805 3.5613

1024 185 1.488 8,056 0.41 3.63

512 193 1.547 9,386 0.48 3.22

333 8 179 1.429 10,002 0.51 19,584 2.80

Baker Unary [6] 256 Virtex2Pro-100 192 1.533 10,570 0.54 2.84

128 203 1.623 12,246 0.63 2.58

128 32 141 4.507 30,020 1.53 2.94

128 64 138 8.840 15,474 1.87 8,263 4.72

1024 187 1.495 9,308 0.48 3.15

512 237 1.896 6,340 0.32 5.86

Baker tree-based[5] 333 8 Virtex2Pro-100 197 1.575 10,020 0.51 19,584 3.08

256 213 1.706 10,920 0.56 3.06

128 204 1.633 12,344 0.63 2.59

Baker Pre-filtering [6]11 ? 32 200 6.400 2,649 0.59 4,518 10.85

Lockwood [18]Bloom filters11 - 8 VirtexE-2000 63 0.502 32,640 0.08 420k12 6.28

Table 6.2. Detailed comparison of DCAM and previous FPGA-based string matching ar-
chitectures.

11this architectures do no perform exact matching, they allow false positives.
1225 bloom filters (one for each of the lengths between 2 and 26characters) can store 35,475 patterns.
13Cho et al. count logic cells to calculate area cost, while all the other researchers count slices. Cho’s

designs would have higher area cost and lower PEM if they counted occupied slices.
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Table 6.4 summarizes performance, cost and PEM results of DCAM and all the

above FPGA-based string matching architectures. In all cases, DCAM achieves better

throughput for designs that store the entire SNORT rule-set in a single device, and have

equal datapath width. DCAM’s area cost is in some cases two to three times higher than

others. However, the differences between implemented rule-set, and different partitioning

strategies should be considered. Based on performance efficiency metric, DCAM has worse

(about2
3
) or similar efficiency compared ROM-based approach, similar PEM compared to

Unary, tree-based, and RDL designs (comparing Unary and tree-based designs with similar

partition size), and better compared to decoded NFAs. Finally, compared to approximate

filtering approaches, DCAM has 1.5 to 3 times lower efficiency, since it requires higher

area cost, but supports higher throughput.

6.5 Summary

In this chapter we tried to analyze different string matching approaches, and compare them

with discrete comparator and DCAM architectures, presented in this thesis. It is clear that

each approach has often different specifications, i.e. accuracy, ruleset (case (in)sensitive,

size), device family etc. Each approach is compared in terms of operating frequency,

throughput, and area cost. Additionally, a performance efficiency metric was introduced

to evaluate designs.

Considering PEM, our discrete comparator’s approach (chapter 4), presented in

2003[43], was better compared to all previous approaches (Sidhu et al.[40], Franklin et

al. [22], Moscola et al. [36], Lockwood [34], Gokhale et al. [23]) and slightly better

compared to Baker’s KMP approach [7] (regardless of the slower devices used). DCAM

solution (chapter 5)is about 5 times better to our earlier architecture as mentioned in sec-

tion 5.3. The performance metrics of our DCAM designs are comparable or better than

other recent researchers’ results. In some cases, DCAM’s area cost is higher than other

architectures, however, its supported throughput is the best published until now. Compared

to architectures that perform exact match (Cho et al., Baker et al. 1 -byte architecture,
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Clark et al.), DCAM has better throughput and similar or slightly worse area cost. Com-

pared to designs that allow false positives (Lockwood bloom filters, Baker et al. 4-byte

architecture), DCAM still supports better throughput (3
2
× Baker et al.,4× Lockwood et

al.), and has about 5 times higher area cost. Summarizing, fine-grain pipelining, paral-

lelism and partitioning, make DCAM designs to achieve the best published throughput.

DCAM uses pre-decoding to increase character sharing, however this architecture does not

allow substring sharing, and hence has in some cases higher area cost. On the other hand,

decoded-CAM is a flexible architecture, which can easily be improved. The DCAM design

that is not partitioned has better efficiency as compared to DCAM designs with partition-

ing. That’s because its area cost is halved and its performance is about 20-25% worse. The

next chapter proposes some improvements for DCAM, that would reduce even more cost,

and increase its efficiency.
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CHAPTER 7

CONCLUSIONS & FUTURE WORK

7.1 Conclusions

Throughout this work we discussed string matching as the major performance bottleneck

in intrusion detection systems. We proposed new string matching micro-architectures and

investigated the efficiency of FPGA-based solutions. We first accented the role of string

matching in intrusion detection systems. String matching is the most computational in-

tensive part of such systems and limits their performance. Further, we analyzed the set

of NIDS patterns, grouping them by length, and also summarizing characters occurrence.

Additionally, in this thesis we discussed briefly software-based solutions, ASIC and FPGA-

based NIDS architectures. Intrusion detection systems running on general purpose proces-

sors have limited performance, while on the contrary, ASIC and FPGA-based systems can

achieve better performance. In particular, FPGAs offer the flexibility needed in such sys-

tems for fast ruleset update.

This work shows that FPGAs are well suited for implementing intrusion detection

systems, achieving high speed processing in reasonable cost. Our results offer a distinct

step forward compared to previously published research. DCAM designs support up to

OC192 processing bandwidth (10 Gbps), storing the entire set of NIDS patterns in a sin-

gle, large FPGA14(4-byte datapath), and about 3 Gbps throughput requiring medium size

devices15(for 1-byte datapath). FPGAs offer the ability of fast reconfiguration, this FPGA

characteristic combined with fast VHDL code generation are important to NIDS systems

that have to be often updated. In this thesis we developed a C program for automatic

VHDL generation. The entire implementation flow (pattern extraction, pre-processing,

14In a single 33,000-slices device (about 66,000 logic cells), while the largest existing Xilinx device

contains about 55,000 slices (110,000 logic cells).
15In a single 10,000-slices device (about 20,000 logic cells).
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VHDL generation, synthesis, Place & Route), described in appendix A.1, offers fast imple-

mentation of large designs.

In order to achieve high performance, we were the first who used the following

techniques in this particular field:

• Fine-grain pipeline

• Partitioning

• efficient data distribution network

• fan-out control

Further, just like other researchers, in order to increase processing bandwidth, DCAM ex-

ploits parallelism. Parallelism offers the ability to trade area for throughput, and choose the

proper configuration for a specific system. Centralized character comparators (decoders)

are used to share matching logic, and reduce DCAM area cost. All the above, adapted in

FPGA structure, lead to efficient string matching modules, that can be fast implemented

and easily reconfigured.

Decoded CAMs operate at high frequency and require a modest area cost for their

implementation. Compared to other research that perform exact match, DCAMs have at

least comparable efficiency, can support better throughput than any other architecture and

have about 2 times higher area cost as compared to the best published designs with simi-

lar characteristics. Finally, our proposed architecture offers simplicity and regularity, and

hence it is straightforward to integrate DCAM sub-modules in a more complete and sophis-

ticated intrusion detection system.

7.2 Future Work

Despite the significant body of research in this area, there are still improvements that we can

use to seek better solutions. Our proposed architecture achieves high-speed and low cost
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FPGA-based string matching for Intrusion Detection Systems. However, there are several

problems to deal with, and a few improvements that can be done in order to reduce the

area cost of the system, and make our system more compete. Additionally, using DCAM

architecture as part of a more sophisticated architecture would probably lead to a better

solution with much lower area cost.

DCAM architecture has many parameters that effect systems performance and cost

(i.e. the group size, level of parallelism etc.). Therefore, generating different designs by

changing these parameters would indicate which group size leads to the best designs and

would also analyze a cost/performance tradeoff for different level of parallelism. Another

parameter we have not explored in detail is the width of pre-decoded incoming data. In

this work we used 8 bits. However, we could consider different widths such as 4 bits (a

single nibble fitting in a LUT), or 12 bits, etc. Narrower decoders may prove beneficial

since they may increase the degree of sharing of decoder terms even further but require

wider AND gates to determine the pattern match. A comparison of the effect of these

parameters on the performance and cost of DCAMs would be very interesting. DCAM can

share common characters, however this architecture is not able to share entire substrings.

Implementation results of other architectures showed that sharing entire substring can save

significant amount of area [5].

An evaluation of the partitioning alternatives would also be very interesting. Our

partitioning algorithm is greedy, and hence may leave room for further improvements. A

more sophisticated algorithm could take into account the exact location of the similarities

between search patterns (in order to increase the degree of shift register sharing), and would

use a global instead of local approach to cost minimization.

Just like other architectures, DCAM must handle the problem of multiple matches

in the same cycle. Since more than one patterns may match in one clock cycle, there must

be a mechanism that reports all of them or an encoder that gives priority to the most sig-

nificant one. A software that detects which patterns may possibly match at the same time,

would be very useful, and joined with a sophisticated priority encoder would hopefully
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solve the problem. Additionally, properly shifting some of the patterns, just like in figure

7.1, would possible lead to area save.

ab c d

aa b c d

Common

characters

   a b c d

aa b c d

Common

characters

Figure 7.1. If we shift pattern ”abcd”, then there are 4 common characters (in the same
position) between the two patterns.

Furthermore, we could add a few additional features. The latest SNORT rule syntax

supports new options, which are relatively easy to implement in DCAM system. So, in or-

der to keep up with SNORT rule syntax, our architecture should also support the following

features:

1. support wild cards, allow (a constant or unspecified number of) ”don’t care” charac-

ters.

2. case insensitive pattern matching

3. negative matches (generate an alert if there is NO match)

4. generate an alert if there is a match of two patterns within specific number of incom-

ing bytes.

5. skip (do not compare) a number of incoming bytes.

NIDS rules contain two parts, the header matching and the payload matching. Our cur-

rent architecture matches only the payload patterns. Therefore, a further improvement of

our system is to integrate header matching modules, in order to store complete rules. A
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preliminary analysis showed that header matching may be useful for reducing the payload

matching cost. This means that header matching can be used for choosing to match only

a subset of patterns. However, this approach requires an architecture that includes block

RAMs, in order to easily switch from one subset to another.

incoming

data

{ DCAM

DCAM

Filter

{

suffix

prefix

Read
Addr

MEMORY

Partial
Match

Prefix
Match

Suffix
Match

Pattern
Match

Figure 7.2. Hybrid architecture. Incoming data is matched against the prefix, and suffix
of every pattern using DCAMs, and against the rest of the pattern using approximate
filtering.

Related work and comparison (chapters 3 and 6) showed that architectures such as

Bloom Filters have very low area cost. However, such approaches have limited perfor-

mance, and do not give exact match, instead they just indicate that some rule has matched.

Further more, approximate matching architectures like Bloom Filters can only match pat-

terns of the same length in one engine. DCAM and one of these approaches (Bloom filters,

Hashing, CRC) could be used together and constitute a low cost and high performance so-

lution. DCAMs can be used to overcome the problems of matching only patterns of the

same length, and the inefficiency of approximate matching for exact matching. This new

hybrid approach, showed in figure 7.2 would match each pattern’s prefix and/or suffix us-

ing DCAM and the rest of the pattern would be stored in a block RAM. The incoming data

would be compared against the pattern’s prefix and/or suffix using DCAM. In the same
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time the rest of the incoming data would be transformed into block RAMs read address us-

ing a logic function. If the element read from the memory is ”1” the substring is matched.

The partial matches (prefix, suffix, substring) are AND-ed to produce the pattern’s match.

The substring can maintain a constant length if we properly change the prefix or/and the

suffix lengths. Additionally, this architecture gives exact matches if each pattern has a

unique prefix or suffix. Since, the operating frequency of block RAMs is limited, we can

also exploit both block RAM ports in order to double their throughput and maintain high

performance. Finally, the false positive probability is reduced, since only a part of every

pattern is matched using approximate matching.

We plan to investigate this new approach and all the above issues further in or-

der to further improve our approach or possibly convert it to a hybrid, more sophisticated

architecture.
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APPENDIX A

IMPLEMENTATION DETAILS
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This appendix presents some implementation details about the methodology, and

the implementation flow used for fast circuit generation. Some circuit details are also de-

scribed, concerning fine-grain pipelining, fan-out control, and data distribution network.

Careful implementation of the designs is very important in order to achieve high perfor-

mance and improve design’s efficiency. One of the most important achievements of this

work is the automatic design generation, which maps very well into FPGA devices without

limiting performance.

A.1 Implementation Methodology

String matching modules must be able to store hundreds of patterns. Therefore, it is nec-

essary to use an automatic and fast methodology to generate designs. In this section we

discuss the design flow used for implementing DCAM designs (the implementation flow of

discrete comparator approach is similar).

EXTRACT

PATTERNS

FROM RULES

CONVERT TO

HEX FORMAT

DELETE

REPEATED

PATTERNS

GENERATE

VHDL

SYNTHESIS

P&R

GROUP

PATTERNS

Figure A.1. Implementation flow. First the patterns are extracted from SNORT files, they
are converted in HEX format, and delete repeated patterns. After that we group pat-
terns, according to the partitioning algorithm, and generate VHDL code. Finally, we
synthesize and place and route design.

Figure A.1 shows the implementation flow used. First, the NIDS patterns are ex-

tracted from rule files, using a Perl script. The extracted patterns are in HEX, ASCII or

mixed (ACII and HEX) format. Therefore, all the patterns are converted in one format

(HEX format) in order to further process them. After that, we eliminate identical patterns

that may exist in the ruleset. Next, the designer should decide how many partitions will be

included in the design. This decision is taken considering the desired performance and cost.

Section 5.2 showed that smaller partitions achieve better operating frequency, while larger

partitions have lower area cost. So, patterns with similarities are grouped together, accord-
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ing to the program described in section 5.1.4. This program also calculates the number of

distinct characters in each group, and the average number of distinct characters.

When all the groups of patterns are specified, the VHDL representation of the de-

sign can be generated. A C program that generates VHDL code has been developed . This

program has the following parameters:

• level of parallelism. Designer can decide how many incoming bytes will be processed

every clock cycle. Processing many bytes every cycle achieves better performance,

while designs that process one byte have lower area cost.

• width of data distribution busses. The width of data distribution busses is also param-

eterizable. Practically, the best choice is to implement buses that have double width

compared to the processing datapath.

After VHDL generation, we synthesize, and Place & Route design. P&R procedure

may be repeated several time using, changing the target operating frequency and sometimes

other parameters, in order to achieve the desired operating frequency. However, we can

minimize P&R time by choosing incremental flow.

A.2 Circuit Details

The method by which VHDL code of a DCAM design is generated was described in the

previous section. We will discuss here how this VHDL design representation maps in

FPGA device, and also a few more implementation details.

Both discrete comparator and DCAM architectures use fine-grain pipelining to

maintain high performance. Figure A.2 shows the way discrete comparator and DCAM

designs map into FPGA. The entire design is pipelined, based on the observation that the

minimum amount of logic in each pipeline stage can fit in a 4-input LUT and its corre-

sponding register. This decision was made based on the structure of FPGAs logic cell. In
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LUT

Flip-Flop

Logic Cell

Flip-Flop

Logic Cell

Flip-Flop

Logic Cell

LUT

LUT

Pipeline Stage

Figure A.2. The entire design is pipelined. Every pipeline stage fits in parallel 4-input
LUTs and the corresponding registers. The registers already exist, since every logic cell
has an LUT and a register, So there is no pipeline area overhead. Hence, the operating
period is equal to the logic cell delay plus the wire delay (routing).

the resulting pipeline, the clock period is the sum of wire delay (routing) plus the delay of

a single logic cell (one 4-input LUT + 1 flip-flop). The area overhead cost of this pipeline

is zero since each logic cell used for combinational logic also includes a flip-flop.

In section 5.1.3 we described the use of multiple clocks, one slow to distribute

data across long distances, and a fast clock for the smaller and faster partitioned matching

function. the Figure A.3 shows the two modules that are implemented to switch from slow

to fast clock domain and reverse. The”slow to fast” module uses a multiplexer to choose

half of the incoming data to the output, its select input is connected to the slow clock, and

the input and output ports are registered. The”fast to slow” module uses a de-multiplexer

and has the opposite functionality.

We experimentally found that the optimal fan-out from a register is 16, since if fan-

out exceeds 16 then the operating frequency drops about 30%. Therefore, the program that



73

CLK/2
M

U
X



N*2 N

N

N

CLK

M
 U

 X


N*2N

N

N

CLK CLK/2

Slow to Fast Fast to Slow

Figure A.3. ”Slow to Fast” and ”Fast to slow” modules. they use a multiplexer and de-
multiplexer respectively to switch from one clock domain to another.

generates VHDL code makes sure that the fanout is equal or less than 16. When more that

16 wires have the same source (register), then the VHDL generator replicates the source

logic cell. Xilinx ISE tool can also control the fan-out, however ISE replicates only the

register and not the entire logic cell. If only the register is replicated, then the operating

frequency drops, since the LUT output must traverse out of the logic cell (Figure A.4).

The most complicated part of the VHDL generator is the implementation of shift

registers that feed the comparators AND-trees. Figure A.5 presents an abstract pseudo-code

that describes how VHDL generator implements the ”shift-register’part of the design. For

each different character there is an array that keeps the number of wires needed from each

offset (shift register) to an AND-tree. For each new shift register, the pseudo-code finds the

closest available shift register that can be used as source, if there is not, creates one. Figure

A.6 shows the implementation of the shift register circuit for the given array. For the 18th

position we need two shift registers (SR18A, andSR18B), since fan-out must be equal or

less than 16. These two shift registers cannot useSR4 as source, because SR4 already has

supplies 16 wires. So the next available shift register within the supported range (max D)

is SR2.

All the above increase DCAM’s efficiency in terms of both performance and area

utilization.
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LUT

Flip-Flop

Logic Cell

No fan-out

control
More than

16 wires

LUT

Flip-Flop

Xilinx

fan-out control

LUT

Flip-Flop

Less than

 16 wires

Less than

 16 wires

LUT

Flip-Flop

DCAM

fan-out control

LUT

Flip-Flop

Less than

 16 wires

Less than

 16 wires

Logic Cell

Logic Cell

Logic Cell

Logic Cell

Figure A.4. Fan-out control is achieved by replicating logic. However, if only the register
is replicated, then operating frequency drops, since the wire that connects the LUT with
the second register is longer than it should. In order no to add any more delay in the
critical paths, we decided to replicate the entire logic cell. This solution does not have
any area overhead, because the second logic cell used already contains an LUT.
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for (every character ch=0;ch<256;ch++){

  for (i=N;i>0;i++){

//N is the maximum pattern length (plus offset in case of parallelism)

for (j=0;j<CHAR[ch][i]%16;j++)

//CHAR array contains the number of wires needed for every character in

//every position (offset)

//16 is the maximum fan-out

if (the position "P" of first non-zero CHAR[ch][] element is closer than 16

and its value%16!=0){

//search for a source that allready exist for the shift register

use it as source for the implemented shift register;

D=calculate the distance;

}

else{

//create a source for the shift register

create another shift register in position max_D;

//used it as source for the shift register

CHAR[ch][i-max_D]++;

//max_D is the maximum distance that one shift register can cover,

//max_D<=17

D=max_D;

}

implement a shift register with distance D and source..the one found or created;

  }

}

Figure A.5. This is an abstract pseudo-code that describes the shift register part of VHDL
generator.

Decoded

 “a”
SR2 SR4

162

SR18A

16

SR18B

4

to AND-trees

Fan-out:       1                       5                       16                    16     4

0
Array of

character “a”
20001602

Index:           1      2       3       4                      16    17     18

IMPLEMENTATION

Figure A.6. This is the implementation of shift register part for the given array of character
”a”. VHDL generator, creates the circuit, so that fan-out won’t exceed 16.
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