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Abstract 
 
 The primary objective of this work is to perform survival analysis with 

nonparametric and semiparametric models, as well as with neural networks. Survival 

analysis is another name for time to event analysis. Usually, death or failure is called 

an "event" in the survival analysis literature, and so models of death or failure are 

generically termed time-to-event models. In this thesis, the event that is studied is the 

death provoked from the ocular melanoma disease. The dataset that contains 1743 

patients suffering from ocular melanoma in different pats of the eye, is obtained form 

the Bioppatern group. From the nonparametric methods, the Kaplan-Meier method is 

used and also the Life-Table and the Nelson-Aalen method. All three of these 

methods have as primary objective to analyze the data so as to come up with 

conclusions that concern the survivability of the patients. These conclusions are 

derived form the survival curves, which are very informative since the probabilities of 

survival are shown for each time point. The semiparametric model that this study uses 

is the Aalen’s additive model. This model makes use of covariates so as to come up 

with conclusions about the effect of the covariates in the survivability of the patients. 

The covariates, or else the prognostic factors, that are used are the longest ultrasound 

basal dimension, the ultrasound height and the epithelioid cellularity. Except for the 

information that is given for the effect of the covariates, information about the 

survivability of the patients can also be given form the analysis of the additive model. 

Finally neural networks are used in this thesis. They are trained with a known survival 

distribution, with the Kaplan-Meier one, in order to predict survivability of the 

patients. 
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Chapter 1 

Introduction 
 

In the beginning of this chapter is given a description of the ocular melanoma 

disease and after that an overview of the survival analysis and the models that perform 

survival analysis are presented. Finally the goal and the structure of this thesis are 

given. 

 

1.1 Information about the ocular melanoma disease 
 

1.1.1 Description of the ocular melanoma disease  

The ocular melanoma is a melanoma of the eye and is the most common type 

of cancer to affect the eye, although, generally, it is still quite rare. [ws-6] In general, 

melanoma is a very aggressive type of cancer that can spread rapidly and it develops 

from cells that are called melanocytes. Melanocytes produce the dark-colored pigment 

melanin, which is responsible for the color of our skin. These cells are found in many 

places in our body including the skin, the hair and the internal organs. The melanoma 

of the eye differs in behaviour and management from melanoma arising from skin. 

[ws-5] 

If not treated, it may spread to other parts of the body but rarely this type of 

cancer starts in another part of the body and spreads to the eye. [ws-4] Between 60% 

and 80% of patients will survive at least 5 years from the time of diagnosis, if the 

cancer has not metastasized. If there has been spread outside the eye, the chance of 

survival is much lower. [ws-8] The incidence of melanoma is highest from ages 50-70 

and is almost the same in men and women. Very few cases occur in people under 30 

years of age. [ws-2] 

The most common type of ocular melanoma is uveal melanoma. This means it 

occurs along the uveal tract of the eye, which includes the choroid, the ciliary body 

and the iris. [ws-5] Most common site is the choroid and less frequently ocular 

melanoma involves the ciliary body, the iris, and the sclera. [ws-7] The behaviour of 

intraocular melanoma varies with site. [ws-8] 
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Melanomas of the iris appear to be quite different from melanomas arising 

elsewhere in the eye or body. This tumour is very slow growing and death rate from it 

is very low (1 - 4%). [ws-7] Local excision is effective in most of these cases, 

although some may require enucleation, and metastasis is seen in only 3% of cases. 

[ws-8] On the contrary, melanoma of the choroid is much more serious because about 

60% are alive five years after diagnosis and patients often die from metastases to the 

liver. [ws-7] 

Melanoma can also occur in the thin lining over the white part of the eye (the 

conjunctiva) or on the eyelid, but this is very rare. [ws-5] 

1.1.2 Causes 

Ocular melanoma is a rare type of tumor and as for many other forms of 

cancer the exact cause is unknown. [ws-5] Familial histories of uveal melanoma have 

been regarded as predisposing factors. A large range of risk factors have been 

investigated: sex related factors, social class, and socioeconomic factors, lightness of 

complexion and hair, eye colour, smoking, viruses, chemicals, links with other 

cancers, but no causative agent has been recognised. Moreover, several studies have 

addressed the possible importance of genetic factors, following the demonstration of 

genetically determined predisposition in other cancers. Clear evidence of a genetic 

component in ocular melanoma is the racial risk with a strong predominance among 

white people and an absence among dark skinned people. [ws-8] It is also known that 

exposure to ultraviolet (UV) rays, either from the sun or sun beds, increases the risk 

of developing melanoma of the skin. People whose skin burns easily are most at risk. 

Typically these people are those with fair skin, fair or red hair and blue eyes. 

However, it is not yet known whether there is any link between UV ray exposure and 

the development of melanoma of the eye. [ws-5] 

1.1.3 Signs and symptoms 

Symptoms include: blurred vision, painful, red eyes, flashing lights, loss of 

side vision in the affected eye, shadows, and misting of the lens of the eye, which is 

known as cataract. [ws-4,6] Also iris color may change. Often no symptoms are 

noticed until the tumor is quite large. [ws-5] 
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1.1.4 How it is diagnosed 

• Ophthalmoscopy: A small hand-held microscope (ophthalmoscope), similar 

to those used by opticians during routine eye tests, is used to look at the inside 

of the eye. [ws-5] 

• Ultrasound scan: A small device which produces sound waves is rubbed over 

the skin around the eye area. The echoes are then converted into a picture by a 

computer. [ws-5] This method which may help the doctor to difference a 

melanoma from another kind of tumor. [ws-4] 

• Slit lamp: The ophthalmologist can detect a melanoma on the iris using a 

lighted tool called slit lamp. [ws-4] 

• Fluorescein angiography: A special dye, called flourescein, is injected into a 

vein in the arm. In a few seconds, the dye travels to the blood vessels inside 

the eye. A camera with special filters that highlight the dye is used to 

photograph the flourescein as it circulates through the blood vessels in the 

retina and choroid  

• CT (computerized tomography) scan: A CT scan takes a series of x-rays to 

build a three-dimensional picture of the inside of the head. The scan is painless 

but takes 10 minutes, longer than a standard x-ray. It may be used to find the 

tumor within the eye or to check for any spread of the disease.  

• MRI (magnetic resonance imaging) scan: This type of scanner uses 

magnetism instead of x-rays to form a series of pictures of the inside of the 

head. The test can take about 30 minutes and is completely painless, although 

the machine is noisy and earplugs or headphones are given to wear.  

• Biopsy: A small sample of tissue may be taken from the suspicious area and 

examined under a microscope. However, this is not necessary for most ocular 

melanomas because they have a distinctive appearance and can usually be 

recognized easily from the x-rays and scans. [ws-5] 
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1.1.5   Treatment 

A number of different treatments are used for ocular melanoma depending on 

the size, cell type and position of the tumor, as well as other factors such as the 

general health, age and level of vision in both eyes. The aim of the treatment is to 

destroy the cancer cells, stop the cancer coming back, and save as much of the vision 

as possible. 

1. Radiotherapy: This type of treatment uses high-energy rays to destroy the 

cancer cells while doing as little harm as possible to normal cells. 

Radiotherapy may be given either from outside the body, external 

radiotherapy, or from within, internal radiotherapy. Radiotherapy may be the 

only treatment or it may be given after surgery. Recent developments in 

radiotherapy have made it possible to preserve sight in the eye, either 

completely or partly. 

External radiotherapy: In external radiotherapy a beam of radiation is directed 

to the area of the tumor. The treatment is normally given as small doses, over a 

few days. Different types of radiotherapy machines can be used.  

Internal radiotherapy: This treatment is given by placing a radioactive source 

close to the tumor. This normally involves a stay in hospital of up to a week. The 

radioactive plaque is placed close to the tumor in the eye under general anesthetic. 

Another operation is carried out to remove it when the treatment is finished 

2. Transpupillary thermotherapy (TTT): This can be used to treat very small 

ocular melanomas or as an additional treatment after radiotherapy. The tumor 

is heated with a special type of laser beam. Cancer cells are more susceptible 

to heat than normal cells and so will be destroyed. Several treatments are 

normally needed. 

3. Surgery: Depending on the size and position of the tumor, it may be possible 

to remove it without needing to remove the eye. However, if the cancer is 

growing rapidly, is large or painful, surgery to remove the eyeball may be the 

most appropriate treatment. This is called enucleation. [ws-5] The enucleated 

eye cannot be treated or repaired and replaced in the eye socket. Instead, it is 
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replaced with a ball implant that may be made of plastic or other materials. 

[ws-3] For many people, this suggestion can be quite shocking and a lot of 

discussion may be needed with the doctors involved before the decision to go 

ahead is taken. [ws-5] 

1.1.6 Prevention    

The most important way to prevent eye melanoma is to avoid excessive 

exposure to sunlight, especially between 10 a.m and 2 p.m., when the sun's rays are 

most intense. When exposure cannot be prevented, sunglasses with ultraviolet 

protection must be used. [ws-9] 

1.2 Overview of survival analysis 
 

The origin of survival analysis goes back to mortality tables centuries ago. 

However, it was not until World War II that a new era of survival analysis came to the 

surface. This new era was characterized by interest in reliability, or failure time, of 

military equipment. At the end of the war these newly developed statistical methods 

became more reliable products, and as the use of survival analysis grew, parametric 

models gave way to nonparametric and semiparametric models for dealing with the 

growing field of clinical trials in medical research.  

Survival analysis was appropriate for such work because medical studies could 

start without all patients being present at the beginning of the study and could end 

before all patients had experienced an event. This was extremely important because 

even in the best-developed studies, there were patients who chose to quit 

participating, who moved too far away to follow, or who died from other causes, 

irrelevant to the event of interest. The researcher was no longer forced to withdraw 

the patient and all the associating data from the study, due to techniques called 

censoring. These techniques enabled the researchers to analyze incomplete data. In 

this way, each patient could contribute all of the information possible to the model for 

the amount of time the researcher was able to observe the unit. [p-5] 
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From the above it becomes clear that in survival analysis, censoring is an 

important concept. A censored observation is an observation for which the exact time 

to the event is unknown because the event is not observed during the period of 

observation. There are various kinds of censoring, including, left, right, and interval 

censoring. If censoring occurs, there is only partial information about a subject’s 

experience of the event under study. A unique feature of survival analysis is that it can 

make use such incomplete information in the analysis. [ws-24] All the complete 

information about censoring is given in chapter 2. 

It can be said that survival analysis is another name for time to event analysis. 

Death or failure is called an "event" in the survival analysis literature, and so models 

of death or failure are generically termed time-to-event models. Time to event 

analysis has also been used widely in the social sciences where interest is on 

analyzing time to events such as job changes, marriage, birth of children and so on. 

[ws-27]  

The engineering sciences have also contributed to the development of survival 

analysis which is called "reliability analysis" or "failure time analysis" in this field, 

since the main focus is in modelling the time it takes for machines or electronic 

components to break down. The developments from these diverse fields have for the 

most part been consolidated into the field of "survival analysis".  

Survival analysis attempts to answer questions such as:  

• What is the perecentage of a population which will survive past a certain time?  

• Of those that survive, at what rate will they die or fail?  

• Can multiple causes of death or failure be taken into account?  

• How do particular circumstances or characteristics increase or decrease the 

odds of survival? [ws-28] 
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1.2.1 Models that perform survival analysis 
 

All the above questions are answered by the use of the various models that 

exist and perform survival analysis. These models are categorized into three 

categories: 

• Nonparametric models: the survival distribution is estimated but without 

restricting this distribution to be a member of a standard parametric family 

distribution, possibly because no suitable theoretical distributions are known. 

Most commonly, the survival function is estimated. [ws-26] These models are 

usually used to compare similar groups of time-to-event data to determine, for 

example, whether there is a difference among different treatments. However, 

nonparametric models cannot be used to estimate the effect of explanatory 

variables explicitly. They are only applicable to right censored data. If the 

main objective is to find a model for the data, estimates obtained by 

nonparametric models and graphs can be helpful in choosing a distribution.    

[b-1] 

• Parametric models: In many clinical studies there are some patients’ 

characteristics, such as prognostic factors and covariates, and it is often 

difficult to sort out which ones are most closely related to prognosis. These 

models are needed to prepare a compact summary of the data that can reveal 

their relationship. [b-1]One way to achieve this purpose is to search for a 

theoretical distribution, that fits the observed data and identify the most 

important. Some of the most important parametric models include the 

exponential distribution, the Weibull, the Gamma, the log normal and the log 

logistic distribution. So, when covariates are considered, we assume that the 

survival time, or a function of it, has a relationship with the covariates. 

Furthermore, when a parametric model is considered, we assume that the 

survival function follows a given theoretical distribution and has a specific 

relationship with the covariates. 

• Semiparametric models: If the survival distribution is unknown and it is 

desirable to analyze the associated information, sometimes referred to as 

covariates, explanatory variables, or independent variables, on survival, then 

the semiparametric models are the forms of model to use. Such a case is the 

situation in modelling travel demand for hurricane evacuation. The interest is 
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in knowing what variables influence the decision to evacuate or not to 

evacuate and when evacuation will take place, if at all. Such variables may be 

socio-economic, demographic, or psychological characteristics of the 

population, or they may be related to the characteristics of the hurricane, or the 

characteristics of the location of the home of evacuees. [ws-24] 

So the main difference between the parametric models and the semiparametric is 

that in the former the distribution is known, while in the latter the distribution is 

unknown. 

There are various models used in the survival analysis that can be categorised into 

the above three categories. This is done below and in addition a short description of 

each one of them is given. 

 

1.2.2 Categorization of the existing models 
 

1. Nonparametric models 

• Kaplan-Meier method: it is a method of estimating time-to-event data in the 

presence of censored cases. It was developed by Kaplan and Meier (1958). Is 

based on estimating conditional probabilities at each time point when the 

event occurs. By taking the product limit of those probabilities, the survival 

rate is estimated at each time. The equation that gives the Kaplan-Meier 

estimator is: 
1

( ) (1 )
i

j
i

j j

d
S t

n=

= −∏  where jd are the dead patients and jn  are the 

at risk patients. 

• Life-Table method: this method is one of the oldest techniques for measuring 

mortality and describing the survival experience of a population. It looks like 

the Kaplan-Meier method with the difference that the time is separated into 

time-intervals. That is why this method requires a large number of 

observations so that the survival times can be grouped into intervals. The 

equation that gives the proportion survival is:
1 1

1, 0
( )

( ), 0i
i i

i
S t

p S t i− −

=⎧
= ⎨ ⋅ >⎩
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• Nelson-Aalen method: This method computes directly the cumulative hazard 

function, in contrast with the Kaplan-Meier method that computes directly the 

survival function. The equation that gives the Nelson-Aalen estimator is: 

( )
j t

j

t j

d
H t

n
<

=∑ where jd  and jn  are as above. 

• Relative survival rate or annual survival ratio. The relative survival rate 

evaluates the survival experience of patients in terms of the general 

population. Greenwood (1926) first suggested this approach for evaluating the 

efficacy of cancer treatment. If the average survival time of the patients treated 

equals that of a random sample of persons of the same age, gender, 

occupation, and so on, the patients could be considered ‘‘cured.’’ The relative 

survival rate is defined as the ratio of the survival rate, probability of surviving 

one year, for a patient under study, observed rate, to someone in the general 

population of the same age, gender, and race, expected rate, over a specified 

period of time.[b-1] 

2. Parametric models 

All the models below follow one of the known distributions that were mentioned 

above. The survival and the hazard functions of these distributions are extended so as 

to include the vector z of the covariates. It will be given a table that will contain the 

survival and the hazard functions of the distribution and of the regression model. In 

this way a more complete image of the relationship between the distributions and the 

models will be formed.  

• Exponential regression model: this model follows the exponential distribution, 

which is characterized by a constant hazard rate λ, its only parameter. A high λ 

value indicates high risk and short survival while a low λ value indicates low 

risk and long survival. This model could be used to reflect the hazard for an 

individual who remains in good health, where the level of hazard would reflect 

the risk of death from unnatural causes, for example an accident 

 Survival function Hazard function 

Distribution ( ) exp( )S t tλ= −  ( )h t λ=  

Regression model  ( , ) exp( ) exp( )TS t z t zλ β= − ⋅  ( , ) exp( )Th t z zλ β= ⋅  

Table 1: Contains the functions of the exponential regression model 
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 In the table above as well as in the tables that follow, z is the vector of 

covariates and β are the regression coefficients [b-1,2] 

 

• Weibull regression model: this model follows the Weibull distribution, which 

is a generalization of the exponential distribution. The Weibull distribution is 

characterized by two parameters, λ and γ. The value of λ determines the shape 

of the distribution curve and the value of γ determines its scaling. 

Consequently, λ and γ are called the shape and scale parameters, respectively. 

[b-1,2] This model could be used to reflect the hazard for patients recovering 

from major surgery, where the level of hazard is expected to fall as the 

duration since surgery increases. 

 

 Survival function Hazard function 

Distribution ( ) exp[ ( ) ]S t t γλ= −  1( ) ( )h t t γλγ λ −=  

Regression model  exp( )( , ) {exp[ ( ) ]}
TzS t z t γ βλ= −  1( , ) ( ) exp( )Th t z t zγλγ λ β−= ⋅  

Table 2: Contains the functions of the Weibull regression model 

 
• Log-logistic regression model: this model follows the log-logistic distribution, 

which is characterized by two parameters α, and γ. [b-1,2] This model could 

be used the hazard for patients with a disease most likely to cause death in the 

early stages, where the level of hazard increases as the initial condition 

becomes more severe but then decreases once patients survived the period of 

highest risk.  

 

 Survival function Hazard function 

Distribution 1( )
1 ( )

S t
t γα

=
+

 
1

( )
1 ( )

th t
t

γ

γ

αγ
α

−

=
+

 

Regression model  1( , )
1 ( ) exp( )TS t z

t zγα β
=

+
 

1 exp( )( , )
1 ( ) exp( )

T

T

t zh t z
t z

γ

γ

αγ β
α β

−

=
+

 

 
Table 3: Contains the functions of the Log-logistic regression model 
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• Accelerated failure time model (AFT): The AFT model for survival time 

assumes that the relationship of logarithm of survival time T and the covariates 

is linear and can be written as: 0
1

log
p

j j
j

T zβ β σε
=

= + +∑  where 

, 1,....jz j p= are the covariates, , 0,1,....j j pβ =  are the coefficients, ( 0)σ σ >  

is an unknown scale parameter, and ε is the error term. It is a random variable 

with known forms of density function g (ε, d) and survivorship function G (ε, 

d) but unknown parameters d. This means that the survival is dependent on 

both the covariate and an underlying distribution g. To become more clear 

why this model is called accelerated, an example will be given. Consider a 

simple case where there is only one covariate x with values 0 and 1. Then the 

above equation becomes 0 1logT zβ β σε= + + . To and T1 denote the survival 

times for two individuals with x0 and x1, respectively. Then, 

0 0exp( )β σεΤ = + and 1 0 1exp( )β β σεΤ = + + which becomes 1 0 1exp( )T β= Τ . 

So T1>T0 if β1>0 and T1<T0 if β1<0. This means that the covariate x either 

“accelerates” or “decelerates” the survival time or time to failure. This is the 

reason for the name accelerated failure time model.[b-1] 

Except for the above parametric models, which are the most commonly used, there 

are some others models that are not so frequently used. These are the Gompertz-

Makeham regression model, the Lognormal regression model and the Gamma 

regression model.  

  

3. Semiparametric models 
• Cox model: The most popular form of semiparametric models is the Cox 

proportional hazards regression model (Cox, 1972). There are two important 

reasons for the popularity of the Cox model. First, no particular probability 

distribution needs to be chosen to represent survival times. Second, it is 

relatively easy to incorporate time-dependent covariates in the model. The 

hazard function of the Cox model has the following 

form: 0( , ) ( ) exp( )Th t z h t z β= ⋅ where z are the covariates and β are the 

regression coefficients. [ws-24] 
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• Extended Cox model: The extended Cox model is the know model but with 

the difference that can analyse covariates that depend on time. The hazard 

function of the Extended Cox model has the following form: 

0( , ) ( ) exp( ( ) ( ))Th t z h t z t tβ= ⋅ . [b-1] 

• Aalen’s additive regression model: The additive regression model is an 

alternative to the Cox model. It results plots that are informative regarding the 

effect of covariates on survival. The basic equation is the following: 

0
1

( , ) ( ) ( )
k

j j
j

h t z t t zβ β
=

= +∑ .So the hazard at any time is a sum of the baseline 

hazard β0(t) and a linear combination of the covariates values zj.The hazard 

can also be written as: ( ) ( ) ( )h t Y t tβ= where the matrix Y contains covariates. 

[p-1] 

• Cox-Aalen Model: The Cox-Aalen model is based on multiplying the two 

basic models. For this model some covariate effects are believed to result in 

multiplicative effects, while others effects are better described as additive. The 

form of the hazard function of the Cox-Aalen is: 

( , ) {[ ( ) ( )] [exp( )]}Th t z Y t t zβ β= ⋅ .[p-19] 

• Proportional excess hazards model: The proportional excess hazards model is 

based on adding the two basic models. The model has the following form : 

0( , ) {[ ( ) ( )] [ ( ) exp( ( ) )]}Th t z Y t t h t z tβ β= + [p-19] 

• Stratified Cox model: The stratified Cox model contains different baselines for 

different strata. The data can be stratified by a covariate, for example sex. If 

we consider two strata sex: female and sex: male, then we actually have two 

models: 0( , ) ( ) exp( )T
i i ih t z h t zβ=  where i=1, 2 for the two sex strata. The 

baseline survivorship function for each stratum is estimated separately based 

on the estimated regression coefficients β. [b-1] 

• Piecewise Exponential model: The Piecewise Exponential model is a model 

that has the flexibility of the Cox model and the ability to statistically test the 

hazard function. In the Piecewise Exponential model, time is divided into 

intervals. The hazard in each interval is assumed to be constant but can vary 

across intervals. Let I denote the total number of intervals, and a0, a1,…, ai-1, 
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ai,…,aI as cut points of intervals, with a0 = 0, and aI = ∞ . The hazard can be 

written as: ( ) exp( )T
ih t h z β= where hi can be considered the baseline hazard, 

which is the hazard when all the covariates are zero, z and β are vectors of the 

covariates and corresponding parameters.[ws-24] 

• Competing risks model: The most methods deal with a single type of failure 

time for each study subject. However, in some situations, failure on a person 

may be due to several distinct causes. The different causes of failure are 

considered as competing events, so problems with multiple causes are 

commonly referred to as competing risk problems. The hazard function can be 

written 0( , ) ( ) exp( )T
j j jh t z h t zβ= .The coefficient vector β indicates the effects 

of the covariates for each event type j. If the covariates are not related to a 

particular type of event, they are set to 0. If β are the same for all j, the 

competing risks model reduces to the proportional hazards model (Cox model) 

[b-1] 

• Models for related observations: In Cox’s proportional hazards model and 

other regression methods we make the assumption that the observed survival 

or the event times are independent. However, in many situations, failure times 

are observed from related individuals or from successive recurrent events or 

failures of the same person. For example, in an epidemiological study of heart 

disease, some of the participants may be from the same family and therefore 

are not independent. These families with multiple participants may be called 

clusters[b-1] 

• Recurrent event models: Most times events or failures are allowed to occur 

only once, such as death. When data include recurrences of the same event, 

such as tumor recurrences after surgeries or successive events of entirely 

different types such as strokes and heart attacks, then we use the recurrent 

event model. There are three recurrent event models: 

1. Prentice, Williams, and Peterson (PWP): They proposed two models for 

recurrent events. Both PWP models can be considered as extensions of the 

stratified proportional hazards model with strata defined by the number and 

time of the recurrent events. The hazard function is extended beyond the 

person’s first event to cover subsequent events.  
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2. Anderson-Gill Model (AG): The model proposed by Andersen and Gill, the 

AG model, assumes that all events are of the same type and are independent. 

The risk set of a person at the time of an event would contain all the people 

who are still under observation, regardless of how many events they have 

experienced before that time 

3. Wei, Lin, and Weissfeld (WLW): Wei, Lin, and Weissfeld proposed also a 

model for the analysis of recurrent failures. The failures may be recurrences of 

the same kind of event or events of different natures, depending on how the 

stratification is defined. If the strata are defined by the times of repeated 

failures of the same type, similar to the strata defined in the PWP models, it 

can be used to analyze repeated failures of the same kind. The difference 

between the PWP models and the WLW model is that the latter considers each 

event as a separate process and treats each stratum separately. Therefore, each 

stratum contains everyone in the study. [b-1] 

• Artificial Neural Networks: They are non-linear, semiparametric models that 

are considered as alternative methods for survival analysis in the presence of 

censorship.[p-18] Most applications of neural networks are classification 

problems and include diagnosis and prognostic problems. [p-17] Except for 

the classification problems, neural networks offer the potential of providing 

more accurate predictions of survival time than do traditional statistical 

models.[p-16] In order for the neural networks to be used for survival analysis, 

in the absence or presence of censoring, some new architectures of neural 

networks have been proposed. 

1. Direct Classification: This method considers survival for a fixed time period, 

and consequently gives a binary classification problem. Censored observations 

are removed. The neural network output then provides an estimate of the 

probability that a subject will survive the time period. Above the 50% 

threshold, the subject is assumed to survive the period. It is clear that this 

approach is rather basic and does not allow producing individual survival or 

hazard curves. Furthermore, it does not deal with the problem of censoring and 

time-varying inputs.[p-7] 
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2. Ohno-Machado: Ohno-Machado uses multiple neural networks to solve the 

survival analysis problem. Each neural network has a single output predicting 

survival at a certain time point. The networks are then trained using their own 

data subsets consisting of cases that made it to the corresponding time period. 

Censored observations are included until their time of censoring. So, the 

number of training instances gradually decreases for the later time intervals 

making the predictions less reliable. When using these neural networks in 

isolation, non-monotonic survival curves may result. As a result, the 

probability of a person surviving two periods could be greater than the 

probability to survive one period because the interdependencies of the survival 

probabilities over time are not properly taken into account when isolated 

neural networks are used.[p-8] 

3. Ravdin and Clark: Ravdin and Clark use a multi-layer feed-forward neural 

network with a single output unit representing the survival status. A time 

indicator and a survival status indicator are added to each record. The time 

indicator then records the successive time periods [1, Tmax] for which a 

prediction is to be made, with Tmax the maximum time of follow-up. An 

uncensored input is then considered Tmax times whereas a censored input is 

considered t times with t being the time of censoring. The survival status is the 

target of the network and is set to zero as long as the subject is alive and to 1 

otherwise.[p-9] 

4. Biganzoli et al.: A variation on the approach of Ravdin and Clark was 

suggested by Biganzoli et al. They also trained a neural network with one 

output and an additional time indicator input. However, unlike Ravdin and 

Clark, uncensored subjects are only considered for the time intervals in which 

they were actually observed. So, subjects that have died are not included after 

the time interval of death. Time dependent inputs might be easily included 

since each subject has multiple input vectors which may change across the 

intervals of observation. The neural network predicts discrete hazard rates.    

[p-10] 
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5. Lapuerta et al: Lapuerta et al suggested a multi-network strategy to deal with 

the survival times for the censored cases. For each time period considered, a 

separate neural network is constructed. These networks are trained using only 

the observations for which the survival status for the corresponding time 

period is known. Subsequently, the trained networks are used to predict the 

outcome for the censored cases. The non-censored observations are then 

provided for training the principal neural network, which predicts the 

probability of survival for each time period considered. It is clear that this 

approach is not suitable for large-scale applications since one need to train as 

many neural networks as there are time periods considered.[p-11] 

6. Faraggi: Faraggi proposes a neural network extension of the Cox proportional 

hazards model by replacing the linear function Tz β  in 

0( , ) ( ) exp( )Th t z h t z β= ⋅ by the output ( , )g z θ of a neural network with a 

single, logistic hidden layer and a linear output layer and so the hazard 

function takes the following form: 0( , ) ( ) exp[ ( , )]h t z h t g z θ= .Analogous to the 

Cox model, no bias input is considered for the output layer since this is 

incorporated into the baseline hazard 0 ( )h t . This method allows preserving all 

the advantages of the classical proportional hazards model. [p-12] 

7. Street: Street uses a multilayer Perceptron with Tmax output units to deal the 

survival analysis problem, where Tmax represents the maximum time horizon 

of the study. A hyperbolic tangent activation function is used in the output 

layer such that all output neurons take on values between −1 and +1. The first 

output neuron having a value < 0 is considered to be the output neuron that 

predicts the event time. If all output neurons have values > 1, then the patient 

is considered to survive the entire time period of the study. The output units 

represent the survival probability for the corresponding time period. For the 

non-censored cases, the output values are set to +1 as long as the patient is 

alive and to −1 after. For the censored cases, the output units are also set to +1 

until their censoring time. After this period, Street uses the Kaplan-Meier 

estimator. The Kaplan-Meier hazards are then used to compute the survival 

probability of the censored observations after the censoring time. These 

probabilities are then scaled to the range of the hyperbolic tangent function. 
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The individual survival curve of an observation can then be derived based on 

the activation values of the output units.[p-13] 

8. Mani: A variation on the method of Street was developed by Mani. Again, for 

every observation in the training set, Tmax output units are computed. But 

now, these output units now represent the hazard rate instead of the survival 

probabilities that were used in the approach of Street. For uncensored 

observations, the hazard is set to zero until the time of death and 1 after. For 

censored observations, the hazard is set to zero until censoring time and to the 

Kaplan-Meier estimator after.[p-14] 

9. Brown et al: Analogous to Mani, Brown suggests a single neural network with 

multiple outputs to predict hazard rates. For the non-censored observations, 

the network output is set to 0 as long as the subject is alive and to 1 when the 

subject undergoes the event. For the time intervals following the event, the 

hazard can take any value. The output values for the censored observations are 

set to 0 until the time of censoring and can take any value for all the time 

intervals that follow. Then, the neural network is trained to minimize the sum 

of squared error criterion and to perform weight updates when the hazard can 

take any value by setting the corresponding errors to 0. [p-15] 

 
1.3  Goal and structure of the thesis  
 

The goal of this study is to implement some of the models that were presented 

above so as to come up with conclusions that concern the survivability of the patients 

in the absence and in the presence of covariates. In order to achieve the former, 

nonparametric models were used that do not make use of the covariates. From the 

above nonparametric models that were presented, we implemented the Kaplan-Meier 

method, the Life-table method and the Nelson-Aalen. In order to come up with 

conclusions that concern the survivability of the patients in the presence of covariates, 

the Aalen’s additive model was used. Finally, we also used artificial neural networks, 

as an alternative to survival analysis. All the methods that are implemented in this 

study use the same dataset of the ocular melanoma disease. 
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The thesis is organised as follows: in chapter 1 we give a description of the 

ocular melanoma disease and we present some of the most known models that are 

used in survival analysis, categorised in three main categories: nonparametric, 

parametric and semiparametric. Also the goal and a structure of this thesis are given. 

In chapter 2 the theoretical background of the functions of survival time and of the 

models that are used in this thesis is given. In addition the theoretical background for 

the covariate selection and censoring is given. In chapter 3, it is presented the 

application of the models that are used in this study. This means that it is given a more 

analytical description of the models, it is explained the covariate selection that was 

done for the dataset of the ocular melanoma disease and finally the censored data of 

the same dataset are described and explained. In chapter 4, the theoretical background 

of the artificial neural networks is presented and also the description of neural 

network that we used is given. In chapter 5 the results of all the methods and the 

neural networks are presented and a description of these results is given. In chapter 6, 

comparisons of this study and of others studies are given. The other studies either 

make use of the same dataset and analyse the data with different methods, such as 

Cox, either use different datasets of the same disease and analyse the data with the 

same models that are used in this study, such as the Kaplan-Meier method. Finally, in 

chapter 7, the conclusions of this thesis are given and also some suggestions for future 

work are also proposed.  
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Chapter 2  

Theoretical background 
 

This chapter contains all the basic theoretical background that will be needed 

in the chapters that follow. This means that the theoretical background about the 

functions of survival time, about the models that are used in this thesis, about 

censoring and finally about the covariates is given. 

 
2.1 Functions of survival time 

As it was mentioned in chapter 1, survival data arise when the aim is to study the 

time elapsed from some particular starting point of the occurrence of an event. The 

starting point of observation is usually a medical intervention such as first diagnosis 

of a given disease, a surgical intervention or the beginning of a treatment in a clinical 

study. [b-2] The survival time is actually the time up to a certain event. Such event 

may be a failure, a death, a relapse, or the development of a given disease. These 

times are randomly distributed and their distribution is usually described by three 

functions:  

1. the survivorship function 

2. the probability density function  

3. the hazard function.  

These three functions are mathematically equivalent, because if one of them is 

given, the other two can also be derived. The basic problem in survival analysis is to 

estimate from the sampled data one or more of these three functions, and to draw 

inferences about the survival pattern in the population.  

 

   2.1.1 Definitions of the functions of survival time 

Let T denote the survival time. The distribution of T, as mentioned above, can 

be characterized by three equivalent functions. 

• Survivorship Function (or Survival Function) 

This function, denoted by S (t), is defined as the probability that an individual 

survives longer than t: 

S(t) =P (an individual survives longer than t) 

     =P(T >t)                                                           (1) 
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or from the definition of the cumulative distribution function F (t) of T, 

         S(t) =1-P (an individual fails before t) 

     =1- F(t)                                                                    (2) 

where F(t) = proportion of individuals failing before time t 
 

S(t) is a nonincreasing function of time t with the following properties: 
 

         
1 0( )
0

for tS t
for t

⎧⎪ == ⎨
= ∞⎪⎩

 

meaning that the probability of surviving at least at time zero is 1 and that the 

probability of surviving at an infinite time is zero.  

The function S (t) is also known as the cumulative survival rate. The graphic 

representation of S (t) is called the survival curve and it was recommended by 

Berkson (1942). If there are no censored observations, the survival function is 

estimated as the proportion of patients surviving longer than t: 

( ) number of patients surviving longer than time tS t
total number of patients

=      (3) 

 

When there are censored observations the numerator of cannot always be 

determined, and that is why nonparametric methods are used in order to calculate the 

survival function. 

 
• Probability Density Function (or Density Function) 

 
The survival time T has a probability density function defined as the limit of the 

probability of failure in a small interval per unit time. It can be expressed as: 

0lim [ ( , )]( ) t P an individual dyingin the time t t tf t
t

Δ → + Δ
=

Δ
    (4) 

The density function has the following two properties: 

• f (t) is a nonnegative function: 

0 0( )
0

for tf t
for t

⎧⎪≥ ≥= ⎨
< ∞⎪⎩

 

• The area between the density curve and the t axis is equal to 1. 
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Ιf there are no censored observations, the probability density function is 

estimated as the proportion of patients dying in an interval per unit width: 

( )
( )*( )

number of patients dying in the time period beginning at time t
f t

total number of patients width of time period
=   (5) 

Like the estimation of S (t), when censored observations are present, the 

numerator cannot be always determined. The graph of f (t) is called the density curve. 

 

• Hazard Function 

The hazard function h (t) of survival time T gives the conditional failure rate. This 

is defined as the limit of the probability that an individual fails in a very short interval, 

t + Δt, given that the individual has survived to time t: 

 

Δ 0lim [an individual fails in the time interval (t,t+Δt)
                given the individual has survived to t]( )

Δ

t P

h t
t

→

=        (6) 

The hazard function can also be defined in combination with the cumulative 

function F (t) and the probability density function f (t): 

                                 ( )( )
1 ( )

f th t
F t

=
−

                                                       (7)                                           

If there are no censored observations the hazard function is estimated as the 

proportion of patients dying in an interval per unit time, given that they have survived 

to the beginning of the interval: 

number of patients dying per unit time in the interval( )
number of patients surviving at t

h t =                (8) 

The cumulative hazard function is defined as: 

                          
0

( ) ( )
t

H t h x dx= ∫                                                         (9) 
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    2.1.2   Relationships between the survival functions 

The three functions defined above are mathematically equivalent. If any one of 

them is given, the other two can be derived. 

From (2) and (7): 

 

( ) 1 ( ) ( ) ( ) ( )( ) 1 ( ) ( ) ( )( ) ( ) ( ) ( )1 ( )

S t F t f t f t f tf t F t S t h th t h t h t S tF t

= − ⎫⎪ − = ⇔ = ⇔ =⎬=
⎪− ⎭

   (10) 

The probability density function is the derivative of the cumulative 

distribution function and as a result the following equation is derived: 

( ) 1 ( )F t S t= −  

                              '( ) [1 ( )] ( )df t S t S t
dt

= − = −                                     (11) 

 

From the two above equations it is derived that: 

            
'

'

( ) ( )( ) ( ) log ( )( ) ( )( ) ( )

f t S th t h t S tS t S tf t S t

⎫= ⎪ = − = −⎬
⎪= − ⎭

                               (12) 

 
Integrating the above equation from zero to t and using S(0) =1, it is obtained that:           

                            
0

( ) log ( )
t

h x dx S t− =∫        or                                            (13) 

                 ( ) log ( )H t S t= −         or                                                           (14) 

         
0

( ) exp[ ( )] exp[ ( ) ]
t

S t H t h x dx= − = −∫                                                 (15) 

 

Lastly from equations (10) and (15) it is obtained that: 

     
( )( ) ( ) ( )*exp[ ( )]( )

( ) exp[ ( )]

f th t f t h t H tS t
S t H t

⎫⎪= = −⎬
⎪= − ⎭

                                      (16) 

 

As it was proven from all the above equations if one of the three survival 

functions is given, then easily the remaining two can be derived. [b-1] 
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2.2 General description of the models 

As it was mentioned above, this study uses some of the models that were 

presented. The statistical models that we use are the Kaplan-Meier model, the Life-

table model, the Nelson-Aalen model and the Aalen’s additive model. Below it will 

be given a basic description of these models. A more analytical description as well as 

the mathematical background of these models, it will be given in the following 

chapter. We also mentioned that this study uses neural networks. The description of 

the neural network that we use in this study is given in chapter 4. 

 

2.2.1 Description of the Kaplan-Meier method 

The Kaplan-Meier estimator is a staircase function and is so widely used, that 

in research papers survival curves are more often called Kaplan-Meier curves. [17] 

The Kaplan–Meier estimator is used to calculate an estimate of cumulative survival 

that can then be used to calculate the cumulative hazard rate. At the moment of each 

death, the proportion of survival decreases and it does not change at any other time. 

So the curve steps down at each death and is flat between deaths, which lead to the 

staircase appearance. [ws-23] 

It is a method of estimating time-to-event models in the presence of censored 

cases and it assumes a single cause of failure. The concept of censoring will be 

explained later in this chapter. The Kaplan-Meier estimator is based on estimating 

conditional probabilities at each time point when an event occurs and taking the 

product limit of those probabilities to estimate the survival rate at each point in time. 

That is why Kaplan-Meier is also called the "product limit estimate." [ws-20]. It 

involves computing the number of people who died at a certain time point, divided by 

the number of people who were still in the study at that time. [ws-22] The survival 

probability is calculated as number surviving divided by number at risk. Patients who 

have died or dropped out are not counted as “at risk”. Patients who are lost are 

considered censored and are not counted in the denominator. [ws-17] .The equation 

that gives the Kaplan-Meier estimator is:  

                                  
1

( ) (1 )
i

j
i

j j

d
S t

n=

= −∏  
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A more analytical mathematical analysis will be given in chapter 3. The 

Kaplan-Meier method is a nonparametric technique and in order to be implemented, 

exact times of the event that is studied are required. As it was mentioned above, the 

survival time is the time up to a certain event. Kaplan-Meier method is used mostly to 

analyze death as event, but it may also be used effectively to analyze time to an 

endpoint, such as remission. For example instead of analyzing death, it may be used 

to analyze the remission of a disease.  

The Kaplan-Meier survival curve is often illustrated graphically. It looks like a 

poorly designed staircase, with vertical steps going down at the time of death of each 

individual subject. [ws-22]  

With staircase curves, as the group of patients is larger, the step down caused 

by each death is smaller and so the staircase will become closer and closer to the ideal 

of a smooth curve. [ws-23] 

 
Summarizing, Kaplan-Meier estimates the instantaneous risk of death as the 

number dying in time interval divided by the number currently at risk of experiencing 

outcome. Moreover, 

1. It considers all observations, failures and censored. 

2. It considers the ordered sets of all time intervals and estimates the probability 

of survival in each interval, given that the patient survived through all prior 

intervals. 

3. Time intervals are as small as possible. At each failure, the survivorship 

function drops in a vertical step, forming a staircase down from 1.0 to the 

lowest value at the end of the study. 

4. It is nonparametric – Kaplan-Meier uses the data to draw the survival function 

directly. 

5. There is absence of competing risk.  

All the above characteristics will be confirmed with the mathematical analysis 

that will be given in chapter 3.  

The properties of the survival curve are: 

1. Step function: if there are small samples then the steps are big  

2. As sample size increases : it gets smoother  

3. S(0) = 1 

4. It is a decreasing function [ws-19] 
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2.2.2 Description of the Life-table method  

The life-table method is one of the oldest techniques for measuring mortality 

and describing the survival experience of a population. The life tables, summarizing 

the mortality experience of a specific population for a specific period of time, are 

called population life tables. As clinical and epidemiologic research become more 

common, the life-table method has been applied to patients with a given disease who 

have been followed for a period of time. Life tables constructed for patients are called 

clinical life tables. 

 The basic idea of the life table is to subdivide the period of observation into 

smaller time intervals. For each interval, all people who have been observed at least 

that long are used to calculate the probability of a terminal event occurring in that 

interval. The probabilities estimated from each of the intervals are then used to 

estimate the overall probability of the event occurring at different time points. The 

mathematical analysis will be given in chapter 3. 

The Life-Table method requires a fairly large number of observations, so that 

survival times can be grouped into intervals. Such as the Kaplan-Meier estimator, the 

Life-Table estimator makes use of all the survival information until the end of the 

study. [b-1] 

 

2.2.3 Description of the Nelson-Aalen method 

It is a method for the nonparametric estimation of the cumulative hazard 

function. It gives exactly the same cumulative hazard function with the Kaplan-Meier 

method but it is a more direct way.  

With the Kaplan-Meier method, the survival function is primary computed and 

then with the relationship ( ) log ( )H t S t= − , the cumulative hazard function was 

computed. With the Nelson-Aalen method the procedure is exactly the opposite, since 

first the cumulative hazard function is computed and with the 

relationship ( ) exp[ ( )]S t H t= − , the survival function is computed.  

This estimate of S(t) is sometimes called the Fleming-Harrington estimator of 

the survivor function. Usually, there will not be much difference between the 

Fleming-Harrington and Kaplan-Meier estimators.Since the same data set is used, it is 

expected that the cumulative hazard and survival function would be the same.[ws-26] 
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The risk set is calculated at every point in time where at least one event 

occurred which means that all events must be sorted according to their ending times. 

The mathematical analysis of this method will be given in chapter 3. 

It is a staircase function with: 

a. Location of drop is random (time at event) 

      b. Size of drop is 1/risk set (number at risk: count of persons alive 

before the death) 

 

2.2.4 Description of the Aalen’s additive model 

 The additive hazard model was suggested for the influence of the covariates 

on the hazard function. This approach is less vulnerable than the Cox model to 

problems of inconsistency when some of the covariates are deleted or the precision of 

some covariates measurements is changed. This method results in plots that may give 

information on the change over time in the influence of covariates. This information is 

taken from the change of the slopes of these plots.  

 The Cox proportional hazards model is the more used model for regression 

analysis of survival data. The most important aspect of the Cox model is the fact that 

the hazard function is the basis of the regression model. More importantly, the hazard 

is a natural function for describing the distribution of life times. Basically the hazard 

function measures the risk that an event may happen at any given time. This risk is a 

natural concept and that is why is reasonable to explain the level of risk in terms of 

covariates. 

 However there are some weaknesses in the Cox model: 

1. The assumptions of the model may not always hold. 

2. Changes over time in the influence of covariates are not very easily 

discovered. 

3. The proportional hazard assumption is vulnerable to changes in the number of 

the covariates and to the accuracy of their measurement. This means that if 

covariates are deleted form a model or are measured with a different level of 

accuracy the proportionality is generally destroyed. 

 The linear model that will be presented below is not supposed to solve all the 

problems mentioned before, but it may give a partial solution to the second and third 

problems. It is an alternative to the Cox model but this model does not require 
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constant proportional hazard. In this model the covariates are modeled as additive 

risks to a baseline hazard.  

 An obvious weakness of this linear model and one that basically distinguishes 

it from the Cox model is that the expression of hi (t) is not restricted naturally to non-

negative values. In this respect the model is not a “natural” one, but this must be 

weighed against the advantages of linearity. One practical consequence of the lack of 

restriction to non-negative numbers is that estimated survival functions may not be 

monotonically decreasing throughout, but can have occasional lapses where they 

increase slightly. This is a weakness but it is not a great problem unless the data set is 

quite small or the chosen covariate values are rather extreme. In the data set of ocular 

melanoma, this is not a problem because the covariate values do not have extreme 

values and the data set is not small. [p-1] 

 As in the above models that were described, a more analytical description as 

well as the mathematical analysis of this model, will be given in chapter 3. 

 

2.3 Theory about censoring  

Censoring in survival analysis is a very important issue because in most of the 

studies, the data that are used in the analysis are not complete. This happens due to 

various reasons that will be explained analytically below. 

There is an important assumption in Survival Analysis that individuals who 

are censored are at the same risk of failure as those who are still alive and uncensored. 

The risk set at any time point, the individuals still alive and uncensored, should be 

representative of the entire population alive at the same time. Statistically, this 

assumption is equivalent to the one that the censoring process is independent of the 

survival time. If censoring is noninformative, that is those censored at a given time are 

a representative sample of those at risk, then the estimates of the statistical methods 

are not biased. However, if the censoring is informative, that is those censored tend to 

be at a higher or lower risk of failure, then the estimates are biases and the results of 

the analysis are not representative. If at all possible, censoring from these later 

situations should be kept to a minimum. [p-6] 
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In general censored are called the patients that have not experienced the event 

of interest at the end of the study or time of analysis. For example, some patients may 

still be alive or disease-free at the end of the study period. Censored are also called 

the patients that are lost to follow-up after a period of study.This fact did not affect 

the outcome because all the non-parametric methods that were developed make use of 

the censored patients.There are three different types of censoring which are 

summarised below: 

• In type I censoring, if there are no accidental losses, all censored observations 

equal the length of the study period. 

 

 
Figure 1: It shows the type I of censoring [b-1] 

For example, suppose that six rats have been exposed to carcinogens by 

injecting tumor cells into their foot pads. The times to develop a tumor of a given size 

are observed. The experiment is terminated after 30 weeks. The above figure is a plot 

of the development times of the tumours. Rats A, B, and D developed tumours after 

10, 15, and 25 weeks, respectively. Rats C and E did not develop tumours by the end 

of the study; their tumor-free times are thus 30-plus weeks. Rat F died accidentally 

without tumours after 19 weeks of observation. The survival data are 10, 15, 30+, 25, 

30+, and 19+weeks. (The plus indicates a censored observation.) 
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• In type II censoring, if there are no accidental losses, the censored 

observations equal the largest uncensored observation. 

 

 
Figure 2: It shows the type II of censoring [b-1] 

For example, in an experiment of six rats, the study was terminated after four 

of the six rats have developed tumours. The survival times are then 10, 15, 35+, 25, 

35, and 19+ weeks. 

• Type III: In most clinical studies the period of study is fixed and patients 

enter the study at different times during that period. Some may die before the 

end of the study and so their exact survival times are known but others may 

withdraw before the end of the study and are lost. Still others may be alive at 

the end of the study. For those lost patients, survival times are at least from 

their entrance to the last contact. For patients still alive, survival times are at 

least from entry to the end of the study. The latter two kinds of observations 

are censored observations. Since the entry times are not similar, the censored 

times are also different. [b-1]  

 
Figure 3: It shows the type III of censoring [b-1] 
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 For example, suppose that six patients enter a clinical study during a total 

study period of one year. Suppose also that all six respond to treatment and achieve 

remission. The remission times are plotted in the above figure. Patients A, C, and E 

achieve remission at the beginning of the second, fourth, and ninth months, and 

relapse after four, six and three months, respectively. Patient B achieves remission at 

the beginning of the third month but is lost to follow-up four months later, the 

remission duration is thus at least four months. Patients D and F achieve remission at 

the beginning of the fifth and tenth months, respectively, and are still in remission at 

the end of the study their remission times are thus at least eight and three months. The 

respective remission times of the six patients are 4, 4+, 6, 8+, 3, and 3+ months. 

Another commonly used name for type III censoring is random censoring. All of these 

types of censoring are right censoring.  

There are also left censoring and interval censoring cases. Left censoring 

occurs when it is known that the event of interest occurred prior to a certain time t, but 

the exact time of occurrence is unknown.  

Interval censoring occurs when the event of interest is known to have occurred 

between times a and b. [b-1] 

 

2.4 Theory about covariates 

As with many statistical analyses, interest in survival analysis may be focussed 

on modelling dependence of the survival time with possible explanatory variables, 

which are also called covariates. 

 In survival analysis, the value of a covariate may take a fixed value, that is its 

value is fixed at the start of the study and do not change throughout the duration of the 

study, for example sex or treatment. However, in survival analysis, covariates may 

also be time-varying, taking different values at different time points, for example 

blood pressure or weight. [ws-25] 

The three main categories of the covariates are the following: 
• Numerical: taking values in an interval (blood pressure). 

• Categorical: taking a finite number of values (Civil Status). 

• Binary: a categorical covariate that takes two values (Sex). [ws-30] 
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Covariates may also be classified as group or individual.  

• group covariate: variable that applies to a group of individuals 

(temperature, environmental factors)  

• individual covariate: variable that applies to an individual animal 

(weight, hormone level)  

Both types of covariates can be time variant (body weight) or time invariant           

(genetic characteristics) [ws-29] 
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Chapter 3  

Model application on specific dataset 
 

This chapter describes in full details the four statistical models that we use in 

this study. These models, as we have already mentioned, are the Kaplan-Meier model, 

the Life-table, the Nelson-Aalen and the Aalen’s additive model. 

 

3.1 The  Kaplan-Meier method 

As it was mentioned above, the Kaplan-Meier method is a method of 

estimating time-to-event data in the presence of censored cases. Censoring is a very 

important issue in this method and that is why below it will be explained analytically 

how censored observations appear in our data and how censoring affects the shape of 

the survival curve practically.  

 

     3.1.1 Censoring in the ocular melanoma dataset 

The Kaplan-Meier method in this study uses a dataset that contains patients who 

suffer from the ocular melanoma disease. The data set was made of 1734 patients with 

ocular melanoma in different parts of the eye. However, many of these patients turned 

out to be censored because they were still alive until the end of the study. 

In censoring type III, patients enter the study at different times during the period 

of study .For patients still alive, survival times are at least from entry to the end of the 

study. Since the entry times are not similar, the censored times are also different. It is 

obvious that the censored patients from our data belong to the third type of censoring. 

Each patient has entered the study at different time, the date of management, and that 

is why each one has different survival time. The survival time, for these patients is 

from entry until a fixed date, the 10th February 2005. 

When a patient is censored the curve doesn't take a step down as it does when 

a patient dies. But because censoring the patient reduces the number of patients who 

are contributing to the curve, each death after that point represents a higher proportion 

of the remaining population, and so every step down afterwards will be a little bit 

larger than it would have been without censoring. 
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The part of the curve after the first patient is censored is only an estimate of 

survival for the group rather than the actual survival, which is not yet known since the 

censored patients are still alive at the time of analysis. [ws-17]  As it was mentioned 

before, censored patients may drop out the study due to various reasons but they are 

still alive. This is the reason that the survival curve after the first censored patients is 

only an estimate, since the censored patients are still alive and we do not know when 

exactly they will die. As a result, we can only estimate the survivability of the 

remaining group of patients in the study .Thus a censored subject contributes to the 

number at risk at the time he becomes censored but is not among those at risk 

immediately after that time.  

If the last observed time is censored, then the estimate of the survivorship 

function does not go to zero and so its smallest value is at the last observed survival 

time. In this case the estimate is considered to be undefined beyond the last observed 

time. [ws-20] 

Censoring must be accounted for in the analysis because otherwise, results 

might be misleading. The Kaplan-Meier and life-table methods assume that censoring 

is noninformative. That is, those censored at a given time are a representative sample 

of those at risk. If those censored tend to be at higher or lower risk of failure, the 

censoring is informative and the estimates may be biased. [ws-19] In our data the 

censored data are noninformative.  

Many clinical trials are designed with a minimum follow-up time. This means 

that the results aren't reported until that amount of time after the last patient signed up 

for the trial. In this case, no patients will be censored until after that minimum time on 

the curve.  

It is useful to see when patients are censored so as to get a feeling for the 

reliability of the curve over time. Survival curves often have a tick mark at each point 

where a patient was censored. They may even show the number remaining "at risk" at 

several points instead. The number at risk at any point in the survival curve is the 

number of patients who are still alive and whose follow- up extends at least that far 

into the curve. [ws-17] 
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         3.1.2   Analytical Description of the method 

To compute a survival curve, the time of occurrence of events must be noted: 

t1, t2, t3…represent the times when a death happens. The starting point of the study 

must also be defined. Time zero is not some specified calendar date, rather it is the 

time that each patient entered the study. This means that t0=0.  

The basic computations for the Kaplan-Meier survival curve rely on the 

computation of conditional survival probabilities. In particular, the probability:  

                                    1[ | ]i iP T t T t −≥ ≥  

 which can be interpreted as the probability of the surviving to a specific time, given 

that someone survived to the previous time. 

This probability is easy to calculate if the number of deaths at a specific time 

is known and if the number of patients at risk at that same time is also known. A more 

difficult probability is the unconditional probability of survival:  

                                    [ ]iP T t≥  

 which can be calculated as it is shown in the following lines:  
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Therefore, the unconditional probability is equal to the cumulative product of 

conditional probabilities. 

 At each time point, it should be counted: 

• di: the number of deaths   

• ci: the number of censored data. 

• ni: the number of patients at risk  

which is defined as:  

1 1 1i i i in n d c− − −= − − . 

The number at risk at any specific time point is just the number at risk at the previous 

time point, minus the number of deaths/failures and the number of censored 

observations. Next the conditional probability of survival is computed: 
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1[ | ] 1 i
i i

i

dP T t T t
n−≥ ≥ = −  

Finally, the unconditional probability of survival is simply the cumulative 

product of the conditional probabilities. The following equation is the one that gives 

the Kaplan-Meier estimator: [ws-22] 

1

[ ] (1 )
i

j
i

j j

d
P T t

n=

≥ = −∏  

       3.1.3 Confidence Intervals 
In order to generalize the knowledge from a sample to the overall population, 

a survival curve is more informative when it includes a 95% Cl. The survival has 

been measured exactly in a sample but it is needed a more descriptive clarification 

for the survival of the entire population. There is certainty 95% that the true 

population survival curve lies within the 95% CI. [ws-21]  

If the exact number of patients who are still alive is known at any specific 

time, then the following equation can be used to calculate an approximate 95% CI 

for the fraction surviving up to at any time t. 

The 95% CI using the Greenwood formula: [ws-19] 

             2[ ( )] ( )
( )ti t

diV S t S t
ni ni di≤

=
−∑                                       (1) 

 

( ) 1,96* ( )*
( )

( ) 1,96* ( )*
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ti t

ti t

dilower S t S t
ni ni di

diupper S t S t
ni ni di

≤

≤

= −
−

= +
−

∑

∑
                    (2) 

 
The standard error of the Kaplan-Meier estimator is given by the variance 

Greenwood’s formula. In general, confidence intervals are calculated as:                  

+/- 1.96(standard error), assuming that the errors are normally distributed. In order to 

conclude to equation 1 the following steps should be followed. 

Grouped data are considered and so at first we should group the data using the 

uncensored times (1) (2) ( )... kt t t< < < . 

 



 49

For each risk set ( ){ : }j i i jR t t t= ≥ counting the number of failures is a binomial 

experiment. So, ( ) ( ) ( )~ ( , )j j jd Binomial n h where ( )jh is the hazard at ( )jt  

Let ( ) ( )1j jq h= − , for ( 1) ( )i it t t− ≤ < . Then, 

^ ^ ^ ^

(1) (2) ( 1)

^ ^ ^

(1) (2) ( 1)

1 ^

1

var(log ( )) var(log{ ,..., })

var(log log ... log )

var(log ( ))

i

i

i

j

S t q q q

q q q

q j

−

−

−

=

=

= + + +

=∑

 

The variances are additive because the risk sets at (1) (2) ( ), ,..., kt t t are nested. So, by 

statistical theory, we can treat 
^ ^

(1) (2)log , log ...q q  as uncorrelated terms. By the delta 
method, which is a method for computing the variances, for a transformation φ of an 

estimate 
^
θ  we have: 

^ ^
' 2var( ( )) [ ( )] var( )φ θ φ θ θ≈  

Using the delta method: 
2

^ ^
( ) ( ) ( )

( ) ( ) 2
( ) ( ) ( ) ( ) ( )

1 ^
( )

( )
1 ( ) ( ) ( )

1 1var(log ) var( )

var(log ( )) var(log )

j j j
j j

j j j j j

i
j

j
j y j t j j

h q h
q q

q q n q n

h
S t q

q n

−

= ≤

⎡ ⎤
≈ = ⋅ =⎢ ⎥
⎢ ⎥⎣ ⎦

⎛ ⎞
= ≈ ⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑

 

Using the delta method again,  
^ ^
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^
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We put in 
^

( )
( )

( )

j
j

j

d
h

n
=  and  

^
( ) ( )

( )

j j
j

j

n d
q

n
−

=  .  

The Greenwood’s formula, for estimating the variance of the Kaplan-Meier estimate, 
is: 

^ ^
( )2

( ) ( ) ( ) ( )

var( ( )) [ ( )]
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d
S t S t
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≈
−∑ , 

which is the same equation as equation 1 [oth-5]. By using the standard error, we can 

obtain approximate confidence intervals for the survival function S(t). [ws-26] These 

confidence intervals are given by equations 2.Using these two equations, the upper 

and the lower 95% CI can be found of the survival curve and so a more complete 

image for the entire population can arise. 
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3.1.4 Implementation of the method in the ocular melanoma dataset 

As it was mentioned, in this study the censored data belong to the third type of 

censoring, which is also called random censoring. The patients entered the study at 

different times (date of management) and all the data are selected up to a specific time 

(21/3/2005). Some died before that day and so their exact time of death is known and 

some are still alive until that day. Those who are alive are recognised because their 

date of death is missing (DOD). Those patients that their DOD is missing are 

considered as censored patients.  

In order to plot the Kaplan-Meier survival curve, the exact time events have to 

be known. The variable survy (survival years) is very helpful because for those 

patients that are dead, the value of this variable is the time from date of management 

until the data of death. For those patients that are still alive the survival years are from 

the date of managements until the 10th February 2005. This is very convenient 

because the exact starting point for each person has not to be clarified as it common 

for all the patients. The counting begins from time zero.  

Because the Kaplan-Meier Method is a method that takes advantage of the 

censored patients, these patients are identified as these who do not have a specific 

date of death and so this value is missing.  

By counting all these patients, those who are still alive, as censored, there are 

left 490 patients who have died. This means that 1244 patients were still alive until 

the last date of this study (21/3/2005). From the 490 patients who died some of 

them died from cancer and some of them died from another cause.  

 

Censored 
Total N 

N of 
Events N Percent 

1734 490 1244 71,7% 
Table 4: Contains the number of the censored and dead patients 

 
 If the survival curve is plotting deaths due to a particular form of cancer, it 

must be decided what to do with those patients who died from another cause and not 

from cancer. In our study the patients who died from cancer are recognised because 

there is a characteristic value metastatic death which is equal to 1. On the contrary, 

those who died from another cause have characteristic value death equal to 1 and 

metastatic death equal to 0. 
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Metastatic death: 0 and death: 1   person died from another cause  

Metastatic death: 1 and death: 1   person died from cancer 

 

Some investigators count those who died from another cause as censored 

subjects and others count them as deaths. In this case, they were counted as deaths. 

[ws-21] 

Below it is given a small sample of four patients of the dataset so as to explain 

when a patient is thought to be dead for cancer, dead from another cause or censored. 

 
mand DOD md death survy 
19-Jan-2005 missing 0.00 0.00 0.06 
19-Mar-1993 missing 0.00 0.00 11.90 
21-Oct-1994 8-Apr-1997 0.00 1.00 2.46 
3-Jun-1985 29-Nov-1989 1.00 1.00 4.49 

Table 5: Contains a sample of four patients of the dataset  
 

1. The first two data represent patients who are still alive until the date 10th 

February 2005. These patients are thought to be censored. 

2. The third patient is someone who has died from another cause and so he is 

also considered as dead. 

3. The fourth patient has died from cancer. 

 Because in some small time intervals, more than an event took place, the data 

had to be grouped so as to make easier the computation of the survival probability 

with the Kaplan-Meier estimator. 

 
survy deaths di censored ci at risk ni di/ni 1-di/ni 

0,01 0 2 1734 0 1 
0,02 1 1 1732 0,000577 0,999423 

            Table 6: Contains a sample of the Kaplan-Meier analysis  
  

• The first column contains the survival years which are sorted in ascending way. 

• The second column contains the patients who died. 

• The third column contains the patients who were censored. 

• The fourth column contains the patients at risk, meaning the patients who were 

alive in the previous time minus those who died and those who were censored. 

• The fifth and the sixth columns contain computations that will eventually help to 

compute the cumulative probability. Actually the sixth column contains the 

conditional probability. 
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In order to implement the Kaplan-Meier estimator, the cumulative probability 

must be calculated. 

 
 

The cumulative probability, the 95% CI and the survival curve, are all 

computed with the help of Matlab [Appendix A] and the results are given in chapter 5. 

 

3.2 The Life-table method 

3.2.1 Analytical description of the method 

As it was mentioned above, The Life-table method is like the Kaplan-Meier 

method with the difference that the time is separated in intervals. Since censoring is 

an important issue for the Kaplan-Meier method, is logical that the Life-table method 

also considers censoring in its analysis. The detail analysis and description of the 

characteristics of the Life-table method follows. This study makes use of the clinical 

Life-Tables and not of the population Life-tables. The former have usually the 

following columns: 

 

1. Interval (ti-ti+1): The first column gives the intervals into which the 

survival times and censored times are distributed. The last interval has 

an infinite length and all the intervals are fixed. 

2. Midpoint (tmi): The midpoint of each interval is included for 

convenience in plotting the hazard and the probability density 

functions. 

3. Width (bi): The width of each interval is needed in the calculation of 

the hazard and density functions, and the width of the last interval is 

infinite. 

4. Number lost to follow-up (li). This is the number of people who are 

lost to observation and whose survival status is thus unknown in the ith 

interval. In this dataset there are no people lost to follow-up. 
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5. Number withdrawn alive (wi): People withdrawn alive in the ith 

interval are those known to be alive at the closing date of the study. 

The survival time of these people is the time from the date of 

management until the 10th February 2005. 

6. Number dying (di): This is the number of people who die in the ith 

interval. The survival time of these people is the time from date of 

management to death. 

7. Number entering the ith interval (ni’): The number of people 

entering the first interval is the total sample size. The other entries are 

calculated from ' '
1 1 1i i in i n c d− − −= − −  which means that the number of 

persons entering the ith interval is equal to the number studied at the 

beginning of the previous interval minus those who are censored and 

died 

8. Number exposed to risk (ni): This is the number of people who are 

exposed to risk in the ith interval .It is assumed that the censored times 

are approximately uniformly distributed in the interval. Therefore, 

people lost in the interval are exposed to risk of death for one-half the 

interval. '
j  n / 2  j jn c= − .If there are no censored patients ni=ni’ 

9. Conditional proportion dying (qi): It is defined as qi=di/ni. It is an 

estimate of the conditional probability of death in the ith interval. 

10. Conditional proportion surviving(pi) : It is given by   pi=1-qi and is 

an estimate of the conditional probability of surviving in the ith 

interval 

11. Cumulative proportion surviving (S(t)): It is an estimate of the 

survivorship function at time ti and some times it is referred as the 

cumulative survival rate. For {
1 1

1, 0( ) ( ) * ( ), 0i
i i i

iS t S t p S t i− −

== = >  

12. Estimated probability density function (f(t)): It is defined as the 

probability of dying in the ith interval per unit width. ( )*( ) i

i

S t qf t
b

=   

i=1,…,s-1 
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13. Hazard function (h (t)): The hazard function for the ith interval is the 

number of deaths per unit time divided by the average number of 

survivors at the midpoint of the interval 

1 1

( )* ( )*
2*( )( ) 1 1( ) *(1 )*[ ( ) ( )] * ( )*( 1)

2 2

i i

i i i

i i
i i

q qS t S t
b b qf th t

S t b pS t S t S t p+

= = = =
++ +

 

S (t) is defined as the probability of surviving at the beginning and not at the 

midpoint of the interval. In the following table it is given the format of the clinical 

Life-Table. [b-1] 

In order to compute the Life-table estimator, the data of the ocular melanoma set 

had to be formed as the following table. This was done with Microsoft Excel and then 

the data with the new format were used in Matlab. The results of the analysis of this 

method will be given in chapter 5.  

 

3.2.2 Confidence intervals 

Confidence intervals will also be used in the Life-Table method. With the use of 

the confidence intervals we can conclude to clearer results. At this point, the standard 

errors will be given since the confidence intervals, as we mentioned before, are 

calculated as : +/- 1.96(standard error).  

The standard error of the survival function is derived from the Greenwood’s 

formula and is given by: 

^
1^ ^

^
1

( ( )) ( )
i

j
i i

j
j j

q
S t S t

n p
σ

−

=

= ∑ .  

The standard errors that follow and refer to the density function and to the hazard 

function accordingly, are not so commonly used and they are not derived from the 

Greenwood (1929) formula but they were suggested by Gehan (1969). The standard 

error of the density function is given by: 

^ ^
1^ ^

^ ^
1

( ( )) ( )
i

j i
mi mi

j
j j j j

q pf t f t
n p n q

σ
−

=

= +∑ .  

Finally, the standard error of the hazard function is given by:  

^
2^ ^

^

1 ( ( )/ 2)( ( )) ( ) i mi
mi mi

i

b h th t h t
n q

σ −
=  
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Table 7: Contains the format of the Life-table analysis [b-1] 
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3.3 The Nelson-Aalen method 

   3.3.1 Analytical description of the method 

 The Nelson-Aalen method, as it was mentioned in the previous chapter, computes 

directly the cumulative hazard function and with the 

transformation ( ) exp[ ( )]S t H t= − , the survival function can be derived. The Kaplan-

Meier method does exactly the opposite analysis. Once again, censoring is considered 

in the analysis. The Nelson-Aalen is given by: 

( )
j t

j

t j

d
H t

n
<

=∑  

where dj is the number of dead and nj is the number of the at risk patients. [ws-18] As 

it was mentioned again, the number at risk at any specific time point is just the 

number at risk at the previous time point, minus the number of deaths/failures and the 

number of censored observations.  

 In order to compute the Nelson-Aalen estimator, Matlab was used [Appendix A]. 

The results are given in chapter 5. 

 
3.3.2 Confidence Intervals  

 The Confidence intervals will also be used in the Nelson-Aalen method as an 

important piece of the analysis. The standard error is given by:  

^ ^

2( ( )) ( )
j

j

t t j

d
H t H t

n
σ

<

= ∑  

As mentioned again before the confidence intervals, are calculated as:                

+/- 1.96(standard error).  

 

3.4 The Aalen’s additive model 

As it was mentioned in previous chapters, the Aalen’s additive model is a 

semiparametric model. It makes use of covariates in order to analyse the survivability 

of the patients. The main purpose of this method is to result in plots that give 

information on the change over time in the influence of covariates. This information is 

taken from the change of the slope. In this section of this chapter, it will be given the 

analytical description of the method and also an analysis of the covariates of this 

dataset will be presented. 
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3.4.1 Analytical description of the method 

A number of individuals are observed over time to see if a specified event 

occurs. The individuals are assumed to be independent and any events happening to 

the individuals are also assumed to be independent between individuals. The life 

times that are observed may be complete or right censored. [p-1] The basic equation 

may be formulated as follows: [p-3] 

0 1
( , ) ( ) ( ) ( )k

j jj
h t Z β t β t Z t

=
= +∑  

The hazard at any time is thus a sum of a baseline hazard β0 (t) and a linear 

combination of the covariate values, Zj. 

In Aalen's terminology, the hazard hi (t) denotes the probability (intensity) of 

the event occurring at time t for individual i, given that it has not occurred before. 

Let’s clarify that: 

• n is the number of subjects  

• r is the number of covariates. 

So, the vector of intensities ( ), 1,2,....,ih t i r= is formulated by the linear 

model:  

( ) ( ) ( )h t Y t β t=  

The matrix Y is of size ( 1)n r× + and is constructed as follows: 

• If the ith individual is a member of the risk set at time t then the ith 

row of Y (t) is the vector 1 2( ) (1, ( ), ( ),.... ( ))i i i i
kY t Z t Z t Z t= , where 

( ), 1,...i
jZ t j r=  are the covariate values.  

• If the individual is not at risk at time t, meaning that the event of 

interest has already occurred or the individual has been censored, then 

the corresponding row in Y (t) contains only zeros.  

It should be noted that the value of the Y vector must be used just before a 

relevant event time and that the covariates are not time-dependent, which means that 

the covariates are not a function of time.  

The first element of the vector β (t) is a baseline parameter and the remaining 

elements ( ), 1,2,....,iβ t i r=  are called regression functions and estimate the influence 

of the covariates. [p-1] These regression functions are the equivalents to the 

regression parameters in the Cox regression model. But in contrast to the Cox model, 
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where the regression parameters are constant, the regression functions may vary with 

time. [p-4] 

Since the regression functions may vary with time, statistical analysis of them 

may reveal changes in the influence of the covariates over time. This is one of the 

main advantages of this method. 

 It is impractical and difficult to estimate the individual regression functions 

and instead the cumulative regression functions are estimated. This happens for the 

same reason that it is easier to estimate a cumulative distribution than a probability 

density.  

The elements Β ( ), 0,1,....,j t j k= of the column vector B (t) are the cumulative 

regression functions and are defined as:  

0

Β ( ) ( )
t

j jt β t ds= ∫  

If T1 < T2 < … are the ordered event times, meaning the times when an actual 

event, not censoring, occurs. Then it may be proved [p-20] that a reasonable estimator 

of     B (t) is given by: 
*Β ( ) ( )k k

Tk t
t X T I

≤

= ∑  

Ik is a vector of zeros except for a one corresponding to the individual 

experiencing an event at time Tk. X (t) is a generalized inverse of Y (t): 
' 1 '( ) [ ( ) ( )] ( )X t Y t Y t Y t−=  

It should be noted that the estimator B*(t) is only defined as long as Y (t) has 

full rank and therefore 'Y Y  is invertible. Therefore estimates are restricted to the 

time interval where 'Y Y  is not singular or alternative to the time when the rank of 

the matrix Y (t) falls below r+1.In fact this time, R will be considered as a final 

censoring time. This means that all subjects remaining in the risk set at this time are 

considered as censored. The introduction of such a censoring does not affect the 

statistical analysis, since it is a stopping time. 

Also the estimates of the baseline hazard are not constrained to non-negative 

numbers. This should not be a problem because the scope of this model is not to 

conclude to a baseline hazard function but to plots that will give information on the 

change over time in the influence of covariates. 
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The cumulative regression functions are plotted against time and give a 

description of how the covariates influence the survival over time. It is therefore the 

change in the cumulative functions, the slope that is of primary interest. 

The survival function as well as the cumulative hazard can also be estimated. 

Let 1(1, ,..., )i i
i rZ Z Z= be a set of covariate values for the ith individual that are fixed 

at given times. In analogy to the Kaplan-Meier estimator, the survival function may 

be estimated as follows for each patient:   
* '( ) [1 ( ( ) ) ]i k k i

Tk t

S t X T I Z
≤

= −∏  

where Zi is the vector of the covariate values. What makes the above equation suitable 

for computing the survival function for each patient separately is that vector Zi of the 

covariates, which is unique for each of the patients. The above equation computes the 

unconditional probability of survival and that is why, as in the Kaplan-Meier method 

where the product of the unconditional probabilities was used in order to compute the 

unconditional probability, the product of the integrals that compute the cumulative 

regression functions is used in the above equation. Accordingly the cumulative hazard 

function is given by the relationship: 
*( ) log ( )H t S t= −  

 Another way of computing the survival function is through the cumulative 

hazard function. This means that the inverse procedure must be followed from the one 

that we described previously. After computing the cumulative hazard function, the 

survival function will be computed by the following equation: ( ) exp[ ( )]S t H t= −  

 The procedure that must be followed is the following: The hazard function of 

the additive model is the following: 0
1

( , ) ( ) ( ) ( )
k

j j
j

h t z t t z tβ β
=

= +∑  .By integrating 

this equation, we get the cumulative hazard function: 0
1

( , ) ( ) ( ) ( )
k

j j
j

H t z B t B t z t
=

= +∑  

In the case of our study that we have three covariates, the above cumulative hazard 

function becomes: 0 1 1 2 2 3 3( , ) ( ) ( ) ( ) ( ) ( ) ( ) ( )H t z B t B t z t B t z t B t z t= + + + . After the 

computation of the cumulative hazard function, we use the equation 

( ) exp[ ( )]S t H t= − and so we get the survival function. The results that come up 

from the one way and the other are exactly the same. 
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 It should be mentioned that the estimated survival functions are not 

necessarily monotonic over the whole observation period. In fact they may increase at 

some values of t and accordingly the cumulative hazard functions may decrease for 

some time t. [p-1]. In chapter 5 there will be given results about the survivability of 

the patients. Also results about how their survivability is influenced by the presence of 

the covariates will be given. These results will be given for the entire population, but 

also for separate patients. 

 

         3.4.2 Description of the covariates of the ocular melanoma dataset 

For the Aalen’s additive model not all of the patients were used and this is due 

to the fact that this model makes use of covariates. Many covariates are not complete 

and as a result there were many missing values that had to be detracted, in order to 

implement the additive model. After the removal of the missing values, they were left 

743 patients. 

 Below it is given a detailed description of the data set and a table that 

summarizes the data and their values. 

 At first the data that have to do with time are described and after that, the 

covariates and their meaning are presented. The information description of the 

covariates was given by the online support of the Bioppatern group. 

• DOB: date of birth, which is obtained from hospital records 

• DOD: date of death, which is obtained from death certificate, family, medical 

practitioner, or any other valid source. 

• Mand: date of management, which is the date of primary treatment of 

intraocular tumour 

• Survy: survival years, which are measured from the date of primary ocular 

treatment (mand) to the date of death or if there is no notification of death 

then to the 10th February 2005. 

• Sex: 0  female, 1 male 

• Md: metastatic death : 0 no, 1 yes 

• Death: patient diseased : 0 alive, 1 dead 

• Uh: ultrasound height, which is the tumour height measured by 

ultrasonography  
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• Lubd: Longest ultrasound basal dimension, which defines the longest basal 

tumour dimension as measured by ultrasonography. [oth-1] There is a staging 

system that is widely used and is devised by the Collaborative Ocular 

Melanoma Study group. They use a system that refers to small, medium, and 

large melanomas, which is revised below. [ws-1] 

Type Thickness Diameter 
Small 1.0 mm to 2.5 mm 5 mm 
Medium 2.5 mm to 10 mm 5 mm to 16 mm 
Large 10 mm or more 16 mm or more 

      Table 8: Contains a system that categorize the dimension of the basal tumor 
 

• Epi: Epithelioid cellularity, which describes the presence or not of epithelioid 

melanoma cells. 0 no, 1 yes 

• Antmar: anterior tumor margin, which is estimated by ophthalmoscopy, slit-

lamp examination and ultrasonography. This variable takes 14 different 

values, each of them corresponds to a different part of the eye that the tumor 

is located. [oth-1]  

Number Location 
1 Disc & Fovea 
2 Fovea 
3 <=1DD Fovea 
4 1-2DD Fovea 
5 Disc 
6 <=1DD Disk 
7 1-2DD Disk 
8 Posterior choroid 
9 Anterior Choroid 
10 Pars Plana 
11 Pars Plicata 
12 Iris 
13 Angle 
14 Cornea 

Table 9: Contains the description of the anterior tumor margin covariate 
 
This covariate can also be categorized in two subgroups: 

Subgroups Value of antmar 

Choroidal (value 0) Antmar <=9 

Ciliary (value 1) Antmar >9 

Table 10: Contains the two subgroups that can be derived from categorization 
of the anterior tumor margin covariate 
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If the data get categorized according to the above values of antmar then we get 

two subgroups of patients. 

Subgroups Type of antmar Number of patients 

Group A Choroidal 446 patients 

Group B Ciliary 297 patients 

     Table 11: Contains the number of the patients of the two subgroups 

An example of the data described above is given, for two patients. 

DOB antmar mand DOD lubd uh epi md death survy sex 
25-Feb-
1933 

9 19-Jan-2005 missing 13.60 6 1.00 0.00 0.00 0.06 0.00 

24-Oct-
1925 

9 21-Oct-1994 8-Apr-
1997 

14.80 7 1.00 0.00 1.00 2.46 1.00 

Table 12: Contains an example of two patients and their covariates 

 

Below it is given a brief description of the above parts of the eye and a picture 

of the anatomy of the eye. [ws-15] 

 
Figure 4: The anatomy of the eye 
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The choroid is part of the lining of the eyeball and is dark-colored to prevent 

light being reflected around the inside of the eye. The ciliary body extends from the 

choroid and focuses the eye by changing the shape of the lens. The ciliary body is 

divisible into two parts: the pars plans and the pars plicata [ws-5] The pars plana is 

the part of the eye lying between the retina and the pars plicata. The retina converts 

light energy into a signal that is sent to the brain. The pars plicata makes intraocular 

fluid, the aqueous humor. [ws-14] The iris is the clearly visible colored disc at the 

front of the eye, which controls the amount of light entering the eye. [ws-5] The fovea 

is the centre most part of the macula. This tiny area is responsible for our central, 

sharpest vision. [ws-16] The macula is located roughly in the centre of the retina, 

temporal to the optic nerve.  It is a small and highly sensitive part of the retina 

responsible for detailed central vision. The macula allows us to appreciate detail and 

perform tasks that require central vision such reading. [ws-13] The cornea is the 

transparent, dome-shaped window covering the front of the eye.  It is a powerful 

refracting surface, providing 2/3 of the eye's focusing power.  Like the crystal on a 

watch, it gives us a clear window to look through. [ws-12] The area in the anterior 

chamber where the cornea and iris join is known as the angle. [ws-10] The optic 

nerve transmits electrical impulses from the retina to the brain.  It connects to the back 

of the eye near the macula. When examining the back of the eye, a portion of the optic 

nerve called the optic disc can be seen. [ws-11] 

 

         3.4.3 Implementation of the method in the ocular melanoma dataset 

 As it was mentioned previously, the main focus of the analysis in the additive 

Aalen’s model is on cumulative regression plots, where the slope at any given time 

gives information on the influence of the covariates at that specific moment. 

The meanings of the covariates, as well as the different covariates of the 

ocular melanoma dataset were explained in previous sections. In this section it will be 

presented the implementation of the Aalen’s additive model in the ocular melanoma 

dataset as well as the solution of some problems that came up during the analysis. 

Originally there were 1743 patients in the data set but for the purposes of the 

additive model only 743 patients were used. Since information on the selected 

covariates is not complete, the number of the patients had to get deduced. For the 

implementation of the additive model, three covariates were selected in order to get 
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examined for their effect over the lifetime distribution and for their influence in the 

disease of ocular melanoma.  

These covariates had to be time independent or else constant over time. 

Moreover these covariates had to have medical interest. This means that after the 

analysis, we had to conclude to results that would have some meaning. In this way 

doctors could use them so as to come up with useful conclusions for the disease of 

ocular melanoma. These covariates describe certain characteristics of the tumour and 

they were obtained after medical observation. From all the covariates that are 

contained in the data set the only three covariates that fulfil the above requirements 

are the:  

• Longest ultrasound basal dimension, which defines the longest basal tumour 

dimension as measured by ultrasonography 

• ultrasound height, which is the tumour height measured by ultrasonography 

• Epithelioid cellularity, which describes the presence or not of epithelioid 

melanoma cells. 

 

 

All the other covariates contain information about time (DOB, DOD, mand, 

survy) or are indicators about death (md, death). In addition, since the ocular 

melanoma has almost no difference between males and females, as it was mentioned 

in the description of the disease in chapter 1, the covariate sex was not examined. 

Finally, the covariate antmar which describes in which part of the eye the tumour was 

located will be used in order to categorize the data in two subgroups for further 

analysis. The two subgroups are the “ciliary body” subgroup and the “choroidal” 

which are the main points of the eye that the disease appears. 

The analysis of the additive model is going to be implemented with the three 

covariates that are summarised in the following table. According to the results that 

will arise, the influence of these covariates is going to get examined. 

 
Covariate Label Value 
Ultrasound height uh Mean=15mm, range(0-30mm) 
Longest ultrasound basal dimension lubd Mean=15mm, range(0-30mm) 
Epithelioid cellularity epi Yes: n= 464 ,No: n=279 

Table 13: Contains the three covariates that will be examined in the Aalen’s 
additive model 
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In the beginning of the analysis the data set had to be determined. As 

mentioned from the 1734 patients the analysis of the additive model was implemented 

with 734 patients. This happened because the three covariates that were chosen had 

missing values and so the individuals with these covariates had to be removed.  

In addition the matrix Y had to be computed for discrete time moments. This 

means that for each separate time point, only a single matrix Y should be computed. 

This was a problem because in the data set of ocular melanoma in a specific time, 

more that one event took place. For example in time 0, 73 years one person dies and 

three others are still alive, meaning that they are censored. So, in the separate time 

point of the 0,73 years four events took place. What it had to be done was to count all 

the death events and the censoring events that took place in a specific time separately, 

so as to have summarized in all the different times the dead and censored patients. In 

this way, the calculation of the Y matrix will be held without problems. The code that 

computes the summarized events as well as the Y matrix is in Appendix B. After that 

computation, 560 different Y matrixes were created, for each different time. This is 

logical since before, we had in the same time four different events, while now we 

have in the same time all the events summarizes and in this way there is no need for 

the time point to be repeated. This difference will be shown in the following two 

tables. 

Survy Dead patients Censored patients 

0,73 1 0 

0,73 0 1 

0,73 0 1 

0,73 0 1 

0,75 0 1 

0,75 0 1 

Table 14: Contains the events that take place in two time point before to be 
summarized 

 

The table that follows contains the same time points, but the dead and 

censored patients are now summarized fro each time point. By counting the events, 

we see that in time 0,73 we have 4 events, 1 dead patient and 3 censored, and in time 

0,75 we have two events, no dead patients and two censored. 
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Survy  dead censored 

0,73 1 3 

0,75 0 2 

Table 15: Contains the events that take place in two time point after to be summarized 
 

After the computation of the Y matrix, the X matrix had to be computed. As it 

was mentioned, this matrix can only be computed until the time when the rank of the 

matrix Y falls below r+1. Because the covariates in this analysis are three, when the 

rank of Y falls below 4, then the computation of the X matrix stops. In this case the 

computations stop at 20, 68 years and as a result 546 different X matrixes are created. 

The individuals that take place in the analysis remain 743. The computation of the X 

matrix is presented in Appendix B. 

In order for the analysis to be continued, the cumulative regression functions 

will be calculated. As it was mentioned in the description of this method previously in 

this chapter, in the calculation of the estimator *Β ( ) ( )k k
Tk t

t X T I
≤

= ∑  ,which has as 

elements the cumulative regression functions, only the ordered event times must be 

computed in the analysis. This means that will be used only the times that an event, or 

else death, takes place and not the times that censoring occurs. 

 This leads to a deduction in the number of patients because between the 743 

individuals, there are patients that are censored. These patients have to be left out 

from the computation of the cumulative regression functions, as the model indicates. 

After this deduction that was required for the analysis of the additive model, 271 

patients were left and 238 different matrixes B were computed. This difference in the 

number of patients is due to the fact that at each different time more than one event 

can take place, as it was explained before. The analysis after this deduction stops at 

20, 58 years. The computation of the B matrix is presented in the Appendix B. 

The cumulative regression functions that were computed have to be plotted 

against time so as to give a description of how the covariates influence the survival 

over time. The change in the slope gives that information. These plots will be given in 

chapter 5. 
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Chapter 4 

Artificial Neural Networks 
In the beginning of this chapter is given an explanatory theoretical background 

about the artificial neural networks, and later in this chapter, it is given the 

architecture of the neural network that use in this study. In chapter 2, there were 

presented the neural networks that are used in survival analysis. In this study, we did 

not use any of these neural networks because our goal was not to implement a 

separate survival analysis with the neural networks but to train a neural network with 

an already used survival method. This means that the inputs of the neural network that 

we used are known. If we wanted to implement survival analysis not with statistical 

methods, but with a neural network, then one of the model that were described in 

chapter 2  would be used. The neural network that we used in this study was trained 

with the Kaplan-Meier method. In this way the results that came up from the 

statistical analysis and with the neural network analysis, can be compared. 

 

4.1 Theoretical background of the neural networks 

Artificial neural networks are inspired from the biological neural system with 

the perspective to reproduce some of the flexibility and power of the human brain in 

order to solve problems which are difficult for traditional sequential computers. They 

can be defined as synthetic networks that emulate the biological neural networks 

found in biological living organisms. [oth-4] 

Another definition which may be given is that “a neural network is an 

interconnected assembly of simple processing elements, nodes, which functionality is 

loosely based on the animal neuron. The processing ability of the network is stored in 

the interunit connection strengths, weights, obtained by a process of adaptation to, or 

learning from, a set of training patterns.” [b-3] 

 As it can be derived from the above definition, the building blocks of artificial 

neural nets are the artificial neurons, which work in parallel in order to solve a 

specific problem. These neurons are tied together with weighted connections and have 

many inputs and one output. In order for the weights to be changed and adapt to the 

training set, a learning rule must be followed. The learning rule is also the way in 

which the neurons are interconnected.  
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The following definition describes in a very effective way what exactly the 

learning procedure is: “Learning is process by which the free parameters of a neural 

network are adapted through a process of simulation by the environment in which the 

network is embedded. The type of learning is determined by the manner in which the 

parameter changes take place” [oth-4] 

 The central idea of neural networks is that parameters, like the weight w and 

the bias b, can be adjusted so that the network exhibits some desired or interesting 

behavior. Thus, the network can be trained to do a particular job by adjusting the 

weight or bias parameters, or perhaps the network itself will adjust these parameters 

to achieve some desired end. Every network needs a transfer function which takes the 

argument n, the sum of the weighted input wp and the bias b, and produces the output 

a. The scalar input is p and is usually transmitted through a connection that multiplies 

its strength by a scalar input w and the result is the product wp. This procedure is 

summarized in the following diagram. [oth-3] 

 

 
Figure 5: Diagram that shows the central idea of the neural networks 

 

4.1.1 Transfer functions 

 The transfer functions are very essential in the formation of the neural 

networks. There are many transfer functions but the most commonly used are three. 

• The hard-limit Transfer function: it limits the output of the neuron to either 

0, if the net input argument n is less than 0, or to either 1, if n is greater than or 

equal to 0. It is usually used to make classification decisions. 
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Figure 6: diagram that shows the hard-limit Transfer function 

• The linear Transfer function: it is usually used as linear approximators. 

 
Figure 7 : diagram that shows the linear transfer function 

• The sigmoid Transfer Function: it takes the input, which may have any 

value between plus and minus infinity, and produces the output into the range 

0 to 1. It is commonly used in backpropagation networks. 

                                           
Figure 8: diagram that shows the sigmoid transfer function 

 

4.1.2  Network Architectures 

There are different network architectures, which are usually identified in three 

different classes: 

• Single Layer feedforward networks: it consists of an input layer of source 

nodes that feed an output layer of neurons. Feedforward means that the 

neurons are connected to output neurons, bur not vice versa. 

• Multilayer feedforward networks: it consists of one or more hidden layers. 

The function of hidden layers is to intervene between the input ant network 

output. When the size if the input is large, it is best to add more hidden layers 

because the results tent to be better and more precise. In multilayer 
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feedforward networks, the input neurons supply input features to the first 

hidden layer whose outputs constitute to the second hidden layer and so on.  

The weights connected to inputs, are called input weights and the weights 

coming from layer outputs, are called layer weights .The final output of the 

network represent the overall response of the network to the inputs fed by the 

inputs neurons of the input layer. The multiple layer networks are very 

powerful. Usually the first layers are sigmoid and the last is linear. With this 

kind of network, which is used in backpropagation, can be trained to 

approximate almost any function. The following network is a three-layer 

network with two hidden layers (layer 1 and 2) and one output layer (layer 3). 

 

 
Figure 9: Diagram that shows a multilayer feedforward network 

 

• Recurrent networks: it contains at least one feedback loop. 

 

   4.1.3 General information about networks  

There are two different styles of training a network: the incremental training and 

the batch training. In the incremental training the weights and biases are updated each 

time an input is presented to the network. In batch training the weights and biases are 

only updated after all of the inputs are presented.  

There are also two basic types of input vectors: those that occur at the same time, 

concurrently, and those that occur sequentially in time. For the former the order is not 

important but for the latter the order in which the vectors appear is important.  

Lastly, there are static networks, they have no feedbacks or delays, and dynamic 

networks that contain delays.  
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As mentioned before, the learning rule is applied to train the network to perform 

some particular task. There are two main categories of learning rules: supervised 

training and unsupervised training. In supervised learning, both the inputs and the 

outputs are provided. The network then learns a set of input-output pairs which is 

called the training set. So the weights are adjusted such as the network responds to 

any input by the desired output or with an accepted accuracy or error. In unsupervised 

learning, the weights and biases are modified in response to network inputs only, 

since the network is only provided with inputs and no with the desired response.     

[oth-3] 

There are many different learning rules used in neural networks such as the 

Hebbian rule, the Perceptron rule, the Delta rule, the Widrow-Hoff rule and others. 

The most commonly used rule in multilayer feedforward networks is the 

Backpropagation rule. Later in this chapter, a fully description of the neural network 

that we use, based on the above characteristics will be given. 

 

    4.1.4 Backpropagation learning rule  

Backpropagation was created by generalizing the Widrow-Hoff learning rule to 

multiple-layer networks and nonlinear differentiable transfer functions. Input vectors 

and the corresponding target vectors are used to train a network until it can 

approximate a function, associate input vectors with specific output vectors, or 

classify input vectors in an appropriate way as defined by you. Networks with biases, 

a sigmoid layer, and a linear output layer are capable of approximating any function 

with a finite number of discontinuities. 

 Standard backpropagation is a gradient descent algorithm, in which the network 

weights are initialized with random values and then are changed in the negative 

direction of the error gradient in order to minimize the error function. 

The term backpropagation refers to the manner in which the gradient is computed 

for nonlinear multilayer networks. Properly trained backpropagation networks tend to 

give reasonable answers when presented with inputs that they have never seen. 

Typically, a new input leads to an output similar to the correct output for input vectors 

used in training that are similar to the new input being presented. The target vector is 

known (supervised learning). This generalization property makes it possible to train a 

network on a representative set of input/target pairs and get good results without 

training the network on all possible input/output pairs.  
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The multilayer feedforward networks that use the backpropagation learning 

algorithm often have one or more hidden layers of sigmoid neurons followed by an 

output layer of linear neurons. This happens because if the last layer of a multilayer 

network has sigmoid neurons, then the outputs of the network are limited to a small 

range but if linear output neurons are used, then the network outputs can take on any 

value. 

During training, the weights and biases of the network are iteratively adjusted to 

minimize the network performance function. The default performance function for the 

feedforward network is the mean square error. As each input is applied to the 

network, the network output is compared to the target. The error is calculated as the 

difference between the target output and the network output. 

There are many variations of the backpropagation algorithm. The simplest 

implementation of backpropagation learning updates the network weights and biases 

in the direction in which the performance function decreases most rapidly, the 

negative of the gradient.  

The backpropagation algorithm in rules is given by: 

• weight change = some small constant × error × input activation 

• For an output node, the error is: 

error = (target activation - output activation) × output activation                             

× (1 - output activation) 

• For a hidden node, the error is: 

error = weighted sum of to-node errors × hidden activation                                     

× (1 - hidden activation) 

Because the backpropagation algorithm often takes a long time to learn, the learning 

rule is often augmented with a so called momentum term. This consists in adding a 

fraction of the old weight change .The learning rule then looks like: 

weight change = some small constant × error × input activation + momentum 

constant × old weight change 
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In this point, the backpropagation algorithm in equation will be given:  

• If j is a node in an output layer, the error δj is:  

                                          δj = (tj - aj) aj(aj -1)  

where aj is the activation of node j, tj is its target activation value, and δj  its error 

value 

• If j is a node in a hidden layer, and if there are k nodes 1, 2, …, k, that receive 

a connection from j, the error δj is: 

                       δj = (w1j δ1 + w2j δ1 + … + wkjδk) aj (aj -1) 

where the weights w1j , w2j , …, wkj belong to the connections from hidden node j to 

nodes 1, 2, …, k. The backpropagation learning rule (applied at time t) is:  

                          Δwji(t) = μ δjai + Δβwji(t-1) 

where Δwji (t) is the change in the weight from node i to node j at time t, the learning 

constant μ is typically chosen rather small, and the momentum term β is typically 

chosen around 0.5. [oth-6] 

It is very important to measure the performance of a trained network. This can be 

measured to some extent by the errors on the training, validation and test sets, but it is 

often useful to investigate the network response in more detail. One option is to 

perform a regression analysis between the network response and the corresponding 

targets. The routine postreg is designed to perform this analysis. 

It returns three parameters. The first two, m and b, correspond to the slope and the 

y-intercept of the best linear regression relating targets to network outputs. If the fit is 

perfect (outputs exactly equal to targets), the slope would be 1, and the y-intercept 

would be 0. The third variable returned by postreg is the correlation coefficient (R-

value) between the outputs and targets. It is a measure of how well the variation in the 

output is explained by the targets. If this number is equal to 1, then there is perfect 

correlation between targets and outputs. [oth-3] 
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4.2 Implementation of the neural networks in the ocular melanoma dataset  
 The neural network was used in this study in order to extract results that could 

be used later in future studies, since the neural network will already be trained and so 

only the inputs and the outputs will be required in order for the results to be derived. 

The data of the Kaplan-Meier method were used for the training of the neural 

network. This means that it has one input, a matrix that contains the dead and the at 

risk patients, and one output the Kaplan-Meier estimator. Because the number of 

patients was big enough, 1743, more than one hidden layer had to be used. In 

particular five hidden layers were used. The first hidden layer had 2 nodes and the rest 

four had five nodes each. 

The learning rule that was used was the backpropagation because in this study the 

inputs and the target vectors are known and so they can be used so train the network 

until a function is approximated. As a training function the traingd could be used, 

since it uses batch descent training and so the weights and biases are updated in the 

direction of the negative gradient of the performance function. In order to have a 

faster training, the trainlm (Levenberg-Marquardt) function was finally used because 

the performance function will always be reduced at each iteration of the algorithm.  

In addition, as learning function the learngdm was used. It calculates the weight 

change for a given neuron from the neuron’s input p and error E, the weight w, 

learning rate and momentum constant according to the gradient descent momentum. A 

momentum constant was used so as to make it less likely for a backpropagation 

networks to get caught in a local minimum. With momentum a network can slide 

through such a minimum.  

Lastly, as a transfer function between the hidden layers the tansig was used rather 

than the logsig because the former is good for neural networks where speed is 

important and the exact shape of the transfer function is not. 

By summarizing, in order to calculate the weight changes in the hidden layer, the 

error in the output layer is propagated back to these layers according to their 

connecting weights. This process is repeated for each sample in the dataset. One cycle 

through the dataset is called an epoch. In the following table the characteristics of the 

neural network are summarized. 
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Architecture Multilayer feedforward network 

Number of inputs 1 

Number of outputs 1 

Number of hidden layers 5 

Number of nodes of each hidden layer 2 & 5  

Training style Batch training 

Type of input vector Sequential 

Type of network Static 

Category of learning rule Supervised 

Learning rule Backpropagation 

Training rule Trainlm 

Performance function Mean square error(mse) 

Leaning function learngdm 

Transfer functions Logsigmoid(hidden layers) 

Purelin(output layer) 

Table 16: Contains the characteristics of the neural network that we used in this 
study 
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Chapter 5  

Results of the statistical methods and of the neural networks 
In this chapter of this study, the results from the statistical methods that we 

used will be presented. As it was mentioned again previously, the methods that this 

study uses are the Kaplan-Meier method, the Life-Table, the Nelson-Aalen and the 

Aalen’s additive model. Also in this study we use neural networks, the results of 

which will be presented later in this chapter. 

 

5.1 Results from the Kaplan-Meier method 

As it was mentioned in chapter 2, the equation that gives the Kaplan-Meier 

method is: 

1
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The survival curve that is derived for the dataset of the ocular melanoma 

disease is the following: 
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     Figure 10a: The survival curve of the 1743 patients from the Kaplan-Meier method  
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The above survival curve is smoother in the beginning because there are more 

patients in the first 20 years and after that it takes a staircase appearance, which is 

logical because after the twenty years the patients are not so many. As it can be seen 

from this survival curve after the 23 years there are no deaths, and that is why the 

survival curve is stable, until the 32 years that a death occurs and so the survival curve 

takes a step down. Because the above survival is gradual, it can be derived that this 

curve represents high survival rate or longer survival. Moreover, this survival can be 

interpreted as follows: The chances, of those who managed to live 32 years, are about 

20% to be cured. 

Because the last observed time is censored, the estimate of the survivorship 

function does not go to zero and so the smallest value is at the last observed survival 

time. In this case the estimate is considered to be undefined beyond the last observed 

time, which is the case in this data set. 

In this survival curve the 95 % CI is also plotted. This means that there is 95% 

certainty that the overall survival curve for the entire population lies within the dotted 

lines. The CIs are not wide in the beginning because there are many patients in the 

first 20 years, but they get wider after the 20 years where there are fewer patients. 

As it can be seen from the survival curve, after the 23 year there are not so 

many deaths. Actually at 23,21 years a death happens and after that time point, the 

next death occurs at 32,33 years. By taking into account this last death our results are 

affected since from the survival curve is shown that the chances of those who 

managed to live 32 years, are about 20% to be cured. But if we do not take into 

account this last death, then the probabilities of the patients to be cured are augmented 

at about 40%. This means that the patients after the 23,31 years might be thought as a 

statistical error since, as we already said, affect our results. In order to have a clearer 

image, the survival function was plotted again but this time the last death was not 

taken into account. As it can be seen from the following plot, the probabilities of the 

patients to be cured are now 40%, as we already said. 
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Figure 10b: The survival curve of the 1743 patients from the Kaplan-Meier method 

without the last death taken into account. 
 

From the above survival functions, the median survival can also be derived, 

which is the 50th percentile. The results will be the same either we derive the median 

survival from the figure 10a, either from the figure 10b. As it can be seen from the 

following plot, the median is derived from the first figure. 

The median survival time is the time at which half the patients have died and 

half are still live. It is easy to derive the median survival from the survival curve, 

because a horizontal line must be drawn at 50% survival and then it must be observed 

where this line crosses the curve. From the following plot it is shown that the median 

survival is at 18 years almost. 
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       Figure 11: The survival curve with the median survival 

 

The cumulative hazard function can easily be derived by using the relationship 

between the survival and the hazard function: ( ) log ( )H t S t= −  
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                      Figure 12a: The cumulative hazard function  
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The possible statistical error, between the years 23,21 and 32,33, which exists 

in the survival function, also exists in the Cumulative hazard function. If we ignore 

the last dead patient at the 32,23 years, then the cumulative rate will be at about 1.But 

if we don not, as it is seen from the above plot, the cumulative hazard goes up to 1,6. 

As it was said above, the last patient that dies affects our results, and that is why it can 

be ignored. The following figure shows the cumulative hazard function without the 

last death taken into account. 

 

 
Figure 12b: The cumulative hazard function without the last death taken into 

account 
 

The survival curve and the cumulative hazard function that are derived from 

the Kaplan-Meier estimator were also computed with the SPSS program so that they 

can be comparable. 

In order to obtain results from the SPSS program no code has to be written. 

The only thing that has to be done is to import the data into the data editor which will 

contain two columns, one with the survival years and another one with the number of 

deaths. Then from the menu the following order has to be followed: Analyse  

Survival Kaplan-Meier. Then a few adjustments have to be done and the plots of the 

cumulative survival and hazard functions are ready. [Appendix A] 
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Figure 13: The survival function from the SPSS program 

 
Figure 14: The cumulative hazard function from the SPSS program 
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In the survival function as well as in the cumulative hazard function the 

censored patients can be identified by the mark “+”. As it can be seen the survival 

functions and the cumulative hazard functions are very much alike since they describe 

the same events in the exact times. 

From the SPSS program the following table came up that summarizes the 

confidence intervals and the median survival. As it can be seen the median that was 

taken from the survival function of the Kaplan-Meier method and the median that 

came up from The SPSS program are very close. The former is at 18 years and the 

later is at 19, 6 years. Also the upper and lower bound of the Confidence Intervals are 

very close. 

 

Mean(a) Median 
95% Confidence Interval 95% Confidence Interval 

Estimate 
Std. 
Error 

Lower 
Bound 

Upper 
Bound Estimate 

Std. 
Error 

Lower 
Bound 

Upper 
Bound 

19,289 ,788 17,746 20,833 19,660 1,297 17,118 22,202 
Table 17: Contains information from the SPSS about the confidence intervals 

and the median of the survival function 
 

 

 We can also use the Kaplan-Meier method so as to come up with the survival 

functions of two subgroups. In this point, we have categorized our data in two 

subgroups according their sex. So in the following plot, the survival functions of the 

male and female patients of our data are shown. With the blue line, the survival 

function of the females is shown and with the green the line the survival function of 

the males is shown. As it can be seen, the survivability of the females is greater than 

the survivability of the males, since for the former the survivability goes up to 50%, 

while for the later it goes up to almost 20%. In this point, we can say that the death 

that affects out results is a death of a male patient. If this death, as we already said 

before, can be thought of as a statistical error and be ignored, then the survivability o 

the male patients go up to 30%. In either case, ignoring or not the last patient, the 

female patients have greater survivability than the male patients. 
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  Figure 15: Survival functions of the male and female patients 

 

         5.1.1 Fitting procedure of the survival function 

 The above survival plots were derived from the Kaplan-Meier estimator which 

means that the plot was constructed by the points of the set that came up during the 

computation of the estimator. These points have to be fitted to known survival 

distributions so as the survival data to be approximated. Up to this point, the survival 

functions that were plotted were just points that came up from the statistical analysis, 

and not an exact plot of a known survival distribution. With the fitting procedure, 

instead of having a plot that will represent the survivability in points, we will have a 

plot of the survival function, since after the following procedure, the function of the 

survivability will be known.  

Two survival distributions have been chosen and tested but only the one of 

them fitted suitably the data. 

• Exponential distribution 

• Log-Logistic distribution 

The fitting procedure was done with the “cftool” of Matlab. [Appendix A] 
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The other distribution was rejected because its goodness of fit was not that 

good. The Curve Fitting Toolbox supports the following goodness of fit statistics for 

parametric models and each of then must have a specific value which ensures the 

good fit. 

• The sum of squares due to error (SSE)  

• R-square 

• Adjusted R-square  

• Root mean squared error (RMSE)  

Sum of Squares Due to Error: This statistic measures the total deviation of the 

response values from the fit to the response values. It is also called the summed 

square of residuals and is usually labelled as SSE.  A value closer to 0 indicates a 

better fit.  
2^

1
( )

n

i i i
i

SSE w y y
=

= −∑  

R-Square: This statistic measures how successful the fit is in explaining the variation 

of the data. In another way, R-square is the square of the correlation between the 

response values and the predicted response values. R-square is defined as the ratio of 

the sum of squares of the regression (SSR) and the total sum of squares (SST). SSR is 

defined as: 
2_^

1
( )

n

i i
i

SSR w y y
=

= −∑  

SST is also called the sum of squares about the mean, and is defined as: 
2_

1
( )

n

i i
i

SST w y y
=

= −∑  

where SST = SSR + SSE. Given these definitions, R-square is expressed as:     

1SSR SSER square
SST SST

− = = −  

R-square can take on any value between 0 and 1, with a value closer to 1 indicating a 

better fit.  

For example, an R2 value of 0.8234 means that the fit explains 82.34% of the total 

variation in the data about the average. 
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Degrees of Freedom Adjusted R-Square: This statistic uses the R-square statistic 

defined above, and adjusts it based on the residual degrees of freedom. The residual 

degrees of freedom is defined as the number of response values n minus the number 

of fitted coefficients m estimated from the response values.  

v n m= −  

 v indicates the number of independent pieces of information involving the n data 

points that are required to calculate the sum of squares. The adjusted R-square statistic 

is generally the best indicator of the fit quality when additional coefficients are added 

to the model. 

( 1)1
( )

SSE nadjusted R square
SST v

−
− = −  

The adjusted R-square statistic can take on any value less than or equal to 1, with a 

value closer to 1 indicating a better fit.  

Root Mean Squared Error: This statistic is also known as the fit standard error and 

the standard error of the regression   

RMSE s MSE= =  

where MSE is the mean square error or the residual mean square  

SSEMSE
v

=  

 A RMSE value closer to 0 indicates a better fit. [oth-1] 

 

The Exponential distribution 

 The exponential survival distribution is characterized by a constant hazard rate 

λ, its only parameter. A high λ value indicates high risk and short survival while a low 

λ value indicates low risk and long survival. [b-1] 

( ) tS t e λ−=  
The goodness of fit statistics for this distribution where: 

sse 0,4506 

rsquare 0,9819 

adjrsquare 0,9819 

rmse 0,0215 

Table 18: Contains the goodness of fit of the exponential distribution in the 
Kaplan-Meier method 
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The fitting procedure was done with the curve fitting tool of the Matlab. The 

exponential survival distribution had to be created, since it was included in the custom 

fitting equations. The plot that shows the Kaplan-Meier estimator with the fitting of 

the exponential distribution is the following: 

As it can be seen from table 15, the goodness of fit is not very good, since the 

sse and the rmse must be close to zero so as to be a good fit, and the rsquare and the 

adjrsquare must be close to 1. There is a deviation of these values and that is why, we 

will also test the log-logistic survival distribution. 

  

 
Figure 16: The fit of the exponential survival distribution in the Kaplan-Meier 

method 
 

 
The Log-Logistic distribution 

The log-logistic distribution is characterized by two parameters α, and γ. [b-1] 
 

1( )
1

S t
tγα

=
+  
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The goodness of fit statistics for this distribution where: 

sse 0,09658 

rsquare 0,9961 

adjrsquare 0,9961 

rmse 0,009958 

Table 19: Contains the goodness of fit of the log-logistic distribution in the 
Kaplan-Meier method 

 

These values reveal that the fit will be good as they are very close to the 

suggested values, which is confirmed by the following plot. 

As it can be seen, the estimated points and the log-logistic survival distribution 

are very close and especially the first 20 years. 

 
Figure 17: The fit of the log-logistic survival distribution in the Kaplan-Meier 

method 
 

Between the two survival distributions, it is obvious that the log-logistic 

survival distribution gives better results, since the goodness of fit is obviously better. 

The sse and the rmse must are really close to zero, and the rsquare and the adjrsquare 

are very close to 1. This is why, the log-logistic distribution is chosen so as to fit the 

Kaplan-Meier estimator and to derive the function of the survivability. 
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The parameters α and γ have the following values: 

 

α 0,0454 

γ 1,079 

Table 20: Contains the parameters of the log-logistic distribution in the 
Kaplan-Meier method 

 

The survival function, based on the above parameters and the log-logistic 

distribution is: 1,079

1( )
1 0,0454

S t
t

=
+

 

5.2 Results from the Life-table method 

In this point of this chapter, the results of the Life-table method will be given. 

The survivorship function, the hazard function and the probability density function 

were computed with the help of Matlab and of SPSS so as to be comparable. 

[Appendix A]. The SPSS procedure is exactly the same for the Life-table method, 

except the fact that the following path must be followed: Analyze  Survival Life-

table. Also the time intervals must be defined. 

1. Survival function  
• Matlab 
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 Figure 18a: The survival function of the Life-table method from Matlab 
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As we mentioned before in the Kaplan-Meier method, the last death provokes 

problems in the analysis since it can be thought of as statistical error. If the last 

death is not taken into account, the probabilities of cure are augmented from 20% 

to 40%. The following figure shows exactly this fact. Also in the following plot 

the confidence intervals are shown. During the last years, the confidence intervals 

become wider because not so many events take place as during the first years. 

 
Figure 18b: The survival function of the Life-table method from Matlab that 

does not contain the last death. 

 
Figure 19: the survival function with the median survival of the Life-table 

method 
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As it can be seen from the above plot, the median survival is almost at 19 

years, which is really close with the median survival that occurred from the Kaplan- 

Meier method, where the median was at the 18 years. The median survival is the same 

either it is derived from the survival function that contains all the data, either is taken 

from the survival function that does not contain the last death. 

 

• SPSS 

 
Figure 20: The survival function of the Life-table method with the SPSS 

program 
 

As it can be observed the Kaplan-Meier method and the Life-table method 

give almost the same survival probability, which means that these two methods are 

very much like, except the fact that the former does not uses intervals of time, while 

the latter does. Besides, this is the main difference between these two methods. The 

above survival is gradual, as the survival from the Kaplan-Meier method was too, 

which means that high survival rate or longer survival is represented. Just because the 

Life-Table uses intervals the steps down are clearer and so the survival curve looks 

like a staircase function. 
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2. Probability Density Function 
• Matlab 
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Figure 21a: The probability density function with Matlab 

 
The proportion of individuals that fail in any time interval and the peaks of 

high frequency of failure can be found from the density function. The probability 

density function is defined as the probability of dying in the ith interval per unit 

width.  

As it can be observed from the above plot, in the 32,3 years, the biggest 

probability density is observed because for a long time (23 years-32 years) no patients 

have died and then suddenly a patient died and that is why a peak is shown at that 

time. The conditional probability of death is high at that time interval. The peak that is 

biggest, after that of the 32,3 years is at almost 2 years. This is expected, since during 

the first two years the most of the deaths take place, and that is why at that time point 

there is a big frequency of failure. The above plot may be misleading, since it shows 

that the biggest probability of dying is at the last interval. The real fact is that the 

biggest probability of dying is at the second year since during that time the most of 

the patients die. In particular, 73 patients die during that time. The following plot does 

not take into account the last death and so it gives a clearer image of what is 

happening. 
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Figure 21b: The probability density function with Matlab without the last 

death taken into account 
 

• SPSS 

 
Figure 22: The probability density function with SPSS 

 
As it can be observed the two density functions from the two programs are alike. 
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3. Hazard function 
• Matlab 
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Figure 23a: The hazard function with Matlab 
 

The hazard function for the ith interval is the number of deaths per unit time in 

the interval divided by the average number of survivors at the midpoint of the 

interval. From the above plot it can be said that the death rate is highest at the 32 

years of the study. For a period of 10 years (23-32) the hazard rate is zero and then 

suddenly the peak of the hazard rate is observed. This happens due to the fact that for 

a long period there were not any deaths. During the first 10 years the death rate is 

relatively constant, taking values from 0.03-0.051. Then it is observed a gradual 

attenuation in the death rate which is logical since after the first 10 years the number 

of deaths is obviously less. Only during the fifteenth and twentieth year, the hazard 

rate is higher because during that time there is a small increase of deaths. Once again, 

because the above plot may become misleading, the last death was not taken into 

account and the hazard function was computed again. As it was mentioned before, 

this last death may be thought of as statistical error and that is why it affects our 

results. 
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Figure 23b: The hazard function with Matlab without the last death 

 

• SPSS  

 
 

Figure 24: The hazard function with SPSS 
 

 
As it can be observed, the two hazard functions from Matlab and SPSS are 

alike. 
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Even though, the statistical analysis of the Life-table method does not contain 

the computation of the Cumulative hazard function, we thought that it would be good 

to derived it from the known relationship ( ) log ( )H t S t= −  . In this way, by having 

the cumulative hazard function, a more complete image of the all the nonparametric 

models is going to be achieved. In addition, in chapter 6, where all the comparisons 

are going to be presented, a more complete work will be done. 
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Figure 25: The cumulative hazard function of the Life-Table method 

 
       5.2.1    Fitting procedure 

 
In this section of the chapter, the plot of the survival function was derived 

from the Life-Table method. The survival curve has to be fitted to known survival 

distributions so as the survival data to be approximated. Since the exponential 

distribution was checked in the Kaplan-Meier method and was not suitable, it will not 

be checked again. Only the log-logistic destitution will be tested.   

The log-logistic distribution is the following: 
1( )

1
S t

tγα
=

+
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The goodness of fit statistics for this distribution where: 

sse 0,034562 

rsquare 0,9764 

adjrsquare 0,9757 

rmse 0,031883 

Table 21: Contains the goodness of fit of the log-logistic distribution in the Life-Table 
method 

 

These values reveal that the fit will be good as they are very close to the 

suggested values, which is confirmed by the following plot. 
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Figure 26: The fit of the log-logistic survival distribution in the Life-table method 

 

The parameters α and γ have the following values: 

α 0,04005 

γ 1,127 

Table 22: Contains the parameters of the log-logistic distribution in the Life-
table method 

 

The survival function, based on the above parameters and the log-logistic 

distribution is is:  

1,127

1( )
1 0,04005

S t
t

=
+
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5.3 Results from the Nelson-Aalen method 

 As we already mentioned, the Nelson-Aalen method gives the cumulative hazard 

function and with the relationship ( ) exp[ ( )]S t H t= − , the survival function is 

computed. At this point, the results of the analysis of the Nelson-Aalen method are 

given:  

 The plot of the cumulative hazard function is: 

 

 
 Figure 27a: The cumulative hazard function of the Nelson-Aalen method 

 

Since the data set is the same for all the three methods, the possible statistical 

error, between the years 23,21 and 32,33, which exists in the previous methods, also 

exists in the Nelson-Aalen method, and especially in the cumulative hazard function. 

If we ignore the last dead patient at the 32,23 years, then the cumulative rate will be at 

about 1.But if we don not, the cumulative hazard goes up to 1,6. As it was said again 

previously, the last patients that dies affects our results, and that is why it can be 

ignored. If we ignore the last patient we conclude to the following plot. In addition, 

this plot contains the confidence intervals which may be very informative. Since 

during the first years the patients are more, the confidence intervals are narrower. 

However, during the last years where fewer events take place, the confidence intervals 

are wider because there is more uncertainty about the results. 
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Figure 27b: The cumulative hazard function of the Nelson-Aalen method 

without the last death taken into account. 
 

 The survival function will also be plotted. It can be derived from:  

( ) exp[ ( )]S t t= −Λ  
 
The plot of the survival function is: 
 

 
 Figure 28: The survival function of the Nelson-Aalen method 
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 At this point we must underline that if the last death is not taken into 

account, the probabilities of cure will arise to 40%, since the last step down will not 

take place. 

 

 
Figure 29: the survival function with the median survival of the Nelson-Aalen method 
 

The median survival is about at 19 years, just like the other two methods. All 

the three methods, the Kaplan-Meier, the Life-table and the Nelson-Aalen method, 

have similar results. The survivability of the patients and also the median survival is 

about the same in the three methods. A more complete comparison of the three 

methods, their differences and their similarities, will be given in chapter 6. 
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5.4 Results from the Aalen’s additive model 

 
At this point, the cumulative regression functions that were computed by the 

statistical analysis of this model are going to be plotted against time. This is the scope 

of this model, to result in plots that will give information on the influence of the 

covariates. Since the regression functions vary with time, statistical analysis of them 

reveals changes in the influence of the covariates over time. The information is taken 

from the slope of the plots. The slope can give three different kinds of information. 

• If there is an increasing slope, the covariate influences the evolution of 

the disease. 

• If there is a negative slope, the covariate looses its influence or it has a 

decreasing effect. 

• If the slope is constant, the covariate can no longer be considered as a 

prognostic factor. 

 

It must be noted at this point that we must not focus on small changes in the 

slope of the plots but we must restrict to more dramatic changes, like the 

disappearance of a clearly increasing slope. 

 It is to be expected that the covariates measured at the beginning of the 

observation period may often lose their influence on survival after a while. [p-1]. This 

is something that will be shown from the plots of the regression functions that follow. 

The plots of the cumulative regression functions for each covariate are presented 

below.  
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1. Covariate “lubd” 
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Figure 30: The plot of the regression function that corresponds to the longest 

ultrasound basal dimension covariate 
 

The covariate “Longest ultrasound basal dimension” has a clear influence 

during the first seven years, since the slope is clearly increasing. After that time the 

influence seems to disappear since the slope of the cumulative regression function is 

almost constant. This means that during the first years of the disease, this covariate 

plays an important role to the survivability of the patients and it influences the 

evolution of the disease. Since that crucial time passes, this covariate starts to loose its 

influence, since the increasing slope disappears.  

It is very important to be able to get information about the influence of each 

one of the covariates because in this way we are able to find out which covariate 

influences more. In addition, we are able to know the exact time point where a 

covariate looses its influence. All this piece of information can become very helpful 

for the doctors since they can adjust the cure of the disease and they can change it 

while the time passes and the covariates start to loose their effect.  
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2. Covariate “uh” 
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Figure 31: The plot of the regression function that corresponds to the 

ultrasound height covariate 
 

 The covariate “ultrasound height” is not stable throughout the years nor has 

a clear increasing or decreasing effect. This is due to the fact that the slope increases 

and decreases constantly while the time passes and so no final result can be taken. In 

order to conclude some results, the time should be split to small time intervals so as to 

observe the influence of the covariate in each time interval.  

 This is not however the scope of the additive method, because the influence 

of the covariate should be observed through the entire time so as to conclude to 

results. So what it can be said about this covariate is that it has not a clear influence in 

the disease of ocular melanoma and so it does not influence the evolution of the 

disease in a determining and clear way. 

 This will also be verified below where we put all the covariates together and 

we try to find which one of them influences more the disease. We will find out that 

the covariate that influences the disease less is the “ultrasound height” covariate. 
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3. Covariate “epi” 
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Figure 32: The plot of the regression function that corresponds to the 

epithelioid cellularity covariate 
 

 
 The covariate “Epithelioid cellularity” has a clear influence during the first 

five years, since the slope is clearly increasing. After that time point, the slope of the 

cumulative regression function remains constant and so the covariate does not 

influence the disease for the next five years. After the ten years the influence seems to 

disappear, which means that the covariate has a decreasing effect. This is something 

that could be said after the first five years, where there is a clear influence, because 

the slope of the cumulative regression function begins to disappear. 

 At this point, we must remind that a negative slope means that the covariate 

looses its influence or that has a decreasing effect, an increasing slope means that the 

covariate influences the evolution of the disease and that a constant slope means that 

the covariate is no longer considered as a prognostic factor, since it has no influence 

on the disease. In other words only when we have increasing slope the covariate 

influences the disease. When we have decreasing and constant slope, the covariate 

starts to loose its influence until the point where it does not influence the evolution of 

the disease at all, which is the point of the constant slope. 
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 What it can be said for this method is that when the plots are interpreted, they 

represent a useful supplement to other kind of analysis, such as the Cox analysis. In 

particular, it is expected that covariates measured at the beginning of the observation 

period may often lose their influence on survival after a while. This is something that 

happened with the above covariates. It is very useful to have a method that can reveal 

the change of the influence of the covariates during the time.  

 In general, as we already mentioned before, in order to interpret the influence 

of the covariates, one should not focus on smaller changes in the slope of the plots, 

but restrict to more dramatic changes, like the disappearance of a clearly increasing 

slope. 

 At this point, the three cumulative regression functions have been put together 

in a plot so as to observe which one of the covariates influences more the evolution of 

the disease. So far we have only tested how each covariate separately influences the 

disease while time passes. Now we will examine, which one of the covariates 

influences more the disease.  

 This will be done only for the first six years, because as it was observed from 

the previous plots, the covariates had a clear influence only during the first years. 

While time passes the covariates started to loose their influence and that is why there 

is no meaning in examining the rest of the years. 

  Once again, the results depend on the slope of each regression function. Since 

the slope of the entire function must be found in order to conclude to a result, and not 

the slope at each point, the cumulative regression functions were fitted to linear 

functions. In this way it is easy to come up with clear conclusions. The fit was done 

with the cftool of Matlab. 

 



 105

 
Figure 33: This diagram gives information about which covariate influences more the 

disease 
  

 The black plot represents the cumulative regression function for the “epi” 

covariate. The green plot corresponds to the “uh” covariate and finally the mauve one 

corresponds to the “lubd” covariate. The fit was done to linear functions so as to be 

able to find the slope.  

 From the above plot it is clear that the covariate “epi” influences more the 

survival, since it has the bigger and the steepest slope. After the “epi” covariate, the 

“lubd” covariate influences more the survival and finally the “uh” covariate 

influences the survival but in a less profound way. This confirms the result that came 

up from the interpretation of the plot of the cumulative regression function that 

corresponded to the “uh” covariate. The conclusion of the interpretation of the plot 

was that the covariate “uh” had no clear and determining influence in the survival.  
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          5.4.1   Division of the dataset into two subgroups 

 As it was said, the analysis of the additive model was done for 743 patients. At 

this point, the analysis will be done again from the beginning but this time not for the 

entire population of the 743 patients but for two subgroups of the population. These 

subgroups were divided according to the value of the covariate antmar. The antmar, as 

we mentioned earlier in this thesis, is a categorical covariate and it actually divides 

the patients into two subgroups according to the point where the ocular melanoma is 

located. Let’s repeat that the ciliary body and the choroidal are the two main points 

where the ocular melanoma is located. In these two subgroups the patients are 

divided. So, what is important at this point is to understand that the covariate antmar 

is not included in the analysis of the additive model, the covariates that are studied are 

still three, but is only used in order to divide the patients into two main subgroups. 

The two subgroups are summarized below. 

 

Subgroups Value of antmar 

Choroidal (value 0) Antmar <=9 

Ciliary (value 1) Antmar >9 

 Table 23: Contains the two subgroups that can be derived from categorization 
of the anterior tumor margin covariate 

 
Subgroups Type of antmar Number of patients 

Group A Choroidal 446 patients 

Group B Ciliary 297 patients 

 Table 24: Contains the number of the patients of the two subgroups 

  

 The analysis of the additive model was done for these two subgroups 

separately from the beginning so as to come up with conclusions for the influence of 

the covariates and compare these results with those from the population of the 743 

patients. The code is exactly the same and for that reason it will not be presented 

again. The only thing that changes is the size of each subgroup. 

 In order to become clearer the fact that the patients are divided into two 

subgroups according to the type of the covariate antmar, the survival functions of 

these two subgroups are given. These functions were plotted by taking the mean value 

of the three covariates in the analysis. 
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 It should be noted that the analysis for the subgroup “ciliary body” stops at  

15, 77 years and for the subgroup “choroidal” stops at 20, 58 years.  

 

 
Figure 34: The plot that contains the survival functions of the two subgroups 

choroidal and ciliary body. 
 

 It is clear from the above plot that the blue line corresponds to the subgroup 

“choroidal”, since the survival function of this subgroup goes up to 20, 58 years. The 

other survival function, the red one, corresponds to the subgroup “ciliary body”, since 

the analysis for this subgroup stops at 15, 77 years. These two survival functions are 

very informative because they show that the patients that suffer from ocular 

melanoma which is located at the ciliary body have less probabilities of cure than 

those patients that suffer from ocular melanoma located at the choroidal. In addition, 

it becomes clear the fact that the covariate antmar divides effectively the population 

into two subgroups.  

 At this point it would be suitable to remind that the survival functions are not 

necessarily monotonic over the whole time period. They may increase at some points 

and this is a weakness of the additive model, as we mentioned earlier at the 

description of the model. 
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 From the analysis of the additive model for the entire population, we 

concluded that the covariate “epithelioid cellularity” is the one that influences more 

the evolution of the disease. The main reason that we divided the population of the 

patients into these two subgroups is to check whether the same covariate is the one 

that influences more the disease either a patients suffers from ocular melanoma 

located at the “ciliary body” either a patients suffers from ocular melanoma located at 

the “choroidal”. 

 In order to conclude to the plots of the cumulative regression functions, the 

same procedure that was followed in the previous section of this chapter is going to be 

followed also here. This means that the same plots are going to be given.  

 

5.4.1.1 Ciliary body 

a. Covariate “lubd” 
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Figure 35: The plot of the regression function that corresponds to the longest 

ultrasound basal dimension covariate for the ciliary body 
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The covariate “Longest ultrasound basal dimension” has an influence in the 

survival during the first six years, but after that time the influence seems to disappear 

since the slope of the cumulative regression function is almost constant. As it was 

mentioned before, in order to make conclusions, big changes in the slope of the plots 

must be observes and not small ones. In this plot the influence of the covariate “lubd” 

is not as obvious and clear as it was for the population of the 743 patients, since in 

some time points during the first six years, the slope decreases but in the overall plot, 

it is obvious that at first there an increasing effect and then this effect disappears. This 

result is satisfying enough to interpret the influence of the covariate. 

 

b. Covariate “uh” 
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Figure 36: The plot of the regression function that corresponds to the ultrasound 

height covariate for the ciliary body 
 

 Once again, no clear and explicit results can arise from this cumulative 

regression plot. The slope is not clearly decreasing or increasing throughout the time 

period but is constantly changing. For this reason, it can be said that no specific 

results can come up from the interpretation of the above plot for the influence of the 

covariate “ultrasound height” to the evolution of the disease. For the subgroup of the 

297 patients, the covariate “ultrasound height” has the same behaviour as the 
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population of the 743 patients. This means that it is expected that this covariate will 

have the smallest influence in the disease, when all the covariates will be put together. 

This will be checked in a following plot. 

 

c. Covariate “epi” 
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Figure 37: The plot of the regression function that corresponds to the epithelioid 

cellularity for the ciliary body 
 

 The covariate “Epithelioid cellularity” has a clear influence during the first 

four years. After that, the slope of the cumulative regression function remains almost 

constant for the next five years and so the covariate does not influence the disease for 

the following years. After the ninth year, the influence seems to disappear. 

 The three plots of the regression functions will be put together so as to 

conclude to summarized results for the influence of the three covariates. This will be 

done only for the first four years, because as it was observed from the previous plots, 

the covariates had a clear influence only during the first years. While time passes the 

covariates started to loose their influence and that is why there is no meaning in 

examining the rest of the years. 
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Figure 38: This diagram gives information about which covariate influences more the 

disease in the ciliary body 
 

 The black plot represents the cumulative regression function for the “epi” 

covariate. The green plot corresponds to the “uh” covariate and finally the mauve one 

corresponds to the “lubd” covariate. The fit was done again to linear functions so as to 

be able to find the slope.  

 From the above plot it is clear that the covariate “epi” influences more the 

survival, since it has the bigger and the steepest slope. After the “epi” covariate, the 

“lubd” covariate influences more the survival and finally the “uh” covariate 

influences the survival but in a less profound way. The results are the same as those 

for the population of the 743 patients.  

 The covariate “epithelioid cellularity” is the covariate that influences more the 

evolution of the disease at the subgroup ciliary body. Since this is by far the most 

important covariate, we want to see how this covariate influences the survivability of 

the patients. In particular we want to see which patients have more probabilities of 

survival, those that have epithelioid cells or those that do not have. Let us remember 

that the covariate “epithelioid cellularity” is a categorical one and it describes the 

presence or the absence of epithelioid melanoma cells. 
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Figure 39: This figure contains the survival functions that show the survivability of 

the patients under the presence or absence of epithelioid cells for the subgroup ciliary 
body 

 

 The blue line corresponds to the survival function for those patients that do not 

have epithelioid cells. The value of the covariate “epithelioid cellularity” is 0 when 

there is absence of epithelioid cells and when there is presence of these cells the value 

of the covariate is 1. It becomes clear that those patients that do not have epithelioid 

melanoma cells have more probabilities of survival than those that have these cells. 

This is logical since these cells have the ability to accelerate the evolution of the 

disease and as a result those patients that are characterized by the presence of these 

melanoma cells have less probabilities of survival.  

 An analogous plot that shows how the survivability is affected from the 

absence or presence of the epithelioid cells for the entire population of the 743 

patients is going to be given in a following section. In that section we also have plots 

that show how the survivability of the entire population of the patients is affected by 

the other covariates that are included in the analysis. 

 After this point the same procedure is going to be followed in order to verify if 

the covariate “epithelioid cellularity” has the greatest influence in the subgroup 

choroidal. 
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    5.4.1.2 Choroidal  

a. Covariate “lubd” 
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Figure 40: The plot of the regression function that corresponds to the longest 

ultrasound basal dimension covariate for the choroidal 
 

The covariate “Longest ultrasound basal dimension” has a clear influence in 

the survival during the first eight years, but after that time the influence seems to 

disappear since the slope of the cumulative regression function is almost constant.  
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b. Covariate “uh” 
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Figure 41: The plot of the regression function that corresponds to the ultrasound 

height covariate for the choroidal 
 

 This plot of the covariate “uh” can not lead to clear and explicit results. The 

slope is not clearly decreasing or increasing throughout the time period but is 

constantly changing. Once again, no specific results can come up from the 

interpretation of the above plot for the influence of the covariate “ultrasound height” 

to the evolution of the disease.  
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c. Covariate “epi” 
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Figure 42: The plot of the regression function that corresponds to the epithelioid 

cellularity for the ciliary 
 

 The covariate “Epithelioid cellularity” has a clear influence during the first 

seven years. After that, the slope of the cumulative regression function remains almost 

constant for the next four years and so the covariate does not influence the disease for 

the following years. After the tenth year, the influence seems to disappear. 

 The three plots of the regression functions will be put together so as to 

conclude to summarized results for the influence of the three covariates. This will be 

done only for the first five years, because as it was observed from the previous plots, 

the covariates had a clear influence only during the first years. While time passes the 

covariates started to loose their influence and that is why there is no meaning in 

examining the rest of the years. 
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Figure 43: This diagram gives information about which covariate influences more the 

disease in the choroidal 
 

 Once again the black plot represents the cumulative regression function for the 

“epi” covariate. The green plot corresponds to the “uh” covariate and finally the 

mauve one corresponds to the “lubd” covariate. The fit was done again to linear 

functions so as to be able to find the slope.  

 From the above plot it is clear that the covariate “epi” influences more the 

survival. After the “epi” covariate, the “lubd” covariate influences more the survival 

and finally the “uh” covariate influences the survival but in a less profound way.  

 Since once again the covariate “epithelioid cellularity” is the one that 

influences more the survivability of the patients, we will plot the survival functions 

that show how the patients are affected by the presence or absence of the epithelioid 

melanoma cells. 
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Figure 44: This figure contains the survival functions that show the survivability of 

the patients under the presence or absence of epithelioid cells for the subgroup 
choroidal 

 

 The above diagram shows that the patients that are characterized by the 

presence of the epithelioid melanoma cells have less probabilities of survival than 

those that do not have this type of cells. Obviously, the blue line corresponds to the 

survival function that shows the survivability under the presence of the epithelioid 

melanoma cells and the red line corresponds to the survival function that shows the 

survivability of the patients that do not have this type of melanoma cells. 

 As a final result it could be said that the covariates influence the survival in 

the same way either it is for a subgroup of the population, either it is for the whole 

population. The covariates “epi” and “lubd” have a clear influence during the first 

years and after some years this influence drops. The covariate “uh” does not have a 

clear influence meaning that it is a not a very helpful covariate since its interpretation 

does not lead to results that can be used in an effective way.  
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 The influence of the covariates, for the subgroups of the “ciliary body”, 

“choroidal” and for the population of the 743 patients, in a descending way is 

summarized below. As is can be seen the influence is the same for all the groups, 

meaning that there is no difference for the covariates and their effect. 

 
Rank of covariate in influence Covariate name 

1 Epithelioid cellularity 

2 Longest ultrasound basal dimension 

3 ultrasound height 

  Table 25: Contains the rank of the covariate in influence 
 
    5.4.2 Survival function 

 As it was mentioned before, the survival function as well as the cumulative 

hazard function can be estimated and plotted for each individual separately. What 

changes during the computation is the set of the covariates which is different for each 

individual. Below it is given a plot of survival functions that correspond to fifteen 

different patients. These functions are plotted together so as to clarify in a more clear 

way the probability of survival.  

 The survival functions were chosen to be plotted because they give more 

information about the survivability of the patients than the cumulative hazard 

functions. From the survival functions, it becomes really clear what chances have 

someone to survive, which is something that it can not be derived from the cumulative 

hazard functions. 

 The individuals were chosen randomly from all the data set. This could be 

done because there is independency between the individuals. The code for the 

survival function is given to Appendix B. 
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Figure 45: This diagram contains the survival functions of fifteen random patients 

from the additive model 
 

 As it can be seen from the above plot, the majority of the patients have a 

probability of survival 50% - 60%, after 10 years. Only two patients do not belong to 

this range. The one of them has a probability of survival 40% and the other one 80%. 

This is logical because in a large set of patients some may differ from the normal 

distribution. These differences happen because of the variety that exists in the set of 

covariates. In general, it can be said that the patients of this study have a satisfying 

probability of survival since most of them are about to live with probability 50%. This 

can also be proved from the diagram that follows. In this diagram, it was plotted the 

survival function for the entire population of the patients. This was done by taking the 

mean value of the three covariates. In this way the survival function that follows is 

representative for all the patients and verifies the above results, where we concluded 

that the patients of this study have a probability of survival at about 50%. In the 

following plot this is shown clearly, since the survival of the patients after 10 years is 

almost 50%. 
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Figure 46: The survival function of the entire population of the patients of the additive 

model 
 

         5.4.2.1 Survivability versus Covariates  

 In order to have more thorough results about the influence of the covariates in 

the survival function, the three covariates were spited into two categories: 

• “Epithelioid cellularity” covariate: was split into epi 0 and epi 1  

• “Longest ultrasound basal dimension” covariate: was split into two categories 

of values, those that have value more than 14.9, which is the mean value, and 

those that have value less than 14.9 

• “ultrasound height” covariate: was also split into two categories of values, 

those that have value more than 10, which is the mean value, and those that 

have value less than 10. 

 This was done so as to be able to come up with results that will explain which 

one of the covariates influences the survivability in a more effective way. In order to 

conclude to these results some changes had to be done in the analysis. The most 

important was that the dataset had to be split into the above categories. This was done 

with Matlab and the code is presented in the Appendix B. 

 The first plot shows how the survival functions are distributed for the 

covariate epi.  
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Figure 47: Shows how the survival functions are distributed for the covariate epi 
  
 With the blue colour are the survival functions for epi 0 and with the red 

colour are the survival functions for epi 1. As it was explained before, the covariate 

epi affects the disease and with this plot it can be proven that those patients that have 

epithelioid melanoma cells, epi 1, have more probabilities to die than those that do not 

have epithelioid melanoma cells, epi 0. If we take for example the twentieth year, the 

group of patients that have epi 1 has a mean probability of survival 55% while the 

group of patients that have epi 0 has a mean probability of 60%. 

 These results can also be verified with the plot that follows. This plot shows 

the distribution of the survival of the entire population. This was done by taking the 

mean value of the covariate epi 1 and epi 0. As it can be shown, the patients with 

covariate epi 1, the red line, have survivability about 55%, while the patients with epi 

0 have greater survivability which is about 60%. The plot that follows is analogous to 

the figures 39 and 44 that show how the presence or the absence of the epithelioid 

melanoma cells influence the survivability of the patients for the subgroups ciliary 

body and choroidal. The figure below shows the results for the entire population of 

the patients. 
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Figure 48: The survival function for the entire population with the mean value of epi 1 

and epi 0 
 

 The second plot shows the distribution of the survival functions for the 

covariate “longest ultrasound basal dimension” 

 
Figure 49: Shows the distribution of the survival functions for the covariate “longest 

ultrasound basal dimension” 
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 With the blue colour are the survivals that correspond to lubd small, less than 

14.9, and with the red colour are the survivals that correspond to lubd dig, more than 

14.9. The covariate longest ultrasound basal dimension defines the longest basal 

tumour dimension as measured by ultrasonography and as it is shown in the above 

plot, those patients that have small lubd have more probabilities of survival. Let’s take 

again for example the twentieth year of survival. The group of patients that have big 

lubd has a mean probability of survival 53% while the group of patients that have 

small lubd has a mean probability of 60%. 

 The third plot shows the distribution of the survival functions for the covariate 

“ultrasound height” 

 

 
Figure 50: Shows the distribution of the survival functions for the covariate 

“ultrasound height” 
 

 From this plot it becomes really clear the fact that the covariate “ultrasound 

height” does not influence the disease in a clear way, since the survival functions are 

overlapped and there is no clear separation so as to come up with effective 

conclusions. That conclusion was also proven from the analysis of the additive model. 
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 In the final plot, it is shown the distribution of the survival functions for big 

lubd - epi 1 and for big lubd - epi 0.  

 

 
Figure 51: Shows the distribution of the survival functions for big lubd - epi 1 and for 

big lubd - epi 0. 
 
 From this plot it becomes clear that the covariate “Epithelioid cellularity” 

influences more the disease than the covariate “Longest ultrasound basal dimension”. 

This is due to the fact that the patients even if they have lubd big, which can be 

translated to more probabilities of death, when they have epi 0 then they have more 

probabilities of survival. This is shown clearly from the above plot, where the blue 

line represents those that have epi 0 and big lubd and the red line represents those 

patients that have epi 1 and big lubd. The first group has survivals that represent 

bigger probabilities of survival, while the second group has survivals that represent 

smaller probabilities of survival.   

 All the codes for the above plots are given to Appendix B. 
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5.5 Results from the neural networks 

 As it was mentioned before, in this study we did not use any of the neural 

networks that were presented in chapter 1, which make a separate survival analysis 

but we used neural networks in order to train them with an already used survival 

method. 

 In order to train the neural network in a more effective way, the data set of the 

1743 patients was split into two subsets. Each subset had to be of equal size and for 

that reason the original data set was divided in a way that gives two sets with the same 

deviations. This means that the two new sets contained both small and big values so 

as to have better results, since the two sets contained equally spaced points from the 

original data.  If the data set was simply divided by two then the one set would 

contain big values and the other one would contain only small values and so the 

training would not be effective. If someone wanted to put new values to be trained 

then the results would not be precise.  

 Each one of these two subsets was used for a different reason. The one was 

used for training and the other for simulation and that is why the results were very 

satisfying, as it will be explained below. 

 While training a neural network, some stopping criterions must be achieved. 

In this neural network, the stropping condition was the goal parameter to reach zero. 

When the neural network stopped its training, that goal was not exactly achieved, 

which was expected since it is rather difficult to achieve the desired value of goal. 

However, the error, the MSE, was reduced as it seems from the following training 

results, which came up after the training procedure of the neural network. The code is 

given to Appendix A, since it concerns the Kaplan- Meier method 

 

 
  Figure 52: Shows the last epochs of the training and the error 

  

 

 



 126

 
Figure 53: This diagram shows the epochs of the training and the final 

performance  

As it can be seen, while the epochs proceed, the error is diminishing and the final 

value is 1.46685 * 10-006 which is close enough to the zero value of the goal. 

The results that finally came up after the simulation show that the output of the 

neural network and the target values are very close. This means that the neural 

network was trained in a very effective way. The neural network was trained for 2000 

epochs which are enough since the results was very satisfying. 

The results are shown in the diagram that follows. Those results came up from the 

regression analysis between the network response and the corresponding targets. As it 

was mentioned before in chapter 4, the performance of a trained network must be 

checked. One way to do this is by performing a regression analysis between the 

network response and the corresponding targets, which is something that was done in 

this study. This regression analysis, as we said in chapter 4, is implemented with the 

function postreg.  

The most important parameter of those that the postreg function returns is the 

correlation coefficient between the outputs and targets, or else the R-value. In the 

following diagram, the R-value is shown which is actually a measure of how well the 

variation of the output is explained by the targets. If this number is equal to 1, then 

there is perfect correlation between targets and outputs. 
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Figure 54: Shows the correlation coefficient, which is one of the results of the 

training test 
 

 Since the correlation coefficient is 0.999, this means that between the target 

and the output there is a perfect correlation. This can also be shown from the above 

diagram, where the best linear fit (the data points) approximates the linear line A=T 

(y=x). This means that the target correspond the output, since they both have a range 

from 0-1. As a result, the output of the neural network and the output from the 

Kaplan-Meier method are very much alike, as it is shown in the below table.  

 

 In order to have a clearer image, they are given some values from the output of 

the neural network and the Kaplan-Meier method so as to be compared. 
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Number of element Output of Kaplan-Meier Output of neural network 

6 0,99942 0,99986 

7 0,99942 0,99954 

8 0,99942 0,99913  

9 0,99884  0,99875 

10 0,99826 0,99833 

11 0,99709 0,99774 

12 0,99709  0,99728  

13 0,9965 0,99708 

14 0,99592  0,99631 

15 0,99592  0,99591  

16 0,99533 0,99519  

17 0,99414 0,99495  

18 0,99355 0,99452 

19 0,99296  0,9939 

Table 26: Contains some of the values of the outputs of the neural network and the 
Kaplan-Meier method 

 

As it can be seen, those two outputs are very close and that is why the 

correlation is so good. 
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Chapter 6 

Comparisons of the results from this study and from other studies 
 In this last chapter, comparisons will be made. These comparisons are based to 

the results of this study and also to the results of other studies. These other studies, 

either make use of the same data set of the ocular melanoma disease, either make use 

of different data set but of the same disease. All the results of these studies are going 

to be presented below. 

 

6.1 Comparison of the results of all the methods of this study 
 

In the first part of this chapter, a comparison of the results of the methods that 

we used in this study will be made. Let us remember which methods we used in this 

study. From the nonparametric models, the Kaplan-Meier method, the Life-table and 

the Nelson-Aalen method were used. From the semiparametric models, the Aalen’s 

additive model was used and finally we also used neural networks in order to train a 

neural network with a known statistical method. This method was the Kaplan-Meier 

method. 

The main scope of the Kaplan-Meier method is to compute the survival 

function or else the survival curve; this is why another name of this method is the 

“survival curve” method. Of course, the cumulative survival function can also be 

derived from this method with the relationship ( ) log ( )H t S t= − .  

The main scope of the Nelson-Aalen method is to derive the cumulative 

hazard function. By having the cumulative hazard function, the survival function can 

also be derived by the relationship ( ) exp[ ( )]S t H t= − . These two methods, the 

Kaplan-Meier and the Nelson-Aalen are two methods that practically compute the 

same things but with an inverse way.  

The Life-Table method is like the Kaplan-Meier method, with the difference 

that the former uses time intervals in the procedure of the analysis, while the latter 

uses all the time points. The Life-table concludes to survival function, to density 

function and to hazard function. 

The Aalen’s additive model has as main scope to conclude to plots that give 

information about the effect of the covariates to the disease. Also individual survival 

functions can be derived and so results about the survivability of each patient can 

come up. 
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Finally the neural network that we used in this study does not count as a 

separate survival model, since we used the Kaplan-Meier estimator to train it. The 

results of the neural network will also be compared with the rest results. 

Let us first compare the survival functions of the three nonparametric models. 

The figures that correspond to the survival functions of the Kaplan-Meier method, the 

Life-table method and the Nelson-Aalen method are the figures 10a, 18a and 28 

respectively. If we compare these three figures, we can see that the survival function 

is almost the same. The survival function of the Kaplan-Meier and the Nelson-Aalen 

is exactly the same, since these two methods give the same results but in an inverse 

way. The survival curve of the Life-table differs a little bit, but this is logical since 

this method uses time intervals. What is important is that these three methods give the 

same probabilities of survival to the patients. All of them give to the patients a 

probability of about 20% to be cured. But if we do not take into account the last death, 

which may be though as statistical error, as we already said, then the probabilities of 

the patients to be cured are augmented at about 40%. In addition, the median survival 

is similar to the three methods, since it varies from 18 years to 19,6 years, which 

verifies that the three above methods have almost the same survival distribution. The 

median survival of these three methods is given in the figures 11, 19 and 29. 

 As far as the cumulative hazard functions are concerned, we can say that 

they are the same in all the three methods. This is logical, since the cumulative hazard 

function van be derived from the relationship ( ) log ( )H t S t= − . This relationship 

uses the survival function, and since the survival function is the same in the three 

nonparametric methods that we use, the cumulative hazard function is also similar in 

these methods. The cumulative hazard functions are given in the figures 12a, 25 and 

27a. 

 Lastly, the Life-table method gives density function and hazard function 

that no other of the two others methods gives. None of the two others methods give 

any of the functions that we just mentioned, and that is why no comparison can be 

done. 

 The results of the Aalen’s additive model cannot be compared with the 

results of the three above methods. This happens due to two main reasons. First 

because the additive model is a semiparametric model and uses covariates while the 

other methods are nonparametric. Because of this fact the results are different since 
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the additive model has as main scope to derive conclusions about the effect of the 

covariates. Second, because in the additive model we used 743 patients, because of 

the missing values of the covariates, and not 1743 as in the nonparametric models. 

Due to this fact the survival functions that we derived from the additive model cannot 

be compared with the survival functions of the nonparametric models. The results of 

the additive model will be compared with results from other semiparametric models. 

 Finally, as we already mentioned in the previous chapter, the results of the 

neural network are almost the same with the results of the Kaplan-Meier method. This 

means that the network was trained in an effective way since the output of the neural 

network has almost the same values with the Kaplan-Meier estimator. These results 

are shown in table 26. 

 
6.2 Comparisons with relevant studies 
 
         6.2.1 Comparison with studies that use the same dataset 
 
  6.2.1.1 Comparison with study that uses the Cox model and the Kaplan-
Meier method  
 

At this point the results from our study are going to be compared with the 

results from another study that uses the same dataset of the ocular melanoma disease. 

Both datasets have 1743 patients. The study that is going to be compared was done by 

Fotini Agrafioti and uses the Kaplan-Meier method, The Cox-model and log-logistic 

regression model. [oth-7]. The results from the Kaplan-Meier and the Cox model will 

only be compared since the log-logistic regression model was not able to be 

implemented in the dataset of the ocular melanoma disease, and so no results came 

out.  

The study of Fotini Agrafioti’s uses the Kaplan-Meier method and the Cox 

model for a reduced dataset. The dataset was reduced because the Cox model uses 

covariates and so the data that contained missing values had to be removed. As a 

result the new subset contained 743 elements. In addition, this reduced dataset was 

also used as a basis for the Kaplan-Meier estimator of the study just mentioned. We 

must mention here that in our study we also had to reduce the dataset for the Aalen’s 

additive model which uses covariates, as described in chapter 5.  
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Having the results from the study of Fotini Agrafioti we can verify if any piece 

of information was lost due to the elimination of the dataset. We may have not 

eliminated the dataset for the Kaplan-Meier method but we did it for the Aalen’s 

additive model and that is why we want to verify if this elimination has not biased our 

data. This can be done by comparing the Kaplan-Meier of our study, with the 1743 

patients, with the Kaplan-Meier of the other study, which contains 743 patients. At 

this point we must also say that the censoring of patients was done in both studies 

with the same way, which is logical since the same data set is used. This means 

practically that a patient is considered to be censored if the death indicator is zero. 

 

The plot below shows the survival curves of the two datasets.  

 
Figure 55: Kaplan- Meier estimator for the dataset of ocular melanoma for the 

1743 patients and the 743 patients 
 

As it can be seen, the two survival curves are relatively close to each other. 

Let us remember the possible statistical error that the last patient of the 1743 patients 

induces. If the last death is ignored, then the survival curve will not take a step down 

and so the survivability will reach the 40%. As it can be seen, the survival curve of 

the 743 patients goes up to 30%. This means that their difference is only 10%, which 
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may be a difference, but is a small one. In addition, these two survival curves seem to 

have the same shape.  

 After comparing the nonparametric models of the two studies, ours and 

Agrafioti’s one, the semiparametric models will be compared. The Cox proportional 

hazards model and the Aalen’s additive model both include the covariates in a way 

that they make conclusions about their effectiveness on the survivability. This is why 

these two methods can be compared. Before comparing the results, a short 

presentation of the Cox model will be made.   

The Cox regression model was first introduced in 1972 and it is now well 

recognized in the analysis of survival data. The model is widely used for exploring the 

relationship between risk and a set of explanatory variables. These variables can either 

describe treatment or prognostic factors taken from clinical trials. [oth-7] 

The covariates are assumed constant in time. In the case of the Cox’s model 

the hazard depends on both time and covariates. This dependence is though provided 

through two separate factors: The first is h0 (t) which is a function of time only and is 

assumed to be the same for all patients. The second is a quantity that depends on 

covariates through the vector β, which is the vector of regression. Cox suggested that 

the hazard function has the following form: 

0( , ) ( ) ex p ( )T
i ih t z h t z β= ⋅  

The only comparison between the two studies that can make sense is the one 

referring to the effect of the covariates. In both studies this effectiveness is measured 

with a regression procedure. In the Cox proportional hazards model, conditional on the 

fact that one individual is observed to fail at time ti the probability that he is the patient 

with covariates zi is: 

0

0
( ) ( ) ( )

( , ) ( ) exp( ) exp( )
( , ) ( ) exp( ) exp( )

i i i

T T
i i i i

T T
i j j j

j R t j R t j R t

h t z h t z z
h t z h t z z

β β
β β

∈ ∈ ∈

= =
∑ ∑ ∑

 

Assume we have k failures (deaths) then the partial likelihood function over all 
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Cox proved that the maximum partial likelihood estimation of β is the solution of the 

equation: ( ) 0l β
β

∂
=

∂
. By the solution of this equation, from the results of the study of 

Fotini Agrafioti’s the following regression parameters were obtained: 

1

2

3

0.127
0.033
0.664

β
ββ
β

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= =⎜ ⎟ ⎜ ⎟

⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 

 The first value refers to the longest ultrasound basal dimension (lubd), the 

second to the ultrasound height (uh) and the third to epithelioid cellularity (epi). These 

coefficients indicate the magnitude of the effects of their corresponding covariates. The 

interpretation of β’s sign is: 

• If β=0  the covariate has no effect on survival 

• If β<0 the covariate affects the survival inversely. This means that the 

higher the value of the examined covariate the lower the hazard. 

• If β>0 the covariate affects the survival. A high value of the covariate 

would mean high hazard.  

 Therefore, the factor that affects the disease more is the presence of epithelioid 

cellular. In addition the lubd affects more than uh.   

 The same results were obtained from the analysis of the additive model. The only 

difference is that the regression parameters is not counted numerically but is 

represented graphically. The graphs are used to calculate the slope of the distribution. 

The greater the slope the more does the coefficient affect survivability.  

 The plot that follows represents the three regression parameters. The slope of the 

epithelioid cellularity is higher that the longest ultrasound basal dimension which is 

higher than the ultrasound height. This plot is the same as figure 33, but in order to have 

a more complete image, it is also given below. 
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Figure 56: This diagram gives information about which covariate influences more the 

disease 
  

 Therefore, even though different models were applied to the same dataset and 

even though each one had each own assumptions, the results are the same. Furthermore 

this conclusion has real medical interest for both the doctors and the patients since we 

know that a patient that appears to have epithelioid cellular will have less probability to 

survive. This result will also be confirmed from the comparisons from other studies that 

follow. 

                      6.2.1.2 Comparison with study that uses artificial neural networks and 

Bayes theorem. 

  The utility of the neural networks in survival analysis has been presented in 

chapter 1.Neural networks in general are very useful in survival analysis because they 

can implement in a very effective way the analysis that is required in order to obtain 

results. This can be done with various methodologies and one of them is presented 

below 

.  
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A relevant study was performed by Taktak, Fisher and Damato [p-21]. They 

modeled the survival after treatment of intraocular melanoma patients. This study 

introduces a new idea about how the neural networks can be combined with Bayes 

theorem, which is different from the neural networks that we presented in chapter 1. It 

actually describes the development of an artificial intelligence system for survival 

prediction from the data of the intraocular melanoma. After the implementation of the 

neural network, the output results are compared to the Kaplan Meier estimator and the 

Cox model.   

The dataset contains patients treated in Glasgow and Liverpool between 1969 

and 2001. The covariates that are analyzed to check their influence on the disease are 

the coronal and sagittal tumor location, the anterior tumor margin, the largest basal 

tumor diameter and the cell type. These covariates and also the time consist the inputs 

of the neural network. The output of the system is the survival probability. The basic 

idea is to examine how the survival curve is affected by certain characteristics of the 

tumor. 

The dataset includes 2331 patients after excluding records with missing 

values.  The final observation in the database is made at 15 years. The entire time 

period is divided into five time intervals each one trying to contain the same number 

of events. For each time interval, a separate neural network is made which estimates 

the survivability at this time interval. Censored patients are only considered until the 

time intervals when they are active, which means that after that time they are 

excluded from the study. This also counts for the uncensored patients, meaning that 

they are also considered until the time interval when they die.  

So, for each time interval a three layer feed forward network is constructed 

and trained by back propagation. The output layer contains one node which generates 

an output value from 0 to 1, where 0 represents high chance of survival and 1 low 

chance for the corresponding time interval. The data in each time interval are divided 

into training and test sets with a specific method in order to eliminate bias.  

The main idea of this study is that the Artificial Neural Network is used to 

transform the output to a survival function by using the Bayes theorem. If the ANN 

output at a time interval is above a certain level, which is called Γi, this indicates a 

low chance of survival. An output lower than this level indicates high chance of 

survival and then, this record is presented to the subsequent network for the next time 

interval. The probability equations that use this study are described below.  
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The probability of death at the end of a time interval [I,i+1) is: 

1
1

( ) 1 i
i

i i i

dP D
n c d+

+

= −
− −

 

where d (i) is number of deaths at the interval, n (i) is the total number of patients and 

c (i) is the number of censoring cases. Some basic definitions are includes in the 

following table: 

 

/ iT d  The number of patients who died from the tumor and had score value >= Γi 

/ it d  Number of patients who died from the tumor and had score value < Γi 

/ iT n  All patients with score >= Γi 

/ it n  All patients who had score < Γi 

Table 27: Contains the basic equations of the Taktak study 

 

In this particular study the syndrome S is represented by a high Artificial 

Neural Network score, which is greater or equal to Γi. The probability of death given 

the presence and non presence of the syndrome S can be defined with the help pf 

Bayes theorem as it is shown from the following equations. 
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The parameters of the above theorem are computed by the following way: 
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Finally, the survival function SF is given by: 

1 0
1 ( / ) 1 [ 1, )

1 ( / ) [ 1, )
t t

i

for t
SF P D S for t i if score for i i i

P D S for t i if score for i i i
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The results of the Artificial Neural Network, when compared to the Kaplan 

Meier and the Cox model, prove that the Artificial Intelligence system was on average 

41% lower than the survival probability predicted by the Cox model, and 37% lower 

than the Kaplan Meier. However, when the samples increased the difference became 

lower than 20%. The Kaplan Meier survival curve of this study is shown in the figure 

that follows.  

The results from this study cannot easily be compared to the ones from our 

study that are presented in chapter 5. The main reason is that the two studies may use 

the same datasets, but actually our dataset is a subset of Taktak’s dataset. This is 

because the dataset of the Taktak uses more patients and more covariates. This is the 

main reason that comparisons cannot made, since the results are different. This is 

shown from the following figure, where the survival after the ten years is about 60%, 

while in our study, the survivability reaches 40%, if the last death is ignored. In 

addition, the study of the TakTak finishes at 15 years, while our study finishes at 33 

years. 

 

 

 
Figure 57: Kaplan Meier survival curve for 2331 patients of intraocular 

melanoma [p-21]. 
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                   6.2.2 Comparisons with studies that use different datasets 

6.2.2.1 Comparison with a study based on prognostic factors for survival 

after enucleation. 

 A relevant study on prognostic factors is made from Isager, Ehlers and 

Overgaard  [p-22]. The main purpose of this study is to evaluate prognostic factors for 

the survival of patients treated by enucleation for choroidal and ciliary body 

melanomas. The nonparametric Kaplan-Meier method and the semiparametric Cox 

model are used in order to plot the survival curves and find the influence of the 

covariates.  

 The study includes 293 patients treated by primary enucleation for choroidal and 

ciliary body melanoma. Kaplan Meier analysis is performed for death from melanoma 

and also for death from other causes. In melanoma survival, patients that died from 

other causes are considered censored. The prognostic factors are estimated by the Cox 

model and also by the Kaplan Meier with the log rank test.  Parameters that are 

known be prognostic are included in the Cox proportional hazard analysis. The 

covariates that are examined are the tumor location, the largest basal diameter, the 

epithelioid cellularity and the extrascleral extension. The cause of death was 

melanoma in 56% of the population and non melanoma in 44%.   

The study, instead of giving the survival curve, they give instead the survival 

probabilities in the cumulative melanoma specific survival function, which are 

summarized in the following table. 

Time  Survival 
5 years  70% 
10 years 53% 
15 years 47% 
20 years  45% 
25 years 41% 

  Table 28: Contains the survival probabilities of the study of Isager 
 

 At this point, we will give again the survival curve of the Kaplan-Meier method 

from our study so as to compare the results. 
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Figure 58: The Kaplan Meier survival curve for the ocular melanoma dataset of our 

study 
         

The survival probabilities from the survival curve of our study are:  

• 5 years  78% 

• 10 years  60% 

• 15 years  55% 

• 20 years  43% 

• 25 years  40% 

If we compare the above survival probabilities with the table 28, we will see 

that there are some similarities and especially at the end of each study, where the 

survivability reaches 40%.This means that the results from our study and from this 

study are close enough. Any difference in the survivability may be due to the fact that 

the two studies examine different dataset. 

Finally we will also compare the results from the Cox model with the results 

from the additive model of our study. The results in the Isager’s study obtained with 

the Cox model prove that the epithelioid cellularity is associated with the worst 

survivability. The survivability was found to deteriorate when the patient has 

epithelioid cells. As shown in the following figure, the population was divided into 

two groups, the first one contains patients with spindle cell type (non epithelioid) and 

the second one contains patients with epithelioid cells. This is according to the results 
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from our study, where we proved that the covariate epithelioid cellularity is the 

covariate that affects more the evolution of the disease. Moreover, we showed that the 

patients that have epithelioid cells have less probabilities of survival. The former 

results are shown in figure 56 which we repeated above so as to be able to have a 

clearer image. The later results are shown in the following figure (figure 60) which 

we also repeat so as to have a more concrete idea. 

 
Figure 59: Survival curves for patients with epithelioid and non epithelioid 

cells as they derived from the Isager’s study. [p-22] 
 

 
Figure 60: The survival function for the entire population with the mean value of 

epi 1 and epi 0. 
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                        6.2.2.2 Comparison with a study based on prognostic indicators in     

choroidal and ciliary body melanoma.   

This study from Teemu Makitie [oth-8] is based on survival analysis of 

intraocular melanoma. This study was done in association with the Ophthalmology 

department and that is why there are more clinical and medical than statistical results. 

However, we can compare the results from the study of Makitie with the results from 

our study, since the Kaplan-Meier method and the Cox model were implemented in 

the former. 

This study uses 167 patients who were enrolled from the years 1972 up to 

1982 and all have choroidal or uveal melanoma. In this dataset, there are patients that 

died from other causes and so they are considered censored. At the end of the follow-

up time, 37 of the 167 patients were alive without evidence of metastatic melanoma 

and 130 patients were had died. Of the 130 deaths, 80 were due to metastatic uveal 

melanoma, 9 were caused by carcinomas and 41 were deaths from other causes. The 

follow-up time was 22 years and the median survival was about 18-26 years. The 

covariates that were taken under consideration in the analysis of the Cox model are 

the epithelioid cells, the large tumor size, the high microvascular density and finally 

the ezrin immunoreactivity. Since the dataset is different, no comparisons concerning 

the probabilities of survival can be done. However, comparisons that concern the 

covariates that influence more the disease and comparisons that concern the gender of 

the patients and how it affects the survivability of the patients can be done. The figure 

that shows how the gender influences the survivability of the patients is the following. 

 
Figure 61: Diagram that shoes how the survivability is affected by the gender 

in the study of Makitie [oth-8]. 
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      From the above figure it is shown that there is no difference between the two 

sexes, which means that the ocular melanoma affects the same the survivability of the 

two sexes. There are some studies that prove that women have better survival than 

men and other studies that claim that do not found any relationship between the two 

sexes. The above figure belongs to the second category of the studies. In our study, as 

shown in the following figure the females have greater survivability than the males, 

which means that our study belongs to the first category of the studies just mentioned. 

 
Figure 62: Survival functions of the male and female functions 

 

 The study of Makitie, besides the Kaplan-Meier method, also uses the Cox 

model. From the implementation of the Cox model the results that came up were that 

the covariate epithelioid cells influences more the disease and after that, the covariate 

largest basal diameter follows in influence. These results are confirmed with ours 

since we also concluded in the same results. Finally this study also concluded that the 

patients that have epithelioid cells have less probabilities of survival, as is shown in 

the following figure. This result is also verified from our study, as shown in figure 60. 
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Figure 63: Survival curves for patients with epithelioid and non epithelioid 

cells, spindle, as they derived from the Makitie’s study. [oth-8] 
 
 

               6.2.2.3 Comparison with a study which models survival of uveal 

malignant melanoma  

This study was done from the Ocular Oncology Service and especially from 

the Department of Ophthalmology and from the Division of Biostatistics of the 

University of Minnesota by Tero Kivela and Patricia M. Grambsch The dataset that 

was used consisted of 167 patients treated from 1972 to 1981 and the simulation was 

limited to 133 (80%) patients for whom there was complete data. The median follow-

up of survivors was at about 17 years.The survival function was analyzed using the 

Kaplan-Meier product-limit method and the confidence intervals were calculated 

according to Greenwood method. 

 There has been a selection of categorical and continuous variables. Some of 

them were significant associated with the survival of the population and some of them 

ware not. The variables that were chosen were the gender, the height, the largest basal 

diameter of the tumor, and the presence of epithelioid cells, which could be either 

absent, either present.  

Since the dataset is different, no comparisons that concern the probabilities of 

survival can be done. However, comparisons that concern the covariates that 

influence more the disease and comparisons that concern the gender of the patients 

and how it affects the survivability of the patients can be done. The figure that shows 

how the gender influences the survivability of the patients is the following: 
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Figure 64: Diagram that shoes how the survivability is affected by the gender in the 

study of Kivela [p-23]. 
 

 This figure shows that the males have more probabilities of survival than the 

women, which is opposite to the results from our study. All these different results, 

form all the different studies that we presented, which concern the sex show that there 

is not a basic rule about the influence of the sex in the disease. This is because either 

the males will have more probabilities of survival, either the females or none of them.  

 This study, besides the Kaplan-Meier method, also uses the Cox model. From 

the analysis made by the Cox model the results that came up were that the covariate 

epithelioid cells influences more the disease. These results are confirmed with ours 

since we also concluded in the same fact. Finally this study also concluded that the 

patients that have epithelioid cells have less probabilities of survival, as is shown in 

the following figure. This result is also verified from our study, as shown in figure 60. 

 



 146

 
Figure 65: Survival curves for patients with presence of epithelioid cells and 

no presence of epithelioid cells as derived from the Kivela’s study. [p-23] 
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Chapter 7  

Conclusions and future work 
 
7.1 Conclusions 

In this study we concentrated on nonparametric methods in order to perform 

survival analysis. In addition, in a big part of this thesis we performed survival 

analysis by using a semiparametric model, the Aalen’s additive model. Finally, we 

also made use of neural networks in order to test the Kaplan-Meier method. The tools 

that were used during the analysis in this study were the SPSS, and the Matlab. 

As far as the nonparametric models are concerned, we concluded to survival 

functions that were very informative since very interesting results came up. We also 

concluded to cumulative hazard functions but these functions are not in general as 

informative as the survival functions. What is also very important is that all the 

nonparametric methods, the Kaplan-Meier, the Life-Table and the Nelson-Aalen, 

concluded to the same results.  

The survival functions, that were almost the same, gave to the patients a 

probability of 20% to be cured. If we do not take under consideration the last death 

that takes place at 32, 33 years, which is the right thing to do, the probabilities of 

survival become 40%, which a pretty good percentage. The median survival varies 

from 18 to 19, 6 years in all the three methods.  

From the three nonparametric methods, the one that is most commonly used is 

the Kaplan-Meier method. It is a very useful method and is also used by doctors in 

order to conclude to informative results. The main advantage of this nonparametric 

method is that in order to be used no knowledge of a parametric distribution is 

required and that is why sometimes is used as a guide so as the appropriate model for 

the analysis to be find. The main disadvantage is that it cannot estimate the effect of 

the covariates in the disease. 

That is why we also used in this thesis the additive model, which has as main 

purpose to discover the effect of each one of the covariates. The covariates that were 

used in the analysis of the additive model were the “epithelioid cellularity”, the          

“longest ultrasound basal dimension” and the “ultrasound height” .The plots of the 

cumulative regression functions gave information about the effect of each one of the 

covariates. This was done by observing their slope so as to see when the slope 

changes. The main result that came up from the analysis of this model is that the 



 148

covariate “epithelioid cellularity” influences more the evolution of the disease with a 

big difference form the other two covariates. The covariate that influences more the 

disease after the “epithelioid cellularity”, is the “longest ultrasound basal dimension” 

and the last one is the “ultrasound height” that appears to have no significance effect.  

In addition, the results that came up from the survival functions are also very 

informative. Because the “epithelioid cellularity” was the covariate that influences 

more the disease of the ocular melanoma we wanted to see how the survivability of 

the patients is influenced by the presence or the absence of the epithelioid melanoma 

cells. The results showed that the patients that are characterized by the presence of the 

epithelioid cells had less probabilities of survival than those patients that did not have 

that type of melanoma cells. This result was also verified by a number of other studies 

that were presented in chapter 6. 

The additive model is a very powerful one because it concludes in separate 

regression functions for each one of the covariates and in this way we are able to see 

how the influence of the disease changes through the observation time. 

Finally, the neural network that was used verified the results of the Kaplan-

Meier method, since the results form the neural network and the results from the 

Kaplan-Meier were quite the same. Neural networks can be very effective in the 

survival analysis because they are very flexible and they can be used in very different 

ways. 

 

7.2 Future work 

The future work that is going to be proposed here concerns mainly the additive 

model because there are not many additional things that can be done with the 

nonparametric methods. So, the further work that can be done with the additive model 

includes: 

• Use of the covariate age, which can be obtained from the date of birth and the 

date of death, so as to see how the survivability of the patients is influenced by 

their age. 

• Use of martingale residuals, which are plotting methods for goodness of fit, so 

as to see if the additive model actually fits the data. 



 149

• Development of testing procedures so as to see if the plots of the cumulative 

regression functions show an overall influence of the covariate on survival or 

show a partial influence in a specific time period. 

• Development of a direct method to interpret the cumulative regression 

functions, rather than the indirect way that we used in this thesis which is the 

interpretation of the slopes of the plots. 

As further work we also suggest the use of other semiparametric methods, like the 

Cox model and the Cox-Aalen, which combines the very useful Cox model and the 

additive model by multiplying these two models. In addition, the proportional excess 

hazard model combines the Cox model and the additive model by adding them. The 

Cox model is the model that is the most used in regression analysis and that is why 

the results from this model would be very interesting. Comparisons with the Cox-

Aalen, the proportional excess hazard model and the Aalen’s additive model would be 

very interesting and informative. 

Finally, the use of other aspects of neural networks, like the ones we presented in 

the introduction of this thesis, would also be very useful and interesting. 
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Appendix A 
 In appendix A all the codes that concern the results form the nonparametric 

models (Kaplan-Meier, Life-Table, Nelson-Aalen) are given and also the code for the 

implementation of the neural network is given. Also besides the codes, some figures 

that show the implementation of the SPSS program and the curve fitting tool of 

Matlab are given. 

Kaplan-Meier estimator 

1. The following code is computing the Kaplan –Meier estimator, the 

Cumulative Hazard Function and the plots of the survival function and 

the Cumulative Hazard Function are also derived. 

 
sum1=ones(979,1);  % initialize sum  
 
for j=2:979 
    tmp(j)=1-(dead(j)/risk(j)); 
    sum1(j)=sum1(j-1)*tmp(j) %computation of the cumulative probability 
end 
figure(1)%plot of survival curve 
 plot(time,sum1); 
 xlabel('time(years)') 
 ylabel(' Cumulative Survival ') 
 title('Survival curve') 
  
 figure(2) 
 H=-log(sum1);%computation and plotting of the cumulative hazard function 
 plot(time,H); 
 xlabel('time(years)') 
 ylabel(' Cumulative Hazard ') 
  
clear j tmp 
 

2. The following code computes the 95% Confidence Intervals 
 
function standard_error() 
 
lower = zeros(1,979);%initializing lower and upper bound 
upper = zeros(1,979); 
 
for t = 1:979 
    w = [1:t]; 
    ni = risk(w); 
    di = dead(w); 
    ri = ni - di; 
    sum = 0; 
    for j = 1:length(w) 
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        sum = sum + di(j)/(ni(j)*ri(j)); %computation of the basic sum  
    end 
    sum = sqrt(sum); 
     
    lower(t) = sum1(t) - 1.96*sum1(t)*sum;%computation of lower bound 
     
    upper(t) = sum1(t) + 1.96*sum1(t)*sum;%computation of upper bound 
     
end 
 
line1 = plot(time,sum1,'k',time,lower,':k',time,upper,':k'); 
 
line2 = line(time,sum1,'LineWidth',3,'Color',[0 0 0]); 
xlabel('time(years)') 
ylabel('Survival Probability') 
title('Survival Curve') 
 
3. SPSS program steps 

 
In order to obtain the survival function from the Kaplan-Meier method using 

the SPSS program the following steps have to be done. 

 

1. From the menu of the SPSS select: Analyze Survival  Kaplan-

Meier and the following window will appear. 

2. In the time field the data that contain the survival years are put and in 

the status field it should be placed the variable which indicates whether 

the event was a failure or a censored observation. Click on the Define 

event button to define codes was used to identify those two situations. 
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The figure shown above is the SPSS dialog box where failures and censoring are 

distinguished. In this data set, a value of 1 indicates a failure and 0 represents 

censoring. 

3. Finally by clicking the options button the following window appears 

where it can be selected what plots will appear. 

 
 

 
 
4. The following figure computes the exponential fitting 
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5. The following figure computes the log-logistic fitting 
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Life-table estimator 
 

1. The following code computes the survival function 
 
S=zeros(36,1); 
S(1)=1; 
for i=2:36 
    S(i)=p(i-1)*S(i-1); 
end 
plot(time,S) 
xlabel('time(years)') 
ylabel('Survival function') 
 clear i 
 
 
 

2. The following code computes the density function 
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f=zeros(36,1); 
for i=1:36 
    f(i)=(S(i)*q(i))/b(i) 
end 
 
plot(time,f) 
xlabel('time(years)') 
ylabel('probability density') 
title('probability density function') 
clear i 
 

3. The following code computes the hazard function 
 
h=zeros(36,1) 
for i=1:36 
    h(i)=(2*q(i))/(b(i)*(1+p(i))) 
end 
 
plot(time,h) 
xlabel('time(years)') 
ylabel('hazard rate') 
title('hazard function') 
clear i 
 
 

4. The following code computes the log-logistic fit 
 
function log_logistic_fit 
 
g = fittype('1/(1+a*(x^c))'); 
F=FITOPTIONS('METHOD','NonLinearLeastSquares','StartPoint',[0.1,0.1]); 
[FITTEDMODEL,GOODNESS,OUTPUT]=fit(time,S,g,F); 
 
 %------------------------------------------- 
  
 a = 0.04005; 
 c =  1.127; 
  
 for i=1:36 
     y(i)=1/(1+a*((time(i))^c)); 
 end 
  
 figure(1) 
 hold on  
 plot(time,y); 
 xlabel('Survival Years'); 
 ylabel('Cumulative Surival'); 
 plot(time,S,'*'); 
 hold off; 
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FITTEDMODEL = 
 
     General model: 
       FITTEDMODEL(x) = 1/(1+a*(x^c)) 
     Coefficients (with 95% confidence bounds): 
       a =     0.04005  (0.02924, 0.05085) 
       c =       1.127  (1.034, 1.219) 
 
 
GOODNESS = 
 

Sse: 0.034562 
Rsquare: 0.9764 
Dfe: 34 
Adjrsquare: 0.9757 
Rmse: 0.031883 
 

 
Nelson-Aalen 
 

1. The following code computes the cumulative hazard and survival 
function with the Nelson-Aalen method. 

 
for i = 1:length(dead) 
    sum = 0; 
    for j = 1:i 
        sum = sum + dead(j)/risk(j); 
    end 
    result(i) = sum; 
end 
 
plot(time,result) 
xlabel('time (years)') 
ylabel('cumulative rate') 
 
S=exp(-result); 
xlabel('time (years)') 
ylabel('survival probability') 
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Neural Networks 
 

1. The following code trains and simulates the neural network 
 
function network_kaplan 
load net_kaplan; 
 
train_p=[]; 
train_t=[]; 
 
sim_p=[]; 
sim_t=[]; 
 
tmp=[]; 
 
for i=1:length(p) 
    tmp(i)=0; 
end 
 
for i=1:2:length(p) 
    tmp(i)=1; 
end 
m=1; 
n=1; 
for i=1:length(p) 
    if tmp(i)==1 
        sim_p(:,m)=p(:,i) 
        sim_t(m)=t(i) 
        m=m+1; 
    end 
 
if tmp(i)==0 
        train_p(:,n)=p(:,i) 
        train_t(n)=t(i) 
        n=n+1; 
    end 
end 
 
net=newff(minmax(train_p),[2 5 5 5 5 
1],{'tansig','tansig','tansig','tansig','tansig','purelin'},'trainlm','learngdm','mse'); 
%creation of a feedforward backpropagation neural network. It has 2 inputs, 
%4 hidden layers with 5 neurons each and one output. The trannfer functions 
%for the hidden layers ate the tansig and the transfer function for the 
%output is the purelin. 
 
net.trainParam.epochs=2000;% initialization to 2000 epochs 
net.trainParam.goal=0;% the training finishes when it reaches error 0.This is the 
performance goal 
net=train(net,train_p,train_t);%the neural network is trained 
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Y=[];%netwotk outputs 
m=1; 
  for i=1:490 
%     SIM_VECTOR=[p(1,i);p(2,i);p(3,i)]; 
    Y(m)=sim(net,[sim_p(1,i);sim_p(2,i)]);  
    a_sim(m)=Y(m); 
    t_sim(m)=sim_t(m); 
   m=m+1; 
  end  
   
figure(1) 
[m(2),b(2),r(2)]=postreg(a_sim,t_sim);%computation of the correlation coefficient 
 
% figure(2) 
% hold on 
% plot(time,t) 
% plot(time,Y,'r') 
% xlabel('time(years)') 
% ylabel('Cumulative Survival Function') 
% title('Kaplan-Meier vs Neural Network output') 
% hold off 
 
With the newff function the following network is created : 
net = 
 
    Neural Network object: 
    architecture: 
         numInputs: 1 
         numLayers: 6 
       biasConnect: [1; 1; 1; 1; 1; 1] 
      inputConnect: [1; 0; 0; 0; 0; 0] 
      layerConnect: [6x6 boolean] 
     outputConnect: [0 0 0 0 0 1] 
     targetConnect: [0 0 0 0 0 1] 
 
        numOutputs: 1  (read-only) 
        numTargets: 1  (read-only) 
    numInputDelays: 0  (read-only) 
    numLayerDelays: 0  (read-only) 
    subobject structures: 
 
            inputs: {1x1 cell} of inputs 
            layers: {6x1 cell} of layers 
           outputs: {1x6 cell} containing 1 output 
           targets: {1x6 cell} containing 1 target 
            biases: {6x1 cell} containing 6 biases 
      inputWeights: {6x1 cell} containing 1 input weight 
      layerWeights: {6x6 cell} containing 5 layer weights 
    functions: 
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          adaptFcn: 'trains' 
           initFcn: 'initlay' 
        performFcn: 'mse' 
          trainFcn: 'trainlm' 
 
    parameters: 
 
        adaptParam: .passes 
         initParam: (none) 
      performParam: (none) 
        trainParam: .epochs, .goal, .max_fail, .mem_reduc,  
                    .min_grad, .mu, .mu_dec, .mu_inc,  
                    .mu_max, .show, .time 
    weight and bias values: 
 
                IW: {6x1 cell} containing 1 input weight matrix 
                LW: {6x6 cell} containing 5 layer weight matrices 
                 b: {6x1 cell} containing 6 bias vectors 
 
    other: 
 
          userdata: (user stuff) 
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Appendix B 
 

In appendix B all the codes that concern the implementation of the Aalen’s 

additive models are given 

1. The code that implements the counting of the death and censored events in 

the ordered times. 

 
%find maximum time index (N) and maximum sample index (M) 
N=round(100*max(time)); 
M=length(death); 
 
%initialize temporary tables; 
ttmp(N)=0; 
stmp(N)=0; 
mtmp(N)=0; 
 
%initialize mortality (m) and survival (s) vectors 
m=[]; 
s=[]; 
 
%find the indexes corresponding to the available times recorded in time 
%table 
 
for i=1:M 
    ttmp(round(time(i)*100))=1; 
end 
 
%Calculate mortality vector 
for i=1:M, 
    if death(i)==1 
        mtmp(round(time(i)*100))=mtmp(round(time(i)*100))+1; 
    end 
end 
% form mortality vector rows ("time" "number of deaths") 
for i=1:N 
    if ttmp(i)~=0 
        tmp=[i/100 mtmp(i)]; 
        m=[m;tmp]; 
    end 
end 
%---------------------------------------------------- 
%Calculate censored vector 
for i=1:M, 
    if death(i)==0 
        stmp(round(time(i)*100))=stmp(round(time(i)*100))+1; 
    end 
end 
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% form censored vector rows ("time" "number of survival") 
for i=1:N 
    if ttmp(i)~=0 
        tmp=[i/100 stmp(i)]; 
        s=[s;tmp]; 
    end 
end 
%---------------------------------------------------- 
%clear not needed variables 
clear i mtmp stmp tmp ttmp M N 
 

2. The code that implements the computation of the Y matrix 
 
%number of samples from patients 
N=length(data); 
%number of existing time indexes 
M=length(s); 
 
%create initial Y table (for 1 time sample) 
data_all=[ones(N,1) data]; 
 
%initialize Y for all time moments 
Y(N,4,M)=0; 
 
for k=1:M 
    Y(:,:,k)=data_all; 
end 
 
%total_m_s: number of deaths+censored UP TO time moment i (inclusive) 
total_m_s=0; 
 
for i=2:M %traverse table Y for all time moments 
    m_s=m(i-1,2)+s(i-1,2); %m_s:sum of deaths+censored for moment i ONLY!!!!! 
    total_m_s=total_m_s+m_s;     
    for j=1:total_m_s 
        Y(j,:,i)=zeros(1,4); %replace total_m_s number of lines with zeros for time 
moment (i+1) 
    end 
end 
 

3. The code that implements the computation of the X matrix 
 
%initialize Y(t) 1<=t<=560 
yt(743,4)=0; 
%initialize number of time moments 
M=length(s); 
 
%traverse Y for all time moments 
for i=1:M, 
    yt(:,:)=Y(:,:,i); 
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    if det(yt'*yt)==0 
        %if det(yt'*yt)==0 then break.'i' holds the time moment where 
        %det(yt'*yt)~=0; 
        end_X=i-1; 
        break; 
    end 
end 
 
%initialize X table.The 3rd dimensioon is of length i-1, since we want only 
%the time moments where det(yt'*yt)==0  
X(4,743,end_X)=0; 
 
for i=1:end_X 
    %get Y for time moment i 
    yt(:,:)=Y(:,:,i); 
    %X(t)=(Y'(t)*Y(t))^-1 * Y'(t) 
    X(:,:,i)=inv(yt'*yt)*yt'; 
end 
 
clear end_X yt i ans 
 

4. The code that implements the computation of the cumulative regression 
functions and creates the plots for each covariate. 

 
tmp=size(X);% we get all the dimensions of matrix X 
MaxX=tmp(3);% we make use only the third dimension of matrix X 
xt=[]; 
k=0; 
 
for i=1:MaxX % we get only the ordered event times where m is different than zero 
    if m(i,2)>0 
        k=k+1; 
        xt(:,:,i)=X(:,:,k);%we make use only the X values that correspond to ordered 
event times 
    end 
end 
 
At(4,1,k)=0;% the dimension of A matrix 
 
sum=zeros(4,1); %initialize sum 
k=0; 
 p=0; 
for i=1:MaxX 
    if m(i,2)>0 
        k=k+1; 
        Ii=zeros(743,1); %initialize I 
        
        for j=1:length(death) 
            if (death(j)==1) 
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                if (time(j)==m(i,1))% I is a vector of zeros except for a one corresponding 
to the individual  
                                    % who experiences an event at time Tk 
                 
    Ii(j)=1; 
                    p=p+1; 
                end 
            end 
        end 
 
        sum = sum + xt(:,:,i)*Ii; %A(t)=Σ X(Tk)*Ik for Tk<=t 
        At(:,:,k)=sum; 
 
    end 
end 
%.......................................................................... 
k=0; 
time_all=[]; 
 for i=1:MaxX % we get only the ordered event times where m is different than zero 
     if m(i,2)>0 
         k=k+1; 
         time_all(k)=m(i);%we make use only the time values that correspond to ordered 
event times 
     end 
 end 
 
% Z(length(At(1,1,:)))=0; 
Z1(length(At(2,1,:)))=0; 
Z2(length(At(3,1,:)))=0; 
Z3(length(At(4,1,:)))=0; 
 
% for j =1:length(At(1,1,:))% we take the first line of all the sheets of A 
%     Z(j) = At(1,1,j); 
% end 
% subplot(2,2,1); 
% plot(time_all,Z); % we plot the components of A against time which result in the 
cumulative regression plots.  
% hold on 
%........................plots............................... 
for j =1:length(At(2,1,:)) 
    Z1(j) = At(2,1,j); 
end 
% subplot(2,2,2); 
plot(time_all,Z1); 
xlabel('time(years)'); 
ylabel('cumulative regression function'); 
title('covariate lubd') 
hold on 
 
for j =1:length(At(3,1,:)) 
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    Z2(j) = At(3,1,j); 
end 
% subplot(2,2,3); 
plot(time_all,Z2); 
xlabel('time(years)'); 
ylabel('cumulative regression function'); 
title('covariate uh') 
hold on 
 
for j =1:length(At(4,1,:)) 
    Z3(j) = At(4,1,j); 
end 
% subplot(2,2,4); 
plot(time_all,Z3); 
xlabel('time(years)'); 
ylabel('cumulative regression function'); 
title('covariate epi') 
hold on 
clear MaxX xt k i sum j tmp 
 

5. The code that implements the computation of the survival functions for 
each patient. 

 
function survival(patient) 
 
load final; 
tmp=size(X);% we get all the dimensions of matrix X 
MaxX=tmp(3);% we make use only the third dimension of matrix X 
xt=[]; 
k=0; 
 
 
for i=1:MaxX % we get only the ordered event times where m is different than zero 
    if m(i,2)>0 
        k=k+1; 
        xt(:,:,i)=X(:,:,k);%we make use only the X values that correspond to ordered 
event times 
    end 
end 
 
Pt(1,1,k)=0; 
Z=[]; 
Z=data_all(patient,:); 
Z=Z'; 
sum=ones(1,1); %initialize sum 
k=0; 
 
for i=1:MaxX 
    if m(i,2)>0 
        k=k+1; 
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        Ii=zeros(743,1); %initialize I 
        for j=1:length(death) 
            if (death(j)==1) 
                if (time(j)==m(i,1))% I is a vector of zeros except for a one corresponding 
to the individual  
                                    % who experiences an event at time Tk 
                    Ii(j)=1; 
                end 
            end 
        end 
 
        sum = sum *(1-(xt(:,:,i)*Ii)'*Z); 
        Pt(:,:,k)=sum; 
         
%        Ht=-log(Pt); 
 
    end 
end 
 
k=0; 
time_all=[]; 
 for i=1:MaxX % we get only the ordered event times where m is different than zero 
     if m(i,2)>0 
         k=k+1; 
         time_all(k)=m(i);%we make use only the time values that correspond to ordered 
event times 
     end 
 end 
  
for j =1:length(Pt(1,1,:))% we take the first line of all the sheets of A 
    R(j) = Pt(1,1,j); 
end 
 
% for j =1:length(Ht(1,1,:))% we take the first line of all the sheets of A 
%     H(j) = Ht(1,1,j); 
% end 
 
figure(1) 
 hold on  
 plot(time_all,R) 
 xlabel('Survival Years'); 
 ylabel('Survival Function'); 
 grid on 
 hold off 
  
% figure(2) 
% plot(time_all,H); 
% xlabel('Survival Years'); 
% ylabel('Cumulative Hazard'); 
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6. The code that implements the computation of the survival functions for the 
covariate epi which is divided into epi 0 and epi 1 

 
function survival_epi_0_1 
load survival_epi0_1.mat; 
 
survival0=[]; 
survival1=[]; 
m=1; 
n=1; 
for i=1:743 
    if data_all(i,4)==1 
        survival1(:,m)=survival(i) 
        m=m+1; 
    end 
    if data_all(i,4)==0 
        survival0(:,n)=survival(i) 
        n=n+1; 
    end 
end 
 
 
figure (1) 
hold on; 
  for i=1:464 
    if survival1(:,i)<=1 
      plot(time_all,survival1(:,i),'r'); 
    end 
end 
 
  for i=1:279 
       if survival0(:,i)<=1 
  plot(time_all,survival0(:,i)); 
       end 
end 
xlabel('Survival time'); 
ylabel('Survival Function') 
hold off; 
 
 

7. The code that implements the computation of the survival functions for the 
covariate lubd which is divided into lubd big(>=14,9) and lubd small(<14,9) 

 
function survival_lubd 
 
load survival_epi0_1.mat 
 
lubd0=[]; 
lubd1=[]; 
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m=1; 
n=1; 
p=1; 
k=1; 
 
for i=1:743 
    if data_all(i,4)==1 
        if data_all(i,2)>=14,9              
            lubd1(:,m)=survival1(:,k); 
            m=m+1; 
            k=k+1; 
               
        end 
        if data_all(i,2)<14,9 
            lubd0(:,n)=survival1(:,k); 
            k=k+1; 
            n=n+1; 
             
                 
        end 
     
    end 
      if data_all(i,4)==0 
        if data_all(i,2)<14,9              
            lubd0(:,n)=survival0(:,p);           
               n=n+1; 
               p=p+1; 
        end 
        if data_all(i,2)>=14,9            
           lubd1(:,m)=survival0(:,p);  
           m=m+1; 
           p=p+1; 
             
        end 
                 
    end 
            
end    
 
figure (1) 
hold on; 
  for i=1:360 
    if lubd1(:,i)<=1 
      plot(time_all,lubd1(:,i),'r'); 
    end 
end 
 
  for i=1:383 
       if lubd0(:,i)<=1 
  plot(time_all,lubd0(:,i)); 
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       end 
end 
xlabel('Survival time'); 
ylabel('Survival Function') 
hold off; 
 

8. The code that implements the computation of the survival functions for the 
covariate uh which is divided into uh big(>=10) and uh small(<10) 

 
function survival_uh 
 
load survival_epi0_1.mat 
uh0=[]; 
uh1=[]; 
m=1; 
n=1; 
p=1; 
k=1; 
 
for i=1:743 
    if data_all(i,4)==1 
        if data_all(i,3)>=10              
            uh1(:,m)=survival1(:,k); 
            m=m+1; 
            k=k+1; 
          end 
        if data_all(i,3)<10 
            uh0(:,n)=survival1(:,k); 
            k=k+1; 
            n=n+1;                            
        end 
     
    end 
      if data_all(i,4)==0 
        if data_all(i,3)<10              
           uh0(:,n)=survival0(:,p);           
               n=n+1; 
               p=p+1; 
        end 
        if data_all(i,3)>=10            
           uh1(:,m)=survival0(:,p);  
           m=m+1; 
           p=p+1; 
                    end 
            
    end 
         
end    
 
figure (1) 
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hold on; 
  for i=1:194 
    if uh1(:,i)<=1 
      plot(time_all,uh1(:,i),'r'); 
    end 
end 
 
  for i=1:549 
       if uh0(:,i)<=1 
  plot(time_all,uh0(:,i)); 
       end 
end 
xlabel('Survival time'); 
ylabel('Survival Function') 
hold off; 
 

9. The code that implements the computation of the survival functions for the 
covariate epi and lubd. The data set is divides into lubd big and epi 1, and 
to lubd big and epi 0 

 
function survival_lubd_epi 
 
load survival_epi0_1.mat; 
% s0=[]; 
% s1=[]; 
 
figure (2) 
hold on; 
for j=1:743 
    for i=1:464 
        if data_all(j,2)>=14,9 
            if survival1(:,i)<=1 
                plot(time_all,survival1(:,i),'r'); 
            end 
        end 
    end 
end 
for j=1:743 
    for i=1:279 
        if data_all(j,2)>=14,9 
            if survival0(:,i)<=1 
                plot(time_all,survival0(:,i)); 
            end 
        end 
    end 
end 
xlabel('Survival time'); 
ylabel('Survival Function') 
hold off; 
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