ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Διπλωματική εργασία

ΘΕΜΑ:«Στατικές και δυναμικές μηχανές νευρωνικών δικτύων για πρόβλεψη μετεωρολογικών παραμέτρων»

Εξεταστική επιτροπή: Σταυρακάκης Γ. (Επιβλέπων) Ζερβάκης Μ. Καλαϊτζάκης Κ.

> Ζήσος Ιωάννης Ιούλιος 2006

ΠΕΡΙΕΧΟΜΕΝΑ

ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ

KE¢	ΦΑΛΑΙ	ΙΟ 1 : ΧΡΟΝΟΣΕΙΡΕΣ	1
1.1	ΓΕΝΙ	ΚΑ ΓΙΑ ΧΡΟΝΟΣΕΙΡΕΣ	1
1.2	ANA	ΔΥΣΗ ΧΡΟΝΟΣΕΙΡΑΣ	2
1.3	ПРОЕ	βΛΕΨΗ ΧΡΟΝΟΣΕΙΡΑΣ	3
	1.3.1	Γενική μεθοδολογία πρόβλεψης με χρονοσειρά	3
	1.3.2	Πλεονεκτήματα μοντέλου χρονοσειρών για πρόβλεψη	4
1.4	KANO	ΟΝΙΚΟΠΟΙΗΣΗ ΤΩΝ ΧΡΟΝΟΣΕΙΡΩΝ	5
1.5	ΣΥΝΑ	APTHΣH AYTOΣYΣXETIΣHΣ (Autocorrelation Function)	5
KE¢	ΦΑΛΑ]	IO 2 : ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ (Neural Networks)	6
2.1	Ιστορ	ική αναδρομή	6
2.2	ΒΙΟΛ	ΟΓΙΚΑ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ	7
	2.2.1 πληρο	Ο ανθρώπινος εγκέφαλος σαν σύστημα επεξεργασίας φοριών	7
	2.2.2.	Βιολογικός Νευρώνας	8
	2.2.3	Εκμάθηνση συνάψεων	9
2.3	TEXN	ΙΗΤΑ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ	9
	2.3.1	Ορισμός	9
	2.3.2	Μοντέλο νευρώνα	10
	2.3.3	Συναρτήσεις ενεργοποίησης(Activation functions)	12
	2.3.4	Αρχιτεκτονικές δικτύων(Network architectures)	13
	2.3.5	Κανόνες μάθησης	15
	2.3.6	Κανόνες εκπαίδευσης νευρωνικών δικτύων	17
		2.3.6.1 Κανόνας εκπαίδευσης νευρώνα	17
		2.3.6.2 Εκπαίδευση μονοστρωματικών νευρωνικών δικτύων	18
		2.3.6.3 Εκπαίδευση πολυστρωματικών νευρωνικών δικτύων	19

	2.3.6.3.1 Αλγόριθμος οπίσθιας διάδοσης σφαλμάτων	21
	για πολυστρωματικά feedforward νευρωνικά	
	δίκτυα (Backpropagation Algorithm)	
	2.3.6.3.2 Μέθοδος Quasi-Newton	25
	2.3.6.3.3 Αλγόριθμος Levenberg-Marquardt(LM)	26
2.4	ΠΛΕΟΝΕΚΤΗΜΑΤΑ ΤΩΝ ΝΕΥΡΩΝΙΚΩΝ ΔΙΚΤΥΩΝ	27
2.5	ΖΗΤΗΜΑΤΑ ΥΛΟΠΟΙΗΣΗΣ ΝΕΥΡΩΝΙΚΟΥ ΔΙΚΤΥΟΥ	29
	2.5.1 Μέθοδος cross-validation	31

ΚΕΦΑΛΑΙΟ 3 : ΣΥΝΕΡΓΑΤΙΚΕΣ ΜΗΧΑΝΕΣ 33 ΣΥΛΛΟΓΙΚΗΣ ΑΠΟΦΑΣΗΣ (COMMITTEE MACHINES)

3.1	ΕΙΣΑΙ	ΓΩΓΗ	33
3.2	ΠΛΕΟ	ΟΝΕΚΤΗΜΑΤΑ ΜΗΧΑΝΩΝ ΑΠΟΦΑΣΗΣ	33
3.3	KATH	ΗΓΟΡΙΕΣ ΜΗΧΑΝΩΝ ΑΠΟΦΑΣΗΣ	34
	3.3.1	Ensemble averaging	35
	3.3.2	Mixture of experts	36

KEΦΑΛΑΙΟ 4 :ΠΡΟΣΑΡΜΟΣΙΜΟ ΝΕΥΡΟ-ΑΣΑΦΕΣ38ΣΥΣΤΗΜΑ
(ADAPTIVE NEURO-FUZZY
INFERENCE SYSTEM)
(ANFIS)38

4.1	Ασαφής Λογική	38
	4.1.1 Ασαφή σύνολα	38
	4.1.2 Ασαφής έλεγχος-ασαφής πρόβλεψη	39
4.2	Μέθοδος Mamdani	40
4.3	Μέθοδος Takagi-Sugeno	42
4.4	Νευρο-ασαφή συστήματα	43
	4.4.1 ANFIS	44

ΠΕΙΡΑΜΑΤΙΚΟ ΜΕΡΟΣ

KE¢	ΦΑΛΑΙ	Ο 5 : ΠΕΙΡΑΜΑΤΙΚΟ ΜΕΡΟΣ	46
5.1	ПАРС	ΟΥΣΙΑΣΗ ΤΩΝ ΧΡΟΝΟΣΕΙΡΩΝ ΘΕΡΜΟΚΡΑΣΙΑΣ ΚΑΙ	46
	ΗΛΙΑ	ΚΗΣ ΑΚΤΙΝΟΒΟΛΙΑΣ	
	5.1.1	Ηλιακή ακτινοβολία	46
		5.1.1.1 Γενικά	46
		5.1.1.2 Επεξεργασία των δεδομένων	46
	5.1.2	Θερμοκρασία	49
		5.1.2.1 Γενικά	49
		5.1.2.2 Επεξεργασία των δεδομένων	50
	5.1.3	Κανονικοποίηση των χρονοσειρών ηλιακής ακτινοβολίας	53
		και θερμοκρασίας	
	5.1.4	Αυτοσυσχέτιση των χρονοσειρών ηλιακής ακτινοβολίας	55
		και θερμοκρασίας	
	5.1.5	Περίοδος χρονοσειρών	56
	5.1.6	Τροποποίηση χρονοσειρών για χρήση τους στα συστήματα	57
		πρόβλεψης	
5.2	ПРОЕ	$β$ ΛΕΨΗ ME NEYPΩNIKA Δ IKTYA(Neural Network Prediction)	59
	5.2.1	Εισαγωγή	59
	5.2.2	Ανάπτυξη νευρωνικών δικτύων πρόβλεψης	59
		5.2.2.1 Διαδικασία πρόβλεψης	60
		5.2.2.1.1 Δεδομένα εκπαίδευσης – Δεδομένα δοκιμής	60
		5.2.2.1.2 Δομή των νευρωνικών δικτύων	62
		5.2.2.1.3 Μέθοδος Εκπαίδευσης	65
		5.2.2.1.4 Μετρικές απόδοσης	69
	5.2.3	Εκπαίδευση νευρωνικών δικτύων – Αποτελέσματα προβλέψεων	70
		5.2.3.1 Ηλιακή ακτινοβολία	70
		5.2.3.2 Θερμοκρασία	73
5.3	ПРОЕ	ЗЛЕΨН ME ANFIS	77
	5.3.1	Αποτελέσματα προβλέψεων ηλιακής ακτινοβολίας με ANFIS	78
	5.3.2	Αποτελέσματα προβλέψεων θερμοκρασίας με ANFIS	78

5.4	ΑΝΑΠΤΥΞΗ ΜΗΧΑΝΩΝ ΝΕΥΡΩΝΙΚΩΝ ΔΙΚΤΥΩΝ			
	(Neural Committee Machines)			
	5.4.1	Στατικές μηχανές νευρωνικών δικτύων	81	
	5.4.2	Δυναμικές μηχανές νευρωνικών δικτύων	87	
	5.4.3	Πρόβλεψη με μηχανές νευρωνικών δικτύων -	88	
		Αποτελέσματα προβλέψεων		
		5.4.3.1 Αποτελέσματα προβλέψεων ηλιακής ακτινοβολιάς	90	
		με τις επτά μηχανές νευρωνικών δικτύων		
		5.4.3.2 Αποτελέσματα προβλέψεων θερμοκρασίας	91	
		με τις επτά μηχανές νευρωνικών δικτύων		
5.5	ГРАФ	ΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΕΚΠΑΙΔΕΥΣΗΣ ΜΕ ΠΡΑΓΜΑΤΙΚΑ	96	
		ΔΕΔΟΜΕΝΑ		

ΚΕΦΑΛΑΙΟ 6 : ΣΥΜΠΕΡΑΣΜΑΤΑ – ΠΕΡΑΙΤΕΡΩ 102 **ΕΡΕΥΝΑ**

ПАРАРТНМА	105
ΒΙΒΛΙΟΓΡΑΦΙΑ-ΑΝΑΦΟΡΕΣ	

ΕΙΣΑΓΩΓΗ

Σ' αυτή τη διπλωματική γίνεται μια προσέγγιση επίλυσης του προβλήματος της πρόβλεψης μετεωρολογικών παραμέτρων. Για την επίλυση αυτού του ανοικτού προβλήματος υπάρχουν σημαντικές ερευνητικές προσπάθειες με πολύ καλά αποτελέσματα. Η γνώση των μελλοντικών τιμών (βραχυχρόνια πρόβλεψη) των μετεωρολογικών παραμέτρων, όπως η θερμοκρασία περιβάλλοντος και η ηλιακή ακτινοβολία, συνεισφέρει σημαντική πληροφορία σε πολλές επιστημονικές περιοχές.

Στην εργασία αυτή υλοποιήθηκαν νευρωνικά δίκτυα με ποικίλες τοπολογίες και μεθόδους εκπαίδευσης με στόχο την εύρεση της καταλληλότερης δομής νευρωνικού δικτύου ως forecaster, δηλαδή τον καθορισμό του πλήθους των εισόδων και του αριθμού των κρυφών στρωμάτων και των αντίστοιχων κόμβων του νευρωνικού δικτύου.

Ένα σημαντικό μέρος της εργασίας καταπιάνεται με την ανάπτυξη στατικών και δυναμικών μηχανών (Committee Machines) αποτελούμενες από νευρωνικά δίκτυα και νευροασαφή συστήματα (ANFIS) σε συνεργατική μορφή. Ο στόχος της υλοποίησης αυτών των μηχανών ήταν η επίτευξη βέλτιστης πρόβλεψης σε σχέση με την πρόβλεψη των μεμονωμένων νευροασαφών predictors.

Η δομή της εργασίας έχει ως εξής:

Δύο γενικά μέρη: το Θεωρητικό και το Πειραματικό μέρος

Στο Θεωρητικό μέρος ανήκουν τα κεφάλαια 1,2,3,4 ενώ στο Πειραματικό μέρος ανήκει το 5° κεφάλαιο.

Το **κεφάλαιο 1** περιγράφει τη χρονοσειρά σαν έννοια, αναφέρει τα σημαντικότερα προβλήματα ανάλυσης χρονοσειράς και στη συνέχεια επικεντρώνεται στη πρόβλεψη χρονοσειράς και στα πλεονεκτήματα του συγκεκριμένου μοντέλου πρόβλεψης.

Το κεφάλαιο 2 περιγράφει τα νευρωνικά δίκτυα. Αναφέρεται στη λειτουργία των βιολογικών νευρωνικών δικτύων τη συσχετίζει με το μοντέλο επεξεργασία ενός συμβατικού υπολογιστή και στη συνέχεια διεισδύει στα τεχνητά νευρωνικά δίκτυα. Τα ορίζει, αναφέρει τις διαφορετικές αρχιτεκτονικές τους, αναλύει κάποιες μεθόδους μάθησης και εκπαίδευσης νευρωνικών δικτύων και καταλήγει στα πλεονεκτήματα τους σαν συστήματα καθώς και σε κάποια ζητήματα υλοποίησης τους.

Το κεφάλαιο 3 περιγράφει τις συνεργατικές μηχανές συλλογικής απόφασης. Αναφέρεται στα πλεονεκτήματα τους, στις κατηγορίες μηχανών και αναλύει τη λειτουργία δύο διαφορετικων δομών μηχανών συλλογικής απόφασης που χρησιμοποιούνται. Το κεφάλαιο 4 περιγράφει το ANFIS. Αρχικά γίνεται αναφορά στην ασαφή λογική και στις αρχές της καθώς και στην πρόβλεψη με χρήση ασαφούς λογικής. Εν συνεχεία ορίζονται τα νευρο-ασαφή συστήματα και περιγράφεται συνοπτικά η λειτουργία του ANFIS.

Το κεφάλαιο 5 αποτελεί το πειραματικό μέρος της εργασίας. Στη παράγραφο 5.1 παρουσιάζονται οι χρονοσειρές ηλιακής ακτινοβολίας και θερμοκρασίας και γίνεται επεξεργασία τους ώστε να χρησιμοποιηθούν στα συστήματα πρόβλεψης που υλοποιούνται. Στη παράγραφο 5.2 αναπτύσσονται δομές νευρωνικών δικτύων πρόβλεψης, οι οποίες εκπαιδεύονται με τα δεδομένα των γρονοσειρών ηλιακής ακτινοβολίας και θερμοκρασίας και στη συνέχεια κάνουν πρόβλεψη αυτών των μετεωρολογικών παραμέτρων.Οι διαφορετικές δομές νευρωνικών δικτύων συγκρίνονται για τις προβλέψεις τους με βάση κάποιες μετρικές απόδοσης. Στη παράγραφο 5.3 υλοποιείται το ANFIS και στη συνέχεια γίνεται πρόβλεψη ηλιακής ακτινοβολίας και θερμοκρασίας με βάση το συγκεκριμένο νευρο-ασαφές σύστημα. Στη παράγραφο 5.4 αναπτύσσονται επτά διαφορετικές συνεργατικές μηχανές συλλογικής απόφασης. Στη συνέγεια ακολουθεί, η διαδικασία πρόβλεψης ηλιακής ακτινοβολίας και θερμοκρασίας με χρήση καθεμιάς απ' τις μηγανές, καθώς και η μεταξύ τους σύγκριση με βάση μετρικές απόδοσης. Στη παράγραφο 5.5 παρατίθενται γραφικές παραστάσεις προβλέψεων με χρήση πραγματικών δεδομένων για τα καλύτερα "νευρωνικά δίκτυα πρόβλεψης, το ANFIS και τη "καλύτερη" συνεργατική μηγανή συλλογικής απόφασης.

Το **κεφάλαιο 6** περιέχει τα γενικά συμπεράσματα της εργασίας καθώς και προτάσεις για περαιτέρω έρευνα.

Στη συνέχεια ακολουθεί το Παράρτημα με πίνακες αποτελεσμάτων προσομοιώσεων με όλες τις δομές νευρωνικών δικτύων που υλοποιήθηκαν, καθώς και με γραφικές παραστάσεις προβλέψεων για τα "καλύτερα" νευρωνικά δίκτυα που προέκυψαν.

κεφαλαίο **1**

ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ

ΧΡΟΝΟΣΕΙΡΕΣ

1.1 ΓΕΝΙΚΑ ΓΙΑ ΧΡΟΝΟΣΕΙΡΕΣ

<u>Ορισμός χρονοσειράς (timeseries)</u>: Χρονοσειρά είναι μια ακολουθία μετρούμενων ποσοτήτων $x_1, x_2, ..., x_n$, ενός φυσικού συστήματος που έχουν ληφθεί ανά συγκεκριμένα τακτά χρονικά διαστήματα. Τα διαστήματα αυτά μπορεί να είναι ωριαία, ημερήσια, μηνιαία ή ετήσια.

Ποιοτικά χαρακτηριστικά των χρονοσειρών:

- 1. Στασιμότητα (Stationary),
- 2. Τάση (Trend),
- 3. Περιοδικότητα ή Εποχικότητα (Seasonal),
- 4. Κυκλικότητα (Cyclical),
- 5. Ασυνέχειες (Discontinuity): Ασυνήθιστες τιμές (Outliers),
- 6. Τυχαιότητα(Randomization).

Μια χρονοσειρά θεωρείται στάσιμη, όταν οι στατιστικές ιδιότητες της χρονοσειράς δεν αλλάζουν με το χρόνο. Ειδικότερα μια χρονοσειρά θα είναι στάσιμη αν έχει μέση τιμή και διακύμανση μη μεταβαλλόμενα με το χρόνο, καθώς και αν η συνδιασπορά μεταξύ τιμών της χρονοσειράς σε δύο διαφορετικά χρονικά σημεία εξαρτάται μόνο από την απόσταση ανάμεσα σε αυτά τα χρονικά σημέια και όχι από τις συγκεκριμένες χρονικές στιγμές.

Το στοιχείο της τάσης περιγράφει τη μακροχρόνια συμπεριφορά μιας χρονοσειράς. Ειδικότερα, αν για μία μακρά χρονική περίοδο οι τιμές μιας χρονοσειράς τείνουν να αυξάνονται ή να μειώνονται, τότε λέμε ότι η σειρά των παρατηρήσεων παρουσιάζει μακροχρόνια τάση.

Το στοιχείο της περιοδικότητας ή εποχικότητας περιγράφει κανονικές επαναλαμβανόμενες διακυμάνσεις των τιμών μιας χρονοσειράς σε κάποια χρονική περίοδο που αυτές μπορεί να αντιστοιχούν σε ένα χρόνο, μια εποχή του χρόνου, ένα μήνα ή και μια βδομάδα. Οι εποχικές μεταβολές είναι ρυθμικές, επαναλαμβανόμενες στο χρόνο και φέρονται να αναφέρονται σε κάποιο πρότυπο, που ακολουθεί το μετρούμενο μέγεθος,το οποίο αποτυπώνεται στις τιμές της χρονοσειράς κατά τη διάρκεια αντίστοιχων μηνών σε διαδοχικά έτη.

Το στοιχείο της κυκλικότητας αναφέρεται σε μακράς περιόδου ταλαντεύσεις των τιμών, γύρω απο μία γραμμή ή καμπύλη τάσης.Οι κυκλικές μεταβολές διαφέρουν απο τις περιοδικές, καθώς είναι μεγαλύτερης διαρκείας και δεν παρουσιάζουν μεγάλη περιοδικότητα.

Οι ασυνέχειες αποτελούν "παραμορφώσεις" των χρονοσειρών σε ορισμένα σημεία και οφείλονται κυρίως σε σφάλματα των οργάνων μέτρησης,των μετρούμενων μεγεθών, τις συγκεκριμές χρονικές στιγμές. Οι τιμές της χρονοσειράς στα σημεία αυτά αποτελούν σφάλματα οργάνων. Επειδή οι τιμές-σφάλματα οργάνων αποτελούν πρόβλημα στην επεξεργασία των χρονοσειρών, απαλείφονται ή αντικαθίστανται, προκειμένου να επιτευχθεί εξομάλυνση της χρονοσειράς.

Η τυχαιότητα έχει να κάνει με απροσδόκητες διακυμάνσεις των τιμών της χρονοσειράς που έχουν να κάνουν είτε με φυσικά αίτια,είτε με ξαφνικά και απρόβλεπτα συμβάντα.

1.2 ΑΝΑΛΥΣΗ ΧΡΟΝΟΣΕΙΡΑΣ

Η ανάλυση των χρονοσειράς περιλαμβάνει τρία σημαντικά ειδικά προβλήματα:

- 1. Πρόβλεψη (Prediction)
- 2. Μοντελοποίηση (Modeling)
- 3. Χαρακτηρισμός (Characterization)

Στόχος της πρόβλεψης είναι να υπολογίσει, με όσο το δυνατόν μεγαλύτερη ακρίβεια την εξέλιξη του συστήματος για μικρή χρονική διάρκεια,δηλαδή ουσιαστικά να υπολογίσει τις μελλοντικές τιμές της μεταβλητής της χρονοσειράς.

Στόχος της μοντελοποίησης είναι να 'κατανοήσει' τη συμπεριφορά και τις χαρακτηριστικές ιδιότητες του συστήματος, για μεγάλη χρονική διάρκεια, μέσω της διαδοχής των μετρήσεων.

Στόχος του χαρακτηρισμού του συστήματος είναι ο καθορισμός κάποιων θεμελιωδών ιδιοτήτων του συστήματος.

1.3 ΠΡΟΒΛΕΨΗ ΧΡΟΝΟΣΕΙΡΑΣ

<u>Ορισμός πρόβλεψης χρονοσειράς (timeseries prediction)</u> : Μέθοδος απεικόνισης παρελθοντικών σημείων της χρονοσειράς σε μελλοντικά.

Η μέθοδος βασίζεται στην υπόθεση ότι η μεταβολή της τιμής του μεγέθους ακολουθεί ένα συγκεκριμένο πρότυπο (¨λανθάνον πρότυπο¨) που επαναλαμβάνεται στο χρόνο και παραμένει σταθερό.

Βασικός στόχος αυτής της μεθόδου είναι η αναγνώριση του ακολουθούμενου προτύπου των ιστορικών δεδομένων και η προέκταση του στο μέλλον.

Με μια έννοια, το μοντέλο χρονοσειρών θεωρείται σαν ένα "μαύρο κουτί" (black box) που δεν κάνει καμία προσπάθεια να ανακαλύψει τους συντελεστές που επηρεάζουν τη συμπεριφορά του.

Η παραστατική μορφή του μοντέλου χρονοσειρών δίνεται στο παρακάτω σχήμα:

Είσοδοι

Σχήμα 1.1 Μπλοκ διάγραμμα μοντέλου χρονοσειρών

Είσοδος του μοντέλου είναι παρελθοντικές τιμές X_i μέχρι τη χρονική στιγμή x = t και έξοδος Y είναι η πρόβλεψη της μελλοντικής τιμής τη χρονική στιγμή x = t+P. Η βασική μέθοδος για τον τύπο αυτό πρόβλεψης είναι η δημιουργία μιας απεικόνισης απο D σημεία της χρονοσειράς που απέχουν κατά Δ μονάδες μεταξύ τους, π.χ. x(t-(D-1)Δ),..x(t-Δ),x(t) προκειμένου να επιτευχθεί πρόβλεψη της μελλοντικής τιμής x(t+P).

1.3.1 Γενική μεθοδολογία πρόβλεψης με χρονοσειρά

Γενικά η προβλεπόμενη τιμή μιας μεταβλητής σε μια μελλοντική χρονική στιγμή, στηρίζεται σε m προηγούμενες τιμές. Το m καλείται καθυστέρηση της πρόβλεψης (lag of prediction). Αν έχουμε τις τιμές της μεταβλητής x για τις χρονικές στιγμές k-m εως k-1, δηλαδή, x(k-1), x(k-2), ..., x(k-m), μπορούμε να προβλέψουμε το x(k), καθώς και τις επόμενες τιμές x(k+1), ..., x(k+p).

Η μεθοδολογία που χρησιμοποιείται για να δημιουργηθεί ένας predictor είναι η εξής:

- 1. Προεπεξεργασία των δεδομένων.
- 2. Απόφαση των m τιμών lag.
- Διαχωρισμός των δεδομένων παρατήρησης σε δεδομένα εκπαίδευσης και δεδομένα δοκιμής (ελέγχου).
- Δημιουργία τοπικού (local) ή ολικού (global) predictor βασισμένου σε αρχιτεκτονικές όπως fourier gray mobels, προσαρμογή πολυωνύμου, μοντέλα ασαφούς λογικής, νευρωνικά δίκτυα.
- 5. Αρχικοποίηση των αρχικών βαρών του predictor σε μηδενικές τιμές.
- 6. Χρήση των δεδομένων εκπαίδευσης για εκπαίδευση του predictor. Η εκπαίδευση λειτουργεί ως εξής: τη χρονική στιγμή k, εφαρμογή των x(k-1), x(k-2), ..., x(k-m) στον predictor. Παίρνουμε την έξοδο του predictor x(k+p). Υπολογίζουμε τα σφάλματα εξόδου (με χρήση κάποιων κριτηρίων) και αλλαγή των τιμών των βαρών του predictor ανάλογα με τον αλγόριθμο εκπαίδευσης που χρησιμοποιείται (learning algorithm) (π.χ. Back Propagation, Genetic Algorithms).
- Υπολογισμός της απόδοσης του εκπαιδευμένου predictor με τα δεδομένα ελέγχου.

1.3.2 Πλεονεκτήματα μοντέλου χρονοσειρών για πρόβλεψη

Υπάρχουν τρία βασικά πλεονεκτήματα της θεώρησης του "μαύρου κουτιού " που αποτελούν και τους βασικούς λόγους της συχνότατης επιλογής του μοντέλου των χρονοσειρών:

- Δεν υπάρχει πάντα η δυνατότητα να συσχετίσουμε ενα μεταβαλλόμενο μέγεθος με κάποιους παράγοντες και πολύ περισσότερο να προσδιορίσουμε τον τρόπο αλληλεπιδρασής τους.
- Σε πολλές περιπτώσεις ενδιαφερόμαστε να προσδιορίσουμε μόνο το τι θα συμβεί και όχι το γιατί.
- Το κόστος που απαιτείται στην περίπτωση αυτή είναι πολύ μικρότερο σε σχέση με άλλες κατηγορίες μοντέλων (όπως το επεξηγηματικό).

1.4 ΚΑΝΟΝΙΚΟΠΟΙΗΣΗ ΤΩΝ ΧΡΟΝΟΣΕΙΡΩΝ

Μια από τις συχνά χρησιμοποιούμενες μεθόδους προεπεξεργασίας δεδομένων αποτελεί η κανονικοποίηση τους. Κανονικοποιώντας τα δεδομένα επιτυγχάνεται ουσιαστικά εξομάλυνση της χρονοσειράς, καθώς οι τιμές που έχουν πλέον τα δεδομένα περικλείονται σε ένα συγκεκριμένο εύρος τιμών προκαθορισμένο και μικρότερο απο το πραγματικό. Είναι επίσης χαρακτηριστικό να σημειωθεί ότι η εκπαίδευση των νευρωνικών δικτύων, που ουσιαστικά αποτελούν τα συστήματα στα οποία οι χρονοσειρές θα χρησιμοποιηθούν στη συνέχεια σαν πρότυπα εκπαίδευσης, μπορεί να γίνει πιο αποτελεσματική, με χρήση κανονικοποιημένων δεδομένων. Οι πιο συχνά χρησιμοποιούμενες κανονικοποιήσεις είναι: ο μετασχηματισμός των δεδομένων ώστε να έχουν μέση τιμή μηδενική και τυπική απόκλιση μοναδιαία, καθώς και η αντιστοίχιση των δεδομένων σε ένα μικρό εύρος τιμών,π.χ.κανονικοποίηση 0.1 εως 0.9 όπου η ελάχιστη τιμή των πραγματικών δεδομένων αντιστοιχή στο 0.1 και η μέγιστη στο 0.9.

1.5 Σ YNAPTH Σ H AYTO Σ Y Σ XETI Σ H Σ (Autocorrelation Function)

Η συνάρτηση αυτοσυσχέτισης είναι ένα μαθηματικό εργαλείο που χρησιμοποιείται στην ανάλυση των χρονοσειρών, και δείχνει τη συσχέτιση μιας συνάρτησης με τον εαυτό της, για διαδοχικά χρονικά διαστήματα. Αποτελεί έναν τρόπο ανίχνευσης της περιοδικότητας ενός σήματος. Ο τύπος υπολογισμού της είναι ο παρακάτω:

$$r_{k} = \frac{\sum_{\substack{t=k+1}}^{n} (Y_{t} - \overline{Y})(Y_{t-k} - \overline{Y})}{\sum_{\substack{i=1}}^{n} (Y_{t} - \overline{Y})^{2}}$$

ópou r_k η autosuscétist με καθυστέρηση k (lag), Y_t η τιμή της sunárthstr τη χρονική στιγμή t, \overline{Y} η μέση τιμή της sunárthstr και Y_{t-k} η τιμή της sunárthstr Yτη χρονική στιγμή t-k.

Η συνάρτηση αυτοσυσχέτισης ουσιαστικά δείχνει τη σχέση εξάρτησης των επόμενων τιμών μιας συνάρτησης από τις προηγούμενες. Όσο μεγαλύτερες τιμές παίρνει η αυτοσυσχέτιση τόσο πιο μεγάλη εξάρτηση υπάρχει μεταξύ διαδοχικών τιμών της συνάρτησης.

КЕФАЛАЮ **2**

NEYPΩNIKA ΔΙΚΤΥΑ (Neural Networks)

2.1 Ιστορική αναδρομή

Η πρώτη ουσιαστική δημοσίευση πάνω στο τομέα των νευρωνικών δικτύων έγινε το 1943, από τους McCulloch και Pitts, οι οποίοι κατάφεραν την πρώτη λογική ανάλυση των νευρωνικών δικτύων, που συνέδεε τις επιστήμες την νευροφυσιολογίας και της μαθηματικής λογικής. Ορίζοντας το μοντέλο του νευρώνα, οι δύο επιστήμονες απέδειξαν ότι με τη χρήση νευρώνων και συναπτικών συνδέσεων, σε ταυτόχρονη λειτουργία, θα μπορούσε να υπολογιστεί οποιαδήποτε υπολογιστική συνάρτηση. Αυτό ήταν ένα πολύ σημαντικό αποτέλεσμα, στο οποίο ουσιαστικά

Στη συνέχεια ακολούθησε το 1949 το βιβλίο του Hebb, όπου παρουσιάστηκε ένας κανόνας εκμάθηνσης των συναπτικών βαρών, με βάση τη θεώρηση ότι ο οργανισμός "μαθαίνει" αυξάνοντας την αποτελεσματικότητα των συνάψεων που συνδέουν επανηλειμένως ενεργοποιημένους νευρώνες. Το 1958 ο Rosenblatt παρουσίασε το perceptron, μία καινοτόμο μέθοδο μάθησης με εποπτεία (supervised learning). Το 1960, οι Widrow και Hoff παρουσίασαν τον αλγόριθμο ελαχιστοποίησης του μέσου τετραγωνικού σφάλματος. Το 1970, παρουσιάστηκε η εννοια του αυτοοργανωνόμενου χάρτη (self-organizing map), με χρήση ανταγωνιστικής (competitive) μάθησης. Μέσα στο 1982, ο Hopfield χρησιμοποίησε την ιδέα της συνάρτησης ενέργειας (energy function), για την κατανόηση της λειτουργίας των επαναλαμβανόμενων δικτύων (recurrent networks), ενώ τη ίδια περίοδο έγινε η δημοσίευση του Kohonen πάνω στους αυτο-οργανωνόμενους χάρτες (Kohonen's selforganizing maps), που ήταν πρωτοποριακή. Το 1986 σημαδεύτηκε από την ανάπτυξη του αλγορίθμου εκπαίδευσης με οπισθοχώρηση (Backpropagation algorithm) από τους Rumelhart, Hinton και Williams. Ακολούθησαν πολλές ακόμα δημοσιεύσεις αλλά αυτές του Hopfield το 1982 και του Rumelhart το 1986 ήταν οι πιο καθοριστικές για την μεταγενέστερη εξέλιξη του τομέα των νευρωνικών δικτύων.

2.2 ΒΙΟΛΟΓΙΚΑ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ

2.2.1 Ο ανθρώπινος εγκέφαλος σαν σύστημα επεξεργασίας πληροφοριών

Το ανθρώπινο νευρικό σύστημα μπορεί να προσεγγιστεί σαν ένα τριεπίπεδο σύστημα. Πυρήνας του συστήματος είναι ο εγκέφαλος, που δέχεται αδιάλειπτα πληροφορίες, τις αντιλαμβάνεται και παίρνει τις απαραίτητες αποφάσεις. Παρακάτω παρατίθεται ένα μπλοκ διάγραμμα που απεικονίζει το προαναφερθέν σύστημα.

Σχήμα 2.1:Διάγραμμα προσέγγισης εγκεφάλου σαν τριεπίπεδο σύστημα

Στο διάγραμμα παρουσιάζονται δύο είδη από βελάκια. Αυτά που έχουν φορά από αριστερά προς δεξιά και δείχνουν την εμπρόσθια κίνηση των σημάτων που περιέχουν τα δεδομένα διαμέσου του συστήματος και τα βέλη με αντίθετη φορά που δείχνουν την παρουσία ανάδρασης στο σύστημα. Οι υποδοχείς μετατρέπουν τα ερεθίσματα από το ανθρώπινο σώμα ή το εξωτερικό περιβάλλον σε ηλεκτρικούς παλμούς, που παρέχουν πληροφορίες στο σύστημα. Οι μετατροπείς είναι οι δέκτες των ηλεκτρικών σημάτων, που παράγονται από τον εγκέφαλο, που στη συνέχεια τα μετατρέπουν σε διακριτές αποκρίσεις, που αποτελούν τις εξόδους του συστήματος.

Η προσπάθεια κατανόησης της λειτουργίας του εγκεφάλου σημαδεύτηκε από την πρωτοποριακή δουλειά του Ramon Cajal(1911), που παρουσίασε την ιδέα των νευρώνων, σαν στοιχειωδών μονάδων του εγκεφάλου. Ο ανθρώπινος εγκέφαλος αποτελείται από περίπου 10 δισεκατομμύρια νευρικά κύτταρα ή νευρώνες. Ένας νέυρωνας συνδέεται με άλλους νέυρωνες, με κατά μέσο όρο περίπου 10.000 συνάψεις. Το δίκτυο νευρώνων του εγκεφάλου αποτελεί ένα ευρέως παράλληλο επεξεργαστικό σύστημα πληροφοριών. Αυτό έρχεται σε αντιδιαστολή με τους σύγχρονους συμβατικούς υπολογιστές, όπου ένας επεξεργαστής εκτελεί σειριακά μια μοναδική αλληλουχία εντολών.

Τυπικά, οι νευρώνες είναι πέντε με έξι φορές πιο αργοί από τις λογικές πύλες πυριτίου (τρανζίστορς), π.χ. εφαρμογές που στη πλακέτα πυριτίου τρέχουν σε ένα νανοδευτερόλεπτο $(10^{-9}$ seconds), στο νευρώνα τρέχουν σε ενα χιλιοστό του δευτερο-

λέπτου(10^{-3} seconds). Ο σχετικά αργός αυτός ρυθμός λειτουργίας τους αντισταθμίζεται από τον πολύ μεγάλο αριθμό νευρώνων και των μεταξύ τους συνδέσεων.

0/10/00/10/11						
	Επεξεργαστικά στοιχεία	Μέγεθος στοιχείων	Ισχύς	Ταχύτητα επεξεργασίας	Τρόπος υπολογισμού	Ανθεκτικός σε λάθη
	10 ¹⁴ Νευρώνες	10^{-6} m	30w	100 Hz	Παράλληλος Κατανεμημένος	Ναι
	10 ⁸ Τρανζίστορς	10 ⁻⁶ m	30w	10 ⁹ Hz	Σειριακός Συγκεντρωτικός	Όχι

Πίνακας 2.1: Σύγκριση του μοντέλου λειτουργίας του εγκεφάλου με ένα συμβατικό υπολογιστή

2.2.2 Βιολογικός Νευρώνας

Η βασική μονάδα επεξεργασίας του νευρικού συστήματος είναι το νευρικό κύτταρο ή νευρώνας. Ο νευρώνας αποτελείται από τα εξής δομικά στοιχεία:

- 1. Δενδρίτες (Dendrites). Αποτελούν τις εισόδους του νευρώνα.
- Σώμα του κυττάρου (Cell body). Αποτελεί το μέρος όπου γίνεται η επεξεργασία των σημάτων-εισόδων.
- 3. Άξονας (Axon). Αποτελεί την έξοδο του νευρώνα.

Σχήμα 2.2: Βιολογικός νευρώνας

Ένας νευρώνας δέχεται είσοδο από άλλους νευρώνες (τυπικά αρκετές χιλιάδες), μέσω των δενδριτών. Οι είσοδοι αθροίζονται και αν το άθροισμα ξεπεράσει μια συγκεκριμένη "κρίσιμη" τιμή, ο νευρώνας απελευθερώνει ένα ηλεκτρικό παλμό, που διαπερνάει το σώμα του κυττάρου και τον άξονα, και τελικά μεταδίδεται στους επόμενους νευρώνες. Η διαδικασία αυτή ονομάζεται αποφόρτιση και ακολουθείται από μια περίοδο αδράνειας, κατά την οποία ο νευρώνας είναι ανίκανος να λειτουργήσει.

Οι καταλήξεις του άξονα (axon endings) σχεδόν αγγίζουν τους δενδρίτες του επόμενου νευρώνα. Η μετάδοση του ηλεκτρικού παλμού από τον ένα νευρώνα στον επόμενο, επιτυγχάνεται με τους νευρικούς πομπούς (neurotransmitters), χημικές ουσίες που απελευθερώνονται από τον πρώτο νευρώνα και δεσμεύονται από τους υποδοχείς του επόμενου. Η σύζευξη αυτή ονομάζεται σύναψη. Η μετάβαση του σήματος από τον ένα νευρώνα στον επόμενο εξαρτάται από παράγοντες όπως η διαθεσιμότητα νευρικών πομπών, ο αριθμός και η διάταξη των υποδοχέων.

2.2.3 Εκμάθηνση συνάψεων

Ο εγκέφαλος έχει τη δυνατότητα να μαθαίνει ως γνωστόν. Με βάση τις δομές των νευρώνων, ένας τρόπος μάθησης είναι η εναλλαγή της ισχύος τως συνδέσεων μεταξύ των νευρώνων (των βαρών των συνδέσεων), καθώς και η αύξηση ή μείωση του αριθμού των συνδέσεων μεταξύ των νευρώνων. Επιπλέον, έχει την ικανότητα για άμεση (online) μάθηση, που βασίζεται στην εμπειρία. Η ισχύς μιας σύναψης μπορεί να μεταβληθεί ανάλογα με την εμπειρία, εξασφαλίζοντας μνήμη και εκμάθηση μέσω της μακροχρόνιας εξέλιξής της. Ένας τρόπος μεταβολής της είναι απελευθερώνοντας περισσότερους νευρικούς πομπούς.

Αξίωμα Hebb: «Όταν ένας άζονας ενός κυττάρου Α διεγείρει ένα κύτταρο Β, και επαναλαμβανόμενα και εζακολουθητικά παίρνει μέρος στην ενεργοποίησή του, κάποια διαδικασία εξέλιζης ή αλλαγή του μεταβολισμού λαμβάνει χώρα σε ένα από τα δύο ή και στα δύο κύτταρα, έτσι ώστε η αποτελεσματικότητα του Α στην ενεργοποίηση του Β να αυζάνεται».

2.3 ΤΕΧΝΗΤΑ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ

2.3.1 Ορισμός

Το νευρωνικό δίκτυο είναι ένας επεξεργαστής κατανεμημένης παράλληλης αρχιτεκτονικής, που αποτελείται από απλές επεξεργαστικές μονάδες, οι οποίες έχουν μια φυσική τάση να αποθηκεύουν εμπειρική γνώση και να την κανουν κατάλληλη για χρήση. Μοιάζει στον εγκέφαλο σε δύο τομείς:

- Η γνώση αποκτάται από το δίκτυο, από το περιβάλλον του, μέσω μιας διαδικασίας μάθησης.
- 2. Η ισχύς των διανευρωνικών συνδέσεων, γνωστή ως συναπτικό βάρος, χρησιμοποιείται για αποθήκευση της αποκτημένης γνώσης.

Το νευρωνικό δίκτυο μπορεί πιο γενικά να περιγραφεί σαν μια μηχανή που σχεδιάζεται για να μοντελοποιεί τον τρόπο, με τον οποίο ο εγκέφαλος εκτελεί μια συγκεκριμένη λειτουργία, που μας ενδιαφέρει. Το δίκτυο είναι συνήθως υλοποιημένο με χρήση ηλεκτρονικών στοιχείων ή προσομοιώνεται με χρήση λογισμικού σε ψηφιακό υπολογιστή.

Τα νευρωνικά δίκτυα γενικά προσδιορίζονται απο την αρχιτεκτονική τους (τοπολογία) και τη διαδικασία εκπαίδευσής τους. Σχεδιάζονται και εκπαιδεύονται για να επιτελέσουν πολύπλοκες λειτουργίες σε διαφορετικούς τομείς εφαρμογών.

- Αναγνώριση προτύπων
- Αναγνώριση δυναμικών συστημάτων
- Ταξινόμηση δεδομένων
- Μηχανική οραση
- Εφαρμογές φωνής
- Συστήματα αυτομάτου ελέγχου
- Ανάλυση χρονοσειρών
- Πρόβλεψη

2.3.2 Μοντέλο νευρώνα

Νευρώνας είναι μια στοιχειώδης επεξεργαστική μονάδα που είναι θεμελιώδης για τη λειτουργία ενός νευρωνικού δικτύου. Ο νευρώνας μπορεί να είναι γραμμικός ή μη γραμμικός. Κάθε νευρώνας δέχεται σήματα εισόδου από τις εξόδους των νευρώνων του προηγούμενου επιπέδου, υπολογίζει το σταθμισμένο άθροισμα όλων των σημάτων εισόδου και το σήμα αυτό περνά μέσα από μια συνάρτηση ενεργοποίησης (activation function), το αποτέλεσμα της οποίας αποτελεί είσοδο στους νευρώνες του επόμενου επιπέδου. Τα σήματα σε ένα νευρώνα σταθμίζονται με ένα συντελέστή βάρους. Παρακάτω παρατίθεται το μπλοκ διάγραμμα του μοντέλου ενός μη γραμμικού νευρώνα.

Σχήμα 2.3:Μπλόκ διάγραμμα του νευρώνα

Στο παραπάνω διάγραμμα ξεχωρίζουμε τρία βασικά στοιχεία του νευρωνικού μοντέλου:

- Ένα σύνολο συνάψεων που η καθεμιά χαρακτηρίζεται από το αντίστοιχο συναπτικό βάρος της. Πιο συγκεκριμένα ένα σήμα x_j που βρίσκεται στην είσοδο της σύναψης j και είναι συνδεδεμένο με το νευρώνα k, πολλαπλασιάζεται με το συναπτικό βάρος w_{ki}.
- Έναν αθροιστή για πρόσθεση των σημάτων εισόδου που είναι πολλαπλασιασμένα με τα αντίστοιχα συναπτικά βάρη.
- Μια συνάρτηση ενεργοποίησης για περιορισμό του πλάτους εξόδου του νευρώνα.

Το μοντέλο νευρωνικού επίσης περιλαμβάνει μια εξωτερική του συστήματος μεταβλητή που συνήθως είναι σταθερός όρος και ονομάζεται συναπτικό βάρος του νευρώνα (bias). Το bias αυξάνει ή μειώνει την είσοδο την συνάρτησης ενεργοποίησης ανάλογα αν είναι θετικό ή αρνητικό.

Με μαθηματικούς όρους ο νευρώνας k μπορεί να περιγραφεί από τις εξής εξισώσεις:

$$u_{k} = \sum_{j=l}^{m} W_{kj} X_{j}$$

και

$$y_{k} = \phi(u_{k} + b_{k})$$

όπου $X_1, X_2, ..., X_m$ είναι τα σήματα εισόδου, $W_1, W_2, ..., W_{km}$ είναι τα συναπτικά βάρη του νευρώνα k, U_k είναι η έξοδος του αθροιστή, b_k είναι το bias, φ(.) είναι η συνάρτηση ενεργοποίησης και Y_k η έξοδος του νευρώνα.

2.3.3 Συναρτήσεις ενεργοποίησης(Activation functions)

Η συνάρτηση ενεργοποίησης που συμβολίζεται με φ(u), ορίζει την έξοδο του νευρώνα σε σχέση με την τιμή της εξόδου του αθροιστή u.

Παρακάτω παρατίθενται μερικές από τις πιο συχνά χρησιμοποιούμενες συναρτήσεις ενεργοποίησης.

Σχήμα 2.4: Συναρτήσεις ενεργοποίησης των νευρωνικών δικτύων

2.3.4 Αρχιτεκτονικές δικτύων(Network architectures)

Οι αρχιτεκτονικές δικτύων είναι αλληλένδετες με τους αλγορίθμους εκμάθηνσης που χρησιμοποιούνται για τα δίκτυα.

Οι αρχιτεκτονικές των νευρωνικών δικτύων μπορούν να διαχωριστούν σε τρεις κύριες κατηγορίες:

- Τα Μονοστρωματικά Νευρωνικά Δίκτυα Εμπρόσθιας Τροφοδότησης (Single-layer feedforward Networks). Στη περίπτωση αυτή έχουμε ένα στρώμα εισόδου που αποτελείται από τις εισόδους του νευρωνικού και συνδέεται με ένα στρώμα εξόδου αποτελούμενο από νευρώνες (υπολογιστικοί κόμβοι). Η μετακίνηση δεδομένων γίνεται μόνο προς τα εμπρός και δεν υφίσταται ανάδραση.
- 2. Τα Πολυστρωματικά Νευρωνικά Δίκτυα Εμπρόσθιας Τροφοδότησης (Multilayer Feedforward Networks). Στην περίπτωση αυτή δικτύων μεταξύ του στρώματος εισόδων και του στρώματος εξόδων παρεμβάλεται ένα ή περισσότερα ενδιάμεσα στρώματα, τα επονομαζόμενα κρυφά στρώματα (hidden layers), τα οποία αποτελούνται από νευρώνες. Με τη χρήση των κρυφών στρωμάτων επιτυγχάνεται μεγαλύτερος βαθμός επεξεργασίας των δεδομένων. Συνήθώς κάθε κόμβος ενός στρώματος είναι συνδεδεμένος με καθέναν απο τους κόμβους του στρώματος που ακολουθεί. Σε αυτή την περίπτωση το νευρωνικό δίκτυο ονομάζεται πλήρως συνδεδεμένο (fully connected). Υπάρχουν περιπτώσεις δικτύων όπου λείπουν

κάποιες συναπτικές ενώσεις, οπότε το δίκτυο ονομάζεται μερικώς συνδεδεμένο (partially connected).

 Επαναλαμβανόμενα Νευρωνικά Δίκτυα (Recurrent Networks). Τα νευρωνικά δίκτυα που ανήκουν στη συγκεκριμένη κατηγορία διαφέρουν από τα νευρωνικα δίκτυα εμπρόσθιας μετάδοσης από το γεγονός ότι έχουν τουλάχιστον μια ανάδραση.

Σχήμα 2.5: Αρχιτεκτονικές νευρωνικών δικτύων

2.3.5 Κανόνες μάθησης

Μάθηση είναι η διαδικασία προσαρμογής των βαρών του νευρωνικού δικτύου για να παράγει αυτό, το επιθυμητό διάνυσμα εξόδου, σε απόκριση στο διάνυσμα εισόδου. Οι κανόνες μάθησης ενός νευρωνικού δικτύου δεικνύουν πώς τα βάρη ρυθμίζονται εφαρμόζοντας ένα παράδειγμα μάθησης. Οι κανόνες μάθησης χωρίζονται σε δύο κατηγορίες:

- Μάθηση με εποπτεία ή επίβλεψη (Supervised Learning): Υπάρχει ουσιαστικά ένα σύνολο ζευγών τιμών εισόδου-εξόδου, σύμφωνα με τα οποία εκπαιδεύεται το δίκτυο, και στη συνέχεια μπορεί να δοκιμαστεί για επαλήθευση της καλής λειτουργίας του.
- Μάθηση χωρίς εποπτεία (Unsupervised Learning), όπου δεν υπάρχει εξωτερική γνώση, αλλά η απόκριση βασίζεται στην ικανότητα των δικτύων να αυτοοργανώνονται εσωτερικά.

Κανόνες μάθησης:

1. Hebbian Rule (Unsupervised Learning)

$$\mathbf{W}_{k+1} = \mathbf{W}_k + \mathbf{b}\mathbf{x}\mathbf{y}$$

 W_{k+1} : Τιμή του βάρους κατά τον επόμενο κύκλο μάθησης.

- x : Είσοδος
- y : Έξοδος
- b : Ρυθμός μάθησης

Ο Hebbian Rule απαιτεί τα βάρη να έχουν αρχικές τιμές κοντά στο μηδέν πριν την μάθηση.

2. Delta Learning Rule (Supervised Learning)

Ο κανόνας αυτός είναι εφαρμόσιμος μόνον όταν η συνάρτηση ενεργοποίησης είναι διαφορίσιμη. Για την λειτουργία αυτού του κανόνα, χρησιμοποιείται η μέθοδος ελαχιστοποίησης του μέσου τετραγωνικού σφάλματος. Το σήμα εκπαίδευσης είναι η διαφορά μεταξύ της επιθυμητής και της πραγματικής απόκρισης του νευρώνα. Ορίζουμε τη συνάρτηση τετραγωνικού σφάλματος ως εξής:

$$E = \frac{1}{2}(d_i - y_i)^2$$

Το σήμα εκπαίδευσης δίνεται από τον παρακάτω τύπο:

$$\mathbf{r}_i = [\mathbf{d}_i - \mathbf{f}_i(\mathbf{w}_i^T \mathbf{x})] \bullet (\mathbf{f}_i(\mathbf{w}_i^T \mathbf{x}))'$$

Ο κανόνας εκπαίδευσης μπορεί εύκολα να προκύψει από την συνθήκη των ελαχίστων τετραγώνων μεταξύ y_i και d_i.

$$E = \frac{1}{2}(d_i - y_i)^2$$
 à $E = \frac{1}{2}[d_i - f_i(w_i^T x)]^2$

$$E = -(d_i - y_i) \bullet (f_i(w_i^T x) \bullet \underline{x})$$

$$\Delta w_i = -nE$$

Οπότε :

$$\Delta w_i = n(d_i - y_i) \bullet (f(s_i) \underline{x})$$

3. Widrow – Hoff Learning Rule

Ο κανόνας εκπαίδευσης Widrow – Hoff θεωρείται μια ειδική περίπτωση του κανόνα Delta. Η μόνη διαφορά τους είναι ότι η έξοδος της συνάρτησης ενεργοποίησης είναι ίδια με την είσοδο. Για το λόγο αυτό η εκπαίδευση του δικτύου είναι ανεξάρτητη της συνάρτησης ενεργοποίησης.

Το σήμα εκπαίδευσης ισούται με:

 $r_i = d_i - s_i = d_i - w_i^T x$

Η αναπροσαρμογή των βαρών δίνεται από το τύπο:

 $\Delta w_i = \gamma \bullet (d_i - s_i) \bullet \underline{x}$

2.3.6 Κανόνες εκπαίδευσης νευρωνικών δικτύων

2.3.6.1 Κανόνας εκπαίδευσης νευρώνα

Σχήμα 2.6: Μοντέλο απεικόνισης του ith νευρώνα

<u>Γενικός κανόνας εκπαίδευσης του ith νευρώνα</u>: Το διάνυσμα των βαρών \underline{w}_i αυξάνει με το γινόμενο των εισόδων <u>x</u> και του σήματος εκπαίδευσης r_i . Το σήμα r_i είναι γενικά μία συνάρτηση των w_i , <u>x</u> και μερικές φορές των επιθυμητών σημάτων d_i .

$\mathbf{r}_{i} = \mathbf{r}_{i} \left(\underline{\mathbf{w}}_{i}^{(t)}, \underline{\mathbf{x}}, \mathbf{d}_{i}^{(t)} \right)$

Η αύξηση των βαρών δίνεται από την εξίσωση

 $\Delta w_{i}(t) = \gamma \bullet r_{i} [w_{i}(t), \underline{x}(t), d_{i}(t)] \bullet \underline{x}(t)$

γ : θετικός αριθμός που ονομάζεται σταθερά εκπαίδευσης και καθορίζει το ρυθμό εκπαίδευσης

$$\frac{d\underline{w}(t)}{dt} = g \bullet \mathbf{r}_{i} \Big[\underline{w}_{i}(t), \underline{x}(t), d(t) \Big] \bullet \underline{x}(t),$$

συνεχούς χρόνου.

2.3.6.2 Εκπαίδευση μονοστρωματικών νευρωνικών δικτύων

Perceptron

Το perceptron δημιουργήθηκε με βάση το μοντέλο του μη γραμμικού νευρώνα, από τον Rossenblatt το 1958. Το νευρωνικό αυτό δίκτυο είναι μονοστρωματικό και σαν συνάρτηση ενεργοποίησης χρησιμοποιεί τη hardlim, η οποία για θετική είσοδο παίρνει τιμή 1 και για αρνητική -1. Παρακάτω δίνεται το μοντέλο του perceptron, που αποτελείται από τρεις εισόδους x_1 , x_2 , x_3 , τα αντίστοιχα βάρη τους w_{i1} , w_{i2} , w_{i3} , το bias, τη συνάρτηση ενεργοποίησης που είναι η προαναφερθείσα και την έξοδο y_i .

Σχήμα 2.7: Perceptron

Το perceptron ανήκει στη κατηγορια της μάθησης με εποπτεία, και χρησιμοποιείται κυρίως για περιπτώσεις προβλημάτων ταξινόμησης προτύπων (pattern classification). Ένα άλλο σπουδαίο χαρακτηριστικό του, είναι ότι αν στο πρόβλημα που καλείται να λύσει, υπάρχει λύση, δηλαδή ένα σύνολο βαρών, που να δίνουν τη λύση, τότε το perceptron σίγουρα θα βρει τις τιμές των βαρών. Ο αλγόριθμος εκπαίδευσης των βαρών του είναι ο εξής: Έχοντας αρχικοποιήσει τα βάρη σε μηδέν, και εφαρμόζοντας είσοδο <u>x</u> στο νευρώνα προκύπτει το ακόλουθο σήμα εκπαίδευσης :

$$r_i = d_i - y_i$$

και η έξοδος του νευρωνικού ισούται με:

$$y_i = sgn(s_i) = sgn(w_i^T \underline{x})$$

οπότε η διαφορά του επόμενου βάρους από το παρόν είναι ίση με:

$$\Delta \underline{\mathbf{w}}_{i} = \gamma \bullet [\mathbf{d}_{i} - \operatorname{sgn}(\mathbf{w}_{i}^{\mathrm{T}} \underline{\mathbf{x}})] \bullet \underline{\mathbf{x}}$$

2.3.6.3 Εκπαίδευση πολυστρωματικών νευρωνικών δικτύων

Τα πολυστρωματικά νευρωνικά δίκτυα, όπως προαναφέρθηκε, αποτελούνται από τις εξής δομικές μονάδες: στρώμα εισόδου (input layer), ένα ή περισσότερα ενδιάμεσα στρώματα (hidden layers), ένα στρώμα εξόδου, τα οποία αποτελούνται από νευρώνες. Σε αυτό τον τύπο δικτύου εντοπίζονται δύο είδη σημάτων: τα σήματα συνάρτησης και τα σήματα σφαλμάτων.

Το σήμα συνάρτησης είναι ένα σήμα εισόδου, που διαδίδεται μέσα στο δίκτυο με κατεύθυνση προς τα εμπρός, συμβατικά, από τα αριστερά προς τα δεξιά, από στρώμα σε στρώμα και καταλήγει στην έξοδο του δικτύου σαν ένα σήμα εξόδου. Όνομάζεται σήμα συνάρτησης για δύο λόγους: πρώτον γιατί θεωρείται ότι εκτελεί μια "χρήσιμη" συνάρτηση στην έξοδο του δικτύου και δεύτερον γιατί κατά το πέρασμα του σήματος συνάρτησης από οποιονδήποτε νευρώνα, το σήμα υπολογίζεται σαν μια συνάρτηση των εισόδων και των βαρών που εφαρμόζονται στον συγκεκριμένο νευρώνα.

Το σήμα σφάλματος προέρχεται από έναν νευρώνα εξόδου του δικτύου και διαδίδεται προς τα πίσω, συμβατικά από δεξιά προς τα αριστερά, από στρώμα σε στρώμα, μέσα στο δίκτυο. Ονομάζεται σήμα σφάλματος για το λόγο ότι ο υπολογισμός του σήματος από κάθε νευρώνα του δικτύου, συνεπάγεται μια συνάρτηση σφάλματος.

Παρακάτω παρατίθεται ένα νευρωνικό δύο εισόδων, δύο κρυφών στρωμάτων, που το καθένα αποτελείται από τρεις και δύο νευρώνες αντίστοιχα και του στρώματος εξόδου, που αποτελείται από ένα νευρώνα (2-3-2-1 νευρωνικό δίκτυο).

Σχήμα 2.8: 2-3-2-1 νευρωνικό δίκτυο

Στο παραπάνω νευρωνικό με τους αριθμούς 1 εως 6 συμβολίζονται οι νευρώνες κάθε στρώματος. Όπου x_1 και x_2 οι είσοδοι, h_1 εως h_6 οι έξοδοι καθενός

από τους νευρώνες και w_{ij}τα βάρη των συνάψεων, όπου i ο νευρώνας-κατάληξη της σύναψης και j ο νευρώνας-αρχή της σύναψης.

Διαδικασία διάδοσης του σήματος συνάρτησης μέσα από το νευρωνικό δίκτυο.

1° βήμα : Υπολογίζουμε την έξοδο του κάθε κόμβου του στρώματος εισόδου, δηλαδή την είσοδο της συνάρτησης ενεργοποίησης έστω Q. Στον κόμβο 1 θα έχουμε :

$$Q_{1} = W_{11}X_{1} + W_{12}X_{2}$$
$$Q_{2} = W_{21}X_{1} + W_{22}X_{2}$$
$$Q_{3} = W_{31}X_{1} + W_{32}X_{2}$$

2° βήμα : Υπολογισμός των εξόδων των συναρτήσεων ενεργοποίησης του πρώτου στρώματος.

$$h_1 = \sigma(Q_1)$$

$$h_2 = \sigma(Q_2)$$

$$h_3 = \sigma(Q_4)$$

3° βήμα : Υπολογισμός των εισόδων των συναρτήσεων ενεργοποίησης του κρυφού-ενδιάμεσου στρώματος.

$$Q_4 = W_{41}h_1 + W_{42}h_2 + W_{43}h_3$$
$$Q_5 = W_{51}h_1 + W_{52}h_2 + W_{53}h_3$$

4° βήμα : Υπολογισμός των εξόδων των συναρτήσεων ενεργοποίησης του κρυφού στρώματος.

$$h_4 = \sigma(Q_4)$$
$$h_5 = \sigma(Q_5)$$

5° βήμα : Υπολογισμός της εξόδου του νευρωνικού δικτύου.

$$Q_{6} = W_{64}h_{4} + W_{65}h_{5}$$

 $Y = h_{6} = \sigma(Q_{6})$

2.3.6.3.1 Αλγόριθμος οπίσθιας διάδοσης σφαλμάτων για πολυστρωματικά feedforward νευρωνικά δίκτυα (Backpropagation Algorithm)

Ο αλγόριθμος όπισθεν διάδοσης σφαλμάτων είναι μια γενική μέθοδος για υπολογισμό των βαρών ενός πολυστρωματικού δικτύου. Στόχος της μεθόδου είναι να εκπαιδευτούν τα βάρη με βάση το σύνολο των τιμών των ζευγών εισόδου-εξόδου, καθώς το δίκτυο ανήκει στη κατηγορία supervised learning, μειώνοντας με κάθε εποχή λειτουργίας του αλγορίθμου το σήμα σφάλματος στην έξοδο του νευρωνικού δικτύου. Το σήμα σφάλματος του j νευρώνα στη n επανάληψη ορίζεται e και ισούται με e_j(n)=t_j(n)-y_j(n),όπου t η επιθυμητή τιμή εξόδου και y η απόκριση του νευρώνα j εξόδου του δικτύου. Επίσης ορίζουμε την ενέργεια σφάλματος για τους νευρώνες του στρώματος εξόδου σαν Ε και ισούται με $E(n) = \frac{1}{2} \sum_{j \in C} e_j^2(n)$, όπου C το σύνολο των νευρώνων εξόδου. Η μέση τετραγωνιαία ενέργεια σφάλματος καλείται E_{av} και ισούται με $E_{av} = \frac{1}{N} \sum_{n=1}^{N} E(n)$. Για ένα σετ δεδομένων εκπαίδευσης η E_{av} αναπαριστά την συνάρτηση κόστους, σαν ένα μέτρο απόδοσης της εκπαίδευσης. Στόχος της διαδικασίας εκπαίδευσης είναι η προσαρμογή των παραμέτρων του δικτύου, ώστε να έχουμε ελαγιστοποίηση της συνάρτησης κόστους.

Για μικρές τιμές ρυθμού μάθησης, αποτελεί μια πολύ σταθερή μέθοδο, αλλά μειονέκτημά της αποτελεί η αρκετά αργή σύγκλισή του. Παρακάτω περιγράφεται βηματικά η λειτουργία του αλγορίθμου.

1. Απόδοση αρχικών τιμών στα βάρη.

 Επιλογή προτύπου και έναρξη επαναληπτικής διαδικασίας για κάθε πρότυπο εκπαίδευσης.

3. Εκπαίδευση προτύπου.

4. Τέλος βρόχου.

5. Επανάληψη της παραπάνω διαδικασίας μέχρι κάλυψη του κριτηρίου τερματισμόυ των επαναλήψεων.

Εκπαίδευση προτύπου

1. Εμφάνιση προτύπου στο στρώμα εισόδου.

2. Υπολογισμός εξόδων ενδιάμεσων κόμβων (στρωμάτων).

- 3. Υπολογισμός τελικής εξόδου του δικτύου (κόμβος εξόδου).
- 4. Εφαρμογή επιθυμητού προτύπου t (target) στην έξοδο.
- 5. Υπολογισμός δ για κόμβους εξόδου.
- 6. Εκπαίδευση κόμβων εξόδου με βάση τον τύπο:

$$\delta_{k} = \sigma'(\alpha_{k}) (t_{k}^{p} - y_{k}^{p})$$

όπου σ'() η παράγωγος της συνάρτησης ενεργοποίησης του κόμβου εξόδου k, a_k το άθροισμα των εισόδων της συνάρτησης ενεργοποίησης, t_k^p η επιθυμητή τιμή (target) που αφορά τον κόμβο k για το πρότυπο εισόδου p, y_k^p η έξοδος του κόμβου εξόδου k για το πρότυπο p.

- 7. Υπολογισμός δ για ενδιάμεσους κόμβους
- 8. Εκπαίδευση ενδιάμεσων στρωμάτων με βάση τον τύπο:

$$\delta_{k} = \sigma'(\alpha_{k}) \sum_{j \in I_{k}} \delta^{j} w_{jk}$$

όπου σ'() η παράγωγος της συνάρτησης ενεργοποίησης του ενδιάμεσου κόμβου k, I_k το πλήθος των κόμβων εξόδου, που παίρνουν είσοδο από τον κόμβο k, και w_{jk} το βάρος της σύναψης, που συνδέει το κόμβο k με τον κόμβο εξόδου j.

Για την εκπαίδευση των βαρών χρησιμοποιείται ο τύπος:

$$\Delta w_{ki} = \rho^* \, \delta_k^{\ *} \, x_{ki}^p$$

Όπου Δw_{ki} η διαφορά του προηγούμενο από το επόμενο βάρος, ρ ο ρυθμός μάθησης, δ_k το αποτέλεσμα μιας από τις παραπάνω εξισώσεις ανάλογα με το αν αφορά κόμβο εξόδου ή ενδιάμεσο κόμβο αντίστοιχα, x^p_{ki} η i είσοδος στον κόμβο k για το πρότυπο p.

Κριτήρια τερματισμού των επαναληψεων

- Κοντινότερη απόσταση της απόκρισης κόμβων εξόδου από την επιθυμητή τιμή, για όλα τα πρότυπα.
- Προσδιορισμός επαρκώς χαμηλής τιμής σφάλματος, δηλαδή χαμήλής τιμής της συνάρτησης κόστους.
- 3. Μείωση του ρυθμού μεταβολής σφάλματος.

Είναι απαραίτητο να αναφερθεί ότι για τον υπολογισμό των βαρών με backpropagation, χρησιμοποιείται ο κανόνας της αλυσίδας, ο οποίος καταρχάς απαιτεί την ύπαρξη και στη συνέχεια τη χρήση των παραγώγων των συναρτήσεων ενεργοποίησης, οι οποίες πρέπει να είναι συνεχείς. Για τις πιο συχνά χρησιμοποιούμενες συναρτήσεις ενεργοποίησης, που είναι η γραμμική, η σιγμοειδής και η υπερβολική εφαπτομένη, παρατίθενται παρακάτω οι παράγωγοί τους.

Τύπος συνάρτησης	Συνάρτηση ενεργοποίησης	Παράγωγος συνάρτησης				
Linear	$\sigma(x)=x$	σ'(x)=1				
Logistic	$\sigma(x) = \frac{1}{1 + e^{-ax}}$	$\sigma'(x)=a*\sigma(x)(1-\sigma(x))$				
Tanh	$\sigma(\mathbf{x}) = \frac{e^{a\mathbf{x}} - e^{-a\mathbf{x}}}{e^{a\mathbf{x}} + e^{-a\mathbf{x}}}$	$\sigma'(x)=a(1-\sigma(x)^2)$				

Πίνακας 2.2: Συναρτήσεις ενεργοποίησης και οι παράγωγοί τους

Το a ονομάζεται παράμετρος κλίσης και συνήθως παίρνει την τιμή 1.

Ακολουθεί περιγραφή της διαδικασίας ανανέωσης των βαρών των συνάψεων, με βάση τον αλγόριθμο όπισθεν διάδοσης σφαλμάτων με παράδειγμα.

Έστω το παρακάτω νευρωνικό δίκτυο.

Σχήμα 2.9: 3-3-1 νευρωνικό δίκτυο

Έστω ότι στους νευρώνες χρησιμοποιείται σιγμοειδής συνάρτηση και το δίκτυο εκπαιδεύεται με ρυθμό μάθησης p.

Έχουμε λοιπόν το διάνυσμα εισόδων που είναι:
$$\mathbf{x} = \begin{bmatrix} \mathbf{x}_0 \\ \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix}$$
, το διάνυσμα βαρών των

συνάψεων μεταξύ εισόδων και ενδιάμεσου στρώματος που είναι:

 $\mathbf{w} = \begin{bmatrix} w_{10} & w_{11} & w_{12} \\ w_{20} & w_{21} & w_{22} \end{bmatrix}$ kai to diánusma twn barwn twn sunáwewn metakú endiámesou

στρώματος και της εξόδου που είναι: $\mathbf{u} = \begin{bmatrix} \mathbf{u}_{10} \\ \mathbf{u}_{11} \\ \mathbf{u}_{12} \end{bmatrix}$.

Κατά την εμπρόσθια διάδοση του σήματος συνάρτησης έχουμε τις εξής σχέσεις:

$$\alpha_{j} = w_{j} \bullet x = \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \end{bmatrix}$$

από την οποία προκύπτουν οι είσοδοι των νευρώνων του ενδιάμεσου στρώματος, οι οποίες περνάνε από τις συναρτήσεις ενεργοποίησης οπότε προκύπτουν οι εξής σχέσεις:

$$\mathbf{h}_{j} = \sigma(\alpha_{j}) = \frac{1}{1 + e^{-\alpha j}} = \begin{bmatrix} \mathbf{h}_{0} & \mathbf{h}_{1} & \mathbf{h}_{2} \end{bmatrix}^{\mathrm{T}} = \begin{bmatrix} 1 & \sigma(\alpha_{1}) & \sigma(\alpha_{2}) \end{bmatrix}$$

Ακολουθεί η έξοδος του νευρώνα εξόδου που δίνεται από την παρακάτω σχέση:

$$y_1 = \sigma(u \bullet h_j)$$

Μετά τον υπολογισμό της εξόδου ξεκινάει η διαδικασία ανανέωσης των βαρών με βάση τη διαφορά της απόκρισης εξόδου από την επιθυμητή έξοδο. Κάνουμε λοιπόν χρήση του τύπου $\delta_k = \sigma'(\alpha_k) (t_k^p - y_k^p)$ για τον κόμβο εξόδου. Έτσι έχουμε:

$$\delta_{y_1} = \sigma'(\alpha_{y_1})(t-y_1) = y_1(1-y_1)(t-y_1)$$

Έχοντας υπολογίσει το δ_{y_1} μπορούμε να υπολογίσουμε τα ανανεωμένα βάρη των συνάψεων u.

Οπότε έχουμε: $\Delta u = \begin{bmatrix} \Delta u_{10} \\ \Delta u_{11} \\ \Delta u_{12} \end{bmatrix} = \begin{bmatrix} p \delta_{y1} h_0 \\ p \delta_{y1} h_1 \\ p \delta_{y1} h_2 \end{bmatrix}$ και τελικά τα ανανεωμένα βάρη u που

ισούνται με: $\mathbf{u}_{new} = \begin{bmatrix} \mathbf{u}_{10} + \Delta \mathbf{u}_{10} \\ \mathbf{u}_{11} + \Delta \mathbf{u}_{11} \\ \mathbf{u}_{12} + \Delta \mathbf{u}_{12} \end{bmatrix}$. Ουσιαστικά τα νέα βάρη προέκυψαν εφαρμόζοντας

τον εξής κανόνα αλυσίδας: u $_{\rm new} \rightarrow {\rm Q}_{_3} \,{\rightarrow}\, {\rm y}_{_1} \,{\rightarrow}\, {\rm e},$ όπου e=t- y $_1$

Στη συνέχεια προκειμένου να υπολογίσουμε τα ανανεωμένα βάρη για τα w, πρέπει πρώτα να υπολογίσουμε τα δ_{h_1} και δ_{h_2} με χρήση του τύπου $\delta_k = \sigma'(\alpha_k) \sum_{j \in I_k} \delta^j w_{jk}$.

Οπότε έχουμε:

$$\begin{split} \delta_{h_1} = \sigma'(\alpha_{h_1})^* \sum_{j \in I_k} \delta_{y_1}^* u_{11} = h_1(1 - h_1)(\delta_{y_1})(u_{11}) \\ \delta_{h_2} = \sigma'(\alpha_{h_2})^* \sum_{j \in I_k} \delta_{y_1}^* u_{12} = h_2(1 - h_2)(\delta_{y_1})(u_{12}). \end{split}$$

Έχοντας υπολογίσει τα δ_{h_1} και δ_{h_2} μπορούμε να υπολογίσουμε τα ανανεωμένα βάρη των συνάψεων w.

$$\Delta \mathbf{w} = \begin{bmatrix} \Delta \mathbf{w}_{10} & \Delta \mathbf{w}_{11} & \Delta \mathbf{w}_{12} \\ \Delta \mathbf{w}_{20} & \Delta \mathbf{w}_{21} & \Delta \mathbf{w}_{22} \end{bmatrix} = \begin{bmatrix} \mathbf{p}(\delta \mathbf{h}_{1}) \mathbf{x}_{0} & \mathbf{p}(\delta \mathbf{h}_{1}) \mathbf{x}_{1} & \mathbf{p}(\delta \mathbf{h}_{1}) \mathbf{x}_{2} \\ \mathbf{p}(\delta \mathbf{h}_{2}) \mathbf{x}_{0} & \mathbf{p}(\delta \mathbf{h}_{2}) \mathbf{x}_{1} & \mathbf{p}(\delta \mathbf{h}_{2}) \mathbf{x}_{2} \end{bmatrix}$$
$$\mathbf{w}_{new} = \begin{bmatrix} \mathbf{w}_{10} + \Delta \mathbf{w}_{10} & \mathbf{w}_{11} + \Delta \mathbf{w}_{11} & \mathbf{w}_{12} + \Delta \mathbf{w}_{12} \\ \mathbf{w}_{20} + \Delta \mathbf{w}_{20} & \mathbf{w}_{21} + \Delta \mathbf{w}_{21} & \mathbf{w}_{22} + \Delta \mathbf{w}_{22} \end{bmatrix}$$

To ananewméno bároc w $_{\rm 10\,new}$ proékuye apó ton exúc kanóna alusídac:

$$W_{10 \text{ new}} \rightarrow Q_1 \rightarrow h_1 \rightarrow Q_3 \rightarrow y_1 \rightarrow e, \acute{o}\pi ov e=t-y_1.$$

Από τα παραπάνω διαφαίνεται ότι η παραγωγικότητα του αλγορίθμου είναι άμεσα συνδεδεμένη με την ελαχιστοποίηση της συνάρτησης κόστους, που αποτελεί το κριτήριο καλής απόδοσης του αλγορίθμου. Το σημαντικό αυτού του κριτηρίου είναι η γενικότητά του. Παρακάτω παρατίθενται δύο μέθοδοι ελαχιστοποίησης της συνάρτησης κόστους που έχουν αρκετά ταχύτερη σύγκλιση του κριτηρίου απ' τον backpropagation.

2.3.6.3.2 Μέθοδος Quasi-Newton

Το χαρακτηριστικό της μεθόδου αυτής είναι ότι χρησιμοποιεί δεδομένα δευτέρας τάξης για την επιφάνεια σφάλματος, χωρίς ουσιαστικά να υπολογίζει τον Hessian πίνακα Η της συνάρτησης κόστους. Ο Hessian πίνακας της συνάρτησης κόστους (\mathbf{E}_{av} (\mathbf{w})) είναι η δεύτερη παραγωγός της, ως προς το βάρος (\mathbf{w}), και ο υπολογισμός του είναι πολύ απαιτητικός υπολογιστικά. Η συγκεκριμένη μέθοδος χρησιμοποιεί πληροφορίες της τρέχουσας επανάληψης για να υπολογίζει τον καινούριο Hessian. Γενική εξίσωση της μεθόδου είναι: w(n+1)=w(n)+ η(n)s(n),

όπου s(n)=-S(n)g(n). Ο πίνακας S(n) είναι ένας θετικά ορισμένος πίνακας που προσαρμόζεται από επανάληψη σε επανάληψη. Αυτό γίνεται ώστε το διάνυσμα διεύθυνσης s(n) να υπολογίσει τη διεύθυνση του Newton που ισούται με $-((\mathbf{E}_{av}(\mathbf{w}))'')^{-1}(\mathbf{E}_{av}(\mathbf{w}))')$.

Χρησιμοποιώντας τα βάρη δύο συνεχόμενων επαναλήψεων, w(n) ,w(n+1), με τα αντίστοιχά τους διανύσματα κλίσης g(n),g(n+1), έστω q(n)=g(n+1)-g(n), $\Delta w(n)=w(n+1)-w(n)$, μπορούμε να πάρουμε πληροφορίες δευτέρας τάξης , δηλαδή σχετικά με τη καμπύλωση, χρησιμοποιώντας την ακόλουθη φόρμουλα:

$$q(n) \approx \left(\frac{\partial}{\partial w} g(n)\right) \Delta w(n).$$

Το χαρακτηριστικό αυτής της μεθόδου είναι ότι έχει ταχεία σύγκλιση καθώς δεν κάνει υπολογισμό του Hessian matrix.

2.3.6.3.3 Αλγόριθμος Levenberg-Marquardt(LM)

Όπως και η προηγούμενη μέθοδος έτσι και ο αλγόριθμος LM, σχεδιάστηκε για να ελαχιστοποιεί τη συνάρτηση κόστους, με μεγάλη ταχύτητα χωρίς να χρειάζεται να υπολογίσει τον Hessian matrix. Όταν η συνάρτηση κόστους έχει τη μορφή του αθροίσματος τετραγώνων,όπως στη περίπτωση των νευρωνικών δικτύων, ο Hessian matrix μπορεί να υπολογιστεί από το παρακάτω γινόμενο:

$$\mathbf{H} = \mathbf{J}^{\mathrm{T}}\mathbf{J}$$

,όπου J ο Jacobian matrix, που περιέχει τις πρώτες παραγώγους των σφαλμάτων δικτύου ως προς τα βάρη και τα bias,δηλαδή:

$$\mathbf{J} = \begin{bmatrix} \frac{\partial \mathbf{e}}{\partial \mathbf{W}_1} & \frac{\partial \mathbf{e}}{\partial \mathbf{W}_2} & \dots \end{bmatrix}$$

Ο Jacobian matrix μπορεί να υπολογιστεί με μεθόδους πολύ λιγότερο σύνθετες υπολογιστικά σε σχέση με τον υπολογισμο του Hessian matrix.

Επίσης ορίζουμε το διάνυσμα κλίσης g που υπολογίζεται ως:

$$g = J^{T}e$$

με Τ να υποδηλώνεται ο ανάστροφος πίνακας και ε το σφάλμα δικτύου.

Η επαναληπτική σχέση υπολογισμού των βαρών με χρήση LM είναι :

$$w_{_{k+l}} = w_{_k} - (J^{^{\mathrm{T}}}J + \mu I)^{^{-1}}J^{^{\mathrm{T}}}e$$

όπου μ ένα συντελεστής που αυξάνεται ή μειώνεται ανάλογα με το αν η επανάληψη είναι επιτυχημένη ή όχι, δηλαδή αν η συνάρτηση κόστους έχει αυξηθεί ή μειωθεί αντίστοιχα μετά από την επανάληψη. Ο Ι είναι ο διαγώνιος μοναδιαίος πίνακας.

2.4 ΠΛΕΟΝΕΚΤΗΜΑΤΑ ΤΩΝ ΝΕΥΡΩΝΙΚΩΝ ΔΙΚΤΥΩΝ

Το νευρωνικό δίκτυο γενικά αντλεί την υπολογιστική του ισχύ μέσω: πρώτον, της μαζικά παράλληλης κατανεμημένης δομής του και δεύτερον μέσω της ικανότητας του να μαθαίνει και συνεπώς να γενικεύει. Η γενίκευση αναφέρεται στην ικανότητα του νευρωνικου δικτύου να παράγει λογικές εξόδους, για κάποιες εισόδους που δεν λήφθησαν υπόψιν κατά την εκπαίδευση. Η χρήση των νευρωνικών δικτύων προσφέρει τις παρακάτω ιδιότητες και δυνατότητες:

- Μη γραμμικότητα (Nonlinearity). Ένα νευρωνικό δίκτυο μπορεί να είναι γραμμικό ή μη γραμμικό. Ένα νευρωνικό δίκτυο, που αποτελείται από τη διασύνδεση μη γραμμικών μονάδων-νευρώνων,ειναι μη γραμμικό. Η μη γραμμικότητα των νευρωνικών δικτύων είναι μια ιδιότητα μεγάλης σπουδαιότητας, ιδίως χρήσιμη στην περίπτωση που ο φυσικός μηχανισμός παραγωγής του σήματος εισόδου είναι έμφυτα μη γραμμικός π.χ. σήμα φωνής.
- 2. Απεικόνιση Εισόδου-Εξόδου (Input-Output Mapping). Ένα χαρακτηριστικό παράδειγμα περιγραφής αυτής της ιδιότητας είναι η μάθηση με εποπτεία (supervised learning). Στη περίπτωση αυτή έχουμε τροποποίηση των συναπτικών βαρών με εφαρμογή στο νευρωνικό δίκτυο ενός σετ δειγμάτων εκπαίδευσης, καθένα από τα οποία αποτελείται απο ένα μοναδικό σήμα εισόδου και την αντίστοιχη του επιθυμητή απόκριση. Το δίκτυο παρουσιάζεται με ένα δείγμα επιλεγμένο τυχαία από το σύνολο των δειγμάτων και τα συναπτικά βάρη τροποποιούνται, ώστε να ελαχιστοποιήσουν τη διαφορά μεταξύ επιθυμητής και πραγματικής απόκρισης του δικτύου, που παράχθηκε από το δίκτυο, σε συνδυασμό με ένα στατιστικό κριτήριο. Η εκπαίδευση του δικτυόυ επαναλαμβάνεται για πολλά δείγματα του συνόλου δειγμάτων μέχρι το δίκτυο να φτάσει σε μια σταθερή κατάσταση (steady state), που δεν θα υπάρχουν πλέον σημαντικές διαφορές στα συναπτικά βάρη. Έτσι το δίκτυο μαθαίνει μέσα από τα

δείγματα δημιουργώντας ουσιαστικά μια αντιστοίχιση εισόδων-εξόδων του σετ.

- 3. Προσαρμοστικότητα (Adaptivity). Τα νευρωνικά δίκτυα έχουν μια έμφυτη ικανότητα, να προσαρμόζουν τα συναπτικά βάρη τους σε μεταβολές του περιβάλλοντός. Πιο συγκεκριμένα, ένα νευρωνικό δίκτυο, που είναι εκπαιδευμένο να λειτουργεί σε ένα συγκεκριμένο περιβάλλον μπορεί εύκολα να επαναεκπαιδευτεί για να αντιμετωπίσει μικρές μεταβολές στις συνθήκες του περιβάλλοντος λειτουργίας του. Επιπρόσθετα σε περίπτωση που το περιβάλλον είναι μη στατικό, το νευρωνικό δίκτυο μπορεί να σχεδιαστεί, ώστε να αλλάζει τα βάρη του σε πραγματικό χρόνο. Έτσι η φυσική αρχιτεκτονική ενός νευρωνικού δικτύου, για αναγνώριση προτύπων, επεξεργασία σημάτων και εφαρμογές αυτομάτου ελέγχου σε συνδυασμό με την προσαρμοστική αναγνώριση προτύπων,προσαρμοστική επεξεργασία σημάτων και προσαρμοστικό έλεγχο.
- 4. Αποδεικτική Απόκριση (Evidential Response). Στο τομέα της ταξινόμησης προτύπων, ένα νευρωνικό δίκτυο μπορεί να χρησιμοποιηθεί, όχι μόνο για την επιλογή του κατάλληλου προτύπου, αλλά και για την εγκυρότητα της απόφασης. Αυτή η πληροφορία μπορεί να χρησιμοποιηθεί για να απορρίψει διφορούμενα πρότυπα, που μπορεί να προκύψουν, βελτιώνοντας έτσι την απόδοση του συστήματος.
- 5. Ανθεκτικότητα σε Σφάλματα (Fault tolerance). Ένα νευρωνικό δίκτυο, που έχει υλοποιηθεί σε επίπεδο υλικού, έχει τη δυνατότητα να είναι ανθεκτικό σε λάθη, με την έννοια ότι η αποδοσή του θα πέσει σταδιακά σε περίπτωση δυσμενών συνθηκών λειτουργίας.
- 6. Ικανότητα εφαρμογής σε τεχνολογία πολύ υψηλού επιπέδου ολοκλήρωσης (VLSI Implementability). Η παράλληλη αρχιτεκτονική ενός νευρωνικού δικτύου το καθιστά πολύ γρήγορο, σε περιπτώσεις υπολογισμού συγκεκριμένων εφαρμογών. Αυτό το χαρακτηριστικό του το κάνει ιδανικό για υλοποίηση εφαρμογών, με τεχνολογία πολύ υψηλού επιπέδου ολοκλήρωσης συστημάτων.
- 7. Νευροβιολογική Αναλογία (Neurobiological Analogy). Η σχεδίαση του νευρωνικού δικτύου παρακινήθηκε από την αναλογία του με τον ανθρώπινο εγκέφαλο, κάτι που αποτελεί ζωντανή απόδειξη ότι η

ανθεκτική σε σφάλματα παράλληλη επεξεργασία δεν είναι μόνο φυσικά πιθανή αλλά και γρήγορη και ισχυρή. Οι νευροβιολόγοι βλέπουν τα τεχνητά νευρωνικά δίκτυα σαν ένα εργαλείο έρευνας, για εξήγηση των νευροβιολογικών φαινομένων.

2.5 ΖΗΤΗΜΑΤΑ ΥΛΟΠΟΙΗΣΗΣ ΝΕΥΡΩΝΙΚΟΥ ΔΙΚΤΥΟΥ

Κατά την υλοποίηση ενός νευρωνικού δικτύου ανακύπτουν αρκετές αποφάσεις, που πρέπει να παρθούν για τη λύση ενός προβλήματος. Αυτές οι αποφάσεις αφορούν την επιλογή του συνόλου των δεδομένων εκπαίδευσης και δεδομένων δοκιμής (training-test set), τη δομή του δικτύου (network architecture),τη μέθοδο εκπαίδευσης(training method) και τη τιμή-στόχο του σφάλματος (error goal).

Μεθοδολογία εκπαίδευσης νευρωνικού δικτύου

Αρχικά πρέπει να γίνει η συλλογή ή η παραγωγή των δεδομένων που θα χρησιμοποιηθούν για τη εκπαίδευση και δοκιμή του δικτύου. Μετά τη συλλογή των δεδομένων ,πρέπει να γίνει διαχωρισμός τους σε δεδομένα εκπαίδευσης και δεδομένα εξακρίβωσης. Το σύνολο των δεδομένων εκπαίδευσης πρέπει να είναι όλα ή ένα μέρος των δεδομένων εισόδου, που να λειτουργεί, αλλιώς η έξοδος του δικτύου δεν θα είναι δεκτή, δηλαδή δεν θα γίνει καλή εκπαίδευση. Η απόφαση περί του μέρους των δεδομένων που θα χρησιμοποιηθούν σαν δεδομένα εκπαίδευσης είναι δύσκολη, καθώς απ΄τη μια μεριά είναι επιθυμητό το σετ να είναι μικρό, για να έχουμε γρήγορη εκπαίδευση και απ' την άλλη θέλουμε μεγάλο μέρος των δεδομένων, για καλύτερη εκπαίδευση και συνεπώς γενίκευση.

Μετά την επιλογή του σετ δεδομένων εκπαίδευσης ακολουθεί η επιλογή της δομής του νευρωνικού δικτύου. Στη απόφαση αυτή υπάρχουν δύο επιλογές, ή θα επιλεγεί εξαρχής μεγάλο δίκτυο, ώστε να υπάρχουν πολλοί νευρώνες στο ενδιάμεσο στρώμα και η εκπαίδευση να καταλήξει πιο εύκολα στην επιθυμητή τιμή-στόχο σφάλματος, οπότε στη συνέχεια θα γίνει επιχείρηση μείωσης του μεγέθους του δικτύου, ώστε να καταλήξουμε στο ιδανικό μέγεθος δικτύου, που θα εκπαιδεύει το σετ προτύπων, ή θα επιλεγεί ένα μικρό δίκτυο αρχικά, το οποίο θα μεγαλώσει σταδιακά ώσπου η εκπαίδευση να φτάσει στην επιθυμητή τιμή σφάλματος.

Στη συνέχεια επιλέγεται μια μέθοδος εκπαίδευσης, κατά την οποία αρχικοποιούνται τα βάρη και τα biases (πολώσεις) και εκπαιδεύεται το δίκτυο. Το
δίκτυο μπορεί να μην φτάσει στην τιμή-στόχο σφάλματος για έναν ή και περισσότερους από τους ακόλουθους λόγους:

1. Η εκπαίδευση εγκλωβίζεται σε ένα τοπικό ελάχιστο.

 Το δίκτυο δεν έχει αρκετούς νευρώνες υπολογισμού, με αποτέλεσμα να μην μπορεί να προσαρμοστεί στο επιθυμητό μοντέλο εισόδου εξόδου.

3. Δεν υπάρχουν αρκετές πληροφορίες στο σετ δεδομένων εκπαίδευσης, ώστε να επιτύχει την επιθυμητή αντιστοίχηση.

Στην πρώτη περίπτωση τα βάρη και τα biases ξαναρχικοποιούνται και επανεκκινούμε την εκπαίδευση. Στη δεύτερη περίπτωση προστίθενται κόμβοι,ή στρώματα και η εκπαίδευση ξαναρχίζει. Η τρίτη περίπτωση δεν είναι πολύ εύκολο να διαπιστωθεί και θεωρείται ότι ισχύει, όταν οι δύο προηγούμενοι τρόποι αντιμετώπισης αποτυγχάνουν.

Όταν εκπαιδεύουμε ένα δίκτυο, στόχος είναι να καταλήξουμε στην ελάχιστη δυνατή τοπολογία (μικρότερο δυνατόν δίκτυο). Σε αντίθετη περίπτωση μπορεί να προκύψει υπερπροσαρμογή(overfitting). Η υπερπροσαρμογή είναι εμφανής, όταν το επίπεδο σφάλματος του δικτύου για τα δεδομένα εκπαίδευσης είναι σημαντικά καλύτερο από το επίπεδο σφάλματος για τα δεδομένα εξακρίβωσης. Η υπερπρορμογή μπορεί να μειωθεί με τους εξής τρόπους:

- 1. Περιορίζοντας τον αριθμό των νευρώνων στο ελάχιστο.
- Αυξάνοντας το μέγεθος του σετ δεδομένων εκπαίδευσης ώστε ο θόρυβος να αμβλύνεται.
- Σταματώντας την εκπαίδευση πριν να εμφανισθεί υπερπροσαρμογή χρησιμοποιώντας τη μέθοδο crossvalidation.

Στη συνέχεια αφού υλοποιηθεί η βέλτιστη εκπαίδευση το δίκτυο, πρέπει να επαληθευτεί με τα δεδομένα εξακρίβωσης. Στόχος της επαλήθευσης, είναι ο υπολογισμός του σφάλματος να καταλήξει στην επιθυμητή τιμή σφάλματος. Αν δεν επιτευχθεί αυτό, θα συντρέχουν δύο λόγοι:

1. Φτωχή γενίκευση, που θα οφείλεται στο ανεπαρκές σετ δεδομένων εκπαίδευσης.

 Υπερπροσαρμογή, που θα οφείλεται είτε σε ανεπαρκές σετ δεδομένων εκπαίδευσης είτε μεγάλο μέγεθος δικτύου.

Η αιτία της χαμηλής απόδοσης της επαλήθευσης είναι συνήθως δύσκολο να διαπιστωθεί και για αυτό χρησιμοποιείται η μέθοδος crossvalidation. Σε περίπτωση που αιτία είναι το ανεπαρκές σετ δεδομένων εξακρίβωσης είτε χρειάζεται να επιλεγεί

ένα άλλο μέρος των δεδομένων εισόδου σαν δεδομένα επαλήθευσης είτε χρειάζεται τα δεδομένα να συλλεγούν ξανά.

2.5.1 Μέθοδος cross-validation

Η μέθοδος αυτή χρησιμοποιείται για να επιτευχθεί η επιλογή της κατάλληλης δομής νευρωνικού δικτύου ώστε να αποφευχθεί η υπερπροσαρμογή των δεδομένων εκπαίδευσης. Σύμφωνα με τη μέθοδο αυτή, το σετ δεδομένων εκπαίδευσης αρχικά διαχωρίζεται σε δύο υποσύνολα:το υποσύνολο εκτίμησης (estimation subset), που χρησιμοποιείται για να επιλέξει το μοντέλο και το υποσύνολο επαλήθευσης (validation subset), που χρησιμοποείται για να επαληθεύσει το μοντέλο.

Στη μεθολογία αυτή επιλέγεται ένα μέγιστο μοντέλο νευρωνικού δικτύου, δηλαδή που έχει μια συγκεκριμένη δομή και ένα συγκεκριμένο αριθμό διανυσμάτων βαρών, και ακολουθείται από μοντέλα με ίδια δομή αλλά με όλο και λιγότερους κόμβους στα ενδιάμεσα στρώματα. Το σετ δεδομένων εκπαίδευσης χωρίζεται σύμφωνα με έναν παράγοντα r, σε υποσύνολο εκτίμησης, που περιέχει N(1-r) πρότυπα και σε υποσύνολο επαλήθευσης, που περέχει Nr πρότυπα. Όλα τα μοντέλα εκπαιδεύονται στο υποσύνολο εκτίμησης και επαληθεύονται από το σετ επαλήθευσης και στόχος είναι να βρεθεί το μοντέλο με τις καλύτερες παραμέτρους(βάρη και biases), δηλαδή αυτό με το μικρότερο σφάλμα επαλήθευσης.

Το θέμα είναι ο προσδιορισμός του r. Σύμφωνα με αποτελέσματα από τον Kearns(1996) μια ιδανική τιμή για το r αποτελεί το 0.2.

Η ουσιαστική διαφορά της υλοποίησης της μεθόδου αυτής σε σχέση με την εκπαίδευση του δικτύου με όλο το σύνολο των δεδομένων εκπαίδευσης είναι η εξής:κατά την εκπαίδευση του δικτύου με το υποσύνολο εκτίμησης, η διαδικασία της εκπαίδευσης σταματάει περιοδικά,και το δίκτυο επαληθεύεται με το υποσύνολο επαλήθευσης. Έτσι υπολογίζεται περιοδικά και το σφάλμα του υποσυνόλου επαλήθευσης. Το σφάλμα αυτό τη χρονική στιγμή που συμβαίνει η υπερπροσαρμογή σταματάει να μειώνεται και αρχίζει να αυξάνεται. Οπότε ο εντοπισμός του ελάχιστου σφάλματος του υποσυνόλου επαλήθευσης μπορεί να λειτουργήσει σαν κριτήριο διακοπής της διαδικασίας εκπαίδευσης.

Μια παραλλαγή της μεθόδου cross-validation αποτελεί η multifold crossvalidation κατά την οποία το σύνολο των Ν δεδομένων διαιρείται σε Κ υποσύνολα. Το μοντέλο εκπαιδεύεται σε όλα τα υποσύνολα εκτός από ένα, και το σφάλμα του υποσυνόλου επαλήθευσης μετριέται στο υποσύνολο που δεν συμπεριελήφθηκε. Η διαδικασία αυτή επαναλαμβάνεται Κ φορές, κάθε φορά μη συμπεριλαμβανομένου διαφορετικού υποσυνόλου. Μειονέκτημα της μεθόδου αποτελεί η μεγάλη απαίτηση υπολογιστικής ισχύος που έχει.

1^η επανάληψη: σφάλμα e1

		1	2	3				
				-				
2^{η}	επανάληψη: σφάλμα e2							
		1	0		2			
		1	2		3			
- n								
3"	^η επανάληψη: σφάλμα e3							
		1		2	2			
		1		Z	3			
4 n	7 0	<u> </u>						
4"	+' επανάληψη: σφάλμα e4							
				_				
			1	2	3			
	Surviver 2 10. Multifald areas relidetion							

Σχήμα 2.10: Multifold cross-validation

κεφαλαίο 3

ΣΥΝΕΡΓΑΤΙΚΕΣ ΜΗΧΑΝΕΣ ΣΥΛΛΟΓΙΚΗΣ ΑΠΟΦΑΣΗΣ (COMMITTEE MACHINES)

3.1 ΕΙΣΑΓΩΓΗ

Σύμφωνα με την αρχή διαίρει και βασίλευε ένα σύνθετο υπολογιστικό πρόβλημα λύνεται, αναλύοντας το σε ένα αριθμό απλούστερων υπολογιστικά προβλημάτων αρχικά, και στη συνέχεια συνθέτοντας τις λύσεις των προβλημάτων αυτών. Στη μάθηση με εποπτεία, η υπολογιστική αυτή απλούστευση επιτυγχάνεται διανέμοντας το πρόβλημα εκπαίδευσης σε ένα αριθμό από 'ειδικούς' (experts), οι οποίοι με τη σειρά τους διαιρούν το δειγματοχώρο εισόδου σε σύνολα από μικρότερους δειγματοχώρους. Ο συνδυασμός των experts αποτελεί τη μηχανή απόφασης (committee machine). Βασικά ο συνδυασμός αυτός συγχωνεύει τη γνώση που αποκτήθηκε από τους ειδικούς, για να φτάσει σε μια συνολική απόφαση, που υποτίθεται ότι θα είναι καλύτερη από οποιαδήποτε από τις αποφάσεις που θα έχει πάρει ο καθένας από τους ειδικούς ξεχωριστά. Ουσιαστικά αναμένεται ότι τα σφάλματα αποφάσεων στα οποία μπορεί να έχει υποπέσει ένας από τους ειδικούς, θα αναιρούνται από τις σωστές αποφάσεις άλλων ειδικών.

3.2 ΠΛΕΟΝΕΚΤΗΜΑΤΑ ΜΗΧΑΝΩΝ ΑΠΟΦΑΣΗΣ

Ένας αλγόριθμος εκπαίδευσης γενικά προσπαθεί να εντοπίσει μια πιθανή συνάρτηση ή υπόθεση h, που να αντιστοιχεί τα δεδομένα διανύσματα εισόδου x_i στις δοσμένες τιμές εξόδου(στόχους) y_i , όσο καλύτερα γίνεται. Συνήθως όμως η συνάρτηση αυτή αντιστοίχισης δεν εντοπίζεται. Αυτό οφείλεται σε τρία ουσιαστικά προβλήματα των απλών experts: το στατιστικό πρόβλημα(statistical problem), το υπολογιστικό πρόβλημα (computational problem) και το πρόβλημα απεικόνισης (representation problem).

Το στατιστικό πρόβλημα υπάρχει λόγω του γεγονότος ότι για ένα δεδομένο σύνολο προτύπων εκπαίδευσης υπάρχουν συνήθως παραπάνω από μια συναρτήσεις μοντελοποίησης, αλλά επιλέγεται μόνο μία, η οποία μπορεί να μην λειτουργεί καλά για μελλοντικά πρότυπα.

Το υπολογιστικό πρόβλημα υπάρχει, γιατί κάποιοι αλγόριθμοι, όπως για παράδειγμα ο backpropagation για τα νευρωνικά δίκτυα, δεν προλαβαίνουν να υπολογίσουν την καλύτερη συνάρτηση μοντελοποίησης σε κάποιες περιπτώσεις, γιατί δεσμεύονται σε τοπικά ελάχιστα.

Το πρόβλημα αναπαράστασης ουσιαστικά είναι ότι συχνά είναι ανέφικτο να αναπαρασταθεί η πραγματική συνάρτηση αντιστοίχησης των δεδομένων με μία απλή υπόθεση.

Η επιτυχία των μηχανών συλλογικής απόφασης είναι ότι μπορούν να ξεπεράσουν σε μεγάλο βαθμό τα παραπάνω προβλήματα. Για το στατιστικό πρόβλημα με χρήση περισσοτέρων του ενός experts με διαφορετικές συναρτήσεις μοντελοποίησης είναι πολύ πιο πιθανό το σύστημα να γενικεύσει καλύτερα. Για το υπολογιστικό πρόβλημα, με τη χρήση ενός σταθμισμένου συνδυασμού αρκετών διαφορετικών υποθέσεων, μειώνεται η πιθανότητα να χρησιμοποιηθεί σαν ταξινομητής (classifier) ως πρόβλεψη, ένα σφάλμα που προέκυψε από τοπικό ελάχιστο. Τέλος για το πρόβλημα αναπαράστασης, με χρήση σταθμισμένου αθροίσματος αρκετών υποθέσεων είναι πιθανό να επεκταθεί ο χώρος των αντιπροσωπευτικών συναρτήσεων.

3.3 ΚΑΤΗΓΟΡΙΕΣ ΜΗΧΑΝΩΝ ΑΠΟΦΑΣΗΣ

Οι μηχανές απόφασης διαχωρίζονται σε δύο βασικές κατηγορίες: 1.στατικές μηχανές, 2.δυναμικές μηχανές.

- 1.Στατικές μηχανές. Στην κατηγορία αυτή μηχανών απόφασης, οι αποκρίσεις αρκετών experts συνδυάζονται με ένα μηχανισμό, ο οποίος δεν εμπεριέχει το σήμα εισόδου ξανά. Αυτή η κατηγορία αποτελείται από τις ακόλουθες μεθόδους:
 - Ensemble averaging, όπου οι έξοδοι διαφορετικών experts συνδυάζονται γραμμικά για να παράγουν μια συνολική έξοδο.
 - Boosting, όπου ένας αδύνατος αλγόριθμος εκπαίδευσης μετατρέπεται σε έναν που επιτυγχάνει αυθαίρετα μεγάλη ακρίβεια

- 2. Δυναμικές μηχανές. Στη κατηγορία αυτή το σήμα εισόδου συμμετέχει ενεργά στο μηχανισμό που συνδυάζει το σύνολο των εξόδων των experts σε μια τελική έξοδο. Στη κατηγορία αυτή υπάρχουν δύο είδη τέτοιων δομών:
 - Mixture of experts, όπου οι ξεχωριστές αποκρίσεις των experts συνδυάζονται μη γραμμικά, με χρήση ένος απλού δικτύου που ονομάζεται gating network.
 - Hierarchical mixture of experts, όπου οι ξεχωριστές αποκρίσεις των experts συνδυάζονται μη γραμμικά με χρήση αρκετών gating networks, που είναι ταξινομημένα ιεραρχικά.

3.3.1 Ensemble averaging

Το σχήμα 3.1 δείχνει έναν αριθμό από διαφορετικά εκπαιδευμένους experts (π.χ. νευρωνικά δίκτυα) που δέχονται μια κοινή είσοδο και των οποίων οι ξεχωριστές έξοδοι συνδυάζονται με κάποιο τρόπο, για να παράγουν μια συνολική έξοδο y. Η μέθοδος αυτή πλεονεκτεί για δύο λόγους:

- Αν ο συνδυασμός των experts αντικαθίστατο από ένα απλό νευρωνικό δίκτυο, θα είχαμε ένα δίκτυο αποτελούμενο από πάρα πολλές παραμέτρους, που θα είχε σαν αποτέλεσμα πολύ μεγάλο χρόνο εκπαίδευσης.
- Το ρίσκο για υπερπροσαρμογή των δεδομένων αυξάνεται σε μεγάλο βαθμό, όταν ο αριθμός των παραμέτρων είναι πολύ μεγαλύτερος σε σύγκριση με το μέγεθος του συνόλου των δεδομένων εκπαίδευσης.

Η προσδοκία από τη χρήση μιας μηχανής απόφασης όπως αυτής του σχήματος 4.1 είναι ότι οι χρησιμοποιούμενοι experts θα έχουν υποπέσει σε διαφορετικά τοπικά ελάχιστα στην επιφάνεια σφάλματος, με αποτέλεσμα η συνολική απόδοση να αυξάνεται με το συνδυασμό των εξόδων με κάποια συγκεκριμένη μεθοδολογία.

Η διαδικασία που χρησιμοποιείται για μια μηχανή αυτού του είδους είναι η εξής:

 Εισάγονται τα ίδια δεδομένα σε καθέναν από τους experts (π.χ.νευρωνικά δίκτυα). Τα δεδομένα αυτά αποτελούν και την είσοδο της μηχανής.

Γίνεται εκπαίδευση και δοκιμή των experts(καθένας ξεχωριστά σύμφωνα με τη δομή του).

3. Η έξοδος που προκύπτει από τη φάση δοκιμής του κάθε expert κατευθύνεται προς το συνδυασμό.

4. Ανάλογα με τη συνάρτηση που ακολουθεί ο συνδυασμός δημιουργεί την έξοδο της μηχανής.

Σχήμα 3.1 Μπλοκ διάγραμμα μηχανής απόφασης που στηρίζεται στο ensemble averaging

3.3.2 Mixture of experts

Το σχήμα 4.2 περιγράφει το μοντέλο ενός συστήματος mixture of experts. Το σύστημα αυτό αποτελείται: από ένα σύνολο από experts και από ένα δίκτυο που ονομάζεται gating network. Κάθε expert μπορεί να είναι ένα εμπρόσθιας διάδοσης νευρωνικό δίκτυο και όλοι οι experts δέχονται κοινή είσοδο και έχουν τον ίδιο αριθμό εξόδων. Το gating network δέχεται επίσης την ίδια είσοδο με τους experts και είναι νευρωνικό δίκτυο που έχει Κ νευρώνες εξόδου. Καθένας από τους νευρώνες αντιστοιχεί σε έναν συγκεκριμένο expert του συστήματος. Οι νευρώνες εξόδου του gating network είναι μη γραμμικοί και οι συναρτήσεις ενεργοποίησης τους προσδιορίζονται από το εξής τύπο [C21]:

$$g_{k} = \frac{\exp(u_{k})}{\sum_{j=1}^{k} \exp(u_{j})}, \qquad k = 1, 2, \dots K$$

όπου g_k οι έξοδοι του gating network οι οποίες σταθμίζουν τις εξόδους των experts του συστήματος και u_k η είσοδος του k νευρώνα του gating network, που ισούται με το γινόμενο του συναπτικού βάρους με την έξοδο του προηγούμενου στρώματος. Η χρήση των προαναφερθεισών συναρτήσεων ενεργοποίησης διασφαλίζει ότι οι έξοδοι του gating network θα πληρούν τις εξής απαιτήσεις:

$$0 \le g_k \le 1$$
 για όλα τα k

και

$$\sum_{k=1}^{K} g_k = 1$$

Έτσι μπορούμε να πούμε ότι οι έξοδοι του gating network αποτελούν τις πιθανότητες συμμετοχής της εξόδου του εκάστοτε expert στη συνολική έξοδο του συστήματος,οι οποίες προέκυψαν με βάση τη γνώση που αποκτήθηκε από το σετ δεδομένων εισόδου.

Αν θεωρήσουμε σαν έξοδο του k expert τη y_k , τότε η συνολική έξοδος του συστήματος mixture of experts είναι ίση με:

$$y = \sum_{k=1}^{K} g_k y_k$$

Σχήμα 3.2 Μπλοκ διάγραμμα μηχανής απόφασης που στηρίζεται στη δομή mixture of experts

κεφαλαίο **4**

4.1 ΑΣΑΦΗΣ ΛΟΓΙΚΗ

Η ασαφής λογική είναι ένας τρόπος μοντελοποίησης της ανθρώπινης εμπειρίας με γλωσσικούς κανόνες. Στην ασαφή λογική ο αριθμός των πραγματικών τιμών είναι άπειρος και ουσιαστικά χαρακτηρίζονται από γλωσσικές μεταβλητές που έχουν ορισμένο αριθμό όρων όπως σωστό, λάθος, περισσότερο σωστό, λιγότερο σωστό κ.τ.λ.

4.1.1 Ασαφή σύνολα

Βασικό όρο της ασαφούς λογικής αποτελεί το ασαφές σύνολο. Το ασαφές (fuzzy) σύνολο είναι διαφορετικό από το διακριτό(crisp) σύνολο τιμών και σύμφωνα με τον Zadeh που πρωτοπαρουσίασε την ιδέα του ασαφούς συνόλου το 1965, το βασικό χαρακτηριστικό του είναι ότι επεκτείνει το νόημα του συνόλου, δεχόμενο διαφορετικούς βαθμούς συμμετοχής. Οι διαφορετικοί αυτοί βαθμοί συμμετοχής καθορίζονται από τη συνάρτηση συμμετοχής. Το ασαφές σύνολο δηλαδή περιέχει όλες τις ενδιάμεσες καταστάσεις, μεταξύ της απόλυτης συμμετοχής και της μηδενικής συμμετοχής, σε ένα σύνολο. Σαν υπερσύνολο αναφοράς χαρακτηρίζεται ένα σύνολο, που περιέχει άλλα υποσύνολα.

Σχήμα 4.1 Fuzzy vs Crisp

Έστω X ένα υπερσύνολο αναφοράς που περιλαμβάνει το σύνολο τιμών μεταξύ 0 και 1 , U(x) η συνάρτηση συμμετοχής και Α,Β δύο ασαφή σύνολα, που ανήκουν στο X.

Η τομή των δύο ασαφών συνόλων A,B ορίζεται ως εξής: KAI(AND): $U_{A \cap B}(x) = \min[U_A(x), U_B(x)],$ για κάθε $x \in X$

Η ένωση των δύο ασαφών συνόλων ορίζεται ως εξής:

Ή(OR): $U_{A\cup B}(x) = \max[U_A(x), U_B(x)],$ για κάθε $x \in X$

To συμπλήρωμα ενός ασαφούς συνόλου A ορίζεται ως εξής: OXI(NOT): $U_A'(x) = 1 - U_A(x)$, για κάθε $x \in X$

4.1.2 Ασαφής έλεγχος-ασαφής πρόβλεψη

Ο ασαφής έλεγχος έχει τη ρίζα του στις ανθρώπινες εμπειρίες. Στόχος των συστημάτων ασαφούς ελέγχου είναι να ελέγχει σύνθετες διαδικασίες με τη βοήθεια της ανθρώπινης εμπειρίας.

Ο συμβατικός μη-ασαφής έλεγχος συστημάτων χρησιμοποιεί φυσικά μοντέλα για να αντιμετωπίσει τις διάφορες διαδικασίες. Αυτό όμως είναι χρονοβόρο και απαιτεί αρκετά καλό θεωρητικό υπόβαθρο από τον σχεδιαστή. Υπάρχουν περιπτώσεις διαδικασιών, που μπορούν να ελεγχθούν από ένα άνθρωπο, χωρίς να υπάρχει κάποιο μοντέλο αντιμετώπισής τους, με αποτέλεσμα να μην μπορούν να ελεγχθούν από συμβατικά συστήματα ελέγχου. Οι διαχειριστές των διαδικασιών αυτών μπορούν να τις ελέγξουν απλά, επειδή έχουν εμπειρία από αυτές. Αυτή, η τυποποίηση της εμπειρίας του διαχειριστή, είναι η βασική ιδέα του ασαφούς ελέγχου με τις μεθόδους της ασαφούς λογικής.

Οι ασαφείς ελεγκτές λοιπόν είναι ειδικά ελεγχόμενα από υπολογιστή συστήματα, που χρησιμοποιούν κανόνες για να μοντελοποιήσουν τη διαδικασία γνώσης. Στην περίπτωσή μας ο ασαφής ελεγκτής παίρνει τη μορφή ασαφούς προβλεπτή (Fuzzy Forecaster) και δημιουργεί κανόνες πρόβλεψης. Παρακάτω παρατίθεται ένα σχηματικό διάγραμμα του μοντέλου του FF.

Σχήμα 4.2 Σχηματικό διάγραμμα FF

Τις εισόδους αποτελούν το πλήθος των σημάτων εισόδου, καθώς και οι διάφορες καταστάσεις στις οποίες μπορεί να βρεθούν στην είσοδο τα σήματα εισόδου π.χ. κανονικοποιημένα.

Κατά την ασαφοποίηση επιλέγεται ο τύπος και ο αριθμός των συναρτήσεων ενεργοποίησης π.χ. Τριγωνική, τραπεζοειδής, γκαουσιανή συνάρτηση συμμετοχής

Οι κανόνες είναι το πιο σημαντικό κομμάτι ενός ασαφούς συστήματος για το λόγο ότι είναι αυτοί που καθορίζουν την συμπεριφορά του συστήματος. Η μορφή των κανόνων είναι:

EAN η είσοδος 1 είναι x KAI / Ή η είσοδος 2 είναι y TOTE η έξοδος είναι z Το μέρος EAN του κανόνα, καλείται αίτιο (antecedent ή premise) και το μέρος TOTE του κανόνα αποτέλεσμα (consequent ή conclusion).

Το επόμενο βήμα είναι η δημιουργία μιας τελικής συνάρτησης συμμετοχής για κάθε μία από τις εισόδους. Η διαδικασία είναι γνωστή σαν συνεπαγωγή (implication).

Το τελευταίο στάδιο ενός FF είναι η αποασαφοποίηση. Εδώ πρέπει να δοσθεί σαφής διακριτή τιμή στην έξοδο. Οι κυριότερες μέθοδοι αποασαφοποίησης είναι οι εξής : Αποασαφοποίηση μεγίστου (Maximum defuzzifier), Αποασαφοποίηση κεντρώου ή κέντρου βάρους (Centre of Area(COA) ή Centre of Gravity(COG) defuzzifier).

4.2 Μέθοδος Mamdani

Η μέθοδος Mamdani χρησιμοποιεί γλωσσικές μεταβλητές για να περιγράψει τις διάφορες καταστάσεις των μεταβλητών και χρησιμοποιεί αυτές τις μεταβλητές σαν εισόδους για να ελέγξει τους κανόνες. Σε ένα παράδειγμα συστήματος θέρμανσης, η μεταβλητή εισόδου είναι η θερμοκρασία δωματίου. Οι όροι των γλωσσικών μεταβλητών είναι ασαφή σύνολα με συγκεκριμένο σχήμα. Αυτό το σχήμα μπορεί να είναι τραπεζοειδές ή τριγωνικό συνήθως. Σε αυτή τη περίπτωση οι όροι του ασαφούς συνόλου μπορεί να είναι: "πολύ χαμηλή", "χαμηλή", "άνετη", "υψηλή", "πολύ υψηλή", και είναι αυτοί που περιγράφουν τη θερμοκρασία. Παρακάτω παρατίθεται γραφική παράσταση της συμμετοχής σε συνάρτηση με τη θερμοκρασία σε βαθμούς Κελσίου.

Τον ίδιο τρόπο χρησιμοποιεί για να βρει και τη συμμετοχή της μεταβλητής εξόδου: Ισχύς συστήματος θέρμανσης (Μικρή,Μέτρια,Μεγάλη). Από τις δύο γλωσσικές μεταβλητές που περιγράφηκαν, φτιάχνονται οι κανόνες λειτουργίας του συστήματος θέρμανσης. Η γραφική παράσταση 4.5 περιγράφει τους κανόνες, σύμφωνα με τους οποίους θα μετατραπεί η ισχύς του συστήματος θέρμανσης για κάθε περίπτωση.

Σχήμα 4.5 Γραφική παράσταση γλωσσικού χώρου καταστάσεων

Όλα τα παραπάνω αποτελούν το βασικό τρόπο σχεδιασμού ενός mamdani ελεγκτή. Η είσοδος σε κάθε περίπτωση ανάλογα με το ερέθισμα που θα δέχεται θα υπολογίζει την αντίστοιχη πράξη ελέγχου. Μετά τον υπολογισμό της εξόδου, σύμφωνα με τους κανόνες, ακολουθεί η ασαφοποίηση, δηλαδή ο υπολογισμός μιας πραγματικής τιμής για να ελεγχθεί η διαδικασία.

4.3 Μέθοδος Takagi-Sugeno

Αποτελεί την παραλλαγή της μεθόδου mamdani. Όσον αφορά την ασαφοποίηση και την υπόλοιπη διαδικασία, είναι ακριβώς ίδια. Διαφέρει στη συνάρτηση συμμετοχής εξόδου. Οι συναρτήσεις συμμετοχής με τη μέθοδο Sugeno είναι είτε γραμμικές είτε σταθερές. Όταν οι συναρτήσεις εξόδου είναι σταθερές τότε το σύστημα λέγεται πρώτης τάξης ασαφές μοντέλο Sugeno. Ένας κανόνας με το μοντέλο πρώτης τάξης μπορεί να διατυπωθεί ως εξής:

If x is A and y is B, then z=k.

- 42 -

Όπου Α,Β ασαφή σύνολα που ορίζουν με τις συναρτήσεις συμμετοχής τα x,y και k είναι μια σταθερή διακριτή τιμή και αποτελεί το αποτέλεσμα (consequent) του κανόνα.

Τα πλεονεκτήματα χρήσης της μεθόδου sugeno είναι τα εξής:

- 1. Είναι πολυ εύκολο να υπολογιστεί
- 2. Χρησιμοποιεί γραμμικές τεχνικές για να ελέγξει μη-γραμμικά συστήματα
- Μπορεί να βελτιστοποιήσει τις παραμέτρους της εξόδου για να βελτιώσει την αποτελεσματικότητα.
- 4. Μπορεί να αναλυθεί μαθηματικά.

4.4 Νευρο-ασαφή συστήματα

Τα νεύρο-ασαφή συστήματα αποτελούν μια υβριδική τεχνική του ευφυούς ελέγχου, που έχει σαν σκοπό να συνδυάσει τα στοιχεία της κάθε τεχνικής ώστε να πετύχει καλύτερα αποτελέσματα. Τα ασαφή συστήματα είναι ικανά να μοντελοποιήσουν την γνώση με περιφραστικούς κανόνες, σε αντίθεσή με τα νευρωνικά δίκτυα που η γνώση κωδικοποιείται με τις μεταβολές των βαρών του δικτύου. Ο υπολογισμός των βαρών του δικτύου βασίζεται σε αριθμητικές μεθόδους, ενώ η επεξεργασία των γλωσσικών κανόνων γίνεται με ασαφή λογική. Παρόλο ότι τα νευρωνικά δίκτυα και τα ασαφή συστήματα έχουν τελείως διαφορετική τεχνική για την αναπαράσταση της γνώσης είναι δυνατόν να έχουμε καλύτερα αποτελέσματα με τον συνδυασμό τους.

Το ANFIS μπορεί να οριστεί σαν ένα σύστημα ασαφούς λογικής εφοδιασμένο με έναν αλγόριθμο εκπαίδευσης. Το σύστημα ασαφούς λογικής είναι "οικοδομημένο" με βάση ένα σύνολο ασαφών κανόνων (IF-THEN), χρησιμοποιώντας αρχές της ασαφούς λογικής, και ο αλγόριθμος εκπαίδευσης προσαρμόζει τις παραμέτρους τους συστήματος της ασαφούς λογικής. Το σύστημα αυτό παρουσιάστηκε από τους Jang και Sun το 1995 και κάνει χρήση ενός υβριδικού κανόνα εκπαίδευσης για να βελτιστοποιήσει τις ασαφείς παραμέτρους ενός πρώτης τάξεως συστήματος Sugeno. Ένα πρώτης τάξης σύστημα Sugeno παρουσιάζεται γραφικά παρακάτω.

Σχήμα 4.6 Αρχιτεκτονική ANFIS για ένα πρώτης τάξης σύστημα Sugeno με δύο εισόδους και δύο κανόνες

4.4.1 ANFIS

Η αρχιτεκτονική του ANFIS στηρίζεται σε δύο σύνολα εκπαιδευόμενων παραμέτρων:

- Τις παραμέτρους των συναρτήσεων συμμετοχής αιτίου (antecedent)
 [a,b,c,d], δηλαδή του IF μέρους των κανόνων.
- Τις πολυωνυμικές παραμέτρους [p,q,r] της εξόδου,που καλούνται και παράμετροι αποτελέσματος.

Κατά την εκπαίδευση του ANFIS χρησιμοποιείται ένας αλγόριθμος σταδιακής μείωσης για βελτιστοποίηση των παραμέτρων αιτίου και ένας αλγόριθμος ελαχίστων τετραγώνων για την επίλυση των παραμέτρων του αποτελέσματος. Επειδή χρησιμοποιεί δύο εντελώς διαφορετικούς αλγορίθμους για να επιτύχει μείωση του σφάλματος, ο κανόνας εκπαίδευσης καλείται υβριδικός. Αρχικά ανανεώνονται οι παράμετροι αποτελέσματος με χρήση ενός αλγορίθμου ελαχίστων τετραγώνων και στη συνέχεια ανανεώνονται οι παράμετροι αιτίου με όπισθεν διάδοση των σφαλμάτων που εξακολουθούν να υπάρχουν.

Όπως διαφαίνεται από το σχήμα 4.6 η αρχιτεκτονική του ANFIS αποτελείται από πέντε επίπεδα. Παρακάτω παρατίθεται περιγραφή της αρχιτεκτονικής του ANFIS για ένα πρώτης τάξης σύστημα Sugeno με δύο εισόδους και δύο κανόνες. Με O_i^1 θα χαρακτηριστεί η έξοδος του i κόμβου του επιπέδου l.

Επίπεδο 1 :Παραγωγή των βαθμών συμμετοχής:

$$O_i^l = \mu_{A_i}(x)$$

Επίπεδο 2 : Παραγωγή των ενεργοποιούμενων βαρών

$$O_i^2 = w_i = \prod_{j=1}^m \mu_{A_i}(x)$$

Επίπεδο 3 : Κανονικοποίηση των βαρών

$$O_i^3 = \overline{w}_i = \frac{w_i}{w_1 + w_2}$$

Επίπεδο 4 : Υπολογισμός των εξόδων των κανόνων με βάση τις παραμέτρους

αποτελέσματος

$$O_i^4 = y_i = \overline{w}_i f_i = \overline{w}_i (p_i x_1 + q_i x_2 + r_i)$$

Επίπεδο 5 : Αθροισμα όλων των εισόδων από το τέταρτο επίπεδο

$$O_i^5 = \sum_i y_i = \sum_i \overline{w} f_i = (\overline{w}_1 x_1) p_1 + (\overline{w}_1 x_2) q_1 + \overline{w}_1 r_1 + (\overline{w}_2 x_2) p_2 + (\overline{w}_2 x_2) q_2 + \overline{w}_2 r_2$$

Μετά το επίπεδο πέντε γίνεται έλεγχος της τιμής του σφάλματος και σε περίπτωση μη ικανοποιητικής τιμής, χρησιμοποιείται αλγόριθμος βαθμιαίας μείωσης, ο οποίος εκπαιδεύει τις παραμέτρους αιτίου.

Κάθε εποχή εκπαίδευσης του ANFIS, που χρησιμοποιεί υβριδικό κανόνα εκπαίδευσης, αποτελείται από δύο περάσματα. Αρχικά υπολογίζονται οι παράμετροι αποτελέσματος κατά το εμπρόσθιο πέρασμα, με χρήση αλγορίθμου βελτιστοποίησης ελαχίστων τετραγώνων, και στην συνέχεια ενημερώνονται οι παράμετροι αιτίου με χρήση βαθμιαίας μείωσης. Κατά το εμπρόσθο πέρασμα υπολογίζονται οι έξοδοι όλων των κόμβων μέχρι το επίπεδο 4. Στο επίπεδο 4 υπολογίζονται οι παράμετροι αποτελέσματος. Στη συνέχεια υπολογίζονται οι έξοδοι με τις νέες τιμές των παραμέτρων αποτελέσματος και σήματα σφαλμάτων διαδίδονται πίσω, μέσα από τα επίπεδα για να ενημερώσουν τις παραμέτρους αιτίου.

κεφαλαίο **5**

ΠΕΙΡΑΜΑΤΙΚΟ ΜΕΡΟΣ

5.1 ΠΑΡΟΥΣΙΑΣΗ ΤΩΝ ΧΡΟΝΟΣΕΙΡΩΝ ΘΕΡΜΟΚΡΑΣΙΑΣ ΚΑΙ ΗΛΙΑΚΗΣ ΑΚΤΙΝΟΒΟΛΙΑΣ

5.1.1 Ηλιακή ακτινοβολία

5.1.1.1 Γενικά

Η μελέτη του φυσικού μεγέθους της ηλιακής ακτινοβολίας (solar radiation) έγινε με βάση πραγματικές τιμές μετρήσεων, που προέρχονται απο υποσταθμό του Εθνικού Αστεροσκοπείου Αθηνών. Οι τιμές αυτές αποτέλεσαν τα δεδομένα που χρησιμοποιήθηκαν στην εργασία για την τεκμηριώση της λειτουργικότητας των συστημάτων πρόβλεψης που υλοποιήθηκαν.

Τα δεδομένα είναι ωριαίες τιμές μετρήσεων ηλιακής ακτινοβολίας, επί εικοσιτετραώρου βάσεως για το χρονικό διάστημα 1981-2000 με μονάδα μέτρησης $Watt/_{m^2}$.

5.1.1.2 Επεξεργασία των δεδομένων

Οι μετρήσεις ηλιακής ακτινοβολίας αντιμετωπίστηκαν σαν μια χρονοσειρά δεδομένων. Παρακάτω παρατίθεται μια γραφική παράσταση των δεδομένων, όπως ακριβώς δόθηκαν απο το Αστεροσκοπείο:

Σχήμα 5.1 Καμπύλη ωριαίων τιμών ηλιακής ακτινοβολίας

Από την παραπάνω γραφική παράσταση φαίνεται ότι ανάμεσα στις μετρήσεις που έχουν λογικές τιμές ηλιακής ακτινοβολίας συμπεριλαμβάνονται και κάποιες που έχουν αρνητικές τιμές και συγκεκριμένα είναι όλες ίσες με -99.9. Οι τιμές αυτές αποτελούν σφάλματα μέτρησης των οργάνων.Ο αριθμός των τιμών-σφαλμάτων είναι 2394 ενώ ο συνολικός αριθμός μετρήσεων, που έχουμε στη διαθεσή μας, είναι 175320. Τα σφάλματα μέτρησης αποτελούν δηλαδή ενα ποσοστό 0.014% των συνολικών μετρήσεων.

Επειδή τα δεδομένα, που αποτελούν σφάλματα μέτρησης, θα αποτελέσουν πρόβλημα στην ορθή λειτουργία των συστημάτων πρόβλεψης, πρέπει να απαλειφθούν. Σε περίπτωση όμως οριστικής απαλοιφής τους, θα δημιουργηθεί πρόβλημα ασυνέχειας στη χρονοσειρά της ηλιακής ακτινοβολίας. Για αυτό το λόγο ακολουθήθηκε μια διαδικασία αντικατάστασής τους από άλλες τιμές, σύμφωνα με μια μεθοδολογία που θα περιγραφεί παρακάτω.

Πρέπει να σημειωθεί ότι η χρονοσειρά που χρειαζόμαστε για τα συστήματα, θέλουμε να περιέχει μέσες ημερήσιες τιμές ηλιακής ακτινοβολίας, καθώς οι προβλέψεις που θέλουμε να κάνουμε, είναι για μέση ημερήσια ακτινοβολία και όχι για ωριαία. Συνεπώς από τη χρονοσειρά ωριαίων τιμών που έχουμε στη διαθεσή μας, θα πρέπει να δημιουργήσουμε τη χρονοσειρά μέσης ημερήσιας ακτινοβολίας, στην οποία πρέπει να έχουμε λύσει και το πρόβλημα με την ύπαρξη σφαλμάτων μέτρησης. Είναι χαρακτηριστικό επίσης ότι επειδή η ηλιακή ακτινοβολία είναι ένα μέγεθος που αρκετές ώρες του 24-ώρου παίρνει μηδενικές τιμές(π.χ. τη νύχτα δεν υπάρχει ηλιοφάνεια), θα υπολογίσουμε τη μέση ημερήσια ακτινοβολία, σαν μέσο όρο των μημηδενικών τιμών της ακτινοβολίας μέσα στο 24-ωρο, ώστε οι τιμές της χρονοσειράς της μέσης ημερήσιας ακτινοβολίας να μην διαφέρουν σε μεγαλο βαθμό απο τις ωριαίες.

Έτσι ακολουθήθηκε η παρακάτω διαδικασία στη χρονοσειρά ωριαίων δεδομένων :

- 1. Στη θέση των τιμών σφαλμάτων των οργάνων (-99.9) βάζουμε μηδενικά.
- 2. Για κάθε 24-ωρο υπολογίζουμε το μέσο όρο των μη μηδενικών ωριαίων τιμών και δημιουργούμε τη χρονοσειρά των μέσων ημερησίων τιμών. Αυτό επιτυγχάνεται αντικαθιστώντας αρχικά τις μηδενικές τιμές της χρονοσειράς των ωριαίων τιμών με την συμβολοσειρά NaN(Not a Number), προκειμένου να ληφθούν υπόψη στον υπολογισμό του μέσου όρου του 24-ώρου, μόνο οι πραγματικές τιμές μετρήσεων. Αυτό επιτυγχάνεται με τη συνάρτηση nonzeros του Matlab. Αφού γίνει η παραπάνω αντικάσταση και υπολογιστούν οι μέσες ημερήσιες τιμές της ηλιακής ακτινοβολίας, παρατηρούμε ότι στη χρονοσειρά που έχει προκύψει υπάρχουν κάποιες μέρες, που έχουν πάρει την τιμή NaN. Αυτό οφείλεται στο γεγονός οτι στη χρονοσειρά των ωριαίων τιμών υπήρχαν ολόκληρα 24-ωρα με σφάλματα μετρήσεων, που είχαν αντικατασταθεί με τη τιμή NaN. Στη συνέχεια ξαναγίνεται αντικατάσταση στη χρονοσειρά μέσων ημερησίων τιμών των NaN με μηδενικά.
- Για τις ημέρες που έχουν μηδενική τιμή ακτινοβολίας παίρνουμε τις εξής περιπτώσεις:
 - Αν η προηγούμενη και η επόμενη μέρα της μέρας με μηδενική τιμή έχουν τιμή διάφορη του μηδενός, αντικαθιστούμε τη τιμή της μέρας αυτής με το μέσο όρο των άλλων δύο ημερών.
 - Αν η προηγούμενη μέρα αυτής με τη μηδενική τιμή έχει τιμή διάφορη του μηδενός και η επόμενή της έχει μηδενική τιμή, τότε η μέρα που μας ενδιαφέρει, παίρνει την τιμή της προηγούμενης από αυτή μέρας.
 - Όταν έχουμε περισσότερες από δύο μέρες συνεχόμενες με τιμές μηδενικές, τότε οι τιμές των ημερών αυτών αντικαθίστανται με την πρώτη προηγούμενη μη μηδενική τιμή.

Μετά τα παραπάνω βήματα προέκυψε η χρονοσειρά των μέσων ημερησίων τιμών ηλιακής ακτινοβολίας για την περίοδο 1981-2000, που περιλαμβάνει 7305(175320/24) τιμές. Η γραφική παράσταση της χρονοσειράς των μέσων ημερησίων τιμών ηλιακής ακτινοβολίας για το χρονικό διάστημα 1981-2000 παρατίθεται παρακάτω:

Σχήμα 5.2 Καμπύλη μέσων ημερησίων τιμών ηλιακής ακτινοβολίας

5.1.2 Θερμοκρασία

5.1.2.1 Γενικά

Η μελέτη του φυσικού μεγέθους της θερμοκρασίας (temperature) έγινε επίσης με βάση πραγματικές τιμές μετρήσεων, που προέρχονται από υποσταθμούς του Εθνικού Αστεροσκοπείου Αθηνών. Οι τιμές αυτές αποτέλεσαν τα δεδόμενα που χρησιμοποιήθηκαν στην εργασία για την τεκμηριώση της λειτουργικότητας των συστημάτων πρόβλεψης που υλοποίηθηκαν.

Τα δεδομένα είναι ωριαίες τιμές μετρήσεων θερμοκρασίας, επί εικοσιτετραώρου βάσεως για χρονικό διάστημα 23 χρόνων (1981-2003), με μονάδα μέτρησης τους βαθμούς Κελσίου (*C*°).

5.1.2.2 Επεξεργασία των δεδομένων

Οι μετρήσεις θερμοκρασίας αντιμετωπίστηκαν σαν μια χρονοσειρά δεδομένων. Παρακάτω παρατίθεται μια γραφική παράσταση των δεδομένων όπως ακριβώς δόθηκαν από το Αστεροσκοπείο:

Σχήμα 5.3 Καμπύλη ωριαίων τιμών θερμοκρασίας

Όπως παρατηρούμε από την παραπάνω γραφική παράσταση πέραν των φυσιολογικών τιμών θερμοκρασίας, που κυμαίνονται από 0-~45 (C°) και σε αυτά τα δεδομένα, όπως και σε αυτά της ηλιακής ακτινοβολίας, υπάρχουν τιμές που δηλώνουν σφάλμα του οργάνου μέτρησης και έχουν την τιμή -99.9. Το πλήθος των τιμών αυτών είναι 256 σε ένα σύνολο 201600 τιμών. Τα σφάλματα μέτρησης αποτελούν δηλαδή ενα ποσοστό 0.0013% των συνολικών μετρήσεων.

Τα δεδομένα αυτά, όπως και στην περίπτωση της ηλιακής ακτινοβολίας, είναι απαραίτητο να αντικατασταθούν, προκειμένου οι χρονοσειρές να γίνουν επεξεργάσιμες. Για την απαλοιφή των σφαλμάτων μέτρησης, θα χρησιμοποιηθεί η ίδια μέθοδος που χρησιμοποιήθηκε για την ηλιακή ακτινοβολία με κάποιες μικρές παραλλαγές. Παίρνουμε λοιπόν τα ωριαία δεδομένα θερμοκρασίας, όπως τα παραλάβαμε απο το Αστεροσκοπείο, και προβαίνουμε στις εξής ενέργειες: Για τα δεδομένα που ισούνται με -99.9 παίρνουμε τις εξής περιπτώσεις:

- Αν η προηγούμενη και η επόμενη τιμή της ωριαίας τιμής με τιμή ίση με -99.9 έχουν τιμή διάφορη του -99.9, αντικαθιστούμε τη τιμή αυτή με το μέσο όρο των άλλων δύο τιμών.
- Αν η προηγούμενη τιμή αυτής με την τιμή -99.9 έχει τιμή διάφορη του
 -99.9 και η επόμενή της έχει τιμή -99.9, τότε η ωριαία τιμή που μας ενδιαφέρει παίρνει την τιμή της προηγούμενης από αυτή.
- Όταν έχουμε περισσότερες από δύο ωριαίες τιμές συνεχόμενες με τιμές ίσες με -99.9, τότε οι τιμές αυτών αντικαθίστανται με την πρώτη προηγούμενη μη μηδενική τιμή.

Έτσι προκύπτει η χρονοσειρά ωριαίων δεδομένων που είναι απαλλαγμένη απο τα σφάλματα οργάνων μέτρησης.

Στην περίπτωση της θερμοκρασίας, δημιουργήσαμε τρεις διαφορετικές χρονοσειρές: τη χρονοσειρά των μέσων ημερησίων τιμών θερμοκρασίας, τη χρονοσειρά των μέγιστων ημερήσιων τιμών θερμοκρασίας και τη χρονοσειρά των ελάχιστων ημερήσιων τιμών θερμοκρασίας. Έτσι παίρνουμε την χρονοσειρά ωριαίων δεδομένων και για την περίπτωση των μέσων ημερησίων τιμών υπολογίζουμε τον μέσο όρο των τιμών για κάθε 24-ωρο. Για την περίπτωση των μέγιστων ημερησίων τιμών υπολογίζουμε τη μέγιστη τιμή για κάθε 24-ωρο και για την περίπτωση των ελάχιστων ημερησίων τιμών, την ελάχιστη τιμή για κάθε 24-ωρο. Οπότε και για τις 3 παραπάνω περιπτώσεις προκύπτουν χρονοσειρές, που περιέχουν 8400 ημερήσιες τιμές δεδομένων θερμοκρασίας. Παρακάτω παρατίθενται οι γραφικές για καθεμία από τις τρεις χρονοσειρές:

Σχήμα 5.4 Καμπύλη μέσων ημερησίων τιμών θερμοκρασίας

Σχήμα 5.5 Καμπύλη ελαχίστων ημερησίων τιμών θερμοκρασίας

Σχήμα 5.6 Καμπύλη μέγιστων ημερησίων τιμών θερμοκρασίας

5.1.3 Κανονικοποίηση των χρονοσειρών ηλιακής ακτινοβολίας και θερμοκρασίας

Στην συγκεκριμένη εργασία χρησιμοποιήθηκαν δύο διαφορετικά είδη κανονικοποίησης, τα οποία εφαρμόστηκαν σε καθεμιά απο τις προαναφερθείσες στο κεφάλαιο 5.1.2, χρονοσειρές. Η πρώτη προσέγγιση κανονικοποίησης που χρησιμοποιήθηκε είναι η κανονικοποίηση των δεδομένων, ώστε να έχουν μέση τιμή μηδενική και τυπική απόκλιση μοναδιαία, ενώ η δεύτερη προσέγγιση που χρησιμοποιήθηκε αφορούσε την απεικόνιση των πραγματικών δεδομένων σε ένα εύρος τιμών που κυμαίνεται από 0.1 εως 0.9.

Για την υλοποίηση της κανονικοποίησης με μέση τιμή ίση με μηδέν και τυπική απόκλιση ίση με ένα, σε καθεμιά από τις τιμές των χρονοσειρών των ημερησίων τιμών ηλιακής ακτινοβολίας και θερμοκρασίας εφαρμόστηκε ο τύπος:

$$Y_k = \frac{X_k - mean}{std}$$

όπου X_k οι μέσες ημερήσιες τιμές, mean η μέση τιμή όλων των τιμών της χρονοσειράς και std η τυπική απόκλιση των τιμών της χρονοσειράς, για την εκάστοτε χρονοσειρά.

Για την υλοποίηση της κανονικοποίησης με μέγιστη τιμή 0.9 και ελάχιστη τιμή 0.1, σε καθεμιά από τις τιμές των χρονοσειρών των ημερησίων τιμών ηλιακής ακτινοβολίας και θερμοκρασίας εφαρμόστηκε ο τύπος:

$$Y_{k} = \frac{0.8}{\max - \min} * X_{k} + \frac{0.1 * \max - 0.9 * \min}{\max - \min}$$

όπου X_k οι μέσες ημερήσιες τιμές, max η μέγιστη τιμή των τιμών της χρονοσειράς και min η ελάχιστη τιμή της χρονοσειράς, για την εκάστοτε χρονοσειρά.

Οπότε στις ήδη υπάρχουσες χρονοσειρές μέσης ημερήσιας ηλιακής ακτινοβολίας, μέσης, μέγιστης και ελάχιστης ημερήσιας θερμοκρασίας προστέθηκαν επιπλέον οχτώ χρονοσειρές, που περιέχουν τις κανονικοποιημένες τιμές τους σύμφωνα με τις προαναφερθείσες μεθόδους κανονικοποίησης. Οι δώδεκα αυτές χρονοσειρές είναι αυτές που θα χρησιμοποιηθούν στη συνέχεια σαν είσοδοι στα συστήματα προβλεψης, που θα υλοποιήσουμε. Παρακάτω παρατίθενται γραφικές χρονοσειρών με κανονικοποιημένες τιμές:

Σχήμα 5.7 Καμπύλη μέγιστων ημερησίων τιμών θερμοκρασίας(0.1-0.9)

Σχήμα 5.8 Καμπύλη μέσων ημερησίων τιμών θερμοκρασίας(mean=0,std=1)

-2.5 L

Σχήμα 5.9 Καμπύλη μέσων ημερησίων τιμών ηλιακής ακτινοβολίας(0.1-0.9)

5.1.4 Αυτοσυσχέτιση των χρονοσειρών ηλιακής ακτινοβολίας και θερμοκρασίας

Στις δικές μας περιπτώσεις χρονοσειρών θα εφαρμόσουμε τη συνάρτηση αυτοσυσχέτισης, προκειμένου να προσδιορίσουμε τη συσχέτιση των διαδοχικών ημερήσιων τιμών ηλιακής ακτινοβολίας και θερμοκρασίας, κάτι που θα αποτελέσει και ένα κριτήριο της ποιότητας και περιοδικότητας των χρονοσειρών, που θα χρησιμοποιηθούν αργότερα στα νευρωνικά συστήματα πρόβλεψης. Επίσης οι γραφικές των αυτοσυσχετίσεων θα μας καθοδηγήσουν με ποιές τιμές lag να προσπαθήσουμε να κάνουμε πρόβλεψη. Παρακάτω παρατίθενται οι αυτοσυσχετίσεις για καθεμιά απ΄τις χρονοσειρές.

Σχήμα 5.10 Αυτοσυσχετίσεις χρονοσειρών

Παρατηρώντας τις αυτοσυσχετίσεις των χρονοσειρών συμπεραίνουμε ότι η συσχέτιση μεταξύ των τιμών μειώνεται καθώς αυξάνεται το lag. Βλέπουμε ότι και για

τις τρεις χρονοσειρές η καλύτερη τιμή αυτοσυσχέτισης επιτυγχάνεται για lag ίσο με μια μέρα.

5.1.5 Περίοδος χρονοσειρών

Παρατηρώντας τις κυματομορφές της ημερήσιας ηλιακής ακτινοβολίας καθώς και της μέσης, μέγιστης και ελάχιστης ημερήσιας θερμοκρασίας διαπιστώνουμε ότι η δυναμική και των τεσσάρων χρονοσειρών φέρεται να είναι ντετερμινιστική. Είναι χαρακτηριστικό ότι και στις τέσσερις γραφικές παραστάσεις, το γράφημα προσεγγίζει τη καμπύλη του ημιτόνου. Θεωρήσαμε λοιπόν και τις τέσσερις χρονοσειρές περιοδικές και θελήσαμε να βρούμε προσεγγιστικά την περιοδό τους. Προκειμένου να υλοποιηθεί αυτό απομονώσαμε τις 1500 πρώτες τιμές των χρονοσειρών, τις απεικονίσαμε γραφικά και στη συνέχεια αφού προβάλλαμε τις max τιμές κάθε ανόδου των καμπυλών, στον άξονα χ, υπολογίσαμε τις αποστάσεις των διαδοχικών προβολών τους.

Παρατηρώντας τις αποστάσεις των διαδοχικών προβολών, βλέπουμε ότι αυτές έχουν τιμές που κυμαίνονται απο 335 εως 395 μέρες. Έχοντας λοιπόν υπόψιν ότι ένας χρόνος έχει 365 μέρες, μπορούμε να θεωρήσουμε ότι όλες οι προαναφερθείσες χρονοσειρές είναι «σχεδόν» περιοδικές ($\frac{335+395}{2}=365$ μέρες),με περίοδο ένα έτος. Παρακάτω παρατίθενται οι καμπύλες των χρονοσειρών, ενώ με κόκκινα γράμματα στον άξονα των χ έχουν σημειωθεί οι προβολές, και πιο συγκεκριμένα οι μέρες που έχουμε τις μέγιστες τιμές:

Σχήμα 5.11 Καμπύλες μέσων, μεγίστων, ελαχίστων ημερησίων τιμών θερμοκρασίας και μέσων ημερησίων τιμών ηλιακής ακτινοβολίας με χρήση προβολών για προσεγγιστικό εντοπισμό της περιόδου των χρονοσειρών.

5.1.6 Τροποποίηση χρονοσειρών για χρήση τους στα συστήματα πρόβλεψης

Τα συστήματα πρόβλεψης που θα περιγραφούν στα επόμενα κεφάλαια δέχονται τις χρονοσειρές σαν δεδομένα προς επεξεργασία.Επίσης τα συστήματα αυτά οπώς θα περιγραφεί αναλυτικά αργότερα, ακολουθούν αλγορίθμους εκπαίδευσης που στηρίζονται στη μάθηση με εποπτεία(supervised learning). Αυτό σημαίνει ότι τα δεδομένα των χρονοσειρών πρέπει να πάρουν τη μορφή είσοδος-έξοδος του συστήματος πρόβλεψης. Έχοντας εντοπίσει μέσω της αυτοσυσχέτισης το βέλτιστο lag, που είναι η μια ημέρα,με τη βοήθεια των συστημάτων πρόβλεψης, θέλουμε να κάνουμε πρόβλεψη ημερήσιας τιμής ηλιακής ακτινοβολίας και θερμοκρασίας για τις εξής περιπτώσεις:

- Πρόβλεψη της τιμής μιας ημέρας, χρησιμοποιώντας ως εισόδους
 τις τιμές των δύο προηγουμένων ημερών.
- Πρόβλεψη της τιμής μιας ημέρας, χρησιμοποιώντας ως εισόδους
 τις τιμές των τριών πρηγουμένων ημερών.
- Πρόβλεψη της τιμής μιας ημέρας, χρησιμοποιώντας ως εισόδους τις τιμές των πέντε πρηγουμένων ημερών.
- Πρόβλεψη της τιμής μιας ημέρας, χρησιμοποιώντας ως εισόδους
 τις τιμές των επτά πρηγουμένων ημερών.

Οι δύο, τρεις, πέντε και επτά προηγούμενες ημερήσιες τιμές θα αποτελέσουν τις εισόδους των συστημάτων μας, ενώ η έξοδος τους θα είναι η πρόβλεψη της συγκεκριμένης "παρούσας" ημέρας. Για την εκπαίδευση των συστημάτων θα συγκρίνουμε τη πρόβλεψη της τιμής για τη συγκεκριμένη ημέρα με την πραγματική τιμή της ημέρας αυτής, που τη γνωρίζουμε από τις χρονοσειρές. Συνεπώς οι χρονοσειρές πρέπει να πάρουν τη μορφή: πραγματικοί είσοδοι-πραγματική έξοδος.

Προκειμένου να υλοποιηθεί το προαναφερθέν μοντέλο και έχοντας υπόψη ότι τόσο οι χρονοσειρές με τα πραγματικά δεδομένα, όσο και αυτές με τα κανονικοποιημένα δεδομένα έχουν τη μορφή στήλης συνεχόμενων ημερησίων δεδομένων εφαρμόστηκαν τα παρακάτω:

- Φορτώθηκε το αρχείο που συμπεριλάμβανε την καθεμια από τις χρονοσειρές.
- 2. Με ένα loop διατρέχτηκαν όλες οι τιμές της χρονοσειράς.
- Για κάθε τιμή δημιουργήθηκε ένα πρότυπο εκπαίδευσης πραγματικών εισόδων - πραγματικής (επιθυμητής) εξόδου, στο οποίο πρότυπο η τιμή αυτή αποτελεί την πρώτη απ' τις τιμές εισόδου.

Πρακτικά υλοποιήθηκε ένας πίνακας που είχε αριθμό γραμμών όσες οι τιμές των δεδομένων, και αριθμό στηλών όσες ήταν οι επιθυμητοί είσοδοι, συν μια στήλη για την επιθυμητή έξοδο. Κάθε γραμμή του πίνακα περιέχει ένα πρότυπο εκπαίδευσης. π.χ. για την περίπτωση πρόβλεψης της τιμής μια ημέρας χρησιμοποιώντας τις τιμές δύο προηγουμένων ημερών, αν η χρονοσειρά έχει όνομα chron, και είμαστε στη τιμή chron(t), τότε η αντίστοιχη γραμμή του πινακα θα είναι:

[chron(t) chron(t+1) chron(t+2)].

4. Αποθήκευση του πίνακα σε αρχείο με κατάληξη .txt.

Στο παρακάτω σχήμα φαίνεται ο πίνακας που περιλαμβάνει τα 20 πρώτα πρότυπα εκπαίδευσης για πρόβλεψη με τιμές πέντε προηγουμένων ημερών σαν εισόδους, για τις αντίστοιχες πρώτες 20 τιμές της χρονοσειράς των μέγιστων ημερήσιων τιμών θερμοκρασίας με πραγματικά δεδομένα.

12.5000	12.500000	12.200000	8.300000	14.700000	15.400000	9.900000
12.2000	12.200000	8.300000	14.700000	15.400000	9.900000	4.800000
8.3000	8.300000	14.700000	15.400000	9.900000	4.800000	5.400000
14.7000	14.700000	15.400000	9.900000	4.800000	5.400000	3.900000
15.4000	15.400000	9.900000	4.800000	5.400000	3.900000	3.300000
9.9000	9.900000	4.800000	5.400000	3.900000	3.300000	10.300000

4.8000	4.800000	5.400000	3.900000	3.300000	10.300000	12.400000	
5.4000	5.400000	3.900000	3.300000	10.300000	12.400000	13.600000	
3.9000	3.900000	3.300000	10.300000	12.400000	13.600000	14.100000	
3.3000	3.300000	10.300000	12.400000	13.600000	14.100000	13.100000	
10.3000	10.300000	12.400000	13.600000	14.100000	13.100000	13.200000	
12.4000	12.400000	13.600000	14.100000	13.100000	13.200000	9.100000	
13.6000	13.600000	14.100000	13.100000	13.200000	9.100000	12.500000	
14.1000	14.100000	13.100000	13.200000	9.100000	12.500000	13.600000	
13.1000	13.100000	13.200000	9.100000	12.500000	13.600000	10.700000	
13.2000	13.200000	9.100000	12.500000	13.600000	10.700000	9.700000	
9.1000	9.100000	12.500000	13.600000	10.700000	9.700000	9.100000	
12.5000	12.500000	13.600000	10.700000	9.700000	9.100000	10.200000	
13.6000	13.600000	10.700000	9.700000	9.100000	10.200000	7.900000	
10.7000	10.700000	9.700000	9.100000	10.200000	7.900000	10.900000	
	1 ^η είσοδος	2 ^η είσοδος	3 ^η είσοδος	4 ^η είσοδος	5 ^η είσοδος	έξοδος	
	1 0.00005	- 3.30005	2 0.00005		2 0.00005	5,5005	
Χοονοσειοά	Πίνακας προτύπων εκπαίδευσης						

Σχήμα 5.12 Χρονοσειρά max ημερησίων τιμων θερμοκρασίας - Πίνακας προτύπων 5 εισόδων-1 εξόδου

5.2 ΠΡΟΒΛΕΨΗ ΜΕ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ (Neural Network Prediction)

5.2.1 Εισαγωγή

Οπως προαναφέρθηκε στο κεφάλαιο 2, τα νευρωνικά δίκτυα είναι ικανά να μαθαίνουν και να γενικεύουν μέσω της εμπειρίας. Στην περίοδο που διανύουμε τα νευρωνικά δίκτυα χρησιμοποιούνται σε ένα μεγάλο εύρος εφαρμογών σε διαφορετικούς τομείς των επιχειρήσεων, της βιομηχανίας και της έρευνας. Ένας μείζων τομέας εφαρμογής των νευρωνικών δικτύων είναι η πρόβλεψη. Τα νευρωνικά δίκτυα έχουν χρησιμοποιηθεί για επίλυση αρκετών προβλημάτων πρόβλεψης όπως: των χαοτικών χρονοσειρών, οικονομικών εφαρμογών, βιομηχανικής παραγωγής, ηλεκτρικού φορτίου, μετεωρολογικών παραμέτρων. Στη συγκεκριμένη εργασία τα νευρωνικά δίκτυα θα χρησιμοποιηθούν για τη πρόβλεψη της θερμοκρασίας και της ηλιακής ακτινοβολίας.Για την εκπαίδευση των νευρωνικών δικτύων, για την πρόβλεψη των προαναφερθείσων παραμέτρων, θα χρησιμοποιηθεί η γενική μεθοδολογία εκπαίδευσης νευρωνικών δικτύων, που παρουσιάστηκε στην παράγραφο 2.5.

5.2.2 Ανάπτυξη νευρωνικών δικτύων πρόβλεψης

Στόχος είναι η ανάπτυξη νευρωνικών δικτύων που θα διαφέρουν στη κανονικοποίηση των δεδομένων της χρονοσειράς (πραγματικά δεδομένα- κανονικοποιημένα δεδομένα), στον αριθμό εισόδων, στον αριθμό κόμβων στο

ενδιάμεσο στρώμα, στις συναρτήσεις ενεργοποίησης, ώστε τελικά χρησιμοποιώντας κάποια κριτήρια απόδοσης να καταλήξουμε στα καλύτερα νευρωνικά, τα οποία θα χρησιμοποιηθούν περαιτέρω για υλοποίηση συστήματων πρόβλεψης συλλογικής μάθησης. Χρησιμοποιώντας τη μεθοδολογία εκπαίδευσης θα δείξουμε βηματικά την υλοποίηση και την εκπαίδευση των νευρωνικών δικτύων για την ηλιακή ακτινοβολία και την θερμοκρασία ξεχωριστά.

5.2.2.1 Διαδικασία πρόβλεψης

5.2.2.1.1 Δεδομένα εκπαίδευσης – Δεδομένα δοκιμής

Ηλιακή Ακτινοβολία

Όπως έχει περιγραφεί στη παράγραφο 5.1, τα δεδομένα που έχουμε στη διάθεση μας είναι διάρκειας 20 χρόνων (1981-2000). Στόχος μας είναι να γίνει πρόβλεψη σε επίπεδο ημερήσιο, οπότε οι αρχικά ωριαίες τιμές έχουν μετατραπεί σε ημερήσιες. Προκειμένου να εκπαιδευτούν τα δίκτυα, τα τρία σετ δεδομένων που έχουν δημιουργηθεί (πραγματικά ημερήσια δεδομένα-κανονικοποιημένα δεδομένα με μέση τιμή μηδέν και διακύμανση ένα, κανονικοποιημένα δεδομένα 0.1-0.9) και περιλαμβάνουν τιμές 20 χρόνων (7305 ημερήσιες τιμές) πρέπει να διαχωριστούν σε σετ δεδομένων εκπαίδευσης και σετ δεδομένων δοκιμής(εξακρίβωσης). Το σετ δεδομένων εκπαίδευσης θα χρησιμοποιηθεί για ανάπτυξη του μοντέλου του Ν.Δ.(Νευρωνικού Δικτύου), και το σετ δεδομένων δοκιμής για αξιολόγηση της δυνατότητας πρόβλεψης του μοντέλου. Για το διαχωρισμό δεν υπάρχει ένα πάγιο μοντέλο, αλλά γενικά πρέπει τόσο το σετ δεδομένων εκπαίδευσης όσο και το σετ δεδομένων ελέγχου να αποτελούν ένα αντιπροσωπευτικό δείγμα των δεδομένων. Το σετ δεδομένων εκπαίδευσης σίγουρα πρέπει να αποτελεί το μεγαλύτερο απ' τα δύο σετ. Έτσι αποφασίστηκε το σετ δεδομένων εκπαίδευσης να αποτελεί το 0.75 των συνολικών δεδομένων και το σετ δεδομένων ελέγχου το 0.25. Δηλαδή θα κάνουμε training των δικτύων για 15 χρόνια και test για 5 χρόνια.

Στη συνέχεια τέθηκε θέμα για το ποιά πέντε χρόνια θα χρησιμοποιηθούν σαν σετ δεδομένων ελέγχου απ' τις συνολικά τέσσερις πενταετίες των είκοσι χρόνων δεδομένων. Το πρόβλημα αυτό αντιμετωπίστηκε με τη χρήση της μεθόδου multifold cross-validation. Εκπαιδεύσαμε ένα απλό δίκτυο δύο εισόδων, τριών κόμβων στο ενδιάμεσο στρώμα και μιας εξόδου, με χρήση του backpropagation αλγορίθμου, με πραγματικά δεδομένα, τέσσερις φορές, χρησιμοποιώντας κάθε φορά διαφορετικά 15 χρόνια σαν σύνολο δεδομένων εκπαίδευσης και αντίστοιχα διαφορετική πενταετία σαν σετ δεδομένων ελέγχου. Από τις τέσσερις αυτές εκπαιδεύσεις αποδείχτηκε ότι οποιαδήποτε περίπτωση και να χρησιμοποιήσουμε προκύπτει περίπου το ίδιο σφάλμα πρόβλεψης. Έτσι καταλήξαμε να χρησιμοποιήσουμε σαν σετ δεδομένων εκπαίδευσης τα πρώτα 15 χρόνια(1981-1995) και σαν σετ δεδομένων ελέγχου τα υπόλοιπα 5(1996-2000). Συνεπώς οι ημερήσιες τιμές 1-5478 των τριών διαφορετικών χρονοσειρών αποτελούν το σετ δεδομένων εκπαίδευσης και οι 5479-7305, το σετ δεδομένων ελέγχου.

Αφού έχουμε διαχωρίσει τις χρονοσειρές πρέπει να προβούμε στη διαδικασία που περιγράφεται στη παράγραφο 5.1.6 ώστε τα διαχωρισμένα δεδομένα να έρθουν στη μορφή πινάκων προτύπων ανάλογα με τον αριθμό εισόδων του νευρωνικού και θα χρησιμοποιηθούν στη συνέχεια στην εκπαίδευση των νευρωνικών δικτύων.

<u>Θερμοκρασία</u>

Στη περίπτωση της θερμοκρασίας έχουμε τιμές από 23 χρόνια (1981-2003). Έχουμε δηλαδή ένα σύνολο 8400 ημερησίων τιμών. Για τη θερμοκρασία αποφασίστηκε τα 15 χρόνια τιμών να αποτελέσουν τα δεδομένα εκπαίδευσης και τα υπόλοιπα 8 να αποτελέσουν τα δεδομένα ελέγχου. Όπως και στην περίπτωση της ηλιακής ακτινοβολίας έτσι και στη θερμοκρασία έγινε χρήση της multifold crossvalidation μεθόδου, διαχωρίζοντας τα 23 χρόνια σε 2 οχταετίες και μία εφταετία και αφού έγινε εκπαίδευση διαπιστώθηκε ότι το σφάλμα που προέκυπτε ήταν περίπου το ίδιο. Οπότε σαν σετ δεδομένων εκπαίδευσης χρησιμοποιήθηκαν οι τιμές των πρώτων 15 χρόνων (1981-1995), που είναι οι ημερήσιες τιμές 1-5478, και σαν σετ δεδομένων ελέγχου χρησιμοποιήθηκαν οι τιμές των υπόλοιπων οχτώ χρόνων (1996-2003), που είναι οι τιμές 5479-8400.

Μετά το διαχωρισμό των τιμών, δημιουργήθηκαν οι πίνακες προτύπων σύμφωνα με τη διαδικασία που περιγράφεται στη παράγραφο 5.1.6, και πλέον τα σετ δεδομένων είναι έτοιμα να διοχετευτούν στην εκπαίδευση των νευρωνικών πρόβλεψης θερμοκρασίας.

5.2.2.1.2 Δομή των νευρωνικών δικτύων

Ηλιακή ακτινοβολία και θερμοκρασία

Η δομή των νευρωνικών δικτύων αποτελεί ένα σημαντικό θέμα συζήτησης και τίθενται αρκετά ερωτήματα προτού καταλήξουμε σε συγκεκριμένη αρχιτεκτονική.

Όσον αφορά τις εισόδους τους, απ' τη στιγμή που θέλουμε να κάνουμε πρόβλεψη της τιμής μιας ημέρας, έχοντας σαν δεδομένα τις τιμές δύο, τριών, πέντε ή επτά προηγουμένων ημερών, θεωρείται δεδομένο ότι τις εισόδους στα νευρωνικά θα αποτελέσουν οι εκάστοτε προηγούμενες τιμές. Συνεπώς θα δημιουργηθούν Ν.Δ. δύο, τριών, πέντε και επτά εισόδων.

Στη συνέχεια τίθεται το ζήτημα του αριθμού των ενδιάμεσων στρωμάτων που θα έχουν τα Ν.Δ. και του αριθμού των κόμβων που θα τα αποτελούν. Γενικά για τα ενδιάμεσα στρώματα ισχύουν τα εξής:

- Τα τοπικά χαρακτηριστικά αναδεικνύονται από το πρώτο κρυφό στρώμα.
 Πιο συγκεκριμένα κάποιοι νευρώνες στο πρώτο κρυφό στρώμα χρησιμοποιούνται για να διαχωρίσουν το δειγματοχώρο εισόδου σε περιοχές και κάποιοι άλλοι του ίδιου στρώματος, για να μάθουν τα τοπικά χαρακτηριστικά, χαρακτηρίζοντας τις περιοχές αυτές.
- 2. Τα γενικά χαρακτηριστικά αναδεικνύονται στο δεύτερο κρυφό στρώμα. Συγκεκριμένα, ένας νευρώνας στο δεύτερο κρυφό στρώμα συνδυάζει τις εξόδους των νευρώνων του πρώτου κρυφού στρώματος λειτουργώντας σε μια συγκεκριμένη περιοχή του δειγματοχώρου εισόδου και έτσι μαθαίνει τα γενικά χαρακτηριστικά της περιοχής αυτής, ενώ οπουδήποτε εκτός της περιοχής αυτής βγάζει έξοδο μηδέν.(Funahashi 1989,Chester,1990)

Στη δική μας περίπτωση οι χρονοσειρές μας έχουν τοπικά χαρακτηριστικά (ημερήσια). Οπότε δεν μας χρειάζεται δεύτερο ενδιάμεσο στρώμα. Συνεπώς όλα τα Ν.Δ. θα έχουν ένα ενδιάμεσο στρώμα. Όσον αφορά τον αριθμό των κόμβων του ενδιάμεσου στρώματος αυτός προκύπτει εμπειρικά μετά από αρκετές προσομοιώσεις. Πάντως από μελέτες άλλες σχετικά με πρόβλεψη έχει προκύψει ότι ο αριθμός κόμβων θα πρέπει να είναι ίσος ή μεγαλύτερος απ΄τον αριθμό των προτύπων εισόδου του στρώματος. Εμείς για όλα τα Ν.Δ. που δημιουργήσαμε πήραμε τις εξής περιπτώσεις: δύο, τρείς, πέντε, δέκα και δεκαπέντε κόμβους.

Τέλος θα έχουμε μία έξοδο, καθώς θέλουμε να κάνουμε πρόβλεψη για μια ημερήσια τιμή.

Επιπρόσθετα τίθεται και το θέμα των συναρτήσεων ενεργοποίησης που θα χρησιμοποιούνται σε καθένα απ' τους νευρώνες του νευρωνικού δικτύου. Γενικά συνηθίζεται στα προβλήματα πρόβλεψης, οι κόμβοι εξόδου να έχουν γραμμική συνάρτηση ενεργοποίησης, σε αντίθεση με προβλήματα ταξινόμησης που προτιμάται η σιγμοειδής συνάρτηση. Όσον αφορά τους νευρώνες των ενδιαμέσων στρωμάτων ως επί τω πλείστω χρησιμοποιούνται οι εξής συναρτήσεις ενεργοποίησης: γραμμική, σιγμοειδής, υπερβολική εφαπτομένη. Μέχρι τώρα καμία έρευνα δεν έχει επαληθεύσει τη σχετική απόδοση των προαναφερθείσων συναρτήσεων ενεργοποίησης, οπότε δεν υφίστανται καθόλου πειραματικά αποτελέσματα, που να υποστηρίζουν την προτίμηση τη μίας ή της άλλης. Στη δική μας περίπτωση έγιναν μερικές προσομοιώσεις και αποδείχτηκε ότι η χρήση της υπερβολικής εφαπτομένης έδωσε ίδια αποτελέσματα με αυτά της σιγμοειδούς. Οπότε προσομοιώσαμε τα νευρωνικά δίκτυα για τις περιπτώσεις της γραμμικής και της σιγμοειδούς συνάρτησης

Συνεπώς υλοποιήθηκαν οι εξής περιπτώσεις νευρωνικών δικτύων:

Σχήμα 5.13: Γενική περιγραφή νευρωνικού που χρησιμοποιήθηκε

Είσοδοι:

 Χρονοσειρά μέσων ημερησίων τιμών των δεδομένων ηλιακής ακτινοβολίας

2. Χρονοσειρά μέσων ημερησίων τιμών των δεδομένων θερμοκρασίας

- 3. Χρονοσειρά μέγιστων ημερησίων τιμών των δεδομένων θερμοκρασίας
- 2. Χρονοσειρά ελάχιστων ημερησίων τιμών των δεδομένων θερμοκρασίας

με καθεμιά από τις παραπάνω περιπτώσεις χρονοσειρών να περιλαμβάνει τις εξής υποπεριπτώσεις:

- α. Πραγματικές τιμές με τις εξής περιπτώσεις:
 - i. 2 προηγούμενες ημερήσιες τιμές σαν εισόδους.
 - ii. 3 προηγούμενες ημερήσιες τιμές σαν εισόδους.
 - iii. 5 προηγούμενες ημερήσιες τιμές σαν εισόδους.
 - iv. 7 προηγούμενες ημερήσιες τιμές σαν εισόδους.

β. Κανονικοποιημένες με κανονικοποίηση μέσης τιμής μηδενικής και τυπικής απόκλισης μοναδιαίας με τις εξής περιπτώσεις:

- i. 2 προηγούμενες ημερήσιες τιμές σαν εισόδους.
- ii. 3 προηγούμενες ημερήσιες τιμές σαν εισόδους.
- iii. 5 προηγούμενες ημερήσιες τιμές σαν εισόδους.
- iv. 7 προηγούμενες ημερήσιες τιμές σαν εισόδους.

γ. Κανονικοποιημένες τιμές με κανονικοποίηση 0.1-0.9 με τις εξής περιπτώσεις:

- i. 2 προηγούμενες ημερήσιες τιμές σαν εισόδους.
- ii. 3 προηγούμενες ημερήσιες τιμές σαν εισόδους.
- iii. 5 προηγούμενες ημερήσιες τιμές σαν εισόδους.
- iv. 7 προηγούμενες ημερήσιες τιμές σαν εισόδους.

Δηλαδή θα δημιουργηθούν νευρωνικά 2,3,5 και 7 εισόδων.

Ενδιάμεσο στρώμα:

Στο ενδιάμεσο στρώμα θα έχουμε τις εξής περίπτωσεις αριθμού κόμβων(νευρώνων)

- 2 κόμβων
- 3 κόμβων
- 3. 5 κόμβων
- 4. 10 κόμβων
- 5. 15 κόμβων

και για καθεμιά από τις παραπάνω περιπτώσεις θα περιλαμβάνονται οι υποπεριπτώσεις:

α. Γραμμική συνάρτηση ενεργοποίησης νευρώνα

β. Σιγμοειδής συνάρτηση ενεργοποίησης νευρώνα.

Έξοδος:

Η έξοδος θα περιλαμβάνει ένα νευρώνα με γραμμική συνάρτηση ενεργοποίησης.

5.2.2.1.3 Μέθοδος Εκπαίδευσης

Ηλιακή ακτινοβολία και θερμοκρασία

Η εκπαίδευση των νευρωνικών δικτύων είναι ένα χωρίς περιορισμούς, μη γραμμικό πρόβλημα ελαχιστοποίησης, όπου τα συναπτικά βάρη τροποποιούνται επαναληπτικά, προκειμένου να ελαχιστοποιήσουν το μέσο ή συνολικό τετραγωνικό σφάλμα μεταξύ των επιθυμητών και των πραγματικών εξόδων, για όλους τους κόμβους εξόδου και για όλα τα πρότυπα εισόδου. Υπάρχουν πολλές μέθοδοι βελτιστοποίησης, με αποτέλεσμα να υπάρχουν πολλές επιλογές για εκπαίδευση του Ν.Δ.. Δεν υπάρχει όμως κανένας αλγόριθμος που να εγγυάται τη συνολικά βέλτιστη λύση για ένα γενικό μη-γραμμικό πρόβλημα βελτιστοποίησης σε ένα λογικό χρονικό διάστημα.

Προκειμένου να καταλήξουμε σε ένα συγκεκριμένο αλγόριθμο τον οποίο θα χρησιμοποιήσουμε για να εκπαιδεύσουμε όλα τα νευρωνικά δίκτυα που δημιουργήσαμε και με δεδομένο ότι για την εργασία έγινε χρήση του neural toolbox του προγράμματος matlab, που έχει ενσωματωμένους ένα πλήθος αλγορίθμων εκπαίδευσης Ν.Δ., επελέξαμε ένα μικρό Ν.Δ. τριών εισόδων, 10 κόμβων στο κρυφό στρώμα και μιας εξόδου, με σιγμοειδή συνάρτηση ενεργοποίησης για το κρυφό στρώμα και γραμμική για το στρώμα εξόδου και το τρέξαμε για κανονικοποιημένα δεδομένα με κανονικοποίηση 0.1-0.9, για τις όλες τις περιπτώσεις αλγορίθμων. Προκειμένου να διαπιστωθεί ποιός αλγόριθμος είναι ο καταλληλότερος χρησιμοποιήθηκαν οι εξής μετρικές απόδοσης:

M.S.E.=Mean Square Error (Μέσο τετραγωνικό σφάλμα)

R.M.S.E=Root Mean Square Error (Ρίζα του μέσου τετραγωνικού σφάλματος)

A.M.E.=Absolute Mean Error (Απόλυτο μέσο σφάλμα)

N.D.E.I=Normalized Root Mean Square Error Index (Κανονικοποιημένος δείκτης ρίζας μέσου τετραγωνικού σφάλματος)

ρ=Correlation Coefficient (Συντελεστής συσχέτισης)

Οι προαναφερθείσες μετρικές θα περιγραφούν αργότερα.Παρακάτω παρατίθενται οι γραφικές παραστάσεις με τις τιμές των μετρικών για καθέναν από τους αλγορίθμους.

- 67 -

Σχήμα 5.14 Γραφική απεικόνιση μετρικών απόδοσης των αλγορίθμων εκπαίδευσης

Στις παραπάνω γραφικές παραστάσεις στο Υ-άξονα συμβολίζονται οι τιμές της εκάστοτε μετρικής και στον Χ-άξονα, ο καθένας από τους 13 αλγορίθμους εκπαίδευσης που χρησιμοποιήθηκαν. Οι αλγόριθμοι εκπαίδευσης που χρησιμοποιήθηκαν είναι οι εξής:

- 1. Quasi Newton Backpropagation(trainbfg)
- 2. Bayesian regularization backpropagation(trainbr)
- 3. Conjugate gradient backpropagation with Powell-Beale restarts(traincgb)
- 4. Conjugate gradient backpropagation with Fletcher-Reeves updates(traincgf)
- 5. Conjugate gradient backpropagation with Polak-Ribiere updates(traincgp)
- 6. Gradient descent backpropagation(traingd)
- 7. Gradient descent with adaptive learning rate backpropagation(traingda)
- 8. Gradient descent with momentum backpropagation(traingdm)
- 9. Gradient descent with momentum and adaptive learning rate backpropagation (traingdx)
- 10. Levenberg-Marquardt backpropagation(trainlm)

- 11. One step secant backpropagation(trainoss)
- 12. Resilient backpropagation(trainrp)
- 13. Scaled conjugate gradient backpropagation(trainscg)

Η παραπάνω αρίθμηση είναι η αντιστοίχη και στις γραφικές. Παρατηρώντας τις γραφικές και πιο συγκεκριμένα τις τιμές των μετρικών για καθέναν από τους αλγορίθμους, συμπεραίνουμε ότι καταλληλότερος αλγόριθμος για εκπαίδευση των νευρωνικών μας δικτύων είναι ο Levenberg-Marquardt Backpropagation. Πρέπει να επισημανθεί ότι ο συγκεκριμένος αλγόριθμος δεν είχε τον πιο γρήγορο χρόνο εκπαίδευσης, αλλά σε σχέση με τους αλγόριθμους που ήταν πιο γρήγοροι απ' αυτόν είχε πολύ καλύτερες τιμές μετρικών, ενώ όποιοι αλγόριθμοι τον πλησίαζαν σε τιμές μετρικών ήταν πολύ πιο αργοί απ' αυτόν.

5.2.2.1.4 Μετρικές απόδοσης

Παρά το γεγονός ότι μπορεί να υπάρχουν αρκετά μέτρα απόδοσης για ένα νευρωνικό δίκτυο πρόβλεψης, όπως ο χρόνος εκπαίδευσης, το βασικό και πιο σημαντικό μέτρο απόδοσης είναι η ακρίβεια-εγκυρότητα πρόβλεψης που μπορεί να επιτευχθεί μετά την εκπαίδευση. Μια μετρική συχνά χρησιμοποιούμενη είναι το σφάλμα πρόβλεψης, που είναι η διαφορά μεταξύ της πραγματικής τιμής (επιθυμητής) και της προβλεπόμενης. Υπάρχει ένας αριθμός μετρικών ακρίβειας που χρησιμοποιούνται και καθεμιά απ' αυτές έχει τα πλεονεκτήματα της και τα μειονεκτήματά της. Η απόδοση των μοντέλων πρόγνωσης που υλοποιήθηκαν υπολογίστηκε με βάση τα εξής κριτήρια: MSE, RMSE, AME, NDEI, ρ.Οι τύποι υπολογισμού των κριτηρίων αυτών είναι οι εξής:

1. $MSE = \frac{1}{n} \sum_{k=1}^{n} (x(k) - \hat{x}(k))^{2}$ 2. $RMSE = \sqrt{\frac{1}{n} \sum_{k=1}^{n} (x(k) - \hat{x}(k))^{2}}$ 3. $AME = \frac{1}{n} \sum_{k=1}^{n} |x(k) - \hat{x}(k))|$ 4. $NDEI = \frac{RMSE}{s} = \sqrt{\frac{\sum_{k=1}^{n} (x(k) - \hat{x}(k))^{2}}{\sum_{k=1}^{n} x^{2}(k)}}$

5.
$$r = \frac{\sum_{k=1}^{n} (x(k) - \overline{x}) \cdot (\hat{x}(k) - \overline{\hat{x}})}{\sqrt{\sum_{k=1}^{n} (x(k) - \overline{x})^2 \cdot \sum_{k=1}^{n} (\hat{x}(k) - \overline{\hat{x}})^2}}$$

M.S.E.= Mean Square Error (Μέσο τετραγωνικό σφάλμα)

R.M.S.E= Root Mean Square Error (Ρίζα του μέσου τετραγωνικού σφάλματος)

A.M.E.= Absolute Mean Error (Απόλυτο μέσο σφάλμα)

N.D.E.I= Normalized Root Mean Square Error Index (Κανονικοποιημένος δείκτης ρίζας μέσου τετραγωνικού σφάλματος)

ρ= Correlation Coefficient (Συντελεστής συσχέτισης)

Όπου x(k) είναι η πραγματική τιμή για τη χρονική στιγμή k, $\dot{x}(k)$ είναι η προβλεπόμενη τιμή (έξοδος μοντέλου) τη χρονική στιγμή k, n είναι το πλήθος των δεδομένων ελέγχου που χρησιμοποιούνται για τη πρόβλεψη, \dot{x} , \dot{x} είναι οι μέσες τιμές των παρατηρημένων και των προβλεπόμενων τιμών αντίστοιχα, σ είναι η τυπική απόκλιση των τιμών στόχων. Ο συντελεστής συσχέτισης ρ μετράει πόσο καλά συσχετίζονται οι προβλεπόμενες τιμές με τις πραγματικές τιμές. Ουσιαστικά τιμή του συντελεστή συσχέτισης κοντά στη μονάδα σημαίνει καλύτερη πρόβλεψη.

5.2.3 Εκπαίδευση νευρωνικών δικτύων – Αποτελέσματα προβλέψεων

5.2.3.1 Ηλιακή ακτινοβολία

Η εκπαίδευση των νευρωνικών δικτύων για τα δεδομένα της ηλιακής ακτινοβολίας, όπως προαναφέρθηκε, έγινε με τη μέθοδο Levenberg-Marqurdt backpropagation και οι παράμετροι της εκπαίδευσης, mse_goal(στόχος εκπαίδευσης για μέσο τετραγωνικό σφάλμα), epochs (εποχές εκπαίδευσης), Learning Rate (ρυθμός μάθησης), πήραν τις εξής αρχικές τιμές:

Epochs = 200Lr = 0.1

<u>Παρατηρήσεις</u>

Για την επιλογή των συγκεκριμένων τιμών παραμέτρων προηγήθηκαν προσομοιώσεις οι οποίες μας οδήγησαν στις συγκεκριμένες αρχικές τιμές. Δηλαδή οι παραπάνω τιμές προέκυψαν εμπειρικά. Κατά τη διαδικασία των διαδοχικών προσομοιώσεων με διαφορετικές τιμές για τις παραμέτρους, παρατηρήθηκε σε κάποιες περιπτώσεις νευρωνικών δικτύων υπερπροσαρμογή (overfitting), π.χ. στο 2-15-1 νευρωνικό δίκτυο για κανονικοποιημένα δεδομένα 0.1-0.9, παρατηρήθηκε υπερπροσαρμογή στην περίπτωση όπου ο αριθμός των εποχών εκπαίδευσης αυζήθηκε σε 350.

Μετά την εκπαίδευση των νευρωνικών δικτύων για όλες τις περιπτώσεις που προαναφέρθηκαν (διαφορετικές κανονικοποιήσεις δεδομένων γρονοσειράς. διαφορετικός αριθμός εισόδων νευρωνικού, διαφορετικός αριθμός κόμβων στο ενδιάμεσο στρώμα, διαφορετικές συναρτήσεις ενεργοποίησης νευρώνων ενδιάμεσου στρώματος), προκειμένου να κατασταλλάξουμε στις τέσσερις καλύτερες σε προβλεψεις περιπτώσεις νευρωνικών δικτύων, οι οποίες θα χρησιμοποιηθούν στη συνέχεια σαν experts στις μηχανές νευρωνικών δικτύων, αρχικά επιλέξαμε τις τέσσερις καλύτερες περιπτώσεις νευρωνικών για κάθε διαφορετική κανονικοποίηση. Η επιλογή αυτή έγινε με βάση τις τιμές των μετρικών απόδοσης, για τα δεδομένα ελέγχου, που περιγράφηκαν παραπάνω. Παρακάτω παρατίθενται πίνακες με τις 4 καλύτερες περιπτώσεις για κάθε κανονικοποίηση. Στο παράρτημα παρατίθενται οι πίνακες 1, 2, 3 που περιλαμβάνουν τα αποτελέσματα εκπαίδευσης των νευρωνικών για όλες τις περιπτώσεις.

Πραγματικά δεδομένα								
Νευρωνικό δίκτυο	Συνάρτηση Ενεργοποίησης	MSE	AME	RMSE	р	NDEI		
7-3-1	Γραμμική	7483.011	63.2687	86.5044	0.81433	0.22256		
5-3-1	Γραμμική	7652.773	63.9124	87.4801	0.80998	0.22518		
3-5-1	Σιγμοειδής	7782	63.986	88.2199	0.80667	0.2271		
3-3-1	Γραμμική	7961.158	65.4578	89.2253	0.80165	0.22979		

Κανονικοποιημένα δεδομένα με μέση τιμή=0,τυπική απόκλιση=1									
Νευρωνικό	Συνάρτηση	MSE	AME	RMSE	р	NDEI			
δίκτυο	Ενεργοποίησης				-				
5-10-1	Σιγμοειδής	0.77129	0.64236	0.87823	0.81711	0.37978			
5-5-1	Σιγμοειδής	0.77663	0.6445	0.88127	0.81566	0.38109			
7-5-1	Σιγμοειδής	0.77929	0.64856	0.88277	0.81467	0.38156			
7-3-1	Σιγμοειδής	0.77929	0.64573	0.88278	0.81461	0.38156			

Κανονικοποιημένα δεδομένα 0.1-0.9									
Νευρωνικό	Συνάρτηση	MSE	AME	RMSE	р	NDEI			
δίκτυο	Ενεργοποίησης								
5-15-1	Σιγμοειδής	0.010896	0.078213	0.10438	0.81751	0.18914			
7-3-1	Σιγμοειδής	0.010889	0.076501	0.10435	0.81694	0.189			
7-10-1	Σιγμοειδής	0.010965	0.075266	0.10471	0.81623	0.18965			
5-10-1	Σιγμοειδής	0.010967	0.076796	0.10472	0.816	0.18975			

Πίνακες 5.1,5.2,5.3. Οι τέσσερις καλύτερες περιπτώσεις εκπαίδευσης για κάθε διαφορετική κανονικοποίηση των δεδομένων ηλιακής ακτινοβολίας

<u>Παρατηρήσεις</u>

Για την περίπτωση των πραγματικών δεδομένων ηλιακής ακτινοβολίας, κατά την εκπαίδευση των νευρωνικών με χρήση σιγμοειδούς συνάρτησης στους νευρώνες του ενδιάμεσου στρώματος δεν επετεύχθηκε καλή γενίκευση, δηλαδή οι προβλέψεις ήταν κακές, σε αντίθεση με την περίπτωση χρήσης γραμμικής συνάρτησης ενεργοποίησης που είχαμε μια αρκετά ποιοτική γενίκευση. Η χρησιμοποίηση πραγματικών δεδομένων για την εκπαίδευση του Νευρωνικού Δικτύου και η μη πρόβλεψη κατάλληλων gain factorsστους μη γραμμικούς νευρώνες (σιγμοειδής συνάρτηση) προκαλεί φτωχή γενίκευση. Οι μη γραμμικοί νευρώνες δεν επενεργούν σε όλο το εύρος των τιμών- εισόδων. Στις υπόλοιπες περιπτώσεις, που είχαμε κανονικοποιημένα δεδομένα, είχαμε αρκετά καλές προβλέψεις και για τις δύο περιπτώσεις συναρτήσεων ενεργοποίησης.

Κάτι άλλο που είναι επίσης άζιο παρατήρησης, είναι ότι για τα νευρωνικά δίκτυα που εκπαιδεύτηκαν με γραμμική συνάρτηση ενεργοποίησης στους κόμβους του ενδιάμεσου στρώματος,είχαμε τις ίδιες εξόδους για όλα τα νευρωνικά που είχαν ίδιο αριθμό εισόδων,ανεξαρτήτου του αριθμού των κόμβων του ενδιάμεσου στρώματος. Επειδή ή θερμοκρασία και η ηλιακή ακτινοβολία έχουν ημιτονοειδή μορφή, ο αριθμός των εσωτερικών κόμβων δεν επηρρεάζει ουσιαστικά την πρόβλεψη λόγω της γραμμικότητας του νευρωνικού δικτύου. Η πρόβλεψη στη περίπτωση αυτή επηρρεάζεται μόνο από τον αριθμό των εισόδων.

Από τους παραπάνω πίνακες είναι προφανές ότι η σύγκριση των προβλέψεων που έχουν προκύψει από δεδομένα διαφορετικών κανονικοποίησεων μπορεί να γίνει με βάση δύο από τις χρησιμοποιημένες μετρικές απόδοσης: το ρ και ndei. Παρατηρώντας λοιπόν τους παραπάνω πίνακες και συγκρίνοντας τις μετρικές τους καταλήξαμε στα εξής τέσσερα ¨καλύτερα¨ νευρωνικά δίκτυα που θα χρησιμοποιηθούν στις μηχανές νευρωνικών δικτύων:

- 5-15-1 για κανονικοποίηση 0.1-0.9 με χρήση σιγμοειδούς συνάρτησης ενεργοποίησης των κόμβων ενδιάμεσου στρώματος.
- 7-3-1 για κανονικοποίηση 0.1-0.9 με χρήση σιγμοειδούς συνάρτησης ενεργοποίησης των κόμβων ενδιάμεσου στρώματος.

- 7-10-1 για κανονικοποίηση 0.1-0.9 με χρήση σιγμοειδούς συνάρτησης ενεργοποίησης των κόμβων ενδιάμεσου στρώματος.
- 5-10-1 για κανονικοποίηση 0.1-0.9 με χρήση σιγμοειδούς συνάρτησης ενεργοποίησης των κόμβων ενδιάμεσου στρώματος.

5.2.3.2 Θερμοκρασία

Όπως στη περίπτωση των δεδομένων ηλιακής ακτινοβολίας έτσι και για τα δεδομένα της θερμοκρασίας η εκπαίδευση έγινε με χρήση του αλγορίθμου Levenberg-Marquardt backpropagation και οι παράμετροι της εκπαίδευσης, mse_goal, epochs, Learning Rate, πήραν τις εξής αρχικές τιμές:

Για μέσες ημερήσιες τιμές θερμοκρασίας έχουμε:

1. Για πραγματικές τιμές δεδομένων: $mse_goal = 1$

Epochs = 150 Lr = 0.00012. Για κανονικοποίηση mean=0, std=1: mse_goal = 0.001 Epochs = 150 Lr = 0.013. Για κανονικοποίηση 0.1-0.9: mse_goal = 0.00001 Epochs = 150 Lr = 0.01

Τόσο για τις μέγιστες ημερήσιες τιμές θερμοκρασίας όσο και για τις ελάχιστες τιμές χρησιμοποιήθηκαν ακριβώς οι ίδιες τιμές στις παραμέτρους εκπαίδευσης.

<u>Παρατηρήσεις</u>

Στις εκπαιδεύσεις, για πραγματικά δεδομένα μέσων ημερησίων τιμών, οι παράμετροι ήταν ιδανικοί για ολες τις περιπτώσεις εκτός απ'το το 3-3-1 με σιγμοειδή συνάρτηση ενεργοποίησης όπου χρειάστηκε ο ρυθμός μάθησης να πάρει ακόμα μικρότερη τιμή προκειμένου να επιτευχθεί γενίκευση. Έτσι στη περίπτωση αυτή το Lr πήρε τιμή ίση με 0.00001.

Στην περίπτωση της χρονοσειράς μέγιστων ημερησίων τιμών με πραγματικά δεδομένα,για όλα τα νευρωνικά με είσοδο 7 προηγούμενες ημερήσιες τιμές χρησιμοποιήθηκε διαφορετική, σε σχέση με όλα τα υπόλοιπα νευρωνικά, τιμή για το Lr,που ήταν η 0.01.

Τέλος, για τη χρονοσειρά των ελάχιστων ημερησίων τιμών με κανονικοποίηση 0.1-0.9,στη περίπτωση των νευρωνικών 7 εισόδων χρησιμοποιήθηκε μικρότερο Lr,ίσο με 0.00001. Όπως για την ηλιακή ακτινοβολία έτσι και για τη θερμοκρασία μετά την εκπαίδευση των νευρωνικών δικτύων, επελέχθηκαν τα τέσσερα καλύτερα νευρωνικά για κάθε κανονικοποίηση για καθεμία από τις χρονοσειρές, των μέσων, των μέγιστων και των ελάχιστων τιμών θερμοκρασίας, τα οποία παρατίθενται στους παρακάτω πίνακες. Στους πίνακες 4 εως 12 του παραρτήματος παρατίθενται τα αποτελέσματα των προβλέψεων για όλες τις προσομοιώσεις.

• Για τα δεδομένα μέσης ημερήσιας θερμοκρασίας έχουμε τα εξής αποτελέσματα:

5.4								
Πραγματικά δεδομένα								
Νευρωνικό	Συνάρτηση	MSE	AME	RMSE	р	NDEI		
δίκτυο	Ενεργοποίησης				1			
7-3-1	Σιγμοειδής	2.6487	1.1938	1.6275	0.97684	0.080617		
7-5-1	Σιγμοειδής	2.664	1.1995	1.6322	0.9767	0.080849		
7-3-1	Γραμμική	2.6687	1.1967	1.6336	0.97665	0.080921		
5-3-1	Σιγμοειδής	2.6725	1.2007	1.6348	0.97665	0.081003		

5.5.

Κανονικοποιημένα δεδομένα με μέση τιμή=0,τυπική απόκλιση=1								
Νευρωνικό δίκτυο	Συνάρτηση Ενεονοποίησης	MSE	AME	RMSE	р	NDEI		
7-3-1	Γραμμική	0.043681	0.1531	0.209	0.97665	0.21402		
7-3-1	Σιγμοειδής	0.043729	0.15393	0.20912	0.97664	0.21414		
5-3-1	Σιγμοειδής	0.043845	0.15432	0.20939	0.97664	0.21436		
7-5-1	Σιγμοειδής	0.043919	0.15407	0.20957	0.97656	0.2146		

5.6

Κανονικοποιημένα δεδομένα 0.1-0.9									
Νευρωνικό	Συνάρτηση	MSE	AME	RMSE	р	NDEI			
δίκτυο	Ενεργοποίησης				_				
5-10-1	Σιγμοειδής	0.000801	0.020861	0.028308	0.97689	0.057741			
3-5-1	Σιγμοειδής	0.000806	0.020964	0.028387	0.9768	0.057915			
7-3-1	Σιγμοειδής	0.000805	0.020884	0.028378	0.97675	0.057871			
7-3-1	Γραμμική	0.000807	0.020812	0.028411	0.97665	0.057938			

 Για τα δεδομένα μέγιστης ημερήσιας θερμοκρασίας έχουμε τα εξής αποτελέσματα:

5.7								
	Πραγματικά δεδομένα							
Νευρωνικό	Συνάρτηση	MSE	AME	RMSE	р	NDEI		
δικτυο	Ενεργοποιησης							
7-5-1	Σιγμοειδής	5.0823	1.7215	2.2544	0.96453	0.092043		
7-3-1	Σιγμοειδής	5.0947	1.7238	2.2572	0.96449	0.092043		
7-10-1	Σιγμοειδής	5.09	1.7234	2.2561	0.96448	0.092001		
7-3-1	Γραμμική	5.1247	1.7244	2.2638	0.96417	0.092314		

5.8							
Κανονικοποιημένα δεδομένα με μέση τιμή=0,τυπική απόκλιση=1							
Νευρωνικό	Συνάρτηση	MSE	AME	RMSE	р	NDEI	
δίκτυο	Ενεργοποίησης				-		
7-3-1	Σιγμοειδής	0.083771	0.22112	0.28943	0.96429	0.22918	
7-3-1	Γραμμική	0.083882	0.22062	0.28962	0.96417	0.22934	
5-3-1	Σιγμοειδής	0.08427	0.22145	0.29029	0.96411	0.22989	
7-5-1	Σιγμοειδής	0.084357	0.22211	0.29044	0.9641	0.22998	

5.9

Κανονικοποιημένα δεδομένα 0.1-0.9									
Νευρωνικό δίκτυο	Συνάρτηση Ενεργοποίησης	MSE	AME	RMSE	р	NDEI			
7-5-1	Σιγμοειδής	0.001537	0.02992	0.039206	0.96458	0.069198			
7-3-1	Σιγμοειδής	0.001539	0.02994	0.039226	0.96451	0.069235			
7-10-1	Σιγμοειδής	0.001555	0.030153	0.039436	0.96419	0.069604			
7-3-1	Γραμμική	0.00155	0.02999	0.03937	0.96417	0.069489			

 Για τα δεδομένα ελάχιστης ημερήσιας θερμοκρασίας έχουμε τα εξής αποτελέσματα:

5.10

Πραγματικά δεδομένα								
Νευρωνικό	Συνάρτηση	MSE	AME	RMSE	р	NDEI		
δίκτυο	Ενεργοποίησης				-			
5-10-1	Σιγμοειδής	6.4482	1.4777	2.5393	0.93469	0.15097		
3-15-1	Σιγμοειδής	6.4805	1.4851	2.5457	0.93442	0.15139		
2-15-1	Σιγμοειδής	6.4953	1.4849	2.5486	0.93428	0.15157		
7-15-1	Σιγμοειδής	6.5357	1.4766	2.5565	0.93391	0.15194		

5.11

Κανονικοποιημένα δεδομένα με μέση τιμή=0,τυπική απόκλιση=1							
Νευρωνικό δίκτυο	Συνάρτηση Ενεργοποίησης	MSE	AME	RMSE	р	NDEI	
7-10-1	Σιγμοειδής	0.09819	0.19016	0.31335	0.93949	0.3205	
3-5-1	Σιγμοειδής	0.098071	0.18836	0.31316	0.93941	0.32001	
5-15-1	Σιγμοειδής	0.099801	0.19568	0.31591	0.93855	0.32295	
3-15-1	Σιγμοειδής	0.10046	0.19137	0.31695	0.93812	0.32388	

5.12

Κανονικοποιημένα δεδομένα 0.1-0.9								
Νευρωνικό	Συνάρτηση	MSE	AME	RMSE	р	NDEI		
δίκτυο	Ενεργοποίησης				1			
2-15-1	Σιγμοειδής	0.001716	0.025549	0.04142	0.94254	0.096309		
5-3-1	Σιγμοειδής	0.001731	0.02526	0.0416	0.94214	0.096699		
7-3-1	Σιγμοειδής	0.001753	0.025244	0.041874	0.94136	0.097316		
5-5-1	Σιγμοειδής	0.001786	0.025641	0.042264	0.94039	0.098244		

Πίνακες 5.4 εως 5.12. Οι τέσσερις καλύτερες περιπτώσεις εκπαίδευσης για τις χρονοσειρές μέσης,μέγιστης και ελάχιστης ημερήσιας θερμοκρασίας για κάθε διαφορετική κανονικοποίηση Όπως και στην περίπτωση των δεδομένων ηλιακής ακτινοβολίας οι προβλέψεις συγκρίθηκαν με βάση το ρ και ndei. Παρατηρώντας λοιπόν τους παραπάνω πίνακες και συγκρίνοντας τις μετρικές τους καταλήξαμε στα τέσσερα "καλύτερα" νευρωνικά δίκτυα για τις χρονοσειρές μέσης,μέγιστης και ελάχιστης ημερήσιας θερμοκρασίας, που θα χρησιμοποιηθούν στις μηχανές νευρωνικών δικτύων:

Μέση ημερήσια θερμοκρασία:

1. 5-10-1 για κανονικοποίηση 0.1-0.9 με χρήση σιγμοειδούς συνάρτησης ενεργοποίησης των κόμβων ενδιάμεσου στρώματος.

7-3-1 για πραγματικά δεδομένα με χρήση σιγμοειδούς συνάρτησης ενεργοποίησης των κόμβων ενδιάμεσου στρώματος.

3. 3-5-1 για κανονικοποίηση 0.1-0.9 με χρήση σιγμοειδούς συνάρτησης ενεργοποίησης των κόμβων ενδιάμεσου στρώματος.

4. 7-3-1 για κανονικοποίηση 0.1-0.9 με χρήση σιγμοειδούς συνάρτησης ενεργοποίησης των κόμβων ενδιάμεσου στρώματος.

Μέγιστη ημερήσια θερμοκρασία:

1. 7-5-1 για κανονικοποίηση 0.1-0.9 με χρήση σιγμοειδούς συνάρτησης ενεργοποίησης των κόμβων ενδιάμεσου στρώματος.

 7-5-1 για πραγματικά δεδομένα με χρήση σιγμοειδούς συνάρτησης ενεργοποίησης των κόμβων ενδιάμεσου στρώματος.

3. 7-3-1 για κανονικοποίηση 0.1-0.9 με χρήση σιγμοειδούς συνάρτησης ενεργοποίησης των κόμβων ενδιάμεσου στρώματος.

4. 7-3-1 για πραγματικά δεδομένα με χρήση σιγμοειδούς συνάρτησης ενεργοποίησης των κόμβων ενδιάμεσου στρώματος.

Ελάχιστη ημερήσια θερμοκρασία:

1. 2-15-1 για κανονικοποίηση 0.1-0.9 με χρήση σιγμοειδούς συνάρτησης ενεργοποίησης των κόμβων ενδιάμεσου στρώματος.

 5-3-1 για κανονικοποίηση 0.1-0.9 με χρήση σιγμοειδούς συνάρτησης ενεργοποίησης των κόμβων ενδιάμεσου στρώματος.

3. 7-3-1 για κανονικοποίηση 0.1-0.9 με χρήση σιγμοειδούς συνάρτησης ενεργοποίησης των κόμβων ενδιάμεσου στρώματος.

4. 5-5-1 για κανονικοποίηση 0.1-0.9 με χρήση σιγμοειδούς συνάρτησης ενεργοποίησης των κόμβων ενδιάμεσου στρώματος.

<u>Παρατηρήσεις</u>

Άζιο παρατήρησης είναι το γεγονός ότι τα περισσότερα από τα "καλύτερα" σε προβλέψεις νευρωνικά δίκτυα είχαν εισόδους με κανονικοποιημένα δεδομένα 0.1-0.9,ενώ στις "καλύτερες" περιπτώσεις δεν συμπεριλαμβάνετο καμία περίπτωση κανονικοποιημένων δεδομένων με μέση τιμή μηδενική και τυπική απόκλιση μοναδιαία.

Όσον αφορά τον αριθμό των εισόδων παρατηρείται ότι σε αρκετές από τις "καλύτερες" περιπτώσεις έχουμε νευρωνικά δίκτυα 5 και 7 εισόδων,δηλαδή έχουμε καλύτερη πρόβλεψη με γνώση των τιμών 5 και 7 προηγουμένων ημερών αντίστοιχα.

Σε σχέση με τον αριθμό των κόμβων στο ενδιάμεσο στρώμα δείχνουν να υπερτερούν νευρωνικά με 3 και 5 κόμβους,ενώ όσον αφορά τη συνάρτηση ενεργοποίησης των νευρώνων ενδιάμεσου στρώματος παρατηρούμε ότι σχεδόν σε όλες τις ¨καλύτερες¨ περιπτώσεις έχουμε χρήση της σιγμοειδούς συνάρτησης.

Επίσης πρέπει να σημειωθεί ότι για κάθε διαφορετική περίπτωση εκπαίδευσης και δοκιμής νευρωνικού δικτύου, πέραν των μετρικών απόδοσης εμφανίζονται και οι εζής γραφικές παραστάσεις:

 Υ-αζονας:Πραγματικές ημερήσιες τιμές και αντίστοιχες προβλέψεις δεδομένων εκπαίδευσης ηλιακής ακτινοβολίας ή θερμοκρασίας

Χ-άζονας: Αριθμός δεδομένων

 Υ-αζονας: Τιμές σφάλματος για προβλέψεις δεδομένων εκπαίδευσης ηλιακής ακτινοβολίας ή θερμοκρασίας

Χ-άζονας:Αριθμός δεδομένων

3. Υ-αζονας: Πραγματικές ημερήσιες τιμές και αντίστοιχες προβλέψεις δεδομένων δοκιμής ηλιακής ακτινοβολίας ή θερμοκρασίας

Χ-άζονας: Αριθμός δεδομένων

 Υ-αζονας:Τιμές σφάλματος για προβλέψεις δεδομένων δοκιμής ηλιακής ακτινοβολίας ή θερμοκρασίας

Χ-άζονας:Αριθμός δεδομένων

- Υ-αζονας: Τιμές προβλέψεων δεδομένων εκπαίδευσης ηλιακής ακτινοβολίας ή θερμοκρασίας Χ-άζονας: Τιμές δεδομένων εκπαίδευσης
- Υ-αζονας: Τιμές προβλέψεων δεδομένων δοκιμής ηλιακής ακτινοβολίας ή θερμοκρασίας Χ-άζονας: Τιμές δεδομένων δοκιμής.

Στο παράρτημα έχουν παρατεθεί οι γραφικές που αφορούν τα δεδομένα δοκιμής για τις εκπαιδεύσεις καθενός από τα τα 16 συνολικά 'καλύτερα' νευρωνικά.

5.3 ΠΡΟΒΛΕΨΗ ΜΕ ANFIS

Για την εκπαίδευση με ANFIS χρησιμοποιηθηκε ο ANFIS Editor GUI που είναι υλοποιημένος στο Fuzzy Logic Toolbox του προγράμματος Matlab. Δημιουργήθηκε πρώτης τάξης νευροασαφές σύστημα Sugeno επτά εισόδων και εκπαιδεύτηκε και δοκιμάστηκε για τις τέσσερις χρονοσειρές δεδομένων (μέσης ημερήσιας ηλιακής ακτινοβολίας, μέσης, μέγιστης και ελάχιστης ημερήσιας θερμοκρασίας) κανονικοποιημένες με κανονικοποίηση 0.1-0.9. Η παραγωγή του Fuzzy Inference System έγινε με επιλογή της μεθόδου sub.clustering, ως μέθοδος βελτιστοποίησης χρησιμοποιήθηκε η backpropagation, ενώ επίσης στις επιλογές είχαμε μηδενικό fault tolerance και 3 επόχες εκπαίδευσης για όλες τις περιπτώσεις.

5.3.1 Αποτελέσματα προβλέψεων ηλιακής ακτινοβολίας με ANFIS

Για τα δεδομένα μέσης ημερήσιας ηλιακής ακτινοβολίας έχουμε τα εξής αποτελέσματα

MSE	RMSE	AME	р	NDEI
0.011115	0.10543	0.078098	0.81305	0.1962

Παρακάτω παρατίθενται γραφικές παραστάσεις όπου συγκρίνονται οι προβλεψεις με τις πραγματικές τιμές δεδομένων μέσης ημερήσιας ηλιακής ακτινοβολίας και στο πάνω μέρος των γραφικών παρατίθενται οι μετρικές απόδοσης για την εκπαίδευση της χρονοσειράς, που δείχνουν την ποιότητα των προβλέψεων με χρήση αυτού του νευροασαφούς συστήματος.

Παρακάτω έχουμε παράθεση των γραφικών σύγκρισης των προβλέψεων με τα πραγματικά δεδομένα που έχουμε στη διάθεση μας για τα δεδομένα δοκιμής (test data):

Σχήμα 5.15 Γραφική απεικόνιση σύγκρισης των προβλέψεων με χρήση ANFIS με πραγματικά δεδομένα για τα δεδομένα δοκιμής ηλιακής ακτινοβολίας

5.3.2 Αποτελέσματα προβλέψεων θερμοκρασίας με ANFIS

 Για τα δεδομένα μέσης ημερήσιας θερμοκρασίας έχουμε τα εξής αποτελέσματα

MSE	RMSE	AME	р	NDEI
0.00084434	0.029058	0.021414	0.97699	0.058671

Παρακάτω παρατίθενται γραφικές παραστάσεις, όπου συγκρίνονται οι προβλέψεις με τις πραγματικές τιμές δεδομένων μέσης ημερήσιας θερμοκρασίας και στο πάνω μέρος των γραφικών παρατίθενται οι μετρικές απόδοσης για την εκπαίδευση της χρονοσειράς, που δείχνουν την ποιότητα των προβλέψεων με χρήση αυτού του νευροασαφούς συστήματος.

Σχήμα 5.16 Γραφική απεικόνιση σύγκρισης των προβλέψεων με χρήση ANFIS με πραγματικά δεδομένα για τα δεδομένα δοκιμής μέσης ημερήσιας θερμοκρασίας

 Για τα δεδομένα μέγιστης ημερήσιας θερμοκρασίας έχουμε τα εξής αποτελέσματα

MSE	RMSE	AME	р	NDEI
0.0016815	0.041006	0.032029	0.96413	0.073831

Παρακάτω παρατίθενται γραφικές παραστάσεις όπου συγκρίνονται οι προβλεψεις με τις πραγματικές τιμές δεδομένων μέγιστης ημερήσιας θερμοκρασίας και στο πάνω μέρος των γραφικών παρατίθενται οι μετρικές απόδοσης για την εκπαίδευση της χρονοσειράς.

Σχήμα 5.17 Γραφική απεικόνιση σύγκρισης των προβλέψεων με χρήση ANFIS με πραγματικά δεδομένα για τα δεδομένα δοκιμής μέγιστης ημερήσιας θερμοκρασίας

 Για τα δεδομένα ελάχιστης ημερήσιας θερμοκρασίας έχουμε τα εξής αποτελέσματα:

MSE	RMSE	AME	р	NDEI
0.0020884	0.045699	0.026337	0.93309	0.10512

Παρακάτω παρατίθενται γραφικές παραστάσεις όπου συγκρίνονται οι προβλεψεις με τις πραγματικές τιμές δεδομένων ελάχιστης ημερήσιας θερμοκρασίας και στο πάνω μέρος των γραφικών παρατίθενται οι μετρικές απόδοσης για την εκπαίδευση της χρονοσειράς

Σχήμα 5.18 Γραφική απεικόνιση σύγκρισης των προβλέψεων με χρήση ANFIS με πραγματικά δεδομένα για τα δεδομένα δοκιμής ελάχιστης ημερήσιας θερμοκρασίας

5.4 ΑΝΑΠΤΥΞΗ ΜΗΧΑΝΩΝ ΝΕΥΡΩΝΙΚΩΝ ΔΙΚΤΥΩΝ (Neural Committee Machines)

Για την βελτιστοποίηση των προβλέψεων που έγιναν με τη χρήση των νευρωνικών δικτύων υλοποιήθηκαν επτά διαφορετικές μηχανές απόφασης. Οι έξι από αυτές ανήκουν στην κατηγορία των στατικών μηχανών και πιο συγκεκριμένα υλοποιήθηκαν με την μέθοδο ensemble averaging, ενώ η έβδομη ανήκει στη κατηγορία των δυναμικών μηχανών και υλοποιήθηκε με βάση τη δομή mixture of experts.

5.4.1 Στατικές μηχανές νευρωνικών δικτύων

Από τις έξι στατικές μηχανές απόφασης, οι πέντε πρώτες αποτελούνται από τέσσερις experts και ένα συνδυασμό(σχήμα 5.19),διαφορετικό για τη καθε μηχανή, ενώ η έκτη αποτελείται από πέντε experts και τον συνδυασμό τους(σχήμα 5.23). Στις πρώτες πέντε μηχανές νευρωνικών δικτύων τους experts αποτελούν τα 4 "καλύτερα" σε προβλέψεις νευρωνικά δίκτυα για καθε διαφορετική χρονοσειρά, που έχει προκύψει από τις προσομοιώσεις όλων των νευρωνικών και παρουσιάζονται στη παράγραφο 5.2. Στην έκτη μηχανή μαζί με τα 4 "καλύτερα" νευρωνικά δίκτυα έχει χρησιμοποιηθεί σαν πέμπτος expert το ANFIS.

Σχήμα 5.19 Μπλοκ διάγραμμα μηχανής απόφασης που στηρίζεται στο ensemble averaging με 4 experts

<u>1^η Μηχανή νευρωνικών δικτύων</u>

Στην πρώτη μηχανή νευρωνικών που υλοποιήθηκε (έχει τη δομή του σχήματος 5.19) χρησιμοποιούνται ως experts τα τέσσερα "καλύτερα" νευρωνικά δίκτυα για κάθε διαφορετική χρονοσειρά (μέσης ημερήσιας ηλιακής ακτινοβολίας, μέσης ημερήσιας θερμοκρασίας, μέγιστης ημερήσιας θερμοκρασίας, ελάχιστης ημερήσιας θερμοκρασίας) και η έξοδος Υ της μηχανής προκύπτει από το συνδυασμό των εξόδων των νευρωνικών (y1,y2,y3,y4) με τη εξής σχέση:

$$Y = \frac{y1 + y2 + y3 + y4}{4}$$

Ο γενικός τύπος του συνδυασμού των εξόδων των experts για τη συγκεκριμένη μηχανή είναι:

$$Y = \frac{y_1 + y_2 + y_3 + \dots y_N}{N}$$

όπου $y_1, y_2, y_3...y_N$ οι έξοδοι των αντίστοιχων 1 εως N experts και N το πλήθος των experts.

Η διαδικασία που χρησιμοποιείται για τη μηχανή αυτή είναι η εξής:

 Εισάγονται όλα τα δεδομένα της ίδιας χρονοσειράς σε καθένα από τα νευρωνικά δίκτυα.

 Γίνεται εκπαίδευση και δοκιμή των νευρωνικών δικτύων (το καθένα ξεχωριστά σύμφωνα με τη δομή του και τον αλγόριθμο εκπαίδευσης που χρησιμοποιεί).

3. Η έξοδος που προκύπτει από τη φάση δοκιμής του κάθε νευρωνικού δικτύου κατευθύνεται προς το συνδυασμό.

4. Στο στάδιο του συνδυασμού χρησιμοποιείται η προαναφερθείσα σχέση που ουσιαστικά υπολογίζει το μέσο όρο των εξόδων των νευρωνικών δικτύων και υπολογίζεται η έξοδος της μηχανής.

Η έξοδος της μηχανής στη δική μας περίπτωση αποτελεί την πρόβλεψη της για τη συγκεκριμένη χρονοσειρά εισόδου. Προκειμένου να προσδιορίσουμε την ποιότητα πρόβλεψης της, υπολογίζουμε τις μετρικές απόδοσης που χρησιμοποιήθηκαν για σύγκριση των νευρωνικών δικτύων για την έξοδο της.

Παρατηρήσεις

Πρέπει να σημειωθεί ότι μιλώντας για έζοδο του νευρωνικού δικτύου δεν αναφερόμαστε σε μια τιμή,αλλα σε ένα πίνακα-στήλη τιμών που αποτελούν ημερήσιες προβλέψεις ηλιακής ακτινοβολίας και

θερμοκρασίας για πέντε και οκτώ χρόνια αντίστοιχα. Συνεπώς στο συνδυασμό προκειμένου να προκύψει η έζοδος της μηχανής, γίνονται πράζεις μεταζύ πινάκων καθώς τόσο τα y1,y2,y3,y4 όσο και η έζοδος Y είναι πίνακες-στήλες.

2^η Μηχανή νευρωνικών δικτύων

Η δεύτερη μηχανή νευρωνικών δικτύων που υλοποίηθηκε έχει ακριβώς την ίδια δομή με το πρώτη και ακολουθεί την ίδια διαδικασία υπολογισμού της εξόδου της. Η διαφοροποίηση της είναι στο τύπο που χρησιμοποιείται στο συνδυασμό.Η έξοδος Υ της δεύτερης μηχανής νευρωνικών δικτύων προκύπτει από το συνδυασμό των εξόδων των νευρωνικών (y1,y2,y3,y4) με τη εξής σχέση:

$$Y = \frac{(y1 + y2 + y3 + y4) - (y \max + y \min)}{2}$$

Ο γενικός τύπος του συνδυασμού των εξόδων των experts για τη συγκεκριμένη μηχανή είναι[C16]:

$$Y = \frac{(y_1 + y_2 + y_3 + ...y_N) - (y_{max} + y_{min})}{N - 2}$$

όπου $y_1, y_2, y_3...y_N$ οι έξοδοι των αντίστοιχων 1 εως N experts, N το πλήθος των experts και y_{max}, y_{min} η μέγιστη και ελάχιστη τιμή μεταξύ των N εξόδων.

Για την περιπτωσή μας όπου έχουμε 4 εξόδους νευρωνικών(πίνακες-στήλες), τα ymax, ymin αποτελούν τη μέγιστη και την ελάχιστη πρόβλεψη κάθε ημέρας. Δηλαδή ουσιαστικά τα ymax και ymin είναι δύο πίνακες με στοιχεία τις μέγιστες και ελάχιστες ημερήσιες προβλέψεις για τις τέσσερις εξόδους των νευρωνικών, π.χ. αν έχουμε τις προβλέψεις των τεσσάρων νευρωνικών για τρείς μέρες που

 $\varepsilon(v\alpha t: y) = \begin{bmatrix} 30\\40\\10 \end{bmatrix}, y2 = \begin{bmatrix} 29\\35\\11 \end{bmatrix}, y3 = \begin{bmatrix} 31\\37\\9 \end{bmatrix}, y4 = \begin{bmatrix} 31.5\\41\\7 \end{bmatrix} \text{ tote to } ymax = \begin{bmatrix} 31.5\\41\\11 \end{bmatrix}, y\min = \begin{bmatrix} 29\\35\\7 \end{bmatrix}.$

<u>3^η Μηχανή νευρωνικών δικτύων</u>

Η δομή της τρίτης μηχανής νευρωνικών δικτύων αποτελεί μια παραλλαγή της γενικής δομής που παρουσιάζεται στο σχήμα 5.19. Η μηχανή αυτή έχει την εξής δομή:

Σχήμα 5.20 Μπλοκ διάγραμμα 3^{ης} μηχανής νευρωνικών δικτύων που στηρίζεται στο ensemble averaging με 4 experts και χρησιμοποιεί βάρη για βελτιστοποίηση πρόβλεψης

Όπως φαίνεται στο σχήμα η 3^η μηχανή απόφασης μέχρι το στάδιο παραγωγής των experts ακολουθεί την ίδια διαδικασία με τις δύο προηγούμενες μηχανές. Ουσιαστικά διαφοροποιείται στο στάδιο του συνδυασμού, που το σπάει σε δύο στάδια. Στο 1° στάδιο πολλαπλασιάζονται καθεμιά από τις εξόδους των νευρωνικών δικτύων με το αντίστοιχο βάρος της,και στο 2° στάδιο έχουμε το άθροισμα των γινομένων των εξόδων των νευρωνικών με τα βάρη το οποίο αποτελεί και την τελική έξοδο.

Τα βάρη w1,w2,w3,w4, παράγονται από τον εξής τύπο [C8]:

$$w_i = \frac{1}{s_i(\frac{1}{s_1} + \frac{1}{s_2} + \dots + \frac{1}{s_k})}$$
, i=1...k

όπου s_i τυπική απόκλιση του σφάλματος πρόβλεψης του i expert (νευρωνικού δικτύου),και k ο τελευταίος expert. Ισχύει πάντα ότι $\Sigma w_i = 1$. Οπότε για την δική μας περίπτωση το βάρος w1 υπολογίζεται από τον εξής τύπο:

w1=
$$\frac{1}{s_1(\frac{1}{s_1}+\frac{1}{s_2}+\frac{1}{s_3}+\frac{1}{s_4})}$$

όπου s_1, s_2, s_3, s_4 οι τυπικές αποκλίσεις των σφαλμάτων πρόβλεψης του 1^{ου}, 2^{ου}, 3^{ου} και 4^{ου} νευρωνικού δικτύου αντίστοιχα. Το σφάλμα πρόβλεψης ορίζεται ως η διαφορά: (πρόβλεψη)-(πραγματική τιμή).

Η τελική έξοδος της μηχανής απόφασης προκύπτει από τον εξής τύπο:

$$Y = \Sigma w_i y_i$$
.

4^η Μηχανή νευρωνικών δικτύων

Η τέταρτη μηχανή νευρωνικών δικτύων έχει την ίδια δομή με τη πρώτη και τη δεύτερη και διαφέρει από αυτές στο τρόπο συνδυασμού των εισόδων. Στο στάδιο του συνδυασμού που περιγράφεται στο μπλοκ διάγραμμα του σχήματος 5.19 η 4^η μηχανή νευρωνικών δικτύων χρησιμοποιεί ένα νευρωνικό δίκτυο.

Το νευρωνικό δίκτυο έχει δομή 4-10-1, δηλαδή έχει τέσσερις εισόδους, δέκα κόμβους στο ενδιάμεσο στρώμα και μια έξοδο, η οποία αποτελεί και την έξοδο της μηχανής. Το νευρωνικό αυτό δίκτυο εκπαιδεύεται με τον αλγόριθμο Levenberg-Marquardt και χρησιμοποιεί γραμμική συνάρτηση ενεργοποίησης στο ενδιάμεσο στρώμα.

Έτσι μετά την εκπαίδευση καθενός από τα νευρωνικά δίκτυα(experts), προκύπτουν οι έξοδοί τους,δηλαδή οι προβλέψεις τους, οι οποίες με τη σειρά τους αποτελούν τις εισόδους του νευρωνικού δικτύου εξόδου της μηχανής. Το δίκτυο εκπαιδεύεται και δοκιμάζεται με τα ίδια δεδομένα. Έτσι σαν έξοδο παίρνουμε τις προβλέψεις του τις οποίες όπως και για ολές τις παραπάνω μηχανές τις αξιολογούμε με βάση τις μετρικές απόδοσης που έχουν χρησιμοποιηθεί για την αξιολόγηση των νευρωνικών δικτύων. Παρακάτω παρατίθεται το μπλοκ διάγραμμα της 4^{ης} μηχανής.

Σχήμα 5.21 Μπλοκ διάγραμμα 4^{ης} μηχανής νευρωνικών δικτύων που στηρίζεται στο ensemble averaging με 4 experts και σαν συνδυασμό χρησιμοποιεί ένα νευρωνικό δίκτυο 4-10-1

<u>5^η Μηχανή νευρωνικών δικτύων</u>

Στη πέμπτη μηχανή νευρωνικών δικτύων γίνεται χρήση του ANFIS στο στάδιο του συνδυασμού. Και αυτή η μηχανή έχει τη δομή του σχήματος 5.19. Τις εισόδους του ANFIS αποτελούν οι έξοδοι των τεσσάρων νευρωνικών δικτύων. Η διαδικασία μέχρι το στάδιο του συνδυασμού είναι η ίδια με τις προηγούμενες μηχανές.

Για την εκπαίδευση με ANFIS χρησιμοποιηθηκε ο ANFIS Editor που είναι υλοποιημένος στο Fuzzy Logic Toolbox του προγράμματος Matlab. Κατά τη λειτουργία του ANFIS φορτώσαμε τα δεδομένα εκπαίδευσης του, που είναι ένας πίνακας που αποτελείται από 4 στήλες, που η καθεμιά αποτελεί έξοδο ενός από τα τέσσερα "καλύτερα" νευρωνικά, και τα εκπαιδεύσαμε όπως περιγράφεται στο κεφάλαιο 4. Ο ελεγκτής ANFIS που υλοποιήθηκε είχε τέσσερις εισόδους και μια έξοδο.Στη συνέχεια έγινε δοκιμή με τα ίδια δεδομένα.Οι έξοδοι της δοκιμής αποτελούν και τις τελικές προβλέψεις της 5^{ης} μηχανής.

Σχήμα 5.22 Μπλοκ διάγραμμα της $5^{η_{\rm S}}$ μηχανής όπου ο συδυασμός εξόδων γίνεται από το ANFIS

6^η Μηχανή νευρωνικών δικτύων

Η 6^η μηχανή νευρωνικών δικτύων έχει τη δομή που φαίνεται στο σχήμα 5.23. Αποτελείται από 5 experts αντί για τέσσερις που έχουν οι προηγούμενες μηχανές απόφασης. Από τους 5 experts οι τέσσερις είναι τα "καλύτερα" νευρωνικά δίκτυα που έχουν χρησιμοποιηθεί και για τις άλλες μηχανές, ενώ ο πέμπτος expert είναι το σύστημα ANFIS. Ο τελικός συδυασμός των εξόδων των experts γίνεται, όπως και στη περίπτωση της 2^{ης} μηχανής. Δηλαδή ο συνδυασμός των εξόδων των experts δίνεται από τον τύπο:

$$Y = \frac{(y_1 + y_2 + y_3 + ...y_N) - (y_{max} + y_{min})}{N - 2}$$

όπου $y_1, y_2, y_3...y_N$ οι έξοδοι των αντίστοιχων 1 εως N experts, N το πλήθος των experts και y_{max}, y_{min} η μέγιστη και ελάχιστη τιμή μεταξύ των N εξόδων. Το μπλοκ διάγραμμα της μορφής της 6^{ης} μηχανής νευρωνικών δικτύων φαίνεται στο σχήμα 5.23. Με N.Δ. συμβολίζονται τα Νευρωνικά Δίκτυα.

Σχήμα 5.23 Μπλοκ διάγραμμα μηχανής απόφασης που στηρίζεται στο ensemble averaging με 5 experts

5.4.2 Δυναμικές μηχανές νευρωνικών δικτύων

7^η Μηχανή νευρωνικών δικτύων

Η έβδομη μηχανή νευρωνικών δικτύων που υλοποιήθηκε αποτελεί μια δυναμική μηχανή, και στηρίχτηκε στη δομή mixture of experts. Σαν experts χρησιμοποιήθηκαν τα τέσσερα "καλύτερα" νευρωνικά δίκτυα για κάθε χρονοσειρά. Το Gating Network αποτελεί ένα νευρωνικό δίκτυο με δομή 7-5-4, με αλγόριθμο εκπαίδευσης τον Levenberg Marquardt. Η είσοδος του gating network είναι η ίδια που μπαίνει και στα νευρωνικά δίκτυα. Οι έξοδοι του gating network αποτελούν τα βάρη για τις αντίστοιχες εξόδους των νευρωνικών δικτύων. Τα βάρη πολλαπλασιάζονται με τις αντίστοιχες εξόδους των νευρωνικών δικτύων και το άθροισμα των γινομένων τους αποτελεί την έξοδο της μηχανής. Παρακάτω παρατίθεται το μπλοκ διάγραμμα για τη δομή MOE που υλοποιήθηκε.[C4]

Σχήμα 5.24 Μπλοκ διάγραμμα μηχανής απόφασης που στηρίζεται στη δομή mixture of experts

5.4.3 Πρόβλεψη με μηχανές νευρωνικών δικτύων – Αποτελέσματα προβλέψεων

Η χρήση των μηχανών νευρωνικών δικτύων για πρόβλεψη της ηλιακής ακτινοβολίας και της θερμοκρασίας απέδειξε ότι έχουμε βελτιστοποίηση των προβλέψεων σε σχέση με τις απλές δομές νευρωνικών δικτύων, με κάποιες μηχανές σε μικρό βαθμό και με κάποιες άλλες σε μεγαλύτερο. Πριν προχωρήσουμε στη παράθεση των αποτελεσμάτων των προβλέψεων και τη σύγκριση των μηχανών πρέπει να αναφερθούν κάποιες λεπτομέρειες σχετικά με την υλοποίηση τους.

 Τα "καλύτερα" νευρωνικά που χρησιμοποιήθηκαν στις μηχανές νευρωνικών δικτύων είχαν διαφορετικό αριθμό εισόδων.
 Απ'αυτό εξυπακούεται ότι ένα νευρωνικό δίκτυο τριών εισόδων έκανε πρόβλεψη με εισόδους τρεις προηγούμενες ημερήσιες τιμές και είχε σαν έξοδο την επόμενη ημερήσια τιμη, ενώ ένα νευρωνικό δίκτυο επτά εισόδων είχε σαν εισόδους επτά προηγούμενες ημερήσιες τιμές και σαν έξοδο τη πρόβλεψη της επόμενης. Αυτό είχε σαν αποτέλεσμα το νευρωνικό τριών εισόδων να έχει σαν πρώτη έξοδο τη πρόβλεψη για την τέταρτη τιμή της χρονοσειράς δεδομένων, ενώ το νευρωνικό επτά εισόδων να έχει σαν πρώτη έξοδο την πρόβλεψη για την όγδοη τιμή της χρονοσειράς δεδομένων. Δηλαδή στη έξοδο του νευρωνικού τριών εισόδων υπήρχαν τέσσερις παραπάνω ημερήσιες προβλέψεις από ότι στο νευρωνικό επτά εισόδων.

Για να λυθεί το πρόβλημα και να είναι δυνατόν να γίνει συνδυασμός των προβλέψεων που αφορούν τις ίδιες ημέρες, μετά την εκπαίδευση και τη δοκιμή των τεσσάρων νευρωνικών δικτύων, αφαιρούνταν από τις εξόδους των νευρωνικών που είχαν μικρότερο αριθμό εισόδων από επτά, οι προβλέψεις που αφορούσαν τις επτά πρώτες ημερήσιες τιμές της χρονοσειράς εισόδου. Πιο αναλυτικά, για να έχουν όλες οι έξοδοι των νευρωνικών δικτύων τον ίδιο αριθμό στοιχείων στους πίνακες εξόδου τους,για κάθε νευρωνικό διαφορετικού αριθμού εισόδων έγινε η εξής διαδικασία:

- Για νευρωνικό 2 εισόδων, δεν λήφθηκαν υπόψη οι 5 πρώτες προβλέψεις
- Για νευρωνικό 3 εισόδων, δεν λήφθηκαν υπόψη οι 4 πρώτες
 προβλέψεις
- Για νευρωνικό 5 εισόδων, δεν λήφθηκαν υπόψη οι 2 πρώτες προβλέψεις
- Για νευρωνικό 7 εισόδων, λήφθηκαν υπόψη όλες οι προβλέψεις.
- 2. Οι περισσότερες από τις εξόδους των "καλύτερων" νευρωνικών δικτύων ήταν κανονικοποιημένες με κανονικοποίηση 0.1-0.9. Στο σύνολο των 16 διαφορετικών εξόδων των νευρωνικών για τις τέσσερις διαφορετικές χρονοσειρές (μέσης,μέγιστης και ελάχιστης ημερήσιας θερμοκρασίας και μέσης ημερήσιας ηλιακής ακτινοβολίας), μόνο οι τρεις έξοδοι ήταν διαφορετικής μορφής και είχαν πραγματικές τιμές, ενώ οι υπόλοιπες δεκατρεις ήταν κανονικοποιημένες 0.1-0.9. Επειδή ο συνδυασμός των εξόδων έπρεπε να γίνει με ίδια δεδομένα, οι έξοδοι που περιείχαν πραγματικές τιμές μετασχηματίστηκαν με κανονικοποίηση 0.1-0.9. Έτσι οι προβλέψεις των μηχανών νευρωνικών δικτύων γίνονταν αρχικά με κανονικοποίηση 0.1-0.9 και στη συνέχεια αποκανονικοποιούνταν σε πραγματικά δεδομένα.

Στη συνέχεια θα γίνει σύγκριση των προβλέψεων των επτά μηχανών νευρωνικών δικτύων με βάση τις ίδιες μετρικές απόδοσης που χρησιμοποιήθηκαν για τα νευρωνικά δίκτυα, για εξόδους με κανονικοποιημένα δεδομένα 0.1-0.9.

5.4.3.1 Αποτελέσματα προβλέψεων ηλιακής ακτινοβολίας με τις επτά μηχανές νευρωνικών δικτύων

Στον παρακάτω πίνακα παρατίθενται οι μετρικές απόδοσης για τις προβλέψεις των επτά υλοποιημένων μηχανών νευρωνικών δικτύων για μέσες ημερήσιες τιμές ηλιακής ακτινοβολίας.

Μηχανές					
Νευρωνικών Δικτύων	M.S.E.	R.M.S.E.	A.M.E.	р	N.D.E.I
1 ^η μηχανή	0.010734	0.103606	0.076094	0.819757	0.190840
2 ^η μηχανή	0.010777	0.103811	0.076134	0.818972	0.191183
3 ^η μηχανή	0.010734	0.103605	0.076095	0.819758	0.190840
4 ^η μηχανή	0.010707	0.103477	0.076157	0.820246	0.187413
5 ^η μηχανή	0.010509	0.102514	0.073934	0.824584	0.185669
6 ^η μηχανή	0.010769	0.103775	0.076284	0.819106	0.191550
7 ^η μηχανή	0.010721	0.103542	0.076080	0.820007	0.190760

Πίνακας 5.13. Αποτελέσματα μετρικών απόδοσης για τις προβλέψεις μέσων ημερησίων τιμών ηλιακής ακτινοβολίας με κανονικοποίηση 0.1-0.9 για τις επτά μηχανές νευρωνικών δικτύων

Παρακάτω παρατίθενται γραφικές παραστάσεις όπου συγκρίνονται οι τιμές των μετρικών απόδοσης για τις επτά μηχανές νευρωνικών δικτύων για δεδομένα μέσων ημερησίων τιμών ηλιακής ακτινοβολίας με κανονικοποίηση 0.1-0.9.

Σχήμα 5.25 Γραφικές παραστάσεις σύγκρισης των 7 μηχανών απόφασης με βάση τις μετρικές απόδοσης για πρόβλεψη ηλιακής ακτινοβολίας

5.4.3.2 Αποτελέσματα προβλέψεων θερμοκρασίας με τις επτά μηχανές νευρωνικών δικτύων

Παρακάτω παρατίθενται οι πίνακες με τις μετρικές απόδοσης για την πρόβλεψη των τιμών μέσης,μέγιστης και ελάχιστης ημερήσιας θερμοκρασίας καθώς και οι γραφικές παραστάσεις σύγκρισης των μετρικών για τις επτά μηχανές νευρωνικών δικτύων που υλοποιήθηκαν

Μηχανές					
Νευρωνικών Δικτύων	M.S.E.	R.M.S.E.	A.M.E.	р	N.D.E.I
1 ^η μηχανή	0.000993	0.031512	0.023604	0.977100	0.062957
2 ^η μηχανή	0.000803	0.028337	0.020760	0.976786	0.057955
3 ^η μηχανή	0.000849	0.029145	0.021300	0.977083	0.058859
4 ^η μηχανή	0.000790	0.028103	0.020588	0.977153	0.057312
5 ^η μηχανή	0.000804	0.028356	0.021403	0.977570	0.057826
6 ^η μηχανή	0.000800	0.028292	0.020654	0.976990	0.057617
7 ^η μηχανή	0.000983	0.031354	0.023408	0.977070	0.062679

 Για τα δεδομένα μέσης ημερήσιας θερμοκρασίας έχουμε τα εξής αποτελέσματα:

Πίνακας 5.14. Αποτελέσματα μετρικών απόδοσης για τις προβλέψεις μέσων ημερησίων τιμών θερμοκρασίας με κανονικοποίηση 0.1-0.9 για τις επτά μηχανές νευρωνικών δικτύων

Παρακάτω παρατίθενται οι γραφικές παραστάσεις όπου συγκρίνονται οι τιμές των μετρικών απόδοσης για τις επτά μηχανές νευρωνικών δικτύων για μέσες ημερήσιες τιμές θερμοκρασίας με κανονικοποίηση 0.1-0.9.

Σχήμα 5.26 Γραφικές παραστάσεις σύγκρισης των 7 μηχανών απόφασης με βάση τις μετρικές απόδοσης για πρόβλεψη μέσης ημερήσιας θερμοκρασίας

 Για τα δεδομένα μέγιστης ημερήσιας θερμοκρασίας έχουμε τα εξής αποτελέσματα:

Μηχανές					
Νευρωνικών Δικτύων	M.S.E.	R.M.S.E.	A.M.E.	р	N.D.E.I
1η μηχανή	0.002195	0.046853	0.036655	0.964787	0.084298
2η μηχανή	0.001978	0.044477	0.034630	0.964558	0.079813
3η μηχανή	0.001953	0.044196	0.034473	0.964791	0.079300
4η μηχανή	0.001522	0.039016	0.029650	0.964819	0.068863
5η μηχανή	0.001532	0.039135	0.029662	0.965210	0.069073
6η μηχανή	0.001735	0.041647	0.032363	0.964745	0.074608
7η μηχανή	0.002245	0.047382	0.037059	0.964699	0.085280

Πίνακας 5.15. Αποτελέσματα μετρικών απόδοσης για τις προβλέψεις μέγιστων ημερησίων τιμών θερμοκρασίας με κανονικοποίηση 0.1-0.9 για τις επτά μηχανές νευρωνικών δικτύων

Παρακάτω παρατίθενται οι γραφικές παραστάσεις όπου συγκρίνονται οι τιμές των μετρικών απόδοσης για τις επτά μηχανές νευρωνικών δικτύων για μέγιστες ημερήσιες τιμές θερμοκρασίας με κανονικοποίηση 0.1-0.9.

Σχήμα 5.27 Γραφικές παραστάσεις σύγκρισης των 7 μηχανών απόφασης με βάση τις μετρικές απόδοσης για πρόβλεψη μέγιστης ημερήσιας θερμοκρασίας

 Για τα δεδομένα ελάχιστης ημερήσιας θερμοκρασίας έχουμε τα εξής αποτελέσματα

Μηχανές					
Νευρωνικών Δικτύων	M.S.E.	R.M.S.E.	A.M.E.	р	N.D.E.I
1η μηχανή	0.001691	0.041117	0.025197	0.943432	0.096199
2η μηχανή	0.001688	0.041081	0.025170	0.943528	0.096098
3η μηχανή	0.001690	0.041115	0.025197	0.943436	0.096195
4η μηχανή	0.001677	0.040946	0.025196	0.943708	0.095160
5η μηχανή	0.001536	0.039193	0.024945	0.948921	0.091084
6η μηχανή	0.001693	0.041143	0.025099	0.943380	0.096137
7η μηχανή	0.001698	0.041211	0.025210	0.943187	0.096441

Πίνακας 5.16. Αποτελέσματα μετρικών απόδοσης για τις προβλέψεις ελάχιστων ημερησίων τιμών θερμοκρασίας με κανονικοποίηση 0.1-0.9 για τις επτά μηχανές νευρωνικών δικτύων

Παρακάτω παρατίθενται οι γραφικές παραστάσεις όπου συγκρίνονται οι τιμές των μετρικών απόδοσης για τις επτά μηχανές νευρωνικών δικτύων για ελάχιστες ημερήσιες τιμές θερμοκρασίας με κανονικοποίηση 0.1-0.9.

Σχήμα 5.28 Γραφικές παραστάσεις σύγκρισης των 7 μηχανών απόφασης με βάση τις μετρικές απόδοσης για πρόβλεψη ελάχιστης ημερήσιας θερμοκρασίας

5.5 ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΕΚΠΑΙΔΕΥΣΗΣ ΜΕ ΠΡΑΓΜΑΤΙΚΑ ΔΕΔΟΜΕΝΑ

Παρακάτω παρατίθενται οι γραφικές παραστάσεις που δείχνουν τις προβλέψεις και τα αντίστοιχα δεδομένα του συνόλου δοκιμής για πραγματικά δεδομένα των χρονοσειρών μέσης ημερήσιας ηλιακής ακτινοβολίας, μέσης ,μέγιστης και ελάχιστης ημερήσιας θερμοκρασίας για πρόβλεψη με το "καλύτερο" νευρωνικό δίκτυο, με το ANFIS και με την "καλύτερη" συνεργατική μηχανή συλλογικής απόφασης.

Οι γραφικές παραστάσεις παρατίθενται ως εξής: για κάθε διαφορετική χρονοσειρά συμπεριλαμβάνονται οι γραφικές παραστάσεις για όλα τα δεδομένα δοκιμής και για ένα μικρότερο δείγμα των ίδιων δεδομένων (2-4 μήνες προβλέψεων) με το "καλύτερο" νευρωνικό δίκτυο, το ANFIS και την "καλύτερη" μηχανή. Έχουμε λοιπόν:

1. Ηλιακή Ακτινοβολία

Σχημα 5.30 Ι ραφικες παραστασεις προβλεψης μεσης ημερησιας ηλιακης ακτινοβολίας για χρονοσειρά πραγματικών δεδομένων με το ANFIS

Σχήμα 5.31 Γραφικές παραστάσεις πρόβλεψης μέσης ημερήσιας ηλιακής ακτινοβολίας για χρονοσειρά πραγματικών δεδομένων με την 5^η συνεργατική μηχανή συλλογικής απόφασης

2. Μέση ημερήσια θερμοκρασία

Σχήμα 5.34 Γραφικές παραστάσεις πρόβλεψης μέσης ημερήσιας θερμοκρασίας για χρονοσειρά πραγματικών δεδομένων με την 5^η συνεργατική μηχανή συλλογικής απόφασης

3. Μέγιστη ημερήσια θερμοκρασία

Προβλέψεις-Μετρήσεις μέγιστης ημερήσιας	Προβλέψεις-Μετρήσεις μέγιστης ημερήσιας
θερμοκρασίας με το ANFIS για όλο το σύνολο	θερμοκρασίας με το ANFIS για ένα μικρότερο
δεδομένων δοκιμής	δείγμα δεδομένων δοκιμής

Σχήμα 5.37 Ι ραφικές παραστάσεις πρόβλεψης μέγιστης ημερήσιας θερμοκρασίας για χρονοσειρά πραγματικών δεδομένων με την 5^η συνεργατική μηχανή συλλογικής απόφασης

4. Ελάχιστη ημερήσια θερμοκρασία

Σχήμα 5.40 Γραφικές παραστάσεις πρόβλεψης ελάχιστης ημερήσιας θερμοκρασίας για χρονοσειρά πραγματικών δεδομένων με την 5^η συνεργατική μηχανή συλλογικής απόφασης
κεφαλαίο **6**

ΣΥΜΠΕΡΑΣΜΑΤΑ – ΠΕΡΑΙΤΕΡΩ ΕΡΕΥΝΑ

Στην παρούσα εργασία χρησιμοποιήθηκαν ευφυή συστήματα προκειμένου να επιτευχθεί βελτιστοποίηση πρόβλεψης των εξής μετεωρολογικών παραμέτρων: Ηλιακής ακτινοβολίας και Θερμοκρασίας.

Όσον αφορά τα Νευρωνικά Δίκτυα Πρόβλεψης που υλοποιήθηκαν, στόχος ήταν να ανακαλυφθεί, μέσα από δοκιμές, η βέλτιστη αρχιτεκτονική των Νευρωνικών Δικτύων που να επιτελεί την καλύτερη πρόβλεψη όσον αφορά τις μετεωρολογικές παραμέτρους της θερμοκρασίας και της ηλιακής ακτινοβολίας. Μέσα από τις δοκιμές προέκυψαν τα εξής συμπεράσματα:

- Καταλληλότερη, σε ποιότητα και σε ταχύτητα, μέθοδος εκπαίδευσης
 των Νευρωνικών Δικτύων Πρόβλεψης αποδείχτηκε η Levenberg-Marquardt Backpropagation.
- Η κανονικοποίηση των δεδομένων στην περιοχή 0.1-0.9 αποδείχτηκε η καλύτερη σε συνδυασμό με σιγμοειδείς συναρτήσεις στους ενδιάμεσους κόμβους.
- Όπως φάνηκε από την εφαρμογή της συνάρτησης αυτοσυσχέτισης για τα δεδομένα, το πλήθος των χρονικών καθυστερήσεων (lags) που έπρεπε να χρησιμοποιήσουμε για τη δόμηση της χρονοσειράς ήταν 2-7. Οι καθυστερήσεις αυτές μας έδωσαν αυτοσυσχετίσεις > 0.85 για τη θερμοκρασία και >0.65 για την ηλιακή ακτινοβολία. Επομένως οι είσοδοι των Νευρωνικών Δικτύων είναι από 2 εως 7 με καλύτερη επιλογή 5 και 7.
- Όσον αφορά τον αριθμό των κόμβων του ενδιάμεσου στρώματος αυτός δεικνύει την εμβάθυνση που επιχειρείται στη χρονοσειρά για την εξόρυξη των χρήσιμων χαρακτηριστικών ιδιοτήτων της. Η επιλογή του πλήθους των εσωτερικών κόμβων όπως φάνηκε από τα πειράματα εξαρτάται ισχυρά από το είδος της χρονοσειράς (Ηλιακής

ακτινοβολιάς ή Θερμοκρασίας), τον αριθμό των εισόδων, την πολυπλοκότητα της χρονοσειράς.

 Από το σύνολο των πειραμάτων προέκυψαν για την ηλιακή ακτινοβολία και τη θερμοκρασία οι βέλτιστες αρχιτεκτονικές Νευρωνικών Δικτύων ως forecasters. Η αξιολόγησή τους πραγματοποιήθηκε με την καταγραφή των δεικτών: MSE, AME, RMSE, ρ, NDEI.

Σε σχέση με το νευροασαφές σύστημα ANFIS που υλοποιήθηκε και χρησιμοποιήθηκε για την εκπαίδευση των δεδομένων των χρονοσειρών παρατηρούμε ότι ο συνδύασμός, των γλωσσικών κανόνων της ασαφούς λογικής με την κωδικοποίηση της γνώσης μέσω των συναπτικών βαρών, έχει σαν αποτέλεσμα μια αρκετά ποιοτική πρόβλεψη, συγκρίσιμη με τις προβλέψεις των 'καλύτερων' νευρωνικών δικτύων που προέκυψαν απο τα πειράματα που προαναφέρθηκαν.

Τέλος έγινε μια προσπάθεια συνδυασμού Νευρωνικών Δικτύων για τη βελτιστοποίηση της πρόβλεψης των ατομικών forecasters, με την υλοποίηση των μηχανών απόφασης ή μηχανών νευρωνικών δικτύων. Υλοποιήθηκαν δύο είδη συνδυασμών: στατικοί και δυναμικοί. Από τα αποτελέσματα προέκυψαν τα εξής:

Γενικότερα πάντως παρατηρείται ότι ο συνδυασμός της ασαφούς λογικής και των μεθόδων εκπαίδευσης των νευρωνικών δικτύων δημιουργεί καλύτερους forecasters. Αυτό οφείλεται στο γεγονός ότι στα Ν.Δ. η πληροφορία από τη χρονοσειρά αποθηκεύεται στα συναπτικά βάρη του δικτύου, ενώ στα ασαφή συστήματα περιγράφεται με γλωσσικούς κανόνες. Οι γλωσσικοί κανόνες εμπεριέχουν ασαφή σύνολα για να εκφράσουν με γλωσσικές μεταβλητές την περιοχή μεταβλητότητας των τιμών των εισόδων. Ένα σημαντικό πλεονέκτημα των ασαφών συστημάτων είναι η ενσωμάτωση στο σύστημα εμπειρικών κανόνων.

Σε σχέση με την ερευνητική εργασία που έγινε στον τομέα της πρόβλεψης μετεωρολογικών παραμέτρων, με χρήση ευφυών τεχνικών, μπορούν να διατυπωθούν οι εξής προτάσεις για περαιτέρω έρευνα:

- Σύγκριση ευφυών τεχνικών πρόβλεψης με συμβατικές τεχνικές.
- Ασαφή συστήματα πρόβλεψης που συνδυάζουν περισσότερες από μία μετεωρολογικές παραμέτρους για πρόβλεψη.
- Χρησιμοποίηση Νευρωνικών και Νευροασαφών συστημάτων για διόρθωση της πρόβλεψης σε μεγάλα υπολογιστικά συστήματα πρόγνωσης καιρού.
- Νευροασαφή συστήματα για την πρόβλεψη μετεωρολογικών παραμέτρων σε περιοχές από μετρήσεις σταθμών που γεωγραφικά γειτνιάζουν με την περιοχή.(Περιοχές χωρίς σταθμούς μέτρησης ή με σταθμούς αλλά χωρίς ιστορική πληροφορία)
- Σύνδεση νευροασαφών predictors για την πρόβλεψη της ζήτησης ηλεκτρικού φορτίου σε μια περιοχή.
- Οι τεχνικές αυτές μπορούν να χρησιμοποιηθούν για πρόβλεψη μετεωρολογικών παραμέτρων σε περιοχές όπου μελετάται το αιολικό δυναμικό της περιοχής.

ПАРАРТНМА

1. Πίνακες

Ηλιακή Ακτινοβολία

Για την ηλιακή ακτινοβολία υλοποιήθηκαν 3 πίνακες με αποτελέσματα από προσομοιώσεις στα νευρωνικά.Οι πίνακες αυτοί περιέχουν τα εξής δεδομένα:

a.real data(πραγματικά δεδομένα)

b.mean=0,std=1 data(Κανονικοποιημένα δεδομένα με μέση τιμη 0,τυπική απόκλιση 1)

c.0.1-0.9 normalization data(Κανονιοποιημένα δεδομένα 0.1-0.9)

Παρακάτω παρατίθενται οι επεξηγήσεις των όρων που υπάρχουν στους πίνακες.

Lm= Levenberg-Marquardt backpropagation(Μέθοδος εκπαίδευσης)

IN=number of inputs(Αριθμός εισόδων)

HID=number of nodes in the hidden layer(Αριθμός κόμβων στο ενδιάμεσο στρώμα)

OUT=number of nodes in the output layer(Αριθμός κόμβων στο στρώμα εξόδου)

Metr=Metrics(Μετρικές απόδοσης)

a.f.=activation function of hidden layer(Συνάρτηση ενεργοποίησης του ενδιάμεσου στρώματος)

LINEAR=Γραμμική(αναφέρεται στη συνάρτηση ενεργοποίησης)

TANSIG=Σιγμοειδής(αναφέρεται στη συνάρτηση ενεργοποίησης)

Epochs=Διάρκεια εκπαίδευσης σε εποχές

c.t.=computation time (διάρκεια εκπαίδευσης και δοκιμής σε seconds)

M.S.E.=Mean Square Error (Μέσο τετραγωνικό σφάλμα)

A.M.E.=Absolute Mean Error (Απόλυτο μέσο σφάλμα)

R.M.S.E.=Root Mean Square Error (ρίζα του μέσου τετργωνικού σφάλματος)

ρ= Correlation Coefficient (Συντελεστής συσχέτισης)

N.D.E.I.= Normalized Root Mean Square Index (Κανονικοποιημένος δείκτης ρίζας μέσου τετραγωνικού σφάλματος)

0
- 24
u

PREDICTOR(lm)		TRAINING	r			TESTING		EPOCHS
IN-HID-OUT								linear tansig
2-2-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
	c.t.	3.886	0.49		c.t.	0.01	0.01	
	M.S.E	7902.28	19425		M.S.E	8488.9	21330	72
	AME	64.734	118.1		AME	67.8235	126.0056	200
	RMSE	88.8948	139.37		RMSE	92.1352	146.494	200
	р	0.78911	0.27		р	0.78709	0.22088	
	NDEI	0.23457	0.3678		NDEI	0.23734	0.37623	
2-5-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
	c.t.	2.904	0.7		c.t.	0.02	0.01	
	M.S.E	7902.28	20325		M.S.E	8488.9	21310	10
	AME	64.734	118.165		AME	67.8235	125.01	200
	RMSE	88.8948	139.3712		RMSE	92.1352	145.44	200
	р	0.78911	0.285		р	0.78709	0.2388	
	NDEI	0.23457	0.3677		NDEI	0.23734	0.3664	
2-10-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
	c.t.	3.284	1.2		c.t.	0.01	0.01	
	M.S.E	7902.28	20200.3		M.S.E	8488.9	20310	42
	AME	64.734	116.15		AME	67.8235	122.11	200
	RMSE	88.8948	125.3712		RMSE	92.1352	143.1441	200
	р	0.78911	0.325		р	0.78709	0.29658	
	NDEI	0.23457	0.366		NDEI	0.23734	0.3687	
2-15-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
	c.t.	1.952	3.7		c.t.	0.01	0.01	10
	M.S.E	7902.28	18325		M.S.E	8488.9	20710	200
	AME	64.734	115.15		AME	67.8235	123.15	200
	RMSE	88.8948	136.37		RMSE	92.1352	144.41	
	р	0.78911	0.3364		р	0.78709	0.2768	
	NDEI	0.23457	0.3655		NDEI	0.23734	0.3717	
3-3-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
	c.t.	2.063	0.7		c.t.	0.01	0.01	
	M.S.E	7511.7245	20325		M.S.E	7961.158	22710	57
	AME	63.4061	122.15		AME	65.4578	128.15	200
	RMSE	86.6702	146.3		RMSE	89.2253	148.41	200
	р	0.80087	0.1364		р	0.80165	0.1268	
	NDEI	0.22869	0.3755		NDEI	0.22979	0.3817	
3-5-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
	c.t.	2.443	2.624		c.t.	0.01	0.01	50
	M.S.E	7511.7245	7320.03		M.S.E	7961.158	7782	200
	AME	63.4061	62.4473		AME	65.4578	63.986	
	RMSE	86.6702	85.5572		RMSE	89.2253	88.2199	
	p	0.80087	0.80657		p	0.80165	0.80667	
	NDEI	0.22869	0.2215		NDEI	0.22979	0.2271	
3-10-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
	c.t.	1.513	27.7		c.t.	0.02	0.02	12
	M.S.E	7511.7245	18325		M.S.E	7961.158	20825	200
	AME	63.4061	114.165		AME	65.4578	124.16	
	RMSE	86.6702	136.37		RMSE	89.2253	144.37	
	p	0.80087	0.33484		p	0.80165	0.2655	
	NDEI	0.22869	0.3597		NDEI	0.22979	0.3777	
3-15-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
	c.t.	2.133	7.76		c.t.	0.01	0.02	
	M.S.E	7511.7245	17325.1		M.S.E	7961.158	19585.2	8
	AME	63.4061	108.16	11	AME	65.4578	119.56	-

	RMSE	86.6702	136.17		RMSE	89.2253	139.34	200
	р	0.80087	0.4184		р	0.80165	0.35055	
	NDEI	0.22869	0.347		NDEI	0.22979	0.36044	
5-3-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
5 5 1	c.t.	3.515	0.55		c.t.	0.01	0.01	Q 1
	MSE	7238.083	19325		MSE	7652.773	21210.6	01
	AME	62 4059	118 465		AME	63 9124	126.01	200
	RMSE	85 0769	139 4112		RMSE	87 4801	145 74	
	n	0.80899	0.26853		n	0.80998	0.2288	
	NDFI	0.22446	0.36783		NDFI	0.22518	0.3754	
551	Motr/o f		TANSIG	┙┤	Motr/o f		TANSIG	
3-3-1		2.644	1 76				0.03	
	MSE	7238 083	1.70		MSE	7652 773	10825	
	MI.S.L	62 4050	110.15		AME	62 0124	17025	40
	AME	02.4039 85.0760	110.13		AME	03.9124	119.13	200
	RNISE	0.80800	0.2084		RNISE	0 20002	139.37	
	P NDEI	0.22446	0.3964		P NDEI	0.22518	0.3323	
5 10 1	NDEI Motr/o f		U.J.J.	1	NDL1 Motr/o f		TANSIC	
5-10-1	Meu/a.i.	2 024	1 822		Nieu/a.i.		1 ANSIG	
	C.L.	7228 082	1.052		MSE	7652 773	10315	
	AME	62 4050	1/203.1		AME	63 0124	17515	19
	DMSE	02.4039 85.0760	121.27		DMSE	97 4901	120.17	200
	RIVISE	0.80800	0.418		RIVISE D	0 80008	0.3625	
	P NDEI	0.22446	0.410	11	P NDEI	0.22518	0.3023	
5 15 1		U.22440	0.3472	$\left \right $	NDEI Materia 6	U.22318	0.53807	
5-15-1	Metr/a.i.	LINEAR	TANSIG		Metr/a.i.	LINEAR	TANSIG	
	C.L.	3.333	5.445	_	C.L.	0.02	0.05	9
	M.S.E	7238.083	1/0/5.1	-	M.S.E	/052.775	19945.8	200
	AME	02.4059 85.0760	110.19	-	AME	03.9124	120.13	
	RIVISE	0.80800	152.954	_	KNISE	0 20002	141.57	
	p NDEI	0.80899	0.39518		p NDEI	0.80998	0.3325	
7.2.1	NDEI Motrio f			+	NDEI Motrio f		0.30337	
/-3-1	Meu/a.i.	LINEAK 8 872	0.83		Nieu/a.i.	LINEAK	1ANSIO	
	C.L.	7040 174	20262		MCE	7482.011	0.02	
	MI.S.L	61 8442	122.03		AME	62 2697	129 77	174
	DMSE	83 0504	1/2 27		DMSE	86 5044	1/2 32	200
	RIVISE	0.81443	0.13788	11	RIVISE D	0.81433	0 11136	
	NDEL	0.22149	0.13788		P NDEI	0.22256	0.38152	
		0.22149		4		0.22230	0.38132	
/-5-1	Metr/a.i.	LINEAK	1 ANSIG	-	Metr/a.i.	LINEAK	1 ANSIG	
	C.L.	8.923	1.055	-	C.L.	0.01	0.02	
	NI.S.E	/049.174	19123.34	_	MI.S.E	7485.011	20890.0	101
		01.8445 82.0504	110.473	-	AME	05.2087	124.01	200
	RIVISE	0.91442	138.4112	-	RNISE	0.0044	145.574	
	p NDEI	0.81445	0.29033	-	P NDEI	0.81455	0.23188	
7 10 1	NDEI Materia 6	0.22149	0.30305	┥┼	NDEI Materia 6	0.22230	0.57164	
/-10-1	Metr/a.i.	LINEAR	1 ANSIG		Metr/a.i.	LINEAK	TANSIG	0
	C.L.	2.394	1.625		C.L.	0.05	0.05	8
	M.S.E	/049.174	1/003.1		M.S.E	7485.011	19007.2	200
	AME	01.8443	109.21		AME	03.208/	119.40	
	RMSE	85.9594	132.47		RMSE	80.3044	140.374	
	p NDEI	0.81445	0.3998		p NDEI	0.81435	0.3438	
	NDEI M. t. f. f.	U.22149	0.34992	+		U.22230	U.301	+
/-15-1	Metr/a.f.	LINEAK	TANSIG	$\left \right $	wietr/a.f.	LINEAK	I ANSIG	_
		4.045	11.852	$\left \right $		0.04	0.041	8
	M.S.E	/049.1/4	10403.1	$\left \right $	M.S.E	/483.011	18055.1	200
	AME	01.8443	106.145		AME	03.268/	110.16/	
1	ERMINE	L & 3. 9594	1 129.343	11	LKMSE	86.5044	1.57.345	1

р	0.81443	0.44812	р	0.81433	0.3924	
NDEI	0.22149	0.34711	NDEI	0.22256	0.3524	

Πίνακας 1: Αποτελέσματα	προσομοιώσεων	των νευρωνικών	δικτύων για	πραγματικά
	δεδομένα ηλιακή	ίς ακτινοβολίας		

b.								
PREDICTOR(lm) IN-HID-OUT		TRAININ	G			TESTING		EPOCHS (tansig)
2-2-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
	c.t.	0.51	1.252		c.t.	0.02	0.01	
	M.S.E	0.83339	0.78695		M.S.E	0.90628	0.86019	8
	AME	0.6654	0.64335		AME	0.70206	0.66752	35
	RMSE	0.9129	0.8871		RMSE	0.95199	0.92746	55
	р	0.78533	0.7988		р	0.78513	0.79753	
	NDEI	0.412	0.40036		NDEI	0.41358	0.40293	
2-5-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
	c.t.	0.581	22.883		c.t.	0.01	0.02	
	M.S.E	0.83339	0.80283		M.S.E	0.90628	0.89882	6
	AME	0.6654	0.64894		AME	0.70206	0.68382	200
	RMSE	0.9129	0.89601		RMSE	0.95199	0.94806	200
	р	0.78533	0.79422		р	0.78513	0.78737	
	NDEI	0.412	0.40438		NDEI	0.41358	0.41187	
2-10-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
	c.t.	0.771	46137		c.t.	0.02	0.01	5
	M.S.E	0.83339	0.76822		M.S.E	0.90628	0.87042	200
	AME	0.6654	0.6371		AME	0.70206	0.67356	200
	RMSE	0.9129	0.87648		RMSE	0.95199	0.93296	
	р	0.78533	0.80418		р	0.78513	0.79492	
	NDEI	0.412	0.39557		NDEI	0.41358	0.40531	
2-15-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
	c.t.	0.901	85.003		c.t.	0.01	0.02	4
	M.S.E	0.83339	0.76391		M.S.E	0.90628	0.88426	200
	AME	0.6654	0.6349		AME	0.70206	0.67998	200
	RMSE	0.9129	0.87402		RMSE	0.95199	0.94035	
	р	0.78533	0.80541		р	0.78513	0.79137	
	NDEI	0.412	0.39445		NDEI	0.41358	0.40852	
3-3-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
	c.t.	0.521	18.446		c.t.	0.01	0.02	5
	M.S.E	0.78246	0.7417		M.S.E	0.82927	0.80246	200
	AME	0.64713	0.62828		AME	0.66807	0.65083	200
	RMSE	0.88457	0.86122		RMSE	0.91064	0.8958	
	р	0.80087	0.81245		р	0.80165	0.80895	
	NDEI	0.39883	0.3883		NDEI	0.394	0.38758	
3-5-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
	c.t.	0.541	27.36		c.t.	0.01	0.01	
	M.S.E	0.78246	0.74144		M.S.E	0.82927	0.8018	5
	AME	0.64713	0.62999		AME	0.66807	0.65392	200
	RMSE	0.88457	0.86107		RMSE	0.91064	0.89543	200
	р	0.80087	0.81253		р	0.80165	0.80915	
	NDEI	0.39883	0.38823		NDEI	0.394	0.38742	
3-10-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
	c.t.	1.001	58.264		c.t.	0.01	0.02	7
	M.S.E	0.78246	0.71969		M.S.E	0.82927	0.80558	200
	AME	0.64713	0.62258		AME	0.66807	0.66159	200
	RMSE	0.88457	0.84834		RMSE	0.91064	0.89754	
	p	0.80087	0.81864		n	0.80165	0.80827	

	NIDET	0.00000	0.000.10	<u>г</u> г	NDDI	0.204	0.00000	
	NDEI	0.39883	0.38249	Ц	NDEL	0.394	0.38833	
3-15-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
	c.t.	1.332	106.403		c.t.	0.01	0.02	4
	M.S.E	0.78246	0.71385		M.S.E	0.82927	0.80324	200
	AME	0.64713	0.61903		AME	0.66807	0.66132	
	KMSE	0.88457	0.84489		KMSE	0.91064	0.89623	
	p NDEL	0.80087	0.82027		p NDEL	0.80165	0.80895	
	NDEI	0.39883	0.38094		NDEI	0.394	0.38///	
5-3-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
	c.t.	0.741	24.325	-	c.t.	0.01	0.02	9
	M.S.E	0.75395	0.72178	-	M.S.E	0.79715	0.79086	200
	AME	0.63692	0.62422		AME	0.6523	0.64661	
	RMSE	0.8083	0.84958		RMSE	0.89283	0.8893	
	p NDEI	0.80899	0.81805		p NDEI	0.80998	0.81184	
	NDEI Matria f	U.39133	0.38299	┥┼	NDEI Matu/a f	U.38009	0.38437	
5-5-1	Metr/a.i.	LINEAR	1 ANSIG	-	Metr/a.i.	LINEAR	TANSIG	
	C.L.	1.001	38.820	-	C.L.	0.02	0.02	10
	IVI.S.E	0.13393	0.70794	41		0.19/15	0.77003	200
	ANIE DMSE	0.03092	0.02021	+	ANE	0.0323	0.0443	
	n	0.0000	0.04139	+	n	0.09203	0.00127	
	P NDEI	0.00099	0.82192	- 1	P NDEI	0.80998	0.81300	
5 10 1	NDEI Motrio f		0.37929	-	NDEI Motrio f		U.J8109	
5-10-1	Metr/a.i.	LINEAK	1 ANSIG	- 1	Metr/a.i.	LINEAK	1 ANSIG	_
	C.L.	0.75205	0.60507	- 1	C.L.	0.01	0.021	5
	MI.S.E	0.73393	0.09397	- 1	MI.S.E	0.79713	0.77129	200
	RMSE	0.03092	0.0144	- 1	RMSE	0.0525	0.04230	
	n	0.80899	0.83425	- 1	n	0.80998	0.87823	
	NDEL	0.39153	0.37607	- 1	NDEI	0.38609	0.37978	
5 15 1	Metr/a f	LINFAR	TANSIG	┙┼	Metr/a f	LINEAR	TANSIG	
5-15-1	c t	0.75395	154 442		c t	0.03	0.03	6
	M.S.E	0.63692	0.68859		M.S.E	0.79715	0.79044	0
	AME	0.8683	0.61247		AME	0.6523	0.6575	200
	RMSE	0.80899	0.82981		RMSE	0.89283	0.88906	
	p	0.39153	0.8273		p	0.80998	0.81222	
	NDEI	0.75395	0.37407		NDEI	0.38609	0.38446	
7-3-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
7 5 1	c.t.	3.155	28.861		c.t.	0.02	0.02	
	M.S.E	0.73428	0.70248		M.S.E	0.77947	0.77929	11
	AME	0.63119	0.61895		AME	0.64573	0.64573	200
	RMSE	0.8569	0.83814		RMSE	0.88287	0.88278	200
	р	0.81443	0.82333		р	0.81433	0.81461	
	NDEI	0.38624	0.37779		NDEI	0.3816	0.38156	
7-5-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
	c.t.	0.882	45.856		c.t.	0.01	0.02	6
	M.S.E	0.73428	0.69504		M.S.E	0.77947	0.77929	200
	AME	0.63119	0.61702		AME	0.64573	0.64856	200
	RMSE	0.8569	0.83369		RMSE	0.88287	0.88277	
	р	0.81443	0.8254		р	0.81433	0.81467	
	NDEI	0.38624	0.37578		NDEI	0.3816	0.38156	
7-10-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
	c.t.	1.542	105.021		c.t.	0.02	0.02	5
	M.S.E	0.73428	0.67655		M.S.E	0.77947	0.79021	200
	AME	0.63119	0.61038		AME	0.64573	0.65796	200
	RMSE	0.8569	0.82253		RMSE	0.88287	0.88894	
	р	0.81443	0.83052		р	0.81433	0.81198	
	NDEI	0.38624	0.37075	71	NDEI	0.3816	0.38422	

7-15-1	Metr/a.f.	LINEAR	TANSIG	Metr/a.f.	LINEAR	TANSIG	
	c.t.	3.605	205.886	c.t.	0.02	0.03	
	M.S.E	0.73428	0.65177	M.S.E	0.77947	0.80051	7
	AME	0.63119	0.59976	AME	0.64573	0.64808	200
	RMSE	0.8569	0.80732	RMSE	0.88287	0.89471	200
	р	0.81443	0.83733	р	0.81433	0.80965	
	NDEI	0.38624	0.3639	NDEI	0.3816	0.38672	

Πίνακας 2: Αποτελέσματα προσομοιώσεων των νευρωνικών δικτύων για δεδομένα ηλιακής ακτινοβολίας με κανονικοποίηση μέσης τιμής ίσης με μηδέν και τυπικής απόκλισης μοναδιαίας

			r	-		meaner		EDOCIUC
PREDICTOR(Im)		TRAININ	ť			TESTING		EPOCHS
IN-IIID-001								tansig
2-2-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
	c.t.	0.41	5.648		c.t.	0.01	0.01	
	M.S.E	0.011644	0.011388		M.S.E	0.012508	0.012551	5
	AME	0.078579	0.077091		AME	0.082329	0.081223	200
	RMSE	0.10791	0.10671		RMSE	0.11184	0.11203	200
	р	0.78911	0.79436		р	0.78709	0.78638	
	NDEI	0.19967	0.19746		NDEI	0.20279	0.20313	
2-5-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
	c.t.	0.521	24.796		c.t.	0.01	0.02	
	M.S.E	0.01644	0.010865		M.S.E	0.012508	0.012076	5
	AME	0.078579	0.075618		AME	0.082329	0.07966	200
	RMSE	0.10791	0.10424		RMSE	0.11184	0.10989	200
	р	0.78911	0.80494		р	0.78709	0.79553	
	NDEI	0.19967	0.19288		NDEI	0.20279	0.19925	
2-10-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
	c.t.	0.951	51.173		c.t.	0.01	0.01	6
	M.S.E	0.11644	0.010753		M.S.E	0.012508	0.012143	200
	AME	0.078579	0.075495		AME	0.082329	0.08017	200
	RMSE	0.10791	0.1037		RMSE	0.11184	0.1102	
	р	0.78911	0.80719		р	0.78709	0.79443	
	NDEI	0.19967	0.19188		NDEI	0.20279	0.19981	
2-15-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
	c.t.	1.051	51.945		c.t.	0.01	0.01	4
	M.S.E	0.11644	0.01653		M.S.E	0.012508	0.12242	200
	AME	0.078579	0.75024		AME	0.082329	0.080711	200
	RMSE	0.10791	0.10321		RMSE	0.11184	0.11064	
	р	0.78911	0.80921		р	0.78709	0.79284	
	NDEI	0.19967	0.19099		NDEI	0.20279	0.20062	
3-3-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
	c.t.	2.724	4.597		c.t.	0.01	0.01	7
	M.S.E	0.011068	0.010428		M.S.E	0.011731	0.011203	127
	AME	0.076967	0.074709		AME	0.079457	0.076855	127
	RMSE	0.10521	0.10212		RMSE	0.10831	0.10584	
	р	0.80087	0.81372		р	0.80165	0.81169	
	NDEI	0.19467	0.18895		NDEI	0.19633	0.19187	
3-5-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
	c.t.	0.781	27.369		c.t.	0.01	0.01	
	M.S.E	0.011068	0.01029	IO29 M.S.E 74365 AME	M.S.E	0.011731	0.011222	9
	AME	0.076967	0.074365		0.079457	0.077844	$\frac{3}{200}$	
	RMSE	0.10521	0.10144		RMSE	0.10831	0.10593	200
	р	0.80087	0.81646		р	0.80165	0.81143	
	NDEI	0.19467	0.1877		NDEI	0.19633	0.19203	

3-10-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
	c.t.	0.711	56.602		c.t.	0.02	0.01	4
	M.S.E	0.011068	0.010151		M.S.E	0.011731	0.011279	200
	AME	0.076967	0.074064		AME	0.079457	0.078388	200
	RMSE	0.10521	0.10075		RMSE	0.10831	0.1062	
	р	0.80087	0.81922		р	0.80165	0.81049	
	NDEI	0.19467	0.18643		NDEI	0.19633	0.19252	
3-15-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
	c.t.	1.111	65.284		c.t.	0.02	0.02	4
	M.S.E	0.011068	0.01		M.S.E	0.011731	0.011486	106
	AME	0.076967	0.073744		AME	0.079457	0.078385	100
	RMSE	0.10521	0.1		RMSE	0.10831	0.10717	
	р	0.80087	0.8222		р	0.80165	0.80683	
	NDEI	0.19467	0.18504		NDEI	0.19633	0.19427	
5-3-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
	c.t.	0.641	23584		c.t.	0.01	0.01	7
	M.S.E	0.010665	0.010125		M.S.E	0.011276	0.011121	163
	AME	0.075753	0.074077		AME	0.077581	0.076882	105
	RMSE	0.10327	0.10062		RMSE	0.10619	0.10545	
	р	0.80899	0.81973		р	0.80998	0.81301	
	NDEI	0.19107	0.18617		NDEI	0.19241	019108	
5-5-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
	c.t.	0.631	1.823		c.t.	0.01	0.02	5
	M.S.E	0.010665	0.0099982		M.S.E	0.011276	0.011034	22
	AME	0.075753	0.073581		AME	0.077581	0.07674	
	RMSE	0.10327	0.099991		RMSE	0.10619	0.10504	
	р	0.80899	0.82224		р	0.80998	0.81479	
	NDEI	0.19107	0.185		NDEI	0.19241	0.19033	
5-10-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
	c.t.	1.112	1.763		c.t.	0.01	0.02	4
	M.S.E	0.010665	0.0099693		M.S.E	0.011276	0.010967	9
	AME	0.075753	0.073726		AME	0.077581	0.076796	-
	RMSE	0.10327	0.099846		RMSE	0.10619	0.10472	
	р	0.80899	0.82373		р	0.80998	0.816	
	NDEI	0.19107	0.18473		NDEI	0.19241	0.18975	
5-15-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
	c.t.	1.512	2.724	-	c.t.	0.02	0.03	
	M.S.E	0.010665	0.0098746		M.S.E	0.011276	0.010896	4
	AME	0.075753	0.074609		AME	0.077581	0.078213	7
	RMSE	0.10327	0.099371	-	RMSE	0.10619	0.10438	-
	p	0.80899	0.82509		p NDEI	0.80998	0.81/51	
7.0.1	NDEI	0.1910/	0.18385			0.19241	0.18914	
7-3-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
	C.L.	0.051	0.951	-	C.I.	0.01	0.01	
	M.S.E	0.010387	0.0099865		M.S.E	0.011026	0.010889	6
	AME	0.075071	0.073970	-	AME	0.0708	0.070501	11
	RMSE	0.10192	0.099932		RMSE	0.105	0.10435	
	P NDEI	0.81445	0.82230	-	p NDEI	0.01455	0.81094	
751	NDEI Motr/o f	U.100J4	U.10407		NDE1 Motr/o f		U.109	
/-J-1	c t	0 751	0.001	$\left \right $	c t	0.02	0.02	
	MSE	0.731	0.701	$\left\{ \right\}$	MSE	0.02	0.02	
	AME	0.010307	0.0077763	$\left \right $		0.011020	0.011003	5
	RMSE	0.073071	0.07550	$\left \right $	RMSE	0.0708	0.070373	6
	n	0.10192	0.099092	$\left \right $	n	0.105	0.1049	
	NDFI	0 1885/	0.02329	$\left \right $	NDFI	0 19018	0.19	
7-10-1	Metr/a f	LINFAR	TANSIG	╉	Metr/a f	LINFAR	TANSIG	
/-10-1	171Cu/a.i.			1	111C11/a.1.		ULUNIO	1

	c.t.	1.873	1.603	c.t.	0.02	0.02	6
	M.S.E	0.010387	0.009946	M.S.E	0.011026	0.010965	5
	AME	0.075071	0.072851	AME	0.0768	0.075266	0
	RMSE	0.10192	0.09973	RMSE	0.105	0.10471	
	р	0.81443	0.82401	р	0.81433	0.81623	
	NDEI	0.18854	0.18449	NDEI	0.19018	0.18965	
7-15-1	Metr/a.f.	LINEAR	TANSIG	Metr/a.f.	LINEAR	TANSIG	
	c.t.	3.275	3.155	c.t.	0.03	0.03	6
	M.S.E	0.010387	0.0097837	M.S.E	0.011026	0.01093	6
	AME	0.075071	0.072386	AME	0.0768	0.075813	0
	RMSE	0.10192	0.098912	RMSE	0.105	0.10455	
	р	0.81443	0.82889	р	0.81433	0.8173	
	NDEI	0.18854	0.18298	NDEI	0.19018	0.18935	

Πίνακας 3: Αποτελέσματα προσομοιώσεων των νευρωνικών δικτύων για δεδομένα ηλιακής ακτινοβολίας με κανονικοποίηση 0.1-0.9

Θερμοκρασία

Για την θερμοκρασία υλοποιήθηκαν 9 πίνακες με αποτελέσματα από προσομοιώσεις

στα νευρωνικά. Οι πίνακες αυτοί περιέχουν τα εξής δεδομένα:

1. Μέση ημερήσια θερμοκρασία

1a. real data(πραγματικά δεδομένα)

1b. mean=0,std=1 data(Κανονικοποιημένα δεδομένα με μέση τιμη 0,τυπική απόκλιση

1)

1c. 0.1-0.9 normalization data(Κανονιοποιημένα δεδομένα 0.1-0.9)

2. Μέγιστη ημερήσια θερμοκρασία

2a. real data(πραγματικά δεδομένα)

2b. mean=0,std=1 data(Κανονικοποιημένα δεδομένα με μέση τιμη 0,τυπική απόκλιση

1)

2c. 0.1-0.9 normalization data(Κανονιοποιημένα δεδομένα 0.1-0.9)

3. Ελάχιστη ημερήσια θερμοκρασία

3a. real data(πραγματικά δεδομένα)

3b. mean=0,std=1 data(Κανονικοποιημένα δεδομένα με μέση τιμη 0,τυπική απόκλιση

1)

3c. 0.1-0.9 normalization data(Κανονιοποιημένα δεδομένα 0.1-0.9)

Η επεξήγηση των όρων που υπάρχουν στους πίνακες έχει γίνει παραπάνω.

1a							
PREDICTOR(lm) IN-HID-OUT		TRAINING			TESTING		EPOCHS linear tansig
2-2-1	Metr/a.f.	LINEAR	TANSIG	Metr/a.f.	LINEAR	TANSIG	

	c.t.	0.561	1.372		c.t.	0.02	0.02	9
	M.S.E	2.412	2.3531		M.S.E	2.8468	2.7872	34
	AME	1.1537	1.1397		AME	1.2326	1.2246	
	RMSE	1.553	1.534		RMSE	1.6873	1.6695	
	р	0.97621	0.9768		р	0.97511	0.97567	
	NDEI	0.081404	0.080404		NDEI	0.083635	0.082755	
2-5-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
	c.t.	0.631	8.412		c.t.	0.02	0.02	7
	M.S.E	2.412	2.3438		M.S.E	2.8468	2.7764	150
	AME	1.1537	1.136		AME	1.2326	1.2245	130
	RMSE	1.553	1.5309		RMSE	1.6873	1.6663	
	p	0.97621	0.97689		p	0.97511	0.97577	
	NDEI	0.081404	0.080244		NDEI	0.083635	0.082595	
2-10-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
2 10 1	<u>c</u> t	0 761	14 621		ct	0.01	0.02	1
	MSE	2 412	2 3243		MSE	2 8468	2 7832	4
	AME	1 1537	1 1314		AME	1 2326	1 2274	150
	RMSE	1.553	1 5246		RMSE	1.2320	1.6683	
	n	0.97621	0.97709		n	0.97511	0.97571	
	NDEI	0.081404	0.07991		NDEI	0.083635	0.082695	
2-15-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
	c.t.	2.534	26.849		c.t.	0.01	0.03	6
	M.S.E	2.412	2.3075		M.S.E	2.8468	2.7987	150
	AME	1.1537	1.1277		AME	1.2326	1.2338	150
	RMSE	1.553	1.5191		RMSE	1.6873	1.6729	
	n	0.97621	0.97726		n	0.97511	0.97564	
	NDEI	0.081404	0.79622		NDEI	0.083635	0.082926	
3_3_1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
551	c.t.	0.661	1.552		c.t.	0.02	0.02	0
	M.S.E	2.3129	2.2729		M.S.E	2.7538	2.7183	9
	AME	1.1351	1.1263		AME	1.2138	1.2101	29
	RMSE	1.5208	1.5076		RMSE	1.6595	1.6487	
	n	0.9772	0.97759		n	0.97593	0.97627	
	NDEI	0.079708	0.79016		NDEI	0.082249	0.081172	
3-5-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
5-5-1	c.t.	0.661	9.194		c.t.	0.02	0.02	5
	M.S.E	2.3129	2.2686		M.S.E	2.7538	2.7269	5
	AME	1.1351	1.1249		AME	1.2138	1.2124	1 5 0
	RMSE	1.5208	1.5062		RMSE	1.6595	1.6513	150
	p	0.9772	0.97764		p	0.97593	0.97619	
	NDEI	0.079708	0.078941		NDEI	0.082249	0.081846	
3-10-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
5 10 1	c.t.	1.061	17.476		c.t.	0.02	0.02	6
	M.S.E	2.3129	2.2436		M.S.E	2.7538	2.7195	150
	AME	1.1351	1.1189		AME	1.2138	1.2142	150
	RMSE	1.5208	1.4979		RMSE	1.6595	1.6491	
	p	0.9772	0.97789		p	0.97593	0.97626	
	NDEI	0.079708	0.078505		NDEI	0.082249	0.081734	
3-15-1	Metr/a.f.	LINEAR	TANSIG	Ħ	Metr/a.f.	LINEAR	TANSIG	5
	c.t.	1.583	33.037		c.t.	0.03	0.031	150
	M.S.E	2.3129	2.2171		M.S.E	2.7538	2.7211	150
	AME	1.1351	1.1095		AME	1.2138	1.2177	
	RMSE	1.5208	1.489		RMSE	1.6595	1.6496	
	р	0.9772	0.97815		р	0.97593	0.97628	
	NDEI	0.079708	0.078039		NDEI	0.082249	0.081759	
5-3-1	Metr/a.f.	LINEAR	TANSIG	Π	Metr/a.f.	LINEAR	TANSIG	
	c.t.	0.66	2.033		c.t.	0.02	0.02	7

	M.S.E	2.2721	2.2443		M.S.E	2.6978	2.6725	34
	AME	1.1257	1.1195		AME	1.2039	1.2007	
	RMSE	1.5074	1.4981		RMSE	1.6425	1.6348	
	р	0.97761	0.97788		р	0.97641	0.97665	
	NDEI	0.078993	0.078509		NDEI	0.081386	0.081003	
5-5-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
001	c.t.	1.171	12.748		c.t.	0.02	0.02	
	M.S.E	2.2721	2.2202		M.S.E	2.6978	2.6852	11
	AME	1.1257	1.1145		AME	1.2039	1.2044	11
	RMSE	1.5074	1.49		RMSE	1.6425	1.6387	150
	р	0.97761	0.97812		р	0.97641	0.97654	
	NDEI	0.078993	0.078086		NDEI	0.081386	0.081195	
5-10-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
5 10 1	c.t.	1.322	28		c.t.	0.02	0.03	
	M.S.E	2.2721	2.2249		M.S.E	2.6978	2.7052	~
	AME	1 1257	1 1149		AME	1 2039	1 2073	5
	RMSE	1.5074	1.4916		RMSE	1.6425	1.6448	150
	p	0.97761	0.97808		n	0.97641	0.97636	
	NDEI	0.078993	0.078168		NDEI	0.081386	0.081497	
5 15 1	Metr/a f		TANSIG		Metr/a f		TANSIG	
5-15-1	c t	2 454	18 229		c t	0.02	0.03	
	MSE	2.434	2 2018		MSE	2 6078	2 6008	
	AME	1 1257	1 1065		AME	1 2039	1.21	6
	PMSE	1.1237	1.1005		PMSE	1.2039	1.21	150
	RNDL D	0.97761	0.07831		n	0.07641	0.97641	
	NDEI	0.97701	0.97831		NDEI	0.97041	0.97041	
7.2.1	NDEI Motrio f				NDEI Motulo f		0.081415	
/-3-1	Metr/a.i.	LINEAK	1 ANSIG		Metr/a.i.		1 ANSIG	10
	C.L.	0.972	9.393		C.L.	0.05	0.05	10
	MI.S.E	2.2333	2.2112		MI.S.E	2.0087	2.0407	150
	AME	1.1100	1.1127		AME	1.1907	1.1930	
	RNISE	1.4943	1.407		RIVISE	1.0330	0.07684	
	P NDEI	0.97797	0.97819		P NDEI	0.97003	0.97084	
7.5.1		0.078303	0.077914		NDEI Matula f	0.060921	0.080017	
/-3-1	Metr/a.i.	LINEAK	1ANSIG		Metr/a.i.	LINEAK	1 ANSIG	
		1.242	15.272		C.L.	0.03	0.02	
	NI.S.E	2.2333	2.1987		MI.S.E	2.0087	2.004	9
		1.1100	1.1099		AME	1.1907	1.1995	150
	RNISE	1.4943	1.4020		RIVISE	1.0330	0.0767	
	P NDEI	0.97797	0.97832		P NDEI	0.97003	0.9707	
7 10 1		0.078303	0.077094			0.060921	0.080849	
/-10-1	Metr/a.1.	LINEAK	1ANSIG		Metr/a.i.	LINEAK	TANSIG	-
	C.t.	1.863	34.319		C.I.	0.03	0.04	6
	M.S.E	2.2333	2.1/8/		M.S.E	2.008/	2.0924	150
	AME	1.1188	1.1035		AME	1.1967	1.2095	
	RMSE	1.4945	1.470		RMSE	1.0330	1.0408	
	p	0.97797	0.97852		p	0.97665	0.97647	
5 1 5 1	NDEI	0.078305	0.077339		NDEI	0.080921	0.081279	
7-15-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
	c.t.	4.827	65.394		c.t.	0.04	0.04	
	M.S.E	2.2335	2.1853		M.S.E	2.6687	2.6816	10
	AME	1.1188	1.1052		AME	1.1967	1.2065	150
	RMSE	1.4945	1.4783		RMSE	1.6336	1.6376	
	p	0.97797	0.97845		p	0.97665	0.97658	
	NDEI	0.078305	0.077456	Ш	NDEI	0.080921	0.081116	

Πίνακας 4: Αποτελέσματα προσομοιώσεων των νευρωνικών δικτύων για πραγματικά δεδομένα μέσων ημερησίων τιμών θερμοκρασίας

PREDICTOR(lm) IN-HID-OUT		TRAINING	4 F	T			EPOCHS linear	
								tansig
2-2-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
	c.t.	0.631	3.024	1	c.t.	0.01	0.01	4
	M.S.E	0.039479	0.038166		M.S.E	0.046607	0.045883	104
	AME	0.1476	0.14531		AME	0.15778	0.15821	104
	RMSE	0.19869	0.19536		RMSE	0.21589	0.2142	
	р	0.97621	0.97701		р	0.97512	0.97561	
	NDEI	0.21656	0.21293		NDEI	0.22093	0.2192	
2-5-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
	c.t.	0.681	7.26		c.t.	0.01	0.02	9
	M.S.E	0.039479	0.038057		M.S.E	0.046607	0.045772	150
	AME	0.1476	0.14518		AME	0.15778	0.15795	150
	RMSE	0.19869	0.19508		RMSE	0.21589	0.21394	
	р	0.97621	0.97708		р	0.97512	0.97565	
	NDEI	0.21656	0.21262		NDEI	0.22093	0.21894	
2-10-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
	c.t.	0.651	14.641		c.t.	0.01	0.02	4
	M.S.E	0.039479	0.037536		M.S.E	0.046607	0.04554	150
	AME	0.1476	0.14397		AME	0.15778	0.15766	150
	RMSE	0.19869	0.19374		RMSE	0.21589	0.2134	
	р	0.97621	0.9774		р	0.97512	0.97581	
	NDEI	0.21656	0.21116		NDEI	0.22093	0.21838	
2-15-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
	c.t.	0.922	26.788		c.t.	0.01	0.03	4
	M.S.E	0.039479	0.037233		M.S.E	0.046607	0.045587	150
	AME	0.1476	0.1437		AME	0.15778	0.15848	100
	RMSE	0.19869	0.19296		RMSE	0.21589	0.21351	
	р	0.97621	0.97758		р	0.97512	0.97574	
	NDEI	0.21656	0.21031		NDEI	0.22093	0.2185	
3-3-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
	c.t.	0.47	5.628		c.t.	0.02	0.02	4
	M.S.E	0.037858	0.036818		M.S.E	0.045075	0.044052	150
	AME	0.14522	0.14301		AME	0.15529	0.15499	
	RMSE	0.19457	0.19188		RMSE	0.21231	0.20989	
	p	0.9772	0.97783		p	0.97593	0.97654	
	NDEI	0.2121	0.20916		NDEI	0.2173	0.21482	
3-5-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
	c.t.	0.601	8.151		c.t.	0.02	0.02	6
	M.S.E	0.037858	0.03666		M.S.E	0.045075	0.045324	150
	AME	0.14522	0.14315		AME	0.15529	0.15731	
	RMSE	0.19457	0.19147		RMSE	0.21231	0.2129	
	p	0.9772	0.97793		p NDEI	0.97593	0.97588	
2 10 1	NDEI Materia 6		0.20872	⊢	NDEI Materia 6	0.2175	0.2179	
3-10-1	Metr/a.i.	LINEAR	I ANSIG		Metr/a.i.	LINEAR	TANSIG	10
	C.L.	1.302	17.333		C.L.	0.02	0.05	10
	IVI.S.E	0.05/858	0.030484	$\left \right $	MI.S.E	0.043073	0.044030	150
	DMCE	0.14322	0.14309	$\left \right $	DMCE	0.13329	0.130/1	
	RIVISE D	0.1943/	0.19101		n	0.21231	0.2118	
	P NDEI	0.2121	0.97803		NDEI	0.21323	0.21678	
2 15 1	Motnla f		TANGIC	╟	Motulo f	U.2173	0.21070	Δ
3-13-1	wietr/a.f.	LINEAK	TANSIG		wietr/a.f.	LINEAK	TANSIG	4

	at	1 1 2 1	22 167		at	0.02	0.02	150
	C.L.	1.131	0.025000		C.L.	0.02	0.03	150
	NI.S.E	0.037838	0.033999			0.043073	0.044647	
	AME	0.14522	0.1410		AME	0.15529	0.15084	
	RMSE	0.19457	0.18974		KIMSE	0.21231	0.211//	
	p NDEI	0.9772	0.97833		p NDEI	0.97593	0.97618	
5.0.1	NDEI	0.2121	0.20683		NDEI	0.2173	0.216/5	
5-3-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
	c.t.	0.55	7.411		c.t.	0.021	0.02	5
	M.S.E	0.03719	0.036291		M.S.E	0.044159	0.043845	150
	AME	0.14402	0.14209		AME	0.15403	0.15432	
	RMSE	0.19285	0.1905		RMSE	0.21014	0.20939	
	p	0.97761	0.97815		p	0.97641	0.97664	
	NDEI	0.21021	0.20765		NDEI	0.21513	0.21436	
5-5-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
	c.t.	0.651	12.047		c.t.	0.02	0.03	
	M.S.E	0.03719	0.035969		M.S.E	0.044159	0.044057	5
	AME	0.14402	0.14146		AME	0.15403	0.15507	150
	RMSE	0.19285	0.18966		RMSE	0.21014	0.2099	150
	р	0.97761	0.97835		р	0.97641	0.97654	
	NDEI	0.21021	0.20673		NDEI	0.21513	0.21488	
5-10-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
	c.t.	0.841	26.128		c.t.	0.02	0.03	
	M.S.E	0.03719	0.035667		M.S.E	0.044159	0.044778	3
	AME	0.14402	0.14099		AME	0.15403	0.15558	150
	RMSE	0.19285	0.18886		RMSE	0.21014	0.21161	130
	р	0.97761	0.97853		р	0.97641	0.97611	
	NDEI	0.21021	0.20586		NDEI	0.21513	0.21663	
5-15-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
	c.t.	1.522	47.719		c.t.	0.03	0.03	
	M.S.E	0.03719	0.034926		M.S.E	0.044159	0.044466	4
	AME	0.14402	0.13965		AME	0.15403	0.15673	4
	RMSE	0.19285	0.18688		RMSE	0.21014	0.21087	150
	р	0.97761	0.97898		р	0.97641	0.97632	
	NDEI	0.21021	0.20371		NDEI	0.21513	0.21587	
7-3-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
, , ,	c.t.	0.701	9.103		c.t.	0.02	0.02	7
	M.S.E	0.036557	0.036037		M.S.E	0.043681	0.043729	150
	AME	0.14314	0.14214		AME	0.1531	0.15393	150
	RMSE	0.1912	0.18983		RMSE	0.209	0.20912	
	р	0.97797	0.97829		р	0.97665	0.97664	
	NDEI	0.20851	0.20702		NDEI	0.21402	0.21414	
7-5-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
151	c.t.	0.931	15.082		c.t.	0.03	0.03	
	M.S.E	0.036557	0.035631		M.S.E	0.043681	0.043919	6
	AME	0.14314	0.14114		AME	0.1531	0.15407	0
	RMSE	0.1912	0.18876		RMSE	0.209	0.20957	150
	p	0.97797	0.97854		p	0.97665	0.97656	
	NDEI	0.20851	0.20585		NDEI	0.21402	0.2146	
7-10-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
/ 10 1	c.t.	1.281	34.29		c.t.	0.03	0.03	1
	M.S.E	0.036557	0.034325		M.S.E	0.043681	0.0444	4
	AME	0.14314	0.1388		AME	0.1531	0.15561	150
	RMSE	0.1912	0.18527		RMSE	0.209	0.21071	
	D	0.97797	0.97933		p	0.97665	0.97627	
	NDEI	0.20851	0.20204		NDEI	0.21402	0.21578	
7-15-1	Metr/a.f	LINEAR	TANSIG	\mathbb{H}	Metr/a.f	LINEAR	TANSIG	+
/-1.J-1	c f	2 955	64 443		ct	0.04	0.04	
	0.0.	2.755	51.175		0	5.01	5.01	1

M.S.E	0.036557	0.033946	M.S.E	0.043681	0.045071	5
AME	0.14314	0.13795	AME	0.1531	0.15604	150
RMSE	0.1912	0.18424	RMSE	0.209	0.2123	100
р	0.97797	0.97956	р	0.97665	0.97596	
NDEI	0.20851	0.20092	NDEI	0.21402	0.2174	

Πίνακας 5: Αποτελέσματα προσομοιώσεων των νευρωνικών δικτύων για μέσες ημερήσιες τιμές θερμοκρασίας με κανονικοποίηση μέσης τιμής ίσης με μηδέν και τυπικής απόκλισης μοναδιαίας

1c

PREDICTOR(lm) IN-HID-OUT		TRAINING	T			TESTING		EPOCHS linear tansig
2-2-1	Metr/a.f.	LINEAR	TANSIG	T	Metr/a.f.	LINEAR	TANSIG	
	c.t.	0.471	3.996	1	c.t.	0.04	0.01	6
	M.S.E	0.00073	0.00071	1	M.S.E	0.00086	0.00085	150
	AME	0.020064	0.019745	1	AME	0.021437	0.021481	150
	RMSE	0.02701	0.02656		RMSE	0.029344	0.029108	
	р	0.97621	0.97701	1	р	0.97511	0.97561	
	NDEI	0.057315	0.056361	1	NDEI	0.059872	0.059392	
2-5-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
	c.t.	0.601	7.35	1	c.t.	0.02	0.02	6
	M.S.E	0.00073	0.000699	1	M.S.E	0.00086	0.000825	150
	AME	0.020064	0.01967	1	AME	0.021437	0.021225	150
	RMSE	0.02701	0.026451		RMSE	0.029344	0.028728	
	р	0.97621	0.9772	1	р	0.97511	0.97622	
	NDEI	0.057315	0.05613		NDEI	0.059872	0.058616	
2-10-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
	c.t.	0.701	14.39		c.t.	0.02	0.02	4
	M.S.E	0.00073	0.000695		M.S.E	0.00086	0.000862	150
	AME	0.020064	0.019585		AME	0.021437	0.021528	130
	RMSE	0.02701	0.026363		RMSE	0.029344	0.029353	
	р	0.97621	0.07735		р	0.97511	0.9752	
	NDEI	0.057315	0.055943	1	NDEI	0.059872	0.059892	
2-15-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
	c.t.	0.911	26.658	1	c.t.	0.02	0.03	4
	M.S.E	0.00073	0.000694	1	M.S.E	0.00086	0.000852	150
	AME	0.020064	0.019581		AME	0.021437	0.021541	150
	RMSE	0.02701	0.026353		RMSE	0.029344	0.029188	
	р	0.97621	0.97737		р	0.97511	0.9755	
	NDEI	0.057315	0.055922		NDEI	0.059872	0.05955	
3-3-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
	c.t.	0.52	5.738		c.t.	0.01	0.02	6
	M.S.E	0.000699	0.000698		M.S.E	0.000833	0.000822	150
	AME	0.01974	0.019477		AME	0.021109	0.021142	150
	RMSE	0.026449	0.026087		RMSE	0.02886	0.028668	
	р	0.9772	0.97782		р	0.97593	0.97634	
	NDEI	0.056122	0.055354		NDEI	0.058882	0.058489	
3-5-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
	c.t.	0.631	8.523	11	c.t.	0.01	0.02	6
	M.S.E	0.000699	0.000675	11	M.S.E	0.000833	0.000806	150
	AME	0.01974	0.01939	1	AME	0.021109	0.020964	150
	RMSE	0.026449	0.025974	1	RMSE	0.02886	0.028387	

	-		1					
	р	0.9772	0.97802		р	0.97593	0.9768	
	NDEI	0.056122	0.055113		NDEI	0.058882	0.057915	
3-10-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
	c.t.	0.771	19.057		c.t.	0.02	0.02	4
	M.S.E	0.000699	0.000672		M.S.E	0.000833	0.000826	150
	AME	0.01974	0.019322		AME	0.021109	0.021183	100
	RMSE	0.026449	0.025927		RMSE	0.02886	0.028754	
	р	0.9772	0.9781		р	0.97593	0.97622	
	NDEI	0.056122	0.055014		NDEI	0.058882	0.058664	
3-15-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	4
	c.t.	1.172	33.338		c.t.	0.02	0.02	150
	M.S.E	0.000699	0.000668		M.S.E	0.000833	0.000834	
	AME	0.01974	0.019269		AME	0.021109	0.021273	
	RMSE	0.026449	0.025845		RMSE	0.02886	0.02888	
	р	0.9772	0.97824		р	0.97593	0.97604	
	NDEI	0.056122	0.055484		NDEI	0.058882	0.058922	
5-3-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
	c.t.	0.601	7.881		c.t.	0.02	0.02	6
	M.S.E	0.000687	0.00067		M.S.E	0.000816	0.000813	150
	AME	0.019577	0.019316		AME	0.020938	0.021027	150
	RMSE	0.026215	0.025888		RMSE	0.028565	0.028514	
	р	0.97761	0.97817		р	0.97641	0.97657	
	NDEI	0.055621	0.054927		NDEI	0.058267	0.058163	
5-5-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
551	c.t.	0.651	12.368		c.t.	0.02	0.02	
	M.S.E	0.000687	0.000662		M.S.E	0.000816	0.000841	1
	AME	0.019577	0.019242		AME	0.020938	0.021003	4
	RMSE	0.026215	0.025737		RMSE	0.028565	0.028997	150
	р	0.97761	0.97842		р	0.97641	0.97578	
	NDEI	0.055621	0.054608		NDEI	0.058267	0.059147	
5-10-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
	c.t.	1.001	26.207		c.t.	0.02	0.03	
	M.S.E	0.000687	0.000658		M.S.E	0.000816	0.000801	1
	AME	0.019577	0.019204		AME	0.020938	0.020861	150
	RMSE	0.026215	0.025657		RMSE	0.028565	0.028308	150
	р	0.97761	0.97856		р	0.97641	0.97689	
	NDEI	0.055621	0.054437		NDEI	0.058267	0.057741	
5-15-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
	c.t.	1.582	47.679		c.t.	0.03	0.04	
	M.S.E	0.000687	0.000649		M.S.E	0.000816	0.000839	1
	AME	0.019577	0.019072		AME	0.020938	0.021345	150
	RMSE	0.026215	0.025483		RMSE	0.028565	0.028965	150
	р	0.97761	0.97885		р	0.97641	0.97581	
	NDEI	0.055621	0.054069		NDEI	0.058267	0.059083	
7-3-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
	c.t.	0.731	9.424		c.t.	0.03	0.02	7
	M.S.E	0.000675	0.000663		M.S.E	0.000807	0.000805	150
	AME	0.019457	0.019123		AME	0.020812	0.020884	150
	RMSE	0.025991	0.025753		RMSE	0.028411	0.028378	
	р	0.97797	0.97838		р	0.97665	0.97675	
	NDEI	0.055138	0.054633		NDEI	0.057938	0.057871	
7-5-1	Metr/a.f.	LINEAR	TANSIG	Π	Metr/a.f.	LINEAR	TANSIG	
	c.t.	0.781	15.623		c.t.	0.021	0.02	
	M.S.E	0.000675	0.000653		M.S.E	0.000807	0.000815	5
	AME	0.019457	0.019134		AME	0.020812	0.02086	
	RMSE	0.025991	0.025554		RMSE	0.028411	0.028549	150
	р	0.97797	0.97871		р	0.97665	0.97647	

	NDEI	0.055138	0.054211	NDEI	0.057938	0.058221	
7-10-1	Metr/a.f.	LINEAR	TANSIG	Metr/a.f.	LINEAR	TANSIG	
	c.t.	1.252	34.359	c.t.	0.03	0.041	4
	M.S.E	0.000675	0.000651	M.S.E	0.000807	0.000811	150
	AME	0.019457	0.01909	AME	0.020812	0.020889	150
	RMSE	0.025991	0.025516	RMSE	0.028411	0.028485	
	р	0.97797	0.97878	р	0.97665	0.97658	
	NDEI	0.055138	0.054131	NDEI	0.057938	0.058091	
7-15-1	Metr/a.f.	LINEAR	TANSIG	Metr/a.f.	LINEAR	TANSIG	
	c.t.	2.133	64.723	c.t.	0.04	0.04	
	M.S.E	0.000675	0.000643	M.S.E	0.000807	0.000857	4
	AME	0.019457	0.019045	AME	0.020812	0.021221	150
	RMSE	0.025991	0.025351	RMSE	0.028411	0.029269	150
	р	0.97797	0.97905	р	0.97665	0.97528	
	NDEI	0.055138	0.053781	NDEI	0.057938	0.059689	

Πίνακας 6: Αποτελέσματα προσομοιώσεων των νευρωνικών δικτύων για μέσες ημερήσιες τιμές θερμοκρασίας με κανονικοποίηση 0.1-0.9

2 a							
PREDICTOR(lm) IN-HID-OUT		TRAINING	r F		TESTING		EPOCHS linear tansig
2-2-1	Metr/a.f.	LINEAR	TANSIG	Metr/a.f.	LINEAR	TANSIG	
	c.t.	0.66	4.316	c.t.	0.021	0.01	14
	M.S.E	5.467	5.2713	M.S.E	5.4273	5.3477	150
	AME	1.7741	1.746	AME	1.7752	1.7699	150
	RMSE	0.95722	2.2959	RMSE	2.3297	2.3125	
	р	0.95722	0.95878	р	0.96211	0.96284	
	NDEI	0.10009	0.09828	NDEI	0.095065	0.094365	
2-5-1	Metr/a.f.	LINEAR	TANSIG	Metr/a.f.	LINEAR	TANSIG	
	c.t.	0.671	7.751	c.t.	0.021	0.02	6
	M.S.E	5.467	5.2619	M.S.E	5.4273	5.2853	150
	AME	1.7741	1.7383	AME	1.7752	1.7631	150
	RMSE	0.95722	2.2939	RMSE	2.3297	2.299	
	р	0.95722	0.95886	р	0.96211	0.96322	
	NDEI	0.10009	0.098191	NDEI	0.095065	0.093813	
2-10-1	Metr/a.f.	LINEAR	TANSIG	Metr/a.f.	LINEAR	TANSIG	
	c.t.	0.972	16.093	c.t.	0.01	0.02	6
	M.S.E	5.467	5.3077	M.S.E	5.4273	5.3061	150
	AME	1.7741	1.7502	AME	1.7752	1.7632	150
	RMSE	0.95722	2.3038	RMSE	2.3297	2.3035	
	р	0.95722	0.95849	р	0.96211	0.96309	
	NDEI	0.10009	0.098618	NDEI	0.095065	0.093997	
2-15-1	Metr/a.f.	LINEAR	TANSIG	Metr/a.f.	LINEAR	TANSIG	
	c.t.	1.562	27.58	c.t.	0.02	0.03	7
	M.S.E	5.467	5.2521	M.S.E	5.4273	5.3202	150
	AME	1.7741	1.7424	AME	1.7752	1.7647	150
	RMSE	0.95722	2.2918	RMSE	2.3297	2.3066	
	р	0.95722	0.95894	р	0.96211	0.963	
	NDEI	0.10009	0.0981	NDEI	0.095065	0.094123	
3-3-1	Metr/a.f.	LINEAR	TANSIG	Metr/a.f.	LINEAR	TANSIG	
	c.t.	1.792	6.029	c.t.	0.02	0.02	10
	M.S.E	5.3843	5.2616	M.S.E	5.3305	5.2433	_

		1				1		
	AME	1.7616	1.744		AME	1.7603	1.7545	150
	RMSE	2.3204	2.2938		RMSE	2.3088	2.2898	
	р	0.95786	0.95885		р	0.96279	0.96351	
	NDEI	0.099319	0.098181		NDEI	0.094203	0.093429	
3-5-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
	c.t.	0.821	9.374		c.t.	0.02	0.02	9
	M.S.E	5.3843	5.246		M.S.E	5.3305	5.2511	150
	AME	1.7616	1.7425		AME	1.7603	1.7547	150
	RMSE	2.3204	2.2904		RMSE	2.3088	2.2915	
	р	0.95786	0.95897		р	0.96279	0.96344	
	NDEI	0.099319	0.098035		NDEI	0.094203	0.093498	
3-10-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
	c.t.	1.152	17.736		c.t.	0.02	0.02	8
	M.S.E	5.3843	5.263		M.S.E	5.3305	5.2323	150
	AME	1.7616	1.7445		AME	1.7603	1.7507	150
	RMSE	2.3204	2.2941		RMSE	2.3088	2.2874	
	р	0.95786	0.95884		р	0.96279	0.96358	
	NDEI	0.099319	0.098193		NDEI	0.094203	0.093331	
3-15-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	10
	c.t.	2.504	34.059		c.t.	0.02	0.04	150
	M.S.E	5.3843	5.2283		M.S.E	5.3305	5.2425	100
	AME	1.7616	1.7406		AME	1.7603	1.7513	
	RMSE	2.3204	2.2865		RMSE	2.3088	2.2897	
	р	0.95786	0.95911		р	0.96279	0.96351	
	NDEI	0.099319	0.097869		NDEI	0.094203	0.093422	
5-3-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
	c.t.	0.671	7.581		c.t.	0.02	0.02	6
	M.S.E	5.2764	5.182		M.S.E	5.1933	5.1498	150
	AME	1.748	1.735		AME	1.7357	1.7309	150
	RMSE	2.297	2.2764		RMSE	2.2789	2.2693	
	р	0.95873	0.95949		р	0.96373	0.96411	
	NDEI	0.098308	0.097425		NDEI	0.092956	0.092566	
5-5-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
	c.t.	1.111	12.158		c.t.	0.02	0.02	
	M.S.E	5.2764	5.1813		M.S.E	5.1933	5.1418	9
	AME	1.748	1.7339		AME	1.7357	1.7291	150
	RMSE	2.297	2.2762		RMSE	2.2789	2.2675	150
	р	0.95873	0.95949		р	0.96373	0.96417	
	NDEI	0.098308	0.097418		NDEI	0.092956	0.092494	
5-10-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
	c.t.	1.853	26.398		c.t.	0.02	0.03	
	M.S.E	5.2764	5.0878		M.S.E	5.1933	5.2335	8
	AME	1.748	1.7181		AME	1.7357	1.7528	150
	RMSE	2.297	2.2556		RMSE	2.2789	2.2877	150
	р	0.95873	0.96024		р	0.96373	0.96358	
	NDEI	0.098308	0.096535		NDEI	0.092956	0.093315	
5-15-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
	c.t.	2.533	47.909		c.t.	0.03	0.04	
	M.S.E	5.2764	5.0727		M.S.E	5.1933	5.2254	6
	AME	1.748	1.7171		AME	1.7357	1.7516	150
	RMSE	2.297	2.2523		RMSE	2.2789	2.2859	150
	р	0.95873	0.96036		р	0.96373	0.9636	
	NDEI	0.098308	0.096392		NDEI	0.092956	0.093243	
7-3-1	Metr/a.f.	LINEAR	TANSIG	Ħ	Metr/a.f.	LINEAR	TANSIG	
	c.t.	1.041	10.165	1	c.t.	0.03	0.02	9
	M.S.E	5.1861	5.0444		M.S.E	5.1247	5.0947	150
	AME	1.7338	1.7109		AME	1.7244	1.7238	150

	RMSE	2.2773	2.246	RMSE	2.2638	2.2572	
	р	0.95942	0.96055	р	0.96417	0.96449	
	NDEI	0.097447	0.096107	NDEI	0.092314	0.092043	
7-5-1	Metr/a.f.	LINEAR	TANSIG	Metr/a.f.	LINEAR	TANSIG	
	c.t.	1.252	16.083	c.t.	0.03	0.03	
	M.S.E	5.1861	5.1233	M.S.E	5.1247	5.0823	8
	AME	1.7338	1.7259	AME	1.7244	1.7215	150
	RMSE	2.2773	2.2635	RMSE	2.2638	2.2544	150
	р	0.95942	0.95992	р	0.96417	0.96453	
	NDEI	0.097447	0.096856	NDEI	0.092314	0.092043	
7-10-1	Metr/a.f.	LINEAR	TANSIG	Metr/a.f.	LINEAR	TANSIG	
	c.t.	2.043	34.59	c.t.	0.03	0.03	6
	M.S.E	5.1861	5.1184	M.S.E	5.1247	5.09	150
	AME	1.7338	1.7237	AME	1.7244	1.7234	150
	RMSE	2.2773	2.2624	RMSE	2.2638	2.2561	
	р	0.95942	0.95996	р	0.96417	0.96448	
	NDEI	0.097447	0.09681	NDEI	0.092314	0.092001	
7-15-1	Metr/a.f.	LINEAR	TANSIG	Metr/a.f.	LINEAR	TANSIG	
	c.t.	3.424	64.312	c.t.	0.041	0.04	
	M.S.E	5.1861	4.9952	M.S.E	5.1247	5.1722	6
	AME	1.7338	1.706	AME	1.7244	1.7414	150
	RMSE	2.2773	2.235	RMSE	2.2638	2.2743	150
	р	0.95942	0.96094	р	0.96417	0.96397	
	NDEI	0.097447	0.095637	NDEI	0.092314	0.09274	

Πίνακας 7: Αποτελέσματα προσομοιώσεων των νευρωνικών δικτύων για πραγματικά δεδομένα μέγιστων ημερησίων τιμών θερμοκρασίας

2b

PREDICTOR(lm) IN-HID-OUT		TRAINING	ŗ		TESTING		EPOCHS linear tansig
2-2-1	Metr/a.f.	LINEAR	TANSIG	Metr/a.f.	LINEAR	TANSIG	
	c.t.	0.441	4.026	c.t.	0.01	0.02	5
	M.S.E	0.089485	0.08615	M.S.E	0.088854	0.086423	68
	AME	0.22697	0.22273	AME	0.22725	0.22546	00
	RMSE	0.29914	0.29352	RMSE	0.29808	0.29398	
	р	0.95722	0.95885	р	0.96213	0.96334	
	NDEI	0.2607	0.2558	NDEI	0.23611	0.23286	
2-5-1	Metr/a.f.	LINEAR	TANSIG	Metr/a.f.	LINEAR	TANSIG	
	c.t.	0.581	7.33	c.t.	0.02	0.021	6
	M.S.E	0.089485	0.085245	M.S.E	0.088854	0.085923	150
	AME	0.22697	0.22194	AME	0.22725	0.22496	150
	RMSE	0.29914	0.29197	RMSE	0.29808	0.29313	
	р	0.95722	0.95929	р	0.96213	0.96357	
	NDEI	0.2607	0.25445	NDEI	0.23611	0.23218	
2-10-1	Metr/a.f.	LINEAR	TANSIG	Metr/a.f.	LINEAR	TANSIG	
	c.t.	0.651	14.581	c.t.	0.02	0.02	4
	M.S.E	0.089485	0.08477	M.S.E	0.088854	0.086888	150
	AME	0.22697	0.2211	AME	0.22725	0.22676	150
	RMSE	0.29914	0.29115	RMSE	0.29808	0.29477	
	р	0.95722	0.95952	р	0.96213	0.96312	
	NDEI	0.2607	0.25374	NDEI	0.23611	0.23348	
2-15-1	Metr/a.f.	LINEAR	TANSIG	Metr/a.f.	LINEAR	TANSIG	
	c.t.	0.921	26.719	c.t.	0.02	0.03	

	M.S.E	0.089485	0.083811		M.S.E	0.088854	0.087789	4
	AME	0.22697	0.22025		AME	0.22725	0.22733	150
	RMSE	0.29914	0.2895		RMSE	0.29808	0.29629	100
	р	0.95722	0.95999	1	р	0.96213	0.9628	
	NDEI	0.2607	0.2523	1	NDEI	0.23611	0.23469	
3-3-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
001	c.t.	0.481	5.818		c.t.	0.02	0.02	1
	M.S.E	0.088131	0.085011	11	M.S.E	0.08725	0.085454	150
	AME	0.22538	0.22157	11	AME	0.22521	0.22411	150
	RMSE	0.29687	0.29157		RMSE	0.29538	0.29232	
	p	0.95786	0.95939		n	0.96279	0.96371	
	NDEI	0.25873	0.25411		NDEI	0.23395	0.23153	
3-5-1	Metr/a.f.	LINEAR	TANSIG	Ħ	Metr/a.f.	LINEAR	TANSIG	
551	c.t.	0.751	8.573		c.t.	0.02	0.02	0
	M.S.E	0.088131	0.084654		M.S.E	0.08725	0.086184	0
	AME	0.22538	0.22136		AME	0.22521	0.22561	150
	RMSE	0.29687	0.29095		RMSE	0.29538	0.29357	
	p	0.95786	0.95956		n	0.96279	0.96334	
	NDEI	0.25873	0.25357		NDEI	0.23395	0.23251	
3-10-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
5 10 1	c.t.	0.872	18.547	11	c.t.	0.01	0.02	5
	M.S.E	0.088131	0.08375	11	M.S.E	0.08725	0.08657	150
	AME	0.22538	0.22041	11	AME	0.22521	0.2261	150
	RMSE	0.29687	0.2894		RMSE	0.29538	0.29423	
	n	0.95786	0.96		n	0.96279	0.96324	
	NDEI	0.25873	0.25221		NDEI	0.23395	0.23303	
3-15-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	6
5 15 1	c.t.	1.692	33.498		c.t.	0.02	0.03	150
	M.S.E	0.088131	0.083135		M.S.E	0.08725	0.085997	150
	AME	0.22538	0.22052		AME	0.22521	0.22512	
	RMSE	0.29687	0.28833		RMSE	0.29538	0.29325	
	p	0.95786	0.9603		p	0.96279	0.96348	
	NDEI	0.25873	0.25129		NDEI	0.23395	0.23226	
5-3-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
551	c t	0.631	7 311		ct	0.02	0.02	7
	MSE	0.086365	0.08472		MSE	0.085005	0.08427	150
	AME	0.22363	0.222		AME	0.22206	0.22145	150
	RMSE	0.29388	0.29107		RMSE	0.29156	0.29029	
	p	0.95873	0.95953		n	0.96373	0.96411	
	NDEI	0.25608	0.25363		NDEI	0.23089	0.22989	
5-5-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
5-5-1	c t	1 111	11 586		c t	0.01	0.02	
	MSE	0.086365	0.083132		MSE	0.085005	0.02	
	AME	0.22363	0.21938		AME	0.22206	0.22338	11
	RMSE	0.22303	0.21930		RMSF	0.22200	0.22330	150
	n	0.25300	0.20033		n	0.25130	0.25175	
	NDFI	0.25608	0.25124		NDFI	0.23089	0.23123	
5 10 1	Metr/a f		TANSIG	┼┼	Metr/a f		TANSIG	
5-10-1			27 100		o t		0.03	
	MSF	0.091	0.080/11/		MSF	0.03	0.05	
	ΔMF	0.000303	0.000414		AME	0.000000	0.000009	4
	DWCE	0.22303	0.21743		DWCE	0.22200	0.22474	150
	n	0.29300	0.20337		n	0.29130	0.29474	
	P NDFI	0.25608	0.20103		NDEI	0.200275	0.23314	
5 15 1	Motr/o f		TANSIC	╟┼	Metr/o f		TANSIC	-
5-15-1	ct	1 573	48.24		c t	0.04	0.03	
	MCE	0.086265	0.081625		MCE	0.04	0.05	
	IVI.S.E	0.000303	0.001033	11	WI.D.E	0.0000000	0.003302	1

	AME	0.22363	0.2176	AME	0.22206	0.22488	4
	RMSE	0.29388	0.2872	RMSE	0.29156	0.29254	150
	р	0.95873	0.96104	р	0.96373	0.96367	
	NDEI	0.25608	0.24897	NDEI	0.23089	0.23167	
7-3-1	Metr/a.f.	LINEAR	TANSIG	Metr/a.f.	LINEAR	TANSIG	
	c.t.	0.621	9.453	c.t.	0.02	0.02	5
	M.S.E	0.084886	0.083039	M.S.E	0.083882	0.083771	150
	AME	0.22182	0.21977	AME	0.22062	0.22112	150
	RMSE	0.29135	0.28816	RMSE	0.28962	0.28943	
	р	0.95942	0.96032	р	0.96417	0.96429	
	NDEI	0.2539	0.25112	NDEI	0.22934	0.22918	
7-5-1	Metr/a.f.	LINEAR	TANSIG	Metr/a.f.	LINEAR	TANSIG	
	c.t.	1.122	15.202	c.t.	0.02	0.03	
	M.S.E	0.084886	0.081626	M.S.E	0.083882	0.084357	7
	AME	0.22182	0.21731	AME	0.22062	0.22211	150
	RMSE	0.29135	0.2857	RMSE	0.28962	0.29044	150
	р	0.95942	0.96101	р	0.96417	0.9641	
	NDEI	0.2539	0.24898	NDEI	0.22934	0.22998	
7-10-1	Metr/a.f.	LINEAR	TANSIG	Metr/a.f.	LINEAR	TANSIG	
	c.t.	2.154	34.71	c.t.	0.03	0.03	7
	M.S.E	0.084886	0.080138	M.S.E	0.083882	0.084416	150
	AME	0.22182	0.21657	AME	0.22062	0.2226	150
	RMSE	0.29135	0.28309	RMSE	0.28962	0.29054	
	р	0.95942	0.96173	р	0.96417	0.96405	
	NDEI	0.2539	0.2467	NDEI	0.22934	0.23006	
7-15-1	Metr/a.f.	LINEAR	TANSIG	Metr/a.f.	LINEAR	TANSIG	
	c.t.	2.113	65.444	c.t.	0.03	0.04	
	M.S.E	0.084886	0.078765	M.S.E	0.083882	0.086594	4
	AME	0.22182	0.21457	AME	0.22062	0.22623	150
	RMSE	0.29135	0.28065	RMSE	0.28962	0.29427	130
	р	0.95942	0.9624	р	0.96417	0.9631	
	NDEI	0.2539	0.24457	NDEI	0.22934	0.23301	

Πίνακας 8: Αποτελέσματα προσομοιώσεων των νευρωνικών δικτύων για μέγιστες ημερήσιες τιμές θερμοκρασίας με κανονικοποίηση μέσης τιμής ίσης με μηδέν και τυπικής απόκλισης μοναδιαίας

2 c							
PREDICTOR(lm) IN-HID-OUT		TRAINING	ł		TESTING		EPOCHS linear tansig
2-2-1	Metr/a.f.	LINEAR	TANSIG	Metr/a.f.	LINEAR	TANSIG	
	c.t.	4.346	4.146	c.t.	0.01	0.01	8
	M.S.E	0.001653	0.001594	M.S.E	0.001642	0.001599	150
	AME	0.030854	0.030276	AME	0.030872	0.030673	150
	RMSE	0.040664	0.039924	RMSE	0.040516	0.039992	
	р	0.95722	0.95879	р	0.96211	0.96319	
	NDEI	0.074402	0.073048	NDEI	0.071551	0.070625	
2-5-1	Metr/a.f.	LINEAR	TANSIG	Metr/a.f.	LINEAR	TANSIG	
	c.t.	0.541	7.821	c.t.	0.01	0.01	5
	M.S.E	0.001653	0.001573	M.S.E	0.001642	0.001618	150
	AME	0.030854	0.030118	AME	0.030872	0.030781	150
	RMSE	0.040664	0.039661	RMSE	0.040516	0.04022	
	р	0.95722	0.95935	р	0.96211	0.96275	
	NDEI	0.074402	0.072568	NDEI	0.071551	0.071028	

2 10 1	Matula f		TANGIC	П	Matula f		TANGIC	
2-10-1	Metr/a.i.	LINEAK	14.261		wieu/a.i.	LINEAR	TANSIG	
	c.t.	0.691	14.361		C.t.	0.02	0.02	4
	M.S.E	0.001653	0.001561		M.S.E	0.001642	0.001616	150
	AME	0.030854	0.030042		AME	0.0308/2	0.030763	
	RMSE	0.040664	0.039511		RMSE	0.040516	0.040208	
	р	0.95722	0.95966		р	0.96211	0.96283	
	NDEI	0.074402	0.072294		NDEI	0.071551	0.071006	
2-15-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
	c.t.	0.932	26.648		c.t.	0.02	0.03	4
	M.S.E	0.001653	0.001554		M.S.E	0.001642	0.001629	150
	AME	0.030854	0.029945		AME	0.030872	0.030836	150
	RMSE	0.040664	0.039422		RMSE	0.040516	0.040364	
	р	0.95722	0.95985		р	0.96211	0.96258	
	NDEI	0.074402	0.07213		NDEI	0.071551	0.071283	
3-3-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
001	c.t.	0.691	5.879		c.t.	0.01	0.02	5
	M.S.E	0.001628	0.001575		M.S.E	0.001612	0.001579	150
	AME	0.030637	0.030115		AME	0.030615	0.030448	150
	RMSE	0.040355	0.039692		RMSE	0.040153	0.039736	
	р	0.95786	0.95927		р	0.96279	0.96372	
	NDEI	0.073832	0.072619		NDEI	0.070903	0.070168	
3-5-1	Metr/a.f.	LINEAR	TANSIG	Ħ	Metr/a.f.	LINEAR	TANSIG	
551	c.t.	0.581	8.181		c.t.	0.01	0.01	5
	MSE	0.001628	0.001573		MSE	0.001612	0.001579	5
	AME	0.030637	0.030134		AME	0.030615	0.030441	150
	RMSE	0.040355	0.039662		RMSE	0.040153	0.039733	
	n	0.95786	0.95933		n	0.96279	0.96372	
	NDEI	0.073832	0.072565		NDEI	0.070903	0.070162	
3-10-1	Metr/a.f.	LINEAR	TANSIG	\square	Metr/a.f.	LINEAR	TANSIG	
5-10-1	c t	1 131	18 156		c t	0.02	0.03	7
	MSE	0.001628	0.001549		MSE	0.001612	0.001583	150
	AME	0.030637	0.02998		AME	0.030615	0.030492	150
	RMSE	0.040355	0.039362		RMSE	0.040153	0.039787	
	n	0.95786	0.95996		n	0.96279	0.96359	
	NDEI	0.073832	0.072016		NDEI	0.070903	0.070258	
3 15 1	Metr/a f	LINEAR	TANSIG		Metr/a f	LINFAR	TANSIG	1
5-15-1	c t	1 171	33 127		c t	0.02	0.03	4
	MSF	0.001628	0.001544		MSF	0.02	0.001582	150
	AME	0.030637	0.029975		AME	0.030615	0.030/33	
	RMSE	0.030037	0.029975		RMSE	0.030013	0.039776	
	n	0.95786	0.96008		n	0.96279	0.96365	
	NDEI	0.073832	0.071903		NDEI	0.070903	0.070238	
5-3-1	Metr/a f	LINFAR	TANSIG	╟	Metr/a f	LINFAR	TANSIG	
5-5-1	c.t	0.551	7 301		c.t	0.02	0.02	5
	MSE	0.001596	0.00155		MSF	0.02	0.02	J
	AME	0.030399	0.029975		AME	0.030186	0.030236	150
	RMSE	0.039949	0.039373		RMSF	0.039633	0.039549	
	n	0.95873	0.95994		n	0.96373	0.96402	
	NDEI	0.073083	0.07203		NDEI	0.069969	0.069821	
5-5-1	Metr/a.f	LINEAR	TANSIG	╞┼╴	Metr/a.f	LINEAR	TANSIG	1
5-5-1	c.t	0.831	12.037		c.t	0.02	0.02	
	MSE	0.001596	0.001523		MSF	0.02	0.02	_
	AME	0.030300	0.02975/		AME	0.030186	0.030209	6
	RMSF	0.039949	0.039021		RMSF	0.039633	0.039528	150
	n	0.95873	0.057021		n	0.96373	0.96414	
	NDFI	0.073083	0.071387	$\left \right $	NDFI	0.060060	0.069783	
5 10 1	Matr/o f	I INFAD	TANSIC	\mathbb{H}	Metr/o f	I INF A D	TANSIC	
3-10-1	wieu/a.i.	LINEAK	UCULAT	1	wicu/a.l.	LINEAK	UGUAL	1

	c.t.	0.991	26.298	c.t.	0.02	0.03	
	M.S.E	0.001596	0.001513	M.S.E	0.001571	0.001598	4
	AME	0.030399	0.029675	AME	0.030186	0.030545	150
	RMSE	0.039949	0.0389	RMSE	0.039633	0.039982	150
	р	0.95873	0.96091	р	0.96373	0.96324	
	NDEI	0.073083	0.071165	NDEI	0.069969	0.070585	
5-15-1	Metr/a.f.	LINEAR	TANSIG	Metr/a.f.	LINEAR	TANSIG	
	c.t.	1.582	48.139	c.t.	0.03	0.03	
	M.S.E	0.001596	0.001503	M.S.E	0.001571	0.001598	4
	AME	0.030399	0.029596	AME	0.030186	0.030545	150
	RMSE	0.039949	0.038763	RMSE	0.039633	0.039982	130
	р	0.95873	0.96119	р	0.96373	0.96324	
	NDEI	0.073083	0.070914	NDEI	0.069969	0.070585	
7-3-1	Metr/a.f.	LINEAR	TANSIG	Metr/a.f.	LINEAR	TANSIG	
	c.t.	0.701	9.133	c.t.	0.02	0.02	5
	M.S.E	0.001569	0.001521	M.S.E	0.00155	0.001539	_
	AME	0.030153	0.02975	AME	0.02999	0.02994	150
	RMSE	0.039605	0.039005	RMSE	0.03937	0.039226	130
	р	0.95942	0.96066	р	0.96417	0.96451	
	NDEI	0.072445	0.071347	NDEI	0.069489	0.069235	
7-5-1	Metr/a.f.	LINEAR	TANSIG	Metr/a.f.	LINEAR	TANSIG	
	c.t.	0.822	15.362	c.t.	0.02	0.03	
	M.S.E	0.001569	0.001504	M.S.E	0.00155	0.001537	5
	AME	0.030153	0.029559	AME	0.02999	0.02992	150
	RMSE	0.039605	0.038783	RMSE	0.03937	0.039206	130
	р	0.95942	0.96112	р	0.96417	0.96458	
	NDEI	0.072445	0.070942	NDEI	0.069489	0.069198	
7-10-1	Metr/a.f.	LINEAR	TANSIG	Metr/a.f.	LINEAR	TANSIG	
	c.t.	1.262	34.42	c.t.	0.03	0.03	4
	M.S.E	0.001569	0.001475	M.S.E	0.00155	0.001555	150
	AME	0.030153	0.029337	AME	0.02999	0.030153	150
	RMSE	0.039605	0.038413	RMSE	0.03937	0.039436	
	р	0.95942	0.96187	р	0.96417	0.96419	
	NDEI	0.072445	0.070264	NDEI	0.069489	0.069604	
7-15-1	Metr/a.f.	LINEAR	TANSIG	Metr/a.f.	LINEAR	TANSIG	
	c.t.	2.123	64.422	c.t.	0.04	0.04	
	M.S.E	0.001569	0.001464	M.S.E	0.00155	0.001572	4
	AME	0.030153	0.02923	AME	0.02999	0.030409	150
	RMSE	0.039605	0.038267	RMSE	0.03937	0.039651	150
	р	0.95942	0.96217	р	0.96417	0.96376	
	NDEI	0.072445	0.069997	NDEI	0.069489	0.069985	

Πίνακας 9: Αποτελέσματα προσομοιώσεων των νευρωνικών δικτύων για μέγισ	τες
ημερήσιες τιμές θερμοκρασίας με κανονικοποίηση 0.1-0.9	

3a			
PREDICTOR(lm) IN-HID-OUT	TRAINING	TESTING	EPOCHS linear tansig
2-2-1	Metr/a.f. LINEAR TANSIG	Metr/a.f. LINEAR TANSIG	

Г Г		0.50				0.01		
	c.t.	0.59	4.416		c.t.	0.01	0.02	11
	M.S.E	2.6664	2.6105		M.S.E	6.9931	6.5542	69
	AME	1.2283	1.219		AME	1.5048	1.4852	
	RMSE	1.6329	1.6157		RMSE	2.6444	2.5601	
	р	0.96825	0.96893		р	0.92943	0.9336	
	NDEI	0.10342	0.10233		NDEI	0.15728	0.15226	
2-5-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
	c.t.	0.721	7.711		c.t.	0.02	0.02	7
	M.S.E	2.6664	2.5781		M.S.E	6.9931	6.8289	150
	AME	1.2283	1.2105		AME	1.5048	1.501	150
	RMSE	1.6329	1.6057		RMSE	2.6444	2.6132	
	р	0.96825	0.96932		р	0.92943	0.93084	
	NDEI	0.10342	0.1017		NDEI	0.15728	0.15542	
2-10-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
	c.t.	0.992	15.182		c.t.	0.02	0.02	8
	M.S.E	2.6664	2.5451		M.S.E	6.9931	6.7883	150
	AME	1.2283	1.2035		AME	1.5048	1.5045	150
	RMSE	1.6329	1.5953		RMSE	2.6444	2.6054	
	р	0.96825	0.96972		р	0.92943	0.93124	
	NDEI	0.10342	0.10104		NDEI	0.15728	0.15496	
2-15-1	Metr/a.f.	LINEAR	TANSIG	\square	Metr/a.f.	LINEAR	TANSIG	
	c.t.	1.152	28.721		c.t.	0.02	0.03	Δ
	M.S.E	2.6664	2.5346		M.S.E	6.9931	6.4953	150
	AME	1.2283	1.2001		AME	1.5048	1.4849	150
	RMSE	1.6329	1.592		RMSE	2.6444	2.5486	
	р	0.96825	0.96985		р	0.92943	0.93428	
	NDEI	0.10342	0.10083		NDEI	0.15728	0.15157	
3-3-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
001	c.t.	0.621	5.899		c.t.	0.02	0.02	10
	M.S.E	2.6137	2.5139		M.S.E	7.1537	6.9317	150
	AME	1.2199	1.1967		AME	1.5143	1.4913	150
	RMSE	1.6167	1.5855		RMSE	2.6746	2.6328	
	р	0.96888	0.97009		р	0.92794	0.93014	
	NDEI	0.10239	0.10041		NDEI	0.15906	0.15657	
3-5-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
001	c.t.	0.731	8.021		c.t.	0.02	0.021	8
	M.S.E	2.6137	2.5519		M.S.E	7.1537	6.7532	0
	AME	1.2199	1.2082		AME	1.5143	1.4989	1.50
	RMSE	1.6167	1.5975		RMSE	2.6746	2.5987	150
	р	0.96888	0.96963		р	0.92794	0.9317	
	NDEI	0.10239	0.10117		NDEI	0.15906	0.15454	
3-10-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
	c.t.	1.011	17.605		c.t.	0.02	0.02	6
	M.S.E	2.6137	2.4837		M.S.E	7.1537	7.1335	150
	AME	1.2199	1.19		AME	1.5143	1.5063	150
	RMSE	1.6167	1.576		RMSE	2.6746	2.6709	
	р	0.96888	0.97045		р	0.92794	0.92823	
	NDEI	0.10239	0.09981		NDEI	0.15906	0.15883	
3-15-1	Metr/a.f.	LINEAR	TANSIG	\square	Metr/a.f.	LINEAR	TANSIG	6
	c.t.	1.682	34.73		c.t.	0.03	0.04	150
	M.S.E	2.6137	2.5075		M.S.E	7.1537	6.4805	150
	AME	1.2199	1.1991		AME	1.5143	1.4851	
	RMSE	1.6167	1.5835		RMSE	2.6746	2.5457	
	р	0.96888	0.97017		р	0.92794	0.93442	
	NDEI	0.10239	0.10028		NDEI	0.15906	0.15139	
5-3-1	Metr/a.f.	LINEAR	TANSIG	$ \uparrow$	Metr/a.f.	LINEAR	TANSIG	
551	c.t.	0.791	2.744		c.t.	0.02	0.03	0
	÷	J., / I					0.00	0

	M.S.E	2.5639	2.5306		M.S.E	6.9796	6.6733	47
	AME	1.2118	1.2055		AME	1.4987	1.4864	-
	RMSE	1.6012	1.5908		RMSE	2.6419	2.5833	
	р	0.96948	0.96989		р	0.92967	0.93248	
	NDEI	0.10139	0.10073		NDEI	0.15706	0.15358	
5-5-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
5 5 1	c.t.	0.952	13.72		c.t.	0.02	0.03	
	M.S.E	2.5639	2.5185		M.S.E	6.9796	6.6483	0
	AME	1.2118	1.2035		AME	1.4987	1.4804	8
	RMSE	1.6012	1.587		RMSE	2.6419	2.5784	150
	n	0.96948	0.97003		n	0.92967	0.93277	
	NDEI	0.10139	0.10049		NDEI	0.15706	0.15329	
5 10 1	Metr/a f	LINEAR	TANSIG		Metr/a f	LINEAR	TANSIG	
5-10-1	c t	1 9/3	27.269		c t	0.02	0.03	
	MSF	2 5639	2 5056		MSE	6.9796	6.03	
	AME	1 2118	1 1001		AME	1 / 087	1 4777	9
	RMSE	1.2110	1.1991		RMSE	2 6/19	2 5393	150
	n	0.969/8	0.97019		n	0.02067	0.03460	
	P NDEI	0.10130	0.97019		P NDEI	0.92907	0.93409	
5 15 1	NDEI Motrio f		0.10024	+	NDEI Motrio f		0.13097	
5-15-1	Metr/a.i.	LINEAR	1 ANSIG		Metr/a.i.	LINEAK	TANSIG	
	C.L.	3.000	48.19		C.L.	0.03	0.04	
	M.S.E	2.5639	2.4111		M.S.E	0.9790	0.0294	10
	AME	1.2118	1.1801		AME	1.4987	1.5005	150
	RMSE	1.6012	1.5528		RMSE	2.6419	2.5748	
	p	0.96948	0.9/133	-	p	0.92967	0.93313	
	NDEI	0.10139	0.098327		NDEI	0.15706	0.15307	
7-3-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
	c.t.	0.801	10.195		c.t.	0.03	0.02	7
	M.S.E	2.5123	2.4886		M.S.E	6.8781	6.6038	150
	AME	1.2042	1.1983		AME	1.4871	1.4752	
	RMSE	1.585	1.5775		RMSE	2.6226	2.5698	
	р	0.97008	0.97037		р	0.93067	0.93318	
	NDEI	0.10035	0.099876		NDEI	0.15587	0.15273	
7-5-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
	c.t.	1.312	15.282		c.t.	0.03	0.03	
	M.S.E	2.5123	2.484		M.S.E	6.8781	6.6241	8
	AME	1.2042	1.1974		AME	1.4871	1.4756	150
	RMSE	1.585	1.5761		RMSE	2.6226	2.5737	150
	р	0.97008	0.97043		р	0.93067	0.93297	
	NDEI	0.10035	0.099783		NDEI	0.15587	0.15297	
7-10-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
	c.t.	1.743	34.21		c.t.	0.03	0.03	5
	M.S.E	2.5123	2.4666		M.S.E	6.8781	6.639	150
	AME	1.2042	1.1932		AME	1.4871	1.4838	150
	RMSE	1.585	1.5705		RMSE	2.6226	2.5766	
	р	0.97008	0.97064		р	0.93067	0.93277	
	NDEI	0.10035	0.099434		NDEI	0.15587	0.15314	
7-15-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
-	c.t.	3.736	72.414	11	c.t.	0.03	0.04	
	M.S.E	2.5123	2.4295	11	M.S.E	6.8781	6.5357	6
	AME	1.2042	1.1847	11	AME	1.4871	1.4766	0
	RMSE	1.585	1.5587	11	RMSE	2.6226	2.5565	150
	р	0.97008	0.97108	11	р	0.93067	0.93391	
	NDEI	0.10035	0.098683	11	NDEI	0.15587	0.15194	

Πίνακας 10: Αποτελέσματα προσομοιώσεω	ν των νευρωνικών δικτύων για πραγματικά
δεδομένα ελάχιστων ημερι	ισίων τιμών θερμοκρασίας

3b

PREDICTOR(lm) IN-HID-OUT	TRAINING					EPOCHS linear tansig	
			T + MALO			T L MARK G	
2-2-1	Metr/a.f.	LINEAR	TANSIG	Metr/a.f.	LINEAR	TANSIG	
	c.t.	2.764	4.046	c.t.	0.02	0.02	5
	M.S.E	0.043643	0.04197	M.S.E	0.11446	0.14279	150
	AME	0.15714	0.15452	AME	0.19252	0.19942	
	RMSE	0.20891	0.20486	RMSE	0.33832	0.37787	
	р	0.96825	0.96949	р	0.92943	0.9131	
	NDEI	0.21817	0.21394	NDEI	0.34573	0.38615	
2-5-1	Metr/a.f.	LINEAR	TANSIG	Metr/a.f.	LINEAR	TANSIG	
	c.t.	0.661	7.391	c.t.	0.02	0.02	7
	M.S.E	0.043643	0.041576	M.S.E	0.11446	0.10666	150
	AME	0.15714	0.15377	AME	0.19252	0.19094	
	RMSE	0.20891	0.2039	RMSE	0.33832	0.32659	
	р	0.96825	0.96978	р	0.92943	0.93401	
	NDEI	0.21817	0.21294	NDEI	0.34573	0.33374	
2-10-1	Metr/a.f.	LINEAR	TANSIG	Metr/a.f.	LINEAR	TANSIG	
	c.t.	0.851	15.832	c.t.	0.01	0.02	5
	M.S.E	0.043643	0.04119	M.S.E	0.11446	0.11651	150
	AME	0.15714	0.15294	AME	0.19252	0.19307	100
	RMSE	0.20891	0.20295	RMSE	0.33832	0.34133	
	р	0.96825	0.97007	р	0.92943	0.92821	
	NDEI	0.21817	0.21195	NDEI	0.34573	0.34881	
2-15-1	Metr/a.f.	LINEAR	TANSIG	Metr/a.f.	LINEAR	TANSIG	
	c.t.	1.182	26.728	c.t.	0.02	0.031	5
	M.S.E	0.043643	0.04105	M.S.E	0.11446	0.10869	150
	AME	0.15714	0.15289	AME	0.19252	0.19125	150
	RMSE	0.20891	0.20261	RMSE	0.33832	0.32968	
	р	0.96825	0.97017	р	0.92943	0.93299	
	NDEI	0.21817	0.21159	NDEI	0.34573	0.3369	
3-3-1	Metr/a.f.	LINEAR	TANSIG	Metr/a.f.	LINEAR	TANSIG	
	c.t.	0.681	5.248	c.t.	0.02	0.02	5
	M.S.E	0.042782	0.041244	M.S.E	0.11709	0.11316	130
	AME	0.15607	0.15359	AME	0.19374	0.19296	150
	RMSE	0.20684	0.20309	RMSE	0.34219	0.33639	
	р	0.96888	0.97002	р	0.92794	0.9303	
	NDEI	0.21605	0.21213	NDEI	0.34967	0.34374	
3-5-1	Metr/a.f.	LINEAR	TANSIG	Metr/a.f.	LINEAR	TANSIG	
	c.t.	0.581	9.033	c.t.	0.02	0.01	4
	M.S.E	0.042782	0.040878	M.S.E	0.11709	0.098071	150
	AME	0.15607	0.15279	AME	0.19374	0.18836	150
	RMSE	0.20684	0.20218	RMSE	0.34219	0.31316	
	р	0.96888	0.97029	р	0.92794	0.93941	
	NDEI	0.21605	0.21119	NDEI	0.34967	0.32001	
3-10-1	Metr/a.f.	LINEAR	TANSIG	Metr/a.f.	LINEAR	TANSIG	
	c.t.	0.751	18.747	c.t.	0.02	0.03	4
	M.S.E	0.042782	0.040674	M.S.E	0.11709	0.10252	150
	AME	0.15607	0.15238	AME	0.19374	0.19105	150
	RMSE	0.20684	0.20168	RMSE	0.34219	0.32019	
	р	0.96888	0.97044	р	0.92794	0.93694	
	NDEI	0.21605	0.21066	NDEI	0.34967	0.3272	
3-15-1	Metr/a.f.	LINEAR	TANSIG	Metr/a.f.	LINEAR	TANSIG	4
	c.t.	1.081	36.292	c.t.	0.02	0.03	150
	M.S.E	0.042782	0.040404	M.S.E	0.11709	0.10046	

	AME	0.15607	0.15166		AME	0.19374	0.19137	
	RMSE	0.20684	0.20101		RMSE	0.34219	0.31695	
	р	0.96888	0.97064	1	р	0.92794	0.93812	
	NDEI	0.21605	0.20996	1	NDEI	0.34967	0.32388	
5-3-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
001	c.t.	0.681	7.821		c.t.	0.02	0.02	5
	M.S.E	0.041966	0.041428	11	M.S.E	0.11424	0.1083	150
	AME	0.15503	0.15437		AME	0.19174	0.18923	150
	RMSE	0.20486	0.20354		RMSE	0.338	0.32909	
	р	0.96948	0.96988		р	0.92967	0.93302	
	NDEI	0.21401	0.21263		NDEI	0.34553	0.33642	
5-5-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
	c.t.	0.671	12.018		c.t.	0.02	0.02	
	M.S.E	0.041966	0.040082		M.S.E	0.11424	0.1098	5
	AME	0.15503	0.15149		AME	0.19174	0.19249	150
	RMSE	0.20486	0.20021		RMSE	0.338	0.33136	150
	р	0.96948	0.97088		р	0.92967	0.9325	
	NDEI	0.21401	0.20915		NDEI	0.34553	0.33874	
5-10-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
	c.t.	2.033	28.611		c.t.	0.02	0.03	
	M.S.E	0.041966	0.039714		M.S.E	0.11424	0.12695	10
	AME	0.15503	0.15084		AME	0.19174	0.19713	150
	RMSE	0.20486	0.19928		RMSE	0.338	0.3563	150
	р	0.96948	0.97115		р	0.92967	0.92236	
	NDEI	0.21401	0.20819		NDEI	0.34553	0.36423	
5-15-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
	c.t.	2.954	47.709		c.t.	0.031	0.04	
	M.S.E	0.041966	0.039361		M.S.E	0.11424	0.099801	7
	AME	0.15503	0.14964		AME	0.19174	0.19568	150
	RMSE	0.20486	0.1984		RMSE	0.338	0.31591	150
	р	0.96948	0.97141		р	0.92967	0.93855	
	NDEI	0.21401	0.20726		NDEI	0.34553	0.32295	
7-3-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
	c.t.	0.681	9.714	1	c.t.	0.02	0.02	6
	M.S.E	0.041122	0.039749	1	M.S.E	0.11258	0.11576	150
	AME	0.15406	0.15135	1	AME	0.19026	0.19017	150
	RMSE	0.20278	0.19937	1	RMSE	0.33553	0.34023	
	р	0.97008	0.9711	1	р	0.93067	0.929	
	NDEI	0.21197	0.2084		NDEI	0.34318	0.34795	
7-5-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
	c.t.	0.871	15.242		c.t.	0.02	0.03	
	M.S.E	0.041122	0.039511		M.S.E	0.11258	0.11733	6
	AME	0.15406	0.15069		AME	0.19026	0.19252	150
	RMSE	0.20278	0.19877		RMSE	0.33553	0.34253	150
	р	0.97008	0.97127		р	0.93067	0.92782	
	NDEI	0.21197	0.20778		NDEI	0.34318	0.35034	
7-10-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
	c.t.	2.083	34.169		c.t.	0.03	0.03	6
	M.S.E	0.041122	0.039072		M.S.E	0.11258	0.09819	150
	AME	0.15406	0.14983		AME	0.19026	0.19016	150
	RMSE	0.20278	0.19767		RMSE	0.33553	0.31335	
	р	0.97008	0.9716		р	0.93067	0.93949	
	NDEI	0.21197	0.20662		NDEI	0.34318	0.3205	
7-15-1	Metr/a.f.	LINEAR	TANSIG	Π	Metr/a.f.	LINEAR	TANSIG	
	c.t.	2.984	68.178]	c.t.	0.03	0.04	
	M.S.E	0.041122	0.038019		M.S.E	0.11258	0.12217	5
	AME	0.15406	0.14799		AME	0.19026	0.20079	5

RMSE	0.20278	0.19498	RMSE	0.33553	0.34953	150
р	0.97008	0.97237	р	0.93067	0.925	
NDEI	0.21197	0.20382	NDEI	0.34318	0.3575	

Πίνακας 11: Αποτελέσματα προσομοιώσεων των νευρωνικών δικτύων για ελάχιστες ημερήσιες τιμές θερμοκρασίας με κανονικοποίηση μέσης τιμής ίσης με μηδέν και τυπικής απόκλισης μοναδιαίας

3C PREDICTOR(lm)	TRAINING					EPOCHS		
IN-HID-OUT						linear		
								tansig
2_2_1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
	c.t.	2.583	4.196		c.t.	0.01	0.01	5
	M.S.E	0.000865	0.000779		M.S.E	0.002115	0.002153	150
	AME	0.021361	0.02105		AME	0.02617	0.026306	150
	RMSE	0.028398	0.027909		RMSE	0.04599	0.046405	
	р	0.96825	0.96936		р	0.92943	0.9281	
	NDEI	0.068781	0.06756		NDEI	0.10694	0.1079	
2-5-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
201	c.t.	0.531	7.091		c.t.	0.01	0.02	6
	M.S.E	0.000865	0.000765		M.S.E	0.002115	0.002276	150
	AME	0.021361	0.020881		AME	0.02617	0.026627	150
	RMSE	0.028398	0.027659		RMSE	0.04599	0.04771	
	р	0.96825	0.96991		р	0.92943	0.92486	
	NDEI	0.068781	0.066991		NDEI	0.10694	0.11093	
2-10-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
2 10 1	c.t.	0.601	14.531		c.t.	0.01	0.02	3
	M.S.E	0.000865	0.000762		M.S.E	0.002115	0.002423	150
	AME	0.021361	0.020849		AME	0.02617	0.026769	150
	RMSE	0.028398	0.02761		RMSE	0.04599	0.049229	
	р	0.96825	0.97002		р	0.92943	0.9197	
	NDEI	0.068781	0.066873		NDEI	0.10694	0.11447	
2-15-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
	c.t.	0.911	26.708		c.t.	0.02	0.03	5
	M.S.E	0.000865	0.000762		M.S.E	0.002115	0.001716	150
	AME	0.021361	0.020817		AME	0.02617	0.025549	150
	RMSE	0.028398	0.027596		RMSE	0.04599	0.04142	
	р	0.96825	0.97005		р	0.92943	0.94254	
	NDEI	0.068781	0.066838		NDEI	0.10694	0.096309	
3-3-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
	c.t.	0.501	6.329		c.t.	0.01	0.01	5
	M.S.E	0.00079	0.000758		M.S.E	0.002164	0.001787	29
	AME	0.021216	0.020798		AME	0.026336	0.025521	_>
	RMSE	0.028117	0.027541		RMSE	0.046515	0.042274	
	р	0.96888	0.97016		р	0.92794	0.94032	
	NDEI	0.068095	0.0667		NDEI	0.10815	0.098287	
3-5-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
	c.t.	0.761	8.262		c.t.	0.02	0.02	7
	M.S.E	0.00079	0.000754		M.S.E	0.002164	0.002174	150
	AME	0.021216	0.020747		AME	0.026336	0.026386	
	RMSE	0.028117	0.027457		RMSE	0.046515	0.04663	
	p	0.96888	0.97035		p	0.92794	0.92822	
	NDEI	0.068095	0.066497		NDEI	0.10815	0.10842	
3-10-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG	
	c.t.	0.912	18.687		c.t.	0.02	0.02	5
	M.S.E	0.00079	0.000751		M.S.E	0.002164	0.002402	150
	AME	0.021216	0.020715		LAME	0.026336	0.026632	1

	DMCE	0.020117	0.007411	Т	DMCE	0.046515	0.040007	Т	
	KNISE	0.028117	0.027411		KINDE	0.040313	0.049007		
	p	0.96888	0.97045		p	0.92794	0.92124		
	NDEI	0.068095	0.066385		NDEI	0.10815	0.11394		
3-15-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG		5
	c.t.	1.342	33.338		c.t.	0.02	0.03		150
	M.S.E	0.00079	0.000749		M.S.E	0.002164	0.000729		
	AME	0.021216	0.020702		AME	0.026336	0.029816		
	RMSE	0.028117	0.027364		RMSE	0.046515	0.085409		
	р	0.96888	0.97055		р	0.92794	0.80395		
	NDEI	0.068095	0.066272		NDEI	0.10815	0.19858		
5-3-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG		
	c.t.	0.711	7.651		c.t.	0.02	0.02		7
	M.S.E	0.000775	0.000745		M.S.E	0.002111	0.001731		150
	AME	0.021074	0.020649		AME	0.026064	0.02526		
	RMSE	0.027847	0.027296		RMSE	0.045946	0.0416		
	р	0.96948	0.9707		р	0.92967	0.94214		
	NDEI	0.067437	0.066103		NDEI	0.1068	0.096699		
5-5-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG		
	c.t.	0.681	12.147		c.t.	0.02	0.021		
	M.S.E	0.000775	0.000742		M.S.E	0.002111	0.001786		5
	AME	0.021074	0.020604		AME	0.026064	0.025641		150
	RMSE	0.027847	0.027246		RMSE	0.045946	0.042264		150
	р	0.96948	0.97081		р	0.92967	0.94039		
	NDEI	0.067437	0.06598		NDEI	0.1068	0.098244		
5-10-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG		
	c.t.	0.991	29.623		c.t.	0.02	0.02		
	M.S.E	0.000775	0.000729		M.S.E	0.002111	0.004293		5
	AME	0.021074	0.020487		AME	0.026064	0.028317		150
	RMSE	0.027847	0.027005		RMSE	0.045946	0.065523		150
	р	0.96948	0.97133		р	0.92967	0.86871		
	NDEI	0.067437	0.065397		NDEI	0.1068	0.15231		
5-15-1	Metr/a.f.	LINEAR	TANSIG		Metr/a.f.	LINEAR	TANSIG		
0 10 1	c.t.	2.053	48.296		c.t.	0.03	0.03		
	M.S.E	0.000775	0.000733		M.S.E	0.002111	0.007073		6
	AME	0.021074	0.020549		AME	0.026064	0.030187		150
	RMSE	0.027847	0.027077		RMSE	0.045946	0.084099		150
	р	0.96948	0.97118		р	0.92967	0.80465		
	NDEI	0.067437	0.06557		NDEI	0.1068	0.19549		
7-3-1	Metr/a.f.	LINEAR	TANSIG	T	Metr/a.f.	LINEAR	TANSIG		
, , , ,	c.t.	0.691	9.524		c.t.	0.03	0.02		6
	M.S.E	0.000759	0.000735		M.S.E	0.00208	0.001753		150
	AME	0.020943	0.02057		AME	0.025863	0.025244		150
	RMSE	0.027566	0.027104		RMSE	0.045611	0.041874		
	р	0.97008	0.97109		р	0.93067	0.94136		
	NDEI	0.066745	0.065627		NDEI	0.106	0.097316		
7-5-1	Metr/a.f.	LINEAR	TANSIG	T	Metr/a.f.	LINEAR	TANSIG		
,	c.t.	0.801	16.834		c.t.	0.02	0.03		
	M.S.E	0.000759	0.000735		M.S.E	0.00208	0.002785		5
	AME	0.020943	0.020594		AME	0.025863	0.026884) 150
	RMSE	0.027566	0.027103		RMSE	0.045611	0.052778		150
	р	0.97008	0.97109		р	0.93067	0.90912		
	NDEI	0.066745	0.065626		NDEI	0.106	0.12266		
7-10-1	Metr/a.f.	LINEAR	TANSIG	t	Metr/a.f.	LINEAR	TANSIG	Π	
, 10 1	c.t.	1.352	34.72	1	c.t.	0.03	0.03	11	Λ
	M.S.E	0.000759	0.000725	1	M.S.E	0.00208	0.0070948	11	4 150
	AME	0.020943	0.02047		AME	0.025863	0.031582	11	150
	RMSE	0.027566	0.026924		RMSE	0.045611	0.084231	11	
	1								

	р	0.97008	0.97148	р	0.93067	0.80242	
	NDEI	0.066745	0.065192	NDEI	0.106	0.19575	
7-15-1	Metr/a.f.	LINEAR	TANSIG	Metr/a.f.	LINEAR	TANSIG	
	c.t.	2.143	64.473	c.t.	0.04	0.04	
	M.S.E	0.000759	0.000713	M.S.E	0.00208	0.010963	4
	AME	0.020943	0.020325	AME	0.025863	0.033548	150
	RMSE	0.027566	0.026694	RMSE	0.045611	0.10471	130
	р	0.97008	0.972	р	0.93067	0.73321	
	NDEI	0.066745	0.064634	NDEI	0.106	0.24334	

Πίνακας 12: Αποτελέσματα προσομοιώσεων των νευρωνικών δικτύων για ελάχιστες ημερήσιες τιμές θερμοκρασίας με κανονικοποίηση 0.1-0.9

2. ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ

Παρακάτω παρατίθενται οι εξής τρεις γραφικές παραστάσεις για καθεμιά από τις περιπτώσεις εκπαιδεύσεων των 'καλύτερων' 16 νευρωνικών δικτύων:

1. Υ-αξονας: Πραγματικές ημερήσιες τιμές και αντίστοιχες προβλέψεις

δεδομένων δοκιμής ηλιακής ακτινοβολίας ή θερμοκρασίας

Χ-άξονας: Αριθμός δεδομένων

 Υ-αξονας:Τιμές σφάλματος για προβλέψεις δεδομένων δοκιμής ηλιακής ακτινοβολίας ή θερμοκρασίας

Χ-άξονας:Αριθμός δεδομένων

 Υ-αξονας: Τιμές προβλέψεων δεδομένων δοκιμής ηλιακής ακτινοβολίας ή θερμοκρασίας

Χ-άξονας: Τιμές δεδομένων δοκιμής

Για τα δεδομένα ηλιακής ακτινοβολίας έχουν προκύψει τα εξής τέσσερα καλύτερα νευρωνικά δίκτυα.

- 5. 5-15-1 για κανονικοποίηση 0.1-0.9 με χρήση σιγμοειδούς συνάρτησης ενεργοποίησης των κόμβων ενδιάμεσου στρώματος
- 7-3-1 για κανονικοποίηση 0.1-0.9 με χρήση σιγμοειδούς συνάρτησης ενεργοποίησης των κόμβων ενδιάμεσου στρώματος
- 7. 7-10-1 για κανονικοποίηση 0.1-0.9 με χρήση σιγμοειδούς συνάρτησης ενεργοποίησης των κόμβων ενδιάμεσου στρώματος
- 4. 5-10-1 για κανονικοποίηση 0.1-0.9 με χρήση σιγμοειδούς συνάρτησης ενεργοποίησης των κόμβων ενδιάμεσου στρώματος

Έχουμε λοιπόν τις παρακάτω γραφικές για τα προαναφερθέντα νευρωνικά δίκτυα.

Για τα δεδομένα μέσης ημερήσιας θερμοκρασίας έχουν προκύψει τα εξής τέσσερα καλύτερα νευρωνικά δίκτυα.

 5-10-1 για κανονικοποίηση 0.1-0.9 με χρήση σιγμοειδούς συνάρτησης ενεργοποίησης των κόμβων ενδιάμεσου στρώματος

 7-3-1 για πραγματικά δεδομένα με χρήση σιγμοειδούς συνάρτησης ενεργοποίησης των κόμβων ενδιάμεσου στρώματος

3. 3-5-1 για κανονικοποίηση 0.1-0.9 με χρήση σιγμοειδούς συνάρτησης ενεργοποίησης των κόμβων ενδιάμεσου στρώματος

4. 7-3-1 για κανονικοποίηση 0.1-0.9 με χρήση σιγμοειδούς συνάρτησης ενεργοποίησης των κόμβων ενδιάμεσου στρώματος

Οι αντίστοιχες γραφικές παραστάσεις για παραπάνω νευρωνικά δίκτυα παρατίθενται παρακάτω:

Για τα δεδομένα μέγιστης ημερήσιας θερμοκρασίας έχουν προκύψει τα εξής τέσσερα καλύτερα νευρωνικά δίκτυα.

1. 7-5-1 για κανονικοποίηση 0.1-0.9 με χρήση σιγμοειδούς συνάρτησης ενεργοποίησης των κόμβων ενδιάμεσου στρώματος

7-5-1 για πραγματικά δεδομένα με χρήση σιγμοειδούς συνάρτησης ενεργοποίησης των κόμβων ενδιάμεσου στρώματος

3. 7-3-1 για κανονικοποίηση 0.1-0.9 με χρήση σιγμοειδούς συνάρτησης ενεργοποίησης των κόμβων ενδιάμεσου στρώματος

4. 7-3-1 για πραγματικά δεδομένα με χρήση σιγμοειδούς συνάρτησης ενεργοποίησης των κόμβων ενδιάμεσου στρώματος.

Οι αντίστοιχες γραφικές παραστάσεις για τα προαναφερθέντα νευρωνικά δίκτυα παρατίθενται παρακάτω:

Για τα δεδομένα ελάχιστης ημερήσιας θερμοκρασίας έχουν προκύψει τα εξής τέσσερα καλύτερα νευρωνικά δίκτυα.

1. 2-15-1 για κανονικοποίηση 0.1-0.9 με χρήση σιγμοειδούς συνάρτησης ενεργοποίησης των κόμβων ενδιάμεσου στρώματος

2. 5-3-1 για κανονικοποίηση 0.1-0.9 με χρήση σιγμοειδούς συνάρτησης ενεργοποίησης των κόμβων ενδιάμεσου στρώματος

3. 7-3-1 για κανονικοποίηση 0.1-0.9 με χρήση σιγμοειδούς συνάρτησης ενεργοποίησης των κόμβων ενδιάμεσου στρώματος

4. 5-5-1 για κανονικοποίηση 0.1-0.9 με χρήση σιγμοειδούς συνάρτησης ενεργοποίησης των κόμβων ενδιάμεσου στρώματος.

Οι αντίστοιχες γραφικές παραστάσεις για τα προαναφερθέντα νευρωνικά δίκτυα παρατίθενται παρακάτω:

- 141 -

ΒΙΒΛΙΟΓΡΑΦΙΑ - ΑΝΑΦΟΡΕΣ

Βιβλιογραφία

- [A1]. Γεωργαντά Ζ. "Επιστημονικές Μελέτες. Η προσέγγιση BOX-Jenkins στην ανάλυση και πρόβλεψη χρονολογικών σειρών." Αθήνα 1987.
- [**A2**]. Παπαιωάννου Γ. "*ΧΑΟΤΙΚΕΣ ΧΡΟΝΟΣΕΙΡΕΣ*".. Leader Books. 1^η έκδοση 2000.
- [A3]. Detelf Nauck, Frank Klawonn, Rudolf Kruse." *Foundations Of Neuro-fuzzy Systems*". ISBN:0-471-97151-0
- [A4]. Gurney Kevin "An introduction to neural networks". University of Sheffield. Routledge. Taylor and Francis Group. London1997.
- [A5]. J.Wesley Hines." *Matlab Supplement to Fuzzy and Neural approaches in engineering*". John Wiley and Sons. New York 1997.
- [A6]. Simon Haykin. "NEURAL NETWORKS A Comprehensive Foundation-Second Edition". McMaster University Hamilton, Ontario, Canada. 1999 by Prentice Hall.

Σημειώσεις

- [**B1**]. Δρ.Διακολουκάς Βασίλης. " Σημειώσεις μαθήματος 'Στατιστική επεξεργασία σήματος για τηλεπικοινωνίες' ... Πολυτεχνείο Κρήτης .Χανιά
- [**B2**]. Δρ. Ντούνης Αναστασιος, "Σημειώσεις Νευρωνικών Δικτύων". Α.Τ.Ε.Ι Πειραιά
- [B3]. Δρ. Ντούνης Αναστασιος, "Computational Intelligence". Α.Τ.Ε.Ι Πειραιά
- [**B4**]. Δρ.Χριστοδούλου Μ. " *Σημειώσεις μαθήματος 'Νευρωνικά Δίκτυα και Εφαρμογές'*. Πολυτεχνείο Κρήτης. Χανιά.
- [B5]. Geneviene Orr "*Neural networks lecture notes*". Willamette University.
- [B6]. Systems Realization Laboratory "*Optimization in Engineering design,Quasi-Newton Methods*". Georgia Institute of Tehnology,.

Άρθρα

- [C1]. Α.Ι. Ντούνης, Β. Μπράχος, Β Σταθούλιας, Δ. Τσελές. Σύστημα ασαφούς λογικής για την πρόβλεψη της μέσης ημερήσιας ηλιακής ακτινοβολίας. 2° Συνέδριο Τεχνολογίας και Αυτοματισμού Θεσ/κη 2-3 Οκτωμβρίου 1998.
- [C2]. Δρ. Σ. Μαρκουλάκης, Δρ. Γ. Σταυρακάκης. "ΒΡΑΧΥΠΡΟΘΕΣΜΗ ΠΡΟΒΛΕΨΗ ΤΟΥ ΗΛΕΚΤΡΙΚΟΥ ΦΟΡΤΙΟΥ ΜΕ ΧΡΗΣΗ ΤΟΥ ΦΙΛΤΡΟΥ ΚΑΙΜΑΝ ΚΑΙ ΤΟΥ ΝΕΥΡΩΑΣΑΦΟΥΣ ΔΙΚΤΥΟΥ ΑΝFIS". Τμήμα ΗΜΜΥ, Πολυτεχνείο Κρήτης, Χανιά.
- [C3]. Δρ.Τσελές Δημήτριος. Τεχνητή Νοημοσύνη και Νεα Τεχνολογία στην υπηρεσία προβλέψεων φυσικών μεγεθών. Α.Τ.Ε.Ι Πειραιά. 4° Επιστ. Συμπόσιο "Μεγάλες στιγμές της Φυσικής" Αιγάλεω,1-3 Απριλίου 2005.
- [C4]. A.I. Dounis, D.I. Tseles, D. Bellis, M. Darachianakis."*Neuro-fuzzy network for ambient temperature prediction*". Neties 97 European Conference of Networking Entities, Ancona 1-3 October 1997.

- [C5]. A. I. Dounis, G. Nikolaou, D. Tseles. "Intelligent methodologies for meteorological parameters, forecasting: a review". Technological Education Institute of Piraeus, Athens, Greece.1st International .Scientific Conference in Information Technology & Quality.
- [C6]. Dr. A. G. Tony Pipe." *Takagi Sugeno fuzzy logic versus Mamdani fuzzy logic*". University of West England.
- [C7]. Demola Popoola ." *Fuzzy Expert Systems. CS364 Artificial Intelligence*". Department of Computing, University of Surrey.
- [C8]. D. Kim & C. Kim, "Forecasting Time Series with Genetic Fuzzy Prediction Ensemble".IEEE Tr. On Fuzzy Systems, Vol 5, No 4., Nov 1997, pp 523-535.
- [C9]. Dounis A. Tseles D., Belis D, Daratsianakis M. "Neuro-fuzzy Network for Ambient Temperature Prediction". Ancona 1997.
- [C10]. Guoqiang Zhang, B.Eddy Patuwo, Michael Y. Hu. "Forecasting with artificial neural networks: the state of art". Kent State University, Kent, Ohio, USA. 31 july 1997.
- [C11]. Heikki Koivo. "ANFIS (Adaptive Neuro-Fuzzy Inference System)". 2000
- [C12]. JYH-SHING ROGER JANG, CHUEN_TSAI SUN. "Neuro-Fuzzy Modeling and Control"., IEEE 1995.
- [C13]. K. Kalaitzakis, G.S. Stavrakakis, E.M. Anagnostakis. "Short-term load forecasting based on artificial neural networks parallel implementation". Technical University of Crete, Chania, Greece.
- [C14]. Manolis Lourakis." *A brief Description of the Levenberg Marquardt Algorithm* ". Institute of Computer Science. Heraklion, Greece. February 11, 2005
- [C15]. Mayte Farinas, Carlos Pedreira. "Mixture of experts and local-global neural networks". Catholic University of Rio de Janeiro.ESANN' 2003-Bruges(Belgium).
- [C16]. M-S.Kim,S-G Kong, "Parallel Structure Fuzzy Systems for Time Series Prediction". International Journal of Fuzzy Systems, Vol. 3, No. 1, March 2001, pp.331-340
- [C17]. Robert Jacobs, Michael Jordan Steven Nowlan, Geoffrey Hinton. "Adaptive mixtures of local experts". from Massachusetts Institute of Technology, University of Toronto.1991.
- [C18]. Ronald Scoenberg. "*Optimization with the Quasi-Newton Method*". Aptech Systems, Maple Valley. September 5, 2001.
- [C19]. Ricardo M. Trigo, Jean P. Palutikof. "Simulation of Daily temperatures for climate change scenarios over Portugal: a neural network model approach". University of East Anglia, Norwich, United Kingdom 1999.
- [C20]. Sam Roweis. "Levenberg-Marquardt Optimization".
- [C21]. Shuang Yang snd Antony Browne, "Neural network ensembles: Combining multiple models for enhanced performance using a multistage approach". University of Surrey. November 2004
- [C22]. Steven J. Nowlan and Geoffrey E. Hinton. "Evaluation of Adaptive Mixtures of Competing Experts". University of Toronto.
- [C23]. S-Y Kung, J. Taur & S-H Lin. "Synergistic Modeling and Applications of Hierarchical fuzzy Neural Networks". Proceeding of the IEEE. Sept. 1999, Vol.87, No 9, pp. 1550-1574
- [C24]. Tracey A. Bale and Khushid Ahmad. "Introducing Feedback into a Mixtureof-Experts Model". University of Surrey, Guilford,UK.